
Klaus Hornberger

Spectral Properties
of Magnetic Edge States



This thesis is available in electronic form at the Universitätsbibliothek
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Zusammenfassung

Wir untersuchen die spektralen Eigenschaften magnetischer Randzustände, wel-
che in den inneren und äußeren Quantenspektren magnetischer Billards auf-
treten. Zur Berechnung der Spektren erweitern wir die Randintegral-Methode
auf den magnetischen Fall und allgemeine Randbedingungen. Nach der Re-
gularisierung (hyper-)singulärer Integraloperatoren gelingt es erstmals, magne-
tische Billards bis in den extrem semiklassischen Bereich exakt zu quantisie-
ren. Das Verständnis für die Ursache zunächst auftretender unphysikalischer
Lösungen ermöglicht zudem die Herleitung der semiklassischen Spurformel aus
den Grundgleichungen der Quantenmechanik. Um die Randzustände quantitativ
zu charakterisieren, führen wir ein spektrales Maß ein. Diese Randzustandsdi-
che ermöglicht es, innere und äußere Spektren statistisch auzuwerten und semi-
klassisch zu beschreiben. Wir finden starke, nichttriviale Kreuz-Korrelationen
zwischen den Quantenspektren des inneren und äußeren Problems. Ihnen liegt
eine Dualität der beiden klassischen Dynamiken zugrunde. Umfangreiche nume-
rische Studien belegen die aufgezeigten Zusammenhänge.

Abstract

We study the spectral properties of magnetic edge states, which exist in the in-
terior and exterior spectra of magnetic quantum billiards. To quantize the bil-
liards, the boundary integral method is extended to the magnetic problem and
to general boundary conditions. By virtue of an analytical regularization of the
(hyper-)singular integral operators, we obtain for the first time precise quantum
spectra even in the extreme semiclassical regime. The insight gained into the
structure of the spectral determinant enables us to derive the semiclassical trace
formula for magnetic billiards from first principles. We propose a spectral mea-
sure, which quantifies the intuitive notion of edge states. This density of edge
states allows to analyse the interior and exterior spectra statistically, and to de-
scribe them semiclassically. We find strong, non-trivial cross-correlations be-
tween the interior and exterior spectra. These correlations are based on a duality
of the corresponding classical dynamics. Our analytical results are confirmed by
extensive numerical studies.
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Chapter 1

Introduction

1.1 Framework

The field of quantum chaos tries to relate the properties of complex quantum systems to
the corresponding classical motion. Its paradigm is the periodic orbit theory developed
by Gutzwiller [1], Berry & Tabor [2] and many others. According to this theory, the
expectation values of a quantum system are determined asymptotically by the set of
classical periodic trajectories. In a common effort, nuclear, atomic, and mesoscopic
physicists, as well as researchers engaged in spectral and asymptotic theory, are trying
to reconcile this with other findings, such as the universality of spectral statistics, and
to apply it to specific systems. For a number of books and reviews on the general
subject of quantum chaos and its history, see Refs [3–10].

Looking for a model system which displays most of the generic properties of bound
Hamiltonian dynamics, one is led to the billiard problem. Here, a point particle moves
frictionless in a two-dimensional domain fenced off by a boundary. Impinging on the
latter, the classical particle is reflected specularly, while the quantum wave function
must satisfy a boundary condition. The classical phase space is determined by the
shape of the billiard boundary, and classes of billiards are known, which generate all
types of dynamics, from integrable to completely chaotic [11]. Since it is relatively
easy to obtain the corresponding quantum spectra, many discoveries in the field of
quantum chaos, like the universality of chaotic spectra [12], the scarring of wave func-
tions by unstable periodic orbits [13, 14], and the existence of action correlations [15]
were first made in quantum billiards.

The quantum implications of chaotic scattering, on the other hand, may be studied
by considering the billiard boundary as a scattering obstacle for an outside particle. An
intimate relation between the scattering problem and the interior quantization exists
[16], which can be understood semiclassically, and was discovered on semiclassical
grounds [17].

1



2 Chapter 1. Introduction

Although most experiments on quantum billiards are done numerically, they may
be physically realized in the two-dimensional electron gas of high-mobility semicon-
ductor heterostructures [18]. Typically, a perpendicular, homogeneous magnetic field
is applied in addition, which is the experimentally easiest way to modify the billiard.

Magnetic billiards

The presence of a Lorentz force affects the classical, two-dimensional billiard dynam-
ics. For sufficiently strong fields, closed cyclotron orbits occur, while other trajectories
perform a skipping motion along the billiard boundary. Moreover, the exterior dynam-
ics (where the billiard boundary acts as an obstacle from outside) is not a scattering
problem as in the field free case but exhibits bounded skipping motion around the
billiard.

The magnetic quantum spectra and wave functions reflect these classical proper-
ties. For strong fields, a separation takes place in the spectrum. Close to the energies
of the Landau levels one finds bulk states which correspond to a free cyclotron motion
of the particle. In addition, edge states appear which are localized at the boundary,
corresponding to a skipping motion along it. Unlike the field free case, the spectrum
is purely discrete also in the exterior, with accumulation points at the energies of the
Landau levels.

1.2 Formulation of the problem and overview of the results

The guiding theme of this thesis is the question whether the interior and exterior quan-
tum spectra of magnetic billiards are related. Is it possible to infer the statistical prop-
erties of one spectrum from the other? Having a pair of interior and exterior spectra
at hand, can one tell whether they belong to the same billiard? In principle, these are
issues of spectral theory – similar in spirit to Kac’s question whether one can “hear the
shape of a drum” [19] – but considerably more difficult with the magnetic field present.
Our objective is to shed light upon these questions, using insights and techniques from
quantum chaos.

The central observation to be made is that there exists a duality of the correspond-
ing interior and exterior classical motion. For any interior periodic orbit one finds, in
general, an intimately related periodic orbit of the exterior problem, and vice versa.
(Strictly, this does not hold always, but under rather general conditions.) Since the
set of periodic orbits determines the quantum spectrum asymptotically (by virtue of
the trace formulae) one may expect that their correlation carries over to the quantum
problem.

Indeed, we shall uncover strong, non-trivial cross-correlations between the quan-
tum spectra of interior and exterior magnetic billiards. We will give evidence that they
are the quantum fingerprints of the classical duality. The correlations are “non-trivial”
in the sense that they are not observed by standard means. Rather, the spectra must be
viewed in an appropriate way since it is specifically the edge states which are related.

Although the partition of the spectrum into edge states and bulk states is intuitively
clear, we are not aware of an objective general criterion in the literature to distinguish
edge from bulk. In particular, a strict separation of the spectrum into two types exists
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only in the extreme semiclassical limit. For finite
�

a gradual transition takes place
between the two extremes. As a prerequisite, we therefore propose a spectral measure
for edge states which provides a quantitative criterion and accounts for the existence
of transitional states. We will argue that our definition is a very natural one. It renders
the mean density of edge states equal for the interior and the exterior problems –
and proportional to the circumference of the billiard. Moreover, this measure has a
clear semiclassical interpretation in terms of the skipping trajectories. It facilitates the
statistical and semiclassical analysis of magnetic spectra.

Large sets of exact quantum eigenvalues are needed in order to perform spectral
statistics, with energies reaching far into the semiclassical regime. This is a non-
trivial computational problem. To our knowledge, the exterior problem was never
addressed, and the published spectra of the interior one are limited to the first few
hundred eigenvalues [20–25]. Below, a method is developed which allows, for the first
time, the calculation of spectra and wave functions in the interior and in the exterior
of magnetic billiards, in particular at strong field strengths, and for high energies.

1.3 Structure of the thesis

In the next two chapters, we give a survey of the classical and quantum motion in
the free magnetic plane and in magnetic billiards, respectively. Although many of the
statements in Chapter 2 are elementary, we shall present them in some detail. This
allows the discussion of concepts, such as the scaling properties or the semiclassical
approximation, which we refer to frequently in the remainder of the thesis. In the
first part of Chapter 3, the classical interior-exterior duality is explained. Turning
to the quantum problem, we introduce general boundary conditions and discuss the
asymptotic properties of magnetic spectra. The introductory chapters conclude with
the definition of a scaled edge magnetization.

In Chapter 4, we solve the quantization problem in the interior and exterior of ar-
bitrary magnetic billiards by means of a boundary integral method. We explain why
spurious solutions arise initially, and how they can be systematically avoided. The
performance of the method is demonstrated in Chapter 5. Apart from wave functions
in the extreme semiclassical regime, spectral statistics are presented, as far as possible
with the standard spectral density.

Chapter 6 is devoted to the derivation of the semiclassical trace formula for hyperbolic
and integrable magnetic billiards. We use a surface-of-section method starting from
the boundary integral operators. Since the derivation is given for the first time, it
will be presented in some detail, with particular consideration for the inherently non-
symmetric properties of the map operators. The integrable disk billiard is quantized
for a second time in Chapter 7 making use of its separability. In combination with the
result of Chapter 6, this allows the trace formula to be extended to general boundary
conditions.

The spectral density of edge states is introduced in Chapter 8. It gives the concept of
edge states a quantitative meaning and is appropriate, both in the deep quantum and in
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the semiclassical regime. The new measure allows spectral analysis to be performed
also in the exterior. The consistency with random matrix theory is checked in Chapter
9, and the quantum edge state density is compared to the result of the trace formula.

In Chapter 10 we finally identify non-trivial cross-correlations between interior and
exterior edge spectra. We show that they are based on a classical duality of the periodic
orbits. In order to observe them, the spectral density of edge states, or an equivalent
measure like the edge magnetization, is of crucial importance.



Chapter 2

Motion in the free magnetic plane

We start by collecting a number of elementary statements on the classical and quantum
motion in the magnetic plane. It allows to introduce the notation used throughout this
thesis, and to set the stage for the discussion in the following chapters. The treatment of
the quantum time evolution operator in Section 2.4, in particular, yields the opportunity
to discuss the semiclassical approximation. In Section 2.5, the Green function of a
particle in the free magnetic plane is derived, in both, its semiclassical and its exact
form.

2.1 Classical motion

We consider the motion of a non-relativistic, spinless, charged particle in the two-
dimensional Euclidean plane,1 which is subject to a magnetic field. Its Lagrangian has
the form [26]

L =
m◦
2

v2 + q vA(r) , (2.1)

where m◦ and q denote mass and charge, respectively.∗ The vectors r = (x, y)T

and v = ṙ give the position and velocity of the particle. Both of them determine the
canonical momentum

p =
∂L
∂v

= m◦v + qA(r) . (2.2)

The classical time evolution is given by the Lagrangian equation of motion

ṗ = q∇(vA(r)) . (2.3)

Here, the magnetic field is decribed by the two-dimensional vector potential A(r).
The latter must be time independent, ∂tA = 0, to avoid electric forces. It follows

∗SI units are used until the introduction of scaled, dimensionless variables in Sect. 2.3.
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6 Chapter 2. Motion in the free magnetic plane

from (2.3) that the equation of motion for the velocity v depends only on the rotation
B =∇×A of the vector potential. It is Newton’s equation of motion

m◦ r̈ = qB∇(r× v) (2.4)

with the (magnetic) Lorentz force on the right side. The latter acts perpendicularly to
the velocity and is proportional to the magnetic field B (the magnetic induction).

Throughout this thesis we are interested in the case of a homogeneous magnetic
field B (with q B > 0). Equation (2.4) is then easily integrated, yielding the cyclotron
motion

r(t) = r(0) +
1

ωc

(
sin(ωct) 1− cos(ωct)

−1 + cos(ωct) sin(ωct)

)
v(0) (2.5)

= r(0)− ρ(0) + ρ(t) (2.5a)

with r(0) and v(0) the initial position and velocity, respectively, and ωc=qB/m◦ the
cyclotron frequency. The particle moves clockwise on a circle with constant angular
velocity ωc. Below, we will need the velocity as a function of the initial and the final
position, r(0) and r(t). Apart from the times which are multiples of the cyclotron
period 2π/ωc, it is given by

v(t) =
1
2ωc

sin(1
2ωct)

(
cos(1

2ωct) sin(1
2ωct)

− sin(1
2ωct) cos(1

2ωct)

)
(r(t)− r(0)) , (2.6)

which follows from equation (2.5). In its second line, (2.5a), the motion is stated in
terms of the radius vector,

ρ(t) :=
1

ωc

(−vy(t)
vx(t)

)
, (2.7)

which points from the (instantaneous) center of motion to the particle position. Ob-
viously, the center c(t) = r(t)− ρ(t) is a constant of the motion. To verify this in a
more formal way, one may consider the classical Hamiltonian

H = pṙ− L =
1

2m◦
(p− qA(r))2 (2.8)

as a function of the canonically conjugate variables r and p. Here, (2.2) was used to
express the velocity in terms of momentum and position. A short calculation shows
that the Poisson bracket vanishes indeed,

d

dt
(r− ρ) ≡ d

dt
c = {H, c} = 0 . (2.9)

Similarly, the energy E := H(r,p) = m◦
2 v2 is constant (as well as the cyclotron

radius |ρ| and the kinetic angular momentum with respect to the center of motion,
ρ × v, which are functions thereof.) In contrast, the canonical momentum p itself
is not a constant of the motion. It does not even have a kinetic meaning, in general,
since it depends on the vector potential, cf. (2.2), which is not uniquely specified by
the magnetic field. Rather, the gradient of any scalar field χ(r) (ie, any “gauge field”)
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may be added to the vector potential without affecting the classical equation of motion
(2.4),

∇× (A(r) +∇χ(r)) =∇×A(r) = B . (2.10)

An important consequence is met in the quantum description, where the canonical mo-
mentum variable turns into a fundamental operator, leaving a mark of the choice of the
vector potential on the quantum evolution. Nonetheless, according to the correspon-
dence principle, every observable will have to be independent of the chosen gauge.

Before turning to the quantization problem, we note that the general vector poten-
tial for homogenous magnetic fields may be written in the form

A(r) =
B

2

(−y
x

)
+∇χ(r) . (2.11)

The choice of χ is a matter of convenience. An important case is the symmetric gauge,
χ = 0, which distinguishes merely a point in the plane (the origin). Choosing χ =
−B2 xy, on the other hand, yields the Landau gauge, which distinguishes a direction
(the orientation of the y-axis). These two gauges are particularly important because
they turn components of the canonical momentum into constants of the motion. In the
Landau case, px is given by the (constant) y-component of the center of motion,

A = ALan ≡ B
(−y

0

)
⇒ px = −m◦ωc cy , (2.12)

while the symmetric gauge fixes the (canonical) angular momentum with respect to
the origin, L = r× p,

A = Asym ≡
B

2

(−y
x

)
⇒ L := r× p =

m◦ωc

2

(
|c|2 − |ρ|2

)
. (2.13)

It is determined by the distance |c| of the center of motion from the origin, and the
cyclotron radius ρ = |ρ|.

In the course of this work, it will be important at several points to state equations
in a manifestly gauge invariant fashion. This is done by keeping χ unspecified, and
verifying that the resulting expressions do not depend on its choice. As the only re-
striction, χ will be assumed to be a harmonic function, ie ∇2χ = 0, throughout.
This rules out conveniently the occurrence of singularities in χ, but keeps the essential
gauge freedom. Moreover, it ensures that the vector potential (2.11) is divergence free,
∇A = 0, which facilitates a number of mathematical transformations.

Turning to the quantum mechanical description, the quantum time evolution will be
treated in terms of the path integral formulation in Section 2.4. Before that, we discuss
the stationary solutions of the Schrödinger equation (in a specific gauge, to prove the
rule stated above). This allows to discuss the spectrum and the scaling properties of
the Hamiltonian straightforwardly.

2.2 Quantization

In quantum mechanics, the canonical variables r and p become observables, expressed
as operators in the Hilbert space of square-integrable functionsL2( � 2). They turn the
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Hamiltonian (2.8) into an operator,

H =
1

2m◦
(p− qA(r))2 , (2.14)

whose spectrum determines the energies E of the stationary states. In position repre-
sentation, p = −i

� ∇, the eigenvalue equation reads

1

2m◦
(−i

� ∇− qA)2 ψ(r) = E ψ(r) . (2.15)

In addition, the solutionψ(r) must be normalizable to qualify as a stationary quantum
state.

∫
d2r |ψ(r)|2 = 1 (2.16)

The energy eigenstates in the magnetic plane were obtained not before 1930, when
Landau published his article on orbital diamagnetism [27]. Although he used the gauge
(2.12), the symmetric vector potential (2.13) will prove more convenient in the follow-
ing. First, we introduce a quantum length scale

b :=

(
2

�

qB

) 1
2

(2.17)

and call it the magnetic length, although it differs from Landau’s definition2 by a factor
of
√

2. It allows to transform position and momentum operators into dimensionless
quantities, denoted by a tilde,

r̃ :=
r

b
and p̃ :=

b
� p , (2.18)

In the symmetric gauge, the Hamiltonian (2.14) now assumes a particularly simple
form,

H =
�
ω

1

2

(
p̃2 + r̃2

)
− ω �

(r̃× p̃) = Hosc − ω L. (2.19)

It is given by the energy of a two-dimensional harmonic oscillator Hosc minus its angu-
lar momentum L = r× p, in quanta of the same size. The oscillator eigen-frequency
differs from the cyclotron frequency by a factor of 2. It is given by

ω :=
qB

2m◦
=
ωc

2
, (2.20)

and known from the precession of magnetic moments as the Larmor frequency. In
order to construct the complete set of energy eigenstates on the magnetic plane, it is
useful to consider the annihilation operators of the left- and right-circular quanta, (see,
eg, [28],)

â(R
L) =

1

2
(x̃∓ iỹ + i(p̃x ∓ ip̃y)) , (2.21)
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with [âL, â
†
L] = [âR, â

†
R] = 1 as the only non-vanishing commutators. It is well

known [28] that the simultaneous eigenstates of the left- and right-circular number
operators (â†LâL) and (â†RâR) form a complete basis set of L2( � 2). An eigenstate
corresponding to n left-circular and m right-circular quanta, respectively, is given by

|n,m〉 =
1√
n!m!

(â†L)n(â†R)m|0, 0〉 , (2.22)

with n,m ∈ � 0. Here, |0, 0〉 denotes the harmonic oscillator ground state, a Gaussian
in position representation, 〈r|0, 0〉= exp(− 1

2r2/b2)/
√
b2π. Like all the states (2.22),

it is square-integrable and obeys the normalization condition (2.16).
Inverting equations (2.21), the Hamiltonian of a particle in the magnetic plane may

be expressed in terms of the circular operators. It assumes a form

H = Hosc − ω L̃ =
�
ω (â†RâR + â†LâL + 1)− �

ω (â†RâR − â†LâL)

=
�
ωc

(
â†LâL +

1

2

)
, (2.23)

which depends only on the number operator of the left-circular quanta. It follows
that the states (2.22) form a complete set of eigenstates of the magnetic plane. Their
energies are determined by the number n of left-circular quanta, called the Landau
level,

E =
�
ωc

(
n+

1

2

)
. (2.24)

This proves that the spectrum of H is discrete and equidistant.∗ The fact that the
energy does not depend on m shows that each Landau level is infinitely degenerate
(with a countable infinity.)

This degeneracy is due to the independence of the energy on the position of the
center of motion. To show that the latter is indeed determined by the right-circular
quanta alone, we note the operators corresponding to the classical radius vector (2.7)
and the center of motion c = r− ρ, respectively,

ρ̃ ≡ ρ
b

=
1

2

(
âL + â†L
−i(âL − â†L)

)
and c̃ ≡ c

b
=

1

2

(
âR + â†R

i(âR − â†R)

)
. (2.25)

Here, equation (2.2) was used to express the velocity in terms of momentum and po-
sition. Clearly, c commutes with the Hamiltonian, like in the classical case. The
components ρx and ρy, on the other hand, are not constants of the motion, although
the cyclotron radius |ρ| is again fixed and determined solely by the energy. This can
be seen from the squared moduli of the vectors,

|ρ̃|2 = â†LâL +
1

2
and |c̃|2 = â†RâR +

1

2
, (2.26)

which contain only the number operators of left- and right-circular quanta. Conse-
quently, the states (2.22) with fixed n and m are eigenstates of these operators. They

∗For mathematical literature on the spectral properties of magnetic Schrödinger operators see [29,30].
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are characterized by definite expectation values for the cyclotron radius and for the
distance from the origin to the center of motion. Moreover, these stationary states
are eigenvectors of the (canonical) angular momentum, obtained by the difference
|c̃|2 − |ρ̃|2 = L/

�
, in analogy to the classical result (2.13).

The general eigenstate of |ρ̃|2 (with eigenvalue n + 1
2 ) is given by a superposition

of states (2.22) with different quantum numbers m. We will call any such stationary
state a Landau state, within the Landau level n.

Coherent states

The states (2.22) are eigenstates of the radial components of the operators ρ and c.
Their azimuthal components are maximally uncertain. It is known from the two-
dimensional harmonic oscillator that the common eigenvectors of âL and âR have the
property to minimize the uncertainty product [28]. These coherent states are given by
the superposition

∣∣∣αL;αR

〉
:= exp

(
− |αL|2 + |αR|2

2

) ∞∑

n,m=0

(αL)n(αR)m√
n!m!

|n,m〉 , (2.27)

with αL, αR ∈ � the associated eigenvalues. If considered in the magnetic plane, the
expectation values of ρ and c are determined directly by these eigenvalues,

〈
αL;αR

∣∣∣ρ
∣∣∣αL;αR

〉
= b

(
Re(αL)
Im(αL)

)

〈
αL;αR

∣∣∣c
∣∣∣αL;αR

〉
= b

(
Re(αR)
− Im(αR)

)
, (2.28)

as one finds immediately from equation (2.25). The corresponding uncertainties ∆ρx =
∆ρy = ∆cx = ∆cy = b/2 are minimal, indeed. Furthermore, the wave functions
(2.27) remain of the coherent type as they evolve in time. From (2.23) one observes
that the state at time t,

e−iHt/ �
∣∣∣αL;αR

〉
= e−iωct/2

∣∣∣e−iωctαL;αR

〉
, (2.29)

is merely characterized by a different phase of αL. It is a localized wave packet ro-
tating with cyclotron frequency ωc around the constant center of motion c. As such it
embodies the closest quantum analogy [31] to the classical motion discussed in Section
2.1.

Gauge invariance

So far, the quantum problem was discussed for the symmetric gauge (2.13) only. We
will now admit an arbitrary gauge again, and consider the consequences of a finite
choice of χ. Although the canonical momentum is gauge dependent, its representation
as a differential operator, p = −i

� ∇, contains no dependence on the vector potential.
This can be understood by the observation that the velocity operator

v =
1

m◦
(p− qA) =

i
� [H, r] (2.30)
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undergoes a unitary transformation as one changes the gauge:

1

m◦

(
− i

� ∇− qA(r)
)

= eiqχ(r)/ � 1

m◦

(
− i

� ∇− qAsym(r)
)

e−iqχ(r)/ � (2.31)

Consequently, in order to preserve the gauge independence of the velocity expectation
value, also the wave functions must be transformed unitarily as the gauge is changed.
This is found immediately by applying (2.31) twice to the time dependent Schrödinger
equation, at arbitrary gauge,

i
�
∂t|ψχ〉 =

1

2m◦
(−i

� ∇− qA)2 |ψχ〉

= eiqχ(r)/ � 1

2m◦
(−i

� ∇− qAsym)2 e−iqχ(r)/ � |ψχ〉 . (2.32)

Comparing the wave function with the one of the symmetric gauge,

i
�
∂t|ψ0〉 =

1

2m◦
(−i

� ∇− qAsym)2 |ψ0〉 , (2.33)

we see that they are indeed related by a local, unitary transformation

|ψχ〉 = eiqχ(r)/ � |ψ0〉 ≡ ei �χ(r̃)|ψ0〉 (2.34)

which is determined by the gauge fieldχ (in dimensionless units χ̃(r̃) := 2χ(r)/(Bb2)).
It follows that the velocity expectation value is gauge invariant. The same holds for
all observables which commute with r, due to the local nature of the transformation
(2.34). As an immediate consequence, the probability density |ψ|2(r) and the probabil-
ity flux, j(r) are also gauge-invariant. The latter may be identified from the continuity
equation∇j = −∂t|ψ|2, which follows from (2.32), as

j := Re(ψ∗vψ) =

�

m◦
Im(ψ∗∇ψ)− q

m◦
A|ψ|2 . (2.35)

Like all observables which include the gradient in position representation, it contains
the vector potential explicitely to account for the gauge-dependent phase of the wave
function.

2.3 The scaling property

The magnetic Schrödinger operator conventionally contains the four parameters
�

,m◦,
q, B, along with the energy E as the spectral variable. Due to the homogeneity of the
vector potential (2.13), it is possible to reduce those to the two principal length scales
which we encountered in the previous sections. Those are the cyclotron radius ρ and
the magnetic length b, respectively, given by

ρ2 :=
2m◦E
q2B2

and b2 :=
2

�

qB
, (2.36)

cf (2.7), (2.17). The cyclotron radius is a quantity of classical mechanics. The mag-
netic length, in contrast, has a pure quantum meaning. As discussed above, it deter-
mines the mean extension of a minimum uncertainty state, and vanishes as

� → 0.
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In the preceding section, we found it convenient to introduce the dimensionless
variables r̃ = r/b and p̃ = bp/

�
. In fact, the homogeneity of the potential (2.13),

in conjunction with the requirement [x̃, p̃x] = [ỹ, p̃y] = i, leads necessarily to the
magnetic length as the appropriate scale. The only freedom is a numerical factor in
the definition of b. We took it such that the induced time scale t̃ = ωt is given by the
(classical) Larmor frequency ω, cf (2.20). It is appropriate to measure time in terms of
the Larmor period T = 2π/ω, rather than the cyclotron period Tcyc = 1

2T , because the
former is the fundamental time scale of the quantum problem. It takes two cyclotron
periods, as one observes from equation (2.29) (and more generally from the propagator
(2.50)), before a wave packet returns to its initial state with correct parity.

The respective dimensionless Lagrangian, furnished with a tilde like all scaled
units, reads

L̃ =
L

�
ω

=
1

2
ṽ2 + r̃× ṽ + ṽ∇r̃χ̃ =

1

2
ṽ2 + ṽÃ(r̃) . (2.37)

It contains no parameters any more, but for the definition of the scaled gauge field,

χ̃(r̃) :=
2

Bb2
χ(br̃) , (2.38)

which is not necessarily homogeneous of order two. This implies the definition of the
general scaled vector potential Ã(r̃) = 2A(br̃)/(Bb). The scaled Hamiltonian, given
by

H̃ =
H

�
ω

=
1

2
(p̃− Ã)2 , (2.39)

shows that the proper, scaled energy reads Ẽ = E/(
�
ω) = 2ρ2/b2. We will state the

energy in terms of the spacing between Landau levels, though,

ν :=
E

�
ωc

=
E

2
�
ω

=
ρ2

b2
, (2.40)

and call ν = Ẽ/2 the scaled energy, nonetheless. This way we conform with the
popular convention that the Landau levels start at one half, rather than at one.

Two distinct short wave limits

Below, it will be important to distinguish the two independent short-wave limits of
magnetic dynamics. From expression (2.40) one observes that the spectral variable ν
can be increased by either increasing ρ at constant magnetic length b, or by decreasing
b at fixed cyclotron radius ρ. The former direction is realized by raising the conven-
tional energy at constant magnetic field. It is the standard high-energy limit. Here, the
curvature of the classical trajectory tends to zero, which shows that in this limit the
dynamical effect of the magnetic field vanishes.

On the other hand, one may increase both, the conventional energy and the field,
at a fixed ratio of E/B2, thereby keeping the cyclotron radius fixed. This way the
underlying classical phase space is kept invariant, while the magnetic length tends to
zero. It is a realization of the semiclassical limit since b2 plays the role of

�
as the

semiclassically small parameter.3
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In order to be able to consider both limits, most equations will not be written in
scaled variables, since they might depend on the spectral variable. Rather the formu-
las will be stated in terms of combinations like r/b so that they can be immediately
replaced by scaled variables. This includes the scaled gradient∇r̃ ≡ b∇r, which will
be written as

∇r/b := b∇r . (2.41)

This is an admittedly unusual, but consistent notation. Scaled variables will be used
within calculations, if it is convenient and makes the presentation clearer. The spectral
variable is always written as E/(2

�
ω) = ν.

2.4 The free quantum propagator

We return to the Lagrangian formulation of mechanics, in order to calculate the time
evolution operator U(t; 0) := exp[−iHt/

�
] for arbitrary gauge. According to Feynman,

its position representation (for t > 0) is given by the path integral [9, 32, 33]

U(t, r; 0, r0) =

q(t)=r∫

q(0)=r0

D[q] exp

(
i

� W [q]

)
. (2.42)

Here, the functionalW attributes a classical action

W [q] :=

∫ t

0
L(q(t′), q̇(t′)) dt′ (2.43)

to all paths q(t′) going from r0 to r in the given time t. (All equations are stated for
a time independent Lagrangian, and the zero indicating the initial time will be omitted
in the following.)

The formulation in terms of a path integral allows the calculation of the time evo-
lution operator in a straightforward manner. Its most important advantage is that the
semiclassical approximant of the propagator can be obtained in a transparent way.
The situation is called semiclassical if

�
is small compared to the actions (2.43). In

this case the dominant contributions to the path integral are represented by those paths
for which the phase in (2.42) is stationary. They are solutions of the variational prob-
lem δW [q] = 0 with fixed initial and final position and time. According to Hamilton’s
principle, these are classical trajectories. The integral is then evaluated by expanding
the variations of (2.43) to second order. Provided the trajectories are isolated, one
obtains the asymptotic expression of the propagator to leading order in

�
[34].

U(t, r; r0) =
1

2πi
�

∑

qcl

∣∣∣∣det

(
− ∂2W [qcl]

∂r∂r0

)∣∣∣∣
1
2

exp

(
i

� W [qcl]− i
π

2
νqcl

)
(1 + O(

�
))

(2.44)

It is a sum over classical trajectories qcl going from r0 to r, in the given time t. The
only quantum ingredient is the finite size of

�
, which sets the scale of the associated

classical action in the phase factor. The additional phase shift is determined by the
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number νqcl
of negative eigenvalues of the matrix

(
− ∂2W [qcl]/(∂r∂r0)

)
[34]. The

latter has a dynamical meaning [9, 33]. It is the inverse of the Jacobi field of qcl,
which describes the linearized deviation of classical trajectories with different initial
momenta. The points of intersection of the field with the initial trajectory qcl are
called focal or conjugate. They determine the value of νqcl

geometrically by virtue
of the Morse theorem [35]. It is equal to the number of conjugate points the particle
encounters on its journey (counted with their multiplicities [35]) and called the Morse
index.

We are now in a position to derive the time evolution operator in the free mag-
netic plane. Due to the simple form of the Lagrangian (2.1), the expansion of the
action functional needed in the derivation of (2.44) breaks off after the quadratic term
(explaining why the motion is mimicked by a harmonic oscillator, cf eq (2.19)). In
consequence, the above expression for the time evolution operator is exact in our case,
rather than asymptotic.

In order to evaluate (2.44), the action of a classical trajectory is needed as a func-
tion of the initial position r0, the final one, r, and the time of flight t. Knowing the
classical motion from Section 2.1, the (scaled) action integral is easily computed,

1
� W (t, r; r0) = W̃ (t̃, r̃; r̃0) =

∫ t̃

0

(
1

2
ṽ(t̃′)2 + ṽ(t̃′)Ã(r̃(t̃′))

)
dt̃′

=
1

2

∫ t̃

0

ṽ2(t̃′)dt̃′ +
∫

∂Q

Ã(r̃′)dr̃′ +
∫

r̃0→r̃

Ã(r̃′) dr̃′

=
1

2
(r̃− r̃0)2 cot(t̃)− r̃× r̃0 + χ̃(r̃)− χ̃(r̃0) . (2.45)

Here, the action integral was split into three parts:

∫ t̃

0
ṽ2(t̃′, r̃; r̃0) dt̃′ =

(r̃− r̃0)2

sin2(t̃)

t̃

2
(2.46)

∫

∂Q
Ã(r̃′) dr̃′ = −(r̃− r̃0)2

sin2(t̃)

t̃

2
+

(r̃− r̃0)2

2
cot(t̃) (2.47)

∫

r̃0→r̃

Ã(r̃′) dr̃′ = −r̃× r̃0 + χ̃(r̃)− χ̃(r̃0) (2.48)

In the first, the modulus of the velocity is constant. Its value (2.46) follows from (2.6).
The second part was made a closed line integral, encircling a domain Q, which is
defined by the trajectory and the straight line from r̃ back to r̃0. By Stokes’ theorem
it may be transformed to an area integral over the rotation of the integrand (given by
the constant magnetic field). One obtains (2.47), with the negative sign due to the
clockwise (mathematically negative) sense of integration. The remaining part (2.48)
is a line integral along the straight path from r̃0 to r̃. Unlike the other contributions, it
depends on r̃ and r̃0 individually, and carries the gauge dependence.

In principle, more than one classical trajectory could connect the two points r̃ and
r̃0 in a given time. However, since the determinant of the matrix in (2.6) is non-zero
for t̃ 6= nπ, n = 1, 2, . . . , the initial velocity is uniquely specified for those times.
At integer multiples of the cyclotron period, in contrast, any trajectory returns to its
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starting point. Excluding these instances for the time being, the time evolution operator
is determined by only one trajectory. For the matrix of second derivatives one obtains

det

(
∂2W̃

∂r̃∂r̃0

)
=

1

sin2(t̃)
. (2.49)

The determinant of its inverse has doubly degenerate zeros at t̃ = nπ. Hence, the
Morse index reads νqcl

= 2[t̃/π] (with [·] the integer part), and one obtains immedi-
ately the time evolution operator in the free magnetic plane

U(t, r; r0) =
1

2πib2

1

sin(ωt)
exp

[
i
(r− r0)2

2b2
cot(ωt)− i

r× r0

b2

]

× exp
[
i
(
χ̃
(r

b

)
− χ̃

(r0

b

))]
. (2.50)

As noted above, this expression is identical to the exact path integral [32, 36–38]. It is
valid except for the times equal to integer multiples of the cyclotron period. At these
instances the propagator is just a unit operator,

lim
ωt→nπ

U(t, r; r0) = lim
ε→0

1

2πib2

(−)n

sin(ε)
exp

[
i
(r− r0)2

2b2
cot(ε)

]

× exp

[
−i

r× r0

b2
+ iχ̃

(r

b

)
− iχ̃

(r0

b

)]

= (−)n δ

(
r− r0

b

)
, (2.51)

with a sign which is positive only after even multiples of the cyclotron period. This
means that any wave function which is propagated by multiples of the Larmor period
T = 2π/ω = 2Tcyc returns precisely at its initial state. Equation (2.51) follows
from a special representation of the two-dimensional δ-function, which is given in the
appendix, cf (A.7). Note finally that the propagator (2.50) was derived for positive
times t > 0 only. It is valid for all times, nonetheless, since it clearly obeys the
unitarity relation U(−t, r; r0) = [U(t, r0; r)]∗. Furthermore, it is given for arbitrary
vector potentials. The dependence on χ shows how the propagator transforms as the
gauge is changed. It is consistent with the gauge dependence of the wave functions
(2.34) discussed in Section 2.2.

2.5 The free Green function

We are now in a position to calculate the Green function of the free magnetic plane. It
will be an important ingredient in the theory of the exact and semiclassical quantization
of magnetic billiards. We define the Green function to be the Fourier transform of the
free propagator

G(E, r; r0) :=

�

2im◦
lim
ε↓0

∫ ∞

0
U(t, r; r0)e

i(E+iε)t/ � dt . (2.52)
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As such, it is a resolvent of the Hamiltonian, ie, it obeys the inhomogeneous Schrödinger
equation

(H− E)G(E, r; r0) = −
� 2

2m◦
δ(r− r0) . (2.53)

For later reference, we note that there exists a second, independent solution to (2.53)
which differs strongly from G. We shall call it the unphysical or irregular Green
function G(irr).

One procedure to obtain the Green function is based on the observation that the
differential equation (2.53) separates in radial coordinates, if the symmetric gauge is
used. This way one is led to an angular momentum decomposition of G, which is of
little use for our purposes. It was derived (incorrectly) in [39,40] and is summarized in
Appendix B. Here, we shall perform the Fourier integral (2.52) directly. It yields the
Green function in a clear-cut fashion, in Cartesian representation and arbitrary gauge.
Substituting scaled variables the integral (2.52) reads

Gν(r; r0) := G(2
�
ων, r; r0)

=
−1

4π

∫ ∞

0

dt̃

sin(t̃)
exp

[
i

(
(r̃− r̃0)2

2
cot(t̃)− r̃× r̃0 + χ̃− χ̃0 + 2νt̃

)]
(2.54)

with the abbreviations χ̃ := χ̃(r̃), χ̃0 := χ̃(r̃0). Here, energy ν is assumed to have an
infinitesimally small positive imaginary part to ensure convergence.

Like in the case of the propagator, stating the Green function as an integral has the
advantage that its semiclassical approximation can be obtained straightforwardly. This
is shown in the following. The exact integration will be carried out afterwards.

2.5.1 The semiclassical Green function

The semiclassical approximation to the Green function, G
(sc)
ν , is obtained by perform-

ing the Fourier transform in the stationary phase approximation, which is summarized
in Appendix A.1. It yields an asymptotic expansion to leading order in the semiclas-
sically large parameter 1/b2. Requiring the integrand of the Fourier integral (2.54) to
have a stationary phase leads to a condition

| sin(t̃)| !
=
|r̃− r̃0|

2
√
ν
≡ |r− r0|

2ρ
, (2.55)

which selects the times of flight of classical trajectories connecting the initial position
r0 with the final point r at fixed energy ν. It can be satisfied only if the distance
between the two points is smaller than the cyclotron diameter. If this is the case, the
time derivative of the phase in (2.54) vanishes at an infinite number of (discrete) times,

t̃
(n)
S = arcsin(ζ) + nπ ,

t̃
(n)
L = π − arcsin(ζ) + nπ , with n = 0, 1, . . . (2.56)

The two times of flight t̃ (0)
S and t̃ (0)

L belong to the two distinct trajectories which con-
nect the initial and the final point directly. They are “short” and “long” arcs, respec-
tively, ie, have an arclength smaller and larger than π (cf Fig. 6.1). At times withn > 0
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the trajectories perform in addition n complete cyclotron orbits. In (2.56), the value

ζ :=
|r− r0|

2ρ
(2.57)

measures the distance between the initial and the final point relative to the classical
cyclotron diameter. After the Fourier transform, the trajectories entering the semiclas-
sical Green function exhibit an action S̃ = W̃ + 2νt̃, which is a function of energy
ν = Ẽ/2 rather than time. As specified by (2.56) the actions read

S̃
(n)�

S
L � = 2πν

(
a �

S
L � + n

)
+ χ̃− χ̃0 . (2.58)

Here, we introduced the notation

aS(r; r0) :=
1

π

(
arcsin(ζ) + ζ

√
1− ζ2 − r× r0

2ρ2

)
and

aL(r; r0) :=
1

π

(
π − arcsin(ζ)− ζ

√
1− ζ2 − r× r0

2ρ2

)
(2.59)

for the geometric part of the action. Note that aS and aL depend on the initial and
the final point individually, due to the term r × r0, which means that they are not
translationally invariant. However, one observes the relation aS(r; r0)+aL(r0; r) = 1.
It follows that the (scaled) action of a closed cyclotron orbit – ie, a short arc followed
by a long one – is given by 2πν.

Conducting the stationary phase approximation (A.2), we need finally the second
derivative of the phase in (2.54). It is given by (r̃ − r̃0)2 cos(t̃)/ sin3(t̃) and at times
(2.56) assumes the values ±4ν

√
1− ζ2/ζ (where the positive sign stands for trajec-

tories of the short type). It follows, that in the semiclassical approximation an infinite
number of trajectories contributes to the Fourier integral.

G(sc)
ν (r; r0) =

−1

4π

∞∑

n=0

(−)n

(
π
2ν

ζ
√

1− ζ2

) 1
2 {

exp
(

2πiν(aS + n) + iχ̃− iχ̃0 + i
π

4

)

+ exp
(

2πiν(aL + n) + iχ̃− iχ̃0 − i
π

4

)}

(2.60)

Fortunately, the sum over the repetitive cyclotron orbits n is of the geometric type. It
converges, since ν was assumed to have a small positive imaginary part, adding a factor
(1 + e2πiν)−1 which is singular at the energies of the Landau levels. The semiclassical
Green function is therefore given by a sum of two contributions, belonging to the short
and the long arc trajectory — the principal classical trajectories connecting r0 and r:

G(sc)
ν (r; r0) =

1

2(1 + e2πiν)

1

(2πi)
1
2

1
2i
√
ν

(
ζ
√

1− ζ2
) 1

2

{
e2πiνaS + e−iπ

2 e2πiνaL

}
ei(χ̃−χ̃0)

(2.61)
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This form will be used in Chapter 6 for periodic orbit theory. Alternatively, one can
combine the short and long arc contributions pulling out that part of the phase which
was time independent in (2.54). This leads to the expression

G(sc)
ν (r; r0) = exp

[
−i

(
r× r0

b2
− χ̃ + χ̃0

)]
G0(sc)
ν

(
(r− r0)2

b2

)
, (2.62)

with

G0(sc)
ν (z) :=

−1

4π

(2π)
1
2

cos(πν)

1
[
z (4ν − z)

]1
4

× cos

(
2ν

[
arcsin

(( z
4ν

) 1
2

)
+
( z

4ν

(
1− z

4ν

)) 1
2 − π

2

]
+
π

4

)
. (2.63)

It shows that the Green function is given by a phase factor which contains the gauge
dependence, and a real function, G

0(sc)
ν , which depends only on the distance between

the initial and the final point. The exact Green function has the same property, as
manifest in (2.54).

Note that the expressions (2.61) and (2.62) are defined only for separations smaller
than the cyclotron diameter |r−r0| < 2ρ. For larger distances, the semiclassical Green
function vanishes by definition, since the stationary phase condition (2.55) has no so-
lution. As the distance between the initial and the final points approaches the cyclotron
diameter, the short and long arcs coalesce and are therefore no longer isolated. In this
case the approximation (A.2) fails, which is indicated by the diverging prefactor of
G(sc), as ζ → 1. If an asymptotic expression is needed for the domain |r− r0| � 2ρ,
eg to describe tunnelling effects, uniform approximations [41] must be employed, as
discussed in Sect. 7.2 and Appendix E.

2.5.2 The exact Green function

In [39, 40] the free magnetic Green function was derived (incorrectly) by angular mo-
mentum decomposition. A brief survey of the angular momentum treatment is given
in Appendix B. In the following, we show how Gν can be obtained by performing the
Fourier transform of the time evolution operator (2.50) directly. The same expression
was derived in [42] (as we have learned recently) using the separability of (2.53) in the
symmetric gauge.

Like in the semiclassical case, we may separate the part of the phase in (2.54)
which is not explicitely time dependent.

Gν(r; r0) = exp

[
−i

(
r× r0

b2
− χ̃ + χ̃0

)]
G0
ν

(
(r− r0)

b2

)
(2.64)

Now, the integral is performed exactly:

G0
ν(z) =

−1

4π

∫ ∞

0

dt̃

sin(t̃)
exp

[
i
(z

2
cot(t̃) + 2νt̃

)]

=
−1

4π

∞∑

n=0

e2πiνn

∫ π

0

dt̃

sin(nπ + t̃)
exp

[
i
(z

2
cot(nπ + t̃) + 2νt̃

)]
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=
−1

4π

1

1 + e2πiν

{∫ ∞

0

du√
1 + u2

(u+ i

u− i

)ν
eizu/2

+ e2πiν

∫ 0

−∞

du√
1 + u2

(u+ i

u− i

)ν
eizu/2

}

=
−1

4π
Γ(1

2 − ν)

[
e−iπ(ν− 1

2
) Γ(1

2 + ν)

2πi

{∫ −i∞

0
dt (t+ 1)ν−

1
2 (t− 1)−ν−

1
2 e−zt/2

+ e2πiν

∫ 0

+i∞
dt (t+ 1)ν−

1
2 (t − 1)−ν−

1
2 e−zt/2

}]

=
−1

4π
Γ(1

2 − ν) z−
1
2 Wν,0(z) (2.65)

Here, a logarithmic representation of the inverse cotangent was used [43; eq (4.4.31)],
as well as the reflection relation of Euler’s Gamma function, Γ( 1

2−ν)Γ(1
2 +ν) cos(πν)

= π. The last equality in (2.65) holds since the expression in square brackets may be
deformed to the (complex conjugate of the) contour integral found in [44; eq (5.1.6)].
It gives the (real valued) irregular Whittaker functionW [43; eq (13.1.34)] (multiplied
by z−

1
2 ) in an integral representation that is valid even for positive ν.

Regularization

The function (2.65), as well as its semiclassical approximant (2.63), exhibit simple
poles as the energy ν approaches the Landau levels. It is often convenient to remove
these poles by considering the regularized version of G0

ν ,

Ĝ0
ν(z) := lim

µ→ν
cos(πµ) G0

µ(z) . (2.66)

Finally, we state the regularized Green function in terms of the irregular confluent
hypergeometric function U [43], which is more common than the Whittaker function:

Ĝ0
ν(z) =

−1

4π

π

Γ(ν + 1
2)

e−z/2 U(1
2 − ν, 1; z) (2.67)

2.5.3 Properties of the free Green function

Figure 2.1 displays the gauge-independent, regularized part of the exact and semiclas-
sical Green function. As one expects, the exact Green function decays exponentially
once the points are separated by a distance, |r− r0| > 2ρ, (ie z > 4ν) which cannot
be traversed classically.∗ As r → r0, it has a logarithmic singularity (cf (2.71)) like
the (complex valued) field-free Green function [45]. Our method to evaluate the free
Green function numerically with high precision and efficiency is discussed in Appen-
dix E. There, Ĝ0

ν is displayed at ν = 57.75, as a function of |r− r0|/ρ.

∗The abovementioned independent solution of (4.2) grows exponentially beyond the classically al-
lowed region. Its derivation is sketched in Appendix B.
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Figure 2.1: Regularized gauge-independent part of the free Green function. Top: Exact
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ν at ν = 10.1. Bottom: Error of the
semiclassical approximation. Even at this moderate value of ν strong deviations occur only at
the classical turning point

√
z = 2

√
ν ≈ 6.36 and at small distances. (The deviations arise

since the semiclassical approximation does not account for the logarithmic singularity at z = 0

and the tunnelling into distances larger than the cyclotron diameter.)

Differential expressions

The gauge invariant part of the Green function has the remarkable property that its
derivatives can be expressed by the function itself, at a different energy. For the regu-
larized version one finds

z
d

dz
Ĝ0
ν(z) = − (1

2 − ν)
(
Ĝ0
ν + Ĝ0

ν−1

)
− z

2
Ĝ0
ν (2.68)

z2 d2

dz2
Ĝ0
ν(z) =(3

2 − ν)(1
2 − ν)

(
Ĝ0
ν + 2Ĝ0

ν−1 + Ĝ0
ν−2

)

+ z(1
2 − ν)

(
Ĝ0
ν + Ĝ0

ν−1

)
+
z2

4
Ĝ0
ν . (2.69)

These formulas were obtained by employing the differential properties of the confluent
hypergeometric function [43].
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Asymptotic behaviour

Finally, we note the behaviour of the Green function at small distances. It has a loga-
rithmic singularity, similar to the Green function of the field-free case [45].

Ĝ0
ν(z) = Lν(z) + O(z log z) as z → 0, (2.70)

where

Lν(z) :=
cos(πν)

4π

(
log(z) + Ψ(1

2 + ν)− 2Ψ(1)
)
− sin(πν)

4
. (2.71)

Here, Ψ is the Digamma function [43]. As for the derivatives of the gauge independent
part of the Green function, one finds the asymptotic expressions

z
d

dz
Ĝ0
ν(z) =

cos(πν)

4π

[
1− z ν

(
log(z) + Ψ(1

2 − ν)− 2Ψ(1)− 1
)]

+ O(z2 log z) ,

(2.72)

z2 d2

dz2
Ĝ0
ν(z) = −cos(πν)

4π
+ O(z log z) , as z → 0. (2.73)

They were deduced from the logarithmic representation of U in terms of the regular
Kummer function [43; eq. (13.6.1)]. These formulas will be needed in Section 4.4.

Notes
1. The motion on magnetic surfaces of finite curvature received some attention in

recent years, both, in the classical [46–49] and the quantum treatment [46,47,50–
52]. One motivation for introducing a non-vanishing curvature is the possibility
to study the quantum spectrum of the free magnetic motion on a compact domain
(a modular domain in the case of constant negative curvature). This has consid-
erable mathematical advantages, since the spectrum remains discrete in the limit
of vanishing field.

2. After (lengthy) deliberations, the author decided to avert from Landau’s defini-
tion of the magnetic length `B = b/

√
2. The latter is appropriate (only) for the

Landau gauge (2.12). The length b, which is the appropriate scale of the symmet-
ric gauge, proves more convenient, since it avoids the appearance of the factor
2 and

√
2 at various places. It gives the radius of a disk, the area b2π of which

assumes the role of Planck’s quantum, cf Eq. (3.11a). Moreover, the flux through
the disk equates the “flux quantum” Φ0 = h/q = B b2π.

3. Scaled spectroscopy is applied successfully in atomic physics, eg [53]. The mea-
surement of absorption spectra in the semiclassical direction allowed in particular
to extract the actions of classical periodic orbits from Rydberg spectra [54]. It
should be noted that scaled spectra have some unusual mathematical features
since they do not belong to one self-adjoint operator. Rather, they stem from a
family of Hamilton operators parametrized by an effective value of � which de-
pends on the spectral variable. As a result, the eigenfunctions are not orthogonal,
although they are proper solutions of the Schrödinger equation with a real en-
ergy. More severely, the stability of spectral points with respect to changes in an
external parameter known from self-adjoint operators does not hold in general.
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Chapter 3

Introducing a boundary

The motion in the magnetic plane turns into a non-trivial problem, once the particle is
restricted to a bounded domain.

3.1 Motion in a restricted domain

Let us assume that the particle is confined to move in a domainD ⊂ � 2, which is com-
pact and singly connected. The classical equation of motion (2.4) still applies in the
interior of the domain (ie, in

◦
D). Here, the particle moves on arcs of constant curva-

ture, which may at some point impinge on the boundary Γ = ∂D. At these instances,
the trajectories must obey the law of specular reflection to qualify as a classical solu-
tion. This follows directly from Hamilton’s principle of requiring an extremal action,
as will be shown in Sect. 6.3.1. Clearly, any trajectory which was reflected once must
run into the boundary again. It follows, that the phase space is in general split up in
two disjunct parts. One part consists of skipping orbits. Their classical motion is no
longer described by a continuous Hamiltonian flow (but by a discrete map), and may
range from regular (integrable) to completely chaotic (hyperbolic). It is characterized
completely by the shape of the billiard and the size of the cyclotron radius. Below, in
Section 3.2, we will briefly review this classical billiard problem. The remaining part
of phase space describes the trivial motion on closed cyclotron orbits. It has a finite
volume whenever the cyclotron radius is small enough to allow for a disk of radius ρ to
fit into the domain. We will call the magnetic field strong, accordingly, if the cyclotron
radius is comparable to or smaller than the size of the billiard – a criterion which is
purely classical.

In the corresponding quantum problem, the eigenfunctions are required to satisfy
the Schrödinger equation in the open domain

◦
D, together with a boundary condition

on the border line Γ (as discussed in Sect. 3.3). One observes that, at strong fields, the
spectrum reflects the partitioning of the classical phase space. There are eigenstates
which hardly touch the boundary, and have energies very close to the Landau levels.

23
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They are called bulk states, because in the limit of strong fields they constitute the
major part of the spectrum. We will see that these states are based on that part of
phase space which is given by unperturbed cyclotron motion. At the same time, one
finds eigenstates which are localized at the boundary. These edge states correspond
to the skipping trajectories, and are expected to reflect the underlying billiard motion.
Albeit being an effect of the boundary they may be quite significant. For instance,
they typically exhibit a directed probability flux causing a large magnetic moment.
This way they balance the magnetic moments of the bulk, leading to a zero mean
magnetization, as discussed in Section 3.4.

The separation into edge and bulk states is intuitively clear and often used. Early
studies were concerned with the surface electron states inside metals [55, 56], and af-
ter the discovery of the Quantum Hall Effect [57, 58] the notion of edge states was
extensively employed to explain this phenomenon [59–64]. (In the latter problem the
Hamiltonian must include an additional impurity potential.) However, the above char-
acterization of edge states is rather vague and we are not aware of a general quantitative
definition in the literature. In due course, we will propose a spectral measure, which
allows to quantify the edge character of a state. Having a meaningful spectral density
of edge states at our disposal, it will be worthwhile to consider the quantum problem
also in the exterior.

Motion in the exterior

The exterior billiard problem is obtained by restricting the particle to the domain � 2\D
– henceforth called the exterior domain. From the classical point of view, there is little
difference between the interior and the exterior dynamics. A particle impinging on the
boundary from outside is reflected specularly and performs a skipping motion around
the billiard. Like in the interior, the skipping trajectories cover a finite volume in phase
space and are described by a discrete billiard bounce map. Complete cyclotron orbits,
on the other hand, now exist for any ρ. The corresponding phase space volume is
unbounded, because the cyclotron center may be located at an arbitrarily large distance
from the billiard.

The fact that a “free particle” may not escape to infinity but is trapped on a cy-
clotron orbit is reflected by the exterior quantum spectrum. It is discrete, in marked
contrast to the field-free scattering situation. The exterior quantum problem requires
the stationary wave function to satisfy the Schrödinger equation in � 2 \ ◦D, again with
a boundary condition on Γ. In addition, the normalization condition (2.16) implies that
the wave functions must vanish at infinity. In the absence of a boundary, the spectrum
would be given by a discrete set of Landau energies, each infinitely degenerate, as
shown in the preceeding chapter. The presence of a billiard lifts this degeneracy, turn-
ing each Landau level into a spectral accumulation point. This means, that there are
infinitely many discrete eigen-energies in any finite vicinity of each Landau energy.

We shall address the general quantum problem in Section 3.3. There, the main con-
cern will be on the boundary conditions and the average spectral behaviour, whereas
the actual quantization is performed in Chapter 4. However, to prepare for the semi-
classical quantization in Chapter 6, it is first necessary to take a closer look at the
classical problem.



3.2. The classical billiard 25

3.2 The classical billiard

Classical magnetic billiards were first examined by Robnik and Berry [65], and are
still the subject of active research [49, 66–72]. In this section we collect basic results,
limiting the discussion to those aspects which will be needed later on.

Parametrisation of the boundary

The classical dynamics is completely specified by the size of the cyclotron radius ρ and
by the shape of the billiard. Throughout this work, the billiard boundary Γ is assumed
to be smooth, so that its normals n̂ exist everywhere. We define them to point outwards
(ie, into � 2 \ D). Keeping their orientation fixed will allow to distinguish the interior
from the exterior problem. The boundary is parameterised by the arc length s,

Γ : s ∈ [0; � ] 7→ r(s) ∈ � 2 , (3.1)

such that the derivative yields the normalized tangent

dr(s)

ds
:= t̂(s) =

(−ny(s)
nx(s)

)
. (3.2)

We define the local curvature

κ(s0) := 2 lim
s→s0

(
r(s)− r(s0)

)
n̂(s)

(
r(s)− r(s0)

)2 (3.3)

to be positive for convex domains. The area of the domain is denoted by � , and �
represents its circumference.

3.2.1 The billiard bounce map

As mentioned above, the particle’s skipping motion may be described by the mapping
of a Poincaré surface of section onto itself. Like in the case of field-free billiards
[11,73–75], it is natural to use the Birkhoff coordinates (s, ps) to define the surface of
section. They are given by the position on the boundary s (the curvilinear abscissa)
and the (normalized) tangential component of the reflected velocity ps = v̂0(s) t̂(s)
at the point of reflection. The variables s and ps are canonically conjugate in the sense
described below. It is worth noting, therefore, that ps is defined as a component of the
velocity vector, rather than the (gauge-dependent) canonical momentum.

A point (s, ps) in the Birkhoff phase space describes the position of incidence, and
the direction of the velocity after reflection (once it is agreed on whether to consider the
interior or exterior problem). Tracking the classical trajectory until its first intersection
with the boundary specifies the next point of reflection s′ uniquely, and p′s follows
from the law of specular reflection. Any reflected trajectory is included this way, and
the complete billiard dynamics is described by the bounce map

B : (s, p) 7→ (s′, p′) (3.4)
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which maps the Poincaré surface of section [0; � ] × (−1; 1) onto itself (in an area-
preserving way.) In order to see that the map generates a discrete Hamiltonian evolu-
tion, one may look for a generating function � (s, s′), which has the property to yield
the (canonically) conjugate coordinates by differentiation,

ps = −d� (s, s′)
ds

and p′s =
d� (s, s′)

ds′
. (3.5)

The relation (3.5) is the discrete analogy to the case of continuous Hamiltonian dynam-
ics, where the canonical momenta are similarly given by the derivative of the action. If
the mixed second derivative of � has a definite sign the equations (3.5) may be glob-
ally inverted [75], yielding the bounce map (3.4). In the case of field free billiards, �
is simply determined by the classical action accumulated along the trajectory between
the points r(s) and r(s′) [75], ie, by the distance |r(s)− r(s′)|.

At this point, the magnetic billiard exhibits a peculiarity. For given initial and
final points on the boundary, it allows in general for two distinct connecting trajec-
tories. Those are the “short” and “long” arcs encountered in the preceeding chapter.
It is therefore not clear, a priori, how to obtain a unique generating function for the
magnetic case. In a recent article [67], Berglund and Kunz presented a “generating
function”, which is determined by the area between the trajectory and the boundary
(together with the length of the trajectory). In the course of semiclassical quantization
we will be lead to this form in a natural way (but shall argue that it is not a generating
function in its proper sense).

The billiard dynamics may now be studied conveniently by investigating the prop-
erties of the map. The Poincaré surface of section plot is a simple means to get an
overview on the dynamics. It is obtained by iterating the map (3.4) starting from a
finite number of initial conditions. In Fig. 3.1 we show surface of section plots of
an interior ellipse at different values of the the cyclotron radius. One observes the
standard picture of mixed chaotic dynamics [7, 76, 77]. The trajectories either lie on
invariant curves (characterizing regular motion) or cover a whole area in the surface
of section (chaotic motion). Stable periodic orbits, in particular, are characterized by
surrounding invariant lines (“islands of stability”).

3.2.2 Integrable and hyperbolic billiards

In the field free case, the ellipse is known to be the only smooth billiard with two
integrals of motion (including the circle as a special case). At finite magnetic fields,
the ellipse turns chaotic – as we have just seen – except for the circle billiard. The
latter exhibits the canonical angular momentum (2.13) as the second integral of the
motion (if the circle is centered at the origin of the symmetric gauge). This suggests,
that the circular shape yields the only integrable magnetic billiard.

The other extreme of motion is called hyperbolic, or displaying hard chaos. It
is present if the stable part of phase space has zero measure, rendering almost all
trajectories unstable. Hyperbolic billiards are popular, although they form a small
class. Early examples of field-free billiards displaying hard chaos were given by Sinai
[73] and Bunimovich [74].

Conditions for the instability of orbits in magnetic billiards are discussed in [68–
70]. In his recent work [49], Gutkin applied a general hyperbolicity criterion [78] to
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Figure 3.1: Birkhoff phase space portraits of the interior ellipse (strong eccentricity 0.8, area
�

= π), for different values of the cyclotron radius ρ = 0.40, 0.44,0.50,0.54 (left column, top
to bottom) and ρ = 0.6, 1.0, 2.0,10.0 (right column, top to bottom). The motion turns (more)
regular as the limit of a strong field, ρ→ 0, and a vanishing field, ρ→∞, is approached.
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Figure 3.2: Parts of dual trajectories in the interior and exterior of a stadium-billiardat ρ = 0.5

(sequence of 75 reflections). The billiard shape is defined in Fig. 9.5.

construct classes of hyperbolic magnetic billiards. The critical parameter in these sets
is given by the sum of the reciprocal cyclotron radius and the (local) curvature of the
boundary. Hard chaos is guaranteed in these cases only for cyclotron radii above a
minimum value.

Most of the billiards considered in this thesis are hyperbolic at zero field, but as-
sume a mixed chaotic phase space at any finite cyclotron radius. An example of a
billiard shape, which generates truly hyperbolic motion even at fairly strong fields, is
given in the right part of Fig. 5.1.

The above statements apply equally to the interior and exterior dynamics, and there
was no need to distinguish between them. This changes as we turn to the question of
how the classical interior and exterior problems are related.

3.2.3 The interior-exterior duality

When comparing interior and exterior motion, the size of the cyclotron radius ρ plays
a crucial role. An important situation is set up if cyclotron radius and billiard shape are
such that any circle with radius ρ intersects the boundary at most twice. For convex
domains, a sufficient condition is the cyclotron radius being greater than the maximum
radius of curvature, or smaller than the minimum radius of curvature. However, con-
vexity is by no means needed for the above criterion — which we shall assume to hold,
for the moment.

Now consider a segment of an interior trajectory going from r(s) to r(s′). The
same two points are connected by a valid exterior trajectory, which travels backwards
in time. Necessarily, the two arcs form a complete circle of radius ρ. (They do not
intersect with the boundary, except at the points r(s) and r(s′), because the above cri-
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Figure 3.3: Breakdown of the duality in segments of partially corresponding trajectories (sta-
dium of Fig. 3.2 at ρ = 0.8.) Only the two left (top) arcs in the interior (exterior) meet with a
dual partner. The breakdown occurs because a cyclotron orbit, which is obtained by continuing
the arcs (dashed line) intersects the boundary more than twice.

terion was assumed to hold.) The interior trajectory is reflected specularly and finally
runs into the boundary at r(s′′). Clearly, the time-reversed exterior trajectory obeys
the same law of specular reflection, leading to the same boundary point r(s′′). It fol-
lows that the interior dynamics and the time-reversed exterior one are described by the
same Poicaré surface of section. Every interior trajectory is linked with a dual exterior
trajectory, which travels backwards in time. We call this property the classical duality
of interior and exterior motion. Pairs of dual trajectories are displayed in Figure 3.2
and 10.8.

As an immediate consequence of classical duality, one finds for any given interior
periodic orbit∗ a dual periodic orbit in the exterior, and vice versa. Being periodic, both
may now be thought of as running forward in time, but then with opposite orders in the
sequence of reflection points. Clearly, these dual partners are intimately related. We
will see that they have the same stability properties, and that the sum of their actions
is an integer multiple of the action of a full cyclotron orbit (with the integer given by
the number of reflections). Examples of dual periodic orbits are given in Figure 10.8
on page 140.

Figure 3.3 shows that the duality breaks down once the duality condition that “any
circle of radius ρ intersects the boundary at most twice”, is no longer fulfilled. Typ-
ically, only a small fraction of the phase space corresponds to arcs which violate the
duality condition. Fig 3.4 gives an impression of the fraction of phase space belonging
to arcs whose extension intersects the boundary more than twice.

∗The collection of periodic orbits is known to be dense in phase space. It plays an important role in
semiclassical quantization, see Chapter 6.
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Figure 3.4: Fraction of the complete interior phase space belonging to arcs which violate the
duality criterion, as a function of the cyclotron radius ρ. (Calculated for the stadium billiard in
Fig. 3.2; the squares indicate the error of the statistical sampling.)

3.3 Quantum billiards

Quantizing classically chaotic billiards is a popular way to study the effects of classi-
cal chaos on quantum dynamics [79, 80]. Quantum billiards are sufficiently simple to
inspire analytical studies and to permit full-scale numerical experiments. At the same
time, they display most of the generic properties of Hamiltonian systems. Many dis-
coveries in the field of quantum chaos, such as the universality of chaotic spectra [12],
the scarring of wave functions by unstable periodic orbits [13,14], and the existence of
action correlations [15] were first made in these 2-dimensional model systems. When
a magnetic field is applied, this is usually done to break the time-reversal symmetry,
or to mimic the situation in semiconductor heterostructures.

Magnetic quantum billiards

Arguably, the earliest study of a magnetic quantum billiard was carried out by Naka-
mura and Thomas [20] who assert that billiards which are classically chaotic display a
reduced diamagnetic susceptibility. (This was later found to be incorrect [81].) Later
works are concerned with the spectral implications of the absence of time-reversal in-
variance [21–23]. Special geometries, such as the disk [82, 83] or, more recently, the
square [25,84,85], received attention as well. All these studies were limited to the first
few hundred eigenvalues, and only to the interior problem.

3.3.1 General boundary conditions

The mentioned works use Dirichlet boundary conditions, ie, demand the wave function
to vanish on the boundary. It is the natural choice from a physical point of view, which
takes the boundary as due to an infinite potential step. However, it will prove fruitful
to consider slightly more general, “mixed” boundary conditions, which include the



3.3. Quantum billiards 31

Dirichlet choice as a special case. They are defined by the equation

ψ(r) = ±λ
b

(
∂n/bψ(r)− iÃn(r)ψ(r)

)
, r ∈ Γ . (3.6)

The lower sign stands here for exterior problem. The symbols, ∂n/b := bn̂(r)∇r and

Ãn = n̂(r)Ã denote the scaled normal derivative, and the normal component of the
scaled vector potential, respectively.

The “mixing” parameter λ interpolates between the two extremes, Dirichlet, λ =
0, and Neumann boundary conditions, λ−1 = 0. In principle, λ may be a function
of the position on the boundary, but will be taken constant throughout the thesis. At
non-vanishing λ, our boundary conditions (3.6) are the gauge-invariant generalisation
of the mixed boundary conditions known for the Helmholtz problem [86–88]. They
imply that the normal component of the current density ̃n = Im(ψ∗∂n/bψ)− Ãn|ψ|2
vanishes for any λ. (This can be noted after multiplying equation (3.6) with ψ∗ and
taking the imaginary part.) The resulting conservation of the probability density ex-
plains why the condition (3.6) keeps the problem self-adjoint for any λ.

The explicit appearance of the vector potential in (3.6) is needed to ensure the
gauge-invariance of the boundary conditions. The fact that the definition does not
depend on the gauge freedom χ is easily seen observing the gauge dependence of a
general wave function (2.34).

Finally, note that λ has the dimension of a length, cancelling the dimensionality
introduced by the normal derivative. The magnitude of the latter depends on the mod-
ulus k =

√
2m◦E/

�
of the wave vector. To account for this trivial energy dependence

of the eigenstates on the boundary condition, it will be convenient (later in the semi-
classical treatment) to use the dimensionless mixing parameter

Λ := kλ = 2
√
ν
λ

b
. (3.7)

We did not state the definition (3.6) of the boundary condition in terms of Λ because
its dependence on the spectral variable ν would destroy the self-adjointness of the
problem, rendering different eigenstates non-orthogonal.

A quite different type of boundary conditions for magnetic billiards was proposed
recently by Akkermans et al [89]. It was designed specifically to be sensitive on the
“chirality” of the wave functions. For the special situation of a separable problem
(ie, a disk billiard) they allow to split the interior eigenspace into two subspaces with
definite chirality. We will see that this is quite close to the desired separation into bulk
and edge states. However, it does not work in the case of a general billiard, and the
resulting spectrum has no relation to the standard Dirichlet conditions. Below, we will
take a different approach to separate edge and bulk, by adjusting the spectral measure
according to our needs, rather than modifying the spectrum.

3.3.2 The quantum spectrum

Unlike their field-free relatives, magnetic quantum billiards offer two independent ex-
ternal parameters – the cyclotron radius and the magnetic length. As discussed in
Section 2.3, one must specify which one is to be fixed in order to define a quantum
spectrum. In the text part of this thesis, we will state the formulas for spectral densities
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only for conventional high-energy spectra taken at fixed magnetic length b. This is
done to avoid clumsy notation, and to minimise the danger of confusion. A summary
of formulas for spectra defined in the semiclassical direction is given in Appendix D.
Still, some of the numerical investigations presented below are carried out on spectra
defined in the semiclassical direction. This will be clearly indicated.

The spectral staircase

The simplest function to characterize a spectrum is the spectral staircase (or num-
ber counting function), which gives the number of spectral points below the specified
energy. For a set of eigenvalues {νn}, it is formally defined as a sum

N(ν) :=
∞∑

n=1

Θ
(
ν − νn

)
(3.8)

over Heaviside step functions Θ. Note that N is a well-defined function only for the
interior problem, because of the infinite number of exterior bulk states close to each
Landau level. The spectral density is conveniently defined as the energy derivative of
the counting function,

d(ν) :=
d

dν
N(ν) =

∞∑

n=1

δ(ν − νn) . (3.9)

It should be understood in the sense of distributions. Formally, such a sum of Dirac
δ-functions could be defined for the exterior problem as well. However, this density
would be meaningful at most in a local sense, since the convolution with a generic
function would diverge at all the Landau energies. Therefore, the following discussion
of the smooth, asymptotic properties of magnetic spectra must be restricted to the
interior problem.

3.3.3 Asymptotic counting functions

The spectral staircase is described asymptotically by the mean number counting func-
tion N(ν), which is uniquely defined [90]. For Dirichlet boundary conditions it is
given by the asymptotic expression [91]

N(ν) =
�
b2π

ν − �
2πb

ν
1
2 +

1

6
+ O

(
ν−

1
2
)
. (3.10)

The expression includes only geometric quantities and the conventional wave vector√
2m◦E/

�
= 2
√
ν/b, which are all independent of the magnetic field. The field

independence of the leading order term follows immediately from Weyl’s law, as we
will see below. However, it is not obvious that the next two orders are identical to the
field free case as well. This was proved only recently in [91], and for circular billiards
in [92].

Note the hierarchy of the geometric quantities appearing in (3.10). The leading
and the second term are proportional to the area and the circumference, respectively.
The constant is determined∗ by the mean curvature

∫
Γ κ(s)ds = 2π. Moreover, the

∗The constant term in (3.10) is modified if there are corners in the boundary [91].
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Figure 3.5: At strong magnetic fields, ρ � � , the major part of the available phase space
consists of complete cyclotron orbits. The skipping orbits give rise to a net current along the
boundary. It has a counter-clockwise sense of orientation, in contrast to the cyclotron orbits.

higher order terms are typically proportional to higher moments of the curvature [93].
This indicates that it is reasonable to view the effect of the boundary on asymptotic
quantities in a perturbative sense. The gross dependence of a general billiard is de-
termined by the enclosed area, with the circumference as a first correction. The next
modification is then given by assuming a finite mean curvature, while taking into ac-
count higher order moments of the curvature distribution would yield to higher order
corrections.

Weyl’s law revisited

Let us consider Weyl’s law more explicitely. It states, that the number of quantum
states below a given energy is determined, to leading order, by the volume of phase
space, which is covered by the energy shell, divided by (a power of) Planck’s quantum

Ntot(ρ
2, b2) =

1

(2π
�
)2

∫∫
Θ(E − H) d2r d2p (3.11)

=
1

(b2π)2

∫∫
Θ
(
ρ2 − |ρ|2

)
d2c d2ρ . (3.11a)

This is the first term in the asymptotic expansion (3.10). Changing the integration
of the canonical momentum to the velocity vector in the first line renders the phase
space integral independent of the magnetic field (since the Jacobian is constant [94]).
This shows immediately that the leading order term of the counting function (like
any quantity which may be written as a phase space integral of position and velocity)
cannot depend on the field strength.

In (3.11a), however, we transformed the variables of integration to the radius vector
ρ, cf eq (2.7), and the cyclotron center c = r − ρ, which do depend on the magnetic
field. As a result, the role of Planck’s quantum is now played by the area b2π.

This second form of the phase space integral has the advantage that it allows to
separate the volumes of skipping and cyclotron motion. The center c is a constant
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Askip
int

Aext
skip

ρ
ρ

Figure 3.6: The dark shaded region indicates the area determining the phase space volume
of interior (left) and exterior (right) skipping orbits. It is given by those points of the interior
and exterior domain, respectively, which have a distance less than one cyclotron radius ρ to the
boundary.

of the motion for all cyclotron orbits. Hence, integrating only the cyclotron part of
the centers one obtains the area � cyc(ρ) of the set of points in D with a distance
from the boundary greater than ρ. Consequently, the number of quantum states which
correspond to cyclotron motion is given, to leading order, by the integral

Ncyc(ρ
2, b2) =

2π

(b2π)2

∫ ρ

0
� cyc(ρ

′)ρ′dρ′ . (3.12)

We note from (3.10) that the total number of states reads to leading order,

Ntot(ρ
2, b2) =

2π

(b2π)2

ρ2 �
2

. (3.13)

Hence, the number of states associated with the skipping part of phase space can be
written as an integral

Nskip(ρ2, b2) = Ntot −Ncyc =
2π

(b2π)2

∫ ρ

0
� skip(ρ′)ρ′dρ′ , (3.14)

involving the area � skip(ρ) := � − � cyc(ρ). By definition, this area is given by
those points in the interior domain which are closer to the boundary than the cyclotron
radius, cf Fig. 3.6. It determines the mean density of those states, which correspond to
the skipping part of phase space.

dskip(ν) =
d

dν
Nskip(ν b2, b2) =

� skip(b
√
ν)

b2π
(3.15)

This is a remarkably simple formula. To obtain the mean density of (interior) quantum
states corresponding to the skipping motion, one merely has to divide the area � int

skip

by the Planck quantum b2π. It should be made clear, however, that we do not yet have
a criterion at our disposal, which allows for a clear distinction of edge and bulk states.
Clearly, any reasonable such definition should pass the requirement of being consistent
with (3.15).

Furthermore, a proper “density of edge states” will have to be well-defined also in
the exterior. Let us therefore comment on the expected mean number of exterior states
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which correspond to skipping motion. By symmetry, it should be determined by the
area � ext

skip of those points in the exterior domain which are closer to the boundary than
ρ. We confirmed this for the circular geometry, where the integral over the skipping
part of phase space in (3.11a) can be performed explicitely. For a disk of radius R one
obtains

N
int
skip =





4

3

�
2πb

ν
3
2 − 1

2
ν2 if

√
ν b < R

�
b2π

ν if
√
ν b > R

(3.16)

N
ext
skip =

4

3

�
2πb

ν
3
2 +

1

2
ν2 , (3.17)

for the interior and the exterior problem, respectively. Note that the interior number is
determined by the area � of the domain once the cyclotron radius ρ =

√
ν b exceeds

the radiusR of the disk, preventing any cyclotron orbits in the interior.
At strong fields, b � ρ � � , in contrast, it is the circumference term which

dominates. Since in this case we may neglect the mean curvature, the average number
of skipping states is approximately given by

Nskip =
4

3

�
2πb

ν
3
2 . (3.18)

This is the phase space estimate for a straight line with periodic boundary conditions.
We now turn to another quantity which serves to characterize interior magnetic

billiards – the response of the spectrum to changes in the magnetic field. Its asymptotic
properties may be related to a phase space integral as well.

3.4 Orbital magnetism

Employing the notion of orbital magnetism we slightly abuse a thermodynamic con-
cept for our one-particle problem. Nonetheless, it is worthwhile to ask for the magnetic
response of the billiard dynamics in the sense of statistical mechanics. Since we do not
want to discuss effects of finite temperature, only microcanonical ensembles will be
considered. It means that averages are performed on the energy shell in phase space,
ie, among all orbits of a given cyclotron radius.

Let us first consider the classical motion along a single periodic∗ trajectory. Being
charged, the particle constitutes an electric current, which in turn induces a magnetic
moment. Will it serve to strengthen or to weaken the applied magnetic field? Clearly,
the latter is true in the case of a cyclotron orbit. Here, the (scaled) magnetic moment
turns negative,

1

2

∫ �Tcyc

0
r̃(t̃)× ṽ(t̃) dt̃ = −ν , (3.19)

which shows that the cyclotronic part of phase space is diamagnetic. The skipping
orbits, one the other hand, will in general give rise to both signs. At strong fields (if

∗We may confine the discussion to periodic orbits, because the set of periodic orbits is known to be
dense in phase space.
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the cyclotron radius is shorter than the minimum diameter of the billiard) skipping
trajectories carry a net current along the boundary. It is orientated clockwise, ie, op-
posite to the cyclotron orbits (see Fig. 3.5). A detailed analysis [95] shows that, in
any case, a subtle cancellation mechanism between cyclotron and skipping orbits is at
work, which guarantees that classically there is no net orbital magnetization. This is
called the van Leeuwen theorem [94, 95].

The statement is proved immediately by evoking the thermodynamic definition
of the magnetization, as the derivative of a thermodynamic potential (the free energy
or the grand canonical potential) with respect to the magnetic field. The potentials
are determined by the partition sum, which is classically a phase space integral. The
latter does not depend on the magnetic field for the reasons given in the preceding
section [94].

Before we turn to the precise quantum definition, it should be emphasized that
orbital magnetism in its proper sense is an effect of many particles at finite temperature.
Assuming the temperature to be much larger than the spacing between Landau levels,
T � �

ωc/kB, Landau showed [27] that a degenerate Fermi gas exhibits a small† net
diamagnetic response. This Landau diamagnetism is an effect of the bulk. Asymptotic
corrections due to the existence of a boundary are discussed in [91, 92, 97–100].

Recently, the effect met some renewed interest, since the geometry of mesoscopic
devices may greatly enhance orbital magnetism. Semiclassical treatments in terms of
periodic orbit theory may be found in [25, 101–104]. In all these works the magnetic
field was assumed to be weak, so that the bending of the trajectories could be neglected.
An exception is the study of the quantum and semiclassical magnetization of the mag-
netic disk in [105]. A comprehensive review on the subject of orbital magnetism is
given in [106].

In this work we shall use the concept of orbital magnetization merely as a means
of characterizing magnetic billiards, ie, we disregard effects of impurities and finite
temperature. We shall argue that it is advantageous to adopt a modified definition of
orbital magnetization. In order to motivate this, we start with the conventional one.

Conventional magnetization

Given the spectrum {En} at finite magnetic field B, one may conventionally define
the magnetization as

Mconv(E,B) :=−
∑

En≤E

dEn
dB

=

∫ E

0
m(E ′;B) dE ′ . (3.20)

This is the one-particle and zero-temperature limit of the standard thermodynamic
definition. By means of equation (3.20) the function m is introduced, which we shall
call the magnetization density,

m(E,B) :=
dNtot

dB
(E,B) = −

∑

n

dEn
dB

δ(E −En) . (3.21)

†The effect is one third of the Pauli spin paramagnetism [96].
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The relation of m to the electrodynamic interpretation of the magnetization is seen
once we note the derivative of the Hamilton operator (2.14) with respect to the mag-
netic field,

dH

dB
= −q

2
(r× v)sym . (3.22)

It is the operator of the magnetic moment, where ()sym indicates the symmetrized
form. It follows that the energy derivatives dEn/dB in eq (3.21) are given by the
corresponding expectation values of the magnetic moment. Hence, the magnetization
density (3.21) reads

m(E,B) =
∑

n

q

2
〈ψn|(r× v)sym|ψn〉 δ(E −En) . (3.23)

The fact that the mean magnetization (density) vanishes is seen immediately from
the field-independence of N, eq (3.10), as noted above. It follows that, at strong fields,
the negative moments of (many) bulk states are balanced by the large, positive mag-
netic moments of relatively few edge states. This will be seen much more clearly once
we modify the definition of the magnetization, such that is complies with the scaling
properties of the system.

Bulk and edge magnetization

We proceed to define a scaled magnetization which has considerable advantages, com-
pared to the conventional one. By virtue of (2.40) the spectrum {νn} depends para-
metrically on the magnetic length, νn = νn(b2). It is natural to define the scaled
magnetization density, such that it yields the density of the scaled magnetic moment
(3.25), in analogy to (3.23). Hence, one is led to the definition

m̃(ν, b2) := − b2 ∂N

∂b2
− ν ∂N

∂ν
(3.24)

=
∑

n

(
b2 dνn

db2
− νn

)
δ(ν − νn) (3.24a)

=
∑

n

1

2
〈ψn|(r̃× ṽ)sym|ψn〉 δ(ν − νn) . (3.24b)

To see that the expectation value of the scaled magnetic moment is indeed determined
by a derivative of the energy with respect to the magnetic length,

1

2
〈ψn|(r̃× ṽ)sym|ψn〉 = b2 dνn

db2
− νn , (3.25)

one merely has to apply the appropriate differential operator to the scaled Hamiltonian.
The scaled magnetization follows by integrating the density.

M̃(ν, b2) :=
∑

νn≤ν

(
b2 dνn

db2
− νn

)
=

∫ ν

0
m̃(ν ′, b2) dν ′ (3.26)

=M̃edge + M̃bulk (3.26a)
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As indicated in the second line, the scaled magnetization splits up naturally into two
parts, which we like to call, respectively, the edge magnetization,

M̃edge(ν, b
2) :=

∑

νn≤ν
b2 dνn

db2
= −

∫ ν

0
b2 d

db2
N(ν ′, b2) dν ′ , (3.27)

and the bulk magnetization,

M̃bulk(ν, b2) := −
∑

νn≤ν
νn = −

∫ ν

0
ν ′

d

dν ′
N(ν ′, b2) dν ′ . (3.28)

This labelling is appropriate, since any Landau state (2.22) exhibits a magnetic moment
〈n,m|12(r̃× ṽ)sym|n,m〉 = −(n+ 1

2) = −ν, like the classical cyclotron orbit (3.19).
Each eigenstate contributes to both magnetization densities,

m̃edge(ν, b
2) =

∑

n

b2 dνn
db2

δ(ν − νn) (3.29)

and

m̃bulk(ν, b2) = −
∑

n

νn δ(ν − νn) . (3.30)

The energies of bulk states lie close to the constant Landau levels and hardly change,
as b2 is varied. Hence, they give rise to a negligible edge contribution. Edge states,
in contrast, contribute to the edge magnetization much stronger than to the bulk. This
follows from the mean values of the magnetization. For the smooth edge magnetization
density one finds, cf (3.10),

medge(ν, b
2) = −b2 ∂N

∂b2
=

�
b2π

ν − 1

2

�
2πb

ν
1
2 . (3.31)

Remarkably, the bulk mean value assumes a form,

mbulk(ν, b2) = −ν ∂N

∂ν
(ν, b2) = −medge(ν, b

2) , (3.32)

which cancels the mean edge magnetization completely. Hence, the mean (total) mag-
netization,M = Medge +Mbulk vanishes like in the conventional case. This holds
strictly for any field, independently of whether or not there is a classical separation
into skipping and cyclotron orbits.

The edge magnetization (3.27) defined in this section embodies a first quantity,
which allows to distinguish edge states quantitatively. We emphasize that it is observ-
able in a physical experiment. While the spectrum is measured in the high-energy
direction, the derivative is to be taken in the semiclassical one (ie, changing b2 at fixed
cyclotron radius ρ.) This may be done by changing both, field and (Fermi) energy ap-
propriately. This concludes the introductory part and we can start with the real work.
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Quantization in the interior and the exterior:
The boundary integral method

In this chapter, we solve the quantization problem for interior and exterior magnetic
billiards by means of a boundary integral method. It allows to obtain the spectra and
wave functions of arbitrarily shaped billiard domains, and includes the general bound-
ary conditions discussed in Section 3.3.1.

4.1 Boundary methods

As compared to the field free case, it is surprisingly difficult to obtain the quantum
spectra of magnetic billiards. So far, numerical studies were limited to the interior
problem and performed almost exclusively by diagonalizing the Hamiltonian [20–24].
This requires the choice and truncation of a basis, which is problematic for general bil-
liards, where no natural magnetic basis set exists. Consequently, results were limited
to the first few hundred eigenvalues (of unclear precision).

The quantum spectra of field-free billiards are usually obtained by transforming the
eigenvalue problem into an integral equation of lower dimension. The corresponding
integral operator is defined in terms of the free Green function, and depends only on the
boundary [107–112]. This method is known to be more efficient than diagonalization
by an order of magnitude [113].

It seems natural to extend these ideas to magnetic billiards. A step in this direction
was taken recently by Tiago et al [40], who essentially propose a null-field method∗

[114] for (interior) magnetic billiards. It involves the irregular Green function (B.14) in
angular momentum decomposition. A drawback of the approach is that the latter must
be known for large angular momenta, which turns out to be numerically impractical.
Moreover, the method does not apply for the exterior problem.

∗The authors of [40] inaccurately call their scheme a “boundary integral method”.

39
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Below, we present the boundary integral method for magnetic billiards [115]. Like
in the field free case, it involves the regular Green function in position space represen-
tation. We present the method for the interior and the exterior problem, and general
boundary conditions.

Outline

Two independent boundary integral equations are known for field-free billiards. In
Section 4.2 we derive their magnetic analogues in a gauge-invariant formulation. It is
shown that, unlike the field-free case, each of these equations yield only a necessary
but not a sufficient condition for the definition of the spectra. In other words, each
equation admits spurious solutions. We identify the physical origin of the latter and
propose a way to avoid them, at the expense of dealing with singular (and eventually
even hypersingular [116]) operators.

The explicit form of the integral operators is presented in Section 4.3, where we
discuss the nature of the singularities as well. In Section 4.4, it is shown how the in-
tegral equations may be solved treating the singular parts of the operators analytically.
This leaves the remaining problem in a form suitable for numerical treatment. Its im-
plementation is sketched in Section 4.5, together with a discussion of the numerical
convergence and the attainable accuracy.

The power of the proposed method is demonstrated in Chapter 5, where we study
spectral statistics using several thousand levels and present interior and exterior wave
functions in the quasi-classical regime.

4.2 The boundary integral equations

4.2.1 Single and double layer equations

The stationary eigenfunction of a magnetic billiard at energy ν is defined by the dif-
ferential equation

(
1
2

(
− i∇r/b − Ã(r)

)2 − 2ν
)
ψ(r) = 0 , (4.1)

and a specification of the wave function on the billiard boundary Γ. We shall employ
the general gauge invariant boundary conditions defined in Section 3.3.1. The free
Green function, Gν , was shown to satisfy the inhomogeneous Schrödinger equation

(
1
2

(
− i∇r/b − Ã(r)

)2 − 2ν
)

Gν(r; r0) = −1
2 δ

(
r− r0

b

)
. (4.2)

Our goal is to cast the quantization problem into an integral equation defined on the
billiard boundary. To that end, we take the complex conjugate of (4.1) and multiply it
(from the left) with Gν . Similarly, equation (4.2) is multiplied with ψ∗ and subtracted
from the former expression. This way an equation is obtained,

ψ∗∇2
r/bGν − Gν∇2

r/bψ
∗ − 2i∇r/b

(
Ãψ∗Gν

)
= ψ∗ δ

(
r− r0

b

)
, (4.3)
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which has a form suitable for the Green and Gauss integral theorems. It holds every-
where in the plane, except for the boundary Γ, where the boundary condition (3.6)
introduces a discontinuity in the derivative of ψ.

We start by considering the interior problem. The treatment of the exterior case
is quite analogous and sketched afterwards. Choosing the initial point of the Green
function away from the boundary, r0 ∈ � 2 \ Γ, the integral of (4.3) over the (interior)
domain D may be transformed to a line integral,

∫

Γ

[
ψ∗ ∂n/bGν − Gν ∂n/bψ

∗ − 2i Ãn ψ
∗Gν

]dΓ

b
=

{
ψ∗(r0) if r0 ∈

◦
D

0 if r0 ∈ � 2 \ D.

(4.4)

It is defined on the boundary Γ (with the normal components of the vector potential
and the gradient denoted as Ãn = n̂(r)Ã and ∂n/b := bn̂(r)∇r, respectively). Now
the vector potential part of the integrand is split,

∫

Γ

[
ψ∗ (∂n/bGν − i Ãn Gν)−Gν (∂n/bψ

∗ + i Ãn ψ
∗)
]dΓ

b

=

{
ψ∗(r0) if r0 ∈

◦
D

0 if r0 ∈ � 2 \ D,
(4.5)

which will permit a gauge invariant formulation of the boundary integral equation. We
choose r0 ∈ Γ and define r±0 := r0 ± εn̂0, for small ε > 0. By adding the two
equations in (4.5), one obtains
∫

Γ

[
ψ∗ (∂

ε

n/bGν − i Ãn G
ε

ν)−G
ε

ν (∂n/bψ
∗ + i Ãn ψ

∗))
]dΓ

b
= 1

2ψ
∗(r−0 ) . (4.6)

Here, we have introduced the abbreviationsG
ε
ν = 1

2Gν(r; r+
0 )+1

2Gν(r; r−0 ), ∂
ε

n/bGν =
1
2∂n/bGν(r; r+

0 ) + 1
2∂n/bGν(r; r−0 ). Equation (4.6) is true for all (sufficiently small)

ε > 0, from which it can be concluded that the limit ε → 0 exists. Moreover, by
observing the asymptotic properties of the Green function (cf Sect. 2.5.3), it can be
shown, that the integration and the limit G

ε
ν → Gν , ∂

ε

n/bGν → ∂n/bGν may be in-
terchanged. By virtue of the boundary condition (3.6) we obtain, after renaming the
limiting function u = ∂n/bψ

∗ + iÃnψ
∗, u0 := u(r0),

∫

Γ

[
Gν −

λ

b
(∂n/bGν − i Ãn Gν)

]
u

dΓ

b
=
λ

b
(−1

2u0) . (4.7)

This is an integral equation defined on the boundary Γ.
In order to derive the corresponding equation for the exterior problem, consider a

large disk Kp ⊃ D of radius p, and integrate (4.3) over Kp ∩
◦
D. Once r0 lies in the

vicinity of Γ, the contribution of ∂Kp to the boundary integral vanishes as p→∞, due
to the exponential decay of the regular Green function Gν (since ψ ∈ L2( � 2 \ D)).
Similar to eq (4.6), one obtains an equation

−
∫

Γ

[
ψ∗(∂

ε

n/bGν − i Ãn G
ε

ν)−G
ε

ν(∂n/bψ
∗ + i Ãn ψ

∗))
]dΓ

b
= 1

2ψ
∗(r+

0 ) , (4.8)
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which permits the limit ε → 0 to be taken before performing the integration. The
resulting boundary integral equation differs from (4.7) only by a sign. In the following,
we shall treat both cases simultaneously, with the convention that the upper sign stands
for the interior problem, and the lower sign for the exterior one,

∫

Γ

[
Gν ∓

λ

b
(∂n/bGν − i Ãn Gν)

]
u

dΓ

b
=
λ

b
(−1

2u0) . (4.9)

In analogy to the Helmholtz problem [107], we will refer to these equations as the
single layer equations for the interior and the exterior domain.

The double layer equations

A second kind of boundary integral equations can be derived by applying the differen-
tial operator (∂n0/b + iÃn0) := n̂(r0)(∇r0/b + iÃ(r0) on equations (4.6) and (4.8),

∫

Γ
ψ∗ (∂n0/b + i Ãn0)(∂

ε

n/bGν − i Ãn G
ε
ν)

dΓ

b

−
∫

Γ
(∂
ε

n0/b
Gν + i Ãn0 G

ε
ν)(∂n/bψ

∗ + iÃnψ
∗)

dΓ

b

= ±1
2(∂n0/b + i Ãn0)ψ∗(r∓0 ) . (4.10)

This equation is true for all ε > 0, which means that the limit ε → 0 exists. As for
the first integral, we may again permute the limit and the integration which yields a
proper integral. Consequently, the limit of the second integral is finite, too. However,
in the second integral we are not allowed to exchange the integration with taking the
limit, because the limiting integrand (4.28) has a 1/(r− r0)2-singularity, which is not
integrable, cf Sect. 4.3.1.

Integral operators of this kind are named hypersingular [116]. Similar to a Cauchy
principal value integral, they are defined by taking a special limit. However, in the
present case the singularity is stronger by one order. Below, in Section 4.3.2, we
define which limit is to be taken. It is denoted by =

∫
and should be read “finite part

of the integral”. With this concept and equation (3.6), we obtain the double layer
equations,

∫

Γ
(∂n0/bGν + i Ãn0 Gν) u

dΓ

b

∓ λ

b
=

∫

Γ

(∂n0/b + i Ãn0)(∂n/bGν − i Ãn Gν) u
dΓ

b
= ∓1

2u0 , (4.11)

which are again integral equations defined on the boundary Γ.
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The spectral determinants

It is useful to introduce a set of integral operators (whose labels D and N indicate
correspondence to pure Dirichlet or Neumann conditions):

QD
sl [u] =

∫

Γ
dΓ Gν u (4.12)

QN
sl [u] =

∫

Γ

dΓ

b
(∂n/bGν − i Ãn Gν) u (4.13)

QD
dl[u] =

∫

Γ

dΓ

b
(∂n0/bGν + i Ãn0 Gν) u (4.14)

QN
dl[u] = =

∫

Γ

dΓ

b2
(∂n0/b + iÃn0)(∂n/bGν − i Ãn Gν) u (4.15)

They act in the space of square-integrable periodic functions, u ∈ L2(Γ), with the
period given by the circumference � .

Nontrivial solutions of the single layer equations (4.9) and double layer equations
(4.11) exist, if the corresponding Fredholm determinants vanish,

det

[
QD

sl ∓ λQN
sl +

λ

2
id

]
= 0 (single layer) (4.16)

det

[
QD

dl ∓ λQN
dl ±

1

2
id

]
= 0 (double layer). (4.17)

These are secular equations although the explicit dependence on the spectral variable
is not shown in our abbreviated notation. However, as already mentioned, each of the
determinants (4.16) and (4.17) may have roots, which do not correspond to solutions
of the original eigenvalue problem given by (4.1) and (3.6). For finite ε, the equations
(4.6), (4.8), and (4.10) are still equivalent to the latter. They acquire additional spurious
solutions only as they are transformed to boundary integral equations by the limit
ε→ 0.

4.2.2 Spurious solutions and the combined operator

The physical origin of the redundant zeros is apparent in our gauge invariant formu-
lation. They are proper solutions for the domain complementary to the one consid-
ered. This is obvious for the single layer equation with Dirichlet boundary conditions
(λ = 0), where the spectral determinant does not depend on the orientation of the
normals. The same is true for the double layer equation with Neumann boundary con-
ditions (λ−1 = 0).

In general, the character of the spurious solutions may be summarized as fol-
lows: Independently of the boundary conditions, the single layer equation includes
the Dirichlet solutions of that domain which is complementary to the one considered.
Likewise, the double layer equation is polluted by the Neumann solutions of the com-
plementary domain, irrespective of the boundary conditions employed.

This statement is easily proved by observing that the single-layer-Neumann oper-
ator and the double-layer-Dirichlet operator are adjoint to each other, QN

sl = (QD
dl)
†,
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while the operators QD
sl and QN

dl are self-adjoint. This is shown explicitly in the next
section. Now assume that u is a complementary Dirichlet solution. In Dirac notation,

QD
sl |u〉 = 0 ∧ QD

dl|u〉 ∓ 1
2 |u〉 = 0 (4.18)

⇒ 〈u|QD
sl = 0 ∧ 〈u|QN

sl ∓ 1
2〈u| = 0 .

Applying the dual of u to the single layer operator yields

〈u|QD
sl ∓ λ

{
〈u|QN

sl ∓ 1
2〈u|

}
= 0 , (4.19)

which implies that the Fredholm determinant of the single layer operator vanishes.
Similarly, if u is a complementary Neumann solution,

± QN
sl |u〉+ 1

2 |u〉 = 0 ∧ QN
dl|u〉 = 0 (4.20)

⇒ ± 〈u|QD
dl + 1

2〈u| = 0 ∧ 〈u|QN
dl = 0

then its dual satisfies the double layer equation, again for any λ,

±
{
± 〈u|QD

dl + 1
2〈u|

}
∓ λ〈u|QN

dl = 0 . (4.21)

Since the spurious solutions are never of the same type, it is possible to dispose of them
by requiring that both, the single and the double layer equations, should be satisfied
by the same solution u. Therefore, one obtains a necessary and sufficient condition for
the definition of the spectrum by considering a combined operator

Q±c :=

(
QD

dl ∓ λQN
dl ±

1

2
id

)
+ iαc

(
QD

sl ∓ λQN
sl +

λ

2
id

)
. (4.22)

It has a zero eigenvalue only if both, single and double layer operators do. In practice,
the spectrum is obtained by finding the roots of the spectral function

ξ(ν) = det(1− Q±c ) . (4.23)

The αc in (4.22) is an arbitrary constant, in principle. Numerically, it is convenient
to allow for a ν-dependence, though, to ensure that single and double layer parts are
similar in size.

It is worthwhile noting that (for the interior problem) spurious solutions will not
appear if one uses the irregular Green function. The reason is that the gauge-independent
part of this function is complex, which destroys the mutual adjointness of the oper-
ators. This is why the irregular Green function had to be chosen for the null-field
method [40]. For the boundary integral method, the option to use this exponentially
divergent solution of (4.2) is excluded, since the corresponding operator would get ar-
bitrarily ill-conditioned once the size of the boundary exceeds the cyclotron diameter.
The exterior problem cannot even formally be solved using G

(irr)
ν (because it has an

essential singularity at the origin).
A last remark is concerned with the important case of Dirichlet boundary condi-

tions. Here, one could as well derive a pair of boundary integral equations that are
not gauge-invariant. (Just set ψ = 0 in (4.4) and consider u = ∂n/bψ

∗.) Of course,
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these equations would yield the proper gauge-invariant eigen-energies of the problem.
However, the energies of the additional spurious solutions would depend on the cho-
sen gauge, and a characterization of the latter in terms of solutions of a complementary
problem would not be possible.

We removed the spurious solutions from the spectral function by considering a
combined integral operator. This is of great practical importance for numerical calcu-
lations because one is not required to calculate the eigenfunctions. Individual spurious
solutions of the single and double layer operators may of course be identified, as well,
by simply evaluating the corresponding wave functions.

4.2.3 Wave functions

The eigenfunctions at points off the boundary, ψ(r0 /∈ Γ), are determined by the
null vectors u corresponding to the roots of the spectral determinant. From equation
(4.5) we obtain immediately an integral representation of the (un-normalized) wave
function,

ψ(r0) = ±
[ ∫

Γ

dΓ

b

[
± λ

b
(∂n/bGν − iÃnGν)−Gν

]
u

]∗
, (4.24)

for r0 /∈ Γ. According to theory, the integral vanishes identically either in the interior
or in the exterior. This is indeed confirmed by our numerical calculations, which are
reported on in the next chapter.

In order to calculate the current density (2.35), the gauge invariant gradient of the
wave function is needed. An integral formula is obtained from equation (4.5), after
applying the differential operator∇r0/b + iÃ0,

∇r0/bψ(r0)− iÃ(r0)ψ(r0) = ±
[ ∫

Γ

dΓ

b

[
± λ

b
(∇r0/b + iÃ0)(∂n/bGν − iÃnGν)

− (∇r0/bGν + iÃ0Gν)
]
u

]∗
.

(4.25)

The densities of other observables can be obtained by similar boundary integrals.

4.3 The boundary operators

In the following, we give explicit expressions for the boundary integrals. This allows
to define the “finite part integral” appearing in the double layer equation (4.11).

4.3.1 Explicit expression for the integral kernels

The integral operators (4.12) – (4.15),

(
Q[u]

)
(r0) =

∫

Γ
dΓq(r; r0)u(r) , (4.26)
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are defined by their integral kernels q(r; r0). The form of the Green function (2.64)
leads to the expressions

qD
sl(r; r0) = E(r; r0) G0

ν(z) (4.27)

qN
sl(r; r0) = E(r; r0)

{
− i

(r− r0)× n̂

b2
G0
ν(z) + 2

(r− r0) n̂

(r− r0)2
z

d

dz
G0
ν(z)

}
(4.28)

qD
dl(r; r0) = E(r; r0)

{
− i

(r− r0)× n0

b2
G0
ν(z)− 2

(r− r0) n̂0

(r− r0)2
z

d

dz
G0
ν(z)

}

(4.29)

qN
dl(r; r0) = E(r; r0)

{(
−((r− r0)× n̂0)((r− r0)× n̂)

b4
− i

n̂× n̂0

b2

)
G0
ν(z)

+

(
−2i

n̂× n̂0

b2
− 2

n̂ n̂0

(r− r0)2

)
z

d

dz
G0
ν(z)

− 4
((r− r0)n̂)((r− r0)n̂0)

(r− r0)4
z2 d2

dz2
G0
ν(z)

}
, (4.30)

with n̂ = n̂(r), n̂0 = n̂(r0), z := (r− r0)2/b2, and the abbreviation

E(r; r0) := exp

[
−i

(
r× r0

b2
− χ̃(r) + χ̃(r0)

)]
(4.31)

for the gauge dependent part. Note that the gauge freedom χ has cancelled in the pre-
factors and appears in the phase only. It can be absorbed by the substitution u(r) →
exp(+iχ(r))u(r), proving the manifest gauge invariance of the boundary integral
equations (4.9), (4.11). Note that expressions (4.28) and (4.29) are related by a permu-
tation of r and r0 with subsequent complex conjugation (since G0

ν is real), hence the
operators are the adjoints of each other. The self-adjoint nature of (4.27) and (4.30)
follows likewise.

The derivatives appearing in (4.28) – (4.30) may be stated in terms of the gauge
independent part of the Green function, G0

ν , itself, at different energies ν. This is
shown in Section 2.5.3, where we discuss their asymptotic properties as well. G0

ν

displays a logarithmic singularity as r → r0, while the differential expressions are
bounded. In that limit, most of the quotients vanish for a smooth boundary, others
tend to the curvature κ0 at the boundary point r0 (defined to be positive for convex
domains),

lim
r→r0

(r− r0)n̂

(r− r0)2
=
κ0

2
, lim

r→r0

(r− r0)n0

(r− r0)2
= −κ0

2
. (4.32)

As a consequence, all the terms in (4.27) – (4.30) are integrable — but for the one
containing the (n̂ n̂0)/(r − r0)2-singularity. The latter gives rise to the need for a
finite part integral.
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4.3.2 The hypersingular integral operator

For finite λ, the double-layer equation contains a hypersingular integral defined as

QN
dl[u] = =

∫

Γ

dΓ

b2
(∂n0/b + iÃn0)(∂n/bGν − iÃnGν)u

:= lim
ε→0

∫

Γ

dΓ

b2
(∂n0/b + iÃn0)(∂

ε

n/bGν − iÃnG
ε
ν)u . (4.33)

We want to replace the integrand by its limiting form. To this end the boundary is split
into the part γcε, which lies within a (cε)-vicinity around r0 (with arbitrary constant
c), and the remaining part Γcε,

= lim
ε→0

[∫

Γcε

dΓ

b2
(∂n0/b + iÃn0)(∂

ε

n/bGν − iÃnG
ε

ν)u

+

∫

γcε

dΓ

b2
(∂n0/b + iÃn0)(∂

ε

n/bGν − iÃnG
ε

ν)(u− u0) (4.34)

+u0

∫

γcε

dΓ

b2
(∂n0/b + iÃn0)(∂

ε

n/bGν − iÃnG
ε
ν)

]
,

with u0 := u(r0). For sufficiently small ε the boundary piece γcε may be replaced by
its tangent and the Green function by its asymptotic expression, cf Sect. 2.5.3. This
way the third integral in (4.34) may be evaluated to its contributing order,

∫

γcε

dΓ

b2
(∂n0/b + iÃn0)(∂

ε

n/bGν − iÃnG
ε

ν)

=
1

4π

∫ cε

−cε
cos
(r0n̂0

b2
s
)

cos

[
ε

(
n̂0 × r0

b2
− s
)]( −2

s2 + ε2
+ 4

ε2

(s2 + ε2)2

)
ds

+ O(ε2 log ε)

=
1

2π

∫ cε

−cε
ds

ε2 − s2

(s2 + ε2)2
+ O(ε2 log ε) =

1

π

1

cε

c2

c2 + 1
+ O(ε2 log ε)

≈ 1

π

1

cε
+ O(ε2 log ε) . (4.35)

Here, the explicit form of the integrand was obtained from (4.30) by the replacement
r0 → r±0 . The last approximation in (4.35) holds because c may be chosen arbitrarily
large. In a similar fashion, it can be shown that the second integral in (4.34) is of order
O(ε). In the first integral we may replace (again for large c) the integrand by its limit,
because ε is small compared to min(|r−r0|) = c ε. Therefore, the limit in (4.33) may
be expressed as

=

∫

Γ

dΓ

b2
(∂n0/b + iÃn0)(∂n/b − iÃn)Gνu

= lim
ε→0

[∫

Γε

dΓ

b2
(∂n0/b + iÃn0)(∂n/bGν − iÃnGν)u + u0

1

πε

]
, (4.36)

where we replaced cε by ε. This equation defines the finite part integral. It completes
the derivation of the boundary integral equations, and we may now turn to the question
of how to solve them.
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4.4 Solving the integral equations

As shown above, the integral equations (4.9) and (4.11) may be used to compute spec-
tra of magnetic billiards. However, the corresponding integral kernels are not yet suit-
able for numerical evaluation. In this section, we show how their asymptotically sin-
gular behaviour may be separated and be treated analytically.

In the following, the combined integral equation as defined by (4.22) will be con-
sidered. The corresponding expressions for the pure double layer or single layer case
are obtained easily by setting αc = 0 or α−1

c = 0, respectively. We also take the
opportunity to regularize the integral equations. At the energies of the Landau levels,
νN = N + 1

2 , N ∈ � 0, they are defined only by the limit ν → νN , so far. This is
because the Green function is singular at the Landau energies. These simple poles are
removed by multiplying the equations with cos(πν), and taking the limiting values at
νN , as shown in Sect. 2.5.2. This way, the Green function is replaced by its regularized
version Ĝ0

ν , cf eq (2.66).
For convenience, we assume λ to be constant on Γ, and parametrize the boundary

according to equation (3.1). This allows to write the (regularized) integral kernel

q̂(s, s0) := cos(πν)
[
qD

dl(rs; rs0) + iαc qD
sl(rs; rs0)

∓ λ
(
qN

dl(rs; rs0) + iαc qN
sl(rs; rs0)

)]
(4.37)

with rs := r(s), s ∈ [0; � ]. After an expansion of the boundary around r(s0),

r(s) = r0 + (s− s0) t̂0 −
κ0

2
(s− s0)2 n̂0 + O

(
(s− s0)3

)
, (4.38)

one obtains, observing (4.27) — (4.30), the asymptotic behaviour for small s′ = s−s0,

q̂(s0 + s′, s0) := exp

[
−i

rs × r0

b2

] {
∓ λ cos(πν)

2π

−1

s′2
(4.39)

+
[
i
s′

b2
+ iαc ∓ λ

(2ν

b2
− (αc − iκ0)

s′

b2

)]
Lν
(s′2
b2

)

+
[
κ0 ∓ λ

(
− 2

ν

b2
+ iαcκ0

)] cos(πν)

4π
+ O(s′2 log s′2)

}
.

The necessary asymptotic expansions for the gauge-independent part of the Green
function and its derivatives may be found in Section 2.5.3. The function Lν de-
scribes the asymptotically logarithmic form of the Green function and is defined in
(2.71). Note that, due to the quotient 1/s′2, the expansion of z∂zG0 contributes up
to and including order O(s′2 log s′2). Similarly, the second order term of n̂n̂0 =
1− 1

2κ
2
0s
′2 + O(s′3) enters with the effect of cancelling another term.

As apparent from (4.39), the singularities of the integral kernel are well described
by the functions

m(s, s0) := ∓ λ exp

[
−i

t̂0 × r0

b2
(s− s0)

]
cos(πν)

2π

−1

(s− s0)2
(4.40)
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Figure 4.1: (a) Real and (c) imaginary part of the smooth combined integral kernel (4.42) for
fixed s0 and the case of Neumann boundary conditions. We choose ρ = 0.6 and an elliptic
domain (of eccentricity 0.8 and area

�
= π, centered on (0.5, 0.25)) at ν = 19, corresponding

to the energy of the roughly 1000th interior eigenstate. (The boundary point s0 = 0 is that of
largest curvature.) The magnifications (b) and (d) around s′ = 0 include the original singular
kernel (4.37) as a dashed line.

and, for the logarithmic part,

l(s, s0) := exp

[
−i

t̂0 × r0

b2
(s− s0)

]
Lν

(
(s− s0)2

b2

)

×
[
iαc + i

(s− s0)

b2
∓ λ

(
2ν

b2
− (αc − iκ0)

(s− s0)

b2

)]
. (4.41)

It is important to include the terms of order O
(
s log(s2)

)
, in order to ensure that the

smooth integral kernel defined as

k(s, s0) := q̂(s, s0)− e(s − s0)
[
l(s, s0) + m(s, s0)

]
(4.42)

is differentiable at s = s0 (provided the curvature is continuous). Here, e(s′) is a
window function (with e(0) = 1), which smoothly switches off the singular functions
for |s′| > 0, and vanishes beyond some small, suitably chosen σe. Figure 4.1 shows
the smooth as well as the original kernel for a typical choice of the boundary and the
energy.

The solution u(s) of the boundary integral equation is periodic and may therefore
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be expanded in a Fourier series,

u(s) e+i �χ(s) =
∞∑

`=−∞
u` e2πi`s/ � . (4.43)

As mentioned above, we include the phase due to the gauge freedom χ̃, which amounts
to the choice of the symmetric gauge for the actual calculation. Within the Fourier
representation, the Fredholm determinant may be written in the form

det
[
Kk` + Lk` + Mk` − � c δk`

]
k,`∈ �

= 0 , (4.44)

with

c := (∓1
2 − 1

2 iαcλ) cos(πν) . (4.45)

It consists of a double Fourier integral over the smooth kernel,

Kk` :=

∫ �

0

∫ �

0
e2πi(s`−s0k)/ � k(s, s0) ds0ds , (4.46)

and two single Fourier integrals,

Lk` :=

∫ �

0
e2πis0(`−k)/ � L`(s0) ds0 , (4.47)

and

Mk` :=

∫ �

0

e2πis0(`−k)/ � M`(s0) ds0 . (4.48)

The functions L`(s0) and M`(s0) are (finite part) Fourier integrals over the asymptotic
singularities (4.41) and (4.40),

L`(s0) =

∫ σe

−σe
e2πi`s′/ � e(s′) l(s0 + s′; s0) ds′ , (4.49)

M`(s0) = =

∫ σe

−σe
e2πi`s′/ � e(s′) m(s0 + s′, s0) ds′ . (4.50)

They may be calculated analytically, for a suitable window function e(s), yielding
smooth functions of s0. In Appendix A.2 the results can be found for

e(s) := cos2

(
π

2

s

σe

)(
Θ(s − σe)−Θ(s+ σe)

)
, (4.51)

with Θ the Heaviside step function. With this choice of the window function the in-
tegrals (4.49) and (4.50) are given in terms of elementary functions, and are easily
evaluated. Having treated the (hyper-)singular features of the boundary integrals ana-
lytically, the remaining problem can be solved efficiently by numerical means.
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Figure 4.2: (a) Matrix Kk` + Lk` corresponding to the same choice of parameters as in
Fig. 4.1, for Dirichlet boundary conditions (where Mk` = 0). Shown are the absolute values
of the matrix elements along its diagonal and neighbouring diagonals on a logarithmic scale.
Apart from the diagonal, appreciable values of the matrix Kk` + Lk` − � c δk` are localized
within a sub-block which allows safe truncation. The vertical lines indicate the typical size
after truncation. (b) The three smallest singular values of the matrix around ν = 19 (at constant
ρ = 0.6 corresponding to roughly the 1000th eigenvalue). The minima of the smallest singular
value (solid line) determine the spectrum to a high accuracy.

4.5 Numerical analysis

In the following, we briefly describe some aspects of the numerical treatment and
discuss the question of numerical accuracy.

The evaluation of the remaining Fourier integrals (4.46) - (4.48) must be performed
numerically. Since the integrands are well-behaved, this may be done by dividing the
boundary intoN equidistant pieces and approximating the integrand at each one by its
value at the mid-point. The summations can be performed by a Fast-Fourier algorithm.
For large enoughN , this simple method is more effective than any attempt to evaluate
the highly oscillatory integrals (4.46) – (4.48) by more sophisticated schemes.

Due to the Fourier representation, the resulting large N × N matrix has a partly
diagonal structure, cf Fig. 4.2(a). There are off-diagonal elements of appreciable
value only within a sub-block the size of which is independent of N . Outside of
the sub-block, essentially only the diagonal elements are occupied (the values decay
rapidly as one leaves the diagonal.) It is the bulk wave functions which are given
by the null vectors corresponding to the latter diagonal Fourier components. These
components do not contribute to the other states, since they are not coupled to them.
As a consequence, the restriction of the matrix to the above-mentioned sub-block at
most removes bulk states, if they exist, out of the numerically calculated spectrum,
without affecting other states. Generically, one is not particularly interested in these
states whose energies are exponentially close to the Landau levels. Since the spectrum
is modified at most in a well-controlled way, it is permissible to truncate the matrix to a



52 Chapter 4. Quantization in the interior and the exterior

smaller sizeNtrunc.(Nonetheless, the described method yields precise bulk energies, as
long as their exponentially small distance to the Landau energies is resolvable within
the numerical precision, cf Fig. 4.2 (b).)

A small complication arises in the case of finite λ. Due to the hypersingular part,
the diagonal Fourier elements increase linearly as |`| → ∞, cf (A.12). The above state-
ments apply in this case after dividing the matrix (4.44) column-wise by the asymptotic
factor

[(〈t̂0 × r0〉
b2

− 2π
`

�

)2

+

(
Si(π)

σe

)2
]1/2

. (4.52)

Here, 〈t̂0×r0〉 is the average (the 0th Fourier component) of the function t̂(s0)×r(s0)
defined on the boundary.

The calculation of the spectrum amounts to finding (all) the roots of the complex-
valued determinant (4.44) in a given energy range. Numerically, this is the most ex-
pensive task, scaling as N 3

trunc. Since the computation of the determinant tends to be
unstable around its zeros, it is more advantageous to employ a singular-value decom-
position of the matrix which is stable in any case [117]. The vanishing of a singular
value indicates a defective rank of its matrix. Due to roundoff errors these non-negative
quantities are always greater than zero. However, the spectral points are very well de-
fined by the sharp minima of the lowest singular value as a function of ν, cf Figure
4.2(b). The detection of near degeneracies is made appreciably easier if one monitors
the next smallest singular values, as well.

In order to calculate the probability densities and current distributions away from
the boundary, one may evaluate the integral representations (4.24) and (4.25). Since
the integrands are not singular for r0 /∈ Γ, the integrals may be approximated by a
discrete sum over the N boundary elements without further ado. The densities of
other observables can be obtained by similar boundary integrals.

Convergence and accuracy

Careful numerical tests indicate that the precision of the calculated spectra and wave
functions is determined almost exclusively by the dimensionN of the initial matrix. In
Figure 4.3(a) we show how the energies converge exponentially asN increases. At the
same time, the calculated spectra are found to be numerically invariant with respect to
other parameters such as αc, σe, Ntrunc, and in particular the location of the origin.

Reasonable choices for αc and σe are αc =
√
ν/b and σe = b. The location and

size of the sub-block is best determined by summing over the moduli of the matrix
elements in each column. The resulting spectra are independent of Ntrunc, provided
it exceeds a critical value. Here, the position of the origin is relevant, because the
calculation of the spectral determinant (4.44), in particular its analytical parts, must be
performed in a specific gauge. The choice in favour of the symmetric gauge is made in
(4.43) where the remaining gauge freedom χ is absorbed into the solution vector. As
a consequence of the resulting distinction of the origin, the spectral determinant is no
longer translationally invariant.

As a result, the size of the truncated matrix depends on the choice of the origin. For
example, the values in Fig. 4.3(a) belong to an ellipse centered at the origin. With an
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Figure 4.3: Errors of the 1000th interior eigenvalue at ρ = 0.6 as a function of the boundary
discretization N . (a) Approximate relative error for the elliptic domain of Fig. 4.2(b) (the
Dirichlet state closest to ν = 19). Here, the energy for N = 2600 was taken as reference.
The numbers indicate the matrix dimension after truncation which determines the numerical
effort. They increase only weakly with N . (b) Exact relative error of the exterior Neumann
energies of a typical edge state ( 4,5) and a typical bulk state (ut,♦), as a function of N .
Here, we use a circular domain (of area

�
= π) which allows to determine the exact energies

(νedge ' 19.0294509, νbulk ' 19.4816851) independently. The center of the domain is
placed at the origin (4,ut) and at the point (3,0) (5,♦), respectively. One observes that the
displacement does not affect the error of the edge state, but increases the error of the bulk state
energy systematically. (Note that the graphs do not have the same scale.)

ellipse displaced by the vector (2, 1)T one obtains the same relative errors forN = 600
and N = 2400 (not shown, one would not see a difference) with truncation sizes
larger by 50%. In order to minimize the numerical effort it is therefore advantageous
to choose the origin in the center of the domain considered.

The fact that bulk states are more strongly affected by the truncation is seen in
Fig. 4.3(b), where exterior Neumann states of a circular domain are compared after
displacement by 3 radii. Since the disk is a separable problem, we can check here
against the exact energies (obtained as the roots of a special function, cf Sect. 7.1)
Note that the calculation of the hypersingular integral introduces no additional error.

The only precise published calculations for a non-trivial shape known to us are the
results of Tiago et al, who give the first twenty Dirichlet levels for an ellipse of eccen-
tricity 0.8 and area � = π at constant b2 = 2/25 (missing one symmetry class!). Our
method is able to confirm their results to all given seven digits (apart from occasional
differences in the last digit by one). For reference, we note the energy of the approx-
imately one-thousandth state (the one closest to ν = 80), which we calculate to be
ν ' 79.9362(6). The expected error is less than 0.1% of the mean level spacing.
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Chapter 5

Results of the boundary integral method

In the following, we demonstrate the performance of the boundary integral method by
exhibiting some numerical results on magnetic billiards, which have been inaccessible
by other methods.

5.1 Spectral statistics

We start by applying some of the standard tools of spectral statistics to large data
sets of interior spectral points. The spectra are expected to reproduce the features
of Random Matrix Theory (RMT), if the underlying classical motion displays hard
chaos. Therefore, we define the spectra of this section in the semiclassical direction
b→ 0, keeping the cyclotron radius ρ constant. This way we ensure that the classical
dynamics are hyperbolic throughout the spectral intervals considered.

We consider the two domains described in Fig. 5.1. One is an asymmetric version
of the Bunimovich stadium billiard (r1 = 0.75, r2 = 0.25, � = 5.39724). In the
magnetic field, its dynamics is free of unitary symmetries but exhibits an anti-unitary
one (time reversal and reflection at y = 0). The skittle shape, in contrast, (made up of
the arcs of four symmetrically touching circles, r1 = 1.0, r2 = 0.5, � = 4.33969)
does not display any symmetry. We chose it, because it generates hyperbolic classical
motion even for small cyclotron radii ρ > 1 [49]. (The asymmetric stadium could not
be proven to be strictly hyperbolic, but any possibly integrable part in phase space is
much smaller than the uncertainty product, (b2π)2, throughout the considered spectral
interval.)

We calculated 5300 and 7300 consecutive interior Dirichlet eigenvalues at ρ = 1.2,
for the asymmetric stadium and the skittle shaped domain, respectively. It should be
noted, that states of much higher ordinal number can be computed at little cost with
the boundary integral method. The time consuming task is rather to find all energies,
including the near-degenerate ones, in a given interval.

A quantity which indicates faithfully whether spectral points were missed is the
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Figure 5.1: Definition of domain boundaries considered in Chapter 5. The magnetic dynamics
in the asymmetric stadium (left) exhibits an anti-unitary symmetry, but no unitary one. In
contrast, the skittle shaped domain (right) is free of any symmetry. It generates hyperbolic
classical motion for ρ > 1, ie even for strong magnetic fields.
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Figure 5.2: Fluctuating part of the spectral staircase in the asymmetric stadium at ρ = 1.2.
The displayed range contains the first 5000 points of the interior spectrum, with the heavy
line a running average over 250 neighbouring points. If a spectral point was missed in the
calculation the curve would show a distinct step by one.
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Figure 5.3: Nearest neighbour distributions of the asymmetric stadium (left) and of the skittle
shaped domain (right), at ρ = 1.2. The histograms should be compared to GOE and GUE
predictions of Random Matrix Theory, respectively (heavy lines.) The monotonic lines give
the corresponding cumulative quantities. Their differences are reported in the insets.
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Figure 5.4: Spectral form factor of the asymmetric stadium (left) and the skittle shaped do-
main (right), based on 5300 and 7300 spectral points, respectively. The heavy lines display
the same data after stronger spectral averaging. The random matrix result for the Gaussian
Orthogonal and the Gaussian Unitary Ensemble, respectively, is indicated by the dashed lines.
The insets show the regions of small τ .
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fluctuating part N
(ρ)
osc(ν) = N(ρ)(ν) − N

(ρ)
(ν) of the spectral counting function. It

is defined in terms of the mean staircase, which is given, for fixed ρ, in equation
(D.1). Figure 5.2 displays N

(ρ)
osc for the asymmetric stadium proving that the spectrum

is complete. A similar result is obtained for the skittle shaped domain (not shown).
The large spectral intervals at hand allow for the direct calculation of some of the

popular statistical functions. Due to the underlying classical chaos and the symme-
try properties mentioned above, one expects the statistics of the Gaussian Orthogonal
Ensemble (GOE) for the asymmetric stadium, and of the Gaussian Unitary Ensemble
(GUE) for the skittle. Figure 5.3 shows the distributions of nearest neighbours P (s)
of the unfolded∗ spectra. Indeed, one finds excellent agreement with Random Matrix
Theory. The differences between the numerical and the RMT cumulative functions
I(s) =

∫ s
0 P (s′)ds′ stay below 2% (ie, below the error of Wigner’s surmise [118]).

A function which characterizes the spectrum much more sensitively than P (s) is
the form factor K(τ), ie, the (spectrally averaged) Fourier transform of the two-point
autocorrelation function of the spectral density [119,120]. Figure 5.4 gives the spectral
form factor together with the RMT results. We find very good agreement. One would
expect systematic deviations at small τ , due to the contributionsof single short periodic
orbits. These cannot be resolved with the present size of the spectral interval, though.
Since most other popular spectral measures, such as Dyson’s ∆3 statistic, are functions
of the form factor, there is no need to present them here.

Thie good agreement with RMT is not only a consequence of the large spectral
intervals the statistics are based on. It is equally important that the spectra are defined
at fixed classical dynamics. Had we calculated the spectra at fixed field, they would
have been based on a classical phase space that transforms from a near-integrable,
time-invariance-broken structure, to a hyperbolic time-invariant one as ρ increases with
energy. This transformation of spectral statistics from GOE to GUE as the field is
increased was studied in [21–23].

5.2 Wave functions in the interior and in the exterior

We proceed to present a selection of stationary wave functions calculated in the semi-
classical regime. We start with those of the skittle shaped domain choosing again
ρ = 1.2. This ensures that the corresponding classical skipping motion is hyperbolic
in the interior, as well as in the exterior.

The skittle

Figure 5.5(a) shows the density plot of a typical interior wave function around the
one-thousandth eigenstate. As expected for a classically ergodic system, it spreads out
throughout the whole domain. Occasionally, one may also find bouncing-ball modes,
ie wave functions localized on a manifold of marginally stable periodic orbits. One
such wave function is given in Fig. 5.5(b). It belongs to a family of 2-orbits.

A typical exterior wave function with an energy close to that of Fig. 5.5(a) is
displayed in the middle row of Figure 5.5, at the same scale (c), and at a larger scale
(d). One observes that in the vicinity of the boundary it behaves similar to an interior

∗The spectra are transformed to unit density; see also the discussion in Sect. 9.1.
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Figure 5.5: Interior and exterior wave functions of the skittle shape at ρ = 1.2, around the
one-thousandth interior eigenstate. The plotted shade is proportional to |ψ|, the thin lines
indicate the boundary Γ. Energies: (a) ν ' 32.98804, (b) ν ' 33.12033, (c,d) ν ' 32.84740,
(e,f) ν ' 32.50073.
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Figure 5.6: Wave functions (a,b) and current distributions (c,d) in an elliptic domain at ρ =

0.6, around the ten-thousandth interior eigenstate.
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c
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Figure 5.6: (continued) The energies of the states are ν ' 60.06026 (a,c) and ν ' 60.50030

(b,d).
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Figure 5.7: Exterior wave functions (a,b) and current distributions (c,d) at ρ = 0.6 and at
similar energies as in Fig. 5.6, ν ' 60.13634 (a,c) and ν ' 60.50049 (b,d).
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Figure 5.7: (continued) [The image in part (b) has been blurred to reduce Moiré patterns when
printed with finite resolution. It should show only concentric elliptic strips.]
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function. On a larger scale, the wave function decays after a distance smaller than two
cyclotron radii. In this region circular structures are faintly visible, with the radius of
the classical cyclotron motion.

The bottom row of Figure 5.5 shows a quite different exterior state with an energy
close to that of a Landau level. It is a bulk state. A typical feature is the fact that there
are no large amplitudes close to the boundary. Rather, one finds a ring of increased
amplitude encircling the domain. Another ring surrounds the domain at a distance
of 2ρ. This double-ring structure moves outwards as one goes through the series of
states with energies increasingly close to the Landau levels. Semiclassically, it can
be understood as being made up of a superposition of cyclotron orbits. This becomes
even more clear in the following where we consider a more symmetric shape of the
boundary.

The ellipse

For the second set of wave functions we choose an elliptic domain (of eccentricity
0.8 and area π), at a small cyclotron radius ρ = 0.6. The classical dynamics is mixed
chaotic in this case [65], cf Fig. 3.1. Going to the extreme semiclassical limit – the ten-
thousandth interior eigenstate – we expect the wave functions to mimic the structures
of the underlying classical phase space. Indeed, Figure 5.6(a) displays a wave function
which is localized along a stable interior 6× 6-orbit. Note that the wave nature of the
eigenstate is still visible at points where the trajectory intersects with itself. Since ρ is
small enough to allow for closed cyclotron orbits fitting into the ellipse, we find bulk
states also in the interior, see Fig. 5.6(b) for an example. Again it is semiclassically de-
scribed by a superposition of closed cyclotron orbits. This can be seen clearly from the
current distributions which are given in the right column of Fig. 5.6 for the edge state
(c) and the bulk state (d), respectively. Here, the length of the arrows is proportional
to the amplitude of the current density.

Similar semiclassical states can also be found in the exterior, as displayed in Fig-
ure 5.7. The edge state, Fig. 5.7(a), is distinguished from a typical bulk state, cf.
Fig. 5.7(b), by the finite current it carries around the domain. In contrast, the bulk
state with its counter-running current densities has no net current along the boundary,
cf. Fig. 5.7(c) and Fig. 5.7(d). We emphasize that all the wave functions and current
distributions shown above are calculated throughout the entire displayed area. They
turn out to be numerically zero in the complementary domains, as expected from the
theory.

5.3 General boundary conditions

The Neumann ground state

So far, we only considered Dirichlet conditions. They are the natural choice from a
physical point of view. The Neumann boundary conditions, Λ−1 = 0, are occasionally
employed in spectral theory [30]. They have the advantage that the ground state energy
lies below the first Landau level, which facilitates its mathematical analysis. Here, we
are able to observe the manifestation of a recent theorem of spectral theory [121]. It
states that the Neumann ground state of a magnetic billiard is exponentially localized
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Figure 5.8: Contour plot of the ground state wave function (absolute value) for Neumann
boundary conditions and strong field, b = 0.05, ν ' 0.2763. The wave function is localized at
the boundary point of maximum curvature, as predicted by a recent theorem [121]. The billiard
domain is given by the union of a half-circle and a half-ellipse (shaded region).
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Figure 5.9: Boundary values of the ground state wave function of Fig. 5.8. As predicted
in [121], it is exponentially localized at the point s = 0 of maximum curvature.
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Figure 5.10: The parametric dependence of the exterior spectrum on the boundary condition
(for the asymmetric stadium, ie � = 5.39724, at fixed b = 0.25). The parameter Λ interpo-
lates between Neumann (arctan Λ = − π2 ) and Dirichlet (arctan Λ = 0) boundary conditions.
The right graph shows details around the forth Landau level.

around the boundary point of maximum curvature. In order to deal with a unique
boundary point of maximum curvature we choose the union of a half-circle and a half-
ellipse (with half-axes ǎ = 2, b̌ = 0.5) as billiard boundary. Choosing a magnetic
length of b = 0.05 (which corresponds to a very strong field), we find the ground state
energy ν = 0.2763. The Figures 5.8 and 5.9 display the ground state wave function
in the billiard and on the boundary, respectively. Indeed, one observes an exponential
localization over six orders of magnitude.

Parametric dependence on the mixing parameter

As a last point, we show the parametric dependence of a spectrum on the type of
boundary conditions. Figure 5.10 presents the exterior spectrum of the asymmetric
stadium as a function of the scaled mixing parameter Λ ∈ (−∞, 0], cf (3.7). It is cho-
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sen negative to ensure that the transformation from Neumann (Λ = −∞) to Dirichlet
(Λ = 0) boundary conditions is continuous. For positive Λ this would not be the case,
which is a restriction similar to the one for the field free case [88]. (The arctan func-
tion is used in Fig. 5.10 to transform the infinite range of Λ into a bounded interval.)

The energies clustering around the Landau levels ν = N + 1
2 , N ∈ � 0 belong to

bulk states. One observes that they are lifted from the Landau levels to higher energies
at Dirichlet boundary conditions, whereas in the Neumann case they are shifted to
smaller energies. A semiclassical theory which describes the exponential approach
of the bulk states to the Landau levels and their transition as a function of Λ will be
described in Sects. 7.2 and 8.3.1. We will come back to Fig. 5.10 not only there, but
also in Chapter 8, when we define the edge state density.
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Chapter 6

Semiclassical Quantization

In Chapter 4, the boundary integral equations were found to yield an efficient method
to obtain the exact quantum spectrum of magnetic billiards. It will be shown in the
following, that the same equations are as important for semiclassical quantization.
They serve as the starting point for the derivation of the semiclassical periodic orbit
formulas.

Periodic orbit formulae for magnetic billiards

The celebrated trace formulas of Gutzwiller [1,34] and Berry & Tabor [2,122] allow to
quantize systems semiclassically in terms of their classical motion. They were derived
assuming a continuous Hamiltonian flow. The corresponding formulas for field free
billiards are known to exhibit additional phase factors which account for the disconti-
nuity at the billiard boundary.

In order to prove that the same is true for magnetic billiards, we shall explain how
the corresponding trace formulas are obtained from first principles. To our knowledge,
no such derivation has been published for magnetic billiards, yet. The natural approach
is to follow the lines of Balian and Bloch’s treatment of field-free billiards [123], in
analogy to the surface-of-section method [124] and the scattering approach [125] for
non-magnetic systems. Those attempts failed so far, due to the appearance of an abun-
dance of unphysical “ghost” orbits which could not be handled. To resolve this prob-
lem, we take advantage of the analysis performed in Chapter 4. There, it was found
that the boundary integral equations allow for spurious solutions which belong to a
particular complementary problem. We will show that the semiclassical spectral de-
terminant can be factorized, accordingly, into an interior and exterior part. Each of
them leads to a trace formula incorporating only the physical periodic orbits in the
appropriate domain.
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Outline

Like in the field-free case [123–127] the semiclassical quantization will be based on
the double layer boundary integral equation. The main complication arising at finite
magnetic field – apart from the spurious solutions – is the inherently asymmetric form
of the respective integral kernel. The latter is not simply related to the semiclassically
unitary operator derived from the generating function of the map, unlike the case of
field-free billiards [75].

In Section 6.1, we deduce the semiclassical approximants to the boundary integral
operators of Chapter 4. After that, in Sect. 6.2, special map operators are introduced
which allow to transform the spectral function of the double-layer boundary integral
equation. As a result, the number counting function is given in terms of the traces of
powers of the map operators.

These traces are evaluated semiclassically in Section 6.3 assuming hyperbolic (ie,
purely chaotic) skipping motion. We show why only classically allowed, skipping pe-
riodic orbits contribute, and how their stability properties enter. The section concludes
with the trace formula for the density of states and the magnetization density. In Sec-
tion 6.4, the traces are evaluated assuming integrable dynamics. As a result, we obtain
the explicit periodic orbit formula for the spectral density of states in the magnetic disk
billiard.

6.1 The semiclassical boundary integral operators

In section 4.3 the boundary integral operators were defined in terms of the free Green
function and derivatives thereof. To obtain the semiclassical approximations of the
operators, one simply replaces the Green function by its approximant. The latter is
an asymptotic expression to leading order in the semiclassically small parameter ν−1,
which was derived in Sect. 2.5.1. To remain at a consistent level of approximation,
the derivatives appearing in the single-layer Neumann and the double-layer operators
(4.13) – (4.15) are to be evaluated to the same leading order. This means in practise,
that only the phase of the Green function (2.61) must be differentiated (but not the
amplitudes). Accordingly, in the remainder of this thesis all equalities involving semi-
classical quantities are understood to be semiclassical in the sense that they are correct
(only) to leading order in ν−1.

In order to obtain expressions which have a semiclassically intuitive and useful
form, it will be important to use that representation (2.61) which contains the actions of
the short and long arcs separately.∗ We found the geometric parts of the corresponding
scaled actions (2.59) to be given by

aS(r; r0) =
1

π

(
arcsin

( |r− r0|
2ρ

)
+
|r− r0|

2ρ

√
1−

(
r− r0

2ρ

)2

− r× r0

2ρ2

)
(6.1)

and

aL(r; r0) = 1− aS(r0; r) . (6.2)

∗At this point, the reader may wish to refresh his or her memory on the ingredients to the semiclassical
Green function as discussed in Sect. 2.5.1.
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Figure 6.1: The angles α, β0, and β are defined with respect the vector r− r0 connecting the
initial and the final point. They measure its length, and the relative direction of the boundary
normals, respectively. These quantities do not depend on the type of the arc (left: long, right:
short), unlike the relative direction of the initial and the final velocities v̂0 and v̂. The latter
may be expressed in terms of α, β0, and β, cf eq (6.7). (The dotted line indicates the billiard
boundary.)

As a first step, we note their gradients with respect to the initial and the final points.

∇r0 a �
S
L � (r; r0) =

1

πρ


∓ r− r0

|r− r0|

√
1−

(
r− r0

2ρ

)2

− 1

2ρ

(−y
x

)
 (6.3)

∇r a �
S
L � (r; r0) =

1

πρ


± r− r0

|r− r0|

√
1−

(
r− r0

2ρ

)2

+
1

2ρ

(−y0

x0

)
 (6.4)

Here, the upper and lower signs of the first summands stand for the short arc and long
arc contribution, respectively. In the following, it will be useful to state the distance
between the initial and the final point in terms of the positive angle

α(r; r0) := arcsin

( |r− r0|
2ρ

)
. (6.5)

In addition, the direction of the normal vectors at the initial and the final points will be
measured by their (signed) angles with respect to the distance vector connecting the
two points.

β(r; r0) :=
�

(n̂; r− r0) β0(r; r0) :=
�

(n̂0; r− r0) (6.6)

Now consider the classical arcs connecting the initial and the final points. They define
the direction of the classical velocities at the points of reflection and incidence, see
Figure 6.1 for a sketch of the situation. The angles (6.5) and (6.6) allow to describe
the direction of the velocities. For the normal components, one finds

v̂S n̂ = cos(β + α) v̂0
S n̂0 = cos(β0 − α)

v̂L n̂ = − cos(β − α) v̂0
L n̂0 = − cos(β0 + α) (6.7)
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for short and long arcs, respectively. (Here, the velocity at the initial point of the arc
is denoted with a zero superscript, and the hats indicate that the velocity vectors are
normalized.)

The semiclassical Dirichlet operators

We proceed to calculate the semiclassical approximation1to the kernel of the double
layer Dirichlet operator (4.14) by inserting (2.61). For the short arc term one has to
evaluate the gauge invariant derivative

∂n0/b[2πiνaS− χ̃0] + iÃn0 = 2i
√
ν

(
−(r− r0) n̂0

|r− r0|
cos(α)− (r− r0)× n̂0

2ρ

)

= 2i
√
ν (− cos(β0) cos(α)− sin(β0) sin(α))

= −2i
√
ν cos(β0 − α) = −2i

√
ν (v̂0

S n̂0) , (6.8)

where we used eqs (6.3) and (6.7). Apart from the sign, it is given by the normal
component of the classical velocity after reflection, since 2

√
ν is the magnitude of the

scaled velocity. Note, that (v̂0
S n̂0) is a non-symmetric function of the initial and the

final point, and depends on the energy through α. For long arc term, one obtains the
analogous expression

∂n0/b[2πiνaL − χ̃0] + iÃn0 = +2i
√
ν cos(β0 + α) = −2i

√
ν (v̂0

L n̂0) . (6.9)

It follows that the semiclassical approximation of the double-layer Dirichlet kernel
(4.29) can be stated in a particularly simple form,

q
D(sc)
dl (r; r0) := ∂n0/bG

(sc)
ν + iÃn0G(sc)

ν =
1

2(1 + e2πiν)

1

(2πi)
1
2

ei(χ̃−χ̃0)

×
{

−v̂0
S n̂0

(sinα cosα)
1
2

e2πiνaS + e−iπ
2

−v̂0
L n̂0

(sinα cosα)
1
2

e2πiνaL

}
. (6.10)

It will be an important ingredient in the derivation of the trace formulas. For com-
pleteness, we note that the semiclassical single-layer Dirichlet kernel is simply given
by the semiclassical Green function itself, q

D(sc)
sl (r; r0) := G

(sc)
ν , as an immediate

consequence of (4.12).

The semiclassical Neumann operators

The kernels of the single- and double layer Neumann operators, eqs (4.13) and (4.15),
involve gauge invariant gradients with respect to the final point of the Green function.
One finds

∂n/b[2πiνaS + χ̃]− iÃn = +2i
√
ν cos(β + α) = +2i

√
ν (v̂S n̂) , (6.11)

∂n/b[2πiνaL + χ̃]− iÃn = −2i
√
ν cos(β − α) = +2i

√
ν (v̂L n̂) , (6.12)
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similar to eqs (6.8) and (6.9). It follows that the semiclassical single-layer Neumann
kernels assumes the form (compared to eq (4.28))

q
N(sc)
sl (r; r0) := ∂n/bG

(sc)
ν − iÃnG(sc)

ν =
1

2(1 + e2πiν)

1

(2πi)
1
2

ei(χ̃−χ̃0)

×
{

+v̂S n̂

(sinα cosα)
1
2

e2πiνaS + e−iπ
2

+v̂L n̂

(sinα cosα)
1
2

e2πiνaL

}
. (6.13)

It is worth noting, how the mutual adjointness of the operators (4.28) and (4.29) shows
up in the semiclassical case. By permuting r and r0 the prefactors of the short and
long arc terms change their roles,

(v̂S n̂) ≡ v̂S(r; r0) n̂(r) = v̂0
L(r0; r) n̂(r0) ≡ (v̂0

L n̂0)† , (6.14)

and likewise (v̂L n̂) = (v̂0
S n̂0)†. As for the phases, it is the factor (1+e2πiν)−1 whose

conjugation provides the term e2πiν needed in conjunction with the relation (6.2) to
prove the mutual adjointness.

The kernel of the semiclassical double-layer Neumann operator follows from ap-
plying the gauge invariant derivative (6.11) to the single-layer Dirichlet expression
(6.10), cf eq (4.15). One obtains

q
N(sc)
dl (r; r0) := (∂n0/b + iÃn0)(∂n/bG

(sc)
ν − iÃnG(sc)

ν )

=
1

2(1 + e2πiν)

2i
√
ν

(2πi)
1
2

ei(χ̃−χ̃0)

×
{
−(v̂0

S n̂0)(v̂S n̂)

(sinα cosα)
1
2

e2πiνaS + e−iπ
2
−(v̂0

L n̂0)(v̂L n̂)

(sinα cosα)
1
2

e2πiνaL

}
. (6.15)

Like the exact kernel (4.30) this semiclassical version is self-adjoint. This follows
again from the observation that the two summands simply change roles when the ad-
joint operator is formed.

6.2 From boundary to map operators

Let us now consider the semiclassical double-layer equation for Dirichlet boundary
conditions in more detail. As known from Chapter 4, the corresponding Fredholm
determinant (4.17) is a spectral function. Its roots yield the Dirichlet spectrum of
the domain considered, conjoint with the Neumann spectrum of the complementary
domain.

In general, the fluctuating part of the number counting function, Nosc = N − N
is obtained from a spectral function by taking the imaginary part of its logarithm, cf
eg [128]. Employing the semiclassical expression (6.10) we get from eq (4.17)

− 1

π
Im log det

[
1

2
± Q

D(sc)
dl

]

=− 1

π
Im log det

[
1

2(1 + e2πiν)

]
− 1

π
Im log det

[
1 + e2πiν ± P

]
. (6.16)
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Here, the determinant was split into two parts. This was done to reflect the the par-
titioning of the corresponding classical phase space into cyclotron orbits (which are
detached from the boundary) and skipping trajectories, cf Sect. 3.1. In the first part
of the sum (6.16), the determinant does not depend on the boundary. The diagonal
operator is singular at the energies νN = N + 1

2 , N ∈ � 0 of the Landau levels, and
represents semiclassically the contribution of the bulk states to the number counting
function. This part is infinite at νN , corresponding to the infinite number of degen-
erate bulk states found in the exterior at each Landau level. (The exponentially small
lifting of the degeneracy observed in the exact spectrum is not seen here, since the
semiclassical Green function (2.62) does not describe tunneling effects.)

The map operators

As will become clear in the following, the second part in (6.16) gives the contribution
of the skipping trajectories to the number counting function. It is described by the map
operator P, defined as2

P := 2(1 + e2πiν) Q
D (sc)
dl . (6.17)

We will show that it can be related to the classical billiard map (3.4) describing the
motion of skipping trajectories.

Equation (6.16) suggests that the fluctuating part of the number counting function
may formally be split, Nosc = Ncycl

osc + Nskip
osc , into parts which correspond to the bulk

states and the edge states, respectively. Strictly speaking, Ncycl
osc is not a well-defined

quantity. We shall disregard this contribution of the bulk states, for the time being,
postponing a rigorous justification to Chapter 8 (where the spectral measure will be
adjusted to remove the bulk states). The relevant contribution to the fluctuating number
counting function is given by the part Nskip

osc which is due to the skipping motion,

Nskip
osc = − 1

π
Im log det

[
1 + e2πiν ± P

]
. (6.18)

Here, the upper sign stands for the interior problem, like in Chapter 4. The map op-
erator P consists of a short arc and a long arc term. It is advantageous to split it
accordingly,

P = PS + PL , (6.19)

with the corresponding integral kernels given by

pS(s, s0) :=
1

(2πi)
1
2

−v̂0
S n̂0

(sin(α) cos(α))
1
2

e2πiνaS eiχ̃−iχ̃0 (6.20)

and

pL(s, s0) :=
1

(2πi)
1
2

−v̂0
L n̂0

(sin(α) cos(α))
1
2

e−iπ
2 e2πiνaL eiχ̃−iχ̃0 , (6.21)

cf eq (6.10) with r = r(s), r0 = r(s0). In the standard procedure to obtain a trace
formula one would now make use of the identity log det = tr log [129] in equation



6.2. From boundary to map operators 75

(6.18), and evaluate the trace of powers of the operator (6.19) in stationary phase ap-
proximation. However, unlike the case of field-free billiards the corresponding saddle
point condition selects classical periodic orbits in the interior and in the exterior. This
could be expected from the fact that the double-layer equation allows for solutions in
the complementary domain. What is worse, an abundance of saddle-point configura-
tions arises which do not have a physical meaning at all. In order to avoid these severe
difficulties, it is vital to be able to write the spectral function (6.18) as a product, such
that each factor yields the spectrum in either the interior or the exterior domain.

Factorising the determinant

To facilitate the factorization of the determinant (6.18), we split the short and long arc
operators once more, PS = Pint

S − Pext
S and PL = Pint

L − Pext
L . Ultimately, the parts

labelled by “int”and “ext” should exclusively account for the motion in the interior
and in the exterior, respectively. To that end, the splitting is defined by the signs of the
prefactors of the integral kernels, which are functions of the initial and the final points.

pint
S (s, s0) := Θ(−n̂0v̂

0
S) pS(s, s0) pint

L (s, s0) := Θ(−n̂0v̂0
L) pL(s, s0)

pext
S (s, s0) := −Θ(n̂0v̂

0
S) pS(s, s0) pext

L (s, s0) := −Θ(n̂0v̂0
L) pL(s, s0)

(6.22)

(The minus sign in front of the exterior kernels is introduced for convenience.) Ac-
cording to the definitions (6.22), the “interior” part of the operators vanishes whenever
the initial and the final points have positions such that the corresponding classical arc
points into the exterior domain, and vice versa. This crucial property is embodied in
the operator equations

Pint
S Pext

L + Pint
L Pext

S = − e2πiν id (6.23)

and

Pint
S Pext

S + Pint
L Pext

L = 0 , (6.24)

which are derived in Appendix C. With their help, it follows immediately that the
determinant in eq (6.18) factorizes into an interior and exterior part.

Nskip
osc = − 1

π
Im log det

[
1 + e2πiν ±

(
Pint

S − Pext
S + Pint

L − Pext
L

)]
(6.25)

= − 1

π
Im log det

[(
1±

(
Pint

S + Pint
L

))(
1∓

(
Pext

S + Pext
L

))]
(6.25a)

= − 1

π
Im tr log

[
1±

(
Pint

S + Pint
L

)]
− 1

π
Im tr log

[
1∓

(
Pext

S + Pext
L

)]

=
1

π
Im

∞∑

n=1

(∓)n

n
tr
[(

Pint
S + Pint

L

)n]
+

1

π
Im

∞∑

n=1

(±)n

n
tr
[(

Pext
S + Pext

L

)n]

(6.25b)

Here we merely replaced the term e2πiν in (6.25) by the operators (6.23), and included
(6.24). Then the identity log det = tr log [129] was used, together with the Taylor
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expansion of the logarithm. The result is a sum of traces which contain only powers
of operators of either the interior or the exterior type.

We shall show in the following that the first sum in (6.25b) yields the interior
semiclassical Dirichlet (Neumann) spectrum, for the upper (lower) sign. Accordingly,
the second sum gives the exterior semiclassical spectrum for Neumann or Dirichlet,
repectively. This is in complete agreement with the finding of Section 4.2.2, that the
double layer Dirichlet equation includes the Neumann solutions of the complementary
domain.

6.3 Trace formula for hyperbolic billiards

In order to obtain the periodic orbit formula we can now follow the lines of the deriva-
tion of the trace formula for field free billiards [110, 123, 124, 126–128, 130–132].
Starting with the interior case, the trace in (6.25b) amounts to an n-dimensional inte-
gral of the form

tr
[(

Pint
S + Pint

L

)n]
=

∫
ds1 . . .dsn

bn
(
pint

S + pint
L

)
(s2, s1) · · ·

(
pint

S + pint
L

)
(s1, sn)

=
1

(2πi)n/2

∫
ds1 . . .dsn

bn
exp

(
i
n∑

j=1

(χ̃(sj+1)− χ̃(sj))
)

(6.26)

×
n∏

j=1

[
−(v̂0

Sn̂0)j Θ
(
− (v̂0

Sn̂0)j
)

(
sin(αj) cos(αj)

) 1
2

exp
(

2πiνaS(sj+1; sj)
)

+
−(v̂0

Ln̂0)j Θ
(
− (v̂0

Ln̂0)j
)

(
sin(αj) cos(αj)

) 1
2

exp
(

2πiνaL(sj+1; sj)− i
π

2

)]
.

Here, the abbreviation (v̂0n̂0)j := v̂0(r(sj+1); r(sj)) n̂(r(sj)) was used, together
with (6.28), and the convention s0 ≡ sn. Note, that the gauge dependent factor (in-
volving the χ̃(sj)) vanishes identically, as a consequence of the cyclic permutability
of the integration variables. This renders the trace (6.26) a gauge invariant quantity. It
will now be evaluated to leading semiclassical order, by the stationary phase approxi-
mation (A.3).

6.3.1 The saddle point conditions

For each of the 2n integrands in (6.26) the condition of a stationary phase leads to n
saddle point equations

d

dsj

[
2πνaηj(sj ; sj−1) + 2πνaηj+1(sj+1; sj)

]
!

= 0 , j ∈ {1, . . . , n} . (6.27)

Here, the indices ηj ∈ {S,L} account for the 2n different sequences of short and long
arc operators under the trace. We shall treat all these equations simultaneously, noting
for any solution s of (6.27) not only the configuration of saddle points, but also the
corresponding sequence of types of arcs, s = ((s1, η1), .., (sn, ηn)).



6.3. Trace formula for hyperbolic billiards 77

^vj

^vj
0

cj-1

βj

αj

0βj-1

j-1r

rj+1

rj

j
^n

nj-1
^

n^ j+1βj+1

c

α

j

ρ

βj
0

j-1

Figure 6.2: The angles entering the jth saddle point condition. (The dashed line indicates the
boundary.)

n̂j v̂0
S j = + cos(β0

j − αj) t̂j v̂0
S j = − sin(β0

j − αj)
n̂j v̂0

L j = − cos(β0
j + αj) t̂j v̂0

L j = + sin(β0
j + αj)

n̂j v̂S j = + cos(βj + αj−1) t̂j v̂S j = − sin(βj + αj−1)

n̂j v̂L j = − cos(βj − αj−1) t̂j v̂L j = + sin(βj − αj−1)

Table 6.1: Components of the incident and reflected velocities. For the geometrical interpre-
tation, see Fig. 6.2.

In order to obtain a geometric interpretation of the saddle point conditions, we fix
the positions rj := r(sj), and extend the selection of the angles (6.5) and (6.6) to a
sequence of n points.

αj := arcsin

( |rj+1 − rj |
2ρ

)
(6.28)

and

β0
j :=

�
(n̂j ; rj+1 − rj) βj+1 :=

�
(n̂j+1; rj+1 − rj) . (6.29)
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This definition implies

cos(βj) =
(rj − rj−1) n̂j
|rj − rj−1|

sin(βj) =
(rj − rj−1)× n̂j
|rj − rj−1|

cos(β0
j ) =

(rj+1 − rj) n̂j
|rj+1 − rj |

sin(β0
j ) =

(rj+1 − rj)× n̂j
|rj+1 − rj |

, (6.30)

as well as

cos(βj+1 − β0
j ) = n̂j n̂j+1 sin(βj+1 − β0

j ) = n̂j × n̂j+1 . (6.31)

Again, αj determines the angles of the incident and the reflected velocity vectors with
respect to the direction given by rj+1 − rj . It follows that the normal and tangential
components of the velocity are given by the expressions in Table 6.1. They allow to
state the derivative of the action with respect to the arc length s along the boundary (cf
eq (3.1)) in a particularly convenient form:

d

dsj
aS(sj ; sj−1) =

1

π


2

√
1−

(
rj − rj−1

2ρ

)2 (rj − rj−1)t̂j
|rj − rj−1|2ρ

− t̂j × rj−1

2ρ2




=
1

πρ

(
cos(αj−1)

n̂j × (rj − rj−1)

|rj − rj−1|
+

rj−1 n̂j
2ρ

)

=
1

πρ

(
− cos(αj−1) sin(βj) +

rj−1 n̂j
2ρ

)
(6.32)

Similarly, one finds

d

dsj
aS(sj+1; sj) =

1

πρ

(
+ cos(αj) sin(β0

j )−
rj+1 n̂j

2ρ

)
(6.33)

d

dsj
aL(sj ; sj−1) =

1

πρ

(
+ cos(αj−1) sin(βj) +

rj−1 n̂j
2ρ

)
(6.33a)

d

dsj
aL(sj+1; sj) =

1

πρ

(
− cos(αj) sin(β0

j )−
rj+1 n̂j

2ρ

)
. (6.33b)

As a result, one obtains an explicit expression for the jth saddle point condition in
terms of the vectors rj−1, rj, rj+1, and n̂j . Naturally, the condition depends on the
type of the two operators involved.

(rj+1 − rj−1) n̂j
2ρ

=





− sin(βj) cos(αj−1) + sin(β0
j ) cos(αj) if (ηj−1, ηj) = (S, S)

− sin(βj) cos(αj−1)− sin(β0
j ) cos(αj) if (ηj−1, ηj) = (S,L)

+ sin(βj) cos(αj−1) + sin(β0
j ) cos(αj) if (ηj−1, ηj) = (L, S)

+ sin(βj) cos(αj−1)− sin(β0
j ) cos(αj) if (ηj−1, ηj) = (L,L).

(6.34)

Note that the left hand side of this equation can be written in terms of the angles appear-
ing on the right side, after simply adding and subtracting the expression (rj n̂j)/(2ρ).

(rj+1 − rj) n̂j
2ρ

+
(rj − rj−1) n̂j

2ρ
= cos(β0

j ) sin(αj) + cos(βj) sin(αj−1) (6.35)
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Combining the last two equations, the saddle point condition assumes a form,

sin(βj + αj−1) = sin(β0
j − αj) if (ηj−1, ηj) = (S, S)

sin(βj + αj−1) = − sin(β0
j + αj) if (ηj−1, ηj) = (S,L)

sin(βj − αj−1) = − sin(β0
j − αj) if (ηj−1, ηj) = (L, S)

sin(βj − αj−1) = sin(β0
j + αj) if (ηj−1, ηj) = (L,L) , (6.36)

which should be compared to the expressions in Table 6.1 for the components of the
classical velocities. One observes that the equations (6.36) simply amount to the con-
dition

t̂j v̂ηj j = t̂j v̂0
ηj j

, (6.37)

for j = 1, . . . n, and any ηj ∈ {S,L}. It means that the tangential component of
the classical velocities which correspond to the saddle point configuration s are con-
tinuous in the point of reflection. Since the modulus of the velocity is a constant of
the motion, the trajectory is either continuous in this point, or the normal component
changes its sign. In the first case the trajectory penetrates the boundary, which we call
an unphysical solution. In the second case, the trajectory corresponding to the saddle
point configuration obeys the law of specular reflection in rj .

From the fact that (6.37) must be satisfied simultaneously at the n points rj , it
follows that any saddle point configuration corresponds to a closed, periodic orbit.
However, by no means is this orbit necessarily a physically allowed classical trajectory.
Figure 6.3 sketches the two different types of saddle point configurations which appear
in magnetic billiards. Here, we choose n = 5, hence the saddle points correspond to
periodic orbits of period 5. Clearly, both of them are unphysical trajectories. The
one on the top features a specular reflection at r2. Then, the boundary is penetrated
at r3, giving rise to a full cyclotron loop. After one more reflection – this time from
the exterior – at r4 = r2, the trajectory arrives at its initial point. It performs one
more cyclotron orbit, without even displaying a boundary point at r2. This saddle
point is a legitimate solution to (6.37), belonging to a dense and two-dimensional set
of stationary points (since the boundary points r1 and r2 may be shifted independently
without changing the picture.) However, it has no relation to a physical periodic orbit
whatsoever.

The saddle point shown on the bottom part of Fig. 6.3, on the other hand, does
exhibit the boundary points of a physical periodic orbit (with period 4.) Nonetheless,
the depicted trajectory is unphysical, since it leaves the interior domain, performing
a cyclotron loop between the third and forth boundary points. Obviously, there is
an infinite number of these unphysical saddle points attached to any proper, physical
periodic orbit. They merely dress the original orbit with additional cyclotron loops.
It might be expected that these unphysical contributions can be re-summed, leaving
behind only the contributions of physical periodic orbits of the interior and exterior
problem. However, this is a virtually impossible task, due to its combinatorial nature
in conjunction with a number of ambiguities. A saddle point configuration may, for
example, incorporate an interior and and exterior periodic orbit at the same time, leav-
ing the question undetermined whether to assign the contribution to the interior or to
the exterior problem.
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Figure 6.3: Typical saddle point configurations appearing in the semiclassical evaluation of
the trace (6.26). Both correspond to unphysical trajectories. The upper configuration has no
relation to an orbit of the classical problem, while the lower one corresponds to a physical
trajectory which is dressed by an additional cyclotron loop.

These problems are resolved immediately by the above splitting of the operator
in interior and exterior types. Here, it is the Heaviside functions introduced by the
splitting which guarantee that only those saddle points contribute for which the cor-
responding classical trajectory is directed into the correct domain at each point of re-
flection. As a consequence, the unphysical solutions discussed above are erased from
the sum. The remaining saddle points will be denoted by γ(n)

int and γ(n)
ext , respectively.

They correspond to the periodic orbits of period n, found in the classical interior and
exterior billiard problem. 3

6.3.2 The prefactors

The next step is to transform the prefactors in the trace integral (6.26) in a suitable
way. Eventually they should combine with the determinant of the matrix of action
derivatives which will be introduced by the stationary phase approximation (A.3). The
resulting expression should then be given in terms of the physical properties of the
attributed periodic orbit γ(n).
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We start with the evaluation of the mixed derivatives of the actions in terms of the
angles (6.28), (6.29) characterising the jth part of the trajectory. If the arc is of the
short type one obtains the formula

d2

dsjdsj+1
aS(sj+1, sj) =

1

πρ

d

dsj+1

(
cos(αj) sin(β0

j )−
rj+1 n̂j

2ρ

)

=
1

2πρ2

(
tan(αj) sin(βj+1) sin(β0

j )

− cot(αj) cos(βj+1) cos(β0
j ) + sin(βj+1 − β0

j )
)

=
−1

2πρ2

cos(β0
j − αj) cos(βj+1 + αj)

sin(αj) cos(αj)

=
−1

2πρ2

(v̂0
Sj n̂j)(v̂Sj+1n̂j+1)

sin(αj) cos(αj)
. (6.38)

Here, the expressions given in (6.33) and Tab. 6.1 were employed, as well as the for-
mulas

d

dsj+1
cos(αj) = − sin(αj)

d

dsj+1
arcsin

( |rj+1 − rj |
2ρ

)

=
−1

2ρ

sin(αj)

cos(αj)

(rj+1 − rj) t̂j+1

|rj+1 − rj |

=
1

2ρ
tan(αj) sin(βj+1) (6.39)

and

d

dsj+1
sin(β0

j ) =
d

dsj+1

[
(rj+1 − rj)× n̂j
|rj+1 − rj |

]

=
t̂j+1 × n̂j
|rj+1 − rj |

− (rj+1 − rj)× n̂j
|rj+1 − rj |

(rj+1 − rj) t̂j+1

(rj+1 − rj)2

=
−1

2ρ

cos(βj+1) cos(β0
j )

sin(αj)
. (6.40)

Hence, the mixed derivative (6.38) is essentially determined by the normal components
of the velocities at the initial and the final point of the corresponding arc. Note that
this expression is manifestly positive, if the arc is part of a physical trajectory, meaning
that it lies either in the interior or in the exterior at both points (see also Fig. 6.2).

If the jth part of the action corresponds to a long arc, one obtains in a similar
fashion

d2

dsjdsj+1
aL(sj+1, sj) =

1

2πρ2

cos(β0
j + αj) cos(βj+1 − αj)
sin(αj) cos(αj)

=
1

2πρ2

(v̂0
L jn̂j)(v̂L j+1n̂j+1)

sin(αj) cos(αj)
. (6.41)

The form of this formula is analogous to (6.38), except for the difference in sign.
It follows that equation (6.41) is manifestly negative if the angles αj , β0

j , and βj+1
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describe a segment of a physical trajectory — again due to the change in the orientation
of the velocity vector.

The mixed derivatives (6.38) and (6.41) allow to transform the product under the
trace integral (6.26) into a symmetrised expression. For a given saddle point γ (n), we
denote the geometric part of the total action by

A(γ(n)) :=
n∑

j=1

aηj(sj+1, sj) , (6.42)

cf (6.1), (6.2). In addition, the number of long arcs appearing in γ(n) will be called `γ .
The product under trace integral (6.26) can now be stated in terms of A(γ(n)) and `γ .
For the interior operators, it assumes the form

e2πiνA(γ
(n)
int ) e−iπ

2
`γ

n∏

j=1

−(v̂0
ηjn̂0)j

(
sin(αj) cos(αj)

)1
2

(6.43)

=

∏n
j=1

(
(v̂0
{ηj j}n̂j)(v̂

0
{ηj+1 j+1}n̂j+1)

) 1
2

∏n
j=1 (sin(αj) cos(αj))

1
2

e−iπ
2
`γ e2πiνA(γ

(n)
int ) (6.43a)

=

∏n
j=1

(
−(v̂0

{ηj j}n̂j)(v̂{ηj+1 j+1}n̂j+1)
)1

2

∏n
j=1 (sin(αj) cos(αj))

1
2

e−iπ
2
`γ e2πiνA(γ

(n)
int ) (6.43b)

=
n∏

j=1

(
2πρ2 d2aηj(sj+1, sj)

dsjdsj+1

) 1
2

eiπ
2

(`γ−`γ) e2πiνA(γ
(n)
int ) (6.43c)

= (2π)
n
2

n∏

j=1

∣∣∣∣ρ2 d2A(γ
(n)
int)

dsjdsj+1

∣∣∣∣
1
2

e−iπ
2
`γ e2πiνA(γ

(n)
int ) . (6.43d)

Here, we used several times the fact that the saddle point configurations described by
γ

(n)
int correspond to physical, interior periodic orbit with n reflections. First, we noted

the positivity of the factor −(v̂0
ηjn̂0)j , to write it as a product of square roots (and

shifted one index by one). Second, the reflection condition

(v̂0
{ηj j}n̂j) = −(v̂{ηj j}n̂j) (6.44)

was employed to get from (6.43a) to (6.43b). As a result, the prefactors are symmetric
in sj and sj+1, which allows to state them in terms of the mixed derivatives of the
classical action. Finally, given the sign of each factor in (6.43d), the sign of the product
can be taken out. It is (−)`γ , due to the `γ long arcs in γ(n).

Upon evaluating the trace of the exterior operators, one is led to the same expres-
sion (6.43d), with γ(n)

int replaced by γ(n)
ext . This is because the additional sign in the

definition (6.22) of the exterior operators cancels the change in the orientation of the
normals relative to the velocity vectors.

6.3.3 Performing the trace

Now, once we succeeded to write the prefactors as mixed derivatives of the action in
(6.43d) we can follow the standard procedure to derive the semiclassical trace formula.
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ρ cyclotron radius (ρ > 0) (2.36)
α relative distance of the initial and the final point (0 ≤ α ≤ π

2 ) (6.5)
β0 relative direction of normal at the initial point (0 ≤ β0 < 2π) (6.6)
β relative direction of normal at final point (0 ≤ β < 2π) (6.6)

aS, aL geometric part of the action of a short (long) arc (6.1)
γ, γ(n) physical periodic orbit (with n reflections) page 80

A(γ) geometric part of the action of the periodic orbit γ (6.42)
nγ (rγ) number of reflections (repetitions) in γ page 83

µγ Maslov index (number of conjugate points in γ) page 83
M(γ) stability matrix of γ (6.46)

Table 6.2: Important geometric quantities

We apply the stationary phase approximation to the n-dimensional trace integral. The
contributing saddle points will be assumed to be isolated. This amounts to the assump-
tion that the corresponding classical billiard dynamics is hyperbolic [4]. The contrary
case of an integrable system will be treated afterwards.

Combining eqs (6.26) and (6.43), together with (A.3), yields

tr
[(

Pint
S + Pint

L

)n]
=

∫ n∏

j=1

[(
pint

S + pint
L

)
(sj+1, sj)

] ds1 . . .dsn
bn

=
∑

γ∈
{
γ

(n)
int

}
n

rγ

1

ρn

∏n
j=1

∣∣∣ρ2 ∂2A(γ)
∂sj∂sj+1

∣∣∣
1
2

∣∣∣∣det
(
∂2A(γ)
∂sk∂sl

)
k,l

∣∣∣∣
1
2

e2πiνA(γ) e−iπ
2

(`γ+νγ )

=
∑

γ∈
{
γ

(n)
int

}
n

rγ

1

| tr(M(γ)− 2| 12
e2πiνA(γ) e−iπ

2
µγ . (6.45)

The factor n/rγ is appears because the sum is taken over all n-periodic orbits of the
interior billiard, rather than over all contributing saddle points. Each n-periodic orbit
(with repetition number rγ ) corresponds to n/rγ distinct saddle points s, which are
related by a cyclic shift of their components. For the last equality in (6.45), we used
once more the fact that γ(n)

int is a classical periodic orbit of a billiard problem. This
implies a general relation between the derivatives of the generating function of the
billiard map A(γ(n)) and the stability matrix M(γ(n)) [127],

det

[(
∂2A(γ(n))

∂sk∂sl

)

k,l

]
= (−)n

[
tr M(γ(n))− 2

] n∏

j=1

∂2A(γ(n))

∂sj∂sj−1
. (6.46)

Its modulus was taken to arrive at (6.45). The integer µγ := `γ + νγ denotes the total
number of conjugate points. Here, νγ is given by the number of negative eigenvalues of
the determinant in the dominator. It counts those conjugate points along the trajectory,
which are due to the focusing and defocusing effect of the boundary. The remaining,
trivial conjugate points, which show up at each long arc (after an angle of π), are taken
into account by `γ .
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For later reference, let us mention that the dual partner orbit of γ (n), denoted as
γ(n), has

µγ = 2n− µγ (6.47)

conjugate points (if it exists at all). As discussed in Section 3.2.3, the dual orbits con-
sists of the arcs complementary to those of γ(n), and has opposite orientation. From
(6.2), we find A(γ(n)) = n − A(γ(n)), and it follows that νγ = n − νγ , since every
element of the matrix of second derivatives in (6.45) is multiplied by (−1). By defini-
tion, we have `γ = n− `γ , what leads to equation (6.47). Note also that the stabilities
of dual periodic orbits are equal, tr M(γ) = tr M(γ), which follows from equation
(6.46).

The trace formula for the spectral counting function

Inserting the expression for the trace (6.45) into (6.25b) we obtain the first part of the
fluctuating number counting function Nskip

osc = N
skip(int)
osc + N

skip(ext)
osc :

Nskip(int)
osc :=

1

π
Im

∞∑

n=1

(∓)n

n
tr
[(

Pint
S + Pint

L

)n] (6.48)

=
1

π
Im

∞∑

n=1

∑

γ∈
{
γ

(n)
int

}
(∓)n

rγ

1
∣∣ tr M(γ)− 2

∣∣ 1
2

e2πiνA(γ)−iπ
2
µγ

=
1

π

∑

γ∈{γ int}

(∓)nγ

rγ
∣∣ tr M(γ)− 2

∣∣12
sin
(

2πνA(γ)− π

2
µγ
)

(6.48a)

It is naturally associated with the interior problem, since the sum finally includes all
periodic orbits

{
γ int

}
of the interior billiard problem (with nγ the number of reflec-

tions). Like in (6.18), (6.25b) the upper and lower signs in eq (6.48) refer to the interior
and exterior choice, respectively, of the original spectral problem.

The second part of the number counting function (6.25b) includes the trace over
powers of the exterior operators. In complete analogy to the treatment above, one
obtains a periodic orbit sum like equation (6.45). As the only difference, the sum
is over all the periodic orbits γext of the exterior classical billiard map. Hence, the
exterior part of the fluctuating number counting function is given by a periodic orbit
sum,

Nskip(ext)
osc :=

1

π
Im

∞∑

n=1

(±)n

n
tr
[(

Pext
S + Pext

L

)n] (6.49)

=
1

π

∑

γ∈{γext}

(±)nγ

rγ
∣∣ tr M(γ)− 2

∣∣ 1
2

sin
(

2πνA(γ)− π

2
µγ
)

(6.49a)

which differs formally from (6.48a) only by a sign (−)nγ in each periodic orbit contri-
bution. This is readily explained. From the theory of non-magnetic quantum billiards,
it is well known [88], that the trace formulae for Dirichlet and Neumann boundary con-
ditions differ only by a phase: At Dirichlet boundary conditions, there exists a phase
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shift of π for each reflection along the periodic orbit, which is absent in the Neumann
case. The same is true for magnetic quantum billiards, as evident from equations
(6.48a) and (6.49a). Those were obtained from the Dirichlet double-layer equation,
which was shown to be polluted by the Neumann spectrum of the complementary do-
main, cf Sect. 4.2.2. Indeed, equations (6.48a) and (6.49a) exhibit a Dirichlet factor
(−)nγ for the periodic orbits in the original domain, while the trajectories in the com-
plementary domain do not get an additional phase.

Hence, for either the interior or the exterior Dirichlet problem the fluctuating num-
ber function is given by

Nskip
osc (ν) =

1

π

∑

γ

1

rγ
∣∣ tr M(γ)− 2

∣∣ 1
2

sin
(

2πνA(γ)− πnγ −
π

2
µγ
)
, (6.50)

where the sum is over all periodic orbits in the respective domain.

6.3.4 Geometric interpretation

Let us briefly discuss the geometric meaning of the scaled action of a trajectory. We
start with the observation, that the actions of short and long arcs are given by identical
expressions, once the parameter

σj :=
(rj+1 − cj)× (rj+1 − rj)

ρ |rj+1 − rj |
=

{
− cos(αj) if “short” arc

+ cos(αj) if “long” arc,
(6.51)

is introduced to describe the j-th arc. Unlike the angleαj (6.28), it is not just a function
of rj and rj+1, but it contains information on the type of the arc, through its sign: σj is
negative for short arcs, and positive for long ones. The geometric parts of the actions
of short and long arcs, (6.1) and (6.2), now assume the common form

a(rj+1; rj) =
1

π

(
π

2
+ arcsin(σj)− σj

√
1− σ2

j −
rj+1 × rj

2ρ2

)
, (6.52)

which is a remarkable simplification.∗ It allows to show immediately that a periodic
orbit γ (of period n) exhibits a geometric action (6.42)

A(γ(n)) =
n∑

j=1

a(rj+1, rj) =
ρ � γ ± � γ

ρ2π
, (6.53)

which is given by the length of the trajectory,

� γ := ρ
n∑

j=1

(π + 2 arcsin(σj)) (6.54)

= ρ
d

dν

[
2πνA(γ(n))

]
, (6.54a)

∗The derivation of the trace formulas would have been considerably more complicated, had we intro-
duced this parametrization earlier.
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and the enclosed area,

� γ := � poly
γ ∓

n∑

j=1

(π
2

+ arcsin(σj) + σj

√
1− σ2

j

)
ρ2 . (6.55)

Here, � poly
γ is the area of the polygon defined by the points of reflection {rj}, and

each of the summands in (6.55) is equal to the area enclosed by the j-th arc, and the
cord connecting its initial and final points, cf eq (2.47). (Hence, overlapping parts of
the enclosed area are counted according to their multiplicity.)

In Chapter 3, we mentioned the generating function � (s, s′) for the skipping mo-
tion in magnetic billiards, cf eq (3.5). In Ref. [67] it was taken to depend on the area
enclosed by the trajectory and the billiard boundary, along with the length of the tra-
jectory. Since the billiard area � – like any constant – may be added to the generating
function without changing the dynamics, we arrive at the same quantity (for periodic
orbits). However, for given initial and final points the enclosed area depends on the
type of the arc, ie, � is not uniquely specified by s and s′ alone. Since additional
information is required, it is not a generating function in its proper sense.

Density of skipping states

Equation (6.54a) follows, bearing in mind that ρ and σi are functions of ν, cf (2.40).
It illustrates the fact that the excursion time of a trajectory is given by the derivative
of its action with respect to energy. Using the proper scaled energy Ẽ = 2ν (cf the
discussion of (2.40)), we obtain the scaled time of flight τγ of the periodic orbit,

τγ =
d

d(2ν)

[
2πνA(γ(n))

]
=

n∑

j=1

(π
2

+ arcsin(σj)
)
. (6.56)

The formula for the fluctuating part of the density of skipping states (3.15) follows by
taking the derivative of the number counting function (6.50) with respect to ν,

dskip
osc (ν) =

2

π

∑

γ

τγ

rγ
∣∣ tr M(γ)− 2

∣∣12
cos
(

2πνA(γ)− πnγ −
π

2
µγ

)
. (6.57)

It must be emphasized, however, that the applicability of this expression is rather re-
stricted. It is valid only for the interior billiard at fields which are weak enough that
no cyclotron orbit fits into the domain. In the opposite case, the attempt to include the
cyclotron contributions “by hand” yields unsatisfactory results [83]. (This is due to the
fact that orbits which are almost detached from the boundary are no longer isolated;
moreover, the semiclassically large parameter ν would enter with a different power in
the integrable cyclotron part.) Since we are interested in strong field effects, equation
(6.57) will not be used in the following.

Magnetization density

Another derivative of the action occurs in the definition of the scaled magnetization
density (3.24) which was discussed in Sect. 3.4. We find that it is determined by the
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area � γ enclosed by the trajectory (6.55),
(
−b2 d

db2
− ν d

dν

)[
2πνA(γ)

]
= ± 2

b2
� γ . (6.58)

The semiclassical expression for the fluctuating part of the scaled magnetization den-
sity is obtained by applying (6.58) to the trace formula for Nosc, cf eq (3.24). Assuming
that all periodic orbits are isolated and of the skipping type we find

m̃osc(ν) = ±2
∑

γ

� γ/(b
2π)

rγ
∣∣ tr M(γ)− 2

∣∣ 1
2

cos
(

2πνA(γ)− πnγ −
π

2
µγ
)
. (6.59)

Hence, compared to the density of skipping states (6.57), each periodic orbit contribu-
tion to the scaled magnetization density includes the enclosed area in units of b2π, ie,
the magnetic moment of the classical orbit, rather than the scaled time of flight. Again,
the expression (6.59) is only applicable for the interior problem at weak fields. The
corresponding, less intuitive semiclassical expression for the conventional magnetiza-
tion at weak fields may be found in [81].

6.4 Trace formula for the integrable case

In the previous section, the classical billiard map was assumed to be hyperbolic. We
now shift to the other extreme – systems with an integrable bounce map. In fact, only
one type of magnetic billiard is known which exhibits integrable motion. It is the disk
billiard, whose boundary is given by a circle of radiusR.

6.4.1 The disk billiard

The periodic orbit formula for the density of states in the interior of the magnetic disk
was derived recently by Blaschke et al [83]. These authors used the trace formula by
Creagh and Littlejohn [133] to account for the continuous circular symmetry of the
disk.

In the following, we derive the trace formula starting from the boundary integral
equation, ie, from first principles. This demonstrates how the integrable case is treated
in the framework of the boundary map operators and yields an explicit formula in a
straightforward manner. Moreover, the exterior case is easily included in our treatment.

Fortunately, many results of the last section apply. In particular, the factorization
of the spectral function (6.25) does not depend on the type of motion, so we can start
directly with the equations (6.48) and (6.49) for the interior and the exterior counting
functions. However, the trace of powers of the map operators cannot be evaluated
like in the hyperbolic case, since the periodic orbits are not isolated but appear in
continuous families [122].

The classical motion is governed by one parameter. It is the ratio

Γd :=
R

ρ
(6.60)

between the radius of the disk and the cyclotron radius. For weak fields Γd < 1, any
two points on the boundary can be connected in the interior only by short arcs, and
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in the exterior (only) by long ones. The field is strong, Γd > 1, if complete cyclotron
orbits fit into the interior. The skipping motion then displays both types of arcs in the
interior and exterior, and two points on the boundary are then no longer necessarily
connected by an arc.

It is advantageous to use the polar angles ϕ = s/R as the coordinates for explicit
formulas. To be definite, we shall choose the angles always such, that adjacent points
differ at most by π. Simple geometry tells that the positive angle α,∗ as defined in
(6.5), obeys

sin(α) = Γd sin

( |ϕ− ϕ0|
2

)
. (6.61)

Moreover, we note the relation

1

2
Γ2

d | sin(ϕ− ϕ0)| � sin(α) cos(α) for Γd � 1 (6.62)

which is needed in proving almost all the equations below. Finally, geometry tells that
the normal components of the reflected velocities are given by

−v̂0�
S
L � n̂0 =

1

Γd

(
1

2
Γ2

d sin(ϕ− ϕ0)± sin(α) cos(α)

)
, (6.63)

for the short arc and long arc, respectively. They allow to state explicitely the prefactors
of the map operators (6.20) and (6.21), in terms of the angle increment ϕ− ϕ0.

6.4.2 Operators for the integrable map

Upon choosing the symmetric gauge, χ = 0, one finds that the actions of short and
long arcs are merely functions of the difference of the initial and the final coordinate,†

aS(ϕ− ϕ0) := aS(Rϕ;Rϕ0) =
1

π

(
α+ sin(α) cos(α) + 1

2Γ2
d sin(ϕ− ϕ0)

)
,

(6.64)

and likewise aL(ϕ − ϕ0) := aL(Rϕ;Rϕ0) = 1 − aS(ϕ0 − ϕ). This reflects the
integrability of the classical motion.

For the special case of the disk billiard, the map operators can be related directly to
the magnetic generalisation of the T operator [124] (cf Note 2 on page 92). Following
[124], we define two operators, TS and TL, entirely in terms of the actions of a short
and long arc, η ∈ {S,L}, respectively, with kernels

tη(ϕ;ϕ0) :=
1

(2πi)
1
2

(
d2(2πνaη)

dϕ dϕ0
(ϕ− ϕ0)

) 1
2

e2πiνaη . (6.65)

∗For the sake of clarity we use α (6.5) rather than σ (6.51) in this section.
†At arbitrary gauge the actions depend on both coordinates individually, and the canonical momentum

is not a constant of the motion.
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Evaluating the mixed second derivatives of the actions, one finds that they may be
stated in a form

d2aS

dϕ dϕ0
(ϕ− ϕ0) =

1

2π

(sin(α) cos(α) + 1
2Γ2

d sin(ϕ− ϕ0))2

sin(α) cos(α)
(6.66)

d2aL

dϕ dϕ0
(ϕ− ϕ0) = − 1

2π

(sin(α) cos(α)− 1
2Γ2

d sin(ϕ− ϕ0))2

sin(α) cos(α)
(6.67)

which allows the direct comparison with equation (6.63). It follows that the operators
Pint

S and Pext
S (cf eq (6.22)) are given essentially in terms of TS.

pint
S (Rϕ,Rϕ0) = tS (ϕ;ϕ0)

b

R

{
Θ(ϕ− ϕ0) if Γd > 1

1 if Γd < 1
(6.68)

pext
S (Rϕ,Rϕ0) = tS (ϕ;ϕ0)

b

R

{
Θ(ϕ0 − ϕ) if Γd > 1

0 if Γd < 1
(6.69)

They vanish whenever there is no classically allowed trajectory connecting the initial
and the final point in the considered domain. Similarly, the operators Pint

L and Pext
L are

given as restrictions of TL.

pint
L (Rϕ,Rϕ0) = −tL (ϕ;ϕ0)

b

R

{
Θ(ϕ− ϕ0) if Γd > 1

0 if Γd < 1
(6.70)

pext
L (Rϕ,Rϕ0) = −tL (ϕ;ϕ0)

b

R

{
Θ(ϕ0 − ϕ) if Γd > 1

1 if Γd < 1
(6.71)

Here we assume |ϕ− ϕ0| ≤ π, as throughout this section.

6.4.3 The explicit trace formula

To obtain a semiclassical expression for the number counting function, we start by
calculating the kernel of the N th power (Pint

S + Pint
L )N , at coinciding initial and final

point s0. It is given by a (N − 1)-dimensional integral,

(
pint

S + pint
L

)N
(s0, s0) =

∫ N∏

j=1

[(
pint

S + pint
L

)
(sj , sj−1)

] ds1 . . .dsN−1

bN−1
(6.72)

with fixed sN ≡ s0. This integral may be evaluated by the stationary phase method.
For the same reason as above (Sect. 6.3.1), only the saddle points contribute, which
correspond to a physically allowed trajectory. However, they are now required to start
and end at the point s0. Each saddle point is characterized by the constant angular
increment ∆ϕ ∈ PN , the jth component given by

ϕj = ϕ0 + j∆ϕ , j = 0, . . . , N − 1 . (6.73)

For givenN , there is a finite number of possible increments

PNint =

{
+2πMN ; M = 1, 2, . . .Mmax if Γd > 1

±2πMN ; M = 1, 2, . . .Mmax if Γd < 1.
(6.74)
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Here, the second index M has the meaning of a winding number.‡ It gives the number
of times the trajectory encircles the origin. The maximum value is given by

Mmax =

{
[arcsin(1/Γd)N/π] if Γd > 1

[N/2] if Γd < 1,
(6.75)

where [·] indicates the integer part. The stationary phase approximation (A.3) brings
about a (N − 1)-dimensional matrix of second derivatives. Its determinant is easily
calculated, since the difference between adjacent angles is constant:

det

(
∂2
∑

a(ϕj+1 − ϕj)
∂ϕk∂ϕl

)

k,l=1...N−1

=
(
a′′(∆ϕ)

)N−1
det




2 −1 0

−1
. . . . . .
. . . . . . −1

0 −1 2




=N
(
a′′(∆ϕ)

)N−1 (6.76)

The number of negative eigenvalues is νA = 0 or νA = N−1, respectively, for positive
or negative sign of a′′(∆ϕ) (ie, for long or short arcs).

Taking the square-root of (6.76) cancels all but one of the prefactors in the inte-
grand of eq (6.72). Altogether, the kernel

(
pint

S + pint
L

)N
(s0, s0), is given by

1

(2πi)
1
2

1√
N

b

R

∑

∆ϕ∈PNint

{ ∣∣∣∣
d2(2πνaS(∆ϕ))

dϕ2

∣∣∣∣
1
2

eN2πiνaS(∆ϕ)−iπ
2

(N−1) (6.77)

+

∣∣∣∣
d2(2πνaL(∆ϕ))

dϕ2

∣∣∣∣
1
2

eN2πiνaL(∆ϕ)−iπ
2
N Θ(Γd − 1)

}
.

It is a sum over all families of interior periodic orbits, where each family is represented
by the orbit starting at s0.

The nth power of the exterior operators, (Pext
S + Pext

L )N , assumes the same form,
except for the Heaviside function, which appears in the short arc term of the sum.
Naturally, the summation is now over the exterior periodic orbit families, the respective
increments given by the set

PNext =

{
−2πMN ; M = 1, 2, . . .Mmax if Γd > 1

±2πMN ; M = 1, 2, . . .Mmax if Γd < 1 .
(6.78)

As the last step in forming the trace tr{(Pint
S + Pint

L )N} we have to integrate s0. Since
the expression (6.77) does not depend on s0, this simply adds the factor 2πR/b.

It follows that for the magnetic disk, the fluctuating number function due to the

‡We use capital letters for the indices N,M in this section, to avoid confusion with the radial and
angular momentum quantum numbers, cf (7.12).
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skipping orbits (6.48) assumes the form

Nskip(int)
osc =

(
2ν

π

) 1
2
∞∑

N=2

1

N3/2

∑

∆ϕ∈PNint

{
(6.79)

1
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d sin(∆ϕ) + sin(α) cos(α)
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2
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1
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(sin(α) cos(α))
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2
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4

)
Θ(Γd − 1)

}
,

withα ≡ arcsin(Γd sin(|∆ϕ|/2)). Analogously, the periodic orbit sum for the exterior
problem is given by

Nskip(ext)
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(
2ν

π

) 1
2
∞∑

N=2

1

N3/2

∑

∆ϕ∈PNext

{
(6.80)
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2
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4

)}
.

The conventional density of states

The semiclassical expression for the density of states is obtained by taking the deriv-
ative of the number function with respect to the energy. In order to compare with the
result of Blaschke et al , which is in units of the conventional energy E, we have to
take the derivative

d

dE
=

1

E

(
ν

d

dν
− 1

2
Γd

d

dΓd

)
. (6.81)

Applying this differential to (6.79) yields the fluctuating part of the density for the
interior problem

d skip(int)
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)}
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(6.82)

This periodic orbit formula is identical to the result in [83]. It approximates the quan-
tum spectrum of the interior magnetic disk only for weak fields Γd < 1, when all
trajectories are of the skipping type. For strong fields, Γd > 1, complete cyclotron or-
bits occur in the interior. One may wish to include them by hand into the periodic orbit
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sum, to account for their contribution to the total number counting function. However,
it was shown in [83] that energies close to the Landau levels cannot be reproduced
this way. Rather than trying to refine the semiclassical approximation, we shall define
a new spectral density of edge states below, which will resolve the problem of bulk
contributions.

Notes
1. The semiclassical operators derived in Section 6.1 allow to compute spectra

within a “semiquantum” approximation, by means of the boundary integral method
of Chapter 4. One merely has to replace the exact kernels (4.27) – (4.30) by
their approximants (2.62), (6.10), (6.13), (6.15) and calculate the respective de-
terminants numerically without further approximation. As an advantage of this
scheme, it applies irrespective of the type of classical motion (including mixed
chaotic dynamics). However, it should not be regarded as a proper semiclassical
quantization, since the degree of approximation is not consistent throughout the
calculation. To be consistent, also the determinant must be evaluated to leading
order in ν (as performed in Sections 6.3 and 6.4).

2. The operator P is not identical – albeit similar – to the standard map operator
defined in terms of the generating function � of the classical map [75],

S = − 1

(2πi)
1
2

(
∂2 �
∂s∂s0

) 1
2

ei � , (6.83)

which is the analogy of Bogomolny’s transfer operator T [124]. The fact that P
consists of two distinct parts, cf (6.19) is no even the main difference. Rather,
it is the inherent asymmetry in the coordinates s, s0, which introduces the most
difficulties compared to the field-free treatment. (The prefactors cannot in gen-
eral be stated as mixed derivatives of the relevant phase.) Moreover, the parts Pη
are not semiclassically unitary, but satisfy equation (6.23).

3. Strictly speaking, the set of saddle points γ(n) which are directed into the correct
domain at each point of reflection still includes the so-called ghost orbits. These
are periodic orbits which leave (and necessarily re-enter) the proper domain with-
out exhibiting a component of the saddle point (ie, a point of reflection) when
leaving it. The left side of Fig. 6.4 shows the situation. Like in the case of non-
magnetic billiards [123], these saddle points do finally not contribute to the sum
over the traces. This is because for any ghost orbit of period n one finds another
of period n+ 1, with an additional boundary point at the position of re-entrance
(right side of Fig. 6.4). These two contributions differ by a factor (−1) due to the
additional boundary point and therefore cancel. (The orbits having a component
of the saddle point at the the place of exit do not contribute due to the vanishing
of one Heaviside function (6.22), as discussed above.)
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Figure 6.4: Sketch of an interior ghost orbit. (The normals are pointing outwards.)



Chapter 7

Separable geometries

In this chapter, the disk billiard is quantized semiclassically for a second time, using
the separability of the quantum problem. This permits to examine the effect of general
boundary conditions on the trace formula. In the second part, a model system is intro-
duced which allows to study the transition of edge states to bulk states asymptotically.

7.1 The disk billiard

The disk is an exception among the magnetic billiards, as the only shape which exhibits
integrable dynamics. The exact and semiclassical quantization procedures presented
in Chapters 4 and 6 do of course apply in the case of the magnetic disk. Nonethe-
less, we shall briefly discuss the quantization based on the separability of the problem.
This way closed expressions for the spectral functions may be obtained, which allow
the derivation of explicit formulas for important quantities, such as the magnetization.
Moreover, formulating the connection of the semiclassical spectral function to the pe-
riodic orbit formula of Sect. 6.4, allows the trace formula to be extended to general
boundary conditions.

We take the boundary to be a circle of radius R which is centered on the origin.
In the symmetric gauge, χ = 0, this ensures that the canonical angular momentum is
conserved. Hence, the eigenstates are characterized by the quantum number

m =
L

� =
c2 − ρ2

b2
. (7.1)

In the second equality the scaled angular momentum is stated in terms of the radial
distance c of the center of motion, cf (2.13). Along with the cyclotron radius ρ, the
latter determines whether the classical motion is of the skipping type. This is the case
forR−ρ < c < R+ρ. Hence, a quantum state (of energy ν) corresponds to classically
skipping motion if its angular momentum quantum number m is bounded from above
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and below by

mmax = R̃2 + 2
√
νR̃ (7.2)

and

mmin = max
(
R̃2 − 2

√
νR̃,−ν

)
, (7.2a)

respectively. Here, the scaled radius R̃ := R/b enters as the only external parameter.
We start with the traditional Bohr-Sommerfeld quantization method, and proceed

to discuss its relation to the periodic orbit formula of Sect. 6.4. The exact quantization
in terms of special functions will be treated afterwards.

7.1.1 Semiclassical quantization

Using polar coordinates (r, ϑ), the ansatz

ψ(r, ϑ) =
ϕ(r/b)√
r/b

eimϑ (7.3)

transforms equation (4.1) into the form of a one-dimensional Schrödinger equation for
the radial function ϕ(r̃).

−1

4
ϕ′′(r̃) +

(
1

4

(r̃2 −m)2 − 1
4

r̃2
− ν
)
ϕ(r̃) = 0 (7.4)

It may be solved to leading order in b2 using the standard WKB technique, see eg
[41, 134].

The semiclassical wave function

It follows that in the energetically allowed region the resulting semiclassical wave
function has the form

ψ(sc)(r, ϑ) = Ndisk
cos
(
Φ

int/ext
disk (ν,m, rb )− π

4

)
(
4ν rb −

(
( rb)

2 −m
)2) 1

4

eimϑ . (7.5)

Here, the phases Φint
disk and Φext

disk are obtained by an integration starting at the interior
and exterior classical turning points of the radial motion, respectively.

Φint
disk(ν,m, r̃) =

1

2

√
4νr̃2 − (r̃2 −m)2 − (ν +

m

2
) arctan

(
2ν +m− r̃2

√
4νr̃2 − (r̃2 −m)2

)

− m

2
arctan

(
(2ν + m)r̃2 −m2

m
√

4νr̃2 − (r̃2 −m)2

)
+
π

2

(
ν +

m− |m|
2

)

(7.6)

and

Φext
disk(ν,m, r̃) = π

(
ν +

m− |m|
2

)
− Φint

disk(ν,m, r̃) . (7.7)
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As for the normalization factorNdisk, we find [134]

(Ndisk)−2 :=
π2

4
∓ π

2
arctan


 2ν + m− R̃2

√
4νR̃2 − (R̃2 −m)2


 , (7.8)

where the upper sign stands for the interior problem (like throughout this chapter).

A spectral function

Allowing for general boundary conditions (3.6) at the disk radius r = R, we obtain
the quantization condition

± cot
(
Φ

int/ext
disk (ν,m, R̃)− π

4

)

= − (±Λ)
(
4νR̃2 − (R̃2 −m)2

) 3
2

2
√
νR̃
(
4νR̃2 − (R̃2 −m)2

)
+ (±Λ)R̃2

(
2ν + m− R̃2

) . (7.9)

The boundary condition enters on the right side through the dimensionless∗mixing pa-
rameter Λ, cf (3.7). It vanishes for Dirichlet boundary conditions. In order to transform
the dependence on the boundary condition into a phase shift αΛ, we define

αΛ(ν,m, R̃) := arctan


 (±Λ)

(
4νR̃2 − (R̃2 −m)2

) 3
2

2
√
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(
4νR̃2 − (R̃2 −m)2

)
+ (±Λ) R̃2

(
2ν +m− R̃2

)




(7.10)

The semiclassical quantization condition (7.9) is then readily brought into a form,

cos
(

Φ
int/ext
disk (ν,m, R̃)∓ αΛ(ν,m, R̃)− π

4

)
= 0 , (7.11)

which allows to state a spectral function ξ in terms of two quantum numbers, the
number of radial nodes n, and the angular momentum m,

ξ
(sc)
disk

(
ν;n,m,Λ,

R

b

)
:= Φ

int/ext
disk

(
ν,m,

R

b

)
∓ αΛ

(
ν,m,

R

b

)
−
(
n +

3

4

)
π , (7.12)

with n ∈ � 0, mmin ≤ m ≤ mmax, cf (7.2). Its zero in ν yields the semiclassical
energy of a state with given radial and angular quantum numbers n and m. Although
the energies are defined implicitly by (7.12), the spectral function allows for explicit
formulas for the infinitesimal change of the energies as an external parameter is varied.
Calculating the derivative of the energy with respect to the boundary mixing parameter
at Dirichlet boundary conditions (Λ = 0), we obtain

dν

dΛ

∣∣∣∣
Λ=0

= −
d

dΛ
ξ
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disk
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2
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
 2ν + m− R̃2

√
4νR̃2 − (R̃2 −m)2



. (7.13)

∗The dimensionless mixing parameter (3.7) is introduced for convenience. Strictly, it is not an inde-
pendent variable but should be replaced by 2

√
νλ/b everywhere (to avoid energy dependent boundary

conditions). This distinction does not matter, ultimately, since we are only interested in the derivatives at
Λ = 0, cf (7.13), (8.1).
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This short formula is further compressed below and needed soon.

The magnetic moment

It was shown in Sect. 3.4 that the scaled magnetic moment of a quantum state in the
magnetic billiard is essentially determined by the derivative of its energy with respect
to the magnetic length, cf equation (3.25). From the semiclassical spectral function
(7.12) we find

b2 dν

db2
= −

b2 d

db2
ξ
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d
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= ±1
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
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

. (7.14)

Alternatively, the expectation value may be calculated directly, using the semiclassical
wave function (7.5). We obtain indeed, after lengthy transformations,

1

2
〈ψ(sc)|(r̃× ṽ)sym|ψ(sc)〉 =

∫
Im
[
ψ∗(sc)(∂ϑ − i r̃2)ψ(sc)

]
dϑ r̃ dr̃

= ±1

2

√
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π

2
∓ arctan


 2ν +m − R̃2

√
4νR̃2 − (R̃2 −m)2



− ν , (7.15)

in complete agreement with (3.25). In the above radial integration (which is limited
by the disk radius and the interior or exterior turning point, respectively), the strongly
fluctuating cos2-term was replaced by its mean. The fact that the exact relation (3.25)
is reproduced shows that this approximation is consistent with the semiclassical one.

The bulk states

States with angular momenta beyond the bounds given by (7.2) are not included in
the spectral function (7.12). Classically, they correspond to cyclotron motion. The
semiclassical energies of these bulk states are determined by the condition that the
two wave functions (7.5) defined from the interior and exterior turning points must
match. They are given by the Landau energies ν = n + 1

2 , and the wave functions are
readily shown to exhibit a magnetic moment of −ν. (Exponential corrections to the
bulk energy are discussed in Sect. 8.3.1)

7.1.2 Relation to the periodic orbit formula

The semiclassical quantization method discussed above amounts to the traditional
Bohr-Sommerfeld rule for separable systems. It is based on the quantizing tori, ie,
those invariant manifolds in phase space whose scaled actions are integers. This
should be contrasted to the periodic orbit formula for the magnetic disk derived in
Sect. 6.4. The latter is a sum over the rational tori, whose classical frequencies are
commensurate [122]. In order to sketch, how the trace formula is connected to the
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Bohr-Sommerfeld quantization, we follow the work of Berry and Tabor [2] who de-
rived the trace formula for general integrable systems. In particular, this allows us to
show how the trace formula is modified if one allows for general boundary conditions
(3.6).

The semiclassical spectrum is given by the energies ν(n,m), which are implicitly

defined as the roots of ξ(sc)
disk. We may write the spectral density as a sum over the two

quantum numbers,

d(ν0) =
∑

n,m

δ
(
ν0 − ν(n,m)

)

= d(ν0) +
∞∑

N,M=−∞

∫
e2πi(Nn+Mm)δ

(
ν(n,m)− ν0

)
dn dm

= d(ν0) +
∞∑

N,M=−∞

∫ ∣∣∣dn
dν

∣∣∣ e2πi(Nn(ν0 ,m)+Mm) dm , (7.16)

where the Poisson summation formula (eg [135]) was employed to transform the sum
into an integral. (Boundary corrections which are to higher order in ν are neglected.)
The sum excludes the term withN = M = 0, which yields the mean density d. Upon
integrating n, the δ-function selects the (real valued) “number” of radial nodes, which
is known explicitely from above.

n(ν0, m) =
1

π

(
Φ

int/ext
disk (ν0, m, R̃)∓ αΛ(ν,m, R̃)− 3π

4

)
(7.17)

We evaluate the remaining integral in the stationary phase approximation. The phase
shift αΛ should be neglected in the saddle point condition

−2
d

dm

[
Φ

int/ext
disk ∓ αΛ

] !
= 2π

M

N
≡ ∆ϕ (7.18)

since Φ is of order ν (while αΛ is of order 1). A detailed calculation shows, that the
angles ∆ϕ selected by (7.18) are indeed given by the setsPNint/ext defined in (6.74) and
(6.78) (modulo 2π). It is now convenient to characterize the corresponding skipping
trajectories by the signed sine of the angle of incidence

ε :=
c2 −R2 − ρ2

2Rρ
= n̂× v̂ , (7.19)

such that the former quantum number m is given by the (real) value

m = R̃2 + 2
√
νR̃ ε . (7.20)

One finds, after a lengthy calculation, that

2Φ
int/ext
disk +

M

N
2πm = πν + 2ν arcsin(σ)− 2νσ

√
1− σ2 + R̃2 sin(∆ϕ)

= 2πν a (7.21)
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with σ = ∓(εR + ρ)/c defined in (6.51), and “a” the geometric action (6.52) of one
arc. Transforming the summation in (7.16) to positiveN we obtain, observing (A.2),
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We note the derivatives
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and
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)
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The last equality allows to integrate the spectral density immediately. It yields the
oscillatory part of the number counting function,
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× sin
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2πνaN +
π

2
N +

π

4
sgn(σ)∓ 2NαΛ

)
,

which may be compared to the trace formulas (6.79) and (6.80) obtained from the
boundary integral equations. The agreement of the prefactors follows after a tedious
discrimination of the various cases (interior/exterior, short/long arcs, and R � ρ.) As
the only difference compared to the Dirichlet result of Section 6.4, we observe the
non-vanishing phase factor ∓2NαΛ for finite Λ.

The effect of general boundary conditions

This result suggests that, compared to Dirichlet boundary conditions, the only effect of
a finite mixing parameter is the appearance of an additional phase shift at every point
of reflection,

∓2αΛ = −2 arctan


Λ

√
1− ε2

1± Λ
1

4ν

ρ/R+ ε

1− ε2


 (7.26)

= −2 arctan
(

Λ
√

1− ε2
)

+ O(Λ2) , as Λ→ 0. (7.26a)

Here, we stated (7.10) in terms of the geometry of the periodic orbit, cf (7.19), and
of ν. One might be tempted to “generalise” the result (7.26) to arbitrarily shaped
billiards, by replacing the disk radius R by the radius of curvature at the point of
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reflection. However, the phase shift at a point of zero curvature (which is given below)
is not reproduced correctly this way. Only the limiting expression for small Λ, cf
(7.26a), matches with its zero curvature analogue. The latter is determined merely by
the (unsigned) angle of incidence with respect to the normal at the point of reflection,

√
1− ε2 = |n̂ v̂| . (7.27)

This form coincides with the non-magnetic result [88]. This generality suggests that
at small Λ any billiard exhibits the additional phase (7.26a) at the points of reflection.

All what will be needed below, fortunately, is this dependence to first order in Λ.
It shows up in the derivative (7.13) which we may now write in terms of the geometric
quantities ε and σ, cf (7.19) and (6.51). It assumes a particularly simple form,

dν

dΛ
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Λ=0

=

√
1− ε2

π
2 + arcsin(σ)

. (7.28)

The remainder of this chapter is of a more technical nature and may be skipped at a
first reading.

7.1.3 Exact quantization

The exact solutions of the Schrödinger equation in symmetric gauge are given in Ap-
pendix B, cf eqs (B.6) and (B.7). At fixed angular momentum m, the interior and
exterior wave functions of the disk are specified uniquely by their behaviour at the
origin and at infinity, respectively. Since in the interior the wave function (for energy
ν) must be regular at the origin, it has the form

ψm(r, ϑ) = Nint eimϑ
(r
b

)|m|
e−

r2

2b2 1F1

(1

2
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|m| −m
2

, 1 + |m|; r
2

b2

)
. (7.29)

For the exterior wave function, which vanishes at infinity, we have

ψm(r, ϑ) = Next eimϑ
(r
b

)|m|
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2b2 U
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2
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2

, 1 + |m|; r
2

b2

)
. (7.30)

Here, 1F1 and U are the regular and irregular confluent hypergeometric function, re-
spectively [43]. Upon applying the general boundary conditions (3.6) at the disk radius
r = R, we obtain the spectral functions
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b
∂3K
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2
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|m| −m
2

, 1 + |m|; R
2

b2

)
(7.31)

with

K(a, b; z) =

{
1F1(a, b; z) for interior problem

U(a, b; z) for exterior problem.
(7.32)

Unlike the semiclassical case (7.12), one cannot predetermine the radial quantum num-
ber here, but has to search for all zeros at given angular quantum number m. The
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derivatives of the energies with respect to external parameters are given explicitely by
derivatives of the spectral function, like in the semiclassical case. For variations in the
boundary condition we find

dν

dΛ

∣∣∣∣
Λ=0

= ∓ R√
νb

∂3K

∂1K
(7.33)

with the arguments of K like above. Similarly, the derivative with respect to the mag-
netic length if given by the quotient

b2 dν

db2
= −R

2

b2

∂3K

∂1K
. (7.34)

Note the relation

b2 dν

db2
= ±√ν R

b

dν

dΛ
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Λ=0

, (7.35)

which holds in the semiclassical case as well.
As already mentioned, out results on the magnetic disk are relevant for other

shapes, because the general billiard may be considered a disk to leading order ne-
glecting variations in the curvature. One further step of neglect would disregard even
the mean curvature.

7.2 The periodic line

In order to remove the effects of a a finite curvature let us deform the boundary Γ
to a straight line of length � . In addition to the mixed boundary conditions along
the straight line, we prescribe periodic boundary conditions at the end points of the
line and perpendicular to Γ. This is clearly no longer a billiard problem in its proper
sense. In particular, there is no distinction between an interior and an exterior prob-
lem. Nonetheless, the classical and quantum problem is well-defined, with a discrete
quantum spectrum. This simple system will allow to discuss the asymptotics of bulk
and edge states in a straightforward fashion, cf Sect. 8.3.

The problem is separable in the Landau gauge, eq (2.12), and may be solved anal-
ogous to the disk above. Now, it is the longitudinal canonical momentum (ie, the
transverse component of the scaled center of motion), which is the second constant of
the motion. It is quantized,

cy
b

=
πb

� m , (7.36)

with integer m (taking the boundary as the x-axis.) The transverse part ϕ of the wave
function obeys the equation

ϕ′′(z) +
(
ν − 1

4
z2
)
ϕ(z) = 0 , (7.37)

with z := 2(y − cy)/b. The semiclassical and exact solutions yield spectral functions,
like above. We shall give only the results.
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Semiclassical quantization

For given longitudinal and transverse quantum numbers, m and n, the semiclassical
energies of skipping states are determined by the roots of the spectral function

ξ
(sc)
line

(
ν;n,m,Λ,

�
b

)
= ν

[
π

2
+ arcsin

(πm√
ν

b

�

)
+
(πm√

ν

b

�

)[
1−

(πm√
ν

b

�

)2] 1
2

]

− αline
Λ

(
ν,m,

�
b

)
− π

(
n+

3

4

)
, (7.38)

with the phase shift

αline
Λ

(
ν,m,˜�

)
= arctan

(
Λ
[
1−

( πm
√
ν˜�

)2] 1
2

)
(7.39)

being determined by the boundary condition Λ.

Exact quantization

Equation (7.37) is solved by the parabolic cylinder functions. It follows that the exact
spectral function has the form

ξline

(
ν;m,Λ,

�
b

)
= Dν− 1

2

(
− 2πm

b

�

)
+ Λ

[
πm

b

� Dν− 1
2

(
− 2πm

b

�

)

+
1√
ν

Dν+ 1
2

(
− 2πm

b

�

)]
, (7.40)

where Dk is Whittaker’s form of the regular parabolic cylinder function [43].

The uniform approximation

As a last point, we are interested in a semiclassical description of the situation when
the corresponding classical trajectory is just detached from the boundary. Since the
WKB approximation of the wave function fails close to the classical turning points,
we have to resort to a uniform approximation, see eg [41]. It yields the asymptotic
wave function in the whole region around one classical turning point, zν = −2

√
ν, in

terms of the (action) integral

w(z) :=

∣∣∣∣
∫ z

zν

∣∣∣ν − 1

4
z′2
∣∣∣

1
2

dz′
∣∣∣∣ (7.41)

=





ν

[
1

2
sinh

(
2 arccos

( z
zν

))
− arccos

( z
zν

)]
if z < −2

√
ν

ν

[
π

2
+ arcsin

( z

2
√
ν

)
+
( z

2
√
ν

)√
1−

( z

2
√
ν

)2
]

if −2
√
ν < z < 2

√
ν ,

which we define to be positive for any z. In uniform approximation, the two inde-
pendent solutions of (7.37) are given (for −∞ < z < 2

√
ν) in terms of the Airy

functions [43]

ϕ1(z) = N
(
w(z)

)1
6

|ν − 1
4z

2| 14
Ai

(
− sgn(z − zν)

(3

2
w(z)

) 2
3

)
(7.42)
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and

ϕ2(z) = N
(
w(z)

)1
6

|ν − 1
4z

2| 14
Bi

(
− sgn(z − zν)

(3

2
w(z)

) 2
3

)
. (7.43)

The general solution may be parametrized by an angle αu ∈ [−π2 ; π2 ].

ϕ(z) = cos(αu)ϕ1(z)− sin(αu)ϕ2(z) (7.44)

This form is particularly convenient. By virtue of the asymptotic expansions of the
Airy functions [43], we regain the WKB wave functions in both, the energetically
forbidden region,

ψ(z) ∼ 1

(1
4z

2 − ν)
1
2

(
1

2
cos(αu) e−w(z) − sin(αu) ew(z)

)
(z � zν , )

(7.45)

and in the energetically allowed one,

ψ(z) ∼ 1

(ν − 1
4z

2)
1
2

cos
(
w(z)− π

4
− αu

)
(z � zν .) .

(7.46)

Note the factor one-half in (7.45), which arises in a non-trivial fashion when connect-
ing the WKB solutions of the two regions [41].

The eigenfunctions turn into bulk states, once the longitudinal quantum numberm
is large enough to leave the boundary in the energetically forbidden region,

qm :=
πbm

�
√
ν

=
z

zν
> 1 . (7.47)

From the uniform approximation (7.42), (7.44) we find that in this case the angle αu
is determined by the ratio

tan(αu) =
Ai
(
(3

2w)
2
3

)
− Λ

√
q2
m − 1 Ai′

(
(3

2w)
2
3

)

Bi
(
(3

2w)
2
3

)
− Λ

√
q2
m − 1 Bi′

(
(3

2w)
2
3

) . (7.48)

By comparing the asymptotic expression (7.46) of the wave function in the allowed
region with that of a Landau state (which has no phase shift), one obtains the energy
shift ∆ν compared to the Landau energy,

∆ν(m,Λ) =
1

π
arctan

(
Ai
(
(3

2w)
2
3

)
− Λ

√
q2
m − 1 Ai′

(
(3

2w)
2
3

)

Bi
(
(3

2w)
2
3

)
− Λ

√
q2
m − 1 Bi′

(
(3

2w)
2
3

)
)
. (7.49)

Figure 7.1 shows the energy shifts for the forth Landau level as a function of the
boundary mixing parameter. Here, the value of � /b was chosen to correspond to
the situation of Fig. 5.10. We observe that the bulk state behaviour is reproduced
qualitatively even at this low Landau level. A quantitative comparison of the bulk
energy shifts (7.49) with a quantum spectrum is given in Sect. 8.3.1.
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Figure 7.1: Energy shifts of the bulk states (7.49) for the forth Landau level and values
( � = 5.39724, b = 0.25, m = 14 . . . 20) which allow the comparison with the right part
of Fig. 5.10. As m is increased, the energy shifts ∆ν turn exponentially small, cf (8.11), (and
the boundary mixing parameter, for which there is no energy shift, approaches the Neumann
condition).

For quantum numbers m which put the boundary into the energetically allowed
region (|qm| < 1), the angle αu is semiclassically given by the phase shift (7.39)
obtained above. For these states, the energy derivative with respect to Λ reads

dν

dΛ

∣∣∣∣
Λ=0

=

√
1− q2

m
π
2 + arcsin(qm)

. (7.50)

It coincides with the limiting expression of a large disk if we set |c| = R+cy in (7.28),
(7.19) and let R→ ∞.
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Chapter 8

A spectral measure for edge states

In this chapter, a spectral measure for edge states is introduced. We discuss its asymp-
totically smooth form and its semiclassical interpretation. The edge magnetization is
shown to provide an alternative, essentially equivalent measure.

8.1 Bulk states and edge states

8.1.1 A quantum criterion

The intuition which leads us to propose a quantitative criterion for edge states may be
acquired from Figure 5.10 on page 66. It displays an exterior spectrum as a function
of the boundary mixing parameter Λ (3.7). One observes that the (infinitely many)
states which accumulate near the Landau levels are hardly affected by changes of the
boundary condition. Clearly, these are bulk states. The extreme insensitivity of their
energies with respect to Λ is explained by the fact, that bulk wave functions are not
localized at the the boundary. They merely touch it with an (exponentially) small tail,
giving rise to (exponentially) small energy shifts, as discussed in Sect. 8.3.1.

Other states depend strongly on Λ because they are localized at the boundary. They
are naturally associated with edge states. The fact that states may have a transitional
nature, as well, can be seen in the right part of Figure 5.10. One observes a sequence of
bulk states which originate from the Landau level and gradually turn into edge states,
with a strong dependence on the boundary. This indicates that any attempt to split the
spectrum into two distinct parts, edge and bulk, would be inappropriate, because states
of an ambivalent nature do exist.

In any case, it is the slope in the level diagram Fig. 5.10 which provides a quanti-
tative criterion on the degree to which a state is of the edge type. We therefore propose
to characterize each Dirichlet eigenstate |ψn〉 by the (positive) derivative of its energy
νn with respect to the boundary mixing parameter at Dirichlet boundary conditions

105
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Λ = 0,

wn :=
dνn
dΛ

∣∣∣
Λ=0
≡ b

2
√
ν

dνn
dλ

∣∣∣
λ=0

. (8.1)

Along with the Dirichlet energies νn, these quantum weights wn form the edge spec-
trum {(νn, wn)}.

In Figures 8.1 and 8.2 we show the interior and exterior edge spectra of the disk
billiard at strong magnetic field on a linear and a logarithmic scale, respectively. One
observes that the weights succeed to segregate edge states, with largewn, from the bulk
states. The latter – an infinite number in the exterior case – accumulate at the Landau
levels ν = N + 1

2 , N ∈ � 0, with vanishingly small weights. There is a sequence of
transitional states emanating from each Landau level, which gradually turn into edge
states. (The spectra were obtained from eqs (7.31) and (7.33).)

Since the disk billiard offers a second quantum number, we can compare our char-
acterization of edge states with a classical criterion. As shown above, a state corre-
sponds classically to skipping motion if the angular momentum quantum number lies
within the bounds given by (7.2). Those states in Figs. 8.1 and 8.2 indicated by a full
dot have constants of the motion which belong to a skipping trajectory, while the oth-
ers are represented by an open dot. We observe that the classical criterion complies
with our picture, but argue that a continuous characterization of the states by means
of the weights is more appropriate. This is the more so, as a second quantum number
does not exist for shapes other than the disk.

The exterior edge spectrum of an elliptic billiard is given, accordingly, in Figure
8.3. It has the same area � and magnetic length b as the disk of Fig. 8.1 (bottom).
Comparing the spectra we observe that they resemble in their gross features. In par-
ticular, the bulk states behave very similarly. However, there are additional structures
showing up in the distribution of the weights of edge states. These can be related to
features of the classical (mixed chaotic) phase space, as will be shown below.

The real advantage of the weights lies in the fact that they allow us to propose a
meaningful spectral measure for the edge states of interior and exterior billiards.

8.1.2 The density of edge states

We define the density of edge states such that, compared to the standard density, each
δ-contribution of an energy νn is weighted individually by the slope given in (8.1),

dedge(ν) :=
∞∑

n=1

wn δ(ν − νn) (8.2)

This definition applies equally for the interior and the exterior problem. In the exterior
case, the sum extends formally over the infinite, near degenerate bulk states. However,
the rapid decay of their weights ensures, that a well-defined mean density exists in the
exterior, as shown below. It is equal to the interior one, to leading order, and given by

dedge(ν) =
�
2πb

ν
1
2 ∓ 1

2
. (8.3)

Hence, the leading order term is proportional to the circumference � of the billiard,
rather than its area. This is precisely what one expects of the quasi one-dimensional
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Figure 8.1: Weighted spectra of the interior (top) and exterior (bottom) magnetic disk (area
�

= π, b = 0.1). Each point (open and filled) corresponds to an eigenstate |ψn〉 with the
energy νn given by the abscissa. The ordinate indicates the attributed quantum weight wn
defined in eq (8.1). It serves to distinguish edge states (with large wn) from bulk states. The
latter accumulate at the Landau levels ν = N+ 1

2
, N ∈ � , and are characterized by vanishingly

small weights wn. A sequence of transitional states emanates from each Landau level and
connects with the edge states. As an alternative criterion, the angular momentum quantum
number allows to decide whether the state corresponds classically to skipping motion (filled
points) or cyclotron motion (open points), cf eq (7.2).
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Figure 8.2: Weighted spectra of the interior (left) and exterior (right) magnetic disk on a
logarithmic scale to highlight the bulk states. (Same data as in Fig. 8.1.)
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Figure 8.3: Weighted spectrum of the exterior ellipse billiard (with eccentricity 0.8, area
�

= π, magnetic length b = 0.1). It should be compared to the exterior disk, Fig. 8.1
(bottom). While the bulk states are very similar, one observes that the edge weights no longer
lie on smooth curves but tend to cluster. These structures can be related to the classical (mixed
chaotic) phase space, as discussed below.
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edge states. The second order term may be related to the mean curvature, as discussed
below. (The upper sign stands for the interior problem.)

Let us now turn to the integrated quantity, in order to judge whether this spectral
measure succeeds to filter the edge states out of the spectrum.

Counting functions

Integrating the edge density we obtain the edge state counting function

Nedge(ν) :=

∫ ν

0
dedge(ν

′) dν ′ =
∞∑

n=1

wn Θ(ν − νn). (8.4)

which is a weighted staircase. Again, the sum formally includes the bulk states. We
expect their contribution to be effectively eliminated by the rapid decay of the weights.

Since the rapid decay of the bulk weights should eliminate the contribution of the
bulk, we expect the edge state counting function to bear no marks of the Landau levels.
The smooth part of the edge state counting function is given by

Nedge(ν) =
2

3

�
2πb

ν
3
2 ∓ 1

2
ν + O(1) . (8.5)

Note that, to leading order, this exhibits the same functional dependence as the phase
space estimate of the skipping states in the periodic line problem (3.18) — with an
additional prefactor of 1

2 as the only difference.
In Figure 8.4 we compare the various spectral counting functions of the magnetic

disk spectra given in Fig. 8.1. Curve (a) shows the total number of states in the interior.
It exhibits steps at the Landau levels. In the exterior, a total counting function does not
exist, but the angular momentum criterion (7.2) allows to count the exterior states of
the skipping type, see curve (b). The corresponding number of interior skipping states
is indicated by curve (c). As one expects, these two counting functions do hardly
exhibit steps, but they have rather different values. In contrast, the weighted exterior
and interior edge state counting functions, curves (d) and (e), respectively, follow the
same mean values to leading order, which is consistent with (8.5). At the same time,
they do not show marks of the Landau levels.

This is seen more clearly in Figure 8.5 which shows the fluctuating part of the edge
state counting function,

Nosc
edge(ν) = Nedge(ν)−Nedge(ν) , (8.6)

for the exterior ellipse spectrum displayed in Fig. 8.3. One observes that the infinitely
many bulk states around each Landau level do not leave marks in the edge counting
function, apart from the first few Landau energies.

The semiclassical formulas for the oscillatory part of the edge state density and
for the edge state counting function are given in the next section. They only involve
periodic orbits of the skipping type.

8.2 The semiclassical density of edge states

While the standard spectral density (3.9) is given by the derivative of the number count-
ing function N with respect to energy, the edge state density (8.2) may be formally
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Figure 8.4: Spectral counting functions for the magnetic disk (R/b = 10). (a) Total number
of interior states. (b,c) Number of exterior (b) and interior (c) skipping states (according to the
angular momentum criterion). (d,e) Weighted number of edge states for the exterior (d) and
interior (e) problem. On average, the curves are well reproduced by the smooth counting func-
tions, eqs (3.10), (3.17), (3.16), (8.5), respectively (not shown). The inset gives the counting
functions for the first four Landau levels. The small kinks in Nskip and Nedge are no longer
present at larger energies.

defined as the derivative with respect to Λ, at Dirichlet boundary conditions (Λ = 0),

dedge(ν) = − dN(ν)

dΛ

∣∣∣∣
Λ=0

≡ − b

2
√
ν

dN(ν)

dλ

∣∣∣∣
λ=0

=
∞∑

n=1

wn δ(ν − νn) . (8.7)

Hence, the periodic orbit expression of the oscillatory part of the state density is de-
duced immediately, once we have the semiclassical formula for Nosc at hand. For
the time being, we restrict ourselves to hyperbolic systems. Combining the results of
Chapters 6 and 7 (eqs (6.50), (7.26a), and (7.27)), the number of states based on the
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Figure 8.5: Oscillatory part of the edge state counting function for the exterior ellipse, cf
Fig. 8.3. Apart from the first few Landau levels, it bears no marks of the bulk states. (The
unknown constant part of Nedge was not subtracted.)

skipping part of phase space is given by

Nskip
osc (ν; Λ) =

1

π

∑

γ

(−)nγ

rγ
∣∣ tr M(γ)− 2

∣∣ 1
2

(8.8)

× sin
(

2πνA(γ)− π

2
µγ − 2Λ

nγ∑

j=1

|n̂jv̂j |
)

+ O(Λ2) .

Compared to (6.50), the leading order dependence on Λ is included, as discussed in
Sect. 7.1.2. (See Tables 6.1 and 6.2 for the definition of the various quantities in (8.8).)
Since the semiclassical bulk states do not depend on the boundary condition, their
contribution vanishes when taking the derivative. One obtains the semiclassical trace
formula for the edge state density at Dirichlet boundary conditions, cf (8.7),

dosc
edge(ν) =

2

π

∑

γ

∑nγ
j=1 |n̂jv̂j |

rγ
∣∣ tr M(γ)− 2

∣∣ 1
2

cos
(

2πνA(γ)− πnγ −
π

2
µγ
)
. (8.9)

In contrast, the unweighted density of states (6.57) was obtained by taking the deriva-
tive with respect to the energy ν. It exhibits the scaled time of flight τγ , cf eq (6.56), in
the denominator. Hence, compared to the expression for the standard spectral density
the periodic orbit sum (8.9) differs only by an additional prefactor

wγ =

∑nγ
j=1 |n̂jv̂j |
τγ

. (8.10)
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It attributes an individual classical weight to each skipping periodic orbit. The classical
weights are given by the time averaged value for the normal component of the velocity
|n̂ v̂| at the points of reflection, and vanish for cyclotron orbits.

Similar to the quantum weights, the wγ lead to a gradual transition from edge to
bulk contributions. In the limit of a “grazing” trajectory of many short arcs, variations
in the curvature of the boundary may be neglected and the classical weights wγ ap-
proach a value of unity. In the opposite case of an orbit which is almost detached from
the boundary, the weights vanish since the cosines approach zero at a finite time of
flight in the denominator of (8.10). In contrast, the periodic orbit expression for the
standard density of states would contain the contribution of cyclotron orbits (with a
different order in

�
) and would suffer divergencies at almost detached orbits [83].

It is instructive to compare the distributions of quantum and classical weights.
Unlike the quantum weights (8.1) attributed to each eigenvalue, the classical weights
(8.10) are a property of the (periodic) orbits. In Fig. 8.6 we compare the phase space
distribution of classical weights to the corresponding weighted quantum spectrum.
The data were obtained for the interior elliptic billiard, and are given in both cases as a
function of the classical cyclotron radius ρ. The distribution of classical weights p(wγ)
was approximated numerically by the histogram over a finite number of trajectories
taken uniformly from phase space. Remarkably, one observes that the characteristic
features of both distributions coincide. This shows that the quantum weights may be
considered the expectation values of an observable which has a classical limit, ie, they
measure a classical property. This holds in spite of the fact that the wn are defined in
terms of the boundary condition, which has no classical analogy.

The particular bifurcating structures in Fig. 8.6 are due to stable periodic orbits,
surrounded by locally integrable regions in phase space. At the bifurcation points,
periodic orbits γ(n) with a given number of reflections nγ exhibit the smallest possible
cyclotron radius (nγ = 6 in the case of the rightmost structure). As the cyclotron
radius increases, the orbits turn into pairs with either longer or shorter arcs. (Some
of the corresponding integrable parts of phase space may be identified in the space
portraits in Fig. 3.1, left column.)

8.3 Asymptotic properties of edge and bulk states

We proceed to briefly discuss the leading order behaviour of the bulk energies, and the
smooth part of the edge counting function. In both cases, the boundary is treated in the
perturbative sense alluded to in Sect. 3.3.3. We therefore substitute it by the periodic
line of Sect. 7.2, and expect that the finite curvature of billiard boundaries leads to
higher order corrections only.

8.3.1 Bulk state energies and weights

The energy shift of a bulk state for general boundary condition is already given in
equation (7.49). An asymptotic expansion, which amounts to the WKB approximation
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Figure 8.6: Weighted edge spectrum (8.2) (top) and phase space distribution of the classical
weights (8.10) (bottom) for the interior ellipse. To ease comparison, also the quantum spectrum
(calculated at constant b = 0.1, as in Fig. 8.3) is given in terms of the classical cyclotron radius
( ρ = b × √ν.) One observes that the quantum weights tend to mimic the structures in the
distribution of classical weights (which are due to stable islands in phase space, cf Fig. 3.1).
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in the energetically forbidden region, yields the expressions

∆νm '
1

2π
exp

(
− 2ν

(
qm
√
q2
m − 1− log

(
qm +

√
q2
m − 1

)))
(8.11)

∼ 1

2π

(
2πbm

� (N + 1
2)

1
2

)2N+1

exp
(
N +

1

2
− 2
(πbm

�

)2)
as m→∞ ,

(8.11a)

with N the Landau level, and qm defined in (7.47). We observe that the bulk state
energies approach the Landau levels exponentially fast (indeed, like a Gaussian) as the
integer m increases — ie, as the distance of the cyclotron center from the boundary
grows.

The weights of bulk states follow likewise, by taking the derivative of (7.49). Es-
sentially, they decay as fast, as the shifts of the bulk energies.

wm ' 2

(
π2b2m2

� 2(N + 1
2)
− 1

) 1
2

∆νm (8.12)

In Figure 8.7 we show (exact) bulk state energies and weights in a double-logarithmic
representation. They belong to the interior and exterior disk at R/b = 15.0111, and to
the 50th Landau level. The crosses give the zero curvature estimates according to eqs
(8.11) and (8.12). One observes that the asymptotic weights and the spacing between
the asymptotic energies match approximately the exact values, and lie between the
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those of the finite curvature case. Individual bulk states are not yet reproduced by the
straight line approximation.

8.3.2 The mean edge counting function

As a second application, the periodic line allows to derive the leading term of the mean
edge state counting function (8.5) in a straightforward manner. We simply identify
the transverse quantum number n as a partial counting function for states with fixed
quantum number m. An explicit formula for n, which includes the dependence on Λ
follows from ξ

(sc)
line = 0, cf eq (7.38). The sum

Nskip(ν,Λ) =
∑

m

n(m,Λ) (8.13)

yields the total number of states corresponding to skipping motion. Taking the deriv-
ative with respect to Λ and replacing the summation by an integral, we obtain the
leading order of the smooth edge state density,

dedge(ν) = −dNskip(ν; Λ)

dΛ

∣∣∣∣
Λ=0

=
1

π

∫ √ν

−√ν

(
1− c̃2

y

ν

) 1
2 � dc̃y

πb
+ O(1)

=
�
2πb

√
ν + O(1) . (8.14)

An analogous calculation for the disc billiard leads to the same expression. The second
order term in (8.3) cannot obtained this way. We will deduce it in the next section by
relating the quantum weights of the disk to the magnetic moments of the states.

8.4 Edge magnetization as a spectral measure

The edge magnetization (3.27) discussed in Section 3.4 is in many respects similar to
Nedge. It was defined, for interior billiards, as

M̃edge(ν) =
∞∑

n=1

un Θ(ν − νn) . (8.15)

Like the edge counting function, this is a weighted staircase. The magnetic weights
are given by a derivative with respect to the magnetic length rather than Λ,

un := b2 dνn
db2

. (8.16)

As discussed in Sect. 3.4, the bulk states are contributing to (8.15) merely to a negligi-
ble degree. Hence, it is reasonable to extend the definition of the edge magnetization to
the exterior problem. As one expects, the exterior edge magnetization turns negative.
Moreover, it has a finite mean, given by

Medge(ν) = ±1

2

�
b2π

ν2 − 1

3

�
2πb

ν
3
2 . (8.17)

The interior case (upper sign) follows from eq (3.31), while the exterior one is sug-
gested by symmetry and confirmed empirically. Hence, like in the case of the edge



116 Chapter 8. A spectral measure for edge states

counting function, the moduli of the mean interior and exterior edge magnetizations
are equal to leading order.

This suggests to take the edge magnetization as an alternative spectral measure
for the edge states. The role of dedge is taken over by the edge magnetization density
(3.29)

m̃edge(ν) =
∞∑

n=1

un δ(ν − νn) (8.18)

which is a sequence of weighted δ-functions, like in eq (8.2). (To obtain a positive
measure in the exterior case, one should of course change the sign of the un.)

In order to measure the edge magnetization spectrum, field and energy must be
controlled, but the boundary condition is fixed at Dirichlet. This is an experimental
advantage. As a disadvantage, the leading order of the edge magnetization is deter-
mined by the area of the billiard, rather than by its circumference. It indicates that
with this measure the one-dimensional character of the edge states is not accounted
for to the same degree as by dedge. However, we shall see that is does a good job in
suppressing the bulk contributions. Moreover, both spectral measures, dedge and m̃edge

are equivalent in the case of a disk billiard. This is seen from equation (7.35), which
yields the exact relation

un = ±√ν R
b
wn . (8.19)

It is as surprising as fortuitous, and does not hold for general billiard shapes. Nonethe-
less, this relation allows to deduce the second, constant term of the mean edge state
density (8.3) by comparison with the smooth edge magnetization density (3.31). Being
the next order after the circumference term, it should be considered as due to the mean
curvature, which is equal for all connected boundaries,

∫
Γ κ(s)ds = ±2π (according

to the Gauss-Bonnet theorem). Since the edge magnetization spectra of the disk differ
from the edge spectra shown in Fig. 8.1 only by a geometric transformation (8.19), we
shall not display them here.

Semiclassical edge magnetization

The semiclassical periodic orbit formula for the complete magnetization density is
given in (6.59). Likewise, one finds that m̃osc

edge is given by the trace formula for the
standard density, with each periodic orbit weighted individually by

uγ := −
b2 d

db2

[
2πνA(γ)

]

d

dν

[
2πνA(γ)

] = ν

∑nγ

j=1

(
− σj

√
1− σ2

j −
rj+1 × rj

2ρ2

)

∑nγ

j=1

(π
2

+ arcsin(σj)
)

= ν
±2 � γ + ρ � γ

ρ � γ
, (8.20)

see eqs (6.54a) and (6.58). Like in the case of wγ , the weights uγ vanish as trajectories
get almost detached from the boundary (since the numerator approaches ±2 � , while
� γ →∞).
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Equipped with a well-defined spectral density and the corresponding trace formula,
we can now proceed with a statistical and semiclassical study of edge state spectra. We
shall not only consider the statistics within of a given edge state spectrum (Chapter 9),
but also cross correlations between different, classically related spectra in Chapter 10.
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Chapter 9

Properties of edge state spectra

We apply the spectral measures discussed in the previous chapter to analyse interior
and exterior edge spectra statistically, and to compare them to the results of the periodic
orbit theory.

9.1 Universal auto-correlations

One of the central goals in the study of quantum chaos is to understand how the statis-
tical properties of the quantum spectrum reflect the nature of the underlying classical
dynamics. We extend this line of research to magnetic billiards, by making use of the
spectral measure of edge states introduced in the previous chapter. It was constructed
to focus on the non-trivial part of phase space, which is determined by the billiard
boundary map (3.4).

We want to show that edge spectra of both, interior and exterior magnetic billiards,
display the universal characteristics of random matrix theory (RMT), provided the
corresponding skipping motion is hyperbolic. Our quantity of choice to characterize
spectral features is the form factor K(τ) which is sensitive to correlations beyond the
mean level spacing [118]. The standard form factor was already used in Chapter 5 to
qualify unweighted spectra of interior billiards. For edge spectra it is readily defined
in terms of the 2-point autocorrelation function of the edge density,

Rν0(ν) =

∫
dosc

edge

(
ν ′ +

ν

2

)
dosc

edge

(
ν ′ − ν

2

)
g1(ν ′ − ν0) dν ′ . (9.1)

Here, we included a normalized Gaussian window function g1 to pick up a spectral
interval centered at ν0.

Before comparison to RMT, it is necessary to remove the trivially system-dependent
properties of the spectrum by “unfolding” it [118]. This is a transformation of the
spectral density which renders it dimensionless and of unit density. Dealing with a
weighted spectrum the unfolding procedure must transform both, the energies and the
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weights. The natural choice involves the smooth edge state counting function Nedge

and the average weight 〈w2〉/〈w〉 in the spectral interval considered:

ν̌n :=
〈w〉
〈w2〉 Nedge(νn) and w̌n :=

〈w〉
〈w2〉 wn . (9.2)

Here, the first and second moments of the weights,

〈w〉 =
∞∑

n=1

wn g(Nedge(νn)− ν̌0) (9.3)

and

〈w2〉 =
∞∑

n=1

w2
n g(Nedge(νn)− ν̌0) , (9.4)

are taken locally in the spectrum in terms of the window function g (a normalized
Gaussian of width σg.) As a result of this unfolding, both the weights and the weighted
density have unit mean.

Since we are dealing with a discrete spectrum, the form factor must be averaged
to be well-defined. The standard procedure is to take the spectral average over non-
overlapping parts of the spectrum,

K(τ) =

〈∫
e2πiν̌τRν̌0(ν̌) g2(ν̌) dν̌

〉

ν̌0

(9.5)

as indicated by the triangular brackets. According to the spectral ergodicity hypothesis
[136] this should be equivalent to an ensemble average for hyperbolic systems.

If we choose the widths of the Gaussians g1 and g2 as σg/
√

2 and σg
√

2, respec-
tively, the Fourier transform of the autocorrelation function leads directly to the power
spectrum. The form factor is then given by the weighted sum

K(τ) =

〈
2
√

2πσ

〈w2〉

∣∣∣∣∣
∞∑

n=1

w̌n e2πi(ν̌n−ν̌0)τg(ν̌n − ν̌0)− ĝ(τ)

∣∣∣∣∣

2〉

ν̌0

, (9.6)

where the Fourier transform of g is denoted by ĝ.
In Figure 9.1 we show the form factors for the interior (top) and exterior (bottom)

edge state spectra for the asymmetric stadium (left) and skittle (right) billiard, respec-
tively. The spectra were obtained in the semiclassical direction, at fixed ρ = 1.2, ie,
for the same situation as in Fig. 5.4. (This was done to ensure that the corresponding
interior and exterior skipping motion is essentially hyperbolic, as discussed in Sect. 5.1
— see Appendix D for the definition of the edge state density at fixed ρ.)

We observe that the interior form factors follow the RMT prediction of the Gaussian
Orthogonal and Gaussian Unitary Ensembles, respectively, as expected from the spe-
cific symmetry properties of the Hamiltonians. In the interior case, this is not sur-
prising. To ensure hyperbolicity, the value of ρ had to be chosen large, such that the
phase space consists only of skipping trajectories which cover it ergodicly. As a con-
sequence, one expects that all interior states are edge states to an equal degree. Indeed,
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Figure 9.1: Form factors (9.6) of the interior (a,b) and exterior (c,d) edge state spectra for
the asymmetric stadium (a,c) and skittle (b,d) billiard, at ρ = 1.2. The shapes are defined in
Fig. 5.1. The functions follow the RMT predictions of the GOE and GUE ensembles [118],
respectively (dashed lines). The heavy lines correspond to stronger spectral averaging than the
thin lines (σg = 10 and σg = 3, respectively.)
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Figure 9.2: Distributionof the quantum weightswn > 0.1 of the interior (shaded) and exterior
(transparent) skittle spectrum at ρ = 1.2. The histograms display peaks whose positions are
well reproduced by the phase space estimates (9.7) and (9.8) (indicated by the arrows). Unlike
the interior case, the exterior distribution shows a tail due to the transitional states which ranges
to the small weights. (For normalization, (bulk) states with weights smaller than 0.1 had to be
disregarded.)

the interior weights are distributed narrowly around a mean valuew, given by the ratio
of weighted and unweighted mean densities,

w =
d

(ρ)
edge(ν)

d
(ρ)
tot(ν)

=
� ρ

4 � , (9.7)

as can be observed from the filled histogram in Fig. 9.2. The weights provide not
much additional information in this case, which explains why K(τ) reproduces the
RMT prediction, like in the unweighted case.

In contrast, the standard form factor – like any other standard statistical function –
does not even exist for the exterior spectrum, which is dominated by infinitely many
bulk states. Nonetheless, viewing the exterior spectrum in an appropriate way, by
means of the edge state density, we find that it closely obeys the predictions of random
matrix theory (bottom row of Fig. 5.4.) This way, a crucial test for the appropriateness
of the new spectral measure is passed. The quantum weights succeed to filter out
selectively the relevant edge states, which in turn exhibit the universal characteristics
expected for chaotic motion.

The distribution of the exterior weights is given by the transparent histogram in
Figure 9.2. Here, we disregarded (bulk) states with small weights. One observes that
the distribution of large weights is peaked, like in the interior case. Again, the peak
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Figure 9.3: Action spectrum of the exterior disk at ρ = 2R. The positive values give the
Fourier transform (9.10) of the exterior edge density (absolute values). The positions of the
peaks are well reproduced by the trace formula (9.9) (negative values) – except for the small
peaks at integer t, which are remnants of the bulk states. The peak heights match well in most
cases; they are expected to fit better if a spectral interval larger than ν ∈ [0; 48] is used.

position is well described by the ratio of weighted and unweighted densities,

w =
d

(ρ)
edge(ν)

d
(ρ)
skip(ν)

' � ρ

2 � ext
skip(ρ)

, (9.8)

with the mean unweighted density now given by the phase space estimate (3.15) of
skipping states. Unlike the interior case, the distribution has a tail of transitional states
which ranges to the infinitely many bulk states with small weights.

9.2 The action spectrum

We turn from the statistical analysis of edge spectra to their semiclassical description.
Here, the main purpose is to show that the trace formula for the edge state density –
which rates each periodic orbit with a classical weight – succeeds in approximating
the exact edge spectrum.

We choose the disk billiard for which an explicit periodic orbit formula is readily
obtained from equation (7.25). For the exterior case and Γd = R/ρ < 1 we find, cf
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Figure 9.4: Action spectrum of the interior disk at a cyclotron radius ρ = 0.4 × R small
enough to allow for bulk states. The Fourier transform (9.10) of the interior edge density
(positive values, ν ∈ [0; 60]) is well reproduced by the trace formula (negative values). Note
that in the top part, which shows the remnant peaks of bulk contributions, the y-axis has a
different scale.
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(8.7)

dosc
edge(ν) =

(
2ν

π

) 1
2
∞∑

N=2

2

N1/2

∑

∆ϕ∈PNext

∣∣∣ sin
(
α− ∆ϕ

2

)∣∣∣ (9.9)

× sin(α) cos(α)− 1
2Γ2

d sin(∆ϕ)

(sin(α) cos(α))
1
2

cos
(

2πνN aL(∆ϕ) +N
π

2
− π

4

)
,

with α defined by equation (6.61). (The term | sin(α− ∆ϕ
2 )| corresponds to the normal

component of the velocity, |n̂ v̂|, in (8.9).) Moreover, the exact quantum spectrum of
the disk is calculated (relatively) easily in terms of the roots of special functions, cf
Sect. 7.1.3. We obtained spectral intervals large enough to allow the Fourier transfor-
mation of the spectral densities,

d̂osc
edge(t) =

∫
e2πiνtdosc

edge(ν) h(ν − ν0) dν , (9.10)

to resolve the classical actions t of the underlying periodic orbits. (The function h is
a suitable window centered on the midpoint ν0 of the spectral interval.) This action
spectrum may be readily compared to the semiclassical prediction based on (9.9).

Like in the previous section, it is convenient to take the spectrum in the semiclas-
sical direction, at constant ρ. (See appendix D for a summary on the edge state density
defined at fixed classical dynamics.) In Figure 9.3 we display the action spectrum for
the exterior disk at a cyclotron radius ρ = 2R larger than the radius R of the disk
(positive values). The corresponding prediction of the trace formula (9.9) is given by
the negative values. One observes that the peak positions match very well with the
predictions of semiclassical theory. The only exception are the small peaks at integer
actions, which are not reproduced semiclassically. They may be considered remnants
of the infinite number of bulk states. The peak heights are well reproduced most of
the time, except if two peaks overlap too strongly. These deviations are expected to
decrease as a larger spectral interval is used, leading to smaller widths of the peaks.

This is seen in Figure 9.4 where we present the exact and semiclassical action
spectra of the interior magnetic disk – based on a large spectral interval (ν ∈ [0; 60] at
ρ = 0.4× R). Here the cyclotron radius was chosen small enough to allow for bulk
states in the interior. One observes again that the latter are very efficiently suppressed
in the action spectrum giving rise only to the small peaks at integer values (shown in
the top part of Fig. 9.4). In the Fourier transform of the unweighted density, in contrast,
the bulk states obliterate the edge contributions and not a single action is resolved (not
shown).

In conclusion, we find that the the semiclassical trace formula succeeds in repro-
ducing the quantum edge state density. It does so by weighting each periodic orbit
contribution with a classical weight which vanishes for cyclotron orbits. This removes
the bulk contributions analogous to (and consistent with) the quantum weights of the
edge state density.

9.3 Using the edge magnetization

Finally, let us demonstrate that the edge magnetization (8.18) as discussed in Section
8.4 may serve as a spectral measure for edge states as well.
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Figure 9.5: Definition of the Bunimovich stadium used in Sect. 9.3 and Chapter 10.

Choosing the Bunimovich stadium billiard (defined in Fig. 9.5), we calculated the
interior and exterior magnetization spectrum in the high-energy direction, at b = 0.2.
The selected spectral interval ν ∈ [100; 135] corresponds to large cyclotron radii ρ =
2 . . . 2.32 giving rise to essentially hyperbolic classical motion (ie, although there are
small integrable parts in phase space, their combined area is much smaller than the
uncertainty product (b2π)2). Quantum mechanically, the problem exhibits one unitary
and one anti-unitary symmetry (rotation by π and reflection at one axis, respectively).
Hence, the spectrum decomposes into two symmetry classes – a feature which will be
needed in the next chapter – while each class should obey the characteristics of the
Gaussian Orthogonal Ensemble [118].

The weighted spectra are shown in Figure 9.6. Note that the weights are very dif-
ferent in magnitude, although they lead to the same average edge magnetization (8.17).
This is explained by the different areas � skip of the interior and exterior skipping mo-
tion since the mean weight is asymptotically determined by

u =
medge(ν)

dedge(ν)
' �

� skip(ρ =
√
νb)

ν , (9.11)

cf eqs (3.31) and (8.3). The center in the distributions of the magnetization weights
is indeed well characterized by the value of u (similar to Fig. 9.2, not shown). More-
over, equation (9.11) indicates that it is reasonable to account for the gross energy
dependence of the magnetization weights un by dividing them by the energies νn. The
counting function then has the same leading order energy dependence as the edge state
counting function (8.5).

Figure 9.7 presents the form factor of the exterior magnetization spectrum. It was
calculated analogous to the expression (9.5) in Section 9.1, except that only energies
within the same symmetry class were taken. As one expects, the form factors follows
the GOE prediction (dashed line). This indicates that the magnetization weights (8.16)
succeed to filter the bulk states consistently, similar to the edge state weights (8.1).
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Figure 9.6: Edge magnetization spectrum of the stadium billiard at b = 0.2 and high energy.
Although the mean values of the magnetic weights differ strongly in the interior (top) and
exterior (bottom) the absolute value of the average edge magnetizations are equal to leading
order, cf (8.17). The classical cyclotron radius corresponding to this part of the spectrum is
large, ρ ∈ [2; 2.32], giving rise to essentially hyperbolic classical motion.
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Figure 9.7: Form factor of the exterior Bunimovich stadium (Fig. 9.5) computed from the
edge magnetization spectrum shown in Fig. 9.6, bottom part.
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Chapter 10

Spectral cross correlations

In the previous chapter we have seen that interior and exterior edge spectra display the
same universal statistics if the underlying classical motion is chaotic. It will be shown
in the following that a much more intimate relation exists between the interior and the
exterior spectra. It is generated by the classical duality of periodic orbits discussed in
Section 3.2.

10.1 The prediction of spectral cross correlations

In order to unravel the connection between interior and exterior edge state energies, a
special cross-correlation function is needed. It not only involves the Dirichlet energies
of the edge states, but also relies on the information provided by their weights.

The cross correlation function

As the first step to obtain the appropriate correlator, we formally extend the definition
of the edge state density to finite boundary mixing parameters Λ.

dedge(ν; Λ) := − d

dΛ
N(ν; Λ) (10.1)

The dependence of the spectral density on Λ will be needed only in the vicinity of the
Dirichlet boundary condition, Λ = 0, (3.6), where an expansion to first order in Λ is
allowed. The spectral density (10.1) can then be written only in terms of the Dirichlet
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energies and Dirichlet weights,

dedge(ν; Λ) =
∞∑

n=1

dνn
dΛ

(Λ) δ
(
ν − νn(λ)

)

'
∞∑

n=1

dνn
dΛ

(0) δ
(
ν − νn(0)− Λ

dνn
dΛ

(0)
)

=
∞∑

n=1

δ
(ν − νn

wn
− Λ

)
, (10.2)

which follows from (8.1) and the properties of the δ-function. The cross-correlation
function is now defined as an integral over energy and boundary parameter

C(ν0) =

∫∫
dosc

int (ν; Λ) dosc
ext(ν;−Λ) h(Λ) g(ν − ν0) dΛ dν , (10.3)

with normalized Gaussian window functions h and g. Here, h serves to restrict the
integration over Λ to the range where the linear approximation in (10.2) is valid and
may have a width of order one. The function g, on the other hand, is needed since the
spectra are discrete. It selects a narrow energy interval centered around the energy ν0

and should have the width of a few effective nearest neighbour spacings.
Inserting expression (10.2), the cross-correlation function turns into a double sum

over the interior and exterior edge spectrum,

C(ν0) =
∞∑

i,j=1

wiw
′
j

wi + w′j
g




νi − ν0

wi
−
ν0 − ν ′j
w′j

1

wi
+

1

w′j


 h

(
νi − ν ′j
wi + w′j

)
− Cbg , (10.4)

where the primes label the exterior energies and weights, for the sake of brevity.
The important point to note is that due to the small width of g only a few pairs of

interior and exterior spectral points will contribute appreciably at a given ν0. It is the
pairs with equal weighted distances from the left and right, respectively, to the refer-
ence energy ν0. Here, the energy differences are scaled individually by the reciprocal
weight attached to each spectral point. The function h, in contrast, limits the absolute
energy distance. Note also that the prefactor in (10.4) ensures that those pairs which
include one bulk state do not contribute to the sum.

The term Cbg in (10.4) subtracts the background. It is approximated by

Cbg ' dedge(ν0)



∞∑

i=1

h
(νi − ν0

wi

)
+
∞∑

j=1

h
(ν ′j − ν0

w′j

)
− dedge(ν0)


 , (10.5)

if we neglect the width of g and disregard the fact that the interior and exterior mean
edge densities differ in the higher order terms.

The semiclassical correlator

We turn now to the semiclassical evaluation of the correlation function using the peri-
odic orbit formula (8.9) discussed in Section 8.2. One obtains a double sum over the



10.1. The prediction of spectral cross correlations 131

skipping interior and exterior periodic orbits:

C(ν0) =

∫
dν g(ν − ν0)

2

π2

∑

γ,γ′

wγ τγ

rγ | trM(γ)− 2| 12
wγ′ τγ′

rγ′ | tr M(γ ′)− 2| 12

×
{

cos
(

2πν
(
A(γ) + A(γ ′)

)
− π(nγ + nγ′)−

π

2
(µγ + µγ′)

)

× ĥ

(
1

π

nγ∑

j=1

|n̂jv̂j| −
1

π

nγ′∑

j=1

|n̂′jv̂′j |
)

+ cos
(

2πν
(
A(γ)−A(γ ′)

)
− π(nγ − nγ′)−

π

2
(µγ − µγ′)

)

× ĥ

(
1

π

nγ∑

j=1

|n̂jv̂j|+
1

π

nγ′∑

j=1

|n̂′jv̂′j |
)}

(10.6)

Here, ĥ is the Fourier transform of the window function h, and the exterior quantities
are again marked with a prime. The width of ĥ is small compared to the sum over
|n̂jv̂j | (which is of order nγ). As a result, the second term in the curly brackets of
(10.6) is suppressed. In the first term of equation (10.6), ĥ reduces the sum effectively
to those pairs with approximately equal sums of angles of incidence

∑
j |n̂jv̂j | =∑

j |n̂′jv̂′j |. It is the dual pairs of periodic orbits discussed in Section 3.2.3 which have
this property. Hence, the only systematic contribution to the correlator will come from
these pairs. In Sect. 6.3.3 we discussed the relations between γ and its dual partner
orbit γ, which may be summarized as

A(γ) + A(γ) = nγ = nγ
tr M(γ) = tr M(γ)
|n̂jv̂j |(γ) = |n̂j−nγ v̂j−nγ |(γ)

rγ = rγ
µγ = 2nγ − µγ

wγ τγ = wγ τγ .
(10.7)

If we retain only the contributions of dual pairs, the cross-correlation function
simplifies to a single sum over interior (or exterior) periodic orbits. Assuming global
duality we obtain

C(ν0) =
2

π2

∑

γ

w2
γ τ

2
γ

r2
γ | trM(γ)− 2| cos(2πnγ(ν0 − 1

2)) ĝ(nγ) . (10.8)

The restriction of the double sum (10.6) to the dual pairs is tantamount to the diag-
onal approximation used in the semiclassical evaluation of the autocorrelation func-
tion [119]. In present case, the actions of the chosen pairs of periodic orbits comple-
ment each other, while in the usual diagonal approximation it is the resonant terms,
A(γ)−A(γ ′) = 0, which give the dominant “diagonal” contribution.

In deriving (10.8), the energy dependence of the amplitudes of the trace formula
could be neglected since the variation of the energy was assumed to be small on the
classical scale in (10.3). If ν0 is taken large (i.e. we are in the semiclassical regime of
the spectrum) the classical quantities in (10.8) will hardly change as ν0 is varied. By
grouping together the contributions from all the periodic orbits with the same number
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of reflections nγ we obtain

C(ν0) =
∞∑

n=nmin

f(n) ĝ(n) cos(2πn(ν0 − 1
2)) , (10.9)

with

f(n) =
2

π2

∑

γ:nγ=n

w2
γ τ

2
γ

r2
γ | trM(γ)− 2| . (10.10)

Assuming ergodicity, the weighted sum over classical n-orbits (10.10) can be calcu-
lated as a phase space average. For large n it takes on the universal value f(n) = n/8.
At the same time, the number of reflections nγ is geometrically bounded from bellow,
n ≥ nmin, for a given cyclotron radius. Hence,

f(n) =

{
0 for n < nmin

1
8n as n� nmin .

(10.11)

Equation (10.9) makes a clear prediction on the form of the cross-correlation function.
Even if the classical dynamics changes slowly as ν0 is varied, the infinite sum (10.9)
will be appreciable only at energies ν0 = N + 1

2 , N ∈ � 0, where the cosine terms are
stationary. We therefore expect the cross-correlation function to display pronounced,
equidistant peaks at large energies. These peaks are a direct manifestation of the ex-
istence of dual orbits. Their positions are expected to coincide with the Landau levels
(although they have nothing to do with bulk states).

This prediction is not restricted to purely chaotic dynamics, although the bouncing
map was assumed to be hyperbolic, so far. For the (integrable) disk one obtains a
completely analogous result. The function f(n) is not universal in this case, but the
prediction remains that C(ν0) is peaked at the energies of the Landau levels. The
statement carries over to generic magnetic billiards, if we are allowed to approximate
a mixed chaotic system by a union of non-overlapping hyperbolic and integrable phase
space domains.

10.2 Statistical evidence

In Figure 10.1 we show the cross-correlation function (10.4) for the ellipse billiard at
magnetic length b = 0.1. It was calculated from the edge spectra shown in Figures 8.3
and 8.6. The corresponding classical dynamics is generic (mixed chaotic) and there
is a strict, one-to-one correspondence between the interior and the exterior classical
dynamics up to ν = 21.6. Beyond this energy, when the cyclotron radius is greater
than the minimum radius of curvature, the classical duality still holds in a substantial
part of phase space.

One observes thatC(ν0) is strongly fluctuating, and displays pronounced, equidis-
tant peaks at energies ν0 = N + 1

2 . In Figure 10.2 we focus on these dominant struc-
tures by plotting the cross-correlation function in terms of νshift = ν0(mod 1) around
one half. To check that this clear signal is not an artefact or due to the accumulation
of bulk states, we make use of the fact that the spectra of the ellipse decompose into
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Figure 10.1: Cross-correlation function (10.4) for the elliptic billiard (eccentricity ε = 0.8,
b = 0.1, σg = 0.001, σh = 1, positive part). The pronounced peaks at ν0 = N + 1

2 ,
N ∈ � 0, indicate the existence of non-trivial correlations between interior and exterior edge
states. (The figure remains unchanged if one removes all bulk states from the sum (10.4) by
imposing a threshold on wn; not shown.)
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Figure 10.2: Cross-correlation function of Fig. 10.1, summed over integer shifts of the argu-
ment, c(νshift) =

∑
nC(n + νshift). In the double sum (10.4) the energies were taken within

the same symmetry class (solid line) and between different symmetry classes (dotted line.)
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Figure 10.3: Fourier transformationD(t), eq (10.13), of the cross-correlation functionC(ν0)

given in Fig. 10.1 (absolute value). The peaks at integer t correspond to the combined actions
of dual periodic orbits (σg = 5 × 10−4, σh = 4.) The fact that the peaks are substantial
starting from nmin = 4 clearly proves the classical origin of the cross correlations.

two symmetry classes. The semiclassical prediction for the cross correlation between
exterior and interior spectra with different symmetries is derived in a similar fashion
as (10.9). However, now we have

f(n) =
2

π2

∑

γ:nγ=n

(−)sγ
w2
γ τ

2
γ

r2
γ | trM(γ)− 2| , (10.12)

where sγ counts the number of times the periodic orbit γ crosses the symmetry line
[137]. Since sγ will be even or odd with equal probability for a given n, the terms
cancel on average, and no correlation signal is expected. This is clearly supported by
the numerical results shown as a dashed line in Figure 10.2.

Action cross correlations

Next, we consider the Fourier transform of the cross-correlation function (10.3), which
highlights its fluctuating part. The semiclassical theory predicts a sequence of equidis-
tant δ-spikes at integer values,

D(t) =

∫
C(ν0) e−2πiν0tdν0 =

1

2

∞∑

n=nmin

(−)nf(n) ĝ(n) δ(n− t) . (10.13)

They correspond to the sums of the actions of dual pairs, which complement each other
to integer values, starting from the minimal number of reflections nmin.
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Figure 10.4: Fourier transform of the cross correlation function (10.14) defined in terms of the
edge magnetization density. The graph should be compared to Fig. 10.3. It shows that also the
edge magnetization density m̃edge permits to unravel the cross correlations. (σg = 5× 10−4,
σh = 0.5)

The absolute value ofD(t), calculated for the same spectrum as Fig. 10.1, is shown
in Figure 10.3. In this case, the periodic orbits of the de-symmetrised ellipse have
at least nmin = 4 reflections. One observes that |D(t)| displays distinct spikes at
integer values.∗ As predicted by the semiclassical theory, the dominant peaks start at
nmin = 4, which is a clear proof for the classical origin of the edge state correlations.

The tiny peaks at t = 1, 2, 3 vanish if one decreases the width of the window
function g (which in turn deteriorates the statistical significance of the result). They
are due to the remnant contributions of the bulk states, and disappear if one removes the
bulk states from the correlator sum by setting a threshold on the weights (not shown;
the remaining peaks would not change by this procedure).

Using the edge magnetization

Let us turn to the question whether the correlation is also seen if one uses the (un-
signed) edge magnetization density (8.18) as the spectral measure. The latter has the
advantage of being easier to measure, both numerically and in experiments, since one
does not have to change the boundary conditions. The theoretical treatment is analo-
gous to the above, with the correlation function now involving an integration over the
variation in (the square of) the magnetic length, δb2, rather than the boundary condi-

∗The real parts of the peaks have signs (−)n, as expected from eq (10.10); not shown.
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tion:

Cmag(ν0) = −
∫∫

m̃
osc(int)
edge (ν; b2 + δb2) m̃

osc(ext)
edge (ν; b2 + δb2)

× h
(δb2

b2

)
g(ν − ν0)

d(δb2) dν

b2
. (10.14)

The minus sign accounts for the fact that the edge magnetization of the exterior prob-
lem is negative. The linear expansion of the dependence of the energies on b2 yields a
double sum like eq (10.4), with the edge weights (8.1) replaced by the moduli of the
magnetization weights (8.16). Semiclassically, the integration over δb2 selects those
pairs of interior and exterior orbits which satisfy

uγ τγ = −uγ′ τγ′ , (10.15)

which is again the dual pairs. (This is seen from eqs (8.20) and (6.56), since the signs
of the σj , eq (6.51), and the order of the points of reflection rj are reversed as one goes
from an orbit to its dual.) We repeated the calculation of the cross-correlation function
of the ellipse spectrum, using the edge magnetization density as the spectral measure.
The resulting function exhibits peaks at the Landau energies similar to Fig. 10.1 (not
shown.) Its Fourier transform is given in Figure 10.4. This shows that the edge mag-
netization density m̃edge succeeds to unravel the cross correlations, similar to the edge
density dedge.

The hyperbolic case

The ellipse spectrum considered so far exhibits generic, mixed chaotic dynamics, with
relatively large integrable parts in phase space. As the last point, we demonstrate that
the correlations do exist also in a system which is (essentially) hyperbolic. We take the
spectrum of the stadium billiard defined in Fig. 9.5 and use the edge magnetization as
the spectral density.

As discussed in Chapter 9, the spectral interval shown in Fig. 9.6 corresponds
to cyclotron radii large enough to guarantee that the corresponding classical dynam-
ics is essentially hyperbolic (ie, the integrable parts of phase space are much smaller
than (b2π)2). Figure 10.5 gives the corresponding cross-correlation function. Like in
Fig. 10.2 the variable is plotted modulo one in order to focus attention on the peaks.
Again, we observe a clear cross-correlation signal for pairs within the same symme-
try class (solid line) while the reference calculation from different symmetry classes
shows no peak (dashed line).

10.3 The pair relation

The peaks inC(ν0) were attributed to the complementarity of the actions of dual orbits.
Quantum mechanically, their occurrence implies that there exists a pairwise relation
between individual interior and exterior edge states. This follows from the discussion
of the quantum correlator (10.4) above. We have noted that pairs of edge energies
contribute only if they have the same weighted distance to the reference energy from
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Figure 10.5: Cross-correlation summed over integer shifts of the argument like in Fig. 10.2.
The data belongs to the stadium billiard in Fig. 9.6 (ν = 100−135, σg = 5×10−4, σh = 0.2,
using the edge magnetization density (8.18).) A clear cross-correlation exists between energies
of the same symmetry class (full line), while there is no signal if the energies are taken from
different symmetry classes (dotted line.)

the left and right, respectively. Since the peaks appear at ν0 = N + 1
2 , the interior

energies νi and exterior energies ν ′j must appear in pairs, such that, according to (10.4)

νi − (N − 1
2)

wi
∼=

(N − 1
2)− ν ′j
w′j

(10.16)

with integer N . Although this is not an exact relation, it will be the more precise the
larger and the closer the two energies are, since the semiclassical approximation (8.9)
and the linearization (10.2) then hold the better.

The information provided by the ratio of the individual quantum weights plays a
crucial role in unravelling this pair correlation. It explains why standard correlation
functions, which involve unweighted densities, do not show any signal, in general.
Moreover, the fact that the quantum weights enter reciprocally in (10.16) explains how
a pairwise relation between interior and exterior states can exist in spite of different
local unweighted densities. It is consistent with the mean edge densities (8.3) being
equal in the interior and exterior.∗

It should be mentioned that the relation (10.16) can be deduced also from the semi-
classical relation between the P operators of dual maps, cf Sect. 6.2, without invoking

∗Using the edge magnetization weights (8.19) we obtain the same picture, which implies that the
individual ratios of the edge and the magnetization weights are approximately equal. This is indeed
observed numerically.
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Figure 10.6: For every correlated pair of interior and exterior edge energies, ν and ν ′, there
exists a Landau level N + 1

2 such that the distances – scaled individually by the reciprocal
quantum weights, w and w′ – coincide.

Pair νn wn
νn − ν0

wn

ν0 − ν ′n
w′n

w′n ν ′n

top 32.5367 0.826 0.0445 0.0444 0.506 32.4775
middle 33.5248 0.489 0.0507 0.0501 0.533 33.4733
bottom 32.5082 0.286 0.0288 0.0248 0.508 32.4874

Table 10.1: Energies and weights of the correlated pairs in Fig. 10.7, with the primes indicat-
ing exterior states.

periodic orbit theory. This will be discussed elsewhere [138]. It shows that the pair-
wise cross-correlation is a generic semiclassical feature of dual magnetic billiards, and
is not related to the type of the classical motion.

For a given interior edge state it is of course not known, a priori, which is the asso-
ciated Landau level N + 1

2 and the exterior weight. Therefore, even in an asymptotic
sense it is not possible to infer an edge spectrum given the complementary one, using
the relation (10.16). However, having an interior and exterior edge spectrum available,
one can clearly decide whether they belong to the same billiard.

In the spectra considered here, we could easily spot single pairs of edge states
using the relation (10.16). Examples are given in Table 10.1. It is natural to ask how
the correlation shows up in the corresponding wave functions.

Correlated wave functions

We proceed to present three pairs of correlated wave functions of the ellipse billiard.
The interior states were chosen to have different locations in Figure 8.6 (displaying
the distribution of quantum weights on page 113, top part). At energies correspond-
ing to ρ ≈ 0.57 we took states with weights lying in the top branch of the rightmost
bifurcation structure, in the middle, and in the bottom branch, respectively. The corre-
sponding exterior states were identified using the pair relation (10.16). Table 10.1 lists
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Figure 10.7: Pairs of correlated interior and exterior wave functions. The energies and weights
are given Table 10.1. (Ellipse billiard at b = 0.1; the shading is proportional to the modulus of
the wave function, and the boundary is indicated by a dotted line.)
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Figure 10.8: Dual pairs of classical periodic orbits in the ellipse billiard, at ρ = 0.57. The top
and bottom orbits are stable, while the middle one in unstable. Their classical weights (8.10)
correspond to the quantum weights (8.1) of the states in Fig. 10.7.
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Figure 10.9: Boundary functions |u| = |∂n/bψ − iÃnψ| of the correlated wave functions
depicted in Fig. 10.10 (along one half of the boundary). Solid line: interior (ν = 110.6567),
dotted line: exterior (ν ′ = 110.4841). The difference is given as a dashed line.

the data for the three pairs.

In Fig. 10.7 we present superimpositions of the interior and the exterior wave func-
tions. One clearly observes that the top and bottom wave functions are localized on
dual periodic orbits. The structures of increased density of classical weights in Fig. 8.6
(page 113, bottom part) may indeed be attributed to periodic orbits which bifurcate as
the cyclotron radius ρ is increased. The top and bottom wave functions were taken
from a fork which belongs to orbits with period 6. They are shown in Fig. 10.8, along
with their dual partners.

The middle wave functions in Figure 10.7, in contrast, are localized on a chaotic
region in phase space confined by un-destroyed invariant tori. For comparison, an
unstable pair of dual classical orbits from this region is given in the middle part of
Fig. 10.8. Note that it exhibits the same spatial extension as the wave functions. Here,
the correlation of interior and exterior wave functions is not evident from the visual
inspection. However, comparing the normal derivatives of the wave functions on the
boundary we observe that they are indeed very similar.

This is a feature shared by all pairs of correlated wave functions, including those
which are based on a chaotic part of the phase space. Figure 10.9 compares the normal
derivatives of a typical pair of correlated states taken from the stadium billiard. One
observes that the moduli resemble each other, even though they are irregular. (The
difference is indicated by the dashed line.) In general, as a consequence of (10.16), it
is expected to be the smaller the closer two edge states are in energy. (If the energies
happened to coincide, this would take place on a Landau level, and the continuation of
one wave function would simply yield the other.)

Figure 10.10 superimposes the wave functions of the pair from the stadium billiard
described in Fig. 10.9. Although they exhibit the typical irregular pattern of wave
function based on a chaotic part of phase space, one can notice that the interior and
exterior structures match. In the exterior wave function, scars of periodic orbits may
be discerned if viewed in total (lower part of Fig. 10.10.)
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Figure 10.10: Top: A typical pair of correlated wave functions from the spectrum displayed
in Fig. 9.6 (superimposed; ν = 110.6567, ν ′ = 110.4841, b = 0.2). The stadium-shaped
boundary is not drawn but visible as a regular nodal line. The lower part shows the exterior
wave function on a larger scale. (The circular scars match the cyclotron radius ρ ' 2.10.)
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10.4 Conclusions

This thesis started out with a simple question — on the relation of the spectra of interior
and exterior magnetic billiards. Cross-correlations were predicted and found, based on
a duality between the respective classical motions. While one could anticipate to ob-
serve correlations between classical actions, ie, involving the Fourier transform of the
spectral densities, it came as a surprise that the classical duality induces a connec-
tion even in the energy domain, between pairs of single edge states. This finding was
confirmed statistically and demonstrated in exemplary cases.

We were able to perform the necessary numerical experiments only after develop-
ing a boundary integral scheme to quantize magnetic billiards. The method allowed
for the first time to calculate exterior spectra and to access spectral intervals large and
precise enough to permit the necessary statistical analysis. Moreover, it served as a
starting point to derive the semiclassical trace formulas from first principles, solving
an open problem in the field.

It turned out to be even more important to be able to apply a reasonable spectral
measure for edge states. The edge state density introduced in this work was shown to
suppress consistently the irrelevant bulk contributions, facilitating the statistical analy-
sis of interior and exterior spectra. It was found to uncover the universal spectral auto-
correlations expected for classically chaotic systems. The quantum weights involved
turned out to be the vital ingredients to unravel the cross correlations.

We believe that our definition of edge states is a very natural choice, arguably the
most natural one. Both, the mean and fluctuating part of the edge density have a clear
physical interpretation. They are consistent with the notion of edge states as quasi
one-dimensional states, which correspond to skipping motion. As a natural direction
of further research one should ask whether the proposed spectral measure is applica-
ble and useful in other areas, specifically for the physics of the (fractional) Quantum
Hall effect, where the concept of edge states is frequently employed without a clear
definition.

The experimental setups of mesoscopic physics are typically based on the Quan-
tum Hall geometry, often with an antidot as a scattering obstacle. The latter may
be considered a magnetic billiard placed close to leads which run to infinity. Unlike
the isolated billiards considered in the present work, the exterior of the billiard now
exhibits a continuous spectrum. It is worthwhile asking whether and how the cross-
correlations survive in this case, ie, to what extend one can infer from the scattering
information to the properties of the corresponding interior billiard problem.
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Appendix A

Mathematical appendix

A.1 The stationary phase approximation

The method of the stationary phase provides asymptotic expansions of integrals with
rapidly oscillating integrands, like

∫
g(x)e2πiνf(x)dx. One can show that for large ν

the leading order contribution is due to the stationary points of the phase f . Expanding
f to second order around these points and using the Gaussian integral,

∫ ∞

−∞
eiax2

dx =

(
π

|a|

) 1
2

ei sgn(a)π4 , (A.1)

one obtains the following statements: For functions f, g ∈ C∞( � ), with f display-
ing a finite number of non-degenerate stationary points xj , such that f ′(xj) = 0 the
asymptotic expansion reads [139]
∫
g(x)e2πiνf(x)dx =

1√
ν

∑

xj

g(xj)

|f ′′(xj)|
1
2

e2πiνf(xj)+iπ
4

sgn(f ′′(xj))
(
1 + O(ν−1)

)
,

(A.2)

as ν → ∞. For functions of an N -dimensional argument, f, g ∈ C∞( � N), an analo-
gous form can be found [140]:

∫
g(x)e2πiνf(x)dNx ∼

(
i

ν

)N
2 ∑

xj

g(xj)

| det f ′′(xj)|
1
2

e2πiνf(xj)−iνj
π
2 . (A.3)

Here, νj gives the number of negative eigenvalues of the matrix f ′′(xj).

A peculiar δ-function

As an immediate application, the stationary phase approximation allows to show that
the complex function

δε(ξ) :=
1

(2πi)
1
2

exp
(

i ξ
2

2ε

)

√
ε

(A.4)

has the property of a one-dimensional Dirac δ-function,
∫
δε(ξ) dξ = 1 (A.5)

∫
g(ξ) δε(ξ) dξ = g(0) (1 + O(ε)) as ε→ 0. (A.6)
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This follows from Eqs. (A.1) and (A.2) with ν = 1/ε and f = x2/2, and is not easily
proven otherwise. The product of (A.4) for the two Cartesian components of the vector
r yields the two dimensional δ-function

lim
ε→0

1

2πib2

1

ε
exp

[
i
(r− r0)2

2εb2

]
= δ(r− r0) , (A.7)

which shows up in (2.51).

A.2 The singular integrals

The Fourier integrals defined in (4.49), (4.50) depend on a window function e. Our
choice is (4.51) which switches off the asymptotically singular functions m and l suf-
ficiently smoothly. For the logarithmic integrals one obtains

L`(s0) =

∫ σe

−σe
ds′ exp

[
i
(

2π`/ � − t̂0 × r0

b2

)
s′
]
Lν

(s′2
b2

)
e(s′)

×
(

i
[
αc +

s′

b2

]
∓ λ

[2ν

b2
− (αc − iκ0)

s′

b2

])

=
(
iαc ∓ λ

2ν

b2

)
Icos +

(
− 1± λ(κ0 + iαc)

)
Isin (A.8)

with

Icos :=
cos(πν)

4π

−1

Ωl ϕ+ ϕ−

{
π2 sin(ϕ)

[
log
(σ2

e

b2

)
+ Ψ(1

2 − ν)− 2Ψ(1)
]

+ 2ϕ+ϕ− Si(ϕ) + ϕϕ+ Si(ϕ−) + ϕϕ− Si(ϕ+)
}

(A.9)

and

Isin :=
cos(πν)

4π

1

Ω2
l b

2 (ϕ+)2 (ϕ−)2

×
{
π2ϕϕ+ϕ− cos(ϕ)

[
log
(σ2

e

b2

)
+ Ψ(1

2 − ν)− 2Ψ(1)
]

(A.10)

− π2(3ϕ2 − π2) sin(ϕ)
[

log
(σ2

e

b2

)
+ 2 + Ψ(1

2 − ν)− 2Ψ(1)
]

− 2(ϕ+)2(ϕ−)2 Si(ϕ)− ϕ2(ϕ−)2 Si(ϕ+)− ϕ2(ϕ+)2 Si(ϕ−)
}
,

where Ωl(s0) = 2π`/ � − t̂0×r0
b2

, ϕ = Ωl(s0) σe, ϕ± = ϕ ± π, and Si is the Sine
Integral. The finite part integral reads

M`(s0) = ∓ λcos(πν)

2π
=

∫ σe

−σe
ds′ ei(2π`/ � − t̂0×r0

b2
)s′−1

s′2
cos2

(π
2

s′

σe

)

= ∓ λcos(πν)

2π
lim
ε→0

[
2

∫ σe

ε
cos(Ωls)

−1

s2
cos2

(π
2

s

σe

)
ds +

2

ε

]
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= ∓ λcos(πν)

2π

( 1

2σe

{
2(cos(ϕ) + ϕ Si(ϕ)) + cos(ϕ+) + ϕ+ Si(ϕ+)

+ cos(ϕ−) + ϕ− Si(ϕ−)
}

+ lim
ε→0

[
− 1

2ε

{
4 + O(ε)

}
+

2

ε

])

= ∓ λcos(πν)

4πσe

{
2ϕ Si(ϕ) + ϕ+ Si(ϕ+) + ϕ− Si(ϕ−)

}
. (A.11)

Asymptotically, we have

M`(s0) ∼ ∓ λ cos(πν)

2
Ωl(s0) sgn(`) as |`| → ∞. (A.12)

Note that with the choice (4.51) the limit of the remaining kernel is

lim
s→s0

[
q̂(s, s0)− e(s− s0)

(
l(s, s0) + m(s, s0)

)]

=
cos(πν)

4π

[
κ0(1∓ λiαc)∓ λ

(
− 2ν

b2
− π2

2σ2
e

)]
(A.13)

which is not just the constant part of (4.39), but contains a term which depends on the
width σe of the window function.
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Angular momentum representation

B.1 Free Green function

In Section 2.5, the magnetic Green function was obtained by a direct evaluation of the
Fourier integral. In this appendix, we derive its angular momentum decomposition. It
allows us to correct some erroneous results in the literature [9, 39], and to discuss the
irregular Green function. Moreover, the solutions of the radial Schrödinger equation,
which are obtained below, are needed in Chapter 7.

The symmetric gauge must be employed since only this choice renders the an-
gular momentum a constant of the motion. In polar coordinates, the inhomogeneous
Schrödinger equation (2.53) then assumes the form

[
− 1

4
(∂2
r̃ +

1

r̃
∂r̃) +

1

4
(r̃+ i

∂ϑ
r̃

)2 − ν
]
Gν = −1

4
δ(r̃− r̃0) . (B.1)

An ansatz in terms of the difference of polar angles,

Gν(r, r0) =
1

2π

∞∑

m=−∞
eim(ϑ−ϑ0)Gm(r̃, r̃0) , (B.2)

which cannot be justified a priori, allows to separate radial and angular coordinates.
For r̃ 6= r̃0, the Gm solve the radial Schrödinger equation in the free plane

[
∂2
r̃ +

1

r̃
∂r̃ −

(r̃2 −m)2

r̃2
+ 4ν

]
Gm(r̃, r̃0) = 0 (B.3)

The definition

Gm(r̃, r̃0) = r̃|m| e−r̃
2/2 gm(r̃2) (B.4)

leads to an equation for gm,

zg′′m(z) + (1 + |m| − z)g′m(z)−
(1

2
− ν +

|m| −m
2

)
gm(z) = 0 , (B.5)

which is known as Kummer’s differential equation and satisfied by regular and irregu-
lar hypergeometric functions [43], 1F1 and U, respectively. For energies different from
the Landau levels, it follows that a pair of independent solutions u1, u2 of the radial
Schrödinger equation (B.3) is given by

u1(r̃) = r̃|m| e−r̃
2/2

1F1

(1

2
− ν +

|m| −m
2

, 1 + |m|, r̃2
)

(B.6)
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and

u2(r̃) = r̃|m| e−r̃
2/2 U

(1

2
− ν +

|m| −m
2

, 1 + |m|, r̃2
)
. (B.7)

Both are real valued solutions. u1 is bounded at r̃ = 0, and diverges as r̃ → ∞.
The function u2, on the other hand, decays like a Gaussian in this limit, but displays a
(logarithmic) singularity as r̃→ 0.

Another fundamental system of equation (B.3) is obtained if one replaces u2 by

uirr
2 (r̃) = r̃|m| e+r̃2/2 U

(1

2
+ ν +

|m|+ m

2
, 1 + |m|,−r̃2

)
. (B.8)

This is a complex valued solution [44], which we call “irregular”. Apart from its
logarithmic singularity at r̃→ 0, it diverges exponentially as r̃ →∞.

Both, u1 and u2, are needed to form a solutionGm of the inhomogeneous equation
(B.1), since the δ-function implies a discontinuity of the derivative,

∂1Gm(r̃0 + 0, r̃0)− ∂1Gm(r̃0 − 0, r̃0) =
1

r̃0
. (B.9)

The requirement that the Green function must vanish as r̃ → ∞, together with its
continuity at r̃ = r̃0, leads necessarily to the form

Gm(r̃, r̃0) =
1

r̃0W (r̃0)

{
u1(r̃)u2(r̃0) if r < r0

u2(r̃)u1(r̃0) if r > r0 ,
(B.10)

with WronskianW = u1u
′
2−u′1u2. In total, the Green function in angular momentum

decomposition and symmetric gauge is given by

Gν(r; r0) =
−1

4π

∞∑

m=−∞
eim(ϑ−ϑ0)

Γ
(

1
2 − ν +

|m|−m
2

)

|m|!
(rr0

b2

)|m|
exp

(
− r2 + r2

0

2b2

)

× 1F1

(1

2
− ν +

|m| −m
2

, 1 + |m|, z<
)

× U
(1

2
− ν +

|m| −m
2

, 1 + |m|, z>
)

(B.11)

=
−1

4π

∞∑

m=−∞
eim(ϑ−ϑ0)

Γ
(

1
2 − ν + |m|−m

2

)

|m|!
(rr0

b2

)−1
M
ν+m

2
, |m|

2

(z<)

×W
ν+m

2
,
|m|
2

(z>) (B.12)

with

z< := min

(
r2

b2
,
r2

0

b2

)
and z> := max

(
r2

b2
,
r2

0

b2

)
. (B.13)

Note that this expression differs slightly from the (incorrect) results in [39] and [9; eq
(6.2.26)].
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An independent solution to the inhomogeneous problem (B.1) may obtained if one
drops the requirement that the Green function should vanish as r̃ →∞. It involves the
irregular solution (B.8) and leads to the Green function

G(irr)
ν (r; r0) =

−1

4π

∞∑

m=−∞
ei(ϑ−ϑ0+π)m

Γ
(

1
2 + ν + |m|+m

2

)

|m|!
(rr0

b2

)|m|
exp

(r2 + r2
0

2b2

)

× 1F1

(1

2
+ ν +

|m|+m

2
, 1 + |m|,−z<

)

× U
(1

2
+ ν +

|m|+ m

2
, 1 + |m|,−z>

)
, (B.14)

which we call “irregular”. This expression was derived by Tiago et al [40]. Unlike
the regular Green function (B.11), this one diverges exponentially, once the distance
between initial and final point exceeds one cyclotron diameter. This property renders
the irregular Green function impractical for most purposes.

B.2 The null field method

The null field method is an alternative scheme to quantize magnetic billiards in the
interior [40]. We include it for completeness, although its practical use is limited.

Let us start with equation (4.4) which reads in terms of the irregular Green function
∫

Γ
G(irr)
ν (r; r0)∂n/bψ

∗dΓ

b
= 0 , (B.15)

where we chose r0 ∈ � 2\D, Dirichlet boundary conditions, and the symmetric gauge.
Rather than transforming this into an integral equation, we put r0 onto a (large) circle
which is centered on the origin and surrounds the billiard domain with a radiusRp.

Now assume that the billiard boundary is given as a function r(θ) of the polar
angle, and expand the unknown boundary function in a Fourier series,

∑

`

eiθ`c` = ∂n/bψ
∗(r(θ)) . (B.16)

Using the angular momentum decomposition (B.14) of the Green function, equation
(B.15) assumes the form

∞∑

`,m=−∞
e−iθ0mamBm`c` = 0 , (B.17)

with

am = (−)m
Γ
(

1
2 + ν + |m|+m

2

)

|m|!
(Rp
b2

)|m|
exp

(R2
p

2b2

)

× U
(1

2
+ ν +

|m|+m

2
, 1 + |m|,−

R2
p

b2

)
(B.18)
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and

Bm` =

∫ 2π

0
ei(m+`)θ

(r(θ)
b2

)|m|
exp

(r2(θ)

2b2

)

× 1F1

(1

2
+ ν +

|m|+m

2
, 1 + |m|,−r

2(θ)

b2

)
dθ (B.19)

=

∫ 2π

0

ei(m+`)θ
(r(θ)
b2

)|m|
exp

(
− r2(θ)

2b2

)

× 1F1

(1

2
− ν +

|m| −m
2

, 1 + |m|, r
2(θ)

b2

)
dθ . (B.19a)

Here, we divided out the constants. Equation (B.17) must hold for all polar angles
θ0. For negative arguments the function U is known to be complex and non-zero [44].
Hence, we can divide by am for allRp, which leaves the condition for the existence of
a nontrivial solution c` to

det(Bm`) = 0 . (B.20)

It is a spectral equation, given by Tiago et al [40] (except for a misprint in their paper).



Appendix C

The product relation of the map operators

We show that the relations (6.23) for the products of the interior and exterior map
operators (6.22) hold semiclassically. They were needed to prove the factorization
of the spectral function. Since the only relevant contribution to the product stems
from regions where the initial and final points are close, we are allowed to replace
the boundary locally by a piece of constant curvature. It follows that the expressions
(6.68) – (6.71) derived for the disk billiards may be employed to show that the kernel
of the product (6.23) acts like a δ-function. Assuming δϕ = (s − s0)/R to be small
we find

(
pint

S pext
L

)
(s, s0) =

=
1

2πi

b

R

∫
dϕ′

(
d2(2πνaS)

dϕ dϕ0
(ϕ′ − ϕ0)

d2(2πνaL)

dϕ0 dϕ′
(ϕ0 + δϕ− ϕ′)

) 1
2

× e2πiν(aS(ϕ′−ϕ0)+aL(ϕ0+δϕ−ϕ′))
{
−Θ(ϕ′ − ϕ0)Θ(ϕ′ − ϕ0 + δ) if Γd > 1

−1 if Γd < 1

' 1

π

bν

R

∫
dϕ′

∣∣∣∣
d2(πaL)

dϕ′ dϕ0
(ϕ0 − ϕ′)

∣∣∣∣ e2πiν+2πiν∂ϕ0 aL(ϕ0−ϕ′) δϕ
{
−Θ(ϕ′ − ϕ0)

−1

=
1

π

bν

R
e2πiν

∫
dϕ′

duL

dϕ′
e2iνuL δϕ

{
Θ(ϕ′ − ϕ0) if Γd > 1

1 if Γd < 1 .
(C.1)

Here, the dependence on δϕ was expanded linearly in the phase, and neglected in the
prefactor. The latter is cancelled by the change of the integration variable to uL :=
π∂ϕ0aL(ϕ0 − ϕ′). Likewise, one finds for the second combination of interior and
exterior operators:

(
pint

L pext
S

)
(s, s0) =

1

π

bν

R
e2πiν

∫
dϕ′

duS

dϕ′
e2iνuS δϕ

{
−Θ(ϕ′ − ϕ0) if Γd > 1

0 if Γd < 1 ,

(C.2)

with uS := π∂ϕ0aS(ϕ0 − ϕ′). The sum of the kernels now assumes the form of a
semiclassical δ-function, once the integration is carried out. The ranges of integration
differ for weak and strong fields. They can be found in Table C.1. Setting ϕ ≡
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If Γd > 1

ϕ′ : ϕ0 − ϕ −−−−→ ϕ0− ϕ0+ −−−−→ ϕ0 + ϕ

uS :
1

2
Γ2

d cos(ϕ) −−−−→ Γd +
1

2
Γ2

d − Γd +
1

2
Γ2

d −−−−→
1

2
Γ2

d cos(ϕ)

uL :
1

2
Γ2

d cos(ϕ) −−−−→ − Γd +
1

2
Γ2

d Γd +
1

2
Γ2

d −−−−→
1

2
Γ2

d cos(ϕ)

If Γd < 1

ϕ′ : ϕ0 − π −−−−→ ϕ0− ϕ0+ −−−−→ ϕ0 + π

uS : −1

2
Γ2

d −−−−→ Γd +
1

2
Γ2

d − Γd +
1

2
Γ2

d −−−−→ − 1

2
Γ2

d

uL : −1

2
Γ2

d −−−−→ − Γd +
1

2
Γ2

d Γd +
1

2
Γ2

d −−−−→ − 1

2
Γ2

d

Table C.1: Ranges of integration needed in eq (C.3).

2 arcsin(1/Γd) one gets

(
pint

S pext
L + pint

L pext
S

)
(s, s0) =

=
1

π

bν

R
e2πiν





∫ 1
2

Γ2
d cos(ϕ)

Γd+ 1
2

Γ2
d

duL e2iνuLδϕ −
∫ 1

2
Γ2
d cos(ϕ)

−Γd+ 1
2

Γ2
d

duS e2iνuSδϕ if Γd > 1

∫ −Γd+ 1
2

Γ2
d

Γd+ 1
2

Γ2
d

duL e2iνuLδϕ if Γd < 1

= − e2πiν 1

π

sin
(
2
√
ν s−s0

b

)
s−s0
b

eiπ
√
νΓd(s−s0)/b 2

√
ν→∞−−−−−→ − e2πiν δ

(
s− s0

b

)
.

(C.3)

This proves the identity (6.23). In a similar fashion, one finds that the product (6.24)
does not contribute semiclassically.



Appendix D

Scaled spectra

In the following, we collect a number of formulas for spectra defined in the semiclas-
sical direction. As discussed in Sections 2.3 and 3.3.2, those spectra are obtained by
decreasing the magnetic length b at fixed cyclotron radius ρ (unlike conventional spec-
tra, where ρ is increased at fixed b). Since the spectra are noted in terms of the scaled
energy ν = ρ2/b2 in both cases, the superscript-(ρ) is used to indicate spectra taken at
fixed ρ.

Scaled spectroscopy has the advantage that the classical dynamics remains fixed
as the spectral variable is increased. This allows to ensure a certain type of classical
motion throughout the spectral interval, cf Sect. 5.1, and to extract classical actions
easily by Fourier transformation, cf Sect. 9.2.

However, one should be aware of the fact that the obtained spectrum does not
belong to one self-adjoint operator. Rather, a sweep through a family of operators is
performed as the spectral variable is increased. Clearly, the energies are real and the
eigenvectors are still proper solutions of the Schrödinger equation, but the latter are
not orthogonal. Moreover, it may happen that two energies coalesce and vanish as an
external parameter is varied.

Many formulas in the main part of this thesis hold for spectra at fixed ρ as well,
after the substitution b→ ρ/

√
ν. In particular, this is the case for the spectral functions

and the trace formulas (which are to leading order in ν), but not the spectral densities.
The smooth number counting function (3.10), for example, reads

N
(ρ)

(ν) =
�
ρ2π

ν2 − �
2πρ

ν +
1

6
. (D.1)

However, care is needed for the spectral density of edge states, which is now given as

d
(ρ)

edge(ν) =
∞∑

n=1

w(ρ)
n δ(ν − ν(ρ)

n ) , (D.2)

with the weights defined at constant ρ,

w(ρ)
n :=

dν
(ρ)
n (Λ)

dΛ

∣∣∣
Λ=0

. (D.3)

Here, we find

N
(ρ)
edge(ν) =

1

2

�
2πρ

ν2 ∓ 1

2
ν . (D.4)
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Appendix E

Numerical evaluation of the Green function

We are not aware of any published numerical procedure to evaluate the irregular con-
fluent hypergeometric function U if both, the (energy) parameter and the argument are
large. It seems that presently only the Mathematica software (Wolfram Research Inc.)
is able to compute the function, at least for moderately large ν. Even this sophisticated
system fails for ν > 75. Anyhow, it is not an option to use it for serious numerical
calculations since the evaluation takes a prohibitively long time.

Therefore, we describe our method to compute the gauge independent part of the
regular Green function in more detail. For low energies ν < 12, the function U(1/2−
ν, 1; z) may be easily calculated by its series representation [43; eq. (13.1.6)]. i.e.
in terms of the regular confluent hypergeometric function 1F1. For very large z an
asymptotic expansion in terms of 2F0 may be employed [141; eq. (6.7.1)].

For energies ν > 12 the numerical convergence of the series expression deterio-
rates strongly in some intervals of the z range (starting at z ≈ 2ν). Here, one may
employ the stable recurrence relation.

(ν − 1
2) Ĝ0

ν(z) = (z − 2ν + 2) Ĝ0
ν−1(z)− (ν − 3

2) Ĝ0
ν−2(z) (E.1)

which is straightforward, but time consuming. Alternatively, asymptotic expansions
for the irregular Whittaker function can be used [44; eqs. (8.1.5), (8.1.10), (8.1.18a)]
which are given to third order in the large parameter ν. Together with [43; eq. (13.5.15)],
they correspond to the changing logarithmic, oscillatory, transient, and exponentially
decaying behaviour of the Green function as the distance z increases. For most val-
ues of z they allow to calculate the Green function to a reasonably high precision and
with acceptable numerical effort. However, between the ranges of validity of the dif-
ferent asymptotic expressions there are small gaps where no formula is appropriate,
cf. Figure E.1. In the gap between the logarithmic and the oscillatory domains, which
is at small z, one may employ the series summation even for large ν � 12. For the
two gaps between the oscillatory, the transient, and the exponential regimes, which are
around z ≈ 4ν, this is possible only up to, say ν = 16. For larger ν we interpolate
between adjacent regions of validity employing the uniform approximation of the ir-
regular Whittaker function around the classical turning point. Neglecting higher orders
in ν, the resulting expression for the Green function (2.66) reads

Ĝ0
ν(z) ≈ C (3

2q)
1
6

|z2 − 4νz − 1| 14
Ai
(

sgn(z − z0)
(

3
2q
) 2

3

)
(E.2)
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Figure E.1: (a) Gauge independent part Ĝ0
ν(z) of the regularized Green function at ν =

57.75. It has a logarithmic singularity at r = 0, and decays exponentially for r > 2ρ. (b)
In the transition regions between oscillatory, transient, and decaying regimes the asymptotic
expressions to third order are not valid (chain, dotted, dashed line respectively.) (c) Here, on
may interpolate using an uniform approximations to the irregular Whittaker function (solid
line.)

where Ai is the regular Airy function and

q :=





ν
(π

2
− atan

(z − 2ν

w

))
+

1

2
log
(z0

z

1 + 2νz + w

1 + 2νz0

)
− 1

2
w if z < z0

1

2
w+

1

2
atan

(2νz + 1

w

)
− π

4
− ν log

(z − 2ν + w

z0 − 2ν

)
if z > z0

(E.3)

with

z0 := 4ν
(

1
2 + 1

2

√
1 + 1

4ν2

)
and w :=

√∣∣z2 − 4νz − 1
∣∣. (E.4)

The constant C may be calculated for values of z where the saddle point expressions
are valid, and is interpolated linearly within the gaps.

The thresholds mentioned above are a reasonable compromise between computa-
tional cost and precision. We observe a peak numerical error (minimum of relative
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and absolute) of 6.5× 10−5 at ν = 22, by comparison with the results of Mathemat-
ica, which are assumed to be exact for ν < 70. For increasing ν, the numerical error
decreases monotonically, what allows us to estimate it to smaller than 3.7× 10−5 for
ν > 70. It was checked that numerical errors of that order do not affect the results
presented in this work.
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List of important Symbols

Most important:

cyclotron radius: ρ

magnetic length: b
scaled energy: ν =

ρ2

b2

Latin symbols:

� . . . . . . . . . . . . . . . . . . . . . . . area of the billiard domain ( � = |D|)
� γ . . . . . . . . . . . . . . . . . . . . . . . area enclosed by the trajectory of γ (6.55)
� skip . . . . . . . . . . . . . . . . . . . . area determining the phase space of skipping

orbits, Fig. 3.6
Ai(z) . . . . . . . . . . . . . . . . . . . . Airy function
A(γ) . . . . . . . . . . . . . . . . . . . . . geometric part of the action of the periodic orbit γ

(6.42)
A(r) . . . . . . . . . . . . . . . . . . . . . vector potential at arbitrary gauge (2.11)
Ã(r) . . . . . . . . . . . . . . . . . . . . . scaled vector potential at arbitrary gauge

(Ã(r̃) = 2A(br̃)/(Bb))
ALan(r), Asym(r) . . . . . . . . vector potential in Landau gauge (2.12) (symmetric

gauge (2.13))
aS(r; r0), aL(r; r0) . . . . . . . geometric part of the action for the short (long) arc

(2.59), (6.1), (6.2)
âR, âL . . . . . . . . . . . . . . . . . . . annihilation operator of right (left) circular quanta

(2.21)
B . . . . . . . . . . . . . . . . . . . . . . . . magnetic induction (B =∇×A)
B . . . . . . . . . . . . . . . . . . . . . . . . billiard bounce map (3.4)
Bi(z) . . . . . . . . . . . . . . . . . . . . Airy function [43]
b . . . . . . . . . . . . . . . . . . . . . . . . magnetic length (2.17), (2.36)
C(ν0) . . . . . . . . . . . . . . . . . . . . cross correlation function (10.3), (10.4)
c, c̃ . . . . . . . . . . . . . . . . . . . . . . (scaled) center of cyclotron motion (c ∈ � 2) (2.25)
D . . . . . . . . . . . . . . . . . . . . . . . . domain of the interior billiard (D ⊂ � 2)
D(t) . . . . . . . . . . . . . . . . . . . . . Fourier transform of C(ν0) (10.13)
Dk(z) . . . . . . . . . . . . . . . . . . . . parabolic cylinder function (Whittakers form) [43]
d(ν) . . . . . . . . . . . . . . . . . . . . . standard spectral density (3.9)
dedge(ν) . . . . . . . . . . . . . . . . . . spectral density of edge states (8.2), (8.7)
dedge(ν) . . . . . . . . . . . . . . . . . . smooth spectral density of edge states (8.3)
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dosc
edge(ν) . . . . . . . . . . . . . . . . . . fluctuating part of the spectral density of edge

states (8.9)

d
(ρ)
edge(ν) . . . . . . . . . . . . . . . . . . spectral density of edge states in the semiclassical

direction (D.2)
dskip(ν) . . . . . . . . . . . . . . . . . . smooth spectral density of skipping states (3.15)
dosc

skip(ν) . . . . . . . . . . . . . . . . . . fluctuating part of the spectral density of skipping
states (6.57)

E . . . . . . . . . . . . . . . . . . . . . . . . (kinetic) energy
Ẽ . . . . . . . . . . . . . . . . . . . . . . . . proper scaled energy (Ẽ = E/(

�
ω) = 2ν), page 12

f(n) . . . . . . . . . . . . . . . . . . . . . weighted classical sum over n-orbits γ(n) (10.10)

1F1(a, b; z) . . . . . . . . . . . . . . . regular confluent hypergeomeric function [43]
e(s) . . . . . . . . . . . . . . . . . . . . . . compact window function (4.51)
� . . . . . . . . . . . . . . . . . . . . . . . . generating function of the billiard bounce map

(3.5)
Gν(r; r0) . . . . . . . . . . . . . . . . . free Green function at energy ν, with r0 the initial

point (2.54)

G
(sc)
ν (r; r0) . . . . . . . . . . . . . . . semiclassical free Green function at energy ν,

(2.61), (2.62)
G0
ν(z), Ĝ0

ν(z) . . . . . . . . . . . . gauge independent part of the (regularized) free
Green function at energy ν (2.64), (2.66), (2.67)

G
0(sc)
ν (z) . . . . . . . . . . . . . . . . . gauge independent part of the semiclassical free

Green function at energy ν (2.63)
g(z) . . . . . . . . . . . . . . . . . . . . . normalized Gaussian window function, g(z) ≡

(2πσ2
g)
− 1

2 exp
(
− z2/(2σ2

g)
)
, with “small” σg

ĝ(t) . . . . . . . . . . . . . . . . . . . . . . Fourier transform of g(z)
H . . . . . . . . . . . . . . . . . . . . . . . . magnetic Hamiltonian (2.14)
H̃ . . . . . . . . . . . . . . . . . . . . . . . . scaled Hamiltonian (2.39)
h(z), ĥ(t) . . . . . . . . . . . . . . . . normalized Gaussian window function, cf g(z),

with “large” width σh, (and its Fourier transform)
j(r) . . . . . . . . . . . . . . . . . . . . . . probability current density (2.35)
K(τ) . . . . . . . . . . . . . . . . . . . . form factor (9.5), (9.6)
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