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Abstract

The characterization of chemical phenomena is at the core of computational chemistry. The
goal is to examine, elucidate, and predict different properties and behaviors based on phys-
ically accurate descriptions of chemical systems which consequently mimic experimental
behavior and provide a deeper understanding of various processes. In quantum-chemical
studies, static calculations are often used to characterize molecular properties, reactions,
and other chemical transformations. Continuous improvement of computational infras-
tructure and the development of highly efficient quantum-chemistry programs now allow
for studying these processes dynamically rather than statically. Because of the vast config-
urational space of most chemical systems and the statistical nature of chemistry, dynamic
sampling-based approaches can reflect chemical processes more accurately. Therefore, they
provide access to new and more exact properties, thereby strengthening the links between
theory and experiment.

Here, sampling-based quantum-chemical methods are presented to compute infrared (IR)
spectra, investigate nucleotide assemblies, characterize reaction mechanisms and explore
chemical reaction space for the discovery of new pathways towards probable precursors
for the building blocks of life. Enhanced sampling techniques are applied to the post-
translational enzymatic desuccinylation reaction of protein lysine side chains by sirtuin 5
and a prebiotically plausible synthesis of the canonical deoxyribonucleosides. Furthermore,
different 3’,5’-cyclic ribonucleotide assemblies were investigated using molecular dynamics
and examined with regards to their stability and suitability for polymerization.

A key component of all studies was the efficient use and analysis of the vast amount
of data generated by sampling. A protocol for preprocessing and quantitative compar-
ison of simulated and measured spectra was introduced, highlighting the superiority of
IR-spectra obtained from molecular dynamics simulations. In addition, data-driven tech-
niques have been developed (1) to identify reactive configurations using a machine learning
model trained to relate reactant geometries to activation barriers and (2) to build complex
reaction networks based solely on the evolution of bond orders during molecular dynamics
calculations with induced reactivity. Enhancing the reactivity while ensuring the stability
of molecular dynamics runs was achieved by using a newly designed periodic smooth step
function in combination with optimized simulation parameters. This optimization, as well
as the construction of reaction networks encompassing hundreds of compounds and chem-
ical transformations was enabled by fully automated post-processing.
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Chapter 1

Introduction

When conceptualizing quantum-chemical studies, a trade-off between description of the
electronic structure and the amount of configurations taken into account has to be made.
In the past, this meant that studies which both reflect the statistical nature of chemistry,
with properties ensuing from thermodynamic ensemble averages, and describing the system
accurately were restricted to very small systems comprised of only a few atoms. However,
today, computational chemists can grow their repertoire of approaches by harnessing the
power of recent advances in the development of efficient low-scaling methods, enhanced
sampling protocols, and the rising performance of computational resources. Thereby, al-
lowing for the application of extensive sampling at reasonable level of theory to increasingly
large systems.

A given chemical system can, for instance, be sampled using adiabatic ground state ab
initio molecular dynamics (AIMD). In these simulations the system is propagated on a po-
tential energy surface (PES) determined by the electronic structure. To do so, the motion
of the nuclei and electrons can be separated. In Born—Oppenheimer molecular dynamics
(BOMD) the electrons are treated quantum mechanically and generate the PES, while the
movement of the nuclei is described classically obeying Newton’s equations of motion. The
resulting trajectories, time-series of molecular geometries, and ensemble averages provide
insight into the dynamic behaviour of the system and can be used to extract various prop-
erties which can be related to experimental findings.

In the scope of this cumulative dissertation, five peer-reviewed publications and one
ongoing project are presented. The compiled studies aim to show the aptitude of sampling
based routines for various chemical systems and objectives, bridging gaps between compu-
tational and experimental studies. Because ample sampling at ab initio level still requires
excessive computational resources, enhanced sampling techniques are used and combined
with data analysis methods to optimally exploit the generated data.

Publications I and II highlight the benefits and importance of thorough sampling for
the characterization of enzymatic reactions. The large system extent of proteins, their
flexibility and implied high dimensional underlying potential energy surfaces pose many
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challenges. Among these is the choice of the enzyme-substrate complex starting configu-
ration from which the reaction is simulated.

In the first study (Publication I), the dependence of the computed reaction barrier
on the starting structure was shown using the initial step of the post-translational desuc-
cinylation reaction of lysine residues catalyzed by SIRT5 (sirtuin 5) as model reaction.
SIRT5 belongs to the protein family of sirtuins, categorized as class I lysine deacylases
(KDACs).X There are seven sirtuin isoforms in mammals. Other than their classification
suggests, these also catalyze, e.g., desuccinylations and demyristoylations.* Sirtuins are
located in various cell compartments where they take part in different biological processes.
Similar to SIRT3 and SIRT4, SIRT5 is found in mitochondria, it has only weak deacetylase
activity and mainly catalyzes demalonylation and desuccinylation reaction of proteins.”©
In the catalyzed reaction the removed acyl-group is transferred to the NAD™ co-substrate
leading to the release of nicotinamide and 2’-O-acyl-ADP-ribose.” The reaction begins with
the cleavage of the glycosidic bond forming an a-1’-O-alkylamidate intermediate (scheme
[1.1). The study highlighted that the selection of the starting structure is determinant for
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Scheme 1.1: Initial step of the deacylation reaction catalyzed by sirtuins.

the success of the computational characterization of enzymatic reactions. As a solution,
we proposed a novel machine learning (ML) based approach to identify a reactive starting
conformation and discover distinct structural features that govern the reactivity. The ML
model was trained to link geometrical features to activation barriers. The barrier heights
were obtained from 150 minimum energy paths started from different snapshots extracted
from a molecular mechanics molecular dynamics trajectory of the SIRT5-NAD™-substrate
complex solvated in water. In the reaction path calculations the active center was treated
at HF-3c¢/minix ™ level of theory and the environment described by a classical force field.
Using the ML model we were able to find multiple potentially reactive configurations,
which were validated by subsequent computation of the respective paths.

In the follow-up study (Publication II), we focused on determining the reaction free
energy barrier, which can be estimated via the exponential average over minimum energy
paths or using enhanced sampling methods.® We computed the free energy reaction profile
and the according transition barrier by QM /MM umbrella sampling” simulations evalu-
ated using the Multistate Bennett’s Acceptance Ratio.™” Thereby, we were able to directly
compare the ‘true’ free energy barrier at the chosen level of theory to the transition barriers
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calculated from the exponential average of the 150 minimal energy paths computed in the
preceding study to build a machine learning model as well as to predict 7501 barriers with
the respective model. This comparison, again, underlined the need for extensive sampling
and showed that the previously computed barrier from 150 minimum energy paths under-
estimated the effective free energy barrier. Furthermore, the computational investigation
showed that the initial reaction step, the nicotinamide cleavage, is of an Sy2 reaction type
and is highly conserved among the sirtuins.

The lessons learned from investigating the initial step of the desuccinylation reaction
catalyzed by SIRTSH were applied to the characterization of the stereo- and regioselective
synthesis of DNA nucleosides under prebiotic conditions, as proposed by Teichert et al.*t
This ongoing project is outlined in chapter [3} In the presented synthesis route, starting

from a nucleobase and acetaldehyde, first, the vinylated nucleobase is formed which sub-
sequently reacts with glyceraldehyde to the [-deoxyribonucleoside (scheme . In the
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Scheme 1.2: Chemical pathway towards S-deoxyribonucleosides and its possible side prod-
ucts, a-deoxyribonucleosides and pentopyranosyl-isomers.*t

preceding study it was shown that exclusively the S-furanose form is obtained.™ Here,
this selectivity was computationally studied using well-tempered metadynamics extended-
system adaptive biasing force (WTM-eABF)*#4 simulations of all reaction steps yielding
the reaction free energy profiles.



In publication ITI, the computational sampling of chemical space using ground state ab-
initio molecular dynamics was used to explore entangled reaction networks. In this study
different external potentials are applied to a collection of encircled starting compounds.
By choosing periodic potentials the available space is repeatedly reduced and expanded,
thereby the probability of collisions between the molecules is increased. In turn, numer-
ous reaction events are observed at reduced time scales. This approach, termed molecular
nanoreactor, was pioneered by Wang et al.** In addition to presenting an alternate imple-
mentation of the computational nanoreactor a fully automated evaluation was developed
which allows to systematically discuss the influence of various simulation parameters. The
post-processing provides a detailed qualitative and quantitative overview of all observed
reaction events. Furthermore, in publication III the molecular nanoreactor approach is
applied to systems of prebiotic interest, a collection of HCN molecules, as well as a mix-
ture of formaldehyde and glycolaldehyde, which are staring compounds for the formose
reaction network.*>™® The goal was to observe key reaction steps towards the formation
of pentoses, hexoses, nitrogen-rich heterocycles, and other prebiotically relevant molecules
that allow us to verify existing hypotheses as well as potentially discover novel reaction
pathways.

Following the formation of the organic molecules constituting the sub-units of the bio-
polymers found in living organisms, they must self-assemble and polymerize. In publica-
tion I'V the non-enzymatic polymerization of 2’,3’-cyclic nucleotides is presented. As a
possible arrangement of the monomers, intercalated stacks were computationally investi-
gated as starting point for polymerization. Stacking interaction energies calculated from
the energy difference between complex and monomers were complemented by molecular
dynamics simulations of the complexes in a water sphere where the compactness of the nu-
cleotide stacks and the time until dissociation were monitored to assess the relative stability.

While publications I, IT, and III showed the benefits and importance of thorough sam-
pling for the characterization of reaction paths in publication V, we employed sampling
to compute infrared (IR) spectra. When extracting IR-spectra from ab initio molecular
dynamics, a continuous spectrum is obtained which accounts for anharmonic effects as well
as possible flexibility of the given compounds.*” In the presented study, the necessary pre-
processing steps to compare spectra are discussed and various quantitative measures are
examined to assess the accordance between computed spectra and experimentally recorded
spectra. Furthermore, publication V shows that, on average, there is a greater similar-
ity between spectra obtained using sampling and measured IR-spectra in comparison to
computed spectra relying entirely on the harmonic approximation and a single structure.



Chapter 2

Theoretical Basis

2.1 Calculation of Minimum Energy Paths

Modeling chemical reactions allows to connect theory and experiment, and learn about
aspects of these processes that are difficult, or impossible to observe experimentally. We
can verify or propose new mechanisms, gain insights into kinetics, compare reactivities,
and learn about structural motifs that influence reactivity. There exist several methods to
model chemical reactions, some of which are presented in the following subsections. When
characterizing a minimum energy path (MEP) we aim to find a continuous pathway on the
potential energy surface (PES) connecting the reactant and product state. The direction of
the path is given by an intrinsic reaction coordinate. The routines available to find MEPs
can be divided into two main categories: (1) propagation methods, that drive the system
along a chosen transition coordinate, and (2) interpolation-based approaches, that require
at least a reactant and product structure. For simple systems, where a good estimate of
the transition state (T'S) is possible, the MEP can also be obtained by tracing the reaction
coordinate from the TS to the reactant and product states.?’

2.1.1 Coordinate-Driven and Chain-of-States Routines

A straightforward approach for computing MEPs is to define an intrinsic coordinate, and
perform restrained optimizations in a sequential fashion along the path given by the co-
ordinate. The transition coordinate &, which is a function of the system configuration x,
effectively maps the high dimensional PES on to lower dimensional representation, z.

(x) =z (2.1)

In principle, this can be any function of phase-space. When computing reaction paths, a
lower dimensional representation, e.g., a geometric feature, is chosen aiming to best describe
the transition between reactant and product state. Lower dimensional representations, also
termed collective variables (CV), to describe chemical transitions are equivalently used in
coordinate-driven enhanced sampling methods to compute free energy profiles and surfaces
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which will be described in section 2.2l

Starting from either the reactant or product state, the path of slowest ascent is followed
by step-wise changing the restraint, given by different values of the transition coordinate,
while minimizing all remaining degrees of freedom, resulting in the minimum energy profile
by adiabatic mapping when performed on the ground state potential energy surface.*
The transition coordinate must represent the change between reactant and product state.
However, selecting, as well as defining an optimal reaction coordinate is quite difficult
and introduces a strong user-bias. Using adiabatic mapping a poor choice of the reaction
coordinate can lead to “hysteresis”, resulting in discord of the MEP depending on the simu-
lation direction (increasing and decreasing of the reaction coordinate) and sudden changes
of the geometry and energy while only marginally changing the transition coordinate.?" In
Figure (a) it is shown for a simple two dimensional example that the diagonal which
clearly discerns the two end-states leads to hysteresis as described above. Close to the TS,
a large structural rearrangement results from a small increase of the driving variable. For
the chosen example this problem can not be solved by a smaller step size. This example
highlights, that selecting an appropriate driving coordinate is often difficult, especially for
concerted reactions, where several bonds are broken and formed simultaneously. To date,
transition coordinates are mainly selected based on chemical intuition and trial and error.
However, several methods have been developed to aid the selection of reaction coordinates,

in particular for the use in coordinate-driven enhanced sampling methods.%#%2
g : )
{ 2
(]
()
(]
o
51 ° i &1
H (]
L)
o
L, B
Energy 7 & Energy : & l

(a) Adiabatic Mapping. (b) Nudged Elastic Band Method.

Figure 2.1: Comparison of the coordinate driven adiabatic mapping method (a) and a
starting scenario for the nudged elastic band approach (b), belonging to the category of
chain-of-states methods. In subfigure (a) the transition coordinate, the linear combination
of & and &, is indicated by the red line. As described before the system is optimized
while restraining for a series of values of the CV yielding the blue points. In subfigure (b)
images are shown in blue, the reactant and product configuration are indicated by a light
blue border. The climbing image is marked by a yellow border. The “springs” are drawn
in green.
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As an alternative to coordinate-driven approaches, the so-called chain-of-states methods
can be used to compute MEPs. A widely applied representative of this category is the
Nudged Elastic Band (NEB) method.?*” To remedy the difficult selection of the reaction
coordinate a preliminary path is generated via interpolation between the reactant and
the product state (fig. (b)). The initial set of images, the collection of intermediate
configurations, can also be generated by a previous coordinate-driven calculation. Then
a target function, (ygg, is defined and minimized, which sums over the energies of all
intermediate states M and incorporates harmonic potentials, ensuring that the images
remain spaced along the reaction path (eq. [2.2).2627

M M-1
Cve (X1, X)) = D E(x) + > ;ki(xiH —x;)? (2.2)
i=1 i=1
These penalty terms can be envisioned as elastic bands. The spring constants k£ may be
constant or varied depending on the energy, resulting in an uniform or TS-concentrated
spacing of the images. The spring constant must be selected with care, as a too large k£ may
lead to “corner cutting”, and a too weak k results in the images “sliding down”, thereby not
adequately resolving the higher energy region around the TS.”® In principle, this problem
can be solved by incorporating more images, which however leads to increasingly com-
putationally demanding optimization of (xgp (3Mimages/Vatoms variables). To lessen this
problem, efficient “nudging” is allowed in the NEB method. This is done by only using
the component of the NEB force (FNEB) which is parallel to the tangent (7;) of the path
(F?), defined by the difference vector of two neighboring images and only the perpendicular
component of the gradient (F;*) when minimizing the target function (fig. [2.2)).2% 81

NEB 51

Energy &

Figure 2.2: Visualisation of components used to allow for nudging. The NEB force FNEB,
is composed of the component of the spring force FiSH, parallel to the tangent 7;, and the
perpendicular component of the gradient Fi*. Adapted from Sheppard et al.°
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In addition, a climbing image may be defined, which is allowed to move more freely
along the path, aiming to find the exact TS.%" In fig. (b) the blue markers represent the
images determined by linear interpolation, the green springs indicate the penalty potentials,
and the climbing image is marked by a yellow border.

2.1.2 Identifying Reactive Configurations by Machine Learning

Both in static and dynamic procedures for modeling chemical reactions, there is a ubiqui-
tous dependency of the result on the chosen starting configuration, which is a stationary
point on the PES and defines the orientation of the reacting molecules. Selecting a suitable
starting structure as well as overcoming this dependency becomes increasingly demanding
with the system extent.

In recent years, machine learning (ML) has gained much popularity for solving a wide
variety of problems in computational chemistry. In a review by Keith et al. an extensive
overview of applications of ML in computational chemistry is given.*?

In publication I, machine learning was used to aid the selection of reactive configurations by
investigating the structure-reactivity relationship by linking inter-atomic distances within
the active center of sirtuin 5 to the reaction barrier. In machine learning terms the inter-
atomic distances are the features and the activation energy is the target. Since the target
is a numerical entity, predicting the transition barrier height is a typical regression prob-
lem. There are several regression models that are suitable to fit different features to target
relationships. The spectrum of algorithms differ in the function estimate, as well as the
included error function, the simplest being Linear Regression.”? Equation shows the es-
timated function used in Linear Regression. In eq. and [2.4] x denotes the input feature
data, [ regression coefficients, and y the output target values. The regression coefficients
are optimized so that the error function, here, the residual sum of squares, is minimized
for the training data. Therefore, Linear Regression is also termed Least-Squares.

Estimated function : fgnear(xi) = By + [rx;.

. 2.3
Error function : argming {Z lyi — f}smear(xz‘)Hz} : 23

Polynomial regression fits a polynomial function of k'"-order by minimizing the same er-
ror function as Least-Squares regression. Alternatively, non-linear dependencies between
features and targets can be handled by applying the so-called ‘kernel-tick’

Lasso, Ridge, Elastic Net, Logistic, and Bayesian regression rely on a different error func-
tion being minimized. In eq. [2.4] the error functions for Lasso, Ridge and Elastic Net
regression are given. In Lasso regression, the L1 norm (||8][1 = Y_ [8;]) is used, in Ridge
Regression, the L2 norm (||8]|3 = X5_, %). Elastic Net regression includes both the [|3][;
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and ||3]]3 terms.

m k
Lasso : ZH% fﬁ(zi)||2+/\2|ﬁj|a
=0 Jj=0
m k
Ridge : Y My = falza)l” + )\Zﬁfa (2.4)

I
=)

i

Elastic Net : ZHyz fa(x;) ||2+/\12|BJ|+)\226 :

These norms are introduced for regularization, which addresses the problem of over-fitting.
This issue arises when small amount of data is provided or the trained model has low
bias and high variance.®® The strength of regularization can be controlled by the hyper-
parameter A or in the case of Elastic Net regression the interplay of A; and \,.

In machine learning terms, bias is the deviation between the average model prediction
and the underlying ground truth and variance is the variability in the model predictions.
When a model has low bias and high variance, it performs well on the training set and
produces large errors on the test data, which means that it fails to generalize predictions.
When increasing the bias, the variance is reduced automatically. L2 Regularization re-
duces the feature weights. The L1 regularization term, in addition, introduces sparsity to
the weights. When more weights equal zero, the number of significant features is reduced,
thereby simplifying the system and suppressing over-fitting.

Assuming expressive features, increasing the sample to feature ratio in general enhances the
predictive power of ML models. Therefore, the use of dimensionality reduction routines
such as the principal component analysis®® are often applied when preparing the fitted
data aiming to reduce the number of input features while maintaining or optimizing their
quality and expressiveness.

For chemical systems, several representations, that can be used for machine learning,
are well established such as molecular graphs,®® Coulomb matrices,**? Bag of Bonds,""
SMILES,*? and many more.**> Depending on the application in mind, a different rep-
resentation might be needed. Furthermore, different outputs of quantum chemical calcula-
tions may be used as features for machine learning procedures in computational chemistry.
In publication I, an Elastic Net machine learning model was trained to predict energy barri-
ers from configurations taken from a classical MD simulation based on only 15 inter-atomic
distances. These were determined by correlation-based feature reduction. Inter-atomic dis-
tances were selected to represent structural changes invariant to translation and rotation.

2.1.3 Importance and Limitations of Minimum Energy Paths

The computation of minimum energy paths (MEP) belongs to the standard repertoire
of computational chemistry. MEPs allow to check the plausibility of proposed reaction
mechanisms. According to Transition State Theory (TST), the reaction rate, k., can
be derived from the free energy difference between the transition and reactant state, the
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highest point along the MEP dividing the surface into reactant and product state. The
geometrical configuration at this point is the transition state structure. The probability of a
system taking on a specific configuration is related to a Boltzmann distribution. Therefore,
the macroscopic rate constant can be expressed using the Eyring equation.“

oy = BT —ac ),
h
where k is the transition coefficient, which is usually set to one,*” kg is the Boltzmann
constant, 7" is the Temperature, R the gas constant, and AG* the Gibbs free energy
difference between transition and reactant state. In terms of enthalpy H and entropy S
the Gibbs free energy is given as

(2.5)

G=H-TS. (2.6)

Therefore, vibrational, rotational, and translational contributions must be determined.
Usually, rigid-rotor and harmonic approximations are used to include thermodynamic cor-
rections. Within the TST), re-crossings of the transition-state dividing plane are not allowed
when « is set to one. Thereby, eq. provides an upper bound to the true reaction rate.
In order to account for re-crossings and tunneling, dynamic effects have to be taken into
account to obtain transmission coefficients. However, this is only useful for very simple
systems, where the activation energy can be determined with extremely high accuracy.4°

[

1 2 3 4
Error in AG* [kJ/mol]

Figure 2.3: Assuming AG* = 65 kJ /mol and T'=298.15 K the resulting k., calculated
according to eq. , of 25.41 mol/s is indicated by dotted line. The effect of over or
underestimating AG* is indicated by errors-bars for deviations between 1 and 5 kJ/mol.

In red the factor of the error is given (k%5 /K85 Frrer).

Fig. m shows how the error in AG* translates to the reaction rate. For example, an
error in AG* of only 1 kJ/mol results in an error of a factor of 1.5 at T=298.15 K in
the reaction rate. An error of 5 kJ/mol leads to an error of factor 7.5, and an error of
10 kJ/mol in an error of factor >50.4
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Because small errors in AG* result in large deviations of k., interpretation of the ob-
tained reaction rates, which rely on a highly accurate energy difference between reactant
and transition state, is often problematic, especially for larger systems where geometry
optimizations, as well as the computation of force constants needed for the thermody-
namic corrections, become increasingly demanding. This is particularly problematic for
biomolecular reactions, where reactant state configurations are often extracted from a pre-
vious MD simulation. Although lower energy states have an exponentially higher chance
of being visited, the much larger number of high energy configurations diminishes the
chances of selecting a structure close to a minimum energy geometry. Furthermore, kinetic
trapping of the system in unrepresentative/unreactive regions of phase space, and the pos-
sibility of having selected a structure in a local minimum along the reaction path makes
the calculation of reliable activation barriers extremely difficult. Another structure-based
problem is that non-dynamic methods are unable to reflect large structural or electronic
re-configurations which might play a central role in reactions for some complex systems.
In addition, there are limitations with regards to the electronic structure method, QM-
region size in QM /MM models,* % and the challenge of finding an optimal reaction coor-
dinate.

The large error in single MEPs for extended systems such as enzymes was addressed by
Ryde.® Under the assumption that the activation energies have a Gaussian shaped distri-
bution, Ryde discusses how many conformations need to be included in order to diminish
structure-based errors in the activation energy depending on the standard deviation of
the distribution. Using the exponential average of the collection of energy barriers the
free energy barrier can be estimated, which is however ill-conditioned meaning that the
number of necessary samples increases more than exponentially for increasing standard
deviations. Alternative averaging techniques such as the arithmetic mean converge much
faster. However, it was shown that the exponential average provides a better estimate.”t
In publication I, 150 energy barriers, for the initial step of the desuccinalytion reaction
of lysine residues catalyzed by sirtuin 5, were computed. For the obtained distribution a
standard deviation of 22.9 kJ/mol was obtained, meaning that 10¢ MEPs would be needed
in order for the exponential average to provide an estimate of the transition barrier height
with an accuracy of 4 kJ/mol.”# In publication II, the estimate resulting from the previ-
ously discussed 150 MEPs was compared to the free energy barrier obtained by umbrella
sampling” (see section and the exponential average of 7501 barriers predicted by the
ML used in publication I to find reactive configurations. The comparison showed that the
approximation based on 150 MEPs underestimated the free energy barrier.=#°3

In summary, dynamic methods which take into account a larger number of configurations
and inherently give rise to thermodynamic contributions might be necessary to make ac-
curate predictions of reaction rates, where energy differences can no longer be determined
with high certainty.
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2.2 Calculation of Free Energy Paths

The previously described methods seek to find the MEP on the potential energy surface,
then thermodynamic corrections are used to compute free energies of the stationary points.
Alternatively, free energy methods may be used to compute the Helmholtz free energy A
with respect to a chosen internal coordinate. A(z) is termed free energy surface (FES) or
potential mean force (PMF).5452

A=U-TS = —;mQ. (2.7)

Q= /eﬁH(r’p)drdp. (2.8)

The free energy may be given in terms of the internal energy U, minus the temperature 7,
multiplied by the entropy S, or using the canonical equipartion function @ (eq. [2.8), where
3 denotes the inverse of the Boltzmann’s constant multiplied by the temperature, (kpT') ™
(eq. . Because the entropy and the equipartion function are measures of the available
phase space of a system, in theory, complete sampling of phase space is needed, which
makes the calculation of free energies extremely daunting. The sampling is usually done
using molecular dynamics where the probability of a point in phase space being visited is
dependent on the energy of the given configuration weighted by the Boltzmann factor,

P(E) o< e™PE, (2.9)

Because of this relation, the probability distributions p(z) may be used to compute free
energy differences, which are more accessible than absolute free energies, as well as the

FES:

AA1_>2 = A1 — A() = —;hl??; = —;hlz[l), (210)
1 1 .
A() =~ glnp(z) = ~ 5l / 5(E(x) — 2)ePU®dx. (2.11)

Ample sampling along the entire coordinate £ is a precondition for computing free energy
profiles according to eq. However, because of the exponentially decreasing probability
with rising energy of visiting a certain state according to the relation eq. 2.9, continuous
sampling is non-trivial. To do so, importance-sampling techniques, based on the definition
of a collective variable, have been developed to enable efficient sampling of the relevant
regions of phase space by encouraging the system to overcome meta-stable states.?®
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2.2.1 Umbrella sampling

The main issue of computing reaction paths via dynamics is the large amount of sampling
needed especially to ensure adequate sampling of higher energy regions such as transition
barriers. As the number of degrees of freedom rises with system size the problem of
insufficient sampling becomes increasingly difficult to overcome by sheer computational
power. Several enhanced sampling techniques have been developed to overcome this issue.
Torrie and Valleau introduced the umbrella sampling method.” Here, the reaction path
is divided into several windows which are sampled by independent molecular dynamics
simulations which can be performed in parallel.

In each umbrella window i a biasing potential w is applied which alters the true PES U"
and thereby constrains the system to successive regions in phase space along the reaction
coordinate £(x).
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Figure 2.4: In umbrella sampling exploration of a desired area is ensured by a sequence
of biasing potentials employed in independent simulations each centered in one of the
windows, ¢, connecting the two minimum energy regions. From the biased sampling, biased
distributions pP(z) are obtained. By post-processing, the unbiased FES, A%(z) can be
recovered.

In principle any functional form can be chosen for the biasing potential, the simplest
and most commonly chosen function is a harmonic potential (eq. [2.13|), where k; is the
force constant which determines the strength of the constraining potential and therefore
has to be chosen carefully to ensure that the system remains close to the desired region
while allowing for meaningful sampling.

UP = U" + w;. (2.12)

1 2

Ski(§(x) — z)”.

5 (2.13)

w,(z) =
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Furthermore, overlap between the windows has to be achieved. The quality of the sampling
is dependent on the window placement and the strength of the force constants and there-
fore benefits from prior knowledge of the free-energy landscape at hand. Fig. illustrates
the described approach. On a model potential, the space between the two minimum energy
states is sampled continuously by introducing harmonic biasing potentials.

The free energy A along the reaction coordinate then has to be recovered from the bi-
ased distributions p?(2) resulting from the series of biased molecular dynamics simulations

(eq. 2.14).

[8(€(x) — 2)eAlo+wi(§0) 4x

b _
pi2) = [ e B +wi (€6 dx (2.14)

To do so, the biases have to be removed and the factors F; have to be determined in order
to align and recombine the separate simulations (eq. [2.15)).
1

Aj(2) = Blnﬂ?(Z) —wi(z) + Fi. (2.15)

2.2.2 Adaptive Biasing Force

There are several alternative methods to umbrella sampling,” such as Targeted Molecular
Dynamics,”® Metadynamics (MtD),”" and the Adaptive Biasing Force (ABF) Method.?®
In the latter, a biasing force is constructed throughout a dynamics simulation. The biasing
force is calculated using a local running average so that it cancels the free energy force
along a chosen CV (z = £(x)). Thereby, the system is able to escape kinetic traps and even-
tually free to move along the predefined CV. Unhindered diffusion indicates convergence.
Subsequently, the free energy profile can be determined from the biasing force. Other than
for umbrella sampling, no prior knowledge of the free energy landscape is needed, which
is one of its many advantages.?3 The estimate is calculated according to eq. [2.16 where
|J| is the determinant of the Jacobian needed for the transformation from generalized to
cartesian coordinates.

agf) _ () - <agiz)>z B <5131§!J\>Z_ (2.16)

F(z) is used to approximate the z-conditioned ensemble average (F),, where Ny denotes
the number of simulations steps.

(F.~F(2) =5 2 Fu (2.17)

ABF was introduced by Darve et al.”® and since then many further developments have been
made. To make the ABF more easily applicable, the extended-system ABF (eABF) was
proposed by Lesage et al., where a fictitious particle is introduced which is coupled to the
CV by a harmonic restraint, alleviating some of the initial limitations for the CV resulting
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from the Jacobian term (eq. [2.16).“” In eABF the biasing force acts on the fictitious
particle (A) instead of the physical system. The extended potential, incorporating the
fictitious particle is defined as

1
2302

where o is the thermal coupling width. Tight coupling ensures that efficient sampling of
A translates to efficient sampling along the CV. Therefore, a biasing potential U, can be
chosen that only affects the dynamics of the non-physical particle directly. The eABF
method was further enhanced by combining it with metadynamics (eq. [2.19)) and its well-
tempered variant, yielding the WTM-eABF method."#13.,

Fieta—eaBr(A) = Foapr(A) + Faep(N). (2.19)

In well-tempered metadynamics periodically repulsive gaussian kernels are placed at the
current location along the CV, resulting in an adaptive external biasing potential equaliz-
ing the underlying free energy surface.®r The WTM-eABF method, thereby significantly
accelerates the convergence by "Shaving Barriers, and Flooding Valleys" *43

In this work, WTM-eABF was applied to compute the formation of deoxyribonucleosides
from acetaldehyde, glyceraldehyde and the respective canonical nucleobases and explore
the regio- and stereo-selectivity of the proposed synthesis route. The project is summarized

in chapter

Uext (X%, A\, 1) = U(x) + (E(x) = A)? + Up(\, 1), (2.18)

2.2.3 Multistate Bennett’s Acceptance Ratio

Umbrella sampling and the variations of ABF have in common that they alter the under-
lying free energy surface and thereby enable sampling of higher energy regions that would
otherwise only be visited infrequently. As these procedures produce biased distributions,
evaluation routines are required to recover the original weights of each sample in order to
determine unbiased free energy surfaces and ensemble averages. This can be done using
the Multistate Bennett’s Acceptance Ratio (MBAR),™ which originates from the Bennett’s
Acceptance Ratio (BAR)®® introduced in 1976.

The free energy in each window, A;, can be self-consistently calculated using the MBAR
equation:

e~ Pwi(xjn)

s N
—BA; _
’ - Z Z Zszl NyeBAr—wr(xjn) " (2.20)

j=1n=1

S denotes the total number of windows, N; is the number of samples in window j and wj is
the value of the biasing potential for the i frame in window j. The unbiased FES A%(z)
can then be obtained using

A'(z) = =57"In po(2)

_ pmy s e —2) (2.21)

)
j=1n=1 Zf N eBAI—Bw(j,n)
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2.3 The Computational Nanoreactor

While the previous sections discussed aspects of the characterization of specific reaction
mechanisms, the molecular nanoreactor approach pioneered by Wang et al.# in 2014 seeks
to automatically discover novel reactions computationally from a feed-stock of starting
molecules. In the proposed routine, high-temperature ab initio MD simulations are con-
ducted, while the molecules are constrained to a periodically contracting sphere. Both the
elevated temperature and the compression of the available space are employed to increase
the probability of reaction events and thereby decrease the required timescale to observe
several chemical transformations. 463766

The automated exploration of reaction space has a rich history, first attempts were made
as early as 1994 by Broadbelt et al.®® Because the performance of extensive ab initio sam-
pling was still prohibitively expensive as computational hardware and quantum chemistry
code were less developed, these early routines employed many heuristic rules in order to
construct chemical reaction networks.?%7 ™ Today, rule-based routines still play a major
role, especially in the discovery of novel pharmaceutical candidates. However, heuristic
models are not as general as the proposed nanoreactor approach, and less exotic reactions
are expected as they are based on rules derived from already established chemistry.” The
nanoreactor approach was also taken up by other groups such as Grimme and co-workers,
who have introduced reactivity to their simulations by employing meta-dynamics using the
RMSD as collective variable driving the system into new regions of chemical space, while
ensuring that reactants remain within a capsule by applying a constant wall potential. =3
In the initial nanoreactor concept, a modified Heaviside step function is applied to switch
between two predefined radii. On atoms that exceed the set radius ry a mass-weighted
harmonic potential U, is applied, pushing these towards the sphere center (eq. [2.22]).4

VIV (r,t) = f(O)U(r, Fasse, Fimax) + (1= F(D)U (7, Tonin, Fain),
m 2.22
U<T7T0>k):;(T—To)29<7’—7"0), f(t):@Q t J ! + texp)_ (2.22)

ttotal ttotal ttotal

This approach leads to abrupt accelerations. A less aggressive alternative is the application
of a cosine function in order to smoothly switch between an extended and contracted sphere

(VW eq. 2.23).

VO, = "G b 0,

max ~ /'min t
70(t) = Tmin + ['max ~ Tmin [1 + cos ( 27r>} )
2 total

(2.23)

However, this leads to a reduced time in the compressed state, in which the reactions are
initiated, as well as in the expanded phase, necessary for the system to relax and stable
species to form.

An alternative function was proposed in publication III, which enables smoother transi-
tions to and from the minimal radius, where harsh accelerations affect the simulation the
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most while allowing for the system to remain in the contracted and extent phase for more
time-steps.
mk

VEC(ro(t). k) = =5 fmax (0,7 = ro(t))

t
ro(t) = min {rmax + (Tmax — T'min) Sin (;T coS ( 2#)) , rmax} )

total

(2.24)

The previously proposed rectangular wave function (VW eq. [2.22)), the smooth cosine
wave (VOW, eq. [2.23)), and limited triangular function (V5¢, eq. [2.24) are compared in
fig. [2.5]

Tmaz TN

Radius

T'min

Simulation Time

Figure 2.5: Collection of boundary potentials used to periodically decrease the space avail-
able to the molecular system in a nanoreactor simulation. Compared are VEWV, VW and

V5S¢ as defined in eq. , eq. and eq. , respectively.

Manual evaluation of the events in nanoreactor simulations is very tedious. To automate
the identification of reaction events and novel species, molecules have to be effectively
recognized. This was previously done based on inter-atomic distances. #6300 A more
general approach could be the use of Wiberg bond orders W pz,™ which can be obtained
with minimal additional computational cost from the density matrix P,

Wap =Y > P, (2.25)

neEAvEB

From the Wiberg bond orders connectivity matrices are obtained which can be used to
derive the molecular species. Using the Python library RDKit,™ the molecules can be
transformed to MOL-objects, which can be used to visualize these, generate respective
SMILES®* and perform further qualitative and quantitative analyses as showcased in
publication ITI.
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2.4 Intermolecular Interactions of Nucleotides

For nucleotides to polymerize to RNA or DNA, these first have to form suitable aggre-
gates. Intermolecular interactions such as w-stacking and hydrogen bridges dictate the
pre-organization, and are therefore central in the self-polymerization step necessary for life
to emerge.

Intrinsic interaction energies characterize the direct forces between sub-units and are gov-
erned by short-range exchange repulsion, dispersion attraction, and electrostatic forces.
Besides the direct forces between the monomers, thermodynamic effects play a major role
in intermolecular interactions.™

The computed energies heavily depend on the molecular structure. For complex systems
with many degrees of freedom finding a representative minimum energy structure is non-
trivial, therefore a major bias is introduced by the selected configuration, which cannot be
alleviated reliably by geometry optimization.
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Figure 2.6: Possible displacements of two subunits A and B. Several variables may change
simultaneously which results in an extensive collection of possible aggregates as well as a
large number of local and relevant minima.

In previous studies, scans were conducted for several possible displacements.™ However,
for systems consisting of several subunits the number of scans required to fully characterize
all possible assemblies quickly becomes unfeasible (fig. [2.6). Alternatively, the relative
stability of nucleotide assemblies was studied using molecular dynamics simulation. Based
on the simple idea that stronger interactions lead to more stable aggregates, the time a
system remains in an assembly can be assessed to compare inter-molecular interactions. In
addition, this approach allows for straight-forward incorporation of explicit solvent, which
is challenging in static studies as the placement of solvent-molecules may influence results
drastically. In publication IV this dynamic approach was chosen to compare the stability
of various homogeneous and heterogeneous intercalated stacked tetramers.
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2.5 Computation and Quantitative Comparison of IR-
Spectra

Computation of spectroscopic data is an excellent link to experiments and to reassure
the veracity of a proposed hypothesis as well as assess the quality of quantum chemical
calculations. The interaction of matter and radiation can be described theoretically using
different methods, e.g., by a perturbative approach. Many (spectroscopic) properties can be
derived from a Taylor series of the perturbed energy E(£) with respect to the unperturbed
ground state energy F(0) describing the electronic response.
The perturbation ¢ can be manifold, time-independent or dependent, e.g., a static external
electric field, a magnetic field, changes in nuclear spins, or an electromagnetic wave. In
addition, perturbations may be combined, giving access to further properties. If £ is a
change in molecular geometry R the following Taylor expansion is obtained:
E 10°E 103E

ER) = ERg) + SR(R —Ro) + 2§R2(R —Ro)* + 6gRg(R —Ro)*+....  (2.26)
The first derivative of the energy with respect to the nuclear coordinates is the gradient.
The second derivative is the Hessian H and contains the force constants. The higher order
terms give access to anharmonic effects such as e.g., Fermi resonance. At a minimum energy
geometry and under the assumption that the potential energy surface at such a stationary
point can be approximated by a harmonic potential, harmonic vibrational frequencies can
be determined based on the Hessian. To do so, the force constant matrix is mass weighted
and diagonalized. The resulting eigenvalues ¢, are related to the vibrational normal modes

Uy as given in eq. [2.27] .

vV = ore €k, (227)
The respective IR intensities are proportional to the change of the dipole moment along the
according eigenvector. Similarly, Raman intensities may be obtained from the derivative
of the polarizability with respect to the normal mode vector.
Alternatively, to this established computation of harmonic frequencies, the IR-spectrum
can be extracted from ab initio molecular dynamics simulation by computing the Fourier

transform of the auto-correlation function of the time derivative of the dipole moment
TOIR0
| 2 T

v (w) o / ((T)a(t + 7)) e tdt. (2.28)

Based on the Wiener-Khintchine theorem®*2 the auto-correlation of a time-dependent
entity y is given by*”

1 ) 2
XX+ 7)) = 5 | ’ [ xer ] et (2.29)
T
Extracting e.g., IR- and Raman-spectra from dynamics has several advantages, such as the
inclusion of anharmonic effects, as the harmonicity of the potential energy is not a pre-
assumption, and the straightforward possibility to incorporate experimental conditions
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such as temperature and solvent, as well as the consideration of different conformers by
design. Furthermore, extracting IR-spectra from dynamics avoids the need to find a true
minimum energy structure and having to compute the Hessian, which comes at an immense
computational cost for extended systems. Other than from the normal mode analysis a
continuous spectrum is obtained, which gives access to peak areas, for additional analysis
and makes peak broadening steps superfluous.

Prior to the quantitative comparison of measured and computed spectra, the theoretical
IR-spectra are scaled to compensate for systematical deficiencies of the applied electronic
structure method.®* =8 Experimental spectra are usually prepared by baseline correction
and peak smoothing.® 2

The quantitative agreement of spectra is given by a ‘Hit Quality Index’ (HQI), which
usually has a value between zero and one. A higher HQI indicates a higher degree of
agreement.? There are several measures available that can be used as HQIs such as
the Euclidean distance the Root Mean Square Deviation, the Absolute Difference Value
Search,®¥ the Kullback-Leibler Divergence,” the Jeffrey Divergence,”” or the Earth Mover
Distance.” The Pearson correlation coefficient (Mpcc) (eq. [2.30)) is another possible mea-
sure that is neither distance-based, nor relies on peak picking and matching but on the
correlation between two spectra (s and 7).

S (si—5)(ri —7)

—

ﬁ( 52 3 (i~ 7)°

=1

Mpcc =

(2.30)

The similarity indicators penalize dissimilarities differently and therefore all lead to non-
identical scores, as well as disparate responses to possible differences. In turn, the appro-
priate measure must be selected for each application (e.g., library search or comparison of
computational approach).

In publication V|, the processing of IR-spectra is presented in detail and several similarity
indicators are tested. The study found that the slowly decreasing Mpcc is best for compar-
ing calculated and measured spectra and for evaluating the quality of different calculated
IR-spectra.??



Chapter 3

Characterization of a Prebiotic
Pathway to Deoxyribonucleosides

In a previous work by Teichert et al*!' it was shown experimentally that deoxyribonu-

cleosides can be synthesized under ambient conditions in an aqueous solution from the
corresponding canonical nucleobases, acetaldehyde, and glyceraldehyde. To date, it is
widely argued that RNA probably arose prior to DNA as it has the ability to self-catalyze
its replication, which is referred to as the “RNA-World” hypothesis.*® Furthermore, it is
discussed if alternative nucleotides could have constituted a variety of early nucleic acid
polymers, which were ancestors to, or co-existed with RNA and DNA. This variety of
information-carrying alternatives to RNA and DNA could have differed in the carbohy-
drate backbone, the nucleobases, as well as the phosphodiester junctions."

Most proposed prebiotic chemical pathways to ribonucleosides, other than the proposed
synthetic route towards deoxyribonucleosides, require, to our knowledge, scarce D-ribose.
In addition, many suggested pathways lack chemical selectivity and fast degradation of
intermediates. 1%t

In the initiating work, it was already shown for deoxyadenosine that the proposed synthe-
sis exclusively forms the B-furanose form.™ In this consecutive computational study, the
high regio- and stereoselectivity observed experimentally was studied using WTM-eABF
simulations (see section at w-BITM-V /def2-TZ VP12 Jevel of theory.

3.1 Simulation Details

System Setup

The formation of the vinylated nucleobases was characterized in three steps using adenine
as an example. Three systems were created as starting points for each of the subreactions
(scheme including (1) adenine, (2) 3H-adenine and acetaldehyde, and (3) 9-acetyl-
adenine. Each system included an additional water molecule to facilitate the transfer of
protons.
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Scheme 3.1: Three step formation of N-9-vinyladenine.

The final condensation step was, in addition, also sampled with five, seven, and nine
water molecules to investigate the effect of surrounding water on the reaction.
For all four canonical bases, adenine (A), cytosine (C), guanine (G), and thymine (T), the
a- and [-deoxyfuranoses and pentopyranosyl-isomers were created. All systems included
one additional water molecule to aid the proton transfer (scheme [3.2] and were used
as starting points for molecular dynamics simulations after geometry optimization.

. &
Q/—\OH 3 \Q/

Scheme 3.2: Formation of a- and -deoxyfuranoses.

OH

Scheme 3.3: Side reaction to pentopyranosyl-isomers.
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Computational Details

All systems were optimized at PBEh-3c/def2-mSVPY% level of theory. Starting from
the optimized structures, w-B97TM-V /def2-TZVPH41% molecular dynamics simulations
including VV10 dispersion correction™™ were conducted, comprised of heating and pro-
duction. All simulations were conducted using the FermiONs-+-+1%109 program package.
The computation of the exchange integrals was accelerated using the sn-LinK*Y procedure.
Furthermore, the extended-Lagrangian™1*1? approach with the k-order 9 was employed.
Implicit solvation with water using the COSMO™ continuum solvation model was used
in all molecular dynamics simulations.

The system, propagated using the Velocity Verlet integrator,*# was heated to 323.15 K
over the course of 3230 0.1 fs MD-steps by increasing the temperature by 1 K every 10
steps. The initial momenta were drawn randomly from a Maxwell-Boltzmann distribution.
During the heating procedure, the system was constrained within the reaction path by a
harmonic potential with k=500 kJ mol~*A~2,

For the characterization of the enamine formation (scheme , six 20 ps WTM-eABF1#43
simulations were run for each reaction step. Here, the time-step was set to 0.5 fs and the
Langevin thermostat was used to maintain a target temperature of 323.15 K. The ABF
force was scaled by a linear ramp and fully applied after 200 samples. The initial height of
the Gaussian hills, with variance 0.1 A, depositioned every 20 steps, was set to 0.5 kJ /mol
and scaled down during the course of the well-tempered simulation. The effective tempera-
ture of the WTM-MtD was set to 2000 K. The force of confinement was set to 5000 kJ/mol
per bin width. Similar settings were chosen for the formation of the furanose (scheme
and pyranose (scheme rings.

For each system, four WT'M-eABF simulations were performed where the dissolution of
the sugar ring is observed resulting in the vinylated nucleobase and glyceraldehyde. These
were started from the product configuration and aimed to show a single transition in order
to ensure that only the transition to a selected isomer is observed. The four walkers were
run independently and varied in the initial momenta. For the furanose systems, these
simulations were 20 ps long, and for pyranose 30 ps. To guarantee sufficient sampling
along the entire reaction path additional 20 ps WTM-eABF simulations were run confined
to the transition state region until at least 200 samples per bin were collected. In total
seven to ten independent simulations were run for each system to investigate the sugar
ring formation.
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Analysis

Reaction profiles were obtained by analysis using MBAR (see sec. [2.2.3).1%0215 Reaction
free energies and activation free energies are calculated according to eq. and eq.

respectively, 2316
AAT — —11 fProduct 3.1
ﬂ ! fReactant dz eiﬁA(Z) ’ ( )
A¢)z
AAY = 5—1 In pzrs)( E> TS (3.2)

fReactant dZ 67/8A(z) 7

where the reaction energy is computed from the non-overlapping integrals over product and
reactant state.” In eq. |3.2, p(2rs) is the normalized probability density at the transition

state, and (A¢).,, is the z-conditioned average of \¢ = y/h%/2wk,T'me. Here, mg is the
effective mass of the pseudo-particle associated with the transition coordinate.1¢

Reaction coordinates

For the initial step of the formation of the vinylated nucleobase (scheme , the proton
transfer from 3N to 9N is facilitated by a water molecule. To model this reaction, the
(dsxu + don) — donp linear combination of distances was chosen as the reaction coordinate
and examined between values of 0.0 and 3.5 A.

For the following step, the formation of the hemiaminal, comprising of the C-N bond
formation and proton transfer from N3 to the carbonyl group, the dicgn + dion + dosu
coordinate was selected as collective variable in a range between -3.2 and 1.5 A during
the simulation. However, as multiple hydrogen atoms are available and this coordinate
is not generalized, the resulting reaction free energy profile is evaluated along the 1C-9N
interatomic distance in order to avoid samples being misplaced with respect to the reaction
progress.

In the concluding condensation step yielding the vinylated nucleobase, the 1C-10 and one
2C-2H bond were cleaved and a proton was transferred from the surrounding water to the
OH-leaving group. The resulting OH  can then accept the proton from the methyl group.
The (dion + dozn) — (dacen + dici0) reaction coordinate was sampled between -3.2 and
3.2 A. Similar to before the reaction coordinate was changed for evaluation. The coordinate
was generalized to the 1C-10 distance and the third shortest 2C-H distance. Therefore,
samples are correctly sorted even if a different proton is abstracted or back-transferred to
the methyl group. The reaction coordinates used for sampling are visualized in fig. [3.1]
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(a) (dsnu +don) — donu (b) dicon + dion + dosu (¢) (dion + dozn) — (dacen + dici0)

Figure 3.1: Summary of reaction coordinates used to simulate the three step formation of
vinylated adenine.

The reactions to deoxyfuranoses (scheme and pyranoses (scheme were started
from the product configurations in order to compare reactivities. As reaction coordinate,
the distance between the 1C2C and 3C10 center of mass and the 10H, O3H distances was
selected (dsci0-1c2c — (dion + dosn), see fig|3.2). The FES was then constructed along
the center of mass distance between 1C-2C and 3C-10.

(a) dscio-1c2¢c — (dion + dosm) (b) dscio-1c2c — (dion + dosn)

Figure 3.2: Visualization of the reaction coordinates used for the sugar ring formations
yielding (a) furanose and (b) pyranose isomers.
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3.2 Current Results

Formation of the Vinyl Nucleobase

WTM-eABF calculations were run in order to collect samples along a chosen transition
coordinate. Fig. [3.3] shows the sampling along the collective variable throughout the
enhanced sampling molecular dynamics simulations and the distribution of samples.
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Figure 3.3: On the left side the value of the reaction coordinate z is shown throughout
the simulation. On the right side summarizing stacked bar plots are displayed, giving
an overview of the sample distribution throughout the CV. Results are given for all three
reaction steps towards N-9-vinyladenine for systems including a single water molecule. The
first row (a) shows the results for the proton transfer from 9N to 3N, the second row (b)
for the subsequent formation of the hemiaminal and (c) the third step for the formation of
the enamine species. The different colors differentiate the results of independent walkers.

Best sampling was achieved for the first reaction step of the enamine formation. Nearly
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uniform sampling was attained, showing the desired effect of the WTM-eABF method. For
the following steps, greater differences were observed in the distribution of samples through-
out the range of the CV. These steps are more complex, including several concerted bond
rearrangements, making the definition of an appropriate CV more challenging.
Furthermore, the non-generalized CVs, meaning that specific protons were included in
the transition coordinate, result in problems when other protons participate in the reac-
tion. Therefore, other reaction coordinates were selected for the subsequent construction
of reaction free energy profiles. The relationship between the coordinates used during
the WTM-eABF simulations and the alternative coordinates tested for post-processing is
visualized in fig.
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Figure 3.4: Comparison of the CV used for sampling and the coordinate selected for analysis
for the second and the third reaction step. Results are shown for systems containing one
(1W), five (5W), seven (7W), and nine (9W) water molecules. As visual guide a line at
200 samples is added in the histograms.

It was found, that the formation of the vinylated nucleobase could be initiated by the
proton transfer from the N-9 position to the N-3 position. This was discovered while sim-
ulating the second reaction step, where the 3-H-adenine species was consistently obtained
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Figure 3.5: Obtained reaction free energy profiles, activation energies and reaction energies
for the reaction steps yielding the vinylated adenine intermediate. For the third step results
are shown for systems containing one (1W), five (5W), seven (7W) and nine (9W) water
molecules.

after the first observed back-reaction. For this initiating proton transfer, a reaction barrier
of 25 kcal/mol and a reaction energy of 6 kcal/mol were determined. For the subsequent
formation of the hemiaminal species, a transition barrier height of 8 kcal/mol and a reac-
tion energy of -10 kcal/mol were obtained. The reaction free energy profiles are shown in
fig.

For the third step, a high barrier of 55 kcal/mol was determined. However, by conduct-
ing further simulations incorporating more explicit water molecules it was found that this
barrier lowers due to stabilization of the transition state via a network of hydrogen bonds
(see fig. [3.6)).

Figure 3.6: Snapshot from WTM-eABF molecular dynamics simulation showing hydrogen
bond network stabilizing the transition state during the condensation reaction from the
hemiaminal to the enamine species.

When adding eight water molecules (nine in total) to the system setup the barrier was
lowered by 8 kcal/mol to 47 kcal/mol relative to the original activation energy obtained
for the minimal system including only a single water molecule. We assume that this effect
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is even higher in bulk water. However, due to the computational expense of ab initio MD
simulations and the increasing demand of sampling needed if high amounts of water are
introduced, this effect was so far only studied using minimal amounts of water molecules
(five, seven, nine). In addition, more generalized CVs are needed for sampling when the
system includes more explicit solvent to allow the reaction to proceed incorporating any
of the available, e.g., water molecules. It should be noted that the stabilization of the
water environment through hydrogen bonds can not be fully approximated using the given
implicit solvent model. We further assume that the bulk water could have a catalyzing
effect on all proton transfers, quantifying this thoroughly would be an interesting starting
point for further investigation.
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Assessment of the Stereoselectivity

To assess the stereoselectivity of the furanose ring formation from D-glyceraldehyde and
the vinylated nucleobase WTM-eABF simulations were run capturing the reaction process
yielding the a- and [-deoxyribonucleosides. Assuming a pericyclic cycloaddition, the linear
combination of the distance between the center of mass of the 10, 3C and 1C, 2C atoms
and two O-H interatomic distances to transfer the proton from the 30 to the O1 atom via

a solvent water molecule was chosen (dsci0-1c2c — (dion + dosn))-
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Figure 3.7: Stacked barplot showing the distribution of samples along the d3c10_1c2c center
of mass distance. The samples from seven independent simulations per system are shown

marked by different colors.

2.0

1.5

4.5

4.0

3.5

30 25 20 15
dsc10-102¢ [A]



3.2 Current Results 31

Because the catalytic solute molecule can move freely and thereby disproportionately

influence the value of the reaction coordinate, it was excluded during the evaluation pro-
cedure. However, when the O-H distances were not included in the reaction coordinate
the reaction process was not observed within the same simulation time. For evaluation,
the center of mass distance dscio—1c2c was deemed more reliable as transition coordinate.
Fig. shows the distribution of samples along the coordinate. Each color indicates
the collected samples from an independent simulation. Because we aimed to evaluate the
stereo-selectivity, the dissolution of the sugar ring was simulated making additional re-
strains, that ensure that a certain anomer is formed, superfluous. For the same reason, a
single transition process was desired when the entire range of the reaction coordinate was
sampled. As a consequence, between 2.0 and 1.5 A additional simulations were needed in
order to assure sufficient sampling in the transition state region. Because in this restricted
region of the transition the reactants do not separate completely, several ring formations
and openings can be sampled.
After the MBAR analysis was carried out along the original reaction coordinate, the free
energy profile was constructed using the determined unbiased weights. Fig. [3.8 shows the
free energy reaction profiles for the formation of a-dA, a-dC, a-dG, a-dT, g-dA, §-dC,
[-dG, and B-dT. In addition, the activation and reaction energies are given.
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Figure 3.8: Results are given for the formation of the a- (dashed) and f-anomers (solid).
Activation and reaction energies are given in kcal/mol.

For all four canonical nucleobases the formation of the a-isomer is favored, which is
in disagreement with the experimentally observed stereo-selectivity. Both, the transition
barriers and reaction free energy do not provide a clear indication that the [-isomer is
expected as the predominant product. While this could be an artifact of insufficient sam-
pling or an inadequate CV for this reaction mechanism, the findings could also suggest
that important aspects of the reaction are not yet taken into account.

To investigate the disagreement between the experimental findings and the computational
results (1) an estimate of the error of the free energy profile has to be added to the evalu-
ation procedure, (2) the reaction should be studied involving additional solvent molecules
as it was already shown that the surrounding water influences the obtained results, and (3)
a sequential mechanism should be reconsidered, where first an open chained deoxyribose
system is formed, which then undergoes cyclization. In principle, this is also allowed in
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the current setup, however, the charge-separation in this mechanism could be disfavored
by the lack of bulk solvent.

Assessment of the Regioselectivity

The alternate formation of the six-memberd rings yielding pentopyranosyl-isomers was
modeled and evaluated analogously to the formation of the five-membered sugar rings.
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Figure 3.9: Stacked barplots showing the distributions of samples along the dsc10-102c
center of mass distance.

Samples were collected from eight to ten independent simulations. More simulations
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were carried out if significantly less then 200 samples (indicated by red line, fig. were
collected in the transition state region. However, for a-py-A, a-py-G, a-py-T, [-py-A,
B-py-C, and (-py-G still less then 200 samples were collected in a bin in the transition-
state region. The insufficient sampling leads to inconsistencies in the resulting free energy

profiles. The distribution of samples is shown in fig. 3.9 The recovered free energy profiles
are given in fig. [3.10
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Figure 3.10: Results are given for the formation of the a- (dashed) and [S-py-anomers
(solid). Activation and reaction energies are given in kcal/mol.

Other than for the furanose isomers, here, the formation of the S-pyranose species seems

to be favored, supported by slightly lower transition barriers and greater reaction energies
than for the a-form. Furthermore, for all four canonical nucleobases the formation of the
[-ribopyranoside constitution isomer seems to be both kinetically and thermodynamically
favored over the formation of the expected [-deoxyribonucleoside.
However, as written before, at this point we have not fully exploited all computational
possibilities. Further investigations are needed to clarify if the chosen setup is adequate to
characterize the reactions sufficiently accurately to draw conclusions about the selectivity
of the synthesis route and why the experimental findings and computational results, at
this stage, are in disagreement.
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3.3 Concluding Remarks

To investigate the reaction mechanism yielding deoxyribonucleosides from prebiotically
available nucleobases, acetaldehyde, and D-glyceraldehyde, reaction free energy profiles
were calculated using WTM-eABF simulations and subsequent MBAR analyses. We were
able to observe all reaction steps computationally, supporting the suggested mechanism
based on experimental observations and thereby the possibility that the deoxyribonucleo-
sides developed earlier than assumed so far.

Furthermore, it was found that surrounding water plays a catalytic role and stabilizes the
observed transitions. Therefore, to refine the results, further simulations with extended wa-
ter spheres should be conducted. With the inclusion of a higher number of water molecules
the need for more generalized reaction coordinates arises to efficiently sample the reactions
and deliver reliable results. Adding more explicit water molecules might also change the
conformational stabilities (e.g., chair conformations) of the reactants and products, influ-
encing the results.

To asses the quality of the free energy profiles, in future work, an error estimate has to be
implemented to measure the statistical error. As the effect of surrounding water has to be
investigated further and the error in the free energy profiles is to be determined, so far, no
clear conclusions can be made concerning the regio- and stereoselectivity of the postulated
prebiotic pathway to DNA nucleosides.
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such as enzymes. A major issue with most schemes (e.g., adiabatic mapping) is that the
resulting activation barrier height heavily depends on the chosen educt conformation. This
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tential energy barriers obtained by QM/MM calculations in order to identify (1) suitable
start-conformations for reaction path calculations and (2) structural features relevant for
the first step of the desuccinylation reaction catalyzed by Sirtuin 5. The latter generally
aids the understanding of reaction mechanisms and important interactions in active cen-
ters. Using our novel approach, we found eleven key features that govern the reactivity.
We were able to estimate reaction barriers with a mean absolute error of 3.6 kcal/mol and
identified reactive configurations.
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ABSTRACT: Sirtuin S is a class III histone deacetylase that,
unlike its classification, mainly catalyzes desuccinylation and
demanoylation reactions. It is an interesting drug target that
we use here to test new ideas for calculating reaction pathways
of large molecular systems such as enzymes. A major issue
with most schemes (e.g, adiabatic mapping) is that the
resulting activation barrier height heavily depends on the
chosen educt conformation. This makes the selection of the
initial structure decisive for the success of the characterization.

Here, we apply machine learning to a large number of

molecular dynamics frames and potential energy barriers
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)
o
T o5
£ ° .. :
< (]
E

“a

obtained by quantum mechanics/molecular mechanics calculations in order to identify (1) suitable start-conformations for
reaction path calculations and (2) structural features relevant for the first step of the desuccinylation reaction catalyzed by
Sirtuin 5. The latter generally aids the understanding of reaction mechanisms and important interactions in active centers. Using
our novel approach, we found eleven key features that govern the reactivity. We were able to estimate reaction barriers with a
mean absolute error of 3.6 kcal/mol and identified reactive configurations.

Bl INTRODUCTION

Computationally obtained reaction barriers are an excellent
link to experiment. They allow us to verify or propose new
reaction mechanisms, gain insights into kinetics, or compare
reactivities. However, the calculation of reliable activation
energies is a demanding task, especially for large molecular
systems, for example, enzymes.

There exists a large collection of static and dynamic methods
to model chemical reactions (e.g., adiabatic mapping,' nudged
elastic band,*® string methods,"® transition path sarnpling,6
umbrella sampling,” metadynamics,” and many more).
Regardless of the method, there are two major challenges:
(1) the choice of the theoretical description, and (2) the
sampling bottleneck that leads to a ubiquitous dependency on
the chosen start conformation. One of the main tools of choice
for studying enzymatic systems is the combination of quantum
mechanics and molecular mechanics (QM/MM) (see e.g,, refs
9—11). The description of the QM part varies between semi-
empirical (e.g, AM1 or SCC-DFTB)">™"* and ab initio
methods (e.g, HF or DFT)."*™'® Besides the level of theory
chosen for the QM region, the extent of the QM spherelg_21
and the treatment of the boundary region play an important
role.”™"" With increasing computational power and novel
efficient methods, we are able to increase our attention to
detail (e.g., solvent effects), and apply higher level theoretical
methods. However, the second issue of selecting an initial
configuration is nearly as important as the accuracy of the
description of the electronic structure. In order to circumvent

v ACS Publica‘tions © 2019 American Chemical Society 6660

the need to search for suitable starting structures from a vast
number of frames,”>** extensive sampling would be needed.
Unfortunately, it becomes more and more demanding to
sample the phase space with increasing system size and
accuracy of the Hamiltonian. Therefore, for extended system
such as enzymes, exploring the entire phase space remains
prohibitively expensive at the QM/MM level. Start config-
urations can be taken from an MM-MD simulation.
Alternatively, it has been suggested to start from the crystal
structure, avoiding the selection problem entirely (see e.g., ref
24). However, the X-ray structures, which often differ from
structures in solution, are not guaranteed to be reactive.'' Even
if they are suited for the initial step of a reaction, problems
might arise for subsequent reaction steps.

Thus, it is paramount to develop a straight forward approach
for pinpointing reactive configurations visited during the MM-
MD, which are located at the beginning of reaction paths. The
work of Lodola et al.”® supports the importance of exploring
the influence of conformational changes. They show the power
of statistical tools, for example, principal component analysis,
to identify conformational changes dominating enzymatic
reactivity.” In a recent study, Bonk et al*® tried to link
geometry and reactivity using machine learning during
extensive transition interface sampling which enabled them
to find reactive trajectories more often.
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Here, we apply QM/MM adiabatic mapping to a large
selection of MM-MD frames to obtain an estimate of the
reaction barrier starting from these snapshots. Adiabatic
mapping is a straight forward approach to calculate the
potential energy profile of a reaction, where a predefined
reaction coordinate is gradually changed while the remaining
system is relaxed. It should be noted that adiabatic mapping is
not suitable for modelling reactions involving large structural
rearrangements or changes in solvation.'" We relate the initial
structures taken from the MD trajectory and the calculated
transition barriers using simple machine learning in order to
understand which conformational changes influence the
reactivity, and build a predictive model for activation energies.
The model is subsequently applied to all MD frames in order
to identify reactive regions within the trajectory. This set up is
intended to help identify suitable start frames and therefore
alleviate the need of extensive sampling, which is a true
limitation at the QM/MM level.

As a model reaction, we investigate the first step of the
desuccinylation reaction catalyzed by Sirt5, which belongs to
the class of histone deacetylases.””*® Despite what its enzyme
class name suggests, SirtS mainly catalyzes the desuccinylation
or demanoylation of lysines and not a deacetylation.”” This
desuccinylation is thought to be a three step reaction which is
initiated by a nucleophilic attack of the substrate on the NAD*
cofactor that leads to the dissociation of nicotinamide.””**~>*

B METHODS

Data Acquisition. Structure Preparation. The crystal
structure (PDB: 3RIY>’) consists of a dimer of Sirt5 in the
complex with a histone tail peptide containing a succinylated
lysine (SLL) as well as NAD*. We selected the first monomer
in the file (chain A for SirtS and chain D for the peptide) as
well as the respective NAD*. Hydrogen atoms were added
using the program tleap from the program suite Amber16.>*
The protonation state of titratable residues was set according
to PropKa.”>*® The zinc finger in SirtS was parametrized using
the ZAFF (Zinc Amber Force Field) parameters.”” For the
residue SLL, GAFF (Generalized Amber Force Field)
parameters’® were assigned using the Antechamber code,
which determined the atomic partial charges from an AM1'
calculation with bond-charge corrections (AM1—BCC).*” The
parameters for NAD" were taken from the AMBER parameter
database.””*' All other parameters were taken from Am-
berFF14.* Finally, the system was solvated by placing it in a
TIP3P* water box with a distance of 17 A in all three
dimensions at a density of 0.832 g/cm®. The system was
neutralized with one chloride ion.

MM-MD Simulation. Two minimizations (10000 steps)
were carried out to prepare the solvated system. During the
first minimization, the protein was constrained and only the
water molecules were optimized. In the second step, the entire
system was subjected to the minimization. The system was
heated to 300 K by increasing the temperature by 1 K every
100 fs. Afterward, the system was equilibrated for 100 000 time
steps. During heating and equilibration, the temperature was
controlled with simple velocity rescaling. The following
production run was performed in the NPT ensemble for
200 ns. The pressure was kept at one atmosphere and the
temperature at 300 K with the Langevin Piston barostat and
Langevin thermostat implemented in NAMD.** The time step
for equilibration and production was set to 2 fs. Nonbonded
interactions were evaluated explicitly within 10 A and smoothly

6661

switched off at 12 A. A Verlet nearest neighbor list" with a
radius of 13.5 A was used to speed up the computations.
Periodic boundary conditions were used in all three directions.
Electrostatic interactions were evaluated with the particle mesh
Ewald method*® and an interpolation of the sixth order. The
MD simulations were carried out with the NAMD** program
package.

QM/MM Calculations. We selected frames (every 0.5 ns)
from the production run as starting points for QM/MM
calculations. All the frames were minimized twice at the MM
level for 10 000 steps, again minimizing first only the solvent
and then the full system. Subsequently, the frames were
subjected to a QM/MM optimization. The QM region always
included the residues Argl0S, Phe70, Phe223, His158, part of
NAD", and the succinyl-lysine residue, as well as all water
molecules within 4 A of the C1’ atom of the ribose in NAD?,
which are in total 139—151 atoms, depending on the number
of water molecules in the active site (Supporting Information,
SFigure 1 shows the QM region). The QM region was
described at the HE-3¢*” level of theory and the MM region as
specified in the section “Structure Preparation”. The two
subsystems were coupled via electrostatic embedding. The
QM/MM calculations were performed within the ChemShell*®
code, with the QM part treated by the program package
FermiONs++.*°

We performed a small benchmark comparing HF-3¢ with
higher level DFT methods to show that it is well suited for our
endeavor. HF-3c consistently overestimates the reaction
barrier. Trends in higher and lower barriers are reflected
properly compared to DFT (see the Supporting Information
for more details).

The optimized structures were used as starting points for
adiabatic mapping pathways. The reaction coordinate was
defined as the difference between the C1'—O bond and the
C1’—N bond. While the C1'=0O distance was reduced, the
C1'—N bond was elongated. In each step, the bond difference
was changed by 0.2 A and fixed, while the remaining system
was minimized.

Machine Learning. Data Preprocessing. We are inter-
ested in the relation between the educt configuration and the
reaction barrier. Therefore, a representation of the geometry is
needed that is suited to describe structural changes. There are
several representations which are well established for chemical
investigations such as Bag of Bonds,”! XYZ-coordinates,
Coulomb-matrices,>>> or SMILES.** Each of these represen-
tations is appropriate for different problems. Even though there
is a number of established representations, we decided to
simply select the distances between all nonhydrogen atoms
within the QM region to describe the geometry in the active
site. This representation allows for a preliminary correlation
analysis which reduces the number of features in our system
(see next section). Additionally, no further calculation of, for
example, atomic charges is needed (which are heavily
influenced by the employed QM method). The collection of
interatomic distances is invariant to translation and rotation,
and therefore, avoids any problems that might otherwise occur.
Additionally, the number of water molecules within the QM
region was considered as an additional feature. All in all, this
added up to 2629 features.

Dimensionality Reduction. Because the outcome of a
machine learning fit is dependent on expressive features and
can be impaired by redundant or even insignificant variables,
the features were purged. The dimensions were reduced by a

DOI: 10.1021/acs.jctc.9b00876
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simple correlation analysis. All features with absolute
correlations <0.375 to the reaction barrier were omitted.
This value was chosen quite low to ensure that most of the
variations were captured. Further, the remaining features were
checked for strong absolute correlations >0.9 among each
other. If a pair of features were strongly correlated, one of them
was omitted. This resulted in a subset containing only 15
features out of the original 2629.

Model Selection, Refinement, and Application. There
exists a vast number of machine learning algorithms to choose
from. Because we want to predict activation energies, we are
trying to solve a typical regression problem from the
mathematical point of view. There are different types of
regression models, simple linear regression (least squares),
polynomial regression, support vector regression, decision tree
regression, to name a few.>>*® The predictive power of the
different machine learning models depends strongly on the
structure and size of the data, and the relation between the
target and feature variables. All machine learning scripts were
performed in python with a combination of pandas®’ and
scikit-learn.”® We tested different supervised learning regres-
sion techniques, the results can be found in section “Machine
Learning Model Comparison” of the Supporting Information.
After testigr;gS we chose a sparse regression model, the elastic net
regressor.”

Elastic net regression includes variable selection and
regularization, which leads to a greater predictive power and
enhances the interpretability of the results. Methods including
regularization are especially suited for problems where little
data is available. They suppress overfitting by introducing a
cost function.”® Based on all 150 samples, an elastic net model
was built. The hyperparameter a, which controls the strength
of the bias, and the 11_ratio (the ratio between the 11- and 12-
type cost functions) were determined using fivefold cross
validation. To evaluate the performance of the model the
mean-absolute-error (MAE), RMSE, and R*> value were
calculated using threefold cross validation. To additionally
visualize the skill of the machine learning model on new
samples, the data set was randomly divided into a training and
testing set (2:1), fitted to the training set and applied to the
test set.

Lastly, the model was fitted to all the available data (all 150
frames), with the previously determined hyperparameters. The
final model was then used to predict the reaction barrier for
every MD frame (every 10 ps of the trajectory). For ten frames
with low predicted reaction barriers, adiabatic mapping as
described in the section “QM/MM Calculations” was carried
out to show that the model helps to find reactive frames. The
model generated here is not transferable, but the presented
protocol can be employed for other extended systems.

M RESULTS AND DISCUSSION

Reaction Barriers Obtained by Adiabatic Mapping.
The combined QM/MM adiabatic mapping calculation of 250
reaction pathways starting from snapshots taken from an MM-
MD simulation gave reaction barrier heights between 22 and
80 kcal/mol. Figure 1 shows how the calculated reaction
barriers increase with an increasing number of water molecules.

As the MD simulation advances, the peptide and NAD*
slightly unbind and more water molecules coordinate the
carbonyl-oxygen involved in the first reaction step, and thus, its
nucleophilicity decreases. After 75 ns, the adiabatic mapping
approach was mostly incapable of describing the nicotinamide

6662

IS

—— Number of water molecules

—— F,

%) w

Number of water molecules

60 80 100

Time [ns]

0 20 10

Figure 1. Number of water molecules within 4 A of the C1’ atom of
the ribose in NAD" is shown in red. The computed HF-3c activation
energies are plotted in blue. The shaded area highlights the region
that was not included in the subsequent machine learning steps.

cleavage, the desired products were no longer obtained. The
incapability to model the reaction expresses itself in very high
reaction barriers. Only the first 150 reaction pathways, starting
from snapshots taken within the first 75 ns of the MD-
trajectory, were included in the data-set for machine learning.

Figure 1 also shows that extended periods of the MD
trajectory are especially nonreactive. This underlines that if
only very few frames are picked or a very short MD simulation
is used as basis for further calculations, one can miss reactive
periods completely. The first 150 samples, each 0.5 ns apart
along the MD-trajectory, yield energy barriers between 21 and
60 kcal/mol. The distribution of the barrier heights is shown in
Figure 2. It highlights that educt configurations that lead to a

0.08 F 12 3 1) Min:
21.87 keal/mol
2) Exp. avg.:
0.06 F 24.83 keal/mol

3) Mean:
37.62 keal/mol

C

B

20

10 50
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Figure 2. Distribution of the calculated energy barriers (adiabatic
mapping with HF-3c). The blue line indicates a smooth distribution

function fitted to the histogram. (1) Lowest barrier found, (2)
exponentially averaged barrier, (3) mean barrier.

low energy transition are extremely rare. This emphasizes how
difficult it is to find an appropriate start frame, that closely
resembles the reactive enzyme complex and provides a
reasonable energy barrier. The large variation of reaction
profiles obtained with different initial configurations, and
therefore the importance of suited starting points has been
recognized early on (see e.g,, refs 9, 25, 60—62).

As presumed by Ryde,*® the energy barriers roughly form a
Gaussian distribution. The arithmetic average is
37.62 kcal/mol, and the minimum activation barrier is
21.87 kcal/mol. The exponential average gives a good estimate
for the barrier and is suitable for comparison with experiments,
under the condition that the picked snapshots are well
chosen;** here we obtain a value of 24.83 kcal/mol. The
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standard deviation, o, within these 150 samgles is 5.40 kcal/
mol. Based on the conclusions by Ryde,®> more than 10°
samples would be needed to obtain an estimate of the
activation barrier within chemical accuracy (within 1 kcal/mol)
of the exponential average. In contrast, most studies have only
used a few snapshots (about 3—10).°7% To avoid having to
calculate millions of pathways, we propose a strategic, scalable
approach. We suggest using machine learning based on
selected distances to pinpoint reactive regions within the
MM trajectory. This allows for strategic sampling of reaction
pathways that contribute significantly to the exponential
average, giving a more accurate estimate of the energy barrier
using less samples. Alternatively, productive snapshots from
the MD trajectory found by the machine learning model, can
be used for further (more accurate) QM/MM studies.
Machine Learning Performance. Using Elastic Net
regression with 15 input features and 150 samples, a model
was built to predict reaction energies from geometrical
features. With a set to 0.09 and 11_ratio equal to 0.5, a
MAE of 3.58 kcal/mol and a root mean squared error (RMSD)
4.46 kcal/mol is obtained. The R* score, which describes the
percentage of the response variable variation that is explained,
is 0.28. In general an R* score of 0.28 may be regarded as very
poor. However, with respect to the complexity of the system
and the very limited number of training points (100) a score of
0.28 is surprisingly high. Additionally, only 15 features were
needed to describe the problem to this level of accuracy, which
is possibly influenced by a much greater collection of residues.
To visualize the performance of the machine learning model,
the data set was randomly spilt into a test (S0 samples) and a
training set (100 samples). This 1:2 division is similar to the
one made during one cycle of the threefold cross validation
used to assess performance. Subsequently the model was fitted
on the training set and applied to the test set. The predictions
for the test set versus the activation barriers calculated using
adiabatic mapping are shown in Figure 3. The predictions of
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Figure 3. Scatter plot showing the performance of the Elastic Net
Regressor on a test set (S0 random points which were not used for
learning).

the regression model are in quite good agreement with the
actual activation barriers. The model is least accurate for the
extreme Dbarriers, it overestimates low barriers and under-
estimates high barriers. These are the regions in the training
distribution of reaction barriers with the least number of
samples. In order to increase the predictive power of the
model, without prior knowledge of the system, more training
points are needed. We suggest to test if semi-empirical
methods might be a solution to the sampling bottleneck.
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Another way to increase the predictive power is to iteratively
apply the model: calculate frames with predicted low barrier
heights, add the results to the training data, and enhance its
performance with every cycle. However, enhancing the
performance of the model is only necessary if the goal is to
predict a final energy barrier using this approach. That being
said, the model is able to differentiate between less and more
reactive frames. Therefore, this straight forward approach is
sufficient to identify regions of interest within the MD
trajectory, which is the intent of this work. Appropriate
starting geometries identified by the built model can then be
used for involved QM/MM studies, for example, aiming at
calculating a free energy reaction profile.

Analysis of the Resulting Feature Subset. The group of
features that remained after the two selection steps (explained
in section “Dimensionality Reduction”) is shown in the
following three tables (Tables 1—3). For each of the features,
the indices of the involved atoms (pdb file of the entire system
is attached to the Supporting Information), the Pearson
correlation coeflicient to the activation energy, the elastic net
coefficient, and an explanatory figure are given. The distances
are grouped into 3 categories. The first category contains
distances between the binding pocket and either the substrate
or the cofactor (Table 1). The second group consists of
intramolecular distances of SLL and NAD* (Table 2). The last
group contains the intermolecular interactions between SLL
and NAD" (Table 3).

The features given in Table 1 are distances from the
substrate and the cofactor to the surrounding amino acids.
Two distances are between atoms of PHE 70 to SLL (1) and
NAD* (2), which are anticorrelated to the activation energy
and contribute to the predictive model. The two features
indicate that PHE 70 and the attached backbone must allow
enough space for the nicotinamide leaving group to move out
of the binding pocket. Hence, if the SLL—PHE 70 and the
NAD*—PHE 70 distances increase, the activation barriers
become lower. Feature 3 and 4 show that the binding pocket
has to be compact and the NAD* cofactor has to be located
deep in the active center for the reaction to take place.

The second category includes intramolecular distances. It
shows that small conformational changes within the reactants
clearly influence the reactivity. Features 5 and 6 express the
relative position of the nicotinamide to the ribose ring. As they
are very similar, feature 6 was eliminated by the elastic net
model due to its redundancy.

The alignment of the succinyl group plays a major role.
Feature 7 has the highest absolute coeflicient of all the features
and therefore has the greatest impact on the predicted
transition barrier. Feature 7 expresses the distance between
the C4 atom and the terminal carboxyl group. This distance is
anticorrelated to the activation barrier, and thus the barrier is
lowest when the negatively charged carboxyl group is furthest
away from the reactive centers.

The last group is the largest, it contains eight features which
describe the relative positions of NAD" and SLL. Features 8, 9,
and 10 are related to the previously explained feature 7. These
distances are also a measure of the relative position of the
carboxyl group, and therefore redundant, their coefficients are
small or zero. The other five distances between NAD" and SLL
show all positive correlation to the energy barrier. They
indicate that the substrate and the cofactor have to be
sufficiently aligned in order for the reaction to take place.
Additionally, based on the large number of features containing
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Table 1. Features 1—4 Used in the Elastic Net Model”

Number 1
Atom indices” 4192, 584
Corr. to E, -0.38
Coefficient -1.12

I

e 0| B

4281, 594

ks

2 3 4
4279, 1165 4280, 2022

-0.39 0.39 0.38
-0.78 0.82 1.19

“These four features describe the overall configuration of the active site. The atoms in between which the distance is measured is colored in green.
bAtom indices as in the pdb-file (see Supporting Information).

Table 2. Features 5—7 Used in the Elastic Net Model for
Describing Interactions Within SLL and NAD**

e I

5

i I

ks

ey

Number 5 6 7
Atom indices” 4294, 4284 4293, 4284 4194, 4191
Corr. to E, 0.41 0.40 -0.45
Coefficient 0.66 0.0 -2.99

“The atoms in between which the distance is measured is colored in
green. “Atom indices as in the pdb-file (see Supporting Information).

the ribose ring, we suspect that the pucker of the ring plays an
important role.

Application of the Trained Model to the Entire MD
Simulation. The final model, which was trained on all 150
samples, was applied to the entire MD-trajectory. The
predicted barrier heights for the initial step of the
dessuccinylation are shown in Figure 4. One can see the
general agreement between predicted (blue) and calculated
MD frames (orange). The changes in the reactivity are
captured and reflected by the estimated barriers. It is
interesting to note that there are periods in the MD trajectory
which are either reactive or nonreactive, and others in which
the reactivity oscillates very strongly.

The distribution of the predicted activation energies is
shown in Figure 5 on the left. It is compared to the initial
collection of barrier heights used for learning. The comparison

—— Predicted barrier heights (ML) +— Calculated samples (adiabatic mapping)

—— Moving average, predictions Moving average, calculated samples

5 | |
50 . | 1 h

E, [keal/mol]

30

0 10 20 30 40 50 60 70

Time [ns]

Figure 4. Section from the entire MD for which the activation
energies were predicted with the previously built model. The red dots
indicate the energy barriers calculated with adiabatic mapping.

shows that the distribution of the predictions is much
narrower. This already suggests that the model will over-
estimate low energy transitions and underestimate high
barriers.

In order to check the reliability of the model for predicting
reactive regions within the MD trajectory, we selected 10
frames for which a low barrier was forecast and three additional
snapshots to represent the frames with higher predicted
activation energies. These three additional samples are the
frames at 25, 50, and 75% of the distribution of predicted
transition barriers. Starting from these snapshots, adiabatic
mapping calculations were carried out. The results for the
picked frames that were modeled are shown in Figure 5 on the
right. The predicted (ML) values and the calculated results
(adiabatic mapping with HF-3c) are compared. They are put

Table 3. Features 8—15 Used in the Elastic Net Model for Describing the Interactions between SLL and NAD*“

Number 8 9 10 11
Atom indices” 4279, 4188 4279, 4190 4279, 4195 4279, 4189
Corr. to E, 0.43 0.41 0.42 0.43
Coefficient 0.0 -0.16 0.0 1.81

z W > W z W z »—W
Number 12 13 14 15
Atom indices” 4282, 4188 4284, 4188 4286, 4188 4286, 4191
Corr. to E, 0.45 0.43 0.54 0.48
Coefficient 0.92 0.0 0.80 0.10

“The atoms in between which the distance is measured is colored in green. bAtom indices as in the pdb-file (see Supporting Information).
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Figure S. Left: Distribution of the predicted barrier heights (blue). For comparison the distribution of the initially calculated barriers (adiabatic
mapping with HF-3c), used for learning, is given (orange). The arithmetic mean (1) and exponential average (2) of the predicted barriers are 37.60
and 33.02 kcal/mol, respectively. Right: Comparison of predicted (ML) and calculated (adiabatic mapping with HF-3c) reaction barriers for 10
frames with low energy transitions and three additional representative snapshots. The values shown here are listed in Table 4.

into context with the predicted barriers for all frames of the
MM trajectory and the samples originally given to the model
for training.

The predicted barrier heights and the calculated reaction
barriers for the thirteen frames are listed in Table 4.

Table 4. Comparison of Predicted and Calculated Barrier
Heights for Ten Frames with Low Estimated Reaction
Barriers by the ML Model”

time JEREE E&le AE

[ns] [kcal/mol]
34.70 31 36 B
36.89 31 35 4
38.44 30 35 5
41.14 30 26 —4
42.16 31 33 2
44.08 30 35 s
45.64 31 34 3
46.96 29 27 -2
47.85 30 32 2
50.58 31 31 0
52.39" 35 40 5
52.76° 37 34 -3
69.007 40 47 7

“Three additional values are given for frames from 25, 50, and 75% of
the distribution of predicted transition barriers. Bold numbers indicate
calculated barriers that are below 30 kcal/mol. In general, all
calculated activation energies are close to the predicted values. The
MAE for these 13 samples is 3.6 kcal/mol. 25%. €50%. 475%.

The comparison of the calculated and predicted activation
energies shows that the designed model overestimates low
energy transitions. The start geometries that lead to low
transitions are few compared to the number of snapshots that
are unsuitable starting points for QM/MM reaction path
studies. From the original 150 samples only 9 had energy
barriers below 30 kcal/mol. Using the machine learning model
2 out of the 10 frames, thought to be suited, lead to barriers
lower than 30 kcal/mol. Therefore, the model allows us to
identify relevant frames that will contribute significantly to the
exponential average of the reaction barrier. For an accurate
estimate of the exponential average, more data points used for
training would be required. Improving the predictive model
and subsequently calculating the exponential average from all
predicted barriers could be an interesting approach to
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approximate the true activation barrier, which then can be
compared to experiments. Overall, we are able to meet our goal
to strategically find reactive regions within the MD-trajectory.
Using the model, we are able to exclude the majority of frames
without needing to calculate them specifically.

M CONCLUSIONS

Using simple machine learning techniques, we are able to find
reactive periods within the MD trajectory without prior
knowledge of the structural factors that govern the reactivity of
Sirtuin 5. The applied protocol enables us to identify the
structural features that stabilize the transition state, and thus
enhance the reactivity.

We found that the cofactor NAD" and the substrate SLL
have to be located close together and be well aligned;
therefore, the compactness of the binding pocket is a
prerequisite. At the same time, there has to be sufficient
room for nicotinamide, the leaving group, to exit the active site.
Configurational changes within NAD* and SLL are also
connected to the reactivity. The relative position of the
nicotinamide to the ribose ring in NAD, the orientation of the
terminal carboxyl group of SLL and its salt bridge to the
neighboring ARG 105 are important structural features. Using
measurements of these changes we were able to estimate
activation energies with a MAE of 3.6 kcal/mol. For the initial
step of the desuccinylation, we found transitions with barriers
as low as 26 kcal/mol. We expect that the inclusion of dynamic
effects through free energy simulations and even more accurate
methods will yield a more reliable transition barrier than found
in the scope of this work. These results also support the
assumption that the dessucinylation investigated here has a
reaction mechanism which is analogous to the deacetylation by
Sirtuin 2, which has already been studied in greater detail.**~>*
The straightforward approach we applied here to estimate
transition barriers is transferable to any extended system. It
greatly simplifies the search for appropriate educt conforma-
tions, which significantly influences the outcome of most QM/
MM-schemes to model enzymatic reaction mechanisms. The
approach is scalable and can be easily customized to meet
individual needs, by employing other descriptions for the MM
or the QM part, adjusting the number of samples or adding
further features.

DOI: 10.1021/acs.jctc.9b00876
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Visualisation

All images of molecular geometries were generated using VMD.! All plots were produced
using the python-packages matplotlib? and seaborn. The chemical structures were drawn

with ChemDraw.
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SFigure 1: Visualisation of the QM-region. The substrate SLL is shown in black and the
co-factor NAD™ in red. Additionally, four amino-acids and zero to four water molecules were
included.

Besides the two reactants, SLL and the co-factor NAD+, four additional amino-acids and
zero to four water molecule were included. Therefore, the number of atoms included in the
QM-region varied from 139 to 152. The residues contained in the QM-region are shown in
Figure 1. The substrate SLL is shown in black, NAD™ in red, HIS 158 in grey, ARG 105
in blue, PHE 223 in magenta and PHE 70 in green. The residues were chosen based on

proximity to the reactive centers.
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Benchmark: HF-3c vs other functionals

To assess the accuracy of the HF-3c/minix for the description of the QM region, seven
frames that covered a 25 kcal /mol range were compared to results obtained by higher theory
methods. For those frames single point calculations were carried out for the educt and the
transition state at the BSLYP-D3/def2-tzvp, revPBE-D3/def2-tzvp, and PW6B95-D3/def2-
tzvp level of theory.> ' The functionals were selected because of their general use (B3LYP
or revPBE) or because they were especially created for kinetic barriers (PW6B95). The
activation barriers were calculated from the single point energies. The QM /MM partitioning

and all interactions were treated as described in section “QM/MM Simulations”.

50
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SFigure 2: Comparison of predicted barrier heights based on the QM /MM adiabatic mapping
paths generated with HF-3c. In all cases HF-3c is an upper limit to the barrier height, and
thus it consistently overestimates the activation energy. The values on the x-axis show when
the frames were picked from the MD-trajectory.

Figure 2 clearly shows that HF-3c is always proportional to the energy barriers estimated
with the other methods and consistently overestimates the barrier height. This consistency
allows us to use HF-3c/minix to distinguish frames higher and lower barriers, as we do not

aim to use it in order to estimate a value comparable to experiment.
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Machine Learning Model Comparison

Listed in the Table 1 are the results for the tested regression models. The numerical hyper-
parameters were determined using 5-fold cross validation. The MAE, RMSE, and R2 value
were calculated using 3-fold cross validation.

STable 1: Summary of the tested machine learning models. The mean absolute
error (MAE), the root-mean-squared-error (RMSE) and the R2 value for each
model are listed. Besides these measures of performance the chosen hyperpa-
rameters are given.

Model Hyperparameters MAE [kcal/mol] RMSE [kcal/mol] R2
Linear Regression 4.28 541 -0.06
Descision Tree Regression max depth=9 5.08 6.91 -0.54
Ridge Regression a =20 3.57 4.46  0.28
Lasso Regression a=0.1 3.71 4.59 0.23
Kernel Ridge Regression — « = 20, kernel="linear’ 3.55 4.44  0.28
Elastic Net Regression a = 0.06, 11 ratio=0.5 3.59 4.46  0.28
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Exponential Averaging Versus Umbrella Sampling
for Computing the QM /MM Free Energy Barrier
of the Desuccinylation Reaction Catalyzed by Sir-
tuin 5
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“Exponential Averaging Versus Umbrella Sampling for Computing the QM /MM Free
Energy Barrier of the Desuccinylation Reaction Catalyzed by Sirtuin 5”

Phys. Chem. Chem. Phys. 2022, 2/, 7723-7731.

Abstract: The computational characterization of enzymatic reactions poses a great chal-
lenge which arises from the high dimensional and often rough potential energy surfaces
commonly explored by static QM /MM methods such as adiabatic mapping (AM). The
present study highlights the difficulties in estimating free energy barriers via exponential
averaging over AM pathways. Based on our previous study [v. d. Esch et al., JOTC,
2019, 15, 6660-6667], where we analyzed the first reaction step of the desuccinylation reac-
tion catalyzed by human Sirtuin 5 by means of QM /MM adiabatic mapping and machine
learning, we use, here, Umbrella Sampling to compute the free energy profile of the initial
reaction step. The computational investigation leads to the conclusion that the NAD™
transfer, the first step of the deacylation reaction, is highly conserved among all sirtu-
ins and proceeds via an Sy2-type reaction mechanism in SIRT5. In addition, the direct
comparison of the extrapolated free energy barrier from minimal energy paths and the
computed free energy path from umbrella sampling further underlines the importance of
extensive sampling.
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Exponential averaging versus umbrella sampling
for computing the QM/MM free energy barrier
of the initial step of the desuccinylation reaction
catalyzed by sirtuin 57

Johannes C. B. Dietschreit, (2) +* Beatriz von der Esch (2 ° and

Christian Ochsenfeld (2 *3°

The computational characterization of enzymatic reactions poses a great challenge which arises from
the high dimensional and often rough potential energy surfaces commonly explored by static QM/MM
methods such as adiabatic mapping (AM). The present study highlights the difficulties in estimating free
energy barriers via exponential averaging over AM pathways. Based on our previous study [von der Esch
et al, J. Chem. Theory Comput., 2019, 15, 6660-6667], where we analyzed the first reaction step of the
desuccinylation reaction catalyzed by human sirtuin 5 (SIRT5) by means of QM/MM adiabatic mapping
and machine learning, we use, here, umbrella sampling to compute the free energy profile of the initial
reaction step. The computational investigations show that the initial step of the desuccinylation reaction
proceeds via an Sy2-type reaction mechanism in SIRT5, suggesting that the first step of the deacylation
reactions catalyzed by sirtuins is highly conserved. In addition, the direct comparison of the extrapolated
free energy barrier from minimal energy paths and the computed free energy path from umbrella sampling

rsc.li/pccp

1 Introduction

Post-translational modifications (PTMs) describe the chemical
alteration of proteins after their expression. They greatly increase
the variety of a cell’s proteome by expanding the chemical space of
the 20 canonical amino acids and play an important role in,
for example, protein activity, cell signaling, or transcription." A
frequently modified residue is lysine. Best known is the interplay
of lysine acetylation®* and methylation®” fixing its charge state to
either neutral or positively charged, especially in histone tails.
Acetylation is one of the possible modifications subsumed
under the group of &-N-acylation of lysine. In humans, there are
18 lysine deacylases (KDACs). They can be divided into four
classes. Classes I, 11, and IV are Zn>"-dependent enzymes; their
active site contains a catalytically active zinc ion. Class III
KDACs, known as sirtuins, also contain Zn?>', but they are
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University of Munich (LMU), Butenandtstr. 7, D-81377 Miinchen, Germany
> Max Planck Institute Jfor Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart,
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HB-R1 interaction, umbrella window placement, choice of force constants, and
the effect of the selected bin-size on the FES constructed using MBAR. See DOI:
10.1039/d1cp05007a
# These authors contributed equally to this work.
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further underlines the importance of extensive sampling.

NAD'-dependent. The catalytic center is located next to an NAD'-
binding Rossmann-fold subdomain, whereas the zinc binding
motif is spatially separated and ensures the structural integrity of
the enzymes.® Sirtuins are the mammalian homologs of the silent
information regulator 2 (Sir2), a highly conserved family of proteins
found in archaea and eukaryotes.”® There are seven different
sirtuin isoforms in mammals (SIRT1-7) that cover a wide range of
lysine deacylations. They not only catalyze lysine deacetylation, but
also, for example, desuccinylation and demyristoylation.*"° In line
with their wide range of catalytic activity, sirtuins can be found in
several different cell compartments such as the nucleus or the
mitochondria,"* where they are involved in various biological
processes.">"?

This paper focuses on the catalytic activity of SIRT5, which
shows no detectable deacetylation but rather demalonylation and
desuccinylation activity."* It is located in the mitochondria and its
main target is the carbamoyl phosphate synthetase 1 (CPS1)."® Its
active site consists of a hydrophobic pocket with a positively
charged arginine (Arg105) at the end. Together with Tyr102, those
two residues position the negatively charged end of the dicar-
boxylic acid modification for removal and have been identified to
govern the selectivity of SIRT5.'® SIRT5 transfers succinyl (and
malonyl) to its cosubstrate by cleaving the ribosyl bond in
NAD" and thereby generating nicotinamide, a natural sirtuin
inhibitor,'”'® and a mixture of 2- and 3’-O-succinyl-ADP-ribose.™*

Phys. Chem. Chem. Phys., 2022, 24, 7723-7731 | 7723
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Fig. 1 Reaction scheme for the first of several reaction steps catalyzed by
sirtuins. In this initial step the acylated lysine substrate 1 reacts with NAD* 2
which results in the a-1'-O-alkylamidate intermediate 4 and the release of
nicotinamide 3. Depicted are both theoretically possible reaction types,
the stepwise Syl and the concerted Sy2. Similar schemes can be found,
e.g. inref. 9, 21, 22, 25, and 26. SIRT1-3,6 act as deacetylases (R = CH3),
SIRT2 can also remove fatty acids (e.g., R = Ci4Hzg), SIRT5 removes
succinyl and malonyl modifications (R = CH,CH,COO™~, CH,COO™), and
SIRT4 is an ADP-ribosyltransferase (similar to the product of the reaction
step depicted here).**?”

A mutagenesis study of the His116 in the active site, modifica-
tion of NAD", and sirtuin crystal structures strongly suggest that no
residue in the catalytic pocket takes actively part in the first step
of the reaction,'®* namely the cleavage of the glycosidic bond
between ribose and nicotinamide, and the addition of the sub-
strates amide carbonyl oxygen to ribose, forming an iminium
adduct (henceforth called intermediate). Said intermediate was
captured by using thioamide substrate analogs.>"** The NAD"
exchange reaction can either proceed via an Syl1-like step-wise or
an Sy2-like concerted mechanism (see Fig. 1). So far computational
studies have only focused on the initial step of the deacetylation
reaction in the bacterial sirtuin analogue Sir2Tm* and the yeast
homolog yHst2.** Both concluded that the first step is very likely
concerted. Since all following reaction steps are intramolecular
rearrangements and proton transfers, it is assumed that the initial
step is the rate limiting step.

In our previous publication we have analyzed the first reaction
step catalyzed by SIRT5 by means of quantum mechanics/mole-
cular mechanics (QM/MM).”® We calculated minimal potential
energy paths for the first reaction step by means of adiabatic
mapping (AM).* AM calculations minimise the energy of the
system while constraining a collective variable to a specific set of
values (in our case the difference between the breaking glycosidic
bond and the forming bond between the amide carbonyl oxygen
and C1’ of ribose). For these paths we used 150 different reactant
configurations which were extracted from a MM-molecular
dynamics (MD) simulation of the SIRT5-substrate complex sol-
vated in water. The study connected the configuration of the active
site with the calculated activation energy by means of machine
learning (see ref. 28). We were able to identify interactions of the

7724 | Phys. Chem. Chem. Phys., 2022, 24, 7723-773]
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substrate (a succinylated peptide) and residues within the active
site that could increase or decrease the activation barrier. Due to
the complexity of the high-dimensional potential energy surface
(PES), the procedure drags the system from reactant to intermedi-
ate by visiting many local minima. This leads to a large scattering
of the activation barriers as the minimised reactant geometries
also correspond to many different local minima.

The effective free energy activation barrier can best be esti-
mated by the exponential average from many of these minimal
energy barriers.>® However, Ryde®" has cautioned that one needs
quite a large number of minimal energy activation barriers as the
exponential average is ill-conditioned and converges very slowly.
Ryde pointed out that many computational studies based on
minimal energies have very large error bars, because of their very
low number of calculated paths, so that their conclusions are
questionable. Therefore, we study the actual free-energy profile
(FEP) for this system as a function of the reaction coordinate, in
order to be able to compare the FEP to the results of the previous
study, which was one of the biggest in scale to date. This
comparison will clearly show if the increase in number of paths
by one to two orders of magnitude (compared to those listed in
ref. 31) has improved its predictive power. We use umbrella
sampling®® and the same QM/MM setup as in our previous
study®® to explore important regions of configuration space and
evaluate the free energy as a function of the reaction coordinate by
means of Multistate Bennett’s Acceptance Ratio (MBAR).*>™°

The manuscript starts with a brief introduction into the
difficulty of predicting effective energy barriers using exponen-
tial averaging and then outlines the equations employed to
compute the FEP based on QM/MM umbrella sampling calcu-
lations. After reviewing the computational details in Section 3,
the obtained FEP of the initial NAD" exchange reaction and the
resulting free energy activation barrier is compared to the
previously determined minimum energy path and exponen-
tially averaged effective barrier.

2 Theory and methods
2.1 The problem of the Ill-conditioned exponential average

If the minimal energy activation barrier of the single adiabatic
mapping path i is denoted with AEj, then the average activation
barrier for n samples is

N Ap
(AET) = D_AE] @
and its variance
a® = ((AE)) — (AEF) (@)

The exponential average (EA) for this set of energies is then
computed as

1 —
AEEA,num -

S (lZ i ) S

where f§ = 1/kgT, with kg being the Boltzmann constant and T the
absolute temperature, which is fixed to 300 K within the scope of

This journal is © the Owner Societies 2022
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this work. As there are several local minima along each degree of
freedom (DoF) orthogonal to the reaction coordinate into which
the system is minimized, and the number of these DoF is very
large in extended biomolecular systems, one can assume that the
minimal energy reaction barriers are normal distributed based on
the central limit theorem.*® The exponential average of normal
distributed reaction barriers can be calculated analytically using
the arithmetic mean (AE*) and the variance o2

AE;

EAjana — <AE1> - % ﬁ0'2 (4)
Ryde®! performed numerical experiments, drawing random num-
bers from a normal distribution and computed the EA using
eqn (3) and (4). Ryde found that he needed more than an
exponentially increasing large number of samples for increasing
o to converge the exponential average within 95% confidence of
the known result. This slow convergence of the exponential
average is the same which also impedes the computation of
absolute free energies. Mean and variance converge much faster
than the exponential average, and thus the analytical expression
(eqn (4)) using the first and second moment of the underlying
distribution is more robust, but can only be employed if the
distribution of activation barriers is indeed Gaussian.

2.2 Multistate Bennett’s acceptance ratio

In the advanced sampling scheme employed in this manuscript,
each single umbrella simulation i (called umbrella window) is
associated with a biasing potential B;, which modifies the original
Born-Oppenheimer QM/MM potential energy surface (PES) U, to

U;= U, + By (5)

In order to recover the unbiased data, we use binless WHAM/
MBAR*™® to estimate the (relative) free energies A; of each
window. The free energy 4; of one window is implicitly defined
as a function of all simulation frames and all free energies

e/J'B/k

e P = Z Z s (6)

J Z nyePAI=BBijk)
i

where S is the number of windows, n; the number of frames in
window 7, and B{j, k) the value of the biasing function of
window i for frame k from simulation window j. Eqn (6) has to
be solved self-consistently, but can alternatively be recast into a
minimization problem

nePAi=PBi(ik)

& =n — ZZ =0, @)

J aneﬁA/ BBi(j k)

where all g;’s are zero at the exact solution. The unbiased free
energy as a function of the collective variable ¢ is
recovered using

ﬁAO 771nzzl: 5(£(la ) (8)

J Z nefdi— ﬁB/(fk)
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The Dirac delta function is evaluated with finite resolution
using an indicator function 1¢¢f¢ . - 1, which is equal to one if
& € [€min,¢max] and otherwise zero. We refer to 0¢ = &nax — Emin
as the bin width at which we compute the free energy surface.

3 Computational details
3.1 QM/MM setup

As reference geometries for the umbrella simulations, we used
the adiabatic mapping path with the lowest activation barrier
from our previous study.”® We chose this particular path in
order to show that the barrier is significantly underestimated
due to the minimizer identifying a local minimum with a high
energy as reactant rather than the lower basin containing most
reactant configurations. The same protein residues within the
active site, namely Arg105, His158, Phe170, and Phe223, as well
as succinyl-lysine (SLL) and the ribose-nicotinamide part of
NAD' were included in the QM region (113 atoms in total).
The QM/MM separation is shown in Fig. 2. We only mod-
ified the location of the QM/MM border compared to our
previous study, avoiding a cut through the peptide bonds along
the protein backbone and placed it between C, and Cy. The QM
region is described with HF-3¢c/minix,*” which has been shown
to yield accurate chemistry but elevated energies for transition
states.”® The activation free energy is therefore expected to be
higher than one computed with a more accurate quantum
mechanical method as, e.g., the one obtained in ref. 23. How-
ever, the free energy surface will be qualitatively correct, and we
expect that Sy1 and Sx2 can be correctly discerned. The MM
parameters for all standard protein residues were taken from
AmberFF14,%® those for NAD" from the AMBER parameter
database.***° SLL is described with GAFF"' parameters and
AM1-BCC*? charges. For the zinc finger we use ZAFF*® para-
meters. The employed water model is TIP3P.** For the full

Fig. 2 Visualisation of the QM/MM subsystem division. On the left, the
protein (white) is shown embedded in water (iceblue). Arg105, His158,
Phel70, and Phe223, as well as the succinyl-lysine substrate and the NAD*
co-factor are marked in orange. These residues were partially included in
the QM-region as defined on the right, with the QM-subsystem shown in
detail.
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original MM setup see von der Esch et al?® All QM/MM
calculations were performed with our in-house program suite
FermiONs++*™*” which uses the OpenMM 7.3 library**™° to
evaluate the MM subsystem (Fig. 2).

3.2 Details of the QM/MM umbrella simulations

For the restrained QM/MM-MD simulations we used a Python
interface for FermiONs++,*™” which allows low-level access to
the QM engine. The propagation of atomic coordinates, appli-
cation of a thermostat, and evaluation of the umbrella potential
were done within Python, only for the QM energy and gradient
evaluations the PyFermiONsInterface was used.

Each umbrella window simulation consists of three parts:
(i) heating, (ii) equilibration, and (iii) production. The system
was propagated using the velocity Verlet algorithm®' and the
temperature was controlled using the Langevin thermostat.””
The initial forces assigned to the active atoms were randomly
chosen from the Maxwell-Boltzmann distribution at 1 K. Dur-
ing heating the time step was set to 0.1 fs and no thermostat
was used. Every 10 time steps the velocities were rescaled in 1 K
increments, reaching 300 K after 3000 time steps.

For equilibration and production, the time step was set to
0.5 fs and the Langevin friction constant to 1 ps™'. For
increased speed and stability, we used the fully converged
extended Lagrangian method®® implemented in FermiONs++.>*
The equilibration period was 1 ps long. The production runs
were at least 10 ps and a maximum of 20 ps long. Simulations
were terminated before the 20 ps limit, if the Mann-Kendall®>~”
test indicated that the mean of the two biased bond lengths had
converged, and therefore equilibrium within the window had
been reached. Outputs were written every 2 fs.

The umbrella simulations were started from structures
taken from the previously obtained minimal energy path with
the lowest barrier height.?® All residues within 10 A of the QM
subsystem were chosen to be active, thereby ensuring that there
is always a layer of frozen atoms enclosing the active atoms.
This ensures that no molecule can escape into the vacuum
surrounding the simulation box, as no periodic boundary
conditions were employed.

In order to distinguish between Sy1 and Sy2 reaction type
(Fig. 1), the sampling was conducted along two dimensions, the
breaking C1’-N bond between ribose and nicotinamide and the
forming bond O-C1’ between the carbonyl oxygen and ribose.
Hence, each umbrella window i was biased with two harmonic
functions

1 1
Bi(x) = zkl.i(dl - dl,i)2 + Ekz,i(dZ - dl,i)27 )

with x being a point in configuration space, d, = d(O-Cl’),
d, = d(CI'-N), as well as k;; and d, ; being the force constant and
equilibrium bond length of bond j in the biasing potential i.
The force constants range from 200 to 700 k] mol™' A2
adapting to the slope of the local PES. In total, 106 umbrella
simulations were carried out. The force constants and locations
of the minima are shown pictorially in Fig. S2 and summarized
in Table S1 (ESIY).
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3.3 MBAR analysis

As only the relative values of the A;’s calculated with MBAR of
each umbrella window are meaningful, the free energy of the
first window is set to zero. The starting guess is zero for all
windows. Eqn (6) was solved self-consistently; suggested mini-
mization algorithms such as Newton-Raphson®* or DIIS*® were
not needed. As convergence criterion of self-consistent itera-
tions we used the largest absolute change in the fA;s per step
and g" = (g1, g2, - -,&s) (g7s as defined in eqn (7)). Convergence
was reached when max|A4;| dropped under 10~ and the norm
of g was below 107, ensuring that a stable minimum had
been found.

The numerical errors of each bin were computed via
bootstrapping® analysis. Ten bootstrapping runs were per-
formed, drawing random frames from each simulation with
replacing and then performing ten additional MBAR analyses.
The standard deviation between the bootstrap samples of
the free energy within each bin was used as statistical error
estimate.

4 Results and discussion

4.1 Interaction of SLL with protein residues

The interactions between Arg105, Tyr102, and the succinylated
substrate were identified by experiments focussing on the cause
of SIRTS5 selectivity.'® Based on our extensive QM/MM sampling
of the desuccinylation reaction, we are able to study these
interactions as the reaction progresses. It should be noted that
while SLL and Arg105 are part of the QM subsystem, the Tyr102
residue was treated at the MM level.

For each frame the hydrogen-acceptor (O-H), hydrogen-
donor (H-X), and the donor-acceptor (O-X) distances were
measured, as well as the hydrogen bond angle O-H-X
(cf. Fig. 3). Subsequently, the samples were binned along the
bond length difference d(Cl'-0) — d(N-CI’) (bin width = 0.05 A).
The results are shown in Fig. 4.

The interaction between SLL and ARG105 contains, due to
the two-prong nature of these residues, two hydrogen bonds,
which are labelled with HB-R1 and HB-R2, respectively. The
hydrogen bond between SLL and TYR102 is denoted with
HB-Y1. HB-R1 and HB-Y1 involve the same carboxyl oxygen

SLL ARG105

Fig. 3 Hydrogen bond and salt bridge-like interactions between SLL and
the protein residues ARG105 (HB-R1 and HB-R2) and TYR102 (HB-Y1). The
three bonds correspond to those analyzed in Fig. 4.
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Fig. 4 Evolution of the interactions between SLL and the protein residues
ARG105 (HB-R1 and HB-R2) and TYR102 (HB-Y1) over the course of the
reaction. The hydrogen bonds are described by the hydrogen—acceptor
(O-H), hydrogen—donor (H-X), donor—acceptor (O-X) distances, as well
as the hydrogen bond angle O-H-X along the bond length difference
d(ClI'-0) — d(N-Cl) (reaction coordinate).

of SLL. Since SLL rotates in some simulations, the labels were
assigned based on the shorter distances measured for each SLL
oxygen to all interaction partners. At the beginning of the
reaction (left-hand side of Fig. 4 or large values on the abscissa),
SLL moves closer to the two protein residues. This is best
shown by the decrease of all three distances in the second
panel from the top of Fig. 4. Additionally one can see, when
comparing HB-R1 and HB-R2, ARG105 and SLL clearly bind one
proton each (see opposite behaviour of O-H and H-X distances
in the first and third panels). This means that the (in the apo-
form) charged residues have changed to a neutral state and are
held together by two hydrogen bonds, which is expected in a
hydrophobic environment such as this active site.°>®" The
instability of the charged ARG105 in the largely hydrophobic
pocket was shown in ref. 16.

As the reaction takes place (d(Cl'-0) — d(N-CI') < 1.25 A),
judging by the O-X distance and the O-H-X angle, the hydro-
gen bond HB-R1 is stronger than HB-R2. It is important to note
that especially directly after the onset of the reaction (bond
difference between 1 and 2 A), the interaction is not as stable as
before and after the reaction. The carboxyl group rotates over
the course of a single simulation window, thereby switching
interaction partners. This causes the noticeable, but artificial
bumps in this region.

As the nucleophilic attack progresses, the hydrogen in the
HB-R1 bond is slowly shifted towards arginine (see Fig. S1,
ESIY), finally leading to a salt bridge like state for the product.
This change in the nature of the interaction can be explained by
the development of a positive charge on the attacking carbonyl
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oxygen of SLL. Additionally, SLL becomes slightly twisted after
this reaction step to accommodate the free nicotine amide. The
change at the site of the nucleophilic attack might change the
character of the binding site, from a neutral to a generally more
charged one, and therefore stabilise the usually stronger salt
bridge over the neutral double hydrogen bond.

4.2 Free energy surface of the initial reaction step in SIRT5

The umbrella sampling method allows for easy parallelization
during the exploration of the free energy surface. However, we
still performed these simulations in consecutive batches, filling
in gaps between sampled areas that had been left unexplored
by the previous set of simulations. In total 106 umbrella
windows were included.

This large number was needed to properly map out not only
the very low but also higher energy regions of the FES. The
surface obtained here is much steeper and therefore harder to
sample than the one of Sir2Tm.** This can have several reasons:
(i) the QM-method employed here overestimates the energy of
stretched bonds and makes all free energy valleys more narrow
and (ii) the QM region includes significantly more atoms and
therefore describes the interaction between the reactive center
and the surroundings differently. In contrast to ref. 23, we
included 113 instead of 65 QM atoms, around 65 000 instead of
9000 MM atoms, and sampled cumulatively for 2 ns instead of
720 ps.

The algorithms WHAM?® or MBAR?* assume that the input
data describe the simulated system in equilibrium and that
they are uncorrelated. We calculated the decorrelation times of
the biasing potential of each umbrella window, the mean was
23 fs. Hence, the statistical inefficiency®*®> was 47 fs. Based on
these findings, we used data 40 fs apart to construct the free
energy surface. For completeness, results based on the full data
set can be found in the ESIT (Fig. S4). After determining the
relative free energies A;, we used a bin width of 0.075 A for both
bond lengths to evaluate eqn (8) (see Fig. 5A).

To obtain the minimal free energy path (MFEP) for the
nucleophilic substitution, we used Dijkstra’s algorithm® to
find the lowest energy path (shown in Fig. 5B, corresponding
to the grey line in Fig. 5A) connecting the lowest point of the
reactant basin (d(Cl'-N) < 2 A and d(O-Cl') > 2.5 A) with the
lowest point of the intermediate basin (d(CI'-N) > 2.75 A and
d(0-Cl') < 1.75 A).

The position on the free energy surface of the line connect-
ing the educt and product of the investigated reaction step very
clearly indicates a concerted mechanism. The energy changes
first very little as the carbonyl oxygen approaches, but then the
shortening of the (C1'-0)-bond length is directly proportional
to the elongation of the (C1’-N)-bond in NAD". After the new
bond has been formed, the energy decreases slightly further by
nicotinamide moving away from the ribose. We can therefore
conclude that the reaction mechanism is always of Sy2 type
disregarding of whether sirtuins catalyse a deacetylation or
desuccinylation. The changes within the active site that lead
to the different substrate specificity of the seven sirtuins do not
change the overall conserved reaction mechanism.
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Fig. 5 (A) Free energy surface of the first reaction step catalyzed by SIRT5

calculated with HF-3c/MM. The minimal free energy path (MFEP) con-
necting the reactant and intermediate state is shown in grey. White areas
were not visited during the simulations. Bins, which were not adequately
explored, but have at least three fully sampled neighbors, were filled with
the mean free energy of the adjacent bins. The original surface is given in
the ESIT (Fig. S3). (B) The free energy profile along the MFEP (most likely
reaction path s), corresponding to the gray line in (A). The difference of
well depths and barrier height along the MFEP are given explicitly.

We additionally performed binning along the bond differ-
ence (d(ClI'-N) — d(O-Cl')) to obtain a one-dimensional free-
energy profile, which is shown in Fig. 6. The values of the 1D
FEP are quite similar to the MFEP obtained from the 2D
surface, but it extends beyond the lowest points in the reactant
and product basins showing two smooth minima.

As reaction free energy we obtain from our simulations

Ad =—p7! IHM —
J‘ReaclanldceiﬂA(g)

37.0 kJ mol " (10)
4.3 Free energy paths vs. minimal energy paths

The AM path that provided the starting configurations for the
umbrella windows on the d(O-Cl') — d(Cl'-N)-surface, had
predicted an activation energy of 91.6 kJ mol *,® which is
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Fig. 6 One-dimensional free energy profile for the initial step of the
desuccinylation catalyzed by SIRTS calculated with HF-3c/MM. The simu-
lation data was binned along the bond length difference of the breaking
and forming bond. The educt minimum has been aligned with 0 kJ mol™*
and the product minimum lies 36.6 kJ mol™* higher.

around 30-40 k] mol™* smaller than the approximate energy
barrier taken from the MFEP (127.7 kJ mol ™, Fig. 5B) or the 1D
FEP (121.2 kJ] mol™ ", Fig. 6). Both, the AM, as well as, the
umbrella sampling simulations were performed at HF-3¢c/MM
level of theory. The AM path is obtained from a sequence of
minimizations along a the d(O-Cl') — d(Cl'-N) distance while
the MFEP is extracted from the PES based on MD simulations
at 300 K. The much lower AM energy barrier is caused by the
path starting off in a local minimum that is already much
higher in energy than the majority of configurations forming
the reactant basin. We want to underline here that the umbrella
windows were started from the nearest points along this path.
This means that the non-zero temperature in the umbrella
sampling simulations has caused the system to escape the local
minima, in which the AM path was stuck, and find the broad
reactant basin. In conclusion, the reaction path obtained from
umbrella sampling offers a more realistic characterization of the
reaction.

This result strongly suggests that predictions of reaction
barriers or even reaction mechanisms based on minimal energy
paths can be misleading, as has already been hinted at by the
strong scattering of minimal reaction barrier values in our
previous paper.”® The exponentially averaged barrier, AE’EA,num,
which combines all 150 paths from the previous study, is also
lower than the free energy barrier obtained here (see Table 1).
Employing Ryde’s considerations,®* the numerical exponential
average has, because of the large variance and comparably
low number of frames, a 95% confidence interval of roughly
2000 kJ mol™*. A broad distribution, like the one we obtained,
would require billions of paths to achieve chemical accuracy. In
light of this, free energy methods seem to be an attractive
alternative even though they are usually perceived to be costly
for QM/MM studies. The analytical EA, AEEA,am, (based on the
Gaussian approximation) is much lower than AE"EA,num due to the
extremely large scattering of the computed barriers (large var-
iance). The fact that the distribution of the 150 frames is bi-modal
calls the applicability of the analytical formula into question,
which assumes a normal distribution. Therefore, the value of
AE;If;A,ana for the 150 adiabatic mapping values is regarded as
nonsensical.
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Table 1 The numerical results of our previous machine learning sup-
ported study on the reaction barriers of the first reaction step
are summarized by their mean ((AE®), eqn (1)), standard deviation
(6, egn (2)), numerical exponential average (AE{a num, €9n (3)), exponential
average assuming a Gaussian distribution (AEa ana, €gn (4)), and the width
of the 95% confidence interval (AAEEa num: AAEEA ana). All numbers are
given in kJ mol L. The values of AAEE, are estimated based on the results
given in ref. 31

AM ML
Samples 150 7501
(AE®) 157.4 157.3
1 22.9 13.4

AE%Amum 104.0 138.4
AAEfp num ~2000 ~18
AFEfaana 52.0 120.8
AAEiA ana ~20 ~3

We also want to stress that non-MD-based methods like AM
do not have to be abandoned altogether, as they are well suited
for initial exploration. The distribution of energy barriers
predicted by our ML model for the entire classical MD simula-
tion is uni-modal and more narrow than the ground-truth
distribution, as the fit underestimates high and overestimates
low barriers. Its EA result, as given in Table 1, is much closer to
the free energy barrier based on umbrella sampling derived in
our present study. The low-dimensional ML model yields, to
some degree surprisingly, a more realistic barrier estimate.
With its few features it cannot incorporate the many DoF
orthogonal to the reaction coordinate, and thus effectively
averages over them creating a Gaussian distribution one would
expect in the high-sampling regime. By its inability to fit the
complexity of the biological system, it reduces the noise from
the many DoFs and helps to get a more realistic barrier. Finally,
it is important to stress again that the free energy barrier
reported here is expected to be an upper limit to the true
reaction barrier, due to the minimal basis-set employed in
HF-3c.

In our previous study, we computed 150 AM paths with around
25 images each. On average 35 optimization steps were needed
per image along a path, which accumulates to roughly 131250
QM/MM energy and force calculations. For the construction of the
2D free energy surface, several million QM/MM-MD-time steps
were required. The ML builds on top of the AM results and can
therefore not be done without it, but after having performed many
AM scans the ML comes at negligible additional cost. While the
umbrella sampling is most reliable, it comes at a significantly
higher computational cost, therefore working on the improve-
ment of ML techniques based on reaction path scans may provide
a cost-effective alternative to determine free energy barriers of
extended systems.

5 Conclusions

Through computation of the FEP by means of QM/MM-MD
simulations and subsequent evaluation using MBAR we have
characterized the initial step of the desuccinylation reaction
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catalyzed by SIRTS5. The results indicate that analogously to the
first step of the deacetylation reaction, the NAD" transfer step of
the desuccinylation reaction is of Sy2 type. This suggests that
the differences in the active site, which give rise to varying
substrate specificities within the sirtuin enzyme family, do not
change the reaction mechanism. Therefore, the first of several
desuccinylation reaction steps has now been shown to be
independent of sirtuin specificity. A future study has to identify
the exact mechanism of the remaining reaction steps.

The computation of the FEP (and of the MFEP connecting
reactant and intermediate) allowed us to evaluate the quality of
free energy activation barriers estimated by means of exponen-
tial averaging. It was shown that the previously computed
barrier based on 150 adiabatic mapping pathways underesti-
mated the effective free energy barrier. This calls generally
the reliability of reaction barriers and mechanisms based on
minimal energy paths into question.

Because of the high computing effort of free energy meth-
ods, we are currently still limited to cost-effective methods such
as HF-3c or smaller QM regions. The development of ever faster
QM codes enables the exploration of increasingly complex
system. A complementary approach will be free energy surface
reweighing techniques suitable for extended systems, allowing
us to extrapolate more accurate results from low-level sampling.
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1 Hydrogenbond between Succinyl Group and Argl05 (HB-R1)

The hydrogen bond between the succinyl group and Argl05 located in the active center of SIRT5 changes
its character as the reaction progresses. This is discussed in section 4.1. In Figure S1 the distance
between the oxygen of the succinyl group and the hydrogen as well as the distance between the nitrogen
belonging to Argl05 and the hydrogen are shown. In the reactant state, both are neutrally charged.
During the reaction, the hydrogen becomes more and more associated with the Argl05 residues, which
results in higher charge separation. The cross-over takes place close to the transition state region,
d(C1 = 0) —d(N = C1") = 0.25 A.

2.0
HB-R1 d(O(SLL)-H)
HB-R1 d(H-N(Arg105))

1.8}

1.6}

o<
1.4}F
1.2F

Mo 15 10 05 00 =05 —10 =15 =20

Figure S1: Change of d(O(SLL)-H) and d(H-N(Argl05)),associated with the HB-R1 interaction, during the
progression of first step of the desuccinylation reaction.
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2 Window Placement and Deviation of Umbrella Window Mean
from Bias Potential Minimum Position

The umbrella windows have to be placed so that the space between reactant and product state is seam-
lessly sampled. The simulations were submitted in batches. Therefore, we were able to set our simulation
widows along the becoming more and more apparent MFEP. In addition, several windows were placed
at d(C-N) = 2.5, to unequivocally exclude the alternative SN1-reaction type.

st
~ tle A
2.0 F k"‘/. A 1 X
o<, \ by NN
L =
—25F \ &8
C|> \% - %
o . > . 200
= ~ » B 300
L9 aee—— 400
PN — ~
3.5 = T Bl 500
OO o | A 600
4.0 > TEE— . B 700

d(C1’-N) /A

Figure S2: The origin of each arrow indicates the original window placement, and therefore the center of
each biasing potential d;; . The arrow's color corresponds to the force constant in kJ mol~' A=2. The arrow
head points to the mean d(C1'-0)/d(C1'-N) sampled in each umbrella simulation.

Figure S2 visualizes the deviation of the mean along d(C1’ — N) and d(O — C1’) within each umbrella
window and the minimum of the biasing potential. Windows placed near the high energy transition
state region or in one of the basins (either reactant or intermediate) show very little deviations between
intended window mean (arrow base) and the computed mean (arrow tip). Windows placed in regions,
where the free-energy profile changes rapidly, deviate more strongly even if large force constants have
been used. This is due to the overestimation of the transition barrier energy by HF-3c¢ and corresponding
large forces. In contrast, much lower force constants (160 kJ mol~' A=2) were used by Hu et al. [Hu2008|
for the one-dimensional umbrella simulations (24 umbrella windows) of Sir2Tm, where they employed
B3LYP/6-31G* and calculated a free energy barrier of only 65.8 kJ/mol for the deacetylation.
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Table S 1: List of the exact biasing potential parameters used in the different Umbrella windows. The
equilibrium distances dy are given in A and the force constants in kJ/mol A2

d(CT-0) koo do(CI-N) Fon

1.3 700.0 3.4 700.0
1.3 700.0 3.6 700.0
1.4 300.0 3.1 300.0
1.4 300.0 3.2 300.0
1.4 300.0 3.3 300.0
1.4 300.0 34 300.0
1.4 700.0 3.6 700.0
1.5 600.0 24 600.0
1.5 300.0 2.6 300.0
1.5 700.0 3.6 700.0
1.6 400.0 2.8 400.0
1.7 500.0 2.0 500.0
1.7 500.0 24 500.0
1.7 500.0 2.7 500.0
1.7 600.0 3.0 600.0
17 400.0 3.3 400.0
1.9 500.0 2.1 500.0
1.9 500.0 2.2 500.0
1.9 500.0 2.3 500.0
1.9 500.0 2.5 500.0
1.9 600.0 2.8 600.0
1.9 500.0 3.3 500.0
2.0 600.0 1.7 600.0
2.0 600.0 1.8 600.0
2.0 600.0 1.9 600.0
2.0 500.0 2.0 500.0
2.0 600.0 2.1 600.0
2.0 600.0 2.3 600.0
2.0 500.0 2.5 500.0
2.0 700.0 3.1 700.0
2.0 700.0 3.4 700.0
2.0 700.0 3.7 700.0
2.1 700.0 1.1 700.0
2.1 500.0 2.0 500.0
2.1 600.0 2.2 600.0
2.1 500.0 24 500.0
2.1 600.0 2.8 600.0
2.1 700.0 4.0 700.0
2.2 500.0 1.8 500.0
2.2 600.0 1.9 600.0
2.2 500.0 2.1 500.0
2.2 500.0 2.2 500.0
2.2 500.0 2.3 500.0
2.2 600.0 2.5 600.0
2.3 500.0 1.8 500.0
2.3 500.0 1.9 500.0
2.3 600.0 2.5 600.0

Continued on next page
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Table S1 — Continued from previous page

d(CT-0) koo do(CIN) ken

2.3 600.0 2.8 600.0
24 500.0 14 500.0
2.4 500.0 1.8 500.0
24 600.0 2.0 600.0
2.4 600.0 2.5 600.0
2.5 400.0 1.5 400.0
2.5 500.0 1.9 500.0
2.5 600.0 2.2 600.0
2.5 600.0 2.5 600.0
2.5 700.0 3.0 700.0
2.6 700.0 1.1 700.0
2.6 500.0 1.8 500.0
2.6 600.0 2.0 600.0
2.7 400.0 1.5 400.0
2.7 300.0 1.7 300.0
2.7 600.0 2.3 600.0
2.7 600.0 2.5 600.0
2.8 300.0 1.4 300.0
2.8 600.0 2.6 600.0
2.9 500.0 1.7 500.0
2.9 600.0 1.9 600.0
2.9 600.0 2.5 600.0
3.0 700.0 1.1 700.0
3.0 700.0 1.2 700.0
3.0 200.0 14 200.0
3.0 600.0 1.8 600.0
3.0 700.0 2.0 700.0
3.0 700.0 2.1 700.0
3.0 700.0 2.3 700.0
3.0 700.0 2.5 700.0
3.1 400.0 1.7 700.0
3.1 700.0 2.2 700.0
3.2 200.0 1.6 200.0
3.2 700.0 1.9 700.0
3.2 700.0 2.5 700.0
3.3 700.0 1.2 700.0
3.3 300.0 1.7 500.0
3.3 700.0 2.0 700.0
3.3 700.0 2.1 700.0
3.3 700.0 2.3 700.0
3.4 200.0 14 200.0
3.4 300.0 1.6 400.0
3.4 700.0 1.9 700.0
3.4 600.0 24 600.0
3.5 700.0 1.3 700.0
3.5 700.0 2.3 700.0
3.5 700.0 2.5 700.0
3.6 700.0 1.9 700.0
3.7 700.0 1.7 700.0
3.7 700.0 2.1 700.0

Continued on next page
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Table S1 — Continued from previous page

do(C1-0) kco  do(CI-N)  ken

3.7 700.0 2.4 700.0
3.8 700.0 1.5 700.0
3.8 700.0 2.3 700.0
3.8 700.0 2.5 700.0
4.0 700.0 1.1 700.0
4.0 700.0 1.7 700.0
4.0 700.0 2.0 700.0
4.0 700.0 2.1 700.0
4.0 700.0 2.5 700.0

3 Free energy surface of the initial reaction step catalyzed by

SIRTS5
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kJ mol~!
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Figure S 3: Original free energy surface of the first reaction step catalyzed by SIRT5 calculated with
HF-3c/MM. The minimal free energy path (MFEP) connecting the reactant and intermediate state is shown
in grey. White areas were not visited during the simulations.
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4 Influence of Bin Width and Sample Number

Figure S4: All plots are based on the full data set (data points are 2 fs apart). The bin sizes used for the
surfaces are the same along d(O — C1’) and d(C1’ — N). The sizes are from left to right and top to bottom
0.01 A, 0.05 A, 0075 A and 0.1 A, respectively.

The influence of bin size on the free activation energy as well as the location of the minimal free energy
path connecting the two minima on the surface was tested. Figure S4 indicates that there is no significant
influence.

S7



72

Publication II




Publication III 73

4.3 Publication III:
Fully Automated Generation of Prebiotically Rel-
evant Reaction Networks from Optimized Nanore-
actor Simulations

Alexandra Stan, Beatriz von der Esch, Christian Ochsenfeld
“Fully Automated Generation of Prebiotically Relevant Reaction Networks from

Optimized Nanoreactor Simulations”
J. Chem. Theory Comput. 2022, 18, 6700-6712.

Abstract:

The nanoreactor approach first introduced by the group of T. J. Martinez [Wang et al., Nat.
Chem., 2014, 6, 1044-1048] has recently attracted much attention because of its ability to
accelerate the discovery of reaction pathways. Here, we provide a comprehensive study of
various simulation parameters and present an alternative implementation for the reactivity-
enhancing spherical constraint function, as well as for the detection of reaction events. In
this context, a fully automated post-simulation evaluation procedure based on RDKit and
NetworkX analysis is introduced. The chemical and physical robustness of the procedure is
examined by investigating the reactivity of selected homogeneous systems. The optimized
procedure is applied at the GFN2-xTB level of theory to a system composed of HCN
molecules and argon atoms, acting as a buffer; yielding prebiotically plausible primary
and secondary precursors for the synthesis of RNA. Furthermore, the formose reaction
network is explored leading to numerous sugar precursors. The discovered compounds
reflect experimental findings, however, new synthetic routes and a large collection of exotic,
highly reactive molecules are observed, highlighting the predictive power of the nanoreactor
approach for unraveling the reactive manifold.
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ABSTRACT: The nanoreactor approach first introduced by the
group of Martinez [Wang et al. Nat. Chem. 2014, 6, 1044—1048]
has recently attracted much attention because of its ability to
accelerate the discovery of reaction pathways. Here, we provide a
comprehensive study of various simulation parameters and present
an alternative implementation for the reactivity-enhancing spherical
constraint function, as well as for the detection of reaction events.
In this context, a fully automated postsimulation evaluation
procedure based on RDKit and NetworkX analysis is introduced.
The chemical and physical robustness of the procedure is examined
by investigating the reactivity of selected homogeneous systems.
The optimized procedure is applied at the GFN2-xTB level of

w Ap ¥

theory to a system composed of HCN molecules and argon atoms, acting as a buffer, yielding prebiotically plausible primary and
secondary precursors for the synthesis of RNA. Furthermore, the formose reaction network is explored leading to numerous sugar
precursors. The discovered compounds reflect experimental findings; however, new synthetic routes and a large collection of exotic,
highly reactive molecules are observed, highlighting the predictive power of the nanoreactor approach for unraveling the reactive

manifold.

Bl INTRODUCTION

At the core of chemical research is the deepening of the
understanding of chemical reactions and exploring the
chemical space." Quantum chemistry has so far mainly played
a role in characterizing reactions that were previously
discovered by experiments, taking more of an explaining and
validating rather than an exploratory and discovering role. In
recent years, the computational molecular nanoreactor
approach was introduced by Martinez et al.>* This method
aims to observe novel reactions within reactive ab initio
molecular dynamics (MD) simulations. Therefore, a periodic
external potential is applied to a collection of encapsulated
starting compounds which leads to the contraction and
expansion of the available space. In turn, the probability of
collisions between the atoms is increased, which results in
numerous reaction events.”"*

The original nanoreactor approach, as pioneered by Wang et
al.” to enhance reactivity and explore chemical space, was
applied to several systems: (1) a mixture of HCN and water,”’
(2) a homo%eneous collection of acetylene molecules,” (3) a
Miller—Urey 9 type system (mixture of H,, CH,, H,0, NH,,
and CO),” and (4) for graphene synthesis via detonation at
different oxygen/acetylene ratios.'

Recently, Grimme proposed a nanoreactor approach that
employs metadynamics'' as driving force for reactivity on an
encapsulated system. He applied this to the thermal
decomposition of benzene and ferrocene, ethyne polymer-

© 2022 The Authors. Published by
American Chemical Society

4 ACS Publications

6700

ization, oxidation of cyclohexane, a Miller—Urey type system,
as well as a model system to study the enzymatic oxidation of
testosterone mediated by P450."”

Pieri et al."’ have combined the metadynamics driven
nanoreactor approach with nonadiabatic MD, allowing the
exploration of photochemical processes. Using the non-
adiabatic molecular nanoreactor, they explored the rich excited
state chemistry of benzene and were able to confirm the
existence of previously described conical intersections.

Alternatively, a large collection of heuristically based
methods for the prediction of mono- and bimolecular
reactions, focusing on the discovery of possible transition
states, has been developed throughout the years."*'> First
attempts to explore new mechanisms computationally were
made by reducing the multidimensional problem of finding
transition states to a two-dimensional matrix representation,
which allows to generate intermediates at minimal computa-
tional cost. This approach was implemented by Broadbelt et al.
in NetGen'® and served as a starting point for numerous other
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heuristically based methods, leading to the discovery of new
reactions, for example, the Reaction Mechanism Generator by
Green et al.'”'® Later methods have proceeded to incorporate
more general chemical principles, for example, electron flow in
polar reactions,'® rather than solely encoded elementary steps
for the generation of possible intermediates.

Newer methods aiming to identify transition states and
thereby discover reaction mechanisms rely on automated
exploration of the potential energy surface by performing high-
energy dynamics, as implemented in the TSSCDS routine by
Martinez-Niafiez,”*~>* which has been recently improved,”* or
by applying external forces as in the well-known adaptive force-
induced reaction (AFIR) method®® for bimolecular reactions.
Further developments have been achieved in the Reiher
group”® by discriminating reactive sites based on predefined
reactivity measures derived from the electronic wave function,
which generate high-energy “reaction structures” for further
optimization and IRC calculations.

Furthermore, efforts were made to predict reactions from
databases of published reactions using fingerprint methods
combined with statistical tools, such as machine learning
techniques.27 One of the earliest algorithms, SYNCHEM, was
published in 1990 by Gelernter et al,*® and it is based on a vast
database, created by inductive and deductive generalization
algorithms. Neural networks have also gained attention for the
prediction of possible products, as they can be easily trained
with literature-known data.”*~>* While these approaches
require less computational effort than the dynamic methods
presented before, they rely on vast amount of carefully curated
input data and specialized training.

In the scope of this work, we revise several aspects of the
molecular nanoreactor approach in detail and introduce
alternative implementations for the spherical constraint
function and the postprocessing. The novel postprocessing
provides the user with an automatically generated overview of
all obtained molecular species and their abundance, a reaction
library and network, as well as an illustrative graphical video
description. Furthermore, the introduction of helium and
argon atoms as buffer atoms is considered, and the role of the
used electronic structure method is examined. Here, we
compare the results from RHF/3-21G,** GFN2xTB,**° and
PBEh-3c/def2-mSVP?” simulations. Aiming to provide a
comprehensive overview of the approach and the parameter
selection, the procedure was tested using various homogeneous
systems and is discussed in detail. The optimized procedure is
applied to a simple system containing HCN and argon. Here,
the formation of relevant primary and secondary precursors for
the prebiotic synthesis of RNA*® such as cyanogen and
formamidine is observed. In addition, the formose reaction
network is explored,”*" yielding several postulated com-
pounds, for example, aldoses, as well as other small reactive
species.

B THEORY AND METHODS

Electronic Structure Method. Thousands to millions of
energy and force evaluations are executed during an MD
simulation. Therefore, the chosen ab initio method must be
cost-efficient to enable meaningful, yet achievable time scales.

So far, the nanoreactor simulations, as presented by the
group of Martinez, employed Hartree—Fock (HF) in
combination with small basis sets and GPU-acceleration, as
well as high temperatures to increase the kinetic energy and to
allow for faster sampling.”'* Alternatively, Grimme used his

6701

highly efficient semiempirical tight-binding method,
GFN2-xTB, aiming to optimize the cost-accuracy ratio in
metadynamics-based nanoreactor computations.'

In this work, we performed high-temperature MD
simulations as presented by Wang et al” at the DFT level
using the PBEh-3c/def2-mSVP method and compared the
results with calculations at the RHF/3-21G and GFN2-xTB
levels of theory. The computation of the exact exchange energy
for HF and PBEh-3c was accelerated usin§ the sn-LinK
method, recently introduced by Laqua et al.*' To compare
computation time and assess the quality of results, we have
chosen a series of compounds, namely C,H,, HCN, CO, H,0,
and NHj, and generated homogeneous systems with 156
atoms each.

Initialization Procedure. The initialization of the
molecules within a given spherical radius is important to
ensure optimal spacing and low forces acting on the atoms in
the nanoreactor. Otherwise, convergence problems may be
encountered. Furthermore, the initial configuration influences
the obtained results. We further elaborate on this matter when
discussing our results.

Here, we introduce a novel algorithm for placing a given
amount of specified molecules in a sphere based on mapping
the Fibonacci lattice on the surface of corresponding
subspheres as given by the golden angle.*” The latter is
defined as the angle between two arcs of a circle whose lengths
behave to each other according to the golden ratio. This
means, that the ratio between the length of the smaller arc and
the length of the bigger arc is the same as the ratio between the
length of the bigger arc and the length of the full circle. The
golden angle ¢ is defined as ~137.508° and can be calculated
from the golden ratio ¢ as follows

1
qa—Zn(l—E]—ﬂ(Ii—\/g) W

To avoid crowding, the maximal radius is not given as a
variable but calculated based on the amount of molecules to be
placed and an interspherical distance given by the user for the
subspheres. The interspherical distance corresponds to the
distance between two molecules placed on neighboring
subspheres at the same angular coordinates. The total amount
of molecules to be placed is further divided according to the
Fibonacci series to avoid crowding in the most inner shell with
two molecules being placed on the surface of the smallest
subsphere at the center of the nanoreactor. The molecules are
shuffled prior to placing so that many different configurations
can be generated, and the obtained setup is independent of the
user-specified order. The corresponding algorithm can be
found in the Supporting Information.

Spherical Confinement. A spherical constraint function in
form of an external potential is used to induce the contraction
of the nanoreactor sphere and defines the forces of
confinement in the simulation.

This virtual piston can be represented by a step function as
previously suggested by Wang et al,” who uses a mass-
weighted harmonic potential to generate the forces. The switch
between the large and the small radius of the sphere is given by
a modified Heaviside step function f(t). However, this results
in a harsh transition.

V(?’, t) =f(t)U(7', rmaxl kmax)

+ (1 —f(t))U(V, rmjn’ kmin) (2)

https://doi.org/10.1021/acs.jctc.2c00754
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where

Ut 1, 0 = G = 0 = 1) “

(&) =0 [LJ -

total

_toy e
t, t

otal total

4)

Equation 2 summarizes the rectangular wave potential,” where
r is the radial coordinate of the atom of interest, r,,,, and 7,
are the selected maximal and minimal radius of the
nanoreactor sphere, respectively, and k,,,, and k,;, represent
the chosen force constants for the mass-weighted harmonic
potential to confine the atoms to the corresponding radius. In
the effective harmonic potential U(r,ro,k), ro is either rp,, or
Tmin- The mass-weighting is necessary to ensure equal
acceleration for all atoms at a given radial coordinate r. Even
though this is not a prerequisite for expansion and contraction,
exclusion of the mass-weighting would lead to lighter species
accumulating in the center of the nanoreactor sphere. The
custom Heaviside step function f(t) in eq 4 takes as an
argument a time-dependent expression, which evaluates if the
current time step ¢ belongs to the contraction phase ., or to
the expansion phase f,,. The total period of a contraction—
expansion cycle is given by t..

Here, we introduce an alternative by using a mass-weighted
harmonic potential, which can be combined with a continuous
function that smoothly transitions between the two states. We
introduce this smooth transition as a cosine wave, where the
amplitude controls the radii and f,, defines the period.
However, due to the much smoother transition, the effective
time spent at the two target radii is low compared to the
transition process. Hence, there is less time for reactions to
occur and for subsequent relaxation, which is a disadvantage
with regards to reactivity-enhancement.

k
V(r, ot), k) = = max(0, r — ()P )

where

Tnax — Vi t
1o(t) = fom + ———|1 + cos[—er]
2 Fotal

(6)

Therefore, we propose a further spherical constraint function
which combines smooth transitions, as given by the periodic
cosine function, with the literature-known rectangular wave
potential (eq 2) and therefore exploits the advantages of both
methods. For this purpose, we decided to use a combined sine
and cosine function to provide a smooth transition to the
minimal radius while also allowing the system to stay at this
radius for a longer time than the simple cosine function
presented in eqs 5 and 6. To ensure that the time spent in the
expanded state is longer than in the contracted state, the
symmetry of the function is broken by introducing a cutoft at
Tmaw aS given below and shown in Figure 1.

Vo, 10, K) = Elmax(0, r = n(0)F o

where

t
ro(t) = minfr .+ (. — rmin)sin[g cos[—Zn]], Tonax

total

(8)
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Figure 1. Time evolution of the three implemented types of spherical
constraint functions: (a) rectangular wave function,” (b) cosine wave,
and (c) smooth-step function. In all cases, an external mass-weighted
harmonic potential is imposed upon contraction of the nanoreactor
sphere.

Fragment Recognition. To process the nanoreactor
simulations, the molecular species in each step have to be
defined and isolated. Previously, interatomic distances were
used to distinguish between molecules.”®”!° However,
standard interatomic distances vary greatly between atom
types and hybridization states, as shown in Table 1.

Table 1. Experimentally Determined Standard Bond
Distances Given in A for the Most Frequent Elements in

Organic Systems**
H C N (0] S
H 0.741 1.099 1.012 0.967 1.345
C 1.530 1.484 1.432 1.809
N 1425 1.463 1.710
o) 1.208 1432
S 2.048

This problem has been addressed by Hutchings et al,*
suggesting the use of a bond-order time series. While imposing
a fixed upper threshold on a Mayer bond order time-series,
defined as the mean value of the oscillating time-series, has
proven to not be reliable enough due to high dependence on
the bond type, taking the first derivative of the bond order
time-series provides sharp peaks, based on which reaction
events could be defined.

The measure used to determine which atoms belong to a
fragment should add as little computational cost as possible to
the simulations, while at the same time being ﬁeneral. We
suggest the use of Wiberg bond orders (WBOs)™ instead of

https://doi.org/10.1021/acs.jctc.2c00754
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the initially used covalent interatomic distances as basis for the
fragment identification.

WBOs* are calculated as the sum over the squared
orthonormalized density matrix elements P,, and describe
covalent bonds between atoms

W= 2 P

HEA VEB

)

They represent the most simple type of bond orders described
so far and are a special case of the Mayer bond orders™ (eq
10), which can be computed using nonorthogonalized
matrices, as they directly employ the overlap matrix S.

My =2 Y (PS),(PS),

UEA VEB

(10)

Based on the calculated WBO matrix, the obtained molecules
can then be reconstructed by imposing a minimal threshold to
define a bond. This absolute threshold was chosen as >0.5,
based on the definition that a bond should have a WBO of 1,*
and it does not depend on the bond type. However, cases were
encountered where atoms could not be assigned based on this
definition due to their WBOs not exceeding 0.5 to any other
atom. For these cases, a second condition has been
implemented based on interatomic distance. Herein, first, all
interatomic distances to the unassigned atom are calculated;
then, the standard deviations to the default bond lengths
(given in Table 1) are computed. Based on the lowest standard
deviation, the atom is assigned to a fragment (list of atom
indices). By not employing fixed thresholds for bond lengths
but relative deviations, the procedure remains generally
applicable. The use of bond orders solves the problem of
high-amplitude molecular vibrations, and spurious species” do
not occur in first place, making the use of a Hidden Markov
Model (HMM) in the evaluation procedure superfluous.
Using the Python3 library pandas,**® the gathered
information is stored in a data frame, which is the starting
point for all further analysis. A function, based on the RDKit
module,*” has been developed to compute the SMILES**'
string starting from the stored WBO matrix and the on-the-fly
computed fragments, which are represented by grouped atom
indices. SMILES strings provide information about the
connectivity of the elements and can be easily converted to
chemical sum formulas and molecular structures.*”*" During
this second step of molecule parsing, charges are added based
on predefined valence rules, if necessary. The stored bond
order matrix of the fragment is used to construct a mo1l object,
which then yields a correct SMILES. Therefore, the first step of
grouping atoms into list of atoms representing the found
fragments is making sure that all atoms have been assigned,
while in the second part, the WBOs are used to determine the
presence of covalent or ionic bonds. The RDKit package is
further used to print the molecular structures of the
encountered species on a grid, providing a comprehensive
visual summary and allowing for quick interpretation of the
results. Furthermore, several visual aids are automatically
generated, that is, a continuous bar plot, providing an overview
over the events during the simulation, an automatically
generated video of the trajectory, where species are color-
labeled based on their SMILES, as well as a network for a
detailed analysis of the (new-)found reaction paths.
Reaction Events and Network Construction. To
identify reaction events, only time steps at the end of the
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expansion are considered to allow the molecules to relax after
the contraction has taken place. A reaction is detected if an
atom is assigned to a different SMILES in a consecutive
expansion time step, which is defined as the product time step.

When a reaction event is identified, an iterative procedure
begins used to find all molecules participating in the
transformation. While the cumulative collection of atom
indices of the products is unequal to that of the reactants,
we iterate through all fragments searching for the molecules
containing unmatched atom indices. When a fragment is found
containing a missing index (1) the fragment is added either to
the reactants or products depending on the time step at which
it has been found, (2) the SMILES of the fragment is stored,
and (3) the corresponding set of atom indices is updated. This
search is conducted bidirectionally. The loop stops when all
atoms of both reactants and products have been assigned and a
stoichiometrically correct reaction has been written. Each
identified reaction is considered only at the time step it has first
occurred.

The adjacency matrix for the resulting reaction network is
generated by looking at the obtained SMILES and the
corresponding atoms. Each node represents a unique SMILES.
An edge is defined between two SMILES which have at least
one mutual atom, meaning they are involved in a chemical
transformation. To avoid creating false edges between
molecules based only on mutual atoms, the network is
constructed in a stepwise fashion. )

The reaction network is generated with NetworkX,> and the
underlying information, the full list of reactions, is stored as a
JSON file to allow for further graph analysis. JSON®” is a data
interchange format which provides a facile way to store and
share complex data types across different programing
languages. The nodes of the network are color-coded based
on the time step at which they first occur, allowing us to
retrace the chronology of the events in the simulation.

Introduction of Buffer Atoms. One of the advantages of
the molecular nanoreactor as compared to rule-based and
coordinate-driven exploration methods is its unbiased
sampling, which also allows for the discovery of multimolecular
transition states.* In this way, novel reaction paths have been
reported where numerous molecules concomitantly and
actively participate in a chemical transformation.”’

However, transition states involving more than three
molecules are rather unlikely under physical conditions. To
avoid these nonphysical reactions, we propose adding helium
or argon atoms to the simulation system in small amounts.
These serve as buffer atoms and are expected to be strongly
inert. In addition, they are helpful for assessing the overall
reasonableness of the reactor design: if the inert noble gas
atoms start to considerably participate in reactions, the
imposed forces and parameters are deemed as inadequate to
provide meaningful results that reflect the true chemical
reaction space.

Computational Details. The RHF and DFT calculations
were conducted with the program package FERMIONs++°+%°
and the LibXC library.® The acceleration procedure for
calculating exact exchange sn-LinK*' and the resolution-of-the-
identity for the Coulomb integral (RL J) were used.”” For
DFT, the gm3 grid was employed, and gm2 was used for
sn-LinK. The SCF convergence criterion was defined as the
root mean square (RMS) of the FPS commutator, and it was
set to 107° au. However, it was lowered temporarily for a
maximum of five consecutive steps to 107> a.u. if convergence

https://doi.org/10.1021/acs.jctc.2c00754
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during the MD simulations could not be achieved otherwise.
For the GFN2xTB simulations, our in-house MD engine was
interfaced to the xtb package.”® The SCF convergence
criterion and the electronic temperature were set to default
values, 107 a.u. and 300 K, if not stated otherwise. The
initialization in the nanoreactor sphere was done using
preoptimized molecules at the PBEh-3c/def2-mSVP level of
theory.

Screening and Application Setups. For all parameter tests,
the system consisting of 39 acetylene molecules (156 atoms)
using a rectangular wave spherical constraint (see Figure la)
(Trarget = 2000 K, 7 = 7 ps, kypiy = 0.5 keal mol™ A7, k=
1.0 kcalmol™ A™% 7. =8 A r,. = 14 A t, = 0.5 ps, and texp
= 1.5 ps) was selected as reference, and the given parameters
were varied. GFN2-xTB was used to compute the energies and
forces during the MD simulation to keep the computational
effort at a minimum.

To investigate the differences between the three spherical
constraint functions, results from five simulations with different
initial configurations for each constraint type were averaged. As
a measure of stability, the mean and standard deviation of the
temperature and pressure were assessed. The reactivity was
evaluated both qualitatively in terms of the chemical nature of
the observed species and quantitatively by the number of
unique species obtained on the automatically generated
molecular grid.

To study the effect of different electronic structure methods
on the outcome, calculations were performed using
GFN2-xTB, RHF/3-21G, and PBEh-3c/def-mSVP on simple
homogeneous test systems. As a starting point, the system
consisting of 39 acetylene molecules was chosen. The number
of atoms in the simulations (156 atoms), as well as all settings,
were then kept constant to avoid introducing biases besides the
different electronic structure method and change of spherical
constraints. In addition, further homogeneous systems were
considered, consisting of HCN, CO, H,O, and NH; molecules.

To test the effect of buffer atoms, simulations of HCN with
helium and argon atoms were performed with the smooth-step
spherical constraint and compared to the HCN-only equivalent
(Tiaeget =2000 K, y = 7 ps~', k = 1.0 kecal mol ™' A%, r,,, = 8 A,
Tmax = 14 A, t = 2.0 ps). Different percentages of added helium
and argon atoms, ranging from 5 to 25%, were screened to
determine the optimal amount of buffer atoms for nanoreactor
simulations. The total number of atoms was kept constant to
simulate the same compression degree. To reduce biases
introduced by the initial configuration, all numerical results
were averaged from a total of five simulations each.

Furthermore, simulations of HCN with argon buffer were
performed and analyzed with regards to the presence of
prebiotic primary and secondary RNA precursors. Lastly, the
formose reaction was investigated starting from systems
containing formaldehyde and glycolaldehyde in a ratio of 4:1
and argon buffer atoms.

All tests regarding the effect of buffer atoms, the HCN/Ar,
and formose/Ar applications were performed with GFN2xTB,
along with the smooth-step spherical constraint function and
its optimized parameters. A complete overview on the used
parameters both for the screening and applications systems is
provided in the Supporting Information (Tables S1—S12).

Postprocessing. After conducting the MD simulations, the
trajectories and bond order files were processed automatically,
and a set of visual representations was generated comprising a
grid of the resulting species provided by the MolsToGrid-
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Image function of the RDKit Python3 package, a continuous
bar plot for a first overview of the reaction events, a movie of
the trajectory generated with PyMOL and OpenCV, as well as
an interactive reaction network constructed using NetworkX,
accompanied by a list of reactions using SMILES.

Here, it should be noted that consecutive intermediate
monomolecular transformations were excluded from the
network representation to decongest these and facilitate
evaluation of the results.

B RESULTS AND DISCUSSION

Simulation Parameter Tuning. Previous applications
presented in the literature™”' revealed that the obtained
results and the stability of the nanoreactor simulations heavily
depend on the chosen spherical constraint and employed
settings. Therefore, we provide a systematic study to
investigate these effects.

Langevin Thermostat. To achieve expressive results within
feasible simulation times for the nanoreactor simulations, the
temperature must be kept high to increase reactivity and,
therefore, speed up reaction events. Different target temper-
atures Ty, were tested (500, 1000, 3000, and 4000 K) and
compared to the most frequently used temperature of 2000 K,
while all other parameters were kept as listed above. The
simulations run at 3000 and 4000 K provided the greatest
variety of molecular species, but the temperature and pressure
throughout the simulation revealed that the thermostat was not
able to handle the highly increased kinetic energy after 200 ps,
which resulted in immense fluctuations of both quantities. This
was not observed with lower target temperatures.

Figure 2a shows the obtained number of molecular species
versus simulation temperatures. To avoid distortion of the
results by single outliers, the interquartile range (IQR)
method*® was used before determining the mean and standard
deviation of the temperature. With increasing thermostat
temperature, the number of unique species highly increases
until a saturation is reached, here at about Ty, = 2000 K. A
further increase in temperature leads to the aforementioned
fluctuations and instability of the simulation. The obtained
results with different friction constants and a target temper-
ature of 2000 K are depicted in Figure 2b. As expected, the
friction constant plays an important role in enhancing the
reactivity and the variety of obtained products throughout the
simulation due to increasing the Brownian motion in the
context of the Langevin thermostat. While a higher friction
constant has a positive effect on the reactivity, an increase in
temperature over ~2500 K is unfavorable due to higher
instability of the MD simulation.

From a qualitative point of view, the abundance in the
obtained species switches from macrocycles to long chains
when increasing temperature and from polyunsaturated chain
molecules to increasingly complex aromatic cycles for higher
friction constants.

Spherical Constraint Function. The choice of the
parameters for the spherical confinement plays an important
role for the outcome. This includes selecting appropriate
minimal and maximal radii for the nanoreactor sphere, as well
as adjusting the periodic length for the contraction—expansion
cycles and the strength of the applied force constant(s).

Variation of the radii for the rectangular wave (compare eq
2) revealed that small radii favor (poly-)cyclic molecules, while
there is a tendency for the formation of chain polymers when
the atoms are given more room to propagate. Experimenting

https://doi.org/10.1021/acs.jctc.2c00754
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Figure 2. Effect of the Langevin thermostat parameters, (a) target
temperature Ty (¥ = 7 ps ') and (b) friction constant 7, on the
outcome of computational nanoreactor simulations. For the temper-
ature, shown in dark blue, standard deviations and the arithmetic
mean are given. Target temperatures T of 500, 1000, 2000, 3000,
and 4000 K were tested. For the comparison of the friction constants,
Tiprger Was set to 2000 K. As the friction constant is increased, the
fluctuations of the temperature T throughout the simulations
decrease, and the variety of observed species, shown in orange,
increases. The linear fit between molecular species and the friction
constant has an R* score of 0.98, highlighting this relation. Outliers
have been excluded from the statistical treatment according to the
IQR*® method.

with different time periods for the contraction—expansion
cycles led to the conclusion that longer contraction periods are
favorable for the reactivity, as expected, but the variety of
obtained molecular species decreases for the same total
simulation time, which in turn leads to the discovery of
fewer reactions at same computational cost. In addition, we
found that the expansion should last longer than the
contraction to allow for the molecules to relax.

Finally, the influence of the force constant of the external
harmonic potential was investigated, and here, the behavior of
both temperature and pressure was analyzed as an indicator of
simulation stability. The results are depicted in Figure 3, where
contraction periods are underlined in light blue. An increase in
the standard deviation due to more fluctuations in both
temperature and pressure when choosing higher force
constants was found. The bottom subplot in both figures
indicates no advantage to choosing different k., and k,,, for
the rectangular wave constraint. Significant peaks in temper-
ature and pressure were observed during contraction periods
regardless of the employed setting.

Therefore, our goal was to introduce a milder function for
the spherical confinement, which should provide similar
results, while also reducing the number of necessary
parameters. Besides the rectangular wave, here, a pure cosine
function was tested, which led to rather poor results as the
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system only briefly visits the contracted state, and thereby, the
reactivity is tremendously decreased. As a consequence, we
sought to combine the smooth behavior of the cosine function
with longer times spent in the contracted state. This goal has
been achieved in the form of the sine of a cosine function
presented in eqs 7 and 8.

As shown in Figure 4, the obtained number of distinct
molecular species highly decreases when using the cosine wave
constraint. The rectangular wave function and the newly
introduced smooth-step constraint provide the same variety in
terms of obtained species, but the latter exhibits less
fluctuations in the measured pressure, which is because of
the milder switch between the expanded and contracted state
of the sphere. This in turn leads to more reproducible
simulations and increased stability. Therefore, the smooth-step
mass-weighted function represents a good alternative for
performing nanoreactor simulations of reasonable length
under milder conditions.

It should be further noted that there is a dependency of the
simulation outcome on the starting geometry. This can be
evaluated in terms of the obtained amount of unique species
on the grid. For the simulations carried out to assess the role of
the spherical constraint used to plot Figure 4, fluctuations
ranging between —75 and +64% from the presented mean
number of species were observed. Therefore, it is recom-
mended to use several simulations with different initial
configurations for applications.

Comparison of Electronic Structure Methods. In the
following, we investigate the influence of different levels of
theory for producing a meaningful nanoreactor simulation and
to avoid accumulation of nonphysical molecular structures
while maintaining the computational cost on a reasonable
scale.

All simulations were performed with the three available
options for the spherical confinement. An initial configuration
was generated for each system and used in all simulations of
this species to assess the effect of the chosen electronic
structure alone, while avoiding any deviations that might result
from varying initial arrangements. The relative number of
obtained species to the simulation length for each setup is
summarized in Table 2.

For the acetylene systems, most distinct species were
obtained for the cosine and rectangular wave constraint
using PBEh-3¢/def2-mSVP, while in the case of the smooth-
step function, GFN2-xTB performed best. However, in the
case of RHF/3-21G and PBEh-3c/def2-mSVP, mostly small
cycles with little experimental relevance could be identified,
which was not the case for GEN2-xTB, where a great variety of
polymers and complex structures were found. Overall, for
acetylene, most species were observed using the smooth-step
function for confinement and GFN2-xTB, while out of a
qualitative point of view, all constraints delivered a variety of
polymerization products and (condensed) cyclic molecules,
among which ethylene, unsaturated cyclobutane derivatives,
along with cyclohexene derivatives, and allenes could be
identified. The H,0 and NH; simulations were completely
inert lacking even proton transfers. However, the ability of
GFN2xTB for describing proton transfers in this context was
tested and confirmed through further simulations containing
protonated water and ammonia molecules besides their
uncharged counterparts. Against chemical intuition, the CO
systems exhibited the greatest reactivity out of all tested
homogeneous collections when described using GFN2-xTB. A

https://doi.org/10.1021/acs.jctc.2c00754
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Figure 3. Fluctuations of temperature () and pressure (b) in the first 10 ps of a nanoreactor simulation using the rectangular wave function
employing different force constants for the harmonic potentials, confining the system to the minimum and maximum radii (T, = 2000 K and y =
7 ps™'). The means are shown by a dashed line, and the standard deviations are indicated by the areas shaded in orange. The areas shaded in light
blue represent contraction phases. All force constants are given in kcal mol™ A™%
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Figure 4. Behavior of temperature and pressure in acetylene
simulations using the three different spherical constraints: rectangular
wave in olive, cosine wave in grey, and the smooth-step function in
orange. The mean and standard deviation are shown as a function of
the used spherical constraint and obtained mean number of molecular
species. All shown values have been obtained as a mean from five
simulations with different initial configurations ( Targer = 2000 K,y =7
S in = Kimax = 1.0 keal mol™ A™% r = 8 A, and 1, = 14 A).
Outliers have been excluded from the statistical treatment according
to the IQR*® method.

Table 2. Number of Molecular Species per 100 ps
Simulation Time for Homogeneous Systems of Acetylene,
Cyanhydric Acid, Carbon Monoxide, Water, and Ammonia
Using Different Functions for Spherical Confinement and
Varying the Electronic Structure Method”

# distinct species/100 ps C,H, HCN CcO H,0 NH;
Cosine Wave
GFN2-xTB 29 SS 79 0 0
RHF/3-21G 30 2 3 2 4
PBEh-3c/def2-mSVP 39 29 3 3 2
Rectangular Wave
GFN2-xTB 24 150 37 0 0
RHF/3-21G 15 2 23 3 1
PBEh-3c/def2-mSVP 34 21 13 6 2
Smooth-Step Function
GFN2-xTB 59 96 85 0 0
RHF/3-21G 4 3 2 2 4
PBEh-3c/def2-mSVP 38 8 7 3 2

“A relative representation was chosen for better comparison due to
different simulation lengths. Absolute numbers are given in Table S13.
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great variety of unexpected polymerization products and cyclic
species were isolated which points to a poor description of the
electronic structure of the CO molecule at this level of theory.
The cyanhydric acid simulations were evaluated with respect to
possible primary and secondary RNA precursors. Here,
GFN2-xTB performed best as complex reaction networks
leading to heterocyclic species, as well as to prebiotic
precursors, were formed.

In contrast, the simulations run with RHF/3-21G and
PBEh-3c/def2-mSVP were overall less reactive, while the
computational effort was 10—20 times higher. However, using
these two methods, proton transfers were observed for the
simulations containing H,O and NH; along with a few
dimerization reactions in contrast to the GFN2-xTB
simulations where such processes had to be confirmed through
the specially designed setups mentioned above. In the context
of reaction path discovery for the C,H, and HCN systems,
both RHF/3-21G and PBEh-3¢/def2-mSVP failed to provide
the same compound and reaction variety in the given
simulation time as the semi-empirical method GFN2-xTB
especially out of a qualitative point of view. The results
obtained with the aforementioned methods include mainly
isomers of reactive small molecules (3-rings) rather than the
formation of novel, larger, and stable compounds.

While GFN2-xTB resulted in promising results for the
reactive systems and confirmed the low reactivity of the water
and ammonia arrangements, it failed to describe the electronic
structure of the CO molecules correctly resulting in very
improbable species. Performing the simulation at higher levels
of theory using RHF/3-21G and PBEh-3c/def2-mSVP proved
to be much more sensitive to the used parameters and
decreased the variety in the obtained molecular species and the
reactivity while also increasing the total computational effort.
To compensate for the low reactivity, longer time scales are
required to obtain meaningful results using the given settings.

By design, Fermi smearing® is used in GFN2-xTB.*’
Because in the existing literature, Fermi smearing (see refs 2
and 7) was not used reportedly for RHF in nanoreactor
simulations, the same setting was chosen here, both for RHF
and PBEh-3c. We expect, that the use of thermal smearing
could greatly impact the results obtained with RHF and PBEh-
3c. Therefore, we plan to investigate Fermi smearing and
further settings, as well as perform a more in depth analysis of
the role of the electronic structure method in a future work.

Introducing Buffer Atoms. To circumvent nonphysical
reactions with a large number of simultaneously reacting
molecules, the addition of buffer atoms to the setup was
considered. For this purpose, HCN systems were used as basis,
keeping the number of atoms of interest (H, C, and N in this
case) constant, in order to qualitatively compare the results.

The simulations containing more than 15% added buffer
atoms were not successful due to increased effective
compression on the system. As buffer atoms, helium and
argon were compared in terms of obtained species and degree
of inertness. Helium buffer simulations yielded smaller
products than the corresponding systems containing argon
atoms regardless of the used amount of buffer atoms. Helium
also displayed higher reactivity yielding nonphysical species
such as helium-substituted ammonia when the amount of
buffer is increased. As we did not employ mass repartitioning,
this could be an effect of the much lower mass of helium
compared to argon.
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Simulations containing argon resulted in promising molec-
ular species, for example, cyanogen, methane, acetylene, and
methyl amine, regardless of the buffer concentration. By
increasing the amount of argon, the resulting species
qualitatively shifted, from mainly acyclic polymers to relevant
N-heterocycles while the stability of the simulations decreased.
Therefore, 10% of added argon atoms were found to be a good
compromise between reactivity and stability.

After having determined the suitable parameters for
employing buffer atoms, the effect of argon on the resulting
reactions was assessed. For this, the obtained chemical
transformations were categorized in monomolecular, bimolec-
ular, and termolecular reactions (Figure S). Buffer atoms

71.3

with Buffer

w/o Buffer

Figure S. Obtained number of mono- and multimolecular reactions
for a HCN system with and without argon buffer. The buffer-
containing simulations were run with 50 HCN molecules and 15
argon atoms, this being equivalent to 10% of added buffer. To
simulate the same compression degree, the simulations without buffer
were run with 55 HCN molecules. All numbers were averaged from
five simulations each. The different colors correspond to different
amounts of reactants in the observed reactions.

slightly decrease the number of monomolecular trans-
formations, such as isomerizations, while also increasing the
occurrence of reactions of interest, such as bi- and termolecular
reactions, which are relevant for reaction path discovery.

Reactions with more than three participating molecules were
summarized in the green bar in Figure S. The obtained slightly
higher number of such reactions is an effect of summarizing
over all subcategories, where each type occurred with lower
probability than the ternary reactions. Furthermore, the
property of the computational nanoreactor method to support
the occurrence of multimolecular reactions has been observed
in previous studies™” and could be attributed to the extreme
conditions employed, as well as to the formation of
preassociated complexes.

On the basis of the HCN/Ar simulations presented above,
we have quantified the amount of reactions per unit of
computing power, where the computing power was defined as
the total wall time needed for all simulations steps in seconds.
Here, very similar results were obtained with and without
argon buffer, with a mean of 1.00 X 107* reactions per second
for the setups without buffer and 1.21 X 10™* when employing
10% added argon buffer. By keeping the percentage of buffer
atoms low, the minimal rise in required computing time per
time step (using a minimal basis) is overcompensated by the
advantages regarding the type and quantity of reactions
observed within the same total simulation time.

These findings suggest that the usefulness of the results from
the nanoreactor approach can be improved by the addition of a
small amount of argon buffer.

https://doi.org/10.1021/acs.jctc.2c00754
J. Chem. Theory Comput. 2022, 18, 6700—6712



4.3 Publication III

83

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

Figure 6. Obtained reaction networks for the different initial configurations of the reactants. On average, 9 novel molecules were detected every
100 ps. The first network (far left) was obtained from a 243 ps simulation, while the other five were constructed from 750 ps simulations. Each
node represents a molecular species colored based on the time step where it first occurred. Early time steps have red hues, while late time steps are
represented by blue tones. Edges encode molecular transformations and are colored according to the starting node. Consecutive intermediate
monomolecular transformations were excluded from the networks. An enlarged view along with the corresponding molecular structures is provided

in the Supporting Information.
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Figure 7. Overview of relevant molecular species obtained from six formose reaction network simulations starting from formaldehyde and
glycolaldehyde at a ratio of 4:1 and 5% of added argon atoms. Feedstock compounds are highlighted in green, while obtained aldoses are colored in
orange. The depicted reaction paths to the aldotrioses and aldotetroses were extracted as such from the generated networks. Side products of the

formose reaction network are depicted in dark blue.

Formose Reaction Network. The self-catalyzing formose
reaction network suggested as source for ribose and other
sugars in prebiotic chemistry®”*® was investigated using the
computational nanoreactor. In the setup, argon buffer atoms
were included, and the newly introduced smooth-step spherical
constraint and postprocessing procedure were used. To
account for the statistical nature and the reported dependency
on the initialization of the nanoreactor, the results were
acquired by six simulations with distinct starting config-
urations.

The simulations, AsForml to AsForm6, starting from a
mixture of formaldehyde (1) and glycolaldehyde (2) at a ratio
of 4:1 and 5% of added argon atoms provided a great variety of
prebiotically relevant compounds, including aldoses of various
chain lengths and several small organic molecules. While
AsForm1 had an MD simulation length of 243 ps, 750 ps were
chosen for AsForm2 to AsFormé. Even though the formose
reaction is known to require basic catalysis, the presented
results have been obtained under neutral conditions as
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addition of catalytic amounts of OH™ ions has highly decreased
the stability of the simulations. Here, the extreme conditions
employed in the simulations are expected to initialize the
reaction network without the basic ions present. The lack of
basic catalysis also has the advantage that the Cannizzaro
reaction is not favored, which is an undesired side reaction in
experimental setups of the formose reaction. The obtained
number of species in the network varied from 22 to 81 with a
mean of 9 novel molecules detected every 100 ps (see Figure
6). On average, 56 events, that is, unique reactions, were
identified.

From the multitude of obtained organic species, important
prebiotic compounds, which were observed to be highly
reactive, such as water (3), carbon dioxide (4), carbon
monoxide (5), and hydrogen (6) were selected. The structural
variety of the found species was broad, ranging from alkanes, of
which methane (7) and ethane (8) were most abundant, to
alcohols 9 to 12 and carboxylic acids 13 to 15. Several known
side products of the formose reaction were found, among

https://doi.org/10.1021/acs.jctc.2c00754
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which the Cannizzaro reaction products of reactants 1 and 2,
that is, methanol (9) and glycol (11) along with the
corresponding carboxylic acid components, formic acid (13)
and glycolic acid (15), were present (Figure 7).

Furthermore, small carbonyl compounds 16 to 19 were
encountered, of which acetone (16) and acetaldehyde (18) are
important molecules bearing structural information needed for
aldol reactions. Also, dicarbonyl compounds such as 2-
oxopropanal (19), which can form through f-elimination
from glyceraldehyde isomers, were isolated. Here, 19 was
formed through addition of a CO molecule to a previously
formed acetaldehyde.

(Un)substituted oxiranes 20 to 22 along with carbonates
and their derivatives 23 and 24 played an important role in
terms of reactivity. Vinylidene carbonate (23) is known to
undergo polymerization. Several polymeric addition products
were seen to support the synthesis of intermediates on the way
to aldoses of different length. Glyceraldehyde (25) was
obtained by aldol addition from formaldehyde to glycolalde-
hyde. It further isomerized to dihydroxyacetone (26).
Aldotetrose 27 and erythrulose (28) formed directly from
the initial compounds as postulated.*® Only precursors of
aldopentoses such as 2,3-hydroxypentanedial (29) could be
found. The enol form of this compound bears a reactive double
bond prone to addition of water under acidic conditions
resulting in ribose. Aldohexoses were missing altogether, which
was in accord with experimental findings, as aldohexoses are
known to form only in very small amounts as part of the
formose reaction network.*® Nevertheless, we expect further
aldopentoses and small amounts of aldohexoses to form at
longer time scales and with varying ratios of the initial
reactants.

HCN Reaction Networks. The ribonucleic acid (RNA)
first hypothesis is supported by the vast presence of RNA
cofactors and catalysts in the present biosphere, implying that
on the early Earth, genetic evolution started with this molecule.
Therefore, abiotic pathways to the components of RNA are
needed.”
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Starting from our parameter tests with homogeneous
systems, we have performed further simulations of HCN
(30) with argon buffer assuming a very simple model of a
reductive atmosphere, and evaluated them focusing on the
presence of primary and secondary RNA precursors, as well as
nucleobase scaffolds. The simulation lengths of ASHCNI to
ASHCNS ranged from 109 to 250 ps (see Table S11 for
further details). The results were collected from a total of five
simulations performed with different initial configurations. The
obtained number of molecular species in the networks varied
between 126 and 210 with a mean of 100 species found every
100 ps. The expected isomerization of cyanhydric acid to
isocyanhydric acid (31) was observed, which opened up new
reaction avenues.

Figure 8 contains selected compounds, which have been
previously suggested to have played an important role as
primary and secondary precursors in the synthesis of RNA
components*® and have here also been observed successfully in
silico using the computational nanoreactor approach.

From the known primary RNA precursors,” all compounds
lacking oxygen were retrieved from the simulations. Here, great
amounts of cyanogen (32) and cyanamide (33) formed along
with its isomer carbodiimide (34) and catalytically active
molecules such as H, (6), N, (35), and NHj, (36). All reaction
paths first led from HCN to polymeric structures such as 37,
which underwent subsequent fragmentation to the presented
precursors or cyclization to various highly reactive compounds,
such as 1,3,5-triazine (38) or imidazole (39) and correspond-
ing derivatives 40 and 41. Small amounts of cyanoacetylene
(42) were also retrieved. Secondary RNA precursors, which
form through reduction from the primary precursors,” were
detected, among which formamidine (43), usually a product of
ammonia and 33, is to be mentioned.

Purine and pyrimidine scaffolds could not be detected as
such due to the unfavorable ratio between carbon, nitrogen,
and hydrogen. Adenine, being the only nucleobase lacking
oxygen and therefore an expected product in experimental
setups, was not obtained in the performed simulations.
However, isomers of adenine (C;HgNs) were present and

https://doi.org/10.1021/acs.jctc.2c00754
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formed both directly in a more concerted fashion and through
multistep processes with stable intermediates starting from
HCN. Compound 44 consisting of a 4H-imidazole and a 1,2,4-
triazole group was obtained through charged intermediates
from five molecules of HCN. The great reactivity of triazole
could potentially lead to a ring opening with subsequent
isomerization to adenine. Diazete (45) also played an
important role in the formation of C;HiNj scaffolds as an
intermediate which further reacts with HCN to yield the
substituted 6-ring triazole 46. This reactive compound
undergoes two rearrangements, first to the linear conjugated
structure 37 and second to compound 47. The latter provides
the right conformational setup for a further potential
isomerization to adenine.

Bl CONCLUSIONS

The objective of this work was to provide a thorough
discussion of the nanoreactor approach, which allows the
automated exploration of reaction space given a feedstock of
starting materials. We investigated several different spherical
constraint functions and tuned the respective parameters by
monitoring the quantitative and qualitative effects on the
resulting productivity of the nanoreactor simulations and their
stability. Furthermore, the use of buffer atoms was introduced,
which led to a slightly improved number of relevant bi- and
termolecular reactions, while the monomolecular transforma-
tions were reduced. The inertness exhibited by the buffer
atoms during the simulation was also assessed as an indicator
for the suitability of the chosen parameters. The quantitative
comparisons were enabled by our fully automated evaluation
procedure, which provides us with a list of all occurring
reaction events and an overview of the newly found
compounds as well as their abundance. The postprocessing
foots on the connectivity matrices built using Wiberg bond
orders calculated throughout the simulations, which are then
translated into molecules with the Python3 library RDKit. This
initial reduction in dimensionality from 3D to 1D enables the
construction of corresponding reaction networks and list of
reactions, while the 3D information is preserved and stored in
the trajectory.

Further, we applied the optimized approach at the
GFN2xTB level of theory to homogeneous HCN systems,
where the formation of prebiotically relevant primary and
secondary RNA precursors, such as cyanogen, cyanamide,
formamidine, and isomers of adenine were observed. In
addition, simulations were carried out starting from form-
aldehyde and glycolaldehyde in a ratio of 4:1 aiming to
reproduce the formose reaction network. Here, reaction paths
to aldotrioses and aldotetroses could be determined, and
precursors of aldopentoses were identified. Furthermore, side
products such as dicarboxyl species and Cannizzaro reaction
products were present.

In the future, we aim to further optimize the found reaction
paths in order to add kinetic information based on free-energy
simulations to the constructed reaction networks and develop
an automated pipeline connecting the two parts of the
nanoreactor procedure.
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