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Chapter 1 - General introduction 

 

1.1.   Introduction 

Due to their high effectivity and limited side effects, biopharmaceuticals play an increasingly 

important role in the treatment of a variety of diseases, including diabetes, metabolic disorders, and 

cancer.1 Compared to small molecules, proteins offer complex functions and specificity but also 

exhibit inherent physical and chemical instabilities.2 However, the protein’s instabilities are not 

solely determined by the intrinsic property of the sequence but largely by the buffer composition.3 

Therefore, not only a thorough developability assessment of the protein is of utmost importance, 

but also an adequate formulation development to control the protein’s stability during its lifetime.4 

Protein stability is a main quality attribute to determine the drug-like properties of a candidate 

molecule or a formulation. However, calculating the stability-indicating parameters of a 

formulation or candidate molecule can be a tedious and resource-intensive process since they are 

usually determined by a variety of experimental screens. So far, no specific parameter is universal 

to indicate stability under various stress conditions such as elevated temperatures, freeze-thaw, and 

agitation or to predict the long-term shelf-life. Especially protein aggregation is a long-standing 

issue in biopharmaceutical technology which is difficult to predict.1 Additionally, the suitability 

and predictive power of certain stability-indicating parameters have been questioned in several 

studies.5–7 In general, advanced knowledge of the protein structure, dynamics, degradation 

pathways, and protein-excipient interactions accelerates the protein developability assessment and 

formulation process. In the last years, a significant improvement in instrumentation for high-

throughput applications with minimal sample consumption could be observed. Additionally, recent 

trends to move experimental screens in silico are useful to limit or eliminate required experimental 

characterization, and to obtain new strategies and guidance to perform efficient experiments.  

Hereafter, the four “types“ of protein stability, the degradation pathways with a focus on protein 

aggregation, as well as biophysical techniques for protein characterization are discussed. 

Additionally, a short description of the common approaches for developability assessment and 

formulation development of therapeutic proteins is given. Computational tools to predict protein 

stability and aggregation parameters are also introduced as well as the application of molecular 

dynamics (MD) simulations in the field of therapeutic protein development. 
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1.2.   Protein stability and degradation pathways 

Protein stability is determined by conformational, colloidal, interfacial, and chemical stability.8 

The conformational stability of a protein is defined as the free energy change (ΔG) for the transition 

from the native (folded) state to the denatured (unfolded) state. This energy change depends on the 

three major stabilizing forces present in the protein – hydrophobic interactions, hydrogen bonding, 

and electrostatic interactions.9,10 Hydrophobic interactions in the protein lead to the formation of 

hydrophobic clusters which are especially important for the stability of larger proteins.10 However, 

burying charged residues in these nonpolar environments comes with large energetic penalties.11 

Furthermore, polar and charged residues can form hydrogen bonds which play an important role in 

protein stability, but the contribution is highly context-dependent. Nevertheless, hydrogen bonds 

by side chains and peptide groups contribute equally for both, small and large proteins.12 

Additionally, charged residues can be involved in charge−charge/ electrostatic interactions which 

can be strong even at a distance, therefore called “long-range” interactions.11 The protonation state 

of ionizable residues, and thus their electrostatic interaction potential, can be controlled either by 

alterations of the protein conformation or by changes in the solution pH. The strength of these 

electrostatic interactions can be adjusted by variations in salt concentrations.11 The native state is 

also energetically favored by the hydration of protein surface residues.13 Suboptimal conditions 

tend to weaken these stabilizing forces and favor local flexibility, leading to protein degradation. 

An important pathway of protein aggregation involves conformational alterations, partial or 

complete protein unfolding accompanied by the increased exposure of hydrophobic regions.14 

Indeed, the conformational stability of many proteins has been shown to correlate with their 

aggregation kinetics.15,16 Techniques that are commonly applied to assess the protein 

conformational stability include differential scanning calorimetry (DSC), differential scanning 

fluorimetry (DSF), circular dichroism (CD) spectroscopy, ultraviolet (UV) spectroscopy, Fourier-

transform infrared (FTIR) spectroscopy, fluorescence spectroscopy, and isothermal chemical 

denaturation (ICD).  

Colloidal stability is the tendency of protein molecules to associate in response to attractive, weak 

forces that are caused by hydrophobic surface residues and electrostatic interactions. The weak net 

interactions between protein molecules in solution are the sum of long-range electrostatic, short-

range attractive, and hard-sphere interactions.8,17 The interactions between proteins can be assessed 

with light scattering techniques. Static light scattering is used to determine the second virial 
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coefficient (B22) and dynamic light scattering to determine the protein interaction parameter (kD).18 

A positive B22 is indicative of repulsion between molecules and thus less probability for self-

association. A negative B22 indicates more attractive forces between the protein molecules where 

protein–protein interactions are favored over protein–solvent interactions. This in turn results in 

colloidal instability of the protein which could potentially lead to aggregation.14 By increasing 

protein interactions via oppositely charged regions or by interactions with ions in solution, colloidal 

stability can also contribute to aggregation.14 The aggregation onset temperature (Tagg) is a 

parameter that is often used to investigate the colloidal stability of proteins. Note that the Tagg is 

often related to the protein melting temperature (Tm) and does not only reflect on the net protein-

protein interactions. Additionally, techniques such as analytical ultracentrifugation, small angle X-

ray scattering (SAXS), nuclear magnetic resonance (NMR), precipitation with polyethylene glycol, 

and bio-layer interferometry (BLI) can be applied to determine the colloidal stability. 

The interfacial stability is related to the behavior of proteins at air-liquid, solid-liquid, or liquid-

liquid interfaces. Since many proteins are surface active, they have a high propensity to interact 

with and adsorb to different types of interfaces. This could lead to protein destabilization and 

protein loss. Due to stresses like freezing or shaking, new or larger interfaces are formed, often 

resulting in severe degradation of the protein.8,19–21 The interfacial stability is determined by 

subjecting the protein to stresses like shaking, stirring, pumping, or freeze-thaw. Subsequently, the 

samples are tested for remaining monomer in solution, aggregation, and particle formation.  

Modifications of covalent bonds, e.g., deamidation, oxidation, hydrolysis, and disulfide bond 

exchange, determine the chemical stability of a protein. Oxidation of histidine, tryptophan, 

tyrosine, methionine, and cysteine groups, as well as deamidation of Asn and Gln residues to Asp 

and Glu, are the two most common chemical degradation pathways.22 Metal ions, oxygen and light 

exposure, and high temperatures are some of the factors that accelerate oxidation. While oxidation 

is rarely affected by solution properties, the rate of deamidation is pH-dependent and exhibits a 

minimum between pH 3 and 6.8 Hydrolysis is the non-enzymatic cleavage of solvent-exposed 

peptide bonds, which is also pH and temperature dependent.23 Disulfide bond shuffling can result 

in an altered conformation of the protein leading to a loss of function.24 The chemical modifications 

are usually assessed by liquid or reversed-phase chromatography coupled to mass spectrometry, 

ion exchange chromatography, hydrophobic interaction chromatography, isoelectric focusing, and 

reduced/ non-reduced gel electrophoresis. 
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1.3.   Protein Aggregation 

Protein aggregation is a major challenge in the drug development process since it may reduce the 

biopharmaceutical’s activity and potentially lead to an immunogenic reaction in the patient.25 

Protein aggregation occurs through different pathways, either via self-association of the native state 

(native aggregation), via unfolding intermediates and unfolded states (non-native aggregation), or 

through chemical degradations.26 Several proteins can directly interact from the native state to form 

aggregates. Depending on the environmental conditions, the association can be electrostatic only 

or a combination of electrostatic and hydrophobic. Self-association often results in reversible 

oligomers/aggregates which can be precursors of irreversible aggregates.27 It must be noted that 

the association process is not limited to one specific site of the protein but can involve multiple 

aggregation-prone regions (APRs).28 It has been shown that the self-association of the native state 

is mainly related to colloidal stability. Therefore, the second virial coefficient B22 or protein 

interaction parameter kD are measures of the tendency of protein-protein self-association.26  

Aggregation through unfolding intermediates or unfolded states is on the other hand determined by 

both conformational stability, and colloidal aspects. Even at normal conditions, the native state is 

in equilibrium with a small population of unfolding intermediates which were found to be 

precursors of the aggregation process. The intermediates have more surface-exposed hydrophobic 

patches and higher flexibility compared to the folded state making them especially aggregation-

prone. In contrast, native or completely unfolded proteins show a lower aggregation propensity 

since the hydrophobic side chains are either buried in the protein core or randomly scattered. 

Aggregates containing only a few monomers are soluble but as soon as they exceed certain size 

and solubility limits, start to precipitate.26 In reality, it is difficult to differentiate between self-

association and aggregation through unfolding intermediates. This is especially challenging since 

the unfolding intermediates are poorly populated and cannot be investigated separately 

experimentally.  

For the sake of completeness, the aggregation through chemical crosslinking and degradation is 

also mentioned, even though it will not be further addressed in this thesis. The most observed 

crosslinking is the intermolecular disulfide bond formation which can further promote physical 

aggregation of proteins.29 Additionally, many chemical degradations have been shown to increase 

the aggregation propensity of proteins by changing their physical properties. For example, 
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oxidation,30 dimerization,31 deamidation,32 hydrolysis,33 and glycation34 have been shown to affect 

protein hydrophobicity, secondary and tertiary structure, and the thermodynamic barrier to protein 

unfolding. 

The (biological) consequence of protein aggregation furthermore depends on its reversibility, 

meaning the ability of the aggregates to dissociate, e.g., when changing the solution conditions to 

non-aggregation-inducing conditions. Early-stage aggregation for example tends to be reversible 

while late-stage and thermally induced aggregation are mostly irreversible.26 

1.4.   Developability assessment 

Only a small percentage of drug candidates entering development reach commercialization. Most 

candidates fail due to issues related to their design and molecular characteristics, as well as the 

applied manufacturing and delivery strategies.3 Research efforts during the discovery phase 

typically revolve around finding the best possible binder to the desired target. Due to the now 

frequent use of directed evolution and in silico tools, even more candidates with high binding 

affinities are identified. This trend requires better screening for suitable drug-like biophysical 

properties in early stages to ensure that risk of failure is detected as early as possible and as cheaply 

as possible in the development life cycle.35 In this context, the concept of developability assessment 

was introduced: Developability is a broad term covering the evaluation of the suitability of a drug 

candidate to be successfully developed regarding its ability to meet adequate quality, 

manufacturability, effectiveness, and safety requirements.3 Biophysical parameters that are more 

readily accessible are often used to predict these properties indirectly. However, it is impossible to 

measure all physicochemical and stability issues at an early development stage when large amounts 

of material are not available and there is no single property that can predict the success of a 

candidate in later clinical stages. Therefore, a combination of various methods which require low 

sample amounts is used to flag variants with unfavorable biophysical properties.36 These properties 

include specificity, solubility, colloidal stability, conformational stability, resistance to 

aggregation, interfacial stability, and chemical stability.37 Lately, several computational methods 

have emerged that aim to predict these properties from the sequence or the 3-dimensional structure 

of the protein.38 These are partly discussed later in this chapter. The in silico approach greatly 

reduces the number of required lab experiments which saves time and precious material. However, 

it is still not possible to reliably predict all physicochemical properties from the sequence. 
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Especially the propensity of non-native protein aggregation and poor conformational stability are 

hard to predict. Additionally, the computational tools rarely take into account the influence of 

different formulation components. However, the predictions from sequences, including the effect 

of formulation conditions, are expected to improve drastically as new large experimental datasets 

emerge.37 Particularly, new approaches combining machine learning (ML) with high-throughput 

experimental techniques are promising screening tools for developability assessment.36 

1.5.   Formulation development 

Formulation development is a critical step in the development of a commercial protein product to 

prevent damage to the protein during production, processing, and long-term storage. One primary 

aim is to find optimized solution conditions that ensure that all four types of protein stability are 

sufficiently high. It has been demonstrated over decades that there is no general approach to 

stabilizing proteins and that each protein requires a customized formulation.22,39 Therefore, a wide 

variety of excipients such as buffering agents, sugars, salts, amino acids, and surfactants is usually 

screened to identify a stable formulation.40 These are part of a library of generally regarded as safe 

(GRAS) excipients.41 Their efficiency has been evaluated in various experiments, and different 

stabilizing mechanisms have been proposed.  

The most important solution factor is pH. The pH influences protein stability by controlling the 

surface charge, which can affect conformational and colloidal stability. In turn, it can significantly 

enhance or reduce protein aggregation and the rate of chemical degradations, e.g. deamidation and 

hydrolysis.8 Additionally, the addition of salts or modifications in the ionic strength can control the 

protein stability by neutralization of the protein surface charge, also called charge-screening effect. 

This leads to enhanced hydrophobic interactions between the monomers.42 Excipients that enhance 

conformational stability shift the equilibrium from the non-native to the native state of the protein, 

thereby decreasing the concentration of unfolded or partly unfolded aggregation-prone species in 

solution.16 This can be achieved by either preferential binding to the native state or preferential 

exclusion from the protein surface.43 For proteins prone to oxidation, the formulation often contains 

antioxidants such as ascorbic acid or sacrificial additives such as methionine.8 Nonionic surfactants 

such as PS 20 and PS 80 are often used to reduce interfacial stress and to prevent adsorption, protein 

denaturation, and aggregation at interfaces.8 However, if the formulation is not properly designed, 

excipients might even have a detrimental effect.44 Thus, understanding protein degradation 
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pathways, especially aggregation, and protein-excipient interactions is fundamental to designing 

optimized formulations. Unfortunately, our current knowledge about the interplay between protein 

structure, formulation, and stability is limited. 

1.6.   Computational tools 

In recent years, the availability of increasingly powerful computers and algorithms enabled the 

development of computational methods that aim to predict and optimize important protein 

properties. Various predictive tools are available to assess different aspects of developability, 

including aggregation propensity, developability potential, and solubility. Many of these tools, 

especially those focusing on the prediction of aggregation propensity, have recently been 

reviewed.38,45,46 In silico tools for protein aggregation can be classified into aggregation-prone 

region (APR) and aggregation propensity predictors, and aggregation kinetics predictors. The 

approaches to predict APRs and aggregation propensity can be further divided into tools that 

require only the amino acid sequence as input and tools that use the 3-dimensional structure of the 

protein for the prediction.46  

Sequence-based prediction tools include for example CamSol, AGGRESCAN, Zyggregator, Pafig, 

PAGE, WALTZ, SALSA β-strand contiguity, TANGO, SecStr, NetCSSP, PASTA, and 

AMYLPRED2. The different algorithms are based on different aggregation propensity scales for 

amino acids. These are determined from in vivo experiments, α-helix and β-sheet propensity, 

hydrophobicity, charge, the presence of gatekeeper residues, physicochemical properties, hydrogen 

bond probabilities, residue interactions, and solvation energies, to name a few. The structure-based 

prediction tools include SAP, DI, AGGRESCAN3D 2.0, Protein-Sol, and structurally corrected 

CamSol and are based on accessible surface area and surface patches. More detailed information 

on the algorithms can be found in the above-mentioned reviews.  

The application of such predictive methods offers a time- and cost-effective complement or even 

an alternative to tedious experiments. Furthermore, in silico tools allow a potentially unlimited 

throughput, and many sequences can be screened in parallel. However, computational tools are 

only as good as the underlying data used to build them. Therefore, it must always be considered 

that the predictive accuracy can be low.3 Furthermore, sequence-based predictors usually neglect 

the effect of the folded structure on the parameter they are predicting. Globular proteins commonly 

possess large aggregation-prone regions, which drive the folding process and are buried in the 
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protein core in the native state.45 Structure-based predictors correct for these buried APRs; 

however, experimental structures are usually not available at early development stages. Therefore, 

structures can be modeled with different tools, e.g. MODELLER, AlphaFold, or MOE. It must be 

noted though, that structure-based prediction tools can be sensitive to errors in the atomic 

coordinates. The CamSol structurally corrected method was for example shown to only be sensitive 

to residue solvent exposure so that the prediction did not change substantially depending on which 

model was selected as input.45 

1.7.   Molecular dynamics (MD) simulations 

MD simulations have become an indispensable complement to experiment, as they can in principle 

provide molecular mechanistic insights into the (thermodynamic) properties of proteins and even 

protein function over limited timescales.47,48 They can help interpret experiments, explain 

unexpected results, and guide experiments. MD simulations mimic the protein's behavior in real 

life on a molecular level, like a molecular microscope for properties that cannot be observed 

experimentally due to very short time and very small spatial scales. Proteins can adopt numerous 

conformational states, described by atomic coordinates and energy levels, which are organized in 

the energy landscape.49 Exploring this energy landscape enables the observation of structural 

fluctuations over time.50 However, MD simulations are dependent on a suitable energy function to 

describe this energy landscape: atoms are described as charged points connected by springs 

corresponding to bonds. The forces that are exerted on individual atoms are defined by a molecular 

mechanics force field which is developed to reproduce experimental data.51 The force field contains 

contributions of many terms that represent different types of interactions between the atoms of the 

protein including bond energy, bond angles, dihedral angles, improper dihedral angles, Van der 

Waals, electrostatic interactions, and hydrogen bonds. Based on the positions of the other atoms, 

the force experienced by each atom is determined. This force is used to numerically solve the 

classical equation of motion (Newton‘s equation), calculate accelerations and velocities, and 

update the atom coordinates.52 This results in a sequence of conformations (“frames”) explored 

over time, containing atomic positions, velocities, and single-point energies, called “trajectory”. If 

the simulation was run long enough, the average of the trajectory that reached convergence 

describes a statistical ensemble of the simulated molecular system. Thus, statistical mechanics can 

be applied to connect the distribution and motions of atoms to macroscopic observables for 
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example molecular size and shape, flexibilities, interactions with other molecules, and the relative 

frequency of one state or conformation compared to another.50,53 

In this thesis, the AMBER biomolecular simulation package with AMBER force fields was used 

for all-atom MD simulations.54 It must be noted that covalent bonds cannot break or form during 

MD simulations, even though some bonds form and break more frequently in real life, e.g. disulfide 

bridges. Furthermore, as the integration of movement is done numerically, time steps shorter than 

the fastest movements in the molecule must be used. This in turn limits the simulation time and 

thus full sampling of the conformational states on biologically relevant timescales.53 This is also 

relevant for MD simulations to evaluate protein folding or aggregation processes, which exceed 

the commonly possible simulation times. Due to their large computational cost, atomistic 

simulations are not applied to evaluate these processes. Instead, the computational burden is 

reduced at the cost of accuracy and structural resolution by employing coarse-grained (CG) models. 

CG models consist of beads describing an approximated collective property of multiple atoms in 

the protein. For these simulations, the GROMACS software was employed in combination with 

the SIRAH force field.55,56 The explicit water model contains four beads in a tetrahedral shape, 

while the protein backbones are described with three beads that represent the nitrogen, α-carbon, 

and oxygen part. The protein side chains are described as one to five beads, depending on the 

physicochemical properties.56 

1.8.   Aim and outline of the thesis 

This thesis aimed to assess the potential of computational tools and MD simulations in the context 

of developability assessment and formulation development. All computational results were 

validated with experimental data using common biophysical characterization techniques relevant 

to developability assessment and formulation development. The current strategy in the 

development of therapeutic proteins consists of a thorough characterization of the protein structure, 

stability, and degradation pathways via extensive experimental screens. Recently, computational 

tools have gained increased importance in biotherapeutic technology. MD simulations can be used 

to explain observations during experimental formulation work to improve the future design of 

experiments and obtain new ideas for formulations. The ultimate goal is to use reliable predictive 

computational tools to dramatically reduce experimental excipient screens.  
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In Chapter 2 and Chapter 3, available web servers were applied for developability assessment and 

the results were compared to experimentally determined stability data of 13 monoclonal antibodies 

and 68 nanobodies. Additionally, structural models of the proteins were generated and used for 

structure-based predictions which were critically compared to the experimental results. Since these 

web servers only consider aggregation from the native state and several studies revealed that the 

most critical factor for long-term stability is non-native aggregation, MD simulations at elevated 

temperatures were applied to generate the partially unfolded, reactive species responsible for this 

degradation mechanism. These altered conformations were then examined for their aggregation 

propensity.  

In Chapter 4, the pH-dependent aggregation mechanism of granulocyte colony-stimulating factor 

(G-CSF) was elucidated by combining experimental characterization of the protein at three pH 

values on a structural level and all-atom simulations, metadynamics simulations, and coarse-

grained MD simulations.  

In Chapter 5, the different effects of the zwitterionic buffer HEPES on G-CSF at various 

concentrations and under different stress conditions were elucidated by biophysical 

characterization and the evaluation of HEPES binding to the protein in MD simulations.  

In Chapter 6, the stabilization of a novel recombinant bacteriophage lysin by HEPES and other 

Good’s buffers was explained experimentally and by examining excipient binding and subsequent 

conformational changes in MD simulations.  

In Chapter 7, the stability of the anti-MYC mini-protein Omomyc at different pH values and ionic 

strengths was assessed employing molecular mechanics Poisson–Boltzmann surface area (MM-

PBSA) calculations and structural characterization. Additionally, the influence of phosphate anions 

on protein folding and reentrant condensation was explained on a molecular level.  

Finally, Chapter 8 provides a summary of the presented results on the application of MD 

simulations in developability assessment and formulation development in the context of the current 

state of the art and an outlook on the future benefit of using computational methods to reduce 

experimental effort. 
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2.1   Introduction 

Nanobodies are derived from the variable binding domains of camelid heavy-chain antibodies 

(VHH) and exhibit unique properties, making them attractive research tools, diagnostics, and 

therapeutics.1 Several nanobodies against various targets can be identified through animal 

immunization and in vitro methods like phage display. Screening for enriched phages is typically 

sufficient for the initial selection of binders, a more thorough characterization is however necessary 

to identify nanobodies with critical features like high thermal stability, low aggregation propensity, 

and high specificity.2,3 Nanobodies have been reported to generally have high solubility and high 

resistance to thermal unfolding with melting temperatures ranging from 60 to 80 °C.4,5 While 

several nanobodies have shown reversible thermal unfolding,5 others are unable to refold to their 

native conformations. Instead, the partially unfolded species tend to aggregate, which is known as 

non-native aggregation.6 The absence of aggregation below the onset temperature of unfolding 

furthermore highlights that protein unfolding represents the rate-limiting step in the aggregation 

process of these nanobodies.7 To identify aggregation-resistant molecules, strategies often focus 

on selecting candidates with high melting temperatures, which indicate a small population of 

unfolded species. However, not all partially unfolded species are equally prone to aggregation.8 To 

answer the question, if and how these partially unfolded species are involved in the aggregation 

mechanisms, it is necessary to understand the key features of nanobodies that show reversible 

thermal unfolding and of those that aggregate.  

Compared to conventional mAbs, nanobodies have a convex paratope shape due to different CDR1 

and CDR2 conformations, and CDR3 loops of unusual lengths.9 These features allow them to target 

hidden epitopes in small cavities, e.g., active sites of enzymes, with high affinity and specificity. 

In exchange for the divergent CDR conformations, nanobodies sacrifice effective packing of the 

upper core and therefore some of their thermodynamic stability.5 However, non-canonical disulfide 

bridges formed between Cys residues of CDR1 and CDR3, have been reported to contribute to high 

thermodynamic stability and good solubility.3,7 Increased solubility is further achieved by 

substitution of hydrophobic residues in the FR2 region (corresponding to the VH-VL interface in 

mAbs) to more hydrophilic residues in nanobodies.5 Moreover, the long CDR3 loops shield 

hydrophobic residues in FR2 and help to mask Trp118, which is key for VH-VL interaction.3 All 

these specific features reveal that, despite their small size of ~15 kDa, nanobodies are highly 

complex molecules, with every amino acid potentially having a direct or indirect impact on the 
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stability, structural integrity, and antigen-binding. This complex interplay of residues restricts the 

extent to which engineering can be tolerated.1 The development of nanobodies with optimal 

stability profiles thus far involved shielding of aggregation-prone regions, increasing charge 

repulsion, and fine-tuning structural dynamics to prevent the formation of aggregation-prone 

conformations.7 However, the molecular determinants responsible for favorable thermal properties, 

reversible unfolding or aggregation are not yet fully understood. We aim to get insights into the 

underlying mechanisms by thorough in silico characterization. Kunz et al. kindly provided the 

sequences and experimental data of a dataset of 68 nanobodies including melting temperatures 

(Tm), onset temperatures of aggregation (Tagg), and aggregation kinetics for selected nanobodies. 

In this study, 78 % of the investigated nanobodies showed aggregation during thermal unfolding.7,10  

To potentially identify sequence features that could discriminate well- from poor-behaving 

nanobodies, we first performed a multiple sequence alignment and compared the amino acid 

compositions. In a second step, we selected publicly available aggregation prediction tools, which 

are easily applicable to our dataset for a comparative study, to predict aggregation propensities and 

aggregation-prone regions (APRs) of the proteins. We applied a sequence-based consensus 

approach with outputs from AGGRESCAN, NetCSSP, AmyloidMutants, Pafig, Amyloidogenic 

Pattern, SecStr, Average Packing Density, TANGO, β-strand contiguity, WALTZ, Hexapeptide 

Conformational Energy, and the intrinsic solubility profiles calculated with CamSol.11 

Additionally, sequence-based solubility scores from Tango, AGGRESCAN, CamSol and the 

Protein-Sol webserver12 were compared to the experimental data. In the third step, we used 

AlphaFold2 to predict the structures of all 68 nanobodies from their sequences. For a structure-

based aggregation prediction we applied AGGRESCAN3D 2.013 and the structurally corrected 

CamSol score. Furthermore, the ratio of hydrophobic to total solvent accessible surface area 

(SASA) and the number of hydrophobic clusters were compared.   

It is important to note that the differences captured with these in silico techniques are features of 

the native folded proteins. As discussed earlier, unfolding of the nanobodies is the rate-limiting 

step in the aggregation process. In the fourth step, we therefore estimated the overall protein 

stability with the Rosetta all-atom energy function.14 Nevertheless, not only the resistance to 

unfolding but also the aggregation propensity of the partially unfolded species must be considered. 

As a result, the final step in our approach was to perform molecular dynamics (MD) simulations to 

obtain partially unfolded species of the nanobodies and to assess their aggregation propensities.  
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2.2. Materials and methods 

2.2.1. Sequence-based analyses 

The sequences and experimental data were provided by Kunz et al.7 A multiple sequence alignment 

was generated with Clustal Omega.15 The theoretical pIs were calculated with the ProtParam tool 

of ExPASy (http://www.expasy.ch/tools/protparam.html).16 The hydropathy of each nanobody was 

calculated based on the values proposed by Kyte and Doolittle.17 The web tool AMYLPRED218 

(http://biophysics.biol.uoa.gr/AMYLPRED2) was applied, including the following methods: 

AGGRESCAN, AmyloidMutants, Amyloidogenic Pattern, Average Packing Density, Beta-strand 

contiguity, Hexapeptide Conformational Energy, NetCSSP, Pafig, SecStr, Tango, and Waltz. In 

addition to the AMYLPRED2 results, intrinsic solubility profiles calculated with CamSol11 

(https://www-cohsoftware.ch.cam.ac.uk/index.php/camsolintrinsic) at pH 7.0 were considered in a 

consensus approach. Each amino acid residue was assigned a score of 1 if the algorithm predicted 

that residue to be aggregation-prone and a score of 0 if not. The sum of these scores per residue 

was calculated as the total score. Since 11 prediction algorithms were used, the maximum score for 

a given residue was 11. Any residue with a total score of ≥ 6 was defined to be aggregation-prone 

in this study. Additionally, sequence-based solubility scores from AGGRESCAN, Tango, CamSol, 

and the Protein-Sol webserver12 (https://protein-sol.manchester.ac.uk) were determined. 

2.2.2. Structure prediction using AlphaFold2 

The structures of the 68 nanobodies are not available in the PDB. We therefore used the AlphaFold2 

notebook on Google Collaboratory (ColabFold)19 to predict their 3D structures. The notebook 

requires FASTA-sequences as input, generates a multiple-sequence alignment (MSA) and uses this 

to predict the models. We used the default settings of three recycles, meaning that the prediction is 

fed through the model three times, and relaxation of the predicted structures using amber force 

fields. The notebook generates five models and ranks them based on two measures of confidence. 

The local reliability (predicted local-distance difference test, pLDDT) and the reliability of 

pairwise interactions between different residues in the chain.19 We selected the best ranked model, 

relaxed the structure with the Rosetta20 FastRelax mover and the scoring function ref2015 on 

Google Collaboratory, and used the output for further analyses. For comparison, the RMSDs for 

each pair of nanobodies was calculated using PyMOL.  
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2.2.3. Structure-based aggregation and stability predictions 

We used AGGRESCAN3D 2.013 and the structurally corrected CamSol score at pH 7 and with a 

patch radius of 10 Å. Furthermore, the ratio of hydrophobic to total solvent accessible surface area 

(SASA) was calculated with the molecular visualization program VMD.21 Hydrophobic residues 

are packed inside the protein core and form clusters, which drive protein folding and stability. 

Additionally, hydrogen bond networks between multiple sidechains impact protein stability. The 

hydrophobic clusters were determined with ProteinTools.22 The number of hydrophobic clusters 

was counted, and the total area calculated. Scoring of the structures with the Rosetta score function 

ref2015 on Google Collaboratory gave an estimation of the protein’s stability. While a lower 

scoring structure is more likely to be stable, the scores do not have a direct conversion to physical 

energy units like kcal/mol. The energies are instead represented in Rosetta Energy Units (REU).  

2.2.4. MD simulations  

All-atom simulations were performed with the Amber19 program in a periodic box with explicit 

solvent.23 The ff14SB force field for proteins was employed in combination with the TIP3P water 

model. The protonation states of ionizable residues at pH 7.2 were adjusted using the H ++ server.24 

All bonds involving hydrogen atoms were constrained using the SHAKE algorithm. The 

nonbonded electrostatic interactions were treated using the particle mesh Ewald algorithm with a 

direct space cut-off of 10 Å. The models of the nanobodies were solvated in a truncated octahedral 

water box with a layer of at least 20 Å from the protein surface and neutralized with chloride or 

sodium ions. The system was energy minimized with the steepest descent algorithm for the first 

5000 cycles, followed by 5000 cycles, using the conjugate gradient method. Subsequently, the 

system was heated to 450 K in an NVT ensemble. System equilibration was carried out for 1 ns in 

NVT ensemble to stabilize the specified temperature using the Langevin thermostat, and 

subsequently for 1 ns in NPT ensemble to adjust the density of the system using the Berendsen 

barostat. The simulations were performed for 100 ns with a time step of 1 fs. The coordinates were 

saved every 5 ps. Trajectories were visually inspected in VMD to verify that there are no 

dimensional constraints due to the chosen box size and shape. All trajectories were analyzed using 

the CPPTRAJ module of Amber19. The last frame of each simulation was saved as a PDB file and 

analyzed with A3D 2.0 and CamSol. The root-mean square fluctuations per residue were compared 

with the predicted sequence-based APRs.  
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2.3. Results and discussion 

2.3.1. Experimental dataset 

The dataset in our study includes 68 nanobodies with a wide range of thermal stabilities with Tms 

ranging from ~ 48 °C to ~ 86 °C (Figure S1). The Tms have been measured with two techniques: 

thermal shift assay with SYPRO® orange and intrinsic fluorescence-based nanoDSF. The 

determined values from the two techniques show a strong correlation with a Pearson’s r of 0.88. 

We therefore only consider the Tm Sypro in the following comparisons with the in silico data. 

nanoDSF measurements simultaneously determined the onset temperatures of unfolding (Ton) and 

onset temperatures of aggregation (Tagg) detected by the backscattering optics of the device. 

Additionally, the ΔTm shift has been determined, which is specified as the difference in Tm between 

low (13.1 µM) and high (32.72 µM) protein concentration. The aim of our study was to explain the 

different thermal stabilities and aggregation propensities of the nanobodies on a molecular level 

and potentially guide further engineering efforts with our findings. We therefore used a sequence- 

and structure-based approach and additionally included MD simulations to account for the impact 

of partially unfolded species.  

2.3.2. Sequence-based approaches to explain the thermal stabilities of nanobodies 

First, we performed a multiple sequence alignment of all 68 nanobodies and compared their 

sequence homologies. We found homologies ranging from ~ 53 % to ~ 99 % for the full sequences 

(FS) (Figure S2) and ~ 62 % to ~ 99 % for the framework regions (FR) only (Figure S3). These 

findings show that, besides the naturally high variability of the CDRs, the usually conserved 

framework regions contain several variations in this dataset. Interestingly, high sequence homology 

to an experimentally well behaving nanobody does not necessarily result in the same high thermal 

stability. An example for this is the nanobody pair NbPep39 and NbD8, sharing a sequence 

homology of ~ 82 % (FS) and ~ 91 % (FR) but a difference in Tm of ~ 30 °C. Strikingly, NbD7 has 

a very low sequence similarity to all other nanobodies in the dataset. Overall, there is no trend in 

sequence homology and stability revealing a diverse set of nanobodies in this study.  

Next, we compared the frequencies of cysteines and charged residues within the nanobodies to find 

a correlation to their respective stabilities (Figure 1). As already described by Kunz et al., there is 

a weak correlation between the number of cysteines, thus disulfide bridges, and the thermal 

stabilities of the nanobodies.7 Furthermore, electrostatic interactions have been shown to play a 
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key role in protein aggregation. “Supercharging” proteins to have an increased net charge was 

reported to prevent aggregation of partially unfolded states and to promote refolding. For example, 

after high temperature exposure of a supercharged scFV variant, it refolds and retains epitope 

binding.25 We therefore calculated the number of positively and negatively charged residues but 

only find weak correlations with the thermal stabilities. It must be noted that the experimental data 

is largely influenced by the pH and ionic strength. The relatively high ionic strength of the PBS 

buffer may have screened the electrostatic interactions. Additionally, the net charge, rather than the 

number of charged residues seems to be a better determinant of aggregation propensity, according 

to literature.26 Thus, we conducted more thorough analyses of the nanobody sequences in the next 

step. 

 

Figure 1: Fraction of cysteines, negatively charged and positively charged residues within each 

nanobody sequence compared to the experimentally determined Tm and Tagg values. The Pearson correlation 

coefficients were calculated with Origin 2019.  

We evaluated sequence-derived metrics including the isoelectric points (pI), hydropathies and β-

sheet propensities. To predict aggregation propensities and APRs of proteins, several 

computational methods have been developed. Depending on the input required for the prediction, 

these methods can be classified as sequence- or structure-based. While certain APR predictors are 

based on common features, e.g., amino acid hydrophobicity and β‐sheet propensity, others differ 
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in their underlying principles. Detailed explanations of each of these predictors can be found in the 

review by Prabakaran et al.27 Here, we used the ProteinSol, Tango, AGGRESCAN and CamSol 

webservers and compared the calculated data to the experimental data (Figure 2).  

 

Figure 2: Correlation of sequence-derived molecular features including pI, hydropathy, β-sheet, and 

aggregation propensities with the thermal stability data of the 68 nanobodies. The Pearson correlation 

coefficients were calculated with Origin 2019. 

It is known that proteins are least soluble at their pIs, where they have a net charge of zero. Most 

of the nanobodies in the dataset have a basic pI ≥ 8.5 showing a wide range of Tms and Taggs. 

Surprisingly, the nanobodies with a pI close to the buffer pH of 7.5, still show relatively good 

behavior. There is no obvious correlation between the pI and thermal stability in this dataset. Next, 

the total hydropathy is calculated based on the hydropathy indices of each amino acid representing 

the hydrophobic or hydrophilic properties of the sidechains, as proposed by Kyte and Doolittle.17 
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The larger the hydropathy score, the more hydrophobic the molecule. Interestingly, we observe a 

moderate positive correlation of the hydropathy with the Tm values (R=0.41). This can potentially 

be explained by the formation of hydrophobic clusters and a better packing of the hydrophobic 

core, which in turn stabilizes the overall fold of the nanobody. On the other hand, more hydrophobic 

proteins tend to have a higher aggregation propensity. However, we again see a weak positive 

correlation of the hydropathy with the Tagg values (R=0.21) indicating that a high hydropathy leads 

to protein stabilization and thus prevents protein aggregation. Additionally, β‐sheet propensity is 

another leading determinant of protein stability and aggregation.26 The propensity of the amino 

acid residues to adopt α-helical or β-structural conformations has been used to calculate the overall 

propensity of the sequence to form a β‐sheet structure. In this dataset, the β‐sheet propensity does 

not correlate with the thermal stabilities.  

To evaluate the aggregation propensities of the sequences, we selected publicly available 

aggregation prediction tools that are easily applicable to our dataset for a comparative study. Again, 

we compared the calculated overall aggregation scores with the experimental data. A ProteinSol 

solubility value >0.45 is predicted to have a higher solubility than the average soluble E. coli 

protein, meaning the higher the score, the more soluble the protein. As expected, there is no 

correlation with the Tm values but to our surprise a weak negative correlation with the Tagg values. 

Considering that a high ProteinSol score indicates higher solubility, we expected a positive 

correlation. However, the ProteinSol scores show a moderate correlation with the pI and a weak 

correlation with the β‐sheet propensity, reflecting on the underlying algorithm, but no correlation 

with any of the other aggregation predictors. Since a higher Tango score indicates a higher 

aggregation propensity, a positive correlation is expected. However, there is no correlation with 

the experimental data. The AGGRESCAN score is calculated based on the hydropathy of the 

molecule which explains the strong correlation (R=0.79) of these values. A positive AGGRESCAN 

score per residue indicates aggregation propensity, whereas residues with no aggregation 

propensity are assigned a negative score. Overall, soluble molecules have a highly negative 

AGGRESCAN score whereas more aggregation prone proteins have higher AGGRESCAN scores. 

In contrast to the expectations, a positive correlation with the Tm (R=0.40) values is detected. This 

might indicate that the predicted APRs reside within the β‐sheets in the core, and thus stabilize the 

structure. At last, we calculated the intrinsic CamSol scores for each nanobody. Negative scores 

reflect on low solubility and high scores on good solubility which should result in a positive 
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correlation with the Tagg values. Again, no correlation can be observed with the experimental data. 

Nevertheless, the predictors AGGRESCAN, Tango, and Camsol show good correlations among 

each other.  

Since the total aggregation scores could not explain the different aggregation behaviors in the 

dataset, a more detailed analysis was conducted. We used a consensus-approach with 11 APR 

predictors to determine the aggregation-prone residues in each sequence (Figure 3). This approach 

might lead to more reliable predictions, since the individual predictors were trained against 

different data sets. A residue is either predicted as aggregation-prone (value of 1) or not 

aggregation-prone (value of 0) by the different algorithms. A cumulative representation of these 

APR predictions per residue for NbD5 is shown in Figure 3a. If a residue reaches the threshold of 

6 positive predictions, it is counted as aggregation prone. The total APR score is the sum of residues 

predicted as aggregation prone within the sequence. These scores were compared to the 

experimental data (Figure 3b, c). Nanobodies with high APR scores should show lower aggregation 

onset temperatures, resulting in a negative correlation. However, there is again no correlation with 

the experimental data. Previous work has shown that a significant fraction of sequence-based APRs 

is predicted in β‐strands.28 Thus, in the native folded state, several of the APRs are not solvent 

exposed but could potentially contribute to non-native aggregation upon unfolding. To better 

understand the position of the APRs in the native protein, we analyzed the 68 nanobodies on a 

structure-based level.   

 

Figure 3: Consensus APR prediction on a residue level with 11 publicly available aggregation 

prediction tools. (a) Example of a cumulative representation of residues in NbD5 predicted as either 

aggregation-prone or not aggregation-prone by the different algorithms with those reaching the threshold of 

6 (horizontal line) colored in blue. (b) Correlation of the total APR score per nanobody with the Tm and (c) 

the Tagg values. The Pearson’s R is calculated with Origin 2019. 
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2.3.3. Structure-based prediction of aggregation propensity and protein stability  

Since the structures of the nanobodies are not available in the PDB, we used AlphaFold2 to predict 

the protein structures from their sequences. The bottleneck of structure prediction of mAbs and 

nanobodies has thus far been the low accuracy of CDR loop modeling, especially CDR-H3 due to 

its increased diversity in sequence and length.29 AlphaFold2 has been successful in addressing this 

challenge. In a comparison of four methods for nanobody structure prediction, AlphaFold showed 

highest accuracy, especially for CDR3 loops with an average RMSD of 2.9 Å. In contrast to the 

other evaluated methods, AlphaFold could even predict structured loops.30 Here, five models were 

generated per nanobody and ranked based on two measures of confidence: the local reliability 

(predicted local-distance difference test, pLDDT) and the reliability of pairwise interactions 

between different residues in the chain.19 The highest ranking structure for each nanobody was 

selected and subsequently energy minimized with Rosetta.20 As expected, the framework regions 

for all nanobodies have been modeled with very high confidence whereas there are varying 

confidence levels in the modeling of the CDRs (Figure 4). For 15 of the 68 nanobodies, the CDRs 

could be confidently modeled while for the remaining 53 nanobodies the CDRs show low 

confidence. Clearly, shorter CDR loops could be modeled with more accuracy, e.g., in NbD4, than 

the longer loops in e.g., NbPep4. However, NbPep14 contains a long CDR3 loop which shows a 

confidence between 70 and 90 %. In total, 59 of the 68 nanobodies show an overall pLDDT >90, 

the remaining 9 nanobodies are still predicted confident with the lowest pLDDT of 87.8 % (Table 

S1). Several of the nanobodies with long CDR3s showed the above-mentioned shielding of the 

former VH-VL interface, e.g., NbPep4. This in turn should reduce their hydrophobic surface area 

and thus aggregation propensity. 
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Figure 4: Examples of AlphaFold2 models of nanobodies NbD4, NbPep14, and NbPep4. AlphaFold 

produces a per-residue score (pLDDT) between 0 and 100. The confidence of the pLDDT is indicated by 

the color code. The framework regions have a very high model confidence, whereas the CDRs have been 

modeled confidently for 15 of the nanobodies in the dataset and with low confidence for the remaining 53 

nanobodies.  

To investigate whether structure homology can indicate the stability of a nanobody, we determined 

the RMSD between each pair of nanobodies based on the full structure and the framework region 

only (Figure S4, Figure S5). As for the sequence homologies, a high structure similarity does not 

necessarily result in the same stability behavior. A few well-performing nanobodies share a similar 

structure which is however also adopted by less well-behaving molecules in the dataset. Overall, 

there is again no visible trend. Interestingly, NbD7 which had the lowest sequence homology within 

the dataset, has a relatively high structure homology.  

As explained above, buried APRs cannot contribute to aggregation of the native state. We 

highlighted the predicted APRs in the example structure of NbPep39 to better reflect on the 

positions within the 3D structure (Figure 5a). In this case, it becomes obvious that the APRs are all 

located in β‐strands which typically form the core of the nanobody. Next, we calculated the solvent 

exposure of each residue in the structure and performed an overlay with the predicted APRs (Figure 

5b). The APRs perfectly match with the least solvent exposed regions of the molecule. This proves 

that the aggregation propensity calculated based on the primary sequence alone, does not reflect on 

the aggregation of the native state. Consequently, the total APR solvent exposure per nanobody 

was calculated as the sum of the solvent exposure of each APR. Again, a comparison with the 

experimental Tagg values does not show any correlation (Figure 5c).  
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Figure 5: Solvent exposure of sequence-based APRs. (a) APRs predicted from the primary sequence of 

NbPep39 (colored in blue) comprise residues in the β‐strands. (b) The predicted APRs of NbPep39 in the 

β‐strands are not solvent exposed in the native state. (c) Total solvent exposure of sequence-based APRs for 

each nanobody does not correlate with Tagg.  

Several computational methods have been applied to predict the aggregation propensities and 

stabilities of proteins on a structure-based level (Figure 6). We used AGGRESCAN3D 2.0 and the 

structurally corrected CamSol webserver to predict the aggregation propensities. These webservers 

have previously successfully been used in the selection of aggregation-resistant antibodies and 

other proteins.31 As already seen for the sequence-based analysis with AGGRESCAN and CamSol, 

the two techniques are not able to explain the different thermal stabilities of the nanobodies. Again, 

Camsol does not show any correlation while AGGRESCAN 3D shows a moderate positive 

correlation with the Tms and a weak positive correlation with the Tagg values, which was expected 

to be negative. Furthermore, the ratio of hydrophobic to total SASA was calculated to give an 

estimate of the hydrophobicity of the surface. Surprisingly, we again observe a weak positive 

correlation with the experimental data. In theory, more hydrophobic surfaces would lead to more 

association of monomers, thus aggregation. Usually, hydrophobic residues are tightly packed into 

the protein core and form clusters, which drive protein folding and stability. We therefore evaluated 

the number of hydrophobic clusters within each structure but could not find an explanation for 

increased stability. Since the experimental data showed that aggregation only occurs after 

unfolding of the molecules, we were interested if the stability of the protein can be a predictor for 

aggregation-resistance. For an estimate of the protein stability, we scored the structures with a 

Rosetta energy function. It must be noted that a lower scoring structure is more likely to be stable, 

but the scores do not have a direct conversion to physical energy units.14 However, for a relative 
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comparison of the molecules in this dataset, the determined energy values can be applied. Here, we 

find a weak negative correlation with the Tms but no correlation with the Tagg values. As expected, 

the Rosetta score does not correlate with any of the aggregation prediction methods. In the end, 

none of the approaches thus far led to a satisfying explanation or prediction of the thermal stability 

or aggregation behavior of the nanobodies in the dataset.  

 

Figure 6: Correlation of the structure-derived features including the Rosetta energy score, the ratio of 

non-polar/polar solvent accessible surface area (SASA), the number of hydrophobic clusters, and the 

aggregation propensities determined with the structurally corrected CamSol and the AGGRESCAN3D 2.0 

webservers. The Pearson correlation coefficients were calculated with Origin 2019. 
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2.3.4. Partially unfolded species in the aggregation process of nanobodies 

Since the nanobodies do not show native but non-native aggregation in the experiments, the impact 

of partially unfolded species must be evaluated. Therefore, we performed MD simulations at 

elevated temperatures (450 K) to obtain partially unfolded species in silico and analyzed their 

aggregation potential with the previously applied approaches (Figure 7).  

A slight decrease in β‐sheet structure but no significant unfolding events can be observed after the 

100 ns simulation at 450 K. The final frame of each simulation was submitted to the CamSol and 

AGGRESCAN 3D 2.0 webservers, and the solvent exposure of the consensus APRs was calculated 

for the partially unfolded species. A comparison with the experimental data again showed no 

correlation with the CamSol scores and a moderate positive correlation with the AGGRESCAN 

3D 2.0 scores, which was expected to be negative. As could be seen before, the in silico tools show 

a better correlation among each other. Interestingly, the solvent exposure of the consensus APRs 

even decreased for some of the nanobodies, indicating that the structures were potentially not fully 

energy minimized. Nevertheless, this approach could not explain the different stability behaviors 

of the nanobodies. This could be because the simulations were not conducted long enough to 

achieve significant unfolding of the structures. Since we could not find any correlation between the 

experimental data and the in silico tools while these show good correlation among each other, a 

hypothesis is that the experimental conditions may influence the Tm and Tagg results, making a 

direct comparison impossible. First, the investigated nanobodies in the dataset were produced with 

different tags (HA-tag and Myc-tag) which add additional 9 or 10 amino acid residues to each 

sequence. Depending on the length of the nanobody, these additional residues comprise between 

6.7 and 8.8 % of the full sequence which can have a significant impact on the stability and 

aggregation propensity. Especially since the tag sequences contain charged and polar residues 

which can be involved in intra- and intermolecular interactions. These tags have not been accounted 

for in the computational assessment. Furthermore, the experimental work has been performed in 

PBS buffer, which has a high ionic strength and can screen potential electrostatic effects which are 

included in the in silico scores. Additionally, phosphate anions can directly interact with residues 

on the surface of proteins and thus alter their self-association behavior.  
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Figure 7: Aggregation propensities of partially unfolded species generated by MD simulations at 450 

K do not correlate with the experimental data. The Pearson correlation coefficients were calculated with 

Origin 2019. 
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2.4. Conclusions 

In this work we carried out a quantitative comparison between various computational methods of 

assessing nanobody thermal stability and aggregation propensity, including selected in silico 

solubility predictors and MD simulations. Our dataset consisted of 68 nanobodies that spanned a 

broad range of Tagg and Tm values to allow the differentiation between well and poor behaving 

molecules in silico. We can conclude that none of the algorithms has been proven to have clearly 

superior performance over another. While the computational tools show relatively good correlation 

among each other, the correlation with the Tm and Tagg values was either weak or not existing. 

Since the webservers do not account for non-native protein aggregation, we performed MD 

simulations at elevated temperature to induce partial unfolding and monitored the aggregation 

propensity of these altered conformations. Again, we were not able to accurately rank the molecules 

according to the measured Tm and Tagg values.  

It must be noted that the performance of the structure-based tools can greatly be impeded by the 

quality of the input structure. Furthermore, the computational screens did not account for the 

different tag-sequences of the nanobodies and the potential effects of the formulation buffer in the 

experimental results. Some of the applied webservers indeed account for the ionic strength in the 

system but not for specific buffer interactions, which could have stabilizing or destabilizing effects 

on the protein.32–35 Phosphate could have indeed been added to the MD simulations, however, this 

would increase the computational burden and would not be accounted for in further analyses steps. 

Next to that, it has been shown that thermal denaturation techniques in some cases result in 

misleading stability rankings, showing poor correlation of the Tm and Tagg values with the long-

term stability of proteins. Instead, the investigation of reversibility of unfolding and colloidal 

stability, e.g. via the interaction parameter kD or the second virial coefficient A2, resulted in better 

correlations with storage stability data.28,36–39 It could therefore be that the experimentally 

determined Tm and Tagg values in this study do not accurately reflect the intrinsic stability of the 

nanobody structures relevant for developability assessment.  
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2.5. Supporting Information 
 

 

Figure S1: Correlation matrix of melting temperatures (Tm) measured via thermal shift assay with 

SYPRO® Orange and via nanoDSF, onset temperature of unfolding (Ton) and onset of aggregation 

(Tagg) as well as ΔTm, specified as the difference in Tm between low (13.1 µM) and high (32.72 µM) 

protein concentration. 
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Figure S2: Heatmap of the sequence homologies between all 68 nanobodies in the dataset ranging from 

~ 50% in red to ~ 90% in blue. The nanobodies are ordered based on their Tms from highest to lowest (top 

to bottom/ left to right). 
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Figure S3: Heatmap of the sequence homologies of the framework regions only between all 68 

nanobodies in the dataset ranging from ~ 60% in red to ~ 99% in blue. The nanobodies are ordered based 

on their Tms from highest to lowest (top to bottom/ left to right). 
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Figure S4: Heatmap of the root-mean square deviations (RMSD) between all 68 nanobodies in the 

dataset ranging from ~ 0.2 Å in blue to ~ 1.5 Å in red. The nanobodies are ordered based on their Tms from 

highest to lowest (top to bottom/ left to right). 
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Figure S5: Heatmap of framework RMSDs between all 68 nanobodies in the dataset ranging from ~ 0.1 

Å in blue to ~ 0.75 Å in red. The nanobodies are ordered based on their Tms from highest to lowest (top to 

bottom/ left to right). 
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Table S1: pLDDT scores of the nanobody AlphaFold2 models. 

Name pLDDT score Name pLDDT score 

NbD1 92.66 NbPep24 91.61 

NbD2 92.7 NbPep25 94.51 

NbD3 91.52 NbPep26 93.22 

NbD4 95.84 NbPep27 91.66 

NbD5 93.99 NbPep28 94.94 

NbD6 89.94 NbPep29 90.35 

NbD7 90.63 NbPep30 94.81 

NbD8 92.79 NbPep31 93.38 

NbD9 93.31 NbPep32 94.12 

NbD10 93.4 NbPep33 92.13 

NbD11 89.79 NbPep34 93.92 

NbD12 95.52 NbPep35 94.75 

NbPep1 89.01 NbPep36 93.01 

NbPep2 87.79 NbPep37 90.74 

NbPep3 93.38 NbPep38 90.28 

NbPep4 87.8 NbPep39 95.25 

NbPep5 93.52 NbPep47 94.29 

NbPep6 90.82 NbPep50 92.05 

NbPep7 90.92 NbPep51 92.86 

NbPep8 92.39 NbPep52 94.43 

NbPep9 91.4 NbPep53 90.46 

NbPep10 89.92 NbPep54 92.67 

NbPep11 92.89 NbPep55 95.5 

NbPep12 91.34 NbPep56 93.08 

NbPep13 95.8 NbPep57 94.32 

NbPep14 93.33 NbPep60 95.41 

NbPep15 92.63 NbPep61 95.53 

NbPep16 90.98 NbPep62 95.55 

NbPep17 91.04 NbPep64 96.04 

NbPep18 89.32 NbPep65 93.66 

NbPep19 88.67 NbPep66 94.45 

NbPep21 91.39 NbPep67 94.17 

NbPep22 88.73 NbPep68 96.04 

NbPep23 93.44 NbPep69 95.41 
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3.1 Introduction 

Antibodies have become the most successful class of therapeutic proteins.1 Animal immunization 

and in vitro techniques like phage display can identify dozens of monoclonal antibodies that bind 

to a pharmacological target. However, not all antibodies with desired antigen-binding properties 

will possess features that make them suitable to become drugs. The drug-like properties of an 

antibody are related to various characteristics like low aggregation propensity, high thermal 

stability, high specificity, and low viscosity at high protein concentrations.2–7 Identifying the 

candidates with drug-like properties at a very early stage is a part of a developability assessment 

strategy that aims to mitigate the risk that an antibody fails to pass checkpoints en route to becoming 

a marketed product. The informed early selection of the most promising candidates can save 

resources and help avoid project delays. 

A sound developability assessment is based on extensive characterization with at least several 

biophysical methods.4,7–11 The issue with this approach is that the number of antibody candidates 

is usually large while the sample amounts are very scarce during the discovery and early 

development phases. Thus, only analytical methods that require small protein amounts and can be 

applied to dozens of samples per day are appropriate at this stage. It is important that these 

techniques provide orthogonal information about the various biophysical characteristics of 

therapeutic antibody candidates. 

The developability assessment aims to select antibodies that do not form aggregates during 

processing and storage. Particularly the aggregation of partially unfolded proteins (known as non-

native aggregation)12 is a severe issue that can endanger the successful development of an antibody. 

The propensity for non-native aggregation of different antibodies is difficult to predict because the 

partially unfolded species are usually present in exceptionally low concentrations at conditions 

relevant for the storage of therapeutic proteins. 

Some developability assessment programs aim to identify aggregation-resistant antibodies by 

selecting molecules with high protein melting temperatures and high Gibbs free energy of 

unfolding. Such strategies are based on the rationale that higher thermal and conformational protein 

stabilities indicate a smaller population of partially unfolded species in solution at storage 

temperature. However, not all unfolded proteins are equally prone to non-native aggregation. For 

example, aggregation-resistant antibody domains with low conformational and thermal stabilities 
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were reported.13,14 Interestingly, these antibody domains share one special feature – they exhibit 

reversible thermal unfolding. This earlier work indicates that the ability of a protein to refold 

without aggregating can be at least as important as the conformational and thermal stabilities for 

the selection of aggregation-resistant molecules. 

Contrary to antibody domains, it is unlikely that a full-length monoclonal antibody refolds 

reversibly without forming aggregates after exposure to high temperatures (e.g. to 90 °C). 

However, this does not mean that all antibodies show the same ability to refold after exposure to 

different temperatures. In contrast, antibodies likely exhibit specific unfolding reversibility as a 

unique biophysical characteristic. In this context, we recently reported an approach to study the 

reversibility of thermal unfolding by modulated scanning fluorimetry (MSF).15 MSF employs 

incremental heating and cooling cycles to identify the temperatures that start causing irreversible 

protein unfolding. For example, by using MSF we showed that the non-reversibility onset 

temperature of trastuzumab is not related to the structural perturbations in the CH2 domain that 

occur at lower temperatures compared to the antigen-binding fragment (Fab) and the CH3 domain.15 

A piece of information that is not directly evident from other methods that assess thermal protein 

unfolding.15 

Different from heat-induced denaturation, isothermal chemical denaturation with urea or guanidine 

hydrochloride (GuHCl) more often results in reversible protein unfolding, even when the protein 

is completely unfolded.16 As the denaturant concentration is reduced, the protein refolding will 

compete with the aggregation of the partially unfolded species.17 This offers an excellent 

opportunity to study the aggregation propensity of the partially unfolded antibodies isothermally 

at storage temperatures. For example, dilution refolding experiments can provide insights into the 

aggregation propensity of antibodies in different solution conditions.18,19 Furthermore, dialysis 

refolding experiments with the ReFOLD assay demonstrated a link between the ability of an 

antibody to remain monomeric after refolding from urea and the aggregation during long-term 

storage in different formulations.20–22  

Here we investigate whether unfolding reversibility studies can select the aggregation-resistant 

antibodies from a set with candidates for further development. We observed vastly different 

unfolding reversibility of the thirteen antibodies in MSF and ReFOLD experiments. Aggregation 

of the unfolded proteins was the main reason for poor unfolding reversibility. We therefore 
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performed MD simulations to obtain partially unfolded variable domains from the antibodies. The 

aggregation potential of the unfolded domains was evaluated with CamSol in silico. We found that 

antibodies with higher non-reversibility onset temperature (Tnr) and higher relative monomer yield 

(RMY) after refolding from denaturants are well-behaved molecules with low aggregation 

propensity during storage. Furthermore, the in silico characterization showed that the variable 

domains of the aggregation-prone antibodies unfold and expose buried aggregation-prone regions 

(APRs) at lower temperatures compared to aggregation-resistant molecules. 

3.2 Materials and methods 

3.2.1 Proteins and chemicals 

Eight of the antibodies (PPI01, PPI02, PPI03, PPI04, PPI10, PPI11, PPI13, PPI17) and one 

bispecific antibody fusion protein (PPI08) were provided by the PIPPI consortium. Detailed 

information about the structure and purity of all PPI proteins except PPI11 is published elsewhere.8 

The remaining four mAbs (adalimumab, bevacizumab, rituximab and trastuzumab) were obtained 

from marketed products. All antibodies except PPI11 (IgG4) and PPI17 (IgG2) belong to the IgG1 

class. All antibodies except PPI01, PPI04 and PPI11 (lambda) have a kappa light chain. Cation 

exchange chromatography was used to separate the antibodies from the excipients in the marketed 

formulations. Finally, the buffer of the proteins was exchanged by extensive dialysis to 50 mM 

histidine/histidine hydrochloride with pH 6.0 at 25 °C. The protein concentration was 1 mg/mL 

unless otherwise stated. All chemicals were of molecular biology or multi-compendial grade and 

were purchased from Sigma or Thermo Fisher Scientific (Germany). 

3.2.2 Isothermal chemical denaturation (ICD) 

The ICD experiments were performed as earlier described.23 Briefly, a protein stock solution, the 

histidine buffer and denaturant stock solution (10 M urea or 6 M GuHCl) in the same buffer were 

combined in a 384-multiwell plate with non-binding surface (Corning, USA). A Viaflo Assist 

(Integra Biosciences, Germany) was used for dispensing and mixing of the solutions. The final 

protein concentration was 0.1 mg/mL. The denaturant concentration varied in 24 steps from 0 to 9 

M or 0 to 5.4 M for the experiments with urea and GuHCl, respectively. After the samples were 

mixed, the well plate was sealed with adhesive foil and incubated for 24 hours at room temperature. 

Afterwards, the intrinsic protein fluorescence at 330 nm and 350 nm after excitation at 280 nm was 

measured in each well with a FLUOstar Omega microplate reader (BMG Labtech, Germany). The 
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ratio between the fluorescence intensities (FI350/FI330) was plotted against the protein concentration 

to obtain the isothermal chemical denaturation curves. CDpal was used to fit the curves using a 

three-state model to obtain the first (Cm1) and second (Cm2) apparent melting denaturant 

concentration.24 

3.2.3 Size exclusion chromatography with multi-angle light scattering (SEC-MALS) 

A Dionex UltiMate 3000 UHPLC system with a UV-Vis absorbance detector (Thermo Fisher 

Scientific) and a DAWN HELEOS multi-angle static light scattering detector (Wyatt Technology) 

were used. The column was a Superdex 200 Increase 10/300 GL. The running buffer contained 50 

mM sodium phosphate pH 7.2 with 400 mM sodium chloride and 0.05% (w/w) sodium azide. The 

system flow was 1 mL/min. The volume of the injected sample was 50 µL. The elution of the 

samples was monitored by the absorption at 280 nm. The Astra v7.1 software (Wyatt Technology) 

was used to calculate the molecular mass. The integration of the chromatograms was done with 

Chromeleon V7 (Thermo Fisher Scientific). This SEC-MALS method was used to analyze the 

samples from the ReFOLD assay and from the storage stability study. 

3.2.4 ReFOLD assay 

A previously reported ReFOLD assay was used for the isothermal unfolding/refolding of the 

antibodies. More experimental details can be found elsewhere.20 Briefly, the antibody samples were 

extensively dialyzed for 24 hours against a denaturant (10 M urea or 8 M GuHCl) dissolved in 50 

mM histidine buffer pH 6.0. Next, the unfolded antibodies in denaturants were extensively dialyzed 

against the denaturant-free 50 mM histidine buffer pH 6.0 for 24 hours to reduce the denaturant 

concentration. The entire procedure was performed at room temperature in 96-deep well plates and 

Pierce™ microdialysis devices (3.5 kDa MWCO) during agitation at 700 rpm on a Thermomixer 

Comfort (Eppendorf AG, Germany). After all dialysis steps, the samples were collected, weighed 

on a microbalance, adjusted to the same weight with 50 mM histidine pH 6.0, centrifuged for 10 

minutes at 10,000 rcf and analyzed by SEC-MALS. The monomer peak area after refolding was 

divided by the monomer peak area of the antibodies before unfolding to obtain a relative monomer 

yield (RMY). The RMY shows the fraction of the monomer which did not aggregate during the 

unfolding and refolding from denaturants. 
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3.2.5 Storage stability study 

The formulated antibodies in 50 mM histidine buffer pH 6.0 were filled (1 mL) into 1.5-mL 

polypropylene microcentrifuge tubes with a screw cap and an O-ring (Corning). The protein 

concentration was 1 mg/mL. The samples were stored at three different temperatures (4, 25 and 40 

°C). The storage time was 12 months at 4 °C and 3 months at 25 and 40 °C. The samples were 

analyzed by SEC-MALS at the beginning of the stability study and at the storage end at each 

temperature. The relative amount of aggregates was calculated with Chromeleon V7 (Thermo 

Fisher Scientific) from the area of the aggregate peak related to all protein peaks in the 

chromatogram. 

3.2.6 Intrinsic differential scanning fluorimetry (nanoDSF) 

The nanoDSF measurements were performed with a Prometheus NT.48 device (NanoTemper 

Technologies) and a ramp of 1 °C/min. The PR. ThermControl V2.1 software was used to 

determine the unfolding onset temperatures (Ton) and the first melting temperature (Tm1) from the 

change in the fluorescence intensity ratio (FI350/FI330). 

3.2.7 Modulated scanning fluorimetry (MSF) 

MSF was performed on a Prometheus NT.48 with the PR.TimeControl software (NanoTemper 

Technologies) as previously described.15 The samples were heated to 1 °C higher temperature and 

held for 1 min in each consecutive incremental heating cycle, followed by a cooling phase and hold 

for 5 min at 25 °C. The heating and cooling ramps (7 °C/min) are fixed in the PR.TimeControl 

software. The MSF analyser software was used to process the raw data.15 The onset temperature of 

non-reversible unfolding (Tnr) was determined from the 10% threshold in the increase of the 

fluorescence intensity signal at 350 nm. 

3.2.8 Dynamic light scattering (DLS) 

Prior to analysis, the samples were centrifuged for 10 minutes at 10,000 rcf. Afterwards, 50 µL/well 

were filled in a 384-multiwell plate (High Content Imaging, Corning). The wells were capped with 

10 µL silicon oil and centrifuged shortly. The measurements were performed with a DynaPro DLS 

plate reader III (Wyatt Technology). A heating ramp was applied to the samples where the 

temperature was increased stepwise by 1 °C from 25 to 85 °C. The DLS plate reader collected 5 

acquisitions of 3 seconds for each well at every temperature step. The number of wells in each run 
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was kept constant (14 wells) to ensure consistency of the data from the replicates. One full run with 

these settings took about 18 hours and the heating ramp between the steps was 0.07 °C/min (fixed 

by the Dynamics V7.8 software). The aggregation onset temperature (Tagg) was determined from 

the increase in the hydrodynamic radius (Rh) using the onset fit in the Dynamics V7.8 software. 

3.2.9 Statistical analysis  

Calculation of mean values and standard deviations were performed with Origin 2019 (OriginLab 

Corporation, USA). 

3.2.10 Computational characterization  

The sequences of ten of the antibodies are available in Protein Data Bank or in published work.8 

No sequences were available for PPI04, PPI11 and PPI08, which precluded us from doing 

computational characterization with these three proteins. The primary sequences of the variable 

(VH and VL) domains were uploaded to the ABodyBuilder tool from the SAbPred toolbox to obtain 

homology models of each Fv.25 Using the homology models, all-atom simulations were performed 

with the Amber19 program in a periodic box with explicit solvent.26 The ff14SB force field for 

proteins was employed in combination with the TIP3P water model. The protonation states of 

ionizable residues at pH 6.0 were adjusted using the H++ server.27 All bonds involving hydrogen 

atoms were constrained using the SHAKE algorithm. Non-bonded electrostatic interactions were 

treated using the particle mesh ewald algorithm with a direct space cut-off of 8 Å. The native-state 

structures of the antibody variable domains were solvated in a truncated octahedral water box with 

a layer of at least 20 Å from the protein surface and neutralized with chloride ions. The system was 

energy minimized with the steepest descent algorithm for the first 5000 cycles, followed by 5000 

cycles using the conjugate gradient method. We applied incremental heating with steps of 20 K 

from 300 K to 400 K and steps of 10 K from 400 K to 540 K by using the final coordinates and 

velocities of the previous temperature simulation as input for the next temperature step. System 

equilibration was carried out for 1 ns in NVT ensemble to stabilize the specified temperature using 

the Langevin thermostat, and subsequently for 1 ns in NPT ensemble to adjust the density of the 

system using the Berendsen barostat. Initial box sizes at 300 K are between 708325 and 867295 

Å3 but increase due to the density adjustment in each NPT run to values between 1160140 and 

1433494 Å3 at 540 K. The simulations at each temperature were performed for 20 ns with a time 

step of 1 fs. The coordinates were saved every 5 ps. Trajectories were visually inspected in VMD28 
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to verify that there are no dimensional constraints due to the chosen box size and shape. All 

trajectories were analysed using the CPPTRAJ module of Amber19; three frames of each 

temperature simulation were exported as PDB files and the beta sheet fraction was calculated using 

the DSSP method29 by Kabsch and Sander and averaged for each temperature simulation. The 

structurally corrected solubility scores of the Fv regions were determined by submitting the three 

frames of each temperature simulation to the CamSol webserver 8, setting the pH to 6.0 and the 

patch radius to 10 Å.30 The obtained solubility scores were averaged for each temperature, 

respectively. The resulting beta sheet fractions and the solubility scores from CamSol were plotted 

against the simulation temperatures and fitted to a Boltzmann function. Five CamSol solubility 

thresholds were defined and the temperatures at which the solubility of the Fv regions reach these 

thresholds determined from the Boltzmann fit. The obtained temperatures were then plotted for 

each antibody Fv region. 

3.3 Results 

3.3.1 Isothermal chemical denaturation and the ReFOLD assay to compare antibodies  

At first, we asked whether the thirteen antibodies have different resistance to unfolding caused by 

two commonly used chemical denaturants. We therefore obtained isothermal chemical 

denaturation (ICD) curves of all proteins in GuHCl and urea (Figure S6). We then fitted the curves 

to a three-state model to obtain the melting denaturant concentrations (Cm1 and Cm2) (Figure S6) 

(Table S2). In this context, Cm is an apparent value showing the resistance to denaturant-induced 

unfolding. An earlier study has shown that an apparent Cm correlated with the aggregation rate of 

antibody formulations at 50 °C;31 thus, it was worth exploring the correlation of Cm to other 

variables in the context of developability assessment.  

Higher concentrations of urea induced protein unfolding compared to GuHCl (Figure S6). 

However, the same plateau of the intrinsic protein fluorescence ratio of the unfolded state was 

reached in both denaturants. The only exceptions to this observation were PPI02, PPI10 and PPI13, 

which unfolded completely in 5 M GuHCl but only partially in up to 9 M urea.  

Subsequently, we used a microdialysis-based (ReFOLD) assay to study if the antibodies can refold 

to their monomeric state after isothermal unfolding with GuHCl or urea.20 The proteins exhibited 

very different RMYs and aggregate distributions after refolding (Figure 8a,b and Figure S7). These 
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observations revealed that we have a panel with antibodies that show considerable differences 

regarding their ability to refold as monomers after unfolding with denaturants. Some proteins like 

trastuzumab, PPI03, PPI13, PPI10, exhibited high RMYs in both denaturants, while others like 

PPI01, bevacizumab, PPI11, PPI04 had low RMYs after refolding from both GuHCl and urea 

(Figure 8c). There were also pronounced differences in the size distribution of the aggregates 

detected after refolding of different antibodies (Figure S7). For example, trastuzumab formed 15.6 

± 0.2% dimers and 15.8 ± 0.7% aggregates with larger sizes, while bevacizumab formed 78.4 ± 

0.7% aggregates larger than dimers (Figure 8a,b).  

In general, refolding from 8 M GuHCl resulted in lower RMYs compared to refolding from 10 M 

urea (Figure 8c). The high ionic strength when using GuHCl screens repulsive electrostatic 

interactions, which explains the lower RMY values measured compared to urea.32 The only 

exception from this trend is PPI01. Low ionic strength causes oligomerization of PPI01 around pH 

6.0.33 Therefore, the high ionic strength of the GuHCl solutions favoured the monomeric state and 

is most probably the reason for the higher RMY of PPI01 after refolding from GuHCl compared to 

urea.  

Notably, the RMY did not correlate with the Cm1 and Cm2 when we used GuHCl (Figure 8d). 

Therefore, the resistance to GuHCl-induced unfolding (Cm1 and Cm2) provides different 

information than the refoldability (RMY) of these antibodies. There was a weak correlation 

between the RMY and Cm2 from experiments with urea (R² = 0.56), which indicates that such 

refoldability experiments could also carry some information about the resistance to unfolding 

induced by urea. 
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Figure 8: Analysis of the antibodies with the ReFOLD assay and ICD. SEC-MALS chromatograms 

of (a) trastuzumab and (b) bevacizumab before unfolding and after refolding from 10 M urea. (c) 

Comparison between the relative monomer yield of 13 antibodies after refolding from GuHCl and urea. 

Mean values of triplicates with standard deviations. (d) Correlations between the RMY after refolding from 

denaturants and the respective Cm1 and Cm2 from the fits to the ICD data in Figure S6. 

3.3.2 Antibody unfolding, refolding and aggregation after heating   

In addition to the characterization shown above, we wanted to compare the antibodies with 

orthogonal techniques that do not employ chemical denaturants. Besides using chemical 

denaturants, the other common approach to unfold proteins is to increase sample temperature. 

Furthermore, alternating heating and cooling cycles provide information on whether the protein 

unfolding is reversible.  

We therefore used MSF to find which temperatures cause unfolding of the antibodies and whether 

the observed unfolding is reversible.15 The different domains of an antibody can unfold at different 
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temperatures and can potentially exhibit different unfolding reversibility. Indeed, MSF showed that 

the antibodies in our dataset behave very differently during heating and cooling. For example, 

PPI01 started unfolding at around 55 °C and this early unfolding is not reversible as evident from 

the changes in the non-reversibility curve (Figure 9a). In contrast, PPI13 showed an early unfolding 

transition at around 60 °C but the baseline of the non-reversibility curve did not change around that 

temperature (Figure 9b). The non-reversibility onset of PPI13 occurred when the protein was 

exposed to temperatures around 80 °C that induced a second unfolding transition (Figure 9b).  

Furthermore, we derived the non-reversibility onset temperature (Tnr) from MSF (Figure S8) and 

used Tnr to rank the thirteen antibodies (Figure 9c). Circular dichroism measurements confirmed 

that the exposure of the proteins to temperatures below Tnr does not lead to substantial structural 

changes, while exposure to temperatures above Tnr severely impacts the tertiary protein structure 

(Figure S9). Looking for a mechanistic explanation of the non-reversibility onset temperature, we 

compared the Tnr values to other biophysical variables.  

First, we used nanoDSF to measure the unfolding onset temperature (Ton) of each antibody (Table 

S2). The Ton is a parameter indicating the temperature where the protein starts to unfold. This has 

previously been demonstrated in various studies, for example, by a comparison of the unfolding 

curves of antibodies measured with nanoDSF and calorimetry.34 The Tnrs of the antibodies did not 

correlate strongly with their Tons (Figure 10a).  

Second, we determined the first melting temperature (Tm1) of the proteins with nanoDSF (Table 

S2). The Tnrs of our antibodies did not correlate with their Tm1s (Figure 10b). Six of the antibodies 

also showed a second unfolding transition that can be used to determine Tm2. Since the unfolding 

at higher temperature could also be relevant for stability, we tested the correlation between Tnr and 

the highest melting temperature of each antibody (Table S2); in other words, we used the only Tm 

for proteins with one unfolding and the Tm2 for proteins with two unfolding transitions. In this 

case, the correlation between Tnr and Tm2 was better (R2 = 0.75). 

Third, we used dynamic light scattering (DLS) to measure the aggregation onset temperature (Tagg). 

DLS was used to measure the Tagg since it is more sensitive towards small aggregates that can be 

missed by the backscattering approach of the Prometheus NT.48.35 The Tagg did not correlate with 

the Ton (Figure 10c), showing that the start of the unfolding does not always cause aggregation of 

these antibodies, which is in good agreement with previous findings.8 
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Fourth, we compared the Tagg with the Tnr and observed a strong correlation between these two 

variables (Figure 10d). Therefore, we concluded that aggregation is the main reason for the non-

reversibility onset in MSF experiments with the antibodies in this work. 

 

Figure 9: Analysis of the antibodies with MSF. Unfolding and non-reversibility curves of (a) PPI01 and 

(b) PPI13 (the start of the unfolding is indicated by gray arrows, Tnr values are indicated by red arrows). (c) 

Tnr values of the antibodies in this work. Mean values of triplicates with standard deviations. The color code 

of the antibodies is the same as in Figure 8c. 
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Figure 10: Comparison of biophysical variables obtained from thermal denaturation techniques. 

Weak correlation (a) between Tnr and Ton, (b) between Tnr and Tm1, and (c) between Tagg and Ton. (d) Strong 

correlation between Tagg and Tnr. Mean values of triplicates with standard deviations. 

3.3.3 Aggregation during storage of the antibodies    

We were interested in whether the high RMY from the ReFOLD assay and high Tnr from MSF are 

features of antibodies that aggregate less during storage. We therefore analyzed the antibodies with 

SEC to determine the relative area of aggregates (Table S2). Subsequently, we performed storage 

stability studies for 3 months at 25 and 40 °C, and for 12 months at 4 °C and analyzed the samples 

again with SEC (Table S2). The largest differences were observed after storage at 40 °C. We 

therefore calculated the change in the relative area of aggregates after storage at 40 °C (Figure 11). 

The SEC analysis of the fresh samples and the samples after storage at different temperatures 

revealed two important pieces of information. First, we obtained the relative area of aggregates that 

were present already at the beginning of the stability study. The exact origin of these aggregates is 
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outside the scope of this work, but they are likely formed during earlier processing steps like protein 

expression, purification, freezing, and buffer exchange. Antibodies with drug-like properties will 

ideally have low aggregate content after processing. Second, we could observe whether the relative 

area of the aggregates increased after storage. Such an increase indicates that an antibody is prone 

to aggregation.  

The SEC data revealed that there were several antibodies with more than 1% relative area of 

aggregates already at the start of the stability study (Table S2). These antibodies were PPI11 (8.5% 

aggregates), PPI10 (3.2% aggregates), PPI17 (3% aggregates), PPI04 (2.4% aggregates), PPI13 

(1.9% aggregates), bevacizumab (1.2% aggregates), rituximab (1.1% aggregates) and adalimumab 

(1% aggregates). 

After storage for 3 months at 40 °C, the following antibodies exhibited an increase in the relative 

area of aggregates of ≥0.5% – PPI04, PPI08, bevacizumab, PPI01, rituximab, and PPI11 (Figure 

11). After storage for 3 months at 25 °C or storage for 12 months at 4 °C, only PPI11 showed an 

increase in the aggregate area of more than 0.5% (Table S2). 

An interesting observation is that the relative area of aggregates decreased by more than 0.5% after 

storage of PPI10 at all three temperatures and for PPI13 after storage at 4 and 25 °C. Thus, the 

aggregates that were present in the bulk solutions of PPI10 and PPI13 were reversible and 

dissociated slowly upon dialysis, dilution, and storage of the antibodies in the histidine buffer used 

in this work. Aggregate dissociation upon buffer exchange and dilution was previously reported 

but is outside the scope of our work.36  
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Figure 11: Aggregate increase after storage of the proteins. Change in the relative area of aggregates 

detected by SEC after storage for 3 months at 40 °C. Mean values of triplicates with standard deviations. 

The color code of the antibodies is the same as in Figure 8c and Figure 9c. 

3.3.4 Comparison between ReFOLD, MSF and aggregation during storage     

We can divide the antibodies in our work into three groups based on their performance in the 

biophysical assays and the storage stability study. 

The first group comprises four antibodies (trastuzumab, PPI03, PPI10 and PPI13) that showed both 

high RMYs after refolding from denaturants (Figure 8c) and Tnr values above 75 °C (Figure 9c). 

None of these four antibodies exhibited an increase (≥0.5%) in the relative area of aggregates after 

storage (Figure 11). 

The second group includes PPI02, PPI17 and adalimumab. These three proteins had suboptimal 

performance in some of the assays. For example, PPI02 had the highest Tnr (Figure 9c) but a low 

RMY after refolding from GuHCl (Figure 8c). PPI17 and adalimumab had RMYs and Tnr that were 

average compared to the other antibodies (Figure 8c and Figure 9c). We did not observe an increase 

(≥0.5%) in the relative area of aggregates after storage of PPI02, PPI17 and adalimumab (Figure 

11). 

The third group contains the remaining antibodies (PPI01, PPI04, PPI08, PPI11, bevacizumab and 

rituximab) that had the lowest RMYs after refolding from denaturants (Figure 8c) and the lowest 

Tnrs measured with MSF (Figure 9c). The antibodies with low RMYs and Tnrs showed an increase 

(≥0.5%) in the relative area of aggregates after storage (Figure 11). Moreover, PPI11 also formed 

aggregates during storage at 4 and 25 °C (Table S2). 
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3.3.5 Preliminary in silico characterization of the antibodies      

We were interested in whether the different unfolding reversibility and aggregation of the 

antibodies can be explained by structural differences that can be studied in silico. 

We had access to sequences for 10 of the 13 proteins, some of them available in the DrugBank 

(https://go.drugbank.com/) or published literature.8 Previous work showed that the PPI antibodies 

differed in their isoelectric points, predicted scale solubility, hydrophobic patch score and 

aggregation score (see Table 1 and supplementary data in Ref8). However, these characteristics did 

not explain the aggregation propensity of the antibodies.8 We therefore adopted a different 

unanimous approach to study the commercial and PPI antibodies in this work. 

We used the TANGO37 and AggreScan38 web servers to look for APRs in the primary structures 

that could provide mechanistic insights into the different aggregation of the antibodies. The VH and 

VL domains contain multiple APRs that differ between the proteins (Figure S10). Contrary, the 

constant domains show the same APRs, which is because most of the proteins are of the IgG1 

subclass and have a kappa light chain. One exception is PPI01 that has a lambda light chain and 

has APRs in its CL domain that differ from the APRs in the CL domains of the kappa light chains 

in this work (Figure S10). Noteworthy, the frameworks of kappa and lambda light chains are also 

different in respect to VL residues contributing to their fold stability.39 

To assess the position of the APRs in the three-dimensional protein structure, we created homology 

models of the Fv regions. We focused on the Fvs because these are the parts of the proteins where 

the sequences differ most. A significant part of the determined APRs in the Fv regions comprises 

residues in the beta strands that are not solvent exposed in the native folded state but could 

contribute to non-native aggregation upon unfolding. To reflect better on the position of 

aggregation-prone regions in the native protein, we also analyzed the homology models with the 

structure-based CamSol method that accounts for the residue proximity and solvent exposure. The 

CamSol scores revealed differences in the solubility of the Fv regions (Figure S11). However, these 

differences capture features of the native folded proteins. In the context of unfolding and non-

native aggregation, the risk that buried APRs are exposed should also be considered. Therefore, in 

silico experiments to cause unfolding and assess the aggregation potential of partially unfolded 

species were the next step in our work. 
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3.3.6 Temperature-ramped molecular dynamics (MD) simulations       

Since our experimental characterization focused mostly on the aggregation that is driven from 

partially unfolded species, we were interested in obtaining partially unfolded species in silico and 

studying their aggregation potential with available webservers like CamSol.  

We first tried to cause unfolding of the Fvs by including chemical denaturants in the simulation 

box, but this approach proved very resource-consuming and was therefore abandoned. The other 

traditional approach to unfold proteins in silico is to increase the temperature in the simulation.40,41 

To investigate the effect of different temperatures on the unfolding of the Fvs, we performed MD 

simulations with incremental heating steps. At each step, the simulation continued for 20 ns to 

allow for the unfolding to take place. Three snapshots of Fv structures at each step/temperature 

were analyzed with the CamSol webserver. 

The folded Fv regions show some differences in exposed APRs at 300 K (Figure 12a and b). As 

the simulation temperature is increased, we observed protein-specific unfolding of beta strands. 

Noteworthy, the unfolding did not always lead to the exposure of APRs. For example, at 460 K the 

first beta strands to unfold in the trastuzumab Fv are near the C-terminus in VH and the N-terminus 

in the VL, together with a short beta strand near CDR-H2. Unfolding of these strands does not cause 

exposure of APRs in trastuzumab Fv (Figure 12a). In contrast, at 460 K the unfolding of 

bevacizumab Fv is characterized by a loss of structure in the N-terminal beta strands in the VH and 

in a short beta strand close to the CDR-H2. The unfolding of the latter causes a disruption of a 

network of intramolecular interactions and exposes a considerable number of APRs (Figure 12b). 

At temperatures of 500 K, both Fvs have lost almost all their secondary structure with only a few 

beta strands intact in the VH domain of trastuzumab and in the VL domain of bevacizumab. At this 

state of unfolding, several APRs are solvent exposed in both Fv regions (Figure 12a and b). 

To visualize better the interplay between unfolding and exposure of APRs, we plotted the beta 

sheet fraction and the solubility score from CamSol for the partially unfolded species obtained at 

different temperatures (Figure 12c and d). The Fv region of trastuzumab lost beta sheet structure 

at high temperatures and the drop in solubility occurred only after a notable unfolding (Figure 12c). 

In contrast, the Fv of bevacizumab exhibited lower solubility already with the unfolding of the first 

beta strands that occurred at lower temperatures compared to trastuzumab Fv (Figure 12d). 



76 

 

To compare the differences in the solubility changes of the Fv regions, we defined five CamSol 

solubility thresholds (Figure 12e). We then plotted the temperature of the MD simulation that 

resulted in partially unfolded species with a solubility score below these thresholds (Figure 12f). 

From this data we saw that some Fv regions, like from PPI13, PPI02, adalimumab and trastuzumab, 

exhibited a solubility loss over a narrow temperature range and at higher temperatures than 

bevacizumab and rituximab.  

The Fv region of PPI01 behaved similarly to the Fv regions of stable antibodies in the dataset 

(Figure 12f). PPI01 is the only antibody in the dataset that has a different CL domain. Both the 

TANGO and AggreScan analysis indicated that the CL domain of PPI01 has different APRs 

compared to the CL domains of the other antibodies (Figure S10). We therefore performed the MD 

simulations combined with CamSol to compare the unfolding and solubility drop of CL domains 

from PPI01 or the other antibodies. The CL domain of PPI01 lost beta sheet structure and showed 

a drop in solubility at lower temperatures than the CL domain of trastuzumab (Figure S12a).  

Noteworthy, the cut-off for electrostatic and van der Waals interactions in the MD simulations is 

important.42 A longer cut-off might improve the quality of the simulation, but increases the 

computational costs. To test whether the chosen cut-off (8 Å) leads to artefacts in our simulations, 

we conducted simulations on trastuzumab Fv and bevacizumab Fv with a cut-off of 10 Å and 

observed that the proteins unfolded at slightly higher temperature but with the same trend (Figure 

S12b and c). 
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Figure 12: In silico characterization of antibody Fv regions. (a, b) MD simulations at different 

temperatures were used to obtain partially unfolded species. The beta sheets are colored in blue. The 

coloring of the Fv strands is based on CamSol scores of the residues - orange: values from -0.8 to -1, red: 

values below -1. Thus, red indicates APRs. (c, d) Plots of the loss in beta sheet fraction (black squares) and 

the solubility from CamSol (red circles) of the partially unfolded species reveal differences between the 

antibody Fv regions. (e) Different thresholds were set to report the temperature at which the solubility of 

the partially unfolded Fvs from CamSol decreases. (f) The temperatures at which the CamSol solubility of 

the Fv regions fall below a certain threshold. The color code is like in Figure 8c, Figure 9c and Figure 11. 
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3.4 Discussion 

Here we investigated whether unfolding reversibility studies can identify the aggregation-resistant 

antibodies in a group with thirteen molecules. Two earlier findings inspired our work. First, the 

thermal unfolding reversibility of antibody domains is a feature of aggregation-resistant 

molecules.13,14,43–45 Second, antibodies aggregate less during storage in formulations favouring 

refolding to monomers after isothermal unfolding with chemical denaturants.20,21 

Using the ReFOLD assay, we observed that some antibodies have a higher tendency to refold to 

monomers after unfolding with urea and GuHCl (Figure 8c). The high RMYs indicate that the 

unfolded states of these antibodies are less prone to aggregation than antibodies with low RMYs. 

The RMY from the ReFOLD assay did not correlate strongly with the Cms obtained with ICD 

(Figure 8d). This poor correlation underlines the difference between the resistance to denaturant-

induced unfolding and aggregation via the unfolded state caused by denaturants.  

In comparison to several other approaches to study protein aggregation after unfolding with 

denaturants,18,19,32,46 the ReFOLD assay is relatively simple to perform. It requires only the protein 

sample, the sample buffer and one denaturant stock solution. All steps are performed on standard 

laboratory equipment with commercially available microdialysis devices. An HPLC-SEC system 

is sufficient for basic sample analysis. Compared to thermal denaturation techniques, the ReFOLD 

protocol induces more moderate protein aggregation at ambient temperatures, revealing differences 

overlooked by other techniques.20 In contrast to denaturant-induced unfolding, substantial antibody 

unfolding caused by heat usually leads to complete monomer loss.47  

Our MSF experiments showed that the non-reversibility effects of the thermal unfolding of our 

antibodies are protein-specific (Figure 9a and b). Compared to calorimetric techniques, MSF 

provides the advantage of high throughput to apply incremental heating and cooling cycles. MSF 

can therefore be used as a technique during the developability assessment of antibodies. 

The Tnr from MSF did not correlate with the Ton or Tm1 from nanoDSF; however, Tnr correlated 

better with the unfolding transition detected at higher temperatures (Tm2). It has been shown that 

the unfolding of the Fab can vary a lot in nanoDSF experiments,34 and sometimes overlaps with 

the CH2 domain or the CH3 domain. The vastly different unfolding temperatures of Fabs present a 

complication for stability predictions based on melting temperatures. An assumption that 

antibodies that unfold at lower temperatures are prone to aggregation will not hold in cases where 
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the Ton and Tm1 are not related to irreversible unfolding. Therefore, the determination of Tnr is 

rational since this variable is related to the domains that exhibit irreversible structural changes.  The 

Tnr could be subsequently assigned to a specific part of the antibody in MSF experiments on 

individual domains. 

We found that the Tnr from MSF correlates well with the Tagg determined with DLS. Therefore, we 

concluded that non-native aggregation was the main reason for the non-reversibility onset in MSF 

experiments with the antibodies in this work. At this point, it might appear that the information 

from MSF and DLS is redundant. However, MSF and temperature-ramped DLS should be 

considered orthogonal techniques due to the completely different heating profiles (incremental 

cycles versus linear ramp) and different physical observable (fluorescence intensity and light 

scattering fluctuations).  

Considering the urgency of understanding protein aggregation in a larger context,48 the reversibility 

of both aggregation and protein unfolding should be studied. On the one hand, MSF is 

fluorescence-based and can detect irreversible structural changes that might or might not be related 

to aggregation;15 on the other hand, DLS can detect aggregation that does not necessarily include 

irreversible structural changes.33 These different perspectives on the behaviour of a protein during 

heating and cooling could dissect distinct processes that were previously overlooked. In the context 

of the current study, we observed that the Tnr and Tagg provided similar information because 

aggregation is the main reason for the irreversible thermal unfolding of these antibodies, which 

was not known before. In future, we aim to provide more specific examples that demonstrate when 

the combination of MSF and DLS provides a better mechanistic understanding of protein stability. 

Different rules and guides for the selection of antibodies with drug-like properties were proposed 

recently. These approaches focus on key antibody features like folding stability, aggregation 

propensity, solubility, viscosity, charge in the CRDs and specificity.49–52 Here we propose that 

refoldability studies can also be included in the developability assessment programs for therapeutic 

antibodies. In such a case, one would ideally use a combination of at least two methods to study 

refoldability – one that causes unfolding by an increase in temperature (MSF) and one isothermal 

method in which the unfolding is caused by chemical denaturants like urea and GuHCl (the 

ReFOLD assay). Depending on the performance of the antibodies in these two orthogonal methods 

to study refoldability, one can assign molecules to four groups (Figure 13a). Group A is the ideal 
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case comprising aggregation-resistant proteins that have high RMYs and high Tnrs. Examples of 

antibodies in Group A are trastuzumab, PPI03, PPI10, and PPI13. Group B includes proteins with 

high Tnr but low RMYs, while Group C encompasses proteins with low Tnr but high RMYs. 

Antibodies belonging to Group B or C can still be aggregation-resistant (e.g. PPI02), but they will 

most likely require characterization with more techniques to understand their stability. Finally, 

Group D includes aggregation-prone proteins with low RMYs and low Tnrs. Examples for 

antibodies in Group D are PPI01, PPI04, PPI08, and PPI11. The molecules in Group D will be 

problematic during development and storage. It is important to say that the cut-offs between the 

groups are for illustrating the idea and probably do not present values that will be true for each 

antibody. However, by applying the presented concept to a large antibody library (e.g. 100s to 

1000s of candidates) one could provide cut-off values for Tnr and RMY with more widespread 

validity in future. 

The antibodies in this work were relatively stable and most of them aggregated only during storage 

at 40 °C. The differences in the aggregation behaviour at different temperatures is a common issue 

with antibodies that obstructs the use of accelerated stability data to predict the storage stability at 

2-8 °C.53–56 One of the antibodies (PPI11) also aggregated during storage at 4 °C and 25 °C. It is 

encouraging to see that both ReFOLD (Figure 8c) and MSF (Figure 9c) indicated that PPI11 is 

prone to aggregate. In future, we will test our approach on more antibodies that aggregate during 

storage at refrigerated temperatures. 

In respect to storage stability prediction, one hypothesis says that the amounts of aggregates at the 

beginning of a stability study indicate which molecules are aggregation-prone. While there might 

be cases where this is true, our storage stability data shows that there is no correlation between the 

amount of aggregates before storage and the percentage of aggregates formed after 3 months at 40 

°C (Figure S13a). Thus, storage stability prediction should be based on more comprehensive 

hypotheses beyond the initial amount of aggregates. 

A limitation of the current study is that we used only SEC to monitor aggregate formation during 

storage. In principle, it is possible that larger aggregates (subvisible and visible particles) that are 

filtered by the SEC column are also formed during storage stability studies; however, we did not 

observe visible particles in the samples or a reduction in the area of the soluble antibody that was 

found in the SEC chromatograms (Figure S13b).  
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Interestingly, one can see connections between our unfolding reversibility studies and previous 

work on stability and developability assessment of antibodies. For example, bevacizumab and 

rituximab exhibited poor unfolding reversibility in our work and a suboptimal performance in 

biophysical assays for developability assessment in earlier studies.7 Indeed, bevacizumab is an 

antibody that required reformulation during clinical studies due to poor physical stability in 

histidine buffer.57 Like bevacizumab, rituximab is also known to aggregate under weak thermal 

stress.58 Both bevacizumab and rituximab were developed before the concepts for developability 

assessment of antibodies emerged, which can explain why they were selected for further 

development despite a poor performance in some biophysical assays. In contrast to bevacizumab 

and rituximab, trastuzumab and adalimumab showed higher unfolding reversibility and no issues 

in developability assessment studies with various techniques.7 In addition, antibodies with good 

unfolding reversibility like PPI02, PPI03 and PPI13 were identified as well-behaved molecules by 

various biophysical assays, while antibodies with poor unfolding reversibility like PPI01, PPI04 

and PPI08 raise stability concerns during extensive characterization.8,33  

We characterized the antibodies in one buffer during this study. One could obtain more accurate 

predictions when each candidate is characterized in at least several different formulations.8 If one 

has the analytical capability and protein material, the assessment of Tnr and RMY can be done in 

different formulation conditions, thus combining developability assessment and pre-formulation 

development; this would most probably provide more accurate candidate selection, but at the 

expense of more tedious characterization at very early stages of product development.  

 

Figure 13: Proposed groups for classification of therapeutic antibodies based on their performance 

in the ReFOLD assay and MSF. (a) Four groups of proteins can be defined from Tnr and RMY. (b) 

Application of the proposed classification to the 13 antibodies in this work. The color code is like in Figure 

8c, Figure 9c, and Figure 11. 
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In future, our goal will be to predict the refoldability and aggregation propensity of therapeutic 

protein candidates in silico before expression. Previously, different structural traits were suggested 

as main drivers for the thermal unfolding reversibility or the aggregation through partially unfolded 

species induced by denaturants. Two notable traits are the balance between positive/negative 

residues (overall negative charge is a feature of some antibody domains that exhibit reversible 

thermal unfolding) and to the arginine/lysine ratio (replacing arginine with lysine reduces the 

aggregation through non-native contacts of a single-chain antibody variable domain).14,46 The 

colloidal stability of the unfolded species is a third trait that seems to be related to the ability of a 

protein to refold.59 

In the context of developability assessment of therapeutic proteins, it will be important to have in 

silico approaches for the selection of molecules resistant to non-native aggregation. Noteworthy, 

most servers used for developability assessment of antibodies are focusing on the native folded 

protein structure, on the primary structure, or only on the complementarity-determining regions 

(CDRs). Inspired by earlier studies,40,41,60 our approach to induce partially unfolded species by MD 

simulations and assess the solubility of these species with webservers is a good starting point for 

future in silico studies that aim to predict the refoldability and aggregation propensity of partially 

unfolded proteins. Doing MD simulation on the Fvs saves computational resources and allows the 

screening of many antibodies; however, it is possible that potential destabilizing effects from the 

constant domains are overlooked. For example, if some of the antibody constant domains like CH2 

unfold before the variable domains, this could potentially have a negative effect on the stability of 

the Fv. To account for this, the goal in future is to perform in silico unfolding studies on the full-

length antibodies.  

In summary, our work shows that unfolding reversibility studies with the ReFOLD assay and MSF 

can be used to select antibodies that resist aggregation at 40 °C from a group with candidates for 

further development. To facilitate the selection process, we proposed to classify the antibodies into 

four groups based on RMYs and Tnr values. In addition, temperature-ramped MD simulations 

showed that the variable domains of aggregation-prone antibodies unfold and expose APRs at 

lower temperatures compared to aggregation-resistant counterparts. The proposed approaches and 

concepts herein can be readily included in the developability assessment programs in 

pharmaceutical companies. 
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3.5 Supporting information 

 

 

Figure S6: Isothermal chemical denaturation curves of the antibodies. The curves are obtained with 

GuHCl (blue squares) or urea (red circles). The lines present a fit to a three-state unfolding model with 

CDpal to determine the apparent melting denaturant concentration for the first (Cm1) and the second (Cm2) 

unfolding.
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Table S2: Overview of the variables determined in this work. The values are mean of triplicates with standard deviations, except for the Cm values 

where the error is the fit error in CDpal. The values are rounded to the larger number. The protein concentration is 1 mg/mL in all assays except ICD 

where the final protein concentration in the samples was 0.1 mg/mL. 

Protein 

ICD ReFOLD MSF nanoDSF DLS % aggregates by SEC before and after storage 

urea GuHCl RMY 

urea 

RMY 

GuHCl 
Tnr ( °C) Ton ( °C) Tm1 ( °C) Tm2 ( °C) Tagg ( °C) T0 

3 m 

@ 40 °C 

3 m 

@ 25 °C 

12 m 

@ 4 °C 

3 m @ 40 °C 

minus T0 
Cm1 (M) Cm2 (M) Cm1 (M) Cm2 (M) 

PPI01 4.6 ± 0.1 6.8 ± 0.2 1.5 ± 0.1 2.7 ± 0.2 0.12 ± 0.01 0.18 ± 0.01 60.3 ± 0.1 55.2 ± 0.2 61.4 ± 0.1 - 52.7 ± 0.7 0.4 ± 0.1 1.2 ± 0.1 0.4 ± 0.1 0.3 ± 0.1 0.8 ± 0.1 

PPI02 5.6 ± 0.1  > 9.0 1.5 ± 0.1  3.6 ± 0.1 0.62 ± 0.01 0.13 ± 0.01 80.7 ± 0.1 62.6 ± 0.2 67.9 ± 0.1 - 73.0 ± 3.5 0.9 ± 0.1 1.0 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 0.1 ± 0.1 

PPI03 6.9 ± 0.5 8.0 ± 0.2 1.8 ± 0.1 2.7 ± 0.1 0.55 ± 0.01 0.44 ± 0.01 76.7 ± 0.1 64.5 ± 0.4 68.8 ± 0.1 77.6 ± 0.1 68.7 ± 2.1 0.2 ± 0.1 0.5 ± 0.1 0.1 ± 0.1 0.1 ± 0.1 0.3 ± 0.1 

PPI04 4.4 ± 0.1 6.5 ± 0.1 1.3 ± 0.3 1.7 ± 0.2 0.28 ± 0.01 0.15 ± 0.01 63.8 ± 0.1 57.4 ± 0.7 64.7 ± 0.1 - 56.5 ± 0.9 2.4 ± 0.1 10.7 ± 0.2 2.3 ± 0.1 2.4 ± 0.1 8.3 ± 0.2 

PPI08 4.5 ± 0.5  6.6 ± 0.1 1.7 ± 0.2 2.1 ± 0.3  0.43 ± 0.03 0.14 ± 0.01 68.0 ± 0.2 70.9 ± 0.6 75.5 ± 0.1 - 56.0 ± 0.8 0.2 ± 0.1 3.2 ± 0.2 0.2 ± 0.1 0.3 ± 0.1 3.0 ± 0.2 

PPI10 5.9 ± 0.1 > 9.0 1.7 ± 0.1 3.5 ± 0.1 0.61 ± 0.01 0.37 ± 0.01 78.7 ± 0.1 62.8 ± 0.7 68.4 ± 0.1 82.3 ± 0.1 73.5 ± 1.4 3.2 ± 0.1 2.3 ± 0.1 1.9 ± 0.1 1.9 ± 0.1 -0.9 ± 0.1x 

PPI11 4.4 ± 0.1 5.2 ± 0.8 0.9 ± 0.2 1.5 ± 0.1 0.25 ± 0.01 0.16 ± 0.01 62.1 ± 0.1 50.7 ± 0.3 56.5 ± 0.1 68.4 ± 0.1 56.6 ± 0.8 8.5 ± 0.2 9.0 ± 0.4 9.8 ± 0.2 10.2 ± 0.1 0.5 ± 0.4 

PPI13 4.8 ± 0.1 > 9.0 1.4 ± 0.3 3.1 ± 0.1 0.52 ± 0.01 0.35 ±0.01 80.5 ± 0.1 57.8 ± 0.8 62.3 ± 0.1 83.4 ± 0.1 73.8 ± 0.7 1.9 ± 0.1 1.8 ± 0.1 1.3 ± 0.1 1.4 ± 0.1 -0.1 ± 0.1x 

PPI17 6.6 ± 1.3 6.6 ± 0.2 1.7 ± 0.4 2.1 ± 0.2 0.38 ± 0.01 0.11 ± 0.01 72.7 ± 0.1 63.9 ± 0.7 69.4 ± 0.1 78.3 ± 0.1 60.9 ± 1.1 3.0 ± 0.1 3.0 ± 0.1 2.5 ± 0.3 2.8 ± 0.1 0.0 ± 0.1 

trastuzumab 5.9 ± 0.8 7.5 ± 0.1 1.4 ± 0.1 2.5 ± 0.1 0.54 ± 0.01 0.43 ± 0.01 78.8 ± 0.1 65.0 ± 0.3 68.9 ± 0.2 80.4 ± 0.3 73.2 ± 1.3 0.4 ± 0.1 0.7 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 

adalimumab 6.3 ± 0.6  6.5 ± 0.1 1.5 ± 0.8 2.3 ± 0.2 0.47 ± 0.01 0.22 ± 0.01 72.0 ± 0.1 58.7 ± 0.6 70.1 ± 0.1 82.0 ± 0.1 66.5 ± 1.0 1.0 ± 0.1 1.3 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.3 ± 0.1 

bevacizumab 5.0 ± 0.7 6.2 ± 0.1 1.9 ± 0.1 2.3 ± 0.9 0.15 ± 0.01 0.02 ± 0.01 70.5 ± 0.1 61.4 ± 0.7 69.8 ± 0.1 - 63.9 ± 0.9 1.2 ± 0.1 3.9 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 2.7 ± 0.1 

rituximab 5.9 ± 1.3 6.3 ± 0.2 1.8 ± 0.1 2.9 ± 0.3 0.42 ± 0.01 0.04 ± 0.01 72.1 ± 0.1 62.5 ± 0.1 67.6 ± 0.1 - 65.5 ± 2.1 1.1 ± 0.1 1.7 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 0.6 ± 0.1 
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Figure S7: Exemplary data from the analysis of the proteins with the ReFOLD assay and SEC-MALS. 

Chromatograms of the proteins before unfolding (red lines) or after refolding from 10 M urea (green dots). 
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Figure S8: Non-reversibility curves of the antibodies from modulated scanning fluorimetry. 

Exemplary curves with the normalized fluorescence intensity signal at 350 nm and 10% threshold from 

which the temperature of non-reversibility onset (Tnr) was determined. The Tnr mean values from the 

triplicates can be found in Table S2. 
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Figure S9: Impact on tertiary antibody structure after exposure to temperatures below and above the 

non-reversibility onset temperature Tnr from MSF. Near-UV CD spectra of the proteins at room 

temperature (black squares) or after heating for 15 minutes to 5 °C above the Tnr (red circles) or to 5 °C 

below the Tnr (blue triangles). The proteins were cooled back down to 25 °C before the measurement. The 

spectra show that heating to temperatures above the Tnr causes severe structural changes. A Jasco J-810 

spectropolarimeter was used for the measurements. The protein concentration was 1 mg/mL. 
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Figure S10: TANGO and AGGRESCAN analysis on the primary structures of the antibodies. 
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Figure S11: Antibody ranking based on the CamSol analysis on the native Fv regions. The color code 

is like in Figure 8c, Figure 9c, Figure 11 and Figure 12f.  
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Figure S12: Additional characterization with MD and CamSol. (a) Analysis on the CL domains from 

PPI01 (lambda) and trastuzumab (kappa). The lines are Boltzmann fits to the data. (b) MD simulations using 

10 Å cut-off. (c) A comparison between solubility drop temperatures when the MD simulations are 

performed with 8 or 10 Å cut-off. 
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Figure S13: Additional storage stability data. (a) The amount of aggregates at the beginning of the 

stability study does not correlate with the aggregation during storage at 40 °C. (b) The area of soluble 

antibody detected in the SEC chromatograms indicates that there was no precipitation during storage.  
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4.1  Introduction 

Proteins are widely applied as medicines due to their high specificity compared to small 

chemicals.1,2 However, protein drugs exhibit additional challenges when it comes to the 

development of formulations that can preserve their stability.3,4 Protein aggregation is a commonly 

encountered problem in the development of biopharmaceuticals that can affect the efficacy of the 

product and cause undesired immune reactions in patients.5 Both protein colloidal and 

conformational stability have been related to protein aggregation.5 The colloidal stability of a 

protein is related to weak net interactions between the protein molecules in solution, which can 

either be attractive or repulsive. The conformational stability is defined by the equilibrium between 

folded and unfolded states of a protein, and a slight deviation from these optimal conditions may 

shift the equilibrium towards unfolded protein species, which are often prone to form aggregates.6,7 

Various factors including the protein’s amino acid sequence and environmental factors such as pH, 

buffers, protein concentration, ionic strength, and storage conditions have an impact on protein 

aggregation. Therefore, the prevention of protein aggregation is a major challenge in the 

formulation development process in the biopharmaceutical industry. Due to the lack of a complete 

molecular understanding and predictability of protein aggregation, formulation development is still 

done in a trial and error approach.8,9  

In this study, we investigated the aggregation mechanism of the therapeutic model protein 

granulocyte-colony stimulating factor (G-CSF). Native G-CSF is a 19.6 kDa glycoprotein with 174 

amino acid residues,10 which mediates the proliferation of granulocytes through receptor binding. 

Filgrastim, the non-glycosylated, recombinant form of G-CSF with an additional N-terminal 

methionine group is a licensed drug to treat neutropenia.11 Filgrastim, hereafter referred to as G-

CSF, is a hydrophobic cytokine with a molecular weight of 18.7 kDa as a result of the removal of 

the glycosylation.12 The structure of G-CSF is characterized by a four-helix-bundle fold with two 

long loops connecting helices αA and αB as well as αC and αD. An additional short 310-helix is 

located within the loopAB and is perpendicular to the four anti-parallel α-helices (Figure 14). 
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Figure 14: The structure of G-CSF obtained from Protein Data Bank (PDB) (PDB code: 1CD913). 

MODELLER was used to generate the first five disordered residues.14 The secondary structure of G-CSF is 

shown with different color schemes: N-terminus (Met1-Pro11), αA (Gln12-Tyr40), loopAB (Lys41-Gln71), 

αB (Leu72-Leu93), αC (Leu100-Leu125), loopCD (Gly126-Ser143), αD (Ala144-Pro175). 

The stability of G-CSF is highly pH-dependent with maximum stability at pH 4.0 and low stability 

and fast aggregation at physiological pH.15–17 With an isoelectric point of around 6.1,16 G-CSF is 

highly positively charged at acidic pH, resulting in electrostatic repulsion between the protein 

molecules. Furthermore, the addition of salt at pH 3.5 causes aggregation16 indicating a strong 

impact of electrostatic interactions on the aggregation of G-CSF. Nevertheless, the pH-dependent 

behavior of G-CSF is still discussed in the literature. Narhi et al. reported an increase of α-helical 

content of G-CSF at pH 4.0 compared to neutral pH using circular dichroism (CD) measurements.18 

Another study used hydrogen deuterium exchange (HDX) mass spectrometry to compare the local 

changes of relative uptake difference between pH 4.0 and 7.0 and could not observe a change in α-

helical content. Narhi et al. observed quenching of Trp residue(s) at pH 4.0 in fluorescence intensity 

measurements.18 Similarly, a Nuclear Magnetic Resonance (NMR) study performed by Aubin et 

al. showed that Trp configuration is pH-dependent.19 
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To provide a detailed molecular understanding of the pH-dependent aggregation mechanisms of 

G-CSF, we performed a multi-scale modeling approach using full atomic and coarse-grained (CG) 

molecular dynamics (MD) simulations. The aggregation mechanism was explored by CG 

simulations of G-CSF using the SIRAH force field (FF)20,21 developed to simulate proteins in 

explicit solvent conditions. WT4 models describe the CG water molecules, where one WT4 model 

consists of four beads that are connected in a tetrahedral form. The protein backbone in the SIRAH 

FF is defined by 3 beads representing nitrogen, alpha carbon, and oxygen atoms and thereby 

allowing for movement of the secondary structure since no constraint is applied to fix the protein 

backbone. Each side chain was modeled specifically based on a combination of physicochemical 

characteristics. The SIRAH FF is a relatively new force field that was recently used to study the 

process of seeding peptide aggregation.22 SIRAH was chosen as an alternative to MARTINI since 

it has been shown that the MARTINI FF overestimates PPI for membrane proteins.23 The 

conformational stability of G-CSF at varying pH values was studied by carrying out full atomic 

MD simulations in the pH range of 4.0 to 7.5. We could observe that the conformational state of 

G-CSF is very similar at varying pH values in unbiased systems. To ensure that the system is not 

trapped in a local minimum, we carried out metadynamics simulations. We compared our in silico 

results with experimental data obtained from fluorescence intensity, CD spectroscopy, nanoDSF, 

and DLS measurements as well as modeling based on small-angle X-ray scattering (SAXS). 

4.2  Methods 

4.2.1 Conventional Molecular Dynamics Simulations 

The structure of G-CSF is available from X-ray (1CD913, 1RHG10, and 2D9Q24) and NMR 

(1GNC25) studies, of which 1CD9 has been widely used as the G-CSF model structure in various 

MD simulation studies.26–28 The initial structure of G-CSF for the conventional molecular 

dynamics simulation (cMD) study was prepared using PDB entry 1CD9 (solved at pH 7.5).13 The 

missing five residues were added using Modeller software 9.21.14 The PDB2PQR server was used 

to protonate the titratable residues at pH 4.0, 5.0, and 7.5.29 The full atomic conventional MD 

(cMD) simulations were carried out using the AMBER software 20 30 and G-CSF was parametrized 

using the force field FF14sb.31 The protein was inserted into a cubic periodic boundary box, where 

the minimum distance between the protein and the edge of the box was set to 15 Å. The TIP4P 

Ewald water model was used to solvate the system.32 The system was neutralized by adding either 



102 

 

sodium or chloride ions. The initial structures were minimized using 10000 cycles. The first 5000 

cycles were computed using the steepest descend algorithm. The remaining 5000 cycles were 

carried out using the conjugate gradient algorithm. The cut-off distance of the non-bonding 

interaction was set to 12 Å. The electrostatic long-range interactions were evaluated using the 

particle-mesh-Ewald (PME) method.33 The SHAKE algorithm was applied to fix the bonds 

involving hydrogen.34,35 The system was heated to 300 K in the NVT ensemble (constant N = 

Number of atoms, V = Volume, T = Temperature) for 0.3 ns, using the Langevin thermostat 36 with 

a collision frequency of 5 ps-1. The system was then subjected to a short equilibration run for 2.2 

ns in the NPT (N= Number of atoms, P= Pressure, T=temperature) ensemble, while the pressure 

was kept at 1 bar using Monte Carlo barostat.37 The final production run was carried out using the 

NPT ensemble for 400 ns and the last 200 ns were used for analyses.  

4.2.2 Metadynamics 

To ensure that G-CSF conformation is not trapped in the local minima during the simulations, we 

have carried out metadynamics simulations using AMBER software 20 30 and PLUMED 2 38. The 

initial structures for the metadynamics simulations were obtained from the final frame of the cMD 

simulations. All metadynamics simulations were carried out in the NVT ensemble for 400 ns using 

the Langevin thermostat with a collision frequency of 5 ps-1.36 The well-tempered metadynamics 

scheme was used to ensure a smooth convergence of the free energy landscape.39 The collective 

variables (CVs) were chosen based on the experimental observations,18,19,40,41 and included the 

center of the mass distance (COM) between Trp and His residues to monitor the interactions 

between, Trp59-His157 (d1) and His80-Trp119 (d2), and the α-helical content (α) (Table 1). 
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Table 1: List of the metadynamics simulation conditions. The following CVs were investigated in the 

study: α-helical content (α), the COM distance between Trp59-His157 (d1), and the COM distance between 

His80-Trp119 (d2). The initial height and width of the Gaussian hills are also provided. Biasfactor is defined 

to perform the simulations in a well-tempered manner. 

Simulation 

Label 

Input pH CVs Height 

[kJ/mol] 

Width Biasfactor Deposition 

Rate [hill/ps] 

1 pH 4.0 α, d1, d2 

 

 

1 

 

 

0.5,  

0.05 nm, 

0.05 nm 

15 

 

1 

2 pH 5.0 

3 pH 7.5 

    

4.2.3 CG Simulations 

The CG simulations were carried out using the Gromacs software 2018 42 with the SIRAH 2 force 

field.20,21,43 The CG model of G-CSF at pH 4.0, 5.0, and 7.5 was obtained by coarse-graining the 

full atomic G-CSF models that were obtained from the PDB2PQR29 web server using the SIRAH 

toolbox.43 For each simulation, 8 G-CSF monomers were added to the system. The initial G-CSF 

monomer was translated and duplicated along the x-, y-, and z-axes where the center of the mass 

distance between replicates was set to 7.5 nm. An alternative approach could have been to sample 

the initial structures from a population-density of structures determined from single monomer 

metadynamics simulations. However, without any input from experimental results, this will give 

rise to a large number of combinations, and we decided therefore to use the final frame of cMD 

simulations. 

The distance between solute and box was set to 0.75 nm resulting in a concentration of ~30 mg/mL. 

Note that a too small simulation box will cause an immediate aggregation of the proteins while too 

large box sizes will increase the simulation time. The optimal protein-protein and protein-box 

distances were chosen empirically to reduce the computational burden for sampling the 

aggregation. The system was solvated by adding SIRAH based WT4 molecules.44 After the 

solvation, the system was neutralized by adding either sodium or chloride ions. In addition to the 

pH study, the effect of salt was monitored by adding 150 mM of NaCl (in CG mode) to the systems 

at different pH conditions. The initial minimization was conducted using the steepest descent 
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algorithm, followed by the conjugate gradient algorithm. The maximum number of each 

minimization scheme was set to 50,000. The heating was performed for 2 ns where the system was 

coupled to the Berendsen thermostat and barostat.45 After heating, the system was equilibrated for 

500 ns using a time step of 10 fs. To accurately sample the NPT ensemble, the system was coupled 

to the stochastic velocity rescaling thermostat46 and the Parrinello-Rahman barostat.47 The 

production run was performed for 3 μs. For each condition, 5 replicate simulations were carried 

out which corresponds to 15 μs per condition. 

4.2.4 Materials 

The bulk G-CSF solution contained 4.0 g/L protein and was provided from Wacker Chemie, 

Germany. The protein concentration was measured spectrophotometrically using a NanoDrop 2000 

(Thermo Fisher Scientific, Wilmington, USA) and an extinction coefficient at 280 nm of 0.86 

(mg/mL)-1cm-1. All chemicals were of molecular biology or multicompendial grade and were 

purchased either from Sigma or Thermo Fisher Scientific (Germany). All solutions were prepared 

with ultrapure water from a Sartorius arium® pro system (Sartorius Corporate Administration 

GmbH, Göttingen, Germany). All buffers used had a concentration of 10 mM and the pH after 

preparation was ± 0.1 of the target value.  

4.2.5 Sample Dialysis and Preparation 

The buffer was exchanged by extensive dialysis to the respective buffer at the given pH (10 mM 

sodium acetate at pH 4.0 and pH 5.0, 10 mM potassium phosphate at pH 7.5) for 24 hours at 2-8 

°C using a Spectra/Por® dialysis membrane (cutoff 6-8 kDa, Spectrum Laboratories, Rancho 

Dominguez, CA, USA) or a Slide-A-Lyzer™ MINI Dialysis Device (cutoff 3.5 kDa, Thermo 

Fisher Scientific, Germany). The samples were collected in microcentrifuge tubes and centrifuged 

at 10,000 x g for 10 minutes and subsequently filtered with 0.02 µm Anotop® membrane filters 

(Whatman, FP 30/0.2 CA-S, GE Healthcare, Buckinghamshire, UK). Stock solutions of sodium 

chloride were prepared in the respective buffer and spiked into the dialysed protein stock to prepare 

samples containing 100 mM of sodium chloride. For measurements that required higher protein 

concentrations, the protein solutions were upconcentrated using Vivaspin 20 5 MWCO PES 

centrifugal concentrators (Sartorius Lab Instruments, Goettingen, Germany). The concentration 

was measured again, and the solutions were sterile filtered with 0.02 µm Anotop® membrane filters.  
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4.2.6 Intrinsic Fluorescence Spectroscopy 

Fluorescence emission measurements of the samples with a protein concentration of 0.5 g/L were 

performed using a Jasco FP-6500 Fluorescence Spectrophotometer. Emission spectra were 

recorded from 300 to 450 nm with an excitation wavelength of 280 nm, steps of 0.01 nm, and a 

scan speed of 100 nm min-1. A 3 nm slit width was used both in excitation and emission 

monochromators. Buffer spectra were subtracted from the sample spectra.  

4.2.7 Circular Dichroism (CD) Spectroscopy 

Near- and far-UV circular dichroic spectra were collected at 25 ⁰C with a Jasco J-810 

spectropolarimeter (JASCO Deutschland GmbH, Pfungstadt, Germany). All samples contained 1 

g/L of protein. Quartz cuvettes (Hellma GmbH, Muellheim, Germany) with 10 mm and 0.1 mm 

wavelength path were used for the measurements, respectively. Five accumulations of each sample 

were taken at a speed of 20 nm/min. The spectrum of the respective buffer was subtracted for each 

sample and smoothing of the spectra was performed using the Savitzky-Golay algorithm with 9 

smoothing points. The mean residue ellipticity (MRE) of the protein at each wavelength was 

calculated as described elsewhere.48 

4.2.8 Differential Scanning Fluorimetry (nanoDSF) 

nanoDSF was used to study the thermal unfolding and aggregation of G-CSF as a function of pH 

and ionic strength. Samples with 1 g/L of protein were filled in standard nanoDSF™ grade 

capillaries, and the capillaries were sealed. A temperature ramp of 1  °C/min from 20 to 100  °C 

was applied with the Prometheus NT.48 (NanoTemper Technologies, Munich, Germany) system 

that measures the intrinsic protein fluorescence intensity at 330 and 350 nm after excitation at 

280 nm. Simultaneously, the device detects aggregation/precipitation of the samples by measuring 

the back-reflection intensity of a light beam that passes through the capillary. The apparent protein 

melting temperatures (Tm) were determined with the PR. ThermControl software V2.1 

(NanoTemper Technologies, Munich, Germany) from the maximum of the first derivatives of the 

thermal unfolding curves. The same software was used to determine the aggregation onset 

temperature (Тagg) from the increase in the signal from the aggregation detection optics. Tm and 

Tagg are mean of triplicates with standard deviations calculated with Origin.  
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4.2.9 Dynamic Light Scattering (DLS) 

Samples with protein concentrations from 1 to 5 g/L were prepared and 10 μL of each sample were 

pipetted in triplicates into a 1536 well plate (Aurora Microplates, Whitefish, USA). The plate was 

centrifuged at 2000 rpm for 2 min using a Heraeus Megafuge 40 centrifuge equipped with an M-

20 well plate rotor (Thermo Fisher Scientific, Wilmington, USA). Two microliter of silicon oil was 

added to seal each well. The plate was centrifuged again and placed in a DynaPro DLS plate reader 

III (Wyatt Technology, Santa Barbara, USA). All measurements were performed at 25 °C with 10 

acquisitions per well and an acquisition time of 5 s. The data was analyzed with the Dynamics 

V7.10 software (Wyatt Technology, Santa Barbara, USA). The diffusion interaction parameter (kD) 

was determined according to the method that is described in the literature.49,50 

4.2.10 Small Angle X-ray Scattering (SAXS) 

For SAXS measurements, samples with initial protein concentrations of 2, 5, and 7 mg/mL were 

prepared and shipped to the ESRF (The European Synchrotron Radiation Facility, Grenoble, 

France) on dry ice. Before measurements, the samples were thawed at room temperature and 

centrifuged at 10000 rpm for 10 min. Data collection was performed at the ID02 beamline. Data 

collection is summarized in the supplementary information. The DOI for the data is 

10.15151/ESRF-ES-404440738. 

The data processing and analysis were performed using ATSAS 2.8.2 software package.51 Before 

modeling, the low-q region was removed to avoid fitting on aggregation/repulsion; the high-q 

region was removed to avoid fitting on noisy data. The monomer structure of G-CSF was fitted to 

the SAXS curves using CRYSOL.52 We have carried out rigid body modeling of the G-CSF dimer 

on a mixture using SASREFMX.53 The dimer structures with high occurrence were manually 

extracted from the CG simulations. The extracted CG dimers were backmapped using the SIRAH 

toolbox,43 i.e. resulting in full atomic structures. The backmapped structures were converted to the 

OLIGOMER compatible input files using FFMAKER.54 The output from the CG simulations was 

fitted to the SAXS data using OLIGOMER. The dimer with the best χ2 value (the value close to 1) 

was selected to estimate the monomer/dimer fractions in the mixture. 
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4.3  Results and Discussion 

4.3.1 pH-dependent structural differences of G-CSF 

We have investigated the effect of the pH on the secondary and tertiary structure of G-CSF using 

a combination of modeling and biophysical techniques. The characteristic far-UV CD spectra with 

two minima at 209 and 222 nm confirm the presence of alpha-helical protein structure at all 

conditions and showed no difference between pH 4.0 and 5.0 and only a slight decrease of helical 

content when increasing the pH to 7.5 (Figure 15a). In agreement with our findings, the G-CSF 

structure solved at pH 3.5 (PDB code: 1GNC) has a similar helix content to the G-CSF structure 

solved at pH 7.5 (PDB code: 1CD9). A similar trend could be observed from HDX-measurement 

performed by Wood et al., who could not find any clear evidence for a change of helical contents 

between pH 4.25 and 7.4.41 In contrast, Narhi et al. used CD spectroscopy and showed that the 

helical content is noticeably higher at low pH (pH 4.5: helical content 75 % vs. pH 7.5: helical 

contents 66 %).18 

The near-UV CD spectra of G-CSF at pH 5.0 and 7.5 are very similar in the wavelength region 

from 250 to 295 nm (Figure 15b). Surprisingly, G-CSF at pH 7.5 shows a negative CD signal at 

wavelengths from 300 to 340 nm which is very unusual for a protein in inorganic buffer but has 

been previously observed for filgrastim.55 It is presumably caused by aggregates in the sample. The 

near-UV CD spectrum at pH 4.0 slightly deviates from the other spectra determined at pH 5.0 and 

7.5 in the wavelength region 250 to 295 nm, but the characteristic features of the spectra remain 

the same. Therefore, G-CSF has a well-defined tertiary structure with only little difference between 

the three tested pH values. 

The tryptophan fluorescence of G-CSF is significantly quenched when the pH is decreased from 

pH 7.5 to pH 4.0 indicating that the Trp residues are in different conformational states at the 

different pH values (Figure 15c) This observation is in accordance with the findings of Narhi et 

al.18 G-CSF contains two Trp residues: Trp59 and Trp119 which are located close to His157 and 

His80, respectively (Figure 15d). The change in pH causes a conformational change of Trp that 

promotes interactions between Trp and positively charged His leading to the quenching of Trp. 

Furthermore, the pH-dependent change of the Trp residues is observed in the available PDB 

structures. The NMR structure of G-CSF at pH 3.5 (PDB code: 1GNC) revealed that the Trp 

residues can interact with the neighboring His residues.25 On the other hand, the X-ray structure 
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obtained at pH 7.5 (PDB code: 1CD9), shows that Trp59 points away from His157. In contrast to 

1CD9, Trp59 is pointing upwards in 1GNC (Figure 16), indicating that the conformation of the Trp 

residues is dependent on pH. Based on these findings, we hypothesized that the Trp configuration 

is an important factor influencing the conformational stability of G-CSF.  

 

Figure 15: Effect of pH on the G-CSF secondary structure studied with (a) far-UV circular dichroism; 

and on the G-CSF tertiary structure studied with (b) near-UV circular dichroism. (c) fluorescence intensity 

measurements which indicate that the Trp residues in G-CSF are quenched at pH 4.0. (d) The location of 

Trp and His residues in G-CSF (PDB code: 1CD9). The protein is shown in a transparent cartoon structure. 

The investigated Trp and His residues are shown as sticks and colored in orange and blue, respectively. 
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Figure 16: The conformational change of Trp59. The sidechain structure of G-CSF at pH 4.0 (PDB code: 

1GNC) is colored blue. The sidechain structure at pH 7.0 (PDB code: 1CD9) is colored red. Note, Trp59 

forms an upward configuration at pH 4.0. The protein is shown using in transparent cartoon structure. 

To further investigate the effect of Trp configurations on the G-CSF structural integrity, we 

performed cMD simulations with the crystal structure 1CD9 as starting structure. The simulations 

were carried out for 400 ns. During the simulations, no significant conformational changes of the 

Trp residues could be observed. Presumably, 400 ns cMD simulations were not sufficient to induce 

noticeable structural changes. Therefore, we continued with well-tempered metadynamics 

simulations where bias potentials are added as a function of the center of mass (COM) distances 

between Trp and His side chains. To check the overall conformational stability, the alpha-helical 

content was chosen as the third CV. The 2D and 3D free energy surfaces (FES) of the CVs are 

shown in Figure 17. The time evolution of the FES is provided in the supplementary information. 
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Figure 17: Estimate of the FES of G-CSF at different pH values. Each energy surface is obtained as a 

function of the α-helical content and the distance between His and Trp residues. The local minima are 

highlighted with dashed white circles. Top panel: The COM distance between Trp59 and His157 is on the 

x-axis. Bottom panel: The COM distance between His80 and Trp119 is on the x-axis. 

Interestingly, the Trp59(loopAB)-His157(αD) pair and His80(αB)-Trp119(αC) pair show different 

behavior. Since Trp59 is located in the loopAB, it has much higher flexibility and can move away 

from His157 easier than Trp119(αC) from His80(αB). Therefore, the FES of Trp59-His157 can be 

sampled at a COM distance larger than 1.5 nm. In addition, all three pH conditions could reproduce 

the upward state of Trp59, where an energetic minimum could be estimated at a Trp59-His157 

distance of around 0.4 nm. However, the Trp59 residues at pH 4.0 and pH 5.0 have an energy 

barrier between the up and down position corresponding to a breakage of the cation-π-interactions 

between Trp59 and protonated His157, while Trp59 can freely move between the two 

configurations at pH 7.5.  

Contrarily, it is difficult to separate His80-Trp119 more than 1 nm and only one local minimum 

could be found from the COM distance. At pH 7.5, the COM distance of His80-Trp119 remained 

around 0.7 nm. At lower pH, the COM distance of His80-Trp119 remained around 0.5 nm. In 

addition, relatively larger fluctuation could be observed at pH 7.5, indicating that His80-Trp119 
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are located close to each other but they are not able to form a strong cation-π-interaction, since 

there is no cation at pH 7.5. 

The histidine residues located closely to the Trp residues in G-CSF will be protonated at low pH. 

The FES has shown that the interaction between Trp and its neighboring His residue is much more 

favorable at pH 4.0. This interaction between Trp and His residues may stabilize G-CSF at pH 4.0 

compared to pH 7.5 by clamping loopAB to helix αD and helix αB to helix αC, therefore making 

the structure locally less flexible. Aubin et al. investigated the interactions between Trp and His 

residues at pH 4.3, 5.0, and 6.4 using NMR.19 Based on chemical shift analysis, the authors could 

show that changes in Trp-His interactions affect the conformational stability of G-CSF.19 In 

addition, Ghasriani et al. have determined the relaxation parameters of G-CSF using NMR 

spectroscopy and assessed the protein flexibility from the calculated order parameters.40 The 

authors found that the main difference between pH 4.0 and 6.0 was due to the change in the loop 

and helical flexibility. The authors observed that the flexibility of loopCD was increased at pH 4.0, 

whereas a very slight increase of flexibility was seen for loopAB at pH 4.0. The π-cation interaction 

between Trp59 and His157 can prevent an increase of loopAB mobility. In contrast, a decrease of 

flexibility could be observed for the helical packing at pH 4.0, and the authors suggested that the 

His80-Trp119 interaction can be the factor that is involved in reducing the flexibility. On the other 

hand, Wood et al. have reported an increase of the loopCD deuterium uptake at pH 7.4.41 One of 

the challenging parts of the experimental characterization of G-CSF above pH 6.2 is that an 

extensive aggregation can occur in the sample.41 Compared to experiments, the metadynamics 

simulations (performed on a single G-CSF molecule) provide an option to study protein 

conformation in highly aggregation-prone physicochemical conditions without the interference of  

protein-protein interactions. The current FES study has been focused on the CVs that can be 

directly observed in the fluorescence intensity and CD measurements (Figure 15), since the FES 

are based on a few local CVs the magnitude of flexibility may be dependent on the choice of CVs. 

The observation made from HDX41 and NMR19 experiments is in good agreement with our 

metadynamics simulations, where the overall α-helical content is not significantly affected by 

adjusting the pH. The MD study indicates that the interactions between Trp and His residues may 

affect the local structural conformation and loop mobility. The interactions between loopAB-αD 

(Trp50-His157) and αB-αC (His80-Trp119) are lost at pH 7.5, suggesting that G-CSF will be more 

flexible at pH 7.5. 
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4.3.2 Effect of pH and Sodium Chloride on the Thermal Unfolding and Aggregation of  

G-CSF 

The structural changes of G-CSF due to different pH values affect the thermal unfolding and 

aggregation of the protein. We furthermore aimed to evaluate the influence of sodium chloride on 

the stability of G-CSF to elucidate the importance of electrostatic interactions. Therefore, we 

performed nanoDSF measurements and determined Tm and Tagg (Table 2). At pH 4.0, G-CSF 

unfolds significantly later (Tm ~65 °C) than at pH 5.0 (Tm ~ 52 °C) and pH 7.5 (Tm ~ 55 °C) and 

does not form detectable aggregates in contrast to higher pH. Addition of 100 mM sodium chloride 

at pH 4.0 causes a significant shift in the unfolding transition of G-CSF to a lower temperature (Tm 

~ 53 °C). The same trend was found for the onset of aggregation (Tagg). This shift cannot be seen 

at pH 5.0 and is less pronounced at pH 7.5. This shows that sodium chloride has a more detrimental 

effect on the thermal stability of G-CSF at low pH. At pH 5.0, close to the isoelectric point of the 

protein, sodium chloride has only a small effect on the aggregation behavior. The lower thermal 

stability at pH 7.5 compared to pH 4.0 is decreased even more upon addition of sodium chloride. 

Table 2: Tm and Tagg of G-CSF were determined with the PR. ThermControl software from the thermal 

unfolding curves and the increase in the signal from the backreflection of the nanoDSF measurements. Tm 

and Tagg are mean of triplicates with standard deviations. (NA- no detection of aggregates.) 

 Tm  [C°] (± error) Tagg  [C°] (± error) 

pH 4.0 64.95 ± 0.02 NA 

pH 4.0 + 100 mM NaCl 53.34 ± 0.05 53.51 ± 0.05 

pH 5.0 52.27 ± 0.07 50.61 ± 0.18 

pH 5.0 + 100 mM NaCl 52.25 ± 0.06 50.75 ± 0.22 

pH 7.5 54.87 ± 0.06 55.1 ± 0.00 

pH 7.5 + 100 mM NaCl 51.08 ± 0.03 47.46 ± 0.09 
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The colloidal stability of G-CSF in all tested conditions was assessed by means of the interaction 

parameter kD which describes the interaction of proteins in solution (Figure 18, Table 3).56 kD is 

commonly used as a surrogate parameter for the osmotic second virial coefficient 𝐵22, which is 

directly related to PPIs, whereas kD provides a less direct relationship. In general, positive kD values 

indicate net repulsive PPIs and negative values correspond to net attractive interactions. However, 

the reversal does not occur exactly at zero. The excluded volume contribution to kD is smaller than 

for B22 and therefore values of kD can be negative when B22 values are still positive. 

 

Figure 18: Diffusion coefficients at increasing protein concentrations assessed with DLS at pH 4.0, 5.0, 

and 7.5 with and without the addition of 100 mM NaCl. 

There is considerable variation in the y-intercept, i.e. the diffusion coefficient at infinite dilution, 

for the measured conditions which could be due to the formation of irreversible species which do 

not dissociate upon dilution or due to protein conformational changes. Since we could not observe 

large conformational changes but a different tendency to form aggregates in the other methods, we 

assume that the samples contained irreversible aggregates. To confirm this hypothesis, we used the 

Stokes-Einstein relation to calculate the infinite dilution values for the hydrodynamic radius r(H)0 

from the infinite dilution diffusion coefficients (D0) for each condition (Table 3). The r(H)0 values 

range from 2.1 up to 4.0 nm, whereas the reported value is 2.0 nm,57 which confirms the presence 

of larger species in our samples. This in turn impedes the correct determination of the diffusion 

interaction parameter kD. Additionally, the partial specific volume of the protein is expected to be 

a function of pH and could significantly contribute to differences in kD. However, the partial 
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specific volume should only change upon unfolding which could neither be observed in CD 

measurements nor MD simulations. Therefore, we do not expect the partial specific volume to have 

a drastic effect on the kD values. To support this hypothesis, we submitted the last frames of the 

conventional all-atom MD simulations at the respective pH values to the HullRad webserver, which 

calculates the partial specific volume of a protein from a PDB structure. A partial specific volume 

of 0.75 mL/g was calculated for all three pH values.  

Table 3: kD and r(H)0 derived from DLS measurements performed at different pH and ionic strength 

values. Due to strong aggregation, kD could not be determined at pH 5.0 with salt.  

Buffer kD [mL/mg] r(H)0 [nm] 

10 mM NaAc pH 4.0 3.3·10-2 2.3 

10 mM NaAc pH 4.0 + 100 mM NaCl -1.2·10-2 2.1 

10 mM NaAc pH 5.0 4.18·10-3 2.2 

10 mM NaAc pH 5.0 + 100 mM NaCl NA NA 

10 mM KPhos pH 7.5 -3.49·10-2 2.5 

10 mM Kphos pH 7.5 + 100 mM NaCl -6.36·10-2 4.0 

 

G-CSF shows a positive kD and is assumed to show repulsion at pH 4.0 which is in agreement with 

the proposed highly positive electrostatic surface at low pH (Figure 19). The addition of salt screens 

the surface charges of the protein and results in a negative kD. These observations are in correlation 

with the strongly decreased thermal stability at low pH upon addition of salt. A kD of almost zero 

could be observed at pH 5.0, which indicate no strong attractive nor repulsive forces between the 

protein monomers. This behavior is expected at a pH close to the isoelectric point where the protein 

has (almost) no net charge. Due to the very high level of the aggregation, the kD could be not 

measured when salt was added to the pH 5.0 formulation. This result is in accordance with the 

observations from Chi et al.16 The authors used static light scattering experiments to obtain the 

osmotic second virial coefficient (B22) value. A positive and negative B22 value could be 

determined at pH 3.5 and pH 6.1, respectively.16 Aggregation of G-CSF occurred when 150 mM 
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of NaCl was added to the formulation, and the B22 value could not be determined due to 

precipitation.16 The negative kD value at pH 7.5 suggests that the G-CSF monomers attract each 

other.  

This is in accordance with the surface potential of G-CSF which is highly pH-dependent (Figure 

19) as G-CSF contains a relatively large number of charged residues. The net charge of G-CSF at 

pH 4.0 is estimated to +13 e using PDB2PQR.29 The electrostatic surface of the helical bundle is 

highly positively charged. Therefore, it is expected that G-CSF will be repulsive at pH 4.0. At pH 

5.0, the net charge of G-CSF is decreased to +1 e, and it becomes -4 e at pH 7.5. Hence, electrostatic 

interactions play a substantial role in the aggregation process of G-CSF. 

 

Figure 19: Electrostatic surface properties of G-CSF at different pH values. (a) Orientation of the 

electrostatic surface. The flexible N-terminus, loopAB, and loopCD are colored in red. Top: The region 

containing loopAB and loopCD is on the front view. Bottom: The helical bundle without any long loop 

structures is on the front view. (b-d) The electrostatic potential surface at different pH was calculated using 

the APBS electrostatics plugins58 in PyMOL59 and PDB2PQR29.  

In order to simulate the aggregation behavior of G-CSF at the different pH values, we performed 

CG simulations with eight monomers in a pH series. The snapshots of the first 500 ns simulation 

before the aggregation are shown in in the supporting information. The aggregation behavior of G-
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CSF at different conditions was estimated by tracking the number of protein-protein interactions 

(PPI) during the simulations (Figure 20). The number of PPI during the 3 μs of the production run 

was defined as the number of observed intermolecular residue pairs with pair distance less than 4 

Å. 

 

Figure 20: The relative number of protein-protein interactions (PPIs) obtained from the CG 

simulations. The number of PPIs during the 3 μs of the production run was defined as the number of 

observed intermolecular residue pairs with pair distance less than 4 Å. The number of PPIs is normalized to 

the number of interactions observed in the pH 4.0 simulations. (a) The total relative number of PPIs during 

the simulations. Each bar represents the mean and the standard error of the mean of the five trajectories 

performed at each pH. (b) Time series of the relative number of PPIs. Each bar represents the mean and the 

standard error of the mean of the five trajectories that are observed in the current MD frame. 

Since the total number of the PPIs is highly dependent on the simulation time and the size of the 

simulation box, the number of interactions is normalized by the number of interactions obtained at 

pH 4.0. Addition of NaCl or increasing the pH value to 5.0 resulted in a 2-fold increase of the 

sampled PPI compared to pH 4.0. A 2.5-fold increase of the PPI could be observed at pH 7.5 

(Figure 20a). The 2-fold increase is following the trend that was observed for the kD data (Table 

3), and the SIRAH FF model could reproduce the increase of PPIs at the aggregating conditions.  

Figure 20b shows the time evolution of the relative number of PPIs during the simulations. It is 

interesting to note that the total number of PPIs increases with simulation time, indicating that the 
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overall tendency is an aggregation (irreversible oligomer formation) rather than an association 

(reversible oligomer formation). An increase in the relative number of PPIs can also be observed 

at pH 4.0. However, this is not completely surprising since the CG simulations have been 

performed at relatively high protein concentration (approximately 30 mg/mL) to reduce the 

computational time for sampling PPI. Interestingly, the slope of the time evolution of the PPI is 

different at each pH. At pH 7.5, a much faster increase of the relative number of PPIs is observed 

when compared to pH 5.0. Since the number of monomers is limited to 8, the relative number of 

PPIs at 3 µs is very similar for pH 5.0 and 7.5, indicating that the difference in the observed relative 

number of PPIs will also be dependent on the simulation time. Accuracy and performance will 

always be a trade-off when sampling PPIs between diffusing protein monomers. In an ideal case, 

very long CG sampling with a relatively large box with many protein monomers will give more 

accurate sampling at the expense of computational time, but it is expected that the results will show 

a similar tendency observed here.  

In the CG simulations, no significant increase of aggregation propensity could be sampled between 

pH 4.0 + NaCl, pH 5.0, and pH 5.0 + NaCl. The highest aggregation behavior could be observed 

at pH 7.5. Note that the degree of increase in the PPI may be dependent on the size of the simulation 

box and the number of the G-CSF monomers. It is implied that the relative number of PPI might 

change if the simulation condition is changed. However, the overall trend is expected to be the 

same. The results from the CG simulations suggest three different aggregation states: 1) weak 

aggregation at pH 4.0, 2) moderate aggregation at pH 4.0 + NaCl, pH 5.0, and pH 5.0 + NaCl, and 

3) strong aggregation at pH 7.5 and pH 7.5 + NaCl.   

To characterize the region of the aggregation-prone residues, interacting residue pairs in the CG 

simulations were depicted in heatmaps. The pixels of the heatmap are assigned by the number of 

frames with the pair-distance less than 4 Å that was registered from all five trajectories. The color 

bar is scaled to the strongest interactions that could be observed in the pH 4.0 simulations. Residue 

pairs were only included in the heatmap if the interactions occurred for more than 25 % of the 

strongest interaction observed in the pH 4.0 simulations. An example of the heatmap is shown in 

Figure 21. To visualize the residues that are involved in the PPI, the residues in the G-CSF structure 

were colored in a similar color scheme as in the heatmaps (Figure 22). 
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Figure 21: Protein-protein interaction (PPI) heatmap at pH 4.0. The x- and y-axes describe the residue 

number and their secondary structural localization of the interacting residue pair. The interacting residue 

pair between different monomers from all five simulations are collected into one data set. The color scale 

indicates the occurrence of the interactions between specific residue pairs. The color bar is scaled to the 

strongest interaction that occurred in the pH 4.0 simulations; here N-Terminus 6 - N-Terminus 7 interaction. 
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Figure 22: The aggregation-prone residues determined from the CG simulations and prediction 

algorithms based on the PDB structure. (a-f) Interacting residues determined from the CG simulations. 

Aggregation-prone residues that were involved in the PPI in the CG simulations are colored red. Residues 

not prone to participate in aggregation (blue) interacted 25 % or less compared to the strongest interaction 

at pH 4.0. (g-h) Aggregation-prone residues are predicted from the initial PDB structure (PDB code: 1CD9) 

using aggrescan3d (A3D) and spatial aggregation propensity (SAP). Red residues represent aggregation-

prone residues. Blue residues represent non-aggregation prone residues based on A3D-score or SAP lower 

than 25 % of the strongest A3D / SAP score from the 1CD9. 
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At pH 4.0, the N-terminal part of G-CSF is the main region participating in aggregation (Figure 21 

and Figure 22a). Since G-CSF is highly charged at pH 4.0, it is expected that the G-CSF monomers 

will repel each other. However, since the N-terminal part of G-CSF does not contain any charged 

residues, is very flexible and exposed to the solvent, it can still interact with other G-CSF 

monomers. Therefore, it appears that N- to N-terminus interactions may be one of the dominant 

PPI at pH 4.0 (Figure 21 and Figure 22a). Shibuya et al. studied the colloidal stability of the 

backbone circularized G-CSF, i.e. the N- and C-termini of G-CSF are connected. Their study 

revealed that backbone circularization of G-CSF at pH 4.0 leads to a more aggregation-resistant G-

CSF when a protein denaturant is added.60 When NaCl is added to the simulations at pH 4.0, both 

loopAB and loopCD are participating in the PPI (Figure 22d), which indicates that the electrostatic 

repulsion between the G-CSF monomers is the main limiting factor of the intermolecular long loop 

interactions. The aggregation-prone residues at pH 5.0 and pH 5.0 + NaCl are following a similar 

pattern as seen for pH 4.0 + NaCl (Figure 22b, d, and e). The relative number of interactions is 

very similar in these conditions (Figure 20). Therefore, this suggests that the aggregation behavior 

at these conditions mainly originated from the loss of the repulsion between the G-CSF molecules, 

i.e. that colloidal stability plays a larger role than conformational stability. At pH 7.5, the short 

helix in loopAB and the bottom part of the helix bundle located close to the N- and C-termini 

become more prone to aggregation. Addition of NaCl at pH 7.5 has a minimal effect on aggregation 

which indicates the screening of electrostatic interactions does not have a noticeable effect on G-

CSF aggregation at this pH which is in accordance with our experimental data. 

We also determined the aggrescan3d (A3D) score and the spatial aggregation propensity (SAP)61 

using PBD structure 1CD9 (Figure 22g) to compare the results obtained from relatively fast 

prediction algorithms with results from computational demanding CG simulations. Interestingly, 

the A3D/SAP calculations were able to predict the N-terminus and large area of the loopAB region 

as aggregation-prone regions (Figure 22g-h). Those aggregation-prone residues follow a similar 

pattern as seen from the CG simulations. However, CG simulations have the advantage that 

aggregation-prone regions can be determined in a pH-dependent manner revealing additional 

aggregation-prone regions.  

Observing the overall pattern of the aggregation-prone residues from the CG simulations, it 

becomes clear that the aggregation mechanism of G-CSF is non-specific, e.g. more than one 

aggregation site exists in G-CSF. Previously, Meric et al. used multiple aggregation prediction 
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algorithms and suggested that Leu83 located at αb is the most aggregation-prone residue.62 

However, the authors found that the point mutation Leu83->Ala did not improve the aggregation 

propensity of G-CSF,62 which is in line with our results that indicate a non-specific aggregation 

mechanism. 

To extract the important PPI of the G-CSF oligomers, we further analyzed the heatmap (Figure 

21). For each condition, two to four dimers that contain several different strong interaction clusters 

were manually extracted from the CG simulations. The extracted G-CSF dimers are used to provide 

an aggregation ensemble of G-CSF oligomers. The first chain of the G-CSF dimers was aligned to 

a reference PDB structure (1CD9). After the alignments, only the second chain is shown together 

with the reference structure, mapping the different protein-protein interfaces in G-CSF aggregates 

(Figure 23).  

 

Figure 23: G-CSF aggregation ensemble. For each condition, multiple dimer structures containing several 

different strong interaction clusters were manually extracted from the CG simulations. Two to four dimers 

were extracted from each condition. In total 18 dimers were extracted from the CG simulations. The first 

chain of the extracted dimer was aligned to the reference structure (1CD9). The second chains of the 

ensemble are shown in transparent and cyan colored structures. The reference structure is colored according 

to the scheme used for aggregation-prone residues of pH 7.5 + NaCl (see Figure 22). 



122 

 

Diverse types of dimers can be observed from the aggregation ensemble. Both aggregation 

ensemble and the simulated aggregation-prone residues suggest that the exposed long loop regions 

are highly prone to aggregation. Interestingly, the exposed helical structures are not prone to 

aggregate, suggesting that a combination of electrostatic repulsion and compactness of the helical 

bundle prevents aggregation of helices. At pH 4.0, the long loop regions show a positively charged 

electrostatic surface (Figure 19 top). Since loopAB and loopCD become aggregation-prone when 

sodium chloride is added or the pH is increased to 5.0, one may argue that electrostatic repulsion 

of the long loop region is one of the most important factors to avoid the aggregation of G-CSF. Our 

metadynamics simulations suggest an increase of flexibility at pH 7.5 due to the loss of the Trp-

His interactions. Since the probability to obtain unfolding of an alpha-helix at standard conditions 

is low without adding protein denaturants or heating the system, it suggests that the increase of 

loop flexibility initiates the aggregation of G-CSF. 

Since the CG model has a limited atomic resolution, careful consideration is required when 

interpreting CG simulation results. In an attempt to validate and inspect the aggregation mechanism 

of G-CSF, we compared the CG simulation results to SAXS measurements of G-CSF, at different 

pH and NaCl concentrations (Figure 24). SAXS can be applied to investigate the inter-particle 

interactions of therapeutic protein.63 However, it is extremely challenging to model the protein-

protein interactions in the irreversible aggregating condition using SAXS data.64 On other hand, 

SAXS data still provides valuable information when it is combined with the CG simulations since 

the combination of SAXS and CG simulations enables the direct comparison between 

computational and experimentally determined aggregation behavior. 
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Figure 24: SAXS scattering curves of G-CSF at (a) pH 4.0  (b) pH 5.0, (c) pH 7.5, (d) pH 4.0 + 100 mM 

NaCl, (e) pH 5.0 + 100 mM NaCl, and (f) pH 7.5 + 100 mM NaCl. The protein concentration range: 2-7 

mg/mL. The data set for pH 5.0 2 mg/mL was not included due to technical problems occurring during the 

measurements. 

The SAXS data indicate that the only non-aggregating condition of G-CSF is at pH 4.0, where 

repulsion between G-CSF molecules is observed (Figure 24a). Since the data measured at the 

highest concentration is less noisy, it was used for the modeling process.  
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Figure 25: SAXS scattering profile plotted at the low-q region. The arrow illustrates the aggregation of 

G-CSF with increasing pH. The protein concentrations of the samples are 7 mg/mL. 

The aggregation of G-CSF was initially investigated by inspecting the low-q region of the SAXS 

data. According to the data shown in Figure 25, increasing pH and the addition of NaCl lead to an 

increase in aggregation, which is in agreement with the aggregation profile deduced from the CG 

simulations (Figure 20). 

In order to investigate the fraction of higher order species of the SAXS data, the dimer fraction of 

the considered samples was calculated. The obtained molecular weight of G-CSF in the aggregating 

conditions was between the molecular weight of monomer and dimer. Therefore, we decided that 

the modeling would be focused on the dimer only. The following modeling approaches were 

applied: i) fitting a dimer structure that was obtained from rigid-body modeling using 

SASREFMX53 with two high-resolution monomer structures (1CD9) as an input (Figure 26a) and 

ii) fitting of the monomer (ICD9) and the dimer structures that were extracted from the CG 

simulations (Figure 23) using OLIGOMER54 (Figure 26b). Both models assume that the scattering 

data are from the mixture, meaning that both monomer and dimer structures will be fitted to the 

SAXS data simultaneously. Furthermore, CRYSOL52 was used to fit the stand-alone monomer 

structure that is obtained from 1CD9. To validate the dimer structure, the χ2 value of the monomer 

fitting was compared to the outcomes of the dimer fitting. The obtained dimer fraction is shown in 

Figure 26.  
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Figure 26: Analysis of the dimer fractions of G-CSF at different pH conditions. (a) Dimer fitting using 

SASREFMX53, and (b) Dimer fitting using OLIGOMER54. The χ2 of CRYSOL52 is generated from the 

fitting of the G-CSF monomer structure. The modeling was performed with SAXS data obtained for protein 

concentration 7 mg/mL. 

Overall, monomer + dimer has a better fit on the experimental data than the monomer only fit, 

meaning that both are present at all studied conditions (Figure 27). The rigid-body modeling 

approach had higher freedom to create the dimer structure to obtain an optimal fitting. Therefore, 

the result obtained from SASREFMX usually gave a better fit (Figure 27b). However, one must 

note that the dimer structure that is generated from the rigid body modeling may not have a 

physically realistic protein-protein interface. The structures obtained from the rigid body modeling 

can be found in the supporting information. 
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Figure 27: The results of the different modeling techniques. Two conditions are chosen as examples: (a) 

non-aggregating pH 4.0, and (b) highly aggregating pH 7.5 + NaCl. The arrows indicate a misfit at the low-

q region. The difference between the fit and scattering profile (Δ) is plotted below the fittings. The horizontal 

line indicates Δ=0. All y-axes are scaled to the same arbitrary chosen range. The modeling was performed 

with SAXS data obtained for protein concentration 7 mg/mL. 

One interesting outcome is that the dimer fraction from the SAXS modeling (Figure 26) follows a 

similar trend as obtained from the CG simulations (Figure 20). Two entirely different modeling 

approaches could separate PPI at 3 different levels: 1) at pH 4.0, 2) pH 4.0+NaCl, pH 5, pH 5.0+ 

NaCl, and 3) pH 7.5 and pH 7.5 + NaCl. 

However, the modeling based on SAXS data (Figure 26) provided a more pronounced increase of 

dimer fraction at pH 7.5 compared to our results from the CG simulations (Figure 20). Note that 

the increase of dimer fraction can also indicate bigger aggregation species. One must note that the 
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CG simulation results will be dependent on the size of the system, the number of included 

monomers, and the simulation time and size. Thus, the CG simulations alone do not provide an 

accurate description of the level of aggregation compared to experimental data. Therefore, the 

SAXS data was included to predict the level of aggregation in a more physically correct manner. 

The SAXS data could validate the trend that was obtained from CG simulations. Furthermore, it 

was possible to propose a possible G-CSF dimer structure by combining both CG simulations and 

SAXS measurements (Figure 28). The proposed G-CSF oligomer structure contains realistic PPI, 

and the structure could be directly related to the experimental data.  

 

Figure 28: Dimer models of G-CSF at different conditions combining dimers extracted from CG 

simulations and SAXS measurements. Note, the fitting has been performed using monomer and dimer 

mixtures. The simulated CG dimer structures were back-mapped and then fitted to the SAXS data at the 

corresponding condition. The dimer with the χ2 value closest to 1 was selected. All dimer models selected 

from the CG simulations are aligned to the ab-initio model of the corresponding SAXS data (gray envelope) 

using DAMMIF65. However, the G-CSF SAXS data showed a certain fraction of higher order species, and 

therefore, the interpretation of the particle shape derived from the SAXS data must be assessed with caution.  
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It is worthwhile to mention that the ab-initio models in Figure 28 have different shapes, which 

indicates that the amount of aggregating species is different at the different pH conditions, since 

the ab-initio model describes an averaged protein shape in solution. The selected dimer structure 

suggests that the N- to N-terminus interactions are dominant at pH 4.0, and that the long loops are 

involved in the aggregation at pH 5.0 and pH 7.5.  We propose that the SAXS models can serve as 

an extension to the CG aggregation model of G-CSF, where the SAXS models can be used to 

provide a bridge between the CG modeled G-CSF and the real system.  

4.3.3 Future perspectives and potential challenges 

Our study on G-CSF demonstrates that the application of orthogonal techniques can provide a 

molecular understanding of the driving forces for PPIs. Since soluble aggregates are usually 

transient, heterogeneous and present at very low concentrations, an ideal experimental technique 

would be able to simultaneously quantify the size and conformation of each species in a sample, 

without immobilization or labeling. However, the applied experimental techniques in this work are 

measuring averages of all species present so that species with a low population are being neglected. 

In some cases, the presence of (irreversible) aggregates even impedes the data analysis, for example 

in the determination of kD and the modeling of the SAXS data. The MD simulations allowed us to 

determine pH and ionic strength-dependent changes on conformation and PPIs at an atomistic level, 

yet needed experimental validation. Applying multiple techniques, the shortcomings of each 

technique can be compensated. Due to its distinct pH-dependent behavior, G-CSF is particularly 

suited as a model protein for this study. However, not all proteins show such dramatic pH-

dependent differences and it has to be seen if the computational approaches are sensitive enough 

to distinguish the aggregation behavior.  Nevertheless, we propose that our approach could be 

extended to other proteins/systems. The challenge will be as the protein size and complexity of the 

system increase (e.g., glycosylation or by including excipients in the simulations), the 

computational cost will increase. However, with the increasing processor and network technology 

performance, it will become feasible to simulate systems with higher complexity. Including 

excipients in simulations may also require additional force field development of these molecules 

in the coarse-grained presentation. CG simulations have been applied to investigate self-

interactions of antibodies,66,67 where the antibody is usually coarse-grained to much smaller beads 

(6-12 beads),66 or the self-association is monitored by simulating only two antibodies.67 
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4.4  Conclusions 

We have demonstrated that multiple approaches are required to shed light on the aggregation 

process of G-CSF. Full atomic simulations have shown that it was very difficult to capture the 

conformations of G-CSF in an unbiased system. The metadynamics study revealed that one of the 

most distinct conformational changes of G-CSF at the different pH values occurs due to the loss of 

cation-π interactions between Trp and the neighboring His residues. The α-helix stability is not 

noticeably affected by pH, indicating that helical destabilization is not the main issue in standard 

formulations. However, the results show that the loss of Trp59-His157 and His80-Trp119 

interactions will cause a local perturbation, that may contribute to the increased flexibility of G-

CSF at higher pH values. The CG simulations could provide the pH-dependent aggregation-prone 

regions of G-CSF, which was in accordance with the SAP results. The predicted aggregation-prone 

regions are the N-terminal region and the two long loops parts of G-CSF. We have inspected the 

electrostatic surface to explain the pH-dependent change in the aggregation promoting regions, and 

found that the long loop regions are repulsive at pH 4.0 due to the positively charged surface 

potential. The addition of salt or increase in pH will make G-CSF more aggregation-prone since it 

will reduce the electrostatic charge located closely to the highly aggregation-prone loop regions. 

Inspecting the dimer structure from the CG simulations, we observe that the α-helical structures 

are not participating in the aggregation, and that the aggregation of G-CSF is highly unspecific 

where multiple forms of G-CSF dimer can exist. The CG simulations lack atomic resolution, and 

it is not feasible to simulate the G-CSF aggregation in a physically realistic size scale. To overcome 

this problem, we have included SAXS data for validation and interpretation of the simulation 

outcomes. We could obtain a reasonable fitting by including the dimer structures extracted from 

CG simulations during the modeling based on the SAXS data. The dimer fraction from SAXS data 

and the number of interactions from CG simulations followed a similar trend. Since both modeling 

and experiments of the protein aggregation process are extremely challenging, it requires a 

combination of multiple approaches to compensate for the weakness of each. We found that the 

combination of various modeling approaches could shed light on the complex pH-dependent 

aggregation process of G-CSF. 
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4.5  Supporting information 

Due to the volume of the supporting information and since the manuscript is published, the 

information can be found here: https://doi.org/10.1016/j.csbj.2022.03.012 
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5.1   Introduction 

Maintaining a drug product's stability is essential for the effective development of therapeutic 

proteins since reduced stability in many cases leads to a loss of efficacy and potency as well as 

increased immunogenicity.1 Therapeutic proteins are prone to changes in their secondary and 

tertiary structure (physical instabilities such as unfolding an aggregation) as well as alterations in 

their primary structure by e.g. oxidation, deamidation, disulfide scrambling, and proteolysis.2 The 

risk of such changes is enhanced when the environmental conditions differ from the physiological 

conditions and when the proteins are exposed to various external stresses in their lifetime until final 

administration.3 The identification of physicochemical properties and possible degradation 

mechanisms of the protein is crucial to find a stable formulation and to prevent problems with 

stability.4 The inherent chemical and physical instabilities of the protein are addressed by 

optimizing the solution conditions (i.e. pH, ionic strength) and identifying stabilizing excipients 

during drug product development. To promote conformational stability, a variety of excipients, 

including specific ligands, amino acids, buffers, surfactants, and sugars can be used.5 High 

concentrations of excipients are usually applied when the excipient is preferentially excluded from 

the protein, whereas excipients that preferentially bind to the protein’s native state are applied in 

lower concentrations.6,7 Therefore, excipients in protein formulations must be optimized based on 

their concentration-dependent effects which could be both, positive and negative.8 

This study focuses on the stabilization of the protein granulocyte-colony stimulating factor (G-

CSF) by addition of the zwitterionic buffer HEPES. G-CSF is a hematopoietic growth factor 

containing 174 amino acid residues, that promotes the proliferation and differentiation of blood 

progenitor cells and the activation of neutrophils.9,10 Filgrastim (hereafter referred to as G-CSF), 

the non-glycosylated recombinant form of G-CSF, contains an additional N-terminal methionine 

and is a licensed drug to treat and prevent neutropenia.11 G-CSF is characterized by a four-helix-

bundle fold and an additional short 310-helix located in loopAB, perpendicular to the four 

antiparallel α-helices (Figure 29).  
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Figure 29: Structure of G-CSF (PDB code: 1CD9). The first four disordered residues which were 

missing in the PDB file were generated with MODELLER. 

It has been shown that hydrophobicity and low solubility are stability concerns, and that methionine 

oxidation is an important degradation pathway of G-CSF.12 G-CSF conformational stability and 

aggregation have been studied extensively. Its conformational stability is maximal at pH 4.0, while 

the protein self-associates as dimers and rapidly forms aggregates at neutral pH.13,14 High ionic 

strength neutralizes the charge-charge repulsions and induces aggregation also at low pH.15,16 

Despite challenges in engineering to stabilize G-CSF, Bishop et al. identified variants with 

enhanced conformational stability and sustained biological activity.17 The design of an 

aggregation-resistant variant, however, remained unsuccessful.18 Interestingly, the presence of the 

buffer substance 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) in high 

concentrations was shown to sustain the in vivo and in vitro activity of bovine G-CSF.19 HEPES is 

a zwitterionic molecule that provides buffer capacity between pH 2.5 to 3.5 and pH 6.8 to 8.2. 

Despite being widely used in protein expression, HEPES is not frequently found in therapeutic 

formulations.20,21 

The aim of this study was not the development of a new formulation that is more stable than those 

on the market, but the exemplary application of molecular dynamics (MD) simulations to explain 

experimental observations, here the previously reported effect of HEPES on the stability of G-CSF. 

This in turn can help with future experimental planning, to get new ideas for formulations, and to 

dramatically reduce classic excipient screenings. The molecular mechanism of the effect of a well-
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known organic buffer molecule on a well-understood, relevant protein is investigated in atomistic 

detail at varying concentrations from 1 to 1000 mM and at two different pH values (pH 4.0 and pH 

7.5). We compare experimental data obtained from near-UV and far-UV CD spectroscopy, 

nanoDSF and DLS measurements, RP-HPLC measurements after short-term stresses, and BLI 

binding studies with MD simulations at increasing concentrations of HEPES. We could identify an 

effect of HEPES on the G-CSF stability at both pH values with different mechanisms at low and 

high concentrations of HEPES and under different stress conditions. HEPES affected not only the 

protein conformation but also the aggregation propensity of the protein. We confirmed direct 

binding of HEPES to specific interaction sites at low concentrations and a crowding of HEPES 

molecules on the protein surface at high concentrations.  

5.2  Material and methods 

5.2.1 Materials 

The bulk G-CSF solution contained 4.0 g/L protein in acetate buffer at pH 4.0. The protein 

concentration was measured spectrophotometrically using a NanoDrop 2000 (Thermo Fisher 

Scientific, Wilmington, USA) and an extinction coefficient at 280 nm of 0.86 (mg/mL)-1cm-1. All 

chemicals were of molecular biology or multicompendial grade and were purchased either from 

Sigma or Thermo Fisher Scientific (Germany). All solutions were prepared with ultrapure water 

from a Sartorius arium® pro system (Sartorius Corporate Administration GmbH, Göttingen, 

Germany).  

5.2.2 Sample Dialysis and Preparation 

Slide-A-Lyzer™ MINI Dialysis Devices (cutoff 3.5 kDa, Thermo Fisher Scientific, Germany) 

were used for direct dialysis into the respective HEPES buffers for 24 hours at 2-8 °C. The 

respective HEPES concentrations were added to 10 mM sodium acetate buffer and subsequently 

adjusted to pH 4.0 ± 0.1 for the low pH samples whereas for pH 7.5 no additional buffer system 

was used. During dialysis, the samples with high HEPES concentrations were significantly 

upconcentrated, which led to precipitation of the protein. Therefore, in the next step the respective 

HEPES buffers at pH 4.0 were spiked into the G-CSF samples before dialysis for all conditions to 

avoid too high concentration gradients across the dialysis membrane. Afterwards, the samples were 

collected in microcentrifuge tubes and centrifuged at 10,000 x g for 10 minutes and subsequently 

filtered with 0.02 µm Anotop® membrane filters (Whatman, FP 30/0.2 CA-S, GE Healthcare, 
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Buckinghamshire, UK). The pH after preparation was ± 0.1 of the target value. It must be noted 

that, in contrast to all marketed formulations of G-CSF, no polysorbate was used in this study which 

led to a faster degradation of the protein. 

5.2.3 Circular Dichroism (CD) spectroscopy 

Near- and far-UV circular dichroic spectra were collected at 25 ⁰C with a Jasco J-810 

spectropolarimeter (JASCO Deutschland GmbH, Pfungstadt, Germany). All samples contained 

1g/L of protein. Quartz cuvettes (Hellma GmbH, Muellheim, Germany) with 10 mm and 0.1 mm 

wavelength path were used for the measurements, respectively. 5 accumulations of each sample 

were taken at a speed of 20 nm/min. The spectrum of the respective buffer was subtracted for each 

sample and smoothing of the spectra was performed using the Savitzky-Golay algorithm with 9 

smoothing points. The mean residue ellipticity (MRE) of the protein at each wavelength was 

calculated as described elsewhere.27 Far-UV spectra could only be recorded for samples with 

HEPES concentrations up to 50 mM due to the signal of the HEPES molecule itself.  

5.2.4 Differential Scanning Fluorimetry (nanoDSF) 

nanoDSF was used to study the thermal unfolding and aggregation of G-CSF as a function of the 

HEPES concentration. Samples with 1 g/L of protein were filled in standard nanoDSF™ grade 

capillaries, and the capillaries were sealed. A temperature ramp of 1  °C/min from 20 to 100  °C 

was applied with the Prometheus NT.48 (NanoTemper Technologies, Munich, Germany) system 

that measures the intrinsic protein fluorescence intensity at 330 and 350 nm after excitation at 

280 nm. Simultaneously, the device detects aggregation/precipitation of the samples by measuring 

the back-reflection intensity of a light beam that passes through the capillary. The apparent protein 

melting temperatures (Tm) were determined with the PR. ThermControl software V2.1 

(NanoTemper Technologies, Munich, Germany) from the maximum of the first derivatives of the 

thermal unfolding curves. The same software was used to determine the aggregation onset 

temperatures (Тagg) from the increase in the signal from the aggregation detection optics. 

5.2.5 Dynamic Light Scattering (DLS) 

DLS was used to determine the hydrodynamic radius (Rh) and the %Polydispersity (%PD) of the 

G-CSF samples. 10 μL of each sample were pipetted in triplicates into a 1536 well plate (Aurora 

Microplates, Whitefish, USA). The plate was centrifuged at 2000 rpm for 2 min using a Heraeus 
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Megafuge 40 centrifuge equipped with an M-20 well plate rotor (Thermo Fisher Scientific, 

Wilmington, USA). Two microliter of silicon oil was added to seal each well. The plate was 

centrifuged again and placed in a DynaPro DLS plate reader III (Wyatt Technology, Santa Barbara, 

USA). All measurements were performed at 25 °C with 10 acquisitions per well and an acquisition 

time of 5 s. The data was analyzed with the Dynamics V7.10 software (Wyatt Technology, Santa 

Barbara, USA). 

5.2.6 Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) 

A Dionex Summit 2 system equipped with a UVD170U UV/Vis detector (Thermo Fisher, Dreieich, 

Germany) was used for the reversed-phase high-performance liquid chromatography. 20 µL were 

injected on a BioBasic C18, 250 x 2.1, 5 µm column (Thermo Fisher, Dreieich, Germany) after 

centrifugation at 10000 x g for 10 min. Detection was performed by UV spectrometry at 280 nm. 

Eluent A consisted of 10 % (w/v) acetonitrile and 0.1 % (w/v) trifluoracetic acid in ultrapure water. 

Eluent B consisted of 0.1 % (w/v) trifluoracetic acid in acetonitrile. The flow rate was 0.2 mL/min. 

The column oven temperature was set to 37 ⁰C. 

5.2.7 Molecular dynamics simulations 

The structure of G-CSF is available in the PDB (1CD9) with the first four disordered residues 

missing. These were added with MODELLER. The protonation states of ionizable residues of the 

protein at the respective pH were adjusted using the H++ server.28 The three protonation states of 

HEPES were parametrized with antechamber using GAFF2 for bonded and non-bonded parameters 

(Figure 30). Atomic partial charges were calculated with the AM1-BCC charge model in 

antechamber.  

 

Figure 30: Structures of the different HEPES protonation states. 

All-atom simulations were performed with the Amber18 program25 in a periodic box with explicit 

solvent. The ff14SB force field for proteins was employed in combination with the TIP3P water 

model. PACKMOL and tleap were used to solvate G-CSF at pH 4.0 and 7.5 with the respective 
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number of HEPES molecules in a cubic water box. The numbers of unprotonated (HEM), 

protonated (HEH), and double protonated HEPES (HEH2) were calculated via the Henderson-

Hasselbalch equation for each condition. All bonds involving hydrogen atoms were constrained 

using the SHAKE algorithm. Non-bonded electrostatic interactions were treated using the particle 

mesh Ewald algorithm with a direct space cut-off of 8 Å. The system was energy minimized with 

the steepest descent algorithm for the first 5000 cycles, followed by 5000 cycles using the conjugate 

gradient method. System equilibration was carried out for 1 ns in NVT ensemble to stabilize the 

temperature of 300 K using the Langevin thermostat, and subsequently for 1 ns in NPT ensemble 

to adjust the density of the system using the Berendsen barostat. The simulations were performed 

for 100 ns with a time step of 2 fs. The coordinates were saved every 10 ps. All trajectories were 

analyzed using the CPPTRAJ module of Amber19 and VMD.29 To estimate the binding of HEPES 

molecules to the protein, we calculated the interaction score probability (P(Iscore)) defined as:  

P(Iscore) = n / (N · a) 

where n is the number of frames HEPES was in contact with a certain residue over simulation time, 

N is the total number of frames, and a is a normalization factor to convert the interaction score into 

a probability. 
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5.3   Results and discussion 

5.3.1 HEPES influences thermal stability and aggregation of G-CSF in a concentration-

dependent manner 

Previous work revealed that HEPES significantly affects the stability of G-CSF when used as a 

buffer component.19 We therefore investigated the effect of varying HEPES concentrations on the 

protein with experimental and computational techniques. Since G-CSF is a highly pH-sensitive 

protein which shows good stability at pH 4.0 but tends to aggregate at neutral pH, we include both 

pH values in this study to evaluate if HEPES could increase the stability not only at neutral pH but 

potentially even further enhance the protein stability at acidic conditions. HEPES only provides 

buffer capacity between pH 2.5 to 3.5 and pH 6.8 to 8.2 so that samples at pH 4.0 additionally 

contained 10 mM sodium acetate buffer.  

First, we investigated the effect of HEPES at the two pH values on the stability of G-CSF. The 

thermal stability at different HEPES concentrations was measured with nanoDSF from 20 °C – 90 

°C. Figure 31a shows the calculated melting temperatures (Tm) and aggregation onset temperatures 

(Tagg) for samples at pH 4.0 and 7.5 with 0, 1, 5, 10, 20, 50, 100, 500, and 1000 mM HEPES. 

Interestingly, even the low HEPES concentrations increase the melting temperature (Tm) compared 

to the reference sample without excipient for both pH values. At pH 4.0 the highest thermal stability 

was found at 10 mM HEPES (Tm = 69.4 °C) while increasing HEPES concentrations lead to a 

reduction in Tm even below the Tm of the reference without excipient. At 500 and 1000 mM 

HEPES, aggregation started to occur in the pH 4.0 samples. At pH 7.5, the melting temperature 

increases from ~51 °C without excipient to ~54 °C from 10 to 1000 mM. As could be seen for pH 

4.0, the Tagg significantly decreases at high HEPES concentrations. These results indeed indicate a 

stabilizing effect of HEPES on G-CSF as was previously shown by Kasraian et el. but at lower 

concentrations. Furthermore, we performed dynamic light scattering (DLS) measurements on all 

samples at 25 °C to determine the hydrodynamic radius (Rh) (Figure 31b). The Rh of G-CSF at pH 

4.0 is slightly smaller for all measured conditions compared to pH 7.5. A small drop in Rh can be 

seen upon the addition of HEPES compared to the reference for both pH values, whereas for the 

high HEPES concentrations a significant increase of Rh is observable. At 1000 mM HEPES, the 

Rh has even doubled compared to the references. This agrees with our nanoDSF measurements 

which indicate a higher aggregation propensity for the samples with high HEPES concentrations. 



144 

 

On the other hand, the increase in Rh could also be due to significant binding of HEPES molecules 

to the G-CSF monomer. To further evaluate if HEPES stabilizes G-CSF against various stresses, 

we performed short-term forced degradation studies on G-CSF at both pH values with increasing 

HEPES concentrations. The samples were subjected to temperature stress at 25 and 40 °C as well 

as shaking stress at 25 °C and 1400 rpm for 24 and 48 hours. All samples were analyzed with RP-

HPLC, and the monomer recovery compared to the unstressed samples was calculated (Figure 31c, 

d; Figure S14). Note, that after 24 hours at pH 4.0 no severe degradation could be observed so that 

here samples after 48 hours are shown. After 24 hours at pH 7.5 degradation was already severe so 

that the results after the shorter stress time are presented. For reference, the results for pH 4.0 after 

24 hours can be found in Figure S14a. At 25 °C only the sample without HEPES at pH 4.0 shows 

a decreased monomer recovery of about 86% while all other samples have a recovery of about 

100%. Shaking stress however has a strong effect on the monomer recovery, especially at pH 7.5. 

At pH 4.0, again the sample without HEPES has a slightly lower recovery (83%), while samples 

with 1 to 50 mM still show a recovery >90%. As could already be seen in the nanoDSF 

measurements, the stability of G-CSF drops severely at HEPES concentrations of 500 and 1000 

mM, where only 37% and 1% monomer were left after the stress, respectively. For pH 7.5, the 

highest monomer recovery was found between 5 and 20 mM HEPES (~30%) while the sample 

without HEPES shows only ~9% recovery and samples with 100, 500 and 1000 mM HEPES have 

less than 1% monomer left. These findings support the stabilizing effect of HEPES on G-CSF. The 

results for the 40 °C samples are however not as clear (Figure S14b). Samples at pH 4.0 after 48 

hours at 40 °C remain stable, except for the sample without HEPES (80% recovery). However, the 

trend cannot be found at pH 7.5. Here, we first observe an increase in recovery with increasing 

HEPES concentration from 51% without HEPES to 75% recovery with 5 mM HEPES but a 

subsequent decrease to 19% for 100 mM HEPES. Surprisingly, the recovery drastically improves 

with 500 and 1000 mM HEPES at pH 7.5 (82 and 94%). This contrasts with our previous results 

but supports the findings of Kasraian et al. Altogether, G-CSF shows very different behavior at low 

(1 – 10 mM), intermediate (20 – 100 mM), and high (500 – 1000 mM) HEPES concentrations as 

well as in response to temperature or shaking stress. We propose that the different concentration-

dependent effects of HEPES are due to direct interactions with the protein surface and thus potential 

changes in the conformation or electrostatics of the protein. Since HEPES is a zwitterionic 

molecule, it can both interact with positively and negatively charged residues on the protein 

surface.  
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Figure 31: Effect of different HEPES concentrations on the stability of G-CSF at pH 4.0 and 7.5. (a) 

Melting temperatures (Tm) and aggregation onset temperatures (Tagg) determined by nanoDSF at varying 

HEPES concentrations. (b) Hydrodynamic radii of G-CSF at the two pH values with increasing HEPES 

concentrations measured by dynamic light scattering (DLS). (c) Monomer recovery (%) measured with RP-

HPLC after 48 hours at 25 °C and shaking stress at 25 °C with 1400 rpm at pH 4.0. (d) Monomer recovery 

(%) measured with RP-HPLC after 24 hours at 25 °C and shaking stress at 25 °C with 1400 rpm at pH 7.5. 

To investigate the effect on a molecular basis, we performed molecular dynamics (MD) simulations 

of G-CSF at pH 4.0 and pH 7.5 without and with increasing HEPES concentrations (10, 50, 100, 

500, 1000 mM). Since MD simulations offer molecular mechanistic insights into conformational 

dynamics, protein-protein interactions, and protein stabilization by excipients, they have found 

broad application as a supplement to experiments.22–24 Here, we added the corresponding number 

of the different HEPES protonation states (double protonated: HEH2, protonated: HEH, 
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deprotonated: HEM; see Figure 30) at the respective pH and concentration to the simulation box 

and performed 100 ns simulations at room temperature with the Amber2018 molecular dynamics 

software.25 Due to limitations in box size, we were not able to simulate concentrations of HEPES 

lower than 10 mM. 

In a first step, we analyzed the simulations visually and could observe that the structure of G-CSF 

was retained during the simulation and that HEPES molecules directly interacted with the protein. 

Since the direct binding could influence the stability, aggregation propensity and structure of the 

protein, we furthermore investigated the effects in more detail. The potential influence of HEPES 

on the protein’s aggregation propensity has been assessed via the solvent accessible surface area 

(SASA) for G-CSF in presence and absence of HEPES (Figure 32). As can be clearly seen, the 

SASA decreases at high HEPES concentrations for both pH values due to binding of HEPES 

molecules to the protein. These results suggest a different mechanism of action for HEPES 

concentrations below and above 100 mM as it is also reflected in the nanoDSF and shaking stress 

results. 

 

Figure 32: Solvent-accessible surface area (SASA) calculated from the MD simulations. (a) SASA for 

G-CSF at pH 4.0 without HEPES and with HEPES concentrations between 10 and 1000 mM. (b) SASA for 

simulations at pH 7.5.  

5.3.2 HEPES induces minor structural changes in G-CSF 

To further elucidate on this phenomenon, the impact of HEPES on the structure of G-CSF was 

determined via CD spectroscopy (Figure 33). The characteristic near-UV CD spectrum is not 

affected by HEPES at any concentration compared to the reference sample without HEPES at pH 
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4.0. However, at pH 7.5 the abnormal signal until 320 nm without excipient disappears upon the 

addition of HEPES. In our previous work we discuss that the reason for this signal could be self-

interaction or aggregation of G-CSF.16 This finding suggests that HEPES reduces this self-

interaction at pH 7.5 even at concentrations of 1 mM. Nevertheless, the shape of the spectrum 

remains the same for all HEPES concentrations showing that the overall tertiary structure of G-

CSF is not affected by HEPES. The far-UV CD spectra could only be determined up to 50 mM 

HEPES, due to signal interference at higher concentrations. Two typical minima at 209 and 222 

nm confirm that G-CSF is α-helical in all conditions. A slight increase of helical content when 

increasing the HEPES concentration was observable at pH 7.5. The spectra at pH 4.0 are all 

comparable. We can therefore conclude that HEPES induces minor structural changes in G-CSF at 

pH 7.5 but not at pH 4.0.  
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Figure 33: Influence of HEPES on the secondary and tertiary structure of G-CSF measured by CD 

spectroscopy. (a,c) Near-UV CD spectra of G-CSF at varying HEPES concentrations at pH 4.0 and pH 7.5, 

respectively. (b,d) Influence of HEPES on the far-UV CD spectra of G-CSF at pH 4.0 and pH 7.5, 

respectively.  

From visually inspecting the MD simulations, we could further observe an influence of HEPES 

binding on helix E (residues 45-55) of G-CSF at pH 7.5. Therefore, the secondary structure was 

assigned for these residues for each condition at both pH values from the MD simulations (Figure 

34). As expected, no changes were found for pH 4.0 where most of the residues in the region 45-

55 form either α-helical or 310-helical structure. The same region at pH 7.5 without any excipient 

on the other hand shows a significant amount of turn and bend, and less α-helical structure. Upon 

addition of HEPES, the turn and bend structure partly decrease and forms an α-helix leading to a 

similar distribution as at pH 4.0. Since also the far-UV CD measurements at pH 7.5 showed the 

slight increase in helical context, we can conclude that HEPES binding induced the formation of 

helical content of residues 45-55, corresponding to helix E.  
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Figure 34: Secondary structure assignment of residues 45-55 of G-CSF from MD simulations with 

different HEPES concentrations (310-helix: black, α-helix: dark gray, turn: light gray, bend: white). (a) 

Relative secondary structure propensity at pH 4.0. (b) Relative secondary structure propensity at pH 7.5. 

5.3.3 HEPES directly binds to G-CSF in MD simulations 

In the last step, we wanted to understand the mechanisms by which HEPES causes either 

stabilization or destabilization of G-CSG at pH 4.0 and pH 7.5 at low, intermediate, and high 

concentrations. HEPES contains two hydrogen bond donor and six hydrogen bond acceptor sites 

and can therefore have contact with multiple residues at once.20 The negatively charged sulfonic 

group (-SO3-) and the positively charged amino group (-NH3
+) in the piperazine ring in HEH and 

HEH2 can participate in salt bridges with positive or negative residues on the protein surface, 

respectively.20 Additionally, the large size of the HEPES molecule enables it to bridge gaps 

between residues that are far apart in sequence but also in the structure, for example on two 

different helices. This mechanism was suggested by Kasraian et al. in their study of HEPES and 

G-CSF. We evaluated the binding of the HEPES molecules to the protein at different conditions in 

MD simulations. Trajectories were analyzed in terms of binding probabilities (P(Iscore)) of the 

different HEPES species to the individual residues of the protein at pH 4.0 and pH 7.5 (Figure 35a-

d; Figure S15). The P(Iscore) is a measure of how long a contact between a HEPES molecule and a 

residue of G-CSF was present during the simulation and is calculated based on a simple distance 

cut-off. We used a P(Iscore) cut-off of 20 % to distinguish transient contacts from actual binding. It 

must be noted that the binding frequency and strength of binding for the three species HEH2, HEH 

and HEM cannot directly be compared between the two pH values since they are included to the 

simulation boxes at different ratios. However, at pH 7.5 HEH and HEM are present with a 1:1 ratio. 
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Figure 35: Binding of HEPES to G-CSF in MD simulations at pH 4.0 and pH 7.5. (a, b) Interaction 

score probabilities P(Iscore) per residue for HEH, HEH2, and HEM with 10 mM HEPES for pH 4.0 and 7.5, 

respectively. The P(Iscore) gives a percentage of how long an interaction of phosphate with each residue was 

present during the simulation. We used a P(Iscore) cut-off of 0.2 to distinguish transient contacts from actual 

binding (indicated by a gray line). (c, d) P(Iscores) for 1000 mM HEPES at pH 4.0 and 7.5, respectively. (e,f) 

The number of residues interacting with either HEH, HEH2, or HEM for ≥ 20% of the simulation show a 

concentration-dependence for pH 4.0 (e) and for pH 7.5 (f). 
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At 10 mM HEPES, the interactions of HEPES with the protein are rarely present and mostly not 

stable throughout the simulation. The P(Iscores) at pH 7.5 with 50 mM HEPES are unexpected in 

comparison to the other conditions, since HEH does seem to interact less with the protein compared 

to lower HEPES concentrations. Interestingly, the binding sites at 10 and 50 mM HEPES compared 

for pH 4.0 and pH 7.5 are similar; especially residues in the region around residue 100 ± 10 interact 

with HEH, corresponding to the C-terminal part of helix B, loopBC, and the N-terminal part of 

helix C. HEH2 and HEM, however, have transient contacts with residues at completely different 

regions of the protein. Further increasing the HEPES concentration leads to an even higher level 

of HEH binding, especially at pH 7.5. We can observe a new interaction of HEPES between 

residues 40 and 60 (helix E) at pH 4.0 and residues 20 and 50 (half of helix A and helix E) for pH 

7.5. Additionally, the N- and C-terminus show interaction with HEH at both pH values. Even at 

100 mM HEPES, HEH2, and HEM show no interactions above the 20 % threshold. At 500 and 

1000 mM HEPES, HEH molecules seem to be equally distributed on the protein surface and no 

distinct interaction sites can be identified. However, at these higher concentrations, also HEH2 and 

HEM show interaction probabilities exceeding the threshold. To allow for an easier comparison, 

the number of G-CSF residues interacting with HEPES above the 20 % threshold are counted and 

presented in Figure 35e and f. As already discussed, at low HEPES concentrations, only very few 

interactions of HEH are observed which increase at higher HEPES concentrations. Interestingly, 

even though the total number of HEPES molecules in the simulation boxes for each concentration 

are the same for both pH values, at high concentrations more HEPES molecules interact at pH 7.5 

compared to pH 4.0. At pH 7.5 there seems to be a limit of HEH binding since the number does 

not increase from 500 to 1000 mM HEPES while the number of HEM on the protein surface still 

increases. To better visualize the HEPES binding sites, examples of low and high concentration 

conditions at pH 7.5 are illustrated in Figure 36. Noteworthy, the HEPES molecules bridge residues 

from different helices and even the N- and C-terminus. Furthermore, the interaction sites at the low 

concentrations correspond to known aggregation sites of G-CSF,16,18,26 which support an 

aggregation breaking effect of HEPES. High HEPES concentrations on the other hand, do not show 

distinct binding sites but rather a crowding of HEPES molecules on the surface which could either 

improve electrostatic repulsion between G-CSF monomers or disrupt the hydration shell around 

the protein molecules which could in turn expose hydrophobic regions of the molecule. Taha et al. 

could also observe a decrease in hydrogen bonds between HEPES and water molecules at high 
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buffer concentrations due to buffer-buffer interactions.20 This would support a mechanism of water 

entrapment between the protein and the layer of HEPES molecules around it.   

 

Figure 36: Binding sites of HEPES to G-CSF at pH 7.5 at low concentrations (left) and distribution of 

HEPES on the protein surface at high concentrations (right). HEPES molecules are colored in blue, the 

interaction sites are colored in orange.  

The concentration-dependent binding of HEPES at pH 7.5 could also be confirmed in bio-layer 

interferometry (BLI) measurements up to 200 mM HEPES. The baseline aligned and double 

referenced sensorgram is presented in Figure S16. A very weak KD of 51.1 mM ± 8.4 mM was 

determined which is in agreement with our MD simulations where the binding was rarely stable 

throughout the whole simulation. However, it must be noted that the BLI-system has the capacity 

to measure weak affinities up to 1 mM with certainty. Nevertheless, the dose dependency of HEPES 

binding to G-CSF could be observed.   
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5.4 Conclusions 

We present an extensive study on the stability of the G-CSF in the absence and presence of HEPES 

at pH 4.0 and pH 7.5 and elucidate the molecular mechanisms by which different HEPES 

concentrations influence the protein structure and stability. We revealed a stabilizing effect of 

HEPES on G-CSF in nanoDSF experiments and against shaking stress at low concentrations 

whereas high concentrations of HEPES (≥ 500 mM) resulted in aggregation of the protein. 

Interestingly, temperature-induced degradation of G-CSF at 40 °C could be prevented by HEPES 

at pH 4.0 at all concentrations whereas a different outcome could be observed at pH 7.5. Here, low 

HEPES concentrations stabilized the protein, while at intermediate HEPES concentrations the 

recovery dropped tremendously. However, at high HEPES concentrations, the highest recovery 

could be observed which supports the previously reported finding of Kasraian et al. We can 

conclude that there are different mechanisms of action for HEPES at low and high concentrations 

and at different stress conditions. Next, we could observe HEPES-induced helix formation of 

residues corresponding to helix E resulting in a more similar structure of G-CSF at pH 4.0 and 7.5. 

Since both, conformational and colloidal stability are superior at pH 4.0, this conformational 

change could be the reason for the stabilizing effect of HEPES at pH 7.5. This however does not 

explain the stabilization of G-CSF at pH 4.0. With MD simulations and BLI measurements we 

could confirm direct binding of HEPES to G-CSF in a concentration-dependent manner. Binding 

sites include residues of helix E as well as aggregation hot spots at low concentrations whereas an 

almost equal distribution of HEPES molecules on the protein surface could be found at high 

concentrations. In summary, HEPES binding not only influences the protein conformation at pH 

7.5 but also bridges residues on different helices and blocks aggregation sites of the protein at both 

pH values. We can therefore conclude that HEPES indeed has a stabilizing effect on G-CSF and, 

depending on the concentration, can be used as an excipient in a G-CSF formulation. Our work 

suggests that HEPES is worth to be studied more as an excipient with a potential dual action as 

buffer and specific stabilizer. Additionally, we could show that the application of MD simulations 

should be further included in formulation development to make formulations even more rational 

than they are today. 

  



154 

 

5.5 Supporting Information 
 

 

Figure S14:  Effect of HEPES on the stability of G-CSF at pH 4.0 and 7.5. (a) Monomer recovery (%) 

measured with RP-HPLC after 24 hours at 25 °C and shaking stress at 25 °C with 1400 rpm at pH 4.0. (b) 

Monomer recovery (%) measured with RP-HPLC after 24 hours and 48 hours at pH 7.5 and pH 4.0, 

respectively, at 40 °C. 
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Figure S15: P(Iscores) of the different HEPES protonation states to G-CSF from 10 to 1000 mM HEPES. 



156 

 

 

Figure S16: Baseline aligned and double referenced sensorgram of the bio-layer interferometry (BLI) 

measurements up to 200 mM HEPES. 

Table S3: Overview of the experimental and computational parameters determined at pH 4.0. 

pH 4.0    Monomer Recovery 

[%] (48 h) 

  # interacting HEPES 

molecules 

HEPES 

[mM] 

Tm [ 

°C] 

Tagg [ 

°C] 

Rh 

[nm] 

25 

°C 

25 °C + 1400 

rpm 

40 

°C 

SASA 

[Å] 

HEH2 HEH 

0 65.4 -- 1.6 86.5 83.4 80.2 10347 -- -- 

1 67.3 -- 1.5 96.2 93.5 97.6    

5 69.0 -- 1.6 98.5 91.8 96.5    

10 69.4 -- 1.7 99.0 92.4 97.4 10305 -- 1 

20 67.8 -- 1.7 98.6 91.1 97.2    

50 65.8 -- 1.8 98.8 88.8 98.6 10101 -- 10 

100 61.6 -- 1.9 97.7 85.9 97.8 9450 -- 24 

500 60.4 61.9 2.5 97.5 36.5 107.2 8857 6 73 

1000 59.7 60.2 3.6 98.3 1.0 103.0 7645 8 114 
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Table S4: Overview of the experimental and computational parameters determined at pH 7.5. 

pH 7.5    Monomer Recovery 

[%] (24 h) 

  # interacting HEPES 

molecules 

HEPES 

[mM] 

Tm [ 

°C] 

Tagg [ 

°C] 

Rh 

[nm] 

25 

°C 

25 °C + 1400 

rpm 

40 

°C 

SASA 

[Å] 

HEH HEM 

0 51.6 -- 2.1 101.8 9.0 51.0 10281 -- -- 

1 51.2 48.8 1.9 102.3 19.4 69.6    

5 53.2 51.5 1.9 106.6 30.6 75.1    

10 53.5 52.0 2.0 92.4 27.8 69.8 10093 5 -- 

20 54.0 52.5 2.0 100.1 31.4 53.8    

50 54.1 52.8 2.1 105.3 11.0 28.2 10153 5 -- 

100 53.8 52.1 2.1 108.7 0.9 19.0 9773 21 -- 

500 53.8 49.2 2.8 113.1 0.4 82.3 8466 73 53 

1000 53.5 47.0 4.2 99.8 0.5 93.7 7396 73 78 
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6.1. Introduction 

The successful development of therapeutic proteins depends on the design of stable and robust 

formulations to sustain stability of the drug product during shelf life. Reduced protein stability can 

lead to a loss of efficacy and potency, and also to harmful effects like enhanced immunogenicity.1 

Therefore, potential chemical and physical protein instabilities are addressed by the adaption of the 

formulation composition during drug product development.2 Oxidation of proteins is often reduced 

by the addition of antioxidants, such as methionine.3 Deamidation is another typical degradation 

pathway of proteins and can often be reduced by pH adaption.4 In addition, the pH has an impact 

on the protein colloidal stability by changing the charge distribution on the protein surface and 

thereby affecting the protein-protein interactions in solution.5 These can further be mitigated by the 

addition of salts, specifically anions of the Hofmeister salt series.6,7  

Furthermore, changes in the conformation or partial unfolding of the protein can lead to loss in 

activity and non-native aggregation.8 Various excipients like specific ligands, amino acids, buffers 

and osmolytes are commonly used to increase the conformational stability.7 The selection is usually 

limited to excipients that are well characterized to avoid further safety and efficacy study 

examinations.9 The excipients either stabilize the conformation of the protein by preferential 

exclusion or by preferential binding to the native state of the protein.2,10 Preferential exclusion is 

usually achieved with high concentrations of sugars, polyols or amino acids.5 In contrast, excipients 

that preferentially bind to the protein with a certain affinity are applied in lower concentrations.10 

While protein-excipient binding can enhance protein stability when the interaction is weak and 

transient, stronger-interacting excipients were found to mostly destabilize proteins.11 Moreover, 

the binding needs to be reversible to assure the proteins therapeutic efficacy after administration. 

Since excipient effects are protein specific, finding the optimal excipients to achieve a stable drug 

product is generally done using a trial-and-error approach. However, there have been recent 

approaches to apply computational tools in the context of formulation design.  A virtual screen has 

been presented that could identify new compounds which bind to predicted aggregation hotspots, 

thus inhibiting protein-protein interactions.12 Furthermore, molecular dynamics (MD) simulations 

are now commonly used to study proteins in the presence of excipients to identify the local effects 

on the proteins. Thus, the mechanisms by which certain excipients, for example a dipeptide,13 
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arginine,14 arginine-salts,15 cyclodextrins,16 and surfactants17 stabilize proteins have been 

elucidated.   

Whereas larger proteins like monoclonal antibodies and antibody-drug-conjugates (ADCs) are 

rather well characterized, the stabilization mechanisms for new, structurally variable proteins must 

be examined on an individual basis. Here, we present a combined study of experimental and 

computational approaches on the stabilization of the novel antibacterial drug candidate HY-133, a 

bacteriophage lysin which specifically targets various S. aureus strains. The drug substance is a 

recombinant chimeric lysin with two functional modules: an enzymatic active domain (EAD) and 

a cell wall binding domain (CBD) which are linked via a synthetic peptide linker (Figure 37). 

Analysis of the electrostatic and hydrophobic surface properties reveal negatively and positively 

charged surface patches in both domains and a large hydrophobic patch in the CB domain. These 

properties make HY-133 not only prone to intermolecular interactions but also to inter-domain 

interactions which brings additional challenges to the development. Both domains can be varied 

according to the drug substance’s intended specificity. Topical administrations of HY-133 in the 

nasal cavity and on the skin is intended. 

 

Figure 37: Homology model of HY-133 with the enzymatic active domain (EAD) from the endolysin of 

phage K (PDB code: 4CSH) and the cell wall binding domain (CBD) from lysostaphin (PDB code: 4LXC) 

with bound ions.   

Early development phases revealed chemical degradation as a critical parameter of HY-133. 

However, a pH of 6.0 and methionine as antioxidant could maintain the protein’s chemical stability 

in combination with a HEPES buffer. In addition, Poloxamer 188 effectively increased the colloidal 

EAD 

CBD 
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stability. We furthermore found that the buffer substance N-2-hydroxyethylpiperazine-N'-

ethanesulfonic acid (HEPES) had an advantage over the commonly used buffer systems citrate and 

histidine at the same pH. HEPES is part of the Good’s buffers family, which was developed in 

1966 by Good et al. with the background of providing highly water soluble buffer systems in the 

physiological pH range.18 It belongs to the piperazinic subgroup and has wide structural similarities 

with piperazine-N,N’-bis(2-hydroxypropanesulfonic acid) (POPSO). Whereas 2-(N-morpholino)- 

ethanesulfonic acid (MES) and 3-(N-morpholino)propanesulfonic acid (MOPS) belong to the 

morpholinic subgroup, they all share the N-substituted aminosulfonic acid. The zwitterionic 

character of these substances provides adequate buffer capacities between pH 5.5 and 8.5.19 

Interestingly, it has been shown that the addition of these buffers in high concentrations, in 

particular HEPES, can stabilize the native structure of BSA,20 sustain the activity of G-CSF,21 and 

increase the stability of RecA.22 However, HEPES is not widely used in drug product formulations, 

despite being frequently used in protein expression. As a rare example, the smallpox vaccine 

ACAM200 contains HEPES as a buffering agent.23 

To gain a deeper understanding of the stabilizing effect, the interaction of the protein and HEPES 

was analyzed by CG-MALS. Moreover, we performed MD simulations to elucidate the stabilizing 

effect of HEPES on HY-133 at atomistic detail. Here, we determined HEPES-interaction sites, the 

strength of these interactions and what impact the binding has on the protein structure. HEPES and 

histidine were both found to interact with the charged and aromatic side chains of surface exposed 

residues via salt-bridge formation and cation-π interaction. The simulations also showed that the 

EAD and CBD tend to interact in the absence of the excipient which is prevented by the binding 

of HEPES but not histidine. This self-interaction gives an indication about the mechanism of 

protein-protein interaction and aggregation.  

6.2. Materials and methods 

6.2.1. Protein and chemicals 

The bacteriophage lysin HY-133 was produced by HyPharm GmbH, Bernried, Germany, in a 

concentration of 5 mg/mL at pH 8.0. The protein was dialyzed using a Spectra/Por dialysis 

membrane with a molecular weight cut-off of 10 kDa (SpectrumLabs) and a 4-fold buffer exchange 

to achieve the basic, buffer-free formulation. The formulation contained 0.5 mg/mL HY-133, 10 

mM CaCl2 and 10 mM methionine (both from Merck KGaA, Darmstadt, Germany), 150 mM NaCl 
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(Bernd Kraft, Duisburg, Germany), 300 mM arginine hydrochloride (AppliChem PanReac) and 

0.05 % Poloxamer 188 (Kolliphor 188, BASF, Ludwigshafen, Germany) at a pH of 6.0. HEPES 

(VWR International, Ismaning, Germany), MES, MOPS, POPSO, PIPES, EPPS (all from Sigma 

Life Science) citrate and histidine were spiked to the buffer-free formulation to achieve a final 

concentration of 25 mM, respectively, and the pH was adjusted thereafter. All chemicals were of 

molecular biology or multi compendial grade. Prior to use, all formulations were filtered with 0.2 

µm PVDF membrane syringe filters (VWR International). 

6.2.2. Reversed phase high pressure liquid chromatography (RP-HPLC) 

An Ultimate 3000 system (Thermo Fisher, Dreicheich, Germany) and a Jupiter C4, 5 µm 300A, 

250 x 4.6 mm column (Phenomenex, Torrence, USA) were used for RP-HPLC. Protein detection 

was performed by fluorometric detection at 280/343 nm. The column oven temperature was set to 

37 °C. Mobile phase A consisted of 10% acetonitrile and 0.1% triflouroacetic acid in highly 

purified water. 100% acetonitrile with 0.1% triflouroacetic acid were used as mobile phase B. A 

stepwise gradient with a flowrate of 1 mL/min for 22 min was applied, 10 µL of each sample was 

injected. 

6.2.3. Ion exchange chromatography (IEX) 

A Dionex Summit system (Thermo Fischer) with a ProPac WCX-10 BioLC Analytical 4x250 mm 

column with an attached column guard ProPac WCX-10G (Thermo Fisher) was used for ion 

exchange chromatography (IEX). 50 mM Tris buffer pH 8.0 (mobile phase A) and mobile phase A 

plus 300 mM NaCl (mobile phase B) were used as a stepwise gradient with a flowrate of 1 mL/min 

for 60 min. All samples were diluted 1:10 with highly-purified water prior to injection, 100 µL of 

each sample was injected. A fluorescence detector (280/343 nm) was used to detect the analyte 

variants.  

6.2.4. Size exclusion chromatography (SEC) 

An Ultimate 3000 system (Thermo Fisher) with a GE Superdex 75 Increase 10/300 GL column 

(General Electric, Boston, MA, USA) was used for size exclusion chromatography. A filtered 

buffer solution containing 50 mM Na3PO4 and 300 NaCl in highly purified water at pH 7.0 was 

used as a mobile phase at a flow rate of 0.5 mL/min for 45 min. Detection was performed with a 
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UV-detector at 280 nm. The injection volume was 50 µL. A gel filtration standard (#1511901, Bio-

Rad Laboratories, Hercules, CA, USA) was used for regular column tests.  

6.2.5. Subvisibile particle analysis (FlowCam) 

Subvisible particles were analyzed using a FlowCam 8000 with an attached 10x magnification cell 

(Fluid Imaging, Scarborough, USA). Triplicates of 200 µL sample were analyzed at a flowrate of 

0.15 mL/min.  Particles were defined by a dark segmentation threshold of 10 and a light 

segmentation threshold of 13. 

6.2.6. Intrinsic differential scanning fluorimetry (nanoDSF) 

NanoDSF was used to study the thermal unfolding of HY-133 with different excipients. The 

samples were filled in standard glass capillaries. A Prometheus® NT.48 (NanoTemper 

Technologies, Munich, Germany) was used with a ramp of 1 °C/min from 25 °C to 95 °C. Intrinsic 

protein fluorescence intensity at 330 nm and 350 nm was measured after excitation at 280 (± 10) 

nm. Back-reflection intensity was measured to detect protein aggregation and precipitation. The 

fluorescence ratio (FI350/FI330) was used to determine protein thermal unfolding, calculated by 

PR.ThermControl V2.1 software (NanoTemper). 

6.2.7. Circular dichroism (CD) spectroscopy 

 A Jasco J-810 spectrometer (Jasco Deutschland GmbH, Pfungstadt, Germany) was used to obtain 

near-UV circular dichroic spectra. Quartz cuvettes (Hellma GmbH, Muellheim, Germany) with 10 

mm pathlengths were installed and measurements were performed with 10 accumulations per 

sample at a scanning speed of 20 nm/min. Each spectrum was buffer subtracted and curve 

smoothing was performed using the Savitzky-Golay algorithm with 7 smoothing points. For each 

sample, the molar ellipticity was calculated as described elsewhere.24 The molecular weight of the 

HY-133 was 31,045.8 Da.  

6.2.8. Composition-gradient multi-angle light scattering (CG-MALS) 

Homo-association experiments by CG-MALS were performed with 0 – 10 mg/mL HY-133 in the 

basic formulation at pH 6.0 with and without 25 mM HEPES. Before use, all samples were filtered 

using 0.2 µm PES filters. Light scattering was detected with an automated CG-MALS instrument 

which was equipped with a dual syringe-pump (Calypso-II) sample and preparation unit, a Dawn 

Heleos-II multi-angle laser light scattering detector, and an OptiLab® T-rEX dRI detector (all 
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Wyatt Technologies, Santa Barbara, CA, USA). The Calypso 2.1.5 software was used to obtain 

Zimm Plots, KD and A2 values.25  

In addition, hetero-association experiments were performed by varying both the HY-133 and the 

HEPES concentration from 0 – 10 mM and 0 – 25 mM, respectively. The experimental settings 

were similar to the ones described above. 

6.2.9. Activity: FRET-Assay  

Activity of HY-133 was determined with an enzymatic assay (HY-133 Activity Assay, Microcoat, 

Bernried, Germany). A short peptide sequence with attached fluorophore and quencher was used 

as a substrate. The substrate mimics the murein cell wall of the bacteria and is specific to S. aureus. 

The substrate is hydrolyzed by HY-133, which results in elimination of the fluorescence quenching. 

The fluorescence signal was obtained at an excitation wavelength of 340 nm and detected at an 

emission wavelength of 440 nm. The specific activity can be calculated according to the protocol.  

6.2.10. Storage stability study 

The basic, buffer-free HY-133 formulation and the formulations containing 25 mM of the 

respective buffers were sterile filtered with 0.22 µm PVDF syringe filters (Millex-GV, Merck 

Millipore Ltd, Ireland), filled into sterilized 2R type I glass vials (MGlass AG, Germany) and 

closed with rubber chlorobutyl stoppers with FluroTec coating (West Pharmaceutical Servies, 

USA). The samples were stored at 4 °C, 30 °C and 40 °C for subsequent analysis for up to 4 months.  

6.2.11. Molecular dynamics (MD) simulations 

A homology model of HY-133 was generated with the EAD from the endolysin of phage K (PDB 

code: 4CSH) and the CBD from lysostaphin (PDB code: 4LXC) using the software MODELLER 

9.21.26 The protonation states of ionizable residues at pH 6.0 were adjusted using the H++ server.27 

The protonated form of HEPES as well as the protonated and deprotonated forms of histidine 

(HIP/HIS) were parametrized with antechamber using GAFF2 for bonded and non-bonded 

parameters. Atomic partial charges were calculated with the AM1-BCC charge model in 

antechamber.  

All-atom simulations were performed with the Amber19 program in a periodic box with explicit 

solvent.28 The ff14SB force field for proteins was employed in combination with the TIP3P water 
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model. Packmol and tleap were used to solvate the homology model of HY-133 in a cubic water 

box including 150 mM NaCl, 10 mM CaCl2 without and with 25 mM of HEPES and histidine, 

respectively. All bonds involving hydrogen atoms were constrained using the SHAKE algorithm. 

Non-bonded electrostatic interactions were treated using the particle mesh ewald algorithm with a 

direct space cutoff of 9 Å. The system was energy minimized with the steepest descent algorithm 

for the first 5,000 cycles, followed by 5,000 cycles using the conjugate gradient method. System 

equilibration was carried out for 1 ns in NVT ensemble to stabilize the temperature of 300 K using 

the Langevin thermostat, and subsequently for 1 ns in NPT ensemble to adjust the density of the 

system using the Berendsen barostat. The simulations were performed for 300 ns with a time step 

of 2 fs. The coordinates were saved every 10 ps. Each system was simulated in duplicates starting 

from a random seed number to estimate the statistical uncertainty of the results. All trajectories 

were analyzed using the CPPTRAJ module of Amber19 and VMD.29 In order to identify effects of 

the buffer molecules on the conformation of HY-133, each frame of a trajectory was grouped into 

one of five discrete clusters by an agglomerative hierarchical clustering approach based on the 

conformational similarity defined by the root-mean-square deviation (RMSD). To estimate the 

binding of the HEPES and histidine molecules to the protein residues, we calculated the interaction 

score probability (P(Iscore)) defined as  

P(Iscore) = n / (N · a) 

where n is the number of frames either HEPES or histidine was in contact with a certain residue 

over simulation time, N is the total number of frames, and a is a normalization factor to convert the 

interaction score into a probability.  

6.3  Results and discussion 

6.3.1. Influence of buffer excipients on chemical stability  

At first, the protein’s chemical stability with different buffer excipients was assessed. The 25 mM 

HEPES buffer was compared to a 25 mM citrate buffer and a 25 mM histidine buffer, respectively. 

In addition, combinations of 12.5 mM HEPES with 12.5 mM citrate or with 12.5 mM histidine 

were tested. All three formulations containing HEPES showed a constant native protein level upon 

storage for 16 weeks at 4 °C, irrespective of whether HEPES was used alone or in combination 

with a second buffer substance (Figure 38). In contrast, the formulations containing only citrate or 
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only histidine showed a reduced native protein recovery of either 96% (citrate) or 84% (histidine). 

Storage at an elevated temperature of 40 °C led to a decrease of the native protein content over 

time in all formulations. This was most pronounced in formulations without HEPES, where only 

20% protein recovery was achieved after 16 weeks. The highest native protein content (> 60%) 

was determined in the formulation containing solely HEPES. Both buffer combinations, HEPES + 

citrate and HEPES + histidine, resulted in native protein contents between the single buffer 

compositions. These results show that HEPES could not be replaced by commonly used buffer 

systems which would be more suitable for this pH range. Therefore, the stabilizing effect is 

independent of the buffering capacity and HEPES is not acting only as a buffering agent. A specific 

stabilizing effect of HEPES is clearly indicated.  

 

 

Figure 38: Native HY-133 amount over time dependent on different excipients. The pre-test was 

performed with each a citrate, histidine and HEPES buffer or the respective HEPES combinations and 

analyzed with RP-HPLC. 

6.3.2. Function of HEPES as stabilizing excipient 

To elucidate the role of HEPES in the HY-133 formulation, the interaction of the protein and 

HEPES was analyzed by CG-MALS. CG-MALS provides quantification of both self- and hetero-

association of either a protein or a protein and another molecule and allows the determination of 

A2, KD, and Mw. First, protein self-association was measured via the light scattering second virial 

coefficient (A2) in the presence of HEPES and without HEPES (Figure 39). The typical step-wise 

decrease in light scattering signal resulted from the stop-flow injection of the different 
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compositions. A visible difference between the two experiments was the delay until a stable light 

scattering signal was reached, which was more pronounced at higher protein concentrations. The 

delay appeared as an initially small increase in light scattering followed by a major signal decrease 

until the signal stabilized. Normalized A2 values of -2.52 and -2.38 were determined without 

HEPES and with HEPES, respectively. A negative A2 is associated with attractive forces between 

two protein molecules,30 which were prevalent in this formulation, irrespective of the presence of 

HEPES.  

However, HEPES influenced the light scattering signal. The rapid set of the plateau and the initially 

observed peak at each step indicated a rapid binding of HEPES to protein hotspots. To gain a deeper 

understanding of the binding of HEPES to the protein, a hetero-association experiment was 

performed. 

 

 

Figure 39: CG-MALS data for HY-133 with HEPES (left) and without HEPES (right). Light scattering 

data of HY-133 dependent on the protein concentration with and without HEPES. The black line shows the 

concentration signal, the blue line the light scattering signal. Grey bars represent measurement points.  

In hetero-association experiments, a series of different composition ratios of HY-133 and HEPES 

were fitted to determine KD and kinetic data. During the fitting process, the monomer molecular 

mass of both analytes and the associations stoichiometries can be modelled.31 The best fit of HY-

133 with HEPES was found to be a 1:1 stoichiometry model, also represented by the plateau with 

the highest amount of complex formation. The overlap of the light scattering data in the stepwise 

decrease in HY-133 concentration and the stepwise increase in HEPES concentration resulted in a 

KD of 0.7∙10 3 mM. The data indicated an almost immediate binding of a HEPES molecule to a 

HY-133 molecule. 
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We were interested in whether we could confirm HEPES-binding, identify the local effects of 

HEPES on the protein and explain the stabilization mechanism. We therefore built a homology 

model of HY-133 and performed MD simulations to study the protein in the absence and presence 

of HEPES and histidine at atomistic detail. The interaction sites of HEPES and histidine were 

determined by calculating the interaction score P(Iscore) per residue (Figure 40A). The P(Iscore) 

reveals that both HEPES and histidine bind to charged and aromatic side chains of surface exposed 

residues of HY-133 via salt-bridge formation and cation-π interactions. Moreover, hydrogen bonds 

between HEPES and polar residues occurred. Considering the zwitterionic character of HEPES 

and histidine, this behavior was expected. We, however, observed different binding sites for the 

two molecules. Histidine mainly interacted with charged residues in the EA domain and with the 

termini of HY-133. HEPES showed some interaction with residues in the EA domain but also 

interacted with the more hydrophobic CB domain and linker residues. Histidine therefore altered 

the electrostatic surface properties of the protein to a higher extent than HEPES which may 

influence the inter-domain and intermolecular interactions. Nevertheless, this finding alone does 

not explain why HEPES is superior to histidine in stabilizing the protein.  

Next, the effects of HEPES and histidine binding on the conformation of HY-133 were examined 

by grouping each frame of the trajectory into one of five clusters, based on the conformational 

similarity defined by the RMSD. A representative structure of the highest occupied cluster for each 

condition is shown in Figure 40C. Comparing these structures, it became apparent that the 

orientation and the distance of the domains substantially differed between the three conditions. For 

the simulations of HY-133 in water only, the initially elongated linker collapsed and formed a 

hydrogen bond network to residues in the CB domain. Thus, the two domains were in close contact. 

Due to the sequence composition of the linker, this behavior is not surprising. Studies on 

intrinsically disordered peptides in water uncovered more compact structures for sequences with a 

high glycine content, supposedly because intrapeptide interactions out-compete backbone-solvent 

interactions.32,33 The simulations with histidine also revealed a collapse of the linker but with less 

hydrogen bonding to residues of the EA or CB domain than in the simulation with water only. 

Again, there was an interaction of the two domains but with a different orientation. The CB domain 

was rotated in a way that a hydrophobic region at its C-terminus is exposed to the surface. In the 

two other conditions, this region was located at the interface between the domains and mostly 

shielded from the surface. Only in simulations containing HEPES, the linker almost maintained the 
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initial extended configuration with only a short bend around a HEPES molecule. Hydrogen bonds 

of this HEPES molecule to residues in the linker and a salt-bridge to residue 246 in the CB domain 

seemed to prevent the collapse of the linker. Thus, the linker was able to keep the domains 

separated. For a better understanding of intramolecular domain-domain interactions and the 

influence of the solvent conditions, we compared fluctuations in the distance between the two 

domains over simulation time (Figure 40B). In water only, the distance between the two domains 

rapidly decreased. Histidine molecules delayed the collapse of the linker but after 150 ns of 

simulation time, a similar distance as for the water simulations was reached. Only the simulations 

with HEPES showed an almost stable domain distance of approximately 30 Å. 

In summary, the ability of HEPES to maintain the extended linker configuration and saturate 

hydrogen bond sites in the linker was the reason for the increased stability of HY-133. In the two 

other conditions, the linker collapsed which could even lead to the exposure of a hydrophobic 

region, as seen for histidine. Notably, also the changes in electrostatic properties of the protein 

surface upon binding of a zwitterion could influence the stability. 

Due to the several binding sites identified, we cannot confirm a 1:1 stoichiometry as shown by the 

CG-MALS data. However, several of the binding events were only transient throughout the 

simulation and only a few were stable until the end of the simulation. Based on a previous study 

showing that weak and transient protein-excipient binding could enhance protein stability, whereas 

strong interactions were found to mostly destabilize proteins,11 we could conclude that the lack of 

strong HEPES-binding did not hinder a stabilizing effect but rather promotes it. 
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Figure 40: MD simulations of HY-133 without excipient, with 25 mM HEPES and 25 mM histidine. 

(a) Interaction scores P(Iscore) calculated per residue for HEPES and histidine averaged over the two 

replicates. (b) Distance of the last residue of the EA domain and the first residue of the CB domain over 

simulation time. (c) Representative structures of the highest occupied clusters for the three studied 

conditions (water: 61.1%. HEPES 62.2%, His: 74.6%) with aligned EAD domains. HEPES molecules are 

colored in red, protonated and deprotonated histidine molecules are colored in blue. 

6.3.3. Influence of different Good’s buffers on protein-excipient interactions 

HEPES is a zwitterionic N-substituted aminosulfonic acid and part of the Good’s buffer series. 

This series can be separated into several subgroups. The most prominent ones are the morpholinic, 

piperazinic and the TRIS family.19 The structural similarities of buffers from the morpholinic and 
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piperazinic family are most pronounced. All side chains of the buffers in these families contain 

sulfonic acid groups and have specific lengths. The piperazinic buffers contain two side chains 

instead of the one side chain in morpholinic buffers. Due to structural similarities, these buffers 

might be able to sufficiently stabilize protein to a similar extent as HEPES.  

Six different Good’s buffers of the above-mentioned groups were selected to examine their ability 

to replace HEPES and provide comparable stability of HY-133: four piperazine derivatives, 

HEPES, POPSO, PIPES and EPPS, and two morpholine derivatives, MES and MOPS. These 

buffers were characterized as non-metal binding and therefore fully compatible with CaCl2, which 

is included in the formulation buffer and directly attached to one binding site at the protein. PIPES, 

HEPES, and MOPS are also reported to be non-metal binding.18,34 Only MES is potentially Ca2+ 

binding, a fact that is contrarily discussed in the literature.18,19   

The thermal stability of proteins can be expressed by their melting temperature (Tm). The Tm values 

of the different formulations could be ranked, with a higher Tm representing a thermally more stable 

product.7 The different buffer excipients were screened with nDSF to evaluate the thermal stability 

of HY-133 depending on the respective excipient. Without an additional excipient, a Tm of 46.4 °C 

was obtained (Table 4). Citrate and histidine buffers showed only minor changes in Tm, whereas 

the Good’s buffers increased the respective Tm values. The highest value of 52.6 °C was found for 

PIPES which, along with HEPES, EPPS, and POPSO, belongs to the group of piperazine 

derivatives. Thus, the Good’s buffers indicated a conformational protein stabilizing efficiency. 35 

As shown before, Tm values of various proteins can depend on different N-based buffers.5,36 Both 

20 mM MES and HEPES increased the conformational stability of RecA. Thermal stability was 

reported to be higher when the pH was above the pKa of the respective buffer substance. This effect 

was stronger at lower pH, when the protein showed higher positive net charge, indicating a direct 

interaction of the buffer with the protein under these conditions.22 In addition, MOPS showed a 

higher propensity to increase the thermal stability of BSA than MES when used in high 

concentrations of 1 M. It was shown that these buffers interact with the peptide backbone leading 

to net stabilization.37 Furthermore, HEPES and EPPS were also stabilizing the conformational 

stability of BSA by interacting with the hydration layers of the peptide backbone.20 In contrast, 

HY-133 already showed an increase in Tm at much lower concentrations, which indicates direct 

interaction of the excipient with the protein rather than stabilization due to preferential exclusion.  
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Table 4: Tm values of HY-133 dependent on the added excipient (excipient concentration = 25 mM). 

Excipient Tm [ °C] 

Without excipient 46.4 

HEPES 51.5 

Citrate 47.9 

Histidine 45.0 

MES 48.1 

MOPS 51.1 

EPPS 51.5 

POPSO 52.4 

PIPES 52.6 

 

As described above, the Tm increase depends on the respective excipient at a fixed concentration 

of 25 mM. To determine the necessary ligand concentration, a thermal shift assay was performed. 

12 different concentrations of HEPES, EPPS, POPSO, PIPES, MES, MOPS, citrate and histidine, 

respectively, ranging from 0 to 50,000 µM were spiked to the buffer-free formulation. The Tm of 

HY-133 in each buffer and excipient concentration was determined and plotted as a function of the 

respective excipient concentration (Figure 41). Formulations containing PIPES and POPSO 

resulted in higher overall Tm values and a faster increase of Tm. These two curves are followed by 

HEPES, EPPS, and MOPS, which all showed a similar curve profile. An overall higher 

concentration of the respective excipient was needed to achieve similar Tm values. The MES buffer 

system showed only a minor increase in Tm. Both citrate and histidine buffered formulations 

showed a non-sigmoidal shaped curve. The histidine buffered formulation resulted in an atypical 

curve with a local Tm minimum of about 34 °C. Citrate resulted in a local Tm maximum at 3,000 

µM with decreasing Tm values at higher citrate concentrations. 
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Figure 41: Overlay of the Tm values of the different excipients depending on their concentration.   

For better comparison, the thermal shift curves were fitted with the Hill1-function (Figure 42). The 

inflection point k is given in µM and equals the concentration, which is necessary for a significant 

increase in Tm. As described elsewhere, the inflection point equals Kd.
36,38,39 

 

Figure 42: Tm values as a function of HEPES concentration. The curve was fitted with the Hill1 equation; 

the inflection point was calculated as k=3491 µM. 
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The Kd values were calculated for the different excipients and are shown as c(Ligand)k in [mM] in 

Table 5. As histidine and citrate buffers did not show a sigmoidal shaped curve, fitting and 

calculation of Kd was not possible. The lowest c(Ligand)k was obtained for POPSO (0.5 mM) and 

PIPES (0.8 mM), followed by MOPS (1.6 mM). HEPES (3.5 mM) and EPPS (5.1 mM) were 

comparable, whereas MES (30.5 mM) showed a substantially higher c(Ligand)k.  

These results were used to select four different ligands for further evaluation of the physical and 

chemical stability of HY-133 in formulations containing different buffer excipients. HEPES and 

POPSO were selected representing the piperazine buffer excipients, differing in their respective 

c(Ligand)k. MES and MOPS were selected as morpholine derivatives. The 4 different excipients 

were compared to the basic formulation with only arginine-HCl, methionine, NaCl, CaCl2, and 

Poloxamer 188.   

Table 5: Kd values of the different excipients calculated in the thermal shift assay. 

Ligand c(Ligand)k 

POPSO 0.5 mM 

PIPES 0.8 mM 

MOPS 1.6 mM 

HEPES 3.5 mM 

EPPS 5.1 mM 

MES 30.5 mM 

 

6.3.4. Stability study of HY-133 with HEPES and further Good’s buffers  

Subsequent to the determination of the influence of Good’s buffers on the conformational stability, 

chemical degradation, protein aggregation (soluble and insoluble), and structural changes of the 

protein depending on the different formulations were analyzed over the course of up to 16 weeks 

at different storage conditions. Different Good’s buffers were compared to a buffer free 

formulation. The formulations were stored at 2-8 °C, 30 °C, and 40 °C.  

All formulations exhibited a characteristic near-UV CD-spectrum with a large negative peak at 

around 285 nm (Figure 43).  In addition, three less prevalent peaks at 268 nm, 276 nm and 290 nm 

could be observed in all spectra. However, a decrease in molar ellipticity in the near-UV region 

was noted in the formulation without buffer excipient at T0. This structural difference can be linked 

to the missing additional excipient. The presence of HEPES and its structural similar entities affect 
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the tertiary structure of the protein. Similar to the aforementioned CG-MALS experiments and MD 

simulations, where rapid binding of HEPES to the protein was shown, structural changes of the 

protein are caused by ligand binding to the protein.24 In general, CD is a very precise tool to 

determine even minor changes in the protein’s conformation7 and changes in the higher order 

structure caused by the addition of sucrose were reported before.40  

After 2 weeks storage at 30 °C, this initially shifted CD-spectrum was further altered, which 

resulted in a spectrum without a large, distinct peak. Minor changes were observed in the POPSO 

formulation in this storage condition, whereas the three other formulations remained unchanged. 

In contrast, 40 °C storage for two weeks led to a loss in molar ellipticity in all formulations. 

However, the characteristic near UV CD-spectrum was maintained for all formulations containing 

excipient. The formulation without an additional excipient showed further alteration.  

After 16 weeks storage at 4 °C, the characteristic near-UV CD-spectrum were maintained in all 

formulations.  
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Figure 43: Molar ellipticity of formulations incl. HEPES, MOPS, MES and POPSO compared to a 

formulation without an additional buffer excipient. (A) T0, (B) after 16 weeks storage at 4 °C, (C) 2 

weeks storage at 30 °C (D) 2 weeks storage at 40 °C. 

Subvisible particle counts remained low throughout the stability study (Figure 44). Storage at 4 °C 

did not lead to a major increase in particle counts, irrespective of the formulation. Elevated storage 

temperatures resulted in a slight increase in particle counts. Higher particle numbers were observed 

in formulations containing MOPS and MES at 30 °C storage. Storage at 40 °C led to an increase 

in particle numbers in the formulations containing MES and in the formulation without an 

additional excipient at the 9-week time point. Yet, this increase could not be confirmed at the 

following time points, indicating no clear stability trend. The structural differences in protein 

folding shown in the CD experiment was apparently not sufficient to cause particle formation 

through the formation of larger oligomers.41 The presence of the surfactant Poloxamer 188 in a 

suitable concentration effectively inhibited subvisible particle formation by improving the colloidal 

stability of the protein.42 
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Figure 44: Particle counts of the different formulations upon storage at (A) 30 °C, (B) 40 °C, and (C) 

4 °C.   

Size exclusion chromatography was used to determine the monomer content of each HY-133 

formulation (Figure 45). An initially lower monomer content was determined in the formulation 

without excipient. Storage at 4 °C provided a stable monomer content over the course of the study, 

as no further decrease was observed in any of the formulations. However, storage at elevated 

temperatures led to a loss in relative monomer content. A comparable, small decrease in monomer 

content was determined in all formulations stored at 30 °C, differing only in the initially lower 

monomer content of the formulation without an additional excipient. Storage at 40 °C led to 

substantial loss in monomer content over time, which was more pronounced in the formulation 

without an additional excipient. HEPES performed best and its similar excipients stabilized the 

protein to a comparable extend.  
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Figure 45: SEC data of the different HY-133 formulations upon storage at (A) 30 °C, (B) 40 °C, and 

(C) 4 °C. 

Chemical changes, such as oxidation and deamidation, of HY-133 were detected with RP-HPLC. 

The relative protein content is displayed in Figure 46. The formulation without an additional 

excipient showed an immediate loss in native protein content after dialysis at T0, followed by an 

accelerated degradation at early time points. Chemical changes were further highly dependent on 

storage temperature. While only minor changes of the protein were observed in any of the 

formulations during storage at 4 °C and 30 °C for up to 16 weeks, storage at 40 °C led to a drastic 

degradation in all the formulations. These changes were the least pronounced in formulations 

containing HEPES and MES, followed by POPSO and MOPS and most pronounced in the 

formulation without an additional excipient.  Thus, all the derivatives and in particular HEPES and 

MOPS were able to stabilize HY-133 against chemical denaturation. 
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Figure 46: RP-HPLC data of the different HY-133 formulations upon storage at (A) 30 °C, (B) 40 °C, 

and (C) 4 °C. 

Charge variant formation, i.e. the formation of specific acidic and basic species of HY-133 upon 

storage, was determined by cation exchange chromatography (CEX) as shown in Figure 47. In 

general, the loss in main peak content of HY-133 is connected to an increase in pre-peak content, 

reflecting more acidic species of the protein. No change in the protein main peak was determined 

after storage at 4 °C in any of the formulations over the course of the study. Storage at 30 °C led 

to only minor changes in protein main peak with about 90% remaining after 16 weeks of storage, 

irrespective of the formulation. Storage at 40 °C led to a major loss in main peak content in all 

formulations over time. Larger loss was observed in the formulation without an additional 

excipient, indicating lower chemical stability compared to formulations with an additional HEPES-

like excipient. For example, after 12 weeks of storage, formulations with an additional excipient 
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resulted in more than 80% remaining main peak area, contrary to less than 30% main peak area in 

the HEPES-free formulation.   

Several chemical alterations are known that are predominantly connected to the development of 

more acidic species. The most common one is deamidation of asparagine (Asn) residues, which is 

reflected by higher acidic species rates.43 In addition to Asn residues, glutamine (Glu) residues can 

also be affected. Deamidation is connected to possible changes in the secondary and tertiary 

structure and therefore changes in the functionality of the protein.4,44 

Thus, our results show that an HEPES-like excipient is crucial to increase the stability of HY-133 

compared to a formulation without one of these excipients.  

 

Figure 47: CEX data of the different HY-133 formulations upon storage at (A) 30 °C, (B) 40 °C, and 

(C) 4 °C. 
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Finally, an enzymatic FRET-assay was applied as an activity assay (Figure 48). Storage at 4 °C 

and 30 °C did not lead to a loss in activity in any of the formulations after 16 weeks. In contrast, 

storage at 40 °C led to a decrease in activity in all formulations with differences between the 

formulations and storage durations. The highest and fastest loss in activity was determined in the 

formulation without an additional excipient. A decrease in specific activity of more than 50% was 

observed after 2 weeks and it further decreased over the course of the study until inactivity.  

With the addition of HEPES or a HEPES-like buffer substance, the decrease in activity during 

storage at 40 °C was decelerated until 9 weeks. However, after 16 weeks at 40 °C, all formulations 

showed a substantial loss in activity.  

 

Figure 48: Activity of the different HY-133 formulations upon storage at (A) 30 °C, (B) 40 °C, and (C) 

4 °C. 
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6.4.   Conclusions 

The aim of this study was to identify and further examine the influence of HEPES on the protein 

stability of HY-133, a novel antibacterial drug specifically targeting various S. aureus strains. 

Furthermore, HEPES was compared to other Good’s buffers used as excipients in a liquid 

biopharmaceutical formulation. So far, HEPES is mainly used as a buffer in protein expression. 

However, here we investigated the potential advantage of HEPES in formulation development. 

Compared to commonly used histidine and citrate buffer systems, HEPES was clearly superior in 

stabilizing the protein HY-133 regarding its chemical and conformational stability. While HEPES 

did not change the second virial coefficient A2, a rapid binding of HEPES to the protein was 

observed in CG-MALS. MD simulations could confirm the binding of HEPES to HY-133, thereby 

preventing the collapse of the linker and inter-domain interactions. This effect could not be 

reproduced with histidine, even though binding was also detected. 

In the second part of the study, HEPES was substituted by various other Good’s buffers with 

morpholinic and piperazinic ring systems: MOPS, POPSO, MES, EPPS, and PIPES. Whereas 

histidine and citrate buffers were not able to increase the Tm of HY-133, HEPES and the respective 

derivatives increased the Tm by up to 6 °C.  

Furthermore, thermal shift assays with the examined formulations were used to calculate Kd based 

on the Hill1-equation. POPSO showed the lowest concentration to increase the Tm of HY-133 with 

0.5 µM, followed by PIPES (0.8 µM), MOPS (1.5 µm), and HEPES (3.5 µm). Kd could not be 

calculated for citrate and histidine buffers. 

Near-UV CD spectroscopy revealed that the conformational stability is sustained in formulations 

containing Good’s buffers. Differences in the tertiary structure of the protein in the formulation 

without a Good’s buffer was already determined at T0, indicating structural changes during the 

dialysis. Looking at different chemical and physical degradations, similar trends were found for 

different LC methods, such as SEC, RP, and CEX. The loss in protein activity was also reduced by 

the addition of HEPES and related buffer substances. 

Overall, HY-133 highly benefits from the addition of HEPES or a similar Good’s buffers due to 

sustained activity and substantially reduced chemical degradation. The studied Good’s buffer 

substances performed similar. However, this study showed that the selection of an optimal buffer 
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system is not limited to the buffer capacity at the perfect buffering range of the compounds. Instead, 

direct effects on the protein stability must also be considered. We showed that buffer substances 

could directly interact with a protein and could lead to improved chemical and conformational 

stabilization for new and pharmaceutical highly relevant protein classes.    
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7.1.   Introduction 

Peptide- and protein-based therapeutics have become increasingly important for cancer therapy due 

to their high efficacy and limited side effects.1 The c-MYC oncoprotein (hereafter referred to as 

MYC) is overexpressed in most human cancers which makes it a promising target for therapeutic 

intervention. MYC is a transcription factor regulating several genes important for cell growth, 

differentiation, metabolism, and apoptosis upon association with its partner MAX (Figure 49).2 

Both MYC and MAX are intrinsically disordered and contain a basic helix-loop-helix leucine 

zipper (bHLHLZ) domain that allows their dimerization and binding of DNA.3 Upon dimerization 

the individual monomers undergo coupled folding and binding which is a widely observed feature 

of intrinsically disordered proteins (IDPs) enabling dynamic interactions with multiple partners 

with modest affinities.4 The MYC-MAX heterodimer interacts with Ebox DNA via its highly 

positive charged basic region and thus activates or represses gene transcription.5 Since intrinsically 

disordered proteins lack an “active site” that could be efficiently targeted by a small molecule drug, 

the development of an inhibitor with high specificity has been challenging. However, a previously 

designed dominant-negative form of MYC called Omomyc has been shown to inhibit MYC 

function both in vitro and in vivo.6 Omomyc is a 91-amino acid mini-protein that mimics the MYC 

bHLHLZ domain and contains four amino acid mutations (E57T, E64I, R70Q, and R71N) in the 

leucine zipper domain to remove electrostatic clashes and thereby enable homodimerization as well 

as heterodimerization with MYC and MAX. Omomyc homodimers as well as Omomyc-MAX 

heterodimers can bind DNA, competing with the DNA-binding of MYC-MAX heterodimers. 

Additionally, direct binding of Omomyc to MYC results in its sequestration from DNA. This in 

turn leads to the repression of MYC-dependent gene transcription (Figure 49).6–8 
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Figure 49: Omomyc dimerizes with MYC and MAX and represses MYC-dependent gene 

transcription. Representation of the crystal structures of apo Omomyc (5I4Z), the MYC-MAX heterodimer 

(1NKP), Omomyc bound to DNA (5I50), and models of the Omomyc-MYC and Omomyc-Max 

heterodimers. The models of Omomyc-MYC and Omomyc-Max were constructed by superposition of the 

crystal structures of Omomyc and MYC-MAX. All structures contain a basic region (B), a helix-loop-helix 

region (HLH), and a leucine zipper (LZ), which are crucial for dimerization and DNA binding. The basic 

region of apo Omomyc was not resolved in the crystal structure. Disordered MYC and MAX fold upon 

dimerization, bind DNA and recruit co-regulators of transcription. Omomyc homodimers and heterodimers 

are capable of binding DNA but do not recruit regulators necessary for gene transcription.6–8 

Based on its significant in vivo activity and safety,9 Omomyc is currently being evaluated in clinical 

trials. However, for a successful translation into a safe and efficacious drug product, an 

understanding of its physicochemical behavior in different conditions is essential. So far, a detailed 

biophysical characterization has not been described.3 Due to the structural flexibility of IDPs, both 

their physical and chemical properties are unique compared to ordered proteins.10 The 

conformational integrity of ordered proteins is usually maintained by three major stabilizing forces, 

namely electrostatic interactions, hydrophobic interactions, and hydrogen bonding.11 In IDPs these 

forces play a key role in intermolecular protein-protein interactions which are essential for their 

biological function.12 The Omomyc homodimer and heterodimers with MYC and MAX for 

example are reportedly stabilized by a combination of multiple electrostatic as well as hydrophobic 

interactions.8 However, these interactions can potentially also lead to the formation of protein 

aggregates, which may reduce the therapeutic activity and result in an immunogenic reaction in the 

patient.13 Protein aggregation and other degradation pathways are however not exclusively based 

on the protein's intrinsic properties but largely depend on solution conditions such as pH, ionic 
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strength, and added excipients.14 The solution pH controls the type and distribution of surface 

charges, which affect both conformational and colloidal stability of a protein.15 Furthermore, ionic 

strength can influence the protein stability by charge-screening, which could lead to enhanced 

hydrophobic interactions, or by altering the protein’s conformational state.11 Therefore, the first 

step in formulation development is to find the optimal pH and ionic strength. Since buffering agents 

may have a diverse effect on protein stability, the choice of an ideal buffer system is another critical 

factor. Buffers not only maintain the pH but can increase the conformational stability and alter the 

colloidal stability. This effect can be due to either change in the ionic strength or direct binding to 

the protein.16 Preliminary studies revealed a substantial influence of phosphate buffer on the 

stability of Omomyc. Due to their high charge density, phosphate anions can bind to positively 

charged amino acid residues and consequently alter the charge distribution on the protein surface 

which has been shown to either stabilize proteins or cause protein aggregation.17–19    

In this work, we investigate the conformational and colloidal stability of Omomyc in different 

formulation conditions with a combination of protein characterization techniques and MD 

simulations. We evaluate the role of electrostatics in homo- and heterodimerization and the effect 

of pH, ionic strength, and phosphate on the conformational ensemble as well as the self-association 

behavior of Omomyc. We found that electrostatics are the main contributor to differences in 

protein-protein binding free energies of Omomyc to its interaction partners. We observed ion-

induced folding of Omomyc and reentrant condensation of the protein in the presence of phosphate. 

High phosphate concentrations lead to Omomyc stabilization.  

7.2.   Materials and methods 

7.2.1. Materials 

The bulk Omomyc solution contained 10.0 g/L protein and was kindly provided from Peptomyc 

S.L.. The protein concentration was measured spectrophotometrically using a NanoDrop 2000 

(Thermo Fisher Scientific, Wilmington, USA) and an extinction coefficient at 280 nm of 0.138 

(mg/mL)-1cm-1. All chemicals were of molecular biology or multicompendial grade and were 

purchased either from Sigma or Thermo Fisher Scientific (Germany). All solutions were prepared 

with ultrapure water from a Sartorius arium® pro system (Sartorius Corporate Administration 

GmbH, Göttingen, Germany).  
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7.2.2. Sample Dialysis and Preparation 

The buffer was exchanged by extensive dialysis to the respective buffer at the given pH (10 mM 

sodium acetate at pH 4.8, pH 5.8, and pH 6.8; or 1, 10, 25, 50, 100, 150, and 200 mM sodium 

phosphate buffer at pH 6.8) for 24 hours at 2-8 °C using Slide-A-Lyzer™ MINI Dialysis Devices 

(cutoff 3.5 kDa, Thermo Fisher Scientific, Germany). The samples were collected in 

microcentrifuge tubes and centrifuged at 10,000 x g for 10 minutes and subsequently filtered with 

a 0.2 µm cellulose acetate membrane filter (Whatman, FP 30/0.2 CA-S, GE Healthcare, 

Buckinghamshire, UK). Stock solutions of sodium chloride were prepared in the respective buffer 

and spiked into the dialyzed protein stock to prepare samples with an ionic strength of 100 mM. 

For measurements that required higher protein concentrations, the protein solutions were 

upconcentrated using Vivaspin 20 5 MWCO PES centrifugal concentrators (Sartorius Lab 

Instruments, Goettingen, Germany). The concentration was measured again, and the solutions were 

sterile filtered with 0.2 µm cellulose acetate membrane filters. 

7.2.3. Circular Dichroism (CD) Spectroscopy 

Far-UV circular dichroic spectra were collected at 25 ⁰C with a Jasco J-810 spectropolarimeter 

(JASCO Deutschland GmbH, Pfungstadt, Germany). All samples contained 0.5 g/L of protein. 

Quartz cuvettes (Hellma GmbH, Muellheim, Germany) with a 1 mm wavelength path were used 

for the measurements. 5 accumulations of each sample were taken at a speed of 20 nm/min. The 

spectrum of the respective buffer was subtracted for each sample and smoothing of the spectra was 

performed using the Savitzky-Golay algorithm with 9 smoothing points.20 The mean residue 

ellipticity (MRE) of the protein at each wavelength was calculated. To elucidate the thermal 

unfolding of Omomyc under different conditions, a thermal ramp of 1 °C/min was applied from 20 

°C – 85 °C while the ellipticity at 222 nm was monitored. The data were fitted to a two-state 

unfolding model using the CDpal software. 21 

7.2.4. Dynamic Light Scattering (DLS) 

To determine the interaction parameter kD, samples with protein concentrations from 1 to 7 g/L 

were prepared. 10 μL of each sample were pipetted in triplicates into a 1536 well plate (Aurora 

Microplates, Whitefish, USA). The plate was centrifuged at 2000 rpm for 2 min using a Heraeus 

Megafuge 40 centrifuge equipped with an M-20 well plate rotor (Thermo Fisher Scientific, 

Wilmington, USA). Two microliters of silicon oil were added to seal each well. The plate was 
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centrifuged again and placed in a DynaPro DLS plate reader III (Wyatt Technology, Santa Barbara, 

USA). All measurements were performed at 25 °C with 10 acquisitions per well and an acquisition 

time of 5 s. The data were analyzed with the Dynamics V7.10 software (Wyatt Technology, Santa 

Barbara, USA).   

7.2.5. Differential Scanning Fluorimetry (nanoDSF) 

NanoDSF was used to study the thermal unfolding and aggregation of Omomyc at varying 

phosphate concentrations. Samples with 1 g/L of protein were filled in standard nanoDSF™ grade 

capillaries, and the capillaries were sealed. A temperature ramp of 1  °C/min from 20 to 80  °C was 

applied with the Prometheus NT.48 (NanoTemper Technologies, Munich, Germany) system that 

measures the intrinsic protein fluorescence intensity at 330 and 350 nm after excitation at 280 nm. 

Simultaneously, the device detects aggregation/precipitation of the samples by measuring the back-

reflection intensity of a light beam that passes through the capillary. The apparent protein melting 

temperatures (Tm) were determined with the PR. ThermControl software V2.1 (NanoTemper 

Technologies, Munich, Germany) from the maximum of the first derivatives of the thermal 

unfolding curves. The same software was used to determine the aggregation onset temperature 

(Тagg) from the increase in the signal from the aggregation detection optics.  

7.2.6. Molecular dynamics simulations 

The full structure of the Omomyc homodimer is available from the PDB code 5i50, and the 

structure of the MYC-MAX heterodimer was obtained from the PDB code 1NKP. The double-

stranded DNA was removed from the PDB files and the models of Omomyc-MYC and Omomyc-

Max were constructed by superposition of the crystal structures of Omomyc and MYC/MAX. The 

protonation states of ionizable residues at the respective pH were adjusted using the H++ server.22 

Phosphate was parametrized with antechamber using GAFF2 for bonded and non-bonded 

parameters. Atomic partial charges were calculated with the AM1-BCC charge model in 

antechamber.  

All-atom simulations were performed with the Amber20 program23 in a periodic box with explicit 

solvent. The ff14SB force field for proteins was employed in combination with the TIP3P water 

model. Tleap was used to solvate the Omomyc homodimers at different pH in a cubic water box 

with and without 100 mM sodium chloride and at pH 6.8 with different phosphate concentrations, 

respectively. All bonds involving hydrogen atoms were constrained using the SHAKE algorithm. 
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Non-bonded electrostatic interactions were treated using the particle mesh Ewald algorithm with a 

direct space cutoff of 9 Å. The system was energy minimized with the steepest descent algorithm 

for the first 5000 cycles, followed by 5000 cycles using the conjugate gradient method. System 

equilibration was carried out for 1 ns in NVT ensemble to stabilize the temperature of 300 K using 

the Langevin thermostat, and subsequently for 1 ns in NPT ensemble to adjust the density of the 

system using the Berendsen barostat. The simulations were performed for 100 or 200 ns with a 

time step of 2 fs. The coordinates were saved every 10 ps. All trajectories were analyzed using the 

CPPTRAJ module of Amber20 and VMD.24 To estimate the binding of phosphate molecules to the 

protein, we calculated the interaction score probability (P(Iscore)) defined as  

P(Iscore) = n / (N · a) 

where n is the number of frames phosphate was in contact with a certain residue over simulation 

time, N is the total number of frames, and a is a normalization factor to convert the interaction 

score into a probability. 

7.2.7. Calculation of binding free energy by MM/PBSA  

The binding free energy for each system was calculated with the MMPBSA.py script in AMBER 

with the default parameters. The last 100 frames were extracted from the 100 ns MD trajectories 

described above. The simulations must be long enough for the system to reach convergence which 

was measured using RMSD (Figure S17b). The binding free energy (ΔGbind,solv) is calculated by: 

ΔGbind,solv =  ΔGbind,vacuum + ΔGsolv,complex − (ΔGsolv,ligand + ΔGsolv,receptor) 

The different contributions to the binding free energy above are calculated as follows:  

ΔGsolv = ΔG𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐,𝜖=80 −  ΔG𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐,𝜖=1 + ΔGℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐  

ΔG𝑣𝑎𝑐𝑢𝑢𝑚 =  ΔE𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑠 − 𝑇 ∙ ΔS𝑛𝑜𝑟𝑚𝑎𝑙 𝑚𝑜𝑑𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

The conformational entropy upon binding (−TΔS) is omitted from the overall binding free energy 

estimate, since the entropic contribution calculation is associated with high computational costs.25  
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7.3.   Results and Discussion 

7.3.1. Control of electrostatics is critical in homo- and heterodimerization of MYC, MAX,  

    and Omomyc 

To develop a stable drug product, it is crucial to maintain the intrinsic stabilizing forces and even 

enhance the stability of the therapeutic protein by finding optimal formulation conditions. To 

accomplish this task, the responsible forces and the effects of environmental conditions must first 

be evaluated. We therefore elucidate which forces control the homo- and heterodimerization of 

Omomyc, MYC, and MAX and determine the effect of the pH on Omomyc homodimers in MD 

simulations. MD simulations have found widespread application as a complement to experiments 

since they provide molecular mechanistic insights into conformational dynamics, protein-protein 

interactions, and protein stabilization by excipients.26–28 Here, we use energy-based features to 

reveal the binding mechanism of the individual monomers. We perform all-atom MD simulations 

and calculate the protein-protein binding free energy with the molecular mechanics/Poisson-

Boltzmann surface area (MM/PBSA) method. MM/PBSA allows the comparison of energy 

contributions from different types of interactions, namely electrostatics (ΔEelectrostatic) and van der 

Waals interactions (ΔEvdw), the desolvation free energy (ΔGsol), and the conformational entropy 

(−TΔS).29 MYC, MAX, and Omomyc become structured upon binding to their respective partners. 

In this case, the energy from specific interactions compensates for the entropic penalty from 

ordering.30 Since the time scale of our MD simulations would not allow folding of the proteins, 

simulations started from the fully folded homo- and heterodimers (without DNA). Therefore, the 

calculations of binding free energies do not account for the additional entropic contribution from 

protein folding. Furthermore, standard MM/PBSA does not consider the screening effect of ions 

on the electrostatic interactions between proteins to evaluate the binding free energy.29 We were 

therefore not able to determine the influence of ionic strength on the homo- and heterodimerization 

in silico.  

The MM/PBSA calculations discriminate between the strongly binding dimers and the MYC 

homodimer (ΔG = 6.9 ± 9.9 kcal/mol), which was previously shown to be unstable and bind DNA 

poorly.7 The method reveals different binding affinities for the Omomyc homodimers and 

heterodimers with MYC and MAX, but their statistical uncertainties overlap (Figure 50a, Table 

S5). Our calculations suggest that the Omomyc-MYC heterodimer and the Omomyc homodimer 
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at physiological pH are the most stable with average binding free energies of -43.2 ± 10.9 and -

42.3 ± 3.7 kcal/mol, respectively. The MYC-MAX and Omomyc-MAX heterodimers show similar 

binding affinities of -33.0 ± 1.6 and -32.3 ± 1.0 kcal/mol. The determined binding free energies for 

the Omomyc homodimer and MYC-MAX heterodimer are in line with previously published ΔG 

values estimated with the PISA tool (ΔG = −41 kcal/mol and −33 kcal/mol, respectively).31 In 

contrast to our findings, Jung et al. also proposed that heterodimers of Omomyc with MYC and 

MAX would contain repulsive interactions or lack stabilizing interactions that would lower their 

stability. Another study could not determine any heterodimerization of MYC and Omomyc at all 

but suggested that the cellular effect of Omomyc is rather due to competition of Omomyc 

homodimers with the MYC-MAX heterodimer for DNA binding.3 Interestingly, we observe high 

statistical uncertainties in the ΔG calculations for the Omomyc-MYC heterodimer suggesting the 

probability of less optimal stabilizing interactions. Furthermore, lowering the pH destabilizes the 

Omomyc homodimer in our MD simulations, as average binding free energies decrease from -42.3 

± 3.7 kcal/mol at pH 6.8 to -35.6 ± 2.8 kcal/mol at pH 5.8 to -26.7 ± 6.4 kcal/mol at pH 4.8. This 

finding suggests that the charge of the protein has a strong impact on the dimer stability. Hence, 

we examined the individual contributions to the total binding free energies. The van der Waals 

energy is a stabilizing contribution to the total binding affinity of each dimer but does not 

significantly differ between the interaction partners (Figure S17a). The only exception is the MYC 

homodimer, which shows slightly less favorable van der Waals energies compared to the other 

dimers. Since the dimerization interfaces of leucine zipper domains are enriched in hydrophobic 

residues that pack in a regular ‘knobs and holes’ pattern, we expected the van der Waals energies 

to contribute most of the stabilizing energy.32 Not only did the mutation of residue E64 of MYC to 

isoleucine in Omomyc remove an electrostatic clash but also introduced an additional hydrophobic 

interaction in the leucine zipper domain which leads to more stabilizing van der Waals 

contributions in the Omomyc dimers. Furthermore, we calculated the electrostatic contributions as 

the sum of the electrostatic energy (ΔEelectrostatic) and the electrostatic contributions to the 

desolvation free energy (ΔGPB). Although compensated for by the desolvation free energy, the 

electrostatic energy remains unfavorable in all cases. The same trend as for the total binding free 

energies can be observed for the electrostatics alone. This shows that electrostatics are the main 

contributor to differences in binding free energies of Omomyc homo- and heterodimers. Our results 

agree with previous reports that the specificity of leucine zipper interactions is dictated by the 

charged residues that flank the core hydrophobic interface.32 Electrostatic potential maps of MYC, 
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MAX, and Omomyc monomers reveal the cause for the observed differences (Figure 50c). 

Naturally, the basic region comprises high positive potential to allow binding of the negatively 

charged DNA backbone, but previous work showed that the N-terminal α-helix is not involved in 

the specificity of dimerization.33 MYC contains a high number of both positive and negative 

charges in the dimerization interface. These high charges impede efficient homodimerization due 

to electrostatic clashes. The MAX monomer lacks the interfacial electrostatic repulsion 

characteristic for MYC but instead presents an optimal complementarity to the MYC interface 

region.9 The interaction site of Omomyc was designed to remove the electrostatic clashes occurring 

in the MYC homodimer and therefore has less charged residues. Some long charged amino acids 

(glutamic acid, lysine, and arginine) are however necessary in the dimerization interface to prevent 

the formation of higher order oligomers and to ensure specificity of dimerization.32 Omomyc can 

consequently homodimerize and bind to both MYC and MAX without detrimental effects of 

electrostatics. Previous work showed that Omomyc homodimers and heterodimers with MYC and 

MAX are indeed stabilized by a combination of both electrostatic and hydrophobic interactions.8 

We can confirm that hydrophobic interactions positively contribute to the binding energies while 

electrostatic interactions are unfavorable in sum. It is therefore essential to control the electrostatics 

of the proteins to enable efficient dimerization and stability.  
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Figure 50: Binding free energies for MYC, MAX, and Omomyc homo- and heterodimers. (a) Protein-

protein binding free energies for MYC, MAX, and Omomyc homo- and heterodimers were calculated with 

MM/PBSA from three independent trajectories each. The mean of the triplicates is shown in red. (b) 

Average of the electrostatic contributions to the binding free energies is calculated as the sum of the 

electrostatic energy (ΔEelectrostatic) and the electrostatic contributions to the solvation free energy (ΔGPB). (c) 

Electrostatic potential maps for monomers of MYC (left), MAX (center), and Omomyc (right). The 

interaction partners are shown in mesh representation to visualize the binding interfaces.  

7.3.2. Effect of pH and ionic strength on Omomyc structure and stability 

Since it was shown that pH and ionic strength may result in opposite changes in conformational 

and colloidal stabilities, these parameters need to be evaluated simultaneously.34 We therefore 

examined the structure as well as thermal and colloidal stability of the protein using a combination 

of biophysical techniques at pH 4.8, 5.8, and 6.8 at low and high ionic strength (adjusted with 
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NaCl). To exclude potential buffer effects on the protein, we used sodium acetate buffer for all pH 

values considered in this part of the work even though the buffering capacity is not given at pH 

6.8. 

First, we investigated the effect of pH and ionic strength on the secondary structure of Omomyc. 

The characteristic far-UV CD spectra with two minima at 209 and 222 nm confirm that Omomyc 

is α-helical in all conditions and shows a slight decrease of helical content when increasing the pH 

from 4.8 to pH 5.8 and 6.8 (Figure 51a). Noteworthy, the ratios of the mean residue ellipticities at 

222 nm and 209 nm [θ]222/[θ]209 are in the range of 0.81 to 0.84, which are typical for non-

interacting α-helices.35 Increasing the ionic strength to a total of 100 mM at each pH produces CD 

spectra with ratios of [θ]222/[θ]209 in the range of 0.97 to 0.99, which indicate the presence of two-

stranded α-helical coiled-coils.35 The presence of NaCl also leads to an increased α-helical content, 

which is reflected by the more negative ellipticity. Similar behavior has been described for MYC 

in the absence and presence of MAX. The MYC bHLH domain is unstructured in the monomeric 

form but forms an α-helical structure upon dimerization with MAX. The low ionic strength spectra 

of Omomyc resemble the reported spectrum of MYC monomers, whereas the high ionic strength 

conditions result in spectra like the one reported for the MYC-MAX complex.3 Furthermore, 

Lavigne et al. observed that the stability and helicity of the MYC-MAX complex were also 

modulated by pH, with a maximum helicity around pH 4.5.36 Since the basic region could not be 

resolved in the apo Omomyc crystal structure (Figure 49), probably due to high flexibility, we 

assume that it is also unstructured without DNA interaction. However, our results show that 

Omomyc undergoes ion-induced folding which again highlights the importance of favorable 

interfacial electrostatic interactions in stabilizing the homodimer. 

Next, the stability of Omomyc under the tested conditions was monitored by the decrease in 

ellipticity at 222 nm during thermal denaturation from 20 °C – 85 °C (Figure 51b). Omomyc at low 

ionic strength shows a very shallow transition in negative ellipticity with increasing temperature, 

while there is no difference between the different pH values. This gradual, less cooperative 

denaturation has already been demonstrated for the MYC bHLHLZ domain.37 In contrast, the high 

ionic strength conditions show a cooperative decrease in α-helical content with no significant 

difference in melting temperature (Tm) between pH 5.8 and 6.8 (36.3 ± 1.2 °C and 34.5 ± 1.8 °C) 

but a shift to a higher Tm at pH 4.8 (41.8 ± 0.9 °C). NanoDSF was used as a complementary tool 
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to measure the protein melting temperatures and the aggregation onset temperatures (Tagg) and 

shows the same trend (Figure S18a, Table S6).  

Furthermore, the colloidal stability of Omomyc was assessed by means of the interaction parameter 

kD derived from DLS measurements. The kD was determined from the concentration dependence 

of the translational diffusion coefficient Dt of the protein (Figure 51c). In all low ionic strength 

conditions, the Dt increases with increasing protein concentration, reflecting a positive kD, 

regardless of the pH. The high kDs can be attributed to repulsive double-layer forces under low 

ionic strength conditions.38 This is in agreement with the relatively high positive charge of the 

protein. It is estimated to be +17 e at pH 4.8, +14 e at pH 5.8, and +11 e at pH 6.8. Upon addition 

of NaCl, the translational diffusion coefficient decreases with increasing protein concentration. 

NaCl was previously shown to compress the double layer and reduce the range of the force causing 

more attractive protein-protein interactions.38,39 Correspondingly, the interaction parameter kD is 

highest at low ionic strength and lowest pH and decreases with increasing pH and ionic strength 

(Figure 51d). This trend can also be observed in the aggregation during heating determined with 

nanoDSF backscattering (Figure S18b). The strong electrostatic repulsion inhibits the aggregate 

growth in all low ionic strength samples so that the aggregates do not reach a size that is detectable 

by the backscattering detector. Only the conditions at pH 5.8 and 6.8 with an ionic strength of 100 

mM show aggregation with Tagg values of 78.19 ± 0.70 °C and 75.55 ± 0.63 °C, respectively.  
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Figure 51: Structure, thermal and colloidal stability of Omomyc at different pH and ionic strength. 

(a) Far-UV CD spectra of Omomyc at pH 4.8, 5.8, and 6.8 with and without addition of NaCl. (b) Thermal 

unfolding curves of Omomyc at the different conditions monitored by the ellipticity at 222 nm. (c) Effect 

of pH and ionic strength on the translational diffusion coefficient Dt at different protein concentrations 

assessed with DLS. (d) Diffusion interaction parameters kD derived from the slope of the concentration 

dependence of Dt. 

Additional MD simulations of fully folded Omomyc homodimers at pH 4.8, 5.8, and 6.8 with NaCl 

were conducted to explore the stability and dynamics of the protein in different ionic strength 

conditions. The root mean square fluctuations (RMSF) show high flexibility of the basic region for 

all pH values both at low and high ionic strength whereas the leucine zipper domain remains 

relatively stable (Figure S18c). High flexibility is usually correlated to lower protein stability. As 

mentioned above, the basic region could not be resolved in the crystal structure of apo Omomyc 
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due to its high flexibility. Therefore, this behavior was expected from the basic region without 

DNA interaction and additional repulsion of the positively charged residues in each monomer. A 

comparison of the RMSF between the different systems indicates that the addition of NaCl only 

slightly affects the flexibility of the basic region and the helix-loop-helix region. However, we are 

not accounting for the ion-induced folding of the basic region in our simulations. We can only 

conclude that the basic region, the termini, and the loop are very dynamic in all conditions and 

seem to be an important factor in protein stability.  

In summary, at low ionic strength, Omomyc displays only residual helicity, which slightly 

increases under acidic conditions but significantly extends at high ionic strength. Additionally, low 

pH leads to charge repulsion of the Omomyc molecules and less self-association compared to 

physiological pH. The addition of NaCl screens the positive charges on the protein surface causing 

self-association.  

7.3.3. Concentration-dependent influence of phosphate buffer on the Omomyc stability 

Preliminary data revealed that phosphate buffer significantly affects Omomyc’s structure and 

stability. We therefore investigated the effect of varying phosphate concentrations on the protein 

with experimental and computational techniques. Already during dialysis into phosphate buffer, 

protein precipitation occurred at 10 and 25 mM phosphate.  

First, the effect of phosphate on the secondary structure was examined by CD spectroscopy. Here, 

we can again observe characteristic far-UV CD spectra with two minima at 209 and 222 nm that 

show a significant increase in negative ellipticity with increasing sodium phosphate concentrations 

(Figure 52a). Even at a concentration of 1 mM phosphate, the α-helical content increases to a 

similar extent as could be seen for the high ionic strength condition in acetate buffer (10 mM acetate 

+ NaCl to achieve total ionic strength of 100 mM). This indicates that it is indeed a specific buffer 

effect and not only a matter of ionic strength. The highest helical content was reached at 200 mM 

sodium phosphate. Additionally, the ratios of the mean residue ellipticities at 222 nm and 209 nm 

[θ]222/[θ]209 shift from 0.84 in 10 mM sodium acetate buffer to 0.88 in 1 mM sodium phosphate 

and a range of 0.97 – 1.00 for phosphate concentrations from 10 to 200 mM. These results suggest 

that phosphate is inducing an extension of the α-helix and facilitates the assembly of the two 

monomers into a two-stranded α-helical coiled-coil.  
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Next, we used CD spectroscopy, nanoDSF, and dynamic light scattering to measure Tm, Tagg, and 

the interaction parameters kD to elucidate the impact of phosphate on the Omomyc stability (Figure 

52b, Figure S19, Table S7). The thermal unfolding of Omomyc in different phosphate 

concentrations from 20 °C – 85 °C measured by CD reveals significant differences between the 

conditions. Omomyc in 1 mM sodium phosphate shows an almost linear decrease in negative 

ellipticity with increasing temperature similar to the low ionic strength conditions at pH 4.8, 5.8, 

and 6.8. Since the unfolding curve for 10 mM sodium phosphate does not show a sigmoidal 

transition, it could not be fitted with the CDpal software to determine the Tm. It can still be seen 

that the temperature at which unfolding starts, is lowest for 10 mM sodium phosphate. Higher 

sodium phosphate concentrations result in a cooperative decrease in α-helical content with a 

significant increase in melting temperature with increasing concentration (from 46.4 to 59.2 °C). 

The complementary nanoDSF measurements show the same trend. It must be noted though, that 

the 10 and 25 mM conditions were measured at lower protein concentrations in nanoDSF. Since 

the protein concentration influences heat-induced protein aggregation, this in turn affects the 

melting transitions.40 If aggregation occurs around the melting temperature of the protein, the Tm 

will shift to lower values.41 Therefore, it is not possible to directly compare the Tms given by 

nanoDSF and CD measurements at 10 and 25 mM phosphate, as the melting transitions may be 

affected by concentration-dependent protein aggregation. The same applies to the Tagg values 

measured with nanoDSF (Figure S19).  

Additionally, the influence of phosphate on the colloidal stability of Omomyc was assessed by 

means of the interaction parameter kD (Figure 52c, d). The kD was not measured for 10 and 25 mM 

phosphate buffer because the required protein concentration could not be reached due to 

precipitation. The translational diffusion coefficients in 1 mM phosphate could not be fitted to 

determine the kD due to non-linearity. However, the slope is positive indicating protein-protein 

repulsion at this 1 mM phosphate. The repulsive protein-protein interactions decrease quickly from 

low to intermediate phosphate concentrations resulting in negative kDs. With increasing phosphate 

concentrations, the kDs become less negative and almost plateau at concentrations of 150 to 200 

mM phosphate. Noteworthy, the translational diffusion coefficient is dependent on the 

hydrodynamic radius of the protein. Since Omomyc is partly unstructured at low ionic strength 

conditions and folds in the presence of NaCl or phosphate, the determined kDs must be interpreted 

with caution. However, the D0 values for all conditions are almost identical for the measurements. 
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This indicates that the hydrodynamic radius at infinite dilution is the same which means that the 

structural differences are probably neglectable.  

Altogether, Omomyc shows very different behavior at low (1 mM), intermediate (10 – 25 mM), 

and high (50 – 200 mM) phosphate concentrations. At low phosphate concentration, the protein is 

not fully structured and protein-protein repulsion between the positively charged Omomyc 

molecules is the reason for the high colloidal stability. Intermediate phosphate concentrations result 

in precipitation of the protein. Further increasing the phosphate concentration causes the protein 

precipitate to resolubilize. This phenomenon is a characteristic feature of reentrant condensation, 

which typically occurs between two critical anion concentrations.38,42 We propose that the different 

concentration-dependent effects of phosphate are due to interactions with protein side chains, at 

low, intermediate, and high concentrations. Phosphate binding to positively charged residues will 

cause neutralization of the long-ranged repulsive electrostatic interactions which in turn allows the 

formation of short-ranged ion-bridging attractive forces between the proteins. Subsequently, these 

attractive forces could lead to precipitation.42 Further binding of phosphate anions to the protein 

surface will induce charge inversion and thus restore protein-protein repulsion.   
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Figure 52: Effect of different phosphate concentrations on the structure and stability of Omomyc at 

pH 6.8. (a) Far-UV CD spectra of Omomyc at pH 6.8 in 10 mM sodium acetate buffer with and without 

NaCl or sodium phosphate buffer with increasing concentrations. (b) Normalized thermal unfolding curves 

of Omomyc in different sodium phosphate concentrations were monitored by the ellipticity at 222 nm. The 

insert shows the raw CD signal for the unfolding of Omomyc in 1 mM sodium phosphate which could not 

be normalized. (c, d) Diffusion interaction parameter kD assessed with DLS. The asterisk indicates that the 

kD could not be determined from the slope of the translational diffusion coefficients. The kD could not be 

measured for samples with 10 and 25 mM sodium phosphate due to precipitation of the protein during 

dialysis.  
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7.3.4. Phosphate binds to Omomyc in a concentration-dependent manner in MD simulations 

To understand the mechanisms by which phosphate causes reentrant condensation of Omomyc at 

intermediate concentrations and stabilization at higher concentrations, we conducted 100 ns 

simulations of the protein in simulation boxes containing 1, 10, 25, 50, 100, 150, and 200 mM 

sodium phosphate, respectively. Dihydrogen phosphate (H2PO4
-) and hydrogen phosphate (HPO4

2-

) were added to the simulation with a ratio of 1 to allow for comparison between the binding 

frequency and strength of the two species. Trajectories were analyzed in terms of binding 

probabilities (P(Iscore)) of phosphate to the individual residues of the protein and resulting structural 

changes in Omomyc (Figure S20, Table S7). The P(Iscore) is a measure of how long contact between 

a phosphate molecule and a residue of Omomyc was present during the simulation and is calculated 

based on a simple distance cut-off. Although one phosphate molecule typically interacts with one 

or two protein residues, it can have contact with up to seven residues. The average number of 

contacts per phosphate molecule was reported to be 3.5 ± 2.3.43 In combination with the applied 

distance cut-off approach, this results in more interaction sites than phosphate molecules present 

in the simulation.  

In particular, the basic region, the first helix, the loop, and the first residues of helix 2 show 

relatively high P(Iscores) already at intermediate phosphate concentrations (Figure 53a, d). In 

contrast, the leucine zipper domain only exhibits a few interaction sites even at high concentrations 

(Figure 53b, d). This is expected since the MYC/MAX/DNA structure confirmed the critical role 

of the several positively charged residues in the basic region, the loop, and helix 2 for the interaction 

with the DNA backbone phosphates in the biological context.5 The trend in all conditions is that 

residues R9, R10, R17, R19, and R20 of the basic region, residue K24 in helix 1, and residue K45 

in the loop are common residues in both monomers forming salt bridges with phosphate ions 

(interaction in at least 5 of the 7 conditions). The positively charged guanidinium group of arginine 

can form multiple hydrogen bonds and is therefore well suited to bind phosphate. The ε-amino 

group of the lysine contains a positive charge and can participate in salt bridges and hydrogen 

bonds. It is therefore not surprising that most phosphate interactions occur with arginine and lysine 

residues. Additionally, the N-terminal methionine residue binds phosphate in the higher 

concentration range via its free amino group. Hydrogen bonding of phosphate to asparagine and 

glutamate residues was also detected, however less frequently. The large size of the phosphate 

molecule enables it to bridge gaps between chains. Thus, residues in contact with phosphate can 
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be quite distant in the protein sequence and even distant in space since residues commonly involved 

in binding phosphate (arginine and lysine) are bulky as well.43 Consequently, phosphate seems to 

mediate the interaction between the basic and HLH region of the two Omomyc monomers but also 

has the potential to cross-link several monomers together.38  

Noteworthy, once phosphate binds to one of the residues at intermediate concentrations, the 

interaction seems to be stable throughout the simulations as indicated by the relatively high 

P(Iscores). In contrast, the interaction probability rarely exceeds 70 % at 150 or 200 mM phosphate 

but shows several interactions below the 20 % threshold (Figure S20f, g). Since the probability of 

a contact is higher due to the larger number of phosphates in the simulation box, it is unlikely that 

it takes longer for a phosphate ion to reach the interaction site. It is more plausible that the 

interactions are not as long-lasting which might be due to crowding of the phosphate anions on the 

protein surface and resulting repulsion.  

The increasing number of residues in contact with phosphate with increasing concentration shows 

that the surface is not saturated in the evaluated concentration range (Figure 53c). We however 

observe different binding affinities of dihydrogen phosphate and hydrogen phosphate. Dihydrogen 

phosphate binds to Omomyc significantly less compared to hydrogen phosphate, especially at low 

and intermediate phosphate concentrations. This is expected based on the different charges of the 

molecules. While the two negative charges of hydrogen phosphate can each form a salt bridge to a 

positive charge on the protein surface, dihydrogen phosphate with only one negative charge can 

participate in just one electrostatic interaction. Noteworthy, at 200 mM phosphate the difference is 

considerably smaller. The number of Omomyc residues in contact with hydrogen phosphate barely 

increases from 150 to 200 mM phosphate (from 34 to 38) whereas the number of interactions with 

dihydrogen phosphate more than doubles (from 14 to 31). This again supports our hypothesis that 

crowding of the hydrogen phosphate anion with its higher charge density on the Omomyc surface 

impedes the approach of additional hydrogen phosphate ions due to charge repulsion. Comparing 

the RMSF of the simulations with different phosphate concentrations shows no influence of 

phosphate on the mobility of the different regions of Omomyc (Figure S20h). We again observe 

generally high flexibility of the basic region and a stable leucine zipper domain for all conditions. 

We propose that phosphate binding only alters the electrostatic interactions between the proteins, 

which also explains that anion-specific differences are reduced at higher concentrations. This effect 

has also been shown when comparing the sodium salts of phosphate, sulfate, and citrate.38 
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Moreover, it has already been reported that the MYC and MAX dimer formation was favored by 

the presence of negatively charged ions such as poly-l-glutamic acid.44  

In summary, the MD simulations support the hypothesis that phosphate induces reentrant 

condensation of Omomyc. The process is driven by neutralization of the protein charge by 

predominant binding of hydrogen phosphate to arginine and lysine residues on the protein surface 

which allows the formation of ion-bridging attractive forces. Increasing the phosphate 

concentration results in an accumulation of hydrogen phosphate and to some extent dihydrogen 

phosphate molecules on the protein surface causing charge inversion and overcharging of the 

protein, thereby restoring repulsion between the protein molecules. Previous studies revealed that 

the presence of multivalent ions causes RC not only of globular proteins such as lysozyme but also 

of IDPs.38,42 The multivalent ions do not only regulate solution properties of IDPs but influence 

their conformational ensemble, for example, causing compaction of the IDP histatin 5.42 We can 

observe both phenomena for Omomyc in the presence of phosphate anions.  
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Figure 53: Binding of hydrogen phosphate and dihydrogen phosphate to Omomyc in MD simulations. 

(a, b) Interaction score probabilities P(Iscore) per residue for H2PO4
- and HPO4

2- averaged over three 

independent MD simulations with 10 and 150 mM sodium phosphate, respectively, reveal the binding 

regions. The P(Iscore) gives a percentage of how long an interaction of phosphate with each residue was 

present during the simulation. We used a P(Iscore) cut-off of 0.2 to distinguish transient contacts from actual 

binding (indicated by a gray line). The basic (B), helix-loop-helix (HLH), and leucine zipper (LZ) domains 

are shown for both chains of the homodimer. (c) The number of residues interacting with either H2PO4
- or 

HPO4
2- for ≥ 20% of the simulation show a concentration-dependent effect. The numbers include the 

residues of both monomers. (d) Representation of the phosphate binding sites (both H2PO4
- and HPO4

2-) at 

10 and 150 mM highlighted in red in the Omomyc structure.   
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7.4.   Conclusions 

We present an extensive study on the stability of the anti-MYC mini-protein Omomyc and elucidate 

the driving forces of dimerization as well as the molecular mechanisms by which the pH, ionic 

strength, and phosphate influence the protein structure and self-association tendency. MM/PBSA 

calculations revealed that van der Waals energies contributed most of the stabilizing energy 

whereas electrostatics are the main contributor to differences in binding free energies of Omomyc, 

MYC, and MAX homo- and heterodimerization. Omomyc undergoes ion-induced folding in the 

presence of sodium chloride and phosphate anions. Additionally, at acidic conditions and low ionic 

strength, repulsion of the Omomyc molecules prevent self-association. Sodium chloride screens 

the positive charges on the protein surface leading to more attractive interactions. Our findings 

reveal that electrostatics must be precisely controlled to achieve conformational as well as colloidal 

stability of Omomyc since high ionic strength induces folding but also diminishes repulsive 

intermolecular forces. We furthermore found that phosphate induces reentrant condensation of 

Omomyc. Omomyc precipitates at concentrations of 10 and 25 mM phosphate due to binding of 

phosphate anions to arginine and lysine residues on the protein surface and subsequent 

neutralization of the repulsive electrostatic forces. Higher phosphate concentrations in contrast 

stabilize Omomyc by overcharging of the molecules which in turn leads to protein-protein 

repulsion. Even though Omomyc shows higher conformational and colloidal stability at acidic pH, 

the use of high concentrations of phosphate at pH 6.8 induces enhanced folding of the unstructured 

bHLH domain and increases the colloidal stability.  
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7.5.   Supporting information 
 

 

Figure S17: MM/PBSA binding free energy calculations. (a) Average of the van der Waals contributions 

to the binding free energies. (b) The average RMSD of the triplicates was used to confirm that the MD 

simulations have converged. The RMSDs for all systems fluctuate over simulation time but the average 

remains in a narrow range. The fluctuation is probably due to the flexibility of the basic region without 

DNA-binding. 
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Table S5: Binding free energies for MYC, MAX, and Omomyc homo- and heterodimers. Individual contributions of the different energy 

contributions and the resulting total ΔG values are determined with the MM/PBSA method. Calculations are shown separately for each of the triplicates.   

 MYC-MYC MYC-MAX Omomyc_MYC Omomyc-MAX 

Energy 

component 

Average Std. Dev. Std. Err. 

of Mean 

Average Std. Dev. Std. Err. 

of Mean 

Average Std. Dev. Std. Err. 

of Mean 

Average Std. Dev. Std. Err. 

of Mean 

EvdW -144.0067 7.2390 0.7203 -162.2802 7.5321 0.7495 -159.3676 6.6635 0.6630 -167.9284 6.4996 0.6467 

Eelectrostatic 587.7248 60.2313   5.9932 195.1954 59.8414   5.9544 556.2185 63.2778 6.2964 285.9861 39.2178 3.9023 

EPB -528.7803   56.2631 5.5984 -155.3539 58.1739   5.7885 -516.2222 59.4367 5.9142 -237.5097 38.4214    3.8231 

Enonpolar -120.4982 4.3684 0.4347 -131.5212 4.4503 0.4428 -131.0352 4.0147   0.3995 -127.5408   3.4271   0.3410 

Edisper 201.6006 5.6872 0.5659 221.1480 6.2033 0.6173 218.7245 4.8828 0.4859 215.7790 3.6536 0.3635 

ΔGgas 443.7181 59.3478 5.9053 32.9152 60.7234 6.0422 396.8510 63.0498      6.2737 118.0577 40.4438 4.0243 

ΔGsolv -447.6779 54.9936 5.4721 -65.7270 59.3585 5.9064 -428.5329 58.9774   5.8685 -149.2714 38.1832 3.7994 

ΔGtotal -3.9598 13.0515   1.2987 -32.8119 12.7321 1.2669 -31.6819 10.0133 0.9964 -31.2137   11.0737     1.1019 

EvdW -148.2921 8.5829   0.8540 -166.7391 7.6418   0.7604 -172.1751   7.1986   0.7163 -170.2578 6.4144 0.6383 

Eelectrostatic 812.3670   65.3322 6.5008 138.0476 52.9679 5.2705 442.5023 60.5644 6.0264 294.5054 39.6530 3.9456 

EPB -736.6426 59.0118 5.8719 -96.1686 48.4871 4.8246 -402.9182   56.3655 5.6086 -249.1144 36.1074 3.5928 

Enonpolar -120.4061 4.8152   0.4791 -132.8198   3.7952   0.3776 -143.1123 3.4491     0.3432 -129.1865 3.5809 0.3563 

Edisper 208.5723   5.8941   0.5865 223.0364 4.0236   0.4004 231.1262   3.9155 0.3896 220.8312 4.1481 0.4127 

ΔGgas 664.0748 64.0839      6.3766 -28.6915   52.5416 5.2281 270.3272    61.8135   6.1507 124.2476 39.2961 3.9101 

ΔGsolv -648.4764 57.5752 5.7289 -5.9520 48.3135 4.8074 -314.9043   56.4570     5.6177 -157.4697 36.3297 3.6149 

ΔGtotal 15.5985 12.5914 1.2529 -34.6435 13.1223    1.3057 -44.5771   11.7567 1.1698 -33.2221 10.5831 1.0531 

EvdW -169.0609 7.8255 0.7787 -164.7739 9.1157 0.9070 -166.4176 7.6167 0.7579 -171.2053 7.0071 0.6972 

Eelectrostatic 786.0268 64.5411 6.4221 208.9222 80.1524 7.9755 429.8543 65.0353 6.4713 354.4666 49.8897 4.9642 

EPB -700.4934   61.2399 6.0936 -164.3624 76.0523 7.5675 -404.3098 59.9060   5.9609 -307.1685 46.7303 4.6498 

Enonpolar -135.9174 3.8659 0.3847 -131.8799 4.2100 0.4189 -139.9882 3.4352 0.3418 -129.2205 4.0509 0.4031 

Edisper 228.4056 4.7859 0.4762 220.6932   5.6244 0.5596 227.4272 3.6615   0.3643 220.6507    4.5591    0.4536 

ΔGgas 616.9660 65.1044 6.4781 44.1484 78.0419 7.7655 263.4368 64.3920   6.4072 183.2613 49.7839 4.9537 

ΔGsolv -608.0052 61.0592 6.0756 -75.5490 75.4031 7.5029 -316.8708 59.0944 5.8801 -215.7383     46.6272 4.6396 

ΔGtotal 8.9608 13.0639 1.2999 -31.4006 11.5458 1.1489 -53.4340 12.7567 1.2693   -32.4770 12.2936 1.2233 
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 Omomyc pH 4.8 Omomyc pH 5.8 Omomyc pH 6.8 

Energy 

component 

Average Std. Dev. Std. Err. of 

Mean 

Average Std. Dev. Std. Err. of 

Mean 

Average Std. Dev. Std. Err. of 

Mean 

EvdW -162.3683 7.7244 0.7686 -167.4883 6.0592 0.6029 -164.7744 7.1714 0.7136 

Eelectrostatic 846.5921   49.6997   4.9453 682.2781   61.6954 6.1389 572.9592 33.9660 3.3797 

EPB -802.1789 43.8820 4.3664 -638.2144 56.2930 5.6014 -534.9262 30.6031 3.0451 

Enonpolar -130.2669 4.4495   0.4427 -132.4847 3.9590 0.3939 -131.3588 3.0475 0.3032 

Edisper 214.6358 5.1065    0.5081 216.5205 4.0860 0.4066 216.3146 4.1762 0.4155 

ΔGgas 686.5766 48.5063     4.8266 517.1862 62.3545 6.2045 410.3683 32.3034 3.2143 

ΔGsolv -717.8100 44.0061         4.3788 -554.1786 56.2257 5.5947 -449.9704 30.3767 3.0226 

ΔGtotal -31.2335 9.9625   0.9913 -36.9924 11.0992 1.1044 -39.6020 10.0656 1.0016 

EvdW -166.3204 8.1749   0.8134 -163.2150 6.4993 0.6467 -165.5059 7.5690 0.7531 

Eelectrostatic  872.8189 42.3182 4.2108 530.5877 37.6968 3.7510 602.3643 42.1464 4.1937 

EPB -824.4452 37.8656 3.7678 -491.0493 33.5036 3.3337 -565.6904 38.2154 3.8026 

Enonpolar -133.3267 4.6518   0.4629 -133.8103 3.7843 0.3765 -133.7519 3.8806 0.3861 

Edisper 219.0308 4.9215   0.4897 217.6254 4.8361 0.4812 219.5995 5.1693 0.5144 

ΔGgas 709.2357 42.7345   4.2522 369.7785 36.8512 3.6668 439.1209 42.2342 4.2025 

ΔGsolv -738.7412 37.5816 3.7395 -407.2342 33.1541 3.2990 -479.8428 38.0091 3.7820 

ΔGtotal -29.5054 13.1739   1.3109 -37.4557 10.1764   1.0126 -40.7220 11.5122 1.1455 

EvdW -162.0029 6.9079 0.6874 -166.9645 6.9517 0.6917 -165.7336 6.6057 0.6573 

Eelectrostatic 885.6308 58.3998 5.8110 595.3236 43.4254 4.3210 554.8949 44.4020 4.4182 

EPB -833.0491 50.6563     5.0405 -548.8966 40.6924 4.0490 -522.8448 40.2843 4.0084 

Enonpolar -132.0798 4.2469      0.4226 -135.8470   3.9150 0.3896 -136.7948 3.9577 0.3938 

Edisper 219.6634 5.4542   0.5427 221.8664 4.4183 0.4396 221.4723 4.3239 0.4302 

ΔGgas 726.1442 56.1277 5.5849 430.4480 44.1728 4.3954 391.6196 43.9836 4.3765 

ΔGsolv -745.4655 49.4203 4.9175 -462.8772 40.3820 4.0182 -438.1673 39.3684 3.9173 

ΔGtotal -19.3213 11.9767 1.1917 -32.4292   11.3050 1.1249 -46.5477 10.6933 1.0640 
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Figure S18: Stability of Omomyc at different pH and ionic strength. (a) Thermal unfolding and (b) 

backscattering traces from the aggregation detection optics at different pH and ionic strength measured with 

nanoDSF. NanoDSF is based on the protein’s intrinsic fluorescence. It must therefore be noted that Omomyc 

does not contain any tryptophan but only tyrosine residues. (c) Root mean square fluctuations per residue 

of the 100 ns MD simulations indicate high flexibility of the basic and loop region of Omomyc.  
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Table S6: Overview of the experimental parameters determined at different pH and ionic strength. 

The values are the mean of triplicates with standard deviations, except for the Tm values from CD where 

the error is the fit error in CDpal. The low ionic strength conditions did not show a sigmoidal transition and 

could not be fitted in CDpal. 

 CD nanoDSF DLS 

 [θ]222/[θ]209 Tm ( °C) Tm ( °C) Tagg ( °C) kD (mL/mg) D0 (cm2/s) 

pH 4.8 0.84 - - - 0.106 6.99  10-7 

pH 4.8 + NaCl 0.99 41.8 ± 0.9 41.14  0.08 - -0.028 8.36  10-7 

pH 5.8 0.85 - 78.32  0.76 - 0.068 7.35  10-7 

pH 5.8 + NaCl 0.97 36.3 ± 1.2 32.98  0.15 78.19  0.70 -0.037 7.86  10-7 

pH 6.8 0.86 - 75.04  0.49 - 0.033 7.29  10-7 

pH 6.8 + NaCl 0.98 34.5 ± 1.8 31.70  0.20 75.55  0.63 -0.051 7.94  10-7 

 

 

Figure S19: Thermal unfolding and aggregation of Omomyc in varying phosphate concentrations. (a) 

Thermal unfolding and (b) backscattering traces from the aggregation detection optics at 1 to 200 mM 

phosphate with nanoDSF. The conditions with 10 and 25 mM phosphate were measured at lower protein 

concentrations and can therefore not directly be compared with the other conditions as well as CD 

measurements. 



218 

 

 

Figure S20: P(Iscores) of hydrogen phosphate and dihydrogen phosphate and phosphate-dependent 

dynamics of Omomyc. (a-g) Interaction score probabilities P(Iscore) per residue for H2PO4
- and HPO4

2- 

averaged over three independent MD simulations with phosphate concentrations from 1 to 200 mM. (h) 

Root mean square fluctuations per residue at varying phosphate concentrations do not show large differences 

in flexibility upon phosphate binding. 

 

  



219 

 

Table S7: Overview of the experimental parameters determined at different phosphate concentrations and residues interaction with phosphate 

in MD simulations. The values are the mean of triplicates with standard deviations, except for the Tm values from CD where the error is the fit error in 

CDpal. The low ionic strength conditions did not show a sigmoidal transition and could not be fitted in CDpal. The kD could not be determined for 10 

and 25 mM phosphate due to precipitation of the protein. The slope of the diffusion coefficient at 1 mM phosphate could not be fitted due to non-

linearity of the measured data. The number of residues interacting with either dihydrogen phosphate or hydrogen phosphate is calculated from the 

P(Iscore) and are in contact with phosphate for more than 20 % of the simulation. 

 CD nanoDSF DLS MD simulations 

 [θ]222/[θ]209 Tm ( °C) Tm ( °C) Tagg ( °C) Tagg ( °C) kD (mL/mg) D0 (cm2/s) # residues 

(H2PO4
-) 

# residues 

(HPO4
2-) 

1 mM NaP 0.88 - 73.62  0.67 - 69.4  1.2 - 8.91  10-7 - 3 

10 mM NaP 0.97 - 46.75  0.18 41.66  0.10 37.5  0.02 - - - 14 

25 mM NaP 0.99 46.4 42.23  0.05 37.59  0.04 39.3  0.2 - - 1 16 

50 mM NaP 1 50.7 43.38  0.03 39.20  0.02 40.1  0.1 -0.047 8.36  10-7 4 27 

100 mM NaP 1 59.2 47.71  0.05 44.62  0.03 45.3  0.07 -0.031 8.56  10-7 11 26 

150 mM NaP 1 60.5 50.58  0.02 49.09  0.29 49.1  0.02 -0.025 8.61  10-7 14 34 

200 mM NaP 1 57.8 52.71  0.02 53.58  2.30 53.9  0.3 -0.024 8.57  10-7 31 38 
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Chapter 8 - Summary of the thesis 

 

The primary aim of this thesis was to investigate the potential of MD simulations in developability 

assessment to accurately rank and select therapeutic protein candidates, and in formulation 

development to gain a mechanistic insight into effects of pH, ionic strength, and excipient 

interactions on the stability of therapeutic proteins.   

In Chapter 1, I started the thesis with a brief overview of protein stability, degradation pathways, 

and biophysical characterization techniques relevant for developability assessment and formulation 

development. Additionally, commonly applied approaches in lead candidate selection and 

formulation development are shortly described and emerging computational tools and MD 

simulations are introduced.  

In Chapter 2, I applied available sequence- and structure-based webservers for aggregation and 

stability prediction on a dataset of 68 nanobodies and compared the results to the experimentally 

determined stability-indicating parameters Tm and Tagg. The computational results showed 

relatively good correlation among each other but neither the sequence- nor the structure-based 

predictions were able to rank the nanobodies according to their experimental behavior. Since the 

webservers do not account for non-native protein aggregation, we performed MD simulations at 

elevated temperature to induce partial unfolding and monitored the aggregation propensity of these 

altered conformations. Again, we were not able to accurately rank the molecules according to the 

measured Tm and Tagg values.  

Chapter 3 is based on a similar approach as Chapter 2 with a dataset of 13 monoclonal antibodies 

but includes more orthogonal biophysical characterization techniques and long-term stability data. 

This study focuses on the assessment of refoldability in combination with temperature-ramped MD 

simulations of the variable domains to select-aggregation resistant antibodies. Available 

webservers for aggregation prediction were not able to accurately rank the molecules according to 

their long-term stability. We could show that the ReFOLD assay and MSF can be used to select 

aggregation resistant antibodies within this dataset and could explain that the higher propensity for 

non-native aggregation of some of the antibodies is caused by unfolding and exposure of APRs at 

lower temperatures compared to the aggregation-resistant counterparts. The MD simulations 
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showed a better correlation with the temperature of non-reversibility and relative monomer yield 

after refolding than with the Tm and Tagg values. 

In Chapter 4, the complex pH-dependent aggregation mechanism of G-CSF was investigated by 

low-resolution biophysical characterization techniques and advanced MD simulations. The 

differences in conformational stability between pH 4.0 and pH 7.5 could be explained with 

metadynamics simulations which showed that one of the most distinct conformational changes at 

different pH values occurs due to the loss of cation-π-interactions between Trp and neighboring 

His residues. The loss of this interaction leads to increased protein flexibility and thus decreased 

conformational stability. CG simulations revealed that the pH-dependent aggregation-prone 

regions of G-CSF are located at the N-terminus and in the two long loops. Electrostatic interactions 

were found to be a main reason for the different aggregation behavior at acidic and neutral pH. 

This finding was supported with the increased aggregation at higher ionic strength due to charge-

shielding effects.  

In Chapter 5, I investigated the effect of the zwitterionic buffer molecule HEPES on G-CSF at 

acidic and neutral conditions. I revealed a stabilizing effect of HEPES on G-CSF in nanoDSF 

experiments and against shaking stress at low concentrations whereas high concentrations resulted 

in aggregation of the protein. I concluded different mechanisms of action for HEPES at low and 

high concentrations and at different stress conditions. With MD simulations and BLI measurements 

I could confirm direct binding of HEPES to G-CSF in a concentration-dependent manner. Binding 

sites were found in helix E as well as aggregation hot spots at low concentrations whereas an almost 

equal distribution of HEPES molecules on the protein surface could be found at high 

concentrations. 

Chapter 6 also focused on the stabilizing effect of HEPES and other Good’s buffers, but here on a 

novel two-domain recombinant bacteriophage lysin, HY-133. Compared to other commonly used 

buffer systems, HEPES showed a clear stabilizing effect on the protein. While HEPES did not 

change the intermolecular interaction, MD simulations showed that binding of HEPES to HY-133 

prevents the collapse of the linker and inter-domain interactions. Other Good’s buffers showed a 

similar stabilizing effect experimentally but were not further assessed in MD simulations.  

In Chapter 7, a combination of biophysical techniques, molecular dynamics (MD) simulations, and 

molecular mechanics/ Poisson–Boltzmann surface area (MM/PBSA) free energy calculations was 
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applied to elucidate the driving forces of dimerization of Omomyc, MYC, and MAX as well as the 

molecular mechanisms by which the pH, ionic strength, and phosphate influence the 

conformational and colloidal stability of Omomyc. I discovered that electrostatics are the main 

contributor to dimerization. Additionally, sodium chloride and phosphate cause ion-induced 

folding of disordered regions of Omomyc. I could furthermore show that Omomyc undergoes 

reentrant condensation in phosphate buffer, as intermediate phosphate concentrations result in 

precipitation, whereas higher concentrations lead to stabilization of the protein. MD simulations 

revealed binding of phosphate ions to arginine and lysine residues on the protein surface with 

concentration-dependent binding affinities of dihydrogen phosphate and hydrogen phosphate ions. 

The findings in this thesis show that the application of computational tools has great potential in 

providing molecular mechanistic insights into the properties of different therapeutic proteins from 

monoclonal antibodies to mini proteins containing intrinsically disordered regions. 

By moving expensive experimental screens in silico, the efficiency of developability assessment 

and formulation development can be improved significantly. Computational tools, particularly the 

sequenced-based methods, have a much greater throughput than experimental screens. However, 

we found that sequence-based predictions applied in this thesis could not accurately rank 

candidates according to their experimental performance. The structure-based approaches showed 

a better correlation; we could however see that the performance of these structure-based tools can 

greatly be impeded by the quality of the input structure. For monoclonal antibodies and nanobodies, 

modelling of the VH/VL pairing and the CDR-H3 loop are particularly challenging. Nevertheless, 

the recent advances in protein structure prediction by, e.g., AlphaFold and RoseTTAFold have 

made it possible to achieve high accuracy protein structures from amino acid sequences. Due to 

the tremendous progress in computer hardware and algorithms, in silico tools start applying a more 

realistic description of proteins as conformational ensembles. However, APR prediction is complex 

and currently available methods are still not 100% accurate. A further step of improvement of these 

tools would be the consideration of environmental conditions, besides the pH, in the predictions. 

Nevertheless, molecular properties that can be derived from the sequence and structure can be very 

useful to define formulation strategies in the next steps of development. In summary, our results 

highlight the need for more robust methods to be able to apply them as reliable screening tools 

during developability assessment.  
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MD simulations are a powerful technique to investigate the conformational behavior of proteins, 

which cannot be captured experimentally. The MD simulations in our work considering the 

developability assessment, allowed the ranking and selection of promising candidates only in the 

case of the monoclonal antibodies but not for the nanobodies. Here, a probable reason is that the 

conditions in the MD simulations were not appropriate to achieve significant unfolding of the 

nanobodies to accurately rank the aggregation potential of the unfolded species. However, required 

simulation times to reach convergence and larger conformational changes are unreasonable 

compared to a nanoDSF or MSF experiment, especially for larger datasets. 

Next, we could show that a better understanding of a protein aggregation mechanism can be 

obtained through MD simulation studies, where CG simulations are particularly useful. The loss in 

resolution of the model is compensated by increased computational efficiency, but validation with 

SAXS experiments was still necessary to verify the aggregation prone regions. However, CG 

simulations so far do not allow the inclusion of more complex features such as temperature, buffer 

components, excipients, and agitating conditions. This would tremendously help to predict rates of 

aggregation with better accuracy.  

The use of MD simulations to study protein-excipient interactions was a successful application in 

this thesis. The (de-)stabilizing mechanisms could be explained for the buffer HEPES for two very 

different proteins, and for phosphate for a highly charged mini protein. It is important to note that 

the results obtained from MD simulations can be used to interpret the phenomena observed in 

experiments, but the setup of the computational work required a lot of knowledge on the system of 

interest beforehand. These results show the value of MD simulations in complement to experiments 

to explain the underlying molecular mechanisms. A completely computational high-throughput 

screening method for formulation development is however not (yet) realistic due to the high 

number of simulations, and thus setup and computation times, that would be required. Here, 

machine-learning approaches are emerging and promising tools to aid the drug development 

process. The advantage of machine-learning models is that they can be predictive even when the 

underlying biophysical mechanisms are not well understood. 

Despite all improvements over the past years, MD simulations have limitations in reproducing a 

realistic protein ensemble. One of the major limitations is the accuracy of force fields used to 

calculate interatomic interactions. Especially force fields for small molecules, such as excipients, 
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are often trained on limited data (ca. 70 molecules for GAFF2). Hence, experimental confirmation 

is necessary in any case. The bottom line of this thesis is that MD simulations combined with high-

throughput experimental techniques represent a very promising screening solution to improve 

efficiency during the early stages of the development process of therapeutic proteins. 
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