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Summary

Most machine learning applications involve a domain shift between data on which a model
has initially been trained and data from a similar but different domain to which the model is
later applied on. Applications range from human computer interaction (e.g., humans with
different characteristics for speech or handwriting recognition), computer vision (e.g., a
change of weather conditions or objects in the environment for visual self-localization), and
neural language processing (e.g., switching between different languages). Another related
field is cross-modal retrieval, which aims to efficiently extract information from various
modalities. In this field, the data can exhibit variations between each modality. Such
variations in data between the modalities can negatively impact the performance of the
model. To reduce the impact of domain shift, methods search for an optimal transformation
from the source to the target domain or an optimal alignment of modalities to learn a
domain-invariant representation that is not affected by domain differences.

The alignment of features of various data sources that are affected by domain shift re-
quires representation learning techniques. These techniques are used to learn a meaningful
representation that can be interpreted, or that includes latent features through the use of
deep metric learning (DML). DML minimizes the distance between features by using the
standard Euclidean loss, maximizes the similarity of features through cross correlation, or
decreases the discrepancy of higher-order statistics like the maximum mean discrepancy.
A similar but distinct field is pairwise learning and contrastive learning, which also em-
ploys DML. Contrastive learning not only aligns the features of data input pairs that have
the same class label, but also increases the distance between pairs that have similar but
different labels, thus enhancing the training process.

This research presents techniques for domain adaptation and cross-modal retrieval
that specifically focus on the following two applications. (1) Online handwriting recogni-
tion involves representing written characters as multivariate time-series data from sensor-
enhanced pens and aims to classify the written text. We recorded and evaluated various
datasets for single character and sequence-to-sequence classification, and made them pub-
licly available. We evaluated the domain shift that can occur between right- and left-handed
writers, as well as between different writing styles, using uncertainty quantification tech-
niques. Our approach utilizes higher-order statistics or optimal transport to adjust the
features between right- and left-handed writers in order to minimize this domain shift.
The best transformation is selected using DML techniques. Additionally, we assess the
effectiveness of contrastive learning and DML for adapting the domain between writing on
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tablet and on paper, as well as for cross-modal retrieval in offline and online handwrit-
ing recognition. (2) Visual self-localization aims to determine the absolute and relative
position and orientation of a human or robot using only one monocular camera. We pro-
pose to enhance the task of predicting the absolute pose by incorporating an auxiliary
task of predicting the relative pose using optical flow during the learning process and to
pre-train on simulated data. In addition, we evaluate different fusion methods that utilize
representation learning to combine information from visual and inertial sensors.

Keywords. representation learning · deep metric learning · domain adaptation · cross-
modal retrieval · multi-modal fusion · time-series classification · online handwriting recog-
nition · visual self-localization · pose regression



Zusammenfassung

Die meisten Anwendungen des maschinellen Lernens beinhalten die Herausforderung, dass
eine Verschiebung der Verteilung zwischen Daten, auf denen ein Modell initial trainiert
wurde, und Daten, aus einer ähnlichen aber unterschiedlichen Domäne, auf die das Modell
später angewendet wird. Anwendungen reichen von Mensch-Maschine-Interaktion (z. B.
Menschen mit unterschiedlichen Charakteristiken haben einen unterschiedlichen Einfluss
auf die Sprach- oder Handschrifterkennung), Computer Vision (z. B. Veränderungen von
Bedingungen oder Objekten in der Umgebung haben einen Einfluss auf die visuelle Eigen-
lokalisierung), und neuronale Sprachverarbeitung (z. B. der Wechsel zwischen verschiede-
nen Sprachen). Ein weiteres verwandtes Feld ist modalübergreifende Extraktion, soge-
nanntes “Cross-Modal Retrieval”, das darauf abzielt, Informationen aus verschiedenen
Modalitäten effizient zu extrahieren. In diesem Bereich können Daten Unterschiede zwis-
chen den verschiedenen Modalitäten aufweisen. Solche Veränderungen der Daten zwis-
chen den Modalitäten können sich negativ auf die Leistung von Modellen auswirken. Um
die Auswirkungen der Domänenverschiebung zu reduzieren, suchen Methoden nach einer
optimalen Transformation der Merkmale vom Quell- zum Zielbereich oder eine optimale
Ausrichtung der Modalitäten, um eine domäneninvariante Darstellung zu lernen, die nicht
von Domänenverschiebung betroffen ist.

Um die Merkmale verschiedener Datenquellen, die von der Domänenverschiebung be-
troffen sind, aufeinander abzustimmen, sind Methoden notwendig, die eine optimale Darstel-
lung lernen. Diese Darstellung sollte interpretierbar sein oder sollte latente Merkmale durch
die Verwendung von tiefem metrischen Lernen, sogenanntem “Deep Metric Learning”, ent-
halten. Tiefes metrisches Lernen minimiert den Abstand zwischen Merkmalen mithilfe
der üblich genutzten euklidischen Norm, maximiert die Ähnlichkeit von Merkmalen durch
die Kreuzkorrelation, oder verringert die Diskrepanz von Statistiken höherer Ordnung,
wie beispielsweise die maximale mittlere Diskrepanz. Ein ähnlicher, aber eigenständiger
Bereich ist das kontrastive Lernen, das ebenfalls tiefes metrisches Lernen verwendet. Kon-
trastives Lernen gleicht nicht nur die Merkmale von Dateneingabepaaren an, die dieselbe
Klasse vorweisen, sondern vergrößert auch den Abstand zwischen Dateneingabepaaren, die
ähnliche, aber unterschiedliche Klassen vorweisen, und somit den Lernprozess verbessern.

Die Forschung, die in dieser Arbeit vorgestellt wird, präsentiert Methoden für die
Domänenanpassung und die modalübergreifende Extraktion, die sich auf die im Folgenden
beschriebenen zwei Anwendungen konzentrieren. (1) Echtzeit-Handschrifterkennung stellt
geschriebene Zeichen als multivariate Zeitreihendaten dar, die mit Sensoren von speziell



viii ZUSAMMENFASSUNG

entwickelten Stiften aufgenommen wurden, und hat das Ziel, den geschriebenen Text zu
klassifizieren. Wir haben verschiedene Datensätze für die Klassifizierung von einzelnen
Buchstaben und für die sequenzbasierte Klassifizierung aufgenommen, ausgewertet und
öffentlich verfügbar gemacht. Wir haben die Domänenverschiebung, die zwischen Rechts-
und Linkshänderdaten sowie zwischen verschiedenen Schreibstilen auftreten kann, unter
Verwendung von Methoden zur Quantifizierung von Unsicherheiten ausgewertet. Unser
Vorgehen verwendet Statistiken höherer Ordnung oder Methoden zur Bestimmung des op-
timalen Transports, um die Domänenverschiebung der Merkmale zwischen Rechts- und
Linkshänderdaten zu minimieren. Die beste Transformation wird unter Verwendung von
Methoden des tiefen metrischen Lernens ausgewählt. Zusätzlich bewerten wir die Wirk-
samkeit von kontrastivem Lernen und tiefem metrischen Lernen zur Anpassung der Domäne
zwischen Sensordaten, die durch Schreiben auf einem Tablet und durch Schreiben auf
einem Papier aufgenommen wurden, als auch für die modalübergreifende Extraktion in
der zeitversetzten und Echtzeit-Handschrifterkennung. (2) Das Ziel der visuellen Eigen-
lokalisierung ist es, die absolute und relative Position und Orientierung eines Menschen,
Roboters, oder eines sonstigen Objekts zu bestimmen, indem nur eine einzelne monoku-
lare Kamera verwendet wird. Wir erweitern und verbessern den Prozess der absoluten
Posenschätzung durch das Integrieren eines zusätzlichen Hilfsprozesses zum Vorhersagen
der relativen Pose anhand des optischen Flusses während des Lernprozesses und durch
vorheriges Training auf simulierten Daten. Darüber hinaus evaluieren wir verschiedene Fu-
sionsmethoden, die Methoden des Representationslernens verwenden, um Informationen
aus visuellen und inertialen Sensoren zu kombinieren.

Schlüsselwörter. Representationslernen · Tiefes metrisches Lernen · Domänenan-
passung · Modalübergreifende Extraktion · Multimodale Fusion · Zeitserienklassifikation ·
Echtzeit-Handschrifterkennung · Visualle Eigenlokalisierung · Posenregression
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Chapter 1

Introduction

1.1 Motivation & Overview

It is common in numerous real-world scenarios to encounter a domain shift in the distri-
bution of data between training and test sets. This leads to a decrease in the performance
of machine learning (ML) models when applied to test data with a domain shift, as stan-
dard ML models assume that training and test datasets are independent and identically
distributed (i.i.d.) (Sun et al., 2016). A domain shift, also known as distributional or co-
variate shift, pertains to a change in the data distribution between training data, which
originates from a source domain, and related but dissimilar test data, which originates from
a target domain (Ben-David et al., 2009). The subsequent four use cases exemplify com-
mon scenarios where domain shift arises: (1) In the field of human-computer interaction,
models confront variable data sources due to individual differences in human character-
istics (Tavenard et al., 2022; Shi et al., 2022; Ragab et al., 2023). This is particularly
significant in the context of speech recognition, where distinctive speaking patterns among
individuals influence the data distribution (Gu et al., 2022), or handwriting recognition,
where variations in writing styles give rise to distinct writing patterns (Klaß et al., 2022).
(2) In computer vision applications, such as those involving changes in weather conditions,
variations in image quality occur consistently (Long et al., 2017; Tzeng et al., 2014). (3)
Neural language processing applications experience domain shift as a result of differences
in colloquial languages (Ben-David et al., 2009; Zhao et al., 2014). (4) The application
of models in medical and diagnostic fields can pose a challenge when dealing with data
from new diseases (Ozyurt et al., 2023). Transfer learning (Pan & Yang, 2009; Shao et al.,
2014; Patel et al., 2015; Day & Khoshgoftaar, 2017) and domain adaptation (DA) (Tzeng
et al., 2014; Long et al., 2017; Alipour & Tahmoresnezhad, 2021; Ma et al., 2022; Tavenard
et al., 2022; Shi et al., 2022; Ragab et al., 2023; Ozyurt et al., 2023) compensates for this
domain shift by transferring knowledge from a source to a target domain. Methods aim to
identify an optimal transformation (Courty et al., 2016) that converts the (current) source
domain data into the target domain by acquiring a domain-invariant representation that
diminishes domain discrepancy.
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A related field is cross-modal retrieval (CMR), which pertains to multi-modal learning
that encompasses the topics of sensor and information fusion. CMR is concerned with
learning across two or more modalities, where M > 2. A modality M refers to a distinct
and independent channel of sensory input, such as image, video, audio, text, 3D data, graph
information, or time-series data obtained from accelerometer, gyroscope, or magnetometer
sensors. CMR has a broad range of applications, such as human activity recognition and
handwriting recognition from both visual and inertial input (He et al., 2022a,b; Zhang
et al., 2022; Shi et al., 2022; Singh & Chaturvedi, 2023), multimedia learning from visual
input (Gu et al., 2022), and semantic embeddings from both visual and semantic input
(Wang et al., 2022; Ohishi et al., 2022; Singh et al., 2022; Guzhov et al., 2022). Utilizing
CMR to extract information from multiple modalities and adapt to the domain enables
the utilization of information across all domains (Ranjan et al., 2015). The inconsistent
representation form of various modalities, referred to as the heterogeneity gap, presents a
significant challenge for CMR that has recently received considerable attention from the
ML community (Huang et al., 2020). One category of techniques involves learning shared
information between modalities using an information fusion module, such as MMTM (Joze
et al., 2020) or soft fusion (Chen et al., 2019). Another approach is to learn an optimal
embedding with representation learning (Huang et al., 2020; Brieger et al., 2022; Wang
et al., 2022; Ohishi et al., 2022; Singh et al., 2022; Deldari et al., 2022a).

Representation learning can be advantageous for both DA and CMR. The goal of
representation learning is to align features of different data sources to learn meaningful
and interpretable representations. Deep metric learning (DML) or similarity learning is a
subfield of representation learning that aims to learn a distance function between features
of sub-domains. DML learns a weight matrix that can reduce the distance between similar
points while increasing the distance between dissimilar points. Although the Euclidean
distance or the Cosine similarity have been commonly used as metrics, recent works in
DML have introduced alternative distances such as maximum mean disrepancy (MMD)
(Borgwardt et al., 2006; Gretton et al., 2012), correlation alignment (CORAL) (Sun &
Saenko, 2015), or higher-order moment matching (HoMM) (Chen et al., 2020) that consider
higher-order statistics to align features. To align the features of corresponding data sources,
DML usually takes into account pairs and minimizes the distance between the anchor and
the positive samples. Contrastive and triplet learning methods define negative samples
(i.e., samples with different class labels) and maximize the distance between the anchor
and negative samples (Schroff et al., 2015). This approach is widely used for CMR.

To summarize the topics addressed in this thesis, we focus on representation learning
and DML for DA and CMR, which have received significant attention from the ML research
community. Figure 1.1 provides an overview of the number of publications on these topics
between 2000 to 2022. In 2022, representation learning received significant attention with
more than 390,000 publications. The number of publications on DML has been increasing
strongly in recent years. While DA has received high attention, the term “cross-modal
retrieval’ is mainly used within the ML community. Therefore, we focus on topics that
have broad and increasing interest among researchers.

In this thesis, we introduce DML-based methods for addressing the topics DA and CMR
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Figure 1.1: Number of publications every year of topics covering this thesis. Numbers from
Dimensions: https://app.dimensions.ai/discover/publication.

in the context of two specific applications: Firstly, we focus on online handwriting (OnHW)
recognition, which involves classifying written text that is represented as multivariate time-
series (MTS) data collected from sensor-enhanced pens. The OnHW task is affected by
a domain shift, which arises due to variations in writing styles among right-handed and
left-handed writers, as well as variations in writing surfaces (paper versus tablet). DA
techniques can enhance the performance of ML models. The second application is visual
self-localization, which involves predicting the absolute and relative pose (position and
orientation) of a moving object using a single monocular camera. We propose methods
to enhance pose estimation utilizing multi-modal fusion techniques that incorporate in-
formation from both visual and inertial sensors. Additionally, we investigate the fusion of
absolute and relative pose predictions to improve the accuracy of absolute pose estimation.
The field of handwriting recognition (HWR) has maintained a consistent research interest
of approximately 10,000 publications per year, while the number publications related to
self-localization has been increasing, with approximately 100,000 publications per year, as
shown in Figure 1.1.

We summarize our contributions from the published papers, which include proposing
datasets and techniques for DA and CMR in the domain of OnHW recognition:

C1 A novel sensor-enhanced pen is utilized in this research, enabling real-time and high-
quality data collection. We record and publicly release diverse OnHW datasets com-
prising single letters (i.e., characters, numbers, and symbols) and letter sequences
(i.e., words and mathematical equations). One of our contributions is the collection
and publication of a dataset consisting of words written on both paper and tablet,
which exhibit a domain shift between the two types of sensor data.

C2 Our proposal entails the creation of a journal that focuses on the comparison of

https://app.dimensions.ai/discover/publication?search_mode=content
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techniques and datasets used in offline HWR and trajectory-based online HWR.

C3 By computing statistics between trajectory-based and sensor-enhanced pen-based
OnHW datasets, we are able to provide a technical overview of the recently published
datasets.

C4 Our contribution includes a dataset of single letters comprising characters, numbers,
and symbols recorded on a tablet with a ground truth trajectory. We propose a
joint classification and trajectory regression approach for single character recognition.
By utilizing multi-task learning, we aim to enhance trajectory alignment, improve
classification accuracy, and minimize trajectory prediction errors. We achieve this
through the combination of cross-entropy loss with distance and similarity losses.

C5 Our contribution is an evaluation benchmark for sequence-to-sequence and single
character-based HWR, encompassing 28 methods that employ recurrent and tempo-
ral convolutional neural networks, as well as Transformer architectures. In addition,
we assess the effectiveness of MTS augmentation techniques and cross-entropy vari-
ants.

C6 Our study comprises a comprehensive evaluation of aleatoric (data) and epistemic
(model) uncertainty quantification, utilizing two prominent Bayesian inference tech-
niques: Stochastic Weight Averaging-Gaussian (SWAG) and Deep Ensembles. Our
analysis enables the detection of out-of-distribution data and domain shifts that arise
when combining handwriting samples from right-handed and left-handed writers.

C7 In order to asses domain shift in time-series feature alignment, we propose a novel
supervised DA method. This method searches for an optimal class-dependent trans-
formation from the source to the target domain using a small number of samples.
We compare DML similarity techniques (i.e., Cosine similarity, MMD, CORAL, and
HoMM) to select the corresponding transformation at inference.

C8 Our approach involves the generation of image-based words for offline HWR to im-
prove the training process of the offline HWR method with CMR techniques.

C9 We evaluate DML techniques for DA between paper-based and tablet-based OnHW
recognition systems.

C10 We propose a dynamic negative sample selection technique for contrastive and triplet
learning, which utilizes the Edit distance metric to measure the discrepancy between
words. Our evaluations demonstrate improved classification accuracy for the pro-
posed method in C8 and C9.

C11 Our contribution is a benchmark for DA using AdaTime on 15 time-series datasets
and 27 DML methods.

Regarding visual self-localization, our contributions can be summarized as follows:
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Figure 1.2: Structural overview of a cross-modal and multi-task neural network model,
as detailed in the corresponding section. The model receives input data from M modal-
ities/domains and solves T classification/regression tasks. For each modality, an encoder
network extracts features. To align the representation between the networks, DML tech-
niques are employed.

C12 We collect and publish several datasets (the Industry dataset) at the Fraunhofer IIS
L.I.N.K. test and application center. These datasets consist of visual and inertial
sensor recordings along with corresponding ground truth poses. Specifically, scenario
#2 was collected using a positioning system with wide-angle cameras, while scenario
#3 was collected on a forklift truck that involved fast motion dynamics. Additionally,
scenario #4 comprises visual and inertial data recordings from a hand-held setup and
a small robotic system in a challenging large-scale indoor environment.

C13 Our proposal involves a method for predicting absolute poses and relative poses from
optical flow between corresponding images. We also introduce a fusion module that
combines the predictions from absolute and relative pose estimation using recurrent
units, resulting in improved performance on the absolute pose regression task. To
enhance the generalizability, we conduct pre-training of both the absolute and relative
models on simulated data.

C14 Our study comprises a benchmark of the fusion between visual and inertial absolute
and relative pose regression using CMR. We compare intermediate fusion, soft fusion,
and late fusion through recurrent units. Additionally, we integrate auxiliary and
Bayesian learning into the absolute pose regression task. We conduct experiments
on both aerial vehicle and hand-held datasets, as well as on our Industry dataset.
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Table 1.1: Reference of the sections to the chapters of the corresponding, contributing
paper.

Section Contributing Paper Contribution Contributing Paper
1.2.1 2 – 9 C1 3 & 6
1.2.2 10 & 11 C2 3
1.3.1 – 1.3.3 2 – 11 C3 6
1.3.4 2 & 4 & 7 – 11 C4 4
1.4.1 4 & 8 & 10 & 11 C5 6
1.4.2 8 & 10 & 11 C6 5
1.4.3 8 & 9 C7 7
1.5.1 5 & 7 & 9 C8 – C10 8 & 9
1.5.2 – 1.5.4 2 & 7 C11 2
1.6 2 & 4 & 7 – 9 C12 – C14 10 & 11 & 12
1.7 4 & 7 & 8 & 11

In the following, we present an outlook of the thesis. Figure 1.2 illustrates a neural
network with CMR and DML. The network is designed to predict T ∈ N classification
or regression tasks (T ≥ 1) by incorporating M ∈ N modalities/domains (M ≥ 2), each
with a domain shift between them. The features are extracted by M encoder networks,
which are distinguished but not necessarily different. Each encoder’s layer output forms a
representation, which is then utilized by another encoder network to predict the goal task
by minimizing a loss function. The alignment of representations between different modal-
ities is achieved using DML and contrastive or triplet learning. Dimensionality reduction
is employed to visualize layer representations for evaluating the model’s performance. Our
applications are limited to M ≤ 2 modalities and T ≤ 2 tasks. However, our methods
can be extended to an arbitrary number of modalities and tasks. Table 1.1 provides an
overview of the section and the contributions linked to the papers. Section 1.2 provides
an overview of the applications OnHW recognition and visual self-localization. The corre-
sponding modalities are defined in Section 1.4.1, and the domain shift is demonstrated in
Section 1.5.1. In Section 1.2, for each application, we define the classification and regression
tasks. We provide additional details regarding neural networks, specifically MTS-specific
neural networks, in Sections 1.3.1 to 1.3.3. In Section 1.4, an overview of CMR and pairwise
learning methods is presented based on the encoded feature representation, and Section 1.5
provides an overview of DA methods. Both CMR and DA rely on representation learning,
which is mathematically defined in Section 1.6. Section 1.7 utilizes dimensionality reduc-
tion techniques to visualize feature embeddings. In Chapter 2, additional experiments are
presented using the AdaTime toolbox. Chapters 3 to 12 comprises the contributing pa-
pers. Datasets and source code are publicly available for the OnHW1 and self-localization2

applications.
1https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html
https://gitlab.cc-asp.fraunhofer.de/ottf/uq_time_series

2https://gitlab.cc-asp.fraunhofer.de/ottf/industry_datasets
https://www.iis.fraunhofer.de/de/ff/lv/lok/opt1/warehouse.html

https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html
https://gitlab.cc-asp.fraunhofer.de/ottf/uq_time_series
https://gitlab.cc-asp.fraunhofer.de/ottf/industry_datasets
https://www.iis.fraunhofer.de/de/ff/lv/lok/opt1/warehouse.html
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(a) The MNIST dataset (LeCun et al.,
1998).

(b) The IAM-OffDB dataset (Marti & Bunke,
1999).

(c) The George Washington dataset (Fitz-
patrick, 1931).

(d) The Devangari dataset (Acharya et al.,
2015).

Figure 1.3: Exemplary datasets commonly used for offline HWR applications.

1.2 Applications
This section delves into the technical details and background of our OnHW recognition
(in Section 1.2.1) and visual self-localization (in Section 1.2.2) applications. We introduce
state-of-the-art and novel datasets, methods, loss functions, and the classification and
regression tasks definitions. The background of our applications, along with the challenges
and limitations highlighted, motivate the need for the methods proposed in the contributing
papers.

1.2.1 Online Handwriting Recognition
First, we distinguish between offline HWR, which involves optical character recognition,
and online trajectory-based HWR. Following this, we introduce OnHW recognition from
sensor-enhanced pens used for writing on paper, and we demonstrate the shift in domains
between writing on paper and touch screen surfaces, as well as between right-handed and
left-handed writers. We then provide an outline of both contemporary and our cutting-edge
datasets, as well as a definition of the classification tasks, loss functions, and trajectory
regression tasks. Finally, we present an overview of HWR-based techniques.

Offline and Online HWR. The act of handwriting entails the creation of structured
symbols that convey linguistic information, serving as a means of communication or docu-
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(a) The PenDigits dataset
(Alimoglu & Alpaydin, 1997).

(b) The UJIpenchars dataset
(Llorens et al., 2008).

(c) The VNOnDB dataset
(Nguyen et al., 2018).

(d) The ILGDB dataset
(Renau-Ferrer et al., 2012).

(e) The IAM-OnDB dataset
(Liwicki & Bunke, 2005).

(f) The OnHW-wordsTraj
dataset (Ott et al., 2022d).

Figure 1.4: Exemplary datasets commonly used for online trajectory-based and gesture-
based HWR applications. Note that data is given as 2D trajectories and not as images.

mentation. HWR refers to the process of digitizing handwritten text, which can be classi-
fied into offline and online HWR. While research on offline HWR has achieved a high level
of sophistication and near-human performance, it is unsuitable for real-time recognition
applications due to its unacceptable delay, as noted by Fahmy (2010). The recognition of
handwritten text involves two consecutive processes, namely digitization and recognition.
Figure 1.3 depicts some widely utilized data samples for offline HWR methods, although
numerous other datasets are available. Optical character recognition exclusively focuses
on the analysis of the visual representation of handwriting, and its efficacy is constrained
since it fails to exploit temporal information such as writing direction, velocity, or pressure
applied to the paper (Plamondon & Srihari, 2000). Online HWR, on the other hand, typ-
ically operates on various spatio-temporal signals such as the position of the pen tip (in
2D), its temporal context, or the movement on the writing surface. These signals can be
partitioned into (indexed) strokes, for instance (Vinciarelli & Perrone, 2003). In contrast
to offline HWR, online HWR (Ghosh et al., 2022) presents certain challenges, such as seg-
menting cursive written sequences into individual characters. Figure 1.4 illustrates some
commonly recognized trajectory data used in online HWR methods. Numerous significant
handwriting-related issues encountered in daily life necessitate an informative represen-
tation of the writing as well as effective classification algorithms (Hussain et al., 2015).
Examples of such issues include signature verification, writer identification, and handwrit-
ing recognition. One well-established real-world application of online HWR involves the
utilization of a stylus pen and a touch screen surface in various recording systems (Alimoglu
& Alpaydin, 1997). These systems process the 2D position on the surface represented as a
trajectory. Some exemplary setups include the iPad OS system and the reMarkable pad.
There are two primary limits that afflict such systems. The first is that they necessitate
a tablet with a touch screen surface and a stylus pen that has either integrated magne-
tometers or pressure sensitivity, and only function in conjunction with both. This results
in costly applications that are insufficiently versatile. The second is that the techniques
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Force sensorFront accelerometer,

gyroscope

Rear

accelerometer

Magnetometer

Figure 1.5: Sensor-enhanced pen with front and rear accelerometers, one gyroscope, one
magnetometer, and one force sensor. Source: https://stabilodigital.com/.

employed in the iPad OS or the reMarkable necessitate writing on particular surfaces,
which can influence the writing style. Additionally, some applications demand writing on
regular paper, or the availability of a touch screen surface is not always assumed, such
as when creating a short list but needing to digitize the notes later (Ott et al., 2023c).
As a result, several advancements have been made in sensor-enhanced pens for writing on
ordinary paper, which are detailed below.

Online HWR from Sensor-Enhanced Pens. Numerous prototype systems employing
sensor-enhanced pens for OnHW recognition on normal paper have been developed (Wang
et al., 2013; Toyozumi et al., 2016; Schrapel et al., 2018; Chen et al., 2021a; Bu et al.,
2021; He et al., 2022a; Alemayoh et al., 2022; He et al., 2022b; Singh & Chaturvedi, 2023);
however, they are not yet suitable for real-world applications. For instance, the GyroPen
(Deselaers et al., 2015) simulates pen-like interaction using standard built-in sensors found
in modern smartphones or the handwriting device by Kuramoto et al. (2020) uses a force-
torque sensor. Drey et al. (2022) bypass a sensor-enhanced device by placing a paper on
a tablet device. On the other hand, STABILO International GmbH offers a sensor pen
that is a finished product and can be purchased. The pen comprises two accelerometers
situated at the front and the back (each with 3 axes), a gyroscope (3 axes), a magnetometer
(3 axes), and a force sensor (refer to Figure 1.5). All sensors capture data at a frequency
of 100 Hz. The force sensor measures the pressure applied by the pen tip to the surface
(i.e., paper). The data collection contains 14 measurements: four sensor data, each in
x, y, and z direction (channels 1-12), the force sensor (channel 13), and the time step
when the recording device receives the data from the pen. The recording device can be
any Bluetooth-enabled device, such as smartphones, tablets, or computers. Dissimilar to
OnHW recognition on touch screen surfaces, this sensor-enhanced pen permits an array of
new and diverse applications:

1. Graphomotor skills are crucial for handwriting. The pen’s visual feedback is advan-
tageous for young pupils and children in language acquisition (Alonso, 2015; Wiley
& Rapp, 2021; Drey et al., 2022). The device can assist in supporting school pupils’
learning or self-direction learning from home without additional effort (Simonnet
et al., 2018). Handwriting on paper is more beneficial for learning than typing on

https://stabilodigital.com/
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a keyboard (Ihara et al., 2021) and has an impact on retention during note-taking
(Wiechmann et al., 2022).

2. Sensor pens can aid in identifying Parkinson’s disease by detecting specific features
from dynamic handwriting tests. From the raw signals, clinical diagnosis of the
patient can be performed (Júnior et al., 2020; Kumar & Ghosh, 2023; Sarin et al.,
2023).

3. Recognition of finger or hand air-writing in three-dimensional space is essential for
virtual and augmented reality (Zhang et al., 2022). Smart devices can substitute pre-
viously used optical sensors. Optical sensor-based methods are restricted by lighting
conditions that significantly affect the recognition result.

4. Air-writing applications are related to controlling smart devices such as television
sets, roller blinds, etc., while simultaneously having a pen quickly jotting down notes.

5. Writer identification finds its application in forensics or security (Christlein et al.,
2015).

6. An examination of gender differences in kinematic, dynamic, and temporal features
was conducted by Faundez-Zanuy & Mekyska (2023). The study discovered that
OnHW recognition studies need to consider gender as a significant confounding factor.
A gender disparity is apparent in the accelerometer data of text written in capital
letters, on-surface and in-air time of genuine and forged signatures, and the writing
time in cursive characters.

Datasets. The primary focus of the contributing papers was to advance research in hand-
writing utilizing sensor-enhanced pens, specifically by recording a range of single character
and sequence-to-sequence datasets using the pen, resulting in the creation of the online
handwriting (OnHW) database (Ott et al., 2020b, 2022d). Table 1.2 provides a summary
of all the OnHW datasets and compares them to the typical trajectory-based datasets for
writer-dependent (WD) and writer-indpependent (WI) classification tasks. The OnHW-
chars dataset consists of 31,275 samples of single lowercase (’a’, ’b’, . . . , ’z’) and up-
percase (’A’, ’B’, . . . , ’Z’) characters from 52 classes, collected from 119 writers. The
OnHW-symbols dataset includes 2,327 samples of 10 number classes (’0’, ’1’, . . . , ’9’)
and 5 operator classes (’+’, ’-’, ’·’, ’:’, ’=’) from 27 writers. Left-handed writers are
also included in both single character datasets, which are denoted as OnHW-chars-L and
OnHW-symbols-L. The OnHW-equations dataset is a sequence-based equations dataset
consisting of 10 numbers and 5 operators written by 55 writers, which was included in
the UbiComp 2021 challenge3. The OnHW-words500 and OnHW-wordsRandom data-
sets contain more word samples (25,218 samples and 14,641 samples, respectively). The
OnHW-words500 dataset contains the same 500 words for each writer, while the OnHW-
wordsRandom dataset contains randomly chosen samples from a large word list in both
3UbiComp 2021 challenge: https://ubicomp.org/ubicomp2021/cfp/student-challenges-2/

https://ubicomp.org/ubicomp2021/cfp/student-challenges-2/
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Table 1.2: Overview of the OnHW datasets (right-handed and left-handed) and state-of-
the-art online handwriting datasets for writer-dependent (WD) and writer-independent
(WI) tasks. Source: Ott et al. (2022d).

Number Number Maximal Number Samples Total
Dataset Writers Classes Length Total WD WI Chars.

OnHW-chars 119 52 single 31,275 23,059 8,216 23,059 8,216 31,275
OnHW-chars-L 9 52 single 2,270 1,816 454 - - 2,270
OnHW-symbols 27 15 single 2,326 1,853 473 1,715 611 2,326
OnHW-symbols-L 4 15 single 361 289 72 271 90 361
OnHW-equations 55 15 15 10,713 8,595 2,118 8,610 2,103 106,968
OnHW-equations-L 4 15 15 843 677 166 543 300 8,438
OnHW-words500(R) 53 59 19 25,218 20,176 5,042 19,918 5,300 137,219
OnHW-words500-L 2 59 19 1,000 800 200 500 500 5,438
OnHW-wordsRandom 54 59 27 14,641 11,744 2,897 11,716 2,925 146,350
OnHW-wordsRandom-L 2 59 26 996 798 198 497 499 10,029
OnHW-wordsTraj 2 59 10 16,752 13,250 3,502 - - 146,512
ICROW (Schomaker, 2003) 67 53 15 13,119 10,500 2,619 10,524 2,595 90,138
IAM-OnDB (Liwicki & Bunke, 2005) 197 81 64 10,773 8,702 2,071 8,624 2,149 265,477
VNOnDB-words (Nguyen et al., 2018) 201 147 11 110,746 88,677 22,069 88,486 22,260 368,455

German and English. Although the OnHW-equations dataset contains a smaller number of
samples (10,713), it has a larger average sequence length compared to the other datasets.
The OnHW-wordsTraj dataset is obtained by utilizing a Wacom EMR module to record
trajectories on a Samsung Galaxy Tab S4, in place of the ink refill. The dataset is com-
prised of four distinct data sources: (1) The actual trajectory of the pen tip on the tablet,
which serves as the ground truth and is recorded at a frequency of 30 Hz, (2) the sensor
data collected by the sensor-enhanced pen, (3) and four cameras are set up to capture the
movement of the pen tip at 60 Hz. We manually label the pixels of 100 random images
to predict the pen tip pixels and obtain the pen tip trajectory in camera coordinates. (4)
The corresponding word labels are also provided. The ground truth trajectory data in this
dataset is comparable to that of the ICROW (Schomaker, 2003), IAM-OnDB (Liwicki &
Bunke, 2005), and VNOnDB-words (Nguyen et al., 2018) datasets. Please compare Fig-
ure 1.4c, Figure 1.4e, and Figure 1.4f. The IAM-OnDB (line level) and VNOnDB-words
datasets contain a greater number of samples, but also require a larger training dataset
due to the higher number of character classes (81 and 147, respectively). The challenges
of the OnHW dataset are presented in Figure 1.6 where sensor data for different chan-
nels from four different datasets are displayed. Figure 1.7 shows all sensor channels for
several samples, as well as the mean and standard deviation of the OnHW-words500 and
OnHW-equations datasets, to highlight the variance.

Challenges. Our datasets and evaluations constitute a benchmark foundation for the
development of novel methodologies and present important challenges for future research,
which we will outline in the following:

1. To cover the large variety of possible holding options of the pen tip and the different
rotation and movement patterns that can occur due to the use of a gyroscope and
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(b) OnHW-equations. Label: ’28 · 3014282’.
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(c) OnHW-words500. Label: ’Quadratmeter’.
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(d) OnHW-wordsTraj. Label: ’Armweiler’.

Figure 1.6: Exemplary sensor data of handwritten symbols, words, and equations extracted
from the OnHW datasets are presented. Note that the force signal drops to 0 for symbols
and equations. As a result, numbers and symbols can be segmented into single strokes,
and equations can be segmented into individual numbers, symbols, or strokes.

accelerometer, a large number of samples has to be recorded to account for differences
between beginner and advanced writers.

2. The variability of magnetometer data is affected by the writing surface and the
proximity of a magnetic device to the pen. This can be observed in the difference in
spread of magnetometer data in the x-axis between words (a) and equations (b) in
Figure 1.7, where words have a higher variance.

3. The variance in writing style, such as cursive or printed writing, differs among in-
dividuals. This is demonstrated in Figure 1.7 where the gyroscope samples in the
y-direction show a higher variance for words compared to equations, as equations are
usually written in a printed style.

4. A character is composed of multiple strokes that can be written in various directions
and ordered in a non-uniform manner.

5. Sequences of characters can be written separately, then the characters and strokes
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Figure 1.7: Exemplary sensor signals (mean and standard deviation) for written words and
equations for the front and rear accelerometer, gyroscope, magnetometer (each of 3 axis),
and the force sensor integrated in the sensor-enhanced pen.

can be segmented and classified in a straightforward way, or they can be written
in a cursive style, making it necessary to classify sequences using a sequence-based
loss. This can be seen by comparing the equation in Figure 1.6b and the word in
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Figure 1.6c. The cursive writing style also results in a higher average force, as shown
in the last row of Figure 1.7.

6. The sensor data is affected by the microscopic elevations of the paper, which introduce
noise and reduce model performances, as can be seen by comparing Figure 1.6c and
Figure 1.6d).

7. Another challenge related to the large variety of possible holding options (point 1)
of the pen tip is the domain shift between sensor data (i.e., gyroscope) from right-
handed and left-handed writers. As left-handed writers are an under-represented
group in the real-world (constituting only 10.6%), ML models tend to overfit on
right-handed writers, leading to decreased performance on left-handed writers.

8. The noise level in the sensor data for writing on paper and tablet is significantly
different, resulting in a domain shift between the two, which is related to point 6.
Combining samples from both domains cannot be done straightforward, as it can
lead to a decrease in model performance. Figure 1.8 illustrates this issue.

Domain Shift for Writing on Paper & Tablet. In light of the existence of numerous
setups that utilize stylus pens in conjunction with tablets, as well as a variety of sensor-
enhanced pens designed for use with standard paper, the following inquiry arises: Is it
feasible to integrate these two approaches, specifically by utilizing a sensor-enhanced pen
with an interchangeable pen tip for writing on both paper and tablet? Such an integration
could potentially combine a multitude of applications in a versatile manner. Therefore, we
conduct a detailed analysis of the domain shift of sensor data between writing on paper and
tablet (see Figure 1.8). Upon comparing the time-series of the front accelerometer in the
x-, y-, and z-directions (rows 1 to 3), it is evident that the sensor data for writing on paper
exhibits substantially more noise than that for writing on a tablet. Although the noise is
reduced for the rear accelerometer (rows 4 to 6), the difference remains discernible. For
the gyroscope data, there is no disparity in noise; however, the writing frequency is higher
for writing on a tablet as the smooth surface allows for an increase in writing velocity.
In addition, it should be noted that the magnetometer data corresponding to rows 10 to
12 exhibit varying levels of dispersion across the scaling range. Specifically, there is a
discernible positive trend in the y-axis of the magnetometer data, which may be attributed
to the left-to-right writing direction on the tablet, and the resultant fluctuations in the
magnetic field. It is worth mentioning, however, that the force data remains unchanged.
Readers interested in mitigating domain shift via DA and representation learning methods
are directed to Chapter 9.

Domain Shift for Right-Handed & Left-Handed Writers. Detecting a domain
shift through data analysis can be a sophisticated task as it may not capture the domain
shift present in the model. However, uncertainty quantification techniques can be employed
to estimate both data and model uncertainty, thereby providing an indicator of domain
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Figure 1.8: Exemplary sensor signals (mean and standard deviation) for words written
on paper and tablet for the front and rear accelerometer, gyroscope, magnetometer (each
of 3 axis), and force sensor integrated in the sensor-enhanced pen. Note that we plot 24
samples for writing on paper and 53 samples for writing on tablet.

shift. While there exist advanced uncertainty quantification methods for computer vision
applications, such methods are seldom employed for spatio-temporal data, such as OnHW
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data. According to Jospin et al. (2022), the total uncertainty can be decomposed into
two distinct components: the aleatoric (data) and epistemic (model) uncertainty. The
aleatoric uncertainty refers to the inherent stochastic uncertainty due to noise and errors,
which cannot be eliminated. When it comes to OnHW recognition, the source of such
uncertainty include shaky hands of the writers, noisy sensors, unsteady writing behavior,
and similar-looking characters. On the other hand, the epistemic uncertainty stems from
systemic uncertainty and could potentially be reduced with improved models or more data.
In OnHW recognition, potential sources of uncertainty include new writing styles during
testing that were not present in the training dataset or a lack of similar pen-holding styles
in the training set. To assess the uncertainty in OnHW data, see Klaß et al. (2022), we con-
ducted a comprehensive evaluation using two widely-used Bayesian inference techniques:
The first technique is Stochastic Weight Averaging-Gaussian (SWAG) proposed by Maddox
et al. (2019), which involves computing the average of stochastic gradient descent iterates
to gain insight into the geometry of the posterior distribution p(θ, D) over model param-
eters θ, given the training dataset D. This posterior is approximated using a Gaussian
distribution. The second technique is Deep Ensembles introduced by Lakshminarayanan
et al. (2017) that refers to a committee of neural networks, each initialized with a different
seed to introduce stochasticity. For an in-depth analysis of the model uncertainty of both
right-handed and left-handed writers, please refer to Chapter 5. One potential solution to
the uncertainty arising from new writers is to employ domain adaptation, which is also
applicable to offline HWR, as demonstrated by Kohút & Hradiš (2023) who found that
fine-tuning with data augmentation can effectively address the challenge of DA in HWR.

Definition of the Classification Tasks. In the following, we present the notation used
for the OnHW recognition task, which is treated as a classification problem and remains
consistent across the relevant papers (Ott et al., 2020b, 2022a,b,c,d; Klaß et al., 2022; Ott
et al., 2023c). One single character, symbol or number, or a sequence of characters (i.e.,
words or equations) is represented as an MTS of the 13 sensor channels provided by the
pen. An MTS U = {u1, . . . , um} ∈ Rm×l is an ordered sequence of l ∈ N (here, l = 13)
streams with ui = (ui,1, . . . , ui,l), i ∈ {1, . . . , m}, where m ∈ N is the length of the time-
series. For the OnHW recordings, the lengths of the time-series are variable. For the single
character classification task, we interpolate the time-series to m = 64 for the OnHW-chars
dataset and to m = 79 for the split OnHW-equations and OnHW-symbols dataset. For
a study on time-series length of sequences, see Ott et al. (2022d). The MTS training set
is a subset of the array U = {U1, . . . , UnU

} ∈ RnU ×m×l, where nU is the number of time-
series. Each MTS is associated with v for single class prediction and v for sequence-based
prediction, where v is a sequence of L class labels from a pre-defined label set Ω with K
classes (L = 1 for single class prediction). The aim of MTS classification is to predict an
unknown class label v ∈ Ω for a given MTS for the single character classification, and to
predict a sequence of unknown class labels v ∈ ΩL. The labels V = {v1, . . . , vnU

} ∈ ΩnU ×L

are the corresponding training labels to the training MTS set U .



1.2 Applications 19

2 8 ∙ 3 1 4 2 2 8 0 

2 8 ∙ 3 0 1 4 2 8 2 

2 8 ∙ 3 0 1 4 2 8 2 8 3 0 ‘ ‘ ‘ ‘

Figure 1.9: Visualization of the CTC loss function applied to the prediction of a sequence
of numbers and symbols from time-series data of a single sample belonging to the OnHW-
equations dataset. Label: ’28 · 3014282’, blank label: {′ ′}.

Loss Functions. For the single classification task, we use the categorical cross-entropy
(CE) loss defined by

LCE(U ,V) = − 1
K

K∑
i=1

q(i|u) log p(i|u), (1.1)

where p(i|u) is the predicted probability for the ith class and q(i|u) is the true class distri-
bution. K are the number of classes. For the single character classification task (lowercase
and uppercase combined), it holds K = 52. For the classification of symbols and numbers
combined, it holds K = 15. In Ott et al. (2022d), we use variants of the CE loss to reduce
overfitting to noisy or unbalanced labels, such as the focal loss (Lin et al., 2017), label
smoothing (Pereyra et al., 2017), soft and hard bootstrapping loss functions (Reed et al.,
2015), generalized CE (Zhang & Sabuncu, 2018), symmetric and reverse CE (Wang et al.,
2019), and joint optimization (Tanaka et al., 2018). For all sequence-based classification
tasks, we use the connectionist temporal classification (CTC) loss function LCTC(U ,V).
This practice is consistent across all contributing papers (Ott et al., 2022b,d, 2023c). For
completeness, we mathematically define the CTC loss function, introduced in detail by
Graves et al. (2006), in the following. An exemplary visualization of the CTC loss on a
sample equation is presented in Figure 1.9. The output layer of our architecture consists
of a softmax function with |L| units with one additional unit, where L = Ω, and where
Ω represents the set of class labels. It holds L′ = L ∪ {′ ′}. The activation value of the
additional unit in the softmax output layer corresponds to the probability of observing
no label {′ ′}. Hence, for an input sequence x of length T , a continuous map Nw (with
weight vector w) from the input (Rm)T to the output (Rn)T , and the sequence of net-
work outputs v = Nw(x), the activation of output unit k at time t is vt

k and it holds the
probability p(π|x) = ∏T

t=1 vt
πt

, ∀π ∈ L′T , which defines a distribution over the set L′T of
length T sequences. We define the conditional probability of a given labelling t ∈ Ω≤T
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as p(t|x) = ∑
π∈B−1(t) p(π|x) with the many-to-one map B and set of possible labels Ω≤T .

Then, the objective of the classifier is to predict the most probable labelling for the in-
put sequence that is defined by h(x) = arg maxt∈Ω≤T p(t|x) that corresponds to the most
probable path h(x) ≈ B(π∗) where the optimal path is π∗ = arg maxπ∈N t p(π|x). For more
information, refer to Graves et al. (2006).

Evaluation Metrics. In the following, we introduce a set of task-specific metrics for
sequence-to-sequence and single character-based evaluations, which are frequently em-
ployed and used throughout in our papers. To ensure consistency across our evaluations,
we report the evaluation metrics and the Edit distance (ED). To evaluate single char-
acter recognition, we use the character recognition rate (CRR), defined as the ratio of
correctly classified characters to the total number of character in the test set, refer to
Ott et al. (2020b, 2022a,c,d); Klaß et al. (2022). For sequence-to-sequence evaluation, we
use the character error rate (CER) and word error rate (WER) as metrics, both of which
are based on the ED. The ED is the minimum number of substitutions S, insertions I,
and deletions D required to transform sequence f = (f1, . . . , fr) of length r into sequence
g = (g1, . . . , gn) of length n. The ED is defined by

EDi,j =


EDi−1,j−1 for fi = gj

min


EDi−1,j + D(fi)
EDi,j−1 + I(gj) for fi ̸= gj

EDi−1,j−1 + S(fi, gj)

(1.2)

for 1 ≤ i ≤ r, 1 ≤ j ≤ n, EDi,0 = ∑i
k=1 D(fk) for 1 ≤ i ≤ r, and ED0,j = ∑j

k=1 I(gk) for
1 ≤ j ≤ n (Damerau, 1964; Ott et al., 2022d). We define the CER = Sc+Ic+Dc

Nc
as the ED,

the sum of character substitutions Sc, insertions Ic, and deletions Dc, divided by the total
number of characters in the set Nc. Similarly, the WER = Sw+Iw+Dw

Nw
is computed with

word operations Sw, Iw, and Dw, and number of words in the set Nw (Kang et al., 2022),
refer to Ott et al. (2022b,d, 2023c).

Definition of the Trajectory Regression Task. In some applications, it is necessary
to capture the trajectory of the pen tip, in addition to/or instead of performing classification
tasks. This is often required for tasks such as handwriting analysis or signature verification.
However, accurately capturing the pen trajectory using inertial sensors is challenging due to
the presence of both rotational and translational motion, which can degrade the accuracy of
the captured data. Additionally, the pen tip motion between adjacent strokes in the air can
result in off-plane traces, which must be removed from the final trajectory (Bu et al., 2021).
To formally define the trajectory regression task, we consider a (discrete) MTS of varying
length that takes values in Ψ ∈ R of size n× d, where n is the number of time steps and d
is the dimension of the time-series, typically two-dimensional. The objective is to predict
a time-series X = {x1, . . . , xn} ∈ Rn×d that closely approximates the ground truth time-
series Y = {y1, . . . , ym} ∈ Rm×d. In the OnHW trajectory regression task, the ground truth
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trajectory is obtained using a Samsung Galaxy Tab S4 with dimensions of (100, 2). The
objective is to minimize the distance di = yi − xi between the predicted trajectory X and
the ground truth trajectory Y by minimizing the (differentiable) loss function L : Rd×Rd →
R+. In the contributing paper (Ott et al., 2022c) (refer to Chapter 4), we utilize distance-
based, spatio-temporal, and distribution-based loss functions (refer to Section 1.6).

Methods & Architectures. Numerous techniques are available for offline HWR, as
outlined in Chapter 8. In our paper contribution (Ott et al., 2023c), we opted gated text
recognizer (GTR), as presented by Yousef et al. (2020). Several recent methods have also
been proposed, including those by Diaz et al. (2021); de Sousa Neto et al. (2022); Bautista
& Atienza (2022); Lyu et al. (2022); Chaudhary & Bali (2022); Jangpangi et al. (2022); Li
et al. (2023). In general, any time-series classification method can be utilized for online
HWR, provided it can be extended with the CTC loss for sequence prediction. For a
comprehensive overview, we direct the reader to Chapter 6. We conducted evaluations on
recurrent units (Chung et al., 2014), BiLSTMs, TCN (Bai et al., 2018), FCN (Wang et al.,
2016), a combination of recurrent units with FCN (Karim et al., 2017, 2019; Elsayed et al.,
2019), ResCNN (Zou et al., 2019), ResNet (Wang et al., 2016), XResNet (He et al., 2019),
InceptionTime (Fawaz et al., 2020), XceptionTime (Rahimian et al., 2019), Transformer
models (Zerveas et al., 2021), TapNet (Zhang et al., 2020b), and XEM (Fauvel et al., 2022)
for the single character-based and sequence-to-sequence classification tasks. Further details
can be found in Section 1.3.3. For OnHW recognition in DA and CMR applications, we
consistently employed a combination of CNN and BiLSTM networks.

1.2.2 Visual Self-Localization
We first provide a rationale for employing visual self-localization and provide a definition
of the pose regression tasks. Subsequently, we demarcate our proposed datasets from the
current leading datasets and present a summary of the pose regression methods. Finally,
we succinctly outline our methodological contributions.

Motivation & Challenges. The objective of self-localization is to determine the pose of
an object in an arbitrary environment, which comprises its six degree-of-freedom position
and orientation. This is essential in various applications, including:

1. In robotics, self-localization is important to navigate robots in their environment.

2. The pose of an autonomous vehicle is critical to accurately navigate in the environ-
ment and avoid collisions.

3. For augmented reality, self-localization is necessary to track the location of objects
and overlay information onto them.

4. For industrial automation, utilizing self-localization technology can enable the iden-
tification of the precise pose of components on an assembly line, thus enhancing
efficiency and productivity.
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Depending on the applications, employing different sensor infrastructures such as LiDAR,
radio, or radar-based systems can be advantageous (Cabrera-Ponce et al., 2021; Yu et al.,
2022). Visual self-localization, on the other hand, leverages monocular or stereographic
images to predict the pose (Kendall et al., 2015; Radwan et al., 2018). Inertial self-
localization has the benefit of utilizing low-cost inertial measurement unit (IMU) sensors
(do Monte Lima et al., 2019). However, for many localization tasks, achieving highly ac-
curate pose estimation is a requirement, which is influenced by the chosen infrastructure
or sensor setup. Novel techniques utilize two or more sensors to exploit the advantages of
each sensor and attain improved pose prediction, resulting in lower pose error. Combining
multiple sensors, i.e., different modalities, necessitates (1) addressing the challenges of each
sensor with respect to the environment, and (2) developing a method that optimally fuses
information from all modalities. In the contributing papers (Ott et al., 2020a, 2023a,b),
we focus on self-localization utilizing visual and inertial sensors and tackle the challenges
in the following:

1. Stereographic cameras are relatively expensive compared to monocular cameras,
which are a low-cost alternative.

2. Visual self-localization is susceptible to the presence of repetitive or texture-less pat-
terns in the environment, which can lead to performance degradation.

3. The prediction of pose in visual self-localization can be adversely affected by motion
blur caused by fast-moving object in the scene.

4. The accuracy of pose prediction in self-localization can be significantly impacted
by the scale (small-scale versus large-scale) of the environment, i.e., the distance of
features from the object being localized.

5. Methods that rely on predicting the relative pose between two consecutive images or
from inertial data can be susceptible to long-term drift, which may be induced by
sensor noise.

Our primary objective is to improve the pose prediction accuracy using monocular images
by leveraging additional sensor, modality information, or auxiliary tasks. In the following,
we outline the different pose regression tasks that serve as baseline models for our cross-
modal techniques.

Pose Regression Tasks & Loss Functions. Pose regression techniques have developed
into efficient and high-performing methods for self-localization, which rely on convolutional
(as discussed in Section 1.3.1) or recurrent (as discussed in Section 1.3.2) networks. Abso-
lute pose regression (APR) techniques can regress the absolute pose (comprising of position
and orientation) directly from image inputs. To refer to the abbreviated term for APR
from images, we use APRV. Typically, APRV methods minimize the loss function

LAPR = ||p̂− p||2 + α

∣∣∣∣∣∣∣∣q̂ − q
||q||

∣∣∣∣∣∣∣∣
2
, (1.3)
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(a) Recording
setup.

(b) Motion blur
and absorber wall.

(c) Point cloud. (d) Point cloud. (e) Point cloud.

Figure 1.10: Visualization of the recording setup, challenges, and the point cloud in the
Fraunhofer IIS L.I.N.K. test and application center.

where p ∈ R3 is the predicted position, p̂ is the ground truth position, q ∈ R4 is the
predicted orientation represented as a quaternion, and q̂ is the ground truth orientation
(Kendall et al., 2015). || · ||2 is the Euclidean distance (L2 norm). The hyperparameter α
is responsible for the weighting of the loss terms and is contingent on the environment’s
scaling. The absolute pose is denoted as x = [p, q]. While odometry techniques rely on
classical approaches for predicting the relative pose, contemporary relative pose regression
(RPR) methods use CNNs or RNNs to regress the relative pose. We use the abbreviation
RPRV to denote RPR techniques based on image inputs, and RPRI to denote those based
on IMU inputs. Analogous to the loss function presented in Equation 1.3 for APR, we
perform regression on the relative pose using:

LRPR = ||∆p̂−∆p||2 + β
∣∣∣∣∣∣∣∣∆q̂ − ∆q

||∆q||

∣∣∣∣∣∣∣∣
2
, (1.4)

where ∆p is the relative position (i.e., translation) and ∆q is the relative orientation (i.e.,
rotation). ∆p̂ and ∆q̂ are the relative ground truth position and orientation, respectively.
The hyperparameter β is used to weight the loss. We discuss the tasks APRV, RPRV, and
RPRI in the respective contributing papers (Ott et al., 2020a, 2023a,b). In the following,
we present an overview of the datasets for evaluating our proposed techniques.

Contributing Datasets. Our objective is to achieve self-localization of an object, specif-
ically an autonomous robot, forklift truck, or human, within large-scale industrial environ-
ments. Although there are publicly accessible datasets like Microsoft 7-Scenes (Shotton
et al., 2013), Cambridge Landmarks (Kendall et al., 2015), DeepLoc (Radwan et al., 2018),
and KITTI (Geiger et al., 2013), they fail to satisfy our requirements of (1) utilizing only
monocular and IMU data sources, (2) providing highly accurate ground truth poses of
less than 1 cm, and (3) encompassing large-scale industrial environments. As a results,
we record the Industry dataset captured in the Fraunhofer IIS L.I.N.K. test and applica-
tion center, which features four different scenarios with diverse recording setups (refer to
Figure 1.10a for an exemplary setup). The visual-only Industry scenario #1 dataset was
recorded by Löffler et al. (2018) using a positioning system. The dataset comprises eight
testing datasets, which can be employed to assess volatility, scale transition, and general-
izability. We tested the approach presented in Ott et al. (2020a) on the Industry scenario
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#1, scenario #2, and scenario #3 datasets. While we recorded the Industry scenario #2
using a positioning system, we used wide-angle cameras instead of narrow-angle images
from scenario #1. For scenario #3, we employed a wide-angle camera setup on a forklift
truck to assess the challenging motion blur (Alam et al., 2023) caused by fast-moving dy-
namics (see Figure 1.10b). The visual-inertial Industry scenario #4 dataset is the most
extensive scenario in size. It was captured using a small robotic system that integrates one
Orbbec3D camera (23 Hz) and an IMU (140 Hz) and comprises of eight training trajectories
and eleven testing trajectories. Environmental setups were altered between each recording
by adding none to five large absorber walls, a labyrinth, or random objects in the envi-
ronments. This variation enables the evaluation of the models’ generalizability on various
environments. In two of the training and testing trajectories, we allowed two individuals
to walk in the L.I.N.K. test and application center with the same recording setup, and we
evaluated this recording in the contributing paper (Ott et al., 2023b). Furthermore, we
conduct an evaluation on all datasets of Industry scenario #4 in the contributing paper
(Ott et al., 2023a). Furthermore, we recorded a point cloud (see Figure 1.10c) with a
NavVis M4 system to load this point cloud into a simulation framework (see Figure 1.10d
and 1.10e) to generate an arbitrary number of synthetic images.

Contributing Methods. In the following, we provide a summary of our principal con-
tributions on visual-inertial self-localization. Our primary model, denoted as APRV, es-
timates the absolute (global) poses using image inputs. As a baseline model, we employ
a time-distributed PoseNet (Kendall et al., 2015) trained with the loss function in Equa-
tion 1.3. However, we observe that the accuracy of pose predictions may be considerably
affected by certain image properties, such as blur or noise caused by fast movements or
environmental challenges such as repetitive or texture-less patterns. In such scenarios,
the objective is to augment the absolute pose prediction and thereby reduce the error of
the absolute pose by incorporating auxiliary information. In our prior work (Ott et al.,
2020a, 2023a), we employed relative (local) poses from visual inputs, whereas in our subse-
quent work (Ott et al., 2023b), we used relative poses from inertial inputs. The additional
knowledge of the relative pose between two successive global poses helps in reducing the
absolute pose outliers and consequently, smooths the trajectory estimations. However,
combining absolute and relative poses is a challenging task as the relative model only con-
tains information about the change in pose relative to the preceding pose. Consequently,
learning the relationship between the relative pose and absolute pose becomes challenging.
To tackle this challenge, we explore various fusion techniques (refer to Table 1.3). In our
previous work (Ott et al., 2020a), we estimated the absolute pose by employing a time-
distributed PoseNet (Kendall et al., 2015) and computing the optical flow between two
consecutive images with FlowNet2 (Ilg et al., 2017). We then estimated the relative pose
using stacked LSTM layers. A compact LSTM fusion model concatenates the absolute and
relative poses and predicts optimized absolute poses. Our experiments were conducted on
multiple datasets including Industry scenario #1, scenario #2, scenario #3, and Microsoft
7-Scenes (Shotton et al., 2013). The proposed approach yields a lower absolute pose pre-
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Table 1.3: Summary of APR and RPR fusion techniques proposed in the contributing
papers (Ott et al., 2020a, 2023a,b). The baseline models are PoseNet (Kendall et al., 2015),
FlowNet2 (Ilg et al., 2017), IMUNet (do Monte Lima et al., 2019), FlowNet (Dosovitskiy
et al., 2015), and Lucas-Kanade (Baker & Matthews, 2004). [s] indicates synthetic pre-
training from simulation.

Model 1 Model 2 Fusion Technique
APRV: PoseNet RPRV: FlowNet2 Pose concatenation + stacked LSTM layers
APRV: PoseNet – Pose graph optimization (PGO) (Grimes et al., 2010)
APRV: PoseNet RPRI: IMUNet Pose graph optimization (PGO) (Grimes et al., 2010)
APRV: PoseNet RPRI: IMUNet Layer concatenation
APRV: PoseNet RPRI: IMUNet Layer concatenation + BiLSTM
APRV: PoseNet RPRI: IMUNet Soft fusion (SSF) (Chen et al., 2019)
APRV: PoseNet RPRI: IMUNet Soft fusion (SSF) (Chen et al., 2019) + BiLSTM
APRV: PoseNet RPRI: IMUNet Multi-modal transfer module (Joze et al., 2020)
APRV: PoseNet RPRI: IMUNet Auxiliary network (Navon et al., 2021) (non-linear)
APRV: PoseNet RPRI: IMUNet Auxiliary network (Navon et al., 2021) (convolutional)
APRV: PoseNet RPRI: IMUNet Bayesian network (BNN) (Kendall & Gal, 2017)
RPRV: FlowNet RPRI: IMUNet Layer concatenation
RPRV: FlowNet RPRI: IMUNet Layer concatenation + BiLSTM
RPRV: FlowNet RPRI: IMUNet Soft fusion (SSF) (Chen et al., 2019)
RPRV: FlowNet RPRI: IMUNet Soft fusion (SSF) (Chen et al., 2019) + BiLSTM
RPRV: FlowNet RPRI: IMUNet Multi-modal transfer module (Joze et al., 2020)
APRV: SfM RPRV: Lucas-Kanade Pose graph optimization (PGO) (Grimes et al., 2010)
APRV: SfM RPRV: Lucas-Kanade Eight different RNN fusion modules
APRV: SfM RPRV[s]: Lucas-Kanade Pose graph optimization (PGO) (Grimes et al., 2010)
APRV: SfM RPRV[s]: Lucas-Kanade Eight different RNN fusion modules
APRV: PoseNet RPRV: Lucas-Kanade Pose graph optimization (PGO) (Grimes et al., 2010)
APRV: PoseNet RPRV: Lucas-Kanade Eight different RNN fusion modules
APRV: PoseNet RPRV[s]: Lucas-Kanade Pose graph optimization (PGO) (Grimes et al., 2010)
APRV: PoseNet RPRV[s]: Lucas-Kanade Eight different RNN fusion modules
APRV[s]: PoseNet RPRV: Lucas-Kanade Pose graph optimization (PGO) (Grimes et al., 2010)
APRV[s]: PoseNet RPRV: Lucas-Kanade Eight different RNN fusion modules
APRV[s]: PoseNet RPRV[s]: Lucas-Kanade Pose graph optimization (PGO) (Grimes et al., 2010)
APRV[s]: PoseNet RPRV[s]: Lucas-Kanade Eight different RNN fusion modules

diction error compared to using APRV only, while also smoothing the global trajectory.
This improvement is particularly noteworthy in scenarios where individual images contain
either no or very few features (e.g., when the camera is directed towards a large white wall
or black absorber wall) while the relative model can still generate a reliable relative pose
from these limited features.

While the previous method employs only one modality (visual), our recent work (Ott
et al., 2023b) leverages an additional modality, namely inertial data. This can prove advan-
tageous in real-world applications where a camera failure is possible, and the model can rely
on the inertial modality. Here again, we use PoseNet (Kendall et al., 2015) as the APRV
model and employ IMUNet (do Monte Lima et al., 2019) as the RPRI model. Regarding
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the APRV-RPRI fusion, we evaluate six well-established techniques. Pose graph optimiza-
tion (PGO) (Grimes et al., 2010) is a non-convex minimization problem that refines and
improves the predicted absolute poses during inference by ensuring consistency between
the predicted and refined relative poses. Fusion of late-layer features is a widely used tech-
nique. However, the straightforward concatenation of absolute and relative features does
not allow the model to establish a relationship between them. By incorporating BiLSTM
layers, the model can learn the connection between the current and previously predicted
absolute poses, leading to improved pose prediction results. Additionally, we examined the
soft fusion approach as a module of the selective sensor fusion (SSF) (Chen et al., 2019),
originally developed for RPR. Both layer concatenation and soft fusion (with BiLSTM
layers) perform similarly, with variations in pose error depending on the environment. The
multi-modal transfer module (MMTM), introduced by Joze et al. (2020), enables the fu-
sion of modalities with different spatial dimensions, and hence, we utilize this module as an
intermediate fusion technique. We evaluate MMTM modules with one, two, or three layers
between APRV and RPRI. We demonstrated that MMTM, originally developed for fusing
high-dimensional image and video modalities, can also be applied to the pose estimation
task by employing time-distributed models. Specifically, we fed three stacked consecutive
images to the APR model and four stacked IMU samples from consecutive time steps
to the RPR model. In addition, we evaluated the use of the auxiliary learning network
(AuxiLearn), proposed by Navon et al. (2021), to treat the RPR model as an auxiliary
task. However, a disadvantage is that the fusion model only predicts absolute pose, while
the relative pose can still be relevant for transfer learning to new scenarios. The aleatoric
uncertainty of poses can be measured to detect challenging images and assign different
weights to the absolute and relative poses during inference. In our study, we evaluated the
Bayesian neural network proposed by Kendall & Gal (2017). We observed an increase in
aleatoric uncertainty and absolute pose prediction error for images with reflective surfaces.
In addition to the APRV-RPRI fusion, we also investigated the fusion of two RPR modali-
ties, namely RPRV-RPRI, to predict the relative pose. This is a sub-field of visual-inertial
odometry, which estimates the motion of an object in 3D space. This techinque is partic-
ularly useful in scenarios where GPS signals are not available or where training datasets
are not available for the entire environment. In this study, we utilized FlowNet (Doso-
vitskiy et al., 2015) as the baseline model for RPRV and IMUNet (do Monte Lima et al.,
2019) as the baseline model for RPRI. We evaluated two fusion techniques: late fusion
(layer concatenation and soft fusion) and intermediate fusion using MMTM modules. Our
experiments were conducted on multiple datasets including Inudstry scenario #4, EuRoC
MAV (Burri et al., 2016), and PennCOSYVIO (Pfrommer et al., 2017). The MMTM fu-
sion technique demonstrated the best performance with the lowest RPR prediction error,
particularly when using three MMTM modules as intermediate fusion.

In the contributing paper (Ott et al., 2023a), a novel approach is presented to combine
absolute poses (APRV) with relative poses (RPRV) derived from visual-only inputs. For
the APRV model, we employ a structure from motion (SfM) technique (Resch et al., 2015;
Jiang et al., 2020b) to reconstruct a point cloud of the environment or a time-distributed
PoseNet (Kendall et al., 2015). Relative poses are obtained by computing optical flow using



1.3 Deep Learning Foundations 27

Lucas-Kanade (Baker & Matthews, 2004), and a small recurrent network with LSTM are
utilized to predict poses. Similar to Ott et al. (2023b), to improve the absolute poses, we
refine them with the relative poses using the state-of-the-art PGO algorithm. We propose
a framework consisting of eight different recurrent fusion cells (Hochreiter & Schmidhuber,
1997; Chung et al., 2014; Zhou et al., 2016; Lee et al., 2017; Lei et al., 2017; Bradbury et al.,
2017; Balduzzi & Ghifary, 2017; Laurent & von Brecht, 2017). We conducted experiments
on all datasets of Industry scenario #4 with cross-validation. The proposed approach
outperforms PGO with smoothed trajectories with fewer outliers. Notably, strongly-typed
RNN (TRNN), introduced by Balduzzi & Ghifary (2017), significantly outperforms PGO
and other RNN cells. In addition, the generalizability of the models is improved by pre-
training both APRV and RPRV models with synthetic data from a simulated framework.

1.3 Deep Learning Foundations
The reader’s comprehension of this thesis necessitates a proficient understanding of deep
learning, specifically with respect to convolutional neural networks (CNNs) employed for
image-based classification (see Section 1.3.1), and spatio-temporal networks that assimilate
data over time (see Section 1.3.2). The time-series classification task and associated archi-
tectures are scrutinized in Section 1.3.3. Additionally, Section 1.3.4 expounds on feature
embeddings, which established the foundation for representation learning.

1.3.1 Neural Networks
Artificial neural networks draw inspiration from the biological processes of brain cells. A
feedforward neural network is a directed acyclic graph composed of an input layer, one
or more hidden layers, and an output layer. The network’s depth is determined by the
number of layers, while the number of each layer dictates its width. Cells within a layer
receive input signals from previous layer’s cells. Upon receiving the input signals, these
cells produce a signal if the weighted sum of the input signal exceeds a predefined threshold.
(Goodfellow et al., 2016; Ott, 2019) A neuron can be described through the equation

f(x) = σ
( n∑

i=1
wixi + b

)
= σ(wT x + b), (1.5)

where n is the number of input values, w is a weight vector, x is the input vector, b
is the bias, and σ is a non-linear activation function. The standard activation functions
commonly used are the Sigmoid function, the logistical function, the hyperbolic tangent
function, and a rectified linear unit (ReLU) function (Goodfellow et al., 2016). In contrast
to feedforward neural networks, CNNs accept three-dimensional input, such as an image,
and are defined by their convolution operation. CNNs are comprised of three distinct types
of layers: convolutional, pooling, and fully connected (FC) layers. A convolutional layer
applies a filter to the input pixels, multiplied with a convolution kernel. Pooling layers
decrease the feature map’s resolution and acquire spatial invariance. In general, a network
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culminates with FC layers that accept an input volume and output a K-dimensional vector,
where K represents the number of classes in the classification task. For the OnHW recogni-
tion task (which classifies 52 characters), the FC layer yields a 52-dimensional vector. The
neural network is trained by minimizing an error through backpropagation of a cost/loss
function L(w). This implies that the neurons’ weights are updated in the direction of
steepest descent in E through wi ←− wi − η ∂E

∂wi
, with a learning rate of η. In our OnHW

recognition application, we employ the Adaptive movement estimation (Adam) optimizer
(Kingma & Ba, 2014). Additionally, stochastic gradient descent (SGD) is commonly uti-
lized. (Goodfellow et al., 2016; Ott, 2019)

1.3.2 Temporal Networks
Over the past decade, temporal networks have received considerable attention in contrast
to standard convolutional networks due to their advantageous properties for applications
that include spatio-temporal data. Examples of these applications are online handwriting
recognition (Ott et al., 2022d), human activity recognition (Anguita et al., 2013; Stisen
et al., 2015), motion detection (Blankertz et al., 2001), time-series forecasting, and radio
frequency-based localization (Stahlke et al., 2022). This section provides a brief overview of
temporal networks, such as recurrent neural networks (RNNs), long short-term memories
(LSTMs), bidirectional LSTMs (BiLSTMs), and temporal convolutional networks (TCNs),
which lay the foundation for the methods discussed in Section 1.3.3.

RNNs. An RNN is a feedforward neural network extension that includes connections
between nodes that form a directed graph. RNNs can represent time sequences with
dynamic temporal behavior. Given the input value x of length t, the state st of the
classical form is computed by st = f(st−1; θ), where θ represents the network parameters.
By unrolling this loop, each node st in an RNN is related to the node st+1 in a directed
acyclic graph. Thus, the state st contains information about all previous states s0, . . . , st−1.
The computation of states in an RNN is given by st = σ(Uxt + Wst−1 + bt), where
ht represents the output of node st, and bt denotes the bias. The sigmoid function is
represented by σ. The RNN output is ht = softmax(Vst), where U, W, and V denote
the hidden layer matrices (Goodfellow et al., 2016). Due to the reconstruction of a vector
of activations for each time step, RNNs are quite deep and may suffer from the issue of
vanishing and exploding gradients. However, despite their difficulty to train, RNNs can
still be beneficial for small-scale problems (Ott, 2019). Numerous variants of RNNs have
been proposed in the literature to address the issue of vanishing and exploding gradients
(Hochreiter & Schmidhuber, 1997; Chung et al., 2014; Zhou et al., 2016; Lee et al., 2017;
Lei et al., 2017; Bradbury et al., 2017; Balduzzi & Ghifary, 2017; Laurent & von Brecht,
2017). Among them, the LSTM cell is the most widely used and is described below.

LSTMs. LSTMs (Hochreiter & Schmidhuber, 1997) solve the problem of vanishing gra-
dients by incorporating an input gate unit that prevents the perturbation of memory
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contexts. In addition, they also include an output gate and a memory unit. Unlike RNNs,
LSTMs consist of a chain of repeating cells instead of a single layer (Ott, 2019).

Bidirectional Units. BiLSTMs (Graves et al., 2009) are a variant of LSTMs, in which
the input information flows in both forward and backward directions. This is achieved by
adding an extra LSTM layer that operates in reverse order. BiLSTMs leverage information
from both past and future contexts, which is crucial for capturing sequential dependencies,
such as those between words and phrases. The advantage of BiLSTMs is that each com-
ponent, such as each character of a word, has access to both past and future information.
However, the training time of BiLSTMs is significantly higher than that of LSTMs.

TCNs. To encode spatio-temporal information and capture high-level temporal informa-
tion, TCNs (Bai et al., 2018) utilize a combination of CNNs and classifier networks. The
CNN is used to compute low-level features, which are then passed to the classifier network.
The encoder-decoder network is capable of processing input sequences of arbitrary length
and generating output sequences of equal length. To ensure that information is not lost
from future to past, TCNs utilize causal convolutions, which convolve the output only with
elements from the same time or earlier.

1.3.3 Time-Series Classification & Architectures
In this section, we present a mathematical definition of the time-series classification task
and provide an overview of the state-of-the-art time-series classification architectures that
we employ in our experiments.

Time-Series Classification Task. In Section 1.2.1, we defined the classification task
for single characters and sequences of characters for the OnHW recognition task. In the
following, we repeat and provide a general mathematical definition of multivariate time-
series and the classification task (Abanda et al., 2022). We use this definition in the
contributing papers (Ott et al., 2020b, 2022a,b,c,d; Klaß et al., 2022; Ott et al., 2023c) and
in Chapter 2.

Definition 1.3.1 (Multivariate Time-Series). A multivariate time-series (MTS) U =
{u1, . . . , um} ∈ Rm×l is an ordered sequence of l ∈ N streams with ui = (ui,1, . . . , ui,l), i ∈
{1, . . . , m}, where m ∈ N is the length of the time-series.

Definition 1.3.2 (MTS Classification Task). The MTS training set is a subset of the
array U = {U1, . . . , UnU

} ∈ RnU ×m×l, where nU is the number of time-series. Each MTS
is associated with v from a pre-defined label set Ω with K classes. The aim of MTS
classification is to predict an unknown class label v ∈ Ω for a given MTS. The labels
V = {v1, . . . , vnU

} ∈ ΩnU are the corresponding training labels to the training MTS set U .
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FCN. The time-series classification task was addressed by Wang et al. (2016) using fully
convolutional networks (FCNs), which extracts features and use a global pooling layer
with softmax activation as a classifier to predict classes. Each FCN block comprises a
convolutional layer with a batch normalization layer and ReLU activation. The FCN
model consists of three such basic blocks. The compact size of the model enables FCN to
achieve high accuracy and require a short training time when applied to small datasets.

RNN & LSTM & GRU & BiLSTM. Recurrent networks, including RNNs, LSTMs,
and GRUs (see Section 1.3.2), have become the predominant choice for sequence modeling
(Chung et al., 2014). BiLSTMs (Graves et al., 2009) have been specifically designed for data
that is difficult to segment and contains long-range bidirectional interdependencies. Among
recurrent units, BiLSTMs have outperformed others, especially in the case of sequence-to-
sequence classification in the OnHW setup for long sequences (Ott et al., 2022d).

TCN. TCNs, introduced by Bai et al. (2018), are simple convolutional architectures that
can outperform RNNs on a diverse range of tasks. For more information, see Section 1.3.2.
We evaluated a CNN in combination with TCNs on the OnHW recognition task in our
experiments (Ott et al., 2022d).

(M)RNN-FCN & (M)LSTM-FCN & (M)GRU-FCN. Many techniques combine
convolutional networks, such as CNNs and FCNs, with temporal layers including RNNs,
LSTMs, GRUs, or TCNs. These are LSTM-FCN (Karim et al., 2017) and GRU-FCN (El-
sayed et al., 2019). Multi-dimensional networks, such as the multivariate LSTM (MLSTM)
by Karim et al. (2019), scan the input in all four possible directions, and compute the RNN
inner states and output based on the previous position in the vertical and horizontal direc-
tions. The advantage of MRNN-FCN and their variants is that they can capture complex
dependencies in multiple dimensions, such as spatial and temporal dimensions. This is
particularly useful for multi-modal time-series data. However, due to their increased com-
plexity, multi-dimensional networks have not been commonly used in recent years.

ResCNN. The ResCNN (Zou et al., 2019) is a hybrid method that incorporates residual
networks into CNNs by introducing them into the first three convolutional layers. By using
different activation functions in different layers, the model’s performance can be improved.

ResNet & XResNet. ResNet (Wang et al., 2016) is an extension of FCN that employs
shortcut connections in each residual block, allowing for deeper networks and gradient flow
through the bottom layers. Three residual blocks are stacked, each with three filters. How-
ever, ResNet is prone to overfitting on small datasets. XResNet (He et al., 2019) improves
parallelism during training and reduces computational cost by modifying convolutional
layers.
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InceptionTime & XceptionTime. InceptionTime (Fawaz et al., 2020), which is an en-
semble of five deep CNN models inspired by the Inception-v4 model (Szegedy et al., 2017),
consists of two residual blocks with each block containing three Inception modules. The
output MTS is averaged over the time dimension using a global average pooling layer after
the residual blocks. An Inception module first applies a bottleneck layer (a sliding filter)
that reduces the MTS dimensionality, followed by multiple sliding filters of varying lengths
to the output of the bottleneck layer. Our implementation of InceptionTime, combined
with BiLSTM layers, performed well on the OnHW classification tasks as reported in Ott
et al. (2022b,d, 2023c). On the other hand, XceptionTime (Rahimian et al., 2019) uses a
series of XceptionTime modules with residual connections, followed by 1D convolutional,
batch normalization, and average pooling layers for the classification task. The Xception-
Time modules consist of depthwise separable convolutions and max pooling layers in two
parallel paths.

Transformer Models. Recently, Transformer models have gained popularity for visual
recognition tasks, but they have also been used for MTS classification. For instance,
Zerveas et al. (2021) developed an unsupervised time-series transformer (TST) that uses
Gaussian noise corruption. While TST performs comparably with the CNN+BiLSTM
model on the OnHW classification tasks, the adaptation of visual transformer models, such
as Perceiver (Jaegle et al., 2021), Sinkhorn (Tay et al., 2020), Performer (Choromanski
et al., 2021), Reformer (Kitaev et al., 2020), and Linformer (Wang et al., 2020), is not
intuitive. Therefore, the performance of these models drops on the OnHW classification
tasks due to the requirement of large amounts of training data.

TapNet. TapNet, a prototypical network proposed by Zhang et al. (2020b), learns low-
dimensional features from time-series data by using a combination of 1D convolutional and
LSTM layers and designing a random group permutation method. The model then com-
putes probabilities over classes based on the class prototypes and the time-series data by
calculating distances between low-dimensional representations using Bregman divergences
(refer to Definition 1.6.3). In the contributing paper (Ott et al., 2022c), we presented a
visualization of the class clusters and their prototypes computed by TapNet in a lower-
dimensional space.

XEM. The explainable-by-design ensemble method for MTS classification, proposed by
Fauvel et al. (2022), combines a boosting-bagging approach with a divide-and-conquer
approach. The method, known as XEM, aims to achieve a balance between model perfor-
mance and faithful explainability.

1.3.4 Feature Embeddings
The goal of feature extraction is to learn a low-dimensional representation, referred to as
feature embeddings, for each instance in order to preserve the information contained in
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its features. These feature embeddings act as hidden representations for a given object.
Given an MTS U = {u1, . . . , um} ∈ Rm×l, as introduced in Definition 1.3.1, the feature
embedding of the MTS is defined as follows.

Definition 1.3.3 (Feature Embedding). A feature embedding of a neural network is defined
by f(U) ∈ Rq×w for the corresponding MTS U. q×w is the size of the output of the neural
network layer.

A feature embedding is typically the output of an activation function, such as a sig-
moid or ReLU activation, of a neural network layer. This definition can be extended
to three-dimensional feature embeddings, as in the case of time-distributed image-based
classification tasks. Feature embeddings are utilized in the multi-modal learning task (dis-
cussed in Section 1.4), where they are shared between networks of different modalities, and
in the domain adaptation task (discussed in Section 1.5), where the discrepancy between
feature embeddings is minimized between different domains.

1.4 Cross-Modal Retrieval & Multi-Modal Learning
This section presents the concept of cross-modal retrieval (CMR), which aims to achieve a
shared task or common representation across diverse data sources. The distinct modalities
are examined in Section 1.4.1. Furthermore, we provide a summary of CMR techniques
and explain the different types of fusion in Section 1.4.2. Additionally, to improve the
learning process, negative entities can be employed in the CMR setup, which is known as
pairwise or contrastive learning. This technique is elaborated in Section 1.4.3.

1.4.1 Modalities
In the context of ML, the term modality pertains to the category of input data or informa-
tion that a model is capable of processing, and may originate from various data sources.
One of these sources are IMU sensors that commonly exist in smartphones, tablets, and
smartwatches, which includes accelerometers, gyroscopes, and magnetometers. The modal-
ity of the data is presented as an MTS and can be utilized for recognizing human activities.
Another modality is obtained from signals captured by electroencephalography (EEG) de-
vices, which can be used for classifying sleep stages. The audio modality is derived from
time-series data recorded through microphones. In computer vision, modality refers to
the category of visual data, such as images or videos that are captured using cameras.
Various image modalities are available, including monocular, stereographic, or RGB-D im-
ages. In the context of natural language processing, modality is linked to the category of
textual data, which can be in written or spoken form. Trajectory modalities refer to two-
dimensional time-series data that contains information about the x- and y-coordinates of
objects, which is utilized in various applications, such as robotics, sports analysis, and epi-
demiology. It is worth mentioning that in numerous applications, data inputs of the same
modality but obtained from diverse input devices are utilized to encompass a wider range
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of information. To illustrate, in the domain of human activity recognition, accelerometers
are attached to both the hand and the leg to capture a wider range of movement data. Rec-
ognizing the data modality is crucial in developing appropriate preprocessing techniques,
feature extraction methods, and ML architectures. Since each modality comprises distinct
information pretaining to the objective, utilizing two or more modalities concurrently to
train the ML model can enhance the outcome. As the dimensionality of modalities can
vary significantly, for instance, visual versus time-series data, employing an advanced CMR
technique is necessary to optimally extract and merge modalities (see Section 1.4.2).

Application in Contributing Papers. In our contributing papers, we employ diverse
types of modalities for different applications. For OnHW recognition, we usually use sensor
streaming data obtained from IMUs as model input (Ott et al., 2020b, 2022a,b,c,d; Klaß
et al., 2022; Ott et al., 2023c). In Ott et al. (2022b), we simultaneously learn a common
representation between MTS data recorded on paper and on a tablet. Although the data
source and type of both modalities are identical, the noise level differs between the two MTS
data. In Ott et al. (2023c), we improve the main task by introducing generated visual data.
Apart from IMU data for OnHW recognition, we also utilize video recordings to capture
the outside-in trajectory coordinates of the pen tip (Ott et al., 2022c). In the context of
self-localization, the main modality is monocular images. In Ott et al. (2020a, 2023a), we
augment the principal visual self-localization task by incorporating an additional modality,
specifically optical flow presented as image modalities. While we use the same principal
visual modality in Ott et al. (2023b), we enhance the task by incorporating an auxiliary
inertial modality acquired from IMU measurements.

1.4.2 Methods & Fusion Points

CMR Methods. The concept of multi-modal learning involves using data from multiple
modalities to train a model to perform a specific task, which can lead to better perfor-
mance than using a single modality. However, this approach poses challenges such as data
alignment, modality selection, and model fusion. In contrast, CMR retrieves information
of one modality using a sample from a different modality. In our paper (Ott et al., 2023c),
we provide an overview of CMR methods. As research for multi-modal learning meth-
ods are wide-ranged and there exist a lot of methods, we focus on the general concept of
CMR and our utilized methods. The multi-modal transfer module (MMTM) (Joze et al.,
2020) allows for fusion of modalities with different spatial dimensions by pooling spatial
information into channel descriptors. The modality mixer (M-Mixer) (Lee et al., 2023)
introduces a recurrent unit, the multi-modal contextualization unit (MCU), to encode a
sequence of one modality with features of other modalities at intermediate layers. The late
fusion approach, namely soft fusion (Chen et al., 2019), employs an attention mechanism
by element-wise multiplying sigmoid masks to the features.
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Figure 1.11: Overview of a multi-modal learning fusion architecture. Two (or more) input
modalities are processed separately, features are extracted with a neural network, and the
objective (at least one) is minimized. The features between both networks are shared with
early, intermediate, or late fusion modules. The colored blocks indicate different layers:
one- or two-dimensional convolutional layers (grey), pooling layers (red), spatio-temporal
layers such as LSTM, TCN, or BiLSTM layers (yellow), dropout (green), and dense layers
(black).

Fusion Points. Figure 1.11 illustrates a network architecture that fuses two distinct
modalities. Depending on the fusion level, three different types of fusion are commonly
used: (1) Early fusion combines the raw modalities either before or after preprocessing,
but this approach is poorly explored in the literature. Another early fusion approach is to
combine modalities in their lower-dimensional space using correlation analysis. (2) Inter-
mediate fusion combines features from all intermediate layers, which are diverse but have
a weak expressive capacity, resulting in noisy features that can cause confusion between
similar classes. (3) Lastly, late fusion combines modality-wise objective features by extract-
ing decisions from single-modality architectures and then fusing them for a final decision.
These methods often recover scores from the softmax layers. (Boulahia et al., 2021)

Application in Contributing Papers. The fusion process in the architecture varies
depending on the application. In the case of the DA task involving time-series data with
domain shift (Ott et al., 2022a), we utilized a small CNN+BiLSTM model. We perform
a feature embedding transformation between two models that are essentially the same.
Specifically, we select a late intermediate layer, which refers to the output of the last con-
volutional layer before the two BiLSTMs. This particular layer contains all the necessary
information for the DA task, and its layer size is advantageous for optimal transport tech-
niques that scale with the input size. In the context of OnHW recognition, the layer size
is 19× 200, while for the sinusoidal classification task, the layer size is 50× 30. We learn a



1.4 Cross-Modal Retrieval & Multi-Modal Learning 35

common representation between offline and online HWR using intermediate layers to en-
hance the online HWR task (Ott et al., 2023c). Specifically, two intermediate convolutional
layers after the visual and time-series encoders are chosen. For the multi-modal learning
setup, the use of softmax activation is crucial. In contrast, for the single task classification,
ReLU activation is preferred. The tablet and paper handwriting recognition tasks are im-
proved using contrastive learning by fusing two CNN+BiLSTM layers (Ott et al., 2022b).
In this study, we assess five intermediate and late points for DA after applying batch nor-
malization, BiLSTM, and dense layers. While intermediate DA consistently reduces the
CER due to more trainable parameters after fusion, late DA is reliant on the representation
loss. Furthermore, in Ott et al. (2022c), we evaluate eight different split points. In con-
trast to fusion, this model only takes in one data modality as input but concurrently and
jointly solves a classification and regression task. Therefore, we refer to split points, where
features are processed independently, instead of fusion points. This is essential because the
trajectory regression task is more difficult than the character classification task, requiring
more trainable parameters at the regression trunk. From our experiments, we observe that
a late split has a positive impact on the trajectory regression task. In another research
paper, we introduce ViPR (Ott et al., 2020a), which utilizes concatenation to combine
absolute and relative pose estimations, represented by the latest fusion point. In Ott et al.
(2023b), we perform feature fusion of layers that contain information regarding absolute
and relative poses. We evaluate three fusion techniques: concatenation (late fusion), soft
fusion (Chen et al., 2019) (late fusion), and intermediate fusion with MMTM (Joze et al.,
2020). Adding BiLSTM layers is a critical step in extracting necessary spatio-temporal
pose information. In Brieger et al. (2022), we explore different fusion techniques between
ResNet18 and time-series Transformer (TS-Transformer) for interference detection (van der
Merwe et al., 2023) in global navigation satellite system (GNSS) signals using visual and
time-series data. In our evaluation, we consider three fusion techniques: late fusion, which
involves layer concatenation and soft fusion (Chen et al., 2019), and intermediate fusion
with MMTM (Joze et al., 2020). Our results show that the highest accuracy is attained
using concatenation, with a 95% F-β score, followed by soft fusion with 93%, and MMTM
with 89%. This approach improves the baseline accuracy of TS-Transformer (59%) and
ResNet18 (88%) models.

1.4.3 Contrastive & Triplet Learning
Many applications suffer from small training datasets due to the time-consuming nature of
data recording. Consequently, ML models tend to overfit on the training data. To address
this issue, recent methods utilize negative identities of each sample to enhance the dataset.
One such technique is contrastive or triplet learning, which we discuss in the following
section.

Contrastive Learning. We briefly define contrastive learning, as previously introduced
in Ott et al. (2023c). In joint representation learning, it is typical to minimize the distance
between embeddings for samples of the same class (see Section 1.6). The ML model is
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trained such that samples of the same class have a small embedding distance, while samples
of distinct classes have a large distance. Recent methods have extended this approach by
minimizing the distance between the embeddings of the anchor sample Ua and the positive
sample Up (both samples have the same class label) and maximizing the distance between
the embeddings of the anchor sample Ua and the negative sample Un (both samples
have different class labels). The feature embedding f(U) of the sample U is defined in
Section 1.3.4. The objective is to minimize the loss function of an ML model such that the
following inequality is satisfied for all training samples

(
f(Ua

i ), f(Up
i ), f(Un

i )
)
∈ Θ:

Lc

(
f(Ua

i ), f(Up
i )

)
+ γ < Lc

(
f(Ua

i ), f(Un
i )

)
. (1.6)

Θ is a set of all possible triplets, Lc(·) is a metric loss as defined in Section 1.6, and γ is a
margin between positive and negative samples, as described by Schroff et al. (2015). The
contrastive loss function considers the distance between the embeddings of the anchor and
the positive identity separately from the distance between the embeddings of the anchor
and the negative identity. Specifically, we define Ua

i , Up
i , and Un

i as data samples from the
same modality. However, the inequality can be also formulated to learn between different
modalities, where Ua

i is from one (the main) modality, and Up
i and Un

i are from another
(the auxiliary) modality (Ott et al., 2023c).

Triplet Learning. The triplet loss function differs from the contrastive loss function
in that it minimizes the distance between the embeddings of the anchor and the positive
identity, while simultaneously maximizing the distance to the embeddings of the negative
identity. This is achieved using the following loss function:

Lt
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+γ, 0

]
, (1.7)

where N is the number of triplets in Θ (Schroff et al., 2015; Ott et al., 2023c). Lc(·) is a
deep metric loss function as defined in Section 1.6.

Application in Contributing Papers. The selection of triplet pairs for training is a
challenging task as certain negative samples, such as soft and hard samples, can reduce the
model’s performance. Therefore, the goal is to select semi-hard samples (Do et al., 2019).
While the triplet loss is typically used for a single-class classification task, we advocate
using the triplet loss for sequence-based learning, specifically for classifying words. In Ott
et al. (2022b, 2023c), we propose selecting negative samples based on a dynamic margin
that is predicated on the Edit distance (see Equation 1.2). Using the dynamic margin
approach, hard negative samples are selected during the early stage of training, while
semi-hard negative samples are selected during the later training stages. In our work, we
enhanced the main sequence-to-sequence OnHW recognition task for writing on paper with
negative samples for writing on tablet devices (Ott et al., 2022b). The negative samples are
selected using the dynamic margin. Additionally, in Ott et al. (2023c), we applied the same
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Figure 1.12: General pipeline for DA methods that learn a domain-invariant representation
between (labeled) source data and (unlabeled) target data (Wilson & Cook, 2020).

dynamic margin between an inertial MTS modality (online HWR) and a visual modality
(offline HWR). The present approach demonstrates an enhanced accuracy in classification
and faster rate of convergence. Additionally, the model exhibits generalization capabilities
across distinct writers (Ott et al., 2023c) and diverse writing surfaces (Ott et al., 2022b). In
contrast, the latest comparable technique proposed by Liu et al. (2022) applies a contrastive
loss for recommendating among three modalities, namely images, description text, and
item graph. The description text and image modalities work in synergy, through a task of
inter-modal alignment, by contrasting each other for the same item.

1.5 Domain Adaptation
The prevalence of deep learning in various classification tasks is largely dependent on the
availability of large labeled datasets. However, annotating these datasets can be challeng-
ing and expensive, requiring expert knowledge for many applications. To overcome this
challenge, one approach is to train the model with data from a source domain and apply
the model to the target domain – the domain of interest. Figure 1.12 presents the general
pipeline for domain adaptation (DA) methods. Since the data from the source and target
domains are from different distributions, there is a domain shift between the two domains,
which leads to reduced model performance on the target domain. DA methods, which
are a sub-category of transfer learning methods, are employed to reduce this domain shift.
DA techniques are necessary in applications ranging from human activity recognition (Liu
et al., 2009; Kwapisz et al., 2010; Anguita et al., 2013; Stisen et al., 2015), online hand-
writing recognition (Alimoglu & Alpaydin, 1997; Ott et al., 2022a; Klaß et al., 2022), sleep
stage classification (Goldberger et al., 2000), medical applications (Villar et al., 2016), or
interference detection (Raichur et al., 2022; Brieger et al., 2022; Goswami et al., 2023;
van der Merwe et al., 2023). In this section, we will delve into the field of DA.

Section 1.5.1 provides an explanation of the domain shift and the objective of DA. The
mathematical boundary for DA is defined in Section 1.5.2. We present an overview of
DA methods in Section 1.5.3, while Section 1.5.4 delves into optimal transport methods in
more detail.
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1.5.1 Definitions & Notations
Definition of Domain Shift & Domain Adaptation. First, we provide definitions
for two important terms: domain and task. A domain comprises a feature space and a
marginal probability distribution, while a task comprises a label space and an objective
predictive function. According to this definition, changes in a domain may arise from
alterations in either the feature space or the marginal probability, and the same holds for
changes in a task (Wilson & Cook, 2020). In machine learning models, it is assumed that
training and test datasets are independent and identically distributed (i.i.d.). However,
the performance of a machine learning model deteriorates when it is applied to data from
a domain that is similar but different (i.e., source domain) from the data it was initially
trained on (i.e., target domain). This phenomenon is known as domain shift, which is also
frequently referred to as dataset bias or distributional shift, between the source and target
domains. In practice, this assumption of i.i.d. data rarely holds as real-world data often
varies over time and space (Sun et al., 2016). To address this domain shift problem, DA
techniques transfer knowledge from the target to the source domain, enabling the learning
of a domain-invariant representation that reduces the domain discrepancy.

Notations. A domain D consists of a feature space U with marginal probability P (U).
The task is defined by the label space Y . The joint distribution is P (U ,Y) and the con-
ditional distribution is denoted as P (Y|U). When considering two domains with domain
shift, there is a source domain DS = {U i

S,Y i
S}

nS
i=1 of nS ∈ N labeled samples of |Y i

S| ∈ N
categories, and a target domain DT = {U i

T ,Y i
T}

nT
i=1 of nT ∈ N labeled samples of |Y i

T | ∈ N
categories. Due to the difference of the two domains, the distributions are assumed to be
different: P (US) ̸= P (UT ) and P (YS|US) ̸= P (YT |UT ) (Zhang, 2021; Ott et al., 2022a).

1.5.2 Bound for Domain Adaptation
In order to mitigate the domain shift between the source and target domains, a number
of DA methods have been developed which constrain the target error by the sum of the
source error and a distance measure between the two distributions. These methods operate
under the assumption that the source risk provides a reliable estimate of the target risk
when the two distributions are similar. Any distance measure discussed in Section 1.6 may
be employed, though we will focus on the H-divergence with dimension d. Specifically,
H is a set of binary classifiers η : U → 0, 1, where U is the label space as defined with
Definition 1.3.1. Although, the same principles apply to multi-class settings (Ganin et al.,
2016). In this section, we first introduce the H-divergence in Definition 1.5.1 to summarize
the target risk in Theorem 1.5.1, as introduced by Ganin et al. (2016).
Definition 1.5.1 (H-divergence, Kifer et al. (2004); Ben-David et al. (2009); Ganin et al.
(2016)). Given the hypothesis space H and two domain distributions DU

S and DU
T over U ,

the H-divergence between DU
S and DU

T is defined by

dH(DU
S ,DU

T ) = 2 sup
η∈H

∣∣∣∣Pru∼DU
S
[η(u) = 1]− Pru∼DU

T
[η(u) = 1]

∣∣∣∣. (1.8)
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For a symmetric hypothesis class H, the empirical H-divergence can be computed
between the samples S ∼ (DU

S )nS and T ∼ (DU
T )nT by

d̂H(S, T ) = 2
(

1−min
η∈H

[ 1
nS

nS∑
i=1

I[η(xi) = 0] + 1
nT

nS+nT∑
i=nT +1

I[η(xi) = 1]
])

, (1.9)

where I[α] is 1 if α is true and 0 if α is false (Ganin et al., 2016). As it is hard to
compute d̂H(S, T ) exactly, by learning to discriminate between source and target samples,
one can approximate d̂H(S, T ) by the Proxy A-distance d̂A = 2(1 − 2ϵ), where ϵ is the
generalization error. The A-distance is defined by dA(DU

S ,DU
T ) = 2 supA∈A

∣∣∣PrDU
S
(A) −

PrDU
T
(A)

∣∣∣, where A is a subset of U . Furthermore, Ben-David et al. (2009); Ganin et al.
(2016) showed that d̂H(S, T ) plus a constant complexity term is the upper bound to the
H-divergence dH(DU

T ,DU
S ). The ideal joint hypothesis minimizes the combined error h∗ =

arg minη∈H RDS
(η) + RDT

(η). With this, the combined error is λ = RDS
(h∗) + RDT

(h∗).

Theorem 1.5.1 (Target risk, Ben-David et al. (2009); Ganin et al. (2016)). For any
δ ∈ (0, 1), with the probability at least 1 − δ over the choice of samples S ∼ (DU

S )nS and
T ∼ (DU

T )nT , it holds for every η ∈ H:

RDT
(η) ≤ RDS

(η) + d̂H(S, T ) + 4

√√√√2d log(2q) + log(2
δ
)

q
+ λ, (1.10)

with the size q of the samples US, UT . λ ≥ infη∗∈H[RDS
(η∗) + RDT

(η∗)], and the empirical
source risk

RDS
(η) = 1

n

m∑
i=1

I[η(xi) ̸= yi]. (1.11)

The goal is to find a representation of the samples, such that the source and the target
domains are as indistinguishable as possible, and hence, a hypothesis with a low source
risk performs well on the target data. For more information and proofs, see Ben-David
et al. (2009); Wilson & Cook (2020). Concluding from this, in the contributing paper (Ott
et al., 2022a), we map the features of the source domain samples on the feature means of
the target domain samples (extracted from pre-trained models), while leaving the target
features unchanged. This approach aims to learn a representation that makes the source
and target domains indistinguishable. In Ott et al. (2022b, 2023c) we propose a technique
for learning a common representation by adjusting the weights of both source and target
networks to align the two domains. In the following section, we give a succinct summary
of techniques aimed at minimizing the aforementioned objective risk.

1.5.3 Categorization of Domain Adaptation Methods
DA is a subcategory of transfer learning (TL) that involves using labeled data to learn
an effective representation network. In recent years, self-supervised learning has emerged
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Figure 1.13: Overview of (unsupervised) DA categories and methods (Zhang, 2021). We
focus on distribution adaptation and discrepancy-based methods.

as a popular approach for learning representations without the need for annotated labels.
While recent research has focused on improving unsupervised learning for TL and DA,
self-supervised learning has demonstrated superior performance in certain applications.
Yang et al. (2020) reported that self-supervised learning outperforms TL when there is a
significant domain difference or when the amount of pre-training data is limited. Addi-
tionally, self-supervised learning is more robust to class imbalance compared to TL, which
is consistent with the findings of Ott et al. (2022a).

In the subsequent section, we categorize contemporary DA approaches. DA can be clas-
sified into three primary types: Firstly, supervised DA, where labeled data from the target
domain is present during training. Secondly, unsupervised DA, which involves a labeled
source domain and an unlabeled target domain. Finally, semi-supervised DA encompasses
scenarios where a limited amount of labeled data from the target domain is available for
training, along with unlabeled data. To overcome the constraints caused by insufficient an-
notations, techniques merge the labeled source domain with the unlabeled target domain.
The majority of research are conducted in the domain of unsupervised DA. Generally, the
number of class labels in the source and target domains are equivalent, known as closed
set DA. Additionally, DA approaches can be categorized as either homogeneous or hetero-
geneous. Homogeneous techniques employ the same feature space with the same feature
dimensionality, while heterogeneous methods employ different feature spaces and feature
dimensionality (Zhang, 2021). The majority of DA approaches tackle the homogeneous
DA problem. We alleviate the constraint (i.e., input data) of the DA methodologies’ ap-
plication, as they can typically be adapted to alternative data sources, ranging from visual
data to time-series data and vice versa. In the subsequent categorization, we emphasize
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Source samples
Target samples

Class 1
Class 2

(a) Source and target
domain data.

(b) Marginal align-
ment: P (US) = P (UT ).

(c) Conditional align-
ment: P (YS |US) =
P (YT |UT ).

(d) Joint align-
ment: P (US ,YS) =
P (UT ,YT ).

Figure 1.14: Differentiation between marginal, conditional, and joint domain alignment of
source and target domain data samples (Zhang, 2021).

new deep learning-based techniques rather than conventional methodologies (e.g., feature
selection, distribution adaptation, and subspace learning). Please refer to Figure 1.13
for a comprehensive overview. Within the realm of distribution adaptation, conventional
and learning-based DA techniques can be subdivided into marginal, conditional, and joint
adaptation (see Figure 1.14). Approaches for marginal distribution adaptation assume a
dissimilarity between the marginal distributions of both domains, where P (US) ̸= P (UT ).
These methodologies minimize the distance between the marginal distributions:

min
H

(DS,DT ) ≈ ||P (US)− P (UT )||2, (1.12)

Examples of such methods are Tzeng et al. (2014); Sun et al. (2016); Ganin et al. (2016);
Chen et al. (2020); Wilson et al. (2020); Liu & Xe (2021); Ott et al. (2022a). Techniques
for conditional distribution alignment assume a difference between the conditional distri-
butions of both domains, where P (YS|US) ̸= P (YT |UT ). These methodologies minimize
the distance metric given by

min
H

(DS,DT ) ≈ ||P (YS|US)− P (YT |UT )||2. (1.13)

To account for the unlabeled target domain, these methods either utilize pseudo-labels
or adopt a semi-supervised setup. For joint distribution alignment methods, it holds
P (YS,US) ̸= P (YT ,UT ), where such methods minimize the joint distribution of both do-
mains by:

min
H

(DS,DT ) ≈ ||P (US)− P (UT )||2 + ||P (YS|US)− P (YT |UT )||2. (1.14)

Examples of such methods are those by Long et al. (2018); Shu et al. (2018); Rahman
et al. (2020); Zhu et al. (2020b), which combine techniques from marginal and conditional
distribution alignment. According to Stojanov et al. (2021), a fixed mapping of input
data to the latent representation may not be appropriate for DA when using invariant
features. To ensure that the latent representation does not lose valuable information, it is
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essential to consider domain-specific information, which requires separate encoders for each
domain. However, there is still no systemic approach to ensure that the learned marginally
invariant representation contains enough semantic information and can achieve conditional
invariance.

Deep learning-based methods for DA can be classified into several categories, such as
discrepancy-based, adversarial-based, pseudo-labeling-based, and attention-based meth-
ods. Adversarial-based methods utilize an additional domain discriminator to differentiate
the source domain from the target domain, as employed by several previous studies (Ganin
et al., 2016; Long et al., 2018; Shu et al., 2018; Wilson et al., 2020; Liu & Xe, 2021). How-
ever, this thesis focuses on discrepancy-based methods that aim to minimize the distance
between the source and target by incorporating distance loss functions in the activation
layers of networks (Zhang, 2021), as they are the most commonly used techniques in DA
applications. Commonly used distance functions include mean squared error (see Sec-
tion 1.6.1) and distribution-based functions such as the Kullback-Leibler divergence or
Jensen-Shannon divergence (see Section 1.6.3), as utilized in works such as Zhuang et al.
(2018); Jiang et al. (2020a). Maximum mean discrepancy (MMD) is a well-known and
frequently used metric (see Section 1.6.4), first proposed by Tzeng et al. (2014). Correla-
tion alignment (CORAL) (see Section 1.6.6) by Sun et al. (2016) and higher-order moment
matching (HoMM) (see Section 1.6.7) by Chen et al. (2020) are related to MMD and
aim to align higher-order statistics of features. Rahman et al. (2020) combine these dis-
tances in one loss function (see Section 1.6.5). Recently, many DA methods have adopted
the Wasserstein distance (Kantorovitch, 2006), such as the Earth Mover’s distance, and
Sinkhorn (Courty et al., 2016) has been used to iteratively solve the Wasserstein distance
and provide good geometrical properties (see Section 1.5.4). In Chapter 2, we benchmark
all of these discrepancy-based methods on time-series DA classification tasks.

1.5.4 Domain Adaptation with Optimal Transport
Optimal transport (OT) is a mathematical framework that deals with the problem of find-
ing the most efficient way to transport resources from one location to another, commonly
used to model the transportation of people, goods, or information. OT has found appli-
cations in diverse fields such as fluid dynamics, image processing, and machine learning.
Particularly in the context of machine learning, OT has proven to be an effective tech-
nique for measuring distances between probability distributions, and has been successfully
applied in DA for computer vision tasks. However, despite this success, it has been rarely
utilized for time-series classification tasks. This section aims to introduce the OT problem
for DA, discuss the properties of OT and Sinkhorn, and provide a summary of relevant
prior work in this area.

Optimal Transport for DA. In the following, we repeat the OT definition as described
in Ott et al. (2022a) to present properties of OT and Sinkhorn. We still assume the
definition of input data (see Definition 1.3.1) and feature embeddings (see Definition 1.3.3).
We assume that the domain shift (present in the corresponding application) is due to an
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unknown, possibly nonlinear map T : DS −→ DT of the input space that preserves the
conditional distribution PS

(
Y|f(US)

)
= PT

(
Y|T(f(US))

)
such that the label information

is preserved (Courty et al., 2016). PS(Y|·) and PT (Y|·) are the conditional distributions of
the source and target domains. In the case of class imbalance, it holds PS(Y) ̸= PT (Y) and
PS(f(US))|Y) = PT (f(UT )|Y). For covariate shift, the conditional distributions are equal:
PS(Y|f(US)) = PT (Y|f(UT )). Searching for T in the space of all possible transformations
is intractable. Hence, T is chosen such that a transportation cost

C(T) =
∫

DS

c
(
f(U), T(f(U))

)
dµ(f(U)), (1.15)

is minimized, where c(a, b) : DS ×DT −→ R+ is a symmetric positive distance function over
the metric space DS ×DT (we assume c(a, a) = 0) where a, b are input data, and µ is the
marginal (Courty et al., 2016; Ott et al., 2022a). DS is the source domain and DT the
target domain. The optimal transportation problem is

T0 = arg min
T

∫
DS

c
(
f(U), T(f(U))

)
dµ(f(U)). (1.16)

This is also known as the Kantorovitch formulation (Kantorovitch, 2006). For more infor-
mation about the properties of the Kantorovitch duality, see Villani (2008). This formula-
tion allows to search a general coupling α ∈ Θ by the transportation plan (Santambrogio,
2015):

α0 = arg min
α∈Θ

∫
DS×DT

c
(
f(US), f(UT )

)
dα

(
f(US), f(UT )

)
, (1.17)

where Θ is a set of all probabilistic couplings Θ ∈ P (DS ×DT ) with marginals µS and µT .
Definition 1.5.2 (Wasserstein distance, Courty et al. (2016)). The Wasserstein distance
of order p between the marginals µS and µT can be defined as

Wp(µS, µT ) :=
(

inf
α∈Θ

∫
DS×DT

d
(
f(US), f(UT )

)p
dα

(
f(UT ), f(US)

)) 1
p

, (1.18)

where d is a distance metric as the cost function:

c
(
f(UT ), f(US)

)
= d

(
f(UT ), f(US)

)p
. (1.19)

The Wasserstein distance is referred to as Earth Mover’s distance (EMD) for the order
p = 1 and as the quadratic Wasserstein-2 distance for order p = 2. Entropic regulariza-
tion has recently emerged as a computationally efficient way of approximating OT costs.
Entropic regularization was first introduced by Léonard (2014) and can be utilized to
efficiently approximate the OT cost. We can define the regularized OT in the following.
Definition 1.5.3 (OT with entropic regularization, (Feydy et al., 2019)). For the regular-
ization parameter ϵ > 0, the approximated OT cost is defined as

OTϵ(µS, µT ) := min
α∈Θ

∫
DS×DT

c
(
f(US), f(UT )

)
dα

(
f(US), f(UT )

)
+ϵKL(α|µS⊗µT ), (1.20)

where µS and µT are the marginals, c is a cost function, and ⊗ is the Kronecker product.
The minimization is performed over the coupling measures Θ ∈ P (DS ×DT ).
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Figure 1.15: Visualization of Sinkhorn that interpolates between OT and MMD distances
(Genevay et al., 2018; Feydy et al., 2019).

The cost function c in Equation 1.19 and Equation 1.20 is typically c(f(US), f(UT )) =
||f(US)−f(UT )||p. KL is the Kullback-Leibler divergence defined in Section 1.6.3. Setting
ϵ = 0 allows to retrieve the Earth Mover’s distance for p = 1. The smooth problem in
Equation 1.20 can be solved efficiently on the GPU for ϵ > 0, see Cuturi (2013).

Definition 1.5.4 (Sinkhorn divergences, (Genevay et al., 2018)). The Sinkhorn divergence
Sϵ(µS, µT ) based on the cost OTϵ is defined as

Sϵ(µS, µT ) := OTϵ(µS, µT )− 1
2OTϵ(µS, µS)− 1

2OTϵ(µT , µT ). (1.21)

It holds Sϵ(µS, µS) = 0 and Sϵ(µT , µT ) = 0.

Properties of OT and Sinkhorn. From Definition 1.5.4, we can formulate two prop-
erties of the Sinkhorn divergence: (1) For ϵ → 0 it holds Sϵ(µS, µT ) → OTϵ(µS, µT ). (2)
As ϵ → +∞ it holds Sϵ(µS, µT ) → 1

2 ||µS − µT ||2−c, where 1
2 ||µT − µS||2−c is the MMD dis-

tance (see Section 1.6.4) whose kernel is the cost from the OT problem. Hence, Sinkhorn
losses have the geometric property to interpolate between MMD and OT (Genevay et al.,
2018; Feydy et al., 2019), please refer to Figure 1.15. Furthermore, Sinkhorn is a convex,
smooth, positive definite loss function, and hence, Sϵ can be used as a reliable loss func-
tion, independent on the value of ϵ (Thornton & Cuturi, 2023). For the proof of Sinkhorn
properties, see Feydy et al. (2019). By tuning ϵ, the regularized Sinkhorn loss is able to
minimize the best of both loss functions, to utilize the non-flat geometry of OT with the
high-dimensional rigidity of MMD losses (Genevay et al., 2018).

Application in Research & Contributing Papers. In their work, Courty et al. (2016)
introduced Sinkhorn as a method for performing supervised DA on visual datasets, such
as those used for digit, face, and object recognition. Sinkhorn was found to be effective
at producing domain-invariant features, leading to improved performance. Genevay et al.
(2018) evaluated the effectiveness of Sinkhorn for generative models in classification tasks,
utilizing datasets such as CIFAR10 and CelebA. They found that a model incorporating
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a Sinkhorn loss and large regularization outperforms both MMD and a method closer to
OT (using a small ϵ) in term of classification accuracy. Thornton & Cuturi (2023) asserted
that the inclusion of an entropic smoothing term in OT solvers yields differentiable, faster,
more resilient-to-outliers, and more parallelizable outcomes. Several research studies aim
to reduce the runtime of OT through various means such as momentum, annealing, or
acceleration. Thornton & Cuturi (2023) demonstrated that an appropriately selected ini-
tialization of the Sinkhorn algorithm can lead to a significant acceleration in computation.
The field of OT is vast and encompasses various directions. Therefore, to maintain the focus
of the thesis, we do not discuss other related works. Instead, in our contribution presented
in Ott et al. (2022a), we utilized the Earth Mover’s distance and Sinkhorn transport with
and without regularization to transform left-handed embeddings into right-handed coun-
terparts. We found that the Python Optimal Transport (POT) package4 (Flamary et al.,
2021) was efficient and user-friendly for our purposes. Our objective was to find an optimal
distance metric for the cost function presented in Equation 1.19. To this end, we evalu-
ated 18 different distance metrics, including (squared) Euclidean, Bray Curtis, Canberra,
Chebyshev, Cosine, Jaccard, Jensen-Shannon, and other distances measures. In our pre-
vious work (Ott et al., 2022c), we utilized the Earth Mover’s distance as a distance metric
to compare the ground truth and predicted trajectories. In Chapter 2, we expand on this
research and further evaluate the effectiveness of Sinkhorn transport for the DA task on
time-series data.

1.6 Representation Learning
In the fields of machine learning and deep learning, representation learning, also referred to
as feature learning, is a set of techniques that enable a system to automatically investigate
and discover representations for a given task, thereby enhancing the performance of clas-
sification, regression, or clustering algorithms. The significance of representation learning
techniques stems from the fact that the input data is typically high-dimensional and large-
scale, and hence, presenting substantial mathematical and computational complexities that
require resolution. Representation learning is a widely recognized technique in the fields of
supervised, unsupervised, and self-supervised learning. A model has the ability to extract
features from input data, and subsequently use those features to accomplish the desired
task either by relying on distance constraints or by utilizing fine decomposition of instances
in complete samples (Goodfellow et al., 2016). When training a model, it is imperative
that the target objective, such as cross-entropy loss, and the representation learning loss
are taken into consideration (Ben-David et al., 2009). In particular, the representation
learning process for time-series data requires special attention, as the objective function
must take into account the spatio-temporal component of the time-series data (Lafabregue
et al., 2021).

An effective representation encompasses the posterior distribution of the underlying
explanatory factor for the given input data. Figure 1.16 visualizes the encoding of features
4Python Optimal Transport package (Flamary et al., 2021): https://pythonot.github.io/

https://pythonot.github.io/
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Figure 1.16: The default representation of data (left) does not encode a semantic meaning.
A neural network encodes representations or features that provide a meaning related to
the current task (right). Here, the task is to classify the input data (dots). In the right
representation, similar data samples are closer to each other, and hence, the task is easier
to solve (Goodfellow et al., 2016).

from input data by a neural network into a high-quality representation, which facilitates
problem-solving properties. The primary inquiry that we aim to address in this section
pertains to identifying suitable objectives for learning optimal representations. As intro-
duced by Bengio et al. (2014), the exploration of representations is significant because they
have the potential to express several non-task-specific priors, as outlined in the following:
(1) Simple parametric models, such as linear models, are often incapable of capturing
the complexity present in the data. As a result, many ML models rely on smoothness-
based learners, such as the Gaussian kernel, in conjunction with representation learning,
to achieve the desired level of performance. (2) Due to the expressive nature of repre-
sentations, a vast number of possible configurations can be learned. (3) The depth of
architectures is a critical factor, as features can be reused to enhance the model’s overall
performance. (4) While the objective is straightforward for classification tasks (i.e., reduc-
ing the number of misclassifications), the objective is far from the ultimate objective when
it comes to representation learning. (5) The model should learn representations that can
disentangle the factors of variation, meaning that features are insensitive to variation in
the data. (Bengio et al., 2014)

Similarity learning and deep metric learning (DML) are related fields to representation
learning. The objective is to learn a similarity, metric, or distance function that quantifies
the degree of similarity or relatedness between two objects, such as the features of a sub-
domain of the objects’ domain. This is accomplished by learning a weight matrix that
reduces the distances between similar points and increases the distances between dissimilar
points. As a results, the variance of similar points decreases, while the variance of dissimilar
points increases. A metric function must satisfy the following four axioms.

Definition 1.6.1 (Distance metric axioms, Ghojogh et al. (2022)). Consider the metric
space H. A distance metric is a mapping d : H×H → [0, inf), which satisfies the following
properties for xi, xj, xk ∈ H:

non− negativity : d(xi, xj) ≥ 0 (1.22)
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identity of indiscernibles : d(xi, xj) = 0⇔ xi = xj (1.23)
symmetry : d(xi, xj) = d(xj, xi) (1.24)

triangle inequality : d(xi, xj) ≤ d(xi, xk) + d(xk, xj) (1.25)

Lemma 1.6.1 (Triangle inequality, Ghojogh et al. (2022)). The triangle inequality

||xi + xj|| ≤ ||xi||+ ||xj||. (1.26)

is satisfied, where || · || is a norm.

Proof. We can proof Lemma 1.6.1 using the squared norm in the following:

||xi + xj||2 = (xi + xj)T (xi + xj)
= ||xi||2 + ||xj||2 + 2xT

i xj

CS
≤ ||xi||2 + ||xj||2 + 2||xi|| · ||xj||
= (||xi||+ ||xj||)2,

(1.27)

where
CS
≤ denotes the use of the Cauchy-Schwarz inequality5.

Several DML functions do not adhere to the axiom of identity of indiscernibles and
instead learn a pseudo-metric. Typically, any distance metric d(·, ·) : Rp ×Rp → R can be
employed (Ghojogh et al., 2022). This section provides an overview of the metrics used in
representation learning and their associated characteristics.

Notations & Goals. The following notations for DML and DA are valid for the whole
section unless stated differently and are relevant for the contributing papers (Ott et al.,
2022a,b, 2023c). We briefly repeat the definition of MTS from Section 1.2.1 and the
definition of DA from Section 1.5.1. We define an MTS U (see Definition 1.3.1). The
MTS training set is a subset of the array U . The aim of MTS classification is to predict an
unknown class label y ∈ Y for a given MTS. For the setup of DA, we further define domain-
specific notations. A domain D consists of a feature space U with marginal probability
P (U). The task is defined by the label space Y . We define the source domain dataset
as US with MTS US with nS ∈ N samples, and the target domain dataset as UT with
MTS UT and nT ∈ N samples. We denote one specific source domain sample as Ui

S with
i ∈ {1, . . . , nS}, and one specific target domain sample as Ui

T with i ∈ {1, . . . , nT}. When
considering MTS classification, there is a source domain DS of nS ∈ N labeled samples
of |Y i

S| ∈ N categories, and a target domain DT of nT ∈ N labeled samples of |Y i
T | ∈ N

categories (see Section 1.5.1). In the field of CMR, the target domain dataset can be
data from one modality, while the source domain dataset is from another modality, with a
domain shift between source and target domain datasets. The source domain embedding
of the neural network is defined by f(US) ∈ RqS×wS for the corresponding MTS sample
5Cauchy-Schwarz inequality: xT

i xj ≤ ||xi|| · ||xj ||.
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US, respectively the target domain embedding f(UT ) ∈ RqT ×wT for the corresponding
target domain sample UT (see Definition 1.3.3). qS × wS and qT × wT are the sizes of the
output of the neural network layer, and it holds: qS = qT and wS = wT . From this, we
can formulate two goals: (1) Given the smaller adaptation set of the source domain US

with MTS US, the goal of DA is to find an optimal transformation T of the representation
of the latent embedding f(US) of the source domain to the representation of the latent
embedding f(UT ) of the target domain, such that the prediction of the unknown class
label yS of the source domain is maximized. (2) Given the metric space H, we want to
compute the distance by the DML distance metric d : H ×H → [0, inf) (optionally, with
respect to the axioms in Definition 1.6.1) between the source domain embeddings f(US)
and the target domain embeddings f(UT ). The goal is to minimize the distance and align
the statistics of both embeddings, and hence, reduce the domain shift in the DA setting,
or find an optimal embedding between two or more modalities in the setting of CMR. For
definitions of distance metrics between general vectors, we use the notation of the vectors
x ∈ Rn and y ∈ Rn with size n. We denote the covariance matrix as C = Cov(x, y)
between the vectors x and y, and the standard deviation as σx of the vector x, respectively
for y. x is the mean of x, respectively for y.

Outlook. In this section, we begin by providing an overview of the mean squared error
(Section 1.6.1) and the Cosine similarity and Pearson correlation (Section 1.6.2), with the
Cosine similarity commonly employed for cross-modal learning. For completeness, we also
present the Kullback-Leibler divergence (Section 1.6.3). Following this, we introduce the
maximum mean discrepancy and maximum covariance discrepancy in Section 1.6.4 and
Section 1.6.5, respectively. Section 1.6.6 provides an overview of second-order discrepancy
metrics, specifically correlation alignment, while Section 1.6.7 presents higher order metrics.

1.6.1 Mean Squared Error & Frobenius Norm
The mean squared error (MSE), also known as the Euclidean distance, is the measure
between two one-dimensional vectors x ∈ Rn and y ∈ Rn of length n, and is defined as

MSE(x, y) := 1
n
||x− y||22 = 1

n

∑
i=1

n(xi − yi)2. (1.28)

The root mean squared error (RMSE) is the square root of the MSE defined as

RMSE(x, y) :=
√

1
n
||x− y||22 =

√√√√ 1
n

∑
i=1

n(xi − yi)2. (1.29)

The axioms 1.22 to 1.25 are fulfilled by both the MSE and RMSE. It is customary to
evaluate the distance between feature embeddings or statistical features of these embed-
dings represented as two-dimensional matrices, as defined previously, by computing the
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Frobenius norm between the matrices A ∈ Rm×n and B ∈ Rm×n,

F(A, B) :=
√
||A−B||2F =

√√√√ m∑
i=1

n∑
j=1

∣∣∣∣Aij −Bij

∣∣∣∣2, (1.30)

see Trefethen & Bau (1997). Numerous alternatives to the MSE exist that are less sensitive
to outliers, although they may have steep gradients near the optimal point and rely on
hyperparameters. Examples of such alternatives include the mean absolute error (MAE),
the Huber metric, the Andrew’s Sine metric, the Bray Curtis metric, the Tuckey’s Biweight
metric, the Poisson metric, and others as noted by Huber & Ronchetti (2009).

Application in Research. The MSE is a commonly utilized measure in various CMR
or contrastive learning tasks, such as face recognition (Schroff et al., 2015), speech classifi-
cation (Bredin, 2017), zero-shot learning of sketches (Chaudhuri et al., 2020), multimedia
retrieval (Huang et al., 2020), visual semantic embedding (Chun et al., 2021), and signature
verification (Wan & Zou, 2021), among others.

Application in Contributing Papers. In Ott et al. (2022c), we utilized the MSE
metric as a means of computing the distance between predicted trajectories and their
corresponding ground truth trajectory, using a differentiable loss function of MSE. We also
compared its performance to that of the Andrew’s Sine and Huber metrics. Conversely, in
Ott et al. (2023c), we used the MSE metric as a baseline for computing the distance between
image and time-series handwritten data in order to align features within a neural network.
This application yielded lower performance results for the MSE metric, prompting us to
exclude it form the contributing papers (Ott et al., 2022a,b). In addition, we compared
the MSE to the Bray Curtis and Poisson variants on a synthetically generated dataset.
It is noteworthy that in recent years, the MSE is becoming less prevalent for CMR tasks,
with the Cosine similarity being a more commonly utilized metric, as described in the
subsequent section.

1.6.2 Cosine Similarity & Pearson Correlation
The cosine of two non-zero vectors x ∈ Rn and y ∈ Rn of size n can be obtained using the
Euclidean dot product formula, which is given by x · y = ||x|| · ||y|| · cos(θ). The Cosine
similarity (CS), cos(θ), is then represented as follows:

CS(x, y) := cos(θ) = x · y
||x|| · ||y||

, (1.31)

where the dot product of two vectors is defined as x · y = ∑n
i=1 xiyi, and θ denotes the

angle between x and y. The range of the CS is [−1, 1], where CS = −1 implies that the
two vectors are exact opposites, CS = 1 implies that the two vectors are exactly the same,
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and CS = 0 indicates orthogonality6 or decorrelation. As CS is a measure of similarity, the
cosine distance is the complement of the CS, with

cosine distance(x, y) := 1− CS(x, y), (1.32)

in the positive space [0, 1]. The objective of neural networks is to maximize the CS, which is
equivalent to minimizing the cosine distance as loss function. However, the cosine distance
does not satisfy the triangular inequality ||x+y|| ≤ ||x||+||y|| (axiom 1.25) or the Cauchy-
Schwarz inequality |⟨x, y⟩| ≤ ||x|| · ||y||. Hence, the cosine distance is not considered a
valid distance metric (Giller, 2012).

The Pearson correlation (PC), introduced by Pearson (1920), is invariant to shifts, and
is defined by

PC(x, y) := Cov(x, y)
σxσy

= (x− x) · (y− y)
||(x− x)|| · ||(y− y)|| , (1.33)

where Cov(x, y) = 1
n

∑n
i=1(xi − x)(yi − y) is the covariance between x and y, σx is the

standard deviation of x, respectively for y, with σ2
x = 1

n

∑n
i=1(xi − x)2, and the mean

x = 1
n

∑n
i=1 xi of the vector x, respectively for y. Then, we minimize the Pearson distance

Pearson distance(x, y) := 1− Cov(x, y)
σxσy

. (1.34)

The Pearson correlation is a measure of linear correlation and is in the range [−1, 1].
For completeness, the concordance correlation coefficient (CCC), proposed by Lin

(1989), is a measure agreement between two vectors, and is defined by

CCC(x, y) := 2PC(x, y)σxσy

σ2
x + σ2

y + (x− y)2 . (1.35)

The use of biased or unbiased estimates is relevant for the concordance correlation when
compared to the Pearson correlation.

Application in Research. The CS metric finds its application in various multimedia
retrieval tasks, including text matching techniques (Wu et al., 2008) where it normalizes the
document length during comparison. It is also used in visual semantic embedding (Wang
et al., 2022; Singh et al., 2022), human activity recognition (Jain et al., 2022), speech and
audio extraction (Ohishi et al., 2022; Guzhov et al., 2022), and time-series classification
(Deldari et al., 2022b). In contrast, the PC is seldom used in CMR, except for the work by
Zhu et al. (2020a) where the cross-modal correlation between texts and images is evaluated
using the PC. The CCC has not been widely explored recently, and apart from Carrasco
& Jover (2003), there are no recent publications on this metric.
6Orthogonality means the perpendicularity between two vectors x and y, that is given if their inner product
⟨x, y⟩ is zero.
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Application in Contributing Papers. In the contributing paper (Ott et al., 2022c),
we assessed the performance of both the CS and PC coefficients for trajectory alignment.
Furthermore, in the contributing papers (Ott et al., 2022a,b, 2023c) and in Chapter 2, we
utilized these correlation coefficients to align features between neural networks.

1.6.3 Kullback-Leibler & Jensen-Shannon Divergence
The Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) is a mathematical mea-
sure of dissimilarity between two probability distributions, denoted as P and Q. Specifi-
cally, for the discrete probability distributions P and Q over the probability space H, the
relative entropy is given by

KL(P ||Q) :=
∑
h∈H

P (h) log
(

P (h)
Q(h)

)
, (1.36)

that is not symmetric and does not satisfy the triangle inequality. In order to address this
issue, the Jensen-Shannon divergence (JSD) is defined by

JSD(P ||Q) := 1
2KL(P ||M) + 1

2KL(Q||M), (1.37)

with M = 1
2(P + Q) being the average distribution. JSD is a symmetric and smoothed

version of the KL divergence. While simple norms and divergences such as relative entropy
and total variation can only compare densities point-wise, they are unable to capture the
geometric properties of the problem and can be unstable when the distributions’ supports
are deformed. On the other hand, optimal transport (discussed in Section 1.5.4) and
maximum mean discrepancy (described in the following Section 1.6.4) take into account
the underlying space’s geometry and are thus better suited for capturing these properties
(Feydy et al., 2019).

Application in Research & Contributing Papers. The KL divergence is a widely
used measure in variational autoencoder (VAE) applications, as shown in Lin et al. (2020).
However, it is less frequently used in CMR applications, as noted in Chen et al. (2021c).
In our study (Ott et al., 2023c), we conducted an evaluation of the KL divergence in this
context and we conducted experiments utilizing KL and JSD for DA in Chapter 2.

1.6.4 Maximum Mean Discrepancy
The concept of maximum mean discrepancy (MMD) was initially introduced by Borgwardt
et al. (2006). Consider data sampled from two unknown distributions with densities p and
q (Borel probability distributions), and defined in U ⊂ Rd. Let US = {f(Ui

S) ∼ p, i.i.d., i =
1, . . . , nS} be the dataset from the source domain and UT = {f(Ui

T ) ∼ q, i.i.d., i =
1, . . . , nT} be the dataset of the target domain. The samples are composed of independent
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and identically distributed (i.i.d.) observations. The goal is to test whether the two da-
tasets follow the same distribution, which is equivalent to performing the hypothesis test
H0 : p = q versus H1 : p ̸= q. Let G be a class of functions g : U → R. The MMD is
defined by Gretton et al. (2012) as follows:

MMD(G, p, q) = sup
g∈G

(
EUS∼p[g(f(US))]− EUT ∼q[g(f(UT ))]

)
. (1.38)

This is known as an integral probability metric. A biased empirical estimate7 of the MMD
is then defined as

MMDb(G, p, q) = sup
g∈G

( 1
nS

nS∑
i=1

g(f(Ui
S))− 1

nT

nT∑
i=1

g(f(Ui
T ))

)
. (1.39)

Linear MMD as Loss Function. Tzeng et al. (2014) applied the MMD for domain
adaptation in CNNs. To compute the MMD loss between the source domain features
f(US) and the target domain features f(UT ), they used the equation:

LMMD
(
f(US), f(UT )

)
=

∣∣∣∣∣
∣∣∣∣∣ 1
nS

nS∑
i=1

f(Ui
S)− 1

nT

nT∑
i=1

f(Ui
T )

∣∣∣∣∣
∣∣∣∣∣
2

, (1.40)

where nS and nT are the number of source and target samples in the mini-batch, respec-
tively. MMD norms are scalable for large batches, computationally efficient, and require
lower sample complexity than optimal transport (Feydy et al., 2019). Tzeng et al. (2014)
conducted experiments to evaluate a model for DA in CNNs based on two selection choices
of an adaptation layer and the domain distance loss: (1) The layer in the network to place
the adaptation layer. (2) The dimension of the layer to choose. The results indicate an
inverse relationship between the MMD computed between the source and target samples
and the accuracy on the target domain test dataset. They achieved the highest classifi-
cation accuracy with the second-to-last adaptation layer. Furthermore, they observed an
inverse relationship between MMD and the accuracy on the test dataset for different values
of adaptation layer dimensionality.

MMD in RKHS. According to Borgwardt et al. (2006); Long et al. (2017), it holds
p = q iff MMD(p, q) = 0 (if G is rich enough). If the class of functions G is too rich,
the resulting MMD(p, q) may produce significantly different results from zero. To avoid
overfitting, the function class can be restricted. One approach to restricting G is to choose
it to be the unit ball in a universal kernel Hilbert space (RKHS).

Definition 1.6.2 (MMD in RKHS, Borgwardt et al. (2006)). We let H be a complete
inner product space (i.e., a Hilbert space) with unit ball G and let p, q be Borel probability
measures. The MMD is defined as the distance between the mean embeddings of the two
distributions by

MMD2(G, p, q) = ||µUS
(p)− µUT

(q)||2H. (1.41)
7The population expectations are replaced with empirical expectations.
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Proof. We can proof the definition of MMD2(G, p, q) according to Gretton et al. (2012) in
the following:

MMD2(G, p, q) =
[

sup
||g||H≤1

(
EUS∼p[g(f(US)]− EUT ∼q[g(f(UT )]

)]2

=
[

sup
||g||H≤1

〈
µUS

(p)− µUT
(q), g

〉
H

]2

= ||µUS
(p)− µUT

(q)||2H.

(1.42)

The kernelized MMD (kMMD) considers test functions in the RKHS of positive semi-
definite kernel k(f(US), f(UT )). Often, the Gaussian radial basis function (RBF) kernel
k(f(US), f(UT )) = exp(−γ||f(US)−f(UT )||2) with γ = 1

2β2 is used. β is a free parameter.
Then, the squared and biased empirical kMMD is defined by

MMD2
k =

∫
U

∫
U

k(f(US), f(UT ))(p− q)f(UT )df(US)df(UT ), (1.43)

where p := 1
nS

∑nS
i=1 δui

S
and q := 1

nT

∑nT
i=1 δui

T
(Cheng & Xie, 2021). In practice, an estimate

of the unbiased kMMD compares the square distance between the empirical kernel mean
embeddings as

kMMDu(G, p, q) = 1
n2

S

nS∑
i=1

nS∑
j=1

k(f(Ui
S), f(Uj

S))

+ 1
n2

T

nT∑
i=1

nT∑
j=1

k(f(Ui
T ), f(Uj

T ))− 2
nSnT

nS∑
i=1

nT∑
j=1

k(f(Ui
S), f(Uj

T )),
(1.44)

as an estimation of MMD2
k(G, p, q) (Long et al., 2017).

Application in Research & Contributing Papers. Recently, Deka & Sutherland
(2023) introduced MMD-B-Fair, a technique for acquiring unbiased representations of data
using kernelized MMD. The approach is invariant to a binary-sensitive attribute and ex-
hibits robust performance in adversarial learning and generative modelling. In Ott et al.
(2023c), we utilized the MMD from Equation 1.39 and kMMD from Equation 1.44 to min-
imize the distance between features of time-series and visual embeddings from two appli-
cations: (1) Generated sinusoidal time-series data and their corresponding visual Gramian
angular summation field, and (2) multivariate time-series from OnHW sensor-enhanced
pens and generated images for offline handwriting recognition. Additionally, we compared
MMD and kMMD in Ott et al. (2022a) for DA and in Ott et al. (2022b) for aligning
embeddings between paper and tablet OnHW. Chapter 2 presents an evaluation of MMD
and kMMD on time-series datasets.
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1.6.5 Maximum Covariance Discrepancy & Maximum Mean and
Covariance Discrepancy

Given the assumptions and notations introduced in Section 1.6.4, the maximum covariance
discrepancy (MCD) can be formally defined as follows:

MCDH(f(US), f(UT )) = ||Cov(f(US))− Cov(f(UT ))||2H, (1.45)

where Cov(·) is the covariance matrix of the embeddings f(US) and f(UT ), respectively.
We can express the loss function for the marginal distribution discrepancy based on the
MCD as

LMCD(f(US), f(UT )) =
∣∣∣∣∣
∣∣∣∣∣ 1
nS

nS∑
i=1

f(Ui
S)

(
InS
− 1

nS

1nS

)
f(Ui

S)T−

1
nT

nT∑
i=1

f(Ui
T )

(
InT
− 1

nT

1nT

)
f(Ui

T )T

∣∣∣∣∣
∣∣∣∣∣
2

F

,

(1.46)

where || · ||F denotes the Frobenius norm, InS
and InT

are the identity matrices of size
nS or nT , and 1nS

and 1nT
are the vectors of ones of length nS or nT . For more infor-

mation on correlation alignment with covariance discrepancy, please refer to the following
Section 1.6.6. The MMD and MCD can be incorporated into a single metric, named as
maximum mean and covariance discrepancy (MMCD), using the following definition

MMCDH(f(US), f(UT )) = β1MMDH
(
f(US), f(UT )

)
+β2MCDH

(
f(US), f(UT )

)
, (1.47)

based on Equation 1.40 (for linear MMD), Equation 1.44 (for kernelized MMD), and
Equation 1.45 (for MCD), where β1 and β2 are hyperparameters to balance the impact
of first-order and second-order statistical discrepancies (Zhang et al., 2020a; Alipour &
Tahmoresnezhad, 2021). The MMCD is not commonly used in practical applications, and
therefore, we did not use this metric in our own applications. However, we present these
metrics for the sake of completeness and provide an evaluation of the linear MMCD and
kernelized MMCD in Chapter 2. We will primarily focus on correlation alignment.

1.6.6 Correlation Alignment
The subspace-based method known as correlation alignment (CORAL), proposed by Sun
& Saenko (2015); Sun et al. (2016), is a straightforward and computationally efficient
technique. CORAL mitigates domain shift by aligning the second-order statistics (i.e.,
the original feature distributions of the source and target domains), without requiring any
target domain labels. Unlike other subspace-based methods, CORAL aligns the original
feature distributions of the embeddings instead of the bases of lower-dimensional subspace.
Let µS and µT be the means of the feature embeddings f(US) and f(UT ) of the source and
target domains, respectively, and CS and CT be the corresponding covariance matrices.
The features are normalized to have zero mean (µS = µT = 0), while CS ̸= CT . CORAL
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Figure 1.17: Structure of the singular value decomposition (SVD) Y = PΣVT of the
matrix Y with matrix lengths m and n, the singular values Σ, and the left and right
singular vectors P and V (Trefethen & Bau, 1997).

aims to reduce the difference between f(US) and f(UT ) through a linear transformation
A by

min
A
||CŜ −CT ||2F = min

A
||AT CSA−CT ||2F , (1.48)

where || · ||2F is the squared Frobenius norm, and CŜ is the covariance of the transformed
source features f(US)A (Sun et al., 2016).

Theorem 1.6.2 (Solution to the CORAL problem, Sun et al. (2016); Ott et al. (2022a)).
The optimal solution of the problem in Equation 1.48 is given by

A∗ = PSΣ+
S

1
2 PT

S PT [1:r]ΣT

1
2
[1:r]PT

T
[1:r], (1.49)

with r = min(rCS
, rCT

), where rCS
and rCT

denote the rank of CS and CT , and Σ+ is
the Moore-Penrose pseudoinverse of Σ. With the singular value decomposition (SVD) of a
real matrix Y the largest r ≤ rY singular values ΣY[1:r], and left and right singular vectors
PY[1:r] and VY[1:r] of Y = PYΣYVT

Y of the real matrix Y of rank rY can be computed.

Figure 1.17 demonstrates an SVD of the matrix Y. For more information on the SVD,
see Trefethen & Bau (1997); Cai et al. (2010).

Proof. We provide the proof according to Sun et al. (2016). AT CSA does not increase the
rank of CS, as A is a linear transformation, and hence, it holds: rCŜ

≤ rCS
. The SVD

on the symmetric matrices CS and CT gives CS = PSΣSPT
S and CT = PT ΣT PT

T . Two
cases with respect to rCS

and rCT
have to be considered: (1) If rCS

> rCT
, the optimal

solution of Equation 1.48 is CŜ = CT , and hence, CŜ = PT ΣT PT
T = PT [1:r]ΣT [1:r]PT

T
[1:r]

with r = rCT
. (2) If rCS

≤ rCT
, the optimal solution to Equation 1.48 is CŜ = PT ΣT PT

T =
PT [1:r]ΣT [1:r]PT

T
[1:r] with r = rCS

.
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When case (1) and case (2) are combined, the optimal solution is CŜ = PT ΣT PT
T =

PT [1:r]ΣT [1:r]PT
T
[1:r] with r = min(rCS

, rCT
). As it holds CŜ = AT CSA in Equation 1.48,

it also holds
AT CSA = PT [1:r]ΣT [1:r]PT

T
[1:r]. (1.50)

We can replace CŜ in Equation 1.50 with PSΣSPT
S and get

AT PSΣSPT
S A = PT [1:r]ΣT [1:r]PT

T
[1:r]. (1.51)

Rewriting Equation 1.51 gives

(PT
S A)T ΣS(PT

S A) = PT [1:r]ΣT [1:r]PT
T
[1:r] (1.52)

that results in
(PT

S A)T ΣS(PT
S A) = ET ΣSE, (1.53)

by defining E = Σ+
S

1
2 PT

S PT [1:r]ΣT

1
2
[1:r]PT

T
[1:r]. Next, we set PT

S A = E. Then, we obtain the
optimal solution of Theorem 1.6.2 as

A∗ = PSE = (PSΣ+
S

1
2 PT

S )(PT [1:r]ΣT

1
2
[1:r]PT

T
[1:r]). (1.54)

The normalization of input features play a crucial role in several ML techniques. Batch
normalization, as proposed by Ioffe & Szegedy (2015), normalizes mini-batches to com-
pensate for internal covariate shift. However, it does not account for external covariate
shift. On the other hand, MMD applies the same transformation to both source and target
domains, while CORAL utilizes asymmetric transformations, making CORAL more flexi-
ble as noted by Sun et al. (2016). Although CORAL is an effective and simple approach,
it has two primary limitations: Firstly, it relies on a linear transformation, which may
not capture the most informative feature transformations. Secondly, it performs feature
extraction, covariance calculations, feature alignment, and classifier training sequentially,
rather than end-to-end, as highlighted by Morerio & Murino (2017). To address these
issues, the following section will introduce Deep CORAL.

Deep CORAL (Sun et al., 2016; Sun & Saenko, 2016) aims to align the second-order
statistics of feature embeddings generated by a deep neural network. This is achieved
through designing a differentiable loss function, referred to as the Deep CORAL loss, which
is defined as the distance between the second-order statistics of the feature embeddings as
follows:

LCORAL = 1
4d2 ||CS −CT ||2F , (1.55)

where || · ||F is the Frobenius norm, d is the dimension of the source and target domain
features, and the covariance matrices of the source and target domains are defined by

CS = 1
nS − 1

(
f(US)T f(US)− 1

nS

(1T
nS

f(US))T (1nS
f(US))

)
(1.56)
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CT = 1
nT − 1

(
f(UT )T f(UT )− 1

nT

(1T
nT

f(UT ))T (1nT
f(UT ))

)
, (1.57)

where 1nS
represents a column vector of size nS with all elements equal to 1, and similarly

for 1nT
, where nS and nT denote the number of source and target data, respectively. Since

CORAL is differentiable, its gradient can be computed using the chain rule and is obtained
with

∂LCORAL

∂f(Ui
S)j

= 1
d2(nS − 1)

(
(f(Ui

S)T − 1
nS

(1T
nS

f(Ui
S))T1T

nS
)T (Ci

S −CT )
)j

(1.58)

for the source domain features, and with
∂LCORAL

∂f(Ui
T )j

= 1
d2(nT − 1)

(
(f(Ui

T )T − 1
nT

(1T
nT

f(Ui
T ))T1T

nT
)T (CS −Ci

T )
)j

(1.59)

for the target domain features (Sun et al., 2016; Sun & Saenko, 2016). In the given
expression, f(Ui

S)j denotes the j-th dimension of the i-th source data, and similarly f(Ui
T )j

represents the j-th dimension of the i-th target data.
Despite the good results proposed by Sun et al. (2016) using Deep CORAL and its

effectiveness, it should be noted that the covariance matrices CS and CT are symmetric
positive definite8. Symmetric positive definite matrices of size n×n with n ∈ N do not form
a subspace of Euclidean space but are instead a Riemannian manifold with non-positive
curvature Sn

++. Therefore, methods in Sn
++ that rely on the Euclidean metric are subop-

timal, as the Euclidean metric fails to consider the inner curvature of the ambient space
(Morerio & Murino, 2017). To address the computational intensity of classical methods
based on the Riemannian metric on Sn

++, we motivate the use of two Bregman divergences
that are computationally efficient. Specifically, we leverage the Jeffreys and Stein distances
based on the Bregman divergence, as suggested by Harandi et al. (2014). To compute these
divergences, we first define the Bregman matrix divergence and Burg divergence, and then
apply them to derive the Jeffreys and Stein divergences. Note that Sn

++ refers to the space
of n×n symmetric positive definite matrices, which is characterized by the condition that
C ∈ Sn

++ if and only if aT Ca > 0,∀a ∈ Rn\{0}.

Definition 1.6.3 (Bregman divergence, Harandi et al. (2014)). Let Sn
++ be a symmetric

positive cone and ξ : Sn
++ → R be a strictly convex and differentiable function defined on

Sn
++. The Bregman matrix divergence Bregξ : Sn

++ × Sn
++ → [0, inf) is defined as

Bregξ(CS, CT ) = ξ(CS)− ξ(CT )− Tr
(
(∇CT

ξ)T (CS −CT )
)
, (1.60)

where ∇CT
ξ is the gradient of ξ with respect to CT . Tr(C) is the trace of the matrix

C ∈ Rn of size n with Tr(C) = ∑n
i=1 cii, where cii denotes the entry on the i-th row and

the i-th column of the matrix C. The Bregman divergence is non-negative and definite,
and it holds:

Bregξ(CS, CT ) = 0 iff CS = CT . (1.61)
8A symmetric matrix C of size n×n is positive definite if the scalar xT Cx > 0 is strictly positive for every
non-zero column vector x of n ∈ N real numbers (Trefethen & Bau, 1997).
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𝑣𝑢

F(𝑢)

F′(𝑢)(𝑣 − 𝑢)

Breg 𝑢, 𝑣
= F 𝑣 − F 𝑢 − F′ 𝑢 𝑣 − 𝑢

Figure 1.18: Visualization of the Bregman divergence. We assume a function Breg :
Rn×Rn → R and we define a strictly convex and differentiable function F : R→ R. Then,
we can visualize the Bregman divergence Breg(·, ·) (Sun, 2010; Cichocki et al., 2015).

Figure 1.18 visualizes the Bregman divergence.

Definition 1.6.4 (Euclidean distance, Harandi et al. (2014)). The Euclidean distance (i.e.,
the Frobenius norm for matrices) is obtained by using ξ(C) = Tr(CT C) as seed function
in the Bregman divergence.

For CORAL in Equation 1.55 we use the Frobenius distance in Definition 1.6.3. The
Jeffreys and Stein divergences are based on the Burg divergence defined in the following.

Definition 1.6.5 (Burg divergence, Harandi et al. (2014)). The Burg divergence, often
referred to as B-divergence, is obtained by ξ(C) = − log det(C) as seed function in the
Bregman divergence in Definition 1.6.3. det(C) denotes the determinant9 of the matrix C.
Then, the Burg divergence is defined as

Burg(CS, CT ) = Tr(CSC−1
T )− log det(CSC−1

T )− n. (1.62)

As a result of the asymmetric behavior exhibited by the Bregman divergence, it is
often unsuitable for use in real-world scenarios (Cherian et al., 2012). Thus, we proceed
to establish the symmetrized Bregman divergences, referred to as the Jeffreys and Stein
divergences, in the following.

Definition 1.6.6 (Jeffreys divergence, Harandi et al. (2014)). The Jeffreys divergence,

9The determinant det(C) of an n× n matrix C can be computed with the Leibniz formula.
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often referred to as J-divergence, is defined as

J(CS, CT ) = 1
2Burg(CS, CT ) + 1

2Burg(CT , CS)

= 1
2Tr(CSC−1

T )− 1
2 log det(CSC−1

T ) + 1
2Tr(CT C−1

S )− 1
2 log det(CT C−1

S )− n

= 1
2Tr(CSC−1

T ) + 1
2Tr(CT C−1

S )− n.

(1.63)

Definition 1.6.7 (Stein divergence, Sra (2012); Harandi et al. (2014)). The Stein diver-
gence, often referred to as S-divergence, is defined as

S(CS, CT ) = 1
2Burg

(
CS,

CS + CT

2

)
+ 1

2Burg
(

CT ,
CS + CT

2

)
= log det

(CS + CT

2

)
− 1

2 log det(CSCT ).
(1.64)

Due to the violation of the triangular inequality by J(CS, CT ), as shown in Lemma 1.6.1,
the Jeffreys divergence-based distance is not a proper distance. Nevertheless, it is com-
monly used (Morerio & Murino, 2017). Since J(CS, CT ) and S(CS, CT ) are defined
in terms of matrix multiplications, these divergences exhibit poor scaling with respect
to the dimension n of CS and CT . In addition, it should be noted that computing
S(CS, CT ) involves the computation of a matrix inverse. On the other hand, the Burg di-
vergence is designed to be invariant to affine transformation, as it satisfies Burg(CS, CT ) =
Burg(QCSQT , QCT QT ) for any Q ∈ GL(n), where GL(n) denotes the general linear group
of real invertible n× n matrices. Since the Definition 1.6.6 of the Jeffreys divergence and
the Definition 1.6.7 of the Stein divergence are derived from the Definition 1.6.5 of the
Burg divergence, the Jeffreys and Stein divergences also exhibit affine invariance. This
property is particularly important for computer vision algorithms. In contrast, the Eu-
clidean distance in Definition 1.6.4 is only invariant to rotation. (Cherian et al., 2012; Sra,
2012; Harandi et al., 2014)

From the Definition 1.6.6 of the Jeffreys divergence, we can reformulate Equation 1.55
of the standard Deep CORAL to the Jeffreys CORAL loss function

LCORAL,Jeffreys(f(US), f(UT )) = 1
4d2

(1
2Tr(CSC−1

T + CT C−1
S )− n

)
, (1.65)

and respectively with the Definition 1.6.7 of the Stein divergence to the Stein CORAL loss
function

LCORAL,Stein(f(US), f(UT )) = 1
4d2

(
log det

(1
2CS + 1

2CT

)
− 1

2 log det
(
CSCT

))
, (1.66)

where CS is the covariance of the source domain feature embeddings f(US), and CT is the
covariance of the target domain feature embeddings f(UT ).
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Application in Research. The use of Bregman divergences has proven to be signifi-
cant in various domains, including computer vision classification (Harandi et al., 2014),
as well as in face and vehicle tracking and texture segmentation (Cherian et al., 2012).
For instance, CORAL has been employed for time-series DA in human activity recognition
(Shi et al., 2022). Deep CORAL has been implemented in the AdaTime toolbox (Ragab
et al., 2023) as a DA loss for time-series classification in activity recognition from sen-
sors (such as accelerometer, gyroscope, body sensors, or electroencephalography signals).
The effectivenes of Deep CORAL has been evaluated on medical time-series data (Ozyurt
et al., 2023). Therefore, (Deep) CORAL has become a widely adopted metric for feature
alignment across diverse domains.

Application in Contributing Papers. In our previous work (Ott et al., 2022a), we
employed the solution of the standard CORAL, as defined in Theorem 1.6.2, by utilizing
the SVD to obtain the transformation matrix from the source domain to target domain.
To compare the second-order distances between feature embeddings of source and target
samples, we utilized the standard CORAL metric (Equation 1.55), along with the Jeffreys
CORAL metric (Equation 1.65), and the Stein CORAL metric (Equation 1.66). In another
work (Ott et al., 2022b), we adapted feature embeddings of sensor data captured by a
digital pen for writing on paper to those for writing on tablet. To accomplish this, we
utilized the differentiable loss functions of the standard, Jeffreys, and Stein CORAL to
train two parallel network pipelines. We also evaluated five different layers as DA points.
Moreover, we extended our work by incorporating Deep CORAL, which is implemented
in the AdaTime toolbox (as discussed in Chapter 2), with the Jeffreys and Stein CORAL
loss functions. We further evaluated a combination of Sinkhorn with all three CORAL
variants.

1.6.7 Higher-Order Moment Matching
The majority of current techniques aim to match the second-order or lower moments, which
may pose limitations in terms of statistical characteristics for non-Gaussian distributions.
To address this issue, higher-order moment matching (HoMM) of order ≥ 3 has been
proposed by Chen et al. (2020) to perform domain alignment by considering higher-order
statistics and address more intricate distributions. HoMM is defined by

LHoMMp,H,bs

(
f(US), f(UT )

)
= 1

Hp

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
nS

nS∑
i=1

f(Ui
S)⊗p − 1

nT

nT∑
i=1

f(Ui
T )⊗p

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

, (1.67)

between the embedding f(US) of the source domain and the embedding f(UT ) of the
target domain, with f(Ui

(·)) =
[
f(Ui

(·))(1), f(Ui
(·))(2), . . . , f(Ui

(·))(H)
]
∈ RH . It holds

nS = nT = bs, with the batch size bs. || · ||F denotes the Frobenius norm, H is the number
of hidden neurons in the adapted layer, and (·)⊗p denotes the p-level tensor power. In the
case of p = 1, HoMM is identical to linear MMD (Tzeng et al., 2014) (refer to Section 1.6.4),
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while for p = 2, it is equivalent to Gram matrix matching. The centralized Gram matrix
is transformed into a covariance matrix when activation outputs are normalized (i.e., by
subtracting the mean value). Consequently, the second-order HoMM (p = 2) is equivalent
to the CORAL (Sun & Saenko, 2015; Sun et al., 2016) method (see Section 1.6.6). However,
since HoMM can perform moment matching for higher orders (p ≥ 3), the space complexity
for calculating the tensor (·)⊗p increases toO(Hp), which becomes infeasible for our models’
embedding sizes ranging from 60 × 100 to 400 × 200. For instance, for H = 200, the
complexity becomes O(106) for p = 3, and O(109) for p = 4. As a solution, Chen et al.
(2020) proposed group moment matching.

Group moment matching (GMM). Let the division of hidden neurons into ng groups
be denoted by G = {G1, G2, . . . , Gng}, where each group Gi has ⌊ H

ng
⌋ neurons. The

corresponding HoMM loss function with GMM is defined as:

LHoMM,GMMp,H,bs,ng

(
f(US), f(UT )

)
= 1

bs2⌊ H
ng
⌋p

ng∑
j=1

∣∣∣∣∣∣
∣∣∣∣∣∣

bs∑
i=1

f(Ui,j
S )⊗p−

bs∑
i=1

f(Ui,j
T )⊗p

∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

, (1.68)

where f(Ui,j
S ) and f(Ui,j

T ) are the activation outputs of the j-th group. The space com-
plexity decreases to O(ng · ⌊ H

ng
⌋p) (Chen et al., 2020). However, for p ≥ 5, group moment

matching still does not work effectively for practical applications and higher layer sizes.
Random sampling matching (RSM). The process of HoMM with RSM can be expressed

formally as follows: First, a high-level tensor is considered, from which RSM randomly se-
lects T values. Then, these T values are aligned in both feature embeddings. Through ran-
dom sampling matching, HoMM is capable of performing arbitrary-order moment match-
ing. Hence, HoMM with RSM can be defined by

LHoMM,RSMp,T,bs

(
f(US), f(UT )

)
= 1

bs2T

T∑
j=1

 bs∑
i=1

r[j,p]∏
k=r[j,1]

[f(Ui
S)](k)−

bs∑
i=1

r[j,p]∏
k=r[j,1]

[f(Ui
T )](k)

2

.

(1.69)
r ∈ RT ×p denotes the randomly generated position index matrix. Then, the randomly
sample value in the p-level tensor f(Ui

(·))⊗p is denoted by ∏r[j,p]
k=r[j,1][f(Ui

(·))](k). The space
complexity reduces to O(T ) (Chen et al., 2020).

Kernelized HoMM. Similar to the kernelization of MMD (Long et al., 2017) in Sec-
tion 1.6.4, HoMM can be kernelized by a reproducing kernel Hilbert space (RKHS). Based
on Equation 1.67, kernelized HoMM (kHoMM) becomes

LkHoMMp,H,bs

(
f(US), f(UT )

)
= 1

Hp

∣∣∣∣∣∣
∣∣∣∣∣∣ 1
bs

bs∑
i=1

ϕ
(
f(Ui

S)⊗p
)
− 1

bs

bs∑
i=1

ϕ
(
f(Ui

T )⊗p
)∣∣∣∣∣∣

∣∣∣∣∣∣
2

F

, (1.70)

where ϕ(f(Ui
(·))⊗p) is the feature’s i-th sample in RKHS (Chen et al., 2020). The kHoMM

algorithm can be formulated similarly to the HoMM algorithm with random sampling
matching, as shown in Equation 1.69, where kHoMM can be randomly sampled from a
radial basis function (RBF) kernel. When p = 1, kHoMM becomes equivalent to kMMD
as proposed by Long et al. (2017).
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Application in Research. The effectiveness of HoMM and kHoMM for domain adap-
tation in optical digits recognition datasets and optical object recognition was assessed by
Chen et al. (2020). On the other hand, the performance of HoMM was evaluated in MTS
activity recognition from sensors by AdaTime (Ragab et al., 2023), while Ozyurt et al.
(2023) evaluated the effectiveness of HoMM on medical MTS data.

Application in Contributing Papers. In our previous work (Ott et al., 2022a), we
utilize HoMM and kHoMM as a distance metric to select the most suitable transformation
(computed with optimal transport) from the source to the target domain. In contrast, in
Ott et al. (2022b), we employed HoMM and kHoMM as a loss function to minimize the
discrepancy between feature embeddings at five different network layers. We compared
HoMM and kHoMM of order p = 2 and p = 3 with random sampling matching and set
T = 1, 000 as the maximal limit for training, which was determined by the capabilities of
the Nvidia Tesla V100-SXM2 GPUs with 32 GB VRAM. In Chapter 2, we utilized HoMM
of order 3, similar to AdaTime, without group moment matching or random sampling
matching, since the source and target domains were aligned at a late network layer with
small layer sizes.

1.7 Dimensionality Reduction
In Section 1.6, it is noted that representation learning presents a challenge in determining
its objective compared to classification tasks. The complexity and dimensionality of learned
representations make it difficult to evaluate their quality, and achieving better results in
classification does not necessarily indicate a good representation. Therefore, researchers
resort to visualizing feature representations and analyzing the arrangement and overlapping
of clusters to evaluate performance. However, as feature representations typically have
high dimensionality (i.e., > 100), dimensionality reduction techniques such as principal
component analysis (PCA) and t-stochastic neighbor embedding (t-SNE) are employed to
visualize them in two or three dimensions. This section provides a brief summary of PCA
and t-SNE, which are often used for visualization. Additionally, we describe the properties
of t-SNE for feature visualization that were used in our contributing papers (Ott et al.,
2022a,c, 2023c).

Principal Component Analysis (PCA). In accordance with Chan (2021), we provide
a brief summary of the objective of PCA. PCA involves the eigendecomposition of the
covariance matrix C. Let X = (xi, . . . , xn) ∈ Rn×d be a set of n data samples of d-
dimensional vectors. PCA aims to find a low-dimensional representation in Rp with p≪ d.
We can define a set of basis vectors {v1, . . . , vp}, where each vi ∈ Rd approximates the input
data by xn ≈

∑p
i=1 αivi, with α as the representation coefficients. The basis vectors are

optimally aligned with the geometric properties of the dataset, such that data samples have
significant coefficients for major axes and small coefficients for minor axes. The reduction
in dimensionality results in the preservation of only the larger coefficients. To compute
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the basis vectors and the corresponding coefficients, we aim to minimize the optimization
problem:

(v̂, α̂) = arg min||v||2=1,α||x− αv||2. (1.71)

by taking the derivative with respect to α and set it to zero: 2vT (x−αv) = 0 ⇒ α = vT x.
We set α = vT x in the optimization problem in Equation 1.71 and get

arg min||v||2=1,α||x− αv||2 = arg max||v||2=1{vT xxT v}, (1.72)

which is independent of α. Assuming that x is a realization of a random vector X, the
optimization problem of Equation 1.72 becomes

arg min||v||2=1,αE||X− αv||2 = arg max||v||2=1vTE{XXT}v = arg max||v||2=1vT Cv, (1.73)

where C := E[XT X] (Chan, 2021). This maximization is equivalent to the eigendecompo-
sition.

Theorem 1.7.1 (Eigendecomposition, (Chan, 2021)). The d × d-dimensional matrix C
has the eigendecomposition C = PΣPT , where P is the d × d eigenvector matrix, and
Σ the eigenvalue matrix. Then, the optimization v̂ = arg max||v||2=1vT Cv has a solution
v̂ = p1, the first column of the eigenvector matrix P.

For a proof of Theorem 1.7.1, refer to Chan (2021). To obtain further principal compo-
nents of the covariance matrix, it is assumed that the eigenvectors in matrix Σ are arranged
in descending order based on the magnitude of the corresponding eigenvalues.

t-SNE. The t-SNE algorithm, proposed by van der Maaten & Hinton (2008) as an exten-
sion of SNE (Hinton & Roweis, 2002), is used for the visualization of high-dimensional data
samples X = (x1, . . . , xn) ∈ Rn×dx with dx dimensions. The algorithm maps these samples
to a lower-dimensional space, typically dy = 2 or dy = 3, denoted by Y = (y1, . . . , yn) ∈
Rn×dy , which can be visualized in a human-readable manner. t-SNE overcomes the issue of
overcrowding of samples in the center of the map, and produces a map that captures the
structure of data at different scales. The low-dimensional samples yi represent individual
map points in Y . The objective is for the map Y to preserve a substantial portion of the
essential structure present in the data X . Although the linear method of PCA effectively
maintains a considerable distance between the representations Y of dissimilar data sam-
ples, it is not feasible for high-dimensional data that exist on a nonlinear manifold. A
multitude of nonlinear dimensionality reduction techniques have been developed, such as
locally linear embedding and stochastic neighbor embedding, but these techniques do not
possess the capability to retain both the local and global structure of the data within a
single map (van der Maaten & Hinton, 2008). Hence, we utilized t-SNE for both data
and embedding visualization in the contributing papers (Ott et al., 2022a,c, 2023c), and
provide a more detailed explanation of SNE and t-SNE in the following.

SNE computes the asymmetric probability pij = exp(−d2
ij)∑

k ̸=i
exp(−d2

ik
) , that represents the

probability that object i would pick object j, and the dissimilarities d2
ij are given by
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d2
ij = ||xi−xj ||2

2σ2
i

, where σi produces a Pi (i.e., the conditional probability distribution) with
a fixed hyperparameter, the so-called perplexity, for Pi that is defined as Perp(Pi) = 2S(Pi),
with the Shannon entropy S(Pi) = −∑

j pij log pij of Pi (van der Maaten & Hinton, 2008).
The probability in the low-dimensional space is

qij = exp(||yi − yj||2)∑
i ̸=k exp(−||yi − yk||2)

, (1.74)

also with Gaussian neighborhoods (with σ = 1
2). By minimizing the PC divergence as cost

function with, for instance, gradient descent, both distributions pij and qij can be matched,
where Pi and Qi represent the conditional probability distribution over all samples (in high-
dimensional space, respectively in low-dimensional space) (Hinton & Roweis, 2002). The
gradient of the cost function c is

∂c

∂yi

= 2
∑

j

(pij − qij + pji − qji)(yi − yj). (1.75)

Then, the gradient update is given by

Y(t) = Y(t−1) + η
∂c

∂Y
+ α(t)

(
Y(t−1) − Y(t−2)), (1.76)

at iteration t with learning rate η and the momentum α(t). As the momentum and the step
size has to be chosen carefully, a hyperparameter search should be performed. In contrast
to SNE, t-SNE uses a symmetrized cost function and a Student-t distribution rather than
a Gaussian distribution in Equation 1.74 (van der Maaten & Hinton, 2008).

Time-Series Embedding Visualization. In our experiments with various datasets,
we established distinct hyperparameters and refrained from selectively choosing embed-
ding visualizations. The initial dimension ranges from 1,500 (formed by reshaping 50×30)
and 3,800 (formed by reshaping 19 × 200). Initially, we utilized PCA to decrease the di-
mensionality of the data to the specified initial_dimension. Subsequently, we employed
t-SNE with the perplexity parameter to obtain a two-dimensional representation. We iter-
ate t-SNE for 2,000 time steps, initialized the momentum to 0.5, and then increased it to
0.8 after 20 iterations. We exemplarily present visualizations of time-series representations
of handwritten samples obtained from a sensor-enhanced pen (refer to Figure 1.19) and
generated sinusoidal time-series samples with induced noise (refer to Figure 1.20). In Fig-
ure 1.19a and Figure 1.19b, samples belonging to different classes are clustered together,
resulting in misclassification. Additionally, in Figure 1.19c, clusters representing samples
labeled as ’+’ (black), ’=’ (light green), and ’:’ (brown) overlap, leading to lower clas-
sification accuracy. In Figure 1.19d, the clusters representing right-handed (blue) and
left-handed (orange) writers are separated in the two-dimensional representation. How-
ever, due to domain shift between the two types of writers, a combined training of a model
results in reduced accuracy. This domain shift can be mitigated by transforming the rep-
resentations of left-handed writers to align with those of right-handed writers, resulting in
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(a) Visualization of lowercase character em-
beddings.

(b) Visualization of uppercase character em-
beddings.

(c) Visualization of number and symbol em-
beddings.

(d) Visualization of character embeddings
recorded from right-handed writers (blue),
left-handed writers (orange), and transformed
left-handed writers (red).

Figure 1.19: Two-dimensional visualization of embeddings of OnHW time-series data using
t-SNE with PCA as initial dimensionality reduction. Source: Ott et al. (2022a).

closer representations in the low-dimensional space. In the generated sinusoidal dataset,
clusters are clearly distinguishable, but the representations of class labels ’8’ (light green)
and ’9’ (light blue) overlap (refer to Figure 1.20a). With an increase in noise, the clusters
of representations become closer, as seen in the five clusters in the middle of Figure 1.20e.

Discussion About t-SNE Visualizations. It is essential to analyze t-SNE visualiza-
tions carefully since they can be misleading. Choosing the right perplexity value is crucial
as it balances the local and global aspects of the dataset. High perplexity values lead to
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(a) Sinusoidal em-
beddings without
noise.

(b) Sinusoidal em-
beddings with low
noise.

(c) Sinusoidal em-
beddings with in-
termediate noise.

(d) Sinusoidal
embeddings with
higher noise.

(e) Sinusoidal
embeddings with
highest noise.

Figure 1.20: Two-dimensional visualization of embeddings of generated sinusoidal time-
series data with the classes 0 to 9 using t-SNE with PCA as initial dimensionality reduction.
Source: Ott et al. (2022a).

cluster merging, resulting in a single big cluster, while low perplexity values lead to the
presence of many small, closely spaced clusters. Denser datasets require higher perplexity
values. A significant drawback of t-SNE is its high computational time, as demonstrated
by the ≈ 10 h required to compute the representation in Figure 1.19. Moreover, t-SNE
can get trapped in local optima. One significant advantage of t-SNE is its correlation to
some extent with the performance of a classification model. When samples are distinctly
separated in the low-dimensional representation, the high-dimensional samples contain ad-
equate variability to build a classifier with good classification accuracy. Regarding the
number of iterations, it is essential to continue iterating until a stable configuration is
reached. Furthermore, if high-dimensional clusters have different standard deviations, the
low-dimensional clusters are approximately the same size, as t-SNE expands dense clus-
ters and contracts sparse clusters. Consequently, relative distance in the low-dimensional
representation are meaningless, while distances between clusters depend on the perplexity
parameter.



Chapter 2

Practical Applications of Domain
Adaptation for Time-Series
Classification

Over the past few years, a diverse range of DA methods have been developed for time-
series classification, but a comprehensive assessment of these methods across various da-
tasets is lacking. This chapter aims to establish a benchmark of DA methods using the
AdaTime toolbox (see Section 2.1). The techniques for feature alignment are summarized
in Section 2.2. Furthermore, we present details regarding datasets such as sleep, gesture,
epilepsy, and human activity recognition, online handwriting recognition, interference de-
tection based on global navigation satellite system (GNSS) data, and generated sinusoidal
data, as well as dataset challenges and information about decoder networks in Section 2.3.
The evaluation results and hyperparameter searches are proposed in Section 2.4.

2.1 Benchmarking Toolbox & Contributions
Evaluation schemes in existing works for DA lack consistency, as comparing methods using
different network encoders can result in improper comparability. Additionally, there is
currently no standard for evaluation datasets in the field of time-series classification. To
address these issues in our evaluation, we utilize the benchmark suite AdaTime10 proposed
by Ragab et al. (2023). This suit standardizes the neural network encoders, implements
ten methods for unsupervised or few-shot DA learning, and evaluates them on four sleep
and human activity datasets. The authors demonstrate that visual DA methods can be
adapted to time-series classification tasks and are competitive when coupled with careful
hyperparameter searches. The procedure of AdaTime involves several steps. Firstly, the
dataset is prepared by slicing, splitting, and normalization. Next, an encoder network
extracts the features from the source and target domains. An unsupervised DA method
is then utilized to mitigate the domain shift between the extracted features of the two
10Github AdaTime: https://github.com/emadeldeen24/AdaTime

https://github.com/emadeldeen24/AdaTime
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domains. To facilitate fair hyperparameter selection without using training labels (in the
unuspervised setup) or with only a few training labels (in the few-shot learning setup),
Ragab et al. (2023) implemented source risk (Ganin et al., 2016), validation risk (You
et al., 2019), target risk, and few-shot target risk. In this section, we utilize the notations
introduced in Section 1.6. Specifically, we define the source domain data DS = {U i

S,Y i
S}

nS
i=1,

consisting of nS ∈ N labeled samples with MTS source data U i
S. Similarly, we define

the target domain data as DT = {U i
T ,Y i

T}
nT
i=1, consisting of nT ∈ N (un)labeled samples

with MTS target data U i
T . We assume that both domains share the same label space

Y = YS = YT , where Y = {1, . . . , |Y|} and |Y| are the number of classes. The goal of DA
methods is to align representations of the source and target domains by finding domain-
invariant features. This is achieved by minimizing the distance between the features of the
source domain f(US) and the target domain f(UT ). This domain alignment loss is given
by

Lalign = min
f

d
(
f(US), f(UT )

)
, (2.1)

where d is a distance metric (see Section 1.6). Furthermore, the neural network maps
the extracted and aligned features to their corresponding class probabilities, which are
typically computed using the cross-entropy loss function LCE. In AdaTime, and typically
in most DA methods, the alignment and classification loss functions are jointly optimized,
which can be expressed by

Ltotal = Lalign + LCE. (2.2)
By jointly optimizing the alignment and classification loss functions, the domain shift is
mitigated, while simultaneously learning the source classification task (Ragab et al., 2023).

We present our contributions as follows: (1) We utilize the AdaTime (Ragab et al.,
2023) toolbox as a baseline to benchmark DA for time-series classification. Our primary
focus is on evaluating DML and representation learning techniques, such as feature align-
ment loss functions and Sinkhorn transport. To achieve this goal, we use ten DA methods
implemented by (Ragab et al., 2023) and extend the toolbox with 14 additional repre-
sentation learning methods. The objective is to compare our results with those obtained
using the optimal transport method proposed by Ott et al. (2022a), particularly on the
OnHW datasets and sinusoidal dataset. Moreover, we assess the effectiveness of combining
Sinkhorn with other metric learning functions. (2) We extend the evaluation of DA meth-
ods to a broader range of datasets than those used in Ragab et al. (2023). Specifically,
we evaluate on three gesture recognition datasets, epilepsy and face recognition datasets,
an OnHW dataset for writing on tablet, three single character-based OnHW datasets (i.e.,
OnHW-chars, OnHW-symbols, and split OnHW-equations) for writing on paper, a multi-
variate and binary GNSS-based dataset for interference detection, i.e., time-series anomaly
detection (Goswami et al., 2023), and a sinusoidal generated univariate time-series dataset.
In contrast to previous work (Wilson et al., 2020; Liu & Xe, 2021; He et al., 2023; Ragab
et al., 2023), we train every possible combination of source and target domain data scenario,
including between participants of data collection, between left-handed and right-handed
writers and vice versa, between channels of sensor data, and between sinus and cosine
data. This approach allows for more generalizable statements. Overall, we train 1,405,290
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domain scenario combinations. (3) We follow the AdaTime approach of visualizing dataset
statistics, such as class distributions, to highlight the challenges of DA. (4) In addition to
evaluating the performance of DA methods, we conduct a detailed analysis of the source,
target, and few-shot target risks, and (5) to further improve the results of DA, we pro-
pose an extensive hyperparameter search of the CNN, ResNet, and TCN encoder networks
implemented by Ragab et al. (2023).

2.2 Domain Adaptation Methods
This section provides an overview of the DA methods used for time-series classification
tasks, including those implemented in AdaTime as well as additional methods used for
benchmarking. For a categorization of DA techniques, please refer to Section 1.5.3. While
some methods were originally designed for visual DA applications (Tzeng et al., 2014; Sun
et al., 2016; Ganin et al., 2016; Long et al., 2018; Shu et al., 2018; Rahman et al., 2020;
Chen et al., 2020; Zhu et al., 2020b), three were specifically developed for time-series DA
(Wilson et al., 2020; Liu & Xe, 2021; Ott et al., 2022a). All of the methods can be adapted
for time-series classification. Discrepancy-based methods (Tzeng et al., 2014; Sun et al.,
2016; Chen et al., 2020; Rahman et al., 2020; Zhu et al., 2020b; Ott et al., 2022a) aim to
minimize the distance between source and target domains, while adversarial-based methods
(Ganin et al., 2016; Long et al., 2018; Shu et al., 2018; Wilson et al., 2020; Liu & Xe, 2021)
use a domain discriminator network. Marginal techniques (Tzeng et al., 2014; Ganin et al.,
2016; Sun et al., 2016; Chen et al., 2020; Wilson et al., 2020; Liu & Xe, 2021; Ott et al.,
2022a) align the marginal distribution, while other methods (Long et al., 2018; Shu et al.,
2018; Rahman et al., 2020; Zhu et al., 2020b) jointly align both marginal and conditional
distributions. In the following, we give an overview of 24 unsupervised DA methods and
the supervised DA method by Ott et al. (2022a).

MSE. We utilize the Frobenius norm to calculate the distance between feature embed-
dings using the standard mean squared error (MSE), as discussed in Section 1.6.1.

CS & PC. The Cosine similarity (CS) and Pearson correlation (PC) (Pearson, 1920)
metrics measure the orthogonality or decorrelation between two vectors. In our work, we
use them to increase the similarity between feature embeddings and align them across
domains, as discussed in Section 1.6.2.

Kullback-Leibler & Jensen-Shannon Divergence. The Kullback-Leibler (KL) di-
vergence, introduced by Kullback & Leibler (1951), and Jensen-Shannon divergence (JSD)
are statistical measures that quantify the difference between two probability distributions
by measuring the relative entropy or information divergence (see Section 1.6.3).

Linear MMD & kMMD. We apply the maximum mean discrepancy (MMD) to align
the first order statistics (see Section 1.6.4). We assess both the linear MMD (Borgwardt
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et al., 2006) and the kernelized MMD (kMMD) (Long et al., 2017) using a Gaussian RBF
kernel.

Deep CORAL. The deep correlation alignment (Deep CORAL) method (Sun et al.,
2016) is a technique to align the second-order statistics of source and target embeddings.
It uses a differentiable loss function to accomplish this. For further details, please refer to
Section 1.6.6.

Jeffreys & Stein CORAL. The affine invariant variations of the CORAL method,
Jeffreys and Stein CORAL (Cherian et al., 2012; Sra, 2012; Harandi et al., 2014), are
designed to align second-order statistics of source and target embeddings. Definition 1.6.6
and Definition 1.6.7 in Section 1.6.6 provide more information about these variations. We
implement Equation 1.65 and Equation 1.66 to train the loss functions for the DA task.

Linear & Kernelized MMCD. Maximum mean and covariance discrepancy (MMCD)
(Zhang et al., 2020a; Alipour & Tahmoresnezhad, 2021) is a combination of MMD and
CORAL loss functions that aligns both the first and second-order statistics (see Sec-
tion 1.6.5, Equation 1.47). We refer to the linear and kernelized MMCD, depending on
whether the linear MMD or kMMD is used.

MMDA. The minimum discrepancy estimation for deep domain adaptation (MMDA)
method (Rahman et al., 2020) leverages a conditional entropy minimization technique to
integrate the kMMD and Deep CORAL alignment functions (refer to Section 1.6.4 and
Section 1.6.6 for more information).

DDC. Deep domain confusion (DDC) (Tzeng et al., 2014) aims to minimize the distance
between domains by using the kMMD metric, as explained in Section 1.6.4.

Linear & Squared DAN. The deep adaptation network (DAN) method, proposed by
Long et al. (2015), embeds the hidden representations of all task-specific layers in an RKHS
to align the mean embeddings of different domain distributions using multiple kMMD. We
assess the performance of two version of loss functions, namely linear and squared DAN.

HoMM. The higher-order moment matching (HoMM) (Chen et al., 2020) approach aims
to align domains based on higher-order statistics by minimizing the discrepancy between
different domains. We specifically evaluate the HoMM method (without GMM and RSM)
with order p = 3. Further details can be found in Section 1.6.7.

DANN. A gradient reversal layer is employed in the domain-adversarial neural network
(DANN) (Ganin et al., 2016) to encourage the emergence of features that are discriminative
for the source domain but indiscriminative with respect to the shift between the source
and target domains.
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CDAN. The conditional domain adversarial network (CDAN) (Long et al., 2018) learns
representations that are disentangled and transferable by conditioning the adversarial adap-
tation models on discriminative information. The multi-linear conditioning captures the
cross-covariance between the feature representation and classifier predictions, while the
entropy conditioning controls the uncertainty of the classifier predictions.

DIRT-T. The decision-boundary iterative refinement training with a teacher (DIRT-T)
(Shu et al., 2018) approach employs a combination of domain adversarial training and a
penalty term that penalizes violations of the cluster assumption. Additionally, it utilizes
natural gradient to further minimize the cluster assumption violation.

DSAN. A transfer network is learned by deep subdomain adaptation network (DSAN)
(Zhu et al., 2020b), which aligns subdomain distributions of domain-specific layers across
different domains based on a local kMMD distance.

CoDATS. The convolutional deep domain adaptation model for time-series data (Co-
DATS) technique, as proposed by Wilson et al. (2020), suggests a method for time-series
DA through the use of a weak supervision DA method in the form of target-domain label
distributions.

AdvSKM. Adversarial spectral kernel matching (AdvSKM) (Liu & Xe, 2021) aims to
improve the MMD metric through the use of a hybrid spectral kernel (i.e., kMMD). This
modified metric allows for a more accurate characterization of non-stationary and non-
monotonic statistics within time-series distributions.

Sinkhorn. The concept of geometric distances involves measuring the optimal trans-
portation cost, which can be calculated by solving a linear program, as originally proposed
by Kantorovitch (2006). This approach has been demonstrated to be effective in various
applications. An iterative method commonly used is the Sinkhorn11 transport method, as
presented by Courty et al. (2016). Further details can be found in Section 1.5.4.

Optimal Transport. The supervised DA method utilizing optimal transport (OT) (Ott
et al., 2022a) aims to minimize the distance between the source and target domain features
for each class label by employing the Earth Mover’s distance (EMD) and Sinkhorn transport
techniques. The optimal transformation is then selected based on the alignment of the
features, which is evaluated using CS and PC (see Section 1.6.2), MMD (see Section 1.6.4),
kMMD (see Section 1.6.4), standard, Jeffreys, and Stein CORAL (see Section 1.6.6), and
HoMM (without GMM and RSM) with order p = 3 (see Section 1.6.7).

11Github Sinkhorn OT: https://gist.github.com/wohlert/8589045ab544082560cc5f8915cc90bd

https://gist.github.com/wohlert/8589045ab544082560cc5f8915cc90bd
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Table 2.1: Statistics about time-series datasets with domain shift.

Dataset # Domains # Channels # Classes Length Train Set Test Set
HHAR1 9 3 6 128 12,716 5,218
UCI HAR1 30 9 6 128 2,300 990
WISDM1 36 3 6 128 1,350 720
SSC (EEG)1 20 1 5 3,000 14,280 6,130
uWave2 8 3 5 150 3,582 896
Finger movements2 28 1 2 50 104 104
Gestures mid air2 10 66 14 66 1,323 1,326
Epilepsy2 2 3 4 206 137 138
Face detection2 2 144 2 62 6,966 2,448
PenDigits2 2 2 10 8 8,133 2,859
OnHW-symbols 2 13 15 79 2,142 525
Split OnHW-equations 2 13 15 79 36,718 9205
OnHW-chars (combined) 2 13 52 64 24,887 8,658
GNSS (binary) 2 88 2 4 – 29 ∅ 15,403 ∅ 6,604
GNSS (multi-class) 2 88 9 4 – 29 ∅ 15,403 ∅ 6,604
Sinusoidal data 2 1 10 1,000 11,000 1,000
1Dataset available at: https://researchdata.ntu.edu.sg/dataverse/adatime
2Dataset available at: http://www.timeseriesclassification.com/dataset.php

Sinkhorn + Alignment Loss. The MMD and optimal transport distances are designed
to consider the underlying geometry of the underlying space in which the data resides.
Feydy et al. (2019) demonstrated that the Sinkhorn divergence provides a means to in-
terpolate between MMD and OT distances. Given the practical advantages of Sinkhorn,
we explore its use in combination with alignment loss functions such as linear MMD,
kMMD, Deep CORAL, Jeffreys CORAL, Stein CORAL, and HoMM. This combination
of two geometric functions enables us to examine their impact on the alignment of feature
representations.

2.3 Experimental Setup
We provide an overview of the time-series classification datasets used in our experimental
setup and provide a rationale for the DA task (see Section 2.3.1). Subsequently, in Sec-
tion 2.3.2, we detail the encoder architectures and their corresponding hyperparameters.

2.3.1 Datasets
In this section, we present various time-series datasets that serve for our comprehensive
evaluation benchmark. Table 2.1 provides an overview of statistics associated with 15 such
datasets, including the number of domains (i.e., participants involved in data collections),
number of channels (i.e., univariate or multivariate data), number of classes, length of the
time-series, and size of the training and test datasets. The datasets are summarized below.

https://researchdata.ntu.edu.sg/dataverse/adatime
http://www.timeseriesclassification.com/dataset.php
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HHAR. The dataset used for heterogeneity human activity recognition (HHAR) (Stisen
et al., 2015) consists of human activities performed by nine users. The dataset includes
readings obtained from three-axis accelerometers, with sampling rates ranging between
25 Hz and 200 Hz. The HHAR dataset was recorded using a total of 36 smartphones,
tablets, and smartwatches, in order to analyze heterogeneities specific to sensors, devices,
and workloads, since impairments can vary significantly across devices and are dependent
on the type of recognition technique used. We evaluate all 36 possible combinations of
DA between the nine users, while previous studies such as Wilson et al. (2020); Liu & Xe
(2021); He et al. (2023); Ragab et al. (2023) evaluated only five combinations.

UCI HAR. The UCI human activity recognition (HAR) (Anguita et al., 2013) dataset
comprises human body motions recorded from 30 users performing activities of daily living,
with six different classes (i.e., standing, sitting, lying down, normal walking, walking up-
stairs, and walking downstairs). The users carried waist-mounted smartphones equipped
with integrated inertial sensors that measured nine channels (i.e., accelerometers, gyro-
scopes, and magnetometers, each with three axis) samples at 50 Hz. We evaluate DA
among 435 possible combinations of the 30 users.

WISDM. The WISDM (Kwapisz et al., 2010) dataset utilizes three-axis accelerometers
embedded in smartphones to recognize six different classes of activities (i.e., walking, jog-
ging, ascending stairs, descending stairs, sitting, and standing) performed by 36 users. We
treat each user as a distinct domain and train DA models on 356 possible combinations of
the 36 users.

SSC (EEG). The sleep stage classification (SSC) (Goldberger et al., 2000) dataset con-
sists of electroencephalography (EEG) signals representing five different sleep stages (i.e.,
wakefulness, three non-rapid eye movement stages, and rapid eye movement stage). The
dataset also includes univariate heart rate recordings from 20 users, with a length of 3,000
time steps. Each user is treated as a distinct domain, and we train DA models on 190
possible combinations of the 20 users.

uWave. The uWave (Liu et al., 2009) dataset includes gestures performed using a hand-
held device equipped with an integrated three-axis accelerometer that allows personalized
gestures from a library of five classes. A total of 4,478 samples were recorded from eight
users. We interpolate the time-series to 150 time steps and evaluate DA methods on all
28 possible combinations of the eight users. It should be noted that we use a different
train/validation (80%/20%) split than previous studies such as Wilson et al. (2020); Liu
& Xe (2021).

Finger Movements. The finger movements (Blankertz et al., 2001) dataset consists of
EEG recordings from one subject seated in a chair with their fingers placed in a standard
typing position on a computer keyboard. The task involves pressing keys with the index
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and little fingers, with binary labels indicating left and right movements. The dataset is
relatively small, with only 104 training and testing samples. We train DA models on 378
possible combinations of source and target domain scenarios.

Gestures Mid Air. The gestures mid air (Caputo et al., 2018) dataset is collected using
a leap motion device and consists of interface-command gestures from 10 subjects. We train
DA models on 45 possible combinations of scenarios.

Epilepsy. The dataset presented by Villar et al. (2016) was generated using a tri-axial
accelerometer with three channels samples at 16 Hz, worn on the dominant wrist by six
healthy participants performing four different activities (i.e., walking, running, sawing, and
seizur mimicking), each at least 10 times. We randomly split the dataset 50%/50% into
source and target domains, and further randomly split the data in 50%/50% training and
testing sets. Due to the small size of the dataset, samples from all subjects are included in
both the source and target domain datasets, but in an unequal manner.

Face Detection. The face detection (Olivetti et al., 2014) dataset addresses the prob-
lem to classify between two classes: Whether the participant has been presented with a
face image or a scrambled image. The dataset is comprised of MEG recordings (i.e., 144
channels) from 16 participants, containing 9,414 samples.

PenDigits. The PenDigits (Alimoglu & Alpaydin, 1997) dataset (see Figure 1.4a) in-
volves a task of handwritten digit classification (10 classes) based on the 2D coordinates
(two channels) of the pen trajectory on a digital screen. A total of 44 writers collected
10,992 samples. Similar to the epilepsy dataset, we randomly divide the datasets into
source and target domains.

Online Handwriting. The OnHW database consists of handwritten samples captured
using sensor-enhanced pens. The OnHW-chars (Ott et al., 2020b) dataset is a task of
recognizing lowercase and uppercase characters (52 classes) and contains 31,275 samples
from 119 right-handed writers and 2,270 samples from 9 left-handed writers. The OnHW-
symbols and split OnHW-equations datasets (Ott et al., 2022d) consist of single numbers
and symbols. The writer’s handedness introduces domain shift, with 27 and 55 right-
handed writers, respectively, and 4 left-handed writers for both datasets. We adjust the
embeddings between these two domains as they represent the source and target domains.
The number of domains in this dataset is lower than the others, but the number of channels
(13) and classes (15 and 52) is higher. We evaluate DA in both directions, from left-handed
to right-handed writers (L→R) and from right-handed to left-handed writers (R→L). For
more details, refer to Section 1.2.1.

GNSS-based Interference Detection. The degradation and disruption of GNSS re-
ceivers by interference signals have a significant impact on their localization accuracy, which
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necessitates their detection and classification (van der Merwe et al., 2023). Furthermore,
the successful classification of interference signal waveforms aids in the determination of
the signal’s purpose, such as differentiating between interference signals from jammers in-
side cars or mounted on towers (Raichur et al., 2022). To address this need, Brieger et al.
(2022) conducted a study in which wideband snapshots were collected in GNSS bands.
These snapshots, taken every second using a sample rate of 62.5 MHz, recorded 20 ms of
raw data and captured the real GNSS signal from an outside receiver mixed with inter-
ference signals. The GNSS-based dataset was obtained from eight static and dynamic
scenarios at varying distances and speeds relative to the receiver and was recorded at the
Fraunhofer IIS L.I.N.K. test and application center. As a consequence, the multi-class
problem has nine distinct classes: Class 0 corresponds to the non-interference class, while
class 1 through 8 represent different types of interference signals to be detected (namely
chirp, frequency hopper, modulated, multitone, noise, and pulsed). Alternatively, for the
binary classification task, classes 1 to 8 are merged to identify either interference or non-
interference signals. To accomplish this, we utilize the following four features out of 88
channels: automatic gain control (AGC), carrier-to-noise density ratio (CN0), azimuth
variance, and elevation variance, as suggested by Raichur et al. (2022). To evaluate the
dataset, we choose two distinct recording days as domains and adapt from the first to the
second. We employ a sliding window, obtained from the tsai toolbox12, with a stride of
1, and assess window lengths ranging from 4 to 29. When using a training/test split of
70%/30%, this generates 15,403 training samples and 6,604 testing samples, on average.

Generated Sinusoidal Data. Ott et al. (2022a) generated univariate data using sinu-
soidal time-series with distinct frequencies for 10 classes and then introduced noise from
a continuous uniform distribution U(a, b) with a = 0.0 and b ∈ B = {0.0, 0.1, 0.2, . . . , 1.9}
to create the target domain dataset. For the source domain training dataset, we flipped
the sign of the time-series and introduced noise U(a, b/2). To assess the effectiveness of
DA methods, Ott et al. (2022a) evaluated them using the flipped dataset with noise values
b ∈ B.

Class & Domain Distributions. Methods that utilize a clustering loss on top of em-
bedded features to optimize clustering by pushing data closer to randomly initialized cluster
centers may encounter issues when the number of samples varies across different domains
or classes (Rezaei et al., 2022). The preponderance of samples in each domain is critical for
unsupervised DA. In this regard, we perform a statistical analysis of the dataset. Figure 2.1
and Figure 2.2 provide details on the class distributions and number of samples per partic-
ipant for all time-series datasets (training and test datasets are combined). For the HHAR
dataset (see Figure 2.1a), classes 1 and 4 are underrepresented, while every user contributed
equally. Class 2 of the UCI HAR dataset (Figure 2.1b) has 500 fewer samples than classes
4 and 5, with every user contributing equally. In the WISDM dataset (see Figure 2.1c),

12Github tsai: https://github.com/timeseriesAI/tsai

https://github.com/timeseriesAI/tsai
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(a) HHAR.
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(b) UCI HAR.
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(c) WISDM.
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(d) SSC (EEG).
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(e) uWave.
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(f) Face detection.
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(h) Finger movements.
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(i) Gestures mid air.

Figure 2.1: Overview of dataset statistics of domain (legend) and class distributions.
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Figure 2.2: Figure 2.1 continued.

classes 1 and 5 preponderate over the classes 0 and 2 to 4 because data collection for spe-
cific classes was faster than for other classes. Participants with ID 1 and 2 contributed less
data than the remaining participants. The SSC (EEG) dataset (see Figure 2.1d) shows a
similar pattern, as class 2 (non-rapid eye movement stage) is predominant in human sleep.
Class 2 is also predominant in the uWave dataset (see Figure 2.1e). Since the source and
target domain samples are randomly split, the face detection (see Figure 2.1f), epilepsy
(see Figure 2.2a), and PenDigits (see Figure 2.2b) datasets are equally distributed between
both domains. The task of detecting GNSS-based interference poses a challenge due to the
uneven representation of interference classes (see Figure 2.1g for the multi-class detection
problem). Class 0 (without interference) contains over 12,000 samples, whereas each class
with interference (class 1 to 8) has less than 2,000 samples. Notably, class 8 has very few
samples available. In contrast, the binary classification task becomes balanced when the
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interference classes are combined with the non-interference classes, and hence, the classi-
fication task is unsophisticated. The finger movements dataset (see Figure 2.1h) has an
equal contribution from each participant, but this is not the case for the gestures mid air
dataset (see Figure 2.1i). Although the classes for OnHW-symbols (see Figure 2.2c) and
split OnHW-equations (see Figure 2.2d) are the same, their distributions differ. Regarding
OnHW-symbols, each class is distributed approximately equally. Concerning split OnHW-
equations, numbers are more likely to appear than operators such as ’+’, ’-’, ’·’, ’:’,
and ’=’. Additionally, since the number ’0’ cannot occur at the beginning of an equation,
it appears less frequently than the numbers ’1’ through ’9’. The ratio of right-handed
to left-handed writers approximately corresponds to the real-world distribution, meaning
that the under-representation of left-handed writers (10.6%) is taken into account13. Each
writer contributed the same amount of characters to the OnHW-chars dataset, as shown
in Figure 2.2e, and as a result, the classes are distributed evenly. In contrast, the classes in
the PenDigits handwriting dataset are roughly equally distributed. Given the imbalanced
nature of the time-series dataset, we also report macro F1-scores, in addition to the stan-
dard accuracy metric, which accounts for the data distribution. The F1-score is defined
as

F1-score = true positive
true positive + 1

2(false positive + false negative) , (2.3)

where true positive is the number of true positives classified by the model, respectively for
false positive and false negative.

2.3.2 Architectures & Hyperparameters
Following the approach in AdaTime (Ragab et al., 2023), we assess the performance of three
encoder networks in extracting features from samples of the source and target domains.
The encoder network is responsible for transforming data from the input space to the
feature space. To cover a range of convolutional and spatio-temporal networks (as described
in Section 1.3.3), we consider three networks: CNN, ResNet18 (He et al., 2016), and
TCN. This selection facilitates a fair comparison of DA methods, although using a more
suitable encoder network specific to each dataset could potentially yield better classification
results. However, due to computational constraints, we limit our encoder networks to these
three options. For the HHAR, UCI HAR, WISDM, SSC, uWave, and generated sinusoidal
datasets, we use the hyperparameters proposed by Ragab et al. (2023), while we search for
optimal hyperparameters for the OnHW datasets. For the remaining datasets, we select the
same hyperparameters as those used for the HAR dataset. We also evaluate normalization
of the time-series data as a preprocessing step. When using iterable-style datasets with
multi-processing, we set the drop last argument to drop the last non-full batch of each
dataset, and we search for the optimal drop last parameter. In the following, we provide a
description of the three encoder networks.
13Marietta Papadatou-Pastou, Eleni Ntolka, Judith Schmitz, Maryanne Martin, Marcus R. Munafò, Se-

bastian Ocklenburg, and Silvia Paracchini. Human Handedness: A Meta-analysis. In Psychological
Bulletin, volume 146(6), pp. 481-524, June 2020. doi:10.1037/bul0000229.

https://pubmed.ncbi.nlm.nih.gov/32237881/
https://pubmed.ncbi.nlm.nih.gov/32237881/
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CNN. The convolutional encoder is composed of three blocks, each comprising a 1D con-
volutional layer (with 64, 128, and 128 channels, respectively), a batch normalization layer,
ReLU activation, and a 1D max pooling layer. Following the three blocks, there is an adap-
tive average pooling layer (with the parameter feature length) and a fully connected layer
for the classification task. The first convolutional layer has the hyperparameters kernel size
and stride. The convolutional layers in all blocks are dependent on the hyperparameter
intermediate channels. The first block includes a dropout with the hyperparameter dropout
rate. Lastly, the convolutional and batch normalization (Ioffe & Szegedy, 2015) layers in
the last block depend on the hyperparameter final output channels.

ResNet18. The ResNet architecture, as proposed by He et al. (2016), is composed of
four one-dimensional residual blocks and one adaptive average pooling layer (with the
parameter feature length). Similar to the CNN, we define the parameters for ResNet as
kernel size, stride, intermediate channels, and final output channels.

TCN. The TCN network comprises a TCN (Bai et al., 2018) layer and two 1D convolu-
tional blocks with ReLU activation.

Loss Parameters. The DA hyperparameters, including the learning rate, source clas-
sification loss weighting, domain loss weighting, CORAL weighting, and MMD weighting,
were established for the HHAR, UCI HAR, WISDM, and SSC (EEG) datasets as sug-
gested by Ragab et al. (2023). For the remaining datasets, we choose the following hy-
perparameters for the DA methods14: MMDA (lr = 0.001, wtsrc = 6.13, wtalign = 8.63,
wtMMD = 2.37, and wtentropy = 7.16), DDC (lr = 0.005, wtsrc = 6.24, and wtalign = 6.36),
HoMM (lr = 0.001, wtsrc = 2.15, and wtalign = 9.13), DANN (lr = 0.01, wtsrc = 9.74, and
wtalign = 5.43), CDAN (lr = 0.01, wtsrc = 5.19, wtalign = 2.91, and wtentropy = 1.73), DIRT-
T (lr = 0.0005, wtsrc = 7.00, and wtalign = 4.51, and wtentropy = 0.79), DSAN (lr = 0.0005,
wtsrc = 1.76, and wtalign = 1.59), CoDATS (lr = 0.001, wtsrc = 6.21, and wtalign = 1.72),
AdvSKM (lr = 0.005, wtsrc = 3.05, and wtalign = 2.876), and the same parameters for
the remaining methods MSE, CS, PC, KL, JSD, linear MMD, kMMD, Deep CORAL,
Jeffreys CORAL, Stein CORAL, linear MMCD, kernelized MMCD, and Sinkhorn (with
combinations) (lr = 0.005, wtsrc = 8.67, and wtalign = 0.44). We equally weight Sinkhorn
and the second alignment loss function. For kMMD, we search for the hyperparameters
kernel_mul = [1, 2, 3, 4] and kernel_num = [3, 4, 5, 6, 7] of the RBF kernel (Zellinger
et al., 2017). For follow-up trainings, we select kernel_mul = 2 and kernel_num = 5.

14Abbreviations. lr: learning rate, wtsrc: weighting source classification loss, wtalign: weighting domain
alignment loss, wtMMD: weighting MMD loss, wtentropy: weighting conditional entropy loss.
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Table 2.2: Results for the source and target test datasets, which are evaluated on the
model trained solely on target samples to show the discrepancy between source and target
domains. For all 15 datasets, we report the accuracy and F1-score in % for the CNN,
ResNet18, and TCN encoder networks. These metrics are averaged over all domain sce-
narios and five training runs. We refer to the underlined best-performing encoder network
in the main text.

CNN ResNet18 TCN
Target Source Target Source Target Source

Dataset Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1
HHAR 98.70 98.70 63.88 58.87 98.01 98.05 47.42 42.54 98.02 98.06 60.77 55.83
UCI HAR 99.42 99.48 74.31 71.27 99.77 99.78 69.96 64.99 98.68 98.68 72.44 68.79
WISDM 99.28 98.21 55.23 38.44 99.22 98.09 55.60 32.84 93.83 88.46 56.36 37.25
SSC (EEG) 79.62 70.18 66.69 54.84 62.13 48.34 49.71 36.43 52.45 39.90 45.11 33.52
uWave 99.82 99.83 83.54 82.05 96.43 96.15 43.38 38.12 99.43 99.41 79.65 77.70
Finger movements 55.91 51.08 51.23 42.55 50.66 45.47 50.51 46.00 57.00 55.16 51.48 46.43
Gestures mid air 67.14 65.11 42.80 37.46 64.23 61.82 38.48 33.97 69.84 67.46 45.89 41.58
Epilepsy 80.31 75.40 77.50 72.87 95.31 95.33 97.81 97.87 74.38 68.06 74.69 73.30
Face detection 52.59 40.59 56.46 48.86 53.52 50.94 51.75 45.88 69.92 69.92 64.10 64.09
PenDigits 99.69 99.68 96.07 95.99 84.41 84.28 78.92 78.78 99.54 99.53 96.03 96.01
OnHW-symbols 77.19 78.07 20.00 14.87 76.25 76.59 13.75 9.74 19.69 15.12 5.00 3.54
Split OnHW-equations 89.66 89.02 36.83 38.29 82.34 82.30 21.92 21.60 56.94 54.48 29.49 29.44
OnHW-chars (combined) 73.52 71.76 37.44 36.83 49.93 48.02 16.10 15.05 1.29 0.86 1.92 0.07
GNSS (binary) 97.16 95.61 73.69 54.81 95.48 93.01 66.26 60.57 96.86 95.14 69.22 54.61
GNSS (multi-class) 73.27 10.85 73.27 10.85 73.27 10.85 73.27 10.85 73.27 10.85 73.27 10.85
Sinusoidal data (b = 0.0) 23.99 15.24 40.12 29.18 58.69 50.45 10.18 3.45 100.0 100.0 0.00 0.00
Sinusoidal data (b = 0.5) 46.27 39.35 43.55 32.50 45.56 36.72 10.91 5.12 98.35 98.33 8.65 7.09
Sinusoidal data (b = 1.0) 34.74 26.95 37.28 29.55 21.01 9.65 8.67 2.33 84.92 84.24 0.87 1.12
Sinusoidal data (b = 1.5) 25.79 17.57 30.97 25.37 11.11 2.79 8.41 3.59 65.04 62.32 0.38 0.44
Sinusoidal data (b = 1.9) 28.75 28.95 22.69 24.17 10.30 2.30 8.87 3.69 59.05 57.58 0.50 0.59

2.4 Evaluation Results
Hardware & Training Setup. For all experiments, we use Nvidia Tesla V100-SXM2
GPUs with 32 GB VRAM equipped with Core Xeon CPUs and 192 GB RAM. We utilize
the vanilla Adam optimizer with a weight decay of 10−4, β1 = 0.5, and β2 = 0.99. Each
dataset and method is trained for 40 epochs and the results are averaged over five trainings.
For the SSC (EEG) dataset, we use a batch size of 128, whereas for the remaining datasets,
a batch size of 32 is used. In the following work, we examine the domain gap between the
source and target domains and provide a detailed analysis of the evaluation results for the
DA methods and encoder networks. Furthermore, we propose hyperparameter searches for
the Sinkhorn and OnHW datasets, and assess the associated risks.

Discrepancy Between Source and Target Domains. We begin by assessing the
domain shift between the source and target domains, which involves training and testing
the models on either the target domain dataset or training the model on the source domain
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Table 2.3: DA results in % (mean and standard deviation over all scenarios and five runs)
for the HHAR (Stisen et al., 2015) dataset utilizing AdaTime. Bold are best results.
Table 2.4 to Table 2.12 continues.

CNN ResNet18 TCN
Method Accuracy F1 Accuracy F1 Accuracy F1

MSE 62.24 ± 16.7 57.79 ± 18.0 48.40 ± 16.4 43.37 ± 18.1 52.08 ± 14.1 46.31 ± 16.2
CS 63.07 ± 18.7 59.09 ± 21.0 53.68 ± 19.6 50.98 ± 22.1 56.09 ± 17.8 51.36 ± 20.8
PC 64.74 ± 17.3 60.68 ± 19.1 54.97 ± 19.6 51.59 ± 22.1 61.43 ± 16.4 57.20 ± 19.1
KL 60.10 ± 16.9 54.76 ± 18.6 50.83 ± 18.7 46.08 ± 21.7 19.36 ± 6.0 8.39 ± 5.8
JSD 64.75 ± 17.4 60.62 ± 20.0 54.55 ± 20.4 50.74 ± 23.4 17.79 ± 3.6 7.33 ± 3.1
Linear MMD 66.83 ± 17.5 63.13 ± 19.7 57.50 ± 20.3 54.95 ± 22.8 68.33 ± 18.3 65.01 ± 21.3
kMMD 63.86 ± 17.1 59.64 ± 18.9 54.50 ± 19.8 51.25 ± 22.3 61.48 ± 17.4 57.48 ± 20.6
Deep CORAL 73.51 ± 17.2 71.57 ± 18.9 61.20 ± 19.2 59.75 ± 21.1 72.17 ± 16.8 70.23 ± 18.9
Jeffreys CORAL 64.49 ± 17.5 60.18 ± 19.4 54.55 ± 19.7 61.11 ± 22.3 62.13 ± 17.7 58.15 ± 21.0
Stein CORAL 64.10 ± 16.9 59.78 ± 18.9 54.93 ± 19.7 51.57 ± 22.2 62.11 ± 16.6 58.18 ± 19.4
Linear MMCD 66.60 ± 17.5 63.03 ± 19.7 57.32 ± 20.2 54.87 ± 22.7 68.04 ± 18.2 64.78 ± 21.1
Kernelized MMCD 64.37 ± 17.1 60.11 ± 19.0 55.26 ± 19.7 52.06 ± 22.3 62.03 ± 17.2 57.97 ± 20.4
MMDA 70.34 ± 14.0 66.08 ± 15.0 57.73 ± 20.8 55.05 ± 23.5 67.26 ± 17.6 64.51 ± 20.1
DDC 63.14 ± 16.6 59.32 ± 19.1 53.74 ± 17.7 49.80 ± 20.3 59.70 ± 16.0 55.69 ± 18.9
Linear DAN 72.14 ± 18.5 69.81 ± 20.6 59.19 ± 19.9 56.96 ± 22.3 68.40 ± 16.9 65.86 ± 19.5
Squared DAN 72.09 ± 18.4 69.84 ± 20.3 59.29 ± 20.2 57.09 ± 22.6 68.48 ± 17.7 66.12 ± 20.1
HoMMp=3 72.64 ± 17.3 70.15 ± 19.4 61.59 ± 19.8 59.70 ± 22.4 70.84 ± 16.8 68.48 ± 19.3
DANN 76.91 ± 18.9 75.86 ± 19.6 63.21 ± 20.3 62.18 ± 21.5 73.16 ± 18.3 71.86 ± 19.4
CDAN 79.88 ± 18.2 79.44 ± 18.5 66.49 ± 20.4 66.11 ± 20.9 76.78 ± 16.7 75.10 ± 18.2
DIRT-T 80.11 ± 18.3 79.45 ± 18.8 67.89 ± 22.0 65.92 ± 23.5 76.78 ± 17.5 74.77 ± 19.4
DSAN 77.96 ± 19.6 77.28 ± 20.4 67.22 ± 22.2 66.60 ± 23.1 74.64 ± 18.7 73.26 ± 20.3
CoDATS 76.30 ± 19.6 75.62 ± 20.4 63.79 ± 19.1 62.73 ± 20.0 72.48 ± 18.1 71.10 ± 19.5
AdvSKM 66.36 ± 15.3 62.23 ± 17.0 53.61 ± 18.6 50.28 ± 20.7 62.32 ± 15.8 58.07 ± 18.3
Sinkhorn 75.15 ± 19.5 73.97 ± 20.7 67.98 ± 20.9 67.18 ± 22.5 70.04 ± 19.1 68.11 ± 21.4

dataset and evaluating it on the target domain dataset. The results are presented in
Table 2.2. Across all datasets, we observe a domain gap between the source and target data,
with the HHAR dataset exhibiting a domain shift of 34.82%p (percent points), the UCI
HAR dataset of 25.11%p, the WISDM dataset of 37.47%p, the SSC dataset of 12.93%p,
the uWave dataset of 16.28%p, and the gestures mid air dataset of 23.95%p. Hence,
regardless of the dataset, a domain shift exists. Moreover, the domain shift is even more
pronounced for the OnHW datasets (57.19%p, 52,83%p, and 36,08%p), as the sensor data
differs significantly between right-handed and left-handed writers, as reported in Klaß et al.
(2022). For the finger movements, epilepsy, face detection, and PenDigits datasets, which
are randomly shuffled, the domain gap is small. However, for GNSS interference detection
(with a window length of 14), a domain shift is observed only in the binary case, with a
shift of 23.47%p. In the multi-class problem, the models tend to predict the class “non-
interference” regardless of the domain. In the sinusoidal dataset, the classification accuracy
significantly decreases with an increased level of added noise, as demonstrated in Ott et al.
(2022a, 2023c). The accuracy drops from 100% for b = 0.0 to 59.05% for b = 1.9 on the
target domain data. Since the model is unable to extract any meaningful features of the
source domain that cannot be correctly classified using the model trained on the target
domain, there is a substantial shift between the two domains. The gap is reduced when
using the CNN encoder but at the expense of lower target accuracy.
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Table 2.4: UCI HAR (Anguita et al., 2013) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 72.41 ± 18.0 69.14 ± 19.9 68.04 ± 16.4 63.93 ± 17.7 69.73 ± 16.0 65.92 ± 17.3
CS 77.62 ± 18.0 75.43 ± 19.9 73.88 ± 16.3 70.49 ± 17.7 68.99 ± 16.5 65.34 ± 17.8
PC 80.52 ± 15.9 78.79 ± 17.1 77.51 ± 15.5 74.53 ± 16.8 78.26 ± 14.6 76.08 ± 15.6
KL 69.17 ± 18.9 65.30 ± 21.1 72.04 ± 16.4 67.42 ± 18.0 16.64 ± 4.8 5.36 ± 3.2
JSD 79.70 ± 16.3 77.95 ± 17.5 72.97 ± 14.7 67.67 ± 16.5 15.85 ± 3.8 4.74 ± 1.9
Linear MMD 82.48 ± 14.7 81.22 ± 15.7 80.97 ± 13.4 78.44 ± 14.6 84.62 ± 12.6 83.35 ± 13.6
kMMD 80.95 ± 15.7 79.26 ± 17.0 77.88 ± 15.2 74.94 ± 16.6 78.46 ± 14.8 76.28 ± 15.8
Deep CORAL 80.93 ± 14.5 79.20 ± 15.5 79.26 ± 13.2 76.60 ± 14.1 78.95 ± 12.7 76.77 ± 13.4
Jeffreys CORAL 80.99 ± 15.6 79.32 ± 16.9 77.90 ± 15.3 74.97 ± 16.6 78.33 ± 14.7 76.10 ± 15.9
Stein CORAL 80.99 ± 15.6 79.32 ± 16.8 77.92 ± 15.1 75.00 ± 16.5 78.52 ± 14.7 76.37 ± 15.7
Linear MMCD 82.45 ± 14.7 81.20 ± 15.6 81.11 ± 13.5 78.67 ± 14.7 84.62 ± 12.8 82.33 ± 13.9
Kernelized MMCD 80.93 ± 15.7 79.20 ± 16.9 79.26 ± 14.4 76.60 ± 15.6 78.95 ± 14.2 76.77 ± 15.3
MMDA 89.92 ± 11.4 89.86 ± 11.5 79.41 ± 13.7 77.04 ± 14.8 77.75 ± 12.9 75.35 ± 13.5
DDC 80.96 ± 14.5 79.29 ± 15.4 77.88 ± 14.0 74.96 ± 14.9 78.57 ± 13.2 76.40 ± 13.9
Linear DAN 86.17 ± 12.3 85.50 ± 12.9 81.91 ± 13.1 80.01 ± 14.1 81.73 ± 13.1 80.15 ± 14.0
Squared DAN 86.31 ± 12.5 85.69 ± 13.0 82.22 ± 13.2 80.41 ± 14.2 82.42 ± 13.0 81.03 ± 13.8
HoMMp=3 88.41 ± 11.9 88.39 ± 11.8 84.72 ± 12.0 83.43 ± 12.8 87.90 ± 10.7 87.64 ± 10.8
DANN 86.97 ± 10.4 86.33 ± 10.6 80.20 ± 12.6 78.03 ± 13.4 84.15 ± 10.8 83.03 ± 11.3
CDAN 89.15 ± 10.5 88.44 ± 11.0 85.16 ± 12.2 83.20 ± 13.2 83.36 ± 10.9 81.45 ± 11.5
DIRT-T 92.02 ± 9.6 91.97 ± 10.0 80.58 ± 14.5 76.04 ± 18.1 85.78 ± 13.1 83.69 ± 15.9
DSAN 89.25 ± 11.2 88.65 ± 11.7 88.17 ± 12.1 87.65 ± 12.5 87.35 ± 11.2 86.51 ± 11.6
CoDATS 87.38 ± 11.7 86.78 ± 12.0 83.11 ± 12.6 81.72 ± 13.3 85.56 ± 11.5 84.75 ± 11.9
AdvSKM 80.77 ± 14.5 78.95 ± 15.4 77.98 ± 14.6 75.23 ± 15.5 78.71 ± 12.9 76.55 ± 13.6
Sinkhorn 87.17 ± 12.4 86.55 ± 12.9 81.62 ± 12.7 78.96 ± 14.0 80.88 ± 12.9 79.05 ± 13.5

Table 2.5: WISDM (Kwapisz et al., 2010) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 49.91 ± 19.8 33.28 ± 18.4 48.92 ± 16.8 27.87 ± 14.4 50.19 ± 15.1 27.08 ± 12.9
CS 50.69 ± 20.2 34.60 ± 18.2 50.84 ± 19.9 30.87 ± 16.5 39.26 ± 15.0 25.93 ± 13.6
PC 58.21 ± 21.2 40.51 ± 20.6 57.60 ± 18.8 35.47 ± 17.4 53.79 ± 20.3 37.50 ± 19.5
KL 45.27 ± 17.6 30.57 ± 17.2 54.72 ± 18.7 32.75 ± 17.1 29.34 ± 12.3 9.66 ± 4.8
JSD 58.46 ± 20.0 41.23 ± 20.6 54.71 ± 20.4 35.28 ± 19.2 29.03 ± 11.9 8.75 ± 4.2
Linear MMD 59.68 ± 19.9 41.04 ± 20.1 58.28 ± 18.7 36.27 ± 17.8 60.37 ± 19.7 38.93 ± 18.9
kMMD 59.15 ± 20.6 41.28 ± 20.6 57.70 ± 18.6 35.43 ± 17.2 57.40 ± 18.9 38.13 ± 18.7
Deep CORAL 60.21 ± 19.7 41.91 ± 20.1 58.84 ± 17.8 36.69 ± 16.9 59.15 ± 18.4 39.39 ± 18.4
Jeffreys CORAL 59.18 ± 20.6 41.30 ± 20.6 57.68 ± 18.6 35.43 ± 17.2 57.34 ± 18.9 38.09 ± 18.7
Stein CORAL 59.15 ± 20.6 41.29 ± 20.6 57.70 ± 18.7 35.44 ± 17.2 57.37 ± 18.9 38.08 ± 18.7
Linear MMCD 59.73 ± 19.9 41.10 ± 20.1 58.58 ± 18.8 36.53 ± 17.9 60.41 ± 19.7 38.95 ± 18.9
Kernelized MMCD 59.25 ± 20.6 41.34 ± 20.6 58.13 ± 18.6 35.85 ± 17.5 57.87 ± 18.8 38.40 ± 18.6
MMDA 62.46 ± 20.1 43.43 ± 20.1 55.27 ± 18.3 31.28 ± 14.8 51.95 ± 15.4 29.28 ± 14.4
DDC 59.68 ± 19.4 41.05 ± 19.8 57.77 ± 17.9 34.34 ± 15.9 59.08 ± 18.7 38.74 ± 18.3
Linear DAN 63.07 ± 20.8 43.62 ± 21.5 60.75 ± 18.9 38.22 ± 18.5 59.81 ± 18.9 39.65 ± 19.4
Squared DAN 63.15 ± 20.7 43.66 ± 21.5 61.01 ± 18.9 38.67 ± 18.8 60.58 ± 19.0 40.43 ± 19.7
HoMMp=3 42.41 ± 21.8 42.40 ± 21.8 59.32 ± 17.9 35.51 ± 17.3 59.89 ± 18.9 40.84 ± 19.6
DANN 63.37 ± 20.2 45.16 ± 21.5 58.26 ± 18.5 39.73 ± 19.1 58.15 ± 17.7 39.89 ± 18.5
CDAN 61.02 ± 19.7 40.95 ± 19.6 56.85 ± 17.7 34.31 ± 15.5 59.74 ± 18.5 39.10 ± 18.1
DIRT-T 61.32 ± 17.6 34.47 ± 14.1 55.76 ± 15.5 27.46 ± 10.8 58.18 ± 17.7 31.25 ± 13.9
DSAN 55.40 ± 18.8 30.80 ± 13.9 59.77 ± 17.9 34.62 ± 16.1 54.98 ± 18.8 34.77 ± 16.3
CoDATS 62.77 ± 19.8 43.74 ± 20.4 59.34 ± 18.8 39.16 ± 19.0 38.68 ± 18.6 36.68 ± 18.6
AdvSKM 59.36 ± 19.7 40.79 ± 20.0 57.26 ± 17.9 33.91 ± 15.6 58.11 ± 18.9 38.33 ± 18.3
Sinkhorn 59.40 ± 22.4 41.15 ± 22.4 59.18 ± 20.3 40.28 ± 20.8 55.66 ± 18.2 35.20 ± 17.4

Evaluation of DA & Encoder Networks on the Human Activity Datasets. Ta-
ble 2.3 to Table 2.7 present the DA results for the HHAR, UCI HAR, WISDM, SSC (EEG),
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Table 2.6: SSC (EEG) (Goldberger et al., 2000) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 69.12 ± 11.1 58.02 ± 12.1 51.63 ± 9.1 38.55 ± 8.8 45.87 ± 4.8 33.59 ± 4.7
CS 71.51 ± 9.8 57.79 ± 11.3 53.13 ± 8.1 36.18 ± 9.2 46.00 ± 4.9 33.89 ± 4.8
PC 69.80 ± 11.1 59.03 ± 11.6 51.86 ± 9.1 38.80 ± 8.7 45.89 ± 5.0 34.15 ± 4.9
KL 69.20 ± 11.0 58.38 ± 11.7 50.03 ± 9.5 37.36 ± 8.7 26.56 ± 14.3 8.21 ± 3.7
JSD 69.99 ± 10.5 59.30 ± 11.0 48.80 ± 10.2 35.65 ± 9.2 26.47 ± 14.1 8.21 ± 3.7
Linear MMD 70.18 ± 10.4 59.39 ± 11.1 51.74 ± 9.2 38.73 ± 8.8 46.16 ± 5.2 33.78 ± 5.3
kMMD 69.80 ± 10.8 59.11 ± 11.4 51.91 ± 9.2 38.96 ± 8.8 45.98 ± 5.0 34.00 ± 4.9
Deep CORAL 72.44 ± 8.4 61.45 ± 8.6 52.67 ± 8.3 39.21 ± 8.1 46.79 ± 4.4 33.54 ± 4.6
Jeffreys CORAL 69.69 ± 10.8 58.93 ± 11.6 51.77 ± 9.3 38.81 ± 8.8 45.93 ± 4.9 34.01 ± 4.8
Stein CORAL 69.95 ± 11.0 59.24 ± 11.5 51.87 ± 9.0 38.90 ± 8.7 45.96 ± 4.9 34.08 ± 4.8
Linear MMCD 70.19 ± 10.3 59.35 ± 11.0 51.82 ± 9.4 38.77 ± 8.9 45.85 ± 5.3 33.55 ± 5.3
Kernelized MMCD 69.83 ± 11.3 59.04 ± 11.9 51,74 ± 9.4 38.80 ± 8.9 45.92 ± 5.0 33.88 ± 5.1
MMDA 64.84 ± 8.5 64.84 ± 8.5 52.15 ± 7.8 36.35 ± 8.4 44.48 ± 5.1 28.31 ± 5.2
DDC 72.44 ± 8.4 61.44 ± 8.6 51.32 ± 8.0 37.98 ± 8.5 46.77 ± 4.5 33.45 ± 4.6
Linear DAN 70.25 ± 10.7 59.70 ± 11.2 51.78 ± 9.3 38.82 ± 8.9 45.98 ± 4.9 34.01 ± 4.8
Squared DAN 70.50 ± 10.5 59.79 ± 11.0 52.02 ± 9.0 39.02 ± 8.7 45.96 ± 4.9 34.10 ± 4.8
HoMMp=3 72.84 ± 8.5 61.74 ± 8.7 51.16 ± 8.1 37.00 ± 8.2 40.42 ± 6.3 19.14 ± 4.7
DANN 73.09 ± 8.5 62.00 ± 8.5 52.54 ± 8.1 38.54 ± 7.8 46.30 ± 4.5 33.00 ± 4.6
CDAN 71.70 ± 10.5 58.10 ± 11.7 49.90 ± 8.2 32.28 ± 9.2 47.88 ± 5.0 33.47 ± 5.5
DIRT-T 73.48 ± 10.3 61.23 ± 11.1 52.37 ± 7.7 37.38 ± 8.0 47.85 ± 5.1 33.30 ± 6.1
DSAN 71.00 ± 10.4 58.15 ± 10.5 51.53 ± 8.3 36.27 ± 9.3 47.43 ± 4.7 34.71 ± 5.2
CoDATS 70.03 ± 8.5 58.34 ± 8.8 50.67 ± 7.4 35.63 ± 7.3 42.39 ± 5.7 26.78 ± 5.4
AdvSKM 72.56 ± 8.8 61.37 ± 9.1 50.97 ± 7.5 35.32 ± 7.8 46.62 ± 4.5 33.35 ± 4.7
Sinkhorn 71.37 ± 10.1 59.97 ± 10.8 51.31 ± 8.9 37.15 ± 8.7 44.87 ± 6.2 28.48 ± 6.3

Table 2.7: uWave (Liu et al., 2009) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 83.76 ± 9.6 82.43 ± 10.3 45.88 ± 12.0 41.66 ± 12.3 71.69 ± 13.0 68.82 ± 14.3
CS 77.88 ± 12.6 76.09 ± 13.6 48.51 ± 11.5 44.81 ± 12.0 69.08 ± 14.9 66.29 ± 15.5
PC 85.62 ± 8.9 84.62 ± 9.6 49.99 ± 12.0 45.99 ± 12.9 73.33 ± 14.4 70.22 ± 15.4
KL 81.35 ± 11.5 79.89 ± 12.4 46.41 ± 11.4 40.81 ± 12.0 12.69 ± 2.6 2.81 ± 0.5
JSD 84.10 ± 11.2 82.72 ± 12.1 49.33 ± 10.6 43.11 ± 11.5 12.10 ± 3.0 2.70 ± 0.6
Linear MMD 86.53 ± 10.1 85.58 ± 10.7 49.79 ± 11.7 45.79 ± 12.4 83.40 ± 9.9 81.69 ± 10.9
kMMD 86.57 ± 9.3 85.53 ± 10.1 49.76 ± 12.0 45.78 ± 12.7 79.22 ± 13.2 77.28 ± 14.0
Deep CORAL 86.51 ± 8.1 85.44 ± 8.9 50.11 ± 10.8 46.16 ± 11.6 80.15 ± 12.5 78.30 ± 13.5
Jeffreys CORAL 85.98 ± 9.9 84.88 ± 10.7 49.75 ± 11.7 45.61 ± 12.4 79.44 ± 13.3 77.50 ± 14.2
Stein CORAL 86.41 ± 9.3 85.41 ± 9.9 49.81 ± 12.1 45.71 ± 12.8 79.11 ± 13.4 77.15 ± 14.2
Linear MMCD 86.39 ± 9.7 85.26 ± 10.6 49.75 ± 12.0 45.73 ± 12.6 83.68 ± 10.5 81.84 ± 11.8
Kernelized MMCD 86.51 ± 9.1 85.44 ± 10.1 50.11 ± 11.8 46.16 ± 12.5 80.15 ± 13.0 78.30 ± 14.0
MMDA 92.26 ± 6.2 91.76 ± 6.9 49.90 ± 10.6 46.24 ± 11.0 84.64 ± 11.3 82.61 ± 13.0
DDC 86.32 ± 8.1 85.28 ± 8.8 49.96 ± 10.4 45.96 ± 11.2 79.43 ± 12.4 77.42 ± 13.3
Linear DAN 87.77 ± 8.7 87.03 ± 9.4 50.58 ± 11.0 46.59 ± 11.7 83.46 ± 11.9 82.02 ± 12.7
Squared DAN 89.53 ± 8.0 88.83 ± 8.7 51.03 ± 11.1 47.03 ± 11.9 86.84 ± 11.3 85.98 ± 12.0
HoMMp=3 92.00 ± 6.1 91.27 ± 7.1 51.28 ± 10.2 47.62 ± 11.1 90.36 ± 9.8 89.90 ± 10.2
DANN 85.13 ± 8.2 84.13 ± 8.7 52.01 ± 10.2 48.26 ± 11.0 84.58 ± 11.0 83.37 ± 11.9
CDAN 96.43 ± 5.5 95.97 ± 6.9 57.95 ± 9.2 53.18 ± 10.7 81.85 ± 12.2 79.01 ± 13.7
DIRT-T 96.43 ± 5.5 95.97 ± 6.9 55.01 ± 12.9 49.97 ± 13.6 80.15 ± 12.5 78.30 ± 13.5
DSAN 13.11 ± 2.7 5.45 ± 1.6 59.25 ± 9.4 56.85 ± 10.4 91.92 ± 10.9 91.55 ± 11.6
CoDATS 88.85 ± 8.0 88.32 ± 8.8 55.48 ± 8.3 52.19 ± 9.6 89.31 ± 8.1 88.46 ± 8.9
AdvSKM 85.54 ± 9.1 84.61 ± 9.7 50.07 ± 11.6 46.18 ± 12.0 79.74 ± 12.5 77.68 ± 13.5
Sinkhorn 92.89 ± 7.3 91.41 ± 8.2 58.01 ± 10.0 54.21 ± 11.3 84.08 ± 13.2 83.01 ± 14.0

and uWave datasets for the CNN, TCN, and ResNet18 encoder networks. For the HHAR
dataset, DIRT-T using the CNN encoder outperforms other methods, achieving an accu-
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Table 2.8: Finger (Blankertz et al., 2001) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 50.18 ± 4.5 45.62 ± 5.1 49.58 ± 4.3 43.72 ± 4.9 53.66 ± 4.0 46.03 ± 7.1
CS 53.27 ± 1.6 40.34 ± 3.5 53.47 ± 2.0 39.03 ± 4.5 53.26 ± 4.2 49.53 ± 5.6
PC 50.50 ± 4.4 45.71 ± 5.2 49.69 ± 4.4 43.14 ± 5.5 52.78 ± 4.6 48.21 ± 5.8
KL 50.18 ± 4.6 45.53 ± 5.2 51.26 ± 4.2 41.59 ± 5.4 50.90 ± 5.0 36.00 ± 6.8
JSD 50.18 ± 4.5 45.68 ± 5.2 51.23 ± 4.0 41.48 ± 5.9 50.80 ± 5.0 35.69 ± 6.4
Linear MMD 50.56 ± 4.3 45.96 ± 5.0 49.51 ± 4.3 43.56 ± 5.0 54.48 ± 2.7 39.47 ± 5.6
kMMD 50.36 ± 4.3 45.97 ± 5.1 49.67 ± 4.4 43.28 ± 5.5 52.63 ± 4.6 48.05 ± 5.8
Deep CORAL 50.35 ± 4.4 45.94 ± 5.2 49.68 ± 4.4 43.30 ± 5.5 52.77 ± 4.8 48.50 ± 5.9
Jeffreys CORAL 50.36 ± 4.4 45.95 ± 5.2 49.64 ± 4.4 43.33 ± 5.4 52.80 ± 4.5 48.11 ± 5.8
Stein CORAL 50.44 ± 4.4 46.01 ± 5.2 49.68 ± 4.3 43.43 ± 5.4 52.85 ± 4.6 48.31 ± 5.8
Linear MMCD 50.58 ± 4.4 45.94 ± 5.2 49.49 ± 4.3 43.53 ± 4.9 54.49 ± 2.7 39.33 ± 5.5
Kernelized MMCD 50.35 ± 4.4 45.94 ± 5.2 49.68 ± 4.4 43.30 ± 5.5 52.77 ± 4.8 48.50 ± 5.9
MMDA 50.69 ± 4.6 46.04 ± 5.2 51.36 ± 3.8 44.88 ± 5.0 51.60 ± 4.4 45.41 ± 6.2
DDC 50.29 ± 4.4 46.03 ± 5.1 49.58 ± 4.4 43.35 ± 5.3 52.89 ± 4.6 48.71 ± 5.9
Linear DAN 50.64 ± 4.4 45.81 ± 5.0 49.66 ± 4.4 43.05 ± 5.4 52.63 ± 4.6 48.24 ± 5.8
Squared DAN 50.54 ± 4.3 46.01 ± 5.0 49.54 ± 4.4 43.31 ± 5.4 52.52 ± 4.8 48.15 ± 5.8
HoMMp=3 49.82 ± 4.9 43.31 ± 6.4 49.99 ± 4.6 44.72 ± 4.9 53.16 ± 4.0 49.86 ± 4.8
DANN 48.74 ± 4.3 46.33 ± 5.1 48.17 ± 4.1 36.86 ± 5.5 52.75 ± 4.3 48.92 ± 6.0
CDAN 51.53 ± 4.4 46.18 ± 5.3 50.01 ± 4.1 42.56 ± 5.1 53.34 ± 3.5 50.31 ± 5.2
DIRT-T 51.02 ± 5.0 42.49 ± 6.1 49.34 ± 4.2 47.35 ± 4.1 51.45 ± 4.3 45.53 ± 6.2
DSAN 52.19 ± 3.3 39.81 ± 5.5 49.44 ± 4.4 45.53 ± 4.9 51.32 ± 4.9 49.80 ± 4.8
CoDATS 51.74 ± 4.1 44.71 ± 5.5 50.43 ± 4.1 43.84 ± 5.5 52.98 ± 4.3 49.00 ± 5.4
AdvSKM 50.47 ± 4.6 46.03 ± 5.7 47.92 ± 4.0 44.70 ± 4.6 52.22 ± 4.6 48.37 ± 5.7
Sinkhorn 50.35 ± 4.9 46.11 ± 4.9 48.33 ± 4.2 42.32 ± 6.1 55.07 ± 1.1 35.88 ± 2.2

Table 2.9: Gestures mid air (Caputo et al., 2018) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 42.56 ± 14.5 37.83 ± 14.9 37.32 ± 14.3 32.65 ± 14.7 43.04 ± 15.0 38.05 ± 15.8
CS 30.52 ± 12.4 23.83 ± 13.1 35.48 ± 14.5 30.39 ± 15.0 20.26 ± 13.1 13.08 ± 13.6
PC 41.96 ± 14.2 37.12 ± 14.8 37.21 ± 14.9 32.43 ± 15.2 43.49 ± 14.7 38.18 ± 15.6
KL 42.23 ± 14.3 37.40 ± 15.0 35.60 ± 14.2 30.46 ± 14.1 26.26 ± 19.5 20.44 ± 19.7
JSD 41.50 ± 14.8 36.56 ± 15.4 34.97 ± 13.0 29.57 ± 13.0 8.78 ± 8.3 2.58 ± 7.9
Linear MMD 42.43 ± 14.3 37.47 ± 14.7 37.03 ± 14.9 32.30 ± 15.1 40.42 ± 14.4 35.25 ± 14.8
kMMD 41.81 ± 14.7 37.10 ± 15.1 37.73 ± 14.3 32.72 ± 14.6 42.78 ± 15.0 37.80 ± 15.7
Deep CORAL 41.30 ± 14.5 36.36 ± 14.9 37.79 ± 15.2 32.86 ± 15.3 43.27 ± 15.3 38.17 ± 15.9
Jeffreys CORAL 41.68 ± 14.3 36.87 ± 14.9 37.56 ± 14.5 32.79 ± 14.8 43.63 ± 15.2 38.52 ± 16.0
Stein CORAL 42.09 ± 14.5 37.00 ± 14.9 37.25 ± 14.6 32.42 ± 14.8 43.50 ± 14.8 38.47 ± 15.6
Linear MMCD 41.89 ± 14.8 36.92 ± 15.3 37.39 ± 14.9 32.55 ± 15.1 39.88 ± 15.1 34.70 ± 15.6
Kernelized MMCD 41.30 ± 14.5 36.36 ± 14.9 37.79 ± 15.2 32.86 ± 15.3 43.27 ± 15.3 38.17 ± 15.9
MMDA 46.16 ± 15.3 41.27 ± 16.0 41.10 ± 16.0 36.93 ± 16.1 43.76 ± 15.1 38.77 ± 15.9
DDC 42.08 ± 14.5 37.21 ± 15.0 37.05 ± 14.6 32.45 ± 14.8 43.07 ± 15.3 37.86 ± 16.2
Linear DAN 42.00 ± 14.3 37.18 ± 14.6 37.53 ± 14.7 32.64 ± 15.2 44.20 ± 15.0 39.17 ± 15.7
Squared DAN 42.47 ± 15.0 37.65 ± 15.5 36.98 ± 14.1 32.10 ± 14.2 43.37 ± 14.8 38.16 ± 15.9
HoMMp=3 43.96 ± 14.8 39.36 ± 15.7 38.52 ± 14.6 34.33 ± 15.0 47.65 ± 15.7 43.30 ± 16.6
DANN 34.96 ± 13.5 29.52 ± 13.9 33.95 ± 13.6 28.62 ± 14.0 35.60 ± 15.3 30.20 ± 16.2
CDAN 40.83 ± 14.1 35.35 ± 14.8 37.90 ± 13.3 32.38 ± 14.1 19.86 ± 16.1 13.30 ± 16.5
DIRT-T 40.53 ± 14.7 34.62 ± 15.8 45.93 ± 14.8 40.88 ± 15.7 38.24 ± 14.3 32.63 ± 15.6
DSAN 7.24 ± 1.8 1.0 ± 0.3 6.91 ± 1.8 1.03 ± 0.4 7.36 ± 1.8 0.99 ± 0.3
CoDATS 33.79 ± 13.4 28.07 ± 14.2 37.79 ± 14.3 33.00 ± 14.8 35.17 ± 15.0 29.58 ± 15.7
AdvSKM 40.96 ± 14.6 36.23 ± 15.1 37.86 ± 14.0 33.27 ± 14.4 43.34 ± 15.4 38.20 ± 16.3
Sinkhorn 41.18 ± 14.3 35.22 ± 15.3 30.19 ± 11.8 23.25 ± 11.9 28.66 ± 12.1 22.44 ± 12.3

racy of 80.11% with a high standard deviation (18.3%) across different domain scenarios.
The F1-scores are marginally lower than the accuracy, as the classes are approximately
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Table 2.10: Epilepsy (Villar et al., 2016) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 98.12 ± 1.2 98.17 ± 1.1 97.19 ± 1.8 97.34 ± 1.7 68.75 ± 2.2 69.05 ± 2.4
CS 84.38 ± 6.3 83.81 ± 6.5 92.19 ± 1.0 91.89 ± 1.1 66.56 ± 3.5 65.33 ± 4.1
PC 99.06 ± 1.2 99.09 ± 1.2 99.38 ± 0.8 99.40 ± 0.7 77.81 ± 3.2 77.31 ± 3.1
KL 98.12 ± 1.2 98.17 ± 1.1 94.06 ± 2.7 93.72 ± 2.9 47.19 ± 3.9 39.09 ± 6.1
JSD 98.12 ± 1.2 98.17 ± 1.1 91.25 ± 3.6 91.06 ± 3.9 37.50 ± 4.0 21.89 ± 4.5
Linear MMD 98.12 ± 1.2 98.17 ± 1.1 98.75 ± 0.6 98.79 ± 0.6 75.00 ± 1.4 74.91 ± 1.6
kMMD 98.12 ± 1.2 98.17 ± 1.1 99.38 ± 0.8 99.40 ± 0.7 78.75 ± 1.9 78.97 ± 1.5
Deep CORAL 98.12 ± 1.2 98.17 ± 1.1 99.38 ± 0.8 99.40 ± 0.7 78.75 ± 1.9 78.97 ± 1.5
Jeffreys CORAL 98.12 ± 1.2 98.17 ± 1.1 99.38 ± 0.8 99.40 ± 0.7 78.44 ± 1.5 78.67 ± 1.2
Stein CORAL 98.12 ± 1.2 98.17 ± 1.1 99.38 ± 0.8 99.40 ± 0.7 78.44 ± 1.5 78.67 ± 1.2
Linear MMCD 98.12 ± 1.2 98.17 ± 1.1 98.75 ± 0.6 98.79 ± 0.6 75.00 ± 3.0 75.08 ± 2.9
Kernelized MMCD 98.12 ± 1.2 98.17 ± 1.1 99.38 ± 0.8 99.40 ± 0.7 78.75 ± 1.9 78.97 ± 1.5
MMDA 96.56 ± 0.6 96.60 ± 0.7 99.06 ± 1.2 99.09 ± 1.2 66.88 ± 3.2 66.40 ± 3.9
DDC 98.12 ± 1.2 98.17 ± 1.1 99.38 ± 0.8 99.40 ± 0.7 78.44 ± 1.5 78.66 ± 1.2
Linear DAN 98.75 ± 1.2 98.79 ± 1.1 98.75 ± 0.6 98.79 ± 0.6 74.38 ± 2.5 74.45 ± 13.0
Squared DAN 98.12 ± 1.2 98.17 ± 1.1 99.06 ± 0.8 99.10 ± 0.7 78.44 ± 2.1 78.53 ± 2.0
HoMMp=3 92.19 ± 2.6 91.57 ± 3.2 99.06 ± 0.8 99.10 ± 0.7 65.62 ± 2.6 63.81 ± 3.3
DANN 96.88 ± 2.0 96.77 ± 2.2 95.31 ± 2.6 95.27 ± 2.8 68.44 ± 4.8 67.28 ± 5.4
CDAN 95.94 ± 1.9 95.95 ± 2.0 92.50 ± 7.1 92.00 ± 7.8 70.62 ± 5.1 69.40 ± 5.5
DIRT-T 88.75 ± 2.5 87.94 ± 2.8 90.00 ± 1.2 89.52 ± 1.3 80.00 ± 2.7 75.47 ± 2.2
DSAN 69.06 ± 3.0 61.42 ± 5.5 97.19 ± 0.6 97.16 ± 0.7 66.56 ± 5.0 64.66 ± 4.6
CoDATS 96.56 ± 1.2 96.56 ± 1.3 96.25 ± 2.7 96.21 ± 2.8 63.44 ± 3.4 61.33 ± 4.1
AdvSKM 98.12 ± 1.2 98.10 ± 1.2 98.75 ± 0.6 98.79 ± 0.6 77.81 ± 3.2 77.68 ± 2.8
Sinkhorn 96.25 ± 0.8 96.28 ± 0.8 90.31 ± 4.6 89.72 ± 5.2 64.69 ± 4.4 63.84 ± 4.5

Table 2.11: Face detection (Olivetti et al., 2014) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 60.12 ± 2.3 58.22 ± 4.2 51.63 ± 1.5 48.06 ± 5.7 64.86 ± 0.8 64.84 ± 0.8
CS 49.16 ± 0.0 32.96 ± 0.0 48.92 ± 0.4 38.28 ± 4.5 49.16 ± 0.0 32.96 ± 0.0
PC 59.59 ± 2.0 58.22 ± 3.2 52.62 ± 1.1 47.76 ± 3.7 65.43 ± 0.8 65.41 ± 0.8
KL 59.01 ± 1.8 56.36 ± 3.1 51.97 ± 0.4 46.44 ± 4.4 50.15 ± 0.8 33.40 ± 0.4
JSD 59.59 ± 2.1 57.96 ± 3.8 50.87 ± 1.4 41.62 ± 5.9 50.52 ± 0.6 33.59 ± 0.2
Linear MMD 63.20 ± 1.2 63.06 ± 1.3 53.31 ± 1.1 52.74 ± 1.5 64.66 ± 0.8 64.58 ± 0.8
kMMD 59.47 ± 0.6 58.17 ± 1.2 53.31 ± 0.5 51.94 ± 1.0 65.47 ± 0.8 65.46 ± 0.8
Deep CORAL 60.38 ± 2.2 59.04 ± 3.3 52.65 ± 1.3 50.96 ± 2.4 65.98 ± 0.9 65.97 ± 0.9
Jeffreys CORAL 60.46 ± 3.0 58.60 ± 5.5 52.21 ± 0.9 50.25 ± 2.2 64.53 ± 1.9 64.52 ± 1.8
Stein CORAL 59.42 ± 2.1 57.15 ± 4.0 52.71 ± 1.0 51.26 ± 2.4 65.85 ± 0.8 65.85 ± 0.8
Linear MMCD 62.29 ± 1.8 61.36 ± 3.1 52.76 ± 2.0 49.23 ± 7.7 65.50 ± 1.5 65.47 ± 1.5
Kernelized MMCD 60.38 ± 2.2 59.04 ± 3.3 52.65 ± 1.3 50.69 ± 2.4 65.98 ± 0.9 65.97 ± 0.9
MMDA 58.83 ± 1.1 57.88 ± 1.7 51.27 ± 1.3 48.36 ± 2.0 66.17 ± 0.6 66.15 ± 0.7
DDC 59.82 ± 2.8 58.24 ± 5.1 53.25 ± 1.5 50.19 ± 2.4 65.00 ± 0.9 64.97 ± 0.9
Linear DAN 61.10 ± 2.3 59.76 ± 3.7 53.32 ± 1.0 51.18 ± 3.9 64.95 ± 0.9 64.93 ± 0.9
Squared DAN 61.80 ± 1.3 60.69 ± 1.9 53.17 ± 2.0 51.71 ± 2.2 65.38 ± 1.3 65.25 ± 1.3
HoMMp=3 58.58 ± 2.9 54.55 ± 6.2 51.80 ± 1.4 47.17 ± 4.9 67.87 ± 0.7 67.85 ± 0.7
DANN 60.96 ± 1.0 60.31 ± 0.9 52.29 ± 1.3 50.81 ± 1.7 65.69 ± 1.2 65.67 ± 1.2
CDAN 60.95 ± 1.4 60.17 ± 1.6 52.13 ± 2.1 48.20 ± 6.3 65.09 ± 1.4 65.01 ± 1.4
DIRT-T 57.47 ± 2.8 50.90 ± 7.1 52.36 ± 2.7 44.34 ± 8.9 62.80 ± 2.3 62.57 ± 2.3
DSAN 49.48 ± 0.7 33.15 ± 0.3 52.44 ± 1.6 48.12 ± 5.1 49.21 ± 0.1 33.19 ± 0.2
CoDATS 60.52 ± 2.1 57.69 ± 3.9 52.70 ± 1.6 49.38 ± 7.1 68.29 ± 0.4 68.23 ± 0.4
AdvSKM 59.27 ± 1.6 58.18 ± 2.9 53.31 ± 0.8 50.70 ± 4.2 65.43 ± 1.8 65.31 ± 2.0
Sinkhorn 61.16 ± 1.9 59.61 ± 2.8 52.85 ± 1.3 50.27 ± 3.0 59.85 ± 7.2 53.13 ± 15.4

distributed evenly (see Figure 2.1a). DIRT-T performs similarly well on the UCI HAR
dataset, achieving an accuracy of 92.02% with a slightly lower F1-score (91.97%) due to
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Table 2.12: PenDigits (Alimoglu & Alpaydin, 1997) dataset. Bold are best results.
CNN ResNet18 TCN

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 96.34 ± 0.2 96.30 ± 0.2 77.15 ± 0.8 77.01 ± 1.0 96.16 ± 0.6 96.10 ± 0.6
CS 96.05 ± 0.4 95.97 ± 0.4 75.83 ± 1.1 75.73 ± 1.1 95.67 ± 1.6 94.56 ± 0.6
PC 96.15 ± 0.5 96.10 ± 0.5 77.59 ± 0.8 77.49 ± 1.0 95.43 ± 2.0 95.36 ± 2.1
KL 95.81 ± 0.8 95.76 ± 0.9 63.97 ± 4.8 60.31 ± 6.4 10.42 ± 0.6 1.89 ± 0.1
JSD 95.82 ± 0.7 95.77 ± 0.7 56.37 ± 5.4 54.03 ± 5.1 10.01 ± 0.6 1.82 ± 0.1
Linear MMD 96.29 ± 0.4 96.23 ± 0.4 77.14 ± 0.7 76.94 ± 0.9 88.49 ± 13.1 87.31 ± 14.9
kMMD 95.91 ± 0.6 95.83 ± 0.6 77.54 ± 0.5 77.40 ± 0.9 95.46 ± 0.5 95.42 ± 0.5
Deep CORAL 96.04 ± 0.7 95.98 ± 0.7 77.49 ± 0.7 77.37 ± 0.9 96.16 ± 0.4 96.12 ± 0.5
Jeffreys CORAL 96.56 ± 0.3 96.52 ± 0.3 77.49 ± 0.9 77.38 ± 1.2 95.42 ± 1.1 95.35 ± 1.1
Stein CORAL 96.15 ± 0.6 96.10 ± 0.7 77.41 ± 0.7 77.23 ± 1.0 95.96 ± 0.8 95.92 ± 0.8
Linear MMCD 96.13 ± 0.4 96.08 ± 0.5 76.98 ± 0.8 76.87 ± 1.0 84.51 ± 6.3 81.55 ± 7.7
Kernelized MMCD 96.04 ± 0.7 95.98 ± 0.7 77.49 ± 0.7 77.37 ± 0.9 96.16 ± 0.4 96.12 ± 0.5
MMDA 95.72 ± 0.6 95.59 ± 0.7 78.53 ± 1.2 78.50 ± 1.3 96.26 ± 0.6 96.22 ± 0.7
DDC 95.83 ± 0.4 95.79 ± 0.4 77.32 ± 0.5 77.16 ± 0.8 95.64 ± 0.5 95.59 ± 0.6
Linear DAN 96.08 ± 0.5 96.01 ± 0.6 77.14 ± 0.5 77.01 ± 0.8 95.89 ± 0.6 95.84 ± 0.6
Squared DAN 96.20 ± 0.5 96.15 ± 0.5 77.37 ± 0.6 77.27 ± 0.8 95.83 ± 1.0 95.78 ± 1.0
HoMMp=3 96.29 ± 0.5 96.22 ± 0.6 78.46 ± 0.7 78.36 ± 0.8 95.52 ± 0.6 95.49 ± 0.6
DANN 96.65 ± 0.3 96.65 ± 0.3 76.48 ± 1.8 76.20 ± 1.6 94.54 ± 0.8 94.47 ± 0.8
CDAN 96.43 ± 0.4 96.41 ± 0.5 75.48 ± 1.9 75.25 ± 2.0 92.25 ± 5.7 91.36 ± 7.3
DIRT-T 96.67 ± 0.2 96.67 ± 0.2 79.21 ± 0.5 78.86 ± 0.7 96.99 ± 0.3 96.96 ± 0.3
DSAN 11.07 ± 0.0 1.99 ± 0.0 9.95 ± 0.8 1.87 ± 0.1 95.83 ± 2.3 95.62 ± 2.7
CoDATS 96.24 ± 0.4 96.20 ± 0.4 83.68 ± 1.3 83.37 ± 1.3 94.21 ± 2.0 93.96 ± 2.3
AdvSKM 96.46 ± 0.2 96.40 ± 0.2 77.43 ± 0.8 77.05 ± 1.0 95.85 ± 0.8 95.80 ± 0.9
Sinkhorn 96.46 ± 0.3 96.43 ± 0.3 76.29 ± 0.9 76.08 ± 1.1 72.07 ± 6.4 67.48 ± 8.1

equal class distributions (see Figure 2.1b). CDAN and DSAN also have high accuracy
results on all datasets. However, on the WISDM dataset, the standard deviation between
different domain scenarios is high due to unequal contributions from participants, and
the F1-score is lower due to the predominant classes 1 and 5 (see Figure 2.1c). DANN
achieves the highest accuracy of 63.37% using the CNN encoder, while lower results are
obtained using the ResNet18 encoder (59.77% of DSAN) and the TCN encoder (60.58% of
squared DAN). All DA methods achieve similarly high results on the SSC (EEG) dataset
with the CNN encoder, and DIRT-T (73.48%) and DANN (73.09%) outperform other DA
methods. The results drop notably for the ResNet18 and TCN encoders. The classifi-
cation task on the uWave dataset is less challenging, and hence, classification results are
higher, e.g., CDAN and DIRT-T achieve 96.43% accuracy (see Table 2.7). DSAN fails to
classify the dataset. While the TCN encoder perpetuates high accuracies (e.g., 89.90%
of HoMMp=3), the ResNet18 encoder reduces accuracies to between 49.90% to 59.25%.
As each participant contributed equally (see Figure 2.1e), the standard deviation is low,
and the F1-scores are marginally lower, although the class 2 is predominant. The linear
MMCD method outperforms or is on par with the kernelized MMCD method. The squared
version of DAN marginally outperforms the linear version for all datasets. In Table 2.8, we
present the results for the DA methods on the univariate finger movements dataset. The
Cosine similarity method, as standard loss for CMR, achieves high accuracies (53.27% on
average) when used with the CNN encoder. On the other hand, Sinkhorn outperforms all
methods, achieving an average accuracy of 55.07% when used with the TCN encoder. Al-
though HoMMp=3 achieves the highest accuracy (47.65%) on the gestures mid air dataset
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Table 2.13: DA results in % for the OnHW datasets based on AdaTime. Results show mean
and standard deviation over five runs for the OnHW-symbols and split OnHW-equations
datasets, and over five cross-validation splits and five runs for the OnHW-chars dataset.
CNN as encoder network. Bold are best results. Comparison to the results of the optimal
transport (OT) method based on Sinkhorn transport from Ott et al. (2022a).

OnHW-symbols OnHW-symbols Split OnHW-equations
(L→R) (R→L) (L→R)

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 77.81 ± 4.3 78.56 ± 5.5 79.33 ± 3.0 78.96 ± 3.3 85.29 ± 1.7 84.39 ± 1.8
CS 14.69 ± 3.8 9.48 ± 2.8 6.88 ± 0.8 2.83 ± 1.0 11.60 ± 3.6 5.02 ± 2.9
PC 77.19 ± 2.8 77.08 ± 5.7 80.13 ± 2.7 79.46 ± 3.4 78.96 ± 6.6 76.81 ± 7.3
KL 78.12 ± 3.7 79.16 ± 4.3 80.67 ± 4.1 80.55 ± 4.7 84.46 ± 3.5 83.07 ± 3.9
JSD 76.88 ± 4.0 77.18 ± 5.8 78.84 ± 3.1 78.56 ± 3.6 10.74 ± 6.2 6.34 ± 4.8
Linear MMD 76.56 ± 2.9 75.88 ± 3.2 81.79 ± 2.1 81.41 ± 2.7 88.33 ± 0.9 87.78 ± 1.3
kMMD 78.44 ± 2.0 79.75 ± 1.7 79.78 ± 3.2 79.39 ± 3.8 87.00 ± 0.6 86.25 ± 0.8
Deep CORAL 84.23 ± 1.0 83.94 ± 0.9 77.73 ± 5.9 77.72 ± 5.6 84.66 ± 1.7 83.61 ± 1.9
Jeffreys CORAL 77.81 ± 2.6 78.74 ± 2.6 79.64 ± 1.8 79.43 ± 2.1 86.84 ± 1.7 85.97 ± 1.9
Stein CORAL 76.25 ± 2.3 77.63 ± 2.3 80.18 ± 1.2 79.99 ± 1.7 85.99 ± 2.1 85.16 ± 2.5
Linear MMCD 76.25 ± 2.6 76.79 ± 3.6 81.29 ± 4.0 81.14 ± 4.3 88.37 ± 1.5 87.59 ± 1.9
Kernelized MMCD 76.25 ± 2.6 76.79 ± 3.6 80.45 ± 2.7 80.16 ± 3.0 87.48 ± 1.4 86.75 ± 1.6
MMDA 77.23 ± 2.5 77.14 ± 2.5 61.86 ± 5.8 61.82 ± 5.4 75.95 ± 4.4 74.95 ± 4.5
DDC 84.27 ± 2.3 83.85 ± 2.6 77.32 ± 5.9 77.24 ± 5.7 84.33 ± 1.9 83.14 ± 2.2
Linear DAN 76.56 ± 2.7 76.26 ± 2.5 81.83 ± 3.3 81.39 ± 4.2 88.37 ± 1.4 87.92 ± 1.5
Squared DAN 77.81 ± 10.4 78.15 ± 12.4 80.62 ± 2.6 80.20 ± 3.5 87.77 ± 2.7 86.91 ± 2.9
HoMMp=3 83.33 ± 2.9 83.99 ± 2.1 76.38 ± 3.6 76.51 ± 3.2 83.87 ± 3.7 83.23 ± 3.6
DANN 77.07 ± 6.2 76.90 ± 6.6 74.96 ± 6.2 73.69 ± 7.7 71.62 ± 6.8 71.49 ± 6.0
CDAN 65.22 ± 10.3 63.87 ± 12.0 72.37 ± 4.5 71.93 ± 5.1 52.90 ± 20.9 52.75 ± 22.0
DIRT-T 76.88 ± 3.7 77.23 ± 3.2 58.84 ± 5.3 59.40 ± 4.8 82.71 ± 1.9 81.17 ± 2.3
DSAN 6.18 ± 1.2 1.53 ± 1.8 6.25 ± 0.4 0.88 ± 0.2 7.96 ± 0.0 0.98 ± 0.0
CoDATS 80.63 ± 3.1 80.71 ± 2.6 67.01 ± 6.5 66.75 ± 6.3 76.23 ± 4.5 75.73 ± 4.7
AdvSKM 84.08 ± 3.5 84.38 ± 3.4 81.03 ± 2.4 80.57 ± 3.0 83.99 ± 2.9 83.08 ± 3.4
Sinkhorn 81.56 ± 2.0 82.77 ± 1.8 78.93 ± 4.1 78.47 ± 4.2 85.67 ± 1.4 84.33 ± 2.1
OT1 [kMMD] 85.09 ± 7.7 - - - 84.03 ± 9.4 -
OT1 [HoMMp=3] 70.03 ± 7.4 - - - 62.37 ± 13.3 -
OT1 [CORAL (J)] 80.92 ± 8.0 - - - 82.24 ± 10.3 -
OT1 [CORAL (S)] 82.31 ± 7.8 - - - 76.12 ± 13.0 -

Split OnHW-equations OnHW-chars OnHW-chars
(R→L) (combined) (L→R) (combined) (R→L)

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 92.76 ± 0.8 92.35 ± 0.8 75.51 ± 3.4 73.75 ± 4.6 64.02 ± 0.2 62.52 ± 0.3
CS 20.82 ± 19.7 16.63 ± 14.6 5.59 ± 4.1 3.72 ± 3.8 1.94 ± 0.0 0.07 ± 0.0
PC 92.56 ± 1.2 92.07 ± 1.3 75.17 ± 2.0 73.48 ± 3.0 63.85 ± 0.2 62.40 ± 0.3
KL 92.44 ± 1.6 91.92 ± 1.9 74.01 ± 3.1 72.30 ± 3.9 63.72 ± 0.3 62.13 ± 0.3
JSD 92.42 ± 1.0 91.94 ± 1.1 74.22 ± 3.4 72.48 ± 4.2 63.45 ± 0.1 61.85 ± 0.1
Linear MMD 92.67 ± 0.4 92.14 ± 0.5 74.39 ± 3.3 73.60 ± 3.8 63.41 ± 0.1 61.82 ± 0.1
kMMD 92.62 ± 0.9 92.14 ± 1.0 74.92 ± 2.8 73.40 ± 3.5 64.05 ± 0.0 62.55 ± 0.0
Deep CORAL 92.27 ± 1.1 91.62 ± 1.1 75.39 ± 3.2 73.70 ± 3.7 64.98 ± 0.2 63.55 ± 0.3
Jeffreys CORAL 92.57 ± 0.6 92.08 ± 0.5 74.51 ± 2.9 72.54 ± 3.5 63.72 ± 0.3 62.22 ± 0.3
Stein CORAL 92.72 ± 0.7 92.28 ± 0.8 74.62 ± 2.9 73.08 ± 3.6 63.90 ± 0.2 62.37 ± 0.2
Linear MMCD 93.10 ± 0.6 92.59 ± 0.5 75.12 ± 2.8 73.61 ± 3.4 63.71 ± 0.1 62.22 ± 0.1
Kernelized MMCD 92.68 ± 1.2 92.24 ± 1.4 74.96 ± 2.7 73.61 ± 3.4 63.72 ± 0.3 62.26 ± 0.3
MMDA 92.08 ± 0.6 91.24 ± 0.7 62.98 ± 2.7 61.43 ± 3.3 57.64 ± 0.2 56.39 ± 0.2
DDC 92.60 ± 0.9 92.00 ± 0.9 71.30 ± 2.5 70.93 ± 2.3 65.17 ± 0.1 63.80 ± 0.1
Linear DAN 92.62 ± 0.9 92.23 ± 1.0 74.90 ± 3.0 72.93 ± 4.0 63.65 ± 0.2 62.16 ± 0.2
Squared DAN 92.75 ± 0.7 92.34 ± 0.7 75.14 ± 2.7 73.46 ± 3.4 63.96 ± 0.2 62.50 ± 0.1
HoMMp=3 93.08 ± 0.9 92.55 ± 0.8 78.14 ± 2.1 76.49 ± 2.8 63.39 ± 0.1 62.34 ± 0.1
DANN 91.52 ± 0.4 90.83 ± 0.6 71.70 ± 3.3 69.53 ± 4.4 62.60 ± 0.5 61.08 ± 0.4
CDAN 89.23 ± 1.9 88.42 ± 2.3 66.27 ± 4.2 66.40 ± 4.0 45.29 ± 8.5 46.39 ± 8.0
DIRT-T 91.53 ± 0.8 90.88 ± 0.9 74.88 ± 1.6 72.90 ± 2.7 57.78 ± 0.1 56.57 ± 0.1
DSAN 8.38 ± 0.0 1.03 ± 0.0 0.60 ± 0.1 0.03 ± 0.0 1.80 ± 0.0 0.07 ± 0.0
CoDATS 91.85 ± 1.0 91.22 ± 1.0 71.07 ± 4.1 69.11 ± 4.6 57.34 ± 0.7 55.49 ± 0.7
AdvSKM 92.33 ± 0.5 91.83 ± 0.4 74.40 ± 3.4 72.59 ± 4.5 64.98 ± 0.0 63.51 ± 0.0
Sinkhorn 92.91 ± 1.3 92.34 ± 1.5 76.96 ± 2.5 75.27 ± 3.4 64.06 ± 0.1 62.79 ± 0.1
OT1 [kMMD] - - 73.87 ± 11.1 - - -
OT1 [HoMMp=3] - - 56.84 ± 9.6 - - -
OT1 [CORAL (J)] - - 72.30 ± 9.1 - - -
OT1 [CORAL (S)] - - 66.50 ± 7.7 - - -
1OT is trained for one cross-validation split for OnHW-symbols and split OnHW-equations (mean
over all samples), and trained and averaged over five cross-validation splits for OnHW-chars.

as shown in Table 2.9, it fails significantly short of the target-only accuracy of 69.92%
as indicated in Table 2.2. Several DA methods, including PC, Deep CORAL, Jeffreys
CORAL, and Stein CORAL, perform similarly well (99.38%) on the epilepsy dataset, as
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Table 2.14: DA results in % for the OnHW datasets based on AdaTime. ResNet18 as
encoder network. Results show mean and standard deviation over five runs for the OnHW-
symbols and split OnHW-equations datasets and over five cross-validation splits and five
runs for the OnHW-chars dataset. Bold are best results.

OnHW-symbols OnHW-symbols Split OnHW-equations
(L→R) (R→L) (L→R)

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 60.31 ± 1.8 59.01 ± 4.3 49.15 ± 8.0 48.06 ± 5.5 57.53 ± 7.4 55.07 ± 7.5
CS 40.62 ± 7.2 36.81 ± 9.6 33.93 ± 8.0 29.79 ± 8.6 9.66 ± 2.5 3.72 ± 2.2
PC 55.94 ± 1.7 53.42 ± 1.8 51.70 ± 8.1 49.87 ± 7.3 59.36 ± 3.4 58.09 ± 3.4
KL 59.38 ± 5.3 57.34 ± 6.9 46.16 ± 8.9 43.44 ± 8.1 22.60 ± 9.6 17.86 ± 8.2
JSD 44.69 ± 5.9 40.53 ± 6.5 37.23 ± 10.8 33.88 ± 9.0 9.63 ± 3.3 3.88 ± 2.0
Linear MMD 61.88 ± 8.5 60.61 ± 7.7 52.77 ± 6.0 50.82 ± 5.4 70.08 ± 3.5 69.93 ± 3.2
kMMD 61.25 ± 3.4 59.33 ± 3.9 51.34 ± 7.8 49.31 ± 6.8 59.97 ± 3.5 58.29 ± 4.2
Deep CORAL 78.36 ± 1.1 78.50 ± 1.6 51.92 ± 7.5 50.21 ± 6.6 72.99 ± 2.2 71.91 ± 2.7
Jeffreys CORAL 58.44 ± 5.5 55.62 ± 6.0 51.52 ± 8.0 49.76 ± 6.7 59.10 ± 4.3 58.65 ± 3.9
Stein CORAL 59.06 ± 3.7 57.73 ± 4.4 51.74 ± 7.1 49.95 ± 5.9 58.81 ± 2.3 57.53 ± 3.4
Linear MMCD 61.25 ± 5.2 60.28 ± 7.1 53.39 ± 5.8 51.60 ± 5.9 68.96 ± 3.9 69.27 ± 3.7
Kernelized MMCD 56.56 ± 3.2 55.83 ± 6.8 51.92 ± 7.5 50.21 ± 6.6 59.49 ± 5.9 57.76 ± 5.8
MMDA 65.61 ± 6.3 65.29 ± 6.3 41.25 ± 4.9 40.17 ± 3.8 67.87 ± 4.1 65.73 ± 4.1
DDC 77.98 ± 3.1 78.15 ± 3.2 51.88 ± 6.7 50.06 ± 5.3 71.86 ± 4.5 70.00 ± 4.9
Linear DAN 56.88 ± 6.5 53.28 ± 7.1 53.17 ± 5.8 51.39 ± 4.7 67.72 ± 3.9 67.59 ± 3.1
Squared DAN 61.25 ± 5.6 59.66 ± 5.5 51.52 ± 7.7 49.69 ± 6.2 62.92 ± 4.2 62.28 ± 3.8
HoMMp=3 64.83 ± 3.8 65.59 ± 3.5 39.38 ± 4.7 39.72 ± 3.8 71.44 ± 8.3 69.31 ± 8.7
DANN 63.03 ± 12.6 60.36 ± 12.9 50.54 ± 4.7 49.25 ± 4.6 54.38 ± 5.3 54.06 ± 4.8
CDAN 50.98 ± 7.5 49.24 ± 8.9 38.79 ± 13.9 35.04 ± 15.8 45.72 ± 9.9 43.87 ± 8.8
DIRT-T 53.96 ± 8.7 53.73 ± 10.1 39.06 ± 3.6 38.07 ± 3.9 59.50 ± 7.6 58.62 ± 7.7
DSAN 44.41 ± 8.8 42.86 ± 8.3 21.70 ± 3.4 17.00 ± 2.4 8.66 ± 0.8 1.86 ± 0.5
CoDATS 64.83 ± 8.3 65.28 ± 8.6 49.91 ± 1.7 47.68 ± 4.1 54.08 ± 3.8 53.93 ± 3.3
AdvSKM 77.31 ± 2.5 76.61 ± 2.6 56.03 ± 8.2 54.55 ± 9.2 72.76 ± 2.6 71.57 ± 2.6
Sinkhorn 45.31 ± 5.5 42.36 ± 5.4 30.31 ± 9.0 25.20 ± 8.8 70.85 ± 5.3 70.58 ± 4.9

Split OnHW-equations OnHW-chars OnHW-chars
(R→L) (combined) (L→R) (combined) (R→L)

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 79.47 ± 3.7 79.76 ± 3.6 46.18 ± 3.8 44.31 ± 4.0 32.40 ± 0.5 29.86 ± 0.5
CS 32.81 ± 24.7 29.65 ± 27.1 13.32 ± 1.7 11.03 ± 1.1 3.78 ± 0.4 0.99 ± 0.3
PC 79.51 ± 1.6 79.85 ± 1.4 46.32 ± 3.5 44.32 ± 3.7 31.03 ± 0.2 28.75 ± 0.2
KL 44.10 ± 5.1 40.38 ± 5.1 44.88 ± 3.5 42.55 ± 4.0 31.67 ± 0.2 29.24 ± 0.2
JSD 19.95 ± 3.4 15.97 ± 2.0 6.64 ± 0.6 3.39 ± 0.7 23.17 ± 2.5 20.79 ± 2.7
Linear MMD 79.53 ± 1.7 79.79 ± 1.4 46.15 ± 4.8 44.45 ± 4.5 31.72 ± 0.6 29.39 ± 0.7
kMMD 79.51 ± 2.0 79.90 ± 1.5 46.51 ± 4.8 44.69 ± 5.1 31.68 ± 0.1 29.35 ± 0.2
Deep CORAL 79.09 ± 1.9 79.56 ± 1.5 63.98 ± 3.9 62.39 ± 4.5 31.68 ± 0.1 29.35 ± 0.2
Jeffreys CORAL 79.48 ± 2.2 79.92 ± 1.7 46.08 ± 4.9 44.42 ± 4.9 31.31 ± 0.2 29.08 ± 0.2
Stein CORAL 79.03 ± 1.7 79.38 ± 1.6 46.04 ± 4.3 44.08 ± 4.4 31.34 ± 0.4 29.05 ± 0.4
Linear MMCD 79.21 ± 2.2 79.32 ± 2.1 46.05 ± 4.9 44.15 ± 5.3 31.72 ± 0.6 29.39 ± 0.7
Kernelized MMCD 79.09 ± 1.9 79.56 ± 1.5 45.54 ± 4.3 43.53 ± 4.5 31.68 ± 0.1 29.35 ± 0.2
MMDA 75.50 ± 3.4 75.87 ± 3.0 56.61 ± 4.1 55.15 ± 4.5 29.29 ± 0.3 26.32 ± 0.3
DDC 79.42 ± 2.5 79.59 ± 2.2 63.31 ± 3.7 61.86 ± 4.3 31.43 ± 0.1 29.09 ± 0.1
Linear DAN 79.33 ± 2.8 79.55 ± 2.7 45.40 ± 4.0 43.44 ± 4.2 32.21 ± 0.3 29.51 ± 0.2
Squared DAN 79.88 ± 2.5 80.17 ± 2.3 46.59 ± 4.4 44.70 ± 4.6 31.80 ± 0.2 29.51 ± 0.2
HoMMp=3 76.59 ± 2.4 76.93 ± 2.3 61.33 ± 4.2 59.51 ± 5.0 24.86 ± 0.8 21.47 ± 0.8
DANN 75.22 ± 2.0 74.77 ± 2.6 57.09 ± 4.0 55.64 ± 4.4 29.09 ± 0.8 27.14 ± 0.8
CDAN 55.88 ± 5.4 52.91 ± 7.2 52.63 ± 4.8 50.76 ± 4.5 15.09 ± 0.6 11.23 ± 0.6
DIRT-T 70.99 ± 1.8 70.52 ± 1.3 55.07 ± 4.3 53.33 ± 4.5 30.05 ± 0.2 27.64 ± 0.2
DSAN 8.85 ± 0.5 1.81 ± 0.6 0.89 ± 0.0 0.13 ± 0.1 1.97 ± 0.0 0.14 ± 0.0
CoDATS 76.13 ± 4.0 75.87 ± 3.7 61.30 ± 3.0 59.56 ± 4.0 29.24 ± 0.4 26.90 ± 0.4
AdvSKM 79.53 ± 1.7 79.75 ± 1.9 63.44 ± 3.7 61.90 ± 4.4 32.17 ± 0.1 29.98 ± 0.1
Sinkhorn 77.24 ± 3.3 77.45 ± 3.1 37.21 ± 3.8 34.48 ± 4.0 25.74 ± 1.5 22.54 ± 1.6

shown in Table 2.10. On the human activity datasets, linear MMD outperforms kMMD,
especially on the face detection dataset, as demonstrated in Table 2.11. Aditionally, as
shown in Table 2.12, DIRT-T achieves the highest accuracy of 96.67% on the PenDigits
dataset. While linear MMD outperforms kMMD, the variants Jeffreys and Stein CORAL
outperform the standard Deep CORAL.

Evaluation of DA & Encoder Networks on the OnHW Datasets. Refer to Ta-
ble 2.13, Table 2.14, and Table 2.15 for the results obtained from the OnHW-symbols,
split OnHW-equations, and OnHW-chars (combined and writer-dependent) datasets. No-
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Table 2.15: DA results in % for the OnHW datasets based on AdaTime. Results show mean
and standard deviation over five runs for the OnHW-symbols and split OnHW-equations
datasets and over five cross-validation splits and five runs for the OnHW-chars dataset.
TCN as encoder network. Bold are best results.

OnHW-symbols OnHW-symbols Split OnHW-equations
(L→R) (R→L) (L→R)

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 6.25 ± 0.0 0.78 ± 0.0 5.62 ± 0.3 0.71 ± 0.0 8.01 ± 0.0 0.99 ± 0.0
CS 6.25 ± 0.0 0.78 ± 0.0 5.58 ± 0.0 0.70 ± 0.0 7.05 ± 0.0 0.88 ± 0.0
PC 6.25 ± 0.0 0.78 ± 0.0 5.58 ± 0.0 0.70 ± 0.0 7.05 ± 0.0 0.88 ± 0.0
KL 8.75 ± 3.0 1.06 ± 0.3 5.62 ± 0.4 0.71 ± 0.0 6.03 ± 2.3 0.75 ± 0.3
JSD 6.25 ± 0.0 0.78 ± 0.0 6.96 ± 2.5 0.86 ± 0.3 7.76 ± 2.1 0.96 ± 0.2
Linear MMD 5.62 ± 1.4 0.71 ± 0.2 5.58 ± 0.3 0.71 ± 0.0 8.01 ± 0.0 0.99 ± 0.0
kMMD 6.25 ± 0.0 0.79 ± 0.0 5.49 ± 0.2 0.69 ± 0.0 8.03 ± 0.0 1.01 ± 0.0
Deep CORAL 6.88 ± 1.8 2.91 ± 2.4 7.68 ± 2.2 4.03 ± 3.4 8.01 ± 0.0 0.99 ± 0.0
Jeffreys CORAL 6.25 ± 0.0 0.78 ± 0.0 5.45 ± 0.1 0.69 ± 0.0 8.01 ± 0.0 0.99 ± 0.0
Stein CORAL 6.25 ± 0.0 0.78 ± 0.0 5.45 ± 0.3 0.69 ± 0.0 8.01 ± 0.0 0.99 ± 0.0
Linear MMCD 5.94 ± 0.7 0.75 ± 0.1 5.62 ± 0.5 0.71 ± 0.1 8.01 ± 0.0 0.99 ± 0.0
Kernelized MMCD 6.88 ± 1.8 2.91 ± 2.4 7.68 ± 2.2 4.03 ± 3.4 8.01 ± 0.0 0.99 ± 0.0
MMDA 7.19 ± 3.4 6.62 ± 3.8 7.72 ± 1.8 7.34 ± 1.4 9.07 ± 0.4 2.23 ± 0.5
DDC 6.25 ± 0.0 0.78 ± 0.0 5.49 ± 0.2 0.69 ± 0.0 8.03 ± 0.0 1.01 ± 0.1
Linear DAN 6.25 ± 0.0 0.79 ± 0.0 5.49 ± 0.2 0.69 ± 0.0 7.82 ± 0.4 0.97 ± 0.0
Squared DAN 6.25 ± 0.0 0.78 ± 0.0 5.49 ± 0.2 0.78 ± 0.2 7.44 ± 0.5 0.92 ± 0.1
HoMMp=3 8.44 ± 4.5 6.94 ± 4.3 7.99 ± 1.6 6.84 ± 1.4 10.29 ± 1.7 3.32 ± 0.9
DANN 6.25 ± 0.0 0.78 ± 0.0 5.76 ± 0.4 0.73 ± 0.1 9.26 ± 1.0 2.37 ± 1.5
CDAN 5.00 ± 0.7 0.63 ± 0.1 6.52 ± 2.4 0.81 ± 0.3 8.01 ± 0.0 0.99 ± 0.0
DIRT-T 16.56 ± 4.2 12.12 ± 4.8 14.15 ± 2.3 11.14 ± 2.4 45.45 ± 6.1 43.25 ± 6.5
DSAN 18.44 ± 1.3 14.84 ± 1.0 16.61 ± 1.9 11.91 ± 2.0 8.80 ± 1.7 1.80 ± 1.6
CoDATS 24.38 ± 3.6 22.26 ± 3.9 8.66 ± 4.6 4.21 ± 5.9 27.58 ± 1.6 23.68 ± 2.0
AdvSKM 6.25 ± 0.0 0.79 ± 0.0 5.71 ± 0.2 0.72 ± 0.0 8.01 ± 0.0 0.99 ± 0.0
Sinkhorn 6.25 ± 1.1 1.17 ± 1.0 7.32 ± 2.8 3.07 ± 1.4 5.95 ± 2.2 1.39 ± 0.8

Split OnHW-equations OnHW-chars OnHW-chars
(R→L) (combined) (L→R) (combined) (R→L)

Method Accuracy F1 Accuracy F1 Accuracy F1
MSE 8.37 ± 0.4 1.03 ± 0.0 0.58 ± 0.1 0.02 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
CS 5.73 ± 0.0 0.72 ± 0.0 2.01 ± 0.6 0.08 ± 0.0 1.94 ± 0.0 0.07 ± 0.0
PC 5.73 ± 0.0 0.72 ± 0.0 2.01 ± 0.6 0.08 ± 0.0 1.94 ± 0.0 0.07 ± 0.0
KL 7.52 ± 1.9 0.93 ± 0.2 1.75 ± 0.2 0.07 ± 0.0 1.91 ± 0.0 0.07 ± 0.0
JSD 6.66 ± 2.2 0.83 ± 0.3 1.73 ± 0.1 0.07 ± 0.0 1.89 ± 0.0 0.07 ± 0.0
Linear MMD 8.37 ± 0.4 1.03 ± 0.0 0.58 ± 0.1 0.02 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
kMMD 8.37 ± 0.4 1.03 ± 0.0 0.58 ± 0.1 0.02 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
Deep CORAL 9.73 ± 2.1 2.04 ± 1.4 0.62 ± 0.1 0.06 ± 0.0 1.83 ± 0.0 0.08 ± 0.0
Jeffreys CORAL 8.37 ± 0.4 1.03 ± 0.0 0.6 ± 0.1 0.04 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
Stein CORAL 8.37 ± 0.4 1.03 ± 0.0 0.58 ± 0.1 0.02 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
Linear MMCD 8.37 ± 0.4 1.03 ± 0.0 0.62 ± 0.1 0.02 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
Kernelized MMCD 9.73 ± 2.1 2.04 ± 1.4 0.62 ± 0.1 0.06 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
MMDA 8.99 ± 1.0 2.60 ± 0.6 1.12 ± 0.5 0.27 ± 0.1 2.03 ± 0.1 0.28 ± 0.0
DDC 8.37 ± 0.4 1.03 ± 0.0 0.58 ± 0.1 0.02 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
Linear DAN 8.37 ± 0.4 1.03 ± 0.0 0.74 ± 0.1 0.03 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
Squared DAN 7.32 ± 1.4 0.91 ± 0.2 0.58 ± 0.1 0.02 ± 0.0 1.83 ± 0.0 0.07 ± 0.0
HoMMp=3 8.62 ± 0.3 1.79 ± 0.5 1.94 ± 0.4 0.73 ± 0.2 2.46 ± 0.1 0.72 ± 0.1
DANN 14.21 ± 12.1 8.08 ± 15.2 1.71 ± 1.0 1.25 ± 0.9 1.91 ± 0.0 0.08 ± 0.0
CDAN 8.38 ± 0.0 1.03 ± 0.0 1.30 ± 0.3 0.05 ± 0.0 1.93 ± 0.0 0.07 ± 0.0
DIRT-T 53.94 ± 1.4 52.02 ± 3.2 1.06 ± 0.1 0.57 ± 0.1 1.86 ± 0.0 0.09 ± 0.0
DSAN 7.92 ± 1.2 1.10 ± 0.2 0.73 ± 0.2 0.09 ± 0.1 1.79 ± 0.0 0.08 ± 0.0
CoDATS 33.79 ± 10.1 27.73 ± 10.2 0.71 ± 0.3 0.04 ± 0.0 1.85 ± 0.1 0.10 ± 0.0
AdvSKM 8.15 ± 0.3 1.01 ± 0.0 0.58 ± 0.5 0.02 ± 0.0 1.85 ± 0.0 0.07 ± 0.0
Sinkhorn 7.31 ± 1.8 1.27 ± 0.5 1.94 ± 0.4 0.26 ± 0.1 2.06 ± 0.1 0.43 ± 0.1

tably, the CNN encoder outperforms the ResNet18 encoder by extracting features that
lead to high classification accuracy, whereas the TCN encoder fails to extract meaning-
ful features. Moreover, when adapting left-handed writers to right-handed writers (L→R),
the OnHW-symbols and OnHW-chars datasets yield higher accuracies than when adapting
right-handed writers to left-handed writers (R→L). This is likely due to the right-handed
writers datasets having more training samples than the left-handed writers datasets, as
illustrated in Figure 2.2c and Figure 2.2e). In the case of split OnHW-equations dataset,
both left-handed and right-handed writers contributed significantly to the samples (still
with a predominance of right-handed writers), as illustrated in Figure 2.2d, hence the effect
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(a) CNN encoder.
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(b) ResNet18 encoder.
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(c) TCN encoder.
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(d) CNN encoder.
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(e) ResNet18 encoder.
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(f) TCN encoder.

Figure 2.3: DA results in % for the GNSS-based dataset utilizing AdaTime for three
encoder networks and for window lengths between 4 and 29. Results are averaged over
five runs. Top: classification task with nine classes (one class for non-interference and
eight classes for interference). Bottom: binary classification task (interference or non-
interference).

of writer adaptation is not present. On the OnHW-symbols dataset, DDC (84.27%), Deep
CORAL (84.23%), and AdvSKM (84.08%) were found to have the highest classification
accuracy among all DA methods. Conversely, on the split OnHW-equations dataset, lin-
ear DAN (88.37%), linear MMCD (88.37%), and linear MMD (88.33%) outperforms all
DA methods, with linearized versions being preferred over the kernelized versions. For
the OnHW-chars dataset, HoMMp=3 (78.14%), Sinkhorn (76.96%), and Deep CORAL
(75.39%) yield the highest accuracies. While the optimal transport (OT) method by Ott
et al. (2022a) is supervised and uses a different CNN encoder, a direct comparison to the
remaining DA methods shows that using kMMD as similarity technique for feature em-
bedding transformation results in the highest accuracy of 85.09% on the OnHW-symbols
dataset. Notably, kMMD was found to be the preferred method over HoMM and Jeffreys
and Stein CORAL for all OnHW datasets.

Evaluation of DA & Encoder Networks on the GNSS-based Dataset. An overview
of classification results for GNSS-based interference detection is presented in Figure 2.3.
Figure 2.3a through Figure 2.3c depict the classification results for the multi-class task
consisting of eight interference classes. On the other hand, Figure 2.3d to Figure 2.3f
demonstrate the results of the binary classification task. It is important to note that some
DA methods failed to train properly, rendering them out-of-scale in the figures. In the case
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of the multi-class problem, the CNN encoder outperforms the ResNet18 and TCN encoders,
as observed in previous datasets. The CNN encoder with window length six achieved the
highest classification accuracy for DSAN, but failed to train properly for other window
lengths. CoDATS and DANN were able to train properly for all window lengths, achieving
classification accuracies between 40.90% to 60.26% and 42.90% to 61.67%, respectively.
However, no statement can be made about the influence of window length on classifica-
tion accuracy. Regarding the binary classification task, the CNN encoder outperforms the
ResNet18 and TCN encoders. Depending on the window length, CDAN (up to 73.46%),
HoMMp=3 (up to 74.94%), AdvSKM (up to 75.60%), and MMDA (up to 73.94%) achievs
higher classification accuracies than other methods. A trend of higher classification accu-
racies for higher window lengths is evident for ResNet18 and TCN encoders.

Evaluation of DA & Encoder Networks on the Sinusoidal Datasets. Our study
presents the evaluation results for all DA methods on the sinusoidal dataset illustrated
in Figure 2.4, Figure 2.5, and Figure 2.6. Unlike previous datasets, where the CNN en-
coder had a superior performance over the ResNet18 and TCN encoders, on the sinusoidal
datasets, the TCN encoder demonstrates robustness for all DA methods, while ResNet18
achieves low classification accuracies. It is important to note that KL and JSD are not
considered proper DA methods, as indicated in Figure 2.5a. The CNN encoder is only ap-
plicable for DANN, Deep CORAL, DIRT-T, DDC, DAN, AdvSKM, MSE, and Sinkhorn,
but limited to low noise parameters. The evaluation results reveal that MMDA (refer to
Figure 2.4a), Deep CORAL and DANN (refer to Figure 2.4c), HoMMp=3 (refer to Fig-
ure 2.4d), and DDC and AdvSKM (refer to Figure 2.4e) demonstrate the highest robust-
ness to noise. It is worth noting that although the F1-score is lower than the accuracy for
DIRT-T, it remains the same for the other methods. The classification accuracy remains
consistently high (up to 100%) for low noise parameters and decreases for higher noise
parameters (b > 0.7). Based on the results, AdaTime concludes that joint distribution
methods, including DIRT-T, MMDA, and DSAN, outperform marginal distribution meth-
ods, such as MMDA, Deep CORAL, and HoMM. The results obtained from sinusoidal
datasets do not align with this statement. Jeffreys and Stein CORAL (see Figure 2.5b)
exhibit similar performance as Deep CORAL (see Figure 2.4c). Although the performance
differences between MMD (see Figure 2.6a) and MMCD (see Figure 2.6b) are marginal,
the kernelized versions of MMD and MMCD show better results than the linear versions.
According to the findings of the optimal transport method proposed by Ott et al. (2022a),
Sinkhorn transport with LpL1 or L1L2 regularization outperforms the best DA method,
which is MMDA. For high noise parameters (b > 1.6), MMDA’s classification accuracy
drops below 80%. In contrast, Sinkhorn transport with kMMD as a similarity comparison
method consistently achieves classification accuracy above 80%. In our previous work (Ott
et al., 2022a), we demonstrated that kMMD and Cosine similarity outperform CORAL,
which in turn yields higher accuracies than HoMM of order three and Pearson correlation.
As a result, the choice of encoder network and its hyperparameters significantly affects the
final classification accuracy, and each DA method exhibits varying degrees of robustness
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(a) Methods MMDA and CDAN.
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(b) Methods CoDATS and DSAN.
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(c) Methods DANN and Deep CORAL.
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(d) Methods DIRT-T and HoMMp=3.
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(e) Methods DDC and AdvSKM.

Figure 2.4: DA results for the sinusoidal datasets with noise parameter b. Left: CNN.
Middle: ResNet18. Right: TCN. Results averaged over five runs.
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(a) Methods KL and JSD.
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(b) Methods Stein CORAL and Jeffreys CORAL.
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(c) Methods linear DAN and squared DAN.
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(d) Methods MSE and Sinkhorn.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

Noise b

0

20

40

60

80

100

Ac
cu

ra
cy

/F
1 

[%
]

0

2

4

6

8

R
is

ks
 [s

co
re

]

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

Noise b

0

20

40

60

80

100

Ac
cu

ra
cy

/F
1 

[%
]

Accuracy
F1
CC
PC

2

4

6

8

10

R
is

ks
 [s

co
re

]

Source risk
Target risk
Few-shot risk

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

Noise b

0

20

40

60

80

100

Ac
cu

ra
cy

/F
1 

[%
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
is

ks
 [s

co
re

]

(e) Methods CS and PC.

Figure 2.5: Figure 2.4 continued.
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(a) Methods linear MMD and kMMD.
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(b) Methods linear MMCD and kMMCD.

Figure 2.6: Figure 2.5 continued.
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Figure 2.7: Hyperparameter search for the parameter γ ∈ [0.05, 0.1, 0.2, 0.3, . . . , 1.0] of the
Sinkhorn method. CNN encoder network for a) and b), and TCN encoder network for c).
Mean accuracy and standard deviation (in %) given over five runs.

to noise. Therefore, a careful selection of the appropriate DA method for each application
is critical to achieving a robust classifier.

Sinkhorn Hyperparameter Search. The Sinkhorn method’s performance is depen-
dent on the hyperparameter γ. We conducted a search to train Sinkhorn using γ ∈
[0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0] for all human activity, OnHW, and sinusoidal
datasets (refer to Figure 2.7). Results indicate that γ = 0.1 achieves the highest accuracies
for the human activity and OnHW datasets, while γ = 0.05 is inconsistent, resulting in
higher accuracies for OnHW-symbols and WISDM datasets, but lower accuracies for the
finger dataset. Furthermore, for specific noise parameters (i.e., b = 0.2, b = 0.4, b = 0.5,
and b = 0.6) for the sinusoidal dataset, a higher γ improves classification accuracy. Specifi-
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(a) Methods Sinkhorn and Sinkhorn+HoMMp=3.
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(b) Methods Sinkhorn+linear MMD and Sinkhorn+kMMD.
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(c) Methods Sinkhorn+Deep CORAL, Sinkhorn+Jeffreys CORAL, and Sinkhorn+Stein CORAL.

Figure 2.8: Figure 2.6 continued.

cally, for γ = 0.05, the accuracy decreases for low noise parameters (b < 1.0), but increases
for high noise parameters (b ≥ 1.0). To maintain consistency in training, we choose γ = 0.1
for follow-up trainings. The hyperparameter searches for CNN, ResNet18, and TCN en-
coder networks are similar concerning the parameter γ. For Sinkhorn, we employ 100
iterations, use MSE loss as the ground metric, and apply a stopping criterion of 0.1.

Combination of Sinkhorn & Alignment Functions. Feydy et al. (2019) demon-
strated the advantageous geometric property of the Sinkhorn method and proved that
it interpolates between OT and MMD. Thus, we aim to combine the strengths of both
techniques by evaluating the benefits of feature alignment by representation learning (i.e.,
linear MMD, kMMD, Deep CORAL, Jeffreys CORAL, Stein CORAL, and HoMMp=3)
with the geometrical properties of Sinkhorn. We present results for ten human activity
recognition datasets in Table 2.16 and Table 2.17, which can be compared with the results
in Table 2.3 to Table 2.12. The Sinkhorn-only method with a parameter value of γ = 0.1
serves as the baseline for comparison. We assign equal weight to Sinkhorn and the align-
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Table 2.16: DA results of the combination of Sinkhorn with alignment loss functions for
the human activity recognition datasets. Mean and standard deviation in % over five runs.
Bold are best results. Underlined are Sinkhorn-only improvements.

CNN ResNet18 TCN
Datasets Method Accuracy F1 Accuracy F1 Accuracy F1

HHAR

Sinkhorn (γ = 0.1) 75.15 ± 19.5 73.97 ± 20.7 67.98 ± 20.9 67.18 ± 22.5 70.04 ± 19.1 68.11 ± 21.4
Sinkhorn+linear MMD 75.17 ± 19.4 73.83 ± 20.6 67.82 ± 21.3 67.11 ± 22.8 70.49 ± 19.7 68.93 ± 21.5
Sinkhorn+kMMD 75.15 ± 19.5 73.97 ± 20.7 67.98 ± 20.9 67.18 ± 22.5 70.04 ± 19.1 68.11 ± 21.4
Sinkhorn+Deep CORAL 75.19 ± 19.3 73.84 ± 20.5 66.88 ± 21.7 66.09 ± 23.3 70.81 ± 19.4 69.04 ± 21.5
Sinkhorn+Jeffreys CORAL 75.40 ± 19.8 74.10 ± 21.0 67.29 ± 21.8 66.49 ± 23.3 70.76 ± 18.6 69.08 ± 20.7
Sinkhorn+Stein CORAL 74.69 ± 19.4 73.43 ± 20.5 68.45 ± 21.3 67.62 ± 22.8 71.08 ± 19.4 69.34 ± 21.6
Sinkhorn+HoMMp=3 75.14 ± 19.1 73.90 ± 20.3 67.36 ± 21.8 66.49 ± 23.4 70.68 ± 19.1 68.83 ± 21.4

UCI

Sinkhorn (γ = 0.1) 87.17 ± 12.4 86.55 ± 12.9 81.62 ± 12.7 78.96 ± 14.0 80.88 ± 12.9 79.05 ± 13.5

HAR

Sinkhorn+linear MMD 86.96 ± 12.8 86.36 ± 13.4 81.57 ± 12.8 79.00 ± 14.1 81.27 ± 12.6 79.58 ± 13.3
Sinkhorn+kMMD 87.17 ± 12.4 86.55 ± 12.9 81.62 ± 12.7 78.96 ± 14.0 80.88 ± 12.9 79.05 ± 13.5
Sinkhorn+Deep CORAL 87.25 ± 12.4 86.66 ± 12.9 81.67 ± 12.7 78.95 ± 14.1 81.03 ± 12.4 79.21 ± 13.1
Sinkhorn+Jeffreys CORAL 87.04 ± 12.5 86.45 ± 13.1 81.49 ± 13.0 78.83 ± 14.3 80.96 ± 12.6 79.04 ± 13.3
Sinkhorn+Stein CORAL 87.12 ± 12.5 86.48 ± 13.1 81.50 ± 12.9 78.95 ± 14.1 81.04 ± 12.7 79.22 ± 13.3
Sinkhorn+HoMMp=3 87.30 ± 12.4 86.68 ± 13.0 82.95 ± 13.0 80.87 ± 14.1 81.00 ± 12.6 79.18 ± 13.2

WISDM

Sinkhorn (γ = 0.1) 59.40 ± 22.4 41.15 ± 22.4 59.18 ± 20.3 40.28 ± 20.8 55.66 ± 18.2 35.20 ± 17.4
Sinkhorn+linear MMD 59.28 ± 22.1 40.99 ± 22.3 58.75 ± 20.9 39.98 ± 21.0 55.55 ± 18.6 35.02 ± 17.6
Sinkhorn+kMMD 59.40 ± 22.4 41.15 ± 22.4 59.18 ± 20.3 40.28 ± 20.8 55.66 ± 18.2 35.20 ± 17.4
Sinkhorn+Deep CORAL 59.09 ± 22.4 40.91 ± 22.3 59.22 ± 20.5 40.31 ± 20.6 55.89 ± 18.4 35.59 ± 17.8
Sinkhorn+Jeffreys CORAL 59.51 ± 22.5 41.20 ± 22.5 59.17 ± 20.4 40.40 ± 20.8 55.59 ± 18.3 35.34 ± 17.8
Sinkhorn+Stein CORAL 59.24 ± 22.4 41.11 ± 22.5 59.06 ± 20.4 40.19 ± 20.7 55.49 ± 18.2 35.19 ± 17.5
Sinkhorn+HoMMp=3 59.63 ± 22.4 41.31 ± 22.6 59.46 ± 20.3 40.46 ± 20.8 55.42 ± 18.7 35.17 ± 17.8

SSC

Sinkhorn (γ = 0.1) 71.37 ± 10.1 59.97 ± 10.8 51.31 ± 8.9 37.15 ± 8.7 44.87 ± 6.2 28.48 ± 6.3

EEG

Sinkhorn+linear MMD 71.57 ± 10.0 60.17 ± 10.8 51.25 ± 8.8 37.13 ± 8.6 44.49 ± 6.3 28.15 ± 6.2
Sinkhorn+kMMD 71.37 ± 10.1 59.97 ± 10.8 51.31 ± 8.9 37.15 ± 8.7 44.87 ± 6.2 28.48 ± 6.3
Sinkhorn+Deep CORAL 71.28 ± 10.0 59.83 ± 10.8 51.20 ± 8.9 37.13 ± 8.6 44.79 ± 6.2 28.46 ± 6.2
Sinkhorn+Jeffreys CORAL 71.19 ± 10.1 59.79 ± 11.0 51.19 ± 8.8 37.02 ± 8.7 44.86 ± 6.2 28.48 ± 6.3
Sinkhorn+Stein CORAL 71.60 ± 10.2 60.13 ± 11.1 51.16 ± 8.9 36.98 ± 8.8 44.95 ± 6.2 28.54 ± 6.3
Sinkhorn+HoMMp=3 71.37 ± 10.1 59.90 ± 11.0 51.29 ± 8.7 37.19 ± 8.5 42.28 ± 6.6 22.80 ± 6.1

uWave

Sinkhorn (γ = 0.1) 92.89 ± 7.3 92.41 ± 8.2 58.01 ± 10.0 54.21 ± 11.3 84.08 ± 13.2 83.01 ± 14.0
Sinkhorn+linear MMD 93.03 ± 7.4 92.60 ± 8.3 58.05 ± 10.4 54.46 ± 11.8 85.19 ± 11.7 84.20 ± 12.3
Sinkhorn+kMMD 92.89 ± 7.3 92.41 ± 8.2 58.01 ± 10.0 54.21 ± 11.3 84.08 ± 13.2 83.01 ± 14.0
Sinkhorn+Deep CORAL 93.13 ± 7.1 92.65 ± 8.3 57.10 ± 10.9 53.34 ± 12.1 83.79 ± 13.1 83.05 ± 13.6
Sinkhorn+Jeffreys CORAL 92.98 ± 7.1 92.53 ± 8.1 57.33 ± 10.4 53.68 ± 11.6 83.55 ± 13.6 82.50 ± 14.2
Sinkhorn+Stein CORAL 93.10 ± 7.3 92.67 ± 8.3 57.60 ± 10.2 54.03 ± 11.3 84.23 ± 13.3 83.21 ± 13.9
Sinkhorn+HoMMp=3 93.32 ± 7.1 92.86 ± 8.1 58.30 ± 10.8 54.52 ± 12.2 84.78 ± 12.4 83.68 ± 13.3

Finger

Sinkhorn (γ = 0.1) 50.35 ± 4.9 46.11 ± 4.9 48.33 ± 4.2 42.32 ± 6.1 55.07 ± 1.1 35.88 ± 2.2
Sinkhorn+linear MMD 50.44 ± 4.9 46.23 ± 5.0 48.17 ± 4.2 42.17 ± 6.3 55.19 ± 0.4 35.67 ± 1.1
Sinkhorn+kMMD 50.35 ± 4.9 46.11 ± 4.9 48.33 ± 4.2 42.32 ± 6.1 55.07 ± 1.1 35.88 ± 2.2
Sinkhorn+Deep CORAL 50.32 ± 5.0 46.06 ± 4.9 47.46 ± 4.2 42.50 ± 6.2 55.11 ± 0.9 35.86 ± 2.1
Sinkhorn+Jeffreys CORAL 50.37 ± 5.0 46.13 ± 5.0 48.40 ± 4.2 42.47 ± 6.2 55.09 ± 1.0 35.91 ± 2.3
Sinkhorn+Stein CORAL 50.37 ± 4.9 46.13 ± 4.9 48.43 ± 4.3 42.48 ± 6.3 55.11 ± 0.9 35.88 ± 2.2
Sinkhorn+HoMMp=3 50.33 ± 4.9 46.10 ± 4.9 48.29 ± 4.2 42.18 ± 6.1 54.90 ± 1.5 37.84 ± 5.7

Ges-

Sinkhorn (γ = 0.1) 41.18 ± 14.3 35.22 ± 15.3 30.19 ± 11.8 23.25 ± 11.9 28.66 ± 12.1 22.44 ± 12.3

tures

Sinkhorn+linear MMD 41.41 ± 14.3 35.44 ± 15.2 29.94 ± 12.2 22.97 ± 12.2 27.91 ± 11.9 21.17 ± 12.2

mid air

Sinkhorn+kMMD 41.18 ± 14.3 35.22 ± 15.3 30.19 ± 11.8 23.25 ± 11.9 28.66 ± 12.1 22.44 ± 12.3
Sinkhorn+Deep CORAL 40.96 ± 14.5 35.31 ± 15.4 30.15 ± 12.2 23.22 ± 12.2 28.57 ± 12.2 21.88 ± 12.5
Sinkhorn+Jeffreys CORAL 41.09 ± 14.3 35.00 ± 15.0 30.18 ± 11.3 23.13 ± 11.3 28.37 ± 12.0 21.70 ± 12.2
Sinkhorn+Stein CORAL 41.38 ± 14.4 35.35 ± 15.3 30.02 ± 12.0 23.14 ± 11.9 28.89 ± 12.6 22.31 ± 12.7
Sinkhorn+HoMMp=3 41.00 ± 14.3 35.04 ± 15.3 29.22 ± 12.0 22.17 ± 11.9 27.62 ± 12.2 21.02 ± 12.3

ment loss functions (weighting of 1). Depending on the dataset, the alignment function
can improve the Sinkhorn results further. For instance, Jeffreys CORAL on the HHAR
dataset, HoMMp=3 on the UCI HAR, WISDM, and uWave datasets, and Stein CORAL



2.4 Evaluation Results 97

Table 2.17: Table 2.16 continued.
CNN ResNet18 TCN

Datasets Method Accuracy F1 Accuracy F1 Accuracy F1

Epilepsy

Sinkhorn (γ = 0.1) 96.25 ± 0.8 96.28 ± 0.8 90.31 ± 4.6 89.72 ± 5.2 64.69 ± 4.4 63.84 ± 4.5
Sinkhorn+linear MMD 96.25 ± 0.8 96.28 ± 0.8 90.94 ± 4.4 90.60 ± 4.6 65.62 ± 1.4 63.95 ± 1.1
Sinkhorn+kMMD 96.25 ± 0.8 96.28 ± 0.8 90.31 ± 4.6 89.72 ± 5.2 64.69 ± 4.4 63.84 ± 4.5
Sinkhorn+Deep CORAL 96.88 ± 2.2 96.88 ± 2.3 94.69 ± 2.1 94.53 ± 2.3 64.69 ± 1.9 63.06 ± 2.5
Sinkhorn+Jeffreys CORAL 96.25 ± 1.6 96.20 ± 1.6 91.88 ± 6.2 91.43 ± 7.0 63.44 ± 4.1 62.33 ± 4.1
Sinkhorn+Stein CORAL 96.25 ± 0.8 96.28 ± 0.8 90.94 ± 6.2 89.83 ± 7.2 63.44 ± 3.5 61.59 ± 3.6
Sinkhorn+HoMMp=3 96.88 ± 1.0 96.93 ± 1.0 93.12 ± 6.4 92.27 ± 8.1 61.88 ± 3.2 60.97 ± 3.7

Face

Sinkhorn (γ = 0.1) 61.16 ± 1.9 59.61 ± 2.8 52.85 ± 1.3 50.27 ± 3.0 59.85 ± 7.2 53.13 ± 15.4

detec-

Sinkhorn+linear MMD 62.12 ± 1.0 60.76 ± 1.8 52.09 ± 0.7 48.48 ± 2.7 55.64 ± 7.3 45.68 ± 15.3

tion

Sinkhorn+kMMD 61.16 ± 1.9 59.61 ± 2.8 52.85 ± 1.3 50.27 ± 3.0 59.85 ± 7.2 53.13 ± 15.4
Sinkhorn+Deep CORAL 62.07 ± 1.2 60.80 ± 1.9 52.70 ± 1.2 51.21 ± 2.0 64.63 ± 1.7 64.47 ± 1.7
Sinkhorn+Jeffreys CORAL 60.56 ± 2.0 59.35 ± 2.0 53.38 ± 0.9 52.87 ± 1.0 62.41 ± 6.7 59.10 ± 13.1
Sinkhorn+Stein CORAL 61.19 ± 0.9 59.48 ± 2.2 50.82 ± 0.8 46.01 ± 5.7 62.84 ± 6.9 59.55 ± 13.3
Sinkhorn+HoMMp=3 62.56 ± 1.8 61.41 ± 2.8 52.52 ± 1.9 47.46 ± 5.8 63.40 ± 7.1 60.15 ± 13.6

Pen-

Sinkhorn (γ = 0.1) 96.46 ± 0.3 96.43 ± 0.3 76.29 ± 0.9 76.08 ± 1.1 72.07 ± 6.4 67.48 ± 8.1

Digits

Sinkhorn+linear MMD 96.51 ± 0.2 96.47 ± 0.2 76.45 ± 0.7 76.17 ± 0.9 73.45 ± 14.7 69.84 ± 16.3
Sinkhorn+kMMD 96.46 ± 0.3 96.43 ± 0.3 76.29 ± 0.9 76.08 ± 1.1 72.07 ± 6.4 67.48 ± 8.1
Sinkhorn+Deep CORAL 96.63 ± 0.4 96.60 ± 0.4 76.18 ± 1.0 76.05 ± 1.1 69.77 ± 9.9 65.36 ± 11.2
Sinkhorn+Jeffreys CORAL 96.63 ± 0.3 96.58 ± 0.3 76.25 ± 1.0 76.01 ± 1.0 70.08 ± 7.0 64.84 ± 8.3
Sinkhorn+Stein CORAL 96.42 ± 0.4 96.38 ± 0.5 76.38 ± 0.9 76.20 ± 1.1 73.55 ± 5.0 69.35 ± 6.2
Sinkhorn+HoMMp=3 96.25 ± 0.5 96.20 ± 0.5 76.37 ± 0.9 76.09 ± 0.9 52.28 ± 4.3 47.10 ± 4.7

Table 2.18: DA results of the combination of Sinkhorn with alignment loss functions for
the OnHW recognition datasets (L→R). Mean and standard deviation in % over five runs.
Bold are best results. Underlined are Sinkhorn-only improvements.

CNN ResNet18 TCN
Datasets Method Accuracy F1 Accuracy F1 Accuracy F1

OnHW-

Sinkhorn (γ = 0.1) 81.56 ± 2.0 82.77 ± 1.8 45.31 ± 5.5 42.36 ± 5.4 6.25 ± 1.1 1.17 ± 1.0

symbols

Sinkhorn+linear MMD 79.69 ± 3.1 81.29 ± 3.4 42.81 ± 11.5 40.04 ± 12.5 6.25 ± 1.1 1.19 ± 0.6
Sinkhorn+kMMD 81.56 ± 2.0 82.77 ± 1.8 54.31 ± 5.5 42.36 ± 5.4 6.25 ± 1.1 1.17 ± 1.0
Sinkhorn+Deep CORAL 80.94 ± 3.6 82.77 ± 3.5 38.12 ± 9.3 34.67 ± 8.8 7.50 ± 3.4 1.03 ± 0.3
Sinkhorn+Jeffreys CORAL 80.31 ± 2.6 81.57 ± 3.3 38.75 ± 5.7 35.04 ± 7.3 7.19 ± 3.0 1.72 ± 1.4
Sinkhorn+Stein CORAL 77.50 ± 3.8 78.47 ± 3.8 38.12 ± 13.5 34.28 ± 17.0 6.25 ± 0.0 1.92 ± 1.7
Sinkhorn+HoMMp=3 79.06 ± 5.6 80.09 ± 5.3 42.50 ± 9.5 39.19 ± 9.8 9.06 ± 1.7 4.51 ± 1.7

Split

Sinkhorn (γ = 0.1) 85.67 ± 1.4 84.33 ± 2.1 70.85 ± 5.3 70.58 ± 4.9 5.95 ± 2.2 1.39 ± 0.8

OnHW-

Sinkhorn+linear MMD 84.44 ± 5.3 83.56 ± 5.7 68.80 ± 5.3 67.82 ± 5.2 7.93 ± 2.2 1.80 ± 1.9

equa-

Sinkhorn+kMMD 85.67 ± 1.4 84.33 ± 2.1 70.85 ± 5.3 70.58 ± 4.9 5.95 ± 2.2 1.39 ± 0.8

tions

Sinkhorn+Deep CORAL 86.31 ± 2.2 85.30 ± 2.2 72.04 ± 1.3 71.14 ± 1.2 8.01 ± 0.0 0.99 ± 0.0
Sinkhorn+Jeffreys CORAL 85.85 ± 3.1 84.56 ± 3.9 71.51 ± 4.8 71.26 ± 5.2 8.01 ± 0.0 0.99 ± 1.0
Sinkhorn+Stein CORAL 85.99 ± 1.3 84.79 ± 1.3 72.28 ± 2.2 71.68 ± 2.4 8.17 ± 2.1 3.10 ± 1.8
Sinkhorn+HoMMp=3 85.77 ± 3.8 84.86 ± 4.3 69.15 ± 2.3 68.20 ± 2.8 8.61 ± 1.3 1.36 ± 0.8

OnHW-

Sinkhorn (γ = 0.1) 76.96 ± 2.5 75.27 ± 3.4 37.21 ± 3.8 34.48 ± 4.0 1.94 ± 0.4 0.26 ± 0.1

chars

Sinkhorn+linear MMD 76.80 ± 2.1 75.02 ± 3.5 38.56 ± 2.7 35.94 ± 3.3 1.76 ± 0.4 0.27 ± 0.1
Sinkhorn+kMMD 76.96 ± 2.5 75.27 ± 3.4 37.21 ± 3.8 34.48 ± 4.0 1.94 ± 0.4 0.26 ± 0.1
Sinkhorn+Deep CORAL 77.19 ± 2.4 75.20 ± 3.8 36.64 ± 5.2 34.12 ± 4.9 0.69 ± 0.2 0.04 ± 0.0
Sinkhorn+Jeffreys CORAL 77.97 ± 1.6 77.00 ± 1.3 38.44 ± 4.0 35.58 ± 4.3 0.69 ± 0.2 0.04 ± 0.0
Sinkhorn+Stein CORAL 76.91 ± 2.7 74.98 ± 4.0 38.63 ± 5.1 35.97 ± 5.4 1.92 ± 0.0 0.29 ± 0.0
Sinkhorn+HoMMp=3 76.91 ± 3.1 74.85 ± 4.4 38.32 ± 3.7 35.70 ± 3.7 2.13 ± 0.2 0.39 ± 0.1

on the SSC dataset (for the CNN encoder network). Although HoMMp=3-only achieves
better results on the HHAR and UCI HAR datasets compared to the combination with
Sinkhorn, HoMMp=3-only fails on the WISDM dataset. Notably, the combination benefits
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(a) HHAR.
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(b) UCI HAR.
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(c) WISDM.
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(d) SSC.
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(e) uWave.
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(f) Finger.
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(g) Gestures mid
air.
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(h) Epilepsy.
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(i) Face detection.
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(j) PenDigits.
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(k) OnHW-symbols.

Si
nk

ho
rn

Si
nk

ho
rn

+
0.

1
K

L

Si
nk

ho
rn

+
0.

5
K

L

Si
nk

ho
rn

+
1

K
L

Si
nk

ho
rn

+
2

K
L

Si
nk

ho
rn

+
10

K
L

Si
nk

ho
rn

+
10

0
K

L

Si
nk

ho
rn

+
1,

00
0

K
L

Si
nk

ho
rn

+
10

,0
00

K
L

kM
M

D

Method

0

20

40

60

80

Ac
cu

ra
cy

/F
1 

[%
]

(l) Split OnHW-
equations.
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(m) OnHW-chars.
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(n) Sinusoidal datasets.

Figure 2.9: Combination of Sinkhorn with KL for the different weighting parameters
ϵ ∈ [0.1, 0.5, 1, 2, 10, 100, 1, 000, 10, 000] for the 10 human activity, the OnHW, and the
sinusoidal datasets. Results are averaged over five runs and all DA scenarios.

the SSC dataset, where Stein CORAL-only achieves 69.95% and Sinkhorn-only achieves
71.37% accuracy, but the combination of both methods results in an accuracy of 71.60%. A
similar pattern is observed for the uWave dataset, where HoMMp=3-only results in 91.00%
and Sinkhorn-only achieves 92.89% classification accuracy, Sinkhorn+HoMMp=3 improves
the result (93.32%). While the combination of Sinkhorn and the alignment functions show
marginal improvements on the finger, gestures mid air, and epilepsy datasets. However,
we found that Sinkhorn combined with Deep CORAL significantly improved the results
for the face detection dataset (64.63%) and the TCN encoder. Nonetheless, it was still
unable to surpass the accuracy achieved by HoMMp=3-only. The results for the OnHW
datasets are presented in Table 2.18 (the baseline results can be found in Table 2.13 to
Table 2.15). For the split OnHW-equations dataset, Sinkhorn+Deep CORAL (86.31%)
outperforms Sinkhorn-only (85.67%) and Deep CORAL-only (84.66%), but linear MMCD
and linear DAN (both 88.37%) still yield the highest classification results. For OnHW-
chars, Sinkhorn+Jeffreys CORAL (77.97%) is unable to surpass the HoMMp=3-only result
(78.14%). The sinusoidal dataset results (see Figure 2.8) show that all methods perform
similarly and do not outperform MMDA (see Figure 2.4a) and kMMCD (see Figure 2.6b).
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As a result, it cannot be concluded that any combination of methods will be optimal
for all datasets and encoder networks. The combination of methods and hyperparame-
ters needs to be carefully chosen for each application. Figure 2.9 present the results of
combining Sinkhorn+ϵ·KL to investigate the Sinkhorn regularization property discussed in
Section 1.5.4, where Sϵ approaches the MMD distance as ϵ→∞. The results are consistent
across all datasets for ϵ ∈ [0.1, 0.5, 1, 2]. However, for larger values of ϵ such as ϵ ≥ 0.5,
ϵ ≥ 10, or ϵ ≥ 100, the performance significantly decreases, although this varies depending
on the dataset. It should be noted that the results for kMMD are similar to those obtained
using Sinkhorn-only, and thus Sinkhorn+ϵ·KL does not converge to MMD as ϵ→∞.

Evaluation of Risks. The selection of the appropriate model, method, and correspond-
ing hyperparameters for unsupervised DA usually relies on the accuracy on the target
domain, which violates the key assumption of unsupervised DA as the target domain la-
bels are not available during training. To address this issue, AdaTime (Ragab et al., 2023)
utilized the source risk (Ganin et al., 2016) and validation risk (You et al., 2019), which
do not require any target domain labels. Additionally, the few-shot target risk employs a
small number of labeled samples (here, five samples per class) from the target train do-
main. In our evaluation, we present the source risk, target risk, and few-shot target risk.
The source risk refers to the cross-entropy loss on the test set from the source domain,
while the target risk is computed using samples from the target domain as the validation
set and is also measured by the cross-entropy loss. The hyperparameters selected using
the target domain are the upper bound for the unsupervised DA method. The few-shot
target risk uses only a few annotated samples per class of the target domain. However, in
real-world scenarios, obtaining a large amount of labeled data from the target domain is
often not possible. In such cases, a few labeled samples per class from the target domain
can still be used to compute the few-shot target risk, which is calculated using the cross-
entropy loss. Figure 2.10 presents the accuracy and the three risks on the human activity
and sleep recognition datasets for all possible domain combinations, for instance, for the
CNN encoder and HoMMp=3. The average accuracy and F1-scores are shown using dashed
horizontal lines. Please note that for readability, not every ID of the source and target
domain is shown. The source risk remains consistently low for all domain combinations,
but the target and few-shot target risks are found to be correlated with the classification
accuracy and the F1-score, and they vary with the domain combination. For instance, in
the HHAR dataset (see Figure 2.10a), the target and few-shot target risks drop below 0.2
for the domain IDs 1→3, 1→4, and 1→5 where the classification accuracy is high, and vice
versa for the domain ID 1→2. Similar observations can be made for the uWave dataset
(see Figure 2.10e), for instance, for the domain IDs 1→6 and 1→8. The results provide
insights into the similarity of data between domains (i.e., participants). The difference
between target and few-shot target risks is marginal for all datasets, and both risks are
correlated. Therefore, the few-shot target risk is an appropriate measure for model and
hyperparameter selection. Figure 2.11 depicts the risks on the OnHW datasets, and the
pattern is similar to the previously mentioned datasets. For the GNSS-based interfer-



100 2. Practical Applications of DA for Time-Series Classification
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
1

2
1

3
1

4
1

5
1

6
1

7
1

8
2

3
2

4
2

5
2

6
2

7
2

8
3

4
3

5
3

6
3

7
3

8
4

5
4

6
4

7
4

8
5

6
5

7
5

8
6

7
6

8
7

8

ID [source to target]

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

/F
1 

[%
]

Accuracy
F1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
is

ks
 [s

co
re

]

Source risk
Target risk
Few-shot risk

(a) HHAR (Stisen et al., 2015) dataset
(36 domain combinations).
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(b) UCI HAR (Anguita et al., 2013) dataset
(435 domain combinations).
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(c) WISDM (Kwapisz et al., 2010) dataset
(356 domain combinations).
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(d) SSC (EEG) (Goldberger et al., 2000) dataset
(190 domain combinations).
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(e) uWave (Liu et al., 2009) dataset
(28 domain combinations).
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(f) Finger (Blankertz et al., 2001) dataset
(378 domain combinations).
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(g) Gestures mid air (Caputo et al., 2018)
dataset (45 domain combinations).

Figure 2.10: DA results for different source to target domains averaged over five runs.
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(a) Adaptation of right-handed writers to left-handed writers (R→L).
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(b) Adaptation of left-handed writers to right-handed writers (L→R).

Figure 2.11: DA and risk results for the OnHW datasets and the CNN encoder for left-
handed and right-handed writers. Left: OnHW-symbols. Middle: split OnHW-equations.
Right: OnHW-chars. Results are averaged over five runs for the OnHW-symbols and split
OnHW-equations datasets, and additionally averaged over all five cross-validation splits
for the OnHW-chars datasets.

ence detection dataset (see Figure 2.3), the source risk is low (< 1.0), but the difference
between target and few-shot target risks is higher for the binary classification task (see
Figure 2.3d). This difference becomes more pronounced for the multi-class problem (see
Figure 2.3a and Figure 2.3b). In the case of the CNN encoder, the source risk ranges from
1 to 2, while the target risk ranges from 2 to 4. However, the few-shot target risk increases
significantly up to 12 on the GNSS dataset. Consequently, relying solely on the few-shot
risk may result in erroneous model selections. For the sinusoidal datasets, the source and
target risks are consistently similar, and are positively correlated with the classification
accuracy, as demonstrated in Figure 2.4. Specifically, MMDA in Figure 2.4a and DANN
and Deep CORAL in Figure 2.4b) exhibit this trend. As the noise parameters increase,
the difference between the target and few-shot target risks also increases. Even though
the target risk shows consistent growth, the few-shot target risk varies significantly. As a
result, selecting the appropriate number of samples for the few-shot target risk is critical
for model selection. In the case of the sinusoidal dataset, choosing few samples for the
few-shot target risk can lead to inappropriate model selection.

Evaluation w.r.t. the Upper Bound. Figure 2.12 and Figure 2.13 provide a summary
of the results obtained for the ten human activity recognition datasets, as well as the three
OnHW datasets, and display the upper bound (refer to Table 2.2 for upper and lower
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Figure 2.12: Comparison of all DA methods on the 10 human activity datasets with respect
to the upper bound. Dashed lines are the upper bounds.

bounds). Out of the 10 datasets, the upper bound is attained for 5, specifically for the
epilepsy (alignment methods), finger movements (Sinkhorn methods), and face detection
(HoMMp=3 and CoDATS) datasets. However, the results for the WISDM dataset are
significantly distant from the upper bound. DA methods show higher effectiveness for the
OnHW datasets, with the upper bound being achieved for all three datasets, reducing
the domain shift between left-handed and right-handed writers. Linear MMD and linear
MMCD attain the upper bound for the split OnHW-equations dataset, while Deep CORAL,
DDC, HoMMp=3, AdvSKM, and OT [kMMD] achieve results higher than the upper bound
for the OnHW-symbols dataset, and HoMMp=3 and the Sinkhorn combinations outperform
the upper bound for OnHW-chars.

Training Times. The training times for all 30 methods and loss combinations on the
sinusoidal datasets are compared (results are averaged over 100 trainings for each method).
An overview of the training times (in s) is provided in Table 2.19, with small standard
deviation observed (ranging from 0.4 to 4.2). The baseline training time of approximately
107 s is observed for models utilizing the standard loss functions MSE, CS, PC, KL, and
JSD, as well as for the linear MMD method (107.6 s). The kernelized versions of MMD,
namely kMMD (74.2 s) and DDC (74.2 s), exhibit significantly faster training times. Deep
CORAL, a second-order method, trains at a similar speed (107.5 s), while Jeffreys CORAL
(140.4 s) and Stein CORAL (150.6 s) require more computing time due to the utilization of
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Figure 2.13: Comparison of all DA methods on the three online handwriting datasets with
respect to the upper bound. Dashed lines are the upper bounds.

Table 2.19: Overview of training times (in s) exemplary on the sinusoidal dataset (TCN
encoder) averaged over all 20 datasets with different noise parameters and five runs.

Time Time Time
Method (in s) Method (in s) Method (in s)

MSE 107.1 Linear MMCD 108.3 DSAN 125.2
CS 107.2 Kernelized MMCD 108.1 CoDATS 108.3
PC 107.2 MMDA 108.7 AdvSKM 75.9
KL 107.2 DDC 74.2 Sinkhorn 220.0
JSD 107.3 Linear DAN 109.3 Sinkhorn+linear MMD 218.0
Linear MMD 107.6 Squared DAN 335.6 Sinkhorn+kMMD 222.0
kMMD 74.2 HoMMp=3 122.3 Sinkhorn+Deep CORAL 220.4
Deep CORAL 107.5 DANN 107.9 Sinkhorn+Jeffreys CORAL 322.2
Jeffreys CORAL 140.4 CDAN 109.5 Sinkhorn+Stein CORAL 328.7
Stein CORAL 150.6 DIRT-T 306.1 Sinkhorn+HoMMp=3 220.8

the log determinant and matrix inverse. The linear DAN method has a fast training time
(109.3 s), but this significantly increases for the squared DAN method (335.6 s). Conse-
quently, squared DAN requires over 15 days for all DA scenarios on the large EEG dataset.
The third-order domain alignment loss HoMMp=3 further increases training times (122.3 s).
While DIRT-T outperforms other methods on five of the ten human activity recognition
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(a) OnHW-symbols.
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(b) Split OnHW-equations. Note that CDAN is not displayed as the results of the method are
out-of-range (accuracy < 65%).
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(c) OnHW-chars (WD, combined).

Figure 2.14: Hyperparameter search for the OnHW datasets (L→R) for ten DA methods.
Left: CNN encoder. Right: ResNet18 encoder. Results are averaged over five runs. Hy-
perparameters are sorted the following: drop last ∈ [False, True], normalize ∈ [False, True],
kernel size ∈ [3, 5, 7], stride ∈ [1, 2, 3], and dropout rate ∈ [0.2, 0.3, 0.4, 0.5]. Note that only
every 4th hyperparameter combination is displayed on the axis for readability.

datasets, it has a huge training time (306.1 s). Due to Sinkhorn being an iterative method,
the training time is substantial at 220.0 s. However, the combination of Sinkhorn with lin-
ear MMD leads to faster convergence of the loss, requiring fewer iterations and resulting in
a decrease in training time (218.0 s). In terms of single loss functions, Jeffreys CORAL and
Stein CORAL have a slow training time and a significant impact on the overall training
time (322.2 s and 328.7 s, respectively, compared to 220.4 s for Deep CORAL).

Hyperparameter Searches on the OnHW Datasets. We perform two hyperpa-
rameter searches on the three OnHW datasets and the three encoder networks. As the
TCN encoder cannot extract meaningful features, we only show results for the CNN and
ResNet18 encoders. The first hyperparameter search (see Figure 2.14) trained all combi-
nations of the parameters drop last ∈ [False, True], normalize ∈ [False, True], kernel size
∈ [3, 5, 7], stride ∈ [1, 2, 3], and dropout rate ∈ [0.2, 0.3, 0.4, 0.5], as introduced in Sec-
tion 2.3.2, resulting in 151,200 trainings. The optimal hyperparameters were selected as
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(a) OnHW-symbols.

32
|3

2|
1

32
|3

2|
2

32
|3

2|
3

32
|6

4|
1

32
|6

4|
2

32
|6

4|
3

32
|9

6|
1

32
|9

6|
2

32
|9

6|
3

64
|3

2|
1

64
|3

2|
2

64
|3

2|
3

64
|6

4|
1

64
|6

4|
2

64
|6

4|
3

64
|9

6|
1

64
|9

6|
2

64
|9

6|
3

12
8|

32
|1

12
8|

32
|2

12
8|

32
|3

12
8|

64
|1

12
8|

64
|2

12
8|

64
|3

12
8|

96
|1

12
8|

96
|2

12
8|

96
|3

Hyperparameter

40

50

60

70

80

90

Ac
cu

ra
cy

 [%
]

32
|3

2|
1

32
|3

2|
2

32
|3

2|
3

32
|6

4|
1

32
|6

4|
2

32
|6

4|
3

32
|9

6|
1

32
|9

6|
2

32
|9

6|
3

64
|3

2|
1

64
|3

2|
2

64
|3

2|
3

64
|6

4|
1

64
|6

4|
2

64
|6

4|
3

64
|9

6|
1

64
|9

6|
2

64
|9

6|
3

12
8|

32
|1

12
8|

32
|2

12
8|

32
|3

12
8|

64
|1

12
8|

64
|2

12
8|

64
|3

12
8|

96
|1

12
8|

96
|2

12
8|

96
|3

Hyperparameter

30

40

50

60

70

80

Ac
cu

ra
cy

 [%
]

(b) Split OnHW-equations.
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(c) OnHW-chars (combined).

Figure 2.15: Hyperparameter search for the OnHW datasets (L→R) for the CNN encoder
(left) and the ResNet18 encoder (right). Results are averaged over five runs. Hyperparam-
eters are sorted the following: intermediate channels ∈ [32, 64, 128], final output channels
∈ [32, 64, 96], and feature length ∈ [1, 2, 3]. Note that we limit the y-scaling for readability.

drop last = False, normalize = False, kernel size = 5, stride = 1, and dropout rate = 0.4 for
the follow-up search. For the second search, we select the parameters intermediate channels
∈ [32, 64, 128], final output channels ∈ [32, 64, 96], and feature length ∈ [1, 2, 3], resulting in
18,900 trainings (see Figure 2.15). The feature length significantly increases the capacity
of the neural networks. We select the optimal hyperparameters as intermediate channels
= 64, final output channels = 64, and feature length = 3, which were used for the trainings
with the results shown in the Table 2.13, Table 2.14, and Table 2.15.
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Statement about Recent, Related Research17

In recent times, a multitude of studies employed handwriting devices that differ from the
sensor-enhanced pen utilized in the contributing papers (Klaß et al., 2022; Ott et al.,
2020b, 2022a,b,c,d, 2023c; Drey et al., 2022). These discrepancies pertain to the type of
integrated sensors, the level of advancement (i.e., prototypical versus finished product), or
in the intended application. Singh & Chaturvedi (2023) utilized surface electromyography
signals (sEMG), accelerometers, and gyroscopes, which are – in contrast to image process-
ing techniques – insensitive to variations in lighting conditions. In a manner akin to the
contributing paper (Ott et al., 2020b), Singh & Chaturvedi (2023) employed elementary
classifiers for the classification of handwritten characters that are subject to denoising au-
toencoder processing. However, their experimentation only entailed the recording of 26
lowercase English characters, written by 15 individuals. In their study, He et al. (2022a)
employed a preliminary device that is equipped with a sensing module attached to the rear
of the pen, and collected acceleration and audio data. Their proposed technique filters the
acceleration data by categorizing the audio of writing, which is recorded via a microphone.
The classification system is capable of distinguishing 15 classes, comprising numbers and
symbols. The analogous preliminary device described in Alemayoh et al. (2022) encom-
passes an integrated IMU comprising an accelerometer and gyroscope, in addition to a force
sensor. Their dataset incorporates 36 alphanumerical character classes, written solely by
six participants. As per the findings of Alemayoh et al. (2022), the fusion of data from the
IMU and force sensor results in improved classification accuracy. Evaluations indicate that
a Vision Transformer model surpasses both CNN and LSTM models in terms of perfor-
mance. In addition, He et al. (2022b) introduced a smart pen with triboelectric sensors that
are evenly dispersed along the pen, thus enabling the tracing of handwriting trajectories as
well as Latin characters and Arabic numerals. These publications collectively illustrate the
significant interest within the research community pertaining to sensor-enhanced pens and
OnHW recognition. Consequently, the contributions and impact of the contributing paper
(Ott et al., 2020b) and its subsequent papers (Klaß et al., 2022; Ott et al., 2022a,b,c,d,
2023c) are further strengthend.

In their work, Kreß et al. (2022) introduced an approach that involves the distribution
of computational workload between the sensor pen (Ott et al., 2020b) and a mobile de-
vice (such as smartphone or tablet) for handwriting recognition, due to the high system
requirements that result from interference on mobile devices. Pertaining to the domain
of handwriting recognition with edge devices, the study by Liu & Sugano (2022) is note-
worthy. This paper outlines a technique for the efficient personalization of models on a
small interactive object recognition camera device, that includes the recommendation of
training candidates, a methodology that could also be extended to data collection involving
sensor-enhanced pens such as Ott et al. (2020b).

17This statement encapsulates recent, pertinent research that are intrinsically associated with the subject
matter of the contributing paper. Such research is disclosed subsequent to the submission or publication
date of said paper and may employ the corresponding dataset(s), make reference to the contributing
paper, or potentially amplify or refine the experiments outlined therein.
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Air-writing is a related but distinct area that has been widely explored with sensor-
enhanced devices (Zhang et al., 2022). In future research, the sensor-enhanced pen could
potentially integrate OnHW recognition with air-writing into a single device, given that
both areas rely on similar sensors that are integrated into the device. Specifically, the
force sensor is critical for OnHW recognition, whereas the accelerometer and gyroscope are
essential for air-writing. The key variation between the two areas is the spatial scaling of
hand movements.
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1 INTRODUCTION
Handwriting involves a representation of the language by structured symbols and applies thoughts and spoken
language onto paper. It is used for communication between individuals or for the documentation of thoughts
for further use. Handwriting Recognition (HWR) is the process of converting written text into a digitized form
that a computer can understand. HWR has been studied for several years, however, it still presents a challenge
that requires further research since the need for HWR systems is growing with the extended need for the use of
digitized systems [57]. This domain can be categorized into two distinguished types: offline and online HWR.
Optical Character Recognition (OCR) falls into the domain of offline HWR and describes the analysis of the

visual representation making use of offline features of the input, where the input of the system is an image
containing handwriting. The written paper is scanned into a digitized image through, e.g., a digitizer, a tablet or a
camera, then segmented into different segments that could include lines, words, or letters, which then undergo
the recognition process [56]. Offline HWR systems have reached near-human performance results and have
been successfully implemented in different areas of applications such as signature verification [21], reading bank
checks and postal addresses. However, offline HWR cannot be applied for applications that require a real-time
recognition (as there is no image of the document immediately after the completion). Furthermore, from simply
analyzing the images it is not possible to make use of rich information such as the temporal direction of writing,
the writing order, writing speed, and (in some cases) the pressure of writing. Only using the position of the
strokes leads to ambiguities if letters overlap [15, 71].

Online HWR (OnHWR) typically uses time in association with different types of spatio-temporal signals. The
data may contain a form of positions including information about the displacement of certain input devices, or
may include the movement of the input devices on the writing surface. These signals are then processed by a
recognition system that orders the strokes by their position and time and that can make use of the geometrical
design and dynamic information from the movement of the writer. In many previous work a stylus pen together
with a touch screen surface usually serve as input devices. Through the temporal information online HWR
systems can be more accurate than offline systems, since similarly shaped characters can be distinguished by
knowing the number of strokes that were necessary [56, 71].

One application of HWR systems is the commitment in primary school classes, where the teacher instructs an
essay, for example, the pupils write with the sensor-enhanced pen on normal paper, and the text can be converted
to a computer-based format automatically and online. The teacher receives immediately a status of the process.
Furthermore, the written text can directly be corrected, and decreases the teacher’s effort. Currently, no HWR
system suffices all requirements for such an application, as such systems are either offline, require a pen that
influences the graphomotoric of the writer, or requires for writing on a tablet that is expensive and influences the
writing style [48]. The required device for the sensor-pen is just a computer, tablet, or phone with an installed
app with a pen-device bluetooth connection that is often available anyways.

For the evaluation of HWR systems and also of the writing-style writer-specific and platform-specific aspects
are necessary that have to be considered. The identification of handedness of the writer plays an important
role to study and compare left-handed and right-handed writers. Previous work analyzes the handedness on
the basis of strokes and slope of letter [63]. The writing performances of dysgraphic and proficient writers are
compared by a distinction between the number and duration of two kinds of pauses, i.e., pen stops and pen lifts
[55]. For the design of the recording platform pen-based systems can be favored over tablet or keyboard systems,
as writing with a pen provides better cognitive processing, i.e., theoretical understanding, critical thinking and
memory recollection [3, 65]. Modifications in writing conditions, e.g., a keyboard or a smoother writing surface of
a tablet, might influence the writing performance, in particular, those of non-automatized beginning writers such
as children as their handwriting movements require visual and graphomotor feedback [26]. Hence, pen-based
OnHWR systems on paper have the lowest impact on the graphomotor.
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Preprocessing and
Feature extraction

Classifier
OnHW-chars

dataset

Accelerometer signals: Gyroscope signal:

Magnetometer signal: Force measurement:

Lowercase characters
a, b, c, d, …, z

Uppercase characters
A, B, C, D, …, Z

Combined characters
a, A, …, z, Z

Writer-dependent
Writer-independent

Classification

Fig. 1. Complete pipeline. (1) The recording setup is a STABILO DigiPen and a tablet storing sensor data and
ground truth labels. (2) The ballpoint pen is enhanced with two accelerometers, one magnetometer, one gyroscope
and one force sensor. (3) The OnHW-chars database consists of 31,275 uppercase and lowercase letters (52 classes)
from 119 writers. (4) Pre-processing and noise filtering is necessary for (5) training the classifier. (6) We present the
results for lowercase, uppercase and combined letters, both on writer-dependent (WD) and writer-independent
(WI) classification tasks.

HWR systems require large amounts of training data to acquire the ability of understanding and classifying what
the user is writing. However, the data collection process is a time and resource consuming process. Consequently,
for the sake of progressing within the specific domain of research, collected datasets are shared within the
scientific community. This field has been researched for many years with several databases being published.
However, many of these published datasets were collected using specific expensive equipment [1, 47, 51] that
make a recognition system unachievable when applying for a real use-case utilization [45], are too small [77], or
only address specific aspects [11, 34, 60]. Hence, the availability of a dataset collected with a convenient digital
pen is essential for the scientific community. The primary purpose underlying our research is to implement a
HWR system that uses a digitizer in the form of a pen that transmits data online during the writing process. To
train such a recognizer for efficient recognition, we need a sophisticated dataset.
The main contribution of this paper is to share a large dataset adding a scientific value in the handwriting

recognition domain. We present a dataset of alphabet characters written on plain paper in the form of time-series
data collected from a digital ballpoint pen equipped with sensors, i.e., a STABILO DigiPen. The collection of data
written on normal paper makes it easier to apply a writing recognizer without the need of other more expensive
devices or specific writing surfaces. In addition, we implemented (most of) the previously used methods applied
for OnHWR, i.e., Machine Learning (ML) classifiers such as k-Nearest Neighbour (kNN) and Support Vector
Machine (SVM) and also Deep Learning (DL) methods such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), i.e., Long-Short-Term Memorys (LSTMs), on our dataset. This provides
a solid baseline for future research and fosters reproducibility in this research area. Fig. 1 presents the whole
pipeline including data recording, pre-processing, classifier training, and evaluation.
The remainder of this paper is structured as follows. Section 2 discusses similar datasets that are currently

used in the field. A summary of available offline and online datasets in the handwriting recognition domain is
provided, including the type, recording platform and size of data. Section 3 presents our main contribution: a
novel dataset for online handwriting recognition. We present the digitizer used for data acquisition along with
the detailed description of the collected dataset. Section 4 provides methods used to pre-process data, to extract
features from it, and how to apply online recognizers, i.e., we describe our implementation of the ML and DL
baseline models that aim at solving the classification problem that this dataset offers. We provide quantitative
results and discuss them in Section 5. Section 6 concludes.
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2 RELATED WORK
Over the last decade, online handwriting recoginition has shown promising results and high accuracy. The
number of datasets and methods to evaluate HWR systems steadily increases. While offline HWR is already very
advanced [14, 49, 74], the focus of research moves to gesture recognition [4, 25, 38, 43, 69, 76], human activity
recognition [79], and online HWR systems [19, 35, 36, 39, 73].
To train an OnHWR system a dataset needs to fulfill a number of requirements. (1) The dataset should allow

for both a WD and WI evaluation, as writing recognition has to be applicable to new writers without re-training
the model. Here, the difficulty is to cover many writing styles, i.e., printed or cursive writing, holding of the
pen, pressure of the pen, size of the characters, and influence of noise. For that, the age, gender, education and
frequency of writing has to be distributed homogeneously over the dataset. (2) As the number of alphabet classes
is high and the introduced noise of the sensors can vary to a high degree, we need a large number of writers to
guarantee for an optimal learning procedure to be considered for the later evaluation of the classifiers. (3) Finally,
the dataset must contain time-series data for online recognition captured at a high frame-rate in order to allow
for high classification accuracies.
This section provides a review of offline and online recognition datasets in Sections 2.1 and 2.2 with a focus

on the requirements on the dataset for an optimal online writing recognition. To better compare the available
dataset we line out a summary in Table 1 which summarizes all offline and online datasets, their corresponding
recording platform, the size of the data, and the corresponding evaluation methods. Due to the broad spectrum of
associated applications, the diversity of patterns, and our main contribution on OnHWR systems, we split these
datasets into digits, characters and words, gestures, and objects, shapes and symbols datasets.

2.1 Offline Datasets and Recognition Systems
The development of offline datasets started in early 1900’s. The IAM [49] dataset is one of the most commonly used
dataset and provides English words and sentences. The large NIST dataset [22, 75] and its variants SD-19 [29],
MNIST and EMNIST [14] contain digits and characters, but suffer from high ceiling effects, i.e., less generalization
leads to overfitting. Further datasets cover addresses, e.g., the CEDAR [33] dataset, and outdoor image texts, e.g.,
the SVT [74] dataset. More offline datasets are listed in Table 1. The classes of our OnHW-chars dataset are the
same as the classes from the IAM [49] dataset, but the dataset was acquired on a whiteboard and not on paper.
The OnHW-chars dataset is smaller in size compared to the NIST and MNIST datasets, but larger as other visual
image datasets [49, 74].
Existing recognition systems differ regarding pattern representation (i.e., image templates, structural repre-

sentations and feature vectors), drawing constraints, and decision-making processes. The datasets present a
large diversity of content with very different properties. We differentiate the datasets between their number
of classes, the available amount of training samples per class, and between WD and WI experimental settings.
The recognition of some datasets are quite challenging because of the presence of different writing styles and
noisy data, while some datasets enable an easier recognition [17]. Most of previous recognition systems focus on
writing on an electronic device. This requires an expensive device, and the recognition system cannot be used on
normal paper. Hence, we focus on pen-based recognition systems that have integrated sensors.

2.2 Online Datasets
In the following, we describe datasets that are a collection of digits, characters and words more related to our
OnHW-chars dataset. The LaViola [40] dataset has been written by 11 persons with a pen on a TC 1100 tablet
and covers trajectory-based digits, characters and mathematical symbols. They used an AdaBoost classifier and
yield an accuracy between 90.9 % and 97.19 % for different recognizer configurations. Keshari et al. [37] achieved
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Table 1. Overview of state-of-the-art offline and online pen-based handwritten datasets. The writer-dependent
(WD) and writer-independent (WI) column indicate the possibility of running WD and WI experiments. As we
focus on OnHWR systems, we do not declare reported experiments for offline datasets.

Dataset Classes Recording platform Size WD/WI Experi-
writer sample class ments

Offline datasets [78]
NIST [22, 75] Handwritten digits Pen 3600 800,000 10 n.d. n.d.
MNIST Subset of NIST Pen – 70,000 10 n.d. n.d.
EMNIST [14] Digits and letters Pen – 445,600 36 n.d. n.d.
Mathematics Mathematical symbols Pen – 60,000 10 n.d. n.d.
Devangari Devangari characters Pen 25 1,800 36 n.d. n.d.
Arabic Text Lexicon of words Pen – 113,284 – n.d. n.d.
Document Lists, tables, formulas, di-

agrams and drawings
Handwritten documents 189 941 – n.d. n.d.

CEDAR [33] Characters and digits Pen 1,500 59,584 – n.d. n.d.
CENPARMI Digits Pen n.d. n.d.
IAM [49] English word, sentences Pen on a whiteboard 657 115,320 1,539 n.d. n.d.
Street View Text
(SVT) [74]

Outdoor image text from
businesses

Harvested from Google
street view

– 725 – n.d. n.d.

Online and gesture-based datasets (see Section 2.2) [16]
Digits, characters and words datasets
OnHW-chars English characters Sensor-enhanced pen 119 31,275 52 WD/WI –
UNIPEN [30] Latin alphabet, characters,

words and sentences
Pen-based computers – 12,000 – – –

PenDigits [1] Handwritten digits Wacom PL-100V 44 10,992 10 WD/WI [1]
UJIpenchars / Isolated handwritten Toshiba Portégé M400 11 1,364 62 WD/WI –
UJIpenchars2 [47] characters tablet PC 60 11,640 97 WD/WI –
LaViola [40] Digits, characters and

math symbols
Tablet TC 1100 with pen 11 11,602 48 WD/WI [17, 37, 40]

IME-OnDB [11] Letters and gesture Pocket PC with pen 14 6,636 18 WI [12, 18]
IAM-OnDB [45] Word instances Electronic whiteboard 221 86,272 11,059 WD/WI [45]
Gestures datasets
Match-Up & Con-
quer [58]

Multi-touch gestures Multi-touch display 3MTM
C3266PW

16 5,155 22 WD/WI –

NicIcon [51] Gestural commands Wacom Intuos2 A4 34 26,163 14 WD/WI [7, 17, 68, 76]
Sign-OnDB [2] Single-stroke pen ges-

tures
Tablet with pen 20 33,150 17 WD/WI [17, 25, 43]

unistroke [77] 2D single-stroke gestures HP iPAQ h4355 with pen 10 4,800 16 – [5, 44, 50, 67]
MMG [6] 2D multi-stroke gestures Finger or pen on tablet 20 9,600 16 WD/WI [6, 69]
Multitouch gesture
[59]

Multi-touch symbolic ges-
tures

Multi-touch display 3MTM
C3266PW

18 7,200 30 –

ILGDB [60] Single-stroke pen ges-
tures

Tablet with pen 38 4,656 588 WD [17, 43]

UsiGesture [9] Gestures Tablet with pen 30 18,300 61 WD/WI [8–10]
Objects, shapes and symbols datasets
HBF49 [17] Features Written with online device – – 49 WD/WI [17]
Object sketches
[20]

Object sketches Multi-strokes 1,350 20,000 250 WD/WI [41, 42]

HHReco [32] Geometric shapes Wacom Graphire2 pen 19 7,791 13 WD/WI [17, 52, 53]
CVCsymb [62] Architectural and electri-

cal symbols
Digital pen 25 5000 50 WD/WI –

IMISketchSDB [34] Offline architectural sym-
bols

Architectural plans 50 1,871 13 WI –

HOMUS [13] Online music notations Galaxy Note with SPen 100 15,200 38 WD/WI –
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an accuracy up to 94.57 % on the mathematical expressions utilizing SVMs trained on standard and Chebyshev
coefficient features.
The UJIpenchars/UJIpenchars2 [47] datasets contain 62/97 different classes of characters and symbols

recorded by 11/60 writers on the Toshiba Portégé M400 tablet covering 1,364/11,640 samples. UNIPEN [30] is
an ongoing project of collecting handprint and cursive handwriting on a pen-based computer from various
alphabets including Chinese and Latin, pen gestures and signatures. The sentences dataset IAM-OnDB [45] covers
about 86,272 word instances from an 11,059 dictionary written by 221 writers via an electronic interface from a
whiteboard. Their Hidden Markov Model (HMM) based approach achieves 65.9 % accuracy. The IME-OnDB [11]
dataset is a good benchmark for evaluating relative positioning of handwriting, as several subsets of gestures
have the same shape only distinguishable through their spatial context. To take relative positioning into account
[11] exploits a fuzzy approach. The PenDigits [1] dataset is a collection of digits written by 44 users on the
Wacom PL-100V. 10,992 samples covering the 10 digit classes and allow WD and WI experiments. Through the
combination of static and dynamic Multi-Layer Perceptron (MLP) classifiers the accuracy can be increased by
different fusion techniques, i.e., voting, mixture, stacking, boosting and cascading. The accuracy of the combined
classifier dropped from 99.3 % for the WD testing set to 98.3 % for the WI testing set (see similarity to our results
in Section 5).

The following datasets build a database for human gestures and are more related to human computer interaction.
The NicIcon [51] dataset contains 26,163 of offline and online written iconic multi-strokes gestures (emergency
situations, e.g., accident, fire), and includes pen-up movements and pressure meassures. Through a highly varying
order and number of strokes, the dataset is quite noisy. WD and WI experiments exist: fusion of HMM-based
and Zernike methods [7], a CKMeans with auto-completion algorithm [68], and MLP, SVM and Dynamic Time
Warping (DTW) classifiers using global and stroke-level features [76].

For the Sign-OnDB [2] dataset 33,759 samples of single-stroke gestures are collected from 20 persons written
on a tablet. Some of the 17 classes can only be distinguished based on dynamic information [17]. The ILGDB [60]
dataset is a collection of single-stroke gestures recorded with a tablet. Each of the 28 writers provided 21 different
gestures of their choice, and hence, in this dataset exists a large number of different samples unequally distributed
over the classes. Consequently, only WD experiments exist [43]. The Match-Up&Conquer [58] multi-touch dataset
is designed to address how users articulate gestures. Similar is the Multitouch gesture [59] dataset that covers
7,200 samples from 18 participants. 30 different gesture classes, e.g., circle, triangle, heart and cat, are unique
in the number of strokes of the shape, number of fingers touching the surface, and bimanual or single-handed
inputs. The unistroke [77] dataset consists of 16 different 2D single-stroke gestures, e.g., triangle, question mark
and start. This dataset is evaluated by the $1 [77] and $N [5] recognizer, protractor [44], and DTW [50, 67]. The
$N-Protractor [6] is derived from the $1 unistroke [77] recognizer that uses a closed-form template-matching
method instead of an iterative search method in the $N [5] recognizer. They provided the Mixed Multistroke
Gesture (MMG) [6] dataset representing 16 classes of 2D multistroke gesture symbols. UsiGesture [9] is a
software support platform that accomodates multiple algorithms for pen-based gesture recognition. The goal is
a dataset made of characters, symbols and commands, that allows to evaluate a gesture recognition algorithm
depending on contextual variables, e.g., environment, platform and user.

Objects, shapes and symbols are addressed in the following datasets. The CVCSymb [62] dataset is a combination
of online and offline architectural and electrical symbols. 5,000 samples have been drawn by 50 writers separated
in two groups of 25 writers each. This results in total in 50 WD and WI classes. The HHReco [32] dataset consists
of 7,410 samples in total of 13 different geometric shapes, i.e., circles, cylinder, archs, and polygons, written by
19 people on a Wacom Graphire2 tablet. Ouyang et al. [53] use an image deformation model to achieve 98.2 %
accuracy focusing on the visual appearance of the symbols.
The Object sketches [20] dataset is a collection of 20,000 unique sketches, e.g., teapot and car, evenly

distributed over 250 object classes. They built upon a bag-of-features representation to extract local features
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and construct a visual vocabulary using kMeans clustering to train a SVM classifier, and achieved 56 % accuracy.
Related is SHREC’13 [41] and SHREC’14 [42] that refer to sketch-based 3D shape retrieval containing 7,200/12,680
sketches and 1,258/ 8,987 3D models. The IMISketchSDB [34] dataset is an offline collection of 13 different
architectural symbols, e.g., furniture, covering 1,871 samples from 50 plans. HOMUS [13] is the only dataset that
addresses musical symbols, which consists of 15,200 offline and online samples from 100 users covering 32 symbol
classes. kNN, DTW and HMM are used for the online classification task, and kNN, NN, SVM and HMM are used
for the offline classification task.

HBF49 [17] is a unique set of 49 features focusing on the universal representation space adapted to a large
variety of symbols that can be used as a reference for evaluation of symbol recognition systems. They reported
experiments with 1NN and SVM classifiers for eight different datasets [2, 32, 34, 40, 51, 60, 62, 70] for WD and
WI cases.

A similar recording platform to the STABILO DigiPen is a phone with gyroscopes and accelerometers used
in [19]. The GyroPen method reconstructs the trajectory of the phone’s corner touching a writing surface for
pen-like interactions. An online recognition system is used using an extended feature set to recognize the words
with trajectory coordinates as input. Neelasagar et al. [35] also use the accelerometer and gyroscope signals from
a smartphone for 3D handwritten character and gesture recognition. The acceleration signals are pre-processed
with segmentation, filtering and normalization, while the gyroscope signals are lowpass filtered and normalized
to get the orientation correction of the device.
Inertial pens that are closest to ours are the ones used in [36, 39], but the recorded dataset is not published.

In these publications, accelerometer, gyroscope and magnetometer are integrated in a pen along with a micro-
controller and a wireless transmission module that records movement data for writing alphabets and making
gestures [36]. Unfortunately, the data acquisition unit is a large device that influences the style of the writer.
Statistical features gave the best results in combination with a probabilistic NN and a kNN classifier. A similar
device was constructed by [73] The recorded acceleration signals are calibrated, lowpass filtered, segmented and
normalized, before aligning the signals with the 10 digit classes by a DTW method. WD (90.6 % accuracy) and WI
(84.8 % accuracy) experiments are reported that are in the same range as our experiments on our OnHW-chars
dataset (see Section 5).
Koellner et al. [39] use the STABILO DigiPen, which is the same device we used ourselves for the recording

of the OnHW dataset, but their dataset is not published. The dataset consists of 20,000 English lowercase letters
written from 15 users, and hence, created a dataset with more samples per writer per class than our dataset. WD
and WI results for kNN, LDA, NB and LSTM classifier are reported.

The recording platform of most of the online datasets are pen-based computers [11, 30, 62], tablets [1, 2,
6, 9, 32, 40, 47, 51, 58–60], phones [13, 77], or a whiteboard [45]. The classes of only some of these datasets
[1, 11, 30, 40, 47] are similar to our OnHW-chars dataset, i.e., gesture-based [2, 6, 9, 51, 58–60, 77] and object-
/symbol-based [13, 17, 20, 32, 34, 62] classification are related to other applications. As many other datasets, WD
and WI is possible on OnHW-chars, but a large number of writers is necessary to evaluate for that in detail. While
IAM-OnDB [45] (221) and object sketches [20] (1,350) have higher, all other datasets have lower number of
writers than OnHW-chars. Similar to [2, 45, 51] OnHW-chars is in the upper scope of number of samples (31,275).

3 PROPOSED DATASET
This section introduces our novel online handwriting (OnHW) dataset. We present our IMU-sensor enhanced
ballpoint pen, i.e., the STABILO DigiPen, in Section 3.1, and describe the data acquisition constraints and
calibration aspects in Section 3.2. In Section 3.3, we present our novel OnHW-chars dataset in detail.
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(a) Sensor-based STABILO DigiPen with inte-
grated accelerometers, gyroscope, magnetometer,
force sensor, and battery.

(b) Axis of the pen tip for the 6DoF
accelerometer and gyroscope sen-
sors.

(c) Data acquisition setup of the
STABILO DigiPen connected to
a tablet device for ground truth
recording.

Fig. 2. The STABILO DigiPen.

3.1 Sensor-Enhanced Ballpoint Pen
The STABILO DigiPen is a sensor-enhanced ballpoint pen with internal data processing capabilities, see Fig.2a. A
Bluetooth module enables live streaming at 200𝐻𝑧 to a connected device. The pen’s overall length is 167mm,
its diameter is 15mm, and it weighs 25 g. With its ergonomic soft-touch grip zone it is easy to use and feels
comfortable and natural. Each DigiPen is equipped with a front accelerometer (STM LSM6DSL), a gyroscope
(STM LSM6DSL), a rear accelerometer (Freescale MMA8451Q), a magnetometer (ALPS HSCDTD008A), and a
force sensor (ALPS HSFPAR003A) [66].

The data recordings store 14 measurements provided by the sensors: two acceleration, one gyroscope and one
magnetometer signals (each in 𝑋 , 𝑌 , and 𝑍 direction, see Fig. 2b), the force with which the pen tip touches the
surface, and the timestep at which the tablet receives the data from the pen.

3.2 Data Acquisition and Calibration
We use a recording app provided by STABILO International GmbH to obtain the sensor data, which is connected
to the DigiPen and tells the user which character to write (see Fig. 2c). Through this setup we also record the
ground truth labels. We applied the following constraints for our data recording to achieve a homogeneous and
equally distributed dataset. The writer has to sit on a chair in front of a table, and has to write on a normal, white
paper (80𝑚𝑔{𝑚2) padded by five additional sheets. There was no guideline concerning the size of the handwriting
and the way of holding the pen, just the logo needs to face upwards. Users are allowed to write in a printed and
cursive style.

Prior to recording we need to calibrate the pen with a short two-step procedure to determine the gyroscope and
magnetometer biases and the magnetometer scaling. While placing the pen on the table for a couple of seconds,
it is possible to find the gyroscope biases 𝑏𝑔𝑥 , 𝑏𝑔𝑦 and 𝑏𝑔𝑧 for each axis as the gyroscope values are supposed to
be zero. Then, the pen should be rotated in all directions (covering a sphere). With the cloud of magnetometer
points, we can calculate the sensor’s bias 𝑏𝑚𝑥 , 𝑏𝑚𝑦 and 𝑏𝑚𝑧 (the sphere’s center) and the sensor’s scaling factor
𝑠𝑚𝑥 , 𝑠𝑚𝑦 and 𝑠𝑚𝑧 (the sphere’s radii). More information can be found in [54, 61]. With these values, the raw
values can be scaled and the bias removed. For each sensor the SI value without bias 𝑆𝐼𝑏𝑖𝑎𝑠 can be computed with

𝑆𝐼𝑏𝑖𝑎𝑠 “ 𝑟𝑎𝑤𝑣𝑎𝑙𝑢𝑒 ´ 𝑏𝑖𝑎𝑠
𝑚𝑎𝑥
𝑚𝑎𝑥𝑆𝐼

𝑠𝑚˚
, (1)
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(a) Accelerometer signals. (b) Gyroscope signal.

(c) Magnetometer signal. (d) Force.
Fig. 3. Exemplary sample of the uppercase character ’B’ for the front and back accelerometer (a), gyroscope (b),
magnetometer (c), and force sensor (d).

where 𝑟𝑎𝑤𝑣𝑎𝑙𝑢𝑒 is the measured valued from the datasheet sensor, 𝑏𝑖𝑎𝑠 is the bias from the calibration procedure
(𝑏𝑔𝑥 , 𝑏𝑔𝑦 and 𝑏𝑔𝑧 for the gyroscope, 𝑏𝑚𝑥 , 𝑏𝑚𝑦 and 𝑏𝑚𝑧 for the magnetometer, and 0 for the accelerometers and
the force sensor),𝑚𝑎𝑥 is the maximal range value that is 32,768 of the front accelerometer and the gyroscope,
8,192 for the back accelerometer and the magnetometer, and 4,096 for the force sensor,𝑚𝑎𝑥𝑆𝐼 is the maximal SI
value that is 2𝑔 for both accelerometers, 1, 000 ° s´1 for the gyroscope, 2.4𝑚𝑇 for the magnetometer, 5.32𝑁 for
the force sensor, and 𝑠𝑚˚ is the measured scaling factor for the corresponding axis, otherwise it is 1 [66]. With
the calibration procedure from [61] the bias of the accelerometer cannot be determined, and hence, we set it to 0.
We use the raw data in Section 4.

Fig. 3 shows exemplary raw signals of a written character ’B’ (note that there is a total number of 82 timesteps).
As the letter is constructed of two strokes, the pen is lifted one time and the measured force is 0𝑁 between
timestep 21 and 24, see Fig. 3d. We describe a proper pre-processing of such signals in Section 4.1.1.

3.3 The OnHW-chars Dataset
In the future, our OnHW dataset consists of several sub-datasets. In this paper, we first provide the OnHW-chars
dataset that consists of lowercase and uppercase characters. The recording of further datasets is an ongoing
project and will be continuously increased for a more profound and detailed evaluation. Words, sentences, symbols
and numbers from the same writers will be published in a later stage. Our DigiPen records data measurements at
100𝐻𝑧. For each writer, three .csv files are provided: One file that contains the calibration data, one file that
contains the character labels with the start and end timesteps, and one file that contains the 13 measurements for
each timestep. The OnHW dataset is publicly available for download here: https://stabilodigital.com/onhw-dataset/.1

For the novel OnHW-chars dataset 119 right-handed persons wrote the English alphabet for six times both in
lowercase and uppercase letters. All writer are grown-up and above the age of 18, but the exact age was not
reported due to anonymity. The ratio between women and men is 45 % women and 55% men. This allows to
solve classification problems with 52 classes. In total, this resulted in 312 samples per person (with some small
deviations). An overview of the sample numbers are given in Table 2. There are 15,650 lowercase characters and
15,625 uppercase characters. The complete OnHW-chars dataset consists of 31,275 samples in total. Consequently,
the OnHW-chars dataset is a large dataset of 119 writers to evaluate for a large diversity of properties, i.e., different

1Alternative download link: https://iis.fraunhofer.de/onhw-dataset/
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Table 2. Overview of the number of samples of the OnHW-chars dataset including lowercase and uppercase
characters from 119 writers for a writer-dependent (WD) and writer-independent (WI) evaluation.

Total Samples WD/WI
Dataset Writer Samples Training Testing
Lowercase characters 119 15,650 11,542 4,108
Uppercase characters 119 15,625 11,517 4,108
Total – 31,275 23,059 8,216

Fig. 4. Analysis of the writing properties of 50 participants. We provide the distribution of the force averaged
over each sample.

writing style (e.g., printed or cursive characters), holding of the pen, pressure of the writer on the pen, and
influence of noise (e.g., bias and scaling) on the classification accuracy.
As OnHW-char is an online dataset it is possible to evaluate for time-series based recognition methods, i.e.,

incorporate the drift of the sensors. Constructing a WI recognizer is a much more challenging task as constructing
a WD recognizer. However, many applications only allow for WI recognizers, as the application does not allow
for a re-training to a new writer before using the pen in many cases. For the WD evaluation we split the dataset
in 90 recordings for training (23,059 samples in total), and 29 recordings for testing (8,216 samples in total). This
corresponds to a split of 73.73 % for training and 26.27 % for testing for the WI case (see Section 5). To better
evaluate for the WD and WI tasks, Fig. 4 shows writing properties for 50 different writers, e.g., the writers 11, 30
and 43 put high pressure on the pen, while the writer 19, 21 and 45 put very low pressure on the pen.
Table 3 presents an analysis of the character properties. If the number of timesteps and strokes are highly

different between the characters, the features of such samples might be better separable for ML-based classifiers.
Obviously, the trajectory for uppercase characters is longer, and consequently, the average timesteps (TS) the
writer requires for lowercase characters are 44.1, while the average timesteps for uppercase characters are 52.1.
For example, the characters ’B’ (71.2), ’E’ (74.2), ’F’ (67.8) and ’H’ (65.6) require more time to write than, e.g., ’c’
(26.8), ’l’ (27.1) and ’I’ (27.7), as they are constituted by more strokes. Lowercase characters are constituted of
1.24 strokes on average, while uppercase characters are constituted of 1.50 strokes, e.g., the characters ’c’, ’h’, ’o’,
’r’, ’s’, ’v’ and ’w’ are always written in one stroke. The standard deviations DTS and DS indicate a high difference
in writing style of a character, e.g., the stroke deviation is 0.44 for lowercase and 0.69 for uppercase characters on
average.
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Table 3. Analysis of the character properties. Presented are the average number of timesteps (TS) and strokes (S)
and their deviations (DTS, DS) for every character.

Char. a b c d e f g h i j k l m n o p q r
TS 45.4 45.4 26.8 50.7 39.5 49.2 53.9 41.6 40.1 53.7 53.9 27.1 58.3 40.0 33.7 50.8 53.7 32.4
DTS 32.6 28.7 21.5 29.7 27.8 18.1 23.3 17.7 21.6 24.7 27.6 21.3 33.5 20.8 17.5 37.3 25.5 16.6
S 1.07 1.04 1.01 1.12 1.03 1.58 1.03 1.01 1.86 1.91 1.52 1.01 1.06 1.01 1.01 1.15 1.21 1.01
DS 0.63 0.24 0.12 0.43 0.43 0.66 0.25 0.11 0.71 1.07 0.74 0.18 0.51 0.13 0.19 0.48 0.51 0.12
Char. s t u v w x y z A B C D E F G H I J
TS 36.0 46.7 37.7 33.2 50.8 44.2 48.2 52.8 60.9 71.2 30.4 56.2 74.2 67.8 56.3 65.6 27.7 45.6
DTS 20.2 19.2 19.9 19.2 28.1 21.5 39.9 26.7 30.9 25.2 21.9 26.9 26.1 36.6 25.8 22.7 27.5 25.9
S 1.01 1.81 1.04 1.01 1.00 1.79 1.35 1.62 1.70 1.61 1.09 1.73 2.73 2.53 1.18 2.45 1.10 1.06
DS 0.18 0.68 0.47 0.13 0.07 0.73 0.94 0.65 1.13 0.66 1.55 0.77 1.27 1.15 0.48 1.19 0.50 0.46
Char. K L M N O P Q R S T U V W X Y Z
TS 59.7 33.4 60.7 55.1 37.1 52.4 65.3 63.6 39.5 47.5 40.1 35.4 58.1 47.8 52.0 60.0
DTS 26.5 20.1 22.5 29.9 22.7 22.4 24.3 28.4 31.3 19.7 24.2 18.6 35.1 23.0 38.2 31.4
S 1.83 1.04 1.21 1.27 1.01 1.43 1.86 1.39 1.01 1.85 1.01 1.01 1.08 1.81 1.58 1.64
DS 0.93 0.38 0.56 0.61 0.11 0.62 0.71 0.61 0.13 0.70 0.11 0.12 1.21 0.64 0.72 0.69

Classifying characters from right-handed and left-handed writers from one single signal-based dataset is a
quite challenging task as the pen rotation is significantly different. Hence, we decided to exclude left-handed
recordings for now.

4 PROPOSED BASELINE CLASSIFIERS
There is an exhaustive literature that deals with the classification of characters, gestures, symbols and objects
gatherd from a 2D tablet-based recording platform. Popular methods include Dynamic Time Warping (DTW) [13,
50, 51, 67, 73, 76, 77], k-Nearest Neighbors (kNN) [13, 17, 20, 36, 39, 60], Support VectorMachines (SVMs) [17, 20, 32,
37, 51, 60, 76], Hidden Markov Models (HMMs) [7, 13, 28, 45, 46] and Neural Networks (NN) [1, 1, 28, 36, 39, 46, 76].
Indeed, research that addresses a signal-based handwritten text analysis gathered from a digital pen comparable
to our platform is very rare.
Online character recognition is based on the analysis of a given sequence of strokes applied over time. Such

analysis usually pre-processes the input signals (by noise filtering), and then extracts features that allow for a
recognition of written characters. In this section we present these steps and apply character classification over the
proposed dataset. Given the unavailability of any previous results of classifying the complete alphabet letters, we
run the following experiments over the separated uppercase and lowercase letters, hence classifying 26 different
classes. In addition, we present the results of applying the classifiers over the complete 52 character classes. We
present results for classical ML models in Section 4.1, and for DL models that use the raw input data to classify
the written characters in Section 4.2.

4.1 Character Classification using Classical Machine Learning Models
We implemented pre-processing steps for applying different ML algorithms to evaluate how accurately different
models classify the alphabet characters. As a pre-processing step we applied noise filtering to reduce the noise
within the data (see Section 4.1.1). Using the filtered data, we extracted different features (see Section 4.1.2), and
used an autoencoder for automatic feature extraction (see Section 4.1.3) as a representation of the information in
the data to be used in the classification algorithms (see Section 4.1.4).
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(a) Raw accelerometer signals. (b) Noise filtered accelerometer signals.

(c) Raw gyroscope signal. (d) Noise filtered gyroscope signal.

(e) Raw magnetometer signal. (f) Noise filtered magnetometer signal.
Fig. 5. Comparison of raw sensor signals (a,c,e) and noise filtered signals (b,d,f).

4.1.1 Pre-processing. Sensor noise represents the random variation in its output when functioning under static
conditions. Hence, our raw sensor data output usually contains distorted signals (due to the paper surface incon-
sistency and trembling during writing). Pre-processing helps to remove insignificant or redundant information,
which helps to extract high quality features from the signal streams. Commonly used pre-processing techniques
include resampling, normalization, segmentation, and filtering [1, 35, 39, 45, 48, 72, 73]. More sophisticated
approaches such as Butterworth filters and Savitzky-Golay pre-processing have been used in [23, 24, 39].
We apply a high pass filter with a cutoff frequency of 1𝐻𝑧 to remove the gravitational acceleration from the

accelerometer recordings. Gravity is a constant force and the high pass filter allows us to keep the fast changing
forces applied when recording while filtering the slow changing gravitational force. To disregard the noise within
the raw data, we use a moving filter with a window of size 11, which acts as a low pass filter that allows the
removal of high frequency noise from the input data. Since random noise usually includes random jumps in the
data signals, the filter allows signal smoothing. Fig. 5 shows a recorded letter sample signal before (left) and after
(right) pre-processing.

4.1.2 Manual Feature Extraction. Feature extraction is the concept of deriving a new set of inputs from the original
raw dataset that represents valuable information of the data in a format that best fits an ML algorithm. Well
established statistical features include the mean, standard deviation, variance, mean absolute deviation, location
of zero crossings, signal range, and minimal and maximal values. Fast Fourier Transform (FFT), Autocorrelation
Function (ACF) andWavelets (WFLT) are used in [39]. For trajectory-based classification techniques static features
(box aspect ratio, length, curvature, area of convex hull, closure, perpendicularity, ratio of the principal axes, etc.)
and dynamic features (initial angle, position of first and last points, etc.) are important [51, 60]. Furthermore,
pressure data available in online data is also important, i.e., average pressure and pen down count [51]. For a
very good overview and discussion on different features we refer the reader to [17].

In our system and dataset we use the two accelerometers and the gyroscope to extract multiple time and
frequency domain features that would allow a higher recognition rate. We extract the features per channel
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Fig. 6. Network structure of the Autoencoder. The input is encoded and the latent space representation de-
coded. Layers: Conv = Convlution; Act. = Activation; BN = BatchNormalization; MP = MaxPooling1D; UpS =
UpSampling1D.

and concatenate the resulting feature vectors forming the final feature vector that is used for the character
classification. The extracted features are mainly statistical and geometrical features of the raw signals. For the
time domain features we used the maximum, the minimum, the mean value, the standard deviation, and the
correlation coefficients of each of the axes. We also include the skewness (i.e., that describes the lack of symmetry
of the data distribution), interquartile range (i.e., a measure of statistical dispersion), median absolute deviation
(i.e., a measure of deviation from the median of the data), and area under curve. For the frequency domain
features, we apply Fast Fourier Transform (FFT) to compute the Discrete Fourier Transform (DFT), then extract
the previously stated features, in addition to including the weighted mean of the frequency distribution, the DFT
coefficients, the local maxima of DFT coefficients, and their corresponding frequencies. The final feature vector is
composed of 327 features of the concatenated channel feature vectors.

4.1.3 Automatic Feature Extraction. As there is no best practice on standard features that are usually considered
best for online character classification, we also investigate the use of an autoencoder to automate the extraction
of a feature vector as the extraction of manual, hand-crafted features has its drawbacks. The number of features
to extract, the relation between the extracted features, and which specific features are useful for specific cases,
still have no precise solution, when considering the research done in this domain. Thus, an automated feature
extraction process allows for better feature vector extraction from the data and get better classification accuracy.
An autoencoder is a neural network that efficiently applies the task of representation learning. It transforms

data into a compressed knowledge and information representation, producing a feature vector that represents
the information contained in a sample of the data. Additionally, as an autoencoder learns to compress the
dimensionality of the data into a specific sized feature space, it learns how to ignore the noise in the data, thus
allowing the use of the raw data with the minimal need for pre-processing steps.
CNNs are well known having the capability to extract features, and are popular specifically when working

with image datasets as implementations of 2D CNNs. We use CNNs as an architecture for an autoencoder and
apply 1D CNN implementations for the time-series data that is recorded from the sensors, allowing the extraction
of a feature vector of defined dimensions automatically that represents a sample information in the defined vector
dimensions. This information includes the 13 channels of the data, representing the four triaxial sensors, and
the force sensor. To fit the data into a CNN, it is necessary for all the samples of the dataset to have the same
number of timesteps, with a sample being defined as a letter recording. Given the different time of recording
per letter, each sample is resampled into a defined number of timesteps equal to 64. This is chosen to allow the
extraction of a feature space vector of size 256. This feature space dimension is assumed to be sufficient to allow
for better classification. Fig. 6 shows the architecture of the autoencoder and the defined dimensions per layer of
the network.
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4.1.4 ML-based Character Classification. Following the extraction of the specific features from the data, we use
the complete feature vector as an input into several ML approaches to classify the written characters based on
the features of the sensor data. We apply several classifiers using Python libraries. Online character classification
is mainly based on techniques like kNN, HMM, SVM, LDA and NB.

As our baselines, we implemented Decision Tree, Random Forest, Logistic Regression, Linear SVM, and kNN.
We perform grid search for the optimal hyperparameters that We line out in the following. Decision Trees (DTs)
use tree-like structures of decisions and the possible consequences, in which each internal node represents a test
on an attribute. The branch represents the evaluation of the test. The leaf node represents the class. We use DTs
with default parameters, i.e., maximal depth and maximal leaf nodes are set to None. A Random Forest (RF) is
an ensemble learning method that constructs a multitude of DTs while training. We apply a RF classifier with
100 trees, no defined max depth, a minimal sample split of 2, and minimal samples leaf of 1. For the Logistic
Regression (LR) classifier we use a L2 norm for penalization, set the parameter 𝐶 “ 1, and set the tolerance for
stopping criteria to 0.0001. We run the lbfgs solver maximal 100 iterations. kNN classifiers are non-parametric
methods where the sample class is predicted by a plurality vote of its neighbors. If 𝑘 “ 1, the sample is assigned
to the class of the single nearest neighbor. kNN is used in [17, 20, 36, 39] (𝑘 ą 1) and in [60] (𝑘 “ 1). We
apply the kNN classifier considering five nearest neighbors (𝑘 “ 5), we set the leaf size to 30 and weights to
uniform. Support Vector Machines (SVM) classifiers are non-probabilistic classifier that is a representation of
the samples as points in space, such that the samples of the separate categories are divided by a clear gap. For an
SVM, also used in [17, 20, 32, 51, 60], a kernel with a gamma parameter and a slack variable has to be set. In our
configuration, we use the slack variable 𝐶 “ 1, the tolerance 0.0001 and the L2 norm as penalty function, and
trained maximal to a 1,000 iterations.
The stated classifiers are different methods that consider different attributes and approaches for applying

classification over the available data features. As a result, these methods would produce different classification
results and accuracies based on how the extracted features are functional for each classifier.

4.2 DL-based Character Classification
Classical classification approaches require the process of feature extraction from time-series data to train ML
models. The feature extraction difficulty lies in the limitations of the expertise in that specific field. Autoencoders
are established to be automated feature extraction methods, but in a two-stage training process, they are, however,
not informed about the final classification task, and have hence no access to the complete information. Therefore,
we present end-to-end DL methods that provide state-of-the-art results with no feature extraction. Similarly to
fitting the data into the autoencoder, that data was resampled to have a fixed length of timesteps providing a
form to fit the data into the different types of networks.

Liwicki et al. [46] used RNNs, i.e., a bidirectional Long-Short-Term Memory (BiLSTM), with the Connectionist
Temporal Classification (CTC) [27] objective function for online whiteboard handwriting recognition (74.0 %
accuracy), and showed an improvement over HMM-based systems (65.4 % accuracy) on the IAM-OnDB [45] dataset.
LSTMs [31] are RNN architectures designed to bridge long time delays between relevant input and target events.
BiLSTMs [64] are able to incorporate context on both sides of every position in the input sequence, e.g., in word
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Table 4. Evaluation results. Accuracies are given in % for different classifier.

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

M
L-
ba

se
d

Fe
at
ur

es
Random Forest 54.77 43.04 56.29 45.96 42.39 30.44
Decision Tree 29.36 22.89 29.87 24.32 19.19 14.96
Logistic Regression 55.36 49.60 58.54 53.26 43.95 39.11
Linear SVM 61.55 51.07 63.70 54.00 48.77 38.71

A
ut
oe

nc
od

er

kNN 49.17 29.87 51.32 30.94 38.30 19.61

M
L-
ba

se
d

Random Forest 58.02 45.55 63.19 43.73 43.60 43.62
Decision Tree 30.49 21.73 33.23 19.68 20.32 20.33
Logistic Regression 56.16 44.93 62.59 43.73 41.66 41.66
Linear SVM 62.09 51.80 70.61 51.74 46.54 46.56
kNN 42.43 34.09 57.49 36.68 33.08 33.08

D
L-

ba
se
d

CNN 84.62 76.85 89.89 83.01 70.50 64.01
LSTM 79.83 73.03 88.68 81.91 67.83 60.29
CNN+LSTM 82.64 74.25 88.55 82.96 69.42 64.13
BiLSTM 82.43 75.72 89.15 81.09 69.37 63.38

recognition where the information left and right of a given letter is useful. The RNN approach of [28] achieved
79.7 % accuracy on the online word recognition task. Dynamic and static neural networks are used in [1].

We implement the CNN, LSTM and BiLSTM networks with a similar design using different architectures.
The design includes two layers of the architecture with a 40 % dropout rate, a fully connected layer with 100
units, followed by the output layer including the number of classes, 26 classes for either lowercase or uppercase
letter classification, and 52 classes for the complete alphabet classification (see Fig. 7). The LSTM and BiLSTM
hidden layers include 64 units each. For the CNN hidden layers, we use a configuration of 64 feature maps, and a
kernel size of 4 with max pooling of size 2. We use a rectified linear unit activation in the hidden layers with the
Softmax activation function in the output classification layer. The cross entropy loss function is applied with
Adam optimization using a 0.001 learning rate.

5 RESULTS AND DISCUSSION
In this section we report results for both cases presented in Section 3.3, i.e., writer-dependent and writer-
independent recognition, with the training and test dataset splits as shown in Table 2. Considering the WI case,
the datasets are split based on writers, keeping the writers in the test dataset completely different from the ones
in the training dataset, while in the WD case, a single writer could be included in both datasets. For the WI task,
we present averaged results for a 5-fold cross validation. Table 4 shows the performance of the baseline classifiers
described in Section 4. We see that (in most cases) classical ML models perform slightly better when they get
presented feature vectors from the autoencoder model. While this is not at a significant level it still shows that
hand-crafted engineering of features is unnecessary. Among all the ML models, the linear SVM performs best.
However, yet the recognition rates of the SVM only reaches an accuracy of 71 % over the WD recognition. The
other classical ML models, i.e., the DT and RF models, yield much lower results over the test dataset due to early
overfitting of the models during the training process (they reached a 100 % recognition rate over the training
dataset).

The best classification accuracy is obtained with the CNN model for almost all of the different cases. The CNN
model reaches almost 85 % accuracy for the lowercase WD task, and 77 % accuracy for the lowercase WI task.
The recognition rate increases to almost 90 % when classifying uppercase characters in the WD case, and to
83 % correct classification in the WI recognition. The results of the CNN+LSTM model and the BiLSTM model
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Fig. 8. Confusion matrix for predicted and ground truth WI combined letters. Presented are the CNN results.

are similar, with slight differences between the different cases. The LSTM provides the lowest accuracies when
dealing the WI recognition.

The results show that state-of-the-art DL methods produce more accurate classification results than classical
ML methods, even when considering an automated feature extraction method. We can also see that, in most
cases, the best recognition rate is obtained at the uppercase letter classification. The accuracy drops for all cases
when extending the classification into the complete 52 classes, as there are several characters that differ only in
size and not in number of strokes, e.g., ’C’/’c’, ’U’/’u’, ’W’/’w’, ’X’/’x’, and ’Z’/’z’, see the secondary diagonal of the
confusion matrix in Fig. 8 for the CNN model for the WI combined case. The recognition rate is higher for the
WD case in direct comparison to the WI case, showing that it is a more challenging task to accomplish as stated
in Section 3.3.

The results presented can be improved with further investigation of the best hyperparameters in the models,
and only serve as a baseline. When considering ML methods, better modeling of the data can be obtained
using time-series analysis features that are not considered in our experiments, e.g., Wavelets and Shapelets. The
dimensions of the feature vector, along with the autoencoder parameters can be improved for this classification
task. Other DL models can be tested over the dataset with deeper hyperparameter optimization study to improve
the recognition rate, specifically for the combined letter classification.
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We evaluated the impact of each sensor on the results by training the models and leaving the data of one
sensor out. The data of the magnetometer does not improve the classification accuracy. We publish the dataset
including the magnetometer data for a possible investigation of further research.
The accuracies obtained with these experiments indicate that the presented dataset fulfills the requirements

that are necessary for applying a writing recognition system stated in Section 2. The number of writers that
contributed to the dataset allows a high recognition rate, and specifically grants the possibility of applying a
recognition system that is able to recognize the handwriting of previously unseen users without having prior
interaction or data. This makes the system a completely WI recognizer.

Since the number of contributions per writer to the dataset are approximately the same, the presented dataset
shapes the 52 classes of the alphabet letters in balanced mode. This allows an implemented system to better
distinguish between the available classes with less confusion between the letters to be recognized, specifically
when dealing with similarly written characters. Although, the accuracy drops slightly for such characters,
e.g., ’U’ (75 % accuracy) and ’V’ (69 % accuracy). The attribute similarity shown in Table 3 underlines that the
average number of strokes are 1.01 for both letters, and the stroke deviation is small. Also the characters ’X’
(66 % accuracy) and ’T’ (82 % accuracy) are confused, as the recording attributes (X: 𝑇𝑆 “ 47.8, 𝐷𝑇𝑆 “ 23.0,
𝑆 “ 1.81, and 𝐷𝑆 “ 0.64, T:𝑇𝑆 “ 47.5, 𝐷𝑇𝑆 “ 19.7, 𝑆 “ 1.85, and 𝐷𝑆 “ 0.70) are similar. Furthermore, placing no
restrictions on the writers during the data recording sessions, such as writing speeds, directions and sizes, made
the data as natural as possible. This allows the implemented systems to generalize the recognition to several
different writing styles.
Additionally, using solely a sensor-enhanced pen to collect the data grants the possibility for the extension

of the dataset, since no other devices are required in the process. Using the OnHW-chars dataset allows the
implementation of a WI handwriting recognizer that only requires the use of a sensor-enhanced DigiPen.

6 CONCLUSION
In this paper, we addressed the handwriting recognition task and the available public datasets that are popular
in the scientific community. We summarized available offline and online handwriting datasets, and made an
in-depth comparison to our novel OnHW dataset that includes data for writing alphabet characters on regular
paper. The dataset was collected using the STABILO Digipen. It consists of 31,275 letter samples, distributed
into 15,650 lowercase and 15,625 uppercase letters collected from 119 writers who contributed approximately
equally to the dataset. The dataset provides a time-series representation of sensor signals that recorded the pen
movement during writing, which include linear accelerations, angular velocities and magnetic field recordings
that help in identifying the angle at which the pen was held, along with the force applied by the pen on the
paper to identify when writing and hovering occurs. To the extent of our knowledge, there are several attempts
for applying online handwriting using sensor-enhanced pens, however no data used within these projects that
covers character level recognition was made publicly available. This presented dataset forms a novel benchmark
for future research to further improve online handwriting recognition, specifically character classification while
writing on normal paper.

In addition, we implemented a series of experiments for the online character classification task, applied over
different subsets of the dataset, based on multiple ML and DL algorithms, which are widely used in the time-series
classification domain. We draw benefits of data pre-processing, feature extraction, and letter classification. The
experimental results showed that CNNs achieve the best results when classifying characters over different subsets,
achieving accuracies of 90 % for theWD and 83% for theWI classification task on average. These presented models
serve as benchmark models that can be used in the scientific community when applying character classification
using sensor data provided from a pen.
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can influence the writing style, and hence, the pen may not be applicable in real-world
scenarios.

Kuramoto et al. (2020) put forward the proposal for a six-axis force-torque sensor that
can determine the contact state of a pen tip to calculate its position and trace. The method
relies on kinematic computations of the pen tip and a probabilistic determination of the
contact state. The authors test their method on written symbols, which is similar to the
dataset proposed in the contributing paper (Ott et al., 2022c). Nonetheless, using such a
device is necessary despite its disadvantage of potentially influencing the writing style.

The authors of ChiSig (Yan et al., 2022) proposed a pipeline for detecting, restoring, and
verifying of Chinese signatures. To assess the restoration, they utilized metrics based on
the Fréchet Inception distance and the similarity between corresponding pixels of images.
In contrast, the reconstructed and ground truth trajectories in the contributing paper (Ott
et al., 2022c) are represented as spatio-temporal time-series, and thus the Euclidean dis-
tance is used. Since there is no established metric for evaluating trajectory reconstructions,
Chen et al. (2022b) propose two metrics: Adaptive interaction on union, which reduces the
influence of stroke widths, and length-independent dynamic time warping, which solves
the trajectory-point alignment problem. These metrics could be suitable for evaluating the
reconstructed trajectories in the contributing paper (Ott et al., 2022c).
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Abstract

Multivariate Time Series (MTS) classification is impor-
tant in various applications such as signature verification,
person identification, and motion recognition. In deep
learning these classification tasks are usually learned using
the cross-entropy loss. A related yet different task is predict-
ing trajectories observed as MTS. Important use cases in-
clude handwriting reconstruction, shape analysis, and hu-
man pose estimation. The goal is to align an arbitrary di-
mensional time series with its ground truth as accurately
as possible while reducing the error in the prediction with
a distance loss and the variance with a similarity loss.
Although learning both losses with Multi-Task Learning
(MTL) helps to improve trajectory alignment, learning often
remains difficult as both tasks are contradictory. We pro-
pose a novel neural network architecture for MTL that no-
tably improves the MTS classification and trajectory regres-
sion performance in online handwriting (OnHW) recogni-
tion. We achieve this by jointly learning the cross-entropy
loss in combination with distance and similarity losses. On
an OnHW task of handwritten characters with multivariate
inertial and visual data inputs we are able to achieve cru-
cial improvements (lower error with less variance) of tra-
jectory prediction while still improving the character clas-
sification accuracy in comparison to models trained on the
individual tasks.

1. Introduction
MTS Classification (MTSC) identifies labels based on

MTS as a set of real-valued, sequentially ordered observa-
tions. MTSC appears across many domains, e.g., human ac-
tivity recognition (HAR), handwriting reconstruction, and
medical data analysis. [31, 46, 60, 62] A related yet differ-
ent task is trajectory reconstruction and function alignment.

This is important to applications that involve the modeling
of mathematical functions or for shape analysis, e.g., to op-
timally transform a shape into another shape [19, 53].

An application where both tasks must be solved simul-
taneously is HAR [1, 4]. For example, the control of smart
devices through hand-movement patterns or sport applica-
tions [35] requires a joint learning of the pattern classifi-
cation and the hand trajectory. The data are recorded us-
ing a handheld device with inertial sensors or by outside-in
cameras, e.g., a Kinect system. For our handwriting recog-
nition application, common techniques require to write on
a device where the writing style is influenced, to take im-
ages of the handwritten text, or to use a stylus pen, a touch
pen with a sensible magnetic mesh tip together with a touch
screen surface [2]. Systems for writing on paper are only
prototypical, such as the ones used in [12, 50, 58], or are
smartphones that provide a pen-like interaction from stan-
dard built-in sensors [17]. For our OnHW application, we
used a novel sensor-enhanced pen [33, 46] and recorded the
pen movement with outside-in cameras.

(a) Distance
loss.

(b) Similar-
ity loss.

Figure 1: Ground truth
(red) and reconstructed
(blue) trajectories.

Combined metrics. In com-
puter vision tasks such as land-
mark localization [9] and human
pose estimation [41], DL has
successfully contributed to se-
quence to sequence regression-
based methods [15]. However,
in trajectory prediction we do
not only want to align recon-
structed trajectories with their
ground truth, but also require
them to be smooth over time [59]. A combination of
distance metrics with geometric shape-based and spatio-
temporal metrics achieves such a smoothness [34]. How-
ever, both metrics contradict each other which makes them
difficult to be used together for training (cf. the blue trajec-
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Input Task Loss Output
Inertial Classification Cross-entropy Character class

or Distance or/and
visual Regression Spatio-temporal trajectory (MTS)
MTS Distribution

Table 1: Summary of the challenge addressed in this paper.

tory of the handwriting reconstruction task in Fig. 1. Opti-
mizing a distance loss (here: Euclidean, Fig. 1a) introduces
a relative error and dilatation while a spatio-temporal loss
(here: Pearson Correlation, Fig. 1b) provides a smooth and
similarly shaped trajectory, but with (large) scaling error.

We address the problem of learning both metrics simulta-
neously by MTL. MTL exploits differences and commonal-
ities across two or more single learning tasks to solve them
jointly with possibly improved performance in each single
task. As the usefulness of different tasks is not known a pri-
ori, combining loss functions is one of the main challenges.
The goal in MTL is to find appropriate weighting strategies
such that the total loss is minimized optimally [13, 20, 40].
MTL research made significant progress over the last years
regarding training techniques [44, 61], but is still challeng-
ing to apply for such contradictory tasks.

In this paper we propose different MTL architectures
that combine two heterogeneous but subtly correlated tasks:
MTSC and trajectory regression on two different datasets
from an OnHW recognition application [46]. Table 1 sum-
marizes the challenge we address. We use MTL [40] and
show that the order of weight increase is crucial for smooth
trajectory regression. Our results show an improved charac-
ter classification and optimal trajectory regression by com-
bining the cross-entropy loss with distance and similarity
losses, i.e., spatio-temporal metrics.

The paper is organized as follows. We discuss related
work in Sec. 2. Sec. 3 explains how we combine classifica-
tion and regression loss functions in an MTL setup. Sec. 4
presents our novel OnHW datasets and CNN architectures
before Sec. 5 shows experimental results. Sec. 6 concludes.

2. Related Work
We discuss related work on MTSC (Sec. 2.1), loss functions
for trajectory regression (Sec. 2.2), and MTL (Sec. 2.3).

2.1. Deep Learning based Multivariate Time Series
Classification (MTSC)

MTSC is used in different fields to estimate class labels
based on several (in-)dependent time series. While there
are many shapelet- and Fourier-based methods, we focus on
DL methods as they are most similar to our approach. DL-
based methods often exploit LSTM and CNN layers to ex-
tract features. Examples include the multi-channel CNN for
univariate processing by [62] and the attention-based LSTM
by [29]. [31] introduced a squeeze-and-excitation block to

generate latent features for classification (MLSTM-FCN).
[60] proposed the attentional prototype TapNet that handles
the issue of limited training labels combined with a random
group permutation method. An overview of MTSC meth-
ods can be found in [22]. However, as such approaches fo-
cus on classification only they perform poorly on (smooth)
trajectory regression.

2.2. Trajectory Regression

For the reconstruction of time series we need a metric to
measure the similarity between a predicted time series and
its ground truth. We here briefly review known metrics and
discuss them in the context of reconstructing trajectories.

Commonly used distance-based metrics are the Mean
Squared Error (MSE), the Mean Absolute Error (MAE) (be-
ing more robust to outliers but with potentially large gradi-
ents near the optimum), the Huber loss [30], Andrew’s Sine,
and Tuckey’s Biweight [7], each handling “outliers” differ-
ently [8]. Although practically relevant, these methods do
not consider temporal dimensions or guarantee smoothness.

Geometric shape-based similarity measures are the
Fréchet distance [10], preserving the time series order of
sequence data along curves, the Hausdorff distance [55], a
measure for dissimilarity for comparing point sets, and the
Procrustes analysis [51]. [59] proposed a trajectory sim-
plification by using sub-trajectory similarity information by
the Fréchet and Hausdorff distances. However, optimizing
such metrics is often difficult as they are not differentiable.

Spatio-temporal distance metrics take into account both
the spatial and the temporal dimensions of movement data,
such as time-dependent trajectories. Examples include the
Cosine Similarity and Pearson Correlation [47]. However,
these metrics are inappropriate for shape reconstruction be-
ing invariant to scaling and translation.

Time Warping approaches such as Dynamic Time Warp-
ing (DTW) [11, 14] can compare time series of variable
size and are robust to shifts or dilatation across time. Ap-
proaches typically solve a minimal-cost alignment problem
solved with dynamic programming [15] using the MSE or
the Mahalanobis distance [24]. For audio-to-audio align-
ment [24] proposed to learn Hamming and Mahalanobis
metrics. [17] used dynamic programming to compare
reconstructed trajectories, but only for result evaluation.
However, such methods may lead to pathological results as
warping the x-axis can produce unintuitive alignments.

Distribution-based methods exploit the distributional
discrepancy of samples. One important example is the
Kullback-Leibler (KL) divergence [3]. Optimal Transport
compares probability distributions in a geometrically faith-
ful way, but is limited because of its computational bur-
den (e.g., the Wasserstein distance [23]). [28] reconstructed
sketches using RNNs that are, however, represented as time-
independent vector images and not trajectories. As the KL
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Figure 2: Method overview: MTS input, exemplary CNN trunk and heads, and class and trajectory prediction. The top
row shows the architecture for the IMU (inertial measurement unit) dataset, the bottom row shows the architecture for the
visual dataset. Classification (cross-entropy) and regression (distance, spatio-temporal and distribution-based) loss functions
are combined with different MTL weighting strategies. ++: concatenation. The right part of the pipeline is equal for both
datasets and CNNs, but the input is separate (inertial features or visual features). Different types of data are not combined.

divergence is asymmetric and does not satisfy the triangle
equality, we will focus on the Wasserstein metric.

Various approaches for handwriting regression have
been proposed, such as the application of adversarial do-
main adaptation for training generative RNNs on handwrit-
ing generation with MNIST [26], or sequence order infer-
ence by combining the L2 norm and the Pearson Correlation
[34]. However, they are training on relative distance pairs.

2.3. Multi-Task Learning (MTL)

MTL achieves a provable information gain over single
task learning if the jointly learned tasks are somehow re-
lated [16]. A naive approach combines multiple losses us-
ing a weighted sum of losses of the single tasks. However,
the model performance is very sensitive to the actual weight
selection. Hence, [32] considered the homoscedastic uncer-
tainty of each task to weight multiple tasks differently. [61]
addressed the problem of learning heterogeneous but sub-
tly correlated tasks (that have different convergence rates
and learning difficulties) with task-wise early stopping and
task-constrained models. Further different weighting strate-
gies of the combination of single tasks exist, i.e., Dynamic
Weight Average (DWA) [40] and Dynamic Task Prioritiza-
tion [27], that dynamically prioritize difficult tasks during
training. The methods by [13] (GradNorm) and [20] (GCS)
are based on gradients for loss scaling, while [21] adds con-
nections between layers, and hence, these methods depend
on the network architecture. [44] addresses the challenge
of combining auxiliary tasks into a single coherent loss by
learning (non-)linear interactions between auxiliary tasks.

3. Methodology
We now present the problem formulation and method-

ological foundation of our approach. Fig. 2 gives an
overview of our method for both the inertial and visual
datasets. We encode the input data sources with a CNN
trunk and process the features for each individual task with

separated heads. We will first describe details for the MTSC
task (i.e., following the classification head) in Sec. 3.1.
For the trajectory prediction task (i.e., along the regression
head) we make use of distance, spatio-temporal and distri-
bution-based loss functions introduced in Sec. 3.2. We then
present different MTL strategies for the combination of loss
functions in Sec. 3.3, and propose suitable MTL architec-
tures in Sec. 3.4 that allow to predict the class labels and
MTS trajectories. Details are given in the Appendix A.1.

3.1. Multivariate Time Series (MTS) Classification

An MTS U = {u1, . . . ,um} ∈ Rm×l is an ordered se-
quence of m ∈ N streams with ui = (ui,1, . . . , ui,l), i ∈
{1, . . . ,m}, where m is the length of the time series and l
is the number of dimensions. For example in pose track-
ing, we might have several streams induced by sensors at-
tached to the body plus (features extracted from) a video
stream. Each MTS is associated with a class label v ∈ Ω
from a pre-defined label set Ω. The training set is a sub-
set of the array U = {U1, . . . ,Un} ∈ Rn×m×l, where
n is the number of time series, and the corresponding la-
bels V = {v1, . . . , vn} ∈ Ωn [60]. The MTSC task is
to predict an unknown class label V̂ for a given MTS. We
learn the classification model using the cross-entropy loss
LCE(U ,V) [25]. For details, see Appendix A.1.

3.2. Trajectory Regression Metrics

When reconstructing or regressing trajectories, such as
handwritten characters, we have to consider another multi-
dimensional (discrete) time series of varying length. The
MTS can take values in Ψ ⊂ R and is represented by a
matrix of size n × d (n: number of timesteps, d: dimen-
sions of the time series). Given a ground truth time series
Y = {y1, . . . ,ym} ∈ Rm×d, the goal is to predict a time
series X = {x1, . . . ,xn} ∈ Rn×d, such that X is closely
aligned to Y [34]. For our OnHW recognition task, the
prediction is of size (100, 2), but can be chosen arbitrar-
ily for different applications. In the following, we consider
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Figure 3: Overview of inertial-based architectures. STL: (A0) and (A1). MTL (A2) to (A8).
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Figure 4: Overview of visual-based architectures. STL: (A0) and (A1). MTL (A2) to (A8).

X and Y to be of same length n, and ri = yi − xi be
the residual between Xi and Yi. We consider a (differen-
tiable) substitution-cost function L : Rd × Rd → R+ to
learn the trajectory regression task. Different loss functions
have different challanges and advantages. We make use of
distance-based, spatio-temporal and distribution-based loss
functions. For more details, see Appendix A.1.

As our distance-based loss function we consider the
mean squared error LMSE(X ,Y) = 1

n∥X − Y∥22 =
1
n

∑n
i=i r

2
i with L2-norm || · ||2, the Huber loss

LH(X ,Y, δH) [30], which is less sensitive to outliers but
depends on a hyperparameter δH , and the Andrew’s Sine
loss LAS(X ,Y, δAS) [8] with hyperparameter δAS . Dis-
tance-based loss functions, however, do not consider rela-
tive differences in input pairs.

The following spatio-temporal loss functions take into
account the temporal dimensions of the data and maximize
the shape similarity between ground truth and predicted tra-
jectory. The Cosine Similarity is a measure of similarity be-
tween two non-zero vectors of an inner product space. The
loss is defined by LCS(X ,Y) = 1 − (x · y)/(∥x∥2∥y∥2).
Cosine Similarity is not invariant to shifts that is required
for our application. The Pearson Correlation [47], in con-
trast, is invariant to shifts as it measures the linear relation-
ship between two distributions in [−1, 1], with 1 being a
perfect alignment. Instead of the symmetric distance pre-
diction [34], we train our model based on the Pearson Cor-
relation loss LPC(X ,Y) = LCS(X − X ,Y − Y) with X
and Y the mean of X and Y , respectively.

Finally, we also consider distribution-based loss func-

tions. Specifically, we use the Wasserstein distance [23] that
defines a distance between two probability distributions on
a given metric space M and that represents the cost δ of an
optimal mass transportation problem. To solve the learn-
ing problem, we need to minimize the loss LWASp

(X ,Y),
but calculating the gradient is computationally expensive.
Hence, we optimize a smoothened Wasserstein loss func-
tion that is strictly convex [18].

3.3. Multi-Task Learning (MTL)

Our goal is to jointly classify an MTS using the cross-
entropy loss and regress the corresponding trajectory, see
the right part in Fig. 2. For each task, we have separate
architecture heads. We show that both tasks are related,
and hence, the MTL approach takes advantage of the in-
formation gain over single task approaches. The training
of different tasks is non-trivial (see, [38, 39, 42, 61]). We
have a set of tasks K = {T1, ..., T|K|} with |K| tasks.
The naive approach is to combine losses by a weighted
sum Ltotal =

∑|K|
i=1 ωiLi, with pre-specified, constant

weights ωi. We use this technique as a baseline, and choose
ωi = 1,∀i ∈ {1, . . . , |K|} as default value, i.e., we weight
the regression and classification losses equally. For trajec-
tory regression we additionally combine two losses, namely
distance-based metrics such as the MSE LMSE , Andrew’s
Sine LAS or Huber LH loss, with spatio-temporal distances
such as the Cosine Similarity LCS or the Pearson Corre-
lation LPC , or distribution-based loss functions, i.e., the
Wasserstein metric LWASp

. We perform different weight-
ing strategies for these losses. First, we apply the naive
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approach. Our second approach is to perform an epoch-
dependent weighting where the weighting of the second
task is dependent on the training process, i.e., the epoch
number. We apply linear weight increase, squared weight
increase, and squared weight decrease with respect to the
weight of the second regression loss (see the blue, green
and red lines in Fig. 2). As a third option, we apply DWA
[40] by averaging task weighting over time. In detail, we
define the weights for the current epoch e as

ωi(e) =
eλi(e−1)/P

∑
k e

λk(e−1)/P
; λi(e− 1) =

Li(e− 1)

Li(e− 2)
, (1)

where P is a pre-specified softness of task weighting. For
large P, λi ≈ 1, and tasks are weighted equally. We set
P = 1. λi is the relative descending rate between previous
epochs e− 1 and e− 2 and is in the range (0,+∞).

3.4. MTL-specific Architectures

We consider different architectures to jointly learn the
two tasks. For the MTL approach, lower representation
layers (trunk) have to be shared between different tasks by
forking into task-specific separate layers (heads). The ratio
between trunk and heads is particularly important for our
application. We train the following nine architectures: only
regression (A0), only classification (A1), and MTL-based
architectures (A2 toA8) with different split points (fromA2

being the latest split to A8 being the earliest split). For our
experiments we implement two different feature encoders:
(1) a CNN that extracts features from the channels of the
IMU (see Fig. 3), and (2) a CNN that extracts features from
the visual dataset (see Fig. 4). The output of the CNNs are
either the class for the MTSC task, the trajectory for the re-
gression task, or both for the MTL approach. For details,
see Appendix, Sec. A.2.

4. Joint Classification and Trajectory Regres-
sion of Online Handwriting (OnHW)

There exists no state-of-the-art dataset that contains ground
truth trajectories and classification labels. We recorded two
novel datasets for OnHW recognition of characters with a
sensor-enhanced pen written on a tablet for ground truth and
three outside-in cameras for pen tip reconstruction.

Figure 5: Pen with an integrated gyroscope, magnetometer,
front and rear accelerometers, and a force sensor.

(a) Recording setup
of three cameras, a
sensor-enhanced pen,
and a tablet.
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(d) Visual data
pre-processing.

Figure 6: Data recording of our OnHW dataset.

Recording Setup. Our inertial dataset uses a sensor-
enhanced pen [46] that contains two accelerometers (3 axes
each), one gyroscope (3 axes), one magnetometer (3 axes),
and one force sensor at 100 Hz (Fig. 5). We replace the pen-
cil lead with a Wacom EMR module and record ground truth
trajectories at 30 Hz on a Samsung Galaxy Tab S4 tablet.
Our visual dataset uses three cameras pointing on the pen
(Fig. 6a) to record the movement of the pen tip at 60 Hz.
A right-handed person wrote ≈18×83 characters contain-
ing small (26) and capital (26) letters, numbers (10), and
symbols (21).

Pre-processing and Dataset. Fig. 6b shows an IMU sig-
nal of the letter ’A’ (from the inertial dataset) and Fig. 6c
shows characters ’A’ to ’P’ (from the visual dataset) from
the pre-computed trajectory in camera coordinates (top row)
and the ground truth trajectory produced by the tablet (bot-
tom row). For the camera-based trajectories we segment the
pixels of 100 random images of the dataset in the classes
“pen“ (the purple parts of the pen in Fig. 6d), “pen tip“
(green parts of the pen), and “background“. We train U-Net
[49] to predict the pen tip from all images and choose the
middle 90th percentile of 20 top-left pen tip pixels as the tra-
jectory in camera coordinates (Fig. 6c). We interpolate the
ground truth trajectory to (100,2). A 71/29 train/validation
split results in 822 training and 332 validation characters
for the IMU dataset, and in 2,466 training and 992 valida-
tion characters for the visual dataset. Datasets and source
code publicly available upon publication.1

CNN Architectures. The visual time series input is of
sizem = 40 due to 20 pixels in both camera axes, the length
l is variable and dependent on the length of the character.
For the IMU input the time series is of size m = 13 (for the
two accelerometers, the gyroscope and the magnetometer

1Dataset and source code: https://iis.fraunhofer.de/onhw-dataset/
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Network MSE+CE AS+CE H+CE MSE+PC+CE MSE+CS+CE MSE+WAS+CE PC+CE CS+CE WAS+CE
Traj. Class. Traj. Class. Traj. Class. Traj. Class. Traj. Class. Traj. Class. Class. Class. Class.

Only regression (A0) 0.1705 - 0.1594 - 0.1501 - 0.1723 - 1.0023 - 0.3107 - - - -
Only classification (A1) - 88.11 - - - - - - - - - - - - -

Class. for regr. (A2) 0.1169 86.69 0.1779 9.78 0.1290 62.78 0.1127 86.81 0.3554 86.28 0.1612 7.28 86.73 86.02 12.60
Latest split (A3) 0.1381 86.67 0.1856 49.31 0.1569 66.73 0.1381 85.75 6.1464 87.22 0.3375 20.79 86.22 84.15 25.53

Late split (A4) 0.1372 86.46 0.1421 76.28 0.1581 63.64 0.1357 88.64 1.3928 87.62 0.3262 26.65 86.67 89.51 29.74
Split after LSTM (A5) 0.1370 87.34 0.1629 68.64 0.1458 73.74 0.1386 85.53 1.0578 88.58 0.3284 35.49 86.93 88.03 54.84

Split after 2. Drop. (A6) 0.1623 87.68 0.1464 83.96 0.1580 84.76 0.1647 84.94 1.0053 85.28 0.3208 80.59 83.37 84.49 84.65
Split after 1. Drop. (A7) 0.1866 84.27 0.1676 86.93 0.1546 86.89 0.1638 84.55 1.1388 87.20 0.3071 84.13 83.58 86.34 81.87

Separate heads (A8) 0.1936 86.87 0.1660 86.02 0.1533 88.43 0.1490 87.03 1.0986 85.79 0.3315 82.03 87.15 88.15 82.58

Table 2: Evaluation results for the IMU-based dataset trained with different loss combinations. Trajectory evaluation metric:
root mean squared error (RMSE). Classification accuracy given in %. A0 and A1: single task architectures. A2 to A8:
MTL architectures. Underlined: baselines. Bold: best results. Columns are combinations of different loss functions, e.g.,
MSE+CE is a combination of the LMSE and the LCE losses, etc.

Network MSE+CE AS+CE H+CE MSE+PC+CE MSE+CS+CE MSE+WAS+CE PC+CE CS+CE WAS+CE
Traj. Class. Traj. Class. Traj. Class. Traj. Class. Traj. Class. Traj. Class. Class. Class. Class.

Only regression (A0) 0.1360 - 0.1388 - 0.1271 - 0.1348 - 2.5733 - 0.2302 - - - -
Only classification (A1) - 73.19 - - - - - - - - - - - - -

Class. for regr. (A2) 0.1250 80.15 0.1279 12.47 0.1475 55.81 0.1327 77.27 0.4900 74.33 0.1844 56.44 74.85 73.52 71.10
Latest split (A3) 0.4314 23.21 0.1327 74.3 0.1577 64.15 0.1401 75.54 0.6713 9.32 0.1960 49.22 76.57 10.34 75.08

Late split (A4) 0.1351 78.49 0.1260 78.23 0.1230 79.42 0.1284 80.89 1.1177 77.08 0.1348 74.50 58.07 74.42 74.25
Split after LSTM (A5) 0.1291 80.40 0.1252 81.24 0.1307 78.06 0.1478 73.21 0.1705 77.22 0.1359 76.64 75.17 79.21 76.47
LSTM in tr. head (A6) 0.1334 77.33 0.1383 74.31 0.1605 63.31 0.1243 81.64 0.1747 78.80 0.1376 73.64 74.05 77.47 75.42
LSTM in cl. head (A7) 0.1378 78.58 0.1267 80.52 0.1330 78.86 0.1459 74.25 1.2483 79.99 0.1380 75.87 80.51 72.10 78.03

Split after 1. Drop. (A8) 0.1246 78.56 0.1248 75.69 0.1310 75.18 0.1251 79.27 0.4132 78.67 0.2448 75.83 78.83 80.76 79.42

Table 3: Evaluation results for the visual dataset trained with different loss combinations. For definitions, see Table 2.

with 3 axes each plus the force sensor) with a variable length
l. When training both encoders, each batch is bias shuf-
fled, such that each batch contains letters of approximately
the same time step length. To account for variable batch
length, we use zero padding to the maximal size in each
batch. For the classification task the last dense layer has
83 neurons, for the trajectory regression task 200 neurons
(reshaped: 100×2). In a preliminary study, we searched
for the optimal dropout and LSTM neurons for the visual
CNN architecture (see Appendix, Fig. 11). We choose an
LSTM combination of 500 and 100 units, and two dropout
layers with 20% dropout after the convolution and the sec-
ond LSTM layer.

5. Experimental Results

We here describe the results for the IMU dataset (Sec. 5.1
to 5.3, Table 2) and for the visual dataset (Sec. 5.4, Ta-
ble 3). More specifically, Sec. 5.1 compares the proposed
MTL architectures against the baseline networks A0 and
A1. We use the cross-entropy loss for MTSC, and distance,
spatio-temporal, and distribution-based losses for trajectory
prediction (Sec. 5.2). In Sec. 5.3, we evaluate our MTL
strategies, and compare our methods to state-of-the-art tech-
niques in Sec. 5.5.

Preliminary. We first want to emphasize that improve-
ments in the smoothness of the predicted trajectory are ut-
most importance in our handwriting application, but that
smoother trajectories do not necessarily lead to a signifi-
cant improvement of the reconstruction error. This is sim-
ilar to image reconstruction, where the biggest gain in per-
formance is achieved by vaguely reconstructing the image,
yet the image still looks unnatural for humans. Hence, also
small trajectory improvements are of interest.

Hardware and Training Setup. For all experiments we
use Nvidia Tesla V100-SXM2 GPUs with 32 GB VRAM
equipped with Core Xeon CPUs and 192 GB RAM. We use
the vanilla Adam optimizer with learning rate 10−4. We run
each experiment three times for 20,000 epochs with a batch
size of 50 and report averaged results (over five epochs).

Evaluation Metric. For evaluation we compute the cate-
gorical metric for class prediction in %, and the root mean
squared error (RMSE) for trajectory prediction. As in [59],
we also compute the geometric shape-based Fréchet [10],
Hausdorff [55] and Procrustes [51] measures, as well as the
time warping approach DTW [15] (see Sec. 2.2). Due to a
correlation between these metrics with the RMSE and for
better readability, we only report the RMSE.
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(a) MSE. (b) Andrew’s Sine. (c) Huber. (d) Pearson Correlation.

(e) Cosine Similarity. (f) MSE + Pearson Correlation. (g) MSE and Cosine Similarity. (h) MSE + Wasserstein.

Figure 7: Trajectory prediction (blue) against the ground truth trajectory (red) of the characters ’A’, ’P’ and ’W’ based on
inertial data trained with different combinations of loss functions.
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Figure 8: Evaluation of combinations of loss functions av-
eraged over all architectures (A0-A8). MTL strategy: naive
weighting w = 1. Baseline (blue): L2 + LCE .

5.1. MTL Architecture Evaluation

As a baseline for the inertial dataset, model A0 results
in an error of 0.1705 using the LMSE , and model A1 in an
accuracy of 88.11%. Exemplary reconstructed letters of the
baseline method is shown in Fig. 7a. The trajectory regres-
sion task improves up to 0.1169 for model A2 to 0.1623 for
model A6, but decreases for model A7 and A8. The accu-
racy of 86.69% (A2) is less accurate than the baseline A1

(87.68%). We conclude, that a late split has a positive influ-
ence on the trajectory regression by sharing more trainable
parameters in the trunk. This even holds for smaller model
sizes (see Appendix, Table 5). For a larger regression head
(A7 and A8) the model is prone to overfitting.

5.2. Loss Function Evaluation

Single Loss Functions. For more details on hyperparam-
eter searches, see Appendix Sec. A.3. For the distance-
based metrics, i.e., Andrew’s Sine and Huber we observe
a decrease in trajectory error (Fig. 7b and 7c) compared to
LMSE at the cost of a deterioration of the classification ac-
curacy. For the LAS loss, the trajectory error decreases for
modelsA6 toA8 against LMSE , while the classification ac-
curacy decreases. The same holds for the LH loss, where
we can increase the classification accuracy up to 88.43%.
Using spatio-temporal losses we are able to learn the shape

0 5000 10000 15000 20000
Epoch

0.150

0.175

0.200

0.225

0.250

0.275

R
eg

re
ss

io
n 

E
rr

or
 (R

M
SE

) w = 1.0
linear: wmax = 10
linear: wmax = 1000
incr. 2: wmax = 10
incr. 2: wmax = 1000

(a) LMSE , LPC and LCE .

0 5000 10000 15000 20000
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

R
eg

re
ss

io
n 

E
rr

or
 (R

M
SE

) decr. 2: wmax = 10
decr. 2: wmax = 1000
DWA

(b) LMSE , LWAS1 and LCE .

Figure 9: MTL strategy evaluation for LMSE combined
with spatio-temporal LPC and distribution-based LWAS1

losses averaged over all architectures (baseline: blue).

of the characters (Fig. 7d and 7e), but at a wrong scale. A
trajectory trained with the LPC is smoother (less variance)
compared to LCS , yet with a lower accuracy in the classi-
fication. Our goal is to minimize the distance of the pre-
dicted trajectory while ensuring a smooth shape. Hence, we
train the (distance) LMSE loss combined with the (spatio-
temporal) LPC and LCS .

Combined Loss Functions. Fig. 8 compares all metrics
based on the naive weighting. For the combination of
LMSE and LPC , the regression loss improves over a model
trained on LMSE only, while providing a smoother tra-
jectory (Fig. 7f). The combined loss LMSE + LCS does
not scale the characters correctly (Fig. 7g) and gives a less
smooth trajectory than the approach with either only LMSE

(Fig. 7a), only LPC (Fig. 7d), or only LCS (Fig. 7e). We
evaluate the LWASp

loss when combined with the LMSE

loss. For larger p, the predictions become more evenly dis-
tributed (as found by [23]). When choosing p = 1 and the
naive weighting strategy (Fig. 9b) the trajectory prediction
error is large (Fig. 7h), but can be significantly improved
using alternative MTL strategies, as described in the fol-
lowing.
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5.3. MTL Strategy Evaluation

We now compare all described MTL strategies
(Sec. 3.3): naive weighting (w=1), linear as well as squared
increase, squared weight decrease with maximal weight-
ing of wmax={10, 1000}, and DWA [40]. Fig. 9 shows
MTL results for LMSE combined with LPC (Fig. 9a) and
LWASp

with p = 1 (Fig. 9b). When combining LWAS1

with the LPC loss, the error further decreases for linear and
squared weight increase. Squared weight decrease notably
increases the error as the scaling of the shape diverges. With
an optimal epoch-dependent weighting strategy the Pearson
Correlation provides a suitable shape while still yielding to
an improvement in accuracy. Combined with the LWAS1

loss, all weighting strategies significantly decrease the er-
ror (improvements between 0.16 to 0.18) in comparison to
the naive approach (0.31), yet still preserve smooth predic-
tions. When only training based on the LMSE loss, the
distance is still smaller, but predicted trajectories are less
smooth and not realistic. For the LPC loss combined with
the LMSE loss DWA is worse than the linear or squared
weight increase. As the loss of LWASp is higher than the
loss of LMSE , DWA cannot optimize the training (Fig. 9b).
We conclude, that the order of weight increase is important
for combining metrics and that a slow weight increase is
the best approach for jointly learning the classification and
trajectory regression tasks.

5.4. Visual Dataset Evaluation

Loss Functions. The visual dataset is more challenging
than the IMU dataset as the network needs to learn the
transformation from the camera to the tablet coordinates
and needs to identify the pen tip hover and touch data be-
tween strokes. This results in a much larger computing
times, i.e., an average run time of 5.4s per epoch (see Ap-
pendix, Table 7). The baselines yield an error of 0.1360 for
the trajectory regression task and 73.19% accuracy for the
MTSC task (see Table 3). For the evaluation of MTL archi-
tectures, we can draw the same conclusions as in Sec. 5.1.
Similar to the IMU dataset, for both, the LH and the LAS
loss we (partly) observe a decrease in trajectory error at
the cost of a worsening classification accuracy. The sin-
gle spatio-temporal LPC loss increases the classification
accuracy (80.51%), but yields improperly scaled characters.
Through the combination of LMSE + LPC , we further de-
crease the trajectory error (0.1243) and increase the classi-
fication accuracy (81.64%) for architecture A6, while still
providing a smooth trajectory. Neither the single distribu-
tion-based LWASp

loss nor the combination with the LMSE

loss can be used to improve the single and combined tasks.
For more details, see Appendix, Sec. A.3.

Method Inertial Visual
MLSTM-FCN [31] w/ SE 89.33% 80.49%

w/o SE 88.41% 78.73%
TapNet [60] 89.02% 79.27%

Ours 89.51% 81.64%
(A4, CS + CE) (A6, MSE + PC + CE)

Table 4: Comparison of state-of-the-art MTSC methods
with our approach on the inertial and visual datasets.

5.5. Comparison to MTSC Methods

We compare our method with MLSTM-FCN [31] and
TapNet [60], two approaches achieving the highest classifi-
cation accuracy on the well-known UEA MTS dataset [5].
For both techniques we interpolate the IMU data to 114 and
the visual data to 71 timesteps. We evaluate various con-
figurations of both networks in the line with suggestions by
the authors. We optimized TapNet and searched for differ-
ent configurations (with default parameters for the CNN,
LSTM and random projection) and optimized the hyper-
parameters for training (such as different learning rates at
10−3, 10−4 and 10−5). For the MLSTM-FCN we achieved
the best results with its squeeze-and-excitation block (see
Table 4). TapNet achieves a better MTSC accuracy in com-
parison to MLSTM-FCN for the visual dataset. However,
this still lacks behind our best reported results, which are
both higher than TapNet and MLSTM-FCN. For the visual
dataset our approach shows a larger margin and is notably
better for certain loss combinations and architectures.

6. Conclusion
We addressed the problem of aligning a ground truth

trajectory that is smooth over time by combining distance-
based with spatio-temporal and distribution-based metrics.
For the application of OnHW recognition of characters
based on IMU and visual data sources, we significantly im-
proved the trajectory prediction task, while still providing
similar shapes. We proposed a framework of architectures
and evaluated different MTL techniques. Through the com-
bination of the trajectory prediction task with the subtly
correlated MTS classification task we further improved the
classification accuracy.
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A. Appendix
We present criteria for loss functions and an overview

of metrics in Section A.1. We propose more details about
the architectures in Sec. A.2, and present more results in
Sec. A.3. Sec. A.4 describes a dataset-specific feature em-
bedding analysis.

A.1. Loss Functions

In the following, we state all loss functions that we used
for our methodology. We describe the cross-entropy loss for
the Multivariate Time Series Classification (MTSC) task.
Next, we present criteria for the trajectory regression task.
Finally, we propose distance-based, spatio-temporal and
distribution-based loss functions.

MTSC Task: Cross-entropy Loss. For the MTSC task,
the cross-entropy loss [25] is defined by

LCE(U ,V) = − 1

n

n∑

i=1

vi log v̂i, (2)

where the Multivariate Time Series (MTS) U =
{u1, . . . ,um} ∈ Rm×l is an ordered sequence of m ∈ N
streams with ui = (ui,1, . . . , ui,l), i ∈ {1, . . . ,m}. m is
the length of the time series and l is the number of dimen-
sions. Each MTS is associated with a class label v ∈ Ω
from a pre-defined label set Ω. The training set is a sub-
set of the array U = {U1, . . . ,Un} ∈ Rn×m×l, where n
is the number of time series, and the corresponding labels
V = {v1, . . . , vn} ∈ Ωn [60]. The MTSC task is to predict
an unknown class label V̂ for a given MTS.

Trajectory Regression Task: Criteria. For the trajectory
regression task it is given a ground truth time series Y =
{y1, . . . ,ym} ∈ Rm×d. The goal is to predict a time series
X = {x1, . . . ,xn} ∈ Rn×d, such that X is closely aligned
to Y . In the following, we consider ri = yi − xi be the
residual between Xi and Yi. We consider a (differentiable)
substitution-cost function L : Rd × Rd → R+ to learn
the trajectory regression task. All metrics to be used in a
neural network have to obey the following criteria, where
X ,Y,Z ∈ R [34]:

L(X ,Y) ≥ 0 (non-negativity) (I)

L(X ,Y) = L(Y,X ) (symmetry) (II)

L(X ,Y) ≤ L(X ,Z) + L(Z,Y) (triangle inequ.) (III)

L(X ,Y) = 0 ⇔ X = Y (ident. of indiscernibles) (IVa)

It is difficult to make accurate predictions about the injec-
tivity as floating points operations and approximation er-
rors lead to a distance of zero for slightly different inputs.

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

MSE
MAE

(a) LMSE and LMAE .

1.0 0.5 0.0 0.5 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

y

(b) LH dependent on δH .

1.0 0.5 0.0 0.5 1.0
x

0

1

2

3

4

y

(c) LAS loss dependent on δAS .

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

LogCosh
Quantile
Tukey's Biweight
Hampel

(d) Other loss functions.

Figure 10: Sample weighting based on different distance-
based metrics.

Hence, Equ. (IVa) can be formulated as a pseudometric with
a relaxed identity of indiscernibles where X̃ ∈ R:

L(X̃ , X̃ ) = 0. (IVb)

Trajectory Regression Task: Distance-based Loss Func-
tions. We consider the Mean Squared Error

LMSE(X ,Y) =
1

n
∥Y − X∥22 =

1

n

n∑

i=i

r2i (3)

with L2-norm || · ||2 (see Fig. 10a). The derivative of the
LMSE loss is ∂

∂X LMSE(X ,Y) = − 2
n

∑n
i=i ri. The Mean

Absolute Error (MAE) is

LMAE(X ,Y) =
1

n
∥Y − X∥1 =

1

n

n∑

i=i

|ri| (4)

with theL1-norm ||·||1. Its derivative is ∂
∂X LMAE(X ,Y) =

1/n
∑n
i=i sign(ri). The Huber loss [30]

LH(X ,Y, δH) =

n∑

i:|ri|≤δH

1

2
(ri)

2 +

n∑

i:|ri|>δH
δH |ri| −

1

2
δ2H

(5)
is less sensitive to outliers, but depends on the hyperparam-
eter δH (see Fig. 10b). The derivative of the Huber loss is

∂

∂X LH(X ,Y, δH) = −
n∑

i:|r|≤δH
ri −

n∑

i:|ri|>δH
δHsign(ri).

(6)

147



Similar, the Andrew’s Sine loss [8] is

LAS(X ,Y, δAS) =
n∑

i:|ri|≤1

4sin

(
ri

2δAS

)2

+
n∑

i:|ri|>1

1,

(7)
with hyperparameter δAS (see Fig. 10c) with the derivative

∂

∂X LAS(X ,Y, δAS) =
n∑

i:|r|≤1

2

δAS
sin

(
ri
δAS

)
. (8)

Trajectory Regression Task: Spatio-temporal Loss
Functions. We define the Cosine Similarity by

LCS(X ,Y) = 1− x · y
∥x∥2∥y∥2

. (9)

The Cosine Similarity is a proper metric as it satisfies the re-
quirements LCS(X ,Y) ≥ 0 (I), LCS(X ,Y) = LCS(Y,X )
(II), and LCS(X ,X ) = 0 (IVb). Under certain conditions
the triangle equality (III) is not fulfilled [36]. This loss
function is a measure of similarity between two non-zero
vectors of an inner product space, but is not invariant to
shifts. The Pearson Correlation loss [47] LPC(X ,Y) =
LCS(X − X ,Y − Y), in contrast, is invariant to shifts.
This means, when X is transformed by a + bX and Y is
transformed by c + dY , where a, b, c and d are constants
(b, d > 0), the Pearson Correlation coefficient is invariant
in location and scale in the two variables. The Pearson Cor-
relation loss is defined by

LPC(X ,Y) = 1− sxy
sx · sy

= 1− (x− x) · (y − y)

∥x− x∥2∥y − y∥2
.

(10)
with the sample mean x = 1

n

∑n
i=1 xi. Analogously for y.

The covariance is sxy = 1
n (x−x)·(y−y), and the variance

of the features is s2x = 1
n

∑n
i=1(xi − x)2, analogously for

s2y . The partial derivative of the Pearson Correlation [54]
regarding x is

∂

∂x
LPC(X ,Y) =

(y − y)− sxy

sy
· (x− x)

sx · sy
. (11)

Further alternative distance-based metrics are, e.g., the
LogCosh, the Quantile [45], the Tukey’s Biweight [7],
the Hampel [8] and the Geman McClure metric [6] (see
Fig. 10d). For more information, see [37] for distance-
based metrics and [52] for spatio-temporal metrics.

Trajectory Regression Task: Distribution-based Loss
Functions. We use the distribution-based loss function,
i.e., the Wasserstein distance [23], defining a distance be-
tween two probability distributions on a given metric space
M and representing the cost δ of an optimal mass trans-
portation problem. Optimal transport can be used to com-
pare probability measures in metric spaces. There exists

some X0 in M such that the Wasserstein space of order p is
defined as

Pp(M) :=
{
µ ∈ P (M);

∫

M
δ(X ,X0)

pdX <∞
}
.

(12)
The pth Wasserstein distance between two probability mea-
sures µ and ν is defined as

Wp(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫

M×M
δ(X ,Y)pdγ(X ,Y)

) 1
p

= inf
{[

E[d(X,Y )p]
] 1

p , law(X) = µ, law(Y ) = ν
}
,

(13)

with the collection of all probability measures Γ(µ, ν) on
M × M and p ∈ [1,∞). E[X] denotes the expected
value of a random variable X . We consider the classi-
cal case where the metric is the Euclidean metric in space
Rd ⊂ M, and hence, δ(X ,Y) = ||X − Y||. For all
subsets P ⊂ Rd, we have γ(P × Rd) = µ(P ) and
γ(P × Rd) = ν(P ). [48] The W1 distance is also called
the Kantorovich-Rubinstein distance. The Wasserstein dis-
tance satisfies the criteria (I) to (IVa): It holds the non-
negativity criteria Wp(µ, ν) ≥ 0 (I), and the symmetry cri-
teria Wp(µ, ν) = Wp(ν, µ) (II). Assume that Wp(ν, µ) =
0, then there exists a transference plan that is concentrated
on the diagonal, and it holds X = Y (IVa). Furthermore,
let µ1, µ2 and µ3 be probability measures on M × M,
and (T1, T2), respectively (Q2, Q3), be an optimal coupling
of (µ1, µ2), respectively of (µ2, µ3). There exist random
variables (T

′
1, T

′
2, T

′
3) with law(T

′
1, T

′
2) = law(T1, T2) and

law(T
′
2, T

′
3) = law(Q2, Q3), such that

Wp(µ1, µ3) ≤
(
E[d(T

′
1, T

′
3)
p]
) 1

p ≤

≤
(
E[d(T

′
1, T

′
2) + d(T

′
2, T

′
3)]

p
) 1

p ≤

≤
(
E[d(T

′
1, T

′
2)
p]
) 1

p +
(
E[d(T

′
2, T

′
3)
p])

) 1
p =

=Wp(µ1, µ2) +Wp(µ2, µ3),
(14)

and the triangle inequality holds (III). The duality formula
for the Kantorovich-Rubinstein distance is

W1(µ, ν) = sup
||ψ||Lip≤1

{∫

M
ψdµ

∫

M
ψdν

}
, (15)

for any µ, ν in the Wasserstein space P1(M). The Wasser-
stein distanceW1 of order 1 is the weakest of all, and hence,
is easier to bound. The Wasserstein distance has the ability
to capture weak convergence precisely and are rather strong
as they take care of large distances in M × M. [57] For
more information, see [43].

Summary. For the classification task, we use the LCE
loss function (2). For the regression task, we use a combina-
tion of the distance-based loss functions LMSE (3), LMAE
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Network Total Trunk Regr. Class.
Only regression (A0) 117,052 96,852 20,200 -

Only classification (A1) 133,735 117,051 - 16,683
Class. for regr. (A2) 190,535 117,052 56,800 16,683

Latest split (A3) 133,735 96,852 20,200 16,683
Late split (A4) 153,935 96,852 20,200 36,883

Split after LSTM (A5) 194,935 86,352 30,700 77,883
Split after 2. Drop. (A6) 260,935 20,352 96,700 143,883
Split after 1. Drop. (A7) 277,639 3,648 113,404 160,587

Separate heads (A8) 281,287 0 117,052 164,235

Table 5: Parameters of the inertial-based models.

Network Total Trunk Regr. Class.
Only regression (A0) 1,342,638 1,322,438 20,200 -

Only classification (A1) 1,359,321 1,342,638 - 16,683
Class. for regr. (A2) 1,416,121 1,342,638 56,800 16,683

Latest split (A3) 1,359,321 1,355,804 20,200 16,683
Late split (A4) 1,379,521 1,322438 20,200 36,883

Split after 1. LSTM (A5) 1,619,921 1,082,038 260,600 277,283
LSTM in traj. head (A6) 1,459,521 1,082,038 260,600 116,883

LSTM in class. head (A7) 1,459,521 982,038 100,200 377,283
Split after 1. Drop. (A8) 2,701,959 76 1,342,600 1,359,283

Table 6: Parameters of the visual-based models.
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Figure 11: Grid search for an optimal number of LSTM
units and dropout for the visual-based CNN. Continuous
line: training loss. Dashed line: validation error.

(4), LH (5) and LAS (7), spatio-temporal loss functions
LCS (9) and LPC (10), and the distribution-based Wasser-
stein function LWASp

(13).

A.2. MTL Network Architectures

The general overview of the framework is given in Fig. 2
(Sec. 3). The input is for the IMU-based and the visual-
based OnHW dataset a MTS that differs regarding its input
size. For the IMU-based dataset, the input are the 13 chan-
nels of the accelerometers, gyroscope, magnetometer and
force sensor. The number of timesteps depends on the sam-
ple length. For the visual dataset, the input is the two dimen-
sional trajectory of the pen tip in camera coordinates. What
follows, is a CNN trunk, a classification head, and a regres-
sion head. The classification head is used for the MTSC task
by predicting a class label with the cross-entropy loss. The
regression head is used for the trajectory regression task that
predicts a MTS that represents the trajectory of the written
character. The loss function for this task is a combination
of distance-based, spatio-temporal, and distribtuion-based
metrics.

The number of trainable parameters in the neural net-
work trunk and in task-specific heads is important. We ad-
dress the problem in the following. We construct for each
dataset nine architectures with different split points. Archi-
tectures A0 and A1 are Single Task Learning (STL) CNNs
for the MTSC task and the trajectory prediction task. Archi-
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Figure 12: Evaluation for CNN architectures (A0-A8)
trained with the LMSE and LCE loss averaged over all
trainings.

tectures A2 to A8 combine both tasks by MTL. All IMU-
based architectures are given in Fig. 3. All visual-based
architectures are given in Fig. 4, where we search for the
optimal number of LSTM units and dropouts (see Fig. 11).
We choose a combination of 500 and 100 LSTM units, and
two dropout layers of 20%. An overview of all architectures
and its number of trainable parameters is given in Table 5
and in Table 6. The number of total parameters increases
for an early split point compared to late split points for both
networks. A regression head with one dense layer of 200
neurons has 20,200 parameters, while a classification head
with one dense layer of 83 neurons has 16,683 parameters.
Fig. 12 compares the training loss of all architectures for the
regression and classification tasks.

A.3. Evaluation Results

Hyperparameter Search for the Inertial-based Architec-
tures. For the alternative distance-based metrics, i.e., An-
drew’s Sine and Huber, we search for the hyperparameters
δH and δAS in {0.1, 0.2, . . . , 2.0, 2.5, . . . , 5.0} using a grid
search (Fig. 14a). For LAS we choose δAS = 0.3, and for
LH we choose δH = 4.0 for follow-up training. A large δH
tends to weight outliers more, while a small outlier rejection
has a higher standard deviation. We also search for the hy-
perparameter p ∈ {1, 2, 3, 4} of the distribution-based loss
LWASp

(Fig. 14a) and choose p = 1 for follow-up training.
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(a) MSE. (b) Pearson Correlation. (c) Cosine Similarity.

(d) MSE + Pearson Correlation. (e) MSE and Cosine Similarity. (f) MSE + Wasserstein distance.

Figure 13: Trajectory prediction (blue) against the ground truth trajectory (red) of the characters ’A’, ’P’ and ’W’ based on
visual data (green) as MTS input preprocessed with U-Net [49].
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(b) Visual dataset.
Figure 14: Grid search for δAS , δH and p averaged over all architectures. For LWASp

: left: trajectory error, right: classifica-
tion accuracy.

Hyperparameter Search for Visual-based Architectures.
As for the inertial-based architectures, we search for the
optimal hyperparameter of alternative distance-based met-
rics using a grid search (see Fig. 14b). For LAS we choose
δAS = 2.5, and for LH we choose δH = 2.0 for follow-up
training. We also search for the hyperparameter p in the dis-
tribution-based loss LWASp

and choose p = 4 for follow-up
training as it achieves the highest classification accuracy for
both the single LWAS4

loss and the combination of LMSE

and LWAS4 .

Camera-based reconstruction. In Fig. 13 we propose
additional trajectory reconstruction results based on the vi-
sual dataset. We come to similar conclusions as for the
inertial-based dataset. While the CNN trained with the
LMSE loss combined with the LPC loss (Fig. 13d) pre-
dicts a smoother trajectory than the single distance-based
loss functions (Fig. 13a), the LMSE + LWAS loss allows a
proper training (Fig. 13f).

Loss function IMU-based CNN Visual-based CNN
LMSE 0.3052± 0.0401 5.8961± 0.0533
LH 0.2971± 0.0401 5.8154± 0.1067
LAS 0.2993± 0.0399 5.8349± 0.1259
LPC 0.3027± 0.0394 4.4017± 0.0924
LCS 0.3001± 0.0395 4.4246± 0.0488

LWAS1
0.2994± 0.0395 4.4538± 0.0996

LMSE + LPC 0.3078± 0.0397 5.9077± 0.0610
LMSE + LCS 0.2984± 0.0387 5.8790± 0.1133

LMSE + LWAS1
0.3096± 0.0396 5.9607± 0.1253

Table 7: Overview of inference times in seconds (s) (mean
and standard deviation over all epochs) for architecture A0.

Training Times. For all loss combinations, we present
inference times (Table 7). While the visual-based CNN
takes 5.3971s for each epoch (on average), the IMU-based
CNN only takes 0.3022s. The differences between the
loss functions are small for the IMU-based architectures.
From the visual-based CNNs we can see that the spatio-
temporal and distribution-based loss functions (4.4267s)
are less computive-intense compared to the distance-based
loss functions (5.8488s). The marginally increased comput-
ing time for all loss combinations (5.9158s) is negligible.
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Figure 15: Visualization of the network embedding of the
last layer based on the t-SNE algorithm by [56].

A.4. Dataset Feature Embedding Evaluation

Fig. 15 illustrates the challenges of the inertial dataset us-
ing a 300 dimensional feature embedding. The figure repre-
sents the feature embedding based on the t-SNE algorithm
[56] (initial dimension of 301, perplexity of 30, an initial
momentum of 0.5, and a final momentum of 0.8) and in-
corporates all 83 classes, i.e., capital and small characters,
numbers and symbols. As it can be seen, the classes can be
well separated. The main difficulty is to differentiate cap-
ital and small letters, e.g., ’V’ and ’v’, ’K’ and ’k’, and
’X’ and ’x’, as these differ only in the size and not in the
number of strokes. Naturally, the embeddings of the letters
’O’, ’o’ and ’0’ are very close to each other. Furthermore,
the classes ’G’, ’6’, ’C’, ’c’ and ’(’ are challenging to
distinguish. These are one of the most frequent errors of the
networks for the MTSC task.
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Uncertainty-aware Evaluation of Time-Series Classification
for Online Handwriting Recognition with Domain Shift

Andreas Klaß1,2,†, Sven M. Lorenz1,2,†, Martin W. Lauer-Schmaltz4, David Rügamer2,3,
Bernd Bischl2, Christopher Mutschler1 and Felix Ott1,2

1Fraunhofer IIS, Fraunhofer Institute for Integrated Circuits IIS
2LMU Munich, Munich, Germany
3RWTH Aachen, Aachen, Germany
4Technical University of Denmark

Abstract
For many applications, analyzing the uncertainty of a machine learning model is indispensable. While research of uncertainty
quantification (UQ) techniques is very advanced for computer vision applications, UQ methods for spatio-temporal data are
less studied. In this paper, we focus on models for online handwriting recognition, one particular type of spatio-temporal
data. The data is observed from a sensor-enhanced pen with the goal to classify written characters. We conduct a broad
evaluation of aleatoric (data) and epistemic (model) UQ based on two prominent techniques for Bayesian inference, Stochastic
Weight Averaging-Gaussian (SWAG) and Deep Ensembles. Next to a better understanding of the model, UQ techniques can
detect out-of-distribution data and domain shifts when combining right-handed and left-handed writers (an underrepresented
group).

1. Introduction
Traditional machine learning (ML) algorithms assume
training and test datasets to be independently and identi-
cally distributed [1, 2]. For many real-world applications,
data often changes over time and space, and hence, train-
ing and test data originate from different distributions.
This can cause ML models to fail due to a domain shift
between training and test data [1]. Transfer learning
[3, 4] and domain adaptation [5, 6] techniques can com-
pensate for this domain shift. A first step in adapting for
this domain shift is its detection, e.g., by having reliable
uncertainty estimates of the model predictions [7]. Thus,
to estimate the uncertainty of the model, a robust un-
certainty quantification (UQ) technique is required that
runs in real-time.

Approximate Bayesian Inference Techniques. In
the field of deep learning (DL), UQ has lately seen a
steep increase in interest. Recently, many promising
methods have been proposed such as Variational Online
Gauss-Newton (VOGN) [8], Stochastic Weight Averaging-
Gaussian (SWAG) [9], Bayes by Backpropagation (BBB)
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[10], and Laplace Approximation [11]. Another widely
used technique are Deep Ensembles [12], which often
yield well-calibrated models while being relatively easy
to implement.

Decomposing Uncertainty. Several ways for estimat-
ing and decomposing uncertainty have been proposed.
A common distinction is made between aleatoric uncer-
tainty, which refers to the variability in the data, and
epistemic uncertainty, which is the model’s uncertainty
caused by a lack of knowledge [13]. Building on [14], [15]
argue that neural networks (NNs) for classification are ba-
sically generalized linear models with error structure of
multinomial and composite link functions. Hence, to ac-
knowledge that the variance of a multinomial outcome is
a function of the mean outcome, they propose to directly
compute the variability in the softmax outputs. Another
method to dissect total predictive uncertainty has been
put forward by [16] and similarly by [17] who propose
to extract epistemic and aleatoric uncertainties from the
predictive distribution of a Bayesian NN by calculating
the entropy and mutual information. For an extensive
survey of related approaches, see [18].

UQ for OnHW. UQ techniques have been broadly
evaluated in computer vision applications such as im-
age classification [14], i.e., optical character recognition
(OCR), but methods have rarely been evaluated on spatio-
temporal datasets [19]. OCR is concerned with offline
handwriting recognition from images. In contrast, on-
line handwriting (OnHW) recognition works on different
types of spatio-temporal signals and can make use of
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temporal information such as writing speed and direc-
tion [20]. While many recording systems make use of a
stylus pen together with a touch screen surface, sensor-
enhanced pens, e.g., [21, 22, 23, 24], based on inertial mea-
surement units (IMUs) enable new applications. These
pens stream data from accelerometer, gyroscope, mag-
netometer and force sensors in real-time represented as
spatio-temporal multivariate time-series (MTS). The ad-
vantage of exploiting this temporal information is the
ability to better distinguish between similarly shaped let-
ters from dynamic information (number of strokes etc.).
Spatio-temporal data can further help to identify certain
characteristics in the data. [25], e.g., showed the domain
shift between right-handed and left-handed writers by
analyzing feature embeddings of their model for OnHW
data.

Contribution. In this paper we evaluate the uncer-
tainty of OnHW model predictions with SWAG [9] and
Deep Ensembles [12] for spatio-temporal reasoning, as-
sessment of out-of-distribution detection, and pattern
and failure recognition. We use uncertainty decomposi-
tions based on the method by [15] and [16] to evaluate
the UQ techniques. Our claims are further supported
by utilizing confidence and accuracy metrics to estimate
the expected calibration error (ECE) [26]. For an OnHW
task with domain shift between right- and left-handed
writers, we evaluate uppercase, lowercase and combined
character classification tasks. Our source code will be
available upon publication.1

The remainder of the paper is organized as follows.
Section 2 discusses related work. In Section 3, we de-
scribe the background of Bayesian modeling and approx-
imate inference. The experimental setup is described in
Section 4, and results are discussed in Section 5.

2. Related Work
We first present related work of UQ with focus on spatio-
temporal reasoning in Section 2.1. Section 2.2 summa-
rizes state-of-the-art results for OnHW recognition.

2.1. UQ for Spatio-Temporal Reasoning
[27] analyzed Bayesian and frequentist UQ methods for
spatio-temporal forecasting on network traffic, epidemics
and air quality datasets. Their evaluation shows that
Bayesian methods are typically more robust in mean pre-
diction, while confidence levels from frequentist meth-
ods provide better coverage over data variations (i.e.,
out-of-distribution data). Furthermore, traditional learn-
ing schemes lack knowledge about uncertainty. STU-

1 Code and datasets: www.iis.fraunhofer.de/de/ff/lv/dataanalytics/
anwproj/schreibtrainer/onhw-dataset.html

aNet [28] addresses this issue for spatio-temporal human
mobility forecasting by injecting controllable uncertainty.
This allows insights to both, UQ and weak supervised
learning. [29] focused on the spatio-temporal uncertainty
of urban prediction (where and when a piece of land be-
comes urban). [7] argue that the feature statistics such
as mean and standard deviation (the domain characteris-
tics of the training data), can be manipulated to improve
the generalizability of DL models by modeling the un-
certainty of domain shifts with feature statistics during
training (that follow a multivariate Gaussian distribu-
tion). In the context of domain adaptation, [19] adressed
the extraction of domain-invariant representations for
MTS classification.

2.2. Online Handwriting Recognition
[21] initially proposed the OnHW-chars dataset and eval-
uated machine and DL techniques for the OnHW MTS
classification task. The dataset contains right-handed
and left-handed writers with a domain shift between
both groups of writers (i.e., domains). [25] showed that
transfer learning from small adaptation datasets results
in poor model performances. Hence, their domain adap-
tation approach transforms features from left-handed
writers into the domain of features from right-handed
writers by optimal transport techniques. A reliable UQ
method could identify out-of-distribution samples and
only apply the transformation on samples for which the
model has a high uncertainty. [22] combined offline and
online handwriting recognition with a cross-modal rep-
resentation learning technique by increasing the dataset
size by using generative models. A robust uncertainty es-
timation technique could select samples with high model
uncertainty.

3. Methodological Background
In the following we describe Bayesian model averaging in
Section 3.1 and the two employed Bayesian UQ methods
in Section 3.2. The decomposition of total predictive
uncertainty into aleatoric and epistemic uncertainty is
discussed in Section 3.3.

3.1. Bayesian Model Averaging
Bayesian approaches in DL naturally represent uncer-
tainty by placing a distribution over model parame-
ters and then marginalizing these parameters to form
a predictive distribution (Bayesian model averaging) [30].
Let 𝑝(𝜃|𝐷) be the posterior distribution over model pa-
rameters 𝜃, i.e., real-valued weights in the NN, given
training dataset 𝐷, and let 𝑝(𝑦*|𝑥*, 𝜃) denote the prob-
ability distribution over model outputs 𝑦* (predicted
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classes), given sample 𝑥*, and model weights 𝜃. For
the OnHW classification task, the sample 𝑥* is an MTS
U = {u1, . . . ,u𝑞} ∈ R𝑞×𝑙, an ordered sequence of 𝑙 =
13 streams with u𝑖 = (𝑢𝑖,1, . . . , 𝑢𝑖,𝑙), 𝑖 ∈ {1, . . . , 𝑞},
where 𝑞 = 64 is the length of the MTS. The training
set 𝐷 is a subset of the array 𝒰 = {U1, . . . ,U𝑛𝑈 } ∈
R𝑛𝑈×𝑞×𝑙, where 𝑛𝑈 is the number of time-series. The
aim is to predict an unknown class label 𝑦* ∈ 𝒴 with
𝐾 classes (i.e., character labels) for a given MTS. The
predictive distribution of the target variable is then given
by

𝑝(𝑦*|𝑥*, 𝐷) =

∫︁
𝑝(𝑦*|𝑥*, 𝜃)𝑝(𝜃|𝐷)𝑑𝜃. (1)

In practice, we can approximate this integral by drawing
𝑆 Monte Carlo samples from the posterior distribution:

𝑝(𝑦*|𝑥*, 𝐷) ≈ 1

𝑆

𝑆∑︁

𝑠=1

𝑝(𝑦*|𝑥*, 𝜃𝑠) , 𝜃𝑠 ∼ 𝑝(𝜃|𝐷).

(2)
The predicted probability of an outcome is thus a
weighted average over its probabilities with the weights
being determined by 𝑝(𝜃|𝐷).

3.2. Approximate Bayesian Inference
In order to apply Bayesian inference to an NN, we need
to compute the posterior 𝑝(𝜃|𝐷) of the NN weights. As
the computation of the posterior is usually intractable,
a (local) approximation is often used. This can be ad-
dressed by SWAG and Deep Ensembles with the latter
abstaining from explicitly modeling 𝑝(𝜃|𝐷) – neverthe-
less, this method can be considered to be in the field of
approximate Bayesian inference.

Stochastic Weight Averaging-Gaussian (SWAG).
SWAG [9] is a Bayesian inference technique for DL that
builds on Stochastic Weight Averaging (SWA) [31]. SWA
computes an average of stochastic gradient decent (SGD)
iterates to obtain information about the geometry of
𝑝(𝜃|𝐷) from its trajectory. This posterior is then ap-
proximated by a Gaussian with simplified covariance
structure and reduced dimensionality.

Deep Ensembles. Deep Ensembles are a committee of
individual NNs initialized with a different seed [12]. The
initialization serves as the only source of stochasticity in
the model parameters which are otherwise not random;
Deep Ensembles can optionally be coupled with a differ-
ently shuffled data loader. In contrast to SWAG, results
are obtained by averaging the predictions of 𝑀 indepen-
dently trained networks instead of explicitly modeling a
posterior and sampling from it. [32] point out that even
an ensemble size of 𝑀 = 5 performs well, strengthen-
ing its reputation as a “gold standard” for accurate and
well-calibrated predictive distributions.

3.3. Uncertainty Decomposition
In the literature two sources of uncertainty are com-
monly considered [13]: (1) Aleatoric uncertainty repre-
sents stochasticity inherent in the data. For the OnHW
application this can be sensor noise induced by the ball-
point pen on the paper or by shaky hands of the writer.
In particular, even with infinitely many data points, there
will always be some variation in the data. (2) Epistemic
uncertainty is the model uncertainty, which, in theory,
can be reduced to zero for an increasing amount of obser-
vations. Various approaches of measuring uncertainty
exist in the literature. We consider two approaches, both
providing justified and mutually complementing insights
into our trained models and data situation: uncertainty
decomposition based on the softmax output variability
[15] in Section 3.3.1 and based on information theory in
Section 3.3.2.

3.3.1. Uncertainty Decomposition based on [Kwon
et al.]

The definition proposed by [15] is based on considera-
tions by [14] and presents a novel way to estimate pre-
dictive uncertainty by breaking it down into

1

𝑇

𝑇∑︁

𝑡=1

diag(𝑐̂𝑡)− 𝑐̂𝑡𝑐̂
⊤
𝑡

⏟  ⏞  
aleatoric uncertainty

+
1

𝑇

𝑇∑︁

𝑡=1

(𝑐̂𝑡 − 𝑐̄)(𝑐̂𝑡 − 𝑐̄)⊤

⏟  ⏞  
epistemic uncertainty

,

(3)
with 𝑐̂𝑡 = (𝑐̂𝑡,1, . . . , 𝑐̂𝑡,𝐾) ∈ [0, 1]𝐾 being the soft-
max output of the NN based on one forward pass (out
of 𝑇 stochastic forward passes),

∑︀𝐾
𝑖=1 𝑐̂𝑡,𝑖 = 1, and

𝑐̄ = 1
𝑇

∑︀𝑇
𝑡=1 𝑐̂𝑡.

Interpretation. Equation 3 yields two 𝐾 ×𝐾 matri-
ces with different interpretations. For the aleatoric part,
diagonal values are in {𝑥−𝑥2 | 𝑥 ∈ [0, 1]}, with the max-
imum uncertainty for 𝑥 = 0.5. If the model is “unsure”,
meaning that the model neither displays confidence that
a prediction corresponds to a certain class nor displays
confidence that it is not, we expect high aleatoric un-
certainty. The off-diagonal elements consist of values in
{−𝑥 · 𝑦 | 𝑥, 𝑦 ∈ [0, 1]}, which yields values on the inter-
val [−0.25, 0]. Lower values correspond to higher data
uncertainty. For the epistemic part, the diagonal contains
the squared difference to the mean softmax outputs (over
𝑇 samples). The off-diagonal has positive values when
the softmax values coincide and negative values if the
softmax values display an inverse relationship.
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3.3.2. Uncertainty Decomposition based on
Information Theory

Another way to decompose predictive uncertainty into
an aleatoric and epistemic part is by following [17] and
similarly [16]. Based on principles from information the-
ory, the Shannon entropy 𝐻(𝑝) = −∑︀𝐾

𝑖=1 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖) is
utilized as a common measure of “informedness” of a sin-
gle probability distribution 𝑝 with 𝐾 outcomes/classes
and the associated probabilities for each 𝑖-th class 𝑝𝑖; tak-
ing the logarithm to base 2 yields values measured in bits.
The total predictive uncertainty (TU) of the predictive
distribution 𝑝(𝑦*|𝑥,𝐷) can then be quantified by

𝑇𝑈 = 𝐻
(︀
𝑝(𝑦*|𝑥*, 𝐷)

)︀
≈ 𝐻

(︁ 1

𝑆

𝑆∑︁

𝑠=1

𝑝(𝑦*|𝑥*, 𝜃𝑠)
)︁
.

(4)
Effectively, this is the entropy of the averaged categorical
predictions, and it includes the two sources of uncertainty
we are interested in.

Aleatoric Uncertainty (AU), Entropy. We can ex-
press aleatoric uncertainty as the expectation over the
entropies of 𝑆 sampled conditional predictive distribu-
tions with fixed weights, i.e.,

𝐴𝑈 ≈ 1

𝑆

𝑆∑︁

𝑠=1

𝐻(𝑝(𝑦*|𝑥*, 𝜃𝑠)). (5)

Epistemic Uncertainty (EU), Mutual Information.
Finally, epistemic uncertainty emerges as the difference
of total and aleatoric uncertainty 𝐸𝑈 = 𝑇𝑈 −𝐴𝑈 , and
is equivalent to the mutual information (MI):

𝐸𝑈 = 𝐻
(︁ 1

𝑆

𝑆∑︁

𝑠=1

𝑝(𝑦*|𝑥*, 𝜃𝑠)
)︁
− 1

𝑆

𝑆∑︁

𝑠=1

𝐻(𝑝(𝑦*|𝑥*, 𝜃𝑠)).

(6)
Intuitively, epistemic uncertainty stands for the infor-
mation gain about the model parameters that would be
obtained when observing the true outcome. MI is always
non-negative, zero in case of perfect independence of 𝑦*

and 𝜃, and positive when model uncertainty is present at
prediction time.

4. Experiments
In our order to evaluate the efficacy of UQ methods for
spatio-temporal handwriting datasets, we use the OnHW
dataset (Section 4.1) and fit different network architec-
tures (Section 4.2). Our evaluation approach is given
in Section 4.3. For architecture and training details and
SWAG parameters, see Appendix A.1. For Deep Ensem-
bles, we choose 𝑀 = 10 (for a study on number of base
learners in Deep Ensembles vs. SWAG performance, see
[9]).

4.1. Online Handwriting Recognition
The OnHW-chars [21] dataset consists of recordings from
a sensor-enhanced ballpoint pen providing 14 sensor mea-
surements: two accelerometers (3 axes each), one gyro-
scope (3 axes), one magnetometer (3 axes), a force sensor
(with which the pen tip touches the surface), and the
time steps. 119 right-handed and nine left-handed writ-
ers participated in the data collection. Each person was
instructed to write the English alphabet on plain paper
six times. This results in 31,275 right-handed and 2,270
left-handed samples. The task is to either classify low-
ercase letters (26 classes), uppercase letters (26 classes)
or combined letters from all 52 classes. For model eval-
uation, five cross-validation sets are provided by [21]
for both writer-dependent (WD) and writer-independent
(WI) MTS classification tasks.

4.2. Neural Network Architectures
We use a modified CNN from [21, 24] for feature extrac-
tion and combine it with one unit for spatio-temporal
classification to extract important temporal features. This
unit is added before the last dense layer. We compare a
standard long short-term memory (LSTM) cell with 100
neurons, a bidirectional LSTM (BiLSTM) cell with 100
neurons, and a temporal convolutional network (TCN)
with 120 neurons. The last dense layer contains 26 neu-
rons for the lowercase and uppercase tasks, or 52 neurons
for the combined task. We interpolate the time-series to
64 time steps without sensor normalization.

4.3. Evaluation Metrics
Confidence Calibration. Calibration can be under-
stood as the degree of reliability of a model. According to
[18], a predictor is well-calibrated if the derived predic-
tive confidence represents a good approximation of the
actual probability of correctness – meaning that 20% of
all predictions with a predictive confidence of 80% should
actually be false. Calibration is thus a notion of uncer-
tainty, measuring the discrepancy between the model’s
forecasts and (empirical) long-run frequencies [12]. Us-
ing the definitions of confidence and accuracy [26], we
can make statements about over- and under-confidence
of the model. We have

confidence(𝑏𝑒) =
1

|𝑏𝑒|
∑︁

𝑠∈𝑏𝑒

𝑐̂𝑠 (7)

and
accuracy(𝑏𝑒) =

1

|𝑏𝑒|
∑︁

𝑠∈𝑏𝑒

1(𝑦𝑠 = 𝑦𝑠), (8)

with 𝑏𝑒 denoting the set of indices of sampled soft-
max outputs falling into the interval (𝑙𝑒, 𝑢𝑒]. Com-
monly, the softmax output range is divided into ten bins
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Method Lowercase Uppercase Combined
WD WI WD WI WD WI

SWAG
right 83.73 76.27 87.10 81.69 72.13 65.41
left 55.51 45.91 55.04 50.67 46.08 39.26

Deep Ensembles
right 83.07 73.87 89.92 80.86 75.29 64.22
left 45.25 37.00 62.73 48.31 45.95 33.27

Best BNN Method right 84.44 76.96 90.31 82.21 75.51 66.12
(right-handed) left 42.55 44.19 49.87 48.54 33.68 36.20

Table 1
Accuracies (in %) for best models trained on right- and left-handed data and evaluated on right-handed or left-handed writers
data separately, compared to the best performing models which were only trained on right-handed data. Bold: best results.

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

Frequentist 84.62 76.85 89.89 83.01 70.50 64.13
[21] TCN TCN TCN TCN TCN LSTM

SWAG
84.44 76.96 87.58 82.21 72.54 66.12
TCN TCN TCN TCN TCN TCN

Deep 83.43 73.41 90.31 81.26 75.51 64.21
Ensembles BiLSTM TCN TCN TCN TCN TCN

Table 2
Accuracies (in %) for models trained on right-handed writers
data and evaluated on right-handed writers data. Second row
shows the respective model. Bold: best results.

(interval sizes of 0.1). We can now make statements
whether our model is under-confident

(︀
accuracy(𝑏𝑒) >

confidence(𝑏𝑒)
)︀

or over-confident
(︀
accuracy(𝑏𝑒) <

confidence(𝑏𝑒)
)︀
. It has been shown that softmax out-

puts of deep NNs are in general not well calibrated and
are often either over- or under-confident [26]. Ideally,
accuracy(𝑏𝑒) ≈ confidence(𝑏𝑒), allowing the user to in-
terpret softmax outputs as probabilities and thereby quan-
tify the prediction uncertainty.

Expected Calibration Error (ECE). The ECE sum-
marizes how far away the confidence is from the actual
(empirical) accuracy [26]. It can be defined as

ECE(𝑏𝑒) =
𝐸∑︁

𝑒=1

|𝑏𝑒|
𝑛

|accuracy(𝑏𝑒)− confidence(𝑏𝑒)|,

(9)
with 𝑛 being the number of predicted softmax outputs,
and 𝐸 being the number of bins. Note that this met-
ric does not give any information about over- or under-
confidence – only how far away the expected accuracy
is from the confidence. Ideally, the ECE is 0.

Reliability Diagrams. We visualize Equations 7 and 8
as reliability diagrams [33] for selected models. Generally,
a model is over-confident if the black bars (displaying
the accuracy for one bin) are below the dashed bisectors.
Consequently, if the black bars are above the bisectors,

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

SWAG
81.85 74.24 84.92 79.58 70.37 63.64
TCN TCN TCN TCN TCN TCN

Deep 80.55 71.41 88.07 78.65 73.31 62.14
Ensembles LSTM TCN TCN TCN TCN TCN

Table 3
Accuracies (in %) for models trained on right- and left-handed
writers data and evaluated on right-handed writers data. Sec-
ond row shows the respective model. Bold: best results.

the model is under-confident. We additionally plot the
histogram [34] of the softmax outputs to get an overview
of the distribution.

5. Experimental Results
In the following, we summarize the main results. In
general, the models perform better on WD classification
tasks than on WI tasks. Architectures with TCN units
outperform LSTM and BiLSTM units on most tasks.

Evaluation on Handedness (trained on right-
handed writers). SWAG and Deep Ensemble models
perform very similarly to frequentist models proposed in
[21] in terms of predicitve accuracy (see Table 2), being
at most 3% points below and 5% points above a respec-
tive frequentist model. When applying models trained
with right-handed data on the left-handed datasets, the
performance ranges from 33.27% to 49.87% accuracy (see
Table 1) which is substantially better than “pure guess-
ing” – our models make informed decisions after shifting
domains, albeit at a lower standard. A possible reason
is that certain sensors produce nearly identical signals
regardless of the orientation of the pen. For example, the
accelerometer at the bottom of the pen should give the
same readings for left-handed writers when writing "I"
and "i" as for right-handed writers, since it is simply a
downward motion regardless of the writing hand.
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Figure 1: Information theoretic uncertainty measures for the Deep Ensemble (dashed) and SWAG (non-dashed) CNN+TCN
models. The models are trained on the combined right- and left-handed writers datasets (a and b, left) or only the right-handed
writers dataset (a and b, right), and evaluated on the left-handed writers dataset. We provide results for lowercase, uppercase
and combined classification tasks.
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(a) Evaluated on right-handed
writers data.
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(b) Evaluated on right-handed
writers data.
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(c) Evaluated on left-handed writ-
ers data.
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(d) Evaluated on left-handed writ-
ers data.

Figure 2: Reliability diagram for the Deep Ensemble CNN+TCN model trained on the combined WD datasets. a) and c):
Trained on the combined right- and left-handed writers datasets. b) and d): Trained on right-handed writers only.

Evaluation on Handedness (trained on right- and
left-handed writers). When evaluating performance
on right-handed data, models trained only on right-
handed datasets consistently outperform models trained
on both datasets combined and yield between 2% points
and 12% points higher accuracies (see Table 3). This per-
formance loss is compensated by a performance gain for
left-handed data. Still, the performance is not up to par
with right-handed data; this gap may be due to a “writing
style” particular to every writer that especially influences
the gyroscope and magnetometer measurements. More
importantly, left-handed writers have a writing style dif-
ferent to right-handed writers which is perhaps exactly
what the right-handed models never learned in order to
address the style of left-handed writers, underlining the
need for a sufficient amount of samples to get a good
representation of various writing styles.

Analysis of Uncertainty. Figure 1 shows the MI and
entropy for SWAG and Deep Ensemble models evalu-
ated on the left-handed data. The barplots show that
the models trained on only right-handed data display
lower uncertainty (i.e., higher confidence) compared to
models trained on combined data. However, this higher

confidence is not empirically justified when looking at
the reliability diagrams in Figure 2, which point out that
models trained without left-handed writers data are mis-
calibrated and therefore overconfident. Models trained
on the combined writers (Figures 2a and 2c) provide more
realistic accuracies when applied to the left-handed data
(ECE of 6.72). The ECE is even higher (24.24) for left-
handed evaluation without left-handers in the training
set (see Figure 2d). For a separate evaluation for each
character, see Appendix A.2.

5.1. Uncertainty Analysis based on [Kwon
et al.]

In Figure 3 we visualize the aleatoric and epistemic un-
certainty as well as the confusion matrix for the Deep En-
semble model and the combined task. For SWAG model
results, see Appendix A.3. In the aleatoric uncertainty
heatmap (Figure 3a) we observe a trace with negative
values at the lower end of the scale. Note that for off-
diagonal values, the aleatoric uncertainty is higher for
lower softmax values. Here, two softmax outputs (with
the highest values) coincide on average (see Section 3.3.1).
This means that the model tends to confuse the two
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(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 3: Uncertainty prediction for the Deep Ensemble CNN+TCN model trained on the combined WD (right-handed only)
dataset. Note that the color scale is fixed for all subplots for comparability with Figure 4, and that we skipped every second
character label for readability.
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Figure 4: Uncertainty prediction for the Deep Ensemble CNN+TCN model trained on the uppercase WD (right-handed only)
dataset. Note that the color scale is fixed for all subplots for comparability with Figure 3 and 6.

classes. The most prominent off-diagonal strip corre-
sponds to the upper- and lowercase pairs. This makes
intuitive sense since, e.g., the lowercase "u" and upper-
case "U" are written similarly. This effect is consequently
not present for less similar pairs like "a" and "A". We
can see this effect also for "l" (lowercase "L") and "I"
(uppercase "i"). A very similar pattern can also be ob-
served in the confusion matrix (see Figure 3c), confirming
that the trained model is not only unsure about how to
classify these pairs, but is also empirically worse in the
respective classification task.

These patterns allow for further interesting insights.
For example, one might expect this pattern to occur for
"i" and "j", but the corresponding heatmap entries lack
signs of confusion of the model. Similarity between char-
acters consequently hinges on the similarity of motions
while writing. Two characters with small differences are
written similarly but in different sizes. This also holds
for specific parts of the letters. For example, "n" and
"h" have a higher aleatoric uncertainty in Figure 3a; the
major difference being that one tiny part of "h" is longer.

Somewhat puzzling is that we see the same effect in
the epistemic uncertainty heatmap (see Figure 3b), where

such pairs with high similarity lead to negative values.
When one entry of the softmax output values is below
and another entry above the respective sample mean,
negative epistemic uncertainty is implied. This leads to
some kind of discriminative power due to the negative
“covariance” for which there is little justification. We thus
advise caution when interpreting the epistemic uncer-
tainty in this context.

5.2. Uncertainty based on Information
Theory

We further highlight the trade-off when using informa-
tion theory-based measures to decide whether a sample
is too uncertain to classify correctly. This is depicted by
Figure 5a showing the relationship between classification
accuracies and different threshold values. We choose the
entropy as the target metric for uncertainty evaluation
(MI would work analogously). On the x-axis is the accu-
racy of the samples above the threshold, i.e., samples our
model feels confident about classifying correctly. On the
y-axis is the accuracy for the samples below the thresh-
old. These values would be considered as too inaccurate
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Figure 5: Accuracy and entropy for the Deep Ensemble
CNN+TCN model trained on the combined WD (right-handed
only) dataset.

to confidently classify. Setting the threshold to 2.0 bits
would approximately yield an accuracy of 82% for the
observations above this threshold and approx. 31% accu-
racy for observations below this threshold (emphasized
by the dashed lines). Figure 5b depicts the entropy dis-
tribution and further clarifies this point. Convincingly,
the accuracy reduces to almost zero for very high en-
tropy samples. Note that the accuracy does not need to
decrease with an increasing entropy threshold or even
be zero for very high entropy values, even though this is
generally true for our models.

5.3. Summary and Limitations
Uncertainty Decomposition. Neither uncertainty
quantification method shows notable differences between
aleatoric and epistemic uncertainty. The heatmaps ex-
hibit the same “strip” for similar characters and give no
hints to different sources of uncertainty (data-driven or
systemic confusion). The benefits of this kind of uncer-
tainty differentiation are limited, but measuring the total
uncertainty can still be useful for domain adaptation or
the detection of wrong labels.

Real-World Link. Since the models trained on right-
and left-handed writers lead to lower data confidence
compared to models trained only on right-handed writers
(see Figure 1), it is unclear how well the measured MI and
entropy translate to the real-world uncertainty. There-
fore, verifying uncertainty remains a limitation in our
interpretation. While we can discriminate between the
entropy associated with different samples, pre-defining
thresholds for uncertain samples is challenging due to
the following reasons: (1) Raw sensor data is elaborate
to interpret and making statements about, e.g., the writ-
ing style from sensor data is hardly possible – which, in
turn, is connected to model uncertainty. (2) Interpreting
the graphomotoricity qualitatively, e.g., for teaching hand
writing, a qualified expert in this field is required. (3) Dif-
ferent writing domains (different pens, surfaces etc.) lead
to different requirements for the uncertainty threshold.

6. Conclusion
We employed SWAG and Deep Ensembles for OnHW
recognition with left- and right-handed writers, a spatio-
temporal MTS classification task with domain shift. We
critically evaluated aleatoric and epistemic uncertainty
using confidence calibration, ECE and reliability dia-
grams. In summary, (1) the model performance only
partly relates to the handedness of writers, (2) our models
are over-confident and miscalibrated when only trained
with right-handed writers and evaluated on left-handed
writers, (3) the uncertainty of the models for small and
capital characters combined is related to lower classifica-
tion accuracy, and (4) the entropy and mutual information
for individual samples correlate well with the accuracy of
our models. Our comparison of different ways to decom-
pose uncertainty easily generalizes to other classification
tasks and can be useful for spatio-temporal reasoning. In
terms of Bayesian inference, SWAG and Deep Ensemble
models perform similarly, while SWAG is computation-
ally less expensive.
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(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 6: Uncertainty prediction for the Deep Ensemble CNN+BiLSTM model (which outperformed the TCN-based archi-
tecture) trained on the lowercase WD (right-handed only) dataset. Note that the color scale is fixed for all subplots for
comparability with Figure 3 and 4.

A. Appendices
We propose model parameters in Section A.1 and show
an evaluation per character in Section A.2. We propose
results for the SWAG model in Section A.3.

A.1. Model and UQ Method Parameters
For reproducibility, we state all general model architec-
ture parameters and propose training parameters for the
SWAG model. For all experiments we use Nvidia Tesla
V100-SXM2 GPUs with 32 GB VRAM coupled with Intel
Core Xeon CPUs and 192 GB RAM.

Model Parameters. We use a CNN with dropout rate
20%, convolutional layers with kernel size 4 and filter size
200. The temporal cell (LSTM, BiLSTM or TCN) contains
100, 100 or 120 neurons, respectively. We interpolate the
time-series to 64 time steps, and train the model for 2,000
epochs with early stopping and a batch size of 50.

SWAG Parameters. We initialize the stochastic gra-
dient descent (SGD) optimizer with initial learning rate
10−2, a momentum of 0.9, and weight decay of 10−4.
The stochastic weight averaging (SWA) burn-in period
was run for 10 epochs. SWAG showed a training process
with fast convergence.

A.2. Evaluation per Character
Confusion Matrices. We propose the confusion ma-
trices for the aleatoric and epistemic uncertainty as well
as the accuracy (in %) for the uppercase (see Figure 4)
and lowercase (see Figure 6) datasets. While for the com-
bined training, lower- and uppercase characters are often
misclassified, the separate training leads to confusion of
characters with similar shapes, e.g., for the uppercase
task, the model is uncertain for "D" and "P", "U" and
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(a) Sample accuracies below and
above an entropy threshold.
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(b) Histogram visualizing the
entropy distribution.

Figure 7: Accuracy and entropy for the SWAG CNN+TCN
model trained on the combined WD (right-handed only)
dataset.

"V", and "T" and "X". These confusions can be iden-
tified with the aleatoric and epistemic uncertainty and
correspond with the classification accuracies. Overall,
the uncertainty for lowercase characters is higher (see
Figure 6a) since the writing style of lowercase characters
is oftentimes quite similar, e.g., "r" and "v", "u" and
"v", "h" and "n", and "d" and "q". This also leads to a
lower classification accuracy (see Figure 6c).

Mutual Information and Entropy. Figure 8a shows
the mutual information (MI) per character, and Figure 8b
shows the entropy, respectively. In general, the MI and
entropy correlates and are similar for each character. The
MI and entropy is high for the characters "U", "u", "v",
"x", and "z". Furthermore, both metrics are higher for
lowercase characters than for uppercase characters. This
corresponds to the confusion matrices in Figure 4 and 6
where aleatoric uncertainty is higher for off-diagonals
for lowercase characters.
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(a) Mutual information per letter.
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(b) Entropy per letter.

Figure 8: Mutual information and entropy per letter for the Deep Ensemble CNN+TCN model trained on the combined WD
(right-handed only) dataset. Note that we skiped every second character in the x-axis (ordered alphabetically) for readability.
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Figure 9: Mutual information and entropy per letter for the SWAG CNN+TCN model trained on the combined WD (right-
handed only) dataset. Note that we skipped every second character in the x-axis (ordered alphabetically) for readability.

A.3. SWAG Model Results
This section provides plots for the SWAG model that
can directly be compared to the previously shown Deep
Ensemble model plots. We observe very similar results

between SWAG and Deep Ensemble models. Figure 9
shows the MI and entropy for the SWAG model with the
same pattern as for the Deep Ensemble model with lower
absolute values. In Figure 10, we see the same overconfi-
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writers data.
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(b) Evaluated on right-handed
writers data.
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(c) Evaluated on left-handed writ-
ers data.
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Figure 10: Reliability diagram for the SWAG CNN+TCN model trained on the combined WD datasets. a) and c): Trained on
the combined right- and left-handed writers datasets. b) and d): Trained on right-handed writers only.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 11: Uncertainty prediction for the SWAG CNN+TCN model trained on the combined WD (right-handed only) dataset.
Note that the color scale is fixed for all subplots for comparability with the other heatmaps, and that we skipped every second
character label for readability.
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(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 12: Uncertainty prediction for the SWAG CNN+TCN model trained on the uppercase WD (right-handed only) dataset.
Note that the color scale is fixed for all subplots for comparability with the other heatmaps.

dence on left-handed data for SWAG models that have
never seen this data similar as for Deep Ensemble mod-
els. The ECE by the SWAG model is marginally lower
than the ECE by the Deep Ensemble model, but follows
the same trend. The heatmaps in Figures 11 for lower-
case and uppercase characters, in Figure 12 for uppercase

characters only, and in Figure 13 for lowercase characters
only of the SWAG model show the same pattern as the
heatmaps for Deep Ensemble models.
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Figure 13: Uncertainty prediction for the SWAG CNN+TCN model trained on the lowercase WD (right-handed only) dataset.
Note that the color scale is fixed for all subplots for comparability with the other heatmaps.
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Datasets
This paper uses the publicly available IAM-OffDB, VNOnDB, and OnHW-chars data-
sets. Along this paper, the OnHW-words500, OnHW-wordsTraj, OnHW-symbols, and
split OnHW-equations datasets were published and are available at:
https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/
onhw-dataset.html

Statement about Recent, Related Research17

The paper by Ghosh et al. (2022) provides a recent survey of OnHW datasets, including a
detailed comparison of the OnHW-chars dataset with 13 other OnHW datasets. In another
work, Wegmeth et al. (2021) employed the OnHW-equations dataset published in the con-
tributing paper (Ott et al., 2022d) and developed a method for classifying mathematical
equations. Their approach involves a data-dependant and rule-based information extrac-
tion algorithm for equations segmentation, and a combination of a binary random forest for
classifying the writing activity and a CNN for making single-label predictions on windows
of data. Furthermore, Bronkhorst (2021) demonstrated the effectiveness of Transformers,
but only evaluated their approach on single characters using the OnHW-chars dataset.

The contributing paper (Ott et al., 2022d) employed vaeious state-of-the-art time-series
classification techniques implemented in the tsai toolbox (Oguiza, 2020) to conduct a
benchmark on OnHW datasets. Recently, the tsai toolbox has been update to include the
implementation of gating multi-layer perceptron (gMLP) proposed by Liu et al. (2021).
This method outperforms Transformers in vision applications and may be of interest for
future time-series applications. We explored alternative loss functions to the categorical
cross-entropy (CE) such as the focal loss, label smoothing, boot soft and hard, the gen-
eralized and symmetric categorical CE, and joint optimization on the single characters

https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html
https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html
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OnHW datasets. Additionally, the label relaxation technique by Lienen & Hüllermeier
(2021) can be applied on the OnHW datasets, where the target is a set of probabilities
represented as an upper probability distribution. The label relaxation method provides
a suitable closed-form expression for model optimization based on the Kullback-Leibler
divergence.

Gu et al. (2022) employed the convolutional RNN proposed in the contributing paper
(Ott et al., 2022d) to extract features from IMU signals for the validation of in-ear head-
phones movements. The network comprises 1D convolutional layers and bidirectional gated
recurrent units, with an eight-channel input representing accelerometer and gyroscope data.
This highlights the versatility of the best-performing model CNN+BiLSTM from Ott et al.
(2022d) in other applications with distinct data dimensions. Additionally, Teng et al. (2022)
utilized a CNN with a BiLSTM layer along with the connectionist temporal classification
(CTC) loss for Mongolian OnHW word recognition. The CNN+BiLSTM network has been
applied to offline signature verification by Longjam et al. (2023). Signature verification is
a challenging task due to the high similarity between different individuals and the varia-
tions within individuals, as well as the skilled imitation of signature structure. Therefore,
CNN+BiLSTM models, along with Transformer networks, are leading approaches for both
offline and online HWR tasks. The IAMOnDB dataset was benchmarked by Mustafid et al.
(2022) using various methods based on neural networks, graph neural networks, attention-
based neural networks, and Transformers. Building on the OnHW-chars dataset of Ott
et al. (2020b) and the benchmark of Ott et al. (2022d), Azimi et al. (2022) developed both
ML models (i.e., decision tree, random forest, extra trees, logistic regression, kNN, and
SVM) and DL models (i.e., FCN, LSTM, BiLSTM, (Bi)LSTM-FCN, M(Bi)LSTM-FCN,
ResNet, ResCNN, InceptionTime, XceptionTime, and XCM). These models achieve an
improvement of 11.3% to 23.56% through hyperparameter tuning. The best performing
model is InceptionTime, which aligns with the results of the contributing paper (Ott et al.,
2022d). However, as only one dataset was evaluated, it is not possible to make a general
statement about the performance. The improvement of 3.08% to 7.01% due to ensemble
learning with DL models is relevant and can be applied to all OnHW datasets in future
studies.

In Section 6.1 of the contributing paper (Ott et al., 2022d), we presented an argument
for the social impact of OnHW recognition for writing on normal paper, emphasizing that
the visual feedback provided by the pen can assist young students and children in learning
a new language. The aim of OnHW with sensor-enhanced pens is to support self-paced
learning from home without additional effort (Drey et al., 2022). Our statements are
supported by recent research by Ihara et al. (2021), who found that handwriting on paper
is more effective for learning than typing on a keyboard. They conduct a study comparing
learning by handwriting with a digital pen on a tablet, typing on a keyboard, or handwriting
with an ink pen on paper, and measured behavioral and electroencephalographic indices
immediately after learning with each writing tool. Their results show a great priming effect
for words learned with the digital or ink pen than those learned with the keyboard, and a
greater priming effect for words learned with the ink pen compared with words learned by
typing, particularly for an unfamiliar group with respect to the digital pen. In addition, the
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study found that positive mood during learning was significantly higher during handwriting
than during typing (Ihara et al., 2021), supporting the motivation for the sensor-enhanced
pen. The use of writing tools does not influence behavior, but does contribute to greater
memorization of new words for handwriting. Furthermore, Wiechmann et al. (2022) split 68
students into longhand, laptop, or tablet note-taking groups, and assessed these students for
conceptual and factual recall while taking notes. The authors found no significant difference
in the recall scores, but a significantly higher median word count for laptops compared to
tablets and handwriting. Students are encouraged to pick the most appealing note-taking
method. Therefore, the sensor-enhanced pen can serve as an alternative method for taking
notes.

The work of Wu et al. (2023) is relevant in the field of handwriting recognition, albeit
using different sensors. Their proposed approach, DMHC, is a multi-modal recognition sys-
tem that operates without requiring any device and fuses two distinct acoustic modalities
(i.e., ultrasonic and audio signals) to achieve noise-resistant performance.
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Abstract
Handwriting is one of the most frequently occurring patterns in everyday life and with it comes challenging applications
such as handwriting recognition, writer identification and signature verification. In contrast to offline HWR that only uses
spatial information (i.e., images), online HWR uses richer spatio-temporal information (i.e., trajectory data or inertial data).
While there exist many offline HWR datasets, there are only little data available for the development of OnHWR methods
on paper as it requires hardware-integrated pens. This paper presents data and benchmark models for real-time sequence-
to-sequence learning and single character-based recognition. Our data are recorded by a sensor-enhanced ballpoint pen,
yielding sensor data streams from triaxial accelerometers, a gyroscope, a magnetometer and a force sensor at 100Hz. We
propose a variety of datasets including equations and words for both the writer-dependent and writer-independent tasks. Our
datasets allow a comparison between classical OnHWR on tablets and on paper with sensor-enhanced pens. We provide an
evaluation benchmark for seq2seq and single character-based HWR using recurrent and temporal convolutional networks
and transformers combined with a connectionist temporal classification (CTC) loss and cross-entropy (CE) losses. Our
convolutional network combined with BiLSTMs outperforms transformer-based architectures, is on par with InceptionTime
for sequence-based classification tasks and yields better results compared to 28 state-of-the-art techniques. Time-series
augmentation methods improve the sequence-based task, and we show that CE variants can improve the single classification
task. Our implementations together with the large benchmark of state-of-the-art techniques of novel OnHWR datasets serve
as a baseline for future research in the area of OnHWR on paper.

Keywords Online handwriting recognition · Sequence-based and character datasets · Time-series data · Sensor-enhanced
pen · Writer-(in)dependent · Architectures
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1 Introduction

Handwriting provides language information based on struc-
tured symbols and is used for communication or documen-
tation of speech. HWR refers to the digitalization of written
text and can be categorized into offline and online HWR.
Research on offline HWR systems is very advanced and has
almost reached a human-level performance, but cannot be
applied for real-time recognition applications (as they induce
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an unacceptable delay) [23] as the written text has first to be
digitalized. Optical character recognition (OCR), one of the
dominant approaches in offline HWR, deals with the analysis
of the visual representation of handwriting only. Its appli-
cation and accuracy are limited as it cannot make use of
temporal information such as writing direction and speed, or
the pressure applied to the paper [65,69].

In contrast, onlineHWR typicallyworks on different types
of spatio-temporal signals such as the positions of the pen tip
(in 2D), its temporal context or the movement on the writing
surface. These handwriting signals can then, e.g., be parti-
tioned into (indexed) strokes [96]. Compared to offlineHWR,
OnHWR has its own merits, e.g., the difficult segmentation
of cursive written sequences into single characters. Many
highly relevant handwriting problems in everyday life require
both an informative representation of the writing and well-
working classification algorithms [35]. Examples include the
verification of signatures, the identification of writers, or the
recognition of handwriting.

The representation of written text crucially depends on the
way it has been recorded. Many recording systems make use
of a stylus pen (a touch pen with a sensible magnetic mesh
tip) together with a touch screen surface [2]. Systems for
writing on paper are only prototypical, such as the ones used
in [11,79,100] or the GyroPen [17] that provides a pen-like
interaction from standard built-in sensors in modern smart-
phones. An advanced system for recording online HWR data
was proposed by Ott et al. [65] who use a sensor-enhanced
ballpoint pen that is extendedwith inertialmeasurement units
(IMUs). The hand movement and velocity patterns with such
a pen are different to air-writing [108]. In this paper, we
propose a novel dataset collection of equations and words
recorded with an IMU-enhanced pen. Using this pen allows
an online representation of the accelerations, orientations and
the pressure applied to the pen. Writing styles can thereby be
characterized by an information-richmultivariate time-series
(MTS). These datasets lay the foundation for HWR from
pens with integrated sensors [17,45,62–65,79,100,104], a so
far unsolved challenge in machine learning.

For machine learning tasks derived from online hand-
writing data, we distinguish between single-label prediction
tasks (i.e., classifying characters, digits and symbols) and
tasks to predict sequences of labels (i.e., words, sentences
and equations). We here focus on the online seq2seq predic-
tion task for writer-dependent (WD) and writer-independent
(WI) classification, but also consider the single-label classi-
fication task. Seq2seq models in natural language processing
(NLP) and speech recognition [86] are used to convert
sequences of Type A to sequences of Type B (e.g., sen-
tences from English to German). Many real-world datasets
take the formof sequences, e.g., written texts, numbers, audio
or video frame sequences. While many approaches build
on language models or lexica [9,71,81,86] that outperform

model-free approaches for certain datasets (e.g., sentences),
these approaches require additional efforts to properly deal
with the data at hand. They cannot handle dialects and infor-
mal words off-the-shelf, do not recognize wrongly written
words, and require a large corpus volume with large training
times to achieve an acceptable accuracy [37]. Evenwith addi-
tional pre-processing, language models and lexica cannot (or
only with high effort [92]) be applied to certain types of
sequences, e.g., equations, as in our case. For our benchmark
baselines we therefore resort to language- and lexicon-free
approacheswithout token passing.More specifically, we pro-
vide an evaluation benchmark with CNNs combined with
(bidirectional) LSTMs and TCNs, and an attention-based
model for the seq2seq OnHWR, as well as several trans-
formers for the single character-based classification task.

The remainder of the paper is organized as follows. We
discuss related work in Sect. 2. Section 3 presents our novel
collection of online handwriting datasets on sequence level.
Section 4 introduces the suggested benchmark models; in
particular, we propose several CNN architectures. In Sect. 5
we provide experimental results before we end with a con-
clusion in Sect. 6.

2 Background and related work

We will first provide an overview of available datasets
of online handwriting datasets and explain the particulari-
ties for each one. Next, we discuss related methodological
approaches to model such data. For a detailed overview of
text classification methods we refer to [47,49].

2.1 Datasets

While there are many offline datasets, online data are rare
[35]. To properly evaluate OnHWR methods, we need a
multi-label online dataset that allows for the evaluation
of tasks for both the writer-dependent and the writer-
independent case. Table 1 gives an overview of available
online datasets. For the single character prediction task,
the Kuchibue [56,57], MRG-OHTC [53], CASIA [98] and
OnHW-chars [65] datasets are available. While the OnHW-
chars dataset is rather small, we provide single character-
based datasets from a larger database. For our sequence-
basedmethod (i.e., a technique that predicts awhole sequence
of characters), the IRONOFF [95], ICROW [78], IAM-
OnDB [51], LMCA [42], ADAB [1], IBM-UB [84] and
VNOnDB [58,59] word and sentence datasets can be used.

The commonly used IAM-OnDB [51] and VNOnDB [59]
datasets only includeonline trajectorydatawritten on a tablet.
However, writing on even and smooth surfaces influences
the writing style of the user [28]. To circumvent this disad-
vantage, we initially recorded a small character-only dataset
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with a sensor-enhanced pen on usual paper in previous work
[65]. In this paper we make use of this novel pen and record
sequence-based samples for a comparison and evaluation
benchmark with the trajectory-based IAM-OnDB (line level)
and VNOnDB-words datasets. Hence, our datasets allow a
broad research on sequence-based classification from sensor-
enhanced pens and allow the connection between classical
OnHW recognition on tablets with sensor-enhanced pens.

2.2 Methods

While hidden Markov models (HMMs) [3,8,18,19,22] have
initially been applied to offline HWR, more recently, deep
learning models became predominant, including convolu-
tional neural networks (CNNs) [109], temporal convolutional
networks (TCNs) [82,83], recurrent neural networks (RNNs)
[20,31,68,70,85,105] including long short-term memorys
(LSTMs), bidirectional LSTMs (BiLSTMs) [12,91] and
multidimensional RNNs [32,97]. More recently, attention
models further improved the classification accuracy of
RNNs [10], but did not outperform previous approaches
for OnHWR. Despite transformers [94] and its variants
[13,36,38,44,90,101] got very popular for NLP [75] and
image processing, these have so far only been applied to
offline HWR [38]. The transformer by [66] is based on
a language model and is used for Chinese text recog-
nition. Similarly, variational autoencoders (VAEs), RNNs
[29] and generative adversarial networks (GANs) [26] have
been successfully applied for synthetic offline handwrit-
ing generation, but not for the online case so far. For
the time-series classification task, standard convolutional
architectures [25,34,72,103,113], spatio-temporal methods
[6,15,21,39,40] and variants [24,87,89,99] as well as trans-
formers [110] have been employed. In [65], we evaluated
machine learning techniques, while in this paper we provide
a broad evaluation benchmark on classical and novel time-
series classification methods previously mentioned. While
many approaches predict one class after the other, [14,54]
predicted sequences similar to our approach. This is neces-
sary to construct a suitable loss function described in the
following. See Appendix 1 for a more detailed overview of
related work.

Loss functions For sequence prediction the connectionist
temporal classification (CTC) [30,31,43] loss combined with
beam search [77] has extensively been used. The Edit dis-
tance (ED) [48] quantifies how dissimilar two strings are to
one another by counting the minimum number of operations
required to transform one string into the other. The ED allows
deletion, insertion and substitution. However, the ED is a dis-
crete function that is known to be hard to optimize. Ofitserov
et al. [60] proposed a soft ED, which is a smooth approxi-
mation of ED that is differentiable. Seni et al. [80] used the

ED for HWR. We use the CTC loss for sequence prediction
(see Sect. 4).

3 Datasets and evaluationmethodology

Our datasets are a collection of existing and newly
generated online handwriting recordings. Section 3.1 first
describes our recording setup to create novel and information-
rich datasets. Section 3.2 gives details about the properties of
our different OnHW datasets and compares them to existing
datasets. Section 3.3 proposes a set of evaluation metrics.

3.1 Recording setup

Our datasets are recorded with a sensor-enhanced pen devel-
oped by STABILO International GmbH that contains two
accelerometers at the front and the back (3 axes each), one
gyroscope (3 axes), onemagnetometer (3 axes) and one force
sensor at 100 Hz (see Fig. 2). The data recordings contain
14 measurements provided by the sensors: four sensor data
signals (each in x, y and z direction), the force with which
the pen tip touches the surface, and the timestep at which
the tablet receives the data from the pen. Figure 1 shows an
exemplary sensor signal from a written equation. Using the
force sensor the sensor data allow to separate strokes well
as the writer lifts the pen between every character (this is
not possible for cursive writing, e.g., for words). In total, we
let 131 adult writers participate in our data collection. For
more information on the sensor pen and data acquisition, see
Appendices 2 and 3.

3.2 Datasets

We propose a large set of four different sequence-based
datasets (see the first four entries in Table 2): the OnHW-
equations dataset was part of theUbiComp 2021 challenge1

and is written by 55writers and consists of 10 number classes
and 5 operator classes (+, -, ·, :, =). The dataset consists of
a total of 10,713 samples. While in the OnHW-words500
dataset only the same 500 words per each writer appear,
in the OnHW-wordsRandom dataset every sample is ran-
domly chosen from a large German and English word list.
This allows the comparison of indirectly learning a lexicon
of 500 words or, alternatively, completely lexicon-free learn-
ing. The OnHW-wordsRandom dataset (14,641 samples) is
smaller than the OnHW-words500 dataset (25,218 samples),
but contains longer words with a maximal length of 27 labels
(19 labels for OnHW-words500). The train/validation split
for the OnHW-words500 dataset is based on words for the

1 UbiComp challenge: https://stabilodigital.com/ubicomp-2021-
challenge/
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(a) Force. (b) Front acc. (c) Rear acc. (d) Gyroscope. (e) Magnetometer.

Fig. 1 Exemplary sensor data for the x-, y- and z-axis of the equation: 20583:70

Fig. 2 Sensor-enhanced pen

Table 2 Overview of our recordings from right-handed writers and state-of-the-art online handwriting datasets for writer-dependent (WD) and
writer-independent (WI) tasks

Number Number Maximal Number samples Total
Dataset Writers Classes Length Total WD WI Chars.

OnHW-equations 55 15 15 10, 713 8595 2118 8610 2,103 106, 968

OnHW-words500(R) 53 59 19 25, 218 20,176 5042 19,918 5300 137, 219

OnHW-wordsRandom 54 59 27 14, 641 11,744 2897 11,716 2,925 146, 350

OnHW-wordsTraj 2 59 10 16, 752 13,250 3502 – – 146, 512

OnHW-symbols 27 15 Single 2326 1853 473 1715 611 2326

ICROW [78] 67 53 15 13, 119 10,500 2619 10,524 2595 90, 138

IAM-OnDB [51] 197 81 64 10, 773 8702 2071 8624 2149 265, 477

VNOnDB-words [59] 201 147 11 110, 746 88,677 22,069 88,486 22,260 368, 455

OnHW-chars [65] 119 52 Single 31, 275 23,059 8216 23,059 8216 31, 275

Table 3 Overview of our
datasets from left-handed
writers for writer-dependent
(WD) and writer-independent
(WI) tasks

Number Maximal Number Samples Total
Dataset Writers Length Total WD WI Chars.

OnHW-equations-L 4 15 843 677 166 543 300 8438

OnHW-words500-L 2 19 1000 800 200 500 500 5438

OnHW-wordsRandom-L 2 26 996 798 198 497 499 10, 029

OnHW-symbols-L 4 Single 361 289 72 271 90 361

OnHW-chars-L [65] 9 Single 2270 1816 454 – – 2270

For WD tasks a 80/20 train/validation split is used; for WI a dataset-specific split is used

Fig. 3 Exemplary online
samples of our
OnHW-wordsTraj dataset (left:
tablet, middle: camera) and the
IAM-OnDB [51] (line level)
dataset (right)
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WD task such that the same 400 words per writer are in the
train set and the same 100 words per writer are in the vali-
dation set. For the WI task, the split is done by writer such
that all 500 words of a single writer are either in the train
or validation set. As it is more likely to overfit on the same
words, theWD task of OnHW-words500 is more challenging
compared to theOnHW-wordsRandomdataset. TheOnHW-
words500R dataset is a random split of OnHW-words500.

Additionally, we record the OnHW-wordsTraj dataset
that consists of four different data sources. We replace the
ink refill with a Wacom EMR module and record online tra-
jectories at 30Hz on a Samsung Galaxy Tab S4 tablet along
with the sensor data. Four cameras pointed on the pen to
record the movement of the pen tip at 60Hz. We manually
label the pixels of 100 random images of the recorded videos
in the classes “pen“, “pen tip“ and “background“ and train
U-Net [76] to predict the pen tip pixels from all images.
From this we derive the pen tip trajectory in camera coor-
dinates. Two persons wrote 4257 words in total that results
in 16,752 camera samples. With this dataset it is possible
to compare results from traditional online trajectory datasets
(written on a tablet) with our online sensor pen datasets. Fig-
ure 3 exemplarily compares the trajectory and camera data
of the OnHW-wordsTraj dataset with the IAM-OnDB [51]
dataset. Table 3 gives a dataset overview of left-handed writ-
ers. Sample sizes are smaller and ranges between around
3% and 13.4% of the sample sizes of right-handed datasets.
For our benchmark, we consider right- and left-handed writ-
ers separately and will publish right- as well as left-handed
datasets for future research.2

Figure 4 compares statistical properties, i.e., the number of
samples, sample lengths and character distributions, between
our dataset and the state-of-the-art datasets. The IAM-OnDB
(line level) and VNOnDB-words datasets consist of more
samples and total number of characters compared to our
OnHW datasets, but at the same time use a higher number of
classes (81 and 147). The IAM-OnDB samples have higher
lengths (up to 64), and the VNOnDB samples have smaller
lengths (up to 11) (see Fig. 4a). The VNOnDB dataset is
equally distributed compared to other words datasets (see
Fig. 4c), while numbers appear more often than operators
in our OnHW-equations dataset (see Fig. 4b). See Appen-
dices A.4 and A.5 for more details on our datasets.

Datasets for single character classification For the OnHW-
equations dataset, it is possible to split the sensor sequence
based on the force sensor as the pen is lifted between
every single character. This approach provides another use-
ful dataset for a single character classification task. We set
split constraints for long tip lifts and recursively split these

2 www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/
schreibtrainer/onhw-dataset.html

sequences by assigning a possible number of strokes per
character. This results in a total of 39,643 single charac-
ters. Furthermore, we recorded the OnHW-symbols dataset
with the same labels (numbers 0 to 9 and operators +,
-, ·, :, =), written by 27 writers and a total of 2326
single characters. Figure 5 compares the distribution of
sample numbers for the OnHW-chars [65] (characters) and
OnHW-symbols as well as split OnHW-equations (numbers,
symbols) datasets. While the samples are equally distributed
for small and capital characters (≈ 600 per character), the
numbers and symbols are unevenly distributed for the split
OnHW-equations dataset (similar to Fig. 4b).

3.3 Evaluationmetrics

We define a set of task-specific seq2seq and single character-
based evaluation metrics that are commonly used in the
community. Metrics for seq2seq evaluation are the char-
acter error rate (CER) and word error rate (WER) that
are based on the Edit distance (ED). The ED is the mini-
mum number of substitutions S, insertions I and deletions
D required to change the sequences f = ( f1, . . . , fr ) into
g = (g1, . . . , gn) with lengths r and n, respectively. The ED
is defined by

EDi, j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

EDi−1, j−1 for fi = g j

min

⎧
⎪⎨

⎪⎩

EDi−1, j + D( fi )

EDi, j−1 + I (g j ) for fi �= g j

EDi−1, j−1 + S( fi , g j )

(1)

for 1 ≤ i ≤ r , 1 ≤ j ≤ n, EDi,0 = ∑i
k=1 D( fk) for

1 ≤ i ≤ r , and ED0, j = ∑ j
k=1 I (gk) for 1 ≤ j ≤ n [16].We

define the CER = Sc+Ic+Dc
Nc

as the ED, the sum of character
substitutions Sc, insertions Ic and deletions Dc, divided by
the total number of characters in the set Nc. Similarly, the
WER = Sw+Iw+Dw

Nw
is computed with word operations Sw,

Iw and Dw and number ofwords in the set Nw [38]. For single
character evaluation, we use the character recognition rate
(CRR) that is the number of correctly classified characters
divided by the total number of characters in the test set.

4 Benchmarkmethods

This section formally defines the seq2seq classification task
and our loss functions.We propose our architecture for HWR
from IMU-enhanced pens and describe our data augmenta-
tion techniques.

Sequence-based classification task An MTS U = {u1, . . . ,
um} ∈ Rm×l is an ordered sequence of l ∈ N streams with
ui = (ui,1, . . . , ui,l), i ∈ {1, . . . ,m}, where m is the length
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Fig. 4 Properties of our and state-of-the-art datasets

Fig. 5 Distribution of samples for the OnHW-chars, OnHW-symbols and split OnHW-equations datasets

of the time-series that is variable and l is the number of dimen-
sions. Each MTS is associated with v, a sequence of L class
labels from a pre-defined label set � with K classes. For our
classification task, v ∈ �L describes words and equations.
The training set is a subset of the array U = {U1, . . . ,Un} ∈
Rn×m×l , where n is the number of time-series, and the cor-
responding labels V = {v1, . . . , vn} ∈ �n×L . The aim of
the MTS classification task is to predict an unknown class
label for a given MTS. We train the classifier using the loss
LCTC(U ,V) [30].

Character-based classification task In contrast to the
sequence-based classification task, corresponding labels V
for the character-based classification task are of length L =
1. We define p(i |u) to be the predicted probability for the i th
class and q(i |u) to be the true class distribution. We train the
classifier using the cross-entropy loss and variants against
overconfidence and class imbalance [50,67,73,88,102,112].

Sequence-based loss The CTC loss is a solution to avoid
pre-segmentation of the training samples. The key idea of
CTC is to transform the network outputs into a conditional
probability distribution over label sequences. An interme-
diate label representation allows repetitions of labels and
occurrences of blank labels to identify nooutput label.Hence,
the networkwith theCTC loss has a softmaxoutput layerwith
one more unit than there are labels. These outputs define the
probabilities of all possible ways to align all label sequences
with the input sequence. [30]

Character-based losses We use the categorical cross-
entropy (CCE) loss defined by

LCCE(U ,V) = − 1

K

K∑

i=1

q(i |u) log p(i |u) (2)

for model training. Samples with softmax outputs that are
less congruent with provided labels are implicitly weighted
more than confident sample predictions (more emphasis is
put on difficult samples with CCE). Hence, more emphasis is
put on difficult samples, which can cause overfitting to noisy
labels [102,112]. To account for this imbalance, we modify
the CCE loss such that it down-weights the loss assigned to
well-classified examples. We use the Focal loss (FL) [50]
defined by

LFL(U ,V, α, γ )

= − 1

K

K∑

i=1

αt
(
1 − p(i |u)

)γ
q(i |u) log p(i |u), (3)

with class balance factor α ∈ [0, 1], and the modulating
factor

(
1− p(i |u)

)γ with focusing parameter γ ≥ 0.As alter-
native, we apply label smoothing (LSR) [67] that prevents
overconfidence by applying a confidence penalty through a
regularization term, yielding

LLSR(U ,V, β) = − 1

K

K∑

i=1

log p(i |u) − βH
(
p(i |u)

)
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Fig. 6 Overview of our CNN architecture in combination with a (Bi)LSTM or a TCN

Fig. 7 Overview of our architecture with multi-head attention

= − 1

K

K∑

i=1

log p(i |u) − DKL
(
x ||p(i |u)

)
,

(4)

with β the strength control of the confidence penalty. Label
smoothing is equivalent to an additional Kullback-Leibler
(KL) divergence term between a uniformly distributed ran-
dom variable x and the network’s predicted distribution p.
The bootstrapping approach [73] is another alternative for
each mini-batch. The soft bootstrapping loss (SBS) is

LSBS(U ,V, β)

= − 1

K

K∑

i=1

[
βq(i |u) + (1 − β)p(i |u)

]
log p(i |u), (5)

for predicted class probabilities p with weighting parameter
β, while the hard bootstrapping loss (HBS)

LHBS(U ,V, β)

= − 1

K

K∑

i=1

[
βq(i |u) + (1 − β)zi

]
log p(i |u) (6)

uses the maximum a posteriori (MAP) estimation of p given
u, with zi := 1[i = argmax ql , l = 1, . . . , K ]. MAP treats
every sample equally for a higher robustness against noisy
labels. This can lead to longer training times to reach conver-
gence and can make optimization more difficult [112]. The
generalized cross-entropy (GCE) [112] loss

LGCE(U ,V, α) = − 1

K

K∑

i=1

1 − p(i |u)α

α
(7)

with α ∈ (0, 1] uses a negative Box-Cox transformation to
combine benefits of the MAP and the CCE. The symmetric
cross-entropy (SCE) [102] is

LSCE(U ,V, α, β) = αLCCE(U ,V) + βLRCE(U ,V) (8)

based on the reverse cross-entropy (RCE) loss

LRCE(U ,V) = − 1

K

K∑

i=1

p(i |u) log q(i |u), (9)

aims for a more effective and robust learning, where α

mitigates the overfitting of CCE and β allows for flexible
exploration of the RCE. Furthermore, we make use of the
joint optimization (JO) [88], which overcomes the noisy
labels problem by learning network parameters and labels
jointly. The loss is defined by

LJO(�,V|U , α, β) =LCCE(�,V|U)+
αLp(�|U) + βLe(�|U)

(10)

with regularization losses Lp and Le, and network parame-
ters �.

Architectures We propose two different architectures for
seq2seq sensor signal classification. For the first method
(see Fig. 6), a convolution block consisting of 1D con-
volutions (200 filter, kernel size 4), max pooling (pool
size 2), batch normalization and dropout (with rate 0.2)
layers is used. One TCN layer of 100 units, one LSTM
layer of 100 units or two BiLSTM layers, each with 60
units, follow to extract the temporal context [74]. While
we use tanh activations for BiLSTM layers, we choose
ReLU for the TCN and LSTM layers. A dense layer with
100 units with the CTC loss predicts a sequence of class
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Fig. 8 Data augmentation methods of the original sensor sample (black)

labels. Second, we implement an attention-based network
(see Fig. 7) that consists of an encoder with batch normal-
ization, 1D convolutional and (Bi)LSTM layers. These map
the input sequence U ∈ Rm×l to a sequence of continuous
representations z. A transformer transforms z using nhead
stacked multi-head self-attention MultiHead(Q, K , V ) =
Concat(head1, . . . , headh)WO with WO ∈ Rhdv×dmodel .
The attention consists of point-wise, fully connected time-
distributed layers followed by a scaled dot product layer
and layer normalization [5] with dmodel output dimen-
sion [94]. headi = Attention(QWQ

i , KWK
i , VWV

i ), where

WQ
i ,WK

i ∈ Rdmodel×dk , and WV
i ∈ Rdmodel×dv . The atten-

tion can be described as mapping a set of key-value pairs of
dimension dv and a query of dimension dk to an output, and is

computed by Attention(Q, K , V ) = softmax
(
QKT√

dk

)
V . The

matrices Q, K and V are a set of queries, keys and values.

Data augmentation As the size of the datasets is lim-
ited, data augmentation is a critical pre-processing step for
networks to prevent overfitting and improve generalization.
However, it is not obvious how to carry out label-preserving
augmentation in some domains, i.e., scaling of acceleration
signals [93].We apply the following different data augmenta-
tionmethods forwearable sensor data on each sensor channel
at 50% probability. Time warping perturbs the temporal
location by smoothly distorting the time intervals between
samples that, e.g., simulates different sampling rates through
time shifts of the connection between device and tablet.
Scaling changes the magnitude of the data in a window by
multiplying by a random scalar σ = ±0.1 that augments
drifts in the signals. Shifting adds a random value α = ±200
to the force data and α = ±20 to the other sensor data.
While jittering is a way of simulating additive sensor noise
by adding a multiple σ = ±0.1 of the standard deviation to
all sensor channels, magnitude warping changes the mag-
nitude by convolving the data window with a smooth curve
varying around [0.7, 1.3] (only for the accelerometer data).
For time and magnitude warping, the data are augmented by
Bézier curves in the interval [1−σ, 1+σ ] that are generated
based on 10 random points. As one sample is represented by

a sequence of characters and a sample cannot be split into
sub-sequences, applying cropping and permutation augmen-
tation is not possible. Figure 8 zooms into the augmented
sensor data of the x-axis signal from Fig. 1.

5 Experiments

This section provides evaluation results for the seq2seq
(Sect. 5.1) and the single character-based classification task
(Sect. 5.2), and evaluates left-handed datasets (Sect. 5.3).We
propose a writer-dependent evaluation in Sect. 5.4.

Hardware and training setup For all experiments we
use Nvidia Tesla V100-SXM2 GPUs with 32 GB VRAM
equipped with Core Xeon CPUs and 192 GB RAM. We
use the Adam optimizer with a learning rate of 10−4. We
run each experiment for 1000 epochs with a batch size
of 50 (unless stated differently) and report results for the
best epoch. We split each dataset into five approx. 80/20
train/validation splits and report the mean and standard devi-
ation of the WER and CER. We use our OnHW-equations,
OnHW-words500(R), OnHW-wordsRandom and OnHW-
wordsTraj as well as the IAM-OnDB [51] and VNOnDB-
words [59] datasets for the sequence-based classification
task, and the OnHW-symbols, split OnHW-equations and
OnHW-chars [65] datasets for the single character-based
classification task. Each model is trained from scratch for
every dataset. We make use of the time-series classification
toolbox tsai [61] that contains a variety of state-of-the-art
techniques [6,15,21,24,25,34,39,72,87,89,99,103,110,113].

5.1 Seq2seq task evaluation

Method and architecture evaluation We first evaluate our
CNN and attention-based models for the seq2seq classifica-
tion task. A summary of results is given in Table 4. For all
datasets ourCNN+BiLSTMmodel significantly outperforms
the CNN+LSTM and CNN+TCN models. The attention-
based model performs poorly on large datasets (OnHW-
[equations, words500(R), wordsRandom]), but yields better
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Fig. 9 CERof InceptionTime [25] for different interpolated time-series
lengths on OnHW-equations dataset

results than the CNN+ TCN on our OnHW-wordsTraj
camera-based dataset and outperforms the CNN+LSTM and
CNN+TCN models on the trajectory-based dataset. The
CNN+BiLSTM model achieves a very good CER of 1.78%
on theOnHW-equationsWDdataset that increases to 12.98%
for the WI task. For the words, IAM-OnDB and VNOnDB
datasets, theWI classification task ismore difficult.Whilewe
achieve very lowCERs, theWERs are higher as no lexicon or
languagemodel is used.While for the OnHW-wordsRandom
dataset the CER of 7.87% for the WD task increases notably
to 35.22% for the WI task, the difference for the OnHW-
words500 dataset is smaller (17.16% CER for the WD task
and 27.80% for the WI task) as words in the validation set
do not appear in the training set (WD task). For the OnHW-
words500R dataset, the CER decreases to 5.20% as the split
is randomly shuffled. Our OnHW-wordsTraj dataset allows a
comparison of three recording devices (i.e., trajectory, IMU
and camera). From the CNN+BiLSTMmodel we see that the
spatio-temporal trajectory-based classification task is easier
than OnHWR from IMU-enhanced pens. Furthermore, it is
challenging to learn the transformation from camera to paper
plane.

Comparison to state-of-the-art techniques For compar-
ison, we train nine different well-established time-series
classification architectures on ourOnHWdatasets and Incep-
tionTime [25] on the tablet datasets. For these methods we
interpolate and zero pad the time-series to 800 timesteps to
obtain a fixed sequence length. We use linear spline interpo-
lation. In total, 800 timesteps lead to a low CER (see Fig. 9),
while above 800 timesteps the training time significantly
increases. As these methods are introduced for classifying
single labels (not sequences of labels), we replace the last
linear layer with a max pooling layer (of kernel size 4), a
dropout layer (40%) and an 1D convolutional layer (kernel
size 1 and channels are the number of class labels). Similar to
our approaches, we further add two BiLSTM layers each of
size 60. InceptionTime is an ensemble of CNNs inspired by
Inception-v4. As its default parameters (nf of 32 and depth

of 6) lead to inferior performance compared to our meth-
ods, we perform a large hyperparameter search for depth
(between 3 and 12) and nf (16, 32, 64, 96 and 128) with and
without BiLSTMs for the WD and WI tasks (see Fig. 10).
On the WD dataset, a higher nf and greater depth leads to
a lower CER. For the WI task, the model tends to overfit
on specific writers for larger models, and hence, the error
rates are constant for nf between 64 and 128, while the CER
still decreases for a greater depth. For nf of 32 and depth
of 11, InceptionTime+BiLSTM can marginally outperform
our CNN+BiLSTM model on the OnHW-equations dataset
(1.65% CER WD and 11.28% CER WI) and is notably bet-
ter on the OnHW-words500 (WD) dataset (12.96% CER)
without the two additional BiLSTM layers, but is on par
with our CNN+BiLSTM model on the WI task (26.08%
CER) and yields marginally higher error rates on the ran-
dom splits. Results further suggest that the performance
strongly depends on the network size. XceptionTime [72]
consists of depthwise separable convolutions and adaptive
average pooling to capture both temporal and spatial con-
tents. We search for the hyperparameter hf (see Fig. 11) and
set n f = 144. The small FCN [103] model yields high error
rates, but ResNet [103] (based on FCN) enables the exploita-
tion of class activation maps to find contributing regions in
the raw data and improves FCN. ResCNN [113] integrates
residual networks with CNNs. We set also n f = 144 for
ResCNN and ResNet (see Fig. 12), which perform simi-
lar, but cannot outperform XceptionTime on our datasets.
While additional BiLSTM layers improve the results of
InceptionTime, the error rates for XceptionTime, ResNet and
ResCNN decrease with additional BiLSTM layers. The uni-
variate models LSTM-FCN [39] and GRU-FCN [21] as well
as the multivariate models MLSTM-FCN [40] and MGRU-
FCN [40] that augment the fully convolutional block with a
squeeze-and-excitation block improve the FCN results, but
are not complex enough to outperform other architectures
on our datasets. In general, word beam search [77] did not
improve results and even leads to degraded performance. See
Appendix 7 for more evaluation details and a comparison to
state-of-the-art techniques.

Influence of data augmentation We train the CNN+ LSTM
model on the OnHW-equations dataset with the augmen-
tation techniques described in Sect. 4. Results are given
in Table 5. The baseline WER of 22.96% (WD) can be
improved with all augmentation techniques, while the WI
error of 69.21% is only affected by time warping and jit-
tering. The most notable improvement is given by time
warping with 20.90% for the WD task and 64.10% for the
WI task. Interpolation to 1,000 timesteps did not improve
the accuracy, and normalization to [−1, 1] deteriorates train-
ing performance. Figure 13 shows augmentation results and
combinations of these for InceptionTime on the OnHW-
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Fig. 10 Hyperparameter search of depth and n f for InceptionTime [25] with and without BiLSTM on the OnHW-equations datasets averaged
over 5 splits

Fig. 11 Hyperparameter search of n f for XceptionTime [72] with and without BiLSTM on the OnHW-equations datasets averaged over 5 splits

Fig. 12 Hyperparameter search of n f for ResNet [103] and ResCNN [113] with and without BiLSTM on the OnHW-equations datasets averaged
over 5 splits

Table 5 Evaluation results (WER, CER) in % (mean and standard deviation over fivefold splits) for different augmentation techniques and sensor
choices for the OnHW-equations dataset

WD WI
Augmentation WER CER WER CER
Technique Sensors Mean STD Mean STD Mean STD Mean STD

None All 22.96 1.83 3.50 0.38 69.21 7.91 18.11 5.20

Scaling (S) All 22.70 0.40 3.43 0.22 69.70 7.90 18.80 5.84

Time Warping (TW) All 20.90 0.83 3.18 0.27 64.10 5.51 15.26 2.27

Jittering (J) All 22.87 0.75 3.47 0.33 68.14 10.03 18.68 7.18

Magnitude Warping (MW) All 22.88 1.21 3.53 0.29 76.80 8.35 18.47 5.21

Shifting (SH) All 22.40 1.12 3.43 0.24 69.81 7.59 18.80 4.88

Interpolation All 25.04 0.92 3.96 0.32 70.50 8.30 19.42 5.96

Normalization All 55.26 2.04 7.97 0.51 82.48 8.74 22.71 5.04

None w/o Magnetometer 22.60 1.51 3.44 0.36 63.48 8.32 16.07 4.73

None w/o Front Accelerometer 21.36 0.60 3.28 0.29 70.24 8.25 19.55 5.52

None w/o Rear Accelerometer 23.20 0.86 3.57 0.26 68.30 8.14 16.64 5.40

None w/o Mag., w/o Front Acc. 22.46 1.55 3.41 0.38 69.12 8.40 17.31 4.02

Bold are baseline improvements
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Fig. 13 Augmentation results for InceptionTime on the OnHW-
equations (WD) dataset over five splits

equations WD dataset. Here, the baseline CER of 1.77% and
WER of 12.94% can be notably improved by time warping
as a single augmentation (comparable to our CNN+LSTM).
The combination of jittering and time and magnitude warp-
ing yields the highest error rate reduction.

Influence of sensor dropping We train theOnHW-equations
dataset and drop data from single sensors, e.g., the front or
rear accelerometer or themagnetometer data, in order to eval-
uate the influence of each sensor, see Table 5. Only dropping
the front accelerometer (WD) and the rear accelerome-
ter (WI) decreases the WER and CER, which could also
be attributed to the smaller dataset size while leaving the
architecture unchanged. Without magnetometer the WER
improves for the WI task as the magnetic field changes with
the recording location, but keeps constant for the samewriter.
Dropping the force sensor leads to a significant higher clas-
sification error as the force sensor provides information that
allows a segmentation of strokes.

5.2 Single character task evaluation

Method and architecture evaluation We use our OnHW-
symbols and split OnHW-equations datasets, the combina-
tion of both (samples randomly shuffled) and the OnHW-
chars [65] dataset, and interpolate the single characters to
the longest single character of the dataset (64 for characters
and 79 for number/symbols). We train our network pro-
posed in Fig. 6 with one additional dense layer of 100 units.
For all methods we use the categorical CE loss for train-
ing and the CRR for evaluation. Network parameter choices
are described in Appendix 6. The results are summarized
in Table 6. We also compare to state-of-the-art results pro-
vided in [65]. While GRU [15] yields very low accuracies
for all datasets, standard LSTM units (2 and 3 stacked lay-
ers), BiLSTMunits andTCNs can increase theCRR. Further,
FCN [40] and the spatio-temporal variants RNN-FCN [40],
LSTM-FCN [39] and GRU-FCN [21] as well as the mul-

tivariate variants MRNN-FCN, MLSTM-FCN [40] and
MGRU-FCN [40] yield better results. MLSTM-FCN [40]
with a standard or attention-based LSTM and with/out a
squeeze-and-excitation (SE) block achieves high accuracies,
but cannot improve over state-of-the-art results achieved by
[65]. Due to minor and inconsistent changes in performance,
it is not possible to make a statement about the importance of
the SE block and the attention-based LSTM. The networks
based on CNNs, i.e., ResCNN [113], ResNet [103], XRes-
Net [34], InceptionTime [25] and XceptionTime [72], can
partly outperform the FCN variants. For XResNet, a smaller
depth of the network is preferable, while for InceptionTime
the greater depth and larger nf generally yields better results.
We train TapNet [111], an attentional prototypical network
for semi-supervised learning, that achieves the lowest accu-
racies. We propose a benchmark for the transformer variants
[13,36,44,90,101] (for details, see Appendix 6). The perfor-
mance improves for all transformer variants compared to
TapNet, but are notably lower than those of the convolutional
and spatio-temporal methods. TST [110] with Gaussian
encoding is on par with the convolutional techniques on
the WD datasets. While our CNN+BiLSTM outperforms all
methods on all OnHW-chars [65] datasets, it is not notably
different from results achieved by the CNN+LSTM and
CNN+TCN architectures, which in turn achieve the best
results on the OnHW-symbols and split OnHW-equations
datasets as well as on the combined cases.

Loss functions evaluation We train the CNN+BiLSTM
architecture for all single-based datasets with the CCE loss as
baseline and the seven variants described in Sect. 4. For FL,
we search for the optimal hyperparameters for the OnHW-
chars combined dataset and for the other methods for the
OnHW-symbols dataset (see Appendix 6). We set α = 0.75
and γ = 8. From the hyperparameter searches and literature
recommendation, we set β = 0.1 for LSR, β = 0.95 for
SBS, β = 0.8 for HBS, and α = 0.95 for GCE. For the
SCE loss, we set α = 0.5 and β = 0.5 for the weighting
of the CCE and RCE losses, respectively. Similar, the reg-
ularization terms of the JO loss are weighted by α = 1.2
and β = 0.8. Table 7 gives an overview of the results for
all loss functions for all single character-based datasets. The
FL improves the CRR results of the symbols and equations
datasets (WI) in comparison with the baseline, but yields
worse results for the other datasets. As characters in the
OnHW-chars dataset are equally distributed, the FL does not
have any benefit on training performance. LSRprevents over-
confidence and increases the accuracy for all datasets. LSR
also achieves the highest accuracy of all losses for eight of
the 12 datasets. As there are many samples that are written
similarly, the model is overconfident for such samples by
integrating a confidence penalty. Similar to FL, the SBS and
HBS losses can only marginally improve results for symbols
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Table 6 Recognition rates (CRR) in % for the symbols, split equations and characters WD and WI datasets

Method OnHW- OnHW- OnHW-sym.1 OnHW-chars3 [65]
(LCCE loss) symbols1 equations1,2 + equations1,2 lower upper combined

WD WI WD WI WD WI WD WI WD WI WD WI

CNN+LSTM 96.44 80.00 95.43 84.22 95.65 85.11 88.85 79.48 92.15 85.60 78.17 68.06

CNN+BiLSTM 96.20 79.51 95.70 83.88 95.50 84.55 89.66 80.00 92.58 85.64 78.98 68.44

CNN+TCN 94.21 76.83 96.70 84.91 95.48 86.30 88.32 78.80 90.80 84.54 77.90 67.96

LSTM (2 layers) 81.18 62.85 91.05 74.11 90.64 74.70 74.76 65.63 80.46 73.86 58.88 51.41

LSTM (3 layers) 83.51 64.48 92.08 75.77 91.52 76.17 76.05 66.14 82.10 74.82 61.58 52.80

BiLSTM (2 layers) 83.30 63.01 91.39 73.43 91.48 76.60 75.80 66.28 81.88 75.50 61.19 53.60

BiLSTM (3 layers) 83.09 59.74 92.46 76.60 91.93 77.05 77.17 67.20 83.48 75.99 63.52 54.21

GRU [15] 47.57 33.22 70.80 45.73 68.36 52.96 35.12 33.98 45.69 44.90 30.72 29.22

TCN [6] 85.41 70.21 91.64 77.44 92.02 79.18 75.36 68.30 79.14 74.27 60.14 54.28

FCN [103] 92.18 74.63 94.03 81.46 94.22 82.56 81.62 71.48 85.37 77.24 67.41 58.00

RNN-FCN [40] 93.23 74.63 94.24 81.56 94.52 82.74 81.74 71.03 85.32 77.28 67.78 57.88

LSTM-FCN [39] 92.39 73.32 93.95 81.47 94.33 82.24 81.43 71.41 85.43 77.07 67.34 57.93

GRU-FCN [21] 92.39 73.32 94.29 81.18 94.49 82.05 81.71 71.57 85.26 77.30 67.22 58.10

MRNN-FCN 92.60 74.30 94.24 81.30 94.36 82.58 82.35 72.06 85.81 77.83 68.01 58.57

MLSTM- SE 89.22 70.38 93.78 82.49 94.04 82.70 79.39 71.90 85.08 77.44 69.33 60.14

FCN [40] SE, Att. 89.43 69.07 93.92 80.56 93.59 82.48 79.71 71.43 85.25 77.34 69.29 59.84

LSTM 87.74 71.85 94.12 80.13 90.14 82.10 80.21 71.26 84.68 76.69 68.63 59.25

Att. 88.37 70.54 93.95 81.18 94.14 82.78 79.97 70.92 84.57 76.71 68.76 58.84

MGRU-FCN [40] 92.60 74.30 94.21 81.28 94.43 82.25 82.17 71.90 85.81 77.92 68.22 58.79

ResCNN (64) [113] 92.23 77.41 94.58 80.95 94.55 82.07 82.52 72.00 86.91 78.64 67.55 58.67

ResNet (64) [103] 94.50 76.76 94.68 83.45 94.74 83.43 83.01 71.93 86.41 78.03 68.56 58.74

XResNet (18) [34] 93.45 74.14 94.80 81.51 94.73 82.91 81.21 69.57 86.02 76.91 66.69 56.64

XResNet (34) [34] 93.45 74.63 94.64 81.77 94.74 82.29 81.40 69.47 85.74 77.03 66.53 55.59

XResNet (50) [34] 93.66 74.47 94.63 81.74 94.83 82.76 80.99 69.14 86.05 76.69 64.98 54.38

XResNet (101) [34] 92.60 75.29 93.64 80.95 93.48 82.74 80.88 69.53 85.83 76.47 64.53 54.20

XResNet (152) [34] 92.18 73.16 93.47 80.00 92.58 81.64 80.71 69.06 85.17 76.70 64.30 53.72

XceptionTime (16) [72] 91.54 72.34 94.03 82.24 93.95 81.84 81.41 70.76 85.94 78.23 66.70 56.92

InceptionTime (32,6) [25] 91.33 76.10 94.05 81.39 93.88 82.37 80.98 72.22 85.20 78.24 66.94 58.34

InceptionTime (47,9) [25] 92.60 75.94 94.49 83.42 94.20 81.25 82.11 72.40 85.93 79.49 67.72 59.53

InceptionTime (62,9) [25] 91.97 78.07 94.83 81.57 95.01 81.74 82.15 72.76 86.05 79.81 67.89 59.62

InceptionTime (64,12) [25] 91.97 76.92 94.87 84.35 95.06 83.33 84.14 75.28 87.80 81.62 70.43 61.68

MultiIncep.Time (32,6) [25] 91.12 75.29 93.91 80.57 93.61 81.67 80.96 72.25 85.12 78.21 66.76 58.32

MiniRocket [87] 69.77 58.76 75.91 45.34 75.58 46.46 46.01 72.25 51.38 44.64 33.65 27.63

OmniScaleCNN [89] 84.78 68.09 91.76 75.46 92.23 77.49 73.70 64.13 79.54 71.23 60.58 51.88

XEM [24] 85.84 67.10 92.13 77.04 91.42 77.90 74.39 68.12 81.67 74.32 58.18 51.99

TapNet [111] 67.02 48.12 66.38 OOM 65.96 OOM 45.62 37.86 46.04 38.76 OOM OOM

mWDN [99] 88.58 67.43 92.37 77.30 92.02 78.60 75.69 63.44 82.91 73.01 59.80 47.48

Perceiver [36] 67.40 48.10 89.60 58.10 89.30 61.10 56.20 39.70 57.08 42.89 42.72 30.28

Sinkhorn [90] 61.10 50.90 76.80 66.40 75.70 69.80 47.26 45.56 53.04 51.36 36.84 34.52

Performer [13] 55.40 47.80 76.10 68.30 74.90 66.80 47.54 46.32 53.48 51.76 36.62 34.56

Reformer [44] 56.90 47.80 75.80 70.10 75.40 70.20 47.26 47.28 53.80 51.78 35.98 34.66

Linformer [101] 53.90 42.90 75.20 67.40 74.90 68.80 48.90 44.92 53.80 51.24 34.92 34.00

TST [110] (Gaussian) 91.12 71.85 93.07 80.40 93.16 80.33 80.10 70.75 84.81 78.34 66.12 57.56

MultiTST [110] 87.53 71.19 92.36 78.82 91.96 79.46 74.19 66.59 81.81 75.18 60.81 53.95

TSiT [110] 84.99 68.09 93.30 78.98 92.91 80.28 79.56 69.90 84.55 77.21 64.81 55.73
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Table 6 continued

Method OnHW- OnHW- OnHW-sym.1 OnHW-chars3 [65]
(LCCE loss) symbols1 equations1,2 + equations1,2 lower upper combined

WD WI WD WI WD WI WD WI WD WI WD WI

CNN (from [65]) – – – – – – 84.62 76.85 89.89 83.01 70.50 64.01

LSTM (from [65]) – – – – – – 79.83 73.03 88.68 81.91 67.83 60.29

CNN+LSTM (from [65]) – – – – – – 82.64 74.25 88.55 82.96 69.42 64.13

BiLSTM (from [65]) – – – – – – 82.43 75.72 89.15 81.09 69.37 63.38

11-fold cross-validation split; samples interpolated to 79 timesteps. 2Split into single symbols and numbers.
35-fold cross-validation split; samples interpolated to 64 timesteps. Underlined: State-of-the-art results. Bold: Best results. SE: squeeze-and-
excitation. Att.: attentional LSTM

Table 7 Recognition rates (CRR) in % for the symbols, split equations and characters WD and WI datasets for the CNN+BiLSTM architecture
trained with different loss functions

Loss Function OnHW- OnHW- OnHW-sym.1 OnHW-chars3 [65]
(CNN+BiLSTM architecture) symbols1 equations1,2 + equations1,2 Lower Upper Combined

WD WI WD WI WD WI WD WI WD WI WD WI

Categorical CE (CCE) 96.20 79.51 95.57 83.88 95.50 84.55 89.66 80.00 92.58 85.64 78.98 68.44

Focal loss (FL) [50] 95.78 79.67 95.42 84.53 95.25 85.20 88.56 78.88 91.91 85.62 77.48 68.15

Label smoothing (LSR) [67] 96.22 81.83 95.86 87.09 95.74 86.52 89.74 80.96 92.72 86.13 79.09 69.43

Boot soft (SBS) [73] 96.00 79.00 95.70 84.87 95.65 85.91 89.08 79.76 92.12 85.79 78.19 68.47

Boot hard (HBS) [73] 96.22 79.17 95.63 85.27 95.60 87.11 89.20 80.00 92.29 85.82 78.28 68.41

Generalized CE (GCE) [112] 96.44 80.83 95.81 86.46 95.64 86.69 88.18 79.34 91.51 85.49 76.91 67.76

Symmetric CE (SCE) [102] 96.44 81.00 95.76 85.15 95.58 85.43 89.24 79.90 92.09 85.84 78.11 68.65

Joint optimization (JO) [88] 97.33 82.17 95.67 85.40 95.60 85.87 89.71 80.14 92.65 86.56 79.07 69.26

11-fold cross-validation split; samples interpolated to 79 timesteps. 2Split into single symbols and numbers
35-fold cross-validation split; samples interpolated to 64 timesteps. Bold: Best results

and split equations datasets, and even decrease performances
for the character datasets. HBS is slightly better than SBS.
The GCE loss decreases the classification accuracy for the
OnHW-chars datasets, while it achieves the second best CRR
of all losses for the split OnHW-equations WD (95.81%)
and WI (86.46%) datasets. Yet, the GCE loss often results
in NaN loss (see Fig. 25, Appendix 7), and hence, is non-
robust for our datasets. The improvement for the SCE loss
is less significant than other losses and even decreases for
the OnHW-chars dataset. JO leads to an improvement for all
OnHW-chars datasets. JO further outperforms all losses for
the WI upper task and achieves marginally lower accuracies
than the LSR loss for the lower and combined datasets. LSR
also achieves the highest accuracies on the OnHW-symbols
WD(97.33%) andWI (82.17%)datasets. In summary, all loss
variants can improve results of the CCE loss for the OnHW-
symbols, split OnHW-equations and combined datasets as
these are not equally distributed. LSR, SCE and JO can most
significantly outperform other techniques. For more details
of accuracy plots, see Appendix 7, Fig. 25.

5.3 Left-handedWriters datasets evaluation

For the left-handed writers datasets, we use the pre-trained
weights from the right-handed datasets and train the
CNN+BiLSTM architecture for 500 epochs. Table 8 sum-
marizes all results for the sequence-based classification
task (left) and the single character-based classification task
(right). The motion dynamics of right- and left-handed writ-
ers is very different, especially with different rotations, and
hence, also the sensor data are different [45]. The models
can still make use of the pre-trained weights, and fine tuning
leads to 1.24% CER for the OnHW-equations-L dataset for
the WD task, and 15.32% CER for the OnHW-words500-
L dataset, which is better than for the right-handed task.
For the OnHW-wordsRandom-L dataset, the CER (5.40%)
increases, while the WER (32.73%) decreases. Consistently,
the results for the WI task decrease as the model overfits
to specific writers due to the small amount of different left-
handed writers in the training set. For single-based datasets,
the fine tuning leads to a high WD classification accuracy of
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Table 8 Evaluation results (WER, CER) in% (mean and standard devi-
ation) for our left-handedOnHW-equations-L, OnHW-words500-L and
OnHW-wordsRandom-L datasets (left), and recognition results (CRR)

in % for our left-handed OnHW-symbols-L, split OnHW-equations-L
and OnHW-chars-L datasets (right) for the CNN+BiLSTM architecture

Dataset WD WI Dataset WD WI
(CNN+BiLSTM WER CER WER CER (CNN+BiLSTM CRR CRR
architecture) Mean STD Mean STD Mean STD Mean STD architecture) Mean Mean

OnHW-equations-L 8.56 1.59 1.24 0.25 95.73 3.13 32.16 5.16 OnHW-symbols-L1 92.00 54.00

OnHW-words500-L 47.90 17.25 15.32 6.03 97.90 1.10 81.43 11.66 OnHW-equations-L1,2 92.02 51.50

OnHW-wordsRandom-L 32.73 3.43 5.40 1.15 99.70 0.30 72.27 15.55 OnHW- Lower 94.70 –

chars-L3 [65] Upper 91.90 –

Combined 82.80 –

11-fold cross-validation split; samples interpolated to 79 timesteps
2Split into single symbols and numbers
35-fold cross-validation split; samples interpolated to 64 timesteps
Writer-dependent (WD) and writer-independent (WI) classification tasks

(a) Mismatches. (b) Insertions. (c) Deletions.

Fig. 14 Evaluation of the ED dependent on the normalized sample lengths for the OnHW-equations dataset

(a) Mismatches. (b) Insertions. (c) Deletions.

Fig. 15 Evaluation of the ED dependent on the normalized sample lengths for the OnHW-wordsTraj dataset

92% for the OnHW-symbols-L and split OnHW-equations-L
datasets (compared to 96.2% and 95.57% for right-handed
datasets, respectively), but decreases forWI tasks to 54% and
51.5% (compared to 79.51% and 83.88% for right-handed
datasets, respectively). Due to the smaller size of the left-
handed datasets, the models overfit to specific writers [45].

5.4 Edit distance and writer analysis

Evaluation of sample length-dependent edit distance We
show the sample length-dependent counts of wrong pre-
dictions, i.e., mismatches, insertions and deletions, for the
OnHW-equations (see Fig. 14) and OnHW-wordsTraj (see
Fig. 15) datasets. For the OnHW-equations dataset, a high

appearance of mismatches and insertions appears at the start-
ing and end characters, while deletions emerge more even
over the whole equations. The first character of words is sig-
nificantly often mismatched or has to be inserted or deleted
for the OnHW-wordsTraj dataset. This shows the unequal
distribution of samples for the words datasets (see Fig. 4c),
while the equations dataset is very equally distributed (see
Fig. 4b).

Writer-dependent evaluation Figure 16 shows the writer-
dependent evaluation of the OnHW-equations dataset. The
CER of many samples of several writers, e.g., ID 0, 2-4, 24-
35, 42-44, and 49-53, is 0%. The CER increases only for a
small number of samples. The range of the CER increases
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Fig. 16 Writer-dependent CER (%) for the OnHW-equations (WD) dataset

for writer IDs 1, 5-7, 22, 23, and 36-39. Hence, the writing
style and with that the sensor data is different and out-of-
distribution in the dataset.

6 Discussion and summary

6.1 Social impact, applications and limitations

Handwriting is important in different fields, in particular
graphomotoric. The visual feedback provided by the pen, for
instance, helps young students and children to learn a new
language. Hence, research for HWR is very advanced. How-
ever, state-of-the-art methods to recognize handwriting (a)
require to write on a special device, which might adversely
affect the writing style, (b) require to take images of the
handwritten text, or (c) are based on premature technical
systems, i.e., the sensor pen is only a prototype [17]. The
publicly available sensor pen developed by STABILO Inter-
national GmbH has previously been used by [46,65] and
allows an easier data collection than previous techniques.
The research for collecting devices which do not influence
the handwriting style is becoming increasingly important and
with it also the social impact of resulting datasets. The aim
of our dataset is to support the learning of students in schools
or self-paced learning from home without additional effort
[4,106].Awell-knownbottleneck formanymachine learning
algorithms is their requirement for large amounts of data sam-
ples without under-represented data patterns. For our HWR
application, a large variety of different writing styles (cursive
or printed characters, left- or right-handed and beginner or
advanced writers), pen rotations and writing surfaces (espe-
cially different vibrations of the paper) are necessary. We
provide an evaluation benchmark for right- and left-handed
datasets. Asmotion dynamics between right- and left-handed
writers are very different, extracting mutual information is
a challenging task [45,63]. The ratio between both groups
approximately fits the real-world distribution, i.e., the under-
representation of left-handed writers (10.6%). Only adults

without any selection participated at data recording as the
handwriting style of students changes quickly with the age
[7].

6.2 Experimental results

We performed several benchmarks and come to the fol-
lowing conclusions: (1) For the seq2seq classification task,
we evaluated several methods based on CNNs in combina-
tion with RNNs on inertial-based datasets written on paper
and on tablet and evaluated state-of-the-art trajectory-based
datasets. Depending on the dataset size, our CNN+BiLSTM
model is on par with the InceptionTime+BiLSTM architec-
ture. A search of architecture hyperparameters is important
to achieve a generalized model for a real-world application.
Our transformer-based architecture could not outperform
simpler convolutional models. (2) Sensor data augmentation
leads to a better generalized training. (3) For the single clas-
sification task, our simple CNN+[LSTM, BiLSTM, TCN]
canoutperformstate-of-the-art techniques. (4)Cross-entropy
variants (i.e., label smoothing) improve results that are
dependent on the dataset (i.e., label noise and class balance).
(5) Writer-independent classification of (under-represented)
left-handed writers is very challenging that is interesting for
future research.

6.3 Collection consent and personal information

While recording the datasets, we collected the consent of all
participants. We only collected the raw data from the sensor-
enhanced pen, and for statistics the age and gender of the
participant and their handedness. The handedness is neces-
sary because the pen is differently rotated between left- and
right-handed writers. The recording localization was Ger-
many. An ID is assigned to every participant such that the
dataset is fully pseudonymized. The ID is necessary for the
WD and WI evaluation.
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6.4 Conclusion and future research

We proposed several equations and words OnHWR datasets
for a seq2seq classification task, as well as one symbol
dataset for the single character classification task based on
a novel sensor-enhanced pen. By utilizing (Bi)LSTM and
TCNmodels combined with CNNs and different transformer
models, we proposed a broad evaluation benchmark for
lexicon-free classification. Various augmentation techniques
showed notable improvement in classification accuracy. Our
detailed evaluation of the WD and WI tasks sets important
challenges for future research and provides a benchmark
foundation for novel methodological advancements. For
example, semi-supervised learning and few-shot learning
such as prototypical networks could improve the classifica-
tion accuracy of under-representedwriters. Exploiting offline
datasets for pre-training or the use of lexicon and language
models might further allow the model to better learn the task.
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Appendices

In this appendix, we will give a general overview of related
work in Sect. 1. We propose more details about the sensor
pen in Sect. 2 and present the data acquisition and format
in Sect. 3. While Sect. 4 shows additional samples, Sect. 5
proposes more detailed statistics of the datasets. We state
the chosen transformer parameters in Sect. 6. Section 7 con-
cludes with more evaluation details.

General overview of related work

Temporal convolutional networks (TCNs) TCNs consist of
CNNs as encoders to extract spatio-temporal information for
low-level feature computation and a classifier that captures
high-level temporal information using a recurrent network.
TCNs can take a series of any length and output it with the
same length. They performwell in prediction taskswith time-
series data. Yan et al. [107] TCNs have been used for the
HWR task in [82,83].

RNNs Wigington et al. [105] proposed a CNN-LSTMmodel
for text detection, segmentation and recognition. The per-
formance of RNNs can be improved using dropout [68].
Carbune et al. [12] highly improve classification accuracies
by a stack of bidirectional LSTMs [31]. Tian et al. [91]
combined BiLSTMs in the word encoder with word inter-
attention for a multi-task document classification approach.
Multi-dimensionalRNNs as theMDLSTM-RNNs [32] scan
the input in the four possible directions, where LSTM cell
inner states and output are computed from previous positions
in the vertical and horizontal directions. Voigtlaender et al.
[97] processed the input in a diagonal-wise fashion to enable
GPU-based training and explored deeper and wider MDL-
STMs architectures for HWR. Bluche [10] transformed the
2D representation into a sequence of predictions to enable
end-to-end processing of paragraphs. However, these archi-
tectures are computationally expensive and extract features
visually similar to CNNs; hence, 2D long-term dependencies
may not be essential [70]. Dutta et al. [20] integrated a spatial
transformer network into their RCNN method.

Transformers They aim for handling long-range depen-
dencies with ease relying entirely on self-attention to
compute representations of its input and output without
using sequence-aligned RNNs or convolution. Vaswani et
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al. [94] showed their transformer architecture consisting of a
decoder, encoder and multi-head attention to be superior in
quality while being more parallelizable and requiring sig-
nificantly less time to train. Kang et al. [38] introduced
a novel method for offline HWR that bypasses any recur-
rence and uses multi-head self-attention layers at visual and
textual stages. As transformer-based models scale quadrati-
cally with the sequence length due to their self-attention, the
Longformer introduced an attention mechanism that scales
linearly and was applied to process documents of thousands
of tokens. The Performer [13] that estimates (softmax) full-
rank attention transformers also use only linear complexity.
The Perceiver [36] scales to high-dimensional inputs such
as audio, videos, images and point-clouds by using cross-
attentional principles before using a stack of transformers in
the latent space.

Additional information of the sensor pen

The DigiPen by STABILO International GmbH is a sensor-
enhanced ballpoint pen with internal data processing capa-
bilities. A Bluetooth module enables live streaming of the
integrated sensor at 100 Hz to a connected device. The
DigiPen development kit is also publicly available.3 The pen
has an ergonomic soft-touch grip zone, such that the writ-
ing feels comfortable and is as normal writing on paper.
The pen’s overall length is 167 mm, its diameter is 15
mm, and its weighs 25 g. The pen is equipped with a
front accelerometer (STM LSM6DSL), a rear accelerometer
(Freescale MMA8451Q), a gyroscope (STM LSM6DSL), a
magnetometer (ALPS HSCDTD008A) and a force sensor
(ALPS HSFPAR003A). The front and rear accelerometers
are differently oriented. The accelerometers were adjusted
to a range of ±2g with a resolution of 16 bit of the front and
14 bit for the rear accelerometer. The gyroscope has a range
of ±1000◦/s (16 bit), and the magnetometer has a range of
2.4 mT (14 bit). The measurement range of the force sensor
is between 0 and 5.32 N (12 bit).

Data acquisition and format

STABILO International GmbH provides a recording app to
obtain the sensor data that are publicly available. Through
this setup we also recorded the ground truth labels. The data
were recorded over a period of 1.5 years. To achieve equally
distributed datasets, we apply the following constraints. The
writer has to write on a normal, white paper padded by five
additional sheets, and has to sit on a chair in front of a table.
The logo of the pen needs to face upwards. Users are allowed
to write in a cursive or printed style. The way of holding the

3 DigiPen Development Kit: https://stabilodigital.com/devkit-
demoapp-introduction/

pen and the size of handwriting was not constrained. Prior
to recording the gyroscope and magnetometer biases and the
magnetometer scaling has to be determined by calibrating the
pen. We do not use the calibration data, but publish the cal-
ibration files along the datasets for possible future research.
For more information, see [65].

The data format is given as following. For each dataset we
will publish the raw data that consist of the calibration file, a
labels file with start and end timestep, and a data file with the
corresponding 13 channels for each timestep. Additionally,
we already preprocess the data and upload pickle (.pkl) files.
For each dataset and each of the five cross-validation splits,
we generated a train and validation file with the sensor data,
the corresponding label and the writer IDs.

Exemplary sensor data

Figures 17 and 18 show the sensor data of the 13 channels for
an exemplary equation and words written on normal paper
and on tablet. The accelerometer data are given in m/s2, the
gyroscope data in ◦/s, the magnetometer data in mT and
the force sensor in N. The equation sample consists of 567
timesteps, while the word sample on paper consists of 217
timesteps and on tablet of 402 timesteps. It can be shown
that for all three samples the single strokes can be clearly
separated through the force sensor (see Fig. 17d). By com-
paring the accelerometer and gyroscope data of a selected
word written on normal paper (see Fig. 18a and b) with the
word written on tablet (see Fig. 18c and d), we can see that
the surface of the paper introduces higher sensor noise than
the surface of the tablet.

Statistics of the datasets

The characteristics of a dataset influences the behavior of
a deep learning model. If the deployed context does not
match the evaluation datasets, a model is unlikely to per-
form well. Hence, we will propose more detailed statistics of
our proposed datasets, in this section, while we already com-
pared our datasets with state-of-the-art datasets in Sect. 3.2.
Table 9 proposes average anddeviation timesteps andnumber
of strokes for each sample length of the OnHW-equations,
OnHW-words500 and OnHW-wordsRandom datasets. The
number of timesteps per sample is significantly larger for
the OnHW-equations dataset than for the words datasets.
We can conclude that writing numbers and symbols requires
more time as words are mostly written in cursive font, while
equations are written in printed font. Hence, the deviation
of timesteps is also larger for equations. The deviation in
timestep lengths is important as the data have to be split by the
CTC loss, and a larger deviation leads to more split varieties.
Additionally, the number of strokes per sample is an signifi-
cant feature for the classification task, which can be learned
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(a) (b)

(c) (d)

Fig. 17 Exemplary sensor data of one sample of the OnHW-equations dataset

(a) (b)

(c) (d)

Fig. 18 Exemplary accelerometer and gyroscope data of one sample of the OnHW-words500 (top) and OnHW-wordsTraj (bottom) datasets

by themodel from the force sensor data. The average number
of strokes is clearly larger (about one to three strokes) for the
OnHW-equations dataset than the words datasets, while the
deviation of strokes is less. We can state from that number
and symbols require many strokes for printed writing, while
cursive writing of words leads to less number of strokes with
a use-specific writing style. Hence, training a model for a
writer-independent classification task is more difficult. To
split the OnHW-equations dataset into single symbols and
numbers, we use the following split constraints, where the
possible number of strokes per character is 0 [1], 1 [1], 2
[1], 3 [1], 4 [1,2], 5 [2], 6 [1], 7 [1,2], 8 [1], 9 [1], + [2], -
[1], · [1], : [2] and = [2].

Figure 19 gives an overview of writers contributed to the
sequence-based datasets. For the OnHW-equations dataset
most participants wrote about 180 equations, while for the
OnHW-words500 and OnHW-wordsRandom each writer
contributed about 500 words. This leads to a equally bal-
anced dataset and a proper writer-independent evaluation.

Not only the diversity of the samples per participant is
important, but also the diversity of the sensor data. In par-
ticular, out-of-distribution sensor data from one writer can
decrease classification accuracy. Figure 20 gives an overview
of the mean distribution per writer for the x-axis of the sen-
sors. For the force data, the writers with IDs 7 and 17 have
many outliers, while the writers with IDs 12, 37 and 42 press
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Table 9 Overview of sample data length average LA and standard deviation LD and number of strokes average SA and standard deviation SD per
number of labels

Dataset 2 3 4 5 6 7 8 9 10 11 12 13 14

OnHW-equations LA – – – 228 332 420 482 559 642 703 777 855 906

LD – – – 37 105 158 167 192 207 211 230 235 260

SA – – – 6.21 7.90 9.28 10.37 11.76 13.05 14.21 15.57 17.03 18.28

SD – – – 2.21 1.67 1.88 2.32 2.61 2.69 2.86 2.93 3.76 3.00

OnHW-words500 LA 87 120 150 187 223 272 320 349 393 425 486 502 603

LD 258 36 35 51 51 63 72 95 86 90 106 118 140

SA 2.46 3.25 3.84 4.57 5.32 6.64 7.40 8.32 8.88 9.55 10.36 11.81 14.75

SD 1.00 1.30 1.41 1.76 1.94 2.33 2.64 2.95 2.94 3.30 3.44 4.26 4.68

OnHW-wordsRandom LA 111 167 201 240 290 340 397 438 493 538 598 648 703

LD 41 80 86 94 112 128 158 165 179 194 209 222 234

SA 2.83 3.89 4.64 5.25 5.95 6.82 7.69 8.50 9.23 10.08 11.11 11.74 13.01

SD 1.07 1.41 1.72 1.80 2.11 2.34 2.65 2.96 3.12 3.42 3.56 3.82 4.04

15 16 17 18 19 20 21 22 23 24 25 26 27

OnHW-equations LA 1,080 – – – – – – – – – – – –

LD 221 – – – – – – – – – – – –

SA 18.90 – – – – – – – – – – – –

SD 3.15 – – – – – – – – – – – –

OnHW-words500 LA 609 608 – 707 712 – – – – – – – –

LD 115 119 – 124 144 – – – – – – – –

SA 14.41 15.27 – 16.96 15.58 – – – – – – – –

SD 4.52 3.94 —- 5.16 5.01 – – – – – – – –

OnHW-wordsRandom LA 748 762 854 891 922 1,018 967 982 1,019 1,199 1,078 1,087 737

LD 237 233 266 260 249 250 221 209 193 206 355 143 0

SA 13.93 14.22 15.64 16.19 17.32 18.61 17.91 19.88 20.00 25.25 23.33 25.00 1.00

SD 4.45 4.97 5.03 5.04 5.48 5.51 6.14 7.17 5.41 6.67 5.25 2.33 0.00

Fig. 19 Overview of writer IDs contributed to the OnHW-equations, OnHW-words500, and OnHW-wordsRandom datasets

the pen tip strongly to the paper. While the front accelerom-
eter data are very diverse between−103 and 103 (e.g., writer
14, 25 and 45 with many outliers, against writer 16, 19 and
37 with consistent sensor data), the movement of the rear
accelerometer is slower between −4 · 103 and 3 · 103, as the
pen tip typically moves faster than the rear accelerometer.
The gyroscope distribution per writer draws conclusion of
the writing style. These findings lead to the conclusion that
the writer-dependent problem is an easier classification task
than the writer-independent problem.

Transformer parameters and hyperparameter
searches

Transformer parameters

This section describes the transformer parameters. For our
attention-based model, we search for the optimal parame-
ters dmodel = [150, 300], dk = [32, 64], dv = [32, 64], the
number of multi-head attentions nhead = [3, 4, 5] and a con-
volutional factor cfac = [4, 6, 8, 10, 16], while the network
consists of the 1D convolutions (cfac, 2 · cfac, 4 · cfac, 8 · cfac)
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Fig. 20 Overview of mean sensor distribution per writer for the OnHW-equations dataset

and the (Bi)LSTM layers (4 · cfac, 2 · cfac). We train only 500
epochs, as each training takes 4h. We choose dmodel = 150,
dk = 32, dv = 64, cfac = 6, with BiLSTM and time distribu-
tion for follow-up trainings. The number of heads nheads is 3.
We apply the Transformer variants Perceiver [36], Sinkhorn
Transformer [90], Performer [13], Reformer [44] and Lin-
former [101] to the single character classification task with
the following parameters. We choose non-reversible trans-
formers without a language model or a lexicon. The input is
the inertialMTS.We evaluated different combinations of last
layers for all variants, i.e., with and without 1D convolution
or 1D max pooling. The best results yielded a permuta-
tion with a 1D max pooling of kernel size 5 and stride 5,
in combination with a linear layer of size (indim, nclasses).
For the Perceiver [36], we set crossheads = 1, numfreq =
4, depth = 2, numlatents = 64, latentdim,heads = 128,
maxfrequ = 10 and latentheads = 4. We set attndrop and
ffdrop to 0.2. nclasses depends on the dataset and is for the
OnHW-symbols and OnHW-equations dataset 15, and for
the OnHW-chars dataset 26 for the lower and upper datasets
and 52 for the combined dataset. We choose the parameters
of the Sinkhorn Transformer [90] dim = 1, 024, heads = 8,
depth = 12, dimhead = 6 and bucketsize = 20. For the Per-
former [13], we choose dim = 512, depth = 1, heads = 5,
dimhead = 4 and causal = True. The parameters of the
Reformer [44] are dim = 128, heads = 8, bucketsize = 20,
dimhead = 6, depth = 12, lshdrop = 0.1 and causal = True.

Fig. 21 Parameter search for α and γ in the Focal loss [50] with Optuna

We set for the Linformer Transformer [101] the parame-
ters dim = 512, seqlen = 79 for split OnHW-equations
and OnHW-symbols and seqlen = 64 for OnHW-chars [65],
depth = 12, heads = 5, sharekv = True and k = 256.
For the Sinkhorn and Reformer Transformers, the sequence
length has to be divisible by the bucket size. For Performer
and Linformer Transformers, the input dimension has to be
divisible by the number of heads, and hence, we exclude the
magnetometer data.
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(a) (b)

Fig. 22 Confusion matrices for mismatches

(a) (b)

Fig. 23 Evaluation of the Edit distance with mismatch, deletion and insertion for every character prediction

Hyperparameter search

We search for the Focal loss [50] for the class balance factor
α ∈ [0, 1] and γ ≥ 0 in the modulating factor (1 − pi )γ .
We use the combined OnHW-chars (WI) dataset. Figure 21
shows the hyperparameter search for α and γ with Optuna4.
The objective value is the character recognition rate. The
optimal parameters are α = 0.75 and a large γ = 8. Note
that the search space is in a small range between 71% and
73%. We use these parameters, for follow-up trainings.

Detailed evaluation

Evaluation of the accuracy per Label

Figure 22 shows confusionmatrices for sequence-based clas-
sification tasks for the accuracy of predicted single class

4 Optuna: https://optuna.org/

labels regarding the ground truth class labels in %. For the
OnHW-equations dataset (see Fig. 22a), the accuracies per
labels are between 96.6% and 99.3%.While the ground truth
’0’ is confused with ’6’ and ’9’ because of the similar
round shape of these numbers, the ’-’ is misclassified with
the ’·’ as both symbols are short samples, and the ’:’ is mis-
classified with a single dot ’·’. From analyzing the confusion
matrix of theOnHW-wordsTraj (see Fig. 22b) dataset, we see
two significant patterns. First, small letters are highly accu-
rate starting from 80% (see the second part of the diagonal),
while only ’j’ is misclassified with ’W’ and ’s’. Second,
capital letters are highly incorrect (see the first part of the
diagonal). Letters as ’C’, ’P’ and ’T’ are indistinguish-
able from other letters, while ’Q’ and ’O’ are interchanged.
The reason is the under-representation of capital letters in
the dataset (see Fig. 4c), as capital letters only appear at the
starting letter of a word in German. By plotting the confusion
matrix for theOnHW-wordsRandomdataset, themismatches
for capital letters improve compared to theOnHW-wordsTraj
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Table 10 State-of-the-art
evaluation results in % for the
online IAM-OnDB [51],
VNOnDB-words [59] and
IBM-UB-1 [84] datasets

Method IAM-OnDB [51] VNOnDB [59] IBM_UB_1 [84]
WER CER WER CER WER CER

BiLSTM [12]2 6.50 2.50 12.20 6.10 15.10 4.10

curve, w/o FF1 18.60 5.90 – – 25.10 6.00

curve, w/ FF1 10.60 4.00 – – 15.10 4.10

BiLSTM [27] 24.99 12.26 – – – –

BiLSTM [31] 20.30 11.50 – – – –

LSTM [52] 18.93 – – – – –

combination2 13.84 – – – – –

BiLSTM [41]2 26.70 8.80 – – 22.20 6.70

Seg-and-Dec [41]2 10.40 4.30 – – – –

GoogleTask24 – – 19.00 6.86 – –

IVTOVTask23,4 – – 14.11 3.24 – –

MyScriptTask2_13,4 – – 2.02 1.02 – –

MyScriptTask2_23,4 – – 1.57 4.02 – –

1 Feature functions (FF) 2 Open training set 3 VieTreeBank (VTB) corpus
4 Results available:here

dataset, but is still significantly higher compared with small
letters. The vowel mutations (’ä’, ’ö’, ’ü’, ’Ä’, ’Ö’,
’Ü’) are also highly under-represented, and the classifi-
cation accuracy highly decreases. Figure 23 separates the
mismatches, deletions and insertions per labels (see Eq. (1)).
The number on top of the box plot indicates the amount of
occurrences in the validation test. For the OnHW-equations
dataset (see Fig. 23a), the number ’0’ does not have to be
inserted, and number ’4’ does not have to be deleted. It is
significant that that the symbols with less timesteps ’-’, ’·’
and ’:’ are often mismatched and missed, while only ’-’
has to be deleted. Numbers are distinguishable more easily.
For the OnHW-wordsTraj (see Fig. 23b), again, the CER of
capital letters is considerably higher than small letters.While
some letters, i.e., ’C’, ’Q’, ’T’, ’U’ and ’V’, are only
mismatched, other edit errors appear for ’A’, ’I’, ’J’ and
’Z’. A dataset with more capital letters could mitigate these
errors.

Evaluation of sample length-dependent edit distance

We show the sample length-dependent counts of wrong pre-
dictions, i.e., mismatches, insertions and deletions, for the
OnHW-equations (see Fig. 14) and OnHW-wordsTraj (see
Fig. 15) datasets. For the OnHW-equations dataset, a high
appearance of mismatches and insertions appears at the start-
ing and end character, while deletions emergemore even over
the whole equations. As previously shown, the first charac-
ter of words is significantly often mismatched or has to be
inserted or deleted for the OnHW-wordsTraj dataset. This
shows the unequal distribution of samples for the words
datasets (see Fig. 4c), while the equations dataset is very
equally distributed (see Fig. 4b).

Evaluation results of state-of-the-art techniques for online
HWR. This section summarizes state-of-the-art results for
the IAM-OnDB [51], VNOnDB [59] and IBM-UB-1 [84]
datasets (see Table 10). Graves et al. [31] (2008) started to
improve the classification accuracy by proposing an alter-
native approach based on a RNN specifically designed for
sequence labeling tasks where data contain long-range inter-
dependencies and that is hard to segment. Liwicki et al. [52]
introduced recognizers based on hidden Markov models and
BiLSTMs, and on different set of features from online and
offline data. Frinken et al. [27] showed that a deep BiL-
STM neural network outperforms the standard BiLSTM
model by combining ReLU activation with BiLSTM layers,
but get a high WER of 24.99% and a CER of 12.26% on
the IAM-OnDB dataset. Keysers et al. [41] used a training
for feature combination, a trainable segmentation technique,
unified time- and position-based input interpretation and a
cascade of pruning strategies. The method achieves a WER
of 26.7% and a CER of 8.80% with a BiLSTM, and up to
10.4%WER and 4.30% CER with a segmentation approach.
The system is used in several Google products such as for
translation. Carbune et al. [12] used bi-directional recurrent
layers in combination with a softmax layer and the CTC
loss. Their approach supports 102 languages. Hence, the
architecture is based on a language model. The system com-
bines methods from sequence recognition with a new input
encoding using Bézier curves. This technique achieves the
currently best results for the IAM-OnDB and IBM_UB_1
datasets. Feature functions (FF) introduce prior knowledge
about the underlying language into the system. This method
was used for the ICFHR2018 competition on Vietnamese
online handwritten text recognition using VNOnDB. Along
with this challenge, results fromGoogleTask2, IVTOVTask2
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 24 Overview of training and testing losses and the evaluation metrics WER and CER in % (mean and standard deviation over fivefold
cross-validation) for all WD and WI datasets

and MyScriptTask2 are available, where MyScriptTask2_2
achieves the lowestWER of 1.57% on the VNOnDB dataset.
This method uses a segmentation component with a feed-
forward network along with BiLSTMs and the CTC loss.
The IVTOVTask2 system also uses BiLSTM layers with
the CTC loss similar to our approach. Unfortunately, public
code is not available for these approaches. A direct com-
parison of these results with our results is not possible, as
we used a fivefold cross-validation of the IAM-OnDB [51]
and VNOnDB-words [59] datasets, different to the train/test
splits used for public results. But for our task,we candifferen-
tiate between WD and WI classification tasks. With our best
model CNN+BiLSTM we achieve a CER of 6.94% (WD)
and 9.11% (WI) for the IAM-OnDBdataset that is better than
the BiLSTM approaches by [27,31,41], but worse than the
BiLSTM by [12] and the method by [41]. On the VNOnDB-
words dataset, our CER of 6.71% (WD) and the WER of
15.54% (WD) is lower than GoogleTask2, but higher than
[12] and MyScriptTask2.

Error and accuracy plots

Figure 24 shows an overview of error plots for all sequence-
based datasets. While the training losses converge very fast
(see Fig. 24a and e) and the models slightly overfit (see
Fig. 24b and f), the WER (see Fig. 24c and g) and the CER
(see Fig. 24d and h) are continuously decreasing.We propose
the validation accuracies (CRR) while training in Fig. 25 for
single-based datasets for the eight training losses. The gener-
alized cross-entropy (GCE) is often not robust, see Fig. 25c
to j. The difference between loss function of the WD sym-
bols and equations datasets is small (see Fig. 25a and c), but
gets more important for the WI tasks (see Fig. 25b and d).
From the OnHW-chars [65] dataset, we can conclude that

symmetric cross-entropy (SCE), label smoothing (LSR) and
joint optimization (JO) can improve the baseline categorical
cross-entropy (CCE) loss. The Focal loss (FL) [50] converges
slower, and boot soft (SBS) and boot hard (HBS) are similar
to CCE.

Training times

Table 11 compares training times of all methods used for
our benchmark for the lower OnHW-chars [65] (WD) and
our OnHW-equations (WD) datasets. For all trainings, we
used Nvidia Tesla V100-SXM2 GPUs with 32 GB VRAM.
TapNet [111] has the fastest training time of 3.6s, but we
trained 3000 epochs for convergence. While we train our
CNN+LSTM model for 1000 epochs with 8.0s each, the
MLSTM-FCN [40] trains slower, but converges faster (only
200 epochs). The training times per epoch of the transformer
variants [13,36,44,90,101] are significantly higher (between
15.7 and 24.5s), but the convergence is also significantly
faster of less than 100 epochs. The Linformer [101] (8.8s)
is as fast as our CNN+LSTM model (8.0s). For seq2seq
classification tasks, our attention-based model is the fastest
with 27.5s. The CNN+TCN model requires 43.5s and the
CNN+LSTMmodel 62s, and can emphasize the advantage of
attention-basedmodels. The CNN+BiLSTMmodel achieves
the lowest error rates, but trains clearly slower with 131s. In
conclusion, transformers train faster than classical methods,
but our classical CNN and RNN models achieve the highest
accuracies. Modules trained with the tsai toolbox have lower
training times: InceptionTime (2.0s), XceptionTime (3.8s),
ResCNN (2.2s) and ResNet (2.9)s. The small model FCN is
very fast at training (1.5s) that increases for added temporal
units such as LSTM-FCN (6.8s) and MLSTM-FCN (7.4s).
The training of InceptionTime increases from 2.0s for depth
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 25 Overview of validation accuracies evaluated every 10th training epoch for the WD and WI OnHW-symbols, split OnHW-equations and
OnHW-chars [65] datasets

Table 11 Comparison of training times per epoch in seconds (s)

Method OnHW- OnHW-
chars equations

CNN+LSTM 8.0 62

CNN+BiLSTM 19.7 131

CNN+TCN 7.3 43.5

Attention-based model – 27.5

Perceiver [36] 17.1 –

Sinkhorn [90] 16.1 –

Performer [13] 15.7 –

Reformer [44] 24.5 –

Linformer [101] 8.8 –

TapNet [111] 3.6 –

MLSTM-FCN [40] 12.0 –

3 and nf 16 up to 37.6s for depth 12 and nf 128. Added
BiLSTM layers up to double the training times.
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embeddings using DTW, our proposed method aligns statistical properties of embeddings
using various metrics such as Cosine similarity, Pearson correlation, MMD, CORAL, or
HoMM.

Shi et al. (2022) presented a comprehensive survey on unsupervised DA for human
activity recognition using time-series data, with a focus on MMD and CORAL for feature
alignment. Recently, a benchmarking suite named AdaTime (Ragab et al., 2023) has
been introduced for DA on time-series data, which facilitates the comparison of various
methods including MMD, Deep CORAL, HoMM, MMDA (a combination of MMD and
CORAL), DANN, CDAN, among others. Since the AdaTime toolbox was published after
the publication of the contributing paper (Ott et al., 2022a), we conducted experiments
on the OnHW datsets using AdaTime in Chapter 2.

Alipour & Tahmoresnezhad (2021) proposed the statistical distribution alignment and
progressive pseudo label selection (SDA-PPLS) method that learns two projection matri-
ces for the source and target domains. The primary objective is to map both domains
into a latent subspace with a shared feature space. In addition to the first-order distri-
bution matching technique (i.e., MMD), the SDA-PPLS method employs a second-order
variant known as maximum covariance discrepancy (MCD). Ozyurt et al. (2023) intro-
duced CLUDA, a nearest-neighbor contrastive learning framework for learning contextual
representations in MTS between features of source and target domain embeddings, along
with a discriminator network. However, as this model relies on five distinct loss functions,
it necessitates an extensive hyperparameter search. Comparing the evaluation results of
CLUDA with those of HoMM, MMDA, CAN, CDAN, Deep CORAL, and DSAN, it can be
observed that CLUDA outperforms the state-of-the-art techniques on medical MTS data.
The source code is currently unavailable.

Raincoat (He et al., 2023) aims to tackle both closed-set and universal unsupervised
DA on time-series data by leveraging both frequency and temporal features. The model
aligns features across domains while also correcting for misalignments. They employ the
Sinkhorn divergence as a suitable divergence measurement for aligning the source and
target domains, which is consistent with the results presented in the contributing paper
(Ott et al., 2022a). Moreover, He et al. (2023) demonstrate that MMD has a theoretical
weakness in terms of vanishing gradients. The implementation of their proposed method
is based on AdaTime (Ragab et al., 2023). Raincoat was evaluated on several time-series
datasets, namely HAR, HHAR, WISDM, SSC (EEG), and Boiler datasets. However, they
only evaluated a subset of the source-target scenarios. In contrast, in Chapter 2 of our
study, we evaluated all possible scenarios. Raincoat outperforms several state-of-the-art
methods, including CoDATS (Wilson et al., 2020), AdvSKM (Liu & Xe, 2021), DIRT-
T (Shu et al., 2018), CDAN (Long et al., 2018), and Deep CORAL (Sun et al., 2016).

The proposed DA network CDAN (Ma et al., 2022) distinguishes between the differences
in the internal dependence structure and those in the marginals. To achieve this, CDAN
calculates the copula distance between the marginals of the source and target domain
features’ distributions. Since CDAN considers both the marginal and copula feature differ-
ences (i.e., as a sum), the model provides a more effective approach for detecting changes
in the marginal distributions and dependence structure. While this approach could serve
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as an alternative distance measure in the contributing paper (Ott et al., 2022a), the source
code is currently unavailable.

The paper by Eldele et al. (2023) provides a comprehensive survey of label-efficient
representation learning techniques for time-series data. In the context of offline HWR,
Kohút & Hradiš (2023) demonstrate that training a model with CTC and fine-tuning with
data augmentation is effective for DA, particularly for small target domain datasets and
writer-dependent and writer-independent tasks. This technique is resistant to overfitting.
Kohút et al. (2023) propose a DA approach that adapts to a new writer using a writer
style block and an adaptive instance normalization layer, which learns dedicated writer
parameters conditioned on learned embeddings of the partitions. However, the fine-tuning-
based DA approach (Kohút & Hradiš, 2023) outperforms this method.



Domain Adaptation for Time-Series Classification to Mitigate
Covariate Shift

Felix Ott
Fraunhofer IIS, Fraunhofer Institute

for Integrated Circuits
Nürnberg, Germany

LMU Munich
felix.ott@iis.fraunhofer.de

David Rügamer
LMU Munich

Munich, Germany
RWTH Aachen

david.ruegamer@stat.uni-
muenchen.de

Lucas Heublein
Fraunhofer IIS, Fraunhofer Institute

for Integrated Circuits
Nürnberg, Germany

heublels@iis.fraunhofer.de

Bernd Bischl
LMU Munich

Munich, Germany
bernd.bischl@stat.uni-muenchen.de

Christopher Mutschler
Fraunhofer IIS, Fraunhofer Institute

for Integrated Circuits
Nürnberg, Germany

christopher.mutschler@iis.fraunhofer.de

ABSTRACT
The performance of a machine learning model degrades when it
is applied to data from a similar but different domain than the
data it has initially been trained on. To mitigate this domain shift
problem, domain adaptation (DA) techniques search for an optimal
transformation that converts the (current) input data from a source
domain to a target domain to learn a domain-invariant representa-
tion that reduces domain discrepancy. This paper proposes a novel
supervised DA based on two steps. First, we search for an optimal
class-dependent transformation from the source to the target do-
main from a few samples. We consider optimal transport methods
such as the earth mover’s distance, Sinkhorn transport and correla-
tion alignment. Second, we use embedding similarity techniques
to select the corresponding transformation at inference. We use
correlation metrics and higher-order moment matching techniques.
We conduct an extensive evaluation on time-series datasets with
domain shift including simulated and various online handwriting
datasets to demonstrate the performance.
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Figure 1: Domain adaptation. To compensate the domain
shift the source data is transformed into the target data (1st:
2D source and target domain features, before transformation,
2nd: after transformation). 3rd and 4th: their distributions.

1 INTRODUCTION
Traditional machine learning (ML) algorithms assume training and
test datasets to be independent and identically distributed (i.i.d.).
Hence, supervised ML only works well when the test data comes
from the same distribution as the training data. As real-world data
often changes over time and space, this assumption rarely holds in
practice [75]. Domain adaptation (DA) [26, 32, 40, 51, 71, 76, 81] as
a special instance of transfer learning (TL) [20, 63, 64, 74] tries to
compensate for this domain shift by transferring knowledge from
a source to a target domain, see Figure 1. There are three types
of DA: supervised, semi-supervised, and unsupervised DA. The
decision which approach to use mainly depends on the number
of labels available in the target domain [91]. Most techniques are
unsupervised and transform the source data by minimizing the
distance to the target data. Typically, the model is (re-)trained on
the transformed source domain [75].

Domain shifts appear in many applications such as classification
[25, 34, 45, 68, 86, 90, 96], handwriting recognition [46], segmen-
tation and regression for multimedia data [12, 30], for example if
the background, shape deformation, or quality are different across
domains. DA aims to mitigate this and has successfully been applied
for object recognition [31, 54, 88, 89], AI planning [95], reinforce-
ment learning [56] and natural language processing [93] (e.g., the
adaptation from English to Spanish documents [47]).

DA is also used for multivariate time-series (MTS) classifica-
tion and forecasting [8, 15, 37, 43], which is a challenging task as
the extraction of domain-invariant representations is non-trivial.
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Figure 2: Domain-variant representation of MTS data of a
source and target sample from a sensor pen representing
the label ’5’ in an online handwriting task. Note that both
samples have different number of time steps 𝑡𝑆 (left) and 𝑡𝑇
(right). Top row: data from an accelerometer; middle row:
gyroscope measures; bottom row: data from a force sensor.

Consider the different time-series of online handwriting from a
sensor-enhanced pen in Figure 2 (right: right-handed writers, tar-
get domain; left: left-handed writers, source domain) [46, 60, 61].
The shaded areas show the discrepancy between both writers, i.e.,
different time step lengths and accelerations. In this case, the com-
plex dependency of time steps in the MTS makes it challenging
to extract invariant features [8]. Many existing methods [21, 67]
employ recurrent neural networks (RNNs) and assume that the
conditional distributions of the source and target domain are equal,
i.e., 𝑃𝑆

(
𝑦 |𝜙 (𝑥1, . . . , 𝑥𝑡𝑆 )

)
= 𝑃𝑇

(
𝑦 |𝜙 (𝑥1, . . . , 𝑥𝑡𝑇 )

)
, with the feature

transformation mapping 𝜙 (·) and X = {𝑥1, 𝑥2, . . . , 𝑥𝑡 } ∈ X being a
set of training samples with 𝑡 ∈ {𝑡𝑆 , 𝑡𝑇 } time steps [62]. However,
this assumption does typically not hold in practice as methods do
not generalize across domains without additional efforts.

Classical DA methods range from feature selection [3, 70] (both
domains share similarities in the features), distribution adapta-
tion (distributions of both domains are different but share simi-
larities), and subspace learning (a lower-dimensional shared rep-
resentation). Distribution adaptation methods can be classified
into three categories: (1) Marginal distribution adaptation meth-
ods assume that the marginal distribution between the domains
are different and focus on overall shape alignment. While the most
established method is maximum mean discrepancy (MMD) [48],
e.g., used in [11, 30, 39, 51–53, 81], many further techniques exist
[2, 22, 23, 42, 51, 62]. (2) Conditional distribution adaptation [73, 85]
assumes that the conditional distribution is varied between the
domains

(
𝑃 (Y𝑆 |X𝑆 ) ≠ 𝑃 (Y𝑇 |X𝑇 )

)
. (3) Joint distribution adaptation

methods [49, 50] minimize the joint distribution distance between
the source and target domain. Subspace alignment methods (i.e.,
SA [26], CORAL [76], GFK [32]) align the source and target domains
via principal component analysis with a lower dimensional space
determined by the Bregman divergence. Recently, DL methods have
become the predominant approach in DA. Existing techniques are,
e.g., based on MMD [48, 81], align the second-order statistics (co-
variances) [77], use the Kullback-Leibler [94] or Jensen-Shannon
divergence [41], or are based on theWasserstein distance [16, 28, 29].
These methods have been broadly applied to visual object recogni-
tion and text categorization [2], but rarely to time-series [8].

We propose a DA method that adapts embeddings from a small
source domain (with domain shift) to embeddings from a large tar-
get domain (main training dataset on which the model has initially
been trained). First, we pre-train our model on a large target domain
dataset. Next, we train an optimal transformation T from the source
to the target domain for each class with joint distribution adaptation
methods, i.e., optimal transport and CORAL, from an adaptation
set with few samples. At inference, we extract features with the
source domain model, transform features into the target domain for
each class, compute the similarity to the target domain to select the
best transformation, and classify the transformed embedding with
the target domain model. This allows a faster adaptation to new
data without the necessity of post-training [35]. We apply this tech-
nique to MTS datasets and evaluate the performance of methods
for the challenging task of embedding similarity comparison from
time-series data [8]. We show performance improvements for syn-
thetically generated univariate sinusoidal data and on multivariate
online handwriting (OnHW) datasets from pens with integrated
sensors. For the challenging OnHW recognition task of new out-of-
distribution writers, we propose a method that can adapt to each
writer and outperforms transfer learning approaches.1

The remainder of this paper is organized as follows. Section 2
discusses related work followed by our proposed methodology in
Section 3. The experimental setup is described in Section 4 and the
results are discussed in Section 5. Section 6 concludes.

2 RELATEDWORK
Research for (multivariate) time-series classification is very ad-
vanced and ranges from classical convolutional neural networks
(CNNs) such as FCN [86] to advanced CNNs [78, 79] such as ResCNN
[96], ResNet [86], XResNet [34], XceptionTime [68] and Inception-
Time [25]. Spatio-temporal methods [14, 45, 60] became popular
with the development of RNNs, i.e., long short-term memorys
(LSTMs) and multi-dimensional LSTMs. Research for Transform-
ers (e.g., TST [90]) for time-series classification is less advanced.
As their goal is to classify a (multivariate) time-series without do-
main shift (e.g., on the UCR [19] datasets), they do not consider
to transform embeddings. All such methods have previously been
benchmarked on OnHW datasets, and [60] showed a benefit of
small CNNs combined with bidirectional LSTMs (BiLSTMs) on
OnHW recognition.

Domain Adaptation for Time-Series Classification. Research on
MTS-specific DA is rare. The domain adversarial neural network
(DANN) learns domain-invariant features [21] and uses a time win-
dow approach to extract temporal information from time-series
data for prognostics with LSTMs. Similar, the variational recur-
rent adversarial deep domain adaptation (VRADA) [67] learns
domain-invariant temporal relationships based on a variational
RNN (VRNN) [15] for MTS healthcare datasets. However, both
of them cannot align the condition distribution well. Sparse asso-
ciate structure alignment (SASA) [8] exploits the sparse associative
structure to mitigate the difficult domain-invariant extraction of
time-series for offsets (change of time lags, Figure 2). SASA gen-
erates a segment set to exclude the obstacle of offsets, extracts
1Datasets and source code available at: www.iis.fraunhofer.de/de/ff/lv/dataanalytics/
anwproj/schreibtrainer/onhw-dataset.html
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associative structure time-series data with time lags, and uses the
structure alignment for knowledge transfer. The domain adapta-
tion forecaster (DAF) [43] leverages statistical strengths from the
source domain to improve the performance on the target domain
for forecasting. The attention-based shared module with a domain
discriminator across domains induces domain-invariant latent fea-
tures and retrains domain-specific features. However, all those
methods require learning latent features between domains, while
applications on embedded devices require approaches to quickly
adapt to a new domain at inference. Similar to our approach but
for forecasting, Hu et al. [37] use pre-trained cross-domain time-
series representations to augment the target domain. Wilson et
al. [87] proposed a DA model with weak supervision and a domain
classifier with a domain-invariant representation, while we use a
target-specific representation.

Covariance- and Discrepancy-based Methods for DA. Procrustes
analysis [84] uses the singular value decomposition for manifold
alignment, but has a run time complexity of 𝑂 (𝑁 3) for 𝑁 samples.
Correlation alignment (CORAL) [10, 75, 76] is a simple method and
can be used in a (non-)trainable manner for embedding alignment,
but has not been used on time-series data before. We make use of
CORAL for transformation computations and selection. Many DA
methods are based on MMD [48] that minimizes the discrepancy
of feature distributions, for example, joint MMD (JMMD) [53] or
transfer joint matching (TJM) [51]. Chen et al. [11] proposed a
higher-order moment matching (HoMM) technique and extend
HoMM into a reproducing kernel Hilbert space (RKHS) [23, 32, 38,
92]. The first order HoMM is equivalent to MMD, and the second-
order HoMM is equivalent to CORAL. Higher orders (≥ 3), however,
result in long training times. Thesemethods do not directly compute
a transformation between source and target domains, but minimize
the discrepancy at training time, and hence, we use these methods
for transformation selection. Transfer component analysis (TCA)
[62] learns transfer components in an RKHS using MMD. Joint
distribution adaptation (JDA) [50] reduces the difference between
source and target domains in both the marginal and conditional
distributions by a principled dimensionality reduction procedure
based on MMD. This approach reduces the embedding dimensions
and cannot be applied for cross-domain feature classification as
given in our application.

Optimal Transport for DA. The earth mover’s distance (EMD)
and Sinkhorn transport [16, 27, 29] has rarely been used for time-
series DA, but successfully for image DA. The Python Optimal
Transport (POT) package [28] has been used for adapting domains
for the classification of satellite images [80]. Images are considered
as time-series as they are an ordered set that is re-sampled onto a
regular time grid for consistent length (< 30 images per time-series).
For an overview, see [24]. We provide a broad evaluation of EMD
and Sinkhorn transport for time-series DA and show benefits over
correlation techniques.

Embedding Distances. Related work for comparing embeddings
commonly use the Euclidean metric, but also correlation-based
metrics are used [58, 59]. Recent methods extend the canonical cor-
relation analysis (CCA) [9, 69] that learn linear projection matrices
by maximizing pairwise correlation, but require long computing

times. Metrics typically used for DA can also be utilized as distance
metrics between embeddings (e.g., CORAL [75], MMD [11, 48, 53]
and HoMM [11]). [58] use the cross- and Pearson correlation [65]
for similarity computation. Our evaluation proposes performance
comparisons of these methods for the time-series DA application.

3 METHODOLOGY
We start with a formal definition of the notation for domain adap-
tation (DA) in Section 3.1. We then give an overview of our method
that consists of two parts: Optimizing a transformation from source
to target domain and selecting the transformation at inference (Sec-
tion 3.2). An overview of all the introduced notation is additionally
given in Appendix A.1.

3.1 Notation
MTS Classification. An MTS U = {u1, . . . , u𝑚} ∈ R𝑚×𝑙 is an

ordered sequence of 𝑙 ∈ N streams with u𝑖 = (𝑢𝑖,1, . . . , 𝑢𝑖,𝑙 ), 𝑖 ∈
{1, . . . ,𝑚}, where𝑚 ∈ N is the length of the time-series. The MTS
training set is a subset of the arrayU = {U1, . . . ,U𝑛𝑈 } ∈ R𝑛𝑈 ×𝑚×𝑙 ,
where 𝑛𝑈 is the number of time-series. The aim of MTS classifica-
tion is to predict an unknown class label𝑦 ∈ Y for a given MTS. We
define the target domain dataset asU𝑇 . Given a smaller adaptation
set of a source domainU𝑆 with MTS U𝑆 , the goal of DA is to find
an optimal transformation T of the representation of the latent
embedding 𝑓 (U𝑆 ) of the source domain to the representation of
the latent embedding 𝑓 (U𝑇 ) of the target domain such that the
prediction of the unknown class label 𝑦𝑆 of the source domain is
maximized. 𝑓 (U𝑇 ) ∈ R𝑞𝑇 ×𝑤𝑇 and 𝑓 (U𝑆 ) ∈ R𝑞𝑆×𝑤𝑆 are the latent
target and source embeddings of the neural network.

Domain Adaptation. A domain D consists of a feature space
X with marginal probability 𝑃 (X). The task is defined by the la-
bel space Y. The joint distribution is 𝑃 (X,Y) and the conditional
distribution is denoted as 𝑃 (Y|X). When considering MTS classifi-
cation, there is a source domain D𝑆 = {X𝑖𝑆 ,Y𝑖

𝑆 }
N𝑆
𝑖=1 of N𝑆 labeled

samples of |Y𝑖
𝑆 | categories, and a target domainD𝑇 = {X𝑖𝑇 ,Y𝑖

𝑇 }
N𝑇
𝑖=1

of N𝑇 labeled samples of |Y𝑖
𝑇 | categories. Due to the difference

of the two domains, the distributions are assumed to be different:
𝑃 (X𝑆 ) ≠ 𝑃 (X𝑇 ) and 𝑃 (Y𝑆 |X𝑆 ) ≠ 𝑃 (Y𝑇 |X𝑇 ) (see Figure 1, left) [91].
DA can mitigate the domain shift and improve the classification
accuracy in the target domain (see Figure 1, 2nd and 4th).

3.2 Method Overview
An overview of our method for MTS classification is given in Fig-
ure 3 and in Algorithm 1. We train a convolutional neural network
with two BiLSTM layers on the target data, and train a different (but
same) model on the (training) source data. Next, we search for the
optimal transformation T to transform the feature embeddings of
the source data onto the feature embeddings of the target data. As
feature embeddings 𝑓 (U𝑆 ) and 𝑓 (U𝑇 ) we choose the output of the
last convolutional layer before the two BiLSTMs of size R50×30 and
R19×200. We obtain a separate transformation for each class. To find
the optimal transformation, we evaluate different DA techniques,
see Section 3.2.1. At inference time, we extract features of the (vali-
dation) source data with the source domain model, transform the
embedding with each class-dependent transformation, and choose
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Figure 3: Method overview. We transform the feature embed-
dings of the source domain (training data, few samples) into
feature embeddings of the target domain (training adaptation
data, many samples) with optimal transport and correlation
alignment. For inference, we evaluate the feature similarity.

Algorithm 1 Domain adaptation: Source data transformation and
transformation selection.
Input: Target dataU𝑇𝑡 , source dataU𝑆𝑡 andU𝑆𝑣 , and labels Y𝑇𝑡 ,
Y𝑆𝑡 and Y𝑆𝑣

Output: Class predictions for source validation dataU𝑆𝑣
1: function DomainAdaptation(U𝑇𝑡 ,U𝑆𝑡 ,U𝑆𝑣 )
2: Train target model with dataU𝑇𝑡 and labels Y𝑇𝑡
3: Train source model with dataU𝑆𝑡 and labels Y𝑆𝑡
4: for 𝑖 ← 1 to |Y𝑆𝑡 | do
5: Compute transformation T𝑖 betweenU𝑇𝑡 ,𝑖 andU𝑆𝑡 ,𝑖

6: ⊲ See Section 3.2.1
7: end for
8: for 𝑖 ← 1 to |U𝑆𝑡 | do
9: for 𝑘 ← 1 to |Y𝑆𝑣 | do
10: Apply transformation T𝑘 to source dataU𝑆𝑣 ,𝑖

11: Compute similarity betweenU𝑆𝑣 ,𝑖 (T𝑘 ) andU𝑇𝑡
12: ⊲ See Section 3.2.2
13: end for
14: Select T with highest similarity ofU𝑆𝑣 ,𝑖 (T) andU𝑇𝑡
15: Predict class label 𝑦𝑆𝑣 of transformedU𝑆𝑣 ,𝑖 (T)
16: end for
17: end function

the transformation for the closest embedding to the target domain
data. For source and target domain similarity computation, see Sec-
tion 3.2.2. Lastly, we classify the transformed embedding with the
target domain classifier with the cross-entropy (CE) loss.

3.2.1 Embedding Transformation. The goal of DA is to minimize
the target domain error by bounding the source domain error and
the discrepancy between them [4–6]. DA approaches consider the
target data for optimizing the source domain model and reduce the
discrepancy between them as in Theorem 1:

Theorem 1 (Zhang, 2021 [91]). Let H be a hypothesis space.
Given the target domain D𝑇 and source domain D𝑆 , we have

∀ℎ ∈ H ,R𝑇 (ℎ) ≤ R𝑆 (ℎ) + 𝑑HΔH (D𝑆 ,D𝑇 ) + 𝛽, (1)

where R𝑇 (ℎ) is the target domain error and R𝑆 (ℎ) is the source
domain error. 𝑑HΔH is the discrepancy distance betweenD𝑆 andD𝑇

w.r.t.H . Then, given the label functions 𝑔𝑇 and 𝑔𝑆 determined by the
domain labels Y𝑇 and Y𝑆 , the shared error 𝛽 is

𝛽 = arg min
ℎ∈H
R𝑆 (ℎ∗, 𝑔𝑆 ) + R𝑇 (ℎ∗, 𝑔𝑇 ), (2)

where ℎ∗ is the ideal hypothesis.

Homogeneous Domain Adaptation. DA models aim to find a min-
imal discrepancy distance 𝑑HΔH (D𝑆 ,D𝑇 ). For classifying time-
series data, we restrict our methods to homogeneous DA, where the
feature space is the same (U𝑇 = U𝑆 ) with the same feature dimen-
sionality (𝑞𝑇 = 𝑞𝑆 and𝑤𝑇 = 𝑤𝑆 ) and interpolate the time-series to
a pre-defined fixed length. In the following, we provide details on
computing the optimal transformation.

Optimal Transport. To mitigate the domain shift for our multi-
variate time-series application, we assume that the domain drift is
due to an unknown, possibly nonlinear map of the input space T :
D𝑆 −→ D𝑇 that preserves the conditional distribution 𝑃𝑆

(
𝑦 |𝑓 (U𝑆 )

)
=

𝑃𝑇
(
𝑦 |T(𝑓 (U𝑆 ))

)
such that the label information is preserved [16].

Searching for T in the space of all possible transformations is in-
tractable. Hence, T is chosen such that a transportation cost

𝐶 (T) =
∫
D𝑆

𝑐
(
𝑓 (U),T(𝑓 (U)))𝑑𝜇 (𝑓 (U)), (3)

is minimized, where 𝑐 : D𝑇 × D𝑆 −→ R+ is a distance function over
the metric space D [16]. The optimal transportation problem is

T0 = argmin
T

=
∫
D𝑆

𝑐
(
𝑓 (U),T(𝑓 (U)))𝑑𝜇 (𝑓 (U)) . (4)

This is also known as the Kantorovitch formulation [44] that allows
to search a general coupling 𝛼 ∈ Θ by the transportation plan [72]:

𝛼0 = argmin
𝛼∈Θ

∫
D𝑇 ×D𝑆

𝑐
(
𝑓 (U𝑇 ), 𝑓 (U𝑆 )

)
𝑑𝛼

(
𝑓 (U𝑇 ), 𝑓 (U𝑆 )

)
, (5)

where Θ is a set of all probabilistic couplings Θ ∈ 𝑃 (D𝑇 × D𝑆 )
with marginals 𝜇𝑇 and 𝜇𝑆 . Then, theWasserstein distance of order
𝑝 between 𝜇𝑇 and 𝜇𝑆 can be defined as

𝑊𝑝 (𝜇𝑇 , 𝜇𝑆 ) :=
(
inf
𝛼∈Θ

∫
D𝑇 ×D𝑆

𝑑
(
𝑓 (U𝑇 ), 𝑓 (U𝑆 )

)𝑝𝑑𝛼 (𝑓 (U𝑇 ), 𝑓 (U𝑆 )
) ) 1

𝑝
,

(6)
where 𝑑 is a distance metric [16] as the cost function:

𝑐
(
𝑓 (U𝑇 ), 𝑓 (U𝑆 )

)
= 𝑑

(
𝑓 (U𝑇 ), 𝑓 (U𝑆 )

)𝑝 . (7)

We apply the earth mover’s distance (EMD), the EMD with Lapla-
cian regularization [29], and Sinkhorn transport [1, 17] (with 𝐿𝑝𝐿1
and 𝐿1𝐿2 class regularization of 0.5) implemented by the Python
Optimal Transport (POT) package [28] between our source and tar-
get domain samples. Selecting a proper cost function is crucial for
the effectiveness of the adaptation of source to target domain. Typ-
ically, the 𝐿2-based metric is used, but other cost functions are also
possible, e.g., norm-based metrics [83], metrics based on Riemann-
ian distances over a manifold [83], metrics used as a loss function
[18], or concave cost functions [27]. We evaluate 18 different dis-
tance metrics in Section 5.3. For comparison, we use correlation
alignment [75] (for more information, see Appendix A.2).
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(a) Target domain
(training) data U𝑇𝑡
with noise 𝑏 = 0.4.
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(b) Source domain
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(c) Source domain
(validation) data U𝑆𝑣
with noise 𝑏 = 0.4.

Figure 4: Time-series of the generated sinusoidal dataset.

3.2.2 Transformation Selection for Inference. At inference we aim
to select the best class-specific transformation (while the class label
of the sample is not known). Hence, we compute the transformation
of the validation source domain embeddings for each class, and
select the transformation for which the embeddings of the target
𝑓 (U𝑇 ) and transformed source T(𝑓 (U𝑆 )) domains have the smallest
cost 𝑐

(
T(𝑓 (U𝑆 )), 𝑓 (U𝑇 )

)
. We use common similarity metrics such

as the cross correlation (CC) 𝑑CC and Pearson correlation (PC) [65]
𝑑PC. We also compute the MMD [48] by

𝑑MMD (D𝐶
𝑇 ,D𝐶

𝑆 ) =
�����
����� 1
N𝑇

N𝑇∑︁
𝑖=1

𝑓
(
U𝐶,𝑖
𝑇

)− 1
N𝑆

N𝑆∑︁
𝑗=1

T
(
𝑓 (U𝐶,𝑗

𝑆

) ) �����
�����
2

H
, (8)

for class𝐶 and the RKHSH . We compare to HoMM [11] of order 3
and kMMD [53] (which is equivalent to the kernelized HoMM of
order 1). We also make use of different CORAL metrics (standard,
Stein [13] and Jeff [55] CORAL based on symmetrized Bregman
divergences [33]) for embedding comparisons.

4 EXPERIMENTAL SETUP
We apply our DA technique to two time-series datasets: generated
time-series (Section 4.1), and OnHW recognition (Section 4.2).

4.1 Synthetic Time-Series Classification
We first investigate the efficacy of our method to transform synthet-
ically generated univariate time-series data. For this, we generate
sinusoidal signal data of 200 time steps with different frequencies
for 10 classes. We add noise from a continuous uniform distribu-
tion 𝑈 (𝑎, 𝑏) with 𝑎 = 0.0 and 𝑏 ∈ 𝐵 = {0.0, 0.1, 0.2, . . . , 1.9} for
the target domain dataset (Figure 4a), and train a CNN+BiLSTM.
For the source domain (training) dataset, we flip the sign of the
generated time-series and add uniform𝑈 (𝑎, 𝑏/2) noise (Figure 4b).
We then validate the adapted model using the flipped dataset with
added uniform noise for 𝑏 ∈ 𝐵 values (Figure 4c). This allows us to
evaluate the time-series adaptation for different noise ratios.

4.2 Online Handwriting (OnHW) Recognition
OnHW recognition typically uses time in association with different
types of spatio-temporal signals. The data contains information
about the displacement of certain input devices [66]. OnHW recog-
nition from sensor-enhanced pens uses data from inertial measure-
ment units to capture the pen movement. The pen in [61] uses two
accelerometers, one gyroscope, one magnetometer, 3 axes each, and
one force sensor at 100Hz. One sample of size𝑚 × 𝑙 represents an
MTS of𝑚 time steps from 𝑙 = 13 sensor channels. We make use
of three character-based datasets: The OnHW-chars [61] dataset

(a) Visualization of the 26 lower
letters of the right-handed target
domain OnHW-chars dataset.

(b) Visualization of the 26 upper
letters of the right-handed target
domain OnHW-chars dataset.

(c) Visualization of the 15 classes
of right-handed target domain
split OnHW-equations.

(d) Visualization of the target
U𝑇 , source U𝑆 and transformed
source U𝑇

𝑆 domain features.

Figure 5: Embedding 𝑓 (U) visualization of OnHW-chars (a
and b) and split OnHW-equations (c and d) using t-SNE.

contains 31,275 samples of small and capital characters (52 label
classes) from 119 right-handed writers. The OnHW-symbols [60]
dataset contains 2,326 samples of numbers and symbols (15 label
classes) from 27 right-handed writers, and the split OnHW-equations
[60] dataset contains 39,643 numbers and symbols from 55 right-
handed writers obtained from 10,713 equations. For these datasets,
80/20 train/validation splits are available for writer-dependent (WD)
and writer-independent (WI) classification tasks. We define these
datasets as our target domainU𝑇 . Usually, observations from left-
handed writers in OnHWdatasets is scarce [46]. As we want OnHW
recognition to work equally well for left-handed writers as for right-
handed writers, we use the smaller available left-handed datasets
as source domainU𝑆 and split it into an adaptation (training) set
U𝑆𝑡 and a validation setU𝑆𝑣 . For an overview, see Appendix A.3.

Figure 5 visualizes the 19 × 200 dimensional feature embeddings
of the CNN+BiLSTM model for the OnHW-chars and split OnHW-
equations datasets. We use the t-SNE method [82] with an initial
dimension 3,800, perplexity of 30, an initial momentum of 0.5, and
a final momentum of 0.8. Figure 5a and 5b visualizes 26 lower
and 26 uppercase class labels of OnHW-chars. Several samples are
in clusters associated with a different class and hence wrongly
classified. Figure 5c differentiates between all 15 class labels for
the split OnHW-equations dataset. Here, we can clearly see that
the labels ’+’, ’=’ and ’:’ are close in their low-dimensional
embedding. Figure 5d shows the low-dimensional embedding of
the right-handed target domain D𝑇 (blue) and the left-handed
source domain D𝑆 (orange). It is notable that the features of both
domains have different distributions. After the transformation, the
left-handed source domainD𝑇

𝑆 (red) is closer to the target domain.
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Table 1: Evaluation results (CRR in %, mean and standard deviation) for transfer learning techniques on the OnHW-symbols
and split OnHW-equations datasets [60] (averaged over four left-handed writers) and on the OnHW-chars [61] dataset (averaged
over nine left-handed writers) based on the CNN+BiLSTM architecture.

OnHW- split OnHW- OnHW-chars [61]
Method symbols [60] equations [60] lower upper combined

Baseline (U𝑆𝑣 in Target Model) 19.18 33.52 45.80 45.97 25.19
Without Transformation 36.92 ± 8.71 47.06 ± 27.13 3.60 ± 2.35 3.87 ± 5.80 3.03 ± 2.44
Post-Training (full) 27.49 ± 14.29 90.53 ± 6.12 35.85 ± 30.33 31.15 ± 30.20 50.22 ± 19.74
Post-Training (middle) 19.23 ± 16.00 88.00 ± 6.51 28.39 ± 23.54 21.42 ± 23.92 41.76 ± 18.81
Post-Training (last) 22.15 ± 20.47 78.87 ± 10.89 16.17 ± 14.31 10.75 ± 14.99 19.88 ± 14.20
Layer Adapting 6.87 ± 2.45 21.53 ± 4.60 2.67 ± 2.04 4.87 ± 2.87 2.10 ± 2.56
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Figure 6: Network architecture with transfer learning by
freezing thefirst layers andfine-tuning the last layers, or only
post-training an additional adaptation layer. The network
is pre-trained on the target domainU𝑇𝑡 , and adapted on the
source domain training setU𝑆𝑡 and validated on the setU𝑆𝑣 .

5 EXPERIMENTAL RESULTS
Hardware and Training Setup. For all experiments we use Nvidia

Tesla V100-SXM2 GPUs with 32 GB VRAM equipped with Core
Xeon CPUs and 192 GB RAM. We use the vanilla Adam optimizer
with a learning rate of 10−4. We use the character recognition rate
(CRR) in % as time-series classification evaluation metric. Details
on the architecture, are proposed in Appendix A.7.

5.1 Limitations of Transfer Learning (TL)
Fine-tuning an existing model on each source domain can be data-
and parameter-inefficient. Under the assumption that the adaptation
dataset is large enough, fine-tuning leads to a better performance
than adapting the domains by feature-based transfer as the model
can overfit on the source data [36]. Hence, we apply different TL
techniques and compare to DA techniques. Figure 6 shows our
network architecture and different TL techniques. First, we adapt
the whole model by fine-tuning on each source domain dataset
from the pre-trained network on the target domain dataset. Second,
we freeze the first layers and only post-train the spatio-temporal
layers (two BiLSTMs and two dense layers). This layer freezing
leads to a faster training than full post-training. Third, we apply a
structurally similar method to the Adapter by Houlsby et al. [35]:
We freeze all previously pre-trained layers, add an adaptation layer
(a standard dense layer) at the end, and only train the additional
layer. The dense layer has |Y| units. This yields a compact and fast
trainable model by adding only a few trainable parameters per task.

Sinusoidal Dataset Evaluation. We adapt the pre-trained models
(on the source domain datasets) with the target domain datasets by
post-training the models provided in Figure 6. Figure 7 shows the
results averaged over 10 trainings for all noise parameters 𝑏 ∈ 𝐵.
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Figure 7: Evaluation of transfer learning on the generated
dataset for noise parameters between 𝑏 = 0.0 and 𝑏 = 1.9.

Post-training the full model and freezing the first layers while post-
training the last layers yields the highest TL results. Post-training
only the last layer or adapting an additional layer results in low
classification accuracies below 20%. In general, TL performs poorly
when we see significant changes between the domains (i.e., 𝑏 > 0.5).
In particular, all results are lower than the results achieved by our
DA techniques (see Section 5.2, Figure 8).

OnHW Recognition Evaluation. Table 1 shows TL results for all
OnHW datasets. Without transformation, the models fail in the
classification tasks, which proves the existence of a domain shift
in the data [46]. As the OnHW-symbols dataset is rather small, all
TL techniques cannot adapt to a specific writer. The larger OnHW-
chars dataset leads to better results. TL only yields good results on
the split OnHW-equations dataset, while full model post-training
outperforms training only specific layers or adapting an additional
layer. Again, TL is limited in its efficacy while our DA approach
shows promising results (see Section 5.3).

5.2 Evaluation of Sinusoidal Data
We train each sinusoidal dataset 10 times, and present results of
mean and standard deviation. As a gold standard we apply the
transformation based on the known label class, which we define as
the upper bound for transformation selection, and define the lower
bound by the classification without the use of any transformation.

Figure 8 presents results for the five optimal transport tech-
niques. The classification accuracy notably drops for higher noise
rates (𝑏 > 0.7). Without transformation (lower bound) the accuracy
is below 20% (see Figure 8a, cyan). The upper bound (black line)
yields an accuracy between 80% and 100%. MMD is outperformed
by all transformation selection techniques as order 1 is not suit-
able. For the remaining techniques, the Laplacian regularization
improves EMD results, while regularizing Sinkhorn (𝐿𝑝𝐿1 and 𝐿1𝐿2)
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(b) SEMD.
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(c) Sinkhorn.
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(d) Sinkhorn (𝐿𝑝𝐿1).
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Figure 8: Results for optimal transport methods and transformation selection on the synthetic dataset (for 𝑏 between 0.0 and
1.9). For better readability we depict the approach without transformation only in (a) as it is independent of optimal transport.

Table 2: Evaluation results (CRR in %) for the left- and right-handed writer OnHW-symbols and split OnHW-equations datasets
[60] for different MTS classification techniques.U𝑇𝑣 are right-handed writer datasets, andU𝑆𝑣 are left-handed writer datasets.

OnHW-symbols [60] split OnHW-equations [60]
Right-handed Left-handed L in R Right-handed Left-handed L in R

Method WD WI WD WI WI WD WI WD WI WI
CNN+BiLSTM [60] 96.20 79.51 92.00 54.00 19.18 95.70 83.88 92.00 51.50 33.52
LSTM-FCN [45] 92.39 73.32 75.34 41.40 - 93.95 81.47 88.56 47.56 -
ResCNN (𝑛𝑓 = 64) [96] 92.23 77.41 80.82 47.87 - 94.58 80.95 89.59 40.45 -
ResNet (𝑛𝑓 = 64) [86] 94.50 77.41 80.82 47.87 - 94.68 83.45 89.20 39.21 -
XResNet50 [34] 93.66 74.47 78.08 47.87 - 94.63 81.74 89.67 45.15 -
XceptionTime (𝑛𝑓 = 16) [68] 91.54 72.34 75.34 40.43 - 94.03 82.24 88.72 50.73 -
InceptionTime (𝑛𝑓 = 64, 𝑑𝑒𝑝𝑡ℎ = 12) [25] 91.97 76.92 80.82 46.81 - 94.87 84.35 88.48 44.15 -
TST [90] 91.12 71.85 78.08 51.06 - 93.07 80.40 87.61 47.27 -

Table 3: Evaluation results (CRR in %) for the left-handed (U𝑆𝑣 ) and right-handed (U𝑇𝑣 ) writer OnHW-chars [61] datasets for
different time-series classification techniques with same parameters as in Table 2.

Right-handed (U𝑇𝑣 ) Left-handed (U𝑆𝑣 ) U𝑆𝑣 in Target Model
Lower Upper Combined Lower Upper Combined Lower Upper Combined

Method WD WI WD WI WD WI WD WI WD WI WD WI WI WI WI
CNN+BiLSTM [60] 88.85 79.48 92.15 85.60 78.17 68.06 94.70 43.60 91.90 43.62 82.80 32.00 45.80 45.97 25.19
LSTM-FCN [45] 81.43 71.41 85.43 77.07 67.34 57.93 70.55 34.06 72.50 29.27 61.02 22.68 - - -
ResCNN (𝑛𝑓 = 64) [96] 82.52 72.00 86.91 78.64 67.55 58.67 80.00 38.78 80.63 29.79 65.39 26.21 - - -
ResNet (𝑛𝑓 = 64) [86] 83.01 71.93 86.41 78.03 68.56 58.74 81.01 40.24 82.95 30.12 66.95 26.17 - - -
XResNet50 [34] 80.99 69.14 86.05 76.69 64.98 54.38 74.86 31.24 76.43 28.35 60.80 18.38 - - -
XceptionTime (𝑛𝑓 = 16) [68] 81.41 70.76 85.94 78.23 66.70 56.92 75.41 40.08 79.20 30.66 63.92 25.91 - - -
InceptionTime (64, 12) [25] 84.14 75.28 87.80 81.62 70.43 61.68 79.08 43.12 81.25 36.48 65.12 29.35 - - -
TST [90] 80.10 70.75 84.81 78.34 66.12 57.56 77.43 41.27 79.11 29.86 63.39 26.83 - - -

does not yield better results compared to standard Sinkhorn. Con-
sistently, CC and kMMD outperform CORAL which yields higher
accuracies than HoMM of order three and Pearson correlation. For
the evaluation of feature embeddings, we refer to Appendix A.4.

5.3 Evaluation of OnHW Recognition
Baseline Results. We train all three OnHW right- and left-handed

writer datasets for writer-dependent (WD) and writer-independent
(WI) tasks. Architectures are taken from [60] (CNN+ BiLSTM) and
the tsai toolbox [57] (for all other models) [25, 34, 45, 68, 86, 90, 96].
Results of these comparisons are given in Tables 2 and 3. For the
OnHW-symbols dataset, the CNN+BiLSTM model outperforms all
architectures, while for the split OnHW-equations dataset, Incep-
tionTime [25] outperforms the CNN+BiLSTM architecture on the
right-handed WI task. On the OnHW-chars dataset, the accuracy
of the CNN+BiLSTM model is notably higher compared to all other
models, and we hence choose the CNN+BiLSTM model for further

experiments. Simply classifying the left-handed writer samples
with the model pre-trained on right-handed writer data yields low
accuracies (19.18% on the OnHW-symbols dataset and 33.52% on
the split OnHW-equations dataset) as left-handed writer samples
are out-of-distribution with respect to the right-handed ones (see
Figure 5d). Hence, an efficient DA technique is necessary.

Evaluation of Domain Adaptation. We first evaluate different
distance metrices for optimal transport. The respective hyperpa-
rameter search results are given in Appendix A.5. Based on these
findings, we choose the squared Euclidean metric for all further
applications. Table 4 summarizes all results for DA pre-trained on
the target domain data U𝑇𝑡 , adapted on the source domain data
U𝑆𝑡 , and validated onU𝑆𝑣 . We train each left-handed writer sep-
arately and report average results with their respective standard
deviation. For an evaluation for each left-handed writer, see Appen-
dix A.6. The last column in Table 4 shows the upper bound using the
known transformation. EMD [27] and SEMD [29] perform similar,
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Table 4: Evaluation results (CRR in %, mean and standard deviation) for different transformation techniques and transformation
selections for all OnHW [60, 61] datasets based on the CNN+BiLSTM architecture. J = Jeff, S = Stein.

Dataset Method CC [65] PC [65] MMD [48] kMMD [53] HoMM [11] CORAL CORAL (J) CORAL (S) w/ T.
EMD [27] 70.03± 8.4 59.14±13.4 61.55±18.2 85.02±6.9 67.11±6.8 75.29±16.0 82.24±7.1 80.85±8.3 89.18±10.8
SEMD [29] 70.03± 8.4 59.14±13.4 61.55±18.2 85.02±6.9 65.72±8.3 75.29±16.0 82.24±7.2 80.85±8.4 89.18±10.8

OnHW- Sinkhorn [16] 64.62±19.2 51.97± 5.2 67.25± 8.1 85.09±7.7 70.03±7.4 78.14± 6.5 80.92±8.0 82.31±7.8 93.35± 8.6
symbols Sink. (𝐿𝑝𝐿1) 64.62±19.2 51.97± 5.2 67.25± 8.1 85.09±7.7 69.96±5.6 78.14± 6.5 80.92±8.0 82.31±7.8 93.35± 8.6

Sink. (𝐿1𝐿2) 64.62±19.2 51.97± 5.2 67.25± 8.1 85.09±7.7 68.64±7.3 78.14± 6.5 80.92±8.0 82.31±7.8 93.35± 8.6
CORAL [75] 5.48± 6.8 2.78± 2.8 5.49± 0.1 6.80±2.2 5.49±0.1 9.66± 7.3 5.49±0.1 4.17±2.4 39.77±10.0
EMD [27] 68.90±14.4 56.16±20.3 59.33±14.9 79.00±11.7 53.87±10.5 73.61±11.4 77.39±11.6 72.09±13.2 85.78± 7.7

split SEMD [29] 68.90±14.4 56.16±20.3 59.33±14.9 79.00±11.7 53.05±10.0 73.61±11.4 77.39±11.6 72.09±13.2 85.78± 7.7
OnHW- Sinkhorn [16] 69.69±17.1 53.31±16.8 67.12± 9.9 84.03± 9.4 62.37±13.3 79.97±10.8 82.24±10.3 76.12±13.0 90.26± 6.3
equations Sink. (𝐿𝑝𝐿1) 69.69±17.1 53.31±16.8 67.12± 9.9 84.03± 9.4 61.86±13.2 79.97±10.8 82.24±10.3 76.12±13.0 90.26± 6.3

Sink. (𝐿1𝐿2) 69.69±17.1 53.33±16.8 67.12± 9.9 84.03± 9.4 62.29±13.4 79.97±10.8 82.24±10.3 76.12±13.0 90.26± 6.3
CORAL [75] 22.19±12.2 15.82±12.6 15.05± 8.4 19.63±13.0 19.01± 9.0 18.27±10.8 18.18±11.2 17.72±11.8 30.34±11.0
EMD [27] 68.41±13.7 54.27± 8.6 33.06±13.7 77.72±11.0 50.51± 9.5 64.25±10.0 80.08±9.5 79.41±9.5 98.19±2.1
SEMD [29] 68.41±13.7 54.27± 8.6 33.06±13.7 77.72±11.0 50.57± 9.5 64.25±10.0 80.08±9.5 79.41±9.5 98.19±2.1

OnHW- Sinkhorn [16] 81.56±12.3 69.27±12.6 51.54±16.6 83.55±10.1 67.31±10.5 77.36±11.3 82.33±9.5 85.22±8.2 100.00±0.0
chars Sink. (𝐿𝑝𝐿1) 81.56±12.3 69.27±12.6 51.54±16.6 83.55±10.1 66.88±11.1 77.36±11.3 82.33±9.5 85.22±8.2 100.00±0.0
(lower) Sink. (𝐿1𝐿2) 81.56±12.3 69.27±12.6 51.54±16.6 83.55±10.1 67.96±10.0 77.36±11.3 82.32±9.5 85.22±8.2 100.00±0.0

CORAL [75] 4.56± 4.1 8.65± 6.3 4.28± 0.4 3.87± 3.9 4.28± 0.4 4.28± 0.4 4.28±0.4 7.40±4.3 47.13±9.2
EMD [27] 62.98±18.1 53.37±15.1 33.93±10.2 67.94±13.1 44.06±12.0 60.70±14.0 79.87±15.3 76.29±16.0 99.31± 2.0
SEMD [29] 62.98±18.1 53.37±15.1 33.93±10.2 67.94±13.1 42.67±12.3 60.70±14.0 79.87±15.3 76.29±16.0 99.31± 2.0

OnHW- Sinkhorn [16] 78.82±13.0 73.32±15.5 55.82±17.6 82.25±14.5 57.57±11.0 74.56±12.6 80.96±16.3 78.25±14.2 99.65± 1.0
chars Sink. (𝐿𝑝𝐿1) 78.82±13.0 73.32±15.5 55.82±17.6 82.26±14.5 57.57±11.3 74.56±12.6 80.96±16.3 78.25±14.2 99.65± 1.0
(upper) Sink. (𝐿1𝐿2) 78.82±13.0 73.32±15.5 55.82±17.6 82.26±14.5 57.34±10.2 74.56±12.6 80.96±16.3 78.25±14.2 99.65± 1.0

CORAL [75] 7.03± 4.6 21.51±10.7 4.26± 1.7 6.27± 3.3 4.26± 1.7 4.26± 1.0 4.26± 1.0 11.11± 6.4 52.10±16.5
EMD [27] 62.18±12.1 51.79±12.9 31.57±11.7 69.62± 9.3 45.21±11.6 57.79±11.4 69.56±9.0 63.96±10.4 94.97±3.4
SEMD [29] 62.18±12.1 51.79±12.9 31.57±11.7 69.62± 9.3 42.80±12.2 57.79±11.4 69.56±9.1 63.96±10.4 94.98±3.4

OnHW- Sinkhorn [16] 65.16±12.1 62.92±10.4 44.16±14.7 73.87±14.7 56.84± 9.6 67.85±10.5 72.30±9.1 66.50± 7.7 96.25±3.5
chars Sink. (𝐿𝑝𝐿1) 65.16±12.1 62.93±10.4 44.16±14.7 73.87±11.1 55.90±10.1 67.85±10.5 72.30±9.1 66.50± 7.7 96.25±3.5
(comb.) Sink. (𝐿1𝐿2) 65.16±12.1 62.92±10.4 44.16±14.7 73.87±11.1 56.48± 9.2 67.85±10.5 72.30±9.1 66.50± 7.7 96.25±3.5

CORAL [75] 3.35± 1.2 4.11± 2.6 0.87± 1.3 3.03± 1.8 0.87± 1.3 0.87± 1.0 0.87±1.3 3.24± 2.2 32.41±8.7

as well as Sinkhorn [16] without and with (𝐿𝑝𝐿1, 𝐿1𝐿2) regulariza-
tion. Sinkhorn transport consistently outperforms EMD (see also
[1]). The model with CORAL [75] for transformation computation
fails to classify the time-series data, even with known transfor-
mation selection. The MMD [48] approach (of order 1) yields the
lowest classification accuracy, and is notably be improved with
CORAL [75] (of order 2). Increasing the order to 3 (HoMM [11]),
decreases the accuracy as a higher number of iterations is required.
The kernalized MMD (kMMD) [53] approach (of order 1) yields
the highest classification accuracies. Kernalizing HoMM leads to
extremely long runtimes. Jeff and Stein CORAL outperform the
standard CORAL method as these are not dependent on its inverse
[33]. Interestingly, CC performs better than the scale-invariant PC.

Runtimes. We demonstrate runtimes for transformation compu-
tation and selection methods exemplary on the OnHW-symbols
dataset for one writer averaged over all samples. To find the op-
timal transformation, EMD (0.0033s) and Sinkhorn (0.0042s) are
the fastest methods, while the regularization increases the compu-
tation time (SEMD: 1.8756s, Sinkhorn 𝐿𝑝𝐿1: 0.025, 𝐿1𝐿2: 0.0526s).
CORAL leads to extremely long runtimes of 405.7s. Applying the
transformation gives the following runtimes in ascending order:
CC (0.013s), MMD (0.013s), PC (0.021s), kMMD (0.024s), CORAL
(0.03s), CORAL (S) (0.109s), CORAL (J) (0.181s), HoMM (2.844s). We

conclude that Sinkhorn with kMMD is the best trade-off between
classification accuracy and runtime.

6 CONCLUSION
We addressed DA for time-series classification by combining a large
variety of DA techniques with transformation selection methods.
We used optimal transport and correlation alignment techniques to
transform features of a source domain into features of a target do-
main. At inference, we compared correlation metrics and methods
based on MMD as embedding distance metrics to select the optimal
transformation. A broad study on synthetic univariate time-series
data and MTS OnHW datasets showed that Sinkhorn transport can
outperform EMD and CORAL. The kernalized MMD metric yields
the highest classification accuracies. Our DA approach yields higher
accuracies than transfer learning on small adaptation datasets.
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A APPENDICES
A.1 Notations

Table 5: Overview of notations used for our domain adapta-
tion methodology.

Notation Description
Multivariate Time-Series (MTS) Classification
U = {u1, . . . , u𝑚 } ∈ R𝑚×𝑙 An MTS (ordered sequence) of 𝑙 ∈ N streams
u𝑖 = (𝑢𝑖,1, . . . ,𝑢𝑖,𝑙 ) A stream of an MTS

𝑖 ∈ {1, . . . ,𝑚}
𝑚 ∈ N Length of a time-series
U = {U1, . . . ,U𝑛𝑈 } Set of 𝑛𝑈 time-series with U ∈ R𝑛𝑈 ×𝑚×𝑙
𝑦 ∈ Y Unknown class label for a given MTS
Y Label space
|Y | Number of class labels
Domain Adaptation
U𝑇 Target domain dataset
U𝑆 Source domain dataset
U𝑇𝑡 Training subset of the target domain dataset
U𝑇𝑣 Validation subset of the target domain dataset
U𝑆𝑡 Training subset of the source domain dataset
U𝑆𝑣 Validation subset of the source domain dataset
U𝑇 MTS of the target domain dataset
U𝑆 MTS of the source domain dataset
U𝑇𝑡 Trainings subset of the target domain dataset
U𝑇𝑣 Valdiation subset of the target domain dataset
U𝑆𝑡 Trainings subset of the source domain dataset
U𝑆𝑣 Valdiation subset of the source domain dataset
𝜇𝑇 Mean of U𝑇

𝜇𝑆 Mean of U𝑆

C𝑇 Covariance matrix of U𝑇

C𝑆 Covariance matrix of U𝑆

T : D𝑆 −→ D𝑇 Transformation
𝑓 (U𝑇𝑡 ) ∈ R𝑞𝑇 ×𝑤𝑇 Latent embedding of the training MTS

of the target domain dataset
𝑓 (U𝑆𝑡 ) ∈ R𝑞𝑆 ×𝑤𝑆 Latent embedding of the training MTS

of the source domain dataset
𝑞∗, 𝑤∗ Size of the embedding 𝑓 (U∗+ ) ∈ R𝑞∗×𝑤∗
X Feature space
𝑃 (X) Marginal probability of X
𝑃 (X,Y) Joint distribution of X and Y
𝑃 (Y |X) Conditional distribution between X and Y
D Domain
D𝑇 = {X𝑖

𝑇 ,Y𝑖
𝑇 }
N𝑇
𝑖=1 Target domain of N𝑇 labeled samples

D𝑆 = {X𝑖
𝑆 ,Y𝑖

𝑆 }
N𝑆
𝑖=1 Source domain of N𝑆 labeled samples

H Hypothesis space
R𝑇 Target domain error
R𝑆 Source domain error
𝑑HΔH Discrepancy distance between D𝑆 and D𝑇

w.r.t. the hypothesis space H
Optimal Transport
𝐶 (T) Transportation cost
𝑐 : D𝑇 × D𝑆 −→ R+ Distance function
T0 Optimal transportation problem
𝛼 ∈ Θ General coupling
Θ ∈ 𝑃 (D𝑇 ,D𝑆 ) Set of all probabilistic couplings
𝑊𝑝 Wasserstein distance of order 𝑝
𝑐 (U𝑇 ,U𝑆 ) Cost function
𝑑 (U𝑇 ,U𝑆 )𝑝 Distance function of order 𝑝

A.2 Correlation Alignment (CORAL)
The calculation of subspace-based methods is simple and efficient.
Hence, we use CORAL [75], which minimizes the domain shift
by aligning the second-order statistics (i.e., the original feature
distributions of source and target domains). Suppose 𝜇𝑇 and 𝜇𝑆 are
the means of 𝑓 (U𝑇 ) and 𝑓 (U𝑆 ), and C𝑇 and C𝑆 are the covariance
matrices. We normalize the features to have zero mean (𝜇𝑇 = 𝜇𝑆
= 0). Then, CORAL minimizes the distance between 𝑓 (U𝑇 ) and
𝑓 (U𝑆 ) by a linear transformation A by

min
A
| |C𝑆 − C𝑇 | |2𝐹 = min

A
| |A𝑇 C𝑇 A − C𝑇 | |2𝐹 , (9)

where | | · | |2𝐹 is the squared Frobenius norm, and C𝑆 is the covari-
ance of the transformed source features 𝑓 (U𝑆 )A [75]. The optimal
solution of this problem is given by

A∗ = P𝑆Σ+𝑆
1
2 P𝑇𝑆 P𝑇 [1:𝑟 ]Σ𝑇

1
2
[1:𝑟 ]P𝑇

𝑇
[1:𝑟 ] , (10)

with 𝑟 = min(𝑟C𝑆 , 𝑟C𝑇 ), where 𝑟C𝑆 and 𝑟C𝑇 denote the rank of C𝑆

and C𝑇 , and Σ+ is the Moore-Penrose pseudoinverse of Σ. We use
the singular value decomposition of a real matrix Y to compute the
largest 𝑟 ≤ 𝑟𝑌 singular values Σ𝑌[1:𝑟 ] , and left and right singular
vectors P𝑌[1:𝑟 ] and V𝑌[1:𝑟 ] of Y = P𝑌 Σ𝑌 V𝑌 of the real matrix Y of
rank 𝑟𝑌 [7].

A.3 Datasets Overview
Table 6 gives an overview of sample counts for the right-handed
target domains for training U𝑇𝑡 and validation U𝑇𝑣 . Results for
these datasets are given in Table 2 and 3. Here, the left-handed
dataset comprise all writers. Table 7 shows the sample numbers for
left-handed writers separated for each writer at an 80/20 training
validation split. We propose counts for the source domains for
trainingU𝑆𝑡 and validationU𝑆𝑣 data. Results are averaged over all
writers (four for the OnHW-symbols and split OnHW-equations
datasets, and nine for the OnHW-chars dataset) and are given in
Table 4 for domain adaptation and in Table 1 for transfer learning.

Table 6: Overview of sample numbers of online handwriting
(OnHW) recognition datasets for writer-dependent (WD) and
writer-independent (WI) and right- and left-handed classifi-
cation tasks. Top line: training. Bottom line: validation.

Dataset Right-handed Left-handed
WD WI WD WI

OnHW-symbols [60] 1,853 1,715 288 267
473 611 73 94

Split OnHW-equations [60] 31,697 30,408 5,021 4,579
7,946 9,235 1,259 1,701

lower 11,524 11,647 903 781
4,101 3,978 218 368

OnHW-chars [61] upper 11,542 11,672 925 757
4,108 3,978 224 364

combined 23,066 23,319 1,821 1,538
8,209 7,956 449 732
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(a) 𝑏 = 0.0. (b) 𝑏 = 0.5. (c) 𝑏 = 1.0. (d) 𝑏 = 1.5. (e) 𝑏 = 1.9.

Figure 9: Embedding visualization for the sinusoidal datasets for the target domainU𝑇 and the source domainU𝑆𝑣 with noise
parameters 𝑏 ∈ 𝐵 = {0.0, 0.5, 1.0, 1.5, 1.9}. Marker ·: target domain embeddings. Marker ×: source domain validation embeddings.

(a) EMD, best transformation. (b) Sinkhorn, best transformation. (c) EMD, MMD. (d) Sinkhorn, MMD.

Figure 10: Embedding visualization for the target domainU𝑇 , source domainU𝑆 and transformed source domainU𝑇
𝑆 for the

sinusoidal datasets. We show embeddings for EMD and Sinkhorn transport without regularization. Evaluated are nine metrics
for transformation selection: CC, PC, CORAL (standard, Jeff and Stein), correlation normalized, MMD, kMMD, HoMM, without
transformation and best transformation. Noise is 𝑏 = 0.5. Note that we applied t-SNE for each plot separately that leads to
different embeddings for the same data (i.e., target domain D𝑇 ). Figure 11 follows.

Table 7: Overview of number of samples for each left-handed
writer for the OnHW datasets for train/validation splits. For
OnHW-chars, we count for lower/upper/combined.

Dataset Writer Train (U𝑆𝑡 ) Val. (U𝑆𝑣 )
OnHW-symbols-L [60] 1 71 18

2 72 18
3 70 18
4 75 19

Split OnHW- 1 1,299 327
equations-L [60] 2 1,067 267

3 1,295 324
4 1,360 341

OnHW-chars-L [61] 1 78 / 89 / 167 26 / 15 / 41
2 78 / 89 / 167 26 / 15 / 41
3 78 / 70 / 148 26 / 11 / 37
4 78 / 89 / 167 26 / 15 / 41
5 79 / 89 / 168 26 / 15 / 41
6 202 / 218 / 420 62 / 42 / 104
7 78 / 89 / 167 26 / 15 / 41
8 78 / 89 / 167 26 / 15 / 41
9 120 / 130 / 250 360 / 26 / 386

A.4 Feature Embeddings for the Sinusoidal
Dataset

To better visualize the differences between domain-dependent em-
beddings and different methods, we plot two dimensional embed-
dings of the features 𝑓 (U). For the sinusoidal dataset, 𝑓 (U) is of
size 50 × 30 (reshaped 1,500). We use t-SNE [82] with initial di-
mension 1,500, perplexity of 30, an initial momentum of 0.5, and a
final momentum of 0.8. Figure 9 visualizes the feature embeddings
for different noise parameters 𝑏 with class label dependent colors.
Without noise (𝑏 = 0), the clusters are clearly separable, while only
label ’8’ and ’9’ overlap. As the noise increases 𝑏 = 1.5, also
the cluster with label ’7’ overlaps, and finally label ’6’ and ’3’
for 𝑏 = 1.9. This is reflected by the results in Figure 8, where the
accuracy drops for 𝑏 > 0.7. The validation samples with domain
shift are notably distant to the target samples.

Figure 10 and 11 visualize the feature embeddings 𝑓 (U) forU𝑇

(blue), U𝑆 (orange), and the transformed U𝑇
𝑆 (red). It is notable

that EMD forms spread clusters of the specific sample embedding
for the transformed source domain, while Sinkhorn shapes small
clusters that are close to the target domain clusters, but are outly-
ing. This distance increases for a higher noise. Choosing the best
transformation (Figure 10a and 10b), the transformed embeddings
are mostly consistent, the kMMD (Figure 11a and 11b) and cross
correlation (Figure 11e and 11f) distance metrics (that result in the
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(a) EMD, kMMD. (b) Sinkhorn, kMMD. (c) EMD, HoMM. (d) Sinkhorn, HoMM.

(e) EMD, CC. (f) Sinkhorn, CC. (g) EMD, PC. (h) Sinkhorn, PC.

(i) EMD, Stein CORAL. (j) Sinkhorn, Stein CORAL. (k) EMD, Jeff CORAL. (l) Sinkhorn, Jeff CORAL.

Figure 11: For the caption, see Figure 10.

highest classification accuracy), are similar to the best transfor-
mation. HoMM (Figure 11c and 11d) with the lowest classification
accuracy, also results in a larger spread of transformed clusters.
Different are the variances Stein and Jeff CORAL trained with EMD
where the transformed source domain samples are notably out-of
the target domain samples (see Figure 11i and 11k).

A.5 Deep Metric Learning Searches
We perform a large hyperparameter search on the OnHW-symbols
dataset for all optimal transport techniques. Results are shown in
Figure 12. The differences between EMD and SEMD are marginally,
as well as between 𝐿𝑝𝐿1 and 𝐿1𝐿2 regularization techniques. In
general Sinkhorn performs better than EMD. While the 𝑙𝑜𝑔 metric
performs best for EMD,𝑚𝑒𝑑𝑖𝑎𝑛,𝑚𝑎𝑥 and 𝑙𝑜𝑔𝑙𝑜𝑔 yield better results
for Sinkhorn. The differences for distance metrics are marginal
for Sinkhorn. For follow-up trainings, we choose the squared Eu-
clidean distance metric with 𝑙𝑜𝑔𝑙𝑜𝑔 metric. Indeed, the similarity
comparison method for transformation selection has the highest
impact. kMMD consistently yields the highest classification accura-
cies followed by Stein and Jeff CORAL. Again, HoMM of order 3
can outperform MMD, but not kMMD.

A.6 Evaluation per Writer
We adapt each writer separately as writer can have very different
writing styles, and hence, different domains of sensor features.
Figure 13 to Figure 17 shows all results for five different optimal
transport techniques and transformation selection methods. Using
the best transformation mostly achieves 100%, which is the upper
bound for the optimal transformation. Without transformation, the
right-handed model leads to a poor accuracy of below 10% (the
lower bound). For the OnHW-symbols and split OnHW-equations
datasets, the accuracy of the models drop for the writer with ID
3. For the OnHW-chars dataset, the writers with ID 3 and 6 are
outlier. The reason is that these persons wrote inconsistent. Again,
the difference between EMD and SEMD, and Sinkhorn with and
without regularization is marginal in accuracy.

Figure 18 shows results of transfer learning separated for all
writers for all OnHW datasets. Consistently, adapting an additional
layers yields the lowest classification results. While the OnHW-
symbols dataset is rather small, all post-training techniques fail
to successfully classify symbols (see Figure 18a). The split OnHW-
equations dataset is large, and hence, post-training results in classi-
fication accuracies between 60% and 100% (see Figure 18b). Results
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(a) EMD.
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(b) Sinkhorn.
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(c) Sinkhorn (𝐿1𝐿2).

Figure 12: Hyperparameter search for distance metrics for optimal transport methods and transformation selection methods
on the OnHW-symbols dataset. Results are averaged over four writers. 1:𝑚𝑒𝑑𝑖𝑎𝑛. 2:𝑚𝑎𝑥 . 3: 𝑙𝑜𝑔. 4: 𝑙𝑜𝑔𝑙𝑜𝑔. 5: 𝑁𝑜𝑛𝑒.
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(d) Sinkhorn (𝐿𝑝𝐿1).
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Figure 13: Evaluation of the transformed embeddings for the left-handed OnHW-symbols dataset for each of the four writers.
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(d) Sinkhorn (𝐿𝑝𝐿1).
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Figure 14: Evaluation of the transformed embeddings for the left-handed split OnHW-equations dataset for each of the four
writers.
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(d) Sinkhorn (𝐿𝑝𝐿1).
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Figure 15: Evaluation of the transformed embeddings for the left-handed OnHW-chars (lower) dataset for each writer.
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(d) Sinkhorn (𝐿𝑝𝐿1).
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Figure 16: Evaluation of the transformed embeddings for the left-handed OnHW-chars (upper) dataset for each writers.
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(d) Sinkhorn (𝐿𝑝𝐿1).
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Figure 17: Evaluation of the transformed embeddings for the left-handed OnHW-chars (combined) dataset for each writer.
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(a) OnHW-symbols.
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(b) Split OnHW-equations.
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(c) OnHW-chars (lower).
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(d) OnHW-chars (upper).
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Figure 18: Evaluation of transfer learning for the OnHW datasets for each of the four, respectively nine, writers.

Table 8: Architecture details for the sinusoidal datasets.

Layer Features
Encoder
Input Size: (Sequence length = 200, 13)
Convolution (1D) Filters: 50, kernel size: 4, activation: softmax
Max Pooling (1D) Pool size: 4
Classifier
Batch Normalization
Dropout Rate 20%
LSTM Units: 10, activation: tanh
Dense Units: 20
Output Size: number classes (10)

for the OnHW-chars lower, upper and combined are similar (see
Figure 18c to 18e). Post-training the full model yields marginally
better results than training only the last layer or the layers after
the middle of the model. Hence, the model requires to overfit on
the specific writer. Results highly vary with the writer ID.

A.7 Details on the Architectures
Table 8 and 9 show architecture details for the sinusoidal dataset,
and OnHW datasets, respectively. Both models contain a feature
extractor of the time-series datasets, and temporal unit, and dense
layers for classification. We use a small LSTM of 10 units for the
synthetic dataset, and two stacked bidirectional LSTM layers of
60 units each for the OnHW datasets. For the optimal transport
methods, we use the output of the max pooling layer before the
batch normalization and dropout layers and the temporal units. We

Table 9: Architecture details for the OnHW datasets.

Layer Features
Encoder
Input Size: (Sequence length, 1)
Convolution (1D) Filters: 200, kernel size: 4, activation: relu
Max Pooling (1D) Pool size: 2
Batch Normalization
Dropout Rate: 20%
Convolution (1D) Filters: 200, kernel size: 4, activation: relu
Max Pooling (1D) Pool size: 2
Classifier
Batch Normalization
Dropout Rate: 20%
BiLSTM Units: 60, activation: tanh, return sequ.: True
BiLSTM Units: 60, activation: tanh, return sequ.: True
Dense Units: 100
Dense (time distributed) Units: number classes, activation: softmax
Output Size: number classes

train the synthetic dataset for 100 epochs, a batch size of 100, the
Adam optimizer with learning rate 0.0001, and the categorical cross-
entropy loss. We train the OnHW datasets for 1,000 epochs, a batch
size of 50, the Adam optimizer with learning rate 0.0001, and the
categorical cross-entropy loss. For transfer learning techniques we
train the synthetic dataset for 80 epochs, and the OnHW datasets
for 100 epochs with the same optimizer parameters.
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Datasets and Source Code
This paper uses the OnHW-words500 and OnHW-wordsRandom datasets from right-
handed writers and left-handed writers, as well as the publicly available IAM-OffDB
dataset. The synthetically generated sinusoidal curves and the corresponding Gramian
angular summation field can be reproduced with the published source code. The source
code to reproduce evaluation results is publicly available at:
https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/
onhw-dataset.html

Statement about Recent, Related Research17

For the contributing paper (Ott et al., 2023c), we employed ScrabbleGAN (Fogel et al.,
2020) as a generative adversarial network (GAN) for augmenting the offline handwriting
data with a corpus of a diverse range of word labels. ScrabbleGAN was selected based on
its suitability for real-world applications, as it is capable of generating realistic handwrit-
ing styles with high data fidelity and low inference times. Furthermore, it is capable of
generating images of words with varying lengths, making it a versatile option for data aug-
mentation purposes. The utilized data augmentation with generated offline handwriting
data can be improved by recent generative models, which include the approaches presented
in Mattick et al. (2021); Kang et al. (2021); Luo et al. (2022); Gan et al. (2023). The gen-
erator proposed by Kang et al. (2021) conditions on both visual appearance and textual
content, and it can produce text-line samples with diverse handwriting styles that visually
outperform ScrabbleGAN. On the other hand, HiGAN+ (Gan et al., 2023) introduces a
contextual loss to enhance style consistency and achieves better calligraphic style transfer.
HiGAN+ also reuses the writer identifier for style encoding, resulting in better evalua-
tion metrics than ScrabbleGAN. Both models are recent generative models that offer an
alternative to improve data augmentation with generated offline handwriting data.

Similarly, recent research provides alternatives that may improve classification re-
sults for offline handwriting recognition. The Gated-CNN-BGRU model proposed by
de Sousa Neto et al. (2022) aims to achieve high performance with few training data while
keeping the number of trainable parameters low. PARSeqA (Bautista & Atienza, 2022) is an

https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html
https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html


223

ensemble of internal autoregressive language models with shared weights, which is learned
through permutation language modeling. Meanwhile, recent developments in Transformer
architectures have led to several Transformer-based models that have shown improved
performance on optical character recognition datasets. Examples of such models include
TrOCR (Li et al., 2023), MaskOCR (Lyu et al., 2022), and the method proposed by Diaz
et al. (2021). While the contributing paper applied interline spacing reduction via seam
carving, resizing the images to 50% height, and random projective (rotating and resizing
lines) and random elastic transform, Chaudhary & Bali (2022) introduce an alternative
data augmentation technique called tiling and corruption. This method involves divid-
ing the input image into multiple small tiles of equal size, which are then replaced with
corrupted tiles. Although the tiling and corruption augmentation technique reduces the
state-of-the-art results (CER) on the IAM-OffDB dataset, it achieves comparable results
with Jangpangi et al. (2022). However, pre-training with synthetic data (Li et al., 2023)
and using Transformer-based architectures (Diaz et al., 2021) achieve lower CERs.

A survey of contrastive and triplet learning techniques and CMR methods is provided
in Deldari et al. (2022a), which also presents a comparison between the method proposed
in the contributing paper (Ott et al., 2023c) and other CMR methods. CMT-Co (Zhang
et al., 2023) is a word-level contrastive learning technique that generated artifacts by
moving characters within a word. The model emphasized the text content by using the
moving direction and distance as supervision.
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Fig. 1. Method overview: Cross-modal representation learning between image and time-series data
using the triplet loss based on metric learning functions to improve the time-series classification task.

1 INTRODUCTION
Cross-modal retrieval (CMR) such as cross-modal representation learning [79] for learning across
two or more modalities (i.e., image, audio, text and 3D data) has recently garnered substantial interest
from the machine learning community. CMR can be applied in a wide range of applications, such as
multimedia management [59] and identification [88]. Extracting information from several modalities
and adapting the domain with cross-modal learning allows using the information in all domains [85].
Cross-modal representation learning, however, remains challenging due to the heterogeneity gap (i.e.,
inconsistent representation forms of different modalities) [49].

A limitation of cross-modal representation learning is that many approaches require the availability
of all modalities at inference time. Image-to-caption CMR methods solve this via a separate encoder
[19, 32]. However, in many applications, certain data sources are only available during training by
means of elaborate laboratory setups [63]. For instance, consider a human pose estimation task that
uses inertial sensors together with color videos during training, where a camera setup might not be
available at inference time due to bad lighting conditions or other application-specific restrictions.
Here, a model that allows inference on only the main modality is required, while auxiliary modalities
may only be used to improve the training process (as they are not available at inference time) [42].
Learning using privileged information [102] is one approach in the literature that describes and
tackles this problem. During training, in addition to 𝑋 , it is assumed that additional privileged
information 𝑋 ∗ is available. However, this privileged information is not present in the inference stage
[70].

For cross-modal representation learning, we need a deep metric learning technique that aims to
transform training samples into feature embeddings that are close for samples that belong to the
same class and far apart for samples from different classes [112]. As deep metric learning requires
no model update (simply fine-tuning for training samples of new classes), deep metric learning is an
often applied approach for continual learning [29]. Typical deep metric learning methods use not
only simple distances (e.g., Euclidean distance), but also highly complex distances (e.g., canonical
correlation analysis [85] and maximum mean discrepancy [68]). While cross-modal representation
learning learns representations from all modalities, single-modal learning commonly uses pair-wise
learning. The triplet loss [90] selects a positive and negative triplet pair for a corresponding anchor
and forces the positive pair distance to be smaller than the negative pair distance. While research of
triplet selection for single-modal classification is very advanced [25, 29, 42, 52, 55, 61, 73, 103, 106],
pair-wise selection for cross-modal representation learning has mainly been investigated for specific
applications [59, 121, 124], i.e., visual semantic embeddings [8, 19, 28, 84].

One exemplary application for cross-modal learning is handwriting recognition (HWR), which can
be categorized into offline and online HWR. Offline HWR – such as optical character recognition
(OCR) – concerns only analysis of the visual representation of handwriting and cannot be applied
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for real-time recognition applications [33]. In contrast, online HWR works on different types of
spatio-temporal signals and can make use of temporal information, such as writing speed and
direction [81]. As an established real-world application of online HWR, many recording systems
make use of a stylus pen together with a touch screen surface [3]. There also exist prototypical
systems for online HWR when writing on paper [20, 27, 89, 108], but these are not yet suitable
for real-world applications. However, a novel sensor-enhanced pen based on inertial measurement
units (IMUs) may enable new online HWR applications for writing on normal paper. This pen has
previously been used for single character [56, 73, 75, 77] and sequence [76] classification. However,
the accuracy of previous online HWR methods is limited, due to the following reasons: (1) The size
of datasets is limited, as recording larger amounts of data is time-consuming. (2) Extracting important
spatio-temporal features is important. (3) Training a writer-independent classifier is challenging,
as different writers can have notably different writing styles. (4) Evaluation performance drops for
under-represented groups, i.e., left-handed writers. (5) The model overfits to seen words that can be
addressed with generated models. A possible solution is to combine datasets of different modalities
using cross-modal representation learning to increase generalizability. In this work, we combine
offline HWR from generated images (i.e., OCR) and online HWR from sensor-enhanced pens by
learning a common representation between both modalities. The aim is to integrate information on
OCR – i.e., typeface, cursive or printed writing, and font thickness – into the online HWR task – i.e.,
writing speed and direction [104].

Our Contribution. Models that use rich data (e.g., images) usually outperform those that use a less
rich modality (e.g., time-series). We therefore propose to train a shared representation using the triplet
loss between pairs of image and time-series data to learn a cross-modal representation between both
modality embeddings (cf. Figure 1). This allows for improving the accuracy of single-modal inference
in the main task. Cross-modal learning between images and time-series data is rare. Furthermore, we
propose a novel dynamic margin for the triplet loss based on the Edit distance. We prove the efficacy
of our metric learning-based triplet loss for cross-modal representation learning both with simulated
data and in a real-world application. More specifically, our proposed cross-modal representation
learning technique 1) improves the multivariate time-series classification accuracy and convergence,
2) results in a small time-series-only network independent from the image modality while allowing
for fast inference, and 3) has better generalizability and adaptability [49]. Our approach shows that
the recent methods ScrabbleGAN [35] and OrigamiNet [117] are applicable in the real-world setup
of offline HWR to enhance the online HWR task. We provide an extensive overview and technical
comparison of related methods. Code and datasets are available upon publication.1

The paper is organized as follows. Section 2 discusses related work followed by the mathematical
foundation of our method in Section 3. The methodology is described in Section 4 and the results are
discussed in Section 5.

2 RELATED WORK
In this section, we discuss related work – particularly, methods of offline HWR (in Section 2.1) and
online HWR (in Section 2.2). We summarize approaches for learning a cross-modal representation
from different modalities (in Section 2.3), pairwise and triplet learning (in Section 2.4), and deep
metric learning (in Section 2.5) to minimize the distance between feature embeddings.

2.1 Offline Handwriting Recognition
In the following, we give a brief overview of offline HWR methods to select a suitable lexicon and
language model-free method. For an overview of offline and online HWR datasets, see [50, 81]. For a
1Code and datasets: https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html
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more detailed overview, see Table 7 in the Appendix A.2. Methods for offline HWR range from hidden
Markov models (HMMs) – such as [7, 30, 31, 60, 78] – to deep learning techniques that became
predominant in 2014, such as convolutional neural networks (CNNs) as the methods by [82, 109].
The gated text recognizer [118] aims to automate the feature extraction from raw input signals with a
minimum required domain knowledge. The fully convolutional network without recurrent connections
is trained with the CTC loss. Thus, the gated text recognizer module can handle arbitrary input sizes
and can recognize strings with arbitrary lengths. This module has been used for OrigamiNet [117]
which is a segmentation-free multi-line or full-page recognition system. OrigamiNet yields state-of-
the-art results on the IAM-OffDB dataset, and shows improved performance of gated text recognizer
over VGG and ResNet26. Hence, we use the gated text recognizer module as our visual feature
encoder for offline HWR. Furthermore, temporal convolutional networks (TCNs) employ the temporal
context of the handwriting – such as the methods [92, 93]. More prominent became recurrent neural
networks (RNNs) including long short-term memories (LSTMs), bidirectional LSTMs (BiLSTMs)
[23, 51, 69, 98], and multidimensional RNNs [9, 10, 17, 21, 39, 58, 105]. Sequential architectures
are perfect to fit text lines, due to the probability distributions over sequences of characters, and due
to the inherent temporal aspect of text [54]. [38] introduced the BiLSTM layer in combination with
the CTC loss. [80] showed that the performance of LSTMs can be greatly improved using dropout.
GCRNN [11] combines a convolutional encoder (aiming for generic and multilingual features) and
a BiLSTM decoder predicting character sequences. Additionally, [83] proposed a CNN+BiLSTM
architecture that uses the CTC loss. Further methods that combine CNNs with RNNs are [62, 97, 115],
while BiLSTMs are utilized in [16, 100].

Recent methods are generative adversarial networks (GANs) and Transformers. The first approach
by [37] was a method to synthesize online data based on RNNs. The technique HWGAN by [53]
extends this method by adding a discriminator D. DeepWriting [1] is a GAN that is capable of
disentangling style from content and thus making digital ink editable. [43] proposed a method to
generate handwriting based on a specific author with learned parameters for spacing, pressure, and
line thickness. [4] used a BiLSTM to obtain an embedding of the word to be rendered and added an
auxiliary network as a recognizer R. The model is trained with a combination of an adversarial loss
and the CTC loss. ScrabbleGAN by [35] is a semi-supervised approach that can arbitrarily generate
many images of words with arbitrary length from a generator G to augment handwriting data and
uses a discriminator D and recognizer R. The paper proposes results for original data with random
affine augmentation using synthetic images and refinement.

2.2 Online Handwriting Recognition
Motion-based handwriting [20] and air-writing [122] from sensor-enhanced devices have been
extensively investigated. While such motions are spacious, the hand and pen motions for writing on
paper are comparatively small-scale [15]. Research for classifying text from sensor-enhanced pens
has recently attracted substantial interest. [45] use acceleration and audio data of handwritten actions
for character recognition. Furthermore, recent publications came up with similar developments that
are only prototypical, for example, [2, 47, 95]. Hence, there is already a lot of interest and future
technical advancements will further boost this. The novel sensor-enhanced pen based on IMUs
[77] enables new applications for writing on paper. Note that this pen is a finished product and can
be bought. Data collection and processing is straightforward and allows applications to be easy
to implement in real-world. [77] published the OnHW-chars dataset containing single characters.
[56] evaluated the aleatoric and epistemic uncertainty to show the domain shift between right-
and left-handed writers. [73] reduced this domain shift by adapting feature embeddings based on
transformations from optimal transport techniques. [57] presented an approach for distributing the
computational workload between a sensor pen and a mobile device (i.e., smartphone or tablet) for
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handwriting recognition, as interference on mobile devices leads to high system requirements. [75]
reconstructed the trajectory of the pen tip for single characters written on tablets from IMU data and
cameras pointing at the pen tip [74]. A more challenging task than single-character classification
is the classification of sequences (i.e., words or equations). [76] proposed several sequence-based
datasets and a large benchmark of convolutional, recurrent, and Transformer-based architectures, loss
functions, and augmentation techniques. While [111] combined a binary random forest to classify the
writing activity and a CNN for windows of single-label predictions, [14] highlighted the effectiveness
of Transformers for classifying equations. Methods such as [96] cannot be applied to this online task,
as these methods are designed for image-based (offline) HWR, and traditional methods such as [16]
for online HWR are based on online trajectories written on tablets. Recently, [6] evaluated further
machine and deep learning models as well as deep ensembles on the single OnHW-chars dataset.

2.3 Cross-Modal Representation Learning
For traditional methods that learn a cross-modal representation, a cross-modal similarity for the
retrieval can be calculated with linear projections [87]. However, cross-modal correlation is highly
complex, and hence, recent methods are based on a modal-sharing network to jointly transfer non-
linear knowledge from a single modality to all modalities [112]. [49] use a cross-modal network
between different modalities (image to video, text, audio and 3D models) and a single-modal
network (shared features between images of source and target domains). They use two convolutional
layers (similar to our proposed architecture) that allow the model to adapt by using more trainable
parameters. However, while their auxiliary network uses the same modality, the auxiliary network of
the proposed method in this paper is based on another modality. [59] learn a cross-modal embedding
between video frames and audio signals with graph clusters, but both modalities must be available at
inference. [88] proposed an image-text modality adversarial matching approach that learns modality-
invariant feature representations, but their projection loss is only used for learning discriminative
image-text embeddings. [42] propose a model for single-modal inference. However, they use image
and depth modalities for person re-identification without a time-series component, which makes
the problem considerably different. [63] handled multi-sensory modalities for 3D models only. For
an overview of CMR, see [24]. An overview of relevant CMR methods is given in Table 8 in the
Appendix A.3. With respect to the kind of the modality, the work by [40, 73] is closest, while the
applications in [73, 106, 120] of handwriting recognition are relevant.

2.4 Pairwise and Triplet Learning
Networks trained for a classification task can produce useful feature embeddings with efficient
runtime complexity O(𝑁𝐶) per epoch, where 𝑁 is the number of training samples and 𝐶 is the
number of classes. However, the classical cross-entropy (CE) loss is only partly useful for deep
metric learning, as it ignores how close each point is to its class centroid (or how far apart each
point is from other class centroids). CE variations (e.g., for face recognition) that learn angularly
discriminative features have also been developed [66]. The pairwise contrastive loss [22] minimizes
the distance between feature embedding pairs of the same class and maximizes the distance between
feature embedding pairs of different classes depending on a margin parameter. The drawback is that
the optimization of positive pairs is independent of negative pairs, but the optimization should force
the distance between positive pairs to be smaller than negative pairs [29].

The triplet loss [116] addresses this by defining an anchor and a positive point as well as a
negative point and forces the positive pair distance to be smaller than the negative pair distance by a
certain margin. The runtime complexity of the triplet loss is O(𝑁 3/𝐶) and can be computationally
challenging for large training sets. Hence, several approaches exist to reduce this complexity, such as
hard or semi-hard triplet mining [90] and smart triplet mining [44]. Often, data evolve over time, and
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hence, [91] proposed a formulation of the triplet loss where the traditional static margin is superseded
by a temporally adaptive maximum margin function. While [61, 120] combine the triplet loss with
the CE loss, [41] use a triplet selection with 𝐿2-normalization for language modeling, but considered
all negative pairs for triplet selection with fixed similarity intensity parameter. The proposed method
uses a triplet loss with a dynamic margin together with a novel word-level triplet selection. The
TNN-C-CCA [119] also uses the triplet loss on embeddings between an anchor from audio data and
positive and negative samples from visual data and the cosine similarity for the final representation
comparison. In image-to-caption CMR tasks, the most common design is separated encoders that
allow the separated inference without the other modality [19, 32]. We choose a similar separate cross-
modal encoder for single-modal inference. CrossATNet [18], another triplet loss-based method that
uses single class labels, defines class sketch instances as the anchor, the same class image instance as
the positive sample, and a different class image instance as the negative sample. While the previous
methods are based on a triplet selection method using single-label classification, related work exists
for using the triplet loss for sequence-based classification (i.e., from texts) [12, 26, 36, 123]. To the
best of our knowledge, no approach so far has used triplet-based cross-modal learning based on the
Edit distance between words. Most relevant are the works by [18, 19, 42, 72, 107] that use the triplet
loss, but without a dynamic margin.

2.5 Deep Metric Learning
As deep metric learning is a very broad and advanced field, only the most related work is described
here. For an overview of deep metric learning, see [71]. Most of the related work uses the Euclidean
metric as distance loss, although the triplet loss can be defined based on any other (sub-)differentiable
distance metric. [106] proposed a method for offline signature verification based on a dual triplet loss
that uses the Euclidean space to project an input image to an embedding function. While [86] use the
Euclidean metric to learn the distance between feature embeddings, [120] use the Cosine similarity.
[48] state that using the non-squared Euclidean distance is more stable, while the squared distance
made the optimization more prone to collapsing. Recent methods extend the canonical correlation
analysis (CCA) [85] that learns linear projection matrices by maximizing pairwise correlation of
cross-modal data. To share information between the same modality (i.e., images), the maximum
mean discrepancy (MMD) [68] is typically minimized.

3 METHODOLOGICAL BACKGROUND
We define the problem of cross-mdoal representation learning and present deep metric learning loss
functions in Section 3.1. In Section 3.2, we propose the triplet loss for cross-modal learning.

3.1 Cross-Modal Retrieval for Time-Series and Image Classification
A multivariate time-series U = {u1, . . . , u𝑚} ∈ R𝑚×𝑙 is an ordered sequence of 𝑙 ∈ N streams with
u𝑖 = (𝑢𝑖,1, . . . , 𝑢𝑖,𝑙 ), 𝑖 ∈ {1, . . . ,𝑚}, where𝑚 ∈ N is the length of the time-series. The multivariate
time-series training set is a subset of the array U = {U1, . . . ,U𝑛𝑈 } ∈ R𝑛𝑈 ×𝑚×𝑙 , where 𝑛𝑈 is the
number of time-series. Let X ∈ Rℎ×𝑤 with entries 𝑥𝑖, 𝑗 ∈ [0, 255] represent an image from the image
training set. The image training set is a subset of the array X = {X1, . . . ,X𝑛𝑋 } ∈ R𝑛𝑋 ×ℎ×𝑤 , where 𝑛𝑋
is the number of time-series. The aim of joint multivariate time-series and image classification tasks is
to predict an unknown class label 𝑦 ∈ Ω for single class prediction or y ∈ Ω for sequence prediction
for a given multivariate time-series or image (see also Section 4.2). The time-series samples denote
the main training data, while the image samples represent the privileged information that is not
used for inference. In addition to good prediction performance, the goal is to learn representative
embeddings 𝑓𝑐 (U) and 𝑓𝑐 (X) ∈ R𝑞×𝑡 to map multivariate time-series and image data into a feature
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space R𝑞×𝑡 , where 𝑓𝑐 is the output of the convolutional layer(s) 𝑐 ∈ N of the latent representation and
𝑞 × 𝑡 is the dimension of the layer output.

We force the embedding to live on the 𝑞 × 𝑡-dimensional hypersphere by using softmax – i.e.,
| |𝑓𝑐 (U) | |2 = 1 and | |𝑓𝑐 (X) | |2 = 1∀𝑐 (see [113]). In order to obtain a small distance between the
embeddings 𝑓𝑐 (U) and 𝑓𝑐 (X), we minimize deep metric learning functions LDML (𝑓𝑐 (X), 𝑓𝑐 (U)).
Well-known deep learning metric are the distance-based mean squared error (MSE) LMSE, the spatio-
temporal cosine similarity (CS) LCS, the Pearson correlation (PC) LPC, and the distribution-based
Kullback-Leibler (KL) divergence LKL. In our experiments, we additionally evaluate the kernalized
maximum mean discrepancy (kMMD) LkMMD, Bray Curtis (BC) LBC, and Poisson LPO losses. We
study their performance in Section 5. A combination of classification and cross-modal representation
learning losses can be realized by dynamic weight averaging [65] as a multi-task learning approach
that performs dynamic task weighting over time (see Appendix A.4).

3.2 Contrastive Learning and Triplet Loss

𝑓𝑐 𝐔𝑖
𝑎

𝑓𝑐 𝐗𝑖
𝑝

𝑓𝑐 𝐗𝑖
𝑛

α

𝓛DML 𝑓𝑐 𝐔𝑖
𝑎 , 𝑓𝑐 𝐗𝑖

𝑛

𝓛DML 𝑓𝑐 𝐔𝑖
𝑎 , 𝑓𝑐 𝐗𝑖

𝑝

Fig. 2. Triplet pair.

While the training with the previous loss functions uses inputs where
the image and multivariate time-series have the same label, pairs with
similar but different labels can improve the training process. This
can be achieved using the triplet loss [90], which enforces a margin
between pairs of image and multivariate time-series data with the
same identity to all other different identities. As a consequence, the
convolutional output for one and the same label lives on a manifold,
while still enforcing the distance – and thus, discriminability – to
other identities.

Therefore, we seek to ensure that the embedding of the multivari-
ate time-series U𝑎

𝑖 (anchor) of a specific label is closer to the embed-
ding of the image X𝑝

𝑖 (positive) of the same label than it is to the em-
bedding of any image X𝑛

𝑖 (negative) of another label (see Figure 2).
Thus, we want the following inequality to hold for all training samples

(
𝑓𝑐 (U𝑎

𝑖 ), 𝑓𝑐 (X𝑝
𝑖 ), 𝑓𝑐 (X𝑛

𝑖 )
) ∈ Φ:

LDML
(
𝑓𝑐 (U𝑎

𝑖 ), 𝑓𝑐 (X𝑝
𝑖 )
) + 𝛼 < LDML

(
𝑓𝑐 (U𝑎

𝑖 ), 𝑓𝑐 (X𝑛
𝑖 )
)
, (1)

where LDML
(
𝑓𝑐 (X), 𝑓𝑐 (U)

)
is a deep metric learning loss, 𝛼 is a margin between positive and negative

pairs, and Φ is the set of all possible triplets in the training set. The contrastive loss minimizes the
distance of the anchor to the positive sample and separately maximizes the distance to the negative
sample. Instead, based on (1), we can formulate a differentiable loss function - the triplet loss - that
we can use for optimization:

Ltrpl,c (U𝑎,X𝑝 ,X𝑛) =
𝑁∑︁
𝑖=1

max
[
LDML

(
𝑓𝑐 (U𝑎

𝑖 ), 𝑓𝑐 (X𝑝
𝑖 )
) − LDML

(
𝑓𝑐 (U𝑎

𝑖 ), 𝑓𝑐 (X𝑛
𝑖 )
) + 𝛼, 0], (2)

where 𝑐 ∈ N.2 Selecting negative samples that are too close to the anchor (in relation to the positive
sample) can cause slow training convergence. Hence, triplet selection must be handled carefully and
with consideration for each specific application [29]. We choose negative samples based on the class
distance (single labels) and on the Edit distance (sequence labels) (see Section 4.2).

2To have a larger number of trainable parameters in the latent representation with a greater depth, we evaluate one and two
stacked convolutional layers, each trained with a shared loss Ltrpl,c.
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Fig. 3. Synthetic signal data (a) for 10 classes, and image data (b-c) for classes 0 (left) and 6 (right).

4 METHOD
We now demonstrate the efficacy of our proposal. In Section 4.1, we generate sinusoidal time-series
with introduced noise (main task) and compute the corresponding Gramian angular summation field
with different noise parameters (auxiliary task) (see Figure 1). In Section 4.2, we combine online
(inertial sensor signals, main task) and offline data (visual representations, auxiliary task) for HWR
with sensor-enhanced pens. This task is particularly challenging, due to different data representations
based on images and multivariate time-series data. For both applications, our approach allows to only
use the main modality (i.e., multivariate time-series) for inference. We further analyze and evaluate
different deep metric learning functions to minimize the distance between the learned embeddings.

4.1 Cross-Modal Learning on Synthetic Data
We first investigate the influence of the triplet loss for cross-modal learning between synthetic time-
series and image-based data as a sanity check. For this, we generate signal data of 1,000 timesteps
with different frequencies for 10 classes (see Figure 3a) and add noise from a continuous uniform
distribution𝑈 (𝑎, 𝑏) for 𝑎 = 0 and 𝑏 = 0.3. We use a recurrent CNN with the CE loss to classify these
signals. From each signal without noise, we generate a Gramian angular summation field [110]. For
classes with high frequencies, this results in a fine-grained pattern, and for low frequencies in a
coarse-grained pattern. We generate Gramian angular summation fields with different added noise
between 𝑏 = 0 (Figure 3b) and 𝑏 = 1.95 (Figure 3c). A small CNN classifies these images with the
CE loss. To combine both networks, we train each signal-image pair with the triplet loss. As the
frequency of the sinusoidal signal is closer for more similar class labels, the distance in the manifold
embedding should also be closer. For each batch, we select negative sample pairs for samples with the
class label 𝐶𝐿 = 1 + ⌊max𝑒 −𝑒−1

25 ⌋ as the lower bound for the current epoch 𝑒 and the maximum epoch
max𝑒 . We set the margin 𝛼 in the triplet loss separately for each batch such that 𝛼 = 𝛽 · (𝐶𝐿𝑝 −𝐶𝐿𝑛)
depends on the positive 𝐶𝐿𝑝 and negative 𝐶𝐿𝑛 class labels of the batch and is in the range [1, 5]
with 𝛽 = 0.1. The batch size is 100 and max𝑒 = 100. Appendix A.5 provides further details. This
combination of the CE loss with the triplet loss can lead to a mutual improvement of the utilization
of the classification task and embedding learning.

4.2 Cross-Modal Learning for HWR
Method Overview. Figure 4 gives a method overview. The main task is online HWR to classify

words written with a sensor-enhanced pen and represented by multivariate time-series of the different
pen sensors. To improve the classification task with a better generalizability, the auxiliary network
performs offline HWR based on an image input. We pre-train ScrabbleGAN [35] on the IAM-
OffDB [67] dataset. For all time-series word labels, we then generate the corresponding image as the
positive time-series-image pair. Each multivariate time-series and each image is associated with y
– a sequence of 𝐿 class labels from a pre-defined label set Ω with 𝐾 classes. For our classification
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Fig. 4. Detailed method overview: The middle pipeline consists of data recording with a sensor-
enhanced pen, feature extraction of inertial multivariate time-series data, and word classification with
CTC. We generate image data with the pre-trained ScrabbleGAN for corresponding word labels. The
top pipeline (four gated text recognizer blocks) extracts features from images. The distances of the
embeddings are minimized with the triplet loss and deep metric learning functions. The classification
network with two BiLSTM layers are fine-tuned for the OnHW task for a cross-modal representation.

task, y ∈ Ω𝐿 describes words. The multivariate time-series training set is a subset of the array U
with labels Y𝑈 = {y1, . . . , y𝑛𝑈 } ∈ Ω𝑛𝑈 ×𝐿. The image training set is a subset of the array X, and
the corresponding labels are Y𝑋 = {y1, . . . , y𝑛𝑋 } ∈ Ω𝑛𝑋 ×𝐿. Offline HWR techniques are based on
Inception, ResNet34, or gated text recognizer [118] modules. The architecture of the online HWR
method consists of an IMU encoder with three 1D convolutional layers of size 400, a convolutional
layer of size 200, a max pooling and batch normalization, and a dropout of 20%. The online method
is improved by sharing layers with a common representation by minimizing the distance of the
feature embedding of the convolutional layers 𝑐 ∈ {1, 2} (integrated in both networks) with a shared
loss Lshared,c. We set the embedding size R𝑞×𝑡 to 400 × 200. Both networks are trained with the
connectionist temporal classification (CTC) [38] loss LCTC to avoid pre-segmentation of the training
samples by transforming the network outputs into a conditional probability distribution over label
sequences.

Datasets for Online HWR. We make use of two word datasets proposed in [76]. These datasets are
recorded with a sensor-enhanced pen that uses two accelerometers (3 axes each), one gyroscope (3
axes), one magnetometer (3 axes), and one force sensor at 100Hz [75, 77]. One sample of size𝑚 × 𝑙
represents an multivariate time-series of a written word of𝑚 timesteps from 𝑙 = 13 sensor channels.
One word is a sequence of small or capital characters (52 classes) or with mutated vowels (59 classes).
The OnHW-words500 dataset contains 25,218 samples where each of the 53 writers contributed
the same 500 words. The OnHW-wordsRandom dataset contains 14,641 randomly selected words
from 54 writers. For both datasets, 80/20 train/validation splits are available for writer-(in)dependent
(WD/WI) tasks. We transform (zero padding, interpolation) all samples to 800 timesteps. For more
information on the datasets, see [76].
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(a) Metropolis. (b) Citizen. (c) Concerts. (d) Starnberg.

Fig. 5. Overview of four generated words with ScrabbleGAN [35] with various text styles.

Image Generation for Offline HWR. In order to couple the online time-series data with offline
image data, we use a generative adversarial network (GAN) to arbitrarily generate many images.

𝑓𝑡𝑓𝑒 𝑓𝑒

“Concerts“?real/fake

Generator

𝒢

𝑧 × 𝑓𝑚 , 𝑓𝑒 , 𝑓𝑒, 𝑓𝑡

“Concert“

𝑓𝑚

Discrimi-

nator

𝒟

Reco-

gnizer

ℛ

Fig. 6. ScrabbleGAN concept by [35] of generat-
ing the word “Concerts”.

ScrabbleGAN [35] is a state-of-the-art semi-
supervised approach that consists of a generator
G that generates images of words with arbitrary
length from an input word label, a discrimina-
tor D, and a recognizer R that promotes style
and data fidelity. While D promotes realistic-
looking handwriting styles, R encourages the
result to be readable. ScrabbleGAN minimizes
a joint loss term L = L𝐷 + 𝜆L𝑅 where L𝐷 and
L𝑅 are the loss terms of D and R, respectively,
and the balance factor is 𝜆. The generator G is
designed such that each character is generated
individually, using the property of the convolu-
tions of overlapping receptive fields to account
for the influence of nearby letters. Four char-
acter filters (𝑘𝑚 , 𝑘𝑒 , 𝑘𝑒 and 𝑘𝑡 ) are concatenated, multiplied by a noise vector 𝑧, and fed into a
class-conditioned generator (see Figure 6). This allows for adjacent characters to interact and creates
a smooth transition, e.g., enabling cursive text. The style of the image is controlled by a noise vector
𝑧 given as the input to the network (being consistent for all characters of a word). The recognizer R
discriminates between real and gibberish text by comparing the output of R to the one that was given
as input to G. R is trained only on real and labeled samples. R is inspired by CRNN [94] and uses
the CTC [38] loss. The architecture of the discriminator D is inspired by BigGAN [13] consisting
of four residual blocks and a linear layer with one output. D is fully convolutional, predicts the
average of the patches, and is trained with a hinge loss [64]. We train ScrabbleGAN with the IAM-
OffDB [67] dataset and generate three different datasets. Exemplary images are shown in Figure 5.
First, we generate 2 million images randomly selected from a large lexicon (OffHW-German), and
pre-train the offline HWR architectures. Second, we generate 100,000 images based on the same
word labels for each of the OnHW-words500 and OnHW-wordsRandom datasets (OffHW-words500,
OffHW-wordsRandom]) and fine-tune the offline HWR architectures.
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Fig. 7. Number image-time-series pairs dependent on substitutions.

Methods for Offline HWR. OrigamiNet [117] is a state-of-the-art multi-line recognition method
using only unsegmented image and text pairs. Similar to OrigamiNet, our offline method is based
on different encoder architectures with one or two additional 1D convolutional layers (each with
filter size 200, softmax activation [120]) with 20% dropout for the latent representation, and a cross-
modal representation decoder with BiLSTMs. For the encoder, we make use of Inception modules
from GoogLeNet [99] and the ResNet34 [46] architectures, and we re-implement the newly proposed
gated, fully-convolutional method termed the gated text recognizer [118]. See Appendix A.6 for
detailed information on the architectures. We train the networks on the generated OffHW-German
dataset for 10 epochs and fine-tune on the OffHW-[500, wordsRandom] datasets for 15 epochs. For
comparison with state-of-the-art techniques, we train OrigamiNet and compare with IAM-OffDB.
For OrigamiNet, we apply interline spacing reduction via seam carving [5], resizing the images to
50% height, and random projective (rotating and resizing lines) and random elastic transform [114].
We augment the OffHW-German dataset with random width resizing and apply no augmentation for
the OffHW-[words500, wordsRandom] datasets for fine-tuning.

Offline/Online Cross-Modal Representation Learning. Our architecture for online HWR is based
on [76]. The encoder extracts features of the inertial data and consists of three convolutional
layers (each with filter size 400, ReLU activation) and one convolutional layer (filter size 200,
ReLU activation), a max pooling, batch normalization and a 20% dropout layer. As for the offline
architecture, the network then learns a latent representation with one or two convolutional layers (each
with filter size 200, softmax activation) with 20% dropout and the same cross-modal representation
decoder. The output of the convolutional layers of the latent representation are minimized with
the Lshared,c loss. The layers of the common representation are fine-tuned based on the pre-trained
weights of the offline technique. Here, two BiLSTM layers with 60 units each and ReLU activation
extract the temporal context of the feature embedding. As for the baseline classifier, we train for
1,000 epochs. For evaluation, the main time-series network is independent of the image auxiliary
network by using only the weights of the main network.

Triplet Selection. To ensure (fast) convergence, it is crucial to select triplets that violate the
constraint from Equation 1. Typically, it is infeasible to compute the loss for all triplet pairs, or this
leads to poor training performance (as poorly chosen pairs dominate hard ones). This requires an
elaborate triplet selection [29]. We use the Edit distance to define the identity and select triplets. The
Edit distance is the minimum number of substitutions 𝑆 , insertions 𝐼 , and deletions 𝐷 required to
change the sequences d = (𝑑1, . . . , 𝑑𝑟 ) into g = (𝑔1, . . . , 𝑔𝑧) with length 𝑟 and 𝑧, respectively. We
define two sequences with an Edit distance of 0 as the positive pair, and with an Edit distance larger
than 0 as the negative pair. Based on preliminary experiments, we use only substitutions for triplet
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selection that lead to a higher accuracy compared to additional insertions and deletions (whereas
these would also change the length difference of image and time-series pairs). We constrain 𝑝 −𝑚/2
(the difference in pixels 𝑝 of the images and half the number of timesteps of the time-series) to be
maximally ±20. The goal is to achieve a small distance for positive pairs and a large distance for
negative pairs that increases with a larger Edit distance (between 1 and 10). Furthermore, despite a
limited number of word labels, there still exist a large number of image-time-series pairs per word
label for every possible Edit distance (see Figure 7). For each batch, we search in a dictionary of
negative sample pairs for samples with 𝐸𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 + ⌊max𝑒 −𝑒−1

100 ⌋ as the lower bound for the
current epoch 𝑒 and maximal epochs max𝑒 . For every label, we randomly pick one image. We let the
margin 𝛼 in the triplet loss vary for each batch such that 𝛼 = 𝛽 · 𝐸𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 depends on the mean
Edit distance of the batch and is in the range [1, 11] with 𝛽 = 10−3 for MSE, 𝛽 = 0.1 for CS and PC,
and 𝛽 = 1 for KL. The batch size is 100 and max𝑒 = 1, 000.

5 EXPERIMENTAL RESULTS
Hardware and Training Setup. For all experiments, we use Nvidia Tesla V100-SXM2 GPUs

with 32 GB VRAM equipped with Core Xeon CPUs and 192 GB RAM. We use the vanilla Adam
optimizer with a learning rate of 10−4.

5.1 Evaluation of Synthetic Data
We train the time-series (TS) model 18 times with noise 𝑏 = 0.3 and the combined model with the
triplet loss for all 40 noise combinations

(
𝑏 ∈ {0, . . . , 1.95}) with different deep metric learning

functions. Figure 8 shows the validation accuracy averaged over all trainings as well as the combined
cases separately for noise 𝑏 < 0.2 and noise 0.2 ≤ 𝑏 < 2.0 (for the LCS loss). Table 1 summarizes
the final classification results of all cases. The accuracy of the models that use only images and in
combination with time-series during inference reach an accuracy of 99.7% (which can be seen as an
unreachable upper bound for the TS-only models). The triplet loss improves the final TS baseline
accuracy from 92.5% to 95.36% (averaged over all combinations), while combining TS and image
data leads to a faster convergence. Conceptually similar to [68], we use the LkMMD loss, which
yields 95.83% accuracy. The LPC (96.03%), LKL (96.22%), LMSE (96.25%), LBC (96.62%), and
LPO (96.76%) loss functions can further improve the accuracy. We conclude that the triplet loss can
be successfully used for cross-modal learning by utilizing negative identities.
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Fig. 8. Accuracy of single- and cross-modal rep-
resentation learning over all epochs.

Method Accuracy (%)
TS model 92.50
Combined (TS, LCS) 95.36
Combined (image, LCS) 99.70
Combined (TS, LMSE) 96.25
Combined (TS, LKL) 96.22
Combined (TS, LkMMD) 95.83
Combined (TS, LPC) 96.03
Combined (TS, LBC) 96.62
Combined (TS, LPO) 96.76

Table 1. Comparison of single- and cross-modal
representation learning.

5.2 Evaluation of Handwriting Recognition
Evaluation Metrics. A metric for sequence evaluation is the character error rate (CER), defined

as CER = 𝑆𝑐+𝐼𝑐+𝐷𝑐
𝑁𝑐

, i.e., the Edit distance (the sum of character substitutions 𝑆𝑐 , insertions 𝐼𝑐 and
deletions 𝐷𝑐 ) divided by the total number of characters in the set 𝑁𝑐 . Similarly, the word error rate
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Table 2. Evaluation results (WER and CER in %) for the generated dataset with ScrabbleGAN [35]
OffHW-German and the IAM-OffDB [67] dataset.

OffHW-German IAM-OffDB
Method WER CER WER CER

Related Work ScrabbleGAN [35] - - 23.61 -
OrigamiNet [117] (12 × gated text recognizer) - - - 4.70
OrigamiNet (ours, 4 × gated text recognizer) 1.50 0.11 90.40 15.67
Inception 12.54 1.17 - -
ResNet 13.05 1.24 - -

Our Gated text recognizer (2 blocks), 1 conv. layer 4.34 0.39 - -
Implementation Gated text recognizer (2 blocks), 2 conv. layer 5.02 0.44 - -

Gated text recognizer (4 blocks), 1 conv. layer 3.35 0.34 89.37 15.60
Gated text recognizer (4 blocks), 2 conv. layer 2.52 0.24 - -
Gated text recognizer (6 blocks) 2.85 0.26 - -
Gated text recognizer (8 blocks) 4.22 0.38 - -

Table 3. Evaluation results (WER and CER in %) for the generated OffHW-words500 and OffHW-
wordsRandom datasets for one and two convolutional layers (c). We propose writer-dependent (WD)
and writer-independent (WI) results.

OffHW-words500 OffHW-wordsRandom
Method WD WI WD WI

(4 × gated text recognizer) WER CER WER CER WER CER WER CER
𝑐 = 1 2.94 0.76 0.95 0.23 1.98 0.35 2.05 0.37
𝑐 = 2 2.51 0.69 0.85 0.22 1.82 0.34 1.95 0.38

(WER) is defined as WER = 𝑆𝑤+𝐼𝑤+𝐷𝑤
𝑁𝑤

, which is computed with the sum of word operations 𝑆𝑤 , 𝐼𝑤
and 𝐷𝑤 , divided by the number of words in the set 𝑁𝑤 .

Evaluation of Offline HWR Methods. Table 2 shows offline HWR results on our generated OffHW-
German dataset and on the IAM-OffDB [67] dataset. ScrabbleGAN [35] yields a WER of 23.61%
on the IAM-OffDB dataset, while OrigamiNet [117] achieves a CER of 4.70% with 12 gated text
recognizer modules. While OrigamiNet is trained for the multi-line classification, which is an easier
task (as the image of the paragraph does not have to be segmented into lines), we trained OrigamiNet
on single-lines with zero padding, which is closer to the OffHW-German dataset. While the images
for the multi-line task are of approximately similar lengths, the image lengths of the single-line task
varies strongly, and hence, zero padding has a high influence on the model performance, resulting
in a CER of 15.67%. While [117] did not propose WER results, OrigamiNet yields only a WER
of 90.40%. This problem does not appear for the OffHW-German dataset, as the dataset contains
only single words with similar lengths. With our own implementation of four gated text recognizer
modules and one convolutional layer for the common representation, our model achieves similar
results. As the training takes more than one day for one epoch on the large OffHW-German dataset,
we train OrigamiNet with four gated text recognizer modules, and achieve 0.11% CER on the
generated dataset and 15.67% on the IAM-OffDB dataset. All our models yield low error rates on
the generated OffHW-German dataset. Our approach with gated text recognizer blocks outperforms
(0.24% to 0.44% CER) the models with Inception [99] (1.17% CER) and ResNet [46] (1.24%
CER). OrigamiNet achieves the lowest error rates of 1.50% WER and 0.11% CER. Four gated text
recognizer blocks yield the best results at a significantly lower training time compared to six or eight
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Table 4. Feature embeddings 𝑓𝑐 (X𝑖 ) and 𝑓𝑐 (U𝑖 ) of exemplary image X𝑖 and multivariate time-series
U𝑖 data of the convolutional layer 𝑐 = conv2 for different deep metric learning functions for positive
pairs (𝐸𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 0) and negative pairs (𝐸𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 0) trained with the triplet loss. The feature
embeddings are similar in the red box (character x) or blue box (character p) for 𝑓2 (X𝑖 ), or the last
pixels (character t) of 𝑓2 (U𝑖 ) for LPC marked green.

ED Label Image U𝑖 𝑓2 (X𝑖 ) 𝑓2 (U𝑖 ): LMSE 𝑓2 (U𝑖 ): LCS 𝑓2 (U𝑖 ): LPC 𝑓2 (U𝑖 ): LKL

0 Export

1 Expert

2 Import

3 Vorort

blocks. We fine-tune the model with four gated text recognizer blocks for one and two convolutional
layers and achieve notably low error rates between 0.22% to 0.76% CER, and between 0.85% to
2.95% WER on the OffHW-[words500, wordsRandom] datasets (see Table 3). While results for
OffHW-wordsRandom are similar for writer-dependent (WD) and writer-independent (WI) tasks,
WI results of the OffHW-words500 dataset are lower than WD results, as words with the same label
appear in the training and test dataset. We use the weights of the fine-tuning as initial weights of the
image model for the cross-modal representation learning.

Evaluation of Representation Learning Feature Embeddings. Table 4 shows the feature embed-
dings for image 𝑓2 (X𝑖 ) and time-series data 𝑓2 (U𝑖 ) of the positive sample Export and the two
negative samples Expert (𝐸𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1) and Import (𝐸𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2) based on four deep
metric learning loss functions. The pattern of characters are similar, as the words differ only in the
fourth letter. In contrast, Import has a different feature embedding, as the replacement of E with I
and x with m leads to a higher feature distance in the embedding hypersphere. Note that image and
time-series data can vary in length for 𝐸𝑑𝑖𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 0. Figure 9 shows the feature embeddings of
the output of the convolutional layers (𝑐 = 1) processed with t-SNE [101]. Figure 9a visualizes the
multivariate time-series embeddings 𝑓1 (U𝑖 ) of the single modal network. The learned representation
generalizes well, but misclassifications (e.g., of small and capital letters at the beginning of a word,
which happen quite often) also introduce errors in the latent representation. Figure 9b visualizes the
multivariate time-series and image embeddings

(
𝑓1 (U𝑖 ) and 𝑓1 (X𝑖 ), respectively

)
in a cross-modal

setup. While the embedding of the single modal network is unstructured, the embeddings of the
cross-modal network are structured (distance of samples visualizes the Edit distance between words)
with the embeddings of the time-series modality being close to the embeddings of the image modality,
and hence, more distinctive clusters with better separation.
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Embedding
Time-series
(single modality)

(a) Feature embedding of IMU samples for the
single modalitiy network.

Embedding
cross-modal

Time-series
Image

(b) Feature embeddings of IMU and image sam-
ples for the cross-modal network.

Fig. 9. Comparison of the naive method (left) and our proposed approach (right), where our method
shows a much better behaved embedding space compared to the naive approach by learning a joint
representation. Plot of 400 × 200 feature embeddings of image and IMU modalities with t-SNE.

Evaluation of Cross-Modal Representation Learning. Table 5 gives an overview of cross-modal
representation learning (for 𝑐 = 1). The first row shows baseline results by [76]: 13.04% CER on
OnHW-words500 (WD) and 6.75% CER on OnHW-wordsRandom (WD) with mutated vowels.
Compared to various time-series classification techniques, their benchmark results showed superior
performance of CNN+BiLSTMs on these OnHW recognition tasks. Only InceptionTime [34] (a
large time-series encoder network with 𝑑𝑒𝑝𝑡ℎ = 11 and 𝑛𝑓 = 96) – with BiLSTM layers – yields
partly better results or is on par with the CNN+BiLSTM model for sequence-based classification,
while the CNN+BiLSTM model outperforms state-of-the-art techniques on single character-based
classification tasks. Due to the faster training of the CNN+BiLSTM, we chose this network for
the cross-modal task. In general, the word error rate (WER) can vary for a similar character error
rate (CER). The reason is that a change of one character of a correctly classified word leads to a
large change in the WER, while the change of the CER is marginal. We define the results trained
without mutated vowels as baseline results, as ScrabbleGAN is pretrained on IAM-OffDB, which
does not contain mutated vowels, and hence, such words cannot be generated. Nevertheless, the
main model can be trained and is applicable to samples with mutated vowels. For a fair comparison,
we compare our results to the results of the models trained without mutated vowels. Here, the
error rates are slightly higher for both datasets. As expected, cross-modal learning improves the
baseline results up to 11.28% CER on the OnHW-words500 WD dataset and up to 7.01% CER on
the OnHW-wordsRandom WD dataset. The contrastive loss shows the best results on the OnHW-
words500 (WD) dataset with the Kullback-Leibler metric and on the OnHW-wordsRandom dataset
(WD) with the cosine similarity metric. With the triplet loss, LCS outperforms other metrics on the
OnHW-wordsRandom dataset but is inconsistent on the OnHW-words500 dataset. The importance
of the triplet loss is more significant for one convolutional layer (𝑐 = 1) than for two convolutional
layers (𝑐 = 2) (see Appendix A.7). Furthermore, training with kMMD (implemented as in [68])
does not yield reasonable results. We assume that this metric cannot make use of the important
time component in the HWR application. We proposed our approach as learning with privileged
information by exploiting a visual modality as an auxiliary task and improve the main task based
on an inertial modality. The cross-modal learning would also work for the visual modality as the
main task and a generated dataset for the inertial modality as an auxiliary task. However, the error
rates are already low for the image-based classification task, as methods for offline HWR are very
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Table 5. Evaluation results (WER and CER in %) averaged over five splits of the baseline time-series-
only technique and our cross-modal learning technique for the inertial-based OnHW datasets [76]
with and without mutated vowels (MV) for one convolutional layer 𝑐 = 1. Best results are bold, and
second best results are underlined. Arrows indicate improvements (↑) and degradation (↓) of baseline
results (w/o MV).

OnHW-words500 OnHW-wordsRandom
WD WI WD WI

Method WER CER WER CER WER CER WER CER

Main Task

InceptionTime, LCTC, w/ MV 37.12 12.96 62.09 26.36 42.88 7.19 84.14 32.35
IT+BiLSTM, LCTC, w/ MV 43.22 13.07 61.62 26.08 39.14 6.39 85.42 33.31
CNN+BiLSTM, LCTC, w/ MV 42.81 13.04 60.47 28.30 37.13 6.75 83.28 35.90
CNN+BiLSTM, LCTC, w/o MV 42.77 13.44 59.82 28.54 38.02 7.81 83.54 36.51

Baseline

LMSE 40.76 ↑ 12.71 ↑ 55.54 ↑ 25.97 ↑ 37.31 ↑ 7.01 ↑ 82.25 ↑ 33.85 ↑
LCS 38.62 ↑ 11.55 ↑ 56.37 ↑ 25.90 ↑ 38.85 ↓ 7.35 ↑ 82.48 ↑ 35.67 ↑
LPC 39.09 ↑ 11.69 ↑ 57.90 ↑ 27.23 ↑ 38.46 ↓ 7.15 ↑ 82.71 ↑ 35.13 ↑
LKL 38.36 ↑ 11.28 ↑ 60.23 ↓ 27.99 ↑ 38.76 ↓ 7.49 ↑ 81.07 ↑ 33.96 ↑

Contrastive Lcontr,1 (LMSE ) 38.34 ↑ 11.57 ↑ 56.81 ↑ 25.98 ↑ 38.25 ↓ 7.31 ↑ 82.09 ↑ 34.03 ↑
Loss Lcontr,1 (LCS ) 39.68 ↑ 11.73 ↑ 58.03 ↑ 27.13 ↑ 35.96 ↑ 6.67 ↑ 81.22 ↑ 33.11 ↑

Lcontr,1 (LPC ) 37.82 ↑ 11.34 ↑ 57.45 ↑ 26.18 ↑ 39.22 ↓ 7.39 ↑ 82.45 ↑ 34.21 ↑
Lcontr,1 (LKL ) 36.70 ↑ 10.84 ↑ 61.72 ↓ 29.16 ↓ 38.92 ↓ 7.51 ↑ 83.54 35.52 ↑

Triplet Ltrpl,1 (LMSE ) 42.95 ↓ 14.13 ↓ 56.48 ↑ 26.66 ↑ 37.66 ↑ 7.04 ↑ 81.64 ↑ 34.39 ↑
Loss Ltrpl,1 (LCS ) 38.01 ↑ 11.29 ↑ 58.50 ↑ 27.10 ↑ 37.12 ↑ 6.98 ↑ 82.71 ↑ 33.09 ↑

Ltrpl,1 (LPC ) 40.43 ↑ 12.41 ↑ 58.20 ↑ 27.48 ↑ 37.40 ↑ 7.01 ↑ 81.90 ↑ 33.89 ↑
Ltrpl,1 (LKL ) 37.55 ↑ 11.21 ↑ 63.52 ↓ 30.52 ↓ 38.39 ↓ 7.36 ↑ 83.18 ↑ 35.21 ↑

advanced and the image dataset is very large. Hence, we assume that fine-tuning the image encoder
with inertial data would result in a minor improvement. Prior work [76] evaluated data augmentation
techniques for multivariate time-series data (i.e., time warping, scaling, jittering, magnitude warping,
and shifting). This approach was rather limited with only 2-3% points of improvement compared
with augmentation with the auxiliary image-based task.

Transfer Learning on Left-Handed Writers. To adapt the model to left-handed writers (who are
typically under-represented and hence marginalized in the real-world), we make use of the left-handed
datasets OnHW-words500-L and OnHW-wordsRandom-L proposed by [76]. These datasets contain
recordings of two writers who provided 1,000 and 996 samples. As a baseline, we pre-train the time-
series-only model on the right-handed datasets and post-train the left-handed datasets for 500 epochs
(see the second and third rows of Table 6). As these datsets are rather small, the models can overfit on
these specific writers and achieve a very low CER of 3.33% on the OnHW-words500-L datasets and
5.26% CER on the OnHW-wordsRandom-L dataset without mutated vowels for the writer-dependent
tasks. However, the models cannot generalize on the writer-independent tasks, as evidenced by
62.07% CER on the OnHW-words500-L dataset and 81.15% CER on the OnHW-wordsRandom-L
dataset. Hence, we focus on the WD tasks. For comparison, we use the state-of-the-art time-series
classification technique InceptionTime [34] with 𝑑𝑒𝑝𝑡ℎ = 11 and 𝑛𝑓 = 96 (without pre-training).
As shown, our CNN+BiLSTM outperforms InceptionTime by a considerable margin. We use the
weights of the pre-training with the offline handwriting datasets and again post-train on the left-
handed datasets with 𝑐 = 1 and 𝑐 = 2. Using the weights of the cross-modal learning without the
triplet loss can decrease the error rates up to 2.57% CER with LKL and 4.47% CER with LPC. Using
the triplet loss Ltrpl,2 (LMSE) can further significantly decrease the WI OnHW-words500-L error
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Table 6. Evaluation results (WER and CER in %) averaged over five splits of the baseline time-series-
only technique and our cross-modal techniques for the inertial-based left-handed writers OnHW
datasets [76] with and without mutated vowels (MV) for one (𝑐 = 1) and two (𝑐 = 2) convolutional layers
𝑐 = 1. Best results are bold, and second best results are underlined. Arrows indicate improvements
(↑) and degradation (↓) of baseline results (w/o MV).

OnHW-words500-L OnHW-wordsRandom-L
WD WI WD WI

Method WER CER WER CER WER CER WER CER

Main Task
InceptionTime, LCTC, w/ MV 49.70 14.02 100.0 96.06 48.10 8.63 100.0 95.93
CNN+BiLSTM, LCTC, w/ MV 14.20 3.30 94.40 71.41 30.20 4.86 100.0 83.51
CNN+BiLSTM, LCTC, w/o MV 12.94 3.33 89.07 62.07 30.89 5.26 100.0 81.15

Baseline

LMSE 11.62 ↑ 2.77 ↑ 90.65 ↓ 67.90 ↓ 30.53 ↑ 4.93 ↑ 100.0 81.99 ↓
LCS 14.92 ↓ 3.53 ↓ 94.14 ↓ 65.10 ↓ 29.06 ↑ 4.87 ↑ 100.0 83.94 ↓
LPC 12.29 ↑ 3.04 ↑ 91.33 ↓ 60.89 ↑ 27.32 ↑ 4.47 ↑ 100.0 85.09 ↓
LKL 11.37 ↑ 2.57 ↑ 93.02 ↓ 66.64 ↓ 29.61 ↑ 4.91 ↑ 100.0 81.28 ↓
Ltrpl,1 (LMSE ) 12.48 ↑ 3.11 ↑ 90.09 ↓ 62.87 ↓ 32.62 ↓ 5.43 ↓ 100.0 80.41 ↑
Ltrpl,1 (LCS ) 13.65 ↓ 3.28 ↑ 90.76 ↓ 62.40 ↓ 34.21 ↓ 5.53 ↓ 100.0 82.14 ↓
Ltrpl,1 (LPC ) 13.71 ↓ 3.23 ↑ 91.55 ↓ 65.95 ↓ 31.59 ↓ 5.32 ↓ 100.0 81.77 ↓

Triplet Ltrpl,1 (LKL ) 13.65 ↓ 3.45 ↓ 94.93 ↓ 72.01 ↓ 31.87 ↓ 5.42 ↓ 100.0 82.02 ↓
Loss Ltrpl,2 (LMSE ) 11.97 ↑ 2.83 ↑ 84.34 ↑ 57.84 ↑ 27.19 ↑ 4.79 ↑ 99.87 ↑ 82.60 ↓

Ltrpl,2 (LCS ) 11.65 ↑ 2.63 ↑ 94.70 ↓ 67.69 ↓ 28.39 ↑ 4.62 ↑ 100.0 83.44 ↓
Ltrpl,2 (LPC ) 13.02 ↓ 2.94 ↑ 89.86 ↓ 60.26 ↑ 30.22 ↑ 4.81 ↑ 100.0 84.29 ↓
Ltrpl,2 (LKL ) 13.55 ↓ 3.22 ↑ 97.86 ↓ 76.54 ↓ 28.14 ↑ 4.71 ↑ 100.0 80.81 ↑

rates. In conclusion, due to the use of the weights of the cross-modal setup, the model can adapt
faster to new writers and generalize better to unseen words due to the triplet loss.

6 CONCLUSION
We evaluated metric learning-based triplet loss functions for cross-modal representation learning
between image and time-series modalities with class label-specific triplet selection. On synthetic
data as well as on different HWR datasets, our method yields notable accuracy improvements for the
main time-series classification task and can be decoupled from the auxiliary image classification task
at inference time. Our cross-modal triplet selection further yields a faster training convergence with
better generalization on the main task.
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A APPENDICES
We provide more information about the broader impact, limitations, ethical concerns, and a com-
parison to writing on touch sceen surfaces in Section A.1. While Section A.2 gives an overview of
methods for offline handwriting recognition, Section A.3 summarizes cross-modal retrieval methods,
the corresponding modalities, pairwise learning, and deep metric learning. We present the multi-task
learning technique in Section A.4, and show more details on learning with the triplet loss on syntheti-
cally generated signal and image data in Section A.5. We propose more details of our architectures in
Section A.6. Section A.7 presents results of representation learning for online HWR.

A.1 Statements
Broader Impact Statement. While research for offline handwriting recognition (HWR) is well-

established, research for online HWR from sensor-enhanced pens only emerged in 2019. Hence, the
methodological research for online HWR currently does not meet the requirements for real-world
applications. Handwriting is still important in different fields, in particular graphomotoricity as
a fine motor skill. The visual feedback provided by the pen helps young students to learn a new
language. A well-known bottleneck for many machine learning algorithms is their requirement for
large amounts of datasets, while data recording of handwriting data is time-consuming. This paper
extends the online HWR dataset with generated images from offline handwriting and closes the
gap between offline and online HWR by using offline HWR as an auxiliary task by learning with
privileged information. One downside of training the offline architecture (consisting of gated text
recognizer blocks) is its long training time. However, as this model is not required at inference
time, processing the time-series is still fast. The cross-modal representation between both modalities
(image and time-series) is achieved by using the triplet loss and a sample selection depending on
the Edit distance. This approach is important in many applications of sequence-based classification,
i.e., the triplet loss evolved recently for language processing applications such as visual semantic
clustering, while pairwise learning is typically applied in fields such as image recognition. Ethical
statement about collection consent and personal information: For data recording, the consent of all
participants was collected. The datasets only contain the raw data from the sensor-enhanced pen
and – for statistics – the age, gender, and handedness of the participants. The datasets are fully
pseudonymized by assigning an ID to every participant. The datasets do not contain any personal
identifying information. The approach proposed in this paper – in particular, when used for the
application of online handwriting recognition from sensor-enhanced pens – does not (1) facilitate
injury to living beings, (2) raise safety or security concerns (due to the anonymity of the data), (3)
raise human rights concerns, (4) have a detrimental effect on people’s livelihood, (5) develop harmful
forms of surveillance (as the data is pseudonymized), (6) damage the environment, and (7) deceive
people in ways that cause harm.

Limitations. The limitation of the method is the requirement of multiple image-based datasets in
the same language. As the OnHW-words and OnHW-wordsRandom datasets are written in German
and contain word labels with mutated vowels, a similar image-based German dataset is required,
which does not currently exist. The available dataset most similar to the OnHW dataset is the
IAM-OffDB dataset, which does not contain mutated vowels. Hence, the OCR method cannot be
pre-trained on words with mutated vowels. In conclusion, the method is not limited by ScrabbleGAN,
but by the image-based dataset required for pre-training. The gated text recognizer could also be
directly pre-trained on the IAM-OffDB dataset, but we assume less generalized results than for our
generated dataset.
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Statement on Ethical Concerns. Machine learning models face various challenges when classifying
text with this sensor-enhanced pen. These challenges can appear if there is a domain shift between
training and test datasets, e.g., specific writers have a unique writing style and accelerations, or they
hold the pen differently. Also, some writers might have a unique writing environment (different
writing surfaces such as a unique table or paper which leads to different magnetic fields). Another
difficulty can appear through an under-represented group such as left-handed writers or a disabled
person for which the model is not trained on. A well-generalized model trained on all possible pen
movements is very challenging and requires a lot of training data. One solution is to record data for a
unique writer and adapt the model, or augment the data for a better representation, e.g., as proposed
with our method on left-handed writers. Hence, unique writers are not excluded and the task for
classifying writing from under-represented groups is addressed in our paper, but domain shifts still
remain a challenging problem.

Comparison to Writing on Touch Screen Surfaces. Methods for writing on surfaces such as the
iPad OS system and others require a tablet with a touch screen surface and stylus pens with integrated
magnetometers or pressure sensitivity. These methods can easily reconstruct the trajectory of the pen
tip through the magnetometer on the surface, and hence, can classify the written text. This is more
challenging when using sensor-enhanced pens, as the classification task is performed directly on the
sensor data. One drawback of methods used in the iPad OS is the requirement for writing on specific
surfaces, which in turn can influence the writing style. Also, certain applications require writing on
normal paper, or the availability of a touch screen surface is not always given, e.g., when writing a
short list, but notes need to be digitized afterwards.

A.2 Offline Handwriting Recognition
In the following, we give a detailed overview of offline HWR methods to select a suitable lexicon
and language model-free method. To our knowledge, there is no recent paper summarizing published
work for offline HWR. For an overview of offline and online HWR datasets, see [54, 85]. Table 7
presents related work. Methods for offline HWR range from hidden Markov models (HMMs) to
deep learning techniques that became predominant in 2014, such as convolutional neural networks
(CNNs), temporal convolutional networks (TCNs), and recurrent neural networks (RNNs). RNN
techniques are well explored, including long short-term memories (LSTMs), bidirectional LSTMs
(BiLSTMs), and multidimensional RNNs (MDRNN, MDLSTM). Recent methods are generative
adversarial networks (GANs) and Transformers. In Table 7, we refer to the use of a language model
as LM with 𝑘 and identify the data level on which the method works – i.e., paragraph or full-text
level (P), line level (L), and word level (W). We present evaluation results for the IAM-OffDB [73]
and RIMES [43] datasets. We show the character error rate (CER) – the percentage of characters
that were incorrectly predicted (the lower, the better) – and the word error rate (WER) – a common
performance metric on word level instead of the phoneme level (the lower, the better).

HMMs. In the past, various methods based on HMMs have been proposed [6, 32, 67, 81]. Recently,
[34] proposed HMM+ANN, an HMM modeled with Markov chains in combination with a multilayer
perceptron (MLP) to estimate the emission probabilities. [62] presented Tandem GHMM that uses
moment-based image normalization, writer adaptation, and discriminative feature extraction with a
3-gram open-vocabulary of size 50k with an LSTM for recognition. [31] proposed an LSTM unit
that controls the shape of the squashing function in gating units decoded in a hybrid HMM. This
approach yields the best results based on HMMs.

RNNs: MDLSTMs. The 2DLSTM approach by [42] combines multidimensional LSTMs (MDL-
STMs) with the CTC loss. The MDLSTM-RNN approach [10] works at paragraph level by replacing
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Table 7. Evaluation results (WER and CER in %) of different methods on the IAM-OffDB [73] and
RIMES [43] datasets. The table is sorted by year.

LM Level IAM-OffDB RIMES
Method Information size 𝑘 P L W WER CER WER CER

HMM
HMM+ANN [34] Markov chain with MLP w/ (5) 15.50 6.90 - -
Tandem GHMM [62] GHMM and LSTM, writer adaptation w/ (50) × 13.30 5.10 13.70 4.60
LSTM-HMM [31] Combination of LSTM with HMM w/ (50) × 12.20 4.70 12.90 4.30

Multi-

2DLSTM [42] Combined MDLSTM with CTC w/o 27.50 8.30 17.70 4.00

dim.

MDLSTM-RNN [10] 150 dpi w/o × 29.50 10.10 13.60 3.20

LSTM

150 dpi w/ (50) × 16.60 6.50 - -
300 dpi w/o × 24.60 7.90 12.60 2.90
300 dpi w/ (50) × 16.40 5.50 - -

[105] GPU-based, diagonal MDLSTM 9.30 3.50 9.60 2.80
SepMDLSTM [22] Multi-task approach w/o 34.55 11.15 30.54 8.29
[11] MDLSTM, attention w/o × - 16,20 - -

Line segmentation 150 dpi w/o × - 11.10 - -
Line segmentation 150 dpi w/o × - 7.50 - -

MDLSTM [16] 10.50 3.60 - -

RNN

BiLSTM [41] w/ (20) 18.20 25.90 - -
HMM+RNN [75] Sliding win. Gaussian HMM, RNN × × - 4.75 -
Dropout [83] LSTMs with dropout w/o 35.10 10.80 28.50 6.80
[106] Maximum mutual information 12.70 4.80 12.10 4.40
[9] 10.90 4.40 11.20 3.50

w/ (50) 13.60 5.10 12.30 3.30
GCRNN [12] CNN+BiLSTM w/ (50) 10.50 3.20 7.90 1.90
CNN-1DLSTM-CTC [87] CNN+BiLSTM+CTC (128 × width) w/o × 18.40 5.80 9.60 2.30

NN+BiLSTM+CTC w/ (50) × 12.20 4.40 9.00 2.50
End2End [63] Without line level w/ 16.19 6.34 - -

Line level w/ × 32.89 9.78 - -
SFR [115] Text detection and segmentation w/o × 23.20 6.40 9.30 2.10
CNN-RNN [33] Unconstrained w/o 12.61 4.88 7.04 2.32

Full-Lexicon w/ 4.80 2.52 1.86 0.65Text-Lexicon w/ 4.07 2.17
Unconstrained w/o × 17.82 5.70 9.60 2.30

[24] Seq2seq, w/o LN w/o 25.50 17.40 19.10 12.00
w/ LN w/o 22.90 13.10 15.80 9.70
w/ LN + Focal Loss w/o 21.10 11.40 13.50 7.30
w/ LN + Focal Loss + Beam Search w/o 16.70 8.10 9.60 3.50

[100] LSTM encoder-decoder, attention 15.90 4.80 - -
[26] ResNet+LSTM, segmentation w/ × - 8.50 - -
[55] BiLSTM × 30.70 12.80 - -

GRCL × 35.20 14.10 - -
[77] Seq2seq CNN+BiLSTM (64 × width) × - 5.24 - -
FPN [14] Feature Pyramid Network, 150 dpi × - 15.60 - -
AFDM [7] AFD module w/ 8.87 5.94 6.31 3.17

CNN

[86] CNN + connected branches, CCA w/ 6.45 3.44 3.90 1.90
Gated text recognizer [121] CNN+CTC (32 × width) w/o × - 4.90 - -
OrigamiNet [120] VGG (500 × 500) × × - 51.37 - -

VGG (500 × 500), w/o LN w/o × × - 34.55 - -
ResNet26 (500 × 500), w/o LN w/o × × - 10.03 - -
ResNet26 (500 × 500), w/ LN w/o × × - 7.24 - -
ResNet26 (500 × 500), w/o LN w/o × × - 8.93 - -
ResNet26 (500 × 500), w/ LN w/o × × - 6.37 - -
ResNet26 (500 × 500), w/o LN w/o × × - 76.90 - -
ResNet26 (500 × 500), w/ LN w/o × × - 6.13 - -
GTR-8 (500 × 500), w/o LN w/o × × - 72.40 - -
GTR-8 (500 × 500), w/ LN w/o × × - 5.64 - -
GTR-8 (750 × 750), w/ LN w/o × × - 5.50 - -
GTR-12 (750 × 750), w/ LN w/o × × - 4.70 - -

DAN [111] Decoupled attention module w/o × 19.60 6.40 8.90 2.70

GAN
ScrabbleGAN [37] Original data w/o 25.10 - 12.29 -

Augmentation w/o 24.73 - 12.24 -
Augmentation + 100k synth. w/o 23.98 - 11.68 -
Augmentation + 100k synth. + Refine w/o 23.61 - 11.32 -

Trans- [59] Self-attention for text/images w/o × 15.45 4.67 - -
for- FPHR [97] CNN encoder, Transformer decoder w/o × - 6.70 - -
mer With augmentation w/o × - 6.30 - -
Other FST [76] Finite state transducer (lexicon) n-gram 19.10 - 13.30 -
Abbreviations. Size 𝑘 of the language model (LM), i.e., with (w/) or without (w/o) a LM. P: paragraph or full text level, L: line level,
LN: layer normalization, CER: character error rate, WER: word error rate, MLP: multi-layer perceptron, HMM: hidden markov
model, GTR: gated text recognizer, seq2seq: sequence-to-sequence, GAN: generative adversarial network, CTC: connectionist
temporal classification, RNN: recurrent neural network, LSTM: long short-term memory, CNN: convolutional neural network
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the collapse layer with a recurrent version. A neural network performs implicit line segmentation by
computing attention weights on the image representation. [105] proposed an efficient GPU-based
implementation of MDLSTMs by processing the input in a diagonal-wise fashion. SepMDLSTM [22]
is a multi-task learning method for script identification and HWR based on two classification modules
by minimizing the CTC and negative log-likelihood losses. While the MDLSTM by [11] contains
covert and overt attention without prior segmentation, the [16] integrated MDLSTMs within a hybrid
HMM. However, these architectures come with expensive computational cost. Furthermore, they
extract features visually similar to those of convolutional layers [87]. End2End [63] jointly learns
text and image embeddings based on LSTMs.

RNNs: LSTMs and BiLSTMs. RNNs for HWR marked an important milestone in achieving
impressive recognition accuracies. Sequential architectures are perfect to fit text lines, due to the
probability distributions over sequences of characters, and due to the inherent temporal aspect of
text [59]. [41] introduced the BiLSTM layer in combination with the CTC loss. [83] showed that
the performance of LSTMs can be greatly improved using dropout. [106] investigated sequence-
discriminative training of LSTMs using the maximum mutual information (MMI) criterion. While
[9] utilized an RNN with an HMM and a language model, [75] combined an RNN with a sliding
window Gaussian HMM. GCRNN [12] combines a convolutional encoder (aiming for generic and
multilingual features) and a BiLSTM decoder predicting character sequences. Additionally, [87]
proposed a CNN+BiLSTM architecture (CNN-1DLSTM-CTC) that uses the CTC loss. The start,
follow, read (SFR) [115] model jointly learns text detection and segmentation. [33] used synthetic
data for pre-training and image normalization for slant correction. The methods by [24, 55, 77, 100]
also make use of BiLSTMs. While [14] uses a feature pyramid network (FPN), the adversarial feature
deformation module (AFDM) [7] learns ways to elastically warp extracted features in a scalable
manner. Further methods that combine CNNs with RNNs are [69, 99, 117], while BiLSTMs are
utilized in [15, 102].

TCNs. TCNs use dilated causal convolutions and have been applied to air-writing recognition
by [5]. As RNNs are slow to train, [94] presented a faster system that is based on text line images
and TCNs with the CTC loss. This method achieves 9.6% CER on the IAM-OffDB dataset. [95]
combined 2D convolutions with 1D dilated non-causal convolutions that offer high parallelism with a
smaller number of parameters. They analyzed re-scaling factors and data augmentation and achieved
comparable results for the IAM-OffDB and RIMES datasets.

CNNs. [86] utilized a CNN with multiple fully connected branches to estimate its n-gram frequency
profile (set of n-grams contained in the word). With canonical correlation analysis (CCA), the
estimated profile can be matched to the true profiles of all words in a large dictionary. As most
attention methods suffer from an alignment problem, [111] proposed a decoupled attention network
(DAN) that has a convolutional alignment module that decouples the alignment operation from using
historical decoding results based on visual features. The gated text recognizer [121] aims to automate
the feature extraction from raw input signals with a minimum required domain knowledge. The
fully convolutional network without recurrent connections is trained with the CTC loss. Thus, the
gated text recognizer module can handle arbitrary input sizes and can recognize strings with arbitrary
lengths. This module has been used for OrigamiNet [120] which is a segmentation-free multi-line or
full-page recognition system. OrigamiNet yields state-of-the-art results on the IAM-OffDB dataset,
and shows improved performance of gated text recognizer over VGG and ResNet26. Hence, we use
the gated text recognizer module as our visual feature encoder for offline HWR (see Section A.6).

GANs. Handwriting text generation is a relatively new field. The first approach by [40] was a
method to synthesize online data based on RNNs. The technique HWGAN by [58] extends this
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Table 8. Overview of cross-modal and pairwise learning techniques using the modalities video (V),
images (I), audio (A), text (T), sensors (S), or haptic (H). Data from sensors are represented by
time-series from inertial, biological, or environmental sensors. We indicate cross-modal learning from
the same modality with ×𝑛 with 𝑛 modalities. If 𝑛 is unspecified, the method can potentially work with
an arbitrary number of modalities.

Method Modality Pairwise Deep Metric Learning Application
(sorted by year) V I A T S H Learning Loss/Objective

[23] ×2 Pairwise 𝐿1 similarity Face verification
[90] × × Pairwise Canonical correlation Multimedia documents: emb.

analysis mapping to common space
DeViSE [38] × × Hinge rank Cosine similarity Visual semantic embedding
OxfordNet [61] × × Contrastive Cosine similarity Visual semantic embedding
[119] × × Denotion graph Pointwise MI Visual semantic embedding
DAN [74] ×2 Pairwise Kernelized MMD Domain adaptation
ml-CCA [89] × × Not pairwise CCA extended Multi-label annotations
FaceNet [92] × Triplet Euclidean Face recognition, clustering
deep-SM [114] ×2 × Pairwise CCA, T-V CCA Universal representation for

semantic matching various recognition tasks
[39] × × Triplet non-Mercer match kernel Visual semantic embedding
TristouNet [13] × Triplet Euclidean Speech classification
Triplet+FANNG [50] × Smart triplet Nearest neighbour graph General
[123] × Triplet CE, conditional Handwritten Chinese

random field characters recognition
[53] × × Pairwise Cosine similarity Visual semantic embedding
GXN [44] × × Triplet Similarity: order- Visual semantic embedding

-violation penalty
TDH [28] ×2 × Triplet Hamming space Visual semantic embedding
VSE++ [35] × × Triplet Similarity: inner product Visual semantic embedding
SCAN t-i [65] × × Triplet Similarity LSE Visual semantic embedding
Discriminative [30] × Triplet Class centroids Image classification
VSRN [66] × × Triplet Similarity: inner product Visual semantic embedding
PIE-Nets [98] × × × Pairwise Diversity, MIL, MMD Visual semantic embedding
LIWE [113] × × Contrastive Sum/Max of Hinges Visual semantic embedding
[124] × STriplet+triplet Cosine similarity Relationship understanding
TIMAM [91] × × Pairwise Norm-softmax CE Visual question answering
GMN [70] ×𝑛 ×𝑛 ×𝑛 Pairwise Cross-modal generation Multisensory 3D scenes
CTM [46] × × Triplet CTC, CE , 𝐿2 correlation Sentence translation
UniVSE [116] × × Contrastive Alignment losses Visual semantic embedding
ActiveSet+RRPB [118] × Smart triplet Semidefinite constraint General
PAN [125] × × Pairwise Cosine similarity Visual semantic embedding
CM-GANs [82] × × Adversarial Inter/intra class Visual semantic embedding
CPC [103] × × × Contrastive CE, MI One modality classification
CrossATNet [17] ×2 × Triplet MSE Zero-shot learning, sketches
MHTN [52] × × × × Pairwise, contr. MMD, Euclidean CMR
GCML [64] ×2 × Triplet Hierarchical relational Retrieval, search,

graph clustering video-to-video similarity
CSVE [108] × × Bidirect. triplet Correlation graph Visual semantic embedding
TXS-Adapt × × Triplet Recency-based Social media domain

[93] (adaptive) correlation
Proxy-Anchor [60] × Pair+proxy Cosine similarity Image classification
TNN-C-CCA [122] × × Triplet CCA Multimedia
AdapOffQuin [21] × × Quintuplet Cosine similarity Visual semantic embedding
ROMA [68] ×2 Soft triplet CE, random Unsupervised representation

(fixed margin) perturbation learning
CLIP [88] × × Contrastive CE, Cosine similarity OCR, action/object recognition
SGRAF [29] × × Pairwise Vector similarity Visual semantic embedding
PCME [25] × × Triplet Euclidean Visual semantic embedding
MCN [18] × × × Contrastive Similarity, reconstruction Multimodal clustering
VATT [1] × × × Contrastive CC, NCE, MIL-NCE Transformer for CMR
[107] × Dual triplet Euclidean Signature verification
[110] × ×2 Contrastive Cosine similarity Audio classification
[48] ×2 Triplet Softmax, MSE Person re-identification
AlignMixup [104] ×2 Pairwise Sinkhorn transport Data augmentation for interpolation
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Table 9. Table 8 continued.

Method Modality Pairwise Deep Metric Learning Application
(sorted by year) V I A T S H Learning Loss/Objective

SAM [8] × × Triplet Cosine similarity Visual semantic embedding
VSE∞ [20] × × Triplet Similarity Visual semantic embedding
AudioCLIP [47] × × × Contrastive Cosine similarity, Environmental sound

symmetric CE classification
data2vec [4] × × × Predicts latent representations Self-supervision with masks
ColloSSL [57] ×𝑛 Contrastive CE, Cosine similarity Human-activity recognition
COCOA [27] ×𝑛 Contrastive Cosine similarity General time-series
ELo [84] × × × × Contrastive 𝐿2, evolutionary Cross-modal, multi-task
[71] × Pairwise - Crowd counting
MM-ALT [45] × × × Pairwise CTC, residual attention Lyric transcription
FLAVA [96] × × Contrastive Cosine similarity, temperature scaling Visual semantic embedding
ConceptBeam [78] × ×𝑛 Triplet Cosine similarity Target speech extraction
[36] × × Contrastive - Text-video retrieval, kitchen
C3CMR [109] × × Triplet CE, cosine similarity Visual semantic embedding
[19] × × Contrastive Cosine similarity VSE with graph embedding
[79] ×2 Classwise CE, HoMM/CC/PC Online HWR
CMR-IS (Ours, 2022) × × Contr., triplet CTC, MSE/CC/PC/KL Online HWR
Abbreviations. CE: cross-entropy, CTC: connectionist temporal classification, MSE: mean squared error, CC: cross-correlation,
PC: Pearson correlation, MMD: maximum mean discrepancy, HoMM: higher-order moment matching, CCA: canonical correlation,
analysis, MIL: multiple-instance learning, MI: mutual information, NCE: noise contrastive estimation, VSE: visual semantic embedding

method by adding a discriminatorD. DeepWriting [2] is a GAN that is capable of disentangling style
from content and thus making digital ink editable. [49] proposed a method to generate handwriting
based on a specific author with learned parameters for spacing, pressure, and line thickness. [3] used
a BiLSTM to obtain an embedding of the word to be rendered and added an auxiliary network as
a recognizer R. The model is trained with a combination of an adversarial loss and the CTC loss.
ScrabbleGAN by [37] is a semi-supervised approach that can arbitrarily generate many images of
words with arbitrary length from a generator G to augment handwriting data and uses a discriminator
D and recognizer R. The paper proposes results for original data with random affine augmentation
using synthetic images and refinement.

Transformers. RNNs prevent parallelization, due to their sequential pipelines. [59] introduced
a non-recurrent model by the use of Transformer models with multi-head self-attention layers at
the textual and visual stages. Their method works for any pre-defined vocabulary. For the feature
encoder, they used modified ResNet50 models. The full page HTR (FPHR) method by [97] uses a
CNN as an encoder and a Transformer as a decoder with positional encoding.

A.3 Overview of Cross-Modal Retrieval Methods
We provide a summary of methods for cross-modal learning in Table 8 and Table 9. Typical modalities
are video, image, audio, text, sensors (such as inertial sensors used for our method), and haptic
modalities. We classify each method with the technique used for pairwise learning that utilizes an
objective for deep metric learning. The overview contains a wide range of applications, while visual
semantic embedding is a common field for cross-modal retrieval.

A.4 Multi-Task Learning
We simultaneously train the LCTC loss for sequence classification combined with one or two shared
losses Lshared,1 and Lshared,2 for cross-modal representation learning. As both losses are in different
ranges, the naive weighting

Ltotal =
|𝑇 |∑︁
𝑖=1

𝜔𝑖L𝑖 , (3)
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Fig. 10. Plot of the 1D signal data for 10 classes.

with pre-specified constant weights 𝜔𝑖 = 1,∀𝑖 ∈ {1, . . . , |𝑇 |} can harm the training process. Hence,
we apply dynamic weight average (DWA) [72] as a multi-task learning approach that performs
dynamic task weighting over time (i.e., after each batch).

A.5 Training Synthetic Data with the Triplet Loss
Signal and Image Generation. We combine the networks for both signal and image classification

to improve the classification accuracy over each single-modal network. The aim is to show that the
triplet loss can be used for such a cross-modal setting in the field of cross-modal representation
learning. Hence, we generate synthetic data in which the image data contains information of the
signal data. We generate signal data x with 𝑥𝑖,𝑘 = sin

(
0.05 · 𝑡𝑖𝑘

)
for all 𝑡𝑖 ∈ {1, . . . , 1, 000} where 𝑡𝑖 is

the timestep of the signal. The frequency of the signal is dependent on the class label 𝑘 . We generate
signal data for 10 classes (see Figure 10a). We add noise from a continuous uniform distribution
𝑈 (𝑎, 𝑏) for 𝑎 = 0 and 𝑏 = 0.3 (see Figure 10b) and add time and magnitude warping (see Figure 10c).
We generate a signal-image pair such that the image is based on the signal data. We make use of
the Gramian angular field that transforms time-series into images. The time-series is defined as
x = (𝑥1, . . . , 𝑥𝑛) for 𝑛 = 1, 000. The Gramian angular field creates a matrix of temporal correlations
for each (𝑥𝑖 , 𝑥 𝑗 ) by rescaling the time-series in the range [𝑝, 𝑞] with −1 ≤ 𝑝 < 𝑞 ≤ 1 by

𝑥𝑖 = 𝑝 + (𝑞 − 𝑝) · 𝑥𝑖 −min(x)
max(x) −min(x) ,∀𝑖 ∈ {1, . . . , 𝑛}, (4)

and computes the cosine of the sum of the angles for the Gramian angular summation field [112] by

GASF𝑖, 𝑗 = cos (𝜙𝑖 + 𝜙 𝑗 ),∀𝑖, 𝑗 ∈ 1, . . . , 𝑛, (5)

with 𝜙𝑖 = arccos (𝑥𝑖 ),∀𝑖 ∈ {1, . . . , 𝑛} being the polar coordinates. We generate image datasets based
on signal data with different noise parameters (𝑏 ∈ {0.0, . . . , 1.95}) to show the influence of the
image data on the classification accuracy. As an example, Figure 11 shows the Gramian angular
summation field plots for the noise parameters 𝑏 = [0, 0.5, 1.0, 1.5, 1.95]. We present the Gramian
angular summation field for the classes 0, 5, and 9 to show the dependency of the frequency of the
signal data on the Gramian angular summation field.

Models. We use the following models for classification. Our encoder for time-series classification
consists of a 1D convolutional layer (filter size 50, kernel 4), a max pooling layer (pool size 4),
batch normalization, and a dropout layer (20%). The image encoder consists of a layer normalization
and 2D convolutional layer (filter size 200), and batch normalization with ELU activation. After
that, we add a 1D convolutional layer (filter size 200, kernel 4), max pooling (pool size 2), batch
normalization, and 20% dropout. For both models, after the dropout layer follows a cross-modal
representation – i.e., an LSTM with 10 units, a Dense layer with 20 units, a batch normalization
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Fig. 11. Plot of the Gramian angular summation field based on 1D signal data with added noise for
the classes 0 (top row), 5 (middle row) and 9 (botton row).

layer, and a Dense layer of 10 units (for 10 sinusoidal classes). These layers are shared between both
models.

A.6 Details on Architectures for Offline HWR
In this section, we provide details about the integration of Inception [101], ResNet [51] and gated
text recognizer [121] modules into the offline HWR system. All three architectures are based
on publicly available implementations, but we changed or adapted the first layer for the image input
and the last layer for a proper input for our latent representation module.

Inception. Figure 12 gives an overview of the integration of the Inception module. The Inception
module is part of the well-known GoogLeNet architecture. The main idea is to consider how an
optimal local sparse structure can be approximated by readily available dense components. As the
merging of pooling layer outputs with convolutional layer outputs would lead to an inevitable increase
in the number of output and would lead to a high computational increase, we apply the Inception
module with dimensionality reduction to our offline HWR approach [101]. The input image is of size
𝐻 ×𝑊 . What follows is the Inception (3a), Inception (3b), a max pooling layer (3 × 3) and Inception
(4a). We add three 1D convolutional layers to obtain an output dimensionality of 400 × 200 as the
input for the latent representation.

ResNet34. Figure 13 provides an overview of the integration of the ResNet34 architecture. Instead
of learning unreferenced functions, [51] reformulated the layers as learning residual functions with
reference to the layer inputs. This residual network is easier to optimize and can gain accuracy from
considerably increased depth. The ResNet block allows the layers to fit a residual mapping denoted
asH(x) with identity x and fits the mapping F (x) := H(x) − x. The original mapping is recast into
F (x) + x. We reshape the output of ResNet34, add a 1D convolutional layer, and reshape the output
for the latent representation.
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Fig. 12. Offline HWR method based on Inception modules [101].
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Fig. 13. Offline HWR method based on the ResNet34 architecture [51].

Gated Text Recognizer. Figure 14 gives an overview of the integration of the gated text recognizer
[121] module – a fully convolutional network that uses batch normalization and layer normalization
to regularize the training process and increase convergence speed. The module uses batch renormal-
ization [56] on all batch normalization layers. Depthwise separable convolutions reduce the number
of parameters at the same/better classification performance. The gated text recognizer uses spatial
dropout instead of regular unstructured dropout for better regularization. After the input image of size
𝐻 ×𝑊 that is normalized follows a convolutional layer with Softmax normlization, a 13 × 13 filter,
and dropout (40%). After the dropout layer, a stack of 2, 4, 6 or 8 gate blocks follows that models the
input sequence. Similar to [121], we add a dropout of 20% after the last gated text recognizer block.
Lastly, we add a 2D convolutional layer of 200, a batch normalization layer and a layer normalization
layer that is the input for our latent representation.

A.7 Detailed Online HWR Evaluation
Table 5 gives an overview of cross-modal representation learning results based on two convolutional
layers (𝑐 = 2) for the cross-modal representation. Our CNN+BiLSTM contains three additional
convolutional layers and outperforms the smaller CNN+BiLSTM by [80] on the WD classification
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Fig. 14. Offline HWR method based on the gated text recognizer architecture [121].

Table 10. Evaluation results (WER and CER in %) averaged over five splits of the baseline time-series-
only technique and our cross-modal learning technique for the inertial-based OnHW datasets [80] with
and without mutated vowels (MV) for two convolutional layers 𝑐 = 2. We propose writer-(in)dependent
(WD/WI) results. Best results are bold, and second best results are underlined. Arrows indicate
improvements (↑) and degradation (↓) of baseline results (CNN+BiLSTM, w/o MV).

OnHW-words500 OnHW-wordsRandom
WD WI WD WI

Method WER CER WER CER WER CER WER CER
Small CNN+BiLSTM, LCTC, w/ MV 51.95 17.16 60.91 27.80 41.27 7.87 84.52 35.22
CNN+BiLSTM (ours), LCTC, w/ MV 42.81 13.04 60.47 28.30 37.13 6.75 83.28 35.90
CNN+BiLSTM (ours), LCTC, w/o MV 42.77 13.44 59.82 28.54 41.52 7.81 83.54 36.51
LMSE 39.79 ↑ 12.14 ↑ 60.35 ↓ 28.48 ↑ 39.98 ↑ 7.79 ↑ 83.50 ↑ 36.92 ↓
LCS 43.40 ↓ 13.70 ↓ 59.31 ↑ 27.99 ↑ 40.31 ↑ 7.68 ↑ 83.68 ↓ 36.30 ↑
LPC 38.90 ↑ 11.60 ↑ 60.77 ↓ 28.45 ↑ 39.93 ↑ 7.60 ↑ 83.19 ↑ 35.83 ↑
LKL 37.25 ↑ 11.29 ↑ 65.10 ↓ 31.26 ↓ 41.81 ↓ 8.22 ↓ 84.40 ↓ 38.93 ↓
Ltrpl,2 (LMSE ) 41.16 ↑ 12.71 ↑ 58.65 ↑ 28.19 ↑ 41.16 ↑ 8.03 ↓ 85.38 ↓ 39.49 ↓
Ltrpl,2 (LCS ) 42.74 ↑ 13.43 ↑ 58.13 ↑ 27.62 ↑ 41.49 ↑ 8.18 ↓ 85.24 ↓ 38.75 ↓
Ltrpl,2 (LPC ) 39.94 ↑ 12.19 ↑ 62.76 ↓ 30.68 ↓ 41.58 ↓ 8.18 ↓ 85.18 ↓ 38.53 ↓
Ltrpl,2 (LKL ) 38.34 ↑ 11.77 ↑ 67.08 ↓ 33.84 ↓ 41.87 ↓ 8.33 ↓ 86.34 ↓ 40.37 ↓

tasks. Without triplet loss, LPC yields the best results on the OnHW-wordsRandom dataset. The
triplet loss partly decreases results and partly improves results on the OnHW-words500 dataset. In
conclusion, two convolutional layers for the cross-modal representation has a negative impact, while
here the triplet loss has no impact.
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Abstract. The performance of a machine learning model degrades when it is ap-
plied to data from a similar but different domain than the data it has initially been
trained on. The goal of domain adaptation (DA) is to mitigate this domain shift
problem by searching for an optimal feature transformation to learn a domain-
invariant representation. Such a domain shift can appear in handwriting recog-
nition (HWR) applications where the motion pattern of the hand and with that
the motion pattern of the pen is different for writing on paper and on tablet. This
becomes visible in the sensor data for online handwriting (OnHW) from pens
with integrated inertial measurement units. This paper proposes a supervised DA
approach to enhance learning for OnHW recognition between tablet and paper
data. Our method exploits loss functions such as maximum mean discrepancy
and correlation alignment to learn a domain-invariant feature representation (i.e.,
similar covariances between tablet and paper features). We use a triplet loss that
takes negative samples of the auxiliary domain (i.e., paper samples) to increase
the amount of samples of the tablet dataset. We conduct an evaluation on novel
sequence-based OnHW datasets (i.e., words) and show an improvement on the
paper domain with an early fusion strategy by using pairwise learning.

Keywords: Online handwriting recognition (OnHW) · sensor pen · domain adap-
tation (DA) · deep metric learning (DML) · writer-(in)dependent tasks.

1 Introduction

HWR can be categorized into offline and online HWR. While offline HWR deals with
the analysis of the visual representation, OnHW recognition works on different types

Supported by the Federal Ministry of Education and Research (BMBF) of Germany by Grant
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of spatio-temporal signals and can make use of temporal information such as writing
direction and speed [20]. Typically, recording systems make use of a stylus pen together
with a touch screen surface [1]. Systems for writing on paper became popular, first
prototypical systems were used [4], and recently a novel system enhanced with inertial
measurement units (IMUs) became prominant [19]. These IMU-enhanced pens are real-
world applicable. While previous work [10, 15, 16, 18, 19] used this pen for writing on
paper, [17] used this pen for writing on tablet. Figure 1 presents IMU data from a sensor-
enhanced pen for writing on paper (left) and tablet (right). Due to the rough paper, the
sensor data for writing on paper has more noise than writing on surface. Furthermore,
the magnetic field of the tablet influences the magnetometer of the pen. This leads to
different distributions of data and a domain shift between both data sources. Previously,
tablet and paper data are processed separately, and hence, there is no method that can
use both data sources simultaneously and inter-changeably.

Traditional ML algorithms assume training and test datasets to be independent and
identically distributed. When applied in practice a domain shift appears in test data
(here, shift between sensor data from tablet and paper), and hence, this assumption

Acc1 [x]
Acc1 [y]
Acc1 [z]
Acc2 [x]
Acc2 [y]
Acc2 [z]

Acc1 [x]
Acc1 [y]
Acc1 [z]
Acc2 [x]
Acc2 [y]
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Gyr [z]
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Fig. 1: Comparison of accelerometer (1st row), gyroscope (2nd row), magnetometer (3rd

row) and force (4th row) data from a sensor pen [19] on paper (left) and tablet (right).
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rarely holds in practice [23]. DA [12, 25] tries to compensate for this domain shift
by transferring knowledge between both data sources. Most techniques transform the
source data (here, data written on paper) by minimizing the distance to the target data
(here, data written on tablet) [23], or by transforming the extracted features of the
data sources [16]. To transform features of source domain into the target domain or
to compare feature embeddings, higher-order moment matching (HoMM) [2] is often
employed. Typically, the maximum mean discrepancy (MMD) [11] (HoMM of order 1)
or the kernelized method kMMD [13] between features is evaluated. Correlation align-
ment (CORAL) [24] is of order 2. A related, yet different, task is pairwise learning. The
pairwise contrastive loss [3] minimizes the distance between feature embedding pairs
of the same class and maximizes the distance between feature embeddings of different
classes dependent on a margin parameter. The triplet loss [21] defines an anchor and a
positive as well as a negative point, and forces the positive pair distance to be smaller
than the negative pair distance by a certain margin. While the triplet loss is typically
used for image recognition, [9, 15] used this loss for sequence-based learning.

Contributions. We propose a method for OnHW recognition from sensor-enhanced
pens for classifying words written on tablet and paper. We address the task of repre-
sentation learning of features from different domains (i.e., tablet and paper) by using
moment matching techniques (i.e., MMD and CORAL). For matching positive and neg-
ative samples of paper datasets w.r.t. anchor samples of tablet datasets, we use a triplet
loss with dynamic margin and triplet selection based on the Edit distance. We conduct a
large evaluation on OnHW [18] datasets. Website: www.iis.fraunhofer.de/de/ff/lv/data-
analytics/anwproj/schreibtrainer/onhw-dataset.html.

The remainder of this paper is organized as follows. Section 2 discusses related
work followed by our proposed methodology in Section 3. The experimental setup is
described in Section 4 and the results are discussed in Section 5. Section 6 concludes.

2 Related Work

In this section, we address related work for OnHW recognition and for pairwise learning
in relation to domain adaptation.

OnHW Recognition. The novel sensor-enhanced pen based on IMUs enables new ap-
plications for writing on normal paper. First, [19] introduced a character-based dataset
from sensor-enhanced pens on paper and evaluated ML and DL techniques. [18] pro-
posed several sequence-based datasets written on paper and tablet and a large bench-
mark of convolutional, recurrent and Transformer-based architectures, loss functions
and augmentation techniques. To enhance the OnHW dataset with an offline HWR
dataset, [15] generated handwritten images with ScrabbleGAN [7] and improved the
training with cross-modal representation learning between online and offline HWR.
[16] proposed a DA approach with optimal transport to adapt left-handed writers to
right-handed writers for single characters. [17] reconstructed the trajectory of the pen
tip for single characters written on tablet from IMU data and cameras pointing on the
pen tip.
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Fig. 2: Detailed method overview: The main network (top pipeline, tablet data) and
the auxiliary network (bottom pipeline, paper data) consist of the respective pre-trained
architectures with convolutional and bidirectional layers. The weights are fine-tuned
with domain adaptation techniques such as the triplet loss at five different fusion points.

Pairwise Learning for DA. Research for pairwise and triplet learning is very advanced
in general [3, 21], while the pairwise learning has rarely been used for sequence-based
learning. [9] use a triplet selection with L2-normalization for language modeling. While
they consier all negative pairs for triplet selection with fixed similarity intensity param-
eter, our triplet approach dynamically selects positive and negative samples based on
ED that is closer to the temporally adaptive maximum margin function by [22] as data
is evolving over time. DeepTripletNN [27] also uses the triplet loss on embeddings
between time-series data (audio) and visual data. While their method uses cosine sim-
ilarity for the final representation comparison, we make use of mean discrepancy and
correlation techniques.

3 Methodology

We start with a formal definition of multivariate time-series (MTS) classification and
an method overview in Section 3.1. We propose our sequence-based triplet loss in Sec-
tion 3.2, and finally give details about DML for DA in Section 3.3.

3.1 Methodology

MTS Classification. We define the sensor data from pens with integrated IMUs as a
MTS U = {u1, . . . ,um} ∈ Rm×l, an ordered sequence of l ∈ N streams with ui =
(ui,1, . . . , ui,l), i ∈ {1, . . . ,m}, where m ∈ N is the length of the time-series. The
MTS training set is a subset of the array U = {U1, . . . ,UnU

} ∈ RnU×m×l, where
nU is the number of time-series. Each MTS is associated with v, a sequence of L class
labels from a pre-defined label setΩ withK classes. For our classification task, v ∈ ΩL
describes words. We train a convolutional neural network (CNN) in combination with
a bidirectional long short-term memory (BiLSTM). We use the connectionist temporal
classification (CTC) [8] loss to predict a word v.
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Method Overview. Figure 2 gives a method overview. The main task (top pipeline) is
to classify sensor data represented as MTS with word labels v written with a sensor-
enhanced pen [19] on tablet. The auxiliary task (bottom pipeline) is to classify sensor
data from the same sensor-enhanced pen written on paper. For optimally combining
both datasets, we train a common representation between both networks by using the
triplet loss Ltrpl,c, see Section 3.2, with c ∈ C = {1, 2, 3, 4, 5} defines the layer both
networks are combined. c = 1 represents an intermediate fusion, while c = 5 represents
a late fusion. With DML techniques, we minimize the distance (or maximizing the
similarity) between the distributions of both domains (see Section 3.3).

3.2 Contrastive Learning and Triplet Loss

To learn a common representation typically pairs of same class labels of both domains
are used. Pairs with similar but different labels can improve the training process. This
can be achieved using the triplet loss [21] which enforces a margin between pairs of
MTS of tablet and paper sources with the same identity to all other different identities.
As a consequence, the feature embedding for one and the same labels lives on a mani-
fold, while still enforcing the distance and thus discriminability to other identities. We
define the MTS Ua

i of the tablet dataset as anchor, an MTS Up
i of the paper dataset

as the positive sample, and an MTS Un
i of the paper dataset as the negative sample.

We seek to ensure that the embedding of the anchor fc(Ua
i ) of a specific label is closer

to the embedding of the positive sample fc(U
p
i ) of the same label that it is to the em-

bedding of any negative sample fc(Un
i ) of another label. Thus, we want the inequality

LDML
(
fc(U

a
i ), fc(U

p
i )
)
+ α < LDML

(
fc(U

a
i ), fc(U

n
i )
)
, (1)

to hold for all training samples
(
fc(U

a
i ), fc(U

p
i ), fc(U

n
i )
)
∈ Φ with Φ being the set

of all possible triplets in the training set. α is a margin between positive and negative
pairs. The DML loss LDML is defined in Section 3.3. The contrastive loss minimizes the
distance of the anchor to the positive sample and separately maximizes the distance to
the negative sample. Instead, we can formulate the triplet loss as

Ltrpl,c(U
a,Up,Xn) =

N∑

i=1

max
[
LDML

(
fc(U

a
i ), fc(U

p
i )
)
−

LDML
(
fc(U

a
i ), fc(U

n
i )
)
+ α, 0

]
,

(2)

where N is the number of triplets. To ensure fast convergence, it is necessary to select
triplets that violate the constraint from Equation 1. Computing the loss for all triplet
pairs leads to poor training performance as poorly chosen pairs dominate hard ones [5].
We use the triplet selection approach by [15] that uses the Edit distance (ED) to define
the identity and select triplets. We define two sequences with an ED of 0 as positive
pair, and with an ED larger than 0 as negative pair (between 1 and 10). We use only
substitutions for triplet selection. Figure 3 shows the number of triplet pairs for each
ED. While there exist 265 samples for ED = 0, 3,022 samples for ED = 1 and
23,983 samples for ED = 2, the number of pairs highly increase for higher EDs.
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For each batch, we search in a dictionary of negative sample pairs for samples with
ED = 1 + bmaxe−e−1

20 c as lower bound for the current epoch e and maximal epochs
maxe = 200 [15]. For every pair we randomly select one paper sample. We let the
margin α in the triplet loss vary for each batch such that α = β · ED is depending on
the mean ED of the batch and is in the range [1, 11]. β depends on the DML loss (see
Section 3.3).

3.3 Domain Adaptation with Deep Metric Learning
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Fig. 3: Number tablet-paper
pairs dependent on the ED.

A domain D consists of a feature space X with
marginal probability P (X ). The task is defined by
the label space Y . When considering OnHW recog-
nition, there is a source domain (paper dataset)DS =
{U iS ,YiS}NS

i=1 of NS labeled samples of |YiS | cate-
gories, and a target domain (tablet dataset) DT =
{U iT ,YiT }NT

i=1 of NT labeled samples of |YiT | cate-
gories. DA can mitigate the domain shift and improve
the classification accuracy in the target domain by
enforcing the distance of target embeddings fc(Ua

i )
and source domain embeddings fc(U

p
i ) and fc(Un

i )
to be minimal. The embeddings are of size 400 × 200 for c = 1, of size 60 × 200 for
c = 2 and c = 3, and of size 60 × 100 for c = 4 and c = 5. We search for a DML
loss LDML

(
fc(U

a
i ), fc(U

p
i )
)
, respectively for the negative sample Un

i , that takes the
domain shift into account. To perform domain alignment, we use higher-order moment
matching (HoMM) [2]

LHoMM
(
fc(U

a
i ), fc(U

p
i )
)
=

1

Hp

∣∣∣∣∣

∣∣∣∣∣
1

ns

ns∑

i=1

fc(U
a
i )
⊗p − 1

nt

nt∑

i=1

fc(U
p
i )
⊗p
∣∣∣∣∣

∣∣∣∣∣

2

F

, (3)

between embeddings fc(Ua
i ) and fc(U

p
i ), respectively for fc(Ua

i ) and fc(Un
i ). It holds

ns = nt = b with the batch size b. || · ||F denotes the Frobenius norm, H is the num-
ber of hidden neurons in the adapted layer, and (·)⊗p denotes the p-level tensor power.
When p = 1, HoMM is equivalent to the linear MMD [25], and when p = 2, HoMM
is equivalent to the Gram matrix matching. When the embeddings are normalized by
subtracting the mean, the centralized Gram matrix turns into the covariance matrix [2],
and hence, HoMM for p = 2 is equivalent to CORAL [24]. However, the space com-
plexity for calculating the tensor (·)⊗p reaches O(Hp). This can be reduced by group
moment matching that divides the hidden neurons into ng groups, with each group b Hng

c
neurons, and the space complexity reduces toO(ng ·b Hng

cp). Furthermore, random sam-
pling matching randomly selects T values in the high-level tensor, and only aligns these
T values in the source and target domains. The space complexity reduces to O(T ) [2].
For our application, we evaluate orders p = 1, p = 2 and p = 3, and choose T = 1, 000,
which reaches the limits of our training setup of GPUs with 32 GB VRAM. Alterna-
tively, we make use of (Jeff and Stein) CORAL [24]. We choose the hyperparameters β
from Section 3.2 proposed in Table 1.
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Table 1: Hyperparameter choices of β for all DML loss functions and fusion points c.
DA Loss c = 1 c = 2 c = 3 c = 4 c = 5

kMMD [13] (p = 1) 10 100 100 10 10
HoMM [2] (p = 2) 0.01 105 104 100 0.1
HoMM [2] (p = 3) 10-6 106 105 100 10-3

kHoMM [2] (p = 2) 103 106 106 104 10
kHoMM [2] (p = 3) 100 106 106 104 10
CORAL [23] 0.01 104 104 10 0.01
Jeff CORAL [23] 0.1 100 100 1 0.1
Stein CORAL [23] 1 100 100 10 1

4 Experiments

OnHW recognition uses time in association with different types of spatio-temporal
signal. The pen in [19] uses two accelerometers (3 axes each), one gyroscope (3 axes),
one magnetometer (3 axes), and one force sensor at 100 Hz. One sample of size m × l
represents an MTS of m time steps from l = 13 sensor channels. We make use of
three sequence-based datasets proposed by [18]: The OnHW-words500 dataset contains
500 repeated words from 53 writers. The OnHW-wordsRandom contains randomly se-
lected words from 54 writers. Both datasets combined represent the (auxiliary task)
dataset from source domain written on paper, and contains in total 39,863 samples. The
OnHW-wordsTraj dataset contains 4,262 samples of randomly selected words from two
writers, and represents the (main task) dataset from target domain written on tablet.
The challenging task is to adapt on one of the two writers (who collected data on tablet)
by utilizing the paper datasets. We make use of 80/20 train/validation splits for writer-
dependent (WD) and writer-independent (WI) evaluation.

Language Models (LMs). We apply LMs to the softmax output values of the neural
networks. We use the Wikimedia database by the Wikimedia Foundation [26]. We cre-
ate the n-gram dictionaries with the nltk package [14] and exclude punctuation marks.
These dictionaries store the probabilities of the order of characters generated from se-
quences of items. Next, we select the paths (word length × number of character labels)
of the network predictions with the highest softmax values with a softmax threshold of
0.001. For more than path thresh = 512 available paths, we limit the number of paths
to max paths = 50. Lastly, the n-gram models are applied to these paths.

5 Experimental Results

Hardware and Training Setup. For all experiments we use Nvidia Tesla V100-SXM2
GPUs with 32 GB VRAM equipped with Core Xeon CPUs and 192 GB RAM. We use
the vanilla Adam optimizer with a learning rate of 10−4. We pre-train both networks
for 1,000 epochs, and adapt for 200 epochs for the contrastive loss and 2,000 epochs
for the triplet loss. A metric for sequence evaluation is the character error rate (CER)
and the word error rate (WER) defined through the ED (see [18]).
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Fig. 4: Baseline results (WER: dashed, CER: solid, in %, averaged over cross-validation
splits) for the InceptionTime (IT) [6] and our CNN+BiLSTM architectures and different
n-gram LMs. Left: WD task. Right: WI task. Legend (tablet = T, paper = P): First notes
training set and second notes validation set of the OnHW datasets [18].

5.1 Baseline Results

Figure 4 presents baseline results for our CNN+BiLSTM architecture compared to In-
ceptionTime (IT) [6] with and without additional BiLSTM layer. Consistently, IT+Bi-
LSTM outperforms IT, while the CER and WER slightly increases for our CNN+Bi-
LSTM model. For all datasets, the WD classification task shows better performance
than the WI task. We can improve the CNN+BiLSTM results with the LM from 3.38%
to 3.04% CER and from 20.23% to 15.13% WER with 5-gram LM trained on the tablet
dataset. While the WER consistently decreases with higher n-gram LM, the CER in-
creases higher than 5-gram LM. This is more notable for the separate tablet (T) dataset
as the length of the words are here shorter than for the paper (P) datasets. By simply
combining both datasets, the models achieve lower error rates evaluated on the tablet
dataset only (from 3.04% CER for T‖T to 2.34% CER for T+P‖T for 5-gram LM), but
increases for the model evaluated on the paper dataset only (from 7.21% CER for P‖P to
7.32% CER for T+P‖P for 5-gram LM). We define X‖Y, with X notes training dataset
and Y notes validation dataset. This demonstrates the problem that there is a domain
shift between tablet and paper data and that the size of the tablet dataset is small.

5.2 Domain Adaptation Results

We train the contrastive and pairwise learning approach by adapting paper data to tablet
data with different representation loss functions (HoMM [2] and CORAL [24]) and pro-
pose results in Figure 5. State-of-the-art pairwise learning techniques cannot be applied
to our setup as they are typically proposed for single label classification tasks. While
the contrastive loss cannot improve the tablet validation results (5a), the validation on
paper (5c) does improve (orange and purple curve of Figure 4). Also for the WI task,
the paper validation improves (5d), while the tablet dataset is still a challenging task
(5b). The triplet loss is on par with the baseline results for the WD task (5e). We see
that early fusion (c = 1) leads to consistently low CERs as it is possible to adapt more
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Fig. 5: DA results (WER: dashed, CER: solid, in %, averaged over cross-validation
splits) for our CNN+BiLSTM architecture (with a 6-gram LM for tablet trainings, 10-
gram for paper trainings respectively, for WD tasks and without LMs for WI tasks). The
model is trained with the combined tablet and paper dataset with different representation
loss functions at five different fusion points c.

trainable parameters after this fusion point. Intermediate (c = 2 and c = 3) and late
(c = 4 and c = 5) fusion is dependent on the representation loss. kHoMM of order
p = 3 at c = 3 leads to the highest significant improvement of 13.45% WER and
2.68% CER. The error rates of Jeff and Stein CORAL are marginally higher. LMs for
c = 4 and c = 5 decrease results as the softmax output values are lower (uncertainty
is higher) and the LM often chooses the second largest softmax value. We summarize
the main difficulties as following: (1) While the paper dataset is very large, the tablet
dataset as target domain is rather small. This leads to a small number of pairs with a
small ED (see Figure 3). (2) Furthermore, as the OnHW-words500 dataset contains the
same 500 word labels per writer, the variance of specific positive pairs is small.

6 Conclusion

We proposed a DA approach for online handwriting recognition for sequence-based
classification tasks between writing on tablet and paper. For this, contrastive and triplet
losses enhance the main dataset and allows a more generalized training process. We
evaluated moment matching techniques as DML loss functions. The kernalized HoMM
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of order 3 at the intermediate fusion layer combined with a n-gram language model
provides the lowest error rates.
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Ott, F.: Uncertainty-aware Evaluation of Time-Series Classification for Online Handwriting
Recognition with Domain Shift. In: IJCAI-ECAI Workshop on Spatio-Temporal Reasoning
and Learning (STRL) (Jul 2022)

11. Long, M., Cao, Y., Wang, L., Jordan, M.I.: Learning Transferable Features with Deep Adap-
tation Networks. In: Intl. Conf. on Machine Learning (ICML). vol. 37, pp. 97–105 (Jul 2015)

12. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.S.: Transfer Joint Matching for Unsupervised
Domain Adaptation. In: Intl. Conf. on Computer Vision and Pattern Recognition (CVPR).
pp. 1410–1417. Columbus, OH (Jun 2014). https://doi.org/10.1109/CVPR.2014.183

13. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep Transfer Learning with Joint Adaptation
Networks. In: Intl. Conf. on Machine Learning (ICML). vol. 70, pp. 2208–2217 (Aug 2017)

14. NLTK: Natural Language Toolkit (Jul 2022), https://www.nltk.org/index.html#
15. Ott, F., Rügamer, D., Heublein, L., Bischl, B., Mutschler, C.: Cross-Modal Common Rep-

resentation Learning with Triplet Loss Functions. In: arXiv preprint arXiv:2202.07901 (Feb
2022)

276
9. Representation Learning for Tablet and Paper Domain Adaptation in Favor

of Online Handwriting Recognition



Tablet and Paper Domain Adaptation for Online Handwriting Recognition 11

16. Ott, F., Rügamer, D., Heublein, L., Bischl, B., Mutschler, C.: Domain Adaptation
for Time-Series Classification to Mitigate Covariate Shift. In: Proc. of the ACM
Intl. Conf. on Multimedia (ACMMM). pp. 5934–5943. Lisboa, Portugal (Oct 2022).
https://doi.org/10.1145/3503161.3548167
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18. Ott, F., Rügamer, D., Heublein, L., Hamann, T., Barth, J., Bischl, B., Mutschler, C.: Bench-
marking Online Sequence-to-Sequence and Character-based Handwriting Recognition from
IMU-Enhanced Pens. In: International Journal on Document Analysis and Recognition (IJ-
DAR). vol. 25(12), p. 385–414 (Sep 2022). https://doi.org/10.1007/s10032-022-00415-6

19. Ott, F., Wehbi, M., Hamann, T., Barth, J., Eskofier, B., Mutschler, C.: The OnHW
Dataset: Online Handwriting Recognition from IMU-Enhanced Ballpoint Pens with Ma-
chine Learning. In: Proc. of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies (IMWUT). vol. 4(3), article 92, pp. 1–20. Cancún, Mexico (Sep 2020).
https://doi.org/10.1145/3411842

20. Plamondon, R., Srihari, S.N.: On-line and Off-line Handwriting Recognition: A Comprehen-
sive Survey. In: Trans. on Pattern Analysis and Machine Intelligence (TPAMI). vol. 22(1),
pp. 63–84 (Jan 2000). https://doi.org/10.1109/34.824821

21. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A Unified Embedding for Face Recog-
nition and Clustering. In: Intl. Conf. on Computer Vision and Pattern Recognition (CVPR).
Boston, MA (Jun 2015). https://doi.org/10.1109/CVPR.2015.7298682
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troduces a novel visual odometry-aided pose estimation technique founded on the master’s
thesis. The approach described herein is comprised of a time-distributed absolute pose re-
gression model utilizing consecutive images, a relative pose regression model that estimates
relative poses (position and orientation changes) through the prediction of optical flow via
FlowNet2 (Ilg et al., 2017), and a fusion of both models with recurrent units to enhance
the prediction of absolute pose. In the process of evaluating this approach, the Microsoft
7-Scenes (Shotton et al., 2013) dataset, the Warehouse (Löffler et al., 2018) dataset, and
two datasets obtained during the course of the master’s thesis were utilized. The evalua-
tion performed in the master’s thesis was limited to only four scenes (namely, chess, heads,
office, and stairs) from the Microsoft 7-Scenes dataset. However, for the CVPR workshop
paper, all scenes from the Microsoft 7-Scenes dataset were retrained. While the results for
the Industry scenario #1 dataset in the contributing paper were derived from the master’s
thesis, the results for the Industry scenario #2 and scenario #3 were retrained utilizing
better model parameters. The CVPR workshop paper also featured an assessment of dy-
namic motions. Additionally, the paper included discussion on 6DoF pose regression with
LSTMs, the influence of relative pose regression on the model, and runtimes considerations.
The contributing paper was written anew, and the figures were recreated. Moreover, an
extensive literature review was conducted independent of the master’s thesis.

Datasets
This paper uses the publicly available Industry scenario #1 dataset. We publish the
Industry scenario #2 and Industry scenario #3 datasets that are available at:
https://www.iis.fraunhofer.de/de/ff/lv/lok/opt1/warehouse.html
https://gitlab.cc-asp.fraunhofer.de/ottf/industry_datasets

Statement about Recent, Related Research17

As many image regions such as the sky, occlusions, and repetitive non-distinguishable
pattern cannot be utilized for localization, these regions are of no use for the task, and
hence, Altillawi (2022) avoids such image regions. This approach could be advantageous
for the challenging Industry datasets (Ott et al., 2020a), since the L.I.N.K. hall environ-
ment contains many repetitive and texture-less features. In their work, Liao et al. (2021)
proposed FINet, which builds a feature hierarchy by combining the shallow and deep layers
of CNNs to capture more local appearance features. FINet has shown promising results in
pose regression, outperforming the previously used absolute pose regression (APR) method
(i.e., PoseNet). Another approach, Direct-PoseNet (Chen et al., 2021b), combines an APR
network with view synthesis based direct matching. DFNet (Chen et al., 2022a) is a re-
lated method that combines APR with direct feature matching by addressing photometric
distortions.

https://www.iis.fraunhofer.de/de/ff/lv/lok/opt1/warehouse.html
https://gitlab.cc-asp.fraunhofer.de/ottf/industry_datasets
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Musallam et al. (2022) introduce a translation and rotation equivariant CNN that can
directly generate representations of camera motions in the feature space. The position
and orientation Transformers (Shavit et al., 2021) consist of encoders, which aggregate
activation maps using self-attention, and decoders, which transform latent features and
scenes encodings into candidate pose predictions. To date, the method proposed by Shavit
et al. (2021) is the only approach that uses a Transformer-based model for pose regres-
sion. Previous techniques learn the camera pose offline, whereas Cabrera-Ponce et al.
(2021) propose a continual learning method for online relocalization to incorporate new
acquired images associated with GPS coordinates. The use of additional sensors, such as
LiDAR (light detection and ranging) sensors, can further enhance pose regression results,
as demonstrated by STCLoc (Yu et al., 2022). However, this also incurs an additional cost
of more expensive equipment.
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Abstract

Visual Odometry (VO) accumulates a positional drift in
long-term robot navigation tasks. Although Convolutional
Neural Networks (CNNs) improve VO in various aspects,
VO still suffers from moving obstacles, discontinuous ob-
servation of features, and poor textures or visual informa-
tion. While recent approaches estimate a 6DoF pose ei-
ther directly from (a series of) images or by merging depth
maps with optical flow (OF), research that combines abso-
lute pose regression with OF is limited.

We propose ViPR, a novel modular architecture for long-
term 6DoF VO that leverages temporal information and
synergies between absolute pose estimates (from PoseNet-
like modules) and relative pose estimates (from FlowNet-
based modules) by combining both through recurrent lay-
ers. Experiments on known datasets and on our own Indus-
try dataset show that our modular design outperforms state
of the art in long-term navigation tasks.

1. Introduction

Real-time tracking of mobile objects (e.g., forklifts in in-
dustrial areas) allows to monitor and optimize workflows
and tracks goods for automated inventory management.
Such environments typically include large warehouses or
factory buildings, and localization solutions often use a
combination of radio-, LiDAR- or radar-based systems, etc.

However, these solutions often require infrastructure or
they are costly in their operation. An alternative approach
is a (mobile) optical pose estimation based on ego-motion.
Such approaches are usually based on SLAM (Simultane-
ous Localization and Mapping), meet the requirements of
exact real-time localization, and are also cost-efficient.

Available pose estimation approaches are categorized
into three groups: classical, hybrid, and deep learning (DL)-

based methods. Classical methods often require an infras-
tructure that includes either synthetic (i.e., installed in the
environment) or natural (e.g., walls and edges) markers.
The accuracy of the pose estimation depends to a large ex-
tent on suitable invariance properties of the available fea-
tures such that they can be reliably recognized. However,
to reliably detect features, we have to invest a lot of ex-
pensive computing time [38, 27]. Additional sensors (e.g.,
inertial sensors, depth cameras, etc.) or additional con-
text (e.g., 3D models of the environment, prerecorded land-
mark databases, etc.) may increase the accuracy but also
increase system complexity and costs [44]. Hybrid meth-
ods [66, 7, 6, 23, 74] combine geometric and machine learn-
ing (ML) approaches. For instance, ML predicts the 3D
position of each pixel in world coordinates, from which
geometry-based methods infer the camera pose [16].

Recent DL approaches partly address the above men-
tioned issues of complexity and cost, and also aim for high
positioning accuracy, e.g., regression forests [51, 74] learn a
mapping of images to positions based on 3D models of the
environment. Absolute pose regression (APR) uses DL [63]
as a cascade of convolution operators to learn poses only
from 2D images. The pioneer PoseNet [33] has been ex-
tended by Bayesian approaches [31], long short-term mem-
ories (LSTMs) [77] and others [50, 26, 36, 11]. Recent APR
methods such as VLocNet [72, 59] and DGRNets [42] in-
troduce relative pose regression (RPR) to address the APR-
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Figure 1: Our pose estimation pipeline solves the APR- and RPR-
tasks in parallel, and recurrent layers estimate the final 6DoF pose.
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task. While APR needs to be trained for a particular scene,
RPR may be trained for multiple scenes [63]. However,
RPR alone does not solve the navigation task.

For applications such as indoor positioning, existing ap-
proaches are not yet mature, i.e., in terms of robustness and
accuracy to handle real-world challenges such as changing
environment geometries, lighting conditions, and camera
(motion) artifacts. This paper proposes a modular fusion
technique for 6DoF pose estimation based on a PoseNet-
like module and predictions of a relative module for VO.
Our novel relative module uses the flow of image pixels be-
tween successive images computed by FlowNet2.0 [25]
to capture time dependencies in the camera movement in
the recurrent layers, see Fig. 1. Our model reduces the posi-
tioning error using this multitasking approach, which learns
both the absolute poses based on monocular (2D) imaging
and the relative motion for the task of estimating VO.

We evaluate our approach first on the small-scale
7-Scenes [66] dataset. As other datasets are unsuitable
to evaluate continuous navigation tasks we also release a
dataset that can be used to evaluate various problems aris-
ing from real industrial scenarios such as inconsistent light-
ing, occlusion, dynamic environments, etc. We benchmark
our approach on both datasets against existing approaches
[33, 77] and show that we consistently outperform the ac-
curacy of their pose estimates.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 provides details about our
architecture. We discuss available datasets and introduce
our novel Industry dataset in Section 4. We present experi-
mental results in Section 5 before Section 6 concludes.

2. Related Work
SLAM-driven 3D point registration methods enable pre-

cise self-localization even in unknown environments. Al-
though VO has made remarkable progress over the last
decade, it still suffers greatly from scaling errors of real
and estimated maps [43, 69, 49, 29, 34, 35, 40, 54, 4, 39].
With more computing power, Visual Inertial SLAM com-
bines VO with Inertial Measurement Unit (IMU) sensors to
partly resolve the scale ambiguity, to provide motion cues
without visual features [43, 70, 29], to process more fea-
tures, and to make tracking more robust [69, 34]. Mul-
tiple works combine global localization in a scene with
SLAM/(Inertial) VO [46, 17, 55, 64, 22, 52, 28]. However,
recent SLAM methods do not yet meet industry-strength
with respect to accuracy and reliability [57, 18] as they need
undamaged, clean and undisguised markers [39, 30] and as
they still suffer from long-term stability and the effects of
movement, sudden acceleration and occlusion [75]. SIFT-
like point-based features [45] for the localization from land-
marks [3, 24, 41, 78] require efficient retrieval methods, use
VLAD encodings such as DenseVLAD [71], use anchor

points such as AnchorNet [60], or use RANSAC-based
optimization such as DSAC [6] and ActiveSearch [61].

VO primarily addresses the problem of separating ego-
from feature-motion and suffers from area constraints,
poorly textured environments, scale drift, a lack of an initial
position, and thus inconsistent camera trajectories [10]. In-
stead, PoseNet-like architectures (see Sec. 2.1) that esti-
mate absolute poses on single-shot images are more robust,
less compute-intensive, and can be trained in advance on ap-
plication data. Unlike VO, they do not suffer from a lack of
initial poses and do not require access to camera parameters,
good initialization, and handcrafted features [65]. Although
the joint estimation of relative poses may contribute to in-
creasing accuracy (see Sec. 2.2), such hybrid approaches
still suffer from dynamic environments, as they are often
trained offline in quasi-rigid environments. While optical
flow (see Sec. 2.3) addresses these challenges it has not yet
been combined with APR for 6DoF self-localization.

2.1. Absolute Pose Regression (APR)

Methods that derive a 6DoF pose directly from images
have been studied for decades. Therefore, there are cur-
rently many classic methods whose complex components
are replaced by machine learning (ML) or DL. For in-
stance, RelocNet [2] learns metrics continuously from
global image features through a camera frustum overlap
loss. CamNet [15] is a coarse (image-based)-to-fine (pose-
based) retrieval-based model that includes relative pose re-
gression to get close to the best database entry that contains
extracted features of images. NNet [37] queries a database
for similar images to predict the relative pose between im-
ages and a RANSAC [67] solves the triangulation to pro-
vide a position. While those classic approaches have al-
ready been extended with DL-components their pipelines
are expensive as they embed feature matching and projec-
tion and/or manage a database. Most recent (and simple)
DL-based also outperform their accuracies.

The key idea of PoseNet [33] and its variants [32,
31, 20, 77, 76, 79, 58, 65, 56, 66] among others such as
BranchNet [56] and Hourglass [66] is to use a CNN
for camera (re-)localization. PoseNet works with scene
elements of different scales and is partially insensitive to
light changes, occlusions and motion blur. However, while
Dense PoseNet [33] crops subimages, PoseNet2 [32]
jointly learns network and loss function parameters, [31]
links a Bernoulli function and applies variational infer-
ence [20] to improve the positioning accuracy. However,
those variants work with single images, and hence, do not
use the temporal context (which is available in continuous
navigation tasks), that could help to increase accuracy.

In addition to PoseNet+LSTM [77], there are also
similar approaches that exploit time-context that is inher-
ently given by consecutive images (i.e., DeepVO [79],
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Figure 2: Optical flow (OF): input image (left); OF-vectors as
RPR-input (middle); color-coded visualization of OF [1] (right).

ContextualNet [58], and VidLoc [12]). Here, the key-
idea is to identify temporal connections in-between the fea-
ture vectors (extracted from images) with LSTM-units and
to only track feature correlations that contribute the most to
the pose estimation. However, there are hardly any long-
term dependencies between successive images, and there-
fore LSTMs give worse or equal accuracy to, for example,
simple averaging over successively estimated poses [65].
Instead, we combine estimated poses from time-distributed
CNNs with estimates of the OF to maintain the required
temporal context in the features of image series.

2.2. APR/RPR-Hybrids

In addition to approaches that derive a 6DoF pose di-
rectly from an image there are hybrid methods that combine
them with VO to increase the accuracy. VLocNet [72] is
closely related to our approach as it estimates a global pose
and combines it with VO (but it does not use OF). To further
improve the (re-)localization accuracy VLocNet++ [59]
uses features from a semantic segmentation. However, we
use different networks and do not need to share weights be-
tween VO and the global pose estimation. DGRNets [42]
estimates both the absolute and relative poses, concatenates
them, and uses recurrent CNNs to extract temporal rela-
tions between consecutive images. This is similar to our ap-
proach but we estimate the relative motion with OF, which
allows us to train in advance on large datasets, making the
model more robust. MapNet [8] learns a map representa-
tion from input data, combines it with GPS, inertial data,
and unlabeled images, and uses pose graph optimization
(PGO) to combine absolute and relative pose predictions.
However, compared to all other methods the most accurate
extension of it, MapNet+PGO, does not work on purely vi-
sual information, but exploits additional sensors.

2.3. Optical Flow

Typically, VO uses OF to extract features from image
sequences. Motion fields, see Fig. 2 (middle), are used to
estimate trajectories of pixels in a series of images. For
instance, Flowdometry [53] and LS-VO [13] estimate
displacements and rotations from OF. [48] proposed a VO-
based dead reckoning system that uses OF to match fea-
tures. [80] combined two CNNs to estimate the VO-motion:
FlowNet2-ss [25] estimates the OF and PCNN [14]

links two images to process global and local pose informa-
tion. However, to the best of our knowledge, we are the
first to propose an OF-based architecture that estimates the
relative camera movement through RNNs, using OF [25].

3. Proposed Model
After a data preprocessing that crops subimages of size

224 ˆ 224 ˆ 3 from a sequence of four images, our pose
regression pipeline consists of three parts (see Fig. 3): an
APR-network, a RPR-network, and a 6DoF pose estimation
(PE) network. PE uses the outputs of the APR- and RPR-
networks to provide the final 6DoF pose.

3.1. Absolute Pose Regression (APR) Network

Our APR-network predicts the 6DoF camera pose from
three input images based on the original PoseNet [33]
model (i.e., essentially a modified GoogLeNet [68] with a
regression head instead of a softmax) to train and predict
the absolute positions p P R3 in the Euclidean space and
the absolute orientations q P R4 as quaternions. From a
single monocular image I the model predicts the pose

x̃ “ rp̃, q̃s, (1)

as approximations to the actual p and q. As the origi-
nal model learns the image context, based on shape and ap-
pearance of the environment, but does not exploit the time
context and relation between consecutive images [32], we
adapted the model to a time-distributed variant. Hence, in-
stead of a single image the new model receives three (con-
secutive) input images (at timesteps tn´1, tn, and tn`1), see
top part of Fig. 3, uses three separate dense layers (one for
each pose) with 2,048 neurons each, and each of the dense
layers yields a pose. The middle pose yields the most accu-
rate position for the image at time step tn.

3.2. Relative Pose Regression (RPR) Network

Our RPR-network uses FlowNet2.0 [25] on each con-
secutive pairs of the four input images to compute an ap-
proximation of the OF (see Fig. 2) and to predict three rela-
tive poses for later use. As displacements of similar length
but from different camera viewing directions result in dif-
ferent OFs, the displacement and rotation of the camera
between pairwise images must be relative to the camera’s
viewing direction of the first image. Therefore, we trans-
form each camera’s global coordinate systems pxn, yn, znq
to the same local coordinate system px̃n, ỹn, z̃nq by

¨
˝
x̃n
ỹn
z̃n

˛
‚“ R

¨
˝
xn
yn
zn

˛
‚, (2)

with the rotation matrix R. The displacement
∆x̃n,∆ỹn,∆z̃n is the difference between the transformed
coordinate systems. The displacement in global coordinates
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Figure 3: Pipeline of the ViPR-architecture. Data preprocessing (grey): Four consecutive input images (tn´1, . . . , tn`2) are center
cropped. For the absolute network the mean is subtracted. For the relative network the OF is precomputed by FlowNet2.0 [25]. The
absolute poses are predicted by our time-distributed APR-network (yellow). The RPR-network (purple) predicts the transformed relative
displacements and rotations on reshaped mean vectors of the OF with (stacked) LSTM-RNNs. The PE modules (green) concatenates the
absolute and relative modules and predicts the absolute 6DoF poses with stacked LSTM-RNNs.

is obtained by a back-transformation of the predicted dis-
placement, such that

RT “ R´1 and RTR “ RRT “ I. (3)

Fig. 4 shows the structure of the RPR-network. Similar
to the APR-network, the RPR-network also uses a stack of
images, i.e., three OF-fields from the four input images of
the timesteps tn´1, . . . , tn`2, to include more time context.

In a preliminary study, we found that our recurrent units
struggle to remember temporal features when the direct in-
put of the OF is too large (raw size 224ˆ224ˆ3 px). This is
in line with findings from Walch et al. [77]. Hence, we split
the OF in zones and compute the mean value for each the
u- and v-direction. We reshape 16ˆ 16 number of zones in
both directions to the size 2ˆ 256. The final concatenation
results in a smaller total size of 3ˆ 512. The LSTM-output
is forwarded to 2 FC-layers that regress both the displace-
ment (size 3ˆ 3) and rotation (size 3ˆ 4).
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Figure 4: Pipeline of the relative pose regression (RPR) architec-
ture: Data preprocessing, OF- and mean computation, reshaping,
and concatenation, 3 recurrent LSTM units, and 2 FC-layers that
yield the relative pose.

The 2 FC-layers use the following loss function to pre-
dict the relative transposed poses ∆p̃tr and ∆q:

L “ α2

∥∥∆p̃tr ´∆ptr
∥∥
2
` β2

∥∥∥∥∆q̃´ ∆q
‖∆q‖2

∥∥∥∥
2

. (4)

The first term accounts for the predicted and transformed
displacement ∆p̃tr to the ground truth displacement ∆ptr
with an L2-norm. The second term quantifies the error of
the predicted rotation to the normalized ground truth rota-
tion using an L2-norm. Both terms are weighted by the hy-
perparameters α2 and β2. A preliminary grid search with a
fixed α2 “ 1 revealed an optimal value for β2 that depends
on the scaling of the environment.

3.3. 6DoF Pose Estimation (PE) Network

Our PE-network predicts absolute 6DoF poses from the
outputs of both the APR- and RPR-networks, see Fig. 5.
The PE-network takes as input the absolute position pi “
pxi, yi, ziq, the absolute orientation qi “ pwi, pi, qi, riq, the
relative displacement ∆pi “ p∆xi,∆yi,∆ziq, and the ro-
tation change ∆qi “ p∆wi,∆pi,∆qi,∆riq. As we feed
poses from three sequential timesteps tn´1, tn, and tn`1

as input to the model it is implicitly time-distributed. The
2 stacked LSTM-layers and the 2 FC-layers return a 3DoF
absolute position p P R3 and a 3DoF orientation q P R4

using the following loss:

LpP,∆P q “ α3 ‖p̃´ p‖2 ` β3
∥∥∥∥q̃´ q

‖q‖2

∥∥∥∥
2

. (5)
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Again, in a preliminary grid search we chose L2-norms
with a fixed β3 “ 1 that revealed an optimal value for α3.

4. Evaluation Datasets

To train our network we need two different types of im-
age data: (1) images annotated with their absolute poses
for the APR-network, and (2) images of OF, annotated with
their relative poses for the RPR-network.

Datasets to evaluate APR. Publicly available
datasets for absolute pose regression (Cambridge
Landmarks [33] and TUM-LSI [77]) either lack accurate
ground truth labels or the proximity between consecu-
tive images is too large to embed meaningful temporal
context. The Aalto University [37], Oxford
RobotCar [47], DeepLoc [59] and CMU Seasons [62]
datasets solve the small-scale issue of the 7-Scenes [66]
dataset, but are barely used for evaluation of state-of-the-art
techniques or consider only automotive-driving scenarios.
The 12-Scenes [73] dataset is only used by DSAC++ [5].
For our industrial application these datasets are insufficient.
7-Scenes [66] only embeds scenes with less training
data and only enables small scene-wise evaluations,
but is mainly used for evaluation. Hence, to compare
ViPR with recent techniques we use the 7-Scenes [66]
dataset. Furthermore, we recorded the Industry dataset
(see Sec. 4.1) that embeds three different industrial-like
scenarios to allow a comprehensive and detailed evaluation
with different movement patterns (such as slow motion and
fast rotation).

Datasets to evaluate RPR. To evaluate the perfor-
mance of the RPR and its contribution to ViPR, we
also need a dataset with a close proximity between con-
secutive images. This is key to calculate the relative
movement with OF. However, most publicly available
datasets (Middlebury [1], MPI Sintel [9], KITTI
Vision [21], and FlyingChairs [19]) either do not
meet this requirement or the OF pixel velocities do not
match those of real-world applications. Hence, we directly
calculate the OF from images with FlowNet2.0 [25] to
train the RPR on it. Our novel Industry dataset allows this,
while retaining a large, diverse environment with hard real-
world conditions, as described in the following.

4.1. Industry Dataset

We designed the Industry dataset to suite the require-
ments of both the APR- and the RPR-network and published
the data1 at large-scale (1, 320m2) using a high-precision
(ă 1mm) laser-based reference system. Each scenario
presents different challenges (such as dynamic ego-motion
with motion blur), various environmental characteristics
(such as different geometric scales, light changes, i.e., ar-
tificial and natural light), and ambiguously structured ele-
ments, see Fig. 6.

Industry Scenario #1 [44] has been recorded with 8
cameras (approx. 60˝ field-of-view (FoV) each) mounted
on a stable apparatus to cover 360˝ (with overlaps) that
has been moved automatically at a constant velocity of ap-
prox. 0.3m{s. The height of the cameras is at 1.7 m.
The scenario contains 521,256 images (640 ˆ 480 px) and
densely covers an area of 1,320 m2. The environment im-
itates a typical warehouse scenario under realistic condi-
tions. Besides well-structured elements such as high-level
racks with goods, there are also very ambiguous and ho-
mogeneously textured elements (e.g., blank white or dark
black walls). Both natural and artificial light illuminates
volatile structures such as mobile work benches. While the
training dataset is composed of a horizontal and vertical zig-
zag movement of the apparatus the test datasets movements
vary to cover different properties for a detailed evaluation,
e.g., different environmental scalings (i.e., scale transition,
cross, large scale, and small scale), network generalization
(i.e., generalize open, generalize racks, and cross), fast ro-
tations (i.e., motion artifacts was recorded on a forklift at
2.26 m height) and volatile objects (i.e., volatility).

Industry Scenario #2 uses three 170˝ cameras (with
overlaps) on the same apparatus at the same height. The
recorded 11,859 training images (1, 280ˆ720 px) represent
a horizontal zig-zag movement (see Fig. 7a) and 3,096 test
images represent a diagonal movement (see Fig. 7b). Com-
pared to Scenario #1 this scenario has more variation in its
velocities (between 0m{s and 0.3m{s, SD 0.05m{s).

Industry Scenario #3 uses four 170˝ cameras (with
overlaps) on a forklift truck at a height of 2.26m. Both
the training and test datasets represents camera movements
at varying, faster, and dynamic speeds (between 0m{s and
1.5m{s, SD 0.51m{s). This makes the scenario the most
challenging one. The training trajectory (see Fig. 7c) con-
sists of 4,166 images and the test trajectory (see Fig. 7d)
consists of 1,687 images. In contrast to the Scenarios #1 and
#2 we train and test a typical industry scenario on dynamic
movements of a forklift truck. However, one of cameras’
images were corrupted in the test dataset, and thus, not used
in the evaluation.

1Industry dataset available at: https://www.iis.fraunhofer.de/warehouse.
Provided are raw images and corresponding labels: p and q.
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(a) Scenario #1 example images. (b) Scenario #2 example images. (c) Scenario #3 setup and example image.

Figure 6: Industry datasets. Setup of the measurement environment (i.e., forklift truck, warehouse racks and black walls) and example
images with normal (a) and wide-angle (b+c) cameras.

5. Experimental Results
To compare ViPR with state-of-the-art results, we first

briefly describe our parameterization of PoseNet [33] and
PoseNet+LSTM [77] in Sec. 5.1. Next, Sec. 5.2 presents
our results. We highlight the performance of ViPR’s sub-
networks (APR, APR+LSTM) individually, and investigate
both the impact of RPR and PE on the final pose estima-
tion accuracy of ViPR. Sec. 5.3 shows results of the RPR-
network. Finally, we discuss general findings and show run-
times of our models in Sec. 5.4.

For all experiments we used an AMD Ryzen 7 2700 CPU
3.2 GHz equipped with one NVidia GeForce RTX 2070 with
8 GB GDDR6 VRAM. Tab. 1 shows the median error of
the position in m and the orientation in degrees. The sec-
ond column reports the spatial extends of the datasets. The
last column reports the improvement in position accuracy
of ViPR (in %) over APR-only.

5.1. Baselines

As a baseline we report the initially described results on
7-Scenes of PoseNet [33] and PoseNet+LSTM [77]
(in italic). We further re-implemented the initial variant of
PoseNet and trained it from scratch with α1 “ 1, β1 “ 30
(thus optimizing for positional accuracy at the expense of
orientation accuracy). Tab. 1 (cols. 3 and 4) shows our
implementation’s results next to the initially reported ones
(on 7-Scenes). We see that (as expected) the results of
the PoseNet implementations differ due to changed values
for α1 and β1 in our implementation.

5.2. Evaluation of the ViPR-Network

In the following, we evaluate our method in multiple sce-
narios with different distinct challenges for the pose estima-
tion task. 7-Scenes focuses on difficult motion blur con-
ditions of typical human motion. We then use the Indus-
try Scenario #1 to investigate various challenges at a larger
scale, but with mostly constant velocities. Industry Scenar-

(a) Training. (b) Testing. (c) Training. (d) Testing.
Figure 7: Exemplary trajectories of Industry Scenarios #2 (a-b)
and #3 (c-d) to assess the generalizability of ViPR.

ios #2 and #3 then focus on dynamic, fast ego-motion of a
moving forklift truck at large-scale.

7-Scenes [66]. For both architectures (PoseNet and
ViPR), we optimized β to weight the impact of position and
orientation such that it yields the smallest total median error.
Both APR+LSTM and ViPR return a slightly lower pose es-
timation error of 0.33m and 0.32m than PoseNet+LSTM
with 0.34m. ViPR yields an average improvement of the
position accuracy of 3.18 % even in strong motion blur sit-
uations. The results indicate that ViPR relies on a plau-
sible optical flow component to achieve performance that
is superior to the baseline. In situations of negligible mo-
tion between frames the median only improves by 0.02m.
However, the average accuracy gain still shows that ViPR
performs en par or better than the baselines.

Stable motion evaluation. For the Industry Scenario #1
dataset, we train the models on the zig-zag trajectories, and
test them on specific sub-trajectories with individual chal-
lenges, but at almost constant velocity. In total, ViPR im-
proves the position accuracy by 12.27% on average (min.:
4.03 %; max.: 25.31 %) while the orientation error is simi-
lar for most of the architectures and test sets.

In environments with volatile features, i.e., objects that
are only present in the test dataset, we found that ViPR (with
optical flow) is significantly (6.41 %) better compared to
APR-only. However, the high angular error of 77.54˝ in-
dicates an irrecoverable degeneration of the APR-part. In
tests with different scaling of the environment, we think that
ViPR learns an interpretation of relative and absolute posi-
tion regression, that works both in small and large proxim-
ity to environmental features, as ViPR improves by 15.52 %
(scale trans.) and 14.41 % (small scale) or 10.68 % (large
scale). When the test trajectories are located within areas
that embed only few or no training samples (gener. racks
and open), ViPR still improves over other methods with
4.03-11.75 %. The highly dynamic test on a forklift truck
(motion artifacts) is exceptional here as only the test dataset
contains dynamics and blur, and hence, challenges ViPR
most. However, ViPR still improves by 10.01 % over APR-
only, despite the data dynamic’s absolute novelty.

In summary, ViPR decreases the position median signif-
icantly by about 2.53m than only APR+LSTM (4.89m).
This and the other findings are strong indicators that the rel-
ative component RPR significantly supports the final pose
estimation of ViPR.
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Table 1: Pose estimation results (position and orientation median error in meters m and degrees (˝)) and total improvement of PE in % on
the 7-Scenes [66] and Industry datasets. The best results are bold and underlined ones are additionally referenced in the text.

Dataset Spatial PoseNet [33] PoseNet+ APR-only APR+LSTM ViPR* Improv.
extend (m) (original/our param.) LSTM [77] (our param.) ViPR (%)

chess 3.0ˆ2.0ˆ1.0 0.32 / 0.24 4.06 / 7.79 0.24 5.77 0.23 7.96 0.27 9.66 0.22 7.89 + 1.74

7
-
S
c
e
n
e
s

[6
6]

fire 2.5ˆ1.0ˆ1.0 0.47 / 0.39 14.4 / 12.40 0.34 11.9 0.39 12.85 0.50 15.70 0.38 12.74 + 2.56
heads 2.0ˆ0.5ˆ1.0 0.29 / 0.21 6.00 / 16.46 0.21 13.7 0.22 16.48 0.23 16.91 0.21 16.41 + 3.64
office 2.5ˆ2.0ˆ1.5 0.48 / 0.33 3.84 / 10.08 0.30 8.08 0.36 10.11 0.37 10.83 0.35 9.59 + 4.01
pumpkin 2.5ˆ1.0ˆ1.0 0.47 / 0.45 8.42 / 8.70 0.33 7.00 0.39 8.57 0.86 49.46 0.37 8.45 + 5.12
red kitchen 4.0ˆ3.0ˆ1.5 0.59 / 0.41 8.64 / 9.08 0.37 8.83 0.42 9.33 1.06 50.67 0.40 9.32 + 4.76
stairs 2.5ˆ2.0ˆ1.5 0.47 / 0.36 6.93 / 13.69 0.40 13.7 0.31 12.49 0.42 13.50 0.31 12.65 + 0.46
I total 0.44 / 0.34 7.47 / 11.17 0.31 9.85 0.33 11.11 0.53 23.82 0.32 11.01 + 3.18

In
du

st
ry

Sc
en

ar
io

1
[4

4]

cross 24.5ˆ16.0 – / 1.15 – / 0.75 – 0.61 0.53 4.42 0.21 0.46 0.60 + 25.31
gener. open 20.0ˆ17.0 – / 1.94 – / 11.73 – 1.68 11.07 3.36 2.95 1.48 10.86 + 11.75
gener. racks 8.5ˆ18.5 – / 3.48 – / 6.01 – 2.48 1.53 3.90 0.61 2.38 1.95 + 4.03
large scale 19.0ˆ19.0 – / 2.32 – / 6.37 – 2.37 9.82 4.99 1.61 2.12 8.64 + 10.68
motion art. 37.0ˆ17.0 – / 7.43 – / 124.94 – 7.48 131.30 8.18 139.37 6.73 136.6 + 10.01
scale trans. 28.0ˆ19.5 – / 2.17 – / 3.03 – 1.94 6.46 5.63 0.58 1.64 6.29 + 15.52
small scale 10.0ˆ11.0 – / 3.78 – / 9.18 – 4.09 20.75 4.46 6.06 3.50 15.74 + 14.41
volatility 29.0ˆ13.0 – / 2.68 – / 78.52 – 2.09 77.68 4.16 78.73 1.96 77.54 + 6.41
I total – / 3.12 – / 30.07 – 2.82 32.30 4.89 28.76 2.53 32.28 + 12.27

In
du

st
ry

Sc
en

.2

cam #0 6.5ˆ9.0 – / 0.49 – / 0.21 – 0.22 0.29 1.49 0.14 0.16 3.37 + 26.24
cam #1 6.5ˆ9.0 – / 0.15 – / 0.38 – 0.23 0.35 2.68 0.17 0.12 2.75 + 46.49
cam #2 6.5ˆ9.0 – / 0.43 – / 0.19 – 0.37 0.13 0.90 0.15 0.30 1.84 + 17.87
I total – / 0.36 – / 0.26 – 0.27 0.26 1.69 0.15 0.20 2.65 + 30.20

In
du

st
ry

Sc
en

.3

cam #0 6.0ˆ11.0 – / 0.41 – / 1.00 – 0.34 1.26 0.72 1.31 0.27 1.43 + 20.64
cam #1 6.0ˆ11.0 – / 0.32 – / 1.07 – 0.26 1.11 0.88 1.27 0.21 1.06 + 20.13
cam #2 6.0ˆ11.0 – / 0.32 – / 1.60 – 0.36 1.62 0.72 1.74 0.32 1.38 + 11.47
I total – / 0.35 – / 1.22 – 0.32 1.33 0.77 1.44 0.27 1.29 + 17.41

Industry Scenario #2 is designed to evaluate for un-
known trajectories. Hence, training trajectories represent
an orthogonal grid, and test trajectories are diagonal. In
total, ViPR improves the position accuracy by 30.2 % on
average (min.: 17.87 %; max.: 46.49 %). Surprisingly, the
orientation error is comparable for all architectures, except
ViPR. We think that this is because ViPR learns to opti-
mize its position based on the APR- and RPR- orientations,
and hence, exploits these orientations to improve its posi-
tion estimate, that we prioritized in the loss function. APR-
only yields an average position accuracy of 0.27m, while
the pure PoseNet yields position errors of 0.36m on av-
erage, but APR+LSTM results in an even worse accuracy
of 1.69m. Instead, the novel ViPR outperforms all signifi-
cantly with 0.2m. Compared to our APR+LSTM approach,
we think that ViPR on the one hand interprets and compen-
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(b) Scenario #3.

Figure 8: Exemplary comparison of APR, ViPR, and a baseline
(ground truth) trajectory of the Industry datasets.

sates the (long-term) drift of RPR and on the other hand
smooths the short-term errors of APR, as PE counteracts the
accumulation of RPR’s scaling errors with APR’s absolute
estimates. Here, the synergies of the networks in ViPR are
particularly effective. This is also visualized in Fig. 8a: the
green (ViPR) trajectory aligns more smoothly to the blue
baseline when the movement direction changes. This also
indicates that the RPR component is necessary to generalize
to unknown trajectories and to compensate scaling errors.

Dynamic motion evaluation. In contrast to the other
datasets, the Industry Scenario #3 includes fast, large-scale,
and high dynamic ego-motion in both training and test
datasets. However, all estimators result in similar find-
ings as Scenario #2 as both scenarios embed motion dy-
namics and unknown trajectory shapes. Accordingly, ViPR
again improves the position accuracy by 17.41 % on aver-
age (min.: 11.47 %; max.: 20.64 %), but this time exhibits
very similar orientation errors. Improved orientation accu-
racy compared to Scenario #2 is likely due to diverse orien-
tations available in this dataset’s training.

Fig. 8b shows exemplary results that visualize how ViPR
handles especially motion changes and motion dynamics
(see the abrupt direction change between x P r8 ´ 9sm
and y P r14 ´ 16sm). The results also indicate that ViPR
predicts the smoothest and most accurate trajectories on un-
known trajectory shapes (compare the trajectory segments
between x P r11 ´ 12sm and y P r14 ´ 16sm). We
think the reason why ViPR significantly outperforms APR
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Figure 9: Exemplary RPR-results (displacements m) against the
baseline (ground truth) on the Scenario #3 dataset (see Fig. 7d).

by 20.13 % here is because of the synergy of APR, RPR,
and PE. RPR contributes most in fast motion-changes, i.e.,
in motion blur situation. The success of RPR may also
indicate that RPR differentiates between ego- and feature-
motion to more robustly estimate a pose.

5.3. Evaluation of the RPR-Network

We use the smaller FlowNet2-s [25] variant of
FlowNet2.0 as this has faster runtimes (140 Hz), and
use it pretrained on the FlyingChairs [19], ChairsSDHom
and FlyingThings3D datasets. To highlight that RPR con-
tributes to the accuracy of the final pose estimates of ViPR,
we explicitly test it on the Industry Scenario #3 that embeds
dynamic motion of both ego- and feature-motion. The dis-
tance between consecutive images is up to 20 cm, see Fig. 9.
This results in a median error of 2.49 cm in x- and 4.09 cm
in y-direction on average (i.e., the error is between 12.5 %
and 20.5 %). This shows that the RPR yields meaningful re-
sults for relative position regression in a highly dynamic and
difficult setting. It furthermore appears to be relatively ro-
bust in its predictions despite both ego- and feature-motion.

5.4. Discussion

6DoF Pose Regression with LSTMs. APR-only in-
creases the positional accuracy over PoseNet for all
datasets, see Tab. 1. We found that the position er-
rors increase when we use methods with independent and
single-layer LSTM-extensions [77, 79, 58, 65] on both the
7-Scenes and the Industry datasets, by 0.04m up to
2.07m. This motivated us to investigate stacked LSTM-
layers only for the RPR- and PE-networks. We support the
statement of Seifi et al. [65] that the motion between con-
secutive frames is too small, and thus, naive CNNs are al-
ready unable to embed them. Hence, additionally connected
LSTMs are also unable to discover and track meaningful
temporal and contextual relations between the features.

Influence of RPR to ViPR. To figure out the informa-
tion gain of the RPR-network we also constructed ViPR in a
closed end-to-end architecture through direct concatenation
of the CNN-encoder-output (APR) and the LSTM-output
(RPR). For a smaller OF-input (3 ˆ 3) of the RPR-model
the accuracy of the 7-Scenes [66] dataset increases, but

decreases for the Industry dataset. This stems from the fact
that the relative movements of the 7-Scenes dataset are
too small (ă 2 cm) compared to the Industry dataset (ap-
prox. 20 cm). Hence, ViPR’s contribution is limited here.

Comparison of ViPR to state-of-the-art methods.
VLocNet++ [59] currently achieves the best results on
7-Scenes [66], but due to the small relative movement
and the high ground truth error compared to VLocNet’s
results a plausible evaluation is not possible regarding in-
dustrial applications. MapNet [8] achieves (on average)
better results than ViPR on the 7-Scenes dataset, but re-
sults in a similar error, e.g., 0.30m and 12.08˝ on the stairs
set against ViPR’s 0.31m and 12.65˝. MapNet has an im-
provement of 8.7 % over PoseNet2 [32] and achieves
41.4m and 12.5 ˝ on the RobotCar [47] dataset. How-
ever, a fair evaluation on this dataset with state-of-the-art
methods requires results and code from VLocNet [72, 59].

Runtimes. The training of the APR takes 0.86 s per
iteration for a batch size of 50 (GoogLeNet [68]) on our
hardware setup. The training of the RPR and PE is faster
(0.065 s) even at a higher batch size of 100, as these models
are smaller (214,605, resp. 55,239, parameters). Hence, it
is possible to retrain the PE-network quickly upon environ-
ment changes. The inference time of ViPR is between 7 ms
and 9 ms per sample (PoseNet: avg. 5 ms, FlowNet2-s:
avg. 9 ms). In addition, ViPR does not require domain
knowledge to provide scenario-dependent applicability, nor
does it need a compute-intensive matcher like brute force
or RANSAC [67, 6]. However, instead of PoseNet, ViPR
can also use such classical approaches in its modular pro-
cess pipeline. DenseVLAD [71] and classical approaches
are 10x (200-350 ms/sample) more computationally inten-
sive than today’s deep pose regression variants.

6. Conclusion

In this paper, we addressed typical challenges of
learning-based visual self-localization of a monocular cam-
era. We introduced a novel DL-architecture that makes use
of three modules: an absolute and a relative pose regres-
sor module, and a final regressor that predicts a 6DoF pose
by concatenating the predictions of the two former modu-
larities. To show that our novel architecture improves the
absolute pose estimates, we compared it with a publicly
available dataset and proposed novel Industry datasets that
enable a more detailed evaluation of different (dynamic)
movement patterns, generalization, and scale transitions.
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Abstract—Visual-inertial localization is a key problem in com-
puter vision and robotics applications such as virtual reality,
self-driving cars, and aerial vehicles. The goal is to estimate an
accurate pose of an object when either the environment or the
dynamics are known. Absolute pose regression (APR) techniques
directly regress the absolute pose from an image input in a
known scene using convolutional and spatio-temporal networks.
Odometry methods perform relative pose regression (RPR) that
predicts the relative pose from a known object dynamic (visual or
inertial inputs). The localization task can be improved by retriev-
ing information from both data sources for a cross-modal setup,
which is a challenging problem due to contradictory tasks. In
this work, we conduct a benchmark to evaluate deep multimodal
fusion based on pose graph optimization and attention networks.
Auxiliary and Bayesian learning are utilized for the APR task.
We show accuracy improvements for the APR-RPR task and for
the RPR-RPR task for aerial vehicles and hand-held devices. We
conduct experiments on the EuRoC MAV and PennCOSYVIO
datasets and record and evaluate a novel industry dataset.1

Index Terms—camera localization, inertial odometry, visual
odometry, multimodal fusion, attention networks, multi-task
learning, auxiliary learning, Bayesian networks.

I. INTRODUCTION

LOCALIZATION is important for intelligent systems such
as virtual and mixed reality, increasingly deployed in

areas of tourism, education, and entertainment [9], [51], [130].
Accurately localizing objects is key to many path planning
applications to determine future movements [19], [102], [143]
of mobile objects, e.g., robots or micro aerial vehicles (MAVs)
[147], [150]. This allows for monitoring and optimizing
workflows as well as tracking goods for automated inventory
management in real-time. A prerequisite for success is a highly
accurate pose recognition (i.e., position and orientation) of
the object. Environments in which such objects are typically
used include large warehouses, factory buildings, and shopping
centers. Localization solutions often use a combination of
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F. Ott, D. Rügamer, and B. Bischl are with the Statistical Learning and Data
Science Chair, LMU Munich, Munich, Germany, and with the Munich Center
for Machine Learning (MCML), Munich, Germany. E-mail: {david.ruegamer,
bernd.bischl}@stat.uni-muenchen.de
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LiDAR-, radio-, or radar-based systems [64], [77], which,
however, either require additional infrastructure or are costly
in their operation. An alternative approach is an optical pose
estimation. The accuracy of the pose estimation depends to a
large extent on suitable invariance properties of the available
features such that these features can be reliably detected [88].
For image-based localization, additional contextual informa-
tion such as 3D models of the scene or pre-recorded landmark
databases can be used when the environment is known. This
potentially improves the pose accuracy but also increases the
system’s complexity. State-of-the-art mobile setups often use
cheap sensors such as an inertial measurement unit (IMU)
[95], from which different motion dynamics (such as the slow
movement of a robot or fast walking and rotation of a human)
can be learned in advance. The goal of approaches using both
sensors simultaneously is to utilize the advantages of both
image and inertial data to improve the self-localization.

Absolute pose regression (APR) techniques directly regress
the absolute six degree-of-freedom (6DoF) pose from images
(APRV) and have become popular in recent years. These
techniques are based on convolutional neural networks (CNNs)
[35], [70], [72], [76], [94], [104], [117], [122], [144] in com-
bination with recurrent neural networks (RNNs) [28], [109],
[111], [124], [140]. However, they do not achieve the same
level of pose accuracy as 3D structure-based methods [122].
On the other hand, visual odometry (VO) techniques predict
the 6DoF relative pose between image pairs of consecutive
time steps. Recently, end-to-end approaches utilize CNNs in
combination with RNNs for relative pose regression (RPRV)
[29]–[31], [62], [75], [85], [92], [99], [142], [153]. Another
approach is inertial odometry (IO), which estimates the 6DoF
relative pose from IMUs of consecutive time steps. Classical
(non ML-) approaches are [23], [38], [58]. In the context of
inertial RPR (RPRI), recent techniques predict the relative pose
with CNNs or RNNs [24], [29], [36].

Odometry techniques typically suffer from accumulated
errors and high drifting errors. For IO systems, the method
continually integrates acceleration and angular velocities with
respect to time to calculate the pose changes [38]. Measure-
ment errors – even if small individually – accumulate over
time and lead to long-term drifts, i.e., due to temperature
changes or loosely placed sensors [82]. The drifting error
of VO techniques arises from fast movement changes and
image blur that is handled by loop closure [20]. Although
VO has made remarkable progress over the last decade, it still
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Fig. 1: Structures of the benchmark methods for visual-inertial fusion for absolute (APR) and relative (RPR) pose regression. The
baselines APRV (PoseNet [72]), RPRV (FlowNet [37]), and RPRI (IMUNet [36]) models are fused for a common representation.

suffers greatly from scaling errors [68], [74], [80], [81], [86],
[102]. While APRV is highly accurate by relying on distinct
observed features in the environment (e.g., texture-rich scenes
with perfect illumination), its accuracy is largely degraded by
appearance changes caused by intermittent occlusions such as
moving objects, photometric calibration, low-light conditions,
and illumination changes [149]. Recent techniques tackle this
problem with a fusion of camera and IMU sensors [25], [29],
[85], [109], [117].

As both sensor types have different advantages in different
situations, visual and inertial data can be used simultaneously
to achieve a highly accurate pose in long-term use. The
goal of fusion approaches is to reduce the drifting error of
odometry techniques by utilizing the absolute pose and to
reduce the error of APR in texture-less environments utilizing
the relative pose. Classical fusion methods of visual-inertial
(VI) systems are based on Bayesian filtering [7], [97], [127]
or on optimization-based methods [127]. Traditionally, these
methods rely on 3D maps and local features [60], [83], [120].
However, naively using all the features before fusion will lead
to unreliable state estimation, incorrect feature extraction, or a
matching that cripples the entire system [151]. Hybrid methods
combine geometric and ML approaches to predict the 3D
position of each pixel in world coordinates [11], [125]. With
more computing power, VI SLAM partly resolves the scale
ambiguity to provide motion cues without visual features [68],
[86], [133] and to make tracking more robust [73]. Multiple
works combine global localization in a scene with VO or IO
[22], [40], [89], [102], [103], [108].

For multimodal learning, several streams are constructed to
optimally perform individual tasks at different levels – i.e.,
early, intermediate, and late fusion. Although, studies suggest
the use of intermediate fusion [67], [110], late fusion is still the
predominant method due to practical reasons. In the field of
VI-based learning, intermediate features of the encoders have
unaligned spatial dimensions, which make intermediate fusion
more challenging [25], [29], [85], [109], [117]. Commonly,
1D feature vectors from each unimodal stream are concate-
nated and an attention mechanism chooses the best expert
for each input signal [25], [65], or dense networks are used
for hierarchical joint feature learning [56]. With multi-task

learning (MTL), a model learns multiple tasks simultaneously
[26], [87], [129] with a shared representation that contains the
mutual concepts between multiple related tasks. In contrast,
auxiliary learning models can be trained on the main task of
interest with multiple auxiliary tasks [84], [106], [134]. This
adds an inductive bias that pushes models to capture mean-
ingful representations and improves generalization. Training
APR and RPR networks can be interpreted as MTL with equal
tasks, while – in the context of auxiliary learning – APR
is the main task and RPR is the auxiliary task. A different
field is uncertainty quantification. Estimating the uncertainty
in position estimation provides significant insight into the
model reliability. One possibility to explain models better is
to estimate their aleatoric and epistemic uncertainty [44], [71].
Bayesian methods show robustness to noisy data and provide
a practical framework for understanding uncertainty in models
[12], [27], [66], [128]. For APR and RPR fusion, the model
can learn to rely on the absolute or relative pose prediction
dependent on the quantified aleatoric uncertainty.

Contributions. In this work, our main objective is to eval-
uate a wide range of different, fundamental fusion techniques
(see Figure 1), that proved to be effective in different fields,
for the VI pose regression problems (APRV-RPRI and RPRV-
RPRI). The issue at hand involves the global and relative pose
in order to optimize the global pose, and mitigating the effects
of environmental factors on the fusion techniques. (1) We
provide an overview of APRV, RPRV, and RPRI methods,
and use PoseNet [72], FlowNet [37], and IMUNet [36] as
baseline models. Indeed, there are more advanced models
that yield a lower localization error in the context of APR
and RPR. Instead, we benchmark different fusion techniques
and highlight their influence on the pose regression tasks. (2)
We apply pose graph optimization (PGO) [50] for absolute
pose refinement (see MapNet [14]), and absolute and relative
pose fusion. (3) We evaluate attention-based methods for late
fusion (concatenation and soft fusion [25]) and intermediate
fusion, i.e., multimodal transfer module (MMTM) [65], for a
cross-modal feature representation. (4) We utilize non-linear
and convolutional auxiliary learning [106] and quantify the
aleatoric uncertainty using Bayesian networds [71] to improve
the loss of the main APRV task. (5) We record a large indoor
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industrial dataset and benchmark the EuRoC MAV [18], the
PennCOSYVIO [112], and our IndustryVI datasets. To further
enhance the results, advanced techniques may serve as black
box models in place of the baseline models. Instead, our con-
tribution is to provide insights into the role of environmental
changes and motion dynamics on the localization task as well
as the robustness of the fusion techniques by exploring results
on these three different datasets.

The remainder of our paper is organized as follows. We
first discuss related work in Section II. Section III introduces
our framework and methods. We present a novel dataset in
Section IV, before showing experimental results in Section V.

II. RELATED WORK

We address methods for VI self-localization in Section II-A,
focus on multimodal fusion techniques in Section II-B, and
briefly summarize uncertainty estimation techniques in Sec-
tion II-C. In Section II-D, we give an overview of datasets.

A. Methods for VI Self-Localization

For self-localization, we separate between odometry methods,
and learning-based APR and RPR methods. Odometry meth-
ods can be partitioned into VO, IO, and VI odometry, each
separated into classical and regression-based techniques. As
this paper provides a benchmark for APR and RPR fusion
techniques, in this section, we briefly summarize methods that
purely rely on SLAM, odometry, RPR, or APR (that build our
baseline models). We focus on the combination of the classical
VO and IO methods, the combination of RPRV and RPRI, and
the combination of APRV and RPR (see Section II-B).

VO & RPRV. Classical VO methods are based on a dead
reckoning system using image features [92], or use point
features between pairs of frames from stereo cameras [107].
For an overview, see [93]. DeepVO [142] is one of the
first networks that combined CNNs with RNNs (two stacked
LSTMs) to model sequential dynamics and relations. While
CTCNet [62] predicts relative poses from a CNN+LSTM
model, DistanceNet [75] uses a CNN+BiLSTM to estimate
traveled distances divided into classes. Several methods exist
that use the optical flow (OF) to regress the relative pose from
consecutive image pairs – such as Flowdometry [99], [100],
ViPR [109], DeepVIO [52], and KFNet [154]. These methods
either use FlowNet [37] or FlowNet2 [61]. While LS-VO [30]
uses an autoencoder for OF prediction, P-CNN [31] uses the
Brox algorithm [17] with a standard CNN. P-CNN+OF [153]
combines FlowNet2 and P-CNN. DF-VO [152] proposed a
method integrating epipolar geometry from CNNs (single-
view depth and OF) and the Perspective-n-Point [45] method.
D3VO [148] learns the image depth, models the pixel uncer-
tainties which improves the depth estimation, and predicts the
pose with PoseNet. In this paper, we use FlowNetSimple [37]
to predict the RPRV relative pose (see Figure 1a).

IO & RPRI. Classical IO includes pedestrian dead reck-
oning (often combined with GPS signals) [5], is based on
walk detection and step counting [15], or is designed as
a strapdown inertial navigation system [23], [126]. While
IONet [24] segments inertial data into independent windows

and learns the relative pose with a CNN+RNN, VINet [29]
directly estimates features from IMU data with LSTMs. Silva
et al. [36] propose a CNN+BiLSTM model (IMUNet) and
evaluate different loss functions (i.e., based on a vector in
the spherical coordinate system, or based on a translation
vector and a unit quaternion). As the CNN+BiLSTM model
[36] yields state-of-the-art results, we use this model as RPRI
baseline (see Figure 1a).

APR. APR methods are based on CNNs for (re-)localization
such as GoogLeNet [132] or ResNet [137]. Methods as
(Dense) PoseNet [72], BranchNet [104], Hourglass [94], Ge-
ometric PoseNet [70] and Bayesian PoseNet [69] are partially
insensitive to occlusions, light changes, and motion blur. As
PoseNet [72] evolved as a simple and effective APR technique,
we use PoseNet as APRV baseline method (see Figure 1a).
[144] dealt with the coupling of orientation and translation
by splitting the network into two branches. LSTMs [53] and
BiLSTM [49] were utilized to extract the temporal context,
e.g., PoseNet+LSTM [140], ViPR [109], ContextualNet [111]
and Seifi et al. [124] use LSTMs, while VidLoc [28] uses
BiLSTMs. RelocNet [4] learns metrics continuously from
global image features through a camera frustum overlap loss.
CamNet [35] is a coarse-to-fine retrieval-based model that
includes relative pose regression to get close to the best
database entry that contains extracted features of images.
NNet [76] queries a database for similar images to predict
the relative pose between images and RANSAC solves the
triangulation to provide a position. The CNN by [13] densely
regresses so-called scene coordinates, defining the correspon-
dence between the input image and the 3D scene space. Sattler
et al. [122] showed that pose regression is more closely related
to pose approximation via image retrieval than to accurate
pose estimation via 3D structure by predicting failure cases.
[10] showed that learning-based scene coordinate regression
outperforms classical feature-based methods. MapNet [14]
learns a map representation by geometric constraints that are
formulated as loss terms. [59] add a prior guided dropout
module before PoseNet with spatial and channel attention
modules to guide CNNs to ignore foreground objects. [113]
inferred a depth map from a CNN encoder and predicted
the pose from the most similar image with nearest neighbor
indexing. AtLoc [141] consists of a visual encoder that extracts
features and an attention module that computed the attention
and re-weights features.

B. Multimodal Fusion for Self-Localization
Classical VI Odometry. Classical methods for sensor fusion
are the (extended) Kalman filter (KF) [48], [91] or pose graphs
[32]. [58] use a trifocal tensor geometry between three images
without estimating the 3D position of feature points (without
reconstructing the environment). The poses are refined with
a multi-state KF in combination with a RANSAC algorithm.
They transform the camera frame w.r.t. the IMU frame. VINS-
Mono [115] is a nonlinear optimization-based method for VI
odometry by fusing pre-integrated IMU measurements and
feature observations that merge maps by PGO [50].

RPR-based VI Odometry. DeepVIO [52] learns the OF
from consecutive images and the relative pose from an inertial-
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TABLE I: Overview of visual and inertial datasets and its sensors and ground truth properties.

Dataset Ref. Year Environment Carrier Sensors Ground truth
TUM RGB-D [131] 2012 Indoors Pioneer Robot Cam: 2 stereo RGB-D (30 Hz), IMU: 1 acc. (500 Hz) Motion capture (300 Hz)
KITTI [47] 2012 Outdoors Car Cam: 1 stereo RGB/gray, IMU: 1 acc./gyr., laser INS/GNSS (10 Hz)
Microsoft 7-Scenes [125] 2013 Indoors Handheld Cam: RGB-D KinectFusion
Málaga Urban [6] 2014 Outdoors Car Cam: 1 stereo RGB, IMU: 1 acc., 2 gyr. GPS (1 Hz)
Cambridge Landmarks [72] 2015 Outdoors Handheld, urban Cam: Google LG Nexus 5 smartphone (2 Hz) From SfM
UMich NCLT [21] 2016 In-/outdoors Segway Cam: 6 omnid. RGB (5 Hz), IMU: 1 acc., 2 gyr., laser GPS/IMU/laser
EuRoC MAV [18] 2016 Indoors MAV hexacopter Cam: 1 stereo gray (20 Hz), IMU: 1 acc./gyr. (200 Hz) MoCap Laser (20 Hz)
12-Scenes [135] 2016 Indoors Handheld Cam: 1 RGB, 1 RGB-D VoxelHashing
Oxford RobotCar [90] 2016 Outdoors RobotCar Cam: Bumblebee XB3 GPS, IMU (5 Hz)
PennCOSYVIO [112] 2016 In-/outdoors Handheld Cam: 4 RGB, 1 stereo, 1 fisheye, IMU: 1 acc./gyr. Visual tags (30 Hz)
Zurich Urban MAV [2] 2017 Outdoors MAV Cam: 1 RGB (30 Hz), IMU: 1 acc./gyr. (10 Hz) Pix4D visual pose
Aalto University [76] 2017 Indoors Handheld Cam: iPhone 6S smartphone Google Project Tango’s
TUM-LSI [140] 2017 Indoors NavVis sytem Cam: 6 Panasonic wide-angle from NavVis M3 system Hokuyo laser (SLAM)
Warehouse [88] 2018 Indoors Pos. system Cam: 8 60◦ RGB Nikon iGPS
DeepLoc [117] 2018 Outdoors Robot platform Cam: RGB-D ZED stereo (20 Hz), IMU: XSens, LiDARs GPS
TUM VI [123] 2018 In-/outdoors Handheld Cam: 1 stereo gray (20 Hz), IMU: 1 acc./gyr. (200 Hz) Partial motion
CMU Seasons [121] 2018 Outdoors Car, suburban Cam: 45◦ forward/left and forward/right SIFT, BA
Industry [109] 2020 Indoors Forklift, pos. sys. Cam: 4 170◦ RGB on fork., 3 170◦ RGB on pos. sys. Qualisys (140 Hz)
UMA-VI [156] 2020 In-/outdoors Handheld Cam: RGB (12.5 Hz), gray (25 Hz), IMU: acc./gyr. (250 Hz) Visual pose (partial)
IndustryVI ours 2022 Indoors Handheld Cam: Orbbec3D (23 Hz), IMU: 1 acc./gyr./mag. (140 Hz) Qualisys (140 Hz)

based network, fused with fully connected layers for VI ego-
motion. This is supported by a network with stereoscopic
image inputs. SelfVIO [1] combined VO and IO networks
with an adaptive fusion model that concatenates features of
both networks, selects features and predicts the absolute pose
with an LSTM. Similarly, the selective sensor fusion (SSF)
approach by [25] extracts features from image and IMU data,
uses a soft or hard (based on Gumbel softmax) fusion approach
to select features and regresses the pose with an LSTM. We
use the soft fusion approach of SSF to combine APRV-RPRI
(see Figure 1d) and RPRV-RPRI (see Figure 1i).

APR & RPR Fusion. Learning-based methods are based
on APR or RPR networks. VI-DSO [138] jointly estimates
camera poses and sparse scene geometry by minimizing the
photometric and the IMU measurement error in a combined
energy functional. The loss formulation of LM-Reloc [139]
is inspired by the Levenberg-Marquardt algorithm, such that
the learned features significantly improve the robustness of
direct image alignment. Additionally, their network performs
RPR to bootstrap the direct image alignment. VINet [29]
incorporates relative features from an LSTMs inertial encoder
with absolute features from a visual encoder by concatenation.
ViPR [109] concatenates relative poses (from OF) and absolute
poses to refine the absolute poses with an LSTM network.
MapNet+PGO [14] uses PGO [50] to refine predicted poses
from absolute and relative pose predictions (we use PGO
in Figure 1b). VLocNet [134] estimates a global pose and
combines it with VO. To further improve the (re-)localization
accuracy, VLocNet++ [117] uses features from a semantic
segmentation.2 RCNN [85] fuses relative and global networks
– while the relative sub-networks smooth the VO trajectory,
the global sub-networks avoid the drift problem. Their cross
transformation constraints represent the temporal geometric
consistency of consecutive frames. We use concatenation as
a baseline fusion technique (see Figure 1c and 1h).

2Public code is not available for VLocNet. Re-implementations lead to
subpar performance [33], but close to MapNet [14].

C. Uncertainty Estimation for Multimodal Fusion

KFNet [154] extends the scene coordinate regression problem
to the time domain based on KF, OF, and Bayesian learning.
[119], [145] show that the training can allow uncertainty
predictions through a Gaussian density loss in combination
with a KF. ToDayGAN [3] is a generative network that
alters nighttime driving images to a more useful daytime
representation captured from two trajectories of the same area
in both day and night. The dropout module by [59] enables the
pose regressor to output multiple hypotheses from which the
uncertainty of pose estimates can be quantified. CoordiNet [96]
predicts the pose and uncertainty from a single loss function
for visual relocalization that are fused with a KF to embed the
scene geometry. [16] utilized MMTM modules to fuse features
derived from images (ResNet) and features extracted from
time-series data (TS Transformer) while assessing Monte-
Carlo dropout. This approach bears similarity to our own
setup, demonstrating that MMTM can be employed in diverse
areas of study.

D. Datasets

Each application covers different characteristics that have to
be represented by the dataset, i.e., properties of the envi-
ronment (small or large scale, features), properties of the
object (movement patterns such as direction, velocity, and
acceleration), and size of the dataset. We provide a benchmark
on different datasets to evaluate the performance of models in
certain scenarios. A dataset can be classified with the following
properties: Indoor or outdoor environment, small- or large-
scale environment, a high accuracy (< 1cm) of the ground
truth trajectory, availability of datasets, same spatial range of
training and test trajectories, and whether the training dataset
allows a generalized training.

Table I summarizes all VI self-localization datasets and
their characteristics. As the TUM RGB-D [131], Microsoft
7-Scenes [125], Cambridge Landmarks [72], 12-Scenes [135],
Aalto University [76], DeepLoc [117], TUM-LSI [140], Ware-
house [88] and Industry [109] datasets contain only images,
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we cannot make use of these datasets for our VI multimodal
setup. The KITTI [46], [47], Málaga Urban [6], Oxford
RobotCar [90], and UMich NCLT [21] datasets contain IMU
and LiDAR data, but cannot be used for APR as odometry
is the main task. The Aachen day-night, CMU seasons, and
RobotCar seasons datasets [121] address viewing conditions
such as weather and seasonal variations and day-night changes
for visual localization. Similarly, the Zurich Urban MAV [2]
dataset addresses only evaluations for VO and SLAM. UMA-
VI [156] is a handheld indoor and outdoor dataset with VI
data but contains only partial ground truth poses. Also, the
ground truth systems of TUM VI [123] cover only a single
room, and hence, longer trajectories do not cover ground truth
poses.

The EuRoC MAV [18] dataset contains VI data recorded
with an MAV in indoor small-scale environments and is
suitable for our APR-RPR benchmark. In contrast, Pen-
nCOSYVIO [112] was recorded handheld in a large-scale
outdoor and indoor environment with VI sensors. As this
dataset does not allow evaluations across various movement
patterns, we record the IndustryVI dataset in a challenging
large-scale indoor industrial environment with ground truth
accuracies below 1mm. We let two persons walk with a
handheld device with various movement patterns. Having two
different persons, in particular, allows an evaluation of the
generalizability between different walking styles. For more
information, see Section IV. Hence, we use the EuRoC MAV,
the PennCOSYVIO, and our IndustryVI datasets to benchmark
different fusion models on indoor and outdoor applications.

III. METHODOLOGY

In this section, we present different deep multimodal fusion
techniques for odometry-aided APR and VI odometry. Sec-
tion III-A presents the baseline models for APRV, RPRI, and
RPRV. We describe PGO for absolute pose refinement in
Section III-B. Section III-C proposes attention-based fusion
methods. We use auxiliary learning for APRV-RPRI fusion in
Section III-D, and use Bayesian neural networks (BNNs) for
aleatoric uncertainty estimation in Section III-E. We describe
fusion techniques for RPRV in Section III-F. Table II summa-
rizes the notations.

A. Baseline Models

The baseline of our fusion models is established through the
utilization of APR and RPR models. A CNN-based APR
model is capable of learning to directly regress the camera
pose from a single image or a set of training images in
conjunction with their corresponding ground truth poses. In
contrast, an RPR model performs 6DoF odometry through the
utilization of either inertial data obtained from an IMU (RPRI)
or visual data obtained from a camera (RPRV).

APRV. We use PoseNet [72] with time-distribution [109]
to predict the absolute positions p ∈ R3 and the absolute
orientations q ∈ R4 as illustrated in Figure 2. PoseNet is a
CNN architecture that utilizes GoogLeNet [132], which is pre-
trained on a huge classification dataset such as ImageNet [34].
PoseNet adds a fully connected (FC) layer of 2, 048 units on

TABLE II: Key parameters and their descriptions.

Parameter Description
APRV Absolute pose regression based on visual input
RPRV Relative pose regression based on visual input
RPRI Relative pose regression based on inertial input
x = [p,q] Absolute pose
∆x = [∆p,∆q] Relative pose
p ∈ R3 Absolute 3D position in Euclidean space
q ∈ R4 Absolute orientation as quaternion
∆p ∈ R3 Relative position (translation)
∆q ∈ R4 Relative orientation (rotation)
vij Relative pose between predicted poses xi and xj

L Loss function
Ec Constraint energy
f(c) Prediction function
Sc Distance matrix
J Jacobian
r Residual
⊞ Manifold update operations for quaternions
⊙ Element-wise multiplication
D Dataset of size |D|
aI ,aV Inertial and visual features
α, β, γ Hyperparamters for loss weighting
S Soft fusion operator
g Sigmoid function
A,B Feature at any given level of APR or RPR
Z Latent representation
EA, EB Excitation signals
W Weights of the network
s Log variance
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Fig. 2: Structure of PoseNet [72] with a modified
GoogLeNet [132] network as the APRV module with input
images I and output position p and orientation q.
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Fig. 3: Structure of the RPRI module [36] with inertial input
data (accelerometer and gyroscope data from 200 timesteps)
and output translation ∆p and change in orientation ∆q.

top of the last inception module to form a localization feature
vector that may be trained for generalization. In addition, we
replace the FC layer and softmax layers of GoogLeNet with
two parallel FC layers, each with three and four units. These
units are utilized to regress the pose, represented by the p =
[x, y, z] coordinates of the position in Euclidean space and q
= [w, p, q, r] as a quaternion for orientation [70], [155].

RPRI. Inspired by [36], our RPRI model is designed based
on a CNN combined with two BiLSTM units, as depicted
in Figure 3. This design is highly suitable for problems that
require the processing of sequential data. The model comprises
of 1D-convolutional layers, each with 128 features and a
kernel size of 11, which separately process the gyroscope and
accelerometer data. After two 1D convolutions, the feature
vectors are down-sampled in size through a max-pooling
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layer with a size of 3. The outputs of the two separate
processing streams are concatenated and fed into a BiLSTM
layer, consisting of 128 hidden units. A BiLSTM is utilized
to enable the past and future IMU readings to influence the
regressed relative pose. To prevent overfitting, a dropout layer
with a rate of 25% is added after each BiLSTM layer. Finally,
the relative pose – ∆p ∈ R3 and ∆q ∈ R4 – is regressed
through the use of FC layers that take the output from the
BiLSTM layers as input.

RPRV. As the feature encoder in our model, we utilize
FlowNetSimple [37] pre-trained on Flying Chairs [37] dataset.
This encoder predicts the relative position ∆p ∈ R3 and
orientation ∆q ∈ R4 from a pair of consecutive monocular
images as input. The network is comprised of 9 convolutional
layers and is designed to have sufficient capacity to learn the
prediction of the OF. The size of the receptive fields gradually
decreases from 7× 7 to 5× 5, and finally 3× 3. We use the
features from the last convolution layer (conv6) as an input to a
FC layer consisting of 2, 048 units, which forms a localization
feature vector. Finally, we add two parallel FC layers, each
containing three and four units. These units perform regression
of the relative pose represented by ∆p and ∆q.

B. Pose Graph Optimization (PGO)

PGO estimates smooth and globally consistent pose predic-
tions from absolute and relative pose measurements during
inference. The method is formulated as a non-convex min-
imization problem, which can be represented as a graph
with vertices corresponding to the estimated global poses
edges representing the relative measurements. The objective
of PGO is to refine the predicted poses during inference
such that the refined poses are close to the actual poses and
ensuring agreement between the refined relative poses and the
input relative poses [50]. The algorithm utilizes the predicted
absolute poses and the relative poses between them as inputs.
In the following, we represent the poses

pi = (tx, ty, tz, qw, qp, qq, qr) (1)

as a vector for translation t ∈ R3 and a vector for orientation
represented as quaternion q ∈ R4. To perform PGO for the
predicted absolute poses (from the APRV model), we initially
collect all the absolute poses in a single vector z. We define
the objective function, which is the sum of the costs of all the
constraints Ec. The constraints can be either for the absolute
poses or for the relatives poses (between a pair of absolute
poses) for both translation and rotation. The constraint energy

Ec(z) = (fc(z)− kc)
TSc(fc(z)− kc) (2)

is represented as a quadratic penalty on the difference between
f(c) and its desired value kc where f(c) is a prediction
function that maps the state vector z to the quantity relevant
for constraint c, weighted by distance matrix Sc (the inverse
of the covariance matrix). Equation (1) represents the relative
position constraint kc by having fc(z) to be the relative
position between two poses. We initially linearize fc around
z, the current value of the state vector z, using the substitution
z = z+x , where x represents the parameter update we solve

for [50]. We take the Cholesky decomposition of the stiffness
matrices Sc = LcL

T
c . With

fc(z) ≈ fc(z) +
∂f

∂z

∣∣∣
z
x, (3)

we get

E =
∑

c

∥∥∥∥LTc
(
fc(z) +

∂f

∂z

∣∣∣
z
x− kc

)∥∥∥∥
2

. (4)

Let Jc = LTc
∂f
∂z

∣∣∣
z

and rc = LcT (kc − fc(z)). We get

E =
∑

c

∥∥∥Jcx− rc

∥∥∥
2

= ∥Jx− r∥2. (5)

Stacking the individual Jacobians J and the residuals r, we
arrive at the least squares problem

∆z = min
∆z

∥J∆z− r∥2 (6)

to solve for ∆z. This can be solved by ∆z = (JTJ)−1JT r.
Finally, the predicted absolute pose state vector z is updated
using z = z ⊞ ∆z, where ⊞ represents the manifold update
operations for quaternions as described in [14].

PGO during Inference. During inference, the absolute pose
predictions and the relative poses between them are used to
obtain the optimal absolute poses using PGO. The algorithm
runs iteratively utilizing a moving temporal window size of
T frames. Suppose the absolute predictions for T frames are
{pi}Ti=1 and the relative poses between them are {∆pij}T−1

i=1 ,
the optimal poses {po}Ti=1 are solved by minimizing the
following cost

LPGO({po}Ti=1) =
T∑

i=1

Ec(pi) +
T−1∑

i=1

Ec(∆pij), (7)

where Ec is the constraint energy from Equation (1). We use
PGO for absolute pose refinement from consecutive relative
poses (see Section III-B1) and absolute pose refinement from
relative poses from the RPR model (see Section III-B2).

1) PGO for APR: PGO refines the predicted absolute poses
such that the relative transforms between them agree with the
relative camera pose between the predicted poses. To achieve
this, we use a time-distributed image encoder (GoogLeNet)
similar to MapNet [14] while using PGO during inference
(see Figure 4). We learn to estimate the 6DoF camera pose
from a tuple of images and additionally enforce constraints
between pose predictions for each image pair. While the APR
encoder minimizes the absolute pose loss per image, MapNet
proposes to minimize both the absolute pose loss per image
and the relative pose loss between the consecutive image pair
as

Ltotal =

|D|∑

i=1

h(pi, p̂i) +

|D|∑

i=1

h(vij , v̂ij), (8)

where the relative pose between predicted absolute poses pi
and pj for image pairs (i, j) is represented by vij = (ti −
tj , qi−qj). h(·) is a metric that measures the distance between
the actual pose p̂ and the predicted camera pose p as defined
in [70]. During inference, we use PGO to fuse the predicted
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Fig. 4: Overview of the APRV model with PGO used for
absolute pose refinement using the consecutive relative poses
between the predicted absolute poses.

absolute poses pi and the relative poses (vij) between the
consecutive image pairs to get smooth and globally consistent
absolute poses poi .

2) APRV-RPRI+PGO: MapNet+ [14] relies on visual data
to regress the absolute poses (that fail to provide accurate
information in challenging conditions) and show how the
geometric constraints between pairs of observations can be
included as an additional loss term (i.e., VO from pairs of
images, from GPS readings, or from IMU readings). Suppose
we have IMU sequences of the same scene as additional data.
The relative poses can be regressed using these sequences in
order to efficiently update the graph, particularly in challeng-
ing lighting conditions. Therefore, our fusion model consists
of APRV and RPRI models to simultaneously regress absolute
and relative poses for S pairs of images and IMU sequences
sampled with a gap of k timesteps from the dataset D (see
Figure 5). The APRV and RPRI networks process the images
and IMU sequences separately in a time-distributed manner.
The visual features (aV ) from APRV and inertial features (aI )
from RPRI of the last layers are fused based on the soft
fusion mechanism discussed in Section III-C2. The features
from the soft fusion model are forwarded to BiLSTM layers
and a pose regressor, one for each absolute and relative pose
regression. We use a similar optimization method as proposed
in MapNet [14]. The minor difference is that, while MapNet
optimizes the prediction of absolute pose pi and pj for image
pairs (i, j) and the relative pose vij between (i, j), our fusion
model additionally optimizes the relative pose (∆tij , ∆qij)
regressed by the RPRI model. So the final loss function for
the fusion model is

Ltotal = γ

|D|∑

i=1

h(pi, p̂i) + α

|D|∑

i,j=1,i̸=j

h(vij , v̂ij)+

+ β

|D|∑

i,j=1,i̸=j

h(∆pi,∆p̂i),

(9)

the sum of losses for the predicted absolute poses pi, the
relatives poses between the predicted absolute poses vij , and
the predicted relative poses ∆pi weighted by the hyperpa-
rameters α, β and γ. We utilize Optuna to search for optimal
hyperparameters. During inference, we use PGO to fuse the
predicted absolute poses pi and the predicted relative pose
∆pij from the fusion network to get smooth and globally
consistent absolute poses poi .

APRV

𝓛APR

𝑥𝑡−2

PGO

𝑥𝑡−1

𝑥𝑡

𝑥𝑡+1

𝛥𝑥𝑡−2,𝑡−1
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𝒙 = 𝒑, 𝒒

𝓛PGO

𝛥𝑥𝑡−2,𝑡−1
𝛥𝑥𝑡−1,𝑡
𝛥𝑥𝑡,𝑡+1

𝓛RPR
RPRI

InterferenceTraining

Fig. 5: Overview of the APRV-RPRI fusion model with PGO
used for absolute pose refinement using the predicted relative
poses from the RPRI model.

C. Attention-based Fusion Methods

Visual and interial features offer different strengths to pose
regression. Hence, our objective is to extract meaningful
information from the camera and IMU sensors and to obtain
a precise estimate of the absolute poses through the use of a
combined feature representation. Inspired by widely applied
attention mechanisms [79], [136], [146], we re-weight each
feature by conditioning on both visual and inertial features.
The selection process of attention-based fusion is conditioned
on the measurement reliability and the dynamics of both
sensors, which learns to keep the most relevant feature repre-
sentations while discarding useless or noisy information. For
decision level fusion of APRV and RPRI features, we use layer
concatenation (see Section III-C1), and soft fusion [25] (see
Section III-C2). We use the architecture introduced by [65] to
fuse the APRV and RPRI features at the intermediate levels
(see Section III-C3).

1) Late Fusion (Layer Concatenation): We visualize late
fusion in Figure 6 that combines the high-level features
produced by the individual sources to extract meaningful
information for future pose regression tasks. Late fusion is
possible when the features have the same number of units
and dimensionality. The structure of the late fusion based
on concatenation is shown in Figure 7. The fusion network
consists of the baseline models APRV and RPRI (see Section
III-A), that process the image and IMU data separately. During
fusion, we concatenate the 1D visual features aV from APRV
and 1D inertial features aI from RPRI. aV and aI are of size
128. In order to model the temporal dependencies between
the combined features, we add a two-layer BiLSTM. After
the recurrent network, an FC layer is utilized to regress the
absolute and relative poses in an MTL setup.

2) Late Fusion (Soft Fusion): The structure of the soft
fusion module is shown in Figure 8. We combine the high-level
features aV and aI produced by the APRV and RPRI models.
The features are fused based on the selective sensor fusion
(SSF) approach introduced by Chen et al. [25] that contains
an attention mechanism. A pair of continuous masks, SAPRV

and SRPRI , are introduced by

SAPRV = SigmoidV ([aV ; aI ])
SRPRI = SigmoidI([aV ; aI ])

(10)
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to perform soft fusion. SAPRV and SRPRI are the masks applied
(element-wise product ⊙) to the features aV and aI learned
by the CNNs by conditioning on both features by

gsoft(aV ,aI) = [aV ⊙ SAPR;aI ⊙ SRPRI ]. (11)

The sigmoid function finally re-weights each feature vector
and preserves the order of coefficient values in the range [0, 1]
to produce the new re-weighted vectors. After the soft-fusion,
the features are forwarded to the recurrent network and finally
to FC layers to perform the pose regression.

3) Intermediate Fusion (MMTM): As the APRV and RPRI
models have unaligned spatial dimensions, they cannot di-
rectly be fused using the commonly used techniques like
element-wise summation [56], weighted average [105], or
more sophisticated methods like attention mechanisms [25]
that assume identical spatial dimensions of different streams.
Inspired by the squeeze-and-excitation (SE) [57] module for
unimodal CNNs, Joze et al. [65] proposed the multimodal
transfer module (MMTM) that allows the fusion of modalities
with different spatial dimensions. Importantly, the squeeze
operation squeezes the spatial information into channel de-
scriptors via a global average pooling operation over spatial
dimensions of input features that enables fusion of modali-
ties of arbitrarily feature dimension. The excitation operation
generates the excitation signals using a simple gating mech-
anism as a sigmoid function, which allows the suppression
or excitation of different filters in each stream. While MMTM
was applied to RGB+depth, RGB+wave, and RGB+pose (both
modalities correspond to each other without prerequisites), the
fusion of APR and RPR with MMTM proved to be more

challenging, as RPR requires knowledge of its global pose.
In our approach, this issue was addressed by utilizing a time-
distributed PoseNet, which provided absolute poses from three
consecutive images, see [109]. The structure of MMTM [65]
is shown in Figure 9. The matrices A ∈ RN1×···×NK×C and
B ∈ RM1×···×ML×C′

represent the features at any given level
of the APRV and RPRI models that are the inputs to the
MMTM module. Ni and Mi represent the spatial dimensions,
and C and C

′
represent the number of channels of APRV

and RPRI, respectively. MMTM learns the global multimodal
embedding to re-calibrate the inputs A and B using the SE
operation on the input tensors A and B. The squeeze operation
enables fusion between the modalities SA and SB that have
arbitrary spatial dimensions.

SA(c) =
1

∏K
i=1Ni

∑

n1,...,nk

A(n1, . . . , nK , c)

SB(c) =
1

∏L
i=1Mi

∑

m1,...,mL

B(m1, . . . ,mL, c)
(12)

that are further mapped into a joint representation Z using
concatenation and FC layers. Excitation signals, EA ∈ RC
and EB ∈ RC′ are generated using Z, which are used to
re-calibrate the input features, A and B, by a simple gating
mechanism

Ã = 2× σ(EA)⊙ A
B̃ = 2× σ(EB)⊙ B,

(13)

where σ(·) is a sigmoid function and ⊙ is a channel-wise
product operation. We use MMTM to fuse the features of the
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APRV and RPRI models as proposed in Figure 10. Learning
the joint representation using MMTM allows the APRV model
to re-calibrate the features of RPRI when the IMU sensor data
is noisy, or vice versa when the images are blurred, texture-
less, or are low light. Based on the experiments conducted
in [65], the best performance is achieved when the output of
half of the last modules of two uni-modal streams are fused by
MMTM modules. We insert the first MMTM module at layer
12 of the APRV model and at layer 5 of the RPRI model.
The add the second MMTM at layer 14 of APRV and layer
7 of RPRI, and the third MMTM at layer 15 of APRV and at
layer 9 of RPRI (see Figure 10). Finally, similar to the late
fusion, the combined features at the end are concatenated and
forwarded to the FC layers to regress the poses.

D. Auxiliary Learning

In the low data regime, where the main task overfits and
generalizes poorly to unseen data, learning auxiliary tasks
have proven to benefit the learning process [63]. In this work,
we use the auxiliary learning framework AuxiLearn [106] to
optimize the learning of the main task (APRV) while using
RPRI as auxiliary task. The structure of the AuxiLearn network
consists of the main network and an auxiliary network, as
shown in Figure 11. The main network is an APRV-RPRI soft
fusion network (see Section III-C2) that regresses the absolute
and relative poses separately. The main network minimizes the
losses on the main task LAPRV and the auxiliary task LRPRI . The
auxiliary network finally operates on the concatenated vector
of losses from the main task. We employ two kinds of auxiliary

networks (see Figure 11): The convolutional network variant of
the auxiliary network consists of stacked 1D convolutional lay-
ers that models the spatial relation among losses, whereas the
non-linear variant consists of stacked FC layers along with a
softplus activation function that captures complex interactions
between tasks and learns the non-linear combination of losses.
To train the auxiliary learning framework, we use the training
set (xt, yt), and the distinct, independent set (xa, ya) that
represents the auxiliary set. The weights of the main network
W are optimized on the training set (xt, yt) to minimize the
total loss

Ltotal = LAPRV(x
t, yt;W) + h(xt, yt;W;ϕ), (14)

where LAPRV is the loss of the main task, and h is the overall
auxiliary loss controlled by ϕ. The loss on the auxiliary set is
defined as LA = LAPRV(xaya;W) as we are interested in the
generalization performance of the main task. Since there is
an indirect dependence of the LA on the auxiliary parameters
ϕ, we compute the bi-level optimization [106] over the main
network’s parameters W. In practice, we simultaneously train
both, W and ϕ, by altering between optimizing W on Ltotal
and ϕ on LA.

E. Bayesian Learning

Understanding the uncertainty of a model is a crucial part
of many ML systems. Neural networks learn the powerful
representations that can map high-dimensional data to an array
of features [72], [132]. However, the mappings are often
assumed to be accurate, which is not always the case. In order
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to understand the confidence of the models’ predictions, we
use the Bayesian neural network (BNN) [71] technique, which
offers to understand the ML model’s uncertainty. Kendall et
al. [71] introduced two main kinds of uncertainty: Aleatoric
uncertainty that captures noise inherent in the training data.
Epistemic uncertainty, also known as model uncertainty, ac-
counts for uncertainty in the model parameters; this uncer-
tainty can be explained away given enough data. In this work,
we model the aleatoric uncertainty by modifying the APRV-
RPRI fusion architecture to predict both, the mean pose values
pmean and the corresponding variance σ2

p (see Figure 12). This
modification induces a new kind of minimization objective
based on the aleatoric uncertainty as

LBNN =
||p − p̂||2

2σ2
p

+
1

2
logσ2

p, (15)

where p and p̂ are the predicted and ground truth absolute
poses and σ2

p are the predicted variances. We do not need the
uncertainty labels to learn the uncertainty, rather, we only need
to supervise the learning of the pose regression by learning
the variances implicitly from the loss function. If the model
is uncertain in pose prediction (first term of Equation (15)),
the model learns to attenuate the total loss LBNN by increas-
ing the uncertainty σ2

p. The second regularization term of
Equation (15), however, prevents the network from predicting
infinite uncertainty, and thus can be thought of as ”learned
loss attenuation”. In practice, we train the network to predict
the log variance sp := logσ2

p with the loss

LBNN =
1

2
exp(−sp)||p − p̂||2 + 1

2
sp. (16)

To regress sp is more stable than to regress σ2
p that avoids

a potential division by zero and dampens the effect of log-
functions.

F. Deep Multimodal Fusion for Relative Pose Regression

In this section, we propose techniques for VI odometry by
fusing the relative pose regression models RPRV and RPRI
as discussed in Section III-A. RPRV extracts the latent repre-
sentation from two consecutive monocular images, and RPRI
extracts temporal information from the inertial data. Both
RPRV and RPRI models are supervised to regress the relative
change in pose. In order to combine the high-level features
produced by the two encoders from raw data sequences, we
perform the late fusion (Section III-C2) and intermediate
fusion (Section III-C3) of RPRV and RPRI to regress the
relative poses. Furthermore, we use the BNN [71] (Section
III-E) to model the aleatoric uncertainty in the relative pose
estimation. It is not possible to perform PGO for RPRV and
RPRI fusion since PGO aims to optimize the consecutive
absolute poses. Similarly, we cannot use the auxiliary learning
framework [106] as it involves learning two related tasks
namely, the main task of interest, while using another auxiliary
task to aid the learning of the main task.

Late Fusion. To perform late fusion, we use a similar
architecture as in Section III-C2. The fusion model takes high-
level visual features aV and inertial features aI from image

and IMU encoders, respectively. Contrarily, the visual features
input aV for the fusion model is obtained from the output of
layer Conv6, rather than being derived from the last layer of
APRV. The inertial features aI from the RPRI model remain
the same. We perform soft fusion [25] by generating a pair of
continuous masks, SRPRV and SRPRI from the visual features
aV and the inertial features aI (see Equation (10)). Finally,
the output of the fusion model gsoft is propagated further to
the FC layers to perform pose regression.

Intermediate Fusion. We utilize MMTM [65] as discussed
in Section III-C3 to perform the intermediate fusion of the
RPRV and RPRI models. We insert the first MMTM at layer 7
of RPRV and layer 5 of RPRI, the second MMTM at layer 8
of RPRV and layer 7 of RPRI, and the third MMTM at layer
9 of RPRV and layer 9 of RPRI. Finally, similar to the late
fusion, the features from the last layers of RPRV and RPRI
are concatenated and forwarded to the FC layers to regress the
relative pose.

Bayesian Learning. To model the aleatoric uncertainty in-
herent in the relative pose regression of the RPRV-RPRI fusion
model, we follow a similar method as discussed in Section
III-E. First, we modify the RPRV-RPRI fusion architecture
based on late fusion to predict both the mean relative poses
and their corresponding variances. Finally, we adapt Equation
(15) based on the aleatoric uncertainty to minimize the loss in
the pose regression as

LBNN =
1

2
exp(−s∆p)||∆p −∆p̂||2 + 1

2
s∆p. (17)

where s∆p := logσ2
∆p. ∆p and ∆p̂ are the predicted and

ground truth relative poses, and σ2
∆p is the predicted variance.

IV. DATASETS

We give details about the EuRoC MAV and PennCOSYVIO
datasets in Section IV-A, respectively in Section IV-B. We
propose our novel IndustryVI dataset in Section IV-C.

A. The EuRoC MAV Dataset
The EuRoC MAV [18] dataset was collected on-board an
MAV and was recorded in an industrial machine hall (MH)
environment and in an indoor Vicon (V) room. The dataset
contains synchronized images (from a front-down looking
stereo camera), IMU measurements, and ground truth poses
from a Leica Nova MS50 laser tracking system and a motion
capture system. Exemplary images are given in Figure 13. 11
datasets range from slow flights under good visual conditions
(MH-01, MH-02, V1-01, V2-01) to dynamic flights with poor
illumination (MH-04, MH-05) and motion blur (MH-03, V1-
02, V1-03, V2-02, V2-03). This presents a difficulty in terms
of generalizing the dataset. The size of the Vicon room
is small-scale (8m × 8.4m × 4m). Many (SLAM) methods
are evaluated on this dataset as it contains different motion
dynamics, but the dataset is not useful for many applications
(i.e., robotics or handheld devices) as it is recorded on an MAV.
The dataset contains 14,566 image and 145,660 IMU training
samples and 12,481 image and 124,810 IMU test samples. We
train on MH-01, MH-03, and MH-04 and test on MH-02 and
MH-05 for APR techniques, and cross-validate all sequences
for RPR techniques.
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Fig. 13: Exemplary images of the EuRoC MAV dataset [18]
of the machine hall (1-3) and the Vicon room (4).

Fig. 14: Images of the PennCOSYVIO dataset [112].

Fig. 15: Environment setup of the IndustryVI dataset with high
absorber walls, randomly placed objects and warehouse racks.

Fig. 16: Exemplary images with texture-less surfaces and
variations in illuminations of the IndustryVI dataset.

B. The PennCOSYVIO Dataset

The PennCOSYVIO [112] dataset was recorded with a hand-
held device at the University of Pennsylvania’s Signh center.
The device contains a stereo camera, an IMU, two Tango
devices, and three GoPro cameras. An 150m long path crosses
from outdoors to indoors. Four sequences include rapid rota-
tions, changes in lighting, repetitive structures such as large
glass surfaces, and different textures (see Figure 14). The
sequences AF and AS are for training and BF and BS are
for testing. AS and BS are recorded at slow pace, and AF and
BF at fast pace. We train and test on each pace separately.
The dataset contains 5,035 image and 50,318 IMU training
samples and 5,369 image and 53,670 IMU test samples.

C. The IndustryVI Dataset

Given that the EuRoC MAV dataset was captured in an
industrial environment but its dynamics of the MAV are
distinct from the dynamics of many robotic or handheld
systems, and the PennCOSYVIO dataset was recorded in an
environment that is different to industrial circumstances, we
have recorded a novel dataset in a large-scale industrial envi-
ronment. The environment is similar to [88], [109]. The visual-
only Warehouse [88] dataset (Industry scenario #1) was cap-
tured utilizing a (robot-like) positioning system, and its eight
diverse testing scenarios offer opportunities for assessments
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(d) Testing trajectory 2.

Fig. 17: Training and test trajectories of the IndustryVI dataset.

of generalizability, volatility, and scale transition. The visual-
only Industry scenario #2 [109] dataset allows an evaluation
for different camera angels. The visual-only Industry scenario
#3 [109] dataset was captured on a forklift truck to evaluate
for high motion dynamics. As these datasets cover only image
data, we record and publish the IndustryVI (scenario #4)
dataset. Our environment covers an area of 1, 320m2, and
contains five large black absorber walls and several smaller
objects (see Figure 15). We built a handheld device with an
Orbbec3D camera with a RGB image resolution of 640× 480
pixels and a recording frequency of 23 Hz with an integrated
IMU at 140 Hz. Exemplary images are shown in Figure 16.
We use a high-precision (< 1mm) motion capture system
for measuring reference poses at 140 Hz. We let two persons
randomly walk in the environment. Trajectories are shown in
Figure 17, where training (a) and testing (c) trajectory 1 is
from person 1, and training (b) and testing (d) trajectory 2
is from person 2. This results in a total of 55,973 image
and 340,620 IMU training samples and 13,990 image and
85,120 IMU test samples. We cross-validate the training and
test trajectories. This allows an evaluation between different
motion dynamics in a large-scale environment with texture-
less ambiguous elements.

V. EXPERIMENTAL RESULTS

Hardware & Training Setup. For all experiments, we
use Nvidia Tesla V100-SXM2 GPUs with 32 GB VRAM
equipped with Core Xeon CPUs and 192 GB RAM. We use
the Adam optimizer with a learning rate of 10−4. We run each
experiment for 1,000 epochs with a batch size of 50 and report
results for the best epoch.

Evaluation Metrics. For the evaluation of the APR, we
report the median absolute position emed,p in m and the median
absolute orientation emed,q in ◦, and the median relative posi-
tion ∆emed,p in ∆m and the median relative orientation ∆emed,q
in ∆◦. As the global consistency of the estimated trajectory
is an important quantity and to compare our relative pose pre-
diction with state-of-the-art techniques, we additionally report
the absolute trajectory error (ATE) by aligning the estimated
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TABLE III: Median absolute p(m/◦) and relative ∆p(∆m/∆◦) pose estimation results for the EuRoC MAV [18] dataset.

Bold are best (min) results. MH-02-easy MH-04-difficult
. . . . . . . .Dotted are worst (max) results. p(m/◦) ∆p(∆m/∆◦) p(m/◦) ∆p(∆m/∆◦)

Method emed,p emed,q ∆emed,p ∆emed,q emed,p emed,q ∆emed,p ∆emed,q
APRV: PoseNet [132] . . . . . . . .0.9249 3.1718 - - 0.9405 3.1086 - -
RPRI: IMUNet [36] - - 0.0276 0.0741 - - 0.0310 0.1073
MapNet [14] 0.9859 3.1879 - - 0.9905 . . . . . . . .3.1898 - -
MapNet+PGO [14] 0.9435 3.1656 - - 0.9690 3.1156 - -
APRV-RPRI+PGO [50] 0.6914 3.1050 0.0350 0.4124 0.7211 3.1532 0.0352 0.4111
Late Fusion (concat) 0.9079 3.1232 0.0381 0.6801 0.9777 3.1134 0.0483 0.5832
Late Fusion (concat) + BiLSTM 0.7902 3.1452 0.0299 0.5062 0.8391 3.1164 0.0471 0.5604
Late Fusion (SSF) [25] 0.9739 3.1744 . . . . . . . .0.0567 . . . . . . . .0.6850 0.9254 3.1164 0.0453 . . . . . . . .0.9805
Late Fusion (SSF) [25] + BiLSTM 0.8114 3.1538 0.0296 0.5670 0.7862 3.1277 0.0240 0.5690
MMTM [65] (3 modules) 0.8356 3.1782 0.0194 0.0601 . . . . . . . .1.1218 3.1207 0.0202 0.0800
AuxiLearn (non-linear) [106] 0.8612 3.0266 0.0371 0.5671 0.7979 3.0996 . . . . . . . .0.0631 0.5851
AuxiLearn (convolutional) [106] 0.9050 . . . . . . . .3.1984 0.0371 0.5561 0.8711 3.1047 0.0612 0.5873
BNN [71] + Late Fusion 0.7925 3.1878 - - 0.8523 3.0285 - -

TABLE IV: Median absolute p(m/◦) and relative ∆p(∆m/∆◦) pose estimation results for the PennCOSYVIO [112] dataset.

Bold are best (min) results. BF BS
. . . . . . . .Dotted are worst (max) results. p(m/◦) ∆p(∆m/∆◦) p(m/◦) ∆p(∆m/∆◦)

Method emed,p emed,q ∆emed,p ∆emed,q emed,p emed,q ∆emed,p ∆emed,q
APRV: PoseNet [132] 1.8210 3.1129 - - 1.4125 3.1411 - -
RPRI: IMUNet [36] - - 0.1091 . . . . . . . .1.0573 - - 0.0393 0.5714
MapNet [14] 3.3017 3.1146 - - 3.2557 3.1317 - -
MapNet+PGO [14] . . . . . . . .3.4130 3.1211 - - . . . . . . . .3.8911 3.1412 - -
APRV-RPRI+PGO [50] 2.5563 3.1016 0.0402 0.7134 2.3142 3.1360 0.0200 0.7099
Late Fusion (concat) 2.2365 3.1028 0.0385 0.8305 2.0696 3.1390 . . . . . . . .0.1013 0.9348
Late Fusion (concat) + BiLSTM 1.6543 3.0962 0.0281 0.8162 1.7389 3.1309 0.0974 1.0773
Late Fusion (SSF) [25] 1.8693 3.1021 0.0321 0.8213 1.6552 3.1356 0.0863 0.8762
Late Fusion (SSF) [25] + BiLSTM 1.1249 3.1037 0.0180 0.7571 1.2341 3.1287 0.0291 0.8123
MMTM [65] (3 modules) 1.0557 . . . . . . . .3.1378 0.0328 0.6695 1.1980 3.1008 0.0976 0.9073
AuxiLearn (non-linear) [106] 1.5402 3.0944 0.0410 1.0195 1.3008 3.1397 0.0525 1.0881
AuxiLearn (convolutional) [106] 1.8931 3.1098 0.0451 1.0220 1.8964 3.1401 0.1006 . . . . . . . .1.1020
BNN [71] + Late Fusion 2.1110 3.1136 - - 1.6569 . . . . . . . .3.1450 - -

trajectory P1:n and the ground truth trajectory Q1:n using the
method of Horn [55]. The ATE at time step i can be computed
as Fi := Q−1

i SPi with the rigid-body transformation S
corresponding to the least-squares solution that maps P1:n

onto Q1:n. Next, we compute the root mean squared error
over all time steps of the translational components by

eATE,p(F1:n) :=
( 1

n

n∑

i=1

||trans(Fi)||2
) 1

2

. (18)

To compare our RPR results with the results proposed by [25],
[36], we use the absolute translational error (ATLE) [36] for
the position ∆eATLE,p in m.

A. Evaluation of APRV-RPRI Fusion Methods

We provide a quantitative evaluation of all APRV-RPRI fusion
methods for the EuRoC MAV (Table III), the PennCOSYVIO
(Table IV), and the IndustryVI (Table V) datasets. For an
overview of APR trajectory comparisons, see Figure 22 to
Figure 27 in the appendix.

Baseline Results, MapNet, and PGO. We evaluate the
results for MapNet [14], PGO, and PGO for APRV-RPRI
fusion, and compare the results to the baseline methods.
The APRV baseline yields proper results of 0.9249m and
0.9405m on the small-scale environment of EuRoC MAV, and
RPRI yields small errors of 2.76cm and 3.1cm (even at fast
dynamics of the MAV). This increases for the large-scale area
of PennCOSYVIO and IndustryVI. The relative error of RPRI

(below 3.0cm) is low for the fast movements of the IndustryVI
dataset. While MapNet and MapNet+PGO (see Section III-B1)
increase the APRV baseline results for the EuRoC MAV and
PennCOSYVIO datasets and most sequences of the IndustryVI
dataset, our implementation of APRV-RPRI fusion utilizing
PGO (see Section III-B2) yields notably lower results on the
EuRoC MAV dataset (e.g., 0.6914m on the MH-02 sequence
compared to 0.9249m of APRV-only) and the train 2 dataset of
IndustryVI. For the PennCOSYVIO dataset, the APRV-RPRI
fusion utilizing MapNet+PGO cannot outperform PoseNet.
This contradicts the results of MapNet and MapNet+PGO
on the 7-Scenes [125] dataset proposed in [14], where Map-
Net+PGO significantly improves the PoseNet results. Given
that MapNet and MapNet+PGO are time-distributed networks,
it is possible to enhance their performance by increasing the
training time steps and incorporating larger skip sizes between
consecutive images.

Late Fusion (Concatenation). Next, we evaluate the late
fusion of APRV-RPRI utilizing concatenation with and without
BiLSTM layers (see Section III-C1). For the EuRoC MAV
dataset, the concatenation improves the APRV-only model for
the MH-02 sequence, but decreases for the MH-04 sequence.
The concatenation with BiLSTM layers can notably reduce
the absolute pose results, but cannot outperform the APRV-
RPRI+PGO [50] fusion, while the relative position results
marginally decrease. For the PennCOSYVIO dataset, the late
fusion decreases the model performance for the BF and BS
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TABLE V: Median absolute p(m/◦) and relative ∆p(∆m/∆◦) pose estimation results for the IndustryVI dataset.

Bold are best (min) results. Train 1, Test 1 Train 1, Test 2 Train 2, Test 1 Train 2, Test 2
. . . . . . .Dotted are worst (max) results. p(m/◦) ∆p(∆m/∆◦) p(m/◦) ∆p(∆m/∆◦) p(m/◦) ∆p(∆m/∆◦) p(m/◦) ∆p(∆m/∆◦)

Method emed,p emed,q ∆emed,p ∆emed,q emed,p emed,q ∆emed,p ∆emed,q emed,p emed,q ∆emed,p ∆emed,q emed,p emed,q ∆emed,p ∆emed,q

APRV: PoseNet [132] 1.8231 9.6742 - - 1.6429 7.8564 - - . . . . . . .1.9345 6.2314 - - 1.6438 7.3452 - -
RPRI: IMUNet [36] - - 0.0300 0.8867 - - 0.0295 0.7743 - - 0.0278 0.6134 - - 0.0265 0.9641
MapNet [14] . . . . . . .1.9012 . . . . . . .10.120 - - 1.8990 8.1803 - - 1.9019 6.9678 - - . . . . . . .1.6891 8.4012 - -
MapNet+PGO [14] 1.8865 9.9905 - - 1.8126 7.9078 - - 1.8991 6.9120 - - 1.6694 8.1021 - -
APRV-RPRI+PGO [50] 1.8681 9.8901 . . . . . . . .0.0481 0.9841 1.7106 7.1193 . . . . . . . .0.0458 0.7925 1.8379 6.2731 . . . . . . . .0.0419 0.9251 1.6234 7.8351 0.0413 0.9811
Late Fusion (concat) 1.8945 9.8976 0.0342 . . . . . . . .0.9995 . . . . . . .1.9016 . . . . . . .8.2087 0.0335 0.8121 1.8154 7.7210 0.0400 1.1301 1.5342 . . . . . . .8.6910 0.2107 1.2004

+ BiLSTM 1.6014 5.1032 0.0301 0.9012 1.6521 5.8724 0.0271 0.8610 1.6231 6.0013 0.0242 0.9221 1.3092 6.0123 0.0254 0.7449
Late Fusion (SSF) [25] 1.7613 9.5848 0.0315 0.9491 1.8616 7.1069 0.0321 0.7867 1.7823 7.3210 0.0381 . . . . . . . .1.2031 1.5005 8.2451 0.1097 . . . . . . . .1.3164

+ BiLSTM 1.5875 5.2016 0.0214 0.9823 1.5216 5.7630 0.0260 0.7967 1.6823 5.4601 0.0278 0.9231 1.3215 5.0291 0.0257 0.9164
MMTM [65] (3 modules) 1.6550 5.2045 0.0374 0.8179 1.5775 5.8832 0.0443 . . . . . . . .1.0797 1.7836 5.6034 0.0378 0.9709 1.4840 5.2451 0.0401 0.8726
AuxiLearn (non-linear) [106] 1.6845 6.2312 0.0310 0.9931 1.6140 5.8834 0.0312 0.8127 1.6941 5.8848 0.0305 1.0867 1.3341 5.0221 0.0213 0.8934
AuxiLearn (convol.) [106] 1.8180 9.7841 0.0332 0.9836 1.9011 8.3024 0.0367 0.8651 1.7983 6.9812 0.0361 1.1331 1.5670 7.8938 . . . . . . . .0.2207 1.1956
BNN [71] + Late Fusion 1.7956 9.7547 - - 1.7691 8.1268 - - 1.8251 . . . . . . .7.3289 - - 1.5476 7.8751 - -

TABLE VI: Intermediate APRV-RPRI fusion using MMTM [65] with separate model optimization for the EuRoC MAV [18]
dataset. While “F” indicates the layer with MMTM fusion (see Section III-C3), ”–” indicates no fusion. For a visualization,
see Figure 37 in the appendix. Bold are best results. Underlined are second best results.

MH-02-easy MH-04-difficult
p(m/◦) ∆p(∆m/∆◦) p(m/◦) ∆p(∆m/∆◦)

MMTM emed,p eATE eATLE emed,q ∆emed,p eATE eATLE ∆emed,q emed,p eATE eATLE emed,q ∆emed,p eATE eATLE ∆emed,q
(F – –) 0.8399 3.2603 0.3111 3.1980 0.0205 1.7572 0.0691 0.0661 1.1084 3.9618 0.4497 3.1156 0.0249 3.7785 0.0661 0.0818
(– F –) 0.9512 3.2789 0.3114 3.1940 0.0219 2.0637 0.0705 0.0645 1.1098 4.3766 0.4439 3.1937 0.0253 3.2841 0.0649 0.0751
(– – F) 0.8743 2.5593 0.5797 3.1795 0.0207 2.0813 0.0693 0.0708 1.0619 3.8419 0.7398 3.1047 0.0244 3.6690 0.0658 0.0686
(F F –) 0.9199 3.3279 0.2792 3.1689 0.0213 1.3248 0.0696 0.0661 1.0592 4.1632 0.4205 3.1400 0.0250 3.4385 0.0661 0.0782
(F – F) 0.9601 3.3041 0.3090 3.1483 0.0204 1.5077 0.0710 0.0648 1.0994 4.3420 0.3548 3.1468 0.0227 4.3420 0.0658 0.0771
(– F F) 0.8609 3.3352 0.2897 3.1997 0.0210 1.8346 0.0699 0.0644 1.0996 3.4948 0.3714 3.1664 0.0243 3.4948 0.0638 0.0707
(F F F) 0.8356 2.9978 0.5182 3.1812 0.0194 1.9925 0.0680 0.0601 1.0997 3.5267 0.7560 3.1607 0.0202 2.9733 0.0642 0.0800

sequences, while adding the BiLSTM layers improves the
performance for the BF sequence, and hence, outperform
the APRV-only baseline model. Concatenation with BiLSTM
layers proves to be effective for the IndustryVI datasets and
outperforms all fusion techniques in terms of performance on
the train 1 and test 1, train 2 and test 1, and train 2 and test 2
sequences. This demonstration reveals that the straightforward
method of concatenating the high-level features does not prove
effective in acquiring a meaningful representation between
the APR and RPR tasks. The enhancement in performance
resulting from the addition of BiLSTM layers underscores the
importance of modeling temporal dependencies in achieving
successful outcomes for the pose regression tasks. Overall, the
error increases for the IndustryVI dataset when training on
person 2 and testing on person 1 (increase of position error)
and vice versa (increase of orientation error). A good fusion
technique can accomodate this, e.g., here, concatenation with
BiLSTM.

Late Fusion (SSF). We evaluate the soft fusion approach of
SSF [36] as a late fusion method (see Section III-C2). Similar
for the late fusion method with concatenation, the BiLSTM
layers are a crucial part for the SSF approach. The adoption
of SSF and BiLSTM layers leads to a substantial reduction
of the aboslute position error compared to the APRV-only
baseline model for all three datasets. For example for the
PennCOSYVIO BF dataset, SSF with BiLSTM yields a low
absolute position error of 1.1249m, but can still significantly
reduce the relative position error from 10.9cm to 1.8cm and the
relative orientation error from 1.057◦ to 0.757◦. This approach
demonstrates superior or comparable results compared to the

fusion technique based on concatenation. This highlights the
significance of proper feature selection, rather than merely
concatenating high-level features.

MMTM. The intermediate fusion method based on
MMTM [65] learns a joint representation between APRV and
RPRI. We train the fusion architecture with seven different
combinations of MMTM modules (for details on the fusion
layers, see Section III-C3). For the number of trainable model
parameters, see Table VIII in the appendix. It is evident that
the number of trainable parameters increases as we increase
the number of MMTM modules. Table VI summarizes the
results for the seven combinations on the EuRoC MAV dataset.
The combinations (– – F), (F F –), (F – F), and (F F
F) yield comparable results on the EuRoC MAV dataset,
while the best and consistent model performances on all three
datasets are achieved using the (F F F) combination of three
MMTM modules. Consequently, we select the combination of
three MMTM modules for the results presented in Tables III
to V. For the EuRoC MAV dataset, MMTM (3 modules)
decreases the APR results while yielding the best RPR results
on the MH-02 sequence. At the expense of the APR error,
the RPR error also decreases for MH-04 against the RPRI
baseline. In addition, MMTM yields the best results for
the PennCOSYVIO dataset. Our conclusion is that despite
being developed for hand gesture recognition, human activity
recognition, and audio-visual speech fusion, MMTM proves
to be an effective module for learning a joint representation
between networks even in the context of the challenging task
of fusing APR and RPR.

Auxiliary Learning. Next, we evaluate the AuxiLearn [106]
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TABLE VII: RPRV-RPRI results given in ∆m and ∆◦. Bold are best results. Underlined are the best RPR baseline results.

EuRoC MAV [18] PennCOSYVIO [112] IndustryVI
MH-02 MH-04 V1-03 V2-02 V1-01 BF BS Test 1 Test 2

Method ∆emed,p ∆emed,q ∆emed,p ∆emed,q ∆emed,p ∆emed,q ∆emed,p ∆emed,q ∆emed,p ∆emed,q ∆emed,p ∆emed,q ∆emed,p ∆emed,q ∆emed,p ∆emed,q ∆emed,p ∆emed,q

RPRV: FlowNet [37] 0.0155 0.013 0.0223 0.114 0.0289 0.359 0.0277 0.360 0.0171 0.215 0.0256 0.336 0.0322 0.505 0.0261 0.801 0.0254 0.864
RPRI: IMUNet [36] 0.0222 0.069 0.0261 0.084 0.0306 0.145 0.0320 0.140 0.0212 0.082 . . . . . . . .0.1091 1.057 0.0393 0.571 0.0295 0.810 0.0290 0.861
Late Fusion (concat) 0.0161 0.103 0.0247 0.099 0.0284 0.211 0.0286 0.206 0.0171 0.121 0.0257 0.348 0.0384 0.479 0.0278 0.829 0.0255 0.865

+ BiLSTM 0.0137 0.123 0.0189 0.122 0.0261 0.325 0.0254 0.330 0.0159 0.187 0.0249 0.328 0.0353 0.464 0.0231 0.779 0.0201 0.787
Late Fusion (SSF) [25] 0.0166 0.079 0.0234 0.088 0.0276 0.200 0.0273 0.215 0.0160 0.116 0.0261 0.343 0.0371 0.498 0.0294 0.860 0.0310 0.886

+ BiLSTM 0.0137 0.090 0.0193 0.088 0.0271 0.276 0.0245 0.280 0.0152 0.134 0.0260 0.319 0.0355 0.442 0.0282 0.795 0.0284 0.783
MMTM [65] 0.0121 0.073 0.0181 0.083 0.0268 0.185 0.0222 0.179 0.0138 0.107 0.0255 0.458 0.0367 0.697 0.0256 0.758 0.0248 0.860

framework (see Section III-D), i.e., the non-linear and convo-
lutional variants. We use the SSF architecture as the main
network to optimize the main APRV task. For all datasets, the
non-linear variant yields better results than the convolutional
variant. Therefore, it is crucial to model the intricate connec-
tions between the APRV and RPRI loss functions utilizing
a non-linear layer instead of the spatial relationship, which
is modeled through the convolutional layer of the auxiliary
network. The efficacy of the AuxiLearn model in comparison
to the baseline models is contingent upon the sequences.
While for MH-02, MH-04, and BS, the APR results increase,
the RPR results decrease. The trend is comparable for the
IndustryVI dataset. It can be deduced that the RPRI task serves
as a suitable auxiliary task for enhancing the main APRV
task, albeit at the cost of a decreased performance on the
RPRI task. Conversely, the main task does not have a positive
impact on the auxiliary task. Therefore, AuxiLearn may prove
beneficial for specific self-localization applications that place
a significant emphasis on the absolute pose.

Bayesian Neural Networks. The BNN [71] models the
aleatoric uncertainty for the APRV task (see Section III-E).
We train the fusion model utilizing the modified loss function
in Equation (15). The performance of the BNN is superior
to the baseline APRV model for the EuRoC MAV dataset,
evidenced by a reduction in error from 0.9249m to 0.7925m
and from 0.9405m to 0.8523m. Additionally, the BNN demon-
strated improved performance for the majority of evaluation
sequences of the IndustryVI dataset. However, its performance
deteriorates for the PennCOSYVIO dataset. Interestingly, the
predicted trajectories are unique and smoother for both the
EuRoC MAV dataset (see Figure 22f and Figure 23f in the
appendix) and for the IndustryVI dataset. This indicates that
the BNN has learned to reduce the variance of the mean
prediction values. For the PennCOSYVIO dataset, we observe
that the prediction are worse inside the building (as seen in the
upper-right part of the Figure 24f and Figure 25f), particularly
in regions where the images feature repetitive patterns of
extensive glass walls. This phenomenon is also substantiated
by the high levels of aleatoric uncertainty present in these areas
(see Figure 39). As a result, Bayesian learning may serve as
a tool for interpreting complex images, for example, images
with difficult illuminations (see Figure 40) or reflective pattern
(see Figure 41) can be detected.

B. Evaluation of RPRV-RPRI Fusion Methods
We provide quantitative results for the RPRV-RPRI fusion
task on the EuRoC MAV, PennCOSYVIO, and IndustrialVI

datasets in Table VII. For an overview of RPR trajectory
comparisons, see Figure 28 to Figure 36 in the appendix. As
the RPR task is independent of the scene geometry, we utilize
all training sequences from both scenes (MH and V) of the Eu-
RoC MAV dataset (i.e., MH-01, MH-03, MH-05, V1-02, V2-
01, and V2-03) and test on the MH-02, MH-04, V1-01, V1-
03, and V2-02 sequences. Hence, the training dataset is large
to cover all movement patterns and dynamics of the MAV,
while the testing datasets cover the large machine hall and the
small living room with different object configurations. First,
we evaluate the baseline models FlowNet [37] for the RPRV
task and IMUNet [36] for the RPRI task. It is noteworthy that
the RPRV model produces superior relative translational results
on the EuRoC MAV dataset, while the RPRI model yields
superior relative orientational results. On the PennCOSYVIO
dataset, the RPRV model outperforms the RPRI model. This
shows that the IMU measurements contain a high sensor noise,
while the RPRV model is robust to fast movement changes
(of the MAV and of the handheld system). The objective
is to merge the advantageous translational predictions of the
RPRV model with the advantageous rotational prediction of the
RPRI model (for the EuRoC MAV dataset), or to selectively
choose favorable predictions from the RPRI model (for the
PennCOSYVIO dataset).

Late Fusion (Concatenation). The combination of con-
catenation with BiLSTM layers can partially enhance the
RPR results, particularly for the Vicon datasets within the
EuRoC MAV dataset and for the IndustryVI datasets. In
contrast, the performance of the late fusion model decreases
on the machine hall sequences. Consequently, similar to the
APRV-RPRI fusion task of the model with concatenation and
BiLSTM layers, the performance of the late fusion model is
also improved by incorporating BiLSTM layers after fusion to
capture temporal dependencies.

Late Fusion (SSF). Soft fusion of RPRV and RPRI (see
Section III-C2) is only marginally different from the late fusion
model with cancatenation with a small improvement in the
RPR errors. As previously, the performance of the SSF model
improves for all datasets by incorporating BiLSTM layers after
the fusion. For the EuRoC MAV and IndustrialVI datasets,
SSF with BiLSTM layers outperforms both baseline models
on all sequences. In the context of PennCOSYVIO, it exhibits
superior performance compared to the RPRI baseline model.
However, it is unable to surpass the translational performance
of the RPRV model for both sequences.

MMTM. As for the APRV-RPRI fusion, we assess the seven
different layer combinations of MMTM for the RPRV-RPRI
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(a) Uncorrupted
image.

(b) Image with
added noise.

(c) Image with
blur.

(d) Image with
noise and blur.

(e) Image with full
patch.

(f) Image with
rectangular patch.

(g) Random corre-
sponding image.

Fig. 18: Image corruption techniques. The original image of the EuRoC MAV [18] dataset is shown in (a).
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(b) Fusion of RPRV and RPRI.

Fig. 19: Number of sigmoid activations higher than 0.5 for APRV and RPRV methods (blue) and RPRI methods (orange)
evaluating the third layer for the MMTM module for different image corruption techniques.

fusion (see Table VI). The model featuring three MMTM
modules (F F F) for the joint representation exhibits the
optimal performance. These results are consistent with the
experiments and findings presented by [65]. We note that the
fusion with three MMTM modules reduces the translational
error of the baseline and fusion techniques on the EuRoC MAV
datasets. However, there is not a substantial improvement for
the PennCOSYVIO and IndustrialVI datasets.

C. Network Activation Mask Evaluation

In this section, we evaluate the network masks (i.e., the
sigmoid activation function outputs) of the MMTM modules
in the APRV-RPRI and RPRV-RPRI fusion tasks. We visualize
pairs of the continuous masks EA and EB as shown in
Figure 9, which depict the feature selection mechanism of
the features extracted from the visual and inertial encoders
prior to their transmission to the temporal modeling and
pose regression. The sigmoid activations ensures that each
feature channel is re-weighted within the range of [0, 1] based
on its significance at a particular time step. To accomplish
this, we corrupt the image input, as depicted in Figure 18a,
and apply five distinct corruptions: image with Salt&Pepper
noise (Figure 18b), blurred image (Figure 18c), full occlu-
sion (Figure 18e), partial occlusion with a rectangular patch
(Figure 18f), and selecting a random corresponding image
for RPRV (Figure 18g). This encompasses a range of real-
time scenarios, including fast rotations, occlusions, and low-
light conditions. Figure 19 provides the number of sigmoid
activations that are higher than 0.5 for the APRV, RPRV,
and RPRI regression tasks for all image corruptions. With
regards to the APRV-RPRI fusion task (see Figure 19a),
the number of sigmoid activations decreases for the image

encoder and increases for the inertial encoder for varying
image corruptions. This demonstrates that the fusion model
progressively relies on the inertial data with an increasing
level of image corruption. For the RPRV-RPRI fusion model,
we corrupt one of the two input images that correspond to
each other. We provide the number of sigmoid activations in
Figure 19b. The number of activations of the RPRV model
decreases for all image corruptions, while the number of acti-
vations increases of the RPRI model. Particularly, as the level
of noise increases (e.g., compare the number of activations
for Salt&Pepper noise with the number of activations for
the combination of image blur and Salt&Pepper noise), the
fusion model becomes more reliant on the inertial encoder.
This phenomenon can also be observed when comparing the
combination of image blur and partial occlusion or for the
combination of image blur and complete occlusion to complete
occlusion alone. Upon the comparison of the APRV-RPRI
fusion with the RPRV-RPRI fusion, it can be observed that
the RPRV model contains higher activations compared to the
APRV model. This is due to the increased reliability of the
model resulting from the use of two consecutive images, rather
than just a single image. Subsequently, we directly visualize
the feature selection masks of the MMTM module employed
in the APRV-RPRI (see Figure 20) and in the RPRV-RPRI (see
Figure 21) for various image corruptions. The fusion networks
learn to assign a greater weight to the inertial features when
the images are degraded (as evidenced by the thick green lines
of the RPRI model compared to the APRV and RPRV models).
This highlights that the networks have learned to place more
importance on a complementary sensor in order to perform the
regression task in the presence of a challenging image input.
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(a) Without disruption.

(b) Blur.

(c) Blur and Salt&Pepper noise.

(d) Salt&Pepper noise.

(e) Partial occlusion.

(f) Complete occlusion.

Fig. 20: Activations for the third MMTM module for different
image corruption techniques for APRV (left) and RPRI (right).

VI. CONCLUSION

We investigated deep multimodal fusion between the visual
APR task supported with inertial RPR and between the visual-
inertial RPR tasks. As baseline models, we utilized PoseNet
for APRV, IMUNet for RPRI, and FlowNet for RPRV. In
ordr to attain globally consistent pose predictions during
interference, we analyzed and compared various techniques
including MapNet, pose graph optimization, late fusion tech-
niques such as concatenation and selective sensor fusion with
BiLSTM layers, intermediate fusion with transfer modules,
auxiliary learning, and Bayesian learning. Our assessments
on the EuRoC MAV aerial vehicle dataset, the handheld
PennCOSYVIO dataset, and our novel large-scale IndustryVI
indoor dataset serve as a comprehensive benchmark for the
robustness of fusion techniques across various challenging
environments and motion dynamics. In conclusion, the results
and key findings can be succinctly summarized as follows: (1)
The APRV-RPRI+PGO approach and the intermediate fusion
with the MMTM technique demonstrate superiority over other
techniques for the APRV-RPRI task on the EuRoC MAV
dataset. These methods exhibit an improved capacity for gen-
eralization on the dataset with smoother predicted trajectories.
(2) Selective sensor fusion and fusion with MMTM exhibit
superiority on the PennCOSYVIO and IndustryVI datasets.
(3) In addition, the MMTM fusion technique yields the highest
performance on the RPRV-RPRI task. (4) Fusing three MMTM
modules is more advantageous than fusing one or two MMTM
modules as it results in a more generalized representation
between both modalities. (5) For all the datasets, the non-
linear-based auxiliary learning approach enhances the perfor-
mances of the main task. (6) The estimation of aleatoric un-
certainty using Bayesian networks provides valuable insights
into the model’s robustness against challenging images. (7)

(a) Without disruption.

(b) Blur.

(c) Blur and Salt&Pepper noise.

(d) Salt&Pepper noise.

(e) Partial occlusion.

(f) Complete occlusion.

(g) Blur and partial occlusion.

(h) Blur and complete occlusion.

Fig. 21: Activations for the third MMTM module for different
image corruption techniques for RPRV (left) and RPRI (right).

We examined the network activations by subjecting the image
inputs to various disruption techniques. Upon increasing the
image corruption, the number of high softmax activations
in the visual model increased, whereas the number in the
inertial model decreased, indicating higher reliability on the
inertial model for challenging images. (8) The IMU bias
has a considerable impact on the performance of RPR-only
methods, as evidenced by the deviation of the trajectories in
the appendix, while the relative pose – even with its inherent
noise – can still be effectively utilized to smooth the absolute
trajectory.
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(a) APRV: PoseNet [72]. (b) MapNet+PGO [14]. (c) APRV-RPRI+PGO.

(d) SSF [25] + BiLSTM. (e) Auxiliary learning (non-linear) [106]. (f) Bayesian network [71].

Fig. 22: APRV-RPRI fusion on EuRoC MAV [18]: MH-02-easy.

(a) APRV: PoseNet [72]. (b) MapNet+PGO [14]. (c) APRV-RPRI+PGO.

(d) SSF [25] + BiLSTM. (e) Auxiliary learning (non-linear) [106]. (f) Bayesian network [71].

Fig. 23: APRV-RPRI fusion on EuRoC MAV [18]: MH-04-difficult.
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(a) APRV: PoseNet [72]. (b) MapNet+PGO [14]. (c) APRV-RPRI+PGO.

(d) Soft Fusion [25] with LSTM. (e) Auxiliary learning (non-linear) [106]. (f) Bayesian network [71].

Fig. 24: APRV-RPRI fusion on PennCOSYVIO [112]: BF.

(a) APRV: PoseNet [72]. (b) MapNet+PGO [14]. (c) APRV-RPRI+PGO.

(d) SSF [25] + BiLSTM. (e) Auxiliary learning (non-linear) [106]. (f) Bayesian network [71].

Fig. 25: APRV-RPRI fusion on PennCOSYVIO [112]: BS.
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(a) APRV: PoseNet [72]. (b) MMTM [65]. (c) SSF [25] + BiLSTM.

Fig. 26: APRV-RPRI fusion on IndustyVI: Testing trajectory 1.

(a) APRV: PoseNet [72]. (b) MMTM [65]. (c) SSF [25] + BiLSTM.

Fig. 27: APRV-RPRI fusion on IndustyVI: Testing trajectory 2.

(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 28: RPRV-RPRI fusion on EuRoC MAV [18]: MH-04-difficult.
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(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 29: RPRV-RPRI fusion on EuRoC MAV [18]: MH-01-easy.

(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 30: RPRV-RPRI fusion on EuRoC MAV [18]: V1-03-difficult.

(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 31: RPRV-RPRI fusion on EuRoC MAV [18]: V1-01-easy.

(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 32: RPRV-RPRI fusion on EuRoC MAV [18]: V2-02-Medium.
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(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 33: RPRV-RPRI fusion on PennCOSYVIO [112]: BF.

(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 34: RPRV-RPRI fusion on PennCOSYVIO [112]: BS.

(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 35: RPRV-RPRI fusion on IndustryVI: Testing Sequence 1.

(a) RPRI: IMUNet [36]. (b) RPRV: FlowNet [37]. (c) SSF [25] + BiLSTM. (d) MMTM [65].

Fig. 36: RPRV-RPRI fusion on IndustryVI: Testing Sequence 2.
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TABLE VIII: We summarize the number of trainable parameters for the baseline and fusion models. While “F” indicates the
layer with MMTM fusion (see Section III-C3), ”–” indicates no fusion. While the IMUNet is a small network with 961,031
parameters, PoseNet (7.7 million) and FlowNet (16.7 million) are significantly larger in size and require more computing time.
The number of parameters decreases by combining the APRV or RPRV models with the RPRI model for the late fusion, as
the last model layers are removed. By adding BiLSTM layers, the model size increases.

Method # Parameters # Parameters
Baseline Models
APRV (PoseNet) 7,713,447 -
RPRI (IMUNet) 961,031 961,031
RPRV (FlowNet) - 16,715,520

# Parameters # Parameters
Method APRV-RPRI RPRV-RPRI

Fusion Models
MapNet+PGO 7,713,447 -
APRV-RPRI+PGO 7,304,238 -
Late Fusion (concat) 6,726,830 15,654,727
Late Fusion (concat) + BiLSTM 7,304,238 16,315,079
Late Fusion (SSF) 6,792,622 15,671,239
Late Fusion (SSF) + BiLSTM 7,320,750 16,331,591
Intermediate Fusion:

MMTM (F/–/–) 8,489,614 16,906,055
MMTM (–/F/–) 8,489,614 16,906,055
MMTM (–/–/F) 8,944,558 17,955,399
MMTM (F/F/–) 9,674,990 17,497,031
MMTM (–/F/F) 10,129,934 18,546,375
MMTM (F/–/F) 10,129,934 18,546,375
MMTM (F/F/F) 11,315,310 19,137,351

Auxiliary (non-linear) 7,320,769 -
Auxiliary (convolutional) 7,320,948 -
Bayesian network 7,320,750 16,322,453
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(a) MH-02-easy.
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Fig. 37: Evaluation of various fusion combinations of MMTM modules for the EuRoC MAV [18] dataset. While “F” indicates
the layer with MMTM fusion (see Section III-C3), ”–” indicates no fusion.
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(a) EuRoC MAV [18]: MH-02-easy. [118] (b) EuRoC MAV [18]: MH-04-difficult. [118]

Fig. 38: Plot of the aleatoric uncertainty for the absolute pose prediction. We plot a dashed line from the predictions to the
ground truth trajectory. Note the increased uncertainty for the middle left part of Figure a) and top left part of Figure b).
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Fig. 39: Plot of the aleatoric uncertainty for the absolute pose prediction. Note the increased uncertainty for the top right part.
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(a) EuRoC MAV [18]: MH-02-easy.

(b) EuRoC MAV [18]: MH-04-difficult.

Fig. 40: Exemplary images with a corresponding high uncertainty computed with the Bayesian model [71]. From [118].

(a) PennCOSYVIO [112]: BF.

(b) PennCOSYVIO [112]: BS.

Fig. 41: Exemplary images with a corresponding high uncertainty computed with the Bayesian model [71]. From [118].
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TABLE IX: Evaluation results on the EuRoC MAV [18] dataset and comparison to state-of-the-art techniques. Absolute
trajectory error (ATE) eATE,p [131] calculated with [55]. Bold are best results.
At present, there is a plethora of visual odometry (VO) and inertial odometry (IO) techniques available, which primarily utilize
the EuRoC MAV dataset for performance evaluation. Given the absence of a comprehensive survey comparing the results of
all techniques, we present a summary of their results in Table IX and compare it with the results obtained from our RPRI
and RPRV techniques using the absolute trajectory error (ATE) eATE,p metric (see Section V). The EuRoC MAV dataset is
cross-validated and evaluated on all testing sequences. The current state-of-the-art techniques employ alternative optimization
strategies and exhibit improved performance on the EuRoC MAV dataset. ORB-SLAM [101] outperforms other methods on
the MH-01, MH-02, MH-03, MH-04, V1-01, and V2-01 datasets, while ORB-SLAM2 [102] yields low ATE results on teh
MH-05, V1-03, and V2-02 datasets. The variance of results of various methods is very high. The utilization of a stereo camera
has a significant impact, as evidenced by the significant improvement in the results of LSD-SLAM [40]. In addition, Qin et
al. [116] improve the method that combines monocular images with IMU data by enhancing the method with stereo images.
Our deep learning-based techniques are optimized based on the relative positional error, resulting in favorable performance
as evaluated through the median relative metrics. However, it should be noted that the error increases when evaluated using
the ATE metric. Comparing the results of IMUNet [36] for RPRI and FlowNet [37] for RPRV with the fusion techniques,
wither FlowNet (MH-01 and V1-01), late fusion utilizing SSF [25] and BiLSTM layers (V1-03 and V2-02), and particularly
MMTM [65] (on the remaining sequences) yield the lowest ATE error.

Method MH-01 MH-02 MH-03 MH-04 MH-05 V1-01 V1-02 V1-03 V2-01 V2-02 V2-03
Hong et al. [54] 0.14 0.13 0.20 0.22 0.20 0.05 0.07 0.16 0.04 0.11 0.17
SVO + MSF [41] 0.14 0.20 0.48 1.38 0.51 0.40 0.63 - 0.20 0.37 -
OKVIS [78] 0.16 0.22 0.24 0.34 0.47 0.09 0.20 0.24 0.13 0.16 0.29
ROVIO [8] 0.21 0.25 0.25 0.49 0.52 0.10 0.10 0.14 0.12 0.14 0.14
VINS-monocular [115] 0.27 0.12 0.13 0.23 0.35 0.07 0.10 0.13 0.08 0.08 0.21
SVO [43]: monocular 0.17 0.27 0.43 1.36 0.51 0.20 0.47 - 0.30 0.47 -
SVO [43]: monocular, edge 0.17 0.27 0.42 1.00 0.60 0.22 0.35 - 0.26 0.40 -
SVO [43]: monocular, edge + prior 0.10 0.12 0.41 0.43 0.30 0.07 0.21 - 0.11 0.11 1.08
SVO [43]: monocular, BA 0.06 0.07 - 0.40 - 0.05 - - - - -
DSO [39] 0.05 0.05 0.18 2.50 0.11 0.12 0.11 0.93 0.04 0.13 0.16
VI-DSO [138] 0.041 0.041 0.116 0.129 0.106 0.057 0.066 0.095 0.031 0.060 0.173
SVO [43]: stereo 0.08 0.08 0.29 2.67 0.43 0.05 0.09 0.36 0.09 0.52 -
ORB-SLAM [101] (no LC) 0.03 0.02 0.02 0.20 0.19 0.04 - - 0.02 0.07 -
ORB-SLAM2 [102] 0.035 0.018 0.028 0.119 0.060 0.035 0.020 0.048 0.037 0.035 -
LSD-SLAM [40]: monocular, no LC 0.18 0.56 2.69 2.13 0.85 1.24 1.11 - - - -
LSD-SLAM [40]: stereo - - - 0.066 0.074 0.089 - - - -
Qin et al. [116]: stereo 0.54 0.46 0.33 0.78 0.50 0.55 0.23 - 0.23 0.20 -
Qin et al. [116]: monocular+IMU 0.24 0.18 0.23 0.39 0.19 0.10 0.10 0.11 0.12 0.10 0.27
Qin et al. [116]: stereo+IMU 0.18 0.09 0.17 0.21 0.25 0.06 0.09 0.18 0.06 0.11 0.26
Qin et al. [114] 0.120 0.120 0.130 0.180 0.210 0.068 0.084 0.190 0.081 0.160 -
Mu et a. [98] 0.551 0.402 0.997 0.704 0.672 0.521 0.652 - 0.232 0.617 -
Feng et al. [42] 0.111 0.074 0.173 0.143 0.205 0.077 0.143 0.093 0.082 0.100 0.233
IMUNet [36] 1.7606 2.8277 2.9113 3.7231 3.2198 1.4714 1.7456 1.4709 1.7779 1.7878 1.8935
FlowNet [37] 2.0312 2.1546 3.5234 3.3650 2.9856 1.7920 1.8673 1.7761 2.0221 2.1203 2.1952
Late Fusion (concat) 2.2651 1.9991 3.3241 3.5760 2.8914 1.7451 1.7818 1.3156 1.8011 1.7992 1.9185
Late Fusion (concat) + BiLSTM 2.1820 1.7792 2.2406 2.9761 2.3476 1.6782 1.7009 1.2810 1.7429 1.7224 1.8208
Late Fusion (SSF) [25] 2.2827 1.9621 3.5606 3.5281 3.0364 1.6774 1.7758 1.3459 1.7758 1.8828 1.9256
Late Fusion (SSF) [25] + BiLSTM 2.0110 1.8171 2.5411 3.1201 2.5431 1.5901 1.6906 1.2134 1.7123 1.7601 1.8567
MMTM [65] (3 modules) 1.8740 1.7541 1.9451 2.6712 2.1182 1.6002 1.6321 1.2998 1.7001 1.7866 1.8012
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A B S T R A C T
The localization of objects is a crucial task in various applications such as robotics, virtual and
augmented reality, and the transportation of goods in warehouses. Recent advances in deep learning
have enabled the localization using monocular visual cameras. While structure from motion (SfM)
predicts the absolute pose from a point cloud, absolute pose regression (APR) methods learn a
semantic understanding of the environment through neural networks. However, both fields face
challenges caused by the environment such as motion blur, lighting changes, repetitive patterns,
and feature-less structures. This study aims to address these challenges by incorporating additional
information and regularizing the absolute pose using relative pose regression (RPR) methods. RPR
methods suffer under different challenges, i.e., motion blur. The optical flow between consecutive
images is computed using the Lucas-Kanade algorithm, and the relative pose is predicted using an
auxiliary small recurrent convolutional network. The fusion of absolute and relative poses is a complex
task due to the mismatch between the global and local coordinate systems. State-of-the-art methods
fusing absolute and relative poses use pose graph optimization (PGO) to regularize the absolute pose
predictions using relative poses. In this work, we propose recurrent fusion networks to optimally
align absolute and relative pose predictions to improve the absolute pose prediction. We evaluate
eight different recurrent units and construct a simulation environment to pre-train the APR and RPR
networks for better generalized training. Additionally, we record a large database of different scenarios
in a challenging large-scale indoor environment that mimics a warehouse with transportation robots.
We conduct hyperparameter searches and experiments to show the effectiveness of our recurrent fusion
method compared to PGO.

1. Introduction
For various path planning applications, such as robotic

systems operating in vast warehouses, obtaining an accurate
localization of objects is crucial (Radwan et al., 2018; Löffler
et al., 2018). To achieve this, the robot’s pose recognition,
which includes its position and orientation, must be highly
precise. While some localization systems use LiDAR, radio,
or radar-based systems (Stahlke et al., 2022) or inertial
sensors (do Monte Lima et al., 2019), visual self-localization

⋆Evaluating the performance of absolute pose regression methods, i.e.,
SfM and PoseNet, in challenging scenarios such as repetitive patterns,
motion blur, structure-less surfaces, and difficult lighting conditions. Fusing
absolute and relative poses using either PGO or recurrent networks.

∗Corresponding author
felix.ott@iis.fraunhofer.de (F. Ott); heublels@iis.fraunhofer.de

(L. Heublein); david.ruegamer@stat.uni-muenchen.de (D. Rügamer);
bernd.bischl@stat.uni-muenchen.de (B. Bischl);
christopher.mutschler@iis.fraunhofer.de (C. Mutschler)

https://www.slds.stat.uni-muenchen.de/people/ott/ (F. Ott);
https://www.slds.stat.uni-muenchen.de/people/ruegamer/ (D. Rügamer);
https://www.statistik.uni-muenchen.de/personen/professoren/bischl/

index.html (B. Bischl); https://cmutschler.de/ (C. Mutschler)
ORCID(s): 0000-0002-4392-0830 (F. Ott); 0000-0001-6670-3698 (L.

Heublein); 0000-0002-8772-9202 (D. Rügamer); 0000-0001-6002-6980 (B.
Bischl); 0000-0001-8108-0230 (C. Mutschler)

https://www.linkedin.com/profile/view?id=felix-ott-494b06146

(F. Ott), https://www.linkedin.com/profile/view?id=david-ruegamer

(D. Rügamer), https://www.linkedin.com/profile/view?id=

christopher-mutschler-28431576 (C. Mutschler)

using monocular cameras has gained popularity with the
advancement of deep learning techniques (Kendall et al.,
2015). The effectiveness of pose estimation techniques de-
pends heavily on the suitable invariance properties of the
features available (Ott et al., 2022a).

The 3D structure of a scene can be estimated from a
sequence of 2D images using structure from motion (SfM)
methods (Venkataraman, 2020; Resch et al., 2015; Jiang
et al., 2020; Brachmann et al., 2023; Yu et al., 2023; Li
et al., 2023b), which involve camera motion estimation by
detecting and matching feature points between pairs of im-
ages, and 3D structure estimation by triangulating the feature
points. Absolute pose regression (APR) techniques (Kendall
et al., 2015; Löffler et al., 2018; Radwan et al., 2018) use
neural networks to extract features from images and esti-
mate the 6DoF global pose of an object with respect to a
known coordinate system. Classical visual odometry (VO)
methods (Mansur et al., 2017) estimate camera motion by
analyzing consecutive images to compute the relative pose
of an object. Relative pose regression (RPR) methods (Wang
et al., 2017; Iyer et al., 2018; Kreuzig et al., 2019; Idan
et al., 2023) have emerged, which predict the relative pose by
using convolutional neural networks (CNNs) and recurrent
neural networks (RNNs). RPR methods based on optical
flow, which captures the motion of pixels between two
frames, are particularly promising due to their robustness
to environmental changes, as evidenced by recent studies
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(Muller and Savakis, 2017; Muller et al., 2016; Zhou et al.,
2020; Ott et al., 2020).

Each method for absolute pose prediction, such as SfM
and APR, and RPR, has its own drawback and each pose
has different sources of noise, as highlighted by Sattler et al.
(2019). To improve the performance of these methods, it
is desirable to combine absolute poses (from SfM or APR)
and relative poses (through RPR from optical flow). While
some approaches combine both fields or different modalities
by a common representation between networks (Ott et al.,
2022a; Brieger et al., 2022), others directly combine the
absolute and relative poses (Mitsuki et al., 2021). However,
fusing absolute and relative poses is a challenging task since
RPR requires knowledge of the global pose, which may
contain errors. Pose graph optimization (PGO) (Brahmbhatt
et al., 2018; Mirowski et al., 2018) is a technique that
estimates smooth and globally consistent pose predictions
during inference. Another approach is to use a fusion module
based on recurrent cells (Ott et al., 2020), which can learn an
improved (i.e., smoothed), long-term trajectory, but requires
time-distributions (i.e., applies a layer to every temporal
slice of an input) to learn the orientation of the relative to
the global pose. Despite recent advances, optimizing the
absolute pose with neural networks remains an open research
topic.

Another research goal of visual self-localization is to
develop methods that can adapt to new and unknown scenes
or remain robust to changes in the environment (Idan et al.,
2023; Winkelbauer et al., 2021; Wang and Qi, 2023; Acharya
et al., 2023), such as adding or removing racks in ware-
houses. To achieve this, some methods learn multi-scene
APR (e.g., using Transformers) to learn multiple scenes in
parallel (Shavit et al., 2022), utilize auto-encoders (Shavit
and Keller, 2022), or employ transfer learning between
scenes (Chidlovskii and Sadek, 2021). To improve the ini-
tial weights, we pre-train the APR and RPR models using
synthetic data.

Contributions. The primary objective of this work is
to optimize absolute poses by fusing absolute and relative
poses. To achieve this goal, the following steps are taken:
(1) We conduct a large hyperparameter search for SfM to
retrieve absolute poses. PoseNet (Kendall et al., 2015) is
alternatively evaluated as an APR technique. (2) The rela-
tive poses are regressed from optical flow computed with
the Lucas-Kanade (Baker and Matthews, 2004) algorithm.
(3) We evaluate PGO (Mirowski et al., 2018) to optimize
the pose, and conduct a benchmark of eight recurrent and
17 convolutional, recurrent, and Transformer networks for
absolute and relative pose fusion. (4) As there is currently no
publicly available dataset to evaluate large-scale challenging
environments, we record and publish1 a large database of
various scenes and changes between scenes. This dataset is
used to conduct experiments on the robustness of methods
against volatile environments. (5) We develop a simulation
framework to generate and pre-train the APR and RPR

1Datasets and source code: https://gitlab.cc-asp.fraunhofer.de/

ottf/industry_datasets

models on synthetic data. Advanced techniques may be used
as black box models in place of the baseline models (SfM,
APR, RPR) to further enhance the results. However, the
focus of this study is on assessing the performance of the
fusion techniques with respect to environmental changes and
motion dynamics on the localization task.

The remainder of this article is organized as follows. We
discuss related work in Section 2. Section 3 introduces our
method, including SfM, APR, RPR, and fusion modules. We
present novel datasets and our simulation for data generation
in Section 4, and discuss experimental results in Section 5.

2. Related Work
The field of SfM and APR has seen an extensive number

of publications in recent years, making it a broad and diverse
research area. However, the main focus of this work is on the
fusion of absolute and relative poses. For a comprehensive
overview of SfM approaches, please refer to Jiang et al.
(2020); Zheng et al. (2018); Piasco et al. (2018); Brachmann
et al. (2023); Radanovic et al. (2023), while for an overview
of APR techniques, please see Sattler et al. (2019); Ott et al.
(2022a); Xu et al. (2022); Blanton (2021); Qiao et al. (2023).
See Boittiaux et al. (2022); Pepe and Lasenby (2023), for an
overview of APR loss functions. In Section 2.1, we introduce
techniques for RPR estimation using optical flow. State-of-
the-art techniques for absolute and relative pose fusion are
discussed in Section 2.2. In Section 2.3, we present related
work for scene generalization.
2.1. RPR from Optical Flow

Numerous techniques exist for estimating the relative
pose from successive image pairs by utilizing optical flow,
including Flowdometry (Muller and Savakis, 2017; Muller
et al., 2016), ViPR (Ott et al., 2020), DeepVIO (Han et al.,
2019), KFNet (Zhou et al., 2020), and the model by Ott et al.
(2022a). These methods employ either FlowNet or FlowNet-
Simple by Dosovitskiy et al. (2015) or FlowNet2 (Ilg et al.,
2017) for estimating optical flow. LS-VO (Costante and
Ciarfuglia, 2018) uses an autoencoder to predict optical
flow. In contrast, Zhi-Yu et al. (2021) utilizes the relative
pose as auxiliary information for optical flow prediction of
FlowNet2. Our method uses the Lucas-Kanade (Baker and
Matthews, 2004) algorithm. DeepVO (Wang et al., 2017),
CTCNet (Iyer et al., 2018), DistanceNet (Kreuzig et al.,
2019), and MotionNet (Ding et al., 2020) do not rely on
optical flow but combine CNNs with RNNs, such as stacked
LSTMs, bidirectional LSTMs, or fully connected layers,
to model sequential dynamics and relationships to predict
relative poses.
2.2. APR & RPR Fusion

LM-Reloc (von Stumberg et al., 2020) formulates its
loss based on the Levenberg-Marquardt algorithm to im-
prove direct image alignment through learned features. It
also incorporates an RPR model to bootstrap the direct
image alignment. ViPR (Ott et al., 2020) enhances absolute
poses by concatenating relative poses predicted from optical
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flow and absolute poses, and then refining them using an
LSTM network. MapNet+PGO (Brahmbhatt et al., 2018)
refines predicted poses from APR and RPR using PGO.
VLocNet (Valada et al., 2018) estimates global poses and
combines it with VO, while VLocNet++ (Radwan et al.,
2018) adds features from semantic segmentation. RCNN
(Lin et al., 2019) fuses relative and global sub-networks
to smooth VO and prevent drift. Mitsuki et al. (2021) pro-
pose a graph neural network that uses image-to-nodes and
image-to-edges to create similarity-preserving mappings,
with nodes representing absolute features and edges rep-
resenting relative features. Kalman filters are frequently
employed for pose fusion, such as in the work by Emter
et al. (2019). This approach combines absolute and relative
measurements, leading to a correlation between a past state
and present state that creates correlations. Our objective
is to mitigate these correlations by utilizing an optimal
recurrent cell. In general, LSTM cells are employed for
representing temporal dependencies in localization tasks.
Recently, Transformer networks have been applied in visual
self-localization, as demonstrated by the methods proposed
by Shavit et al. (2022); Li and Ling (2022); Kim and Kim
(2023); Li et al. (2023a). Nevertheless, Transformers are
not adequate for integrating absolute and relative poses with
their low-dimensional information. Also, the bidirectional
properties (Graves et al., 2009) of LSTMs are unfeasible for
pose modeling. Ruan et al. (2023) fuse APR with scene coor-
dinate regression. While Lu and Lu (2019) combine a depth
map from a single-view depth network with relative poses
from a pose network, Yang et al. (2020) proposed D3VO that
combines the depth map with relative poses from PoseNet.
In contrast, Zhan et al. (2020) proposed combination of a
depth network with optical flow. However, this method only
performs visual odometry.

Das and Dubbelman (2018) fuse an absolute pose (from
GNSS data) with a relative pose (from vehicle odometry).
The following two works integrate relative poses from iner-
tial data with absolute poses from visual data. VINet (Clark
et al., 2017) utilizes a concatenation approach to merge
relative features extracted by an inertial LSTM encoder
with absolute features extracted by a visual encoder. On the
other hand, VI-DSO (von Stumberg et al., 2018) employs a
combined energy functional to jointly estimate camera poses
and sparse scene geometry by minimizing the visual and
inertial measurement errors.
2.3. Simulation for Scene Generalization

Todays regression-based techniques for APR are scene-
specific with respect to their training and evaluation. They
rely on the coordinate system of the training dataset and ex-
hibit poor generalization across different scenes (Chidlovskii
and Sadek, 2021). The Transformer network, proposed by
Shavit et al. (2022), learns multi-scene APR. The model
employs encoders to aggregate activation maps via self-
attention and decoders to transform latent features and
scenes encoding into predicted pose. This allows the model
to learn informative features while embedding multiple

scenes in parallel. To address the issue of dataset shift,
Chidlovskii and Sadek (2021) developed a deep adaptation
network that can learn scene-invariant image representations
for transfer learning. They use adversarial learning to gener-
ate such representations for the model transfer. Wang and Qi
(2023) report that single-input images can cause confusion
in relocalization when dealing with scenes that share similar
views but differ in position, which motivates the use of a
time-distributed network. Furthermore, they highlight the
difficulty of relocalization in variable or dynamic scenes.
Wang and Qi (2023) created a variable scene dataset com-
prising three scenes: an office, a bedroom, and a sitting
room. They use semi-automatic processing to develop their
MMLNet method, which can regress both camera pose and
scene point cloud. Similarly, our approach involves fusing
point clouds and relative poses. Acharya et al. (2023) uses a
generative network to model fake synthetic images for APR.

While APR techniques learn absolute scene parameters,
RPR methods can localize in unseen environments by learn-
ing only the residual pose between image pairs. However,
their performance is notably reduced in unfamiliar scenes.
To enhance the generalization of RPR methods, Idan et al.
(2023) improved their performance by aggregating paired
feature maps into latent codes. Meanwhile, Winkelbauer
et al. (2021) proposed an RPR approach (based on ResNet)
that introduces changes to the model architecture, such as
an extended regression part, hierarchical correlation layers,
and uncertainty and scale information, to better generalize
to new scenes.

In summary, prior works have focused on introducing
auxiliary information to the model to learn general and
scene-specific features that can generalize to various scenes.
However, no existing approach learns scene information
from simulated environments (absolute) or motion from
simulated dynamics (relative).

3. Methodology
Firstly, we present to reconstruct a point cloud from

an image dataset using SfM (see Section 3.1). Section 3.2
describes an alternative approach based on APR. The Lucas-
Kanade method for computing optical flow and our RPR
network are presented in Section 3.3. Absolute and relative
pose fusion are described based on these APR and RPR
methods. Additionally, we evaluate PGO in Section 3.4 and
propose a framework of models that utilize various RNNs
in Section 3.5. Finally, in Section 3.6, the rationale for pre-
training APR and RPR to improve generalizability to various
scenarios is discussed. Figure 1 presents a method overview
of all steps.
3.1. Structure from Motion

This section outlines the steps involved in using SfM
to create a point cloud. The SfM pipeline is proposed in
Figure 2, while Table 1 provides a summary of the hyper-
parameters used in each step.
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Figure 1: Method overview. First, a point cloud is constructed from an image dataset using SfM to extract features, spatial
consistency, overlap criterion, cluster sampling, and bundle adjustment (BA). Second, we train a small convolutional recurrent
neural network to predict the relative pose Δ𝐱 between two consecutive images. For evaluation, the absolute pose 𝐱 from the
point cloud and the relative pose Δ𝐱𝑡𝑟 from the RPR model is retrieved for a query image. Last the absolute pose is optimized
with either PGO or a recurrent network.
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Figure 2: SfM pipeline using bundle adjustment (BA) to
reconstruct a point cloud from input images.

SfM. We adopt the source code provided by Venkataraman
(2020) as the baseline for our SfM pipeline, which is used
to recover 3D structure of a given environment. SfM is
employed to determine the relative pose of each image with
respect to the first image. Inspired by the findings of Resch
et al. (2015) that suggest the use of every fifth image for
reconstruction, we manually pre-select around 600 images
from each dataset (comprising between 7,000 to 138,000
images) for point cloud reconstruction. Additionally, we ob-
tain the intrinsic matrix, which is essential for recalibration,
by capturing images of a checkerboard using our camera

Table 1
Overview of SfM hyperparameters.

Parameter Description
𝑠𝑐 Spatial consistency of the point neighborhood

in pixel
𝑜𝑐 Overlap criterion of floor pixels between

images in %
𝑚𝑚 Minimal number of matches for each point

over all images
𝑒𝑥 Exclude points with reprojection error larger

than separation limit in pixel
𝑔𝑖𝑏𝑏𝑠 Boolean of gibbs factor of pixel improvement

by excluding single points
𝑠𝑡𝑑 Standard deviation for point exclusion for BA

setup. For the sake of reproducibility, we report the following
calibration matrix:

𝐾 =
⎡⎢⎢⎣

548.44934818 0.0 317.73762648
0.0 540.17600512 249.00614224
0.0 0.0 1.0

⎤⎥⎥⎦
(1)

We ensure to avoid matching two points from the same image
with a single point from the point cloud.
Feature Extraction. We utilize the cv2 library (OpenCV,
2022) to extract image features, which yields descriptors of
size 128 for each image. In a pre-defined study, we asses
the impact of three feature extraction techniques, namely,
scale-invariant feature transform (SIFT) proposed by Lowe
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(2004), speeded up robust features (SURF) introduced by
Bay et al. (2006), and oriented fast and rotated brief (ORB)
proposed by Rublee et al. (2011), on the reconstruction
performance. Based on our evaluation, we select SIFT as the
feature extraction technique for our pipeline.
Spatial Consistency & Overlap Criterion. In addition,
we employ spatial consistency to enhance the discriminative
capability of the raw feature points by evaluating the match-
ing quality of feature points in a larger spatial neighborhood.
We follow the approach proposed in Jiang et al. (2020),
which involves computing the ratios of features that fall into
two corresponding regions. We introduce a hyperparameter
𝑠𝑐 that specifies the spatial consistency of the point neigh-
borhood in terms of the number of pixels. We also apply an
overlap criterion to filter out unnecessary image pairs. We
divide the ground floor into a grid and require each image
to contain a specific percentage (controlled by the parameter
𝑜𝑐) from these grid points.
Cluster Separation. Points from multiple images can cor-
respond to the same point in the point cloud. To handle
such cases, we partition these image points into cluster and
explore the possibility of improving the match separation,
as proposed in Jiang et al. (2020). This results in the cre-
ation of additional clusters in the point cloud. We use the
hyperparameter𝑚𝑚 to determine the number of matches. For
neighborhood clustering, we use k-means with two clusters.
We apply this strategy iteratively with bundle adjustment
(BA) until the hyperparameter 𝑒𝑥 falls below a predefined
threshold in term of pixels.
Gibbs Sampling. We first apply BA. Next, we iterate
through all image points for each point of the point cloud.
We employ Gibbs sampling to iteratively remove one point
from the selected image points and evaluated whether the
remaining points improve the performance of the BA. We
adjust the hyperparameter 𝑔𝑖𝑏𝑏𝑠 for this process.
Bundle Adjustment. We adopt the sparse BA method pro-
posed by Github (jahdiel) (2016). Additionally, we define
parameters to regularize the point cloud to remain within the
environment. In all BA steps, we keep the rotation matrix
fixed, and only change the rotation matrix of the last BA
step. We tune the hyperparameter 𝑠𝑡𝑑, which represents the
standard deviation for point exclusions.
3.2. Absolute Pose Regression

In order to reduce the computational requirements asso-
ciated with hyperparameter tuning for SfM (that we provide
in Section 5.1), an alternative approach involves using APR
methods, as discussed in Section 2.2. Rather than tuning
hyperparameters, a CNN-based APR model can learn to
directly regress the camera pose from a single input image in
conjunction with their corresponding ground truth poses. In
our case, we utilize a time-distributed network that takes a set
of three consecutive images as input (at timesteps 𝑡𝑛−2, 𝑡𝑛−1,
and 𝑡𝑛) to predict absolute positions 𝐩 ∈ ℝ3 in Euclidean

coordinates and absolute orientations 𝐪 ∈ ℝ4 as quaternions
of the absolute pose 𝐱 = [𝐩,𝐪]. We use the PoseNet archi-
tecture (Kendall et al., 2015) based on GoogLeNet (Szegedy
et al., 2015) with time-distribution (Ott et al., 2020). Our
network includes a fully connected (FC) layer of 2,048 units,
and two parallel FC layers, each with three and four units. We
minimize the root mean squared error (RMSE) loss function

APR = ||𝐩̂ − 𝐩||22 + 𝛽1
|||
|||𝐪̂ −

𝐪
||𝐪||2

|||
|||
2

2
, (2)

between the predicted pose 𝐱 = [𝐩,𝐪] and ground truth pose
𝐱̂ = [𝐩̂, 𝐪̂], weighted by the hyperparameter 𝛽1 = 50. We use
a batch size of 50, the Adam optimizer without decay, and a
learning rate of 10−4.
3.3. Relative Pose Regression from Optical Flow

We utilize the Lucas-Kanade (Baker and Matthews,
2004) algorithm to compute the optical flow between two
images captured at timesteps 𝑡𝑛−1 and 𝑡𝑛 for learning the
relative movements and rotations of an object. The optical
flow is a vector field representation of the movement of
objects or surfaces in a sequence of images or video, as
captured by a camera. Each vector in the optical flow field
corresponds to the displacement of a small portion of the
image from frame 𝑡𝑛−1 to frame 𝑡𝑛. Hence, we receive the
pixel movements in 𝑢 and 𝑣 direction. The Lucas-Kanade
algorithm is a classic differential method that assumes
uniform motion of objects in a small local neighborhood
and solves a system of linear equations relating the spatial
and temporal derivatives of the image intensity to the local
motion parameters. We present an exemplary visualization
of optical flow in Figure 3.

We propose the following recurrent network for the
purpose of regressing the relative pose from optical flow. To
achieve this, we initially subject the vector input, which has a

(a) Images of timestep 𝑡𝑛−1.

(b) Images of timestep 𝑡𝑛.

(c) Optical flow visualization.
Figure 3: Exemplary optical flow visualizations (c) between two
consecutive images (a and b) of real-world scenarios (image 1
and 2) and simulated scenarios (image 3 and 4). Note the small
movement between timestep 𝑡𝑛−1 (a) and timestep 𝑡𝑛 (b).
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size of 480×640×2 pixels, to 4×4mean average pooling with
stride 1, resulting in a tensor size of 120×160×2. In this case,
𝑢 and 𝑣 represent the third dimension of the optical flow. We
then proceed to search for an optimal network configuration,
which may involve batch normalization, adding one or two
stacked LSTM layer, and ReLU, softmax, or no activation.
Our chosen network configuration involves the absence of
batch normalization and activation, and the use of one LSTM
layer with 50 units for each direction of 𝑢 and 𝑣 by slicing the
third dimension of the optical flow. The output of the LSTM
layers is then concatenated, and two FC layers of size 3 and 4
are added to predict the relative pose Δ𝐱 = [Δ𝐩𝑡𝑟,Δ𝐪], i.e.,
the relative position (translation) Δ𝐩𝑡𝑟 ∈ ℝ3 and the relative
orientation (rotation) Δ𝐪 ∈ ℝ4. To minimize error, we apply
a mean squared error (MSE) loss function

RPR = ||Δ𝐩̂𝑡𝑟 − Δ𝐩𝑡𝑟||2 + 𝛽2
|||
|||Δ𝐪̂ −

Δ𝐪
||Δ𝐪||2

|||
|||2, (3)

with the ground truth relative pose Δ𝐱̂ = [Δ𝐩̂𝑡𝑟,Δ𝐪̂].
Therefore, we transform the global coordinate systems of
consecutive cameras to a local coordinate system 𝐩 = 𝐑𝐩
with the rotation matrix 𝐑, such that 𝐑𝑇 = 𝐑−1 and 𝐑𝑇𝐑 =
𝐑𝐑𝑇 = 𝐈. The relative poses Δ𝐩𝑡𝑟 are then the differences
between the rotated poses. We weight the orientational loss
function with 𝛽2 = 50. Additionally, we use a batch size
of 50, the Adam optimizer without decay, and a learning
rate of 10−4. Finally, the relative ground truth labels are
transformed based on the current orientation of the absolute
pose.
3.4. Pose Graph Optimization

We employ the PGO algorithm (Mirowski et al., 2018)
as the state-of-the-art method for fusing absolute and rela-
tive poses, which provides smooth and globally consistent
pose estimates. PGO can be formulated as a non-convex
minimization problem represented by a graph with vertices
corresponding to the estimated global poses and edges rep-
resenting the relative poses. The goal is to ensure that the
refined relative poses align with the input relative poses
(Brahmbhatt et al., 2018; Ott et al., 2022a). To reduce run
time complexity, we split the absolute and relative poses into
100-sample chunks with a 20-sample overlap. We conducted
a search for the optimal parameters that results in the lowest
positioning error.
3.5. APR-RPR Fusion based on Recurrent Cells

Our contribution is a recurrent model for fusing absolute
and relative poses to achieve a smoother absolute pose
estimation and optimize localization error. To accomplish
this, we concatenate the output pose of the absolute method
(refer to Section 3.1 and Section 3.2) of size (𝑁𝑡×𝐵𝑆×7) and
the output pose of the relative method (refer to Section 3.3)
of size (𝑁𝑡 × 𝐵𝑆 × 7), resulting in a network input of size
(𝑁𝑡 × 𝐵𝑆 × 14), where 𝑁𝑡 is the number of timesteps and
𝐵𝑆 is the batch size. The objective is to predict an improved
absolute pose at timestep 𝑡𝑛 from the concatenated absolute
and relative poses of timesteps {𝑡𝑛−𝑁𝑡−1,… , 𝑡𝑛}. For pose

refinement, we implement the following recurrent network,
which includes one or two stacked RNN cells. The output of
the first cell has a size of (𝑁𝑡 × 𝐵𝑆 × 14), while the output
of the second cell is of size (𝐵𝑆 × 𝑟𝑢), where 𝑟𝑢 represents
the number of units of the RNN cell. Finally, we include two
FC layers, similar to the APR model (refer to Section 3.2),
with the RMSE loss function

APR-RPR = ||𝐩̂ − 𝐩||22 + 𝛽3
|||
|||𝐪̂ −

𝐪
||𝐪||2

|||
|||
2

2
, (4)

and weighting 𝛽3 = 50, a batch size of 100, the Adam
optimizer without decay, and a learning rate of 10−4. In
Section 5.4, we present a hyperparamter search for 𝑁𝑡, 𝑟𝑢,and the number of stacked recurrent cells (one or two).

The vanishing gradient problem is a major issue with
RNNs, which occurs when gradients become too small as
they propagate backwards through time during weight up-
dates. This can be problematic in our fusion model due
to small orientation entries (i.e., quaternions are below 1)
and hinders the learning of long-term dependencies. To
address this issue, we explore various recurrent cells that
can allow the model to learn the dynamics of an object
(i.e., slow moving robot versus fast moving human) on the
low-level pose representation. Object movements typically
follow predictable, non-chaotic patterns that follow physical
behavior (Ott et al., 2022b). One solution is to use gating
mechanisms such as those found in long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and gated
recurrent unit (GRU) (Chung et al., 2014). Another option is
the minimal gated unit (MGU) (Zhou et al., 2016; Heck and
Salem, 2017), which is a simplified version of LSTM and
GRU that uses only an update and reset gate. The recurrent
additive network (RAN) (Lee et al., 2017) is another type
of gates RNN that uses purely additive latent state updates.
For greater parallelism, we evaluate the simple recurrent unit
(SRU) (Lei et al., 2017), which simplifies computations as
the majority of computations for each step are independent
of recurrence. Additionally, quasi-recurrent neural networks
(QRNN) (Bradbury et al., 2017) apply minimalistic recur-
rent pooling functions in parallel across channels. Balduzzi
and Ghifary (2017) proposed strongly-typed RNN (TRNN),
which learns simple semantic interpretations via dynamic
average pooling. The chaos free network (CFN), proposed
by Laurent and von Brecht (2017), is a type of RNN that
models non-chaotic dynamics.

Furthermore, we evaluate convolutional networks, such
as FCN (Wang et al., 2016), TCN (Bai et al., 2018), ResNet
(Wang et al., 2016), ResCNN (Zou et al., 2019), Inception-
Time: (Fawaz et al., 2020), XceptionTime (Rahimian et al.,
2019), and OmniScaleCNN (Tang et al., 2022), a combi-
nation of recurrent with fully convolutional networks, i.e.,
LSTM-FCN (Karim et al., 2017), GRU-FCN (Elsayed et al.,
2019), and MLSTM-FCN (Karim et al., 2019), Transformer
models, i.e., TST (Zerveas et al., 2021), TSPerceiver (Jaegle
et al., 2021), and TSSequencerPlus (Tatsunmai and Taki,
2022), and mWDN (Wang et al., 2018), XCM (Fauvel et al.,
2022), and gMLP (Liu et al., 2021).
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Table 2
Overview of the visual Industry scenario #4 datasets recorded in a large-scale indoor environment with a robot or handheld.

Dataset Setup # Images
Train 1 Robot, clear environment 92,668
Train 2 Robot, four absorber walls with objects 19,872
Train 3 Robot, four absorber walls 138,233
Train 4 Handheld, person 1, four absorber walls 27,856
Train 5 Handheld, person 2, four absorber walls 28,113
Train 6 Robot, open environment with objects 114,998
Train 7 Robot, open environment with objects and labyrinth 29,240
Train 8 Robot, open environment with object, labyrinth, and absorber walls 110,923
Test 1 Robot, clear environment 23,168
Test 2 Robot, one absorber wall 30,379
Test 3 Robot, two absorber walls 24,752
Test 4 Robot, three absorber walls 26,877
Test 5 Robot, four absorber walls with objects 4,968
Test 6 Robot, four absorber walls 34,559
Test 7 Handheld, person 1, four absorber walls 6,964
Test 8 Handheld, person 2, four absorber walls 7,029
Test 9 Robot, open environment with objects 28,750
Test 10 Robot, open environment with objects and labyringth 7,311
Test 11 Robot, open environment with objects, labyrinth, and absorber walls 27,732

3.6. Simulation-Augmented Pre-Training
Pre-training neural networks using simulated data can

enhance their performance in various tasks, especially in the
case of data scarcity, domain adaptation, data augmentation,
and providing a good initialization for transfer learning to
real data (Zhang et al., 2017; Shrivastava et al., 2017).
Previous studies in the context of visual self-localization
(Winkelbauer et al., 2021; Idan et al., 2023; Wang and
Qi, 2023) have demonstrated the potential benefits of pre-
training on synthetic data for improved performance. To this
end, we develop a simulation environment with a loaded
point cloud of the real-world environment to generate a
large number of samples and augment the APR and RPR
models for better initial weights, improved adaptability to
unseen scenarios, and enhanced transfer learning to changes
in the environment. Figure 4 illustrates the data generation
process. Initially, we record a large dataset using a NavVis
M4 system (see Figure 4a) while moving in an environment
with seven large black absorber walls and two warehouse
racks, as shown in Figure 4b. Next, we create a detailed
point cloud (see Figure 4c) from this dataset, which was
then loaded into the simulation framework implemented by
Shhuna GmbH (see Figure 4d). We only use the large hall
of the simulation framework (left part) for data generation.
Using a fish-eye camera (in the simulation), we generated
319,955 images mimicking a slow moving robot, see Fig-
ure 3 (third and fourth column) for exemplary images. We
concurrently capture images from three cameras, including
one front-facing camera and two side-facing cameras. We
utilized this dataset to pre-train the APR and RPR models
on a large dataset.

4. Experiments
In the following section, we provide details regarding

the data collection and experiments. Specifically, Section 4.1
offers an overview of our datasets and the challenges as-
sociated with localization. Section 4.2 provides a summary
of our experiments. Finally, in Section 4.3, we describe the
hardware setup and evaluation metrics used in our study.
4.1. Datasets & Challenges

Numerous datasets are currently accessible for assessing
APR techniques. Nevertheless, the present datasets possess
limitations such as being captured outside the industrial
environments or with equipment such as micro aerial ve-
hicles (MAVs) or handheld devices, or are inadequate for

(a) NavVis M4. (b) Recording trajectory.

(c) Simulated point cloud. (d) Simulation framework.
Figure 4: Creation of simulated images for pre-training.
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Figure 5: Trajectories of the Industry datasets with 𝑥 ∈ [14, 34] and 𝑦 ∈ [7, 23].

(a) Feature-less ab-
sorber walls.

(b) Feature-less ab-
sorber walls.

(c) Harsh lighting
conditions.

(d) Warehouse racks. (e) Labyrinth. (f) Texture-less walls.
Figure 6: Exemplary challenging images of the large-scale
indoor environment.

evaluating specific scenarios like changes in the environ-
ment. Therefore, we have captured the Industry dataset in

a vast large-scale industrial environment covering an area
of 1, 320𝑚2, similar to the environment in Löffler et al.
(2018); Ott et al. (2020, 2022a); Stahlke et al. (2022). A
small robotic recording platform is constructed, equippped
with an Orbbec3D camera featuring an RGB image reso-
lution of 640 × 480 pixels and a recording frequency of
23 Hz. To measure reference poses at a high-precision level
(< 1𝑚𝑚), a motion capture system operating at 140 Hz is
utilized. Eight training and 11 testing datasets are recorded,
comprising 10 distinct scenarios, as presented in Table 2.
Trajectories are depicted in Figure 5. Changes are introduced
to the environment between recordings to asses the model’s
robustness against volatile objects, i.e., the removal or ad-
dition of absorber walls, and the ability to generalize and
adapt to various scenarios and motion dynamics. Initially, a
large-scale clear environment without objects was recorded.
Subsequently, we introduced one, two, three, or four ab-
sorber walls, along with smaller objects. Additionally, a
small “labyrinth” in an L-like configuration was constructed,
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(a) Median position error in 𝑚. (b) Median orientation error in °.
Figure 7: Evaluation of all SfM point clouds (for different
hyperparameters, see x-axis) for the robot train 3 and test
6 datasets. The dashed lines indicate the lowest error.

(a) Median position error in 𝑚. (b) Median orientation error in °.
Figure 8: Evaluation of the best SfM point cloud (from
Figure 7) for different hyperparameters 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 for the robot
train 3 and test 6 datasets.

Table 3
Overview of different fusion combinations.

Absolute Pose Relative Pose Fusion
SfM RPR PGO
SfM RPR (pre-trained) PGO
APR RPR PGO
APR RPR (pre-trained) PGO
APR (pre-trained) RPR PGO
APR (pre-trained) RPR (pre-trained) PGO
SfM RPR Recurrent model
SfM RPR (pre-trained) Recurrent model
APR RPR Recurrent model
APR RPR (pre-trained) Recurrent model
APR (pre-trained) RPR Recurrent model
APR (pre-trained) RPR (pre-trained) Recurrent model

as shown in Figure 5g and Figure 5r. Finally, we captured
the motion dynamics of two individuals randomly walking
in the environment, with four absorber walls present (see
trajectories in Figure 5d, 5e, 5o, and 5p).

The motion dynamics between the robot and humans are
different. Cross-validation is conducted for all training and
test datasets. Figure 6 presents images that are challenging
with respect to the localization task, including the feature-
less structure of the absorber walls (Figure 6a and Figure 6b),
which makes it particularly hard for SfM to extract features
and match image points, or different scalings between distant
warehouse racks (Figure 6d) and the small-scale labyrinth
(Figure 6e). See Zangeneh et al. (2023), for challenges under
ambiguous scenes.

(a) Median position error in 𝑚. (b) Median orientation error in °.
Figure 9: Evaluation of all SfM point clouds (for different
hyperparameters, see x-axis) for the handheld train 4 and test
7 datasets. The dashed lines indicate the lowest error.

(a) Median position error in 𝑚. (b) Median orientation error in °.
Figure 10: Evaluation of the best SfM point cloud (from Fig-
ure 9) for different hyperparameters 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 for the handheld
train 4 and test 7 datasets.

4.2. Overview of Experiments
Table 3 provides a comprehensive summary of the exper-

iments conducted in our study. Our approach to estimating
absolute pose involves either applying SfM (see Section 3.1)
or using the time-distributed APR model (see Section 3.2).
To predict relative poses, we utilize the RPR model (see
Section 3.3). We evaluate the performance of both APR
and RPR models with and without pre-training on the syn-
thetically generated dataset (see Section 3.6). In terms of
fusion, we compare our proposed fusion framework with
eight different recurrent cells, namely LSTM, GRU, MGU,
RAN, SRU, QRNN, TRNN, and CFN (see Section 3.5),
against the state-of-the-art PGO technique (see Section 3.4).
4.3. Hardware Setup & Evaluation Metrics

For all experiments, we use Nvidia Tesla V100-SXM2
GPUs with 32 GB VRAM equipped with Core Xeon CPUs
and 192 GB RAM. We use the Adam optimizer with a
learning rate of 10−4. We run each experiment for epochs =
(iterations ⋅ BS)∕dataset_size, where we set iterations to
150,000 for APR and RPR and to 75,000 for the fusion
models, the batch size BS is 50 for APR and RPR and 100
for the fusion models, and the dataset size depends on the
scenario according to Table 2. We report results for the last
epoch. For the evaluation of absolute predictions, we report
the median absolute position in 𝑚 and the median absolute
orientation in °.
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(a) Median position error in 𝑚. (b) Median position error in 𝑚. (c) Median orientation error in °. (d) Median orientation error in °.
Figure 11: SfM hyperparameter search for the robot train 3 and test 6 datasets. Figures a) and c) are with the three-point
criterion, and Figures b) and d) are without the three-point criterion. The legend is equal for all subplots.

(a) Median position error in 𝑚. (b) Median position error in 𝑚. (c) Median orientation error in °. (d) Median orientation error in °.
Figure 12: SfM hyperparameter search for the handheld train 4 and test 7 datasets. Figures a) and c) are with the three-point
criterion, and Figures b) and d) are without the three-point criterion. The legend is equal for all subplots.

5. Evaluation
5.1. Hyperparameter Search for SfM

In the first step, we conduct an extensive hyperparameter
search for the SfM parameters described in Table 1 using
two datasets: a dataset (train3 and test 6) and a handheld
dataset (train 4 and test 7). We select the best hyperparam-
eter combinations for point cloud reconstruction and apply
them to the remaining robotic and handheld datasets. Each
dataset (robotic and handheld) comprises a total of 1,752
parameters. Figure 7 illustrates all hyperparameter results
for the robot dataset, while we select the best point clouds
and evaluate the parameter 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 with values in {0.0,
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}
in Figure 8. We observe that the parameter 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 has a
significant impact on the position error, with values ranging
from 0.24m to over 0.7m. Based on Figure 8, we find that the
parameter 𝑒𝑥 = 0.30 yields a low position error of 0.242m,
while the parameter 𝑒𝑥 = 0.35 yields a low orientation
error of 1.19°. The hyperparameter search results for the
handheld dataset are shown in Figure 9 and Figure 10. The
error in this case increases due to the higher dynamics of the
human, resulting in a position error of 0.37m and orientation
error of 2.14°. The optimal value for the parameter exclude
varies with the position (with 𝑒𝑥 = 0.20 being optimal) and
orientation (with 𝑒𝑥 = 0.35 being optimal). To obtain highly
accurate orientation predictions, a point cloud with a few and
very accurate points is preferred, while a dense point cloud
is better for low position error.

Figure 11 and Figure 12 present the selective search
for the parameters of the three-point criterion for the robot
dataset and the handheld dataset, respectively. We observe

Table 4
Number of matches per point for the eight training datasets
(average and standard deviation).

Dataset # Matches Dataset # Matches
Train 1 9.23± 8.41 Train 5 6.86± 4.50
Train 2 8.57± 6.93 Train 6 7.83± 5.73
Train 3 7.72± 6.51 Train 7 7.12± 4.72
Train 4 7.84± 6.29 Train 8 7.89± 6.42

that the three-point criterion results in decreased perfor-
mance (Figures a and c represent the results with the cri-
terion, while Figures b and d show the results without
it). Additionally, we explore three other parameters (refer
to the legend in Figure c). The first parameter is a hard
limit to exclude points, which can be set to either True or
False. We observe an improvement in results when using
the limit. If the limit is used, the second parameter specifies
the percentage of lower values to remove from [0.1, 0.2, 0.3],
with a preference for lower values. If the limit is set to False,
we search for the minimum number of neighbors required to
not exclude a point, with values in the range [1, 5, 9]. The
best results are obtained when the number of neighbors is
set to 5. The third parameter is the radius, which determines
when a point counts as a neighbor for another point, with
values in the range [1, 5, 9]. Here, a high value is preferred.

The evaluation of additional hyperparameters is pre-
sented in Appendix A.1. Figure 27 and Figure 28 show the
results for the robot dataset, while Figure 29 and Figure 30
present the results for the handheld dataset. We select the
best parameters for fusing with the RPR model.
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(a) Train 1. (b) Train 2. (c) Train 3. (d) Train 4.

(e) Train 5. (f) Train 6. (g) Train 7. (h) Train 8.
Figure 13: Overview of SfM point clouds for all eight training datasets. Blue dotted lines indicate the borders of the environment.

Table 5
Evaluation results for SfM. Results are shown as median position error in 𝑚 and median orientation error in °. We select the
hyperparameter 𝑒𝑥 = 0.3 for the robotic datasets and the hyperparameter 𝑒𝑥 = 0.2 for the handheld datasets. The cell color
indicates the relatedness between training and test environments and dynamics (light gray =̂ similar environments, dark gray =̂
strong environmental differences).

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8
Test 1 0.4406 1.47 0.6720 2.18 0.6820 2.40 1.1758 31.83 1.7932 6.55 0.6600 2.30 2.0009 6.06 6.6378 20.30
Test 2 0.5736 1.94 0.5984 2.14 0.4296 1.71 1.1756 4.02 1.0385 3.64 0.7775 2.69 2.6908 8.47 5.9536 19.22
Test 3 0.8155 2.90 0.7514 2.78 0.4529 1.89 1.7175 6.40 1.5590 5.62 1.1602 3.91 3.4231 11.23 6.5891 21.41
Test 4 1.6407 5.50 0.6393 2.48 0.3407 1.54 1.8450 6.79 1.4746 5.40 1.1674 4.03 7.2445 26.19 7.0458 22.88
Test 5 6.5806 20.27 0.1312 0.82 0.2076 1.05 1.4789 4.79 0.5336 1.85 4.0145 12.14 5.7685 19.70 9.4618 29.55
Test 6 3.8720 13.03 0.7598 2.93 0.2417 1.19 0.5971 2.25 0.5417 1.99 4.3004 13.06 6.7546 23.65 10.3992 35.50
Test 7 24.5902 94.50 15.2681 64.65 1.5336 6.05 0.3742 2.17 0.3458 1.99 21.3927 80.61 18.3089 75.64 20.9043 79.34
Test 8 21.6899 81.23 12.6190 43.84 1.0662 4.41 0.4205 2.22 0.3049 1.82 10.3005 35.54 11.2760 42.33 14.2804 52.24
Test 9 1.0352 3.99 2.0459 6.84 0.8040 3.81 5.9806 18.24 1.0407 4.30 0.5175 2.52 1.5983 5.55 3.8926 12.44
Test 10 1.1925 5.56 5.6020 17.17 1.1586 5.47 2.8885 10.17 1.6000 6.32 0.5515 3.40 0.7954 4.14 4.9886 16.21
Test 11 12.1940 39.80 4.1512 14.22 0.4923 3.27 1.9017 7.29 0.9849 4.58 0.9164 4.34 1.8022 6.10 2.1391 7.25

5.2. Evaluation Results: SfM
We visualize the resulting SfM point clouds for all

training datasets in Figure 13 with the dashed blue lines
as the borders of the environment. The open environment
of the train 1 dataset with no objects allows for a dense
reconstruction, while train 2 also yields a high-density point
cloud with wall features. However, on the top right and
bottom left sections of the hall, points are missing due to
the underrepresentation of images in these areas. However,
datasets train 3, train 7, and train 8 contain many object
features, while train 6 has more ceiling points. Dataset train
4, recorded with slow motions from person 1, has many
feature-rich object points, while train 5, with fast motions
from person 2, has a higher noise of points due to motion
blur. The average number of matches per point cloud, re-
ported in Table 4, supports these findings. Train 1 has the
most matches with an average of 9.23 per point, resulting in
a dense point cloud, while train 5 has a lower density with an
average of 6.86 matches per point. The remaining datasets
have an average number of matches ranging from 7.12 to
8.57.

Table 5 provides a summary of the SfM results, with the
grey cells indicating the difference between the training and
testing datasets. The evaluation shows that SfM is highly
effective when tested on the same scenario as the training

scenario, as evidenced by the low errors on the train 2 and
test 5 dataset (0.1312m and 0.82°) and the train 3 and test
6 dataset (0.2417m and 1.19°). For instance, with the point
cloud from the train 3 dataset, the error increases consistent
with increasing changes in the environment. Therefore, the
error correlates with the changes in the environment (i.e., the
color of the table cells). On the other hand, the prediction
of orientation from the reconstruction is relatively robust
against changes, with errors ranging from 1.19° on the test 6
dataset to 2.40° on the test 1 dataset. SfM also performs well
on the handheld datasets (train 4 and train 5) with high mo-
tion dynamics, when evaluated on the same scenarios (test 7
and test 8). However, SfM fails when the reconstructions are
applied to the robot evaluation datasets (and vice versa). In
conclusion, while SfM is quite robust against environmental
changes, it is not robust against dynamics (i.e., motion blur).

In Figure 14, we present three representative trajectory
predictions from SfM. The trajectory predictions for all
datasets can be found in Appendix A.2, spanning from
Figure 31 to Figure 38. Overall, SfM produces few outliers
(less than 100), in scenarios where the test images lack
distinctive features. Moreover, SfM can accurately localize
the robot in both open environments (see Figure 14a) and
those with absorber walls (see Figure 14a). However, the

F. Ott, L. Heublein, D. Rügamer, B. Bischl, C. Mutschler: Preprint submitted to Elsevier Page 11 of 31

341



Fusing SfM and Simulation-Augmented Pose Regression from Optical Flow for Challenging Indoor Environments

(a) Train 1, test 1. (b) Train 3, test 6. (c) Train 4, test 7.
Figure 14: Evaluation of the predicted positions (green =̂ low position error, red =̂ large position error) against the ground truth
trajectories (blue) for SfM.

Table 6
Evaluation results for the APR model. Results are shown as median position error in 𝑚 and median orientation error in °. We
select the hyperparameter 𝑒𝑥 = 0.3 for the robotic datasets and the hyperparameter 𝑒𝑥 = 0.2 for the handheld datasets. The cell
color indicates the relatedness between training and test environments and dynamics (light gray =̂ similar environments, dark
gray =̂ strong environmental differences).

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8
Test 1 0.8076 2.12 3.0364 9.56 2.0245 10.92 4.4608 33.05 5.4224 36.99 1.1224 3.03 3.1848 9.73 1.8310 5.64
Test 2 1.0096 2.98 3.4245 10.36 2.0611 9.47 5.6366 34.33 5.6771 46.69 1.6957 4.83 3.9469 13.93 2.2105 6.09
Test 3 1.3636 4.72 3.0526 12.44 1.9051 9.32 4.5158 35.70 5.9039 42.06 2.3052 8.79 3.8144 18.73 2.5504 8.30
Test 4 2.2635 5.85 3.5413 9.95 1.9869 8.66 5.8072 29.51 7.2380 52.85 2.4261 7.85 4.6354 19.50 2.3831 7.14
Test 5 2.1091 6.93 0.7340 1.99 0.6417 2.32 3.9771 24.13 7.1118 71.50 2.6327 9.32 3.9958 18.60 1.8708 6.64
Test 6 3.2216 23.71 3.7292 19.39 0.4232 1.74 3.9909 16.07 5.2587 43.72 3.3173 30.38 5.2294 54.94 2.8280 23.32
Test 7 8.4233 79.54 7.1442 87.50 6.5239 39.58 0.6277 2.92 0.9070 4.10 7.6766 76.02 5.8731 82.03 6.6052 68.35
Test 8 6.2944 83.48 5.9621 82.11 4.6108 18.77 0.8599 3.88 0.8892 3.85 5.7339 60.65 6.0106 69.61 5.3620 54.91
Test 9 1.7769 5.63 3.9475 18.32 3.0726 21.53 4.6508 34.17 4.8097 41.53 0.8045 2.59 3.9290 8.69 1.6533 4.95
Test 10 4.1898 12.43 2.8045 37.11 4.2577 48.94 3.9608 41.43 4.5296 46.22 2.1423 8.28 0.8444 3.66 0.8224 4.01
Test 11 3.3845 16.54 4.3289 26.20 2.1233 8.81 3.9488 30.08 4.9100 54.42 2.3541 8.53 2.7667 13.89 0.8000 3.82

predicted trajectory may not be smooth in some cases (see
Figure 14c).
5.3. Evaluation Results: APR and Augmented

APR
In this section, an evaluation of the APR model is pre-

sented and the results are compared to SfM. The summary of
the results is provided in Table 6. Similar to SfM, the APR
model achieves the lowest position and orientation errors
when evaluated in the same training and testing scenario.
However, the errors produced by the APR model are higher
compared to SfM (e.g., 0.4232m for APR and 0.2417m for
SfM on the train 3 and test 6 dataset). The error increases
significantly for changes in the environment (e.g., 2.0245m
for the test 1 dataset), indicating that the APR model is less
robust to changes compared to SfM. On the other hand, the
APR model produces fewer outliers due to the restricted area
in the learning process.

The motivation behind pre-training the APR model on
a synthetically generated dataset is to enhance its general-
ization capabilities when objects are removed or added. We
propose a comparison between the results of the APR model
and the pre-trained APR model in Figure 15. The x-axis
represents all possible combinations of training and testing
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(a) Median position error in 𝑚.
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(b) Median orientation error in °.
Figure 15: Comparison of APR with APR pre-trained on data
generated from simulation.

scenarios. The green dots indicate an improvement in the
error, while the red dots indicate a degradation in the error.
The simulation environment contains many absorber walls
that resemble the environment of dataset train 2, leading
to a significant improvement in results for this scenario.
However, the results decrease for the train 4 and train 5
datasets since the synthetic dataset lacks human dynamics
and motion blur. When the predicted position error by APR
is high, augmenting the data can further improve the results.
However, the changes are marginal when the error is already
low.
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(a) Fusion of SfM and RPR with PGO.
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(b) Fusion of APR and RPR with PGO.
Figure 16: Comparison of SfM, respectively for APR, with the optimization of SfM, respectively of APR, with RPR and PGO.
We evaluate APR and RPR pre-trained and non-pre-trained. Dashed lines show the position improvements in %.

5.4. Fusion Results
In the next step, we conduct an evaluation of the fusion

of SfM and RPR, as well as the fusion of APR and RPR.
The evaluation is carried out using PGO for pose refinement
initially, followed by recurrent fusion cells. For an overview
of the evaluation, please refer to Table 3.
PGO & Augmentation. Initially, we refine the absolute
poses using relative poses with the state-of-the-art PGO
algorithm. Figure 16a presents a comparison between the
position error of SfM with the refined poses obtained from
PGO (SfM+RPR+PGO). PGO has a significant positive
impact on results in challenging scenarios but does not effect
good localization results (e.g., train 2, train 3, and train 6
datasets). However, PGO marginally decreases the results
for handheld datasets (train 4 and train 5). We also present
the percentage improvement achieved by pre-training RPR
with simulated data (dashed lines). While pre-training has a
negative impact (-0.6%) on the train 2 and train 3 datasets,
results can be slightly improved for the remaining datasets,
up to 1.0%. Figure 16b presents results for refining APR
with RPR. In contrast to SfM, this combination has no effect
on results. Additionally, pre-training only leads to marginal
improvements or decreases in results.
Recurrent APR-RPR Fusion & Augmentation. In order
to fuse APR and RPR and predict an optimized absolute
pose, it is essential to consider the specific deterministic,
random-walk, non-linear, or long-memory behavior (or a
combination of these) of both robotic and human motion.
Specifically, the motion range of objects is limited to certain
velocities and orientation changes. To address these chal-
lenges, a recurrent unit is necessary to process the required
pose information. However, there is currently no clear un-
derstanding of which RNN-cell structure is most suitable for
each type of behavior and the characterization of these units
is not clear (Khaldi et al., 2023). Therefore, we provide a
comprehensive evaluation of eight RNN units for the fusion
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Figure 17: Comparison of trainable model parameters of all
eight stacked recurrent networks for APR and RPR fusion for
different number of units 𝑟𝑢 ∈ [5, 10, 20, 50].

task. According to Khaldi et al. (2023), an MGU cell is
most suitable for a deterministic and non-linear behavior,
while an LSTM cell is recommended for chaotic behavior,
see also Yu et al. (2019). In order to further explore the
optimal RNN-cell structure for the fusion task, we train
and evaluate in addition to the commonly used cells LSTM,
GRU, and MGU, the cell types CFN, QRNN, RAN, SRU,
and TRNN. We vary the number of timestep input values
(𝑁𝑡 ∈ [3, 6, 10, 15, 25]) and the number of recurrent units
(𝑟𝑢 ∈ [5, 10, 20, 50]). Both single and two stacked RNN cells
are evaluated using a copy memory task, which is designed
to stress test the ability of recurrent networks to propagate
long-term, distant information (Bai et al., 2018). This task
assesses the model’s capacity to retain information for dif-
ferent lengths of time (𝑁𝑡). To compare the different models,
Figure 17 shows the number of trainable model parameters
for each of the eight stacked RNN cells and the number
of units 𝑟𝑢. We observe that larger cell sizes (𝑟𝑢) result in
a significant increase in trainable parameters, leading to a
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(a) Train 1. (b) Train 2.

(c) Train 3. (d) Train 4.

(e) Train 5. (f) Train 6.

(g) Train 7. (h) Train 8.
Figure 18: Evaluation of recurrent absolute (i.e., SfM or APR) and relative (i.e., RPR) pose fusion for eight training datasets
evaluated on the corresponding testing dataset. Lines evaluate for recurrent cells and stacked (solid) or non-stacked (dashed)
cells. The heatmap in the background ranks the best fusion method (green indicates best ranked method and red indicates the
last ranked method). [s] indicates the simulation-augmented pre-training of APR or RPR. Black horizontal line indicates the
optimization of SfM and RPR with PGO. For readability, we set 𝑦 limits.

higher risk of overfitting. On the other hand, smaller gating
mechanisms result in a decrease in the number of parameters
(i.e., LSTM > GRU > MGU), with TRNN having the fewest
parameters. Figure 18 provides an overview of the results for
all eight training datasets and various fusions of absolute and
relative models (with and without simulated pre-training),

compared to PGO (black line). We evaluate the parameters
𝑁𝑡 ∈ [3, 6, 10, 15, 25] and 𝑟𝑢 ∈ [3, 5, 10]. We rank all
methods with colored backgrounds. In the following, [s]
indicates pre-training. The results of the method ranking
indicate that SfM+RPR and SfM+RPR[s] outperform APR
on all datasets, except for the train 8 dataset. The efficacy
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Table 7
Evaluation results for the best recurrent cell for fusing SfM or APR with pre-trained RPR utilizing the stacked TRNN cell with
𝑁𝑡 timesteps and 𝑟𝑢 recurrent units. Results are shown as median position error in 𝑚 and position improvement in %. The cell
color indicates the relatedness between training and test environments and dynamics for the position error (light gray =̂ similar
environments, dark gray =̂ strong environmental differences), and the degree of improvement (green =̂ improvement, red =̂
degradation) against SfM-only (see Table 5).

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8
Test 1 0.2606 +40.9 0.5909 +12.1 0.5249 +23.0 2.5297 –115.1 2.0405 –13.8 0.3877 +41.3 1.4115 +29.5 1.8464 +72.2
Test 2 0.3297 +42.5 0.4970 +16.9 0.3091 +28.0 1.7065 –45.1 1.8001 –73.3 0.4709 +39.4 1.7347 +35.5 2.1859 +63.3
Test 3 0.4724 +42.1 0.5831 +22.4 0.3335 +26.4 1.8748 –9.2 1.9356 –24.2 0.8070 +30.4 1.8795 +45.1 2.5305 +61.6
Test 4 0.9710 +40.8 0.4942 +22.7 0.2394 +29.7 1.8955 –2.7 1.9427 –31.7 0.7822 +33.0 3.5102 +51.5 2.3277 +66.9
Test 5 2.4365 +63.0 0.0888 +32.3 0.1399 +32.6 1.7744 –22.0 1.6923 –217.4 2.2221 +44.6 3.3965 +41.1 1.8474 +80.5
Test 6 1.9714 +49.1 0.6641 +12.6 0.1620 +33.0 1.5941 –184.1 1.6885 –211.7 2.5828 +39.9 3.6296 +46.3 2.7798 +73.3
Test 7 5.7052 +76.8 4.2081 +72.4 1.7238 –12.4 0.2631 +29.7 0.2612 +24.5 5.6267 +73.7 4.6363 +74.7 6.5534 +68.7
Test 8 4.2785 +80.3 4.8111 +61.9 1.8361 –61.7 0.3215 +23.5 0.2125 +30.3 3.5936 +65.1 4.0741 +63.9 5.3554 +62.5
Test 9 0.5803 +43.9 1.4832 +27.5 0.5536 +31.1 2.3406 +60.9 1.7902 –72.0 0.2952 +43.0 1.0633 +33.5 1.6314 +58.1
Test 10 0.6552 +45.1 2.9389 +47.5 0.7821 +32.5 1.9858 +31.3 1.8844 –17.8 0.3701 +32.9 0.4084 +43.7 0.7674 +84.6
Test 11 2.6793 +78.0 2.4830 +40.2 0.3220 +34.6 1.9044 –0.1 1.7822 –81.0 0.5500 +40.0 1.2626 +29.9 0.7451 +65.2

(a) Train 1, test 1. (b) Train 3, test 6. (c) Train 4, test 7.
Figure 19: Evaluation of the predicted positions (green =̂ low position error, red =̂ large position error) against the ground truth
trajectories (blue) for the recurrent fusion of SfM with the pre-trained RPR model utilizing the stacked TRNN cell with 𝑁𝑡 = 15
timesteps and 𝑟𝑢 = 10 recurrent units.

of pre-training is dependent on the dataset. Among the
fusion models, most outperform PGO on the train 1, train 2,
train 3, train 5, train 6, train 7, and train 8 datasets. Using
two stacked RNN cells always yields better results than
using only one cell. TRNN (Balduzzi and Ghifary, 2017)
consistently achieves the lowest position errors, which is
evident in Figures 18a, 18b, 18c, 18d, 18e, and 18f, and
18g. Therefore, a small model with few trainable parameters,
i.e., 𝑟𝑢 = 10 (as shown in Figure 17), is adequate for fusing
absolute and relative poses. A large timestep size of 𝑁𝑡 = 25
is observed to be better, as it enables the model to learn long-
term dependencies of the motion dynamics. The difference
between the recurrent units 𝑟𝑢 = 5 and 𝑟𝑢 = 10 is marginal
and varies depending on the dataset, as evident in Figure 18d
versus Figure 18h. A model size of 𝑟𝑢 = 3 is too small to
learn usable features.

Table 7 displays the improvement in position compared
to SfM-only (Table 5) for all datasets. Based on the dataset
used, the results can demonstrate an improvement ranging
from +12.1% to +84.6% for the robotic dataset, especially
when the training and testing are conducted on robotic
datasets. However, the results show a substantial decline

for the handheld dataset when assessed on robotic datasets.
This indicates that while recurrent cells can learn motion
dynamics and produce a more precise predicted trajectory,
they cannot adjust to new dynamics, such as transitioning
from fast handheld movements to slow robotic movements.
Nevertheless, the model can adapt from robotic to handheld
movements. The enhancement is attributed to a significant
decrease in outliers and the ability to predict smoothed
trajectories, which is evident by comparing Figure 19 with
Figure 14.

In Figure 20, we present additional results involving
17 convolutional, recurrent, and Transformer models, along
with a comparison to PGO and TRNN (as shown in Fig-
ure 18). The hyperparameter searches are performed for the
parameters 𝑁𝑡, 𝑟𝑢, 𝑛𝑓 , 𝑑𝑒𝑝𝑡ℎ, 𝑑𝑚𝑜𝑑𝑒𝑙, and 𝑛𝑙𝑎𝑦𝑒𝑟𝑠. Regarding
the handheld dataset (Figure 20a), only TSiT (Zerveas et al.,
2021) and gMLP (Liu et al., 2021) demonstrate superior
performance compared to PGO and achieve similar results
as TRNN. On the other hand, in the case of the robotic
dataset (Figure 20b), most of the methods outperform PGO.
However, TRNN exhibits lower positioning errors copmared
to all other methods, except for gMLP.
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Figure 20: Hyperparameter search for the convolutional, recurrent convolutional, and Transformer models. We search for the
hyperparameters 𝑁𝑡 ∈ [5, 10, 15, 25], 𝑟𝑢 ∈ [3, 5, 10], 𝑛𝑓 ∈ [16, 32, 64, 128], 𝑑𝑒𝑝𝑡ℎ ∈ [3, 4, 5, 6], 𝑑𝑚𝑜𝑑𝑒𝑙 ∈ [32, 64, 128, 256], and
𝑛𝑙𝑎𝑦𝑒𝑟𝑠 ∈ [2, 3, 4, 5] (ordered from bottom to top). We select the best hyperparameters (marked red) to compare with PGO (black)
and TRNN (orange).

5.5. Comparison to State-of-the-art
In comparison to state-of-the-art methods, we employ

the accelerated coordinate encoding (ACE) technique pro-
posed by Brachmann et al. (2023). ACE leverages a scene-
agnostic feature backbone along with a scene-specific pre-
diction head. In their work, Brachmann et al. (2023) uti-
lize an MLP prediction head, enabling optimization across
thousands of viewpoints simultaneously during each training
iteration. This characteristics lead to a stable and rapid
convergence. Notably, ACE represents the most recent ad-
vancement in this research domain and surpasses alternative
approaches such as PoseNet (Kendall et al., 2015), MS-
Transformer (Shavit et al., 2022), DSAC* (Brachmann and

Rother, 2021), SANet (Yang et al., 2019), and SRC (Dong
et al., 2022).

While ACE effectively produces a dense point cloud for
nearby objects, such as the large black absorber walls, it
fails to extract features from distant white walls and other
feature-rich objects at a distance (see Figure 22). The pose
prediction performance of ACE is notably diminished un-
der challenging conditions, particularly when dealing with
absorber walls. In contrast, our point clouds reconstructed
with SfM exhibit more evenly distributed features, even from
distant walls (see Figure 13). Furthermore, we provide a
comparison of SfM+RPR fusion with TRNN networks and
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Table 8
Comparison of results for the TRNN fusion model (left column) with ACE (Brachmann et al., 2023) (right column). Results
are shown as median position error in 𝑚. The cell color indicates the relatedness between training and test environments and
dynamics (light gray =̂ similar environments, dark gray =̂ strong environmental differences).

Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8
Test 1 0.2606 0.271 0.5909 0.329 0.5249 0.492 2.5297 2.522 2.0405 1.701 0.3877 0.484 1.4115 1.619 1.8464 1.939
Test 2 0.3297 0.135 0.4970 0.510 0.3091 0.414 1.7065 1.349 1.8001 1.557 0.4709 0.559 1.7347 1.829 2.1859 2.130
Test 3 0.4724 0.166 0.5831 0.430 0.3335 0.369 1.8748 1.233 1.9356 1.369 0.8070 0.779 1.8795 1.714 2.5305 1.175
Test 4 0.9710 0.263 0.4942 0.495 0.2394 0.273 1.8955 1.044 1.9427 1.267 0.7822 0.755 3.5102 3.687 2.3277 0.958
Test 5 2.4365 2.715 0.0888 0.096 0.1399 0.114 1.7744 0.541 1.6923 0.618 2.2221 2.040 3.3965 3.583 1.8474 1.033
Test 6 1.9714 0.660 0.6641 0.687 0.1620 0.175 1.5941 0.830 1.6885 0.788 2.5828 2.235 3.6296 4.430 2.7798 1.612
Test 7 5.7052 3.550 4.2081 3.588 1.7238 0.418 0.2631 0.216 0.2612 0.227 5.6267 5.325 4.6363 5.317 6.5534 3.998
Test 8 4.2785 2.281 4.8111 1.130 1.8361 0.402 0.3215 0.325 0.2125 0.225 3.5936 3.645 4.0741 4.441 5.3554 2.686
Test 9 0.5803 0.319 1.4832 0.864 0.5536 0.977 2.3406 1.710 1.7902 1.894 0.2952 0.213 1.0633 1.014 1.6314 0.743
Test 10 0.6552 0.423 2.9389 1.198 0.7821 1.233 1.9858 1.561 1.8844 1.733 0.3701 0.535 0.4084 0.365 0.7674 0.431
Test 11 2.6793 2.676 2.4830 1.737 0.3220 0.426 1.9044 0.925 1.7822 1.526 0.5500 0.678 1.2626 1.239 0.7451 0.783

(a) Example 1. (b) Example 2. (c) Example 3. (d) Example 4. (e) Example 5.
Figure 21: Matches in red for five exemplary images.

Figure 22: Retrieving absolute poses from the point cloud
reconstructed with ACE (Brachmann et al., 2023).

ACE in Table 8. While ACE performs well for scenarios in-
volving close objects, such as in the train 1 and test 3 dataset,
our fusion model outperforms ACE in large-scale scenarios,
as seen in the train 6 and test 1 dataset. Consequently, for
further improvements in localization results, ACE can be
used as a black-box model in combination with our relative
module to achieve a more robust localization solution.
5.6. Robustness to Environmental Challenges

In this section, we aim to investigate the resilience of
SfM against environmental variations and challenges. Fig-
ure 24 shows the position error for various environmental
conditions. Figure 21 illustrates some sample images along
with their corresponding matched pixels displayed as red
points. One of the primary obstacles is coping with the noise
in the input images caused by several factors such as lighting

conditions, motion blur, and camera distortion. As depicted
in Figure 21b, the presence of motion blur in the image due
to the rapid rotation of the robot results in only a few pixels
being matched with other images. Conversely, in Figure 21c,
a similar background context without motion blur allows for
feature extraction from the surroundings, leading to success-
ful matching. The correspondence between the position error
in the x (top) and y (bottom) coordinates with respect to the
orientation of the camera in the environment, as well as chal-
lenges present in the images, is visualized in Figure 23. The
x and y-error exhibit similar behavior. The results indicate
that the position error is low for the orientation of 180°, as
the feature-rich warehouse racks are visible. However, the
position error significantly increases for images that point to
the right of the environment (0° and 360°). This is especially
evident in the top figure for the timesteps 200 to 300 and 750
to 1,100, as many absorber walls and reflective surfaces are
visible. Selected images recorded under optimal conditions
(green) result in a low position error (e.g., at the timesteps
0 to 150 and 1,250 to 1,350). SfM is found to be robust
against slight motion blur, as evident from timestep 2,600
to 2,750. The images in Figure 21d and Figure 21e contain
rich information, leading to many pixels being matched.
However, SIFT struggles to extract features from the black
absorber walls present in Figure 21a and Figure 21e. Addi-
tionally, the images were generated using a fish-eye lens in
the simulated environment, making it challenging to undis-
tort them to construct an effective point cloud. Moreover,
SfM techniques can encounter difficulties when dealing with
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Figure 23: Plot of the positional error with respect to the x and y-coordinates of SfM for the train 4 dataset with environmental
challenges marked in color. The top plot shows the orientation between 0°and 360°. The orientation of 0°points to the east of
the environment. The middle plot shows seven challenges or optimal image conditions in color. The bottom plot shows the error
dependent on the orientation in the environment.

op
tim

al
(1

,3
55

)

sl
ig

ht
 b

lu
r

(8
98

)

he
av

y 
bl

ur
(1

20
)

ha
rs

h 
lig

ht
(1

84
)

sl
ig

ht
 b

lu
r

ha
rs

h 
lig

ht
(1

52
)

he
av

y 
bl

ur
ha

rs
h 

lig
ht

(1
6) lo
w

re
so

lu
tio

n
(1

62
)

0.0

0.5

1.0

1.5

2.0

M
ed

ia
n 

Po
si

tio
n

E
rr

or
 in

 x
 [m

]

Figure 24: Position error of SfM for various environmental
challenges. Number in brackets are the number of samples in
the test set.

large-scale scenes. In such scenarios, the number of features
and images can become too substantial for the algorithms
to handle efficiently (Schönberger and Frahm, 2016). As
a results, we were unable to construct point clouds from
more than 1,000 images due to computation times on our
hardware setup. Thus, we opted for 600 images for each
dataset. One further challenge in SfM is dealing with moving
objects in the scene. While our scenarios are static, there
are moving objects present between the scenarios. Figure 25
illustrates the average number of matches per image view,
which affects the point cloud density. A larger number of
matches per view, up to 70 matches (as in Figure 25a), results
in a denser point cloud (as in Figure 13a), whereas for the
train 8 dataset, the point could is sparse (see Figure 13h)
due to numerous objects and absorber walls and a smaller
number of matches per view, up to 20, as in Figure 25h.

F. Ott, L. Heublein, D. Rügamer, B. Bischl, C. Mutschler: Preprint submitted to Elsevier Page 18 of 31

348
12. Fusing Structure from Motion and Simulation-Augmented Pose

Regression from Optical Flow for Challenging Indoor Environments



Fusing SfM and Simulation-Augmented Pose Regression from Optical Flow for Challenging Indoor Environments

0 100 200 300 400 500 600
Views

0

10

20

30

40

50

60

70

Av
er

ag
e 

M
at

ch
es

(a) Train 1.
0 100 200 300 400 500 600

Views

0

10

20

30

40

50

60

70

Av
er

ag
e 

M
at

ch
es

(b) Train 2.
0 100 200 300 400 500 600

Views

0

10

20

30

40

50

60

70

Av
er

ag
e 

M
at

ch
es

(c) Train 3.
0 100 200 300 400 500 600

Views

0

10

20

30

40

50

60

70

Av
er

ag
e 

M
at

ch
es

(d) Train 4.

0 100 200 300 400 500 600
Views

0

10

20

30

40

50

60

70

Av
er

ag
e 

M
at

ch
es

(e) Train 5.
0 100 200 300 400 500 600

Views

0

10

20

30

40

50

60

70

Av
er

ag
e 

M
at

ch
es

(f) Train 6.
0 100 200 300 400 500

Views

0

10

20

30

40

50

60

70

Av
er

ag
e 

M
at

ch
es

(g) Train 7.
0 100 200 300 400 500

Views

0

10

20

30

40

50

60

70

Av
er

ag
e 

M
at

ch
es

(h) Train 8.
Figure 25: Average number of matches (y-axis) per view (x-axis) for all eight training datasets. Grey indicates standard deviation
over all images.

(a) Standard deviation limits. (b) Minimum matches. (c) Spatial consistency.

(d) Overlap criterion. (e) Separation limits (𝑒𝑥). (f) Gibbs sampling.
Figure 26: Overview of computation times (logarithmic in 𝑠) for different hyperparameter choices.

We observe that the number of matches varies significantly
across different scenarios, indicating diverse environmental
conditions in different areas.

In our analysis of the predicted trajectories (see the
appendix, Figure 31 to Figure 38), we have observed that
when constructing a point cloud from a clear environment
(train 1) and evaluating it on environments with absorber
walls, the reconstructed position exhibits an increase in error
in those particular regions. This trend is noticeable in the
top region of test 2, which contains one absorber wall (see
Figure 31b), and the lower middle region of test 6, which

contains four absorber walls (see Figure 31e). This pattern
is also evident in the other datasets we evaluated.
5.7. Computation Times

Figure 26 illustrates the computation times (in 𝑠) of SfM
for point cloud reconstruction with respect to the parameters
𝑠𝑡𝑑, 𝑚𝑚, 𝑠𝑐, 𝑜𝑐, 𝑒𝑥, and 𝑔𝑖𝑏𝑏𝑠. We highlight each parameter
and average over the remaining parameters, displaying the
standard deviation in grey. The time is displayed on a loga-
rithmic scale. As seen in Figure 26a, the standard deviation
(𝑠𝑡𝑑) for point exclusion in BA has a negligible effect on
computation time. The number of minimum matches (𝑚𝑚 ∈
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{3, 4, 5}) has an impact on the time for cluster separation
(as depicted in Figure 26b). Higher spatial consistency (𝑠𝑐)
increases the time for match computation and view correc-
tion (as illustrated in Figure 26c) due to the use of k-means.
The overlap criterion (𝑜𝑐) in Figure 26d and separation limits
(𝑒𝑥) in Figure 26e have a minor impact on the training
time. In general, cluster separation and 3D pose estimation
from BA are the most time-consuming steps. SfM has the
advantage of being able to run on a small CPU.

6. Conclusion
The focus of our study was on combining absolute poses

obtained from SfM or an APR method with relative poses,
in order to optimize and smoothen the trajectory of objects
such as robots and humans. To estimate the relative pose, we
proposed a recurrent network that learns the translation and
rotation by analyzing the optical flow between consecutive
images computed with the Lucas-Kanade algorithm. Our
primary contribution was a fusion framework that uses eight
different recurrent neural networks to combine absolute and
relative poses, and we compared our approach to the state-of-
the-art PGO technique for pose refinement. Additionally, we
released a large visual database recorded in a challenging in-
door environment that mimics warehouse scenarios, and we
developed a simulation framework for generating synthetic
images to pre-train APR and RPR models for faster training.

We conducted a comprehensive evaluation on the datasets,
and the main findings can be summarized as follows: (1)
The quality of the point cloud generated by SfM heavily
depends on the hyperparameters selected, particularly the
points that are removed from the point cloud. There is a
cleavage of parameters on the position and orientation error.
(2) A meticulous selection of these parameters results in sig-
nificantly better outcomes compared to pose regression tech-
niques. (3) SfM and APR methods experience difficulties in
extracting features from challenging images, especially from
feature-less images. However, APR methods exhibit more
robustness against environmental changes. (4) Pre-training
APR and RPR slightly enhances the position error by up to
1% for environments that resemble the simulated scenario.
(5) PGO can refine the pose and improves high position
errors, while simultaneously decreasing low position errors.
(6) Our framework comprising various fusion cells based
on convolutional, recurrent and Transformer models has
demonstrated a significant enhancement in absolute pose
error by facilitating smoother trajectory and higher resilience
to challenges. This approach consistently outperforms PGO.
The implementation of a strongly-typed RNN (TRNN) as a
small-scale RNN model has yielded an average improvement
of 42.67% in position results over the SfM-only results for
the robotic datasets.
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A. Appendix A
A.1. Hyperparameter Search

In Figure 27 and Figure 28, we conduct a detailed hy-
perparameter search for the robot dataset, while in Figure 29
and Figure 30, we perform a similar search for the handheld
dataset. The x-axis of each figure represents a combination
of three hyperparameters (𝑒𝑥1, 𝑒𝑥2, 𝑒𝑥3) that control the
separation limit. We search for each of these parameters
in the range of [10, 20, 30, 40], subject to the constraints
that 𝑒𝑥1 ≥ 𝑒𝑥2, 𝑒𝑥1 ≥ 𝑒𝑥3, and 𝑒𝑥2 ≥ 𝑒𝑥3. Here, 𝑒𝑥1is the cluster separation limit, 𝑒𝑥2 is the Gibbs separation
parameter, and 𝑒𝑥3 is the 3D position adjustment of BA.
We observe that certain combinations of these parameters
result in high error rates, but higher values of the parameters
generally yield lower position and orientation errors. For
example, (𝑒𝑥1, 𝑒𝑥2, 𝑒𝑥3) = (40, 30, 30) produces the best
results.

For each combination of hyperparameters, we generate
a point cloud using the parameters 𝑚𝑚 ∈ [3, 4, 5], 𝑠𝑙 =
𝑠𝑡𝑑 ∈ [3, 4, 5], the spatial consistency 𝑠𝑐 ∈ [0, 1, 2], and the
overlap criterion 𝑜𝑐 ∈ [0.0, 0.1, 0.2]. For the robot dataset,
we found that the combination of 𝑠𝑐 = 2 and 𝑜𝑐 = 2.0 yields
the best results (position error below 0.3m and orientation
error below 1.5°), as depicted in Figure 27i and Figure 28i.
For the handheld dataset, we recommend the combination
of 𝑠𝑐 = 1 and 𝑜𝑐 = 1.0, refer to Figure 29e and Figure 30e.
We also observe that a high value for the minimum matches
parameter 𝑚𝑚 = 5 is clearly the best choice, while 𝑠𝑡𝑑 =
[3, 4, 5] produces similar results.
A.2. Trajectory Plots

Figure 31 to Figure 38 contain visualizations of the
predicted absolute poses for SfM, encompassing all eight
training datasets and ten test datasets.
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(a) Spatial consistency: 0, overlap criterion:
0.0.

(b) Spatial consistency: 0, overlap criterion:
1.0.

(c) Spatial consistency: 0, overlap criterion:
2.0.

(d) Spatial consistency: 1, overlap criterion:
0.0.

(e) Spatial consistency: 1, overlap criterion:
1.0.

(f) Spatial consistency: 1, overlap criterion:
2.0.

(g) Spatial consistency: 2, overlap criterion:
0.0.

(h) Spatial consistency: 2, overlap criterion:
1.0.

(i) Spatial consistency: 2, overlap criterion:
2.0.

Figure 27: Detailed evaluation results for the SfM hyperparameter search for the robot train 3 and test 6 datasets. Median position
error in 𝑚. For readability, the label spacing is fixed. The legend shows the minimum matches hyperparameter. The legend is
equal for all subplots.
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(a) Spatial consistency: 0, overlap criterion:
0.0.

(b) Spatial consistency: 0, overlap criterion:
1.0.

(c) Spatial consistency: 0, overlap criterion:
2.0.

(d) Spatial consistency: 1, overlap criterion:
0.0.

(e) Spatial consistency: 1, overlap criterion:
1.0.

(f) Spatial consistency: 1, overlap criterion:
2.0.

(g) Spatial consistency: 2, overlap criterion:
0.0.

(h) Spatial consistency: 2, overlap criterion:
1.0.

(i) Spatial consistency: 2, overlap criterion:
2.0.

Figure 28: Detailed evaluation results for the SfM hyperparameter search for the robot train 3 and test 6 datasets. Median
orientation error in °. For readability, the label spacing is fixed. The legend shows the minimum matches hyperparameter. The
legend is equal for all subplots.
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(a) Spatial consistency: 0, overlap criterion:
0.0.

(b) Spatial consistency: 0, overlap criterion:
1.0.

(c) Spatial consistency: 0, overlap criterion:
2.0.

(d) Spatial consistency: 1, overlap criterion:
0.0.

(e) Spatial consistency: 1, overlap criterion:
1.0.

(f) Spatial consistency: 1, overlap criterion:
2.0.

(g) Spatial consistency: 2, overlap criterion:
0.0.

(h) Spatial consistency: 2, overlap criterion:
1.0.

(i) Spatial consistency: 2, overlap criterion:
2.0.

Figure 29: Detailed evaluation results for the SfM hyperparameter search for the handheld train 4 and test 7 datasets. Median
position error in 𝑚. For readability, the label spacing is fixed. The legend shows the minimum matches hyperparameter. The
legend is equal for all subplots.

F. Ott, L. Heublein, D. Rügamer, B. Bischl, C. Mutschler: Preprint submitted to Elsevier Page 26 of 31

356
12. Fusing Structure from Motion and Simulation-Augmented Pose

Regression from Optical Flow for Challenging Indoor Environments



Fusing SfM and Simulation-Augmented Pose Regression from Optical Flow for Challenging Indoor Environments

(a) Spatial consistency: 0, overlap criterion:
0.0.

(b) Spatial consistency: 0, overlap criterion:
1.0.

(c) Spatial consistency: 0, overlap criterion:
2.0.

(d) Spatial consistency: 1, overlap criterion:
0.0.

(e) Spatial consistency: 1, overlap criterion:
1.0.

(f) Spatial consistency: 1, overlap criterion:
2.0.

(g) Spatial consistency: 2, overlap criterion:
0.0.

(h) Spatial consistency: 2, overlap criterion:
1.0.

(i) Spatial consistency: 2, overlap criterion:
2.0.

Figure 30: Detailed evaluation results for the SfM hyperparameter search for the handheld train 4 and test 7 datasets. Median
orientation error in °. For readability, the label spacing is fixed. The legend shows the minimum matches hyperparameter. The
legend is equal for all subplots.

(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 6.

(f) Test 7. (g) Test 8. (h) Test 9. (i) Test 10. (j) Test 11.
Figure 31: Evaluation of the predicted positions (green, red) against the ground truth trajectories (blue) for SfM for the train 1
dataset.
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(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 6.

(f) Test 7. (g) Test 8. (h) Test 9. (i) Test 10. (j) Test 11.
Figure 32: Evaluation of the predicted positions (green, red) against the ground truth trajectories (blue) for SfM for the train 2
dataset.

(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 6.

(f) Test 7. (g) Test 8. (h) Test 9. (i) Test 10. (j) Test 11.
Figure 33: Evaluation of the predicted positions (green, red) against the ground truth trajectories (blue) for SfM for the train 3
dataset.

(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 6.

(f) Test 7. (g) Test 8. (h) Test 9. (i) Test 10. (j) Test 11.
Figure 34: Evaluation of the predicted positions (green, red) against the ground truth trajectories (blue) for SfM for the train 4
dataset.
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(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 6.

(f) Test 7. (g) Test 8. (h) Test 9. (i) Test 10. (j) Test 11.
Figure 35: Evaluation of the predicted positions (green, red) against the ground truth trajectories (blue) for SfM for the train 5
dataset.

(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 6.

(f) Test 7. (g) Test 8. (h) Test 9. (i) Test 10. (j) Test 11.
Figure 36: Evaluation of the predicted positions (green, red) against the ground truth trajectories (blue) for SfM for the train 6
dataset.

(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 6.

(f) Test 7. (g) Test 8. (h) Test 9. (i) Test 10. (j) Test 11.
Figure 37: Evaluation of the predicted positions (green, red) against the ground truth trajectories (blue) for SfM for the train 7
dataset.
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(a) Test 1. (b) Test 2. (c) Test 3. (d) Test 4. (e) Test 6.

(f) Test 7. (g) Test 8. (h) Test 9. (i) Test 10. (j) Test 11.
Figure 38: Evaluation of the predicted positions (green, red) against the ground truth trajectories (blue) for SfM for the train 8
dataset.
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Glossary

Absolute Pose Regression (APR) is a field of methods for estimating the six degrees
of freedom (6DoF) of an object’s pose (i.e., position and orientation) in 3D space
using machine and deep learning techniques. It is a specific case of pose estimation,
which is the process of determining the pose of an object in the real-world from an
image input or sequences of images (Kendall et al., 2015). xvii, xix, 22, 23, 25, 26,
283, 299

Character Error Rate (CER) is a common metric to measure the performance of a
method that performs character recognition, such as handwriting recognition, optical
character recognition, speech recognition, or natural language processing. The CER
indicates the percentage of characters that are incorrectly recognized w.r.t. the total
number of characters in the test dataset (Kang et al., 2022). xix, 20, 35, 223

Connectionist Temporal Classification (CTC) is a type of neural networks output
and is associated with a scoring function utilized for sequence-to-sequence (seq2seq)
problems. Examples are classifying words or sentences in the field of handwriting
recognition, and speech or audio recognition. A CTC loss function predicts a sequence
of labels (including blank outputs) from a sequence of inputs. The CTC loss does
not require an explicit alignment between the input and output sequences (Graves
et al., 2006). xiii, xix, 19, 21, 169, 204

Convolutional Neural Network (CNN) A CNN is a category of deep learning neural
networks that is designed to process data in a grid-like structure. CNNs are often
utilized for image inputs. A CNN is composed of pooling layers that reduce the data
dimensionality, convolutional layers that perform convolution operations to the input
data, and normalization layers that guarantee that the data remains within a range
that allows for efficient processing (Goodfellow et al., 2016). xv, xvi, xix, 21, 23, 27,
29–31, 52, 69, 78–81, 83, 86, 87, 89–92, 94, 95, 97, 99, 101, 104, 105, 111, 168, 169,
284

Cross-Modal Retrieval (CMR) is a type of information retrieval in which the data
inputs are in different modalities – such as image, text, audio, video, time-series, 3D
models, etc. – while retaining a semantically similar context. The primary objective
of CMR is to learn a common representation by matching the data modality inputs
(Deldari et al., 2022a). xix, 4–8, 21, 32, 33, 47–51, 86, 223
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Deep Metric Learning (DML) is a method as a subcategory of representation learning,
where the distance or similarity between the representations of different data points
can be used to make predictions. The goal is to learn a mapping from the high-
dimensional input data to a compact feature space where the distance between data
points reflects their semantic similarity (Bengio et al., 2014). v, xix, 4, 6–8, 46–48,
68

Domain Adaptation (DA) is advantageous in real-world scenarios where the data dis-
tribution changes over time or in different settings, i.e., the data is not independent
and identically distributed (i.i.d.). DA is a technique to adapt a model trained on
one domain (or distribution of data) to function effectively on a related but different
domain. The goal of DA is to improve the model’s performance on the target domain
by utilizing knowledge from the source domain (where labeled data is available) to
regularize the model for the target domain (where labeled data is scarce) (Wilson &
Cook, 2020). xiv–xvii, xix, xxiv, 3–6, 8, 16, 18, 21, 34, 35, 37–42, 44, 45, 47, 48,
51–53, 60, 67–75, 78–82, 86–92, 94, 96–104, 202–204, 266

Domain Shift refers to the dissimilarity in the distribution of input-output pairs between
the training and test data. Domain shift occurs when a model (trained on a specific
data distribution) is evaluated on a dinstinct data distribution. This can lead to a
decrease in model performance since the model may not generalize well to the new
data and requires domain adaptation methods to address this challenge (Wilson &
Cook, 2020). v, xvii, 3, 5, 6, 8, 16, 34, 37, 38, 42, 47, 48, 54, 64, 67, 68, 72, 74, 80,
81, 102

Higher-order Moment Matching (HoMM) is a technique to match the higher-order
moments of a target distribution to a source distribution up to a certain order p. This
is done by minimizing the distance between both distributions (Chen et al., 2020).
xvi, xx, 4, 6, 42, 60–62, 70–72, 90, 91, 203

Inertial Measurement Unit (IMU) An IMU is an electronic device that typically in-
cludes accelerometers, gyroscopes, and magnetometers. The goal is to measure mo-
tions and dynamics of an object, such as its linear acceleration, angular rate, and
magnetic field strength (do Monte Lima et al., 2019). xx, 22–24, 26, 32, 33, 111, 134,
169, 298

Long Short-Term Memory (LSTM) is a type of a recurrent neural network that is
designed to process entire sequences of data to handle the problem of long-term
dependencies in sequential data and vanishing and exploding gradients of the cell.
LSTMs use so-called memory cells that can maintain its state over a long period of
time. This cell selectively chooses which information to keep and which information
to discard (Hochreiter & Schmidhuber, 1997). xxi, 24, 25, 28–31, 34, 111, 169
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Maximum Mean Discrepancy (MMD) is a non-parametric measure and is defined by
representing distances between distributions as distances between mean embeddings
of features (first order). MMD is computed by applying a kernel function to the
samples of the two distributions (Borgwardt et al., 2006). xiv, xv, xxi, 4, 6, 42, 44,
45, 51–54, 56, 60, 61, 69–72, 79, 88, 90, 91, 95, 99, 102, 104, 203

Modality A modality refers to the type of information or data that is being used in a
system or task, e.g., visual data (such as images or videos), audio data, inertial data,
GPS data, 3D model data, and text and speech data in natural language processing
(Joze et al., 2020). v, 4, 7, 22, 25, 32–37, 47

Multivariate Time-Series (MTS) An MTS consists of one or multiple variables (i.e.,
channels) recorded over time. Each variable in an MTS can be thought of as a
separate dimension with the goal to analyze and understand the relationships between
the different variables over time (Abanda et al., 2022). xxi, xxiv, 5, 6, 8, 18, 20, 29,
31–33, 37, 47, 48, 62, 68, 203

Online Handwriting (OnHW) Recognition is a technology that allows for the recog-
nition of handwriting. This type of recognition is also known as dynamic or real-time
handwriting recognition, and tracks the movement of the stylus or finger on the writ-
ing surface to use the resulting data to recognize the written characters, words, or
equations. Novel systems use sensor-enhanced pens to gather motion data. OnHW
recognition is used for applications such as digital ink input for tablets and smart-
phones, signature verification, and handwriting-based security systems (Ott et al.,
2020b, 2022d). vi, 28, 37, 67

Pairwise Learning is a method where the model is trained to predict the similarity or
dissimilarity between pairs of data points. The goal is to learn a mapping from
the high-dimensional input data to a lower-dimensional feature space, in which the
distance between data points reflects their semantic similarity (Schroff et al., 2015).
v, 8

Representation Learning aims to learn a dense, compact, and informative represen-
tation of the input data that captures the underlying structure of the data. The
objective of representation learning is to find a mapping from the high-dimensional
input data to a lower-dimensional space that preserves the most important (and
crucial) information and patterns in the data. This learned representation can be
utilized as a feature for downstream tasks such as clustering, classification, regres-
sion, forecasting, and generation (Bengio et al., 2014). v, vi, 4, 8, 16, 27, 35, 45–47,
62, 68, 95, 204

Self-Localization is the process of predicting the location (position and orientation) of
a mobile device, robot, or human within an (unknown) environment. Visual self-
localization involves using visual sensors to identify the object’s location w.r.t. a
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known reference. This information can then be used for various tasks such as map-
ping, navigation, and localization of other objects or devices (Radwan et al., 2018).
v, vi, xvii, 5, 6, 8, 9, 21, 22, 24, 33, 282

Word Error Rate (WER) is a common metric to measure the performance of a method
that performs word or sentence recognition, such as handwriting recognition, optical
character recognition, speech recognition, text-to-speech synthesis, or natural lan-
guage processing. The WER indicates the percentage of words that are incorrectly
recognized w.r.t. the total number of words in the test dataset (Kang et al., 2022).
xxii, 20
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