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Zusammenfassung
Eine konsistente Vorschrift zum Ordnen der Operatorstrukturen in der Standard Model
Effective Field Theory (Standardmodell der Teilchenphysik als Effektive Feldtheorie) er-
fordert mehr als die kanonische Dimension der Operatoren, da diese keine Informationen
über die perturbative Expansion der zugrunde liegenden Quantenfeldtheorie bei hohen
Energien enthalten. Obwohl dies in der Literatur seit vielen Jahren bekannt ist, steht
hierzu ein konsistenter quantitativer Ansatz noch aus. In dieser Arbeit präsentieren
wir eine Lösung für Operatoren der kanonischen Dimension sechs, die auf dem Konzept
der chiralen Dimension basiert. Unsere Ergebnisse werden durch explizite analytische
Berechnungen für zwei wichtige Beispiele an Hadronenbeschleunigern veranschaulicht,
nämlich die Fusion von zwei Gluonen, die mit der Produktion eines Top-Quark-Paares
einhergeht, und den Zerfall eines Higgs-Bosons in zwei Gluonen oder Photonen. Wir
präsentieren kurze numerische Studien für beide Prozesse, um hypothetische Abweichun-
gen vom Standardmodell abzuschätzen.





Abstract
A consistent power-counting prescription for the Standard Model Effective Field Theory
requires more than the canonical dimension of operators, as they contain no informa-
tion about the perturbative expansion of the underlying Quantum Field Theory at high
energies. Although this has been noted in the literature for many years, a consistent
quantitative approach remains to be completed. In this work, we present a solution
for operators of canonical dimension six based on the notion of chiral dimensions. Our
results are illustrated by explicit analytic calculations for two major examples at hadron
colliders. These are the fusion of two gluons associated with the production of a top-
quark pair, and the decay of a Higgs boson into two gluons or photons. We provide
numerical studies for both processes to estimate hypothetical deviations from the Stan-
dard Model.





1. Introduction
The combination of Special Relativity and Quantum Mechanics, the cornerstones of
modern physics, leads inevitably to the formalism of Quantum Field Theory (QFT),
which is until today the only physical framework that can unite concepts like causality
or the equivalence of mass and energy and the quantum world, i.e. wave-particle duality
or the uncertainty relations, in a superordinate theory [1–4]. It predicts the existence of
antimatter, particle creation and annihilation and explains mysteries like the connection
between spin and quantum statistics that remain unresolved otherwise [5–8].
According to QFT, matter represents itself as various fields, that is entities that depend
on the spacetime they ”live on”. Neighboring field points - so to speak - are held to-
gether like two point masses connected by a spring - only that they are actually infinitely
close together. Embedded into a fully-fledged quantum theory, the notion of elementary
particles arises when interpreted as the fundamental excitations of the corresponding
quantum oscillators. They propagate through space like waves within a chain of coupled
springs. Particle interactions are caused by deviations from the superposition principle
of the harmonic limit. The familiar forces (gravity, electromagnetism) are nothing else
than the long-range manifestations of some of these interactions. The Standard Model
(SM) ultimately unifies all known particles and interactions in the QFT framework.
It includes the quantum theories for electromagnetism known as Quantum Electrody-
namics (QED) [9–11], the strong interaction referred to as Quantum Chromodynamics
(QCD) [12–14], as well as the weak interaction [15–17] and even gravity to some extent
[18–20].
The QFTs relevant to particle physics are usually defined in terms of a function, the La-
grange density or Lagrangian, which encodes all the information about the interactions
of the involved particles. Its often relatively simple form is dictated by the symmetries
of the physics under consideration. The Lagrangian is linked to the quantum mechani-
cal transition amplitudes for particular particle processes by virtue of the path integral.
Unfortunately, the path integral can only be solved directly in the rarest cases, so approx-
imation methods must be used to make the necessary predictions for experiments from
QFT. The most common method is perturbation theory. Here, the transition amplitudes
are expanded in terms of perturbative series around the aforementioned harmonic limit
of the oscillators. They are organized in such a way that only the first terms are relevant.
In practice, the perturbative series is a power series in a small parameter, such as the
electromagnetic fine structure constant α ≈ 1/137 in QED, which indicates the strength
of the electromagnetic interaction. In this case, the individual terms of the perturbative
series can be represented graphically by Feynman diagrams. In QED, the terms with
the lowest power of α are denoted as tree diagrams and usually form the contributions of
classical physics within the formalism of QFT. They are generally easy to compute and
already provide accurate predictions for experimentally measurable quantities. From
a phenomenological, as well as theoretical point of view, the higher order terms in α
become particularly interesting. These are called loop diagrams and form the quantum
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corrections to the classical result of the tree diagrams1. Many of these diagrams are
not directly computable in the sense that the associated terms of the perturbative series
diverge - often in the form of complicated integrals leading to undefined masses, field
(wavefunction) normalizations, and other Lagrangian parameters. At first glance, this
means the demise of the perturbative series. It took decades for physicists to solve the
problem of divergent loop diagrams. The strategy commonly used today involves first
parameterizing the divergences, which is known as regularization. By introducing ap-
propriate counterterms in the Lagrangian, the divergences can be eliminated, which is
known as renormalization. As a positive side effect, this gives the actual definitions of
the parameters of the Lagrangian as experimentally measurable quantities. Theories in
which a finite number of counterterms is sufficient to handle the divergences of all loop
diagrams to all orders are called renormalizable. The most prominent example QFTs,
that is QED and QCD, are renormalizable. In fact, the entire SM (excluding gravity) is
renormalizable.
For a long time, it was believed that only such renormalizable theories could be consid-
ered for a general understanding of nature. This idea is certainly correct when it comes
to establishing a theory of everything that includes the SM as a certain limit. In practice,
however, questions often arise that are very difficult to answer within the framework of
a renormalizable theory, for instance when perturbation theory fails or in the context
of higher-spin particles like the graviton. A classic article by Steven Weinberg [23] in
1979 finally presented the proposal to give physical sense also to non-renormalizable
QFTs - under certain conditions. Here, a finite number of counterterms is not sufficient
to absorb all divergences of the loop diagrams. In such theories, therefore, an infinite
counterterm extension of the Lagrangian necessarily results, and hence also an infinite
tower of further interactions, which is why they do not seem very attractive at first sight.
Examples of non-renormalizable theories are the Fermi theory of the weak interaction
[24, 25], Chiral Perturbation Theory for the low-energy spectrum of the strong interac-
tion [26, 27], and also general relativity as a theory of gravity [28, 29]. Their respective
phenomenal success teaches us that even non-renormalizable theories must have their
right to exist.
The key to the success of a non-renormalizable theory lies in the organization of the de
facto infinite number of terms in the Lagrangian into relevant and less relevant terms
for the physical problem - the power counting. Non-renormalizable QFTs in which some
form of power-counting is applied are called Effective Field Theories (EFTs). Also the
SM is nowadays considered as an EFT, which can be extended by non-renormalizable
terms to include physics beyond the SM. It eventually has to be abandoned in favor of a
more complete theory for higher energies whose precise form is one of the main subjects
in current research.
From a physical point of view, an EFT is nothing else than a calculational framework
for which the correct degrees of freedom for the problems at hand have been chosen. In
particle physics, this mainly concerns the energy range at which experiments are done.
For instance, below the energy threshold for the production of a certain heavy particle,

1This is - strictly speaking - not true, see e.g. [21, 22].
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the latter is not part of the physical particle spectrum and does therefore not appear
as a propagating degree of freedom in a low-energy EFT. Were it not for the inherent
quantum nature of our universe, this could be trivial in the sense that low-energy physics
remains unaffected by the heavier states. In reality, however, quantum mechanical un-
certainty essentially allows the heavy particle to ”smear” into the low-energy regime,
thus influencing physical predictions. For example, the (light) muon ”knows” about the
existence of heavy quarks via their effects on its anomalous magnetic moment.
In the context of the SM at the electroweak scale, these potential heavy states are un-
known to date. Without an explicit model theory, the EFT has to be constructed from
first principles. Different scenarios are possible. For instance, assuming a mass gap
between the SM fields and weakly coupling new heavy states results in a framework
commonly referred to as Standard Model Effective Field Theory (SMEFT) [30–35]. As
another example, allowing arbitrary new-physics effects in the Higgs sector of the SM
leads to the formalism named Electroweak Chiral Lagrangian2 (EWChL) [36–47]. Fur-
ther EFTs with different assumptions can be constructed. All theories have in common
the need for extraordinarily high precision in quantitative analyses, both theoretically
and experimentally. Indeed, the impact of new physics below its threshold decreases
dramatically for lower energies making deviations from the SM background hard to de-
tect.
In this work, we explore the role of power-counting for high-precision calculations in the
context of SMEFT. Based on simple examples and specific models, we derive a general
power-counting formula providing estimates for the Wilson coefficients of the SMEFT
operators depending on their particle content. Our results are underpinned by in-depth
calculations and phenomenological studies for two prominent particle reactions at the
Large Hadron Collider (LHC), namely the fusion of two gluons associated with the pro-
duction of a top-anti-top-quark pair (gg → tt̄), and the decay of a Higgs boson into two
gluons (h→ gg).
The organization is as follows. Section 2 contains a brief heuristic as well as a quan-
titative summary of our general setup and the conventions we use by reviewing the
basic properties of the SM. The main conceptional results regarding the application of
chiral dimensions to SMEFT are presented in Section 3. Our major examples, that is
gg → tt̄ at leading order (LO) in QCD and h → gg at next-to-leading order (NLO) in
QCD can be found in Section 4 and Section 5, respectively. We conclude in Section 6.
While lengthy calculational details are collected in small appendices that are integrated
within the main text, the major appendices starting from Appendix A feature additional
information such as input parameters and Feynman rules, but also further examples.

2This theory is sometimes also referred to as the Higgs Effective Field Theory (HEFT).
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2. The Standard Model of particle physics
This section serves as a summary of the basic concepts and the formalism behind the SM.
Physicists should skip the first subsection without further ado as it merely contains a
heuristic popular scientific review of the ”periodic table” of elementary particles. Readers
who are already familiar with the SM on a quantitative level might also want to omit
the second subsection and turn to SMEFT right away in order to catch up with the
conventions used in this work. Finally, working particle physicists may immediately
jump to Section 3 concerning non-trivial loop counting and chiral dimensions in SMEFT.

2.1. Informal invitation
Particle physics is the science of the basic building blocks of matter and the fundamental
forces - or, in modern language, of particles and their interactions. Its central goal is to
explore and explain what elementary particles and interactions were present in the early
universe - or equivalently, are still present today at the smallest scales - and how they
connect to our measurements at the world’s largest machines, i.e. particle accelerators.
In doing so, we realize that on a microscopic scale, our world is mathematically much
simpler than superficial observations at larger scales - say the size of a human - would
suggest. In fact, the interactions of the elementary particles are, mathematically speak-
ing, dictated by some of the least complex symmetries of nature. In the following lines,
the basic ideas of the SM will be explained in an intuitive and qualitative way. Good
heuristic as well as quantitative reviews and introductory texts can be found in [48–51].
Let aside to precisely define the notion of a particle, we assume that, at first sight in a
model universe, there are four different species of particles, known as the fundamental
fermions. They are called up-quark (u), down-quark (d), electron (e) and neutrino (ν)
and we take them as massless and electrically neutral3. Furthermore, these particles
feature some kind of internal angular momentum, the spin, which selects one particular
direction in space for a given particle4. The same (massless) particle moves through
space in a certain direction (with the speed of light), which distinguishes a second direc-
tion. If one projects the spin axis onto the motion axis, two possibilities arise: The spin
can be oriented in the direction of motion or against the direction of motion. We speak
of right or left handedness or helicity of the particle and introduce subscripts, i.e. eL or
eR, etc., to distinguish the respective cases5. So far, a left-handed electron will forever

3The attempt to consider mass and electrical charge from the beginning turns out to be problematic.
It is more clever to implement these concepts later by a suitable mechanism.

4As a first approximation, we can imagine the fundamental fermions as little spinning tops, all rotating
with the same speed, whose rotation axes point in different directions. However, this view is strictly
speaking wrong. Spin is a genuine quantum effect with no classical analog and requires the notion of
complex numbers for a consistent mathematical treatment [52].

5Important here is the assumption of vanishing masses and hence light speed; otherwise a reference
frame could be chosen, in which the handedness would be reversed by boosting to a reference frame
with higher velocity than the particle (but still below the speed of light). Based on the transformation
properties of spinors under the Lorentz group, it is, however, possible to introduce the concept of
chirality that makes a frame independent distinction of eL and eR, etc. possible even for massive
particles.
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stay a left-handed electron, etc., and it seems reasonable, that none of the possibilities
(left- or right-handed) should be treated differently when we turn on interactions in this
model universe.
It is, however, more than astonishing that nature chooses to distinguish on a fundamen-
tal level between left- and right-handed particles. To be precise, a mechanism exists
that can convert a left-handed up-quark uL into a left-handed down-quark dL and an
electron eL into a neutrino νL (and vice versa). In contrast, all right-handed particles
are unaffected by this mechanism. So to speak, they remain unseen by it. It is called
the chiral interaction. For the sake of book-keeping, we collect the particles that can be
converted into each other in a lepton doublet lL and a quark doublet qL as

lL =

(
νL
eL

)
and qL =

(
uL
dL

)
(2.1)

A transformation of the particles inside a doublet into each other by the chiral inter-
action is now caused by a rotation in the internal space of the doublets whose precise
interpretation is dictated by the probabilistic laws of quantum mechanics. It is math-
ematically sufficient to describe the rotational behavior under very small, infinitesimal
rotations, which are completely characterized by three generators6. These correspond
to the massless gauge bosons W 1 , W 2 and W 3. A left-handed electron, for example,
could thus turn into a left-handed neutrino by emitting or absorbing a certain combina-
tion of W -bosons. Right-handed particles, on the other hand, are introduced as chiral
singlets eR , uR and dR which cannot rotate into each other and hence do not interact
with the W -bosons. The right-handed neutrino does not appear in the SM, because it is
an uncharged and color-neutral (see below) particle and cannot interact with the other
constituents of the SM by the other interactions. In the SM, there are three copies of
each of these chiral doublets and singlets, which are called the three particle generations.
Communication between the generations is possible by virtue of the Cabibbo-Kobayashi-
Maskawa matrix (CKM matrix) for quarks and the Pontecorvo-Maki-Nakagawa-Sakata
matrix (PMNS matrix) for leptons, which we neglect here for simplicity.
Besides the chiral interaction, nature knows the strong interaction for which, slightly
abusing our notation, we introduce the quark triplets

u =

urug
ub

 and d =

drdg
db

 (2.2)

where the chirality indices L or R have been suppressed. In contrast to the chiral
interaction, the strong interaction does not distinguish between left- and right-handed
particles, but between leptons and quarks. Leptons do not feel the strong interaction, so
to speak. The individual components of the quark triplets differ in their color or color
charge. They are usually referred to as red, green, and blue (r, g and b). The strong
interaction now leads to transformations of the quarks within a triplet. As before, these

6The number three results from the fact that, mathematically, the Lie algebra of the doublet rotation
group SU(2) is three-dimensional.
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transformations are caused by the generators of the infinitesimal rotations in the internal
space of the triplets. In the case of the strong interaction, eight gauge bosons result7,
which are called gluons. For example, a red up quark can transform into a green one by
emitting a suitable gluon.
Let us turn back to the chiral interaction. Since we have neglected masses and charges so
far, there is no way to distinguish, within the chiral interaction, between a left-handed
neutrino and a left-handed electron. The world would be symmetric with respect to
the chiral interaction. In reality, the components of the chiral doublets as well as the
W -bosons have non-vanishing and - crucially - different masses and charges (with a
corresponding gauge boson, the photon), so that the chiral symmetry in the real world
must be broken - or rather hidden. On the other hand, it is clear that the chiral
symmetry must have been present in some form, otherwise the elementary particles
would not interact with the W -bosons of the real world in the observed way, which
resembles the chiral interaction in some sense8.
The SM solves the symmetry problem of the chiral interaction by linking the origins
of mass and electric charge to the properties of the physical vacuum. Electric charge
and the massless photon are replaced by the hypercharge and a gauge boson B. They
preserve the chiral symmetry like W 1 , W 2 and W 3 and distinguish only between left-
and right-handed particles. In other words, the components of the chiral doublets are
each assigned the same hypercharge, whereas the corresponding chiral singlets pick up
different hypercharge values. Introduced in this way, the latter is now able to explain
both masses and the electric charge. This is done via a so-called electroweak symmetry
breaking mechanism, which states that the symmetries of the physical vacuum and the
symmetries of the fundamental interactions differ. It can be achieved by the presence
of a condensate9 with non-vanishing hypercharge. The most prominent example of a
realization of electroweak symmetry breaking is the Higgs mechanism. In this case, a
chiral doublet is introduced giving rise to a new particle - the Higgs particle - which
prefers a non-vanishing vacuum expectation value everywhere in space. It ”breaks” the
chiral symmetry by interacting with the other elementary particles to generate their
distinct masses and charges. Hypercharge and chiral interaction are thereby converted
into electric charge and weak interaction as we know them today. Thereby, the gauge
bosons W 1, W 2, W 3 and B transform into the gauge bosons of the real world, namely
W+, W−, Z0 and the photon γ. The masses of W+, W− and Z0 are generated in the
correct ratio, while γ remains massless as it should.
Because of its enormous predictive power, which has withstood any experimental test
up to the present day, the SM belongs to the canon of ”confirmed” theories in physics.
Thus, every form of physics beyond the SM must be able to reproduce the SM as a limit.
Electroweak symmetry breaking, i.e. the transition of a physical vacuum which respects

7Again, the number eight relates to the fact that the Lie algebra of the triplet rotation group SU(3) is
eight-dimensional.

8This is the weak interaction. Such a dilemma, however, does not occur in the strong interaction,
because the masses and charges of the quarks are independent of their colour. The world is therefore
symmetric with respect to the strong interaction.

9This is in essence some background to which everything has to couple in one or the other way.
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the symmetries of the fundamental interactions, into another vacuum breaking these
symmetries by the Higgs condensate, should have taken place in the early universe when
the average available energy (i.e. temperature) was much larger than it is today. Particle
accelerators that mimic these extreme situations by high-energy particle collisions may
therefore be viewed as time machines enabling us to probe matter under the conditions
of the very early universe. The discovery of the Higgs particle in 2012 at the LHC at
CERN (Conseil Européen pour la Recherche Nucléaire) [53] is regarded as one of the
greatest moments in the history of particle physics and is the prime example of the
predictive power of theoretical physics, which had already postulated it in 1964 [54–59].
To this day, the Higgs particle and hence the nature of electroweak symmetry breaking
is at the center of research in particle physics.

2.2. Standard Model Lagrangian
The previous section comprises a heuristic summary of the renormalizable part of the
SM10. We can construct a Lagrangian for the SM by writing down all renormalizable
terms that respect the symmetries. These are Lorentz invariance on one hand, and the
internal gauge symmetries left-handed isospin SU(2)L, hypercharge U(1)Y and colour
SU(3)c on the other hand. The matter content consists of the quarks and leptons
(up-quark u, down quark d and neutrino ν, electron e, respectively), all coming in
three copies, and a complex scalar field ϕ, referred to as the Higgs field. Their SU(2)L
representation as well as hypercharge assignments Y are given by

Left-handed lepton doublet lL =

(
νL
eL

)
with Y = −1

2
(2.3)

Right-handed lepton singlet eR with Y = −1 (2.4)

Left-handed quark doublet qL =

(
uL
dL

)
with Y =

1

6
(2.5)

Right-handed up-quark singlet uR with Y =
2

3
(2.6)

Right-handed down-quark singlet dR with Y = −1

3
(2.7)

Higgs doublet ϕ =

(
ϕ+

ϕ0

)
with Y =

1

2
(2.8)

We have suppressed the fermion generation11, as well as quark colour indices like in
(2.1). Note that a right-handed neutrino is absent. Furthermore, we work in the flavour

10We reserve the acronym SM exclusively for the renormalizable part - the non-renormalizable part will
be denoted by SMEFT, see below.

11In a suboptimal notation, these would be given by

ν −→ (νe, νµ, ντ ); e −→ (e, µ, τ); u −→ (u, c, t); d −→ (d, s, b) (2.9)

for all chiralities. Numbered indices like u1, u2 or u3 for u, c and t, etc. are also common. It should
be clear from the context what is meant.
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basis rather than the mass basis. A conversion can be done by the CKM matrix for
the quarks (or PMNS matrix for the leptons if a right-handed neutrino is considered).
This is, however, unimportant for our purposes. The covariant derivative featuring the
SU(2)L, U(1)Y and SU(3)c gauge bosons Wα

µ , Bµ and GAµ with couplings g, g′ and gs,
respectively, is defined by

Dµ = ∂µ + igWα
µ τ

α + ig′Y Bµ + igsG
A
µT

A (2.10)

depending on the field they act on, i.e. the SU(2)L-part is absent for right-handed
fields and the SU(3)c-part concerns only quarks, irrespective of their handedness. To
avoid writing too many Kronecker deltas, fundamental indices are not displayed. Do
not confuse Lorentz indices with adjoint SU(2)L indices as both are denoted by Greek
letters. The generators for the non-Abelian gauge groups are normalized as [τα, τβ] =
iεαβγτγ and [TA, TB] = ifABCTC , where ε and f denote the Levi-Civita symbol and
the structure constants of SU(3), respectively12. Note that only the gluon field GAµ is
physical - the isospin and hypercharge gauge bosons are mere linear combinations of
physical fields.
The most general Lagrangian should include kinetic terms for the fermions, the Higgs
field and the gauge bosons, as well as all allowed interaction terms, i.e. a ϕ4-interaction
as well as Yukawa interactions. Mass terms for the gauge bosons as well as for the
fermions are forbidden by the underlying symmetries. However, a Higgs mass term ∼ ϕ2

is not excluded by the symmetries. Also, there is no mechanism to determine the sign of
this term. Compared to the canonical choice of sign for mass terms, that is L ∼ −m2ϕ2,
the SM realizes such a term with a flipped sign, namely L ∼ +m2ϕ2. It is this tiny
detail that is responsible for a broad variety of phenomenological observations, not least
for the fermion- and gauge-boson masses. The list of allowed terms is exhausted by the
SM Lagrangian13

LSM =− 1

4
BµνB

µν − 1

2
〈WµνW

µν〉 − 1

2
Tr (GµνG

µν)+

+ il̄L /DlL + iēR /DeR + iq̄L /DqL + iūR /DuR + id̄R /DdR+

+ (Dµϕ)
†Dµϕ+m2ϕ†ϕ− 1

2
λ(ϕ†ϕ)2+

−
(
l̄LΓeeRϕ+ q̄LΓddRϕ+ q̄LΓuuRϕ̃+ h.c.

)
(2.11)

where h.c. denotes the hermitian conjugate of the last line. Our conventions are as
follows. We constructed the field strength tensors from the gauge fields via Bµν = ∂µBν−
∂νBµ, Wα

µν = ∂µW
α
ν − ∂νWα

µ − gεαβγW
β
µW

γ
ν and GAµν = ∂µG

A
ν − ∂νGAµ − gsfABCGBµGCν

with Wµν = Wα
µντ

α and Gµν = GAµνT
A. The abbreviations 〈...〉 and Tr(...) denote

traces over fundamental isospin and colour indices, respectively. For later use, we define
the dual gauge boson tensors via B̃µν = εµναβB

αβ/2, etc. with ε0123 = 1. The isospin

12We can thus write τα = σα/2 and TA = λA/2, where σα and λA for α = 1, 2, 3 and A = 1, ..., 8 are
the Pauli- and Gell-Mann matrices, respectively.

13We neglect topological terms and related issues like the strong CP-problem.
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components of the dual Higgs field ϕ̃ with Y = −1/2 are given by ϕ̃i = εijϕ
∗
j with ε12 = 1

and the star refers to complex conjugation. We have denoted the Yukawa couplings by
Γe, etc. They are matrices in generation space; as stated above, diagonalizing the fermion
mass terms after electroweak symmetry breaking changes their couplings to the gauge
fields. The resulting CKM matrix mainly affects the W -boson interactions and is, as
stated above, not taken into account here.
The Higgs potential V (ϕ†ϕ) = λ(ϕ†ϕ)2/2 − m2ϕ†ϕ has a minimum for ϕ†ϕ = v2/2
where v =

√
2m2/λ is the Higgs vacuum expectation value and the original SU(2)L

symmetry is broken when expanding around this minimum. Fluctuations around the
vacuum expectation value are then interpreted as the physical fields. Without loss of
generality, we can choose the coordinate system in isospin space such that the vacuum
expectation value is entirely shifted to the lower component ϕ0, i.e. we write

ϕ =

(
ϕ+

1√
2
(v + h+ iη)

)
(2.12)

where 1/
√
2 is just a normalization convention. The emergence of a dimensionful con-

stant v enables the generation of gauge boson masses via the Higgs kinetic term, as
well as fermion masses via the Yukawa interactions. The upper component ϕ+ along
with the field η remain massless and can be interpreted as the Goldstone bosons for
the symmetry breaking-pattern at hand. In unitary gauge, they can be absorbed as the
respective third degrees of freedom for the now massive gauge bosons. The residual field
h is massive and comprises the only surviving physical object from the Higgs field ϕ.
This is the Higgs boson. It couples to all massive particles in the SM.
The renormalizable part of the SM is hereby complete. To sum up, it consists of all
operators up to canonical dimension four that are allowed by symmetry. Interpreted
as an EFT, its only ordering mechanism in perturbation theory is the loop order of
Feynman diagrams. A given process usually has an infinite number of contributions as-
sociated with an ever increasing loop-order, each contributing a loop suppression factor
of 1/(16π2) and additional powers of weak couplings, i.e. parameters . 4π, assuring
the non-divergence14 of the series15. Renormalizability keeps the number of input pa-
rameters constant to arbitrary precision, that is to all orders. Although the theoretical
validity of the SM may be extended to arbitrary high energies, it should be noted that
its particle content is restricted to masses . v, as they are all generated via the same
mechanism. A näıve extrapolation into the deep UV16 in terms of the SM therefore
seems unnatural as there might indeed exist (much) heavier particles with no relation
to v. The precise dynamics of such particles might not be straightforwardly embeddable
into the SM framework.
14To be precise, the series expansion is in fact only asymptotic and hence eventually divergent. Such

issues, however, do not touch the low-loop considerations presented in this work.
15If additional loops are associated with two powers of weak couplings κ, it is advantageous to work

with finestructure constants ακ ≡ κ2/(4π), so that the expansion parameter is ακ/(4π).
16In particle physics, the abbreviation UV (ultraviolet) is taken over from the classification of the visible

light spectrum and generally refers to small scales (wavelengths) and hence high energies. The
opposite, IR (infrared), is associated with large scales or low energies.
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2.3. Standard Model Effective Field Theory
The more compelling part starts when we add higher dimensional operators, i.e. of
canonical dimension dc > 4, to the SM Lagrangian, resulting in SMEFT. To compensate
for the dimensional discrepancy in four-dimensional spacetime, such operators come
with an extra energy scale Λ that divides out the excess. The SM Lagrangian then gets
enlarged to

LSMEFT = LSM +
∑
i

Ci
Λ
Q5,i +

∑
i

Ci
Λ2
Q6,i + ... (2.13)

with dimensionless Wilson coefficients Ci and generic dc-dimensional operators Qdc,i.
The index i labels the operators with fixed dc. As this list with increasing dc would
continue until infinity, we need a power-counting assumption on the Lagrangian level to
guarantee the non-collapse of the theory. This can be achieved by choosing Λ to be large
compared to the SM energy scales17. The resulting Lagrangian is then renormalizable
order-by-order in the following sense. Despite featuring an infinite number of parameters,
only a finite number is usually relevant for a given process with fixed precision. All
higher-order effects in Λ (an infinite number of effects) would then contribute below
this precision benchmark point and can therefore consistently be neglected. From a
phenomenological point of view, the higher dimensional local operators are in fact the
manifestation of heavy non-SM particles at the SM energy scales . v. Indeed, all theories
with weakly coupling heavy particles of mass M � v reduce to SMEFT with Λ ≈
M when the non-SM fields are integrated out. Obtaining non-vanishing experimental
constraints on the SMEFT Wilson coefficients18 would therefore be a good hint towards
physics beyond the SM, e.g. heavy SUSY particles or dark-matter candidates.
Let us now turn to the explicit construction of the higher-dimensional operators. In
order to obtain a complete and non-redundant set of operators for a given dc, several
manipulations have to be made. This includes the application of Fierz identities, as well
as field redefinitions. The latter are equivalent to using the equations of motion on the
Lagrangian level [6]. There exists only a single dimension-five (lepton number violating)
operator [60]

Qνν = (ϕ̃†lL)
TC(ϕ̃†lL) (2.14)

where open generation indices have been suppressed on both sides of the equation and the
transposition refers to the spinor space. In constructing this operator, it is advantageous
to convert the right-handed fields into their left-handed charge conjugates by virtue of the
matrix C = iγ2γ0. Making isospin indices explicit, the hypercharge of two Higgs doublets
ϕjϕm is Y = 1, so only two fermions lTLiClLn (this is Lorentz invariant) with combined
Y = −1 are possible for a combination. The isospin indices then have to be contracted
17In addition, the Wilson-coefficients must not grow arbitrarily for higher canonical dimension. The

suppression mechanism is thus entirely accounted for by Λ.
18Note that it is actually only the ratio Ci/Λ

dc−4 that enters the experimental observables. It is
therefore common to actually identify Λ ≡ M and absorb everything else, that is weak couplings
and dimensionless numerical numbers, into Ci.
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with εijεnm in order to achieve a non-vanishing result. After electroweak symmetry
breaking, this operator gives rise to (Majorana) neutrino masses. However, due to
astonishing experimental constraints [61–64], the Wilson coefficient of this operator has
to be quite small, so we can neglect this operator as a first approximation [65].
Next up are the dimension-six operators [30, 31, 66]. A full basis has first been written
down in its modern form in [31] and is commonly referred to as the Warsaw basis.
Imposing baryon number conservation, it consists of 59 independent operators for one
particle generation. Defining

ϕ†←→D µϕ ≡ ϕ†Dµϕ− (Dµϕ)
†ϕ (2.15)

and

ϕ†←→D α
µϕ ≡ ϕ†ταDµϕ− (Dµϕ)

†ταϕ (2.16)

the full set of pure bosonic (left column) and mixed fermionic-bosonic (right column)
operators is given by the following list.

QG = fABCGAνµ GBλν GCµλ Qeϕ = (ϕ†ϕ)(l̄LeRϕ) (2.17)
QG̃ = fABCG̃Aνµ GBλν GCµλ Quϕ = (ϕ†ϕ)(q̄LuRϕ̃) (2.18)
QW = εαβγWαν

µ W βλ
ν W γµ

λ Qdϕ = (ϕ†ϕ)(q̄LdRϕ) (2.19)
QW̃ = εαβγW̃αν

µ W βλ
ν W γµ

λ QeW = (l̄LσµνeR)τ
αϕWα

µν (2.20)
Qϕ = (ϕ†ϕ)3 QeB = (l̄LσµνeR)ϕBµν (2.21)
Qϕ� = (ϕ†ϕ)�(ϕ†ϕ) QuG = (q̄LσµνT

AuR)ϕ̃G
A
µν (2.22)

QϕD = (ϕ†Dµϕ)∗(ϕ†Dµϕ) QuW = (q̄LσµνuR)τ
αϕ̃Wα

µν (2.23)
QϕG = ϕ†ϕGAµνG

Aµν QuB = (q̄LσµνuR)ϕ̃Bµν (2.24)
QϕW = ϕ†ϕWα

µνW
αµν QdG = (q̄LσµνT

AdR)ϕG
A
µν (2.25)

QϕB = ϕ†ϕBµνB
µν QdW = (q̄LσµνdR)τ

αϕWα
µν (2.26)

QϕWB = ϕ†ταϕWα
µνB

µν QdB = (q̄LσµνdR)ϕBµν (2.27)

QϕG̃ = ϕ†ϕG̃AµνG
Aµν Q

(1)
ϕl = (ϕ†i

←→
D µϕ)(l̄Lγ

µlL) (2.28)

QϕW̃ = ϕ†ϕW̃α
µνW

αµν Q
(3)
ϕl = (ϕ†i

←→
D α

µϕ)(l̄Lγ
µταlL) (2.29)

QϕB̃ = ϕ†ϕB̃µνB
µν Qϕe = (ϕ†i

←→
D µϕ)(ēRγ

µeR) (2.30)

QϕW̃B = ϕ†ταϕW̃α
µνB

µν Q(1)
ϕq = (ϕ†i

←→
D µϕ)(q̄Lγ

µqL) (2.31)

Q(3)
ϕq = (ϕ†i

←→
D α

µϕ)(q̄Lγ
µταqL) (2.32)

Qϕu = (ϕ†i
←→
D µϕ)(ūRγ

µuR) (2.33)

Qϕd = (ϕ†i
←→
D µϕ)(d̄Rγ

µdR) (2.34)

Qϕud = (ϕ†i
←→
D µϕ)(ūRγ

µdR) (2.35)
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It is sometimes convenient to eliminate QϕD from this basis by writing

QϕD = −1

4

(
Qϕ� + (ϕ†←→D µϕ)(ϕ

†←→D µϕ)
)

(2.36)

which can be derived upon integration by parts. The baryon number conserving pure
fermionic operators are given by

Qll = (l̄Lγ
µlL)(l̄LγµlL) Qle = (l̄Lγ

µlL)(ēRγµeR) (2.37)
Q(1)
qq = (q̄Lγ

µqL)(q̄LγµqL) Qlu = (l̄Lγ
µlL)(ūRγµuR) (2.38)

Q(1)
qq = (q̄Lγ

µταqL)(q̄Lγµτ
αqL) Qld = (l̄Lγ

µlL)(d̄RγµdR) (2.39)

Q
(1)
lq = (l̄Lγ

µlL)(q̄LγµqL) Qqe = (q̄Lγ
µqL)(ēRγµeR) (2.40)

Q
(1)
lq = (l̄Lγ

µταlL)(q̄Lγµτ
αqL) Q(1)

qu = (q̄Lγ
µqL)(ūRγµuR) (2.41)

Qee = (ēRγ
µeR)(ēRγµeR) Q(8)

qu = (q̄Lγ
µTAqL)(ūRγµT

AuR) (2.42)

Quu = (ūRγ
µuR)(ūRγµuR) Q

(1)
qd = (q̄Lγ

µqL)(d̄RγµdR) (2.43)

Qdd = (d̄Rγ
µdR)(d̄RγµdR) Q

(8)
qd = (q̄Lγ

µTAqL)(d̄RγµT
AdR) (2.44)

Qeu = (ēRγ
µeR)(ūRγµuR) Qledq = (l̄LieR)δij(d̄RqLj) (2.45)

Qed = (ēRγ
µeR)(d̄RγµdR) Q

(1)
quqd = (q̄LiuR)εij(q̄LjdR) (2.46)

Q
(1)
ud = (ūRγ

µuR)(d̄RγµdR) Q
(8)
quqd = (q̄LiT

AuR)εij(q̄LjT
AdR) (2.47)

Q
(8)
ud = (ūRγ

µTAuR)(d̄RγµT
AdR) Q

(1)
lequ = (l̄LieR)εij(q̄LjuR) (2.48)

Q
(3)
lequ = (l̄LiσµνeR)εij(q̄Ljσ

µνuR) (2.49)

Again, the fermion generation indices have been left open. As an example, they may be
restored like Q1231

eu = (ē1Rγ
µe2R)(ū

3
Rγµu

1
R) → (ēRγ

µµR)(t̄RγµuR), etc. The Warsaw-basis
operators are sometimes collected into the self-explaining schematic classes X3

µν , ϕ6,
∂2ϕ4, ϕ3ψ2, ∂ϕ2ψ2, ϕ2X2

µν , ϕψ2Xµν and ψ4 where Xµν , ϕ, ψ and ∂ are general abbre-
viations for SM field strength tensors, scalars, fermions and (covariant) derivatives.
It is conceptually self-explanatory, but cumbersome, to construct SMEFT bases for even
higher dimensions [67–73]. However, such higher-dimension operators are even more
suppressed with respect to the heavy new-physics scale Λ. Let aside the dimension-five
operator (2.14), the dimension-six operators (2.17)-(2.49) thus represent the leading and
therefore most promising new-physics effects. Having still to be discovered, it is these
leading-order effects that reasonable phenomenological studies should be primarily con-
centrated on.
Introduced in this way, it seems that the loop expansion inherited from the SM com-
pletely decouples from the 1/Λ-expansion in SMEFT. After all, when looking at the world
through ”EFT glasses”, the latter is nothing more than an additional power-counting
scheme on top of the usual counting of loops. The operators are simply constructed
from the ground up without referring to potential new-physics models. At first glance,
being maximally agnostic towards high-energy theories, this seems to be the procedure
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of choice. This view, however, lacks a reference to what is really happening at high
energies, namely the generation of these operators from first principles in the realm of
the real-world new-physics scenario. It is therefore more advantageous to look through
”new-physics glasses” in the sense that one should ask the question of whether there are
certain hierarchies between Warsaw-basis operators over the course of their creation in
general. In the next section, we will argue that this is indeed the case.
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3. Loop counting in SMEFT
The phenomenology of the six-dimensional Warsaw-basis operators has been studied ex-
tensively in the literature. A näıve application of (2.17)-(2.49), however, not only has
the major disadvantage of introducing a maximal set of new coefficients to be accounted
for, but is also inconsistent with a broad class of possible high-energy scenarios. In this
section, we advertise a consistent approach based on an additional power-counting pre-
scription for loops, the chiral dimension, that interferes with the 1/Λ-expansion handled
by canonical dimensions in a non-trivial manner. As a positive side effect, this may also
reduce the number of relevant parameters for a given process drastically. This section is
partly based on [74].

3.1. Toy model analysis
Before diving into SMEFT at canonical dimension six, let us consider a toy model,
namely QED - symbolically standing for the SM - with a light electron ψ of negligible
mass and a top-quark t of mass m, supplemented by a heavy scalar S of mass M ,
representing the beyond-the-SM physics. A more realistic scenario with relevance for the
SM is given in Appendix G, where we consider the Two-Higgs-Doublet Model (2HDM).
The Lagrangian for the toy model is given by [74, 75]

L =− 1

4
FµνF

µν + ψ̄i 6Dψ + t̄(i 6D −m)t+

+
1

2
∂µS∂

µS − 1

2
M2S2 − b

6
S3 − λ

24
S4 − gt̄tS (3.1)

where the covariant derivatives are defined as

Dµψ = ∂µψ − ieAµψ (3.2)

and

Dµt = ∂µt+ i
2e

3
Aµt (3.3)

and Fµν = ∂µAν − ∂νAµ is the photon field strength tensor. Taking the dimensionless
couplings g and λ asO(1) numbers and the super-renormalizable coupling b ∼M to allow
the generation of an unsuppressed four-point interaction via connecting two three-point
vertices by a heavy propagator, this theory naturally possesses two scales, m and M . It
may serve as a prototype for a weakly coupled, fully renormalizable (in the traditional
sense) UV theory.
We are now interested in how the scalar S modifies the dynamics of the electron and the
top-quark at low energies for the case m � M . As an example, we consider electron-
positron annihilation associated with top-anti-top pair production (e+e− → t̄t). The
incoming electron and positron momenta are denoted by k1 and k2 and the outgoing top
and anti-top momenta by p1 and p2, respectively, with k21 = k22 = 0 and p21 = p22 = m2.
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Furthermore, we define q ≡ k1+k2 = p1+ p2. At LO in QED, there is only one diagram
with an amplitude of

k1

k2

q
p1

p2

≡ −2e2

3q2
v̄(k2)γµu(k1) ū(p1)γ

µv(p2) (3.4)

with a self-explaining notation for the spinors. As the heavy scalar S only couples to
the top-quark, we expect its effects to only modify the photon-top-anti-top vertex. At
NLO, we therefore replace

ū(p1)γ
µv(p2) −→ ū(p1)Γ

µv(p2) (3.5)

where Γµ ≡ γµ + δΓµ. The correction δΓµ is then given by the triangle diagram

p1

k

k − p2

k + p1

p2

q

= −i2e
3
ū(p1)δΓ

µv(p2) (3.6)

where

ū(p1)δΓ
µv(p2) =

=ig2µ2ε
∫

ddk

(2π)d
ū(p1)(/k + /p1 +m)γµ(/k − /p2 +m)v(p2)(

k2 −M2 + iη
)(
(k + p1)2 −m2 + iη

)(
(k − p2)2 −m2 + iη

)
(3.7)

in dimensional regularization with d = 4 − 2ε and 0 < η � 1. In the appendix to this
section, we show three different ways how to calculate the loop integral to LO in 1/M2.
Employing the OS (on-shell) renormalization scheme, the final result is given by

δΓµ = − g2

16π2
1

M2

((
ln r

3
+

4

9
+ h1(z)

)
q2γµ+

+

(
ln r +

7

6
+ h2(z)

)
iσµνqνm

)
+O

(
1

M4

)
(3.8)
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where the definitions

σµν ≡ i

2
[γµ, γν ] , r ≡ m2

M2
, z ≡ q2

4m2
(3.9)

and

h1(z) ≡
∫ 1

0
dx 2x(1− x) ln

(
1− 4x(1− x)z − iη

)
=

(
1

3
+

1

6z

)
h2(z) +

1

9
(3.10)

h2(z) ≡
∫ 1

0
dx ln

(
1− 4x(1− x)z − iη

)
=

√
1− 1

z
ln


√
1− 1

z + 1√
1− 1

z − 1

− 2 (3.11)

have been used.
The compact expression (3.8) contains the full information on the heavy scalar’s impact
on low energy scales, where terms of higher order in 1/M2 can be neglected. At these
scales, however, the scalar is not part of the physical particle spectrum, so here the
dynamics is best described by an EFT with the scalar integrated out. The parameters
(Wilson coefficients) of the EFT are then completely determined by either matching the
EFT to the full theory (top-down approach) or by fixing their values via experimental
input (bottom-up approach). Let us focus on the top-down approach first before com-
menting on the bottom-up approach.
Because the LO vertex-correction given by (3.6) is a one-loop diagram, we have to go
at least to the one-loop order in the matching procedure to fully capture all effects. As
a first step, we integrate out S at tree-level, i.e. solve its classical equation of motion.
The latter is given by

�S +M2S +
b

2
S2 +

λ

6
S3 + gt̄t = 0 (3.12)

with the formal solution

S = − 1

�+M2 + b
2S + λ

6S
2
gt̄t = − g

M2
t̄t+O

(
1

M4

)
(3.13)

Reinserted into (3.1) yields

Leff ⊃
g2

2M2
t̄tt̄t ≡ C1

M2
Q1 (3.14)

with C1 = g2/2 and Q1 = t̄tt̄t. For the one-loop operators, we have to refer to the local
operators generated in (3.8). These are given by

Leff ⊃
C2

M2
Q2 +

C3

M2
Q3 (3.15)

with

Q2 = ∂µF
µν t̄γνt (3.16)
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and

Q3 = mt̄σµνt F
µν (3.17)

Their coefficients C2 and C3 can be determined by carrying out the full one-loop match-
ing. Schematically, suppressing the prefactors present in (3.6), we have

matching
←−−−−−−→

+ (3.18)

δΓµ = δΓµQ1
+ δΓµQ2

+ δΓµQ3

with the full theory result on the left-hand side given by (3.8) and EFT vertices repre-
sented by black squares on the right-hand side. Here, the tree level local contributions
are given by19

δΓµQ2
=

3C2

2eM2
q2γµ (3.21)

and

δΓµQ3
= − 3C3

eM2
miσµνqν (3.22)

whereas the non-local loop diagram reads

δΓµQ1
= i

2C1

M2
µ2ε
∫

ddk

(2π)d
ū(p1)(/k +m)γµ(/k − /q +m)v(p2)(

k2 −m2
)(
(k − q)2 −m2

) (3.23)

The factor 2 stems from two possible contractions of the four-top operator (3.14) and
the closed fermion loop induces an extra factor of (−1). This integral is calculated
using the strategy of regions for the full theory contribution in (3.99) in the appendix

19As the photon eventually contracts with the electron current, we can use the Dirac equation
v̄(k2)/qu(k1) = 0 implicitly to drop terms ∼ qµ. As a consequence, the term ∼ ∂µA

µ in Q2 does
not contribute. Note that upon using the equation of motion for the photon field, i.e.

∂µF
µν = −eψ̄γνψ +

2e

3
t̄γνt (3.19)

we can get rid of the second derivative obtaining the operator

Q′
2 = −eψ̄γνψt̄γνt+

2e

3
t̄γνtt̄γνt (3.20)

instead of Q2. The first term in (3.20) gives the same contribution to the process considered above
by virtue of a plain four-fermion vertex.
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to this section. When the MS (modified minimal subtraction) renormalization scheme20

is employed, we are left with

δΓµQ1
= − C1

8π2M2

((
1

3
ln
m2

µ2
+ h1(z)

)
q2γµ +

(
ln
m2

µ2
+ h2(z)

)
miσµνqν

)
(3.24)

Matching the EFT to the full theory then leads to

C2 = −
eg2

24π2

(
1

3
ln

µ2

M2
+

4

9

)
(3.25)

and

C3 =
eg2

24π2

(
1

2
ln

µ2

M2
+

7

12

)
(3.26)

together with C1 = g2/2 as stated above21.
As we can clearly see, the Wilson coefficients Ci/M2 with i = 1, 2, 3 contain all the
information associated with the high energy scale M , whereas the low energy dynamics
solely results from the non-local loop contribution as given by logarithms and the loop
functions h1(z) and h2(z). It is not possible to capture the full theory result (3.8) with
local operators alone. At this point, this observation might seem rather trivial, as the
full theory is a genuine one-loop effect, so a tree-level EFT treatment should have been
doomed to fail from the beginning. Of course, it was easy in this case, since the UV
theory, the scalar S, is known to us. In the context of the SM, however, this is no
longer the case. ”Knowing” only about the right-hand side of (3.18) makes it clear that
a proper loop-counting rule is unavoidable even for simple cases like this toy model22.
In fact, an ordering prescription based on a topological counting of loops alone - that
is, considering only δΓµQ2

and δΓµQ3
as they are of tree-level topology - would lead to

wrong conclusions and predictions for experimental setups. One might argue that such
an order-by-order matching (of loops) between the full theory and the EFT would still
be enough to take these observations into account. After all, in this model, we are talk-
ing about a one-loop effect within the full theory, so we should trivially not expect to
capture it by the EFT when using tree-level topologies only. The latter may serve as a
leading order approximation only - though a quite inaccurate one due to the properties
of this specific model. When the UV theory is generally unknown, fixing the loop order
in EFT calculations would then ensure to never miss any UV effect up to this order (in
the full theory). This, of course, comes with the disadvantage of featuring a maximal
20The 1/ε-poles in (3.99) have exactly the form of Q2 and Q3, which is why they serve as counterterms.
21It is now straight forward to compute the beta-functions βi ≡ 16π2µ dCi/dµ for i = 2, 3. They are

given by

β2 = −8e

9
C1 and β3 =

4e

3
C1 (3.27)

22The crucial criteria of this toy model are its renormalizability to all orders, and its weak couplings to
the low energy spectrum.
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and potentially redundant number of Wilson coefficients to be fitted to the experimental
data.
To make this more clear, we now turn to the bottom-up approach for the toy model.
Pretending to not know about the heavy scalar S and its mass M , we are supposed to
work with the first line of (3.1) supplemented by all possible higher dimensional oper-
ators built from the electron, the top-quark and the photon. When CP conservation
is assumed to hold, there are 22 dimension-six operators in total, most of them four-
fermion ones. They are all suppressed by a factor of 1/M2, where M now denotes the
(unknown) scale of new physics (see also footnote 18). A complete (hermitian) basis is
given by the following table (we have introduced a small electron mass me to catch up
with ordinary QED results at one-loop):

four-electron four-top mixed electron-top field strength

ψ̄ψψ̄ψ t̄tt̄t← ψ̄ψt̄t mt̄σµνtFµν ←

iψ̄ψψ̄γ5ψ it̄tt̄γ5t iψ̄ψt̄γ5t meψ̄σ
µνψFµν

ψ̄γ5ψψ̄γ5ψ t̄γ5tt̄γ5t iψ̄γ5ψt̄t ∂µF
µν t̄γνt←

ψ̄γµψψ̄γ
µψ t̄γµtt̄γ

µt ψ̄γ5ψt̄γ5t

ψ̄γµψψ̄γ
µγ5ψ t̄γµtt̄γ

µγ5t ψ̄γµψt̄γ
µγ5t

ψ̄γµγ5ψt̄γ
µt

ψ̄γµγ5ψt̄γ
µγ5t

ψ̄σµνψt̄σ
µνt

iψ̄σµνγ5ψt̄σ
µνt

We have used Fierz identities and the equations of motion to eliminate redundant oper-
ators23. The ones that are generated by the scalar S - i.e. Q1, Q2 and Q3 - are marked
with an arrow.
Let us now - once more - summarize the two possible procedures mentioned above to
parameterize the new-physics impact on e+e− → t̄t:

• If we rely on canonical dimensions only, there is no reason why we should not take
all Wilson coefficients as O(1)-numbers24. As a first approximation, we would

23It is common to remove second-derivative operators by virtue of their equations of motion. Therefore,
we could have replaced ∂µFµν t̄γνt in favour of ψ̄γµψt̄γµt (see also footnote 19 above). We chose not
to in order to keep the relation to the toy model more transparent

24If completely arbitrary values were allowed, the effects of even higher dimensional operators, e.g. of
canonical dimension eight, could outperform lower dimensional ones and the whole operator series
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therefore take all tree-level diagrams with single dimension-six insertions, as they
collectively scale as ∼ 1/M2 compared to the leading-order non-new-physics re-
sult given in (3.4). These include plain ψ̄ψt̄t-vertices as well as photon exchange
diagrams with local operator insertions featuring the photon, i.e. field strength
tensors. Some of them read

(first approximation) (3.28)

It is only until the precision of the calculation needs to be improved, that one-
loop contributions are considered. Here, we have closed fermion bubble-like loops
attached to the virtual photon, but also triangle graphs with modified local vertices.
They all scale as ∼ 1/(16π2M2) compared to (3.4) and are hence loop-suppressed
with respect to the first-approximation graphs (3.28). Examples are given by

(subleading contributions)

(3.29)

Such a power-counting scheme will, however, never be able to capture the physics of
the toy model correctly. Indeed, the first-approximation graphs (3.28) fail to repro-
duce the non-local contributions given by h1(z) and h2(z), whereas the subleading
contributions given by (3.29) would introduce a much higher level of complexity
than needed. In fact, the photon-exchange triangle graph needs to be supplemented
by a two-loop diagram with a four-fermion insertion in order to be compatible with
the toy model and its renormalization group equations (3.27). This is clearly be-
yond the scope of this exercise. We can thus never end up with a consistent EFT
description when focusing on the canonical dimension of operators alone.

• We can cure this improper power-counting setup by allowing for another ordering
parameter in addition to the canonical dimension, the implicit loop order. It can be
captured in a quantitative way by the notion of chiral dimensions (and we will do
so below), but for now, we simply state that all operators involving field strength
tensors are generated one loop order higher than others. In this case, our first
approximation (∼ 1/M2 with respect to (3.4)) would solely be the four-fermion-

would break down. Indeed, for the operator series not to break down as a whole, the suppression
mechanism of operators of canonical dimension dc with Wilson coefficient Ci to scale like Ci/Mdc−4 ∼
1/Mdc−4 has to be functional in general, see also footnote 17.
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vertex diagram

(first approximation) (3.30)

For the toy model, it turns out that this equals zero, i.e. all mixed electron-top
Wilson coefficients vanish. Beyond a first approximation, we have the diagrams

(subleading contributions) (3.31)

scaling like ∼ (1/16π2M2), whereas the triangle graph in (3.29) appears to be even
more suppressed, namely ∼ 1/

(
(16π2)2M2

)
. This is exactly the right pattern for

the toy model.
Instead of arguing solely based on the explicit topological loop order of diagrams, we
emphasize the existence of an implicit loop order incorporated in the Wilson coefficients
C2 and C3, which needs to be equally accounted for. According to this view, there simply
is no tree-level result in the EFT, as all operators are genuine one-loop effects: Q1 via
its one-loop topology, Q2 and Q3 via an implicit loop factor hidden in their Wilson
coefficients. In contrast to the order-by-order treatment mentioned above, this will not
only lead to the correct pattern of low-energy operators in the toy model, but also
reduce the number of parameters drastically for more general scenarios. In essence, if
the UV theory fulfills the aforementioned quite general properties, counting loop orders
already on the operator level is crucial for making sensible and experimentally accessible
predictions. Doing otherwise would then correspond to the opposite assumption, namely
that the UV theory does not possess these properties. Either case corresponds to further
assumptions about the UV sector besides its mass gap to the SM. An entirely model-
independent notion of the EFT is therefore not possible in general.
It is a matter of definition whether one should use the word ”inconsistent” for the pattern
highlighted in (3.28) and (3.29) as we have done before. In fact, there are actually no
mathematical inconsistencies associated with such an approach within the pure EFT as a
theory on its own. However, one should always keep in mind that without the possibility
of referring to a UV theory the EFT eventually matches to, such studies would remain
purely academic and doomed to irrelevance by construction. They are - in some sense -
inconsistent with reality.
Having explored the non-trivial matching properties of the fairly generic toy model
provides enough motivation to consider broader scenarios like SMEFT, where the only
sensible approaches close to reality are - if at all - bottom-up.
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3.2. Canonical and chiral dimensions
Any EFT, renormalizable or non-renormalizable, must be based on some power-counting
prescription which can provide a hierarchy pattern between the operators [76–78]. The
latter are built out of quantum fields representing the degrees of freedom of a given
theory and must respect its symmetries, which are usually postulated. For example, the
renormalizable part of the SM consists of all dimension-four operators built from SM
fields that are invariant under SU(3)c × SU(2)L × U(1)Y and is expanded in terms of
loops. SMEFT is obtained when the restriction of renormalizability is abandoned. We
then gain a second possibility on top of the loop expansion, the expansion in terms of
canonical dimensions. The latter are a quantitative tool for counting the order at which
hypothetical beyond-the-SM effects enter on the level of the Lagrangian. Let us now see
how a similar tool emerges for keeping track of loop orders.
Generally speaking, the LO SM consists of a Higgs doublet ϕ, fermions ψ and (non-
Abelian) gauge fields X. Fermionic interactions are either gauge- or Yukawa-like and
are associated with one weak coupling κ. For consistency reasons, the quartic Higgs
self-interaction comes with two weak couplings, i.e. κ2 (imagine constructing it from
two triple-vertices, each proportional to µκ, where µ is an energy scale, connected by a
propagator coming with 1/µ2, thus canceling the µ-dependence), and the gauge bosons
are collectively described by the field strength, which we symbolically write as Xµν ∼
∂X + κX2. Schematically, we have the following list of operator structures25:

XµνX
µν , κ2φ4, ψ̄ /Dψ, κψ̄ψϕ (3.32)

All structures must scale homogeneously under some quantitative power-counting mea-
sure, otherwise they could barely be viewed as the LO content of an EFT. Let us there-
fore introduce a dimension d to count the building blocks of operators with varying
weights. A given operator with Nϕ bosons (scalars or vectors), Nψ̄ψ fermion bilinears,
N∂ derivatives and Nκ weak couplings is then associated with a dimension

d =WϕNϕ +Wψ̄ψNψ̄ψ +W∂N∂ +WκNκ (3.33)

where Wi are the respective weights of the building blocks. For the LO operators in
(3.32) to scale homogeneously (d = const for all operators), we find the following set of
equations

d = 2Wϕ + 2W∂ = 3Wϕ +W∂ +Wκ = 4Wϕ + 2Wκ =

=Wψ̄ψ +W∂ =Wψ̄ψ +Wϕ +Wκ (3.34)

leading to

W∂ =Wκ +Wϕ (3.35)
d

2
=Wκ + 2Wϕ (3.36)

25The Higgs mass term will be discussed below.
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Wψ̄ψ =Wκ + 3Wϕ (3.37)

For this system of equations to be uniquely determined, we need to specify two weights,
e.g. Wϕ and Wκ. The rows of the following table provide the independent resulting
patterns of weights for different choices:

Wϕ Wκ W∂ Wψ̄ψ d

0 0 0 0 0

1 0 1 3 4 dc

0 1 1 1 2 dχ

Choosing Wϕ =Wκ = 0 yields a trivial assignment to the other weights and is therefore
not relevant. The other independent cases are exhausted by allowing either Wϕ or
Wκ to be non-zero. Interestingly, this leads unambiguously to the notion of canonical
dimensions d = dc = 4 for the case Wϕ = 1 and Wκ = 0. However, setting Wϕ = 0
together with Wκ = 1 leads to a second possibility, this time with d = 2. An assignment
based on Wϕ = 0 is called chiral dimension (abbreviated as dχ) and is as suited as the
canonical dimension as a power-counting tool for EFTs. It is associated with the loop
expansion as we will see below. Taking Wϕ = 1 and Wκ = 1 at the same time corresponds
to a mere linear combination of dc and dχ and contains no additional information.
The LO SM terms in (3.32) thus allow for two independent counting mechanisms26, the
canonical dimension

dc = Nϕ + 3Nψ̄ψ +N∂ (3.40)

and the chiral dimension

dχ = Nψ̄ψ +N∂ +Nκ (3.41)

The LO SM operators have dc = 4 and dχ = 2, respectively. We will now explore
the roles of dc and dχ in SMEFT. In particular, we will derive a general power-counting
formula estimating the natural values of the dimensionless Wilson coefficients for a given
operator structure.
26The choice of taking Wϕ and Wκ as the parameters the other weights depend on is pragmatic and

arbitrary: ϕ and κ are the only entities for which a classical non-relativistic limit exists. This does
not mean that non-trivial solutions with zero-weights other than Wϕ and Wκ cannot be found. In
fact, they read

d = 2, Wϕ = −1, Wψ̄ψ = 0, W∂ = 2, Wκ = 3 (3.38)

and

d = 2, Wϕ = 1, Wψ̄ψ = 2, W∂ = 0, Wκ = −1 (3.39)

However, negative weights are not suited as a consistent power-counting prescription. Such solutions
are therefore not relevant.
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3.3. Power-counting formula for SMEFT
Let us consider a completely generic weakly coupling renormalizable (gauge) theory
featuring the following particle content:

heavy scalar S
heavy vector V
heavy fermion F

light scalar s
light vector v
light fermion f

We combine them into sets B = {S, V } and b = {s, v} collecting heavy and light bosons,
and β = {B, b} and ψ = {F, f} denoting bosons and fermions, respectively. Our goal
is to find a general power-counting formula for the Wilson coefficients of operators built
from light fields when the heavy fields representing new physics are integrated out. For
this, we need to specify all interactions between the various interactions and count their
associated weak couplings κ. Denoting the respective interaction classes by ψ̄ψ′β, ββ′β′′,
ββ′β′′β′′′ and ββ′∂β′′, all allowed interaction vertices are schematically given by the fol-
lowing table:

ψ̄ψ′β ββ′β′′ ββ′β′′β′′′ ββ′∂β′′

f̄fb bb′b′′ bb′b′′b′′′ bb′∂b′′

f̄fB bb′B bb′b′′B bB∂b′

f̄F b bBB′ bb′BB′ bB∂B′

f̄FB BB′B′′ bBB′B′′ BB′∂B′′

F̄ fb BB′B′′B′′′

F̄ fB

F̄Fb

F̄FB

κ µκ κ2 pκ

The corresponding number of weak couplings is displayed at the bottom. As stated
above, quadruple-boson vertices possess two weak couplings. In addition, we have made
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an energy scale associated with triple-boson vertices as well as the momentum from the
derivative interaction explicit. A term bb′∂B can be eliminated in favor of the ones
shown upon partial integration. Primes denote different members of the same set, but
the indistinguishability of particles has not been implemented. This is, however, enough
for our purpose.
Consider now a general ÑL-loop diagram D with only light external legs. Denote by Ni

the number of vertices of type i (this notation will be self-explaining), Ni the number
of propagators of type i and Ñi exterior numbers of type i (such as external light fields,
number of loop-factors, etc.). Such a diagram would scale like

D ∼
(

1

16π2

)ÑL (
f̄f
)Ñf hÑhvÑvµν κÑκpÑpµ∑Nββ′β′′ (3.42)

Here we have enforced Lorentz invariance by allowing fermion-bilinears only. Further-
more, the field strength tensor vµν of the light vector v (in an abstract index notation)
ensures gauge invariance. Covariant derivatives are represented as momenta on the
amplitude level. The object

∑
Nββ′β′′ represents the total number of non-derivative

triple-boson vertices. Sums are generally taken over open index sets, that is β, β′ and
β′′ in this case, but overcounting should be avoided. We can relate Ñκ and Ñp to the
vertices and propagators by counting their respective contributions displayed in the table
above. This leads to

Ñκ =
∑

Nψ̄ψ′β +
∑

Nββ′β′′ + 2
∑

Nββ′β′′β′′′ +
∑

Nββ′∂β′′ (3.43)

and

Ñp = 4ÑL − Ñv +
∑

Nββ′∂β′′ − 2
∑
Nβ −

∑
Nψ (3.44)

For the latter (which can get negative), we have made use of the fact that every loop
introduces an integration over unconstrained momenta and that fermion and boson prop-
agators scale like 1/p and 1/p2, respectively. Since the (Abelian) field strength tensor
vµν contains a factor of momentum, we have to shift Ñp by −Ñv to account for the
right energy dimensions. We can obtain an expression for the total number of loops
ÑL by counting the numbers of propagators and vertices, as the former introduce un-
constrained momenta and hence an integration, whereas the latter enforce momentum
conservation and therefore reduce the number of unconstrained momenta. Keeping a
global Dirac-delta for momentum conservation of external particles in mind, we obtain

ÑL = 1 +
∑
Nβ +

∑
Nψ −

∑
Nψ̄ψ′β −

∑
Nββ′β′′ −

∑
Nββ′β′′β′′′ −

∑
Nββ′∂β′′

(3.45)

Let us now eliminate the number of propagators Ni from our formulas. For this, we
write 4ÑL = 2ÑL + 2 + 2ÑL − 2 in (3.44) and plug in (3.45) for one of the terms. We
then obtain

Ñp = 2ÑL + 2− Ñv +
∑
Nψ − 2

∑
Nψ̄ψ′β − 2

∑
Nββ′β′′ − 2

∑
Nββ′β′′β′′′ −

∑
Nββ′∂β′′

(3.46)
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The remaining fermionic propagator terms can be eliminated upon noting that every ex-
ternal fermion is connected to a vertex and that every propagator connects two vertices.
Having distinguished fermions and anti-fermions in our notation, this translates to

Ñf +Nf =
∑

Nf̄ψβ =
∑

Nψ̄fβ (3.47)

and, using that the number of external heavy fermion lines is zero

NF =
∑

NF̄ψβ =
∑

Nψ̄Fβ (3.48)

Combining both equations in (3.46) exactly cancels the fermionic vertex terms leading
to

Ñp = 2ÑL + 2− Ñv − Ñf − Ñκ −
∑

Nββ′β′′ (3.49)

We thus arrive at

D ∼
(

1

16π2

)ÑL (
f̄f
)Ñf hÑhvÑvµν κÑκp2ÑL+2−Ñv−Ñf−Ñκ

(
p

µ

)−
∑
Nββ′β′′

(3.50)

As a special case, we switch off the super-renormalizable interaction by setting Nββ′β′′ =
0 for all combinations. The impact of heavy fields then manifests itself as higher dimen-
sional operators suppressed by the heavy scale. Denote it by Λ and consider operators of
canonical dimension dc. To compensate for a change of energy dimension of the object
D, the momentum has to be shifted, as it is the only liable source of new physics. In
other words, a suppression in terms of Λ has to emerge from heavy propagators (or loop
functions) being expanded in terms of the inverse heavy mass. We can therefore write

D ∼
(

1

16π2

)ÑL 1

Λdc−4

(
f̄f
)Ñf hÑhvÑvµν κÑκpd̃+dc−4 (3.51)

where

d̃ ≡ 2ÑL + 2− Ñv − Ñf − Ñκ (3.52)

On one hand, for the corresponding local operator to be of canonical dimension dc, this
formula is subject to the constraint

dc = 3Ñf + Ñh + 2Ñv + d̃+ dc − 4 (3.53)

On the other hand, the chiral dimension dχ is given by

dχ = Ñf + Ñv + Ñκ + d̃+ dc − 4 (3.54)

Eliminating d̃ yields an expression for the ÑL, namely

ÑL = 1 +
dχ − dc

2
(3.55)
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The power-counting formula for a Wilson coefficient Ci of a generic SMEFT operator
therefore depends on an interplay between dc and dχ. The former solely determines the
suppression with respect to the high energy scale Λ, whereas both are needed for the
power of the loop factor 1/(16π2).
It is straightforward to generalize our formulas even if Nββ′β′′ 6= 0. One then has to
distinguish between two cases: The scale µ might be light or heavy. In the former
case, according to the homogeneity in dχ of the LO terms in perturbation theory, the
scale has to be counted as µ ∼ κ and our former analysis can be taken over without
modifications27. For large scales µ ∼ Λ, however, there would be no additional weak
coupling. In addition to the heavy propagators, there is now another possible source for
producing the factor 1/Λdc−4 in (3.51). For a fixed canonical dimension, the constrained
interplay between heavy propagators and large-scale super-renormalizable interactions
can be implemented by an auxiliary excess quantity δ. It can be introduced by modifying
the p-dependence in (3.51) to

pd̃+dc−4 −→ pd̃+dc−4+δ−
∑
Nββ′β′′µ

∑
Nββ′β′′−δ (3.56)

We now split the sum of super-renormalizable terms into vertices associated with heavy
scales and light scales, denoted by Nh

ββ′β′′ and N l
ββ′β′′ , respectively28. We have to require

δ =
∑
Nh
ββ′β′′ to ensure the correct power of Λ in the final expression. We then end up

with

p
d̃+dc−4−

∑
N l
ββ′β′′µ

∑
N l
ββ′β′′ (3.57)

Counting µ ∼ κ for light scales reveals that the number of light-scale super-renormalizable
interaction vertices drops out in (3.54), so (3.55) stays intact.
As a bookkeeping device, we introduce the quantity

f ≡ Λ

4π
(3.58)

which kind of determines a reasonable energy scale at which SMEFT is an appropriate
description of nature: For scales much smaller than f , effects of higher dimensional
operators are heavily suppressed; for scales much larger than f , the perturbative series
might get in trouble as an infinite tower of higher dimensional operators gets important.
However, in contrast to strongly coupled scenarios, such as Chiral Perturbation Theory,
being a mere definition, f has no dynamical interpretation.
The power-counting formula is then given by

Ci =
f4−dc

(4π)dχ−2
(3.59)

27This is in fact generic: Small mass parameters have to be counted as weak couplings, so that no
peculiarities arise. In the SM, for instance, this is obvious because all SM masses are associated with
(weak) Yukawa couplings.

28Note that Nbb′b′′ is necessarily associated with a weak scale, otherwise it cannot be part of a LO
EFT Lagrangian since it would violate the scale separation assumption between the light and heavy
degrees of freedom. In contrast, the vertices with at least one (suppressed) heavy boson might be
linked to the large scale Λ.
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which estimates the expected size of a Wilson coefficient in terms of dc and dχ. The object
L ≡ (dχ− 2)/2 is often referred to as the ”loop-order” - a relic from Chiral Perturbation
Theory. It puts the loop expansion on the same footing as the 1/Λ-expansion and should
not be confused with the ”loop-factor” 1/(16π2), which is counted by ÑL. For instance,
a ten-dimensional operator with two-loop suppression (dc = 10 and ÑL = 2) would have
L = 5, as it is suppressed with respect to the SM with 5 factors of 1/Λ2 or 1/(16π2).
For the dc = 6-operators of the toy model in Section 3.1, we find

dχ (C1O1) = 4, dχ (C2O2) = 6, dχ (C3O3) = 6 (3.60)

indicating the relative suppression between the Wilson coefficients of O1 and O2,3. It is
compensated by the topological loop of O1, which is, of course, not part of the power-
counting formula.

3.4. Weak-coupling assignments for the Warsaw basis
For the practical application, (3.59) has a big disadvantage: It needs the number of weak
couplings as an input parameter via dχ. In reality, this can be achieved by explicitly
matching SMEFT to specific model scenarios. To avoid this, one can, however, give a
general estimate for a minimal number of associated weak couplings for a given operator
by counting the number of possible interactions of the external fields. This depends, of
course, on some minimal assumptions on the underlying dynamics and varies for different
values of dc. We will now explore the implications on Warsaw-basis operators when all
interactions are assumed to be weak and renormalizable. As the weak-coupling assign-
ment for a given operator is in fact the crucial point for its expected impact, we present
two contrasting approaches; the first one catches up with our topological considerations
of the last subsection, the second one makes use of the dimensional distinction between
masses and weak couplings.

Topological reasoning
In the case of the leading new-physics effects, we can use our topological formula (3.51)
with dc = 6. Furthermore, the equations of motion can be employed to eliminate re-
dundant operator structures to match with the Warsaw basis, which does not contain
second-derivative operators29. We can therefore set

d̃+ 2 ≤ 1 (3.61)

Focusing first on the case, d̃+ 2 = 0, we obtain

dχ = Ñf + Ñv + Ñκ = 2ÑL + 4 (3.62)

and find the following cases for the numbers of external fields

Ñv = 3 =⇒Ñf = 0, Ñh = 0, dχ = 3 + Ñκ (3.63)
29The Higgs operators with second derivatives do not matter here as we are primarily interested in

operators with field strength tensors. We comment on them below.
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Ñv = 2 =⇒Ñf = 0, Ñh = 2, dχ = 2 + Ñκ (3.64)
Ñv = 1 =⇒Ñf = 1, Ñh = 1, dχ = 2 + Ñκ (3.65)

Ñf = 0, Ñh = 4, dχ = 1 + Ñκ (3.66)
Ñv = 0 =⇒Ñf = 2, Ñh = 0, dχ = 2 + Ñκ (3.67)

Ñf = 1, Ñh = 3, dχ = 1 + Ñκ (3.68)
Ñf = 0, Ñh = 6, dχ = Ñκ (3.69)

The minimal number of weak couplings can now be estimated by inspecting the allowed
interactions. For instance, we have to exclude vertices involving a light gauge boson
v and two different bosons/fermions, i.e. bBv or f̄Fv, etc. since the kinetic terms -
they involve the gauge boson v via the covariant derivative - of scalars and fermions
can always be chosen diagonal, independent of their mass terms. Furthermore, a plain
v2ββ′-vertex has to be excluded by gauge invariance as we want to end up with an
external field strength vµν . This leads us to the observation that the Ñv = 3-case (3.63)
needs at least three weak couplings - one for each field strength separately, rendering
dχ = 6 and thus ÑL = 1. Similarly, two external v-fields together with two light bosons
h in (3.64) require at least Ñκ = 4, since we have excluded the plain vertex, and thus
dχ = 6. Things get more interesting when we come to the case Ñv = 1. Lorentz-
invariance forces us to contract the (antisymmetric) field strength indices with σµν in
the case of Ñf = 1. However, f̄σµνf is a non-renormalizable interaction that has to
emerge from an off-shell particle exchange giving rise to at least two couplings. Together
with an extra coupling from each vµν and h, we again end up with dχ = 6. The case
Ñv = 1 with Ñh = 4 is forbidden by Lorentz-invariance. Finally, we have the operators
with Ñv = 0. The first class, the ones with Ñf = 2, can be generated with a total of
two weak couplings - one for each fermion bilinear - leading to dχ = 4, i.e. tree-level.
Likewise, the Ñf = 1 together with Ñh = 3-case requires one coupling for the fermion
bilinear and at least two couplings for the h3-part, either by combining all three bosons
in a quadruple-boson vertex counting as κ2 or by splitting them apart into two groups
with triple-boson vertices counting as one κ each. The result is again dχ = 4. Finally,
we have the h6-operator. Here, we need at least three couplings to attach the external
fields to the diagram, three pairs of two fields with one κ each (triple-vertices) or two
pairs of three fields with κ2 each (quadruple-vertices), but at least another coupling for
the diagram to be connected. Again, we end up with dχ = 4, i.e. ÑL = 0.
The second case, d̃+2 = 1, features only Ñv = 0-operators due to the hidden derivative in
vµν . We would otherwise end up with higher-derivative operators that can be eliminated
by the equations of motion. We now have

dχ = Ñf + Ñv + Ñκ + 1 = 2ÑL + 4 (3.70)

and find the following two cases

Ñf = 1, Ñh = 2, dχ = 2 + Ñκ (3.71)
Ñf = 0, Ñh = 5, dχ = 1 + Ñκ (3.72)
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(3.73)

The first case (Ñf = 1) is straightforward: We need two couplings, one for the fermion
bilinear and one for the two bosons. The result is dχ = 4. The second case does not
exist due to Lorentz invariance.
The last class of operators contained in the Warsaw basis features four light bosons and
two derivatives. The bosons require two couplings and, together with the derivatives,
the chiral dimension is dχ = 4.
This concludes the weak-coupling and hence the chiral-dimension assignments for all
Warsaw-basis operators. Our analysis was based on topological considerations only, i.e.
our line of reasoning was as general as possible. As a cross-check of our findings, we
consider another general setup based on differentiating between energy scales and inverse
length scales.

Dimensional reasoning
In this approach, we analyze the dimensional structure of a given operator to read off its
implicit number of weak couplings. Throughout our previous analysis, we have worked
in units where ~ = c = 1. This implies the existence of only one dimensional scale, the
energy E. Everything, i.e. masses, length scales, time, etc. can be expressed in terms
of energies. Let us now restore the dependence on ~ and check whether the minimal
number of weak couplings can also be derived on dimensional grounds [8, 21, 79] by
superficially counting loops with factors of ~. This new system of units then includes
energy E, as well as length L. The old units can be restored upon noting that the di-
mension of ~ is given by [~] ∼ EL (square brackets evaluate the dimensional units of the
objects inside). Employing the convention that the classical action be free of factors of
~, an n-loop diagram then scales like ∼ ~n−1. This can be derived from the path integral
representation of amplitudes. Indeed, the generating functional is given in terms of the
path integral, i.e.

Z ∼
∫
DΦ ei

S[Φ]
~ (3.74)

where DΦ denotes the functional integral over the entire field content Φ = {φ, ψ} with
generic bosons φ and fermions ψ and S[Φ] =

∫
d4x L(Φ), written as a functional of the

fields, is the classical action. The generating functional is related to Feynman graphs
via expanding the exponential function and contracting the fields inside the various fac-
tors of L(Φ) appropriately (Wick’s theorem). As the vertices (propagators) of Feynman
diagrams are - loosely speaking - proportional (anti-proportional) to the corresponding
terms in L(Φ), the ~-dependence of the exponent of the generating functional provides
an ~-counting for the Feynman rules. Vertices and propagators then come with factors
of 1/~ and ~, respectively. Since the number of loops of a specific connected diagram is
given by ÑL = 1−N +N (see (3.45)), where N and N are the total numbers of vertices
and propagators, there is a one-to-one correspondence between the number of loops and
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a superficial30 power of ~.
With ~ 6= 1, using [d4x] = L4 and [∂] = L−1, we find the following dimensional de-
pendencies for the action S, the Lagrangian L, masses m, weak couplings κ (excluding
super-renormalizable interactions), bosonic field φ (including gauge fields) and fermionic
fields ψ

[S] = EL, [L] = EL−3, [m] = L−1,

[κ] = E− 1
2L− 1

2 , [φ] = E
1
2L− 1

2 , [ψ] = E
1
2L−1 (3.75)

We will turn to the field strength Xµν ∼ ∂φ + κφ2 below. These relations are solely
derived from kinetic terms ∂2φ2, ∂ψ2, mass terms m2φ2, mψ2 and interaction terms
κφψ2, κ∂φ3, κ2φ4. Instead of energy E and length L, however, we can use a system of
units based on the independent entities mass m and weak coupling κ. Consider now a
generic operator

Q = c ∂Ñ∂φÑφψÑψ (3.76)

with a compensating factor c accounting for dimensional commensurability with L. Its
dimension can be determined upon noting that

[∂Ñ∂φÑφψÑψ ] = L−Ñ∂− 1
2
Ñφ−ÑψE

1
2
Ñ = mÑ∂+Ñφ+

3
2
Ñψκ−Ñ (3.77)

where Ñ ≡ Ñφ+Ñψ and we have eliminated L and E in favour of m and κ in the second
step. Since [L] = κ−2m4, the dimension of c is given by

[c] = m4−dcgÑ−2 (3.78)

with dc = Ñ∂ + Ñφ + 3Ñψ/2 as usual. When recognizing m as the large mass scale Λ,
this formula provides the number of associated weak couplings for a given operator in
SMEFT for a minimum number of ~- and hence loop-factors. This number can easily
be raised by multiplying with powers of ~. However, as [~] = EL, every ~ comes with
compensating factors of κ2.
Let us work out the relevant cases for the Warsaw basis (2.17)-(2.49) with dc = 6. We
first consider the classes without field strength tensors, i.e. ϕ6, ∂2ϕ4, ϕ3ψ2, ∂ϕ2ψ2 and
ψ4, where ϕ is now the Higgs field. The coefficients are given by

ϕ6 −→ [c] = m−2κ4 (3.79)
∂2ϕ4 −→ [c] = m−2κ2 (3.80)
ϕ3ψ2 −→ [c] = m−2κ3 (3.81)
∂ϕ2ψ2 −→ [c] = m−2κ2 (3.82)

ψ4 −→ [c] = m−2κ2 (3.83)
30Cancellations of ~-factors after expanding or integrating the propagators due to the different units of

momentum and mass may appear. They ultimately spoil our classical/quantum - tree/loop classifi-
cation, but are in principle unrelated to the points we make [80, 81].
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which leads to the same weak-coupling prescription we obtained previously. Concerning
field-strength operators, note that both ∂φ and κφ2 scale homogeneously in E and L or
κ and m leading to the scaling behaviour [Xµν ] = m2κ−1. The resulting dimensional
pattern is equivalent to counting Xµν as a boson field in (3.78). We find

X3
µν −→ [c] = m−2κ (3.84)

ϕ2X2
µν −→ [c] = m−2κ2 (3.85)

ϕψ2Xµν −→ [c] = m−2κ2 (3.86)

By construction, the results in (3.84)-(3.86) are the weak-coupling assignments at tree-
level, i.e. there are no factors of ~ involved. Here, however, the displayed number of
weak couplings is unrealistic. For instance, without loss of generality, the purely non-
Abelian part of X3

µν comes already with κ3 - an additional factor of κ2 with respect to
the tree-level result (3.84). The only available object to compensate for this dimensional
excess is ~ which raises the loop order by one unit. Similarly, for the other cases, since
every Xµν adds a weak coupling κ that is necessarily associated with the gauge field
alone, we need additional factors of κ to separately couple the residual fields. This adds
at least another κ2 or one loop order for both cases ϕ2X2

µν and ϕψ2Xµν .
We conclude that every Warsaw-basis operator that has at least one field strength tensor
comes with at least one loop factor, whereas all operators without the former can be
generated at tree level. This is a generic result that holds for a broad class of high-
energy scenarios [82–85]. As a last point, one might argue that field redefinitions or
the application of the equations of motion are always possible. These could transform
a tree-level generated non-field-strength operator into a field-strength operator without
loop suppression. However, the so-obtained operators are not part of the Warsaw basis
[86]. In fact, when restricted to the latter, our findings can be applied without further
limitations.
The phenomenological role of the power-counting formula (3.59) together with the weak-
coupling assignments highlighted in this subsection cannot be overestimated. In fact,
when confronted with the sheer number of Wilson coefficients suggested by the plain
Warsaw basis, every sensible evaluation of experimental data must at some point restrict
the parameter space to facilitate the eventual detection of any beyond-the-SM effects.
Our analysis shows that such a truncation is not arbitrary and can indeed be done
systematically. In the remaining sections, we demonstrate how this works in practice.
We do this by evaluating the leading new-physics effects for two specific processes at
the LHC, showing explicitly how a systematic reduction of the Warsaw-basis parameter
space leads to a manageable number of coefficients that represent the unknown physics.

Appendix: Three independent calculations of the triangle diagram to O(1/M2) and
OS counterterm

Perturbative calculations in QFT are often cumbersome and prone to errors. It is there-
fore advantageous to verify and confirm final results by alternative approaches when-
ever possible. In fact, every loop calculation in this thesis has been approved by at
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least two different methods. As an example, in this appendix, we list three different
ways to solve the loop integral (3.7) to O(1/M2), as well as the calculation of the
counterterm required to impose the OS renormalization scheme. Throughout this sec-
tion, we will make use of identities like p21 = p22 = m2 and p1 · p2 = 1

2q
2 − m2 or

the Dirac-equations ū(p1) /p1 = mū(p1) and /p2v(p2) = −mv(p2) and the Gordon identity
ū(p1)(p

µ
1−p

µ
2 )v(p2) = 2mū(p1)γ

µv(p2)−ū(p1)iσµνqνv(p2) without further comments and
suppress the spinors. The iη-prescription and hence the analytic structure of the loop
functions in the complex plane will be restored in the end upon sending m2 → m2 − iη.
We will start with a straightforward evaluation of the complicated loop integral in terms
of Feynman parameters. In a second approach, we split the multi-scale integral into
different integration regions and sum up the respective contributions, which leads to
the calculation of two easier integrals. A third possibility highlights the reduction of the
tensor structure in the original expression to scalar functions by expanding the former in
terms of all possible Lorentz structures. As expected, although differing in methodology,
all three approaches yield the same final result, namely (3.8).

Brute force calculation
First, we perform the integral all at once in one shot. For this, we introduce Feynman
parameters via the formula

1

ABC
=

∫ 1

0
dx

∫ 1

0
dy

2x(
A+ (B −A)x+ (C −B)xy

)3 (3.87)

and find

ū(p1)δΓ
µv(p2) = ig2

∫ 1

0
dx

∫ 1

0
dy µ2ε

∫
ddk

(2π)d
ū(p1)N

µv(p2)

(k2 −∆)3
(3.88)

with the abbreviations

∆ ≡M2

(
1− x+ x2

m2

M2
− x2y(1− y) q

2

M2

)
(3.89)

Nµ ≡2x(2gµαγβ − gαβγµ)kαkβ + 2x(4− x2)m2γµ − 2x3y(y − 1)q2γµ+

− 4mx2(x− 2)(y − 1)pµ1 − 4mx2(x− 2)ypµ2 (3.90)

Note that the denominator is symmetric with respect to the exchange y ↔ (1− y). We
can therefore write

Nµ =2x(2gµαγβ − gαβγµ)kαkβ + 2x(4− 4x+ x2)m2γµ+

+ 2x3y(1− y)q2γµ − 2mx2(x− 2)iσµνqν (3.91)

Performing the momentum integral in dimensional regularization using the expressions
given in Appendix D results in

δΓµ =− g2

16π2M2

(
I1miσ

µνqν − I2q2γµ − I3m2γµ −
(
1

ε
+ ln

4π

eγ
+ ln

µ2

M2
+

1

2

)
M2γµ

2

)
(3.92)
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The form factors are given by

I1 =

∫ 1

0
dy

∫ 1

0
dx

y2(y − 2)

1− y + y2 m
2

M2 − y2x(1− x) q
2

M2

=
7

6
+ ln

m2

M2
+ h2(z) +O

(
1

M2

)
(3.93)

I2 =

∫ 1

0
dy

∫ 1

0
dx

y3x(1− x)
1− y + y2 m

2

M2 − y2x(1− x) q
2

M2

= −11

36
− 1

6
ln
m2

M2
− h1(z)

2
+O

(
1

M2

)
(3.94)

I3 =

∫ 1

0
dy

∫ 1

0
dx

(
y(4− 4y + y2)

1− y + y2 m
2

M2 − y2x(1− x) q
2

M2

+

− M2

m2
y ln

(
1− y + y2

m2

M2
− y2x(1− x) q

2

M2

)
− 3M2

4m2

)
=

=1− 5

36

q2

m2
− 1

6

q2

m2
ln
m2

M2
− q2

2m2
h1(z) +O

(
1

M2

)
(3.95)

In evaluating the integrals, it turns out to be advantageous to view
(
m2−x(1−x)q2

)
/M2

as a single object of small numerical absolute value and perform the y-integration at first.
The so obtained expressions can be Taylor-expanded before the x-integration is tackled,
which can be written in terms of h1(z) and h2(z) (see (3.10) and (3.11)). However,
the complicated expressions I1, I2 and I3 require disproportionately high calculational
power for the problem at hand. The next technique tries to avoid this by splitting our
multi-scale problem into several single-scale ones.

Strategy of regions
This method is based on dividing the original integral into several integration regions
that are determined by the relevant scales of the problem at hand. The integrand is then
expanded around the respective region which reduces the complexity of the integration
by a fair amount. Adding up all contributions from all regions yields the original integral
[65, 87, 88]. For our case, there are two regions of the loop momentum k to consider,
namely

I : m, p1, p2, k �M

II : m, p1, p2 � k,M

Let us first evaluate region I. Expanding the integrand in the relevant limit, i.e. the
propagator of the heavy particle, and introducing Feynman parameters, we find

ū(p1)δΓ
µ
I v(p2) ≡

ig2

−M2
µ2ε
∫

ddk

(2π)d
ū(p1)(/k +m)γµ(/k − /q +m)v(p2)(

k2 −m2
)(
(k − q)2 −m2

) =

=
ig2

−M2

∫ 1

0
dx µ2ε

∫
ddk

(2π)d
ū(p1)N

µv(p2)(
k2 −∆

)2 (3.96)
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where

∆ ≡ m2 − x(1− x)q2 (3.97)
Nµ ≡ (2gµαγβ − gαβγµ)kαkβ +m2γµ +miσµαqα + x(1− x)q2γµ (3.98)

and terms of O(1/M4) or higher are consistently neglected. The momentum integral
yields (see Appendix D for the necessary formulas)

δΓµI =
g2

16π2M2

((
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)(
q2γµ

3
+miσµνqν

)
+

−
(
h1(z)q

2γµ + h2(z)miσ
µνqν

))
(3.99)

with the form factors h1(z) and h2(z) given by (3.10) and (3.11).
Moving on to region II, we first rewrite the integrand according to

ū(p1)δΓ
µv(p2) =ig

2µ2ε
∫

ddk

(2π)d
ū(p1)(/kγ

µ/k + 4mkµ + 4m2γµ)v(p2)(
k2 −M2

)
k4
(
1 + 2k·p1

k2

)(
1− 2k·p2

k2

) (3.100)

The corresponding expression ū(p1)δΓ
µ
IIv(p2) is obtained by expanding the nominator

and denominator in the relevant limit and keeping only even powers of k (the integration
is symmetric with respect to k ↔ −k). Dropping terms of O(1/k2) and higher, we obtain

/kγµ/k + 4mkµ + 4m2γµ(
1 + 2k·p1

k2

)(
1− 2k·p2

k2

) ≈
≈/kγµ/k + 4m2γµ − 8mkµk · (p1 − p2)

k2
+

4/kγµ/k
(
(k · p1)2 + (k · p2)2 − (k · p1)(k · p2)

)
k4

(3.101)

Within the integral, due to symmetry, this expression is equal to(
2

d
− 1

)
γµk2 +

2q2γµ

d+ 2
+

4(d2 − 5d+ 4)m2γµ

d(d+ 2)
+

8(d− 1)miσµνqν
d(d+ 2)

(3.102)

After performing the integral, we obtain

δΓµII ≡
g2

16π2M2

((
1

ε
+ ln

4π

eγ
+ ln

µ2

M2
+

1

2

)
M2γµ

2
−
(
1

ε
+ ln

4π

eγ
+ ln

µ2

M2
+

4

3

)
q2γµ

3
+

−
(
1

ε
+ ln

4π

eγ
+ ln

µ2

M2
+

7

6

)
miσµνqν +m2γν

)
(3.103)

Adding both regions yields

δΓµ =δΓµI + δΓµII = −
g2

16π2M2

((
ln
m2

M2
+

7

6
+ h2(z)

)
miσµνqν+
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+

(
1

3
ln
m2

M2
+

4

9
+ h1(z)

)
q2γµ −m2γµ −

(
1

ε
+ ln

4π

eγ
+ ln

µ2

M2
+

1

2

)
M2γµ

2

)
(3.104)

Of course, this matches the expression above (see (3.92)).
The strategy of regions has the particular advantage of being conceptually related to the
philosophy of the EFT approach to physics. Indeed, for our problem, the two regions
are nothing else than the domains of validity of the respective theory. Region I, the soft
region, is equivalent to the low-energy EFT and hence the bubble-diagram contribution
(3.24) featuring the non-local structure functions h1(z) and h2(z), whereas region II,
the hard region, gives rise to local operators and Wilson coefficients that are determined
by the matching procedure of the EFT to the full theory. The renormalization scale µ
separates the domains and is canceled when both contributions are finally combined.

Passarino-Veltman reduction
Finally, we provide an in-depth study of the tensor structure of our integral in terms
of scalar functions [89–91]. Although this method is usually accompanied by lengthy
calculations and a confusing number of equations to keep track of, it is actually quite
reliable when it comes to complicated applications. For instance, there could be cases
where the evaluation of tensor integrals as in (3.87)-(3.95) is simply not possible in a
straightforward manner. Especially when making use of computer algebra systems such
as FeynCalc, FormCalc or Package-X [92–94], the integral reduction method turns
out to be quite fruitful, but should only be employed if unavoidable.
We rewrite the integral in terms of basic triangle integrals31

− i

g2
ū(p1)δΓ

µv(p2) =µ
2ε

∫
ddk

(2π)d
ū(p1)(/k + 2m)γµ(/k + 2m)v(p2)(

k2 −M2
)(
(k + p1)2 −m2

)(
(k − p2)2 −m2

) =

=ū(p1)(γ
αγµγβCαβ + 4mCµ + 4m2γµC)v(p2) (3.105)

where

C ≡µ2ε
∫

ddk

(2π)d
1

D1D2D3
=

=− i

16π2M2

∫ 1

0
dy

∫ 1

0
dx

y

1− y + y2
(
1− x(1− x) q2

m2

)
m2

M2

=

=
i

16π2M2

(
1 + ln

m2

M2
+ h2(z) +

7m2

2M2

(
1− q2

6m2

)
+

3m2

M2

(
1− q2

6m2

)
ln
m2

M2
+

+
3m2

M2
h2(z)−

3q2

2M2
h1(z) +

m4

M4

(
1− q2

3m2
+

q4

30m4

)(
37

3
+ 10 ln

m2

M2

)
+

+ 10
m4

M4
h2(z)− 10

m2q2

M4
h1(z) + 10

q4

M4
h3(z)

)
+O

(
1

M8

)
(3.106)

31Do not confuse these expressions (and subsequent ones) with the abbreviations introduced in Appendix
E.
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Cµ ≡µ2ε
∫

ddk

(2π)d
kµ

D1D2D3
(3.107)

Cαβ ≡µ2ε
∫

ddk

(2π)d
kαkβ

D1D2D3
(3.108)

with the abbreviations

D1 ≡k2 −M2 =⇒ k2 = D1 +M2 (3.109)

D2 ≡k2 + 2k · p1 =⇒ k · p1 =
1

2
(D2 −D1 −M2) (3.110)

D3 ≡k2 − 2k · p2 =⇒ k · p2 =
1

2
(D1 −D3 +M2) (3.111)

The one parameter integral in the scalar triangle C could be done using

∫ 1

0
dy

y

1− y + y2A
=

ln(A) +
ln
(
−2A+

√
1−4A+1

)
−ln(2A)√

1−4A

2A
(3.112)

In addition to h1(z) and h2(z) in (3.10) and (3.11), we defined

h3(z) ≡
∫ 1

0
dx x2(1− x)2 ln (1− 4x(1− x)z) =

=

(
1

30
+

1

60z
+

1

80z2

)
h2(z) +

1

120z
+

13

900
(3.113)

It is also useful to define32

B(i, j) ≡µ2ε
∫

ddk

(2π)d
1

DiDj
(3.114)

A(i) ≡µ2ε
∫

ddk

(2π)d
1

Di
(3.115)

with

B(1, 2) = B(1, 3) =
i

16π2

(
1

ε
+ ln

4π

eγ
+

∫ 1

0
dx ln

µ2

x2m2 + (1− x)M2

)
(3.116)

B(2, 3) =
i

16π2

(
1

ε
+ ln

4π

eγ
+

∫ 1

0
dx ln

µ2

m2 − x(1− x)q2

)
(3.117)

A(1) =
i

16π2
M2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

M2
+ 1

)
(3.118)

A(2) = A(3) =
i

16π2
m2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2
+ 1

)
(3.119)

32We generally refer to the A, B and C-functions as tadpoles, bubbles and triangles, irrespective of their
indices. For later use, diagrams with four propagators are denoted by D and referred to as boxes.
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and

Bµ(i, j) ≡µ2ε
∫

ddk

(2π)d
kµ

DiDj
(3.120)

For every combination of i and j in Bµ(i, j), we have to identify the available Lorentz
vectors and expand the vector integral accordingly. This suggests us to write

Bµ(1, 2) ≡ Qpµ1 (3.121)
Bµ(1, 3) ≡ Rpµ2 (3.122)

Bµ(2, 3) ≡ µ2ε
∫

ddk

(2π)d
kµ − pµ1(

k2 −m2
)(
(k − q)2 −m2

) = Sqµ − pµ1B(2, 3) (3.123)

where we have shifted k → k − p1 in the last formula. We now have to determine the
unknown coefficients Q, R and S. Contracting the above equations with p1 and p2,
respectively, yields

p1µB
µ(1, 2) =µ2ε

∫
ddk

(2π)d
k · p1
D1D2

=
1

2

(
A(1)−A(2)−M2B(1, 2)

)
= Qm2 (3.124)

p2µB
µ(1, 3) =µ2ε

∫
ddk

(2π)d
k · p2
D1D3

=
1

2

(
A(3)−A(1) +M2B(1, 3)

)
= Rm2 (3.125)

qµB
µ(2, 3) =µ2ε

∫
ddk

(2π)d
k · q(

k2 −m2
)(
(k − q)2 −m2

) − 1

2
q2B(2, 3) =

=
1

2
q2B(2, 3)− 1

2
q2B(2, 3) = 0 = Sq2 − 1

2
q2B(2, 3) (3.126)

where we have expanded k ·q in terms of the denominator structure in the last expression
and shifted the loop momentum for the resulting tadpole functions to cancel each other.
We then obtain

Q =−R =
1

2m2

(
A(1)−A(2)−M2B(1, 2)

)
(3.127)

S =
1

2
B(2, 3) (3.128)

Next, for the same reasons as before, we write

Cµ ≡ Apµ1 +Bpµ2 (3.129)

with unknown A and B (not to be confused with the tadpole and bubble functions
above). The relevant contractions read

p1µC
µ =µ2ε

∫
ddk

(2π)d
k · p1

D1D2D3
=

1

2

(
B(1, 3)−B(2, 3)−M2C

)
= Am2 +B(p1 · p2)

(3.130)
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p2µC
µ =µ2ε

∫
ddk

(2π)d
k · p2

D1D2D3
=

1

2

(
B(2, 3)−B(1, 2) +M2C

)
= A(p1 · p2) +Bm2

(3.131)

From this, we obtain

A = −B =− m2

2
(
m4 − (p1 · p2)2

)((1 + p1 · p2
m2

) (
B(2, 3) +M2C

)
+

−B(1, 3)− p1 · p2
m2

B(1, 2)

)
= − 1

4m2 − q2
(
B(2, 3)−B(1, 2) +M2C

)
(3.132)

where the left-hand side of (3.116) has been used. Similarly, we have

Cαβ ≡ Xgαβ + Y p1αp1β + Zp2αp2β +W (p1αp2β + p2αp1β) (3.133)

with the four coefficients X, Y , Z and W . The contractions are given by (d is the
spacetime dimension)

gαβCαβ =µ2ε
∫

ddk

(2π)d
k2

D1D2D3
= B(2, 3) +M2C = Xd+ Y m2 + Zm2 + 2W (p1 · p2)

(3.134)

pα1 p
β
1Cαβ =µ2ε

∫
ddk

(2π)d
(k · p1)2

D1D2D3
= µ2ε

∫
ddk

(2π)d

1
2(D2 −D1 −M2)(k · p1)

D1D2D3
=

=
1

2

(
p1µB

µ(1, 3)− p1µBµ(2, 3)−M2p1µC
µ
)
=

=Xm2 + Y m4 + Z(p1 · p2)2 + 2Wm2(p1 · p2) (3.135)

pα2 p
β
2Cαβ =µ2ε

∫
ddk

(2π)d
(k · p2)2

D1D2D3
= µ2ε

∫
ddk

(2π)d

1
2(D1 −D3 +M2)(k · p2)

D1D2D3
=

=
1

2

(
p2µB

µ(2, 3)− p2µBµ(1, 2) +M2p2µC
µ
)
=

=Xm2 + Y (p1 · p2)2 + Zm4 + 2Wm2(p1 · p2) (3.136)

pα1 p
β
2Cαβ =µ2ε

∫
ddk

(2π)d
(k · p1)(k · p2)
D1D2D3

= µ2ε
∫

ddk

(2π)d

1
2(D2 −D1 −M2)(k · p2)

D1D2D3
=

=
1

2

(
p2µB

µ(1, 3)− p2µBµ(2, 3)−M2p2µC
µ
)
=

=X(p1 · p2) + Y m2(p1 · p2) + Zm2(p1 · p2) +W
(
m4 + (p1 · p2)2

)
(3.137)

Let us write

J1 ≡B(2, 3) +M2C (3.138)

J2 ≡
1

2

(
p1µB

µ(1, 3)− p1µBµ(2, 3)−M2p1µC
µ
)

(3.139)

J3 ≡
1

2

(
p2µB

µ(2, 3)− p2µBµ(1, 2) +M2p2µC
µ
)

(3.140)
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J4 ≡
1

2

(
p2µB

µ(1, 3)− p2µBµ(2, 3)−M2p2µC
µ
)

(3.141)

Note that only J1 is written in a manifestly reduced form. The others are only implicitly
reduced. The coefficients are then given by

X =
1

(d− 2)q2(q2 − 4m2)

(
q2(q2 − 4m2)J1 + 4m2J2 + 4m2J3 + (8m2 − 4q2)J4

)
(3.142)

Y =
1

(d− 2)q4(q2 − 4m2)2

(
4m2q2(q2 − 4m2)J1 + 16(d− 1)m4J2+

+
(
16(d− 1)m4 − 16(d− 2)m2q2 + 4(d− 2)q4

)
J3+

+ 16(d− 1)m2(2m2 − q2)J4
)

(3.143)

Z =
1

(d− 2)q4(q2 − 4m2)2

(
4m2q2(q2 − 4m2)J1+

+
(
16(d− 1)m4 − 16(d− 2)m2q2 + 4(d− 2)q4

)
J2+

+ 16(d− 1)m4J3 + 16(d− 1)m2(2m2 − q2)J4
)

(3.144)

W =− 1

(d− 2)q4(q2 − 4m2)2

(
(16m4q2 − 12m2q4 + 2q6)J1+

− 8(d− 1)m2(2m2 − q2)J2 − 8(d− 1)m2(2m2 − q2)J3+

−
(
32(d− 1)m4 − 16dm2q2 + 4dq4

)
J4

)
(3.145)

Inserting the explicit expressions for the integrals (i.e. (3.116) and (3.117) into (3.129)
with (3.132)), we find

Cµ =
pµ1 − p

µ
2

q2 − 4m2

(
i

16π2

∫ 1

0
dx ln

(
x2 + (1− x)M2

m2

1− x(1− x) q2
m2

)
+M2C

)
≡

≡ pµ1 − p
µ
2

q2 − 4m2
(F +M2C) (3.146)

p2µB
µ(1, 2) =− p1µBµ(1, 3) =

q2 − 2m2

4m2

(
A(1)−A(2)−M2B(1, 2)

)
≡ q2 − 2m2

4
G =

=
q2 − 2m2

4

i

16π2

(
M2

m2

(
1 +

∫ 1

0
dx ln

(
1− x+ x2

m2

M2

))
+

−
(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2
+ 1

))
(3.147)

p2µB
µ(2, 3) =− p1µBµ(2, 3) =

4m2 − q2

4
B(2, 3) =

=
4m2 − q2

4

i

16π2

(
1

ε
+ ln

4π

eγ
+

∫ 1

0
dx ln

µ2

m2 − x(1− x)q2

)
(3.148)

p1µB
µ(1, 2) =− p2µBµ(1, 3) =

1

2

(
A(1)−A(2)−M2B(1, 2)

)
=
m2

2
G (3.149)
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where we have defined F and G on the go. Reinserted into (3.139)-(3.141) gives

J2 =J3 = −J4 −
q2

8
G = −q

2 − 2m2

8
G+

4m2 − q2

8
B(2, 3) +

M2

4
(F +M2C) (3.150)

It is useful to separate the finite from the infinite parts by defining

B(2, 3) ≡I + B̃(2, 3) (3.151)
G ≡− I + G̃ (3.152)

where

I ≡ i

16π2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)
(3.153)

B̃(2, 3) ≡ − i

16π2

∫ 1

0
dx ln

(
1− x(1− x) q

2

m2

)
(3.154)

G̃ ≡ i

16π2

(
−1 + M2

m2
+
M2

m2

∫ 1

0
dx ln

(
1− x+ x2

m2

M2

))
=

=
i

16π2

(
M2

m2
− 1

)
− M2

m2
H (3.155)

with

H ≡ − i

16π2

∫ 1

0
dx ln

(
1− x+ x2

m2

M2

)
(3.156)

Also, we have

F = B̃(2, 3)− i

16π2
ln
m2

M2
+

i

16π2

∫ 1

0
dx ln

(
1− x+ x2

m2

M2

)
=

= B̃(2, 3) +
i

16π2

(
m2

M2
− ln

m2

M2
− 1

)
+
m2

M2
G̃ = B̃(2, 3)−H − i

16π2
ln
m2

M2
(3.157)

where we have used (3.155) in the last step. Eliminating J3 and J4 via (3.150) in
(3.142)-(3.145) leads to

X =
q2(q2 − 4m2)J1 + 4q2J2 − (8m2 − 4q2) q

2

8 G

(d− 2)q2(q2 − 4m2)
=

=
1

2(d− 2)
I +

1

4
B̃(2, 3) +

(
M2

2
− M4

2(4m2 − q2)

)
C − M2

2(4m2 − q2)
F (3.158)

Y =
4m2q2(q2 − 4m2)J1 +

(
16m2q2 + 4(d− 2)q4

)
J2 − 16(d− 1)(2m4 −m2q2) q

2

8 G

(d− 2)q4(q2 − 4m2)2
=

= − (d− 4)m2

(d− 2)q2(q2 − 4m2)
I − q2 − 2m2

2q2(q2 − 4m2)
B̃(2, 3)− q2 − 2m2

2q2(q2 − 4m2)
G̃+
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+
M2
(
−8m4 + 2m2(M2 + q2) +M2q2

)
q2(q2 − 4m2)2

C +
M2(2m2 + q2)

q2(q2 − 4m2)2
F (3.159)

Z = Y (3.160)

W = −(16m4q2 − 12m2q4 + 2q6)J1 − (16m2q2 − 4dq4)J2
(d− 2)q4(q2 − 4m2)2

+

−
(32(d− 1)m4 − 16dm2q2 + 4dq4) q

2

8 G

(d− 2)q4(q2 − 4m2)2
=

=
(d− 4)(q2 − 2m2)

2(d− 2)q2(q2 − 4m2)
I +

m2

q2(q2 − 4m2)
B̃(2, 3) +

m2

q2(q2 − 4m2)
G̃+

−
M2
(
8m4 − 2m2(M2 + 3q2) + 2M2q2 + q4

)
q2(q2 − 4m2)2

C − 2M2(q2 −m2)

q2(q2 − 4m2)2
F (3.161)

where J1, J2 and G (or rather G̃) were eliminated via (3.138), (3.150) and (3.155),
respectively. The function H can be decomposed into F and B̃(2, 3) and vice versa
upon using (3.157). Note that Y , Z and W are finite, since d − 4 ∼ ε cancels the
1/ε-dependence in I. Catching up with (3.105), after using the Dirac equation and the
Gordon identity, we arrive at

4mCµ + 4m2γµC =

(
8m2

q2 − 4m2
(F +M2C) + 4m2C

)
γµ − 4m

q2 − 4m2
(F +M2C)iσµνqν

(3.162)
γαγµγβCαβ =

(
2m2(Y −W )− q2W − (d− 2)X

)
γµ + 2m(W − Y )iσµνqν (3.163)

where (3.146) and (3.133) have been used. We also have

W − Y =
d− 4

2(d− 2)(q2 − 4m2)
I +

1

2(q2 − 4m2)
B̃(2, 3) +

1

2(q2 − 4m2)
G̃+

− 3M2

(q2 − 4m2)2
F − M2(−4m2 + 3M2 + q2)

(q2 − 4m2)2
C (3.164)

Where F and G̃ can be eliminated in favor of H by virtue of (3.157) and (3.155) as
before. For very large M2, the parameter integral (3.156) is given by

H =
i

16π2

4m
2

M2 −
(
2m

2

M2 − 1
)
ln
(
m2

M2

)
−
√
1− 4m

2

M2 ln

(
−

2m
2

M2+
√

1−4m
2

M2−1

2m
2

M2

)
2m

2

M2

=

=
i

16π2

(
1 +

1

2

m2

M2

(
2 ln

(
m2

M2

)
+ 1

)
+

1

3

m4

M4

(
6 ln

(
m2

M2

)
+ 5

))
+O

(
m6

M6

)
(3.165)

When the dust settles, keeping only O(1/M2)-effects, we end up with(
− 4m

q2 − 4m2
(F +M2C) + 2m(W − Y )

)
iσµνqν =
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=
i

16π2M2

(
7

6
+ ln

m2

M2
+ h2(z)

)
iσµνqνm (3.166)

and(
8m2

q2 − 4m2
(F +M2C) + 4m2C + 2m2(Y −W )− q2W − (d− 2)X

)
γµ =

=
i

16π2

(
−m

2

M2
+

q2

3M2
ln
m2

M2
+

4q2

9M2
+

q2

M2
h1(z)−

1

2ε
− 1

2
ln

4π

eγ
− 1

2
ln

µ2

M2
− 1

4

)
γµ

(3.167)

Reinserted into (3.105), this is the desired result and matches (3.92) and (3.104).

Counterterms
In this appendix, we have so far calculated the unrenormalized divergent amplitude. In
addition to being finite, the renormalized amplitude should also fulfill the OS condition

δΓµ = 0 for q = 0 (3.168)

This guarantees a proper interpretation of e as the electric elementary charge in Coulomb’s
law for large distances, i.e. for q = 0.
To fix the counterterms on a quantitative level, we need to evaluate the following self-
energy diagram

k

k − p

≡ iΣ = g2µ2ε
∫

ddk

(2π)d
/k +m(

(k − p)2 −M2
)(
k2 −m2

) (3.169)

Introducing Feynman parameters and performing the momentum integration as usual,
we find

iΣ =g2
∫ 1

0
dx µ2ε

∫
ddk

(2π)d
x/p+m(

k2 − xM2 − (1− x)m2 + x(1− x)p2
)2 =

=
ig2

16π2

∫ 1

0
dx (x/p+m)

(
1

ε
+ ln

4π

eγ
+ ln

µ2

xM2 + (1− x)m2 − x(1− x)p2

)
(3.170)

We can choose the OS renormalization scheme for the top-quark’s mass by imposing33

Z2 − 1 ≡ δ2 = −
d

d/p
Σ(/p)

∣∣
/p=m

(3.171)

where Z2 is the wavefunction renormalization of the top-quark. We find

d

d/p
Σ(/p) =

ig2

16π2

∫ 1

0
dx

(
x

(
1

ε
+ ln

4π

eγ
+ ln

µ2

xM2 + (1− x)m2 − x(1− x)/p2

)
+

33See for example equation (18.43) in [8].

54



+
2/px(1− x)(x/p+m)

xM2 + (1− x)m2 − x(1− x)/p2

)
(3.172)

which gives

δ2 = −
ig2

16π2

(
1

2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

M2

)
−
∫ 1

0
dx x ln

(
x+ (1− x)2 m

2

M2

)
+

+
m2

M2

∫ 1

0
dx

2(1− x)(1 + x)

1 + (1−x)2
x

m2

M2

)
(3.173)

In the limit m2 �M2, this evaluates to

δ2 = −
ig2

16π2M2

((
1

ε
+ ln

4π

eγ
+ ln

µ2

M2
+

1

2

)
M2

2
+m2

)
(3.174)

dropping higher-order terms. The Ward identity implies Z1 = Z2, where Z1 renormalizes
the top-quark-photon interaction and is hence associated with γµ, so using (3.92) and
(3.104), the renormalized final result is given by

δΓµ = − g2

16π2M2

((
ln
m2

M2
+

7

6
+ h2(z)

)
miσµνqν +

(
1

3
ln
m2

M2
+

4

9
+ h1(z)

)
q2γµ

)
(3.175)

which matches (3.8) from the main text and fulfills (3.168). Here, we have not introduced
extra indices to distinguish between renormalized and unrenormalized amplitudes, as this
should be clear from the context.
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4. Gluon fusion top-pair production gg → tt̄ in SMEFT
As a first example, we look at the leading SMEFT corrections for the partonic scattering
process gg → tt̄ at LO in QCD. The gluon-fusion channel is dominant for top-pair
production at hadron colliders where the competing quark-anti-quark fusion channel
qq̄ → tt̄ becomes less and less important for increasing center-of-mass energies34. Our
primary focus lies on the chromomagnetic operator QuG which induces a new magnetic-
moment type interaction between a quark line and a gluon. Recent calculations can
be found in [97, 98]. The power-counting rules argued for in this work suggest its
accompaniment by four-fermion operators entering at a higher-order loop topology. This
section is based on [99].

4.1. Setup and SM result
We consider the process of gluon fusion gg → tt̄, where two initial gluons with momenta
k1 and k2 and colours B and C merge together to yield a top-anti-top pair with momenta
p1 and p2 and colours c1 and c2, respectively:

k1, B

k2, C

p1, c1

p2, c2

(4.1)

The differential cross-section for this process within the SM can be calculated by eval-
uating only three Feynman diagrams. In this case, the relevant parameters are the
strong coupling constant gs and the mass of the top-quark mt. In SMEFT, the situation
becomes more cumbersome. The first non-vanishing contributions appear at operator
dimension six and the relevant parameters now also include the Wilson coefficients Ci
of the new operators Q6,i as well as the Higgs mass mh, its vacuum expectation value
v, and the other quark masses mb, mc, etc., and the CKM matrix entries. However, we
restrict ourselves to the third generation only and neglect the CKM matrix.
The total amplitude is given by a sum of the SM result and the leading order SMEFT
correction

iM = iMSM +
1

Λ2
iMSMEFT , (4.2)

34This does not only apply to proton-proton colliders like the LHC, but also to proton-anti-proton
colliders (e.g. Tevatron) due to the overwhelming dominance of the gluon PDF (parton distribution
function) over its quark or anti-quark counterparts [95, 96].
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where Λ denotes the (potentially very high) scale of new physics as usual. The cross-
section depends on |M|2 which to order 1/Λ2 takes the form

|M|2 ≡ |MSM |2 +
2

Λ2
Re {M∗

SMMSMEFT } (4.3)

Before we come to dimension-six operators, let us first review the LO cross-section for
gg → tt̄ within the SM [100]. Applying the usual notation for spinors ū(p1) ≡ ū and
v(p2) ≡ v, polarization vectors εµ(k1) ≡ εµ and εν(k2) ≡ εν (which we assume to be
transversal, i.e. kµ1 εµ = kν2εν = 0), and the Gell-Mann matrices λA = 2TA, the three
diagrams and their respective contributions are given by

≡ iM(t)
SM = −ig2s(TBTC)c1c2 ū

(
γµ

/k2 − /p2 +mt

−2p2 · k2 + iη
γν
)
vεµεν (4.4)

≡ iM(u)
SM = −ig2s(TCTB)c1c2 ū

(
γν

/p1 − /k2 +mt

−2p1 · k2 + iη
γµ
)
vεµεν (4.5)

≡ iM(s)
SM = −ig2s ifABCTAc1c2

(
−2gσµkν1 + gµν(k1 − k2)σ + 2gνσkµ2

)
·

· 1

q2 + iη
ūγσvεµεν (4.6)

The Ward identity can be checked straightforwardly by sending εµ to k1µ, etc.
In the center-of-mass frame, the differential cross-section is given by

dσ

dΩ
=
|M|2
64π2s

|p1|
|k1|

(4.7)

where |M|2 is initial (final) spin and colour summed (averaged) amplitude squared and
the Mandelstam variables read

s = q2 = E2
cm = (k1 + k2)

2 = (p1 + p2)
2 = 2k1 · k2 = 2p1 · p2 + 2m2

t =

= 2m2
t − t− u (4.8)

t = (k1 − p1)2 = (k2 − p2)2 = −2k1 · p1 +m2
t = −2k2 · p2 +m2

t =
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= m2
t −

s

2

(
1−

√
1− 4m2

t

s
cos θ

)
(4.9)

u = (k1 − p2)2 = (k2 − p1)2 = −2k1 · p2 +m2
t = −2k2 · p1 +m2

t =

= m2
t −

s

2

(
1 +

√
1− 4m2

t

s
cos θ

)
(4.10)

where we have parameterized the four vectors according to

k1 =

(
Ecm
2
, 0, 0,

Ecm
2

)
, p1 =

(
Ecm
2
,p1

)
(4.11)

k2 =

(
Ecm
2
, 0, 0,−Ecm

2

)
, p2 =

(
Ecm
2
,−p1

)
(4.12)

with k21 = k22 = 0, p21 = p22 = m2
t and Ecm the center-of-mass energy. The angle θ is

the scattering angle, i.e. the angle between the incoming gluon with four-momentum
k1 and the final-state top-quark. The spatial momenta of the quarks read p1 = −p2 =
|p1|(sin θ, 0, cos θ). We have

|p1| =

√(
Ecm
2

)2

−m2
t =

Ecm
2

√
1− 4m2

t

s
(4.13)

|k1| =
Ecm
2

(4.14)

which can be inserted in (4.7). The full amplitude is given by the sum of the three
diagrams

iMSM ≡ iM(s)
SM + iM(t)

SM + iM(u)
SM (4.15)

Summing and averaging over final and initial spins and colours results in

|MSM |2 =
1

82
1

22

∑
|MSM |2 (4.16)

Using αs = g2s/4π and employing the usual relations for traces and hermitian conjugates
of gamma matrices as well as the Dirac equation, we eventually find the result (see also
[101] or the latest version [61])(

dσ

dΩ

)
SM

=
α2
s

32s

√
1− 4m2

t

s

(
6(m2

t − t)(m2
t − u)

s2
− m2

t (s− 4m2
t )

3(m2
t − t)(m2

t − u)
+

+
4
3(m

2
t − t)(m2

t − u)− 8
3m

2
t (m

2
t + t)

(m2
t − t)2

+
4
3(m

2
t − t)(m2

t − u)− 8
3m

2
t (m

2
t + u)

(m2
t − u)2

+

− 3(m2
t − t)(m2

t − u) + 3m2
t (u− t)

s(m2
t − t)

− 3(m2
t − t)(m2

t − u) + 3m2
t (t− u)

s(m2
t − u)

)
=
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=
α2
s

32s

√
1− 4m2

t

s

(
− N

3s2(m2
t − t)2(m2

t − u)2

)
(4.17)

with

N ≡
(
7m4

t − 7m2
t (t+ u) + 4t2 − tu+ 4u2

)
·

·
(
6m8

t −m4
t (3t

2 + 14tu+ 3u2) +m2
t (t+ u)(t2 + 6tu+ u2)− tu(t2 + u2)

)
(4.18)

We now move to the SMEFT computation for this process.

4.2. SMEFT corrections
As stated above, the leading new-physics contributions to gg → t̄t appear at operator
dimension six. At tree-level, these include only operators featuring field strength tensors.
We have shown in Section 3 that these operators are generally associated with inher-
ent loop factors by virtue of their Wilson coefficients. Consistent power-counting rules
therefore require the inclusion of topological one-loop diagrams, even for a lowest-order
treatment. We can write

iMSMEFT ≡ iM(trees)
SMEFT + iM(loops)

SMEFT (4.19)

Let us first evaluate the tree diagrams.

Trees

The tree contributions are straightforward to write down [66, 102, 103] and are given by
the following list (insertions of dimension-six operators are indicated by black squares):

≡ iM(trees,1)
SMEFT =

i
√
2vgs
Λ2

ifABCTAc1c2 ū (C
∗
uGiσ

µνPL + CuGiσ
µνPR) vεµεν

(4.20)

≡ iM(trees,2)
SMEFT =

i
√
2vgs
Λ2

(TBTC)c1c2 ū
((
C∗
uGiσ

µαk1αPL+

+CuGiσ
µαk1αPR

) /k2 − /p2 +mt

−2p2 · k2 + iη
γν
)
vεµεν (4.21)
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≡ iM(trees,3)
SMEFT =

i
√
2vgs
Λ2

(TCTB)c1c2 ū
(
γν

/p1 − /k2 +mt

−2p1 · k2 + iη

(
C∗
uGiσ

µαk1αPL+

+CuGiσ
µαk1αPR

))
vεµεν (4.22)

≡ iM(trees,4)
SMEFT =

i
√
2vgs
Λ2

(TBTC)c1c2 ū
(
γµ

/p1 − /k1 +mt

−2p1 · k1 + iη

(
C∗
uGiσ

ναk2αPL+

+CuGiσ
ναk2αPR

))
vεµεν (4.23)

≡ iM(trees,5)
SMEFT =

i
√
2vgs
Λ2

(TCTB)c1c2 ū
((
C∗
uGiσ

ναk2αPL+

+CuGiσ
ναk2αPR

) /k1 − /p2 +mt

−2p2 · k1 + iη
γµ
)
vεµεν (4.24)

≡ iM(trees,6)
SMEFT =

i
√
2vgs
Λ2

ifABCTAc1c2
(
−2gσµkν1 + gµν(k1 − k2)σ + 2gνσkµ2

)
·

· 1

q2 + iη
ū
(
C∗
uGiσσαq

αPL + CuGiσσαq
αPR

)
vεµεν

(4.25)

≡ iM(trees,7)
SMEFT =

i6CGgs
Λ2

ifABCTAc1c2
(
kν1k

µ
2 − (k1 · k2)gµν

)
·

· 1

q2 + iη
ū( /k1 − /k2)vεµεν (4.26)

≡ iM(trees,8)
SMEFT =

−i4CφG
Λ2

δBCδc1c2
mt

m2
h − q2

(
kν1k

µ
2 − (k1 · k2)gµν

)
ūvεµεν

(4.27)
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where PL/R = (I∓ γ5)/2 are the left- and right-handed projectors in spinor space. The
total tree level amplitude is then given by

iM(trees)
SMEFT =

8∑
k=1

iM(trees,k)
SMEFT (4.28)

Note that we have explicitly written down the crossed versions of diagrams. For instance,
the four diagrams iM(trees,2)

SMEFT to iM(trees,5)
SMEFT should not be viewed as independent con-

tributions as they can be converted into each other by reversing the fermion flow and/or
repositioning the dimension-six insertion. In this section, however, making every cross-
ing explicit helps with keeping track of the Ward identity when it gets less transparent
(see below). For iM(trees)

SMEFT , the Ward identity is fulfilled, as can easily be checked.
As mentioned before, this is not the final result for the complete SMEFT amplitude
at LO. For instance, being a genuine one-loop operator, the Wilson coefficient of the
chromomagnetic Operator QuG depends on some renormalization scale µ (we will not
distinguish the renormalization scale from the one introduced upon dimensional regu-
larization) via its renormalization group equation [104–107]. This dependence has to
be canceled by the corresponding loop amplitudes. In fact, the operator QuG provides
the necessary counterterms for the divergent four-fermion loop amplitudes. Crucially, a
non-trivial cancellation of infinities depends on the bottom mass mb. We will therefore
include the full bottom-mass effects to our analysis.

Loops

The loop structure for this process is quite complicated because of bubble diagrams as
well as triangle diagrams featuring the Dirac matrix γ5 in d 6= 4 dimensions [108]. The
explicit calculations are cumbersome and lengthy; we show them in the appendix to this
section together with the notational abbreviations. The result is given by35

iM(loops)
SMEFT ≡

V∑
k=I

iM(loops,k)
SMEFT (4.30)

35Similar to Section 5, the diagram (4.27) is actually accompanied with the one-loop contribution

(4.29)

and its fermion-flow reversed version. These should be taken into account for fully consistent phe-
nomenological studies. However, here we are mainly interested in the chromomagnetic operator
QuG and its accompanying four-fermion operators, so we ignore the diagram (4.29) for the sake of
simplicity.
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The list of amplitude structures is long. It reads

iM(loops,I)
SMEFT =

ig2s
16π2Λ2

Tr(TBTC)δc1c2 ū

((
kν1k

µ
2 − (k1 · k2)gµν

)
Y1 + iεαβµνk1αk2βY2+

+
(
(k1 · k2)iγλελαµν(k2 − k1)α − (iγλε

λαβµkν1 − iγλελαβνk
µ
2 )k1αk2β

)
Y3

)
vεµεν

(4.31)

with

Y1 ≡
4Sb9
mb

(
C

(1)
quqd +

1

12
C

(8)
quqd

)
PR +

4Sb9
mb

(
C

(1)∗
quqd +

1

12
C

(8)∗
quqd

)
PL −

4St9
mt

C(8)
qu

Y2 ≡
4Sb14
mb

(
C

(1)
quqd +

1

12
C

(8)
quqd

)
PR −

4Sb14
mb

(
C

(1)∗
quqd +

1

12
C

(8)∗
quqd

)
PL +

4St14
mt

C(8)
qu γ

5

Y3 ≡

(
8Sb17
m2
b

(
2C(3)

qq − 2C(1)
qq + C

(1)
qd −

1

6
C

(8)
qd

)
+

+
8St17
m2
t

(
−2C(3)

qq − 2C(1)
qq + C(1)

qu −
1

6
C(8)
qu

))
PL+

+

(
8Sb17
m2
b

(
C

(1)
ud −

1

6
C

(8)
ud − C

(1)
qu +

1

6
C(8)
qu

)
+

8St17
m2
t

(
2Cuu − C(1)

qu +
1

6
C(8)
qu

))
PR

(4.32)

iM(loops,II)
SMEFT =

ig2s
16π2Λ2

{TB, TC}c1c2 ū

((
kν1k

µ
2 − (k1 · k2)gµν

)
Y4 + iεαβµνk1αk2βY5+

+
(
(k1 · k2)iγλελαµν(k2 − k1)α − (iγλε

λαβµkν1 − iγλελαβνk
µ
2 )k1αk2β

)
Y6

)
vεµεν

(4.33)

with

Y4 ≡
Sb9
mb

(
C

(1)
quqd +

5

6
C

(8)
quqd

)
PR +

Sb9
mb

(
C

(1)∗
quqd +

5

6
C

(8)∗
quqd

)
PL −

4St9
mt

(
C(1)
qu −

1

6
C(8)
qu

)
Y5 ≡

Sb14
mb

(
C

(1)
quqd +

5

6
C

(8)
quqd

)
PR −

Sb14
mb

(
C

(1)∗
quqd +

5

6
C

(8)∗
quqd

)
PL+

+
4St14
mt

(
C(1)
qu −

1

6
C(8)
qu

)
γ5

Y6 ≡

(
2Sb17
m2
b

(
−8C(3)

qq + C
(8)
qd

)
− 8St17

m2
t

(
C(1)
qq + C(3)

qq

))
PL+
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+

(
2Sb17
m2
b

(
C

(8)
ud − C

(8)
qu

)
+

8St17
m2
t

Cuu

)
PR −

2St17
m2
t

C(8)
qu γ

5 (4.34)

iM(loops,III)
SMEFT =

ig2s
16π2Λ2

ifABCTAc1c2 ū

(
( /k1 − /k2)

(
kν1k

µ
2 − (k1 · k2)gµν

)
Y7+

+
(
iσναk1αk

µ
2 − iσ

µαk2αk
ν
1 + iσαβk1αk2βg

µν + (k1 · k2)iσµν
)
Y8+

+
(
iσναk2αk

µ
2 − iσ

µαk1αk
ν
1

)
Y9

)
vεµεν (4.35)

with

Y7 ≡

(
Sb10
m2
b

(
8C(3)

qq + C
(8)
qd

)
+

4St10
m2
t

(
C(1)
qq + C(3)

qq

))
PL+

+

(
Sb10
m2
b

(
C

(8)
ud + C(8)

qu

)
+

4St10
m2
t

Cuu

)
PR +

St10
m2
t

C(8)
qu

Y8 ≡
(

mb

k1 · k2
Xb

2 +
Sb14
mb

)((
C

(1)
quqd −

1

6
C

(8)
quqd

)
PR +

(
C

(1)∗
quqd −

1

6
C

(8)∗
quqd

)
PL

)
+

+
mt

k1 · k2

(
2C(1)

qu −
1

3
C(8)
qu

)
Y9 ≡

mt

k1 · k2

(
2C(1)

qu −
1

3
C(8)
qu

)
(4.36)

iM(loops,IV )
SMEFT =

ig2s
16π2Λ2

(TBTC)c1c2 ū
(
mtiσ

µαk1αY10
/k2 − /p2 +mt

−2p2 · k2
γν
)
vεµεν+

+
ig2s

16π2Λ2
(TCTB)c1c2 ū

(
γν

/p1 − /k2 +mt

−2p1 · k2
mtiσ

µαk1αY10

)
vεµεν+

+
ig2s

16π2Λ2
(TBTC)c1c2 ū

(
γµ

/p1 − /k1 +mt

−2p1 · k1
mtiσ

ναk2αY10

)
vεµεν+

+
ig2s

16π2Λ2
(TCTB)c1c2 ū

(
mtiσ

ναk2αY10
/k1 − /p2 +mt

−2p2 · k1
γµ
)
vεµεν (4.37)

with

Y10 ≡
(
2C(1)

qu −
1

3
C(8)
qu

)
(4.38)

iM(loops,V )
SMEFT =

ig2s
16π2Λ2

(TBTC)c1c2 ū
(
mbiσ

µαk1αY11
/k2 − /p2 +mt

−2p2 · k2
γν
)
vεµεν+

+
ig2s

16π2Λ2
(TCTB)c1c2 ū

(
γν

/p1 − /k2 +mt

−2p1 · k2
mbiσ

µαk1αY11

)
vεµεν+
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+
ig2s

16π2Λ2
(TBTC)c1c2 ū

(
γµ

/p1 − /k1 +mt

−2p1 · k1
mbiσ

ναk2αY11

)
vεµεν+

+
ig2s

16π2Λ2
(TCTB)c1c2 ū

(
mbiσ

ναk2αY11
/k1 − /p2 +mt

−2p2 · k1
γµ
)
vεµεν+

+
ig2s

16π2Λ2
ifABCTAc1c2

mb

k1 · k2
ū
(
iσναqαk

µ
2 − iσ

µαqαk
ν
1+

+ iσαβk1αk2βg
µν + (k1 · k2)iσµν

)
Y11vεµεν (4.39)

with

Y11 ≡
(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2
b

)((
C

(1)
quqd −

1

6
C

(8)
quqd

)
PR +

(
C

(1)∗
quqd −

1

6
C

(8)∗
quqd

)
PL

)
(4.40)

The loop functions S are defined in the appendix to this section. Note that iM(loops,V )
SMEFT

is the only divergent expression. This issue can be resolved by going back to the tree
amplitudes, in particular to the chromomagnetic operator QuG and its hermitian conju-
gate. Remarkably, this effect only comes into play when the bottom mass is non-zero.
The relevant part of the renormalization group equation for the chromomagnetic oper-
ator is given by [104, 106]

dCuG
d lnµ2

=− gsmb

16π2
√
2v

(
C

(1)
quqd −

1

6
C

(8)
quqd

)
(4.41)

Not counting hermitian conjugates, out of the eleven four-fermion operators, only the
two operators appearing in Y11 are divergent and hence responsible for the cancellation
of the renormalization scale dependence between the different loop orders. We introduce
counterterms iM(counter)

SMEFT of the form of the chromomagnetic operator QuG and choose
the MS scheme to cancel the divergent entity 1/ε+ ln(4π/eγ).
Adding all these contributions yields

iM(loops,V )
SMEFT+

6∑
k=1

iM(trees,k)
SMEFT + iM(counter)

SMEFT =

=
ig2s

16π2Λ2
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(
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+
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+
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(
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+
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µ
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+ iσαβk1αk2βg
µν + (k1 · k2)iσµν

)
Y12vεµεν (4.42)

with

Y12 =

(
mb ln

µ2

m2
b

(
C

(1)
quqd −

1

6
C

(8)
quqd

)
+

√
2v
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CuG

)
PR+

+

(
mb ln

µ2
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(
C

(1)∗
quqd −

1

6
C

(8)∗
quqd
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+

√
2v
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C∗
(uG)

)
PL (4.43)

We have

dY12
d lnµ2

= 0 (4.44)

as it should. The gauge invariance of the full amplitude (4.30) can be checked straight-
forwardly.
The final results for the SMEFT corrections to the differential cross-section are obtained
by squaring the amplitudes and using (4.7). The list is given by

(
dσ

dΩ

)
QG

= − CG
Λ2

α
3/2
s m2

t

√
1− 4m2

t
s

64
√
2s

9(t− u)2

(m2
t − t)(m2

t − u)
(4.45)

(
dσ

dΩ

)
QϕG

=
CϕG
Λ2

αsm
2
t

√
1− 4m2

t
s

(
1− 4m2

t
s

)
64π

s2

(m2
t − t)(m2

t − u)(m2
h − s)

(4.46)

(
dσ

dΩ

)
QuG

= − Re{CuG(µ)}
Λ2

α
3/2
s vmt

√
1− 4m2

t
s
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√
2πs

7m4
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(m2
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(4.47)(

dσ
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)
Q
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√
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t
s

192mbs

1

(m2
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·
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b
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t

s

)(
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+
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b

(
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b

)
(4.48)

(
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Re{C(8)
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√
1− 4m2
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s
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1

(m2
t − t)(m2
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·
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b
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where
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=Re
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(
1
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(4.60)

in the relevant energy regime and ai ≡ s/4m2
i for i = t, b.

4.3. Numerical results
So far, we have evaluated the analytic differential cross-section formulas for the parton-
level particle reaction gg → tt̄ at LO QCD. However, we expect NLO QCD corrections
for processes with external gluon states to enhance the numerical values of our results by
a significant amount [109, 110], see also Section 5. A cautious numerical evaluation of our
formulas must therefore always be taken with a grain of salt. But since QCD corrections
affect both the SM result and the SMEFT corrections on an equal footing, our formulas
can still be viewed as a first approximation for the size of the expected phenomenological
new-physics impact on SM observables based on this parton-level process. Absolute val-
ues should then be multiplied by the relevant K-factors for this process, which is about
1.5 [97]. Of course, such an artificial adjustment can ultimately not replace a full QCD
study at NLO, see [111, 112] for different examples. We will therefore not consider any
sort of extrapolation towards higher order QCD effects36 and keep in mind that our
values only represent the qualitative behavior and might quantitatively be far off from
reality.
The input parameters for our formulas are shown in Appendix A. We use the MS bottom
36This includes the running of the strong coupling constant as well as the quark masses.
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Figure 1: Numerical plots for the SM result (first row), QG (second row), QϕG (third
row), QuG (fourth row) and Q(1)

quqd (last row). The left and right columns show
the differential (for

√
s = 1 TeV) and total cross-sections in pb, respectively.

The middle column represents the ratio between the differential corrections
and the SM result.
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Figure 2: Numerical plots for Q(8)
quqd (first row), Q(1)

qd (second row), Q(1)
ud (third row), Q(8)

qd

(fourth row) and Q
(8)
ud (last row). See Figure 1 for further details.
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Figure 3: Numerical plots for Quu (first row), Q(1)
qq (second row), Q(3)

qq (third row), Q(1)
qu

(fourth row) and Q
(8)
qu (last row). See Figure 1 for further details.
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mass at µ = mb. The cutoff scale is set to Λ = 1 TeV and we fix the renormalization
scale to µ = mt. The Wilson coefficients with field strength tensors, i.e. CG, CϕG and
CuG are nominally set to 1/(16π2), all others are assumed to be 1. Since it is only
the ratio between the Wilson-coefficients and the cutoff scale that enters the analytic
formulas, we can safely extend the latter beyond 1 TeV without spoiling the SMEFT
expansion by implicitly adjusting the parameters. We plot the absolute values of the
differential cross-section corrections for

√
s = 1 TeV together with their ratios to the

SM result, as well as the corrections to the total cross-section by integrating over the
remaining angle as a function of the center-of-mass energy

√
s in Figures 1-3. Due to the

cylindrical symmetry, the angular dependence of our cross-section formulas (4.45)-(4.58)
can be reduced to only one angle via dΩ = 2πdθ. The relative corrections to the SM
never exceed the per-mille range, which is far beyond the current experimental reacha-
bility. We can nevertheless make some qualitative observations. First, on one hand, for
the operators QG, Q(1)

quqd and Q(1)
qu , the relative correction of the differential cross-section

to the SM reaches is maximum for the forward-backward scattering case, which would
make their detection even harder due to beamline constraints. All other operators, on
the other hand, reach their maximal relative impact for high scattering angles. Second,
the relative total cross-section (not plotted) for the fastest growing operator Q(1)

qu hits the
percent level at around

√
s ≈ 3.5 TeV. Possible resonances above 1 TeV could, however,

spoil the applicability of SMEFT already before this benchmark. Last and most inter-
estingly, we observe a change of sign of the correction to the total cross-section shortly
after the top-pair production threshold

√
s = 2mt for the operators Q(1)

quqd, Quu, Q(1)
qq ,

Q
(3)
qq , Q(1)

qu and Q(8)
qu . After subtracting the SM background from experimental data, such

a signature could prove to be valuable for the hypothetical extraction of non-vanishing
values for their Wilson coefficients.
Of course, other processes for which the impact of the operators under consideration is
enhanced compared to our case are possible. For instance, four-top production channels
at particle colliders feature the plain four-top operator already at tree-level [113]. This,
however, comes with the cost of having to produce four on-shell top-quarks in the first
place. Concerning the operator Quu, the combined upper limit from the ATLAS exper-
iment for four-top production implies |Cuu| ≤ 1.9 for Λ = 1 TeV [114].
Apart from the top sector, the occurrence of hypothetical strong couplings in the context
of new physics seems plausible in the Higgs sector for this process, where an enhance-
ment of certain Wilson coefficients involving the Higgs field could be possible. Scenarios
with strong dynamics of electroweak symmetry breaking can be described in very general
terms by the EWChL, see also the next section. In such cases, the operator QϕG can in
principle be generated without the extra loop factor 1/(16π2), since the Higgs fields are
no longer associated with weak couplings, which essentially reduces the chiral dimension.
On one hand, depending on the scenario, this would also enhance the one-loop contri-
bution (4.29) such that their respective hierarchy is restored [74]. For instance, albeit
the chiral dimension of QϕG would be reduced to dχ = 4 (there are always weak gauge
couplings associated with field strength tensors), we would simultaneously also reduce
the chiral dimensions of Qϕ,kin and Cfϕ (see Table 1 in Section 5) to dχ = 2. The oper-
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ator QuG, on the other hand, is always loop-suppressed with respect to the four-fermion
ones, even for strong-coupling scenarios in the Higgs sector, see also Chapter 2.1 in [115].
The EWChL framework has such subtleties automatically incorporated.
The EWChL coefficient cggh is related to the SMEFT coefficient CϕG via

CϕG =
Λ2αs
8πv2

cggh ≈ 0.08 cggh (4.61)

Its experimental value is approximately given by cggh = −0.01±0.08 [116]. The remain-
ing tree-level operators are at best constrained by |CuG| ≤ 0.78 and |CG| ≤ 0.037 for
Λ = 1 TeV [103, 117–121]. The uncertainties of the coefficients are in fact quite large.
Given the current data, it is therefore not possible to postulate significant deviations
from their natural values of 1/(16π2) ≈ 0.0063.
We have compared our analytic results to the numerical Monte Carlo implementation
SMEFT@NLO [122] for MadGraph5 aMC@NLO [123, 124] for selected center-of-
mass energies and scattering angles with mb = 0 (this is required by SMEFT@NLO37)
and fixed αs. For the tree-level-topology operators, as well as the bottom-quark loops,
we find sufficient agreement with our formulas. In contrast, our top-quark-loop results
differ from the SMEFT@NLO output by a few percent38.

Appendix: Explicit calculations of the loop diagrams

For the process in mind, there are two new vertices that play a role at the one-loop
level. With open colour indices ci and spinor indices si and taking only the third quark
generation into account, these vertices are of the four-fermion type and are given by

t̄, c2, s2

b, c4, s4 t, c1, s1

b̄, c3, s3

≡ V (b)
c1c2c3c4s1s2s3s4 ≡ V

(b,1)
s1s2s3s4δc3c4δc1c2 + V (b,2)

s1s2s3s4δc3c2δc4c1 =

= iδc3c4δc1c2

(
(γαPL)s3s4(γ

αPL)s1s2

(
2C(1)

qq − 2C(3)
qq

)
+

+(γαPR)s3s4(γ
αPR)s1s2

(
C

(1)
ud −

1

6
C

(8)
ud

)
+

+(γαPL)s3s4(γ
αPR)s1s2

(
C(1)
qu −

1

6
C(8)
qu

)
+

37Providing the full mb-dependence (including the renormalization group equation (4.41) for the chro-
momagnetic operator!), our analytic formulas therefore complement the numerical discussion.

38This might partly be due to ambiguous contractions for the four-top vertex together with large nu-
merical cancellations when the full mt-dependence is taken into account. In fact, we were able to
achieve adequate accordance when manipulating the counterterms within the program.
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+(γαPR)s3s4(γ
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(4.62)

and

t̄, c2, s2

t, c4, s4 t, c1, s1

t̄, c3, s3

≡ V (t)
c1c2c3c4s1s2s3s4 ≡ V

(t,1)
s1s2s3s4δc3c4δc1c2 + V (t,2)
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(4.63)

Where we have suppressed the 1/Λ2 factors. The particle-anti-particle assignments are,
of course, arbitrary and the Feynman rules were chosen such that we need to include
an extra minus sign for each fermion loop irrespective of its index structure (trace or
non-trace), see also [125].
The most obvious thing to do is to close the loop on one side resulting in a modified
quark propagator

p

p

≡ iΣ (4.64)

It could replace the internal propagator of the t- and u-channel diagrams in the SM.
However, since the loop does not depend on the external momentum p, the OS condition
Σ(p) + δ = 0 leads to an exact cancellation by the counterterm δ, so these tadpole
diagrams can be annihilated by their respective counterterms [8].
The next possibility is the attachment of one or two gluons to the closed loop resulting in
modified three- and four-point functions. Adding one gluon gives the following modified
quark-quark-gluon vertex (the incoming gluon g has colour A and the loop momenta are
denoted by k̃ and p̃; of course, the latter are not independent of each other but rather
depend on only one unconstrained loop momentum k)

k̃

p̃

g, A

t, c1, s1

t̄, c2, s2

= −igsTAc1c2

(∫
d4k

(2π)4

V
(b,2)
s1s2s3s4

(
(/̃k +mb)γ

σ(/̃p+mb)
)
s4s3

(k̃2 −m2
b + iη)(p̃2 −m2

b + iη)
+
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+

∫
d4k

(2π)4

V
(t,2)
s1s2s3s4

(
(/̃k +mt)γ

σ(/̃p+mt)
)
s4s3

(k̃2 −m2
t + iη)(p̃2 −m2

t + iη)

)
(4.65)

We will, as usual, drop the iη-terms from now on. The so-obtained modified quark-
quark-gluon vertex thus does not depend on V (b/t,1).
Adding a second gluon yields two diagrams depending on the direction of the loop
momentum (clockwise or anti-clockwise). The result is a modified quark-quark-gluon-
gluon vertex which now depends on both V (b/t,1) and V (b/t,2). For the sake of notation, we
focus on one of the two four-fermion vertices and drop the index b or t. We also suppress
the Wilson coefficients as well as spinor indices and introduce Γ1 and Γ2 denoting a
certain combination of left- and right-handed projectors appearing in the four-fermion
vertices (e.g. Γ1 = γαPR, etc.). The expression Γ1(...)Γ2 is therefore a short notation for(
Γ1(...)Γ2

)
s1s2

or Tr
(
Γ1(...)

)
(Γ2)s1s2 depending on the context. Let us also introduce the

notation Γ̃ denoting the parts of the four-fermion vertex appearing in V (b/t,1), whereas
Γ refers to V (b/t,2). All in all, we find the following loop contributions

k
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≡iM(loops,1)
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· ū
(∫

d4k

(2π)4
Γ1(/k +m)γµ(/k − /k1 +m)Γ2

(k2 −m2)((k − k1)2 −m2)

/k2 − /p2 +mt

−2p2 · k2
γν
)
vεµεν

(4.66)
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(∫

d4k

(2π)4
Γ1(/k +m)γσ(/k − /q +m)Γ2

(k2 −m2)((k − q)2 −m2)

)
vεµεν

(4.70)

k
k − k2

k + k1
≡ iM(loops,6)

SMEFT =

=g2s(T
BTC)c1c2 ū
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Before we go on with the explicit calculation of the loop functions, in order to be sure
not to miss any contributions, we should superficially check the gauge invariance of the
sum of these amplitudes, i.e. the Ward identity. This can be done by letting εµ −→ k1µ
(the analysis for εν −→ k2ν works analogously). We find
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CTB)c1c2 ū

(∫
d4k

(2π)4
Γ1(/k +m)γν(/k − /k2 +m)Γ2

(k2 −m2)((k − k2)2 −m2)

)
vεν (4.76)

iM(loops,5)
SMEFT →ig

2
sf

ABCTAc1c2 ū

(∫
d4k

(2π)4
Γ1(/k +m)γν(/k − /q +m)Γ2

(k2 −m2)((k − q)2 −m2)

)
vεν+ (4.77)

−ig2sfABCTAc1c2 ū
(∫

d4k

(2π)4
Γ1(/k − /q +m)Γ2

((k − q)2 −m2)
− Γ1(/k +m)Γ2

(k2 −m2)

)
vεν (4.78)

iM(loops,6)
SMEFT →g

2
s(T

BTC)c1c2 ū

(∫
d4k

(2π)4
Γ1(/k +m)γν(/k − /k2 +m)Γ2

(k2 −m2)((k − k2)2 −m2)

)
vεν+ (4.79)

−g2s(TBTC)c1c2 ū
(∫

d4k

(2π)4
Γ1(/k + /k1 +m)γν(/k − /k2 +m)Γ2

((k + k1)2 −m2)((k − k2)2 −m2)

)
vεν+ (4.80)

+g2sTr(T
BTC)δc1c2 ū

(∫
d4k

(2π)4
Γ̃1(/k +m)γν(/k − /k2 +m)Γ̃2

(k2 −m2)((k − k2)2 −m2)

)
vεν+ (4.81)
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−g2sTr(TBTC)δc1c2 ū
(∫

d4k

(2π)4
Γ̃1(/k + /k1 +m)γν(/k − /k2 +m)Γ̃2

((k + k1)2 −m2)((k − k2)2 −m2)

)
vεν

(4.82)

iM(loops,7)
SMEFT →g

2
s(T

CTB)c1c2 ū

(∫
d4k

(2π)4
Γ1(/k + /k2 +m)γν(/k − /k1 +m)Γ2

((k + k2)2 −m2)((k − k1)2 −m2)

)
vεν+ (4.83)

−g2s(TCTB)c1c2 ū
(∫

d4k

(2π)4
Γ1(/k + /k2 +m)γν(/k +m)Γ2

((k + k2)2 −m2)(k2 −m2)

)
vεν+ (4.84)

+g2sTr(T
BTC)δc1c2 ū

(∫
d4k

(2π)4
Γ̃1(/k + /k2 +m)γν(/k − /k1 +m)Γ̃2

((k + k2)2 −m2)((k − k1)2 −m2)

)
vεν+

(4.85)

−g2sTr(TBTC)δc1c2 ū
(∫

d4k

(2π)4
Γ̃1(/k + /k2 +m)γν(/k +m)Γ̃2

((k + k2)2 −m2)(k2 −m2)

)
vεν (4.86)

The cancellation pattern then works as follows:

(4.73), (4.74), (4.78) −→ 0

(4.75)←→ (4.79)

(4.76)←→ (4.84)

(4.77)←→ (4.80), (4.83)

(4.81)←→ (4.86)

(4.82)←→ (4.85)

The Ward identity therefore seems to be fulfilled, at least at first sight. In order to per-
form these various cancellations, however, it is necessary to shift loop momenta. This
is actually not a valid manipulation as the four-fermion vertex structure denoted by Γ1,
etc. contains γ5 forcing us to work strictly in four dimensions where bubble- and triangu-
lar diagrams are quadratically and linearly divergent, respectively. Shifting integration
variables could therefore introduce non-vanishing boundary terms. We will nonetheless
apply dimensional regularization with a näıve prescription for γ5, i.e. with anti com-
muting γ5 [126]. In particular, the formula Tr(γµγνγαγβγ5) = −4iεµναβ continues to
hold in d 6= 4 dimensions39. In Appendix F, we show an explicit example calculation of
how this affects the triangle diagrams. Further comments can be found in [127–134].
As usual, we define d = 4−2ε and let

∫
d4k
(2π)4

−→ µ2ε
∫

ddk
(2π)d

, where µ is the usual renor-
malization (more precise: regularization) scale. The final result should unambiguously
be defined by being finite, renormalization scale independent and gauge invariant, i.e.
obeying the Ward identity. We will actually leave Γ1, etc. open and adjust them to the
respective cases afterwards. As shown above, this guarantees the Ward identity to be
fulfilled at every intermediate step of the calculation.

39This is the same convention used in FeynCalc [92].
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The straightforward computation of the respective diagrams leads to

iM(loops,1)
SMEFT =g2s(T

BTC)c1c2
i

16π2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)
·

· ū
(
Γ1miσ

µαk1αΓ2

/k2 − /p2 +mt

−2p2 · k2
γν
)
vεµεν (4.87)

iM(loops,2)
SMEFT =g2s(T

CTB)c1c2
i

16π2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)
·

· ū
(
γν

/p1 − /k2 +mt

−2p1 · k2
Γ1miσ

µαk1αΓ2

)
vεµεν (4.88)

iM(loops,3)
SMEFT =g2s(T

BTC)c1c2
i

16π2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)
·

· ū
(
γµ

/p1 − /k1 +mt

−2p1 · k1
Γ1miσ

ναk2αΓ2

)
vεµεν (4.89)

iM(loops,4)
SMEFT =g2s(T

CTB)c1c2
i

16π2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)
·

· ū
(
Γ1miσ

ναk2αΓ2

/k1 − /p2 +mt

−2p2 · k1
γµ
)
vεµεν (4.90)

iM(loops,5)
SMEFT =g2s if

ABCTAc1c2
i

16π2
1

q2
(
2kµ2 g

σν + gµν(k1 − k2)σ − 2kν1g
σµ
)
·

·ūΓ1

((
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)(
1

3
q2γσ +miσσαq

α

)
+X1q

2γσ +X2miσσαq
α

)
Γ2vεµεν

(4.91)

iM(loops,6)
SMEFT =g2s(T

BTC)c1c2
i

16π2
ūΓ1

((
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)(
miσµν +

1

3
( /k2 − /k1)g

µν+

+
2

3
(kν1γ

µ − kµ2 γ
ν)

)
+ S1miσ

µν + S2iγ
5γλε

λµναk1α + S3iγ
5γλε

λµναk2α+

+ S4g
µν /k1 + S5g

µν /k2 + S6k
ν
1γ

µ + S7k
µ
2 γ

ν+

+ S8mg
µν + S9

1

m
kν1k

µ
2 + S10

1

m2
kν1k

µ
2 /k1 + S11

1

m2
kν1k

µ
2 /k2 + S12

1

m
iσαµk1αk

ν
1+

+ S13
1

m
iσανk2αk

µ
2 + S14

1

m
iσαµk2αk

ν
1 + S15

1

m
iσανk1αk

µ
2+

+ S16
1

m2
iγ5γλε

λαβµk1αk2βk
ν
1 + S17

1

m2
iγ5γλε

λαβνk1αk2βk
µ
2+

+ S18
1

m
iσαβk1αk2βg

µν + S19
/k1
m2

iγ5εαβµνk1αk2β+

+ S20
/k2
m2

iγ5εαβµνk1αk2β + S21
1

m
iγ5εαβµνk1αk2β

)
Γ2vεµεν+
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+g2sTr(T
BTC)δc1c2

i

16π2
ūΓ̃1

(
same expression

)
Γ̃2vεµεν (4.92)

iM(loops,7)
SMEFT =g2s(T

CTB)c1c2
i

16π2
ūΓ1

((
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)(
miσνµ +

1

3
( /k1 − /k2)g

µν+

+
2

3
(kµ2 γ

ν − kν1γµ)
)
+ S1miσ

νµ + S2iγ
5γλε

λνµαk2α + S3iγ
5γλε

λνµαk1α+

+ S4g
µν /k2 + S5g

µν /k1 + S6k
µ
2 γ

ν + S7k
ν
1γ

µ+

+ S8mg
µν + S9

1

m
kµ2k

ν
1 + S10

1

m2
kµ2k

ν
1 /k2 + S11

1

m2
kµ2k

ν
1 /k1 + S12

1

m
iσανk2αk

µ
2+

+ S13
1

m
iσαµk1αk

ν
1 + S14

1

m
iσανk1αk

µ
2 + S15

1

m
iσαµk2αk

ν
1+

+ S16
1

m2
iγ5γλε

λαβνk2αk1βk
µ
2 + S17

1

m2
iγ5γλε

λαβµk2αk1βk
ν
1+

+ S18
1

m
iσαβk2αk1βg

µν + S19
/k2
m2

iγ5εαβνµk2αk1β+

+ S20
/k1
m2

iγ5εαβνµk2αk1β + S21
1

m
iγ5εαβνµk2αk1β

)
Γ2vεµεν+

+g2sTr(T
BTC)δc1c2

i

16π2
ūΓ̃1

(
same expression

)
Γ̃2vεµεν (4.93)

The short notations for non-trivial Feynman parameter integrals (X are the bubbles, S
the triangles) are defined by

X1 ≡−
∫ 1

0
dx 2x(1− x) ln

(
1− 2x(1− x)k1 · k2

m2

)
(4.94)

X2 ≡−
∫ 1

0
dx ln

(
1− 2x(1− x)k1 · k2

m2

)
(4.95)

S1 ≡−
1

2
− 2

∫ 1

0
dz

∫ 1−z

0
dy ln

(
1− 2yz

k1 · k2
m2

)
+

+

∫ 1

0
dz

∫ 1−z

0
dy

1 + (2yz − 1)k1·k2
m2

1− 2yz k1·k2
m2

(4.96)

S2 ≡
1

3
+

∫ 1

0
dz

∫ 1−z

0
dy(1− 3y) ln

(
1− 2yz

k1 · k2
m2

)
+

+

∫ 1

0
dz

∫ 1−z

0
dy

(y − 1) + y(y − 1)(2z − 1)k1·k2
m2

1− 2yz k1·k2
m2

(4.97)

S3 ≡−
1

3
−
∫ 1

0
dz

∫ 1−z

0
dy(1− 3z) ln

(
1− 2yz

k1 · k2
m2

)
+
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−
∫ 1

0
dz

∫ 1−z

0
dy

(z − 1) + yz(2z − 1)k1·k2
m2

1− 2yz k1·k2
m2

(4.98)

S4 ≡
1

3
+

∫ 1

0
dz

∫ 1−z

0
dy(1− y) ln

(
1− 2yz

k1 · k2
m2

)
+

+

∫ 1

0
dz

∫ 1−z

0
dy

(y − 1) + 2yz(y − 1)k1·k2
m2

1− 2yz k1·k2
m2

(4.99)

S5 ≡−
1

3
−
∫ 1

0
dz

∫ 1−z

0
dy(1− z) ln

(
1− 2yz

k1 · k2
m2

)
+

−
∫ 1

0
dz

∫ 1−z

0
dy

(z − 1) + 2yz(z − 1)k1·k2
m2

1− 2yz k1·k2
m2

(4.100)

S6 ≡−
2

3
−
∫ 1

0
dz

∫ 1−z

0
dy(1 + y) ln

(
1− 2yz

k1 · k2
m2

)
+

+

∫ 1

0
dz

∫ 1−z

0
dy

(y + 1) + 2y2z k1·k2
m2

1− 2yz k1·k2
m2

(4.101)

S7 ≡
2

3
+

∫ 1

0
dz

∫ 1−z

0
dy(1 + z) ln

(
1− 2yz

k1 · k2
m2

)
+

−
∫ 1

0
dz

∫ 1−z

0
dy

(z + 1) + 2yz2 k1·k2
m2

1− 2yz k1·k2
m2

(4.102)

S8 ≡
1

2
−
∫ 1

0
dz

∫ 1−z

0
dy

1 + (2yz − 1)k1·k2
m2

1− 2yz k1·k2
m2

, S9 ≡
∫ 1

0
dz

∫ 1−z

0
dy

4yz − 1

1− 2yz k1·k2
m2

(4.103)

S10 ≡
∫ 1

0
dz

∫ 1−z

0
dy

2yz(1− 2y)

1− 2yz k1·k2
m2

, S11 ≡ −
∫ 1

0
dz

∫ 1−z

0
dy

2yz(1− 2z)

1− 2yz k1·k2
m2

(4.104)

S12 ≡−
∫ 1

0
dz

∫ 1−z

0
dy

2y

1− 2yz k1·k2
m2

, S13 ≡
∫ 1

0
dz

∫ 1−z

0
dy

2z

1− 2yz k1·k2
m2

(4.105)

S14 ≡−
∫ 1

0
dz

∫ 1−z

0
dy

1

1− 2yz k1·k2
m2

, S15 ≡
∫ 1

0
dz

∫ 1−z

0
dy

1

1− 2yz k1·k2
m2

(4.106)

S16 ≡−
∫ 1

0
dz

∫ 1−z

0
dy
y(y + 2z − 1)

1− 2yz k1·k2
m2

, S17 ≡
∫ 1

0
dz

∫ 1−z

0
dy

yz

1− 2yz k1·k2
m2

(4.107)

S18 ≡−
∫ 1

0
dz

∫ 1−z

0
dy

1

1− 2yz k1·k2
m2

, S19 ≡ −
∫ 1

0
dz

∫ 1−z

0
dy

y(1− y)
1− 2yz k1·k2

m2

(4.108)

S20 ≡−
∫ 1

0
dz

∫ 1−z

0
dy

yz

1− 2yz k1·k2
m2

, S21 = −
∫ 1

0
dz

∫ 1−z

0
dy

1

1− 2yz k1·k2
m2

(4.109)

Note that these expressions can always be modified using the identities∫ 1

0
dz

∫ 1−z

0
dy f(y, z) =

∫ 1

0
dz

∫ 1−z

0
dy f(z, y) =

∫ 1

0
dx

∫ 1−x

0
dy f(y, 1− x− y) =
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=

∫ 1

0
dw

∫ 1

0
dξ wf(w − wξ,wξ) =

∫ 1

0
dw

∫ 1

0
dξ wf(1− w,wξ) (4.110)

It is obvious that our presentation contains a horrendous amount of redundancy. Indeed,
numerically evaluating the integrals as functions of k1·k2

m2 leads to the following relations40

S14 = −S15 = S18 = S21 = S9 − 4S17, S4 = −S5 = −X1 −
k1 · k2
m2

S10, (4.111)

S6 = −S7 = 2X1, S10 = −S11, S12 = −S13, (4.112)

S17 = −S20 = −
1

2
(S16 + S19) , (4.113)

S2 =
k1 · k2
m2

S16, S3 =
k1 · k2
m2

S17, S8 = −
k1 · k2
m2

S9, (4.114)

S1 −
k1 · k2
m2

S14 = −
k1 · k2
m2

S12 = X2 (4.115)

With a minimal set of structure functions (we chooseX1, X2, S9, S10 and S17; let us also
keep S14 for notational clarity, remembering that it actually equals S9−4S17) and using
gαβεµνλρ = gαµεβνλρ− gανεβµλρ+ gαλεβµνρ− gαρεβµνλ, the sum of the triangle diagrams
is given by

iM(loops,6)
SMEFT + iM(loops,7)

SMEFT =

= g2s if
ABCTAc1c2

i

16π2
ūΓ1

((
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)
·

·
(
miσµν +

1

3
( /k2 − /k1)g

µν +
2

3
(kν1γ

µ − kµ2 γ
ν)

)
+

+X1

(
2kν1γ

µ − 2kµ2 γ
ν + gµν( /k2 − /k1)

)
+

+X2
m

k1 · k2

(
(k1 · k2)iσµν + iσανk2αk

µ
2 − iσ

αµk1αk
ν
1

)
+

+ S10
1

m2
( /k1 − /k2)

(
kν1k

µ
2 − (k1 · k2)gµν

)
+

+ S14
1

m

(
(k1 · k2)iσµν + iσαµk2αk

ν
1 − iσανk1αk

µ
2 + iσαβk1αk2βg

µν
))

Γ2vεµεν+

+g2s{TB, TC}c1c2
i

16π2
ūΓ1

(
S9

1

m

(
kν1k

µ
2 − (k1 · k2)gµν

)
+ S14

1

m
iγ5εαβµνk1αk2β+

+ 2S17
1

m2

(
(k1 · k2)iγ5γλελαµν(k2 − k1)α − iγ5γλελαβµk1αk2βkν1+

+ iγ5γλε
λαβνk1αk2βk

µ
2

))
Γ2vεµεν+

+g2sTr(T
BTC)δc1c2

i

16π2
ūΓ̃1

(
2S9

1

m

(
kν1k

µ
2 − (k1 · k2)gµν

)
+ 2S14

1

m
iγ5εαβµνk1αk2β+

40Analytically, this can be justified upon integration by parts, see [135].
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+ 4S17
1

m2

(
(k1 · k2)iγ5γλελαµν(k2 − k1)α − iγ5γλελαβµk1αk2βkν1+

+ iγ5γλε
λαβνk1αk2βk

µ
2

))
Γ̃2vεµεν (4.116)

From the vertex factor written above, we can now read off the respective contributions
of every four-fermion operator. Symbolically, the final result is then given by

iM(loops)
SMEFT =

∑
k∈Q

iM(loops,k)
SMEFT

Q = {Q(1)
quqd, Q

(1)∗
quqd, Q

(8)
quqdQ

(8)∗
quqd, Q

(1)
qd , Q

(8)
qd , Q

(1)
ud , Q

(8)
ud , Quu, Q

(1)
qq , Q

(3)
qq , Q

(1)
qu , Q

(8)
qu }
(4.117)

However, it is easier to organize the terms according to their colour- and Dirac structures.
Let us therefore write

iM(loops)
SMEFT =

V∑
k=I

iM(loops,k)
SMEFT

which closes the gap to (4.30). The masses appearing in the structure functions will
be distinguished by superscripts b or t. As a crosscheck, we have also derived these
expressions using tensor integral reduction methods.
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5. The decay process h→ gg with anomalous Higgs couplings
at NLO in QCD

Our second example concerns the decay of a Higgs boson associated with the production
of two gluons at NLO in QCD. Based on the power-counting arguments discussed in
Section 3, we assume the existence of anomalous couplings in the Higgs sector resulting
from the dynamics of potential heavy particle states beyond the SM. Similar setups
and processes in the context of the pure SM have intensively been investigated in the
literature [136–149]. Our analysis is based on [150].

5.1. Introduction and motivation
When generalizing the notion of anomalous Higgs couplings for a broader class of sce-
narios, one inevitably arrives at the formalism of the EWChL [36, 46, 151–160]. We
use this opportunity to introduce the basics of the EWChL as well as its connection to
SMEFT for the process under consideration.
In broad terms, solely based on the loop expansion and featuring the Higgs boson as a
singlet rather than a doublet, the EWChL is an EFT that most effectively reconciles the
nature of perturbative QFT along with the real physical states. Its basic idea relies on a
more general interpretation of the electroweak Goldstone bosons in terms of an a priori
unknown symmetry-breaking pattern. A similar situation applies to low-energy QCD
when the theory becomes non-perturbative. Chiral symmetry breaking is the transition
from the high-energy states (quarks, gluons) to the low-energy regime where the degrees
of freedom are given by pions, kaons, eta-particle, etc. The latter can be reinterpreted as
the (pseudo-)Goldstone bosons from an (approximate) flavour-symmetry-breaking pat-
tern SU(3)L×SU(3)R → SU(3)V . The most general Lagrangian collects the Goldstone
fields in their exponential representation [26, 161]. The spectrum can straightforwardly
be enlarged by singlets like the f0(500)-resonance in terms of scalar functions [162–167].
In the case of the electroweak sector of the SM, the role of SU(3)L×SU(3)R is played by
custodial symmetry SU(2)L×SU(2)R and the pions together with the f0(500)-resonance
are replaced by the electroweak Goldstone bosons ϕi and the Higgs boson h realized as a
singlet. The Lagrangian is constructed in terms of the chiral dimensions given in (3.41).
Since bosons do not increase the chiral dimension, its LO form already features an in-
finite tower of Higgs boson interactions. Although this looks unwieldy at first glance,
it offers the advantage over SMEFT in that every term can be associated with a fixed
number of Higgs bosons. This makes the EWChL the EFT of choice for fixed-number
Higgs processes.
The LO Lagrangian (dχ = 2) is the same as (2.11) with the last two lines replaced by

v2

4
〈DµU

†DµU〉F (η) + v2

2
∂µη∂

µη − V (η)− ψ̄m(η, U)ψ (5.1)

where η ≡ h/v and U ≡ exp{2iϕατα/v}. The covariant derivative is given by

DµU = ∂µU − ig′BµUτ3 + igWµU (5.2)
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and the mass matrix reads

m(η, U) ≡ UM(η)PR +M†(η)U †PL, (5.3)

with ψ = (u, d, ν, e)T and M(η) = diag
(
Mu(η),Md(η),Mν(η),Me(η)

)
. As usual, gen-

eration indices are suppressed. Without loss of generality, we expand the scalar functions
around their minimum according to

F (η) = 1 +
∞∑
n=1

Fnη
n, V (η) = v4

∞∑
n=2

Vnη
n, Mf (η) =

∞∑
n=0

Mf,nη
n (5.4)

for f = {u, d, ν, e} and identify the fermion masses as mf =Mf,0. Constructed in this
way, the EWChL at LO contains the SM as a limit when renormalizability is required
and the doublet structure of the Higgs field is restored. It is more general in the sense
that it allows for arbitrary coefficients in the Higgs sector deviating from the SM. For
instance, single Higgs couplings between fermions and the W -boson can now be param-
eterized by arbitrary numbers multiplying the SM Feynman rules. These anomalous
couplings are denoted by cf = Mf,1/mf and cW = F1/2, respectively [168]. The SM
requires Mf,1 = mf and F1 = 2 and thus cf = cW = 1.
The construction of the EWChL at NLO (dχ = 4 or one-loop order) works analogously
[46, 169, 170]. Interestingly, this introduces local interactions between the Higgs boson
and the massless gauge bosons, i.e. the photon and the gluon, which can be parame-
terized by anomalous couplings cγγh and cggh. In the pure SM, there exists no contact
interaction between the neutral and colourless Higgs boson and the massless photons
or gluons41. However, a Higgs decay to two gluons or photons can still be realized
by virtue of closed fermion loops (coloured fermions, i.e. quarks, for the gluon case).
Similar setups might be realized in the context of new heavy particles beyond the SM
which generate non-vanishing values for cγγh and cggh. Although being implemented by
local operators within the framework of the EWChL, these hypothetical effects are by
construction loop suppressed.
The relevant part of the EWChL for the decay of a Higgs boson to two gluons can then
be written down as42

Leff =−
∑
f

mfcf
h

v
f̄f +

αs
8π
cggh

h

v
GAµνG

Aµν + 2cWm
2
W

h

v
W+
µ W

−µ +
α

8π
cγγh

h

v
FµνF

µν

(5.5)

where we have made the loop factors as well as the necessary weak couplings (the strong
coupling constant gs = 2

√
παs and the elementary charge e = 2

√
πα = gg′/

√
g2 + g′2)

41The heavy-top limit (see below) is sometimes said to introduce a contact interaction in the pure SM.
As such a language can, however, lead to confusing communication, we will not adopt this jargon.
In this work, unless otherwise explicitly specified, the SM has all particles, including the top-quark,
fully resolved, i.e. we fix cggh = cγγh = 0 for the SM.

42Our main focus lies on the gluon decay channel for which only the first two terms in (5.5) are relevant.
We will eventually turn to the photon case and hence the remaining terms of (5.5) at the end of this
section.

86



explicit. The thus-obtained anomalous coefficients cf , cW , cggh and cγγh can then be
taken as O(1)-numbers.
So far, our discussion seems to be restricted to the framework of the EWChL which
may differ from the same setup in SMEFT. This is, however, not the case. Consider, for
example, the diagrams

and (5.6)

where as before black squares represent new-physics insertions parameterized by cf and
cggh or Warsaw-basis Wilson coefficients43. The loop diagram also appears in the pure
SM, which is why we refer to it as SM-like, whereas the local Higgs gluon interaction is
non-SM-like. We will turn to their calculation in the next subsections. These diagrams
are not only the unique LO diagrams for h → gg within the EWChL, but also in
SMEFT44. In particular, the SMEFT diagrams

, , ,

(5.7)
are all of the same subleading order, namely dχ = 6, and can consistently be neglected.
It is therefore possible to take over (5.5) to the SMEFT framework. The respective
translation between the various SMEFT and EWChL coefficients is given in Table 1.
43We will also apply the convention to use black dots (or squares) for EWChL insertions of dχ = 2 (or

dχ = 4) below.
44There seems to be quite some confusion in the community about the terms ”LO” and ”NLO” in

the context of new physics concerning the comparison between SMEFT and the EWChL. Strictly
speaking, it is advantageous to refer to the SM as the LO SMEFT Lagrangian. We have explicitly
not done so in this work to catch up with the conventions used in the literture. In this language
(neglecting the Weinberg operator) the Warsaw basis then builds up SMEFT at NLO - all effects are
suppressed with respect to the LO terms by one suppression component, namely 1/Λ2. For instance,
the coefficient cggh in SMEFT is an NLO effect - exactly as in the EWChL. In fact, it is even less: For
weakly coupled scenarios - and SMEFT is explicitly constructed for such scenarios - it comes with an
extra loop suppression 1/(16π2), formally pushing it to the NNLO. This apparent discrepancy can
be understood when referring back to the purpose of the EWChL as the more general EFT for new
physics in the Higgs sector. Indeed, strong coupling scenarios are explicitly allowed, which would
render cggh a genuine NLO effect with only one suppression factor. This comes with the cost of
enhancing anomalous non-field-strength Higgs-operators of arbitrary canonical dimension to the LO,
i.e. they are completely unsuppressed and potentially of the same order as the SM. According to this
view, the diagrams (5.6) are the LO contributions to h → gg in the EWChL, but the NLO ones in
SMEFT.
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Anomalous EWChL coupling SMEFT coefficient

cf 1 + v2

Λ2Cϕ,kin − v3√
2mfΛ2Cfϕ

cW 1 + v2

Λ2Cϕ,kin

cggh
32π2v2

g2sΛ
2 CϕG

cγγh
32π2v2

Λ2

(
CϕW
g2

+
CϕB
g′2 −

CϕWB

gg′

)
Table 1: Relation between the anomalous couplings in (5.5) interpreted as the funda-

mental parameters of the EWChL and the SMEFT Wilson coefficients given in
(2.17)-(2.49). For notational simplicity, we have defined Cϕ,kin ≡ Cϕ�−CϕD/4.
See also [150, 171–173].

It is now a mere philosophical question of whether one thinks in terms of the EWChL or
SMEFT when it comes to Higgs processes. The former, however, has several advantages
in this regard. As stated above, having the actual physical object, the Higgs boson h,
implemented on a fundamental level, the Higgs interaction vertex structure is more clear
in the framework of the EWChL. For instance, for the single Higgs anomalous coupling
to two gluons, it is possible to sum up the contributions from all chiral dimensions in a
single object cggh which is already present at the dχ = 4-Lagrangian45. In fact, due to
their vanishing contribution to the chiral dimension, this observation can be generalized
to an arbitrary number of Higgs bosons. Note that this is not the case in SMEFT, which
features the unphysical Higgs doublet as a building block. Here, a generic (2n + 4)-
dimensional operator Q2n+4

ϕG ≡ (ϕ†ϕ)nGAµνG
Aµν has an impact on processes with up to

2n Higgs bosons. Extending the idea of resumming the infinite tower of Higgs singlets
interactions to the doublet case results in the recently developed framework of geometric
SMEFT (abbreviated geoSMEFT) [174–177], to which we turn back at the end of this
section.
Let us now perform the explicit calculation of the diagrams (5.6). These are LO QCD
contributions, i.e. their amplitudes scale as ∼ g2s and the decay rate is proportional to
g4s ∼ α2

s. However, it is a well-known fact for the case at hand that NLO QCD effects
scaling like ∼ g6s on the decay-rate level are essential for reasonable phenomenological
analyses. We therefore extend our treatment to include NLO QCD corrections. This
is a cumbersome exercise that includes the calculation of virtual diagrams scaling like
∼ g4s on the amplitude level, as well as real radiation contributions ∼ g3s with soft or
collinear coloured final states. The former interfere with the LO diagrams, the latter
with themselves. In order to not lose the overview of the various contributions, we split
the calculation apart into smaller subsections starting with a detailed calculation of the
LO diagrams.

45It is common practice to absorb higher-chiral-dimension contributions into cggh since their correspond-
ing operators can always be brought to the form hGAµνG

Aµν by the common methods (equations of
motion, integrating by parts, etc.). See also [150].
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5.2. Detailed calculation at LO in QCD
SM-like contribution

We first turn to the SM-like contribution to h→ gg featuring a modified hf̄f -coupling.
As this calculation also features the building blocks for subsequent chapters, we show
most of the mathematical details within the main text. The total amplitude iMLO

SM in
the SM at LO in QCD for this process consists of two contributions iMLO

1,SM and iMLO
2,SM

that are related by reverting the fermion flow. They are given by (see Appendix C for
our conventions)

q

k

k2

k1

B

A

≡ iMLO
1,SM = −

g2scfyf√
2

Tr(TBTA)ε∗µ(k1)ε
∗
ν(k2)I

µν
1,2

(5.8)

q

k

k2

k1

B

A

≡ iMLO
2,SM = −

g2scfyf√
2

Tr(TATB)ε∗µ(k1)ε
∗
ν(k2)I

νµ
2,1

(5.9)

where the two outgoing on-shell gluon momenta are given by k1 and k2 with k21 = k22 = 0,
respectively, and the incoming Higgs momentum is given by q = k1 + k2 with q2 = m2

h.
The momentum integral in dimensional regularization with d = 4− 2ε is given by

Iµν1,2 = µ2ε
∫

ddk

(2π)d
Tr
(
(/k − /k2 +mf )γ

ν(/k +mf )γ
µ(/k + /k1 +mf )

)(
(k − k2)2 −m2

f + iη
)
(k2 −m2

f + iη)
(
(k + k1)2 −m2

f + iη
) (5.10)

with Iνµ2,1 related by interchanging k1 ↔ k2 and µ↔ ν. We will apply similar notational
conventions throughout this entire section. Note that we have left the gluon colour
indices A and B open, which will simplify the notation. Due to the cyclicity of the trace,
the LO colour structure is particularly simple. It is also useful to distinguish between
the fermion mass mf participating in the loop and the Yukawa coupling yf =

√
2mf/v.
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Note that for h → gg, the loop fermions are mandatorily quarks, so f = {t, b, c, s, u, d}
(see (5.258) for an explicit distinction between quarks and leptons in the context of
h → γγ). The total LO amplitude for a single fermion is given by the sum of the two
contributions (5.8) and (5.9)

iMLO
SM = iMLO

1,SM + iMLO
2,SM = −

g2scfyf√
2

Tr(TATB)ε∗µ(k1)ε
∗
ν(k2)(I

µν
1,2 + Iνµ2,1) (5.11)

We now have to evaluate the loop integral (5.10). Since there exists no Higgs-gluon-gluon
vertex in the SM to absorb an eventual divergence coming from the momentum integra-
tion, we expect the final result to be finite despite the integral itself being superficially
divergent. The numerator is given by

Tr
(
(/k − /k2 +mf )γ

ν(/k +mf )γ
µ(/k + /k1 +mf )

)
=

=4mf

(
(4gµαgνβ − gµνgαβ)kαkβ+

+ (2gναkµ1 − 2gµαkν2 )kα + (m2
f − k1 · k2)gµν + kν1k

µ
2 − k

µ
1k

ν
2

)
(5.12)

Crucially, the vanishing of an odd number of Dirac matrices causes the O(k3)-term to
disappear. Due to the transversality of the gluon polarization vectors, i.e. kµ1 ε∗µ(k1) = 0
and kν2ε

∗
ν(k2) = 0, we can drop the O(k1)-contribution as a whole and the last term

of the O(k0)-contribution. Furthermore, we observe that Iµν1,2 = Iνµ2,1. Employing the
notation of Appendix E, we end up with

Iµν1,2 = 4mf

(
(4gµαgνβ − gµνgαβ)Cαβ + (m2

f − k1 · k2)gµνC + kν1k
µ
2C
)

(5.13)

Reducing the tensor integral Cαβ to scalar integrals and defining τf = k1 · k2/(2m2
f )

results in

Iµν1,2 = −
4mf

k1 · k2
(kν1k

µ
2 − k1 · k2g

µν)J(τf ) (5.14)

with J(τf ) ≡ iJ̃(τf )/(16π
2) = εB − 2m2

f (τf − 1)C to leading order in ε, which is finite
as expected. The loop function J̃(τf ) is evaluated in Appendix E and given by

J̃(τf ) =


1 +

(
1− 1

τf

)
arcsin2

√
τf for 0 < τf < 1

1− 1
4

(
1− 1

τf

)(
ln

(
1−

√
1− 1

τf

1+
√

1− 1
τf

)
+ iπ

)2

for 1 ≤ τf <∞
(5.15)

We will give a more general expression for higher ε orders below. For notational simplic-
ity, the dependence on τf of the scalar integrals B and C has been suppressed. Using
Tr(TATB) = TF δ

AB with TF = 1/2 and k1 · k2 = q2/2 = m2
h/2, the total amplitude is

given by

iMLO
SM =

ig2scfyfmf

2
√
2π2m2

h

δABε∗µ(k1)ε
∗
ν(k2)(k

ν
1k

µ
2 − k1 · k2g

µν)J̃(τf ) (5.16)
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The amplitude MLO
SM has an imaginary part in the kinematic regime 2mf < mh, which

- in accordance with the optical theorem - is to be expected, as the loop-fermions can
go on-shell.
For a 1 → 2 decay, it is straightforward to compute the total decay rate Γ once the
squared amplitude |M|2 is known. The differential decay rate in the Higgs boson’s rest
frame is given by [61]

dΓ =
|k1|

32π2m2
h

|M|2dΩ3 (5.17)

where the overline in |M|2 denotes a sum over final spins and colours as before and dΩ3

is the differential solid angle that can trivially be integrated to 4π, because there is no
angular dependence. This yields the total decay rate Γ. The absolute value of the spatial
momentum of either outgoing gluon is |k1| = mh/2. Finally, (5.17) has to be corrected
by a symmetry factor of 1/2 due to the two final state gluons being indistinguishable.
Actually, introducing the symmetry factor on the level of the differential decay rate is
not strictly correct. Instead, it appears when the phase space integral is carried out
and accounts for an overcounting of distinguishable final states. We will nevertheless
introduce these factors already at the differential level. Note that (5.17) is not restricted
to LO calculations, hence the suppression of further labels.
Returning to our case, squaring iMLO

SM and performing the spin and colour sums is
straightforward. For the colour sum, we use δABδBA = N2

c − 1, where Nc is the number
of quark colours, i.e. Nc = 3 for QCD. The spin sum46 is equivalent to adding up the
individual helicity amplitudes. Employing the notation of Appendix B, we have

Hgg
++ = −〈12〉2, Hgg

−− = −[12]2, Hgg
+− = 0, Hgg

−+ = 0 (5.19)

with47

Hgg
λ1λ2
≡ 2ε∗µλ1(k1, k2)ε

∗
νλ2(k2, k1)(k

ν
1k

µ
2 − k1 · k2g

µν) (5.20)

Using 〈12〉∗ = [21] and 〈12〉[21] = m2
h, the polarization sums evaluate to∑

λ1,2=±
|Hgg

λ1λ2
|2 = |Hgg

++|2 + |H
gg
−−|2 + |H

gg
+−|2 + |H

gg
−+|2 = 2m4

h (5.21)

We finally arrive at

|MLO
SM |2 = 128g4sc

2
fy

2
fm

2
f |J(τf )|2 (5.22)

46In contrast to QED, the spin sum for non-Abelian gauge bosons should take ghost contributions into
account and is given by the formula [135]∑

polarizations, n

εα(k)ε
∗
β(k) = −gαβ +

kαnβ + kβnα
k · n − n2kαkβ

(k · n)2 (5.18)

holding for arbitrary linearly independent four-momenta k and n. It is convenient to choose the
reference momentum n = k2 for the spin sum related to k = k1 and vice versa in order to drop the
last term in (5.18). This is also done in (5.20).

47We have so far suppressed the gluon helicity indices λ1 and λ2.
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and thus - with an obvious notational convention - a total decay rate of

ΓLO×LO
SM =

4g4sc
2
fy

2
fm

2
f

πmh
|J(τf )|2 (5.23)

where

|J(τf )|2 =


1

256π4

(
1 +

(
1− 1

τf

)
arcsin2

√
τf

)2
for 0 < τf < 1

1
256π4

∣∣∣∣∣1− 1
4

(
1− 1

τf

)(
ln

(
1−

√
1− 1

τf

1+
√

1− 1
τf

)
+ iπ

)2 ∣∣∣∣∣
2

for 1 ≤ τf <∞
(5.24)

Before moving on, we should get an overview of the numerical impact for different quarks
running through the loop. The SM result for one quark (cf = 1 for only one f) can be
obtained by plugging in the parameters (without errors) from Appendix A. We find

ΓLO×LO
SM =

{
2.15117542 · 10−1 MeV for the top-quark with OS mass as input
1.60163440 · 10−3 MeV for the bottom-quark with MS mass as input

(5.25)

In the light of these numbers, one could conclude that the effects of lighter quarks can
be neglected and only the top-quark has a significant impact on the total decay rate.
However, the previous discussion misses interference effects between the various quark
channels. To take them into account, we add up the individual amplitudes (5.16) for a
single fermion f (or better quark) and obtain48

∑
f

iMLO
SM =

8g2s√
2m2

h

δABε∗µ(k1)ε
∗
ν(k2)(k

ν
1k

µ
2 − k1 · k2g

µν)
∑
f

cfyfmfJ(τf ) (5.26)

Repeating the same steps as before for the top- and bottom-quark results in

ΓLO×LO
SM =

4g4s
πmh

(
c2t y

2
tm

2
t |J(τt)|2 + c2by

2
bm

2
b |J(τb)|2 + 2ctcbytybmtmbRe{J(τt)∗J(τb)}

)
=

=(2.15117542 · 10−1c2t + 1.60163440 · 10−3c2b − 2.24018695 · 10−2ctcb) MeV
(5.27)

which gives a total decay rate of ΓLO×LO
SM = 1.94317307 · 10−1 MeV for the top- and

bottom-quark at LO for the pure SM. This demonstrates the importance for including
lighter quarks in a proper numerical analysis. We will do so in Subsection 5.8.

48From now on, the sum over loop fermions f is always implicitly understood.
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Non-SM-like contribution

As discussed above, the EWChL allows for scenarios with arbitrary cggh (in combination
with non-vanishing cf , also for the top-quark). These non-SM-like contributions are
given by the single diagram

k2

k1

q

B

A

≡ iMLO
NSM =

ig2scggh
8π2v

δABε∗µ(k1)ε
∗
ν(k2)(k

ν
1k

µ
2 − k1 · k2g

µν) (5.28)

In terms of the helicity amplitudes (5.20), we have

iMLO
NSM =

ig2scggh
16π2v

δABHgg
λ1λ2

(5.29)

Combining the amplitudes (5.26) and (5.29) finally yields

iMLO ≡ iMLO
NSM + iMLO

SM =
iαs
4π

δABHgg
λ1λ2

cggh
v

+
∑
f

yfcf√
2mf

J̃(τf )

τf

 (5.30)

and thus

|MLO|2 =
α2
sm

4
h

8π2
(N2

c − 1)

∣∣∣∣cgghv +
∑
f

yfcf√
2mf

J̃(τf )

τf

∣∣∣∣2 (5.31)

The total LO decay rate is then given by

ΓLO×LO =
α2
sm

3
h

256π3
(N2

c − 1)

(
c2ggh
v2

+ 2
cggh
v

∑
f

yfcf√
2mf

Re{J̃(τf )}
τf

+

+

∣∣∣∣∑
f

yfcf√
2mf

J̃(τf )

τf

∣∣∣∣2) (5.32)

Heavy-top limit

It is also worth considering the limit mt → ∞ in (5.16), subsequently denoted as the
heavy-top limit. With arcsin(x) = x+ x3/6 + 3x5/40 +O(x7), we obtain

J(τt)

τt
=

i

24π2
+

7iτt
720π2

+
iτ2t

252π2
+

13iτ3t
6300π2

+O
(
τ4t
)

(5.33)
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and therefore (setting yt/mt =
√
2/v and ct = 1)

lim
τt→0

iMLO
SM =

ig2s
12π2v

δABε∗µ(k1)ε
∗
ν(k2)(k

ν
1k

µ
2 − k1 · k2g

µν) (5.34)

for the top-quark contribution. The heavy-top limit corresponds to an EFT in which
a heavy quark (e.g. the top) is integrated out and its loop contribution to h → gg is
replaced by a local interaction giving rise to the amplitude (5.34). Upon ”zooming out”,
the complicated loop function collapses to a pure number and the fermion does not act
as a separate degree of freedom any more. It can therefore be viewed as taking ct → 0
in the EFT and introducing a new direct coupling between the Higgs boson and two
gluons of the form (5.28) with

cggh =
2

3
+

7

45
τt +

4

63
τ2t +

52

1575
τ3t +O

(
τ4t
)

(5.35)

for ct = 1 and yt =
√
2mt/v in the full theory, that is the SM. The so-obtained cggh

should be distinguished from the corresponding EWChL parameter. It solely depends
on the ”high energy” parameters ct, yt and mt (namely cggh = 2ctytv/(3

√
2mt) at lowest

order). In reality, τt ≈ 0.13 and J(τt)/τt ≈ i/(23.25π2), so the lowest order term in the
heavy-top limit is already quite accurate. There will be corrections of higher order in
gs, which we will come to later (see (5.308)).

Appendix: Higher orders in ε

For later use, we will now expand the amplitude to O(ε2). In fact, carefully keeping
track of higher order terms in ε in (5.13) with (E.21), we actually find

Iµν1,2 =−
4mf

k1 · k2
(kν1k

µ
2 − k1 · k2g

µν)
(
(ε+ ε2 + ε3)B̃+

− 2m2
f (τf − 1− ε− ε2)C

)
+O(ε3) (5.36)

which reduces to the previous result (5.14) when ε is sent to 0. Note that B̃ actually
starts with 1/ε. The tricky part is to expand B̃ and C to higher orders in ε. Using
(D.13), we get

B̃ =µ2ε
∫

ddk

(2π)d
1

(k2 −m2
f )
(
(k + q)2 −m2

f

) =

=
i

16π2

(
4πµ2

m2
f

)ε
Γ(ε)

∫ 1

0
dx

1

(1− 4x(1− x)τf )ε
(5.37)

C =µ2ε
∫

ddk

(2π)d
1

(k2 −m2
f )
(
(k + k1)2 −m2

f

)(
(k − k2)2 −m2

f

) =

= − i

16π2m2
f

(
4πµ2

m2
f

)ε
Γ(1 + ε)

∫ 1

0
dz

∫ 1−z

0
dy

1

(1− 4yzτf )1+ε
(5.38)

94



for arbitrary ε = (4−d)/2. Again, these expressions reduce to the ones listed in Appendix
E for ε → 0. For (5.36) to be accurate, we need B̃ to O(ε) and C to O(ε2), which is
achieved by expanding the integrands keeping in mind that Γ(ε) = e−γε(1/ε+π2ε/12)+
O(ε2) and Γ(1 + ε) = e−γε(1 + π2ε2/12) +O(ε3). This yields [141]

B̃ =
i

16π2

(
4πµ2

m2
f

)ε
Γ(1 + ε)

1− ε

(
B̃−1

ε
+ B̃0 + B̃1ε

)
+O(ε2) (5.39)

C =
i

16π2m2
f

(
4πµ2

m2
f

)ε
Γ(1 + ε)

1− ε
(
C0 + C1ε+ C2ε

2
)
+O(ε3) (5.40)

with

B̃−1 = 1 (5.41)

B̃0 =
1

1− θf
(
−θf + (θf + 1)H({0}; θf ) + 1

)
(5.42)

B̃1 =
1

1− θf

(
1

6
(12− 12θf − π2 − π2θf )+

+ (θf + 1)
(
H({0}; θf )− 2H({−1, 0}; θf ) +H({0, 0}; θf )

))
(5.43)

C0 = −
θfH({0, 0}; θf )

(θf − 1)2
(5.44)

C1 =
θf

(1− θf )2

(
π2

6
H({0}; θf ) + 2H({0,−1, 0}; θf )+

+H({0, 0}; θf )−H({0, 0, 0}; θf ) + 3ζ(3)

)
(5.45)

C2 =
θf

(1− θf )2

(
−π

2

3
H({0,−1}; θf )−

1

6

(
π2 − 12ζ(3)

)
H({0}; θf )− 3ζ(3) +

π4

72
+

+ 2H({0, 0,−1, 0}; θf )− 2H({0,−1, 0}; θf )+

+
π2

6
H({0, 0}; θf )− 4H({0,−1,−1, 0}; θf )+

+ 2H({0,−1, 0, 0}; θf ) +H({0, 0, 0}; θf )−H({0, 0, 0, 0}; θf )
)

(5.46)

where θf is defined via

θf ≡

√
1− 1

τf
− 1√

1− 1
τf

+ 1
(5.47)

Note that upon sending τf → τf + iη, one also has θf → θf + iη, which is important
for obtaining the correct analytic continuations. The functions H({...}; θf ) denote the
harmonic polylogarithms (HPL functions, see [178] for an implementation) normalized
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such that H({0}; θf ) = ln θf and ζ(3) ≈ 1.202 is Apéry’s constant defined via the
Riemann zeta function ζ(s) =

∑∞
k=1 k

−s. The generalization of (5.15) then reads

J(τf , ε) = (ε+ ε2 + ε3)B̃ − 2m2
f (τf − 1− ε− ε2)C +O(ε3) (5.48)

with B̃ and C given by (5.39) and (5.40). For later purposes, we introduce

4

3
FH0 (ε) ≡

2J̃(τf , ε)

τf
(5.49)

with J(τf , ε) ≡ J̃(τf , ε)/(16π2) as before. Explicitly, we then find

FH0 (ε) = −i π
2

24τf

(
(ε+ ε2 + ε3)B̃ − 2m2

f (τf − 1− ε− ε2)C
)

(5.50)

Dropping terms of O(ε3). We remark that when working with ε 6= 0, not only the ampli-
tude, but also the phase space gets ε-corrections. Indeed, the strictly four-dimensional
formula (5.17) should be viewed as the special case of the more general expression [61]

dΓ =
1

2mh

1

S
|M|2dΦn (5.51)

which is valid for arbitrary space time dimensions d = 4− 2ε and n final state particles
(here we have n = 2). Again, the symmetry factor S is equal to the number of indis-
tinguishable permutations of the final state particles (so S = 2 for our case) and the
two-body phase space integration measure is given by [179]

dΦ2 = (2π)2ε−2 2
2ε−3

(m2
h)
ε
dΩ3−2ε

ε→0−→ 1

32π2
dΩ3 (5.52)

with dΩN being the N -dimensional solid angle such that

ΩN ≡
∫
dΩN =

2π
N
2

Γ
(
N
2

) (5.53)

is the volume of the N -dimensional hypersphere. The total phase space volume can be
obtained immediately as

Φ2 ≡
∫
dΦ2 =

22ε−3πε−1

(m2
h)
ε

Γ(1− ε)
Γ(2− 2ε)

ε→0−→ 1

8π
(5.54)

5.3. Virtual QCD corrections
Non-SM-like contribution

We now turn to the virtual O(g4s)-corrections to the amplitude (5.30). In contrast to
the LO calculation, we consider the local Higgs-gluon-gluon interaction first and turn to
the SM-like contributions later.
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The QCD corrections to the diagram (5.28) are given by one-loop diagrams featuring
gluons. From (5.5), we see that the Feynman rules for local Higgs-triple gluon or Higgs-
quadruple gluon vertices are simply given by −g2scggh/(8π2v) times the corresponding
three- or four-gluon Feynman rule displayed in Appendix C. We only consider diagrams
with at most one effective vertex. These are given by49

q

k

k2

k1

B

A

≡ iMV
1,NSM (5.55)

and

q

k

k2

k1

B

A

≡ iMV
2,NSM (5.56)

The total virtual amplitude iMV
NSM ≡ iMV

1,NSM + iMV
2,NSM is given by

iMV
NSM =

ig4sNccggh
64π4vε2

ε∗µ(k1)ε
∗
ν(k2)δ

AB

(
µ24π

−m2
he
γ

)ε(
1− π2

12
ε2
)
(gµνk1 · k2 − kν1k

µ
2 ) +O(ε)

(5.57)

or, in its full glory

iMV
NSM =

ig4sNccggh
64π4v

ε∗µ(k1)ε
∗
ν(k2)δ

AB (gµνk1 · k2 − kν1k
µ
2 ) ·

·
(

1

ε2
+

1

ε

(
ln

4π

eγ
+ L

)
+

1

2
ln2

4π

eγ
+ ln

4π

eγ
L+

1

2
L2 − π2

12

)
+O(ε) (5.58)

where we have defined50

L ≡ ln
µ2

−m2
h

= ln
µ2

m2
h

+ iπ (5.59)

The calculational details are left for the appendix to this chapter. Featuring UV, as well
as IR poles, this amplitude requires renormalization, which we turn to now.
49Generally, we label the virtual corrections with V and the real radiation contributions with R (see

below).
50We have to choose the +iπ-convention due to the iη-prescription.
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Renormalization

We will now renormalize the amplitude (5.57) by absorbing the UV divergencies into a
counterterm of the form (5.28). With g2s = 4παs, the combined amplitudes (5.28) and
(5.57) are given by

iMLO+V
NSM =

iαscggh
4πv

δABHgg
λ1λ2

(
1− αs

2π
Nc

(
µ24π

−m2
he
γ

)ε(
1

ε2
− π2

12

))
≡ αs

4π
iM(0)

NSM +
(αs
4π

)2
iM(1)

NSM (5.60)

with Hgg
λ1λ2

defined in (5.20) and

iM(0)
NSM =

icggh
v

δABHgg
λ1λ2

(5.61)

iM(1)
NSM = −2iM(0)

NSMNcSε

(
µ2

−m2
h

)ε(
1

ε2
− π2

12

)
(5.62)

where we have introduced Sε ≡ (4π/eγ)ε. This factor is common to all loop computations
that are carried out in dimensional regularization. Let us now, for the sake of generality
in the following derivations, drop all the labels and consider the amplitude

iM≡ αs
4π
iM(0) +

(αs
4π

)2
iM(1) (5.63)

We now redefine the parameters of the theory by introducing counterterms Zα and ZG
for the coupling constant αs and the external gluon wavefunctions ε∗µi(ki) (the labels µi
and ki stand for generic Lorentz indices and four-momenta), respectively51. The explicit
formulas are given by [138, 143]

αs
4π
−→ αs

4π

(
µ2R
µ2

)ε
Zα ≡

αs
4π

(
µ2R
µ2

)ε
S−1
ε

(
1 +

αs
4π
δZα

)
+O(α3

s) (5.64)

ε∗µi(ki) −→
√
ZGε

∗
µi(ki) ≡

√
1 +

αs
4π
δZGε

∗
µi(ki) +O(α

2
s) (5.65)

m2
f −→ Zm2

f
m2
f ≡ m2

f +
αs
4π
δm2

f +O(α2
s) (5.66)

where µR is the renormalization scale, which essentially trades against the artificial
regularization scale µ. For an amplitude with ng external gluons (we have ng = 2), the
shift (5.65) just means that an overall factor of Zng/2G = 1+ ngαsδZG/(8π) +O(α2

s) has
to be introduced. The right-hand sides of (5.64)-(5.66) feature the renormalized coupling
constant after the shift (5.64), so no additional adjustment of αs is required in the latter
two equations, i.e. (5.64) is only applied to the αs-factors displayed on the right-hand

51As we want to apply the same formulas for the two-loop amplitudes featuring fermion loops (see
below), we pretend that there is also a dependence on the fermion mass and renormalize the latter
as well via Zm2

f
.
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side of (5.63). The mass renormalization (5.66) is the only manipulation that does not
affect overall factors only. An amplitude exposed to (5.66) then changes according to

iM = iM+
αs
4π
δm2

f

∂

∂m2
f

iM+O(α2
s) (5.67)

It is important to carefully keep track of the order in αs one is working at. Applying the
combined shifts to (5.63) eventually results in a renormalized amplitude iMr given by

iMr =Z
ng/2
G

(
αs
4π

(
µ2R
µ2

)ε
Zα

(
iM(0) +

αs
4π
δm2

f

∂

∂m2
f

iM(0)

)
+

+
(αs
4π

)2(µ2R
µ2

)2ε

Z2
αiM(1)

)
+O(α3

s) =

=
αs
4π

(
µ2R
µ2

)ε
S−1
ε iM(0)︸ ︷︷ ︸

iM(0)
r

+
(αs
4π

)2(µ2R
µ2

)2ε

S−2
ε

(
iM(1) − iM⊗

)
︸ ︷︷ ︸

iM(1)
r

+O(α3
s) (5.68)

where

iM⊗ = −
(
µ2R
µ2

)−ε
Sε

(
ng
2
δZG + δZα + δm2

f

∂

∂m2
f

)
iM(0) (5.69)

summarizes the counterterms. Their explicit forms to O(α0
s) in the OS scheme (we will

also use other schemes, see below) are given by [143]

δZG = −
(
µ2R
m2
t

)ε
2

3ε
(5.70)

δZα = −1

ε
β0 − δZG (5.71)

δm2
f = −

(
µ2R
m2
f

)ε
6m2

fCF

(
1

ε
+

4

3

)
+O(ε) (5.72)

where β0 = 11CA/3 − 2Nf/3 is the LO term in the QCD beta-function with Nf = 5
light, i.e. massless quark flavours contributing to the gluon self energy52 and the Casimir
operators are given by CA = Nc and CF = (N2

c − 1)/(2Nc) and reduce to 3 and 4/3 for
Nc = 3, respectively. In (5.70) and (5.71), the fermion mass has to be the top mass mt,
as all other masses are approximated as massless and their effects are included in β0.
For ng = 2, however, δZα cancels anyways in (5.69). The mass renormalization (5.72),
on the other hand, applies to all possible masses appearing in the loops. In practice, this
means that while all quark masses are considered as massive when going through the
loop, when appearing as external real radiation states to cancel the virtual IR infinities,

52This always includes the bottom-quark, irrespective its non-vanishing mass as a loop participant.
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all quarks but the top can be treated as massless.
With ng = 2, we are finally left with

iM⊗ = Sε

(
1

ε
β0 + β0 ln

µ2

µ2R
+ 6m2

fCF

(
1

ε
+

4

3
+ ln

µ2

m2
f

)
∂

∂m2
f

)
iM(0) +O(ε) (5.73)

At NLO, UV divergencies of a given virtual amplitude iM(1) manifest themselves as
single poles in 1/ε. They are canceled by the 1/ε-term in (5.73).
For our case (5.60), remembering that (5.61) is actually independent of mf , we obtain

iMLO+V
r,NSM =

αs
4π
iM(0)

r,NSM +
(αs
4π

)2
iM(1)

r,NSM (5.74)

with

iM(0)
r,NSM =

(
µ2R
µ2

)ε
S−1
ε

icggh
v

δABHgg
λ1λ2

(5.75)

iM(1)
r,NSM =

(
µ2R
µ2

)ε
S−1
ε

icggh
v

δABHgg
λ1λ2

NcI(ε) +O(ε) (5.76)

where we defined

I(ε) = − 2

ε2
− 1

ε

(
β0
Nc

+ 2L̃

)
− L̃2 +

π2

6
(5.77)

with

L̃ ≡ ln
µ2R
−m2

h

= ln
µ2R
m2
h

+ iπ (5.78)

Note that the renormalized coupling constant αs implicitly depends on the renormaliza-
tion scale µR and has to be adjusted accordingly. The final result (5.74) is now free from
UV divergencies, but still contains IR poles. These need to be canceled by real radiation
contributions. Before turning to them, let us first move to the virtual SM-like diagrams.

SM-like contribution

We now consider the two-loop diagrams featuring the SM-like coupling cf , see Figures
4 and 5. Their direct computation reveals UV as well as IR divergencies that need
renormalization as in the non-SM-like case. However, the explicit expressions are now
far more involved [137, 140–142]. Note that only [141] includes the full unrenormalized
and IR divergent bare amplitudes. The unrenormalized LO quark-loop amplitude (see
Section 5.2) plus its divergent two-loop correction is given by

iMLO+V
SM ≡ iαs

4π
Hgg
λ1λ2

δAB
∑
f

yfcf

2
√
2mf

(
2J̃(τf , ε)

τf
+
αs
π
Agg

)
(5.79)
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Figure 4: Two-loop diagrams (the layout was generated with [180]) representing the
Abelian (proportional to CF ) corrections ofO(α2

s) to the amplitude for h→ gg.

where J̃(τf , ε) is defined in (5.48). The first term is just the cf -part of (5.30), that
now has to be evaluated up to O(ε2), whereas Agg denotes its unrenormalized QCD
correction, i.e. a quite complicated object. Upon renormalization (see (5.64)-(5.66)), we
effectively replace

αs
π

(
2J̃(τf , ε)

τf
+
αs
π
Agg

)
−→ αs

π

(
µ2R
µ2

)ε
S−1
ε

(
2J̃(τf , ε)

τf
+
αs
π

(
µ2R
µ2

)ε
S−1
ε (Agg −A⊗

gg)

)
(5.80)

where the counterterm (5.69) reads

A⊗
gg = −

1

4

(
µ2R
µ2

)−ε
Sε

(
−1

ε
β0 + δm2

f

∂

∂m2
f

)
2J̃(τf , ε)

τf
(5.81)

The explicit form of the counterterm up to O(ε) depends on the scheme and is given by
(see (5.72))

δm2
f = −6m2

fCF


1
ε +

4
3 + ln

µ2R
m2
f

(OS)

1
ε + ln

µ2R
µ2f

(MS)
1
ε +

4
3 + ln

µ2R
µ2f

(scheme in [137, 140])

(5.82)
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Figure 5: Non-Abelian (proportional to CA) two-loop diagrams featuring three- and four-
gluon vertices, which supplement the ones in Figure 4.

where µf is the scale at which the fermion mass is renormalized. We now employ the
notation of [140] by writing (see also (5.49))

4

3
FH0 ≡ 2J̃(τf )τf (5.83)

where J̃(τf ) is given by (5.15). Furthermore, we write the ε-dependence in FH0 (ε) only
when higher order ε-terms are actually needed. This is the case for the LO term, as it
eventually interferes with the NLO result which contains IR poles of O(ε−2), as well as
for the term in (5.81) which gets multiplied by β0/ε (and of course anything contained
in Agg). We finally end up with53

αs
π

(
4

3
FH0 (ε) +

αs
π
Agg

)
−→ αs

π

(
µ2R
µ2

)ε
S−1
ε

(
4

3
FH0 (ε)+

53Using

∂

∂m2
f

= − τf
m2
f

∂

∂τf
(5.84)

and
∂

∂τf

4

3
FH0 =

2

τ3f

(
−τf + (2− τf )f(τf ) + τf (τf − 1)f ′(τf )

)
≡ − 2

3τf
FH0 C

H
2 (5.85)
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+
αs
π

(
µ2R
µ2

)ε
S−1
ε

((
µ2R
µ2

)−ε
Sε

(
1

6

δm2
f

m2
f

FH0 C
H
2 −

1

3ε
β0F

H
0 (ε)

)
+Agg

))
(5.87)

The two-loop amplitude is now given by

Agg =
(
µ2R
µ2

)−ε
Sε

(
−2

3
Nc

(
µ2R
−m2

h

)ε(
1

ε2
− π2

12

)
FH0 (ε)+

+ CFF
H
0 C

H
2

(
1

ε
+

4

3
+ ln

µ2R
m2
f

)
+Afin

)
+O(ε) (5.88)

Note that we have replaced the dependence on µ (which comes into play via dimensional
regularization of the divergent two-loop diagrams) by the renormalization scale µR to
O(ε) by pulling out the factor (µ2R/µ

2)−ε. The finite terms read [140]

Afin ≡ CFFH0 CH1 +
2

9
CA
(
FH0 B

H
1 − 2FH0 C

H
1

)
(5.89)

where54

FH0 C
H
1 = −

θf (1 + θf + θ2f + θ3f )

(1− θf )5
(
108Li4(θf ) + 144Li4(−θf )− 64Li3(θf ) ln θf+

− 64Li3(−θf ) ln θf + 14Li2(θf ) ln2 θf + 8Li2(−θf ) ln2 θf+

+
1

12
ln4 θf + 4ζ(2) ln2 θf + 16ζ(3) ln θf + 18ζ(4)

)
−

20θf
(1− θf )2

+

+
θf (1 + θf )

2

(1− θf )4
(
−32Li3(−θf ) + 16Li2(−θf ) ln θf − 4ζ(2) ln θf

)
+

−
4θf (7− 2θf + 7θ2f )

(1− θf )4
Li3(θf ) +

8θf (3− 2θf + 3θ2f )

(1− θf )4
Li2(θf ) ln θf+

where a prime denotes derivation with respect to τf and

f(τf ) = −1

4
ln2


√

1− 1
τf

− 1√
1− 1

τf
+ 1

 =


arcsin2 √τf for 0 < τf < 1

− 1
4

ln

 1−
√

1− 1
τf

1+
√

1− 1
τf

+ iπ

2

for 1 ≤ τf <∞
(5.86)

54The HPL functions were already introduced in the appendix to Section 5.2 and the polylogarithms
and zeta-functions are defined via

Lin(x) =
∞∑
k=1

xk

kn
=

∫ x

0

Lin−1(t)

t
dt, ζ(n) = Lin(1) (5.90)

with the special cases

Li0(x) =
x

1− x
, Li1(x) = − ln(1− x), ζ(2) =

π2

2
, ζ(4) =

π4

90
(5.91)
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+
2θf (5− 6θf + 5θ2f )

(1− θf )4
ln(1− θf ) ln2 θf +

θf (3 + 25θf − 7θ2f + 3θ3f )

3(1− θf )5
ln3 θf+

+
4θf (1− 14θf + θ2f )

(1− θf )4
ζ(3) +

12θ2f
(1− θf )4

ln2 θf −
12θf (1 + θf )

(1− θf )3
ln θf (5.92)

and

FH0 B
H
1 =

θf (1 + θf )
2

(1− θf )4
(
72H({1, 0,−1, 0}; θf ) + 6 ln(1− θf ) ln3 θf − 36ζ(2)Li2(θf )+

− 36ζ(2) ln(1− θf ) ln θf − 108ζ(3) ln(1− θf )− 64Li3(−θf )

+ 32Li2(−θf ) ln θf − 8ζ(2) ln θf

)
+

−
36θf (5 + 5θf + 11θ2f + 11θ3f )

(1− θf )5
Li4(−θf )−

36θf (5 + 5θf + 7θ2f + 7θ3f )

(1− θf )5
Li4(θf )+

+
4θf (1 + θf )(23 + 41θ2f )

(1− θf )5
(

Li3(θf ) + Li3(−θf )
)
ln θf+

−
16θf (1 + θf + θ2f + θ3f )

(1− θf )5
Li2(−θf ) ln2 θf +

θf (1 + θf − 17θ2f − 17θ3f )

(1− θf )5
ζ(2) ln2 θf+

+
θf (5 + 5θf − 13θ2f − 13θ3f )

24(1− θf )5
ln4 θf −

2θf (5 + 5θf + 23θ2f + 23θ3f )

(1− θf )5
Li2(θf ) ln2 θf+

+
2θf (11 + 11θf − 43θ2f − 43θ3f )

(1− θf )5
ζ(3) ln θf +

36θf (1 + θf − 3θ2f − 3θ3f )

(1− θf )5
ζ(4)+

−
2θf (55 + 82θf + 55θ2f )

(1− θf )4
Li3(θf ) +

2θf (51 + 74θf + 51θ2f )

(1− θf )4
Li2(θf ) ln θf+

+
θf (47 + 66θf + 47θ2f )

(1− θf )4
ln(1− θf ) ln2 θf +

θf (6 + 59θf + 58θ2f + 33θ3f )

3(1− θf )5
ln3 θf+

+
2θf (31 + 34θf + 31θ2f )

(1− θf )4
ζ(3) +

3θf (3 + 22θf + 3θ2f )

2(1− θf )4
ln2 θf+

−
24θf (1 + θf )

(1− θf )3
ln θf −

94θf
(1− θf )2

(5.93)

with θf defined in (5.47).
Finally, we can write down a compact form of the renormalized SM-like NLO amplitude,
namely

iMLO+V
r,SM =

iαs
4π

Hgg
λ1λ2

δAB
(
µ2R
µ2

)ε
S−1
ε

∑
f

yfcf

2
√
2mf

(
4

3
FH0 (ε)+

+
αs
π

(
Afin +

Nc

3
I(ε)FH0 (ε) + CFF

H
0 C

H
2 X(µ2f )

))
(5.94)
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where

X(µ2f ) =


0 (OS)

4
3 + ln

µ2f
m2
f

(MS)

ln
µ2f
m2
f

(scheme in [137, 140])

(5.95)

Combined together with (5.74), we obtain the fully-fledged NLO QCD amplitude

iMLO+V
r =

iαs
4π

Hgg
λ1λ2

δAB
(
µ2R
µ2

)ε
S−1
ε

(
cggh
v

(
1 +

αs
4π
NcI(ε)

)
+

+
∑
f

yfcf

2
√
2mf

(
4

3
FH0 (ε) +

αs
π

(
Afin +

Nc

3
I(ε)FH0 (ε) + CFF

H
0 C

H
2 X(µ2f )

)))
(5.96)

resulting in

dΓLO×V =
α3
sm

3
h

16π3
(N2

c − 1)

(
µ2R
µ2

)2ε

S−2
ε Re

{cggh
v

+
∑
f

yfcf

2
√
2mf

4

3

(
FH0 (ε)

)∗×
×

cggh
4v

NcI(ε) +
∑
f

yfcf

2
√
2mf

(
Afin +

Nc

3
I(ε)FH0 (ε) + CFF

H
0 C

H
2 X(µ2f )

)}dΦ2

(5.97)

This expression is, however, not finite upon sending ε → 0. It contains the object I(ε)
which collects the IR behavior of the virtual amplitudes. According to the Kinoshita-
Lee-Nauenberg (KLN) theorem [181, 182], the IR singularities of the LO×V decay rate
- it is of O(α3

s) - have to be canceled against phase space singularities of the R×R decay
rate which is also of O(α3

s). The latter consists of the real radiation corrections - with
amplitudes of O(g3s) - which we will turn to in the next two subsections.

Appendix: Explicit calculation of the one-loop integrals

This appendix highlights the calculational details for the virtual one-loop diagrams (5.55)
and (5.56). The first contribution is given by (see Appendix C for the conventions and
abbreviations)

iMV
1,NSM = −

g4scggh
16π2v

ε∗µ(k1)ε
∗
ν(k2)I

ABµν (5.98)

with

IABµν ≡WABCC
αβγσ gµαgνβµ2ε

∫
ddk

(2π)d
(k2 + q · k)gγσ − kγkσ − qγkσ

k2(k + q)2
(5.99)
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An extra symmetry factor of 1/2 had to be introduced in (5.98) as the gluon is its own
anti-particle. The iη-prescription has been suppressed. It can be restored upon noting
that q2 = m2

h should be replaced by m2
h + iη in the denominator, so −m2

h → m2
he

−iπ

inside logarithms.
Introducing the Feynman parameter x and shifting k → k − xq, we arrive at

IABµν =WABCC
αβγσ gµαgνβ

∫ 1

0
dx µ2ε

∫
ddk

(2π)d
Nγσ

(k2 + x(1− x)q2)2
(5.100)

where the numerator is given by

Nγσ ≡ (gδτgγσ − gδγgστ )kδkτ − x(1− x)(q2gγσ − qγqσ) (5.101)

Employing (D.17) and (D.18) and carefully taking care of all O(ε)-terms, we end up with

iMV
1,NSM =

ig4scggh
256π4v

ε∗µ(k1)ε
∗
ν(k2)f

ACDfBCD

(
13

6

(
1

ε
+ ln

4π

eγ
+ ln

µ2

q2
+ iπ +

44

39

)
q2gµν+

+
1

3

(
1

ε
+ ln

4π

eγ
+ ln

µ2

q2
+ iπ +

5

3

)
kν1k

µ
2

)
+O(ε) =

=
ig4scggh
128π4v

ε∗µ(k1)ε
∗
ν(k2)f

ACDfBCD
(

µ24π

−m2
he
γ

)ε
·

·

((
13

6ε
+

22

9

)
gµνk1 · k2 +

(
1

6ε
+

5

18

)
kν1k

µ
2

)
+O(ε)

(5.102)

where we have used ln
(
−q2

)
= ln

(
q2
)
− iπ. Note that the final result is IR finite. This

could have been anticipated since the Higgs-gluon-gluon vertex in fact vanishes when one
of the gluon propagators gets on-shell, so the IR-divergent region does not contribute.
The second diagram reads

iMV
2,NSM =

g4scggh
8π2v

ε∗µ(k1)ε
∗
ν(k2)Ĩ

ABµν (5.103)

(5.104)

where

ĨABµν ≡µ2ε
∫

ddk

(2π)d
NABµν

k2(k + k1)2(k − k2)2
(5.105)

with

NABµν ≡
(
(k + k1) · (k − k2)gσγ − (k + k1)

γ(k − k2)σ
)
·

· V ACD
στα (k + k1, k1, k)g

µτgνδgαβV BDC
βδγ (k, k2, k − k2) (5.106)
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Unfortunately, apart from the colour part (which is simply −fACDfBDC), the expanded
expression for the numerator is quite lengthy. Ultimately, we have to calculate the
integral

µ2ε
∫

ddk

(2π)d
Aαβγσµνkαkβkγkσ +Aαγσµνkαkγkσ +Aγσµνkγkσ +Aγµνkγ +Aµν

k2(k + k1)2(k − k2)2
(5.107)

with

Aαβγσµν ≡ gαβgγσgµν + (4d− 5)gαβgγµgσν (5.108)
Aαγσµν ≡ (4d− 6)gµγgνσ(kα1 − kα2 ) + 3gγσgµν(kα1 − kα2 )− gγσgµαkν1 + gγσgναkµ2

(5.109)
Aγσµν ≡ 4(4− d)gµγgνσk1 · k2 + 2gµν(kσ1 k

γ
1 + kσ2 k

γ
2 ) + 9gγσ(kν1k

µ
2 − k1 · k2g

µν)+

− 6gνσkµ2k
γ
1 − 6gµσkν1k

γ
2 − 2gνσkµ2k

γ
2 − 2gµσkν1k

γ
1 (5.110)

Aγµν ≡ 6(kγ1 − k
γ
2 )(k

ν
1k

µ
2 − g

µνk1 · k2) (5.111)
Aµν = 4k1 · k2(gµνk1 · k2 − kν1k

µ
2 ) (5.112)

Introducing Feynman parameters y and z and shifting k → k − yk1 + zk2, we obtain

ĨABµν =− 2fACDfBDC
∫ 1

0
dz

∫ 1−z

0
dyµ2ε

∫
ddk

(2π)d
Ãαβγσµνkαkβkγkσ + Ãγσµνkγkσ + Ãµν

(k2 + 2yzk1 · k2)3
(5.113)

where

Ãαβγσµν ≡ gαβgγσgµν + (4d− 5)gαβgγµgσν (5.114)
Ãγσµν ≡ gµν

(
(4y2 − 6y + 2)kγ1k

σ
1 + (4z2 − 6z + 2)kγ2k

σ
2+

+ (6y − 8yz + 6z)kγ1k
σ
2 − (4yz − 3y − 3z + 9)gγσk1 · k2

)
+

+ 2gµσkν1
(
(4dy2 − 5y2 − 2dy + 4y − 1)kγ1 − (4dyz − 2dy − 5yz + 3y + z + 3)kγ2

)
+

+ 2gνσkµ2
(
(4dz2 − 5z2 − 2dz + 4z − 1)kγ2 − (4dyz − 2dz − 5yz + 3z + y + 3)kγ1

)
+

+ 2gγµgσνk1 · k2(−4dyz + 2dy + 2dz − 2d+ 5yz − 3y − 3z + 8)+

− gγσkν1k
µ
2 (4dyz − 5yz + y + z − 9) (5.115)

Ãµν ≡ 2gµν(k1 · k2)2(2y2z2 − 3y2z + y2 − 3yz2 + 9yz − 3y + z2 − 3z + 2)+

+ 2kν1k
µ
2k1 · k2(4dy

2z2 − 5y2z2 − 2dy2z+

+ 4y2z − y2 − 2dyz2 + 4yz2 + 2dyz − 11yz + 3y − z2 + 3z − 2) (5.116)

Using (D.13), (D.14) and (D.15), we eventually find

2

∫ 1

0
dz

∫ 1−z

0
dyµ2ε

∫
ddk

(2π)d
Ãαβγσµνkαkβkγkσ

(k2 + 2yzk1 · k2)3
=

= − i

16π2

(
µ24π

−m2
he
γ

)ε
gµνk1 · k2

(
15

8ε
+

65

16

)
+O(ε2) (5.117)
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2

∫ 1

0
dz

∫ 1−z

0
dyµ2ε

∫
ddk

(2π)d
Ãγσµνkγkσ

(k2 + 2yzk1 · k2)3
=

=
i

16π2

(
µ24π

−m2
he
γ

)ε(
−
(
127

24ε
+

1723

144

)
gµνk1 · k2 +

(
29

6ε
+

871

72

)
kν1k

µ
2

)
+O(ε)

(5.118)

2

∫ 1

0
dz

∫ 1−z

0
dyµ2ε

∫
ddk

(2π)d
Ãµν

(k2 + 2yzk1 · k2)3
=

=
i

16π2

(
µ24π

−m2
he
γ

)ε((
2

ε2
+

5

ε
+

163

12
− π2

6

)
gµνk1 · k2+

−
(

2

ε2
+

5

ε
+

99

8
− π2

6

)
kν1k

µ
2

)
+O(ε) (5.119)

When the dust settles, we arrive at

iMV
2,NSM =

ig4scggh
128π4v

ε∗µ(k1)ε
∗
ν(k2)f

ACDfBCD
(

µ24π

−m2
he
γ

)ε(
1− π2

12
ε2
)
·

·

((
2

ε2
− 13

6ε
− 22

9

)
gµνk1 · k2 −

(
2

ε2
+

1

6ε
+

5

18

)
kν1k

µ
2

)
+O(ε) (5.120)

The O(1/ε2)-term indicates an IR pole. This had to be expected as one of the loop gluons
might get on-shell resulting in a diverging propagator. The IR poles will drop out in the
full decay rate by virtue of phase space integration associated with soft real radiation
diagrams. The final combined result (5.57) is obtained upon using fACDfBCD = Ncδ

AB.
It is worth noting that all O(1/ε)-terms cancel in an almost magical way in (5.102) and
(5.120) leaving only the explicit IR pole 1/ε2 behind.
One might think that the following three contributions should also be taken into account
(symmetry factors have been dropped):

q

k
k2

k1

B

A

≡ iMV
3,NSM = −

g4scggh
8π2v

ε∗µ(k1)ε
∗
ν(k2)J

ABµν
1,2 (5.121)
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q

k2

k1

B

A

k

≡ iMV
5,NSM =

g4scggh
8π2v

ε∗µ(k1)ε
∗
ν(k2)J

ABµν (5.122)

where we have defined

JABµν1,2 ≡ µ2ε
∫

ddk

(2π)d
V CAD
αγβ (k − k2, k1, k)gµγgνδgασgβλV DBC

λδσ (k, k2, k − k2)
k2(k − k2)2

(5.123)

and

JABµν ≡WABCC
αβλσ gµαgνβgλσµ2ε

∫
ddk

(2π)d
1

k2
(5.124)

The amplitude iMV
4,NSM is related to iMV

3,NSM by interchanging the external gluons,
which leads to the replacement of JABµν1,2 by JBAνµ2,1 . Thee loop integrals JABµν1,2 and
JABµν vanish due to being scaleless (see Appendix D), so the amplitudes iMV

3,NSM ,
iMV

4,NSM and iMV
5,NSM are in fact zero.

5.4. Real QCD corrections (h→ gq̄q)
Non-SM-like contribution

Real radiation contributions are associated with soft and collinear emission channels
which can not be distinguished from a gluon. In the case of one gluon and two massless
quarks in the final state, there is one diagram with effective Higgs-gluon-gluon-vertex to
consider, namely

A

c1

c2
q

k1

kq

kq̄ ≡ iMR,gq̄q
NSM (5.125)

for which we define s1q = (k1 + kq)
2, s1q̄ = (k1 + kq̄)

2 and sqq̄ = (kq + kq̄)
2 with

m2
h = s1q + s1q̄ + sqq̄ and find

iMR,gq̄q
NSM =

ig3scggh
16π2vsqq̄

ε∗µ(k1)T
A
c1c2 ū(kq)

(
(m2

h − sqq̄)γµ − 2 /k1(k
µ
q + kµq̄ )

)
v(kq̄) (5.126)
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This expression can easily be converted into the spinor-helicity formalism using the
relations

Hgqq̄
+++ = 0, Hgqq̄

−−− = 0, Hgqq̄
+−− = 0, Hgqq̄

−++ = 0,

Hgqq̄
+−+ = −〈1q〉

2

〈qq̄〉
, Hgqq̄

−+− =
[1q]2

[qq̄]
, Hgqq̄

++− =
〈1q̄〉2

〈qq̄〉
, Hgqq̄

−−+ = − [1q̄]2

[qq̄]
(5.127)

where

Hgqq̄
λ1λqλq̄

≡ 1√
2sqq̄

ε∗µλ1(k1, kq + kq̄)ūλq(kq)
(
(m2

h − sqq̄)γµ − 2 /k1(k
µ
q + kµq̄ )

)
vλq̄(kq̄)

(5.128)

for the gluon, quark and anti- quark helicities λ1, λq and λq̄, yielding the compact form

iMR,gq̄q
NSM =

ig3scggh
√
2

16π2v
TAc1c2H

gqq̄
λ1λqλq̄

(5.129)

SM-like contribution

We now have the contribution

A

c1

c2
q

kq

kq̄k

k1

≡ iMR,gq̄q
1,SM (5.130)

and its fermion flow reversed relative iMR,gq̄q
2,SM . Explicit calculations can be found in the

appendix to this subsection. The final result iMR,gq̄q
SM = iMR,gq̄q

1,SM + iMR,gq̄q
2,SM is given by

iMR,gq̄q
SM =

ig3s
16π2sqq̄

TAc1c2ε
∗
µ(k1)ū(kq)γνv(kq̄)·

·
∑
f

yfcf√
2mf

(
2kν1 (k

µ
q + kµq̄ )− (m2

h − sqq̄)gµν
) F (τf , κf )
(κf − τf )2

(5.131)

where the loop-function F (τf , κf ) is defined below (see (5.146) and (5.148)). Using
(5.128), this can be cast in the form

iMR,gq̄q
SM = − ig

3
s

√
2

16π2
TAc1c2H

gqq̄
λ1λqλq̄

∑
f

yfcf√
2mf

F (τf , κf )

(κf − τf )2
(5.132)

110



The final result for the real radiation quark channel thus reads

iMR,gq̄q ≡iMR,gq̄q
NSM + iMR,gq̄q

SM =

=
ig3s
√
2

16π2
TAc1c2H

gqq̄
λ1λqλq̄

cggh
v
−
∑
f

yfcf√
2mf

F (τf , κf )

(κf − τf )2

 (5.133)

To check the consistency of our results, let us now consider the heavy-top limit for
this amplitude (see also (5.34)). Writing κt = rτt with r = sq̄q/m

2
h, there is only one

parameter entering the limit. We find

−
F (τf , κf )

(κf − τf )2
=
2

3
+

7

45
τt +

4

63
τ2t +

52

1575
τ3t +

(
11

45
τt +

32

315
τ2t +

4

75
τ3t

)
r+

+

(
44

315
τ2t +

116

1575
τ3t

)
r2 +

148

1575
τ3t r

3 +O
(
τ4t
)

(5.134)

The O(r0)-terms can be matched to (5.35) for ct = 1 and Yukawa-like Higgs-top coupling
and are thus associated with a diagram of the form (5.125) in the heavy-top limit. The
remaining O(rk)-terms with k ≥ 1 correspond to a local interaction

(5.135)

where the encircled square symbolizes a local interaction with dχ ≥ 6. For instance, for
k = 1, the local operator

g3scgq̄qh
16π2vm2

t

q̄γµTAqGAµν∂
νh (5.136)

with

cgq̄qh =
11

180
+

8

315
τt +

1

75
τ2t +O

(
τ3t
)

(5.137)

for ct = 1 and Yukawa-like Higgs-top coupling has chiral dimension dχ = 6 and scales
like ∼ 1/(16π2m2

t ). For higher k, derivatives on the quark current are needed. These
come with extra suppression of the heavy mass mt via the increasing power of τt. In any
case, EWChL contributions like (5.135)-(5.136) with mt replaced by some heavy mass
scale are beyond the scope of this work.

Appendix: Calculational details for the SM-like contribution

The quantitative expressions for the two contributions are given by

iMR,gq̄q
1,SM =

g3syfcf√
2(kq + kq̄)2

TBc1c2Tr(T
BTA)ε∗µ(k1)ū(kq)γνv(kq̄)I

µν (5.138)
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and

iMR,gq̄q
2,SM =

g3syfcf√
2(kq + kq̄)2

TBc1c2Tr(T
BTA)ε∗µ(k1)ū(kq)γνv(kq̄)J

µν (5.139)

with

Iµν ≡ µ2ε
∫

ddk

(2π)d
Tr
(
(/k − /kq − kq̄/+mf )γ

ν(/k +mf )γ
µ(/k + /k1 +mf )

)(
(k + k1)2 −m2

f

)
(k2 −m2

f )
(
(k − kq − kq̄)2 −m2

f

) (5.140)

Jµν ≡ µ2ε
∫

ddk

(2π)d
Tr
(
(/k − /k1 +mf )γ

µ(/k +mf )γ
ν(/k + /kq + kq̄/+mf )

)(
(k − k1)2 −m2

f

)
(k2 −m2

f )
(
(k + kq + kq̄)2 −m2

f

) (5.141)

The Dirac equation implies ū(kq)( /kq + kq̄/)v(kq̄) = 0, so we can take over the results
from the LO SM calculation in Subsection 5.2, where the same role is played by the
transversality condition kν2ε

∗
ν(k2) = 0. Defining kqq̄ ≡ kq + kq̄ and dropping terms

proportion to kµ1 and kνqq̄, we find the numerator of Iµν to be given by

Tr
(
(/k − kqq̄/+mf )γ

ν(/k +mf )γ
µ(/k + /k1 +mf )

)
=

= 4mf

(
(4gµαgνβ − gµνgαβ)kαkβ + (m2

f − k1 · kqq̄)gµν + kν1k
µ
qq̄

)
(5.142)

Using the same arguments as in Subsection 5.2, we find Iµν = Jµν and thus iMR,gq̄q
SM ≡

iMR,gq̄q
1,SM + iMR,gq̄q

1,SM = 2iMR,gq̄q
1,SM . The situation is, however, a bit more involved, since

k21 = 0, but k2qq̄ = sqq̄ 6= 0. Shifting the loop momentum k → k − yk1 + zkqq̄ and
introducing Feynman parameters, we arrive at

Iµν =

∫ 1

0
dz

∫ 1−z

0
dyµ2ε

∫
ddk

(2π)d
Nµν(

k2 −m2
f + yz(m2

h − sqq̄) + z(1− z)sqq̄
)3 (5.143)

where

Nµν =4mf

(
(8gµαgνβ − 2gµνgαβ)kαkβ+

+ 2m2
fg
µν − 2z2sqq̄g

µν − (1− 2yz)(m2
h − sqq̄)gµν + (2− 8yz)kν1k

µ
qq̄

)
(5.144)

Performing the momentum integral and defining τf ≡ m2
h/4m

2
f as before and κf ≡

sqq̄/4m
2
f results in the gauge invariant expression

Iµν =
imf

8π2

(
gµν+

− 2

∫ 1

0
dz

∫ 1−z

0
dy
gµν − 2(1− 2yz)(τf − κf )gµν − 4z2κfg

µν + (1− 4yz)
kν1k

µ
qq̄

m2
f

1− 4yzτf − 4
(
z(1− z)− yz

)
κf

)
=

=
imf

8π2

(
kν1k

µ
qq̄

m2
f

− 2(τf − κf )gµν
)
F (τf , κf )

(κf − τf )2
(5.145)
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with

F (τf , κf ) ≡κf

√
1

τf
− 1 arctan

 1√
1
τf
− 1

−√1− κf
√
κf arctan

 1√
1
κf
− 1

+ κf − τf+

+
κf − τf + 1

2

[
Li2

 2

1 +
√
1− 1

τf

+ Li2

 2

1−
√

1− 1
τf

+

− Li2

 2

1 +
√
1− 1

κf

− Li2

 2

1−
√

1− 1
κf

]+
+ κf

√
1− 1

τf
Artanh

 1√
1− 1

τf

−√κf − 1
√
κfArtanh

 1√
1− 1

κf


(5.146)

When working with FeynCalc [92] using Mathematica [183], it is important to write√
κf − 1

√
κf instead of

√
κ2f − κf , etc.; otherwise the wrong analytic continuation will

be implemented. Note that

lim
κf→0

F (τf , κf ) =−
(τf − 1)Li2

(
2

1+
√

1− 1
τf

)
+ (τf − 1)Li2

(
2

1−
√

1− 1
τf

)
+ 2τf

2
=

=i16π2τfJ(τf ) (5.147)

with J(τf ) from (5.15). One can rewrite the dilogarithms in terms of ordinary logarithms
squared (see Appendix E). The correct analytic continuation is achieved by sending
m2
f → m2

f − iη and therefore τf → τf + iη and κf → κf + iη.
It is worth noting that F (τf , κf ) can be related to A5(τf , κf ) defined via equation (A.14)
in [184] and A from equation (A.19) in [136] by

F (τf , κf ) = τf (κf − τf )A5(τf , κf ) =
1

2m2
f

(κf − τf )A (5.148)

where

A5(τf , κf ) =
1

4τf

(
4 +

4κf
τf − κf

(
W1(sqq̄)−W1(m

2
h)
)
+

+

(
1− 1

τf − κf

)(
W2(sqq̄)−W2(m

2
h)
))

(5.149)

with

W1(a) ≡2 +
∫ 1

0
dx ln

(
1− x(1− x) a

m2
f

− iε

)
=
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=


2

√
4m2

f

a − 1 arcsin
√

a
4m2

f
for 0 < a < 4m2

f√
1− 4mf

a (2 arccos
√

a
4m2

f
− iπ) for 4m2

f ≤ a <∞
(5.150)

W2(a) ≡2
∫ 1

0

dx

x
ln

(
1− x(1− x) a

m2
f

− iε

)
=

=


−4 arcsin2

√
a

4m2
f

for 0 < a < 4m2
f(

2 arccos
√

a
4m2

f
− iπ

)2

for 4m2
f ≤ a <∞

(5.151)

5.5. Real QCD corrections (h→ ggg)
Non-SM-like contribution

In addition to the gluon-light-quarks radiation channels, amplitudes with three final-state
gluons have to be dealt with. The non-SM-like diagrams involve effective Higgs-multiple-
gluon vertices. We have

q

k3

k1

C

A

k2
B ≡ iMR,ggg

1,NSM =

=
ig3scggh
8π2v

ε∗µ(k1)ε
∗ν(k2)ε

∗λ(k3)V
ABC
µνλ (−k1, k2, k3)

(5.152)

A

B

C

q
k1

k2

k3

≡ iMR,ggg
2,NSM =

ig3scggh
8π2v(k2 + k3)2

ε∗µ(k1)ε
∗ν(k2)ε

∗λ(k3)·

·
(
k1 · (k2 + k3)g

αµ − kα1 (k
µ
2 + kµ3 )

)
V ABC
ανλ (k2 + k3, k2, k3)

(5.153)

and iMR,ggg
3,NSM and iMR,ggg

4,NSM , which are related to iMR,ggg
2,NSM by permuting {k1, µ, A} ←→

{k2, ν, B} ←→ {k3, λ, C}. The triple-gluon vertex V ABC
µνλ (k1, k2, k3) is explicitly writ-
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ten out in Appendix C. It is worth defining sij ≡ (ki + kj)
2 for i, j = 1, 2, 3 with

m2
h = s12+s13+s23. A lengthy, but straightforward computation shows that iMR,ggg

NSM ≡∑4
k=1 iM

R,ggg
k,NSM is indeed gauge invariant as it should, i.e. sending ε∗(ki) → ki yields

zero. The final result reads

iMR,ggg
NSM =

g3scggh
8π2v

ε∗µ(k1)ε
∗
ν(k2)ε

∗
λ(k3)f

ABCFµνλ (5.154)

where

Fµνλ =gµν(kλ2 − kλ1 ) + gµλ(kν1 − kν3 ) + gνλ(kµ3 − k
µ
2 )+

+
(s12 + s13)(k

λ
2g

µν − kν3gµλ) + 2(kµ2 + kµ3 )(k
λ
1k

ν
3 − kν1kλ2 ) + gνλ(kµ3 s12 − k

µ
2 s13)

s23
+

− (s23 + s13)(k
µ
2 g

λν − kν1gµλ) + 2(kλ2 + kλ1 )(k
µ
3k

ν
1 − kν3k

µ
2 ) + gνµ(kλ1 s23 − kλ2 s13)

s12
+

− (s12 + s23)(k
λ
1g

µν − kµ3 gνλ) + 2(kν1 + kν3 )(k
λ
2k

µ
3 − k

µ
2k

λ
1 ) + gµλ(kν3s12 − kν1s23)

s13
(5.155)

We can rewrite this expression in terms of helicity amplitudes as shown in Appendix B.
The actual conversion is tedious, but again straightforward. We finally arrive at

Hggg
+++ = −

m4
h

[12][23][31]
, Hggg

−−− =
m4
h

〈12〉〈23〉〈31〉
, Hggg

+−− = − [23]3

[21][13]
, Hggg

−++ =
〈23〉3

〈21〉〈13〉

Hggg
+−+ = − 〈13〉3

〈12〉〈23〉
, Hggg

−+− =
[13]3

[12][23]
, Hggg

++− =
〈12〉3

〈13〉〈32〉
, Hggg

−−+ = − [12]3

[13][32]
(5.156)

where55

Hggg
λ1λ2λ3

≡
√
2ε∗µλ1(k1, k2)ε

∗
νλ2(k2, k3)ε

∗
λλ3(k3, k1)F

µνλ (5.157)

and thus

iMR,ggg
NSM =

g3scggh

8
√
2π2v

fABCHggg
λ1λ2λ3

(5.158)

SM-like contribution

The real radiation amplitudes for h → ggg for the SM-like contributions consist of
six genuine triangle amplitudes iMR,ggg

1,SM to iMR,ggg
6,SM and six box diagrams iMR,ggg

7,SM to
iMR,ggg

12,SM . Within each group, the diagrams are related to each other by permuting the
final state gluons (three possibilities for a given fermion flow direction) and reverting

55Note that λ is a Lorentz index, whereas λi with i = 1, 2, 3 are the helicity indices for the three gluons.

115



the fermion flow (two possibilities for each final state permutation). Let us start with
the first triangle diagram

A

B

C
q

k2

k3k

k1

≡ iMR,ggg
1,SM (5.159)

Defining κf,ij ≡ sij/4m2
f , the final expression reads

iMR,ggg
1,SM =

ig3s
32π2s23

V ABC
δνλ (k23, k2, k3)ε

∗
µ(k1)ε

∗ν(k2)ε
∗λ(k3)·

·
∑
f

yfcf√
2mf

(
2kδ1k

µ
23 − (m2

h − s23)gµδ
) F (τf , κf,23)

(κf,23 − τf )2
(5.160)

where the complex function F was already defined in (5.146). The amplitude iMR,ggg
2,SM

can be obtained from iMR,ggg
1,SM by reverting the fermion flow, resulting in the same

expression56. The remaining amplitudes iMR,ggg
3,SM and iMR,ggg

5,SM and their reversed fermion
flow analogues iMR,ggg

4,SM and iMR,ggg
6,SM are related to iMR,ggg

1,SM and iMR,ggg
2,SM by exchanging

the external particles. For instance, with a self-explaining notation, we have

iMR,ggg
1,SM (k1, k2, k3;A,B,C) = iMR,ggg

3,SM (k2, k1, k3;B,A,C) = iMR,ggg
5,SM (k3, k2, k1;C,B,A)

(5.161)

All in all, defining V ABC
αβγ (p1, p2, p3) = fABC Ṽαβγ(p1, p2, p3), we get

6∑
k=1

iMR,ggg
k,SM =

∑
f

ig3s
16π2

yfcf√
2mf

fABCε∗µ(k1)ε
∗
ν(k2)ε

∗
λ(k3)·

·

(
Ṽδνλ(k23, k2, k3)

(
2kδ1k

µ
23 − (m2

h − s23)gµδ
) F (τf , κf,23)

s23(κf,23 − τf )2
+

− Ṽδµλ(k13, k1, k3)
(
2kδ2k

ν
13 − (m2

h − s13)gνδ
) F (τf , κf,13)

s13(κf,13 − τf )2
+

− Ṽδνµ(k12, k2, k1)
(
2kδ3k

λ
12 − (m2

h − s12)gλδ
) F (τf , κf,12)

s12(κf,12 − τf )2

)
(5.162)

56In the notation of the appendix to this subsection, reverting the fermion flow implies the exchange of
µ with δ and k1 with k23 in Iµδ1,23, which does not change anything.
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where we have lowered all polarization indices µ, ν and λ for the sake of notation.
The second class of diagrams starts with the box

C

A

B
q k

k2

k3

k1

≡ iMR,ggg
7,SM (5.163)

As before, reverting the fermion flow generates the next amplitude iMR,ggg
8,SM . This implies

exchanging A,µ, k1 ←→ C, λ, k3. The remaining ones iMR,ggg
9,SM to iMR,ggg

12,SM can be
obtained from all other permutations. Using Tr(TATBTC) − Tr(TATCTB) = i

2f
ABC ,

the final result for the box amplitudes is then given by

12∑
k=7

iMR,ggg
k,SM =−

∑
f

ig3syfcf

2
√
2
fABCε∗µ(k1)ε

∗
ν(k2)ε

∗
λ(k3)

(
Jλνµ3,2,1 + Jνµλ2,1,3 + Jµλν1,3,2

)
(5.164)

where Jµνλ1,2,3 is calculated explicitly in the appendix to this subsection and defined in
(5.196).
The full expression obtained by combining (5.162) and (5.164) is quite complicated and
unhandy. However, it can be numerically matched to the formulas given in [184] and
[137]. These are given by

iMR,ggg
SM ≡

12∑
k=1

iMR,ggg
k,SM =−

∑
f

g3sm
4
hyfcf

16π2
√
2mf

ε∗µ(k1)ε
∗ν(k2)ε

∗λ(k3)f
ABCAµνλ(1, 2, 3)

(5.165)

where

Aµνλ(1, 2, 3) ≡Aµνλ(1, 2, 3)−Aνµλ(2, 1, 3)−Aλνµ(3, 2, 1)+
−Aµλν(1, 3, 2) +Aνλµ(2, 3, 1) +Aλµν(3, 1, 2) (5.166)

with

Aµνλ(1, 2, 3) ≡
(
8k1λk1νk2µ
s212s13

− 4k1λgµν
s12s13

)
A2(s12, s13, s23)

+

(
2k1νk8λk3µ
3s12s13s23

+
4k1λgµν
s12s13

)
A3(s12, s13, s23) (5.167)
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and (in the notation of [184])

A2(s12, s13, s23) ≡b2(s12, s13, s23) + b2(s12, s23, s13) (5.168)

A3(s12, s13, s23) ≡
1

2

(
A2(s12, s13, s23) +A2(s23, s12, s13) +A2(s13, s23, s12)+

−b4(s12, s13, s23)− b4(s23, s12, s13)− b4(s13, s23, s12)
)

(5.169)

The functions b2 and b4 are defined via (always remember m2
f → m2

f − iε)

b2(a, b, c) ≡
m2
f

m4
h

(
a(c− a)
a+ c

+
2bc(c+ 2a)

(a+ c)2
(
W1(b)−W1(m

2
h)
)
+

+
(
m2
f −

a

4

)(1

2
W2(a) +

1

2
W2(m

2
h)−W2(b) +W3(a, b, c,m

2
h)

)
+

+ a2

(
2m2

f

(a+ c)2
− 1

2(a+ c)

)(
W2(b)−W2(m

2
h)
)
+
bc

2a

(
W2(m

2
h)− 2W2(b)

)
+

+
1

8

(
a− 12m2

f −
4bc

a

)
W3(b, a, c,m

2
h)

)
(5.170)

and

b4(a, b, c) ≡
m2
f

m2
h

(
−2

3
+

(
m2
f

m2
h

− 1

4

)(
W2(a)−W2(m

2
h) +W3(a, b, c,m

2
h)
))

(5.171)

where, in addition to W1 and W2 defined in (5.150) and (5.151),

W3(a, b, c, d) ≡I3(a, b, c, d)− I3(a, b, c, a)− I3(a, b, c, c) (5.172)

The integral I3 is given in [137] and reads

I3(a, b, c, d) ≡
∫ 1

0

dx

x(1− x) + bm2
f

ac

ln

(
1− x(1− x) d

m2
f

)
=

=
2

β+(a, b, c)− β−(a, b, c)

(
Li2
(

β−(a, b, c)

β−(a, b, c)− α−(d)

)
+

+ Li2
(

β−(a, b, c)

β−(a, b, c)− α+(d)

)
− Li2

(
β+(a, b, c)

β+(a, b, c)− α−(d)

)
+

+ ln

(
−β+(a, b, c)
β−(a, b, c)

)
ln

(
1 +

bd

ac

)
− Li2

(
β+(a, b, c)

β+(a, b, c)− α+(d)

))
(5.173)

with

β±(a, b, c) ≡
1

2

1±

√
1 +

4m2
fb

ac

 (5.174)
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α±(d) ≡
1

2

1±

√
1−

4m2
f

d

 (5.175)

Defining

ã(d) ≡

√
4m2

f

d
− 1 (5.176)

r2(a, b, c, d) ≡ ã2(d) + 1

ã2(d) + (2β+(a, b, c)− 1)2
(5.177)

cos
(
θ(a, b, c, d)

)
≡ r(a, b, c, d)(ã2(d)− 2β+(a, b, c)− 1)

1 + ã2(d)
(5.178)

cos
(
φ(a, b, c, d)

)
≡ r(a, b, c, d)(ã2(d) + 2β+(a, b, c)− 1)

1 + ã2(d)
(5.179)

(5.180)

with θ and φ between 0 and π, the two relevant special cases are

I3(a, b, c, d) ≡

{
I<3 (a, b, c, d) for 0 < d < 4m2

f

I>3 (a, b, c, d) for 4m2
f ≤ d <∞

(5.181)

where

I<3 (a, b, c, d) ≡ 2

2β+(a, b, c)− 1

(
2Li2

(
r(a, b, c, d), θ(a, b, c, d)

)
+

− 2Li2
(
r(a, b, c, d), φ(a, b, c, d)

)
+

+
(
φ(a, b, c, d)− θ(a, b, c, d)

)(
φ(a, b, c, d) + θ(a, b, c, d)− π

))
(5.182)

and

I>3 (a, b, c, d) ≡ 2

2β+(a, b, c)− 1

(
−Li2

(
α+(d)

α+(d) + β+(a, b, c)− 1

)
+

+ Li2
(

α+(d)− 1

α+(d) + β+(a, b, c)− 1

)
+

+ Li2
(

α+(d)

α+(d)− β+(a, b, c)

)
− Li2

(
α+(d)− 1

α+(d)− β+(a, b, c)

)
+

+ ln

(
α+(d)

1− α+(d)

)
ln

(
α+(d) + β+(a, b, c)− 1

β+(a, b, c)− α+(d)

)
+

− iπ ln
(
α+(d) + β+(a, b, c)− 1

β+(a, b, c)− α+(d)

))
(5.183)
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The dilogarithm with two arguments57 is defined via

Li2(x, y) = −
1

2

∫ x

0

dz

z
ln
(
1− 2z cos y + z2

)
=

1

2

(
Li2(xeiy)− Li2(xe−iy)

)
(5.185)

The special cases (5.182) and (5.183) can straightforwardly be obtained from the general
form (5.173) using

Li2(1− x) =
1

6
π2 − Li2(x)− ln(1− x) lnx (5.186)

Again, we rewrite the amplitude in terms of helicity amplitudes in the notation of Ap-
pendix B. As the amplitudes themselves now depend on the helicity configuration - MHV
(maximally helicity violating) vs. NMHV (next-to maximally helicity violating), this is
an involved task. To shorten the notation, we introduce the abbreviation

Pλ1λ2λ3 ≡ ε∗µλ1(k1, k2)ε
∗
νλ2(k2, k3)ε

∗
λλ3(k3, k1)

m4
hAµνλ(1, 2, 3)√

2
(5.187)

yielding

iMR,ggg
SM =−

∑
f

g3syfcf
16π2mf

fABCPλ1λ2λ3 (5.188)

Writing A4(s12, s13, s23) ≡ b4(s12, s13, s23) + b4(s23, s12, s13) + b4(s13, s23, s12) as in [184]
and applying the notation (5.157), we find

P+++ =−
m4
h

[12][23][31]

2

3

(
3A2(s12, s23, s13) + 3A2(s13, s12, s23) + 3A2(s23, s13, s12)+

+A3(s12, s13, s23)− 3A3(s12, s23, s13)− 3A3(s13, s12, s23) +A3(s13, s23, s12)+

+A3(s23, s12, s13)− 3A3(s23, s13, s12)
)
= 2A4(s12, s13, s23)H

ggg
+++

P+−− =− [23]3

[21][13]

2m4
h

3s223

(
3A2(s23, s13, s12) +A3(s12, s13, s23) +A3(s13, s23, s12)+

+A3(s23, s12, s13)− 3A3(s23, s13, s12)
)
=

2m4
h

s223
A2(s23, s12, s13)H

ggg
+−−

P−−− =2A4(s12, s13, s23)H
ggg
−−−, P−++ =

2m4
h

s223
A2(s23, s12, s13)H

ggg
−++

P+−+ =
2m4

h

s213
A2(s13, s23, s12)H

ggg
+−+, P−+− =

2m4
h

s213
A2(s13, s23, s12)H

ggg
−+−

57For one argument, see 5.90. It is given by

Li2(x) ≡ −
∫ x

0

ln(1− z)

z
dz =

∫ 1−x

1

ln(z)

1− z
dz (5.184)
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P++− =
2m4

h

s212
A2(s12, s13, s23)H

ggg
++−, P−−+ =

2m4
h

s212
A2(s12, s13, s23)H

ggg
−−+ (5.189)

It seems reasonable to pull out the polarization factor Hggg
λ1λ2λ3

by introducing

Pλ1λ2λ3 ≡ H
ggg
λ1λ2λ3

Qfλ1λ2λ3(s12, s13, s23) (5.190)

where we have reintroduced the label f to denote the dependence on the fermion mass
mf , which we have suppressed so far for notational simplicity. The explicit expressions
for Qfλ1λ2λ3(s12, s13, s23) can be read off from (5.189).
Combining both amplitudes (5.158) and (5.188) yields

iMR,ggg ≡iMR,ggg
NSM + iMR,ggg

SM =

=
α
3/2
s√
2π
fABCHggg

λ1λ2λ3

cggh
v
−
∑
f

yfcf√
2mf

Qfλ1λ2λ3(s12, s13, s23)

 (5.191)

Note that in contrast to all other amplitudes, there is no overall polarization factor.
Instead, the functional form of the amplitude depends on the latter in a non-trivial way.

Appendix: Calculational details for the SM-like contributions

For the triangle graphs, we find

iMR,ggg
1,SM =

g3syfcf√
2k223

Tr(TATD)V DBC
δνλ (k23, k2, k3)ε

∗
µ(k1)ε

∗ν(k2)ε
∗λ(k3)I

µδ
1,23 (5.192)

where we defined kij ≡ ki + kj and

Iµδ1,23 ≡ µ
2ε

∫
ddk

(2π)d
Tr
(
(/k − /k23 +mf )γ

δ(/k +mf )γ
µ(/k + /k1 +mf )

)(
(k + k1)2 −m2

f

)
(k2 −m2

f )
(
(k − k23)2 −m2

f

) (5.193)

Fortunately, we have kδ23V DBC
δνλ (k23, k2, k3) = 0 (see Appendix C for the notation), so we

can use the results of Subsection 5.4.
Turning to the box graphs, we have

iMR,ggg
7,SM = −

g3syfcf√
2

Tr(TCTBTA)ε∗µ(k1)ε
∗ν(k2)ε

∗λ(k3)J
µνλ
1,2,3 (5.194)

with

Jµνλ1,2,3 ≡ µ
2ε

∫
ddk

(2π)d
Tr
(
(/k − /k23 +mf )γ

λ(/k − /k2 +mf )γ
ν(/k +mf )γ

µ(/k + /k1 +mf )
)(

(k + k1)2 −m2
f

)
(k2 −m2

f )
(
(k − k2)2 −m2

f

)(
(k − k23)2 −m2

f

)
(5.195)

Proceeding the usual way - that is, introducing Feynman parameters and so on - will lead
to expressions that cannot be integrated analytically by the standard methods58. Instead
58We have numerically checked the equality of the so-obtained Feynman-parameter integrals with

(5.196). The explicit expressions are, however, too lengthy for the limited space in this work.
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of doing so, we evaluate the integral in terms of scalar Passarino-Veltman amplitudes
as in Appendix E, although with slightly different normalizations. We denote the box,
triangle and bubble contributions by D, C (or C̃) and B (or B̃), respectively. The full
expression (5.195) is then expanded according to (remember sij = 2ki · kj)

Jµνλ1,2,3 ≡f
µνλ
D (k1, k2, k3) + fµνλ

B̃
(k1, k2, k3)+

+fµνλB (k1, k2, k3)− fλνµB (k3, k2, k1)+

+fµνλC (k1, k2, k3)− fλνµC (k3, k2, k1)+

+fµνλ
C̃

(k1, k2, k3)− fλνµC̃
(k3, k2, k1) = −Jλνµ3,2,1 (5.196)

where

fµνλD (k1, k2, k3) =
iπ2mfD0(0, 0, 0,m

2
h, s12, s23,m

2
f ,m

2
f ,m

2
f ,m

2
f )

(2π)ds12s313s23
·

·
(
4s213s23

(
s12 − 4m2

f

)(
s23k

µ
2k

ν
1k

λ
1 − s13k

µ
2k

ν
1k

λ
2

)
+

+ 4s12s13s23
(
s13(s13 − 4m2

f )− 2s12s23
)(
kµ2k

ν
3k

λ
1 − k

µ
3k

ν
1k

λ
2

)
+

+ 4s12s
2
13(s23 − 4m2

f )
(
s13k

µ
2k

ν
3k

λ
2 − s12k

µ
3k

ν
3k

λ
2

)
+

+ 4s12s23
(
s13(s13 − 12m2

f )− 4s12s23
)(
s23k

µ
3k

ν
1k

λ
1 − s12k

µ
3k

ν
3k

λ
1

)
+

+ 2s12s13s23
(
s13(s12 + s13 − 8m2

f )− 2s12s23
)
gµν(s13k

λ
2 − s23kλ1 )+

+ 4s12s13s23
(
4s13m

2
f + s12s23

)
gµλ(s23k

ν
1 − s12kν3 )+

+ 2s12s13s23
(
s13(s13 + s23 − 8m2

f )− 2s12s23
)
gνλ(s12k

µ
3 − s13k

µ
2 )
)

(5.197)

fµνλ
B̃

(k1, k2, k3) =−
8iπ2mfB0(m

2
h,m

2
f ,m

2
f )

(2π)d(d− 2)s12s213s23(m
2
h − s23)2(m2

h − s12)2
·

·
(
−2s13s23(s13 + s23)

2
(
(d− 4)s12m

2
h + (d− 2)s13s23

)
kµ2k

ν
1k

λ
1+
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With q = k1 + k2 + k3 and κf,ij = sij/4m
2
f as before, the Passarino-Veltman amplitudes

are given by
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ki,kj 6=kk≡ µ2ε
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A compact expression for W3 is defined above (see (5.172)) and s13 = m2
h − s12 − s23

[136].

5.6. Antenna subtraction
h→ gq̄q-channel

In the case of a 1→ 3 decay, the relation between the spin- and colour-summed amplitude
squared and the differential decay rate of the Higgs boson is given by (see (5.51))

dΓ =
1

2mh

1

S
|M|2dΦ3 (5.207)

For h→ gqq̄, we have S = 1, because all particles in the final state are distinguishable.
Using Tr(TATA) = (N2

c − 1)/2 and (see (5.128))∑
λ1,q,q̄=±

|Hgqq̄
λ1λqλq̄

|2 = 1

2

s21q + s21q̄
sqq̄

(5.208)

it is given by

|MR,gq̄q|2 = α3
s

2π
(N2

c − 1)
s21q + s21q̄
sqq̄

∣∣∣∣cgghv −
∑
f

yfcf√
2mf

F (τf , κf )

(κf − τf )2

∣∣∣∣2 (5.209)

where (5.133) has been used. Upon applying the renormalization prescriptions (5.64)-
(5.66), we simply pick up an overall factor of (µ2R/µ2)3εS−3

ε in (5.209), as all other effects
are of higher order in αs. We finally obtain the real radiation decay rate

dΓR,gq̄q =
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µ2R
µ2

)3ε

S−3
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s
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(κf − τf )2
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(5.210)
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The difficult part is the phase space integration over dΦ3. All real radiation amplitudes
are in fact finite, so the three-body phase space integration must contain divergencies in
order to cancel the explicit IR divergencies associated with ε-poles (i.e. the object I(ε))
in the NLO virtual h→ gg decay rate (5.97). Working with dimensional regularization
in the virtual case, one is therefore motivated to perform the phase space integration in
d = 4− 2ε dimensions, too. Equation (A4) in [179] gives the relevant expression as

dΦ3 =
(2π)2ε−3

24−2εΓ(2− 2ε)

(m2
h)
ε−1(

s1qsqq̄(m2
h − s1q − sqq̄)

)εdsqq̄ds1q ε→0−→ dsqq̄ds1q
128π3m2

h

(5.211)

where s1q̄ has been eliminated by a delta distribution enforcing s1q+s1q̄+sqq̄ = m2
h (one

does a similar thing when dealing with Feynman parameters for triangle diagrams). Due
to the Higgs boson being a scalar, there is no need for a non-trivial angular integration.
Performing the integrals over sqq̄ from 0 to m2

h − s1q and s1q from 0 to m2
h yields the

total phase space volume

Φ3 ≡
∫
dΦ3 =

24ε−7π2ε−3(m2
h)

1−2εΓ(1− ε)3

Γ(3− 3ε)Γ(2− 2ε)

ε→0−→
m2
h

256π3
(5.212)

As mentioned before, the divergent phase space integral combines with the explicit IR
poles in terms of ε of the virtual amplitudes yielding a finite result. Rather than having
a highly unstable numerical cancellation between the phase space integral and the poles,
it would be convenient to have an analytic cancellation by coming across the relevant
expressions featuring ε within the phase space integral itself. We do this by employing
the antenna subtraction scheme [185–188].
Symbolically, we can write

ΓR + ΓV =

∫
3
dΓR −

∫
3
dΓS︸ ︷︷ ︸∫

3 dΓ
R−S

+

∫
3
dΓS +

∫
2
dΓV︸ ︷︷ ︸∫

2(dΓ
V −dΓT ) ≡

∫
2 dΓ

V−T

(5.213)

where the integral subindices denote whether the two- or three-body phase space inte-
gration has to be performed (i.e. integration over dΦ2 or dΦ3, etc.). The renormalized
real radiation differential decay rate and its virtual counterpart are denoted by dΓR (see
5.210 or a similar expression for h → ggg) and dΓV (see (5.97)), respectively, and the
subtraction term dΓS is chosen such that

∫
3 dΓ

R−S is finite and can be integrated nu-
merically without any peculiarities. It is possible to set ε→ 0 here59. Correspondingly,
the combination

∫
3 dΓ

S +
∫
2 dΓ

V should be finite as well. However, as the last term
contains poles in ε, one has to keep ε arbitrary here. In fact, it is possible to choose dΓS
such that the three-body phase space dΦ3 integral factorizes into the two-body phase
space dΦ2 and the so-called unresolved antenna phase space dΦX yielding [189]∫

3
dΓS =

∫
2

∫
X
dΓS ≡ −

∫
2
dΓT (5.214)

59The combination dΓR−S actually vanishes for the non-SM-like case, as the explicit form of the antenna
function (5.218) is chosen such that it exactly cancels the cggh-part of the physical amplitude squared
in (5.209).
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where the integration
∫
X can be done analytically.

For the case at hand, the explicit form of the subtraction term is given by [187]

dΓS,gq̄q ≡ 1

2mh

α3
s

4π

(
µ2R
µ2

)ε
S−1
ε G3

0|M
(0)
r |2dΦ3 (5.215)

where (see (5.30), (5.75) and (5.94))
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)ε
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+
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3
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(5.216)

and thus

|M(0)
r |2 =2m4

h(N
2
c − 1)

(
µ2R
µ2

)2ε

S−2
ε

∣∣∣∣∣cgghv +
∑
f

yfcf

2
√
2mf

4

3
FH0 (ε)

∣∣∣∣∣
2

(5.217)

This corresponds to (5.2) with ε 6= 0. The object

G3
0 ≡

µ2ε

m4
h

(
s21q + s21q̄
sqq̄

)(
1− ε

2
− ε2

4
−
(
1

8
− 50ζ(3)

3

)
ε3 +O(ε4)

)
(5.218)

is the adequate gluon-quark-antiquark antenna function. Note that the symbols s1q, s1q̄
and sqq̄ in (5.218) are in fact different from the Mandelstam variables defined for the
physical process h → gqq̄. Indeed, they refer to the momenta of the three partons that
are involved in the IR singularity giving rise to a separate phase space ΦX that should
not be confused with the physical one defined in (5.211); see [190, 191] and [187] for
the technical details concerning the dipole or antenna interpretation of ΦX , respectively.
Using dΦX = dΦ3/Φ2 for this additional phase space (which follows from the integral
over dΦ2 being constant, see [179, 187, 192]), where Φ2 for arbitrary ε is given in (5.54),
the integrated form of the antenna function reads

G30 ≡ 8π2S−1
ε
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)
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)
+O(ε3) (5.219)

For our purpose, we only need the O(ε−1) and O(ε0) terms. The final result is then
given by

dΓT,gq̄q =−
∫
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dΓS,gq̄q = −

(∫
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|M(0)

r |2dΦ2 +O(ε) (5.220)

with |M(0)
r |2 defined in (5.217). This expression has to be multiplied by the number Nf

of light quarks in the final state, which - as stated before - equals 5 in our case (all final
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state quarks but the top are considered as massless).
The combination dΓ(R−S),gq̄q gives a non-zero contribution only in the SM-like case,
namely (we are allowed to set ε→ 0 here)

dΓ(R−S),gq̄q =
α3
s

4πmh
Nf (N

2
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s21q + s21q̄
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)
dΦ3 (5.221)

which is independent of c2ggh. Remember that κf depends on sqq̄. The phase space
integral over dΦ3 in (5.221) has to be done numerically.

h→ ggg-channel

We now apply (5.207) with S = 6 for three indistinguishable final gluon states and
(5.211) with s1q, s1q̄ and sqq̄ replaced by s12, s13 and s23, respectively. The renormalized
amplitude squared is given by (see (5.191))
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with the helicities defined in (5.157). Their squares read∣∣Hggg
+++

∣∣2 = ∣∣Hggg
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and the relevant sum evaluates to∑
λ1,2,3=±

∣∣∣Hggg
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where

A6(s12, s13, s23) ≡
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We can take over (5.215) for dΓS,ggg with G3
0 replaced by

F 3
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(5.226)

and an extra factor of Nc/3 in order to adjust the colour- and symmetry factors for three
gluons (1/6 for the final state permutations and an extra factor of 2 due to the overall
relative normalization between the ggg and gqq̄ channels which can ultimately be traced
back to a reflection symmetry in the former). We obtain
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with |M(0)
r |2 again given by (5.217). The integrated form of F 3

0 is given by
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The subtraction term for the virtual amplitude is reads
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where the definition (5.220) was used.
Applying m2

h = s12 + s13 + s23 yields

m4
hF

3
0 =

m8
h + s412 + s413 + s423

s12s13s23
+O(ε) = 1

2

∑
λ1,2,3=±

∣∣∣Hggg
λ1λ2λ3

∣∣∣2 +O(ε) (5.230)

and thus (we set ε = 0)

dΓ(R−S),ggg =
α3
s

24πmh
Nc(N

2
c − 1)·

·
∑

λ1,2,3=±

∣∣∣Hggg
λ1λ2λ3

∣∣∣2(∣∣∣∣cgghv −
∑
f

yfcf√
2mf

Qfλ1λ2λ3(s12, s13, s23)
∣∣∣∣2+

−
∣∣∣∣cgghv +

∑
f

yfcf

2
√
2mf

4

3
FH0

∣∣∣∣2
)
dΦ3 (5.231)

Again, setting cf = 0 yields a vanishing contribution.
Let us now combine the virtual decay rate (5.97) with its subtraction terms (5.220) and
(5.229). Indeed, rewriting the expressions using (5.217) and neglecting terms of O(ε)
gives

dΓLO×V =
Nc

2mh

α3
s

32π3
|M(0)

r |2Re
{
I(ε)

2

}
dΦ2+
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+
α3
sm

3
h

16π3
(N2

c − 1)Re

{cggh
v

+
∑
f

yfcf

2
√
2mf

4

3

(
FH0
)∗×

×

∑
f

yfcf

2
√
2mf

(
Afin + CFF

H
0 C

H
2 X(µ2f )

)}dΦ2 (5.232)

and

dΓT ≡dΓT,gq̄q + dΓT,ggg =

=
Nc

2mh

α3
s

32π3
|M(0)

r |2
(
µ2R
m2
h

)ε(
Nf

3Ncε
+

7Nf

6Nc
− 1

ε2
− 11

6ε
− 7π2

12
+

73

12

)
dΦ2

(5.233)

For CA = Nc, we find(
µ2R
m2
h

)ε(
Nf

3Ncε
+

7Nf

6Nc
− 1

ε2
− 11

6ε
− 7π2

12
+

73

12

)
=

= Re

{
I(ε)

2

}
−
β0 ln

µ2R
m2
h

2Nc
+

7Nf

6Nc
− 73

12
+O(ε) (5.234)

This confirms the cancellation of the IR divergencies contained in the object I(ε). Note
that the non-trivial explicit ε-dependence of the object FH0 (ε) (see (5.50)) has actually
never been used as it is canceled in the final expression.
We are now ready to write down the full virtual decay rate together with its subtraction
terms. It is given by

ΓV−T =

∫ (
dΓLO×V − dΓT

)
=
α3
sm

3
h

128π4
(N2

c − 1)Re

{cggh
v

+
∑
f

yfcf

2
√
2mf

4

3

(
FH0
)∗ ·

·

∑
f

yfcf

2
√
2mf

(
Afin + CFF

H
0 C

H
2 X(µ2f )

)}+
+
α3
sm

3
h

512π4
(N2

c − 1)

∣∣∣∣∣cgghv +
∑
f

yfcf

2
√
2mf

4

3
FH0

∣∣∣∣∣
2(

β0 ln
µ2R
m2
h

−
7Nf

3
+

73Nc

6

)
(5.235)

where (5.54) has been used. The beta-function can be found below (5.72) and FH0 , Afin,
CH2 and X(µ2f ) are given by (5.83), (5.89), (5.85) and (5.95), respectively.
The list of required expressions for a numerical analysis h→ gg at NLO QCD based on
actual numbers is hereby complete. Before doing so, we briefly turn to a related process,
namely h→ γγ, which we have almost already completed en passant.
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5.7. h→ γγ at NLO in QCD
LO conributions

Having exploited the non-Abelian case, i.e. h → gg, it should be straightforward to
obtain results for h → γγ by taking the Abelian limit of our formulas. In addition,
however, we need to take into account the coupling between the photon and the massive
gauge bosons. This will introduce interesting new insights that are absent in the gluon
case, as we will discuss in this subsection [193–204].
Using the results of Subsection 5.2, one can immediately write down the SM-like ampli-
tude for h→ γγ induced by fermion loops. In contrast to h→ gg, these could now also
be leptons. The diagrams are given by

q

k

k2

k1

≡ iMγγ,LO
1,SM = −

q2fyfcf√
2

ε∗µ(k1)ε
∗
ν(k2)I

µν
1,2 (5.236)

and its fermion flow reversed version iMγγ,LO
2,SM with Iµν1,2 replaced by Iνµ2,1, where qf ≡ Qfe

denotes the charge of the fermion going through the loop (Qf = 0 and Qf = −1 for
neutrinos and charged leptons and Qf = 2/3 and Qf = −1/3 for up- and down-type
quarks, respectively) and Iµν1,2 given in (5.10) as before. We end up with

iMγγ,LO
1,SM + iMγγ,LO

2,SM =
ie2

8π2
Hγγ
λ1λ2

∑
f

cf
Q2
fyf√
2mf

J̃(τf )

τf

J̃(τf ) =


1 +

(
1− 1

τf

)
arcsin2

√
τf for 0 < τf < 1

1− 1
4

(
1− 1

τf

)(
ln

(
1−

√
1− 1

τf

1+
√

1− 1
τf

)
+ iπ

)2

for 1 ≤ τf <∞
(5.237)

where

Hγγ
λ1λ2
≡ 2ε∗λ1µ(k1)ε

∗
λ2ν(k2)(k

ν
1k

µ
2 − k1 · k2g

µν) (5.238)

as in (5.20). Compared to (5.16), there is an extra factor of 2 resulting from the nor-
malization of the SU(3) generators, i.e. Tr(TATB) = δAB/2. If the loop-fermions are
quarks, there is an extra factor of δc1c1 = Nc resulting from the implicit colour-index
contraction across the loop-propagators.
As mentioned before, there are additional contributions arising from W -boson loops. In
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unitary gauge, the first one is given by

q

k

k2

k1

≡iMγγ,LO
3,SM (5.239)

and the second and third ones by

q

k

k2

k1

≡ iMγγ,LO
4,SM (5.240)

and its gauge boson flow reverted relative iMγγ,LO
5,SM . The explicit calculations are carried

out in the appendix to this subsection. The final result is given by

iMγγ,LO
3,SM + iMγγ,LO

4,SM + iMγγ,LO
5,SM = − ig

2e2vcV
64π2m2

W

Hγγ
λ1λ2

F (τW )

F (τW ) =


2 + 3

τW
+ 3

(
2
τW
− 1

τ2W

)
arcsin2

√
τW for 0 < τW < 1

2 + 3
τW
− 3

4

(
2
τW
− 1

τ2W

)(
ln

(
1−

√
1− 1

τW

1+
√

1− 1
τW

)
+ iπ

)2

for 1 ≤ τW <∞

(5.241)

where τW ≡ m2
h/4m

2
W ≈ 0.60706.

In addition to the SM-like couplings cf and cW , we have the direct coupling between the
Higgs boson and two photons in the context of an EFT. Following (5.5), we have

Lint ⊃
e2

32π2v
cγγhhFµνF

µν (5.242)

where Fµν is the Abelian field strength tensor for photons. The relevant contribution is
given by

k2

k1

q

≡ iMγγ,LO
NSM =

ie2cγγh
16π2v

Hγγ
λ1λ2

(5.243)
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and the full LO result is then given by adding up (5.237), (5.241) and (5.243).

The role of the Goldstone bosons

There have recently been suggestions that (5.241) or (5.293) might in fact be wrong [205,
206]. Instead, the expression

3

τW
− 3

4

(
2

τW
− 1

τ2W

)
ln2


√
1− 1

τW
− 1√

1− 1
τW

+ 1

 (5.244)

is envoked, i.e. the first term in (5.241) is missing. However, the argumentation is based
on a blank-faced non-necessity of regularization for divergent momentum integrals when
the final result turns out to be finite, which is the case for h → γγ in the SM. While
this argument is not only false [207], expression (5.244) has the wrong behavior when
the particle in the loop becomes massless [208, 209].
Näıvely taking the coupling between the Higgs and the loop particle to be proportional
to the mass of the latter (yf ∼ mf or g2 ∼ m2

W ), we expect no coupling at all and hence
no Higgs decay into photons when mf ,mW → 0. For the fermion loop, we find

lim
τf→∞

J(τf )

τf
= 0 (5.245)

confirming our guess, but for the W -boson loop we have

lim
τW→∞

F (τW ) = 2 (5.246)

while (5.244) would yield 0. We now show that the (correct) non-decoupling between the
Higgs and the W -bosons shown by (5.246) has its origin in the pure Higgs-sector, namely
the Goldstone bosons of electroweak symmetry breaking - that is the longitudinal modes
of the W -bosons.
To be more specific, imagine a world without W -bosons. We are interested in calculating
the amplitude for h → γγ within the pure Higgs sector. Setting g = 0 in the SM
Lagrangian while keeping e finite does not work because of the interplay between g and
g′. Somehow identifying the latter with e assigns a charge to all components of the
complex scalar doublet ϕ. We therefore have to consider the Lagrangian

L = (Dµϕ)
†Dµϕ+m2ϕ†ϕ− λ

2
(ϕ†ϕ)2 (5.247)

with Dµϕ = ∂µϕ + iQAµϕ, see (2.11). We identify Aµ with the electromagnetic field
and Q as the charge operator

Q = e

1 0

0 0

 (5.248)
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As in the SM, the scalar field develops a vacuum expectation value given by v =
√
2m2/λ

and we can introduce the real scalar fields ϕ0, ϕ1, ϕ2 and h and write

ϕ =

 ϕ+

1√
2
(v + h+ iϕ0)

 (5.249)

where ϕ± ≡ (ϕ1 ± iϕ2)/
√
2 with a slightly different notation compared to (2.12). The

scalars ϕ± and ϕ0 are the massless Goldstone bosons, while the massive field h can be
identified with the SM Higgs boson. When the W - and Z-bosons are reintroduced, the
Goldstones become the longitudinal modes of the former. However, without massive
vector bosons, the Goldstones remain in the physical particle spectrum - as is the case
for non-unitary gauges in the full SM with massive vector bosons.
We now evaluate the couplings between the photon Aµ, the Higgs h and the charged
Goldstones ϕ±. Expanding the kinetic term of the scalar doublet yields

(Dµϕ)
†Dµϕ =∂µϕ−∂

µϕ+
1

2
∂µh∂

µh+
1

2
∂µϕ0∂

µϕ0+

+ ieAµ(ϕ+∂µϕ− − ϕ−∂µϕ+) + e2AµA
µϕ−ϕ+ (5.250)

The relevant Feynman rules are given by

p2

p1

µ ≡− ie(pµ1 − p
µ
2 ) (5.251)

ν

µ

≡ = 2ie2gµν (5.252)

The Higgs potential contains the terms

m2ϕ†ϕ− λ

2
(ϕ†ϕ)2 ⊃ −1

2
λv2h2 − λvϕ−ϕ+h (5.253)
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giving rise to the Feynman rules

≡− iλv

k ≡ i

k2
(5.254)

and the masses m2
h = λv2 and mϕ± = mϕ0 = 0 as expected.

Next, we evaluate the loop diagrams generating h→ γγ. They are given by

q

k

k2

k1

≡− 2λve2gµνε∗µ(k1)ε
∗
ν(k2)µ

2ε

∫
ddk

(2π)d
1

k2(k − q)2
=

= − i

8π2
λve2gµνε∗µ(k1)ε

∗
ν(k2)

(
1

ε
+ ln

4π

eγ
+ ln

µ2

−q2
+ 2

)
(5.255)

q

k

k2

k1

≡λve2ε∗µ(k1)ε∗ν(k2)µ2ε
∫

ddk

(2π)d
(2kµ + kµ1 )(2k

ν − kν2 )
k2(k + k1)2(k − k2)2

=

=
i

16π2
λve2gµνε∗µ(k1)ε

∗
ν(k2)

(
1

ε
+ ln

4π

eγ
+ ln

µ2

−q2
+ 3

)
+

− i

8q2π2
λve2kν1k

µ
2 ε

∗
µ(k1)ε

∗
ν(k2) (5.256)

The second diagram has a fermion-flow reversed version yielding the same analytical
expression. Combining all three results using q2 = λv2 = m2

h leads to

ie2

4π2v
(k1 · k2gµν − kν1k

µ
2 )ε

∗
µ(k1)ε

∗
ν(k2) (5.257)

which is precisely the first term of (5.293) in (5.290).
This calculation demonstrates a non-decoupling behavior of the Higgs boson from pho-
tons, even if massive fermions or vector bosons are absent. This is in strong contrast to
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Figure 6: All two-loop diagrams that represent the corrections of O(αs) to the quark
loop amplitude for h→ γγ, see also Figure 4. The lepton- and W -boson loops
don’t get QCD corrections since there is no coupling between leptons or W -
bosons and gluons.

gluons, which would indeed decouple from the Higgs particle in this limit - a relic from
QCD being unaffected by electroweak symmetry breaking.

NLO conributions

There is no coupling between photons and gluons in the SM, so all QCD corrections to
h → γγ are of genuine two-loop topology (in contrast to Subsection 5.3). The relevant
diagrams are displayed in Figure 6.
Only the quark loops obtain QCD corrections. With α = e2/(4π) and Ql = −1, the
fermion loops (5.237) - LO plus QCD corrections - are given by

iMγγ,LO+V
SM ≡ iα

2π
Hγγ
λ1λ2

(∑
l

(
cl

yl√
2ml

J̃(τl)

τl

)
+
∑
q

cq
NcQ

2
qyq

2
√
2mq

(
2J̃(τq)

τq
+
αs
π
Aγγ

))
(5.258)

where the subindices l and q refer to leptons and quarks, respectively. Details can be
found in [137, 140, 142, 210, 211]. We have suppressed the terms associated with cγγh
and cW . The expression Aγγ refers to the unrenormalized QCD correction and thus
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contains divergencies in the first place. Luckily, in contrast to Subsection 5.3, there are
no IR poles, as there cannot be a cancellation mechanism to account for them. Indeed,
the corresponding real radiation amplitude h→ γγg does not exist due to gluon colour
conservation. However, Aγγ still contains UV poles. These need to be canceled by
appropriate counterterms in the form of the LO amplitude. In fact, the first term in

2J̃(τq)

τq
+
αs
π
Aγγ (5.259)

changes according to (5.64)-(5.66). As there are no gluons in the final state and the LO
amplitude is O(α0

s), only the mass renormalization comes into play. We have (in the
notation of [140], see also (5.83))

2J̃(τq)

τq
=

4

3
FH0 −→

4

3
FH0 +

αs
4π
δm2

q

∂

∂m2
q

4

3
FH0 (5.260)

and

αs
π
Aγγ −→

(
µ2R
µ2

)ε
S−1
ε

αs
π
Aγγ (5.261)

yielding (see also Subsection 5.3)

4

3
FH0 +

αs
π
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4

3
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(
µ2R
µ2
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ε

αs
π

((
µ2R
µ2

)−ε
Sε

1

6

δm2
q

m2
q

FH0 C
H
2 +Aγγ

)
(5.262)

The explicit form of the mass counterterm is again given by (5.82). The unrenormalized
amplitude Aγγ is proportional to CF = (N2

c − 1)/(2Nc) and can be written as

Aγγ ≡
(
µ2R
µ2

)−ε
Sε

(
CFF

H
0 C

H
2

(
1

ε
+

4

3
+ ln

µ2R
m2
q

)
+ CFF

H
0 C

H
1

)
+O(ε) (5.263)

where FH0 CH1 and FH0 CH2 were defined in (5.92) and (5.85), respectively, with θf replaced
by θq. The renormalized final result of (5.258) is then given by

iMγγ,LO+V
r,SM =

iα

2π
Hγγ
λ1λ2

(∑
l

(
cl

yl√
2ml

J̃(τl)
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+
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qyq

2
√
2mq

(
4

3
FH0 +

αs
π
CF
(
FH0 C

H
1 + FH0 C

H
2 X(µ2f )

)))
(5.264)

where X(µ2f ) was defined in (5.95). The final expressions (5.264), (5.241) and (5.243)
provide the basic ingredients for a numerical study of h → γγ at NLO QCD, to which
we turn to in the last subsection.
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Appendix: Calculation of the W -boson loops

Evaluating the W -boson loops requires a lot of calculational endurance and patience.
The first question one is confronted with addresses the choice of the gauge. For example,
we could work in Feynman gauge, resulting in a particularly easy-to-handle form of
the W -propagator. This, however, comes with the disadvantage of explicitly having to
include the electroweak Goldstone bosons separately in the analysis, resulting in more
than ten diagrams! Although each diagram might ultimately turn out to be simple, their
sheer number makes the bookkeeping rather uncomfortable and prone to error. We will
therefore work in unitary gauge, where the effects of the Goldstones are processed by
the W -propagators. We only have to evaluate two diagrams in this case - though two
quite spicy ones. They are given by (5.239) and (5.240).
In formulas, we have

iMγγ,LO
3,SM ≡ g2e2vcV

2m4
W

ε∗µ(k1)ε
∗
ν(k2)I

µν (5.265)

with

Iµν =µ2ε
∫

ddk

(2π)d

(
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)(
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γσ − kγkσ
)
gσβ
(
m2
W gγα − pγpα

)(
k2 −m2

W

)(
p2 −m2

W

)
(5.266)

with p ≡ k + q. The coupling constant g plays the same role as the Yukawa coupling
and may be eliminated using g = 2mW /v. Employing the usual tricks yields

Iµν =

∫ 1

0
dx µ2ε

∫
ddk

(2π)d
Nµν(

k2 −m2
W + x(1− x)q2

)2 (5.267)

with

Nµν ≡(2gαβgµγgνσ − 2gµνgαβgγσ)kαkβkγkσ+
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Using (D.13)-(D.15) and splitting Iµν into three parts Iµν
k4

, Iµν
k2

and Iµν
k0

corresponding
to the number of loop momenta in the numerator of (5.268), we obtain the expressions
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Adding up all three contributions yields
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+ ln

4π

eγ
+ ln

µ2

m2
W

)
+

q2

30m2
W

+
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+

∫ 1

0
dx

(
1− 4x2 + 4x+ (−10x4 + 20x3 − 11x2 + x)

q2

m2
W

)
·

· ln
(
1− x(1− x) q

2

m2
W

))
(5.272)

The remaining contributions come from the triangle graphs

iMγγ,LO
4,SM =

g2e2vcV
2m6

W

ε∗µ(k1)ε
∗
ν(k2)J

µν
1,2 (5.273)

iMγγ,LO
5,SM =

g2e2vcV
2m6

W

ε∗µ(k1)ε
∗
ν(k2)J

νµ
2,1 (5.274)

where

Jµν1,2 ≡µ
2ε

∫
ddk

(2π)d
nµν(

k2 −m2
W

)(
(k + k1)2 −m2

W

)(
(k − k2)2 −m2

W

) (5.275)

with

nµν ≡ Ṽ µβγ(−k1,−k − k1, k)Ṽ νδσ(−k2,−k, k − k2)gλβ·
·
(
m2
W gγδ − kγkδ

)(
m2
W g

αλ − (k + k1)
α(k + k1)

λ
)(
m2
W gσα − (k − k2)σ(k − k2)α

)
(5.276)

The object Ṽ µνλ(p1, p2, p3) was defined above (5.162). Employing Feynman parameters
and shifting k → k − yk1 + zk2, we get

Jµν1,2 = 2

∫ 1

0
dz

∫ 1−z

0
dy µ2ε

∫
ddk

(2π)d
Nµν

(k2 −m2
W + yzq2)3

(5.277)

where

Nµν ≡ Nµν
k8

+Nµν
k6

+Nµν
k4

+Nµν
k2

+Nµν
k0

(5.278)

The individual contributions are given by

Nµν
k8

= 0 (5.279)

Nµν
k6

= m2
W (gµνgαβgγδgλσ − gµαgνβgγδgλσ)kαkβkγkδkλkσ (5.280)

Nµν
k4

=m2
W

(
1

2
gαµgβν

(
gγδ
(
6m2

W + q2(4yz − y − z + 1)
)
+

− 4y(2y − 1)kγ1k
δ
1 − 4z(2z − 1)kγ2k

δ
2 + 4(4yz − y − z)kγ1k

δ
2

)
+
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− 1

2
gαβgγδ

(
gµν
(
6m2

W + q2(6yz − y − z + 1)
)
− 2yzkν1k

µ
2

)
+

+ gαβ
(
4gµν

(
y(3y − 1)kγ1k

δ
1 + z(3z − 1)kγ2k

δ
2 − (6yz − y − z)kγ1k

δ
2

)
+

+ gνγkµ2
(
z(1− 4z)kδ2 − z(1− 4y)kδ1

)
+

+ gµγkν1
(
y(1− 4y)kδ1 − y(1− 4z)kδ2

)))
kαkβkγkδ (5.281)

Nµν
k2

=m2
W

(
1

2
gαβ
(
2gµν

(
2m4

W +m2
W q

2(6yz − y − z − 1) + q4yz(3yz − y − z + 1)
)
+

+ kν1k
µ
2

(
q2yz(y + z − 1− 4yz)− 2m2

W (3yz + y + z − 4)
))

+

+
1

2
gµαgνβ

(
4(2d− 3)m4

W +m2
W q

2(3 + y + z − 6yz) + q4yz(y + z − 1− 2yz)
)
+

− 2gµν
((
m2
W y(6y − 2) + q2y2(6yz − y − 3z + 1)

)
kα1 k

β
1+

+
(
m2
W z(6z − 2) + q2z2(6yz − 3y − z + 1)

)
kα2 k

β
2+

− 2
(
m2
W (6yz − y − z + 1) + q2yz(6yz − 2y − 2z + 1)

)
kα1 k

β
2

)
+

+ 2kν1k
µ
2

(
y2z(2y − 1)kα1 k

β
1 + yz2(2z − 1)kα2 k

β
2 + yz(y + z − 4yz)kα1 k

β
2

)
+

+ kν1g
µα
((
m2
W y(6y + 1) + q2y2(4yz − y − 2z + 1)

)
kβ1+

+
(
m2
W (y − 2z − 4− 6yz) + q2yz(2y − 4yz + z − 1)

)
kβ2

)
+

+ kµ2 g
να
((
m2
W z(6z + 1) + q2z2(4yz − 2y − z + 1)

)
kβ2+

+
(
m2
W (z − 2y − 4− 6yz) + q2yz(2z − 4yz + y − 1)

)
kβ1

))
kαkβ (5.282)

Nµν
k0

=
m2
W

2

(
kν1k

µ
2

(
2m4

W

(
(6− 4d)yz + y + z + 4

)
+

+m2
W q

2yz(6yz + y + z − 3) + q4y2z2(2yz − y − z + 1)
)
+

− gµνq2
(
m4
W (4yz − y − z + 5) + 2m2

W q
2yz(3yz − y − z)+

+ q4y2z2(2yz − y − z + 1)
))

(5.283)

It can be viewed as a lucky coincidence that the O(k8)-term vanishes. Otherwise, the
complexity it would have induced to the lower order terms would have made the whole
calculation hardly tackleable by hand. It also has to vanish for consistency reasons,
as it scales like d4k k8/k6 ∼ dk k5, but the highest order term in iM3 scales like
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d4k k4/k4 ∼ dk k3, so there would be nothing for the resulting divergencies to cancel
against.
As before, we split Jµν1,2 apart according to the number of loop momenta in the numerator.
We obtain

Jµν
1,2,k8

=0 (5.284)

Jµν
1,2,k6

=
i

16π2
gµνm6

W

((
9

2
− 3q2

4m2
W

+
q4

20m4
W

)(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2
W

)
+

9

8
− 3q2

16m2
W

+

+
q4

80m4
W

− 9

∫ 1

0
dz

∫ 1−z

0
dy

(
1− yz q2

m2
W

)2

ln

(
1− yz q2

m2
W

))
(5.285)

Jµν
1,2,k4

=
i

16π2
gµνm6

W

((
−27

4
− 11q2

48m2
W

+
151q4

1440m4
W

)(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2
W

)
+

+
q2

12m2
W

+
q4

120m4
W

+

+
1

8

∫ 1

0
dz

∫ 1−z

0
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(
108 + (256yz − 40y − 40z + 18)

q2

m2
W

)
·

· ·
(
1− yz q2

m2
W

)
ln

(
1− yz q2

m2
W

))
+

+
i

16π2
kν1k

µ
2m

4
W

((
1

6
− 2q2

45m2
W

)(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2
W

)
− 1

24
− q2

90m2
W

+

− 2

∫ 1

0
dz

∫ 1−z

0
dy (10yz − y − z)

(
1− yz q2

m2
W

)
ln

(
1− yz q2

m2
W

))
(5.286)

Jµν
1,2,k2

=
i

16π2
gµνm6

W

((
9

2
− 17q2

48m2
W

+
77q4

1440m4
W

)(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2
W

)
+

− 3 +
7q2

12m2
W

− q4

40m4
W

+

− 1

4

∫ 1

0
dz

∫ 1−z

0
dy

(
36 + (66yz − 11y − 11z − 1)

q2

m2
W

+

+ yz(46yz − 15y − 15z + 11)
q4

m4
W

)
ln

(
1− yz q2

m2
W
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+

+
i

16π2
kν1k

µ
2m

4
W

((
2

3
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180m2
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)(
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ε
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4π
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m2
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24
+
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720m2
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− 1

4

∫ 1

0
dz

∫ 1−z

0
dy

(
−2(24yz + 5y + 5z − 8)+

− 4yz(10yz − 3y − 3z + 2)
q2

m2
W

)
ln

(
1− yz q2

m2
W

))
(5.287)

Jµν
1,2,k0

=
i

16π2
gµνm6

W

(∫ 1

0
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∫ 1−z

0
dy

1

2
(
1− yz q2

m2
W

)((4yz − y − z + 5)
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m2
W

+

+ yz(6yz − 2y − 2z)
q4

m4
W
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+

− i
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kν1k

µ
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4
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1
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(
1− yz q2

m2
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)(−20yz + 2y + 2z + 8+
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m2
W

+ y2z2(2yz − y − z + 1)
q4

m4
W

))
(5.288)

Adding up all contributions, we find

Jµν1,2 =
i

16π2
gµνq2m4

W

((
9m2

W

4q2
− 4

3
+

5q2

24m2
W

)(
1

ε
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4π

eγ
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µ2

m2
W

)
+

−
15m2
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8q2
+
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240m2
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+

+
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+

+
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+
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+
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(
1− yz q2

m2
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)
+

+
1

2
(
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m2
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+ yz(6yz − 2y − 2z)
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+

+
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µ
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4
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((
5
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12m2
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)(
1

ε
+ ln

4π

eγ
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W

)
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+
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240m2
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+
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+
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(
1− yz q2

m2
W

)
+
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+ yz(6yz + y + z − 3)
q2

m2
W

+ y2z2(2yz − y − z + 1)
q4

m4
W

))
(5.289)

This result is symmetric under the exchange µ ↔ ν and k1 ↔ k2, so Jµν1,2 = Jνµ2,1.
The divergent pieces cancel the ones from (5.272). The final result for the W-loop
contribution to h→ γγ is therefore given by

iMγγ,LO
3,SM + iMγγ,LO

4,SM + iMγγ,LO
5,SM =

g2e2vcV
2m4

W

ε∗µ(k1)ε
∗
ν(k2)

(
Iµν +

2Jµν1,2
m2
W

)
=

=
ig2e2vcV
32m2

W

ε∗µ(k1)ε
∗
ν(k2)

(
F (τW ) k1 · k2gµν +G (τW ) kν1k

µ
2

)
(5.290)

where

F (τW ) =
37

12
− 6

5
τW+

+

∫ 1

0
dx

(
9

4τW
+ 20x2 − 20x− 2+

− 4x(1− x)(35x2 − 35x+ 2)τW

)
ln (1− 4x(1− x)τW )+

−
∫ 1

0
dz

∫ 1−z

0
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(
9

2τW
− 80yz + 9y + 9z − 10+

+ 20yz

(
4 + 42yz − 7y − 7z

)
τW

)
ln (1− 4yzτW )+

+
2

1− yz q2

m2
W

(
4yz − y − z + 5 + 8yz(3yz − y − z)τW + 16y2z2(2yz − y − z + 1)τ2W

)
(5.291)

and

G (τW ) =
τW
6
− 19

6
+

+

∫ 1

0
dx

(
1− 4x2 + 4x− 4x(10x3 − 20x2 + 11x− 1)τW

)
ln (1− 4x(1− x)τW )+

−
∫ 1

0
dz

∫ 1−z

0
dy (8− 9y − 9z + 16yz − 8yz (30yz − 5y − 5z + 2) τW ) ln (1− 4yzτW )+

+
2

1− 4yzτW

(
10yz − y − z − 4− 2yz(6yz + y + z − 3)τW − 8y2z2(2yz − y − z + 1)τ2W

)
(5.292)

Evaluating the parameter integrals yields after some algebra

F (τW ) = −G (τW ) = 2 +
3

τW
− 3

4

(
2

τW
− 1

τ2W

)
ln2


√
1− 1

τW
− 1√

1− 1
τW

+ 1

 (5.293)
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where

ln2


√
1− 1

τW
− 1√

1− 1
τW

+ 1

 =


−4 arcsin2√τW for 0 < τW < 1(
ln

(
1−

√
1− 1

τW

1+
√

1− 1
τW

)
+ iπ

)2

for 1 ≤ τW <∞
(5.294)

5.8. Phenomenological results
We now turn to a numerical analysis of our decay-rate formulas. This subsection is
based on the numbers presented in [150]. The input parameters are defined in Appendix
A. We use the OS quark masses as input parameters and convert them into running
masses via the scheme in [137, 140]. This corresponds to the last possibility in (5.95).
To the relevant order in αs, the corresponding formula that converts an OS mass mf to
its running version mf (µ

2
f ) reads60

mf (µ
2
f ) = mf

(
1−

αs(µ
2
f )

π
ln
µ2f
m2
f

)
+O(α2

s) (5.295)

Solving the one-loop renormalization group equation dαs/d lnµ2f = −αsβ0/(4π)+O(α2
s),

this formula is equivalent to [137]

mf (µ
2
f ) = mf

(
αs(µ

2
f )

αs(m2
f )

) 4
β0 (

1 +O(α2
s)
)

(5.296)

which is the expression we employ for our analysis. For numerical implementations,
the package CRunDec [212–214] can be employed for the conversion between the mass
schemes and the running strong coupling with Nf = 5 light flavours at the two-loop level.
This introduces an artificial renormalization scale dependence for our results, both at
LO and at NLO in QCD - in addition to the NLO function X(µ2f ) and the logarithmic
dependence on µR. The degree of dependence on these scales can be illustrated by fixing
them to selected values and varying between half and double these values. It is common
to choose µf = mf and µR = mh. The parametric uncertainties are obtained upon
varying one input parameter at a time and adding up the respective contributions in
quadrature. This, of course, assumes the independency of our input parameter uncer-
tainties.
Featuring easily tackleable analytic expressions without phase space singularities, we
begin with the process h→ γγ and consider h→ gg afterwards.

60This formula can be derived by formally equating the bare masses squared in terms of the different
renormalization schemes in (5.82) and taking the square root.
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Numerics for h→ γγ

The QCD corrections to h → γγ do not change the final results significantly. Indeed,
employing a self-explaining notation, the central values for the SM result are given by

Γh→γγ =

{
9.41 keV (LO QCD)
9.54 keV (NLO QCD)

(5.297)

The scale dependence from varying the quark-mass renormalization scales µq between
half and double their values are negligible in both cases (going from LO to NLO reduces
them by another order of magnitude). Ich bin ein versteckter lustiger Text. Meine
einzige Aufgabe ist es, die Grafik richtig in den Text einzubinden. Es wäre zwar schöner,
wenn es micht nicht bräuchte, aber sei’s drum.

Figure 7: Contour plots for h → γγ generated by varying two parameters at a time
showing the steeper gradient away from the SM result in the cW -direction. We
have set cb = cc = cτ = 1 in all plots. The SM central value of 9.54 keV is
marked with a black line and the SM configuration ct = cW = 1 together with
cγγh = 0 is given by a red dot in the center of the respective plot.

Allowing arbitrary anomalous couplings and dropping contributions below one per mille,
we arrive at [150]

Γh→γγ =
(
15.098c2W − 6.451ctcW − 3.624cγγhcW + 0.774cγγhct + 0.689c2t+

+0.217c2γγh + 0.097cbcW + 0.085cτ cW + 0.079cccW − 0.021cbct+
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−0.018ctcτ − 0.017ccct − 0.012cbcγγh − 0.010cγγhcτ − 0.009cccγγh
)

keV
(5.298)

at NLO QCD, where we have ordered the terms by phenomenological impact. Fixing
all anomalous couplings but two to their SM values enables us to plot the new-physics
deviations of the decay rate. In Figure 7, we have concentrated ourselves on the most
promising anomalous couplings, i.e. cW , ct and cγγh. The rate of change away from the
SM central value of 9.54 keV is significantly larger for varying cW than in the other di-
rections, hinting towards the high sensitivity of the decay h→ γγ to the W -boson loops,
as is also indicated by the numbers in (5.298). In this context, speculative new-physics
models influencing the Higgs-W -boson coupling should therefore be easier accessible
than other scenarios.

Numerics for h→ gg

The numerical results for h → gg as given in (5.235) are based on a C++ program for
which the Monte Carlo algorithm SUAVE implemented in the CUBA library [215] is
used for the real radiation phase space integration after the antenna subtraction has
been performed. In the vicinity of cggh ≈ −2ct/3, however, one inevitably encounters
a negative total decay rate. This can be understood upon noting that there are indeed
parameter space regions where the LO QCD amplitude vanishes identically, effectively
pushing its (negative) interference term with the virtual amplitude to the LO. The only
term that could fix this unphysical behavior is the virtual amplitude squared, which we
have neglected in our αs-expansion61. A rigorous expansion in αs on the rate level is
never a perfect square, so parameter space regions where the total decay rate becomes
negative are unavoidable. We will now try to understand this on a quantitative level
and argue for an ad hoc fix to cure the decay rate near its singular regions.
The decay rates (5.32) and (5.235) serve as our starting points. We now perform the
heavy-top limit with yt =

√
2mt/v and Nc = 3 to reduce the complexity of our expres-

sions62. For mt →∞, we have

FH0 −→ 1 (5.299)

Afin −→ 11

3
(5.300)

FH0 C
H
1 −→ − 1 (5.301)

FH0 C
H
2 −→ 0 (5.302)

FH0 B
H
1 −→

11

2
(5.303)

resulting in

ΓLO×LO −→ ΓLO×LO
∞ ≡

α2
sm

3
h

32π3v2

(
cggh +

2

3
ct

)2

(5.304)

61A thorough treatment would require double-real-radiation contributions, etc. and is beyond the scope
of this work

62The phase space integrations (5.221) and (5.231) vanish identically in the heavy-top limit.
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ΓLO×LO + Γ(V−T ) −→ ΓNLO∞ ≡ ΓLO×LO
∞

(
1 +

αs
π

(
R+

11

3

ct

cggh +
2
3ct

))
+O(α4

s)

(5.305)

The first factor is simply ΓLO×LO from (5.32) in the heavy-top limit (5.35) and

R =
1

2

(
73

2
−

7Nf

3
+

3β0
3

log
µ2R
m2
h

)
(5.306)

is the real-radiation contribution, which is always positive for realistic values of Nf . The
O(α4

s) correction explicitly indicated refers to the aforementioned NNLO corrections.
While the result vanishes for cggh = −2ct/3, it can become negative for cggh ≈ −2ct/3.
This is an artifact of the truncation in the αs-expansion that can be fixed by ”completing
the square”.
The heavy-top-limit result can be mapped to a tree-level calculation of the effective
Lagrangian

Leff = ChGaµνGaµν (5.307)

with

C = αs
8πv

(
cggh +

2

3
ct

(
1 + 11

αs
4π

))
(5.308)

which results in a decay rate of

Γeff =
2m3

h

π
C2 = ΓLO×LO

∞

(
1 +

11αs
3π

ct

cggh +
2
3ct

+
121α2

s

36π2
c2t(

cggh +
2
3ct
)2
)

(5.309)

with ΓLO×LO
∞ given above. For the effective Lagrangian, this result is exact to O(α4

s)
and differs from (5.305) at this order. In contrast to the latter, however, (5.309) is a
perfect square. In addition, setting cggh = −2ct/3, we obtain the (positive) result

Γeff −→
121α4

sm
3
hc

2
t

1152π5v2
(5.310)

This term might now serve as a regulator for (5.305) near the singular configuration
cggh ≈ −2ct/3. We therefore define our parameter-space regularized to include the fix
(5.310). The result is given by

ΓNLO∞ −→ΓLO×LO
∞

(
1 +

αs
π

(
R+

11

3

ct

cggh +
2
3ct

))
+

121α4
sm

3
hc

2
t

1152π5v2
+O(α4

s) = (5.311)

=ΓLO×LO
∞

((
1 +

11αs
6π

ct

cggh +
2
3ct

)2

+
αs
π
R

)
+O(α4

s) (5.312)
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LO NLO

Atg 0.56937 ±1.5% +23%
−17% 0.88041 ±1.8% +11%

−11%

Agg 0.41360 ±1.5% +23%
−17% 0.59755 ±1.7% +9.5%

−9.6%

Att 0.19595 ±1.5% +23%
−17% 0.32290 ±1.8% +13%

−11%

Att + fix (5.310) 0.32468 ±1.8% +13%
−12%

Abg −0.03442 ±2.0% +23%
−17% −0.04837 ±2.2% +8.8%

−9.2%

Abt −0.02369 ±2.0% +23%
−17% −0.03569 ±2.2% +11%

−10%

Abb 0.00218 ±4.0% +23%
−17% 0.00328 ±4.0% +11%

−10%

Table 2: LO and NLO values for the coefficients in (5.314). The first uncertainty refers
to the parametric uncertainty, the second one is related to the renormalization
scale variation. For the former, we have to take their respective correlations
into account when calculating the error of the LO and NLO decay rates, see
also [150].

.

It turns out that the same fix (5.310) provides the necessary regulatory properties for
the full decay rate when the top-mass dependence is restored63. This is, of course, not
a rigorous procedure and should be taken with caution. The phenomenological impact
of the fix away from the singular regions, however, is almost negligible. In the following
analysis, we will always include the fix.
Including parametric, as well as scale uncertainties resulting from varying the renormal-
ization scale µR between half and double the Higgs mass mh, and employing the same
self-explaining notation as in the h→ γγ case, the SM results are given by

Γh→gg =


(
0.1744± 1.5%(parametric)+23%

−17%(scale)
)

MeV (LO QCD)(
0.2923± 1.8%(parametric)+13%

−12%(scale)
)

MeV (NLO QCD)
(5.313)

With arbitrary anomalous couplings, we obtain

Γh→gg =
(
Atgcgghct +Aggc

2
ggh +Attc

2
t +Abgcgghcb +Abtctcb +Abbc

2
b

)
MeV (5.314)

where the coefficients can be read off from Table 2. Referring to the anomalous couplings
cggh, ct, etc. as the fundamental parameters of the EWChL [216] and including only

63In fact, this is not strictly true when lower-mass quarks, such as the bottom- or charm-quark are
included. However, the problematic regions are far off from phenomenologically reasonable regions,
so we don’t worry about them here.
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top-quark contributions, we arrive at the following NLO QCD formula

ΓEWChL
h→gg

ΓSM
h→gg

= 1 + 2 δct + 2.7116 cggh + δ2ct + 1.8404 c2ggh + 2.7116 δctcggh , (5.315)

with the definition δct ≡ ct − 1, which can be matched to the corresponding expression
in SMEFT using the relations of Table 1. Employing the definition C̃i ≡ Civ

2/Λ2, one
then obtains

ΓSMEFT
h→gg

ΓSM
h→gg

= 1 + 2

(
C̃ϕ� −

1

4
C̃ϕD

)
− 2.0164 C̃tϕ + 578.04 C̃ϕG

+

(
C̃ϕ� −

1

4
C̃ϕD

)2

− 2.0164

(
C̃ϕ� −

1

4
C̃ϕD

)
C̃tϕ

+ 1.0164 C̃2
tϕ + 8.3632 · 104 C̃2

ϕG

+ 578.04

(
C̃ϕ� −

1

4
C̃ϕD

)
C̃ϕG − 582.77 C̃tϕC̃ϕG . (5.316)

However, in contrast to the former expression, the last one is far from being systemat-
ically consistent. On one hand, it lacks the implicit loop factors of field-strength oper-
ators. Including them would, as an example, lower the coefficient associated with C̃ϕG
from 578.04 to 3.6605. In fact, all coefficients would then be given by O(1)-numbers.
On the other hand, it contains dimension-six squared contributions (∼ 1/Λ4 on the
decay-rate level), but neglects genuine dimension-eight operators. This can be fixed by
enlarging Table 1 to include dimension-eight effects (see [175, 176, 217] for the phe-
nomenological implications, where it has been argued that including QCD corrections
to the dimension-six terms ∼ C6

ϕG spoils the degeneracy of cggh within SMEFT64). For
instance, kinematic differences between the related processes h→ gg and gg → h intro-
duce a mismatch between the ratio of C6

ϕG and its eight-dimensional relative C8
ϕG inside

cggh. Within ordinary SMEFT, this arises naturally when the perturbative expansion
is truncated systematically. It is, however, an artifact of not treating C6

ϕG and C8
ϕG on

equal footing when it comes to QCD corrections. In fact, the main advantage of working
with only one object cggh is the possibility to calculate radiative corrections once and for
all as there is no reason to distinguish the EFT-dependent ingredients that eventually
sum up to cggh. Viewing cggh as a single object with respect to QCD corrections also
makes their common origin in geoSMEFT more manifest. Processes involving more than
two external Higgs states then require additional coefficients, e.g. cgghh, accounting for
a parameter degeneracy in the EWChL [171, 216, 218–224]. In SMEFT at canonical
dimension eight, both cggh and cgghh are represented by (different) linear combinations
of C6

ϕG and C8
ϕG. To be more specific, enlarging the Lagrangian (5.5) by a term65

αs
16πv2

cgghhh
2GAµνG

Aµν (5.317)

64Here, we employ the notation C6
ϕG ≡ CϕG.

65Note that our conventions differ slightly to the ones used in [216].
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leads to

cggh =
32π2

g2s

(
v2

Λ2
C6
ϕG +

v4

Λ4
C8
ϕG

)
(5.318)

cgghh =
32π2

g2s

(
v2

Λ2
C6
ϕG +

3v4

Λ4
C8
ϕG

)
(5.319)

Let us turn back to our phenomenological analysis. We provide contour plots for various
combinations of anomalous couplings in Figure 8. The global minima of the decay rates
as functions of the anomalous couplings lie far off from their SM central value hinting
towards the potential sensitivity of the SM decay rate to small deviations and hence new
physics. Note that we have to be cautious close to the parametric-suppression region
cggh ≈ −2ct/3, since here the artificial fix (5.310) is essentially our LO and only physical
result and we do not know the exact behavior at higher orders. The overall qualitative
picture of the contour plots does not change when going from LO to NLO.
It is therefore easier to study the behavior of the decay rate when only one parameter
is changed from its SM value. This is done in Figure 9, where we considered a rescaled
result (by c−2

t ) and plotted its dependence on the ratio cggh/ct with cb = ct. The non-
overlap of the scale error bands for LO and NLO hint towards the potential necessity
of even higher-order QCD calculations for this process66. Near the minimum, again,
we can not really trust our numbers due to the fix. Chosen QCD K-factors, i.e. ratios
between the NLO and LO decay rates, are finally shown in Figure 10. Of course, the
”LO K-factors” are centered at a value of 1. While we do not observe any obscurities
for cggh set to its SM value 0, we observe a highly non-trivial behaviour for negative
values. As before, however, this can be traced back to the parameter space singularity
and should not be overinterpreted. The bending of the NLO K-factor for fixed cggh and
cb for very small ct can be traced back to the destructively interfering bottom loop that
gets relatively enhanced. See also [150] for a similar plot concerning varying cb which
shows a nearly constant NLO enhancement of about 70%.
Our results may contribute to a possible extension of existing LO QCD global data
fits [116, 227] into the full NLO QCD regime. So far, the available LHC data suggests
deviations of the SM couplings of at most 10%. This includes the anomalous Higgs-
gluon-gluon coupling, which is constrained by cggh = −0.01± 0.08. In the light of these
numbers, the necessity to push the theoretic, as well as experimental accuracy by at least
an order of magnitude in future works and colliders seems unavoidable for an eventual
detection of potential signals from highly hypothetical physics beyond the SM.

66Although the error bands become smaller when transiting to higher orders in QCD, we eventually
expect them to overlap for a sufficiently converging perturbative series, since the hypothetical all-
order result is scale independent by construction [225, 226].
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Figure 8: LO and NLO contour plots for the h → gg decay rates with varying effective
couplings. A black cross indicates the SM configuration. The global minimum
is highlighted with a red cross or line, see also [150].
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6. Conclusions and outlook
In this work, we have demonstrated how a power-counting scheme for SMEFT relying
solely on canonical dimensions can result in inconsistencies within the perturbative ex-
pansion of the underlying QFT at high energies. To be more precise, without further
assumptions about the UV sector, the relevant power-counting information is incomplete
and therefore not suited as a consistent realistic EFT for the SM degrees of freedom.
One possible minimal assumption about the full theory is that it can be defined as a
renormalizable perturbative QFT with weak couplings. In fact, if this were not the case,
other EFT frameworks such as the EWChL might prove to be better suited as a starting
point for low-energy studies than SMEFT.
Based on specific examples and general setups, we have developed a systematic treatment
for operators of canonical dimension six by introducing the notion of chiral dimensions to
SMEFT. The latter act as a book-keeping device for counting loop orders equally to the
expansion in the high energy scale. Our results confirm the observation that operators
involving field strength tensors come with extra suppression factors on a quantitative
level.
While variations of the power-counting scheme we propose and hence the hierarchy be-
tween operators are, of course, always possible, the approximations, assumptions and
power-counting rules for the EFT should always be explicitly specified.
Our analysis concerns mainly operators of canonical dimension six. An extrapolation
to higher dimensions is not straightforward, as field redefinitions and the application of
the field equations of motion may spoil the classification of operators into field-strength
operators and non-field-strength operators in a non-trivial way. Despite being of sub-
leading phenomenological importance, it seems, however, plausible that a conceptually
related analysis can also be performed for these higher-order effects in future works.
A first example for the importance of our power-counting rules for the LHC was given
by our computation of the leading new-physics corrections (assumed to be in the third
particle generation only) to the differential cross section for top-quark pair production
via gluon fusion in SMEFT at LO QCD. A superficial numerical discussion serves as
an illustration of how the overall SMEFT impact is relatively minor, as all effects are
actually loop-suppressed within our power-counting framework. Given the expected sig-
nificance of NLO QCD corrections for the process under study, a more comprehensive
analysis should incorporate them as well, as there could indeed be enhancements of the
impact of certain operators. We defer a general phenomenological study for hadron col-
liders including the initial-quark-anti-quark channel, PDFs and a more thorough analysis
of the Warsaw-basis coefficients’ parameter space to future works.
As a second example, we have conducted a comprehensive investigation of the Higgs-
boson decay rates of h → gg and h → γγ at NLO QCD, taking into account possible
anomalous Higgs couplings arising from new-physics effects. In this case, there is no dis-
tinction between the predictions of SMEFT and the EWChL. The EFT follows a power
counting in loop orders, which can be systematically integrated within QCD perturba-
tion theory. Indeed, the extension of the QCD calculation from LO to NLO does not
generate any further EFT parameters.

155



While having lesser importance for h → γγ, the phenomenological impact of QCD on
the h → gg rate is substantial. It gives rise to a K-factor of about 1.7 and halves the
scale uncertainty.
Our results may provide the basic ingredients for a global fit analysis of the SMEFT
or EWChL parameters including NLO QCD effects. However, as even higher-order ef-
fects in QCD will eventually turn out to be significant, such an NLO QCD treatment of
the anomalous couplings for h → gg will have to be extended to higher loop orders for
more sensible predictions and hence potential constraints on new-physics signatures in
experimental data in future works.
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A. Input parameters
Throughout this work, we use the following numerical values as SM input parameters
[61]:

mh 125.25± 0.17 GeV

mt (OS) 172.69± 0.30 GeV

mb (MS at µb = mb) 4.18+0.03
−0.02 GeV

mb (OS) 4.78± 0.6 GeV

mc (MS at µc = mc) 1.27± 0.02 GeV

mc (OS) 1.67± 0.07 GeV

mτ (OS) 1.77686± 0.00012 GeV

mZ (OS) 91.1876± 0.0021 GeV

mW (OS) 80.377± 0.012 GeV

αs(mZ) 0.1179± 0.0009

GF 1.1663788 · 10−5 ± 6 · 10−12 GeV−2

α(0) (7.2973525693± 1.1 · 10−9) · 10−3

With gs = 2
√
παs, v = 1/

√√
2GF and e = 2

√
πα, we can alternatively use

gs(mZ) 1.217± 0.005

v 246.21964± 6 · 10−5 GeV

e(0) 0.302822120872± 2.3 · 10−11
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B. Spinor helicity formalism
When working with polarization vectors, we have often suppressed the actual polariza-
tion, which can take one of two values (±). One can deal with polarizations after squaring
the amplitude in terms of a polarization sum, e.g. (5.18). It is, however, advantageous
to consider fixed polarization amplitudes from the start. The spinor helicity formalism
then provides a useful tool helping to avoid lengthy expressions involving polarization
vectors. This section contains a summary of how the different notation schemes are
related to each other.
In the following, all external particles are assumed to be massless. In general, we apply
the conventions of [228] and the corresponding textbook (the metric tensor, however, is
chosen to be mostly minus; this causes actually some trouble and needs extra adjust-
ments, see also [8]). Good reviews with an emphasis on the cases we are interested in
can be found in [229–236]. The following table features the relevant physical quantities
within the respective notation schemes:

Vector notation Spinor helicity formalism

ū+(ki) = v̄−(ki) [i|

ū−(ki) = v̄+(ki) 〈i|

v+(ki) = u−(ki) |i]

v−(ki) = u+(ki) |i〉

εµ+(ki) = ε∗µ− (ki)
1√
2

[i|γµ|n〉
〈ni〉

εµ−(ki) = ε∗µ+ (ki) − 1√
2

〈i|γµ|n]
[ni]

As dealing with explicit polarizations using the spinor helicity formalism bypasses com-
plicated spin sums, when avoiding the latter, the dependence on the reference momentum
n 6= i (or kn 6= ki) for gauge bosons has to enter directly as indicated. In fact, a lot
of simplification usually happens already on the amplitude level upon choosing smart
combinations for the reference momenta, see for example (B.15) below.
Working with bra-kets is only powerful in combination with a bunch of identities. Some
of them are given here (kg, kh, ki, kj are assumed to be massless four-vectors):

/ki = |i〉[i|+ |i]〈i| (B.1)
〈ij] = [ij〉 = 0 (B.2)
〈ij〉 = −〈ji〉 (B.3)
[ij] = −[ji] (B.4)
〈ij〉∗ = [ji] (B.5)
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2ki · kj = 〈ij〉[ji] (B.6)
〈i|γµ|j〉 = [i|γµ|j] = 0 (B.7)
[i|γµ|j〉 = 〈j|γµ|i] (B.8)
[i|γµ|j〉∗ = [j|γµ|i〉 (B.9)
〈i| /kh|j] = 〈ih〉[hj] (B.10)
〈i|γµ|j]γµ = 2(|i〉[j|+ |j]〈i|) (B.11)
[i|γµ|j〉γµ = 2(|i]〈j|+ |j〉[i|) (B.12)
〈g|γµ|h]〈i|γµ|j] = 2〈gi〉[jh] (Fierz identity) (B.13)
〈ij〉〈gh〉+ 〈ig〉〈hj〉+ 〈ih〉〈jg〉 = 0 (Schouten identity) (B.14)

Let us carry out two examples. First, consider the polarization structure found in (5.16).
Choosing both helicities explicitly, we find

ε∗µ+(k1)ε
∗
ν+(k2)(k

ν
1k

µ
2 − k1 · k2g

µν) = εµ−(k1)εν−(k2)(k
ν
1k

µ
2 − k1 · k2g

µν) =

=
1

2

〈1|γµ|n]〈2|γν |m]

[n1][m2]
(kν1k

µ
2 − k1 · k2g

µν) =

(B.6)
=

1

2[n1][m2]

(
〈1| /k2|n]〈2| /k1|m]− 1

2
〈12〉[21]〈1|γµ|n]〈2|γµ|m]

)
=

(B.10),(B.13)
=

1

2[n1][m2]
(〈12〉[2n]〈21〉[1m]− 〈12〉[21]〈12〉[mn]) =

n=2,m=1−→ 1

2[21][12]
(0− 〈12〉[21]〈12〉[12]) = −1

2
〈12〉2 (B.15)

Second, for one specific case of the polarization structure found in (5.126), we obtain

ε∗µ+(k1)ū−(kq)
(
(m2

h − sqq̄)γµ − 2 /k1(k
µ
q + kµq̄ )

)
v+(kq̄) =

= εµ−(k1)ū−(kq)
(
(m2

h − sqq̄)γµ − 2 /k1(k
µ
q + kµq̄ )

)
v+(kq̄) =

= −〈1|γ
µ|n]√

2[n1]
〈q|
(
(m2

h − sqq̄)γµ − 2 /k1(k
µ
q + kµq̄ )

)
|q̄] =

= − 1√
2[n1]

(
(m2

h − sqq̄)〈1|γµ|n]〈q|γµ|q̄]− 2〈1|( /kq + /kq̄)|n]〈q| /k1|q̄]
)
=

(B.10),(B.13)
= − 1√

2[n1]

(
2(m2

h − sqq̄)〈1q〉[q̄n]− 2(〈1q〉[qn] + 〈1q̄〉[q̄n])〈q1〉[1q̄]
)
=

n=q+q̄−→ −
√
2

[q1] + [q̄1]

(
(〈1q〉[q1] + 〈1q̄〉[q̄1])〈1q〉[q̄q]− (〈1q〉[qq̄] + 〈1q̄〉[q̄q])〈q1〉[1q̄]

)
=

(B.6)
= −

√
2sqq̄〈1q〉2

〈qq̄〉
(B.16)

The following table summarizes some relevant equations (we include the respective ref-
erence vector as a second argument of the polarization vectors):
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Vector notation Spinor helicity formalism

ε∗+(ki, kn) · ε∗+(kj , km)
〈ij〉[mn]
[ni][mj]

ε∗−(ki, kn) · ε∗−(kj , km)
[ij]〈mn〉
〈ni〉〈mj〉

ε∗+(ki, kn) · ε∗−(kj , km) − [nj]〈mi〉
[ni]〈mj〉

ε∗+(ki, kn) · kj − 〈ij〉[jn]√
2[ni]

ε∗−(ki, kn) · kj
[ij]〈jn〉√
2〈ni〉

ε∗µ+(k1, kn)ε
∗
ν+(k2, km)(k

ν
1k

µ
2 − k1 · k2gµν)

〈12〉[2n]〈21〉[1m]−〈12〉[21]〈12〉[mn]
2[n1][m2]

ε∗µ−(k1, kn)ε
∗
ν−(k2, km)(k

ν
1k

µ
2 − k1 · k2gµν)

[12]〈2n〉[21]〈1m〉−[12]〈21〉[12]〈mn〉
2〈n1〉〈m2〉

ε∗µ+(k1, kn)ε
∗
ν−(k2, km)(k

ν
1k

µ
2 − k1 · k2gµν)

〈n2〉[21]〈21〉[1m]−〈12〉[21]〈n2〉[m1]
2〈n1〉[m2]

ε∗µ−(k1, kn)ε
∗
ν+(k2, km)(k

ν
1k

µ
2 − k1 · k2gµν)

[n2]〈21〉[21]〈1m〉−[12]〈21〉[n2]〈m1〉
2[n1]〈m2〉

ε∗µ+(k1, kn)ū−(kq)
(
(m2

h−sqq̄)γµ−2 /k1(k
µ
q+

kµq̄ )
)
v+(kq̄)

−
√
2

[n1]

(
(m2

h − sqq̄)〈1q〉[q̄n] − (〈1q〉[qn] +
〈1q̄〉[q̄n])〈q1〉[1q̄]

)
ε∗µ+(k1, kn)ū+(kq)

(
(m2

h−sqq̄)γµ−2 /k1(k
µ
q+

kµq̄ )
)
v−(kq̄)

−
√
2

[n1]

(
(m2

h − sq̄q)〈1q̄〉[qn] − (〈1q̄〉[q̄n] +
〈1q〉[qn])〈q̄1〉[1q]

)
ε∗µ−(k1, kn)ū−(kq)

(
(m2

h−sqq̄)γµ−2 /k1(k
µ
q+

kµq̄ )
)
v+(kq̄)

√
2

〈n1〉
(
(m2

h − sq̄q)[1q̄]〈qn〉 − ([1q̄]〈q̄n〉 +

[1q]〈qn〉)[q̄1]〈1q〉
)

ε∗µ−(k1, kn)ū+(kq)
(
(m2

h−sqq̄)γµ−2 /k1(k
µ
q+

kµq̄ )
)
v−(kq̄)

√
2

〈n1〉
(
(m2

h − sq̄q)[1q]〈q̄n〉 − ([1q]〈qn〉 +

[1q̄]〈q̄n〉)[q1]〈1q̄〉
)
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C. Feynman rules for the SM
A generic SM amplitude iM can be obtained by applying the set of Feynman rules we
list in this appendix [66, 237]. Only the Feynman rules that are explicitly used within
this work are shown. Our conventions are as follows. We denote external field points by
empty dots and interactions by black dots. Higgs, photon, gluon, fermion and W -boson
lines are symbolized by dashed lines, curvy lines, spring-like lines, straight lines with
arrows and edgy curvy lines with arrows, respectively. The usual spacetime indices read
µ, ν, etc. and ε, u (or v) denote the polarization vectors and particle (or anti-particle)
spinors. Fundamental and adjoint colours are given by ci and A, etc., and flavours by
fi. The rest of our notational conventions should be self-explaining.

≡ 1 (C.1)

p
A, µ

≡

{
εAµ (p) for incoming
ε∗Aµ (p) for outgoing

(C.2)

p
µ
≡

{
εµ(p) for incoming
ε∗µ(p) for outgoing

(C.3)

p ≡

{
u(p) for incoming
ū(p) for outgoing

(C.4)

p

≡

{
v̄(p) for incoming
v(p) for outgoing

(C.5)

k
≡ i

k2 −m2
(C.6)

k
A, µ B, ν ≡ −igµνδ

AB

k2
(Feynman gauge) (C.7)

kµ ν ≡
−i(m2

W gµν − kµkν)
m2
W (k2 −m2

W )
(unitary gauge) (C.8)
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kf1, c1 f2, c2 ≡ iδf1f2δc1c2
/k +m

k2 −m2
(C.9)

f2, c2

f1, c1

A,µ ≡− igsδf1f2TAc1c2γ
µ (C.10)

f2, c2

f1, c1

µ ≡− ieQf1/2δf1f2δc1c2γ
µ (C.11)

f2, c2

f1, c1

≡− i
yf1/2√

2
δf1f2δc1c2 (C.12)

µ

ν

≡ i
2
g2vgµν (C.13)
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k2

k3

k1

B, ν

C, λ

A, µ ≡− igsV ABC
µνλ (k1, k2, k3) = −gsfABC

(
gµν(k1 + k2)λ+

− gµλ(k1 + k3)ν + gνλ(k3 − k2)µ
)
(C.14)

k2

k3

k1

ν

λ

µ ≡ie
(
gµν(k1 + k2)λ − gµλ(k1 + k3)ν + gνλ(k3 − k2)µ

)

(C.15)

B, ν C, λ

A, µ D, σ

≡− ig2sWABCD
µνλσ = −ig2s

(
fABEfCDE(gµλgνσ − gµσgνλ)+

+ fACEfBDE(gµνgλσ − gµσgνλ)+

+ fADEfBCE(gµνgλσ − gµλgνσ)
)

(C.16)
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ν λ

µ σ

≡ = ie2(gσµgλν + gσνgλµ − 2gσλgµν) (C.17)

closed

loop
≡− 1 (C.18)
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D. Momentum integrals
Evaluating loop integrals requires a good deal of calculational machinery. This ap-
pendix highlights some equations related to integration techniques that we apply quite
frequently in this work.
One of the most relevant formulas for practical calculations in QFT is the d-dimensional
momentum integral

µ4−d
∫

ddk

(2π)d
k2a

(k2 −∆)b
= i(−1)a−b

(
µ2
)2− d

2

(4π)
d
2

Γ
(
a+ d

2

)
Γ
(
b− a− d

2

)
Γ(b)Γ

(
d
2

) ∆a−b+ d
2 (D.1)

which can be found in any QFT book [5–8]. The Gamma function fulfills the properties
[7]

Γ(n) = (n− 1)Γ(n− 1) (D.2)
Γ(n+ 1) = n! (D.3)

Γ

(
n+

1

2

)
=

√
π(2n)!

22nn!
(D.4)

Γ(−n+ x) =
(−1)n

n!

(
1

x
− γ +

n∑
k=1

1

k

)
+O(x) (D.5)

where the Euler-Mascheroni constant is defined via

γ = lim
n→∞

(
n∑
k=1

1

k
−
∫ n

1

dk

k

)
≈ 0.5772 (D.6)

Special cases of (D.5) are given by

Γ(−1 + x) = −1

x
+ γ − 1 +O(x) (D.7)

Γ(x) =
1

x
− γ +O(x) (D.8)

Γ(1 + x) = 1− xγ +O(x2) (D.9)

It is also worth noting that one can always replace the loop-momenta in the numerator
of (D.1) by the corresponding tensor structures via [5]

kµkν ←→ k2

d
gµν (D.10)

kµkνkαkβ ←→ k4

d(d+ 2)
(gµνgαβ + gµαgνβ + gµβgνα) (D.11)

kµkνkαkβkγkδ ←→ k6

d(d+ 2)(d+ 4)
(gµνgαβgγδ + gµαgνβgγδ + gµβgναgγδ+

+ gδνgαβgγµ + gδαgνβgγµ + gδβgναgγµ+
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+ gµδgαβgγν + gµαgδβgγν + gµβgδαgγν+

+ gµνgδβgγα + gµδgνβgγα + gµβgνδgγα+

+ gµνgαδgγβ + gµαgνδgγβ + gµδgναgγβ) (D.12)

For a = 0, 1, 2 in (D.1), we find

µ4−d
∫

ddk

(2π)d
1

(k2 −∆)b
= i(−1)b

(
µ2
)2− d

2

(4π)
d
2

Γ
(
b− d

2

)
Γ(b)

∆−b+ d
2 (D.13)

µ4−d
∫

ddk

(2π)d
kαkβ

(k2 −∆)b
= −i(−1)b

(
µ2
)2− d

2

(4π)
d
2

gαβ

2

Γ
(
b− 1− d

2

)
Γ(b)

∆1−b+ d
2 (D.14)

µ4−d
∫

ddk

(2π)d
kµkνkαkβ

(k2 −∆)b
= i(−1)b

(
µ2
)2− d

2

(4π)
d
2

gµνgαβ + gµαgνβ + gµβgνα

4

Γ
(
b− 2− d

2

)
Γ(b)

∆2−b+ d
2

(D.15)

An expansion around d = 4 is now straightforward. The following list of integrals is
valid for ∆ 6= 0 with d = 4− 2ε up to O(ε0):

µ2ε
∫

ddk

(2π)d
1

k2 −∆
=

i

16π2
∆

(
1

ε
+ ln

4π

eγ
+ ln

µ2

∆
+ 1

)
(D.16)

µ2ε
∫

ddk

(2π)d
1

(k2 −∆)2
=

i

16π2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

∆

)
(D.17)

µ2ε
∫

ddk

(2π)d
kαkβ

(k2 −∆)2
=

i

16π2
∆gαβ

2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

∆
+ 1

)
(D.18)

µ2ε
∫

ddk

(2π)d
1

(k2 −∆)3
= − i

16π2
1

2∆
(D.19)

µ2ε
∫

ddk

(2π)d
kαkβ

(k2 −∆)3
=

i

16π2
gαβ

4

(
1

ε
+ ln

4π

eγ
+ ln

µ2

∆

)
(D.20)

µ2ε
∫

ddk

(2π)d
1

(k2 −∆)4
=

i

16π2
1

6∆2
(D.21)

µ2ε
∫

ddk

(2π)d
kαkβ

(k2 −∆)4
= − i

16π2
gαβ

12∆
(D.22)

When dealing with infrared divergences, the finite expressions (D.19), (D.21) and (D.22)
will lead to divergent Feynman parameter integrals. It is therefore better to work with
general d 6= 4, i.e. (D.13)-(D.15) in these cases.
The class of momentum integrals with ∆ = 0 can be written as

µ4−d
∫

ddk

(2π)d
1

k2c
(D.23)
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for fixed c = b− a (in the notation of (D.1)) and is referred to as scaleless [238]. Substi-
tuting k = λk′ (which corresponds to a simple momentum rescaling by λ) yields

µ4−dλd−2c

∫
ddk′

(2π)d
1

k′2c
(D.24)

The two expressions (D.23) and (D.24) hold for arbitrary choices of d and λ and can
therefore only be equal if they are set to zero in dimensional regularization.
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E. Tensor integral reduction for triangle graphs with two
external gluons

As stated in the main text, tensor integral reduction methods are among the most com-
mon tools for computing loop corrections in a systematic manner [89–91]. For simple
cases like fermion triangle graphs with massless external gluons, it can be done by hand.
We have made use of the results presented in this appendix on several occasions in this
work.
In the following discussion, we consider a process with two external gluons associated
with a fermion triangle loop and evaluate the relevant one-loop tensor integrals by re-
ducing them to an appropriate basis of scalar integrals.
Throughout this section, we set the gluon momenta on-shell by imposing k21 = k22 = 0
and define the incoming Higgs-momentum by q = k1 + k2 with q2 = m2

h. The mass
of the loop particle is denoted by m and, for the sake of notation, we drop the −iη
parts associated with propagators. As usual, sending m2 to m2 − iη in the end restores
the correct prescription, which becomes important for figuring out the correct analytic
behavior of the explicit loop functions in the complex plane.
For simplicity, we focus on the diagram

k − k2

k

k + k1

(E.1)

where features other than the triangle loop were left implicit. Applying dimensional
regularization with d = 4− 2ε and dropping terms of O(ε) or higher, the relevant basic
scalar integrals are given by

A ≡µ2ε
∫

ddk

(2π)d
1

(k2 −m2)
= µ2ε

∫
ddk

(2π)d
1(

(k + k1)2 −m2
) =

=µ2ε
∫

ddk

(2π)d
1(

(k − k2)2 −m2
) =

i

16π2
m2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2
+ 1

)
(E.2)

B ≡µ2ε
∫

ddk

(2π)d
1

(k2 −m2)
(
(k + k1)2 −m2

) =

=µ2ε
∫

ddk

(2π)d
1

(k2 −m2)
(
(k − k2)2 −m2

) =

=
i

16π2

(
1

ε
+ ln

4π

eγ
+ ln

µ2

m2

)
=
d− 2

2m2
A (E.3)
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B̃ ≡µ2ε
∫

ddk

(2π)d
1

(k2 −m2)
(
(k + q)2 −m2

) =

=µ2ε
∫

ddk

(2π)d
1(

(k + k1)2 −m2
)(
(k − k2)2 −m2

) =

=B − i

16π2

∫ 1

0
dx ln

(
1− x(1− x) q

2

m2

)
(E.4)

C ≡µ2ε
∫

ddk

(2π)d
1

(k2 −m2)
(
(k + k1)2 −m2

)(
(k − k2)2 −m2

) =

=− i

16π2

∫ 1

0
dz

∫ 1−z

0
dy

1

m2 − yzq2
(E.5)

Feynman parameters have been introduced for C and the combinationB−B̃ which can be
recognized as being finite. Evaluating the parameter integrals and defining τ ≡ q2/4m2

yields

B − B̃ =
i

16π2

(
2

√
1

τ
− 1 arctan

(√
1

1
τ − 1

)
− 2

)
(E.6)

C =− i

16π2m2
h

Li2

 2

1 +
√
1− 1

τ

+ Li2

 2

1−
√
1− 1

τ

 =

=
i

32π2m2
h

ln2

(
1− 2τ

(
1−

√
1− 1

τ

))
(E.7)

where Li2(1− x) + Li2(1− 1/x) = −1
2 ln

2 x has been used.
We now have to distinguish between the cases 0 < τ < 1 and 1 ≤ τ <∞. It is now time
to reinsert the iη-terms as they provide clear prescriptions concerning the branch cuts
of the logarithms and square roots.
For 0 < τ < 1, we find

B − B̃ =
i

16π2

(
2

√
1

τ
− 1 arctan

(√
1

1
τ − 1

)
− 2

)
(E.8)

C =
i

32π2m2
h

ln2

(
1− 2τ

(
1−

√
1− 1

τ
+ iη

))
=

=
i

32π2m2
h

ln2

(
1− 2τ

(
1− i

√
1

τ
− 1

))
=
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=
i

32π2m2
h

ln2
((
i
√
τ +
√
1− τ

)2)
=

i

8π2m2
h

ln2
(
i
√
τ +
√
1− τ

)
=

=− i

8π2m2
h

(
1

i
ln
(
i
√
τ +
√
1− τ

))2

= − i

8π2m2
h

arcsin2
√
τ (E.9)

whereas for 1 ≤ τ <∞, we get

B − B̃ =
i

16π2

−i√1

τ
− 1 ln


√

1
τ − 1 + i√
1
τ − 1− i

− 2

 =

=
i

16π2

−i√1

τ
− 1− iη ln


√

1
τ − 1− iη + i√
1
τ − 1− iη − i

− 2

 =

=
i

16π2

−√1− 1

τ
ln


√
1− 1

τ − 1√
1− 1

τ + 1
+ iη

− 2

 =

=− i

16π2

√1− 1

τ

ln

1−
√
1− 1

τ

1 +
√
1− 1

τ

+ iπ

+ 2

 (E.10)

C =
i

32π2m2
h

ln2

1 +
√

1− 1
τ

1−
√

1− 1
τ

+ 2− 4τ

 =
i

32π2m2
h

ln2

−1−
√
1− 1

τ

1 +
√
1− 1

τ

 =

=
i

32π2m2
h

ln2

−1−
√
1− 1

τ

1 +
√
1− 1

τ

+ iη

 =
i

32π2m2
h

ln

1−
√
1− 1

τ

1 +
√
1− 1

τ

+ iπ

2

(E.11)

where we have employed the relations arcsin(x) = −i ln
(
ix+

√
1− x2

)
and arctan(x) =

(−i/2) ln
(
(1 + ix) / (1− ix)

)
. The scalar integrals A, B, B̃ and C are the building blocks

for the more elaborate tensor integrals. Their reduction to scalar integrals neglecting
terms of O(ε) and higher is a straightforward computation that consists of expanding
the tensor integral in terms of all allowed Lorentz structures with unknown coefficients
and projecting out one coefficient at a time. This leads to a set of algebraic equations
for the unknown coefficients in terms of tensor integrals of lower rank, which can be
inverted by hand. The following list provides the final results.

Bµ(0, 1) ≡µ2ε
∫

ddk

(2π)d
kµ

(k2 −m2)
(
(k + k1)

2 −m2
) = −1

2
kµ1B (E.12)
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Bµ(0, 2) ≡µ2ε
∫

ddk

(2π)d
kµ

(k2 −m2)
(
(k − k2)2 −m2

) =
1

2
kµ2B (E.13)

Bµ(0, 3) ≡µ2ε
∫

ddk

(2π)d
kµ

(k2 −m2)
(
(k + q)2 −m2

) = −1

2
(kµ1 + kµ2 ) B̃ (E.14)

Bµ(1, 2) ≡µ2ε
∫

ddk

(2π)d
kµ(

(k + k1)
2 −m2

)(
(k − k2)2 −m2

) = −1

2
(kµ1 − k

µ
2 ) B̃ (E.15)

Bµν(0, 1) ≡µ2ε
∫

ddk

(2π)d
kµkν

(k2 −m2)
(
(k + k1)

2 −m2
) =

=
1

d− 1
gµν

(
m2B +

1

2
A

)
+

1

3
kµ1k

ν
1B (E.16)

Bµν(0, 2) ≡µ2ε
∫

ddk

(2π)d
kµkν

(k2 −m2)
(
(k − k2)2 −m2

) =

=
1

d− 1
gµν

(
m2B +

1

2
A

)
+

1

3
kµ2k

ν
2B (E.17)

Bµν(0, 3) ≡µ2ε
∫

ddk

(2π)d
kµkν

(k2 −m2)
(
(k + q)2 −m2

) =

=
1

4(d− 1)(k1 · k2)

(
gµν
(
2k1 · k2(2m2 − k1 · k2)B̃ + 2k1 · k2A

)
+

+
(
kµ1k

ν
1 + kµ1k

ν
2 + kµ2k

ν
1 + kµ2k

ν
2

)(
(−2m2 + dk1 · k2)B̃ + (d− 2)A

))
(E.18)

Bµν(1, 2) ≡µ2ε
∫

ddk

(2π)d
kµkν(

(k + k1)
2 −m2

)(
(k − k2)2 −m2

) =

=
1

4(d− 1)(k1 · k2)

(
gµν
(
2k1 · k2(2m2 − k1 · k2)B̃ + 2k1 · k2A

)
+

+
(
kµ1k

ν
1 + kµ2k

ν
2

)(
(−2m2 + dk1 · k2)B̃ + (d− 2)A

)
+

+
(
kµ1k

ν
2 + kµ2k

ν
1

)(
(−2m2 − (d− 2)k1 · k2)B̃ + (d− 2)A

))
(E.19)

171



Cµ ≡µ2ε
∫

ddk

(2π)d
kµ

(k2 −m2)
(
(k + k1)2 −m2

)(
(k − k2)2 −m2

) =

=
1

2k1 · k2
(kµ1 − k

µ
2 )
(
B̃ −B

)
(E.20)

Cµν ≡µ2ε
∫

ddk

(2π)d
kµkν

(k2 −m2)
(
(k + k1)2 −m2

)(
(k − k2)2 −m2

) =

=
1

4k1 · k2
(kµ1k

ν
1 + kµ2k

ν
2 )
(
B − B̃

)
+

+
1

k1 · k2
(kµ1k

ν
2 + kµ2k

ν
1 )

(
d− 4

4(d− 2)
B̃ − m2

d− 2
C

)
+

+
1

d− 2
gµν

(
1

2
B̃ +m2C

)
(E.21)

Cµνλ ≡µ2ε
∫

ddk

(2π)d
kµkνkλ

(k2 −m2)
(
(k + k1)2 −m2

)(
(k − k2)2 −m2

) =

=
1

24(k1 · k2)2

(
(kµ1k

ν
1k

λ
1 − k

µ
2k

ν
2k

λ
2 )
(
−4k1 · k2B+

+
3

d− 1
(dk1 · k2 − 2m2)B̃ +

3(d− 2)

d− 1
A
)
+

+
(
kµ1k

ν
1k

λ
2 + kµ1k

ν
2k

λ
1 + kµ2k

ν
1k

λ
1 − k

µ
1k

ν
2k

λ
2 − k

µ
2k

ν
2k

λ
1 − k

µ
2k

ν
1k

λ
2

)(24m2

d− 2
B+

− 3

d− 1
(6m2 + (d− 4)k1 · k2)B̃ −

3(d+ 2)

d− 1
A
)
+

+
(
gµνkλ1 + gλνkµ1 + gµλkν1 − gµνkλ2 − gλνk

µ
2 − g

µλkν2

)(
−12m2

d− 2
k1 · k2B+

+
6

d− 1
(2m2 − k1 · k2)k1 · k2B̃ +

6

d− 1
k1 · k2A

))
(E.22)

The last expression Cµνλ differs from the actual result for arbitrary d = 4− 2ε by terms
of O(ε2). All other formulas are exact.
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F. Example calculation with γ5 in d 6= 4 dimensions
In Section 4, we encounter left- and right-handed projectors inside divergent loop in-
tegrals. As the former feature the strictly four-dimensional object γ5, we have to be
careful when applying dimensional regularization. For such calculations, gauge invari-
ance plays a crucial role for obtaining physically meaningful results. In this appendix,
we show a sample calculation which demonstrates how imposing the Ward identity leads
to unambiguous final results. For this, consider the integral

I ≡ I1 + I2 =

∫
d4k

(2π)4
Tr
(
(/k + /k1 +m)γµ(/k +m)γν(/k − /k2 +m)γλγ5

)
(k2 −m2)

(
(k + k1)2 −m2

)(
(k − k2)2 −m2

) +

+ (µ↔ ν, k1 ↔ k2) (F.1)

where I1 and I2 refer to the two distinct loop momentum directions within a triangle
diagram like in (E.1) involving two vector currents associated with the incoming mo-
menta k1 and k2 and one axial-vector current associated with the outgoing momentum
q = k1 + k2, respectively. The incoming external legs are considered as massless and
transversal, so k21 = k22 = 0 and q2 = 2k1 ·k2 and terms proportional to kµ1 and kν2 are ne-
glected. We also apply the formula gδλεµνασ = gδµελνασ−gδνεµλασ+gδαελµνσ−gδσελµνα
to eliminate terms proportional to kλ1 or kλ2 during the calculation. Symmetry arguments
reveal that I1 = I2. We now evaluate the diagram using two different methods, namely
a direct computation using Feynman parameters, as well as employing tensor integral
reduction methods.

Feynman parameters
Introducing Feynman parameters gives

I1 = 2

∫ 1

0
dz

∫ 1−z

0
dy

∫
d4k

(2π)4
N

(k2 −m2 + yzq2)3
(F.2)

where the numerator is given by

N =Tr
(
(/k + (1− y) /k1 + z /k2 +m)γµ(/k − y /k1 + z /k2 +m)·

· γν(/k − y /k1 − (1− z) /k2 +m)γλγ5
)
=

=− 4ikαkβ

(
−2ελνασk2σgµβ − 2ελµασk1σg

νβ+

+ ελµνσgαβ
(
(1− y)k1σ − (1− z)k2σ

)
+ 2ελµνα(zkβ2 − yk

β
1 )
)
+

− 4i
(
ελµνσ

(
(y − 1)k1σ − (z − 1)k2σ

)
(m2 + yzq2) + 2yz(ελνσδkµ2 − ε

λµσδkν1 )k1σk2δ

)
(F.3)

where we dropped terms proportional to O(k3) and O(k1). We now continue to d = 4−2ε
dimensions and use the formulas (D.19) and (D.20) with ∆ = m2 − yzq2. This gives

I1 =
1

4π2

∫ 1

0
dz

∫ 1−z

0
dy ελµνσ

(
(y − 1)k1σ − (z − 1)k2σ+
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−
(
(1− 3y)k1σ − (1− 3z)k2σ

)
ln

(
1− yz q

2

m2

))
+

+
1

4π2

∫ 1

0
dz

∫ 1−z

0
dy ελµνσ

yzq2 +m2

yzq2 −m2

(
(y − 1)k1σ − (z − 1)k2σ

)
+

+
2yz

m2 − yzq2
(ελµσδkν1 − ελνσδk

µ
2 )k1σk2δ (F.4)

where the first integral came from the O(k2)-term and the second one from the O(k0)-
term. All but the last line are nothing else than the boundary terms of I1 as can be seen
by direct computation: We define

Tr
(
(/k + /k1 +m)γµ(/k +m)γν(/k − /k2 +m)γλγ5

)
∼ Tr

(
/kγµ/kγν/kγλγ5

)
= −4igαβελµνγkαkβkγ ≡ fµνλ(k) (F.5)

where we have extracted the O(k3)-term. Shifting the loop momentum by a four-
momentum a results in∫

d4k

(2π)4
fµνλ(k + a) =

∫
d4k

(2π)4
fµνλ(k) + aδ

∫
d4k

(2π)4
∂

∂kδ
fµνλ(k) (F.6)

where the boundary term is given by

aδ
∫

d4k

(2π)4
∂

∂kδ
fµνλ(k) =iaδ lim

kE→∞

∫
k2EkEδdΩ4

(2π)4
fµνλ(kE) =

=aδ lim
kE→∞

∫
dΩ4

(2π)4
4gαβελµνγk2EkEδkEαkEβkEγ

k6E
=

=
ελµνσaσ
8π2

(F.7)

The boundary term can be adjusted such that the final result obeys the Ward identity.
Here, this is, however, not the case (see below). Numerically evaluating the parameter
integrals of the boundary terms suggests that∫ 1

0
dz

∫ 1−z

0
dy

(
(y − 1)− (1− 3y) ln

(
1− yz q

2

m2

)
+
yzq2 +m2

yzq2 −m2
(y − 1)

)
=

=

∫ 1

0
dz

∫ 1−z

0
dy

(
(z − 1)− (1− 3z) ln

(
1− yz q

2

m2

)
+
yzq2 +m2

yzq2 −m2
(z − 1)

)
=

=

∫ 1

0
dz

∫ 1−z

0
dy

yzq2

m2 − yzq2
(F.8)

Finally, we arrive at

I = 2I1 =
1

2π2

(
q2ελµνσ(k1σ − k2σ) + 2(ελµσδkν1 − ελνσδk

µ
2 )k1σk2δ

)∫ 1

0
dz

∫ 1−z

0
dy

yz

m2 − yzq2
(F.9)
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Multiplying with k1µ or k2ν yields 0 as it should, i.e. no boundary-term adjustment is
in fact needed. The Ward identity is thus fulfilled.
Let us now examine the anomaly. For m2 = 0, contracting (F.9) with qλ, we obtain

1

2π2
ελσµνk1λk2σ (F.10)

hinting towards the non-conservation of the axial current as expected.

Integral reduction
We write the integral as

I1 = µ2ε
∫

ddk

(2π)d
Ñ

(k2 −m2)
(
(k + k1)2 −m2

)(
(k − k2)2 −m2

) (F.11)

where

Ñ =Tr
(
(/k + /k1 +m)γµ(/k +m)γν(/k − /k2 +m)γλγ5

)
=

=− 4igαβελµνγkαkβkγ + 4i
(
2gνβελµασk1σ + 2gµβελνασk2σ − gαβελµνσ(k1σ − k2σ)

)
kαkβ+

+ 4i
(
gλνεµασδk1δk2σ − gλµενασδk1σk2δ + gµνελαδσk1δk2σ − kν1ελµασk2σ+

+ kα1 ε
λµνσk2σ + kα2 ε

λµνσk1σ + (m2 − k1 · k2)ελµνα
)
kα + 4im2ελµνσ(k1σ − k2σ)

(F.12)

Applying the d-dimensional reduction formulas from Appendix E yields

I1 =−
4i

q2
ελµνγ(k1γ − k2γ)

(
m2(B̃ −B)− q2

2
B̃

)
+

− 4iελµνσ(k1σ − k2σ)
(
d− 3

d− 2
B̃ +

d− 4

d− 2
m2C

)
+

+
4i

q2
(ελµασkν1 − ελνασk

µ
2 )k1σk2α

(
d− 4

d− 2
B̃ − 4

d− 2
m2C

)
+

+ 4i
m2

q2
ελµνα(k1α − k2α)(B̃ −B)+

+ 4im2ελµνσ(k1σ − k2σ)C (F.13)

where the first line comes from the O(k3)-term, the second and third line from the
O(k2)-term, the fourth line from the O(k1)-term and the last line to from O(k0)-term.
When the dust settles, we arrive at

I1 =

(
2iελµνσ(k1σ − k2σ)−

4i

q2
(ελµασkν1 − ελνασk

µ
2 )k1σk2α

)(
4

d− 2
m2C − d− 4

d− 2
B̃

)
(F.14)
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Note that

4

d− 2
m2C − d− 4

d− 2
B̃ = − i

8π2

∫ 1

0
dz

∫ 1−z

0
dy

yzq2

m2 − yzq2
(F.15)

This is the same result we obtained before, i.e. (F.9), hinting towards the consistency
of our approach.
We remark that it is also possible to not touch the divergent structure of the loop in-
tegral - and hence the subtile part - at all [6]. For instance, one can expand I in terms
of unknown structure functions using Lorentz invariance and identify the superficially
divergent ones (the first terms in (F.9)) by counting the power of external contracted
momenta. Their explicit form is then unambiguously dictated by the convergent struc-
ture functions (the second terms in (F.9)) upon imposing the Ward identity and Bose
statistics. This approach is, of course, related to a manual adjustment of the boundary
term ∼ ελµνσaσ by enforcing the Ward identity by hand. Strictly speaking, this is the
procedure of choice. In fact, all but the last line in (F.4) is initially - at best - question-
able and should hence be left open until the Ward identity fixes the final values. Here,
however, it turns out that these suspicious terms are already the correct ones.
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G. ”Real-world” example: 2HDM and SMEFT
The QED toy model highlighted in Section 3.1 can easily be generalized to a more
”realistic” situation in the context of the full SM. To be more specific, in this appendix,
we consider the 2HDM in the decoupling limit and integrate out all non-SM fields for
the process uū→ tt̄.
From the SM, the 2HDM differs by an extra SU(2) doublet adding four degrees of
freedom to the SM Higgs particle sector. However, it is advantageous to first consider
two independent doublets φ1 and φ2 and identify the SM doublet on the go. Allowing
both doublets to develop a vacuum expectation value, we can write them as

φa =

 ϕ+
a

1√
2
(va + ρa + iηa)

 ,where a = 1, 2 (G.1)

and define the vacuum expectation value as

〈φa〉 ≡

 0

va√
2

 (G.2)

A Lagrangian for the two doublets is then given by [239–243]

L2HDM = LSM,H̄Ȳ + (Dµφa)
†Dµφa − V (φ1, φ2) + LY (G.3)

where LSM,H̄Ȳ is the SM Lagrangian (2.11) without the Higgs and Yukawa sectors. We
will deal with the latter - denoted by LY - below and focus on the Higgs sector first.
The potential reads

V (φ1, φ2) =− µ21φ
†
1φ1 − µ

2
2φ

†
2φ2 −m

2(φ†1φ2 + φ†2φ1) + λ1(φ
†
1φ1)

2 + λ2(φ
†
2φ2)

2+

− λ3(φ†1φ1)(φ
†
2φ2)− λ4(φ

†
1φ2)(φ

†
2φ1)− λ5

(
(φ†1φ2)

2 + (φ†2φ1)
2
)

(G.4)

where we have imposed CP-invariance and dropped uneven terms like φ†1φ1φ
†
1φ2, etc.

for simplicity. The covariant derivative reads

Dµφa =

(
∂µ + igWα

µ τ
α +

i

2
g′Bµ

)
φa (G.5)

The electroweak symmetry-breaking sector works as in the SM. Indeed, from the kinetic
terms of the Higgs doublets, we find

(Dµ〈φa〉)†Dµ〈φa〉 =
1

2

(
0 va

)(
gWα

µ τ
α +

1

2
g′Bµ

)
(gWµJτJ +

1

2
g′Bµ)

 0

va

 =
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=
1

2

vava
4

(
g2(W 1

µ)
2 + g2(W 2

µ)
2 + (g′Bµ − gW 3

µ)
2
)
=

=
1

2

vava
4

(
2g2W+

µ W
µ− + (g2 + g′2)ZµZ

µ
)

(G.6)

with W±
µ = (W 1

µ ∓ iW 2
µ)/
√
2 and Zµ = (gW 3

µ − g′Bµ)/
√
g2 + g′2. The gauge boson

masses are therefore given by mW = gvava/2 and mZ =
√
g2 + g′2vava/2. They are

thus generated by an interplay between the vacuum expectation values of both doublets
making it impossible to identify one of them with the SM Higgs doublet. Instead, we
have to identify the propagating degrees of freedom first.
The vacuum expectation values v1 and v2 are, of course, linked to the Lagrangian pa-
rameters. The explicit relation is given by

µ21 =v
2
1λ1 −

1

2
v22λ3 −

1

2
v22λ4 − v22λ5 −

v2
v1
m2 (G.7)

µ22 =v
2
2λ2 −

1

2
v21λ3 −

1

2
v21λ4 − v21λ5 −

v1
v2
m2 (G.8)

and can be found by setting the linear terms in ρ1 and ρ2 to zero in the vicinity of the
minimum of the potential67. The mass terms are obtained by keeping only the quadratic
terms. We find

Lmass = −
(
ϕ−
1 ϕ−

2

)
M1

ϕ+
1

ϕ+
2

− 1

2

(
ρ1 ρ2

)
M2

ρ1
ρ2

− 1

2

(
η1 η2

)
M3

η1
η2


where

M1 =

 v21λ1 − 1
2v

2
2λ3 − µ21 −

(
m2 + 1

2v1v2λ4 + v1v2λ5
)

−
(
m2 + 1

2v1v2λ4 + v1v2λ5
)

v22λ2 − 1
2v

2
1λ3 − µ22



M2 =

 3v21λ1 − 1
2v

2
2λ3 − 1

2v
2
2λ4 − v22λ5 − µ21 −

(
m2 + v1v2λ3 + v1v2λ4 + 2v1v2λ5

)
−
(
m2 + v1v2λ3 + v1v2λ4 + 2v1v2λ5

)
3v22λ2 − 1

2v
2
1λ3 − 1

2v
2
1λ4 − v21λ5 − µ22



67The linear terms are given by

φ†
1φ1 ⊃ v1ρ1, φ†

2φ2 ⊃ v2ρ2, φ†
1φ2 + φ†

2φ1 ⊃ v1ρ2 + v2ρ1, (φ†
1φ1)

2 ⊃ v31ρ1,

(φ†
2φ2)

2 ⊃ v32ρ2, (φ†
1φ1)(φ

†
2φ2) ⊃

1

2
v1v

2
2ρ1 +

1

2
v21v2ρ2,

(φ†
1φ2)(φ

†
2φ1) ⊃

1

2
v1v

2
2ρ1 +

1

2
v21v2ρ2, (φ†

1φ2)
2 + (φ†

2φ1)
2 ⊃ v1v

2
2ρ1 + v21v2ρ2 (G.9)
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M3 =

v21λ1 − 1
2v

2
2λ3 − 1

2v
2
2λ4 + v22λ5 − µ21 −

(
m2 + 2v1v2λ5

)
−
(
m2 + 2v1v2λ5

)
v22λ2 − 1

2v
2
1λ3 − 1

2v
2
1λ4 + v21λ5 − µ22


(G.10)

Eliminating µ1 and µ2 with (G.7) and (G.8), these matrices can be cast in the form

M1 =

(
m2 +

1

2
v1v2λ4 + v1v2λ5

) v2
v1
−1

−1 v1
v2



M2 =v1v2

 2v1v2λ1 +
m2

v21
−
(
m2

v1v2
+ λ3 + λ4 + 2λ5

)
−
(
m2

v1v2
+ λ3 + λ4 + 2λ5

)
2v2v1λ2 +

m2

v22



M3 =(m2 + 2v1v2λ5)

 v2
v1
−1

−1 v1
v2

 (G.11)

Upon defining v2 ≡ v21 + v22 and λ ≡ λ3 + λ4 + 2λ5, we can find compact expressions for
the rotated fields and their corresponding masses. The results are then given by

Lmass =−
(
ϕ̃−
1 ϕ̃−

2

)M2
±1 0

0 M2
±2


ϕ̃+

1

ϕ̃+
2

− 1

2

(
ρ̃1 ρ̃2

)M2
ρ1 0

0 M2
ρ2


ρ̃1
ρ̃2

+

− 1

2

(
η̃1 η̃2

)M2
η1 0

0 M2
η2


η̃1
η̃2

 (G.12)

where ϕ̃+
1

ϕ̃+
2

 =

 cosβ sinβ

− sinβ cosβ


ϕ+

1

ϕ+
2


ρ̃1
ρ̃2

 =

 cosα sinα

− sinα cosα


ρ1
ρ2


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η̃1
η̃2

 =

 cosβ sinβ

− sinβ cosβ


η1
η2


with

sin2 β =
v22
v2

cos2 β =
v21
v2

sin2 α =
m2M2

ρ2v
2
2 −m2M2

ρ1v
2
1 + 2λ1M

2
ρ2v

3
1v2 − 2λ2M

2
ρ1v1v

3
2

v1v2(M4
ρ2 −M4

ρ1)

cos2 α =
m2M2

ρ2v
2
1 −m2M2

ρ1v
2
2 + 2λ2M

2
ρ2v1v

3
2 − 2λ1M

2
ρ1v

3
1v2

v1v2(M4
ρ2 −M4

ρ1)
(G.13)

The masses are given by68

M2
±1 = 0, M2

±2 =
v2

v1v2
(m2 +

1

2
v1v2λ4 + v1v2λ5) =M2

η2 +
v2

2
(λ4 − 2λ5)

M2
η1 = 0, M2

η2 =
v2

v1v2
(m2 + 2v1v2λ5)

M2
ρ1,2 =

m2v21
2v1v2

+
m2v2 + 2λ1v

3
1 + 2λ2v1v

2
2

2v1
+

±

√(
m2(v21 + v22) + 2v1v2(λ1v21 + λ2v22)

)2 − 8m2
(
λ1v51v2 − λv31v32 + λ2v1v52

)
+ ι

2v1v2
(G.15)

where ι ≡ 4v41v
4
2

(
λ2 − 4λ1λ2

)
. The link to the SM Higgs doublet can be established by

rotating H1

H2

 =

 cosβ sinβ

− sinβ cosβ


φ1
φ2

 (G.16)

68For m2 = 0, these formulas reduce to the particularly simple form

M2
±1 = 0, M2

±2 =
1

2
v2(λ4 + 2λ5),

M2
η1 = 0, M2

η2 = 2v2λ5,

M2
ρ1,2 = v21λ1 + v22λ2 ±

√
(v21λ1 − v22λ2)2 + v21v

2
2λ

2 (G.14)
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Note that this will change the potential in a non-trivial way. The new doublets are given
by

Ha =

 ϕ̃+
a

1√
2
(Va + hρa + iη̃a)

 (G.17)

withh
ρ
1

hρ2

 =

 cosβ sinβ

− sinβ cosβ


ρ1
ρ2

 =

cos(α− β) − sin(α− β)

sin(α− β) cos(α− β)


ρ̃1
ρ̃2

 (G.18)

and V1 = v and V2 = 0. All effects related to electroweak symmetry breaking are
therefore incorporated in H1. We can go to unitary gauge by imposing

H1 =

 0

1√
2
(V1 + hρ1)

 , H2 =

 ϕ̃+
2

1√
2
(hρ2 + iη̃2)

 (G.19)

It is now possible to interpret H1 as the SM Higgs doublet, which is, inconveniently, not a
physical object (hρ1 is not a propagating degree of freedom). In the limit sin(α− β)→ −1
and cos(α− β) → 0, however, this situation changes as hρ1 → ρ̃2 and hρ2 → ρ̃1. The
heavier scalar ρ1 then decouples from the electroweak gauge bosons and we expect the
possibility of choosing the Lagrangian parameters such that

m2
h ≡M2

ρ2 �M2
±2,M

2
ρ1,M

2
η2 ≡ m2

s (G.20)

where we assumed no hierarchy pattern between the heavy states by formally introduc-
ing the mass scale ms.
Before integrating out the heavy states, we have to specify the Yukawa couplings. As-
suming only the top-quark to be massive, out of many possibilities to combine the quarks
and the doublets, let us choose

LY = −Y ′
t q̄Lφ̃2tR + h.c. (G.21)

for our analysis (qL and tR are the third generation left-handed quark doublet and right-
handed top-quark, respectively). The SM Yukawa coupling yt =

√
2mt/v is related to

Y ′
t via yt = Y ′

t cosβ, since φ2 = H1 cosβ+ ... . As usual, we have employed the notation
φ̃2 = iσ2φ

∗
2 to project out the top-quark component of q̄L in a symmetry-preserving way.

Collecting all non-Yukawa scalar interactions in an object LH,int, the full Lagrangian is
then given by

L2HDM = LSM + LH,int −H†
2�H2 −m2

sH
†
2H2 − yt cotβq̄LH̃2tR + h.c. (G.22)
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Let us first integrate out the heavy fields at tree level. The equations of motion are given
by

(�+m2
s)H

j
2 = −yt cotβq̄iLεijtR (G.23)

(�+m2
s)H

†j
2 = yt cotβt̄Rε

jiqiL (G.24)

Reinserting these expressions into the Lagrangian and using εijεjk = −δik, we arrive at
the effective Lagrangian

Leff,tree =
y2t cot

2 β

m2
s

t̄Rq
i
Lq̄

i
LtR =

m2
t cot

2 β

v2m2
s

(
1

2
t̄tt̄t+

1

2
t̄iγ5tt̄iγ5t+ 2t̄PLbb̄PRt

)
(G.25)

where the SU(2) indices have been made explicit in the first step. Tree-level matching
thus generates four-fermion operators only.
Our next task is the full one-loop computation for uū → tt̄. We first massage the
Lagrangian in a suitable form. Writing out all relevant kinetic and interaction terms,
we find

Lrel =
1

2
∂µρ̃1∂

µρ̃1 −
1

2
m2
sρ̃

2
1 +

1

2
∂µη̃2∂

µη̃2 −
1

2
m2
s η̃

2
2 + ∂µϕ̃

+
2 ∂

µϕ̃−
2 −m

2
sϕ̃

+
2 ϕ̃

−
2 + (G.26)

− mt

v
cotβt̄tρ̃1 +

mt

v
cotβt̄iγ5tη̃2 +

√
2

v
mt cotβt̄PLbϕ̃

+
2 +

√
2

v
mt cotβb̄PRtϕ̃

−
2 (G.27)

The computation of the vertex correction is lengthy but in principle only marginally
different from the one highlighted in the appendix to Section 3. To O(1/m2

s), employing
the usual notation, it is given by69

ϕ̃±
2 ,η̃2,ρ̃1 ≡ −igsT

AδΓµ = −igsTA
m2
t cot

2 β

16π2v2m2
s

(
mtiσ

µνqν+

+
2

3

(
1

3
− ln

q2

m2
s

+ iπ

)(
q2γµPR −mtq

µγ5
)
− 2

(
1

3
ln
m2
t

m2
s

+
4

9
+ h1(z)

)
q2γµ

)
(G.28)

where h1(z) was defined in (3.10) with z = q2/m2
t and the imaginary part arises due to

the vanishing bottom mass. Being a gauge relict, the term ∼ qµ may be dropped, as
it is annihilated when contracted with the up-quark current on the left (not displayed).
The corresponding loop-level Lagrangian reads

Leff,loop =−
gsm

2
t cot

2 β

16π2v2m2
s

2

3

(
ln
µ2

m2
s

+
4

3

)(
DµGAµν t̄RT

AγνtR +DµGAµν t̄T
Aγνt

)
+

69We have evaluated this diagram both by direct computation and by applying the strategy of regions.
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− gsm
2
t cot

2 β

16π2v2m2
s

1

2
mtG

A
µν t̄T

Aσµνt (G.29)

Using (G.25) and (G.29) for loop- and tree-topology-diagrams, respectively, yields

= i
g2s
q2
v̄(k2)T

Aγµu(k1)·

· ū(p1)TA
m2
t cot

2 β

16π2v2m2
s

(
2

3

(
5

3
− ln

q2

µ2
+ iπ

)
q2γµPR −

2

3

(
ln
m2
t

µ2
+ 3h1(z)

)
q2γµ

)
v(p2)

(G.30)

and

= i
gs
q2
v̄(k2)T

Aγµu(k1)·

· ū(p1)TA
gsm

2
t cot

2 β

16π2v2m2
s

(
−2

3

(
ln
µ2

m2
s

+
4

3

)(
q2γµPR + q2γµ

)
+mtiσ

µνqν

)
v(p2) (G.31)

Combining (G.31) and (G.30) restores the full result (G.28). When comparing to the
Warsaw basis, as we will do next, we have to reinterpret terms ∼ q2γµ in favor of
four-fermion operators. Instead of (G.31), we should therefore use

= i
gs
q2
v̄(k2)T

Aγµu(k1)ū(p1)T
A gsm

2
t cot

2 β

16π2v2m2
s

mtiσ
µνqνv(p2)

(G.32)
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and

= −iv̄(k2)TAγµu(k1)ū(p1)TA
g2sm

2
t cot

2 β

16π2v2m2
s

·

· 2
3

(
ln
µ2

m2
s

+
4

3

)
(γµPR + γµ) v(p2) (G.33)

This can be justified by converting the corresponding field strength operators into four-
fermion ones via the equation of motion for the gluon field

DνGAνµ = gs(q̄L,1γµT
AqL,1 + q̄L,3γµT

AqL,3 + ūRγµT
AuR+

+ t̄RγµT
AtR + d̄RγµT

AdR + b̄RγµT
AbR)
(G.34)

where we have introduced generation indices on the left-handed quark fields (we neglect
the second particle generation here); the rest of the notation should be self-explaining. In
addition, one can use Fierz identities70 and related tricks to match the operator structure
we found to the Warsaw basis. Without showing the calculational details, we arrive at

t̄Rq
i
Lq̄

i
LtR = −

(
Q(8)3333
qu +

1

6
Q(1)3333
qu

)
(G.36)

DµGAµν t̄RT
AγνtR = gs

(
Q(8)1133
qu +

1

4
Q1331
uu +

1

4
Q3113
uu −

1

12
Q1133
uu −

1

12
Q3311
uu

)
(G.37)

DµGAµν t̄T
Aγνt = gs

(
Q(8)3311
qu +Q(8)1133

qu +
1

4
Q1331
uu +

1

4
Q3113
uu −

1

12
Q1133
uu −

1

12
Q3311
uu +

+
1

8
Q(1)1331
qq +

1

8
Q(1)3113
qq +

1

8
Q(3)1331
qq +

1

8
Q(3)3113
qq − 1

12
Q(1)1133
qq − 1

12
Q(1)3311
qq

)
(G.38)

mtG
A
µν t̄T

Aσµνt =

√
2mt

v

(
Q33
uG +Q∗33

uG

)
(G.39)

We have only included four-fermion operators that contribute to the process at hand
and symmetrized the generation index as far as possible. These formulas provide the

70For example, in colour space we have

δαβδγδ t̄αRq
i,β
L q̄i,γL tδR = −1

2
δαβδγδ q̄i,γL γµqi,βL t̄αRγµt

δ
R = −C(8)3333

qu − 1

6
C(1)3333
qu (G.35)

where the SU(3) relation 2TA,αβTA,γδ = δαδδγβ − δαβδγδ/3 has been used.
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building blocks for a proper matching to SMEFT. The Wilson coefficients are then given
by

C(8)3333
qu = 6C(1)3333

qu = −2m2
t cot

2 β

v2
(G.40)

2C1331
uu = 2C3113

uu = −6C1133
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2
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qq = −12C(1)1133
qq = −12C(1)3311

qq = 8C(1)1331
qq = 8C(1)3113

qq
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2
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16π2v2

(
2

3
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8

9

)
(G.41)

C33
uG = C∗33

uG = −gsm
3
t cot

2 β

16π2v3
1√
2

(G.42)

If we had instead proceeded in a bottom-up approach using the Warsaw basis, we would
have again included the diagrams (G.30), (G.32) and (G.33) - denote their contributions
by δΓµ1 , δΓµ2 and δΓµ3 , respectively, this time with unknown coefficients and cut-off scale
Λ, and would have found71
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(G.43)

for the closed fermion loop,

δΓµ2 = −
√
2v

gsΛ2
iσµνqν

(
C∗33
uG PL + C33

uGPR
)

(G.44)

for the chromomagnetic tree-level contribution, and finally the plain four-fermion vertex

ig2s v̄(k2)T
Aγµu(k1)ū(p1)T

AδΓµ3v(p2) ≡

≡ i

Λ2

(
2
(
C(1)1133
qq + C(3)1133

qq

)
v̄(k2)γµPLu(k1)ū(p1)γ

µPLv(p2)+

−2
(
C(1)1331
qq + C(3)1331

qq

)
v̄(k2)γµPLv(p2)ū(p1)γ

µPLu(k1)+

+2C(1)1133
uu v̄(k2)γµPRu(k1)ū(p1)γ

µPRv(p2)+

71For simplicity, we assume the new physics to couple only to the third particle generation. This,
however, does not affect δΓµ3 .
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−C(8)1331
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(G.45)

For a proper comparison, the last expression has to be converted to the form of (G.33)
using Fierz identities72. Comparing to (G.40)-(G.42) with the identification Λ ↔ ms

reveals that most of the four-fermion operators in δΓµ1 are in fact not generated in this
model. The loop contribution is, however, important in order to fulfill the SMEFT
renormalization group equations [104–107] for δΓµ2 .
Our analysis in this appendix demonstrates how the basic ideas of the toy model from
Section 3 can be taken over to the full SM. While the 2HDM is, at the end of the
day, an arbitrary choice of UV physics, its implications for the hierarchy of operator
structures in SMEFT are actually quite universal. Indeed, there exists no mechanism
that could enhance the expected numerical values for the Wilson coefficients of field-
strength operators, as long as the (renormalizable) UV theory is considered weakly
coupled, which is in fact the basic assumption SMEFT relies on.

72In particular, we use v̄(k2)γµPLv(p2)ū(p1)γµPLu(k1) together with the appropriate manipulations in
colour space.
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