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Summary 
 
 

This thesis examines the functional architecture of the preattentive stage 
that precedes the deployment of selective attention within a visuo-tactile search 
paradigm. By combining the empirical evidence from visual and crossmodal 
search, it proposes a “modality-weighting account” (MWA) for crossmodal search 
that extends the “dimension-weighting account” (DWA) from visual search. To 
answer the main research question of whether multisensory attentional resources 
derive from a common or separate pool(s), two electrophysiological markers for 
visual and tactile attention (PCN & CCN) are analyzed regarding modality-
specific and supramodal mechanisms. 

Chapter 1 (General Introduction) gives an in-depth overview of the scientific 
background and the evolution of empirical concepts in visual and crossmodal 
search. In visual search, selective attention is guided by the most salient or 
relevant activation of the “priority map”, which reflects the weighted integration 
of independent analyzers or dimensions (e.g., color or shape) and their distinct 
feature activations (e.g., a red circle among blue circles). While this preattentive 
hierarchy, i.e., the DWA, has often been confirmed in visual search, empirical 
evaluation of a similar crossmodal concept is missing. A testable scientific 
framework is presented based on comparable empirical evidence showing 
performance benefits for redundant combinations and substantial switch costs 
across visual dimensions and sensory modalities. While the preattentive levels of 
dimensions and modalities should be the same in the multisensory DWA (null 
hypothesis), the MWA assumes a functional dissociation between them and 
proposes a “supramodal priority map” (research hypothesis). Also, the electro- 
physiological evidence for preattentive processes, multisensory integration, as 
well as visual and tactile attention is presented. Further, the visual PCN and 
tactile CCN components are introduced, reflecting spatial filtering and the 
outcome of preattentive computations. Based on the five factors of attention, a set 
of superordinate research questions for the visuo-tactile paradigm is derived that 
can be analyzed in combination with EEG recordings.  

Chapter 2 (Redundancy Gains) provides strong evidence for the MWA by 
showing significantly higher redundancy gains, i.e., accelerated performances and 
PCN onsets and increased PCN amplitudes, for crossmodal but not visual 
redundancies. Also, the study reveals a consistent pattern for preattentive 
coactivations. While the CCN reflects a stable somatosensory component for 
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tactile target attention (modality-specific), the PCN is adaptive to visual and 
crossmodal information and a good predictor for behavior. 

Chapter 3 (Spatial Attention) extends the insights on redundancy gains by 
analyzing their spatial properties, i.e., comparing the slopes from quadratic 
fitting. Here, vision and touch can be described by two distinct spatial functions: 
external quadratic or egocentric flat. While visual redundancies remained within 
their spatial (focal and peripheral) limits, crossmodal redundancies exceeded 
them, revealing crossmodal bending in spatial attention (favors MWA). Although 
the PCN was generally amplified for crossmodal redundant targets (supramodal), 
their quadratic slope was unaffected (modality-specific). Finally, an eigenvector 
model for spatial properties is discussed. 

Chapter 4 (Intertrial Effects) examines the hierarchy of switch costs, which 
are substantially higher between modalities than (visual) dimensions (favors 
MWA). Here, the reaction time delay for modality shifts (e.g., vision → touch) was 
accompanied by reduced amplitudes in PCN and CCN. This finding indicates a 
supramodal mechanism for attentional resources distributed across sensory 
modalities. Also, a decay function across multiple successive trials and a visual 
bias that promotes location shifts are presented.  

Chapter 5 (General Discussion) combines and discusses the various findings. 
Based on the evidence, the MWA reflects the suitable preattentive hierarchy for 
crossmodal attention, confirming the central claim. Furthermore, a “supramodal 
priority network” is proposed that prioritizes relevant features and spatial 
locations across sensory modalities by activating distinct network branches and 
nodes. Finally, a novel “Dynamic Search” paradigm is briefly introduced that is 
suitable to investigate the follow-up questions and likewise deals with the 
challenges of attention research. 
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Searching for answers, 
The questions, they sprout. 

Thou art humble! 
 
  



4   General Introduction 

 
 

The world we live in is complex. We must constantly adapt and update our 
beliefs and knowledge to find our way around it. This necessity to evolve applies 
to us as humans as well as science. In science, gathering accurate information to 
draw the correct conclusions is essential; likewise, every scientific journey starts 
with an open question. Although “everyone knows what attention is” (James, 
1890), this thesis wants to learn more about the specific preattentive architecture 
preceding selective attention that integrates sensory information across multiple 
modalities (e.g., vision, sound or touch), which is known as crossmodal search. 
First and foremost, the main question wants to know whether crossmodal 
attention derives from “common or separate pools of selective attention” (cf. 
Miller, 1982; Töllner et al., 2009), i.e., do we have common attentional resources 
across sensory modalities, or is there, for example, a particular visual attention 
or tactile attention each with its unique capacities?  

To answer this rather global and abstract attention research question, it is 
essential to obtain an empirical framework of (crossmodal) selective attention 
based on its attributes, factors, previous theories, and research background. From 
that, a set of concise empirical hypotheses is derived, enabling to answer (or at 
least approach) the main question from various perspectives by combining 
evidence from behavior and neural dynamics in EEG recordings. 

 

Origins of Selective Attention 
 
 Although attention appears ubiquitous, in the elder philosophy, there is 

often no explicit term for attention; it is either unconditionally assumed or simply 
neglected. Nevertheless, attention seems inevitable regarding higher cognitions 
such as consciousness or reasoning. Notably, there appears to be a pattern of 
philosophers like Descartes and Hegel to assume an ‘immediate connection' of 
sensory perception to our conscious experience and reflections. Likewise, other 
philosophers like Aristotle and Kant endeavor to understand our mind and soul 
by sets of a priori categories, where the mixture of substance, quantity, quality, 
and relations enable our sensory experiences, presumably including attention. 
Another immanent concept of attention can be found in Heidegger’s ‘being-in-the-
world’, which bundles a limited section of the ‘worldliness’ into our existence, 
revealing core attributes of attention like selection and limitation. These thoughts 
on attention throughout philosophy are very scarce and merely reflect an opener 
to shift the focus to experimental psychology and the obtained evidence from 
many empirical studies, which detached from philosophy during the late 
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nineteenth century. Finally, by overcoming behaviorism and plain schemes of 
perception and action (e.g., Berlyne, 1951), attention research prospered from the 
paradigm shift of the cognitive revolution in the mid-twentieth century (e.g., 
Neisser, 1967) by focusing on the internal and neural processes in-between our 
perceptions and actions. 

 Still, attention appears closely linked but different to higher cognitions 
and consciousness (Dehaene, 2014; Dehaene & Naccache, 2001; Edelman & 
Tononi, 2001; Eimer & Grubert, 2015; Koch & Tsuchiya, 2007, 2012; Posner, 1994; 
Woodman et al., 2007), “attention is necessary, but not sufficient for awareness” 
(M. A. Cohen et al., 2012). It is commonly agreed that attention reflects a 
transient phenomenon that occurs in-between our perception and awareness, 
activating its own resources within specific attention networks in our brain 
(Corbetta & Shulman, 2002; Gross et al., 2004; Posner & Dehaene, 1994; Posner 
& Petersen, 1990; Walz et al., 2014; Woodman & Luck, 2003). In a famous 
experiment about ‘inattentional blindness’ (Simons, 2000; Simons & Chabris, 
1999), participants were instructed to count the dribbling of a basketball of one 
team. Fascinatingly, they overwhelmingly failed to recognize the wandering 
gorilla in plain sight while focusing on the task, revealing an unequivocal 
dissociation between perception and awareness. 

 Since the late 1950s, attention research focused on two major questions 
about attentional selection: 1) the timing (early vs. late) and 2) the type of process 
(parallel vs. serial) (Allport, 1971; Broadbent, 1958; Deutsch & Deutsch, 1963; 
Kahneman, 1973; LaBerge, 1973b). Generally, our brain functions are a sequence 
of cognitive stages, or so-called brain states, which alternate systematically over 
temporal snapshots; similar to throwing a ball from person to person, information 
is passed across various brain states (e.g., McClelland, 1979; Pashler, 1997). In 
our case, it is assumed that attention follows perception and takes over from it. 
Hence, the when of this transition is of key importance, i.e., the temporal locus of 
selective attention. While late selection only occurs when the integration of 
perceptual information is completed fully, early selection interrupts those 
perceptual processes by selecting relevant information and concurrently 
neglecting irrelevant information, leaving them unprocessed. This debate on early 
vs. late selection spanned several decades, adding empirical evidence for selective 
attention being either late and passive, waiting for the ball or perceptual 
information, or reaching actively for this ball from early on. Another perspective 
on this debate came from the ‘perceptual load theory’ (cf. Lavie, 1995), which 
argues that early or late selection depends on the perceptual load of the 
experimental paradigm. In a series of experiments with target letters in visual 
displays, Lavie (1995) manipulated the set size, the distance and compatibility of 
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distractors, and the task itself, e.g., by adding go/no-go conditions of combined 
colors and shapes. Evidence for both early and late selection models was found 
depending on the perceptual load of visual displays and tasks, leading to a truce 
in the debate. 

 Alongside the timing of selective attention, another debate ignited on 
whether perceptual integration and attentional selection occur in a parallel or 
serial fashion (Allport, 1971; LaBerge, 1973b). Overall, targets within visual 
displays are composed of distinct features, which activate independent visual 
analyzers or so-called dimensions; for example, a green square or a left-tilted bar 
contains primary information about colors and forms or orientation and forms, 
respectively (Allport, 1971; Treisman, 1969). Generally, selective attention 
reflects a filter, bottleneck, or spotlight (Broadbent, 1958; Duncan, 1980; LaBerge, 
1983; Treisman et al., 1983). Hence, both processes can be encountered during the 
preattentive stage, a fast, automatic, and parallel activation of independent visual 
analyzers and a slow, controlled, and serial combination of those activations, 
enabling attentional selection. This conceptualization has been summarized in 
the two-process theory (Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977) 
and the two-stage model of Guided Search (Wolfe, 1994; Wolfe et al., 1989). 

 Despite this brief overview of the origins of attention research, those 
original questions will be reencountered in some form or another during the quest 
to derive a suitable empirical framework and preattentive hierarchy for 
crossmodal search.  

  
Attributes of Attention 

 
So far, attention seems ubiquitous as it reflects the gateway between 

perception and action, but also higher cognitive functions, e.g., working memory 
(Baddeley, 1992). Yet, attention is a transient state, which has given researchers 
scientific impetus over many decades. Commonly, three attributes describe 
attention in more detail. First, attention is selective, as it acts like a filter, 
prioritizing some information while blocking other information (e.g., Broadbent, 
1958; James, 1890). Second, attention is limited, a process with limited-capacity 
resources, often described as a bottleneck (e.g., Lavie, 1995; Neisser, 1967; 
Treisman, 1969). Like a prism retrieving a section of the light spectrum, attention 
selects a fraction of the vast sensory perception (s. Figure 1–1). Third, attention 
is dynamic; it reflects an emergent process over time, e.g., by attending 
sequentially to several spatial locations or objects (e.g., Logan, 1996; Vecera & 
Farah, 1994; Wolfe, 1994). These three attributes of attention make it much easier 
to develop empirical research questions. For example, how can we systematically 
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manipulate the prioritization of visual targets? Is there a cost function of selective 
attention that indicates limited resources? Are there distinct spatial functions for 
visual and tactile attention? 

 
Five Factors of Attention 

 
 Before presenting the empirical framework of crossmodal attention, the 

understanding of selective attention must be revised. To begin with, it is 
necessary to summarize the various perspectives on attention, deriving five 
distinct factors or entrance hubs that enable empirical examination (e.g., Logan, 
1996; Treisman, 1969; Wolfe et al., 1989; Wolfe & Horowitz, 2017). 

So far, selective attention primarily relied on sensory perception (e.g., vision) 
and its functional integration (for a good reason). Naturally, our senses, or 
windows to the world, rely on attention to process relevant information from 
external sources. This type and direction of processing is often called a ‘bottom-
up’ process, as it originates from perceptual information. During this ‘bottom-up’ 
stream, selective attention is captured by the most salient information, e.g., 
seeing a red traffic light or hearing the sound of sirens. Saliency stands out from 
the surroundings; it describes a contrast within visual scenes or displays and 
enables us to listen to a specific voice in a noisy room during a cocktail party. 
Overall, ‘bottom-up’ saliency or prioritization combines different aspects; it can be 
object-based, location-based, or discrimination-based (Allport, 1971; Duncan, 
1984; Logan, 1996; Vecera & Farah, 1994). While objects and locations can be 
considered independent factors (Logan, 1996; Maljkovic & Nakayama, 1994, 1996; 
Vecera & Farah, 1994), discrimination or saliency derives from their combined 
computation. Although object recognition and spatial decoding are commonly 
active during visual encoding, e.g., during feature-binding (Mangun, 1995; 
Treisman & Gelade, 1980), they appear coarsely separated in the visual cortex 
across the ventral stream (what) and dorsal stream (where), respectively (DeYoe 
& Van Essen, 1988; Goodale & Milner, 1992; Grill-Spector & Malach, 2004; Konen 
& Kastner, 2008; McIntosh et al., 1994; Mishkin et al., 1983). This neuro-
anatomical dissociation for objects and locations originates from V1 and 
propagates parallel to the inferior temporal or posterior parietal lobe in a bottom-
up, stimulus-driven, or feedforward manner. Conversely, both streams share 
reciprocal connections or combined activations across the inferior parietal lobe 
(IPL) and visual areas, e.g., V4, MT/V5 (Hayden & Gallant, 2005; Milner, 2017; 
Singh-Curry & Husain, 2009; J. Wang et al., 1999). Arguably, visual information 
about objects and locations joins or converges at some stage or brain area into a 
coherent percept (e.g., Hillyard & Münte, 1984; Treisman & Gelade, 1980) to 
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achieve discrimination based on saliency. This neural mechanism also includes 
serial limitations where “attention is either at one location or another” (Wolfe, 
1994, p. 209). This thesis will focus on both ‘bottom-up’ factors for selective 
attention, objects and locations, and their interaction (s. Chapters 2 & 3). Further, 
the composition of feature singletons (object features) and their spatial functions 
(spatial locations) will be analyzed across visual and tactile modalities (s. Figure 
1–1). 

A third factor of selective attention can be found in the immediate past. 
Whereas objects and locations indicate the actual and real-time processing of 
perceptual information, selective attention relies heavily on temporal dynamics 
and preceding information. In experimental psychology, this temporal derivative 
of selective attention is analyzed as the difference between consecutive trials (or 
visual displays). It is summarized under intertrial effects (e.g., Found & Müller, 
1996; H. J. Müller et al., 1995), where the comparison of response rates, e.g., 
reaction times, can either facilitate, decelerate or remain the same between the 
current trial (n) and the previous trial (n–1). In search paradigms, target 
repetitions produce response benefits (e.g., red circle → red circle), whereas 
systematic target changes lead to substantial switch costs (e.g., red circle → blue 
square). The best-known example of this is probably the modality-shift effect, 
where attentional shifts between sensory modalities (e.g., vision → touch) lead to 
tremendous switch costs, i.e., delayed responses (Miles et al., 2011; Spence, 
Nicholls, et al., 2001; Töllner et al., 2009). These intertrial effects open another 
perspective on selective attention and its limited resources, providing time-
sensitive markers of attentional deflections, e.g., repetition benefits or switch 
costs from most recent events. These ‘bounded or occupied’ attentional resources 
represent residual cortical activations, which are commonly described as neural 
traces or attentional traces (Alho et al., 1990; Fecteau & Munoz, 2003; Gondan et 
al., 2007; Mannuzza, 1980; Ruge & Naumann, 2006). Chapter 4 will give a 
detailed empirical description of how these intertrial effects systematically 
modulate in a visuo-tactile search paradigm (s. Figure 1–1).  

Besides these three factors of selective attention, representing primarily 
automatic and stimulus-driven mechanisms based on current or previous salient 
sensory information, another critical factor is ‘top-down’ or goal-driven attention 
(Desimone & Duncan, 1995; Wolfe, 1994). Instead of being entirely at the whim 
of environmental saliency, we can voluntarily guide attention based on our goals 
and expectations using attentional templates (e.g., Duncan & Humphreys, 1989; 
Eimer, 2014; Fecteau, 2007). Finding a familiar face in a crowd is a famous 
example of such a template, which pre-activates basic and complex visual features 
of the familiar face, e.g., shape and size of the head, nose, or ears, colors of skin, 
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hair, or eyebrows, spatial relations of eyes, nose, and mouth, and many more. In 
contrast to bottom-up saliency computations, which run through the visual cortex 
in a feedforward direction (V1 → V4), top-down templates (or visual cues) neurally 
pre-activate relevant features and visual areas in a feedback direction, e.g., in V4 
or IT, improving selective attention for both specific objects and locations 
(Chelazzi et al., 1993; Desimone & Duncan, 1995; Luck et al., 1993). Further, the 
short-term activations of attentional templates from memory or cues are strongly 
associated with working memory and neural activity in frontal regions (Carlisle 
et al., 2011; Eimer, 2014; Houtkamp & Roelfsema, 2006; Olivers et al., 2011; 
Stokes et al., 2013; Warden & Miller, 2010). Notably, the top-down control in 
selective attention extends the cortical scope from the parietal and visual cortex 
toward (pre-)frontal regions, resembling the well-known fronto-parietal attention 
networks (e.g., Corbetta & Shulman, 2002; Posner & Dehaene, 1994). Although 
attentional templates are evidently active before and during search displays 
(Eimer & Kiss, 2010; Grubert & Eimer, 2018), their ability to (proactively) 
suppress bottom-up saliency appears either limited, e.g., the additional singleton 
paradigm (Theeuwes, 1991, 1992, 2010), or is an open issue of debate, e.g., signal-
suppression account (Gaspelin et al., 2015; Gaspelin & Luck, 2018b; Sawaki & 
Luck, 2010). Even though bottom-up and top-down factors clearly oppose one 
another, the distinction between attentional templates and intertrial effects is not 
so clear as both rely on ‘prior history’ or priming (Fecteau, 2007; Lamy & 
Kristjánsson, 2013). This thesis aims to improve the discriminability of these two 
factors by deriving a concise set of empirical hypotheses (here in Chapter 1) that 
will be evaluated later on for empirical examination (Chapter 5).  

Generally, there is joint agreement on the four factors of selective attention 
(e.g., Theeuwes, 2010; Wolfe, 1994), which can be envisioned in an oppositely or 
orthogonally arrangement of involved brain functions (s. Figure 1–1), e.g., dorsal 
and ventral streams, bottom-up feedforward and top-down feedback connections, 
or current and previous activations. While the scientific community does not 
question those factors, the focus and debate of attention research rely (once again) 
on the exact timeline of selective attention (similar to early and late selection 
models) and is about when those factors interact (or interfere) with one another, 
e.g., stimulus-driven (automatic) vs. goal-driven (guided or controlled). Of note, 
other factors also guide selective attention, as can be seen in Wolfe's (2021) 
updated version of Guided Search (GS 6.0), including reward or scene syntax and 
semantics. However, as this thesis incorporates a visuo-tactile search paradigm 
for crossmodal attention, there will be, by default, no empirical intersections to 
study those additional factors. Nonetheless, this thesis aims to incorporate those 
contemporary trends whenever applicable, as it strives to propose a general model 
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of crossmodal selective attention (Chapter 5) based on the observed empirical 
evidence (Chapters 2–4). 

The fifth factor is vigilance or sustained attention (e.g., Esterman et al., 2013; 
MacLean et al., 2009). While the four factors take a snapshot of the task and its 
conditions, sustained attention depicts the (attentional) time course of the same 
task. Commonly, sustained attention measures the trial-by-trial variation in 
performances, often called the vigilant decrement in continuous performance 
tests (Riccio et al., 2002; Rosenberg et al., 2013; See et al., 1995). Interestingly, 
the direct influence of vigilance on selective attention has often been omitted due 
to the equally balanced and averaged conditions and targets over the whole 
duration of the experiment, thus eradicating frequent and systematic attentional 
fluctuations. Nonetheless, the role of sustained attention cannot be underrated, 
as it seems directly associated with the activation of fronto-parietal attention 
networks (deBettencourt et al., 2015; Helfrich et al., 2018; Posner & Dehaene, 
1994; Rosenberg et al., 2016). Further, activity in attention networks reflects the 
trial-by-trial variability and also rhythmicity of attentional states, i.e., being 
either ‘in-the-zone’ or ‘out-of-the-zone’ (Kucyi et al., 2017; Rosenberg et al., 2015) 
associated with specific brain rhythms and oscillations, e.g., theta and alpha 
frequencies (Helfrich et al., 2018; Michel et al., 2021). Altogether, the five-factor 
model combines two perspectives of task/condition effects and attentional 
fluctuations over time. Similar to attentional templates, the factor of sustained 
attention will be critically reviewed in some detail (here in Chapter 1). Also, its 
practical feasibility and empirical relevance will be discussed later (Chapter 5). 

Finally, we derive the five-factor model of selective attention, which 
resembles the empirical framework of this thesis (s. Figure 1–1). As mentioned 
above, this model aligns with previous models that included similar or other 
factors, e.g., set size, reward, habituation, learning, or distractor handling (e.g., 
Desimone & Duncan, 1995; Duncan & Humphreys, 1989; Found & Müller, 1996; 
Gaspelin et al., 2015; Logan, 1996; Mackworth, 1968; Treisman, 1969; Wolfe et 
al., 1989; Wolfe & Horowitz, 2017); and it by no means claims to be complete. 
Nonetheless, the five-factor model pursues the scientific purpose of enabling a 
general model of crossmodal selective attention. This thesis argues that a general 
attention model must combine those factors, similar to essential ingredients in a 
recipe. Ultimately, this attention model should enable a dynamic quantification 
of each factor across search tasks, similar to a multiple regression equation. 
However, before we can develop an empirical and statistical conceptualization 
like this, it takes a deeper dive into the details of those factors and their empirical 
evidence. 
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Visual Search 

Although evidence for the five factors of selective attention already depends 
on it, this section introduces visual search from experimental psychology. Before 
beginning to describe displays, targets, and various visual tasks, it is noteworthy 
that the majority of early attention theories (e.g., Broadbent, 1958; Cherry, 1953; 
Deutsch & Deutsch, 1963; Treisman, 1960, 1969) were primarily based on 
auditory search, i.e., dichotic listening to voices or sounds. Excitingly, their 
research questions, concepts, and terms could be flexibly transferred to visual 
search (and also crossmodal search). 

In their paper, Deutsch and Deutsch (1963) suggest that (selective) attention 
derives from perceptual and discriminatory mechanisms, which group and 
segregate (sensory) information. Further, their statement, “How such grouping or 
segregation takes place is a problem for perceptual theory …” (p. 83), resembles 
the core question of what happens between perception and attention. In a 

Figure 1–1. The five-factor model of attention is shown. Overall, selective attention 
(green), i.e., the deployment of attentional resources, modulates based on the impact 
of (1) object features (red) or feature activations, (2) spatial locations (orange), (3) 
intertrial effects (purple) or prior history, (4) attentional templates, and continuous 
processes of (5) sustained attention. Also, some relevant references for each factor are 
added. While object features and spatial locations reflect bottom-up driven processes 
in a feedforward direction, intertrial effects and attentional templates indicate 
feedback activity from previous activations (e.g., neural traces) or top-down control. 
Although the five-factor model is not exhaustive, its sparse description can be regarded 
as the skeleton of a computational model of attention.  
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conceptual example, Deutsch and Deutsch (1963) collect a group of people 
(originally boys) from which they want to infer who is the tallest. Instead of 
comparing each person with one another, leading to an “enormous rate” of 
comparisons with increasing group size, the authors favor “a simpler and more 
economical way” to achieve their goal: collecting the people under a horizontal and 
adjustable board that measures ‘height’. Given that everyone stands up, the board 
would touch the tallest person like a threshold. Further, the board would move 
down when the tallest person leaves or up when a taller person enters the scene. 
This example refers to the mechanisms of selective attention. Here, attention 
capture is based on weighting the importance of (sensory) information, e.g., a 
person's height, or any other (physical) dimension, e.g., color or tone. Overall, the 
concept of attentional selection by Deutsch and Deutsch (1963), occurring after 
perceptual aggregation or dimension-based grouping, therefore late, already 
contains many essential aspects for the empirical framework of this thesis, being 
conceptually very similar to saliency summation models (cf. Koch & Ullman, 
1985). 

Another influential study is from Treisman (1969). In this study, the author 
reviews the evidence from various experiments of the 1960s, which include both 
auditory search (or selective listening) and visual search. Notably, visual search 
experiments were then conducted using the tachistoscopic technique, enabling the 
presentation of visual displays in the millisecond range (e.g., Lappin, 1967; 
Sperling, 1960).  

In her study, Treisman (1969) proposes four selection types for attention: (i) 
output selection, (ii) input selection, (iii) analyzer selection, and (iv) test and 
target selection. Whereas (i) and (ii) refer to late and early selection models (e.g., 
Broadbent, 1958; Deutsch & Deutsch, 1963), where perceptual processes are 
either unrestricted or filtered, (iii) analyzer selection resembles an intermediate 
step between early and late selection. Those proposed analyzers are nothing less 
than the already introduced dimensions, being independent units or ‘collections’ 
of similar features, e.g., color (red, green, blue), orientation (left, right), or shape 
(bars, squares, circles). Further, independent analyzer units include ‘basic’ 
dimensions (e.g., color and orientation) but also more ‘complex’ ones, such as 
letters or words.  

To better describe those selection processes, Treisman (1969) proposes a 
visual search task where the display includes “colored letters in different sizes 
and orientations” (p. 284). Here, participants must identify whether those (briefly 
presented) displays contain the letter ‘G’, i.e., the target, among irrelevant 
nontarget letters (e.g., ‘H’), by giving a positive (‘present’) or negative (‘absent’) 
response, respectively. Essentially, (visual) targets can be composed of features 
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along (visual) dimensions, e.g., a red ‘G’ contains a color and a letter. On the 
contrary, a target cannot be ‘G’ and ‘H’ at the same time and location, representing 
a conflict within analyzer units. According to Treisman (1969), the knowledge of 
the target’s features enables a test within analyzer units, in contrast to other 
features, e.g., color-test: red vs. blue or yellow, or letter-test: ‘G’ vs. ‘H’, or ‘F’, thus 
describing (iv) test and target selection. Generally, this example of visual search 
(next to another of auditory search) describes attentional selection as a sequence 
of underlying processes, where each selection type (i – iv) can be associated with 
a specific stage or process within that pipeline, yielding an empirical framework. 
Arguably, target selection (red ‘G’) and (correct) response must undergo a 
systematic process of perceptual integration by activating relevant analyzers 
(e.g., color and letters) and by rejecting irrelevant analyzers (e.g., size and 
orientation), i.e., type (iii) selection. The feature discrimination (e.g., red vs. blue) 
occurs within those relevant analyzers (e.g., color), i.e., type (iv) selection. 

Next, Treisman (1969) reviews this selection ‘architecture’ for divided and 
focused attention, i.e., to disentangle parallel or serial selection processes. While 
some evidence suggests independent (hence parallel) analyzers due to 
uncorrelated visual dimensions (Lappin, 1967), others favor serial discrimination 
between those dimensions (Egeth, 1966). Also, there is reasonable evidence that 
visual search occurs in a serial fashion, e.g., reaction time and the number of 
display items increase linearly, or responses become delayed for shorter 
interstimulus intervals (favoring a serial queue) (cf. Treisman, 1969). Similarly, 
focused attention on a single analyzer or specific analyzer sets seems unlikely due 
to interferences across relevant and irrelevant analyzers occurring within the 
perceptual or response stage or both. A famous example of analyzer interference 
is the Stroop test, where saying a word’s color conflicts with a color’s word, e.g., 
‘green’ in yellow or ‘red’ in blue (Stroop, 1935). While in 1969, the evidence for (iii) 
analyzer selection appears still ‘equivocal’, feature-based (iv) target selection, on 
the other hand, consistently led to improved performances.  

The special merit of this early study of Treisman (1969) is the proposition of 
‘independent analyzers’ or dimensions (particularly for visual search) and her 
effort to explain the various stages and types of selection. Like Deutsch and 
Deutsch (1963), Treisman (1969) proposes a mechanism for selective attention in 
an ‘all-or-nothing fashion’ or as an adaptive ‘signal-to-noise ratio’, ultimately 
defining which features and dimensions capture attention. Interestingly, she 
implies that spatial locations (e.g., within a search display) are seized or 
perceptually registered in a ‘very early stage’, clearly before (iii) analyzers and 
(iv) targets.
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With the advent of computer screens (e.g., CRT monitors), experimental 
psychology and visual search experienced a boost in scientific productivity from 
the 1980s onwards. The endless options to compose visual displays based on the 
number of items or set size, features, and locations led to various search tasks 
striving to decipher visual selective attention. Before we continue the evolution of 
our empirical framework, it is essential to introduce some basic terms and 
scientific milestones of visual search. As already mentioned, a (visual) display 
contains visual objects, e.g., targets, non-targets, cues, or distractors, defined by 
discriminative features on a homogenous background (e.g., black, gray, or white). 
Those displays are often presented relatively quickly (below 1 second or faster), 
and a fixation cross (or something similar) precedes them as a marker to align 
focal attention. Generally, a task consists of many displays organized in blocks 
and specific task conditions linked by an interstimulus interval (often blank). 
Besides display presentation, i.e., the sensory input, behavioral response 
describes another pillar of visual search, i.e., the processing output, obtaining the 
reaction time in milliseconds or accuracy in percentage from key presses. 
Sometimes error feedback is given by presenting visual and auditory signals, e.g., 
a beep tone. 

Another common term of visual search is ‘pop-out’ search, which describes a 
salient ‘odd-one-out’ target or a ‘pop-out’ singleton among (mostly) homogenous 
nontargets, e.g., a green diamond among red diamonds, a white horizontal bar or 
black vertical bar among black horizontal bars (Luck & Hillyard, 1994a; Maljkovic 
& Nakayama, 1994). Crucially, the ‘pop-out’ target differs from the nontargets by 
a distinct feature-contrast, e.g., green vs. red, white vs. black, or vertical vs. 
horizontal. Crucially, those contrasts can occur systematically within and across 
visual dimensions, e.g., within color: red vs. green or across letter and shape: ‘G’ 
vs. circle (H. J. Müller et al., 1995). Again, it is important to emphasize that a 
feature can be any type of visual segregation, whereas a dimension contains a set 
of all similar features (e.g., colors). Obviously, ‘pop-out’ search is primarily driven 
by bottom-up saliency computations (Duncan & Humphreys, 1989; Koch & 
Ullman, 1985; Schreij et al., 2008). Although nontargets (e.g., green diamonds) 
and distractors (e.g., a red circle) are both task-irrelevant, distractors can also 
‘pop-out’ by having a salient feature-contrast to the nontargets and target (e.g., 
green circle) that needs to be actively suppressed during the task, delaying 
response times as described in the ‘additional singleton paradigm’ (Theeuwes, 
1992). Although this thesis will not analyze the impact of distractors in detail, it 
is nonetheless worth mentioning that both selection and suppression in attention 
research represent two sides of the same coin. 
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Another essential aspect of visual search is the task itself, designed to answer 
one or more concrete research questions. Similar to visual targets, the number of 
visual search tasks can be endless, yet we encounter a systematic and manageable 
variety of visual search paradigms. Arguably, visual search has three task classes: 
detection, localization, and identification, which themselves contain many other 
tasks and specific variations (cf. Töllner et al., 2012). In detection tasks, 
participants must indicate the presence or absence of targets (among nontargets) 
that occur at a predefined rate across trials (e.g., 20 %, 50 %, or 80 %). Responses 
are commonly collected by button (or key) presses after the visual display 
presentation, indicating whether a target was perceived as ‘present’ or ‘absent’. A 
special case of detection is conjunction search. While detection is generally quite 
effortless, e.g., finding a letter among squares, the target in conjunction search 
combines the feature-contrasts of nontargets, e.g., finding a green ‘T’ among 
brown ‘T’s and green ‘X’s, thus increasing the difficulty of discrimination with 
increasing set size. The next section shows that conjunction search plays a critical 
role in the feature-integration theory and Guided Search (Treisman & Gelade, 
1980; Wolfe et al., 1989). Different from detection tasks, localization task targets 
appear commonly in all trials. Here, participants are instructed to respond based 
on the target’s spatial location, which can be ‘left’ or ‘right’, ‘top’ or ‘bottom’, and 
‘in’ or ‘out’ of a display zone (Sauter et al., 2018; Wolber & Wascher, 2005). A 
combination of spatial locations and feature detection is the spatial cueing task, 
where visual displays are preceded by a visual cue that points to a particular 
spatial location influencing target detection (and selective attention) based on its 
validity (e.g., 75 % valid & 25 % invalid cues) (e.g., Eimer & Kiss, 2008; Folk et 
al., 1992; Folk & Remington, 1998; Wolber & Wascher, 2005).  

The third visual search class is identification tasks, associated with a higher 
attentional load than detection and localization tasks, which ‘only’ ask for the 
presence and location of targets. In those tasks, participants must identify targets 
based on specific features, e.g., a target can be either a green or blue square among 
yellow square nontargets but also an ‘M’ or ‘W’ among vertical bars (Eimer, 1996). 
Crucially, participants had to discriminate those relevant target features (here, 
color or form) by pressing the respective buttons, e.g., left-hand: green or ‘M’ and 
right-hand: blue or ‘W’ (hence, the name discrimination task). Another common 
task is compound search, where participants initially must visually detect the 
target (e.g., a letter ‘E’ or a 90° rotated ‘T’) and, in the following step, report on 
the respective appearance (e.g., ‘E’ mirrored or not?, is the top of ‘T’ left or right?) 
by giving the correct button response (Deubel & Schneider, 1996; Zinchenko et 
al., 2020). Further examples can be found in additional singleton paradigms, 
where participants had to find a green diamond and identify whether the line 
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within the diamond was horizontal or vertical (Theeuwes, 1992), or they had to 
find a tilted bar among vertical bars and indicate whether the gap in the target 
bar was on the bottom or top (Goschy et al., 2014; Sauter et al., 2018). 

Closing the gap to our five-factor model of selective attention, visual search 
and its various tasks are well suited to examine (and answer) the multitude of 
specific research questions. For example, visual objects can be created by any 
combination of features (originating from distinct dimensions), allowing for 
systematic discrimination of contrast levels and bottom-up saliency in almost any 
task, e.g., the redundant-signals effect (Grubert et al., 2011; Krummenacher et 
al., 2002a; Töllner, Zehetleitner, Krummenacher, et al., 2011). Further, visual 
search can focus on locations, i.e., the examination of spatial attention, e.g., by 
using spatial cueing paradigms. The strong (and genuine) link between attention 
and spatial locations becomes evident by descriptions of attention as a ‘spotlight’, 
‘zoom lens’, or ‘gradient models’ that indicate a relationship between the capacity 
of attention and the activity in the retinotopic visual cortex or receptive fields 
(Eriksen & St James, 1986; LaBerge, 1983; LaBerge & Brown, 1989; Luck et al., 
1997; Mangun & Hillyard, 1988; N. G. Müller et al., 2003; Posner, 1980). Notably, 
the detection of target singletons becomes worse with increasing distance to the 
center of our focal attention, indicative of a spatial function of visual attention, 
which is known as the eccentricity effect (Carrasco et al., 1995; Staugaard et al., 
2016; Wolfe et al., 1998).  

Further, intertrial effects or prior history can be embedded by manipulating 
the display sequence (or target sequence) within and across blocks, enabling a 
systematic view of repetition benefits and switch costs for target objects and 
locations (Found & Müller, 1996; Rangelov et al., 2013; Talcott & Gaspelin, 2020; 
Wolfe, 2021). Also, top-down processes or attentional templates can be measured 
in visual search by giving certain objects and locations a high probability of 
appearance, i.e., making the target’s presence predictable beyond the prior history 
in alignment with the task goal (Fecteau, 2007; Lamy & Kristjánsson, 2013). 
Crucially, top-down control can be observed in visual search as it selectively 
deploys attentional resources to relevant but not irrelevant visual inputs (Eimer 
& Kiss, 2010; Grubert et al., 2017). Finally, the fifth factor of sustained attention 
(seamlessly) aligns well with visual search tasks and can monitor attentional 
states (‘in-the-zone’ vs. ‘out-of-the-zone’) across trials, blocks, and sessions 
(Esterman et al., 2013; Kucyi et al., 2017; Rosenberg et al., 2015). 

Overall, visual search evolved into a broad research field over the last 
decades, where the multitude of insights are summarized into well-known 
theories, e.g., theory of visual attention (TVA), perceptual load theory, guided 
search, or dimension-weighting account (DWA) (Bundesen, 1990, 1998; Found & 



Visual Search 17 

Müller, 1996; Huang & Pashler, 2007; Lavie, 1995; Lavie & Tsal, 1994; H. J. 
Müller et al., 1995; Wolfe, 1994; Wolfe et al., 1989). Visual search combines task 
designs and behavioral responses flexibly with physiological recordings such as 
eye-tracking, following processes of overt and focal attention along saccades and 
fixations, or controlling for involuntary saccades from center fixations in covert 
attention designs (Deubel & Schneider, 1996; Rayner, 1978, 2009; Theeuwes, 
1992; Wollenberg et al., 2018). Also, visual search is compatible with brain 
imaging techniques such as EEG and fMRI, which enable the analysis of temporal 
and structural correlates of attention (e.g., Corbetta & Shulman, 2002; 
Kristjánsson et al., 2007; Leonards et al., 2000; Töllner, Zehetleitner, Gramann, 
et al., 2011; Töllner, Zehetleitner, Krummenacher, et al., 2011; Wei et al., 2009). 
Finally, visual search also profited from computational modeling and the signal 
detection theory (Green et al., 1966; Stanislaw & Todorov, 1999), providing an 
accurate description of perceptual, preattentive and attentional processes across 
the visual cortex, e.g., in saliency summation models (Itti & Koch, 2001; Koch & 
Ullman, 1985; Koene & Zhaoping, 2007; Lee et al., 1999). 

In concluding this section, it can be stated that visual search is still quite an 
active field of experimental psychology, which is nowadays focusing on topics such 
as distractor handling (e.g., Gaspelin et al., 2015; B. Wang & Theeuwes, 2020), 
top-down control (e.g., Grubert & Eimer, 2018; Jenkins et al., 2018), reward (e.g., 
Hickey et al., 2010, 2014), probability cueing (e.g., Anderson et al., 2021; Goschy 
et al., 2014), and working memory (e.g., Gazzaley & Nobre, 2012; Oberauer, 2019; 
Olivers et al., 2011). Despite this impressive progress in studying visual selective 
attention, the ultimate goal for visual search must be the transition from the lab 
toward real-life settings and natural viewing (e.g., Võ & Wolfe, 2015), particularly 
with the advent of virtual and augmented reality. Similar to virtual reality, our 
actual (visual) reality, i.e., (visual) information processing, is, according to 
Broadbent (1956), a measurement of bits per second with a known limit and 
capacity of how much information we can concurrently perceive. Interestingly, 
this ‘bit thought’ links visual search to information theory (Borst & Theunissen, 
1999; Shannon, 1948), where information is quantified as entropy or complexity 
(by bits and nits). Notably, the increase in complexity or similarity, i.e., too much 
or too less information, respectively, hinders the discrimination of visual displays 
or scenes and, thus, selective attention (Duncan & Humphreys, 1989). Hence, the 
optimal conditions to study visual search and selective attention derive from a 
balanced task set and design, including pertinent information. When the facts are 
straight, one can delve into unexplored territories. 
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Feature-Integration Theory 

The following sections will collect the empirical framework's building blocks 
or elements. First, it is worth taking a deeper look into (visual) features, which 
were introduced above, besides the four types of selection (Treisman, 1969). In 
another scientific effort, Treisman and Gelade (1980) summarized the ‘equivocal’ 
evidence through a series of experiments into a “feature-integration theory of 
attention”. The authors argue that early visual integration occurs automatically 
and in parallel through features (or visual contrasts) within the visual space. Yet, 
recognizing visual objects occurs later and serially as those features need to be 
coherently combined along the areas of the visual cortex. Essentially, the feature-
integration theory states that the activation of specific features is parallel, while 
their ‘binding’ into objects must be serial and requires focused attention. 

Again, Treisman and Gelade (1980) highlight that features belong to distinct 
dimensions or analyzers, e.g., colors or orientation, which are “separately 
analyzed by some functionally independent perceptual subsystem, and ‘feature’ 
to refer to a particular value on a dimension.” (p. 98-99). The clear distinction 
between a parallel perceptual or preattentive stage that activates so-called 
feature maps and the subsequent serial attentional stage that identifies objects 
relates to the two-process theory (Shiffrin & Schneider, 1977). Yet, the interesting 
question remains to which extent those serial attentional processes can become 
parallel via unitization or practice (LaBerge, 1973a). 

The empirical evidence for their feature-integration theory gave Treisman 
and Gelade (1980) by conducting a series of conjunction search experiments. 
Remember, in conjunction search, the target shares its features with all 
nontargets, while in disjunction or feature search, the target shares its features 
with only half of the nontargets (or less). Here, they showed that in conjunction 
search, i.e., finding a green ‘T’ among brown ‘T’s and green ‘X’s, reaction times 
revealed a significant linear slope that increased over set sizes (1, 5, 15, or 30 
items in the visual display) for both positive or negative target events (present or 
absent). Interestingly, slopes in negative events were twice as high as positive 
ones, indicative of the extra time needed for an exhaustive search. In contrast, 
feature search (or disjunction search), finding a blue letter ‘T’ or ‘X’ or a brown or 
green ‘S’ among brown ‘T’s and green ‘X’s, revealed a flat (non-significant) slope, 
showing comparable reaction times across the various set sizes for positive target 
events. Hence, their finding suggests that the visual processing in conjunction 
search is serial and depends on set size (exhaustive and self-terminating search), 
taking around 60 ms per item, providing evidence against the unitization of 
distinct features that assumes an efficient search with flat slopes.  



Saliency-Summation Models and Guided Search

The same outcome of serial conjunction search persists for easier targets (e.g., 
finding a red ‘O’ among green ‘O’s and red ‘N’s) with equally distant items (e.g., 
embedded in a 4 x 4 matrix) and across the similarity range of targets and 
nontargets. Further, the authors argue that the prolonged search for conjunctions 
derives from the impaired spatial segregation of features and textures, as they 
are less discriminative than disjunctions. Also, Treisman and Gelade (1980) claim 
that (visual) spatial encoding and feature activation processes are distinct yet 
must coincide in conjunction search, opposing other accounts of attentional 
capture based on spatial orienting, e.g., spotlight or zoom lens (Eriksen & 
Hoffman, 1972; Posner, 1978). 

Overall, the feature-integration theory proposes a preattentive mechanism 
that combines parallel detection with perceptual grouping (or segregation) based 
on feature activations before the spatially-bound deployment of focal attention 
that serially identifies visual items or objects. Although the statistical power 
within experiments is arguably a bit low (including only 6-8 participants), and the 
main conclusions will already be challenged in the next section, the feature-
integration theory remains a landmark publication in visual search. 
Furthermore, the feature-integration theory can be regarded as a precursor of the 
idiomatic “binding problem”, where coherent (visual) percepts and higher 
cognitive processes originate from the neural synchrony of local feature 
activations (Damasio, 1989; C. M. Gray, 1999; Reynolds & Desimone, 1999; 
Singer, 1999; Singer & Gray, 1995; Treisman, 1996, 1998, 1999; Wolfe & Cave, 
1999). 

Saliency-Summation Models and Guided Search 

Another perspective on visual selective attention stems from computational 
modeling, summarizing the various claims about spatial encoding and feature 
decomposition into a general framework (cf. Koch & Ullman, 1985). Agreeing on 
the two-stage model, the authors distinguish a “preattentive mode” and an 
“attentive mode” as collections of ‘early representations’ that selectively combine 
into a ‘central representation’. Again, elementary features (e.g., color, orientation, 
or moving direction) are processed rapidly and parallel with the spatial locations 
of the visual field, then follow the processes of focal attention and the serial 
recognition of complex objects.  

Koch and Ullman (1985) introduce the concept of “topographical maps” to 
understand better the transition from the preattentive to the attentive stage. By 
referring to evidence from the research of spatial orienting and receptive fields 
(Eriksen & Hoffman, 1972; Goldberg & Wurtz, 1972), the authors argue that the 
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distributed activations across feature maps must be encoded in a spatially 
coherent fashion, i.e., mapping each feature activation to distinct visual locations 
(or vice versa). Based on this (necessary) assumption, Koch and Ullman (1985) 
introduced the “saliency map” as another topographical map intermediate to early 
and central representations. 

The saliency map summarizes loads of various feature maps (e.g., a red 
diamond among green circles) by registering them across the visual field, i.e., 
multiple features can co-exist in one location (e.g., a green tilted bar) or one 
feature can be linked to multiple locations (e.g., the color green). Further, the 
saliency map must incorporate a weighting mechanism to enable attentional 
capture, i.e., the transition to the non-topographic central representation. This 
mechanism yields a saliency summation that triggers the allocation of selective 
attention in a winner-takes-all routine that serially deploys visual selective 
attention to the location with maximum saliency (or highest overall feature-
contrast) and not to multiple locations simultaneously (in line with Posner et al., 
1980). Finally, Koch and Ullman (1985) argue that selection shifts must occur 
based on maximum changes in the saliency map due to constant re-weighting over 
time. This explicit description of an attention shift toward the most salient 
location is similar to the rough proposition of Deutsch and Deutsch (1963) of an 
adaptive board to measure a person’s height. 

Besides their computational approach, Koch and Ullman (1985) also initiated 
the debate about the saliency map’s brain area and timing. By giving two options, 
the saliency map can be either located beyond the striate cortex, relying on the 
completion of early visual representation in V4 or MT, or it might be directly 
linked to V1 and the lateral geniculate nucleus (LGN), and thus preceding those 
feature activations. Notably, the authors underscore the 30-50 ms estimate for 
attention shifts (Bergen & Julesz, 1983) based on the physiological properties of 
neurons.  

Although their ‘saliency-summation’ model is primarily built on bottom-up 
saliency that encodes elementary features (e.g., color and orientation) and 
locations, influencing many subsequent studies (Itti & Koch, 2001; Koene & 
Zhaoping, 2007; Lee et al., 1999), it nonetheless flexibly combines with the other 
factors of selective attention, such as top-down control and prior history, i.e., 
affecting the weighting routine due to priming and search priorities (e.g., 
Navalpakkam & Itti, 2007; Wolfe, 1994). This ‘multi-faceted’ character of saliency 
summation is similar to the visual cortex's hierarchical structure, combining 
feedforward and feedback connections (e.g., Hochstein & Ahissar, 2002; Van 
Essen & Maunsell, 1983). 



Saliency-Summation Models and Guided Search

In addition to ‘saliency-summation’, Wolfe and colleagues (1989) extend the 
‘feature-integration theory’ by proposing a model of Guided Search, which 
incorporates an “attention map” (similar to the concept of a saliency map) after 
the parallel activation of feature maps. Again, the authors distinguish between 
parallel preattentive and serial attentive stages. In a series of conjunction search 
experiments, Wolfe and colleagues (1989) showed that a central claim of the 
feature-integration theory, i.e., expecting a linear slope for conjunctions over 
increasing set sizes, indicative of constant serial processing (scanning item by 
item), cannot be maintained. Instead of linear slopes of around 29 ms or 67 ms 
(including a significant 1:2 ratio) for present and absent targets, respectively, the 
encountered slopes of Wolfe and colleagues (1989) were much smaller (often non-
significant) and ‘non-linear’. Significantly, those non-linear slopes, similar to 
logarithmic (or inverse quadratic) functions, rise substantially less over set sizes 
than linear slopes. This finding suggests that the purely serial search mode for 
conjunctions, as predicted by the ‘feature-integration theory’, is actually a hybrid 
search mode of both serial and parallel processes. Hence the conclusion of Wolfe 
and colleagues (1989) is that visual selective attention is also guided by the 
parallel activation of feature maps, at least to a certain amount, depending on 
how compatible the transmission from the preattentive to the attentive stage is. 

Another intriguing finding of Wolfe et al. (1989) is the fact that stimulus 
saliency plays an enormous role in visual search concerning experimental 
outcomes and conclusions. Although the authors did not provide a detailed 
description of how salient feature loads are precisely integrated, like the 
weighting mechanism of Koch and Ullman (1985), they compared their 
conjunction search findings using a television monitor with bright colors, with an 
exact replication of the experiments in Treisman and Gelade (1980), which used 
the tachistoscopic technique with painted displays. Notably, Wolfe and colleagues 
(1989) replicated the steep (linear) slopes in the tachistoscope in difference to 
their shallow (nonlinear) slopes. However, they also showed that tachistoscopic 
slopes did depend on the saturation of colors, i.e., serial item search was about 
twice as fast for “high contrast” conditions (6 ms & 13 ms per item) in comparison 
to replicated “low contrast” conditions (11 ms & 24 ms per item). Overall, these 
results provide important evidence that stimulus saliency is a critical factor to 
consider (e.g., via saliency alignment of feature-contrasts), which is in accordance 
with other studies (Duncan & Humphreys, 1989; Itti & Koch, 2001; Nothdurft, 
1993; Töllner, Zehetleitner, Gramann, et al., 2011). 

The nonlinear evidence for attentional guidance of Wolfe et al. (1989), i.e., the 
logarithmic increase of conjunction search among set sizes, is very much in line 
with the proposed ‘winner-takes-all’ network of Koch and Ullman (1985) of local-
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to-global saliency comparisons of the visual field, reflecting a binary-search tree 
with a logarithmic time (or search) complexity. However, besides the stimulus-
driven saliency, search performance for self-terminating tasks, e.g., rating the 
presence or absence of targets as in conjunction search, also depends on goal-
driven factors such as task design. For example, a triple conjunction search 
(including size, color, and letter), e.g., finding a big red ‘O’ among small red ‘X’s, 
small green ‘O’s, and big green ‘X’s, reveals smaller slopes across set sizes due to 
the task-embedding of two feature contrasts as compared to regular conjunction 
search with only one feature contrast (Quinlan & Humphreys, 1987; Wolfe et al., 
1989). On the other hand, triple and double conjunctions become comparable 
again when they both embed discriminations of only a single feature contrast 
between the target and nontargets. Also, search difficulty varies based on the 
number of included conjunction targets. In a simultaneous search for two targets 
(e.g., red ‘X’ or green ‘O’ among green ‘X’s and red ‘O’s), initial and strategic 
guidance towards a specific feature fails, e.g., neglecting all red stimuli when 
searching for a green ‘O’, which in turn produces the serial (linear) slopes, again 
(Nakayama & Silverman, 1986). 

Wolfe et al.'s (1989) findings clearly suggest a modification to the original 
feature-integration theory. They argue that search efficiency and attentional 
selection depend on the amount of noise, i.e., the variation in stimulus saliency, 
between the parallel and serial stages. A high saliency of feature contrasts 
improves the signal-to-noise ratio, enabling attentional guidance through the 
‘seamless’ transmission of preattentive computations. Subsequently, ‘feature-
integration’ was modified due to empirical evidence, which formerly assumed a 
strict separation of parallel and serial processes.  

For example, Treisman and Sato (1990) revised conjunction search as a 
response to the empirical exceptions from a purely serial search mode (e.g., 
McLeod et al., 1988; Pashler, 1987; Wolfe et al., 1989). Overall, they replicated 
those ‘exceptions’ of search slopes in their own experiments, favoring fast and 
(more) parallel conjunction search. Furthermore, the search speed for 
conjunctions relies on nontarget heterogeneity, i.e., display complexity; the more 
distinct nontargets were included, the more difficult the search. On the other 
hand, knowing a conjunction target in advance substantially improves the search 
compared to unknown targets, referring to involved mechanisms of top-down 
control, e.g., working memory. Notably, the feature-integration theory was 
updated by introducing an extra “master map” that combines the encoding of 
features and locations accordingly, that is, serial deployment of attention 
(Treisman, 1988; Treisman & Sato, 1990), similar to the functionality of the 
“saliency map” (Koch & Ullman, 1985) and “attention map” (Wolfe et al., 1989).  



Saliency-Summation Models and Guided Search

Based on their findings, Treisman and Sato (1990) excluded conjunction 
detectors and segregation assumptions due to additivity effects among features, 
which suggest the presence of both feature independence (evidence against 
detectors) but also feature summation (evidence against segregation). Hence, the 
authors propose a ‘feature-inhibition’ hypothesis, where irrelevant feature 
information of nontargets is suppressed in the master map, e.g., when searching 
a green ‘T’ among green ’X’s and brown ‘T’s, the feature activation of the color 
brown and the letter ‘X’ can be (actively) inhibited, thus complementing target 
selection and search efficiency. Of course, this ‘feature-inhibition’ can only apply 
when the target is known and obviously fails for unknown targets. Further, the 
effectiveness of ‘feature-inhibition’ depends on target vs. nontarget 
discrimination. Finding a rotated ‘T’ among rotated ‘L’s is much more challenging 
than finding a pink 45° tilted bar target among green 45° bars or pink 135° bars. 
That is, ‘feature-inhibition’ is ineffective for similar edge comparisons in letters 
(‘T’ vs. ‘L’), while for the latter color-orientation stimuli, it can flexibly choose one 
independent analyzer, e.g., green, that discards all green 45° bars by pooling them 
out. Again, the almost instantaneous exclusion of half of the non-targets via 
‘feature-inhibition’ relates well to the shallow slopes and nonlinear inverse 
quadratic functions (of the binary search tree). 

Wolfe (1994) summarized Guided Search into an updated version (GS2). As 
before, the author describes the activation of basic feature maps (e.g., orientation, 
color, or motion) during the preattentive stage, which altogether load onto an 
“activation map”. In GS2, Wolfe (1994) explains in much more detail the 
underlying architecture. The author links stimulus-driven bottom-up processes of 
feature segregation to neural encoding patterns that ultimately translate signal 
strength, i.e., the differences of feature contrasts of signal detection, into 
‘categorical’ features that interact with top-down processes such as task demand. 
More precisely, each ‘categorical’ feature represents a distribution of local and 
specialized firing neurons, including a variance or noise term similar to Gaussian 
distributions.  

In addition to those feature distributions, Wolfe (1994) presents a linear 
model of parameters to forecast reaction times during visual search tasks. This 
formula includes a baseline (b), average time per item (x), set size (n), and 
standard deviation (σ), yielding a base estimate for behavioral responses, e.g., in 
feature or conjunction search. Arguably, this is a simplified formula, as it does not 
account for the display’s complexity, i.e., the similarity and proximity of stimuli 
(see Humphreys & Müller, 1993; Koch & Ullman, 1985). However, the proposition 
of a 50 ms attention shift as average time per item is consistent with the 30-50 
ms physiological estimate of Koch and Ullman (1985), although a bit high. At 
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present, Guided Search is in its sixth version. GS6 includes additional factors of 
selective attention, e.g., prior history, reward, or scene syntax and semantics. 
Still, the “activation map”, which triggers attentional capture updates at a 50 ms 
rate about 20 times per second (or 20 Hz), yet object recognition (similar to the 
central representation) takes about 150 ms per item, about 3 “attention map” 
updates (or 7-8 Hz). 

Fascinatingly, all three concepts of selective attention used a similar 
mechanism to explain the consistent mapping of features and locations, based on 
‘saliency summation’, yet in different terms: “saliency map” (Koch & Ullman, 
1985), “master map” (Treisman, 1988), and “attention map” or “activation map” 
(Wolfe, 1994; Wolfe et al., 1989). Another term was proposed by Fecteau and 
Munoz (2006): the “priority map”. The authors advocate a relabeling due to 
evidence from firing rates of neurons that respond to stimulus-driven salience and 
goal-driven relevance. Therefore, the term “saliency map” is not sufficient, as it 
does not express the role of dynamic ‘prioritization’. In summary, the attentional 
“priority map” aligns with the other terms that also proposed a bi-directional 
convergence of bottom-up and top-down processes in an implicit or explicit 
manner. This thesis uses the term “priority map” or “attentional priority map” to 
refer to the topographic map that guides selective attention. Besides a common 
agreement on a specific term, the most intriguing questions about the “priority 
map” are the where and when. The “Attentional Priority Map” section will 
examine these questions in greater depth.  

Dimension-Weighting Account 

 As described in the previous sections, features are heterogenous, reflecting 
the variety of basic and complex properties of discriminative objects. This 
heterogeneity in visual search should be considered (Wolfe, 1994). So far, the 
primary research focus of the studies presented was to examine the two-stage 
model and its modes of selective attention, i.e., the transition of the parallel 
preattentive stage into the serial attention stage, and further how these stages 
guide the deployment of selective attention (Deutsch & Deutsch, 1963; Koch & 
Ullman, 1985; LaBerge, 1973b; Treisman & Gelade, 1980; Wolfe et al., 1989). 
While there is common agreement on topographic feature maps and the priority 
map in visual search, less advance was made to investigate the intricate 
relationships of feature activations, leaving this topic in an ‘equivocal’ state 
awaiting a systematic conception with empirical evidence. 

 The updated feature-integration theory exposed the necessity to organize 
the abundance of features or the ‘feature-space’, as it includes two competing 
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mechanisms, i.e., ‘feature-activation’ and ‘feature-inhibition’, at the same level of 
preattentive computations (Treisman & Sato, 1990). Since features derive from 
the firing patterns of local neurons, ‘categorical’ features rely on adequate signal 
segregation (Wolfe, 1994). Hence, the more similar and spatially closer targets 
and nontargets become, the more activation and inhibition interfere with one 
another, seemingly, a conflict that impacts and delays visual search. 

The presence of this conflict is quite vivid across many visual search studies. 
For example, finding a letter ‘L’ is much more difficult among ‘T’s than ‘X’s in 
simple texture discrimination (Bergen & Julesz, 1983), as ‘textons’, a letter’s 
building blocks, are more similar between ‘L’ and ‘T’ than ‘L’ and ‘X’. Another 
example is the ‘additional singleton paradigm’ (Theeuwes, 1991, 1992), revealing 
several interesting insights in a series of experiments. First and foremost, 
Theeuwes (1992) shows that the efficiency of target selection depends on the 
saliency of feature contrasts, consistent with previous findings. Finding a green 
circle among red circles (color-contrast) was around 60 ms faster in reaction times 
than finding a green circle among green diamonds (shape-contrast), indicative of 
an ‘asymmetric selectivity’ between color and shape. Further, distractor 
interference, i.e., the advent of an ‘additional singleton’ beside the target, also 
depends on the amount of saliency. Whenever the distractor is more salient than 
the target, the distractor automatically pulls attentional resources in a bottom-
up manner, inducing a substantial delay in target selection with slower reaction 
times, e.g., a red-diamond distractor and a green-circle target among green 
diamonds. However, by (over-)correcting the saliency imbalance for color and 
shape, exchanging the high salient red color with a low salient yellow-green color, 
the effect patterns of the distractor bias reversed: a shape-contrast distractor 
(green diamond) produced higher response costs than a color-contrast distractor 
(yellow-green circle). The findings of Theeuwes (1992) suggest saliency trade-offs 
between visual dimensions, e.g., color and shape, that guide selective attention 
and distractor handling. Arguably, salient distractors cannot be ignored 
completely, and the ‘feature-inhibition’ of irrelevant distractors occurs on-the-fly. 

Considering these findings and those of conjunction search, the evidence 
suggests that the performance during visual search depends on systematic 
variations in the task design (Bergen & Julesz, 1983; Theeuwes, 1992; Treisman 
& Sato, 1990; Wolfe, 1994). Hence, a systematic look at the heterogeneity and 
homogeneity of target and nontarget relations, i.e., their feature contrasts, is 
required, introducing another perspective besides pure saliency-summation. 
Interestingly, and maybe a bit expectedly, the ‘missing link’ awaits in the 
independent analyzer units or visual dimensions. 
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In advance to explain visual dimensions in greater detail, another study by 
Treisman (1988) highlights the relevance of this issue. Her study shows that 
feature search, i.e., the detection of disjunctive targets among nontargets, is flat 
for increasing set sizes and comparable for known and unknown targets but only 
for within-dimension feature-contrasts, e.g., a blue bar among green bars or a 
horizontal bar among vertical bars. Also, Treisman (1988) examines two 
substantial performance delays. While performances were fast for within-
dimension targets and across-dimension heterogeneity in nontargets, processing 
delays occurred for mixed across-dimension targets and within-dimension 
heterogeneity nontargets, which empirically summarizes the above-stated 
conflict. Notably, the shift in scientific focus on dimensions relates back to Allport 
(1971) and the proposed analyzer selection (iii) by Treisman (1969).  

With these findings in mind, Müller, Heller, and Ziegler (1995) conducted 
their experiments. Based on empirical evidence and conclusions (cf. Treisman, 
1988; Wolfe, 1994), Müller and colleagues (1995) propose an extra layer of 
“dimension-specific saliency maps”, or dimension maps, intermediate to feature 
maps and the priority map, as a functionally distinct processing step. Further, the 
authors argue that a dissociation for unknown “odd-one-out” targets that vary 
within or across visual dimensions proves that the existing preattentive hierarchy 
is incomplete. 

Like Treisman (1988), Müller et al. (1995) replicated the indifferent and flat 
function across set sizes and the increased reaction time costs for unknown cross-
dimension conditions of about 55-60 ms. While in the within-dimension condition, 
a target only varied in three orientations: a (small and gray) left-oriented, right-
oriented, or horizontal gray line among small gray vertical lines; the cross-
dimension condition, on the other hand, varied in size (large gray vertical line), 
color (small black vertical line), or orientation (small right-oriented gray line), 
again among small gray vertical lines. These extra costs in cross-dimension 
targets expose a gap in the preattentive architecture, as it cannot be explained by 
the ‘global’ and parallel integration of feature activations, where the “odd-one-
out” should be equal across unknown targets. Instead, this finding of Müller and 
colleagues (1995) localizes a dimension-specific bias in the “early perceptual 
stage” (p. 7) that precedes the capture of selective attention. 

In their second experiment, Müller and colleagues (1995) examined the 
interplay of relevant targets and irrelevant distractors by modulating the 
distractor either within- or cross-dimension. As feature search is not exhaustive 
as conjunction search is, the “odd-one-out” or “pop-out” target only needs to be 
detected but not identified. For this reason, positive and negative responses, 
indicating target presence or absence, respectively, are generally comparable. 
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However, adding a heterogeneous distractor, i.e., a task-irrelevant singleton that 
varies from nontargets, introduces an imbalance for positive and negative 
conditions, as the “odd-one-out” distractor produces a salient contrast that 
requires extra elimination effort to give a response. Hence, Müller and colleagues 
(1995) retrieved a significant delay for positive responses in both within- and 
cross-dimension (Δ 73 ms and Δ 29 ms, compared to the respective baseline in the 
first experiment), which was substantially higher in the within-dimension 
condition. This finding indicates that the (active) inhibition or feature 
segregation, i.e., omitting the task-irrelevant distractor, is more costly and, thus, 
less efficient for the within-dimension than the cross-dimension distractor. Again, 
this outcome advocates the functional relevance of visual dimensions. Yet, the 
authors admit that inhibiting a cross-dimension distractor is also incomplete, as 
a delay in positive responses, although smaller, persists. 

To gain more insights into the impact of top-down control during the 
preattentive stage, Müller et al. (1995) varied the probabilities of their first 
experiment for each of the three targets in both conditions. Here, the right-
oriented line occurred in 80% of target-present trials (within- and cross-
dimension), and the other two targets were equally present in only 20% of target-
present trials in both conditions. While no effect was found in the within-
dimension condition, showing equal negative and positive responses, a massive 
effect appeared in the cross-dimension condition. As expected, the highly probable 
target was significantly faster than negative responses (Δ 41 ms) and low probable 
targets (Δ 111 ms), which also had much higher error rates (9 %). 

Overall, the findings of Müller, Heller, and Ziegler (1995) revealed strong 
cross-dimension evidence that a preattentive hierarchy, which so far only 
consisted of feature maps and a priority map, is not sufficient and must take an 
extra computational level of dimension maps into account (s. Figure 1–2). 
Although the authors cannot completely resolve the issue of whether ‘dimension 
elimination’ in the second experiment is serial or parallel, their reasoning for 
weight shifting between visual dimensions seems plausible. Whereas within-
dimension targets maintain the same dimension-weight across trials, in this case 
for orientation targets with comparable reaction times, cross-dimension targets, 
on the other hand, need to constantly adjust those weights due to dimension-shifts 
in the trial sequence from orientation to color to size, leading to substantial delays 
and reaction time costs. As before, in the ‘saliency-summation’ models, the 
weighting mechanism that integrates perceptual information is also preserved in 
this updated version, as the priority map combines the weights of dimension 
maps, which combine the weights of their respective feature maps. 
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Notably, weight-shifting between visual dimensions might elegantly explain 
the cross-dimensional costs by intertrial dependencies. Based on correspondence 
with Wolfe and a post-hoc analysis, Müller and colleagues (1995) argue that 
repetitions in target dimensions between consecutive trials (e.g., color → color 
from trial n–1 to trial n) were significantly faster (Δ 57 ms) than dimension-shifts 
(e.g., orientation → color). In contrast to other opinions that favor a purely 
stimulus-driven perceptual integration (Theeuwes, 1991, 1992), where salient 
stimuli like an additional singleton or distractor cannot be suppressed by top-
down control, dimension-weighting appears to be a suitable explanation that 
includes both factors, stimulus-driven and goal-driven aspects. A highly expected 
target in one dimension (e.g., orientation) produces substantial response 
advantages compared to unexpected dimensions (e.g., color or size), indicating an 
unequal distribution of weights across visual dimensions based on (implicit or 
explicit) prioritization.  

Also, Müller et al. (1995) claim that the weights (or importance) of visual 
dimensions cannot be ignored entirely; assigning a weight of zero to a specific 
dimension seems odd, as the (voluntary) exclusion of color information in daylight 
for healthy vision is sheer impossible. Hence, a ‘known’ distractor might always 
delay the attentional capture of a target whenever the distractor is more salient 
due to automatic adjustments in dimension-weighting, exceeding those weights of 
the prioritized target dimension, which in the next step must be actively 
suppressed. Notably, dimension-weighting is congruent with Theeuwes' (1991, 
1992) findings, as only the high-salient distractor produced delays but not the 
low-salient distractor. In a recent study, Sauter and colleagues (2018) provided 
further evidence for dimension-weighting in a probability-cueing paradigm, 
showing that the distractor’s dimension matters. While same-dimension 
distractors produce heavy interferences with the target (Δ 94 ms), the impact of 
different-dimension distractors is significantly lower (Δ 14 ms). 

 The proposition of a “dimension-weighting account” (DWA), introducing an 
intermediate layer of dimension-specific saliency maps or dimension maps into 
the preattentive hierarchy, is based on the evidence presented. Overall, the DWA 
combines bottom-up processes (features and locations), top-down control, and 
intertrial dependencies (four factors of selective attention) via the inherent 
weighting dynamics within and across visual dimensions. Further, the DWA 
entails a set of concise assumptions and research questions to bolster its 
functional relevance. Two essential claims of the DWA, which will be primarily 
addressed in this thesis, are the following: The detection (or localization) of pop-
out singletons produces intertrial effects, i.e., a substantial amount of response 
costs due to weight-shifting, when the feature-contrast of targets switches across 
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visual dimensions (e.g., color → orientation, or shape → color). Another claim 
suggests that target detection becomes faster by combining those task-relevant 
dimensions since the weights of multiple dimensions are summed, thus, 
improving the guidance of selective attention (e.g., color + shape or color + 
orientation). On the other hand, same-dimension shifts (e.g., blue → green) or 
combinations (blue and green targets) should be (more or less) comparable to 
same-feature repetitions (e.g., blue → blue) and combinations (two blue targets). 

 More investigations on the “dimension-weighting account” was done by 
Found and Müller (1996) by analyzing intertrial dependencies. In their 
experiments, the authors examined feature search: finding orientation (left- or 
right-tilted white bars) and color (blue or red vertical bars) targets among white 
vertical bars (nontargets) on a black background. In the first task, participants 
performed a detection task, where they had to respond to the presence or absence 
of targets (both conditions 50 %). The second experiment was an identification 
task, where participants had to indicate the target’s dimension, either color or 
orientation, via button presses. Again, Found and Müller (1996) replicated the 
flat slopes for feature search across increasing set sizes (here 4, 9, 16), indicating 
a parallel search mode. Also, they showed behavioral advantages for color targets 
with faster response times and fewer errors than orientation targets. Overall, 
Found and Müller (1996) examined a consistent pattern of intertrial facilitation 
across color and orientation targets, comparing the current trial (n) as a function 
of the previous trial (n–1) with shift conditions. That is, same-dimension shifts 
(e.g., color → color) were significantly faster than different-dimension shifts (e.g., 
color → orientation, or vice versa) with a delta of 22–36 ms across experiments 
and visual dimensions. While for the detection task, no intertrial facilitation was 
found between same-feature (e.g., red → red) and different-feature (e.g., left-tilt 
→ right-tilt) shifts, interestingly, the identification task revealed extra
facilitation in color for same-feature repetitions (e.g., blue → blue) above different-
feature shifts (e.g., red → blue). Overall, Found and Müller (1996) retrieved
evidence favoring the “dimension-weighting account” as switch costs or intertrial
facilitation derive primarily from dimensional shifts or repetitions, representing
about two-thirds of the effect.

In another experiment, Found and Müller (1996) showed that counting three 
or four targets within a display also depends on whether target dimensions are 
homogeneous or heterogeneous. Counting four homogeneous targets (e.g., all color 
targets) is significantly faster than counting three homogeneous targets, as 
participants had to (extra) check for another heterogeneous target (e.g., one 
orientation target). Again, this finding supports a DWA as preattentive 
architecture as visual search becomes more efficient for homogeneous targets, 
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adjusting the weights for only one dimension (e.g., color or orientation). In 
contrast, heterogeneous targets must update their dimension weights 
sequentially (e.g., color and orientation), which produces extra costs. As before, 
these weights accumulate onto the priority map, guiding visual selective attention 
to perform the task properly.  

 Essentially, the dimension-weighting account extends the concepts of 
previous theories, those of feature maps and an attentional priority map, with 
their empirical evidence for dimension maps. Crucially, the DWA embeds four 
factors of selective attention (except sustained attention), reflecting the 
dynamical assignment of dimension weights and their interplay that project onto 
the priority map regarding saliency, relevance, and prior history. With the DWA, 
the various findings in visual search and the continuous spectrum of task designs 
(e.g., as in feature and conjunction search from flat to steep slopes over set sizes) 
can be attributed to the efficiency of that weighted integration, producing either 
benefits or costs that reflect a more parallel or serial search mode, respectively 
(Fecteau & Munoz, 2006; Found & Müller, 1996; H. J. Müller et al., 1995; 
Treisman & Sato, 1990; Wolfe, 1994, 2021). Of note, the studies on DWA add the 
perspective of intertrial dependencies or prior history as a conceptual factor of 
short-term priming to attention research, becoming a productive approach over 
the following years (e.g., Becker et al., 2009; Eimer et al., 2010; Goschy et al., 
2014; Krummenacher et al., 2009; Lamy & Kristjánsson, 2013; H. J. Müller et al., 
2004). 

 The DWA provides answers to the ‘equivocal’ evidence of the various visual 
search experiments. For example, it appears reasonable that letter discrimination 
is more difficult for ‘L’s and ‘T’s than ‘L’s and ‘X’s, as horizontal and vertical 
‘textons’ (or features) are identical but diagonally different for the latter (e.g., 
Bergen & Julesz, 1983). Also, it makes sense that letter discrimination is more 
challenging than feature search or conjunction search, as the letter’s feature-
contrast derives from only one, although more complex, within letter dimension, 
instead of feature-contrast(s) across dimensions, e.g., a green 45° bar among pink 
135° bars, including color and orientation dimensions. Notably, the DWA favors 
the presence of dimension-specific saliency maps, i.e., independent analyzers, 
within the parallel preattentive mode, as dimension-wise contrasts primarily 
guide the rapid (or almost instantaneous) feature-contrast detection within a 
visual display, which Müller and colleagues describe as the “odd-one-out” or “that” 
response (Found & Müller, 1996; H. J. Müller et al., 1995). Ultimately, these 
topographic dimension loads from specialized analyzers are again spatiotopically 
combined in the attentional priority map, enabling the attentional capture of 
“that” difference over “there”. In line with other studies, Found and Müller (1996) 
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underscore the difference between detection or localization tasks, which only 
require a “that” and “where” response, and identification tasks, which 
additionally require a “what” response, revealing a dissociation for preattentive 
and attentive modes, respectively (Nothdurft, 1992; Sagi & Julesz, 1985). 

 The DWA has been a productive framework for examining the attentional 
processes during visual search over the recent decades (Gramann et al., 2007; e.g., 
Krummenacher et al., 2001a; Liesefeld & Müller, 2019). Despite the core 
assumption that visual dimensions or independent analyzers are organized 
within the same functional level of the preattentive architecture, their respective 
weights or influence on selective attention are somewhat asymmetric. First, 
dimension differences might simply result from saliency imbalance across 
dimensions, as shown by adjusted colors in the studies of Theeuwes (1992) and 
Wolfe et al. (1989). This reason might also explain the color benefits of Found and 
Müller (1996). Second, in line with Wolfe (1994) visual dimensions can be either 
basic (e.g., orientation, color, size, or motion) or more complex (e.g., shapes, 
letters, or words), resembling a hierarchical order of stimulus-driven feedforward 
and goal-driven feedback connections, representing the visual cortex with its 
dorsal and ventral streams (Hochstein & Ahissar, 2002; Van Essen & Maunsell, 
1983). Third, the distribution of dimension maps within the visual cortex could 
reflect a distinctive temporal sequence of dimension loads onto the priority map, 
e.g., the integration of a color-contrast precedes that of a shape-contrast.
Arguably, those ‘earlier’ and basic dimensions should either be anatomically
closer to the priority map (e.g., in V1) or have shortcut connections.

Finally, while the DWA is well-suited for visual search, it remains an open 
issue whether it can be generalized to multisensory perception in “crossmodal 
search”, e.g., combining perceptual information from different modalities such as 
vision, touch, and sound. In case the DWA indeed applies to crossmodal search, 
the layer of distributed independent analyzers or dimension maps would simply 
expand across sensory modalities within the same hierarchical level. Generally, 
the crossmodal DWA claims a flat hierarchical organization of crossmodal 
dimensions with a supramodal priority map, i.e., a common pool of attentional 
resources. Hence, attentional orienting in visual and crossmodal search should be 
comparable without a substantial difference. Concluding, the DWA is a 
centerpiece for the scientific framework of this thesis, and its empirical evaluation 
for crossmodal search is one of the main objectives. 
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Crossmodal Search 

 So far, the scientific background and the two-stage model of selective 
attention, i.e., its preattentive and attentive modes of parallel and serial 
integration, have been introduced in the preceding sections with a focus on visual 
search and the preattentive hierarchy that culminates into the “dimension-
weighting account” (DWA). Overalls, this preattentive hierarchy includes 
topographic layers of feature maps, dimension maps, and the priority map, which 
are connected by weighted projections. The attentional prioritization of features 
or dimensions occurs through the dynamic interplay of up-weighting or down-
weighting processes, i.e., selective activation or inhibition. Similar to the other 
concepts of visual search (Koch & Ullman, 1985; Treisman & Sato, 1990; Wolfe, 
1994), where the chronological order for feature maps and the priority map is not 
specified, the DWA architecture does not provide a clear statement as well (Found 
& Müller, 1996; H. J. Müller et al., 1995). Based on the empirical evidence, it can 
be argued that the activation of preattentive layers represents levels of 
‘attentional resolution’, that is, the ‘precision of attentional representation(s)’. 
While for detection or localization tasks, a dimension-specific contrast is sufficient 
to respond, identification (or feature-discrimination) tasks, on the other hand, 
require exact feature knowledge of the target and thus additional processing time 
(e.g., Found & Müller, 1996; H. J. Müller et al., 1995). 

Of course, attention is not exclusively bound to vision, as humans are 
multisensory beings. In this context, it is worth emphasizing (again) that the early 
studies of selective attention primarily examined selective listening (e.g., Cherry, 
1953; Treisman, 1960). Hence, attention's concept and empirical evolution appear 
independent of sensory modalities, indicating that selective attention reflects a 
supramodal capacity. But is that the case? Despite a deepened understanding of 
attention, this question cannot be answered by looking solely at individual 
modalities (e.g., vision or sound). It needs the interaction of those senses (e.g., 
vision and touch) to obtain a (more) complete picture of selective attention, which 
is known as crossmodal search. Overall, crossmodal search, i.e., “the adaptive 
attentional orienting to multisensory events”, is well-suited to examine 
supramodal and modality-specific attention mechanisms. While a supramodal 
attention mechanism applies to all sensory modalities in the same way, modality-
specific attention mechanisms would be different across sensory modalities, being 
unimodal or antagonistic to one another.  

The distinction between supramodal and modality-specific attention 
mechanisms in crossmodal search is the central question of this thesis, which in 
the context of attention research, dates back over many decades. For example, 
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Treisman (1969) reported better performances for divided attention that combines 
auditory and visual stimuli by summarizing the preliminary outcome of an 
unpublished pilot study. She further concludes: “While two inputs to the same 
modality must share the same analyzers throughout, the two inputs to different 
modalities would be at least partly analyzed by independent systems.” (p. 289). 
This statement complements the concept of attentional resources by adding the 
perspective of crossmodal search. Whereas dimensions or analyzer units are 
considered independent within visual search, they depend on (or share) the same 
pool of resources in visual selective attention. On the contrary, crossmodal search 
potentially combines independent pools of attentional resources across sensory 
modalities before the deployment of attention, proposing an extra layer of 
preattentive integration. Arguably, multisensory representations originate from 
the temporal coherence of neural decoding; they derive either from an overall and 
supramodal attentional priority map or the combination of modality-specific 
saliency maps (e.g., Macaluso et al., 2002a; Töllner et al., 2009). Concerning the 
preattentive hierarchy, this juxtaposition describes a fine but decisive distinction. 
It will be examined in greater detail after introducing crossmodal search with 
experimental designs, concepts, and insights. 

There are plenty of studies in crossmodal search that combine multiple 
sensory modalities (e.g., Diederich & Colonius, 2004; Eimer & van Velzen, 2005; 
Macaluso et al., 2002b; Miller, 1982; Spence, Nicholls, et al., 2001; Spence & 
Driver, 2004). Among sensory modalities, the combinations of vision, sound, and 
touch proved particularly suitable for studying crossmodal selective attention, in 
contrast to odor and taste modalities, whose scope of application is rather 
restricted (e.g., Kauer & White, 2001; Laing & Glemarec, 1992). Like other 
sensory modalities, odor and taste primarily activate modality-specific brain 
regions, e.g., piriform or insular cortex, but also multimodal (or supramodal) 
areas, such as the far anterior insular cortex (Veldhuizen & Small, 2011). 
Although olfaction and taste contain mixtures of independent fragrances and 
ingredients, in line with the concept of dimensions, they primarily describe 
“chemosensory” processes (Mombaerts, 1999; Spence, Kettenmann, et al., 2000; 
Spence, McGlone, et al., 2001), which complicates the objectivity of the 
experimental designs. For example, it might be difficult for odor and taste 
experiments to retrieve conclusions about selective attention for several reasons. 
Although odor (and taste) detection, i.e., the onset of olfactory stimuli, is 
efficiently fast, the spatial propagation and stimulus offset in ‘odor displays’ 
depend on molecular movements (Hopfield, 1991), in difference to visual and 
auditory stimuli, with complete control of onset and offset timings. Further, the 
transition of olfactory sensations to selective attention and response decisions, 
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e.g., the identification of an odor, might be more error-prone with an increased
amount of variance, requiring a more explicit link to memories and ‘expert
knowledge’. Regardless, several fascinating attempts have been made to study
multisensory interactions, including odor and taste, for example, in synesthesia
(Deroy et al., 2013; Deroy & Spence, 2013; Spence et al., 2015; Thesen et al., 2004).
However, pursuing a complete attention theory that combines all sensory
modalities will be one of the most exciting challenges for future studies.

Whereas the evolution of a preattentive hierarchy, i.e., the proposition of an 
attentional priority map, can be genuinely attributed to the efforts of visual 
search, from the beginning, crossmodal search investigated the superordinate 
question of whether attentional resources, e.g., in a bimodal detection task, either 
derive from separate pools or a common pool, i.e., modality-specific or supramodal 
mechanisms, respectively (cf. Miller, 1982). Generally, crossmodal search 
describes perceptual integration as the activation of ‘channels’ from distinct 
sensory modalities that transmit ‘signals’. Notably, by assuming independent 
channels, studies in crossmodal search are associated with divided attention (e.g., 
Miller, 1982; Treisman, 1969). 

For example, Miller (1982) conducted a series of experiments, including a 
bimodal detection task containing visual and auditory stimuli, where participants 
had to respond to target-present trials while ignoring target-absent trials. Those 
tasks consisted of three targets: a centrally presented visual asterisk or letter ‘X’, 
an auditory 780 Hz tone, or their “redundant” visual-auditory combination. On 
the other hand, target-absent trials either showed nothing, a letter ‘O’, or a 360 
Hz tone. Crucially, Miller (1982) consistently found a “redundant-signals effect” 
(Kinchla, 1974), retrieving substantially accelerated reaction times for the 
redundant signals, the visual-auditory target, in comparison to non-redundant or 
single-channel signals, i.e., a redundancy gain or delta of around 100 ms. This 
“redundant-signals effect” (RSE) even persisted for the comparison with the 
average of the respective faster non-redundant channels, e.g., visual or auditory 
signals (Δ 55 ms) (Biederman & Checkosky, 1970). 

Overall, the RSE can be explained by two accounts, separate-activation, i.e., 
a race-model of two or more completely independent channels, or a co-activation 
account for combined integration. The reasoning behind both accounts is quite 
similar to the threshold criterion and winner-takes-all mechanism in visual 
search. While in separate-activation models, reaction times obey the assumption 
of independent and identical distributed random variables, redundancy gains 
simply reflect statistical facilitation, where a trial’s winner, i.e., the faster 
channels, captures selective attention and triggers response behavior (Raab, 
1962). Conversely, co-activation models propose an extra gain surpassing 
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statistical facilitation's limit (or threshold), which arguably, can only be achieved 
by the interaction of those racers, which amplifies the overall signal strength, e.g., 
by activating supramodal brain regions. 

The critical contribution of Miller (1982) was the race-model inequality, a test 
to evaluate whether separate-activation or co-activation models explain 
redundancy gains. The race-model inequality proposes a statistical limit by taking 
the sum of the cumulative density functions of non-redundant signals (e.g., 
auditory + visual). The test for coactivations, i.e., testing for violations of the race-
model inequality, compares the reaction time percentiles (e.g., 5%, 10%, 15%, etc.) 
of cumulative density functions. In the case that the percentiles of redundant 
signals temporarily precede those of the additive limits marks a violation of the 
race-model inequality and favors the presence of coactivations beyond 
independent racers. Instead of rare occasions, Miller (1982) argues that 
“coactivation models may be the rule rather than the exception.” (p. 269), as he 
found evidence for coactivations in other studies as well (Miller, 1978, 1981). 
Furthermore, Miller (1982) discusses the “locus of coactivation” within the 
timeline of selective attention, decision, and response behavior. In line with late 
selection models, Miller favors a post-perceptual and decision-related “locus of 
coactivation”, after a sufficient level of (parallel and independent) perceptual 
processing.  

Interestingly, although only in the Appendix section, Miller (1982) briefly 
presents an eight-parameter model to predict response behavior, i.e., the 
cumulative density functions of reaction times, based on linear integration of 
activation levels and equations of McClelland (1979). Generally, the sensory 
activation of visual, auditory, or redundant information influences the rate of 
response activation level that initiates response behavior, e.g., button pressing. 
Furthermore, Miller (1982) added parameters on trial-by-trial variability (or 
attentional parameters) to indicate the distribution of attentional resources and 
the sensitivity to attentional fluctuations among sensory modalities, and the 
variance of response rates. Arguably, this model achieved relatively good fits, yet, 
Miller did not continue to elaborate on this parametric model but rather on the 
race-model inequality and its various predictions. For example, violations of the 
race-model inequality are associated with coactivations and evidence 
accumulation processes that integrate combined sensory information over a 
prolonged time (Miller, 1986).  

Again, it must be emphasized that despite favoring the decision process as 
the “locus of coactivation”, Miller (1986) cannot provide evidence for this, being 
still an open quest. Nonetheless, models to explain the “redundant-signals effect” 
for crossmodal search gained momentum, yielding many exciting insights and 
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extended concepts, e.g., superposition or interactive race models, to which 
reference is made but no detailed description (Blurton et al., 2014; Colonius, 1986; 
Diederich & Colonius, 1991; Gondan et al., 2010; Gondan & Minakata, 2016; 
Miller et al., 2001; Mordkoff & Miller, 1993; Mordkoff & Yantis, 1991, 1993; 
Schröter et al., 2007; Schwarz, 1989, 1994; Ulrich & Giray, 1986; Zehetleitner et 
al., 2015). Notably, the crossmodal concept of race-model inequality and the 
redundant-signals effect also influenced visual search by showing that violations, 
i.e., evidence for coactivations, primarily occur across but not within visual
dimensions, which is in line with the assumptions of the dimension-weighting
account (Feintuch & Cohen, 2002; Grubert et al., 2011; Koene & Zhaoping, 2007;
Krummenacher et al., 2002a, 2002b, 2010, 2014; Töllner, Zehetleitner,
Krummenacher, et al., 2011; Zehetleitner et al., 2008).

Fascinatingly, the locus of coactivation issue and debate have not been 
resolved (completely) until today. While some favor late selection accounts, i.e., 
the presence of coactivations in the post-selective and decision stage, or at least 
post-perceptually (Feintuch & Cohen, 2002; Miller, Beutinger, et al., 2009; Miller 
& Reynolds, 2003; Mordkoff & Yantis, 1991, 1993), others promote the 
preattentive stage as the origin of coactivations that precedes the capture of 
attention, i.e., the completion of priority map computations (Grubert et al., 2011; 
Koene & Zhaoping, 2007; Krummenacher et al., 2014; Töllner, Zehetleitner, 
Krummenacher, et al., 2011; Zehetleitner et al., 2009). However, neither side can 
completely exclude the other, which is made more explicit by the following two 
quotes: “We cannot rule out the possibility that attention can also facilitate 
perceptual processing. … Our findings strongly suggest that at least one 
important role of attention is postperceptual gating of information to high-level 
processes that deal with response execution.” (Feintuch & Cohen, 2002, p. 368), 
and “Although the latter [post-selective] cannot be definitely ruled out, there is a 
growing body of evidence that fits nicely with a salience [preattentive], but not a 
decisional (or motoric), origin of coactivation effects.” (Zehetleitner et al., 2009, p. 
1755). 

Regardless of those opposing perspectives, there seems to be agreement that 
the locus of coactivation must occur primarily within the preattentive and post-
selective stages, namely after perceptual “low-level” processing and before the 
initiation of motor responses (Mordkoff et al., 1996; Schröger & Widmann, 1998). 
It also seems reasonable that there are multiple coactivation loci during the 
accumulation of information and attentional selection (Yantis & Johnston, 1990). 
The concept of multiple loci aligns with the cascade model of McClelland (1979), 
which proposes a sequence of activation levels for the various processing stages, 
e.g., sensory, decision, and response activation levels. As described above (in the
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parametric model of Miller, 1982), a level’s rate (or load) depends on the summed 
(or linear) integration of its preceding level. Hence, each stage’s projection can be 
associated with (additional) interactive or coactive processes. Since crossmodal 
search is primarily associated with processes of divided attention, it is essential 
to note that a core concept of visual search, the overall attentional priority map, 
is not explicitly considered, e.g., in the coactivation debate. Again, this refers to 
the superordinate research question of this thesis of whether multisensory 
attentional resources are supramodally or modality-specific organized and to 
gather evidence that favors either a global priority map or multiple local sensory 
priority maps. To resolve this question empirically, the conceptual mixture of 
visual and crossmodal search is paramount. It can only succeed by agreeing on a 
preattentive architecture that guides crossmodal attention and by comparing the 
dynamics of electrophysiological components as neural markers for selective 
attention. 

Although intersensory facilitation in bimodal search tasks with performances 
of bimodal targets exceeding those of unimodal targets is sufficiently documented 
(e.g., Girard et al., 2013; Miller, 1982; Nickerson, 1973; Todd, 1912), further 
evidence of the additive effects across three sensory channels stems from 
Diederich and Colonius (2004). The authors tested visual, auditory, and tactile 
modalities in a simple detection task with varying stimulus intensity levels and 
stimulus-onset-asynchrony (SOA) conditions. Whereas the visual stimulus was 
constant, a 62.5 ms presented flash with 250 lux on the screen, three stimuli were 
included for the auditory 1000 Hz tone with different loudness (70 dB, 80 dB, 90 
dB) via headphones, and also for the tactile 27.7 Hz vibration with different 
intensities (40 mV, 145 mV, 448 mV). Overall, Diederich and Colonius (2004) 
found evidence for trimodal facilitation above the detection of bimodal and 
unimodal targets by measuring the multisensory response enhancement (MRE) 
index, i.e., the percentage of redundancy gains in comparison to unimodal or 
bimodal baselines. Their findings suggest that redundancy gains increase by 
adding additional relevant channels, showing that trimodal visual-auditory-
tactile signals exceed bimodal signals, which also exceed unimodal signals. 
Furthermore, the authors showed the relevance of physiological synchronicity, 
i.e., the optimal time lag between sensory stimuli (Raab, 1962), and presented
evidence for inverse effectiveness, i.e., the nonlinear relation of stimuli’s intensity
(Meredith & Stein, 1986). Interestingly, multiple optimal trimodal combinations
were found with an enhancement above 11 %, e.g., a low-vibrating tactile target
that precedes the visual flash and the 70 dB auditory tone by 50 ms (MRE 13.1
%) or a middle-vibrating tactile target that precedes the visual flash and the 90
dB auditory tone by 30 ms and 80 ms, respectively (MRE 13.1 %).
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In addition to enhancement measurements, Diederich and Colonius (2004) 
also examined race-models by adapting the Miller (1982) procedure for trimodal 
targets. By comparing the cumulative density functions of the trimodal (tactile-
visual-auditory) target with those of the bimodal sums minus the recurrent 
unimodal target (e.g., tactile-visual + visual-auditory – visual), Diederich and 
Colonius (2004) consistently found violations of the (adapted) race-model 
inequality. Besides coactivations for bimodal targets, this finding further 
supports additional trimodal coactivations of neural encoding. Interestingly, the 
authors favor (or at least discuss the role of) the superior colliculus for 
multisensory encoding (Meredith & Stein, 1986). By taking into account that 
coactivations or race-model violations depend on the spatial proximity of 
multisensory events, i.e., the enhancements decrease with an increasing spatial 
distance between those crossmodal targets (e.g., Frens et al., 1995; Spence & 
Driver, 1997a), relates elegantly to the spatio-topographic encoding of the priority 
map in visual search. Hence, coactivation models implicitly seem to entail spatio-
temporal decoding of multisensory events, thus boosting performance due to the 
coherent alignment of crossmodal signals. 

In addition to those exciting results that support coactivation models, it must 
be clarified that the test for violations of the race-model inequality by assuming 
context-independent racers is a very conservative criterion (Miller, 2016), as the 
absence of violations does not preclude the presence of (context-dependent) 
coactivations per se (Liesefeld et al., 2017). Therefore, other indirect or less strict, 
i.e., context-sensitive, criteria can be utilized to examine coactive processing, such
as the ‘maximum negative dependency’ (Colonius & Diederich, 2017) or by
measuring redundant-signal repetitions and intertrial switch effects (Liesefeld et
al., 2017). In contrast to the comparison of percentiles in the cumulative density
functions, those criteria represent aggregated scores (e.g., mean reaction times).
By assuming a dimension-weighting account, context dependency arises from
limited attentional resources distributed as weights across (visual) dimensions
and their dynamic adjustments during the task, i.e., increasing weights for
feature repetitions and decreasing weights for feature changes. For example,
redundancy costs, reflecting delayed responses of feature repetitions in redundant
embeddings compared to exact (single-feature) repetitions, suggest the presence
of interactive (or coactive) weight adjustments and thus can be regarded as
evidence against independent racers (Liesefeld et al., 2017). The ‘maximum
negative dependency’ describes a sample criterion for spike counts and reaction
times. It compares the minima of oppositely sorted reaction times in non-
redundant signals against the reaction times of redundant signals. Whenever
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redundant signals are substantially faster than the racer’s minima, this favors 
coactivation models (Colonius & Diederich, 2017). 

Like the additive effects of dimensions in visual search, combining sensory 
modalities in crossmodal search improves performances and produces 
redundancy gains (e.g., Diederich & Colonius, 2004; Forster et al., 2002; Grubert 
et al., 2011; Iacoboni & Zaidel, 2003; Krummenacher et al., 2002a; Töllner, 
Zehetleitner, Krummenacher, et al., 2011). Importantly, redundancy gains, i.e., 
violations of the race-model inequality, arise primarily for combinations across 
visual dimensions or sensory modalities but not for intradimensionally or 
intramodally redundant signals. Despite the similar findings in visual and 
crossmodal search, this also points to a scientific gap, as the intramodal 
redundant combinations derive only by one dimension, e.g., tactile pulses or 
visual flashes (cf. Forster et al., 2002). This thesis examines this gap by combining 
visual dimensions (e.g., color and shape) with sensory modalities (e.g., vision and 
touch) in crossmodal task designs. It tries to gather empirical evidence on whether 
an extended multisensory dimension-weighting account is suitable, assuming 
comparable dimensions and sensory modalities, or whether another level of 
modality-specific processing is needed to explain the data. 

Obviously, the redundant-signals effect can be associated with the first factor 
of selective attention, as it combines the activations of features across dimensions 
and sensory modalities. However, as proposed by saliency-summation models, 
those feature activations need to be integrated in a spatially consistent manner, 
that is, by weighted projections onto the priority map. While the assumption of 
‘one’ priority map in visual search is reasonable, it might be more complicated for 
crossmodal search, i.e., search with divided attention across sensory modalities. 
Arguably, the spatial decoding of locations is essential for sensory modalities – 
vision, touch, and audio. Whereas vision space represents a quadratic fit with an 
optimum in the fovea center that decreases toward the periphery, the touch space 
relies on an anatomical reference frame (Assumpção et al., 2018; Carrasco et al., 
1995; Föcker et al., 2010; Heed & Röder, 2010; Staugaard et al., 2016; Teder-
Sälejärvi et al., 1999). This empirical evidence suggests different organizations of 
spatial functions for vision and touch, with external and egocentric decoding, 
respectively. Further, this proposes modality-specific saliency maps within the 
visual cortex and somatosensory regions (Chambers, Stokes, et al., 2004; Forster 
et al., 2016). However, evidence on crossmodal space indicates that the egocentric 
touch space merges with the external vision space within the parietal region, e.g., 
intraparietal sulcus or temporo-parietal junction (Chambers et al., 2007; Downar 
et al., 2000; Driver & Spence, 1998; Eimer, Forster, et al., 2003; Eimer & Driver, 
2000; Kanwisher & Wojciulik, 2000; Macaluso et al., 2000, 2002a; Spence, Pavani, 
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et al., 2000; Spence & Santangelo, 2009), indicative of a supramodal mechanism 
that is embedded in the fronto-parietal attention networks and the personal space 
(Buschman & Kastner, 2015; Graziano & Cooke, 2006; Posner & Dehaene, 1994; 
J. F. Stein, 1989). 

While features and locations represent the stimulus-driven factors of 
selective attention (feedforward factors), expectancy and prior history describe 
the goal-driven or priming factors (presumably feedback factors). In Spence, 
Nicholls, and Driver's (2001) experiment, the authors combine visual, auditory, 
and tactile stimuli in a localization task, i.e., the discrimination of left- and right-
presented targets. Each trial presented either a visual red light, an auditory 
signal (90 dB white noise), or a tactile pulse (around 200 Hz) for 50 ms on the left- 
or right-located LED, speaker, or tactile stimulator on the index fingers, 
respectively. Overall, the experiment included four conditions. For each block (16 
blocks total), participants were instructed to divide their attention equally across 
the three modalities or to focus on one of them, i.e., the expected modality with a 
75 % occurrence rate. The findings of Spence and colleagues (2001) suggest that 
the target localization for the expected modality improves reaction times, 
generating substantial benefits for auditory (∆ 34 ms), visual (∆ 25 ms), and tactile 
(∆ 17 ms) signals about their baseline of equally divided attention. In contrast, 
unexpected targets produced sufficient costs (∆ 31-80 ms). Although quite 
compelling, this finding on endogenous expectancy only tells half of the story. 

In the next step, Spence, Nicholls, and Driver (2001) showed that those 
benefits and costs primarily derive from exogenous intertrial relations, i.e., 
ipsimodal repetitions or crossmodal shifts, respectively. Interestingly, crossmodal 
shifts accounted for two-thirds of the total effect (compared to the sum of benefits 
and costs in milliseconds), revealing a vast “modality-shift effect” (MSE) in line 
with previous studies (cf. R. Cohen & Rist, 1992; Ferstl et al., 1994; Klein, 1977; 
Posner et al., 1976). Ultimately, the authors only looked at those crossmodal 
targets to test whether the relevance for (endogenous) expectancy persisted when 
correcting for the ipsimodal bias, i.e., the high occurrences of expected modality 
repetitions. Somewhat ‘unexpectedly’, the benefits in the expected modalities 
shrank (or even vanished) for auditory (∆ 10 ms), visual (∆ 10 ms), and tactile (∆ 
-6 ms) targets to non-significance. At the same time, the costs of the unexpected
modalities remained highly significant. Finally, Spence, Nicholls, and Driver
(2001) discuss attentional asymmetries across sensory modalities, where shifting
attention away from touch towards the visual or auditory modality was most
costly. Notably, their argumentation tallies with the above-described spatial
functions, as these results suggest a genuine dissociation between external, visual
or auditory, and internal or egocentric tactile modalities (by referring to Eimer &
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Driver, 2000; Roland, 1982; J. F. Stein, 1989). Their explanation gains further 
support by showing comparable reaction times within the blocks of distributed 
attention, which makes a saliency imbalance between those modalities unlikely. 

Overall, the study of Spence, Nicholls, and Driver (2001) is an excellent 
example of how the various factors of selective attention are intertwined, bottom-
up saliency, top-down expectancy, and intertrial dependencies. It underscores the 
difficulty of obtaining effects of endogenous expectancy, i.e., top-down control, 
despite explicit instruction of participants. Furthermore, the authors strengthen 
the relevance of intertrial effects or exogenous priors for crossmodal search. The 
amount of switch costs in the modality-shift effect strongly indicates that 
attention resources are not independently distributed among sensory modalities, 
as it takes time to detach them. Generally, the study has a striking similarity 
with visual search and the dimension-weighting account (Found & Müller, 1996; 
H. J. Müller et al., 1995), as it deciphers the dynamic (re-)prioritization across 
trials, i.e., the distribution of resources or weights, similar to those of visual 
dimensions, yet for crossmodal search. 

Evidence from other ‘modality-shift effect’ studies extends the understanding 
of modality-specific asymmetries and attentional engagement by analyzing the 
time-course between cue-target or target-target presentations (e.g., Miles et al., 
2011; Rodway, 2005; Turatto et al., 2002, 2004). For example, Miles, Brown, and 
Poliakoff (2011) conducted a series of visuo-tactile search experiments similar to 
those of Spence et al. (2001). Crucially, the authors varied the ‘stimulus-onset 
asynchrony’ (SOA) (150 ms, 600 ms, & 1000 ms) and the ‘intertrial interval’ (1250 
ms, 1600 ms, & 2000 ms) to investigate exogenous effects that influence modality 
encoding from preceding noninformative cues or targets. During the cue-target 
tasks, participants had to localize a visual or tactile target, a 200 ms red-light 
LED flash or a 100 Hz vibration (bone conductors), at the right hand’s index finger 
or little finger, respectively. Further, noninformative cues (orange LED or white 
noise vibrations) were presented in the middle of the hand’s back to avoid location-
priming effects on the left-located index finger and the right-located little finger.  

Miles et al. (2011) showed that the endogenous presence of a modality-shift 
effect (MSE) depends on attentional engagement with the preceding exogenous 
cue. Whereas no cue engagement (10 ms condition) produces solid benefits for 
visual target repetitions (but no tactile benefits), cue engagement (50 ms odd-ball 
condition) diminishes the MSE of the preceding target’s modality, except a late 
tactile repetition benefit (1000 ms condition). Counterintuitively, the (attended) 
exogenous cue (50 ms) produced reaction time costs for tactile cue-target 
repetitions in the 150 ms and 600 ms conditions, but reaction time benefits for the 
1000 ms condition, congruent with the above endogenous target-target benefit. 
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Notably, no differences, neither costs nor benefits, were found in visual cue-target 
relations. This finding indicates that the exogenous cue effect is more substantial 
for touch but absent for vision. Although not discussed in too much detail by the 
authors, this finding indicates modality-specific “refractory periods” for vision and 
touch. Whereas vision can quickly (and almost independently) integrate new 
“same-modality” information (< 150 ms), tactile processing produces delays for 
“same-modality” cue-target combinations (< 600 ms).  

Interestingly, the visual “refractory period” of attentional integration aligns 
with findings in visual search, where the impact or costs of various visual cues, 
producing a delay in reaction times, vanishes or flattens already after around 200-
300 ms (Wolfe et al., 2004). However, congruent to the argumentation of Miles et 
al. (2011) of favoring a transition from exogenous to endogenous processes, 
evidence from other studies suggests that the timing within 100–300 ms for 
successive target presentations is especially vulnerable for attentional selection, 
i.e., producing a substantial delay in reaction times during matching tasks (Dalvit
& Eimer, 2011; Jenkins et al., 2016). Notably, the matching of successive targets
is most effective when both targets fall either within the same perceptual
snapshot or cycle (< 100 ms), ‘percept-percept matching’, or when the preceding
target completed the transition to working memory (> 300 ms), ‘image-percept
matching’. Further, matching becomes less efficient during the stage of
attentional selection (100–300 ms), as the new target enters before the old target
exits, inducing competition or serial conflict for attentional resources.

Returning to the study of Miles et al. (2011), their findings suggest that the 
MSE is primarily driven by endogenous intertrial effects, producing switch costs 
(e.g., vision → touch) that diminish with an increasing intertrial interval in both 
vision and touch. Importantly, switching from touch to vision was less costly than 
vice versa, a modality-specific asymmetry, which once again demonstrates that 
visual processing is more effective than tactile processing, adding evidence to the 
claim of “visual dominance” (Klein, 1977; Posner et al., 1976). Although visual 
dominance across our sensory modalities seems intuitive, its scientific evaluation 
is more complicated. Similar to saliency in visual search targets, studies that 
promote visual dominance (or auditory dominance) in crossmodal search (Gondan 
et al., 2007; Miles et al., 2011; Posner et al., 1976; Spence, Nicholls, et al., 2001), 
often lack an adequate alignment (comparing the global mean of reaction times) 
or description of crossmodal stimuli. 

Furthermore, Miles et al. (2011) show that the impact of the MSE extends 
over the two preceding trials, revealing additional benefits and costs for same-
same and different-different modalities, which the authors link to the “neural 
trace theory” (Zubin, 1975). Congruent with the discussion in Miles et al. (2011), 
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this finding indicates a dynamic weighting mechanism for crossmodal targets that 
pull attentional resources by activating modality-specific feature maps (Töllner et 
al., 2009). Essentially, weight adjustments during crossmodal search require time 
as they either decay or increase over successive trials, in accordance with the 
DWA in visual search (Found & Müller, 1996).  

Despite evidence for endogenous modality-cueing, Miles et al. (2011) also 
found (as expected) spatial-cueing effects across the finger’s locations. 
Interestingly, shifting from the index finger to the little finger or vice versa, i.e., 
the opposite location, during successive trials was substantially faster than 
repeated finger locations. Here, tactile location-shifts revealed more net benefits 
than visual location-shifts, while both modalities revealed a delay for repeated 
locations across stimulus-onset-asynchrony (SOA) conditions, indicative of 
‘inhibition of return’ effects (Klein, 2000; Miles et al., 2011; Posner et al., 1985). 
Although Miles and colleagues (2011) present evidence for both modality-cueing 
and spatial-cueing across successive trials, they did not analyze both effects in 
combinations, e.g., repetitions vs. changes in targets and locations. 

Similar to visual search, the endogenous top-down prioritization of targets is 
not questioned in crossmodal search as noninformative cues or distractors can be 
ignored sufficiently. Nonetheless, it remains challenging to distinguish between 
the effects of short-term priming and long-term templates (cf. Spence, Nicholls, et 
al., 2001). So far, it seems that knowing one or more crossmodal targets in 
advance fastens attentional selection by up-weighting (or pre-activating) target-
specific feature maps for congruent targets, but delays for incongruent, unknown, 
or unexpected targets (e.g., Talsma et al., 2010). However, during the time-course 
of search tasks, those ‘priors’ dynamically adjust their weights based on the 
‘evidence’ of the target’s occurrence rates, especially in mixed block designs, 
reflecting statistical learning processes (e.g., Glicksohn & Cohen, 2013). Another 
perspective on goal-driven attention derives from ‘reward’ studies in visual search 
with macaque monkeys (Chelazzi et al., 1998). In this study, monkeys had to 
make saccades towards a specific image that matched with a preceding central 
cue image (e.g., flower-flower matching). Correct saccades were rewarded with a 
drop of juice. By recording the firing rates of neurons within distinct receptive 
fields in the inferior temporal cortex, the authors found a functional dissociation 
between spatially congruent (‘good’) and incongruent (‘poor’) firing rates of 
receptive fields that indicate continuous attentional engagement after 150-200 ms 
of array onset and 70-80 ms earlier than the target saccade. 

The activation of topographic and relevant receptive fields resembles a 
matching (or spatial binding) for goal-driven and stimulus-driven information 
(cue-target matching) within the inferior temporal cortex. Interestingly, the 150-
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200 ms timing aligns with the 150 ms duration of object recognition in Guided 
Search (Wolfe, 1994, 2021) and the timing of multisensory integration, where 
crossmodal interactions, i.e., additive or coactive effects, start at around 150-160 
ms (Gondan et al., 2007; Talsma & Woldorff, 2005; Teder-Sälejärvi et al., 2002). 
Based on the presented empirical evidence, the time window from 150 ms 
onwards seems to play a critical role in visual and crossmodal search, as it 
combines the various factors of selective attention and embeds similar 
mechanisms of weighted integration. Furthermore, it reflects a temporal marker 
for transitioning from the preattentive parallel stage to the serial stage of 
attentional selection (and post-selective stage). To obtain a set of concise research 
questions, finalizing the empirical framework for crossmodal search will be 
essential by distinguishing modality-specific and dimension-specific encoding 
aspects, contrasting the extended dimension-weighting account.  

Modality-Weighting Account 

Although crossmodal attention based on modality-specific computations 
seems rather trivial given the presented empirical evidence and its genuine origin 
from divided attention research, it nonetheless becomes empirically relevant in 
the context of focused attention, where crossmodal information is combined and 
distinguished adequately, favoring the presence of supramodal mechanisms of 
attentional orienting across sensory modalities. Because crossmodal search 
studies ‘only’ differentiate between distinct processing stages or activation levels, 
e.g., sensory, decision, and response stages (McClelland, 1979), it misses out on a
straightforward conceptualization and empirical evaluation of saliency
summation and attentional prioritization like the dimension-weighting account
(DWA) in visual search (Found & Müller, 1996). Therefore, the main concern of
this thesis is the exact formulation of such a crossmodal account.

Following up on the crossmodal search findings, it is commonly agreed that 
crossmodal redundancies produce substantial performance benefits, while 
modality shifts create tremendous performance costs (e.g., Diederich & Colonius, 
2004; Forster et al., 2002; Gondan et al., 2007; Miles et al., 2011; Miller, 1982; 
Spence, Nicholls, et al., 2001). As indicated earlier, the presence of ‘weighted 
integration’ can explain this empirical evidence reasonably well: combined 
weights in redundant signals enhance attentional selection by improving the 
signal-to-noise ratio, and costs for switching between sensory modalities arise 
from intersensory weight shifting. Overall, these findings demonstrate 
crossmodal dependencies that constitute performance behavior regardless of the 
underlying processing stages (e.g., preattentive or post-selective). 
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In another crossmodal search study that investigated the modality-shift 
effect, Töllner and colleagues (2009) conducted two visuo-tactile search 
experiments where participants had to discriminate either the target’s modality 
(a visual LED flash or tactile vibration) or specific visual or tactile target features 
(red or green LED colors, 40 Hz or 100 Hz tactile vibrations) by pressing the 
respective foot pedals. Generally, the visuo-tactile search task was very similar to 
the experimental setup in Spence et al. (2001) but without an auditory condition. 
In the first experiment, the setup consisted of seven green-light LEDs and two 
tactile solenoids arranged symmetrically on the left and right sides and index 
fingers, respectively (three LEDs at each side and one in the center). White noise 
was played throughout the task. Each trial started with a 500 ms fixation cross 
at the center (the bottom of a computer screen) and was followed by a 200 ms 
target, either a visual green light or a tactile vibration. To respond to the target’s 
modality, answers were given by pressing the respective foot pedal (e.g., left: 
vision & right: touch, or vice versa). In combination with a 1000 ms interstimulus 
interval and average visual (479 ms) and tactile (492 ms) responses, a trial lasted 
around 2000 ms. 

Overall, Töllner et al. (2009) found two main effects and an interaction term 
in their first experiment for the factors of modality shift and location shift. Here, 
significant costs occurred for switching the modality between successive trials 
(511 ms), e.g., vision → touch, compared to modality repetitions (461 ms), e.g., 
vision → vision. Also, the authors reported significant benefits for repetitions in 
the target’s location (481 ms), e.g., left → left, and a delay in location changes (490 
ms), e.g., right → left. Interestingly, this finding of location repetition benefits 
contrasts those of Miles et al. (2011), who reported benefits for location switches 
during successive trials between the index finger and the little finger within the 
same hand. Despite a comparable task design and intertrial durations of target-
target relations (roughly around 2000 ms), both experiments vary in that Töllner 
et al. (2009) analyzed the location switching between both hands combined for 
visual and tactile targets, while Miles et al. (2011) examined visual and tactile 
switching between fingers separately within the same hand, revealing a 
crossmodal interaction. Hence, this indicates a research gap that requires further 
examination. 

To test their critical assumption that attentional switch costs, i.e., the 
presence of a modality-shift effect, already build up during the early preattentive 
stage that precedes attentional selection, Töllner et al. (2009) recorded the 
electrophysiological activity via electroencephalography (EEG) parallel to 
performances. Crucially, the authors wanted to examine whether a supramodal 
marker for attentional reorienting exists, indicating consistent switch costs for 
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both visual and tactile modality shifts. By averaging EEG epochs, i.e., stimulus-
locked segments, across frontal, central, and parietal electrode positions, they 
retrieved the event-related potentials (ERPs). They compared the amplitude of the 
early tactile (somatosensory) and visual component deflections within distinct 
time windows, namely the P1, N1, and N2 components. The authors found a 
significant increase in N1 amplitude for modality changes in vision and touch 
across those electrode positions relative to modality repetitions, indicative of a 
supramodal mechanism. At the same time, there were no findings in P1 and N2 
or negligible interactions. 

To ensure that this ‘early’ supramodal N1 effect, within 140-180 ms, 
originates during the perceptual and preattentive stage and not from a ‘refractory’ 
response-related bias of the preceding modality-different target, Töllner and 
colleagues (2009) conducted a second experiment by controlling the response 
patterns. Instead of simple sensory discrimination, participants had to 
distinguish visuo-tactile features: two visual LED colors, red and green, and two 
tactile vibration patterns, 40 Hz and 100 Hz. Importantly, response patterns were 
balanced by a visual and tactile feature for each pedal, e.g., a red-light or a 40 Hz 
target for left-pedal and a green-light or 100 Hz for right-pedal responses (or vice 
versa), eradicating a potential modality-specific response bias. Similar to the 
previous experiment, response patterns were counterbalanced and switched 
during the task’s half-time break. 

Again, Töllner et al. (2009) replicated the modality-shift effect (596 ms vs. 545 
ms) for successive changes between visual and tactile targets. In contrast to their 
first experiment, they found a response difference between visual (546 ms) and 
tactile (595 ms) target detection, with the former being faster, yet both were 
seemingly slower than those in the first experiment (479 ms & 492 ms). Notably, 
this difference results from the adapted task design, indicating that ‘modality-
discrimination’ (485 ms) is faster than exact ‘feature-discrimination’ (571 ms), 
reflecting ‘rough’ and ‘precise’ decoding modes. This delay for precise 
discrimination was especially the case for both tactile targets. While a simple 
tactile stimulation (experiment 1) could be detected relatively effortlessly, the 
tactile discrimination between 40 Hz and 100 Hz vibrations (experiment 2) was 
more difficult. Instead of a common position effect (experiment 1), Töllner et al. 
(2009) reported a three-way interaction for modality, modality shift, and location 
shift. Importantly, tactile target discrimination was fastest for dual repetitions: 
modality and location, e.g., left vibration → left vibration, whereas visual 
repetitions were comparable across location-shift conditions. Unfortunately, 
Töllner et al. (2009) did not analyze the four distinct features and their intramodal 
feature shifts separately (e.g., 40 Hz → 100 Hz, or red → green). Finally, the 
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authors examined another factor of response shift. They reported interactive 
outcomes for repetitions and changes in responses, modalities, and locations, e.g., 
faster reaction times for repeated modalities and pedal responses. 

The EEG findings in the second experiment were congruent with those in the 
first experiment, yet more detailed. Again, the somatosensory N1 sensitively 
depicted modality shifts (vision → touch) with increased amplitudes. Although 
the authors found an interaction between tactile modality shifts and location 
repetitions with an increased N1 (e.g., left visual target → left tactile target), 
crucially, the N1 was unaffected by response conditions. On the other hand, 
findings in the visual N1 were more restricted than before, as the enhanced 
negativity for modality shift (touch → vision) was mainly over frontal regions and, 
by declining, becoming absent over parietal regions. Ultimately, by finding no 
systematic interaction between modality (vision, touch) and modality shift 
(repetition, change), Töllner et al. (2009) interpreted their evidence, the presence 
of a ‘modality-unspecific’ anterior N1 effect, in terms of supramodal mechanism 
or marker that sensitively depicts modality shifts during successive trials already 
during the preattentive stage, contrasting response-related accounts (e.g., 
Mortier et al., 2005). 

Besides these exciting findings, the relevance of Töllner et al.’s (2009) paper 
stems from the direct comparison with the visual search literature. Crucially, the 
authors reconciled their electrophysiological anterior N1 as a marker for 
“modality-shifts” with a similar, yet later, fronto-central ‘transition N2’ 
component for visual “dimension-shifts” (e.g., red color target → left-tilted 
orientation target) (Gramann et al., 2007). Based on the preattentive hierarchy of 
the DWA (Found & Müller, 1996; H. J. Müller et al., 1995), Töllner et al. (2009) 
argue that the anterior N1 reflects a crossmodal search marker for “attentional 
weight shifting”, and therefore, adheres the same ‘weighting rules’ as in visual 
search. This reasoning led the authors to propose a modality-weighting account 
(MWA), a crossmodal generalization and extension of the DWA. Remember, the 
DWA consists of layers of dimension maps, i.e., independent analyzer units, that 
combine specific activations from various feature maps. Finally, those activations 
get integrated onto an attentional priority map in a spatially consistent manner 
and ranked based on saliency and relevance, i.e., the interplay of attentional 
factors guiding the serial capture of selective attention. 

The innovative idea of Töllner et al.’s (2009) MWA is the extension of the 
preattentive hierarchy by an extra layer of modality-specific computations that 
integrate the weighted signals of their underlying (modality-specific) dimensions 
(e.g., vision: color, orientation, etc.; touch: vibration, pressure, etc.). As before, 
attentional resources will be limited across these modality maps (crossmodal 
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search), yet they likely exceed intramodal capacities (e.g., visual search). This 
issue relates to the fundamental (and opening) question of whether attentional 
resources share a common pool with a (global) limited capacity or whether each 
modality derives its own (local) resource limits, where the overall capacity equals 
the sum of separate pools (Miller, 1982; Treisman, 1969). Finally, these modality 
maps are linked to a topographic “supramodal master map” that combines the 
multisensory signals into an attention-guiding mapping of crossmodal space. 

Although the MWA of Töllner et al. (2009) is ‘merely’ a conjecture from their 
anterior N1 findings, without ‘unequivocal evidence’, it nonetheless yields the last 
building block to obtain a complete scientific framework for empirical research. 
The ‘co-existence’ of a multisensory DWA and MWA, describing the underlying 
preattentive dynamics in crossmodal search, marks an open gap in attention 
research (s. Figure 1–2). The critical quest to favor an MWA, as depicted by 
Töllner et al. (2009), is to provide evidence for the additional layer of modality 
maps, which should substantially exceed the (subordinate layer of) dimension 
maps. By applying Occam’s razor, the null hypothesis assumes no functional 
dissociation between modality-specific and dimension-specific processes, i.e., both 
thrive from same-level computations and weightings, which indicates that the 
extended (multisensory) DWA is sufficient. As shown later in the “Hypotheses 
and Limitations” section, this conceptual juxtaposition (MWA vs. DWA) leads to 
concise and superordinate research questions for each of the five attention factors, 
anticipating performance behavior as well as the neural dynamics of attentional 
correlates. 

Besides the layer of modality maps, another decisive description of the MWA 
is the assumption of a supramodal priority map that combines the modality-
specific spatial encoding of relevant sensory modalities. Regarding visuo-tactile 
search, this supramodal priority map fuses the spatial functions of external visual 
information and the egocentric tactile information (Assumpção et al., 2018; 
Carrasco et al., 1995) into coherent multimodal representations in crossmodal 
space. However, the empirical evaluation of a supramodal priority map is not 
trivial, as the variety of counter-accounts must be considered. For example, 
instead of a common, supramodal, and crossmodal priority map, it might already 
be sufficient to assume separate modality-specific priority maps (e.g., visual or 
tactile priority maps) interacting with each other after completing modality-
specific saliency computations through crossmodal links. Whereas the outcome of 
‘multimodal representations’ would be the same in both accounts, the neural 
functionality, however, is of decisive difference, describing crossmodal 
prioritization as either ‘static’ and ‘unique’ or ‘distributed’ within the 
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frontoparietal attention network (Eimer et al., 2002; Eimer & Van Velzen, 2002; 
Spence & Driver, 2004). 

Regarding the redundant-signal effect (RSE) and the modality-shift effect 
(MSE), crucially, the MWA assumes that the performance benefits from 
crossmodal redundant targets should exceed those of intramodal redundant ones 
that combine distinct dimensions, while the costs for modality shifts should 
exceed those of intermodal dimension shifts. Both outcomes favor the additional 
layer of modality maps above the layer of dimension maps. Interestingly, the 
empirical evidence for the RSE points to crossmodal links within parietal regions, 
presumably summing the weights of crossmodal activations, whereas the MSE in 
Töllner et al. (2009) suggests a supramodal involvement of frontal areas in the 
anterior N1 component for weight shifting between sensory modalities. Again, 
both brain regions represent characteristic attention network hubs and are 
further consistent with the findings of various studies (Chambers et al., 2007; 
Macaluso et al., 2002b; Man et al., 2015; Quinn et al., 2014) that found 
supramodal and invariant activations, for example in the temporo-parietal 
junction and the inferior frontal cortex during crossmodal search tasks. Likewise, 
there is agreement that unimodal processes, i.e., the processing of low-level 
sensory information, temporarily precede the activation of crossmodal links or the 
convergence to “higher association areas” (Quinn et al., 2014; Senkowski et al., 
2008; Talsma & Woldorff, 2005; Töllner et al., 2009). Of note, multisensory 
integration or crossmodal binding occurs within 157-260 ms in the supramarginal 
gyrus and from 280 ms onwards from the middle frontal gyrus (cf. Quinn et al., 
2014), falling within the 100-300 ms time window of attentional selection (e.g., 
Dalvit & Eimer, 2011; Jenkins et al., 2016).  

Regarding the supramodal priority map, the anterior N1 within 140-180 ms 
seemingly disqualifies as a spatio-temporal candidate due to its early origin and 
spatial blindness, since spatial sensitivity posits a fundamental prerequisite of 
the priority map. Therefore, the anterior N1 indicates perceptual gating by 
updating (or re-adjusting) the weights of sensory channels as reflected by the 
amplitude increase for modality shifts. Furthermore, the anterior N1 reflects the 
‘rough’ stage of ‘modality-discrimination’, consistent across both experiments, in 
contrast to the subsequent ‘precise’ stage of exact ‘feature-discrimination’ 
(experiment 2) that further relies on a higher ‘attentional resolution’, thus 
delaying reaction times. Therefore, the frontal N1 reflects a control mechanism 
for attentional orienting in crossmodal search but not a spatially-coherent 
representation of multisensory signals (Töllner et al., 2009). 

Multisensory integration, i.e., the convergence of sensory information, occurs 
parallel to attention processes, spanning multiple stages with spatio-temporally 
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distinct properties (Man et al., 2015; Meyer & Damasio, 2009). Hence, it is no 
coincidence that the proposed modality-weighting account (Töllner et al., 2009) 

Figure 1–2. The preattentive hierarchy for crossmodal search is shown as scientific 
framework. The preattentive architecture includes a hierarchy of distinct topographic 
maps on multiple layers or levels. In visual search, this hierarchy combines the parallel 
activation of feature maps, as proposed by the feature-integration theory (FIT), within 
independent analyzer units or dimension maps (orange solid lines) that project their 
loads via weighted summation (Σw) in a spatially coherent fashion onto an attentional 
priority map (purple dashed lines). Based on saliency-summation models (SSM), the 
priority map guides selective attention serially to the most salient or relevant (display 
or scene) information, i.e., the highest feature-contrast based on a ‘winner-takes-all’ 
mechanism. The main research interest is to provide evidence for the preattentive 
hierarchy in crossmodal search. Here, it will be essential to examine whether a 
multisensory dimension-weighting account (DWA) already suffices or whether the 
preattentive hierarchy needs to be extended by another intermediate layer of modality 
maps (as proposed by Töllner et al., 2009), describing a modality-weighting account 
(MWA). Generally, the MWA proposes modality-specific saliency maps (e.g., for vision 
or touch) that merge their spatio-topographic loads onto a supra-modal priority map. 
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has similarities to other scientific concepts, such as the convergence-divergence-
zone (CDZ) framework (Damasio, 1989; Meyer & Damasio, 2009), the global 
workspace theory (Baars, 1997; Dehaene et al., 1998; Shanahan & Baars, 2005), 
or transmodal nodes (Mesulam, 1998). In essence, all these models embed a 
hierarchical or network structure that includes forward and backward 
connections across sensory, memory, or attentional systems that are connected 
via heteromodal, transmodal, or association hubs, enabling higher cognitions 
(e.g., working memory) and subjective experiences (e.g., consciousness) as well as 
coordinating actions (e.g., motor responses). 

Fascinatingly, these models (attempt to) describe the whole set of cognitive 
functions by more or less explicitly utilizing the term maps as distributed 
functional mechanisms and resources. For example, the CDZ framework 
distinguishes between perception and recall (or mental imagery) modes, reflecting 
the activation of relevant maps (e.g., feature binding) through perceptual forward 
integration or memory-based backward reconstruction. However, these models 
need more explicit descriptions of the underlying mechanisms despite their 
functional universality, which the MWA entails by incorporating the (explicit) 
weighting mechanism among layers of its preattentive hierarchy. 

Last but not least, to enable the empirical comparability of both the DWA and 
MWA, it is vital to address the issue of ‘search displays’, which are generally quite 
different among visual and crossmodal search experiments. Whereas targets in 
visual search can ‘pop-out’ among many nontargets and differ by numerous 
contrasts in features and dimensions, i.e., complex displays from computer screen 
presentations (Luck, 2011), the displays in crossmodal search paradigms appear 
somewhat limited by including just one or a couple more LEDs, loudspeakers, and 
tactile stimulators (e.g., Gondan et al., 2007; Kanayama et al., 2012; Macaluso et 
al., 2002b; Miles et al., 2011; Spence, Nicholls, et al., 2001; Talsma & Woldorff, 
2005; Töllner et al., 2009). Despite congruent findings, this ‘display difference’ 
between visual and crossmodal search makes a direct comparison seem a bit 
arbitrary. To overcome the ‘display issue’, this thesis introduces a novel visuo-
tactile search paradigm by extending the number of tactile stimulators while 
guaranteeing visual search compatibility. Overall, the combination of visual 
projections and tactile vibrations within a joint (multisensory) screen enables the 
collocated presentation of visual and tactile targets and nontargets across a fixed 
number of locations (8 or 10), symmetrically arranged across the left and right 
hemifields and fingertips. Crucially, this expansion of crossmodal items (i.e., 
increasing the set size) enables a direct comparison between the intramodal 
dimension-specific dynamics of visual search and the modality-specific dynamics 
in crossmodal search. Using the visuo-tactile search paradigm, the empirical 
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evaluation of dimension and modality maps is possible, favoring either an MWA 
or an extended DWA. 

Electrophysiological Evidence 

Having introduced the empirical framework (MWA vs. DWA), the primary 
focus of the thesis lies on the preattentive stage and the capture of selective 
attention as the outcome of attentional priority computations. Hence, it is 
essential to consider this time window in greater detail by examining the 
electrophysiological evidence. Of note, there are plenty of EEG findings parallel 
to the scientific evolution of visual and crossmodal search, similar to those of 
Töllner et al. (2009), whose findings should now be more intelligible, given the 
conceptual knowledge. Of course, other neuroimaging techniques, such as fMRI, 
PET, or TMS, also revealed various insights into crossmodal attention besides 
EEG findings, for example, establishing the structural nodes of the frontoparietal 
attention network (Brefczynski & DeYoe, 1999; Chambers et al., 2007; Chambers, 
Payne, et al., 2004; Chambers, Stokes, et al., 2004; Corbetta et al., 1993; 
deBettencourt et al., 2015; Downar et al., 2000; Fink et al., 1997; Kristjánsson et 
al., 2007; Kucyi et al., 2017; Macaluso et al., 2000, 2002a, 2002b; Man et al., 2015; 
Pollmann et al., 2000; Posner & Dehaene, 1994; Shafritz et al., 2002). Since EEG 
is the technique of choice for the following studies, those other techniques derive 
a supportive role in the quest for suitable EEG markers and the interpretation of 
their findings. Yet, fMRI will be crucial in the “Attentional Priority Map” section. 

Generally, the EEG measures voltage changes over the scalp from many 
electrode channels with an incredible temporal resolution: the sampling rate, i.e., 
the number of measured time points per second, is often 1000, retrieving one 
voltage score per millisecond for each electrode. The scientific strength of the EEG 
reveals itself in combination with the exact timing of “task events”, e.g., 
timestamps that indicate a visual display’s onset (including targets, nontargets, 
and/or distractors) or button-press responses. Commonly, the EEG gets sliced into 
same-length segments or epochs that align on those task events, containing the 
various task conditions. The event-related potential (ERP) reflects the (condition-
wise) average of those (selected) epochs across time points and electrodes (or 
electrode clusters). Crucially, the (average) ERP amplifies the signal-to-noise 
ratio (SNR) with increasing trials, i.e., the number of epochs; it strengthens the 
signal while canceling out the noise, revealing some stable “event-related 
components” with characteristic amplitude deflections and timings. The 
statistical evaluation is based on the amplitude, e.g., the positive maxima and 
negative minima, and the latency, e.g., the peak timing, of the subject-wise ERP 
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components. Before analyzing (relevant) ERP components, a sequence of specific 
preprocessing steps is performed, such as re-referencing, high-/low-pass filtering, 
the removal of ocular and muscular artifacts, independent component analysis 
(ICA), and baseline correction to improve the SNR and ensure the validity of 
statistical findings (Bell & Sejnowski, 1995; Bigdely-Shamlo et al., 2015; Luck, 
2014). 

As indicated above in the previous sections, the main focus is on preattentive 
computations that precede and guide the capture of (crossmodal) selective 
attention. Therefore, choosing an adequate EEG component that indicates 
attentional processes for vision and touch is critical to establish empirical 
evidence favoring a preattentive hierarchy based on modality maps (MWA) or 
dimension maps (DWA), respectively. To obtain such neural markers, it is 
essential to consider the influence of the perceptual, preattentive, and attention 
stage on the various EEG components within 300 ms after stimulus onset.  

By starting at the perceptual level, well-known visually evoked potentials or 
components are the P1, the first positive peak within 90-130 ms, and the N1, the 
first negative trough within 160-200 ms, which arise most clearly over lateral 
parieto-occipital regions (Eason, 1981; Hillyard & Münte, 1984; Mangun, 1995; 
Van Voorhis & Hillyard, 1977). Although the P1 and N1 are elicited consistently 
by sudden visual changes, indicating a (purely) perceptual bottom-up mechanism 
regardless of the underlying visual relevance, e.g., a visual target or distractor, 
nonetheless, those studies also revealed a mechanism for spatial attention that 
increases the contralateral P1 and N1 amplitudes for visual signals located in the 
attended visual hemifield. Yet, this ‘early’ attention impact was likely due to a 
preceding and relevant cue, initiating an attention shift towards the cued visual 
hemifield before the target’s appearance and, therefore (simply) resembles the 
cue-target validity (Mangun, 1995; Mangun et al., 1987; Mangun & Hillyard, 
1987, 1991). Essentially, the ‘spotlight’ of attention is allocated in advance to the 
cued spatial location, amplifying the visually evoked P1 and N1 components in 
the visual cortex for the visual target. 

Besides the visual-evoked potentials (VEPs), there are also auditory-evoked 
potentials (AEPs) and somatosensory-evoked potentials (SEPs), each indicating 
distinct spatio-temporal components for vision, audio, and touch that are linked 
to processes of perceptual integration (V. P. Clark et al., 1994; Cruccu et al., 2008; 
García-Larrea et al., 1992, 1995; Hillyard et al., 1973; Levit et al., 1973; 
Näätänen, 1988; Näätänen & Gaillard, 1983; Näätänen & Picton, 1987; Picton & 
Hillyard, 1974; Van Voorhis & Hillyard, 1977). Generally, those studies presented 
sensory information to the left or right visual hemifields, ears, or hands, and 
participants were instructed to either attend to the left and unattended to the 
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right side or vice versa (blockwise or via cues). Concurrently, EEG signals were 
recorded, and the spatio-temporal deflections of early ERP components (e.g., P1, 
N1, P2) were analyzed and shown as topomaps (Driver & Spence, 1998; Eimer & 
Driver, 2001; Eimer & Schröger, 1998; e.g., Föcker et al., 2010). Of note, early 
ERP components for attended locations improved regardless of the preceding cue’s 
modality (e.g., sound cues that precede visual stimuli) (e.g., Giard & Peronnet, 
1999; McDonald et al., 2000). 

Although the term “N1 component” is common in each sensory modality, its 
timing and spatial deflection differ genuinely between the auditory N1 (70-120 
ms), visual N1 (160-200 ms), and somatosensory N1 (100-150 ms) (e.g., García-
Larrea et al., 1995; Hillyard & Münte, 1984; Näätänen & Picton, 1987). 
Furthermore, while for auditory perceptual processing, i.e., the integration of 
auditory information, often an N1-P2 complex is mentioned, a 100 ms negative 
trough followed by a positive peak after around 180 ms (Näätänen & Picton, 1987; 
Picton & Hillyard, 1974; Woldorff & Hillyard, 1991), in contrast, the term P1-N1 
complex is used in visual perceptual integration, indicating a positive peak (120 
ms) that is succeeded by a negative trough (170 ms) (Gruber et al., 2005; Klimesch 
et al., 2004). Notably, auditory and somatosensory processing temporarily 
precedes visual integration based on the N1 timing, and some form of sensory 
dipole with opposite polarities occurs between auditory and visual processing (N1-
P2 complex vs. P1-N1 complex). 

The N1 component (and subsequent EEG components) are assumed to reflect 
the “activation of neural assemblies” (Picton & Hillyard, 1974, p. 197) within 
modality-specific brain regions, for example, the parieto-occipital visual cortex or 
the central somatosensory cortex. Since EEG signals derive from post-synaptic 
potentials (Luck, 2014), new insights from combined EEG and local field 
potentials suggest that the P1 component primarily derives from excitatory 
activity in the supragranular layer, while the N1 component reflects inhibitory 
activity (Bruyns-Haylett et al., 2017). This finding aligns well with previous 
studies on ongoing alpha oscillations, which (combined with theta oscillation) 
produce the P1-N1 complex, leading to the external and internal states for the P1 
and N1, respectively (Gruber et al., 2005; Hanslmayr et al., 2007, 2011). Another 
takeaway from Bruyns-Haylett and colleagues' (2017) study is the ‘Gaussian’ 
description of EEG components. Similar to Luck (2014), the average ERP consists 
of independent and superimposed components (with Gaussian properties), i.e., 
additive post-synaptic potentials of supragranular, granular, and infragranular 
layers, which adequate experimental interventions and recordings can discern. 
Besides the component’s maximum amplitude and latency, the authors also 
report the full width at half maximum (FWHM), a standard parameter in 
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Gaussians that depicts the width or duration at 50 % amplitude height, including 
an “onset” and “offset” timing. 

To return to the functional role of the N1 regarding multisensory integration 
and selective attention, so far, based on the presented evidence, it reflects 
modality-specific and inhibitory processes. Hence, the various findings on the 
anterior N1 (140–180 ms) that show increased amplitudes for modality shifts (R. 
Cohen & Rist, 1992; Gondan et al., 2007; Töllner et al., 2009) might indicate a 
perceptual or preattentive coping mechanism towards ‘unexpected events’ 
(Spence, Nicholls, et al., 2001). In line with ‘feature-inhibition’ and the ‘inhibition-
timing hypothesis’ (Klimesch et al., 2007; Treisman & Sato, 1990), the increased 
inhibitory N1 or higher alpha synchronization reflects additional efforts to 
improve the signal-to-noise ratio for target discrimination for the unexpected 
modality (e.g., touch), due to a bias of the preceding modality (e.g., vision), and 
reduced weighting precision in touch. Overall, it appears reasonable to assume 
that these early components, such as P1 and N1, reflect a modality-specific stage 
of perceptual integration that can be influenced (or superimposed) by the 
“processing negativity” (within 50–150 ms) linked endogenous attention and top-
down control (e.g., prior history, cued locations, or anticipatory activity) (cf. 
Näätänen, 1982). However, as will be shown in the following paragraphs in a 
detailed study description of Talsma and Woldorff (2005), these components 
(sensory N1 and processing negativity) do not provide clear evidence for 
crossmodal attention, as they precede the stage multisensory integration and 
attentional capture. Therefore, they disqualify as suitable candidates for testing 
neural mechanisms across sensory modalities. 

Based on empirical evidence, the dissociation between ‘early’ uni-modal and 
‘late’ cross-modal perceptual processes appears adequate (e.g., De Meo et al., 
2015; Teder-Sälejärvi et al., 2002), similar to the debate on ‘early’ and ‘late’ 
attentional selection (Pashler, 1997). In their study, Talsma and Woldorff (2005) 
conducted a detection task where participants had to respond to left or right 
visual white square wave grating), auditory (1600 Hz tone with 65 dB), or 
crossmodal targets, which were either attended or unattended, while concurrently 
measuring the EEG activity. Overall, the authors pursued to establish evidence 
for multisensory integration during the preattentive stage by comparing the 
temporal evolution and dissociation of EEG activity between the redundant 
auditory-visual (AV) signal and their non-redundant sum (A + V), similar to 
previous studies (Giard & Peronnet, 1999; B. E. Stein & Meredith, 1993; Wallace 
et al., 1993). To achieve this, Talsma and Woldorff (2005) excluded the 
‘anticipatory’ activity, i.e., the endogenous processing negativity or contingent 
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negative variation (CNV; Walter et al., 1964), by applying a 2 Hz high-pass filter, 
correcting for slow oscillatory drifts (Teder-Sälejärvi et al., 2002).  

The authors retrieved three phases for multisensory integration from the 
difference in (AV) and (A + V): a frontal positivity within 100–140 ms that 
indicates enhancements from (redundant) multisensory integration, invariant for 
attended or unattended stimuli, and two centro-medial positivities within 180–
220 ms and 320–360 ms. The factor attention, i.e., the difference between 
attended and unattended signals, was significantly enhanced within 140–300 ms, 
revealing a substantial negative deflection that peaks around 250 ms. Of note, 
this time window for attentional processes is congruent with previous suggestions 
of 100–300 ms (Dalvit & Eimer, 2011; Jenkins et al., 2016) and 200–300 ms 
(Palmer et al., 2019; Wolfe et al., 2004). Finally, multisensory integration and 
attention interacted within 160–200 ms, that is, the timing of the N1 component 
and preceding the 250 ms attention peak, and at a later stage between 320–420 
ms.  

Overall, the findings of Talsma and Woldorff (2005) show that multisensory 
integration occurs at a relatively late stage (around 180 ms), effectively 
distinguishing uni-modal perceptual and multisensory stages. Notably, the 
timing of multisensory integration aligns with the late visual N1 (160–200 ms), 
indicating temporal sensory segregation between late visual and earlier auditory 
(N1: 70–120 ms) and somatosensory (N1: 100–150 ms) processes of sensory 
integration. Although speculative, the interplay between the (external or 
excitatory) positive P1 and the (internal or inhibitory) negative N1 might reflect 
the (low-level) perceptual and preattentive binding mechanism to generate 
accurate representations (or mappings) of our sensory environment (Bruyns-
Haylett et al., 2017; Hanslmayr et al., 2011; Klimesch et al., 2007). Support for 
this proposition comes from the presented studies as multisensory stimuli 
produce a frontal positivity within the P1 timing (100–140 ms), indicative of 
combined external signals (Talsma & Woldorff, 2005), and modality changes 
between successive trials are linked to an anterior N1 (140–180 ms) reflecting 
internal weight shifts (Gondan et al., 2007; Töllner et al., 2009). Again, it would 
be interesting to examine in greater detail whether the inhibitory N1, i.e., the 
enhancement in amplitude, reflects the internal weighting of relevant and 
irrelevant feature activations between and within sensory modalities.  

However, since the multisensory integration only starts with the timing of 
the (late visual) N1 component, again, this disqualifies the N1 as a sensitive 
marker for crossmodal selective attention. Nonetheless, it is important to 
emphasize that the N1 is associated with early processes of attentional orienting, 
as it modulates contralaterally to the attended stimuli with increased amplitudes. 
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This adaptive sensitivity of the N1 points to the convergence of space-based and 
object-based computations into a coherent spatio-topographic mapping based on 
saliency and relevance, that is, the attentional priority map (Fecteau & Munoz, 
2006; Koch & Ullman, 1985; Logan, 1996; Wolfe, 1994). Therefore, the N1 
precedes the capture of spatial selective attention, likely reflecting a gateway 
between the (parallel) preattentive and (serial) attentive stage. 

Before the finish line of selecting suitable neural markers begins, it should be 
noted that the sequence of ERP components within the selected time range of 
100–300 ms can be regarded as a process of evidence accumulation, spanning 
across perceptual, preattentive, and attentive stages (or levels), including various 
ERP components, such as P1, N1, P2, N2, and even P3 (Driver & Spence, 1998; 
Eimer & Driver, 2001; Gaillard, 1976; Gramann et al., 2007; Levit et al., 1973; 
Luck & Hillyard, 1994a; Näätänen, 1982, 1988; Polich, 1986; Sams et al., 1983; 
Squires et al., 1976; Sutton et al., 1965). So far, a suitable neural marker should 
follow the preattentive stage, i.e., subsequent to the N1 component, and within 
the attention stage, e.g., around 250 ms. Further, a good candidate must entail 
spatial encoding due to the spatio-topographic aggregation of the priority map. 
Also, it should modulate sensitively to the five factors of selective attention (e.g., 
bottom-up saliency of features and locations, prior history, top-down control, and 
sustained attention). Finally, the neural dynamics of those markers should be 
similar and consistent for visual and tactile targets. By finding such neural 
markers, comparing the MWA and DWA should be possible by examining 
modality-specific and supramodal mechanisms based on a set of precise empirical 
hypotheses.  

Posterior Contralateral Negativity 

The above-stated catalog of requirements enables an explicit search for an 
adequate EEG component that indicates the deployment of selective attention 
based on the preceding preattentive computations. The N2pc is exactly such a 
component. It arises as posterior contralateral activity from pop-out targets in 
contrast to (pop-out) non-targets or homogenous displays within 200-300 ms after 
stimulus onset (cf. Luck & Hillyard, 1994a). Further, the N2pc, i.e., the target-
related contralateral negative deflection, was present for feature contrasts in 
various visual dimensions, such as orientation, color, and size. Of note, Luck and 
Hillyard (1994a) found performance benefits, i.e., accelerated reaction times, for 
prior knowledge of the target’s feature-contrast (e.g., a color difference), arising 
in the EEG components from 175 ms onwards (similar to Talsma & Woldorff, 
2005), thus indicating an interaction of bottom-up and top-down processes during 
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the stage of attentional selection (consistent with Treisman & Gelade, 1980; Wolfe 
et al., 1989). Interestingly, the presence of the N2pc is based on feature 
discrimination of target information against irrelevant non-targets or distractors, 
that is, it occurs within a ‘complex’ visual display that includes multiple (or at 
least one other) stimuli. In contrast, the N2pc is absent for target-only 
presentations. In another study by Luck and Hillyard (1994b), the authors 
describe the N2pc as a “spatial filtering process” that selects relevant 
contralateral target information while suppressing (or inhibiting) irrelevant non-
targets or distractors within the visual scene.  

In another study about the N2pc, Eimer (1996) obtained similar results for 
color and form targets among three or even one distractor (or non-target) item(s), 
producing a substantial and target-sensitive posterior contralateral negativity. 
This study included multiple visual discrimination tasks, where visual displays 
were presented for 150 ms. Participants had to discriminate color targets (red or 
blue), form targets (W or M), or word targets (‘RECHTS’ or ‘LINKS’) among 
respective nontargets. The novelty of this N2pc study was the statistical 
evaluation of N2pc amplitudes, which derived from the (mean average) difference 
of the ipsilateral from the contralateral amplitude within the N2 time range (220-
300 ms). Similar to Luck and Hillyard (1994b), Eimer (1996) concluded that the 
N2pc reflects an “attentional filtering process” for the selection of relevant target 
information.  

Fascinatingly, the “attentional selection” in the N2pc can be associated 
spatio-topographically with the preceding bilateral P1 component (80-120 ms), 
which time-wise refers to the initial firing rates of (retinotopic or position) 
receptive fields (cf. Chelazzi et al., 1998), i.e., spatio-topographic integration of 
the external visual scene. While the irrelevant receptive fields stop firing during 
the timing of the inhibitory visual N1, relevant receptive fields maintain 
engagement with the target, i.e., they continue firing based on saliency or 
relevance, bottom-up discrimination or top-down templates, respectively. Hence, 
the N2pc is the consequence or outcome of spatial prioritization and feature 
binding across visual dimensions, (likely) producing a negative deflection due to 
the continuous firing of contralateral receptive fields (Chelazzi et al., 1993; Luck 
et al., 1997). The distribution of (position) receptive fields is closely linked to the 
retina, including many smaller ones in the fovea and larger but fewer ones 
towards parafoveal and peripheral locations (e.g., Y. Chen et al., 2009; Sereno et 
al., 1994). This distribution pattern of positional receptive fields aligns with the 
eccentricity effect, i.e., a decay in visual detection performance from foveal toward 
peripheral regions (Carrasco et al., 1995; Staugaard et al., 2016; Wolfe et al., 
1998). Also, the N2pc amplitude decreases with extending eccentricity (Schaffer 
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et al., 2011) or remains high within parafoveal regions and then plunges 
peripherally (Papaioannou & Luck, 2020), providing further evidence that the 
N2pc reflects a spatial marker for attentional selection.  

Another study stems from Wolber and Wascher (2005). Although the authors 
replicated the previous N2pc findings of selective “visuo-spatial processing” in a 
series of experiments, they also raised concerns regarding the naming convention. 
By analyzing the “N2pc” peak latency, Wolber and Wascher (2005) found a range 
from 197 ms to 325 ms for the asymmetric deflection of the N2pc. Hence, the term 
“N2pc” in reference to the timing of the N2 component might be a bit misleading, 
as the “visuo-spatial” component arises within the N1 to P3 timing; thus, names 
like N1pc, N2pc, or N3pc would be more consistent (yet more confusing) for the 
same underlying process (Verleger et al., 2012). Therefore, the authors endorsed 
the more general expression: posterior contralateral negativity (PCN). The term 
PCN is also the expression of choice for this thesis, yet PCN and N2pc refer to the 
same functional process of attended spatial target selection. Notably, Wolber and 
Wascher (2005) obtained the PCN component by taking the average difference 
between contra- minus ipsilateral electrode channels for left and right targets, 
respectively (e.g., the average of right: PO7–PO8 & left: PO8–PO7 signals). 
Further, the PCN latency was chosen subject-wise as the timing of the negative 
peak within a selected grand average time range, e.g., 150–300 ms or 200–350 
ms.  

The main findings of Wolber and Wascher (2005) revealed systematic 
differences in PCN latencies across their three experiments. For example, the 
PCN latency was delayed for less salient form targets and increasing set sizes of 
nontargets but faster for congruent color embeddings. Overall, the authors found 
highly significant positive correlations between the PCN latency and reaction 
time performances; the earlier the PCN peak latency, the faster the reaction time. 
Of note, instead of choosing the PCN electrodes in advance (e.g., the ‘canonical’ 
PO7 and PO8 channels), Wolber and Wascher (2005) selected the (symmetric) 
electrode pairs based on the grand average ‘maximum’ amplitude in N1 and PCN, 
deriving three different selections for each experiment: PO5/PO6 for form targets, 
P7/P8 for spatially cued squares, and PO7/PO8 for color-form targets (e.g., yellow 
circle, or red square).  

Overall, the PCN established itself as a common neural marker for spatial 
target selection and attentional deployment in many studies, either as a direct 
measurement of systematic variations in PCN amplitude or latency (Kiss et al., 
2008; Krummenacher et al., 2014; Lleras et al., 2008; Ruge & Naumann, 2006; 
Töllner et al., 2008, 2010; Woodman & Luck, 1999, 2003), or as an indirect 
measurement of asymmetric posterior deflections and/or the difference between 
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attended and unattended target conditions within 150-350 ms (Driver & Spence, 
1998; Gramann et al., 2007; Hillyard & Münte, 1984; Mangun, 1994; Mangun & 
Hillyard, 1988). 

After demonstrating the functional relevance of the PCN by showing 
systematic variations in amplitude and latency, it is essential to continue the 
detailed description to obtain a complete holistic concept of the PCN component. 
Similar to the concept of event-related EEG components, the PCN deflection 
entails a (peak) amplitude and latency, reflecting magnitude or signal strength 
(y-axis) and timing (x-axis) parameters, respectively. Further, the PCN (as well 
as other ERP components) rely on a sufficient signal-to-noise ratio (SNR), i.e., 
maximizing the signal and minimizing the noise, which is ensured by a 
sufficiently large number of included trials and adequate preprocessing routines 
(e.g., artifact rejection procedures) (cf. Luck, 2014). To obtain a complete (PCN) 
component impression, further parameters can be derived, such as its temporal 
start and end, onset and offset, respectively, and the mean amplitude, the 
amplitude average within a specific time range (e.g., 225-275 ms). Whereas the 
selection of amplitude scores is precise, the choice of a ‘standardized’ onset or 
offset criterion is more relative. This issue can be scientifically resolved by 
utilizing the ‘full width at half maximum’ (FWHM) parameter of Gaussian 
distributions, the 50 % amplitude height, marking the duration (or width) from 
the onset to offset timing. Based on this description, the PCN (as well as other 
ERP components) can be regarded as a Gaussian curve (or the additive signal of 
Gaussian subcomponents from cortical layers) (Bruyns-Haylett et al., 2017; Luck, 
2014). Essentially, the timing and magnitude parameters represent the speed and 
amount of the allocated attentional resources (s. Figure 1–3).  

Another critical issue of the PCN addresses “noise susceptibility”. Despite 
establishing a clear PCN description above, extracting those various parameters 
satisfactorily for each participant exposes a practical challenge. As shown, the 
PCN “occupies” a broad time range, i.e., 150–350 ms, in which attentional 
selection occurs. Given its temporal fluctuation across single trials, the PCN is 
less ‘clocked’ or ‘time-locked’ as, for example, the perceptual and event-driven 
visual N1. This considerable variation flattens or broadens the signal strength of 
the PCN already in the average signals within participants and accumulates in 
the grand average between participants. In combination with hemispheric 
asymmetry and the common EEG noise, the various noise factors are particularly 
influential in ‘small’ components, such as the PCN, posing a critical challenge to 
the extraction of correct timings. 
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A noise or bias reduction technique is jackknifing (Miller et al., 1998; Miller, 
Ulrich, et al., 2009; Smulders, 2010; Ulrich & Miller, 2001). Instead of extracting 
each participant's latency (or amplitude) scores individually, the jackknife 
method computes a grand average for each participant by iteratively omitting the 
same participant. For example, in a sample with n participants, jackknifing will 
yield n averages each from n–1 participants. Those jackknife (grand) averages 
reduce the common and individual EEG noise tremendously, and adequate 
parameter extraction becomes feasible, i.e., the choice of onset, latency, or offset. 
However, since the obtained data reflect a ‘compressed’ solution, statistics need 
to either apply a correction of the test statistic (Miller et al., 1998; Ulrich & Miller, 
2001) or convert the jackknife scores into individual estimates by the reversed 
jackknife transformation (Smulders, 2010). Regardless of the underlying 
approach – ‘normal’ or jackknife procedure – the outcome is (mathematically) 
identical. Yet, jackknifing is “more correct” as it disregards the noise and thus 
optimizes signal detection, given the requirement that a component like the PCN 
is (actually) present and observable. 

Concerning the five factors of selective attention, the link with bottom-up 
locations and features seems evident since the PCN reflects a visuo-spatial marker 
for the attentional selection of target-relevant information. Importantly, the PCN 

Figure 1–3. The Posterior Contralateral Negativity (PCN) and Central Contralateral 
Negativity (CCN) is shown on the left and right side with their temporal deflections 
and topomaps around the peak latency. Left. The PCN represents a neural marker for 
visual selective attention and spatial filtering with a negative deflection (150–350 ms) 
over parieto-occipital regions (e.g., PO7/PO8, PO3/PO4, O1/O2 electrodes). The 
difference wave of (attended) contralateral and (unattended) ipsilateral hemifields 
consists of a peak amplitude and three temporal parameters of peak latency, onset, and 
offset. Importantly, onset and offset derive from the 50% criterion of the peak 
amplitude, similar to the full-width-at-half-maximum (FWHM) criterion in Gaussians. 
Right. The CCN reflects a somatotopic marker for tactile spatial attention (140–340 
ms) over central regions. Also, it can be described by peak amplitude and latency, and 
an onset or offset.  
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is elicited for multiple (or any) visual dimensions: color, orientation, size, and form 
(or shape) (Eimer, 1996; Luck & Hillyard, 1994a; Wolber & Wascher, 2005). In 
agreement with these findings in visual search (and the assumptions of a DWA), 
the PCN modulates sensitively for visual redundant targets. For example, Töllner 
and colleagues (2011) found in a detection task with a 1:2 ratio in absent/present 
trials that visual redundant targets (orientation + color feature contrasts) elicited 
an earlier PCN latency and a higher PCN amplitude in comparison to non-
redundant targets (orientation or color), except for same PCN amplitudes between 
the redundant and orientation target. Overall, the findings of Töllner et al. (2011) 
provided empirical evidence of an enhanced PCN due to cross-dimensional visual 
redundant targets. The authors conclude that the PCN latency and amplitude 
reflect “an index of the preattentive processing speed and … an index of the 
amount of attentional resource allocation” (Töllner, Zehetleitner, Krummenacher, 
et al., 2011, p. 139). Those redundancy gains in the PCN, i.e., the selective 
outcome of preattentive computations, were aligned with race-model violations in 
physical performances, promoting a preattentive ‘locus of coactivation’ instead of 
a post-selective origin, adding an electrophysiological view to the ongoing debate 
(Feintuch & Cohen, 2002; Krummenacher et al., 2002b; Zehetleitner et al., 2008). 

Another study by Grubert and colleagues (2011) found similar redundancy 
gains in the PCN (or N2pc) component for color-shape targets – a red-diamond 
among green squares or a green-diamond among red squares – that exceeded 
single-dimensional red/green color and diamond shape targets in their baseline 
detection task, where participants had to respond to whether a color, a shape, or 
color-shape target was present. Of note, whereas Töllner et al. (2011) report the 
participant-wise PCN latency, the maximum negative deflection (within 150–350 
ms), and the average of its ten surrounding time points as PCN amplitude, 
Grubert et al. (2011) report the participant-wise mean amplitude (average across 
180-280 ms), and the jackknifing PCN onsets, i.e., the timing that exceeded an
absolute threshold of –1µV. Yet both studies selected the PO7/PO8 electrode
locations to examine PCN dynamics.

The findings by Grubert et al. (2011) revealed that PCN onsets were 
significantly earlier for the redundant target (171 ms) than for color (184 ms) and 
shape (196 ms) targets, which were comparable to one another. In addition to this 
baseline condition, the authors included a color-target and a shape-target 
condition to examine the influence of target prioritization on the PCN. For 
example, in the shape condition, participants had to respond to the presence of a 
shape feature contrast – a pure shape or redundant target – while ignoring pure 
color targets and absent trials. The same logic applied to the color-target 
condition. Although Grubert et al. (2011) found “reliable N2pc” for pop-out 
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singletons, i.e., a significant negative deflection, interestingly, the (statistical) 
temporal benefits of redundant targets in PCN onsets vanished in the color-target 
(171 ms vs. 174 ms) and shape-target (176 ms vs. 190 ms) condition. Despite 
finding still a “reliable N2pc” in task-irrelevant color and shape pop-out 
singletons, critically, their PCN onsets and amplitudes were significantly delayed 
and attenuated in comparison to their task-relevant counterparts, respectively.  

In summary, Grubert et al. (2011) demonstrated that the PCN component 
only partially (but not entirely) reflects bottom-up saliency processing of visual 
pop-out singletons by showing evidence for the impact of top-down control or task-
driven prioritization based on task sets – the (pre-)activation of task-relevant 
target templates (see also Eimer & Kiss, 2010). Generally, both visual search 
studies and their observed PCN dynamics can be explained by the DWA. Whereas 
redundant signals combine their weights of dimension-specific activations for the 
guidance of attentional selection, which manifests in the faster and more 
enhanced PCN, single-target templates (actively) up-weight task-relevant 
dimensions (e.g., color-target) while concurrently down-weighting task-irrelevant 
dimensions (e.g., shape singletons), thus eradicating (saliency-driven) 
redundancy gains. Furthermore, the PCN amplitude refers to a limited capacity 
for the number of intradimensional targets (e.g., single vs. multiple colors). 
Whereas the PCN amplitude is larger and faster for a single color target, it 
becomes smaller and delayed for multiple color targets, indicative of a higher 
memory load in a letter-digit identification task (Grubert et al., 2016). This 
finding (as well) can be interpreted with the DWA, which assumes a limited 
capacity for each visual dimension (e.g., color). While a single feature (e.g., red) 
can utilize (almost) the full capacity (similar to focused attention), multiple 
features (e.g., blue and yellow) must share the same capacity (similar to divided 
attention). Overall, the PCN component reflects a visuo-spatial filtering process 
based on the preattentive summation of salient and relevant features across (and 
within) visual dimensions. 

Also, the PCN modulates sensitively to dimensional changes or repetitions 
between successive trails. For example, Töllner et al. (2008) demonstrated earlier 
and enhanced PCN for dimension repetitions (color → color & shape → shape: -
2.25 µV, 243 ms) in contrast to dimension changes (shape → color & color → 
shape: -1.95 µV, 251 ms), during an identification task, where participants had to 
select the target (e.g., a red circle or a blue square among blue circles) and respond 
to the orientation of its grating (horizontal or vertical).  

The study of Eimer et al. (2010) also found a delay in PCN onsets for target 
(and/or ‘distractor’) ‘swaps’ in comparison to repetitions (242 ms vs. 188 ms). 
While participants had to respond to the diamond notch (top or bottom), task 
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conditions were defined by color repetition or swaps between targets and 
distractors (actually nontargets) in two experiments. For example, when the 
previous trial consisted of a red-diamond target and three green-diamond 
nontargets, a ‘full repetition’ would reveal the same colors for the target and 
nontargets but in a different spatial configuration (e.g., red-diamond top-left → 
red-diamond bottom-right). In a ‘full change’, colors in target and nontarget were 
‘swapped’, revealing a green-diamond target and three red-diamond nontargets. 
The second experiment extended this ‘swap’ paradigm by introducing a third color 
(blue), which also included partial repetitions (e.g., red-diamond target [same] but 
three blue-diamond nontargets [new]) and partial swaps (e.g., blue-diamond 
target [new] and three red-diamond nontargets [swap]). Of note, Eimer et al. 
(2010) computed the mean amplitude for an early (200–270 ms) and late (270–
340 ms) time window. They calculated the jackknife PCN onset latencies with a 
relative threshold (instead of an absolute) by selecting the time point of 40% 
(jackknife) peak amplitude (see also Kiesel et al., 2008). 

The main findings of Eimer et al. (2010) revealed a temporal dissociation in 
PCN; full and partial repetitions revealed accelerated onsets and higher 
amplitude during the ‘early’ time window than partial and full swaps with delayed 
onsets and higher amplitudes during the ‘late’ time window. Generally, the early 
vs. late amplitude effects can be interpreted as a temporal delay between 
repetitions and changes, that is, shifted PCN components (genuinely) produce 
amplitude differences between early (or onset) and late (or offset) time windows. 
Interestingly, the PCNs in Eimer et al. (2010) revealed a characteristic PCN offset 
pattern in their Figure 5, but without statistical evaluation. Here, the PCN offset 
appears fastest for full repetitions and heavily delayed for full swaps, whereas 
partial repetitions and swaps had comparable PCN offsets in-between. 

While the analysis of PCN onsets and peak latencies is common, a scientific 
reflection on the functional role of PCN offsets is missing. Whereas the earlier 
timing scores seemingly reflect the origin and peak of (covert) visual target 
selection (and attentional deployment), the later PCN offset might indicate the 
completion of “target individuation” against nontargets within visual displays or 
scenes (see conference abstract of J. Foster et al., 2018). Likewise, the PCN offset 
could represent the transition toward a (central) object representation (Koch & 
Ullman, 1985) and post-selective processes, such as working memory, decisions, 
or response preparation (e.g., McClelland, 1979; Oberauer, 2019). Hence, PCN 
onset and offset (and duration width) might reveal a functional dissociation in the 
processing timeline, which (taken together) could better explain the increasing 
switch costs in reaction times. For example, performances in Eimer et al. (2010) 
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revealed the following pattern: full repetition < partial repetition < partial swap 
< full swap. 

Generally, it is important to underscore that the PCN findings in Töllner et 
al. (2008) and Eimer et al. (2010), that is, the PCN delays (and lower amplitudes) 
for visual (dimension) changes are consistent with the amount of switch costs in 
behavioral response times. Whereas the findings by Töllner et al. (2008) align 
with the DWA, assuming prominent switch costs for cross-dimensional changes 
due to weight shifting (e.g., color → shape), the interpretation of Eimer et al.’s 
(2010) findings needs some consideration. Crucially, the task of Eimer et al. (2010) 
required the detection of a color pop-out singleton (e.g., red) in contrast to (three) 
same-color nontargets (e.g., green). Although intertrial changes only included 
‘feature-shifts’ within the color dimension (e.g., red → green), which in terms of 
the DWA should be comparable, nonetheless, reaction times and PCN dynamics 
obtained substantial costs. This outcome can be explained by both a singleton-
search mode (“odd-one-out” or dynamic templates) instead of a feature-search 
mode (static templates) and the permanent adjustments of intra-dimensional 
weights: the weight of ‘feature-inhibition’ and ‘feature-selection’ are (constantly) 
swapped between the target and nontargets (e.g., red ↔ green). Hence, the weight 
shift sum in a full swap is the same as a regular ‘dimension-shift’, thus in line 
with the DWA. Further, the dynamic color-swapping between target and 
nontargets introduces a higher (attentional) load, similar to the set size effect in 
conjunction search. 

Of course, plenty of other studies provide further interesting evidence on the 
functional role of the PCN, yet going too much into the details would go beyond 
the scope. For example, reward expectation (Eckstein, 2011) seems to be linked 
with PCN dynamics – becoming earlier and larger for high-reward targets (Kiss 
et al., 2009; Wei & Ji, 2021). Nonetheless, some further (PCN) insights are given 
with a brief description.  

For example, Zivony and colleagues (2018) underscored the genuine (uni- 
directional) link between PCN and attentional shifting by emphasizing that an 
observed PCN (indeed) indicates an attentional shift toward a (relevant) target 
(including the timing and amount of deployed attentional resources). In contrast, 
attention shifts can occur without a PCN (e.g., the observation of an irrelevant 
distractor) due to a lack of attentional engagement. Of note, Zivony et al. (2018) 
measured the PCN onset as the 15 % fractional peak latency, that is, the time 
point with 15 % peak amplitude (Kiesel et al., 2008; Luck, 2014). The requirement 
of attentional engagement for relevant targets is a reminder of the (default) PCN 
constraints – it measures lateral but not midline targets and is susceptible to 
noise due to temporal variation in the deployment of attention. 
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Another study worth mentioning is by Matusz and Eimer (2013). 
Interestingly, their experiments examined a (consistent) PCN onset and 
amplitude difference between visual and audiovisual task sets (for target-color 
singleton cues), being delayed and decreased for the latter. While in the visual 
task, only one attentional template was activated (e.g., a red bar), two bimodal 
templates were active during the audiovisual tasks (visual: red bar or small bar; 
auditory: high pitch or sound). Again, similar to focused and divided attention, 
Matusz and Eimer (2013) explained their findings by weighting differences in the 
visual (color or size) template based on unimodal or bimodal prioritization. While 
the visual task simply applies visual (template) matching, the audiovisual tasks 
require multimodal (template) matching alongside more distributed attentional 
resources. This indicates a difference in the perceptual load based on the number 
of concurrently active templates. Hence, the weights of the same visual singleton 
cues differ between unimodal and bimodal tasks, manifesting in the delayed and 
decreased PCN, suggesting a crossmodal involvement in the same modality-
specific component. Overall, these findings align with the assumptions of the 
(multisensory) DWA and the MWA, which assume a reduced saliency for color 
singletons in the priority map due to other concurrently active and relevant 
templates in visual dimensions or sensory modalities. Crucially, the study of 
Matusz and Eimer (2013) provides evidence for a crossmodal influence on PCN 
expression. Yet the study cannot answer the critical question (of this thesis) 
whether the preattentive hierarchy needs to be extended for modality maps 
(above dimension maps), as it was not included in the task design. Nonetheless, 
the study of Matusz and Eimer (2013) points to a critical role of the superior 
temporal sulcus (STS) and the lateral intraparietal area (LIP) (McDonald et al., 
2003; B. E. Stein & Stanford, 2008), which contain “multisensory spatial maps” 
and are relevant for “the control of space-based and feature-based visual 
attention” (Matusz & Eimer, 2013, p. 1007). The PCN depicts the activity of those 
areas. 

Overall, the PCN is embedded within other lateralized components in the 
same spatial electrode cluster, such as the Pd (distractor positivity) that 
modulates within 290–340 ms due to the attentional capture of distractor 
information (Feldmann-Wüstefeld et al., 2021; Hickey et al., 2009; Hilimire et al., 
2012; Sawaki & Luck, 2010; Wyble et al., 2015), or subsequent memory-related 
processes in the SPCN (sustained posterior contralateral negativity) and CDA 
(contralateral delay activity) (Adam et al., 2018; K. Clark et al., 2015; Grubert et 
al., 2017; Ikkai et al., 2010; Jolicoeur et al., 2008; Luria et al., 2016; Mazza et al., 
2007). Additional components are the stimulus- and response-related LRPs 
(lateralized readiness potentials), which indicate response preparation or 
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execution, respectively, and are commonly measured over central (C3/C4) regions 
(Miller et al., 1998; Töllner, Zehetleitner, Krummenacher, et al., 2011; Ulrich & 
Miller, 2001). 

Regarding the five factors of selective attention, it can be stated with the 
presented empirical evidence that four factors systematically affect the PCN 
component: bottom-up (i) object features and (ii) spatial locations, as well as (iii) 
intertrial history, and (iv) top-down attentional templates. Yet it remains an open 
issue whether the fifth factor (v) sustained attention or vigilance affects the PCN 
(based on a scarce scientific background), hypothetically the PCN reduces with 
increasing task fatigue and could sensitively depict fluctuations between ‘in-the-
zone’ and ‘out-of-the-zone’ attentional states (Esterman et al., 2013; Kucyi et al., 
2017; Rosenberg et al., 2015, 2016).  

Overall, the PCN, as a visuo-spatial processing filter, is a suitable candidate 
(or marker) to summarize the underlying preattentive computations, i.e., the 
timing and amount of deployed attentional resources, similar to the priority map. 
Furthermore, the PCN succeeds the time window of multisensory integration 
(e.g., Talsma & Woldorff, 2005), adapting sensitively for crossmodal search 
(Matusz & Eimer, 2013), but (by definition) precedes post-selective stages (e.g., 
central object representation, decision, and response reparation). Therefore, the 
PCN is the perfect candidate to examine the functional difference between visual 
dimensions and (potentially) sensory modalities and to retrieve modality-specific 
and supramodal mechanisms that either favor an extended MWA or a 
multisensory DWA.  

Central Contralateral Negativity 

 To fulfill the neural requirements for the visuo-tactile paradigm, a marker 
for tactile attention is (still) missing, similar to the PCN for visual attention. 
Fortunately, an adequate somatosensory component exists, the central 
contralateral negativity (CCN), also known as N140cc (Forster et al., 2016). 
Although the empirical evolution of the CCN component shows many parallels 
with the origins of the PCN (or N2pc), its corpus of evidence is (unfortunately) 
much smaller, likely due to feasibility constraints in tactile devices. Nonetheless, 
a brief chronological evolution of the CCN is presented in the following 
paragraphs. 

 In an ‘early’ study, García-Larrea et al. (1995) gave an introductory 
overview of the various findings of a somatosensory N1 component (SEP) within 
100–150 ms. Here, the N1 is delayed due to higher attentional load, is higher for 
tactile target information, decays due to habituation, and vanishes for neutral 
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stimuli. Further, García-Larrea et al. (1995) examined the “exogenous and 
endogenous components” of the somatosensory N1 by testing electrical 
stimulations (300 µs, 3–6 mA, series of 150–200 pulses) on two fingers of each 
hand (second and third finger) in neutral, García-Larrea et al., unattended, and 
attended conditions. The cognitive load varied across these task conditions. 
Participants had to relax in the neutral and ignore the tactile pulse series; they 
had to silently count the (less frequent) number of pulse series in either the 
unattended left or attended right hand. The authors found a dissociation between 
the early N120 and late N140 components. While the N120 reflects (modality-
specific) tactile awareness, its amplitude increase (for tactile pulses) occurred 
regardless of the spatially attended left or right hand. In contrast, the N140 
revealed a substantially higher amplitude over contralateral electrode locations 
for the attended right hand than the unattended left hand and vanished in the 
neutral condition. Overall, this finding of García-Larrea et al. (1995) indicates 
that tactile target detection is improved by (endogenously) deployed attentional 
resources. The highest amplitude effects were found for the attended right hand 
in C3, Cz, and C4 electrodes, significantly higher than in the unattended hand 
condition and earlier N140 latencies in C3 (6.5 ms). The ‘tactile attention effect’ 
for left (C3) and right (C4) somatosensory hemifields was interpreted by García-
Larrea et al. (1995) with “callosal transfer times”, which potentially ensures the 
correct spatial (egocentric) decoding of right and left tactile stimulations. 

 The visuo-tactile search study by Eimer and Driver (2000) ‘replicated’ the 
N140 findings for attended (and relevant) tactile target information, originating 
from 140 ms onwards over central regions (C3, Cz, C4) in contrast to unattended 
(or ‘to-be-ignored’) tactile stimuli. In a similar experimental setting as in García-
Larrea et al. (1995), participants had to vocally ‘judge’ whether a visual or tactile 
target occurred at the attended left or right side (or hand). All stimuli were 
presented for 200 ms. While (frequent) nontargets showed either a visual 
isoluminant green light across left or right LEDs or a continuous tactile vibration 
on the left or right index finger, (infrequent) targets included a 10 ms ‘gap’ after 
95 ms in visual illumination and tactile vibration.  

As expected, Eimer and Driver (2000) found substantial and characteristic 
negative difference waves (Nd components) within 210–280 ms between attended 
and unattended visual and tactile targets over occipital and central regions, 
respectively. Although Nd findings are derived from midline electrodes (Fz, Cz, 
Pz), they occur in the same time range as the PCN and reflect modality-specific 
spatial attention processes. Eimer and Driver (2000) found a clear attentional 
separation between vision and touch by comparing the Nd across the three task 
conditions, reflecting endogenous and independent spatial orienting to relevant 



Central Contralateral Negativity 69 

(while ignoring irrelevant) targets. Whenever participants had to respond to 
visual targets in attended side presentations (‘judge vision’ condition), they found 
a visual Nd but no tactile Nd, and vice versa for the ‘judge touch’ condition. Yet, 
when both (visual and tactile) targets were relevant (‘primary vision’), an early 
central effect (Nd1) was observed for tactile targets within 140–200 ms, which 
Eimer and Driver (2000) interpreted as the activation of crossmodal links between 
both sensory modalities. 

In another study by Eimer, Forster et al. (2004), the spatial orienting of the 
tactile N140 component is examined in greater detail. Again, a vast N140 
amplitude gain for frequent tactile stimuli (strong vibrations) was found at the 
attended index fingers. Importantly, the N140 amplitude became more negative 
with increasing hand distance (near: 6 ms vs. far: 56 ms), which can be explained 
by the association of somatotopic and external space or “coordinate systems”. 
Further, Eimer et al. (2004) also reported a subsequent “sustained enhanced 
negativity for tactile stimuli at attended locations” (p. 605) within 200–300 ms, 
i.e., the time window of selective attention, which interestingly was unaffected by
the distance of hand position. In summary, these findings suggest an ‘early’
interaction between somatotopic (or anatomical) and external (or proprioceptive)
during spatial registration (in N140), which seemingly vanishes during the later
time window, and presumably indicates tactile attention processing.

So far, the findings between the visual N1 and the tactile N140 are congruent 
as both components reflect processes of spatial gating by showing enhanced 
negative amplitudes for attended sensory information. Similar to the visual N1, 
which precedes the PCN, the tactile N140 disqualifies as a tactile (target) marker 
as it modulates to (attended) tactile targets as well as tactile nontargets. 
Similarly, it seems conclusive to detect a sensitive marker for tactile attention in 
the subsequent lateralized divergence – the central contralateral negativity. 

The somatosensory CCN, or N140cc, is a relatively novel EEG component. It 
was introduced and summarized by Forster et al. (2016) by studying the 
somatosensory ‘body space’. In their experiments, six tactile stimulators (or 
solenoids) were either placed at the hand’s fingertips (‘hand task’) or at the left 
and right shoulders, index fingers, and big toes (‘body task’). In their detection 
tasks, two discriminative tactile stimuli patterns – ‘tap’ and ‘buzz’ – were 
presented for 603 ms across solenoids in each trial. Participants had to vocally 
respond to the presence of an assigned tactile target (counterbalanced ‘tap’ or 
‘buzz’) at one solenoid, while the other five solenoids presented tactile nontargets 
(‘tap’ or ‘buzz’, respectively). The response behavior was comparable between 
tactile targets and task conditions. In the EEG, Forster et al. (2016) found a 
significant target-related central contralateral negativity (C3/C4 electrodes) 
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within 140–340 ms with a maximum of around 220 ms, the N140cc at all body 
locations. Interestingly, the N140cc amplitude was more negative in the ‘hand 
task’ than in the ‘body task’. Although tactile stimulation was quite long (603 ms), 
an N140cc indicates ‘fast’ tactile discrimination between both target–nontarget 
patterns (vanishing after 340 ms). Further, the N140cc was most prominent in 
fingers and became (significantly) reduced (but still relevant) in shoulders and 
then toes. Essentially, while the N140cc reflects the “allocation of attention to 
target locations” (p. 164), Forster et al. (2016) did not reveal evidence for the 
‘speed of tactile attention’ as response rates were comparable across fingers and 
toes, despite substantial N140cc amplitude differences. 

Arguably, the most interesting conclusion of Forster et al. (2016) of the 
N140cc is the link to the “somatosensory homunculus”, where tactile sensitivity 
is maximized in the fingertips (cf. Sato et al., 1999). By linking the N140cc to the 
N2pc, which decays towards the periphery (Schaffer et al., 2011), the authors 
argue that the hands are the “fovea of touch” (p. 165) with the most negative 
N140cc amplitude. Hence, the N140cc can also be regarded as a “spatial filtering 
process”, but instead of the external (visual) space, it decodes the egocentric 
(somatotopic) space topographically. Overall, the findings of Forster et al. (2016) 
evidently showed that the N140cc is related to tactile attention and tactile target 
discrimination (‘tap’ vs. ‘buzz’) within a more ‘complex tactile display’ (of six 
solenoids). Yet, the authors admit that the functional role of the N140cc, whether 
it reflects target selection or nontarget (distractor) suppression, is not fully 
clarified. Nonetheless, the study of Forster et al. (2016) reflects a landmark 
publication in the quest to understand tactile attention by providing a suitable 
EEG marker, such as the N140cc (s. Figure 1–3).  

In agreement with this ‘somatotopic decoding’ scheme are insights from 
tactile learning in a contextual cueing task that assume an “anatomical reference 
frame” (Assumpção et al., 2018; S. Chen et al., 2020). Also, the N140cc modulates 
sensitively for concurrent target and distractor presentations; for example, it 
decreases for contralateral but not ipsilateral distractors, evidencing target 
selection (Gherri et al., 2021, 2022). Other recent studies underscore the target 
selection (instead of distractor suppression) role by reporting an N2cc (the same 
as N140cc) (Katus & Eimer, 2019). Furthermore, the (late) N140cc amplitude 
(230–310 ms) enhances with increasing hand distance (near vs. far), which 
suggests spatial interaction of proprioception and/or visual feedback (Ambron et 
al., 2018), as a contrary result as in Eimer et al. (2004). Again, to avoid confusion 
for the tactile attention component, the expression CCN (central contralateral 
negativity) will be used throughout the thesis (instead of N140cc or N2cc). 
Although the tactile CCN and visual PCN seem to have obviously much in 
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common, there is a huge empirical gap between both components, as the CCN 
only recently gained momentum. While the PCN describes the ‘amount’ and 
‘speed’ of (visual) attentional allocation, the CCN parameters seem to entail 
magnitude effects only (so far) via the evaluation of mean amplitudes, e.g., in 
early (140-240 ms) and late (240-340 ms) sections (Forster et al., 2016; Katus & 
Eimer, 2019). Therefore, the CCN reflects “tactile spatial filtering” and thus 
seems ideally suited to analyze tactile attention processes (just like the visual 
PCN). Before combining the empirical framework (DWA vs. MWA) and the 
modality-specific neural markers (PCN & CCN) into a set of concise research 
questions for the visuo-tactile search paradigm, it is imperative to consider the 
“attentional priority map” in greater detail by examining the crossmodal links 
between vision and touch. 

Attentional Priority Map 

By having introduced the empirical framework of preattentive computations 
and the neural markers of visuo-tactile attention, the priority map must now be 
considered. Consistent with the superior research question of “common or 
separate attention pools” (Miller, 1982) across sensory modalities, this section 
describes the modality-specific and supramodal mechanisms based on the spatio-
temporal aspects of attentional selection. 

The PCN and CCN components reflect the modality-specific saliency or 
spatial prioritization of relevant visual or tactile information. Hence, both 
components by themselves constitute visual and tactile saliency maps (or priority 
maps), summarizing the preattentive dynamics of weighted feature integration in 
a spatially consistent manner (Eimer, 1996; Forster et al., 2016; Luck & Hillyard, 
1994a). So far, the evidence on PCN and CCN favors ‘separate attention pools’ for 
visual and tactile attention, respectively. Whether those ‘separate pools’ persist 
during visuo-tactile search (evidencing modality-specific priority maps) or 
combine through crossmodal links, reflecting ‘common pool’ dynamics (evidencing 
supramodal priority map) remains an open scientific issue. However, since 
multisensory integration precedes (and interacts) with attention processes 
(Talsma & Woldorff, 2005), it seems plausible that the lateralized deflections – 
the ‘attentional divergence’ between contra- and ipsilateral sides – in PCN and 
CCN would capture those crossmodal dynamics in their amplitude and/or latency 
expressions. 

Generally, attention combines stimulus-driven and goal-driven (bottom-up 
and top-down) processes by activating a fronto-parietal network, the so-called 
attention network (Corbetta & Shulman, 2002; Petersen & Posner, 2012; Posner 
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& Dehaene, 1994; Posner & Petersen, 1990). Crucially, this attention network 
combines several relevant network hubs across frontal regions, like the frontal 
eye field (FEF), the ventral frontal cortex (VFC) or the dorsolateral prefrontal 
cortex (dlPFC), but also in parietal regions, such as the intraparietal sulcus (IPS) 
or superior parietal lobe (SPL), and the temporo-parietal junction (TPJ) (see 
Corbetta & Shulman, 2002; Petersen & Posner, 2012). Although the (fMRI) 
evidence on attention networks primarily derives from sustained attention 
studies, like the (gradual) continuous performance tasks (deBettencourt et al., 
2015; Rosenberg et al., 2016), evidence from crossmodal paradigms promote the 
posterior parietal cortex as the area of interest for spatial orienting and 
multisensory activations (Chambers et al., 2007; Chambers, Payne, et al., 2004; 
Chambers, Stokes, et al., 2004; Macaluso et al., 2000, 2002a, 2002b).  

Given the requirement of coherent spatial decoding, a supramodal priority 
map, as proposed by the MWA, has to combine the distinct spatio-topographic 
saliency computations across sensory modalities, e.g., within a specific brain 
region or via the establishment of crossmodal links between modality-specific 
areas during preattentive computation that precedes the capture of (crossmodal) 
attention. 

For example, Chambers et al. (2004) reported two distinct time windows for 
spatial orienting during a visual search task – localizing a target with high-
frequency grating – an early or ‘fast’ (90–120 ms) and a late or ‘slow’ (210–240 ms) 
timing, activating the (right) angular gyrus within the inferior parietal lobe (IPL). 
The authors argue that these activations for visual spatial attention derive from 
the “fast retinotectal pathway via the superior colliculus (SC), and from the slow 
geniculostriate pathway via the primary visual cortex.” (p. 218). Notably, the 
“biphasic” timing of (visual) spatial attention by Chambers et al. (2004) is 
perfectly in line with the timing of P1 and PCN (or N2pc) components and their 
link to the firing of relevant receptive fields (e.g., Chelazzi et al., 1998; Luck et 
al., 1997; Mangun & Hillyard, 1988). The conclusion of Chambers et al. (2004) is 
very much in line with the ‘attentional resolution’ of the underlying saliency 
computations, e.g., the initial “where” of the “odd-one-out” (“that response”), 
followed by the feature identification (“what response”) (H. J. Müller et al., 1995; 
H. J. Müller & Rabbitt, 1989; Sagi & Julesz, 1985). Whereas the early P1 reflects 
a “crude” spatial change detector that indicates that something is different in the 
(visual) scene or display (SC pathway), the late PCN timing enables the 
discrimination of “more complex visual information” (p. 218), that is feature 
binding from activations in the visual cortex, e.g., V1, V4, or MT (LGN pathway). 

Interestingly, Chambers et al. (2004) describe the early 90–120 ms (P1) 
timing as “the disengagement of attention from its current location” (p. 218), 
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likely due to the ‘new’ snapshot of visual information. Also, the P1 timing aligns 
with the initialization of saccade programming (Reichle & Reingold, 2013), overt 
and covert attention shifts in the frontal eye field (Buschman & Miller, 2009), and 
the ‘attentional divergence’ across receptive fields that amplify and reduce firings 
rates for relevant and irrelevant receptive fields, respectively (Chelazzi et al., 
1993; Deubel & Schneider, 1996), promoting ‘attentional engagement’ in the later 
210–240 ms timing (PCN) (Duncan & Humphreys, 1992; Zivony & Lamy, 2018).  

Based on the evidence, it seems plausible that the computation of the visual 
priority map (or saliency summation) accumulates in two stages: the fast pathway 
registers the (external) spatial frame (e.g., visual display), while in the second 
stage, the slow pathway provides the content (e.g., Shulman et al., 2002). 
Essentially, both network pathways converge in the IPL, reflecting a full cycle of 
saliency summation (210–240 ms) that coalesce in the PCN's dynamics. So instead 
of promoting a specific brain region as the (visual) priority map, it is more 
reasonable to assume an interconnected “priority network” of relevant nodes or 
brain areas, such as SC, LGN, V1, V4, or MT (Fecteau & Munoz, 2006; Koch & 
Ullman, 1985; Koene & Zhaoping, 2007; Li, 2002; Meredith & Stein, 1986; Shim 
et al., 2013; Somers & Sheremata, 2013). Finally, the IPL or the lateral 
intraparietal area (LIP) measures the outcome of those “priority network” 
projections (Balan & Gottlieb, 2006; Bisley & Goldberg, 2010; Fecteau & Munoz, 
2006) with deployed attentional engagement. 

Similar to the visual priority map or the activity in the “attentional priority 
network” that is measured by the PCN over the posterior parietal cortex, the 
CCN, as shown in the previous section, reflects the somatotopic summation along 
the body schema – the “tactile priority map” (Assumpção et al., 2018; Eimer et al., 
2004). However, despite the apparent distinction in spatial decoding, empirical 
evidence suggests that visual and tactile information, in combination with their 
external and egocentric spatial functions (Eimer, Forster, et al., 2003), merge in 
invariant areas of the posterior parietal cortex, indicating crossmodal links, e.g., 
in TPJ (Man et al., 2015; Quinn et al., 2014). For example, Macaluso et al. (2000) 
found that the “spatially congruent” presentation of combined visual and tactile 
information enhances the activity in the supramarginal gyrus of the IPL. In their 
follow-up studies with fMRI and PET, Macaluso et al. (2002a, 2002b) provided 
additional insights into the “supramodal network of spatial attention” which is 
embedded in the fronto-parietal attention network. Notably, the activation in IPS 
and TPJ represented crossmodal hubs of attentional (re-)orienting due to invalid 
cues, regardless of the target’s modality, being either a visual or tactile target. 
Furthermore, Macaluso et al. (2002a) refer to the modality-specific role of the 
somatosensory cortex for tactile information, being unaffected by visual 



74 General Introduction 

information, while the parietal cortex and occipital visual cortex reveal 
supramodal activations for visual and tactile targets. Nonetheless, the authors 
conclude that the spatial specificity in occipital regions remains for vision, that is, 
external coordinates exceed (or dominate) the egocentric mapping (Eimer, 
Forster, et al., 2003; Spence, Shore, et al., 2001). Overall, crossmodal links in the 
(posterior) parietal cortex, e.g., in IPS and TPJ have been reported many times 
(Buschman & Kastner, 2015; Downar et al., 2000; Graziano & Cooke, 2006; 
Kanwisher & Wojciulik, 2000; Spence & Santangelo, 2009; J. F. Stein, 1989). 

 Overall, it seems that a “supramodal priority map” must be located within 
the attention network, especially within the parietal regions due to those 
crossmodal links. Again, it is unlikely to assume a specific brain area, but rather 
a “supramodal priority network”, whose neural activations and projections, 
similar to the “visual priority network” culminate over parietal regions. Further, 
the evidence clearly favors the ‘late’ stage, e.g., around 210–240 ms (Chambers, 
Payne, et al., 2004), thus answering the question of Treisman (1988) of whether 
the timing of the “master map” is early or late. Since this timing reflects the 
(spatio-topographic) attentional engagement for more complex (multi-)sensory 
objects, it also fulfills the requirement of stimulus-driven salience and goal-driven 
relevance (Corbetta & Shulman, 2002; Fecteau & Munoz, 2006) and occurs after 
(or parallel) to the parietal processes of multisensory integration (Talsma & 
Woldorff, 2005). Arguably, the efficiency of such a “supramodal attention 
network” depends on the coherence across relevant network hubs and their 
feedforward and feedback connections, establishing a ‘closed-loop system’ 
(deBettencourt et al., 2015; Desimone & Duncan, 1995).  

Finally, the PCN moves into the center of interest as a suitable candidate for 
visual and crossmodal search by depicting the attentional engagement over 
parieto-occipital regions as a spatial marker for selective attention. Whereas the 
CCN is expected to be purely tactile and modality-specific, the neural dynamics 
of a supramodal PCN are expected to be amplified and exceed those of a (modality-
specific) visual PCN, like a detector for preattentive coactivation. 

Contemporary Research 

Now that almost all the relevant empirical background has been outlined in-
depth, this section aims to locate the topic of “crossmodal selective attention” 
within the broader landscape of “attention research” by looking at some other 
contemporary research topics. Indeed, the scientific quest to examine the 
preattentive hierarchy in (crossmodal) attention is fascinating (and arguably 
essential), yet it only reflects a rather small, specialized segment. 
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As mentioned, attention is a transitional stage between our perception and 
actions. Furthermore, it is “necessary but not sufficient” for the subjective 
experience of awareness and consciousness (Koch & Tsuchiya, 2012). Also, 
attention is central for other executive functions, such as working memory, but 
also short- and long-term memory, with a focus on (internal) object 
representations and other concrete or abstract information (Wolfe, 2021). 

By having obtained the PCN as a sensitive marker for (visual) spatial 
selective attention (Eimer, 1996; Luck & Hillyard, 1994a; Wolber & Wascher, 
2005), this enabled researcher to study the variety of (visual) attention paradigm 
with (almost) limitless research question, without knowing the exact preattentive 
hierarchy. For example, the topic of “distractor handling” has become more and 
more relevant over recent years (Carlisle & Nitka, 2019; Gaspelin et al., 2015, 
2017; Kerzel & Burra, 2020; Kiss et al., 2012; Liesefeld & Müller, 2021; Sauter et 
al., 2019; van Moorselaar & Slagter, 2019; Won et al., 2019). Like a race-model, 
the parallel presentation of ‘pop-out’ targets and distractors (among nontargets) 
compete for attentional resources. The distractor can either capture attention 
before the target due to higher saliency or, if known and anticipated, it can be 
actively suppressed (‘feature-inhibition’) (Berggren & Eimer, 2018; Carlisle & 
Nitka, 2019; Sawaki & Luck, 2013). As briefly mentioned in the PCN section, the 
capture and active suppression of distractor information is measured by the Pd 
component within 290–340 ms (Feldmann-Wüstefeld et al., 2021; Hickey et al., 
2009; Hilimire et al., 2012; Sawaki & Luck, 2010; Wyble et al., 2015). The dynamic 
interplay between PCN and Pd reveals a temporal sequence of attentional 
selection and suppression for targets and distractors, e.g., the PCN becomes 
delayed or reduced due to distractor interference, obtaining a sensitive template 
to examine attention shifts (Burra & Kerzel, 2013; Drisdelle & Eimer, 2021; 
Liesefeld et al., 2021). 

The rekindled debate of how distractor handling plays out, either through 
bottom-up processes, top-down control, or intertrial history, goes hand in hand 
with the topic of “statistical learning” (Theeuwes, 2019). Essentially, successful 
distractor inhibition reflects a learning process based on spatial or dimension- 
specific regularities (Liesefeld & Müller, 2021; Theeuwes et al., 2022; van 
Moorselaar et al., 2020; B. Wang & Theeuwes, 2018). When a distractor occurs 
more frequently within a specific location, the spatio-topographic priority map 
learns this regularity. It decreases the location’s weights (or relevance), i.e., the 
probability-cueing effect, which delays the target detection in the same location 
(Allenmark et al., 2019; Goschy et al., 2014; Zhang et al., 2019). Interestingly, the 
(statistical) learning of regularities in time and space can be generalized across 
(sensory) modalities (Frost et al., 2015, 2019).  



76 General Introduction 

Arguably, regularities produce an implicit or explicit rule or template during 
the task stored in “working memory”, another topic of interest. Although the 
concept of working memory dates back several decades (Baddeley, 1992, 2003), it 
spurred attention research since the last years (Grubert et al., 2016; Hanning et 
al., 2016; Liesefeld et al., 2020; Vogel & Machizawa, 2004; Woodman & Vogel, 
2008; Zelinsky & Bisley, 2015). Crucially, (goal-driven) attentional engagement 
relies on so-called “attentional templates”, which are held in working memory, 
guiding our attention in an endogenous fashion, e.g., by flexibly activating 
relevant and discarding irrelevant templates in advance of the display 
presentation (Grubert & Eimer, 2018). Those templates consist of (a collection of) 
distinct feature representations like colors; they also can extend across sensory 
modalities (Grubert et al., 2016; Matusz & Eimer, 2013). The studies on 
attentional templates demonstrate the impact of top-down control on selective 
attention that varies depending on the task set (Wolfe, 2021). Similar to working 
memory, the capacity of attentional templates is limited (Olivers et al., 2011; 
Woodman et al., 2001).  

To obtain electrophysiological insights from templates and working memory 
processes, those studies focused again on the PCN but also another component, 
the ‘contralateral delay activity’ (CDA), reflecting working memory processes 
within 300–900 ms (Carlisle et al., 2011; Ikkai et al., 2010; Luria et al., 2016). 
Interestingly, the origin of the CDA is also (primarily) located in the posterior 
parietal cortex; its amplitude indices the ‘cognitive load’ and increases with the 
number of relevant (task) items until a distinct limit and affects performances 
(Adam et al., 2018; Ikkai et al., 2010; Luria et al., 2016). While the CDA increases 
with the number of items or templates (working memory load), the PCN 
attenuates due to distributed resources among those templates (attention load), 
revealing a dynamic interplay between working memory and attention processes 
within parietal regions (Grubert et al., 2016; Heuer & Schubö, 2016). Overall, 
selective attention and working memory are intertwined based on their specific 
properties: while selective attention updates working memory, working memory 
controls the guidance of attention, e.g., during a task (for a review see Oberauer, 
2019). Finally, the involvement of frontal (and parietal) regions during working 
memory activity underscores the importance of top-down control for attention 
during target selection and distractor suppression (Buschman et al., 2011; Gaspar 
& McDonald, 2014; Postle, 2006; Soto et al., 2006, 2007), which is closely tight to 
theta oscillations, e.g., the fronto-midline theta activity (Jensen & Tesche, 2002; 
Onton et al., 2005). 

Another evolving corpus of studies deals with “sustained attention”; shifting 
the research perspective away from selection processes toward the temporal 
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fluctuations of attentional resources during continuous task performance, e.g., 
vigilance decrements (Esterman et al., 2013; MacLean et al., 2009; See et al., 
1995). Although sustained attention reflects the fifth factor of attention in this 
thesis and has been briefly introduced before, it shows promise as an evolving 
branch for future attention research, especially through the liaison with ongoing 
“brain oscillations” (Clayton et al., 2015; Fiebelkorn et al., 2018; Helfrich et al., 
2018; van Es et al., 2022). While the electrophysiological evidence in selective 
attention primarily focuses on event-related lateralizations (e.g., PCN or CCN), 
research on sustained attention examines the oscillatory spectro-temporal 
mechanisms across hubs of the fronto-parietal attention network, like FEF and 
LIP. Evidence suggests that the communication within the attention network is 
coupled to the phase of theta oscillations (Helfrich et al., 2018) that indicates 
rhythmic perceptual sampling during attention processes (Bastos, Vezoli, 
Bosman, et al., 2015; Calderone et al., 2014).  

Furthermore, Fiebelkorn et al. (2018) found a coupling between the ‘good’ 
theta phase with beta in FEF, suppressing attention shifts, and gamma in LIP, 
enhancing visual processing. On the contrary, the authors report another coupling 
between the ‘poor’ theta phase and the inhibitory processes of alpha. Notably, 
these attentional states resemble a dynamic oscillatory neural code of the 
interplay between selection and suppression, excitation or inhibition. Also, 
behavioral performances were related to the distinct states of ‘good’ and ‘poor’ 
theta coupling. Fascinatingly, Fiebelkorn et al. (2018) relate these distinct states 
to the computation within the priority map and derive the following conclusion: 
“By periodically attenuating the strongest peak in that priority map, the rhythmic 
properties of spatial attention promote active sampling (Schroeder et al., 2010), 
preventing spatial attention from remaining overly focused on a single location.” 
(p. 850).  

This quote describes the underlying weighting mechanism of attentional 
prioritization elegantly from an oscillatory perspective. Whereas the ‘good’ theta 
phase samples perceptual information (weight accumulation), the inhibitory 
alpha and ‘poor’ theta phase rhythmically reduce the importance (or weights) of 
prioritized but also irrelevant activations, thus parallelly enhancing selection 
while also triggering a new attention cycle. As the attention network and the 
“priority network” are essentially the same (Fecteau & Munoz, 2006; Fiebelkorn 
et al., 2018), these oscillatory patterns reflect a rhythmic “communication through 
coherence” between relevant network hubs, such as FEF and LIP (Bastos, Vezoli, 
& Fries, 2015; Fries, 2005). Interestingly, the 7–8 Hz theta frequency for 
attentional sampling (Fries, 2005) and the 14–30 Hz beta rhythm in FEF, are 



78   General Introduction 

compatible with the 150 ms proposed pace of item recognition and the 30–50 ms 
timing of attention shifts (Koch & Ullman, 1985; Wolfe, 1994). 

This intricate link between processes of selective and sustained attention 
marks an open scientific gap, which would be promising to close. For example, 
trial-by-trial variations or fluctuations in sustained attention can be measured by 
the “variance time-course” (Esterman et al., 2013; Esterman & Rothlein, 2019; 
Rosenberg et al., 2013, 2015) to classify “in-the-zone” or “out-of-the-zone” 
attentional states, which should be observable in the time-course of brain 
oscillations, e.g., theta and/or alpha frequency. Ultimately, the dynamic 
fluctuations of resources should manifest in the time-course of the PCN 
component; “in-the-zone” should accelerate and/or amplify the PCN. Also, Pd 
should contain more alpha activity than PCN in a spectral decomposition, due to 
active suppression. 

More evidence that underscores the relevance of brain oscillations derives 
from the fact that early ERP components such as P1 and N1, which are linked to 
perceptual integration, originate from the superposition of theta and alpha 
oscillations and their phase alignment during stimulus onset (Gruber et al., 2005; 
Klimesch et al., 2004). Also, prestimulus alpha activity predicts visual perception 
in attentional blink paradigms, showing that an internal (or inhibitory) state 
impairs the attentional orientation toward shortly presented external 
information (Busch et al., 2009; Hanslmayr et al., 2011; Slagter et al., 2016). 
Generally, it seems plausible to assume a “neural code” of coupled brain 
oscillations that enable cognitive states such as attention, working memory, or 
consciousness due to rhythmic processing and network communication (Friston 
et al., 2015; Lisman & Jensen, 2013; Mathewson et al., 2012; McLelland & 
VanRullen, 2016; Palva et al., 2010; VanRullen, 2016). 

Given that network communication derives from feedforward and feedback 
connections, it represents a sequence (or hierarchy) of cognitive states along 
network hubs, e.g., areas in the visual cortex (e.g., Ahissar & Hochstein, 2004; 
Bastos, Vezoli, Bosman, et al., 2015). In “predictive coding” the brain creates a 
model, i.e., the internal representation of the environment, that is constantly 
updated by the matching (or synchronization) of top-down priors (or expectancies) 
and incoming sensory information (Alamia & VanRullen, 2019; Bressler & 
Richter, 2015; Hardstone et al., 2021; Rao & Ballard, 1999; Talsma, 2015). 
Overall, there are many ways in predictive coding to model cognitive functions 
(e.g., Spratling, 2017), like Bayesian priors (e.g., Aitchison & Lengyel, 2017), 
sensory uncertainty (e.g., van Bergen et al., 2015), or dynamic causal modeling 
(Bastos, Litvak, et al., 2015; Friston, 2012). Further, priors are measured (or 
estimated) by probability distributions (e.g., Gaussians), and the direction of 
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information flow (feedforward or feedback) is assessed via Granger Causality 
(e.g., Bressler & Seth, 2011). Essentially, it is assumed that the brain tries to 
maximize evidence while minimizing entropy or uncertainty (Friston, 2012), a 
process that is described as the free-energy principle (Friston, 2009, 2010), in 
accordance with information theory (e.g., Borst & Theunissen, 1999). 

Finally, other emerging topics are “neurofeedback” (Bagherzadeh et al., 2020; 
deBettencourt et al., 2015; Thibault et al., 2018) and the experimental transfer 
into “real-world settings” with the “co-registration of neuroimaging techniques” 
such as EEG and eye-tracking, e.g., to examine natural viewing or reading 
(Barczak et al., 2019; Coco et al., 2020; Dimigen et al., 2011; Kriegeskorte et al., 
2008; Leszczynski & Schroeder, 2019; Võ & Wolfe, 2015). Altogether these ‘new’ 
topics rely on the profound scientific evidence from the previous topics to make 
significant contributions, including (crossmodal) selective attention, e.g., 
oscillatory synchronization. For example, neurofeedback requires adequate and 
feasible neural markers to track the ongoing (and fluctuating) activity of brain 
states (e.g., attention) and the knowledge of technical constraints, to improve 
performances by presenting target information in the optimal moment (e.g., ‘good’ 
theta phase). Concurrently, real-life settings are the natural consequence of 
decades of fundamental laboratory research, yet they require advanced 
calibration techniques to ensure the quality and validity of their findings. 

Hypotheses and Limitations 

Given the detailed and in-depth empirical description and introduction of the 
scientific background spanning over (many) decades of attention research, 
everything is now set to develop the main research hypotheses. Although the 
(ultimate) main objective is indeed to develop and derive a complete and concise 
computational model of (crossmodal) attention (CMA), likewise it is also clear that 
this cannot be achieved within one thesis, indicating both the first limitation but 
also the global and superior goal. Similar to other attempts that parameterize the 
functionality of attention processes and cognitive states by computational models 
(e.g., Bundesen, 1998; Friston, 2009; McClelland, 1979; Miller, 1982; Wolfe, 1994), 
it is reasonable to assume that processes of (crossmodal) selective attention can 
be described by a set of distinct and latent factors, containing specific loads (or 
weights) and interactions. Overall, this thesis focuses on five factors of attention 
referenced throughout the introduction in a confirmatory fashion: object features, 
spatial locations, intertrial effects, attentional templates, and sustained attention 
(s. Figure 1–1). This factor set does not claim to be exhaustive, yet it arguably 
depicts the skeleton structure of the underlying neural dynamics of selective 
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attention. It contains the bidirectional streams of spatio-topographic feedforward 
(bottom-up) and feedback (top-down) processing and its temporal derivatives of 
the immediate past and resource fluctuations, which altogether assemble in the 
moment of attentional capture.  

Of course, plenty of other factors or rules, such as reward or meaning (Wolfe 
& Horowitz, 2017), reflect additional functional or factorial embeddings for a 
CMA. However, it can be argued that a CMA includes primary and secondary 
factors. While primary factors describe the general architecture of an attention 
model, i.e., its functional skeleton, secondary factors unravel (sub-)classes within 
and across those primary factors. For example, while initiating a target template 
reflects a common process, the inherent or expected value of such a template is 
based on attribution and decision rules, e.g., via target ranking. Similarly, 
saliency represents a complex configuration that modulates by various variables, 
e.g., segregation or similarity (Duncan & Humphreys, 1989). These secondary
factors can be considered categorical compounds of saliency and relevance that
culminate in the priority map with their qualitative or quantitative expression
(Fecteau & Munoz, 2006; Wolfe, 1994).

The main goal of a CMA is to quantify the impact or effect sizes of each factor 
(and their sub-factors) by linear combinations and interaction terms and to 
evaluate its prediction and time regression. This ultimate and global goal can only 
be achieved in several stages, i.e., a sequence of local goals. Besides the main 
research question of whether common or separate pools of attention exist across 
sensory modalities, this thesis's (additional) local goal is empirically examining 
those five (primary) attention factors. Since the deployment of crossmodal 
selective attention depends on the outcome of preattentive computations – the 
weighted prioritization and ‘winner-takes-all’ selection –, a scientific framework 
or preattentive architecture was introduced with testable statements and 
predictions, the modality-weighting account. 

The modality-weighting account or MWA (proposed by Töllner et al., 2009) 
extends the dimension-weighting account or DWA (Found & Müller, 1996; H. J. 
Müller et al., 1995) from visual search toward crossmodal search. Overall, there 
is common agreement that preattentive computations derive from a hierarchy of 
multiple layers, whose activations accumulate onto the attentional priority map 
(Fecteau & Munoz, 2006; Koch & Ullman, 1985; Wolfe, 1994). Whereas the 
assumption of dimension maps reflecting independent analyzer units (e.g., color 
dimension) consisting of many feature maps (e.g., red, green, blue) is sufficient in 
visual search, it remains an open issue whether the same hierarchy is also 
suitable for crossmodal search, or whether it needs to be expanded with the 
additional layer of modality maps. 
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As the empirical background shows plenty of similar findings in visual and 
crossmodal search, for example, there are substantial redundancy gains (e.g., 
Forster et al., 2002; Krummenacher et al., 2002b; Miller, 1982; Töllner, 
Zehetleitner, Krummenacher, et al., 2011) or intertrial switch costs (e.g., Found 
& Müller, 1996; Krummenacher et al., 2009; Spence, Nicholls, et al., 2001; Töllner 
et al., 2009) for target combinations or changes across visual dimensions or 
sensory modalities, respectively. Despite this vast and compelling corpus of 
studies, the intricate question of whether dimensions and modalities derive from 
the same hierarchical level or rather different levels within the preattentive stage 
is still an open issue (s. Figure 1–2). Nevertheless, closing the gap is feasible by 
utilizing an adequate crossmodal search paradigm (here, visuo-tactile search) and 
focusing on the distinction between visual dimensions and sensory modalities 
across search tasks. Essentially, a decision or ruling that either favors an MWA 
(research hypothesis) or a DWA (null hypothesis) is applicable via the statistical 
evaluation of dimension- and modality-conditions. 

Commonly, the outcome of task manipulations (or conditions) is measured by 
participant’s performances that record behavioral variables such as error rates 
and reaction times. In addition to these standard dependent variables, which are 
indispensable for testing the hypotheses, this thesis also incorporates neural 
markers, i.e., PCN and CCN, as spatial detectors for the deployment of visual and 
tactile attention, respectively (Eimer, 1996; Forster et al., 2016; Gherri et al., 
2021; Luck & Hillyard, 1994a; Wolber & Wascher, 2005).  

The choice of these markers is based on electrophysiological evidence. As 
described in detail above, the PCN and CCN reflect spatio-topographic processes 
of target selection, i.e., the outcome (or summation) of the preceding preattentive 
computations, within their specific brain areas: visual or somatosensory cortex. 
Overall, the preattentive stage includes two distinct stages that precede the 
timing of attentional engagement with a maximum at 250 ms (Talsma & Woldorff, 
2005). The first stage is the phase of unimodal perceptual integration that is tied 
to the modality-specific neural signatures of P1 and N1 components – VEP or SEP 
(e.g., García-Larrea et al., 1995; Mangun, 1995). While the P1 is considered to 
reflect excitatory perceptual processes, initiating firing in relevant receptive fields 
(Chelazzi et al., 1993, 1998) in the supragranular layer, the N1 component reflects 
inhibitory processes (Bruyns-Haylett et al., 2017; Gruber et al., 2005; Hanslmayr 
et al., 2007, 2011), likely improving the signal-to-nose ratio across unimodal 
activations. The second stage of multisensory integration occurs (arguably) after 
the peak timing of the N1 (tactile: N140 or visual: N180) around 180 ms (Talsma 
& Woldorff, 2005), and is associated with crossmodal links or network hubs (IPL, 
IPS, & TPJ) in the posterior parietal cortex (PPC) (Macaluso et al., 2002a, 2002b; 
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Man et al., 2015; Quinn et al., 2014). In line with these two stages of unimodal 
and crossmodal integration is also the timing of the two pathways of spatial 
attention. While the ‘fast’ (SC) pathway activates the ‘spatial frame’ (within P1 
timing: 90–120 ms) during a first loop, the ‘slow’ pathway or second loop provides 
the (multisensory) ‘content’ of feature activation loads within the timing of spatial 
selective attention (210–240 ms) (Chambers, Payne, et al., 2004). The PCN and 
CCN reflect modality-specific components, whose neural dynamics (magnitude 
and/or timing expressions) modulate sensitively due to the location-based and 
feature-based prioritization (Ambron et al., 2018; Forster et al., 2016; Grubert et 
al., 2011; Katus & Eimer, 2019; Töllner et al., 2008; Töllner, Zehetleitner, 
Krummenacher, et al., 2011). Finally, the PCN should also be sensitive to detect 
supramodal activity due to crossmodal links in the PPC that combine the 
egocentric (or somatotopic) tactile information with the external visual 
information (Eimer, van Velzen, et al., 2003; Eimer & van Velzen, 2005; Macaluso 
et al., 2000; Man et al., 2015; Quinn et al., 2014). 

Although it would be interesting to examine the full timeline of perceptual, 
preattentive, attentive, post-selective, and response stages to gain a complete 
picture of the underlying electrophysiological spatio-temporal components and 
patterns during crossmodal search, unfortunately (and understandably) though, 
this is out of the scope for this thesis. Of course, other components such as the N1, 
the CDA, or the lateralized readiness potentials (LRPs) (García-Larrea et al., 
1995; Ikkai et al., 2010; Näätänen, 1982; Töllner, Zehetleitner, Krummenacher, 
et al., 2011; Ulrich & Miller, 2001) would undoubtedly contribute to a CMA, yet 
this voluntary restriction or limitation was made to ensure the quality of the 
primary research questions by focusing on behavior and the neural dynamics in 
PCN and CCN. Surely, those analyses can be made up in future studies. 

Before presenting the superordinate research questions to test whether 
modality-weighting explains the preattentive modulations during crossmodal 
search in behavior and in PCN and/or CCN for each of the five factors, a brief 
description on the included (and non-included) EEG studies and the many pilot 
testings (including 8–12 participants each) is given.  

Overall, the viuso-tactile search paradigm consisted of 8 or 10 symmetrically 
collocated tactile solenoids and visual fields on a transparent frame. Generally, 
participants had to place their fingertips on top while fixating the center (at 
around 50–55 cm distance). Further, crossmodal displays were presented for 250 
ms and response were given by pressing two foot pedals. Three tactile pilot 
testings were conducted to derive a set of discriminable tactile features with 
distinct frequencies (e.g., 30 Hz, 40 Hz, 100 Hz, 150 Hz, 200 Hz). The amplitude 
of tactile frequencies was controlled and adjusted with an oscilloscope. For each 
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EEG experiment a series of 1–3 pilot testings were carried out to ensure optimal 
experimental conditions for the main experiment. For example, the redundancy 
experiment had to incorporate three feature-contrast (color, shape, & frequency) 
with a comparable saliency (or reaction time). To guarantee this, 3 pilots had to 
be executed by comparing a blue square with multiple colors and tactile 
frequencies. Also, some pilot testings did not qualify for the EEG, e.g., ‘reverse 
redundancies’: a stable target with changing nontargets, or were embedded in a 
colleague’s project, e.g., ‘additional singleton’. 

For the EEG experiments, two EEG studies were included in the three main 
chapters examining redundancy gains (20 participants) and the modality-shift 
effect (18 participants). Furthermore, another EEG experiment was conducted for 
attentional templates (19 participants), which is not included as a unique main 
chapter (preliminary findings are presented in the General Discussion). 
Additionally, two other EEG studies were recorded: a redundancy-variation (14 
participants) and a dynamic optimization paradigm (8 participants). 

Finally, the moment arrived to present the set of superordinate research 
questions. Again, the main focus is to scientifically judge whether a common or 
separate pools across sensory modalities exist. This can be achieved by finding 
either modality-specific or supramodal mechanisms in crossmodal attention. 
While a supramodal mechanism reveals similar dynamics for the same task 
condition across sensory modalities (e.g., reduced amplitudes in PCN and CCN), 
a modality-specific mechanism may only apply to one modality (e.g., faster PCN 
onsets but no effect in CCN), or it is opposite between modalities. Remember, the 
other main goal is to provide empirical evidence for the presence of a MWA, 
therefore each question will (more or less) be related to this (e.g., favoring a MWA 
instead of DWA). Generally, these research question arise from the five factors of 
attention. Hence, each factor will be linked to 2–3 distinct research questions 
which derive from the introduced scientific background and its detailed 
descriptions.  

(i) object features

As shown in visual and crossmodal search, substantial redundancy gains arise 
between visual dimensions and sensory modalities (Miller, 1982; Töllner, 
Zehetleitner, Krummenacher, et al., 2011). The open question in Chapter 2 is: (1) 
Do crossmodal redundancies (vision + touch) outperform intramodal redundancies 
(color + shape)? and: (2) Do these crossmodal benefits show up in the PCN and/or 
CCN? Also, (3) is there evidence for a preattentive locus of coactivation?, adding 
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neural evidence for the ongoing debate (Feintuch & Cohen, 2002; Zehetleitner et 
al., 2009). 

(ii) spatial locations

The second study (Chapter 3) extends the findings on redundancy gains by looking 
at interactions between the external visual and egocentric tactile spatial functions 
(Assumpção et al., 2018; Carrasco et al., 1995; Föcker et al., 2010; R. Gray et al., 
2009; Staugaard et al., 2016; Wolfe et al., 1998). By analyzing processes of spatial 
attention in crossmodal search the following question(s) will be essential to 
examine: (4) Are there specific spatial functions for vision and touch, that are 
quadratic and flat, respectively? (5) Do these modality-specific spatial functions 
also appear in visual PCN and/or tactile CCN? The final question is more specific 
and linked to the slopes of quadratic fitting: (6) Is there a systematic patten from 
quadratic fits in focal and peripheral slopes that explain intramodal and 
crossmodal benefits, e.g., limitation or amplification?  

(iii) intertrial effects

The third study (Chapter 4) examines the hierarchy of intertrial switch costs 
(Found & Müller, 1996; Spence, Nicholls, et al., 2001; Töllner et al., 2009). (7) Is 
the shift between modalities (e.g., vision → touch) more costly than between visual 
dimensions (e.g., color → shape)? (8) Are these costs reflected by reduced 
amplitudes and delays in the PCN and/or CCN? (Eimer et al., 2010; Töllner et 
al., 2008). Further, it will be interesting to investigate: (9) How long do those 
switch costs, reflecting neural traces, persist across trials? (e.g., Zylberberg et al., 
2009). 

Although the factors of attentional templates and sustained attention 
are not included as separate studies, nonetheless, some interesting research 
questions can be formulated:  

(iv) attentional templates

For example, it would be interesting to gain a deeper understanding on how 
performances and PCN dynamics of a ‘stable’ template (e.g., a square target) 
modulate by combining it with another target template of varying similarity: e.g., 
a triangle target (same visual dimension), a color target (different visual 
dimension), and a tactile frequency target (different modality). (10) Is there a 
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functional template difference across shape targets which goes beyond priming 
effects, i.e., prior history? (e.g., Lamy & Kristjánsson, 2013). Essentially, the 
square target should differ between intramodal and crossmodal templates pairs, 
as attention resources become more distributed across sensory modalities. 

(v) sustained attention

There is a reasonable amount of empirical evidence promoting the functional role 
of brain oscillations within the fronto-parietal attention network, especially for 
theta and alpha oscillations (Fiebelkorn et al., 2018; Helfrich et al., 2018; Michel 
et al., 2021). Based on this scientific background, response fluctuations are closely 
linked to either “in-the-zone” or “out-of-the-zone” attention states (Esterman et 
al., 2013; Rosenberg et al., 2015, 2016) and should be related to brain oscillations 
and the PCN. (11) Are there functionally relevant correlations between response 
fluctuations, brain oscillations, and the PCN? 

Overall, the established scientific framework that promotes modality- 
weighting in crossmodal search during the preattentive stage can be regarded as 
a consequence of decades of research. Although it displays only a section of 
attention research, nonetheless, the set of superordinate research questions  
(1–11) are a guide to examine the neural dynamics in crossmodal selective 
attention. The answers to these questions will be discussed in the final “General 
Discussion” chapter. 
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2 Redundancy Gains  
in Crossmodal Search 

Tell me, how quickly 
Does the world unveil itself ? 

Just wait an instant.
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Abstract 

Redundant combination of target features from separable dimensions can 
expedite visual search. The dimension-weighting account explains these 
“redundancy gains” by assuming that the attention-guiding priority map 
integrates the feature-contrast signals generated by targets within the respective 
dimensions. The present study investigated whether this hierarchical 
architecture is sufficient to explain the gains accruing from redundant targets 
defined by features in different modalities, or whether an additional level of 
modality-specific priority coding is necessary, as postulated by the modality- 
weighting account (MWA). To address this, we had observers perform a visuo-
tactile search task in which targets popped out by a visual feature (color or shape) 
or a tactile feature (vibro-tactile frequency) as well as any combination of these 
features. The RT gains turned out larger for visuo-tactile versus visual redundant 
targets, as predicted by the MWA. In addition, we analyzed two lateralized event-
related EEG components: the posterior (PCN) and central (CCN) contralateral 
negativities, which are associated with visual and tactile attentional selection, 
respectively. The CCN proved to be a stable somatosensory component, unaffected 
by cross-modal redundancies. In contrast, the PCN was sensitive to cross-modal 
redundancies, evidenced by earlier onsets and higher amplitudes, which could not 
be explained by linear superposition of the earlier CCN onto the later PCN. 
Moreover, linear mixed-effect modeling of the PCN amplitude and timing 
parameters accounted for approximately 25% of the behavioral RT variance. 
Together, these behavioral and PCN effects support the hierarchy of priority-
signal computation assumed by the MWA. 

Keywords: redundancy gains, PCN, CCN, crossmodal search,  
dimension-weighting account (DWA), modality-weighting account (MWA) 
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Introduction 

A fire alarm system includes both visual and auditory warning sub-systems, 
enabling people to make a fast escape decision in an emergency based on 
redundant, visual and/or auditory information. Facilitation by such redundant 
information is known as the redundant-signal effect or redundancy gains (Miller, 
1982). In experimental settings, redundancy gains manifest in terms of both 
enhanced response speed and accuracy, as has been demonstrated in various 
search paradigms (Krummenacher et al., 2001b; Miller, 1982; Todd, 1912; Töllner, 
Zehetleitner, Krummenacher, et al., 2011). 

Redundancy gains have been reported, for instance, for targets redundantly 
defined in multiple visual feature dimensions in visual-singleton, ‘pop-out’ search 
(e.g., color + shape, color + motion, shape + motion) (Feintuch & Cohen, 2002; 
Krummenacher et al., 2002a; Krummenacher & Müller, 2014; Mordkoff & Yantis, 
1993; Töllner, Zehetleitner, Krummenacher, et al., 2011), or, respectively, in 
multiple sensory modalities in crossmodal search (e.g., vision + touch) (Diederich 
& Colonius, 2004; Forster et al., 2002; Miller, 1982). In crossmodal search, 
redundancy gains are also referred to as intersensory facilitation (Blurton et al., 
2014; Forster et al., 2002; Meredith & Stein, 1986; Miller, 1986). Interestingly, 
Diederich and Colonius (2004) found detection performance to be better for 
trimodal targets, combining redundant information from vision, sound, and touch, 
compared with bimodal targets, for which performance was better than for 
unimodal targets. 

Initially, redundancy gains were thought to arise as a natural consequence of 
statistical facilitation (Raab, 1962; Townsend & Ashby, 1983). In this view, 
redundant signals are conceived as independent ‘racers’ that are processed in 
parallel and compete with each other to trigger the (detection) response. In this 
race model, the response decision is made as soon as the faster racer reaches the 
decision criterion. Accordingly, the upper limit of the reaction-time performance 
is constrained by the faster of the two racers: the fastest responses cannot be 
faster than those produced by the faster racer. However, numerous studies have 
shown that the pure race-model cannot fully account for redundancy gains that 
exceeds the boundary of statistical facilitation (Colonius & Diederich, 2006; 
Feintuch & Cohen, 2002; Hagmann & Russo, 2016; Krummenacher et al., 2002a; 
Miller, 2016; Schwarz, 1989; Töllner, Zehetleitner, Krummenacher, et al., 2011), 
in particular, for redundancy gains that give rise to violations of the stringent 
criterion assumed in Miller’s (1982) race-model inequality. 

Thus, instead of independent racers, violations of the race-model inequality 
have been taken to reflect coactivation effects, that is: both signals combine to 
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activate the (detection) response (Miller, 1982; Zehetleitner et al., 2009). It should 
be noted, though, that directly testing for coactivations by examining the race-
model inequality is very conservative: the absence of violations does not preclude 
coactivations per se. Given this, other, direct and indirect measures – in 
particular, maximum negative dependency (Colonius & Diederich, 2017) or 
redundant-signal repetition (benefit) and switch (cost) effects (Liesefeld et al., 
2017) – can be utilized in support of coactive processing. On the other hand, when 
the noise in the redundant stimuli is increased, the parallel race model, without 
the assumption of coactivation, can actually produce spurious violations of the 
race-model inequality (Otto & Mamassian, 2012). Interestingly, violations of the 
race-model inequality appear to be primarily linked to redundant targets that 
combine features across separable visual dimensions or across sensory modalities, 
while they are not observed for redundancies within dimensions or modalities 
(Forster et al., 2002; Krummenacher et al., 2002a). 

The above-mentioned studies have typically examined redundancy gains 
either across dimensions within one sensory modality (e.g., visual search) or 
across modalities (e.g., crossmodal search). But it has rarely been addressed 
whether redundancy gains follow a specific hierarchy within a functional 
processing architecture that combines the two – dimension and modality – 
aspects. This issue is of particular importance for theoretical conceptions of the 
processing architecture underlying attentional selection in perception, 
specifically: do redundancy gains generated by multimodal signals arise at the 
same preattentive processing stage as redundancy gains produced by (separable) 
intramodal signals, or do they reflect processing at a hierarchically higher stage? 
This was the focal issue investigated in the present study, by comparing and 
contrasting two accounts: the dimension-weighting account (e.g., Found & Müller, 
1996; H. J. Müller et al., 1995, 2003) and the modality-weighting account (Töllner 
et al., 2009). – To better understand the architectures envisaged by the two 
accounts, we consider them in some detail in turn. 

Dimension-weighting: A common assumption of theories of attentional 
selection in visual search, including the dimension-weighting account (DWA), is 
that search-guiding perceptual information is extracted and integrated via the 
summation of saliency signals onto an overall-saliency, or ‘attentional-priority’, 
map (Fecteau & Munoz, 2006; Koch & Ullman, 1985; Lee et al., 1999; Wolfe et al., 
1989). In more detail, at the pre-attentive stage, object features are coded by 
specific analyzer units forming separable feature maps (e.g., for the various colors, 
orientations, motion directions, etc.; first-order feature coding in terms of 
Gaspelin & Luck, (2018a). Of note, a feature activity responding to an item in its 
receptive field is modulated by the features of its neighbor items. Specifically, the 
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feature activity is higher when the features of the items in its surround differ 
significantly from the item being detected (e.g., Knierim & van Essen, 1992; 
Nothdurft, 2000), due to a process called iso-feature suppression (Li, 2002), 
effectively reflecting feature contrast. Some theories, including the DWA (Found 
& Müller, 1996; Itti & Koch, 2001; H. J. Müller et al., 1995; Wolfe, 1998), assume 
that the feature-contrast signals are combined into dimension-specific saliency 
maps (e.g., for color, orientation, motion, etc.; second-order feature coding in terms 
of Gaspelin & Luck, 2018), and the dimension-specific saliency signals, in turn, 
are integrated into the supra-dimensional attentional-priority map (Fecteau & 
Munoz, 2006; Ferrante et al., 2018), which guides the allocation of focal attention. 
The DWA additionally assumes that the integration of the dimension-specific 
saliency signals occurs in a weighted fashion, that is: in a competitive process, 
greater weight is assigned to saliency signals from ‘pertinent’ dimensions and 
correspondingly less weight to non-pertinent dimensions – where the weights are 
modulated by both inter-trial history and top-down set (H. J. Müller et al., 2003). 
Thus, for instance, if color, rather than orientation, is target-defining on 
consecutive trials, the weight for color signals increases and that for orientation 
signals decreases, as evidenced by color repetition benefits (irrespective of 
whether a particular color feature is repeated or not; Found & Müller, 1996). Also, 
if a target is defined by dual features from different dimensions (such as color and 
orientation), there is a redundancy gain due to the parallel coactive processing of 
signals from the two dimensions (Krummenacher et al., 2001b, 2002a). However, 
as shown by Krummenacher et al. (2001b), the size of the gain can be influenced 
by the distribution of weights assigned to each dimension. For example, if the 
system has recently encountered targets that rely heavily on color information, a 
redundant target that is defined both color and shape will be mainly detected 
based on its color information because color has been given a higher weight in the 
recent processing history. The shape information will contribute less to the 
detection of the target because its weight is lower. If multiple redundant targets 
are encountered in a row, the weights assigned to the different dimensions become 
balanced, which allows for optimal coactivation to occur. This means that a second 
redundant target is more likely to be processed coactively than a first one (this is 
called the redundant-target repetition benefit). However, if the next target is 
defined by one feature (a non-redundantly, e.g., color), it will be detected less 
efficiently, showing a redundant- to non-redundant-target switch cost, and it 
occurs because the balanced weight distribution that was established by the 
previous redundant target is non-optimal for processing a single feature. 
Redundancy gains are strongest and violate the race-model inequality when the 
signals being processed come from a single target located in the same place 
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(Krummenacher et al., 2002). When the signals are separated by one or more 
other objects (i.e., they come from two distinct targets), the redundancy gains and 
violation of the race-model inequality disappear. This finding is consistent with 
the idea that cross-dimensional signal integration occurs in a location-specific 
manner, as proposed by virtually all ‘saliency-summation’ theories starting from 
Koch and Ullman (1985).  

An extension of the DWA (which was developed to account for attentional 
guidance in visual search) that takes other modalities, such as that of touch, into 
account would assume that guidance signals generated in modalities other than 
vision are treated at the same hierarchical level as visual signals, effectively just 
adding other stimulus dimensions. Thus, for instance, in the tactile modality, 
vibrotactile stimuli would be coded in terms of their vibration frequency 
(frequency dimension) and amplitude (strength dimension). As illustrated on the 
right side of Figure 2–1, in the extended DWA scheme, the frequency dimension 
would just be another dimension (vibrotactile frequency-saliency map) at the 
same hierarchical level as the visual dimensions of color (color-saliency map), 
shape (shape-saliency map), etc., with the supra-dimensional priority map 
integrating the saliency signals from all these dimensions in a weighted fashion. 
Consequently, for computing the attentional overall-priority map, it would not 
matter whether saliency signals are coded in the same or different modalities. 
Accordingly, this scheme makes one critical prediction: redundancy gains should 
not differ between redundant targets defined within the same modality (e.g., 
visual search: color + shape) and targets defined across different modalities (e.g., 
visuo-tactile search: color + frequency), provided that the saliency of the 
respective (color, shape, and frequency) target-defining features is comparable 
(see e.g., Krummenacher et al., 2001b). 

Modality-weighting: An alternative conceptualization, which does predict a 
difference, was proposed by Töllner et al. (2009) to account for their finding, in a 
crossmodal search scenario, of a modality-shift effect (i.e., slowed responses to 
targets in a given – visual or, respectively, tactile – modality on modality-switch 
vs. repetition trials): their modality-weighting account (MWA). In contrast to the 
DWA, the MWA assumes an extra layer of modality maps (see left side of Figure 
2–1), above the (modality-specific) dimension maps and below the overall-priority 
map, where the modality maps integrate dimension-specific saliency signals into 
modality-specific saliency maps, which are then combined across modalities into 
the attentional-priority map. Some empirical support in line with this scheme is 
provided by consistent findings of modality-shift costs (Spence, Nicholls, et al., 
2001; Töllner et al., 2009), as well as crossmodal redundancy gains (Diederich & 
Colonius, 2004; Forster et al., 2002; Iacoboni & Zaidel, 2003; Miller, 1982) – 
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indicating that multisensory integration follows similar rules of weighting and 
prioritization as multidimensional integration in visual search. Importantly, on 
the assumption that there is a relatively separate weight resource for each 
modality – so that up- or down-weighting of any (say: the visual) modality does 
not substantially influence the weight available for the other (say: tactile) 
modality –, the MWA does predict that the gains for crossmodally redundant (e.g., 
visuo-tactile) targets are larger than those for intramodally redundant (e.g., 
visual) targets. 

Thus, a critical test to decide between the alternative architectures envisaged 
by DWA and the MWA – in particular, whether it is necessary to assume the 
additional layer of modality-specific saliency maps (MWA) – would be to directly 
compare the redundancy gains generated by crossmodal targets with those 
produced by intramodal targets. As, to our knowledge, there is no prior work 
providing conclusive evidence to answer this question, the present study was 
designed to allow this critical comparison by introducing a crossmodal search 
paradigm that combined target information from the color and shape dimensions 
in vision and the (vibro-tactile) frequency dimension in touch; thus, besides non-
redundant (color C, shape S, frequency F) targets, there were both visually 
redundant (color+shape C+S) and crossmodally redundant (color+frequency C+F, 
shape+frequency S+F, color+shape+frequency C+S+F) targets, allowing direct 
comparison of the redundancy gains between the two types of redundant targets. 
Critically for this comparison, the baseline, bottom-up feature contrasts have to 
be (reasonably well) equated between the three types of non-redundant target 
(i.e., color, shape, and frequency) signals; if one was more bottom-up salient than 
another, detection of redundantly defined targets would be driven (mainly) by the 
more salient target feature, working against the establishment of redundancy 
effects. Thus, following Zehetleitner et al. (2013), we matched the three types of 
target feature introduced in the main experiment in terms of their bottom-up 
saliency by ensuring that they produced comparable reaction times and error 
rates in pilot experiments (in which only the three non-redundant types of target 
– C, S, and F – were presented in separate trial blocks). Crucially, in the main
experiment, we then examined whether the redundancy gains in the response
times are similar or larger for cross- vs. intramodal combinations of these
(matched) target features, arguing in favor of either the ‘flat’ architecture of the
DWA or the ‘hierarchical’ architecture of the MWA.

In addition to examining behavioral performance, we also recorded the EEG 
to evaluate the neural dynamics of the different types of redundancy gains. While 
some authors have argued that redundancy gains arise post-selectively, that is, 
after the deployment of attention (Feintuch & Cohen, 2002; Miller, Beutinger, et 
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al., 2009), others have provided strong behavioral evidence that, at least in search 
paradigms (with multiple, target and non-target, stimuli), redundancy gains arise 
also pre-attentively, in the computation of attentional selection priority 
(Krummenacher et al., 2001b, 2002a; Zehetleitner et al., 2009) – in line with the 
DWA and MWA.  

A good electrophysiological candidate component for attentional selection in 
the visual domain is the posterior contralateral negativity (PCN, also referred to 
as N2pc): a lateralized negative deflection (150–350 ms) over parieto-occipital 
regions (Ansorge & Heumann, 2006; Eimer, 1996; Luck & Hillyard, 1994b; 
Töllner, Zehetleitner, Krummenacher, et al., 2011; Wolber & Wascher, 2005; 
Woodman & Luck, 1999). The PCN seems to be a suitable indicator for attentional 
selection by indicating both the speed of pre-attentive computations and the 
amount of allocated attention. Examining this component in a visual search 
paradigm, Töllner et al. (2011) established an earlier and more negative PCN for 
visually redundant (color + orientation) targets relative to non-redundant (color, 
orientation) targets, whereas EEG signals reflecting post-selective target 
processing showed no additional effects beyond the PCN and were overall 
comparable for redundant and non-redundant targets – providing strong support 
for a pre-attentive origin of the behavioral redundancy gains. 

In tactile search, there is also a component linked to tactile selective attention 
(in tasks that require finding a tactile target among tactile distractors), namely, 
the central contralateral negativity (CCN, also referred to as N140cc): an event-
related lateralization with a negative deflection (140–340 ms), which specifically 
indicates tactile target information among tactile distractors, similar to the PCN, 
but over central regions (Eimer et al., 2004; Forster et al., 2016). 

Accordingly, the purpose of the present study was to investigate to what 
extent redundancy gains can be explained by these components (PCN, CCN) that 
lead up to attentional target selection in visuo-tactile search. Interestingly, the 
temporal evolution of both components, the CCN (starting around 140 ms) and 
PCN (from 170 onwards) (Forster et al., 2016; Hopf et al., 2004; Kiesel et al., 
2008), mirror the modality-specific temporal dissociation in the N1, with the 
tactile N1 (140 ms) over central regions (Eimer et al., 2004; Eimer & Driver, 2000; 
García-Larrea et al., 1995) preceding the visual N1 (170–220 ms) over parieto-
occipital regions (Mangun, 1995; Novitskiy et al., 2011). Given the difference in 
the emergence of the two components, the processing of touch signals would 
temporally precede that of visual signals – rendering the CCN unlikely to be 
responsive to crossmodal, visuo-tactile redundancies. In contrast, the PCN, 
originating in ventral visual areas (Hopf et al., 2000; Tay et al., 2022), would be 
more likely to reflect the processing of visuo-tactile redundancies in the guidance 
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of crossmodal search, as it emerges spatially close to supramodal brain regions in 
the posterior parietal cortex, such as the intraparietal sulcus or temporo-parietal 
junction, that combine visuo-tactile information (Chambers et al., 2007; Downar 
et al., 2000; Macaluso et al., 2002b). 

In summary, the PCN appears to be the most suited component to examine 
the pre-attentive hierarchy assumed by the MWA (vs. the DWA), by looking for 
gains in its temporal evolution and/or magnitude of expression in response to 
crossmodally redundant (color+frequency C+F, shape+frequency S+F, 
color+shape+frequency C+S+F) vs. visually redundant (color+shape C+S) search 
targets. For triple (crossmodally) redundant targets (C+S+F), we expected to find 
additional gains (Diederich & Colonius, 2004; Wolfe et al., 1989). Importantly, in 
examining for these crossmodal redundancy gains, we controlled for potential 
confounds such as linear superposition and volume conductance that may arise 
from the temporal lag of the PCN relative to the CCN. Last but not least, we 
expected the PCN to be predictive of behavioral, reaction-time performance. 
Altogether, our aim was to contribute to a better understanding of the functional 
architecture of crossmodal attention, by investigating key predictions from the 
MWA (see Figure 2–1). 
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Figure 2–1. Functional architectures of the MWA (left) and DWA (right). In general, activations across 
hierarchical layers (spatiotopically organized maps) converge onto the attention-guiding overall-
priority map, where each hierarchical layer integrates (or sums) signals from the respectively lower 
layer, in a weighted fashion (w; where the total weight is limited). Although both accounts assume 
that focal attention is allocated (in a winner-take-all process) to the location signaling the highest 
attentional priority, they differ in their intermediate structures between the entry-level maps of 
feature analyzers (F) and the attentional-priority map. The DWA (right) parsimoniously assumes only 
one intermediate layer of dimension-specific feature-contrast maps (D) representing the (bottom–up) 
saliency of display items within the respective feature dimension; the output of these dimension maps 
then converges directly, in a weighted fashion, onto the overall-priority map. In contrast, the MWA 
(left) extends the DWA by introducing an additional layer of modality-specific saliency maps (M), 
which integrate, in a weighted fashion, the dimension-specific saliency signals within a given modality 
and output, again in a weighted fashion, to the overall-priority map. The question of which account 
applies better can be tested empirically by assessing the pattern of redundancy gains in singleton 
search (RG; i.e., the gains from defining the target redundantly, by multiple features, vs. 
nonredundantly, by a single feature). Provided that all features are equated in their bottom–up 
saliency, the DWA predicts that the redundancy gains should be equal for any target–feature 
combinations across dimension maps (e.g., color + shape vs. shape + frequency). In contrast, the MWA 
predicts that cross-modal redundancies (e.g., color + frequency) produce greater gains than intramodal 
(e.g., purely visual) redundancies (color + shape). The entry-level feature-analyzer maps depicted in 
the figure code for the features of the targets (fuchsia, square, 100 Hz) and distractors (blue, circle, 40 
Hz) used in the visuo-tactile search task of the present study; accordingly, there are two separable 
feature dimensions in the visual modality and one in the tactile modality. 
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Methods 

Participants. 20 participants (6 females, mean age: 24.9, standard deviation: 2.8 
years) were recruited for the experiment. They gave their informed consent prior 
to the experiment and were paid 9 €/hour for their participation. All had normal 
or corrected-to-normal vision, including normal color vision (tested using the 
EnChroma color-blind test); also, they all had (self-reported) normal tactile 
sensitivity in their fingertips. The inclusion criterion for the main task was 
achieving a tactile detection accuracy above 80% (see next subsection for details), 
which ruled out three participants who failed to reach this criterion. Accordingly, 
17 participants were included in the further analyses. The sample size is in line 
with recent visual, tactile and multisensory neuroimaging studies, including 16-
20 participants (e.g., Ansorge & Heumann, 2006; Busse et al., 2005; Chambers et 
al., 2007; Forster et al., 2016; Keller et al., 2017; Man et al., 2015; Talsma et al., 
2005). Further, this sample size is also supported by assuming medium-to-large 
effect sizes (generalized η² or amount of variance explained) in EEG parameters 
for repeated-measures ANOVAs of targets and categories (η² > .10, power = .90, α 
= .05). The Ethics Committee of the Department of Psychology (LMU) gave their 
approval for this study. 

Stimuli and Procedure. In the crossmodal display, the visual and tactile items 
were presented simultaneously via Matlab Psychophysics Toolbox using a 
projector (Optomo) and solenoid actuators (Dancer Design, diameter 1.8 cm), the 
latter linked to a MOTU system and a 10-channel amplifier. As illustrated in 
Figure 2–2, the two types of stimuli appeared collocated at 2 x 5 locations – 
symmetrically arranged along the fingertips of each hand, and separated by a 
central fixation cross –, with the visual items displayed just above the actuators. 

Participants were seated comfortably looking down onto a semitransparent 
plexiglass table surface (table height: 84 cm; surface: 70 x 60 cm, tilted 60° relative 
to the upright observer) in front of them, which served as display screen (screen-
to-eye distance: ~55 cm), with their fingertips resting softly on top of the 
actuators. On average, the effective display area subtended 38.1° x 12.5° of visual 
angle; visual items (color-filled-in squares or circles) were 3.1° in size (side length 
or, respectively, diameter) and isoluminant (~36 cd/m²), with a center-to-center 
separation of the visual items to tactile solenoids of ~2.1° and an inter-item 
separation between visual and tactile target locations of ~1.9°. Participants wore 
(in-ear) headphones playing pink background noise (which is smoother and so 
experienced as more pleasant than white noise) and earmuffs (3M Peltor) to mask 
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any potential auditory cues coming from the actuator vibrations or other external 
sources, with the loudness of the noise adjusted for each participant. 

The task required detection of a singleton ‘pop-out’ target: participants had 
to discern whether a target was present or absent, responding by pressing one or 
the other of two foot pedals when any odd-one-out (target) item was present or 
absent among homogenous distractor (or non-target) items: blue circles paired 
with a 40-Hz vibration. Pop-out targets differed from distractors by feature 
contrast in color (C: fuchsia), shape (S: square), or (actuator-vibration) frequency 
(F: 100 Hz) or their respective redundant combinations (CS, CF, SF, CSF). The 
mapping of the foot pedal to the ‘target-present’ vs. ‘-absent’ response was 
counterbalanced across participants and switched half-way through the 
experiment (after 9 trial blocks); to avoid a carry-over effect induced by response 
switching, participants performed an additional training block (50 trials, same 
targets) to ensure high accuracy levels (> 80 %) after response remapping.  

Importantly, the distractors and the seven targets were iso-luminant (in the 
visual modality) and of similar vibration amplitudes (in the tactile modality). 
Based on the MWA, targets can be grouped into four categories (or contrast 
groups): non-redundant targets (NR: C, S, F), visually (dual-) redundant targets 
(VR: CS), crossmodally (dual-) redundant targets (CR: CF, SF), and triple-
redundant targets (TR: CSF) (see Figure 2–2). To ensure a common baseline in 
non-redundant targets (C, S, F), a series of pilot studies[1] were conducted to select, 
and introduce in the main experiment, target feature-contrast values for color 
(fuchsia), shape (square), and frequency (100 Hz) that produced comparable 
response times and so can be assumed to be of similar bottom-up saliency (cf. 
Zehetleitner et al., 2013).  

The experiment consisted of 1800 trials, presented across 18 blocks of 100 
trials each. Within a block, each of the seven targets were presented once at each 
of the 10 (visuo-tactile) locations, yielding 70 target-present trials (i.e., each target 
appeared 180 times in total). In addition, there were 30 target-absent trials per 
block. The reasons for introducing 70% target-present (and only 30% target-
absent) trials was that the main focus of the study was on target-generated 
redundancy gains and to ensure a sufficient signal-to-noise ratio for the 
corresponding PCN and CCN components, while also avoiding adverse effects of 
fatigue (a balanced present:absent ratio would have increased the trial number 
by a factor of 1.4; see also previous studies of redundancy gains in search tasks 
that used similar, unequal ratios, e.g., Töllner et al., 2011). To control for specific 
cross-trial target sequences (i.e., inter-trial transitions), we applied de Bruijn 
sequencing (Aguirre et al., 2011) to ensure that all transitions were equally likely 
across the 1800 experimental trials. 
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Participants were instructed to fixate at the center and to respond to target 
presence/absence as fast and accurately as possible. Each trial started with a 500-
ms fixation cross, followed by the visuo-tactile stimulus array (with a target 
present or absent), which was briefly presented for 250 ms. Afterwards, 
participants had to respond by pressing a foot pedal. If the response was wrong, 
error feedback was presented in the form of a 300-ms warning ‘beep’ (330 Hz) via 
the headphones. The next trial began after an inter-trial interval randomly 
selected between 900 to 1100 ms (see Figure 2–2). 

One or two days prior to the formal experiment, participants underwent a 
training session practicing the tactile detection task in 6 to 8 blocks of 100 trials 
each. That is, only tactile, 100-Hz (F) targets were present among homogeneous, 

Figure 2–2. Illustration of the experimental setup including visual (projector-generated) and tactile 
(actuator-generated) stimuli. Participants placed their fingertips softly on the tactile actuators and gave 
responses via foot pedals. The timeline of the trials in the detection task consisted of a fixation-cross 
(FC), a visuo-tactile stimulus array, responses (R) via foot pedals, and an interstimulus interval (ISI). 
In case of wrong answers, error feedback via headphones (beep tone) was played. The durations of these 
events are depicted underneath in milliseconds (msec). Generally, distractor or nontarget (blue circle + 
40 Hz) items were presented at each location, except for one location on target-present trials. Overall, 
there were seven possible targets, defined by feature-contrast(s) in color (fuchsia), shape (square), and 
frequency (100 Hz), and their respective combinations (C, S, F, CS, CF, SF, CSF). According to the 
MWA, assuming a hierarchy of redundancy gains, these targets were combined into categories of 
nonredundant (NR), visually redundant (VR), cross-modally redundant (CR), and triple redundant (TR) 
targets. For assessing behavioral performance, NR consisted of C, S, and F targets; for examining the 
PCN, which generally describes a visual component, NR included C and S targets, whereas F targets 
were examined separately. On the right panel, a list of relevant acronyms and legends for targets and 
categories is shown. 
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40-Hz distractors (with the visual array consisting of color-and shape-
homogeneous blue circles), with a target being present in 50% of the trials.
Participants had to reach a final level of above 80% correct responses on all,
target-present and -absent, trials (in the last practice blocks) in order to be
admitted to the main experiment (this ruled out three participants, whom we then
replaced by three other participants). The same threshold (> 80% correct) was also
applied to tactile target-detection performance in the main experiment, which led
to the exclusion of three participants, although they had previously passed the
training.

Performance Analysis. We analyzed both error rates and mean reaction times. 
Since the pop-out task was generally quite easy, for reaction times (mean = 597 
ms, standard error = 21 ms) only correct-response trials ranging between 250 and 
1200 ms were included (on average, 2% of the trials were excluded). For statistical 
analysis, we conducted repeated-measures ANOVAs, post-hoc testing with 
Bonferroni correction and repeated-measures correlations (Bakdash & Marusich, 
2017). As effect-size parameter, the generalized eta-squared values (η²) are given 
(Lakens, 2013), violations of sphericity are corrected with Greenhouse-Geisser, 
and 95% within-subject confidence intervals are shown and reported (Loftus & 
Masson, 1994). Overall, we analyzed performance for the seven targets (C, S, F, 
CS, CF, SF, CSF), as well as the four MWA-based categories (NR, VR, CR, TR). 
Moreover, we examined for coactivations by redundant targets both directly by 
looking at violations of the race-model inequality (after removing twins of error 
responses from the distribution of correct reaction times) by the first and, 
respectively, the second occurrence of two sequential redundant targets (Colonius 
et al., 2017; Krummenacher et al., 2001b; Miller, 1982; Ulrich et al., 2007), and 
indirectly through repetition effects and redundancy gains (Liesefeld et al., 2017). 
Furthermore, we compared the responses to redundant targets and, respectively, 
redundant-target categories with the minimum of their oppositely sorted feature 
contrasts, known a the ‘maximum negative dependency’ (Colonius & Diederich, 
2017), using one-tailed independent t-tests and bootstrapping procedures (with 
10.000 repetitions). Statistics were performed using R. 

EEG Recordings and Preprocessing. We recorded the EEG using 64 Ag/AgCl 
active electrodes placed in the 10–20 system (Brain Products™) with a 1000-Hz 
sampling rate. During the task, we kept impedances below 5 kΩ. Further, we used 
Python and MNE (Gramfort et al., 2013, 2014) for EEG preprocessing and 
analysis and R for statistics. The preprocessing steps included a bandpass filter 
(0.1–70 Hz) and a notch filter (50 Hz) to eliminate line noise. We then used ICA 
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(extended infomax) to separate ICA components of eye blinks and saccades and 
corrected the EEG recordings by applying the inverse transformation of the ICA 
and removing ICA components associated with ocular artifacts.[2] Subsequently, 
the EEG signals were re-referenced by mastoids (TP9, TP10) and a 40-Hz lowpass 
filter was applied. 

For the main analysis, we applied an extra 12-Hz low-pass filter with zero-
phase shift, to obtain ‘cleaner’ PCN and CCN signals, which are generally 
susceptible to noise (Miller et al., 1998; Ulrich & Miller, 2001). Further, this 
filtering includes the alpha and theta frequency bands, which both are linked to 
selective attention (J. J. Foster et al., 2017; Keller et al., 2017; Michel et al., 2021). 
To rule out possible filter effects, such as temporal smearing (Luck, 2014), we used 
paired t-tests to compare both (12-Hz vs. 40-Hz) signals. As regards behavioral 
criteria, only correct-response trials with reaction times within 250–1200 ms were 
selected for epoching the EEG, including a 200-ms baseline interval prior to onset 
of the search array. Next, we applied mean baseline correction and averaged the 
waveforms (ERPs) for left- and right-side presented targets and, respectively, target 
categories. Following this, we computed the lateralized signals (CCN, PCN) by 
subtracting the ipsilateral from the contralateral waveforms. For computing the 
CCN, we selected the difference waves for electrode positions C3/C4 (Eimer et al., 
2004; Forster et al., 2016); and for the PCN, we combined PO7/PO8, PO3/PO4, 
and O1/O2 to improve signal-to-noise ratio (Feldmann-Wüstefeld et al., 2015; 
Töllner, Zehetleitner, Krummenacher, et al., 2011). Since the PCN primarily 
indicates visual selective attention, only color (C) and shape (S) targets were 
subsumed under the non-redundant category (NR), while purely tactile (F) targets 
were considered separately. 

EEG Analysis. For the PCN (150–350 ms) and CCN (140–340 ms), we analyzed 
latencies and amplitudes with a zero-phase 20-ms moving average and applied 
the jackknife procedure (Kiesel et al., 2008; Miller et al., 1998; Ulrich & Miller, 
2001). The peak amplitude and peak latency were selected by taking the negative 
peak, and the onset and offset by applying the 50% criterion from the peak 
amplitude. Next, we applied the inverse transformation of jackknife scores 
(Smulders, 2010); while this is equivalent to other corrections of test statistics 
(Ulrich & Miller, 2001), it has the additional advantage of examining correlations 
and linear mixed-effect models. Further, we also extracted the raw, non-jackknife 
amplitude from the peak minima. For the statistics, we applied the same 
repeated-measures ANOVAs and post-hoc testing – though, instead of using 
Bonferroni correction (which is very conservative), we used the false-discovery 
rate (FDR) for post-hoc comparisons (Benjamini & Hochberg, 1995). To control for 
a potential bias due to unbalanced categories VR (CS) and CR (CF, SF), we 
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additionally compared the means for color (CS, CF), shape (CS, SF), and frequency 
(CF, SF) in behavioral performance and the EEG signals. To establish the 
presence of crossmodal benefits which we expected to find in the PCN in 
particular, a potential confound must be addressed, namely, that of earlier tactile 
CCN activity simply leading to a linear superposition of visuo-tactile information. 
Hence, we also compared the (PCN) onset timings for redundant targets and, 
respectively, target categories (e.g., SF, or TR) with their linear ‘feature sums’, 
that is, the summation of the respective non-redundant PCN signals (e.g., S+F, or 
NR+F). Crucially, finding faster PCN onsets by redundant signals compared to 
their linear feature sums would not only argue against the early tactile confound, 
but also be indicative of the presence of coactivations at the preattentive 
(attentional-priority computation) stage, reflecting some form of neural race-
model violation. Finally, we evaluated linear mixed-effect models (LMM) using 
common information criteria (AIC, BIC), to make a statement about the 
predictability (marginalized R²) of behavioral performance from the PCN 
dynamics. 

Results 

Performance. Analysis of behavioral performance (see Figure 2–3) focused on the 
error rates (ERs) and mean reaction times (RTs). ANOVAs with the single-factor 
Target revealed a prominent main effect in both ER (F (6, 96) = 34.91, p < .001, η² 
= 0.596) and RT (F (6, 96) = 39.24, p < .001, η² = 0.243): redundant targets (CS, 
CF, SF, CSF) were overall detected significantly more accurately and faster than 
non-redundant targets (C, S, F) (Bonferroni post-hoc tests, ps < .014). 
Importantly, the ERs and RTs were comparable among the non-redundant targets 
(ps > .085), indicating that these were well equated in terms of their physical 
saliency. For the four redundant targets, the ERs were very low overall (< 3 %), 
with fewer errors for CSF than CS targets (p = .005). In contrast, the RTs 
exhibited a clear hierarchy of redundancy gains as expected on the modality-
weighting account (ps < .036): RTs became progressively faster from CS (549 ms) 
through CF (526 ms) and SF (521 ms) to CSF (508 ms) targets. The mean target-
absent RT (658 ms) was the slowest. 

With the RT (target) effects being in line with the modality-weighting account 
(MWA), we proceeded with an analysis based on our a-priori target categories. 
Single-factor Category ANOVAs also yielded main effects in ERs (F (3, 48) = 49.38, 
p < .001, η² = 0.609) and RTs (F (3, 48) = 128.02, p < .001, η² = 0.224). More errors 
were made with targets in the non-redundant (NR) category compared to the 
three redundant (VR, CR, TR) categories (ps < .001); again, responses were less 
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accurate for the visual compared to the triple redundant category (p = .001). As 
for RT performance, NR targets were responded to significantly slower than 
redundant targets; for the latter, RTs became increasingly faster from VR through 
CR to TR targets (ps < .002). As both error rates and reaction times exhibit similar 
patterns of redundancy gains, we additionally applied repeated-measures 
correlations, which yielded a strong positive link between both variables in both 
the target- (r (101) = 0.669, p < .001) and category-based (r (50) = 0.806, p < .001) 
analysis. That is, faster responses were also more accurate, ruling out speed-
accuracy trade-offs. 

Additionally, we compared colors (CS, CF targets), shapes (CS, SF targets), 
and frequencies (CF, SF targets), to address possible concerns about the design 
imbalance between the VR and CR categories (one combination in VR vs. two 
combinations in CR); note that this comparison effectively isolates the 
contribution of the color, shape, and frequency signals to the redundant-target 
gain. The results revealed reaction times to redundant targets involving frequency 
(524 ms) to be significantly faster (ps < .003) compared to those involving color 
(538 ms) and shape (535 ms), which were comparable. In the error rates (which 
were overall near ceiling), there was a difference only between redundant 
frequency (2.1%) and color targets (2.8%) (p = .009), for both of which the ERs were 
comparable to shape targets (2.2%). – Thus, the findings, particularly in the RTs, 
are clearly in line with the MWA by showing significantly greater gains for 
crossmodal redundancies (see Appendix Figure 2–A1). 

The mean RTs for redundant targets (e.g., SF) showed significantly fast 
compared to the non-redundant targets (e.g., S + F), but this redundant gain did 
not consistently meet the criteria for coactivation defined by the race-model 
inequality (Miller, 1982). This was only the case for SF vs. S+F targets, but not 
for any other redundant targets (all ps > .080). Since this test is very conservative, 
we also looked for indirect evidence of coactivations in terms of the existence of 
cross-trial repetition and redundancy-cost effects (cf. Liesefeld et al., 2017). 
Indeed, we found benefits for single-feature repetitions in the non-redundant 
category (i.e., repetition vs. change of single-feature target across trials n–1 and 
n: 580 ms vs. 597 ms, t(16) = 3.18, p = .006), and double-feature repetitions in the 
redundant categories (i.e., double-feature repetition vs. single-feature repetition 
and complete feature change across trials n–1 and n: 512 ms vs. 524 ms and, 
respectively 529 ms, t(16) > 4.10, ps < .002). Furthermore, single-feature 
repetitions led to slower RTs after redundant embeddings (585 ms) than after 
non-redundant presentation (566 ms) (t(16) = -3.50, p = .003), which is indicative 
of a bias due to redundant activations. 
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Finally, the redundant-signals enhancement test (cf. Colonius & Diederich, 
2017), also known as the maximum negative dependency test, was used to 
compare the mean RTs of redundant targets (e.g., SF) to the minimum of the 
oppositely sorted mean RTs of the non-redundant targets (e.g., S + F). This test is 
used to determine if coactivations are presented and is less conservative than the 
race-model inequality test (Miller, 1982). The results of this test showed that 
coactivations were presented for SF vs. S+F, CSF vs. C+S+F, CR vs. NR+F, and 
TR vs. NR+F (ps < .037, one-tailed), but not for CS vs. C+S, CF vs. C+F, and TR 
vs. VR+F (ps > .15, one-tailed) (see the right-hand panel in Figure 2–3, and 
Appendix Table 2–A2). 

Before turning to the PCN and CCN results, it is important to note that both 
EEG signals, whether filtered with 12-Hz or 40-Hz, were fully comparable, that 
is: they showed no differences whatsoever across latency scores (PCN: ts(16) < 

Figure 2–3. The error-rate (ER) and RT results are presented for categories (NR, VR, CR, TR; left 
panels) and targets (A = target absent, C, S, F, CS, CF, SF, CSF; middle panels). Horizontal lines and 
asterisks indicate statistically reliable differences from Bonferroni post hoc comparisons (*p < .05, **p 
< .01, ***p < .001). Of note, the ERs and RTs were comparable for C, S, and F targets, meeting our 
common-baseline criterion. The right shows the redundant-signals enhancement tests (cf. Colonius & 
Diederich, 2017) for coactive (vs. the minimum of their negatively dependent RTs) processing of the 
multiple features, or feature categories, defining redundant targets. Prominent redundancy gains were 
found in ERs and RTs (marked by *). Whereas in ERs, TR (CSF) was more accurate than VR (CS), and 
the RTs exhibited a clear hierarchy of redundant gains with benefits increasing from VR (CS) through 
CR (CF, SF) to TR (CSF), as expected on the MWA. 
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|1.55|, ps > .141, CCN: t(16) < |1.42|, ps > 0.176), thus revealing no effects of 
temporal smearing Although the amplitudes were different (PCN: t(16) >|2.35|, 
ps < .032, CCN: t(16) > |2.47|, ps < .025), being lower for the 12-Hz signals, this 
result is rather trivial, since filtering in general converges to the ensemble mean 
as a limit process while preserving the systematic effect (this can be also seen 
from the exact-same result in mean amplitudes for both 12-Hz and 40-Hz signals; 
see Table 1 and Appendix Table 1). Further, in a comparison of (inverse) jackknife 
vs. (raw) no-jackknife amplitudes, we found the same effect of reduced amplitudes 
as in the previous comparison (12-Hz vs. 40-Hz). To ensure that both amplitudes 
within a participant are modulated in the same fashion, we applied repeated-
measures correlations, which revealed a high and significant relationship 
(targets: r (84) > .870, ps < .001, CI = [.705; .882]; categories: r (50) > .893, ps < 
.001, CI = [.763; .941]), indicative of similar properties across amplitudes. 
Accordingly, jackknifing can be considered a form of filtering. Given this, the 
report below focuses on the 12-Hz signals and jackknife scores (a detailed 
description for 40-Hz targets and categories can be found in Appendix Table 2–
A1 and Appendix Figures 2–A2 & 2–A3). 

CCN. We found a prominent CCN over central regions (C3/C4) for tactile target 
signals (F, CF, SF, CSF). Compared to solely visual (i.e., non-tactile) target signals 
(C, S, CS), amplitudes for the tactile targets were significantly more negative (-
1.94 µV vs. -0.78 µV, ps < .016). Among the tactile targets (F, CF, SF, CSF), there 
were no significant differences in CCN in either onsets or amplitudes (all ps > 
.29); hence, neither the CCN onsets (105 to 125 ms) nor the amplitudes (-1.89 to -
2.01 µV) were sensitive to crossmodal redundancies (see Figure 2–4). Although 
the CCN latency analysis yielded a significant main effect (F (3, 48) = 4.81, p < 
0.001, η² = 0.122), subsequent post-hoc comparisons, including false-discovery 
rate (FDR) correction, revealed F to be marginally earlier than CF, SF, and CSF 
(ps = .052). However, no main effects in CCN latency were present in 12-Hz 
categories, and in 40-Hz targets and categories (ps > .187). To examine for the 
presence of a late visual confound in the CCN for crossmodal (visuo-tactile) 
targets, we compared the mean amplitudes within the 300–400-ms window. While 
this revealed a marginal main effect in both target- and category-based analyses 
(ps = .077, η²s < 0.038), the effect sizes were small and there were no differences 
in post-hoc testing (ps > .14). – Thus, the CCN reflects a consistent somatosensory 
component starting around 110 ms post stimulus onset and peaking around 200 
ms with -2.00 µV, which is unaffected by crossmodal, visuo-tactile redundancies.
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PCN. Typically, the PCN has only been examined in visual search paradigms, so 
that it is unclear whether it also plays a role for tactile-only information. For this 
reason, we omitted the solely tactile target (F) from the subsequent PCN analyses 
and included only color (C) and shape (S) as non-redundant (NR) pop-out signals. 
But we analyzed the tactile PCN (F) separately. Altogether, all PCN variables – 
onset, amplitude, latency, and offset – showed consistent main effects in both 
target- and category-based analyses. A full statistical summary of the major 
findings in PCN is provided in Table 1.  

To start with, the PCN onsets were modulated congruently across categories 
and targets. Analyzed category-based, crossmodal redundant targets (CR, TR) 
elicited earlier PCN onsets than solely visual and visual redundant targets (NR, 
VR) (all ps < .027, see Figure 2–5 and Table 2–1). Examined target-based, this 
crossmodal advantage was also evident in earlier PCN onsets for SF and CSF in 
comparison to C, S, and CS (all ps < .03). No crossmodal benefit was apparent for 
CF, due to a larger variance (see Figure 2–6).  

Figure 2–4. The CCN is shown over central regions (C3/C4) for the seven targets (C, 
S, F, CS, CF, SF, and CSF). Naturally, only targets including a tactile signal (F, CF, 
SF, CSF) elicited a prominent CCN, in comparison with solely visual targets (C, S, CS). 
Although the CCN was comparable in onsets and amplitudes (nonsignificant, n.s., 
comparisons) among the F, CF, SF, and CSF targets, there were at best marginal 
differences in latency and 300- to 400-msec mean amplitude in post hoc comparisons 
(FDR; • p < 0.1). Thus, the tactile CCN reflects a stable somatosensory component that 
is not sensitive to cross-modal, visuo-tactile redundancies. 
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Similarly, the PCN amplitudes were significantly more negative in the CR 
and TR than in the NR and VR categories (ps < .024). Again, this pattern was 
consistent when examined target-based: amplitudes were generally more negative 
for crossmodally redundant targets (CF, SF, CSF) than for visual targets (C, S, 
CS) (ps < .046), except for the SF vs. C post-hoc comparison (p = .141). 
Furthermore, findings in PCN amplitudes were mirrored by findings in 200–300-
ms mean amplitudes. Again, crossmodal categories (CR, TR) and targets (CF, SF, 
CSF) had consistently higher amplitudes than NR and VR (ps < .053) and C, S, 
and CS (ps < .059), respectively. As mentioned above, the findings and patterns 
between jackknife amplitudes and raw (no-jackknife) amplitudes were 
statistically congruent (see Table 1). 

This pattern indicates that the PCN is sensitive to crossmodal redundancies 
in terms of both onset (onsets occurring earlier) and amplitude (amplitudes 
becoming more negative). However, what remains open is whether these findings 
indicate true crossmodal gains (reflecting ‘coactivations’) by visuo-tactile targets, 
rather than simply deriving from the superposition of the earlier (tactile) CCN. 
We address this issue in the following sections. Of note, no gains in either onset 
or amplitude were found for purely visual redundancies (see Figures 2–5 and 2–
6, and Table 2–1). 

As for the PCN latencies, these were generally shorter for redundant (VR, CR, 
TR) than for non-redundant (NR) target categories (ps < .041), with CR being 
marginally shorter than NR (p = .065), but longer than TR (p = .041). This pattern 
is indicative of PCN latency being sensitive to redundancies. While the pattern of 
redundancy gains in PCN latencies was similar when examined target-based (i.e., 
with shorter latencies for CS, CF, SF, and CSF vs. C and S), the effect was 
significant only in comparison to S targets (ps < .013), but not reliable in 
comparison to C targets (ps > .059). The latter may reflect a dissociation in 
feature-contrast computation between color and shape targets (shapes being 
integrated wholes of more elemental features), while it may also be attributable 
to a lower PCN signal-to-noise ratio for targets in comparison to categories (see 
Figure 2–6 & Table 2–1). 

Finally, the PCN offsets occurred earlier in VR and TR compared to CR and 
NR target categories (ps < .028), pointing to a benefit for visual redundancies. 
Examined target-based, the pattern was again somewhat more complicated (likely 
for the same reasons as with the PCN latencies): offsets occurred generally 
(though in some cases just marginally) earlier for visual redundant targets (CS, 
CSF) (ps < .069) compared to S, CF, and SF targets, though not in comparison 
with color-only (C) targets (ps > .372), and the offsets were comparable among C, 
S, CF, and SF targets (ps > .051).  
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In summary, crossmodal redundancies (CR, TR) produced benefits in terms 
of earlier PCN onsets and larger (negative) PCN amplitudes. Further, 
redundancies (VR, CR, TR) generally gave rise to shorter PCN latencies, and 
visual redundancies (VR, TR) appeared to elicit earlier PCN offsets. Given these 
distinct patterns and temporal effects for visual and crossmodal redundancies, 
the PCN – like the behavioral results (see above) – favors the MWA (see Figure 
2–5 & Table 2–1). 

In addition, the separate analysis of the frequency target (F) revealed 
evidence for a purely tactile PCN: the frequency target, too, elicited a prominent 
negative deflection over extrastriate regions (see Table 2–1 & Figure 2–6). This 
tactile PCN, however, occurred much earlier compared to the other targets, 
having an onset at around 121 ms. It plateaued around 229 ms with -0.57 µV and 
faded out by 281 ms. Given these properties, the tactile PCN is likely to reflect a 
wave propagation from the CCN (see above).  

Figure 2–5. The PCN results are shown for categories (NR, VR, CR, TR) over parieto-occipital 
regions (PO7/ PO8, PO3/ PO4, O1/O2). On the top, grand averages of the PCN signals (< 12 Hz) are 
shown as negative deflections, which are most prominent within 200–300 msec post stimulus onset. 
On the bottom, bar plots are shown with FDR post hoc comparisons (• p < .1, *p < .05, **p < .01). 
Benefits were found for cross-modal redundancies (CR, TR) in both PCN onsets and PCN amplitudes. 
Furthermore, PCN latencies were generally shorter for redundancies (VR, CR, TR), with only a 
marginal advantage for CR vs. NR, whereas PCN offsets showed benefits for categories with visual-
redundant information (VR, TR). 



Results 111 

Analogous to behavioral performance (see above), in a supplementary analysis, 
we also compared the effects of color (CS, CF), shape (CS, SF), and frequency (CF, 
SF) signals in redundant targets with regard to the CCN and PCN. In the CCN, 
only targets including a frequency signal produced a prominent negative 
deflection, underpinning the tactile sensitivity over central regions. For the PCN, 
frequency (174 ms), shape (203 ms), and color (213 ms) signals differed 
significantly in the onsets (ps < .041), while the amplitudes were more negative 
with frequency (-0.96 µV) compared to color (-0.69 µV) and shape (-0.61 µV) 
signals (ps < .023); and the PCN offsets occurred earlier with color (269 ms) and 
shape (270 ms) compared to frequency (283 ms) signals (ps < .061). No significant 
differences were found in the PCN latencies. These findings complement those 
from the main analysis by showing crossmodal (frequency) benefits in the PCN 
onsets and amplitudes, and a visual (color and shape) effect in the PCN offsets. – 

Figure 2–6. The PCN results are shown for targets (C, S, F, CS, CF, SF, CSF) over parieto-occipital 
regions (PO7/ PO8, PO3/ PO4, O1/O2). PCN grand averages (< 12 Hz) are shown (top) for targets, 
including a purely tactile PCN (F, gray line). Furthermore, bar plots are shown for onset, amplitude, 
latency, and offset (bottom), along with within-subject confidence intervals. Here, prominent findings in 
post hoc comparisons (using FDR correction) are indicated by asterisks (• p < .1, *p < .05, **p < .01). For 
targets, onsets and amplitudes revealed cross-modal benefits and redundancy gains, occurring earlier in 
CF, SF, and CSF compared with C, S, and CS. Redundant targets (CS, CF, SF, CSF) had shorter latencies 
compared with S, but not C. Finally, the PCN offsets occurred consistently earlier for targets including 
visual redundant information (i.e., CS and CSF), but not for sole-color (C) targets 
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Of note, there was a slight PCN onset advantage for redundant-shape (CS, SF) 
over redundant-color (CS, CF) targets (203 vs. 213 ms), with both exhibiting 
comparable PCN latencies and offsets (see above). Accordingly, the fact that in 
the target-based analysis, the timing of PCN was not reliably expedited by 
redundant-color vs. sole-color targets (see above) is unlikely attributable to 
fundamental differences in feature-contrast computation between color and shape 
signals, thus favoring an explanation in terms of reduced signal-to-noise ratios 
(and/or more conservative post-hoc testing in the target- as compared to the 
category-based analysis) (see Appendix Figure 2–A1). 

Neural Race vs. Coactivation. In a further, critical analysis, we examined whether 
the crossmodal dynamics in the PCN derive purely by linear superposition of early 
(tactile) activation reflected in the CCN on the later (visual) PCN, or, 
alternatively, whether the crossmodal gains in the PCN onsets can be attributed 
to coactivations by visuo-tactile targets. To this end, we compared the PCN onsets 
for redundant Targets and, respectively, target Categories and the respective 
linear sums of the non-redundant feature contrasts contained in them (e.g., CF 
vs. C + F). While we did not find temporal benefits in the PCN onsets for CS and 
CF targets compared to their respective feature sums (p > .131) (indicative of 
linear superposition), for SF vs. S+F and CSF vs. C+S+F (target-based 
comparisons) and for CR vs. NR+F and TR vs. VR+F (category-based 
comparisons) we established significantly earlier PCN onsets (p < .04). Overall, 
the PCN onsets were consistently faster than their feature sums (see Figure 2–7 
and Appendix Table 2–A2). Of note, finding these consistent temporal benefits in 
PCN onsets aligns nicely with the coactivation analysis of the reaction times 
above, which indicates coactivations for the very same combinations (see Figure 
2–3). Thus, although linear superposition clearly plays a role (witness the 
summed-feature neural signals reflecting quite similar PCN patterns as 
crossmodal redundant signals), it fails to explain the whole effect pattern. 
Instead, we take our finding of evidence for coactivations in the PCN onsets to 
argue in favor of crossmodal signals combining to expedite the coding of 
attentional selection priorities.  
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Finally, Figure 2–8 depicts the temporal evolution, from onset through peak 
latency to offset, of the topomaps for each type of Target, with the activation map 
for a given target scaled to half-to-full amplitude range (µV). Descriptively, visual 
targets elicited a prominent PCN over parieto-occipital regions (see C, S, and CS), 
with the PCN for color (C) appearing more prominent over occipital regions and 
that for shape (S) over parietal regions, and both combing with visual redundant 
color-shape (CS) targets. Generally, visual-target-related activity appeared to 
propagate towards parieto-central regions. Targets involving tactile information 
(F, CF, SF, CSF) produced a prominent CCN component over central regions. Of 
note, the CCN for purely tactile targets (F) was not observed to (strongly) 
propagate towards occipital regions, while visual and tactile generators appeared 
to combine for crossmodal targets. Finally, for CF targets, the two neural 
generators – a central tactile CCN and an occipital visual PCN – are quite clearly 
discernible, whereas for SF and CSF targets the topomaps show no clear-cut 
separation. Interestingly, for redundant and particularly crossmodal targets (CS, 
CF, SF, CSF), the visual and tactile activations in the topomaps appear to 

Figure 2–7. PCN onsets for redundant targets and target categories in comparison 
with their respective feature sums. PCN curves are shown for redundant signals 
(colored and dashed lines) and the linear summation of the respective features 
combined in them (gray; e.g., SF vs. S + F). Bar plots (with within-subject confidence 
intervals) present the results from one-tailed independent t tests of the mean PCN 
onsets, being either significant (*p < .05, **p < .01, ***p < .001) or nonsignificant (ns). 
In brief, PCN onsets were expedited above the (temporal) limit of their linear 
superposition in SF, CSF, CR, and TR, indicative of neural coactive processing of these 
cross-modal targets or target categories. 
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combine, which might be interpreted in terms of linear superposition or, 
alternatively, crossmodal interactions (i.e., coactivation). Although these 
observations are purely descriptive, we consider it interesting for future studies 
to examine these spatio-temporal patterns of the event-related lateralizations in 
greater detail. 

Linear Mixed-Effect Models. Finding similar patterns of hierarchical redundancy 
gains in reaction times and PCN dynamics, pointing to crossmodal coactivations 
in attentional-priority coding, we went on to examine (in a final analysis) how 
well the PCN itself predicts behavioral (RT) performance. To this end, we applied 
linear mixed-effect modeling (LMM), by stepwise including PCN onset (ms), 
amplitude (µV), latency (ms), and offset (ms). To control for the different scales 
(ms, µV), we applied z-normalization. Generally, this procedure was applicable 
due to the inverse transformation of jackknife scores, yielding individual 
estimates. Importantly, we omitted the tactile target (F) from the LMM analysis, 

Figure 2–8. Temporal evolution of the topomaps for the seven targets, from onset through peak latency to 
offset, within the range of half-amplitude (in the PCN) to (above) peak-amplitude (PCN or CCN, depending 
on which amplitude is more prominent). Overall, a visual PCN (C, S, CS), activating parieto-occipital 
regions can be discerned from a tactile CCN (F) over central regions. 
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since it produced a prominent bias owing to its unique PCN characteristics 
(having a very early onset and a loose offset). Examined target-based, we found 
three prominent predictors of RT performance, in PCN onset, amplitude, and 
latency (ps < .001), while offset contributed at only marginally (p < .083) – with 
the dynamics in the PCN explaining 19.8 % of the variance in the reaction times 
in total. The category-based model performed even better, explaining 25.5% of the 
RT variance, by revealing PCN onset, amplitude, and offset as prominent 
predictors (ps < .001) (see Appendix Table 2–A3). – In summary, the holistic 
dynamic in the PCN, reflecting a hierarchy in perceptual and preattentive 
processing in line with the MWA, turned out to be a good predictor of performance. 

Discussion 

Previous studies have provided evidence of redundancy gains in visual 
(Krummenacher et al., 2001b; Töllner, Zehetleitner, Krummenacher, et al., 2011) 
and, respectively, multisensory target detection (Diederich & Colonius, 2004; 
Forster et al., 2002; Miller, 1982). Thus far, however, the gains deriving from 
cross-dimensional (within the same modality) and, respectively, crossmodal 
redundant target definition have been studied separately. The present study 
combined both aspects within the same, crossmodal search paradigm in order to 
examine whether redundant-signal integration across (the visual color and shape) 
dimensions and across (the visuo-tactile) modalities operate at the same or 
distinct hierarchical levels in the functional architecture of search guidance. 

The theoretical framing of the study was provided by Töllner and colleagues 
(2009) in their “modality-weighting account” (MWA) of crossmodal search, which 
is an extension of the “dimension-weighting account” (DWA; e.g., Found & Müller, 
1996) of visual search. Both accounts assume a distinct hierarchy of perceptual 
and preattentive signal coding that precedes attentional selection, where 
information from separable lower-level mechanisms of feature (-contrast) coding 
is integrated, in a weighted fashion, onto on overall-saliency map which guides 
the allocation of focal attention, more recently referred to as ‘attentional-priority’ 
map (Fecteau & Munoz, 2006). However, the architectures assumed by the two 
accounts differ in one crucial aspect: whereas the DWA would consider 
dimensional (feature-contrast) maps to be sufficient to account for crossmodal 
signal integration, the MWA assumes an extra, modality-specific level of saliency 
signaling, that is: modality-specific saliency maps, whose signals are then 
integrated, (again) in a weighted fashion, onto a crossmodal attentional-priority 
map (see Figure 2–1). Accordingly, the main focus of the present study was on the 
necessity of assuming this extra hierarchical level in (crossmodal) search 
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guidance. To achieve this, a crucial prerequisite had to be met: we had to, and did, 
ensure that the non-redundantly defined targets (C, S, F) were of comparable 
physical saliency (as assessed by the time taken to detect them with comparable 
accuracy), so that all (separable) target signals had an equal chance to influence 
detection when they were combined in redundantly defined targets. Further, to 
strengthen the validity of our findings, we conducted both target- and category-
based analyses following the hierarchical classification deriving from the MWA 
(see Figure 2–2).  

In behavioral performance, we found striking benefits for redundant targets 
in both error rates (ERs) and reaction times (RTs). Since the ERs were generally 
quite low (near ceiling) for redundant targets (2–3%), they would have been 
expected to be less sensitive to depicting the hierarchy of redundancy gains. Yet, 
finding fewer errors for triple compared to visual redundant targets supports 
previous reports of ‘pop-out’ target detection becoming more accurate by 
generating an additional feature-contrast signal (in another, crossmodal 
dimension) (Diederich & Colonius, 2004; Wolfe et al., 1989). For the search RTs, 
we found increasing redundancy gains from purely (dual) visual (VR) through 
(dual) crossmodal (CR) to triple (TR) redundant targets, as predicted by the MWA. 
Crucially, CR targets generated extra gains relative VR targets even given that 
the respective target signals combined together in the various redundant-target 
definitions were well equated in their baseline feature-contrast levels; also, we 
were able to rule out a potential bias from imbalanced feature combinations, by 
showing that performance modulations by redundant color (CS, CF), shape (CS, 
SF), and frequency (CF, SF) signals showed exactly the same pattern, namely: 
favoring crossmodal combinations (see Figure 2–3 & Appendix Figure 2–A1). 
These effect patterns argue strongly in favor of the MWA. Additionally, finding 
TR to exceed CR suggests that redundancy gains may not yet have reached their 
limit; that is, performance might potentially increase further (asymptotically) by 
adding additional feature contrasts. Overall, this pattern was evident in both 
target- and category-based analyses, without confounding speed-accuracy trade-
offs: performance accuracy and speed were positively correlated. 

While the pattern of behavioral redundancy gains strongly favors the MWA, 
the RT gains breach the bounds of the race-model inequality only for SF targets; 
for all other redundant targets, there was no strong evidence supporting 
coactivations. Nonetheless, not finding significant violations of the race-model 
inequality does not preclude coactivations, as the test is rather conservative. 
Interestingly, indirect evidence of coactivations was provided by the presence of 
significant cross-trial repetition-benefit and redundancy-cost effects (Liesefeld et 
al., 2017; Miller, 2016), which can be attributed to dynamic adjustments of the 
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integration weights associated with particular target feature signals 
(Krummenacher et al., 2001b). While feature repetitions on consecutive trials 
were generally associated with benefits, costs arose when the critical feature of a 
non-redundant target was included in a redundant target on the preceding trial. 
Accordingly, the biases we found among the various target feature signals argue 
against the assumption of independent racers. This is consistent with the results 
of another coactivation test developed by Colonius and Diederich (2017), which 
assumes maximum negative dependency across feature contrasts as criterion 
instead of an independent race. When we applied this test to the present RT data, 
we found evidence of coactivations (i.e., significant breaches of the maximum 
negative dependency threshold) by redundant targets or target categories for SF, 
CSF, CR, and TR (while tests of the race-model inequality had only revealed a 
violation for SF), but not for CS and CF. Along with the evidence from cross-trial 
repetition-benefit and cross-trial redundancy-cost effects, these findings support 
the idea of visuo-tactile coactivation (rather than mere statistical facilitation) in 
the computation of attentional-selection priorities (see Figure 2–3). 

Thus far, we have considered the behavioral evidence favoring the MWA in 
accounting for the pattern of redundancy gains in crossmodal search. Of note, 
though, the MWA provides a mere functional model of the hierarchy of signal-
coding and -integration stages that precede the final stage of attentional target 
selection, without specifying the ‘where’ and ‘when’ of the critical distinction 
between dimension- and modality-specific saliency maps in neural terms. To 
achieve this, we recorded the EEG in our study and, in the analyses, focused on 
the PCN and CCN: two lateralized components thought to reflect the transition 
from pre-attentive signal processing to attentional selection.  

In terms of the CCN, our results revealed that it is a stable somatosensory 
component over central regions that is sensitive to vibro-tactile target 
information, similar to previous findings (Eimer & Driver, 2000; Forster et al., 
2016; Katus et al., 2015). However, importantly, we found no redundancy gains 
for targets defined by a combination of a tactile and one or two visual features: 
both the CCN onset timing and amplitude were comparable among the various 
tactile (F) and visuo-tactile (CF, SF, CSF) targets conditions (see Figure 2–4). The 
CCN appears to be modality-specific for touch: it emerges at approximately 110 
ms and temporally precedes the PCN, thereby precluding crossmodal 
interactions. We only observed a weak late (within 300–400 ms) crossmodal 
influence on the (tactile) CCN from relatively ‘delayed’ (visual) PCN activity 
projected onto central regions in the CCN latency (main effect only with 12-Hz 
targets) and CCN mean amplitudes, likely because this component is impacted by 
latency jitter. More research is needed to confirm whether the CCN is truly 
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insensitive (uninfluenced by linear superposition or spreading activation) to 
crossmodal activity, especially in its later stage, as it is a relative ‘new’ ERL 
component. Although we counterbalanced motor-response preparation during 
half-time break, it would be of interest in future work to examine the relationship 
between the CCN and these processes in more detail, as the sLRP (i.e., stimulus-
locked lateralized readiness potential) starting around 250 ms (Miller et al., 1998; 
Töllner, Zehetleitner, Krummenacher, et al., 2011; Ulrich & Miller, 2001) may 
also be a source of redundancy gains (Feintuch & Cohen, 2002; Miller, Beutinger, 
et al., 2009; Töllner, Zehetleitner, Krummenacher, et al., 2011). Recall that we 
introduced only one vibro-tactile feature (F) in the present study, so that it cannot 
be ruled out that the CCN is sensitive to tactile redundancies, that is, 
combinations of multiple tactile features.  

Regarding the PCN, we found prominent and consistent effects in both target- 
and category-based analyses. In particular, there was a crossmodal effect in both 
PCN onset and amplitude: with CR and TR targets, the PCN was elicited much 
earlier and was more negative compared to VR and NR targets. Further, the PCN 
latencies were generally shorter for redundant (including VR) targets, and the 
PCN offsets occurred earlier with visual redundancies (VR, TR). While the 
enhanced PCN amplitude only indicates a crossmodal amplification, there were 
two temporal effects within the time course of the PCN: earlier onsets with 
crossmodal redundancies, and earlier offsets with visual redundancies. 

Our novel finding that the PCN is sensitive to crossmodal, visuo-tactile 
information expands its previously known visual scope (Eimer, 1996; Töllner, 
Zehetleitner, Krummenacher, et al., 2011; Woodman & Luck, 1999) to include 
some form of multisensory signal integration (in contrast to the CCN, which we 
found to be influenced only by tactile information). To confirm this interpretation, 
we examined an alternative explanation based on the distinct time courses of the 
earlier CCN and the later PCN, namely, that the crossmodal benefits simply 
derive from the overlay or linear superposition of these independent neural 
generators. By comparing the PCN onsets for redundant targets and categories 
with their respective feature sums, we found clear temporal benefits for 
crossmodal targets (in particular: SF and CSF) and categories (CR and TR) that 
exceeded the limit of their linear superposition, supporting the operation of neural 
crossmodal coactivations at the stage of attentional-priority computation[3]. It’s 
worth noting that the pattern of coactivations driving the PCN onsets exactly 
mirrored the pattern revealed by the redundant-signal enhancement test for the 
RTs. 

Prior studies suggest that extrastriate regions like the intraparietal sulcus 
(IPS) and temporo-parietal junction (TPJ) are involved not only in modality-
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specific, but also supramodal activations within the time window of the PCN – 
thus likely playing a role in crossmodal attention (Chambers et al., 2007; 
Chambers, Stokes, et al., 2004; Downar et al., 2000; Macaluso et al., 2000, 2002a, 
2002b). Accordingly, the PCN originating within parietal regions (Hopf et al., 
2000; Tay et al., 2022) might be a suitable candidate reflecting these crossmodal 
processes. By positively establishing crossmodal gains in the timing (onset) and 
amplitude of the PCN, we can interpret our primary effects in terms of the 
hierarchical functional architecture assumed by the MWA. In particular, the fact 
that there are substantial crossmodal benefits in PCN onsets would argue in favor 
of an architecture assuming ‘modality maps’, rather than just ‘dimension maps’. 
Thus, the crossmodal (and likely coactive) PCN modulation provides a strong 
piece of evidence (in addition to that from behavioral performance) that the MWA 
provides an apt account of crossmodal redundancy gains. 

Of note, we also found a PCN elicited by purely tactile (F) targets (see Figure 
2–6). This tactile PCN appeared slightly delayed and reduced relative to the 
central CCN, which might indicate spreading activations or traveling waves (e.g., 
Klimesch et al., 2007; Nunez et al., 2001; Schack et al., 2003; A. von Stein & 
Sarnthein, 2000). However, since the tactile PCN occurred earlier compared to all 
visual and visuo-tactile PCNs (122 ms vs. 167–242 ms), the tactile PCN seems to 
fall into different time frames of sensory processing and visual integration 
(Bastos, Vezoli, & Fries, 2015; Bastos, Vezoli, Bosman, et al., 2015; Fries, 2005). 
Interestingly, we did not find differences in the PCN onsets for visual redundant 
(VR) vs. non-redundant (NR) targets. Our non-finding may be owing to the fact 
that, in our crossmodal search paradigm, crossmodal PCN effects superseded the 
underlying visual effects, particularly in the onsets and amplitudes. Note that 
there was still a temporal effect of visual redundancies in the PCN latencies and, 
most prominently, in the offsets. Thus, taken together, the crossmodal and visual 
effects point to a temporal evolution of the PCN, which starts being sensitive to 
crossmodal redundant targets and only later to visual redundancies. In terms of 
the MWA, this suggests that crossmodal targets generate an amplified and earlier 
PCN which exceeds visual redundancies, thus boosting selective attention. An 
alternative explanation why PCN offsets were sensitive to visual redundancies 
may derive from the notion that, besides the PCN, visual attention is linked to 
another component: the so-called distractor positivity (Berggren & Eimer, 2018; 
Hilimire et al., 2009, 2010), which runs parallel to the PCN, peaking within 290–
340 ms, and is thought to be indicative of active (visual) distractor suppression. 
Accordingly, the offset benefit for visual redundancies (VR, TR) might derive from 
a more efficient feature-contrast discrimination between redundant targets and 
distractors (fuchsia square [target] vs. blue circles [distractors]) as compared to 
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non-redundant targets (color: fuchsia circle [target] vs. blue circles [distractors]; 
shape: blue square [target] vs. blue circles [distractors]). Furthermore, this visual 
effect might also account for the noise in, or seeming absence of, the tactile PCN 
offset (see Table 2–A1 and Figure 2–6), as the visual discrimination cannot come 
into play with purely tactile targets (in which case all visual items are uniform 
blue circles). Finally, the dynamics of visual discrimination in the PCN offset can 
be linked to visual ‘dimension’ maps (or a supradimensional visual ‘modality’ 
map), as it appears to be modality-specific for vision. 

The CCN and PCN have distinct onsets, with the CCN occurring before the 
PCN by at least 60 ms. This difference in timing is similar to the modality-specific 
timing of the somatosensory N1 and the visual N1 (Eimer et al., 2004; Eimer & 
Driver, 2000; García-Larrea et al., 1995; Mangun, 1995; Novitskiy et al., 2011). 
While ERPs (sensory-perceptual processing) and ERLs (attentional processing) 
provide different information about neural activity, the temporal profile of the 
CCN, PCN, and N1 all appear to be consistent with each other (CCN < PCN, and 
tactile N1 < visual N1). The PCN might reflect a stage of multisensory integration 
that begins around 180 ms in crossmodal sensitive parietal regions (Busse et al., 
2005; Man et al., 2015; Quinn et al., 2014; Talsma & Woldorff, 2005). 

The present findings, and the insights gained from them, raise a number of 
interesting questions for future research. In particular, it would be interesting to 
determine the (asymptotic) limit of redundancy gains by either adding more 
redundant target signals within a given modality and/or more modalities and 
fitting exponential approximations. Further, and arguably the most interesting 
question concerns whether the PCN reflects a suitable neural marker enabling 
the investigation of coactivation in redundancy gains for the preattentive stage, 
contributing to the ongoing debate at which stage (pre-attentive vs. post-selective) 
redundancy gains occur (cf. Feintuch & Cohen, 2002; Zehetleitner et al., 2009). 
Although our study provides consistent evidence in favor of (preattentive) 
coactivations within the PCN onsets, it remains crucial to corroborate this finding 
across various EEG paradigms. Finally, going beyond the clear demonstration of 
crossmodal redundant benefits (over and above visual redundant benefits) in the 
present study, it remains crucial to show that the capacity of crossmodal attention 
exceeds the limits of unisensory attention (e.g., visual attention). 

We conclude that the PCN component reflects processes of crossmodal 
attentional selection; in particular, it is indicative of an attention-guiding (i.e., 
preattentive) stage of multisensory coactive signal integration, consistent with 
the MWA: the PCN exhibits the most prominent and early effects with 
crossmodally redundant targets, followed later on by modality-specific effects 
with visual redundant targets. As conceived by the MWA, the output of this stage 
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is a map of crossmodal (visuo-tactile) attentional-priority signals. That is, the 
activations achieved by the stimuli on this map are inherently ‘feature-blind’ (e.g., 
Wolfe, 2021): they no longer carry information about the specific visual and tactile 
features that constitute the stimuli in the display array. Accordingly, focused 
attention is required to extract the features of selected items (by backtracking to 
the feature-coding levels) and combine them into integrated, multisensory objects 
(cf. Treisman & Gelade, 1980). The PCN is a good predictor of reaction times, 
explaining around 25% of the variability in reaction times in a category-based 
analysis and around 20% in a target-based analysis. This supports the idea that 
the preattentional processes – of ‘predictive coding’ under conditions of 
uncertainty – play an important role in conscious perceptual decisions and 
decision-making (van Bergen et al., 2015; van Bergen & Jehee, 2019). The parietal 
PCN plays a significant role in regulation of attentional selection across all 
modalities. However, the PCN appears to only reflect processes of crossmodal 
integration when it is combined with visual processing. 
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Appendix 

Figure 2–A1. The PCN results are shown for features in redundant color (CS, CF), shape (CS, SF), and 
frequency (CF, SF) over parieto-occipital regions (PO7/ PO8, PO3/ PO4, O1/O2). PCN grand averages (< 12 
Hz) are shown (top). Furthermore, bar plots for ERs and RTs are shown on the right panel, and PCN 
dynamics in onset, amplitude, latency, and offset (bottom), along with within-subject confidence intervals. 
Here, prominent findings in post hoc comparisons (using Bonferroni and FDR correction, respectively) are 
indicated by asterisks (• p < .1, *p < .05, **p < .01). For frequency, RTs and onsets were faster and 
amplitudes are more negative; whereas PCN latencies were comparable, and PCN offsets were earlier for 
color and shape. 
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Figure 2–A2. The PCN results are shown for targets (C, S, F, CS, CF, SF, CSF) over parieto-occipital 
regions (PO7/ PO8, PO3/ PO4, O1/O2). PCN grand averages (40 Hz) are shown (top) for targets, including 
a purely tactile PCN (F, gray line), and features. Furthermore, bar plots are shown for onset, amplitude, 
latency, and offset (bottom), along with within-subject confidence intervals. From post hoc comparisons, 
onsets and amplitudes generally revealed cross-modal benefits and redundancy gains, occurring earlier and 
being more negative for SF and CSF compared with C, S, and CS. No difference was found in PCN latency 
(likely because of high variances), and PCN offsets occurred earlier for CS and CSF compared with S, CF, 
and SF. 
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Figure 2–A3. The 40-Hz CCN is shown over central regions (C3/C4) for the seven targets (C, S, F, CS, CF, SF, 
and CSF). Naturally, only targets including a tactile signal (F, CF, SF, CSF) elicited a prominent CCN, in 
comparison with solely visual targets (C, S, CS). Whereas the CCN was comparable in onsets, amplitudes, and 
latencies (nonsignificant, n.s., comparisons) among the F, CF, SF, and CSF targets, there were at best marginal 
differences in 300- to 400-msec mean amplitude in post hoc comparisons (FDR; • p < .1). Thus, the tactile CCN 
reflects a stable somatosensory component that is not sensitive to cross-modal, visuo-tactile redundancies. 
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Table 2–A2. Results for the Redundant-signals Enhancement Tests in Behavior’s RTs (in msec) Are Shown at the Top, 
Including Mean and Standard Deviation (in Brackets) for Redundant Targets and Their Respective Feature-sum 
(e.g., SF vs. S + F). Further One-tailed t Statistic and p Values, and Degrees of Freedom (df) 

RTs Redundant Target Feature-Sum t Statistic p 

CS vs. C + S 554 (52) 561 (24) −0.56 .292 

CF vs. C + F 531 (59) 550 (31) −1.91 .126 

SF vs. S + F 524 (50) 561 (31) −2.53 .011* 

CSF vs. C + S + F 510 (50) 553 (22) −3.26 .002** 

CR vs. NR + F 527 (54) 556 (31) −1.91 .037* 

TR vs. NR + F 510 (50) 556 (31) −3.2 .002** 

TR vs. VR + F 510 (50) 525 (27) −1.07 .15 

df (16)

12-Hz PCN Onsets Redundant Target Feature-Sum t Statistic p 

CS vs. C + S 219 (8) 227 (8) −1.165 .131 

CF vs. C + F 195 (27) 212 (27) −0.719 .241 

SF vs. S + F 167 (16) 195 (16) −1.869 .04* 

CSF vs. C + S + F 190 (6) 214 (6) −4.557 <.001*** 

CR vs. NR + F 173 (14) 206 (14) −2.686 .016* 

TR vs. NR + F 190 (8) 206 (14) −3.749 <.001*** 

TR vs. VR + F 190 (8) 208 (8) −2.639 .009** 

df (16)

40-Hz PCN Onsets Redundant Target Feature-Sum t Statistic p 

CS vs. C + S 213 (14) 234 (14) −1.796 .091 

CF vs. C + F 189 (34) 213 (34) −0.796 .438 

SF vs. S + F 165 (19) 199 (19) −2.012 .061* 

CSF vs. C + S + F 190 (7) 214 (7) −4.013 .001** 

CR vs. NR + F 172 (22) 207 (22) −1.829 .086* 

TR vs. NR + F 190 (7) 207 (7) −2.764 .007** 

TR vs. VR + F 190 (9) 208 (9) −2.881 .036* 

df (16)

Similarly, 12-Hz and 40-Hz PCN onsets (in msec) are shown with mean, within-subject confidence intervals in brackets, T statistic, 

and p values. 

* p < .05.

** p < .01.

*** p < .001.



Table 2–A3. Results of the Target- and, Respectively, Category-based LMMs 

95% CI Bounds 

PCN AIC BIC R2 Estimate SE df t Statistic p Lower Upper 

Targets (Intercept) 0 0.19 81 0 1 −0.37 0.37 

Onset 207 218 0.07 0.17 0.06 81 2.89 .005 0.06 0.28 

Amplitude 200 213 0.129 0.25 0.07 81 3.67 <.001 0.12 0.39 

Latency 189 205 0.175 0.16 0.06 81 2.53 .013 0.04 0.29 

Offset 188 206 0.198 0.11 0.07 81 1.75 .084 −0.01 0.24 

Categories (Intercept) 0 0.21 47 0 1 −0.4 0.4 

Onset 147 156 0.088 0.24 0.07 47 3.31 .002 0.1 0.38 

Amplitude 145 157 0.126 0.31 0.09 47 3.43 .001 0.13 0.48 

Latency 141 154 0.175 −0.05 0.11 47 −0.5 .618 −0.26 0.15 

Offset 132 148 0.255 0.35 0.1 47 3.38 .001 0.15 0.55 

AIC, BIC, and (marginalized) R2 report the change in the models’ explanatory power when stepwise including the PCN onset, amplitude, 
latency, and offset parameters. Furthermore, the summary of these four predictors is shown with its (standardized) estimate, standard 
error (SE ), degrees of freedom (df ), t-statistic, p value, and 95% confidence interval. 
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Notes 

1 To ensure comparable reaction times (RTs, ms) and error rates (ERs, %) for the 
non-redundant – color, shape, and frequency – feature contrasts introduced in the main 
experiment, we conducted two pilot studies testing targets (blockwise) in simple 
(target-present vs. -absent) detection tasks using the same experimental setup. 
Overall, visual stimuli were kept isoluminant (mean luminance of ~36 cd/m²) and the 
amplitudes of the tactile target and distractor frequencies were similar. In an initial 
pilot study (N=8 observers), two (blue: RGB [0 0 255]) visual target shapes among blue 
circle distractors and six tactile target-distractor frequency combinations (in Hz) were 
tested, which yielded the following ERs and RTs: square: 6%, 570 ms; triangle: 14%, 
596 ms; 100-30: 7%, 521 ms; 150-30: 10%, 549 ms; 200-30: 14%, 531 ms; 100-40: 9%, 
567 ms; 150-40: 13%, 531 ms; 200-40: 23%, 582 ms. From these targets, the blue square 
and the 100-40 frequency pair (target: 100 Hz, distractor: 40 Hz) were selected as 
feature contrasts for shape and frequency targets, as these produced the most similar 
performance measures (ERs, p = .057; RTs, p = .93). In the second pilot study (N=10 
observers), we included five colors from the red-to-blue spectrum: square: 5%, 547 ms; 
100-40: 10%, 618 ms; color1 [106 0 115]: 5%, 519 ms; color2 [104 0 124]: 4%, 530 ms;
fuchsia [101 0 135]: 6%, 567 ms; color4 [98 0 147]: 8%, 568 ms ; color5 [94 0 162]: 10%,
558 ms). Of these, square (shape), fuchsia (color), and 100-40 (vibro-tactile frequency)
were most comparable in terms of ERs (ps > .054) and RTs (ps > .102) – that is, in terms
of behavioral measures of bottom-up saliency (cf. Zehetleitner et al., 2013). These three
feature contrasts were the introduced as basic target features in the main experiment.

2 To confirm that our findings genuinely reflect processes of covert attentional 
orienting rather than overt saccadic activity, we analyzed the percentage of saccades 
in epochs that occurred during the critical 150–350-ms period, which includes the CCN 
and PCN time window. Since we did not directly record the horizontal eye movements, 
we examined for saccadic activity in left (F9, AF7, FT9) and right (F10, AF8, FT10) 
electrode channels (which are common locations for the corneo-retinal dipole), using a 
20-90 Hz band-pass filter (Keren et al., 2010) and Hilbert transform to obtain the
envelope power, before applying the inverse ICA transformation. Given reduced ocular
signals at the ‘frontal’ channels, we classified saccadic activity as bilateral activity
exceeding a fixed threshold criterion of 10 µV, instead of 20 or 30 µV for the horizontal
EOG channels (cf. Drisdelle & Eimer, 2021; van Moorselaar et al., 2020). This
procedure revealed saccadic activity to be present in an average of 4.85% (SD: 3.72%)
of epochs, with a range of 0.3–12.1% across participants. Given this, and the fact that
saccadic events were randomly distributed across our experimental conditions, our
reported PCN (and CCN) findings can be taken to reflect processes of covert (rather
than overt) attention.

3 However, it is important to note that our failure to find significant temporal 
benefits for redundant CS and CF targets (over and above their feature sums) does not 
exclude the possibility of an explanation in terms of linear superposition for such 
targets. 
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3 Spatial Attention  
in Crossmodal Search 

And thus, while searching, 
What and where becomes 

that over there. 
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Abstract 

During bottom-up saliency summation, selective attention elegantly combines 
feature-based and location-based information. However, these processes differ 
between sensory modalities. While visual attention is optimal in focal or foveal 
areas, it decreases toward the periphery; known as eccentricity effect. On the 
contrary, tactile attention follows the body-schema and is equally distributed 
across fingers. This study examines the spatial properties of redundancy gains by 
analyzing the spatial slopes (𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2) from quadratic fitting for external and 
quadratic vision and egocentric or somatotopic (constant) touch. As expected, 
significant quadratic fits were found for all targets containing visual information, 
and a flat function for purely tactile targets. Notably, the visual redundant color-
shape target remained within the spatial limits of focal (𝛽𝛽0) color and peripheral 
(𝛽𝛽2) shape, while crossmodal redundant targets exceeded those limits, yet the 
visual pattern of spatial benefits in focal color and peripheral shape was repeated. 
Further, event-related lateralizations revealed a modality-specific pattern in 𝛽𝛽2 
slopes – showing a quadratic visual PCN and a constant tactile CCN – in line with 
external and egocentric properties. Also, there was a supramodal PCN 
mechanism with crossmodal amplification in 𝛽𝛽0. The findings are discussed, and 
a spatial vector space is proposed with feature-contrast eigenvectors. 



132 Spatial Attention 

Introduction 

Selective attention acts like a music conductor; it hits the tunes of our 
perceptual orchestration by prioritizing relevant features and locations – the what 
and where (e.g., Duncan, 1984; Logan, 1996; Wolfe, 1994). Although feature 
activations and spatial locations represent distinct processes in visual search 
(Bundesen, 1990; Hayden & Gallant, 2005; Luck et al., 2000; Luck & Hillyard, 
1994a; Mangun & Hillyard, 1988), they both converge consistently during 
saliency summation and weighted integration onto the spatio-topographic priority 
map (Fecteau & Munoz, 2006; Found & Müller, 1996; Itti & Koch, 2001; Koch & 
Ullman, 1985; Lee et al., 1999; Mangun, 1995; Treisman & Gelade, 1980; Wolfe, 
1994), and share common regions within the parietal cortex (Brefczynski & 
DeYoe, 1999; Corbetta & Shulman, 1998; Fink et al., 1997; Hopf & Mangun, 2000; 
Kanwisher & Wojciulik, 2000; McIntosh et al., 1994; Sereno et al., 2001). 

In visual search, studies have shown that visual attention operates best in 
focal areas and declines toward the periphery as shown by decelerated reaction 
times; a phenomenon known as the eccentricity effect (Carrasco et al., 1995; 
Hansen et al., 2009; Jonas et al., 1992; Larson & Loschky, 2009; Staugaard et al., 
2016; Wolfe et al., 1998). Further, the eccentricity effect is linked to the 
distribution of receptive fields being dense in focal regions and sparse in the 
periphery (e.g., Hansen et al., 2009), which can be described by linear or quadratic 
slopes (Carrasco et al., 1995; Föcker et al., 2010; R. Gray et al., 2009; Wolfe et al., 
1998). 

Given that we live in a multisensory world, spatial attention does not rely 
purely on visual information alone but also others, such as auditory or tactile 
information (Assumpção et al., 2018; Föcker et al., 2010; Heed & Röder, 2010; 
Holmes & Spence, 2004; Röder et al., 1999; Spence & McGlone, 2001; Teder-
Sälejärvi et al., 1999). In contrast to vision, which represents an external (cortical) 
mapping, spatial orienting in touch is initially egocentric or somatotopic, 
reflecting an anatomical reference frame that follows the body schema, being most 
sensitive to the hands, the ‘“fovea of touch” (Assumpção et al., 2018; Eimer, 
Forster, et al., 2003; Forster et al., 2016; Holmes & Spence, 2004; Medina & 
Coslett, 2010), and subsequently merged with (visual) external coordinates into a 
crossmodal space (Driver & Spence, 1998; Eimer, Forster, et al., 2003; Graziano 
& Cooke, 2006; Kanwisher & Wojciulik, 2000; Spence, Pavani, et al., 2000). 
Although vision and touch activate distinct modality-specific brain regions for 
spatial integration within parieto-occipital and central regions (Chambers et al., 
2007; Chambers, Payne, et al., 2004; Chambers, Stokes, et al., 2004; Eimer & 
Driver, 2000; Forster et al., 2016; García-Larrea et al., 1995), there is also 
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evidence for supramodal activations in the intraparietal sulcus (IPS) and 
temporo-parietal junction (TPJ) (Diederich et al., 2003; Downar et al., 2000; 
Macaluso et al., 2000, 2002a, 2002b; Man et al., 2015; Quinn et al., 2014; Spence, 
Pavani, et al., 2000). Altogether these findings indicate a dual role for spatial 
attention in the parietal cortex, being either modality-specific in visual search or 
supramodal in crossmodal search (Chambers et al., 2007; Föcker et al., 2010; 
Spence & Driver, 1997a). 

The crossmodal influence on spatial orienting has been demonstrated in 
several cueing paradigms, where preceding auditory or tactile cues (but not visual 
cues) improved the peripheral sight in vision (R. Gray et al., 2009; Lu & Dosher, 
2000; Rosli et al., 2008; Spence & Santangelo, 2009). For example, Gray et al. 
(2009) analyzed the reaction times for the separation in various cue-target 
combinations by comparing their slopes via quadratic fitting. Further, the authors 
reported steep slopes for visual cue-targets, replicating the eccentricity effect with 
a narrow and focal distribution of spatial attention, the slopes in crossmodal cue-
targets (e.g., auditory or tactile cue) were significantly more flat with increasing 
cue-target separation, thus effectively broadening spatial attention. 

Similar findings of spatial decline have been reported in early (perceptual) 
EEG components, such as the P1, N1, or N2. Essentially, these components had 
higher amplitudes for attended locations that declined toward (peripheral) 
unattended locations, indicative of spatial prioritization due to endogenous or 
exogenous expectancy (Driver & Spence, 1998; Eimer & Driver, 2001; Eimer & 
Schröger, 1998; Föcker et al., 2010; Mangun, 1995; Mangun et al., 1987; Mangun 
& Hillyard, 1987). However, to describe the spatial orienting in crossmodal 
attention more accurately, e.g., in a crossmodal detection task (s. Chapter 2), 
event-related lateralizations, such as the PCN (or N2pc) in visual attention and 
the CCN (or N140cc) in tactile attention, acting as a spatial filter, might be more 
adequate (Eimer, 1996; Forster et al., 2016; Luck & Hillyard, 1994b; Wolber & 
Wascher, 2005; Woodman & Luck, 1999). While the PCN amplitude decreases 
from the fovea to the periphery, similar to the visual eccentricity effect and the 
distribution of receptive fields (Papaioannou & Luck, 2020; Schaffer et al., 2011), 
the CCN amplitude in hands, the ‘fovea of touch’, is maximized and presumably 
equal across fingers (Forster et al., 2016). 

Given this empirical background, this study extends the preceding study on 
redundancy gains in visuo-tactile search by examining the underlying spatial 
functions across the seven visual, tactile, and crossmodal targets. Overall, the 
previous study provided strong evidence in favor of a modality-weighting account 
(MWA) as a suitable preattentive hierarchy for crossmodal search by showing 
that the redundancy gains in crossmodal redundant targets substantially exceed 
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those visual redundant ones. This finding of crossmodal benefits was backed by 
accelerated reaction times and the neural dynamics of the PCN, revealing earlier 
onsets and higher amplitudes. Furthermore, evidence for the presence of 
coactivation is provided by the test of ‘maximum negative dependency’ (Colonius 
& Diederich, 2017) for two crossmodal targets (shape-frequency & color-shape-
frequency). While the CCN reflects a stable somatosensory component for tactile 
target information, the PCN over parietal regions sensitively depicted the pattern 
of redundancy gains and was revealed to be a good predictor for performances. 
Also, the PCN onsets mirrored the (behavioral) coactivation pattern perfectly by 
exceeding the threshold of linear superposition, providing strong evidence for a 
preattentive origin (or locus) of coactivations (for a detailed description see 
Chapter 2). 

Despite the convincing evidence in the previous study, the main focus was on 
aggregated targets, i.e., averages across the ten locations for each target in the 
visuo-tactile paradigm. For this reason, an in-depth analysis of the underlying 
spatial functions is missing, reflecting a scientific gap that this study aims to 
close. 

Critically, this study examines the spatial functions across visual, tactile, and 
crossmodal targets by comparing the respective slopes from quadratic fits. Based 
on the modality-specific spatial functions – external and quadratic in vision, but 
egocentric and flat in touch –, the detection of the seven targets, i.e., the feature-
contrast combinations in color, shape, and frequency, should reveal systematic 
modulations in focal and peripheral slopes. Essentially, we expect to find a 
quadratic spatial function for visual targets (color, shape, & color-shape) with a 
focal optimum and a decay toward peripheral locations that manifests in 
decelerated reaction times and decreased PCN amplitudes. On the contrary, the 
tactile target (frequency) should reveal a flat spatial function with comparable 
reaction times and CCN amplitudes across finger locations. Finally, we expect to 
find substantial interactions between spatial slopes across redundant targets. 
While the visual redundant target (color-shape) should remain within the 
modality-specific limits of visual attention, crossmodal redundant targets (color-
frequency, shape-frequency, color-shape-frequency) should exceed those visual 
and tactile limits, providing a supramodal mechanism for the underlying 
redundancy gains. Ultimately, this study aims to provide evidence of whether 
spatial interactions already occur within the preattentive stage of multisensory 
integration, e.g., via crossmodal links in the parietal cortex (Chambers et al., 
2007; Macaluso et al., 2002b) in PCN, or rather reflect maintain their independent 
external and egocentric spatial orienting in PCN and CCN, respectively.  
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Methods 

As mentioned above, this study (re-)analyzes and extends the previous 
findings by analyzing the spatial slopes. Therefore, everything remained the same 
(s. Chapter 2 Methods), e.g., participants, stimuli and procedure, EEG recordings, 
and preprocessing, except for the adjusted data analyses in performances and 
event-related lateralizations. Before we explain them in detail, it is important to 
address two important issues.  

First, participants were seated in front of the visuo-tactile display, laying 
their fingertips on top of the tactile solenoids (s. Figure 3–1), while keeping their 
eyes fixated at the center with a distance of around 55 cm. Since no head fixation 
was applied, the distance of spatial locations varied during the task. Therefore, 

Figure 3–1. Here, the experimental setup is shown in the top left panel from the previous study on 
redundancy gains (for a detailed description s. Chapter 2). This study extends the findings on redundancy 
gains by analyzing the (spatial) slopes of quadratic solutions: 𝑦𝑦 =  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽0. To analyze targets and 
locations sufficiently, a double jackknife procedure (bottom left panel) was conducted across (within-
subject) locations and (between-subject) targets with subsequent double inverse transformation (Smulders, 
2010). The top right panel shows the visuo-tactile display for each of the ten locations with their respective 
averaged eccentricity, i.e., visual angle, in degree (°) from central (focal) locations (red) to peripheral 
locations (blue). For the main analysis in behavior, PCN, and CCN, the symmetric locations were collapsed 
and mirrored. The bottom right panels shows the distinct spatial functions for vision and touch, being 
quadratic and constant respectively.  
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the visual angles can be described on average (40° display size, 3.5° item size, 4° 
inter-item separation), omitting within- and between-subject variations. 
Nonetheless, the validity is ensured by the fact that visual angle variations (e.g., 
head movements) reflect a (linear) noise term while preserving the constant 
external mapping of the ten locations. 

Second, quadratic fitting was applied in line with other studies (R. Gray et 
al., 2009; Lu & Dosher, 2000) with the (common) formula: 𝑦𝑦 =  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽0  . 
By assuming a quadratic and symmetric function across spatial locations, 
importantly, we only expect the slopes of 𝛽𝛽2 and 𝛽𝛽0 to be relevant, reflecting the 
slope towards the periphery and the focal saddle point of central fixations. 
Although the formula contains a linear term with the 𝛽𝛽1 slope, it (presumably) 
can be omitted since both spatial properties of the center and periphery are 
already covered by 𝛽𝛽2 and 𝛽𝛽0. Nonetheless, we evaluate the expected non-
involvement of 𝛽𝛽1 statistically by using one-sample t-tests.  

Performance Analysis. Again, we only included correct trials having responses 
within 250–1200 ms, which on average excluded 2 % of trials as outliers. To test 
whether reaction times (RTs) and error rates (ERs) in the left and right spatial 
locations were congruent and symmetric, we applied paired t-tests for each of the 
seven targets. Initially, spatial locations were averaged across targets and 
participants, and symmetrically collapsed (s. Figure 3–1). Further, we applied 
repeated-measures (RM) ANOVAs, which include the factors of targets and 
locations. In general, violations of the sphericity assumption were controlled with 
Greenhouse-Geisser correction, and the generalized eta squared (η²) is reported 
as effect size. Quadratic fitting was done by using the symmetric RTs for two 
solutions. We applied a regular fit, with 𝛽𝛽0 as the saddle point in the center and 
𝛽𝛽2 as the gradient toward the periphery, and an orthogonal fit, where 𝛽𝛽0 reflects 
the mean RT or centroid of the parabola. Further, the prominence of the slopes 
(𝛽𝛽0, 𝛽𝛽1, 𝛽𝛽2) was statistically evaluated by using RM ANOVAs and one-sample t-
tests. To reveal modality-specific or supramodal patterns, the spatial slopes 𝛽𝛽2 
and 𝛽𝛽0 were compared across targets, with a special focus on visual and 
crossmodal redundancies.  

EEG Analysis. In order to ensure a sufficient signal-to-noise ratio (SNR), we 
applied a within-subject jackknife procedure across target locations. For each 
target location, we averaged the epochs of the other nine target locations and 
computed their specific ERLs (PCN and CCN). For the PCN, we included 
electrodes PO7/PO8, PO3/PO4, and O1/O2, while for CCN, C3/C4 was chosen. 
Then, we applied the common between-subject jackknife procedure across 
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participants (Kiesel et al., 2008; Miller et al., 1998; Ulrich & Miller, 2001) and 
extracted the negative peak amplitudes in PCN and CCN within the time interval 
of 150–350 ms post-stimulus presentation. To further improve the SNR in ERLs, 
we collapsed the five symmetric target locations by averaging them. Afterwards, 
we applied a double inverse transformation of the within-subject (locations) and 
between-subject (participants) jackknife scores (Smulders, 2010). Similar to 
performances, we applied RM ANOVAs for targets and locations. Finally, 
quadratic fitting was done by mirroring (doubling) the symmetric locations for the 
amplitudes in PCN and CCN to reveal the slopes 𝛽𝛽0, 𝛽𝛽1, and 𝛽𝛽2 as spatial 
properties. Afterwards, the slopes were again statistically analyzed by RM 
ANOVAs, and one-sample t-tests (s. Figure 3–1).  

Results 

Performances. Initially, we compared left and right locations across targets. For 
the majority, left and right locations across targets were comparable in both error 
rates (ERs) (ps > .118) and reaction times (RTs) (ps > .077). Further, some minor 
differences were found within targets, either in ERs or RTs. For CS, there was a 
bias on the first and left locations, showing slower RTs (p = .019), while ERs were 
comparable (p = .152). The exact same bias was found in SF, showing ERs to be 
different (p = .025) and RTs comparable (p = .077). Finally, in F, the tactile 
frequency, RTs were consistently faster for right locations than left ones (p < .001), 
showing benefits for the right hand. Yet, ERs for F were comparable (p = .146). 
Since ERs and RTs or both were consistent in the left and right hemifields across 
targets, it seems that spatial attention is broadly evenly distributed for left and 
right locations during the visuo-tactile detection task, which allows us to use the 
symmetric solutions. 

In ERs, we found two significant main effects in targets (F (6, 96) = 37.11, p 
< .001, η² > .250) and locations (F (9, 144) = 16.37, p < .001, η² > .168), and also a 
prominent interaction (F (54, 864) > 7.08, p < .001, η² > .226). The same results in 
RM ANOVA were also present for RTs, showing main effects for targets (F (6, 96) 
= 39.25, p < .001, η² > .455) and locations (F (9, 144) > 52.50, p < .001, η² > .384), 
and a significant interaction (F (54, 864) > 7.99, p < .001, η² > .190). Generally, 
redundant targets (CS, CF, SF, CSF) were faster and more accurate than non-
redundant targets (C, S, F) (ps < .001), which perfectly replicates our previous 
findings (s. 2.1). Further, an eccentricity effect for ERs and RTs was present 
across locations, showing best outcomes within center locations and decreasing 
reactions and accuracies towards the periphery (ps < .001). Finally, and most 
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importantly, the interactions indicate that the spatial functions across targets 
differed (s. Figure 3–2). 

By having the evidence from the RM ANOVA that the spatial functions across 
targets differ, we can now analyze the spatial properties and slopes (𝛽𝛽2,𝛽𝛽1,𝛽𝛽0) by 
fitting the quadratic function for symmetrically collapsed locations. Analyzing the 
orthogonal slope 𝛽𝛽0 actually reveals the mean RTs or centroid of the parabola, 

Figure 3–2. The performances in reaction times (in milliseconds) are shown for each of 
the seven targets (C, S, F, CS, CF, SF, & CSF) and symmetric locations (eccentricity 
with adjusted units, a.u.). Each target plot contains the quadratic fit for 𝑦𝑦 =  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽0 
on the top, shows the overall mean reaction time (center diamond) the location-specific 
reaction times (circles) including within-subject confidence intervals. The ‘quadratic fit’ 
curve is shown as lines. The statistical analysis of the distinct slopes is shown in bar 
plots at the bottom, significant differences are indicated by asterisks (*** p < .001, ** p 
< .01, p < .05). While the centroid or orthogonal 𝛽𝛽0 replicates the findings on redundancy 
gains, the focal 𝛽𝛽0  (saddle point) shows color benefits and the peripheral 𝛽𝛽2  shows 
shape benefits in vision. Overall, visual targets (C, S, CS, CF, SF, & CSF) revealed 
substantial quadratic fits (𝛽𝛽2), whereas the purely tactile target (F) was flat.  
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and thus the main effect across targets is equivalently significant as above (F (6, 
96) = 38.43, p < .001, η² > .258) (s. Chapter 2 Results), which further underlines
the validity of quadratic fitting. Again, we found the same hierarchy of
redundancy gains as before with increasing benefits in RTs across non-redundant
(C, S, F), visual redundant (CS), crossmodal redundant (CF, SF), triple redundant
(CSF) targets (ps < .013).

Another main effect was found for the regular 𝛽𝛽0, indicating the saddle point 
of the parabola and the optimum of focal attention in the center (F (6, 96) = 37.36, 
p < .001, η² > .315). Interestingly, the saddle points in 𝛽𝛽0 slopes deviated from the 
common hierarchy of redundancy gains across targets. Here, we found a 
dissociation between color and shape, showing slower RTs for S compared to C 
and CS (ps < .017) in focal areas, while both C and CS were comparable (p = .299). 
The same pattern of focal benefits for colors was repeated within crossmodal 
targets, showing CF and CSF to be consistent (p = .697), while both exceeded SF 
(ps < .030). Furthermore, SF was comparable to C and CS (ps > .697), while 
crossmodal benefits stayed apparent for all other comparisons (ps < .018). Finally, 
the saddle point of RTs in the tactile target F was significantly slower than all 
other targets (ps < .018). Generally, these findings in 𝛽𝛽0 slopes indicate particular 
benefits for color in focal areas. 

As expected, the linear slope 𝛽𝛽1 was not relevant in both regular and 
orthogonal quadratic fits, since it was de facto zero in all targets (|𝛽𝛽1|< 4E-14), 
showing no differences in one-sample t-tests (ps > .329), except for F, where the 
𝛽𝛽1 slope was marginally different to zero (p = .052). Hence, 𝛽𝛽1 is not relevant.  

The analysis of 𝛽𝛽2 revealed another interesting pattern with a significant 
main effect across targets (F (6, 96) = 26.93, p < 0.001, η² = 0.518). Again, 𝛽𝛽2 slopes 
indicate the spatial gradient towards the periphery. While 𝛽𝛽2 was comparable 
between S and CS (p = .277), the 𝛽𝛽2 slope in C was much steeper and significantly 
different from both (ps < .048). As before, the same pattern was repeated within 
crossmodal targets, showing 𝛽𝛽2 in SF and CSF to be consistent (p = .947), but 
both were less steep than CF (ps < .007). Here it seems that peripheral 
performances appear to be better for shape information. Although we found overly 
benefit for crossmodal redundancies (ps < .058), interestingly, the 𝛽𝛽2 slopes in S 
and CS were similar to CF (p < .342). 

Finally, by using one-sample t-tests for the 𝛽𝛽2 slopes, no difference was found 
in the solely tactile target F (p = .204), while the other six targets (C, S, CS, CF, 
SF, CSF), containing visual information, were significantly higher than zero (ps 
< .001). Therefore, the spatial function of tactile information in F seems to be flat 
or constant (egocentric), while the visual and crossmodal targets follow a 
quadratic function (external) (s. Figure 3–2). 
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Event-Related Lateralizations. For the PCN, similar to the analysis in redundancy 
gains (s. Chapter 2), we excluded F and analyzed it separately, due to its special 
role as a purely tactile signal. First, we conducted the same RM ANOVA as in 
performances. Importantly, in ERLs, we only included the five collapsed locations 
for the analysis to improve the signal-to-noise ratio in PCN and CCN signals. Two 
main effects were present in the PCN for the factor Targets (F (5, 80) = 4.88, p < 
.001, η² = .127) and Locations (F (4, 64) = 16.87, p < .001, η² = .169), without an 
interaction (F (20, 320) = 1.28, p < .193, η² = .026). Overall, PCN amplitudes were 
the most negative in crossmodal targets and central locations (s. Figure 3–3 & 
Figure 3–4). Interestingly, the RM ANOVA in the CCN revealed only one main 
effect in Targets (F (6, 96) = 28.44, p < .001, η² = .503), showing the same 
dissociation between visual (C, S, CS) and tactile (F, CF, SF, CSF) targets as in 
the redundancy gains’ study (s. Chapter 2). Further, there was no effect in 
Locations (F (4, 64) = 1.25, p = .295, η² = .005) and no interaction (F (24, 384) = 
0.85, p = .659, η² = .019). Actually, finding a significant effect in PCN locations 
but not in CCN locations, is in line with our assumptions, expecting vision to be 
quadratic and touch to be flat and constant. Furthermore, finding no interactions 
already suggests that the spatial functions in PCN and CCN are comparable 
across targets. 

The analysis of spatial slopes (𝛽𝛽2, 𝛽𝛽1, 𝛽𝛽0) revealed further insights. In PCN, 
no difference was found in β2 (F (5, 80) = 0.52, p = .764, η² = .017), suggesting that 
all six targets containing visual information (C, S, CS, CF, SF, CSF) have similar 
gradients towards peripheral locations. Further, a one-sample t-test revealed that 
the 𝛽𝛽2 slopes of the same six targets were significantly different to zero (ps < .013), 
indicating good quadratic fits, while the 𝛽𝛽2 slope in F, the tactile PCN, was 
comparable to zero (p = .853), and therefore, not quadratic but flat.  

Again, the linear slope 𝛽𝛽1was actually zero (< 1E-17) and insignificant (ps > 
0.05) for the quadratic fit of PCN amplitudes. The orthogonal 𝛽𝛽0 was significantly 
different across the six targets (F (5, 80) = 6.45, p < .001, η² = .120). Here we found 
the same crossmodal benefits in the PCN amplitude as before (s. Chapter 2), with 
more negative amplitudes in CF, SF, and CSF compared to C, S, and CS (ps < 
.054). A similar effect was also present in the regular 𝛽𝛽0, which indicates the focal 
saddle point of PCN amplitudes (F (5, 80) = 6.14, p < .001, η² = .119). Here we 
found the same crossmodal benefits in amplitudes (ps < .059) as within the 
orthogonal 𝛽𝛽0, except for the comparison between C and SF (p = .185). 

In the CCN, β2 was not different across targets (F (6, 96) = 1.20, p = .313, η² 
= .055) and overly not different from zero (ps > 0.255). However, gradients in SF 
and CSF were prominently different to zero (ps < 0.025), which indicates that a 
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quadratic fit adds some improvement for these crossmodal targets in the CCN (s. 
Figure 3–5). The 𝛽𝛽0 slope was again zero and irrelevant (ps > .381). Finally, 
results in both 𝛽𝛽0 (regular and orthogonal) were very similar (F (6, 96) > 14.33, p 
< .001, η² > .315). The CCN amplitudes in tactile targets (F, CF, SF, CSF) were 
significantly more negative than purely visual ones (C, S, CS) (ps < .005). 

In summary, these findings suggest that the β2 slopes in PCN are indeed 
quadratic towards peripheral locations for visual and crossmodal targets, while 
𝛽𝛽2 was flat for the tactile PCN (F). Further, we found crossmodal amplification in 
𝛽𝛽0 slopes, which is in line with the findings in redundancy gains. The CCN, on 
the contrary, was overly flat in 𝛽𝛽2 slopes and thus CCN amplitudes were 
comparable across locations, except for some quadratic modulations in SF and 
CSF. Finally, both 𝛽𝛽0 slopes indicate higher tactile CCN amplitudes. Since no 
interactions were found and 𝛽𝛽2 were consistent, the spatial functions in PCN and 
CCN appear to be modality-specific, while the crossmodal amplification in PCN 
suggests the presence of a supramodal mechanism. 

Figure 3–3. The PCN (top) and CCN (bottom) within 150–350 ms are shown for targets 
and symmetric locations (e.g., 1, -1) ranging from the periphery (blue) to the center (red). 
Notably, the CCN was only present for tactile targets (F, CF, SF, & CSF) and (more or 
less) constant across locations. The PCN was adaptive to visual information by showing 
enhanced PCN amplitudes for central locations in visual targets (C, S, CS, CF, SF, & 
CSF) that decay toward the periphery (replicating the eccentricity effect). The PCN of 
the purely tactile target (F) remained constant.  
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Figure 3–4. The PCN amplitudes (in µV) are shown for each of the seven targets (C, S, 
F, CS, CF, SF, & CSF) and symmetric locations (eccentricity with adjusted units, a.u.). 
Each target plot contains the quadratic fit for 𝑦𝑦 =  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽0  on the top, shows the 
overall mean reaction time (center diamond) the location-specific reaction times (circles) 
including within-subject confidence intervals. The ‘quadratic fit’ curve is shown as lines. 
The statistical analysis of the distinct slopes is shown in bar plots at the bottom, 
significant differences are indicated by asterisks (*** p < .001, ** p < .01, p < .05). While 
the centroid or orthogonal 𝛽𝛽0 and focal 𝛽𝛽0 replicates the findings on redundancy gains, 
showing enhanced crossmodal PCN amplitudes, the peripheral 𝛽𝛽2 shows significant yet 
comparable quadratic fits for all visual targets (C, S, CS, CF, SF, & CSF) and a flat 𝛽𝛽2 
for purely tactile targets (F).  
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Discussion 

The main purpose of this study was to extend our findings on redundancy 
gains by analyzing its spatial properties. To achieve this, quadratic fitting was 
applied to investigate the focal (𝛽𝛽0) and peripheral slopes (𝛽𝛽2) as parameters of 

Figure 3–5. The CCN amplitudes (in µV) are shown for each of the seven targets (C, S, 
F, CS, CF, SF, & CSF) and symmetric locations (eccentricity with adjusted units, a.u.). 
Each target plot contains the quadratic fit for 𝑦𝑦 =  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽0  on the top, shows the 
overall mean reaction time (center diamond) the location-specific reaction times (circles) 
including within-subject confidence intervals. The ‘quadratic fit’ curve is shown as lines. 
The statistical analysis of the distinct slopes is shown in bar plots at the bottom, 
significant differences are indicated by asterisks (*** p < .001, ** p < .01, p < .05). While 
the centroid or orthogonal 𝛽𝛽0 and focal 𝛽𝛽0 replicates the findings on redundancy gains, 
showing a stable somatosensory enhancement in CCN amplitudes for all tactile targets 
(F, CF, SF, & CSF), the peripheral 𝛽𝛽2 were non-significant and thus constant except for 
SF and CSF.  
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spatial attention. In line with the eccentricity effect in visual search for external 
spatial mappings (Carrasco et al., 1995; Staugaard et al., 2016), we expected to 
observe (steep) quadratic slopes (𝛽𝛽2) in visual targets (R. Gray et al., 2009; Lu & 
Dosher, 2000) and a flat slopes (𝛽𝛽2) in purely tactile targets, due to somatotopic 
or egocentric mappings of the body schema across finger locations (Assumpção et 
al., 2018; Eimer et al., 2004; Forster et al., 2016; Holmes & Spence, 2004; Medina 
& Coslett, 2010). Furthermore, redundancy gains are expected to modulate 
systematically based on the spatial parameters (𝛽𝛽0, 𝛽𝛽2). While visual 
redundancies (CS) should remain within the spatial limits of vision (C, S), 
crossmodal redundancies (CF, SF, CSF) should exceed those limits due to 
‘coactive’ crossmodal spatial interactions. Finally, the examination of spatial 
slopes in the event-related lateralizations of PCN and CCN components, 
reflecting spatial filters for visual and tactile attention, are expected to depict the 
external and egocentric mapping, respectively. While spatial (slope) interactions 
in the PCN, the area of crossmodal links, can be regarded as evidence for 
crossmodal spatial integration in the preattentive stage (supramodal 
mechanism), comparable slopes across visual targets (C, S, CS, CF, SF, CSF) in 
the PCN and tactile targets (F, CF, SF, CSF) in the CCN would suggest 
independent spatial integration for vision and touch (modality-specific 
mechanism). 

Overall, the reaction times and error rates between left and right locations 
were comparable across all six visual targets (C, S, CS, CF, SF, CSF), allowing us 
to collapse and combine symmetrical locations by excluding this spatial bias. In 
touch, the frequency target (F), however, we found faster reaction times in the 
right hand with comparable error rates in both hands. This difference might be 
linked to right-handedness, which likely improves tactile sensitivity in the 
dominant hand. Yet, tactile reaction times were consistent across the fingers 
within each hand, and thus indicate an egocentric and flat distribution of tactile 
spatial attention within the “fovea of touch” (Forster et al., 2016). Generally, these 
findings support the assumption that spatial attention is deployed broadly and 
symmetrically across the ten display locations during the visuo-tactile detection 
task. 

Initially, the analysis of reaction times and error rates revealed significant 
main effects and an interaction for the factors Targets and Locations, indicating 
that the spatial functions differ across targets. While the main effect in Targets 
is identical to the hierarchy of redundancy gains (s. Chapter 2), differences across 
Locations in the six visual targets were in line with the eccentricity effect, 
revealing better performances in the centers that worsened toward the periphery 
(Carrasco et al., 1995; R. Gray et al., 2009; Staugaard et al., 2016). To examine 
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those spatial properties in more detail, we compared the slopes 𝛽𝛽2, 𝛽𝛽1, and 𝛽𝛽0 
from quadratic fitting. Whereas the orthogonal solution of the centroid 𝛽𝛽0 slope 
(reflecting the mean reaction times), again replicates the pattern of redundancy 
gains (s. Chapter 2), the regular quadratic solution revealed two interesting target 
patterns in focal saddle points (𝛽𝛽0) and the peripheral (quadratic) slope (𝛽𝛽2). As 
expected, the linear term of the 𝛽𝛽1 slope was irrelevant. 

The first spatial pattern was found in (regular) 𝛽𝛽0 saddle points, indicating 
the reaction time optimum (the minimum) in focal areas, by showing a consistent 
benefit for color targets (C, CS) over the purely shape target (S). Despite a clear 
crossmodal enhancement in 𝛽𝛽0, interestingly, the same pattern of color benefits 
was repeated within crossmodal targets, showing higher focal gains for CF and 
CSF than SF targets. So, it is quite clear that color perception exceeds shape 
perception in focal regions. Furthermore, these findings also suggest that visual 
redundancies (CS, CSF) in focal regions are strongly linked to color (C, CF) 
targets, since their 𝛽𝛽0 slopes are similar (s. Figure 3–2). This finding indicates a 
modality-specific limit within vision, revealing no extra gain or benefit beyond 
color perception. On the contrary, we also found supramodal benefits in 
crossmodal redundancies (CF, SF, CSF), were the combination of vision (C, S, CS) 
and touch (F), always lead to significant improvements in focal regions (𝛽𝛽0 effect). 
Generally, visual information (color and/or shape) is very effective in focal areas 
and clearly exceeds tactile information (frequency), which refers to findings of 
visual dominance (Gondan et al., 2007; Klein, 1977; Posner et al., 1976; Spence, 
Shore, et al., 2001; Xia et al., 2018). 

In contrast to color benefits in focal areas, the second spatial pattern revealed 
a 𝛽𝛽2 effect for shapes, being less steep toward the periphery. Here, the peripheral 
slope (𝛽𝛽2) was steeper in C compared to S and CS, which both were comparable. 
Again, the same pattern was repeated in crossmodal targets, showing lower 𝛽𝛽2 
slopes in SF and CSF over CF. In summary, the findings in focal and peripheral 
slopes, now perfectly explain visual redundancy gains (CS & CSF), which arise 
due to both spatial properties. Interpreting both spatial patterns, it seems obvious 
that color promotes focal benefits, while shape promotes peripheral benefits.  

The combination of color and shape information, obviously improves both 
spatial properties. Therefore, visual redundancy gains arise as the optimal 
combination of focal and peripheral properties. Furthermore, it is important to 
emphasize that spatial attention in visual redundant targets appear modality-
specific; it remains within the limits of its respective feature contrasts (here color 
and shape). Finally, crossmodal targets (CF, SF, CSF) generally exceed these 
visual limits by revealing extra gains in both spatial slopes (𝛽𝛽0 and 𝛽𝛽2), and thus 
indicate supramodal adjustments in crossmodal spatial attention. This 
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supramodal boost in spatial properties provides empirical evidence for the 
presence of crossmodal bending in spatial attention. Yet, the same rules of visual 
optimization are again preserved in crossmodal targets, with improved focal color 
(CF) and peripheral shape (SF) that coalesce in CSF. 

Overall, the spatial function in vision was sufficiently explained by quadratic 
fits, which is in line with the eccentricity effect and the external cortical mapping 
in receptive fields (Carrasco et al., 1995; Carrasco & Frieder, 1997; R. Gray et al., 
2009; Harvey & Dumoulin, 2011; Yoshor et al., 2007). By having obtained distinct 
spatial properties in focal (𝛽𝛽0) and peripheral (𝛽𝛽2) slopes, theses findings extend 
the previous insights from redundancy gains, which now can also be explained by 
distinct patterns of spatial optimization. For touch, the solely tactile frequency 
(F) revealed a flat spatial function, in line with the assumption that spatial tactile
attention is equally distributed across fingers and egocentric (Assumpção et al.,
2018; Eimer, Forster, et al., 2003; Forster et al., 2002; Holmes & Spence, 2004;
Medina & Coslett, 2010). For future studies, it would be interesting to continue
the examination of distinct feature contrasts and their spatial functions across
dimensions and sensory modalities on whether spatial limits in intramodal or
crossmodal combinations persist or are exceeded, respectively. From the mapping
of both spatial slopes, showing the relationship between the focal saddle point
(𝛽𝛽0) and the peripheral slope (𝛽𝛽2) (s. Figure 3–6), some exciting questions arises.
In the coordinate space, it seems that the spatial properties of crossmodal targets
derive from scaling coefficients, which might reflect eigenvalue solutions and
feature vectors. Furthermore, for each visual dimension there might be a specific
set of lambdas (i.e., eigenvalues), which enables us to obtain accurate estimates
about the interactions across features. Additionally, redundancy gains should
only occur within the area of its feature vectors, while the intersection of feature
vectors would refer to physical threshold or limits. Hence, our findings clearly
suggest that spatial properties play a major role for explaining redundancy gains
by revealing distinct characteristics, which should be considered.

To find out whether those spatial dynamics are also evidenced in event-
related lateralizations, we analyzed both PCN and CCN, two neural markers of 
visual and tactile spatial attention, respectively. Overall, the main interest was 
to retrieve the same spatial function of reaction times, that is, a quadratic spatial 
function in PCN amplitudes for visual targets (C, S, CS, CF, SF, CSF) and a flat 
spatial function in CCN amplitudes for tactile targets (F, CF, SF, CSF). 
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Before we discuss our findings, it is important to discuss one critical issue. In 
order to retrieve locations-specific target activation in PCN and CCN with a 
sufficient signal-to-noise ratio, it was necessary to apply a ‘double jackknife 
procedure’, across targets locations and participants. Although from a 
mathematically point of view, applying (double) inverse transformation is 
unhesitating, being a set of linear transformation, from an empirical perspective, 
it is important to highlight that the obtained results (merely) reflect individual 
estimates (Smulders, 2010). Therefore, it will be essential in future 
methodological studies to evaluate the relationship between ‘real scores’ and 
‘individual estimates’ more thoroughly to establish this technique as a common 
procedure, enabling a multitude of applications. 

In this study, we found significant quadratic slopes (𝛽𝛽2) in the PCN for all 
targets containing visual information, but (overly) not in in the CCN and the 
solely tactile PCN (F) (s. Figures 3–4 & Figure 3–5). Interestingly though, the 𝛽𝛽2 
slopes of SF and CSF were significant in the CCN, the same targets that showed 
evidence coactivation in the previous study (s. Chapter 2). Of note, a similar 

Figure 3–6. The two-dimensional spatial mapping of focal 𝛽𝛽0 (x-axis) and peripheral 𝛽𝛽2 
(y-axis) is presented for the six visual targets (C, S, CS, CF, SF, & CSF). Importantly, 
color circles or ellipses indicate the within-subject confidence intervals of both spatial 
slopes (𝛽𝛽0, 𝛽𝛽2). The feature vectors for shape (S, SF: blue) and color (C, CF: purple) were 
added as lines, creating a specific plane within their means (dark gray) and error rates 
(bright gray). Arguably, the plane indicates the area for redundancy gains, and the 
intersection between both feature vectors might refer to the physical threshold or limit 
(around 467 ms) of performances. Overall, this schema represents eigenvector solutions 
for visual and crossmodal feature-contrast.  



148 Spatial Attention 

quadratic slope was also present for shape (S) in the CCN, although not 
significant, due to high variance in the periphery. Nonetheless, this finding 
suggests that shape information in general might be the cause that influences the 
CCN (thus producing preattentive coactivation). In the PCN, no evidence was 
found for crossmodal bending, since the quadratic slopes of the six targets (C, S, 
CS, CF, SF, CSF) were comparable. This indicates that the 𝛽𝛽2 slope appears 
modality-specific in the PCN for vision, likely representing the spatial firing 
patterns of receptive fields based on external coordinates (Carrasco et al., 1995; 
Luck et al., 1997). 

For the other slopes, the regular and orthogonal 𝛽𝛽0, saddle point and centroid, 
respectively, we replicated the hierarchy of redundancy gains (s. Chapter 2), by 
showing crossmodal benefits in PCN amplitudes, with more negative amplitudes 
(in CF, SF, & CSF), and a purely tactile CCN (in F, CF, SF, & CSF). Hence, we 
can argue that crossmodal targets lead to a supramodal amplification in PCN 
amplitudes, similar to effects in cortical magnification (Carrasco et al., 2003; 
Carrasco & Frieder, 1997; Staugaard et al., 2016).  

Further, this explanation for the PCN is also in line with other studies, which 
suggest that the spatial egocentric mapping of tactile information is forwarded to 
parieto-occipital regions, where they combine with the external visual mapping 
(Driver & Spence, 1998; Eimer, Forster, et al., 2003; Spence, Pavani, et al., 2000). 

This is also supported by the fact that the tactile PCN is constant, which 
indicates a common baseline across locations, and thus the superposition of visual 
and tactile mappings does not bias the peripheral gradient in 𝛽𝛽2, and thus 
preserves the external mapping of visual spatial attention. This explanation is 
also supported by the fact that on the contrary, no visual influence was found in 
CCN amplitudes which remained comparable (F, SF, CF, CSF). Overall, the 
evidence favors modality-specific spatial functions across locations (𝛽𝛽2), being 
quadratic in visual PCN and flat in tactile CCN, and a supramodal amplification 
in PCN (𝛽𝛽0).  

Another interesting aspect might be that quadratic fitting is not fully 
sufficient in PCN, since some locations appear quite distant to the curve of the 
quadratic function (e.g., 3rd location in C, or 4th location in CF). For colors, this 
can be explained by the fact that the visual angle is more closely linked to the 
fovea, and though spatial perception decreases steeper for locations outside an 
visual angle of 8–10°, which in our case occurs between 2nd and 3rd locations 
(Larson & Loschky, 2009). Therefore, it might be interesting to also apply higher 
polynomials to obtain additional spatial slopes of visual feature-contrasts. 

In summary, we found strong evidence that redundancy gains can be 
described by spatial characteristics in vision and touch, being quadratic and flat, 
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respectively. Furthermore, we found interactions in their focal and peripheral 
slopes (𝛽𝛽0, 𝛽𝛽2), revealing focal gains for colors and peripheral gains in shapes. 
Whereas visual redundancies appear modality-specific, since its benefits remain 
within the limits of spatial properties, crossmodal redundancies, on the contrary, 
exceeded those modality-specific limitations, and thus indicate a supramodal 
interaction with crossmodal benefits. Although vision is highly efficient in focal 
areas, its lack towards the periphery seems to be effectively compensated by other 
senses (Solovey et al., 2015), which becomes apparent by our findings suggesting 
crossmodal bending of spatial attention. Additionally, finding the same modality-
specific spatial functions in PCN and CCN, being again quadratic and flat 
respectively, underscores the differences in visual and tactile spatial integration, 
being external and egocentric, respectively. Yet crossmodal amplification in PCN 
amplitudes indicates supramodal benefits similar to cortical magnification of 
receptive fields. Therefore, the dynamics of spatial attention in PCN are both 
modality-specific and supramodal, which is in line with previous studies 
(Chambers et al., 2007; Föcker et al., 2010; Spence & Driver, 1997b). For future 
studies it would be interesting to investigate whether the mapping of spatial 
slopes and properties (focal, periphery) includes eigenvectors of features and their 
combinations. Finally, it seems promising to expand the analysis of crossmodal 
spatial attention on neural dynamics by looking into further components and 
wave complexes. 
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4 Intertrial Effects  
in Crossmodal Search 

Fragile continuum 
But yet a honey river 
And grip goes under. 
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Abstract 

Selective attention is the gateway between our perceptions and higher cognitive 
functions that modulates sensitively to bottom-up, top-down, and also intertrial 
effects, which emerge from the history of events. While repeated sensory 
information tends to improve our performances, shifts between sensory 
modalities (e.g., vision → touch) lead to prominent switch costs, known as the 
modality-shift effect (MSE). Generally, selective attention integrates perceptual 
and preattentive processes through saliency summation. In visual search, feature 
integration can be explained by the hierarchy of the “dimension- weighting 
account” (DWA), which combines layers for visual dimensions (e.g., color and 
shape), and their features (e.g., red and green). Here, switch costs arise between 
but not within dimensions. In this study, we extend the DWA to crossmodal 
attention using a visuo-tactile search paradigm. This “modality- weighting 
account” (MWA) assumes distinct and increasing switch costs for shifts between 
dimensions and modalities (MSE), which was confirmed by reaction times. Also, 
the cost for switching between modalities persisted over three successive trials, 
and a dissociation for location-shifts (left vs. right) was found between vision and 
touch. Further, we included EEG recordings and analyzed the latency and 
amplitude of visual (PCN) and tactile (CCN) lateralizations. Whereas latencies in 
the visual PCN indicate a modality-specific mechanism, being equally delayed for 
shifts in dimensions and modalities, a supramodal mechanism was found in 
amplitudes, which were prominently reduced for modality-shifts in both PCN and 
CCN. Interestingly, the PCN appears adaptive for vision and touch, indicating 
crossmodal attention to be linked to extrastriate regions (beyond linear 
superposition). In general, these findings are in favor of the MWA and its 
hierarchy, showing a delay or reduction of attention resources in PCN and CCN 
due to intertrial effects. 
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Introduction 

For many decades, selective attention has been regarded as the gate that 
links perception and action in a coherent fashion (Allport, 1987; Berlyne, 1951; 
James, 1890; Pashler, 1997). In current theorizing, selective attention in 
perception is conceived as a limited-capacity resource that is allocated based on 
bottom-up (physical) stimulus saliency and top-down stimulus set or 
expectancies, where inter-trial effects reflecting the ‘history’ of recent selection 
events may be subsumed under the latter (Awh et al., 2012; Bundesen, 1990; 
Found & Müller, 1996; Maljkovic & Nakayama, 1994, 1996; H. J. Müller et al., 
1995; Wolfe, 1994). 

One type of inter-trial effect is the modality-shift effect (MSE), which refers 
to the (de-)prioritized processing of modality-specific information from 
multisensory (e.g., visuo-tactile) stimuli. In general, performance is facilitated 
when the task-critical, ‘target’ information is repeated within a given modality, 
whereas performance is impeded when the critical information changes from one 
modality to another (R. Cohen & Rist, 1992; Gondan et al., 2004; Jonides & Mack, 
1984; Rodway, 2005; Spence, Nicholls, et al., 2001). That is, prioritizing a specific 
modality on (preceding) trial n–1 is beneficial when this modality remains task-
relevant on (current) trial n (repetition benefit), but costly when another modality 
becomes relevant on trial n (switch cost). Of note, though, shifting between 
modalities may be asymmetric. For instance, (Miles et al., 2011) found switching 
from vision to touch to be more costly than switching from touch to vision – an 
asymmetry attributed to visual dominance (Gondan et al., 2007; Klein, 1977; 
Posner et al., 1976; Spence, Shore, et al., 2001; Xia et al., 2018). In short, the MSE 
is a prominent inter-trial effect, which is evident across sensory modalities (R. 
Cohen & Rist, 1992; Rodway, 2005; Spence, Nicholls, et al., 2001; Turatto et al., 
2002). 

From a neurophysiological perspective, the MSE can be explained as follows. 
Initially, modality-specific sensory information activates primary cortices in the 
respective brain regions (e.g., Macaluso et al., 2002b), with the evidence 
accumulation being modulated by bottom-up (perceptual) and top-down 
(attentional) processes (e.g., De Meo et al., 2015; Macaluso et al., 2016; Talsma et 
al., 2010). Finally, processing of the information in a given (current) trial episode 
is influenced by ‘neural imprints’ (Fecteau & Munoz, 2003) from preceding trials, 
which reflect the cross-trial alternation of, and thus the activation balance 
between, the task-relevant sensory modalities. As a result, it takes less time to 
extract the response-relevant information when the target modality is repeated 
(because the relevant modality is ‘pre-activated’), whereas shifting the modality 
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causes a cost (because the residual activation of the preceding, now no longer 
relevant modality must be compensated for). Both components – the pre-
activation (of the relevant modality) and residual activation (of the irrelevant 
modality) – have been termed neural trace (Gondan et al., 2007; Maljkovic & 
Nakayama, 2000; Mannuzza, 1980; Zubin, 1975; Zylberberg et al., 2009) or, 
respectively, attentional trace (Alho et al., 1990; Jaśkowski et al., 2002; Näätänen, 
1990; Ruge & Naumann, 2006). 

For a more principled understanding of the MSE – the observable end result 
of modality switching –, it is helpful to consider in greater detail the putative 
(neuro-) functional architecture that underlies it. According to ‘saliency- 
summation’ models (Itti & Koch, 2001; Koch & Ullman, 1985; Lee et al., 1999; Li, 
1999, 2002; Wolfe, 1994; Wolfe et al., 1989), the allocation of selective attention is 
driven by an ‘attentional priority map’ (e.g., Fecteau & Munoz, 2006), that is, a 
spatiotopically organized representation of the (visual) scene whose units code the 
rank order in which objects at the various field locations should be selected for 
focal-attentional processing: the higher the activation of a unit, the greater the 
attentional priority of stimuli in its receptive field. In vision, the priority map 
integrates, or summates, signals derived from entry-level feature coding in the 
various visual dimensions (such as orientation, color, motion, etc.). Features that 
exhibit a higher contrast compared to their surround contribute stronger bottom-
up ‘saliency’ signals to priority computation (i.e., through iso-feature suppression 
mechanisms; e.g., Knierim & van Essen, 1992; Li, 2002; Nothdurft, 2000), and 
specific features may be top-down enhanced if they match the attentional set (e.g., 
matching the templates of task-relevant targets held in visual working memory; 
e.g., (e.g., matching the templates of task-relevant targets held in visual working
memory; e.g., Desimone & Duncan, 1995; Treisman & Sato, 1990; Wolfe, 1994).
Once intermediate-level representation between the entry-level feature maps and
the attentional-priority map has been postulated by “dimension-weighting
account” (DWA; Found & Müller, 1996; H. J. Müller et al., 1995). This account
assumes that feature-contrast signals are computed per dimension and may be
represented in dimension-specific feature-contrast maps (e.g., for orientation
contrast, color contrast, motion etc.; see also Itti & Koch, 2000). Critically, the
signals in these maps are integrated by the attentional-priority map in a weighted
fashion (e.g., color signals dimension may be assigned a greater weight than
orientation signals), with the weights determined, in a competitive fashion, by
both top-down set and inter-trial history (e.g., H. J. Müller et al., 2003).
Concerning selection-history effects, the competitive weighting of dimension
explains why dimension shifting (e.g., to a color target on trial n from an
orientation target on trial n–1) causes performance costs compared to dimension
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repetitions (e.g., a color target on trial n following a color target on trial n–1), 
whereas feature changes (vs. repetitions) within a repeated dimension affect 
performance comparatively little. And it also explains why, with targets defined 
redundantly (i.e., targets that are salient) in multiple dimensions, signal 
integration across dimensions (by the priority map) is modulated by the relative 
weight that has accrued to the various dimensions as a result of inter-trial history: 
the degree to which two dimension-specific signals drive evidence accumulation 
by the priority-map units is scaled by the dimensional weights, and signal-
summation, or ‘co-activation’, effects are optimal when the relative weights are 
within a comparable range (e.g., Krummenacher et al., 2001a, 2009, 2010; H. J. 
Müller et al., 2003, 2004; H. J. Müller & Krummenacher, 2006; Pollmann et al., 
2000). 

Going beyond the DWA (which was formulated to account for signal 
summation in the visual modality), Töllner and colleagues (2009) proposed a 
“modality-weighting account” (MWA) – essentially an extension and 
generalization of the DWA to crossmodal (search) task scenarios. According to the 
MWA, the priority map is an attention-guiding representation that integrates 
saliency signals across multiple sensory dimensions (such as vision, audition, 
touch, etc.). In architectural terms, it adds an extra layer of modality-specific 
maps situated between the intra-dimensional feature-contrast maps (assumed in 
the DWA) and the attentional-priority map (s. Figure 4–1), where there is 
competitive weighting of the (signals from the) various modalities determining 
their driving influence on signal integration by the priority map. Töllner et al. 
(2009) proposed this account based on their finding of a prominent MSE in a visuo-
tactile discrimination task, that is: modality shifting (e.g., to a visual target on 
trial n from a tactile target on trial n–1) caused substantial performance costs 
compared to modality repetitions (e.g., a visual target on trial n following a visual 
target on trial n–1). In addition to assessing behavioral performance, Töllner et 
al. (2009) also recorded the EEG. Analysis of the EEG data provided evidence of 
the amplitude of a particular event-related potential (ERP) component, namely, 
the anterior N1, to indicate a supramodal mechanism of weight-shifting: 
whenever a modality-shift occurred the amplitude of the anterior N1 increased 
consistently across visual and tactile targets and experimental tasks. This finding 
is consistent with a variety of other studies that also found the N1 to be a sensitive 
component distinguishing between intra- and cross-modal shifts (Gondan et al., 
2007; Levit et al., 1973; Squires et al., 1976; Sutton et al., 1965; Verleger & Cohen, 
1978). Nevertheless, whether the mechanisms reflected in the N1 play indeed a 
central, ‘supramodal’ role in regulating the attentional priority of the various 
modalities is not entirely clear from the wider literature. For instance, some 
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studies found only an auditory N1 effect (R. Cohen & Rist, 1992), with others even 
reporting an inverse effect for vision (Gondan et al., 2007). Also, a later 
component, the N2 has been shown to play a role in uni-modal visual search 
(Folstein & Van Petten, 2008), with shifts of the target-defining dimension 
producing an amplified N2 over fronto-central regions (Gramann et al., 2007). 
Overall, these inter-trial effects in early EEG components (N1, N2) can also be 
explained by a superimposed processing negativity being linked to early 
perceptual and pre-attentive coding processes (Näätänen, 1982; Näätänen & 
Picton, 1987; Talsma & Woldorff, 2005).  

Exactly within the time window of these early ERP components falls the 
“posterior contralateral negativity” (PCN, also referred to as N2pc): a lateralized 
negative deflection at posterior electrodes (within 150–350 ms post stimulus) 
which is taken to be indicator of the allocation of visuo-spatial attention in the 
scene (Eimer, 1996; Luck & Hillyard, 1994a; Töllner, Zehetleitner, 
Krummenacher, et al., 2011; Wolber & Wascher, 2005; Woodman & Luck, 1999). 
In particular, in visual search, the timing and amplitude of the PCN have been 
linked to the speed of the attention allocation (i.e., the transition from pre-
attentive to focal-attentional processing ) and, respectively, the amount or 
‘engagement’ of processing resources at the spatial focus of attention (cf. Zivony 
et al., 2018). Töllner et al. (2008) found a temporal delay in PCN peak latencies 
in a visual pop-out search task when the target-defining dimension switched from 
shape on trial n–1 to color on trial n (shape → color), or vice versa. Further, the 
PCN amplitudes were more negative for targets with repeated visual dimensions 
(e.g., color → color). Consistent with the DWA, no difference was found between 
exact target feature repetitions (e.g., green → green) and feature shifts (e.g., red 
→ green). In another study using variations of Maljkovic and Nakayama’s (1994)
‘priming of pop-out’ paradigm, Eimer et al. (2010) found expedited PCN onsets for
target repetitions and delayed onsets for prominent changes (involving full
swapping of the target and distractors features), by employing the jackknife
procedure (Ulrich & Miller, 2001). However, amplitude effects derived merely
from the differential onset timings, with more negative amplitudes for repetitions
in the early PCN and for changes in the late PCN.

For tactile search – which likewise involves processes of attentional target 
selection (Spence & Gallace, 2007) –, an analogous component to the posterior 
contralateral negativity (PCN) has been observed over central regions: a “central 
contralateral negativity” (CCN or N140cc), which reflects the allocation of tactile 
attention (Eimer et al., 2004; Eimer & Driver, 2000; Forster et al., 2016). That is, 
the CCN is also a lateralized negative deflection (140–340 ms post stimulus), 
which builds up for tactile targets (but not tactile distractors), varying in 
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amplitude for different stimulated body parts, with the most negative deflections 
observed for stimulation of the fingers. Thus, generally, lateralized negative 
deflections appear to reflect a common process of selective attention that 
integrates spatially-coded information (including sound, as revealed by an N2ac 
in anterior regions; Gamble & Luck, 2011). 

Based on the evidence reviewed above, the present study employed a multi-
modal, visuo-tactile search paradigm to re-examine, both behaviorally (examining 
reaction times and response accuracy) and electrophysiologically (analyzing the 
PCN and CCN as sensitive markers for visual and, respectively, tactile attention), 
the specific hierarchy of summative attentional-priority computation across 
feature, dimension, and modality levels as assumed by the MWA (see Figure 4–
1). Critically, we focused on the pattern of target shift-cost effects to test whether 
the costs are indeed greater for modality shifts than for (intra-modal) dimension 
shifts, as expected on the MWA, which assumes an extra stage of modality 
weighting above a stage of intra-modal dimension weighting; or, alternatively, 
whether they are of comparable magnitude, as would be predicted by a 
parsimonious extension of the DWA to incorporate multi-modal search scenarios, 
which considers all stimulus dimensions equal in that a single (dimensional) 
weight resource is competitively shared among all dimension, whether they are 
of the same or of different modalities. In particular, on the MWA, we expected the 
switch costs to reflect the assumed hierarchy: they should be largest for modality-
shifts (MSE), followed by (intra-modal) dimension shifts, and negligible for (intra-
dimensional) feature shifts. In this study, these assumptions about intertrial 
effects are investigated empirically by using a visuo-tactile search paradigm. 
Furthermore, we analyzed the persistence of switch costs across successive trials, 
i.e., a decay function of the neural traces (Zylberberg et al., 2009). Also, we looked
location-shift patterns between visual and tactile targets.

Besides examining the behavioral shift effects, we also analyzed the PCN and 
CCN components, expecting to find modulations in their timing and magnitude 
that reflect the hierarchy assumed by the MWA: they should become delayed and 
less negative with the (behavioral) increase in shift costs from the feature through 
the dimension to the modality level. Importantly, in contrast to higher amplitudes 
for modality shifts in the N1 and N2, indicative of a perceptual-coping mechanism 
(Gondan et al., 2007; Gramann et al., 2007; Töllner et al., 2009), less negative 
amplitudes in the PCN (as found in visual search (Eimer et al., 2010; Töllner et 
al., 2008) and CCN on target shift trials could be taken to reflect reduced 
allocation of attentional (weight) resources due to the carry-over, across trials, of 
neural traces from previously task-relevant relevant (i.e., pre-activated) 
dimensions or modalities. In contrast, target repetitions would ride on the same 
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neural traces (accessing the same or similar information), thus making the 
deployment of attention more efficient – expressed in faster reaction times and 
earlier onsets and higher amplitudes of the lateralized components.  

In summary, while there are many issues worth investigating in the context 
of inter-trial effects (such as visual dominance or the functional role of N1), the 
focus of the present study lies on the MWA as a multi-modal extension from the 
DWA. [insert location-shift and neural decay function here] 

Accordingly, the main goal is to find a supramodal mechanism which 
combines processes of selective attention across the visual and tactile modalities 
(Farah et al., 1989; Lakatos et al., 2009; Spence, 2002). As outlined above, by 

Figure 4–1. Left Panel. The modality-weighting account (MWA) is illustrated as a hierarchy of layers of 
spatiotopic maps, from feature through dimension to modality maps, that propagate their weighted signals 
upwards to an attention-guiding saliency (or ‘attentional-priority’) map. It is assumed that target switch 
costs increase with increasing hierarchy: (intra-dimensional) feature switching → (intra-modal) dimension 
switching → modality switching. For the analyses of intertrial effects, switch costs are derived by subtracting 
repetitions as baseline from the respective shifts (feature, dimension, or modality), or by conducting 
orthogonal contrasts within each layer of the MWA. Right Panel. The experimental setup is depicted, with 
the display items including collocated visual and tactile information. Participants were instructed to place 
their fingertips on the actuators, and to issue responses via foot pedals. Further, red circle (R), green circle 
(G), square (S), triangle (T), low (tactile) frequency (L, 20 Hz), high frequency (H, 55 Hz) were the six 
singleton targets in the visual and, respectively, tactile modalities, which popped out among homogeneous 
distractors (cyan circles, 200-Hz vibrations). The inter-trial target-shift conditions, i.e., the changes in the 
target definition from the previous (n–1) to the current trial (n), are illustrated (on the right) for all possible 
inter-trial conditions: visual target (VR = visual target, feature repetition, VF = visual target, feature change, 
VD = visual target, dimension change, VM = visual target, modality change) and tactile targets (TR, TF, 
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showing delayed latencies and reduced amplitudes for modality shifts, we 
anticipate the neural dynamics of the PCN and CCN to be indicative of such a 
common, cross-modal pool of attentional resources. 

Methods 

Participants. 18 participants were recruited for this study. All were right-handed 
and had normal or corrected-to-normal vision, and normal tactile sensitivity in 
their fingertips. Due to technical failure in EEG recording, one participant had to 
be excluded. Thus, 17 participants (mean age 25.9 years, four females) were 
included in the study. They gave their informed consent prior to the study and 
were reimbursed (9 €/h) for their participation. The study was approved by the 
Ethics Board of the Faculty of Pedagogics and Psychology at LMU Munich, 
Germany. 

Stimuli and Procedure. The visuo-tactile setup (Figure 4–1) consisted of a 
transparent frame, with eight evenly spaced tactile actuators (Dancer Lab), and 
parallel visual projection from the backside (Optomo). Participants were seated 
in front of the setup, fixating their eyes at the center of the projection surface (eye-
to-surface distance of approx. 57 cm), and placing their fingertips (excepting the 
thumbs) softly on top of the actuators. The actuators, delivering vibro-tactile 
stimulation, were arranged in a slightly curved fashion on each side, reflecting 
the lengths of the various fingers and so affording a comfortable hand/finger 
posture during the experiment. The visual items, projected onto the surface, were 
collocated with the actuators, to render the impression of an array of integrated 
visuo-tactile objects. 

The experimental task was to localize any cross-modal (i.e., either a visual or 
a tactile) ‘pop-out’ target presented among seven homogeneous distractors on 
either the left or right side of the stimulus array display; participants indicated 
the side of the target by pressing the corresponding foot pedal. The pop-out item 
was defined by either a visual or a tactile feature contrast relative to distractors. 
In total, there were six targets: against the visual distractor context, composed of 
seven cyan circles, visual targets were defined in either the color dimension, being 
featurally either red or green, or in the shape dimension, being triangle- or 
square-shaped. Against the tactile distractor context, composed of 200-Hz 
vibrations, the tactile targets were defined in the (vibro-tactile) frequency 
dimension, being of a low, 20-Hz frequency or a high, 55-Hz frequency. The six 
targets were equally likely (and appeared equally likely at each of the 8 possible 
locations), with the target order across trials determined by De-Bruijn sequencing 
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(Aguirre et al., 2011). Whatever the target on a given trial, participants were 
instructed to produce a localization response to it as fast and accurately as 
possible. A trial started with the presentation of a central fixation cross for 500 
ms, which was immediately followed by the search display consisting of a pop-out 
target at any position among the seven distractors. The search display was 
presented only briefly, for an exposure duration of 200 ms, to avoid eye 
movements. Next, the foot-pedal (left/right-localization) response was recorded. 
In case of an incorrect response, the visual feedback display ‘Error!’ was shown 
for 1000 ms. The inter-trial interval was about 1000 ms (varying within +/- 50 
ms). 

To balance the inter-trial conditions (which are in the focus of the present 
study), we applied De Bruijn sequencing (Aguirre et al., 2011), that is, a 
randomization procedure that ensured that all types of – to-be-examined – inter-
trial target transitions from trial n–1 and to trial n were equally likely. In 
particular, we examined the following four types of inter-trial target shifts: 
Repetitions = R (e.g., square → square), Feature shifts = F (e.g., low → high), 
Dimension shifts = D (e.g., color → shape), and Modality shift = M (e.g., touch → 
vision) (s. Figure 4–1). In total, the experiment consisted of 728 trials, presented 
in 24 blocks of 72 trials each. Each target was repeated 288 times, equally 
distributed across all eight locations. 

Performance Analysis. For behavioral performance, we examined the error rates 
(ER) and mean reaction times (RTs) in repeated-measures (RM) ANOVAs with 
the factors Target (dimension) and Shift. Throughout the Results, we report the 
generalized eta-square values (η², (Lakens, 2013) and depict within-subject 
confidence intervals (Loftus & Masson, 1994; Morey, 2008), unless indicated 
otherwise. Further, Greenhouse-Geisser correction was applied for violations of 
sphericity. For RTs, only correct responses within the time range 250–1200 ms 
were analyzed (i.e., response-error trials and trials with outlier RTs were 
excluded; see Results for details). For the analysis of switch costs, we took 
repetitions (R) of singleton target features (e.g. red → red) as baseline and 
subtracted this from feature shifts (F), dimension shifts (D), and modality shifts 
(M). For the neural decay, six two-way RM ANOVAs were conducted in reference 
for the preceding trials (n–1, n–2, n–3, n–4, n–5, & n–6), separately for feature 
(color, shape, & frequency) and shift (feature, dimension, modality). Again, shift 
conditions were subtracted from their respective baselines of exact repetitions. 
Also, location-shift between left and right hemifields and hands were analyzed 
across visual and tactile conditions, by utilizing RM ANOVAs. 
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EEG Recording and Analysis. The brain activity was recorded by 64 Ag-AgCl 
electrodes placed in the 10-20 system using BrainAmp and Brain Vision Recorder 
(BrainProducts™), at a sampling rate of 1000 Hz. During the experiment, 
impedances were kept below 5 kΩ. The EEG recordings were analyzed with 
Python and MNE (Gramfort et al., 2013, 2014), while statistics were conducted in 
R. 

For the EEG preprocessing, initially, we applied a band-pass filter (0.1–70 
Hz), including a notch filter to exclude line noise. Further, we conducted an 
extended infomax ICA and corrected eye blinks and saccades by inverse 
transformation of their respective independent components. Finally, the EEG 
signals were re-referenced by mastoid electrodes, and another 12-Hz low-pass 
filter was applied with zero-phase shift, in order to retrieve more interpretable 
signals further including alpha and theta oscillations which are both linked to 
selective attention (Keller et al., 2017; Michel et al., 2021). 

Following this, events were segmented into 1-second epochs, including a 200-
ms baseline interval. For the PCN and CCN, initially, epochs were averaged 
(ERPs) separately for left and right target locations, including an average 
baseline correction. In order to obtain a sufficient amount of EEG epochs (a high 
signal-to-noise ratio), here, we selected the shifts from the orthogonal contrasts 
within each hierarchical layer of the MWA (s. Figure 4–1), that is: in the first 
contrast, we combined EEG events (or epochs) for exact repetitions (high → high, 
triangle → triangle) and feature-shifts (e.g., red → green, low → high) for vision 
and touch respectively. In the second contrast (being only applicable for vision), 
we included all events (EEG epochs) for dimension-shifts (e.g., shape → color, 
color → shape) and “repeated dimensions” (e.g., color → color, shape → shape), 
subsuming both repetitions and feature-shifts. Finally, we analyzed modality-
shifts (e.g., touch → vision, vision → touch) and modality repetitions (vision → 
vision, touch → touch), our third contrast, separately for each modality. 

Finally, ipsilateral signals were subtracted from contralateral ones, where 
the PCN was averaged across extrastriate regions (PO7/PO8, PO3/PO4, P5/P6, 
O1/O2), and the CCN across central regions (C3/C4, C5/C6, C1/C2, CP3/CP4). To 
extract the amplitude and timing of these components, we applied the jackknife 
procedure for the PCN (200–340 ms) and CCN (140–340 ms) to derive the 
amplitude and peak-latency parameters; the timing of the onset and offset was 
chosen by the common 50% criterion (Kiesel et al., 2008; Miller et al., 1998; Stahl 
& Gibbons, 2004; Ulrich & Miller, 2001). 

By nature, the PCN derives with a relatively low signal-to-noise ratio due to 
event-related lateralizations, making it difficult to determine the exact timing. To 
compensate for this circumstance, it is important to have a good signal-to-noise 
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ratio by including many trials, and to apply the jackknife procedure. However, 
inaccuracies can still occur, since timing is closely associated with the amplitude 
criterion (50%). Further, which PCN time parameters are sensitive to 
experimental manipulations appears to vary across studies, being sometimes 
prominent in onsets (Eimer et al., 2010) and at other times in peak latency 
(Töllner et al., 2008; Töllner, Zehetleitner, Krummenacher, et al., 2011), although 
in each case an underlying temporal effect exists. For this reason, here, we 
introduce a more stable and ‘novel’ latency estimate, by simply averaging the 
three time points (onset, peak latency, offset). This step is intended to reveal 
temporal effects more sensitively, while also improving comparability. 

For the statistics, jackknife amplitudes and latency scores were transformed 
into individual estimates, which approximate the real-timing scores, enabling 
statistical comparisons without further corrections (Smulders, 2010). Again, we 
applied RM ANOVAs, and paired t-tests for the contrasts in RT and PCN / CCN 
parameters for each level of the MWA. For the contrasts in vision, since trials are 
balanced, targets for colors and shapes are combined across shift conditions. 
Finally, we apply repeated measures correlations (Bakdash & Marusich, 2017) to 
uncover links between the PCN /CCN and behavior. The topomaps, which are 
presented in the results (s. Figures 4–6, 4–7, & 4–8) and show central and 
extrastriate activations of CCN and PCN, are averaged around 250 ms after 
stimulus onset. 

Results 

The main goal of this study is to investigate intertrial effects in a crossmodal 
search paradigm. Thereby, we assume that switch costs can be explained by the 
hierarchy of the MWA, where intertrial costs are negligible for feature-shifts (F), 
but increasingly prominent for dimension-shifts (D) and modality-shifts (M) (s. 
Figure4–1).  

First, we report the error rates (ERs) and mean reaction times (RTs) for the 
six targets of the cross-modal localization task. Overall, the ERs were comparable 
within each of the two visual dimensions, color (red: 1.4%, green: 1.9%) and shape 
(squares: 2.7%, triangles: 3.8%) (ps < 0.133). For the vibro-tactile targets (low 
frequency: 14.4 %, high-frequency: 7.9 %, the ERs were higher compared to the 
visual targets and differed from one another (p < 0.001). Importantly, the ERs on 
inter-trial shift trials were overall comparable among the six targets (ps > 0.136), 
ruling out inter-trial biases in target accuracies. Comparing the ERs across 
dimensions (color, shape, vibration), an RM ANOVA revealed a significant 
Dimension effect (F (2, 32) = 38.72, p < .001, η² = .542): ERs were significantly 
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higher (ps < 0.001) for vibro-tactile targets (10.6 %) compared to both color (1.7 %) 
and shape (3.3 %) targets, which were also different (p = 0.036) (s. Figure 4–2).  

For the RT analysis, only correct trials were selected, and on average 2.1% of 
outliers (with RTs outside the 250–1200-ms window) were excluded. A target-
based RM ANOVA revealed the Target main effect to be significant (F (5, 80) = 
41.00, p < .001, η² = .232): RTs to color (red: 516 ms, green: 527 ms), shape (square: 
564 ms, triangle: 568 ms), and vibro-tactile (low-frequency: 613 ms, high-
frequency: 583 ms) target were all significantly different (ps < .001), apart from 
squares, triangles, and high-frequency vibrations, which were comparable to one 
another (ps < .072, uncorr.). A dimension-based RM ANOVA yielded a similar 
pattern (F (2, 32) = 41.58, p < .001, η² = .216), revealing color (521 ms), shape (566 
ms), and vibro-tactile (597 ms) targets to have distinct processing times (ps < 
.006). The effects in RTs and ERs among dimensions are likely linked to bottom-
up feature-contrast computations, which follow a hierarchy from color though 
shape to vibrations (s. Figure 4–2). Although there were some differences between 
target features (e.g., red and green), these appear to be largely consistent within 
their respective dimensions. Since the main focus of the present study lies on 
inter-trial target switch costs, we went on to examine for these effects omitting 
differences among dimensions in the analyses. Further, we only examined switch 
costs in the RTs (as there were no evident switch costs in the ERs).  

Switch Costs. To start with, we conducted separate RM ANOVAs with the cross-
trial target Shift (R = repetition, F = feature shift, D = dimension shift, M = 
modality shift) for visual (V) and tactile (T) target stimuli. For the former, there 
was a prominent main effect of shifts (F (3, 48) = 26.60, p < .001, η² = .031): the 
RTs for the various conditions were 532 ms (VR), 534 ms (VF), 542 ms (VD), and 
555 ms (VM), that is, they increased in line with the hierarchy assumed in the 
MWA. The same pattern was also revealed for tactile stimuli: 578 ms (TR), 572 
ms (TF), and 608 ms (TM) (F (2, 32) = 23.61, p < .001, η² = .043). 

In order to take a more direct look at the shift effects and their underlying 
dynamics for each dimension, we calculated the switch costs (F, D, M) by 
subtracting repetitions (R) as a common baseline. As expected, no significant costs 
were found for (intra-dimension) feature-shifts (e.g., green → red) versus 
repetitions (e.g., red → red) in one-sample t-tests (t (16) < |1.72| ps > .258); that 
is, target changes at the feature level have little impact on performance, 
consistent with the MWA (See Supplementary Figure 4–A1 for a summary of the 
switch costs (ER, RT) for specific target features.) At the next level, (intra- 
modality) dimension shifts produced significant switch costs for both color targets 
(Δ 14 ms, t (16) = 4.75, p < .001) and shape targets (Δ 7 ms, t (16) = 2.65, p = .018). 
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Finally, modality-shifts produced costs for both color targets (Δ 24 ms, t (16) = 
6.18, p < .001) and shape targets (Δ 21 ms, t (16) = 4.92, p < .001), with the 
modality-shift costs significantly exceeding the dimension-shift costs (ps < .002). 
Likewise, shifting the modality was costly for responding to tactile targets, 
whether they were preceded by color targets (Δ 31 ms, t (16) = 5.67, p < .001) or 
shape targets (Δ 28 ms, t (16) = 4.73, p < .001). This pattern, including the greater 
costs of shifts across modalities vs. shifts across dimensions within the same 
(here: exclusively the visual) modality is consistent with the key assumption – of 
a modality-specific priority-coding level – made by the MWA. 

Of note, although the cross-modal shift costs (M) looked numerically 
somewhat larger for vibro-tactile targets than for visual targets (see Figure 4–2), 
they did not differ statistically (ps > .113), that is: we found no robust evidence of 
a bias towards the visual modality (or visual dominance), which would have 
produced significantly higher switch costs for touch vs. vision. The absence of such 
a bias is interesting especially when taking into account the fact that our design 
was skewed by default, with visual targets occurring twice as frequently as vibro-
tactile targets. When applying a correction term for tactile vibrations (0.66), the 
modality-shift effects become even more similar (ps > 0.368). Given this, the 
present data provide little (and certainly no conclusive) evidence regarding the 
issue of visual dominance. 

Location-Shift. In the location analysis, two significant main effects were found 
for ERs and RTs for the factor Dimension (F (2, 32) > 38.59, ps < .001, η² > .524), 
replicating the previous findings, and Location (F (1, 16) > 10.85, ps < .005, η² > 
.014), showing faster and more accurate response for right hand or hemifield 
locations instead of left locations. These accuracy benefits were most evidence in 
right hand tactile targets (s. Figure 4–3). The analysis of location-shift in vision 
and touch showed characteristic differences. Here, visual targets (VR: visual 
repetition, VF: visual feature-shift, VD: visual dimension-shift, VM: visual 
modality-shift) were significantly slower in RTs for repeated locations (F (1, 16) = 
14.18, p = .002, η² = .278), the lack of an interaction (location-shift x switch costs) 
made it consistent across visual target (p = .183). In tactile targets (TR: tactile 
repetition, TF: tactile feature-shift, TM: tactile modality-shift), there was no main 
effect in location-shift (F (1, 16) = 3.72, p = .071, η² = .140). Yet, there was a 
significant disordinal interaction revealing TR and TF to be faster for repeated 
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hands, while in TM the effect was reversed, tactile performance was faster when 
the preceding visual target occurred at the opposite side (s. Figure 4–4).  

Figure 4–2. The upper panels present the error rates (ER, in percent) and reaction times 
(RT, in milliseconds) for color, shape, and vibro-tactile targets. The lower panel shows the 
switch costs separately for color, shape, and vibro-tactile targets, calculated by subtracting 
their respective feature-repetition (R) baseline from (intra-dimension) shifts in features (F), 
(intra-modality) shifts in dimensions (D), and shifts in the modality (M), respectively. For 
vibro-tactile targets, there could not be an intra-modality shift in D (as there was only one 
vibro-tactile dimension: frequency); further, M depicts the shift costs for vibro-tactile target 
averaged across shifts from (preceding) color and shape targets (which produced equivalent 
costs). Further, significance level is indicated by asterisks, or n.s. (non-significant), 95% 
confidence-intervals are added. 
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Figure 4–3. Error rates (in percentage) and reaction times (in milliseconds) are shown for 
left and right locations and sides across color, shape, and vibro-tactile targets. Overall, 
there was a systematic advantage for the right visual hemifield and hand, being 
significantly more accurate and faster than the left visual hemifield and hand. 

Figure 4–4. The location-shift analysis for repetition and change is presented for visual 
and tactile conditions is presented for reaction times (in milliseconds). Whereas visual 
targets were systematically faster for locations changes (e.g., left → right) in comparison to 
location repetitions (e.g., right → right) across all visual shift conditions (VR: repetition, 
VF: feature-shift, VD: dimension-shift, VM: modality-shift). On the contrary, tactile targets 
were faster for hand and tactile repetitions (TR, TF). Interestingly, a tactile modality-shift 
was better for changed locations (e.g., right → left) due to preceding visual information.  
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Neural Decay Function. The extended intertrial analysis found a convergence of 
switch costs, vanishing at n–4. Overall, the significant switch costs of modality-
shifts persisted across preceding trials n–1 and n–2 across all dimensions (ps < 
.01), and for color and frequency in n–3 (ps < .05). Although dimension-shifts 
already vanished in n–2, feature-shifts in frequency and shape became 
substantial (ps < .05) (s. Figure 4–5). 

Figure 4–5. The switch costs (in milliseconds) are shown for the timeline of six preceding 
trials (n–1, n–2, n–3, n–4, n–5, & n–6). Again, the shifts for feature (F), dimension (D), and 
modality (M) are subtracted from identical repetitions for color, shape, and vibro-tactile 
targets, representing the delta of switch costs. The within-subject confidence intervals are 
shown, significant switch costs are indicated with asterisks.  
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Contrast 1: Feature Shifts. In line with the MWA, RTs were not significantly 
affected by (intra-dimension) feature shifts vs. repetitions (F vs. R), for either the 
visual or vibro-tactile targets (vision: Δ 2 ms, t (16) = 0.72 p = .481; touch: Δ -5 ms, 
t (16) = 1.17, p = .258). That is, no switch costs arise at the level of the feature 
maps. This finding is also reflected in the PCN and CCN for visual and vibro-
tactile targets, respectively: neither the latencies nor the amplitudes of the 
respective components differed between F and R (ps > .163) – in line with the 
MWA (see Supplementary Figures 4–A2 & 4–A3).  

Contrast 2: Dimension Shifts. For the contrast at the dimension level, the two 
shift types at the (visual) feature level were combined and compared to a (visual) 
dimension shift (F, R. vs. D). In RT, an (intra-modal) dimension shift produced 
significant costs over and above an (intra-dimension) feature shift or repetition (Δ 
9 ms, t (16) = 6.26, p < .001). An analogous, temporal effect was found in both the 
PCN onsets (F (1, 16) = 7.90, p = .012, η² = .065), which were delayed for dimension 
shifts (223 ms) vs. dimension repetitions (213 ms), and the PCN latencies (F (1, 
16) = 5.44, p = .033, η² = .041; 256 ms vs. 263 ms). No further effects were found
in the PCN timing and amplitude (ps > .155) (see Figure 4–6).

Figure 4–6. The PCN for visual targets as contrasts in the dimension layer is shown. VR (purple) denotes 
dimension repetitions (including both repetitions and feature shifts) and VD (fuchsia) dimension shifts. The 
PCN is presented in the center; the topomaps underneath (averaged activity in the time window 240–260 
ms) depict the central and extrastriate activations. The bar plots present descriptives of the contrast in 
reaction times (RTs), PCN amplitude, and PCN latency, including within-subjects confidence intervals. 
Findings are either marked as non-significant (n.s.) or significant (indicated by asterisks). Overall, visual 
dimension-shifts produced a significant delay in reaction times and PCN latency, while PCN amplitude was 
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Contrast 3: Modality Shifts. Moving up the hierarchy of the MWA, comparing 
modality shifts vs. modality repetitions (R, F, D vs. M), there were significant RTs 
costs both for switching from vibro-tactile to visual targets (Δ 18 ms, t (16) = 6.11, 
p < .001) and for switching from visual to vibro-tactile targets (Δ 32 ms, t (16) = 
6.24, p < .001). For visual targets, the PCN amplitude was significantly reduced 
(F (1, 16) = 12.63, p < .002, η² = .023) for modality shifts vs. intra-modal repetitions 
(-0.71 µV vs. -0.96 µV). And, while there was little difference in PCN onsets (p = 
.438; modality shifts vs. intra-modal repetitions: 222 ms vs. 218 ms), both the PCN 
latencies and the PCN offsets were significantly delayed on modality-shift vs. -
repetition trials (latencies: 266 ms vs. 260 ms, F (1, 16) = 4.76, p = .044, η² = .031; 
offsets: 309 ms vs. 301 ms; F (1, 16) = 6.12, p = .025, η² = .017). However, the delay 
caused by a modality shift was not larger than that of an (intra-modal) dimension-
shift for visual targets (p = 0.332). For vibro-tactile targets, we also found a 
prominent amplitude effect in the CCN (F (1, 16) = 5.06, p = .039, η² = .010): the 
CCN amplitudes were less negative for shifts from visual to vibro-tactile targets 
(–1.05 µV vs. –1.28 µV); there was no modality-shift effect on any of the CCN 
timing parameters (ps > .323). Interestingly, the tactile CCN-amplitude effect was 
also preserved in the PCN (F (1, 16) = 7.12, p = .017, η² = .058), albeit being less 
negative in the latter component (modality-shifts vs. -repetitions: –0.50 µV vs. –
0.76 µV). Given that the timing of the tactile CCN (onset: 157 ms; latency: 239 ms) 
precedes the tactile PCN (onset: 198 ms; latency: 255 ms), it would appear that 
the tactile component originates over central regions and propagates towards 
extrastriate regions, which is associated with a reduction in its negativity reduces 
(see Figure 4–7 & 4–8, and Supplementary Figure 4–A4). 

In summary, finding the same negative reduction for modality shifts in the 
PCN and CCN amplitudes favors a supramodal account, indicative of reduced 
attentional resources for processing a given target modality (say touch) when a 
cross-trial target change requires switching to this modality from another 
modality (in the example, vision). The timing, however, appeared to be relevant 
only for the PCN elicited by visual targets: here, there was a temporal delay in 
the latency estimate, which however did not differ between dimension shifts and 
modality-shifts. In order to examine whether these findings in amplitude and 
latency are both linked to the behavioral RTs, we conducted repeated-measures 
correlations. Overall, we found a significant (moderately) positive correlation, 
with higher negativity in the PCN being associated with faster RTs (r (101) = .407, 
p < .001). Also, we found another (moderately) positive correlation for temporally 
sensitive visual shifts (VR, VF, VD, VM), with a shorter PCN latency being linked 
with faster RTs (r (50) = .421, p = .002).  
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Figure 4–7. The PCN for visual targets as contrasts in the modality layer is shown. VR (purple) 
denotes dimension repetitions (including all intramodal repetitions) and VM (yellow) modality 
shifts. The PCN is presented in the center; the topomaps underneath (averaged activity in the time 
window 240–260 ms) depict the central and extrastriate activations. The bar plots present 
descriptives of the contrast in reaction times (RTs), PCN amplitude, and PCN latency, including 
within-subject confidence intervals. Findings are either marked as non-significant (n.s.) or 
significant (indicated by asterisks). Overall, visual modality-shifts produced a significant delay in 
reaction times and PCN latency, and a reduced PCN amplitude.  

Figure 4–8. The CCN for tactile targets as contrasts in the modality layer is shown. TR (yellow) 
denotes dimension repetitions (including all intramodal repetitions) and TM (purple) modality shifts. 
The CCN is presented in the center; the topomaps underneath (average activity in the time window 
240–260 ms) depict the central and extrastriate activations. The bar plots present descriptives of the 
contrast in reaction times (RTs) and CCN amplitude (within-subject confidence intervals), significance 
is indicated by asterisks. Overall, tactile modality-shifts produced a significant delay in reaction times 
and CCN amplitude. 
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Discussion 

The present – cross-modal search – study was designed to investigate the 
hierarchy governing inter-trial and switch-cost effects (Found & Müller, 1996; 
Spence, Shore, et al., 2001; Theeuwes, 2010; Töllner et al., 2009). To do so, we 
combined evidence from the MSE (Miles et al., 2011; e.g., Spence, Nicholls, et al., 
2001; Töllner et al., 2009) and related effects in (uni-modal) visual search 
(Krummenacher et al., 2009; e.g., H. J. Müller et al., 1995; Pollmann et al., 2000) 
guided by the hierarchical architecture of attentional-priority computation 
envisaged by the MWA proposed by Töllner et al. (2009), which forms the 
theoretical backbone of our study. Within its hierarchy of layers (see Figure 4–1), 
the MWA predicts that switch costs are largest for modality shifting (MSE), 
intermediate for (intra-modal) dimension shifting, and negligible for (intra-
dimensional) feature shifting. 

In terms of behavioral – RT – performance, the pattern of inter-trial effects 
we found is consistent with this assumed hierarchy, for both vision and touch: 
there were no reliable RT costs for switching (as compared to repeated) the target-
defining feature within a given dimension; significant shift costs emerged when 
switching from one to another dimension (as compared to staying within the same 
dimension) within the same modality (here only tested for vision); and the shift 
costs were significantly higher when switching from one to another modality (as 
compared to staying within the same modality) (s. Figure 4–2). This pattern is in 
accordance with previous studies (Found & Müller, 1996; Krummenacher et al., 
2009; Mortier et al., 2005; H. J. Müller et al., 1995). In other words, while 
dimension and modality shifts produce costs, feature shifts are handled as 
efficiently as repetitions, and with respect to switch costs can also be considered 
to produce benefits (Jonides & Mack, 1984; Spence, Nicholls, et al., 2001). In 
general, this pattern argues in favor of the MWA as a valid extension of the DWA 
to multi-modal search scenarios. In particular, the MSE reflects a true supra-
modal effect that cannot be readily explained by accounts that assume just a layer 
of dimensions-specific saliency coding (without differentiating stimulus 
modalities), the outputs of which feed directly to the attention-guiding priority 
map; instead, the outputs of the dimension maps are first integrated per modality 
(modality layer) and then forwarded, in a competitively weighted fashion, to the 
priority map (s. Figure 4–2, Supplementary Figure 4–A1). 

Before discussing our PCN and CCN findings, it is interesting to briefly 
consider what appear to be basic RT (and ER) differences between the three target 
dimensions in the present study: color, shape, and (vibro-tactile) frequency. These 
differences are suggestive of a processing hierarchy (RT, ER) reflecting the 
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respective target’s physical saliency (s. Figure 4–2). The advantage for colors over 
shapes most likely derives from the fact that both are processed differently in the 
visual cortex (Brincat & Connor, 2004; Gegenfurtner, 2003; Stettler et al., 2002), 
insofar the color encoding precedes that of shape in the ventral stream (Perry & 
Fallah, 2014). This would also explain why switch costs for dimension-shifts were 
less prominent in shapes, as the allocation of attentional resources follows the 
visual stream. In contrast, switching from shapes to colors becomes more costly, 
since attention must be retracted against the direction of its visual hierarchy. 

Compared to visual targets, responding to vibro-tactile targets was delayed 
(and more error-prone) – indicating that they took longer to become salient than 
visual targets. While this would be in line with the (presumed) dominant role of 
vision (Spence, Nicholls, et al., 2001; Spence, Shore, et al., 2001), there are 
alternative explanations of the visual bias in the present study. First, participants 
were a-priori less familiar with tactile search (a scenario only introduced in the 
experiment, whereas looking for an odd-one-out color or shape corresponds more 
with participant’s everyday life experiences); and second, the visual/tactile target 
ratio was by default unbalanced, with twice as many visual- than tactile-target 
trials. Yet, the modality-shift effects appear to be comparable between vision and 
touch. Accordingly, a clear conclusion about visual dominance is beyond the scope 
of the present study; and, more generally, how the dominance of one or another 
task-relevant modality (in a multi-modal scenario) is modulated by probabilistic 
weighting of sensory modalities remains to be investigated in future work. 

Another interesting fact, which captures the gap between saliency 
computation and intertrial history, even though not too obvious, may be gleaned 
from the effect sizes (generalized η²) in the performance (RT) analyses. While the 
effect-size for dimensions was quite large (0.216), effect-sizes for a main-effect in 
shifts were quite small in both modalities, vision (0.031) and touch (0.043) 
respectively, which underscores the subordinate and more variable role of inter-
trial effects. That is, while bottom-up saliency computations can be considered as 
a first-order process in which the various feature analyzer units are activated 
(scaled according to the feature contrast to the units in their surround) by the 
current search array, the inter-trial effects reflect a second-order modulation of 
these signals according to the weight settings (i.e., the residual neural traces) 
carried over to the current from the previous trial(s). 

Further evidence revealing the persistence of modality-shift across sensory 
modalities comes from the neural decay analysis. Here, it was shown that the 
residual activations from visual or tactile ‘neural traces’ produce the most-
persisting switch costs across multiple trials (Mannuzza, 1980; Zubin, 1975; 
Zylberberg et al., 2009). This finding indicates that attentional resources are 
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bound to the preceding sensory modality (vision or touch) and take time to detach 
completely. For future studies it would be interesting to investigate whether these 
neural traces can be described as an exponential decay. Another interesting shift 
pattern was revealed in location shifts. Whereas visual targets was generally 
improved for location changes, switching between left and right visual hemifields, 
performances for tactile targets was improved for hand repetitions. This finding 
indicates a spatial dissociation between vision and touch, which can be explained 
by inhibition-of-return’ (Klein, 2000; Posner et al., 1985; Taylor & Klein, 2000) or 
by somatosensory pre-activation (Assumpção et al., 2018; Badde et al., 2015). 
Interestingly, switching from touch to vision or vice versa was always better for 
the opposite hemifields. This indicates that spatial orienting might be primarily 
guided by visual processes and thus can be regarded as evidence for visual 
dominance (Klein, 1977; Posner et al., 1976; Spence, Nicholls, et al., 2001).  

Beyond the behavioral inter-trial effects, the present study focused on the 
neural dynamics governing the switching between targets within and across the 
modalities of vision and touch. While the pattern of behavioral (RT) results clearly 
favor the MWA (with the MSE reflecting a supra-modal cost function), the critical 
question was whether the hierarchy of inter-trial shift effects would also be 
manifest in two components linked to attention selection: the PCN and CCN. 
Given that the interplay of neuronal activations (present vs. residual) reflects 
distribution of dimension- and modality-specific processing resources, we 
expected dimensional (intra-modal) and cross-modal shifts of the target from the 
previous to the current trial to impact the attention-related components, due to 
the carry-over of the neural traces (i.e., relative balance of the respective pathway 
activations established as result of inter-trial history). 

Importantly, there were no significant RT switch costs for intra-dimensional 
feature shifts vs. feature repetitions – in line with previous findings in visual 
search (e.g., Found & Müller, 1996; Töllner et al., 2008) and the MWA (Töllner et 
al., 2009); likewise, feature shifts (vs. repetitions) did not impact the dynamics 
seen in PCN and CCN for either visual or vibro-tactile targets. In contrast, for 
dimension shifts vs. dimension repetitions in the visual modality (in our design 
the only modality in which we could examine for such an effect), the PCN was 
delayed – evidenced by significant differences in both the PCN onset (+10 ms) and 
latency (+7 ms) parameters. Again, this finding is in line with (Töllner et al., 
2008), who found a delay of 8 ms. Of note, the delay in PCN latency and the RT 
switch costs (+9 ms) are near-equivalent. 

Finally, and theoretically most important in the present context, there was 
also a delay in the PCN latency for modality shifts (from vibro-tactile) to visual 
targets, as compared to visual-target repetitions; although this delay was robust 
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only in the PCN offsets (+8 ms), the effect was significant for our aggregate latency 
estimate (+6 ms). Of note, the latency estimate was consistently (and 
significantly) delayed for both types of visual shift (i.e., for shifts from vibro-tactile 
targets both to color targets and to shape targets), strengthening the validity of 
this finding with regard to the temporal dynamics of the (visual) PCN. That this 
delay effect was not obtained consistently in both the PCN onset and offset 
measures (even though both derive from the same, 50% criterion) is likely owing 
to the relativeness of the 50% criterion which derives from different amplitudes 
in modality-shift and modality-repeat conditions. Given this fragility of the PCN 
in combination with its rather low signal-to-noise ratio, a valid PCN time criterion 
is essential. We propose that our aggregate latency estimate provides a better 
solution than any single timing measure: it reduces random variability, thus 
becoming more consistent. 

While no temporal effects were found in tactile targets and the CCN, the 
timing effects in PCN were statistically prominent and modality-specific, here, 
the (visual) PCN latency did not differ between dimension shifts within the visual 
modality and modality shifts from the tactile to be the visual modality. Even 
though our findings of systematic PCN delays are in line with the hierarchy of the 
MWA and linked to the behavioral switch costs, as indicated by the significant 
correlations (i.e., revealing slower RTs for lower amplitudes and temporal delays 
in PCN), the PCN delay effects do not reflect a genuine supra-modal mechanism 
due to the absence of analogous temporal effects in the tactile CCN.  

As for the amplitudes of the PCN and CCN, we found a consistent amplitude 
reduction for modality shifts in both vision and touch, with the PCN and CCN, 
respectively, becoming less negative. For tactile targets, the (central) CCN 
appeared to propagate towards the (posterior) PCN, while preserving its 
amplitude effect (i.e., the reduction) in extrastriate regions. Of note, there was 
also a significant correlation between amplitudes and RTs, that is, an association 
of the amplitude and switch costs in intertrial effects (as indicated by slower RTs). 
Thus, overall, the reduced component amplitudes can be explained in terms of the 
attentional resources, or ‘weight’, being reduced for a given modality following a 
shift (to it) from another modality – indicative of a truly supra-modal mechanism 
that generates costs for modality switching or, conversely, benefits from modality 
repetitions. In terms of the MWA, this mechanism reflects the competitive 
weighting of the two alternative target modalities driven by inter-trial history: 
the respective target-defining modality is upweighted on a given trial n–1 and the 
non-defining modality down-weighted; accordingly, when the target on the 
subsequent trial n is defined in the previously non-defining modality, its weight 
in the priority computation is reduced and consequently it is processed with fewer 
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attentional resources compared to a modality repetition. In other words, the 
amplitude results support the MWA as a suitable extension of the DWA (from 
intra-modal) to cross-modal search. 

For visual dimension-shifts, there was no significant difference in PCN 
amplitudes. There may be two reasons for this. One is that the task itself may 
play a modulatory role: in a crossmodal-search scenario, for the participants, the 
major demands arise from having to handle the processing of targets defined in 
separate modalities, as a result of which intra-modal processes may become 
attenuated and so less prominent. The second is that, in visual search, clear 
evidence for amplitude modulations due to dimension shifts is still not fully 
resolved as differences in amplitude might simply derive from temporal 
dissociations of early vs. late PCN effects (cf. Eimer et al., 2010) (in contrast to 
higher amplitudes for redundancy gains, which have been shown several times, 
e.g., Töllner et al., 2011).

In summary, our findings suggest that the hierarchy of the MWA provides a 
good fit to explain the cross-trial dynamics of selective attention. As temporal 
effects in the visual PCN latency appear to be consistent by showing a delay for 
shifts across dimensions and modalities, but no effects in CCN latency, thus being 
modality-specific, we cannot declare a favorite hierarchy as both the DWA and 
MWA seems to apply. However, we found a supra-modal mechanism in amplitude 
modulations, favoring the MWA. Interestingly, the tactile CCN propagates from 
central towards extrastriate regions, while the visual PCN does not propagate in 
the reverse direction. For parietal regions, these findings may suggest not only a 
visual but also a supra-modal role in attentional shifts. This reflection on a 
common pool of attentional resources relates to previous findings and the debate 
of whether inferior parietal cortex and temporo-parietal junction are linked to 
crossmodal attention (Chambers et al., 2007; Chambers, Stokes, et al., 2004; Hopf 
et al., 2000; Quinn et al., 2014).  

As the evidence to favor a MWA suggests, it should be the cause for deeper 
analyses. Therefore, it is worthwhile to consider some thoughts for future 
investigations. First, the concept of neural traces, as a gradient or second-order 
process, might be interesting to investigate, as it seems to reflect a function of 
contrast but also distance between perceptual analyzer units and sensory 
modalities, which perfectly captures the purpose of the MWA. As crossmodal 
attention seems to be linked to parietal regions, being very close to visual areas 
might explain the impact and presence of visual dominance. Also, because only 
vision produces temporal effects in PCN, which genuinely describes intertrial 
effects, producing benefits or costs in time. 
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Appendix 

Figure 4–A1. Error rates (in percentage) and reaction times (in milliseconds) are shown for each 
of the six features (color: R: red, G: green; shape: S: square, T: triangle; vibration: L: low, H: high) 
and their respective switch costs (delta to repetition baseline) of feature-shift (F), dimension-shift 
(D), and modality-shift (M). Notably, tactile targets were least accurate and slowest and switch 
costs for modality-shifts consistently high.  
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Figure 4–A2. The PCN for visual targets as contrasts in the feature layer is shown. VR (purple) 
denotes exact repetitions and VF (fuchsia) feature shifts (e.g., red → green). The PCN is presented 
in the center; the topomaps underneath (averaged activity in the time window 240–260 ms) depict 
the central and extrastriate activations. The bar plots present descriptives of the contrast in 
reaction times (RTs), PCN amplitude, and PCN latency, including within-subjects confidence 
intervals. Findings are either marked with asterisks or non-significant (n.s.). Overall, visual 
feature-shifts were comparable in reaction times an, PCN latency, and PCN amplitudes. 
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Figure 4–A3. The CCN for tactile targets as contrasts in the feature layer is shown. TR (yellow) 
denotes exact repetitions (including all intramodal repetitions) and TF (orange) feature shifts (e.g., 
low → high). The CCN is presented in the center; the topomaps underneath (average activity in the 
time window 240–260 ms) depict the central and extrastriate activations. The bar plots present 
descriptives of the contrast in reaction times (RTs) and CCN amplitude (within-subject confidence 
intervals), significance is indicated by asterisks or by n.s. (non-significant). Overall, tactile feature-
shifts were comparable in reaction times and CCN amplitude. 
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Figure 4–A4. The CCN for tactile targets as contrasts in the modality layer is shown in PCN electrode 
locations (PO7/PO8, PO3/PO4, O1/O2, and P5/P6). TR (yellow) denotes exact repetitions (including all 
intramodal repetitions) and TM (purple) modality shifts (e.g., red → high). The CCN is presented in 
the center; the topomaps underneath (average activity in the time window 240–260 ms) depict the 
central and extrastriate activations. The bar plots present descriptives of the contrast in reaction 
times (RTs) and CCN amplitude (within-subject confidence intervals), significance is indicated by 
asterisks or by n.s. (non-significant). Overall, tactile modality shifts were significantly delayed in 
reaction times and decreased in tactile PCN (or extrastriate CCN) amplitudes. 



181 

5 General Discussion 
 

Marbles click and climb 
While a journey’s end 
Shines lost in gold. 

After presenting the main empirical studies, the following sections will 
summarize and discuss their findings based on the proposed preattentive 
framework: the modality-weighting account (MWA) and further link them to the 
superordinate research questions from the General Introduction (Chapter 1). The 
‘General Discussion’ outline is as follows: The presentation of empirical evidence 
from the visuo-tactile search paradigms is based on how much the MWA is favored 
over an extended dimension-weighting account (DWA). These considerations will 
focus primarily on the findings in PCN and CCN components, the markers of 
choice for visual and tactile attention. Here, obtaining a clear picture of the 
modality-specific and supramodal functions of PCN and CCN will be essential. 
Based on those facts, the concept of a “supramodal priority network” (in line with 
the MWA) will be discussed in detail, which implies preattentive coactivations. 
Further, how the evidence contributes to a (general) computational attention 
model (CMA) will be discussed. Also, the future challenges of attention research 
are (roughly) outlined, and the “Dynamic Search” paradigm is proposed. Finally, 
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with a fair degree of certainty, an answer to the central (decade-long) question of 
whether crossmodal attention derives from “common or separate pools of selective 
attention” is given. 

Modality-Weighting in Crossmodal Search 

First, it is vital to get an overview of the central findings and how they relate 
to the preattentive architecture of modality-weighting. Remember, the MWA 
proposes an extra layer of modality maps with modality-specific saliency 
computation that precedes the attentional guidance of a (supramodal) priority 
map during crossmodal search. In contrast to an extended (multisensory) DWA, 
which suggests that independent analyzers are comparable within and across 
sensory modalities, the MWA assumes a dissociation between intramodal 
(dimension-wise) and crossmodal (modality-wise) processes (Töllner et al., 2009). 
Hence, the main objective was to provide evidence for the theoretical proposition 
by conducting crossmodal studies that include visuo-tactile search paradigms. 

Based on the scientific background, the redundant-signals effect (RSE) 
(Diederich & Colonius, 2004; Forster et al., 2002; Krummenacher et al., 2002; 
Miller, 1982; Töllner et al., 2011) and the modality-shift effect (MSE) or intertrial 
switch costs (Found & Müller, 1996; Miles et al., 2011; Spence, Nicholls, et al., 
2001; Töllner et al., 2009) proved to be particularly suitable for empirically 
investigating the (expected) difference between MWA and DWA. The MWA 
predicts that crossmodal redundancies and switch costs exceed intramodal ones, 
producing substantially higher benefits but also costs in response behavior and 
during attentional selection. The experimental manipulations in the studies on 
redundancy gains (Chapter 2) and intertrial effects (Chapter 4) examined the 
preattentive layers of (visual) dimensions and modalities across distinct task 
conditions. The distinction between the ‘modality condition’ and the (visual) 
‘dimension condition’ was central to both studies. 

The study on redundancy gains (RGs) in Chapter 2 gave strong empirical 
support in favor of the MWA by showing substantially faster RGs in crossmodal 
targets (CF, SF, or CSF) than in the intramodal visual redundant target (CS), 
providing a clear answer to the first superordinate question (1). This outcome is 
strengthened by the common baseline between nonredundant targets (C, S, & F), 
ensuring equal saliency, and the extended feature analysis (s. Figure 2–2, & 2–
A1). Further support for unveiling an RG hierarchy stems from studying spatial 
attention (Chapter 3), where crossmodal benefits exceed intramodal limitations. 
This finding closes the scientific gap between (the co-existing) visual and 
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crossmodal search by showing a systematic dissociation between intramodal 
dimensions and sensory modalities. 

Further, the analyses of neural dynamics in PCN and CCN provided evidence 
that this systematic dissociation (already) arises during the preattentive stage. 
Again, the PCN and CCN reflect neural markers for visual and tactile “spatial 
filtering” and attentional orienting in parieto-occipital and central regions, 
respectively. Previous studies showed that the PCN modulates sensitively in 
timing and magnitude based on the outcome of preattentive computations, 
indicative of the processing speed and the amount of allocated attentional 
resources (cf. Töllner et al., 2011). The CCN timing and amplitude were consistent 
across tactile and visuo-tactile targets, reflecting a stable somatosensory 
component for tactile attention and is, therefore, insensitive to depict the 
preattentive hierarchy of the MWA. By showing faster onsets and higher 
amplitudes for crossmodal redundant targets and earlier offsets in visual 
redundant targets, the PCN, on the contrary, revealed itself to be a suitable 
candidate for detecting modality-specific (visual) but also supramodal (visuo-
tactile) activity. This finding is in line with visual search studies and the evidence 
of crossmodal links within the posterior parietal cortex (PPC), e.g., in IPS or TPJ 
(Downar et al., 2000; Eimer et al., 2010; Grubert et al., 2011; Macaluso et al., 
2000, 2002a, 2002b; Man et al., 2015; Quinn et al., 2014; Wolber & Wascher, 
2005). Although the outcome of substantial crossmodal benefits in the PCN 
answers the second superordinate question (2), verifying its functional relevance 
by excluding the option of simple linear superposition was crucial. 

Another (central) claim of the MWA is the presence of coactivation during the 
preattentive stage, favoring an early instead of a late locus of coactivation 
(Feintuch & Cohen, 2002; Töllner et al., 2011; Zehetleitner et al., 2009). Based on 
the assumption of a “supramodal priority map or network”, the unimodal saliency 
computations from independent sensory systems (vision and touch) need to 
converge in advance to enable crossmodal prioritization, which (arguably) occurs 
during the stage of multisensory integration (Talsma & Woldorff, 2005). Providing 
evidence for the presence of coactivation in response rates, e.g., using the 
‘maximum negative dependency’ test (Colonius & Diederich, 2017), was essential 
to examine neural racers in the PCN component. Again, the ‘maximum negative 
dependency’ as well as the ‘race-model inequality’ (RMI) (Miller, 1982) measure 
violations of the independent racer assumption, yet, as stated before, the RMI is 
very conservative in that the absence of violations does not preclude the presence 
of coactivation (Liesefeld et al., 2017). Exactly this was observed for redundant 
signals. While no violations of the RMI were present, the ‘maximum negative 
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dependency’ test obtained several significant enhancements in SF, CSF, CR (and 
TR) but not in CS or CF. 

Reasonably, the approaches to measure those violations (have to) differ across 
behavior and PCN, yet they rely on the same assumption of independent racers. 
By considering the ‘independence’ of distinct feature activations (C, S, & F), the 
neural activity in PCN onsets for redundant signals should be either comparable 
(SF = S + F) or exceed (SF < S + F) their respective feature sums temporarily. 
Overall, the study on redundancy gains (Chapter 2) found a consistent pattern of 
(neural) race-model violations for crossmodal redundancies (except for CF) that is 
precisely the same as in the behavior (s. Figure 2–2, Figure 2–6, & Table 2–A2). 
Due to previous knowledge, the coactivation evidence can be associated with 
crossmodal links in the PPC within the timing of multisensory integration (e.g., 
Eimer & Driver, 2000; Macaluso et al., 2002a, 2002b; Talsma & Woldorff, 2005). 
Generally, the finding of preattentive coactivation reflects a decisive contribution 
to the (still) ongoing “locus of coactivation” debate (Feintuch & Cohen, 2002; 
Zehetleitner et al., 2009). Essentially, it favors the MWA by fulfilling one of its 
central claims: the assumption of combined (or co-active) loads across modality 
maps that precede the supramodal selective attention processes, culminating in 
the PCN dynamics. 

Although the presence of preattentive coactivations answers the third and 
last superordinate question (3) for the factor of object features, several aspects 
must be considered.  

Of course, more evidence from future studies is needed to corroborate the 
neural-race proposition. For example, it would be interesting to analyze the 
reason for the functional dissociation between shape-frequency (SF) and color-
frequency (CF), being either with or without coactivation. Based on the 
topographic maps (s. Figure 2–8), it might be the case that the structural distance 
between feature-coding areas matters. For example, color-coding in V1 of the 
primary visual cortex (Li, 2002) is more distant to the tactile-coding 
somatosensory cortex than shape-coding areas in V4 or IT of the parietal cortex 
(Goolsby et al., 2005). Therefore, the lack of coactivation evidence might derive 
from less (direct) connectivity between color and frequency areas, in contrast to 
shape and frequency. This assumption is consistent with previous studies (Wolber 
& Wascher, 2005), and the main results and topographic pattern showing most 
negative deflections of a shape PCN in parietal electrodes (e.g., P5/P6) and of a 
color PCN in parieto-occipital electrodes (e.g., PO7/PO8). Furthermore, the 
feedforward direction of the visual cortex likely explains the consistent PCN delay 
between ‘basic’ color and ‘more complex’ shape targets, i.e., PCN latency in color 
precedes those of shapes (∆ 25 ms). Examining the PCN projections with 
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structural information on the various visual and crossmodal feature activations 
would be interesting in a future study. 

Furthermore, the substantial predictive impact of the PCN parameters on 
behavior, as shown by linear mixed-effect models, explaining up to 25 percent of 
the variance (s. Table 2–A3), draws a sharp distinction between PCN onset and 
offset. Crucially, onsets were faster for crossmodal redundant embeddings (CF, 
SF, & CSF, or CR & TR), and offsets were faster for visual redundant embeddings 
(CS, CSF, or VR & TR). This outcome indicates two separate and distinct 
functional processes within the PCN component: modality-specific for visual 
information and supramodal for visuo-tactile information. The fact that two 
aspects support the PCN shows ‘early supramodal engagement’ during its onset 
timing.  

The first aspect is that the CCN component generally precedes the PCN and 
propagates toward parietal regions to co-register the somatotopic signals with 
external visual information. If no visual target is present, i.e., solely homogenous 
nontargets, visuo-tactile co-registration is not possible, leading to the purely 
tactile PCN. On the contrary, supramodal engagement occurs for visuo-tactile 
targets (e.g., SF & CSF). Here, the somatotopic tactile information aligns with the 
firing of relevant receptive fields due to the visual ‘pop-out’ feature contrast 
(promoted by location coherence) (cf. Macaluso et al., 2000). Second, this early 
supramodal engagement is again supported by the evidence from parietal 
crossmodal links (Man et al., 2015; Quinn et al., 2014) and coactivation in PCN 
onsets exceeding the linear superposition solutions.  

Another issue is the PCN deflection itself during the visuo-tactile detection 
task, which arguably was a bit low (< 1µV), especially in the three visual targets 
(C, S, CS). Although the large visual angle of the display size (around 40°) might 
play a role, it is more plausible that the included number of seven targets is the 
reason for that, as (visuo-tactile) attention resources (or weights) were likely 
distributed among them. This conclusion is similar to Grubert et al. (2016), who 
found a PCN attenuation for the included number of color targets: single (- 3µV), 
two (- 2µV), or three (-1.5 µV) colors, which became even lower during variable 
color blocks. Although the detection task was primarily bottom-up driven and in 
singleton search mode, i.e., finding the “odd-one-out”, the observed visual PCN 
amplitudes align with the expected decay of resources. This finding suggests that 
participants obtained implicit knowledge during the mixed-block design about the 
relevant and pseudo-random targets (Aguirre et al., 2011). It can also be that the 
amplification of crossmodal redundancies alters the firing modes of receptive 
fields, which adaptively reduces unimodal signal processing. 
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Finally, the relevant role of the PCN offset (for visual redundancies) gives 
some room for speculation. While the onset (and peak latency) indicate the waxing 
of selective attention processes, reflecting the outcome of preattentive 
computations, the offset might indicate the waning after attentional deployment, 
or the transition efficiency based on visual discrimination. This PCN concept 
relates to ‘feature-selection’ and ‘feature-inhibition’ processes (Treisman & Sato, 
1990). Initially, the PCN selects (or guides attention to) the most salient 
information (via up-weighting or prioritization); only then irrelevant display (or 
scene) aspects like nontargets or distractors are suppressed (via down-weighting 
or inhibition). Based on this reasoning, inhibition is (or must be) a consequence of 
selection, which is in line with the Pd findings of active suppression that occurs 
after PCN timing within 290–340 ms (Feldmann-Wüstefeld et al., 2021; Hickey 
et al., 2009; Hilimire et al., 2012; Sawaki & Luck, 2010; Wyble et al., 2015). Since 
no distractors were shown in this paradigm, those distinct dynamics in the PCN 
indicate the optimization of the signal-to-noise ratio (SNR), similar to a broad 
“spatial tuning function”. Again, providing empirical evidence for these 
speculative thoughts (e.g., by analyzing additional Gaussian properties such as 
the width – the temporal difference between onset and offset) would be exciting. 

The following study on spatial attention (Chapter 3) complements the results 
on crossmodal redundancy gains (Chapter 2) by adding an in-depth spatial 
decomposition for each of the seven targets. Given the fact that visual sensitivity 
decays from the fovea toward the periphery, which is known as the eccentricity 
effect (Carrasco & Frieder, 1997; Staugaard et al., 2016), mean reaction times can 
actually be decomposed into foveal and peripheral slopes via quadratic fitting 
across spatial locations. On the other side is somatosensory or tactile integration, 
which is most sensitive in the hands, the “fovea of touch” (Forster et al., 2016), 
and presumably flat (or constant) across fingers. Although vision and touch rely 
on two distinct spatial functions, external and somatotopic, respectively, based on 
evidence from crossmodal cue-target pairs (Föcker et al., 2010; Gray et al., 2009), 
an interaction of the spatial functions can be assumed. 

The initial behavioral analysis confirmed the quadratic and constant 
functions of vision and touch and their interaction within crossmodal targets (CF, 
SF, CSF). The spatial decomposition made redundancy gains for those crossmodal 
redundant targets much more explicit, revealing a genuine and persistent pattern 
between feature contrasts of color and shape. Whereas color discrimination was 
(as expected) optimal in the fovea (or central) slope, shape discrimination was 
substantially better in the peripheral slope. Fascinatingly, the visual redundant 
target (CS) adopted the optimal combination of both by combining the focal color 
slope and the peripheral shape slope yet remaining within these visual 
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boundaries. Also, the spatial function in the purely tactile target (F) was non-
quadratic and thus constant within each hand. Overall, the finding of two 
modality-specific spatial functions in vision and touch, quadratic and constant, 
answers another superordinate question (4). 

As described, intramodal (visual) redundancies remained within their 
(spatial) limits; on the contrary, crossmodal redundancies exceeded those same 
limits by amplifying the focal and bending the peripheral slope, causing 
redundancy gains with accelerated reaction times. Intriguingly, the same pattern 
of redundancy benefits due to focal color and peripheral shape was repeated in 
crossmodal targets. This intricate finding of self-similar feature mappings led to 
the proposition of a vector space (s. Figure 3–6). In this vector space, distinct 
features can be described as eigenvectors based on their spatial coordinates (focal 
and peripheral slope). This vector space is likely suitable to predict the physical 
limits of each (visual) feature, e.g., due to vector intersections. Also, this vector 
space might be feasible to detect and describe coactivation areas, that is, a specific 
spatial configuration or a (pre-defined) range of spatial slopes. Of course, this 
novel eigenvector proposition needs empirical validation from future studies. Yet 
its utility and impact for visual and crossmodal search may be considerable, which 
will be made more explicit with the following example. 

By calibrating the visual or crossmodal scene into a two-dimensional spatial 
representation similar to the priority map, which also considers the fixation 
center, feature activations can be localized based on their coordinates. According 
to the findings in Chapter 3, every feature activates a linear combination of 
spatial slopes (creating a vector), which, similar to Bayesian priors, can be 
estimated by a sufficient number of occurrences. Those vectors represent the 
unique identifier of each feature, e.g., a blue color or a left-tilted orientation, 
whose similarities or differences can be compared statistically. This “feature 
vector space” enables in-depth examination and accurate prediction of complex 
visual displays containing various feature sets, including discriminative states of 
coactivation and statistical facilitation. It allows comparison across samples and 
participants and thus promotes sparse sampling. Finally, it would be interesting 
to know whether these spatial priors are stable or dynamic, opening a new 
perspective on feature integration dynamics. 

Besides the convincing evidence in behavior, the findings in PCN and CCN 
were congruent. Here, PCN amplitudes in visual targets showed a quadratic 
decay toward the periphery; the CCN for tactile targets was constant. Overall, 
this finding has particular value as it recognizes the two modality-specific spatial 
functions of external and egocentric mapping during the timing of attentional 
selection. While the CCN accumulates information from the “fovea of touch” 
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across fingers, the PCN amplitude vividly represents the firing sum of relevant 
receptive fields, decreasing toward the periphery. Further, this outcome provides 
strong evidence for the presumed spatio-topographic processes that combine 
relevant object features with spatial locations (Chambers et al., 2004; Koch & 
Ullman, 1985; Treisman & Gelade, 1980; Wolfe, 1994). The finding of spatial 
functions in PCN and CCN answers the fifth question (5). 

Although the answer to the sixth research question is already half given: the 
self-similar pattern of crossmodal redundancy gains due to focal amplification and 
peripheral bending. However, the evidence from PCN and CCN still needs to be 
included. While the quadratic decay in PCN amplitudes was constant across all 
six visual targets (C, S, CS, CF, SF, & CSF), the PCN amplitudes were generally 
amplified for crossmodal targets (CF, SF, & CSF). This result reveals a decisive 
difference between behavior and the PCN, which showed no signs of peripheral 
bending within crossmodal targets. Therefore, the firing rates of receptive field 
clusters appear unaffected for crossmodal redundancies, suggesting that the 
PCN's peripheral slope reflects a modality-specific process based on external 
visual mapping. However, the amplification, adding a constant tactile term, 
reveals a supramodal effect in PCN amplitudes. This presumably preattentive 
effect is underscored by the evidence from coactivations and neural racers from 
Chapter 2. Of note, the coactivation between vision and touch (in SF and CSF) 
becomes visible in the significant quadratic slopes of SF and CSF in the CCN (s. 
Figure 3–5). Although it is a minor finding, some considerations can be made from 
it. Arguably, crossmodal binding occurs in the PPC and can be observed in PCN 
amplification. Yet, coactivation from active crossmodal links might be detectable 
in the CCN, similar to a feedback function. Based on this consideration, which 
again needs further empirical evaluation, another claim can be drawn from visual 
inspection of focal or central activations in CF and CSF: they seem to exceed the 
other locations, which suggests that coactivation in color can only be detected in 
focal regions but vanishes in peripheral locations.  

This claim also calls for a ‘spatial update’ of coactivation models, which has 
not yet been considered in too much depth (Colonius & Diederich, 2017; Miller, 
1982; Schwarz, 1989). Again, this race-model update relates to the previously 
introduced feature vectors. Based on the evidence in Chapter 3, intramodal 
redundancies remain within the spatial limits of their single features. Arguably, 
this finding should be generalizable across all visually redundant combinations. 
Further, it opens a new perspective on how to describe coactivations: If 
coactivation is simply the violation of the race-model inequality or the 
enhancement of the maximum negative dependency test without considering the 
spatial properties, it may not live up to its own standards.  
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Although no evidence for coactivation was found for the visually redundant 
color-shape target, it shows a precedent based on the observed limits in spatial 
slopes. To make this argument more apparent, both racers show different speeds: 
the color racer is faster in focal locations, the shape racer is faster in peripheral 
locations, thus, the color-shape target merely reflects the interaction of both 
racers, which adds up to significant redundancy gains. There is actually no extra 
resource or activation beyond those racers that go along with the definition of 
coactivation. Generally, the ‘interactive race model’ seems more suitable to 
explain the underlying pattern (Mordkoff & Yantis, 1991, 1993) as it does not 
imply extra coactive resources but merely the interaction between racers or 
targets and nontargets. In contrast to this study, Mordkoff and Yantis (1993) 
found race-model violations for redundant color-shape targets above the additive 
sum of single color and shape.  

It will be crucial for future studies to clarify coactivation and its spatial 
properties in visual search. Overall, there might be three possible explanations. 
First, coactivations occur between visual dimensions that clearly exceed their 
feature limits. Second, the ‘interactive racers’ might produce spurious violations 
of the race-model inequality in visually redundant targets due to increased 
internal noise (Otto & Mamassian, 2012). Third, the “coactivation process” itself 
might be more versatile. It can reflect co-activation as well as enhanced co-
inhibition of irrelevant nontargets. This assumption would align with the timing 
effects in the PCN that favor preattentive co-activation for crossmodal redundant 
targets in PCN onsets and co-inhibition in visual redundant targets during the 
(post-)selective stage in PCN offsets. 

The third study shifted the focus from the bottom-up factors of object features 
and spatial locations to intertrial effects or prior history (Awh et al., 2012; Found 
& Müller, 1996; Wolfe, 2021). Despite analyzing co-activation effects, the benefits 
and switch costs for various shift conditions were examined to evaluate another 
core assumption of the MWA that shifts between sensory modalities (e.g., vision 
→ touch) are more costly than between (intramodal) dimensions (e.g., color → 
shape). Overall, the behavioral pattern supports the MWA by showing 
significantly higher switch costs, i.e., prolonged reaction times for modality shifts 
compared to a visual dimension-shift. Additionally, there was also a (predicted) 
null finding as exact feature repetitions (e.g., red → red) and an intradimensional 
feature-shift (e.g., triangle → square) were comparable. This null finding aligns 
with DWA and MWA, which assume no switch costs for intradimensional changes 
(Found & Müller, 1996). Of course, this outcome of a switch cost hierarchy 
answers the next superordinate research question (7). 
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Interestingly, the extended behavioral analyses revealed modality-specific 
location-shift patterns. Although visual and tactile performances were generally 
better for the right hand and visual hemifield (in line with previous studies by 
Spence, Shore, et al., 2001; Whitehead, 1991), the location-shift preferences 
differed for visual and tactile targets. Whereas visual target localization became 
faster for location changes (e.g., right → left) across all four visual conditions (VR, 
VF, VD, & VM), tactile target localization was improved for hand repetitions (e.g., 
right → right). However, the fact that a modality-shift for visual and tactile 
targets favored location changes (over repetitions) highlights a functional 
difference in spatial orienting in vision and touch. Arguably, visual search 
operates with the “inhibition-of-return” mechanism, suppressing (or down-
weighting) the activity of the current location and promoting (up-weighting) the 
opposite (or unknown) location (Klein, 2000; Posner et al., 1985; Taylor & Klein, 
2000). However, tactile targets seem to enhance the sensitivity of (or up-weight) 
the current hand, while a hand shift needs to relocate these attentional resources. 
Finally, the evidence that location changes are always faster regardless of the 
preceding targets indicates a (persisting) visual bias or dominance for spatial 
decoding (Posner et al., 1976; Spence, Nicholls, et al., 2001). 

Furthermore, a modality-shift, i.e., a shifting of attentional resources across 
sensory modalities, had the most prolonged “neural trace”, which remained 
traceable for three successive trials. Generally, it would be interesting to model a 
neural decay function, e.g., via exponential fitting, to investigate the temporal 
dynamics of residual activations (e.g., Zylberberg et al., 2009). For example, it 
would be interesting to study whether those “decay functions” reflect a stable, 
functional marker or are rather dynamic over the experiment time course, within 
and across participants. The absence of PCN and CCN results indicates a 
limitation. Therefore, the ninth research question (9) is only partially answered. 
However, it will be necessary to replicate those findings of “location-shift 
patterns” and “neural decay functions” in future studies. Investigating 
crossmodal switch costs by their spatio-temporal dynamics as a temporal 
derivative (n–1 vs. n) would be fascinating. An intuition of such an approach can 
be seen in the delta topomaps in Figures 4–6, 4–7, & 4–8. This approach shows 
attentional resources as a time-dependent variable distributed across modalities 
(or features). Again, those time-regressive dynamics can be made available via 
enhanced jackknife procedures. Finally, this time-dependent approach is not 
limited to the PCN or CCN but applies to all other perceptual and preattentive 
components, e.g., the anterior N1 (Töllner et al., 2009). 

Besides the response evidence that favors the MWA due to a hierarchy of 
switch costs, a congruent pattern was observed in PCN and CCN components by 
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showing substantial amplitude decreases during a modality-shift. Overall, this 
outcome reflects evidence for a supramodal mechanism of shared attentional 
resources already active within the preattentive stage – promoting an MWA. 
Whenever a “pop-out” target occurs, e.g., a red circle, it attracts attention, i.e., 
establishing a “strong” or prioritized connection between feature activations and 
the priority map. In case of a feature repetition (another red circle), this link is 
still (or already) active, and thus processing takes less time. On the contrary, a 
shift between (visual) dimensions or sensory modalities needs to (re-)establish a 
direct link. Since our attentional resources are limited, it requires to free these 
occupied resources from previous events (or connections). This common and 
supramodal mechanism, which becomes most apparent for a modality-shift, can 
be seen as strong evidence favoring the MWA as it implies the attentional 
orienting of a supramodal priority map. Also, it answers the eighth research from 
the General Introduction. 

Furthermore, the PCN also revealed a modality-specific effect by showing a 
consistent delay in their PCN latency estimate, i.e., the average from the onset, 
latency, and offset for shifts between dimensions and modalities. The fact that 
both changes were the same in the PCN delay refers to a common delay 
mechanism, which would be interesting to study in greater detail. Again, no 
temporal differences were found in the CCN, similar to the previous studies. The 
absence of CCN timing effects indicates two things. First, the CCN might not be 
susceptible to temporal differences across finger locations, i.e., the “fovea of touch” 
(Forster et al., 2016). Second, by only including vibro-tactile frequencies, these 
studies may be limited to retrieving the whole functional picture of the CCN. It 
will be necessary for future studies to include various targets across tactile 
dimensions (e.g., pressure, frequency, or distinct patterns) to obtain a complete 
picture of tactile attention. 

All three studies supported the MWA as the underlying preattentive 
architecture. They revealed several supramodal mechanisms that promote the 
existence of an attentional priority map across sensory modalities. First, PCN 
onsets and amplitudes are accelerated and amplified for crossmodal redundant 
targets, exceeding the intramodal limits of vision, which goes along with 
coactivations during multisensory integration. Second, switching between 
sensory modalities consistently decreases the PCN and CCN amplitudes, 
indicating that attentional resources are shared across vision and touch. While 
the CCN reflected a stable somatosensory component, the PCN modulated 
sensitively to crossmodal interactions and interferences, which is in line with 
previous evidence on crossmodal links in the PPC (Chambers et al., 2007; 
Macaluso et al., 2002b; Man et al., 2015; Quinn et al., 2014). 
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In summary, the main findings in performances and neural dynamics of PCN 
and CCN components strongly support “modality-weighting” as the underlying 
preattentive architecture in crossmodal search, thus extending the visual 
“dimension-weighting” by introducing another intermediate layer of modality 
maps. Essentially, crossmodal attention combines and connects their resources 
during attentional orienting, revealing exceeding redundancy benefits and 
intersensory switch costs. Although the main research questions of this thesis are 
answered with this, some additional considerations are made in the following 
sections. 

A Supramodal Priority Network 

As described in the General Introduction, the quest to find the priority map 
of visual (or crossmodal) spatio-topographic computations in saliency and 
relevance initiated an ongoing debate. While some favor early visual areas, such 
as V1 or the superior colliculi (SC) (Koch & Ullman, 1985; Koene & Zhaoping, 
2007; Li, 2002; Meredith & Stein, 1986; Shim et al., 2013), others promote saliency 
summation during a later stage (e.g., V4, MT) and beyond the visual striate cortex 
in the PPC (Chambers et al., 2004; Fecteau & Munoz, 2006; Koch & Ullman, 1985; 
Somers & Sheremata, 2013). However, the search for a single map is limited. 
Based on the evidence of Chambers, Payne, Stokes et al. (2004), spatio-
topographic saliency computation derives through a fast and a slow pathway, 
activating the spatial reference frame and subsequently providing the specific 
feature content during the timing of attentional selection (210–240 ms), 
respectively.  

Interestingly, this explanation is in line with evidence from firing rates in 
receptive fields (Chelazzi et al., 1993, 1998) that show an initial firing of all 
receptive fields during the early P1 time window (90–120 ms), i.e., initiation of 
the spatial frame, while only a subset of relevant receptive fields continue firing 
until the PCN timing of attentional selection (around 250 ms) (Luck et al., 1997). 
The continuation of firing within a subset of receptive fields reflects the (hidden) 
dynamic weighting processes to prioritize specific feature activations based on 
their bottom-up saliency or top-down relevance (e.g., matching a target template). 
Essentially, the deployment of selective attention that provides a central 
representation for higher cognitions can only occur by establishing a strong and 
coherent linkage between those relevant network hubs, similar to optimizing the 
signal-to-noise ratio (SNR). 

The proposition of a “priority network” instead of a “priority map” seems more 
plausible as it is embedded into the fronto-parietal attention network that 
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combines distinct hubs (e.g., FEF, PPC, IPS, or TPJ) to enable attentional 
orienting (Corbetta & Shulman, 2002; Posner & Dehaene, 1994). Therefore, 
attentional selection describes a “coherent state of deployed resources across 
network hubs”. Although the PCN seems suitable for depicting the supramodal 
priority computations from visual and tactile activations, arguably, it ‘only’ 
accounts for the parietal activations. For example, it combines crossmodal 
amplification and coactivation while maintaining the external visual quadratic 
mapping in receptive fields. The tactile somatotopic mapping might be included 
in the PCN amplification, yet the peripheral slopes in CCN seem to modulate 
sensitively for coactive, i.e., revealing significant quadratic slopes. This finding 
suggests reciprocal connections between parietal and central regions, which need 
to be considered in greater detail in future studies. Furthermore, the impact of 
top-down control from presumably frontal areas is not fully resolved yet. Although 
top-down control enhances the PCN dynamics (Eimer & Kiss, 2010; Grubert et 
al., 2011), evidence from attentional orienting to crossmodal templates is still 
missing. A “priority network” combines multiple components across fronto-
parietal regions, and the PCN is one of them. Other components might be the 
CCN or the anterior N1. 

 To extend the scope of the “attention priority network”, preliminary findings 
from the attentional templates study (short presentation at the TeaP in Ulm, 
2021) showed that the PCN delay in a constant target template (square target) 
could be entirely attributed to the template difference of the preceding trial, being 
intradimensional (triangle target), intramodal (color target), or crossmodal 
(frequency target), respectively. This (preliminary) outcome indicates that the 
PCN is indeed sensitive to the prior history (see also Chapter 4). At the same time, 
the PCN activity of target templates (square target) is independent of their 
contextual embeddings. However, since performances revealed a contextual 
dependence of target template combinations (e.g., square vs. frequency target), 
the PCN evidence might not explain the behavior pattern thoroughly. Other 
factors need to be considered, e.g., frontal activity. 

Another preliminary finding supports the relevant role of brain oscillations 
for sustained attention (Poster presentation at the SAMBA Salzburg 2021). Here, 
it was shown that performance fluctuations over the experimental time course 
(being either “in-the-zone” or “out-of-the-zone”) (Esterman et al., 2013; Rosenberg 
et al., 2015) are correlated to the intertrial-coherence (ITC) of the frontal and 
parietal theta and alpha oscillations and also the PCN amplitude, becoming 
increased and more negative, respectively during good “in-the-zone” 
performances. This preliminary outcome contributes to other studies that propose 
a genuine role of brain oscillations within the attention network (Fiebelkorn et 
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al., 2018; Helfrich et al., 2018; Michel et al., 2021; Sauseng et al., 2007). It will be 
essential in future studies to examine the (correlative) links between the PCN and 
theta and alpha oscillations.  

Overall, the “supramodal priority network” reflects the adjusted weighting 
(SNR optimization) of relevant brain areas, which derives from “communication 
through coherence” that includes a hierarchy of feedforward and feedback 
connections (Bastos, Litvak, et al., 2015; Bastos, Vezoli, et al., 2015; Fries, 2005), 
which in the case of crossmodal search can be described by the MWA. Further, it 
can be stated that the graphical structure of the MWA architecture and the 
“supramodal priority network” are identical: attentional resources are deployed 
(and distributed) across branches. Therefore, the amount of attentional resources 
is extended by each network (children) node (e.g., dimension or modality map) yet 
limited by the capacity of the superior (parent) node. Finally, the “supramodal 
priority network” combines the attentional resources from vision and touch, which 
fastens their parallel (co-)activation but delays intersensory switching due to the 
more costly serial allocation of resources during attention shifts. 

A Computational Model of Attention 

To understand crossmodal selective attention sufficiently, it must integrate 
the empirical evidence into a computational model of attention (CMA). As already 
stated in the first chapter, the five-factor model reflects the skeleton of such a 
CMA, as it depicts the feedforward (object features, spatial locations) and 
feedback (attentional templates) directions of a “priority network”, as well as 
time-regressive fluctuations of the prior history (intertrial effects) and sustained 
attention. Similar to previous studies, a CMA entails distinct processing levels or 
stages, e.g., a sequence of perceptual, preattentive, post-selective, and response 
levels (McClelland, 1979; Miller, 1982; Wolfe, 1994). By considering a closed-loop 
system (deBettencourt et al., 2015) within the stimulus-to-response interval, 
performances are essentially the product of the preceding dynamics within those 
levels (similar to a neural network). 

The contribution of this thesis for such a CMA is the in-depth analysis of the 
PCN and CCN components as neural markers for visual and tactile spatial 
attention. Overall, it has been shown that the PCN is a good performance 
predictor by explaining up to 25 % of reaction time’s variance (s. Chapter 2). 
However, a detailed look into the PCN becomes more complex, revealing distinct 
temporal stages for crossmodal and visual selection. Also, the PCN model is 
limited as it does not include the purely tactile target (which likely also applies to 
auditory targets). Again, the PCN is sensitive to crossmodal information, but only 
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in combination with visual information. Indeed, other components or brain 
oscillations need to be included to complete a CMA, such as the N1(VEP, SEP, 
AEP), theta & alpha oscillations, the PD, CDA, or sLRP (Fiebelkorn et al., 2018; 
Hickey et al., 2009; Luria et al., 2016; Miller et al., 1998). 

Although plenty of empirical evidence exists for each component, attention 
research needs an integrative CMA that combines them. Crucially, a 
parameterized CMA would estimate the influence of each attention factor (e.g., 
bottom-up saliency or switch costs) on each target to obtain a set of ‘priors’, e.g., 
based on their distinct effect sizes. These ‘priors’ are linked to spatio-temporal 
patterns, e.g., PCN onset or N1 amplitude, which must be carefully selected. A 
CMA can be described by a hierarchy of activation functions for each level. Like 
the cascade model of McClelland (1979), activation is projected from level to level 
until response timing, i.e., the end of the closed-loop system. Arguably, the choice 
of parameters and the time-dependent integration falls into the field of dynamic 
systems, combining stable and unstable moments or convergent and divergent 
neural states. 

Challenges of Attention Research 

Even though attention research spans more than a century, its challenges 
have not become any less, quite the opposite. From “every one knows what 
attention is” (James, 1890) to “no one knows what attention is” (Hommel et al., 
2019), we are somewhere on the center line. Of course, an incredible corpus of 
scientific insights or a pile of evidence over many decades is available, but it is 
hard to get an overview. Overall, the thesis extended the theory on crossmodal 
attention by providing evidence for “modality-weighting” and preattentive 
coactivations and proposing a “supramodal priority network”. Closing the 
scientific gap(s) between visual and crossmodal search with the MWA concept 
establishes a bridge between these (decade-long) separated research paradigms. 
Yet, it also raised many follow-up questions. 

Generally, attention research reflects one topic out of many in experimental 
psychology. Of course, it has to evolve to keep its relevant role and expertise 
within cognitive research. Within the next years, attention research has to 
overcome several challenges. First, the issue of “setup limitations” (especially in 
crossmodal search) must be resolved by taking advantage of modern applications 
(e.g., augmented or virtual reality) (Climent et al., 2021; Drigas et al., 2022; 
Mitsea et al., 2022) and the developments in co-registration (Himmelstoss et al., 
2020; Nikolaev et al., 2016; Nunez & Silberstein, 2000) that make natural settings 
more feasible (Coco et al., 2020; Leszczynski & Schroeder, 2019; Võ & Wolfe, 



196 General Discussion 

2015). Second, the “methodological scope” of data processing and analysis must 
be expanded, linked, and standardized. For example, more and more efforts are 
being made to provide common preprocessing pipelines in various neuroimaging 
techniques, such as EEG or fMRI (Bigdely-Shamlo et al., 2015; Esteban et al., 
2019). Of course, machine learning will play a crucial role in the future of 
attention research (Lindsay, 2020). Here, it will be essential that knowledge does 
not become implicit but remains explicit (blackbox vs. science). Third, attention 
“paradigms” need to evolve by taking complexity into account. For example, the 
aspect of stimulus heterogeneity in targets, distractors, and nontargets across 
visual dimensions and feature activations has not been fully considered. It would 
be interesting to obtain complete saliency solutions (or estimates) for the whole 
color or orientation spectrum in its many combinations. Similar to sensory 
uncertainty, those saliency solutions can be utilized to predict attention processes 
(van Bergen et al., 2015). 

Again, attention must remain within the scientific focus to not become a 
‘transient phenomenon’ itself. The following section briefly introduces a new 
paradigm that summarizes the results and challenges presented. 

Dynamic Search 

Based on the assumption that attention reflects a unique cognitive resource 
and a transient phenomenon that links (multisensory) perception, cognitions, and 
actions via filtering, the focus goes inevitably to its third attribute – attention is 
“dynamic”. This section proposes a ‘new’ paradigm of “dynamic search”. As shown 
in the preceding sections, attention research must evolve to address the open 
issues and new challenges. Dynamic search combines visual and crossmodal 
search evidence, assuming an MWA. As shown by the evidence of this thesis, 
selective attention derives from dynamic weighting (or prioritization) processes 
during the preattentive stage. 

So far, the evidence is based on findings in detection and localization tasks, 
which involve a low level of complexity, as simply detecting a “pop-out singleton” 
is sufficient to respond to its presence or location. Hence, examining additional 
task designs in the same visuo-tactile paradigm would be valuable. The 
implementation of an identification task should provide further insides. Whereas 
detection and localization tasks show implicit knowledge (“that and “where” 
response) of the “odd-one-out”, identification requires explicit feature knowledge 
(“what” response) (Found & Müller, 1996; Nothdurft, 1992; Sagi & Julesz, 1985). 
For example, a crossmodal identification task would look like this: Participants 
are instructed to focus on one or multiple pop-out targets within a specific 
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modality, either vision (e.g., a blue square or fuchsia circle among blue circles) or 
touch (fast or slow vibrating frequencies among a baseline frequency). Each trial 
has one pop-out target (e.g., blue square) that guides attention. Next, participants 
identify the feature of the other modality (high vs. low frequency) and give their 
response (left or right pedal press). This procedure can be done blockwise or 
mixed. Essentially, this task tests crossmodal identification processes: the 
switching from one modality (selection) to another (identification). 

Furthermore, the “stimulus-onset asynchrony” (SOA) reflects an interesting 
temporal factor, which examines the optimal alignment between sensory 
modalities. Crucially, SOA paradigms can be linked to working memory and 
retrospective judgments. Here, participants are presented with a tactile display 
(e.g., left hand: high vibration & right hand: low vibration), followed by a visual 
display (with a distinct SOA, e.g., 200 ms), including a pop-out singleton, which 
participants have to localize and then respond to the preceding tactile target (high 
vs. low response), which has kept in working memory as a template.  

Overall, both tasks try to gain further insights into the underlying flexibility 
of attentional orienting to multisensory events. Whereas identification activates 
complete branches of the supramodal priority network at the feature level, the 
SOA conditions should reveal a distinct timeline of crossmodal integration. 

Besides these canonical paradigms, “dynamic search” is also suited to predict 
selective attention spatially. By combining visual or crossmodal displays with a 
fast sequence of pop-out singletons and EEG recordings, including some response-
relevant oddball targets, it should be possible to track covert attention shifts and 
to obtain a functional map of attentional orienting, e.g., via PCN or brain 
oscillations. For example, in a visual display with free-moving stimuli, 
participants are instructed to (covertly) follow a moving target. This free-moving 
target can be combined with moving (heterogenous) nontargets or distractors with 
varying distances. Furthermore, targets can dynamically evolve from a simple 
feature-contrast into complex objects, e.g., a color target can transform into a 
shape target (e.g., via interpolation). Again, this gradual change can be measured 
by the neural dynamics of preattentive and attentive modes. Finally, the 
proposition of an eigenvector space for distinct features (dimensions and 
modalities), which still must be empirically substantiated, can be regarded as a 
requirement that enables complex dynamic search. This “live-tracking” of 
selective attention should enable individual “attentional calibration” within the 
whole attention network (feedforward and feedback connections) and allow for 
attention-related learning effects, e.g., in neurofeedback. Overall, this brief and 
speculative introduction of “dynamic search” that measures the spatiotemporal 
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flow of neural processes is similar to recent efforts in visual search (Boettcher et 
al., 2022). 

Generally, the future of attention research looks promising and exciting at 
the same time. Of course, many major challenges await, but that has always been 
the case. Although it will be crucial to verify the “supramodal priority network” 
for crossmodal selective attention, the versatility of “dynamic search” enables to 
integrate the many insights into a coherent computational model of attention. By 
actively using the many interfaces to other developing fields (e.g., consciousness, 
neurofeedback, or virtual reality), attention research remains state-of-the-art and 
assert its relevance. The evidence on preattentive “modality-weighting” may have 
contributed to this.  
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