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Zusammenfassung

In dieser Arbeit verwenden wir eine Reihe von hochauflösenden kosmologischen N–body
Simulationen, um die Bildung und Entwicklung von hochgradig nichtlinearen Objekten in
unserem Universum zu untersuchen.

In Kapitel 2 beschäftigen wir uns mit der Systematik von Subhalo Populationen Dunk-
ler Materie, deren Evolution wir hier zum ersten mal veranschaulichen können: ein be-
trächtlicher Teil der Masse der meisten Halos kam erst bei einer relativ niedrigen Rotver-
schiebung dazu, und dieser Massenzuwachs erfolgt in klumpiger Form mit einer Halomas-
senverteilung ähnlich jener des gesamten Universums. Da Tidal Stripping die Masse der
Subhalos rasch reduziert, wird die Population bei jeder gegebenen Masse von Objekten
dominiert, die erst kürzlich in den Halo gestürzt sind und die daher Vorgänger geringerer
Masse (und somit höherer Häufigkeit) hatten. Die Umlaufbahnen erst kürzlich dazugekom-
mener Halos verbringen die meiste Zeit im äußeren Halo, sodaß Subhalos einer gegebenen
Masse deutlich weniger im Zentrum konzentriert sind, als die Gesamtheit der Dunklen
Materie. Subhalos, die in der Nähe des Zentrums beobachtet werden, haben kürzere Um-
laufperioden und müssen daher schon früher hineingestürzt sein. Sie behalten somit nur
einen relativ kleinen Anteil ihrer ursprünglichen Masse. Unsere Ergebnisse weisen darauf
hin, daß jeglicher Vergleich mit Galaxien in realen Galaxienhaufen nur möglich ist, wenn
die Bildung der sichtbaren, Licht abstrahlenden Komponente geeignet modelliert wird.

In Kapitel 3 erweitern wir die Arbeit aus Kapitel 2 dahingehend, daß wir den Zusam-
menhang zwischen der Subhalo- und der Galaxienpopulation untersuchen, indem wir zehn
hochauflösende Resimulationen von Dunklen Halos der Größe eines Galaxienhaufens mit
semi-analytischen Galaxienbildungsmodellen kombinieren. Im Besonderen vergleichen wir
Anzahldichten und Geschwindigkeitsprofile von Haufengalaxien mit denen von Subhalos.
Während die Radialverteilung von Galaxien jener der Dunklen Materie folgt, ist die Vertei-
lung der Subhalos viel weniger zum Zentrum hin konzentriert. Wir beobachten, daß es eine
komplexe und stark ortsabhängige Beziehung gibt zwischen den Galaxien und den Subha-
los in denen sie sich befinden. Diese Beziehung kann nur durch eine adäquate physikalische
Behandlung des Galaxienbildungsprozesses korrekt modelliert werden.

In Kapitel 4 untersuchen wir den Aufbau der Dichtekonzentration im Zentrum von
ΛCDM Halos. Die primäre Schlußfolgerung ist, daß die inneren Kerne von Galaxien durch
mehrfache Verschmelzungen zu einem universellen Dichteprofil ihrer kollisionsfreien Mi-
schung aus Sternen und Dunkler Materie tendieren. Unser Ergebnis könnten auch helfen,
einige der scheinbaren Schwierigkeiten mit dem CDM Model der Strukturbildung zu lin-
dern. Erstens könnte es im Prinzip das beobachtete Fehlen einer Spitze der Verteilung der
Dunklen Materie im Zentrum von nahen Galaxien und Galaxienhaufen erklären. Zweitens
würde es eine Übereinstimmung von mitbewegter Anzahldichte der massereichen Halos als
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Funktion der Geschwindigkeitsdispersion mit SDSS Beobachtungen der Galaxienanzahl als
Funktion der stellaren Geschwindigkeitsdispersion zulassen.

Im letzten Kapitel haben wir eine Reihe von N–body Resimulationen einzelner Halos
bei verschiedenen Rotverschiebungen in einem kosmologischen Volumen (0.68Gpc)3 durch-
geführt, mit dem Ziel, die ersten gebundenen Objekte aufzulösen, in denen die ersten Sterne
in einem von kalter Dunkler Materie dominierten Universum geboren worden sein könnten.
Unsere Simulationen haben erfolgreich seltene aber relativ massereiche Halos aufgelöst,
wobei ein sehr weiter Rotverschiebungsbereich [z = 80, z = 0] mit ultrahoher Auflösung
abgedeckt wurde. Die höchste davon in unserer letzten Stufe mit einer Teilchenmasse von
0.8M¯. Unsere ersten Resultate zeigen, daß die anfängliche Strukturbildung extrem stark
zu überdichten Regionen hin beeinflußt war, und diese Bias Relation kann von der er-
weiterten Press-Schechter Theorie reproduziert werden. Die interne Struktur dieser frühen
Halos ist jener ihrer Gegenstücke bei niedriger Rotverschiebung sehr ähnlich, allerdings ist
der Fit mit einem NFW Profil weniger gut. Die Halomassenfunktion wurde bei den Rot-
verschiebungen z ∼ 50 und z ∼ 30 untersucht. Wir finden eine exzellente Übereinstimmung
zwischen Vorhersage und Simulation. Da unser Simulationsvolumen keine kleine periodische
Box ist, sind wir in der Lage, bei jeder gegebenen Rotverschiebung seltenere und masse-
reichere Halos zu simulieren, als vorhergehende Arbeiten. Wir beobachten, daß effektives
radiatives Kühlen von atomarem Wasserstoff in Halos unserer Simulation schon bei z = 32
stattfinden kann. Die Häufigkeit solcher Halos würde laut Vorhersage heute in mitbewegten
Einheiten jener von Halos der Masse 1014 h−1M¯ entsprechen. Fall sich die ersten Sterne
in einem Halo der Masse 106M¯ gebildet haben sollten, könnte eine große Anzahl Sterne
schon bei z ∼ 45 geboren worden sein, mit einer mitbewegten Häufigkeit vergleichbar jener
von M∗ Halos heute.
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Summary

In this thesis, we use a variety of high resolution cosmological N–body simulations to study
the formation and evolution of highly non–linear objects in our universe.

In Chapter 2, we study the systematics of dark matter subhalo populations. For the
first time, we give a picture for the evolution of subhalo populations: a substantial fraction
of the mass of most haloes has been added at relatively recent redshifts, and this mass is
accreted in clumpy form with a halo mass distribution similar to that of the Universe as
a whole. Since tidal stripping rapidly reduces the mass of subhaloes, the population at
any given mass is dominated by objects which fell in recently and so had lower mass (and
thus more abundant) progenitors. The orbits of recently accreted objects spend most of
their time in the outer halo, so that subhaloes of given mass are substantially less centrally
concentrated than the dark matter as a whole. Subhaloes which are seen near halo centre
have shorter period orbits and so must have fallen in earlier. They thus retain a relatively
small fraction of their initial mass. Our results suggest that any comparison with galaxies
in real clusters is only possible if the formation of the luminous component is modelled
appropriately.

Extending the work of Chapter 2, in Chapter 3 we study the relationship between the
subhalo and the galaxy population by combining 10 high resolution resimulations of cluster–
sized dark haloes with semi–analytic galaxy formation modelling. In particular, we compare
the number density and velocity profiles of cluster galaxies and those of subhaloes. While
the radial distribution of galaxies follows closely that of the dark matter, the distribution
of dark matter subhaloes is much less centrally concentrated. We find there is a complex
and strongly position–dependent relation between galaxies and the subhaloes in which they
reside. This relation can be properly modelled only by appropriate physical representation
of the galaxy formation process.

In Chapter 4, we study the assembly of the central cusps of ΛCDM haloes. The primary
conclusion is that the inner cores of galaxies tend to a universal density profile for their
collisionless mixture of stars and dark matter through multiple mergers. Our result may
alleviate some apparent challenges to the CDM model for structure formation. Firstly,
it could in principle explain the observed absence of a cusp in the central dark matter
distribution of nearby galaxies and galaxy clusters. Secondly, it would allow consistency
of the comoving number density of massive haloes as a function of velocity dispersion with
SDSS observations of the counts of galaxies as a function of stellar velocity dispersion.

In the final Chapter, we have carried out a sequence of N–body resimulations of indi-
vidual haloes at various redshifts within a cosmological volume (0.68Gpc)3 with the aim of
resolving the first bound objects which could potentially host the first stars in a cold dark
matter dominated universe. Our simulations succeed in resolving rare but relatively mas-
sive haloes spanning a very broad redshift range[z = 80, z = 0] with ultra-high resolution.
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Summary

The highest resolution achieved in our final level simulation has a particle mass of 0.8M¯

and a force softening of ε = 7.8pc in comoving units. Our results indicate that initial
structure formation was extremely strongly biased to overdense regions, and that this can
be well understood within the framework of extended Press-Schechter(EPS) theory. The
internal structure of these early haloes are quite similar to their low redshift counterparts,
although the NFW profile does not fit as well. The halo mass function is examined at
redshift z = 50 and z = 30. We find an excellent agreement between the predictions and
the simulations. Because our simulation volume is not a small periodic box we are able
to simulate rarer and more massive halos at any given redshift than previous work. We
find that bound–free cooling from atomic hydrogen can take place in haloes as early as
z = 32 and that the comoving abundance of these halos is predicted to be the same as for
1014h−1M¯ halos today. If the first stars did form in haloes with mass ∼ 106M¯, a large
number would be born already at z ∼ 45 with a comoving abundance matching that of
haloes with mass M∗ today.
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1 Thesis objectives and framework

Abstract
In this chapter we provide the relevant background for this thesis. The scientific
objective for each project is presented in the last section.

1.1 Motivation

I have to admit I knew nothing about scientific Astronomy before I decided to pursue a
PhD in Astrophysics. However something in my deep heart lured me. I had dreamt of
being a theoretical cosmologist when I was in high school, where I constructed a model for
our cosmology during a biological course. After some training in Physics I realized that my
model was more philosophical than scientific and thus could never be proved or falsified.
Thus I was happy when the opportunity arose to study scientific Cosmology.

In the current standard cosmological model, around 90 per cent of the matter content
of our universe today is composed of dark matter, which we cannot detect directly. Nev-
ertheless, there is firm dynamical evidence for its existence in galaxy halos, and even more
direct evidence has now been added by the phenomenon of gravitational lensing which has
now been detected around galaxies, and in the general mass field. This dark matter is
believed to interact with other matter only by gravity. Without dark matter, the current
structure of our Universe could not form. In the last twenty years progress in the both
theoretical and observational Astronomy has lead to a “concordance” cosmological model
of a flat ΛCDM universe. However there has been a growing controversy on the small
scales where nonlinear dynamics and complex baryonic process dominate. My research in
the past three yeas has mainly concentrated on investigation of such small scale and highly
nonlinear objects. In what follows I give the most relevant theoretical background for the
research presented in this thesis.

1.2 The standard Cosmology

The current standard cosmological model is based on the assumption that our universe is
homogeneous and isotropic on large scales (roughly > 100Mpc). The space–time for such
universe can be described by the Robertson–Walker Metric:

ds2 = (cdt)2 − a(t)2[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)] . (1.1)

Here c denotes the speed of light, (r, θ,φ) are the comoving spherical polar coordinate
system, t denotes the proper time, a(t) is expansion factor (often defined as unity today
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1 Thesis objectives and framework

by convention), and the curvature parameter K is a constant which can be scaled in such
a way so that it only take the values 1, 0 or −1.

The assumption of the Robertson–Walker Metric results in enormous simplifications of
Einstein’s field equations

ä = −4πG

3
a(ρ+

3p

c2
) + [

1

3
Λac2] , (1.2)

ȧ2 =
8πGρ

3
a2 − kc2

a2
+ [

1

3
Λa2c2] . (1.3)

Here Λ is the cosmological constant which represents the vacuum energy. Simplifying
equation(1.3) can be written as

H(a)2 = (
ȧ

a
)2 =

8πG

3
ρ+

Λ

3
− k

a2
(1.4)

and is usually referred to Friedman’s equation. It indicates that the expansion of Universe is
actually driven by a matter term, a cosmological constant term and a curvature term. H(a)
is the hubble parameter, which is time dependent and has a value H0 = 72± 8 km/s/Mpc
(Freedman et al. 2001) at present. By convention, H0 is usually parameterized as H0 =
100hkms−1Mpc−1, where h is a dimensionless factor.

The matter content of the universe is usually expressed in terms of the critical density

ρc =
3H(a)2

8πG
, (1.5)

which allows the definition of three useful cosmological parameters:

ΩM =
ρ

ρc
, ΩΛ =

Λ2c2

3H2
0

, and Ωc = −
kc2

R0H2
0

. (1.6)

The latest Cosmic Microwave Background(CMB) experimental results by the WMAP
collaboration (Spergel et al. 2003) suggest we are living in a flat universe with the following
cosmological parameters: Ωm = 0.29± 0.087, Ωλ = 0.69± 0.05 and Ωc

∼= 0. The expression
for the critical density includes the Hubble parameter H(t), thus it evolves with time.
Today it has a value

ρc0 ≡ 2.7755× 1011h2M¯Mpc . (1.7)

It is convenient to introduce a new astrophysical variable called the redshift: z(t) =
1/a(t)− 1. The energy of photons emitted by distant sources is reduced by the expansion
of the Universe, where more distant light results in higher redshift due to earlier emission.
Thus redshift is often used as a time variable in Cosmology.

The second Friedman equation can then be transformed into

H2(z)

H2
0

= Ωm(1 + z)3 +Ωk(1 + z)2 +ΩΛ . (1.8)

If we know the values of the present–day density parameters of universe, we can integrate
this equation to derive lookback time for the Universe:

t0 − t1 = H−1
0

∫ z

0
(1 + z1)

−2[(1 + z2)
2(1 + ΩMz1)− z1(2 + z1)Ωλ]

−1/2dz1 .

When z = ∞, this integration gives the age of our Universe. Results from the WMAP
collaboration suggests our Universe is 13.4± 0.3Gyr old.
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1.3 Linear and quasi–linear theory

1.3 Linear and quasi–linear theory

Our standard cosmological model assumes that structure in the universe originates from
small amplitude quantum fluctuations imprinted as an initially homogeneous and isotropic
Gaussian random field during an epoch of inflationary expansion shortly after the Big
Bang. In this case, the linear density is completely determined by its power spectrum,
or equivalently its two–point correlation function. When the fluctuations are small (i.e.
density contrast δρ = (ρ − ρ̄)/ρ̄ ¿ 1) linear and quasi–linear theories are very powerful
tools to study the formation and the evolution of large scale structure.

1.3.1 Primordial density fluctuations and transfer function

The initial perturbation spectrum is commonly assumed to be a power law,

P (k) = kn, (1.9)

where n can be considered an effective power index even when P (k) is not a pure power law.
For the special case where n = 1, i.e. for the Harison-Zel’dovich scale–invariant spectrum,
equation (1.9) has the property that the density contrast had the same amplitude on all
scales when the perturbations come through the horizon. Proponents of the inflationary
picture of the early Universe find that fluctuations with the Harrison-Zel’dovich spectrum
occur rather naturally.

Inflation is believed to be produced by the dominant presence of a quantum scalar field
which rolls slowly from a false to the true vacuum, maintaining an approximately constant
energy density and causing the early Universe to expand exponentially for a brief period
of time. Quantum fluctuations in the inflation field are thus blown to macroscopic scales.
Models of inflation predict the general properties of the resulting fluctuation field: it has
Gaussian distributed amplitudes and a near scale–invariant power spectrum.

The primordial power spectrum was believed to change during the evolution of the early
universe until the end of the epoch of recombination by various processes including, growth
under self-gravitation, the effects of pressure, and dissipative processes. In general, modes
of short wavelength have their amplitudes reduced relative to those of long wavelength in
this way. The overall effect can be encapsulated in the transfer function, T (k), which gives
the ratio of the later–time amplitude of a mode to its initial value:

P (k, z) = P0(k)T
2(k)

D(z)

D(z0)
, (1.10)

Where

T (k) =
δk(z0)

δk(z)D(z)
. (1.11)

Here D(z) is the linear growth factor extrapolated to the present to be discussed later in
this chapter. The normalization redshift is arbitrary, so long as it refers to a time before
any scale of interest has entered the horizon. Once we possess the transfer function it is
a most valuable tool. The evolution of linear perturbations back to the surface of last
scattering obeys the simple growth laws given in equation (1.10), and it is easy to see then
how structure in the universe will have changed during the matter–dominated epoch.
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1 Thesis objectives and framework

It is a challenge to calculate accurate results for transfer functions, mainly because we
have a mixture of matter and relativistic particles. Accurate results require a solution of the
Boltzmann equation to follow the evolution in detail. CMBFAST is commonly considered
one of the best publicly available Boltzmann codes for this task (Sejak & Zaldarriaga 1996).
There are also several fitting formulae available for the transfer function of the CDM model.
One of the most widely used ones is given by Bardeen et al. (1986; BBKS)

T (k) =
ln(1 + 2.34q)

2.34q

[

1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4
]−1/4

, (1.12)

with q = k/[(ΩCDM,0 +ΩB,0)h
2Mpc−1] .

To completely specify P (k) we also need to fix its overall amplitude. For P (k) with a
given shape, the amplitude is fixed if we know the value of P (k) at any k, or the value of
any statistic that depends on P (k). One historically popular prescription for normalizing a
theoretical power spectrum involves the variance of the galaxy distribution when sampled
with randomly placed spheres of radius R:

σ2(R) =
1

2π2

∫

∞

0
k3P (k)W̃ (kR)

dk

k
, (1.13)

where W̃ (x) = 2(sin kR−kR cos kR)/(kR)3 is the Fourier transform of a spherical top–hat
filter with radius R. The value of σ(R) derived from the distribution of normal galaxies
is approximately unity in spheres of radius R = 8h−1Mpc. Alternately, the normalization
can be obtained by COBE or WMAP observations of the cosmic microwave background
(CMB) anisotropy.

1.3.2 Dynamics of linear perturbations

The problem of the growth of small perturbations under gravity dates back to the work
of Jeans (1902), who applied first order perturbation theory to study the instabilities in
evolving clouds of gas in the context of a static background fluid. Since the evolution of
dark matter in an expanding background behaves like collisionless fluid, Jeans theory can
be easily extended to discuss the time evolution of perturbations in an expanding Universe.
Here it is convenient to use the comoving coordinates, x , defined as

r = a(t)x . (1.14)

The proper velocity, u = dr/dt, at point x can then be written as

u = ȧ(t)x+ v, v = aẋ . (1.15)

where v is the peculiar velocity describing the motion of the fluid relative to the fundamental
observer (one comoving with the background) at x. We can also express the density, ρ, in
terms of the density perturbation against the background,

ρ(x, t) = ρ̄(t)[1+ δ(x, t)] . (1.16)
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1.3 Linear and quasi–linear theory

The time evolution of an ideal fluid is given by the equation of continuity (which describes
mass conservation), Euler’s equation (the equation of motion), and Poisson’s equation
(describing the gravitational field):

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0., (1.17)

∂v

∂t
+
ȧ

a
v +

1

a
(v · ∇)v = −∇φ

a
− ∇P
aρ̄(1+ δ)

, (1.18)

∇2φ = 4πGρ̄a2δ . (1.19)

where ∇ ≡ ∇x and ∂/∂t is in Eulerian space, φ denotes the potential, ρ̄ is the mean
background density.

In cases where both δ and v are small and pressure is negligible, so that the nonlinear
terms in the above equations can be neglected, we obtain:

δ̈ + 2aδ̇ = 4πGρ̄δ . (1.20)

The solutions of equation(1.20) depend on the cosmological model relative to which the
perturbations are defined. For the simplest matter–dominated Einstein-de sitter universes,
one can obtain the exact result which has two modes, one growing,

δ+ ∝ t2/3, (1.21)

and the other decaying,

δ− ∝ t−1. (1.22)

The general growing solution D(t) for all dust cosmogonies is given by integration

D(z) = H(z)

∫

∞

z
dz

1 + z

H3(z)
. (1.23)

D(z) is usually referred to as the growth factor. Given a density field of perturbations,
δ0(x, z0), its late time growth is determined by the growth factor as long as δ ¿ 1

δ(x, z) = δ0(x, z0)
D(z)

D(z0)
. (1.24)

1.3.3 The Zel’dovich Approximation

Once the fluctuation evolves into the non–linear regime (δ À 1), the linear growth theory
discussed above breaks down. Although the full development of the gravitational instability
cannot be solved exactly without resorting to numerical simulations, there are some very
useful special cases and approximations that can help us to understand the general case.
As a first–order Lagrangian perturbation theory, the Zel’dovich approximation can be used
in the development of perturbations into the non–linear regime. Rather than working out
the development of the perturbation in some external Eulerian reference frame, the motion
of particle’s in a comoving coordinate frame is followed. If we denote x and r as the proper
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1 Thesis objectives and framework

and comoving position vectors of the particles of the fluid, the Zel’dovich approximation
can be written

x = a(t)r+ b(t)P(r) . (1.25)

The first term on the right-hand side describes the uniform expansion of the background
model and the second term the perturbations as a function of the particles Lagrangian
coordinate r. In the coordinate system of the principal axes of the local distortion tensor,
the motion of the particles in comoving coordinates can be described by a deformation
tensor D:

D =





a(t)− αb(t) 0 0
0 a(t)− βb(t) 0
0 0 a(t)− γb(t) .



 (1.26)

Mass conservation requires the density ρ in the vicinity of any particle to satisfy

ρ[a(t)− αb(t)][a(t)− βb(t)][a(t)− γb(t)] = ρ̄a3(t) . (1.27)

Here ρ̄ is the mean density of matter in the Universe. In the case of α > β > γ, collapse
occurs most rapidly along the x–axis and the density becomes infinite when a(t)−αb(t) =
0. At this point, the ellipsoid will have collapsed to a pancake and the solution breaks
down for later times. Although the density becomes formally infinite in the pancake, the
surface density remains finite, and so the solution still gives the correct result for the
gravitational potential at points away from the caustic surface. The results of numerical
N–body simulations have shown that the Zel’dovich approximation is remarkably effective
in describing the evolution of the non–linear stages of the collapse of large scale structures
up to the point at which caustics are formed (Coles et al. 1993).

The advantage of the Zel’dovich approximation is that it normally breaks down later
than Eulerian linear theory. This method is usually used to set up initial conditions for
cosmological simulations.

1.3.4 The spherical “Top-Hat” Collapse

The spherical “Top–Hat” collapse model is a simple and useful approximation to study
the nonlinear evolution of the cosmic density field. For a spherical perturbation in the
expanding Universe, the Eulerian radius R of a mass shell which had initial Lagrangian
radius R0 and mean linear overdensity δ0 is given by

R(z)

R0
=

1 + z

5/3|δ0|
(1− cos θ)

2
, (1.28)

1

1 + z
= (

3

4
))2/3

(θ − sin θ)2/3

0.6|δ0|
, (1.29)

Where δ0 denotes the initial density δinit extrapolated to the present time given by equation
(1.24). In the case δinit < 0, then (1−cos θ) should be replaced by (coshθ−1) and (θ−sin θ)
by (sincθ − θ).

12



1.3 Linear and quasi–linear theory

In the spherical collapse model, initially overdense regions begin their collapse at θ = 0,
turn around at θ = π, and collapse completely at θ = 2π. With the above equations, the
size of an overdense region evolves as

R0
R(z)

=
62/3

2

(θ − sin θ)2/3

(1− cos θ)
. (1.30)

At the point of turnaround the overdensity is given by δ = (R0/Rz)
3 − 1 = (3π/4)2 − 1 ∼

4.55. The final size at collapse is infinite, and so the density of this region is infinite as
well. In practice the region virialises at some non-zero size rather than collapsing to infinite
density. The average density within the virialized object is usually estimated by assuming
that the object virializes at half the value of the turn around radius in physical units. This
occurs when the density reaches

∆vir = 18π2 ' 178 (1.31)

times the density of the background at virialization.
According equation (1.28), the extrapolated linear overdensity of such a collapsed object

would have had a critical value, δsc, given by

δsc(z)

1 + z
=

3

5

(

3π

2

)2/3

' 1.686 , (1.32)

at the moment of collapse. Thus, a collapsed object is one in which the initial overdensity,
extrapolated using linear theory to the time of collapse, was δsc(z)/D(z) = 1.686. At this
time, the actual overdensity is about 178. That is the reason that the bound objects (dark
haloes) in N–body simulations are usually defined as spherical regions with overdensity
178 times the cosmic mean.

1.3.5 The statistics of hierarchical clustering

1.3.5.1 The Mass Function

In the Cold Dark Matter scenario, galaxies and larger scale structures are built up by the
process of hierarchical clustering. A simple but quite useful description of this process was
first developed by Press & Schechter (1974). Their objective was to provide an analytic
formalism for the process of structure formation once the density perturbations had reached
such an amplitude that they could be considered to have formed virialized objects.

Recall that the primordial density perturbations are believed to be Gaussian fluctuations.
Thus the phases of the waves which make up the density distribution are random and the
distribution of the amplitudes of the perturbations of a given mass M can be described by
a Gaussian function

p(δ) =
1√

2σ(M)
exp[− δ2

2σ2(M)
] , (1.33)

where δ = δρ/ρ is the density contrast associated with perturbations of mass M . For a
Gaussian distribution, the mean value is zero and the variance, σ2(M), i.e the mean square
fluctuation, is

< δ2 >= 〈(δρ
ρ
)2〉 = σ2(M) , (1.34)

13
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Thus at a given time t, the fraction of points which are surrounded by a sphere of radius
R, within which the mean overdensity exceeds δc is given by

f(δ > δc) =
1

2
[1− erf(

δc√
2σ(R)

)] (1.35)

Press & Schechter suggested that this fraction be identified with the fraction of particles
which are part of collapsed lumps with masses exceeding M = 4πρ̄a3R3/3. There is,
however, a problem here. AsM → 0, then σ(R)→∞ and thus f → 1/2. This formula thus
predicts that only half of the particles are parts of lumps of any mass. Press & Schechter
solved this by multiplying the mass fraction by an arbitrary factor of 2. The number density
of collapsed lumps with mass in the range M →M + dM is then

n(M, t) = −2 ρ̄

M

∂F1/2

∂R

dR

dM
dM (1.36)

= −
√

2

π

ρ̄

M

δc(t)

σ2
exp[−δ

2
c (t)

2σ2
]dM (1.37)

where δc(t) = δc/D(t) is the critical overdensity linearly extrapolated to the present time.

A substantially better fit to mass function in N–body simulation is obtained if the error
function in equation(1.35) is replaced by a function of slightly different shape. Sheth
& Tormen (1999) suggested the following modification:

n(M, z)dM = A(1 +
1

ν ′2q
)

√

2

π

ρ̄

M

dν ′

dm
exp(−ν

′2

2
)dM (1.38)

where ν ′ =
√
aν, a = 0.707, A = 0.322 and q = 0.3. In a detailed comparison with a wide

range of simulations, Jenkins et al. (2001) confirmed that the model is indeed a good fit
providing that haloes are defined at the same density contrast relative to the mean in all
cosmologies. However, Jenkins et al. (2001) point out that the Sheth & Tormen formula
does overestimate the number density of extremely rare objects, a more accurate fitting
formula is given in their paper.

1.3.5.2 The extended Press–Schechter theory

Bond et al. (1991) developed an alternative approach based on excursion sets to derive the
Press & Schechter formulism, which gives an analytic explanation to the original arbitrary
factor of 2 in equation (1.36). An advantage of the excursion sets approach is that it
provides a description of how a collapsed object was built up by the accretion and merger
of smaller objects.

Consider a spherical region of mass M2 with linear overdensity δc/D(t2) that forms a
collapsed object at time t2. By this approach, the fraction of M2 that was in collapsed
objects of certain mass at an earlier time t1 < t2 is given by

f(S1, D1|S2, D2)dS1 =
1√
2π

δ1 − δ2

(S1 − S2)3/2
exp[− (δ1 − δ2)

2

2(S1 − S2
]dS1 , (1.39)
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1.3 Linear and quasi–linear theory

Where S1 = σ2(M1), S2 = σ2(M2), δ1 = δc/D(t1), and δ2 = δc/D(t2). The formulae give
the fraction of material in objects of mass M2 at time t2 which were in objects of mass M1

at the earlier time t1. The mass distribution of the progenitors of objects of mass M2 is
therefore

n(M1, t1|M2, t2)dM1 =
M2

M1
f(S1, D1|S2, D2)

dS1
dM1

dM1 . (1.40)

There is also a conditional mass function corresponding to ellipsoidal collapse (Sheth
&Tormen 2002), the conditional probability is replaced by the following formula:

fS1
(S1, D1|S2, D2)dS1 =

|T (S1, D1|S2, D2)|√
2π(S1 − S2)3/2

×

exp

{

− [B(S1, D1)−B(S2, D2)]
2

2(S1 − S2)

}

dS1, (1.41)

and

T (S1, D1|S2, D2) =
5
∑

n=0

(S2 − S1)
n

n!

∂n[B(S1, D1)−B(S2, D2)]

∂S1
n , (1.42)

where the moving barrier B(S, z) =
√
aS∗[1 + β(S/aS∗)

α] with S∗ ≡ δ2c (z). The param-
eters are obtained from fitting the mass function to N-body simulations, a = 0.707, α =
0.485, β = 0.615. Sheth & Tormen (2002) argued that this is an improved fit to simu-
lation data. However, their formalism is somewhat arbitrary in the sense that the series
in equation(1.42) is not well motivated and the parameters of the model are adjusted by
comparison with N–body simulations rather than derived from their theory.

1.3.5.3 Spatial clustering and Bias

The PS formalism only provides the mass distribution for the bound objects (dark haloes).
It contains no any information about the spatial distribution of these objects. Extending
this theory, Mo &White (1996) constructed a model for the spatial clustering of dark haloes.

The basic mechanism of clustering bias is that an object of given mass will collapse earlier
if it lies in a region of large–scale overdensity, leading to an enhanced abundance of haloes
in such regions with respect to the mean.

In deriving the conditional probability equation (1.39 and 1.40), it is not necessary that
M2 itself be a halo; in fact this equation holds even if M2 is an uncollapsed spherical
region. In this case, equation (1.40) can be interpreted as the average number of M1 haloes
identified at redshift z1 in a spherical region with comoving radius R0 = (3M2/4πρ̄)

1/3 and
density contrast δ0. The overdensity of haloes in such region is

δLh (1|2) =
N(1|2)
n(M1, z1)

VL − 1 (1.43)

where VL = 4π
3 R

3
0 and N(M1, z1) is the mean number of halos of given mass at redshift

z1. This expression becomes particularly simple when M0 À M1 (so that S0 ¿ S1) and
δ0 ¿ δ1:

δLh (1|2) =
ν21 − 1

δ1
δ0, where ν1 =

δ1√
S1

(1.44)
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here δ1 = δc/D(t1) and δ0 is the linear density contrast linearly extrapolated to the present
time. This expression gives the over–abundance of haloes in Lagrangian space.

It is more convenient to model the clustering of dark haloes at given redshift in Eulerian
space, since most quantities are measured in Eulerian space. Then one must be able to cal-
culate their expected abundance in spheres which at the desired redshift z have radius R
and non–linear overdensity δ. Based upon the spherical collapse model, Mo & White(1996)
derived an analytical formulae which relates the nonlinear overdensity to the linear overden-
sity in Lagrangian space. Although their derivation was for an Einstein-de Sitter Universe,
Sheth & Tormen later confirmed that it is reasonably accurate for all cosmologies (Sheth
& Tormen, 2002).

δ0(δ, z0) =
δsc(z0)

1.68647
×
[

1.68647− 1.35

(1 + δ)2/3

− 1.12431

(1 + δ)1/2
+

0.78785

(1 + δ)0.58661

]

(1.45)

With the above assumptions, the average overdensity of dark haloes in spheres with current
radius R and current mass overdensity δc can be expressed as:

δh(1|2) =
N(1|2)

n(M1, z1)V
− 1, (1.46)

where V = 4πR3/3, R0 = R(1+ δ)1/3, and δ0 is determined from the nonlinear overdensity
δ. When R0 À R1 and |δ0| ¿ δ1, we have

δh(1|2) = bh(M1, z1)δ = (1 +
ν21 − 1

δ1
)δ (1.47)

Here bh(M1, z1) is the bias factor at time t for haloes identified at time t1. Thus, the
over–abundance of haloes is enhanced with respect to the background mass overdensity δ
by a factor bh, and this which depends both on the mass M1 and the time t1 when they
are identified. We call bh the linear bias relation for haloes. Haloes with mass M1 > M?

are biased (bh > 1), while haloes with M1 < M? are anti–biased (bh < 1), relative to the
mass density field.

As first pointed out by Jing (1998), the original Mo &White (1996) formula suffer from
similar inaccuracies to the original PS mass function, and indeed the two discrepancies are
closely related. A more precise formula can be obtained from the ellipsoidal collapse model
(Sheth, Mo & Tormen 2001):

b = 1 +
1

δc

[

ν ′2 + bν ′2(1−c) − ν ′2c/
√
a

ν ′2c + b(1− c)(1− c/2)

]

, , (1.48)

where ν ′ =
√
aν, a = 0.707, b = 0.5 and c = 0.6. Numerical simulations show that this

revision is substantially more accurate than its spherical counterpart, especially for haloes
whith M < M∗. We will discuss biased clustering for the bound objects at early redshifts
in Chapter 5.
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1.4 Nonlinear evolution

1.4 Nonlinear evolution

1.4.1 N-body simulation

As mentioned above, for the full treatment of nonlinear evolution, we must resort to nu-
merical simulation. Currently, N–body simulation is becoming a more and more important
and powerful tool for understanding the formation and evolution of structure in the nonlin-
ear regime. According to the standard cosmology model, over 90 percent of matter in our
universe is dark matter, which is believed to interact with other matter only via gravity.
Therefore, the gravitational interaction produced by the dark matter component is the
dominant action influencing structure formation in our Universe, especially on large scales.

In cosmological N–body simulations, the dark matter is usually represented by particles.
These are evolved forward in time by Newton’s laws written in comoving coordinates

dr

dt
=

1

a
v , (1.49)

dv

dt
+Hv = −∇φ , (1.50)

∇2φ = −4πGa[ρ(x, t)− ρ̄] , (1.51)

1.4.1.1 Initial conditions

Initial conditions for large scale cosmological simulations are usually constructed by impos-
ing perturbations on an initially uniform state represented by a “glass” or grid distribution
of particles. The glass configuration was invented by White (1993). First, particles are
placed randomly within the computational box. The cosmological N–body integrator is
then used to follow their motion but with the sign of Newton’s constant changed when
calculating peculiar gravitational forces. After some time, the initial poisson distribution
relaxes to a “glass” like distribution where the force on each particle is very close to 0,
and this state shows no discernible order or anisotropy on scales beyond a few interparticle
separations. The merit of the glass distribution is that it has no preferred direction of the
kind present in a grid distribution. Once an initially uniform distribution of particles has
been produced, fluctuations are imposed using the algorithm described in Efstathiou et
al. (1985). Based on the Zel’dovich approximation, a Gaussian random field is set up by
perturbing the positions of the particles and by assigning them velocities according to the
growing mode solution of linear theory.

When one is interested in the formation and evolution of individual objects, extremely
high resolution may be required, and large–scale cosmological simulation appears too ex-
pensive. The most economical approach to this task is to use resimulation techniques.
Firstly, one needs to run a large–scale coarse– resolution simulation. Then one selects the
interesting object to be studied further in detail, all particles belonging to the object and
its immediate environment are traced back to the initial Lagrangian space. The region con-
taining all these particles is then filled with a homogenous distribution of higher resolution
particles. These particles are then perturbed using the waves of the parent simulation,
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together with the extra high frequency waves needed to fill out the power spectrum be-
tween the Nyquist frequencies of the old and new simulations. The regions outside the high
resolution regions are coarsely sampled with degraded resolution in order to represent the
large–scale tidal fields acting on the object of interest.

1.4.1.2 The codes

The central problem of N–body numerical simulation lies in the computational algorithm
used to compute the gravitational force. Evaluating the forces by direct summation over all
particle pairs is prohibitive for simulations involving huge numbers of particles. Fortunately,
there are available quite a variety of much more efficient algorithms.

An older, widely used gravity solver is the particle–mesh (PM) algorithm. In this scheme,
the forces are determined by assigning mass points to a regular grid and then solving
Poisson’s equation on it. The use of a regular grid with periodic boundary conditions
naturally allows using Fast Fourier Transform(FFT) methods to recover the potential, and
this results in a substantial increase in speed. A weakness with this method is the relatively
poor force resolution on small scales due to the finite spatial size of the mesh. A hybrid
“particle-particle-particle mesh” (P3M) method, was developed to fix this problem. It
solves the short range force directly (PP) but uses the mesh to compute the longer range
component (PM); Thus, the short-range resolution of the algorithm is improved by adding
a correction to the mesh force, while keeping the speed of the longer range force calculation.
The advantage of this algorithm is that it is quite efficient in estimating the force when
particle sets are lightly clustered, and it has the relatively light memory requirements. Thus
it was widely used for the last generation of cosmological simulations which needed to evolve
large numbers of particles on computers with relatively less memory than available today.
For example, a P3M code, HYDRA, was used to carry out one of the largest published
cosmological simulations, the 1 billion particle Hubble Volume Simulations, performed by
the Virgo consortium in 1998 (Evard et al. 2001) on the Cray T3E super computer.
However, with the recent developments in computer hardware, memory is no longer a
bottleneck for cosmological applications. Thus, the P3M algorithm is less used today.

An alternative gravity solver is the Barnes–Hut tree algorithm. This method divides
space recursively into a hierarchical cells, each containing one or more particles. If a cell
of size s and distance d (from the point where g is to be computed) satisfies s/d < θ
the particles in this cell are treated as one pseudo-particle located at the center of mass
of the cell. Computation time is saved by replacing the set of particles by a low-order
multipole expansion due to the distribution of mass in the cell. The advantage of the tree
algorithm is that it is fully spatially adaptive, since the hierarchical tree automatically
refines its resolution where needed, and hence it is efficient for highly clustered simulations.
The main drawback of the tree algorithm is its relatively large memory requirement and its
inefficiency in lightly clustered simulations. Hence it has only only been widely used for high
resolution simulation of individual objects. Currently, a technique exploiting the merits of
both the PM and the tree algorithm is becoming fashionable for cosmological simulations.
The long range force is computed by PM, whilst the short range force is computed by a
traditional tree algorithm, thus it is quite efficient in both heavily and lightly clustered
regimes.
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For this thesis, the subhalo project presented in Chapter 2 uses a combination of a P3M
based gravity solver HYDRA (Couchman et al. 1985) and a pure tree code GADGET-1.1;
for the on the formation of the first structures presented in Chapter 5, the TREE-PM code
GADGET-2.0(Springel 2004) is extensively used.

1.4.2 Dark halo and subhalo

One of the direct applications of dark matter simulations is to study the highly non–linear
internal structure of dark matter haloes. A halo is often defined as a virialised system
which has mean density 200 times the critical density of the universe, as suggested by
“top–hat” spherical collapse model. Regardless of the detailed initial conditions, numerous
high resolution simulations agree on that the radial mass distribution of dark haloes follows
closely a universe profile (Navarro, Frenk &White 1996, 1997).

ρ(r)

ρcrit
=

δc
(r/rs)(1 + r/rs)2

(1.52)

Here rs is a characteristic radius where the logarithmic profile slope is −2, δc is a char-
acteristic density. The NFW profile, with its logarithmic slope changing gradually from
−1 near the centre to -3 at large radii, is close to ρ ∝ r−2 in the intermediate range of
radius. However, whether the asymptotic inner dark matter density profile slope is ρ ∝ r−1

or ρ ∝ r−1.5 (as advocated by Moore et al. 1998) is still a matter of debate. The latest
simulations from the different groups show dark halo inner profile with slopes at r ∼ 0.1rs
which vary from β(r) = −1.1 to β(r) = −1.4 (Navarro et al. 2003; Reed et al. 2003;
Diemand et al. 2004). The inner profile of dark matter halos has particular interest since
it may allows to constrain models for the dark matter. In Chapter 4, we will discuss the
assembly of the central cusp of ΛCDM clusters.

High resolution N–body simulations indicate that the halo concentration parameter,
c = r200/rs is correlated with halo mass; at fixed halo mass, the value of c depends on
halo formation time. The universal profile is apparently a result of some physical principles
operating on a broad range of initial conditions rather than of some specific initial condition.

According to the standard CDM scenario, structure in our Universe formed hierarchically.
Small–scale fluctuation were the first to collapse as virialised objects. These then merged
to form larger systems. The inner regions of early virialised objects are very compact and
often survive accretion onto a larger system to be self–bound and long–lived subhaloes
of the host. Since galaxies form by the condensation of gas at the centres of early haloes,
cluster galaxies are still likely associated with subhaloes in their host cluster. Only in recent
years have numerical techniques and computer capabilities advanced to the point where it
is possible to study in detail the properties of subhaloes. It seems that the overmerging
problem has been largely resolved in current cosmological simulations. However, these
suggested another problem: only a dozen dwarf galaxies are observed in our Milky Way,
while many more subhaloes are resolved in current dark–matter–only simulations(Moore
et al. 1998). This has often interpreted as a problem of the CDM model. Currently, there
two different pictures for the suppression of galaxy formation on small scales to alleviate
this problem. In the first case, visible satellites are rare objects (only one subhalo in 100 on
the smallest scales). In the second case, dwarfs form with widely varying efficiency in the
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dozen most massive subsystems, and galaxy formation stops altogether below some fairly
high mass cutoff.

In Chapter 2, we study in detail the subhalo population with numerical simulation. In
Chapter 3, we combine high resolution simulations and semi–analytic techniques to explore
the relationship between galaxies and subhaloes. As we argue, the correspondence between
subhaloes and galaxes is quite complicated, and thus the apparent discrepancy between
subhaloes and observed galaxies are very likely due to incorrect interpretation of simulation
and observation.

1.4.3 Galaxy Formation

In the previous sections we only discussed the evolution and formation of dark matter
structure. However, observational astronomy mostly refer to luminous matter, like stars
and galaxies, and it is important to realize that gravity alone does not provide a complete
description of such observations. In the CDM paradigm, galaxies form when gas, initially
well mixed with the dark matter, cools and condenses into emerging dark matter haloes. In
addition to gravity, a non–exhaustive list of the processes that now need to be taken into
account includes: the shock heating and cooling of gas into dark haloes, the formation of
stars from cold gas and the evolution of the resulting stellar population, the feedback pro-
cesses generated by the ejection of mass and energy from evolving stars, the production and
mixing of heavy elements, the extinction and reradiation of stellar light by dust particles,
the formation of black holes at the centres of galaxies and the influence of the associated
quasar emission. These processes span an enormous range of length and mass scales. The
best that can be done with current computing techniques is to model the evolution of dark
matter and gas components with smoothed particle hydrodynamics (SPH). However, this
method still suffers from the problem that it is quite inefficient. Moreover, every time the
”baryonic” model is changed, a new simulation has to be run.

In the other approach known as semi–analytic modelling, the baryon physics is treated
phenomenologically using a simple, spherically symmetric model to describe the accretion
and cooling of gas into dark matter halos. It turns out that this simple model works
quite well as judged by the good agreement with results of fully N–body/gas–dynamical
simulations. The advantage of this approach is that it is quite efficient, and so it can be
used to explore a large region of parameter space where the physics is unclear.

The standard galaxy formation picture is described by White &Rees (1978). In this
picture, galaxy formation essentially proceeds in two stages. First, dark matter haloes
form in a collisionless gravitational collapse, and then baryons sink to the center of these
halos because the gas can dissipate energy by radiative process. A modern and more
realistic description of galaxy formation process was presented by White and Frenk (1991).
These authors argued that three baryonic processes are important for galaxy formation,
(1) radiative cooling process. (2) star formation, and (3) feedback. Among these processes,
the cooling process is the most important for galaxy formation.

Once gas begins to fall into a dark–mater haloes, shocks will heat it up to the virial
temperature; in order for the gas to form stars, it must be able to undergo radiative
cooling to dispose of this thermal energy. It is useful to introduce two time–scales. The
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cooling time is the time scale on which gas radiates thermal energy

tc = −
E

Ė
' 3ρkBT

2µΛ(T )
. (1.53)

Where µ is the mean molecular weight for the ionized gas for primordial composition
(µ ' 0.57), kB is the Boltzmann constant. The second time-scale is the dynamical time
scale. For a uniform gas cloud with density ρ, this time-scale is

tdyn = 1/
√

Gρ , (1.54)

which represents the fastest time on which the cloud can collapse. These two time-scales
together with the Hubble time τH = H−1, determine how the protogalaxy cools as it
collapses. If tc > τH , then cooling cannot have been important and the cloud will have
scarcely evolved since its collapse. If τH > tc > tdyn, then the gas can cools on a cosmologi-
cal timescale, but it cool so slowly that the gas cloud can adjust its pressure distribution to
maintain the support of the cooling matter. There is thus a relatively quiescent quasi–static
collapse on a timescale tc. If tc < tdyn, the cloud cools so rapidly that dynamical processes
are unable to adjust the pressure distribution in time: pressure support will be lost and the
gas undergoes a rapid collapse on the free-fall timescale, accompanied by fragmentation to
smaller and smaller scales as instabilities develop in the cloud.

1.5 Outline

The contents of this thesis are based upon three submitted papers and one almost completed
paper in preparation for publication. Here I summarise the objective of each project as
follows

Chapter 2 is the article,The subhalo populations of ΛCDM haloes by L. Gao, S. D. M.
White, A. Jenkins, F. Stoehr, V. Springel, 2004, MNRAS, 355, 819. In this article, we use
a large cosmological simulation and a variety of high resolution resimulations of individual
cluster and galaxy haloes to study the systematics of subhalo populations in ΛCDM haloes.

The standard CDM theory allows for the existence of numerous subhaloes residing in
a single virislised halo. Only in recent years have numerical techniques and computer
capabilities advanced to the point where it is possible to study in detail the properties
of such subhaloes. Most studies to date have been limited because their analysis has
been performed on a small number of individual haloes. Since halo-to-halo variations are
large, this may prevent the derivation of statistically significant results. Drawing from a
large body of different simulations (including a large scale simulation and higher resolution
simulations of individual objects) in this study we are able to examine the systematic
properties of subhaloes as a function of host halo mass and redshift.

Chapter 3 is an extension of the work presented in Chapter 2, Galaxies and subhaloes in
ΛCDM clusters by L. Gao, G. De Lucia, S. D. M White, A. Jenkins, 2004, MNRAS, 352,
L1. In this article, we clarify the relationship between subhaloes and the galaxies.
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1 Thesis objectives and framework

Studies of subhaloes are interesting because they are assumed to host galaxies. The
most widely adopted assumption about the galaxy associated with a subhalo is that its
luminosity (or its kinematics) are simply related to the mass (or potential well depth) of
the corresponding subhalo. With this assumption, a variety of contradictory conclusions
have been drawn from comparison with the observed properties of luminous objects in
galaxy haloes and galaxy clusters. Extending by previous work by other authors and the
subhalo study of Chapter 2, we combine 10 high resolution resimulations of cluster–sized
dark haloes with semi–analytic galaxy formation modelling to explore the relationship
between subhaloes and galaxies.

Chapter 4 is the article, Early Formation and Late Merging of the Giant Galaxies by
L. Gao, A. Loeb, J. Peebles, S. D. M. White, A. Jenkins, 2004, ApJ, 614, 17. In this
article, we study the assembly of the central cusps of ΛCDM clusters.

This work follows up on earlier work by Loeb &Peebles (2003). The principal goal is to
understand how giant central cluster galaxies were assembled in the now-standard LCDM
cosmogony, e.g. when were they assembled, and by what path?

Chapter 5 is an uncompleted article, The first structures in CDM Universe by L. Gao,
S. D.M. White, A. Jenkins, V. Springel, C. S. Frenk. In this article, we perform a suite
of high resolution simulations with the aim of resolving one of the earliest forming bound
objects.

Current smoothed–particle–hydrodynamical simulations of the first stars suffer from the
problem of unrealistic initial conditions. Thus the question: “when were the first stars
were born”? is still an open one. In this study, we devise a simulation recipe with correct
cosmological boundary conditions in order to resolve the earliest collapsed objects in which
the PoP III stars may be born.
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2 The subhalo populations of ΛCDM haloes

Abstract
We investigate the subhalo populations of dark matter haloes in the concordance
ΛCDM cosmology. We use a large cosmological simulation and a variety of high res-
olution resimulations of individual cluster and galaxy haloes to study the systematics
of subhalo populations over ranges of 1000 in halo mass and 1000 in the ratio of sub-
halo to parent halo mass. The subhalo populations of different haloes are not scaled
copies of each other, but vary systematically with halo properties. On average, the
amount of substructure increases with halo mass. At fixed mass, it decreases with
halo concentration and with halo formation redshift. These trends are comparable in
size to the scatter in subhalo abundance between similar haloes. Averaged over all
haloes of given mass, the abundance of low mass subhaloes per unit parent halo mass
is independendent of parent mass. It is very similar to the abundance per unit mass of
low mass haloes in the universe as a whole, once differing boundary definitions for sub-
haloes and haloes are accounted for. The radial distribution of subhaloes within their
parent haloes is substantially less centrally concentrated than that of the dark matter.
It varies at most weakly with the mass (or concentration) of the parent halo and not
at all with subhalo mass. It does depend on the criteria used to define the subhalo
population considered. About 90 per cent of present-day subhaloes were accreted after
z = 1 and about 70 per cent after z = 0.5. Only about 8 per cent of the total mass of
all haloes accreted at z = 1 survives as bound subhaloes at z = 0. For haloes accreted
at z = 2, the survival mass fraction is just 2 per cent. Subhaloes seen near the centre
of their parent typically were accreted earlier and retain less of their original mass
than those seen near the edge. These strong systematics mean that comparison with
galaxies in real clusters is only possible if the formation of the luminous component is
modelled appropriately.

2.1 Introduction

According to the standard CDM scenario, structure in our Universe formed hierarchically.
Small-scale fluctuations were the first to collapse as virialised objects. These then merged
to form larger systems. The inner regions of early virialised objects are very compact
and often survive accretion onto a larger system to become self-bound subhaloes of their
host. Since galaxies form by the condensation of gas at the centres of early haloes, most
cluster galaxies may well be associated with subhaloes in their host cluster. Only in recent
years have numerical techniques and computer capabilities advanced to the point where it
is possible to study in detail the properties of such subhaloes (Moore et al. 1998, 1999;
Tormen, Diaferio & Syer 1998; Klypin et al. 1999a,b; Ghigna et al. 1998, 2000; Springel
et al. 2001; Stoehr et al. 2002, 2003). These studies indicate that the ‘overmerging’
problem in early simulations, i.e. the failure to resolve subhaloes corresponding to galaxies
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2 The subhalo populations of ΛCDM haloes

in cosmological simulations of cluster haloes, was in part a result of insufficient mass and
force resolution.

Using high resolution resimulations of individual cluster or galaxy haloes, it is possible
to study the properties of subhaloes in detail. Recent papers by De Lucia et al. (2004),
Diemand et al. (2004) and Gill, Knebe & Gibson (2004) discuss many aspects of this topic
and present results compatible with but complementary to those presented below. Most
studies to date have been limited because their analysis has been performed on a small
number of individual haloes. Since halo-to-halo variations are large, this may prevent the
derivation of statistically significant results. In addition, all studies are still affected at
some level by numerical resolution. The available tests show that the subhaloes seen in a
particular object are reproduced moderately well in mass, but not in position or velocity,
when the same object is resimulated multiple times with varying resolution (Ghigna et al.
2000; Springel et al. 2001; Stoehr et al 2002, 2003). This is a result of the well known
divergence of neighboring trajectories in nonlinear dynamical systems.

In this paper, we carry out a systematic study of the properties of subhaloes in the
halo population of a single, large-scale cosmological simulation, and we complement this
by analysing a multi-resolution set of resimulations of a single ‘Milky Way’ halo, together
with a set of high-resolution resimulations of eight different rich clusters. These resimula-
tions allow us to investigate how numerical resolution and halo-to-halo variation affect the
conclusions from our cosmological simulation. We do not, however, carry out a full study
of the numerical requirements for fully converged numerical results for the properties of
subhaloes.

Previous studies of subhaloes within haloes of different scale have emphasised similarities
– to a large extent the internal structure of a ‘Milky Way’ halo looks like a scaled version
of that of a rich cluster halo (Moore et al. 1999; Helmi & White 2001; Stoehr et al. 2003;
De Lucia et al. 2004; Desai et al. 2004). We show below that this scaling is not exact,
and that a better model assumes the mass distribution of low-mass subhaloes to be the
same as in the Universe as a whole, once the differing definitions of an object’s boundary
are accounted for. We show that galaxy haloes have fewer high-mass subhaloes than rich
clusters because of their earlier formation times. Indeed, even among haloes of given mass,
the number of massive subhaloes correlates well with formation time, as reflected in the
halo’s central concentration.

The emphasis of earlier high resolution work on solving the ‘overmerging problem’ has
given rise to the impression that the subhaloes are typically objects which formed at very
early times. We demonstrate below that this is not the case. Even at low subhalo masses,
most subhaloes were accreted onto the main halo at low redshift, in most cases well below
z = 1. This is important when considering the formation paths of present-day cluster
galaxies.

Our paper is organized as follows. We introduce our various simulation sets in Section 2.
In Section 3, we compare the halo mass abundance function measured from our cosmological
simulation with theoretical predictions and with earlier numerical data. In Section 4, we
investigate the subhalo population as a function of halo mass and of redshift. The spatial
distribution of subhaloes within haloes is also discussed in Section 4. In Section 5 we
investigate the infall and mass-loss histories of present-day subhaloes, as well as the fate
of objects that are accreted onto bigger clusters at early times. We discuss our results and
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2.2 The Simulations

set out our conclusions in Section 6.

2.2 The Simulations

2.2.1 The GIF2 cosmological simulation

We have carried out a cosmological simulation of a ΛCDM universe in a periodic cube
of side 110 h−1Mpc. The total number of particles is 4003, and the individual particle
mass is 1.73× 109h−1M¯. This is a factor of 8 better than the mass resolution of the GIF
simulations published by Kauffmann et al. (1999) but otherwise the parameters and output
strategy of the simulations are rather similar. We therefore call our new simulation GIF2.
The cosmological parameters adopted are: Ω = 0.3, λ = 0.7, σ8 = 0.9, and h = 0.7; We
choose initial fluctuation power spectrum index n = 1, with the transfer function produced
by CMBFAST (Seljak & Zaldarriaga 1996) for Ωbh

2 = 0.0196.

Initial conditions were produced by imposing perturbations on an initially uniform state
represented by a ‘glass’ distribution of particles. This we generated with the method devel-
oped by White (1993) which involves evolution from a Poisson distribution with the sign of
Newton’s constant changed when calculating peculiar gravitational forces. Fluctuations are
imposed using the algorithm described in Efstathiou et al. (1985). Based on the Zeldovich
(1970) approximation, a Gaussian random field is set up by perturbing the positions of the
particles and by assigning them velocities according to the growing mode solution of linear
theory.

In order to save computational time, we performed the simulation in two steps. First,
we ran the simulation from high redshift until z = 2.2 with the parallel SHMEM version of
HYDRA (Couchman, Thomas & Pearce 1995; Macfarland et al. 1998). At these times the
particle distributions are lightly clustered and thus the P3M based gravity solver is quite
efficient. We then completed the simulation with a tree-based parallel code, GADGET

(Springel, Yoshida & White 2001), which has better performance in the heavily clustered
regime.

Since the two codes adopt different force-softening schemes, it is necessary to match the
force shape at the time we switch from one code to the other. The softened force becomes
Newtonian at a distance of about 2.3ε for HYDRA, while this occurs at a distance of 2.8ε
for GADGET. Experimentation showed that a factor of 1.06, namely εHydra = 1.06εGadget,
produces an excellent match of the two force laws. In practice, we started the simulation
at z = 49 with ε = 7h−1kpc in comoving units within HYDRA, and changed the softening
to ε = 6.604h−1kpc for the continuation with GADGET after redshift 2.2.

The simulation was carried out on 512 processors of the Cray T3E at the Rechenzentrum
Garching, the supercomputer centre of the Max-Planck Society. We stored the data at 50
output times logarithmically spaced between 1 + z = 20 and 1 + z = 1. This enables
us to construct halo and subhalo merging trees as in Springel et al (2001). These will
be used in other work to model galaxy formation within the simulation, so that issues of
galaxy assembly and galaxy clustering can be addressed. The numerical data for our GIF2
simulation are publicly available at http://www.mpa-garching.mpg.de/Virgo
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2 The subhalo populations of ΛCDM haloes

Table 2.1: Numerical parameters for the GA-series simulations.

GA0 GA1 GA2 GA3n

Np 68323 637966 5953033 55564205
mp[h

−1M¯] 1.8× 108 1.9× 107 2.0× 106 2.5× 105

ε[h−1kpc] 1.8 1.0 0.48 0.24

Table 2.2: Particle number in the high resolution region and finalM200 for the 8 cluster
simulations.

C1 C2 C3 C4

Np 8457516 7808951 13466254 9352943
m200[h

−1M¯] 0.81× 1015 0.75× 1015 0.52× 1015 0.54× 1015

C5 C6 C7 C8

Np 9011020 8704504 10182210 8454580
m200[h

−1M¯] 0.62× 1015 0.84× 1015 0.45× 1015 0.60× 1015

2.2.2 Higher resolution simulations of individual halos

In order to investigate the importance of numerical and resolution effects in the study of
subhaloes, we have used a set of multi-resolution resimulations of a Milky Way sized halo
carried out by Stoehr et al. (2002, 2003). The simulations studied here are the versions
called GA1, GA2 and GA3n in the original papers. The final mass of the main halo
studied here is M200 = 2 × 1012h−1M¯ and its maximum circular velocity is 240 kms−1.
In this series of resimulations all perturbation modes present in the initial conditions of a
given resimulation are exactly inherited by all higher resolution ones. Hence all significant
structure in the low resolution systems should be reproduced at higher resolution. The
number of particles in the high-resolution region, the particle mass and the gravitational
softening are given for the GA simulations in Table 1.

We analyse in addition a set of 8 high-resolution resimulations of rich cluster halos
previously studied in Gao et al. (2003) and Navarro et al. (2003). These simulations
all have the same particle mass and force resolution, 5.12 × 108h−1M¯ and ε = 5h−1kpc,
respectively. The clusters were originally chosen as all objects in a relatively narrow mass
range within the 0.479h−1Gpc cosmological simulation of Yoshida et al. (2001). The initial
particle number in the high resolution region of each simulation and the mass of the final
virialized object are listed in Table 2.

All these high-resolution resimulations assumed the same cosmological parameters as our
GIF2 simulation, and all were all run with the publicly available code Gadget 1.1.

30



2.3 The mass function of haloes

2.3 The mass function of haloes

We have used a friends-of-friends group-finding algorithm (Davis et al. 1985) with the
standard linking length of 0.2 in units of the mean interparticle separation to identify
virialised haloes in our GIF2 simulation. Only haloes which contain at least 20 particles
are included in the halo catalogues we analyse below.

The halo mass function (the abundance of haloes as a function of their mass) is one of
the fundamental quantities characterising the nonlinear distribution of mass in the Uni-
verse. Substantial effort has gone into building theoretical models for this function and
into calibrating them with numerical simulations (Press & Schechter 1974; Bond et al.
1991; Lacey & Cole 1993, 1994; Mo & White 1996; Sheth & Tormen 1999; Sheth, Mo &
Tormen 2001; Jenkins et at. 2001; Reed et al. 2003; Yahagi et al. 2004). Here we use
our GIF2 simulation, which has a reasonable volume and good mass resolution, to compare
the FOF halo mass distribution against published fitting formulae for halo masses down to
4× 1010h−1M¯ and for redshifts up to z = 5.

In Fig. 2.1, we plot the differential halo mass function measured directly from the GIF2
simulation (red dotted line), the theoretical predictions from Press-Schechter theory (dotted
line) and from Sheth & Tormen(1999)(dashed line), and the fit to numerical data published
by Jenkins et al. (solid line). Note that we plot the mass function of Jenkins et al. only
over the mass range where their fitting formula was checked. We have multiplied the mass
function by M2 before plotting in order to take out the dominant mass dependence and
to make the differences between the various formulae more apparent. Fig. 2.1 clearly
shows that, in the redshift and mass range studied, the FOF(0.2) halo mass function is
well described by the formulae of Jenkins et al. and of Sheth & Tormen. While being not
perfect, the fit is extremely good in comparison with the Press & Schechter mass function.
This confirms the recent conclusion of Reed et al. (2003) and Yahagi et al. (2004), based
on simulations of smaller volumes, that these formulae can be applied at earlier redshift
and to lower masses than previously demonstrated.

2.4 Subhalo populations

Several methods have been proposed to identify subhaloes within larger systems. For a
detailed review we refer to Springel et al. (2001; hereafter SWTK). In this paper, we use
the algorithm SUBFIND, developed by SWTK, to isolate locally overdense and self-bound
particle sets within dark matter haloes. All such subhaloes containing at least 10 particles
are included in our subhalo catalogues.

2.4.1 A convergence study of subhalo populations

Independent of the particular method employed to identify subhaloes, most published stud-
ies agree that the differential subhalo mass function (MDF) of an individual halo is approx-
imately a power-law, dn/dm ∼ m−α, with α = 1.7− 1.9 independent of redshift and of the
mass of the parent halo (Moore et al. 1999; Ghigna et al. 2000; De Lucia et al. 2004). No
study so far has compared in detail the properties of the subhaloes identified by different
methods. Different criteria for defining the boundaries and the membership of subhaloes
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2 The subhalo populations of ΛCDM haloes

Figure 2.1: Comparison of the differential halo mass function in our GIF2 simulation
with different analytic predictions. Halos were identified with a standard FOF algorithm
with linking length b = 0.2, and we plot data for all haloes containing more than 20
particles. Note that we have multiplied the mass function byM 2 to take out the dominant
mass dependence.

are bound to lead to systematic differences in subhalo populations, but the uniformity of
the derived slopes suggests that such differences may be correctable through simple scaling
factors.

Further study of the effects of numerical resolution on simulated subhalo populations is
clearly important. Numerical convergence was claimed by Ghigna et al. (2000; hereafter
G00), by SWTK and by Stoehr et al (2002, 2003) on the basis of multi-resolution simu-
lations of individual objects. However, the data presented are not fully convincing. For
example, Fig. 2.5 of SWTK shows the subhalo mass function for a rich cluster resimulated
4 times with increasing mass and force resolution. The subhalo abundance in the low-
est resolution simulation S1 agrees well with that in the highest resolution simulation S4,
while the intermediate resolution simulations S2 and S3 agree very well with each other
but appear significantly offset from S4. The reasons for this are unclear. We show similar
data in Fig. 2.2 for the subhalo abundance in the GA series resimulations of a ‘Milky Way’
halo. (A cumulative version of this plot is given by Stoehr et al. (2002) but without GA3n
data). Here agreement is excellent for subhaloes that contain at least 30 particles, but
there may be significant differences for smaller subhaloes. These could be due to resolution
problems. As we show below (Section 4.6 and Fig. 2.10) it appears that subhaloes with
small N dissolve overly fast, particularly in the inner regions of a halo.

In order to avoid effects due to our particular definition of the boundary of a subhalo (and
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2.4 Subhalo populations

Figure 2.2: Differential subhalo abundance functions per unit host mass for the final
haloes in our GA1, GA2 and GA3n simulations. Error bars assume Poisson uncertainties
in the counts.

so of its mass) we check this convergence by examining the abundance of haloes in our GA
series as a function of their maximum circular velocity Vmax. We define the square of this
quantity to be the maximum value of GM(r)/r for those particles identified as bound to the
subhalo by SUBFIND. Vmax is a more stable quantity than the subhalo mass and depends
little on how the subhalo is defined. Fig. 2.3 demonstrates that the cumulative abundance
of subhaloes as a function of Vmax (the VDF) is very well reproduced between the different
simulations in the GA series. Thus, we conclude that our simulation techniques correctly
reproduce the subhalo abundance down to objects of relatively small particle count. In
particular, GA3n reproduces the correct subhalo abundance down to values of Vmax below
10 km/s and so well below the values relevant to the observed satellites of the Milky Way.

Dark matter haloes are strongly nonlinear and chaotic N-body systems, so we cannot
expect simulations of the ‘same’ object run with different resolution, with different codes,
or with different integration parameters to be very similar at the final time. (See for
example the various simulations from identical initial conditions in the Santa Barbara
Cluster Comparison Project (Frenk et al. 1999) This is because in a chaotic N-body system
any small perturbation to the trajectory is amplified exponentially by subsequent evolution.
In the bottom panel of Fig. 2.4, we show density maps for all subhaloes belonging to the
final FOF haloes of GA2 (left-hand panel) and GA3n (right-hand panel). Although these
plots are qualitatively similar, there is no detailed correspondance between subhaloes. On
the other hand, the upper panels show that the material which makes up these subhaloes
is very similarly distributed in the two simulations at early epochs. The biggest differences
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Figure 2.3: The cumulative abundance of subhaloes as a function of maximum circular
velocity Vmax for the final haloes in the GA1, GA2 and GA3n simulations.

are due to subhaloes which are included in the final halo in one of the simulations but
are just outside it in the other. Fortunately, we do not care much about the positions of
individual subhaloes and are more interested in statistical results. A re–simulation of an
object with higher resolution may not reproduce its structure in detail, but it can still be
viewed as the result of evolution from a nearby set of initial conditions (e.g. Hayes 2003).

2.4.2 Is the population of subhaloes similar in all haloes?

A number of authors have argued that the statistical properties of subhaloes in a galaxy-
sized halo are simply a scaled version of those in a rich cluster halo (Moore et al. 1999;
Helmi & White 2001; De Lucia et al. 2004; Diemand et al. 2004). Prima facie this is
surprising, since it is well known that the merging histories of haloes (and in particular
their formation times) vary systematically with mass (Lacey & Cole 1993; Navarro, Frenk
& White 1997). One might expect these differences to result in a systematic dependence
of the subhalo population on mass.

We define a dimensionless subhalo mass, mn = msub/Mhalo, where Mhalo is the virial
mass of the parent halo defined as spherical region which has 200 times critical density
of universe at that time. In the upper panels of Fig. 2.5, we plot subhalo abundance
against this normalized mass for three ranges of halo mass in our GIF2 simulation, [3 ×
1014h−1M¯, 10

15h−1M¯], [10
14h−1M¯, 3×1014h−1M¯] and [3×1013h−1M¯, 10

14h−1M¯].
These bins contain 7, 33 and 243 haloes, respectively. In this plot we also include subhalo
abundance functions for GA3n and for our 8 cluster simulations. If halo populations of
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2.4 Subhalo populations

Figure 2.4: Images at z = 0 and z = 5 of the material contained in z = 0 subhaloes of
the main halo with mass exceeding 5.8× 108h−1M¯ in GA2 and GA3n. Upper plots are
for z = 5, lower plots for z = 0. GA2 is shown on the left and GA3n on the right.
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Figure 2.5: Mass functions at z = 0 for subhaloes within radius r200 of their parent
haloes. In the top left-hand panel we plot differential subhalo abundance as a func-
tion of scaled subhalo mass, mn = msub/Mhalo, for three ranges of halo mass in our
GIF2 simulation, for GA3n and for our 8 cluster resimulations. In the top right-hand
panel, we plot the corresponding cumulative mass functions. In the bottom left-hand
panel, we plot differential subhalo abundance normalized to the total mass of the parent
haloes, 〈Mhalodn/dmsub〉. The corresponding cumulative mass functions are shown in
the bottom right-hand panel.
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2.4 Subhalo populations

differing mass were just scaled copies of each other, these various abundance functions would
all agree. In fact, however, the differential and cumulative normalized mass functions of
Fig. 2.5 depend systematically on halo mass. The subhalo abundance in high-mass haloes
is clearly higher (at given scaled subhalo mass) than in low-mass haloes. The difference
between the rich cluster haloes and the galaxy halo GA3n is a factor of 2. The cluster
haloes also clearly have more abundant subhaloes than the lowest mass haloes in our GIF2
simulation. A similar relation between subhalo abundance and mass of the host halo can
be found in Fig. 2.7 of Diemand et al. (2004).

In the bottom panels of Fig. 2.5, we show differential and cumulative plots of subhalo
mass abundance using a different normalization procedure. We divide the total number
of subhaloes in each bin by the total mass of all the parent haloes to obtain the subhalo
abundance per unit parent halo mass. We then plot this abundance as a function of the
actual mass (rather than the scaled mass). With this normalization, the subhalo mass
functions of different mass haloes agree very well. For relatively low-mass parent haloes
the subhalo abundance drops below that seen in more massive parent haloes for subhalo
masses exceeding about 1 per cent of the parent mass. Ignoring this high mass cut-off, the
subhalo abundance per unit halo mass in Fig. 2.2 is reasonably well fit by:

dn/dm ' 103.2(msubh/M¯)
−1.9hM¯

−1 (2.1)

An immediate consequence of the universality of this relation is a shift with parent halo
mass in the abundance of subhaloes as a function of scaled mass mn. For small subhalo
masses this shift is

4 log10 f(mn;Mhalo) = 0.14 log10Mhalo , (2.2)

where f(mn;Mhalo) is the mean abundance of subhaloes by normalized mass dn/dmn in
parent haloes of mass Mhalo. Since the slope of the subhalo MDF is close to 2, this shift
in the normalized function is quite small. As an example, the abundance shifts by about a
factor of 2 at fixed mn between a typical galaxy halo of mass 1012h−1M¯ and a rich cluster
halo of mass 1015h−1M¯. This is indeed the shift seen between GA3n and the clusters in
the upper panels of Fig. 2.5

In Fig. 2.6, we plot the abundance of subhaloes as a function of Vmax for GIF2 haloes
in our three mass bins and for our 8 clusters. We normalize the abundance as above by
dividing the total subhalo count in each bin by the total mass of the contributing haloes.
This figure confirms the result of Fig. 2.5. With this normalization the subhalo abundance
as a function of Vmax is ‘universal’, i.e. appears not to depend on parent halo mass. We also
plot in Fig. 2.6 the differential abundance of haloes in our GIF2 simulation as a function of
Vmax. Here we normalize by the total mass in the simulation. This shows the interesting
result that subhalo abundance and parent halo abundance follow similar curves, but with
the subhaloes shifted to lower velocity by 20 or 30 per cent. We will come back to this in
the next section. Note that the turn-over and drop at small Vmax for all these curves are
due to the resolution limit of the simulations.
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2 The subhalo populations of ΛCDM haloes

Figure 2.6: Differential abundance of subhaloes as a function of maximum circular
velocity Vmax. Curves are shown for three halo mass ranges in the GIF2 simulation and
for our 8 cluster simulations. All subhaloes within r200 of their hosts are counted, and
the number of subhaloes in each bin is normalized by the total mass of the contributing
haloes. The curve labelled GIF2 is the corresponding function for the main haloes
themselves and is normalized by the total mass in the GIF2 simulation.

2.4.3 The mass fraction in subhaloes

The total fraction of a halo’s mass invested in subhaloes is an interesting quantity but
one for which there is little agreement among the numbers reported in the literature (see,
for example, Ghigna et al. 1998, 2000; Springel et al. 2001; Stoehr et al. 2003). Most
authors estimate mass fractions between 5 per cent and 20 per cent, but Moore et al.(2001)
argue that the true fraction might approach unity if subhaloes could be identified down to
extremely small masses. Fig. 2.7 shows the average mass fraction (within r200) in subhaloes
more massive than given msub for GIF2 and cluster haloes in our three ranges of halo mass.
These curves show clear trends which can already be inferred from Fig. 2.5. The subhalo
mass fractions appear to converge to well-defined values as the lower limit on subhalo mass
is reduced, and the asymptotic value is larger for high-mass than for low-mass haloes.
Convergence is a result of the effective slope of the differential abundance function being
larger than −2, while the trend with halo mass results from the apparent universality of
the abundance function at low masses (when normalized by halo mass) together with a
dependence of the high-mass cut-off on halo mass.

The masses of individual subhaloes, and so the value of this asymptotic mass fraction,
will depend systematically on the algorithm used to define the subhaloes. A variety of dif-
ferent subhalo identification schemes have been used in published studies and undoubtedly
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Figure 2.7: The fraction of halo mass in subhaloes. This plot shows the fraction of the
mass within r200 of halo centre which is in subhaloes more massive than msub for GIF2
and cluster haloes in our three mass ranges. Error bars on selected points show the rms
scatter of the individual values of the mean for the 15 haloes used to derive the curve
for the most massive bin.

account in part for the wide range of subhalo mass fractions quoted. Notice also that since
most of the subhalo mass is in the biggest objects, there is a large halo-to-halo variation
(well over a factor of 2) in the overall subhalo mass fraction. We show this scatter through
the error bars on selected points in the curve for the most massive haloes in Fig. 2.7. These
give the rms scatter of the individual values for the 15 clusters averaged together to make
this curve.

2.4.4 Dependence of subhalo populations on halo concentration and
formation time

As demonstrated in Fig. 2.5, subhaloes tend to be more abundant in more massive haloes.
In this section, we show that strong trends are also apparent with halo concentration and
with halo formation time. Such systematics are not surprising since Navarro, Frenk &White
(1996, 1997) showed that more massive haloes form later and have lower concentrations.
They demonstrated that the density profiles of CDM haloes are well described by a simple
fitting function with two parameters, ρs and rs. Here rs is a characteristic radius where the
logarithmic density profile slope is −2, and ρs is the mass density at rs. They also showed
that these two quantities are strongly correlated, implying a relation between concentration
parameter c = r200/rs and halo mass. More massive haloes are less concentrated. They
argued that this is because more massive haloes typically form later. They also showed
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Figure 2.8: The relation between subhalo abundance and the concentration and the
formation redshift of haloes. The left-hand panel shows the number of subhaloes as
a function of halo concentration, as measured by Vmax/V200, for our GIF2 and cluster
simulations. Only subhaloes containing more than 0.1 per cent of the mass of their
parent are considered in compiling these statistics. The middle and right-hand panels
show the same measure of subhalo abundance as a function of halo formation times
defined as the redshifts when the most massive progenitor has 50 per cent and 25 per
cent of the final mass respectively. Open hexagons are for halos in the mass range
3× 1014h−1M¯ < Mhalo < 1015h−1M¯; filled triangles are for halos with 1014h−1M¯ <
Mhalo < 3×1014h−1M¯; and open squares are for haloes with 3×1013h−1M¯ < Mhalo <
1014h−1M¯.

that at given mass, haloes which form earlier have higher concentrations, a result which has
been confirmed by subsequent studies (Wechsler et al. 2000; Bullock et al. 2001; Zhao et
al. 2003a, 2003b). This suggests that haloes of similar concentration or formation time
should have similar formation histories and so similar numbers of subhaloes.

In the left-hand panel of Fig. 2.8 we show the number of subhaloes as a function of
the concentration of the host, as measured by Vmax/V200. (Using this measure of halo
concentration avoids fitting a model to our numerical data). For this comparison, we
count only subhaloes with msub/Mhalo > 0.001. This ensures that our results are free of
resolution effects. We include data for our GIF2 haloes and for our 8 cluster simulations.
Haloes of different mass are plotted using different symbols. Clearly, there is a trend for
more concentrated clusters to contain fewer subhaloes and this trend is present and is
similar in all three mass ranges.

The middle panel of Fig. 2.8 shows subhalo abundance as a function of halo formation
redshift, defined here as the redshift at which the most massive progenitor of a z = 0 halo
first exceeds half the mass of the final object. We obtain this value by linear interpolation
between the redshifts at which we have stored values of the progenitor masses. In this plot
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also there is a clear trend. Haloes which form late tend to have more subhaloes than haloes
which form early, and the relation between substructure and formation time is similar for
haloes of different mass. Notice that some haloes form at low redshift yet still contain few
subhaloes. Examination of some specific cases suggests that these are products of recent
mergers between isolated, similar mass haloes which had previously eliminated much of
their substructure. In order to avoid such cases, the right-hand panel of Fig. 2.8 plots
subhalo abundance against a formation time defined as the redshift when the most massive
progenitor has 25 per cent of the final mass. The number of recently formed objects with
little substructure is reduced and the relation between substructure and formation time
appears cleaner.

A final point to note from Fig. 2.8 is the scatter in the number of subhaloes within
objects of given concentration or formation time. The values span a range of up to a factor
of four, and the scatter is at most weakly related to halo mass. Clearly the variety of
possible formation paths for haloes of given global properties is large enough to produce
widely different subhalo populations even among rather similar objects.

2.4.5 The evolution of the subhalo mass function

Our analysis so far has concentrated on the subhalo distribution within our simulated
haloes at redshift z = 0. Although this is the time when our simulations have the best
effective resolution and so can give information over the widest range of scales, it is never-
theless interesting to look at other redshifts in order to investigate the evolution of subhalo
properties. Given the near universality we found above, it seems natural to concentrate on
the variation with redshift of the abundance of subhaloes per unit parent halo mass, and
to compare this with the abundance of haloes per unit mass in the Universe as a whole.
This comparison is made in Fig. 2.9 using the abundance of subhaloes in the most massive
progenitor of our ‘Milky Way’ halo in GA3n, and of the main cluster in each of our eight
cluster simulations. For these plots we multiply the differential abundance distributions
by the square of the (sub)halo mass in order to remove the dominant variation. We can
then plot results corresponding to a range of fourteen orders of magnitude in abundance
and seven orders of magnitude in (sub)halo mass. The simulation results are shown twice
in these plots, for reasons discussed below. The halo abundance predicted for the Universe
as a whole by the Sheth & Tormen (1999) mass function is shown by a dashed line in each
panel.

Fig. 2.9 shows that subhalo abundance distributions vary rather little with redshift. At
all redshifts we find the result already noted above for z = 0. Normalised to total available
mass, the subhalo abundance within haloes is very similar to the halo abundance in the
Universe as a whole. The offset between the two (the points without error bars and the
dashed lines in Fig. 2.9) is almost independent of mass and epoch and is roughly a factor
of four in abundance at fixed mass, corresponding to a factor of two in mass at fixed
abundance. This offset can be ascribed to the different ways in which we define the limits
of haloes and of subhaloes. Our haloes are bounded by a surface within which the mean
interior density is 200 times the critical value, while our subhaloes are bounded by the
surface where their density drops to the local value in their host. If the internal density
profiles of subhaloes were exactly similar to those of their hosts, and their radial distribution
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Figure 2.9: The differential abundance of subhaloes per unit parent halo mass in the
GA3n simulation and in our eight cluster simulations is compared with the Sheth &
Tormen (1999) formula for the abundance of haloes per unit mass in the Universe as a
whole. The four panels refer to four different redshifts as shown. The simulation results
are plotted twice in each panel. The symbols without error bars are for subhalo masses
as returned by SUBFIND. The points with error bars are obtained when these masses
are corrected upwards by a factor of two (see text). The crosses are for GA3n halo; and
the squares are the averaged value of 8 clusters.
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within their hosts exactly paralleled that of the dark matter, then it is easy to see that
this difference in boundary definition would cause the masses of subhaloes to be about a
factor of two smaller, on average than those of ‘field’ haloes of identical structure. The
set of points with error bars in Fig. 2.9 shows our simulation results when the subhalo
masses returned by SUBFIND are doubled to ‘correct’ for this effect. The agreement with
the Sheth-Tormen curves is then remarkably good.

We note that the density profiles of the small haloes which give rise to subhaloes are
more concentrated than those of the larger haloes they fall into. In addition, we show in
the next section that the radial distribution of subhaloes is less concentrated than that of
the mass. Both these effects should reduce the difference between the mass assigned to an
isolated halo and that assigned to the subhalo it turns into. On the other hand, dynamical
processes strip material from a halo once it is incorporated into a larger system, thereby
reducing its mass. As we demonstrate in Section 5, most subhaloes fell into their host
relatively recently and the amount of stripping is typically quite modest. The combined
effect of all these factors is that once subhalo masses are doubled, as above, the number
of subhaloes per unit mass within a halo is very similar to the number of small haloes per
unit mass in the surrounding universe and thus in the material from which the main halo
formed.

2.4.6 The spatial distribution of subhaloes

How are subhaloes distributed within their parent halo? Superficially, this appears closely
related to the distribution of galaxies within clusters, but in fact this relation is complicated
because subhalo masses are much more strongly affected by tidal stripping than are the
luminosities of the galaxies they contain. As a result the effective total mass-to-light ratio
of cluster galaxies is a strongly increasing function of clustercentric radius (see Fig. 2.12 of
SWTK).

It is also interesting to ask whether the radial distribution of subhaloes depends on
subhalo mass or on the mass of the parent halo. We address the latter dependence using
haloes from our GIF2 and cluster simulations split into the three mass ranges already
analysed in Section 4.2. For each mass range we compute the mean fraction by number of
all subhaloes within r200 that lie within normalized radius r/r200. These subhalo number
density profiles are shown in the upper left-hand panel of Fig. 2.10 and are compared with a
similarly defined profile for the total mass. All data are shown for z = 0 and for subhaloes
with msub/Mhalo > 0.001 only. We can then get comparable and reliable results for all
three halo mass ranges. It is clear that the radial distribution of subhaloes is substantially
less concentrated than that of the mass as a whole. There is no significant dependence
detected on parent halo mass over the one order of magnitude range tested in this panel,
but a weak dependence does appear when we compare with our ‘Milky Way’ simulation
GA3n (see below).

We address the issue of possible dependences on subhalo mass using our cluster resim-
ulations together with the haloes in the most massive bin of our GIF2 simulation (for a
total of 15 systems). In the upper right-hand panel of Fig. 2.10 we show radial number
fraction plots for subhalo populations limited above 10−3 and 10−4 of the parent halo mass.
There appears to be a slight tendency for the more massive haloes to be more centrally
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Figure 2.10: Cumulative radial distributions at z = 0 for subhaloes within r200 in
various sets of haloes in our simulations. The top left-hand panel shows the fraction of
all subhaloes with mass exceeding 0.1 per cent of their host halo mass and lying within
r/r200 of halo centre. Results are plotted for haloes from our GIF2 and cluster simulations
in each of the three mass ranges discussed above. The top right-hand panel shows similar
profiles but for various subhalo samples of the 15 massive haloes (Mhalo > 3×1014h−1M¯)
in our GIF2 and cluster simulations. For comparison, we plot cumulative profiles for
the total halo mass in both panels. The bottom left-hand panel shows profiles for all
subhaloes more massive than 5.78 × 108h−1M¯ for two resimulations of a ‘Milky Way’
halo with mass resolution differing by a factor of 10. This mass limit corresponds to
30 particles in the lower resolution simulation. The dotted line shows the profile for
subhaloes containing at least 30 particles in the higher resolution simulation. The bottom
right-hand panel gives subhalo profiles in these same two simulations but for the subhalo
mass range corresponding to 10 to 30 particles in the lower resolution simulation.
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concentrated, but the effect is small and it is unclear if it is significant given the relatively
small number of parent haloes in our sample.

For these same 15 clusters, the upper right-hand panel of Fig. 2.10 also shows the cumu-
lative radial profile of subhaloes for which Vmax is greater than 10 per cent of the parent
halo’s value of V200. It is interesting that this population appears to be significantly more
concentrated than populations defined in these same haloes above a mass threshold. This
presumably results from a combination of two effects. A subhalo of given density structure
is assigned smaller and smaller masses but unchanging Vmax values as it gets closer to the
centre of its parent halo. In addition, subhaloes near the centre of their parent tend to
be more heavily affected by tidal stripping than more distant objects as demonstrated in
Section 5.4; such tidal stripping affects the masses of subhaloes more strongly than their
maximum circular velocities (Ghigna et al. 2000; Hayashi et al. 2003).

The lower panels of Fig. 2.10 use our ‘Milky Way’ simulations to extend these results
to parent haloes of lower mass and to test further for resolution effects. The dashed
and solid curves compare the cumulative profiles for subhaloes with mass greater than
5.78 × 107h−1M¯ in GA2 and GA3n. This mass corresponds to 30 particles in GA2 and
is Mhalo/40000. The two profiles agree extremely well, suggesting that resolution is not
seriously effecting our subhalo distributions. Reducing the lower limit on subhalo particle
number still further does lead to noticeable effects, as we show in the lower right-hand panel
of Fig. 2.10. Here the comparison is repeated for the subhalo mass range corresponding
to 10 to 30 particles in GA2. The abundance of subhaloes is significantly depressed in the
lower resolution simulation, particularly in the inner regions. Near the resolution limit of a
simulation subhaloes begin to be lost and they disappear preferentially in the inner regions
of haloes.

Note that the GA3n result in this panel agrees well with that in the left-hand panel, as
does the additional GA3n profile plotted there for subhaloes with more than 30 particles
(and so withmsub > 3×10−6Mhalo). Although all these profiles are close to those plotted in
the upper panels for mass-limited subhalo populations within haloes of much higher mass,
they are nevertheless noticeably more concentrated. This can be seen in Fig. 2.11, where
we overplot the 30 particle limited subhalo number profile of GA3n and the mean profile
for subhaloes with msub > 10−4Mhalo in our 15 clusters; the subhalo profiles are plotted
with symbols. This suggests that as the density profile of the parent halo becomes more
concentrated, so too does that of the subhalo population. Note however, that the effect is
much weaker for the subhaloes than for the mass as a whole. Our subhalo number density
profiles are well fit by the following form:

n(< x)/N = (1 + ac)xβ/(1 + acxα) (2.3)

where, x is the distance to the host centre in units of r200, n(x) is the number of subhaloes
within x, N is the total number of subhaloes inside r200, a = 0.244, α = 2, β = 2.75, and
c = rs/r200 is the concentration of the host halo. The lines in Fig. 2.11 show the predications
of this formula for GA3n and for our 15 cluster haloes. Clearly, our fitting formula works
quite well. We caution that the concentration dependence here is based on our GA-series
simulations only and so should be confirmed with similar resolution simulations of other
objects. We emphasize that this formula applies to subhalo populations defined above a
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Figure 2.11: Cumulative radial distributions at z = 0 for subhaloes within r200 for the
GA3n halo and out 15 clusters. The lines overlying the symbols are the corresponding
fits given by Equation (3)

given lower mass limit, not to populations defined above circular velocity or luminosity
limits.

Our subhalo number density profiles agree well with those presented by Diemand et
al. (2003) who also found little dependence either on the mass of the parent or on the
mass of the subhalo. They also agree with the subhalo profiles found by De Lucia et al.
(2004) for their more massive haloes, but not with the more concentrated profiles found by
these authors for their least massive haloes. The differences are relatively small but appear
significant. In addition, De Lucia et al. (2004) found massive subhaloes in their simulations
to be significantly less centrally concentrated than low-mass subhaloes. At present, we have
no clear explanation for this difference with our results. We note that the discrepant results
in De Lucia et al are based on a simulation (denoted M3 by them) which was carried out
with an early version of GADGET and for which we have other indications that the chosen
integration parameters produced overly condensed halo cores and thus, perhaps, overly
robust subhaloes (Power et al. 2003). The profiles presented by Gill, Knebe & Gibson
(2004) are also similar to ours but are somewhat steeper in the innermost regions. This
is likely to reflect the rather different way in which they find subhaloes and define their
masses.
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Figure 2.12: The distribution of subhalo accretion times in our simulations. The
accretion time is defined as the redshift when the main progenitor first fell into a larger
system and so first became a subhalo. The left-hand panels give the fraction by number of
present-day subhaloes which were accreted before redshift z, while the right-hand panels
give the corresponding fractions by mass. Our different mass halo samples are labelled.
The upper panels refer to our samples of group and cluster haloes, while the lower panels
refer to three simulations of a ‘Milky Way’ halo with differing mass resolution.
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2.5 The evolution of subhaloes

In this section we analyse the evolution of subhaloes by following the history of individual
objects. We construct these histories according to the definitions of SWTK. Any particular
subhalo identified in one of our stored outputs can have progenitors in the immediately
preceding output which are either subhaloes or independent FOF haloes. A subhalo at the
earlier time is considered a progenitor if more than half its most-bound particles end up
in the subhalo under consideration. A FOF halo is considered a progenitor if it contains
more than half the subhalo’s particles. The main progenitor of a subhalo is its largest mass
progenitor. By tracing back its main progenitor, the history of any particular subhalo can
be followed to the moment of ‘accretion’ when its principal halo ancestor fell onto a larger
system and first became a subhalo.

2.5.1 The history of present subhaloes

It is interesting to know when current subhaloes were typically accreted onto the halo in
which they are found. The various panels of Fig. 2.12 show, for our different parent halo
samples, the fractions by number (left) and by mass (right) of present-day subhaloes which
were accreted before redshift z, as given in the abscissa. In constructing these plots we
have considered all subhaloes containing at least 10 particles at z = 0. The group and
cluster mass haloes are shown in the upper panels, and the three simulations of a ‘Milky
Way’ halo are shown in the lower panels. It is remarkable that very few of the subhaloes
identified at z = 0 have survived as subhaloes since early times. Only about 10 per cent of
them were accreted earlier than redshift 1 and 70 per cent were accreted at z < 0.5. These
numbers are similar for haloes of all mass and do not depend significantly on the mass of
the subhaloes considered. (The apparently discrepant behaviour of the mass fraction for
the GA series is just a consequence of focussing on a single realisation in which a relatively
massive object happened to accrete at z ∼ 0.7.) It is clear that subhaloes are typically
recent additions to the haloes in which they are seen, substantially more recent, in fact,
than typical dark matter particles.

2.5.2 Mass loss from subhaloes as a function of time

When a virialised halo falls onto a bigger structure it loses mass continually through tidal
stripping and its orbit slowly decays towards the centre of its new parent as a result of
dynamical friction. It is reasonable to expect that subhaloes which fell in earlier should
have lost a larger fraction of their original mass by the present day. To measure this
mass loss, we calculate the ratio of the mass of each subhalo at z = 0 to the mass of its
progenitor halo just before it was accreted. In Fig. 2.12 we plot the mean of this ratio for all
present-day subhaloes more massive than 1.73×1010h−1M¯ as a function of their accretion
redshift, showing results separately for parent haloes of different mass and including haloes
from our GIF2 and cluster simulations. The noise at high redshifts in this plot is due to
poor statistics. As we saw already in the last section, very few present-day subhaloes were
accreted at such early times.

It is clear from Fig. 2.13 that there is little dependence of mass loss on parent halo
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Figure 2.13: Mean retained mass fractions for subhaloes identified at z = 0 as a function
of the redshift at which they were accreted. Different curves refer to parent haloes of
different mass and all present-day subhaloes more massive than 1.73× 1010h−1M¯ were
included when taking the averages.

mass and that the mean retained mass fraction for surviving subhaloes is a strong function
of accretion redshift. Notice that since we compile statistics for subhaloes identified at
z = 0, we neglect objects which have been stripped to masses below our resolution limit or
disrupted entirely. As we show in the next section, the retained mass fractions of Fig. 2.12
are thus substantially higher than those of typical haloes accreted at each redshift.

2.5.3 The fate of accreted haloes

In this section we follow all the haloes which are accreted onto the main progenitor of a
final halo (and so first become subhaloes of it) at redshifts 2 and 1. We are interested to
learn what fraction of these survive until z = 0, what are the final masses of the survivors,
what happens to those that do not survive, and how these various fates depend on the mass
of the halo which is accreted. Here we use our eight rich cluster simulations to investigate
these issues. We begin by finding all progenitors of a final cluster which are independent
FOF haloes in the stored output immediately beyond z = 1 (or 2) but are already listed as
part of the main progenitor in the subsequent output. We then attempt to trace all these
subhaloes forward until either we reach z = 0 or they are lost. Three different fates are
possible for each accreted halo:
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Figure 2.14: The fate of haloes which merge into the main cluster progenitor at redshifts
of 2 & 1. Results are shown averaged over our eight cluster simulations in top and
bottom panels, respectively. Filled symbols and solid lines show the fraction of haloes
which survive as independent subhaloes at each later redshift z, while open symbols
and dashed lines show the fraction of the total progenitor halo mass attached to these
survivors. For each accretion redshift we show results for progenitor haloes containing
at least 100 and at least 300 particles. A surviving subhalo is required to have at least
10 particles assigned to it by our subhalo-finder.
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(1) If it can be followed as a subhalo to z = 0, we say it survives;

(2) If it dissolves and becomes part of the main body of its host, we say it disrupts;

(3) If it merges with a larger subhalo and then loses its identity, we say it merges. We find
that no more than a few percent of accreted haloes suffer this fate.

In Fig. 2.14 we show the fraction of accreted haloes which are identified as surviving at
each later redshift, as well as the fraction of the total mass initially assigned to these haloes
which remains attached to the surviving subhaloes. We see that while more than 90 per
cent of accreted haloes are identified as subhaloes in the output immediately after their
accretion, the total subhalo mass is, however, only about half of that assigned to the original
haloes. This is a result of the effect already noted above. The algorithm which we use to
identify subhaloes bounds them at a substantially higher density than that used to bound
isolated haloes. Consequently, if a field halo falls onto a larger system its assigned mass
decreases by a factor of two, on average, even if its structure is unchanged. As subhaloes
orbit within their parent haloes, their masses are further reduced by tidal stripping. Thus
the fraction of the initial mass attached to the survivors continually decreases, and more
and more subhaloes drop below the mass limit for identifying them in our simulations.

Fig. 2.14 gives results for two sets of progenitor haloes at each accretion redshift. These
are defined to contain at least 100 and at least 300 particles, corresponding to halo masses
exceeding 5 × 109h−1M¯ and 1.5 × 1010h−1M¯, respectively. As can be seen, the mass
fraction in the survivors is independent of this mass limit and is 8 per cent for haloes
accreted at z = 1 and 2 per cent for haloes accreted at z = 2. The fraction of survivors by
number does depend on the mass limit. Our samples only contain subhaloes identified with
more than 10 particles, so descendents begin to be lost from the lower mass halo sample for
mass reduction factors greater than 10 whereas factors exceeding 30 are needed to remove
objects from the higher mass sample.

2.5.4 Radial dependence of accretion time and mass loss

Subhaloes which were accreted onto their parent halo’s main progenitor at early times
initially had relatively short orbital periods and so should be located, on average, in the
inner regions of the final halo. In addition, a subhalo which has been orbiting within its
parent for a long time will have suffered substantially from the effects of dynamical friction
and tidal stripping, so its orbit will have decayed by a larger factor than that of a recently
accreted subhalo of similar current mass. Both these effects are expected to lead to a
correlation between the radial position of a subhalo and its accretion redshift.

In Fig. 2.15 we plot mean and median values of accretion redshift and of retained mass
fraction against r/r200 for subhaloes of the 15 haloes in our GIF2 and cluster simulations
with masses exceeding 3×1014h−1M¯. The upper and lower panel refer to subhaloes more
massive than 2× 1010h−1M¯ and more massive than 6× 1010h−1M¯ respectively. Clearly
there is indeed a strong age-radius relation which is similar for subhaloes of differing mass.
Recently accreted subhaloes tend to occupy the outer regions of their host, while older
subhaloes reside preferentially in the inner regions. In addition, haloes near the centre
typically retain a much smaller fraction of their progenitor halo’s mass than those in the
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outer regions. The large difference between the median and the mean in the accretion
redshift plot is a reflection of the substantial skewness of the distribution. As we already
saw in Fig. 2.12 and 2.13, tidal stripping is clearly very effective and, as a consequence, the
ancestors of inner subhaloes were more massive than those of outer subhaloes of the same
mass. Thus in a galaxy cluster inner subhaloes are likely to host brighter galaxies than
outer subhaloes of similar mass.

2.6 Summary and discussion

We have used a single, large-scale cosmological simulation together with two sets of resim-
ulations of the formation of individual cluster and galaxy haloes to carry out a systematic
study of the properties of dark halo substructure in the concordance ΛCDM universe. In
agreement with the earlier work of Jenkins et al. (2001), Reed et al. (2003) and Yahagi et
al. (2004) we find the abundance of haloes (defined using a friends-of-friends group finder
with linking length b = 0.2) to be well described by the Sheth & Tormen (1999) mass func-
tion down to masses of a few times 1010M¯ and out to a redshift of 5. Our main results
for the subhalo populations within these haloes can be summarized as follows:

(1) The subhalo populations of different haloes are not simply scaled copies of each other,
but vary systematically with global halo properties. On average, massive haloes
contain more subhaloes above any given fraction of parent mass than do lower mass
haloes, and these subhaloes contain a larger fraction of the parent’s mass. At given
halo mass, subhaloes are more abundant in haloes which are less concentrated, or
formed more recently.

(2) There is considerable scatter in the abundance of subhaloes between haloes of similar
mass, concentration or formation time. This presumably reflects differences in the
details of halo assembly.

(3) For subhalo masses well below that of the parent halo the mean subhalo abundance per
unit parent mass is independent of the actual mass of the parent. It is very similar to
the abundance of haloes per unit mass in the universe as a whole, once a correction
is made for the differing bounding density within which the masses of haloes and
subhaloes are defined.

(4) Normalised in this way to total parent halo mass, the mean abundance of subhaloes
as a function of maximum circular velocity is also quite similar to the abundance per
unit mass of haloes as a function of Vmax. For subhaloes the abundance per unit mass
is about a factor of two lower at given Vmax than for haloes. Equivalently, the Vmax
values of subhaloes at given abundance per unit mass are about 25 per cent lower
than those for haloes.

(5) In agreement with previous studies, we find the the radial distribution of subhaloes
within their parent haloes to be much less concentrated than that of the dark matter.
We find no significant dependence of this radial profile on the mass of the subhaloes
and only a very weak dependence on the mass (or concentration) of the parent halo.

52



2.6 Summary and discussion

Figure 2.15: Radial dependence of the accretion redshift (left-hand panel) and retained
mass fraction (right-hand panel) for subhaloes of the 15 haloes more massive than 3 ×
1014h−1M¯ in our GIF2 and cluster simulations. In each panel thick solid lines give the
mean at each value of r/r200 while thin solid lines give the median. The top panels are
for subhaloes more massive than 2 × 1010h−1M¯ while bottom are for subhaloes more
massive than 6× 1010h−1M¯.

53



2 The subhalo populations of ΛCDM haloes

To a good approximation the radial distribution of subhaloes appears ‘universal’ and
we give a fitting formula for it in equation 2.3.

(6) The subhalo number density profile does depend on how the population is defined.
Subhalo populations defined above a minimum circular velocity limit are significantly
more concentrated than those defined above a minimum mass limit.

(6) Most subhaloes in present-day haloes fell into their parent systems very recently. Only
about 10 per cent of them were accreted earlier than z = 1 and 70 per cent were
accreted at z < 0.5. These fractions depend very little on the mass of the subhaloes
or on that of their parents

(7) The rate at which tidal effects reduce the mass of subhaloes is not strongly dependent
on the mass of the accreted object or on that of the halo it falls into. About 92 per
cent of the total mass of haloes accreted at z = 1 is removed to become part of the
‘smooth’ halo component by z = 0. For haloes which fall in at z = 2 this fraction is
about 98 per cent.

(8) Subhaloes seen near the centre of their parent haloes typically fell in earlier and retain
a smaller fraction of their original mass than subhaloes seen near the edge. Thus
inner subhaloes may be expected to host brighter galaxies than outer subhaloes of
similar mass (see Springel et al. 2001).

These properties suggest a relatively simple picture for the evolution of subhalo popula-
tions. A substantial fraction of the mass of most haloes has been added at relatively recent
redshifts, and this mass is accreted in clumpy form with a halo mass distribution similar to
that of the Universe as a whole. Since tidal stripping rapidly reduces the mass of subhaloes,
the population at any given mass is dominated by objects which fell in recently and so had
lower mass (and thus more abundant) progenitors. The orbits of recently accreted objects
spend most of their time in the outer halo, so that subhaloes of given mass are substantially
less centrally concentrated than the dark matter as a whole. Subhaloes which are seen near
halo centre have shorter period orbits and so must have fallen in earlier. They thus retain
a relatively small fraction of their initial mass.

Comparison of these subhalo properties with observation is far from simple. The recent
accretion of most subhaloes means that the galaxies at their centres were almost fully
formed by the time they became part of their current host. We might therefore expect their
observable properties to be more closely related to the mass of their progenitor haloes and
to their accretion redshifts than to the current masses of their subhaloes. Explicit tracking
of galaxy formation during the assembly of cluster haloes shows that these differences can
be large. For example, both Diaferio et al. (2001) and Springel et al. (2001) find radial
number density profiles for magnitude limited samples of galaxies which are similar both
to the underlying dark matter profiles and to the observed profiles of real clusters, but
which are very different from the number density profiles for mass limited subhalo samples.
Similar differences are to be expected between the velocity biases of galaxies and subhaloes.
Models for the stellar content of subhaloes which are based purely on their current mass
and internal structure are very unlikely to be successful. The past history of subhaloes must
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be included to get realistic results, as must galaxies associated with apparently disrupted
subhaloes. We investigate these issues further in a companion paper (Gao et al. 2004);
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3 Galaxies and subhaloes in ΛCDM galaxy
clusters

Abstract
We combine 10 high resolution resimulations of cluster–sized dark haloes with semi–
analytic galaxy formation modelling in order to compare the number density and ve-
locity dispersion profiles of cluster galaxies with those of dark matter substructures
(subhaloes). While the radial distribution of galaxies follows that of the dark matter
closely, the distribution of dark matter subhaloes is much less centrally concentrated.
The velocity dispersion profiles of galaxies are also very similar to those of the dark
matter, while those for subhaloes are biased high, particularly in the inner regions
of clusters. We explain how these differences, already clearly visible in earlier work,
are a consequence of the formation of visible galaxies at the centres of dark matter
haloes. Galaxies and subhaloes represent different populations and are not directly
comparable. Evolution produces a complex and strongly position-dependent relation
between galaxies and the subhaloes in which they reside. This relation can be properly
modelled only by appropriate physical representation of the galaxy formation process.

3.1 Introduction

A variety of observational indicators have recently converged to establish the ΛCDM cos-
mogony as the de facto standard model for the formation of structure in our universe (e.g.
Spergel et al 2003). For the general class of such hierarchical models, Navarro, Frenk &
White (1996, 1997) showed that the radial density profiles of nonlinear structures such as
galaxy or cluster dark haloes are well represented by a simple fitting formula of “univer-
sal shape”. As new galaxy surveys have amassed homogeneous data for large samples of
clusters, the mean radial profiles of both number density and velocity dispersion have been
found to conform quite closely to these NFW predictions for the dark matter(Carlberg et
al. 1997;Biviano &Girardi 2003). Models which follow galaxy formation and cluster as-
sembly explicitly do reproduce such parallel galaxy and dark matter profiles, even though
the relation between the luminosity and dark matter mass of individual galaxies shows a
lot of scatter and is predicted to depend strongly on clustercentric distance (Diaferio et al.
2001; Springel et al 2001).

The high resolution achieved by numerical simulations in recent years has allowed detailed
study of the properties of dark matter substructure (subhaloes) within dark haloes (Tormen
1997; Ghigna et al. 2000; Klypin et al. 1999a, 1999b; Stoehr et al. 2002, 2003; De Lucia
et al. 2004a; Diemand et al. 2004; Gill et al. 2004; Gao et al. 2004). These studies agree
quite well on the structure, abundance and radial distribution predicted for subhaloes,
once differences in numerical resolution are accounted for. On the other hand, a variety of
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contradictory conclusions have been drawn from comparison with the observed properties of
luminous objects in galaxy haloes and galaxy clusters (compare the discussions in Moore et
al. (1998), Klypin et al. (1999), Stoehr et al. (2002,2003), Springel et al. (2001), D’Onghia
& Lake (2003), Desai et al. (2003), Diemand, Moore & Stadel (2004) and Kravtsov et
al. (2004)). We argue below that these disagreements can in most cases be traced to
insufficiently careful modelling of the relation between the properties of subhaloes and
those of the galaxies they contain.

In particular, a number of recent studies have noted that the radial distribution of sub-
haloes within dark haloes is very shallow compared both to that of the dark matter and
to that of observed galaxies in real clusters (Ghigna et al. 2000; Diemand et al. 2004; De
Lucia et al. 2004a; Gao et al 2004). Some of these authors concluded that this difference
may indicate a fundamental problem for the ΛCDM model, failing to notice that the earlier
simulations of Springel et al. (2001) had followed substructure with comparable numerical
resolution and showed that modelling baryonic processes can produce a galaxy profile in
good agreement with observation. This suggests there are serious inadequacies in a simple
model where the luminosity (or kinematics) of a galaxy are simply related to the mass (or
potential well depth) of the corresponding subhalo in a dark-matter-only simulation. With
the assumptions of Springel et al. (2001) the relation between these properties shows very
large scatter and depends systematically on radius within a cluster halo. This is because
the stellar mass of galaxy is determined primarily by its halo mass at the time the stellar
component was assembled rather than by its halo mass at the present day.

Semi–analytic models of the kind used by Springel et al. (2001) are an ideal tool to
explore the relation between dark matter subhaloes and the galaxies they host. In this
paper we use the improved semi-analytic model developed by De Lucia, Kauffmann &
White (2004b) which is able to reproduce the observed luminosity functions, metallicities
and colour-magnitude relations of cluster galaxies, as well as the metall content of the
intracluster medium. We apply this model to a set of ten high resolution dark-matter-only
resimulations of cluster formation in a ΛCDM universe, eight of which are also analysed
in companion papers on the systematic properties of subhalo populations in ΛCDM dark
haloes (Gao et al. 2004) and on the assembly of the central cusps of ΛCDM clusters (Gao
et al. 2003)

This Letter is structured as follows. In Sec. 3.2, we briefly describe the simulations and
the semi–analytic model used for this study. In Sec. 3.3, we study the spatial distributions
and the velocity dispersion profiles of galaxies and dark matter substructures and we explain
the differences between them. A discussion and a summary of our results are presented in
Sec. 3.4.

3.2 The Simulations and the Semi–analytic Model

We use a set of ten N-body resimulations of the formation of a massive galaxy cluster
in a ΛCDM Universe. The clusters range in mass M200 from 4.5 × 1014 h−1M¯ to 8.5 ×
1014 h−1M¯, and were initially identified in a cosmological simulation of a region 0.5h−1Gpc
on a side (Yoshida et al. 2001). Many of them have been studied previously in Power et
al. (2003), Gao et al. (2003, 2004) and Navarro et al. (2003). These resimulations
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were carried out using the publicly available parallel N–body code GADGET (Springel,
Yoshida & White 2001) with a particle mass of 5.12× 108 h−1M¯ and a force softening of
ε = 5h−1kpc. The cosmological parameters assumed were: Ω0 = 0.3, ΩΛ = 0.7, h = 0.7
(we adopt the standard convention H0 = 100h km s−1Mpc−1) and normalisation σ8 = 0.9.
Dark matter subhaloes are identified using the algorithm SUBFIND (Springel et al. 2001).
All subhaloes containing at least 10 particles are tracked. The numerical data for each
simulation are stored at 50 times logarithmically space between 1 + z = 40 and 1 + z = 1
and tree structures are built to follow the formation and merger history of each halo and
its subhaloes.

We follow the baryonic evolution using the semi–analytic model by De Lucia et al.
(2004b). As in Springel et al. (2001) the model explicitly follows the evolution of the
dark matter halo within which a galaxy forms, even after this halo is accreted by a larger
object and becomes one of its subhaloes. The model also follows the chemical and pho-
tometric evolution of cluster galaxies in a self–consistent way, together with the chemical
enrichment of the intracluster medium. De Lucia et al. (2004b) have shown that their
model agrees with a large body of observational results for galaxies in the local Universe,
both in clusters and in the field. We refer to the original paper for a more detailed descrip-
tion. In this study, we use their ‘feedback’ model which they find to be the only one able
to reproduce the observed decline in baryon fraction from rich clusters to galaxy groups.

3.3 Number density and velocity dispersion profiles for galaxies
and subhaloes

A number of recent studies have focussed on the radial distribution of subhaloes within
dark matter haloes (Ghigna et al. 2001; Stoehr et al. 2003; De Lucia et al. 2004a; Diemand
et al. 2004; Gao et al. 2004; Gill et al. 2004). These papers all agree that the subhalo
profile is shallower than that of the underlying dark matter, and indeed their subhalo
profiles are all very similar. Our own results are shown in the top left panel of Fig. 3.1 in
the form of average radial profiles for the dark matter and for different subhalo samples
within our 10 cluster resimulations. Note that there are roughly 50 subhaloes per cluster
with Msub/Mhalo > 2 × 10−4 or with Vsub/Vhalo > 0.09. (The two velocities here are the
maximum circular velocities of the subhalo and of the cluster respectively.) There are about
350 subhaloes per cluster with more than 30 particles, which is the limit to which Gao et
al. (2004) considered the subhalo distributions to be insensitive to resolution effects. The
shaded region shows the scatter of the dark matter density profiles in our simulation set.
Note that all densities have been normalised to the mean density inside the virial radius.
The weak concentration of the subhalo distribution relative to that of the dark matter is
evident for all our samples, although, as noted by Gao et al. (2004), the profile depends
on how the subhalo population is defined (limited in mass or in circular velocity). In this
same panel we also plot mean profiles for our model galaxies to two different magnitude
limits. In contrast to the subhalo profiles and in agreement with Diaferio et al. (2001) and
Springel et al. (2001), these coincide very nicely with the mean dark matter density profile.

In the top right panel of Fig. 3.1 we plot the average projected dark matter distribution
together with the surface density profile of model galaxies to two different magnitude limits.
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Figure 3.1: Top left: mean radial profiles for the dark matter (solid line), for model
galaxies to two different magnitude limits (filled symbols), and for different subhalo
samples, based on the ten clusters used in this study. Top right: mean projected surface
density profiles for the dark matter (solid line) and for model galaxies to two different
magnitude limits (dashed and dotted lines). The filled symbols represent the mean
observed surface density profile of cluster galaxies in the CNOC survey (Carlberg et al.
1997). In these two panels, the hashed region represents the full scatter in dark matter
profiles. Bottom panels: 3-D velocity dispersion profile (left) and line–of–sight velocity
dispersion profile (right) for dark matter (solid line), for subhaloes containing at least
30 particles (dash line), and for model galaxies to two different limiting magnitudes.
The dashed regions and error bars represent standard 1σ scatter in the dark matter and
galaxy(B < −17) velocity dispersion profiles.
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For comparison, we also plot the average observed surface density profile for cluster galaxies
in the CNOC survey (Carlberg et al. 1997). The surface density profiles for the simulations
are obtained by projecting along the x, y and z axes in turn, keeping only dark matter
particles and galaxies within±2R200 of cluster centre in depth, and binning up the projected
density profiles out to a projected distance of 2R200. The plotted curves are then an average
over three projections of each of ten simulations. The mean galaxy surface density profiles
of our simulations agree extremely well both with the observational data and with the mean
dark matter profile.

In the bottom panels of Fig. 3.1 we show the 3-D (left panel) and the line–of–sight (right
panel) velocity dispersion profiles of dark matter particles, of galaxies and of subhaloes
containing at least 30 particles. The hashed region and error bars represent the standard
1σ scatter of the dark matter and galaxy (B < −17) profiles among our ten resimulations.
In agreement with Diemand et al. (2004) and Gill et al. (2004), we find that the velocity
dispersion of the subhalo population substantially exceeds that of the dark matter, partic-
ularly in the inner regions. On the other hand, any bias in the velocity dispersions of the
model galaxies are quite weak.

Fig. 3.1 clearly shows that subhaloes and galaxies have very different number density
and velocity dispersion profiles in our simulations, despite the fact that we assume that a
galaxy forms at the centre of each dark halo and is carried along with it when it falls into
a larger system and so becomes a subhalo. What is the origin of these differences? If one
wants to relate the properties of subhaloes to those of the galaxies residing within them,
the evolution of the baryonic component has to be tracked appropriately. This necessarily
involves consideration of the full collapse, assembly, merging and tidal stripping history of
each subhalo, rather than just its properties at the final time. Such tracking can be carried
out conveniently and moderately realistically using semi–analytic techniques, as is done in
this work.

Note that many of the model galaxies used to construct Fig. 3.1 are not associated
with any resolved dark matter subhalo. In pure dark matter simulations subhaloes can
disappear once their mass falls below the resolution limit of the simulation. It may be that
their dark matter content should indeed be reduced to such small values by tidal stripping,
or it may be that proper inclusion of the effects of the baryonic component would make
them more resistant to stripping and disruption, as originally envisaged by White & Rees
(1978). Our semi–analytic model assumes that the visible galaxy survives even if the
mass of the correponding subhalo drops below the limit of our N-body simulation. We
associate the galaxy with the most bound particle of its subhalo at the last time this could
be identified, and we use this particle at later times to track the galaxy’s position and
velocity. Such ‘orphan’ galaxies behave as individual N-body particles although we assume
them to merge with the central galaxy of the cluster on a dynamical friction time-scale.
They are responsible partly for the large differences between the ‘galaxy’ and ‘subhalo’
profiles in the inner regions of our clusters.

As discussed in Gao et al. (2004), the infall time and the retained mass of a subhalo
are both strongly increasing functions of clustercentric radius. This implies that subhaloes
in the inner regions of cluster haloes today were generally more massive in the past than
similar mass but more recently accreted subhaloes in the outer regions. As first shown
by Springel et al. (2001), this produces an increasing mass–to–light ratio as a function
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Figure 3.2: Mass–to–light ratio (left) and (circular velocity)4–to–light ratio (right) for
model galaxies brighter than B = −17 as a function of distance from cluster centre. Thick
lines show median values as a function of radius. Galaxies that are not associated with
any dark matter subhalo are assigned zero mass and circular velocity, but are displayed
with a randomly generated small negative value of the ordinate so that they are visible
in the plots.
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of the clustercentric distance. We show this for our present models in Fig. 3.2 where
we plot mass–to–light ratio (M/LB) and (circular velocity)4–to–light ratio (V 4/LB) for
our model galaxies as a function of distance from cluster centre. Galaxies brighter than
MB = −17 from all ten resimulations are shown here. The velocity used in the right panel
is defined as the maximum circular velocity of the associated subhalo. Outside the virial
radius, these ratios are almost flat, reflecting the proportionality between the halo mass
(or circular velocity to the fourth power) and the galaxy luminosity for isolated haloes (the
Tully-Fisher relation). About 60 per cent of the galaxies brighter than MB = −17 are not
associated to any resolved subhalo, and so are assigned zero mass and circular velocity.
Note, in this plot, in order to show the density distribution of those ‘orhpan’ galaxy, we
plot mass–to–light ratio for them vary randomly from −25 to 0, and (velocity–to–light)4

from −0.025 to 0, respectivly. Springel et al. (2001) show that this trend is present at a
similar level in a simulation with almost ten times better resolution than those we use here.
In addition, numerical convergence studies by Diemand et al. (2004) and by Gao et al.
(2004) indicate that resolution effects on subhalo mass are relatively small for subhaloes
with more than 30 particles and so cannot be responsible for the trends in Figure 2.

The radial variation of the mass–to–light ratio of cluster galaxies reflects the fact that
tidal stripping is very efficient in reducing the masses of subhaloes within larger systems
but is assumed to have much less effect on the luminosity and structure of the galaxies
which reside at their centres. In such a situation, selecting subhaloes above a certain mass
(or circular velocity) results in a population with very different properties from a galaxy
population selected above a certain limiting magnitude.

3.4 Summary and discussion

In this Letter, we have implemented a semi-analytic treatment of galaxy formation on
ten high resolution resimulations of galaxy cluster evolution in order to study the number
density and velocity dispersion profiles predicted for galaxies and for dark matter subhaloes
in ΛCDM galaxy clusters. In agreement with previous work, we find galaxy profiles that
agree well both with simulated dark matter profiles and with observed galaxy profiles,
but subhalo profiles with much weaker central concentration and with substantially higher
velocity dispersion.

We show that these differences are due to a strong increase in the mass–to–light (or
(circular velocity)4–to–light) ratio of galaxies as a function of the distance from cluster
centre. This trend is caused by tidal stripping which rapidly reduces the mass of dark
matter subhaloes once they are accreted onto a larger structure, while only weakly affecting
the galaxies at their centres. In related work, De Lucia et al. (2004a) and Gao et al.
(2004) examine in considerably more detail the efficiency of tidal stripping, showing that
the longer a substructure spends in a massive halo, the larger is the destructive effect.
As they demonstrate explicitly, subhaloes are constantly being erased and being replaced
by newly infalling haloes. Our semi-analytic models assume that this process does not,
however, destroy the galaxy at the centre of each subhalo, which has typically accumulated
a substantial and strongly bound stellar component during early evolutionary stages.

Much of the work on substructure within dark matter haloes has attempted to link
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3 Galaxies and subhaloes in ΛCDM galaxy clusters

simulated substructure to observed galaxies by assuming a constant mass–to–light ratio for
subhaloes or by relating their maximum circular velocity to galaxy luminosity through the
observed Tully–Fisher and Fundamental Plane relations. Our results show clearly, as did
the earlier results of Springel et al. (2001) that such assumptions are very unlikely to give
realistic results. Galaxies and subhaloes are not simply related. The luminosity of a galaxy
cannot be inferred from the z = 0 properties of the subhalo which corresponds to it in a
dark-matter-only N-body simulation. Indeed, many cluster galaxies have no corresponding
subhalo in such a simulation, even though the haloes in which they originally formed
were easily resolved by the simulation. The galaxy formation process must be treated
appropriately to get results which are even qualitatively correct.

We note that these issues will not be addressed by carrying out dark matter simulations
of higher resolution. The tests of Diemand et al. (2004) and Gao et al. (2004) show that
subhaloes can be followed and their masses tracked at least roughly down to a a limit of
20 particles or so, corresponding to subhalo masses around 1010M¯ for the simulations
in this paper. This is below the observed stellar mass of the galaxies in the real samples
with which we are comparing our models. Thus dynamical evolution becomes dominated
by the visible components of galaxies before our simulations run into resolution problems.
Any improvement over our current simple semi-analytic assumptions will require explicit
modelling of structure in the stellar component of cluster galaxies.

Finally we note that although this paper has dealt with cluster–sized haloes only, the
same caveats apply also to galaxy– and group–sized haloes. Only through a full treatment
of the baryonic physics, is it possible to carry out a detailed comparison between theoretical
results and observational data. A complex network of actions and back–reactions regulates
the evolution of the galaxy components we see, and any comparison of simulated subhaloes
to observed galaxies must consider the time-integrated effect of these processes or risk
serious error.
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4 Earlier formation and later merging of the
Giant Galaxies

Abstract
The most luminous galaxies in the present Universe are found at the centers of the
most massive dark matter haloes, rich galaxy clusters. In the ΛCDM cosmology, such
massive halo cores are present at redshift z = 6 with a comoving number density (as a
function of mass interior to ∼ 10 kpc) that is comparable to today’s value. The identity
of the matter in these central regions is, however, predicted to change as major mergers
bring together stars and dark matter from initially well separated sub-units. We use
N-body simulations to show that these mergers push pre-existing matter outwards in
the dominant galaxy, preserving the inner density profile of collisionless matter. It
appears that the central regions of large galaxies end up dominated by stars formed
in a number of dense cores, well before the last major mergers. The density profile of
collisionless matter (stars and dark matter combined) in these central regions appears
to be stable and to have attractor-like behavior under merging. This suggests that
the baryon loading associated with dissipative contraction and star formation may be
erased as subsequent mergers drive the mass distribution back to a universal profile.
Such suppression of the effects of baryon loading, along with the early assembly of
mass concentrations, may help resolve some apparent challenges to the CDM model
for structure formation.

4.1 Introduction

Recent merger-driven evolution of the most massive galaxies was under discussion well
before the introduction of the Cold Dark Matter (CDM) model for structure formation
(see for example Toomre & Toomre 1972, §VII.b; Ostriker & Tremaine 1975), and has long
been recognized as an important process within the CDM model (Frenk et al. 1985). A less
widely discussed aspect of this model is that dark matter halos with characteristic velocities
and comoving number densities characteristic of the luminous parts of large galaxies form
at redshifts well above unity (Loeb & Peebles 2003). The dichotomy – very significant
events in the history of the massive galaxies at low and high redshift – may be mirrored
in the observational data: there is clear evidence for merging and evolution beyond aging
of the star populations at redshift z < 1, and clear evidence also for the presence of giant
galaxies with old star populations at redshifts well above unity (Conselice et al., 2003).

We discuss the relation between these two aspects of galaxy formation in the CDM model
by combining arguments based on analytic fitting functions and on direct numerical N-body
simulations. The early formation of mass concentrations similar to those in the luminous
parts of the most massive present-day galaxies is reviewed in §2. In §3 we present ΛCDM
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4 Earlier formation and later merging of the Giant Galaxies

simulations which have sufficient resolution to follow the assembly of the regions which
house the central dominant galaxy in observed rich clusters. The details of this assembly
are analyzed in §4. Mergers among massive halos at redshifts between 0.5 and 4 bring more
matter into the innermost 10 kpc than remains from the dominant progenitor at higher
redshift. Logical and observational consistency with the early formation of massive systems
leads to three conditions. First, most of the matter present in the centers of the dominant
halos at z = 6 has to be displaced outwards during mergers. We show this effect in the
simulations. Second, the hierarchy of mergers has to preserve the stellar concentration
within radii ∼ 10 kpc. This may reflect the fact that in merger simulations the dense
regions (where stars seem most likely to form) tend to end up in the dense regions of the
merger remnant. We present in §4 a statistical measure that illustrates this preservation
effect. Third, the characteristic density profile of a virialized halo of collisionless matter
has to be stable under a sequence of disturbances from major mergers. As discussed in
§4.3, this attractor effect is supported by the simulations. An important observational
consequence may be the suppression of the adiabatic baryon loading associated with gas
cooling and star formation.

Our central conclusion is that in the ΛCDM cosmology giant galaxies exist at redshift
z = 3 with close to the present comoving number density, in terms of the total mass
measured within physical radius r ∼ 10 kpc. At this time they may have up to half the
present star mass in this region. This would be quite different from the indications from
at least some semi–analytic models for galaxy formation (e.g. Baugh et al. 1998, figure
13), but in line with a considerable variety of – though not all – observational indications
(as reviewed in Peebles 2002). Further considerations on whether our interpretation of the
ΛCDM model agrees with the observations are presented in §5.

Throughout this paper, we assume the standard ΛCDM cosmological parameters Ωm =
0.3, ΩΛ = 0.7, Ωb = 0.04, σ8 = 0.9, n = 1, and Hubble constant H0 = 100h km s−1 Mpc−1

with h = 0.7.

4.2 Formation of Mass Concentrations Characteristic of the

Most Massive Galaxies

Analytic fitting functions can be combined with analytic formulae for halo abundance
to make ΛCDM predictions for the characteristic mass density run in rare, very massive
halos. In Figure 4.1 we show results for halos assumed to have a fixed comoving number
density, corresponding to physical density n = 10−7a(t)−3 Mpc−3; the profiles are plotted
at redshifts corresponding to factor of two steps in the cosmological expansion factor a =
(1 + z)−1. The most striking impression from this plot is how little the mass distribution
changes in the inner regions after 1 + z = 8. Fukushige & Makino (2001) were led by their
numerical simulations to propose that that the run of density in physical units in the inner
power law part is approximately independent of time, a behavior suggested previously by
the simple theoretical model of Syer & White (1998) for the assembly of halos through
merging. Loeb & Peebles (2003) were independently led to the same proposal from the
fitting function analysis in Figure 4.1.

This figure, computed as described in Loeb & Peebles (2003), is based on the Press-
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Figure 4.1: Density runs at various redshifts for halos with comoving density n(> M) =
10−7 Mpc−3. Physical rather than comoving units are used both for the radius and for
the density.
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Schechter mass function (including the modification by Sheth & Tormen 1999; see also
Sheth, Mo & Tormen 2001) and analytic density profiles. The Navarro, Frenk, & White
(1997, hereafter NFW) shape with concentration parameter c = 4 is used in the top panel,
while the Moore (Moore et al. 1999; Ghigna et al. 2000) profile with concentration c =
4/1.72 is used in the bottom panel. (See Klypin et al. 2001 for the conversion factor, 1.72,
between the two profiles.) Clearly, the mass in the inner 10h−1 kpc of these rare halos is
predicted to evolve very little for z ∼< 6. That is, according to the ΛCDM model, massive
cores similar to those which house the largest present-day galaxies already existed just one
billion years after the Big Bang. We will see in the next section that our simulations of
ΛCDM bear out this result from the fitting functions.

4.3 High Resolution Simulations of Massive Halo Assembly

The numerical results in this paper are based on a set of 8 simulations of the formation of a
massive galaxy cluster halo in our standard ΛCDM model. These 8 halos, which are part of
the suite of simulations analysed in Navarro et al (2003), range in virial mass between 4.5×
1014h−1M¯ and 8.5 × 1014h−1M¯. They are chosen from a simulation of a representative
cubic region of side 479h−1Mpc (the VLS simulation of the Virgo Consortium, see Jenkins et
al. 2001 and Yoshida Sheth & Diaferio 2001), which contains 41 halos with mass exceeding
4.5 × 1014h−1M¯. Our objects thus have an effective abundance of 3.7 × 10−7h3Mpc−3.
This is the observed present-day abundance of galaxies with luminosity greater than 8L∗.
Almost all such systems are indeed the central dominant galaxies within rich clusters.

We resimulated each of our 8 halos, as in Navarro, Frenk & White (1997), with greatly
improved resolution in the cluster and its immediate environment and with degraded reso-
lution outside this region. The mass of an individual dark matter particle in the high res-
olution region is 5.12× 108h−1M¯ and the gravitational softening parameter is 5.0h−1 kpc
in comoving units. The simulations were carried out with the publicly available parallel
N-body code GADGET (Springel, Yoshida & White 2001).

We show images of the evolution of the mass distribution in these 8 halos in Figure 4.2.
The three sets of panels show the halo material at three different redshifts, z = 0, 1 and
3. Each panel is 5h−1Mpc across in physical (not comoving) units. Each shows only the
matter which is within r200 of the cluster center at z = 0, so that the same particles are
used to make corresponding images in each of the three sets. As usual, we define r200
to be the radius within which the mean enclosed density is 200 times the critical value.
It is striking that although all the halos are centrally concentrated and relatively regular
at z = 0, the material which makes them up was in all cases in several disjoint and well
separated pieces at z = 1 and was in many pieces at z = 3.

In the images in Figure 4.2 the particles which lie within 10 h−1 kpc of halo center at
z = 0 are shown in black in all three sets. It is remarkable that in all cases these particles
also come from several different objects at z = 3. The same is true even at z = 1 in many
cases. We analyse the details of core assembly in more detail in the next section.

The stability of the central mass concentrations predicted in §2 can be seen directly in
these simulations. Figure 4.3 shows the mass within physical radius r = 10h−1 kpc around
the center of the most massive progenitor of the final halo at discrete time steps and in each
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of the 8 simulations. Notice that the vertical axis is linear in these plots. The variations
in mass are relatively small and show no consistent trend for a > 0.15, corresponding to
z < 6. This is in good agreement with Figure 4.1. That is, the CDM model predicts that
at z < 6 there is little evolution of the mass within a radius characteristic of the luminous
parts of the largest galaxies. Note, however, that the object plotted in each panel is not the
same at each time: the most massive progenitor of a cluster at z = 6 does not necessarily
evolve into its most massive progenitor at z = 4 which may not evolve into its most massive
progenitor at z = 2. We indicate this effect in the plots; working back from z = 0, we toggle
the plotting symbol between filled and open each time the most massive progenitor changes
identity.
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Figure 4.2: Images of the mass distribution at z = 0, 1 and 3 in our 8 simulations of
the assembly of cluster mass halos. Each plot shows only those particles which lie within
r200 of halo center at z = 0. Particles which lie within 10h−1 kpc of halo center at this
time are shown in black. Each image is 5h−1Mpc on a side in physical (not comoving)
units.
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Figure 4.3: The total mass within physical distance 10h−1 kpc of the center of the
most massive progenitor of the final halo at each time plotted and for each of our 8
simulations. Symbols switch between filled and open each time the identity of the most
massive progenitor changes.
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4.4 Mergers and Relaxation at Low Redshifts

In this section, we consider the predicted rearrangement of matter in the cores of pure CDM
halos at low redshift, and then discuss why the stars in giant galaxies might be expected
to remain concentrated in the centers of the halos as observations require. Finally, we
consider the idea that the net mass distribution in stars plus dark matter, both considered
as collisionless particles, tends to relax toward the NFW form.

4.4.1 Rearrangements of the Dark Matter

Loeb & Peebles (2003) discuss the evolution of the halo structure shown in Figure 4.1
in terms of an “inside-out” growth process, whereby mass is added to galaxies in “onion
shells” with declining density as a function of cosmic time. This can indeed reproduce
the behavior in Figure 4.1, but cannot be the entire story because, as Figure 4.2 shows,
late mergers add material even to the very center of the main halo and so must affect the
distribution of the other matter there.

Figure 4.4 makes this point more quantitatively. We identify the particles which are
within 10h−1kpc of the center of each cluster halo at z = 0, and we then follow them
back in time. The circles in each panel show the fraction of these particles which are
already within 100h−1 kpc (physical) of the center of their dominant concentration at each
earlier redshift. (We identify the center of this dominant concentration by calculating the
gravitional potential of each particle in the set due to all the others, and then choosing the
most bound particle.) Note that the dominant concentrations used to make this plot are
often not the most massive progenitors which were used to make Figure 4.3. Both figures
illustrate the point that, in the ΛCDM model, mergers at low redshifts have a substantial
effect on the innermost regions of large halos. Only 20–50% of the mass that now lies within
10h−1 kpc of the center of a massive halo was closer than 100h−1 kpc to their dominant
concentration at z = 6, and typically no more than 50% was closer than 100h−1 kpc at
z = 2. The rest of the mass was added to the cores by late mergers. These major mergers
are visible in Figure 4.4 as abrupt changes in F (z) which are often accompanied by large
fluctuations in the mass within 10h−1 kpc.

The matter present in the central 10h−1 kpc of each massive concentration at high
redshift must have been displaced to make room for the matter subsequently added by
mergers. We illustrate this process in Figure 4.5. We start by selecting all particles within
10h−1 kpc (physical) of the center of the most massive progenitor of each halo at z = 6.
Since many of these particles have apogalactica well outside 10h−1 kpc, we plot their
cumulative radial distributions at z = 5.5 after they have had time to phase-mix around
their orbits. We then identify this same set of particles at a series of later times and plot
the cumulative radial distribution about the center of their dominant concentration. (This
center is defined as the most bound particle of the set, as above.) One sees a systematic
trend for these distributions to broaden with time, the median distance typically increasing
by a factor of about two from z = 4 to the present. Notice, however, that in two of the
eight cases the dominant concentration of these particles at z = 0 is not at the center of
the main halo, but at the center of one of its more massive subhalos.

The late assembly of the matter which does finally end up at halo center is illustrated
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Figure 4.4: History of addition of the matter now in the central parts of massive halos.
The black curves show the fraction of the particles at r < 10h−1 kpc at z = 0 which
lie within 100h−1 kpc (physical) distance from the center of their main concentration at
each earlier redshift z.
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by the complementary plot in Figure 4.6. Here we again select all particles which are
within 10h−1 kpc of halo center at z = 0 and then plot cumulative radial distributions
about the center of their dominant concentration at a series of earlier times. (These are
the same particle sets and center definitions used to make Figure 4.4.) We plot the lowest
redshift curves for z = 0.07 rather than for z = 0 in order to show a properly phase-mixed,
quasi-equilibrium distribution. There is little evolution subsequent to z = 0.33 in 7 cases,
subsequent to z = 1 in 3 cases, and subsequent to z = 2 in one case. At higher redshifts,
however, substantial fractions of the particles are further than 100h−1 kpc from center of
the dominant concentration in all cases. This behavior reflects the late addition of matter
to the cores of the galaxies, as already illustrated in Figure 4.4.

4.4.2 The Distributions of Stars

The star populations in giant ellipticals are typically old (a familiar and well established
observation, as evidenced by the discussions by Oke 1971, 1984 and Hamilton 1985; for
recent data see Bernardi et al. 2003). Once formed, stars behave dynamically as collisionless
matter. Since stars make substantial contributions to the mass within the half-light radii
re ∼< 10h−1 kpc of massive galaxies (Romanowsky et al. 2003, and references therein)
merger-driven rearrangements of matter must not have substantially diluted the central
concentrations of stars by the addition of nonbaryonic dark matter. A full analysis of the
predicted effect of dilution is beyond the scope of this paper – and perhaps beyond what is
now computationally feasible – but we can offer two simple relevant considerations. First,
the condition that dilution is modest is in line with the familiar tendency in numerical
simulations for the dense parts of merging halos to end up in the dense parts of the merger
remnant (White 1980; Barnes 1992; Dubinski 1998).

The second consideration is based on the same sets of particles already used in Figures 4.4
and 4.6, namely those particles that are within r < 10h−1 kpc of the center of each dominant
halo at z = 0. Figure 4.7 shows the evolution with redshift of the cumulative distribution of
ambient physical density around each of these particles, estimated by means of a standard
SPH spline kernel which averages over the positions of the 25 nearest neighbors. Note
that the final time shown is z = 0.07 rather than z = 0 so that the particle distribution
is properly phase-mixed. The median ambient density around this particle set increases
by a factor of about six from z = 6. This is a result of our selection procedure, which
preferentially picks out those particles which have been scattered into the most strongly
bound orbits by 2–body effects and by the violent relaxation which accompanies merging.
The median ambient density for these particles at z = 6 is typically about 5×106M¯kpc

−3,
which is 500 times the mean density at that epoch. The matter now in the central regions
of a giant galaxy was thus already in the inner regions of virialised objects at z = 6, and
hence could have experienced substantial star formation at that time.

This mixing process is explored in a different way in Figure 4.8. Among all the particles
that lie within r200 in each final cluster we identify the 1000 which have the largest ambient
density at z = 6. We then plot cumulative ambient density distributions for these particle
sets at lower redshifts beginning with z = 5.53. These distributions broaden with time
as relaxation scatters particles into lower density regions. At z = 0 their median ambient
density is typically 3×106M¯kpc

−3, which is a factor 9 smaller than at z = 5.5 but still 105
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Figure 4.5: Cumulative radial distributions at a series of later redshifts for the particles
that were within 10h−1 kpc of the center of the most massive z = 6 progenitor of each
cluster halo. Distances are all in physical units and are measured from the center of the
dominant concentration of each particle set at each redshift. Note that for the middle
clusters in the top and bottom rows (numbers C2 and C8) this dominant concentration
does not coincide with the cluster center at z = 0 but with one of the more massive
substructures.
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Figure 4.6: Evolution of cumulative radial distributions, as in Figure 4.5, but now for
particles which are within 10h−1 kpc of halo center at the final time, z = 0. These
are same particle sets (with the same definition of density center) already used to make
Figure 4.4.
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times the present cosmic mean density. Note that much of this broadening occurs between
z = 1 and z = 0, and is actually a consequence of 2–body scattering. In simulations of
even better mass resolution, we would expect the reduction in density at late times to be
significantly lower. It is important to realise, however, that not all these “dense” particles
from high redshift end up in the central “galaxy”. Typically about 40% of them lie within
100h−1 kpc of the center of the final halo; most of the others lie near the center of one of
its substructures. If we consider these particles to represent the matter which was already
illuminated by star formation at z = 6, then the corresponding light is today associated
both with the dominant central galaxy in each halo and with other cluster galaxies.

A comparison of the distribution of matter that is illuminated now in the giant galaxy
with that which was plausibly already illuminated at z = 6 is presented in Figure 4.9.
This shows, for the particles used in Figure 4.8, the present cumulative radial distribution
about the center of the final halo. In 6 of our 8 halos the largest single concentration of
these “early dense” particles is in the central object, with 20% to 50% within 100h−1 kpc
of halo center. In the remaining two objects, however, the dominant concentrations are in
subhalos offset by 150 to 500h−1 kpc from the center of the main halo, so that the bulk of
the earliest stars are predicted to be in non-central galaxies.

In these rare massive halos at z = 6 the virial radius (at density contrast ∼ 200) is
comparable to the half-light radius re ∼ 10h−1 kpc of the bright galaxy at the center of
the present day descendant. If most of the baryons then within this region had promptly
collapsed to stars, the stellar mass fraction within r = 10h−1 kpc at z ∼ 6 would have
been about equal to the primeval mass fraction, that is, about one fifth of the total mass
within the present half-light radius. The remaining ∼ 80 percent of the stars would have
been added later, by merging with other concentrations of generally old stars. Roughly in
line with this, the indication from Figure 4.3 is that ∼ 20–50% of the mass now interior
to r = 10h−1 kpc was added at 3 ∼< z ∼< 6, and about half of the mass was added at
z < 3. We must assume that most of the added mass was stellar, so that the core can be
star-dominated today. If the mass displaced out of this radius were primarily CDM, the
stellar mass interior to re ∼ 10h−1 kpc would have roughly doubled since z ∼ 3. Since
M(< r) ∝ rβ with β ∼ 1 in the core, the effective radius re of starlight would have about
doubled since z ∼ 3.

4.4.3 The Attractor Hypothesis

Our analysis depends on the hypothesis of a dynamical attractor effect, that the inner cores
of galaxies tend to approach through multiple mergers a universal density profile for their
collisionless mixture of stars and dark matter. The stability of the NFW mass distribution
under violent disruptions by mergers argues for this effect, as do observational constraints,
as follows.

In the absence of the attractor effect the dissipative settling needed to increase the baryon
to dark matter ratio in the luminous parts of a galaxy would tend to make the central mass
density run steeper than the NFW/Moore model, leading to two problems. First, it would
seem to produce an unacceptably steep central mass density run (Barnes & White 1984;
Jesseit, Naab & Burkert 2002; Sand, Treu & Ellis, 2002; Sand et al. 2003, and references
therein). Second, it would likely produce too many galaxies with large velocity dispersions.

84



4.4 Mergers and Relaxation at Low Redshifts

Figure 4.7: Evolution of the cumulative distribution of ambient physical density for
particles which lie within 10h−1 kpc of halo center at z = 0. These are the same particle
sets used to make Figures 4.4 and 4.6.
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Figure 4.8: Evolution of the cumulative distribution of ambient physical density for
those 1000 particles within r200 at z = 0 which had the highest ambient densities at
z = 6.
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Figure 4.9: The cumulative radial distribution at z = 0 of the particle sets tracked
in Figure 4.8. The center used here is the density center of the main halo. Note that
in several cases a large fraction of the particles are concentrated to one of the halo
substructures rather than to this main center.
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If in the typical giant galaxy all collisionless matter, dark plus stellar, relaxed to a good
approximation to NFW, it would certainly help relieve the challenge of the central mass
density run. Also, it would allow consistency of the comoving number density of massive
halos as a function of the velocity dispersion (at a characteristic present-day half-light
radius, re ∼ 10h−1 kpc) with the SDSS observations of the counts of galaxies as a function
of the stellar velocity dispersion (as illustrated in Figure 4.2 of Loeb & Peebles 2003, with
the data from Sheth et al. 2003). The attractor hypothesis was invoked by Loeb & Peebles
(2003) to help resolve these two observational issues.

A similar argument is given in a recent preprint by El-Zant et al (2003). These authors
performed simulations of idealised NFW clusters, in which the galaxies are represented by
a population of “massive solid clumps”. As the clumps spiral to cluster center, their energy
losses causes the central NFW cusp to flatten. This effect also occurs in our own simulations
as massive substructure clumps merge into the central region, but in our case the clumps
are not solid and are progressively disrupted as they move in. Stellar galaxies can clearly
be disrupted in a like manner so it is unclear that the El-Zant et al. representation more
realistic than our own. The main point in the current context is that numerical work since
the original NFW papers suggests that an NFW-like inner structure is an attractor for
evolution from a wide range of initial conditions and thus should apply to stars and dark
matter together in rich cluster cores.

In the attractor hypothesis the usual correction for compression by stellar mass added
through dissipative settling would apply only to stars formed out of baryons added after
the last major merger. Figure 4.3 indicates that the central mass distributions in massive
galaxies typically have been rearranged by at least one major merger at z < 2. Our
hypothesis requires that most of the stars formed earlier than that.

Elliptical galaxies at z < 1 do show evidence for recent star formation (Jørgensen 1999;
Trager et al. 2000; Menanteau, Abraham, & Ellis 2001; Fukugita 2003), which might be
the result of accretion or of recycling of matter shed by stars within the galaxy. The
amount of mass added or rearranged by recent star formation is generally thought to be
only ∼ 10–20%, however, and so not likely to greatly disturb the attractor solution.

4.5 Open Issues

The idea that some large elliptical galaxies formed by merging of late-type galaxies has been
under discussion for many years (e.g. Toomre & Toomre 1972; Ostriker 1980; Negroponte
& White 1983; Schweizer 2000). Under the attractor hypothesis, an elliptical that formed
by the merger of gas-rich galaxies with a subsequent starburst, perhaps the typical path
in galaxy groups, might be expected to show significant baryon loading effects on its total
density run; an elliptical that formed by mergers of less gas-rich early-type galaxies, perhaps
the more common pattern for cluster ellipticals, would show fewer effects from baryon
loading. We are not aware of observational tests of this possible systematic difference
between ρ(r) in field and cluster galaxies, although possibly related differences are seen
between the central density runs of bright and faint ellipticals (Faber et al 1997) and
between the core colors of cluster and field ellipticals (Menanteau, Abraham & Ellis 2001).

A related issue is the meaning of the strikingly small differences between the spectra and
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mass-to-light ratios of cluster and group ellipticals, as illustrated by Hogg et al. (2003)
and van Dokkum & Ellis (2003). A detailed analysis of this effect within the ΛCDM model
would be challenging, and certainly desirable. A first analysis by Kauffmann & Charlot
(1998a) shows qualitative agreement with the data but a quantitative difference between
cluster and field which may be larger than observed.

There is a long history of debate over the observational constraints on the time scale for
the formation of the mass concentrations characteristic of the luminous parts of present-
day giant galaxies (e.g. Peebles 1989; White 1989; and references therein). Radio galaxy
surveys provide convincing evidence for the presence of old massive galaxies at redshifts
1 < z < 3 (Lilly & Longair 1984; Nolan et al. 2003; Willott et al. 2003). Massive high
redshift protogalaxies are likely hosts for the ∼ 109M¯ black holes that power the SDSS
quasar population at z ∼ 6 (Fan et al. 2003; Wyithe & Loeb 2003). On the other hand, a
number of recent attempts to measure the evolution of the mean stellar density contributed
by massive galaxies have concluded that only half the current stars are present at z ∼ 1 to
1.5 and only a tenth at z ∼ 3 to 4 (Drory et al. 2003; Bell et al. 2003; Dickinson et al. 2003;
Stanford et al. 2003). Estimating the number density and stellar mass of giant galaxies at
high redshift poses a severe observational challenge, however, and the current situation is
confused. Thus Bell et al. (2003) find that the stellar mass in their red sequence of galaxies
has increased by a factor of two since redshift z = 1, but Pozzetti et al. (2003) see no
significant evolution of the star mass function of massive galaxies over the same redshift
interval.

There also is continuing debate over the relation of the observations to the theoretical
situation. Kauffmann & Charlot (1998b) find a considerable difference between the red-
shift distributions predicted for K-selected samples by the assumption of pure luminosity
evolution out to high redshift and by a semianalytic ΛCDM model for galaxy formation.
They conclude that the observations favor the latter. Somerville et al. (2003) find much
smaller differences between their own versions of these two models. The predicted redshift
distributions differing insignificantly at z < 1.4. At higher redshift their hierarchical model
predicts fewer galaxies than their pure luminosity evolution model, with the observations
lying between the two. Our own analysis indicates that in the ΛCDM model the stellar
mass in a giant galaxy at z = 3 could be as much as half the present value. This is con-
siderably less rapid evolution than is claimed by many authors, but is significantly later
assembly than pure luminosity evolution assumes. It is perhaps in line with Somerville et
al. (2003). We emphasise that the ΛCDM model does produce enough massive objects
at early times to account for the highest redshift galaxy clusters, massive galaxies and
luminous quasars (Efstathiou & Rees 1992, Mo & White 2002). The debate is whether
current treatments of star and black hole formation adequately represent the predictions of
the ΛCDM cosmology, and, of course, whether these predictions are compatible with the
observed numbers of massive objects at high redshift.

The examples in the numerical simulations used in this paper suggest the typical giant
galaxy has suffered significant merging events at redshifts less than unity. The cluster Abell
2199 (Minkowski 1961) has long been considered a likely example of galaxies observed in
the act of merging, and the cluster C0337 at z = 0.59 may be another case (Nipoti et al.
2003). The number of candidate merging systems of this type is not large, however. It
would be of considerable interest to use numerical simulations to develop diagnostics of the
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appearance of recently merged, massive, early-type galaxies. These could then be used to
check the high merger rate of the ΛCDM cosmology.

Our discussion highlights two systematic effects of purely gravitational halo formation.
First, the form for the halo density run behaves as a dynamical attractor (Navarro, Frenk
& White 1997; Jain & Steinmetz 1999). Second, the mass within a fixed physical radius
around the most massive halos evolves little with time after reaching a density contrast
on the order of 100 (Fukushige & Makino 2001; Loeb & Peebles 2003). Both effects are
supported by numerical simulations, but have not been fully checked in the specific context
of baryon settling. Existing simulations of mergers of spirals embedded within NFW-like
halos do produce remnants whose inner regions are closer to NFW than those of their
progenitors, despite remaining dominated by stars (Barnes 1992; Dubinski 1998). Further
simulations would be helpful, however, to check our attractor hypothesis, in particular
whether a halo which is compressed relative to NFW by baryon loading relaxes back to
NFW after a few major mergers.

Finally, we note that since the physics of pure gravitating systems is simple, even if
their behavior is complex, there may be an analytic explanation of the systematics of halo
formation discussed in this paper. Possible approaches are discussed by Syer & White
(1998) and Dekel, Devor & Hetzroni (2003) among others, but a convincing explanation
remains elusive.
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5 The first structures in a CDM Universe

Abstract
We have carried out a sequence of N–body resimulations of individual haloes at various
redshifts within a cosmological volume (0.68Gpc)3 with the aim of resolving the first
bound objects which could potentially host the first stars in a cold dark matter domi-
nated universe. Our simulations succeed in resolving rare but relatively massive haloes
spanning a very broad redshift range[z = 80, z = 0] with ultra-high resolution. The
highest resolution achieved in our final level simulation has a particle mass of 0.8M¯

and a force softening of ε = 7.8pc in comoving units. Our results indicate that initial
structure formation was extremely strongly biased to overdense regions, and that this
can be well understood within the framework of extended Press-Schechter(EPS) the-
ory. The internal structure of these early haloes are quite similar to their low redshift
counterparts, although the NFW profile does not fit as well. The halo mass function
is examined at redshift z = 50 and z = 30. We find an excellent agreement between
the predictions and the simulations. Because our simulation volume is not a small pe-
riodic box we are able to simulate rarer and more massive halos at any given redshift
than previous work. We find that bound–free cooling from atomic hydrogen can take
place in haloes as early as z = 32 and that the comoving abundance of these halos is
predicted to be the same as for 1014h−1M¯ halos today. If the first stars did form in
haloes with mass ∼ 106M¯, a large number would be born already at z ∼ 42 with a
comoving abundance matching that of haloes with mass M∗ today.

5.1 Introduction

Soon after their birth the first stars will light up the universe and begin to influence the
thermal and chemical state of the ambient gas. The precise details of what happens when
these stars turn on has yet to be understood. Recent simulation work following the evolution
of dark matter and primordial gas (see Bromm & Lason, 2003 and reference therein) has
claimed that the first stars are born in haloes with virial temperatures Tvir ∼ 2000K and
masses M ∼ 106M¯ at redshifts 20 < z < 30 (Abel et al. 1999; Fuller & Couchman, Bromm
et al. 2001; Yoshida et al. 2003).

Because of constraints from currently available computer resources, previous hydrody-
namical simulation work on the first stars has been carried out by following gas and dark
matter in small comoving periodic cubes (Abel et al. 1999; Yoshida et al. 2003). Ac-
cording to the CDM scenario, at high redshift, the most massive haloes, which may house
the first generation of stars, are extremely rare objects and are expected to originate from
extreme rare high density peaks. Small periodic boxes tend to suppress the height of the
peaks (Bond et al. 1991; Barkana & Loeb 2003) as well as to limit the volume surveyed,
and therefore will artificially underestimate the formation redshift of the first stars. Thus
the first stars resolved in these previous simulations form later than the real first stars

95



5 The first structures in a CDM Universe

which would appear in a CDM universe. An alternative approach, is to simulate a high σ
region with constrained initial conditions (Fuller &Couchman 2000; Bromm et al. 2001).
However, there is no clear relation between the statistical properties of the final objects
starting from such constrained initial conditions and those objects forming from realistic
initial conditions (White 1993). Thus the question of when and how the first stars appear
in our universe should be revisited.

Starting with the framework of the extended Press-Schechter theory ( Bond et al. 1991;
Lacey & Cole 1993, 1994; Mo & White 1996, 2002; Sheth & Tormen 2002), it is possible
together with semi-analytical modeling to constrain the formation of the first stars. In
recent years, EPS and improved EPS (e.g. Sheth & Tormen (1991), Jenkins et al. (2001))
theory have been compared against N-body simulations over a very broad parameter range
(Jenkins et al. 2001; Reed et al. 2003; Gao et al. 2004a). These comparisons show excellent
agreement between the halo abundance in N–body simulations and the analytical formulae
by Jenkins et al (2001) and by Sheth & Tormen (1999). However these comparisons are still
limited by the finite dynamical range of current simulations. The validity of EPS theory
has only been checked over a limited mass and redshift range. Previous results already
show that EPS or Sheth & Tormen mass function do not correctly predict halo abundance
at the high mass end (Jenkins et al. 2001). In the CDM model, the earliest structures
we are interested in are all extremely rare objects so one needs to be particularly cautious
when using EPS theory in this regime before it is confirmed.

In this paper, we carry out a sequence of ultra-high resimulations of individual objects
at a variety of redshifts with the aim of simulating convincingly the formation of the
earliest structure in a CDM universe. To start with, to familiarise the reader with the
properties of the dark matter distribution at high redshift we present a series of images of
the halos and their surroundings. We then examine whether or not the analytical theory
which works well at low redshift can be applied at high redshift. We defer the inclusion
of hydrodynamical modeling of the condensation of primordial gas to future papers. The
paper is structured as follows. In Section 2, we describe our simulation method in detail. In
Section 3, we investigate biased clustering of massive haloes at high redshift, and examine
the performance of EPS theory against our simulations. In Section 4, we study the internal
structure of massive dark objects as a function of redshift. We discuss the implications of
our simulation in Section 5. Finally, we set out our conclusions in Section 6.

5.2 Simulations details

We used the following cosmological parameters for our simulations: Ω = 0.3, Λ = 0.7,
σ8 = 0.9, Ωbh

2 = 0.0196 and h = 0.7. The initial linear power spectrum is computed
down to scale 2000h/Mpc with CMBFAST (Seljak & Zaldarriaga, 1996). It was necessary
to extrapolate a further order of magnitude in wavenumber to reach the Nyquist frequency
defined by our highest resolution resimulation. The extrapolation used was a power-law
matched to the slope at the join. Strictly speaking one would expect there to be some
curvature but in fact at these wavenumbers the slope is very close to -3.
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5.2.1 The simulations

It is a challenge to simulate the formation of the first structures, because in a CDM universe,
structure formation is hierarchical and the first collapsed objects are very small. More
seriously the slope of the matter power spectrum on small scales approaches the critical
value of −3 where the contribution to the variance of the density field per log interval in
wavenumber is independent of wavenumber. Thus a wide-range of scales make important
contributions to the density field fluctuations (Efstathiou et al. 1988; Smith et al. 2003).
A very large simulation box is required to provide the correct long wave fluctuations and
with current computer resources it is not possible to simulate a sufficiently large region
while at the same time following the non-linear dynamics of the first collapsing structures.

We have devised a procedure to circumvent this dilemma as follows.

(1) We identified a rich cluster in a very large volume cosmological simulation.

(2) we then resimulated this rich cluster and its immediate surroundings with higher mass
and force resolution. The final cluster had around 2 million particles.

(3) We identified the most massive object in the high resolution region at a higher redshift
when it contained only around 10000 particles within the virial radius.

(4) We then resimulated this object and its immediate surroundings with higher mass and
force resolution (again with several million particles inside virial radius).

(5) repeat 3 and 4 again and again until the desired redshift or particle mass is achieved.

In practice, we selected a rich cluster of virial mass 8 × 1014h−1M¯ from a large scale
cosmological simulation (The VLG simulation of The Virgo consortium, Jenkins et al.
2001) with side–length 479h−1Mpc. The first resimulation of the cluster (named cl01) has
been analyzed in Navarro et al.(2003) and Gao et al. (2003, 2004a, 2004b). Then we
used the “Zoom-in” resimulation technology similar to Power et al. (2003) to simulate
the desired object step by step following the recipes described above with much higher
mass and force resolution. At the end of each new simulation, we checked the virial mass
and the surrounding structure between the lower and the higher resolution simulations to
ensure they are consistent. For the first three resimulations, R1 (z = 0), R2 (z = 5) and
R3(z = 12) the simulation was run with the original periodic boundaries of the parent
simulation. We used isolated boundary conditions with a spherical cut–off at comoving
radius 5h−1Mpc and 1.25h−1Mpc for R4 and R5 respectively. Since the universe is quite
homogenous at high redshifts on these scales, our desired objects were largely unaffected
by the omission of more distant structures. Note that this cut-off, unlike the imposition
of periodic boundary conditions, does not cut-off the contribution to the density field due
to long wavelength modes, although it does significantly affect the bulk motion of the
region, which we are not interested in here. The high resolution regions for R1, R2 and
R3 simulation are about 4 times the virial radius of the final object, while for R4 and R5
we employed a more extensive volume to allow us to investigate the large scale structure
around the largest halos. Further details of our series of resimulations are listed in Table 1.
Here Np is the total number of particles in the high resolution region of each simulation,
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Table 5.1: Numerical parameters of R series simulation

R1 R2 R3 R4 R5

Np 8457516 5804755 8658025 41226712 73744737
mp[h

−1M¯] 5.12× 108 2.2× 106 1.24× 104 29.5 0.545
ε[h−1kpc] 5.0 0.8 0.15 0.017 0.0048
M200[h

−1M¯] 0.8× 1015 3.4× 1012 2.0× 1010, 5.2× 107 1.2× 105

zstart 39 149 249 399 599
zfinal 0.0 5.0 12.04 29.04 48.84

Mp is the mass of each of these particles, ε is the softening parameter (in comoving units),
M200 is the mass of the final object within a sphere of mean overdensity 200 relative to
critical, and zstart and zfinal are the initial and final redshift of the simulation.

Typically in our resimulations the highest mass halo is resolved with 2 million particles
inside r200. Only for the highest redshift z = 48.84, was the particle number significantly
lower at 0.2 million particles. For R5, the highest resolution resimulation, the particle mass
was 0.8M¯ and the force softening of 7.8pc in comoving units.

For a given halo mass at a particular redshift one can associate a characteristic abun-
dance, defined as the number of halos of equal or greater mass per unit volume. While the
iterative procedure outlined above is guaranteed to find a rare massive halo at high redshift
it is not obvious what the global mean abundance of the halos generated by this procedure
actually is. The abundance cannot be on average any lower than the abundance of galaxy
clusters similar to that selected initially. In fact, it turn out to be significantly higher.

The R1 simulation was run with the publically available tree code GADGET-1.1(Springel,
Yoshida & White, 2000). The other simulations were run with an improved TREE-PM

GADGET-2.0 (Springel 2004, in preparation).

5.2.2 Halo finders

In N -body simulations two of the most common methods to identify halos are: the friends-
of-friends algorithm of Davis et al. (1985), and the spherical overdensity(SO) finder de-
scribed by Lacey &Cole (1994). An advantage of the FOF method is that it does not
impose any fixed shape on the halos, and it is very economical computationally. However,
it occasionally links two separate haloes through a chance bridge of particles. In the limit of
very large numbers of particles per object, FOF approximately selects the matter enclosed
by a fixed isodensity contour.

In the SO algorithm, the mass of a halos is evaluated in a spherical region. There is only
one free parameter, the mean overdensity, k, of the halos, although there are many possible
ways of centering the spherical region. In our implementation, the centre is determined
iteratively, after making an initial guess based an estimate of the local density for each
particle with the standard SPH method, re–centering on the center-of-mass, growing a
sphere outwards about the new centre until it reaches the desired mean overdensity, and
recomputing the center-of-mass. After several iterations, the motion of the centre becomes
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Figure 5.1: Halo mass function for the same region of R4 and R5 simulation. The haloes
are identified with SO(180) algorithm; The error bars assume Poisson uncertainties in
the counts for the R4 haloes.

small. The advantage of the SO algorithm is that it avoids the problem of occasionally
linking two disjoint halos. It does, however, impose a fixed spherical shape on the haloes.

For the first structures, as we will see in later sections, massive objects are very strongly
clustered, and their separations are usually small. More over, these objects are almost
always connected together by long filaments made of smaller haloes. We find that the
FOF halo selection is then quite dependant on the mass resolution of the simulations. For
example, with the FOF(0.2) algorithm, the halo mass function in the corresponding region
of R4 and R5 simulations are very different, 15 per cent of all high resolution particles
are identified as a single halo for the R5 simulation, which it doesn’t occur for the lower
resolution simulation R4. The abundance of haloes selected by SO(k = 180) is the same
for lower and higher resolution as can be clearly seen in Fig. 5.1, where we plot it for the
R4 and the R5 simulations; clearly, they match up to the resolution limit of the lower
resolution simulation. In what follows, we use the SO(180) algorithm to identify all halos,
unless otherwise stated.
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5.3 Large scale structure at high redshift

5.3.1 Morphology

According to the CDM paradigm, growing density fluctuations imprinted in the very early
universe begin to evolve into the nonlinear regime on small scales first with larger and larger
scales participating as time progresses. At high redshift the matter power spectrum has a
slope close to −3 and this means that structure grows in scale more rapidly (measured in
terms of the Hubble time) than in the present day universe. Because of this difference it
is interesting to compare “large scale” structure at high redshift to that today. For this
comparison, we scale length units to r200 of the most massive halo in our R4 simulation
at z = 48.84 and to the R1 halo at z = 0 in the VLG simulation. Here r200 is defined to
be the radius within which the mean enclosed density is 200 times the critical value. In
comoving units, it is 1.5Mpc for the R1 halo, and 1.2kpc for the R5 halo which is the most
massive halo in high resolution region of R4 simulation at redshift z = 48.84.

In Fig. 5.2, the mass surface density of “large scale” structure for our R4 simulation at
z = 48.84 is shown in the bottom panel, and for the parent VLG simulation at z = 0 is
shown in the upper panel. In this plot, a slice of geometry 190× 190× 10 in units of r200
is projected into a plane. We normalize the projected density fields using the projected
cosmic mean surface density at the corresponding redshifts. The color table in each panel
represents the real dimensionless surface density 1 + δ, and is shown with a logarithmic
scale. The mass distribution of the VLG simulation on large scales is relatively homogenous
while the structures at early times are very strongly biased around the most massive halo of
our simulation. This is consistent with the statistics of gaussian random fields (Kaiser et al.
1984): high density peaks tend to be more strongly clustered. This indeed indicates that
the most massive halos at high redshift reside in very large overdense regions imprinted on
the initial density field.

5.3.2 Biased structure formation at high redshift

We quantify this biased spatial clustering of structure at high redshift visible in Fig. 5.2 by
comparing the mass function measured directly from our simulations with that predicted
as the cosmic mean. Note that no studies have established whether the current analytical
formulae works well at such high redshift and on such small mass scales. In the bottom
panel of Fig. 5.3, we plot the SO(180) halo mass function for spherical regions centered the
most massive halo in the high resolution region of the R4 simulation at redshift z = 48.84.
We give results for radii 80, 40 and 20 times r200 of this halo. For comparison, we plot the
halo abundance for spherical regions centred on our z = 0 cluster with radii 80, 40 and
20 times its r200. In each panel of Fig. 5.3, we also plot the standard Press-Schechter(PS)
(Press & Schechter 1973) and Sheth & Tormen (Hereafter ST) (Sheth & Tormen 1999)
mass function as short–dashed and long–dashed lines. It is noticeable that the difference
between the PS and the ST mass function at z = 48.84 is a factor of 8, much larger than
at z = 0. Clearly, the halo abundance in the VLG simulation agrees with ST at z = 0
over the entire mass range both for r < 80r200 and for r < 40r200, whereas it is slightly
higher at the large mass end for r < 20r200. There is no significant bias in abundance in
large volumes around a massive halo at z = 0 and the mean overdensity for these selected
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Figure 5.2: Projected dark matter density fields of a slice of geometry 190× 190× 10
in units of r200 of the halo on which each slice is centred. This is the R5 halo(the most
massive halo in high resolution region of the R4 simulation at z = 48.84) and the R1
halo at z = 0. The VLG simulation is plotted in the upper panel and the R4 simulation
in the lower panel. The density fields are normalized to the cosmic mean density field
and shown in a logarithmic scale.
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regions is almost 0. On the other hand, the halo abundance at redshift z = 48.45 in our
largest examined volume (r < 80r200) is about 1200 and 150 times more abundant than
the predicted by the EPS and the ST respectively over the whole mass range we resolve.
This is in large part due to the fact that this whole region is overdense, as seen in Fig. 5.2.

It is important to know whether the analytical formulae can correctly reproduce the halo
abundance found in numerical simulations at such a high redshift. There is no straightfor-
ward approach to test this with our data, since our simulated regions are special ones with
high overdensity. However, we can compare our results with conditional EPS theory.

Extending PS theory, Bond et al. (1991) argued that the fraction of the mass in a initial
region of radius R0 and linear overdensity δ0 which at redshift z1 is contained in dark haloes
of mass M1 is given by,

f(S1, δ1|S0, δ0)
dS21
dM1

dM1 = (
1

2π
)1/2

δ1 − δ0

(S21 − S20)
3/2

exp[− δ1 − δ0
2(S21 − S20)

]
dS21
dM1

dM1 (5.1)

where, S denote the top–hat variance of linear density fluctuation, S1 is for redshift z1
and S0 is for initial redshift z0; δ1 is the linear overdensity. Now we need to connect the
nonlinear overdensity in Eulerian space to the original linear overdensity in Lagrangian
space. Based upon the spherical collapse model, Mo & White(1996) first derived an an-
alytical formula linking the nonlinear overdensity to the linear overdensity in Lagrangian
space for an Einstein-de sitter universe, and afterwards Sheth & Tormen confirmed that it
is reasonably accurate for all cosmologies (Sheth & Tormen, 2002).

δ0(δ, z0) =
δsc(z0)

1.68647
×
[

1.68647− 1.35

(1 + δ)2/3

− 1.12431

(1 + δ)1/2
+

0.78785

(1 + δ)0.58661

]

(5.2)

It is simple to measure the nonlinear overdensity in each spherical region of the R4
simulation, we derive a the nonlinear overdensity δ = 1.7 for the spherical region with radius
80r200, δ = 2.8 for 40r200 and δ = 4.3 for 20r200, respectively. Then we use Equation 5.2
to compute the corresponding linear overdensity which is needed in Equation. 5.1 to derive
the predicted halo abundance in these regions. In the same plot, the thick solid lines are
the halo abundance functions predicted by conditional EPS theory corresponding the halo
abundance in the three different region. Clearly, the agreement is very good in all cases.
This indicates that the EPS mass function is surprisingly accurate for estimation of halo
abundance in high density regions at high redshifts.

5.4 Evolution of massive halo structure and environment

We now turn to on investigation of the internal structure and immediate surroundings of
massive haloes as a function of redshift.
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Figure 5.3: Halo abundance function in the VLG (top panel) and the R4 simulation
(bottom panel) for different spherical regions 80R200, 40R200 and 20R200 centred on the
R1 halo at z = 0 and on the most massive halo in the high resolution region of the R4
simulation at z = 48.85, respectively. Halos were identified by the standard SO(180)
method. The error bars assume Poisson uncertainties in the counts. In the bottom
panel, the solid lines in the upper curve are the predicted halo abundance in regions
with different nonlinear overdensity according to constrained Press–Schechter theory.
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5.4.1 Visualization

In the left column of Fig. 5.4, we show images of our massive haloes as a function of redshift.
In each plots, the density field in a cube with length 4 in units of r200 centered on the final
halo in one of our resimulations is projected into a plane. Again, the surface density is
normalized to the cosmic mean. Clearly, these haloes look rather similar in that they are
all quite centrally concentrated. However there is a strong trend for the strength of the
surrounding filaments to increase with redshift.

In the right column of Fig. 5.4, we show the same haloes on a larger scale. In the plots,
we project a slice of thickness of 2r200 and side 10r200 for the same haloes. As can be seen,
the density contrast in the images is higher for haloes at z = 0 and z = 5, this suggests that
the matter in the region we show is very concentrated to the central dark haloes; while the
background is brighter for haloes at z = 12, z = 29 and z = 48 where very strong filaments
are visible.

5.4.2 Density profile of dark haloes as a function a redshift

In collisionless dark matter only simulations, the density profiles of low redshift CDM haloes
are well described by a simple fitting function with two parameters, ρs and rs (Navarro,
Frenk &White, 1997). Here rs is a characteristic radius where the logarithmic density
profile slope is -2, and ρs is the mass density at rs. Recent high resolution simulations
confirm that the NFW profile actually is a good fit to 1% of the virial radius, although
there is still debate about the asymptotic slope at smaller radii (Navarro et al. 2003; Reed
et al. 2003; Diemand et al. 2004). Roughly two million particles lie within virial radius of
the final halo in all our simulations except R5 so we can look at the internal structure of
massive haloes as a function of redshift. In Fig. 5.5 we show the density profiles of these
final massive haloes as open symbols. The best NFW fit for these haloes are shown as the
solid lines, and the concentration parameter c = r200/rs is given in each panel. As can be
seen, the NFW profile is a good description of these objects up to redshift z = 12, but it
does not work so well for earlier times.

In the lower left panel, we overplot all these density profiles for a convenient comparison.
This shows that, when scaled with r200, the density profile for the final massive haloes in our
sequence are systematically dependent on redshift: the inner slope and the concentration
parameter c decrease with increasing redshift. It is noticeable that the density profiles for
the R4 and the R5 haloes are almost the same, and their surrounding structures are quite
similar (see in Fig. 5.4). This suggests the possibility of a self–similar formation of very
massive dark haloes at high redshift.

5.4.3 Properties of Substructure

The high resolution achieved by numerical simulations in recent years has allowed detailed
study of the properties of dark matter substructure (subhaloes) within dark haloes (Ghigna
et al. 1998; De Lucia et al. 2004; Diemand et al. 2004; Gao et al. 2004a, 2004b). The prop-
erties of substructure are important to characterize the internal structure of dark matter
haloes and to compare to observed substructure such as satellite galaxies. Unfortunately,
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Figure 5.4: Projected dark matter density fields of massive halo in inverse chronological
order. In left-hand panel we plot mass projections of dark matter particles within a cube
with 4r200 on a side. In right panel we show a slice centra to our final haloes in our
sequence simulations with geometry 10 × 10 × 2 in unit of r200 of the corresponding
haloes. The density fields are normalized with mean cosmic density field and shown
using a logarithmic scale.
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0.01 0.1 1 0.01 0.1 1

Figure 5.5: Density profiles for the final halo in each of our each simulations. The
open circles are the density profile measured directly from the simulations, the solid
lines are the corresponding fits with the NFW profile. c200, given in in each panel, is the
corresponding concentration parameter.
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Figure 5.6: Cumulative subhalo abundance functions for the final haloes of our sequence
of simulations

the correspondence between subhaloes and galaxies is a complicated one (Springel et al.
2001; Gao et al. 2004b).

In Fig. 5.6, we plot the cumulative subhalo abundance function for the final haloes in
our sequence of simulations. Note that we scale subhalo mass by m200 of the host halo and
only subhaloes within r200 are counted. It is remarkable that the substructure abundance is
quite similar for haloes at all redshifts except z = 0, when subhaloes are roughly a factor of
1.5 more abundant than at earlier times. This similarity may again reflect the self–similar
formation of these very massive haloes.

The radial distribution of substructures is also similar to that in low redshift counter-
parts. Subhaloes are significantly less centrally concentrated than the underlying mass
distribution, as shown in Fig. 5.7. In this plot, all subhaloes containing at least 30 particles
are counted, this is the limit to which Gao et al. (2004) considered the subhalo distribution
to be insensitive to resolution effects.

5.5 Discussion

If the evolution of the primordial gas and dark matter in current hydrodynamic simulations
has been followed correctly, our dark–matter–only simulations can complement their results
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Figure 5.7: The cumulative spatial distribution of subhaloes containing least 30 parti-
cles within r200 for the final haloes of our sequence of simulations. The solid curve shows
the total mass distribution in the z = 0 halo

to predict the formation time and also the abundance of the first stars.

In Fig. 5.8, we plot the M200 (top panel) and the virial temperature (bottom panel) of
the most massive halo in the high resolution region of our sequence of simulations as a
function of redshift. As can be seen from the top panel, the most massive halo resolved
in our simulation has a viral mass of ∼ a few ×M¯ at z = 100, 10h−1M¯ at z = 80, and
106h−1M¯ at z = 45. This last value corresponds to the smallest virial mass in which a
star can form according to recent hydrodynamical simulations (Abel et al. 1998; Bromm,
Coppi, Larson 1999; Yoshida et al. 2003). At z ∼ 26 the most massive object has 108h−1M¯

corresponding to the least mass possible for the birth of a quasar (Bromm et al. 2003).

The thick line in the same plot is quite interesting. It shows the predicted mass accretion
history for the R1 halo according to extended PS theory. It is remarkable that this pre-
diction follows closely the mass of the most massive haloes in our sequence of simulations.
There is at most a 10 per cent shift in the redshift direction at very early redshifts. We
note that the most massive haloes don’t become part of the final R1 halo. Examination
shows that our R2 halo ends up as a halo of virial mass ∼ 1014h−1M¯ at z = 0. At redshift
z = 5, it is 15 per cent more massive than the most massive progenitor of the R1 halo.
However, the R3, R4 and R5 haloes do end up as part of the R2 halo. Statistically, the
most massive halo in the high resolution region of our simulations roughly tracks the whole
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Figure 5.8: Top panel: mass of the most massive halo (define as M200) in our sequence
of simulations as a function of redshift. The solid line is the predicted mean mass of
the most massive progenitor of the R1 halo according to extended PS theory. Bottom
panel: the virial temperature (defined by using the maximum circular velocity) of the
most massive halo in our simulations as a function of redshift.

mass accretion history of a rich cluster today, and is consistent with EPS theory.
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Encouraged by the fact that the internal structure of dark matter haloes at high redshifts
is quite similar to that of their low redshift counterparts, we estimate the virial temperature
of dark haloes using the maximum circular velocity of the halo and assuming hydrostatic
equilibrium:

T = 35.9(Vc/km s−1)2K (5.3)

The viral temperature of the most massive halo in the high resolution regions of our sim-
ulation as a function of redshift is shown in the lower panel of Fig. 5.8. A halo of virial
temperature ∼ 2000K which is the critical temperature for the formation of the first stars
suggested by current hydrodynamical simulations (Abel et al 1999, Bromm et al. 1999)
collapses as early as z = 42. The critical temperature ∼ 104K for the effective cooling by
atomic H is reached as early as z = 35.

Since we simulate special regions, it is important to know the global abundance of objects
like those we study. As demonstrated in Fig. 5.3, EPS theory predicts halo abundance
accurately at redshift z = 48.85 at least in high density regions. In Fig. 5.9 we show
it works at z = 30 as well. Again, we apply conditional EPS equation (equation (1) and
equation (2)) and compare it to the halo abundance in a spherical region with radius 30r200.
The agreement is just as good as in Fig. 5.1. Thus, we conclude that EPS theory can be
used to predict the abundance of dark haloes in dense regions over the redshift range z = 30
to z = 50. It is possible, of course, to compare EPS theory to the data at other redshifts in
our simulations. However, a complete examination is out of the scope of this paper, where
we are more interested in objects that collapse before redshift z = 30. These should host
the first stars.

In Fig. 5.10, we plot the predicted abundance of massive objects in our simulations as a
function of redshift over the range [z = 29, z = 100] according to the PS formalism. The
two thin solid lines give the number of haloes per h3(Mpc)−3 equal to or more massive
than the most massive halo in the high resolution region of our R4 and R5 simulations.
Note that two effects are supposed to be responsible to the differences in this plot for the
overlapping redshift range for the R4 and R5 simulations. Firstly, the most massive object
in the two simulations can be different as noted in Gao et al. (2003), a massive halo at
early times doesn’t necessary evolve into a massive halo at later times. Secondly, the halo
abundance at high redshift is very sensitive to mass, a small difference in mass can result
in a large fluctuation in abundance.

It is interesting to know the abundance of the critical halo (∼ 106M¯) able to host one
of the first stars as a function of redshift. In Fig. 5.10, we show the number of haloes more
massive than 106M¯ per comoving h3(Mpc)−3. The abundance at high redshift is also
sensitive to the initial linear power spectrum. In Fig. 5.10, we plot abundances according
to two analytical transfer functions, those of Bond & Efstathiou (1987; BE) and Bardeen
et al. (1986; BBKS), and according to the numerical one produced with CMBFAST. The
last was used in our simulations. The prediction with the BE transfer function gives the
smallest halo abundance, while the with BBKS transfer function give the largest. As can
be seen, at fixed redshift, the dependence on transfer function can be as large as a factor
10; At fixed abundance, the difference can be 10 per cent in redshift. It is unclear yet which
transfer function is more accurate on such small scales.

In order to compare the halo abundance with that at the present–day, we plot the
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Figure 5.9: Differential mass function in a spherical region with radius 30r200 sur-
rounding the most massive halo in our R3 simulation. The solid line is the prediction of
conditional EPS theory. The error bars assumes Possion uncertainties in the counts for
the R3 simulation

predicted z = 0 halo abundance as a function of halo mass (upper axis) in Fig. 5.10 as the
thick solid line. Since the Sheth & Tormen mass function (Sheth &Tormen 1999; Sheth,
Mo, Tormen 2001) is more accurate at low redshift (Jenkins et al. 2001; Reed et al. 2003;
Gao et al. 2004), we compute this curve with the Sheth & Tormen formula. Comparing
the abundance of critical haloes to this curve, haloes with mass 106M¯ at z = 45 which
could probably house the first stars are as abundant as haloes of mass ∼ 1014h−1M¯ today.
By redshift z = 40 critical haloes(∼ 106M¯) are as abundant as present “Milky Way”
sized halo (∼ 1012M¯), and by redshift z = 30 they are as abundant as present haloes of
mass M ∼ 109M¯. This suggest that the first stars may be born before redshift z = 40.
However, according to this plot, our simulation failed to find the rarest objects at high
redshift with abundances similar to our R1 halo.

5.6 Concluding remarks

From repeated resimulation of the most massive halo in the high resolution regions of our
sequence, we have succeeded in following realistically very massive rare haloes over the
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Figure 5.10: Thin solid lines: the PS–predicted abundance of haloes equal in mass to
the most massive haloes in our R4 and R5 simulation as a function of redshift (bottom
axis); Dashed lines: the abundance of the critical mass halo for star formation (106M¯)
as a function of redshift (bottom axis) estimated for three different transfer functions.
Thick solid line: the abundance of haloes as a function of mass (upper axis) at z = 0
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range z = 80 to z = 0. Our results may be summarized as follows:

(1) Structure formation at high redshift is extremely strongly biased to overdense regions,
and the halo abundance in such overdense regions can be well reproduced by con-
strained Press &Schechter theory.

(2) There is a strong trend for the strength of the filaments surrounding around a massive
halo to increase with redshift.

(3) The internal structure of dark haloes at high redshift is quite similar to that at low
redshift. They are quite centrally concentrated. The properties of subhaloes within
early haloes are also similar to their low redshift counterparts.

(4) The inner slope of the density profile of haloes become shallower with redshift, while
the concentration parameter c decreases with redshift.

(5) Extended Press &Schechter theory is very accurate for predicting the halo abundance
over redshift z = 50 to z = 30 in overdense regions.

In a ΛCDM universe, early massive dark matter haloes collapsed in large overdense
regions. With realistic initial conditions, our simulations are able to resolve rarer and more
massive haloes at any given redshift than previous work, even though we did not actually
capture one of the rarest objects. The first stars should form earlier than previously
thought. If the first stars did form in haloes with mass 106M¯, a large number density
could be in place at z ∼ 42.
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Conclusion

Numerical simulation is a unique tool to explore the complexity of nonlinear systems. In
this thesis, we use N–body simulations to study the formation and evolution of highly
nonlinear objects in the “concordance” ΛCDM universe.

In Chapter 1, we review the most relevant theoretical framework for our studies.
The high resolution achieved by numerical simulation in recent years has allowed detailed

study of the properties of the dark matter substructure (subhaloes) which is predicated by
Cold Dark matter model. Since subhaloes are believed to be the carriers of galaxies, this
topic has attracted increased interest both from theoretical (e.g numerical simulation) and
observational (e.g. gravitional lensing) field. In Chapter 2, we use a large cosmological
simulation and a variety of high resolution resimulations of individual cluster and galaxy
haloes to investigate the systematic properties of subhalo populations. In contrast to
the results of previous studies, we found that the subhalo populations of different haloes
are not scaled copies of each other, but vary systematically with halo properties. On
average, the amount of substructure increases with halo mass. At fixed mass, it decreases
with halo concentration and with halo formation redshift. These trends are comparable
in size to the scatter in subhalo abundance between similar haloes. Averaged over all
haloes of given mass, the abundance of low mass subhaloes per unit parent halo mass is
independent of parent mass. It is very similar to the abundance per unit mass of low mass
haloes in the universe as a whole, once differing boundary definitions for subhaloes and
haloes are accounted for. The radial distribution of subhaloes within their parent haloes
is substantially less centrally concentrated than that of the dark matter. It varies at most
weakly with the mass (or concentration) of the parent halo and not at all with subhalo mass.
It does depend on the criteria used to define the subhalo population considered. About
90% of present-day subhaloes were accreted after z = 1 and about 70% after z = 0.5. In the
mean, subhaloes accreted at z = 1 currently retain only about 8% of their original mass,
those accreted at z = 2 only about 2%. Subhaloes seen near the centre of their parent
typically were accreted earlier and retain less of their original mass than those seen near
the edge. These strong systematics mean that comparison with galaxies in real clusters is
only possible if the formation of the luminous component is modelled appropriately.

Chapter 3 is an extension of Chapter 2. In this work, we address the relation between
subhaloes and galaxies by considering in detail the physical processes that regulate the
baryonic evolution. In the past, the interpretation of subhalo abundance has been mostly
based upon the current mass or internal structure of subhaloes without consideration of
their history. This leads to some aaparent contradictions between the predictions of Cold
Dark Matter theory and the observations. We show in this chapter that there is no obvious
contradiction but there is a rather complicated relation between subhaloes and galaxies.
Thus the reported discrepancies are very likely due to inadequacies in the simple models
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used, where the luminosity of the galaxy are simply related to the mass or (circular velocity)
of the corresponding subhalo in a dark–matter–only simulation. As an example, we use
a combination of 10 high resolution simulations of cluster–sized haloes and semi–analytic
techniques to study the spatial distributions and the velocity dispersion profiles of galaxies
and of dark matter subhalo. With reasonable assumptions about the evolution of the
baryonic components, the radial distribution of model galaxies is in nice agreement with
that of observed galaxies. We demonstrated that galaxies and subhaloes represent d ifferent
populations and are not directly comparable. Evolution produces a complex and strongly
position–dependent relation between subhaloes and their central galaxies. The relation can
be properly modelled only by appropriate physical representation of the galaxy formation
process.

In Chapter 3. we explore the assembly of the central cusps of ΛCDM haloes. In the
ΛCDM cosmology, giant protogalaxies are present at redshift z = 6 with comoving number
density (as a function of mass interior to ∼ 10 kpc) that is comparable to the present
number density of giant galaxies. The identity of the matter in their central regions is,
however, predicted to change as major mergers bring together stars and dark matter from
initially well separated sub-units. We use N-body simulations to show that these mergers
push pre-existing matter outwards in the dominant galaxy, preserving the inner density
profile of collisionless matter. It is plausible that the central regions of large galaxies end
up dominated by stars formed in dense cores well before the last major mergers. The
stability, or attractor-like, property of the collisionless matter distribution (stars and dark
matter combined) under merging then suggests that the baryon loading which accompanies
dissipative contraction and star formation may be erased as subsequent mergers drive the
mass distribution back to a universal profile. Such suppression of the effects of baryon
loading, along with the early assembly of the mass concentrations, may help resolve some
apparent challenges to the CDMmodel for structure formation. It could in principle explain
the observed absence of cusps in the central dark matter distribution of nearby galaxies
and galaxy clusters.

In the final Chapter, we carry out a sequence ofN–body resimulations of individual haloes
at various redshifts within a cosmological volume (0.68Gpc)3 with the aim of resolving
the first bound objects which could potentially host the first stars in a Cold Dark Matter
dominated universe. Our simulations succeed in resolving rare but relatively massive haloes
spanning a very broad redshift range[z = 80, z = 0] with ultra-high resolution. Our
results indicate that initial structure formation was extremely strongly biased to overdense
regions, and that this can be well understood within the framework of extended Press-
Schechter(EPS) theory. The internal structure of these early haloes is quite similar to
their low redshift counterparts, although the NFW profile does not fit as well. The halo
mass function is examined at redshift z = 50 and z = 30. We find excellent agreement
between the predictions and the simulations. Because our simulation volume is not a small
periodic box we are able to simulate rarer and more massive halos at any given redshift
than previous work. We find that bound–free cooling from atomic hydrogen can take place
in haloes as early as z = 32 and that the comoving abundance of these halos is predicted to
be the same as for 1014h−1M¯ halos today. If the first stars did form in haloes with mass
∼ 106M¯, a large number would be born already at z ∼ 45 with a comoving abundance
matching that of haloes with mass M∗ today.
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