
Characterising cell fate decision in space
and time via transcriptomic data analysis

Kumulative Dissertation
der Fakultät für Biologie

der Ludwig-Maximilians-Universität München

vorgelegt von
Mayra L. Ruiz Tejada Segura

München, den 09.11.2022



Diese Dissertation wurde angefertigt

unter der Leitung von

Prof. Dr. Maria-Elena Torres-Padilla und Dr. Antonio Scialdone

am Institut für Epigenetik und Stammzellen

des Helmholtz Zentrum Münchens

Erstgutachter: Prof. Dr. Maria-Elena Torres-Padilla

Zweitgutachter: Prof. Dr. Wolfgang Enard

Tag der Einreichung: 09.11.2022 

Tag der mündlichen Prüfung: 18.07.2023

1





Table of Contents

Abbreviations    -------------------------------------------------------------------------------------------- 5

List of Publications -------------------------------------------------------------------------------------- 6

List of unpublished manuscripts ------------------------------------------------------------------ 6

Declarations of contribution as a co-author   --------------------------------------------------- 7

Summary   --------------------------------------------------------------------------------------------------- 9

Aims   --------------------------------------------------------------------------------------------------------- 10

Introduction   ----------------------------------------------------------------------------------------------- 12

I. Adding spatial dimensions to transcriptional profiles   ------------------------- 14

I.I Placing transcriptomes in the 3D space: The biological relevance of cell 
types’ spatial positions  ---------------------------------------------------------------- 14

I.II Spatial Transcriptomics   ---------------------------------------------------------- 14

I.III Studying cell identity changes in the olfactory mucosa   ----------------- 15

I.IV The chromatographic hypothesis in olfaction   ----------------------------- 17

I.V Spatial mapping of Olfr gene expression: a brief summary of previous 
studies   ------------------------------------------------------------------------------------ 18

I.VI Creating the Olfactory Mucosa 3D transcriptomic atlas   ---------------- 19

I.VII An unbiased and quantitative definition of olfactory zones   ----------- 20

I.VIII A machine learning algorithm to map the spatial expression of the entire 
repertoire of Olfr genes   -------------------------------------------------------------- 21

I.IX Deconvolving cell types through single-cell RNA sequencing and TOMO-
seq data integration   ------------------------------------------------------------------- 22

II. Studying cell identity transitions as a function of time with single-cell RNA-
seq time course experiments   -------------------------------------------------------------- 24

II.I Cellular plasticity in the early mouse embryo   ------------------------------- 24

3



II.II Two cell-like cells: an in vitro model of cellular totipotency   ------------- 24

Results   ------------------------------------------------------------------------------------------------------- 27

Chapter I. A 3D transcriptomics atlas of the mouse nose sheds light on the 
anatomical logic of smell   --------------------------------------------------------------------- 28

Chapter II. Retinoic acid signaling is critical during the totipotency window in 
early mammalian development   ------------------------------------------------------------- 61

Discussion   --------------------------------------------------------------------------------------------------- 96

I. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical 
logic of smell   -------------------------------------------------------------------------------------- 96

I.I Interrogating our 3D gene expression atlas of the olfactory mucosa.   -- 96

I.II Refining our transcriptional atlas through machine learning   ------------- 97

I.III Revisiting the Chromatographic Hypothesis   -------------------------------- 97

I.IV scRNA-seq data enabled us to get cell type abundance spatial 
distributions   ------------------------------------------------------------------------------- 98

I.V Perspectives   ------------------------------------------------------------------------- 98

II. Retinoic acid signaling is critical during the totipotency window in early 
mammalian development: Insights from single cell transcriptomic profiling  100

II.I Low doses of retinoic acid on embryonic stem cell cultures affect cell state 
transitions of mouse embryonic stem cells   --------------------------------------- 100

II.II Other cell identities induced by a low-dose retinoic acid treatment   --- 100

Closing remarks   ------------------------------------------------------------------------------------------- 102

References   -------------------------------------------------------------------------------------------------- 103

Acknowledgements   -------------------------------------------------------------------------------------- 110

Annex I. Curriculum Vitae   ------------------------------------------------------------------------------ 113

Annex II. Copyright statements   ---------------------------------------------------------------------- 119

4



List of abbreviations

Abbreviation Definiition

OSN Olfactory Sensory Neuron
OM Olfactory Mucosa
ISH In Situ Hybridization
ISS In Situ Sequencing
OB Olfactory Bulb
OC Olfactory Cortex
M/T cells Mitral/Tufted cells
Olfr Olfactory Receptor
PCA Principal Component Analysis
tSNE t - distributed Stochastic Neighbour Embedding
DPT Diffusion Pseudo-Time
scRNA-seq Single-cell RNA sequencing
DWLS Dampened Weighted Least Squares 
NNLS Non Negative Least Squares
ESCs Embryonic Stem Cells
2CLCs 2-cell-like-cells
mESCs mouse Embryonic Stem Cells
RA Retinoic Acid
CIARA Cluster-Independent Algorithm for the identification

of markers of RAre cell types

smFISH Single-molecule Fluorescence in situ Hybridization

5



List of publications

Ruiz Tejada Segura, M. L.*, Abou Moussa, E.*, Garabello, E., Nakahara, T. S., Makhlouf, 
M., Mathew, L. S., ... & Saraiva, L. R. (2022). A 3D transcriptomics atlas of the mouse 
olfactory mucosa sheds light into the anatomical logic of smell. Cell Reports,  38(12), 
110547.             

Iturbide, A., Ruiz Tejada Segura, M. L.*, Noll, C.*, Schorpp, K.*, Rothenaigner, I., Ruiz-
Morales, E. R., ... & Torres-Padilla, M. E. (2021). Retinoic acid signalling is critical during the
totipotency window in early mammalian development. Nature Structural & Molecular Biology,
28(6), 521-532.

Yin, W., Cerda-Hernández, N., Castillo-Morales, A., Ruiz Tejada Segura, M. L., Monzón-
Sandoval, J., Moreno-Castilla, P., ... & Gutiérrez, H. (2020). Transcriptional, Behavioural and
Biochemical Profiling in the 3xTg-AD Mouse Model Reveals a Specific Signature of Amyloid 
Deposition and Functional Decline in Alzheimer’s Disease. Frontiers in neuroscience, 1322.

Huang, S. S., Makhlouf, M., AbouMoussa, E. H., Ruiz Tejada Segura, M. L., Mathew, L. S., 
Wang, K., ... & Saraiva, L. R. (2020). Differential regulation of the immune system in a brain-
liver-fats organ network during short-term fasting. Molecular metabolism, 40, 101038.

List of unpublished manuscripts

Gabriele Lubatti, Marco Stock, Ane Iturbide, Mayra L. Ruiz Tejada Segura, Richard Tyser, 
Fabian J. Theis, Shankar Srinivas, Maria-Elena Torres-Padilla, Antonio Scialdone (2022). 
CIARA: a cluster-independent algorithm for the identification of markers of rare cell types 
from single-cell RNA seq data. bioRxiv 2022.08.01.501965; doi: 
https://doi.org/10.1101/2022.08.01.501965

Jitesh  Neupane,  Gabriele  Lubatti,  Mayra  Luisa  Ruiz  Tejada  Segura,  Joao  Pedro  Alves
Lopes,  Sabine  Dietmann,  Antonio  Scialdone,  M  Azim  Surani  (Unpublished  manuscript).
Human embryonic organoids reveal origin of primordial  germ cells and neuromesodermal
progenitors.

* These authors contributed equally to this work

6



Statement of contribution

I hereby state that my contribution to the publication:

Ruiz Tejada Segura, M. L.*, Abou Moussa, E.*, Garabello, E.,
Nakahara, T. S., Makhlouf, M., Mathew, L. S., ... & Saraiva, L. R. (2022). A 3D
transcriptomics atlas of the mouse olfactory mucosa sheds light into the anatomical
logic of smell. Cell Reports, 38(12), 110547.

consisted in writing an initial version of the manuscript and doing all the data analysis
presented here and related figures; except for the clustering of Olfrs 3D expression patterns
via Topic modeling, which was done by Elisa Garabello, whom I co-supervised during her
internship with the Scialdone lab.

Mayra L. Ruiz Tejada Segura
München, August 16th, 2022

Confirmation of contribution

We hereby confirm that the statement of contribution reproduced above is both truthful and
accurate and represents a substantial enough contribution to warrant a first-co-authorship.

Prof. Dr. Maria Elena Torres Padilla Eman Abou Moussa

Dr. Antonio Scialdone

7



Statement of contribution

I hereby state that my contribution to the publication:

Iturbide, A., Ruiz Tejada Segura, M. L., Noll, C., Schorpp, K.,
Rothenaigner, I., Ruiz-Morales, E. R., ... & Torres-Padilla, M. E. (2021). Retinoic acid
signalling is critical during the totipotency window in early mammalian development.
Nature Structural & Molecular Biology, 28(6), 521-532.

consisted in performing the single cell RNA-seq data analysis related to the timeline of the
2-cell-stage-like phenotype induction through retinoic acid and producing the related figures.

Mayra L. Ruiz Tejada Segura
München, August 16th, 2022

Confirmation of contribution

I hereby confirm that the statement of contribution reproduced above is both truthful and
accurate.

Dr. Antonio Scialdone Prof. Dr. Maria Elena Torres Padilla

8



Summary

Cell identities can be described in terms of cell types and states, whose specialised 
functions are reflected in their transcriptome. The broad spectrum of cell identities 
that mammals possess varies often gradually across space and time, and some of 
them are restricted to specific developmental stages and spatial locations in an 
organism or tissue. Recent advances in molecular biology, like single-cell 
transcriptome sequencing, provide gene expression profiles of individual cells; 
therefore allowing a precise transcriptomic characterization of cell types. In this way, 
single-cell transcriptomics has helped define cell type identity in several biological 
systems, yet the standard protocols do not provide info about space or time. 
Mapping cell identity changes in space and time is fundamental to understanding the
functions and mechanisms of specification of cell types
For instance, spatial gradients of gene expression enable organisms to carry out 
complex biological processes by orchestrating different functions at specific locations
in tissues. 
In my dissertation, I describe how the analysis of spatial and time-course single-cell 
transcriptomic data revealed insights into cell fate decisions across space and time 
in two different contexts: activation of different olfactory receptor genes across the 
olfactory mucosa and cell state transitions in mouse embryonic stem cell cultures.

9



Aims

Chapter 1. A 3D transcriptomics atlas of the mouse nose sheds light on the 
anatomical logic of smell

- Build a tridimensional gene expression atlas of the whole mouse olfactory 
mucosa.

- Find spatially localised genes and get insight into the spatial aspect of 
biological processes happening in the olfactory mucosa.

- Define olfactory receptor genes’ expression zones in an unbiased and 
unsupervised way.

- Look into the anatomical logic of the sense of smell through associations 
between Olfr genes’ spatial expression patterns and properties of the 
chemical compounds they detect.

Chapter 2. Retinoic acid signalling is critical during the totipotency window in 
early mammalian development

- Identify and characterise the cell state changes that mouse embryonic stem 
cells can undergo in response to treatment with low doses of retinoic acid

- Describe the transcriptional changes driving cells’ transition between 
totipotent-like and pluripotent states.

- Identify new pathways regulating the 2-cell (totipotent-like) state programme.

10
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Introduction

Historically, biologists have tried to deconstruct complex biological systems by breaking 
them down to their basic unit, cells, and then classifying cells into different cell types 
according to their phenotype and function [1]. Mammals contain a multitude of distinct cell 
types, each of which may be composed of multiple cell states. This combination of cell type 
and state together defines a cell identity (Figure 1). Each of these cell identities has 
specialised functions [2 ], which are reflected in the set of genes they express [3]. Therefore 
new advances in molecular biology, like transcriptome sequencing, have given us the 
chance to describe cell identities through the expression profiles of thousands of genes [1]. 
This broad spectrum of cell identities varies gradually across tissues and also along time as 
an organism develops (Figure 1), which raises fundamental biological questions: How does 
this cell diversity arise? How do the different types of cells distribute and interact in a tissue, 
and ultimately, an organism? Although much has been learned, these fundamental 
questions still captivate us today [4], and they represent the main motivation behind lots of 
transcriptomic research. Gradual cell identity changes in time are accompanied by 
transcriptional changes (Figure 1)  [5], whereas gene expression spatial gradients can drive 
tissue formation [6]. 
This gives us a hint that transcriptomic profiles could be used as a proxy of cell identity, 
through which cell identity changes in space and time could be analysed. 
The following chapters of this dissertation describe how we analyzed the 
establishment of cell diversity and the spatial distribution of cell (sub)types across a 
tissue in specific systems, using single cell and spatial gene expression profiling 
approaches. The first chapter describes our research on the mouse olfactory system, 
by estimating the spatial distribution of different Olfactory Sensory Neuron (OSN) 
subtypes in the olfactory mucosa (OM) and the role it plays in smell. The second 
chapter concerns the investigation of changes in cell identity in a population of 
mouse embryonic stem cells treated with low doses of retinoic acid. 
In the next paragraphs, I’ll introduce the two biological systems I studied and the 
main technologies and computational tools I used. 
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Figure 1. Cell identity changes across space and time. Shapes indicate cell types and colours cell 
states. The combination of cell type and state together defines a cell identity. Cell identities change 
gradually along time and across space. Cell identity changes are often accompanied by changes in 
gene expression.  
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I. Adding spatial dimensions to transcriptional profiles

I.I Placing transcriptomes in the 3D space: The biological relevance of cell types’ 
spatial positions 

Spatial positions of cells allow us to start exploring how the identity of a cell is affected by the
types or states of surrounding cells. Cells in different tissue microenvironments express 
specific sets of genes [7]. As mentioned above, this can be seen during development, with 
the formation of gene expression gradients along the main embryonic body axes. In the 
Drosophila embryo, for example, ‘coordinate’ genes determine different embryonic regions 
along the anteroposterior axis. Briefly, a gene product is localised in a specific region of a 
freshly laid egg. This works as a spatial signal that results in the asymmetrical distribution of 
transcription factors, which are organized in concentration gradients. These gradients then 
define the spatial limits of expression of zygotic target genes [6], directing the activation of 
the correct developmental gene programs needed for the construction of specific organs. In 
such a way, cell fate decisions are based on spatial relationships between cells. Therefore, 
cell spatial relationships are key to understanding the properties of individual cells within 
multicellular organisms [7]. Moreover, many diseases are characterised by abnormal cell 
type composition of tissues, with some cell types in higher or lower proportions than usual, 
or some misplaced cell types [8], highlighting the medical importance of cell spatial locations.

Spatial variability of expression levels can also be observed within single organs, even 
among cells of the same type. An example of this lies in the Olfactory Mucosa. In this tissue, 
there are ~1100 different subtypes of Olfactory Sensory Neurons, whose transcriptional 
profile and identity depend on their spatial location [9], according to mechanisms and 
functions that are still unclear. While transcriptional profiling could help address these open 
questions, with the standard protocols the spatial information gets lost [10]. This triggered the 
development of new techniques that preserve spatial information while providing unbiased 
profiling of the entire transcriptome. These techniques go under the name of spatial 
transcriptomics, and we describe some of them in the next paragraphs. 

I.II Spatial Transcriptomics

The spatial transcriptomics techniques can be divided into subcategories as follows: i) 
Technologies based on microdissected gene expression profiling, consisting of isolating 
regions of interest and then performing RNA extraction and sequencing on them. One of the 
main advantages of these techniques is that they allow whole transcriptome profiling across 
large pieces of tissues. On the other hand, many of them can not reach single-cell resolution
[11] or they miss other features in order to reach it, such as spatial resolution within the region
of interest [12] or number of cells characterised [13,14]. ii) In Situ Hybridization (ISH) 
technologies, where a labelled probe must be hybridised to a complementary target of 
interest [15]. These methods allow the visualisation of RNA molecules directly in their original 
environment. However, targets must be known a priori and the computational demand of 
image processing increases with the number of targets. This puts a limit on the field of view 
and the number of targets visualised. iii) In Situ Sequencing (ISS) technologies, where RNA 
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sequencing is performed directly on the RNA content of a cell while it remains in its tissue 
context. This can achieve subcellular resolution in some cases [16], but these approaches are
also targeted, and the number of targets that can be analysed is limited by technical 
constraints as well; iv) in situ capturing technologies, capturing transcripts in situ and then 
performing sequencing ex situ. These would ideally allow unbiased whole transcriptome 
analysis; however, RNA capture efficiency gets compromised as resolution increases, 
detecting often under 10% of the genes [15].

In general, spatial transcriptomics techniques present a trade-off between number of 
captured genes and spatial resolution. Some techniques based on microdissected gene 
expression return transcriptome-wide profiles, a big advantage against in situ hybridization 
and some in situ sequencing technologies such as seqFISH [17], MERFISH [18] and 
STARmap [19], which, on the other side, produce higher resolution data, at subcellular levels 
in some cases [18]. Microdissected gene expression techniques with higher spatial resolution,
like Spatial Transcriptomics (1-10 cells) [20] or Slide-seq (1-3 cells) [21],  do not need specific 
gene targets, but they have low RNA capture efficiency, which keeps them from detecting 
many genes in most cases [20,21]. Low gene capture efficiency from these techniques creates 
the need for having scRNA-seq data to confirm the identities of the targeted cells as cell type
marker genes are often not captured. Interestingly, scRNA-seq data can also be used to 
deconvolve the signal coming from different cell types when single-cell resolution can not be 
reached, as in the case of TOMO-seq [15]. For example, TOMO-seq allows the estimation of 
3D gene expression profiles of whole tissues and although its spatial resolution is not as 
high as other techniques’, it allows localised whole transcriptome profiling across large tissue
pieces and even across some whole tissues [11,15].

I.III Studying cell identity changes in the olfactory mucosa 

As mentioned above, the sense of smell relies on a specific spatial distribution of OSN sub-
types in the olfactory mucosa. Animals’ ability to distinguish and interpret chemical signals in
their surroundings through the olfactory system is essential for their survival. Essential 
activities like finding food, mates or avoiding infection depend on the sense of smell being 
able to recognize millions of compounds in the environment. This discriminative process 
starts when, after a sniff, air enters the nasal cavity and reaches the OM, where odours 
activate Olfactory Receptors located in the cilia of OSNs. Each neuron expresses one Olfr 
gene randomly chosen from an extensive repertoire of about 1100 genes in mice, each of 
which encodes an Olfactory Receptor protein able to bind to a specific group of ligands. 
Thus, an OSN can detect a subset of odours depending on the Olfactory Receptor it 
expresses. Then, as a ligand binds an olfactory receptor in an OSN, a signalling cascade is 
activated. This makes the neuron fire, transporting information about ligand binding to the 
Olfactory Bulb through its axon, which is directed to a specific glomerulus according to its 
active Olfactory Receptor. Glomeruli associated with different Olfactory Receptors are 
consistently localised in specific areas of the Olfactory Bulb. Thus, each ligand will induce 
unique spatial patterns of glomerular activation, resulting in the release of neurotransmitters 
at specific locations in the Olfactory Bulb (Figure 2). Then localised glomerular activation 
triggers specific behavioural responses [22].
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Figure 2. Odour detection (Adapted from 23). Different odours are detected by OSNs in different zones
of the olfactory mucosa, which activates a signalling cascade. As a result, neurons fire, transporting 
information about odourant binding to specific glomeruli in the Olfactory Bulb according to the active 
Olfactory Receptors. In turn, glomerular activation causes specific behavioural responses. 
(OM=Olfactory Mucosa, OSNs=Olfactory Sensory Neurons, OB=Olfactory Bulb, OC=Olfactory Cortex,
M/T cells=Mitral/Tufted cells)

The first step in the generation of the specificity of these odour-triggered signals is the 
choice of the Olfactory Receptor (Olfr) gene to express by each Olfactory Sensory Neuron 
(OSN), which defines the compounds they will be able to detect, as well as a unique 
transcriptional programme [22]. The choice of the Olfr gene to activate is random, and the 
spatial location of the OSN determines the probability of activation of each Olfr gene. Thus, 
in this system, cell identity depends on spatial location. The regulation of the activation of 
Olfr genes is not completely understood. It has been proposed that epigenetic mechanisms 
regulate Olfrs’ activation probabilities in the different regions of the OM, resulting into groups 
of Olfrs with similar activation probabilities across OM regions [24]. 
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Olfactory receptors were identified as a group of hundreds of proteins that belong to a 
superfamily of receptors that transduce signals via interactions with G proteins. They are 
characterised by shared sequence motifs that are not present in the rest of the superfamily; 
however, this subfamily is still highly diverse, consistent with their hypothesised ability to 
bind structurally diverse ligands [25].  Olfrs are organised in clusters in the genome and it has
been observed that Olfrs in the same cluster, which are not more than 300kb away from 
each other, tend to be expressed in similar areas of the Olfactory Mucosa [26]. Olfrs’ 
expression is restricted to the OM, specifically to Olfactory Sensory Neurons located in this 
tissue [25,27]. 

Since Olfactory Receptors’ family was identified [27], the question of how OSNs achieve 
through them the high discrimination level of odourants observed in mammals was raised. 
As observations suggested that Olfrs were a large family, it was likely that just a small 
subset of OSNs expressed each Olfr. Moreover, it was already known that some genes, 
mainly Olfrs, had particular spatial expression patterns in the OM, which opened the next 
questions: How are the neuronal subsets expressing each Olfr defined? Could they have 
specific locations such that the olfactory system uses physical space within the OM to 
encode sensory information? This would imply the presence of a “topographic map” of 
odours in the OM. Then the olfactory system could employ these maps to discriminate 
among the numerous odorants. However, no complete map of gene expression in the OM 
existed, i.e., the spatial location in the OM of only a subset of OSN subtypes was known. 
This constitutes a strong motivation to apply spatial transcriptomics to explore OSN identity 
changes across the OM.

 
I.IV The chromatographic hypothesis in olfaction

 The link between OSNs’ spatial location and function -the anatomical logic of smell- 
is still a longstanding question. Could it be that the locations where different odourants are 
detected contribute to the high discriminatory power that characterizes mammalian 
olfaction? 
In an attempt to answer this question, electrophysiological observations of the detection of 
15 compounds in different regions of the OM were done [28]. The authors of this work 
confirmed that odorants caused different neuronal activity intensities at the medial and 
lateral regions of the OM; and that the activity intensity ratios between regions varied 
between odorants [28]. They also noticed that the elapsed time between the onset of OSN 
activity in the two regions varied depending on the odorant used. Therefore, they suggested 
that these observations could be explained by the rate at which different molecules migrate 
across the OM. Being this the case, the OM could separate different molecules by their 
ability to move across it. Thus we could think that this separation follows the same principle 
as chromatography, which also takes advantage of differential molecular migration caused 
by differential affinity of molecules to the medium through which they pass [28]. This 
hypothesis is known as “the chromatographic hypothesis” and remains to be tested as it is 
based on observations of a small group of odorants. 
Olfr genes were not known when the hypothesis was formulated. Thus, this odour perception
model has been kept independent from Olfrs’ spatial expression patterns. Later, it has been 
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speculated that the spatial distribution of OSNs sub-types and their associated Olfrs might 
reflect the spatial patterns of migration of the odourants they detect, which could improve 
odour discrimination [29]. 
In the first part of this dissertation, I provide a reconstruction of 3D gene expression 
patterns for thousands of genes, including most of Olfrs. As one application of this 
map, I use it to quantitatively test for the first time the chromatographic hypothesis of 
olfaction. 

I.V Spatial mapping of Olfr gene expression: a brief summary of previous studies

Olfr genes’ expression across the OM started being assessed via in situ hybridization 
experiments, which demonstrated that they follow topographically distinct expression 
patterns in this tissue, shaped as concentric rings which are bilaterally symmetrical in the 2 
nasal cavities [25]. As the thought that the diversity of Olfrs expression patterns could be 
related to the diversity of detected ligands became popular, attempts to profile and classify 
Olfrs’ spatial patterns started.

In order to represent the diversity of Olfr patterns in the OM and classify them, researchers 
divided the OM into discrete zones where different Olfrs are expressed. Four was the initial 
number of zones identified, as the expression area of each of 31 Olfrs profiled back then 
covered about one-quarter of the total surface area of the OM [25]. Then, the finding of 
overlaps between Olfrs spatial expression patterns triggered the idea of using a continuous 
index to classify patterns of Olfr expression. Thus, indexes were assigned to Olfrs according 
to fraction of OSNs expressing them in each of the previously defined four contiguous zones 
where they can be found  [9]. For example, an Olfr gene with an index of 1.5 signifies that 
roughly one-half of the OSNs expressing it is estimated to be in zone 1 and the other half in 
zone 2  [9]. While the definition of indexes allowed a more precise classification of the Olfr 
expression patterns, they were affected by at least two major limitations: first, the initial 
definition of the zones and their number was chosen in a rather arbitrary way; second, the 
analysis was based on the spatial expression profiles of less than 10% of  the existing Olfrs. 

More recently, to profile the spatial expression of more Olfrs, Tan and Xie performed RNA-
seq on a single sample of OM sectioned in 12 pieces along the dorso-medial axis [26]. 
Despite including information about thousands of genes, this dataset generated a low-
resolution spatial map of gene expression along a single axis, assuming that the 3D 
expression patterns of Olfrs are entirely determined by their patterns along the dorso-medial 
axis. Therefore this data would also not allow an unsupervised definition of zones. 
Nevertheless, this experiment allowed assigning a spatial index to 1033 Olfrs based on the 
similarity between their patterns and the patterns of Olfrs indexed by Miyamichi et al. [9]. 
However, Olfrs described by Miyamichi et. al follow all ring shaped patterns. Hence, genes 
whose patterns resulted inconsistent with those profiled by Miyamichi et al., like Olfr459 [9],  
could not get an index. 

Another attempt to better characterise Olfr genes’ expression patterns was done by 
Mombaerts et. al. in 2019 [30]. They used three colour fluorescence in situ hybridization, 
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semi-automated image segmentation and 3D reconstruction to map 68 Olfrs in 3D and OM-
wide. They qualitatively discerned 9 overlapping zones of expression where these Olfrs were
expressed. However, they were still looking at a very small subset of Olfr genes. Thus the 
main limitation until now in order to get to the description of the whole spectrum of Olfr 
expression and, thus, of OSN identities has been the small number of characterized genes 
and/or the limited spatial resolution achieved [9,26,30]. 
One of the main goals of my work described in the first chapter of this thesis was to 
profile the spatial expression pattern of all genes within the mouse OM in 3D by using 
spatial transcriptomics.   

I.VI Creating the Olfactory Mucosa 3D transcriptomic atlas  
 

For our project, we chose a spatial transcriptomic technique that would allow us to profile as 
many genes as possible in the 3D space, even if not at the single-cell level. Thus, our 
collaborators from the Saraiva group at Sidra Medicine (Doha, Qatar) carried out the OM 
spatial transcriptomic profiling via TOMO-seq [11], a technique which is based on performing 
RNA-seq on cryosections of a tissue of interest cut along the main body axes (Figure 3). The
transcriptomic profiling of these cryosections gives information on the expression patterns of 
genes along single spatial axes. These uni-dimensional patterns can then be 
computationally combined to yield a 3D transcriptional profile of the tissue, by using 
algorithms such as the Iterative Proportional Fitting [15]. 

Figure 3. Schematic illustration of the TOMO-seq protocol applied to the olfactory mucosa. Tissues 
were cryosectioned along the three main body axes; RNA from each slice of tissue was extracted and
sequenced.

This transcriptome-wide approach reaches an RNA capture efficiency comparable to bulk 
RNA-seq, giving us the possibility to notably increase the number of spatially characterised 
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Olfrs  [31]. Furthermore, a 3D characterization of gene expression in the OM would serve as 
a starting point to describe biological processes taking place in the OM, like toxin detection, 
from a spatial perspective; and starting from these data, a more unbiased, quantitative 
definition of Olfrs zones can be achieved (see section below). 
Overall, our work resulted in the first 3D transcriptome atlas of the Olfactory Mucosa, 
as described in the first chapter of this dissertation. And to facilitate the access of 
this resource to the scientific community, I built a web app where the data can be 
downloaded and explored in 3D, available from the website 
http://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose .

I.VII An unbiased and quantitative definition of olfactory zones 

With TOMO-seq, we could detect and robustly profile the spatial patterns of ~50% 
(689) of  Olfrs. Our next goal was to use them for an unbiased definition of Olfrs’ zones of 
expression, grouping Olfr genes according to spatial expression pattern similarity. As 
mentioned before, Olfrs’ expression patterns overlap in space, following a continuous 
distribution across the OM; such continuous distribution is an aspect that should be taken 
into account when defining and describing the zones.

Frequently, clustering algorithms are applied to gene expression data to find genes whose 
expression values change in a similar way across different samples, but most of these 
algorithms [32–34] divide data into discrete clusters, with each element assigned to a single 
cluster. 
With our data, we decided to use Topic Modelling, an approach originally designed for text 
mining. In the original context, this method receives as input a set of documents with the aim
to describe them based on the topics they contain. In order to achieve this, the contained 
topics must be inferred. Then, the distributions of word frequencies representing the different
topics, as well as the distributions of topic proportions describing each document are 
obtained as output [35]. This is particularly convenient for us to represent the fact that Olfr 
genes can be expressed in more than one zone. So with the goal to describe Olfrs spatial 
expression trends in terms of proportions of expression in different zones, we used the 
reconstructed 3D expression patterns of Olfrs as inputs for a Topic Modelling algorithm. As 
output, we obtained an unbiased definition of the zones (defined as probability distributions 
over the spatial coordinates) and a decomposition of Olfr expression patterns in terms of the 
zones (through the “degrees of belonging”, representing a quantification of how much a 
given expression pattern fits in each zone).

Based on the behavior of the likelihood as a function of the number of topics, we estimated 
the existence of at least five Olfr expression zones. Then, each Olfr spatial pattern could be 
identified by five numbers representing its degrees of belonging to the five zones. The 
observation of continuous overlap between contiguous Olfr genes’ expression areas brought
the representation of the spatial expression pattern of the 82 profiled Olfrs through a 
continuous index [9]. As we extended the fraction of spatially characterized Olfrs repertoire, 
we observed that Olfrs expression patterns could be described by only a subset of all 
possible combinations of zones. In particular, we showed that each Olfrs expression pattern 
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could be represented by a single number. To show this, we performed dimensionality 
reduction on our Olfrs spatial expression patterns represented by the degrees of belonging 
to the five zones we inferred using diffusion maps [36]. 
Diffusion maps have recently gained popularity among dimensionality reduction techniques 
due to their accuracy at modelling continuous trajectories in biological processes such as the
gradual transcriptional changes cells undergo during differentiation [36]. This technique 
models the state transitions involved in biological processes via diffusion dynamics. In this 
model, elements can randomly diffuse from their position, which represents a state, through 
an isotropic Gaussian wave function. So the transition probability from state x to state y is 
defined by the interference of the two wave functions Y(x) and Y(y). In this way, states can 
be ordered according to transition probabilities and visualised in a manifold defined by 
eigenvectors of the transition probability matrix. Given its ability to order states, this 
dimensionality reduction method has the advantage of preserving the nonlinear structure of 
data as a continuum [36]. This makes it optimal for representing nonlinear continuous 
processes in comparison with other dimensionality reduction techniques, like principal 
component analysis (PCA) or t - distributed Stochastic Neighbour Embedding (tSNE), which 
are based on linear or clustering methods [37,38]. 
When applied to Olfrs spatial expression trends, the diffusion map showed a continuous 
distribution of Olfrs along a uni-dimensional curve, which hinted to the possibility of 
simplifying their representation to a single coordinate tracking the position of each Olfr along 
this curve. We defined this coordinate, which we named “3D index”, via a method called 
diffusion pseudo-time (DPT) [39]. DPT is a random-walk-based distance that is computed 
based on Euclidean distances in the 'diffusion map space'. So, this technique orders Olfrs 
according to the similarities of their degrees of belonging using diffusion-like random walks 
[39 ]. While the 3D index correlated well with the previously defined expression index [9], its 
definition is fully quantitative and allows the description of the spatial patterns of a much 
larger set of Olfrs. 

I.VIII A machine learning algorithm to map the spatial expression of the entire 
repertoire of Olfr genes

As mentioned above, our TOMO-seq experiment allowed us to characterise the 3D spatial 
expression pattern of 689 Olfrs, which corresponds to approximately half of the mouse Olfr 
repertoire. The rest of the Olfr genes were either too lowly expressed or not detected at all in
our data. Given that previous studies have demonstrated that machine learning models can 
estimate gene expression values using genomic sequences and features (eg, k-mer 
frequencies, GC content…), we decided to try such approaches to get some insight about 
the expression of the Olfr genes we could not detect. In previous studies, machine learning 
models predicting gene expression values were trained on features such as the separation 
between the coding and the regulatory sequence of a gene, codon frequency and other 
important features for gene expression regulation [ 40,41]. For Olfr genes, in addition to their 
genomic features (e.g., position of genomic cluster, gene length, etc), we also know the 
positions of many loci acting as enhancers, which are called Greek islands [42,43]. So, we 
decided to verify whether the genomic features of Olfrs and those of their known enhancers 
could predict Olfrs zonal expression via machine learning algorithms. 
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Machine learning models can be trained to predict gene expression based on diverse 
features. Deep learning architecturesdecode information directly from genomic sequences, 
which shallow models can not do. However they lack interpretability and addressing 
questions about the importance of specific features takes a full model training process 
without the tested feature(s).  [41]. On the other hand, when predictions are made using a few
non-sequence features, standard machine learning models perform well and the importance 
of specific features is retrievable [41]. 
In our case we had around ten non-sequence features to predict on, so we decided to try a 
standard machine learning  approach, which would also allow us to ask questions about the 
importance of the features in the predictions. Random forest models keep a feature in the 
model if its absence significantly affects the prediction, meaning that feature importance is 
intrinsically calculated by the model. This was a big advantage for us, given that it allowed us
to compare the importance of different genomic features for spatial expression patterns. 
By combining our TOMO-seq data with machine learning methods, using the 689 Olfrs
we profiled as a training dataset, we were able to spatially characterise nearly all Olfr 
genes (N= 1378, ~98%) in the mouse.

I.IX Deconvolving cell types through single-cell RNA sequencing and TOMO-seq data 
integration

TOMO-seq does not achieve single-cell resolution. Thus, conclusions about the 
location of different cell types in the OM could not be made via this dataset. Therefore we 
thought of combining our TOMO-seq data with previously published single-cell RNA-seq 
data to estimate a 3D map of cell type composition of the OM.  

Single-cell RNA sequencing (scRNA-seq) provides gene expression profiles of individual 
cells and allows a precise transcriptomic characterization of cell types [1], even those that are
rare [44]. On the other hand, as tissues must be dissociated to collect single cells for scRNA-
seq, this kind of data lacks information about spatial relationships among cells [10]. 

The idea to integrate data from different sequencing methods through common features has 
become popular as these combined datasets have revealed novel insights that would not be 
found using one single method [45]. In this case, in order to find how different cell types were 
distributed across the OM, we needed to get reference transcriptomic profiles for different 
cell types from scRNA-seq data. Then we would use them to deconvolve the transcriptomic 
signal from every slice of tissue obtained with TOMO-seq to estimate the cell-type 
composition. 

Several Machine learning methods have been recently published to deconvolve bulk 
transcriptomic profiles using the transcriptomic profiles of single cell types derived, eg, from 
scRNA-seq data. One of the first steps for cell type deconvolution is the choice of the subset 
of features (i.e., genes) to use in the algorithm. This can be done in supervised and 
unsupervised ways. Supervised approaches rely on predefined signature matrices 
containing expression data of known marker genes of well-defined cell types. scRNA-seq 
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data contains data from many more genes, which has opened the possibility of having better
descriptions of specific cell types and even discovering new ones [7]. So in order to make the
most of scRNA-seq data to define cell type-specific signatures, we decided to use an 
unsupervised approach. 
Different unsupervised feature selection techniques have been used for this task. The most 
common ones select genes according to a single criterion, such as highest expression, 
coefficient of variation or q values from t-tests comparing different cell types [46,47]. Cell type 
deconvolution using cell type transcriptomic profiles obtained using such gene selection 
techniques has shown consistency with previous knowledge on cell types location [48]; 
however, the addition of known marker genes to those cell type profiles has improved the 
deconvolution results [49], pointing to the possibility of improving feature selection strategies. 
Moreover, the gene selection methods mentioned before would sometimes select cell type 
unspecific genes [50]. 
Due to these issues, we decided to adopt a gene selection strategy called AutogeneS that 
minimises the correlation among cell type profiles and maximises the euclidean distance 
among them [50]. This unsupervised approach has been tried on different datasets where the
ground truth is known, performing almost as well as supervised approaches based on known
marker genes [50].

  
Once the feature selection is done, the deconvolution algorithm can be run on the data. 
Typically, deconvolution algorithms assume that gene expression signals from a cell type in 
a mixed sample are proportional to the fraction of this cell type in the mixture [50,51]. This, in 
turn, means that linear models could describe mixed transcriptional profiles in terms of 
fractions of gene expression signals coming from different cell types’ transcriptional profiles. 
Different types of models have been used for this purpose, like Dampened Weighted Least 
Squares (DWLS), Non Negative Least Squares (NNLS), and diverse penalised linear 
regression models like Support Vector Machines [50,52]. These approaches have shown 
consistent performance when cell type profiles are based on the same list of genes [48]. 

In the first chapter of this dissertation, we integrated scRNA-seq data from [53] with 
our TOMO-seq data and estimated the spatial distribution of different cell types 
across the OM through cell type deconvolution analysis. Specifically, we built cell 
type profiles using scRNA-seq data and used them to generate a model that describes
gene expression from TOMO-seq data in terms of proportions of RNA coming from 
different cell types. 
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II. Studying cell identity transitions as a function of time with single-cell RNA-seq time
course experiments

II.I Cellular plasticity in the early embryo

Single-cell transcriptomics has been extensively applied in developmental biology. In 
particular, adding the time dimension to single-cell transcriptomic data has allowed the study
of cell state trajectories that generate the different cell types [54,55] and the loss of cellular 
plasticity involved in this process [55]. 

In mammals, only cells in the earliest embryonic pre-implantation stages can autonomously 
form a whole organism and therefore give rise to any cell type. This property is called 
totipotency and it is lost as development progresses and cellular plasticity is gradually 
reduced until cells reach a differentiated state. In mice, the totipotent window of embryos is 
limited to the zygote and the 2-cell stage embryo (Figure 4). After this window, cells commit 
to two different fates: the embryonic cell lineage (inner cell mass), marked by the presence 
of OCT4, SOX2 and NANOG, and the GATA4/6+ or CDX2+ extraembryonic cell lineages 
[56 ]. Cells from the inner cell mass can give origin to any cell in the embryonic lineage, but 
not in the extraembryonic lineages, thus, these cells are not totipotent anymore but 
pluripotent [57].

Embryonic Stem Cells (ESCs), derived from the inner cell mass, can stay pluripotent in 
culture; so they have great potential in regenerative medicine. Moreover, pluripotent stem 
cells have been successfully induced by manipulating the transcriptional and epigenetic 
networks of various differentiated cell types [58,59]. The possibility of pluripotency induction 
and maintenance in culture has facilitated the study of cell state trajectories from the 
pluripotent state to differentiated states. However, totipotency and the factors that confer the 
ability to give rise to cells in both embryonic and extraembryonic lineages remained poorly 
understood. 

II.II Two cell-like cells: an in vitro model of cellular totipotency

In ESC cultures, the presence of rare groups of cells resembling the blastomeres of 2-cell 
stage embryos has been observed [56]. These cells, referred to as ‘2-cell-like-cells’ (2CLCs), 
share many features with the two cell stage embryos such as the expression of genes like 
Zscan4, and retrotransposons from the MERVL family. Furthermore, they lack pluripotency 
proteins OCT4, SOX2, and NANOG, and have the capacity to contribute to extraembryonic 
tissues [56]. 2CLCs are considered totipotent-like cells, and a powerful model to study 
totipotency-related molecular features. Therefore, identifying conditions that can induce and 
maintain 2CLCs in culture can facilitate their isolation and transcriptional profiling. This, in 
turn, can help us uncover key factors involved in the onset of totipotency and the underlying 
gene regulatory networks [60]. 
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In the second chapter of this thesis, I show how we found that a treatment with low 
doses of retinoic acid can promote the transition of mouse ESC (mESC) into 2CLCs. 
In particular, I analysed scRNA-seq datasets of mESC at 0 hours, 2 hours, 12 hours 
and 48 hours after retinoic acid treatment, which led to the characterization of the 
transcriptional dynamics that accompanies the transition of mESC into 2CLC or 
precursor cells. 

Figure 4. Schematics of totipotency-pluripotency transition in mouse embryos. 2-cell-like-cells arise 
spontaneously in mouse pluripotent stem cell cultures.  ( adapted from https://www.helmholtz-
munich.de/ies/news-and-events/news/news/article/48544/index.html )

Overall, the two chapters presented in this cumulative dissertation highlight 
the importance of integrating space and time in gene expression data analysis,  which
allows investigating how cell identities are distributed across tissues and how they 
can dynamically vary following a perturbation.  Transcriptional features associated with 
specific cell types have turned essential for cell type description. And looking at 
transcriptional changes related to cell identity dynamics in time and space could be crucial 
for addressing further unsolved questions, like the formation and distribution of different cell 
types in biological contexts as diverse as embryonic development and olfaction.
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Chapter I. A 3D transcriptomics atlas of the mouse nose sheds light on the 
anatomical logic of smell
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SUMMARY

The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic
remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be inde-
pendent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a
genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially ex-
pressed in space reveal that bothOlfrs and non-Olfrs are distributed in a continuous and overlapping fashion
over at least five broad zones in theOM. The spatial locations ofOlfrs correlatewith themucus solubility of the
odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource
resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underly-
ing Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral
representation of smell.

INTRODUCTION

The functional logic underlying the topographic organization of

primary receptor neurons and their receptive fields is well known

for all sensory systems but olfaction (Kandel et al., 2013). The

mammalian nose is constantly flooded with odorant cocktails.

Powered by a sniff, air enters the nasal cavity until it reaches

the olfactory mucosa (OM). There, myriad odorants activate

odorant receptors (Olfrs) present in the cilia of olfactory sensory

neurons (OSNs), triggering a cascade of events that culminate in

the brain and result in odor perception (Buck and Axel, 1991;

Kandel et al., 2013). Most mouse mature OSNs express a single

allele of one out of �1,100 Olfr genes (Olfrs) (Chess et al., 1994;

Hanchate et al., 2015; Malnic et al., 1999; Saraiva et al., 2015b).

Olfrs employ a combinatorial strategy to detect odorants, which

maximizes their detection capacity (Malnic et al., 1999; Nara

et al., 2011). OSNs expressing the same Olfr share similar

odorant response profiles (Malnic et al., 1999; Nara et al.,

2011) and drive their axons to the same glomeruli in the olfactory

bulb (Mombaerts et al., 1996; Ressler et al., 1994; Vassar et al.,

1994). Thus, Olfrs define functional units in the olfactory system

and function as genetic markers to discriminate between

different mature OSN subtypes (Ibarra-Soria et al., 2017; Saraiva

et al., 2015b).

Another remarkable feature of the OSN subtypes is their

spatial distribution in the OM. Early studies postulated that

OSNs expressing different Olfrs are spatially segregated into

four broad areas within the OM, called ‘‘zones,’’ and which

define hemicylindrical rings with different radii (Ressler et al.,

1993; Vassar et al., 1993). Subsequent studies identified Olfrs

expressed across multiple zones, making clear that a division

in four discrete zones might not accurately reflect the system,

and a continuous numerical index representing the pattern of

expression of each Olfr along the zones was implemented
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(Miyamichi et al., 2005; Strotmann et al., 1992). More recently, a

study reconstructed Olfr expression patterns in three dimen-

sions (3D) and qualitatively classified the expression areas of

68 Olfrs in nine overlapping zones (Zapiec and Mombaerts,

2020). However, all these studies sampled a fraction (�10%) of

the total intact olfactory receptor gene repertoire and, most

importantly, lack a quantitative and unbiased definition of zones

or indices. We do not currently understand the full complexity of

the OM and lack an unbiased and quantitative definition of

zones. In effect, the exact number of zones, their anatomical

boundaries, molecular identity, and functional relevance are

yet to be determined.

One hypothesis is that the topographic distribution of Olfr and

OSN subtypes evolved because it plays a key role in the process

ofOlfrchoice inmatureOSNsand/or inOSNaxonguidance (Bash-

kirova et al., 2020; Coppola et al., 2013). An alternative hypothesis

is that the spatial organization of Olfr/OSN subtypes is tuned to

maximize the detection and discrimination of odorants in the pe-

ripheral olfactory system (Ressler et al., 1993). Interestingly, the

receptive fields of mouse OSNs vary with their spatial location

(Ma and Shepherd, 2000), which in some cases correlates with

the patterns of odorant sorption in the mouse OM—this associa-

tionwasproposedas the ‘‘chromatographichypothesis’’ decades

before thediscovery of theOlfrs (Mozell, 1966) and later rebranded

as the ‘‘sorption hypothesis’’ in olfaction (Schoenfeld andCleland,

2006; Scott et al., 2014).While some studies lend support to these

hypotheses (reviewed in Secundo et al. 2014), others question

their validity (Abaffy and Defazio, 2011; Coppola et al., 2019).

Thus, the logic underlying the representationof smell in theperiph-

eral olfactory system still remains unknown, and it is subject of

great controversy (Kurian et al., 2021; Secundo et al., 2014).

Spatial transcriptomics, which combines spatial information

with high-throughput gene expression profiling, expanded our

knowledge of complex tissues, organs, or even entire organisms

(Achim et al., 2015; Asp et al., 2019, 2020; Junker et al., 2014;

Peng et al., 2016). In this study, we employed a spatial transcrip-

tomics approach to create a 3D map of gene expression of the

mouse nose, and we combined it with single-cell RNA

sequencing (RNA-seq), machine learning, and chemoinfor-

matics to resolve its molecular architecture and shed light onto

the anatomical logic of smell.

RESULTS

A high-resolution spatial transcriptomic map of the
mouse olfactory mucosa
We adapted the RNA-seq tomography (Tomo-seq) method

(Junker et al., 2014) to create a spatially resolved genome-wide

transcriptional atlas of the mouse nose. We obtained cryosec-

tions (35 mm) collected along the dorsal-ventral (DV), anterior-

posterior (AP), and lateral-medial-lateral (LML) axes (n = 3 per

axis) of the OM (Figure 1A) and performed RNA-seq on individual

cryosections (see STAR Methods). After quality control (Figures

S1A–S1D; Table S1; STARMethods), we computationally refined

the alignment of the cryosection along each axis, and we

observed a high correlation between biological replicates (Fig-

ure 1B). Hence,wecombined the three replicates into a single se-

ries of spatial data, including 54, 60, and 56 positions along the

DV, AP, and LML axis, respectively (Figure 1C; STAR Methods).

On average, we detected >18,000 genes per axis, representing

a total of 19,249 genes for all axes combined (Figure 1D). Molec-

ular markers for all canonical cell types known to populate the

Figure 1. Application of TOMO-seq to mouse OM

(A) Experimental design. TOMO-seq was performed on nine tissue samples, from which three were sliced along the dorsal-ventral axis (DV), three along the

anterior-posterior axis (AP), and three along the lateral-medial-lateral axis (LML).

(B) Boxplots showing the distributions of Spearman’s correlation coefficients (rho) between replicates in each axis.

(C) Heatmaps showing Spearman’s correlation between gene expression patterns at different positions along the three axes.

(D) Number of detected genes along each axis separately or across thewhole dataset. Geneswere considered as detected when they had at least one normalized

count in at least 10% of the samples from one axis.

(E) Heatmaps of log10 normalized expression (after combining the three replicates per axis) of OM canonical markers along the three axes (GBCs, globose basal

cells; HBCs, horizontal basal cells; iOSNs, immature olfactory sensory neurons; mOSNs, mature olfactory sensory neurons; RESs, respiratory epithelium cells;

RPM, reads per million; SUSs, sustentacular cells).

(F) Normalized expression of canonical OM spatial marker genes along the three axes. Red line shows fits with local polynomial models.
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mouseOMwere detected in all axes (Figure 1E) and expressed at

the expected levels (Saraiva et al., 2015b).

Next, we verified the presence of a spatial signal with the Mor-

an’s I (Schmal et al., 2017; Figure S1E), whose value is signifi-

cantly higher than 0 for the data along all axes (p < 2 3 10�16

for all axes), indicating that nearby sections have more similar

patterns of gene expression than expected by chance. Given

the left/right symmetry along the LML axis (Figure 1C), the data

were centered and averaged on the two sides—henceforth, the

LML axis will be presented and referred to as the lateral-medial

(LM) axis (see STAR Methods). We could reproduce the expres-

sion patterns for knownOMspatial markers, including the dorso-

medialmarkersAcsm4 andNqo1 (Gussing andBohm, 2004;Oka

et al., 2003) and the ventrolateral markers Ncam2 and Reg3g

(Alenius and Bohm, 1997; Yu et al., 2005; Figures 1F and S1F).

Together, these results show that RNA tomography is a sensi-

tive and reliable method to examine gene expression patterns in

the mouse OM.

Spatial differential gene expression analysis identifies
cell-type-specific expression patterns and functional
hotspots in the OM
In the last 3 decades, multiple genes with spatially segregated

expression patterns across the OM have been identified. Most

of these genes are expressed in mature OSNs and encode che-

mosensory receptors, transcription factors, adhesion mole-

cules, andmanymolecules involved in the downstream signaling

cascade of receptor activation (Cho et al., 2007; Cloutier et al.,

2002; Fulle et al., 1995; Greer et al., 2016; Gussing and Bohm,

2004; Juilfs et al., 1997; Liberles and Buck, 2006; Miyamichi

et al., 2005; Norlin et al., 2001; Oka et al., 2003; Pacifico et al.,

2012; Saraiva et al., 2015b; Tietjen et al., 2003, 2005; Vassar

et al., 1993; Wang et al., 2004; Yoshihara et al., 1997; Yu et al.,

2005; Zapiec and Mombaerts, 2020). A smaller number of

zonally expressed genes (e.g., metabolizing enzymes, chemo-

kines, and transcription factors) were found to be expressed in

sustentacular cells, globose basal cells, olfactory ensheathing

cells, Bowman’s gland cells, and respiratory epithelial cells

(Cloutier et al., 2002; Duggan et al., 2008; Heron et al., 2013;

Juilfs et al., 1997; Miyawaki et al., 1996; Norlin et al., 2001; Pe-

luso et al., 2012; Whitby-Logan et al., 2004; Yu et al., 2005).

Despite this progress, our knowledge on what genes display

true zonal expression patterns and what cell types they are pri-

marily expressed in is still very limited.

To identify axis-specific differentially expressed genes (DEGs)

(hereafter referred to as spatial DEGs), we first filtered out lowly

expressed genes, then binarized the expression levels at each

position according to whether they were higher or lower than

their median expression, and applied the Ljung-Box test to the

autocorrelation function calculated on the binarized expression

values (Figure S2A; STARMethods). After correcting for multiple

testing, we obtained a total of 12,303 spatial DEGs for the three

axes combined (false discovery rate [FDR] < 0.01; Figure 2A)—

the AP axis showed the highest number of spatial DEGs

(10,855), followed by the DV axis (3,658) and the LM (1,318).

Next, we added cell-type resolution to the spatial axes by

combining our data with a single-cell RNA-seq (scRNA-seq) da-

taset from 13 cell types present in the mouse OM (Fletcher et al.,

2017). We cataloged spatial DEGs based on their expression in

mature OSNs (mOSNs) versus the 12 other cell types (non-

mOSNs; Figures 2B and 2C; Table S2). This led to the identifica-

tion of 456 spatial DEGs expressed exclusively in non-mOSNs,

which are associated with gene ontology (GO) terms, such as

transcription factors, norepinephrine metabolism, toxin meta-

bolism, bone development, regulation of cell migration, T cell

activation, and others (Table S2). Some genes are expressed

across many cell types, but others are specific to one cell type

(Figure 2C; Table S2). As expected, some of these genes are

cell-specific markers with known spatial expression patterns,

such as the sustentacular cells and Bowman’s glands markers

Cyp2g1 and Gstm2 (Yu et al., 2005), the neural progenitor cell

markers Eya2 and Hes6 (Tietjen et al., 2003), and the basal lam-

ina and olfactory ensheathing cell markers Aldh1a7 and Aldh3a1

(Norlin et al., 2001; Table S2). We also identified spatial DEGs

along a single axis or multiple axes and specific to one or few

cell types (Figures S2B and S2C). For example, the ribosomal

protein Rps21 plays a key role in ribosome biogenesis, cell

growth, and death (Wang et al., 2020) and is primarily expressed

in horizontal basal cells (HBCs), consistent with their role in the

maintenance and regeneration of the OM (Leung et al., 2007).

Another example is the extracellular proteinase inhibitor

Wfdc18, which induces the immune system and apoptosis

(Jung et al., 2004) and is expressed in microvillous cells type 1

(MVC1s), consistent with their role in immune responses to viral

infection (Baxter et al., 2020). Two more examples are the fibro-

blast growth factor Fgf20 in immature sustentacular cells (iSCs)

and the adapter protein Dab2 in mature sustentacular cells

(mSCs) (Figures S2B and S2C). Fgf20 is expressed in several

cell types, regulates the horizontal growth of the olfactory turbi-

nates, and is preferentially expressed in the lateral OM (Yang

et al., 2018), consistent with our data. Dab2 regulates mecha-

nisms of tissue formation, modulates immune responses, and

participates in the absorption of proteins (Finkielstein and Capel-

luto, 2016; Park et al., 2019), consistent with the known mainte-

nance and support roles of mSCs in the OM (Brann et al., 2020).

A GO enrichment analysis on the axis-specific DEGs for non-

mOSNs genes revealed a very wide variety of biological pro-

cesses and molecular functions. Some of the notable terms

identified were water and fluid transport (e.g., Ctfr and Aqp3),

transcription factors (e.g., Hes1 and Dlx5), oxidation-reduction

processes (e.g., Scd2 andCyp2f2), microtubule cytoskeleton or-

ganization involved in mitosis (e.g., Stil and Aurkb), cell cycle

(e.g., Mcm3 and Mcm4), cell division (e.g., Kif11 and Cdca3),

negative regulation of apoptosis (e.g., Dab2 and Scg2), sensory

perception of chemical stimulus (e.g., Olfr870 and Gnas), and

cellular processes (e.g.,Mal and Pthlh), among many others (Ta-

ble S2).

The identification of thousands of spatial DEGs prompted us

to examine their distribution patterns along each axis and the pu-

tative functions associated with such spatial clusters of gene

expression.We started by using uniformmanifold approximation

and projection (UMAP) (Becht et al., 2018) and hierarchical clus-

tering to visualize and cluster all spatial DEGs along the three

axes. This analysis uncovered nine patterns of expression in

theDV andAP axes each and five patterns in the LM axis (Figures

2D and 2E). These patterns include variations of four major
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shapes: monotonically increasing (/), monotonically decreasing

(\), U-shape (W), and inverted U-shape (X) (Figure 2E). The latter

two patterns present clear maximum and minimum at different

positions along the axis—for example, the brown, green, pink,

magenta, and black AP clusters show a similar inverted U-shape

pattern, but their maximum moves along the axis (Figure 2E). As

expected, the dorsomedial markers Acsm4 and Nqo1 belong to

the turquoise clusters in both the DV and LM axes, while the

ventrolateral marker Reg3g belongs to the blue cluster from

the DV axis (Figure 1F; Table S3), mimicking their respective

expression pattern in the mouse OM.

The total number of genes per cluster had a median value of

236 but varied greatly between clusters—ranging from 57 in the

green LM cluster to 8,551 in the turquoise AP cluster (Figure 2D;

Table S3). GO enrichment analyses on the spatial DEGs yielded

enriched terms for 14 of the 23 spatial clusters (Table S3). For

example, the turquoise AP cluster displaying a monotonically

increasing pattern (Figure 2E) yielded GO terms associated with

the molecular machinery of mOSNs—such as axonal transporta-

tion, RNA processing, ribosomal regulation, and regulation of his-

tone deacetylation (Table S3). Interestingly, the brownDV cluster,

which displays a monotonically decreasing expression pattern

(Figure 2E), had similar GO term enrichment (Table S3). In agree-

ment with these results, we found that most known OSN activity-

Figure 2. Genes with non-random spatial

patterns across different cell types in the

OM

(A) Venn diagram showing the numbers of spatial

differentially expressed genes (DEGs) along each

axis.

(B) Bar plot showing the log10 number of spatial

DEGs that are mOSN specific (‘‘mOSNs’’) or that

are detected only in cell types other than mOSNs

(‘‘other’’).

(C) Heatmap of log10mean expression per cell type

of genes that are not expressed in mOSNs but only

in other OM cell types (INPs, immediate neuronal

precursors; iSCs, immature sustentacular cells;

mSCs, mature sustentacular cells; MVCs, micro-

villous cells; mSCs, mature sustentacular cells).

(D) UMAP plots of spatial DEGs along the three

axes (n = 3 per axis). Each gene is colored ac-

cording to the cluster it belongs to.

(E) Normalized average expression patterns of

spatial DEGs clusters along the three axes.

(F) Heatmap showing the log2 enrichment over the

random case for the intersection between lists of

genes belonging to different clusters (indicated by

colored circles) across pairs of axes.

dependentmarkers (Wang et al., 2017) are

spatial DEGs belonging to the AP tur-

quoise and brown clusters, which contain

genes with expression peaks in the poste-

rior region (Figure S2E; Table S3). We also

observed a similar trend in the DV axis,

with many of these markers being more

highly expressed in the dorsal region

(Figure S2E).

The results above show that OSNactivity is enriched in the dor-

soposterior region of the OM, which could be due to an enrich-

ment ofOSNs in that region. To test this hypothesis, we estimated

the abundance and spatial variability of OSNs and five additional

major cell types (HBCs, globose basal cells [GBCs], SCs, MVCs,

and immediate neuronal precursors [INPs]) in each section

through a cell deconvolution analysis (see STAR Methods). We

observed statistically significant changes in the abundance of

OSNs,which ispredicted tobehigher in thedorsoposterior region

of the OM, as previously suggested (Nickell et al., 2012; Vedin

et al., 2009). Conversely, other cell types like HBCs are predicted

to have an opposite pattern, as they tend to be more abundant in

the anteroventral region (Figure S2F; Table S2).

Next, we extended our GO analysis to the remaining spatial

clusters and found additional terms enriched or shared between

several clusters among the three axes. For example, GO terms

enriched in the dorsomedial region (turquoise DV, pink AP, and

LM green clusters) include detoxification of several metabolites

and multiple metabolic and catabolic processes, suggesting

that this region is involved in the OM detoxification (Table S3).

Another example is the enrichment in terms related to the im-

mune system—such as defense response and humoral immune

response—in the anteromedial section along the AP axis (yellow,

black, and magenta AP and turquoise LM clusters), which
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strongly hints at a role of this area in defending OM from patho-

genic invaders (Table S3). The anteroventral and posteroventral

regions (blue DV and blue AP clusters) are enriched in terms

related to the cellular and anatomical organization (e.g., extracel-

lular matrix organization and regulation of cell communication)

and bone and cartilage development (e.g., ossification and bio-

mineral tissue development), suggesting these locations are hot-

spots for the development and regulation of the OM structure.

Finally, the ventral portion of the DV (red DV cluster) is associated

with terms related to cilia movement and function (e.g., regula-

tion of cilium movement and microtubule-based movement),

consistent with both the location and functions of the respiratory

epithelium (Yu et al., 2005).

Next, we further explored the relationships between the genes

populating each cluster. We found that ventral genes (blue DV

cluster) tend to reach a peak in expression in the anterior area

of the OM (yellow AP cluster) more often than expected by

chance (Figure 2F). We also observed that medial genes (tur-

quoise LM cluster) are more highly expressed in the dorsal

(magenta DV cluster) and anterior regions (black, yellow, and

magenta AP cluster), while genes peaking in the lateral region

(brown LM cluster) tend to be ventral (red DV cluster; Figure 2F).

These conclusions hold, even when we exclude Olfrs from the

analysis (Figure S2D).

These associations between the clusters of spatial DEGs

along different axes suggest that the presence of complex 3D

expression patterns in OM is not restricted to either Olfrs or

OSNs. Moreover, our results show that our experimental

approach can uncover spatially restricted functional hotspots

within the OM.

A 3D transcriptomic atlas of the mouse OM
Since the OR discovery 3 decades ago (Buck and Axel, 1991), in

situ hybridization (ISH) has been the method of choice to study

spatial gene expression patterns across the OM. This method

is technically challenging and inherently a very low-throughput

experimental approach.

As we showed above, our Tomo-seq data enable a systematic

and quantitative estimation of gene expression levels along the

three axes of the OM. Here, we take this analysis one step further

and generate a fully browsable tridimensional (3D) gene expres-

sion atlas of themouseOM. First, we reconstructed the 3D shape

of OM based on publicly available images of OM sections (STAR

Methods). We then fed the shape information combined with the

gene expression data along the three axes into the iterative pro-

portional fitting (IPF) algorithm (Fienberg, 1970; Junker et al.,

2014; Figure 3A). The 3D atlas of the OM faithfully reproduced

the known 3D pattern of the dorsomedial marker Acsm4 (Oka

et al., 2003; Figure 3B). To further validate our 3D gene expres-

sion atlas of theOM,we compared the 3D reconstructed patterns

with conventional ISH patterns for five spatial DEGs identified in

this study. The first gene validated was Cytl1, which we

confirmed to be expressed along the septum throughout the

OM (Figures 3C and 3D), consistent with the role Cytl1 plays in

osteogenesis, chondrogenesis, and bone and cartilage homeo-

stasis (Shin et al., 2019; Zhu et al., 2019). The four additional

genes (Olfr309, Olfr618, Olfr727, and Moxd2) validated via ISH

are presented elsewhere in this manuscript (Figures 4, 5, and S4).

To make this 3D gene expression atlas of the mouse OM avail-

able to thescientificcommunity,wecreatedawebportal (available

athttp://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose)

providing access to the spatial transcriptomicdatadescribed here

in a browsable and user-friendly format. This portal contains

search functionalities allowing the users to perform pattern search

by gene, which returns (1) the normalized counts along each of the

three axes, (2) the predicted expression pattern in 3D with a zoom

function, (3) visualization of the expression patterns in virtual cryo-

sectionsalong theOMbyselecting anypossiblepairwise intersec-

tionbetween twogiven axes (i.e., DVxAP,DVxLM, andAPxLM), (4)

the degrees of belonging for each ‘‘zone’’ (see results section

below), and (5) single-cell expression data across 14 different

cell types.

In sum, here, we generated and made publicly available a

highly detailed and fully browsable 3D gene expression atlas of

the mouse OM, which allows the exploration of the expression

patterns for �20,000 genes.

Topographical expression patterns of Olfrs

In our combined dataset, we detected a total of 959 Olfrs (Fig-

ure 4A), of which we confidently reconstructed the spatial

expression patterns for 689 differentially expressed in space

(FDR< 0.01; Figure 4B)—anumber six times larger than the com-

bined 112 Olfrs characterized by previous ISH studies (Miyami-

chi et al., 2005; Ressler et al., 1993; Vassar et al., 1994; Zapiec

and Mombaerts, 2020). To define Olfr expression in 3D space

in a rigorous, unbiased, and quantitative way, we ran a latent

Dirichlet allocation (LDA) algorithm (STAR Methods; Liu et al.,

2016) on the 689 spatially differentially expressed Olfrs. LDA is

a generative statistical model that can infer the topics of a collec-

tion of documents based on the variability and frequency of spe-

cific words. In the context of this study, if the spatial expression

data of Olfrs are considered equivalent to ‘‘documents,’’ the in-

ferred topics correspond to ‘‘zones’’ (STAR Methods). We ran

LDA for different numbers of zones, and the trend of the log likeli-

hood function suggested that the minimal number of topics

required to represent the diversity of patterns is five (Figure S3A;

STAR Methods). Next, we visualized the spatial distribution of

these five zones in our 3D OM model, with colors representing

the probability that a given spatial position belongs to each

zone. These five zones extend from the dorsomedial-posterior

to the lateroventral-anterior region (Figure 4C), consistent with

the previously described zones (Miyamichi et al., 2005; Ressler

et al., 1993; Vassar et al., 1993).

The majority ofOlfrswith known spatial patterns are restricted

to a single zone, but a small number of Olfrs are expressed

across multiple zones in a continuous or non-continuous fashion

(Miyamichi et al., 2005; Strotmann et al., 1992; Zapiec andMom-

baerts, 2020). Under this logic, eachOlfr has a different probabil-

ity of belonging to the five topics and zones we identified. To test

this assumption, we used the same mathematical framework as

above to compute the probabilities that the expression pattern of

eachOlfr belongs to a given zone, i.e., the ‘‘degree of belonging’’

(DOB) (Table S4). The DOBs represent a decomposition of the

expression patterns in terms of the five zones (Figure 4C) and

quantitatively describe the changes in patterns of genes with

overlapping areas of expression (e.g., see Figure S3B). Thewidth
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of the distribution of DOBs across the five zones, which can be

measured with entropy, can distinguish genes whose patterns

mostly fit in a single zone from those spanning multiple zones

(Figure S3C; STAR Methods).

To visualize the global distribution of the 689 Olfrs, we applied

the diffusion map algorithm (Haghverdi et al., 2015) to their

DOBs. This showed that the genes are approximately distributed

along a continuous line spanning the five zones andwithout clear

borders between zones (Figure 4D), consistent with previous

studies (Miyamichi et al., 2005; Strotmann et al., 1992; Zapiec

andMombaerts, 2020).With the diffusion pseudo-time algorithm

(Haghverdi et al., 2016), we calculated an index (hereafter

referred to as ‘‘3D index’’) that tracks the position of each Olfr

gene along the 1D curve in the diffusion map and represents

its expression pattern (Figure 4E).

While our approach yielded an index for the 689 spatially

differentially expressed Olfr genes used to build the diffusion

map, there were 697 Olfrs that could not be analyzed, either

because they were too lowly expressed or not detected at

all in our dataset (Figure 4A). Since the spatial expression pat-

terns for some Olfrs are partly associated with their chromo-

somal and genomic coordinates (Sullivan et al., 1996; Tan

and Xie, 2018; Zhang et al., 2004), we hypothesized that we

could use a machine-learning algorithm to predict the 3D

indices for the 697 Olfrs missing from our dataset. Thus, we

trained a random forest algorithm on the 3D indices of the

spatially differentially expressed Olfrs in our dataset using

nine genomic features as predictors, such as the chromosomal

position, number of Olfrs in cluster, and distance to nearest

known enhancer (Figure 4F; STAR Methods). The algorithm

performance was confirmed by over 100 cross-validation iter-

ations, which revealed a low root-mean-square error ((10%)

on the mean 3D index (Figure S4A; STAR Methods). The five

most important predictors were features associated with

Figure 3. The 3D reconstruction of the OM

(A) Schematic of 3D shape reconstruction strategy. Images of 2D slices along the AP axis of the OMwere piled together to build an in silico 3Dmodel of OM, which

can also be used to visualize in silico sections. This 3D model, together with the gene expression data along each axis, was the input of the iterative proportional

fitting algorithm, which allowed us to estimate a 3D expression pattern for any gene.

(B and C) Reconstruction of the 3D expression patterns of the Acsm4 (B) and Cytl1 (C) in the OM, visualized in 3D and in OM coronal sections taken along the AP

axis.

(D) ISH experiment validating Cytl1 spatial expression pattern reconstructed in (C); note that Cytl1 is expressed in the septal region all along the OM. Purple

arrowheads indicate the location of labeled cells. The dotted outline marks the borders of the OM dissected and used in the RNA-seq experiments and for the

construction of the 3D model.
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Figure 4. Zonal organization of Olfrs in the OM

(A) Number of Olfrs detected in our data and in an OM bulk RNA-seq data (Saraiva et al., 2015b).

(B) Venn diagram of spatially differentially expressed Olfrs per axis (n = 3 per axis).

(C) Visualization of the five zones across the OM (coronal sections) estimatedwith a latent Dirichlet allocation algorithm. The colors indicate the probability (scaled

by its maximum value) that a position belongs to a given zone.

(D) Diffusion map of Olfrs. Genes are colored based on the zone they fit in the most. DC, diffusion component.

(E) Same as (D), with Olfrs colored by their 3D index.

(F) We fitted a random forest algorithm to the 3D indices of 681 spatialOlfrs using nine genomic features as predictors. After training, the random forest was used

to predict the 3D indices of 697 Olfrs that have too low levels in our data.

(G) 3D indices versus the indices of 80 Olfrs estimated in Miyamichi et al. (2005) from ISH data. Black circles indicate Olfrs detected in our dataset; green circles

are Olfrs whose indices were predicted with random forest. The correlation coefficients computed separately on these two sets of Olfrs are, respectively, rho =

0.92 (p < 2 3 10�16) and rho = 0.69 (p = 0.009).

(H–P) Predicted expression patterns (H, K, and N), degrees of belonging (I, L, and O), and ISH (J, M, and P) forOlfr309,Olfr727, and Olfr618, respectively. Purple

arrowheads indicate the location of labeled cells. The dotted outline marks the borders of the OM dissected and used in the RNA-seq experiments and for the

construction of the 3D model.
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chromosomal position, distance to the closest Olfr enhancer

(Monahan et al., 2017), length of the Olfr cluster, position in

the Olfr cluster, and phylogenetic Olfr class (Figure 4F). Using

this machine-learning algorithm, we predicted the 3D indices

for the 697 Olfrs missing reliable expression estimates in our

dataset (Table S4).

Overall, through multiple unsupervised and supervised

computational methods, we have quantitatively defined five

spatial expression domains in the OM (called zones) and have

provided accurate 3D spatial indices for 1,386 Olfrs, which rep-

resents �98% of the annotated Olfrs.

Importantly, we found strong correlations between the ‘‘Miya-

michi indices’’ inferred using ISH in Miyamichi et al. (2005) and

our 3D indices (rho = 0.88; p < 23 10�16; Figure 4G). This corre-

lation remains significant when we separately analyze the 3D

indices computed by diffusion pseudo-time (rho = 0.92; p <

2 3 10�16) or predicted by random forest (rho = 0.69; p =

0.009). In addition, our indices also correlated with the ‘‘Zolfr

indices’’ (Zapiec and Mombaerts, 2020; rho = 0.88; p < 2 3

10�16; Figure S4B), and with the ‘‘Tan indices’’ (Tan and Xie,

2018; rho = 0.89; p < 2 3 10�16; Figure S4C), inferred by ISH

and RNA-seq, respectively.

To confirm our predictions, we performed ISH for three Olfrs

that have not been characterized before—two detected in our

dataset and for which the 3D index was calculated via diffusion

pseudo-time (DPT) (Olfr309 and Olfr727) and one not detected

in our dataset and for which the 3D index was predicted with

the random forest algorithm (Olfr 618). Notably, all three Olfrs

were expressed primarily within the zones they were predicted

to be expressed in: zone 2 for Olfr309 (3D index = 30.76),

zones 4 and 5 for Olfr727 (3D index = 75.14), and zone 1 for

Figure 5. Zonal organization of non-Olfr

genes in the OM

(A) Heatmap of degrees of belonging of most zone-

specific non-Olfr genes.

(B) 3D gene expression pattern (coronal sections)

of most topic-specific non-Olfrs for each topic

along the AP axis.

(C) Reconstruction of the 3D expression pattern of

the gene Moxd2 in the OM.

(D) ISH experiment validating Moxd2 spatial

expression pattern reconstructed in (B) and (C).

Purple arrowheads indicate the location of ISH-

labeled cells. The dotted outline marks the borders

of the OM dissected and used in the RNA-seq

experiments and for the construction of the 3D

model.

Olfr618 (3D index = 7.42; Figures 4H–

4P and S4D–S4F; Table S4).

Topographical expression patterns
for non-Olfr genes
A recent study performed RNA-seq in 12

randomly dissected OM pieces along

the DV axis and identified �700 non-Olfr

genes with putatively spatial patterns

(Tan and Xie, 2018), includingmany genes

with zonal expression patterns identified previously (Duggan

et al., 2008; Gussing and Bohm, 2004; Liberles and Buck,

2006; Ling et al., 2004; Norlin et al., 2001; Oka et al., 2003; Tietjen

et al., 2003;Whitby-Logan et al., 2004; Yoshihara et al., 1997). By

identifying 11,538 non-Olfr spatial DEGs (Figures 2 and 3; Table

S5), we increased the list of non-Olfr genes with spatial zonation

in the OM by 16-fold.

Using the mathematical framework based on topic modeling

described above, we decomposed the expression patterns of

non-Olfr genes onto the five zones we identified. This allowed

us to identify genes showing zone specificity by calculating the

entropy of the DOBs distributions. Interestingly, we found

28 genes highly specific for each of the five zones (i.e., with en-

tropy <1; STAR Methods; Figure 5A; Table S5). For example,

S100a8 (zone 1) codes for a calcium-binding protein involved

in calcium signaling and inflammation (Yoshikawa et al., 2018),

Moxd2 (zone 2) is a mono-oxygenase dopamine hydroxylase-

like protein possibly involved in olfaction (Kim et al., 2014),

Lcn4 (zone 3) is a lipocalin involved in transporting odorants

and pheromones (Charkoftaki et al., 2019; Miyawaki et al.,

1994), Gucy1b2 (zone 4) is a soluble guanylyl cyclase oxygen

and nitric oxide (Bleymehl et al., 2016; Koglin et al., 2001), and

Odam (zone 5) is a secretory calcium-binding phosphoprotein

involved in cellular differentiation and matrix protein production

and with antimicrobial functions of the junctional epithelium

(Lee et al., 2012; Springer et al., 2019; Figure 5B). The high

zone specificity of the expression pattern of these genes gives

clues into possible biological processes taking place in the

zones. Indeed, Gucy1b2 is a known genetic marker for a small

OSN subpopulation localized in cul-de-sac regions in the lateral

OM, consistent with our reconstruction (Figure 5B), and it
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regulates the sensing of environmental oxygen levels through the

nose (Omura and Mombaerts, 2015; Saraiva et al., 2015b). In

addition, our ISH experiments revealed thatMoxd2 is expressed

in a small ventrolateral patch of the OM (Figure 5D), validating its

predicted 3D spatial pattern (Figures 5B and 5C) and highlighting

a potential highly localized role of this protein in neurotransmitter

metabolism (Goh et al., 2016) in the mouse OM.

A recent study showed that the transcription factors Nfia, Nfib,

and Nfix regulate the zonal expression ofOlfrs (Bashkirova et al.,

2020). To get some insights into the signaling pathways involved

in this process, wemined our dataset for genes encoding ligands

and receptors (Efremova et al., 2020) correlated with the expres-

sion patterns of the Nfis (STAR Methods). This analysis returned

476 genes involved in biological processes associated with the

regulation of neurogenesis, regulation of cell development,

anatomical structure development, cellular component organi-

zation or biogenesis, and regulation of neuron differentiation (Ta-

ble S5). As expected, some of these genes have known functions

in the OM, such as segregating different cell lineages forNotch1-

3 (Carson et al., 2006), genes associated with the development

of the nervous system (e.g., Erbb2 and Lrp2; Britsch et al.,

1998; Spuch et al., 2012), and many others associated with

the semaphorin-plexin, ephrin-Eph, and Slit-Robo signaling

complexes—which regulate OSN axon guidance and spatial

patterning of the OM (Cloutier et al., 2002; Cutforth et al., 2003;

Huber et al., 2003; Kania and Klein, 2016). Excitingly, themajority

of these 476 genes still have unknown functions in the OM, thus

highlighting the potential of our approach to discover genes and

pathways involved in the regulation of zonal expression in the

OM.

The anatomical logic of smell
For most sensory systems, the functional logic underlying the

topographic organization of primary receptor neurons and their

receptive fields is well known (Kandel et al., 2013). In contrast,

the anatomic logic of smell still remains unknown, and it is sub-

ject of great controversy and debate (Kurian et al., 2021; Se-

cundo et al., 2014).

To explore the underlying logic linked to the zonal distribution

of Olfrs, we investigated possible biases between their expres-

sion patterns and the physicochemical properties of their

cognate ligands. First, we compiled a list of known 738 Olfr-

ligand pairs, representing 153 Olfrs and 221 odorants (Figure 6A;

Table S6). Interestingly, Olfr pairs sharing at least one common

ligand have more similar expression patterns (i.e., more similar

3D indices) than Olfrs detecting different sets of odorants (Wil-

coxon rank-sum test; p < 23 10�16; Figure 6B). This observation

is consistent with the hypothesis that the Olfr zonal distribution

depends, at least partially, on the properties of the odorants

they bind to.

Next, we considered a set of 1,210 physicochemical descrip-

tors, including the molecular weight, the number of atoms,

Figure 6. Physiological role of the zones

(A) Circular network illustrating the pairs of Olfrs and ligands that we found in the literature.

(B) Boxplots showing the distributions of the absolute value of 3D index differences between pairs of Olfrs sharing at least one ligand versus pairs of Olfrs without

cognate ligands in common. The difference between the two distributions is statistically significant (p < 2 3 10�16; Wilcoxon rank-sum test).

(C) Scatterplot showing the Spearman correlation coefficients between the ligands’ mean 3D indices and molecular descriptors and the corresponding

�log10(adjusted p value). Turquoise circles indicate the descriptors having a significant correlation only when both class I and II Olfrs are considered; red circles

mark the descriptors with a significant correlation also when class I Olfrs are removed.

(D) Scatterplot illustrating the correlation between air/mucus partition coefficients of the odorants and the average 3D indices of their cognate Olfrs. Only odorants

for which we know at least two cognate Olfrs (110) were used here. Odorants are colored according to the zone they belong to (defined as the zone with the

highest average degree of belonging computed over all cognate receptors). The five odorants highlighted in the plot by larger circles are indicated on the right-

hand side, along with their molecular structure and common name.

(E) Average expression pattern of the cognate Olfrs recognizing each of the five odorants highlighted in (D), including their respective CAS numbers.
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aromaticity index, lipophilicity, and the air/mucus partition coef-

ficient (Kam), which quantifies the mucus solubility of each ligand

(Rygg et al., 2017; Scott et al., 2014; STAR Methods). We then

computed the Spearman’s correlation of each of these descrip-

tors of the ligandswith the average 3D indices of theOlfrs detect-

ing them. We found a statistically significant correlation for 744

descriptors (FDR < 0.05; Figure 6C; Table S6). The top five high-

est correlations were with the air/mucus partition coefficient Kam

(rho = 0.55; adjusted p = 1 3 10�7), ATSC2S (rho = �0.56;

adjusted p = 2 3 10�7), SPmax2_Bh.s (rho = �0.52; adjusted

p = 2 3 10�6), SPmax1_Bh.s (rho = �0.51; adjusted p = 3 3

10�6), and ATSC6e (rho = �0.51; adjusted p = 3 3 10�6; Fig-

ure 6C; Table S6). Interestingly, ATSC2S, SPmax1_Bh.s, and

SPmax2_Bh.s are also related to solubility (Consonni and Tode-

schini, 2008; Devillers and Domine, 1997; Hollas, 2003). Notably,

the association between Kam and the mean 3D indices does not

depend on the number of zones defined with LDA (STAR

Methods). Furthermore, it remains robust to changes in the set

of ligands and/or Olfrs used for the analysis, namely, when we

excluded Olfrs for which the 3D indices were predicted with

the random forest model (rho = 0.48; p = 2 3 10�6; Figure S5B)

or when only 3D indices from class II Olfrs were included in the

analysis (rho = 0.5; p = 1 3 10�7; Figure S5C).

In particular, the positive correlation of the 3D indices with Kam

(Figure 6D) indicates that the most soluble odorants (lower) pref-

erentially activate Olfrs located in the most antero-dorsomedial

region (zone 1) of theOM,while the least soluble odorants (higher

Kam) activate Olfrs in the postero-ventrolateral region (zones 4 to

5). In other words, gradients of odorants sorption (as defined by

their Kam) correlate with the gradients of Olfr expression from

zone 1 to zone 5, consistent with the chromatographic/sorption

hypothesis in olfaction (Mozell, 1966; Scott et al., 2014). This is

exemplified by the plots in Figure 6E, illustrating the predicted

average expression levels across OM sections of the Olfrs bind-

ing to five odorants with different values of Kam. These results

show a direct association between Olfr spatial patterns and the

calculated sorption patterns of their cognate ligands in the OM,

providing a potential explanation for the physiological function

of the zones in the OM.

DISCUSSION

Past studies yielded inconclusive and sometimes contradictory

views on the basic logic underlying the peripheral representation

of smell, partly because the topographic distribution of OSN sub-

types and their receptive fields still remained vastly uncharted,

data on Olfr-ligand pairs were scarce, and there were pitfalls

associated with electro-olfactogram recordings used to study

spatial patterns of odor recognition in the nose (Kurian et al.,

2021; Scott and Scott-Johnson, 2002; Secundo et al., 2015).

Here, we combined RNA-seq and computational approaches

that utilize unsupervised and supervised machine learning

methods to discover and quantitatively characterize spatial

expression patterns in the OM. We created a 3D transcriptional

map of themouseOM,which allowed us to spatially characterize

17,628 genes, including �98% of the annotated Olfrs. We iden-

tified and validated by ISH several spatial marker genes, and a

clustering analysis pinpointed the OM locations where specific

functions related to, e.g., the immune response might be carried

out. We alsomathematically definedOlfr expression zones in the

OM with an unsupervised machine-learning method based on

topic modeling. We estimated that the OM includes at least

five zones, which can be used to decompose the expression pat-

terns of all genes. However, our analysis showed that there is a

continuous distribution of Olfrs patterns in the OM. Thus, while

a discrete number of zonesmight be convenient to provide a first

classification of Olfrs, these might obscure the complexity of the

OM spatial patterns. To account for this, we adopted a mathe-

matical framework that can rigorously define zones while

capturing finer structures in the data, via the degrees of

belonging and the 3D index, which are more suitable to describe

Olfrs patterns crossing multiple zones.

The global transcriptomic landscape of the vertebrate OM is

similar between individuals and broadly conserved among

different vertebrate species, ranging from zebrafish to human

(Bear et al., 2016; Saraiva et al., 2015a, 2019). Similarly, the

spatial segregation of Olfrs into partially overlapping rings of

expression, centered around the midline structure of the OM,

is also conserved among vertebrates (Freitag et al., 1995; Horo-

witz et al., 2014; Marchand et al., 2004; Miyamichi et al., 2005;

Octura et al., 2018; Ressler et al., 1993; Strotmann et al., 1992;

Vassar et al., 1993; Weth et al., 1996). While the number of Olfr

zones in zebrafish, frog, and salamander still remain unknown

(Freitag et al., 1995; Marchand et al., 2004; Weth et al., 1996),

ISH studies suggested that the total number of Olfr expression

zones can vary between mammals—ranging from two in ma-

caque (Horowitz et al., 2014) to four in rat (Vassar et al., 1993)

and goat (Octura et al., 2018), and between four and nine in

mouse (Miyamichi et al., 2005; Ressler et al., 1993; Zapiec and

Mombaerts, 2020). While the exact number of Olfr expression

zones in OM still remains under debate, our results are consis-

tent with both another recent RNA-seq study (Tan and Xie,

2018) and the largestOlfr ISH study in the mouse OM (Miyamichi

et al., 2005), thus supporting the existence of at least five over-

lapping Olfr expression zones in the mouse nose.

Taking into account how conserved the molecular organiza-

tion of the OM is in vertebrates, the 2-fold reduction in the num-

ber ofOlfr expression zones in macaque compared with rodents

and goat (an ungulate) is puzzling. While we cannot exclude the

presence of confounding factors (e.g., limitedOlfr sampling and/

or inconsistent definitions of ‘‘zones’’), it is interesting that the 2-

fold reduction in number of zones is associated with a 2-fold

reduction in the number of annotated intact Olfrs in macaque

(and other higher primates, including human) compared with

other rodents and ungulates (Horowitz et al., 2014; Niimura

et al., 2014; Saraiva et al., 2019). Since the accelerated loss of

Olfr genes during primate evolution has been linked to the acqui-

sition of trichromatic acute vision and dietary changes (Niimura

et al., 2018), it is plausible that these evolutionary pressures

also helped shape the spatial distribution of Olfrs in macaques

and other primates, including human.

The quantitative framework we built for this dataset will facili-

tate the interrogation of gene expression patterns via an online

tool we provide and help answer important questions on the

physiology of the nose. Our approach could be easily applied

to spatial transcriptomic data collected from other tissues to
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perform comparisons across tissues from different species or

the same tissue across multiple developmental stages. More-

over, the results from this study serve as a template to start

answering other important questions about olfaction, such as

whether Olfr spatial expression maps can encode maps of

odor perception. Because the general molecular mechanisms

of olfaction, zonal organization of Olfrs, conservation of ligands

among Olfr orthologs, and components of olfactory perception

are conserved in mammals (Adipietro et al., 2012; Bear et al.,

2016; Freitag et al., 1995; Horowitz et al., 2014; Kurian et al.,

2021; Manoel et al., 2021; Octura et al., 2018; Saraiva et al.,

2019; Weth et al., 1996), the association we uncovered here be-

tween Olfr zones and the solubility of odorants they detect can

likely be extrapolated to other mammals, including humans.

Finally, the functional logic underlying the mammalian topo-

graphic organization of primary receptor neurons and their

receptive fields in smell is now starting to be exposed.

Limitations of the study
This study enabled us to answer fundamental and long-standing

questions about the rationale behind the spatial organization of

the peripheral olfactory system. Specifically,weprovide evidence

to the hypothesis that the spatial zones increase the discrimina-

torypower of theolfactory systembydistributingOlfrs in theareas

of the OM more likely to be reached by their cognate ligands,

based on their solubility in mucus. A caveat of this approach is

that the Olfr-ligand list we compiled from the literature includes

odorant libraries of different size and composition and tested us-

ing different experimental approaches. Moreover, highly abun-

dant Olfrs have a higher probability of being deorphanized than

lowly abundant Olfrs, and ecologically relevant odorants are

more likely to activate Olfrs when compared with other odorants

(Dunkel et al., 2014; Saraiva et al., 2019; Trimmer and Mainland,

2017). Despite having compiled and performed our analysis on

the largest set of Olfr-ligand pairs assembled to date and carrying

outmultiple robustness checks,wecannot ruleout that ascertain-

ment biasmight contribute to the associationswe found between

the Olfr spatial location and the properties of their respective li-

gands. Future studies investigating the activation profiles for all

mouse Olfrs and/or mapping the in vivo activation patterns of

mouse Olfrs in the olfactory mucosa will be key to stress test

the conclusions of our study.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Digoxigenin-AP, Fab fragments Merck (Roche) Cat# 11093274910, RRID:AB_514497

Biological samples

Olfactory mucosae from C57Bl/6J mice

(adult males)

The Jackson Laboratory Stock # 00664

Chemicals, peptides, and recombinant proteins

30% Hydrogen Proxyde Solution Merck (Sigma-Aldrich) Cat. # H1009

Triethanolamine Merck (Sigma-Aldrich) Cat. # T58300

Acetic anhydride Merck (Sigma-Aldrich) Cat. # 320102

Deoinized formamide Merck (Sigma-Aldrich) Cat. # F9037

Yeast tRNA Merck (Roche) Cat. # 10109495001

Denhardt’s solution (503) Merck (Sigma-Aldrich) Cat. # D9905

Dextran sulfate solution (50%) Merck (Chemicon) Cat. # S4030

203 SSC Merck (Calbiochem) Cat. # 8310-OP

Tween-20 Merck (Sigma-Aldrich) Cat. # 822184

TSA Blocking Reagent Perkin-Elmer Cat. # FP1020

NBT/BCIP Stock Solution Merck (Roche) Cat. # 11681451001

Critical commercial assays

SMART-Seq v4 Ultra Low Input RNA Kit for

Sequencing

Clontech (Takara Bio) Cat. # 634892

Bioanalyzer DNA High-Sensitivity kit Agilent Technologies Cat. # 5067-4626

Nextera XT DNA Library Preparation Kit (96

samples)

Illumina Cat. # FC-131-1096

Nextera XT Index Kit v2 Set A (96 indexes,

384 samples)

Illumina Cat. # FC-131-2001

pGEM�-T Easy Vector Systems Promega Cat. # A1360

DIG RNA Labeling Kit (SP6/T7) Merck (Roche) Cat. # 11175025910

ProbeQuant G-50 Micro Columns Cytiva Biosciences Cat. # 28903408

Deposited data

TOMO-seq Olfactory Mucosa dataset This study https://www.ebi.ac.uk/arrayexpress/

E-MTAB-10211

Single cell RNA-seq data from the Olfactory

Mucosa

Fletcher et al., 2017 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE95601

Dragon database of molecular descriptors Talete S.R.L. http://www.talete.mi.it

CellphoneDB ligands and receptors

database

Efremova et al., 2020 https://github.com/ventolab/CellphoneDB

Experimental models: Organisms/strains

Adult male C57Bl/6J mice The Jackson Laboratory Stock # 00664

Oligonucleotides

See ‘‘method details’’ section for

oligonucleotides

This study N/A

Software and algorithms

samtools version 0.1.19-44428cd Li et al., 2009 http://samtools.sourceforge.net/

htseq-count version 0.11.2 Anders et al., 2014 https://github.com/htseq/htseq/

R 4.1.2 The R Foundation https://www.r-project.org/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and data should be directed to andwill be fulfilled by the Lead Contact Luis R. Saraiva

(saraivalmr@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA-seq raw data have been deposited and are publicly available as of the date of publication at ArrayExpress: E-MTAB-10211. All

original code and scripts for the 3D nose atlas shiny app has been deposited at Github and can be found at the Github Repository:

https://doi.org/10.5281/zenodo.6036047https://zenodo.org/badge/DOI/10.5281/zenodo.6045897.svg. The 3D nose atlas pro-

cessed data can be browsed and visualized here: http://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose.

Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The animals used in this study were adult male C57Bl/6J mice (aged 8–14 weeks, The Jackson Laboratory, Stock # 00664) main-

tained in group-housed conditions on a 12:12 h light:dark schedule (lights on at 0700 hours). Each mouse was randomly assigned

for cryosectioning along one of the three cartesian axes.

The use and care of animals used in this study was approved by the Internal Animal Care and Use Committee (IACUC) of Monell

Chemical Senses Center, by the IACUC of the University of S~ao Paulo, and by the Wellcome Trust Sanger Institute Animal Welfare

and Ethics Review Board in accordance with UK Home Office regulations, the UK Animals (Scientific Procedures) Act of 1986.

METHOD DETAILS

Dissection of the olfactory mucosa, cryosections, and RNA-sequencing
Theolfactorymucosa (OM) of 9micewascarefully dissected, andall the surrounding tissue (includingglands andbone) removed – this

was necessary to ensure that the transcripts present in the surrounding tissue do not contaminate the RNA isolated from the OM. The

OMs were then embedded in OCT (Tissue Tek), immediately frozen in dry-ice and kept at �80�C. Each OM was then cryosectioned

along each of the 3 cartesian axes: dorsal-ventral (DV, n = 3), anterior-posterior (AP, n = 3), or lateral-medial-lateral (LML, N = 3). Every

second cryosections (35 mm thick) was collected into 1.5 mL eppendorf tubes containing 350 mL RLT Plus Buffer (Qiagen) supple-

mented with 1% 2-mercaptoethanol, immediately frozen in dry-ice and kept at �80�C until extraction. RNA was extracted using

theRNeasyPlusMicroKit (Qiagen), togetherwith agenomicDNAeliminator columnanda30-minute incubationwithDNAse I (Qiagen).

Reverse transcription and cDNA pre-amplification were performed using the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing

(Clontech/Takara). cDNAwas harvested and quantifiedwith the Bioanalyzer DNAHigh-Sensitivity kit (Agilent Technologies). Libraries

were prepared using the Nextera XT DNA Sample Preparation Kit and the Nextera Index Kit (Illumina). Multiplexed libraries were

pooled and paired-end 150-bp sequencing was performed on the Illumina HiSeq 4000 platform at Sidra Medicine, except for one li-

brary (DV-I) for which 125-bp paired-end sequencing was performed on the Illumina HiSeq 2500 platform at the Wellcome Sanger

Institute. The raw data are available through ArrayExpress under accession number E-MTAB-10211.

RNA-seq data mapping and gene counting
Readswere aligned to themm10mouse genome (release 99). The sequences of the genes ‘‘Xntrpc’’ and ‘‘Capn5’’ were removed from

the genome files as in Saraiva et al. (2015b). The alignment was performed with the software STAR version 2.7.3a (Dobin et al., 2013).

Genome indexeswere generated using STAR–runModegenomeGeneratewith default parameters. Then, alignment of readswas per-

formed with the following options: –runThreadN 48 –outSAMunmapped Within –outFilterMultimapNmax 1000 –outFilterMismatchN-

max 4 –outFilterMatchNmin 100 –alignIntronMax 50000 –alignMatesGapMax 50500 –outSAMstrandField intronMotif –outFilterType

BySJout. The resulting SAM files were converted to bam format and sorted using samtools (version 0.1.19-44428cd) (Li et al.,

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Python 3.9.6 Python Software Foundation https://www.python.org/

Scripts for TOMO-seq data analysis This study https://doi.org/10.5281/zenodo.6036047

https://zenodo.org/badge/DOI/10.5281/

zenodo.6045897.svg
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2009). Themulti mapping readswere eliminated using the same software (samtools view -q 255). Finally, the reads for each genewere

counted using htseq-count (version 0.11.2) with the options -m intersection-nonempty -s no -i gene_name -r pos (Anders et al., 2014).

Quality control
We excluded all the samples that fulfilled any of these criteria: they had less than 50% mapped reads, less than 4,000 detected

genes, more than 20% mitochondrial reads, less than 10,000 total number of reads, or did not express any of the 3 canonical

OSN markers Omp, Cnga and Gnal. This resulted in �51 good-quality sections along the DV axis (�84% out of the collected sec-

tions), �76 (�91% of total) along the AP axis and �59 (�93% of total) along the LML axis, as averaged across the three replicates

per axis.

Data normalization
Gene expression counts were normalized by reads-per-million (RPM), then genes detected in only one replicate and genes that were

detected in less than 10% of all samples along one axis were eliminated. To check the similarity between replicates, we calculated

Spearman correlations between the transcriptional profiles of sections along each axis (using the top 1000 Highly Variable Genes per

axis). Close positions had themost similar transcriptional profiles (Figure 1C). Afterward, the 3 replicates for each axis were aligned as

follows: the top 3,000 highly variable genes (HVGs) from each replicate were identified using the method implemented in the scran

library in R (Lun et al., 2016) and the intersection of these 3 groups was used in the next steps. For the replicates’ alignment, we took

as reference the replicate with the smallest number of slices. We used a sliding window approach that identified the range of consec-

utive positions on each replicate along which the average value of the Spearman’s correlation coefficient computed with the refer-

ence replicate over the HVGwasmaximum (mean Spearman’s Rho = 0.80, p < 0.05). Tomitigate batch effects, the level of every gene

was scaled in such a way that their average value in each replicate was equal to the average calculated across all replicates. After this

scaling transformation, the data was then averaged between replicates. Once the 3 biological replicates were combined, we had 54

sections along the DV axis, 60 along the AP and 56 along the LML. Along the LML axis a symmetric pattern of expression is expected

around the central position, where the septal bone is located. To confirm this in our data, first we identified the central position by

analyzing the expression pattern of neuronal markers like Cnga2, Omp and Gnal, whose expression is lowest in the area around

the septal bone. Indeed, all three marker genes reach aminimum at the same position along the LML axis (slice 28), which we consid-

ered to be the center. The expression patterns of�90%of genes on either side of the central position show a positive correlation, and

�70% reach statistical significance (Spearman’s correlation computed on the highly variable genes having more than 50 normalized

counts in at least 3 slices), further supporting the hypothesis of the bilateral symmetry. Hence, after replicates were averaged, LML

axis was made symmetric averaging positions 1:28 and 56:29. Moreover, Olfrs were normalized by the geometric mean of neuronal

markers Omp, Gnal and Cnga2, as done previously (Ibarra-Soria et al., 2017).

To verify the presence of a spatial signal, we calculated the Moran’s I and the associated p-values for the top 100 Highly Variable

genes along each axis using the ‘‘Moran.I00 function from the ‘‘ape’’ library in R with default parameters (Paradis et al., 2004). The

p-values of the genes along each axis were combined with the Simes’ method (Simes, 1986) using the function combinePValues

from the scran R library (Figure S1E).

Identification of differentially expressed genes and gene clustering
Before testing for differential expression along a given axis, we filtered out genes whose expression levels had low variability. To this

aim, for each genewe estimated their highest and lowest expression by taking the average of its three highest and three lowest values

respectively. Then, we considered for downstream analyses only the genes that meet either of these two criteria: the highest expres-

sion value is greater than or equal to 5 normalized counts and the fold-change between the highest and lowest value is greater than 2;

or the difference between the highest and the lowest value is greater than or equal to 4 normalized counts. The expression levels of

the genes were binarized according towhether their valuewas higher or lower than their median expression along the axis. Finally, we

used the ‘‘ts’’ function in R to transform the binarized expression values into time series objects, and we applied on them the Ljung-

Box test (Box.test function in R with lag = (axis length)-10) which identifies genes with statistically significant autocorrelations, i.e.,

with non-random expression patterns along an axis. The resulting p-values were adjusted using the FDR method and genes with

an FDR <0.01 were considered as differentially expressed. For the next steps, the log10 normalized expression of differentially ex-

pressed genes along each axis was fitted with a local regression using the locfit function in the R library locfit (Loader, 2007). Smooth-

ing was defined in the local polynomial model term of the locfit model using the function ‘‘lp’’ from the same library with the following

parameters: nn = 1 (Nearest neighbor component of the smoothing parameter) and deg = 2 (degree of polynomial). The fitted expres-

sion values of these genes along each axis were normalized between 0 and 1. Clustering was performed separately for each axis on

the fitted and normalized patterns of the differentially expressed genes. We used the R function ‘‘hclust’’ to perform hierarchical clus-

tering on the gene expression patterns, with a Spearman’s correlation-based distance (defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 ð1� rÞp

) and the "average"

aggregation method. The number of clusters were defined with the cutreeDynamic function from the dynamicTreeCut R library, with

the parameters minClusterSize = 50, method = ‘‘hybrid’’ and deepSplit = 0. To visualize the data in two dimensions, we applied the

UMAP dimensionality reduction algorithm (umap function in the R library umapwith default options; see Figure 2D) (Becht et al., 2018;

McInnes et al., 2018). To analyze the relationship between the expression patterns of genes along different axes, we computed the
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intersections of the gene clusters between any pair of axes. The expected number of elements in each intersection under the

assumption of independent sets is given by:

jAXBjexp =
jAjjBj
jAWBj

whereAandB indicate thesetsofgenes in twoclusters identifiedalong twodifferent axesand j,j indicates thecardinality of a set (i.e., the
number of its elements). The ratio between the observed and the expected number of elements in the intersection jAXBjobs = jAXBjexp
quantifies the enrichment/depletion of genes having a given pair of patterns across two axes with respect to the random case. The log2
values of ð1 + jAXBjobs = jAXBjexpÞ are shown in Figure 2F.

Combining Tomo-seq with single-cell RNA-seq data
The TPM (transcripts per million)-normalized single cell RNA-seq (scRNA-seq) data collected frommouse olfactory epithelium avail-

able from Fletcher et al. (2017) was used to identify cell-type specific genes. To this aim, we computed the average expression level

for each cell type in the scRNA-seq dataset for all the differentially expressed genes that we identified in our TOMO-seq data. The

genes with an average expression above 100 TPM in mOSNs and below 10 TPM in all other cell types were considered mOSN-spe-

cific. Conversely, genes with an average expression above 100 TPM in any of the non-mOSN cell types and below 10 in mOSNswere

considered to be specific for non-mOSN cells.

Gene ontology (GO) enrichment analysis
GO Enrichment analyses were performed using the GOrilla online tool (http://cbl-gorilla.cs.technion.ac.il) with the option ‘‘Two un-

ranked lists of genes (target and background lists)’’. For each axis, we used as background list the list of the genes we tested.

Cell type deconvolution analysis
To perform cell type deconvolution analysis, we used a previously published single-cell RNA-seq (scRNA-seq) data from the mouse

OM (Fletcher et al., 2017). First, the cells included in unclassified clusters were removed and the data was rescaled using the function

‘‘pp.log1p’’ from the scanpy library (Wolf et al., 2018). Then, we obtained 2000 highly variable genes using the function ‘‘pp.highly_

variable_genes’’ (scanpy library). In the following analysis, we merged clusters of similar cell populations and considered the

following 6 cell types: 1-HBC = HBC1+HBC2+HBC3; 2-INP = INP1+INP2+INP3; 3-GBC = GBC, 4-SC = mSC + iSC, 5-OSN =

iOSN + mOSN, 6-MVC = MVC1+MVC2.

This scRNA-seq data was used as input for the AutoGeneS algorithm (Aliee and Theis, 2021). The cell type assignment as well as

the list of highly variable genes were passed as input to the function ‘‘ag.init’’ from AutogeneS, and then we estimated the optimal

subset of genes to perform cell type deconvolution with the function ‘‘ag.optimize’’ (with parameters: ‘‘ngen’’ = 5000, ‘‘nfeatures’’ =

400 and ‘‘mode’’ = ‘‘fixed’’). Finally, we deconvolved the Tomo-seq data along the three axeswith the function ‘‘ag.deconvolve’’ using

Nu Support Vector regression models (‘‘model’’ = ‘‘nusvr’’). The results were normalized such that the sums of cell type proportions

per slice is equal to 1 (Figure S2F). To identify the cell types with non-random spatial distribution along the axes, we applied the Ljung-

Box test as explained above (section ‘‘identification of differentially expressed genes and gene clustering’’); the p values are reported

in Table S2.

Identification of ligands and receptors associated with the NfiA, NfiB or NfiX transcription factors
The genes in the CellphoneDB ligands and receptor database (Efremova et al., 2020) that were among our spatially differentially ex-

pressed genes were selected and Spearman correlation tests between their 1D expression patterns and the 1D patterns for the Nfi

transcription factors were performed. Correlation coefficients from the three axes were averaged and FDRs from the 3 axes were

combined with the Simes’ method (Simes, 1986) using the function combinePValues from the scran R library. Combined FDR values

<0.01 were taken as significant.

3D spatial reconstruction
The olfactory mucosa shapewas obtained from publicly available images of themouse nasal cavity along the posterior to the anterior

axis published in Barrios et al. (2014). The area of the slices corresponding to the OM was manually selected and images of their sil-

houettes were made. Those images were then transformed into binary matrices having 1’s in the area occupied by the OM and 0’s in

the remaining regions. The binarymatrices were rescaled tomatch the spatial resolution in our dataset, which is composed of 54 vox-

els along theDVaxis, 56 along the LMLaxis and 60 along the APaxis. Finally,matriceswere piled in a 3Darray inR to obtain an in-silico

representation of the 3D shape of the OM, which, in total, was composed of 77,410 voxels. To perform the 3D reconstruction of the

expression pattern for a given gene, first we normalized its expression levels by the volume of the slice at each corresponding position

along the three axes, which was estimated using our 3D in silico representation of the OM. Then, we rescaled the data in such a way

that the sum of the expression levels along each axis was equal to the average expression computed across the whole dataset. This

rescaled dataset together with the binary matrix representing the 3D OM shape was used as input of the Iterative Proportional Fitting

algorithm, which produced an estimation of the expression level of a gene in each voxel (Junker et al., 2014). Iterations stopped when

the differences between the true and the reconstructed 1D values summed across the three axes was smaller than 1.
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Definition of zones by topic modelling
In order to identify zones, we fitted a Latent Dirichlet Allocation (LDA) (Blei et al., 2003) algorithm to the 3D gene expression patterns

(in log10 scale) of the differentially expressed Olfrs (689 Olfrs x 77,410 voxels).

The LDA algorithm was originally employed for document classification: based on the words included in each document, LDA can

identify "topics", in which the documents can then be classified. Using this linguistic analogy, in our application of LDA, we consid-

ered the genes as ‘‘documents’’, and the spatial locations as ‘‘words’’, with the matrix of gene expression levels being the analogous

of the "bag-of-word" matrix (Liu et al., 2016). In this representation, the zones are the equivalent of ‘‘topics’’, and they are automat-

ically identified by LDA.We used the LDA implementation included in the R package ‘‘Countclust’’ (Dey et al., 2017), developed based

on the ‘‘maptpx’’ library (Taddy, 2012), which performs a maximum a posteriori estimation to for model fitting. LDA was run for all

possible numbers of topics K ˛ [2,9]. The following parameters were chosen: convergence tolerance = 0.1; max time optimization

step = 180 seconds; n_init = 3. For each number of topics k, three independent runs were performed with different starting points,

in order to avoid biases due to the choice of the initial condition. We estimated the number of topics by computing the log likelihood

for each value of K˛ [2,9]. As seen in Figure S3A, while the log-likelihood is amonotonically increasing function of the number of topic

(as expected), for a number of topics around �5 it shows a ‘‘knee’’ and starts to increase more slowly. This suggests that �5 is the

minimal number of topics needed to describe the complexity of the data without overfitting. Hence, we fix a number of topics equal to

5; however, we also verified that all our conclusions remain substantially unaffected if a different number of topics is chosen.

After running LDAwith K = 5, we retrieved themodel output, which consists of two probability distributions: the first is P(position| k)

with k ˛ [1,5], which is the conditional probability distribution defining the topic k; the second probability distribution is P(k | gene),

namely the probability distribution that quantifies the degrees of belonging of a given gene to the topics k˛[1,5].With these probability

distributions, we can identify the spatial positions that form each topic and how the different topics can be combined to generate the

spatial expression pattern of each gene.

Being a generativemodel, once trained, LDA can also decompose into topics the spatial expression patterns of genes that were not

used during the training procedure. We exploited this feature of LDA to estimate the degrees of belonging of non-olfactory receptor

genes. To this aim, we utilized an algorithm based on the python gensim library Lda.Model.inference function (Rehurek and Sojka,

2010), using as input the estimated probability distribution P(position | k) with k ˛ [1,5]. The model fitting was performed using the

Open Computing Cluster for Advanced data Manipulation (OCCAM), the High-Performance Computer designed and managed in

collaboration between theUniversity of Torino and the Torino division of the IstitutoNazionale di FisicaNucleare (Aldinucci et al., 2017).

Definition of Olfr 3D indexes via diffusion pseudo-time
As explained in the section above, we can describe the spatial expression pattern of each gene through a set of five numbers, which

represent the degrees of belonging to the five topics identified by LDA. We applied a diffusion map (Haghverdi et al., 2015) to the

degrees of belonging of theOlfrs to visualize them in two dimensions by using the ‘‘DiffusionMap’’ function from the ‘‘destiny’’ R pack-

age (Angerer et al., 2016) (with distance = ‘‘rankcor’’ and default parameters). In this two-dimensional map, the Olfrs are approxi-

mately distributed along a curve that joins the most dorsal/medial genes (those in zones 1–2) with those that are more ventral/lateral

(zones 3–5). To track the position of the genes along this curve, we computed a diffusion pseudo-time (DPT) coordinate (Haghverdi

et al., 2016) with the ‘‘DPT’’ function from the ‘‘destiny’’ R package (taking as starting point the gene with the smallest first diffusion

component among the genes suggested by the function find_tips from the same package). In order to make the indexes go from

Dorsal to Ventral, as in previous studies (Miyamichi et al., 2005), we reversed the order of the DPT coordinates by substracting

the maximum coordinate from all coordinates and multiplying them by (�1). By doing this, we obtained for each Olfr an index, which

we called 3D index, representing its spatial expression pattern in the 3D space: more dorsal/medial genes (zones 1–2) have smaller

3D indexes than Olfrs expressed in the ventral/lateral regions (zones 3–5).

Prediction of zone index for undetected Olfrs with Random Forest
WefittedaRandomForestmodel to the3D indexesof 681of the689Olfrswecharacterizedwithour dataset (i.e., those that are located

in genomic clusters). The following nine features of each Olfr were used as predictors: genomic position (i.e., gene starting position

divided by chromosome length); genomic cluster; genomic cluster length; number of Olfrs in the genomic cluster; number of en-

hancers in the genomic cluster; cluster position (i.e., starting position of the cluster divided by the chromosome length); distance to

the closest enhancer; gene positionwithin the cluster (i.e., the distance of the gene starting position from the end of the cluster divided

by the cluster length); and phylogenetic class. These features were computed using the mm10 mouse genome in Biomart (Kinsella

et al., 2011), while the list of enhancers and the genomic clusters assigned to each Olfr were taken from Monahan et al. (2017). The

Random Forest model was fitted with the function ‘‘randomForest’’ (R library ‘‘randomForest’’ (Liaw and Wiener, 2002), with option

‘‘na.action = na.omit’’). Afterward, we performed a cross-validation test with the function ‘‘rf.crossValidation’’ from the ‘‘rfUtilities’’

package (Rather et al., 2020) with default parameters. Over 100 cross-validation iterations, the root mean square error (RMSE)

was(10% of the mean 3D index. The feature importance was computed with the ‘‘importance’’ function from the randomForest li-

brary with default parameters. Finally, the Random Forest model trained on the 681 Olfrs was used to predict the 3D indexes of 697

Olfrs thatwere too lowly expressedorwereundetected inour dataset.Overall,wewereable to computeorpredictwithRandomForest

a 3D index for all theOlfrs annotated in the mouse genome, except for 28 of them that do not have any genomic cluster assigned. To

quantify the consistency between our Olfr 3D indexes and indexes defined previously, we calculated the Spearman’s correlation
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coefficients between our indexes and those defined in three previous studies (Miyamichi et al., 2005; Tan and Xie, 2018; Zapiec and

Mombaerts, 2020) (see Figures 4G, S4B, and S4C).

Odorant information and Olfr-ligand pairs
All odorant structures and associated CAS numbers were retrieved from either Sigma-Aldrich (www.sigmaaldrich.com) or PubChem

(https://pubchem.ncbi.nlm.nih.gov). A comprehensive catalog of the cognate mouse Olfr-ligand pairs was collected (last update:

March 2021) by combining data from the ODORactor database (Liu et al., 2011) and additional literature sources (Abaffy et al.,

2006; Araneda et al., 2004; Bozza et al., 2002; Dunkel et al., 2014; Floriano et al., 2000; Gaillard et al., 2002; Godfrey et al., 2004;

Grosmaitre et al., 2006, 2009; Jiang et al., 2015; Jones et al., 2019; Kajiya et al., 2001; Malnic et al., 1999, 2004; Nara et al., 2011;

Nguyen et al., 2007; Oka et al., 2004, 2006, 2009; Pfister et al., 2020; Repicky and Luetje, 2009; Saito et al., 2004, 2017; Saraiva

et al., 2019; Shirasu et al., 2014; Shirokova et al., 2005; von der Weid et al., 2015; Yoshikawa et al., 2013; Yoshikawa and Touhara,

2009; Yu et al., 2015; Zhuang and Matsunami, 2007).

This catalog includes 738 Olfr-ligand interactions for a total of 153 Olfrs and 221 odorants. These 153Olfrs include 100 spatialOlfrs

in our dataset and for which we have 3D indexes, and 49 additional Olfrs with predicted 3D indexes (see above). Next, we checked

whether Olfrs pairs sharing at least one cognate ligand have more similar spatial expression patterns than pairs not sharing ligands.

To do this, we computed the absolute values of the differences between the 3D indexes (D) of 1706 pairs of ORs sharing at least one

odorant and 9,922 pairs of ORs that are known to bind to different odorants (Figure 6B). The two sets of D values were significantly

different (Mann-Whitney U test, p value < 2 3 10-16). This test remained significant when excluding Olfrs for which 3D indexes were

estimated by the Random Forests model (p value < 2 3 10-16), and also when excluding class I Olfrs (p value < 2 3 10-16).

Correlation analysis of physico-chemical descriptors with 3D index
Physicochemical descriptors for ligands were obtained from the Dragon 6.0 software (http://www.talete.mi.it/). After removing the

descriptors showing 0 variance, a table of 1911 descriptors for 205 ligands was obtained. In addition to these, we estimated the

air/mucus partition coefficients (Kam) of the odorants as done previously (Rygg et al., 2017; Scott et al., 2014). Briefly, we calculated

the air/water partition coefficients (Kaw) for each odorant from the Henry’s Law constants obtained using the HENRYWINmodel in the

US EPA Estimation Program Interface (EPI) Suite (version 4.11; www.epa.gov/oppt/exposure/pubs/episuite.htm). Then, we

computed the air/mucus partition coefficients (Kam) according to the formula:

LogðKamÞ = 0:524,LogðKawÞ ,LogðKowÞ
where Kow indicates the octanol/water partition coefficient, which were obtained using the KOWWIN model in the EPI Suite.

To increase the robustness of our correlation analysis, we removed the descriptors with 20 or more identical values across our set

of ligands, andwe initially considered only the ligands having 2 ormore known cognate receptors; these filters gave us 1,210 descrip-

tors (including Kam) for 101 ligands.

We performed Spearman’s correlation tests between the physicochemical descriptors and mean 3D index of the cognate Olfrs,

and we considered as statistically significant those correlations with FDR <0.05 (see Table S6). The descriptors with the largest

correlation coefficients were Kam (rho = 0.55, p = 1 3 10-7) and ATSC2s (Centred Broto-Moreau Autocorrelation of lag 2 weighted

by I-state, rho = �0.56, p = 2 3 10-7). We obtained statistically significant correlations between Kam and the mean 3D indexes

also when excluding Olfrs with 3D indexes predicted by Random Forest (Rho = 0.48, p value = 2 3 10-6, based on 87 ligands; Fig-

ure S5B) or excluding class I Olfrs (Rho = 0.5, p value = 1 3 10-7, based on 101 ligands; Figure S5C).

In-situ hybridization
In-situ hybridization was basically performed as previously described (Ibarra-Soria et al., 2017). Adult 12-week-old male C57BL/6J

mice anesthetized, and then perfused with 4% paraformaldehyde. The snouts containing the OM were dissected out, decalcified in

RNase-free 0.45M EDTA solution (in 13 PBS) for two weeks – the bone and tissue encapsulating the OM are necessary to preserve

the OM tissue integrity during the ISH. Next, the decalcified snouts were cryoprotected in RNase-free 30% sucrose solution (13

PBS), dried, embedded in OCT embedding medium, and frozen at�80�C. Sequential 16 mm sections were prepared with a cryostat

and the sections were hybridized to digoxigenin-labeled cRNA probes prepared from the different genes using the following oligo-

nucleotides: Cytl (50-AAAGACACTACCTCTGTTGCTGCTG-30 and 50-GTAAGCAGAGACCAGAAAGAAGAGTG-30), Moxd2 (50-TGTA

CCTTTCTCCCACTCCCTATTGTC-30 and 50-CCCATGCAACTGGAGATGTTAATTCTG-30), Olfr309 (50-TACAATGGCCTATGACCGC

TATGTG-30 and 50-TCCTGACTGCATCTCTTTGTTCCTG-30), Olfr727 (50-CGCTATGTTGCAATATGCAAGCCTC-30 and 50-GCTTTGA

CATTGCTGCTTTCACCTC-30), and Olfr618 (50-CATGAACCAATGTACCTTTTCCTCTC-30 and 50-AAACCTGTCTTGAATTTGCTTTG

TC-30). The PCR products were cloned into pGEM-T Easy vector and the probes were obtained by in vitro transcription of the plas-

mids, using SP6 or T7 RNA Polymerases (Roche) and DIG RNA Labeling mix (Roche).

QUANTIFICATION AND STATISTICAL ANALYSIS

Information on gene expression thresholds for spatial differential expression analysis is described in the method details section. The

presence of a spatial signal along the 3 axes was verified via the Moran’s I statistic (see relevant section above). The presence of
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spatial non-randompatternswas tested using the Ljung-Box test and the resulting p valueswere adjusted using the FDRmethod (see

relevant section above). Consistency between different datasets and replicates, as well as association between independent data

were tested using Spearman correlation tests. Mann-Whitney U tests were employed to test the statistical significance of differences

between two distributions. Finally, a cross validation test was used to quantify the accuracy of our Random Forests model through

the root mean square error (RMSE). Statistical tests were performed using R (version 4.1.2). Statistical details are reported in theMain

text, Figures and Figure legends, the STAR methods section and supplementary tables. N represents the number of biological rep-

licates (animals) we analyzed. Boxplots are centered at themedian of the distribution, the bottom and top of the box represent the 1st

and 3rd quartiles respectively, and the whiskers extend for an additional 1.5 times the interquartile range.
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SUPPLEMENTAL FIGURES  

 

Figure S1. TOMO-seq data QC, Related to Figure 1 and Table S1. (A) Boxplots showing the distributions of the 

log10 total number of reads per sample in each axis (DV = dorsal-ventral; AP = anterior – posterior; LML = lateral-

mid-lateral). (B) Boxplots of percentage of uniquely mapped reads per sample per axis. (C) Boxplots of distributions 

of log10 detected genes per sample per axis. (D) Boxplots of percentage of mitochondrial reads per sample per axis. 

(E) Boxplots showing the distribution of the Moran’s I statistics calculated for the top 100 Highly Variable Genes 

per axis. P-values are computed for each gene and then combined with the Simes’ method. The combined p-values 

are < 2.2x10-16 for all axes. (F) Normalized expression of canonical OM spatial marker genes along the three axes. 

Red line showing fits with local polynomial models.  
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Figure S2. Spatial differential expression analysis, Related to Figure 2 and Table S2. (A) Schematics of 

strategy to find spatially differentially expressed genes; as an example, data for Acsm4 along the dorsal-ventral (DV) 

axis is shown: Gene expression was binarized according to whether the expression per slice was higher or lower 

than the median expression (red horizontal line). Then, we computed the autocorrelation function for different 

values of the lags, and we applied the Ljung-Box test to verify whether the autocorrelation values are significantly 

higher than zero. (B) Box plots of example genes’ expression (log10 reads-per-million, RPMs) distributions in 

different cell types. None of these genes is expressed in mOSNs (INP = Immediate Neuronal Precursors; GBC = 

Globose Basal Cells;  mOSNs = mature Olfactory sensory neurons; iOSNs = immature Olfactory Sensory Neurons; 

MVC = Microvillous Cells; iSC = Immature Sustentacular Cells; mSC = Mature Sustentacular Cells; HBCs = 

Horizontal Basal Cells). (C) Spatial gene expression trends along each axis of the example genes shown in panel B.  

(D) Heatmap showing the log2 enrichment for the intersection between different gene clusters (indicated by colored 

circles) across pairs of axes, after excluding Olfr genes. (E) Heatmaps showing normalized mean expression of the 

neuronal activity marker genes listed in Table S2 from (Wang et al., 2017) along the three axes. (F) We used cell 

type deconvolution analysis to estimate the cell type composition per section along the three axes. The red line 

marks the fit with local polynomial models. 

  

55



 

Page 4 of 7 

 

 

Figure S3. Olfr genes 3D zones, Related to Figure 3. (A) Log-likelihood values for fits with LDA models as a 

function of the number of zones. (B) Bar plot showing the degrees of belonging of Olfr genes with overlapping 

spatial patterns (Miyamichi indexes of 1, 1.3 and 2 respectively). (C) Distribution of entropy values of our 689 

spatially differentially expressed Olfrs. The Olfrs with entropy values less than 1 bit (vertical red line) can be 

considered to fit mostly in one zone. (D) Bar plot showing the degrees of belonging of Moxd2.  
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Figure S4. Olfr 3D index prediction, Related to Figure 4 and Tables S3 and S4. (A) Root mean square error 

(RMSE) per iteration of the cross-validation test for the Random Forest model used to predict 3D indexes. (B) 

Scatter plot illustrating the comparison of our 3D indexes versus the “Zolfr indexes” defined by (Zapiec and 

Mombaerts, 2020) from ISH data. For this comparison, these zones were numbered from 1 to 9 from the most dorsal 

to the most ventral. Black circles indicate Olfrs detected in our dataset; green circles are Olfrs for which indexes 

were predicted with Random Forest. The correlation coefficients computed separately on these two sets of Olfrs are 

respectively rho=0.92, p-value<2x10-16 and rho=0.44, p-value>0.05. (C) Scatter plot showing the correlation of our 

3D indexes with the “Tan Indexes” estimated by (Tan and Xie, 2018), who performed RNA-seq on 12 samples at 

different positions along the dorsal-ventral axis of the OM and estimated indexes using as reference the ~80 Olfrs 

analyzed in (Miyamichi et al., 2005) via ISH. Black circles indicate Olfrs detected in our dataset; green circles are 

Olfrs for which indexes were predicted with Random Forest. The correlation coefficients computed separately on 

these two sets of Olfrs are respectively rho=0.95, p-value<2x10-16, and rho=0.68, p-value < 2x10-16.(D-F) In-situ 

hybridization experiment validating the predicted 3D spatial expression patterns for Olfr309 (D), Olfr727 (E), and 

Olfr618 (F). Note that Olfr618 is expressed in Zone 1, consistent with its predicted spatial expression pattern and 

calculated 3D index of 7.42 (Figure 4 N, O). Purple arrowheads indicate the location of ISH labeled cells. The 

dotted outline indicates the borders of the OM dissected and used in the RNA-seq experiments and for the 

construction of the 3D model.  
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Figure S5. Physiological role of the zones, Related to Figure 6 and Table S6. Scatter plot illustrating the 

correlation between ATSC2s of the odorants and the average 3D indexes of their cognate Olfrs. Only odorants for 

which we know at least two cognate Olfrs (110) were used here. Odorants are colored according to the zone they 

belong to (defined as the zone with the highest average degree of belonging computed over all cognate receptors).  

(B) Scatter plot illustrating the correlation between air/mucus partition coefficients of the odorants and the average 

3D indexes of their cognate Olfrs. Only odorants which are detected by Olfrs present in our TOMO-seq dataset (87) 

were used here. (C) Scatter plot illustrating the correlation between air/mucus partition coefficients of the odorants 

and the average 3D indexes of their cognate Olfrs. Only odorants which are detected by Class II Olfrs (101) were 

used here. 
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Totipotency is the ability of a cell to give rise to a full organ-
ism1,2 and encompasses the broadest cellular plasticity in the 
mammalian body. Totipotency is a transient feature of the 

cells in the early embryo, which in mice is limited to the zygote 
and 2-cell embryo, because only the blastomeres of these stages 
can autonomously generate a full organism3–5. As development 
progresses, totipotency is lost and cellular plasticity is gradually 
reduced. Three days after fertilization, the blastocyst forms and plu-
ripotent cells emerge within the inner cell mass (ICM)2. In contrast 
to totipotent cells, pluripotent cells can no longer contribute to the 
extra-embryonic derivatives of the trophectoderm6.

Pluripotent embryonic stem (ES) cells derive from the ICM. 
The establishment of ES cell lines over 30 years ago7 has enabled 
their use as model system to study pluripotency. Depending on the 
culture conditions, ES cell cultures can be highly heterogeneous, in 
which distinct cell populations with diverse developmental poten-
tials coexist. Among these, cells resembling the blastomeres of 
2-cell stage embryos, referred to as ‘2-cell-like-cells’ (2CLCs), arise 
spontaneously, constituting less than 1% of the cells8. 2CLCs share 
several features with 2-cell stage embryos, including a ‘2 C’ tran-
scriptional program, characterized by genes expressed upon zygotic 
genome activation (ZGA), which occurs in late 2-cell embryos8–10. 
This includes the transcription factor ZSCAN411 and retrotrans-
posons from the MERVL family12. In addition, 2CLCs recapitulate 
other features of 2-cell embryos including their chromatin acces-
sibility landscape9, greater global histone mobility13 and the capacity 
to contribute to extra-embryonic tissues8.

Although not strictly totipotent, 2CLCs are considered 
totipotent-like cells and are therefore a powerful cellular model to 

study molecular features related to totipotency. 2CLCs emerge most 
often from naive ES cells, but downregulate protein levels of pluri-
potency factors10. Upon exit from pluripotency, 2CLCs arise from 
an intermediate cellular population characterized by the expres-
sion of ZSCAN4. The number of ZSCAN4+ cells fluctuates in cell 
cultures, and can increase following changes in metabolites in the 
medium or the addition of signaling molecules such as retinoic acid 
(RA)14,15. Much effort has been made towards understanding the 
mechanisms regulating the transcriptional program in 2CLCs and 
in 2-cell stage embryos8–10,16–21. However, it is still unclear how 2CLCs 
arise, and the factors that activate the 2-cell program and regulate 
ZGA in vivo remain elusive. Thus, identifying conditions that can 
robustly induce and stably maintain 2CLCs in culture can shed light 
into their regulatory networks and potentially uncover key factors 
activating the earliest developmental program in mammals.

Results
Low concentrations of RA induce 2CLCs. To identify the molecu-
lar pathways underlying 2CLC identity, we performed a large-scale, 
small-molecule screen using an ES cell line with a stable inte-
gration of the ‘2C::tbGFP’ reporter, driving turbo GFP expres-
sion under MERVL long-terminal repeat (LTR; Supplementary 
Fig. 1a), used to identify 2CLCs8–10,16,17. We set up a pilot screen 
with 1,280 FDA-approved compounds using the percentage of 
tbGFP-expressing cells as primary readout. As a positive control 
for 2CLC induction we used acetate14. Our pilot set-up performed 
robustly across experiments (Supplementary Fig. 1b–d). We then 
screened 30,000 compounds from a diversity library and obtained 
393 hits (Supplementary Fig. 1b), which we further assayed in 
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triplicates and under two concentrations, incorporating ZSCAN4 
expression as additional readout. This resulted in 16 confirmed 
hits, which we tested in a tertiary screen using a concentration 
gradient and a viability test. In general, higher concentrations of 
these 16 hits led to reduced cell numbers (Supplementary Fig. 1e),  
suggesting dose-dependent toxicity. The tertiary screen identi-
fied three retinoids as major hits for their ability to increase the 
number of 2CLCs: RA, isotretinoin and acitretin (Supplementary 
Fig. 2a,b). Because RA is the only natural retinoid among them, 
we focused primarily on RA for further studies. We validated the 
screening using fluorescence-activated cell sorting (FACS), which 
confirmed that RA induces 2CLCs, with an effect size of ~10-fold 
(Supplementary Fig. 2c).

Next, we characterized the conditions that allow robust 
reprogramming to 2CLCs by RA. We also aimed to reduce the 
DMSO concentration because DMSO hampers 2CLC emergence 
(Supplementary Fig. 2c). Because, in our screen, we observed 2CLC 
induction at the lowest RA doses, we probed these RA concentra-
tions with reduced DMSO concentrations and different treatment 
lengths (Fig. 1a). Remarkably, we identified conditions under which 
RA induced a more than 50-fold increase of 2CLCs (up to 30% of 
the culture; Fig. 1b). Although we observed an increase in 2CLC 
induction with higher RA concentration and length of treatment, 
just 30 min of RA treatment at the lowest concentration (0.16 µM) 
robustly increased (approximately fourfold) 2CLCs (Fig. 1b). We 
obtained similar results, albeit with slightly lower induction rates, 
for the other retinoid, acitretin (Supplementary Fig. 3a).

RA has been used for decades to induce ES cell differentiation22, 
which appears at odds with its ability to induce 2CLCs. However, 
RA induces differentiation at higher doses (1–10 µM) than those we 
report here to induce 2CLCs, and when added for longer time peri-
ods. Indeed, increasing the RA concentration (up to 10 µM) did not 
lead to a higher proportion of 2CLCs (Fig. 1c). Instead, we observed 
maximal 2CLC induction at 0.53 µM RA, and higher concentrations 
gradually decreased this effect (Fig. 1c). Thus, RA mediates 2CLC 
reprogramming most efficiently at lower concentrations. 2CLCs 
induced with RA express 2CLC markers such as ZSCAN4 (Fig. 1d). 
The simultaneous addition of RA or acitretin with acetate—also 
known to induce 2CLCs14—resulted in a synergistic effect, lead-
ing to a conversion of more than 40% of the ES population into 
2CLCs (Fig. 1e and Supplementary Fig. 3b). We next addressed 
whether RA plays a role in the transition from ZSCAN4+ cells to 
2CLCs. We used a double ‘2C’ and Zscan4 reporter cell line10, sorted 
Zscan4+/2C::tbGFP− cells, and treated them with RA. RA treat-
ment increased the number of 2CLCs arising from ZSCAN4+ cells  
(Fig. 1f), and induction of 2CLCs from ZSCAN4+ cells was blocked 
by an antagonist of RA signaling (Fig. 1f). These data indicate that 
RA promotes the transition to the 2CLC state from the intermediary 
ZSCAN4+ cell population. Thus, we conclude that low doses of RA 
robustly induce 2CLC reprogramming.

The RA pathway is active in spontaneously emerging 2CLCs. We 
next explored whether RA signaling is responsible for the sponta-
neous emergence of 2CLCs. Analysis of 2CLC RNA-seq datasets16 
revealed an increase in the expression of some of the genes encoding 
proteins mediating the conversion of retinol to RA, such as RDH10 
and ALDH1A2 and ALDH1A323. The nuclear receptors RAR (reti-
noic acid receptor) and RXR (retinoid X receptor) also showed 
increased expression in 2CLCs (Fig. 2a). This suggests that the RA 
pathway might be active in 2CLCs, and possibly also in totipotent 
cells in vivo.

To investigate the mechanism whereby RA induces 2CLCs, we 
disrupted the RA signaling and degradation pathways. First, we 
disrupted cellular RA metabolism by perturbing RA degradation 
through the downregulation of CRABP1, which mediates RA clear-
ance (Fig. 2b)24. siRNA for Crabp1 increased 2CLC induction in 

response to RA (Fig. 2c and Supplementary Fig. 4a) and led to a 
strong upregulation of Zscan4 and endogenous Mervl transcripts 
(Fig. 2d). Importantly, Crabp1 downregulation also increased the 
2CLC population in control conditions (Fig. 2c), indicating that the 
RA pathway might be involved in triggering spontaneous repro-
gramming of 2CLCs. Second, we addressed whether 2CLC induc-
tion relies on nuclear RA function. We performed siRNA against the 
RA importers CRABP2 and FABP5, which bind RA and translocate 
into the nucleus to facilitate RA binding to RAR or PPAR, respec-
tively, enabling transcriptional activation of RA-response genes24 
(Fig. 2b). Downregulation of Crabp2 or Fabp5 did not prevent 2CLC 
induction and resulted instead in a small, reproducible increase in 
RA-mediated 2CLC reprogramming (Fig. 2e). We observed simi-
lar results, albeit not significant, without RA addition (Fig. 2e). The 
slight increase in 2CLC was accompanied by an increase in Zscan4 
and Mervl expression (Fig. 2f). Because altering the levels of the 
nuclear RA importers affects 2CLC number, these results suggest 
that the RA pool in the nucleus plays a role in 2CLC induction.

The transcription factor RARγ mediates 2CLC reprogramming. 
We next addressed whether 2CLCs depend on downstream tran-
scriptional activity of RA. Following RA import into the nucleus, RA 
binds to RARs and RXRs25. In the canonical pathway, these recep-
tors form heterodimers upon ligand binding and activate transcrip-
tion of targets containing retinoic acid response elements (RAREs). 
RXRs can also form non-canonical heterodimers with other nuclear 
receptors26. Thus, we tested whether specific transcription factors 
are necessary for RA-induced 2CLC reprogramming. We first asked 
whether 2CLC induction by RA and acitretin is affected by a gen-
eral RAR antagonist, AGN19310927,28. AGN193109 clearly blocked 
2CLC induction by RA and acitretin (Fig. 2g,h), indicating that 
2CLC reprogramming upon retinoid stimulation depends on RAR 
activity. Interestingly, AGN193109 also reduced the effect of acetate 
on 2CLCs (Fig. 2g,h), suggesting that 2CLC induction by acetate 
is mediated partly through RAR activity. Importantly, addition of 
AGN193109 led to a significant reduction of the endogenous 2CLCs 
in control conditions, leading to a practically undetectable 2CLC 
population (Fig. 2g,h). Consistently, AGN193109 abolished the effect 
of Crabp1, Crabp2 and Fabp5 siRNA on 2CLC induction in con-
trol conditions and upon RA stimulation (Supplementary Fig. 4b).  
These results indicate that RAR activity mediates endogenous and 
RA-induced 2CLC reprogramming, pointing towards a key role for 
the RA pathway and its receptors in the core 2CLC network.

We next investigated whether RA activity signals through RAR 
homodimers or RAR/RXR heterodimers by treating ES cells with 
RXR antagonists in combination with RA. In contrast to the RAR 
antagonist (AGN193109), neither of the RXR antagonists tested 
affected 2CLC induction (Fig. 2i), suggesting that a non-canonical 
RAR dimer mediates RA activity during 2CLC induction. Because 
AGN193109 inhibits all RAR subtypes (α, β and γ), we next deter-
mined which RAR subtype is necessary for 2CLC induction. 
Inhibiting RARα and RARβ decreased RA-mediated 2CLC induc-
tion slightly, but did not abolish it (Fig. 2j). However, blocking 
RARγ with LY2955303 had the strongest effect in inhibiting 2CLC 
emergence, with an almost complete disappearance of detectable 
2CLCs in control conditions, and a dramatic reduction upon RA 
stimulation (Fig. 2j,k and Supplementary Fig. 4c). Accordingly, 
RARγ participates in 2CLC induction by RA and in the spontane-
ous emergence of 2CLCs.

To test whether RA can activate transcription in 2CLCs, we used 
a RARE reporter, whereby a minimal promoter (cytomegalovirus, 
CMV) and an upstream RARE29 drive GFP expression (Fig. 2l), which 
we transfected into a 2C::tdTomato ES cell line16. RARE reporter 
activity increased upon RA addition compared to the control plas-
mid containing the minimal promoter alone. In addition, the 2CLC 
population (tdTOMATO+) contains GFP+ cells (~25% of the cells; 
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Fig. 2l). Altogether, this indicates that endogenous 2CLCs possess 
RARE activity and that the fraction of 2CLCs showing this activity 
increases upon RA stimulation. To investigate this further, we asked 
whether genes expressed in 2CLCs contain RARE motifs by examin-
ing 2CLC-regulatory regions from assay for transposase-accessible 
chromatin sequencing (ATAC-seq) datasets30. The RARE motif was 
significantly enriched in 2CLCs compared to a random distribu-
tion, which appeared both in the ‘gained’ and ‘lost’ peaks compared 
to ES cells (Fig. 2m). The RARE motif in 2CLC-specific peaks was 
also significantly enriched compared to ATAC-seq peaks shared 
between 2CLCs and ES cells (P = 1.14 × 10−95). We obtained similar 
results in ES cell-specific peaks (P = 1.05 × 10−132). Thus, enrichment 
of the RARE motif in accessible regions in 2CLCs correlates with 
the RARE activity observed in 2CLCs and suggests that RA activ-
ity functions through the binding of RARE elements in ES cells to 
induce 2CLC reprogramming.

RA induces 2CLC reprogramming without inducing differentia-
tion. 2CLCs arise preferentially from naive ES cells10. Because RA 
promotes ES cell differentiation22, we next addressed whether the 
ability of RA to reprogram 2CLCs depends on culture conditions. 
We tested conditions that promote (1) naive, ground-state pluri-
potency (+LIF (leukemia inhibitory factor) and +2i), (2) primed 
pluripotency (+LIF without 2i) or (3) exit of pluripotency towards 
differentiation (withdrawal of LIF and 2i). We treated ES cells with 
RA for one to five days and quantified 2CLCs (Fig. 3a). For the 
three conditions analyzed, 2CLC induction was highest 48 or 72 h 
following RA addition, beyond which timepoint the 2CLC popu-
lation gradually decreased (Fig. 3a). Although the addition of 2i 
decreased the number of RA-induced 2CLCs, LIF removal also led 
to a decrease in the percentage of 2CLCs (Fig. 3a). Of the three con-
ditions, the highest reprogramming efficiency by RA was observed 
when LIF was maintained, but 2i was removed (Fig. 3a). These data 
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suggest that a constant pool of pluripotent cells is required for 2CLC 
reprogramming upon RA addition and that, upon longer treatment, 
ES cells start to differentiate and are no longer able to transition 
towards the 2CLC state. Next, we determined the time it takes for 
ES cells to reprogram into 2CLCs in response to RA by adding RA 
to the medium for only 2 h and analyzing the percentage of 2CLCs 
at several timepoints thereafter (Fig. 3b). We first detected 2CLC 
induction 18 h after treatment and maximal induction 48 h after RA 
removal, suggesting that short exposure to RA induces reprogram-
ming a few hours after the pulse. Overall, a short RA treatment is 

sufficient to robustly induce 2CLCs and RA may be important early 
during the reprogramming process.

The above results indicate that low RA concentrations robustly 
induce 2CLC reprogramming under a defined temporal window. 
To better understand how RA induces 2CLCs, we performed sin-
gle cell (sc) RNA-seq at 0, 2, 12 and 48 h of RA treatment (Fig. 3c). 
We also analyzed cells cultured under identical RA conditions, but 
in the absence of LIF, as a reference for cells undergoing differen-
tiation31 (Fig. 3c). We sequenced 14,742 cells across timepoints, 
of which 11,432 passed stringent quality criteria (Supplementary  
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FACS, 48 h after treatment. Mean values of the indicated replicates are shown. P values were calculated by two-sided Mann–Whitney test. i, Induction of 
2CLCs upon treatment with RAR and RXR antagonists. The percentage of 2CLCs was quantified by FACS, 48 h after treatment. Mean ± s.d. values of the 
indicated replicates are shown. j, Representative fluorescence images of ES cell colonies harboring the 2C::tbGFP reporter, 48 h after treatment with the 
indicated antagonists and RA. Scale bar, 100 µm. k, Induction of 2CLCs upon treatment with LY2955303. The percentage of 2CLCs was quantified by FACS, 
48 h after treatment. The mean of the indicated replicates is shown. P values were calculated by two-sided Mann–Whitney test. l, Percentage of 2CLCs 
displaying RARE activity. The percentage of 2CLCs (tdTOMATO+) and ES cells (tdTOMATO−) with RARE activity (GFP+) was quantified by FACS, 48 h after 
RARE::EGFP reporter transfection and 24 h after RA treatment. The mean of the indicated replicates is shown. m, RARγ binding motif enrichment in open 
chromatin regions, using 2CLC and ES cell specific peaks. Dot size: −log10(P value).
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Fig. 5a,b). Clustering all data points cultured with RA and LIF 
revealed six clusters, visualized using uniform manifold approxi-
mation and projection (UMAP; Fig. 3d). These clusters (A–F) 
corresponded roughly to (A) cells with high expression levels of 
pluripotency factors (Rex1/Zfp42, Sox2, Nanog); (B) cells with a 
more intermediate expression level of pluripotency factors, pre-
sumably exiting pluripotency; (C) a cluster of ‘RA-responsive’ 
cells exclusively present in the 48 h RA treatment, which express 
low levels of 2CLC markers such as Zscan4a,c,d,e and Gm47924; 
(D) and (E) cells expressing 2CLC markers, such as Zscan4a,c,d,e, 
Gm47924 and Tcstv1; (F) cells expressing early differentiation 
markers (Gata6, Sox17, Sox7) (Fig. 3e–h and Supplementary 
Fig. 5c). The transcriptional differences between the clusters 
extended beyond the known 2CLC and pluripotency markers 
(Supplementary Fig. 5c and Supplementary Table 1).

We analyzed each timepoint individually based on the six clusters 
identified, which comprise all cellular heterogeneity across time-
points. To assess whether any cluster represents the 2CLC popula-
tion, we plotted 2C::tbGFP and Zscan4 expression over the UMAP 
(Fig. 3g). Both tbGFP and Zscan4 were expressed highest in clusters 
D and E in all timepoints, indicating that unbiased clustering iden-
tifies 2CLCs based on transcriptional data (Fig. 3e). In agreement 
with our observations above, the number of 2CLCs (GFP+ cells) was 
maximal in the 48 h RA-treated timepoint, reaching up to 60% of 
the population (Fig. 3g,h and Supplementary Fig. 5d). Accordingly, 
Zscan4+ cells represented almost 80% of the cells captured at this 
timepoint (Supplementary Fig. 5e).

Differential gene expression (DE) analysis between clus-
ters revealed the ‘2C’ signature in clusters D and E (Fig. 3h, 
Supplementary Fig. 5c and Supplementary Tables 2–7), which 
contained genes expressed in 2-cell embryos, including Zscan4, 
Tcstv1 and Gm20767. The gene signature specific to cluster D over-
lapped significantly with that of cluster E (Fig. 3f; Fisher’s exact test 
P < 2.2 × 10−16). This indicates that endogenous 2CLCs (cluster E, 
already detected in early timepoints), overall, share the transcrip-
tional profile of RA-induced 2CLCs (cluster D, upon induction 
at 48 h), including expression of Dux (Supplementary Fig. 5f).  
We also identified new 2CLC markers (Supplementary Tables 2–7),  
such as Tmem72, a transmembrane protein of unknown func-
tion (Supplementary Fig. 6a,b). The RA-responsive cluster (clus-
ter C) emerging at 48 h displayed a partial ‘2C’ signature too 
(Supplementary Fig. 6c). This includes expression of 2C::tbGFP and 
Zscan4a,c,d,e, albeit at low levels, as well as Tcstv1 and Gm47924 
(Fig. 3e and Supplementary Fig. 5c).

In addition to the 2CLC clusters, the two clusters comprising 
pluripotent ES cells exhibiting high and medium levels of Rex1 
and Nanog (clusters A and B) were consistently present across 
early timepoints (0, 2 and 12 h) and represented the majority of the 
cells at these timepoints (Fig. 3g). Specifically, at time 0 h, the two  

largest clusters expressed pluripotency markers, while the 2CLC 
cluster exhibited lower expression of pluripotency genes (Fig. 3h), 
as expected8,10. With longer timepoints with RA exposure, pluri-
potency markers expression decreased and, by 48 h, the number 
of 2CLCs increased drastically and a cluster of cells expressing dif-
ferentiation markers emerged (cluster F; Fig. 3g,h). Importantly, 
the 2CLCs and the differentiating cluster do not share expression 
patterns and are clearly distinguishable from each other (Fig. 3g,h).  
This was further demonstrated when comparing scRNA-seq pro-
files of cells grown for 48 h with RA with LIF and without LIF  
(Fig. 4a). LIF removal resulted in a larger population of cells 
undergoing differentiation, visible as a cluster of cells expressing 
markers like Gata6 (Fig. 4a,b). In line with our results above, LIF 
removal resulted in fewer 2CLCs compared to cells grown in LIF, 
upon RA stimulation (Fig. 4b). Importantly, the 2CLC cell popu-
lation (tbGFP+ and Zscan4+) did not overlap with the population 
of differentiating precursor cells (Gata6+) under these conditions 
either (Fig. 4a). We note that another feature that distinguishes 
2CLCs (clusters D and E) from differentiating cells (cluster F) is the 
expression of some RA-signaling components, such as Rxra, which 
display higher expression levels in 2CLCs (see below and Fig. 5a). 
Thus, cells differentiating upon RA addition constitute a distinct 
population from 2CLCs, and ES cells can respond differently to RA 
stimulation, thereby generating different populations and potential  
cell trajectories.

To address whether RA elicits different cellular trajectories we 
performed RNA velocity analysis32. We first asked whether the 
scRNA-seq transcriptional dynamics faithfully recapitulates the ori-
gin of the 2CLCs that emerge from ES cells8,10. RNA velocity on all 
early timepoints (0, 2 and 12 h of RA treatment) revealed indeed a 
directional flow emerging from ES cells (Fig. 4c). In addition, we 
observed arrows denoting flow between clusters A and B, sugges-
tive of fate transitions between naive (Nanog/Rex1-high) and more 
primed (Nanog/Rex1-low) ES cells, as expected33,34. We asked if tra-
jectories for 2CLCs versus differentiation in response to RA can be 
distinguished based on transcriptional dynamics. We applied RNA 
velocity to our later timepoint, which revealed a strong separation 
between the path of differentiating precursors (purple, cluster F) and 
that of 2CLCs (green, cluster D) (Fig. 4d). Thus, 2CLCs undertake a 
clearly distinct trajectory to that of early differentiating precursors.

Next, we explored potential reasons why cells may undertake 
these two different trajectories. We used Slingshot to map the tra-
jectory depicting the transition towards 2CLCs (cluster D) and the 
trajectory towards differentiation (cluster F) across the late time-
point. We then asked whether genes are differentially expressed 
along each trajectory. Different genes become activated during each 
transition, displaying either a sharp or a more gradual increase in 
gene expression (Fig. 4e,f). Among these, Gsk3b is downregulated 
in the 2CLC trajectory, suggesting potential differences in Wnt 

Fig. 3 | 2CLC induction by RA is time-regulated and captured by scRNA-seq. a, Left: experimental design. ES cells containing the 2C::tbGFP reporter were 
treated for a range of time periods with RA under the indicated culture conditions. 2CLC (GFP+) induction was measured for all samples at the same end 
point by FACS. Right: percentage of 2CLCs (GFP+) determined by FACS. Each line with connected dots corresponds to the measurement of one replicate.  
b, Left: experimental design. ES cells containing the 2C::tbGFP reporter were treated with RA for 2 h, and the emergence of 2CLCs was measured at 
different timepoints after treatment. Right: percentage of 2CLCs (GFP+) quantified by FACS. The mean of the indicated replicates (represented by 
individual dots) is shown. c, Experimental design for scRNA-seq. ES cells containing 2C::tbGFP reporter were treated with RA for different time periods. 
d, UMAP plot from scRNA-seq comprising all cells grown with serum/LIF and treated with RA for 0 h, 2 h, 12 h or 48 h. Cells are colored based on the 
clusters identified by the Leiden algorithm. e, Violin plots showing the expression levels of selected marker genes (rows) in each cluster (columns): 
Zfp42/Rex1, marker of naive ES cells (corresponding to cluster A); Zscan4 (computed as the sum of expression counts of genes in the Zscan4 family) and 
tbGFP (MERVL) marking 2CLCs (clusters D and E); Gata6 for differentiating cells (cluster F). f, Venn diagram comparing upregulated genes in cluster D 
and cluster E. g, UMAP plots depicting scRNA-seq data from cells grown in LIF and RA for different periods of time (rows) and colored by cluster (left 
column), by expression level of GFP (MERVL) (central column) and by expression level of Zscan4 (calculated as the sum of the levels of genes from the 
Zscan4 family; right column). h, Heatmaps displaying the expression levels of selected marker genes in cells at different times after RA treatment as in g 
(0 h, 2 h, 12 h, 48 h). Zfp42/Rex1 is a marker of naive ES cells; Sox2 and Nanog mark ES cells; Tcstv1, Zscan4a, Zscan4c, Zscan4d and Zscan4e are upregulated 
in 2CLCs; Gata6, Sox17 and Sox7 display higher expression levels in differentiating cells.
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signaling underlying the differential response to RA (Fig. 4e and 
Supplementary Table 8). DE analysis of genes displaying opposite 
expression changes across the two trajectories identified 104 genes 
upregulated in the trajectory towards 2CLCs and downregulated 

towards differentiation (Fig. 4g). Furthermore, 750 genes were 
downregulated in the trajectory towards 2CLCs but upregulated 
towards differentiation. Altogether, 854 genes displayed tran-
scriptional changes in response to RA across both trajectories. 

a

b c

d

RA 0 h
LIF

RA 2 h
LIF

RA 12 h
LIF

RA 48 h
LIF

g h

0 2 4 6

0

10

20

30

40
LIF 2

 2
L

 
F

0 2 4 6
0

10

20

30

40

+LIF–2i

2

2

–LIF–2i

P
er

ce
nt

 2
C

LC
 (

G
F

P
+
)

A
B
C
D

E
F

L

UMAP1

U
M

A
P

2

e f

1,248

83
591

C  
D C

E

UMAP1

U
M

A
P

2

L tbGFP Zscan4

Zscan4
Tcstv1
Tcstv3
Zfp352
Sp110
Spz1
Naalad2
Nelfa
Tmem72
...

Zfp42
Sox2
Nanog
Tcstv1
Zscan4a
Zscan4c
Zscan4d
Zscan4e
Gata6
Meis1
Sox17
Sox7

A B C D E F

2.5
0

5
0

0

0

25

2.5

D D N = 3

0 µM

0.53 µM

N = 30 h 6 h 18 h 24 h 48 h
0

5

10

15

20

25
DMSO
RA 0.53 µM

A B C D E F

Zfp42

GFP

Zscan4

Gata6

Zfp42
Sox2
Nanog
Tcstv1
Zscan4a
Zscan4c
Zscan4d
Zscan4e
Gata6
Meis1
Sox17
Sox7

Zfp42
Sox2
Nanog
Tcstv1
Zscan4a
Zscan4c
Zscan4d
Zscan4e
Gata6
Meis1
Sox17
Sox7

Zfp42
Sox2
Nanog
Tcstv1
Zscan4a
Zscan4c
Zscan4d
Zscan4e
Gata6
Meis1
Sox17
Sox7

Cluster

Cluster

ln(norm
alized counts)

0 8

0

1

0 35
ln(normalized counts)

FACS
0 µM

0.53 µM

0 µM

0.53 µM

Cluster

ln(normalized counts)

Days

RA
1 d

RA
2 d

RA
3 d

RA
4 d

RA
5 d

0 d

0 1 2 3 4 5

FACS

0 h 50 h
0 h

28 h 30 h 50 h

2 h 18 h

18 h
RA

40 h 42 h 50 h

2 h 6 h

6 h
RA

22 h 24 h 50 h

2 h 24 h

24 h
RA

0 h 2 h 50 h

2 h 48 h

48 h
RA

RA
2 h

2 hRA
12 h

12 h
RA

48 h
48 hRA48 h

No LIF
0 h 48 h48 h

0 h

scRNA-seq

NATuRE STRuCTuRAL & MoLECuLAR BIoLoGy | VOL 28 | JUNE 2021 | 521–532 | www.nature.com/nsmb526 66

http://www.nature.com/nsmb


ResouRceNATURE STRUCTURAL & MOLECULAR BIOLOgy

Gene list enrichment analysis revealed that GATA2 target genes 
(P value = 0.01089) were enriched in upregulated genes towards 
2CLCs, in line with the known role of GATA2 in 2CLC induction21. 
By contrast, genes upregulated towards the differentiation trajec-
tory were enriched in MAX targets (P = 4.952 × 10−24). Indeed, Max 
expression is downregulated exclusively across the 2CLC trajectory 
(Supplementary Table 8), suggesting a potential role for MAX in the 
distinctive response of ES cells to RA. Although the role of each of 
these pathways needs to be investigated, these data provide a basis 
for understanding the different responses elicited upon RA stimula-
tion in ES cells.

Early embryos display endogenous RA activity. The above results 
indicate that RA is a primary gatekeeper of 2CLC reprogramming. 
Accordingly, our scRNA-seq data reveal that components of the RA 

signaling pathway are expressed in 2CLCs (Fig. 5a). Whether such 
a signaling response is a ‘cell culture’ feature of 2CLCs or part of the 
regulatory network of totipotent cells in 2-cell embryos is unclear. 
Indeed, while RA plays a key role in cell differentiation at later devel-
opmental stages22,35, its receptors are expressed earlier36. We thus 
addressed whether the RA pathway is active in pre-implantation 
embryos. RNA-seq analysis revealed expression of proteins respon-
sible for metabolizing retinol, RA transporters and the RA nuclear 
receptors prior to the blastocyst stage (Fig. 5b). RARγ displayed the 
highest expression levels at the late 2-cell stage (Fig. 5b), suggesting 
that RA may regulate gene expression in 2-cell embryos through 
RARγ. To test this, we asked if regulatory elements in 2-cell stage 
embryos contain RARE motifs. We interrogated ATAC-seq datas-
ets37 and found that the RARγ motif is enriched in accessible regions 
in early stages compared to the ICM (Fig. 5c). The enrichment in 
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Fig. 4 | RA-reprogrammed 2CLCs differ from differentiating cells. a, UMAP plots of cells treated with RA for 48 h with LIF (left column) or without LIF 
(right column). Rows from top to bottom are colored by expression of tbGFP (MERVL), Zscan4 (marking 2CLCs) and Gata6 (marking differentiating cells). 
b, Percentages of cells where the indicated marker gene is detected (counts > 0). The left barplots refer to cells grown with LIF and the right barplots to 
cells grown without LIF; in both cases, cells were treated with RA for 48 h. c, Diffusion map with RNA velocity overlaid for cells grown in LIF and treated 
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RARE motifs was observed in 2-cell and 8-cell stage embryos, sug-
gesting that RA activity may be important during several stages of 
pre-implantation embryogenesis.

Next, we addressed whether the embryos display RA activity. 
First, we examined the localization of the nuclear RA importers, 
which translocate to the nucleus to mediate RA signaling24. Because 
CRABP2 is the RA donor for RARs and FABP5 for RXRs, we focused 
on CRABP2 and found that its mRNA is maternally deposited  
(Fig. 5b). Immunostaining revealed nuclear localization of CRABP2 
from the 2-cell stage onwards, but cytoplasmic in zygotes (Fig. 5d). 
This change in localization suggests that RA signaling may be acti-
vated at the 2-cell stage. Second, we addressed whether embryos dis-
play RA-dependent RARE transcriptional activity by microinjecting 
the RARE-GFP reporter in a late 2-cell stage blastomere (Fig. 5e). 
We monitored embryos 42–44 h later to allow for detectable GFP 
fluorescence. We detected RARE activity in the large majority of 
microinjected embryos, based on GFP fluorescence (Fig. 5f,g). This 
activity was RARE-dependent, because GFP was undetectable in 
most embryos injected with the reporter lacking RARE (Fig. 5f,g). 
Note that the fact that we did not see GFP expression in all embryos 
is expected in this type of experiment due to potential mosaicism 
upon plasmid injection38. The number of embryos expressing GFP 
was similar in controls (DMSO) and with RA (Fig. 5g), indicat-
ing that early embryos have endogenous RA activity. Thus, the 
pre-implantation embryo displays endogenous RA activity and has 
the machinery to regulate RARE-driven transcription.

Inhibiting RA activity compromises cleavage development. 
Finally, we investigated a potential role of RA signaling during the 
totipotency transition in embryos. To address whether RA signal-
ing is important for pre-implantation development, we inhibited 
RAR signaling using a RARγ antagonist. We cultured zygotes with 
LY2955303 or the vehicle (DMSO). Control embryos formed blas-
tocysts after three days (88%, n = 51). By contrast, inhibiting RARγ 
prevented developmental progression, with most embryos arrested 
at the 2-cell or 4-cell stage (78%, n = 59) (Fig. 6a,b). To investi-
gate the potential involvement of other RA receptors, we treated 
embryos with three other antagonists against RXR homo- and het-
erodimers (HX531), RARα (ER50891) or both RARβ and RARγ 
(CD2665), but the latter with much lower affinity than LY2955303 
(CD2665 Ki for RARγ is 100 times higher than LY2955303). None 
of these antagonists affected blastocyst formation, suggesting 
that only specific and robust chemical inhibition of RARγ affects 
developmental progression (Fig. 6c). To test this further we used 
siRNA against RARγ in zygotes, which led to a reduction of RARγ 
mRNA levels to ~8% of the controls (Fig. 6d). Knockdown of RARγ 
resulted in compromised developmental progression, with only 
~60% of the embryos reaching the blastocyst stage (Fig. 6e). The 
milder phenotype observed with siRNA—as opposed to the RARγ 
antagonist—may be due to either incomplete protein knockdown 
and maternal deposition of RARγ, potential compensatory effects 

of other RA receptors upon RNAi, or LY2955303 potentially target-
ing other receptors. Unfortunately, our attempts to perform a RARγ 
western blot after siRNA were unsuccessful due to the low amount 
of material. Thus, although the RARγ antagonist treatment results 
in a much stronger phenotype, our siRNA results support a role for 
RARγ in regulating early developmental progression. However, we 
cannot formally exclude the possibility that other RA receptors may 
also be involved in RA signaling in early embryos.

Blocking ZGA with a general RNA PolII inhibitor results in most 
embryos arresting at the 2-cell stage39, similarly to the phenotype 
observed upon LY2955303 treatment. Thus, we next addressed if 
inhibiting RARγ affects ZGA by analyzing MERVL expression—
a key ZGA marker—in embryos treated with LY2955303. qPCR 
revealed a striking reduction in MERVL transcripts in 2-cell embryos 
upon RARγ inhibition (Fig. 6f). These data suggest that RAR activity 
is necessary to ensure correct development prior to the 4-cell stage, 
presumably through regulation of ZGA. To address this, we per-
formed RNA-seq40 in late 2-cell embryos upon LY2955303 treatment 
(Supplementary Fig. 7a,b). DE analysis revealed no significant dif-
ferences between DMSO (vehicle) and potassium simplex optimized 
medium (KSOM) (control) embryos, so we performed all subsequent 
analyses against the DMSO group. Embryos grown with LY2955303 
displayed a transcriptional program that differed from controls 
(Supplementary Fig. 7b). LY2955303 treatment led to significant 
changes in gene expression, with 1,780 upregulated and 2,339 down-
regulated genes (log2FC > 1 and log2FC < −1, respectively; Padj < 0.05) 
(Fig. 6g and Supplementary Table 9). The majority of upregulated 
genes are normally highly expressed in zygotes and early 2-cell 
embryos (Fig. 6h), suggesting that LY2955303-treated embryos fail 
to progress into the transcriptional program of late 2-cell embryos. 
By contrast, most downregulated genes are highly expressed at the 
late 2-cell stage, which demarcates ZGA (Fig. 6h). Thus, chemical 
inhibition of RA signaling results in a failure to fully activate ZGA. 
Indeed, major ZGA genes were under-represented in the upregulated 
genes (P = 2.2 × 10−16, Fisher test) and over-represented in the down-
regulated genes (P = 2.723 × 10−11, Fisher test). Repetitive element 
expression was also affected by LY2955303, including downregula-
tion of MERVL elements (MT2B2, MT2C_Mm and several MaLR) 
(Supplementary Table 9). Overall, our data suggest that RA signaling 
can control the ‘2-cell’ transcriptional program both in vitro, in cell 
culture, as well as in vivo, in mouse embryos.

Discussion
Using a high-throughput, large-scale chemical screening, our work 
identifies a new regulatory pathway of 2CLC reprogramming and 
early mouse development. Consistent with our findings in 2CLCs, 
we identified a previously unappreciated activity of RA signaling at 
the earliest stages of embryogenesis. Thus, this work also helps to 
validate the use of 2CLCs as a model system for understanding the 
biology of the early embryo, enabling the discovery of a crucial sig-
naling pathway at this stage of development.

Fig. 5 | The RA pathway is active in totipotent cells of the mouse embryo. a, Violin plots showing the distribution of expression of RA receptors per 
cluster. The lower four genes are markers for naive ES cells (Zfp42; cluster A); 2CLCs (Zscan4 and tbGFP; clusters C, D and E); and differentiating cells 
(Gata6; cluster F). b, Box plots depicting the expression level of the indicated RA-pathway-related genes in pre-implantation embryos at zygote (n = 4), 
early 2-cell (n = 8), mid 2-cell (n = 12), late 2-cell (n = 10), 4-cell (n = 14), 8-cell (n = 28), 16-cell (n = 50), early blastocyst (n = 43), mid blastocyst (n = 60) 
and late blastocyst (n = 30) stages. The boxes denote the 25th and 75th percentiles (bottom and top of box) and median values (horizontal band inside 
box). The whiskers indicate the values observed within up to 1.5 times the interquartile range above and below the box. c, RARG motif enrichment in the 
open chromatin regions of the ±10 kb TSS by indicated developmental stage. Dot size, −log10(P value). d, Immunostaining of CRABP2 at the indicated 
developmental stages. Images are single confocal sections of single embryos. n, number of embryos analyzed. N, number of experimental replicates. 
Scale bars, 20 µm. e, Experimental design for the data in Fig. 6f,g. A RARE::EGFP reporter or a control plasmid lacking the RARE motifs was injected in one 
random blastomere of 2-cell-stage embryos. f, Representative fluorescence images of embryos with the RARE::EGFP reporter 44 h after microinjection of 
the reporter with or without RA treatment, showing embryos between late 8-cell and cavitating morula. g, Percentage of embryos expressing GFP from 
the control (CTRL) or RARE reporter. Median values of the indicated replicates (represented by individual dots) are shown. P values were calculated by 
one-sided Mann–Whitney test.
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Although several factors preventing the progression to a 2CLC 
state are known, much less is known about positive regulators 
promoting 2CLCs other than DUX9,17,41, DPPA2/4 (refs. 18,19,42) 
and miR-344 (ref. 21). Our data identify the RA signaling pathway 
as a core component of 2CLC identity and key regulator of 2CLC  

emergence. Previous work has shown that RA can increase the num-
ber of Zscan4+ cells in ES cell cultures15,43, which constitute around 
5% of the ES cell population and are an intermediate cellular state 
between ES and 2CLCs10. In contrast to 2CLCs, RAR activity is not 
necessary for the emergence of the ZSCAN4+ population, although 
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their numbers decrease when treated with a RAR inhibitor15. 
Together with previous work, our data support a model whereby 
RA induces both the ZSCAN4+ cells43 as well as the transition from 

the ZSCAN4+ state towards the 2CLC state. The identification of 
additional hits from our screening together with our findings on RA 
will enable the investigation of culture conditions to stably maintain 
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2CLCs. Our scRNA-seq dataset indicates that ES cells can under-
take several paths in response to RA signaling and that 2CLCs are a 
clearly distinguishable, non-overlapping cell population, compared 
to early differentiating precursors. The fact that we did not detect 
additional cell populations between ES cells and 2CLCs in our 
scRNA-seq and velocity analyses may suggest that reprogramming 
towards the 2CLC state involves fast cellular transitions.

Whether the ability of ES cells to adopt distinct fates in response 
to RA signaling depends on the ability of RAR to target differ-
ent genomic regions deserves further investigation. A possible 
mechanism whereby different doses of RA may cause different 
cellular responses could be the existence of different types of 
RA-responsive genes, for example, target genes with low versus 
high affinity for RARs binding, or with a different spacer length 
between the DR motifs. In such a scenario, a different output 
regarding gene expression results from different levels of transcrip-
tion factor occupancy. This phenomenon has been documented for 
other nuclear receptors44–46, but has not been explored for RAR/
RXR. Although pan-RAR antibodies have been used in the past47, 
the lack of antibodies specific for each RAR transcription factor has 
precluded this type of analysis. Notwithstanding, our observations 
that RAR motifs are significantly enriched in regulatory regions of 
2CLCs and embryos at the 2- and 8-cell stages anticipates direct 
gene regulation by RA. Binding motifs for some transcription fac-
tors important for mouse development, such as Nr5a2 and Rarg, do 
not show an enrichment in regulatory regions at the same stages 
in human pre-implantation embryos48. This suggests potential 
species-specific regulation, so a potential response to RA signaling 
of human induced pluripotent stem cells or ES cells will be exciting 
to investigate.

Identifying RA as a robust inducer of bona fide 2CLC repro-
gramming has allowed us to discover a new role for RA signaling in 
promoting the 2-cell stage program in vivo. In line with cell culture 
observations, chemical inhibition of RARγ results in developmental 
arrest, most probably due to a failure to fully trigger ZGA. Double 
compound mutants for RARα/RARγ are embryonic lethal at E7.5, 
and RARγ/RARβ double-deficient animals survive until birth49,50. 
In addition, although it is unclear whether RARγ−/− females display 
reduced fertility, they can give rise to offspring51. Thus, although 
these studies did not reveal a pre-implantation phenotype when 
knocked out zygotically, their function during early development 
may have been obscured due to maternal inheritance and redun-
dant activities. Indeed, the intricate functional redundancy of RAR 
and RXR, together with the compensatory effects by their different 
isoforms, renders their individual analysis complex35.

Altogether, our work sheds light into the regulatory networks 
underlying the reprogramming to a totipotent-like state in culture 
and suggests a previously unappreciated role for RA signaling at the 
earliest stages of mammalian embryogenesis.
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Methods
Cell culture. Cells were grown in medium containing DMEM-GlutaMAX-I, 15% 
FBS, 0.1 mM 2-beta-mercaptoethanol, non-essential amino acids, penicillin and 
streptomycin and 2× LIF over gelatin-coated plates. Medium was supplemented 
with 2i (3 µM CHIR99021 and 1 µM PD0324901, Miltenyi Biotec) for maintenance 
and expansion. The 2i was removed 24 h before starting experiments.

Flow cytometry. Before cytometry, cells were washed with PBS, trypsinized 
with trypsin-EDTA 0.1% and resuspended in 0.5% BSA PBS solution at 4 °C. 
Cells were kept on ice until sorting, performed using a BD BioSciences FACS 
Aria III. Analysis was done with FlowJo software (the gating strategy is shown in 
Supplementary Fig. 7c). For the RA effect on GFP− cells experiment, the GFP− gate 
was defined based on the fluorescence of wild-type (WT) ES cells and 2CLCs were 
removed before RA treatment. For scRNA-seq, treatments started at different 
timepoints so that all experimental conditions were collected at the same time. 
Samples were sorted to enrich the population in living single cells and library 
preparation was conducted immediately.

Real-time polymerase chain reaction. Total RNA was extracted using phenol–
chloroform extraction using TRIzol reagent (Invitrogen). Reverse transcription 
was performed with a First Strand cDNA synthesis kit (Roche) following the 
manufacturer’s instructions with random hexamers. Real-time PCR was performed 
with GoTaq qPCR Master Mix (Promega) on a LightCycler 96 Real-time PCR 
system (Roche). The relative expression level of each gene was normalized to Rps28 
and Actb. The primers used are listed in Supplementary Table 10. Data were plotted 
with GraphPad Prism.

siRNA transfection. One day before transfection, 2i inhibitors were removed. 
siRNA transfection was performed using Lipofectamine RNAi MAX (Life 
Technologies). A total of 75,000 cells were transfected per condition and well in 
24-well gelatin-coated plates, with a final siRNA concentration of 30 nM. Silenced 
Negative Control No.1 (Life Technologies) was used. The siRNAs are listed in 
Supplementary Table 9. The effect of siRNA silencing was examined three days 
after transfection and two days after RA treatment (qPCR primers are listed in 
Supplementary Table 11).

Immunofluorescence. The 2C::turboGFP cell line was cultured on gelatin-coated 
coverslips. At 48 h after RA treatment, cells were washed with PBS, fixed with 
4% PFA for 10 min at room temperature and, after four washes with PBS, 
permeabilized with 0.3% Triton X-100 for 10 min at room temperature. After 
washing with PBS, primary antibodies were incubated overnight at 4 °C, followed 
by another three washes in PBS. The antibodies used were mouse turboGFP 
(TA140041, Origene) and rabbit Zscan4 (AB4340, EMD Millipore). Secondary 
antibodies were incubated for 1 h at room temperature. Mounting was done in 
Vectashield mounting medium (Vector Labs). Images were acquired using a Leica 
SP8 confocal microscope.

Reporter cell lines. The 2C::tdTomato and 2C::turboGFP/Zscan4::mCherry 
lines have been previously described10,16. To generate 2C::turboGFP reporter, 
ES cells were transfected with a plasmid containing a destabilized NLS-tagged 
turboGFP cassette under the regulation of Mervl LTR using Lipofecramine 2000. 
A single clone was selected from successfully transfected cells and has been fully 
characterized elsewhere (Nakatani et al., manuscript in preparation).

Small-molecule screening. Plate and liquid handling was performed using 
an HTS platform system composed of a Sciclone G3 liquid handler from 
PerkinElmer with a Mitsubishi robotic arm (Mitsubishi Electric, RV-3S11), a 
MultiFlo dispenser (Biotek Instruments) as well as a Cytomat incubator (Thermo 
Fisher Scientific). Cell seeding and assays were performed in black 384-well 
CellCarrier plates (PerkinElmer, 6007558). The plates were coated with gelatin 
0.1% for 20 min at 37 °C to facilitate better cell adherence. Cells were seeded in 
384-well microplates with 10,000 cells per well. Image acquisition and image-based 
quantification was done using the Operetta/Harmony high-throughput imaging 
platform (PerkinElmer). Z′ factors were calculated according to the formula 
Z′ = 1 − (3(θp + θn)/(µp − µn)), where p is the positive control, n is the negative 
control, θ is the standard deviation and µ is the mean.

Screening assay. 2C::turboGFP ES cells were washed with 1× PBS, trypsinized 
and resuspended to a density of 90,909 cells ml−1 in cell culture medium. The cell 
suspension (10,000 cells per well; 110 µl per well) was dispensed into assay 384-well 
plates and incubated at 37 °C in 5% CO2. The same day, cells were treated either 
with compound (1 mM stock solution) dissolved in 100% dimethyl sulfoxide 
(DMSO) or DMSO alone, then 0.7 µl of compounds/DMSO were transferred to 
110 µl cell culture medium per well to keep the final DMSO volume concentration 
below 0.7%. The positive control (10,000 cells per 110 µl) with 32 mM acetate and 
0.7% DMSO was seeded separately after compound transfer in columns 23 and 24 
of the 384-well assay plates. The cells were then incubated (37 °C, 5% CO2) for 48 h 
before fixation and antibody staining. Cells were permeabilized with PBS-Triton 
0.3% for 5 min at room temperature (RT). After washing with PBS and blocking 

with PBS-BSA 1% for 1 h, primary anti-tbGFP antibody (TA140041) was added 
overnight at 4 °C. After washes with PBS, cells were incubated with Alexa488 
anti-mouse secondary antibody, for 1 h at RT. After washes with PBS, cells were 
incubated with PBS-Hoechst 33342 (1 µg ml−1) for 15 min at RT. Cells were again 
washed with PBS. Finally, plates were recorded using the automated Operetta 
microscope using the ×20 NA objective for high-resolution images (PerkinElmer). 
For quantification, six images of each condition were recorded. This resulted in a 
cell number of ~100 cells of each condition in control wells with DMSO.

Image analysis. Multiparametric image analysis was performed using Columbus 
high-content imaging and analysis software version 2.8.0 (PerkinElmer Life 
Sciences). Hoechst signal was used to detect cell nuclei using method C with the 
following parameters: common threshold (parameter determining the lower level 
of pixel intensity for the whole image that may belong to nuclei), 0.30; area (to tune 
the merging and splitting of nuclei during nuclei detection), >30 µm2; split factor 
(parameter influencing the decision of the computer of whether a large object is 
split into two or more smaller objects or not), 10; individual threshold (parameter 
determining the intensity threshold for each object individually), 0.2; contrast 
(parameter setting a lower threshold to the contrast of detected nuclei), 0.1. Next, 
the area of nuclei and the Hoechst intensity were determined and the nuclei were 
filtered by these properties (nucleus area >20 µm2 and <400 µm2; intensity > 100). 
For this subpopulation called ‘Nuclei selected’ the median intensity of the GFP 
signal was calculated and used to select the green cell population (intensity > 600). 
The percentage of the green cells was calculated. In addition, the whole image area 
was defined and the mean GFP signal was calculated to exclude wells with green 
fluorescent compounds (intensity < 400).

Embryo collection and immunostaining. Experiments were carried out according 
to valid legislation and in compliance with the local government (Government 
of Upper Bavaria). Mice were bred in a 12-h light cycle. Housing conditions were 
according to ETS 123 guidelines: 20–24 °C and 45–65% humidity. Embryos were 
collected for immunostaining as described in ref. 53 from CD1 ~6-week-old females 
that were crossed with CD1 males upon natural matings. Embryos were fixed 
immediately after collection. The zona pellucida was removed with acid Tyrode’s 
solution (Sigma), and embryos were washed three times in PBS and fixed54. After 
permeabilization, embryos were washed three times in PBS-T (0.1% Tween in 
PBS), free aldehydes were removed by short incubation in NH4Cl (2.6 mg ml−1) 
and the embryos were washed twice in PBS-T. The embryos were blocked and 
incubated with anti-CRABP2 antibody, then washed three times in PBS-T, blocked 
and incubated with the corresponding secondary antibodies (A488-conjugated goat 
anti rabbit immunoglobulin-G). After washes in PBS-T and PBS, embryos were 
mounted in Vectashield with DAPI (Vector Laboratories) and imaged under a Leica 
SP8 inverted confocal microscope using a ×63 oil objective across 0.5-μm stacks. 
Blastocysts were mounted in three dimensions and imaged across a 1-μm stack.

Microinjection and embryo manipulation. For the RARE::GFP reporter 
plasmid experiments, 2-cell-stage embryos were collected from 5–8-week-old 
F1 (CBAxC57BL/6J) females mated with F1 males 42–44 h post hCG injection. 
Ovulation was induced by injecting 10 IU pregnant mare serum gonadotropin 
(PMSG) (IDT Biologika) and human chorionic gonadotrophin (hCG) (MSD 
Animal Health) 48 h later. A single, random blastomere was microinjected with 
1–2 pl of 20 ng μl−1 of the RARE plasmid or the plasmid without the RARE 
sequences. Dextran rhodamine (1 mg ml−1) was added as the microinjection 
control. Embryos were cultured in KSOM and monitored regularly. For RNAi, 
zygotes were collected from 5–8-week-old F1 (CBAxC57BL/6J) females mated 
with F1 males at 17–19 h post hCG injection and microinjected with 1–2 pl of 
25 μM siRarg pool (Horizon Discovery M-04974-01-005) or siControl10. GFP 
mRNA (100 ng) was added as positive control for microinjection. Embryos were 
cultured in KSOM and monitored regularly. At 20 h post injection, some embryos 
were washed in PBS and frozen for qPCR. For the experiments with antagonists, 
zygotes were collected at 18 h post hCG injection and randomly allocated to the 
experimental groups, then cultured in the presence of 10 μM LY2955303, HX531, 
ER50891 or CD2665 (Tocris 3912, 2823 and 3800, respectively) in 0.05% DMSO or 
DMSO 0.05% in KSOM and scored daily for developmental progression. The data 
were plotted with GraphPad Prism.

Embryo real-time qPCR. Total RNA was obtained from 20–25 2-cell embryos 
using the Arcutus PicoPure RNA isolation kit (Applied Biosystems 12204-01). 
Reverse transcription was performed with Superscript IV reverse transcriptase 
(Invitrogen 18090010) following the manufacturer’s instructions, with random 
hexamers. Real-time PCR was performed with Roche SYBR Green I Master Mix 
(04707516001) on a LightCycler 96 real-time PCR system (Roche). The relative 
expression level of each gene was normalized to Gapdh and Actb.

Single embryo RNA-seq. Zygotes were collected at 18 h post hCG injection and 
cultured in the presence of 10 μM LY2955303 in 0.05% DMSO, 0.05% DMSO in 
KSOM or KSOM alone. Embryos were cultured until the late 2-cell stage (48 h 
post hCG), washed in PBS at 37 °C and flash-frozen in lysis buffer according 
to the Smart-Seq2 protocol. Libraries were verified using a 2100 Bioanalyzer 
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(Agilent). Samples were paired-end sequenced at PE250 on an Illumina  
NovaSeq 6000 platform.

Single-cell RNA-seq. Cells were collected after RA treatment and sorted for 
live single cells by FACS. Cell were then counted and tested for viability with an 
automated cell counter. Five thousand cells of the sample were then input into 
the 10X protocol. Gel bead-in-emulsion (GEM) generation, reverse transcription, 
cDNA amplification and library construction steps were performed according to 
the manufacturer’s instructions (Chromium Single Cell 3′ v3, 10X Genomics). 
Samples were run on an Illumina NovaSeq 6000 platform.

Gene counting. Unique molecular identifier (UMI) counts were obtained using 
the kallisto (version 0.46.0) bustools (version 0.39.3) pipeline55. First, mouse 
transcriptome and genome (release 98) fasta and gtf files were downloaded from 
the Ensembl website, and 10X barcodes list version 3 was downloaded from the 
bustools website. We built an index file with the ‘kallisto index’ function with 
default parameters. Then, pseudoalignment was done using the ‘kallisto bus’ 
function with default parameters and the barcodes for 10X version 3. The BUS 
files were corrected for barcode errors with ‘bustools correct’ (default parameters), 
and a gene count matrix was obtained with ‘bustools count’ (default parameters). 
To estimate the tbGFP read counts, we used the tbGFP sequence available from 
GenBank (ID ASW25889.1) and followed the same procedure.

Quality control and normalization. To remove barcodes corresponding to empty 
droplets, we used the ‘emptyDrops’ function from the R library ‘DropletUtils’ 
version 1.6.1 (ref. 56). For this, a lower threshold of 1,000 UMI counts per barcode 
was considered. Afterwards, quality control was performed using Python library 
‘scanpy’ version 1.4.2 (ref. 57). Cells were filtered by fraction of mitochondrial 
reads and number of detected genes. Cells having more than 10% counts mapped 
to mitochondrial genes or fewer than 1,000 detected genes were removed 
(Supplementary Fig. 4). Then data from tbGFP expression were integrated and 
count tables from each timepoint were normalized separately using the R library 
‘scran’ (version 1.14.0)58 as follows. First, the function ‘quickCluster’ was run, 
then size factors were calculated based on this clustering using the function 
‘computeSumFactors’ with default parameters. Finally, the data were normalized 
using the computed size factors.

Batch correction and regressing out of confounding effects. We performed 
batch correction on the data with LIF with the mutual nearest neighbors (MNN) 
method59 (function ‘mnn_correct’ from the ‘mnnpy’ library; https://github.com/
chriscainx/mnnpy), using as input the log-transformed normalized counts of 
the genes that were in the list of top 3,000 highly variable genes (HVGs) at every 
timepoint, as done in ref. 59 (highly variable genes were identified with the function 
‘highly_variable_genes’ in the scanpy library with the following parameters: min_
disp=0.3, inplace=False, n_top_genes=3000). Afterwards, only genes with more 
than two counts in at least two cells were kept for further analysis and the data were 
scaled using the function ‘pp.scale’ from scanpy. On this batch-corrected data, the 
number of detected genes was regressed out using the scanpy function ‘regress_out’.

Data visualization, clustering and diffusion maps. We used UMAP60 for 
data visualization (‘umap’ function in scanpy, with options n_components=2, 
min_dist=1). Leiden clustering was performed on the top 3,000 HVGs calculated 
across the whole dataset (with k = 15 and resolution = 0.4) using a correlation 
distance in the ‘pp.neighbors’ function from scanpy. To identify marker genes for 
a given cluster, first we found differentially expressed genes between that cluster 
and any other cluster (Wilcoxon’s rank sum test, false discovery rate (FDR) < 0.1, 
log2FC > 1), then genes were ranked according to their mean FDRs computed 
across all pairwise comparisons. To validate the differentiation state of the clusters 
suggested by the markers, the expression of some previously known relevant genes 
(Rex1, Sox2, Nanog, Tcstv1, Zscan4a, Zscan4c, Zscan4d, Zscan4e, Gata6, Meis1, 
Sox17 and Sox7) was plotted on UMAP. Cells were aligned along a pseudotime 
trajectory using a diffusion map61, which was computed with the ‘diffmap’ function 
from the scanpy package on the first 20 principal components. We performed all 
differential gene expression analyses with Wilcoxon’s rank sum test, with an FDR 
threshold of 0.1 and log2FC threshold of 1.

RNA velocity. To estimate RNA velocities62, we obtained loom files as described 
in the following. Fastq files were aligned using STAR (version 2.7.3a)63. Genome 
indices were generated using STAR --runMode genomeGenerate with default 
parameters. Then, alignment of reads was performed with the following options: 
--runThreadN 8 --outSAMunmapped Within. The resulting SAM files were 
converted to bam format and sorted using samtools64 (version 0.1.19-44428cd). 
Uniquely aligned reads from cells that passed the quality control were selected 
and distributed in separate bam files. We ran velocyto (version 0.17.17)62 with the 
option run-smartseq2 on bam files from cells corresponding to each timepoint to 
generate one loom file of spliced and unspliced counts per timepoint. On these 
loom files, we ran ‘scvelo’65 to perform RNA velocity analysis. This was done 
separately for the early timepoints (0 h, 2 h and 12 h) and the 48 h + LIF dataset. 
Second-order moments (steady-state levels) were calculated with the function  

‘pp.moments’. These values were used for computing velocities using the function 
‘tl.velocity’ with the following options: mode=‘stochastic’, min_r2=0.001. RNA 
velocity was plotted on a diffusion map colored by cluster with the function  
‘pl.velocity_embedding_stream’ from scvelo.

Cellular trajectory analysis. The trajectories analysis was performed in R 
(version 4.0.2) using the R package slingshot66 (version 1.6.1) on the 48 h 
dataset with the main clusters. As input for slingshot, we used the original main 
clusters (2, 3 and 5) and the diffusion map (function DiffusionMap from the R 
library destiny67 computed on the top 3,000 HVGs identified with the function 
FindVariableFeatures (with selection.method=‘vst’) from the R library Seurat. 
Data were normalized using the function NormalizeData (with parameter 
normalization.method equal to ‘LogNormalize’) from the R library Seurat68 
(version 3.2.0). DE analysis was done with the R package tradeSeq69 (version 
1.2.1). For detecting the DE genes along the two trajectories we used the function 
startVsEndTest. Identification of the genes that are most different between the 
two trajectories was performed with the function patternTest with parameters l2fc 
equal to log2(1.5) and nPoints equal to 50.

Single-embryo RNA-seq analysis. Data quality was assessed with FastQC (version 
0.11.7). Reads were processed with Trimmomatic (version .0.39) to remove 
Nextera adaptors and over-represented sequences. Reads were subsequently 
mapped to the mouse genome M25 (GRCm38.p6) and quantified using kallisto 
(version 0.44.0). Reads were imported into R (version 4.0.2) by the tximport 
package and the Scater and Single Cell Experiment packages were used to 
perform quality control tests by comparing library size, number of expressed 
genes and proportion of mitochondrial genes, for which the applied thresholds 
were 30,000 reads as the minimum for library size, 5,000 genes as minimum for 
the number of expressed genes and 20% as the maximum for the proportion of 
mitochondrial genes. Accordingly, one of the LY2955303 samples was removed 
as an ‘outlier’, because it did not pass the QC threshold (Supplementary Fig. 7a). 
Embryos with an average number of counts of ≥10 were kept for subsequent 
analysis. The average number of counts was calculated using the calculateAverage 
function from the scater package, where size-adjusted average count is defined 
by dividing each count by the size factor and taking the average across embryos. 
Principal component analysis was used to analyze the three groups of embryos 
(KSOM, DMSO or LY2955303) using log-transformed and library size-normalized 
counts using the top 3,650 high variable genes, which were calculated using 
modelGeneVar() and getTopHVGs() functions from the scran package. Differential 
gene expression analysis was performed using DESeq2 (version 1.28.1) with 
the threshold of an adjusted P value < 0.05 to select DE genes. Upregulated and 
downregulated DE genes from LY2955303 versus DMSO embryos with log2FC 
of >1 and <−1, respectively, were selected to show how they were expressed in 
WT embryos, based on RPKM values of published data52. RPKM values of the 
genes with non-zero counts were transformed to Z-scores to produce the relevant 
heatmaps. For repetitive elements analysis, trimmed reads were mapped to the 
primary assembly of the mouse genome M25 (GRCm38.p6) using STAR (version 
2.7.6a) with the following parameters: --readFilesCommand zcat --outFilterType 
BySJout --outFilterMultimapNmax 100 --winAnchorMultimapNmax 200 
--alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 
999 --alignIntronMin 20 --alignIntronMax 0 --alignMatesGapMax 0 
--outSAMprimaryFlag AllBestScore --outMultimapperOrder Random 
--outSAMstrandField intronMotif --runRNGseed 13 --outSAMtype BAM 
Unsorted --quantMode GeneCounts --twopassMode Basic. Mapped reads to genes 
and TEs were counted using TEtranscripts (v.2.1.4), where the used GTF file for 
TE annotations was mm10_rmsk_TE.gtf. Finally, DE analysis was performed as 
described above using the count table generated from TEtranscripts. The list of 
‘major’ ZGA genes has already been published70.

Assay for transposase-accessible chromatin sequencing analysis and 
transcription factor binding site enrichment analysis. ATAC-seq data from 
2CLC and ES cells30 (GSE75751) was downloaded, reads were trimmed using 
trimmomatic (version 0.38) with parameters 3:30:8:1:true LEADING:10 
TRAILING:10 SLIDINGWINDOW:5:10 MINLEN:30. The output was aligned to 
the mm10 (vM21 GRCm38.p6) mouse genome from GENCODE, using bowtie2 
with the parameters --dovetail --no-discordant --no-mixed -X 1500. BAM files 
were cleaned keeping the uniquely mapped reads using the samtools functions 
fixmate, sort and view -q 14. Peaks were called using macs2 v2.1.2.20181002 --bdg 
-q 0.01 -SPMR --keep-dup all --call-summits. The ATAC-seq data from mouse 
embryos37 (GSE66390) were preprocessed and aligned as above. Peak-calling 
was also done with macs2, with parameters --bdg -q 0.01 --nomodel --nolambda 
--keep-dup, all as reported by the authors of that study. The transcription factor 
binding site enrichment analysis was done using the software Analysis of Motif 
Enrichment (AME) from the MEME suite v5.0.5, using Fisher’s exact test to assess 
the relative enrichment and --kmer 1. The binding motif matrices used for the 
scanning were downloaded from JASPAR. 2CLC and ES cell RNA-seq (GSE75751) 
reads were trimmed in the same way as just described. The output reads were 
pseudoaligned with kallisto v0.44.0, using the mm10 (vM21 GRCm38.p6) mouse 
transcriptome available in GENCODE. Counts were normalized as RPKM. The 
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RNA-seq data from mouse embryos were from GSE66390 and were processed 
following the same pipeline as for 2CLCs and ES cells RNA-seq.

Statistical analyses. Statistical tests were performed keeping in mind the data 
distribution and the number of data points available. For all the qPCR analyses, 
because each replicate represents the mean expression level of the particular gene 
for thousands of cells, the data follow a normal distribution according to the 
central limit theorem. We thus applied the t-test (unpaired) for all statistically 
relevant comparisons. Across the manuscript, data on the percentage of 2CLCs 
in control conditions were gathered (n = 99) and a Shapiro–Wilk test was used 
to test if they were normally distributed. The test returned a significant P value, 
discarding a normal distribution. Therefore, a non-parametric test was used 
(Mann–Whitney, unpaired) to compare the 2CLC percentage between conditions 
whenever N ≥ 4. Additional details on sample sizes, in addition to the statistical 
tests conducted, are presented in the corresponding figure legends.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
scRNA-seq data generated in this study are available under ArrayExpress accession 
no. E-MTAB-8869 and single-embryo RNA-seq data under accession no. 
E-MTAB-9940. All other data supporting the findings of this study are available 
from the corresponding author on reasonable request.

Code availability
All scRNA-seq data were analyzed with standard programs and packages, as 
detailed in the Methods. Code is available on request.
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Supplementary Figure 1. Small molecule screen identifies retinoids as inducers 
of 2CLCs 
a. Schematic representation of the 2C::reporter. 

b. Design of the small molecule screen and the validation assays. 

c. (Top) Quantification of GFP+ and GFP+/Zscan4+ cells in control conditions (DMSO as 

negative control and Acetate as positive control) for plates across the pilot screen, one 

typical screening round with 30.000 diversity library compounds, secondary screen and 

final screen with top hits. Mean values ± s.d. from all control wells of a plate are shown. 

(Bottom) Z Prime values were calculated for each screening plate based on GFP+ and 

GFP+/Zscan4+ quantification in control conditions (DMSO and Acetate). 

d. Representative images of positive and negative controls in two different rounds of 

the full screen after immunofluorescence using a tbGFP antibody. Each plate of the 

screen counted with 32 wells for negative and positive controls. 

e. Representative image of the final round of the screen (comprising 16 top hit 

compounds) after immunofluorescence with the indicated antibodies. 
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Supplementary Figure 2. Quality control of the small molecule screen identifying 
retinoids as 2CLC inducers 
a. Representative images of ES cells with the retinoids identified as hits and the 

negative (DMSO) and positive (Acetate) controls from the last round of the screen (n=3 

plate replicates). Scale bar, 50µm.  

b. Quantification of 2CLCs, identified as double positive for GFP and ZSCAN4 

(GFP+/Zscan4+), induced upon treatment with retinoids in a range of concentrations 

from the last round of the screen. Mean values ± s.d. from triplicate wells are shown. 

Total cell number is represented in blue. 

c. Induction of 2CLCs (GFP+) upon RA treatment measured by FACS. Control (no 

treatment), DMSO (RA vehicle) and Acetate (positive control) are shown. Mean of 2 

replicates are shown. Each dot corresponds to the measurement of one replicate. 
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Supplementary Figure 3
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Supplementary Figure 3. Analysis of 2CLC induction by different retinoids and 
synergistic effects with Acetate 
a. Representative scatter plots for experiment in Fig. 2a with Acitretin showing 

2C::tbGFP fluorescent measurements of individual cells as assayed by FACS. 

b. Representative scatter plots for experiment shown in Fig. 2e showing 2C::tbGFP 

fluorescent measurements of individual cells as assayed by FACS. 
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Supplementary Figure 4
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Supplementary Figure 4. Effect of perturbing RA pathway on 2CLC 
reprogramming. 
a. RT-qPCR analysis of the indicated transcripts after siRNA for Crabp1, Crabp2 and 

Fabp5. Mean of the indicated replicates (represented by individual dots) is shown. 

b. Induction of 2CLCs upon siRNA for Crabp1, Crabp2 and Fabp5 and RA and/or RAR 

antagonist AGN 193109 treatment. Scramble siRNA was used as control. Percentage 

of 2CLCs (GFP+) quantified by FACS 48 hours after treatment. Mean ± s.d. of the 

indicated number of replicates is shown. P-value by paired two-sided Student’s t test. 

c. Induction of 2CLCs upon treatment with the RARγ antagonist LY2955303 or the 

RAR antagonist AGN193109. Percentage of 2CLCs (GFP+) quantified by FACS 48 

hours after treatment. Mean ± s.d. of the indicated number of replicates is shown. P-

value by two-sided Mann-Whitney test. 
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Supplementary Figure 5
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Supplementary Figure 5. Parameters of scRNA-seq analysis and quality controls. 
a. The distribution of UMI counts, number of detected genes, and fraction of reads 

mapped to mitochondrial genes (rows from top to bottom) are shown with violin plots 

for cells in each condition (columns) after quality filtering.  
b. Number of cells in each condition that passed quality control and were used for 

downstream analyses. 
c. Heatmap illustrating the expression levels (normalized by the maximum) of the top 5 

marker genes for each of the six clusters, indicated by the color bar at the top. 
d. Percentage of cells where GFP is detected (left) and corresponding UMAP with cells 

colored by GFP expression (right) for cells grown in LIF and treated with RA during 

different times. 
e. Percentage of cells where Zscan4 is detected (left) and corresponding UMAP with 

cells colored by Zscan4 expression (right) for cells grown in LIF and treated with RA 

during different times. 

f. Bar plot showing the log2 fold change expression levels of Dux in different clusters. 

Fold change was calculated by dividing the mean of the ln(normalized counts) in each 

cluster by the mean of the ln(normalized counts) in cluster A. 
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Supplementary Figure 6
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Supplementary Figure 6. Example of identification of new 2CLC markers 
a. UMAP of all cells grown in LIF and Retinoic Acid, colored by expression levels of 

Tmem72 (top left), Zscan4 (top right); GFP (bottom left) and Zfp42/Rex1 (bottom right). 
b. Violin plots showing the distribution of expression of 2CLCs marker genes Tmem72, 

Zscan4 and GFP (rows from top to bottom) per cluster (columns). 
c. Venn diagram comparing up-regulated genes (compared to cluster A) in Cluster C, 

Cluster D and Cluster E. 
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Supplementary Figure 7
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Supplementary Figure 7. Quality control of singe embryo RNA-seq analysis  
a. Log10 transformed library size, number of detected genes per embryo, and fraction 

of reads mapped to mitochondrial genes per embryo are shown. Colour code 

corresponds to each experimental condition and each dot represents one embryo. 

b. PCA of the single-embryo top HVG expression dataset. Each point corresponds to a 

single embryo, which is colored according to the experimental group it corresponds to.  

c. Example of gating strategy used to quantify GFP+ cells in FACS experiments. Left 

and right column corresponding to ES WT and 2C::tbGFP cells respectively. 
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Discussion 

In the work described in this dissertation, we showed the importance of the 
space and time context of transcriptomic data for its analysis and further 
biological interpretation. Therefore, my work also highlights the urge for 
transcriptomic profiling methods that allow having spatial and time 
information at high resolution, as well as for the development of computational
pipelines for the analysis of the resulting data. 
Placing transcriptomes along time and spatial axes allowed us to address 
fundamental biological questions in very different contexts, such as the 
olfactory system and embryonic stem cells. 
In the next paragraphs, I will briefly summarize our main results and discuss 
our contributions to understanding the relevance of OSN subtype location for 
the sense of smell (Chapter I), and the onset of a totipotent-like cell state in 
embryonic stem cell cultures as a consequence of treatment with low doses of
retinoic acid (Chapter II). 

I. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical 
logic of smell

I.I Interrogating our 3D gene expression atlas of the olfactory mucosa. 

The existence of stereotypic spatial gene expression patterns in the olfactory mucosa
(OM) has been known for some time. However, limited information about spatial gene 
expression patterns is available, and their function is unclear as well. The most familiar 
example of such patterns in this tissue is provided by olfactory receptor genes (Olfrs), of 
which less than 10% had been characterised. As a consequence, previous analyses about 
the logic of the peripheral representation of smell often remained inconclusive. In the first 
chapter of this dissertation, we used spatial transcriptomics (with the TOMO-seq protocol) to 
create the most complete transcriptional characterisation of the olfactory mucosa to date. 
We reconstructed the spatial expression pattern of > 17000 genes in the OM across the 3D 
space. Then, by combining our spatial transcriptomics computational analysis pipeline with 
machine learning, we went beyond the technical limitations of the experimental protocol and 
provided a spatial reconstruction of ~98% of Olfr genes’ expression patterns. We built a 
user-friendly web app for our OM transcriptional atlas and made it publicly available at 
[http://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose], which will facilitate the study
of diverse biological processes occurring in the OM along with their transcriptional and 
spatial context. 
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Our 3D transcriptional atlas allowed us to make a new unbiased definition of Olfrs’ 
spatial expression zones through a mathematically rigorous procedure that was able to 
capture two key features: the definition of a discrete number of zones; and the expression of 
Olfr genes in multiple zones. To represent the continuous distribution of Olfr across the 
zones, we also defined a continuous “3D index” for each Olfr that can describe their spatial 
distribution from the Dorsal/Medial/Anterior to Ventral/Lateral/Posterior region of the OM. For
the Olfr genes previously characterised, our predictions on their spatial expression patterns 
and the values of their 3D indexes matched those found with orthogonal experimental 
techniques (e.g., in situ hybridization). 

Apart from odourant detection, other biological processes take place in the OM, like toxin 
detection [61] and neurotransmitter metabolism [62] . However, in most cases, we do not know
whether they take place at specific locations in the OM, and the identity of the genes 
involved. Our topic modelling approach allowed us to easily identify the genes showing the 
most localised expression patterns: first, we projected all genes onto the topics defined from 
Olfr genes; then, we computed the entropy associated with their expression patterns, by 
which we found highly localised genes. Such genes are involved in several biological 
processes, like neurotransmitter metabolism, which had been previously observed in the OM
[ 62,63 ]. Thus, these analyses pointed out the possibility that some processes known to 
happen in the OM are spatially localised. Furthermore, we set a starting point for studies 
focused on these processes, indicating the spatial location of some related genes, which 
might suggest their specific roles and the pathways they are involved in. 

I.II Tuning our atlas through machine learning

As ~600 Olfrs were not detected in our TOMO-seq data, we employed a machine 
learning approach to estimate their 3D index. More specifically, we trained a random forest 
model on 681 detected Olfr genes to predict the 3D index from their genomic features (e.g., 
distance to closest enhancer element, genomic cluster). 

By doing so, we obtained the spatial expression of ~98% of the mouse olfactory 
receptor genes, showing the potential of genomic features as predictors of spatial gene 
expression trends. Furthermore, this analysis allowed the identification of the genomic 
features that can best predict the expression patterns of Olfrs (i.e., genomic position and 
distance to closest enhancer), which could help reveal the mechanism of Olfr random 
choice.

I.III Revisiting the Chromatographic Hypothesis

Our 3D indexes, as a simpler representation of the almost complete repertoire of 
Olfrs’ spatial expression patterns, made it possible to look for associations between Olfrs’ 
spatial trends and features of the ligands that Olfrs detect. One of the most statistically 
significant associations was with the air / mucus partition coefficient, defined by the ratio 
between the odorant concentration in the air phase and the concentration in mucus at the 
air–mucus interface [ 64]. This coefficient can be a way of quantifying the affinity of ligands to 
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mucus relative to air. Overall, this result suggests that olfactory receptors are distributed 
through the OM according to their ligands’ affinity to mucus, which affects the ability of those 
ligands to diffuse in the OM.  
In this way, we provided quantitative evidence for the chromatographic hypothesis, i.e., the 
hypothesis that the Olfrs spatial distribution mirrors the patterns of diffusion of the associated
ligands in the OM, and could optimize the ability to detect and distinguish different 
odourants. 
While we created and used the largest database of Olfr - ligand pairs (including 153 Olfr 
genes and 221 odourants), the collection of additional data will be important to confirm our 
conclusions and explore further associations between Olfr positions in the OM and the 
physico-chemical properties of their ligands.

I.IV scRNA-seq data enabled us to get cell type abundance spatial distributions.

Different cell types might be involved in localised biological processes in the OM. 
However, the spatial transcriptomic technique we used (TOMO-seq), while it allows the 
unbiased profiling of the transcriptome of the entire OM, it does not achieve single-cell 
resolution, which is needed to distinguish the various cell types. 
To circumvent this limitation, we integrated our TOMO-seq data with previously published 
scRNA-seq datasets to computationally estimate changes in abundances of different cell 
types across the OM [53  ]  . Neuronal abundance trends were consistent with previous 
observations, showing the potential of scRNA-seq and spatial (TOMO-seq) data integration. 
In particular, we observed an increase in the relative number of neurons towards the 
posterior side of the OM. On the other hand, sustentacular cells and horizontal basal cells 
showed opposite patterns, tending to be more abundant in the anterior region. Our estimated
cell type abundance trends could be potentially useful for cell communication analysis in the 
OM and for the study of localised biological processes in this tissue. 

I.V Perspectives

Our study sets a basis for future research on the sense of smell and other biological 
processes taking place in the OM. 
There is several follow-up computational work that could be done on our data. For example, 
as the importance of coding and regulatory DNA sequences in gene expression estimation is
pointed out in some studies [40,41], the inclusion of DNA sequences might improve the 
prediction of spatial patterns of undetected Olfrs.  Algorithms based on Convolutional Neural 
Networks can, for instance, include both DNA sequences and genomic features as 
predictors, as it was shown in [41]. 

Another interesting future direction is the extension of the analysis of Olfr-ligand pairs. The 
list we compiled from the literature includes odourant libraries of different sizes and 
compositions and tested using different experimental approaches. Moreover, highly 
abundant Olfrs have a higher probability of being deorphanised, and ecologically relevant 
odorants are more likely to activate Olfrs when compared with other odorants [65–67]. These 
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elements might have determined a bias in our analysis towards highly abundant Olfrs 
detecting ecologically relevant ligands. So, it will be important in the future to repeat the 
analysis on the association between odourants’ physicochemical descriptors and Olfr spatial 
patterns using a larger number of Olfr - ligand pairs. As a possibility to extend the available 
knowledge on Olfr - ligand pairs, machine learning approaches based on chemical features 
of odourants have been used to predict interactions between odourants and olfactory 
receptors and shown to be effective [68]. Olfr - ligand pairs resulting from such predictions 
could be used in the near future to revisit associations between Olfrs spatial patterns and 
ligands’ properties. 

Extending the list of Olfr - ligand pairs would make it possible to carry out further association 
studies on olfaction. An example of this would be investigating the relationship between the 
behaviours elicited by odours and the spatial distribution of the associated receptors. Some 
studies about genetic variation in olfactory receptors have shown links between specific 
odourant receptors’ activity and behavioural responses to certain odours; it was observed 
that some single nucleotide polymorphisms altered Olfr genes’ activity, causing different 
behavioural responses to odours [69]. Data about Olfr - odour correspondence together with 
odour-specific behavioural responses and Olfr genes’ expression data might allow us to get 
this sort of insight as well, without the need for genetic variants. Having this information 
would allow us to test directly for associations between quantitative behavioural data and 
Olfr genes’ expression. 

Finally, it might be possible to implement a computational method for the distinction 
between different sources of gene expression spatial variation. Indeed, transcriptional 
differences across a tissue can occur for two reasons: Either because the transcriptome of 
cells of the same type varies depending on cells’ location in the tissue; or because cell type 
composition changes across space. Thus, a method to distinguish these two kinds of 
transcriptional trends would be a good addition to current spatial transcriptomics data 
analysis pipelines. Our spatial cell type deconvolution analysis assumes that most of the 
genes in each cell type do not change their average expression levels as a function of 
position; however, a priori, we can not exclude this possibility. 
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II. Retinoic acid signaling is critical during the totipotency window in early mammalian
development: Insights from a time-course single-cell transcriptomic profiling

II.I Low doses of retinoic acid on embryonic stem cell cultures affect cell state 
transitions of mouse embryonic stem cells

Retinoic acid (RA) is a known differentiation inducer [70]; however, we found that a 
low dose treatment of this agent can induce 2CLCs in mESC. To understand how this cell 
identity change occurs, we obtained and analysed a time-course single-cell RNA - seq 
dataset from mESCs at different times following RA treatment.  
Unsupervised clustering with the Leiden algorithm of transcriptional profiles across all time 
points revealed six clusters: two comprising pluripotent ES cells; a cluster of ‘RA-responsive’
cells exclusively present in the 48 h RA treatment, which express low levels of 2CLC 
markers; two clusters that corresponded to 2CLCs, as indicated by the expression of both 
MERVL and Zscan4 ; and one cluster of cells expressing early differentiation markers, which
could be mostly found at the last time point only [57]. 
  

One of the 2CLCs clusters was composed mostly by cells which were profiled early 
after treatment (endogenous 2CLCs); whereas the other one was mostly populated by cells 
sequenced 48 hours after treatment (induced 2CLCs). These two clusters showed a highly 
significant overlap of marker genes, which pointed out new 2CLC markers and indicates that
RA-induced 2CLCs overall share the transcriptional profile of endogenous 2CLCs. Future 
work will be needed to identify culture conditions that stably maintain 2CLCs in culture.  

II.II Other cell identities induced by a low-dose retinoic acid treatment

The RA treatment also leads to the differentiation of a small group of cells. 
Importantly, the 2CLCs and the differentiating cluster do not share expression patterns and 
are clearly distinguishable from each other. To get insights into the different pathways that 
induce a 2CLC or differentiation, we identified and analysed the transcriptional trajectory 
joining mESCs and these two alternative cell identities using RNA velocity analysis [71] and 
the trajectory analysis pipeline implemented in [72] using the Slingshot and Tradeseq R 
libraries [72,73]. We found that a feature that distinguishes 2CLCs from differentiating cells is 
the expression of some RA-signalling components, such as Rxra. This hinted at possible 
different responses to RA, each triggering a different cell state trajectory. A model where 
different responses to RA trigger alternative trajectories also matched the RNA velocity 
analysis results, which depicted two different cell state trajectories: one towards 2CLCs and 
one towards differentiating cells. And consistent with this, further analysis revealed that 
different genes become activated during each transition. 

Our work helped characterise RA-induced 2CLCs as a model to study the early 
embryonic development,  identifying the retinoic acid signalling pathway as a key component
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of the 2CLC identity and regulator of 2CLCs reprogramming. Furthermore, our data provide 
a basis for understanding ES cells’ different responses upon RA stimulation. The ability of 
ES cells to activate different sets of genes in response to RA needs further investigation to 
identify the specific molecular pathways involved and their roles in the onset of distinct fates.
A start towards the inference of gene regulatory networks involved in the onset of cell types 
could be done based on the SCENIC R pipeline, which identifies sets of genes that are 
coexpressed with TFs in each cell and then infers stable cell states based on co-expression 
module activity [74].

It is also worth noticing that the Leiden algorithm was able to identify early 2CLCs as 
a separate cluster only once we put the data from all time points together. Then the fraction 
of cells of this type was big enough to be identified. Identifying and characterising rare cells 
has a great relevance in many biological contexts. Here for example, it could reveal the time 
point when different cell types start to emerge. Although scRNA-seq gives us the possibility 
of identifying novel rare cell types, these cells sometimes share markers with other more 
abundant cell types, which makes it hard for standard clustering methods to distinguish 
them. Many algorithms have been specifically designed for identifying rare cells, which 
perform well when these cells have strong markers [75,76]. However their efficiency decreases
when the targeted cell population is very small (<1%) and has just a few unique markers. In 
order to assess this problem, we developed an algorithm called CIARA (Cluster-Independent
Algorithm for the identification of markers of RAre cell types), which identifies genes that are 
highly expressed in small groups of cells with similar transcriptomic signatures as potential 
marker genes for rare cell types [77]. 

As mentioned before, we showed that a group of reprogrammed mESCs into 2CLCs 
and a group of differentiating cells were detectable after a 48 hours treatment of low doses 
of RA. However it is unclear how long the RA treatment should be to cause effects on cell 
fate decisions [77]. Hence, a new scRNA-seq dataset of mESCs after a 24 hours treatment 
was generated and analysed with CIARA for cell type composition. Apart from a group of 
mESCs and a group of 2CLCs, the marker genes selected by CIARA helped find a small 
group of cells characterised by the expression of differentiation markers such as Gata4 and 
Gata6. This indicates that these cell types are present at this time point, but the change in 
their proportions in the population comes after 24 hours. Thus here we also show the 
potential of CIARA for the detection of small changes in cell type composition.
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Closing remarks

Overall, during my PhD I characterised cell identity changes in space and time using 
transcriptome data from different sequencing techniques. My work highlights the importance 
of combining information across different modalities and scales (e.g., spatial transcriptomic 
patterns across whole tissue, single-cell transcriptomes, genomic positions of olfactory 
receptors and their enhancers) and the potential of interrogating them via machine learning 
methods to get further biological insights. 

Here, I also pointed out some limitations, potential ways to address them, and the 
possibility of extending some of the analyses done in this dissertation. The data acquired in 
the chapters of this thesis has been made freely accessible to the community at 
http://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose and the Array Express 
database [78].  
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