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Abstract

Computing power in weather forecasting is a constraint due to the large number of de-
grees of freedom in the atmosphere and the limited resources with which to predict it.
Nowadays, ensemble forecasting further exacerbates this: In order to get a probabilistic
prediction, multiple forecast models are run parallel to each other in an ensemble. Our
resources must therefore be used where it is most impactful. One area where it is not clear
how many resources are needed is in the size of the ensemble. Sampling uncertainty, which
occurs from being unable to sample all the degrees of freedom in the atmosphere leads to
imprecise forecasts and can be detrimental in times when it is vital to forecast extreme
weather events, especially as climate change makes these more frequent. On the other
hand, ensembles may be unnecessarily large for forecasters interested in only basic fore-
cast quantities. By understanding what ensemble size is required in an ensemble forecast,
one can better predict the weather as well as ensure computational resources are being
optimally spent. An idealised approach is taken, whereby a massive ensemble represen-
tative of convective-scale ensemble forecasts is simulated with the aim of looking at how
sampling uncertainty decreases with ensemble size. For this, the convergence measure is
created which uses bootstrapping (sampling with replacement) of the forecast distribution
to obtain a Confidence Interval (CI) within which the sampling uncertainty for a given
statistic lies for the sampled ensemble sizes. An asymptotic power law scaling inversely
to the square-root of the ensemble size is found in the limit of large ensemble size as a
consequence of the Central Limit Theorem (CLT). This is already seen for the mean and
variance with operational ensemble sizes. A framework to find the optimal ensemble size
given a desired level of sampling uncertainty is then possible if one is in this asymptotic
regime by extrapolating the power law to smaller sampling uncertainty levels. If one is not
in the asymptotic regime because of too small an ensemble size, a parametric technique
which makes use of the distinctive shapes of the forecast variables can be employed. It was
furthermore found that the convergence of sampling uncertainty depended on the forecast
variable’s distribution shape and the statistic of interest. Extending the initial version
of the idealised model to include weak and strong forcing convective weather regimes, it
is seen that di↵erent characteristics of sampling uncertainty exist for di↵erent convective
weather regimes. This is a consequence of the distribution shapes being di↵erent for each
regime. The question of ensemble size is not only relevant for convective-scale forecasting,
but also for the synoptic scale. By applying the convergence measure to data from the
European Centre for Medium-range Weather Forecasts (ECMWF), asymptotic scaling was
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confirmed to also occur in synoptic-scale data for statistics including the Extreme Fore-
cast Index (EFI), which is used operationally. A framework for finding the optimal size
of ensemble based on the forecast variable, the statistic of interest and the level of sam-
pling uncertainty desired, which is applicable for the convective as well as synoptic scale,
is thereby developed in this thesis.



Zusammenfassung

Die verfügbare Rechenleistung ist ein limitierender Faktor in der Wettervorhersage, was
vor allem auf die vielen Freiheitsgrade der Atmosphäre zurück zu führen ist. Ensemble-
Vorhersagen, die in jüngster Zeit verstärkt durchgeführt werden, verschärfen das Problem:
Um eine probabilistische Vorhersage zu erhalten, werden viele, etwas unterschiedliche Sim-
ulationen parallel gerechnet, die dann das Ensemble bilden. Die verfügbaren Ressourcen
müssen daher möglichst geschickt aufgeteilt werden, wobei allerdings ist die Bestimmung
der optimalen Größe des Ensembles schwierig und weitgehend ungeklärt ist. Die Stich-
probenunsicherheit, die dadurch entsteht, dass nicht alle Freiheitsgrade der Atmosphäre
berücksichtigt werden können, führt zu ungenauen Vorhersagen und dies ist besonders
kritisch bei Extremwetter-Ereignissen, welche durch den Klimawandel immer häufiger zu
erwarten sind. Auf der anderen Seite sind die Ensembles möglicherweise unnötig groß für
die Vorhersage grundlegender meteorologischer Variablen. Ein besseres Verständnis der
Anforderungen an die Ensemblegröße einer Vorhersage würde somit bessere Vorhersagen
durch eine optimierte Aufteilung der verwendeten Ressourcen ermöglichen. Mit einem
idealisierten Verfahren wurde zunächst ein sehr großes Ensemble atmosphärischer Konvek-
tion simuliert und untersucht, wie die Stichprobenunsicherheit mit der Ensemblegröße ab-
nimmt. Dazu wurde eine Konvergenzmetrik entwickelt, welche die Bootstrapping-Technik
(mit Zurücklegen) auf die Vorhersageverteilung anwendet, um ein Konfidenzintervall zu
erhalten, in welchem die Stichprobenunsicherheit für eine bestimmte statistische Größe
und für gegebene Ensemblegröße liegt. Asymptotisch zeigte sich ein Potenzgesetz invers
zur Wurzel der Ensemblegröße im Grenzfall großer Ensembles als Konsequenz des zen-
tralen Grenzwertsatzes. Für den Mittelwert und die Varianz ist dieser Grenzfall für op-
erationelle Ensemblegrößen bereits erfüllt. Durch Extrapolation des Potenzgesetzes ist es
dann in dem asymptotischen Regime möglich, die optimale Ensemblegröße für eine be-
liebige gewünschte Stichprobenunsicherheit zu bestimmen. Außerhalb des asymptotischen
Regimes, d.h. bei zu kleiner Ensemblegröße, kann eine parametrische Technik angewen-
det werden, welche die charakteristischen Verteilungen der Vorhersagevariablen ausnutzt.
Weiter konnte gezeigt werden, dass die Konvergenz der Stichprobenunsicherheit von der Art
der Verteilung der vorhergesagten Variable und der gewünschten Statistik abhängt. Mit
einer Erweiterung des idealisierten Modells auf jeweils schwach oder stark angetriebene
Konvektion konnte außerdem gezeigt werden, dass sich die Charakteristiken der Stich-
probenunsicherheit abhängig vom konvektiven Wetterregime unterscheiden. Dies ist eine
Konsequenz der unterschiedlichen Verteilungsformen in den beiden Wetterregimen. Die
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Frage nach der Ensemblegröße ist jedoch nicht nur für Konvektion von Interesse, son-
dern auch für größere, synoptisch-skalige Prozesse. Dazu wurde die Konvergenzmetrik auf
Vorhersagedaten des European Centre for Medium-range Weather Forecasts (ECMWF)
angewendet. Die asymptotische Skalierung konnte auch für die synoptisch-skaligen Daten
für verschiedene statistische Größen bestätigt werden, einschließlich des operationell ver-
wendeten Extreme Forecast Index (EFI). Somit stellt diese Arbeit ein Verfahren vor,
um die optimale Ensemblegröße in Abhängigkeit von der vorhergesagten Variable, der
gewünschten Statistik und der gewünschten Stichprobenunsicherheit zu finden und das
sowohl auf der konvektiven als auch auf der synoptischen Skala.
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Chapter 1

Introduction

Ensemble forecasting, whereby forecast models with slightly di↵erent initial conditions are
run in parallel, has become progressively more commonplace in operational weather centres
worldwide since the 1990s. Evolving from single, deterministic, weather models, ensemble
forecasting allows for a probability to be attached to a meteorological prediction, for ex-
ample to say that there is a 40% chance of rain. The improvement in weather forecasting
has been, and continues to be, hugely important for a strong economy and in protecting
human life and property (Craig et al., 2021)1, especially since humans must become more
resilient with the e↵ects of climate change creating more frequent natural disasters such
as wind storms and flooding. To emphasise the positive impact improving forecasts can
have, the World Bank has estimated that there could be increases of up to 30 billion USD
per year in global productivity and 2 billion USD per year in reduced asset losses, from
investing about 500 million USD in improving weather, climate, and water observation and
forecasting systems (Anderson et al., 2017). This provides a great motivation for further
improving weather forecasts, which is the overarching goal of this thesis.

1.1 History and Outlook of Weather Forecasting

In the following I will outline the progression from deterministic forecasting to probabilistic
predictions using ensembles of deterministic forecast models. Finally, I will conclude with
the vital questions being asked today in the field of ensemble forecasting, focusing on the
question of ensemble size which I will explore in more depth.

1.1.1 Deterministic forecasting

Abe (1901) and Bjerknes (1904) saw the potential of applying the laws of physics to the
problem of predicting the weather in the early 1900s. By using di↵erential equations to

1I am a co-author, whereby I contributed the sub-section “Early-career scientists”
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calculate how variables of the atmosphere, namely wind, pressure, density and tempera-
ture, change in time, future states of the atmosphere could be estimated. These equations
were composed of the Navier-Stokes and mass continuity equation as well as the law of
thermodynamics (Bauer et al., 2015). The di↵erential equations were then solved numer-
ically using spatial and temporal discretisation. The first successful computation of these
equations was carried out by Charney (Charney, 1948) in the middle of the 20th century. A
few years following this, the first real-time deterministic forecast was created in Stockholm
(Bolin, 1955).

It happened that deterministic forecasting, whereby there is only one possible state
of the atmosphere predicted, was often misleading. For example in October 1987 the deter-
ministic forecast currently in operational use at that time did not foresee a storm over the
UK. Had an ensemble been run however, there may have been an extreme weather warning
broadcasted as many members from a later simulated 51 member ensemble showed a deep
depression (low pressure) and strong winds, not shown in the deterministic forecast at the
time (Slingo and Palmer, 2011). From this and other similar incidents, it was made clear
to forecasters and researchers that deterministic forecasts weren’t the ultimate answer to
weather forecasting but rather an important stepping stone along the way. Slowly, the
world of operational forecasting was beginning to delve into the possible advantages of a
probabilistic forecast.

1.1.2 Ensemble forecasting

In the second half of the 20th century scientists were investigating the limits of predictabil-
ity of the atmosphere, that is, how far in advance they could provide a prediction which
would be better than a random one. Limits on the predictability of the atmosphere exist
because it is very chaotic, with 106�108 degrees of freedom (Leutbecher and Palmer, 2008).
In order to first understand this chaos, the divergence of initial conditions in non-linear
systems was investigated. One of the first experiments to address this calculated the Root
Mean Square Error (RMSE) (measures the variability) of wind error predictions. In this
experiment the wind error was seen to double in two days (Thomson, 1957). Lorenz (1963)
quantified this result further by using a finite system of deterministic non-linear di↵eren-
tial equations. He discovered how predictability is flow dependent and how two slightly
di↵erent initial conditions can lead to remarkably di↵erent states of the atmosphere at a
later point in time, the so called “Butterfly e↵ect” (although he references a seagull’s wings
rather than those of a butterfly’s in his work). Lorenz argued that deterministic forecasts
could not be trusted due to the Butterfly e↵ect and the ability of tiny errors to have a
large impact on the forecast. As such he was one to foresee the future ensemble system
(Lorenz, 1965).

Multiple methods have been proposed to obtain a probabilistic future state of the
atmosphere. This has included the Liouville or Fokker-Planck equations (Palmer, 2017)
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and Epstein’s stochastic dynamic prediction method (Epstein, 1969). Both were limited
however by the large number of degrees of freedom of the atmosphere (Leutbecher and
Palmer, 2008). The Monte-Carlo method was ultimately suggested (Leith, 1974), which is
used to this present day, being operational for over 25 years (Palmer, 2019).

Figure 1.1: Example of ensemble forecasting. Initial condition uncertainty is propagated
in time with an ensemble of predictions (shown by blue lines) to sample the forecast
uncertainty at a later time point. The red line shows the analysis being propagated in
time. This set-up enables a probability to be attached to the meteorological prediction, in
this case precipitation. Figure originally from Bauer et al. (2015).

The Monte-Carlo method commonly used in ensemble forecasting begins with a dis-
tribution of states of the atmosphere, which is provided by Data Assimilation (DA). Data
assimilation simply combines the prediction from a numerical forecast, known as the back-
ground, with observations of the atmosphere to calculate a best-guess of the current state
of the atmosphere, known as the analysis. Alongside this an associated error is calculated,
which is known as the initial condition uncertainty and can be used to create a distribution
of initial states for the Monte-Carlo forecast. Each of these states is known as an ensemble
member and together they make up the ensemble. The ensemble distribution therefore
is made up of ensemble members from a specific forecast variable. The initial condition
uncertainty is seen in Figure 1.1, whereby the ensemble members, shown by blue lines, are
propagated in time by forecast models which have only slight di↵erences between them
to allow for forecast spread. The analysis ensemble member is shown in red and the grey
shading is the forecast uncertainty at a later time which has been calculated from the
resulting projections from each of the ensemble members. This allows for a probabilistic
prediction of the forecast variable, which in this case is precipitation. The forecast uncer-
tainty comes from multiple sources of unpredictability including small scale noise, upward
propagation of energy, errors from numerical and physical approximations and inaccurate
and lack of observations to sample the initial state of the atmosphere.

From constant improvements in a multitude of areas including from advancing the
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DA (e.g. Ruckstuhl and Janjić (2018)), observation systems (e.g. Wang et al. (2015))
and the formulation of the numerical models (e.g. Hirt et al. (2019)), we’ve been able to
extend the forecast by roughly one day each decade for the past 40 years (Bauer et al.,
2015). Further improvement is possible, as shown by Selz et al. (2022) who calculated
that 4-5 days of predictability can be gained by continued improvements to the forecasting
system. According to Bauer et al. (2015), there are three main areas where improvement
is needed in ensemble forecasting. These are the representation of physical processes in the
ensemble models, the initialisation of the model and the ensemble forecasting itself. This
thesis concentrates on improvement in the latter area, with a specific focus on the question
of how to decide on how many ensemble members are required for the ensemble forecast.

1.1.3 Ensemble Size

Within the ensemble forecasting system, the number of ensemble members used in opera-
tional centres has not changed significantly in recent years. Operational ensembles typically
have sizes between 20 and 50 members (Buizza et al., 2000; Reinert et al., 2020; Meto�ce,
2023). These sizes have often been chosen based on the computational power available at
that time. As it is important that forecasts are improved, and ensemble forecasting is one
of the key areas to improve, it is consequential to ask how many members are actually
needed in an ensemble.

It is not precisely known what ensemble size is optimal to have in weather forecasting.
Leith (1974) suggested from looking at the Mean Square Error (MSE) that eight members
would be enough to estimate an ensemble mean and not much improvement would be
gained from adding further members. This was, however, calculating the mean of the en-
semble members and not statistics which forecast extreme weather events, which are often
di�cult to accurately forecast with current operational ensemble sizes. Extreme weather
events are events such as major floodings from a lot of precipitation or high speed winds,
where the probability, and as such the predictability, of the event occurring is low. Extreme
weather events is one of the top two risks facing the world today and so it is a priority to
forecast them reliably (WEF, 2020). In order to predict extreme events, the probability
of extreme events occurring needs to be known and the quantiles of tails of distributions
are a statistic which is often used for their prediction. Lovejoy and Schertzer (2018) show
however that tails of uni-modal distributions are not well resolved with current ensem-
ble sizes of about 50. This sensitivity for quantiles where the probability density is low,
which will be referred to as extreme quantiles, is perhaps unsurprising considering that the
frequency distribution of a forecast quantity (hereafter referred to simply as distribution)
from an ensemble of up to 50 members is unlikely to be accurate for rare events that are
infrequently sampled. Whereas fewer members would be needed to resolve a less extreme
(e.g. median) quantile. Clearly forecasters are interested in di↵erent statistical properties
of the forecast, and as such there will likely not be one magic number for how large an
ensemble should be. Rather, it will likely depend on what is interesting to the forecaster,
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as well as the forecasting system itself.

It has been seen from many studies that increasing ensemble size does have a posi-
tive e↵ect on the quality of the forecast. Buizza et al. (1998) and Raynaud and Bouttier
(2017) compare the benefits of increased ensemble size against those of higher resolution,
where the grid points in the model are closer together, for global and regional forecast-
ing systems. Both studies found that either ensemble size or resolution increases could
be more beneficial, depending on factors such as forecast lead time (duration of forecast
run) and the quantity being predicted. Richardson (2001) took into account the usefulness
of the forecast for users. They showed that users with low predictability forecasts and
low cost/loss ratios (where the cost of taking preventive action is much less than the cost
of what could be lost if preventive action is not taken) would particularly benefit from
increasing their ensemble size. Machete and Smith (2016) took another approach by cal-
culating an ensemble’s relative information content (how much information the ensemble
contains) to measure the e↵ect of increasing the ensemble size. They showed that there is
still information to be gained from increasing ensemble size even when ensembles are on
the order of 100 in size, however at a large enough ensemble size model error will even-
tually dominate and sampling uncertainty won’t be of concern. There are studies which
showed no significant e↵ect of increasing ensemble size e.g. Bannister et al. (2017); Jirak
et al. (2016). In both of these studies however the maximum ensemble size was only 93.
In general, from looking at the impact of ensemble size in specific instances and scenarios
it appears that ensemble size does have a measurable e↵ect on the quality of the forecast.
This shows that understanding the ensemble size required is an important issue. It is not
clear though from these studies what a large enough ensemble size would be. From the
dependencies on specific cases and models, it is likely that a general framework is needed
to understand this in detail.

Steps to understand ensemble size required have been taken from a theoretical stand-
point. Leutbecher (2019) delved into the problem of how large an ensemble should be by
providing a theoretical framework for the modest increases in forecast skill with increasing
ensemble size. A number of di↵erent skill scores were evaluated, and results from European
Centre for Medium-range Weather Forecasts (ECMWF) ensembles with up to 200 mem-
bers were compared with theoretical expectations for ensembles of di↵erent sizes under
the assumptions that the ensemble is reliable (if the forecast model is able to replicate
the observed state) and that the members are exchangeable (the members could be mixed
up and it would not make a di↵erence). Under these assumptions for an ensemble of size
n, the score of the Continuous Ranked Probability Score (CRPS), which measures the
performance of an ensemble, is equal to the score for an infinite ensemble multiplied by a
factor (1+ 1

n). This shows that improvements in CRPS will be small once the ensemble size
has reached a few 10s of members, and useful estimates could often be obtained with even
smaller ensembles. Similar results were found for other scores, with the notable exception
of the Quantile Score (QS) which evaluates how well quantiles of value 0 < p < 1 can be
measured in a forecast (Leutbecher, 2019). For the more extreme quantiles on a uni-modal
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distribution close to 0 or 1, convergence required much larger ensemble sizes. These re-
sults encourage the formulation of a broad framework for understanding and estimating
ensemble size, however there needs to be further refinement for it to be applicable to every
ensemble forecast and statistical quantity.

In research environments, larger ensemble sizes have been considered to resolve the
forecast distribution more accurately and to investigate the question of ensemble size. For
example, Lin et al. (2020) evaluated a measure of hurricane strength called non-dimensional
damage, that depends non-linearly on wind speed and is sensitive to extremes. They found
that a 100-member ensemble was not large enough to resolve the relevant part of the wind
speed distribution, whereas an ensemble size of 1, 000 gave much improved results. Like-
wise, Jacques and Zawadzki (2015) chose to use a 1, 000-member ensemble to describe the
background covariance structure, which quantifies how di↵erent forecast variables are de-
pendent on each other and is used in DA. This was found to be of benefit since multivariate
combinations of values may be infrequently sampled even when the individual values are
not rare. This e↵ect is magnified from simple Gaussian marginal distributions being able to
create more complicated multivariate distributions (Poterjoy, 2022). A quantitative evalu-
ation of the importance of ensemble size in DA was provided by Kondo and Miyoshi (2019),
who used the 10, 240-member global ensemble of Miyoshi et al. (2014), to measure the de-
gree of non-Gaussianity, how much the forecast distributions diverged from being Gaussian
distributed, at di↵erent ensemble sizes. It was found that in general, approximately 1, 000
members were required to represent characteristics of non-Gaussian distributions such as
skewness and kurtosis, the third and fourth moments of the distribution. Using the same
model as Miyoshi et al. (2014), Necker et al. (2020a) quantified how sampling uncertainty
decreased in spatial covariances of smaller subsets of their 1, 000-member simulation over
a domain of central Europe. Furthermore in Necker et al. (2020b), a look up table ap-
proach was developed to correct for sampling uncertainty in the spatial covariances which
was dependent on ensemble size. These studies have often come to the conclusion that a
1, 000-member ensemble should be used. It is not clear however how this number should
di↵er depending on the ensemble forecast, or the forecasting case.

Due to the large degrees of freedom in the atmosphere, ensembles of operational size
contain a measurable sampling uncertainty. This occurs because an ensemble can’t create
a perfect replica of the real distribution when there are less ensemble members than de-
grees of freedom. This sampling uncertainty then leads to inaccurate forecast predictions.
To estimate the extent of this inaccuracy, a form of bootstrapping can be used (Davison
and Hinkley, 1997). Bootstrapping is simply sampling from a distribution with replace-
ment, to create a statistically identical new distribution. Furthermore, non-parametric
bootstrapping is when the underlying distribution is not known. Non-parametric boot-
strapping can then be used to infer statistical properties about the underlying distribution
without making assumptions about it. It samples with replacement from an empirical
Cumulative Distribution Function (CDF) to create bootstrapped distributions which can
then be used to create Confidence Interval (CI)s which provides a probability with which
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a statistic is within the limits of the chosen interval (e.g. 95%) (Jolli↵e, 2007). This can
be useful in estimating the actual sampling uncertainty. Dibike et al. (2008) used this
non-parametric bootstrapping method to quantitatively evaluate the uncertainty of statis-
tically down-scaled climate data in Northern Canada, whereby the low resolution climate
data was processed to obtain higher resolutions. To calculate the uncertainty, they con-
structed CIs to calculate the variability of the mean and spread of the di↵erence between
the down-scaled and observed, meteorological variables. In addition, Feng et al. (2011)
used block bootstrapping to predict the uncertainty related to seasonal means. In their
case, blocks of data were sampled rather than individual data points so as to keep their
serial time correlation. From these studies it is clear that bootstrapping can be a powerful
tool in calculating the magnitude of the sampling uncertainty created from having a finite
ensemble size.

The previous studies detailed the strong impact ensemble size can have on forecast
skill and sampling uncertainty as well as first steps to estimate what ensemble size would
be optimal. Despite this, it is not clear how many members are required to resolve the
full distribution including the tails and forecast them accurately enough. It is likely a
framework is needed, that can be applied to a specific ensemble and forecast case, to reach
an ensemble size relevant to the forecaster. This leads to the central question of this thesis
which is how to know what ensemble size is required to achieve su�cient accu-
racy in your statistic of interest?

1.2 Asymptotic Convergence of Sampling Uncertainty

In order to address the central question of what ensemble size to aspire to, preliminary
studies have looked at the nature of how sampling uncertainty of probabilistic weather
forecasts decreases with increasing ensemble size. It is thought that if this converges with
ensemble size according to a theory, then it can be estimated how further ensemble size
increases would influence the accuracy of the forecast. This has been investigated from
an experimental and theoretical point of view, each of which will be explored in this section.

1.2.1 Convergence in forecast data

Milinski et al. (2020) used bootstrapping without replacement to measure how sampling
uncertainty decreased with ensemble size. With a 200-member climate model, a power law
like convergence was observed for statistics of the global mean and RMSE over a region.
Their method of bootstrapping without replacement limited them however in determining
how further increases in the ensemble size would reduce the sampling uncertainty. This is
because the sampling uncertainty at the maximum ensemble size would be zero, which is
very unrealistic. A “recipe” was outlined, explaining how one could determine the ensemble
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size required based on a maximum level of uncertainty acceptable for a forecaster. If one
could estimate how sampling uncertainty would continue to decrease at larger ensemble
sizes, one could give a best guess on how many ensemble members they would need to
reach their required level of sampling uncertainty.

Figure 1.2: Convergence of sampling uncertainty with ensemble size for the mean statistic
and the temperature distribution. Log10 scaled x and y axis. The orange dashed and blue
solid line correspond to two di↵erent methods of calculating how sampling uncertainty
decreases with ensemble size. The dotted black line scales proportional to n

� 1
2 , where n is

ensemble size. Figure from Craig et al. (2022).

To avoid the problem of an unrealistic sampling uncertainty measurement at the
largest ensemble size as in Milinski et al. (2020), Craig et al. (2022) 2 used bootstrapping
with replacement on their 1, 000-member ensemble to investigate how sampling uncertainty
would decrease with ensemble size. We discovered that for all distribution shapes and most
forecast variables, the width of CIs, which is used as the measure of sampling uncertainty
of the ensemble estimates, decreased proportional to n

� 1
2 with increasing ensemble size

n. As this scaling extended infinitely, not going to zero, it is called “asymptotic” (Urdan,
2022). The forecast variables included the mean, standard deviation and the 95th percentile
of temperature and humidity, as well as the probability of precipitation exceeding certain
thresholds. An example is given for the mean of the temperature distribution in Figure 1.2.
It is seen that using a neighbourhood (orange line), whereby the ensemble size is artificially
increased, the sampling uncertainty is smaller than that for the distribution from a single
grid point (blue line). We found the n

� 1
2 scaling for su�ciently large ensemble sizes for

all statistical quantities, except some 95th percentiles and the probability of precipitation

2I was a co-author and aided in the analysis of data and interpretation of results and contributed to
writing.
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exceeding large thresholds. We hypothesised that the scaling would eventually be observed
for these statistical quantities where the scaling had not been observed, if ensembles sizes
larger than 1, 000-members would be employed. Additionally, we saw that the distribution
shape of the forecast uncertainty can influence convergence of the sampling uncertainty of
a statistical quantity.

The two studies (Milinski et al., 2020; Craig et al., 2022) described in this section
show there is potential in looking at how sampling uncertainty decreases with ensemble
size to answer the central question of how large an ensemble should be. Since if the sam-
pling uncertainty always converges with the scaling of n� 1

2 , one would be able to estimate
how small the sampling uncertainty would become with even larger ensemble sizes. Craig
et al. (2022) also pointed to the potential importance of distribution shape of the forecast
uncertainty on the convergence behaviour.

Distribution shapes and neighbourhood method

Figure 1.3: Conceptual model of the evolution of forecast uncertainty for a fictitious vari-
able “q” in a forecast. Dotted line is distribution shape from previous time step. Figure
from Craig et al. (2022).

As previously mentioned, we hypothesised that the convergence of sampling uncer-
tainty depends on the distribution shape (Craig et al., 2022). It was generally seen that
more complicated shapes which were less Gaussian would need a larger ensemble for their
convergence to scale proportional to n

� 1
2 , and di↵erent shapes would lead to di↵erent mag-

nitudes of sampling uncertainty. An idea of how forecast distribution shapes vary as a
function of lead time is given by our conceptual model, shown in Figure 1.3. It shows the
distribution broadening from the constrained initial distribution prepared by the DA, as un-
certainty increases and deviations from Gaussianity become larger as non-linear processes
(for example convection) become important. These deviations may be of the form of the
distribution developing long tails (extreme events) and multiple peaks (weather regimes).
At long lead times it will then converge to a smoother climatological distribution. Look-
ing at forecasts of winds, temperatures, humidity and precipitation from a 1, 000-member
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cloud-resolving ensemble, we found evidence for this progression of distribution shape. As
distribution shapes don’t remain constant but change and evolve during a forecast run, this
means that their e↵ect on the convergence of sampling uncertainty will change throughout
a forecast.

A variety of shapes of distribution may be seen in a forecast run. For example,
Thomas et al. (2021) show through a large eddy (small scales) simulation and a Gaus-
sian mixing model that the model variable of water vapour saturation density is neg-
atively skewed. Censored, shifted gamma distributions were found to fit precipitation
accumulations (Scheuerer and Hamill, 2015) and Jacques and Zawadzki (2015) saw in
their convection-resolving model a Laplace distribution fit the horizontal wind, as well as
some bimodality occurring. We identified three categories of distributions: quasi-Gaussian,
highly skewed and multi-modal (Craig et al., 2022), which have also been observed in other
studies, e.g. Kawabata and Ueno (2020). Clearly there are various types of distributions
being formed in an ensemble, not only Gaussian distributions which are often assumed by
DA algorithms. It will be of interest to look at their impact on the convergence of sampling
uncertainty with ensemble size.

Oftentimes the shape of a distribution will not be clear due to too small an ensemble.
To counter this, the neighbourhood method can be employed. This method was shown
to be e↵ective in our study with a 1, 000-member full convective-scale Numerical Weather
Prediction (NWP) ensemble (Craig et al., 2022) where a larger ensemble was needed to see
asymptotic convergence in some forecast variables. The convective scale has an order of
O(10km) and the “full” NWP model simply means that the numerical model has a com-
plexity which captures all relevant processes in the atmosphere and is of an operational
standard. The neighbourhood method can be used to create smoother distribution shapes
from an otherwise small ensemble with a large sampling uncertainty. It works by sampling
grid points within a specified neighbourhood, rather than from a single grid point. The grid
points are treated as individual ensemble members, increasing the e↵ective ensemble size
and providing additional information if the grid points within the neighbourhood are un-
correlated (Craig et al., 2022). By averaging out the uncorrelated small-scale noise among
ensemble members in the neighbourhood, smoother distributions can then be created with
reduced sampling uncertainty. To be e↵ective, it is important that the ensemble members
within the neighbourhood have similar statistical properties. Otherwise the distribution
shape will change as the neighbourhood region becomes larger, incorporating members
with di↵erent statistical properties. If a neighbourhood region is a circle, the statistical
properties will often begin to become inhomogeneous at a radius of around 100km as a
result of including di↵erent orographies and synoptic weather conditions.

Previous studies have found a large array of distribution shapes within their ensem-
bles. This is of potential importance because it has been hypothesised that the ensemble
distribution shape can a↵ect the convergence of sampling uncertainty with ensemble size.
As such, it will be of interest to look at the shapes of forecast distributions and understand
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their link to the sampling uncertainty of statistical quantities.

1.2.2 Convergence in theory

Asymptotic convergence of sampling uncertainty, which has been observed in meteoro-
logical data, whereby convergence proportional to n

� 1
2 occurs indefinitely in the limit of

large n, is a well-established topic in statistics. This exists due to the Central Limit
Theorem (CLT). The CLT states that for a large number n of independent and identi-
cally distributed (iid) random variables, the sampling distribution of the summation of the
random variables will be normally distributed without dependence upon the initial distri-
bution’s shape (Dekking et al., 2005). It further assumes that the underlying distribution
of random variables has a finite variance.

The CLT can be used to calculate a standard error. A standard error is “a measure
of variability between samples if an infinite number of samples could be drawn from a
population” (Harding et al., 2014). This means that the standard error is not the same as
the standard deviation which measures the variability of one particular sample. Rather, it
is the standard deviation of the sampling distribution of the statistic of interest and can
be referred to as the sampling uncertainty. For a few statistics the standard errors are
well-known and can be simply quantified (Harding et al., 2014). Perhaps the most well
known standard error is that for the mean, estimated as:

�m =
sX
p
n
, (1)

where sX is an estimate of the population’s standard deviation. It can be seen that the
standard error decreases proportional to n

� 1
2 . A standard error exists for the standard

deviation which also depends on the population’s standard deviation and decreases pro-
portional to n

� 1
2 :

�sd =

r
⇡

2

sX
p
n
, (2)

although this requires normality of the underlying distribution. Note that these estimates
do not address how many members are needed for asymptotic convergence to begin.

Convergence of sampling uncertainty according to Equation (1) was demonstrated
in Leutbecher (2019) with an idealised set-up. Multiple simulated Gaussian distributions
with up to 16, 000-members were used to measure how the uncertainty of the ensemble
mean converged with ensemble size. A close match between the measured value of the
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sampling uncertainty for the mean as well as the variance with the theoretical value for
various ensemble sizes was found.

As well as for the mean and standard deviation, a well known equation exists which
describes how the sampling uncertainty of any quantile decreases with ensemble size. For
a given quantile level, the standard error of the ensemble sample estimate of that quantile
is given by:

�p =
1
p
n

s
p(1� p)

f 2(qp)
, (3)

where n is the number of ensemble members and f is the probability density at qp, the true
theoretical quantile corresponding to p, where p 2 (0, 1) is the quantile level (Gneiting,
2014; Stuart and Ord, 2000). The first term on the right-hand side of Equation (3) shows
the expected scaling with ensemble size, while the second term shows that the uncertainty
is inversely proportional to the frequency of occurrence of the quantile, i.e. predictions of
rare events are less confident. For su�ciently large n, Equation (3) provides an estimate
of how many ensemble members would be required in order to have a specific level of
sampling uncertainty for a particular quantile level of a meteorological variable, and how
this changes depending on quantile level. This is illustrated in Figure 1.4, which shows the
ensemble size required to reach a given level of sampling uncertainty for di↵erent quan-
tile levels for a Gaussian-distributed variable, computed from Equation (3). The figure
shows that as one requires increased certainty in the estimate of the quantile level p, more
members are required. Furthermore, as the quantile level gets more extreme (in this case
further away from the median), the sampling uncertainty increases for any given number
of ensemble members, varying inversely with the underlying Gaussian distribution shown
in Figure 1.4(a).

It has been seen that the power law behaviour of sampling uncertainty convergence
with ensemble size observed in computational meteorology studies occurs due to the CLT.
This provides a strong basis for creating a framework with which one could estimate the
required ensemble size based on the level of sampling uncertainty acceptable, in cases
where asymptotic scaling can be observed in forecast data. For example, if a forecaster is
wanting to approximate the number of members required to reach a certain accuracy in
the spread of their measurement of temperature over Munich they could use asymptotic
scaling. This would work by quantifying how their data which they have with their current
sized ensemble scales with n

� 1
2 , and then extrapolating this until it reaches the level of

sampling uncertainty they would wish to have. The corresponding ensemble size required
to get that level of sampling uncertainty would then be the desired ensemble size. Previous
studies have made a solid start in investigating the possibilities of this technique, however
these have been preliminary and further exploration is required. This motivates us to
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Figure 1.4: (a) Probability density of a Gaussian as a function of quantile p and (b) showing
the corresponding ensemble size (contours) required to reach a given level of sampling
uncertainty (y-axis) for di↵erent quantile levels (x-axis).

thoroughly answer whether asymptotic theory is relevant to real forecast data,
by quantifying how sampling uncertainty decreases with ensemble size.

1.3 Convergence of Sampling Uncertainty in Convec-
tive Weather Regimes

Forecast uncertainty is impacted by the meteorological situation (Keil and Craig, 2011).
Weather regimes group specific conditions of the meteorological environment together and
convective weather regimes are those regimes involving convection. For example, convec-
tion in the midlatitudes can often be categorised by the two regimes of weak and strong
forcing (Flack et al., 2016). As each weather regime will produce di↵erent distribution
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shapes of forecast uncertainty for various variables e.g. precipitation, due to the di↵erent
atmospheric processes, it is of interest to look at how the convergence of sampling uncer-
tainty with ensemble size di↵ers between di↵erent regimes. It could be that the ensemble
size required is dependent on the weather regime. Due to myself being situated in the
midlatitudes, weak and strong forcing convective weather regimes will be investigated in
this thesis. As a first step to understand the two regimes, there will be an introduction to
convection. Thereafter the two convective weather regimes will be described.

The following introduction to convection and weather regimes is adapted from the
textbooks Emanuel (1955) and Lin (2007).

1.3.1 Convection

In atmospheric sciences, convection generally refers to the small-scale thermally-driven cir-
culations which result from gravity acting upon an unstable vertical distribution of mass
in the atmosphere. This convection combined with moisture (known as moist convection)
organises itself on many spatial scales, producing microscale turbulence to fronts and hur-
ricanes.

The parcel method is used to assess the stability of the atmosphere to convection.
By calculating the buoyancy of a parcel of air that is displaced vertically a finite distance,
it can be determined whether it will rise, stay where it is, or sink from its current position.
If the parcel has water vapour available, it will allow for condensation as the parcel rises.
As the parcel ascends and the saturation vapour pressure decreases, this lets more water
vapour in the parcel condensate. With this condensation, latent heat is released, warming
the parcel and keeping it more buoyant than it’s environment when it is displaced upwards.
This convective instability with the involvement of water vapour is known as conditional
instability and leads to moist convection and precipitating clouds. The point at which
the parcel begins to be more buoyant than its environment is known as the Level of Free
Convection (LFC). If there is a region below the LFC where the parcel is less buoyant than
its environment, it is known as Convective Inhibition (CIN). If the CIN is overcome and
passes the LFC, the parcel will keep rising until the surrounding environment is as dense
as the parcel, meaning that it is no longer positively buoyant. This occurs at the Level of
Neutral Buoyancy (LNB).

There are three main stages to a single convective storm, often thought of as the
lifecycle of a cumulonimbus cloud, which occurs as a result of conditional instability. First
there is the developing stage, in which there is a warm, strong updraft and air is pulled
in at the cloud boundaries (entrainment). This can be catalysed from thermals (surface
fluxes of latent and sensible heat) or mountains where air packets are forced to rise. Rain-
drops and ice particles will begin to form at this stage in the upper portion of the cloud
as condensation arises but there will not be substantial rainfall at this point. The second
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stage is the mature stage. Here the cloud is continuing to grow. Precipitation is now falling
and reaching the ground which then evaporates, cooling the base. In the third stage, dis-
sipation begins. Here detrainment (opposite of entrainment) begins at the centre of the
cloud, whereby it no longer brings in air from its surroundings. Precipitation meanwhile
is falling into the updraft which slows down and stops the updraft, e↵ectively killing the
convective cell.

Convection requires lifting and moving of air packets, which means that there needs
to be a continual conversion of energy from potential to kinetic. It is possible to calculate
an upper bound on the potential energy available for the convection of an air parcel. This
is known as the Convective Available Potential Energy (CAPE) and is simply

CAPE =

Z LNB

LFC
Fdz, (4)

where the forces acting per unit mass of the parcel (F) are as a result of gravity and the
surrounding air pressure. Equation (4) is evaluated along the path of vertical displacement,
where dz is the unit scalar along this path. It is simply the work released in lifting a packet
of air. This is calculated from the position with which a parcel in the boundary layer (first
km above ground level) becomes buoyant, the LFC, to the LNB, where the parcel has no
potential energy left. By calculating the CAPE, one can estimate whether convection can
occur when an air packet reaches the LFC.

Moist convection can organise itself from single cells to various large structures. A
common structure is a squall line that usually accompanies a cold front which occurs when
a cool air mass follows a warmer air mass. As the cool air mass is denser, it is pushed
underneath the warmer air mass, which as a result ascends. A squall line consists of lines
of convective cells which are normally a few hundred km long and are created along the
intersection of the warm and cold air masses. These squall lines then move with the larger
air masses, creating a gust front composed of high winds at the transition region of the
warm and cold air masses. As warm air is pushed upwards, this allows for condensation,
resulting in cumulonimbus clouds and a region of heavy downpour behind the gust front.
This convective feature can evolve over a few hours.

1.3.2 Convective weather regimes

In this thesis, convection is separated into weak and strong forcing regimes which both occur
frequently in the midlatitudes, especially in the Summer. In each of these regimes, convec-
tion has either a weak or strong connection with the synoptic-scale flow. Synoptic-scale
flows, which have horizontal scales on the order O(1, 000km), can a↵ect the environment
within which convection might occur and likewise, convection can a↵ect the synoptic-scale
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flow depending on its vertical heating and moisture profile (Kuo and Reed, 1988).

Convection can often be categorised to be occurring in a weak or strong forcing
regime depending on how it is initiated and maintained. Convection in a weak forcing
regime occurs when large-scale processes have built up CAPE over a timescale which is
long compared with the timescale with which the instability is removed because of signif-
icant CIN in the atmosphere. This Convective Inhibition (CIN) could be for example an
inversion, where warm, light air is above cold, dense air (Keil et al., 2014). A “trigger” that
could be for example, orography or solar insolation, eventually overcomes this inhibition
and allows for the release of CAPE by latent heat release which is often in the form of
many precipitating single convective cells. As a result of solar insolation playing a role
in weak forcing scenarios in triggering the release of CAPE, there is often a characteristic
diurnal cycle with significant precipitation around midday and less in the night. In the
strong forcing regime, there is little CIN and so when CAPE is produced by large scale
processes it is quickly consumed by latent heat release. This is known as equilibrium con-
vection and can be maintained much longer than convection in the weak forcing scenario.
Moist convection in these strong forcing regimes usually have the form of larger convective
structures such as squall lines.

The convective adjustment timescale (Done et al., 2006) is often used to indicate
which regime an area is in at any one time. The timescale is an estimate of how quickly
convection consumes CAPE and is the ratio of the convective instability (CAPE) to the
rate of its removal by the convection (stabilisation) (Keil et al., 2019):

⌧c =
CAPE
dCAPE

dt

. (5)

If there is CIN in the environment, as in a weak forcing scenario, CAPE will be able to
increase to large values until something triggers its release. Furthermore, the eventual
latent heat release in the weak forcing scenario is stronger due to the larger amounts of
CAPE allowed to be built up, providing a large denominator value. Overall however, there
are larger values for ⌧c in weak forcing scenarios than if there is less CIN and the CAPE is
continually removed by convection, meaning that it cannot build up to such high values,
as in the strong forcing scenario. A threshold (usually between 3 and 12 hours (Zimmer
et al., 2011)) is qualitatively set in a model to distinguish between the weakly and strongly
forced convective weather regimes.

Due to the interaction of the larger-scale flow with convection, strong forcing is gen-
erally more predictable than weak forcing i.e. the location and intensity of the convection
can be predicted more accurately for a longer period of time. The predictability is often
measured by the spread of the distribution of the forecast ensemble of a certain variable,
for example precipitation. Keil et al. (2014) analysed 88 days during the Summer of 2009
using a NWP ensemble which has a grid size small enough to broadly resolve convective
motions and found that the predictability was higher for hourly total precipitation when
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the strong forcing regime was dominant. Bachmann et al. (2020) implemented two other
predictability measures, the believable and the decorrelation scale which measures at what
small scale the ensemble still represents the observations and at what scale the ensemble
members become decorrelated, respectively. Data was analysed from three summer peri-
ods simulated using an operational ensemble forecast and it was likewise found that strong
forcing regimes had greater predictability than weak forcing regimes.

The di↵erences in predictability between the weak and strong forcing regimes can be
attributed to the spread of the underlying model variable distributions, indicating that the
distribution shapes could be di↵erent depending on the forcing regime. As the nature of
the convergence of sampling uncertainty with ensemble size is hypothesised to depend on
the underlying ensemble distribution shape, it provides the premise that one forcing situa-
tion may be more prone to sampling uncertainty than the other. As an example, the rain
distribution in a weak forcing situation with precipitation would likely have a longer tail
than that in a strong forcing scenario because in weak forcing, the clouds and rainfall would
be more sporadically distributed in the form of single cells rather than organised systems.
This larger spread in the weak forcing’s rain distribution then leads to less predictability
but also a smaller density in the tail of the distribution and therefore a larger sampling
uncertainty in the extreme quantiles according to Equation (3) would be expected. The
question is then exactly how does convergence of sampling uncertainty with en-
semble size di↵er between the convective weather regimes of weak and strong
forcing?

1.4 Convergence of Sampling Uncertainty on the
Synoptic Scale

Due to the complexity of the atmosphere and the many scales within which weather phe-
nomena occur, the study of the atmosphere is broken up in terms of space and time scales.
The convective scale is on the order of O(10km) and consists of the individual single con-
vective cells. These can then organise themselves into larger structures comprising moist
convection as previously described. Structures on the synoptic scale (order of O(1, 000km))
include extratropical and tropical cyclones (e.g. hurricanes) and fronts with a lifetime out
to two weeks.

Models of di↵erent complexities are built for di↵erent scales. A synoptic-scale model
will have deep convection parameterised, where deep indicates that the height of the con-
vective cell goes at least beyond the midtroposphere (about 8km in the midlatitudes).
Convective-scale models on the other hand resolve deep convection and the dynamics of
the model explicitly handle the convection. At grid-sizes of approximately 2km, there ex-
ists a “grey-zone” however, where the convection is only crudely resolved.
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Sampling uncertainty convergence in forecasts has been examined primarily using
data from convective-scale models. It is not clear whether the convergence of sampling
uncertainty with ensemble size on the synoptic scale will have the same characteristics as
it does on the convective scale. The distribution shapes will likely be a major factor in
determining this. Another factor will be the availability for large enough ensemble sizes
to reach the asymptotic regime. On the convective scale, one can artificially increase the
e↵ective ensemble size using the neighbourhood method. On the synoptic scale however, it
is less clear whether this will be e↵ective as the grid points are more strongly correlated and
as such many more grid points would be needed to increase the e↵ective ensemble size. As
the grid points need to remain statistically similar, this may be challenging as the larger
the neighbourhood region, the more chance that regions with di↵erent weather regimes
and therefore di↵erent statistical properties, will be included. As such, it is possible that
similar convergence behaviour as on the convective scale, also occurs in the synoptic scale.
It is however, unclear, and will be investigated in this thesis.

It is interesting whether convergence of sampling uncertainty proportional to n
� 1

2

with ensemble size also occurs in ensemble data from global NWP models with synoptic
scales, as the size of an ensemble at the synoptic scale is also a pressing question. I am
specifically interested in asking thereforewhether the nature of sampling uncertainty
convergence with ensemble size is the same for both the convective scale as well
as for the synoptic scale.

1.5 The Key Questions

As discussed, in this thesis I am interested in answering the big question of how to know
the ensemble size required to achieve the desired accuracy in your statistic of
interest. For a thorough and complete investigation, this involves answering the three
following questions:

1. How does sampling uncertainty decrease with ensemble size?

2. How does convergence of sampling uncertainty with ensemble size di↵er between
convective weather regimes of weak and strong forcing?

3. Is the nature of how sampling uncertainty converges the same for both the convective
scale and the synoptic scale?

The first step to answering these questions is to develop an ensemble large enough
to measure how sampling uncertainty decreases with ensemble size, beyond that of current
ensemble sizes. With a larger ensemble, it will be possible to investigate aspects of the
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convergence of sampling uncertainty with ensemble size that are otherwise hidden with a
standard sized ensemble. To do this, an idealised model which models convection will be
employed. Idealised models have been used in many studies before to understand behaviour
and characteristics otherwise concealed in a more complex and computationally intensive
system: for example in deeper understanding of DA (Ruckstuhl and Janjić, 2018; Petrie
et al., 2017) or in explaining certain features of the atmosphere such as self-aggregation
(Yang, 2021) and behaviour in specific regions of the globe (Hendricks et al., 2021). By
ensuring the model is replicating the atmosphere su�ciently, which will be done in this
thesis by comparing the idealised model used to full NWP models, the results will also be
applicable to the larger models it is a simplified version of.

With the idealised model, the relevance of the asymptotic theory to ensemble weather
prediction will first be assessed by calculating the convergence of sampling uncertainty with
ensemble size for a massive idealised ensemble using a bootstrapping method. Considera-
tions will then be made on how these findings would be relevant for an ensemble from a
more complex model of a significantly smaller size. How the convergence of sampling un-
certainty with ensemble size depends on the convective weather regime will additionally be
assessed. Once this convergence is understood and clearly established for convective-scale
data, it will be investigated whether the same results hold for synoptic-scale data.

Having an understanding of how sampling uncertainty decreases asymptotically with
ensemble size for forecast statistics from forecast models of di↵erent scales can make an
impact. The main reason is that by knowing how sampling uncertainty converges asymp-
totically, one can estimate how many ensemble members one needs to limit their sampling
uncertainty to below a satisfactory level. If a forecaster is interested in the mean, they
may find that they need a smaller ensemble than they would have otherwise expected and
likewise, a forecaster interested in an extreme quantile can estimate exactly how many
more members they require to achieve a target accuracy. This furthermore allows for a
more e�cient distribution of computing resources, to areas which really need it in order to
advance the accuracy of weather forecasts.
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Chapter 2

Asymptotic Convergence of Sampling
Uncertainty

The following Chapter is adapted from the publication titled “Convergence of forecast dis-
tributions in a 100, 000-member idealised convective-scale ensemble” (Tempest et al., 2023)

2.1 Background

A major way in which forecasting can be improved is by understanding how many ensemble
members an ensemble needs. This understanding can allow for greater forecasting accuracy
as well as a more e�cient allocation of scarce computational resources. As discussed in
the Introduction, ensemble size will depend upon the statistic(s) of interest as well as the
forecast variable and the level of sampling uncertainty acceptable. As such, a framework
is needed to estimate the ensemble size.

Previous studies have illuminated the possibility of using the nature of how sampling
uncertainty converges with ensemble size, to determine what size of ensemble is required
based on the the maximum level of sampling uncertainty acceptable (Leutbecher, 2019;
Craig et al., 2022). In cases where asymptotic scaling of the sampling uncertainty pro-
portional to n

� 1
2 would be observed, it could be possible to approximate the number of

ensemble members required to reach a given level of sampling uncertainty for a statistical
quantity of a forecast variable. For example, if a forecaster is wanting to approximate the
number of members required to reach a certain accuracy in the spread of their measure-
ment of temperature over Munich. This would work by quantifying how their data which
they have with their current sized ensemble scales with n

� 1
2 , and then extrapolating this

until it reaches the level of sampling uncertainty they would require. The corresponding
ensemble size would then be their desired ensemble size for that level of uncertainty.

This chapter assesses the relevance of the asymptotic theory to ensemble weather
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prediction in it’s ability to estimate what ensemble size is needed. A computationally
e�cient idealised 100, 000-member ensemble forecasting system is considered to build on
the results from our 1, 000-member convective-scale ensemble using a full NWP (Craig
et al., 2021). This idealised ensemble is checked to be realistic in terms of space and time
scales, replicating convective processes as well as the shape of the forecast distributions.
The ensemble sizes required to obtain the asymptotic scaling for di↵erent quantities and
their dependence on the underlying distribution will be investigated as well as considering
how to obtain information about convergence from ensembles of a smaller, operational, size.

In Section 2.2, the model and methods are presented. An idealised model is selected
and the setup of the idealised prediction system is described, along with the methods
which are carried out on the subsequent ensemble data. Section 2.3 begins with evaluating
whether the distributions from the idealised prediction system are of a similar shape as
those from a full NWP model. The results of exploring the convergence behaviour are then
reported in Section 2.3.2. In Section 2.3.3 two methods are introduced which determine
whether one is scaling asymptotically as well as how to estimate the sampling uncertainty
convergence at larger ensemble sizes using only a smaller ensemble. The main results are
then summarised in Section 2.4.

2.2 Model and Methods

A model is required which represents the basic processes of convection in the midlatitude
atmosphere. This encompasses having space and time scales representative of convective
processes and being capable of modelling non-linear processes. It must, in addition, be
computationally inexpensive, so that ensemble sizes of order O(105) can be examined ef-
ficiently. A one-dimensional idealised model for cumulus convection (Wuersch and Craig,
2014) is employed, which was developed for convective-scale DA. This model features a
simple representation of convective updrafts and downdrafts, but with enough complexity
to mimic the non-linear dynamics of the convective life cycle and the spatially intermittent
and non-Gaussian statistics of a convecting atmosphere. In Section 2.2.1 the model of
(Wuersch and Craig, 2014) is described, and in Section 2.2.2 it is assessed whether this
model achieves the requirements stated above. The idealised prediction system built on
the basis of the idealised model is presented in Section 2.2.3, before the methods used are
outlined in Section 2.2.4.

2.2.1 Idealised model

The one-dimensional idealised model (Wuersch and Craig, 2014) uses a modified version
of the shallow-water equations for a single fluid layer. Conditional instability that leads
to convection is modelled by a modification of the buoyancy term when the fluid level is
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Figure 2.1: Snapshots of the domain at four time points for the three model variables.
Thresholds (described in text) are shown in the height field.

lifted su�ciently, and a rain equation is introduced to allow for the creation of negatively
buoyant downdrafts. The model state is specified by three variables: wind u, height h, and
rain r, illustrated in Figure 2.1. These are described by the following equations:
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where H is the height of the topography, h is the fluid depth (referred to as “height”) and
Z = H + h, the absolute fluid layer height. Note that orography is not included, so that
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H = 0 and therefore Z = h. From selecting the initial fluid level height, h0, to be 90m, the
gravity wave speed is 30ms�1, as in Wuersch and Craig (2014). The di↵usion constants
used are: Ku = 2 · 103m2s�1

, Kh = 6 · 103m2s�1 and Kr = 10m2s�1.

If h is greater than a first threshold (h > Hc = 90.02m), then the buoyancy at that
grid point is increased by setting the geopotential, �, to a relatively low constant, �c,
which is chosen to be 899.77m2s�2. This encourages more fluid into this region, thereby
increasing h further. This process is analogous to the developing, buoyant updraft phase
of a cloud whereby the LFC has been passed by a saturated fluid parcel. Therefore when
h crosses the threshold Hc, that grid point is said to contain a cloud.

If h crosses a second threshold (h > Hr = 90.4m), and wind is converging on this
grid point, then rain (scaled by � which is set to 0.1) is produced. This is the mature
stage. Where rain exists, it adds a negative term to the geopotential, reducing buoyancy,
and tending to create downward motion leading to the collapse of the cloud and the dissi-
pation stage. Rain is removed from the domain by a linear relaxation of rate ↵, with value
1.4 · 10�4s�1. This allows for rain to remain at a grid point even if there is no longer a
cloud, thereby disincentivising another cloud to form immediately afterwards at the same
location. An example of the growth and decay of a short-lived cloud occurs at x = 22km in
Figure 2.1. The height crosses the rain threshold at t = 20 minutes, the negative buoyancy
due to the rain changes the convergent wind to divergent, and the height perturbation has
disappeared by t = 104 minutes while the rain amount decays more gradually.

Throughout the simulation, gravity waves perturb the height field, initiating and in-
hibiting convection. In addition, to model the contribution of boundary-layer turbulence
to convective initiation, convergent and divergent perturbations F , are added to the wind
field at every time step. These are of the form of a normalised 1st order derivative of a
Gaussian function. This odd function is multiplied by an amplitude, ū, which has value
8.95·10�3ms�1. Convergent perturbations encourage h to reach the first threshold in height
(Hc), initiating the updraft phase of a cloud.

The numerical implementation of the model is based on Wuersch and Craig (2014),
with a second-order centred finite di↵erence approximation on a staggered grid alongside
a RAW filter for time-smoothing (Williams, 2009, 2011). The time step is modified here
to 4s and the RAW filter parameter to 0.7, for numerical stability. The integrated height
field over the domain does not change in time, signifying that the model is mass-conserving
under this numerical approximation.

2.2.2 Properties of the model solutions

The example in Figure 2.1 show that the evolution of the simulated cloud life cycle occurs
on realistic time scales. For the updraft phase of a cloud, the time between a cloud’s
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Figure 2.2: Hovmöller diagram showing the evolution of the height field across a section
of the domain over the 24 hour period of the free forecast.

initiation (h > Hc) and rain formation (h > Hr) is approximately 15 minutes. For the
downdraft phase, the half-life of rain is approximately 1 hour and the overall lifetime of a
cloud (h > Hc) with one updraft and one downdraft, is between 1 and 2 hours. Multiple
phases of a cloud can exist, as shown in Figure 2.2 which displays the evolution of the height
field in time using a Hovmöller diagram. Longer lasting clouds exist, featuring several up-
and downdraft phases in their evolution (marked by multiple regions with darker shades
of green). Splitting of convective updrafts and initiation of new clouds in the vicinity of
existing clouds can also be observed.

With a total domain size of 500km and a horizontal resolution of 500m, there is a
cloud coverage of approximately 5% of the domain at any instant. The widths of clouds
are logarithmically distributed with a mean of 1.2km and a maximum width of 7.5km,
which is in agreement with Wuersch and Craig (2014). This corresponds to an average of
20.8 clouds in the domain at any given time. The statistics of cloud size and number are
stationary in time, and the spatial locations of the clouds are close to random, with the
distance between clouds following an exponential distribution (not shown). This agrees to
the theory detailed in Craig and Cohen (2006) and numerical experiments of Cohen and
Craig (2006). Overall the temporal and spatial distributions produced by the idealised
model are reasonable for a convecting atmosphere. This, along with the computationally
inexpensive nature of the modified shallow water equations, makes it a suitable model for
our experiments.
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2.2.3 Idealised prediction system

An NWP system is created, based upon the idealised model. A truth run is initialised,
along with a 500-member ensemble for DA, which will be used to initialise a larger forecast
ensemble. The truth run and ensemble members are initialised with a homogeneous state
of no background wind, no rain and a constant initial height (h0) of 90m, and all simula-
tions are run for 1, 000 time steps with independent realisations of the stochastic forcing
term to spin up (the short initial adjustment period) the model fields.

After initialisation, the ensemble Kalman filter (EnKF) DA (Evensen, 1994) is cy-
cled 50 times. Observations were assimilated every 5 minutes at every grid point for each
model variable. The observations were obtained by adding a Gaussian (log-normal) noise
to the wind and height (rain) fields. This noise has an error of approximately 10% of the
maximum deviation from that variable’s mean value. A forecast-error covariance locali-
sation (Gaspari and Cohn, 1999) is further implemented, with the localisation radius as
2km. For more details on the DA used in this system, see Ruckstuhl and Janjić (2018) and
Ruckstuhl et al. (2021). After 50 cycles the RMSE had converged to an approximately
constant value. The DA ensemble size of 500 members was chosen based on the results of
Ruckstuhl and Janjić (2018) comparing RMSE as a function of ensemble size.

For the free forecast, the ensemble size was expanded to 100, 000 members by copying
the initial conditions of the DA 200 times each, as even with an idealised set-up it was
prohibitive to run the DA with all 100, 000 members. This procedure is su�cient, since the
stochastic forcing causes members that start with identical initial conditions to decorrelate
rapidly. This was verified by computing the Pearson correlation coe�cient of the height
field over the domain between ensemble members which started with di↵erent initial con-
ditions, compared with those that started with identical initial conditions. The forecast
ensemble, as well as the truth run, was run for 24 hours, and data were saved every four
model minutes. The ability to run such a large ensemble was the primary motivation for
using an idealised model.

The idealised prediction system described here models di↵erent sources of forecast
error. The EnKF provides initial conditions with an approximately Gaussian error. Along
with this, the stochastic perturbations to the wind field provide model error. On the other
hand, due to the cyclic domain, there are no boundary condition errors.

2.2.4 Statistical analysis

The analysis of the ensemble forecasts will focus on two types of statistics. The shape of
the distributions of model variables is of particular interest, along with their divergence
from being Gaussian-distributed. Furthermore, the nature of the decrease of sampling un-
certainty as an ensemble becomes larger is of importance, for which statistical inference
will be employed.
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Non-Gaussian statistics

To test how close the forecast distributions are to being Gaussian distributed, the same
measures as used by Kondo and Miyoshi (2019) are employed. These are sample skewness,
sample excess kurtosis and the Kullback-Leibler Divergence (KL Divergence) (Kullback
and Leibler, 1951). Skewness, the third moment of the distribution, measures the symme-
try of the data. Kurtosis, the fourth moment of the distribution, measures the density at
the tails of the data. For a Gaussian distribution, skewness and excess kurtosis are zero.
The KL Divergence is a non-symmetric measure of the di↵erence between two distributions
and is used to measure the distance a histogram of a distribution from the ensemble is,
from that of a reference Gaussian Probability Density Function (PDF). As such, the lower
the score, the closer the distribution from the ensemble is to being Gaussian distributed,
and a subjective threshold is chosen to determine whether that distribution can then be
considered Gaussian. Scores above 0.3 are considered here to be non-Gaussian, which is
slightly higher than the threshold used by Kondo and Miyoshi (2019).

Statistical inference

Each finite-sized data set (x1, x2, ..., xn) of length n, created by an ensemble with n mem-
bers is just one realisation of the random variables (X1, X2, ..., Xn) from a distribution F ,
and, as such, each of the sample statistics (e.g. sample mean x̄n = x1+x2+...+xn

n ) is just one
possible realisation of a random variable (e.g. X̄n = X1+X2+...+Xn

n ) (Dekking et al., 2005).
For inference of a population characteristic of F that the sample statistic is estimating (in
this case the sample mean is estimating the expectation µ), the distribution function of
the random variable (in this example X̄n) will determine the associated uncertainty of the
estimation.

If this underlying distribution F is unknown, non-parametric bootstrapping (Davison
and Hinkley, 1997) is a powerful tool used to infer information about its characteristics.
Bootstrapping assumes that the estimate F̂ is an accurate realisation of F . Non-parametric
bootstrapping is re-sampling with replacement from a data set where all data points have
equal probabilities 1

n , to create a “bootstrapped” random sample (X⇤
1 , X

⇤
2 , ..., X

⇤
n), of the

same length as the original sample. From each bootstrapped random sample, the desired
sample statistic can be calculated (in this case the bootstrapped sample mean x̄

⇤
n). The

distribution of this statistic (the random variable of the bootstrapped mean X̄
⇤
n) can then

be used to construct CIs, and make inferences, for the chosen characteristic of F . Using
this probability distribution as an approximation for that of the distribution of a random
variable, in this case X̄n, is known as the bootstrap principle (Dekking et al., 2005).

For the analysis of uncertainty, bootstrapping will be performed on the distributions



40 2. Asymptotic Convergence of Sampling Uncertainty

obtained from the forecast ensemble described above. The 100, 000-member distribution
(F̂ ) will be assumed to be an accurate realisation of the underlying distribution, F . For
each distribution, the bootstrapping procedure is repeated 10, 000 times in order to remove
noise from the sampling distributions of the statistics of interest. Of particular interest is
how the uncertainty of these sampling distributions decreases as ensemble size increases.
For this purpose, a sampling distribution array of length 10, 000 will be created for various
ensemble sizes obtained as subsets of the full forecast ensemble. In order to ensure each data
point in the distribution had equal weight in the bootstrapping procedure, a jackknife-after-
bootstrap analysis was carried out (not shown) (Davison and Hinkley, 1997). For what is
to follow, it has been determined that no one data point had any significant influence.

For the construction of the CI, the percentile method is employed where for the 95%
level, the 2.5th and 97.5th percentile of the random variable’s sampling distribution are
the lower and upper bounds to the interval. This is deemed to be appropriate due to not
having knowledge of the underlying distribution and the mostly symmetric nature of the
sampling distributions obtained from our bootstrapping procedures. The width of the 95%
CI is then labelled the “convergence measure”.

2.3 Results and Discussion

2.3.1 Distributions from the idealised prediction system

The idealised prediction system defined in the previous section reproduces the basic pro-
cesses of convection and is computationally e�cient. The first question to be addressed
is whether the forecast distributions generated during the ensemble forecast are represen-
tative of a real NWP ensemble system. In this section, distributions will be extracted
from the idealised system and their evolutions and shapes analysed and compared with
distributions extracted from our 1, 000-member full NWP ensemble (Craig et al., 2021).

Throughout this study, distributions from the ensemble will be extracted for a single
position and time, and as a result will contain 100, 000 data points (unless stated). The
evolution in time of the shape of the distributions was di↵erent, depending on whether
the initial condition produced by the DA contained a cloud at the chosen grid point or
not. The following subsections therefore will show distributions of the three variables of
the idealised model for both initially cloudy and noncloudy grid points.

Evolution of the wind variable

Figure 2.3 shows distributions of the wind variable at four time points in the evolution of
the free-run at an initially cloudy, and noncloudy, grid point. In each histogram, 100 bins
are calculated in order to clearly resolve the shapes of the distributions. The histograms
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Figure 2.3: Wind variable distributions from the 100, 000-member ensemble at initially
(a,b,c,d) cloudy and (e,f,g,h) noncloudy grid points after (a,e) 4, (b,f) 24, and (c,g) 80
minutes, and (d,h) at 24 hours of free run, overlaid by a Gaussian and Laplace PDF. Non-
Gaussian statistics corresponding to the distributions are detailed in Table 2.1

Starting conditions After: 4 minutes 24 minutes 80 minutes 24 hours

cloudy [0.026, 1.309, 0.029] [-0.374, 1.431, 0.018] [-0.423, 1.450, 0.024] [-0.073, 5.356, 0.159]
noncloudy [-0.102, 1.789, 0.024] [-0.539, 7.498, 0.070] [-0.222, 6.051, 0.078] [0.016, 5.282, 0.160]

Table 2.1: Non-Gaussian statistics of wind distributions. Entries of table are [skewness,
kurtosis, KL Divergence].

are normalised so that the integral is one, with the result that the narrow bin interval leads
to probability densities greater than one. The distribution which is extracted from an ini-
tially cloudy grid point shows an increase in spread and tail density until 80 minutes. At 24
minutes there is a shift in the mean towards positive wind, but the mean relaxes gradually
to zero again as seen at 80 minutes. The distribution at 24 hours is centred around zero.
At the initially noncloudy grid point, the distribution follows a similar evolution, except at
24 and 80 minutes where the mean remains near zero. Table 2.1 documents three statistics
that characterise the non-Gaussianity of the distributions presented in Figure 2.3. It is
clear from the kurtosis that density increases at the tails and the distributions at both
grid points become slightly less Gaussian as time evolves. It is interesting to note that
the kurtosis of the distribution at the grid-point which began with no cloud increases at a
faster rate than at the grid point which started the free-run with a cloud. Also clear is the
symmetry of the distributions (small skewness) throughout the evolution.
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At all time points and for both grid points, KL Divergence (Table 2.1) is below 0.3
and as such a Gaussian PDF fits well to the distributions. Figure 2.3 also shows a reference
Laplace distribution for comparison. In some cases the Laplace form can fit aspects of the
distribution more e↵ectively than a Gaussian. This is seen at 4 minutes and at climatology
for both grid points where the Laplace form captures the peak of the distribution well.
Jacques and Zawadzki (2015) also found their 1, 000-member background wind distribu-
tions from a convection resolving forecast to be approximated well by a Laplace PDF.

Evolution of the height variable
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Figure 2.4: Height variable distributions from the 100, 000-member ensemble at initially
(a,b,c,d) cloudy and (e,f,g,h) noncloudy grid points after (a,e) 4, (b,f) 24, and (c,g) 80
minutes, and (d,h) at 24 hours of free run, overlaid by a Gaussian or bimodal Gaussian
PDF. Non-Gaussian statistics corresponding to the distributions are detailed in Table 2.2

Starting conditions After: 4 minutes 24 minutes 80 minutes 24 hours

cloudy [0.352, 1.017, 0.032] [-0.737, 1.029, 0.052] [0.244, -1.310, 0.558] [4.470, 20.828, 1.332]
noncloudy [2.206, 43.841, 0.060] [10.872, 159.423, 0.738] [8.037, 80.440, 0.896] [4.426, 20.492, 1.319]

Table 2.2: Non-Gaussian statistics of height distributions. Entries of table are [skewness,
kurtosis, KL Divergence].

As with the wind variable, the evolving shapes of the height variable distributions
(Figure 2.4) are analysed. The histogram of the height variable at 4 minutes at the grid
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point initially containing a cloud shows a single peak with mean above the Hc threshold
of 90.02m. As the ensemble members diverge, some no longer contain a cloud, leading to
a second peak which is centred below Hc. This shift can be detected at 24 minutes, but is
clearly visible by 80 minutes. The formation of a second peak is accompanied by a large
increase in KL Divergence (Table 2.2). As time goes on, density in the histogram increas-
ingly shifts to the noncloudy peak (peak with mean below Hc), until the climatological
distribution is reached, in which only a few members contain a cloud at that location. The
cloudy peak (peak with mean above Hc) is then very small in comparison to the noncloudy
peak and the bi-modality is hardly visible. The evolution of the distribution for the first 80
minutes at the grid point which did not initially contain a cloud is roughly opposite to that
of the initially cloudy grid point. In this case, the initially noncloudy members gathered
below the Hc threshold gradually diverge, with a few members eventually forming clouds
to produce a second peak above this threshold.

At 4 minutes, the distributions at both grid points still show the approximately Gaus-
sian distribution produced by the DA. After 24 and 80 minutes, a bi-modal Gaussian fits
well to the distributions, for both the grid points which started without and with a cloud.
This deviation from a simple Gaussian is consistent with the increase in KL Divergence to
be above 0.3 (Table 2.2) at these grid and time points.

Evolution of the rain variable

Starting conditions After: 4 minutes 24 minutes 80 minutes 24 hours

cloudy [2.164, 7.897, 0.927] [0.070, -0.285, 0.054] [1.023, 1.539, 0.097] [1.388, 3.021, 0.362]
noncloudy [0.116, -0.706, 2.033] [0.511, -0.542, 0.457] [1.409, 2.536, 0.346]

Table 2.3: Non-Gaussian statistics of rain distributions. Entries of table are [skewness,
kurtosis, KL Divergence].

The evolution of the rain variable distributions are shown in Figure 2.5. Note the log
scaled x-axis. The ensemble members below a certain threshold (3 ·10�5) are considered to
have no rain and are not plotted. Instead the percentage of ensemble members that have
rain is stated above each panel. The number of bins is reduced to 50, in order to clearly
observe this reduced number of members. In the case of the grid point beginning with a
cloud, it contained a cloud which had not yet precipitated. At 4 minutes therefore, many
of the ensemble members had not yet precipitated. The fraction of members with rain
increases up until 80 minutes, at which time 75% of the members contain rain, compared
to 4% at 4 minutes. Rain is removed by a sink (decreasing) function that is proportional to
the rain amount, so that the largest rain amounts experience the most rapid decline, with
the results that the peak of the distribution is shifting towards smaller values between 24
and 80 minutes. This is also seen in the strong increase of skew in Table 2.3. As the mem-
bers at 24 hours become decorrelated, there is no characteristic cloud size which would have
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Figure 2.5: Rain variable distributions from the 100, 000-member ensemble at initially
(a,b,c,d) cloudy and (e,f,g,h) noncloudy grid points after (a,e) 4, (b,f) 24, and (c,g) 80
minutes, and (d,h) at 24 hours of free run. Percentages above histograms show the number
of members containing rain, which is shown in the histogram. Overlaid by gamma and
lognormal PDF. Non-Gaussian statistics corresponding to the distributions are detailed in
Table 2.3.

resulted in a well-defined peak as seen at 24 and 80 minutes. A similar evolution occurs
at the grid point which did not initially contain a cloud. However as the members were
not primed to produce rain (they did not already contain a cloud in the updraft phase)
fewer members had developed rain at 24 and 80 minutes. The increase in skewness over
the evolution at both grid points is reflected in the divergence from Gaussianity indicated
by the KL Divergence in Table 2.3.

When there is significant rain (> 0.1% of members), the rain distribution fits well to
a Gamma PDF, and to a lesser extent, a log-normal PDF. This distribution shape was also
found by Scheuerer and Hamill (2015) where a censored, shifted gamma PDF is fitted in
the statistical post-processing of an ensemble reforecast’s accumulated precipitation distri-
butions. Note that Figure 2.5(f) contains only 17 members with rain, however it appears
to also be able to be approximated by a Gamma/Log-Normal PDF.

Comparison with NWP models

Finally, it is important to evaluate whether the form and evolution of the distributions are
representative of those found in full NWP systems. The rain and wind speed variables of
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the idealised model correspond directly with variables of a NWP model, but the height
variable requires some interpretation. The most important consideration is that when the
height exceeds a certain threshold, the buoyancy becomes positive, and the grid point is
considered to contain a cloud. h can therefore correspond to the saturation deficit, or
relative humidity, variables that capture the atmospheric variability inside and outside of
clouds.

For each of the three model variables, the evolution of the distribution shapes has
been analysed at a variety of di↵erent grid points. It was found that the wind was rea-
sonably well described by a Gaussian or Laplace PDF, height by Gaussian mixture, and
rain by a Gamma distribution. This can be compared with our study of a 1, 000-member
ensemble forecast using a NWP model Craig et al. (2021), where it was found that the
distributions of all the examined forecast variables fell into one of three broad categories:
quasi-Gaussian, multi-modal or highly skewed. The parameterised fits for the three vari-
ables of the idealised model are thus representative of the three categories that characterise
NWP ensemble forecasts. Furthermore, the evolution in time of the model variable dis-
tributions follows our conceptual model as described in the Introduction. Based on these
results, it is anticipated that the convergence characteristics of the distributions will also
be representative of the behaviour of real-world NWP systems.

A preliminary analysis of the bivariate distributions was carried out in addition (not
shown). Bivariate distributions were created from pairs of distributions of the same vari-
able but at di↵erent time points and from pairs of distributions of di↵erent variables but
at the same time points. At early time steps of the free run, it was found that bivariate
distributions were generally Gaussian, with the exception of those including rain. As time
evolved, non-Gaussianity developed as expected, including in those bivariate distributions
where both marginal distributions remained Gaussian. This was seen for the case of the
bivariate distribution of the wind at two di↵erent time points where similar structures were
created to those from the idealised model employed by Poterjoy (2022).

2.3.2 Sampling uncertainty convergence

The convergence of sampling uncertainty of statistical properties as ensemble size increases
is now analysed. Following our previous study with the 1, 000-member NWP ensemble,
statistical inference is carried out on selected uni-modal distributions from the ensemble
in the free-run component of the idealised prediction system to identify the nature of the
convergence of sampling uncertainty. It is further investigated how sampling uncertainty
convergence is sensitive to the shape of the distribution and the statistic being evaluated.
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Universal convergence scaling characteristic

The analysis of convergence will focus on two cases: the 80 minute forecast for an initially
cloudy grid point, and the 24 hour forecast for an initially noncloudy grid point. As can
be seen from panels (c) and (h) of Figures 2.3, 2.4 and 2.5, these two cases include the
three main distribution types found in the forecasts. Note that for the rain distributions,
the zero-rain data points that are omitted from the distribution plots are included in all
convergence measure computations of forecast statistics. For each of the 100, 000-member
distributions, 10, 000 bootstrap distributions were created. Sampling distributions of ran-
dom variables were then constructed by calculating the desired statistical property for each
of the 10, 000 bootstrapped distributions. For smaller sample sizes of 1 to 200 members
drawn from the 100, 000-member distribution, the random variable sampling distribution
of length 10, 000 is calculated for every ensemble size. From 200 until 100, 000 members,
the random variable sampling distribution is calculated in steps of 100 members. The
width of the CI (between the 2.5th and 97.5th percentile of the random variable sampling
distribution), which is defined as the convergence measure, is subsequently plotted as a
function of ensemble size using a log-log scale. The convergence measure is fitted to the
expected scaling behaviour of y = an

� 1
2 using linear regression in log space, where a quan-

tifies how the convergence measure scales with n. The range of values used for each fit
are detailed in the Appendix (Section 6.1). A forecast statistic is described as being in
the asymptotic regime if the convergence measure appears to be converging as n

� 1
2 with

ensemble size.
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Figure 2.6: Continuous and dotted coloured lines are width of 95% CI of the sampling
distribution of the mean for (a) wind, (b) height and (c) rain model variables. The con-
tinuous line uses distributions from (c) of Figures 2.3, 2.4 and 2.5. The dotted line uses
distributions from (h) of Figures 2.3, 2.4 and 2.5. Light and dark grey lines are fitted to
continuous and dotted lines respectively, see the text for details. The corresponding width
of grey lines spans 5% above and below fitted line. The fitted parameter is shown in the
legend. The number of ensemble members used for fitting are catalogued in the Appendix,
Section 6.1.
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The convergence measure of the mean, as a function of ensemble size, n, is shown in
Figure 2.6 for the three model variables for the two cases. The fitted power law lines which
scale as n� 1

2 follow the width of the 95% CI well for each distribution and model variable,
except at ensemble sizes below 10 for the height and rain distributions. The decrease of the
sampling uncertainty of the sample mean proportional to n

� 1
2 is an expected result of the

CLT. However, the lines corresponding to the two cases are o↵set from each other, that
is, the fitted a values are di↵erent. In the case of the mean wind, the di↵erence is small,
but for the other variables it is greater than a factor of two. While the asymptotic scaling
of the uncertainty appears to be independent of the shape of the underlying distribution,
the absolute width of the CI is not. Finally, it is noted that the convergence measures
are similar for both rain distributions which included, and did not include, the zero-rain
members (not shown). This is the case for all the results in this study and for this reason
only the convergence measures including the zero-rain members are shown.
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Figure 2.7: As in Figure 2.6 but for the sampling distribution of the variance.

The convergence measure for the variance is shown in Figure 2.7. The power law scal-
ing of n� 1

2 is seen again in all distributions. As expected, the CLT is not only applicable
to the mean, but also to other forecast statistics. The number of members required until
convergence appears to follow n

� 1
2 is generally larger than for the mean (Figure 2.6), and

there is an overestimation of the width made by the fit at smaller ensemble sizes. This is in
line with our previous study with the 1, 000-member NWP ensemble where we discovered
that more members are required in the standard deviation compared to the mean in order
to achieve convergence as predicted in the asymptotic limit.

The convergence of various quantile, p, sampling distributions are shown in Fig-
ure 2.8. With enough members it is clear that in most cases the convergence measure
scales as n� 1

2 , with wider CIs for more extreme quantiles as well as more members required
to reach the asymptotic regime. This scaling behaviour has also been observed in the skew-
ness and kurtosis (not shown), indicating the universality of the n

� 1
2 scaling of sampling

uncertainty with ensemble size as long as enough members are used. The exception was
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Figure 2.8: As in Figure 2.6 but for sampling distributions of di↵erent quantile levels, p.
Legend labels the di↵erent quantiles.

the 0.999 quantile. It could be seen to scale approximately as n
� 1

2 but there was more
variability than for the lower quantiles. As such it is unclear if it has reached the asymp-
totic convergence regime. Another anomalous behaviour is the apparent downward jump
in three of the convergence lines (at p=0.3, 0.375 and 0.4) for the height distribution. It
will be seen in the next section that this is likely due to these quantile levels being situated
near the minimum between the two peaks of the height distribution, located at p=0.375.
Since these height values are relatively rare, large ensemble sizes are required to provide
confident estimates of distribution shape in this region.

Dependence on distribution shape

It has been seen that the convergence measure scales proportional to n
� 1

2 with ensemble
size for a su�ciently large ensemble. However, the constant a, and hence the absolute
width of the CI, depended on the forecast statistic and on the case being considered. To
better understand these results, this section will systematically investigate the e↵ects of
the underlying distribution of a forecast variable on the sampling uncertainty for di↵erent
forecast statistics.

For the wind variable, the distributions for the two cases initially with and without
a cloud are very similar (Figure 2.3 (c) and (h)). The width of the CIs for the estimates
of the means are also very similar (Figure 2.6(a)). When the distribution shapes are less
similar, as for the height and rain distributions in Figures 2.4 and 2.5, the di↵erences
become substantial. This may be related to the fact that the distribution of the wind
variable is near Gaussian in form, so that the density is greatest near the mean, whereas
the multi-modal or skewed distributions of the other variables have larger density away
from the mean.

The width of the 95% CI for estimates of the ensemble variance also shows di↵erences
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between the two cases (Figure 2.7), but for this statistic it is the wind variable for which
the di↵erence is largest, while both the height and rain plots show less sensitivity. This
again may relate to where the density of the underlying distribution is located, but the
connection is less clear.

For convergence measures of the quantile estimates shown in Figure 2.8, the majority
of convergence lines are o↵set from one another. For the unimodal distribution of the wind
and rain, the further the quantile is from the median, the larger the width of the 95%
CI. Hence more uncertainty is attached to these quantiles at the tails compared to at the
centre of the distribution. This behaviour is expected from Equation (3), which states that
the standard error of a quantile estimate will be inversely proportional to the density of
the underlying distribution at that quantile level. The behaviour for the height variable is
more complex, with large sampling uncertainties for intermediate quantile levels. This is
also consistent with Equation (3) however, since the bimodal distribution of height has a
minimum near the p=0.375 quantile, leading to wide CIs there.

To show visually the importance of the distribution shape on the convergence of
the forecast statistics, contour plots are created showing the ensemble size, n, required to
obtain a desired sampling uncertainty (standard error) for a range of quantiles from a dis-
tribution. The values are computed using Equation (3), where the underlying distribution,
f , is obtained as a Kernel Density Estimation (KDE) using data from the 100, 000-member
distribution, using the Scott method to calculate the bandwidth (Scott, 2015). This leads
to the underlying distribution being well represented, but can also lead to the resulting
contour lines wavering slightly. Every quantile between 0.01 and 0.99 is calculated in steps
of 0.01. Using Equation (3) to estimate a required ensemble size requires knowledge of the
underlying distribution. In practice, this must be estimated from an available ensemble,
which will typically be much smaller than 100, 000 members. For comparison, results will
also be shown which are calculated using the bootstrap method employed previously, with
three subensemble sizes (50, 100 and 500 members).

Figure 2.9 shows the resulting contour plot for the near-Gaussian wind distribution
(Figure 2.3(c)), which resembles the result for a true Gaussian in Figure 1.4. It can be seen
that for quantiles further away from the median, the number of members required to obtain
the same level of uncertainty increases. Similarly, as one moves vertically downwards at
a fixed quantile level p, the number of members required to reach smaller levels of uncer-
tainty increases. As expected, the tails of the distribution are more uncertain compared
to the peak of the distribution in this uni-modal case.

The white lines show estimates obtained with small ensemble sizes. As the number
of ensemble members decreases, the estimated value starts to fall below the large ensemble
estimate. This is most visible for the 50-member white line. This corresponds to the over-
estimation of the asymptotic fit in Figure 2.8(a), particularly observable at the 0.95 and
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Figure 2.9: Contours show the number of members required to achieve a standard error (y-
axis) for quantile levels ranging from 0.01 to 0.99 in steps of 0.01 (x-axis) for the distribution
of Figure 2.3(c). White lines show an estimate using the bootstrapping technique.

0.99 quantile levels. As the uncertainty calculated in Equation (3) is proportional to n
� 1

2 ,
large deviations between the contours and white lines indicate that the bootstrapped data
is not yet converging as n� 1

2 for that given ensemble size.

As with the wind distribution, a contour plot of n is calculated for the height dis-
tribution (Figure 2.4(c)) and is visualised in Figure 2.10. Unlike for the wind, there is
a peak in uncertainty centred around the 0.4 quantile level, which, as noted previously,
corresponds to the minimum between the two peaks of the underlying height distribution.
This emphasises that any quantile levels corresponding to rare events (such as a trough
in the distribution) need more members to obtain the same uncertainty level as at other
quantile levels. Since the peak at larger heights (cloudy grid points) is smaller than the
other peak, larger ensemble sizes are required for quantiles in this region. A curious fea-
ture seen in Figure 2.10 is the slight decrease in uncertainty in both the large-ensemble
and bootstrapped estimates above the 0.96 quantile level. This level corresponds to the
rain threshold in Equation (9). Any grid points that surpass this height immediately
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Figure 2.10: As in Figure 2.9 but with a height distribution from Figure 2.4(c).

experience a reduction in buoyancy due to the presence of rain, so that the tail of the
distribution is truncated and height values just above this level are not as rare as might be
expected. As a result, fewer ensemble members are needed to estimate these quantile levels.

The contour plot of n using the distribution from the rain variable (Figure 2.5(c)) is
shown in Figure 2.11. The skewness of the distribution is evident in the asymmetric nature
of the contours, with the least uncertain region occurring between p of 0.2 and 0.3 (instead
of 0.5). As expected, any p estimate for values outside this region would be more uncertain
for the equivalent ensemble size. The longer the tail is, the larger the uncertainty. As the
distribution is positively skewed, the quantile levels situated above the peak show larger
uncertainties than below. A decrease in uncertainty, analogous to that found for large
p in Figure 2.10, is also seen here, but for quantiles below p of 0.02. As before, this is
due to the probability density of f remaining higher than expected, perhaps because the
exponential removal of rain leads to an accumulation of rain values close to the zero bound.
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Figure 2.11: As in Figure 2.9 but with a rain distribution from Figure 2.5(c).

2.3.3 How big an ensemble do I need?

An important benefit of the asymptotic scaling of the width of the CIs is that an es-
timation can be made of the number of ensemble members needed to reduce sampling
uncertainty to a desired level. This is of course only true if the ensemble size is large
enough to show that the asymptotic regime is reached. As shown in the previous section,
asymptotic convergence could be demonstrated with the 100, 000-member idealised ensem-
ble for most statistical properties. It is inconceivable however with current computing
resources to consider using a 100, 000-member NWP ensemble in practice. Hence, it is of
importance to understand how the asymptotic convergence behaviour may be identified
in ensembles of a significantly smaller size. In this section, two approaches to estimating
convergence properties when only small ensembles are available, will be explored. First,
it is considered whether asymptotic convergence can be established based on a bootstrap
estimate of the uncertainty of the convergence measure from a small ensemble. A sec-
ond method is then proposed based on a parametric fit of the small ensemble output to an
appropriate standard PDF for which the convergence properties can be precisely computed.
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Bootstrapping using smaller ensemble sizes
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Figure 2.12: Width of 95% CI of sampling distribution of (a) variance and (d) 95th per-
centile of wind distribution (Figure 2.3(c)), (b) variance and (e) 30th percentile of height
distribution (Figure 2.4(c)) and (c) variance and (f) 99.9th percentile of rain distribution
(Figure 2.5(c)) as a function of ensemble size. Convergence measures are calculated 10
times using di↵erent sizes of ensemble (50, 100, 500 and 1, 000 members), which are di↵er-
ent samples of the full 100, 000-member distribution. The convergence measure calculated
using all 100, 000 members is in black in the background.

If only a small ensemble is available for a forecast, it is still possible to construct a
bootstrap estimate of CIs as before, but these estimates may not be useful if the small
ensemble is not representative of the full distribution. To investigate this issue, CIs are
first constructed which are based on di↵erent small ensembles drawn from the 100, 000
members computed previously, to see whether the convergence behaviour is consistent.
Figure 2.12 shows convergence curves for a sample of forecast variables, namely the vari-
ance and selected quantiles of the wind, height and rain distributions (see Figures 2.3(c),
2.4(c) and 2.5(c) respectively). This includes variables that converge for relatively small
ensemble sizes, as well as more extreme values that occur only rarely. The plots show the
convergence measure computed by bootstrapping from ensembles of size 50, 100, 500 and
1, 000. Each calculation is repeated 10 times for di↵erent small ensembles of the given size.
For reference, the convergence measures constructed from the 100, 000-member ensemble
are also plotted.
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For the variables on the top row of Figure 2.12, even 50 members is su�cient to
identify the asymptotic convergence regime with the width of the CI scaling as n

� 1
2 . It

is interesting that the correct scaling behaviour is found for the estimates based on the
smaller ensemble sizes, although there is spread in the constant o↵set of the curves that
increases as the ensemble becomes smaller. Figure 2.12(d) shows an example where the
asymptotic scaling is seen only for estimates based on ensemble sizes of 500 members or
larger. The curves based on smaller ensemble sizes show a range of slopes, giving a clear
indication that the ensemble is not large enough to show convergence behaviour. Note
however, that while it is unlikely, it is not impossible to find a small ensemble that gives
the n

� 1
2 slope by chance. Figure 2.12(e) shows the interesting case of the 30th percentile

of the height distribution, near the minimum between the two peaks. As noted earlier,
small ensembles do not have su�cient resolution to distinguish the peaks, and show the
asymptotic behaviour for a limited range of n before dropping to the true convergence
measure curve when n becomes su�ciently large. The curves based on small ensembles all
follow this behaviour, but if the ensemble is not large enough to resolve the two peaks of
the height distribution, it will appear as though the asymptotic regime has been reached.
Finally, the extreme rain example in Figure 2.12(f) shows no evidence of convergence for
any of the ensemble sizes considered here.

Figure 2.12 shows that if an ensemble is large enough to be in the asymptotic con-
vergence regime for a forecast variable, the scaling behaviour will be seen in plots of the
CI, but with a random o↵set that would a↵ect the accuracy of an extrapolation of the
results to large ensemble sizes. If the ensemble is not large enough to show asymptotic
convergence, the results show a large variability among di↵erent realisations of the small
ensemble. In practice, this variability will not be seen because only a single realisation of
the ensemble will be available. However, multiple realisations can be generated by boot-
strap resampling, and the question is posed of whether a set of ensembles generated this
way show the same variability as an ensemble drawn from the full distribution.

Figure 2.13 investigates this for the case of a 50-member ensemble. For reference,
blue lines show convergence curves for 10 ensembles drawn from the 100, 000-member data
set. These are overplotted with 100 curves generated from 100 ensembles generated by
resampling a single 50-member ensemble. For most of the forecast variables, the resultant
spread (red lines) is similar to that of the blue lines. This is the case for all the variance
and extreme quantile measures except for a slight overestimation of uncertainty of the 30th

percentile of height. This suggests that it will often be possible to determine if a given
ensemble forecast is large enough to produce the asymptotic scaling behaviour. If this is
the case, the estimate of the sampling uncertainty can be reliably extrapolated to predict
how sampling uncertainty will decrease with ensemble size.
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Figure 2.13: (a-f) as in Figure 2.12. Blue lines are green lines from Figure 2.12. One sam-
pled distribution of size 50 from the original 100, 000-member ensemble was bootstrapped
to obtain 100 distribution samples of size 50. The convergence measure calculated from
these distributions is shown in red. The sampled distribution used for red lines has its own
convergence measure shown in black.

Parameterisation of distributions

As it has been seen, it is possible to determine whether the sampling uncertainty of a sta-
tistical property of an ensemble’s prognostic variable is converging asymptotically or not.
But for many quantities of interest, especially extreme events, the conclusion will be that
the ensemble is too small and the estimates of sampling uncertainty will not be reliable.
In this section the potential of using a priori knowledge of the distribution of a forecast
variable is explored to provide improved estimates from such small ensembles. Figures 2.3,
2.4 and 2.5 showed how distributions from the free-run of the idealised prediction system
can be classified into three categories. It is then possible to estimate, using a small number
of members, how the distribution with a much larger ensemble would look like by assuming
one of these three categories as the underlying PDF. The convergence measure can then be
calculated using a smaller ensemble. For example in the case of a Gaussian fit, the mean
and standard deviation parameters would be calculated from the data. With this fitted
Gaussian, a dataset of members of any size could be generated. This dataset could then be
used to calculate the convergence measure using the bootstrapping method as before. In the
following both the full ensemble, and 50 members from the 100, 000-member ensemble, are
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used to create parameterised distributions, whose resulting convergence will be compared.
From the results, it can be concluded whether the parameterisation technique can calculate
the convergence measure accurately, and how accurate it is when only 50 members are used.
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Figure 2.14: (a) Red and (b) green lines are width of 95% CI of sampling distribution of
mean for (a) wind distribution (Figure 2.3(c)) and (b) height distribution (Figure 2.4(c)),
calculated using bootstrapping using the 100, 000-member ensemble data. Black lines
show convergence using data generated from a fitted parameterisation that used 100, 000
members from the ensemble. Grey lines show convergence using data generated from a
fitted parameterisation that used 50 members from the ensemble.

The convergence measure of the mean calculated from using distributions generated
from a parametric fit of a wind and height distribution (Figures 2.3(c) and 2.4(c), respec-
tively) is shown in Figure 2.14. The parameterisations (Gaussian for wind and bi-modal
Gaussian for height) which used two di↵erent sizes of ensemble for parameterisation (each
shown in grey and black lines) showed good agreement to the convergence calculated using
the original 100, 000-member ensemble data.

The convergence measure of the variance could be approximately estimated by pa-
rameterisation of the ensemble’s distribution (Figure 2.15). The convergence measure
calculated with the two parameterisations, however, is displaced for both distributions. In
the case of the wind distribution, the parameterisation creates an underlying PDF which
has smaller variance. This leads to the resulting sampling distribution of variance to be
smaller and hence produce a narrower 95% CI. This is also the reason for the shifting
in the case of the height distribution. Note that using more than 50 members for the
parameterisation does not improve the results greatly.
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Figure 2.15: As in Figure 2.14, but for the sampling distribution of the variance.
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Figure 2.16: Black contours created as in Figure 2.9, but using (a) 50 and (b) 100, 000
members from the distribution of Figure 2.3(c) to parameterise f . The grey contour shows
the contour of Figure 2.9. The purple contour (a) is the result from using a KDE estimated
using only 50 members for f .

The use of parameterisation to estimate the sampling uncertainty of quantiles is
now investigated. In Figure 2.9, it was found that when estimating f with a KDE using
the full 100, 000-member ensemble, Equation (3) gave a good approximation to the boot-
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strapped measurements of convergence, indicating that the convergence of uncertainty was
well described by asymptotic theory. This was generally also the case for the height and
rain model variables. The black contours of Figure 2.16(a) show the number of ensemble
members required for a certain standard error for a range of quantiles as before, but now
calculated using a Gaussian parameterisation for f . It uses 50 members from Figure 2.3(c)
to estimate the Gaussian parameters. Although the parameterisation estimate of the con-
vergence measure seems relatively accurate, the Gaussian is not fitted precisely to the KDE
(grey lines) which was estimated with 100, 000 members. There is an underestimation of
uncertainty below p of 0.3 due to the KDE density being smaller than the Gaussian density
in this region. When the KDE is estimated using 50 members from the ensemble for f ,
it gives an imprecise estimate of the uncertainty (purple line). The di↵erence in accuracy
between the KDE estimated from 50 members and the parameterisation when 50 members
are used is clear. At small ensemble sizes, the parameterisation method has a much greater
accuracy than using KDE for estimating f in Equation (3). This is also the case for the
height and rain distributions discussed below (not shown). When 100, 000 members are
used to fit the Gaussian (contours of Figure 2.16(b)), there is a lesser underestimation of
uncertainty below p of 0.3. However, 50 members generally gives closer alignment to the
KDE than estimation with 100, 000 members.
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Figure 2.17: Black contours created as in Figure 2.10, but using (a) 50 and (b) 100, 000
members from the distribution of Figure 2.4(c) to parameterise f . The grey contour shows
the contour of Figure 2.10.

A bi-modal Gaussian parameterisation of the height distribution shown in Figure 2.4(c)
is used to estimate the convergence of sampling uncertainty in the quantiles (Figure 2.17).
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Unlike non-parametric methods, the fitted bimodal distribution always produces a qualita-
tively correct structure, but when only 50 members are used for the fit, the p value at which
the transition between the two peaks occurs is displaced by about 0.15 and it is no longer a
good estimation of the convergence measure. When 100, 000 are used to parameterise, the
uncertainty estimate is closer to the KDE which used 100, 000 members for its estimation,
but with slight over- and underestimation of uncertainty in regions. Only the bi-modal
Gaussian parameterisation calculated using 50 members from the ensemble captures the
decrease in uncertainty above the 0.96 quantile level.
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Figure 2.18: Black contours created as in Figure 2.11, but using (a) 50 and (b) 100, 000
members from the distribution of Figure 2.5(c) to parameterise f . The grey contour shows
the contour of Figure 2.11.

Parameterising the rain distribution of Figure 2.5(c) with a Gamma PDF results in
reasonable uncertainty estimates of the convergence of the sampling uncertainty of quan-
tiles (Figure 2.18). In the two uncertainty estimates from each of the parameterisations,
there is a slight underestimation at small p values below 0.2. This underestimation is
larger, and occurs for a larger range of quantiles, for the parameterisation which used only
50 members. The underestimation occurs due to the di↵erence in the density of the tails
of the KDE and the parameterised distributions. The decrease in uncertainty below the
0.02 quantile level is not captured by either method.

From Figures 2.14, 2.15, 2.16, 2.17 and 2.18, it is clear that using a relatively small
number of members to calculate the convergence measure by using a parameterised dis-
tribution can be reasonably accurate. It has been found that 50 members are enough
to estimate the convergence measure of the mean and variance, as well as quantiles near
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the median of uni-modal distributions. More members would be required for distributions
with a multi-modal shape. It has been seen that there is little benefit in using a KDE
approximation to the full distribution with a small number of ensemble members to es-
timate the uncertainty of quantiles. As there is no limit to how many members can be
generated from a parametric fit, this method can be used to obtain the characteristics of
the asymptotic convergence as long as the shape of the underlying distribution is captured.

2.4 Summary and Conclusions

Operational probabilistic forecasting is limited to relatively small ensemble sizes due to
high computational costs. This can impact how representative of the truth the underlying
distribution is by creating a sampling uncertainty. While the sampling uncertainty is ex-
pected to decrease with increasing ensemble size, it is di�cult to determine what ensemble
size is required to reduce it to a desired level. Here an idealised prediction system which
replicates the key processes of convection has been used to identify how sampling uncer-
tainty of statistical properties converges with ensemble size in order to assess the relevance
of asymptotic theory to estimating how large an ensemble should be.

The one-dimensional idealised prediction system developed was found to suitably
replicate convective-scale forecast ensembles by comparing the ensemble distribution shapes
for the three prognostic variables to corresponding quantities from a 1, 000-member full
NWP ensemble. Shapes of these distributions over the 24 hour evolution in the free-run
were found to fit into three categories: quasi-Gaussian, multi-modal, and highly skewed,
as in our previous study (Craig et al., 2021). Also expected from previous work, the dis-
tributions became less Gaussian distributed in time, as anticipated due to the non-linear
convective processes (Poterjoy, 2022; Kondo and Miyoshi, 2019; Kawabata and Ueno, 2020;
Zhang, 2005; Legrand et al., 2016).

By creating a convergence measure, the sampling uncertainty was found to scale uni-
versally as n� 1

2 in the limit of large n. This applied to statistical properties including the
mean, variance, quantiles between 0.05 and 0.95 as well as 0.999, the skewness and kurto-
sis. At what point asymptotic convergence is reached, and the magnitude of the sampling
uncertainty, depends on the statistical quantity and the distribution shape. In general,
the more the statistic depends on extreme or infrequent values, the more members are
required to reach convergence. Since this behaviour does not depend on the distributions
being Gaussian, this conclusion should continue to hold for multivariate distributions where
non-Gaussianity is often stronger than for the marginals. However, due to the larger uncer-
tainty associated with quantities from multivariate distributions, it would be expected that
the absolute level of sampling uncertainty would be larger than for the uni-variate counter-
parts. It would also be expected that more members would be required until asymptotic
convergence could be reached.
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For the quantiles, the dependence of sampling uncertainty on distribution shape could
be described by Equation (3), which states that the sampling uncertainty is inversely pro-
portional to the frequency of occurrence of a quantile. The applicability of this equation to
the simulated large ensemble distributions highlights the relevance of asymptotic theory to
ensemble weather prediction. This observed theory can be used to provide an alternative
method to estimate how adding ensemble members would improve a probabilistic forecast
and in extension, to determine how large an ensemble should be. This way of thinking
contrasts to studies such as Leith (1974) which provides a specific number of members
required to achieve su�cient precision in a certain aspect of an ensemble. Rather, the
asymptotic convergence provides a scaling rule which can be used to answer the question
of how large an ensemble should be based on individual ensemble requirements, provided
the ensemble is su�ciently large for the theory to apply.

The question of how to apply the asymptotic theory to small ensembles, where it is
not obvious that the large n theory is applicable, was addressed in two ways. First, the un-
certainty of the convergence measure could be used to determine if asymptotic convergence
had already been reached. If this was not the case, parameterisation of the underlying dis-
tribution could be employed. In this case, a good estimate of the convergence measure
could be calculated, if an appropriate form for the distribution shape was assumed. In an
operational setting the underlying distributions could potentially be obtained from refore-
casts. Another method that could have been used to reach the asymptotic regime with a
small ensemble would have been to increase the e↵ective ensemble size by implementing
the neighbourhood method which was described in the Introduction.

The ability to quantify the convergence of sampling uncertainty of statistical quan-
tities in ensembles of operational size allows us to address the question of how many
ensemble members are needed. For example, an operational forecaster would like to know
if it would be worthwhile investing in expanding their current 50-member NWP ensemble
to 100 members. They are particularly interested in their ability to accurately estimate the
spread of temperature over Munich. To answer this question, they would like to calculate
the convergence measure of the variance statistic for the temperature variable. The first
thing they need to do is to check whether the asymptotic theory can be applied, by cal-
culating the uncertainty in the convergence measure. They do this by bootstrapping their
50-member ensemble 100 times to obtain 100 distributions of length 50. With each of these
distributions they then calculate the convergence measure. They see no divergence in the
measures, similar to the green lines in Figure 2.12(a). It is in the asymptotic regime. This
enables them to then visualise how the convergence measure will decrease as extra ensem-
ble members are added to their 50-member NWP ensemble and hence how the accuracy of
their estimate of the range of temperature over Munich will increase as more members are
added. A knowledge of how many ensemble members to aim for in the future to obtain a
certain level of sampling uncertainty can hence be calculated using a framework based on
asymptotic theory.
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Chapter 3

Asymptotic Convergence in Weak
and Strong Forcing Convective
Weather Regimes

3.1 Background

As laid out in the introduction, a major question of interest is how the convergence of
sampling uncertainty with ensemble size changes depending on whether one is in the con-
vective weather regime of weak or strong forcing. If di↵erences are found, this would lead
to di↵erent sizes of ensembles needed, depending on the regime.
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Figure 3.1: Daily evolution of the CAPE, convective timescale (⌧c) and precipitation on
the (a) 10th and (b) 29th June 2021 during a period of weak and strong forcing respectively.
Shading indicates the 95th CI. Simulated using data from 120-member ICON-D2 ensembles
(Puh et al., 2023).

There are various measurements which can be made to di↵erentiate between weak
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and strong forcing regimes. One such measurement is the convective adjustment timescale
(⌧c) which was introduced in the Introduction. Along with this measure, the CAPE and
precipitation can also be used to characterise regimes. An example of a weak and strong
forcing regime is shown in Figure 3.1 using data from 120-member ensembles from ICON-
D2, a full convective-scale NWP forecast (Puh et al., 2023)3. It shows the weak forcing
day of the 10th June and the strong forcing day of the 29th June over Southern Germany.
Beginning at 00:00 UTC in the weak forcing, it can be seen that the CAPE is relatively
low, as well as the rain. Then as radiation increases in the morning, the CAPE increases
and due to turbulence in the boundary layer from the thermal energy, convection begins
soon thereafter. As convection reduces the buoyancy in the domain, the CAPE decreases
slightly, as seen around 12:00 UTC. Due to the solar radiation however, the CAPE only
decreases strongly after 18:00 UTC. The rain has reached its peak at around 12:00 UTC
and decreases thereafter. Apart from the dip at 04:00 UTC, the convective timescale is
very large (approximately 60 hours) until convection begins, but then decreases to approx-
imately 10 hours thereafter. In strong forcing on the other hand, the convective timescale
is relatively low, under 4 hours, throughout the 24 hour forecast. Although the CAPE is
larger in general for the strong forcing and more constant, the diurnal cycle is still seen as
it obtains higher values during the middle of the day. The precipitation also has higher
values as well as being more constant throughout the day, although it is seen to dip in the
morning. This is due to a cold weather front passing through Southern Germany in the
afternoon. Although these two scenarios will not be precisely replicated, these examples
show the broad characteristics of weak and strong forcing and will be expected to be repli-
cated in the model used in this chapter.

As weak and strong forcing regimes have di↵erent behaviours as seen in Figure 3.1,
it can be expected that the model variable distribution shapes from the two regimes also
have di↵erences. It has been seen in the previous chapter that the shape of the underly-
ing distribution can influence the nature of how the sampling uncertainty converges with
ensemble size (Tempest et al., 2023). As such, it is to be expected that di↵erences in the
distribution shape between the two forcing regimes could then propagate to di↵erences in
the convergence of sampling uncertainty as the ensemble becomes larger. Specifically, it
might be expected that in periods of strong precipitation, the tails of the weak forcing
moisture (height and rain) variable distributions are longer and less dense, leading to a
larger sampling uncertainty for extreme quantiles following Equation (3). As well as a
larger sampling uncertainty in this scenario, it could be expected that the weak forcing
would need more ensemble members for the convergence of sampling uncertainty to scale
proportional to n

� 1
2 if the distribution is less defined at extreme values. Moreover, strong

forcing would be expected to have a larger spread in its variables in the early hours and
in the evening, which would mean a larger sampling uncertainty in the mean according to
Equation (1). This would also apply to the standard deviation statistic described by Equa-

3I am a co-author, whereby I contributed data and analysis from the extended idealised ensemble
developed in this Chapter
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tion (2), however only in cases where the underlying distribution is normally distributed.
It will be of interest to study these specific scenarios by analysing the distributions in weak
and strong forcing situations as well as their complementary sampling uncertainty and how
it converges with ensemble size.

A similar approach will be taken as in the previous chapter to investigate the di↵er-
ence in convergence of sampling uncertainty with ensemble size between weak and strong
forcing. That is, an idealised model will be used to create large ensemble sizes. After it’s
success in our previous study (Craig et al., 2022), the neighbourhood method will be used
in combination with the large ensemble size to increase the e↵ective ensemble size further.
The same idealised model will be used as in Tempest et al. (2023), however it will be
extended to allow for di↵erent convective weather regimes. As such, the requirements for
the model is that it has space and time scales representative of convective processes, can
model non-linear processes, be computationally e�cient as well as be able to accurately
portray the di↵erences between weak and strong forcing as highlighted in Figure 3.1. Fur-
thermore, the spread in the weak forcing should be larger than the strong forcing amongst
moisture model variables at times when significant precipitation occurs. Using the ex-
tended idealised ensemble, two experiments will then be run, one with weak forcing and
the other with strong forcing. In order to ensure the results from the idealised model
are realistic enough, the distributions from weak and strong forcing runs from ICON-D2
(Figure 3.1), will be analysed and compared to the idealised model results. Di↵erences
between the distributions in the weak and strong regimes will be highlighted as areas of
potential di↵erence in the convergence of sampling uncertainty. The convergence measure
from Chapter 2 will then be used to identify di↵erences in the convergence of sampling
uncertainty between the two convective weather regimes and it will be verified whether
these relate to the di↵erences seen in the distribution shapes.

It is the aim of this chapter therefore to investigate how sampling uncertainty con-
vergence with ensemble size di↵ers between weak and strong forcing regimes and what
implications this has for the ensemble size required. Section 3.2 will introduce the ex-
tended idealised ensemble which replicates weak and strong forcing. The distributions will
then be analysed in Section 3.3.1 to ensure the model is replicating realistic behaviour
and because it is expected that distribution shape is a key factor in explaining the di↵er-
ences in sampling uncertainty between the forcing regimes. Then the convergence measure
will be used in Section 3.3.2 to ascertain whether the di↵erent forcing regimes do lead to
di↵erent convergence behaviours. Summary and conclusions will then follow in Section 3.4.
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3.2 Model and Methods

3.2.1 Extended idealised model

The idealised model from Chapter 2 (Tempest et al., 2023) is extended to allow for weak
and strong forcing regimes. Figure 3.1 which uses data from a full NWP model will be used
as a reference in this adaptation. Unless stated, the idealised model remains as previously
described. As it is only extended, it is expected that the model will satisfy the conditions of
having space and time scales representative of convective processes, can model non-linear
processes and be computationally e�cient.

It is known that the rate at which CAPE is consumed in the atmosphere by convec-
tion can di↵er between weak and strong forcing regimes. As such, a measure of CAPE
is introduced into the idealised model as the first step in extending it. CAPE e↵ectively
measures the buoyancy of air, therefore the equivalent of CAPE in the idealised model
is the di↵erence between the geopotential (�) and the constant geopotential (�c), which
a grid point acquires if it is a cloud (above the Hc threshold) and which then allows for
buoyancy and the developing, updraft phase of a cloud. It can be written as:

CAPEe = (gh̄� �̄c)e, (10)

where the bars are domain averages and e indicates an ensemble average. The CAPE does
not remain constant however, and so a time dependant �c is required. �c will decrease
when there is more radiation or stronger synoptic forcing, allowing for more buoyancy, and
increase with any convection, creating less buoyancy in the model. How CAPE evolves
can then be used to create either a weak or strong forcing regime in the model. The time-
dependent equation for �c is:

d�c

dt
= Srad � Sfor + Scon, (11)

where the terms on the right hand side control the radiation to allow for a diurnal cycle
(Srad) and dictate the strength of synoptic forcing (Sfor) as well as convection (Scon).

Radiation begins during the morning and increases until 12:00 UTC and then de-
creases thereafter. As such, a time dependence is required in the form of a cosine and the
condition that there is no radiation before 06:00 UTC and none after 18:00 UTC. Therefore:

Srad =

8
<
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0, otherwise
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where ar has the value 0.000025m2s�3. t is the current time step and ttotal are the total
number of time steps in one diurnal cycle.

The forcing term is likewise also time dependent to mimic the front passing through
Southern Germany in the afternoon of the 29th June 2021. It is tuned so that in the case of
strong forcing, a front lasts for approximately 13 hours, with the peak occurring at 18:30
UTC:

Afor = af

✓
1 + sin

✓
2⇡(t� Tshift)

Tfor

◆◆
(13)

Sfor =

⇢
Afor, Afor > af

af , otherwise

�
. (14)

where each ensemble member has a random af , chosen from a Gaussian distribution of
mean 1.5 · 10�5 and standard deviation of 1.5 · 10�6 in the case of strong forcing. Tfor is set
to a period of 26 hours and Tshift provides a shift of 11 hours.

The convection term produces negative buoyancy in the case of rain and convergence
in the wind. It depends on the strength of convergence and is tuned with �2 so to balance
it with the buoyancy terms of Srad and Sfor.

Scon =

⇢
�2�

d̄u
dx , Z > Hr and

du
dx < 0

0, otherwise

�
(15)

where �2 is set to �2000m2s�2 and � is 0.1 as before.

To incorporate the diurnal cycle, whereby solar radiation encourages convection dur-
ing the day, the stochastic forcing in the original model which acts on the height field at
every time step at a random grid point is made to be time dependent. The magnitude of
the perturbations is multiplied by a constant, Cstoc, which is:

Cstoc =
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=
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The addition of Equation (11) hence allows for �c to change in time, allowing for periods of
greater buoyancy and periods with less buoyancy. The stabilising term (Scon) increases �c,
making the model more stable whereas the destabilising terms of Srad and � Sfor decrease
�c, making the model less stable and encouraging more convection to reduce the instability.
When CAPE is large and there is not a lot of convection, the model is not in equilibrium,
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and this would be a weak forcing scenario. Only when there is a trigger, such as orography
or radiation, could the CAPE be released in the form of convection. When the atmosphere
is in equilibrium, convection removes CAPE when it is created. This would be a strong
forcing regime.

As explained previously, the convective timescale (Equation (5)) can also be used to
di↵erentiate between weak and strong forcing regimes. It is the speed at which convection
removes CAPE and can be calculated in the extended idealised ensemble by:

⌧c =
CAPEe

3600 · Scone

, (17)

where the division by 3600 seconds means that the units of ⌧c is hours.

3.2.2 Set-up of extended idealised ensembles

Two ensembles were created with the extended idealised model, namely a weak forcing run
and a strong forcing run. Any di↵erences to how the idealised 100, 000-member ensemble
in Chapter 2 was implemented, are detailed here. For the initialisation, the domain for
the two experiments was at rest initially with zero rain and wind and the height set at
38m, for all grid points. The fluid depth was lowered as the gravity wave speed was too
fast and creating too much convection at later time points in the weak forcing case when
the fluid depth was at the previous level of 90m. For both experiments, a 1, 000-member
ensemble was used as the input background to the EnKF DA (Evensen, 1994) which was
said to be at 00:00 UTC. The DA then used the respective model for either weak or strong
forcing and was cycled 288 times with 75 time steps between each cycling. This covered a
time period of 24 hours and so captured one diurnal cycle. The set-up of the DA was the
same as for the 100, 000-member ensemble however had the adaptations to the model as
mentioned above. The free-runs for the weak and strong forcing ensembles were then ran
for 24 hours, being initialised using the analysis’ from the DA. The ensembles then had
a size of 5, 000 each for the free-run through copying the analysis ensemble members 5 times.

In the set-up of the extended idealised ensembles, certain model parameters were
re-tuned due to the addition of Equation (11) and the lowering of the fluid depth. This
included the amplitude of the random perturbations to be increased to 0.011 from 0.00895.
The thresholds for clouds and rain were decreased to 38.02m and 38.4m respectively and
the wind (Ku) and height (Kh) di↵usion constants were changed to 3.4 · 103m2s�1 and
1.4 · 103m2s�1 respectively. Furthermore, a cut-o↵ for the rain variable was introduced.
When the rain was below 0.000009, it was automatically decreased to zero. This was to
improve how realistic the idealised model was as rain below that threshold was negligible
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and did not impact the operation of the model.

3.2.3 Properties of the extended idealised ensemble

The idealised ensemble has now been extended to allow for weak and strong forcing regimes.
Here it is checked that this is done accurately, by analysing the evolution of CAPE, rain
and the convective timescale throughout one diurnal cycle for the weak and strong forcing
ensemble runs and comparing these with the ICON-D2 model output (Figure 3.1).
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Figure 3.2: Time evolution of total rain in domain, CAPE and convective timescale in the
(a) weak and (b) strong forcing free runs from the extended idealised ensemble. Shading
indicates the 95% CI spread from the 5, 000-member ensemble. A simple moving average
is used for the convective timescale.

The evolution in time of CAPE, the convective timescale, as well as the total rain in
the domain of the extended idealised ensemble for the two forcing regimes can be seen in
Figure 3.2. As can be seen in the weak forcing case, the CAPE is low after 00:00 UTC and
begins to increase after 06:00 UTC when the radiation term begins to increase, making the
atmosphere less stable. Similarly, there is basically no rain in this time period. As such,
the convective timescale is very high. After about 09:00 UTC there is enough instability
for the first rain clouds to be created. Until about 12:00 UTC, the CAPE has continued to
increase but after this point the radiation begins to decrease and the convection is also very
strong at this point, both acting to reduce the CAPE. The rain continues to be dominant
until approximately 15:00 UTC where it has then exhausted the CAPE in the atmosphere
and begins to decrease. The CAPE and rain then slowly decrease from their peaks. The
convective timescale has reduced to a small value of approximately 10 hours after the be-
ginning of the convection and remains around this value for a period of time. As the rain
begins to wane, the convective timescale gradually begins to increase again, however not to
the previously high values. In the strong forcing scenario, the CAPE is relatively constant
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throughout the 24 hours and at all points there is a large amount of rain. This makes for
a relatively constant low value for the convective timescale, as expected. In this strong
forcing experiment one still sees the diurnal cycle in the rain.

The evolution of the three quantities of the CAPE, convective timescale and precip-
itation in Figure 3.2 for the weak and strong forcing runs are in line with those computed
from the ICON-D2 runs for the 10th and 29th June 2021 respectively (Figure 3.1). In both
the idealised and NWP ensemble, the diurnal cycle is clearly seen in the weak forcing run
and to a lesser extent in the strong forcing. As well as this, the general time evolutions of
the three quantities match.

The spread in the ensemble is additionally important for di↵erentiating between weak
and strong forcing. The spread of the rain and CAPE values appears consistently larger
in the idealised strong forcing case of Figure 3.2. However, if one measures the standard
deviation (spread) across the extended idealised ensemble for every individual grid point
and then averages across the domain, the weak forcing has a larger spread in the moisture
variables for a 5 hour period around 12:00 UTC, as would be expected due to the sporadic
nature of the weakly forced precipitation.

Through analysing and comparing Figures 3.1 and 3.2 and checking the spread, the
extended idealised ensemble has been shown to produce su�ciently realistic weak and
strong forcing regimes. Furthermore, it has been deemed to be realistic enough in terms
of the space and time scales being representative of convective processes, can model non-
linear processes and be computationally e�cient, from carrying out similar analysis’ as in
the previous chapter (not shown). Still of interest to analyse to ensure the accuracy of
this extended idealised ensemble and the variation between the weak and strong forcing
regimes, is the evolution of the model variable distributions from throughout the 24 hour
free run.

3.2.4 Analysis of neighbourhood distributions

To increase the e↵ective ensemble size, the neighbourhood method is employed as it has
been shown to be successful in previous convective-scale ensemble studies (Craig et al.,
2022; Puh et al., 2023). The neighbourhoods were chosen so to be centred close to the
middle of the domain, at grid point 501 of 1, 000 (beginning at 1). Three neighbourhood
sizes were then created, by including x grid points above and below grid point 501 on the
one-dimensional domain. x was 2, 10 and 20. This gave neighbourhood sizes of length
2km, 10km and 20km respectively.
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3.3 Results and Discussion

The distribution shapes are now analysed for the weak and strong forcing runs through-
out their 24 hour free run forecast to ensure they are realistic enough for our purposes of
creating forecast runs which di↵erentiate between weak and strong forcing regimes. The
di↵erences in distribution shape are furthermore expected to be important in explaining
di↵erences in the convergence measure (see Section 3.1). Expectations from the analysis of
the distributions will therefore later be compared with the convergence measure calculated
from the distributions.

3.3.1 Distributions from weak and strong forcing runs

Several characteristics of the distribution shapes are expected. First, it is expected that
the three categories of distribution shape which are common to weather forecasting (quasi-
Gaussian, multi-modal and highly skewed) (Tempest et al., 2023), are seen. Furthermore,
for the forecast to realistically portray weak and strong forcing, it is anticipated that the
weak forcing runs begin with little spread in all three model variables. At 06:00 UTC and
onwards significant spread would be gathered before decreasing again in the afternoon.
This strong diurnal cycle behaviour is not expected to be as obvious in the strong forcing.
Furthermore, longer and thinner tails are anticipated in the weak forcing for the moisture
variables during periods of heavy precipitation.

Forcing regime Time (UTC) Wind (ms�1) Height (m) Rain

Weak 06:00 0.000804 0.00169 0
12:00 0.00808 0.0695 0.000762
20:00 0.00573 0.0719 0.000138

Strong 06:00 0.00735 0.116 0.000271
12:00 0.0110 0.121 0.000369
20:00 0.00722 0.0807 0.000216

Table 3.1: Standard deviation of distributions from Figure 3.3.

To show the time evolution of the distribution shapes, Figure 3.3 shows contour
histogram plots of the 24 hour evolution of the distributions using a neighbourhood of
length 20km of the three model variables (columns) from the weak and strong forcing runs
(rows). The general shape of the distributions were similar for all neighbourhood sizes and
the single grid point, however the larger the neighbourhood, the smoother the distributions
became (not shown). First of all it can be confirmed that at all times the three expected
distribution shape categories of Gaussian, multi-modal and highly skewed were produced
by the ensembles. Examples of Gaussian distributions can be seen in the wind at all time
points and forcing types. Bi-modality can be seen in the height, for example after 12:00
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Figure 3.3: Contour histogram plots for the (a,d) wind, (b,e) height and (c,f) rain from
the extended idealised ensemble over 24 hours in (a,b,c) weakly and (d,e,f) strongly forced
regimes. Black dots indicate location of the 0.95 quantile. Neighbourhood of length 20km
shown.

UTC in the weak forcing. Highly skewed shapes can then be seen in the rain, for example
after 18:00 UTC in the weak forcing scenario. This indicates that similar, realistic, distri-
butions as in Tempest et al. (2023) are produced by the extended version of the idealised
model.

Employing Figure 3.3, the spread of the forecast distributions is now analysed. The
diurnal cycle is seen from the changes in spread in all model variables of the weak forcing
and is not as prominent in the strong forcing, as expected. The height variable however
shows no decrease in spread as the wind and rain variables in the evening. Calculating the
spread in Table 3.1, it is clear that in the weak forcing for all three model variables, the
spread is very small compared to the strong forcing at 06:00 UTC and slightly smaller at
12:00 UTC and at 20:00 UTC. After 18:00 UTC the spread decreases for the wind and rain
variables however not for the height in the weak forcing case. The spread becomes similar
in the evening for both forcing runs. The spread at 12:00 UTC was larger in the strong
forcing than the weak forcing for the moisture variables, not as expected. When normalised
however, the rain has a larger spread in the weak forcing at 12:00 UTC. Nevertheless, the
expected behaviour of the spread being very small for the weak forcing compared to the
strong forcing in the morning is seen, as well as the evolution of the weak forcing increasing
in spread quickly as rain occurs around 12:00 UTC.
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Forcing regime Time (UTC) Wind Height Rain

Weak 06:00 0.0129 0.00646 0
12:00 0.0136 0.00262 0.00183
20:00 0.0134 0.00370 0.00292

Strong 06:00 0.0136 0.00264 0.00526
12:00 0.0109 0.00374 0.00590
20:00 0.0135 0.0859 0.00165

Table 3.2: Probability density at the 0.95 quantile of the distributions in Figure 3.3.

The tails of the distributions from the weak and strong forcing runs are now compared
in Figure 3.3. The probability density of the 0.95 quantiles are listed in Table 3.2 and are
visualised by black dots for each variable and for both forcing runs. It is seen that the den-
sity of the 0.95 quantile for the wind is relatively similar between weak and strong forcing
but that there are larger di↵erences for the moisture variables. The density of the 0.95
quantile is smaller for the weak forcing case for the moisture variables when there is a lot
of precipitation at 12:00 UTC. This is also the case for the height at 20:00 UTC when there
are still a significant number of clouds in the domain. This indicates that in general, dur-
ing time periods of significant precipitation, the tails of distributions of moisture variables
in the weak forcing regime are longer and less dense than those in the strong forcing regime.

To test how realistic the idealised version is in creating weak and strong forcing
regimes, distributions from the extended idealised ensemble are compared with those from
the 120-member ICON-D2 ensemble (Puh et al., 2023). The height and rain variables from
the idealised ensemble correspond to those of the relative humidity and precipitation vari-
ables from ICON-D2 respectively. Low values of the relative humidity variable indicate
relatively dry air, and higher variables indicate wetter air, with saturation occurring at
100%. In Figure 3.4 it is seen that for both variables, the spread increases significantly
in the first 14 hours for both forcing regimes. Although more time is needed in the weak
forcing until the maximum spread of the relative humidity is reached. The spread of the
relative humidity for the weak and strong forcing regime is most divergent in the mid
morning around 06:00 UTC, and then becomes closer together as the day goes on, as seen
in the idealised ensemble. For the total precipitation however, the di↵erences in spread
between the weak and strong forcing become larger throughout the day and then decrease
towards the evening again. The time evolutions in spread seen from the idealised and full
numerical model ensembles suggests that the di↵erences between weak and strong forcing
depend largely on the specific cases selected. For example if the cold front passed through
in the morning of the 29th June, large amounts of rain in the early morning would lead
to the spread having large di↵erences between weak and strong forcing at this time, and
then would get more similar throughout the day. This is seen in the idealised ensemble,
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Figure 3.4: Contour histogram plots for the (a,c) relative humidity and the (b,d) hourly
precipitation from the 120-member ICON-D2 ensemble over 24 hours on the (a,b) weakly
and (c,d) strongly forced regime days of the 10th and 29th June 2021 respectively. Data
used a circular neighbourhood of radius 10km. Black dots show location of 0.95 quantile
at 14:00 UTC.

where there is more constant rain than in the ICON-D2 simulation for the strong forcing
case. Nevertheless, in both the idealised and ICON-D2 ensemble, there have been seen
to be large di↵erence in spread in weak and strong forcing runs and this will likely have
consequences for the convergence measure.

Comparing the tails of the moisture variable distributions between the idealised and
ICON-D2 ensemble, similarities are observed. Using Figures 3.3 and 3.4, it can be seen
that in both ensembles the tails for the weak forcing moisture distributions during time
periods of precipitation are longer and less dense, although of a smaller magnitude, com-
pared to the strong forcing. The time point of 14:00 UTC is used for comparison as a time
when large amounts of precipitation was occurring in both the weak and strong forcing
cases. From comparing the probability densities between weak and strong forcing at the
0.95 quantile for ICON-D2 (black dots in Figure 3.4), it has been confirmed that even
during periods of strong precipitation in the strong forcing, the weak forcing remains to
the have the smallest density, and therefore the thinnest distribution tails. Although the
distributions are not exactly comparable between the idealised and ICON-D2 ensemble,
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important similarities of the spread and the density of the tails exist which are expected
to lead to distinct behaviour in the convergence measure for weak and strong forcing. As
such, it can be concluded that findings from the idealised model which compare weak and
strong forcing can be applicable in a broader context to larger, more complex NWP models.

It has in general been seen that the time evolution and shape of the distributions
from the extended idealised ensemble are as to be expected and that they furthermore
show di↵erences between weak and strong forcing which are also seen in the ICON-D2
ensemble distributions. That is, the distributions from the extended idealised ensemble
convey important di↵erences between weak and strong forcing which will likely be signif-
icant in creating di↵erent characteristics in the convergence of sampling uncertainty with
ensemble size since the convergence measure is dependent on the underlying distribution
shape. In particular, the spread is seen to be di↵erent at many time points between the
weak and strong forcing cases. For the case of the idealised ensemble, the spread is very
small for the weak forcing in the morning and then increases quickly as convection begins,
whereas the strong forcing does not show as much variability. It is therefore expected that,
according to Equation (1), that the convergence measure for the mean of the weak and
strong forcing in the morning will have very di↵erent values, with strong forcing having
the largest uncertainty. This di↵erence in sampling uncertainty would then decrease as
convection begins, but as strong forcing has the largest spread, it will consistently have the
largest sampling uncertainty for the statistic of the mean. As the distribution shape has
a similar influence on the standard deviation as for the mean according to Equation (2),
similar convergence behaviour is expected in this case, but only for the wind variable as
the condition of Gaussianity is required. The second main di↵erence in the distributions
between weak and strong forcing is that in periods of heavy precipitation, the tails of the
moisture variables in the weak forcing are longer and therefore less dense at extreme values.
Following Equation (3) this will lead to larger sampling uncertainty in the weak forcing
during these convective periods. In addition it would be expected that more ensemble
members would be required for the convergence measure to converge proportional to n

� 1
2 .

In the following, it will be analysed as to whether these di↵erences in the distributions are
observed in the convergence measure.

3.3.2 Sampling uncertainty convergence

Due to the di↵erent distribution shapes seen in weak and strong forcing regimes throughout
one diurnal cycle, it is expected that there will be di↵erent sampling uncertainty behaviour
for each regime. The magnitude of the sampling uncertainty as well as how quickly it con-
verges proportional to n

� 1
2 will be investigated. For this, the convergence measure will

be analysed and particular attention given to the variables and statistics where particular
di↵erences between the weak and strong forcing distributions were observed. The statisti-
cal quantities are analysed based on knowledge of how certain aspects of the distribution
shape can a↵ect that statistic e.g. the standard deviation of the distribution can impact
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Figure 3.5: Convergence measure for the mean using data from the extended idealised
ensemble with a neighbourhood of length 20km. Shows (a,b,c) wind (d,e,f) height and
(g,h,i) rain. Each column is a di↵erent time point. Weak forcing is in the dashed coloured
lines and strong forcing is in the solid coloured lines. Grey line in background is converging
proportional to n

� 1
2 , it’s width spanning 10% of the magnitude of the weak forcing (strong

forcing for (g)) convergence measure.

Figure 3.5 shows the convergence measure for the mean statistic for the three model
variables and three time points using data from a neighbourhood of length 20km. These
three time points were chosen because they each had di↵erent distribution shapes and were
at di↵erent phases of the diurnal cycle. As expected for the mean (Tempest et al., 2023),
the convergence measure is scaling proportional to n

� 1
2 with less than 10 ensemble mem-

bers. At 06:00 UTC, the convergence measures for the weak and strong forcing are quite
di↵erent for the wind and height (there contains no rain in weak forcing). As convection
begins, these lines get closer together and this continues into the evening. This is expected
according to Equation (1), whereby the larger the standard deviation of the underlying
distribution, the larger the uncertainty of the mean. As the standard deviations of the un-
derlying distributions from the weak and strong forcing (Table 3.1) become closer together
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throughout the day, so does the sampling uncertainty of the mean.
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Figure 3.6: As in Figure 3.5 but for the standard deviation.

In a similar manner as the mean, the standard deviation convergence measure for the
three model variables (Figure 3.6) is shown. The same behaviour as for the mean is seen
in the standard deviation for the wind whereby the convergence measure becomes closer
and closer during the day. This is also due to the standard deviation of the underlying
distribution becoming closer together as Equation (2) states that the smaller the spread
of the underlying distribution, the smaller the sampling uncertainty of the standard de-
viation. This is however not the case for the height and rain, where it is seen at 20:00
UTC that their weak and strong forcing convergence measures become more o↵set despite
their spread becoming more similar. This is due to the height and rain distributions not
satisfying the condition of normality required for Equation (2).

The convergence measures for the 0.95 quantile are shown in Figure 3.7 for the three
model variables and three time points using data from a neighbourhood of length 20km.
As a consequence of the density of the 0.95 quantile of the wind being consistently smallest
for the strong forcing compared to the weak forcing as shown by Table 3.2, the strong
forcing has the largest sampling uncertainty at all time points. Due to Equation (3), the
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Figure 3.7: As in Figure 3.5 but for the 0.95 quantile.

smaller the density, the larger the sampling uncertainty of that specific quantile. The
strong forcing does not always have the largest sampling uncertainty however. Concen-
trating on the moisture variables, the magnitude of the sampling uncertainty of the height
variable during weak forcing is larger than the strong forcing at 12:00 and 20:00 UTC, and
also in the case of the rain variable at 12:00 UTC. This was expected as for these variables
at these time points, the probability density at the 0.95 quantile is smallest for the weak
forcing (Table 3.2) due to the long tails in the distribution. The sampling uncertainty is
likely only largest for the weak forcing during these time points as significant precipitation
is occurring then. In the weak forcing case, until late morning there are not many rain
clouds and then suddenly many. This means that there will be a large density of noncloudy
members in the ensemble, while other members acquire lots of rain. This creates a tail with
less density than for the strong forcing, where more ensemble members would have already
acquired clouds and rain earlier in the forecast. At 20:00 UTC the rain has decreased
significantly in the weak forcing case, meaning that the tail of the distribution is no longer
less dense than that in the strong forcing case. This is not the case for the height, where
many clouds still exist in the weak forcing case, meaning that at 20:00 UTC the weak forc-
ing still has a larger sampling uncertainty for the 0.95 quantile of height but not for the rain.
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Figure 3.8: Convergence measure for the 0.95 quantile using data from the extended ide-
alised ensemble from a single grid point. Shows (a,b,c) wind, (d,e,f) height and (g,h,i)
rain. Each column is a di↵erent time point. Weak forcing is in the dashed coloured lines
and strong forcing is in the solid coloured lines. Grey line in background is converging
proportional to n

� 1
2 , it’s width spanning 10% of the magnitude of the weak forcing (strong

forcing for (g)) convergence measure.

In contrast to results so far that considered neighbourhoods of length 20km, the
convergence measure from a single grid point is now analysed in order to determine how
distribution shapes a↵ect how many ensemble members are required for convergence pro-
portional to n

� 1
2 . Figure 3.8 shows the convergence measure for the 0.95 quantile as in

Figure 3.7 but for a single grid point rather than for a neighbourhood. At 06:00 UTC, all
measures are converging proportional to n

� 1
2 , as well as all wind variables with an ensem-

ble containing 5, 000 members. It is seen however for distributions with long, low density
tails, that they need significantly more members for their sampling uncertainty to converge
proportional to n

� 1
2 . This is evident for the height variable in the weak forcing regime as

it has not converged asymptotically at 12:00 and 20:00 UTC with 5, 000 members, but
the strong forcing has. This corresponds to periods when the tail of the respective weak
forcing distributions were the longest and least dense. Similarly for the rain: when the tail
of the underlying distribution was very long, more members were needed for convergence
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to be proportional to n
� 1

2 . This is seen at 12:00 UTC during the weak forcing where the
rain distribution’s tail was less dense than the strong forcing’s, leading to the weak forcing
needing more than a 1, 000 members to converge asymptotically and the strong forcing
significantly less. The opposite is true at 20:00 UTC when there was no longer significant
rain in the weak forcing. This example demonstrates how distributions with longer and less
dense tails can lead to needing more members until asymptotic convergence of sampling
uncertainty proportional to n

� 1
2 is observed.

Through analysing specific cases of the convergence measure and their underlying
distributions, di↵erences in the convergence of sampling uncertainty in weak and strong
forcing regimes have been found. It has been seen that in weak forcing cases with precip-
itation, the moisture variables will have a greater sampling uncertainty for their extreme
quantile statistics and that they will need more ensemble members for convergence pro-
portional to n

� 1
2 to be observed compared to strong forcing regimes. Furthermore, the

di↵erence in sampling uncertainty between weak and strong forcing for the mean (and
standard deviation in case of a Gaussian underlying distribution) has been found to be
significant at particular times of the day when the distributions from the weak and strong
forcing runs show the most di↵erence in spread. For the idealised ensemble, the di↵erence
in spread between the weak and strong forcing across all model variables was greatest in
the early morning, giving the strong forcing a much larger sampling uncertainty than the
weak forcing at this time, and this di↵erence then decreased throughout the day as the
weak and strong forcing distributions became more similar. The convergence behaviour
observed here was expected from the characteristics of the model variable distributions in
combination with the equations for the standard error of the mean, standard deviation and
quantiles. As the distribution characteristics which led to these conclusions were also seen
in data from ICON-D2, it is expected that these convergence results will additionally hold
for full NWP ensembles.

3.4 Summary and Conclusions

Di↵erent weather regimes exist, each containing di↵erent types of weather. The question
explored in this chapter was whether the ensemble size required to predict the weather
would vary depending on if there was a weak or strong forcing convective weather regime.
To investigate this, the convergence of sampling uncertainty with ensemble size in the weak
and strong forcing regimes were compared.

Large ensemble experiments with weak and strong forcing were simulated to explore
how sampling uncertainty converges in both regimes. This involved extending the idealised
ensemble from Chapter 2 by adding in an extra time dependent equation for the constant
geopotential term which was made to depend on the radiation, synoptic forcing and con-
vection. The radiation and synoptic forcing increased, while the convection damped, the
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buoyancy a given cloud would have in the model. Equivalent terms for the CAPE and con-
vective timescale were created in order to categorise the convective forcing regime within
which the model was in. From comparisons of these two measures as well as the time evo-
lution of the precipitation over a diurnal cycle with weak and strong forcing forecasts from
the 120-member full convective-scale NWP ensemble, ICON-D2, it was ascertained that
distinct forcing regimes had been created by the extended idealised ensemble. Following
Chapter 2, the extended version of the ensemble continued to have space and time scales
representative of convective processes, be able to model non-linear processes as well as be
computationally e�cient. A weak and strong forcing ensemble forecast was then created
of length 24 hours beginning at 00:00 UTC with initial conditions provided by DA. Each
ensemble had 5, 000 members in the free run.

The distributions were first checked to ensure they were su�ciently realistic as well
as to observe how they varied between weak and strong forcing regimes. For this, the
neighbourhood method was employed to expand the ensemble further. Three categories
of distribution shape, Gaussian, multi-model and highly skewed were seen, in line with
previous convective-scale studies. Furthermore, behaviour unique to weak and strong forc-
ing seen in the extended idealised ensemble were also seen to occur in ICON-D2. This
indicated that the extended idealised ensemble was realistic enough for the purposes of
di↵erentiating between the forcing regimes. The di↵erences seen in the di↵erent regimes
amongst the distributions included large variations in spread between the weak and strong
forcing distributions and longer, less dense tails in the weak forcing moisture distributions
compared to the strong forcing during periods of precipitation.

The convergence measure was used to show di↵erences in the nature of the con-
vergence of sampling uncertainty between the weak and strong forcing regimes. Specific
di↵erences arose, which were clearly linked with the underlying distribution shape. The
mean statistic which has larger sampling uncertainty when the underlying distribution has
more spread according to Equation (1), had consistently larger sampling uncertainty for
the strong forcing case since it’s spread was larger. The di↵erence in sampling uncertainty
of the mean between the weak and strong forcing varied significantly, and this was related
to the spread of the underlying distributions. Large variations in sampling uncertainty
were also seen for the standard deviation, however this behaviour could not be linked well
to the distribution shapes for the height and rain variables as normality was required for
Equation (2) to apply. Longer, thinner tails in the weak forcing moisture distributions dur-
ing time periods of precipitation led to larger sampling uncertainty in the extreme quantiles
of the weak forcing compared to the strong forcing following Equation (3). Furthermore, it
was seen that the longer the tail, the more members were needed to resolve the distribution
shape and as such the more members that would be needed for convergence proportional
to n

� 1
2 to be observed.

The di↵erences highlighted of how sampling uncertainty converges with ensemble size
between weak and strong forcing regimes indicates that di↵erent ensemble sizes may be
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required depending on whether one is in the weak or strong forcing convective weather
regime. If one is following the framework to determine ensemble size which was developed
in the previous chapter, one can find the desired ensemble size for each regime by calcu-
lating the convergence measure. Say our forecaster with a 50-member ensemble is again
interested in the spread of temperature over Munich and they want to know how many
members they would require to reach a certain level of sampling uncertainty for days when
there is weak forcing and for days when there is strong forcing. As before, they would
calculate the convergence measure for the standard deviation (or variance) of the temper-
ature and as seen in the previous chapter, it would likely be converging proportional to
n
� 1

2 with a 50-member ensemble. They would then extrapolate this to smaller values of
sampling uncertainty until they were satisfied and the corresponding ensemble size would
be their required size of ensemble for that level of sampling uncertainty. To measure the
ensemble size required in each regime, the convergence measure would be calculated mul-
tiple times, in weak and strong forcing scenarios to ascertain the ensemble size needed
in each. It is likely that the strong forcing temperature distribution would have a larger
spread and be Gaussian in shape, leading to it having a larger sampling uncertainty for any
given ensemble size and as such require a larger ensemble size than for the weak forcing to
reach the same level of sampling uncertainty. This framework depends on the statistic of
interest, model variable distribution and desired level of sampling uncertainty, as before in
Chapter 2. From this chapter it has additionally been found that since weak and strong
forcing regimes have di↵erent distribution shapes, their sampling uncertainty convergence
with ensemble size will be di↵erent. Assuming that other weather regimes will also have
distribution shapes specific to that regime, it can be concluded that a di↵erent size of
ensemble will likely be necessary depending on the weather regime.



Chapter 4

Asymptotic Convergence at the
Synoptic Scale

4.1 Background

The topic of using di↵erent time and space scales in the prediction of the atmosphere, in
particular the convective scale and the synoptic scale, was introduced in the Introduction.
Ensemble size is a pressing question for both of these scales for ensemble forecasting and
so it is valuable to ascertain whether the results of asymptotic convergence found previ-
ously for the convective scale are valid for the synoptic scale. If this is the case, a similar
framework based on how the sampling uncertainty converges with ensemble size could be
used to estimate the size of ensemble required for synoptic-scale probabilistic forecasts.

It has been seen in the previous two chapters that convergence of sampling uncer-
tainty with ensemble size depends greatly on the shape of the underlying forecast variable
distribution. From previous studies, it is generally expected that the shapes of distribu-
tions of forecast variables from synoptic-scale forecasts will fit well into the same three
categories of Gaussian, multi-modal or highly skewed, that are seen in convective-scale
forecasts. For example, temperature distributions can be modelled well by a normal dis-
tribution and generalisations thereof, including skewed normal and mixtures of normal
distributions (Lakatos et al., 2022). Precipitation on the other hand can be modelled by
a censored, shifted gamma distribution (Scheuerer and Hamill, 2015). For some forecast
variables it is unsure how best it can be modelled, although it is thought in most cases
that it has a distribution which belongs to one of the three categories of either Gaussian,
multi-modal or highly skewed. For example the relative humidity, where it has been ap-
proximated as various symmetrical and skewed distributions (Tompkins, 2005). As many of
the forecast variables from synoptic-scale models have similar distribution shapes as those
from convective-scale models, it is expected that the characteristics of the convergence of
the sampling uncertainty with ensemble size will also be similar.
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For the investigation of whether asymptotic convergence in the sampling uncertainty
occurs for synoptic-scale data, a model with the suitable scales must be chosen. Fur-
thermore the ensemble should be tuned to have the appropriate amount of spread. The
Integrated Forecast System (IFS) from ECMWF is chosen, which has a horizontal resolu-
tion close to 18km and a lead time of up to 15 days. The IFS ensemble is moreover well
developed and used operationally. It is composed of 50 members with perturbed initial
conditions, 1 control member and 1 high resolution run. A multitude of model variables
are archived and available for analysis. The temperature at 2m and 500hPa, the relative
humidity and the accumulated precipitation will be analysed in this chapter for the reason
that they give a sample of each of the three categories of distribution shape and will allow
for comparison with our convective-scale results Puh et al. (2023).

It has been hypothesised that it is expected that the sampling uncertainty conver-
gence properties will be similar for synoptic-scale data and convective-scale data due to the
distribution shapes. For a 50-member synoptic-scale ensemble it is therefore conjectured
that the sampling uncertainty of the mean, most standard deviations and non-extreme
quantiles will be converging proportional to n

� 1
2 , where n is ensemble size. Whereas ex-

treme quantities which require more resolution at the tails of the distribution such as the
0.95 quantile, will not converge and need more ensemble members. A statistic which is
commonly calculated operationally with synoptic-scale forecasts is the Extreme Forecast
Index (EFI), which is used to identify potentially extreme events (ECMWF, 2023). It is
uncertain whether a 50-member ensemble is large enough to see asymptotic convergence
in other forecast statistics such as this one, if it does indeed converge proportional to n

� 1
2

in the limit of large n. Application of the neighbourhood method to increase the e↵ective
ensemble size is not expected to be as e↵ective with the larger-scale data as for the smaller-
scale data. This is due to the higher correlated nature of the grid points, leading to them
being less independent. It is of interest whether this method can still be e↵ectively used
however, in some capacity to increase the e↵ective ensemble size.

In this chapter the IFS from ECMWF will be analysed to investigate whether the
asymptotic sampling uncertainty convergence seen in convective-scale forecast data also
occurs in synoptic-scale forecasts. The IFS and the relevant methods are described in Sec-
tion 4.2. In the results section of 4.3, the distributions from the model are first analysed
for four model variables to check how similar the distribution shapes are in the synop-
tic scale compared to the convective scale. Then the convergence measure, introduced in
Chapter 2 which measures the convergence of sampling uncertainty with ensemble size,
will be calculated for various statistics, including the EFI. This convergence measure will
be analysed to ascertain how many members are needed for scaling proportional to n

� 1
2 ,

as well as the e↵ect of the neighbourhood size and how similar these results are from
the convective scale. Finally in Section 4.4 it will be concluded whether a similar frame-
work to calculate ensemble size can be used in the synoptic scale as for the convective scale.
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4.2 Model and Methods

4.2.1 ECMWF model

The operational ensemble forecast of the ECMWF IFS consists of the ECMWF Ensemble
of Data Assimilations (EDA) (Isaksen et al., 2010; Lang et al., 2019; ECMWF, 2021a)
and the Ensemble Forecast (Palmer et al., 1992; Molteni et al., 1996; ECMWF, 2021c).
The IFS is a spectral, hydrostatic model and uses terrain following pressure coordinates
(Rodwell and Wernli, 2022). Both the EDA and Ensemble Forecast consists of 50 ensemble
members and 1 control member with a 12 minute time step. The horizontal grid has a
resolution close to 18km and there are 137 levels vertically.

The EDA system uses a multi-resolution incremental 4D-Variational method, a type
of DA which involves minimising a cost function using information from observation oper-
ators and adjoint and tangent-linear versions of the non-linear forecast model (ECMWF,
2021a). High and low resolutions are used to make the process more e�cient. The ob-
servations which are screened and corrected using the Variational Bias Correction (Dee,
2004) are organised in time-slots every 30 minutes and are randomly perturbed to simu-
late observation uncertainty. The assimilation windows are 12 hours in length, in which
time the distance between the model-trajectory and information from the background and
observations is measured by the cost-function to then calculate an analysis as well as its
associated uncertainty. The uncertainty of the analysis, which is the initial condition un-
certainty, will then be a combination of the observation and background uncertainty. The
ensemble which then is used to initiate the forecast will be constructed from this initial
condition uncertainty.

The IFS employs various parameterisation schemes which simplify complicated pro-
cesses in the atmosphere. Examples include a large-scale cloud and precipitation scheme
(Tompkins and Janisková, 2004) as well as a control for gravity waves (ECMWF, 2021b).
For representation of errors and (sub-grid-scale) uncertainties, the Stochastic Perturbation
to Physical Tendencies (SPPT) parameterisation (ECMWF, 2021c) is used. To further
increase spread in the Ensemble Forecast during the first 2 days, singular vectors (Molteni
and Palmer, 1993; Leutbecher and Lang, 2014) are added, which perturb the initial con-
ditions provided by the EDA.

4.2.2 Ensemble forecast

The operational forecast which is analysed in this chapter begins at 00:00 UTC on the 10th

June 2021. The forecast is run for 15 days and the model variables of the temperature
at 500hPa, the temperature at 2m, the relative humidity and the total precipitation are
extracted.
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4.2.3 Data analysis

Neighbourhood distributions

single grid point

108km

288km

468km

Figure 4.1: Black lines show geographical outline of central Europe. Filled blue circles
show regions used to create neighbourhoods of various sizes. Centre grid point used for
each neighbourhood is at (50.39958N, 9.686247E).

Similar neighbourhoods are created as in our studies of Craig et al. (2022) and Puh
et al. (2023), the centre point of which were taken to be at the coordinates of (50.39958N,
9.686247E). Three neighbourhoods were then created, with radii of 108km, 288km and
468km, as seen in Figure 4.1.

Model Climate

The model climate, otherwise known as M-climate, is the climatological distribution of a
forecast variable and is used in the calculation of select statistics. It is the distribution
a forecast variable achieves when it contains no more predictability. As the climate is
seasonal and varies in location, it is calculated for a specific time of the year and specific
location.
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For the preparation of the model climate, three sets of nine consecutive re-forecast
sets are used. Of the nine sets, the 5th is set to be corresponding to the preceding Monday
or Thursday (days on which the reforecast is initiated) which is closest to the relevant
date of interest. Each of these sets consists of an 11-member ensemble (1 control and 10
perturbed members) with data for the previous 20 years at the same date. The distribu-
tions are then extracted for the relevant lead time. Although in practice only one starting
year is chosen, in this thesis the process is carried out three times: with starting years of
2019, 2020 as well as 2021. The combination of these ensembles then comprises the model
climate distribution of size (3 starting years·9 sets·11 members·20 years) = 5940 members.

EFI statistic

The EFI is calculated by comparing the ensemble distribution of a forecast variable to the
model’s climatological distribution for the chosen location, time of year and forecast lead
time. It can have values between �1 and 1. The more this value deviates from 0, the more
unusual the forecast distribution is. The EFI is calculated by the following:

EFI =
2

⇡

Z 1

0

Q�Qf(Q)p
Q(1�Q)

dQ, (18)

where Qf(Q) denotes the proportion of ensemble members from the forecast situated at
the Q quantile of the model climate (ECMWF, 2023). The denominator provides more
weight to the extremes of the model climate. Note that if the ensemble distribution is out-
with the values of the climatological distribution, these are not taken into account in the
calculation. As the model climate dataset is much larger than the ensemble distribution,
the estimated model climate distribution is assumed to be the true distribution and the
sampling uncertainty discussed in this chapter will relate purely to the ensemble forecast
distribution.

Note that in our calculations of the EFI, although they were checked by multiple
scientists, the EFI computed matches the ECMWF value only within a factor of 10�2.
This could be due to a number of di↵erences including the specific files used to create the
model climate as well as the bin size used to create the CDF in the calculation of the EFI.

4.3 Results and Discussion

4.3.1 Distributions from the synoptic scale model

As a first step in analysing the sampling uncertainty convergence behaviour of the synoptic-
scale data from ECMWF, the 50-member forecast distributions are examined, since it has
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been seen in previous chapters that the distribution shape has an important role in deter-
mining the nature of the convergence of sampling uncertainty. It is of interest to see whether
the distributions from the ECMWF model match the shape of distributions from previous
synoptic-scale and convective-scale studies. As the distribution shape varies throughout
the forecast, various time points will be looked at and it will be expected that the evolution
will follow the conceptual framework proposed by our previous study (Craig et al., 2022).
In addition, the e↵ect of neighbourhood size on the distribution shape will be analysed. It
is expected that above a radius of approximately 100km the distribution shape will change,
because di↵erent orographies and synoptic weather conditions would likely be included.
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Figure 4.2: (a-f): Evolution of distributions in time of the temperature at 2m using the
50-member IFS ensemble with a 108km radius neighbourhood. Title of each subplot shows
lead time of forecast.

Figure 4.2 shows distributions of the temperature at 2m for various lead times with
a neighbourhood of radius 108km. This neighbourhood is used so that there are as many
members in the histogram as possible before the distribution shape was seen to change
significantly. The distribution at each time point is shaped by either one, or a combination
of, Gaussian distributions, as expected (Lakatos et al., 2022). The expected distribution
shapes according to synoptic-scale studies are also seen for the other three model variables
inspected, see Appendix Figures B. 6.2, 6.1 and 6.3. The relative humidity and tempera-
ture at 500hPa can be similarly modelled by a selection of Gaussian distributions and the
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total precipitation can fit a gamma distribution well. It is therefore seen that the shapes
from the ECMWF model are as expected following synoptic-scale studies and also fit into
the same three categories as seen in convective-scale ensembles.
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Figure 4.3: Single grid point distribution at 360 hours of free forecast for the (a) temper-
ature at 2m and the (b) total precipitation using the IFS ensemble. Lines plotted connect
each of the 16 histogram bins. The model climate distribution from reforecasts is overlaid
in red.

Over the 15 days of forecast, the forecast distributions evolve their shape. At the
beginning of the forecast, at 3 hours, the distributions for all four model variables are a
relatively narrow Gaussian. In the case of the temperature at 2m (Figure 4.2) this Gaus-
sian shifts its mean to higher values and then shifts back to lower temperatures later on
in the day. During the first 12 hours of forecast, the temperature at 2m is likely increased
due to radiation, and then likely decreases in the afternoon due to precipitation evaporat-
ing and less radiation being absorbed from the sun. During the rest of the forecast the
distribution broadens out, obtaining a multi-modal Gaussian at the end of day 15. It is
questionable whether the distribution at 360 hours is the climatological distribution. To
test this, the distribution from the temperature at 2m and total precipitation forecast was
compared with their model climate distribution and can be visualised in Figure 4.3. To
aid visualisation, lines are plotted which connect each of the 16 histogram bins. As can
be seen by comparing the single grid point distributions from the forecast to the model
climate created from reforecasts, the climatology has not been reached after 360 hours of
free forecast. The evolution of distribution shape in time has therefore been observed to
follow our conceptual framework (Craig et al., 2022) which was previously seen to apply
for convective-scale forecasts. Whereby the distributions from the synoptic-scale ensemble
begin with a constrained distribution from the DA, which then develops varied shapes
(mainly in the form of shifts in the case of the 2m temperature). Like the convective-scale
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forecasts however, the final stage of reaching the climatological distribution is not reached
after 15 days of forecast.
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Figure 4.4: E↵ect of neighbourhood size on the distributions of (a) temperature at 2m and
the (b) total precipitation at 360 hours of forecast lead time using the IFS ensemble. Lines
plotted connect each of the 24 histogram bins. “single” in legend refers to the single grid
point and values in kms refers to the radii of neighbourhood regions.

Figure 4.4 shows distributions of the temperature at 2m and total precipitation for 3
neighbourhood sizes and the single grid point at 360 hours of forecast lead time. Although
the distributions are not matching exactly, as shown by the 2m temperature bimodality
seen in the 108km radius neighbourhood not appearing in the larger neighbourhood sizes,
they are more similar than at the beginning of the forecast and this was also the case
for the two other variables (not shown). As expected, the larger the neighbourhood, the
larger the spread. This is particularly obvious for the temperature at 2m where the largest
neighbourhood has a longer tail on the left side of the distribution. This occurs because
the largest neighbourhoods encompass more regions and so have a larger range of values.
The other variables again had similar characteristics in their neighbourhood distributions
(not shown). As the larger neighbourhood sizes do not change their distribution shape sig-
nificantly, it is possible that in this forecast case and lead time, the neighbourhood method
could be useful to expand the ensemble.

It has been shown that the distributions from the ECMWF data are as to be ex-
pected according to previous studies of synoptic-scale data. Furthermore these shapes of
distribution fit into the same three categories as seen in convective-scale data, and their
evolution in time follows a similar conceptual framework. Since the distribution shapes are
similar, this provides a good basis to assume that our hypothesis will hold that there will



4.3 Results and Discussion 91

be similar behaviour of the sampling uncertainty convergence with ensemble size in the
synoptic-scale data as with the convective-scale data. Furthermore, at later lead times the
distribution shapes from neighbourhoods with radii larger than 100km are similar to those
with smaller radii. This suggests that the neighbourhood method could be more useful
than initially expected at allowing the asymptotic convergence of sampling uncertainty to
be seen in more extreme statistical quantities otherwise hidden with a small 50-member
ensemble.

4.3.2 Sampling uncertainty convergence

It has been seen that the distribution shapes throughout the 15 days of the ECMWF
forecast fit into the same three categories of distribution shape as seen in convective-scale
models and as such it can be expected that similar convergence behaviour of the sampling
uncertainty will apply to the synoptic scale as for the convective scale. To assess this, the
convergence measure for a selection of standard statistics has been computed for the same
four model variables as analysed for the distributions at 360 hours. This time point has
been chosen due to it containing a variety of distribution shapes. A single grid point is
further analysed as it will allow for it to be easily seen how many members are needed for
asymptotic convergence proportional to n

� 1
2 to occur, if it does at all. It is noted that the

distribution shape of the single grid point and the neighbourhood with radius of 108km
have similar shapes at 360 hours. Convergence proportional to n

� 1
2 is expected with the

50-member ensemble for the statistics of the mean and in most cases for the standard devi-
ation and the least extreme quantiles. The neighbourhood method may be of help to then
artificially increase the ensemble size if convergence asymptotically has not been obtained
although this may not function well due to the higher correlated nature of synoptic-scale
data.

Figure 4.5 shows the convergence measure for four variables (columns) and various
statistics (rows) using ensemble data from a single grid point at 360 hours into the fore-
cast. The thicker grey line in the background is converging proportional to n

� 1
2 , in order

to observe whether the sampling uncertainty of a forecast variable is converging asymp-
totically. Concentrating first on the mean (top row) and the temperature at 500Pa (first
column), one sees that the convergence measure converges asymptotically with less than
10 members. This is also the case for the temperature at 2m, relative humidity and total
precipitation. For the standard deviation convergence, the model variables apart from the
total precipitation converge after less than 50 ensemble members. More members would
be required in the total precipitation. This is likely due to the strongly skewed distribu-
tion shape of the total precipitation, as extra members could add to the tail, varying the
standard deviation significantly. The convergence measure of the mean and standard de-
viation at other time points are similar. They have mostly converged apart from a case of
a very highly skewed distribution with a large concentration at zero whereby it’s standard
deviation hasn’t converged with 50 members (not shown). This follows our expectations
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Figure 4.5: Convergence measure using IFS ensemble data from a single grid point and
four model variables (columns) at 360 hours of forecast lead time. Rows contain di↵erent
statistical quantities. From top to bottom they are the (a-d) mean, (e-h) standard deviation
and (i-l) multiple quantiles. Grey line in background is converging proportional to n

� 1
2

and shows the expected slope for asymptotic convergence.

from the convective scale whereby the mean often converges asymptotically with less than
50 members and the standard deviation needs between 50 and 100.

None of the quantiles on the bottom row of Figure 4.5 (the line style depicts the
quantile level, going from p = 0.5 to 0.99) are converging proportional to n

� 1
2 , indicating

that none have reached the asymptotic regime with only 50 ensemble members. This in-
cludes the 0.5 quantile, otherwise known as the median. The median has not converged
but the mean likely has because if one adds another ensemble member to the 50-member
ensemble, the median can vary substantially more than the mean since the mean would in-
clude the extra point into the overall average whereas there could be a large gap to the new
median point in the data. A “zigzagging” is additionally seen in the convergence measure
of the quantiles. This is due to the small ensemble size and is also seen in convective-scale
data from ICON-D2 (Puh et al., 2023). The convergence measure for the quantiles from
the three other model variables at other time points are similar: they have not asymp-
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totically converged with a 50-member ensemble (not shown). This is broadly in line with
studies from the convective scale whereby it was seen that for quantiles at unpredictable
parts of distributions (e.g. tails and troughs), more members are needed for convergence
proportional to n

� 1
2 . Asymptotic convergence could have been expected however for the

more central quantiles as in Figure 2.8 of Chapter 2. Further investigation is required to
understand this behaviour.
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Figure 4.6: Convergence measure for the 0.95 quantile statistic for the (a) 2m temperature
and (b) total precipitation at 360 hours of forecast lead time. Red and grey line in back-
ground of single grid point are converging proportional to n

� 1
2 . Convergence measure for

various neighbourhood sizes are in addition plotted. “single” in legend refers to single grid
point and values in kms refers to the radii of neighbourhood regions. Shading behind the
neighbourhood convergence measures are the 95% CI of the uncertainty of the convergence
measure.

The neighbourhood method is used in an attempt to enlarge the ensemble artificially
in order to achieve asymptotic convergence in the sampling uncertainty in select quantiles
that did not converge with a single grid point in Figure 4.5. As a quantity which did not
converge with 50 members, the 95th percentile of the 2m temperature and total precipita-
tion is chosen. The convergence measure is calculated for this statistic for neighbourhood
radii of 108, 288 and 468km and is shown in Figure 4.6. The Figure shows that as the
neighbourhood size increases, for both model variables, the convergence measure shifts to
smaller values, decreasing the magnitude of the sampling uncertainty. It is perhaps sur-
prising that the neighbourhood method appears to work due to the relatively correlated
nature of the grid points over large regions. However, the neighbourhood regions chosen
are quite large, and the shapes of the largest neighbourhood distributions are not too
dissimilar to the smaller neighbourhood distributions (see Figure 4.4) indicating that the
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statistical properties are not too indi↵erent and so this likely leads to the neighbourhood
method being e↵ective in this case.

The uncertainty of the convergence measure is further assessed in order to determine
which of the neighbourhood lines in Figure 4.6 have converged asymptotically. The sin-
gle grid points are not tested as they are clearly not scaling proportional to n

� 1
2 . The

same method as in Section 2.3.3 is carried out whereby the convergence measure is calcu-
lated many times using bootstraps of the original ensemble to calculate new convergence
measures. One hundred of these calculations were carried out, from which a 95% CI was
computed. This is shown by the shading behind the convergence measure lines. Clearly,
for both model variables, the width of the CI decreases as the size of the neighbourhood
region increases. Furthermore, at the smaller neighbourhood sizes one sees the CI slightly
diverging at larger ensemble sizes, indicating that it has not converged asymptotically. For
example the total precipitation’s neighbourhood of radius 108km. With a neighbourhood
region of radius 469km, the convergence measure has asymptotically converged for both
model variables. From computing the uncertainty of using the neighbourhood method to
increase the e↵ective ensemble size, it has been seen that in this case where large neighbour-
hoods don’t lead to significantly di↵erent distribution shapes, that it can be an accurate
and cheap method to artificially increase the ensemble size to achieve asymptotic conver-
gence.

From investigating how sampling uncertainty decreases with ensemble size using data
from the ECMWF forecast, asymptotic convergence was seen in synoptic-scale data in the
statistics of the mean, standard deviation and quantiles when the neighbourhood method
was employed. Increasing the e↵ective ensemble size using the neighbourhood method was
seen to be more useful than expected for being able to reach asymptotic convergence with
a limited ensemble size. This could be because of the statistically similar distributions
up until large neighbourhood sizes in the case selected. It has been seen as a whole that
the previous conclusions from the convective scale (Chapters 2 and 3) also apply to the
larger time and space scale data from the ECMWF forecast. A further question which is of
interest in particular for this ECMWF dataset is whether asymptotic convergence can be
seen in statistics commonly used in weather forecasting. As such, the sampling uncertainty
convergence of the EFI will now be investigated.

EFI

In operational settings, which is where data from the IFS ensemble is often employed,
statistical quantities other than the mean, standard deviation and quantiles are often also
used. One of these is the EFI. As the EFI, which is calculated by Equation (18), can
be thought of as the sum of iid random variables multiplied by a factor, it is expected
to follow the CLT. This would mean that the sampling distribution of the EFI would
be normally distributed and as such will converge asymptotically with enough ensemble
members. It will now be explored whether asymptotic convergence of the EFI does occur
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with the 50-member IFS ensemble.
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Figure 4.7: Convergence measure of the EFI for the (a) 2m temperature and the (b)
total precipitation shown by red and blue lines respectively. Shading behind convergence
measures shows the 95% CI of the uncertainty of the convergence measure. Grey line is
converging proportional to n

� 1
2 . Single grid point data from the IFS ensemble used.

The convergence measure of the EFI for the 2m temperature as well as the total
precipitation are calculated and shown in Figure 4.7 for the single grid point located in
Figure 4.1. In line with how ECMWF computes the index, the one control member as well
as the 50 ensemble members are used to create the model climate and ensemble distribu-
tions. The EFI is designed to highlight di↵erences between the forecast and climatological
distribution and as such, the forecast lead time of 3 hours is chosen for analysis. Com-
paring the magnitudes of the convergence measure is irrelevant as they are for di↵erent
statistical quantities but what is interesting is that it looks as though both quantities are
converging proportional to n

� 1
2 with less than 10 members. This follows the convergence

characteristics of the mean statistic.

As in Figure 4.6, the uncertainty of the bootstrap is calculated and shown by the
background shading in Figure 4.7. For both variables, the uncertainty of the bootstrap
is parallel to the convergence measure, indicating that the convergence measure gives a
realistic estimate of the real convergence of sampling uncertainty with ensemble size. This
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is expected to be possible due to the underlying distribution shapes having no significant
tails which could create a larger range of values in the nominator of Equation (18) and
as such greater uncertainty in the value of the EFI. The confidence interval for the 2m
temperature is less smooth than for the total precipitation. It is thought that this could
be due to the temperature being relatively Gaussian symmetric whereas the total precipi-
tation has a lot of density at zero, with only one relatively small tail to create uncertainty
rather than two. This uncertainty analysis shows that the convergence measure of the EFI
has converged asymptotically with just a 51-member ensemble.

From analysing the EFI, it has been seen that asymptotic convergence of sampling
uncertainty is not limited to standard statistical quantities. This is theoretically possible
since, as long as the statistic obeys the CLT, it will converge asymptotically with a large
enough number of ensemble members. In the case of the EFI statistic, a 51-member ensem-
ble was enough to observe this convergence. This suggests that the framework to estimate
ensemble size which is based on asymptotic theory can also work with a great magnitude
of commonly used operational forecast statistics as long as they obey the CLT.

4.4 Summary and Conclusions

A framework for estimating ensemble size in convective-scale data exists which is based on
quantifying how sampling uncertainty converges with ensemble size. In the limit of large
ensemble size convergence is proportional to n� 1

2 , allowing one to estimate how many mem-
bers are needed to reach a certain level of sampling uncertainty. In this chapter, data from
a synoptic-scale forecast model was analysed in order to determine whether this framework
to estimate ensemble size is not only applicable to convective scales but to synoptic scales
in addition. Furthermore it is of interest whether the asymptotic convergence of sampling
uncertainty applies not only to standard statistics but also to a common statistic used in
operational forecasting, the EFI.

The 50-member synoptic-scale IFS ensemble forecast from ECMWF was first evalu-
ated to determine if the distribution shapes were qualitatively similar to convective-scale
ensembles. Since it is known that the underlying distribution shape significantly influences
the convergence of sampling uncertainty, if similar shapes were found, this would likely
mean that similar convergence behaviour would also be found. This was indeed the case
as the three categories of distribution shape from convective-scale models were seen in the
variables tested, which were the temperature at 2m and 500hPa, the relative humidity and
the total precipitation. In addition, the evolution of the distributions in time followed a
conceptual convective-scale framework.

With the 50-member ensemble, convergence of sampling uncertainty proportional
to n

� 1
2 was seen for the mean and most standard deviation quantities, as expected from
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convective-scale results. Larger ensemble sizes were needed for all quantiles tested however.
The neighbourhood method was useful in expanding the e↵ective ensemble size despite the
more highly correlated nature of the synoptic-scale data. As long as the neighbourhood
distributions were statistically similar and large enough, they could increase the e↵ective
ensemble size in order to reach asymptotic convergence for the variables tested.

The EFI statistical quantity was tested for asymptotic convergence as a quantity
which is often employed operationally in the prediction of extreme events. Due to the EFI
appearing to obey the CLT, the quantity was seen to converge proportional to n

� 1
2 with

less than 10 members for the 2m temperature and the total precipitation. This indicates
that the sampling uncertainty of operational forecasting statistics are also able to converge
asymptotically.

Asymptotic convergence of sampling uncertainty has been found to not only occur in
the convective scale, but also in the synoptic scale. Furthermore, asymptotic convergence
behaviour has been seen in statistics other than the standard moments of the distribution
(e.g. mean and standard deviation) and quantiles but also for the EFI, a forecast statis-
tic comparing the model climate and forecast distributions. The framework developed in
Chapter 2 for estimating ensemble size can hence be of relevance to the synoptic scales.
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Chapter 5

Conclusions

The purpose of this thesis was to answer the big question of how to know the ensem-
ble size required to achieve the desired accuracy in your statistic of interest.
This would allow for more precise weather forecast as well as for the optimal use of finite
computational resources.

To find the required ensemble size, the approach of looking at how sampling uncer-
tainty converges with ensemble size was taken. This followed on from our previous study
(Craig et al., 2022) where we highlighted the potential of using asymptotic theory to cre-
ate a framework to find the required ensemble size. By using idealised representations of
the atmosphere, huge ensembles could be created with which the convergence could be
investigated out to very large ensemble sizes - a task which is not possible with current
operational forecasting models.

How sampling uncertainty decreases with ensemble size was first explored.
The idealised model of Wuersch and Craig (2014) was developed to create an ensemble
with 100, 000 members which was su�ciently representative of a convective-scale ensem-
ble. That is, it satisfied the space and time scales of convection, it could model non-linear
processes and the forecast distributions fit into the three categories of Gaussian, multi-
modal and highly skewed. Using a method which was developed using bootstrapping, 95%
CIs of the sampling uncertainty, known as the convergence measure, could be plotted as
a function of ensemble size, allowing one to visualise how sampling uncertainty converged
with ensemble size.

An asymptotic power law scaling proportional to n
� 1

2 , where n is ensemble size, was
observed in the convergence measure. This was seen universally in the limit of large en-
semble size across all model variables and statistics tested and occurred as a result of the
CLT. In extreme statistics such as a quantile of a distribution where there was not signif-
icant probability density at that quantile level, more ensemble members were required for
convergence proportional to n

� 1
2 to be observed. In comparison, fewer than 10 members

were necessary for the mean and around 50 for the variance, which would be possible to
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be detected by today’s operational ensemble sizes. The magnitude of the sampling uncer-
tainty was additionally seen to depend on the shape of the distribution.

Two methods were developed to determine whether one was in the asymptotic con-
vergence regime and what to do if one was not. The first method, which measured the
uncertainty of the convergence measure, could let one know how certain the estimate of
sampling uncertainty convergence was. If one was converging proportional to n

� 1
2 with

high estimation accuracy, one could be confident one was in the asymptotic regime. If
one was not, the second parametric method, which used the distinct shapes of the forecast
variables could be employed to create a statistically equivalent ensemble, which could be
as large as needed to reach the asymptotic regime. Asymptotic convergence of sampling
uncertainty proportional to n

� 1
2 then allowed for a framework to determine ensemble size.

If the convergence measure was converging asymptotically, the convergence measure could
be extrapolated to smaller sampling uncertainties. Once the desired level of sampling un-
certainty was reached, the corresponding ensemble size would then be the size of ensemble
needed.

The next question was how does convergence of sampling uncertainty with
ensemble size di↵er between the convective weather regimes of weak and strong
forcing? An extended version of the idealised ensemble was developed which allowed for
weak and strong forcing regimes. It was found that in periods of precipitation, weak forcing
regimes will have the largest sampling uncertainty in extreme quantiles of moisture vari-
ables due to the small densities in the tails of their distributions. This furthermore leads to
larger ensemble sizes required to reach the asymptotic regime. In addition, large di↵erences
in spread during specific time periods between the weak and strong forcing regimes for all
variables led to large di↵erences in sampling uncertainty between regimes for the mean and
standard deviation statistic. It has hence been established that the di↵erent distribution
shapes in weak and strong forcing regimes lead to di↵erences in the sampling uncertainty
convergence behaviour. Assuming that other regimes will also have distribution shapes
specific to that regime, it is likely that, dependent on the weather regime, di↵erent ensem-
ble sizes will be required to reach the same level of accuracy in the statistic of interest and
forecast variable.

What size of ensemble to have is also a pressing question on larger synoptic scales and
as such the final question was whether the nature of sampling uncertainty conver-
gence is the same for both the convective scale and the synoptic scale?. Using
synoptic-scale data from a 50-member ECMWF ensemble forecast, the distributions of the
temperature at 2m and 500hPa, the total precipitation as well as the relative humidity
were found to contain the three types of distribution shapes common to convective-scale
forecasting. This led to the sampling uncertainty convergence behaviour on the convective
and synoptic scales having similar characteristics. The neighbourhood method was addi-
tionally found to be of benefit in expanding the e↵ective ensemble size to reach asymptotic
convergence in cases where the forecast variable distribution did not change substantially
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within the neighbourhood region. This analysis led to the conclusion that the framework to
find ensemble size that was previously developed for the convective scale also has potential
for the synoptic scale.

Using the framework to find ensemble size that was developed in this thesis has far-
reaching consequences. From continually comparing the idealised ensembles with larger,
more complex models and also working with the operational data from ECMWF, this
ensured that the results from the idealised ensembles are applicable to the real-world at-
mosphere. By finding the optimal size for an ensemble on the convective or synoptic
scale, which is tailored to the specific forecast situation and the forecaster’s needs, one can
optimise finite computational resources. Dependent on the statistic of interest, forecast
variable and acceptable level of sampling uncertainty, this may lead to needing a larger
or smaller ensemble for the forecaster’s purposes. This allows the forecast ensemble to be
built or improved with the optimisation of ensemble size as a priority so that the wanted
precision is met, and ensures less waste of computational resources.

There are a few limitations with the results presented in this thesis. Through the
framework proposed, it is possible to determine how many ensemble members would be re-
quired to limit the sampling uncertainty to within a desired level. Depending on how small
this uncertainty is desired to be however, this ensemble size may not be physically possible
- not just because of lack of computational power, but due to the number of observations
required for the validation of the ensemble prediction system. This is investigated for the
evaluation of the Discrete Ranked Probability Score (DRPS) statistic which measures how
close the observations are to the ensemble output. For the decomposition of this statis-
tic into useful components, Candille and Talagrand (2005) calculated that the number of
possible outcomes from the ensemble must be small compared to the number of obser-
vations. It was mentioned however that a di↵erent decomposition method could be used
which does not encounter this limitation. Another caveat is that the framework proposed
considers only sampling uncertainty and its dependence on ensemble size. Other sources
of uncertainty in ensemble predictions, including model uncertainty and initial condition
uncertainty resulting from limited observations or approximations in the DA system, will
limit the accuracy of probabilistic forecasts regardless of ensemble size. A final caveat
is that in Chapter 4, only one single forecast case initialised on the 10th June 2021 was
analysed for a grid point in Central Germany. Variations of the results obtained would
have been seen if di↵erent grid points, times, as well as neighbourhood sizes had been
used, especially since the distributions of forecast variables at di↵erent forecast lead times
from di↵erent neighbourhood sizes sometimes showed more di↵erences amongst themselves
than the neighbourhood example chosen. Furthermore, it could be that certain model vari-
ables are more uncorrelated between grid points than others, leading to the neighbourhood
method being less, or more e↵ective. For example, it could be expected that the two vari-
ables tested in this thesis, 2m temperature and total precipitation, that they would have
less correlation between grid points than say the temperature at 500hPa. Chapter 4 is
therefore meant as a preliminary study into the applicability of asymptotic theory for de-
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termining ensemble size on the synoptic scale.

This thesis provides significant progress towards understanding ensemble size, how-
ever there is scope for further investigation. In this thesis, uni-variate distributions were
primarily considered as this was su�cient in order to detect and analyse the convergence
behaviour of sampling uncertainty as ensemble size increased. It may be of interest, how-
ever, to carry out further investigations of convergence of sampling uncertainty with multi-
variate distributions, since they have important applications such as predicting road con-
ditions in the winter by looking at joint probability distributions of temperature and pre-
cipitation (Berrocal et al., 2010) and predicting extreme rainfall by looking at joint spatial
precipitation distributions (Debusho and Diriba, 2021). Furthermore, in this thesis, pri-
marily the standard statistics of the mean, standard deviation/variance and quantiles were
analysed, with the EFI as the only statistic specifically tailored to operational forecasting.
As other operational forecast statistics are expected to follow the CLT (e.g. the CRPS
(Zamo and Naveau, 2018)), it is expected that they will also converge asymptotically in
the limit of large ensemble size. A final thought is the need for further studies which look
at how computational resources are allocated in a forecasting system. By considering the
forecast variables and statistics of interest in the allocation of computational resources,
perhaps new priorities in the allocation would be discovered since in this thesis it has been
shown that the ensemble size needed depends strongly on the forecast variable and the
statistic of interest.



Chapter 6

Appendix

6.1 Data Used for Fitting Convergence Measure

Model variable Distribution Statistic Fitting cut-o↵

wind c of Figure 2.3 mean 0
variance 100

0.6 quantile 0
0.7 quantile 0
0.95 quantile 100
0.99 quantile 200
0.999 quantile 2000

h of Figure 2.3 mean 0
variance 100

height c of Figure 2.4 mean 3
variance 100

0.3 quantile 500
0.375 quantile 80000
0.4 quantile 2000
0.6 quantile 30
0.999 quantile 1000

h of Figure 2.4 mean 3
variance 100

rain c of Figure 2.5 mean 3
variance 100

0.6 quantile 5
0.7 quantile 5
0.95 quantile 100
0.99 quantile 300
0.999 quantile 70000

h of Figure 2.5 mean 3
variance 100

Table 6.1: Convergence measure data used for fitting of y = an
� 1

2 . Data up to a certain
ensemble size cut-o↵ (column 4) was not used in fitting procedure.
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6.2 Further ECMWF Distributions
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Figure B. 6.1: As in Figure 4.2 but for the temperature at 500hPa.



6.2 Further ECMWF Distributions 105

0 50 100
0.00

0.01

0.02

0.03

0.04

0.05

P
ro

ba
bi

lit
y

D
en

si
ty

3 hours

0 50 100
0.00

0.02

0.04

0.06

0.08

12 hours

0 50 100
0.00

0.01

0.02

0.03

0.04

0.05

0.06
24 hours

0 50 100
Relative Humidity (%)

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

ba
bi

lit
y

D
en

si
ty

72 hours

0 50 100
Relative Humidity (%)

0.00

0.01

0.02

0.03

0.04
264 hours

0 50 100
Relative Humidity (%)

0.00

0.01

0.02

0.03

0.04

360 hours

(a) (b) (c)

(d) (e) (f)

Figure B. 6.2: As in Figure 4.2 but for the relative humidity.
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Figure B. 6.3: As in Figure 4.2 but for the total precipitation.
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Dekking, F., C. Kraaikamp, H. Lopuhaä, and L. Meester, 2005: A Modern Introduction to

Probability and Statistics. Springer.

Dibike, Y. B., P. Gachon, A. St-Hilaire, T. B. Ouarda, and V. T.-V. Nguyen, 2008: Un-
certainty analysis of statistically downscaled temperature and precipitation regimes in
northern canada. Theoretical and Applied Climatology, 91 (1), 149–170.

Done, J., G. Craig, S. Gray, P. A. Clark, and M. Gray, 2006: Mesoscale simulations
of organized convection: Importance of convective equilibrium. Quarterly Journal of the

Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology

and physical oceanography, 132 (616), 737–756.

ECMWF, 2021a: IFS Documentation CY47R3 - Part II: Data assimilation. 2, ECMWF,
doi:10.21957/t445u8kna, URL https://www.ecmwf.int/node/20196.

ECMWF, 2021b: IFS Documentation CY47R3 - Part IV Physical processes. 4, ECMWF,
doi:10.21957/eyrpir4vj, URL https://www.ecmwf.int/node/20198.

ECMWF, 2021c: IFS Documentation CY47R3 - Part V Ensemble prediction system. 5,
ECMWF, doi:10.21957/zw5j5zdz5, URL https://www.ecmwf.int/node/20199.

ECMWF, 2023: Extreme forecast index. ECMWF, URL https://confluence.ecmwf.

int/display/FUG/Extreme+Forecast+Index+-+EFI2C+and+Shift+of+Tails+-+SOT.

Emanuel, K. A., 1955: Atmospheric Convection. Oxford University Press.

Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21 (6), 739–759, doi:
10.3402/tellusa.v21i6.10143, URL https://doi.org/10.3402/tellusa.v21i6.10143,
https://doi.org/10.3402/tellusa.v21i6.10143.

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model
using monte carlo methods to forecast error statistics. Journal of Geophysical Research:

Oceans, 99 (C5), 10 143–10 162, doi:https://doi.org/10.1029/94JC00572, URL https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JC00572.

Feng, X., T. DelSole, and P. Houser, 2011: Bootstrap estimated seasonal potential pre-
dictability of global temperature and precipitation. Geophysical Research Letters, 38 (7).

Flack, D. L., R. S. Plant, S. L. Gray, H. W. Lean, C. Keil, and G. C. Craig, 2016: Char-
acterisation of convective regimes over the british isles. Quarterly Journal of the Royal

Meteorological Society, 142 (696), 1541–1553.

Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in
two and three dimensions. Quarterly Journal of the Royal Meteorological Soci-

ety, 125 (554), 723–757, doi:https://doi.org/10.1002/qj.49712555417, URL https:

//rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712555417.

https://www.ecmwf.int/node/20196
https://www.ecmwf.int/node/20198
https://www.ecmwf.int/node/20199
https://confluence.ecmwf.int/display/FUG/Extreme+Forecast+Index+-+EFI2C+and+Shift+of+Tails+-+SOT
https://confluence.ecmwf.int/display/FUG/Extreme+Forecast+Index+-+EFI2C+and+Shift+of+Tails+-+SOT
https://doi.org/10.3402/tellusa.v21i6.10143
https://doi.org/10.3402/tellusa.v21i6.10143
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JC00572
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JC00572
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712555417
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.49712555417


122 BIBLIOGRAPHY

Gneiting, T., 2014: Calibration of medium-range weather forecasts. (719), doi:10.21957/
8xna7glta, URL https://www.ecmwf.int/node/9607.

Harding, B., C. Tremblay, and D. Cousineau, 2014: Standard errors: A review and eval-
uation of standard error estimators using monte carlo simulations. The Quantitative

Methods for Psychology, 10 (2), 107–123.

Hendricks, E. A., J. L. Vigh, and C. M. Rozo↵, 2021: Forced, balanced, axisymmetric
shallow water model for understanding short-term tropical cyclone intensity and wind
structure changes. Atmosphere, 12 (10), 1308.

Hirt, M., S. Rasp, U. Blahak, and G. C. Craig, 2019: Stochastic parameterization of
processes leading to convective initiation in kilometer-scale models. Monthly Weather

Review.

Isaksen, L., M. Bonavita, R. Buizza, M. Fisher, J. Haseler, M. Leutbecher, and L. Raynaud,
2010: Ensemble of data assimilations at ecmwf.

Jacques, D. and I. Zawadzki, 2015: The impacts of representing the correlation of errors
in radar data assimilation. part ii: Model output as background estimates. Monthly

Weather Review, 143 (7), 2637 – 2656, doi:10.1175/MWR-D-14-00243.1, URL https:

//journals.ametsoc.org/view/journals/mwre/143/7/mwr-d-14-00243.1.xml.

Jirak, I. L., A. J. Clark, C. J. Melick, and S. J. Weiss, 2016: 15b. 5 investigation of the
impact of convection-allowing ensemble size for severe weather forecasting.

Jolli↵e, I. T., 2007: Uncertainty and inference for verification measures. Weather and

Forecasting, 22 (3), 637–650.

Kawabata, T. and G. Ueno, 2020: Non-gaussian probability densities of convection initi-
ation and development investigated using a particle filter with a storm-scale numerical
weather prediction model. Monthly Weather Review, 148 (1), 3–20.

Keil, C., F. Baur, K. Bachmann, S. Rasp, L. Schneider, and C. Barthlott, 2019: Rela-
tive contribution of soil moisture, boundary-layer and microphysical perturbations on
convective predictability in di↵erent weather regimes. Quarterly Journal of the Royal

Meteorological Society, 145 (724), 3102–3115.

Keil, C. and G. C. Craig, 2011: Regime-dependent forecast uncertainty of convective
precipitation. Meteorologische Zeitschrift, 20 (2), 145.

Keil, C., F. Heinlein, and G. C. Craig, 2014: The convective adjustment time-scale as
indicator of predictability of convective precipitation. Quarterly Journal of the Royal

Meteorological Society, 140 (679), 480–490.

https://www.ecmwf.int/node/9607
https://journals.ametsoc.org/view/journals/mwre/143/7/mwr-d-14-00243.1.xml
https://journals.ametsoc.org/view/journals/mwre/143/7/mwr-d-14-00243.1.xml


BIBLIOGRAPHY 123

Kondo, K. and T. Miyoshi, 2019: Non-gaussian statistics in global atmospheric dynamics:
a study with a 10 240-member ensemble kalman filter using an intermediate atmospheric
general circulation model. Nonlinear Processes in Geophysics, 26 (3), 211–225, doi:10.
5194/npg-26-211-2019, URL https://npg.copernicus.org/articles/26/211/2019/.

Kullback, S. and R. A. Leibler, 1951: On information and su�ciency. The Annals of

Mathematical Statistics, 22 (1), 79–86, URL http://www.jstor.org/stable/2236703.

Kuo, Y.-H. and R. J. Reed, 1988: Numerical simulation of an explosively deepening cyclone
in the eastern pacific. Monthly Weather Review, 116 (10), 2081–2105.

Lakatos, M., S. Lerch, S. Hemri, and S. Baran, 2022: Comparison of multivariate post-
processing methods using global ecmwf ensemble forecasts. 2206.10237.
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