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Zusammenfassung

Das Swampland-Programm zielt darauf ab diejenigen effektiven Feldtheorien, die
mit Quantengravitation bei hohen Energien vereinbar sind, von denjenigen, welche
es nicht sind, zu unterscheiden. Diese Unterscheidung wird mit Hilfe der soge-
nannten Swampland-Vermutungen gemacht, welche tiefgreifende Einschränkun-
gen auf eine effektive Feldtheorie bewirken können. Diese Vermutungen sind
gewöhnlich von allgemeinen Argumenten zu schwarzen Löchern, Holographie oder
direkt von der Stringtheorie motiviert. Außerdem sind viele dieser Vermutungen
miteinander vernetzt, was auf ein noch unentdecktes grundlegenderes Naturgesetz
hindeutet.

Eine der wichtigsten Vermutungen ist die Swampland Distanzvermutung, welche
das Kernstück dieser Arbeit bildet. Diese limitiert die Distanz im skalaren Fel-
draum, welche in einer effektiven Feldtheorie zurückgelegt werden kann, bevor
die Theorie aufgrund einer unendlichen Anzahl von Zuständen, die masselos wer-
den, zusammenbricht. Über die letzten Jahre wurde diese Vermutung auf ver-
schiedene Arten verallgemeinert. Es wurde zum Beispiel eine enge Verbindung zu
geometrischen Flüssen festgestellt, was etwas Interesse an geometrischen Flüssen
innerhalb der Swampland-Gemeinschaft entfacht hat. Desweiteren wird angenom-
men, dass die Distanzvermutung nur auf Geodäten im Feldraum zutrifft. Allerd-
ings wurde gezeigt, dass sich der Gültigkeitsbereich der Distanzvermutung auch
auf Bewegungen, welche keine Geodäten im Feldraum sind, erstreckt.

Diese Arbeit hat zwei Absichten. Zum Einen werden motiviert von der Verbindung
zur Distanzvermutung neue geometrische Flüsse konstruiert und untersucht. Dazu
gehören eine geometrische Flussgleichung für die Anzahl der Raumzeitdimensio-
nen und eine Erweiterung des Ricci-Flusses, welche die Rückkopplung der Ma-
teriefelder mitberücksichtigt. Auf der anderen Seite wird die Distanzvermutung
auf das Szenario kosmischer Beschleunigung angewandt, welches immer noch ein
offenes und wichtiges Problem in der Physik darstellt. Wie sich herausstellt, ist
eine Abweichung von einer Geodäte am Rand des Feldraums begrenzt aufgrund
der Übereinstimmung mit der Distanzvermutung.





Abstract

The Swampland Program aims to distinguish between those effective field theories,
which can be completed into Quantum Gravity at high energies, and those which
can’t. The distinction between these two sets is made by the so called Swampland
Conjectures which can put severe constraints on an effective field theory. These
conjectures are usually motivated by general black hole arguments, holography or
directly String Theory. Moreover, many of these seem to be intertwined in a web
of conjectures hinting at a more fundamental principle yet to be uncovered.

One of the most important and best studied conjectures is the Swampland Dis-
tance Conjecture (SDC) which lies at the heart of this thesis. It limits the scalar
field space distance which can be traversed in an effective field theory before the
theory has to break down due to an infinite tower of states becoming massless.
Over the last years the conjecture was generalized in many different ways. For
instance, a close relation to geometric flows has recently been found, which has
sparked some interest in geometric flows within the Swampland community. Fur-
thermore, the SDC is supposed to hold for geodesic field space trajectories, but it
was shown that the validity of the SDC can be extended to a non-geodesic motion
in field space.

The purpose of this thesis now is twofold: On the one hand, motivated by the
connection to the SDC new geometric flows are constructed and studied. This
includes a geometric flow equation for the number of spacetime dimensions and
an extension of Ricci flow which incorporates the backreaction of matter fields.
On the other hand, the SDC is applied to the scenario of cosmic acceleration,
which is still an open and significant problem in physics. It turns out that the
non-geodesicity of trajectories is bounded by consistency with the SDC near the
boundary of field space.
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[2] D. De Biasio, J. Freigang, D. Lüst and T. Wiseman, Gradient flow of
Einstein-Maxwell theory and Reissner-Nordström black holes, J. High Energ.
Phys. Article 74 (2023)
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”If string theory is a mistake, it’s not a trivial mistake.

It’s a deep mistake and therefore kind of worthy.”

Lee Smolin
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Chapter 1

Introduction

1.1 History and Motivation

”If string theory is a mistake, it’s not a trivial mistake. It’s a deep mistake and
therefore kind of worthy.” In my opinion this quote by Lee Smolin perfectly en-
capsulates the spirit of the so called Swampland Program. But why? To explain
that, let’s rewind to the beginning of the 20th century.
The last century began with a major revolution in physics. With his discov-
ery of light quanta in 1900 Max Planck paved the way for the development of
Quantum Mechanics (QM). Even though a lot of physicists were sceptical at first
due to its uncommon predictions and implications for our world, it gained more
and more traction until it was finally very well established in the 1920s. Some
of its key successes were the prediction of the wave-particle duality by Louis de
Broglie, the discovery of the Schrödinger equation, which turned out to be one
of the central objects in Quantum Mechanics, and the formulation of the uncer-
tainty principle by Werner Heisenberg. However, soon people realized that there
were still flaws in the theory. Although it was able to produce some amazing
results like the ones just mentioned, it still failed to accurately describe realistic
atoms beyond the simplest cases. Moreover, QM was running into problems when
applied to massless particles. There was a tension between QM and Special Rel-
ativity (more on that soon). Paul Dirac started to resolve this tension in the late
1920s with the formulation of his equation which describes electrons including
relativistic effects. One very surprising consequence of the Dirac equation was
the prediction of antiparticles which was soon after verified by the discovery of
the positron. Ultimately, Paul Dirac laid the foundation for the development of
Quantum Field Theory (QFT). Such theories describe the microscopic world in
terms quantum fields, which implies that particles aren’t the fundamental objects,
but they are merely excitations of the corresponding field. Over the next decades
three major QFTs emerged each of them describing one of the fundamental forces
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in our universe. The three forces in question are the electromagnetic force, the
strong force and the weak force. These are covered by Quantum Electrodynam-
ics (QED), Quantum Chromodynamics (QCD) and the Electroweak Theory (EW
Theory) which is a combined formulation of the weak and the electromagnetic
force. Some standout contributors to these developments were Richard Feynman,
Murray Gell-Mann and Steven Weinberg. However, this list is far from exhaustive
and there were many more important contributors. In fact, too many to name
them all, hence only a small excerpt was given. It was truly an exciting time
period. In the end this evolution culminated in the formulation of the Standard
model (SM) of particle physics in the mid 1970s which describes our microscopic
world with a ridiculous precision to this day and is still one of the greatest achieve-
ments of theoretical physics. The SM unifies the previously named three forces
in a single theory. In summary, Quantum Mechanics and later Quantum Field
Theory revolutionized our understanding of the microscopic world.
But this was only one part of the revolution in physics. In the beginning of the
20th century Albert Einstein published his groundbreaking paper ”On the Elec-
trodynamics of Moving Bodies” and laid the foundation for the development of his
theory of Special Relativity (SR). It is based on two principles: there is an univer-
sal speed limit, namely the speed of light, and the laws of physics are supposed to
be the same in different inertial reference frames. Although these principles seem
very simple, the implications are quite profound. In particular, time appears to
run slower for objects which are in motion relative to a stationary observer. Over
the next decade Albert Einstein pushed his ideas forward and finally constructed
his theory of General Relativity (GR) which describes gravity as the curvature
of spacetime itself. Connecting to the previous example it also states that clocks
tick slower in the presence of a strong gravitational field. However, it took sev-
eral years until it was accepted by the science community after an experimental
validation. Then, it quickly dethroned Newton’s theory of gravity and became
the state of the art gravity theory which holds true to this day. Some predictions
of the theory were verified only decades after. So, back then the theory was far
ahead of the technological limitations. Some prominent examples here are cosmic
inflation, black holes and gravitational waves, which were only detected about a
century later. On top of that, our modern life is heavily dependent on GR via the
GPS system. The GPS system would become inaccurate within a very short time
span if it didn’t take GR corrections into account. In total, one can say that GR
drastically reshaped our understanding of the world at large scales.
Therefore, there were these two very powerful theories. On the one hand, QM
perfectly predicted the microscopic world and, on the other hand, GR reigned
over the macroscopic and cosmic scales. Hence, it was very natural that physi-
cists sought out to unify them. After some early attempts the idea of Quantum
Gravity (QG) gained some traction in the middle of the last century. However,
the quantum theory, which had been effortlessly mastering every challenge so far,
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suddenly struggled to deal with gravity and produced nonsensical results. All the
standard techniques, like canonical quantization or the path integral formalism,
couldn’t consistently incorporate gravity, which was quite surprising to everybody.
Now you might wonder, why did people care or better still care to this day about
a theory of Quantum Gravity? As explained so far, these two theories operate at
very different length scales. Therefore, they are never needed at the same time,
one might object. But that assumption is wrong! Gravity isn’t necessarily coupled
to large length scales but to large masses and there are certainly very tiny and
very heavy objects in the universe, e.g. black holes. Thus, black holes have been
the primary object to investigate in the context of QG. Moreover, it is strongly
believed that our universe originated from a single point, the big bang, which
contained the whole universe and hence was enormously massive. And, lastly, hu-
mans always try to push the boundaries of what is possible. So, it is very natural
that scientists try to connect two theories, which are known to perfectly work by
themselves, even if it would be just for the sake of completeness.
Then, in the 1960s and 1970s a new theory was discovered, mainly by accident:
String Theory. In an attempt to describe mesonic interactions, Gabriele Veneziano
wrote down an amplitude which exhibited some intriguing properties. Subse-
quently, different physicists including Leonard Susskind realized that the so called
Veneziano amplitude could be interpreted as a scattering amplitude of extended
objects, namely strings. Soon after that, a new theory of strings was proposed:
String Theory. It replaced the fundamental point particle with a tiny vibrating
string and the different observed particles correspond to different vibration modes
of the strings. This seemingly innocent modification had profound implications
for the theory. String Theory turned out to be an inherently UV finite theory
since all interactions are smeared out and not point-like, i.e. ultralocal, like in
usual QFTs. Moreover, by quantum consistency the theory predicted the number
of spacetime dimensions it has to live in, namely Bosonic String Theory demands
26 dimensions and Superstring Theory (the supersymmetric extension of String
Theory) 10 dimensions, which is, of course, much more than our observed four
spacetime dimensions. This can now be regarded as a feature or a bug of the
theory. Either way, String Theory is still the only theory which determines the
number of spacetime dimensions 1, whereas other theories need this as an input.
Also people soon realized that one can curl up the excess dimensions on tiny
geometries, which are too small to be detected. This process is called compact-
ification. But most importantly String Theory’s spectrum seemed to contain all
so far observed particles and on top of that another particle, which checked all
the boxes for a graviton, the mediator particle of gravity. Thus, it became a
promising candidate theory for Quantum Gravity. But after some time physicists
developed five distinct supersymmetric extensions which seemed incompatible at

1There are some possible loopholes to this, like supercritical String Theory.
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first. But in the mid 1990s Edward Witten among others showed that these five
theories are all related by duality transformations and that they all descend from
a 11-dimensional parent theory: M-Theory. This was termed the second string
revolution. At this point String Theory had gained a lot of traction and many
people believed that it is the theory underlying our world. However, in order
to show that, one had to compactify the theory down to four dimensions and
the 4-dimensional effective theory was dependent on the chosen compactification.
Nevertheless, it was widely believed that it was only a matter of time until the
right compactification was found. So the years went by and nobody succeeded.
Additionally, people realized, how absurdly large the number of possible compact-
ifications is. This lead to a gloomy mood within the String Theory community
and more and more theorists began to seriously doubt if String Theory really is
the theory of everything. But then a different approach was born in the early
2000s: the Swampland Program.
At this point let me emphasise that this brief history of Quantum Gravity and
String Theory is not complete. Only a subset was chosen to set the stage for the
spirit of the Swampland Program.

1.2 What is the Swampland Program?

The idea of the Swampland Program was introduced in 2005 [4], followed up
by [5, 6], as an alternative to the direct search for the correct vacuum which is
hidden behind a daunting number of possible string compactifications [7, 8, 9,
10]2. Instead of just working top-down a systematic exploration of String Theory
features was proposed. The goal is to find the properties, that all effective field
theories (EFTs), which are derived from String Theory or more generally Quantum
gravity, have in common. In fact, from now on the terms String Theory and
Quantum Gravity will be used as synonyms because String Theory is, as a matter
of fact, a consistent QG theory. It is just not known, if it is the one underlying
our world, but it is widely believed that every theory of QG should have the same
features 3.
At the core of this search lies theoretical self-consistency 4 [12, 13] which has
already proven to be a powerful tool in QFT. An effective theory is only valid up
to an energy scale ΛQFT above which it breaks down. At this point usually new
degrees of freedom have to be introduced such that the theory can be completed

2Actually it took more than 10 years until the idea really became popular among the String
Theory community.

3There are even some arguments, which suggest that QG is unique and that String Theory
is a certain phase of QG [11].

4Self-consistency turns out to be much more constraining at higher energy scales, than it is
at lower ones, even if gravity is included [12, 13]. Therefore, we have a plethora of consistent
effective field theories, but most likely only a unique Quantum Gravity theory.
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into the UV. An example would be Fermi theory [14] which is an effective EW
Theory. It contains a four-point contact interaction which breaks down at the
energy scale of the W-Boson mass. Above this scale the W-Boson needs to be
included into the theory, the four-point interaction gets resolved and the theory
can be completed into the UV. Now the same concept can be applied to an EFT
coupled to gravity. The question, the Swampland Program tries to answer, is,
whether such an EFT can be completed into QG and if so, what are the conditions
to do so?
Thus, we divide the set of EFTs at a given energy into two categories.

The Swampland and the String Landscape

The set of effective field theories which are consistent with Quantum Gravity
is referred to as the String Landscape, whereas the set of effective field
theories, which cannot be completed into Quantum Gravity in the UV, is
defined as the Swampland [4, 12, 13].

An illustration of the situation can be found in figure 1.1. One has to emphasise
that a theory from the Swampland still is a perfectly fine QFT, it is just not
compatible with QG at high energies. Even though the String Landscape is vast,
it turns out the Swampland is even bigger. So not everything is possible in String
Theory and there are some constraints [13].
The distinction between the Swampland and the Landscape is usually made by
the use of so called Swampland Conjectures which reflect the just mentioned con-
straints. In a sense, these determine the border between the Swampland and
the Landscape and they are formulated such that they become trivial in the de-
coupling limit of gravity, that is MP → ∞. In the best case these conjectures
are formulated in the language of the effective theory such that the approach is
bottom-up [12]. Hence, one can check, if a given effective theory is compatible
with Quantum Gravity, without knowing a specific embedding of the theory into
QG. These conjectures represent an UV imprint of QG at much lower energies.
This also opens up a new possibility for indirect experimental evidence for String
Theory. The energy scale of String Theory lies far beyond the today and in the
near future experimentally accessible energy scales, but it is possible to check, if
these UV imprints are compatible with current observational data. In fact, there
is some progress made in that direction, but we are not yet at a point where we
can make strong observational predictions [15, 16, 17, 18, 19, 20].
Probably the three most studied Swampland Conjectures are the No Global Sym-
metries Conjecture [21, 12, 13], the Weak Gravity Conjecture [6, 12, 13] and the
Swampland Distance Conjecture (SDC) [5, 12, 13]. The first one demands the
absence of global symmetries in an EFT compatible with QG. People have al-
ready argued for this before the Swampland Program using general black hole
arguments. Thus, it is well established that this feature should hold in any QG
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Swampland

Quantum Gravity

Landscape

Energy Scale

Theory Space

Theory Space

Figure 1.1: An effective theory from the Landscape can be completed into Quan-
tum Gravity, whereas a theory from the Swampland can’t. The set of the Land-
scape doesn’t have to be connected, as it is illustrated here. Also it is believed
that we have a unique theory of Quantum Gravity. Hence, it is just a single point
in the UV. This figure is inspired by [12].
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theory. It was even proven in holographic setups [22, 23]. The Weak Gravity Con-
jecture essentially requires you to have a particle in your theory for which gravity
is the weakest force, e.g. weaker than the electromagnetic force 5. This translates
to a restriction on the spectrum of an effective theory compatible with QG. On the
other hand, a Swampland Conjecture can also have implications on the geometry
of the internal moduli space. Roughly speaking, the moduli space parametrises the
internal geometry on which the QG theory is compactified. From the perspective
of the EFT the moduli space represents the possible vacuum expectation values
(VEVs) for the scalar fields which are called moduli in this context. Therefore, we
have a relation between scalar fields in the effective theory and the internal geom-
etry. This intuition on the moduli space will suffice for the purposes of this thesis
and there will also be some explicit examples later. The Swampland Distance
Conjecture then states that any infinite distance limit in the moduli space has to
be accompanied by an infinite tower of states whose masses drop exponentially
with the distance traversed. In the full limit of infinite distance this signals the
breakdown of the EFT. Moreover, the SDC even demands that the moduli space
of QG has to have these infinite distance points which puts a restriction on the
moduli space geometry. Let me mention that there is another class of conjectures,
namely conjectures which try to rule out certain gravitational backgrounds. The
most prominent example here is the de Sitter Conjecture [24] which places a bound
on the gradient of potentials in a positive region. Roughly speaking, these are the
three big categories of Swampland Conjectures: conjectures that constrain the
spectrum, that constrain the internal geometry and that constrain the admissible
gravitational backgrounds. Furthermore, all these conjectures have a varying level
of rigor and the more rigorous ones tend to be less useful in providing indirect
evidence for String Theory [12].
Again, it has to be emphasised that this was just a small subset of the existing
conjectures which is enough to highlight the general features. Let me just mention
a few more [25, 26, 11, 27, 28, 29]. A good starting point for the interested reader
would be [12, 13].
Unlike the No Global Symmetries Conjecture the Weak Gravity Conjecture and
the Distance Conjecture are motivated directly by String Theory. However, it
was discovered that the Swampland Conjectures are connected via an underly-
ing web and that they are not independent from each other. On the one hand,
this hints at a more fundamental principle which is yet to be uncovered. And,
on the other hand, this gives another motivation to identify String Theory with
Quantum Gravity since the web relates conjectures, which have originated from
String Theory, to other conjectures, that were argued for on general QG grounds.
Let us highlight one example for this underlying web. There is a nice connection

5In fact, this just the electric version of the Weak Gravity Conjecture. The magnetic version
provides an upper limit on cut-off scale for the effective theory by the gauge coupling. But we
won’t comment further on this since it won’t be important throughout this thesis.
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Quantum GravityEnergy Scale

Λeff

Λswamp

Figure 1.2: If we increase Λeff in our theory, we reach the boundary of the cone at
the scale Λswamp. At this point we need to modify our theory to be still consistent
with Quantum Gravity when further increasing Λeff. This figure is inspired by
[12].

between the No Global Symmetries Conjecture, the Weak Gravity Conjecture
and the SDC [30], namely infinite field distances correspond to vanishing gauge
couplings. Hence, in these limits global symmetries are restored. So, by the No
Global Symmetries Conjecture the breakdown of the EFT is even required.
There is usually the same structure to a Swampland Conjecture [12]. Let’s con-
sider some Quantum Field Theory which is evaluated or observed at an energy
scale Λeff. The energy scale ΛQFT, above which the theory becomes inconsistent
even without gravity, is assumed to be much higher than the other scales here.
If ΛQFT would be low, the theory would become inconsistent before gravity could
have an effect on it. Then, this effective QFT gets coupled to gravity which in-
troduces a new energy scale Λswamp. At this energy scale Λswamp the theory needs
to be modified in order to be consistent with Quantum Gravity in the UV. This
modification could be mild, like the introduction of a single particle (see the Weak
Gravity Conjecture), or it can be severe, like the introduction of a whole tower of
states (see the SDC) 6. Either way, if Λeff reaches Λswamp, this modification has to
happen. This situation is illustrated in figure 1.2. However, in a practical theo-
retical setup the picture is generally slightly different. Instead of increasing Λeff

”by hand” the parameters in the theory are changed. The parameters in question
are usually vacuum expectation values of scalar fields parametrising the internal

6Also this should be reminiscent of the Fermi theory example.
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Quantum GravityEnergy Scale

Λeff, Λswamp

Figure 1.3: By changing the parameters in the theory we move in theory space,
until we reach the boundary of the cone. Effectively, this lowers the scale Λswamp

down to Λeff such that Quantum Gravity effects become relevant already at Λeff.

geometry. This has the effect that Λswamp gets lowered until it reaches Λeff and QG
features become relevant directly at Λeff. This situation is depicted in figure 1.3.
Both figures 1.2 and 1.3 are very heuristic and don’t depict the situation perfectly
accurate. They are merely meant to provide some visual intuition. Also, to be
precise, the two illustrations and cases aren’t fully decoupled from each other.
To wrap things up, let me come back to the quote by Lee Smolin. The Swampland
Program takes a more modest point of view than String Theory, namely it just
claims that String Theory is a consistent theory of Quantum Gravity and not that
it is directly realized in our world. Hence, even if String Theory is not underlying
our world, i.e. it is a ”mistake” in the sense of the quote, we can still learn a great
deal about QG and nature itself by systematically analyzing it. Thus, in either
case String Theory is highly non-trivial and definitely worthwhile exploring.

1.3 Outline of the Thesis

This thesis is organized as follows. In Chapter 2 the theoretical prerequisites from
the existing literature are introduced which aim to connect the results in the later
chapters of this thesis. In particular, chapter 2 begins with a short introduction
into String Theory, which is strongly geared towards the needs of this thesis and
is by no means complete. This includes the string spectrum, String Theory com-
pactified on a circle S1, the string β-functions and the low-energy effective action
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of String Theory. In section 2.2 the central connecting piece of this thesis is es-
tablished, namely the Swampland Distance Conjecture. Moreover, the example
of a circle S1 compactification, which closely follows the presentation in [12], is
worked out in much detail such that the main points of the SDC are highlighted.
Then, in section 2.3 the SDC is generalized in different ways which closes the gap
to the results of this thesis. For instance, the SDC can also be directly applied to
the metric instead of massless moduli, which ultimately yields a close relation to
geometric flow equations, Ricci flow being the example here. This part is mainly
based on [31] and [27]. In order to motivate the results in chapter 3, the reader
is further provided with an introduction to the idea of the Swampland Program
in the context of large spacetime dimensions D which is largely inspired by [29].
Lastly, the SDC is extended to non-geodesic trajectories. Here the presentation
strongly evolves around [32].
In chapter 3 a novel geometric flow equation for the number of spacetime dimen-
sions D is derived on the basis of the two-loop string β-function for the metric.
First, this is analyzed in detail for maximally symmetric Einstein spaces, a D-
sphere and D-dimensional AdS spacetime. Then, to conclude this chapter, the
derived flow is applied to a particular setting, namely the Freund-Rubin compact-
ification, which has already been introduced in chapter 2.
Chapter 4 develops a geometric flow, the Einstein-Maxwell (EM) flow, as a gradi-
ent flow, which extends Ricci flow in the sense that it also includes the backreaction
of the matter content. In particular, the matter content is given by a Maxwell
field. With the application to black hole geometries in mind the well-posedness
of the flow is shown in the presence of a non-extremal and an extremal horizon.
Finally, the EM flow is performed for the obvious example of Reissner-Nordström
black holes, for both its non-extremal and its extremal version. These EM flows
are all evaluated numerically, besides the near-horizon flow in the extremal case,
which can be solved analytically.
In chapter 5 the allowed non-geodesicity of the SDC is applied to the theory of
multi-field cosmic acceleration. As it turns out, infinite-distance trajectories (i.e.
trajectories that can extend infinitely such that they are compatible with the
SDC) have a bounded turning rate Ω at the boundary of moduli space, namely
Ω/H < O(1) ·

√
ϵ, where ϵ is the acceleration parameter obeying ϵ < 1. This state-

ment holds even true for trajectories, which are allowed to turn near the boundary
of moduli space while staying consistent with the SDC. Moreover, a new tool in
the analysis of infinite-distance trajectories was introduced: the swamp cone.
The last chapter, i.e. chapter 6, finally provides a summary of the results in this
thesis and an outlook into the future. In the appendix the reader can find some
side calculations which have been moved there for the readability of the thesis.
The conventions in this thesis will mostly be chapter-specific which means that
different chapters might have different conventions. But everything is thoroughly
declared, so there should be no confusion.
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Unless otherwise stated, this thesis is formulated in natural units. For instance,
the d-dimensional Planck massMp,d is sometimes reinstated in order to make some
Swampland argument. Furthermore, the metric convention is always mostly plus.
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Chapter 2

Theoretical Prerequisites

In this chapter the theoretical prerequisites are developed which are important to
the rest of this thesis. It starts with a very brief and focused introduction into
String Theory. This will be very basic because not a lot is required to follow the
later arguments. For a thorough introduction the reader is referred to some well
established standard literature [33, 34, 35, 36, 37, 38].
After that the reader is introduced to the Swampland Distance Conjecture which is
then applied to the the specific example of a circle S1 compactification. Moreover,
some generalisations of the SDC are presented. For instance, the relation of the
SDC to geometric flows is explained and the SDC is extended to non-geodesic
trajectories in field space. There is also a short section about the Swampland
Program in a large number of spacetime dimensions.

2.1 Brief Introduction into String Theory

The material covered in this section is part of the standard literature and can be
found in [35, 36, 38]. There is also a short introduction to String Theory in [12]
which we loosely follow here, at least in the choice of topics.

2.1.1 The Spectrum of String Theory

In analogy to a relativistic point-particle, whose action is given by the length of
its worldline, one can define the so called Nambu Goto action SNG of a relativistic
string moving in a flat background in terms of the volume of its worldsheet Σ
[39, 40]

SNG = −T
∫
Σ

d2σ

√
− det

(
∂XM

∂σα
∂XN

∂σβ
ηMN

)
(2.1)

where T = 1
2πα′ is the string tension. The parameter α′ is also called the Regge

Slope which determines the string mass scale, defined here as Ms =
1

2π
√
α′ . Hence,
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the string length is given by lS = 1√
α′ in these conventions. The worldsheet Σ is

parametrised by coordinates σα = (τ, σ). The functions XM(σα) are maps from
the worldsheet into theD-dimensional flat spacetime, so we haveM = 0, . . . , D−1.
The determinant is taken over the worldsheet coordinates and this action enjoys
reparametrisation invariance of the worldsheet and global Poincaré invariance.
The square root in (2.1) makes it notoriously hard to quantize. By introducing an
auxiliary metric hαβ on the worldsheet the Nambu Goto action can be rewritten
as

SP = −T
2

∫
Σ

d2σ
√
−hhαβ∂αXM∂βX

NηMN (2.2)

where h ≡ dethαβ and ∂
∂σα ≡ ∂α. This action is called the Polyakov action

[41, 42] 1. The equation of motion for hαβ turn into the following constraint on
the energy-momentum tensor Tαβ on the worldsheet

Tαβ = 0. (2.3)

Among the previous symmetries the Polyakov action has an additional rescaling
symmetry of hαβ which is labelled Weyl symmetry 2. Moreover, Weyl invariance
makes Tαβ traceless, even without the equation of motion. That statement always
holds classically, but can fail at the quantum level. These symmetries can be used
to completely fix the auxiliary metric to be the flat metric on the worldsheet, i.e.
hαβ = ηαβ. This choice is called the conformal gauge3. At this point the standard
route is to introduce light-cone coordinates on the worldsheet as follows

σ± = τ ± σ. (2.4)

From here on we focus on closed strings which obey a periodicity condition 4

XM(τ, σ) = XM(τ, σ + 2π). (2.5)

However, the open string is treated the same way except for a few minor differ-
ences. Here we refer the reader again to the standard literature [33, 35, 36, 38].
In conformal gauge the equation of motion for XM becomes a wave equation such
that XM can be split into

XM(τ, σ) = XM
L (σ+) +XM

R (σ−) (2.6)

where these terms correspond to a left- and right-moving wave on the closed string.
Both parts can now be separately expanded into Fourier modes αMn for the right-
moving sector and ᾱMn for the left-moving sector. The exact expansions aren’t

1It turns out the Polyakov action was already introduced earlier in [43, 44, 45]
2This is where String Theory is special. This symmetry only works for 1d extended objects.
3This doesn’t fix the gauge completely. There is still some residual gauge symmetry left

which leaves ηαβ invariant.
4We choose the length of the string to be l = 2π.
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important here, so we refrain from giving them.
In principle the theory defined by (2.2) is easy to quantize, but we also need
to take care of the constraints (2.3). But before dealing with that the Fourier
modes αMn get promoted to operators at the quantum level such that they obey
the following commutation relations[

αMm , α
N
n

]
= mδm+n,0 η

MN (2.7)

and the same holds true for ᾱMn . The mixed commutators are vanishing, i.e. the
two sectors are independent of each other. The commutation relations (2.7) are
just the standard commutation relations of the harmonic oscillator. Modes αMn
with n > 0 are the annihilation operators of the vacuum and modes with n < 0
are creation operators. Since we demand that XM is hermitian, the modes are

related as
(
αMn
)†

= αM−n. It turns out that αM0 is proportional to the momentum
pM of the string. Also αM0 commutes with every other mode. Hence, the vacuum
gets another label by the momentum pM , i.e. |0, p⟩. Now the constraints (2.3)
can be employed via the Virasoro generators which are given by

Ln = − 1

2π

∫ 2π

0

dσ e−inσT−− =
1

2

∞∑
m=−∞

αMn−mα
N
m ηNM (2.8)

where T−− is a component of the energy-momentum tensor in worldsheet light-
cone coordinates. There is an analogous expression for the left-moving sector. In
the classical theory the constraints (2.3) are equivalent to demanding Ln = 0 = L̄n,
but at the quantum level things are more subtle. There is an ordering ambiguity
for L0 and L̄0 in the sum of (2.8) which ultimately results in a normal ordering
constant a5. Thus, all physical states in the spectrum need to fulfill

Ln |phys⟩ = 0 for n > 0 (2.9)

(L0 + a) |phys⟩ = 0. (2.10)

The same applies to the left-moving sector. Furthermore, there is a level-matching
constraint which forces the number of right- and left- moving creation operators
to be the same

(L0 − L̄0) |phys⟩ = 0. (2.11)

This is one of the only ways the two sectors are connected. Moreover, at the quan-
tum level the generators (2.8) fulfill the following famous Virasoro commutation
relations

[Ln, Lm] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (2.12)

5In Minkowski space the normal ordering constant from the right- and left- moving sector
coincide, i.e. a = ā
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where c is the so called central charge. The second term is a quantum effect
which corresponds to a quantum breaking of the Weyl invariance, i.e. the trace of
the energy-momentum tensor acquires a contribution proportional to c. It turns
out that each bosonic field contributes a value of 1 to c such that c is given by
the number of fields. Each spacetime coordinate has its own map XM which
corresponds to a bosonic field. Thus, we find c = D.
This quantization procedure is called old covariant quantization. However, due to
the constraints one has to impose on the physical states it is very difficult to find
the spectrum of the theory. There are two other quantization schemes. On the
one hand, there is the path integral quantization and, on the other hand, there
is the light-cone quantization. The former is the cleaner way of dealing with the
situation but there are a lot of technicalities involved. Therefore, we focus on the
latter which provides a shortcut to the spectrum. The main idea of light-cone
quantization is to fix the residual gauge freedom and to solve the constraints (2.3)
explicitly before the quantization. As the name suggests, we introduce light-cone
coordinates for the the fields XM in the following way

X± =
1√
2

(
X0 ±X1

)
. (2.13)

First, we use the residual gauge freedom to set all oscillators in the ”+”-direction
to 0 such that we get

X+ = α′p+τ (2.14)

where p+ is defined analogously. Furthermore, we have set the center of mass
position to 0. Then the constraints (2.3) can be used to relateX− to the transverse
coordinates X i for i = 2, . . . , D − 1, namely we find

∂±X
− =

1

α′p+
(
∂±X

i
)2
. (2.15)

Hence, only the transverse oscillators αin are independent degrees of freedom be-
cause there are no oscillators in the ”+”-direction and the oscillators in the ”-”-
direction are given in terms of the transversal ones by (2.15). All physical states
can now be built by acting with different combinations of the transverse oscillators
αin and ᾱin for n < 0 on the vacuum state |0, p⟩ which allows us to directly read
off the spectrum. The states of the spectrum follow the mass formula

α′M2 = 2(N⊥ + N̄⊥ − 2) (2.16)

where a normal ordering constant was fixed by criticality, i.e. the absence of
quantum anomalies6, and N⊥ (N̄⊥) counts the number of oscillators in the right
(left)-moving sector. Moreover, the level-matching condition demands N⊥ = N̄⊥.

6This fixes the spacetime dimension to be 26 for the bosonic string.
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Another way to infer the normal ordering constant is by considering the little
group of massless states which is SO(d − 2). It turns out that the state at the
first excited level perfectly decomposes into irreducible representations of that
group. So, it has to be massless which then fixes the normal ordering constant.
At the first excited level 7 there is one state αi−1ᾱ

j
−1 |0, p⟩. This state contains a

symmetric traceless part, an antisymmetric part and a trace part. Thus, there
is a symmetric, transverse, traceless excitation gij in the spectrum which can
be associated with the graviton. This is precisely the reason String Theory is a
consistent theory of Quantum Gravity. Moreover, there is also the antisymmetric
tensor field Bij which is called the Kalb-Ramond field. Lastly, the trace part is a
scalar field named the dilaton. The dilaton governs the string coupling strength.
All states with N⊥ = N̄⊥ > 1 are massive string states of the order Ms. These
are in general also important ingredients of String Theory. But these states can
never be excited in a low-energy effective theory because Ms is much higher than
the energy scale of the effective theory Λeff. Therefore, we don’t consider them
further.
This introduction was only concerned with Bosonic String Theory which is enough
for the purpose of this thesis. The interested reader is again referred to the
literature [33, 34, 35, 37] for a treatment of Superstring Theory.

2.1.2 String Theory on a circle S1

Let’s consider a closed bosonic string with mapping functions XM(τ, σ) in flat
spacetime which corresponds to a metric

ds2 = ηMNdX
MdXN . (2.17)

The simplest possible compactification is on a circle S1 of radius R, which means
we take a spatial coordinateXd with d ∈ {1, . . . , D−1} and make the identification

Xd ∼ Xd + 2πRω (2.18)

for ω ∈ Z. This identification relaxes the periodicity condition (2.5) of the closed
string in the following way

Xd(τ, σ) = Xd(τ, σ) + 2πRω (2.19)

again for an integer ω, the so called winding number. So the compact dimension
opens up the possibility for the closed string to wind around it which would
not be possible for a point-particle. The winding number ω of the string is also
conserved which means that the string can’t be unwound without breaking it.
The wave function translating Xd around the string has to be single-valued [35]

eip
d(Xd+2πRω) !

= eip
dXd

(2.20)

7We skip the tachyonic groundstate because it gets projected out in the Superstring Theory.
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which forces the momentum along the circle direction to have discrete values

pd =
n

R
(2.21)

where n ∈ Z. From the mode expansion of Xd(τ, σ) = Xd
R(τ − σ) + Xd

L(τ + σ)
one can then infer

pdR =
1

2

(
n

R
− ωR

α′

)
(2.22)

pdL =
1

2

(
n

R
+
ωR

α′

)
(2.23)

such that the mass m in the D − 1 non-compact dimensions is given by

α′m2 = α′ n
2

R2
+

1

α′ω
2R2 + 2(NL +NR − 2) (2.24)

where NL counts the number of left-moving oscillators and NR the number of
right-moving oscillators. In the above the first term accounts for the momentum
along the circle direction and the second term represents the energy contribution
due to the string winding ω times around the compact dimension. Moreover, the
level-matching condition gets relaxed to

NR −NL = nω. (2.25)

The spectrum in the non-compact D − 1 dimensions also gets new contributions,
even for n = 0 = ω, because there are now two distinct sets of oscillator modes,
namely the ones along the compact direction αdn, ᾱ

d
n and the ones living in the

non-compact spacetime αMn , ᾱ
M
n forM ̸= d. For more details on the spectrum one

should consider e.g. [35, 36, 38].
However, there is an interesting feature of the spectrum (2.24). It is invariant
under

R ↔ α′

R
, n↔ ω (2.26)

which is an example of a duality transformation called T-duality. Thus, no matter,
if the compact circle is small or large, the spectrum of the compactified string looks
the same. This will become important later when we consider the Swampland
Distance Conjecture. But T-duality isn’t just a symmetry of the mass spectrum,
in fact, it can be shown to be a symmetry of the full (free) theory, i.e. including
the mode expansions etc. Furthermore, the radius R =

√
α′ is a fixed point of this

transformation. At this fixed point some vector fields, which were introduced by
the compactification, become massless and their gauge symmetry gets enhanced.
More details on that can be found in [35, 36, 38] Before concluding this section
let us emphasise that T-duality is a deeply stringy effect which works only due to
the extension of the string.
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2.1.3 The String one-loop β-functions

So far the discussion has only been about strings in flat space with metric ηMN .
Now we will consider a string in a general curved background, namely we will
replace ηMN → GMN(X). Even more generally, the string can further be consis-
tently coupled to an antisymmetric tensor field BMN and a scalar field Φ. These
are the Kalb-Ramond field and the dilaton which were previously introduced.
Together with the spacetime metric GMN they form the massless bosonic closed
string spectrum. Therefore, the Polyakov action (2.2) gets modified by these
non-trivial background fields to be [35]

SP = −T
2

∫
Σ

d2σ
√
−h
(
hαβ∂αX

M∂βX
NGMN + ϵαβ∂αX

M∂βX
NBMN + α′ΦR(2)

)
(2.27)

where ϵαβ is the totally antisymmetric tensor and R(2) is the Ricci scalar of the 2d
worldsheet 8. From the worldsheet point of view the functions GMN , BMN and Φ
are couplings, which means they acquire a running behavior at the quantum level.
As it is also common in Quantum Field Theory, the β-functions are expanded
in loop orders. This corresponds here to an expansion in α′ or, intuitively, we
expand the worldsheet theory around small curvature backgrounds. The one-loop
β-functions are given by [12, 35, 36]

βGMN = α′
(
RMN + 2∇M∇NΦ− 1

4
H LK
M HNLK

)
+O(α′2) (2.28)

βBMN = α′
(
−1

2
∇KH

K
MN +HK

MN∇KΦ

)
+O(α′2) (2.29)

βΦ = α′
(
−1

2
∇2Φ +∇KΦ∇KΦ− 1

24
HMNKH

MNK

)
+O(α′2) (2.30)

where RMN is the spacetime Ricci tensor, ∇M is the spacetime covariant deriva-
tive and HMNK is the field strength of BMN , namely HMNK = ∇[MBNK]. Now
for the flat background, i.e. with only ηMN like in (2.2), quantum conformal in-
variance, which is equivalent to Weyl symmetry, forces the spacetime dimension
to be critical. The critical dimension of the bosonic string is 26, whereas it is 10
for the superstring. In the non-trivial background above the β-functions of the
couplings have to vanish to ensure conformal invariance, so we get

βG,B,Φ = 0. (2.31)

These conditions are also called the string equations of motion which can also
be derived from an action. This action corresponds to the low-energy effective

8In fact, the dilaton term breaks classical Weyl invariance. It should be considered with the
other one-loop corrections to the couplings. Then, the classical Weyl symmetry is restored by
cancellations [35].
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action of String Theory because it only involves the massless string fields, e.g.
for Type IIA/IIB Superstring Theory the low-energy effective action is IIA/IIB
supergravity. For instance, the low-energy effective action, which has (2.31) as its
equations of motion, is given by [12, 35, 36]

S = 2πMD−2
s

∫
dDX

√
−Ge−2Φ

(
RD − 1

12
HMNKH

MNK + 4∂MΦ∂MΦ

)
(2.32)

whereD = 10 for the superstring andD = 26 for the bosonic string. Moreover, RD

is the D-dimensional spacetime Ricci scalar. The action (2.32) is in the so called
string frame because the Ricci scalar has a prefactor depending on the dilaton,
namely e−2Φ. This will be important when comparing String Theory results to
field theory results for point-particles because the latter are usually given in the
Einstein frame. In the Einstein frame the Ricci scalar has no prefactor except for
the D-dimensional Planck mass.

2.2 Swampland Distance Conjecture

In this section the Swampland Distance Conjecture in its standard form is intro-
duced and explained. Its features are further highlighted in a specific example,
namely the circle S1 compactification.

2.2.1 Definition and Explanation

The Swampland Distance Conjecture (SDC) was originally introduced in [5] and
it constrains the field space geometry of the scalar fields without potential, called
moduli, consistent with Quantum Gravity. The field space described by the moduli
is calledmoduli space M. Consider a d-dimensional effective theory of some scalars
ϕi minimally coupled to gravity

S =

∫
ddX

√
−g
(
Rd

2
− 1

2
Gij(ϕ

k)∂µϕ
i∂µϕj + . . .

)
(2.33)

where the d-dimensional Planck mass MP,d ≡ 1, Rd is the d-dimensional space-
time Ricci scalar and Gij is the field space metric on M. The dots . . . indicate
that there might be further ingredients in this effective theory, but these aren’t
important for the SDC. The scalar fields are canonically normalized, if Gij = δij.
The SDC now consists of two main parts and can be formulated as follows
[5, 12, 13].
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Swampland Distance Conjecture

• Starting from any point P ∈ M there exists always another point
Q ∈ M such that the geodesic distance between P and Q denoted by
∆(P,Q) is infinite, i.e. M is non-compact.

• At each infinite distance limit, i.e. ∆(P,Q) → ∞, there exists an
infinite tower of states scaling as

M(Q) ∼M(P ) e−λ∆(P,Q)

where λ is a positive constant of O(1).

The first statement gives the intuitive picture that a moduli space consistent with
QG has a bulk and one or several infinite distance points [12]. Moreover, this
is precisely what constrains the geometry of M, in the sense that it has to have
these infinite distance points.
The second part characterises the limit to these infinite distance points. It is
important to note here that the exponential scaling is tied to the distance being
infinite which means that there is no exponential scaling for a finite distance.
Furthermore, the geodesic distance is given by [12]

∆(P,Q) =

∫
γ

√
Gij

∂ϕi

∂ξ

∂ϕj

∂ξ
dξ (2.34)

where γ is the shortest geodesic distance between P and Q which is parametrised
by ξ. It gets determined by the geodesic equation on the field space

ϕ̈i + Γijkϕ̇
jϕ̇k = 0 (2.35)

where the dot ˙ denotes differentiation with respect to ξ and Γijk are the Christoffel
symbols of Gij. In practice one tends to work with canonically normalised fields
such that (2.35) becomes trivial and the shortest distance is just given by the fields
themselves because the field space is flat. Moreover, since the SDC is a statement
about infinite field distance, the starting point P doesn’t matter. Hence, it is
often omitted and the distance is just labelled ∆ without any arguments.
The exponential in the second part of the SDC further contains this positive
constant λ ∼ O(1) which governs the rate of the exponential. It isn’t further
characterised by the SDC which is certainly unsatisfying. However, there has to
be a lower bound on λ, because otherwise the exponential scaling of the mass
tower gets spoiled. Some concrete bounds have been proposed in the literature
[26, 46, 47, 48], but so far there is no full explanation from first principles or
directly from the EFT data [13].
The second statement of the SDC also has severe consequences for the EFT. In the
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infinite distance limit9 one has to include an infinite amount of massless particles
to be consistent with QG. But this renders the EFT useless and it breaks down
which means there is no field theory description in that limit. So, in a sense, the
consistency with QG leads to its own demise and the effective description can only
be valid for a finite field distance traversed. In particular, if we identify the QG
cut-off scale Λswamp with the first state in the infinite tower10, we get

Λswamp ∼ e−λ∆ (2.36)

such that Λswamp gets exponentially lowered with the distance traversed. As soon
as Λswamp hits the scale Λeff, the full tower has to be included. This resembles the
situation depicted in figure 1.3 pretty well, since the distance is associated with
the change of some VEVs in the theory. But that will be made even more clear
in the next section.
Lastly, there is also a refined version of the SDC [51, 52] which sharpens it and
extends it to also include moduli with a potential. However, since this isn’t further
needed in the thesis, we omit it here.

2.2.2 Example: Compactification on a Circle S1

In this part we closely follow the presentation of [12]. This includes the conventions
and the calculations, although significantly more details are provided here.
Consider a D-dimensional theory of pure gravity, where D = d + 1. The action
then reads

S =

∫
dDX

√
−G RD

2
(2.37)

where RD is the D-dimensional Ricci scalar. We employ again units such that
the d-dimensional Planck mass MP,d is set to 1 which will directly translate to
MP,D = 1, as will be shown soon. Now we compactify the d-th spatial coordinate
XD on a compact circle S1 of radius R such that we identify

XD ≃ XD + 1 (2.38)

where picked our units such that the periodicity is set to 1. In fact, such circle
compactifications were first introduced and studied by Kaluza [53] and Klein [54].
In this setup the metric can be written as

ds2 = GMNdX
MdXN = e2αϕgµνdX

µdXν + e2βϕ
(
dXd

)2
(2.39)

where M = 0, . . . , d and µ = 0, . . . , d − 1. Furthermore, gµν and ϕ, which can
be seen as a d-dimensional scalar field, only depend on the external coordinates

9To be precise, this full limit is actually discontinuous.
10This isn’t fully correct. Usually Λswamp is associated with the species scale Λsp [49, 50], but

for us this distinction isn’t important here since the two only differ marginally [13].
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Xµ and not on Xd. Using the Ansatz (2.39), the D-dimensional Ricci can be
decomposed as

RD = e−2αϕ (Rd − C1∂µϕ∂
µϕ− C2∂

µ∂µϕ) (2.40)

where Rd is the d-dimensional Ricci scalar and the constants C1 and C2 are given
by

C1 = (d− 1)(d− 2)(α− β)2 + 2βd(d− 2)(α− β) + d(d− 1)β2 (2.41)

C2 = 2 ((d− 1)(α− β) + βd) . (2.42)

The full derivation of this decomposition can be found in appendix A. Since this
is under a spacetime integral, we can directly drop the last term in (A.11) as a
total derivative (after going to Einstein-frame). Thus, the action becomes

S =

∫
ddX

√
−g e((d−2)α+β)ϕ

(
Rd

2
− C1

2
∂µϕ∂

µϕ

)
(2.43)

where the integral over Xd is normalised to 1 in our conventions. By demanding
that we are in the Einstein frame, we get

β = −(d− 2)α. (2.44)

Moreover, ϕ should be canonically normalised, i.e. C1 = 1, which then gives

α2 =
1

(d− 1)(d− 2)
. (2.45)

Hence, the action finally reads

S =

∫
ddX

√
−g

(
Rd

2
− 1

2
∂µϕ∂

µϕ

)
(2.46)

which is an example of (2.33) with a 1-dimensional moduli space. The prefactor
of the action wasn’t changed at all during this calculation such that MP,d ≡ 1
directly implies MP,D ≡ 1, as promised. The field ϕ is related to the radius R of
the circle in the following way

2πR = VS1 =

∫ 1

0

dXd
√
Gdd = eβϕ = e

−
√

d−2
d−1

ϕ
(2.47)

where VS1 denotes the volume of the circle. So, interestingly, the radius R be-
comes dynamical in the lower dimensional theory and varying the scalar field ϕ
corresponds to changing the radius of the internal circle. In particular, the limit
ϕ → ∞ means the radius shrinks to 0, i.e. R → 0, and the limit ϕ → −∞ corre-
sponds to the decompactification limit R → ∞ in which the compact dimension
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opens up. By these considerations the moduli space M of ϕ is given by the real
line

M = R. (2.48)

Obviously, this has, as demanded by the SDC, two infinite distance points, namely
±∞. Any point in between, which would correspond to the ”bulk” here, is in-
finitely far away from these points.
Next, the geodesic equation is trivial for a 1d field space which is also canonically
normalised, so one can directly consider the distance (2.34). This gives

∆(P,Q) = ϕQ − ϕP (2.49)

where ϕQ is the value of ϕ at the point Q and respectively for ϕP . Again, we are
interested in infinite distance limits, so we can safely drop the finite contribution
ϕP . Then, people usually write (dropping the Q-label)

∆ ∼ ϕ. (2.50)

Therefore, the geodesic field distance is given by the field itself, which is a general
feature of canonically normalised fields. Please note that the distance is logarith-
mic in the radius R because the kinetic term in R isn’t canonically normalised.
In order to identify the tower of states, we need to introduce another massless
D-dimensional scalar Ψ to (2.37), namely

S =

∫
dDX

√
−G

(
RD

2
− 1

2
∂MΨ∂MΨ

)
. (2.51)

The scalar field Ψ now also depends on Xd. However, since Xd is periodic, the
scalar field also has to be periodic in Xd. Thus, it can be decomposed into modes
ψn as

Ψ
(
XM

)
=

∞∑
n=−∞

ψn(X
µ)e2πinX

d

(2.52)

such that the periodicity along Xd is enforced and the momentum along the circle
direction is quantized like for the string in section 2.1.2. The modes ψn only
depend on the external coordinates Xµ. Because Ψ is real, the modes satisfy
ψ†
n = ψ−n. Then, using ∫ 1

0

dXde2πi(n+m)Xd

= δn+m,0 (2.53)

the kinetic term of Ψ decomposes as

−1

2

∫
dDX

√
−G ∂MΨ∂MΨ =
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∫
ddX

√
−g

(
−1

2
∂µψ0∂

µψ0 −
∞∑
n=1

(
∂µψn∂

µψ†
n + (2πn)2e

2
√

d−1
d−2

ϕ
ψnψ

†
n

))
.

(2.54)

Hence, there is a massless real zero-mode ψ0 and infinitely many complex scalars
ψn with masses

Mn = 2πn e

√
d−1
d−2

ϕ
(2.55)

in d dimensions. This mass tower is commonly named KK-tower MKK after
Kaluza and Klein, the inventors of the circle compactification. Thus, there is a
mass tower scaling like 11

MKK ∼ eλ∆ (2.56)

where

λ =

√
d− 1

d− 2
(2.57)

which is an O(1) constant. The masses in this KK-tower drop to 0 in the limit
ϕ → −∞ which corresponds to the decompactification limit of the circle. In
fact, such KK-towers, which become massless in the large volume limit of the
internal geometry, are ubiquitous even in more complicated higher-dimensional
compactifications.
However, what about the other limit ϕ → ∞, i.e. R → 0? This is also an
infinite distance limit and it should be accompanied with an infinite tower of
states becoming massless according to the SDC. It obviously can’t be the KK-
tower, so there has to be another tower of states. The mass spectrum, that we
supplemented by the addition of Ψ, corresponds to a point-particle. Instead we
will use now the mass spectrum of a string on circle (2.24) which is a Quantum
Gravity mass spectrum. To better relate the two cases, we assume that the d-
dimensional metric is flat, i.e. gµν = ηµν , and that there is no contribution from
the oscillators. Hence, the spectrum reads

m2 =
n2

R2
+

1

α′2ω
2R2. (2.58)

A few steps have to be performed to compare this to the results from the field
theory calculation, namely we need to go from the string frame in (2.32) to the
Einstein frame. First, the metric (2.39) contains additional factors e2αϕ and e2βϕ

compared to the metric (2.17). The d-dimensional mass spectrum contains a factor
of the inverse d-dimensional metric which results in [12]

m2 = −ηµνpµpν → m2 = −e−2αϕηµνpµpν . (2.59)

11Usually the geodesic distance in the SDC is defined with an absolute value such that the
structure in the exponential stays the same for limits to ±∞. That is why the minus sign is
missing in this example.
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To compensate this change, the mass spectrum (2.58) gets multiplied by e2αϕ and
it is then given in the Einstein frame. But this isn’t the full story. We need to
make another change, namely there is a dilaton factor e−2Φ multiplying the action
(2.32). Let’s consider the effective d-dimensional dilaton Φd defined by [12]

e−2Φd = e−2ΦeβϕMs. (2.60)

We perform variations of the internal radius R that leave Φd invariant which
implies the following scaling for the D-dimensional dilaton

e−2Φ ∼ e−βϕ

Ms

. (2.61)

From the string effective action we can read off the d-dimensional Planck mass

1

2
Md−2

p,d = 2πMD−2
s e−2Φ. (2.62)

But in our units we have set Mp,d ≡ 1 such that by (2.61) the string scale Ms has
to scale like

Ms ∼ e
β

d−2
ϕ. (2.63)

Thus, we find that in this scenario α′ isn’t constant, namely it behaves like

α′ = α′
0 e

− 2β
d−2

ϕ (2.64)

where we specified the dimensionful proportionality constant here to be α′
0. This

change affects the winding modes in the mass spectrum (2.58) such that we get

m2 =M2
KK +M2

wind = (2πn)2 e
2
√

d−1
d−2

ϕ
+

ω2

(2π)2α′
0

e
−2

√
d−1
d−2

ϕ
(2.65)

where we reinstated the values for α and β. It is remarkable that we exactly recover
the KK-tower MKK from the slightly naive field theory calculation before. But
there is another tower which is associated with the winding modes of the string.
This winding tower Mwind is the contribution coming from Quantum Gravity,
since these winding states are a purely stringy effect, and it is precisely this tower
which becomes massless in the limit ϕ → ∞, i.e. R → 0. In the field theory this
limit wasn’t accompanied by a tower becoming massless. Thus, we see that the
SDC is only fully fulfilled in a QG setup. In total, we have two inversely scaling
towers

MKK ∼ eλ∆ (2.66)

Mwind ∼ e−λ∆ (2.67)
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where λ =
√

d−1
d−2

∼ O(1). Thus, in each infinite distance limit a tower becomes

massless and invalidates the EFT12, as it is demanded by the SDC. It is even
conjectured by the Emergent String Conjecture that these are the two leading
types of towers becoming massless in an infinite distance limit [55]. In a more
general setup there can also be other extended objects, which can wind internal
cycles, such as D-branes, which serve as endpoints for open strings [56, 57].
Moreover, the KK-tower and the winding tower are exchanged by T-duality which
was introduced in section 2.1.2. Remember that T-duality relates the limits of
small and large circles which is precisely what happens to the two towers. The
SDC is sometimes also referred to as a duality conjecture in the sense that it is
predicting the existence of a duality at every infinite distance limit such that the
infinite tower provides the new fundamental (weakly coupled) degrees of freedom
of the dual description [13].
Finally, one has to say that the SDC and all of its implications were extensively
tested in String Theory scenarios and they are pretty well established in the
community [30, 58, 59, 60, 55, 61, 62, 63]. Hence, in practice the verification isn’t
usually done and people just know that there are these KK-towers and winding
towers, as soon as infinite field distance limits are encountered.

2.3 Generalizations of the SDC

In this section the SDC is generalized in several different ways such that we nicely
connect to the results of this thesis. This includes the Generalized Distance Con-
jecture [25], which is related to geometric flows [27], the Large Dimension Conjec-
ture [29] and the extension to non-geodesic trajectories [32]. However, there are
also other extensions like the Black Hole Entropy Distance Conjecture [28], just
to highlight another example.

2.3.1 Generalized Distances and Geometric Flows

The Swampland Distance Conjecture was originally formulated for scalar fields
[5]. It is hence very natural to ask the question, if the SDC also holds for different
fields. Furthermore, the scalar fields in the EFT usually have their origin in
different places, like the spacetime metric. So it was proposed in [25] that there
exists a general version of the SDC, the so called Generalized Distance Conjecture
(GDC), which should apply to all fields. The field space metric G 13 for an
arbitrary field OM1...Mn with n spacetime indices gets naturally determined by the

12Remarkably, this only happens in the lower dimensional theory, whereas the full higher
dimensional theory is completely fine in these limits [12].

13In abuse of notation we will use G for the general field space metric and not just for the
scalar field space as before.
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kinetic term
Lkin = −GM1...MnN1...NnDOM1...MnDON1...Nn (2.68)

where D is some differential operator. This motivates to formulate the following
distance

∆O =

∫
γ

(〈
GM1...MnN1...Nn

∂OM1...Mn

∂ξ

∂ON1...Nn

∂ξ

〉) 1
2

dξ (2.69)

where γ is a geodesic path through field space parametrized by ξ. The angled
brackets denote an averaging over the spacetime manifold M〈
GM1...MnN1...Nn

∂OM1...Mn

∂ξ

∂ON1...Nn

∂ξ

〉
=

1

VM

∫
M
GM1...MnN1...Nn

∂OM1...Mn

∂ξ

∂ON1...Nn

∂ξ
(2.70)

where VM is the (infinite) spacetime volume of M. This is necessary because
in general the field VEVs depend on the spacetime coordinates. In the case
of constant VEVs the spacetime volume cancels out. Moreover, the generalized
distance (2.69) nicely reduces to (2.34) for scalar fields.
Then the Generalized Distance Conjecture says that any infinite distance limit of
∆O is accompanied by a light tower of masses scaling like [25]

m ∼ e−λ∆O (2.71)

where λ 14 is a constant of O(1). In [25] the Generalized Distance Conjecture was
originally formulated for setups in which the external non-compact is an Einstein
space. However, it isn’t completely far fetched that it should hold for more general
setups. Moreover, in [25] the conjecture was also extended to situations where
more than one field OM1...Mn is evolving in its field space.
Probably the most obvious choice for the Generalized Distance Conjecture would
be the spacetime metric itself, as it is a crucial ingredient of a theory of Quantum
Gravity. Applying the just described procedure to transverse traceless metric
variations gMN , we get [25]

∆g = c

∫ ξf

ξi

(
1

VM

∫
M

√
ggMNgOP

∂gMO

∂ξ

∂gNP
∂ξ

) 1
2

dξ (2.72)

where c ∼ O(1) is dimensionful constant parameter. The path γ is parametrized
by ξ which ranges from ξi to ξf . Intuitively, the metric gMN(ξ) describes a family
of metrics in a generalized moduli space 15. However, this notion of distance in a
metric field space isn’t new, namely it has already appeared in [64, 65]. Although
this was derived for transverse traceless metric variations, the distance (2.72) also

14Of course, the exponential rate λ is different depending on the field. This is just abuse of
notation.

15It is generalized in the sense that it goes beyond scalar fields.
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holds for general metric variations [27]. Thus, for an infinite distance ∆g we expect
a mass tower becoming light like

m ∼ e−λ∆g (2.73)

where λ ∼ O(1).
A straightforward application of (2.72) are Weyl rescalings of the form

g̃µν = e2ξgµν (2.74)

which results in a collapse of the distance formula to [25, 27]

∆g ≃ ξf − ξi ≃ ξ. (2.75)

Here we are considering a lower d-dimensional effective metric gµν , hence the differ-
ent indices. This can further be applied to a family of AdS metrics parametrized
by a cosmological constant Λ(ξ) ranging from Λi = Λ(ξi) to Λf = Λ(ξf ). The
cosmological constant behaves under Weyl rescalings as [25, 27]

Λ(ξ) = −1

2
(d− 1)(d− 2)e−2ξ (2.76)

such that the distance becomes

∆g ≃ ξf − ξi ≃ ln

(
Λi
Λf

)
≃ ln Λ. (2.77)

In combination with the Generalised Distance Conjecture this leads to the AdS
Distance Conjecture (ADC) [25]. In an AdS space described by a cosmological
constant Λ the ADC predicts in the limit Λ → 0 a mass tower scaling like

m ∼ |Λ|α (2.78)

where α is positive and O(1). In general, one expects α ≥ 1
2
where the threshold

α = 1
2
is called the strong ADC [25, 27]. Moreover, the dual limit Λ → ∞ is

far less clear here since it corresponds to super-Planckian curvatures. But there
is some evidence from String Theory constructions that hints at a mass tower
becoming light even in that limit [27].
In [27] it was then observed that there is a close relation between geometric flow
equations in General Relativity and the Generalised Distance Conjecture. For
instance, they considered Ricci Flow which was introduced in [66] 16. It is one of
the prototypical examples of geometric flow equations and it was famously used
by Perelman in his proof of the Poincaré Conjecture [70, 71]. Other examples of

16We will not provide a full introduction to Ricci flow here. For reviews on Ricci Flow consider
[67, 68, 69]. There will also be more details and some more context in chapter 4.
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geometric flows are the Ricci-Bourguignon Flow [72, 73] or the Calabi Flow [74].
For a family of metrics gµν(τ) on a d-dimensional manifold Ricci flow is given as
[66]

∂

∂τ
gµν(τ) = −2Rµν(τ) (2.79)

where Rµν is the Ricci tensor associated with gµν . Here τ is the flow parameter
of mass dimension -2 along which we want to evaluate the distance. Ricci flow is
a partial differential equation (PDE) since Rµν involves second order derivatives
of gµν . Intuitively, Ricci flow can be seen as a set of heat equations which means
that the geometry gets smoother along the flow. Moreover, (2.79) can be derived
as a gradient flow from the Einstein Hilbert action, but more on that in chapter
4.
Of particular interest are the fixed points gµν(τ∗) of (2.79) [27]

∂

∂τ
gµν(τ)

∣∣∣
τ=τ∗

= 0 (2.80)

which are given by flat space with vanishing Ricci tensor

Rµν(τ) = 0. (2.81)

It was already shown above that a vanishing cosmological constant, i.e. flat space,
lies at infinite distance (2.72) for Weyl rescalings. This motivates us to investigate
Ricci flow for Einstein spaces, which have the following property

Rµν = Λgµν , (2.82)

where Λ is the cosmological constant of the space, i.e. it is negative for AdS
spaces and positive for dS spaces. As a consequence of (2.79) the Ricci scalar
R(τ) behaves as follows [27]

∂

∂τ
R = ∇2R + 2RµνR

µν . (2.83)

If we consider Einstein spaces with (2.82), this provides a shortcut to the behavior
of Λ(τ), namely we get

dΛ

dτ
= 2Λ2. (2.84)

Here we only have an ordinary differential equation (ODE) because Λ is indepen-
dent of the spacetime coordinates. In fact, each equation in (2.79) gives (2.84)
leading to a consistent collapse of the set of PDEs to a single ODE. Moreover, it
is obvious that the fixed point is characterized by Λ = 0. The solution of (2.84)
is [27]

Λ(τ) =
Λ0

1− 2Λ0(τ − τ0)
(2.85)
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where we defined Λ0 = Λ(τ0). The main focus here are AdS spaces with Λi < 0.
These will flow to Λ = 0 from below as τ → ∞ which is a fixed point at infinite
flow time. We have already learned that according to (2.76) the cosmological
constant scales under canonical Weyl rescalings like

Λ(ξ) = Λie
−2ξ (2.86)

where Λi = Λ(ξi) as before. Now comparing (2.85) with (2.86) we observe the
following relation between τ and ξ [27]

ξ =
1

2
ln (1− 2Λ0(τ − τ0)) . (2.87)

Since we are interested in ξ > 0 with ξ → ∞, we need to have τ − τ0 > 0 with
τ → ∞ in accordance with the above. Thus, the path defined by the Ricci flow
is just a reparametrisation of the path defined by the Weyl rescalings. This gets
further supported by the distance along the path. Plugging the solution to the
Ricci flow (2.85) into the distance formula (2.72) we get [27]

∆g = c
√
d ln (1− 2Λ0(τ − τ0)) = 2c

√
d ξ ≃ ξ (2.88)

So even the distance along a path given by Ricci flow diverges in the same way as
the distance by the GDC. This leads to the following Ricci flow conjecture [27].

Ricci Flow Conjecture

Consider Quantum Gravity on a family of d-dimensional metrics gµν(τ)
satisfying the Ricci flow

∂

∂τ
gµν(τ) = −2Rµν(τ).

Then, there exists an infinite tower of states, which becomes massless, when
following the flow to a fixed point gµν(τ∗) at infinite distance.

The origin of the mass tower needs a little explanation and motivation. In general,
the d-dimensional spacetime Md,τ is only part of the full spacetime D-dimensional
spacetime MD due to compactification. So the generic situation looks like

MD = Md,τ ×KD−d,τ (2.89)

where KD−d,τ is the compact space and the index τ denotes evolution under Ricci
flow. Of course, the full D-dimensional theory has to be Ricci flat to fulfill the
string β-functions (2.31). So usually we apply Ricci flow to an effective spacetime
Md,τ which implies that the internal space KD−d,τ has to compensate this be-
havior such that the full theory stays Ricci flat. For a concrete example consider
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external AdS spacetime and an internal sphere. If the external spacetime flows
to flat space, the sphere has to also flow to flat space, i.e. the sphere has to blow
up, giving rise to a KK-tower [27].
There is further a close relation between Ricci flow and the renormalization group
flow of the string βG-function (2.28), namely Ricci flow is basically given by the
right-hand side of (2.28) for vanishing dilaton and Kalb-Ramond field. This was
studied in [75, 76]. Moreover, this relation was also investigated in the context of
the Swampland Program [77].
In [27] the Ricci Flow Conjecture was further extended to a conjecture about the
Ricci scalar and to distances in terms of entropy functionals which can also in-
volve scalar fields on top of the metric. However, neither of these are needed in
the following, so the interested reader is invited to check out the original work.
Now one might wonder, if this is just tied to Einstein manifolds, but there are
several other examples in [27] to further strengthen their key observation, namely
that the generalized distance for metrics is directly related to the distance along
Ricci flow. So geometric flows in general can be seen as an alternative or even a
complementary formulation of the Generalized Distance Conjecture in this con-
text. Instead of changing the on-shell fields ”by hand” to infinite distance limits,
as it is usually done for the different distance conjectures, geometric flows intro-
duce a new flow parameter τ which determines then the evolution of the fields
via the corresponding flow equation. In general, such geometric flows put your
fields off-shell which can lead to other difficulties. However, there were also some
attempts to formulate an on-shell version of geometric flows [78].
All of this strongly motivates to investigate geometric flows beyond the example
described here. It is then very natural to extend this to other examples like black
holes, preferably extremal black holes which admit a supersymmetric description.
This feeds directly into one of the main results of this thesis. In chapter 4 the
framework for geometric flows of extremal black holes is developed and applied to
a Reissner-Nordström black hole [2].

2.3.2 Swampland Distance Conjecture at large D

The limit of a large spacetime dimension D isn’t a novelty in gravitational theo-
ries. For instance, it was already studied in the context of General Relativity in
[79], see [80] for a more recent review. Moreover, this idea was then applied to the
Swampland Program in [29] which was followed up by [81]. For instance a new
duality, called D-Duality, was proposed in [81] which relates Quantum Gravity
compactifications of different dimensions.
Before moving on to the main results of [29] let’s briefly talk about large dimen-
sions D in String Theory. As already mentioned, String Theory has a critical
dimension, namely D = 10 for the superstring and D = 26 for the bosonic string.
However, there are attempts to generalize String Theory to an arbitrary dimen-
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sion, like the linear dilaton background which cancels the Weyl anomaly by an
additional contribution to the energy-momentum tensor [82, 83, 84, 85]. But
their full quantum consistency isn’t settled yet [29].
The main idea of [29] was to consider the Swampland Program for large dimen-
sions D and to ask the question, whether large D Quantum Gravity belongs to
the Swampland. One of the main analysis tools is the Swampland Distance Con-
jecture which gets extended to distances between different spacetime dimensions.
In particular, this means that one has to extend the parameter space to include
D such that the field space distance ∆ gets promoted to have a D-dependency,
i.e.

∆ → ∆(D). (2.90)

This might then imply constraints on the spacetime dimension D. These possible
constraints were formulated in a conjecture, the so called Large Dimension Con-
jecture (LDC). For a given mass tower Mi the LDC demands that the associated
distance ∆i(ϕj, D) is a positive function of the EFT fields ϕj and of D, namely

∆i(ϕj, D) ≥ 0, (2.91)

unless there is a dual tower M̃i, such that the dual distance ∆̃i(ϕj, D) becomes
positive, when ∆i(ϕj, D) changes its sign and takes negative values [29]. A par-
ticular example for these dual towers Mi and M̃i are the KK-tower MKK and the
winding tower Mwind (2.66) for the circle compactification. For ∆ ∼ ϕ ≥ 0 the
tower becoming massless is the winding towerMwind, as described in section 2.2.2.
But if ∆ becomes negative, there is the dual tower MKK becoming massless in
perfect agreement with the LDC.
But in terms of the largeD limit the circle compactification isn’t really interesting.
Hence, we turn to a different example, namely the Freund-Rubin compactification,
which is a non-warped product manifold of a d-dimensional AdS space and a d′-
dimensional sphere, i.e. MD = AdSd × Sd

′
with D = d + d′. We will follow

the conventions of [29] here. This is obtained as a solution to the D-dimensional
Einstein field equations without cosmological constant in the presence of a d-form
field strength localised on the AdS space 17

Fµ1...µd =
ϵµ1...µd√
−gA

f (2.92)

where f is a constant with units of mass squared and gA is the determinant of the
AdS metric.
The presence of the field strength modifies the Ricci scalar of the AdS space RA

and the Ricci scalar of the sphere RS to

RA = −d(d′−1)
D−2

f 2 (2.93)

17In fact, one can also move the form field to the d′-sphere via Hodge duality [29].
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RS = d′(d−1)
D−2

f 2. (2.94)

This also implies the following correlation between the AdS radius rA and the
sphere radius rS

(d− 1)rS = (d′ − 1)rA. (2.95)

The KK-tower in this setup is given in terms of the AdS cosmological constant
Λd

18 [29]

m2
KK ∼ −2

(d− 1)d′

(d− 2)(d′ − 1)2
Λd (2.96)

which immediately tells us that the strong ADC is fulfilled for arbitrary dimensions
d and d′. From (2.96) one can infer the distance by inverting the exponential
scaling of the Swampland Distance Conjecture, i.e.

∆ ∼ −1

λ
lnmKK ∼ − lnmKK (2.97)

for a decay rate λ of O(1). We keep the sign here explicit since it is important for
the LDC. In our example the distance will correspond to the AdS distance ∆AdS

but we will suppress that label here.
There are now several possibilities to build the large D = d+d′ limit. First, we fix
the dimension d′ of the sphere and take d ∼ D → ∞. In that limit the KK-tower
(2.96) and the distance (2.97) become apparently independent of the spacetime
dimension d ∼ D

m2
KK ∼ − d′

(d′ − 1)2
Λd ∼ −Λd (2.98)

∆ ∼ −1

2
ln(−Λd). (2.99)

But in this limit the cosmological constant Λd can be expressed in terms of the
AdS radius rA and d as follows

Λd ∼ −D
2

r2A
. (2.100)

such that the distance becomes

∆ ∼ ln
(rA
D

)
. (2.101)

So we need to further specify, if we want to keep Λd or rA constant in the limit
of d ∼ D → ∞. For instance, let’s choose the latter case. Thus, the distance
becomes negative for D > rA. If there is no dual tower to mKK in this theory,

18Keep in mind that Λd < 0.
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then the LDC forces the spacetime dimension to a smaller value than a critical
value D0 given by

D ≤ D0 = rA. (2.102)

In the region D > rA all the KK-states are above the Planck mass 19, i.e. super-
Planckian, which results in a breakdown of the notion of spacetime since curva-
tures become large. So, if there is no dual tower, the KK-tower must be below
the Planck mass [29]. However, these large curvature regimes aren’t under good
control. Thus, there might some strong gravitational corrections which interfere
with this argument [29].
Moreover, let’s also consider the limit d′ ∼ D → ∞ for fixed d and rA. This di-
rectly implies that Λd is also fixed. The KK-tower (2.96) and the distance (2.97)
get a non-trivial scaling for a very large d′ ∼ D

m2
KK ∼ −Λd

D
(2.103)

∆ ∼ 1

2
ln

(
D

−Λd

)
(2.104)

such that the KK-tower becomes massless and the distance diverges in the full
limit d′ ∼ D → ∞. Now it is obvious from (2.95) that rS has to also diverge here
in order to keep rA fixed. Thus, it is precisely the modulus associated with the
volume of the d′-dimensional sphere which gives rise to this massless tower. So
this case is nothing else than the SDC in disguise. Furthermore, we can’t learn
anything from the LDC in this limit since it is always fulfilled [29].
Motivated by the relation between geometric flows and the GDC a geometric flow
equation for the number of spacetime dimensions D is derived in chapter 3 [1]
which will provide a mechanism for the large D limit. This flow then also gets
applied to the large d′ limit in the Freund-Rubin compactification.

2.3.3 Non-Geodesic Trajectories

The Swampland Distance Conjecture was originally formulated only for geodesic
distances. However, it was observed in [32] that this can be relaxed and that we
can also move on non-geodesic trajectories, while still being consistent with the
SDC when approaching infinite distance points in moduli space. In particular,
this non-geodesicity corresponds to a lower bound on the exponential decay rate
λ of the mass tower becoming massless. Having a lower bound for the decay rate
is nothing new [26, 46, 47, 48] but so far it has never been tied to a non-geodesicity
of a trajectory.
For instance, this deviation from a geodesic can be achieved by adding a potential

19In the limit d ∼ D → ∞ we have Mp,D = Mp,d. So there is no need to differentiate between
the two Planck masses here [29].
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V such that we move in a valley, i.e. a flat direction, of the potential. To be more
precise, the SDC is formulated for exactly massless moduli but it is expected to
also hold in the presence of a scalar potential, as long as the masses and energies,
which are induced by it, are below the cut-off Λswamp of the EFT. This means we
have a pseudomoduli space [32]. This also means that the valley of the potential
doesn’t have to be perfectly flat but only flat enough such that the relevant ener-
gies are below the cut-off Λswamp [32]. Now these valleys of the potential V in the
pseudomoduli space don’t necessarily have to align with the geodesic directions
in the moduli space without the potential V . This then implies that, since it is
strongly expected that the SDC holds in both cases, there may be deviations from
a geodesic compatible with the SDC. Such scenarios involving a potential have
already been studied in the context of string flux compactifications [52, 86, 87]
but we will take a model-independent bottom-up approach as presented in [32].
For instance, we consider, as in [32], a simple hyperbolic plane and products
thereof because these occur as the asymptotic boundary geometry of various
Calabi-Yau (CY) compactifications, see for example [30, 88, 89]. And the bound-
ary of the moduli space is precisely where the physics relevant to the SDC hap-
pens. So, having motivated the choice, we start with just a single hyperbolic
plane, namely we assume that the moduli field space of an EFT is given by an
hyperbolic plane. The metric of the field space then reads 20

d∆2 =
n2

s2
(ds2 + dϕ2) (2.105)

where this covers the upper half-plane s > 0 and n is related to the Ricci scalar,
i.e. the curvature, as [32]

R = − 2

n2
. (2.106)

We take the field s to be along the vertical axis in field space, whereas ϕ is along
the horizontal direction. The field s is commonly referred to as the saxion and ϕ as
the axion. Moreover, the axion ϕ is in principle a periodic scalar. But, as pointed
out in [32], the periodicity is generally spontaneously broken by axion monodromy
potentials [90, 91], which is also usually the case in string flux compactifications
[92, 93], so we will assume henceforth that ϕ is not periodic and can take any real
values.
As explained and derived in appendix B, the geodesics of the hyperbolic plane,
that reach the boundary of moduli space s = ∞, are vertical lines with constant
axion ϕ = ϕ0 = const, which also directly means that the geodesic distance ∆geo

20We have chosen to label the line element with d∆2 instead of ds2 here in order to avoid any
confusion with the field s.
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21 is purely given by s. In particular, we get

∆geo ∼ n ln s. (2.107)

where n is assumed to be positive from here on. In the spirit of the SDC we now
postulate a mass tower Ms along the s-direction [32]

Ms ∼ s−a (2.108)

with a > 0 such that this tower becomes massless in the infinite distance limit.
This is the minimum requirement by the SDC but, in general, there are a plethora
of mass towers in a real String Theory setting. Moreover, let us emphasise that
there is no dual tower postulated here, namely for s → 0, since we interpret this
moduli space as the asymptotic limit of a CY compactification, meaning we are
only concerned with large values of s. Using the SDC, namely

Ms ∼ e−λg∆geo , (2.109)

together with (2.107) and (2.108) we can infer the geodesic decay rate λg in this
setup to be

λg =
a

n
. (2.110)

As explained above, we may now deviate from a geodesic by e.g. the introduction
of a potential in the EFT. This then means that the distance can also get con-
tributions from ϕ which isn’t forced to be constant anymore. However, we still
require the trajectory to reach the boundary of moduli space s = ∞. For instance,
the non-geodesic distance ∆ is given by 22

∆ = n

∫ √
1 +

(
dϕ

ds

)2
ds

s
(2.111)

where we have chosen to parametrise ϕ in terms of s, i.e. we have ϕ(s). This
parametrisation eliminates the necessity for a parameter along the trajectory and
guarantees an infinite distance for s→ ∞. To ensure compatibility with the SDC,
it was found in [32] that we can approach the infinite distance point s = ∞ at
most by a constant tangent vector (this is ultimately tied to a non-vanishing decay
rate in the limit s → ∞), corresponding to the largest possible deviation from
a geodesic at the boundary of moduli space, i.e. s = ∞ 23. A constant tangent

21We will give the geodesic distance here the extra label ”geo” to stress the difference to a
non-geodesic distance ∆. Moreover, we will do the same for the decay rate, namely the geodesic
decay rate is given by λg and the non-geodesic one by λ.

22This also motivates the choice in (2.105) a posteriori, as the distance is given by the integral
over the square root of the line element.

23In fact, as we will also see in chapter 5, the tangent vector for our parametrisation is given
by T a = (1, dϕ/ds).
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vector in the (s, ϕ)-plane directly implies that s and ϕ are linearly related, namely

dϕ

ds
= β = const. (2.112)

For β = 0 we clearly recover the geodesic case. Moreover, because the hyperbolic
plane is conformally flat, we can translate this straightforwardly into an angle as
follows

tan θ = β. (2.113)

In that case the non-geodesic distance ∆ becomes

∆ ∼ n
√

1 + β2 ln s =
n

cos θ
ln s (2.114)

By choosing the non-geodesic decay rate λ to be

λ =
λg√
1 + β2

= λg cos θ, (2.115)

we still perfectly fulfill the SDC for the mass tower Ms in the sense that

λ∆ = λg∆geo. (2.116)

According to [32] we term this situation the critical case. Thus, the critical case
corresponds to a constant deviation from the geodesic distance ∆geo and a con-
stant deviation from the geodesic decay rate λg. Whereas the distance gets longer,
the decay rate is reduced. But, as it was pointed out earlier, the decay rate is
expected to have a lower bound λ0 translating to a bound on the non-geodesicity
of the trajectory. So the important object, which constrains the situation, is the
decay rate.
This can be also seen in other ways. For instance, consider taking β → ∞, i.e.
θ → π/2, then we could delay the mass towerMs indefinitely, which would clearly
violate the SDC in the sense that we could traverse an infinite field distance
without a massless tower appearing. Hence, this case was called swampy in [32].
Furthermore, if such a critical trajectory is realized by a potential, we can deter-
mine an effective field living in the flat valley of the potential. For such a field
the pseudomoduli space would be 1-dimensional 24 and the non-geodesic distance
from the (s, ϕ)-plane would correspond to a geodesic distance in this pseudomod-
uli space, as it is flat and 1-dimensional. However, the non-geodesic decay rate λ
corresponding to the mass tower Ms would also directly descend to this effective
field theory in the valley, meaning that we suddenly fulfill a SDC with a lower
decay rate (than in the original parent theory). Obviously, this demands a bound
on the deviation from a geodesic trajectory in the (s, ϕ)-plane, because otherwise

24Because we only consider the upper half of the hyperbolic plane, this 1-dimensional pseu-
domoduli space is only the positive real line.
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the decay rate could become so low the exponential behavior in the valley theory
gets spoiled, even though the distance would be geodesic from that perspective.
The main point here is that, depending on the perspective, a distance can be
geodesic or not but the decay rate is the same in both cases, confirming that the
decay rate is the more fundamental object.
Next, let us point out that the geodesic equation enjoys a reflection symmetry of
the axion, i.e. ϕ → −ϕ. This is also shown in appendix B. This means we can
also consider a negative β corresponding to a negative θ. Moreover, the change in
the decay rate isn’t affected by that.
Now we extend our moduli space to a product of two hyperbolic planes which has
the following metric

d∆2 =
n2

s2
(ds2 + dϕ2) +

m2

u2
(du2 + dψ2) (2.117)

where we have two saxions s, u and two axions ϕ, ψ. All the previous comments
about the periodicity of the axions still apply here. At this point we also have to
introduce a mass tower along the second saxionic direction u, meaning that we
have two mass towers

Ms ∼ s−a, Mu ∼ u−b (2.118)

for a, b > 0, such that we meet the minimum requirements of the SDC. In gen-
eral, Ms and Mu could also combine to give new towers but this would be highly
model-dependent and we won’t consider this possibility in this thesis [32]. More-
over, the geodesics for this geometry are also derived in appendix B. Thus, a
geodesic corresponds to a movement in the (s, u)-plane with constant axions, i.e.
ϕ = ϕ0 = const and ψ = ψ0 = const.
Like for the single hyperbolic plane, we want to investigate non-geodesic trajec-
tories which approach infinite distance points. These infinite distance points are
s → ∞ and u → ∞, which imply Ms → 0 and Mu → 0 respectively. Since
the simultaneous limit of both going to infinity is very subtle 25, we will only ap-
proach one infinite distance point at a time. The situation is symmetric in s and
u, so we can choose either field. For instance, we pick the s-direction again. This
is obviously also a geodesic in the product case as long as we keep u fixed, i.e.
u = u0 = const. Then, there are two possibilities to extend this to a non-geodesic
trajectory, namely the two axionic directions. On the one hand we can fix ψ such
that both u, ψ are constant but this just reproduces the result from the single
hyperbolic plane. And on the other hand we keep both ϕ and u constant which

25First, as it is shown in appendix B, this situation is geodesic. But, more importantly, the
tower structure usually gets more complicated because the two towers are generally expected
to combine is some way which is highly model-dependent. In the simultaneous infinite distance
limit this then becomes relevant. We will comment some more on that later.
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is a new case. Thus, we will focus on this one. The distance is then given by

∆ = n

∫ √
1 +

(
m

n

s

u0

dϕ

ds

)2
ds

s
(2.119)

where we have chosen to parametrise ψ in terms of s for the same reasons as
before. Now remember that the tangent vector approaching s = ∞ can at most
be constant which directly implies a constant change in the distance compared to
the geodesic case. It turns out the same holds here [32]. Then, from (2.119) we
can directly infer

s
dψ

ds
= γ = const (2.120)

such that the decay rate for the mass tower Ms gets modified like

λ =
λg√

1 +
(
m
n
γ
u0

)2 (2.121)

to be perfectly consistent with SDC. All of this is completely analogous to the
previous case with a single hyperbolic plane. Again we recover the geodesic case
by setting γ = 0 but here we can’t directly employ an angle, since we aren’t
conformally flat anymore. Nevertheless, we will comment more about an angle
formulation in chapter 5. This is again the critical case in the sense that it
represents the maximum deviation from a geodesic when approaching an infinite
distance point. But there is still the lower bound on the decay rate λ0 which we
also have to respect in this case, as this lower bound is tied to the mass tower Ms

and not to a specific trajectory.
In summary, we have seen that it is possible to deviate from a geodesic, still
being consistent with the SDC. The maximum deviation in the asymptotic limit
is called the critical case in which the decay rate and the distance get modified
by a constant factor. In practice, the conditions for the critical case, namely the
relation between the fields like (2.112) and (2.120), are derived in the fastest way
by demanding that the geodesic distance gets changed by a constant.
In chapter 5 these concepts are applied to the scenario of cosmic acceleration.
There we will further extend the concepts to trajectories which involve multiple
fields up to an arbitrary number N . Moreover, we even consider trajectories which
have a non-constant deviation from a geodesic and only in the full limit to the
boundary of moduli space this deviation will become constant, as demanded by
the SDC.



Chapter 3

Geometric Flow Equations for the
Number of Spacetime Dimensions

This whole chapter is based on a collaboration with Davide de Biasio [1]. Some
parts were adjusted in this thesis but the general result stays the same. Moreover,
the conventions in this chapter differ from the previous ones but everything is
declared properly, so there should be no confusion.

On the one hand, there was some recent interest in the limit of large dimensions
within the Swampland Program [29, 81], as outlined in section 2.3.2. One pro-
motes the number of dimensions D to an independent parameter in Quantum
Gravity and then investigates the behavior of different Swampland Conjectures.
On the other hand, there is the close relation between geometric flow equations
and the Generalised Distance Conjecture, as motivated in section 2.3.1. In this
chapter we try to combine these concepts to derive new geometric flow equations
which describe the variation of spacetime geometries under the change of their
dimensions. To the best of our knowledge this flow with respect to D, denoted by
D-flow, was not discussed before in the literature and introduces a new territory
in the field of geometric flow equations in gravity. Schematically, D-flow has the
following structural form

∂f1(gµν)

∂D (λ)
= f2(R) (3.1)

where λ is a flow parameter analogous to the one usually introduced when studying
Ricci flow. Here f1 is a certain function of the spacetime metric gµν and f2 is a
function of the curvature invariants of the geometry, denoted collectively by R
here. As we will discuss soon, the function f1 will be closely related to the D-
dependent volume of the spacetime manifold, whereas f2 will be determined by
linear and quadratic curvature invariants in the simplest cases. The appearance
of quadratic curvature invariants in the flow equation for D is directly related
to the two-loop graviton β-function in String Theory. Finally, note that in the
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D-flow equations we are treating D as a continuous parameter, as it is done in
the dimensional regularization scheme for example.

3.1 Derivation of the Flow

The standard procedure of deriving the low-energy graviton equations of motion
emerging from String Theory is to compute the associated βG-function up to a
certain power in α′ and to impose it to be zero such that the conformal symmetry
of the original theory is restored. This was widely explored, for example, in
[94, 95, 96, 97, 98, 99, 100, 101]. So we turn the two-loop expression 1

βGµν = α′Rµν +
(α′)2

2
RµασγR

ασγ
ν +O(α′3) (3.2)

into the geometric flow equation

∂gµν
∂λ

≡ −2βGµν = −2α′Rµν − (α′)
2
RµασγR

ασγ
ν (3.3)

which can be regarded as an extension of the standard Ricci flow (2.79). But
here the α′-dependence is kept explicit in contrast to what is usually done with
Ricci flow. This is due to the fact that it can’t be removed by a simple rescaling
of the flow parameter λ. This choice has two main advantages. First, it allows
us to quantitatively study how rapidly the flow gets switched off as the string
contributions get smaller, for example by expressing the flow equations in terms
of the ratio between

√
α′ and a typical length scale of the manifold. Secondly,

it gives us the possibility to properly address the flow of Ricci flat spacetime
metrics for which the two-loop term becomes the leading contribution such that it
sources a non-trivial evolution in λ. Clearly, there is no known nor direct way to
turn the equation (3.3) into a flow equation for the dimension D of the manifold.
Therefore, keeping our final purpose in mind we want to recast it in a suitable
form and then proceed with promoting D to a λ-dependent quantity. Our first
step, starting from (3.3), is to observe that it implies the following flow behaviour
for the square root of the metric determinant

∂
√
g

∂λ
=

1

2
√
g

∂g

∂λ
(3.4)

where we have chosen to work with Euclidean signature for the equations to be
properly defined. For a profound discussion of the many mathematical subtleties
that underlie the analysis of geometric flow equations, specifically concerning their

1To capture more types of manifolds, it is beneficial to go beyond the one-loop expression
here. This means we include terms up to O(α′2).
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parabolicity, the reader is strongly encouraged to look at the standard references
like [67, 68, 69]. Using the well-known Jacobi’s formula

d

dt
detA(t) = tr

(
adj(A(t))

dA(t)

dt

)
(3.5)

for the derivative of the determinant of a matrix we get

∂
√
g

∂λ
=

1

2
√
g
Tr

(
ggαµ

∂gµν
∂λ

)
=

√
g

2
Tr

(
gαµ

∂gµν
∂λ

)
. (3.6)

By plugging the flow equation (3.3) into (3.6), we are left with

∂
√
g

∂λ
= −α′√gR− (α′)2

2

√
gK (3.7)

with R being the Ricci scalar and K being the Kretschmann scalar corresponding
to gµν . Combining all the metric components into a single equation is surely a step
ahead towards our goal, but it is still not enough: to achieve a good definition of
a flow equation for D and to promote D to a continuous modulus of the theory, it
is clear that any explicit dependence on the spacetime coordinates, whose number
is precisely D, must be factored out. This can straightforwardly be done by
integrating both sides of (3.7) over the spacetime manifold on which gµν (λ) is
defined as a family of Riemannian metrics. We obtain the following∫

∂
√
g

∂λ
= −α′

∫
√
gR− (α′)2

2

∫
√
gK. (3.8)

When dealing with a non-compact spacetime manifold the integrals are intended
to be properly regularised. For example, we might be required to introduce ap-
propriate cut-offs on some coordinates in order to make both sides of the equation
finite. At this point we want to manipulate the left-hand side of (3.8) and express
it in a more convenient form. In order to do so, we must first stress that, despite
the fact that we will then try to generalise our discussion to a setting in which the
manifold’s dimension itself can change along the flow, we are still working with
the standard form (3.3) at a fixed value of D. Hence, taking the λ-derivative out
of the integral only accounts to the appearance of a boundary term which can be
safely dropped. Therefore, we are left with

∂V
∂λ

= −α′
∫

√
gR− (α′)2

2

∫
√
gK (3.9)

where the volume V is defined as

V ≡
∫

√
g. (3.10)
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At this point we observe that

S1 ≡
∫

√
gR (3.11)

is nothing more than the standard Einstein-Hilbert action in Euclidean signature,
while

S2 ≡
1

2

∫
√
gK (3.12)

is a higher order correction of the former, as previously mentioned. Now we can
see that the final form

∂V
∂λ

= −α′S1 − (α′)
2 S2 (3.13)

of the flow equation can be meaningfully generalised to a scenario in which the
dimension D of the manifold is not forced to be fixed along the flow since neither
explicit components of the metric nor coordinate-dependent quantities appear in
it. This is precisely the route that we will follow. Inspired by (3.13), we postulate
the flow equation for D(λ) to be

dD

dλ
≡ −

(
∂V
∂D

)−1 [
α′S1 + (α′)

2 S2

]
. (3.14)

It must be highlighted that (3.13) and (3.14) are not precisely equivalent. Namely,
if we want to reduce (3.14) back to (3.13), we must assume the D-derivative of
V to be finite, in order to bring it to left-hand side and apply the chain rule. As
we will see, this is not always the case. Therefore, (3.13) must be regarded as a
special case of (3.14). Furthermore, it is clear that the D-dependence of V will
descend from our choice of the explicit form of the metric at any given value of D
which is not fixed by the flow itself. That, in a sense, will be the input information
allowing us to fix the flow behaviour of the dimension. Such a choice is usually
extremely natural, like for the example in which the manifold is taken to always be
a D-sphere along the flow. Once we have chosen a specific family of metric tensors
at different values of D and we have computed the associated scalars S1(D) and
S2(D), we can turn the number of dimensions into a continuous parameter. Then,
(3.14) must be interpreted as to tool allowing us to find the correct D (λ) such
that the D-behaviour assumed for V can be reconciled with (3.13).

3.2 Maximally Symmetric Spaces

A D-dimensional Riemannian manifold is said to be maximally symmetric, if it
possesses the highest allowed number of Killing vectors, namely D(D + 1)/2.
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This straightforwardly implies that the associated Riemann curvature tensor gets
reduced to the simple form

Rµναβ =
R

D(D − 1)
(gµαgνβ − gµβgνα) . (3.15)

Therefore, it can be shown that

K =
2R2

D(D − 1)
. (3.16)

Because of that the volume flow equation in Euclidean signature becomes

∂V
∂λ

= −
∫

√
g

(
R+

R2

D(D − 1)

)
(3.17)

where R ≡ α′R.

3.3 D-Sphere

Starting from the standard expression for the metric on a D-sphere with radius
ρ, which is indeed a maximally symmetric space, we can straightforwardly derive
the expression

R (D) =
D (D − 1)

ρ2
(3.18)

for the Ricci scalar and the formula

V (D) =
2π

D+1
2 ρD

Γ
(
D+1
2

) (3.19)

for the D-dependence of the volume which is plotted in figure 3.1.
At this point we can proceed towards enforcing the flow equation (3.14). As was
widely discussed in the previous section, an explicit solution for D (λ) can only
be achieved by specifying from the start a D-dependent family of metric tensors.
In this example gµν (D) will be nothing more than the metric for a D-sphere with
radius ρ for any natural value of D. It must be stressed that we do not need, nor
it would have made sense, to specify the form of the metric for any real value of D.
As a matter of fact, it is more than sufficient to turn D into a continuous function
D (λ) of the flow parameter, after we have computed V (D), R (D) and K (D)
as functions of D, since all our efforts in rephrasing the flow equation differently
were precisely aimed towards allowing us to make D continuous in a consistent
way. Therefore, we can now derive the following form for (3.14)

dD

dλ
= −D(D − 1)

µ2

(
1 +

1

µ2

)(
∂ logV
∂D

)−1

(3.20)
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Figure 3.1: Graph of the volume V of a D-sphere as the number of dimensions D
is promoted to a continuous variable.

where

µ ≡ ρ√
α′

(3.21)

is defined as the ratio between the sphere radius and the length scale of a string.
It is important to highlight the presence of a deformation factor

Z (µ) ≡ 1

µ2

(
1 +

1

µ2

)
(3.22)

on the right-hand side of the equation (3.20) accounting for the rescaling of the
flow produced by the significance of stringy effects with respect to the size of the
sphere. Therefore, plotting Z (µ) allows us to observe how rapidly the λ-evolution
gets switched off as string effects get negligible, namely as

√
α′ gets much smaller

than ρ. This can be seen in figure 3.2. Given the above considerations, we can now
absorb Z(µ) into the flow parameter λ, defining a new, rescaled, flow parameter

ξ ≡ Z(µ)λ (3.23)

and obtaining the following flow equation

dD

dξ
=−D(D − 1)

(
∂ logV
∂D

)−1

=

=2D(1−D)

[
log
(
eρ2π

)
− ψ0

(
D + 1

2

)]−1
(3.24)



3.3 D-Sphere 47

Figure 3.2: Graph of the deformation factor Z as the scale ratio µ grows, namely
as the sphere radius gets much bigger than the length of a string.

where ψ0 is the Polygamma function. Clearly, when writing down the explicit
form of the volume V , a dependence on ρ reappears independently from

√
α′.

Nevertheless, it is still remarkable that the flow equation, when V is implicit and
taken as a variable by itself, only depends on the ratio µ.

3.3.1 Large D Behaviour

In this section we want to study the flow equation at a large number of dimensions
D, in order to build a better intuition of its asymptotic behaviour. In particular,
the explicit form of the volume can be approximated by

V (D) ≈
√
2e

(
ρ

√
2πe

D

)D

. (3.25)

Therefore, the flow for D(ξ) can be obtained from

dD

dξ
= 2D(1−D)

(
log

2eπρ2

D

)−1

≈ −2D2
(
log

σ

D

)−1

(3.26)

where σ ≡ 2eπρ2 > 0. By rescaling the flow parameter as τ ≡ 2ξσ and by defining
the quantity

X ≡ σ

D
(3.27)

the above equation gets simplified for very small values of X as

dX

dτ
=

1

logX
. (3.28)
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Therefore, we can simply integrate it

τ − τ0 = X (logX − 1)−X0 (logX0 − 1) ≈ X logX −X0 logX0 (3.29)

and solve for X. Starting from a small value of X0, corresponding to a large D, it
is unavoidable to flow towards X = 0. Indeed, this means that the flow equation
forces us to flow towards D = ∞.

3.3.2 Fixed Points

In the following section we will look for fixed points of the flow. For instance, we
will solve the equation

dD

dξ
= D(1−D)

(
∂ logV
∂D

)−1

= 0 (3.30)

in order to find values of D for which the right-hand side of the flow equation is
zero. Then we will study the stability of such points in detail. Indeed, by plugging
in the explicit form of V , it can be shown that (3.30) admits two, distinct solutions:
Da = 0 and Db = 1. Concerning the stability of the fixed point Da we investigate
the local behaviour at Da in the following figure 3.3.

Figure 3.3: dD/dξ around Da with ρ = 1

Therefore, Da is an unstable fixed point of the flow. This is due to the fact that
dD/dξ is positive for D slightly bigger than 0 2. So any perturbation is magnified

2It makes no sense to consider a negative dimension D.
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by the flow and brings us far away from Da.
Concerning on the other hand the stability of the fixed point Db, we observe the
local behaviour at Db in the following plot 3.4.

Figure 3.4: dD/dξ around Db with ρ = 1

Hence, Db is a stable fixed point of the flow. This is due to the fact that dD/dξ
is negative for D slightly bigger than 1 and positive for D slightly smaller than
1. So any perturbation is compensated by the flow and we are lead back to Db.
Focusing on D ∈ (0, 1 + ε), with 0 < ε ≪ 1, we can turn back to the equivalent
flow equation for the volume V

dV
dλ

=
dD

dλ

dV
dD

= D(1−D)V . (3.31)

Here the chain rule can only be applied since we are in a region where V is
monotonic in D. Now we can ask ourselves whether the stability of the fixed
point is affected by our change of perspective. For that it is enough to study the
sign of dV/dD and we can straightforwardly observe that we are working in an
interval where dV/dD > 0. Thus, this confirms the fact that Db is a stable fixed
point for the volume flow, while Da is unstable.

3.3.3 Singularities

At this point our aim is to locate and study singular points along the flow. Namely,
there are values D̄a of the dimension for which

dV
dD

= 0. (3.32)
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Figure 3.5: dV/dD for ρ = 1 in terms of D.

At these points the derivative dV/dD blows up to infinity leading to a singularity.
Indeed, it can be easily observed from the plot presented in Figure 3.5 that there
are two values of D for which the flow gets singular. That is, two extremal points
of V , when intended explicitly as a function of D. The first one, which we choose
to name D̄a, sits at a finite value of D. It is approximately equal to 6.26. The
second one, in contrast, corresponds to theD → ∞ limit which can be consistently
referred to as D̄b. While the presence of the former is manifest, the existence of
the latter might still be a little bit obscure. In order to dispel any doubts, the
limit can be taken by exploiting the large D approximation of V producing

lim
D→∞

dV
dD

≈ lim
D→∞

(
2eπρ2

D

)D
2

log 2 = 0. (3.33)

Therefore, it is now clear that the flow equation for D (ξ) presents two singular
points. The one at infinity is almost harmless. The one at D̄a, however, is definitely
less trivial and requires further attention. In particular, the flow can not be
extended along the whole real line R where D is allowed to take its values. When
the initial point D0 is taken to belong to the (0, D̄a) interval, D (ξ) is confined
there, too. Analogously, choosing D0 in (D̄a,∞) imposes D (ξ) not to decrease
below D̄a. The stability of such a singularity under small perturbations can be
studied by analysing the sign of dD/dξ in its neighbourhood. The situation is
depicted in figure 3.6. If D0 is chosen to be slightly smaller than D̄a, the flow
brings D (ξ) back towards Db = 1. On the other hand, if D0 is bigger than D̄a,
D (ξ) flows towards the singular point D̄b at infinity. Hence, D̄a is repulsive, while
D̄b is attractive.
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Figure 3.6: dD/dξ for ρ = 1 around D̄a.

3.4 D-dimensional AdS

In this section we compute the D-Flow for the case of AdS spaces. For instance,
we have

ds2 = −
(
1 +

r2

α2

)
dt2 +

(
1 +

r2

α2

)−1

dr2 + r2dΩ2
D−2 (3.34)

and

R =
D(1−D)

α2
. (3.35)

This directly implies that D > 2. Since we are working with a maximally sym-
metric space, we further have

K =
2R2

D(D − 1)
=

2D(D − 1)

α4
. (3.36)

At this point we introduce a radial cut-off Λ and compute the volume enclosed
into a sphere with radius Λ centred at r = 0. Moreover, we remove the time
integral because it will just cancel in the D-flow. So, the volume V reads

V(D|Λ) =
∫ Λ

0

drrD−2

∫
SD−2

dΩD−2 =
ΛD−1

D − 1

2π
D−1
2

Γ
(
D−1
2

) . (3.37)

As a simplification we take Λ = α and arrive at

dD

dλ
=
D(D − 1)

σ2

(
1− 1

σ2

)(
∂ logV
∂D

)−1

(3.38)
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Figure 3.7: dD/dλ in terms of D for α = 1.

with
σ ≡ α√

α′
. (3.39)

Hence, the deformation factor Z(σ) is slightly different from the one we had for
the sphere, namely here we have

Z (σ) ≡ 1

σ2

(
1− 1

σ2

)
. (3.40)

Besides large σ, the flow gets now also weak when approaching σ ∼ 1. This is
specifically due to the sign of the Ricci scalar R. In order to better investigate
the shape of Z, it can be interesting to include even higher order terms.
Since we have worked out the sphere case in full detail, we will be much quicker in
the analysis here. The steps are precisely the same and the interesting behavior
for us is mainly the fixed point structure. By reabsorbing the σ-dependent factor
into the flow equation, we find fixed points at D = 0 and at D = 1. However,
both of these lie outside the range of validity for D. By visual inspection of figure
3.7 we further notice that the fixed point at D = 1 is repulsive. Thus, for any
valid starting point D0 we are always pushed towards D = ∞.

3.5 Freund-Rubin Compactification

In this section we consider a particular setting for Superstring Theory compact-
ification on a sphere, namely we analyse the Freund-Rubin compactification, as
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presented in [29], and write down its associated D-Flow equation. Although this
has already been introduced in section 2.3.2, we will briefly recap everything and
match the notation to this chapter.
Since we are dealing with a non-warped product manifold

MD = AdSd × Sd
′

(3.41)

with D = d + d′, we will be left with an evolution equation for D which will
have to be translated into a flow for d and/or one for d′. In order to do so, our
underdetermined system forces us to impose a further condition on either d or
d′. Since the low-energy effective field theory description we are interested in
is expected to live on the AdS spacetime, the most natural choice is to assume
its dimension to be fixed and move the whole flow dependence to the compact
manifold dimension d′.

3.5.1 Description of the Setup

As just given, the Freund-Rubin compactification is of the form MD = AdSd×Sd
′

with D = d+ d′ where G is the metric of the full spacetime MD, gA is the metric
of the AdS part and gS is the metric of the sphere. It is a solution to the D-
dimensional Einstein equations without cosmological constant in the presence of
a d-form field strength localised on the AdS spacetime

Fµ1...µd =
ϵµ1...µd√
−gA

f (3.42)

where f is a constant with units of mass squared.
Due to the presence of the field strength, the Ricci scalars of the AdS space RA

and the Ricci scalar of the sphere RS are modified to be

RA = −d(d′−1)
D−2

f 2 (3.43)

RS = d′(d−1)
D−2

f 2. (3.44)

This results in a correlation between the AdS radius RA and the sphere radius RS

(d− 1)RS = (d′ − 1)RA. (3.45)

Furthermore, the coordinates of the two subspaces do not mix. Hence, the volume
just factorises as

VD =

∫
MD

√
−G =

∫
AdSd

√
−gA

∫
Sd′

√
gS = VAdSd

VSd′ (3.46)

and the total Ricci scalar is just the sum of the Ricci scalars of the subspaces

RD = RA +RS =
f 2(d− d′)

D − 2
. (3.47)
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3.5.2 D-Flow

Constructing the D-Flow equation for this example we only focus on the first
order contribution in α′ since we already get a non-trivial flow behavior at one-
loop order. Hence, α′ can be directly absorbed into the flow parameter λ. Because
the Ricci scalar does not depend on the coordinates, the D-Flow equation simply
reduces to

d

dλ
D(λ) = −RD

(
∂ logVD
∂D

)−1

. (3.48)

As it was previously discussed, we now impose d to be fixed and move the whole
flow dependence to d′. Hence, we consider V as a function of d′ and obtain the
following expression

d

dλ
d′(λ) = −RD

(
∂ logVD
∂d′

)−1

(3.49)

where

VSd′ =
Rd′
S 2π

d′+1
2

Γ
(
d′+1
2

) (3.50)

∂ logVD
∂d′

=
∂ logVSd′

∂d′
=

1

2

(
log(πR2

S)− ψ0

(
d′ + 1

2

))
. (3.51)

The resulting flow equation for d′ then becomes

d

dλ
d′(λ) = −2f 2(d− d′)

d+ d′ − 2

1

log(πR2
S)− ψ0

(
d′+1
2

) . (3.52)

It must be stressed that the above derivation assumes both RS and RA to be fixed
along the flow, unavoidably violating the condition expressed in (3.45). Otherwise,
we can choose to impose (3.45) which allows one of the radii to change with d′. This
option will be discussed later. First of all, it can be straightforwardly observed
that the above expression has two fixed points: one at d′ = d and one at d′ = ∞.
By studying the sign of the right-hand side of (3.52) we can analyse the character
of such points. In particular, we find the following:

• d′ = d is an unstable fixed point. By taking d′ slightly smaller than d we get
pushed to 0. By taking, on the other hand, d′ slightly larger than d we get
pushed to ∞.

• d′ = ∞ is a stable fixed point. By taking d′ > d, we always get pushed to
∞.
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Fixed AdS Radius

In the following discussion, we assume the radius RA of the AdS spacetime to be
fixed, impose (3.45) and introduce a λ-dependence in the sphere radius RS. In
particular, we have

RS(λ) =
d′(λ)− 1

d− 1
RA. (3.53)

This unavoidably alters the flow equation for d′ which takes now the form

d

dλ
d′(λ) = −2f 2(d− d′)

d+ d′ − 2

1

2 d′

d′−1
+ log (πRS(λ)2)− ψ0

(
d′+1
2

) . (3.54)

The expression for RS(λ) is presented directly above. As can be clearly observed,
a new term has been introduced in the denominator. But it doesn’t alter the
unstable behaviour of the fixed point at d′ = d, nor the stability of the one at
d′ = ∞. Nevertheless, it introduces a further stable fixed point at d′ = 1. The
sphere radius, in correspondence to the three fixed points, assumes three peculiar
values:

• At d′ = 1, the sphere turns into a 1-dimensional circle. Hence, the whole
computation of the curvature breaks down and the flow gets pathological.

• At d′ = d, RS is equal to RA.

• At d′ = ∞, RS grows towards ∞. Hence, KK states are expected to produce
a tower of massless states.

The picture, emerging when both the AdS dimension d and the radius RA are kept
fixed, while varying the internal sphere dimension d′ and size, can be summarised
as follows. We have an unstable fixed point at d = d′, with RA = RS, where
the theory seems to be consistent. As soon as a small perturbation of the sphere
dimension is introduced, we get either pushed towards d′ = 1, where our flow
equations get pathological, or towards d′ = ∞, where an infinite tower of states is
expected to appear in the spectrum. The specific scaling behaviour of KK-modes
was presented in [29] as

m2
KK(l = 1) = −2

(d− 1)d′

(d− 2)(d′ − 1)2
Λd (3.55)

where l labels the KK momentum. The cosmological constant Λd of the AdS
effective field theory was chosen to not to vary along the flow, as the whole λ-
dependence was moved to parameters of the internal dimensions and RA stays
constant. Therefore, it can be clearly observed that such states get asymptoti-
cally massless, when we flow towards d′ = ∞. In particular, following the standard
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discussions of the Swampland Distance Conjecture, we expect the flow to be pro-
vided with an appropriate notion of distance ∆ (λ0, λ), so that we asymptotically
have

m2
KK (λ) ∼ m2

KK (0) e−α∆(λ0,λ) (3.56)

where α labels now the decay rate in the mass tower. Furthermore, these KK-
states are associated to the growing sphere, as discussed in section 2.3.2. In our
example, focusing on the d′ = ∞ limit, this would then translate into identifying
the asymptotic behaviour of the distance with

α∆(λ0, λ) ∼ log
m2
KK (0)

m2
KK (λ)

= log
d′0(d

′
λ − 1)2

d′λ(d
′
0 − 1)2

∼ log d′λ. (3.57)

This clearly doesn’t uniquely fix an appropriate notion of ∆, since it only regards
its long distance behaviour. Nevertheless, it fits the standard expectation that
the distance should grow proportionally to the logarithm of the dimension and it
allows us to observe that d′ = ∞ is at infinite distance from the unstable fixed
point at d′ = d. It would certainly be interesting to fully work out a proper
distance ∆ for this, because we can’t really use the typical distances like (2.72).
Moreover, D-flow has provided a mechanism here for the d′ → ∞ limit. For
instance, in section 2.3.2 this limit was performed ”by hand”, whereas here it was
a result of D-flow. So this further hints at a close relation between geometric flows
and the SDC even in an exotic setup like here.



Chapter 4

Gradient Flow of
Einstein-Maxwell Theory

This whole chapter is based on a collaboration with Prof. Toby Wiseman and Da-
vide de Biasio [2]. In particular, my contribution was the construction of the flow
and the analysis of the near horizon flow. The latter was performed in close col-
laboration with Davide de Biasio. All the numerical simulations were performed
by Prof. Wisenman himself. In particular, this includes the whole section 4.4 and
the subsection 4.5.3. However, these parts are still included here for completeness,
as I was also involved in the interpretation of the results. But all the numerical
details are omitted and only the results and plots are kept here. The interested
reader is invited to check out the full paper. Moreover, this chapter has its own
conventions but everything is declared properly, so there should be no confusion.

As it was motivated in section 2.2.2 there is a close relation between geometric flow
equations like Ricci flow and the Generalized Distance Conjecture. So it makes
sense to generalise Ricci flow such that it can be applied to more scenarios. In
particular, we are interested in extremal black holes like the Reissner-Nordström
solution. Since this chapter will be more concerned with the general and mathe-
matical features of such an extension, we will first provide a small review on some
properties of Ricci flow applied to black hole geometries.
Ricci flow may be regarded as a natural gradient flow of the Euclidean signature
Einstein-Hilbert action with respect to the DeWitt metric [102, 103], and provides
a way to study both the stability of saddle points in the canonical ensemble, as
well as the global structure of the space of solutions. An example is gravity in
a box with spherical spatial symmetry and fixed boundary radius. Describing
this at finite temperature using a Euclidean continuation, the saddle points of the
action are the small and large black holes, as well as ”hot” flat space, and being
Ricci flat, these are fixed points of Ricci flow. The small black hole is always ther-
modynamically unstable in the canonical ensemble [104] and there is an analog
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of the Hawking-Page phase transition between the large black hole and hot flat
space [105]. This thermodynamic instability of the small black hole results in a
negative mode of the Lichnerowicz operator [106, 107, 108, 109, 110], which drives
an instability under Ricci flow [102]. A very interesting recent study of the Wick
rotation from Lorentzian signature finds that mode stability about a fixed point in
the semiclassical Euclidean path integral is directly related to the stability under
Ricci flow [111].
This instability implies a relevant deformation of the small black hole that gener-
ates two flows away from it. In [102] it was found these flows connect to the other
two stable fixed points, the large black hole, and hot flat space, the latter requiring
a surgery to resolve a singularity along the flow. This is intriguingly qualitatively
similar to the behaviour of real time evolution of a small black hole surrounded
by a bath of radiation at its Hawking temperature. Removing the box by taking
it to infinite size, the small black hole tends to the usual Schwarzschild solution
and the large black hole is removed with the box. Since the unstable mode is
localized about the horizon, the instability under Ricci flow persists. One of the
two flows from Schwarzschild then again tends to flat spacetime (after resolving
a singularity at finite flow time that changes the spacetime topology). The other
”eats up” spacetime indefinitely as there is now no large black hole for it to flow
to.
As previously mentioned, these Ricci flows of the Schwarzschild black hole can be
thought of as RG flow of a sigma model [112]. However it is also possible that
the off-shell geometries that the flow passes through may have significance in the
gravitational path integral [102].
The above discussion was for Euclidean signature. In fact Ricci flow is not well
defined for Lorentzian spacetimes in general. However, restricting to static or
stationary metrics it is well posed and preserves smooth non-extremal Killing
horizons [102, 113, 114], the surface gravity and angular velocities of these being
constant along the flow. Furthermore, the Euclidean negative mode discussed
above preserves the Euclidean U(1) isometry, and hence can be Wick rotated to
an instability of the Ricci flow of static black hole spacetimes. Thus, the unsta-
ble flows of Euclidean Schwarzschild can be Wick rotated to give flows of static
spacetimes away from Lorentzian Schwarzschild.
Further motivated by these considerations it is interesting to consider the flow of
a gravitational system with matter. Here we will consider the simple setting of
gravity coupled to a Maxwell field. There is a natural family of flows that are
gradient flows of the Einstein-Maxwell action with respect to a natural metric on
the superspace. These flows couple the metric and Maxwell vector potential. The
flow of the metric is similar to Ricci flow but with an extra contribution from the
Maxwell stress tensor. The flow of the Maxwell field is given by the Yang-Mills
flow in the background of the metric. We call this combined gradient flow the
Einstein-Maxwell flow (EM flow). The non-trivial fixed points of the flow are
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then the Reissner-Nordström (RN) solutions.

4.1 Einstein-Maxwell Theory

4.1.1 Setup

Since we are concerned with a natural gradient geometric flow of the static Einstein-
Maxwell system, we will briefly review the 4-dimensional Einstein-Maxwell system
and its RN black hole solutions. We will also introduce convenient coordinates
for the later discussion. The theory contains the metric gµν and a gauge field Aµ
and the classical solutions solve the Einstein-Maxwell equations

Rµν = 2FµαF
α

ν − 1

2
F 2gµν

∇µFµν = 0 (4.1)

which derive from the action

S =
1

16πG

∫
d4x

√
−g
(
R− F 2

)
. (4.2)

We note that we have chosen to use a gravitational normalization for the Maxwell
field. The static vacuum solutions to this are the Reissner-Nordström black holes.
The metric may be written as

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2

f(r) =
(
1− r+

r

)(
1− r−

r

)
(4.3)

with dΩ2 = dθ2+sin2 θdϕ2 and the magnetically and electrically charged solutions
have gauge potentials

Amag = −√
r+r− cos θdϕ

Aelec =
√
r+r−

(
1

r+
− 1

r

)
dt (4.4)

respectively.1 The mass M and the magnetic or electric charge Q (in appropriate
units) of the solutions are

2GM = r+ + r−
1One may also source the RN solution with a mixed electromagnetic solution of the form

A = α
(

1
r+

− 1
r

)
dt + β cos θdϕ for appropriate α, β. Here, as stated earlier, we will only be

concerned with purely electric or magnetic solutions as generally mixed fields will produce a
Poynting energy flux whose backreaction is not compatible with the static symmetry of the
metric. In the case of these spherical solutions a static solution with both electric and magnetic
charge is allowed since the spherical symmetry ensures the electric and magnetic fields are
parallel, being radially directed, and hence the Poynting vector vanishes.
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Q =
√
r+r− (4.5)

so that GM ≥ |Q|. We may also consider the negatively charged solutions by
reversing the signs of the gauge potentials above but here we just consider the
positively charged case for simplicity. Regarding r+ as the outer horizon position
and r− as the inner horizon position implies r+ > r−.

4.1.2 Thermodynamics

The solutions obey a First Law of black hole mechanics

dM = TdS + µdQ (4.6)

where the Hawking temperature T , the Bekenstein-Hawking entropy S and the
potential µ associated to the charge Q of the non-extremal solutions are given by

T =
κ

2π
=

r+ − r−
4πr2+

S =
πr2+
G

µ =
1

G

√
r−
r+
. (4.7)

Here κ is the surface gravity. We note that for the electric RN one can see from
writing Aelec = −ψ dt that G · µ corresponds to the potential difference from
the horizon to that at infinity, i.e. ψr+ − ψ∞, noting that the potential at the
horizon vanishes. The extremal limit corresponds to taking r− → r+, so that the
surface gravity (and hence the temperature) vanishes, and corresponds to taking
the charge |Q| → GM . The specific heat capacity at constant charge cQ and the
capacitance at fixed temperature ϵT are

cQ = T
∂S

∂T

∣∣∣∣
Q

= −
2πr2+
G

r+ − r−
(r+ − 3r−)

ϵT =
∂Q

∂µ

∣∣∣∣
T

=
Gr+(r+ − 3r−)

r+ − r−
(4.8)

respectively. We note that cQ is negative for small charges and becomes positive

for r+ ≥ r− > 1
3
r+, so for charges |Q| >

√
3GM
2

= Qcrit, whereas ϵT has precisely
the opposite sign to cQ. If we work at fixed temperature T and charge Q, the
relevant ensemble is the canonical ensemble and, as discussed in [115, 116], then
thermodynamic stability is simply governed by the positivity of cQ. Thus at fixed
temperature and charge, the canonical ensemble is unstable for |Q| < Qcrit but
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becomes stable for sufficient charges |Q| > Qcrit. If we instead choose to work
at fixed temperature T and potential µ, then we must use the grand canonical
ensemble and the condition for stability, namely that the corresponding Gibbs
potential has a local minimum, is then given by positivity of both cQ as well as ϵT
(see for example [117]). Now we see from their explicit expressions that cQ and
ϵT have opposite sign, and hence the grand canonical ensemble is unstable for all
values of temperature and potential.
The work of [109, 110] related the negative mode of the Euclidean continuation
of the Schwarzschild black hole to its negative specific heat capacity and hence
thermodynamic instability. The magnetic RN solution can also be analytically
continued to a smooth Euclidean solution in the same manner. Monteiro and
Santos [115] have shown it also has a Euclidean negative mode for charges where
the specific heat at constant charge is negative, and hence the canonical ensemble
is unstable, and this mode disappears as the charge is increased to |Q| = Qcrit

(see also [118]).
Whereas, for electric RN, one fixes Aelec at infinity and therefore this is naturally
related to the ensemble with fixed electric potential. This is therefore associated
to the grand canonical ensemble which is unstable in any case. But the static
Lorentzian electric RN solution cannot straightforwardly be analytically contin-
ued to a (real) Euclidean solution, due to the electric gauge field whose potential
would naively become imaginary.
Interestingly, however, we will find later that the stability of the static EM flows
about RN do reflect these behaviours in the sense that the flow of the magnetically
charged fixed point becomes stable for sufficient charge, but that of the electric
fixed point does not. This is particularly interesting in light of the recent links
between the stability of the canonical ensemble for Schwarzschild in a box and its
stability under Ricci flow [111]. So this suggests a generalization which includes
charge.
We will find our geometric flows preserve surface gravity of a horizon and hence
we will be interested in the set of solutions at a fixed temperature in order to
understand possible end-points of the flow. Furthermore, we will see that the
magnetic flow preserves magnetic charge, and the electric flow preserves the elec-
tric potential difference between the horizon and infinity. From the expressions
above it follows that for magnetic RN solutions at a given fixed magnetic charge
Q the temperature T is given in terms of r+ as

T (r+) =
1

4π

r2+ −Q2

r3+
(4.9)

which has a maximum

Tmax =
1

6
√
3π|Q|

(4.10)
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r+

T

T0

Tmax

Small BH Large BH

Q
√
3Q

Figure 4.1: This plot shows the temperature T (r+) of a magnetic RN solution at
fixed (sufficiently large) charge Q. For a temperature T0 < Tmax there are two
solutions: a small BH and a large BH. The small BH, with smaller r+, is stable
since cQ > 0 (indicated by the yellow shading), whereas the large BH, with bigger
r+, is unstable since cQ < 0 (indicated by the blue shading). Moreover these
two BHs merge into a marginally stable one at r+ =

√
3|Q| which corresponds

to T0 = Tmax. The red arrows already indicate the flow behavior which we will
observe later. The extremal BH lies at r+ = Q with vanishing temperature.

at r+ =
√
3|Q|. This arises since for fixed charge there is a minimum mass, given

by the BPS bound M ≥ |Q|, and a unique solution exists for all greater masses.
Then for M → |Q| the temperature vanishes, but for very large M ≫ |Q| the
temperature also becomes small, so by continuity in between there is a maximum.
Assuming one takes a temperature T0 < Tmax there are then two magnetic RN
solutions. In analogy with Hawking-Page we may think of these as a small and
large black hole. Now the smaller one, with massM < 2|Q|√

3G
, is thermodynamically

stable (with no Euclidean negative mode), and the larger one has a greater horizon

size and mass M > 2|Q|√
3G

, and is thermodynamically unstable (with a Euclidean

negative mode). Given a charge, then increasing the temperature to its critical
value, Tmax, these two solutions merge to a single marginally stable solution. For
greater temperatures there are no RN black hole spacetimes. This situation is
summarized in figure 4.1.
For electric RN solutions, then fixing the electric potential µ the situation is
different. The temperature T in terms of r+ now reads

T (r+) =
1−G2µ2

4π

1

r+
. (4.11)

For a given potential there exists a single black hole for every temperature T0
and these solutions are always thermodynamically unstable since cQ and ϵT have
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r+

T

T0
Black Hole

Figure 4.2: This plot shows the temperature T (r+) of an electric RN solution
at constant electric potential µ. For any temperature T0 there is only a single
BH solution which is always unstable. The red arrows indicate the flow behavior
which will be shown later.

precisely opposite signs. Figure 4.2 shows a depiction of this case.

4.1.3 Convenient Units and Coordinates

When considering a RN fixed point of the flow we will find it convenient to choose
units such that r+ = 1, i.e. the outer horizon is a unit sphere, and the exterior
spacetime is r > 1. In this case a useful radial coordinate we will use later is ρ,
related to r by

r =
1

1− ρ2
(4.12)

which maps the infinite range r ∈ [1,∞) to the interval ρ ∈ [0, 1). Then the RN
metric (in these units, so r+ = 1) becomes

ds2 = −ρ2F (ρ)dt2 + 4r(ρ)4
dρ2

F (ρ)
+ r(ρ)2dΩ2

F (ρ) = 1− r− + r−ρ
2 (4.13)

with the magnetic Maxwell potential as above (with r+ = 1) and the electric one
being

Aelec =
√
r−ρ

2dt. (4.14)

Taking r− → 0 yields the uncharged Schwarzschild black hole solution, whereas
taking r− → 1 gives the extremal RN black holes. In this extremal limit we
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introduce a new coordinate

ρ′ = ρ2 (4.15)

such that again ρ′ ∈ [0, 1). The extremal metric then reads

ds2 = −ρ′2dt2 + r(ρ′)4
dρ′2

ρ′2
+ r(ρ′)2dΩ2

r(ρ′) =
1

1− ρ′
(4.16)

which is supplemented by either an electric or a magnetic potential

Aelec = ρ′dt

Amag = − cos θdϕ (4.17)

where we assumed positively charged solutions. Taking ρ′ → 0, so that r → 1, we
directly recognise the near horizon geometry as AdS2 × S2.

4.2 Gradient Flows

Given an action S, which is a functional of some fields ΨA, then the variation
δS/δΨA is a covector on the space of fields, the ”superspace”. Here the label
”A” collectively denotes spacetime indices and coordinates. As discussed in [102],
given a metric on superspace, GAB, which is also a functional of the fields ΨA,
the expression δS/δΨA may be converted into a vector and a gradient flow can be
defined as

d

dλ
ΨA = GAB δS

δΨB
. (4.18)

The simplest such local superspace metrics will only depend on the fields and not
their derivatives. If GAB is a positive definite metric, then this is a gradient de-
scent of the action which monotonically decreases along the flow. Different choices
of superspace metric will yield different flow equations.

4.2.1 Gradient Flow of the Einstein-Hilbert Action

For instance, let us consider the Einstein-Hilbert action in this context

SEH =
1

16πG

∫
d4x

√
−gR. (4.19)
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We may associate ΨA with the metric gµν(x), such that the abstract index A
is enumerating both the metric components and coordinate position. A natural
metric on superspace is given by the DeWittk metric (using the notation of [111])

(hµν , h̃αβ) =
1

32πG

∫
d4x

√
−ghµνGµναβh̃αβ, (4.20)

where hµν and h̃αβ are two perturbations of the metric gµν , and

Gµναβ =
1

2

(
gµαgνβ + gµβgνα + kgµνgαβ

)
(4.21)

for a real k. Then, rearranging the gradient flow equation (4.18) as

GAB
dΨA

dλ
δΨB = δS (4.22)

with δS given by the variation δΨB, explicitly gives(
d

dλ
gµν , δgαβ

)
= δSEH = − 1

16πG

∫
d4x

√
−gδgαβ

(
Rαβ − 1

2
gαβR

)
. (4.23)

We will focus on the case k = −1. So the flow equation becomes

d

dλ
gµν(x) = −2Rµν (4.24)

which is simply the Ricci flow. An important point is that since the DeWitt−1

metric is not positive definite, the Einstein-Hilbert action does not generally vary
monotonically along Ricci flows. For example a monotone functional is famously
given by the Perelmann entropy [69].
The fixed points of Ricci flow are ones so that ġµν = 0 where the dot indicates a
flow time derivative, i.e. ˙ = d/dλ. Thus, the fixed points are Ricci flat metrics.
However, one may also consider solutions to the Ricci soliton equation

Rµν = ∇(µξν) (4.25)

to be geometric fixed points of the flow, since for these we have ġµν = −Lieξgµν .
For non-vanishing ξ the metric is clearly varying, but the geometry it represents
is not. Thus, a Ricci soliton represents a geometric fixed point of the flow, so the
geometry doesn’t flow, but the coordinates it is presented in do.
Ricci flow is itself diffeomorphism invariant. By performing a flow time dependent
diffeomorphism

xµ → xµ + vµ(λ, x)

d

dλ
vµ = ξµ (4.26)
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we generate a new flow of the metric

d

dλ
gµν = −2Rµν + Lieξgµν (4.27)

where we may write Lieξgµν = 2∇(µξν). The flows gµν(λ) for the Ricci flow and
the above flow are the same geometrically, but the two metrics will differ by a
coordinate transformation at any given λ, i.e. depending on the flow time.
Due to its diffeomorphism invariance, Ricci flow is not well-posed as a PDE for
initial data at some starting flow time λ. However, following DeTurck [119], we
may make the choice that

ξµ = gαβ
(
Γµ αβ − Γ̄µ αβ

)
(4.28)

given a smooth fixed (i.e. flow time independent) reference connection Γ̄µ αβ on
the manifold. Then the principle part (meaning the second derivative terms) of
the flow is

d

dλ
gµν =PP g

αβ∂α∂βgµν . (4.29)

For Riemannian metrics this is now parabolic. For Lorentzian signature metrics
this is generally not well-posed, as timelike perturbations ”anti-diffuse”. However,
following [113, 114], we may restrict to the space of static or stationary metrics,
and then the flow is indeed parabolic, thus well-posed.
Let us take the reference connection Γ̄µ αβ to be the Levi-Civita connection of a
static reference metric, ḡµν . Then the flow obviously preserves staticity of the
metric, namely starting with a static metric it will remain static. If the metric is
static, we may generally write it locally as

gµν(x) =

(
−N(xk) 0

0 hij(x
k)

)
(4.30)

with N ≥ 0 and det(hij) > 0 in coordinates xµ = (t, xk) adapted to the static
symmetry. Note that in these static coordinates N may vanish at black hole hori-
zons but away from these it should be positive. We may always choose coordinates
locally so that the spatial metric hij is a smooth Riemannian metric. Then since
gµν has no explicit time dependence, the principle part becomes

d

dλ
gµν =PP h

ij∂i∂jgµν (4.31)

which is indeed a parabolic diffusion-like flow for the metric components on the
curved space hij.
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4.2.2 Gradient Flow of the Einstein-Maxwell Action

We now consider the gradient flow of the Einstein-Maxwell action

S =
1

16πG

∫
d4x

√
−g
(
R− F 2

)
(4.32)

with Fµν = 2∂[µAν]. Now, schematically, our field space ΨA is composed of the
metric gµν(x) together with the gauge field Aµ(x). A natural superspace metric
is then given by

(hµν , h̃αβ) =
1

32πG

∫
d4x

√
−ghµνGµναβ

(g) h̃αβ

(uµ, ũα) =
1

16πG

∫
d4x

√
−guµGµα

(A)ũα (4.33)

where, as above, hµν and h̃αβ are metric perturbations, whereas uµ and ũα are
perturbations to the gauge field Aµ. Moreover, for the superspace metrics we take

Gµα
(A) =

4

τ
gµα

Gµναβ
(g) =

1

2

(
gµαgνβ + gµβgνα − gµνgαβ

)
(4.34)

for a constant τ . Furthermore, we take (hµν , uα) = 0 so that the metric and gauge
perturbations are orthogonal. We may regard the parameter τ as determining the
speed of the flow of the gauge field relative to that of the metric and later we will
focus on the case τ = 1. We see that this superspace metric is constructed only
from the metric (so doesn’t involved the gauge field) and that its restriction to
the metric simply gives the DeWitt−1 superspace metric.
Then we obtain the following gradient flow equations

d

dλ
gµν = −2Rµν + 4FµαF

α
ν − F 2gµν

d

dλ
Aµ = τ∇αFαµ. (4.35)

We will call this system the Einstein-Maxwell flow (EM flow) and its fixed points,
ġµν = 0 = Ȧµ, are solutions of the Einstein-Maxwell equations.
The EM flow is both diffeomorphism and gauge invariant. Thus, we may consider
the analog of Ricci solitons, so field configurations where the geometry and the
gauge field flow only up to diffeomorphisms and gauge transformations

ġµν = −Lieξgµν

Ȧµ = −LieξAµ − ∂µΛ (4.36)



68 4. Gradient Flow of Einstein-Maxwell Theory

with ξ generating the flow dependent diffeomorphism and Λ the gauge transfor-
mation of the Maxwell field along the flow. We may explicitly modify the EM flow
to add such a flow time dependent diffeomorphism ξ and gauge transformation Λ
as

d

dλ
gµν = Lieξgµν − 2Rµν + 4FµαF

α
ν − F 2gµν

d

dλ
Aµ = LieξAµ + ∂µΛ + τ∇αFαµ (4.37)

such that we get the same flow up to diffeomorphisms and gauge transformations.
The analog of Ricci solitons can then be thought of as the fixed points of this
modified flow.
As for Ricci flow, the Einstein-Maxwell flow is not parabolic, even when restricted
to static field configurations. In a linearization of the flow the two derivative terms
vanish on linear perturbations that are diffeomorphisms or gauge transformations
of the gauge field. In order to obtain a well-posed flow, we take the modified flow
above in equation (4.37) and choose ξ as the DeTurck vector in equation (4.28)
and further take

Λ = τ∇αAα. (4.38)

Now, choosing the reference metric to be static, the flow truncates to the space of
static metrics and gauge fields. From here on we will focus on the case τ = 1 such
that the principle part of the flow on static metrics and gauge fields then becomes

d

dλ
gµν =PP hij∂i∂jgµν

d

dλ
Aµ =PP hij∂i∂jAµ. (4.39)

Since hij is a smooth Riemannian metric, the character of the flow is governed by
the components of gµν and Aµ diffusing on the spatial geometry hij, and hence is
parabolic. If we take τ ̸= 1, we would get another contribution, which is a second
order derivative of the metric components, to the gauge field equation in (4.39).
However, this wouldn’t spoil the parabolicity of Aµ but it just hints at a preferred
canonical choice of τ = 1.
We have written this static flow for a general gauge potential Aµ compatible with
the static symmetry. However, as emphasized earlier, in general a static potential
will have a stress tensor that is only stationary, but not static due to a Poynting
energy flux being generated when both (static) electric and magnetic fields are
present. Thus, here we take the Maxwell potential to be either purely electric, i.e.
A = −ψdt, or purely magnetic, so A = Aidx

i. These electric or magnetic forms
are consistently preserved by the flow for the DeTurck choice of ξ and the gauge
choice in equation (4.38).
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From this point on we will term the parabolic Einstein-Maxwell flow in (4.37) of a
static spacetime with either magnetic or electric Maxwell field and DeTurck vector
ξ and gauge choice Λ as the ”magnetostatic or electrostatic Einstein-Maxwell
(EM) flow”.

4.3 Static EM Flows of Black Hole Spacetimes

We now consider the EM flow on static black hole spacetimes. While the flow
is parabolic away from horizons, it isn’t clear that it will preserve the smooth
structure of a horizon and this is what we aim to demonstrate here. Furthermore,
in the extremal case we will see the nice property that the flow of the near horizon
geometry decouples from the flow of the exterior of the horizon, as one might
expect from extremal black holes.

4.3.1 Static non-extremal black hole spacetimes

The EM flow of static non-extremal black holes is very simple to consider, being
similar to the discussion for Ricci flow. In fact, for Ricci flow one may simply
perform a Euclidean continuation of a static metric, identifying the period of the
Euclidean time coordinate so that the Euclidean manifold becomes smooth at the
horizon. Since Ricci flow of this Euclidean geometry preserves the U(1) isometry
associated to the static symmetry, it is obvious that the smoothness of the horizon
is preserved.
However, in the case of the EM flow a gauge field with electric potential component
cannot generally be analytically continued to Euclidean time. Hence, we will use
a different argument, namely that of [113, 114], which exploits the similarity
between a static Killing horizon and the origin of a polar coordinate system.
Following [113, 114] the most general smooth static symmetric metric with a
Killing horizon associated to the surface gravity κ (with respect to the Killing
vector ∂/∂t) can be written in coordinates xµ = (t, r, xa) adapted to the static
symmetry and horizon as

ds2 = −r2V dt2 + U(dr + rUadx
a)2 + habdx

adxb (4.40)

where r = 0 is the horizon. Moreover, V, U, Ua, hab are all smooth functions of r2

and of xa with V, U > 0 and hab is a Riemannian metric. At the horizon there is
the additional condition that(

V − κ2U
)∣∣
r=0

= 0. (4.41)

Then making the coordinate transformation α = r sinhκt, β = r coshκt (analo-
gous to that going from polar to Cartesian coordinates) one finds a metric tensor
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with smooth components and non-vanishing determinant.
The most general symmetric two-tensor, that is also smooth on the Killing hori-
zon, takes a similar form, although with different component functions V , U , Ua
and hab compared to the metric above. These must obey the same smoothness
conditions, so being smooth functions of r2 and of xa and also satisfying (4.41).
But they don’t need to have the positivity of V and hab doesn’t have be a Rie-
mannian metric.
Now consider a covector ω. The most general form compatible with the symmetry
Lie∂/∂tω = 0 and with smoothness at the Killing horizon can be written as

ω = r2Φ dt+ rWdr + ωadx
a (4.42)

where now Φ, W and the components ωa are again smooth functions of r2 and of
xa. We may see this by writing a general smooth vector in the coordinates α and
β, introduced above, as

ω = ωαdα + ωβdβ + ωadx
a (4.43)

where ωα, ωβ, ωa are smooth functions of α, β and xa. Then transforming back
to t and r coordinates we obtain

ω=κr (ωα coshκt+ ωβ sinhκt) dt+ (ωα sinhκt+ ωβ coshκt) dr + ωadx
a.(4.44)

In order to have the static symmetry, we see that these components should have
no explicit t dependence. Noting that a smooth function f of α and β, which
obeys ∂tf = 0, must be a function of β2 − α2 = r2. Then we see the behaviour of
ωα and ωβ is constrained to go as

ωα = −αW (r2, xa) +
1

κ
βΦ(r2, xa)

ωβ = −1

κ
αΦ(r2, xa) + βW (r2, xa) (4.45)

for Φ(r2, xa), W (r2, xa) smooth functions of r2 and xa which yields the form in
equation (4.42) above.
Then a gauge field A, which is purely electric, compatible with the static symmetry
and smooth on the Killing horizon, will take the form

A = r2Φ dt (4.46)

(after a gauge transformation to remove any spatial components). In the purely
magnetic case, it will take the form

A = rWdr + ωadx
a. (4.47)
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We take the reference metric to be some smooth spacetime with a coinciding
Killing horizon at r = 0 with the same surface gravity, so

ḡµνdx
µdxν = −r2V̄ dt2 + Ū(dr + rŪadx

a)2 + h̄abdx
adxb (4.48)

such that V̄ , Ū , Ūa and h̄ab obey the same conditions as the corresponding com-
ponent functions of the metric. Being static, then staticity with respect to ∂/∂t
is preserved by the flow. Likewise the electric or magnetic form of the gauge po-
tential is also preserved.2

Translating to α and β coordinates, all the tensors are smooth in the coordinates
α, β, xa and compatible with the symmetry ∂/∂t. Now consider the flow equa-
tions. The tensors derived from the metric, the reference metric and the gauge
field, the curvature and the field strengths and the various Lie derivative and gauge
transform terms will also all be smooth and respect the symmetry. Combining
these into the right-hand sides of the flow equations will again yield a smooth
symmetric two tensor and a smooth symmetric covector. Since these respect the
static symmetry and are smooth in α, β, then returning to t, r, xa coordinates,
they will take the smooth forms discussed above, and thus the smooth form of the
metric and gauge field will be preserved by the flow. In particular, the constant
surface gravity κ with respect to ∂/∂t will be preserved by the flow which directly
implies that the temperature associated to the black hole remains unchanged.

4.3.2 Conserved charges under EM flow

Since black holes can carry charges, we may wonder whether any charges or po-
tentials are conserved by the static EM flow. Let us consider first the electric
flow in asymptotically flat spacetimes. We take the asymptotic boundary condi-
tion that the metric and the reference metric tend to Minkowski space and the
non-vanishing component of the vector field At tends to a constant Φ∞. Thus we
have

ds2 → −dt2 + dr2 + r2
(
dθ2 + sin2 θdϕ2

)
At → Φ∞ (4.49)

as r → ∞. We may interpret Φ∞ as the electric potential difference of the
spacetime, since we have seen that At → 0 at black hole horizons. Thus, we see
that for black hole spacetimes the electric static EM flow preserves the electric
potential difference µ since it is fixed by the asymptotic boundary conditions.
One may ask, does it also preserve the charge? Working to higher order in powers
of 1/r, given a potential of the form

At = Φ∞ +
1

r
f(θ, ϕ) +O

( 1
r2
)

(4.50)

2We note that there is no mixing between these electric and magnetic components since they
transform differently under the static t → −t symmetry.
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then the electric charge is

Q =
1

4π

∫
S2
∞

⋆F =
1

4π

∫
dθdϕ sin θf(θ, ϕ) (4.51)

where the integral is taken over the 2-sphere at infinite radius. Naively it appears
that this electric charge is also fixed in flow time since one may simply show that

Ȧt = O

(
1

r2

)
. (4.52)

and thus the leading 1/r term in At is not affected by the flow. This is similar
to the observation in [120] that the ADM mass of a static spacetime is invariant
under Ricci flow since again the leading asymptotic fall-off is not corrected.
While technically correct, we argue that this is not physically the correct picture.
A counter example in our context that we discussed earlier is that we may Ricci
flow from the Schwarzschild black hole to flat spacetime (via a topology change).
So clearly we should physically expect that the mass changes.3 The resolution is
that there are different ways to compute charges or masses during a flow. Charges
are defined far away from the system of interest and, thus, there are two limits
we are concerned with, namely large radius and large flow times. Depending on
the ordering of these limits we may obtain a definition of charge that doesn’t
vary with flow time or one that does. If we define charge at fixed finite flow
time and infinite radius, we don’t allow the charge to vary in a finite flow time
as information from the interior of the system cannot propagate out to infinity.
On the other hand, if we define charges on a very large but formally finite sphere,
these charges may vary at sufficiently late times in the flow. This is analogous to
the discussion in [120] where, although the ADM mass is fixed during Ricci flow,
quasi-local masses do evolve.
This may be precisely illustrated with a simple example given by the following
exact solution to diffusion in flat Euclidean 3d space

F (λ, x⃗) =
1

|x⃗|

∫ ∞

0

dωF̃ (ω)e−ωλ sin
(
|x⃗|

√
ω
)

(4.53)

where x⃗ are the usual Euclidean coordinates, λ is diffusion flow time and F̃ (ω) is
the integral transform of the initial data at λ = 0. We consider an initial profile
given by

F̃ (ω) =

{
1
πω

ω < 1/L
0 ω ≥ 1/L

(4.54)

3One might be tempted to say that this is associated to the surgery required to change
topology, but this is not the case as the surgery is local to the region in the interior where the
singularity develops as the horizon shrinks and does not affect the asymptotics at all.
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and then the p-th flow time derivative at λ = 0 is

dp

dλp
F (λ, x⃗)

∣∣∣∣
λ=0

=

{
1
r
+O (1/r2) p = 0

− 1
r2

2(−1)p cos(r/
√
L)

π
√
L
2p−1 +O (1/r3) p > 0.

(4.55)

Since F (0, x⃗) ∼ 1/r, but dp

dλp
F (λ, x⃗)

∣∣
λ=0

∼ 1/r2 for any p > 0, we see that
the asymptotic ∼ 1/r behaviour persists unchanged at finite flow time, so that
F (λ, x⃗) ∼ 1/r. However, it is quite evident that pointwise, so at any fixed position
x⃗, we have F (λ, x⃗) → 0 as λ→ ∞. In diffusion we know that it will take a diffusion
time λ ∼ r2 to effect a change on the scale r. Thus, while formally at finite flow
time the 1/r coefficient will remain unchanged, if we actually look at some very
large, but finite fixed radius, and ask how the diffusion field looks at late flow
times, it will tend to zero, as will all its spatial derivatives. Formally for any point
x⃗ we have

lim
λ→∞

∂i1∂i2 . . . ∂inF (λ, x⃗) = 0 (4.56)

for any number of derivatives n ≥ 0.
Let us return to the context of the electric static EM flow. The charge is fixed
for finite flow times if we compute it from the formula above (i.e. from the 1/r
fall-off). However, if instead we compute it as the charge inside some very large
radius R

Q =
1

4π

∫
S2
r=R

⋆F, (4.57)

this will closely approximate the charge computed with the original definition for
early times, λ ≪ R2, but then will change and deviate from this definition if we
wait for a sufficiently long flow time, λ ∼ R2. With this more physical definition
of charge, we conclude that for the electric static EM flow the electric potential is
fixed as a boundary condition and the charge will vary with flow time.
The converse holds for the magnetic static EM flow. Here we asymptotically have
the boundary condition that

Aa → Aa(θ, ϕ) (4.58)

for large r, where xa = (θ, ϕ) and Aa(θ, ϕ) is a fixed covector field on the 2-
sphere at infinity. We may regard this as a ”Dirichlet” boundary condition for
the magnetic potential as r → ∞. The magnetic charge is now computed as

Qmag =
1

4π

∫
S2
∞

F =
1

4π

∫
dθdϕ (∂θAϕ − ∂ϕAθ) (4.59)

and thus it is fixed by the asymptotic data Aa. As it is the leading behaviour of
Aa that determines this magnetic charge in the large r limit, we emphasize that
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this remains fixed independent of whether we evaluate the charge integral strictly
in the infinite radius limit or instead at some very large but finite radius R.
Thus, in summary, the electrostatic EM flow preserves the electric potential as
a boundary condition (but not electric charge), and the magnetostatic EM flow
preserves the magnetic charge as a boundary condition. Both flows preserve the
surface gravity. We will return to this point later when drawing an analogy be-
tween the behaviour of these flows starting with an RN black hole and the ther-
modynamic stability of the RN solution.

4.3.3 Static extremal black hole spacetimes

Already for Ricci flow it is far less obvious that the flow is compatible with pre-
serving a static smooth extremal horizon. We begin our discussion by considering
the flow of the metric. Then, we will consider adding the gauge field, which is
either purely electric or purely magnetic.
Following [121] a general static extremal horizon can be written as

ds2 = −r2eTdt2 + eR
(
dr

r
+ rωadx

a

)2

+ γabdx
adxb (4.60)

where r = 0 is the horizon and crucially T , R, ωa and γab are smooth functions of
r and xa there. Furthermore, T and R obey

(T −R)|r=0 = 0

∂r(T −R)|r=0 = ψ (4.61)

where ψ is some constant depending on the geometry. The near horizon geometry
is then given by the limit as r → 0

ds2NH = eT
(
−r2dt2 + dr2

r2

)
+ γabdx

adxb (4.62)

which is a (warped) product of AdS2 with the horizon 2-geometry γab. Suppose
we flow the metric by a symmetric tensor Aµν so that

d

dλ
gµν = Aµν . (4.63)

Then we should have that the form above is preserved. In order for this to hold,
the tensor Aµν must have an analogous form to that of the metric, namely

Aµν =

 −r2Âtt 0 0
1
r2
Ârr Âa

Âab + r2ÂaÂb

 (4.64)
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so that the component functions Âtt, Ârr, Âa, Âab are smooth in r and xa. Then
to preserve the metric smoothness conditions (4.61), we further require(

Âtt − Ârr

)∣∣∣
r=0

= 0

∂r(Âtt − Ârr)
∣∣∣
r=0

= ψ Âtt

∣∣∣
r=0

. (4.65)

This tensor is now also smooth on the Lorentzian spacetime. Linearly combining
such tensors satisfying (4.65) with the same value of ψ yields again smooth sym-
metric tensors (also with the same value of ψ) and contracting their indices with
the metric gives also a smooth function of r and xa.
The near horizon limit of this smooth tensor exists and is given as

ANHµν =

 −r2ANH(xa) 0 0
1
r2
ANH(xa) 0

ANHab (xa)

 (4.66)

where the components are defined from those of the original tensor at r = 0 as

ANH(xa) = Âtt(r, x
a)
∣∣∣
r=0

ANHab (xa) = Âab(r, x
a)
∣∣∣
r=0

(4.67)

and may be thought of as a scalar and symmetric 2-tensor respectively, defined
on the 2-dimensional near horizon spatial geometry γab.
The static EM flow updates both the metric and gauge field by the sum of sev-
eral terms and we now consider these individually, showing that smoothness is
preserved.

Ricci Tensor Term

We now show that the Ricci tensor of this geometry is smooth. This implies
that flowing the metric by the Ricci tensor preserves smoothness. This analysis
is simplified by noting that we may use residual coordinate freedom to choose ωa
to vanish in the metric (4.60). Explicitly we may write (4.60) as

ds2 = − r2eTdt2 + eR
(
1− r2waw

aeR
) dr2
r2

+ γ′ab
(
dxa + eRwadr

) (
dxb + eRwbdr

)
(4.68)

where γ′ab = γab+ eRr2wawb and w
a is defined by wa = γ′abw

b. We now take a new
coordinate ya(r, x) which obeys the following linear differential equation

∂ry
a = eRwb∂by

a. (4.69)
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This may be solved by taking boundary conditions ya = xa at r = 0 and then
integrating in r starting from the surface r = 0. Since the components of eRwa are
smooth in r and xa, this will have smooth solutions and the inverse transformation
ya → xa will also exist (at least locally near r = 0). These coordinates then yield
a metric of our desired form

ds2 = −r2eTdt2 + eR
′ dr2

r2
+ γ′′abdy

adyb

γ′′ab = γ′cd
∂xc

∂ya

∣∣∣∣
r

∂xd

∂yb

∣∣∣∣
r

(4.70)

where eR
′
= eR

(
1− r2waw

aeR
)
. An important fact we will use later is that, since

ya ≃ xa near r = 0, the near horizon metric is unchanged by this transformation.
Furthermore, the near horizon form of any other smooth tensor is also unchanged.
Now proceeding we will assume we have taken the above coordinates so that our
extremal metric can be written as

ds2 = −r2eTdt2 + eR
dr2

r2
+ γabdx

adxb (4.71)

without the off-diagonal wa terms. Then by direct calculation one can obtain the
Ricci tensor

Rµν =

 −r2R̂tt 0 0
1
r2
R̂rr R̂a

R̂ab + r2R̂aR̂b

 . (4.72)

We define Kab = ∂rγab and K = γabKab. For fixed r then γab is a 2-metric,
whose covariant derivative we denote as ∇̃ and whose Ricci tensor we write as
R

(γ)
ab . Moreover, we decompose the following expressions covariantly over this r-

dependent 2-geometry γab and emphasise that Latin indices are raised/lowered
with respect to γab. Then we may write

R̂tt = eT−R
(
eRQ0 + rQ1 + r2Q2

)
R̂rr =

(
eRW0 + rQ1 + r2W2

)
R̂a =

1

r

(
U0
a + rU1

a

)
R̂ab + r2R̂aR̂b = e−R

(
eRV 0

ab + rV 1
ab + r2V 2

ab

)
(4.73)

where

Q0 = −1

2
∇̃2T − 1

4
(∇̃T )2 − 1

4
∇̃aT ∇̃aR− e−R

W0 = −1

2
∇̃2R− 1

4
(∇̃R)2 − 1

4
∇̃aT ∇̃aR− e−R
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U0
a = −1

2
∇̃a(T −R) (4.74)

and

Q1 = −3

2
∂rT +

1

2
∂rR− 1

2
K

U1
a = −1

2
∂r∇̃aT − 1

4
∂rT ∇̃a(T −R) +

1

4
K∇̃aR

+
1

4
Kab∇̃b(T −R)− 1

2
∇̃aK +

1

2
∇̃bKab (4.75)

and where

Q2 = −1

2
∂2rT − 1

4
(∂rT )

2 +
1

4
(∂rT )(∂rR)−

1

4
(∂rT )K

W2 = −1

2
∂2rT − 1

4
(∂rT )

2 +
1

4
(∂rT )(∂rR) +

1

4
(∂rR)K − 1

2
∂rK − 1

4
KabK

ab

(4.76)

and then finally

V 0
ab = R

(γ)
ab − 1

2
∇̃a∇̃bT − 1

2
∇̃a∇̃bR− 1

4
∇̃aT ∇̃bT − 1

4
∇̃aR∇̃bR

V 1
ab = −Kab

V 2
ab = −1

2
∂rKab +

1

4
KKab −

1

4
Kab∂r(T −R) +

1

4
γab
(
KcdKcd −K2

)
.

(4.77)

First, one can check that R̂a is in fact a smooth function of r, even though naively
it appears to go as O(1/r), due to the fact that T = R at r = 0 so U0

a vanishes at
r = 0. The other components R̂tt, R̂rr, R̂ab are then clearly smooth in r and xa.
Secondly, one can explicitly confirm that the smoothness conditions (4.65) indeed
hold by virtue of the behaviour of the metric functions.
Furthermore, we see that the near horizon geometry of the Ricci tensor is given
by

RNH
µν =

 −r2RNH 0 0
1
r2
RNH 0

RNH
ab

 (4.78)

where

RNH = eT
(
−1

2
∇̃2T − 1

2
(∇̃T )2 − e−T

)
RNH
ab = R

(γ)
ab − ∇̃a∇̃bT − 1

2
∇̃aT ∇̃bT. (4.79)
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Clearly the near horizon geometry only depends on the intrinsic geometry and
not on any r derivatives at the horizon r = 0. Thus, we see that the Ricci tensor
term in our EM flow equation for the metric indeed preserves the extremal horizon
structure.

DeTurck Diffeomorphism Term

Now we consider the diffeomorphism term ∇(µξν) in the metric flow equation.
In order to keep the metric static and preserve gtr = gta = 0 during the flow,
the diffeomorphism vector field must have ξt = 0 and the remaining components
cannot depend on t. Additionally, for the diffeomorphism to preserve the extremal
horizon we find that it must take the form

ξµ =
(
0, r2f, va

)
(4.80)

where f and va are smooth functions of r and xa. The vanishing ξr component
at r = 0 implies that the position of the horizon is not changed in the flow,
as one would expect. Perhaps less obvious is that this component must vanish
quadratically in r as the following expressions show

∇(µξν) =

 −r2Âtt 0 0
1
r2
Ârr Âa

Âab + r2ÂaÂb

 (4.81)

where we have

Âtt = eT
(
1

2
va∇̃aT + rf +

1

2
r2f∂rT

)
Ârr = eR

(
1

2
va∇̃aR + rf + r2

(
1

2
f∂rR + ∂rf

))
Âa =

1

2
eR∇̃af +

1

2
γab∂rv

b

Âab + r2ÂaÂb = ∇̃(avb) +
r2

2
fKab . (4.82)

In particular, Âa would be singular, going as ∼ 1/r if ξr ∼ r rather than quadrati-
cally in r.4 One can check that this indeed obeys the smoothness conditions (4.65).
The near horizon form is then

(∇(µξν))
NH =

 −r2ANH 0 0
1
r2
ANH 0

ANHab

 (4.83)

4We note that while a general behaviour ξr = rf(r, xa) for f smooth in its arguments would
be singular, it seems possible to have ξr = rc + r2f(r, xa) with c a constant. However, as
we discuss shortly, the DeTurck vector component ξr does not have such a linear in r leading
behaviour. Thus, we drop this contribution.
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with

ANH =
1

2
eTva∇̃aT

∣∣∣∣
r=0

ANHab = ∇̃(avb)

∣∣∣
r=0

(4.84)

and we see this only depends on va and not on f . We may check that the DeTurck
choice of diffeomorphism indeed gives the above form for ξµ in (4.80). Recall that

ξµ = gαβ
(
Γµαβ − Γ̄µαβ

)
(4.85)

with the reference connection being the Levi-Civita connection of a smooth static
reference metric

ds̄2 = −r2eT̄dt2 + eR̄
(
dr

r
+ rω̄adx

a

)2

+ γ̄abdx
adxb (4.86)

where T̄ , R̄, ω̄a and γ̄ab obey the same restrictions as their counterparts in the
actual metric. In particular, we also need to have ψ = ψ̄ in order to obtain a
smooth extremal horizon when adding up tensors composed from the actual and
the reference metric. We emphasize that while we have chosen to use our coor-
dinate freedom to eliminate the drdxa terms in the metric for these calculations,
this generally will not eliminate those terms in the reference metric.
One then finds the DeTurck vector field indeed has the form required for a dif-
feomorphism that preserves the extremal horizon, as in equation (4.80). It may
explicitly be checked that ξt = 0 and that the component ξr goes as

ξr = re−R

(
eT̄−R̄

eT−R
− 1

)
+O(r2). (4.87)

This naively looks to only vanish as ∼ r rather than ∼ r2 at the horizon. However,
due to the smoothness of the metric and reference metric, and hence T − R =
T̄ − R̄ = 0 at r = 0, this expression actually goes as O(r2), as in equation (4.80).
Finally one finds that

ξa = − 1

2
γab∇̃b(T +R) +

1

2
eT̄−T γ̄ab∇̃bT̄

+
1

2
eR̄−Rγ̄ab∇̃bR̄ + γbc

(
Γ̃abc −

¯̃Γabc

)
+O(r) (4.88)

where Γ̃abc and
¯̃Γabc are the (Levi-Civita) connections of the horizon 2-metric γab

and reference metric γ̄ab respectively. Moreover, let us emphasise that indices are
raised/lowered with respect to γab and not γ̄ab.
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Hence, on the horizon r = 0 the 2d vector inducing the near horizon diffeomor-
phism is

va = eT̄−T γ̄ab∇̃bT̄ − γab∇̃bT + γbc
(
Γ̃abc −

¯̃Γabc

)
. (4.89)

Having discussed the Ricci tensor and DeTurck diffeomorphism terms for a static
extremal horizon and shown they give smooth tensors we now see that DeTurck-
Ricci flow will preserve the smooth structure of a static extremal horizon. More-
over, we may take the near horizon limit of the flow to obtain a geometric flow
of the near horizon geometry. This near horizon flow will be independent of the
details of the geometry away from the horizon depending only on the intrinsic
geometry of the horizon itself.
Now we turn to the remaining parts in the static EM flow. These are the Maxwell
field and its flow and also its backreaction terms in the metric flow equation. We
will consider the purely electric and magnetic cases separately.

The electric Maxwell field

A purely electric potential is preserved under the EM flow. We find that smooth-
ness for the Maxwell field on the static extremal horizon geometry implies that a
pure electric potential takes the form,

A = rΦ(r, xa)dt (4.90)

where the potential function Φ is smooth in r and xa. Note that the electric
potential vanishes at the horizon which is necessary for the vector field Aµ to have
finite norm. Further, as we will see, in order for the field strength F α

µ Fνα term
in the flow to preserve the extremal metric we require

∇̃aΦ
∣∣∣
r=0

= 0 (4.91)

so that Φ is constant over the horizon. The right-hand side of the Maxwell field
equation in the static EM flow (for a diffeomorphism of the form (4.80)) can be
decomposed as

∇µFµt + LieξAt = rQ0 + r2e−RQ1 + r3e−RQ2

Q0 = ∇̃2Φ− 1

2
∇̃a(T −R)∇̃aΦ + va∇̃aΦ

Q1 = 2∂rΦ +
1

2
Φ (K − ∂r(T +R)) + eRfΦ

Q2 = ∂2rΦ +
1

2
(K − ∂r(T +R)) ∂rΦ + eRf∂rΦ (4.92)

with the r- and a-components vanishing. Note that these terms preserve the form
of the electric potential. In particular, the condition (4.91) is perfectly consistent
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with the above. Hence, the value of Φ on the horizon will be constant over the
2-geometry and will remain unchanged in flow time. Then taking the near horizon
limit, the electric gauge potential is just given by

ANH = rΦNHdt (4.93)

for constant ΦNH = Φ(0, xa) and is fixed along the flow. It thus generates a
constant radially directed electric field FNH

tr on the horizon. The charge enclosed
by the horizon is then simply proportional to its horizon area.
We note that the flow gauge transformation term ∂µΛ is trivial here because
Λ = ∇αA

α (remember τ = 1) vanishes for a static electric potential.
Finally, the Maxwell field backreacts on the metric flow via the symmetric tensor
F α
µ Fνα and its trace. We find

F α
µ Fνα =

 −r2Âtt 0 0
1
r2
Ârr Âa

Âab + r2ÂaÂb

 (4.94)

where

Âtt = −∇̃aΦ∇̃aΦ− e−R∂r(rΦ)∂r(rΦ)

Ârr = −e−T∂r(rΦ)∂r(rΦ)

Âa = −1

r
e−T∂r(rΦ)∇̃aΦ

Âab + r2ÂaÂb = −e−T ∇̃aΦ∇̃bΦ. (4.95)

Note we see the previously claimed condition (4.91) is required for (Âtt − Ârr)
to vanish on the horizon and one can directly check then that the remaining
smoothness constraint in equation (4.65) holds.
Since F α

µ Fνα is smooth, its trace with respect to the metric will be too, and so
will be the backreaction term F α

µ Fνα − 1
4
gµνF

2 in the metric equation of the EM
flow.

The magnetic Maxwell field

Now we turn to the purely magnetic case. We assume our magnetic Maxwell field
to take the following form

A = br(r, x
a)dr + ba(r, x

a)dxa (4.96)

where br and ba are smooth functions in r and xa. Now also remember that we
took the choice τ = 1, as it seems to be the preferred choice. The form for the
magnetic Maxwell field is preserved by the flow equations which are given by

τ∇µFµr + LieξAr = Q0 + rQ1 + r2Q2
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Q0 = τ∇̃aFar +
τ

2
∇̃a(T −R)Far + va∇̃abr + ba∂rv

a

Q1 = 2brf

Q2 = f∂rbr + br∂rf (4.97)

τ∇µFµa + LieξAa = Q0 + re−RQ1 + r2e−RQ2

Q0 = τ∇̃bFba +
τ

2
∇̃b(T +R)Fba + Lievba

Q1 = 2τFra

Q2 = −τ∂rFra +
τ

2
∂r(T −R)Fra +

τ

2
KFra + τγbcKbaFcr

+eRf∂rba + eRbr∇̃af (4.98)

with the t-component being trivial. The gauge fixing term ∂µΛ is determined by
Λ which takes the form

Λ = ∇µA
µ = Λ0 + re−RΛ1 + r2e−RΛ2

Λ0 = ∇̃ab
a +

1

2
∇̃a(T +R)ba

Λ1 = 2br

Λ2 =
1

2
(∂r(T −R) +K)br + ∂rbr (4.99)

so we see this is also a smooth function. It is then clear that the covector given by
its gradient, namely ∂µΛ, then preserves the form of the gauge field (4.96) with
its contribution to the flow.
Now we turn to the contribution in metric flow equation, so the term F α

µ Fνα
gives

F α
µ Fνα =

 −r2Âtt 0 0
1
r2
Ârr Âa

Âab + r2ÂaÂb

 (4.100)

where

Âtt = 0

Ârr = r2γabFraFrb

Âa = γbcFrbFac

Âab + r2ÂaÂb = γcdFacFbd + r2e−RFraFrb (4.101)

with Fra = ∂rba − ∇̃abr and Fab = ∇̃abb − ∇̃bba. Because we have Âtt = 0 and
Ârr ∼ O(r2), the smoothness conditions in (4.65) are trivially fulfilled. Hence, the
backreaction of the magnetic potential in the metric flow preserves smoothness of
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the extremal horizon.
The near horizon limit of the magnetic gauge potentialA = br(r, x

b)dr+ba(r, x
b)dxa

at r = 0 becomes the 2-vector potential

ANH = bNHa (xb)dxa

bNHa (xb) = ba(0, x
b) (4.102)

which is defined over the 2-geometry γab of the horizon.

Collecting Terms and the Near Horizon Limit

We have seen above that each term in the static EM flow equations preserves
the smoothness of both the extremal horizon and the gauge field. Recall that
to simplify the task of computing these terms we have chosen coordinates where
the off-diagonal terms wa vanish. However, we emphasize that having shown
smoothness in these simpler coordinates, then guarantees smoothness in more
general coordinates where the off-diagonal terms are present.
We will now consider the near horizon limit of the flow. We explicitly showed
above that the transformation to remove these off-diagonal terms does not affect
the near horizon form of smooth tensors. Thus, having computed the near horizon
forms in coordinates, where wa vanishes, gives their form for any (smooth) choice
of coordinates with terms wa, i.e. the near horizon limit is independent of wa.
Using the results from before we may take the near horizon limit of the EM flow
so that for r = 0 we have in the electric case

d

dλ
T = ∇̃2T + v′a∇̃aT + 2e−2T

(
eT − (ΦNH)2

)
d

dλ
γab = −2R

(γ)
ab + 2∇̃(av

′
b) + ∇̃aT ∇̃bT + 2γabe

−2T (ΦNH)2 (4.103)

where

v′a = eT̄−T γ̄ab∇̃bT̄ + ξ(γ)a

ξ(γ)a = γbc
(
Γ̃abc −

¯̃Γabc

)
. (4.104)

In particular, v′a generates a diffeomorphism along the near horizon flow and has
a contribution from the near horizon 2d DeTurck vector ξ(γ)a. We note that,
following our discussion above, the near horizon electric potential ΦNH is simply
a constant that doesn’t change with flow time. We further note that v′a differs
from the previous va above in equation (4.89).
In the magnetic case the near horizon limit of flow takes the following form

d

dλ
T = ∇̃2T + v′a∇̃aT + 2e−T − (FNH)2
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d

dλ
γab = −2R

(γ)
ab + 2∇̃(av

′
b) + ∇̃aT ∇̃bT + 4FNH

ac FNH c
b − γab(F

NH)2

d

dλ
bNHa = ∇̃bFNH

ba + ∇̃aΛ
NH + Liev′b

NH
a (4.105)

where FNH
ab = ∇̃ab

NH
b − ∇̃bb

NH
a , ΛNH = ∇̃aba, and v

′a is defined as above in the
electric case.
The two derivative terms on the right-hand side of both the electric and the
magnetic metric flow equations have precisely the correct form to give a parabolic
flow for the metric components

d

dλ
T = γab∂a∂bT + . . .

d

dλ
γab = γcd∂c∂dγab + . . . (4.106)

where . . . represent lower derivative terms. Thus, the metric components obey
coupled diffusion equations governed by the near horizon (inverse) metric γab,
which is Riemannian and hence gives parabolic flows. We note that it is the 2d
near horizon limit of the DeTurck vector that ensures this parabolic flow for the
near horizon metric.
For the electric flow the electric potential remains constant. In the magnetic case
we see that the principle part of the potential flow is

d

dλ
ba = γcd∂c∂dba + . . . (4.107)

so that it also yields a parabolic flow, due to the gauge fixing term ∇̃aΛ
NH in

equation (4.105).
Away from the horizon we know that the EM flow has a parabolic character. It
also preserves the smooth static extremal horizon structure. Thus, we may con-
struct this near horizon flow and then regard its solution as Dirichlet data for the
parabolic flow in the exterior of the horizon. This gives a heuristic argument for
well-posedness in the presence of an extremal horizon but it would be interesting
to develop a rigorous mathematical proof of well-posedness.

4.4 EM Flows about non-extremal RN

Here we want to determine the stability of the electric and magnetic RN black
holes which are fixed points of the EM flow, namely they obey ġµν = Ȧµ = 0.
In order to check that, we need to slightly perturb these solutions and observe
whether the evolve back to the fixed point. If they do so, then they are stable fixed
points, whereas if they don’t, they are unstable fixed points. In the latter case
we also want to know were the flow evolves to. Moreover, we will only consider
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spherically symmetric perturbations since we strongly expect that these results
extrapolate to the general case.
But first, let’s setup the flow. We can write a general smooth static spherically
symmetric metric as

ds2 = −ρ2T (λ, ρ)dt2 + 4r(ρ)4A(λ, ρ)dρ2 + r(ρ)2S(λ, ρ)dΩ2 (4.108)

where dΩ2 = dθ2 + sin2 θdϕ2, ρ is the compactified radial coordinate introduced
in section 4.1 related to the usual coordinate as r = 1/(1 − ρ2). Then T,A, S
specify the geometry and will depend on flow time λ. Following the discussion in
section 4.3.1 they should be smooth functions of ρ2 at the horizon ρ = 0. Flat
spacetime in this radial variable ρ takes the form,

ds2flat = −dt2 + 4r(ρ)4dρ2 + r(ρ)2dΩ2 (4.109)

and thus we require T,A, S → 1 as ρ → 1 for our metric above to impose the
boundary condition that it is asymptotically flat. Please note that (4.109) only
covers flat space for r ≥ 1. Further we require that(

T − 4κ2A
)∣∣
ρ=0

= 0. (4.110)

Then, this spacetime has a smooth non-extremal horizon at ρ = 0 with surface
gravity κ and, as discussed before, this surface gravity is preserved by the EM
flow. Choosing

T = F (ρ)

A = F−1(ρ)

S = 1

F (ρ) = 1− r− + r−ρ
2 (4.111)

then yields the RN metric from section 4.1. Here we have taken r+ = 1 which
we will use for the rest of this section. We now make this choice for the reference
metric.
Due to static spherical symmetry the most general gauge field must take the form,

A = ρ2Φ(λ, ρ)dt+ ρAρ(λ, ρ)dρ+ A(Ω)

A(Ω) = Aθdθ + Aϕdϕ (4.112)

where Φ and Aρ depend on flow time and are smooth functions of ρ2. Here A(Ω)

is a one-form living on the 2-sphere (so only having dθ and dϕ components). In
order for the field strength of A(Ω) to preserve the static spherical symmetry, its
components Aθ and Aϕ must have no time or radial dependence. Then, the only
choice compatible with spherical symmetry is the potential, A(Ω) = −qB cos θdϕ
for a constant qB (or an SO(3) rotation of this). As mentioned previously, in
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spherical symmetry we may consistently have both an electric and magnetic field,
as both the electric and magnetic field are radial so there is no Poynting energy
flux. However, following our previous discussion we will restrict to either, namely
the purely electric or the purely magnetic cases. Noting that the radial component
is pure gauge, we thus restrict to the forms

Aelec = ρ2Φ(λ, ρ)dt

Amag = −qB cos θdϕ. (4.113)

with qB a constant. In the magnetic case we observed previously that the charge
is fixed along the flow by boundary conditions and here we see it is given by qB.
In the electric case we require Φ(ρ) → µ as ρ→ 1, and then G ·µ gives the electric
potential difference between the horizon and infinity (since the potential At ∼ ρ2

vanishes at the horizon).

4.4.1 Linear Perturbations about RN

We now consider linear perturbations to both these fixed points. To proceed, we
expand around the fixed point RN geometry, given by g

(RN)
µν and A

(RN)
µ , and look

for EM flow solutions of the form

gµν = g(RN)
µν + ϵeΩλδgµν

Aµ = A(RN)
µ + ϵeΩλδAµ (4.114)

where we linearized in ϵ, Ω is a complex constant and δgµν , δAµ preserve the
static spherical symmetry. We expect all such linear ”mode” solutions with this
exponential flow time dependence provide a basis for the general flow solution and
we may regard finding these solutions as an eigenvalue problem, where Ω is the
eigenvalue. Mode solutions with Re(Ω) ≤ 0 are stable in flow time and unstable
modes have Re(Ω) > 0. The existence of such unstable modes would indicate the
RN fixed point is an unstable fixed point of the static EM flow, in the sense that
a generic initial perturbation to the RN fixed point will contain some component
of the unstable mode and this will take the flow away from the fixed point as it
exponentially grows in flow time.
We have chosen the reference metric to be the same RN solution as that of the
fixed point metric and hence ξµ = 0 at the fixed point. In both the electric and
magnetic cases we also have Λ = 0 for the RN solution with the gauge potentials
discussed previously. Thus, perturbing the RN solution as above we will have

ξµ = ϵeΩλδξµ

Λ = ϵeΩλδΛ. (4.115)

We may then separate such eigenmodes into those with δξµ,Λ = 0 and those
with δξµ,Λ ̸= 0. The former case will be an eigenmode on the original Einstein-
Maxwell flow equation (4.35), whilst the latter is an eigenmode up to a flow time
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dependent diffeomorphism and gauge transformation.
More explicitly we take the metric components to be of the form

T (ρ) =
(
1− r− + r−ρ

2
) (

1 + ϵeΩλδT (ρ)
)

(4.116)

A(ρ) =
(
1− r− + r−ρ

2
)−1 (

1 + ϵeΩλδA(ρ)
)

(4.117)

S(ρ) = 1 + ϵeΩλδS(ρ). (4.118)

Moreover, in the electric case we take the electric potential as

Φ(ρ) =
√
r− + ϵeΩλδΦ(ρ) (4.119)

while in the magnetic case, as discussed above, the gauge potential is simply fixed
with magnetic charge qB =

√
r−. The functions, δT, δA, δS, and in the electric

case δΦ too, are all smooth functions of ρ2 (so even functions) on ρ ∈ [0, 1). We
further impose the asymptotically flat boundary condition that δT = δA = δS =
δΦ = 0 at ρ = 1.
In order to find the stable and unstable modes of the flow equations, we numer-
ically solve them over the interval ρ ∈ [0, 1) by discretizing spacetime into N
points. Hence, our flow equation is then schematically of the form

Ov = Ωv (4.120)

where due to the discretization O and v are a N × N matrix and a N -vector
respectively and v represents the values of the functions δT, δA, δS, and in the
electric case δΦ, at the discrete points. From this system we can then numerically
determine the eigenmodes Ω and the eigenfunctions v. If we find at least one
positive mode, we know that the fixed point is unstable.

4.4.2 Magnetic non-extremal RN Linear Stability

Here we consider linearized flow about magnetic RN. The work of Monteiro
and Santos [115] shows that Euclidean magnetic RN has a negative mode for
|Q| <

√
3GM/2, which for us implies r− < 1/3 (remember r+ = 1). This mode

involves the metric and not the gauge potential which is simply the unperturbed
magnetic solution Amag = −√

r− cos θdϕ. Continuing back to Lorentzian signature
these negative modes precisely yield δξ = 0 unstable eigenmodes of the linearized
static EM flow equations for the metric, i.e. with Re(Ω) > 0, signifying an expo-
nentially growing instability. The fact that δξ = 0 for these modes originates from
the statement that the tensor and vector perturbations decouple in this magnetic
case [115]. One might naively then think that the magnetic RN solution becomes
a stable fixed point for larger charges and up to extremality. However, it isn’t
clear that unstable modes cannot exist outside the sector δξ = 0, as this has not
previously been studied. We emphasize that, while such modes would not have
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Figure 4.3: The left panel shows the eigenvalue Ω of the one unstable mode for
the flow of the non-extremal magnetically charged RN solution against r− which
controls its charge. For r− = 0 this is the Gross-Perry-Yaffe negative mode of the
Schwarzschild solution. For charges 0 < r− < 1/3 this unstable mode persists,
disappearing at r− = 1/3, when it becomes a zero-mode which is generated by
a perturbation within the RN family of solutions. For greater charges the fixed
point is stable (within this spherically symmetric setting). ξ remains zero for all
these unstable modes. In the right panel the maximum value of the perturbation
to the Ricci scalar for the mode is shown.

a clear interpretation in terms of the Euclidean action studied in [115], they, if
present, would certainly affect the stability of the fixed point of the static EM
flow and that what we will investigate here.
In figure 4.3 we plot the unstable mode determined numerically against varying
charge, i.e. against different values r−. We find that there is only one unstable
mode for r− < 1/3 and we find none for r− > 1/3. To be more precise, the
unstable mode becomes a zero-mode at r− = 1/3. The numerical wavefunctions
δT, δA, δS are extracted from the eigenvector v corresponding to the negative
mode for a given r− or the zero-mode at r− = 1/3. We explicitly check that these
wavefunctions are compatible with δξ = 0 in all cases. Also shown in that figure
is the maximum value of the perturbation to the Ricci scalar plotted against r−.
For the unstable mode of the Schwarzschild solution, so for r− = 0, this vanishes
as the Euclidean negative mode is traceless. The perturbation is non-vanishing
for a finite charge range but vanishes again when the unstable mode disappears
and becomes a zero-mode at r− = 1/3. As it turns out, at that point the mode
is a static perturbation of the unique RN solution. Thus, it fulfills the Einstein-
Maxwell equations and must have a vanishing Ricci scalar.5

In figure 4.4 we plot the wavefunctions δT , δA, δS for r− = 0, r− = 1/6 and
r− = 1/3, normalized such that δS = 1 at the horizon. Moreover, in the bottom
plot we include the wavefunctions determined from a static perturbation to the

5This was not explicitly discussed in [115].
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Figure 4.4: The numerically generated wavefunctions δT (Red), δA (Blue) and
δS (Purple) are plotted against the radial coordinate ρ for the unstable modes
corresponding to r− = 0 (top left) and r− = 1/6 (top right) and for the zero-mode
at r− = 1/3 (bottom). The instability becomes a static perturbation of RN for
r− = 1/3 and may be computed independently. These independently computed
wavefunctions are shown as dashed curves in the bottom plot which perfectly
agree with the numerically constructed wavefunctions in solid lines.

magnetic RN solution as dashed lines. These lie perfectly on top of the solid lines
of the numerically generated wavefunctions confirming the zero-mode is indeed a
perturbation within the RN family.
Thus, we conclude that the only unstable mode in the static spherically symmet-
ric sector is the continuation of the Euclidean mode described by Monteiro and
Santos which precisely has δξ = 0. It is possible that one exists without spherical
symmetry, but we believe it to be very unlikely.

4.4.3 Electric non-extremal RN Linear Stability

Now we consider the fixed point given by the electrically charged non-extremal
RN solution. As discussed above, there is no decoupling of the metric flow from
that of the gauge field electric potential. In particular, one cannot perturb the
metric and consistently have the gauge field fixed – it will be forced to flow. Fur-
thermore, in this electric case there is no straightforward Euclidean continuation,
and therefore no prior results from considering Euclidean negative modes.



90 4. Gradient Flow of Einstein-Maxwell Theory

Figure 4.5: This figure shows the eigenvalues Ω for the unstable modes for the
flow of the electrically charged RN solution against r− for r− ≤ 0.999. The
Gross-Perry-Yaffe negative mode at r− = 0 continues to an unstable mode of the
electrically charged solutions. However, additional negative modes appear as the
charge is increased. For r− ≤ 0.999 up to three unstable modes may exist but
very near extremality (not shown in the plot), for 0.999 < r− < 1, more unstable
modes appear. It therefore appears that electrically charged RN is an unstable
fixed point of the EM flow near extremality, unlike the magnetically charged RN
solution which is stable.

It appears that at least one unstable mode is present up until extremality. Per-
haps more surprisingly new unstable modes appear at specific values of the electric
charge. At the numerical resolutions we use, it is difficult to see the behaviour
very near extremality but it appears that an increasing number of unstable modes
appear in the limit that r− → 1 (remember r+ = 1).6 In figure 4.5 we plot the
eigenvalues with positive real part, noting that in fact we find all these eigenvalues
are purely real. Their wavefunctions are also real. All the unstable modes here,
except in the zero charge r− = 0 case which corresponds to the Schwarzschild solu-
tion, have non-vanishing δξ and non-trivial gauge potential δΦ. We have checked
that they all have a non-vanishing perturbation to the Ricci scalar confirming that
they are not simply a pure diffeomorphism on the metric but physically change
the geometry as well as the gauge field.
In figure 4.6 and 4.4.3 we show the wavefunctions for values r− = 0.5, 0.9, 0.99, 0.999
of the two most unstable modes present for those values (the second unstable mode
only emerges for r− > 0.854). We note that the number of nodes increases with
each new branch of unstable modes. In the limit r− → 1 the wavefunctions ap-
pear to tend only to have non-trivial δS with the other components and gauge
field apparently vanishing in this limit. We also observe that the curvature of

6It also could be that all these negative modes merge into a single mode in the extremal
limit.
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Figure 4.6: This figure shows the most unstable mode wavefunctions for the EM
flow of perturbations of electrically charged RN for charges r− = 1/2 (top left),
r− = 0.9 (top right), r− = 0.99 (bottom left) and r− = 0.999 (bottom right).
The wavefunction δT is shown in red, δA in blue, δS in purple, and the potential
perturbation δΦ is in light blue. The modes are normalized to have δS = 1 at
the horizon and we see δS dominates the near horizon behaviour as extremality
is approached, i.e. it becomes increasingly localized there.

the function δS at the horizon appears to increase as r− → 1, with δS becoming
increasingly localized at the horizon ρ = 0, indicating the perturbation may not
be smooth in the limit of extremality.

Finally we comment that the emergence of new unstable modes with increasing
charge indicates that at special values of charge, there are static zero-modes, i.e.
linear perturbations that don’t flow. This occurs in the magnetic case when the
unstable mode disappears but there we had δξ = 0 and hence this zero mode
is just a perturbation tangent to the RN space of solutions, as just discussed.
Here, however, δξ ̸= 0 and we believe that these zero modes are not associated
to perturbations that are tangent to the RN solution. Instead they should be
tangent to new branches of ”soliton” solutions of the Einstein-Maxwell system
that presumably merge with the RN solutions at particular values of charge. We
have not attempted to directly construct these soliton solutions as non-linear
solutions to the Einstein-Maxwell soliton equation, but it should be possible to
do so.
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Figure 4.7: S
imilar to the previous figure, the wavefunctions (same color-coding as in figure
4.6) for the second most unstable mode are shown for perturbations of electrically
charged RN with charges r− = 0.9 (top left), r− = 0.99 (top right) and r− = 0.999
(bottom). We see that the wavefunctions have one node compared to figure 4.6.
But δS grows again relative to the other component functions at the horizon as
extremality is approached.
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4.4.4 End Points of unstable RN Flows

In the case of the uncharged asymptotically flat Schwarzschild solution in static
spherical symmetry the single unstable mode of Ricci flow generates two flows,
one that leads the horizon to shrink to zero size in finite flow time and the other
that expands the horizon ”eating up” the whole spacetime [102]. In both the
magnetic case for subcritical charge and in the electric case for all charges we
have instabilities and we now ask where these flow.
In order to address this we solve the non-linear flow described at the start of this
section 4.4. We numerically evolve the full metric functions T,A, S and for the
electric case also the potential Φ by discretizing the ρ coordinate on the interval
[0, 1). We impose a Neumann boundary condition for the functions T,A, S and
Φ at ρ = 0 in order to enforce the smooth horizon boundary condition (which
requires these functions to be smooth in ρ2). The asymptotic flatness is imposed as
a Dirichlet boundary condition, namely T,A, S → 1 at ρ = 1. In the electric case
the potential has the boundary condition Φ → √

r− at ρ = 1, fixing the potential
difference to the horizon. As mentioned previously, the horizon smoothness and
the value of the surface gravity are correctly preserved by the numerical flows.
We discuss the electrostatic EM flow first. We begin by perturbing the RN fixed
point taking initial data

T = 1− (1− ρ2)r−

A = 1/T

S = 1± 0.01 · (1− ρ2)4

Φ =
√
r− (4.121)

such that we are perturbing only the sphere part of the metric via the function
S, i.e. this corresponds to a spherical symmetric perturbation. Whilst obviously
finite, this deformation to S is sufficiently small in amplitude that its initial evolu-
tion is well described by linear perturbation theory about the electric RN solution.
It preserves the boundary conditions and, depending on the sign, either initially
decreases (− sign) or increases (+ sign) the horizon size a tiny bit. We expect it
to have overlap with the linear unstable mode (or modes) of the electric RN fixed
point and thus to generate flows driven by these unstable modes.
In figure 4.8 we show the evolution of the geometry by plotting the invariants√
−gtt = ρ

√
T against

√
gθθ = r(ρ)

√
S at a sequence of flow times λ. These are

invariants in the sense that they transform as scalars under a coordinate transfor-
mation ρ → f(ρ). The curve of

√
−gtt against

√
gθθ is then gauge invariant and

illustrates how gtt varies with the radius. In the figure we show the two evolutions
started with the negative and positive initial perturbations to the horizon radius
for a reasonably large charge, corresponding to r− = 0.8. We see the perturbation
that initially shrinks the horizon flows in finite flow time to a singularity (here
occurring at λ ≃ 3.9), whereas the perturbation that initially expands the horizon



94 4. Gradient Flow of Einstein-Maxwell Theory

1 2 3 4
gθθ

0.2

0.4

0.6

0.8

1.0

-gtt

1 2 3 4
gθθ

0.2

0.4

0.6

0.8

1.0

gtt

Figure 4.8: This figure shows curves of
√
−gtt plotted against

√
gθθ at constant

intervals of electric EM flow time ∆λ for a small initial perturbation of an electric
RN solution with reasonably large charge corresponding to r− = 0.8 (recall r+ =
1). The left-hand frame shows the flow where the horizon is initially reduced in
size and we see that it flows to a singularity at λ ≃ 3.9 (here ∆λ = 0.05). The
right-hand frame shows the situation where the horizon is perturbed initially to
be larger than that of the electric RN solution and we see it apparently expands
forever (here the curves are shown for flow intervals ∆λ = 0.25). The geometry of
the RN fixed point is shown by the red dashed curve and the arrows indicate the
sense of change of the geometry for increasing flow time. Both these behaviours
are qualitatively similar to the Schwarzschild fixed point under Ricci flow. We see
analogous behaviour for all charges of the electric RN fixed point.

leads to it growing in flow time in an apparently unbounded manner. In the latter
case the horizon accelerates in its expansion and we can only follow it numerically
for a finite period, before time gradients become too large to resolve accurately.
This behaviour is qualitatively the same behaviour as for the Schwarzschild solu-
tion. Moreover, we see precisely the same qualitative behaviour for smaller and
larger charges, although as one approaches near extremal charges it becomes more
challenging to perform the simulations. For large charges, where the linear the-
ory tells us multiple unstable modes exist, presumably one may seed the initial
flows by these different unstable modes to generate different flows. However, we
expect that without fine tuning it is the dominant unstable mode that determines
the final behaviour. Hence, we may regard our perturbation above, which is not
chosen to coincide with the unstable modes but just overlaps them, as giving
the generic evolution. It would be interesting to explore whether more exotic
behaviours could be found in the case of large charges where there are multiple
unstable modes which may be tuned initially in the seed perturbation.
This similar qualitative behaviour to the uncharged case is perhaps to be expected.
Our electric EM flow preserves surface gravity and electric potential difference to
the horizon. At fixed electric potential and surface gravity, i.e. temperature,
there is only one infilling RN solution which is precisely the initially perturbed
fixed point. Thus, as in the uncharged case, there is no natural end state solution
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to flow to, except flat spacetime (with a constant electric potential). While we
haven’t explored this in detail here, one may resolve the singularity formed by
the shrinking horizon case and presumably this then flows to flat spacetime after
the topology is suitably changed, as it happens in the uncharged case [102]. We
may understand the other growing horizon as the flow ”searching” for a larger
stable black hole. If one puts the flow in a box, then, as in the uncharged case, a
new large black hole solution exists [122] and this expanding horizon flow would
presumably settle down to that solution. The reader is here reminded of the figure
4.2 which precisely describes the situation.
Now let us discuss the case of the magnetic flow and recall that the magnetic
charge is preserved by the flow. Analogous plots of

√
−gtt against

√
gθθ are shown

in figure 4.9 for two situations, one below the critical charge and one above. Above
the critical charge our linear analysis has shown no negative modes and, indeed,
we see that large initial deformations of the magnetic RN solution flow back to
it. The figure shows the example of r− = 0.4 (recall that r− > 1/3 gives charges
larger than the critical one) for an initially large deformation of the form

T = 1− (1− ρ2)r−

A = 1/T

S = 1± 0.5 · (1− ρ2)4. (4.122)

which is again a spherically symmetric perturbation. The lower plot in 4.9 shows
both the positive and negative initial deformations on the same axes and both
flow back to the RN fixed point. We observe this same behaviour for all charges
greater than the critical one, so r− > 1/3 and for a variety of non-linear initial
deformations to the geometry.
The case of sub-extremal charge, so r− < 1/3, is much more interesting. In this
case we expect from [115] one unstable mode of the flow which was confirmed
by our linear analysis. There is now an important difference compared to the
electric case. While there is only one black hole solution at fixed surface gravity
and electric potential, we have now in the magnetic case an additional fixed point.
This new solution is stable, has r+ < 1 and has the same surface gravity and charge
as the unstable magnetic RN fixed point which has r+ = 1. These two solutions
were called small and large black hole before and we refer back to figure 4.1 in
which this situation is depicted. Thus, for an initial perturbation that reduces
the horizon size, rather than flowing to zero size and a singularity, another option
is to flow to this second stable fixed point, namely the small black hole. This is
precisely what occurs in our simulations. For an initial perturbation similar to
that in the electric case

T = 1− (1− ρ2)r−

A = 1/T
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Figure 4.9: Here we now plot curves of
√
−gtt against

√
gθθ at constant intervals

for the magnetic EM flow. The top left- and right-hand frames are similar to
those of the previous figure 4.8, being for an unstable magnetic RN solution with
r− = 0.2 perturbed initially to have smaller horizon size (left) or larger horizon
size (right). The latter gives the same expanding horizon behaviour as that of
the electric case. We have ∆λ = 0.5 for this plot. The red dashed curve again
shows the geometry of the initial magnetic RN fixed point that is perturbed. In
the initially contracting case a new stable magnetic RN solution exists for the
same surface gravity and charge and the flow asymptotes to this. Here it has
r+ = 0.64 (remember the starting point was at r+ = 1) and we show the new
stable fixed point geometry using longer red dashes. The flow curves in this case
are plotted for λ = 0, 10, 12, . . . , 22, 24, 30, 50 and 1000. The lower frame shows
flows from a non-linear deformation of a fixed point with larger charge r+ = 0.4,
so it is stable. Two flows are shown, one with larger horizon initially (blue curves)
and one with smaller (purple curves). Both quickly return to the stable fixed
point (shown by the red dashed curve) under the flow (both curves are shown at
intervals ∆λ = 0.5). Arrows indicate the sense of change of the geometry under
increasing flow time.
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S = 1± 0.01 · (1− ρ2)4 (4.123)

we observe that the case with the negative sign flows to the stable small black hole
solution. This is shown in the top left plot of figure 4.9 for the case r− = 0.2. But
we see the same behaviour for all initial charges r− < 1/3 that we have studied.
Unlike the uncharged or electric cases, where by a change of topology, that removes
the horizon, we may have an infilling flat spacetime fixed point (with constant po-
tential in the electric case), in this magnetic setting, where the magnetic charge
is fixed by the asymptotic boundary conditions, this is not possible. With a flat
spacetime topology there is no way to infill the geometry smoothly to a give a
fixed point and yet carry the magnetic charge.
Therefore, it intuitively makes sense that in this magnetic case we see the horizon
shrinking flow go to the stable charged small black hole, rather than a flow singu-
larity corresponding to the collapse of the horizon. While this singularity could
be resolved in principle, we won’t flow to a flat spacetime fixed point afterwards
due to the flow preserving magnetic charge. Another way to understand this dif-
ferent behaviour is that the charge enclosed at any radius is the same, as there is
no charged matter, so the horizon carries the fixed magnetic charge. When the
horizon shrinks, the backreaction from the fixed charge becomes larger, and its
contribution to the stress tensor would diverge if the horizon shrinks to zero size.
Hence, this trapped magnetic flux acts to prevent the horizon from shrinking to
0.
Lastly, as we see in the figure 4.9 on the top right, the flow, that initially increases
the horizon size of the unstable fixed point, appears to continue to do so in an
accelerated manner as in the uncharged or electric cases. We see this same be-
haviour for all r− < 1/3 as we perturb the unstable RN fixed point in a manner
initially expanding the horizon. As mentioned above for the electric case, pre-
sumably if we placed this system in a spherical box, a new stable ”larger” black
hole fixed point (meaning a third even larger black hole solution) would exist and
this horizon expanding flow would asymptote to this. In the asymptotically flat
setting we consider here, the flow expands the horizon forever, always searching,
but not finding, a larger stable black hole to settle on.

4.5 EM Flows about extremal RN

For static extremal black hole spacetimes with pure electric or magnetic charge
we have argued above that we may perform static EM flows and further that
the flow of the near horizon geometry decouples from the exterior. Following our
discussion of the stability of static EM flows in the spherically symmetric case
about non-extremal RN, it is natural to extend this to the extremal case. To do
this, we consider the general spherically symmetric metric using the coordinates
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introduced earlier in equation (4.16), taking

ds2 = −ρ′2Tdt2 + r(ρ′)4A
dρ′2

ρ′2
+ r(ρ′)2SdΩ2. (4.124)

From our earlier discussion, in order to have a smooth extremal horizon located at
ρ′ = 0 we should have T,A, S being smooth functions of ρ′ and further satisfying

(T − A)|ρ′=0 = 0

∂ρ′ (T − A)

T

∣∣∣∣
ρ′=0

− 4 = ψ′ (4.125)

for some constant ψ′. Now considering the static EM flow, T,A, S become also
functions of flow time λ. For the pure magnetic case, we simply have

Amag = − cos θdϕ (4.126)

as this is preserved by the flow. Remember that we have performed the extremal
limit r− → 1 for r+ = 1. In the electric case, instead, we take

Aelec = ρ′Φdt (4.127)

which is smooth provided Φ is a smooth function of ρ′ and of λ. One may check
explicitly that the spherically symmetric static EM flow equations preserve the
smoothness conditions (4.125), following our general analysis earlier. From our
discussion in section 4.1, using our choice of units, the extremal RN fixed point is
given by T = A = S = 1, with Φ = 1 in the electric case, so that ψ′ = −4.
First, we may explicitly solve the near horizon non-linear flow equations in both
the electric and magnetic cases. Specializing our general discussion in section 4.3.3
to our spherically symmetric Ansatz, the near horizon form of the metric is

ds2NH = T0

(
−ρ′2dt2 + dρ′2

ρ′2

)
+ S0dΩ

2 (4.128)

and in the electric case

ANHelec = ρ′Φ0dt (4.129)

with T0 and S0 being functions of only flow time λ. As discussed in section 4.3.3,
for the electric near horizon flow the potential Φ0 is a constant in flow time. As
one might expect from the non-extremal case above, solving this near horizon flow
we will find that the magnetic RN solution is a stable fixed point of the magnetic
flow but the electric solution is unstable.
In either the magnetic or electric case we may fix the near horizon metric to be
that of extremal RN and then consider the flow in the exterior. We will simulate
these flows numerically and fully non-linearly. In the magnetic case the flows
approach magnetic RN at late times. However in the electric case, even with the
horizon fixed to be that of extremal RN, we see generic initial data, even that
corresponding to small initial perturbations, seem to develop to a singularity.
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4.5.1 Near horizon Electric flow

The electrostatic near horizon flow is determined by the flow equations

T ′
0(λ) = 2− 2

Φ2
0

T0

S ′
0(λ) = −2 +

2Φ2
0S0(λ)

T0(λ)2
. (4.130)

where the prime denotes a flow time derivative, i.e. ′ = d/dλ. The RN near
horizon fixed point is given by T0(λ) = S0(λ) = Φ0. We will choose units such
that Φ0 = 1. We may expand about this fixed point perturbatively and solve
(4.130), giving

T0(λ) = 1 + ϵe2λa

S0(λ) = 1 + ϵe2λ (b− 4λa)

Φ0 = 1 (4.131)

to first order in ϵ, where a and b are integration constants. Note that we do not
perturb Φ0, as it is constant in flow time. Moreover, a perturbation of Φ0 would
simply correspond to changing the charge of the fixed point solution which can
be mapped back to one by a change of units. We thus see the fixed point is
unstable and there are two relevant deformations of it, parameterized by ϵa and
ϵb. Starting with the RN near horizon solution as λ→ −∞, adding these relevant
deformations will then flow the near horizon geometry away from near horizon
extremal RN solution for finite λ.
The simplest class of non-linear solutions, which tend to the RN solution for
λ → −∞, is that corresponding to T0 being constant, namely T0(λ) = 1. The
flow equation for S0 consequently linearizes, such that the non-linear solution for
S0 is simply

S0(λ) = 1 + ϵ e2λ. (4.132)

for a constant ϵ. We see that for ϵ < 0 the horizon sphere shrinks to zero size at
finite flow time λ. Alternatively for ϵ > 0 it expands forever. Thus, the extremal
electric RN black hole is an unstable fixed point of the EM near horizon flow with
behaviour reminiscent of the non-extremal Schwarzschild black hole under Ricci
flow [102].
The general near horizon solution has non-constant T0 and can is given by

T0(λ) = (1 + P±(λ))

S0(λ) =
(1 + (c− 4(λ− λ0))P±(λ) + P±(λ)

2)

1 + P±(λ)
(4.133)
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where we have defined

P±(λ) = W0

(
±e2(λ−λ0)

)
(4.134)

with W0(x) being the Lambert W-function that gives the principle solution of y
for the relation x = yey. The constant λ0 arises from translation invariance of the
equations in λ and c is the remaining constant of integration that determines the
different behaviours. Asymptotically as λ→ −∞ we have

P±(λ) → ±e2(λ−λ0) (4.135)

and the function W0(x) exists for all x > −1/e and is monotonically increasing.
At x = −1/e it takes the value minus one.
The analytic behaviour of the near horizon flow is captured in Figure (4.10). The
sign in the definition (4.135) of P± (λ) defines two distinct branches for evolutions
away from the fixed point. For these the various trajectories in the (S0, T0)-plane
are then labelled by the value of c. For the P+ (λ) branch (shown as blue curves
in the figure) we get S0 → 0 in finite flow time with T0 remaining finite. For the
P− (λ) branch with c > 0 (shown as orange curves) the same behaviour occurs.
However, taking instead c < 0 (shown as red curves) then we have S0 → ∞ and
T0 → 0 in a finite flow time. In the special case c = 0 for the P− (λ) branch
(shown as the black curve), which separates these two behaviours, both T0 and S0

go to zero at the same finite flow time. Finally taking the limit c → ±∞ for the
P± (λ) branches results in the two T0 = 1 behaviours in (4.132) above, one with
S0 that shrinks to zero in finite flow time (purple in the figure) and the other with
growing S0 (green in the figure) so that the horizon expands forever. The only
behaviour which exists for all flow times is this last one.
The Ricci scalar of the near horizon geometry, which is the Ricci scalar of the full
spacetime restricted to ρ = 0, is simply given by

R|ρ=0 = − 2

T0
+

2

S0

. (4.136)

For all finite values of c then either S0 → 0 at a finite flow time with finite T0 or,
alternatively, T0 → 0 with S0 → ∞ at a finite flow time. In both cases the Ricci
scalar diverges, showing that the geometry encounters a curvature singularity at
finite flow time. The special case c = 0 where T0 → 0 and S0 → 0 could allow
a cancellation between the two terms in the Ricci scalar but calculation reveals
it is still singular. The only exception to a finite flow time singularity is the flow
T0 = 1 with expanding horizon, where the flow exists for all time, and the scalar
curvature tends to R|r=0 → −2/T0. We note that any solution to the Einstein-
Maxwell equations has vanishing Ricci scalar (since the stress tensor is traceless)
and hence the asymptotic geometry that this flow tends to cannot be the near
horizon geometry to an Einstein-Maxwell solution due to its non-vanishing Ricci
scalar.
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Figure 4.10: Analytic behaviour of the near horizon electric flow for small per-
turbations of the RN fixed point with Φ0 = 1. The various colors correspond to
different choices for c and the branches P± and are detailed in the main text. The
arrows point in the direction of the flow, while the black dot highlights the fixed
point. The near horizon magnetic flow can be obtained by reversing the arrows
and swapping S0 and T0.
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4.5.2 Near horizon Magnetic flow

Now we consider the magnetic case where the near horizon flow equations are

T ′
0(λ) = 2− 2

T0
S2
0

S ′
0(λ) = −2 +

2

S0(λ)
. (4.137)

Then, introducing functions T̄0 (λ) ≡ S0 (−λ) and S̄0 (λ) ≡ T0 (−λ), the above
flow equations become

T̄ ′
0 (λ) = 2− 2

T̄0

S̄ ′
0 (λ) = −2 + 2

S̄0

T̄ 2
0

(4.138)

which are precisely the near horizon electric equations (4.130) taking S0 → S̄0 and
T0 → T̄0. Hence, the near horizon magnetic flow is equivalent to the electric one,
after exchanging T0 and S0 and flipping the sign of the flow time λ. This implies
that the unstable near horizon RN fixed point that lies in the infinite past of the
electric near horizon flow translates into a stable fixed point of the magnetic near
horizon flow.

4.5.3 Flows of the full extremal spacetimes

Finally, we numerically investigate the non-linear spherically symmetric flows
starting with a deformation of the extremal electric and magnetic RN solution
that preserves extremality. We solve the full non-linear flow for the metric func-
tions T,A, S, and in the electric case Φ too, by discretizing in the spacetime
coordinates, as for the non-extremal case discussed earlier. In the non-extremal
setting we needed a Neumann boundary condition at the horizon for our metric
functions. However, in the extremal case the flow equations are simply imposed
at the horizon and, as we have discussed above, decouple from the exterior flow
as they involve no radial derivatives. While we have the analytic solution for any
initial data for the near horizon flow, it is convenient here to simply evolve the
near horizon flow numerically. We then check if it correctly reproduces the ana-
lytic solutions.
Our expectation is that deformations of the magnetic RN solution should return
to it under the flow and, indeed, this is what we see. An example is shown in
figure 4.11 where we start with a non-linear deformation of the magnetic solution,
initially deforming the metric functions as

T = A = 1 + 2(1− ρ′2)4
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Figure 4.11: This figure shows curves of
√
−gtt plotted against

√
gθθ at constant

intervals of flow time, namely ∆λ = 0.25, for a non-linear initial deformation
of the extremal magnetic RN solution. The RN fixed point is shown in dashed
red and we see that the initially deformed geometry asymptotes back towards
extremal RN as the flow proceeds.

S = 1− 3

4
(1− ρ′2)4. (4.139)

We note that these are compatible with smoothness of the horizon, as in equa-
tion (4.125), and preserve ψ′ = −4. We already know that the near horizon flow,
i.e. the behaviour at ρ′ = 0, must return to the magnetic near horizon RN ge-
ometry. In figure 4.11 we display the geometric invariant

√
−gtt plotted against√

gθθ. These curves are shown at intervals of flow time ∆λ = 0.25 and we see
that they asymptote back towards the magnetic RN fixed point. This behaviour
is generic for other non-linear deformations we have implemented, provided they
are not too large (when they can potentially give rise to singularities away from
the horizon). Thus, at least in the spherically symmetric setting, the extremal
magnetic RN solution appears to be a stable fixed point of the non-linear flow for
the full extremal horizon spacetime.
Now let us consider the electrically charged RN fixed point. Our near horizon

analysis already indicates it is unstable and in figure 4.12 we follow two flows
(corresponding to the two signs) where the fixed point is initially perturbed by
taking

S = 1± 0.01 · (1− ρ′2)2 (4.140)

with T = A = Φ = 1. From our near horizon analysis for the negative sign above
we know that the horizon behaviour is T = 1 and S = 1 − 0.01e2λ at ρ′ = 0
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Figure 4.12: Here we show flows that begin with a small perturbation of the
electrically charged extremal RN solution. The perturbation is subtracted and
added to initially decrease and increase the horizon size, giving the left- and
right-hand frames plotted for flow time intervals ∆λ = 0.1 and 0.25 respectively.
The flow behaviour at the extremal horizon decouples and follows the near horizon
flow, leading to a collapse in finite flow time or exponential horizon expansion.
We see that the exterior of the geometry follows this near horizon behaviour in a
smooth manner. In the collapsing case the singularity occurs at λ = 2.30. In the
expanding case curves are shown for flow times up to λ = 5, when gradients near
the horizon become too difficult to numerically resolve.

and so the horizon sphere will shrink to zero size at time λ = 2.30. For the
positive sign the horizon behaviour is T = 1 and S = 1 + 0.01e2λ by the near
horizon analysis and so the horizon sphere exponentially expands in flow time.
Simulating the full flows we again plot the invariant

√
−gtt against

√
gθθ for both

cases in the figure 4.12. Indeed, we see exactly these behaviours at the horizon,
with the geometry away from the horizon responding but remaining smooth. In
the expanding case the simulation is run until flow time λ ≃ 5 when the function
S becomes too large (S ∼ O(102)) at the horizon to properly resolve gradients
there. In the case where the sphere shrinks to zero size we expect that one can
resolve the singularity by a surgery, as done in [102], to continue the flow through
to flat spacetime.
Finally, we can consider the case where we do not initially perturb the horizon
geometry which means our perturbation is vanishing at the horizon, namely at
ρ′ = 0. We show here the example deformation

S = 1± 0.5 · ρ′4(1− ρ′2)2 (4.141)

with T = A = Φ = 1 and again note this preserves smoothness of the extremal
horizon with ψ′ = −4. The near horizon analysis then implies T = S = 1 for
all flow time at the horizon ρ′ = 0. The plethora of unstable modes of the non-
extremal flow suggests that, while the horizon geometry is pinned to that of the
extremal electric RN, the exterior spacetime may be unstable. Indeed, this appears
to be the case. In figure 4.13 we plot the same invariants as in the previous figures
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Figure 4.13: The top panels are similar to the previous figure but now the two flows
depicted are for an initial small perturbation of extremal electrically charged RN
that preserve the horizon geometry so that the near horizon geometry remains that
of extremal RN throughout the flow. The same perturbation is both added and
subtracted to RN, generating the top left and right panels respectively. In both
cases the flow time interval between the curves is ∆λ = 0.1. While the horizon
geometry is fixed, we still see that extremal RN is unstable, as the perturbation
grows in the exterior. This appears to build up curvature near, but not at the
horizon. This is confirmed in the bottom two panels, where the Ricci scalar is
plotted against

√
−gtt for the same perturbations respectively. This is zero for

the RN solutions and hence is fixed to zero at the horizon as the near horizon
geometry is unperturbed here. But we see the curvature appears to grow in the
vicinity of the horizon. The curves are plotted up to a flow time λ = 3 when
gradients become too large to accurately resolve. While it appears a singularity
forms, it remains unclear whether this occurs in a finite flow time.



106 4. Gradient Flow of Einstein-Maxwell Theory

for both these flows, now zooming in on the region near the horizon. The horizon
size indeed remains fixed and the flow away from the horizon remains smooth for
some time. We show the flow at time steps ∆λ = 0.1 up to a flow time of λ = 3
when in both cases the gradients near the horizon become very large. In the same
figure we show the Ricci scalar R plotted against

√
−gtt near the horizon and see

that it becomes large and localized just outside the horizon. Recall that for a RN
solution we have R = 0 and for these flows it is fixed to have its vanishing RN value
at the horizon as the near horizon geometry is pinned to that of extremal RN. The
maximum absolute value of the Ricci scalar appears to grow in an unbounded way
as the flow proceeds. The maximum also becomes closer to the horizon, making it
difficult to numerically resolve at late flow times. The same qualitative behaviour
occurred for other perturbations that we have tested for the electric extremal RN
solution and that kept the near horizon geometry fixed.
These results appear to confirm that the extremal electric RN solution is unstable
to all deformations. Deformations, that perturb the horizon, obviously flow away
governed by the unstable near horizon flows discussed earlier. More interestingly,
if the near horizon geometry is not perturbed and thus stays that of extremal RN,
the exterior solution then appears to flow away from RN, developing increasing
curvature that is more and more localized in the vicinity of the horizon as the
flow proceeds.



Chapter 5

Cosmic Acceleration and Turns in
the Swampland

This whole chapter is based on a collaboration with Marco Scalisi and Guoen
Nian [3]. As the paper was only published after this thesis was handed in, this
chapter differs slightly from [3]. But the general results are the same.

Cosmic acceleration plays a fundamental role in the current understanding of our
universe. A variety of experiments operating at different scales, such as supernovae
[123, 124] and cosmic microwaves background (CMB) [125, 126, 127] experiments,
have provided very compelling evidence of a phase of accelerating expansion both
in the early and in the current universe. While we have a good understanding of
how this phase can be realized in terms of an effective scalar field theory, we still
struggle to agree on a full-fledged embedding of it into String Theory.
The presence of several light scalar fields, active during the acceleration phase,1

is a natural expectation for such an embedding (see [128] for a recent review on
string cosmology). String Theory comes in fact with many moduli, often span-
ning non-trivial field geometries, and giving them a mass is definitely a complex
task. Unlike scenarios with one single scalar field, multi-field models typically
feature non-geodesic trajectories in field space.2 Deviations from geodesics can be
sourced by a non-zero scalar potential and they are usually quantified by the so
called turning rate Ω. Strong non-geodesic motion, characterized by rapid turns
in field space with Ω ≫ 1 (in Hubble units), can lead to intriguing and rich
phenomenology. Examples have been provided in the context of inflation (see

1Here we consider only time-dependent acceleration phase, such as inflation or quintessence,
with certain displacements in field space.

2It should be noted that the most common strategy to construct an effective (supergravity)
model is to stabilize all fields except one, which drives the acceleration phase. However, despite
its simplicity, this approach may not be the most natural and often demands precise control
over the effective theory.
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e.g.[129, 130, 131, 132, 133, 134, 135, 136, 137, 138]) and also for quintessence
models (see e.g. [139, 140, 141, 142, 143, 144, 145, 146]). These can be modi-
fications of the inflationary power spectrum [131, 133], production of primordial
black holes [147, 148], possibility to inflate on a steep potential [136, 141, 143]
(namely with large potential gradient) and also enhanced growth of large-scale
structure. Despite the great attention this topic gained in the research commu-
nity, the results are mainly model-dependent and so we lack a general principle
of what a consistent Quantum Gravity embedding allows for (see [137] for some
work in this direction in the context of supergravity).
An alternative route to (string) model building is given by the the Swampland
Program, which suggests that one can employ a bottom-up approach to restrict
the set of EFTs consistent with quantum gravity, as it was already explained
earlier in this thesis. Especially the SDC can be quite helpful in this scenario,
since we are usually dealing with several scalar fields in a non-trivial field space.
Also remember that the Swampland Program can lead to possible observational
predictions. For instance, implications of the SDC for cosmic inflation were first
studied in [20] (see also [149]), where a universal upper bound on the inflaton
range was found (see also [150, 151] for some variations of it with fixed decay
rate).
Moreover, the SDC finds a natural test around the boundary of moduli space.
These asymptotic regions are located at an infinite distance from any other point,
hence they are also referred to as ”infinite-distance singularities”. Around these
regions, the geometry exhibits negative curvature and non-compactness3, while
maintaining a finite volume [5]. The effective theory becomes simple and can
be expressed as a perturbative expansion on a certain parameter. Additionally,
there is evidence suggesting that the scalar potential approaches zero in this limit
[158]. These factors have led to serious considerations of the boundary of mod-
uli space as a promising framework for embedding models of cosmic acceleration
[159, 145, 146], often referred to as ”asymptotic acceleration”.
Here we study the implications of the SDC for multi-field models of cosmic accel-
eration at the boundary of moduli space. As a main result, we find that the ratio
between the turning rate Ω and the Hubble parameter H is constrained by

Ω

H
< c

√
ϵ (5.1)

with ϵ ≡ −Ḣ/H2 being the acceleration parameter and c being a O(1) quantity,
depending on the curvature of the moduli space and on the decay rate of the
tower mass scale. Since ϵ < 1 by definition, this result implies that asymptotic

3In the context of inflationary cosmology, it has been shown [152, 153, 154, 155, 156, 157]
that non-compact symmetries and negative curvature of the field space are key features for an
excellent fit to the observational data. The relation between the SDC and such a cosmological
scenario has in fact been investigated in [20].
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acceleration is incompatible with rapid turns or any strong non-geodesic motion.
Thus, at the boundary of moduli space QG imposes predominantly geodesic mo-
tion. We argue that this result should be valid also in the more conservative case
of super-Planckian excursions for which one can consistently apply the SDC.
One direct implication of (5.1) is a clear tension between asymptotic acceleration
and the de Sitter conjecture [24, 160, 158]. In fact, a distinct characteristic of
multi-field models is that the acceleration phase is not solely determined by the
gradient of the scalar potential but rather by the interplay of this and the turning
rate, as given by the following formula4

ϵ =
1

2

|∇V |2

V 2

(
1 +

Ω2

9H2

)−1

. (5.2)

It has been previously highlighted in the literature [136] that, when Ω ≫ H, this
formula allows for the fulfillment of the de Sitter conjecture (i.e. |∇V | > O(1) ·V )
while also enabling an acceleration phase with ϵ ≪ 1. However, our result (5.1)
significantly limits this possibility within the context of asymptotic acceleration
since it implies that the second term in the bracket of (5.2) is sub-leading. Given
the current observational bounds, we conclude that models of early/late-time
acceleration, near the boundary of moduli space, typically exhibit tension with
the de Sitter conjecture.

5.1 SDC, Mass Decay Rate and Non-Geodesics

As it is beneficial for the rest of this chapter, we briefly review previously intro-
duced concepts and elaborate further on them because here some more details are
required.
The SDC implies the existence of at least one infinite tower of states with mass
scale exponentially decreasing in field space in the infinite distance limit, namely

m = m0 exp(−λ∆) as ∆ → ∞ (5.3)

where m0 is the typical mass scale of the tower before any displacement, ∆ is the
traversed distance in moduli space and λ is the decay rate, namely the parameter
regulating how fast the mass of the tower decreases in field space. It has been
argued that λ is order one [51], in reduced Planck mass units, and lower bounds
have also been pointed out in different contexts [46, 47, 48, 161, 150]. The existence
of a lower bound is very important as it defines the validity of the EFT. Namely,

4Let us remark that (5.2) relies on a slow-roll approximation, which assumes that the second
derivative of the fields is sub-dominant compared to the friction term in the equations of motion.
The full formula, as discussed later, reveals that relaxing this condition can potentially aid in
satisfying the de Sitter conjecture in an accelerating background.
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it indicates how fast/slow one can approach the infinite distance singularity in
field space and therefore how much field distance can be traversed, before the
EFT completely breaks down due to genuine QG effects. It happens, in fact,
that the QG cut-off Λswamp, which is more precisely given by the species scale Λs

[49, 50, 162, 163, 164], decreases exponentially in field space together with the
mass scale of the tower. While a finite small number of light states can always
be integrated in such to define a new EFT, the presence of an infinite number of
light states necessarily drives the cut-off to zero with exponential rate α which is
in general different from the rate λ of the tower 5. In the case of states equally
spaced, such as Kaluza-Klein modes, one can show that Λs = m1/3 (assuming
MP = 1), thus yielding α = λ/3 [15, 20, 30, 165]. This is consistent with the fact
that, in the infinite distance limit, the QG cut-off lies still above the typical mass
scale of the tower. While traversing a distance in field space, some states of the
tower can enter the EFT and produce observational effects, while the QG cut-off
remains still above the typical energy scale of the EFT. This explains how it is
possible for the SDC to have an impact on observations in low-energy physics.
The exponential rate of the tower λ can in general depend on the path followed
in moduli space while approaching the infinite-distance point. A first example of
this situation was given in [20] for the hyperbolic half-plane where it was shown
that trajectories, with the axion and saxion linear to each other6, yield an effective
reduction of the decay rate. This translates also into the possibility of engineering
a larger field excursion. A more general analysis is given in [32]. In fact, one can
reverse (5.3) and express the mass decay rate of the tower as

λ(∆) = −d logm
d∆

= −T i∂i logm (5.4)

that is the scalar product between the normalized tangent vector T i, along the
trajectory that we follow to reach the point at infinity, and the gradient of the
(logarithm of the) mass of the tower. In the most general case, the gradient of the
mass can be aligned along any direction in moduli space [32]. However, in most
of the String Theory examples, ∂i logm is aligned along geodesics. This implies
that λ becomes a measure to quantify the non-geodicity of the trajectory. In this
case we can write

λ = −|∂ logm| cos θ = λg cos θ (5.5)

where θ is the angle between the trajectory we are following in field space and
the geodesic 7. Both paths will reach the infinite-distance singularity but with

5Here we are more precise compared to the toy model in the previous chapter where we
directly identified the Λswamp with the first tower state.

6Situations where the axion has a typical linear backreaction with the saxion, for large field
displacements, have been observed in string theory models such as in [166, 52, 86, 167]. Moreover,
this corresponds the critical case from section 2.3.3 where a 2-dimensional hyperbolic plane was
discussed.

7More on the definition of the angle θ soon.
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different angles. In fact, as mentioned before, the tangent vector T i has to be
constant in the full infinite-distance limit such that we are compatible with the
SDC. The parameter λg represents the highest value of λ and it corresponds to
the decay rate for a geodesic trajectory. Moving along a non-geodesic trajectory
can be the result of introducing a scalar potential for the moduli (see section 5.2).
Now (5.5) seems to suggest that λ could even become zero, if one moves along a
trajectory, which is orthogonal to a geodesic (i.e. θ = π/2) 8. This would mean
that arbitrary distances could be traversed without the mass scale of a tower
dropping-off. The EFT would be valid for arbitrary long distances, and one could
easily avoid the drastic implication of the SDC.9 However, as mentioned above,
we have clear indication that String Theory sets a lowest possible value for such
a decay rate [46, 47, 48, 161, 150]. If we generically indicate the existence of such
a lower bound with

λ ≥ λ0, (5.6)

then we can translate this into a maximum deviation angle from the geodesic
trajectory allowed by the SDC, namely

cos θ ≥ − λ0
|∂ logm|

=
λ0
λg
. (5.7)

A bound on the angle θ means that not all the trajectories in moduli space are
allowed by the SDC and we can deviate by a maximum angle from the geodesic.
In the next section we recall how the introduction of a scalar potential can lead
to a departure from a moduli space geodesic equation.
At this juncture, it is important to emphasize that our focus will now be solely on
infinite-distance trajectories in the subsequent discussion. These trajectories are
characterized by distances that can extend infinitely, providing a robust framework
to apply the SDC. Specifically, we will first examine deviations from geodesics with
a constant angle θ = const (section 5.3), which is nothing else than the critical case
from section 2.3.3, and then trajectories with a time-dependent deviation angle
θ = θ(t) (section 5.4). On the one hand, we will refer to the former case henceforth
as the critical case. And, on the other hand, let us emphasize that, given (5.5),
the latter case corresponds to a time-dependent, or rather ∆-dependent, decay
rate of the tower mass λ = λ(∆). This will effectively induce field-dependent
corrections such that the mass formula (5.3) will deviate from its the exponential
form when moving away from the moduli space boundary (which is placed at
∆ → ∞). Therefore, a time-dependent decay rate can serve as a convenient mean
to parameterize a departure from the boundary.

8This was previously termed the swampy case, see section 2.3.3
9Models with highly curved trajectories and large field ranges have in fact been proposed in

literature [133, 136, 168, 169, 140, 141, 170]. Whether these effective scenarios could be realized
in a consistent string theory embedding is still unclear. Recent work [137] seems in fact to
restrict such a possibility (see also [171]).
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5.2 Multi-field Setup and Trajectories in Moduli

Space

String Theory comes naturally with many moduli, namely massless scalar fields.
The internal field geometry, defined by their kinetic terms, is generically non-flat,
with a typical curvature, as the result of the compactification process. It is also
characterized by a set of geodesics. However, the introduction of a scalar poten-
tial (e.g. by means of fluxes) can lead to a deviation from the original geodesic
trajectories and a consequent change of dynamics.10

In this section we present a pedagogical introduction to a convenient framework
for studying multi-scalar field systems [136]. This is based on projecting the equa-
tions of motion along the tangent and normal directions of the trajectory along
which the system evolves. By employing this approach, we demonstrate how the
system can be described using an equation resembling the equation of motion for
a single scalar field, as well as another equation involving the turning rate Ω. We
emphasize the relationship between the equations of motion and the trajectories
(geodesic or non-geodesic) in field space. We progressively delve into increasing
levels of complexity. We begin by considering the case of free massless scalar
fields in a flat Minkowski background. Next, we introduce a scalar potential and
demonstrate how it leads to deviations from geodesic motion. Subsequently, we in-
corporate gravity and investigate the effects of a Friedmann-Lemâıtre-Robertson-
Walker (FLRW) background. Finally, we describe the equations governing a scalar
multi-field system that gives rise to cosmic acceleration.

5.2.1 Scalar Fields in Minkowski Spacetime

Let us consider the Lagrangian of n free massless homogeneous scalar fields Φa =
Φa(t), thus depending just on the time variable t

L = −1

2
ηµνGab ∂µΦ

a∂νΦ
b (5.8)

where ηµν is the Minkowski spacetime metric, Gab = Gab(Φ
a) is the internal field

space metric and Latin indices a, b run from 1 to n. The equations of motion then
take the form

Φ̈a + ΓabcΦ̇
bΦ̇c = 0, (5.9)

where the dot ˙ is indicating a time derivative, and

Γabc =
1

2
Gad

(
∂Gbd

∂Φc
+
∂Gcd

∂Φb
− ∂Gbc

∂Φd

)
(5.10)

10There are instead situations where the dynamics remain quite insensitive to a great variety
of scalar potentials and is instead mainly determined by the geometric properties of the internal
manifold. In the context of inflationary cosmology, the α-attractor scenario [152, 153, 156] is a
primary example of such a circumstance.



5.2 Multi-field Setup and Trajectories in Moduli Space 113

are the Christoffel symbols of the moduli space. Note that (5.9) has precisely the
form of a geodesic equation. It describes, in fact, the set of (geodesic) trajectories
along which the scalar fields Φa evolve in time. Notice that the time t is not a
preferred parameter for the geodesic and we can shift and rescale it as the result of
the shift-symmetry of the Lagrangian (5.8) and scale-symmetry of the equations
of motion (5.9).
Let us introduce the covariant derivative Dt, which is defined as

DtA
a ≡ Ȧa + ΓabcA

bΦ̇c (5.11)

for a given vector Aa. Having DtA
a = 0 means that the vector Aa is parallel

transported along the trajectory Φa, i.e. Aa always ”points at the same direction”
along Φa. Moreover, Dt acting on a field scalar reduces to an ordinary time
derivative. With this definition the above set of equations (5.9) reduces to

DtΦ̇
a = 0, (5.12)

which is consistent with the fact that the equations of motion are just geodesic
equations and a geodesic is a trajectory which is autoparallel transported along
itself.
We now introduce the tangent and the normal vector to the trajectory Φa, respec-
tively, as

T a =
Φ̇a

Φ̇

Na = − 1

|DtT |
DtT

a (5.13)

where Φ̇ is the speed along the trajectory, defined as

Φ̇ =

√
GabΦ̇aΦ̇b. (5.14)

Both vectors T a and Na are normalised and orthogonal to each other, namely
GabT

aT b = GabN
aN b = 1 and GabT

aN b = 0. Now we can project the equations
of motion along the tangent and normal vectors. This just means contracting the
equations of motion with T a and Na. The tangential projection yields

Φ̈ = 0 (5.15)

where we have used the product rule for Dt and the orthogonality property of T a

and Na. Instead, the normal projection gives

ΩΦ̇ = 0 (5.16)
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where we have introduced the turning rate as

Ω = |DtT | (5.17)

and used again orthogonality of the two vectors together with the fact that

DtΦ̇
a = Φ̇DtT

a + Φ̈T a. (5.18)

Excluding the trivial case Φ̇ = 0, (5.16) implies that we need Ω = 0 in order
to fulfill the geodesic equation. That is the reason why Ω is also called non-
geodesicity factor. Furthermore, let us note that if T a gets parallel transported
along Φa, i.e. DtT

a = 0, we immediately get Ω = 0 and the equation of motion
just reduces to the equation Φ̈ = 0. Since we are dealing with positive definite
Riemannian field manifolds, the statement Ω = 0 is equivalent to DtT

a = 0.
Geometrically, Ω measures the failure of T a being parallel transported along Φa.

5.2.2 Scalar Fields with Potential in Minkowski Spacetime

As the next step, we now introduce a potential V (Φa) for the scalar fields. We
still consider a flat Minkowski background such that the Lagrangian L becomes

L = −1

2
ηµνGab∂µΦ

a∂νΦ
b − V (Φa) . (5.19)

The equations of motion hence read

DtΦ̇
a +GabVb = 0 (5.20)

where we define Vb ≡ ∂V/∂Φb. Projecting again the set of equations in the
tangential and normal direction we get

Φ̈ + VT = 0 (5.21)

ΩΦ̇ = VN (5.22)

where we have introduced VT ≡ T aVa and VN ≡ NaVa, i.e. the corresponding
projections of the gradient of the potential V . It is interesting to understand
what happens in the case DtT

a = 0, which is, as explained earlier, equivalent to
Ω = 0. Rearranging the relation (5.18) we get

DtT
a =

1

Φ̇

(
DtΦ̇

a − T aΦ̈
)
. (5.23)

In the case of zero potential, as seen before, both terms in the bracket of the last
equation vanish, thus automatically leading to Ω = 0. Instead, in the presence
of a non-zero potential the situation is slightly more involved. The two terms
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can in fact cancel each other, so that the trajectory will follow a geodesic path in
field space. However, the acceleration along the trajectory will still be determined
by the tangential projection of V , as expressed in (5.21). We can get more in-
sight about this situation by using the equations of motion (5.20) and (5.21) and
rewriting (5.23) as

DtT
a = − 1

Φ̇

(
GabVb − T aVT

)
. (5.24)

In order to have Ω = 0, we immediately see that the gradient of the potential
Va and the tangent vector Ta have to be aligned. This means that geodesic tra-
jectories are always characterized by a zero normal component of the gradient of
the scalar potential, namely VN = 0. Intuitively, the trajectory corresponds to a
valley of the scalar potential. If there is no normal force, the tangent vector gets
parallel transported along the trajectory. This is an approach used very often
in string/supergravity model building as it hugely simplifies the analysis of the
system. In a typical saxion-axion system it corresponds to stabilizing one of the
two fields and leaving the other very light to drive the acceleration phase. On
the other hand, the multi-field framework allows, in principle, also for very sharp
turns, Ω ≫ 1, which means a great misalignment between the potential gradient
flow and the tangent vector T a.

5.2.3 Scalar Fields with Potential in FLRW Spacetime

We further generalise our setup by taking the 4-dimensional spacetime to be a
FLRW metric gµν with line element of the form

ds2 = −dt2 + a2(t)dx⃗2. (5.25)

Then, given the action

S =

∫
d4x

√
−g
(
1

2
R− 1

2
gµνGab∂µΦ

a∂νΦ
b − V (Φa)

)
(5.26)

with g being the determinant of gµν and R the Ricci scalar, we get the following
equations

DtΦ̇
a + 3HΦ̇a +GabVb = 0. (5.27)

These contain an additional friction term 11, proportional to the Hubble expansion
rate H ≡ ȧ/a. The projections work completely analogous to the previous cases,
namely we get

Φ̈ + 3HΦ̇ + VT = 0 (5.28)

ΩΦ̇ = VN . (5.29)

11In fact, the friction term can be eliminated by an appropriate affine reparametrisation.
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We note that the set of equations (5.27) just reduce to two simple equations. The
first, namely (5.28), has the form of the equation for a single scalar field in a
FLRW spacetime. The second, i.e. (5.29), involves the turning rate Ω and it is
not affected by the friction term. Since only the first equation is altered, we can
draw the same conclusions about the case DtT

a = 0, as discussed in the previous
part.

5.2.4 Multi-field Cosmic Acceleration

As final step, we consider the coupled system and include the backreaction of the
scalar dynamics on the FLRW background. We will explicitly state the conditions
required to achieve cosmic acceleration. The action we consider is as before (5.26).
Therefore, the background dynamics of the full system is given by

3H2 − 1

2
Φ̇2 − V = 0 (5.30)

Φ̈ + 3HΦ̇ + VT = 0 (5.31)

ΩΦ̇ = VN . (5.32)

where the first equation is the Friedmann equation associated to the FLRW metric
while the last two equations refer to the dynamics of the scalar fields and are
already in the projected form, as introduced before.
Cosmic acceleration happens when ä > 0. One can show that this is equivalent
to requiring

ϵ < 1 (5.33)

with ϵ being the acceleration parameter defined and equal to

ϵ ≡ − Ḣ

H2
=

Φ̇2

2H2
. (5.34)

To ensure that the acceleration phase lasts for a sufficient number of Hubble
times12, one can require

η ≡ ϵ̇

Hϵ
= 2ϵ+ 2

Φ̈

HΦ̇
< 1. (5.35)

Note that the latter expressions are exact and do not assume any slow-roll con-
dition. They can be obtained simply by differentiating (5.30) with respect to
the cosmic time t and combining this with (5.31), once we observe that VT Φ̇ =

12This condition is particularly relevant in the case of cosmic inflation to solve the horizon
problem. There it is necessary for ϵ to remain small for a minimum of around 60 e-foldings,
whereas in the case of quintessence dark energy this condition can be relaxed.
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T aVaΦ̇ = Φ̇aVa = V̇ by the chain rule.
Using these definitions one can rewrite the Friedmann equation (5.30) simply as

H2 =
V

3− ϵ
. (5.36)

Finally, one can derive an expression which relates the fractional gradient of V
and the acceleration parameter ϵ in a multi-field setup. Let us note that

|∇V |2

V 2
=
V 2
T + V 2

N

V 2
(5.37)

where we have used that V a = T aVT + NaVN . We can obtain an expression for
the tangential derivative of V as

V 2
T =

1

2
ϵ (6− (2ϵ− η))2H4 (5.38)

by combining (5.31), (5.34) and the expression for η given in (5.35). Similarly, we
can obtain an expression for the normal derivative of V , namely

V 2
N = 2Ω2H2ϵ. (5.39)

By combining the last four numbered equations, one finally obtains

|∇V |2

V 2
= 2ϵ

((
1 +

η

2(3− ϵ)

)2

+
Ω2

H2(3− ϵ)2

)
. (5.40)

If we demand a phase of cosmic acceleration, namely ϵ < 1, then one has

|∇V |2

V 2
≃ 2ϵ

((
1 +

η

6

)2
+

Ω2

9H2

)
. (5.41)

The latter expression shows that one may fulfill the de Sitter conjecture [24] in
an accelerating background, either by having a large turning rate Ω (namely, a
misalignment between the tangent vector and the gradient flow of V ) or a large
η parameter (see [172] for a recent analysis of this regime in the context of single
field inflation). One example of the latter situation is given by the so-called
”scaling cosmologies” as recently analysed in [145, 146]. If one instead insists on
η ≪ 1, then one effectively requires a slow roll condition, namely Φ̈ ≪ HΦ̇. In
this regime, one obtains

|∇V |2

V 2
≃ 2ϵ

(
1 +

Ω2

9H2

)
(5.42)

which was already displayed in the introduction section of this work as (5.2).
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5.3 Asymptotic Acceleration and Turning Rate

for constant θ

The boundary of moduli space provides an ideal testing ground to examine the
predictions of the SDC. It allows for trajectories that extend infinitely, enabling
the identification of a tower of states with exponentially decreasing mass along
such paths.13 Around these asymptotic regions, effective field theories exhibit
significant simplifications and possess distinct features. Recent investigations [159,
145, 146] have therefore focused on studying cosmic acceleration in these limits.
In this section we examine the implications of the SDC on a multi-field system that
leads to ”asymptotic acceleration”, referring to cosmic acceleration occurring at
the boundary of moduli space. We consider infinite-distance trajectories, namely
paths in field space that can approach such asymptotic regions. These trajectories
can either follow geodesics or deviate from them by a certain angle θ, as already
discussed. The SDC imposes a strict constraint on this deviation angle, requiring
it to approach a constant value in the full infinite-distance limit [32]. In this section
we stick to the case of (infinite-distance) trajectories with constant deviation angle
from a geodesic.14 Moreover, we focus on hyperbolic spaces as prototype geometries
of infinite distance limits of Calabi-Yau compactifications.
As main result, we find that the turning rate of such infinite-distance trajectories
is negligible during the acceleration phase since it takes the form

Ω

H
= F (θ, R)

√
ϵ. (5.43)

Here F is a function of the deviation angle θ and of the (sectional) curvature R
of the field manifold and it is upper bounded by

F (θ, R) < F (θ0, R) (5.44)

with θ0 being the maximum deviation angle allowed which is related to the lower
bound on the tower mass decay rate λ, see (5.7). The exact form of F will depend
on the specific case and dimensionality of the hyperbolic space and the trajectory
followed therein.
We will proceed as follows. First, we begin by considering the simplest case of
a single hyperbolic plane, which corresponds to a typical saxion-axion system.
Next, we move on to a more complex scenario by considering a product of two
hyperbolic planes. We will explore the diverse trajectory possibilities that arise

13According to the Emergence String Conjecture [55], the tower of states can be represented
by either Kaluza-Klein modes or tensionless strings. However, for the purposes of our discussion,
the specific nature of the tower is not relevant.

14Moving away from the boundary allows to have more freedom, such as path-dependent
deviations from geodesic trajectories. We will consider this case in the following section.
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in this setup. Finally, we extend our analysis to the case of N hyperbolic planes
and generalise our derived formulas.

5.3.1 Computation for one Hyperbolic Plane

As already introduced in section 2.3.3, the metric of a single hyperbolic upper
half-plane is given by

d∆2 = GabdΦ
adΦb =

n2

s2
(
ds2 + dϕ2

)
(5.45)

for s > 0. For completeness let us reiterate some of its features at this point.
For instance, the parameter n > 0 controls the curvature of the hyperbolic plane,
namely the Ricci scalar reads R = −2/n2. We are dealing with two scalar fields:
the saxion s and the axion ϕ, i.e. Φa = (s, ϕ). The saxion s is assumed to take
large values since we are interested in infinite distance limits which correspond
to s → ∞. Furthermore, the axion ϕ is usually periodic with some identification
even for large s, but this symmetry is in general broken in the presence of a
potential [32]. Hence, we assume that ϕ can take any real value. We will make
these assumptions throughout the rest of this chapter, i.e. also for products of
hyperbolic planes with several saxions and axions.
To be consistent with the Scalar Distance Conjecture, we impose a mass tower
scaling as

Ms ∼ s−a (5.46)

where a > 0. This ensures a massless tower of states, which drops exponentially
down, when traversing an infinite field distance along a geodesic, i.e. along the
s-direction.
Now we can apply the techniques introduced in Section 5.2, namely the turning
rate Ω is given by

Ω2 =
n2

s2
(DtT

s)2 + (DtT
ϕ)2 (5.47)

where

DtT
s = Ṫ s + ΓsbcT

bΦ̇c = Ṫ s − 1

s
T sṡ+

1

s
T ϕϕ̇

DtT
ϕ = Ṫ ϕ + ΓϕbcT

bΦ̇c = Ṫ ϕ − 1

s
T sϕ̇− 1

s
T ϕṡ. (5.48)

For the single hyperbolic plane the non-vanishing Christoffel symbols are

Γsss = −1

s
= Γϕsϕ, Γsϕϕ =

1

s
. (5.49)

Next, to get an upper bound on the turning rate Ω, we choose a trajectory which
enjoys maximal non-geodesicity compatible with the SDC. This precisely amounts
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to the critical case introduced in section 2.3.3 for the single hyperbolic plane.
Also recall that in this case the distance and, more importantly, the decay rate
are modified by a constant factor compared to the geodesic case. For instance,
recalling section 2.3.3 we have the following critical case condition here

dϕ

ds
=
ϕ̇

ṡ
= β = const (5.50)

where the first equality holds in general by the chain rule. Interestingly, the
condition (5.50) makes the velocity along the trajectory a constant multiple of the
speed experienced on a geodesic, i.e. along the s-direction. This is not surprising
because, if the distance changes by a constant factor, then the speed, i.e. the
time-derivative of the distance, also does. This results in

Φ̇2 =
n2

s2
(ṡ2 + ϕ̇2) = n2(1 + β2)

ṡ2

s2
(5.51)

and the tangent vector to the trajectory reads

T s =
1

Φ̇
ṡ

T ϕ =
1

Φ̇
ϕ̇ =

1

Φ̇
βṡ. (5.52)

Thus, we get

DtT
s =

1

Φ̇

(
s̈− ṡ

Φ̇
Φ̈− ṡ2

s
(1− β2)

)
DtT

ϕ =
1

Φ̇
β

(
s̈− ṡ

Φ̇
Φ̈− 2

ṡ2

s

)
. (5.53)

Using
ṡ

Φ̇
Φ̈ = s̈− ṡ2

s
, (5.54)

which can be verified by explicit computation, the above becomes

DtT
s =

β2

Φ̇

ṡ2

s
=

β2

n
√
1 + β2

ṡ

DtT
ϕ = −β

Φ̇

ṡ2

s
= − β

n
√
1 + β2

ṡ. (5.55)

Then, the turning rate Ω is finally given by

Ω2 = β2 ṡ
2

s2
=

β2

n2(1 + β2)
Φ̇2. (5.56)
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A non-vanishing Ω immediately tells us that the path defined by (5.50) is not a
geodesic of the hyperbolic plane, unless we have β = 0. In particular, more on
the consistency of the critical case with the geodesic equation can be found in
appendix C which provides a complementary picture. However, the above also
implies that we need to apply a normal force VN in order to be moving in a straight
line, given by a linear relation between s and ϕ, on a hyperbolic plane. Since our
intuition is usually built on Euclidean geometry, this is rather strange and one of
the unusual properties of hyperbolic spaces.
Now a very natural question is, whether there is an interpretation of β in terms
of the deviation angle θ such that we connect to the statements in the previous
sections. To answer that, we use the following standard formula from Riemannian
geometry

cos θ =
vaua
|v||u|

(5.57)

which defines an angle (between two vectors va and ua) via the inner product for
curved spaces. We are interested in the angle between the tangent to the trajectory
T a and the vertical axis, i.e. the s-axis. But, more generally, we are interested in
the angle between the tangent to the geodesic trajectory T ag corresponding to the
mass tower in question and the tangent to the non-geodesic trajectory T a. The
latter can be found above and the former is given by

Φ̇2
g = n2 ṡ

2

s2

T sg =
1

Φ̇g

ṡ

T ϕg = 0. (5.58)

We arrive at these expressions by setting β = 0 because on the geodesic trajectory
the axion ϕ is just a constant. Also note that both tangent vectors are normalised
such that the denominator in the angle formula (5.57) is just 1 such that

cos θ = GabT
a
g T

b =
1√

1 + β2
. (5.59)

It is very obvious now that β = tan θ. However, this isn’t a big surprise because
there is the well-known relation

dϕ

ds
=
ϕ̇

ṡ
= tan θ (5.60)

which gives the angle between a curve ϕ(s) and the s-axis. This expression holds
for conformally flat manifolds (as the hyperbolic plane is) because angles on a
conformally flat manifold are the same angles as in Euclidean flat space, i.e. a
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conformal transformation is angle-preserving. But let us emphasise that this sec-
ond approach is only sensible here, because we are conformally flat, whereas the
first method works for any curved space.
Furthermore, the quantity in (5.59) is precisely the factor from (5.5) which reduces
the geodesic decay rate on a non-geodesic trajectory. At this point let us mention
that negative θ have the same influence on the decay rate as positive θ. In fact,
β can also be negative because we have a symmetry of ϕ → −ϕ in the equations
of motion (also including a potential). This is also pointed out in appendix B for
the geodesic equation. Moreover, this holds also for all the later cases.
Finally, using (5.75) the velocity along the trajectory and the turning rate can be
written in terms of this angle θ as

Φ̇2 =
n2

cos2 θ

ṡ2

s2

Ω2 =
sin2 θ

n2
Φ̇2. (5.61)

By invoking (5.34) we arrive at the promised form for Ω/H, namely

Ω2

H2
=

2 sin2 θ

n2
ϵ (5.62)

where the prefactor clearly is an O(1) quantity, unless we have a very large cur-
vature.

5.3.2 Computations for two Hyperbolic Planes

Once we include a second hyperbolic plane the situation gets more complicated.
In a product of two hyperbolic planes we have two saxions s, u and two axions
ϕ, ψ and the field space metric, as introduced in section 2.3.3, reads

d∆2 = GabdΦ
adΦb =

n2

s2
(
ds2 + dϕ2

)
+
m2

u2
(
du2 + dψ2

)
(5.63)

where Φa = (s, ϕ, u, ψ). At this point we make the same assumptions about both
the saxions and the axions as in the previous part. Moreover, we associate a mass
tower with each saxionic direction, namely

Ms ∼ s−a

Mu ∼ u−b (5.64)

where a, b are again some positive constants. Keep in mind that this is just
the bare minimum of the mass towers required by consistency with the SDC. In
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general, there is an abundance of towers in a realistic string theory setup.
The turning rate Ω gets now contributions from both hyperbolic planes

Ω2 =
n2

s2
(
(DtT

s)2 + (DtT
ϕ)2
)
+
m2

u2
(
(DtT

u)2 + (DtT
ψ)2
)

(5.65)

where

DtT
s = Ṫ s + ΓsbcT

bΦ̇c = Ṫ s − 1

s
T sṡ+

1

s
T ϕϕ̇

DtT
ϕ = Ṫ ϕ + ΓϕbcT

bΦ̇c = Ṫ ϕ − 1

s
T sϕ̇− 1

s
T ϕṡ

DtT
u = Ṫ u + ΓubcT

bΦ̇c = Ṫ u − 1

u
T su̇+

1

u
Tψψ̇

DtT
ψ = Ṫψ + ΓψbcT

bΦ̇c = Ṫψ − 1

u
T uψ̇ − 1

u
Tψu̇. (5.66)

For the product of two hyperbolic planes the non-vanishing Christoffel symbols
are

Γsss = −1

s
= Γϕsϕ, Γsϕϕ =

1

s
, Γuuu = −1

u
= Γψsψ, Γuψψ =

1

u
. (5.67)

Please note that there are no non-vanishing Christoffel symbols which mix between
the two hyperbolic planes because the coordinates are independent of each other
(only in the next step we assume some relations between them).
So far not much has changed in the product case. We have just extended all the
quantities by two new entries. However, the differences are coming in now, namely
in the choice of the trajectory. For now we will focus on a saxionic direction, the
s-direction. However, this isn’t a restriction in any form because the situation
is symmetric. So, if we pick the u-direction, we would acquire exactly the same
results. This means we are investigating how the mass tower Ms behaves under
different trajectories in moduli space. For a product of two hyperbolic planes we
can have up to four scalar fields moving at the same time. But we will keep it
slow and start with trajectories only involving the saxion s and one other field.

Saxion-Axion Trajectories

In the first case we keep u and ψ fixed, i.e. u = u0 = const, ψ = ψ0 = const
and hence T u = 0 = Tψ. However, here we immediately recover the result from
the single hyperbolic plane (5.61) because we keep everything fixed on the other
hyperbolic plane.
Next, we assume that u = u0 and ϕ = ϕ0 are constant such that T u = 0 = T ϕ.
Effectively, we are just considering the saxion from one hyperbolic plane which
evolves together with the axion from the other hyperbolic plane. We have to
establish now a relation between s and ψ which maximizes the non-geodesicity
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whilst respecting the SDC. As already seen in section 2.3.3, it turns out that the
condition

ψ̇
ṡ
s

= γ = const (5.68)

has the desired effect. Unlike the last case, the above relation isn’t directly equal
to dψ

ds
because we have the extra 1

s
term (we could use some logarithmic coordinate

for s but there will be more on the interpretation later). The geodesic trajectory
can be recovered by setting γ = 0.
Now (5.68) produces the following velocity along the trajectory

Φ̇2 =
n2

s2
ṡ2 +

m2

u20
ψ̇2 = n2 ṡ

2

s2

(
1 +

m2γ2

u20n
2

)
, (5.69)

which is again a constant multiple of the geodesic velocity, and the tangent vector
to the trajectory reads

T s =
1

Φ̇
ṡ

T ϕ = 0

T u = 0

Tψ =
1

Φ̇
ψ̇ =

1

Φ̇
γ
ṡ

s
. (5.70)

Thus, we get

DtT
s =

1

Φ̇

(
s̈− ṡ

Φ̇
Φ̈− ṡ2

s

)
DtT

ϕ = 0

DtT
u =

1

u0

ψ̇2

Φ̇

DtT
ψ =

1

Φ̇

(
ψ̈ − ψ̇

Φ̇
Φ̈

)
. (5.71)

Using

ṡ

Φ̇
Φ̈ = s̈− ṡ2

s

ψ̈ = γ

(
s̈

s
− ṡ2

s2

)
ψ̇

Φ̇
Φ̈ =

γ

s

(
s̈− ṡ2

s

)
, (5.72)
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which can be again verified by explicit computation, the above reduces dramati-
cally to

DtT
s = 0

DtT
ϕ = 0

DtT
u =

1

u0

1

Φ̇
ψ̇2 =

1

u0

1

Φ̇
γ2
ṡ2

s2

DtT
ψ = 0. (5.73)

It is quite interesting that the contribution to the turning rate Ω is concentrated
along the u-direction which will be important soon. All in all, these computations
work out quite similar to the single hyperbolic plane. The turning rate then finally
reads

Ω2 =
m2γ4

u40

1

Φ̇2

(
ṡ2

s2

)2

=

m2γ4

u40n
4(

1 + m2γ2

u20n
2

)2 Φ̇2. (5.74)

We immediately recognise the same quadratic scaling with the speed Φ̇ as in
(5.61).
Analogous to the previous section, we also employ an angle formulation. By
(5.57) we can again compute the angle θ between the geodesic tangent vector T ag
corresponding to the mass towerMs (this is the same vector as in the single plane
case, we just add two zero components T u and Tψ) and the non-geodesic tangent
vector T a which is given above for this trajectory. Again both tangent vectors are
normalised, so we get

cos θ = GabT
a
g T

b =
1√

1 + m2γ2

u20n
2

. (5.75)

This immediately implies the identification tan θ = mγ
u0n

. But we can’t directly
apply the second method from the previous section here because we aren’t con-
formally flat. Moreover, this is again the expression for cos θ in (5.5).
As an alternative approach to the above angle definition, we can consider the
effective metric of the trajectory which is given by

d∆2
eff =

n2

s2
ds2 +

m2

u20
dψ2. (5.76)

Please remember that n,m, u0 are constants here. Then, we can redefine our
coordinates

d∆2
eff = d(n ln s)2 + d

(
m

u0
ψ

)2

= ds̃2 + dψ̃2 (5.77)

which gives us a flat manifold in which we can use normal angle definitions. For
instance, these coordinates enable us to apply the formula from the previous
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section, namely (5.60), work our way back to the original coordinates and use
(5.68)

tan θ =
dψ̃

ds̃
=

dψ̃
dt
ds̃
dt

=
m
u0
ψ̇

n ṡ
s

=
mγ

u0n
. (5.78)

Hence, the angle θ can be interpreted as the angle between ψ̃(s) and the s̃-axis
in the usual sense known from flat space, whereas the angle defined by (5.75)
came from a more generalised angle notion which goes beyond flat space. We just
wanted to provide both formulations, but when in doubt the general formulation
(5.57) is more robust.
Finally, if we employ this angle formulation, the above results become quite similar
to the single hyperbolic plane results, namely

Φ̇2 =
n2

cos2 θ

ṡ2

s2

Ω2 =
sin4 θ

m2
Φ̇2. (5.79)

In particular, the velocity Φ̇ is formally given by the same expression as for the
single hyperbolic plane. But the prefactor for the turning rate is slightly altered
to before which isn’t really surprising because the saxion and axion came from
different hyperbolic planes in contrast to the previous case.
Furthermore, let us comment some more about this effective metric (5.76). If we
would repeat the computation of the turning rate Ω using the effective metric
with coordinates s and ψ or using the effective flat metric (5.77) with coordinates
s̃ and ψ̃, we get immediately 0. The mindful reader might wonder at this point,
if Ω isn’t coordinate invariant. This would imply that Ω behaves like a pseudo-
force which depends on the given coordinate frame and can be transformed away.
However, that is a wrong conclusion. The root of the problem here is the fact
that we toss away the ϕ- and u- coordinate. Looking back at (5.73) we see that
the only contribution to Ω comes from DtT

u. In a sense the non-geodesicity is
fully concentrated in a coordinate which is absent in the effective system (5.77).
So it isn’t surprising that the result becomes 0 in the flat effective coordinates. A
little bit more on that can be also found in appendix C. In conclusion we can say
that the effective formulation (5.77) is very useful in providing some intuition to
the angle definition. But, as we just showed, there are some clear limitations to
the formulation and one has to treat such simplifications with great care since the
coordinate truncation might not be consistent.
In the end the result can be expressed in the desired form

Ω2

H2
=

2 sin4 θ

m2
ϵ (5.80)

where we used (5.34). The prefactor is again O(1) for a moderate curvature.
It is perhaps slightly interesting that the relevant curvature corresponds to the
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hyperbolic plane of the axion, namely 1/m2.

Saxion-Saxion Trajectories

Finally, there is another possible two-field trajectory, namely we keep the two
axions ϕ and ψ fixed and let the two saxions s and u evolve together. Then we
follow our recipe by determining the critical case relation first which turns out to
be

u̇
u
ṡ
s

= δ = const. (5.81)

This can directly inferred by demanding a constant change of the distance. There-
fore, the speed along the trajectory becomes

Φ̇2 =
n2

s2
ṡ2 +

m2

u2
u̇2 = n2 ṡ

2

s2

(
1 +

m2

n2
δ2
)

(5.82)

and the tangent vector to the trajectory reads

T s =
1

Φ̇
ṡ

T ϕ = 0

T u =
1

Φ̇
u̇ =

u

Φ̇
δ
ṡ

s

Tψ = 0. (5.83)

The covariant time derivatives become

DtT
s =

1

Φ̇

(
s̈− ṡ

Φ̇
Φ̈− ṡ2

s

)
DtT

ϕ = 0

DtT
u =

1

Φ̇

(
ü− u̇

Φ̇
Φ̈− u̇2

u

)
DtT

ψ = 0. (5.84)

We immediately recognise that the only two non-vanishing components have the
same structure. Again we can show by explicit calculation that

ṡ

Φ̇
Φ̈ = s̈− ṡ2

s
u̇

Φ̇
Φ̈ = ü− u̇2

u
. (5.85)

Here the symmetry of the situation, namely s ↔ u, becomes even more evident.
Ultimately, the above leads to

DtT
s = 0
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DtT
ϕ = 0

DtT
u = 0

DtT
ψ = 0 (5.86)

which directly implies
Ω2 = 0. (5.87)

Hence, a critical trajectory involving only two saxions (related by (5.81)) is
geodesic. The explanation for that can be found in appendix C where the sit-
uation is analyzed on the level of the geodesic equation. Let us emphasise that
this is a geodesic for any δ.
At this point we need make some further comments regarding the mass towers.
For instance, observe that the bigger δ is, the more we move away from the s-axis
into the direction of the u-axis. At first this seems to be a problem because we
can apparently delay the mass towerMs as long as we want by increasing δ, which
would be in tension with the SDC. But here we have two saxionic directions and
both of them have a mass tower associated to them, as stated before. Intuitively,
if we move away from the s-axis, i.e. the mass towerMs, the mass towerMu along
the u-axis might come to the rescue. To be more precise, once we include several
saxions, we have to go beyond our minimal model that states that we only have
mass towers along the saxionic directions. These tower generally combine in some
ways, in fact, there are usually a lot of combined mass towers in a realistic String
Theory setting. These combined towers are, however, heavily model-dependent,
i.e. we would have to specify how the different saxionic mass towers interact and
combine. So it is hard to make general bottom-up statements if we include more
than one saxion in the trajectory. Moreover, if we need to consider a more general
tower structure for this case, it is also not compatible with the previous results,
where we only had the single mass tower Ms. On top of that, a saxion-saxion
critical trajectory can’t make a significant impact on the magnitude of Ω/H be-
cause it is geodesic. Thus, henceforth we only focus on trajectories involving a
single saxion, which means we fix a single mass tower, together with one or more
axions.

Saxion-Axion-Axion Trajectories

That leaves one final combination to investigate for a product of two hyperbolic
planes. The situation in question is the one where only the second saxion u is
constant, i.e. u = u0 = const. This is the first trajectory involving three fields,
which brings another new feature with it. The critical case condition connects
here all three fields in general, namely(

ϕ̇

ṡ

)2

+
m2

n2u20

(
ψ̇
ṡ
s

)2

= const (5.88)
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will result in the desired maximal deviation from a geodesic at the boundary of
moduli space. But we won’t treat this case in full generality 15. We instead focus
on a subset fulfilling the above constraint. For instance, we will assume that
both terms are separately constant which allows us to make direct contact to the
previous calculations and results

ϕ̇

ṡ
= β = const

ψ̇
ṡ
s

= γ = const. (5.89)

Here we dropped the squares and the other constantsm/nu0 from the second term.
Furthermore, we reuse the constants as before, to better illustrate the similarities
and differences, although this here is a completely separate case. Also we don’t
expect anything to change qualitatively in the fully general situation where just
the sum is constant.
Now we are ready to give the velocity along the trajectory

Φ̇2 =
n2

s2
(ṡ2 + ϕ̇2) +

m2

u20
ψ̇2 = n2 ṡ

2

s2

(
1 + β2 +

m2γ2

u20n
2

)
(5.90)

and the tangent vector to the trajectory

T s =
1

Φ̇
ṡ

T ϕ =
1

Φ̇
ϕ̇ =

1

Φ̇
βṡ

T u = 0

Tψ =
1

Φ̇
ψ̇ =

1

Φ̇
γ
ṡ

s
. (5.91)

Following the procedure of the previous calculations we continue by determining
the covariant derivatives

DtT
s =

1

Φ̇

(
s̈− ṡ

Φ̇
Φ̈− ṡ2

s
(1− β2)

)
DtT

ϕ =
1

Φ̇
β

(
s̈− ṡ

Φ̇
Φ̈− 2

ṡ2

s

)
DtT

u =
1

u0

ψ̇2

Φ̇

DtT
ψ =

1

Φ̇

(
ψ̈ − ψ̇

Φ̇
Φ̈

)
. (5.92)

15It might be possible to treat the case fully general by employing a suitable parametrisation
for (5.88).
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Although we have a different prefactor in Φ̇, we recover again similar relations to
the prior calculations

ṡ

Φ̇
Φ̈ = s̈− ṡ2

s

ψ̈ = γ

(
s̈

s
− ṡ2

s2

)
ψ̇

Φ̇
Φ̈ =

γ

s

(
s̈− ṡ2

s

)
(5.93)

such that we arrive at

DtT
s =

β2

Φ̇

ṡ2

s

DtT
ϕ = −β

Φ̇

ṡ2

s

DtT
u =

1

u0

1

Φ̇
γ2
ṡ2

s2

DtT
ψ = 0. (5.94)

Finally, the turning rate Ω becomes

Ω2 =
Φ̇2(

1 + β2 + m2γ2

u20n
2

)2 (β2

n2
(1 + β2) +

m2γ4

u40n
4

)
. (5.95)

It is interesting that the result here isn’t just the sum of the separate cases since
the prefactor is different. But, when setting either β = 0 or γ = 0, we recover the
previous cases which is a nice consistency check. Most importantly, the turning
rate Ω scales again with Φ̇. As already firmly stated, this is the key property
when relating the results to cosmic acceleration.
Although there are three fields evolving now, the angle formula from before can
still be applied. Then, the geodesic tangent vector T ag along the tower Ms is given
as in the preceding cases (or it is recovered from T a here by setting β = 0 = γ),
whereas the non-geodesic tangent vector T a was defined above. Again both vectors
are normalised, so by (5.57) we find

cos θ = GabT
a
g T

b =
1√

1 + β2 + m2γ2

u20n
2

(5.96)

such that tan θ =
√
β2 + m2γ2

u20n
2 . As probably expected, cos θ, which modifies the

geodesic decay rate due to (5.5), depends on both β and γ. Furthermore, we can
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define the angle θϕ as the projection of θ to the (s, ϕ)-plane by setting γ = 0 in
T a and analogously the angle θψ as the projection to the (s, ψ)-plane by setting
β = 0, resulting in

tan θϕ = β

tan θψ =
mγ

nu0
. (5.97)

These are also precisely the angles defined in the trajectories with only two fields,
a single saxion and axion. This enables us to express everything in terms of these
angles which gives a very similar result to the previous instances

Φ̇2 =
n2

cos2 θ

ṡ2

s2

Ω2 = cos4 θ

(
1

n2

tan2 θϕ
cos2 θϕ

+
1

m2
tan4 θψ

)
Φ̇2. (5.98)

In this formulation the connection to the previous findings becomes even more
apparent. If we set γ = 0, we get θ = θϕ and θψ = 0 and we immediately recover
the result from the single hyperbolic plane. As expected, the same consistency
check works for setting β = 0, where we recover (5.79). Let us also point out the
structurally different contributions from the axion on the same hyperbolic plane
compared to the one from the other hyperbolic plane.
By (5.34) this yields the desired form

Ω2

H2
= 2ϵ cos4 θ

(
1

n2

tan2 θϕ
cos2 θϕ

+
1

m2
tan4 θψ

)
(5.99)

where the prefactor is again O(1) for moderate curvatures. At this point we are
ready to extend the results to an arbitrary amount of hyperbolic planes.

5.3.3 Computations for N Hyperbolic Planes

In this section we extend our computations to an arbitrary amount of hyperbolic
planes. Since we have treated already all possible caveats, this generalisation is
quite straightforward. Basically, one just gets more components and equations,
but each one of them falls into one of the categories discussed before. So the
calculation for an arbitrary N is just built up from the two possible base cases:
saxion with axion from the same hyperbolic plane and saxion with an axion from
another hyperbolic plane. And it was shown how these cases combine. In fact,
the generalisation to N hyperbolic planes just amounts to adding copies of the
same equations/terms, as we will see shortly. For the reasons discussed before we
won’t include more than a single saxion here.
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First, the metric now is given by

d∆2 = GabdΦ
adΦb =

N∑
i=1

n2
i

s2i

(
ds2i + dϕ2

i

)
. (5.100)

This is a product of N hyperbolic planes where the saxions si and the axions
ϕi are combined in Φa = (s1, ϕ1, ..., sN , ϕN). Moreover, each hyperbolic plane
has its own parameter ni which is related to the scalar curvature Ri of the i-th
hyperbolic plane like Ri = −2/n2

i . As demanded by the SDC we assign to each
saxionic direction a mass tower

Msi ∼ s−ai (5.101)

for some constants ai > 0. The object we seek to determine is the turning rate Ω
which reads here

Ω2 =
N∑
i=1

n2
i

s2i

(
(DtT

si)2 + (DtT
ϕi)2
)
. (5.102)

From here on we fix a saxionic direction we want to investigate. Without loss
of generality we pick s1 because one can always rearrange the indices such that
the desired direction carries the index 1. Moreover, we drop the index 1 from all
quantities of the first hyperbolic plane, i.e. s1 ≡ s, ϕ1 ≡ ϕ and n1 ≡ n.
Next, we fix the critical trajectory. Except s1 the trajectory doesn’t contain any
other saxionic directions which means all si = s0i = const for i ≥ 2. In order
to avoid a clumsy notation, we drop the 0-label here, which normally indicates a
constant quantity, i.e. we just write si instead of s0i. The critical case condition
turns out to be (

ϕ̇

ṡ

)2

+
N∑
i=2

n2
i

n2s2i

(
ϕ̇i
ṡ
s

)2

= const (5.103)

which is completely analogous to the previous cases. But again we simplify the
situation by assuming that all terms are individually constant. Here we also don’t
expect that this simplification has a major impact on the key results. Hence, we
demand

ϕ̇

ṡ
= β = const (5.104)

ϕ̇i
ṡ
s

= βi = const for i ≥ 2. (5.105)

Following along the procedure of the previous instances the velocity of the trajec-
tory is readily given by

Φ̇2 =
n2

s2
(ṡ2 + ϕ̇2) +

N∑
i=2

n2
i

s2i
ϕ̇i

2
= n2 ṡ

2

s2

(
1 + β2 +

N∑
i=2

n2
iβ

2
i

s2in
2

)
. (5.106)
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This allows us to write down the tangent vector T a to the trajectory as

T s =
1

Φ̇
ṡ

T ϕ =
1

Φ̇
ϕ̇ =

1

Φ̇
βṡ

T si = 0

T ϕi =
1

Φ̇
ϕ̇i =

1

Φ̇
βi
ṡ

s
(5.107)

for i ≥ 2. Since the further calculation works out in same way as the previous
ones, we can just piece it together. For instance, we then get

DtT
s =

β2

Φ̇

ṡ2

s

DtT
ϕ = −β

Φ̇

ṡ2

s

DtT
si =

1

si

1

Φ̇
β2
i

ṡ2

s2

DtT
ϕi = 0 (5.108)

where i ≥ 2. For a general N here the last two equations just get copied N − 1
times. Therefore, it’s no surprise that the turning rate Ω amounts to

Ω2 =
Φ̇2(

1 + β2 +
∑N

i=2
n2
i β

2
i

s2in
2

)2
(
β2

n2
(1 + β2) +

N∑
i=2

n2
iβ

4
i

s4in
4

)
. (5.109)

which is a straightforward generalisation of the prior findings. Let us emphasise
the important part here, namely Ω ∼ Φ̇ for a general critical trajectory involving
up to N axions on top of the saxion associated with the mass tower in question.
Then it’s again possible to define the total angle θ between the geodesic tangent
vector T ag , which corresponds to setting β = 0 = βi, and the tangent vector to the
trajectory T a which is defined at the beginning of the section, yielding

cos θ = GabT
a
g T

b =
1√

1 + β2 +
∑N

i=2
n2
i β

2
i

s2in
2

. (5.110)

Moreover, there are also the angles of the projection onto the (s, ϕ)-plane and
onto the (s, ϕi)-plane. The former is defined by setting βi = 0 for i ≥ 2, whereas
the latter is given by setting β = 0 = βj for j ̸= i in the above angle formula.
These then read

tan θϕ = β
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tan θϕi =
niβi
nsi

. (5.111)

That allows us to express the results in terms of these angles such that we get

Φ̇2 =
n2

cos2 θ

ṡ2

s2

Ω2 = cos4 θ

(
1

n2

tan2 θϕ
cos2 θϕ

+
N∑
i=2

1

n2
i

tan4 θϕi

)
Φ̇2 (5.112)

which is perfectly consistent with all previous results, in the sense that all the
prior turning rates were just special cases of this general formula.
In the end we recover, even for an arbitrary amount of hyperbolic planes, by (5.2)
the promised expression

Ω2

H2
= 2ϵ cos4 θ

(
1

n2

tan2 θϕ
cos2 θϕ

+
N∑
i=2

1

n2
i

tan4 θϕi

)
. (5.113)

Unless we have high curvature or an unnaturally high number N of hyperbolic
planes (in a typical String Theory construction we can only have up to 3 hyperbolic
planes), this prefactor is again O(1).

5.4 Asymptotic Acceleration and Turning Rate

for non-constant θ

As seen in the previous section 5.3, it is impossible to achieve a large turning
rate for asymptotic acceleration with a constant deviation from a geodesic, i.e. a
constant deviation angle θ. However, this condition was only forced upon us in
the full limit to the boundary of moduli space since the limiting tangent vector
has to be constant [32]. Once we are just near the boundary, but still close enough
such that the geometry is hyperbolic, we can relax this condition and allow for
a non-constant tangent vector corresponding to a varying θ. In particular, it is
enough for consistency with the SDC to assume that we only approach a constant
tangent vector. Then we can get additional contributions to the turning rate
from (possibly) large turns in field space. Moreover, the existence of a lower
bound λ0 on the decay rate (which translates to an upper bound θ0 for the angle)
restricts the movement to a cone which is very reminiscent of a light-cone in Special
Relativity. This cone will be termed swamp cone. Under these assumptions a
general expression for the turning rate is derived which could in principle get
large due to contributions from rapid turns. But as it turns out, very close to the
boundary these turns are very limited such that we recover again the relation

Ω

H
< c

√
ϵ (5.114)
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for an O(1) constant c. To be more precise, this is inferred by an asymptotic
expansion around the boundary of moduli space. Such an asymptotic expansion
was previously proposed in [20].
In this section we will restrict our analysis to a single hyperbolic plane given by
(5.45), as the results directly translate to the more general cases. So we first
introduce the swamp cone as a mean to construct an infinite-distance trajectory
with non-constant deviation angle θ from a geodesic consistent with the SDC.
Using that we then derive a general formula for the turning rate Ω, where we indeed
get new terms proportional to the turning of the trajectory, i.e. proportional to
θ̇. After that an asymptotic expansion in terms of 1/s is performed around the
boundary of moduli space (corresponding to s = ∞). This will yield θ̇ ∼ Φ̇ ∼√
ϵ for large s in the context of asymptotic acceleration. Thus, even the new

contributions to the turning rate Ω can’t become arbitrarily large which then
implies again the above bound on Ω/H.

5.4.1 Swamp Cone and the general Turning Rate

Before we begin, let’s recall the definitions and assumptions for the single hyper-
bolic plane in section 5.3.1 which will again apply here.
The first step is then to relax the critical case condition (5.50) which is supposed
to hold for limiting tangent vectors. This is possible, if we are not fully at the
boundary of moduli space, meaning we only consider large s here. Let us em-
phasise that (5.50) can also be extended into the bulk of moduli space away from
the boundary. However, once we allow for a non-constant tangent vector, we gain
more freedom in the choice of our trajectory and that is precisely what we exploit
now. This is achieved by replacing the proportionality constant β with a general
function f(t), namely

β = const → f(t). (5.115)

By the previously employed angle notion this can be translated into a non-constant
angle θ(t) via

f(t) = tan θ(t) (5.116)

which is completely harmless since we are dealing with a conformally flat hyper-
bolic plane. To develop intuition, it is usually better to use the formulation in
terms of the angle. Let us emphasise that, up to this point, we are still fully
general for infinite-distance trajectories. We have just reparametrised the field
ϕ(t) in terms of the function f(t), namely

ϕ̇ = f(t)ṡ. (5.117)

For a given s(t) and ϕ(t) one can determine f(t) or, the other way round, we can
integrate this expression for a given f(t) and s(t) to find ϕ(t). Of course, there
might be some extreme functions which might give some problems, but we will
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assume, that every function involved here has a sufficiently nice behavior. Then,
it turns out that this parametrisation is very well suited for our purposes.
Moreover, the function f(t) has to be bounded because there exists a maximum
deviation angle θ0 (coming from the lower bound on the decay rate λ0) which
may not be exceeded to be consistent with the SDC. As argued earlier, it is also
allowed to have negative angles, which then translates into a lower bound on the
angle −θ0, such that we get

− tan θ0 ≤ f(t) = tan θ(t) ≤ tan θ0. (5.118)

This holds due to the montonicity of tan θ on the interval [−π/2, π/2]. One direct
implication of the above is that a trajectory now given by

Φ̇2 = n2 ṡ
2

s2
(
1 + f(t)2

)
T s =

1

Φ̇
ṡ

T ϕ =
1

Φ̇
f(t)ṡ (5.119)

is completely contained in a cone in the (ṡ, ϕ̇)-plane which extends from −θ0 to
θ0. We name this cone the swamp cone because everything outside the cone is
inconsistent with the SDC and therefore in the Swampland. In the previous section
the trajectories were restricted to straight lines within this cone, but here the
trajectory may do whatever it wants, as long as it doesn’t reach out of the swamp
cone. In order to translate this idea to the (s, ϕ)-plane, we have to integrate.
Keep in mind, that so far it has been trivial to integrate the fields because ṡ and
ϕ̇ have been just related by a constant factor β. The situation with a general f(t)
is more involved. For instance, the trajectory in (s, ϕ)-plane has a swamp cone
associated at each point such that the slope of the trajectory stays within the
cone. To the mindful reader, this should be very reminiscent of Special Relativity
and the light-cone. This is illustrated in figure 5.1.
At this point one might worry that this is a very strong interpolation of statements,
which are supposed to hold at the boundary of moduli space. But this isn’t a
problem here because we will take a modest approach and just assume that these
principles also apply near the boundary of moduli space, i.e. just for very large
s. This will be made manifest in the next section. For now we continue with a
general function f(t).
The main reason for this generalisation was to investigate, whether this enables
us to generate a larger turning rate Ω. The calculation of Ω works in complete
analogy to the previous section. The tangent vector and the speed of the trajectory
were already given in (5.119) such that we arrive at

DtT
s =

1

Φ̇

(
s̈− ṡ

Φ̇
Φ̈− ṡ2

s
(1− f 2)

)
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Figure 5.1: This figure shows an illustration of the swamp cone. For instance, on
the left-hand side we have the swamp cone (indicated by the blue shading) on the
(ṡ, ϕ̇)-plane where a trajectory, given by its tangent vector T a, is just restricted to
stay inside the blue-shaded area. Although the orange tangent vector is depicted
as a straight line, as it was the case previously, it isn’t constrained to that. In
fact, the trajectory can turn as sharply as it wants, as long as it stays consistent
with an infinite distance limit. Moreover, on the right-hand side we have the
(s, ϕ)-plane. Here the orange trajectory has a swamp cone (again indicated by
the blue shading) associated at each point along it, meaning that the slope has to
stay within it. This is clearly reminiscent of the light-cone from Special Relativity.

DtT
ϕ =

1

Φ̇

(
ϕ̈− ϕ̇

Φ̇
Φ̈− 2

ṡϕ̇

s

)
(5.120)

which turns out to be formally identical with the result for a constant tangent
vector. But now the differences start to come in, namely all the second derivative
terms, which implicitly involve f(t), get extra contributions. The relevant terms
work out to be

ṡ

Φ̇
Φ̈ = s̈− ṡ2

s
+

ṡ

1 + f 2
fḟ

ϕ̈ = s̈f + ṡḟ

ϕ̇

Φ̇
Φ̈ = f

(
s̈− ṡ2

s

)
+

f 2

1 + f 2
ṡḟ . (5.121)

Thus, the covariant derivative of the tangent vector also changes

DtT
s =

f 2

n
√
1 + f 2

ṡ− sf

n (1 + f 2)
3
2

ḟ

DtT
ϕ = − f

n
√
1 + f 2

ṡ+
s

n (1 + f 2)
3
2

ḟ . (5.122)
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Let us emphasise that everything is consistent with the previous findings upon
setting ḟ = 0. But these expressions are quite cumbersome, so we switch directly
to the formulation in terms of the angle θ(t) by virtue of (5.116). Then, the
covariant derivatives DtT

a become

DtT
s =

1

n
tan2 θ cos θ ṡ− s

n
sin θ θ̇

DtT
ϕ = − 1

n
sin θ ṡ+

s

n
cos θ θ̇ (5.123)

where we used ḟ = θ̇/ cos2 θ. From this point it is straightforward to determine
the turning rate which turns out to be

Ω2 =

(
tan θ

ṡ

s
− θ̇

)2

. (5.124)

For the last step please note that the velocity along the trajectory takes the
following familiar form

Φ̇ =
n

cos θ

ṡ

s
. (5.125)

Then, we arrive at the final result

Ω =

∣∣∣∣sin θn Φ̇− θ̇

∣∣∣∣ . (5.126)

First of all, this result is still fully consistent with (5.61). Since it was already
argued that the first term here is bounded by O(1) ·

√
ϵ, we would require a large

angular velocity θ̇ to achieve a significant turning rate Ω. Without making further
model-dependent specifications we can’t really infer something quantitative from
here. But, as we will see shortly, there are some implications for θ̇ near the
boundary of moduli space where the constraints of the SDC become stronger.
Before we move on, let us point out that (5.126) is the fully general expression for
the turning rate of an infinite-distance trajectory on a hyperbolic plane.

5.4.2 Asymptotic Expansion of θ

As argued before, the function f(t) is in principle capable to describe the full
trajectory up to s = ∞. However, we can’t make any quantitative statements
without assuming a specific trajectory. Hence, instead of using the full function
f(t) we make an expansion around s = ∞ because we know how f(t) has to
behave in the limit, in order to respect the SDC, namely it has to stay within the
swamp cone and it has to approach a constant

f(t)
t→∞−→ β = const (5.127)
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which is precisely the constant we have introduced for the critical case (5.50). Or,
equivalently, the angle hast to behave as

θ(t)
t→∞−→ θ∞ = const (5.128)

where θ∞ = tan−1 β. One could expand either f(t) = tan θ(t) or directly θ(t),
but it turns out that the latter connects better to the previous calculations, al-
though both are perfectly fine. Because for our setup s is always monotonically
increasing with t (otherwise we would certainly leave the swamp cone), we can
also parametrise θ in terms of s instead of t. This enables us to directly expand
θ(s) like

θ(s) = θ∞ +
∑
n>0

cn
sn

(5.129)

around s = ∞, which represents the boundary of moduli space, and θ∞ is given as
above. The sum only runs over positive integers such that the expression converges
to a certain value in the limit s → ∞ 16. Moreover, it was already established
that θ(s) ≤ θ0 as required by consistency with the SDC. Since we also allow for
negative θ, there is also the lower bound θ(s) ≥ −θ0. However, this leads to
exactly the same conclusions so we just stick to the upper bound.
Now we take s to be large enough that the sum in (5.129) is very well approximated
by the first non-zero term, which we assume to be the k-th term, so we get

θ(s) ≈ θ∞ +
ck
sk
. (5.130)

Using θ(s) ≤ θ0 we can find the following estimate

ck
sk

≤ θ0 − θ∞ ≤ 2θ0 (5.131)

where in the last step we used that θ∞ could at most be equal to −θ0. Ultimately,
the angular velocity θ̇ is the object we are after. Thus, performing the derivative
of (5.130) leads to

θ̇(s) ≈ −k ck
sk
ṡ

s
(5.132)

by the chain rule. Furthermore, the derivative vanishes for s → ∞ which is
required to approach a finite value. Now let’s turn to the absolute value of θ̇
because we are only interested in the magnitude of θ̇. Hence, using (5.131) and
(5.125) we can get an upper bound for the absolute value of the angular velocity∣∣∣θ̇(s)∣∣∣ ≤ 2k

n
θ0 cos θ(s) Φ̇. (5.133)

16This excludes expansions like
∑

n cn sin(ns) because these would have an indeterminate limit
s → ∞. Furthermore, there is another class of functions which is not captured by the above
expansion. These functions don’t admit a polynomial expansion but rather a ”non-perturbative”
one using exponentials like

∑
n cne

−ns.
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where every quantity on the right-hand side is positive. Here cos θ(s) could also
be expanded according to (5.130), but this isn’t necessary here, since the cosine
is a bounded O(1) function anyway. The question is now, how large can this be?
If we again assume moderate curvature, meaning 1/n ∼ O(1), then only k could
make the above big. Now recall that k is the first non-vanishing contribution in
the sum in (5.129), so a large k would be very unnatural. But, most importantly,
the angular velocity θ̇ is proportional to the speed along the trajectory like the
other contribution to the turning rate Ω.
So have seen that |θ̇| cannot become arbitrarily large near the boundary of moduli
space and that it comes at the same order in ϵ as the other contribution. By
using (5.34) we have thus found that, even including turns, the turning rate Ω is
generally bounded by

Ω

H
< c

√
ϵ (5.134)

around the boundary of moduli space where c is an O(1) constant. The precise
value of c depends on the interplay between sin θ/n and θ̇ in the absolute value.
But this isn’t really important as c is just O(1) for generic Quantum Gravity
setups.



Chapter 6

Summary and Outlook

6.1 Summary

Before going into more detail, let us reiterate the main results of this thesis:

1. A novel geometric flow for the number of spacetime dimensions D was de-
rived from a refined version of Ricci flow.

2. An extension to Ricci flow, the so called Einstein-Maxwell flow, was con-
structed, which includes the backreaction of the matter content, namely
given by a Maxwell field, onto the spacetime metric.

3. In the setting of cosmic acceleration the non-geodesicity Ω allowed by the
SDC near the boundary of moduli space is restricted to be Ω < O(1) ·

√
ϵ

(in Hubble units).

Now a more complete summary of the findings is presented.

Geometric Flow Equation for the Number of Spacetime Dimensions

Starting from the expression for the graviton β-function, which is derived from
the String Theory worldsheet σ-model, a two-loop refined version of the Ricci flow
equation was stated. Then the associated flow equation for the volume V of the
manifold, on which the flow takes place, was explicitly constructed. Exploiting
its suitable form, namely it having its D-dependence factored out, the spacetime
dimension D was generalised to a continuous parameter and provided with an
analogous flow, the so called D-flow. It must be stressed that the geometric evo-
lution equation forD only corresponds to the one for V , when it is non-singular. In
this sense, the equation for D can be regarded as a generalisation of the framework
from which we started. Thereafter, D-flow was applied to maximally symmetric
Einstein spaces, for instance a family of D-spheres and D-dimensional AdS space-
time, highlighting the interesting behaviour around fixed and singular points. In
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both cases the attractive or repulsive behaviour of the singled-out values of D was
studied in detail. Lastly, the physically relevant example of Freund-Rubin com-
pactification, which is a product manifold of the previous cases, i.e. AdSd × Sd

′
,

was analysed extensively, finding some remarkable similarities with the behaviour
one would expect from the SDC. In particular, D-flow restricted to the internal
dimension d′ lead to an infinite KK-tower becoming light with an induced distance
∆ along the flow which scales as ∆ ∼ ln d′ for large d′.

Gradient Flow of Einstein-Maxwell Theory

The natural geometric flow for Einstein gravity coupled to a Maxwell field in
the asymptotically flat setting was explored. It arises as the gradient flow of the
Einstein-Maxwell action. Then, we have shown that for static geometries and
Maxwell fields this flow, the so called EM flow, is well-posed taking either purely
electric or magnetic potentials, when it is parabolic in character. It was also argued
that EM flow preserves smooth non-extremal and extremal horizons, hence making
it suitable for the application to charged black hole geometries. For geometries
with an extremal horizon the near horizon flow decouples from the exterior, as
one might expect. Moreover, the surface gravity of a horizon is preserved by
the flow. In the electric case the potential difference between infinity and the
horizon is fixed by the natural asymptotic boundary conditions which fix the
gauge potential at infinity. In the magnetic case the natural boundary condition
of fixing the asymptotic magnetic potential results in a conserved magnetic charge
under the EM flow. Thus, we may regard the electric and magnetic flows as
being conjugate to each other in the sense that the electric flow preserves the
potential (difference), while the magnetic one preserves charge. Furthermore,
EM flow was applied to non-extremal and extremal Reissner-Nordström solutions.
Although these are fixed points of the flow, one could induce a non-trivial flow
by perturbing the geometry. As the geometric flow behavior for black holes is
generally very complicated, we resorted to a numerical evaluation. However, for
extremal Reissner-Nordström the near horizon flow could be solved analytically.

Cosmic Acceleration and Turns in the Swampland

As it turned out, the Swampland Distance Conjecture can be consistent with non-
geodesic paths, as long as the limiting tangent vector of the trajectory is constant.
In particular, this ensures a non-vanishing decay rate of the mass tower in the limit
to the boundary of moduli space. Since cosmic acceleration, which is characterised
by ϵ < 1, usually involves several scalar fields on non-geodesic trajectories, it serves
as a natural application of this feature. For instance, it was previously observed
in the literature that a highly turning, i.e. highly non-geodesic, motion could
resolve the tension between the dS conjecture and cosmic acceleration. However,
for infinite-distance trajectories with a constant tangent vector in a hyperbolic
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geometry, which is the typical asymptotic limit of Calabi-Yau compactifications,
the turning rate or non-geodesicity factor Ω is bounded by Ω < O(1) ·

√
ϵ (in

Hubble units). This holds for very general trajectories and severely restricts a
large turning rate. Away from the boundary of moduli space the condition of a
constant tangent vector can be relaxed which results in additional contributions
to the turning rate Ω. However, as we show by an asymptotic expansion around
the the boundary of moduli space, these new terms are again O(1) ·

√
ϵ such

that the previous bound persists. Moreover, a new concept for the analysis with
infinite-distance trajectories consistent with the SDC was developed, namely the
swamp cone.

6.2 Outlook

In this part some possible future directions of the results in this thesis are sug-
gested. After that some final remarks are made.

Geometric Flow Equation for the Number of Spacetime Dimensions

First of all, the limit d′ → ∞ in the Freund-Rubin compactification corresponds
to large curvatures which might lead to problems, as it is a regime where the geo-
metric formulation breaks down due to the KK-tower becoming super-Planckian.
A possible solution to this is the inclusion of even higher-loop corrections from
the graviton β-function in String Theory. In fact, this inclusion might further in-
fluence the structure of fixed points and singular points, possibly giving new ones
at finite dimensions. Moreover, D-flow applied to general D-dimensional black
hole solutions, like the generalisation of the Schwarzschild black hole, might yield
some intriguing results. This could also open up a possibility to relate D-flow to
other Swampland Conjectures. Finally, it would interesting to construct a proper
notion of distance for the context of D-flow beyond the large D limit since the
standard formulas, like ∆g for the metric distance, can’t be directly applied.

Gradient Flow of Einstein-Maxwell Theory

There are a lot of possible future directions here. First, one could consider EM flow
in the context of the Swampland Program. For instance, it would be expected that
the Ricci Flow Conjecture also applies here since EM flow is a direct generalisation
of Ricci flow. Moreover, EM flow can also be applied to extremal black holes,
which are a very natural test object within QG. A very welcomed property here
is the analytical control in the near horizon flow of the geometry. Then, the flow
could be easily extended to also include scalar fields which would provide a direct
connection to the SDC. In a preliminary study into this direction it seemed that
the attractor formalism was preserved by a flow of an extremal dilatonic black hole
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including a scalar field. Furthermore, if a geometric flow of a black hole ends up at
flat space after a resolution of a flow singularity, the black hole ”disappears” along
the flow which closely resembles the effect of Hawking radiation. Thus, black hole
evaporation could be modelled by geometric flow equations. The resolution of
a flow singularity is done by hand and is called surgery. As Ricci flow and also
EM flow are closely related to the string β-functions, the inclusion of higher-loop
corrections might provide a mechanism for the surgery. However, there are still a
lot more future directions, e.g. an extension from static to stationary spacetimes,
a proper investigation of the parameter τ characterising the relative speed between
the metric and the Maxwell field flow, a systematic exploration of the unstable
modes in the electric Reissner-Nordström EM flow or the construction of the
analogue to Ricci solitons for EM flow.

Cosmic Acceleration and Turns in the Swampland

Since a non-geodesic trajectory typically is realized by the addition of a potential,
the bound on Ω induced by the SDC should translate into a constraint on the
potential, or at least a constraint on the valleys, i.e. the flat directions, of the
potential. Moreover, the bound on Ω doesn’t release the tension between the dS
conjecture and cosmic inflation but it further hints at a delicate interplay between
Ω, ϵ, η which is required to satisfy the dS conjecture. In particular, the parameter
η was recently of growing interest within the community. As more investigations
are conducted, we should get closer and closer to a resolution of this problem.
Furthermore, if the moduli fields are inhomogeneous instead of homogeneous,
the extra spacetime dependence can be understood as introducing extra forces in
moduli space providing another mechanism for non-geodesic trajectories. It would
be interesting to see whether this approach yields a similar bound on the turning
rate near the boundary of moduli space.

Final Remarks

The current time is truly exciting, as more and more significant breakthroughs are
made within the Swampland Program. The theoretical understanding becomes
better and the observational implications more frequent and more precise. Hence,
I believe that it is only a matter of time until we have a real observational test for
String Theory at the energy scale accessible to us. Then we know, if String Theory
is a ”mistake”, relating back to the quote by Lee Smolin. But it was hopefully
firmly established throughout this thesis that String Theory, as a consistent theory
of Quantum Gravity, certainly isn’t trivial either way.



Appendix A

Decomposition of RD

The metric is given as

ds2 = GMNdX
MdXN = e2αϕgµνdX

µdXν + e2βϕ
(
dXd

)2
(A.1)

where M = 0, . . . , d and µ = 0, . . . , d − 1. Furthermore, gµν and ϕ only depend
on the external coordinates Xµ. Introducing

g̃µν = e2(α−β)ϕgµν (A.2)

the metric (A.1) becomes

ds2 = e2βϕ
(
g̃µνdX

µdXν +
(
dXd

)2)
. (A.3)

Now we can further define

GMN = e2βϕG̃MN . (A.4)

The above is a Weyl rescaling of the metric such that we can apply the stan-
dard transformation behavior of the Ricci scalar under Weyl rescalings, namely
in general it holds for a n-dimensional metric

GMN → Ω2GMN

R → Ω−2
(
R− 2(n− 1)∇2 lnΩ− (n− 2)(n− 1)(∂ lnΩ)2

)
. (A.5)

Thus, we get

RD = e−2βϕ
(
R̃D − 2β(D − 1)□̃ϕ− β2(D − 2)(D − 1)(∂̃ϕ)2

)
(A.6)

where

□̃ϕ = G̃MN∇̃M∇̃Nϕ
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(∂̃ϕ)2 = G̃MN∂Mϕ∂Nϕ.

Furthermore, R̃D is the Ricci scalar with respect to G̃MN and ∇̃M is the covari-
ant derivative with respect to G̃MN . The above quantities need to be further
decomposed as follows

□̃ϕ = e−2(α−β)ϕ (□ϕ+ (d− 2)(α− β)(∂ϕ)2
)

(A.7)

(∂̃ϕ)2 = e−2(α−β)ϕ(∂ϕ)2 (A.8)

where the quantities on the right-hand side are purely defined in terms of gµν ,
namely

□ϕ = ∂µ∂µϕ

(∂ϕ)2 = ∂µϕ∂
µϕ.

Lastly, we need to take care of R̃D. Because nothing depends on Xd, it is not
hard to show by using the explicit formulas that

R̃D = R̃d. (A.9)

Here R̃d is determined by g̃µν . Thus, one can apply the above Weyl rescaling
formula (A.5) once more

R̃d = e−2(α−β)ϕ (Rd − 2(d− 1)(α− β)□ϕ− (d− 1)(d− 2)(α− β)2(∂ϕ)2
)
.

(A.10)
All these results can be plugged into (A.6) and, when the dust settles, we arrive
at

RD = e−2αϕ (Rd − C1∂µϕ∂
µϕ− C2∂

µ∂µϕ) (A.11)

with

C1 = (d− 1)(d− 2)(α− β)2 + 2βd(d− 2)(α− β) + d(d− 1)β2 (A.12)

C2 = 2 ((d− 1)(α− β) + βd) . (A.13)



Appendix B

Geodesics of Hyperbolic Planes

Here we will derive the geodesics for a single hyperbolic plane and a product of
two hyperbolic planes. Let’s first recall the geodesic equation

Φ̈a + ΓabcΦ̇
aΦ̇b = 0 (B.1)

where the dot indicates a derivative with respect to ξ, i.e. ˙ = d/dξ, which
parametrises the geodesic. Also note that we used Φa instead of ϕa to collec-
tively label the fields in order to avoid confusion with the axion ϕ. Thus, we
slightly differ here from the notation in section 2.2.1.
We begin by examining the single hyperbolic plane whose metric we state here
again for completeness

d∆2 = gabdΦ
adΦb =

n2

s2
(
ds2 + dϕ2

)
(B.2)

where Φa = (s, ϕ). This parametrises the upper half of the hyperbolic plane, i.e.
s > 0. The non-vanishing Christoffel symbols are

Γsss = −1

s
= Γϕsϕ, Γsϕϕ =

1

s
(B.3)

such that the geodesic equation (B.1) becomes

s̈− 1

s
ṡ2 +

1

s
ϕ̇2 = 0

ϕ̈− 2

s
ṡϕ̇ = 0. (B.4)

First of all, we note that these equations are invariant under the transformation
ϕ → −ϕ. Then, it is easy to see that a solution to these equations is given by
a vertical line along the s-direction with ϕ = ϕ0 = const. Moreover, there is
a second class of solutions, namely semi-circles with centers along s = 0 [32].
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But because we are interested in the region of large s with trajectories trending
towards s = ∞, we will focus only on the first class. Assuming ϕ = ϕ0 = const
the second geodesic equation becomes trivial, whereas the first reads

s̈− 1

s
ṡ2 = 0. (B.5)

We can safely divide by s, since it is positive, such that we get

s̈

s
− ṡ2

s2
= 0

d2

dξ2
ln s = 0

ln s = aξ + b

⇒ s(ξ) = C eaξ (B.6)

where C ≡ eb. This also implies C > 0 which is required by s > 0. Furthermore,
the integration constant a is also positive to be consistent with s → ∞. Please
note that we are always able to reparametrise this such that we can get almost
any behavior for s, i.e. s doesn’t have to be necessarily exponential.
Next, we turn to the product of two hyperbolic planes. In that case the metric
reads

d∆2 = gabdΦ
adΦb =

n2

s2
(
ds2 + dϕ2

)
+
m2

u2
(
du2 + dψ2

)
(B.7)

where Φa = (s, ϕ, u, ψ). This again holds for s, u > 0. The non-vanishing Christof-
fel symbols for this metric are

Γsss = −1

s
= Γϕsϕ, Γsϕϕ =

1

s
, Γuuu = −1

u
= Γψsψ, Γuψψ =

1

u
. (B.8)

Therefore, we arrive at the following geodesic equations

s̈− 1

s
ṡ2 +

1

s
ϕ̇2 = 0

ϕ̈− 2

s
ṡϕ̇ = 0

ü− 1

u
u̇2 +

1

u
ψ̇2 = 0

ψ̈ − 2

u
u̇ψ̇ = 0. (B.9)

In analogy to the above, these equations enjoy an invariance under axion reflection,
i.e. ϕ → −ϕ and ψ → −ψ. Moreover, it is pretty evident from these equations
that a geodesic for the product of two hyperbolic planes consists of two geodesics
of the single hyperbolic plane combined in one vector. Due to the same reasons
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as above, we reject all the semi-circle solutions and just focus on the case with
constant axions, namely ϕ = ϕ0 = const and ψ = ψ0 = const. Hence, the axion
equations become again trivial and we get twice the same saxion equation which
precisely has the same form as above

s̈− 1

s
ṡ2 = 0

ü− 1

u
u̇2 = 0. (B.10)

Similarly to the case before, the solution to these equations works out to be

⇒ s(ξ) = Ceaξ

u(ξ) = Debξ (B.11)

where a, b, C,D > 0 due to the same consistency arguments. Note that we could
also choose either a or b to be 0 such that one hyperbolic plane is completely
constant and we just have a geodesic, i.e. a vertical line, on the other one. Fur-
thermore, as above, this solution can also be reparametrised to give a behavior
different from the exponential one.
Finally, one has to emphasise that all the constants introduced in this appendix
have no relation to the main part of the text, they are merely integration con-
stants.
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Appendix C

Geodesicity of Critical
Trajectories

Here we check, if the critical trajectories from section 5.3.1 and 5.3.2 fulfill the
geodesic equation. This is meant as a complementary point of view to the analysis
in the just mentioned sections, 5.3.1 and 5.3.2, where the geodesicity was deter-
mined by the computation of Ω.
Now recall the geodesic equations for a single hyperbolic plane which has already
been introduced in appendix B, namely we have

s̈− 1

s
ṡ2 +

1

s
ϕ̇2 = 0

ϕ̈− 2

s
ṡϕ̇ = 0 (C.1)

where the dot indicates a derivative with respect to ξ, i.e. ˙ = d/dξ, which
parametrizes the given trajectory.
Inspired by section 5.3.1 we explore now what is happening in the critical case
characterized by

ϕ̇ = βṡ (C.2)

where β is a real constant. Intuitively, we would immediately say that this isn’t
a geodesic unless β = 0 because we have seen in appendix B that a geodesic
(trending towards s = ∞) has to have ϕ̇ = 0. For the critical case the geodesic
equations above become

s̈− 1

s
ṡ2(1− β2) = 0

β

(
s̈− 2

s
ṡ2
)

= 0. (C.3)

It turns out this can only be consistently solved for β = 0 and then we recover
the geodesic solution from appendix B which is what we anticipated from the
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start. However, we also see that the critical condition ϕ̇ = βṡ makes the system
of equations overdetermined, i.e. we have two equations for a single function s.
Overdetermined systems aren’t guaranteed to have a solution which is precisely the
case here. They are usually only solvable, if some equations are linearly dependent.
Here we could only make that happen with β2 = −1 (after multiplying the second
equation by β) which would imply a complex β. So, we reject that possibility.
Besides, we want a solution for an arbitrary β and not only for some special value.
That explains what happens on the level of the geodesic equation in the critical
case which is in perfect agreement with the result of a non-vanishing turning rate
Ω in section 5.3.1.
Now we turn to the product of two hyperbolic planes. Again, recall the geodesic
equations from appendix B which read

s̈− 1

s
ṡ2 +

1

s
ϕ̇2 = 0

ϕ̈− 2

s
ṡϕ̇ = 0

ü− 1

u
u̇2 +

1

u
ψ̇2 = 0

ψ̈ − 2

u
u̇ψ̇ = 0. (C.4)

Now it is very interesting to see what happens in the critical case for two saxions
from section 5.3.2, which is governed by constant axions (ϕ = ϕ0 = const and
ψ = ψ0 = const) and the condition

u̇

u
= δ

ṡ

s
(C.5)

for some δ = const. Since the axions are kept constant, it’s quite reasonable to
expect that this should also solve the geodesic equations. And, indeed, we get

s̈− 1

s
ṡ2 = 0

δ

(
s̈− 1

s
ṡ2
)

= 0. (C.6)

Unlike above these two equations are compatible in the sense that the two equa-
tions are linear dependent. And we can solve this overdetermined system of equa-
tions consistently for an arbitrary non-vanishing δ. In particular, the solution for
s is given by

s(ξ) = Ceaξ (C.7)

where C, a > 0, as in appendix B. As another cross check, we can integrate the
critical case condition (C.5) to

lnu = δ ln s+ k (C.8)
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where k is some integration constant. Plugging the solution for s, i.e. (C.7), into
that we arrive at

lnu = δ ln s+ k = (δa) ξ + (δ lnC + k) (C.9)

which is obviously also a solution to the geodesic equation for constant axions.
Therefore, the critical case here turns out to be a geodesic trajectory for the
product of two hyperbolic planes which is again in perfect agreement with the
corresponding result Ω = 0 from chapter 5.
Moreover, it is also worthwhile to explore what happens in the case involving the
saxion and the axion from the other hyperbolic plane, which was also introduced
in section 5.3.2. In that case we set ϕ = ϕ0 = const and u = u0 = const. This
makes the geodesic equation associated with ϕ trivial again. But this time the
equation for the other constant coordinate u isn’t trivial, which is very crucial.
Omitting the ϕ-equation, we get

s̈− 1

s
ṡ2 = 0

1

u0
ψ̇2 = 0

ψ̈ = 0. (C.10)

We can already read off some implications from this set of equations, for instance,
ψ has to be constant. But let’s employ the critical case condition first. In this
setting it is given by

ψ̇ = γ
ṡ

s
(C.11)

for γ = const. Hence, the above equations turn into

s̈− 1

s
ṡ2 = 0

1

u0
γ2
(
ṡ

s

)2

= 0

γ

(
s̈− 1

s
ṡ2
)

= 0. (C.12)

Without the second equation we would be in the same situation as in the previous
case which would imply a geodesic trajectory with Ω = 0. However, precisely this
second equation spoils the situation since it forces upon us the uninteresting case
s = const. Besides the fact that this case is uninteresting, we have also demanded
that we want our trajectory to approach s = ∞. So there is no solution to the
geodesic equation in this case. In agreement with the findings of section 5.3.2 we
conclude that Ω ̸= 0 and that we have to include all the coordinates in order to
get a proper result. Hence, this is another point of view to the argument, why we
have to be careful with these effective metrics, which was also presented in section
5.3.2.
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[35] R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory,
Theoretical and Mathematical Physics, Springer, Heidelberg, Germany
(2013), 10.1007/978-3-642-29497-6.

[36] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string,
Cambridge Monographs on Mathematical Physics, Cambridge University
Press (12, 2007), 10.1017/CBO9780511816079.

[37] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond,
Cambridge Monographs on Mathematical Physics, Cambridge University
Press (12, 2007), 10.1017/CBO9780511618123.

[38] B. Zwiebach, A first course in string theory, Cambridge University Press
(7, 2006).

[39] Y. Nambu, DUALITY AND HADRODYNAMICS, in Winter School in
Theoretical Particle Physics, pp. 573–596, 1986.

[40] T. Goto, Relativistic quantum mechanics of one-dimensional mechanical
continuum and subsidiary condition of dual resonance model, Prog. Theor.
Phys. 46 (1971) 1560.

https://doi.org/10.1007/JHEP04(2020)170
https://arxiv.org/abs/1910.00453
https://doi.org/10.1016/j.nuclphysb.2020.115112
https://doi.org/10.1016/j.nuclphysb.2020.115112
https://arxiv.org/abs/1912.07453
https://arxiv.org/abs/2011.06610
https://doi.org/10.1007/JHEP08(2018)143
https://arxiv.org/abs/1802.08264
https://doi.org/10.1002/prop.201900037
https://doi.org/10.1002/prop.201900037
https://arxiv.org/abs/1903.06239
https://doi.org/10.1007/JHEP03(2021)299
https://doi.org/10.1007/JHEP03(2021)299
https://arxiv.org/abs/2012.00034
https://doi.org/10.1007/978-3-642-29497-6
https://doi.org/10.1017/CBO9780511816079
https://doi.org/10.1017/CBO9780511618123
https://doi.org/10.1143/PTP.46.1560
https://doi.org/10.1143/PTP.46.1560


158 BIBLIOGRAPHY

[41] A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B 103
(1981) 207.

[42] A.M. Polyakov, Quantum Geometry of Fermionic Strings, Phys. Lett. B
103 (1981) 211.

[43] S. Deser and B. Zumino, A complete action for the spinning string,
Physics Letters B 65 (1976) 369.

[44] L. Brink, P. Di Vecchia and P. Howe, A locally supersymmetric and
reparametrization invariant action for the spinning string, Physics Letters
B 65 (1976) 471.

[45] L. Brink and J.H. Schwarz, Local Complex Supersymmetry in
Two-Dimensions, Nucl. Phys. B 121 (1977) 285.

[46] N. Gendler and I. Valenzuela, Merging the weak gravity and distance
conjectures using BPS extremal black holes, JHEP 01 (2021) 176
[2004.10768].

[47] D. Andriot, N. Cribiori and D. Erkinger, The web of swampland
conjectures and the TCC bound, JHEP 07 (2020) 162 [2004.00030].

[48] T. Rudelius, Asymptotic observables and the swampland, Phys. Rev. D
104 (2021) 126023 [2106.09026].

[49] G. Dvali, Black Holes and Large N Species Solution to the Hierarchy
Problem, Fortsch. Phys. 58 (2010) 528 [0706.2050].

[50] G. Dvali and D. Lust, Evaporation of Microscopic Black Holes in String
Theory and the Bound on Species, Fortsch. Phys. 58 (2010) 505
[0912.3167].

[51] D. Klaewer and E. Palti, Super-Planckian Spatial Field Variations and
Quantum Gravity, JHEP 01 (2017) 088 [1610.00010].

[52] F. Baume and E. Palti, Backreacted Axion Field Ranges in String Theory,
JHEP 08 (2016) 043 [1602.06517].
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