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Zusammenfassung

Stark wechselwirkende Systeme sind eine der Hauptherausforderungen der moder-
nen Physik. Ihre intrinsische Komplexität verhindert eine effiziente Simulation mit
klassischen Computern. Ein Beispiel für solche Systeme sind antiferromagnetische
Mottisolatoren, in denen ein Wettstreit zwischen Spin- und Ladungsfreiheitsgraden
zu exotischen Phänomenen wie Ladungsträgerpaarung und Supraleitung führt. Das
Fermi-Hubbard-Modell, welches das Verhalten stark wechselwirkender Fermionen
auf einer Gitterstruktur beschreibt, ist ein Minimalmodell welches die Physik dieser
stark korrelierten Materialien wiedergibt.
In dieser Doktorarbeit benutzen wir einen Quantensimulator basierend auf ultra-
kalten Atomen in optischen Gittern, um Simulationen des Fermi-Hubbard-Modells
durchzuführen. Wir realisieren den stark wechselwirkenden Bereich dieses Modells
in einer Leitergeometrie bestehend aus zwei gekoppelten Ketten. Wir messen lokale
und nichtlokale Spin- und Ladungskorrelationen indem wir die Spin und Dichteauf-
lösung einzelner Gitterplätze unseres Quantengasmikroskops nutzen. Wir untersu-
chen das System bei Temperaturen auf der Größenordnung der Spinaustauschwech-
selwirkung, welche aufgrund des Zusammenspiels von magnetischer und kinetischer
Energie das Einsetzen exotischer Quantenvielteilchenphänomene markiert.
In dotierten Leitersystemen beobachten wir direkt die Paarung von Dotanden, ein
Prozess der der Hochtemperatursupraleitung zu Grunde liegt. Wir stellen fest, dass
die Paarung stark gesteigert wird, wenn die Bewegungsfreiheit der Dotanden in ei-
ne Richtung unterdrückt wird, während Spinaustausch in alle Richtungen stattfindet.
Mit einer solchen Geometrie erreichen wir Bindungsenergien die vergleichbar mit
der Spinaustauschwechselwirkung sind. Im Gegensatz dazu ist Pauliabstossung do-
minant gegenüber der Paarbindung, wenn Bewegung in alle Richtungen ermöglicht
wird. Wir untersuchen außerdem die Auswirkung der Paare auf den Magnetismus
im System und bestätigen deren Zusammenhang. Bei höherer Dotierung stellen wir
eine Korrelation zwischen verschiedenen Paaren fest, welche konsistent ist mit La-
dungsdichteordnung.
Ein weiteres Ergebnis dieser Arbeit ist die Realisierung einer Variante der symme-
triegeschützten topologischen Haldane Phase bei endlicher Systemgrösse und end-
licher Temperatur. Wir beobachten die Signaturen dieser paradigmatischen Quan-
tenphase, indem wir das experimentelle Leitersystem auf eine antiferromagnetische
Spin-1 Kette abbilden. Wir nutzen die einzigartigen Möglichkeiten unseres Experi-
ments um nichtlokale Stringordnungsparameter zu messen, welche uns die Unter-
scheidung zwischen topologischer und trivialer Phase ermöglichen. Wir untersuchen
außerdem die Robustheit der Phase bezüglich verschiedener Kopplungsparameter
und Systemgrößen. Schließlich characterisieren wir die Randmoden des Systems.





Abstract

Understanding the behavior of strongly interacting quantum systems remains a cen-
tral challenge in modern physics. The intrinsic complexity of these correlated systems
has prevented efficient simulation on classical computers. Antiferromagnetic Mott in-
sulators are an example in which competing processes of the spin and charge degrees
of freedom lead to exotic phenomena like charge carrier pairing and superconductiv-
ity. The Fermi-Hubbard model, which describes the behavior of interacting fermions
on a lattice, is a minimal model that captures the essential physics of strongly corre-
lated materials.
In this thesis, we use a quantum simulator based on ultracold atoms in optical lattices
to perform simulations of the Fermi-Hubbard model. We realize the strongly inter-
acting regime of this model in a ladder geometry consisting of two coupled chains.
Harnessing the single-site spin and density resolution of our quantum gas micro-
scope, we measure local and nonlocal spin and density correlations. We probe the
system at temperatures around the spin-exchange energy, which marks the onset of
exotic quantum many-body phenomena due to the interplay of magnetic and kinetic
energy.
In doped ladder systems, we directly observe the pairing of dopants, a process that is
at the heart of high-temperature superconductivity. We find that pairing is strongly
enhanced by suppressing one direction of dopant motion, while spin exchange per-
sists in all directions. With such a geometry, we reach binding energies on the order
of the spin-exchange energy. In contrast, if dopant movement is enabled in all direc-
tions, Pauli repulsion becomes dominant over binding. We furthermore investigate
the effect of the pairs on magnetism and confirm their strong connection. At higher
doping, we find correlations between pairs of dopants that are consistent with charge
density order.
Another result of this thesis is the realization of a finite-size and finite-temperature
version of the symmetry-protected topological Haldane phase. We observe the sig-
natures of this paradigmatic quantum phase of matter by mapping the experimental
ladder system onto an antiferromagnetic spin-1 chain. We use the unique ability of
our experiment to measure non-local string order parameters which allow us to dis-
tinguish between the topological and the trivial phase. We furthermore investigate
the robustness of the phase for different parameter regimes and system sizes. Finally,
we characterize the edge modes of the system.
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CHAPTER 1

Introduction

The emergence of material properties from their microscopic constituents still poses
many questions despite decades of research. While the equations governing single
quantum particles are well understood and can often be solved exactly, such solu-
tions remain elusive for most quantum many-body systems [1, 2]. Furthermore, the
presence of strong interactions between particles complicates numerical computation.
The exorbitant size of the Hilbert space, exponential in the number of particles, lies
beyond the capabilities of any classical computer.
Nevertheless, effective models and the development of numerical tools [3–5], as well
as a constant experimental progress [6], contribute to an ever-increasing knowledge
regarding strongly correlated electronic systems, topological quantum matter, atomic
and molecular physics, and many others.
In order to simulate such quantum many-body systems, Richard Feynman famously
proposed the use of a ‘quantum simulator’ [7], a machine whose constituents are
based on quantum mechanics, thereby imitating the very physics it simulates. In the
last 20 years quantum simulation has indeed emerged as a promising tool to tackle a
wide range of quantum many-body problems [8, 9]. In contrast to universal quantum
computers, whose application is still out-of-reach for most tasks, particular quantum
systems are carefully engineered to imitate the behavior of the target system. Promi-
nent platforms to perform such simulations are for example trapped ions [10–12],
ultracold atoms [13], quantum dots [14, 15] and superconducting circuits [16, 17].
Ultracold atoms in particular have shown to be a versatile tool for quantum simu-
lation [18, 19]. They are capable of tackling a large area of quantum problems for
both bosonic and fermionic systems, that range from continuous systems in one [20],
two [21, 22] and three dimensions [23] to lattice models [19]. The simulated systems
can have sizes from few particle physics [24] to ensembles of many millions [25] and
can often be tuned from the non-interacting regime all the way to unitary gases [26,
27].
The field of ultracold atoms was enabled by technological advances in laser cooling
and trapping [28] and evaporative cooling techniques [29–31]. These developments
lead to the breakthroughs of observing Bose-Einstein condensation (BEC) [29, 30] and
the BEC-to-BCS crossover in fermionic superfluids [32].
The implementation of optical lattices [33], i.e. periodic dipole traps of interfering
laser beams, has allowed for the realization of lattice models like the Bose- and Fermi-
Hubbard model [34, 35]. These models play an instrumental role in condensed mat-
ter physics. Optical lattices have allowed for the observation of the superfluid-to-
Mott-insulator transition [36, 37], many-body localization [38] and the realization of
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topological models like the Haldane model [39] and the Hofstadter Hamiltonian [40].
Further technological advancements like the implementation of high-resolution ob-
jectives and improved cooling schemes have allowed for the development of quan-
tum gas microscopy using fluorescence imaging of bosons in optical lattices [41, 42]
and fermions in optical lattices [43–46]. With their single-site resolution, these mi-
croscopes have enabled access to a multitude of so-far-inaccessible microscopic ob-
servables like local spin- and density correlations [47–50]. The approach is closely
related to single atoms in optical tweezers [51–53], a platform currently en route to
fully programmable quantum computation [54].
By now there exist a multitude of both bosonic and fermionic microscopes, some of
which have developed further techniques like spin resolution [47], or bilayer imaging
techniques [55–57] and site-resolved addressing and potential shaping schemes [58,
59]. In this thesis, a fermionic quantum gas microscope is used to explore different
aspects of the Fermi-Hubbard model. In particular ladder-shaped system geometries,
that is lattices consisting of two rungs and L legs, are employed to study charge-
carrier pairing, an intensely researched phenomenon of strongly correlated electronic
systems, as well as the Haldane phase, a paradigmatic symmetry-protected topologi-
cal phase.

The origin of unconventional superconductivity

An outstanding quantum many-body problem is the origin of unconventional super-
conductivity [60, 61]. Superconductors are materials that transmit current without
any resistivity below a certain critical temperature. In particular high-temperature
(high-TC) superconductivity can persist up to 133 K [62, 63]. In order for a material
to become superconducting, the fermionic charge carriers need to form pairs. These
bound objects follow bosonic statistics and can condense into a superfluid, a (quan-
tum) state of matter that flows without viscosity. While for conventional supercon-
ductors the phonon-mediated pairing process is explained by the BCS theory [64], the
origin of charge carrier pairing in unconventional superconductors is still a matter
of debate. One prominent view is to attribute the pairing mechanism to magnetic
fluctuations [65, 66]. This idea of magnetically mediated pairing is supported by the
phase diagrams of unconventional superconductors, as they tend to feature magneti-
cally ordered phases in the vicinity of the superconducting phase. Examples include
heavy fermion systems [67], iron pnictides [68], layered organic materials of the BEDT
family [69], cuprate superconductors [70–72], and twisted bilayer graphene [73, 74].
The last three classes of materials are particularly striking since they exhibit supercon-
ductivity emerging upon doping antiferromagnetic Mott insulators. To simulate the
physics of doped antiferromagnets, cold atom systems can realize the Fermi-Hubbard
model, which is considered to be a minimal model for the cuprate high-TC super-
conductors [75]. However, due to its complexity and challenges like the Fermi sign
problem in numerical investigations [76], the existence of pairing and superconduc-
tivity in the Hubbard model is still a topic of debate [77–80]. In order to shed light
on pairing in Fermi-Hubbard systems, several theoretical studies considered doped
Hubbard ladders and t − J ladders [81–85]. Ladder systems consist of two coupled
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chains and are thus less complex than two-dimensional systems. An important conse-
quence is, that accurate numerical solutions can be obtained using the density matrix
renormalization group (DMRG) algorithm [86]. Ladder materials are also known to
display superconductivity from several solid-state experiments [87–89]. Ladders thus
pose an ideal model to experimentally demonstrate pairing in a well-understood set-
ting and experimentally confirm the possibility of a magnetically mediated pairing
process. The observations presented in this thesis constitute the first microscopic ob-
servation of pairing in a quantum simulator.

Simulating symmetry-protected topological phases

Apart from superconductivity, Hubbard ladders host a myriad of other phenomena
that arise from the antiferromagnetic Mott insulating regime. Symmetry-protected
topological phases are one of them and their appearance in form of the Haldane phase
has been studied in the course of this thesis. Since the description of topological phase
transitions by J. Michael Kosterlitz and David J. Thouless 50 years ago [90], topology
has fundamentally changed our understanding of quantum phases of matter. The
Landau theory [91] distinguishes different phases based on symmetry breaking and
corresponding local order parameters. Topological phase transitions, however, are
not captured by this approach, but can instead be characterized through topological
properties and non-local topological order parameters [92, 93]. Topological invari-
ants serve to distinguish different quantum phases of matter. A prominent example
is the Chern number [94], capturing the winding of eigenstates. While so-called topo-
logical phases display long-range entangled topological order, another class called
symmetry-protected topological (SPT) phases are short-range entangled [95, 96]. Ex-
amples of topological phases include quantum Hall systems [97] and the Kitaev hon-
eycomb model [98], while the archetype of SPT phases is the Haldane phase [99, 100].
This strongly interacting model describes the ground state of an antiferromagnetic
spin-1 chain. A hallmark feature of such topologically nontrivial systems is the bulk-
edge correspondence [93, 95], describing the relationship between the degenerate
edge states and the bulk properties protecting them. In the Haldane phase, the bulk
is characterized by a non-local order parameter, while the edge hosts fourfold degen-
erate edge states due to fractional spin degrees of freedom. In this thesis, an effective
spin-1 chain is built up of spin-1/2 particles in Hubbard ladders in order to realize
the Haldane phase. Even though the spin-1/2 system does not map on a short-range
system, it can be shown that the two systems are adiabatically connected and thus
exhibit the same phase [101].

Outline of the thesis

In this thesis, Fermi-Hubbard ladders are engineered using a Fermi-gas microscope
with single-site potential shaping. The tunability of interactions, lattice potential, and
atom number allows for the realization of the strongly interacting Heisenberg regime,
as well as doped t-J ladders. Harnessing the full spin and density resolution of our
system, we can extract local and non-local correlations within and between the spin
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and charge sectors of the system. This enables us to observe hole pairing mediated by
magnetic correlations, a process that is thought to be behind the charge-carrier pair-
ing in unconventional superconductors. In a second project, we study the physics of
the symmetry-protected topological Haldane phase using ladders with a special edge
termination. We observe the characteristic non-local string order and corresponding
edge states and compare them to a similar system in the topologically trivial phase.

• In Ch. 2 the Fermi-Hubbard model is introduced as an important theoretical
model to study condensed matter physics and the key aspects of simulating this
model in a cold atom quantum simulator are laid out. Fermi-Hubbard ladders
are introduced as a useful minimal system to study the behavior of the doped
Fermi-Hubbard model, and as a system that can realize the Haldane phase.

• In the following, in Ch. 3, the experimental apparatus is introduced. A special
focus lies on the imaging and potential shaping of the system and on recent
technical improvements.

• Ch. 4 presents the main results of this thesis. Dopant pairing, mediated by the
magnetic correlations in the system, is observed in ladder systems through the
evaluation of two-point density correlations. To achieve this, dopant repulsion
is switched off between the legs of the ladder using an especially tailored poten-
tial offset.

• In Ch. 5 we present a finite-size and finite-temperature version of the Haldane
phase. In an undoped ladder with a special tilted edge termination, we define
diagonal unit cells and show that the system of these unit cells displays the
characteristic signatures of the Haldane phase.
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CHAPTER 2

The Fermi-Hubbard model - theory and
quantum simulation

This chapter discusses the Fermi-Hubbard model and its simulation using cold atoms
in optical lattices. Different aspects and phases of the Fermi-Hubbard model are ex-
plained alongside experimental realizations. A special focus lies on the effects of dop-
ing. Furthermore, this chapter introduces the specific properties of Fermi-Hubbard
ladders and gives the theoretical background for dopant pairing in these ladders.
Finally, symmetry-protected topological phases and the appearance of the Haldane
phase in ladder systems are introduced.

2.1 A model to study strongly correlated electrons

Electronic systems are one of the cornerstones of our technological age, but the under-
lying quantum many-body processes are often subject to intense research with many
open questions remaining. One of the main models to describe strongly correlated
electrons in condensed matter physics is the Fermi-Hubbard model, consisting of re-
pulsively interacting spin-1/2 particles living on a periodic lattice structure [102, 103].
This model displays a wide range of phenomena observed in materials with strong
electron correlations and is thought to be a minimal model that captures the essen-
tial physics of high-TC superconductivity. Despite the relatively simple structure of
the model, its simulation on classical computers poses a major challenge. Even with
considerable theoretical effort, no consensus about the very existence of supercon-
ductivity in this model has been reached [77, 104, 105]. Efficient exact diagonaliza-
tion codes on modern supercomputers can handle about 16 sites for the full Fermi-
Hubbard model [106], while DMRG [86] works reliably for cylinders of few legs and
considerable length, e.g. 24x4 in [77]. Other theoretical methods include auxiliary-
field quantum Monte Carlo [77], worm-algorithm Monte Carlo [107], approached
based on the self-consistent Born approximation [108], and many others. Further de-
scriptions to capture superconducting materials in different regimes include the RVB
approach [75], nearly antiferromagnetic Fermi liquid theory [109], DMFT and its ex-
tensions [110], while other effective models more directly target the Fermi-Hubbard
model, like strings [111, 112].
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Figure 2.1: Illustration of a Fermi-Hubbard system.a, A two-dimensional Fermi-
Hubbard system on a square lattice. The two spin states are represented by two
different colors. Particles can hop onto neighboring sites with tunneling amplitude
t, and interact with interaction energy U if they inhabit the same lattice site. The
depicted state is typical for repulsive interactions U > t with spin ordering and
few holes and doubly occupied sites (termed doublons), while singly occupied sites
dominate. b, Schematic phase diagram of the Fermi-Hubbard model in a cubic lat-
tice at half filling. BEC stands for Bose-Einstein condensate, SF for superfluid, BCS
for Bardeen–Cooper–Schrieffer and AFM for antiferromagnet. The phase diagram is
adapted from [113].

2.2 Basics

The Fermi-Hubbard model consists of interacting spin-1/2 particles in a single band
of a lattice. The particles can hop on nearest-neighbor lattice sites with tunneling
amplitude t, and interact with interaction energy U, if two particles of opposite spin
inhabit the same lattice site. The Hamiltonian is given by

ĤFH = −t ∑
⟨i,j⟩, σ=↑,↓

(ĉ†
i,σ ĉj,σ + h.c.) + U ∑

i

n̂i,↑n̂i,↓ , (2.1)

where c†
i,σ (ci,σ) is the creation (annihilation) operator for a fermion of spin σ on site i,

n̂i,σ is the density operator for a particle of spin σ on site i, and ⟨i, j⟩ denotes nearest-
neighbor sites. Fig. 2.1a illustrates a Fermi-Hubbard system with its two spin states
on a square lattice. The depicted spin ordering is characteristic of low temperatures
and repulsive interaction U > 0.
Fig. 2.1b shows the phase diagram of the three-dimensional Fermi-Hubbard model
depending on interaction strength U/t and temperature for the non-magnetized half-
filled case. For low interactions, the hopping term t, which tends to delocalize parti-
cles, dominates the physics, while interaction plays a minor role. The system shows a
metallic phase with strong density fluctuations.
For higher interactions, the hopping term starts to compete with the interaction U,
which tends to localize particles. On the attractive side U < 0, particles of oppo-
site spin attract each other and it is energetically favorable to form bound pairs. This
parameter regime is of great importance for the study of conventional superconduc-
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tivity [114]. At low temperatures, the system enters an s-wave superfluid phase of
pairs, with BCS character at low interactions and a BEC of tightly bound pairs for
strong interactions. In the BEC regime |U| ≫ t the pairs can be regarded as hardcore
bosons. These repel each other and form a charge-density wave with reduced occu-
pation on every other lattice site while forming a superfluid. In the BCS limit of weak
interactions Cooper pairs form and the critical temperature decreases with decreas-
ing U. The studies conducted within this thesis only concern the repulsive side of the
Fermi-Hubbard model.
For repulsive interactions, the system shows a crossover from a metallic to an insu-
lating state as interactions dominate over temperature U ≫ kBT, with kB being the
Boltzmann constant. The Mott insulator is an incompressible state characterized by
localized particles and suppression of double occupancies. For temperatures as low
as the spin-exchange energy J = 4t2/U, the spins order within the Mott insulator
and form an antiferromagnet (AFM). This phase displays a long-ranged spin correla-
tions reminiscent of a checkerboard pattern. The repulsive side of the Hubbard model
can be mapped onto the attractive side through a particle-hole transformation, which
maps the spin sector on the density sector [115]. The mapping still holds away from
half filling, where doping maps onto magnetization.
Even in the Mott-insulating state, the occupation variance per site is not zero. The
remaining variance is caused by doublon-hole fluctuations, i.e. short-lived quantum
fluctuations, in which a particle hops onto another particle for a finite amount of time.
These fluctuations are suppressed with increasing U/t. In the large U regime, the
fluctuations are strongly suppressed and the half-filled Fermi-Hubbard model can be
approximated by the antiferromagnetic Heisenberg model

HH = J ∑
⟨i,j⟩

Ŝi · Ŝj , (2.2)

with spin-exchange coupling J = 4t2/U and Ŝi being the spin operator at site i. In this
limit, each lattice site is occupied by exactly one particle and neither interaction nor
tunneling processes can happen directly. The only allowed process is the second order
process where two neighboring spins of opposite directions exchange their position
via a virtual doublon. The spin-exchange parameter is an instructive quantity even
away from the Heisenberg limit. For large but finite U/t the Heisenberg model still
poses a valid approximation for Fermi-Hubbard systems, a fact that will be exploited
within this thesis.
The correlations in the spin sector between two points can be quantified using the
density-normalized connected spin correlator

Cd(i, j) =
⟨Ŝz

i Ŝz
j⟩ − ⟨Ŝz

i⟩⟨Ŝz
j⟩

σ(Ŝz
i)σ(Ŝ

z
j)

,

where σ(Ô) is the standard deviation for an Operator Ô. For simplicity, we evaluate
spin correlations on singly occupied sites, where σ(Ŝz

i)σ(Ŝ
z
j) = 1/4, the same as in

the Heisenberg limit. Furthermore, we usually average over all points with mutual
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distance r, such that the correlator becomes

C(r) =
1
Nr

∑
i−j=r

4
(
⟨Ŝz

i Ŝz
j⟩s − ⟨Ŝz

i⟩s⟨Ŝz
j⟩s

)
, (2.3)

with normalization Nr equal to the number of positions i, j at distance r and where
⟨ ⟩s denotes the expectation value for singly occupied sites. In three-dimensional
systems, a phase transition to a long-range spin-ordered state C(r ≫ 1) > 0 is
reached at a finite transition temperature TN. A maximum of TN = 0.3 t is reached
at U/t = 8 [116]. In two dimensions, in accordance with the Mermin-Wagner theo-
rem [117], there is no spin-ordered state at T > 0. However, as temperature decreases,
the spin correlation length ξ keeps growing. Spin correlations can thus be used as a
thermometer in the low-temperature regime of a 2d Fermi-Hubbard system. In one-
dimensional systems, there is no long-range spin order. For finite temperature T > 0
such a system displays exponentially decaying spin correlations while having alge-
braic order at zero temperature [85].

2.3 Simulating the Fermi-Hubbard model using ultracold
atoms

The field of cold atoms has been continuously expanding its capabilities of trapping
and manipulating atomic particles in a highly controlled environment. Fermionic par-
ticles have cooled to quantum degeneracy [23] more than two decades ago, with cur-
rently reachable minimum temperatures of T/TF ∼ 0.05 [118], where TF is the Fermi
temperature. Nowadays cold atoms are a successful platform for quantum simulation
and a promising candidate for programmable quantum computing [8, 119].

2.3.1 Optical lattices

Optical lattices are one of the most powerful tools in quantum simulation [113, 120].
They established themselves as a powerful tool to simulate strongly correlated elec-
trons, by creating an analogy between ultracold atoms in optical lattices and electrons
in a solid. The analogy is illustrated in Fig. 2.2. The optical lattice is a periodic grid,
created by interfering laser light, which traps atoms in their optical potential. The po-
tential landscape seen by the atoms simulates the ionic lattice structure of condensed
matter systems. The atoms represent the electrons in such a system and are thus of-
ten referred to as charge, while their hyperfine states represent the electronic spin.
The Coulomb interaction between electrons is simulated by the contact interaction
between fermions in different hyperfine states [18, 118]. While the distance between
atoms in a solid is shorter than 1 nm, the lattice spacing in optical lattices typically
ranges from half a micrometer to more than 1 µm. The large spacings enable detailed
observations in real space, but also affect the energy scales of the system, which are
many orders of magnitude lower. The electrons in a solid at room temperature are
thus simulated by atoms in an optical lattice at temperatures of a few nano Kelvin.
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Figure 2.2: Analogy between electronic systems and cold atoms. Quantum simu-
lation of electronic systems uses neutral atoms (here 6Li) to simulate the behavior of
electrons in solids. Both systems can be approximated by the Fermi-Hubbard model,
even though solids can have additional terms [61]. The energy and temperature scales
differ by many orders of magnitude but can be scaled to one another. Illustration is
taken from [121].

Generation of optical lattices

In an optical lattice, the nodes and antinodes of the standing wave of interfering laser
beams form a regular grid. The light frequency is typically far detuned from atomic
resonance, creating an optical trap while actual excitation is suppressed. The light
field induces an atomic dipole moment, which oscillates at frequency ω given by the
laser light. The interaction between driving field and dipole moment leads to an
energy shift of the atomic state. Since the light intensity varies spatially, the optical
potential created by the varying energy shift forms an optical dipole trap [122]

V(r) =
3πc2

2ω3
Γ
∆

I(r) , (2.4)

where c is the speed of light, Γ the linewidth of the optical transition and ∆ the detun-
ing from resonance. Red detuned (∆ < 0) optical lattices trap atoms in the antinodes
of the standing wave (maximal intensity), while blue detuned (∆ > 0) lattices trap
in the nodes (minimal intensity). The lattice depth is often expressed in terms of the
recoil energy that an atom of mass m acquires when scattering a photon. It is given
by

ER =
h2

8ma2
lat

, (2.5)
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Figure 2.3: Illustration of an optical lattice. It shows a single plane of an optical
lattice. The optical potential only allows for atoms to sit in the minima.

with the lattice spacing alat = λ/(2 sin(α/2)), where α is the angle between the two
interfering laser beams and λ is the wavelength. The off-resonant scattering rate ΓSC
for far-detuned light

ΓSC =
3πc2

2h̄ω3

(
Γ
∆

)2

I(r) (2.6)

decreases with the square of the detuning and thus faster than the trapping potential
V(r) ∝ 1/∆ of Eq. (2.4). Heating from off-resonant scattering can be effectively sup-
pressed by choosing laser sources with very large detunings, typically hundreds of
nanometers.
Figure 2.3 illustrates ultracold atoms trapped in a two-dimensional plane of an optical
lattice potential. For sufficiently deep lattice potentials V ≳ 5ER, the system is in the
tight-binding limit and can be expressed in terms of Wannier functions [123] which are
localized states on individual lattice sites. The overlap between states on neighboring
sites depends on the depth of the lattice and gives rise to the tunneling amplitude of
particles hopping from one site to the other. In our experiment, we work in a regime
where only the lowest band is populated. This system can be well approximated by
the Hubbard model.
One of the main challenges for fermions in optical lattices is to reach sufficiently low
temperatures. While the metal-to-Mott-insulating crossover is governed by the en-
ergy scales given by U, spin correlations only build up when reaching the lower tem-
peratures on the order of the superexchange energy J. In order to realize a long-range
antiferromagnet, temperatures considerably below J are thus needed. Consequently,
phenomena that arise due to a competition of magnetic and kinetic degrees of free-
dom like hole pairing and superconductivity (see section below), require even lower
temperatures. Cold atom based Fermi-Hubbard simulators have reported temper-
atures as cold as T/t = 0.25 [124]. This is considerably above most temperature
estimations for superconductivity and related collective phases [125, 126].

2.3.2 Quantum gas microscopy

Ultracold atoms in optical lattices enable the simulation of condensed matter systems,
but their full potential lies in the access to microscopic real-space observables, which
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Figure 2.4: Quantum gas microscopy.a, A high-resolution objective as used in quan-
tum gas microscopy. The two-dimensional layer of atoms (top) is imaged through
the objective, while an addressing beam can be used to manipulate the atomic system
with single-site precision. b, Example shot from a quantum gas microscope. Each of
the green particles, which are distinguishable in the picture by eye, is the fluorescence
by one or two single atoms in the optical lattice. Doubly occupied sites show twice
the intensity. c, Reconstructed occupation for the fluorescence image. Light green
markers represent single atoms, while dark green indicates doubly occupied sites.

are hidden to solid state experiments. Using high-NA objectives in the experimental
setup allows for single-site resolved images of the atomic system. In these so-called
quantum gas microscopes, an optical resolution of below 1 µm can be achieved us-
ing visible light. The access to the full density information allows to measure local
and non-local correlation functions in real space. Fig. 2.4 illustrates the single site
resolution for a typical quantum gas microscope. The objective is used both to image
the atoms in a two-dimensional atomic plane, as well as to address and manipulate
selected sites or regions of the system. The images (example snapshot shown in Fig.
2.4b) produced by such a setup show the single atoms as they occupy the lattice grid.
Different reconstruction algorithms such as deconvolution with a point-spread func-
tion [127] or more advanced methods like machine-learning techniques [128] are used
to translate the images to occupation numbers for each lattice site, which can then be
further analyzed.
Following the realization of bosonic quantum gas microscopes [41, 129], the first
Fermi microscopes [43–46], i.e. quantum gas microscope for fermions in optical lat-
tices, followed half a decade later. They were able to provide in situ observations
of antiferromagnetic correlations [47, 50, 130], both in one and two dimensions. Po-
tential shaping in order to reduce the confining potential from the lattice beams has
led to the realization of antiferromagnetic correlations, ranging as far as the system
size [124]. Spin resolution is often achieved by applying a pushout beam to one of
the spin species [50]. This technique has the disadvantage that holes cannot be dis-
tinguished from the pushed-out spin species, while doublons cannot be distinguished
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from the remaining spin species. The pushout method is thus not suited to investigate
the interplay of spin and charge away from half filling, or in systems that are not in
the Mott insulating regime. Our method, which allows for full resolution of spin and
charge, is to apply a Stern-Gerlach separation to the spin states. The two spin states
can be spatially separated either in plane [47] or in the vertical direction [56, 57].

A quantum gas microscope can, however, only access a projected part of the wave-
function in Fock space. The process of imaging the atoms leads to a collapse of the
wavefunction. Thus thousands of repetitions are necessary to extract the occupation
distribution of the full quantum state. The time it takes to produce a cloud of cold
atoms and take a single snapshot lies at ∼ 20 s for most quantum gas microscopes,
including the one used in this thesis. However, research groups around the world are
making progress in the quest for faster cycle times, with some experiments having
reported the production of a degenerate Fermi gas within 4 s [131].

2.4 The doped Fermi-Hubbard model

Doping the Fermi-Hubbard model means changing the ratio of particles to lattice
sites. The system is called hole doped below half filling, and doublon doped above
half filling. This is analogous to doping in real materials, where a small amount of
foreign atoms is introduced in order to create either an excess or a deficiency of elec-
trons. The Fermi-Hubbard model is particle-hole symmetric [132], meaning doublon
doping can be mapped on hole doping and vice versa.

The doped Fermi-Hubbard model is extensively studied both theoretically and exper-
imentally due to its close relation with high-temperature superconductors. Fig. 2.5
shows the (conjectured) phase diagram of the doped Fermi-Hubbard model in the
strongly interacting regime U ≫ t. It is largely inspired by the high-temperature su-
perconducting cuprates [61]. The antiferromagnetic Mott insulator at half filling tran-
sitions into a pseudogap phase [133] upon doping. At higher temperatures and in-
termediate doping, a strange metallic phase appears, which shows anomalous prop-
erties such as a resistivity scaling linearly with temperature [134]. At low tempera-
tures and intermediate doping, a d-wave superconducting phase is observed in the
cuprates [70] and conjectured to appear in the Fermi-Hubbard model. However, due
to a lack of experimental evidence and established theoretical methods, the Fermi-
Hubbard phase diagram remains controversial, especially about the existence of a
superconducting phase [77, 104, 135, 136]. Despite this uncertainty, the Fermi Hub-
bard model displays many of the typical phenomena of the cuprates, like antiferro-
magnetism, pairs and stripes, and pseudogap physics [61, 66, 137]. One can thus
gain insight into the intricate mechanisms and competitions at play in the cuprates
by studying the Fermi-Hubbard model. In the following, we will discuss some of the
key features of the doped Fermi-Hubbard model that have been studied within this
thesis.
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Figure 2.5: Phase diagram of the Fermi-Hubbard model and the cuprates. Conjec-
tured phase diagram of the two-dimensional Fermi-Hubbard model. The antiferro-
magnet (AFM) transitions into a pseudogap phase and a strange metallic phase upon
doping. At low temperatures, a superconducting (SC) phase is conjectured, but other
collective effects like stripes are also in discussion.

2.4.1 The t − J model

We consider only the strongly interacting regime U ≫ t, as it is the relevant regime
for the cuprate materials. In this regime, doublons are strongly suppressed, similar
to the Heisenberg regime discussed earlier. However, dopants can still move through
the system with hopping amplitude t. The doped Hubbard model with strong in-
teractions can thus be approximated by an expansion to leading order in t/U [102],
leading to a simplified effective model. The elimination of doublons considerably
reduces the Hilbert space, thus enhancing the possibility for numerical simulations.
The t − J model typically refers to the Hamiltonian

ĤtJ =− ∑
⟨i,j⟩,σ

P̂
(

t ĉ†
i,σ ĉj,σ + h.c.

)
P̂ +

+ ∑
⟨i,j⟩

J
(

Ŝi · Ŝj −
n̂in̂j

4

)
,

(2.7)

where P̂ projects to the subspace without doublons. The model consists of a hopping
term describing nearest-neighbor tunneling of dopants and a spin-exchange term de-
scribing spin-spin interaction.
The expansion to leading order in t/U, however, yields another term, which is usually
omitted in the t− J model. That term is also of order t2/U and describes next-nearest-
neighbor tunneling of dopants [102]. In this process a hole (or doublon) switches po-
sition with a spin two sites away, via a virtual doublon, similar to the spin-exchange
process. While the term is considerably smaller than the nearest neighbor hopping
term, it allows for hole movement without moving spins from one sublattice to an-
other.
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Figure 2.6: Hole motion in a Fermi-Hubbard chain. A hole can move through a one-
dimensional Fermi-Hubbard chain without magnetic energy cost. Antiferromagnetic
spin correlations get stretched by one site around the hole.

2.4.2 Spin-charge separation

Before investigating the physics in the two-dimensional model, we will take a look
at the physics in one-dimensional Fermi-Hubbard chains. One-dimensional systems
are characterized by decoupled spin and charge excitations that can propagate inde-
pendently [85, 138]. Fig. 2.6 illustrates how holes move in a doped chain without
disturbing the spin ordering of the system.
The low-energy regime of Fermi-Hubbard chains is treated as a Luttinger liquid [139,
140], possessing collective wave excitations with linear dispersion and long wave-
lengths. Spin-charge separation in equilibrium has been observed experimentally in
a quantum gas microscope by revealing the antiferromagnetic spin correlations across
a hole [141]. Incommensurate spin correlations, as predicted by the Luttinger liquid
description, have been observed microscopically at higher doping [142].
In the course of this thesis, spin-charge separation has been observed beyond the Lut-
tinger liquid regime, by creating a highly energetic excitation in the spin and charge
sector through a local quench. The spin and charge excitations are created together,
by removing one fermion from the chain. Subsequently, we observed how the excita-
tions dynamically separate. They propagate through the system at different velocities
and independently from each other. The results are discussed in detail in [143].

2.4.3 Competition of kinetic and magnetic energy

In two-dimensional AFM systems, spin and charge excitations do not decouple. In-
stead, magnetic and kinetic degrees of freedom compete with each other. A hole in a
doped system strives to minimize its kinetic energy by delocalizing. However, a de-
localized hole frustrates the antiferromagnetic spin order and is thus unfavorable in
magnetic energy [111]. This competition of the tunneling energy t and spin exchange
J can be understood on the level of an illustration, as in Fig. 2.7. The hole motion lo-
cally creates ferromagnetic spin bonds with high magnetic energy cost. This limits the
range over which the hole can move in the system, as long as the spin configuration
is frozen.
Instead of delocalizing in the system, the hole is confined to a small area, in which
it is dressed with a magnetic cloud of reduced antiferromagnetic spin correlations.
The compound object of hole and dressing cloud forms a magnetic polaron, with
an altered effective mass and reduced motion governed by the spin-exchange rate J.
Polarons have been observed in cuprates indirectly, through the suppression of the
single particle bandwidth [144, 145]. In a cold atom quantum simulator, polarons
have been observed in equilibrium [146], and their dynamical formation has been
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Figure 2.7: Competition of kinetic and magnetic energy. A hole moving through
a two-dimensional Fermi-Hubbard system disturbs the spin order in the system and
thus costs magnetic energy. For each site it hops further, the spin order is reduced, as
illustrated by the colored bonds. As a result, the hole cannot be delocalized over large
distances but stays confined to a small region. Within this area, it disrupts the spin
correlations.

studied after releasing a pinned hole [147].
In the course of this PhD thesis, we have observed the evolution of polaron effects
from the lightly doped regime into the strong doping regime. We find that the po-
laron picture holds for low doping below ≈ 20% but breaks down at higher doping
when the system goes through a crossover into the Fermi liquid regime. In Fig. 2.8
the observed spin correlations around a hole are shown for different doping levels.
For low doping, the correlations correspond to a magnetic polaron, with antiferro-
magnetic character for diagonal spin correlations around the hole. Nearest neighbor
spins are more ferromagnetic in the vicinity of a hole than they are in the antiferro-
magnetic background. At higher doping, however, this picture breaks down and we
find that nearest-neighbor bonds become more antiferromagnetic in the presence of
holes than in the absence of holes. At this point, the system crosses over to the Fermi-
liquid phase, which does not host polarons. A detailed discussion of the results of
this project can be found in [121].
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Figure 2.8: Polaron evolution upon doping. We measured the magnetic bonds
around holes for different levels of doping δ. Cc

◦ is a connected three-point correlator
where the spin background in the absence of a hole is subtracted. It highlights the
difference between the magnetic environment with and without a hole. At low dop-
ing, the correlations are compatible with magnetic polaron, while at high doping the
signature of a polaron vanishes. Further analysis can be found in [121].
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Figure 2.9: Pairing mechanism in doped antiferromagnets. The starting point of
this illustration is the frustrated antiferromagnet of Fig. 2.7, which has been disturbed
by a single moving hole. If now a second hole follows along the path of the first hole,
it can reshuffle the spin order, thereby undoing the magnetic energy cost of the first
hole. This way the two holes can move together through the system without a major
impact on the spin sector.

2.4.4 Pairing and superconductivity

The competition of spin and charge degrees of freedom is at the heart of many intrigu-
ing phenomena of the cuprate materials and the Fermi-Hubbard model. Amongst the
most famous ones is the emergence of superconductivity. A complete understand-
ing of the mechanisms underlying superconductivity, as well as its relation to related
phenomena like stripes [148, 149], remains elusive to this day. For superconductivity
to emerge, charge carriers, i.e. doped holes or doublons, need to form pairs. At suit-
able density and mobility, these bosonic pairs can condense into a superfluid state -
the superconducting phase - in which the resistivity vanishes. A common assump-
tion is that the magnetic fluctuations in the antiferromagnetic background mediate
the pairing process [150].
To understand the proposed binding mechanism, we observe that the frustration cre-
ated by a single hole in an antiferromagnetic spin environment can be lifted when
two holes move together. This process is illustrated in Fig. 2.9. A single hole moving
through an antiferromagnet locally destroys the spin correlations in the system. If
a second hole follows the path of the first hole, it can restore the magnetic order in
the system. Two holes together can thus move together while keeping the spin sector
largely undisturbed - a process that allows for efficient hole delocalization. The effec-
tive attraction between holes in doped antiferromagnets is thus based on the lowering
of magnetic exchange interaction.
However, the binding of holes into pairs constrains their motion because the two holes
mutually block each other’s spatial fluctuations. The reduced short-range mobility re-
sults in an increase in kinetic energies. Thus the pairing process competes with indi-
vidual hole motion. The effective attraction of holes, due to enhanced delocalization
over the full system, competes with a short-scale repulsion caused by Pauli blocking
of holes. Binding can thus only happen as a compromise between pairing and mu-
tual distance, balancing the magnetic energy advantage and repulsion. The effect is
a comparably low binding energy, typically much lower than the spin-exchange en-
ergy. Accurate theoretical analysis of this problem remains a key problem in quantum
many-body physics [151–153].
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2.5 Fermi-Hubbard Ladders

The two-dimensional Fermi-Hubbard model poses many challenges to our under-
standing. While the one-dimensional Hubbard model can be more easily tackled the-
oretically, it does not display the same phenomena as the two-dimensional model. In
particular, it does not share the phase diagram of the high-temperature superconduct-
ing cuprates. Fermi-Hubbard two-leg ladder systems with two coupled legs of length
L are more complicated than single chains, but easier to simulate on classical com-
puters than two-dimensional systems. They are thus comparably well understood
theoretically while displaying many of the relevant features of the cuprates like the
characteristic competition between spin and charge degrees of freedom.
More generally, an n-leg ladder system consists of n coupled legs. For large n it
thus approaches a two-dimensional system, whereas n = 1 corresponds to a one-
dimensional chain. Intermediate n constitute a crossover from one to two dimensions.
This crossover is however not smooth but displays different properties depending on
the parity of n [154] (see also below at 2.5.2).
Unless otherwise specified, we use the term ladder within this thesis to refer to two-
leg ladders. A ladder system of L × 2 coupled sites is illustrated in Fig. 2.10a. The
particles can tunnel along the rungs (legs) of the system with tunneling amplitude
t⊥ (t∥). Ladder systems can be simulated theoretically, e.g. using DMRG and have
been investigated intensively, see e.g. [85]. They have played an instrumental role in
the elucidation of a magnetic pairing mechanism [84, 155], but have also been used
as a simple model to investigate symmetry-protected-topological phases [101, 156],
artificial gauge fields [157–160], Josephson junctions [161–164] and many other phe-
nomena.

2.5.1 Single-particle band structure

Fermi-Hubbard ladders are described by the Hamiltonian

ĤFHL = −
(

t∥ ∑
x,y σ

ĉ†
x,y,σ ĉx+1,y,σ + t⊥ ∑

x σ

ĉ†
x,0,σ ĉx,1,σ + h.c.

)
+ U ∑

i

n̂i,↑n̂i,↓ , (2.8)

with tunneling amplitude t⊥ (t∥) along the rungs (legs) of the system. In order to find
the band structure for single particles, following e.g. [159, 160], we first consider only
a single leg without interactions. The momentum state operators are

d̂k,σ =
1√
L

∑
j

ĉj,σeikrj ,

where rj is the location of site j. The Hamiltonian can be formulated using the momen-
tum eigenstates with eigenenergies that depend on the cosine of the quasimomentum

Ĥ = ∑
k,σ

ϵ(k)d̂†
k,σd̂k,σ , ϵ(k) = −2t∥cos(ka) .
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Figure 2.10: Fermi-Hubbard ladders and their band structure. a, Holes in a ladder
system can move with tunneling amplitude t⊥ (t∥) along the rungs (legs). Two parti-
cles of opposite spin that occupy the same lattice site interact with interaction energy
U. b, Single-particle band structure of tight-binding ladders depending on quasimo-
mentum k along the leg. The two disconnected bands, each of width 4 t∥, result from
the symmetric and antisymmetric states along the rung and are shifted with respect
to each other by an energy of 2 t⊥. The exemplary plotted band structure corresponds
to a parameter setting of t⊥ = 2 t∥.

If we consider a single rung of the ladder, we find a double well with eigenstates

|Ψ±⟩ = 1√
2
(|R⟩ ± |L⟩) , ϵ± = ±t⊥ .

Since the two directions are separable, the band structure of the ladder system follows
as the sum of the leg and rung eigenenergies, as shown in Fig. 2.10b. Two bands of
width 4t∥, corresponding to the bands of a single chain, are shifted with respect to
each other by 2t⊥. The shift corresponds to the energy splitting between the symmet-
ric and antisymmetric states along the rung.

2.5.2 Interacting ladders

For a half-filled ladder system of two interacting spin states, the band structure de-
rived above suggests insulating behavior starting around U ≥ 4t∥+ 2t⊥, that is, when
the interaction energy for a double occupancy exceeds the energy cost of populating
the band of the antisymmetric rung states. In the regime of very large interactions
U ≫ t⊥, t∥, doublon-hole fluctuations are strongly suppressed and the system ap-
proximates the Heisenberg limit of Eq. (2.2).

Antiferromagnetic Heisenberg ladders

In the Heisenberg regime with spin exchange J = 4t2/U > 0, the properties of an
n-leg ladder system depend on the number of legs n [154]. While antiferromagnetic
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correlations appear for all numbers of legs, they show different distance dependen-
cies whether the number of legs is even, or odd. Ladders with an odd number of
legs display magnetic order with a power-law decay of spin correlations versus dis-
tance. Furthermore, odd n systems do not display a spin excitation gap. Even-leg
ladders, on the other hand, have a disordered ground state with purely short-ranged
spin correlations which decay exponentially. They display an energy gap associated
with the cost of a spin excitation. This arises from a tendency of the spins in even-leg
ladders to form singlet bonds, which has a strong conceptual connection to the res-
onating valence bond (RVB) state [75]. Following this, the two-leg ladder system has
a spin gap due to its dominant singlet character along the rungs with short-ranged
spin correlations along the leg. The antiferromagnetic two-leg ladder is depicted in
Fig. 2.11, illustrating its coupling parameters and singlet character along the rungs
which underlies the spin gap.

Ferromagnetic rung coupling

If the exchange coupling J in the Heisenberg model becomes negative, the ground
state has ferromagnetic spin order. Even though the Fermi-Hubbard model of Eq. (2.1)
cannot have a negative exchange coupling in any parameter limit, the scenario can be
reached for example through a potential offset ∆ > U between neighboring lattice
sites (for details see section 4.3.1). Here we discuss the Heisenberg model for anti-
ferromagnetic leg coupling J∥ > 0 and ferromagnetic rung coupling J⊥ < 0. Similar
to the antiferromagnetic case, this configuration shows a strong dependence on the
number of legs n [85]. For even leg ladders with large negative J⊥, the ferromag-
netic rungs add up to integer spin values S = n/2. For the resulting antiferromag-
netic spin-S chain the Haldane conjecture [165] applies, according to which integer
spin chains are gapped, while half-integer spin chains are gapless. In particular, this
means that the two-leg ladder with ferromagnetic rung coupling can be treated as a
gapped integer-spin chain. This system realizes the Haldane phase of spin-1 chains, a
paradigmatic topological phase that will be introduced in detail later in this chapter.

2.5.3 Doped t − J ladders

Doped ladder systems [166, 167] have served as an instructive model for theoretical
investigation of doping in the Hubbard model [81–84]. Similar to the cuprates, doped
ladders can display a superconducting phase, as well as strange metallic behavior and
pseudogap characteristics [89].

Fig. 2.11 depicts a lightly doped ladder system in the t − J regime of strong inter-
actions. Holes tunnel with tunneling amplitude t⊥(t∥) along the rungs (legs), while
spin exchange takes place with exchange coupling J⊥(J∥). With these parameters the
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Figure 2.11: t − J ladders. A ladder with strong singlet bonds along the rungs is
displayed. Holes in this system can move with tunneling amplitude t⊥ (t∥) along the
rungs (legs), while spin exchange takes place with exchange coupling J⊥ (J∥). In the
regime of strong rung coupling J⊥ ≫ J∥, singlets form along the rungs, leading to a
spin gap on the order of J⊥. With increasing leg coupling the rungs are not inhabited
by pure singlets anymore, but instead, spin correlations also build up along the legs.
The strength of spin correlations along the rung vs. the leg depends on the coupling
parameters, but a spin gap persists for all J⊥/J∥ > 0.

t − J ladder Hamiltonian is

ĤtJL = ∑
⟨i,j⟩,σ

P̂
(
−tij ĉ†

i,σ ĉj,σ + h.c.
)
P̂ +

+ ∑
⟨i,j⟩

Jij

(
Ŝi · Ŝj −

n̂in̂j

4

)
,

(2.9)

where the hopping energy is tij = t∥ (t⊥) and the superexchange energy is Jij = J∥
(J⊥) for nearest-neighbour sites i, j on the same leg (rung).
Theoretical studies of one and two holes in ladder systems have found an interplay of
spin- and charge degree of freedom similar to two-dimensional systems and pairing
of holes at suitable parameters [166, 168–170]. A paradigmatic case for theoretical
investigation is the regime where the inter-chain spin exchange is larger than single-
particle interchain hopping, i.e. J⊥ > t⊥ [155]. This regime exhibits large binding
energies and serves as a toy model to elucidate the pairing mechanism without further
complication from competing processes like hole repulsion. Fig. 2.12 illustrates the
pairing mechanism in this parameter regime. As in the 2D case, it is favorable for
holes to be delocalized in the system in order to reduce kinetic energy. For a single
hole, delocalization however competes with the magnetic order along the rungs of
the system. A hole that moves through the system, shifts the singlet bonds along the
rungs. If a second hole moves along with the first one, it restores the singlets. Two
holes together can thus delocalize along the ladder and minimize their kinetic energy,
while causing only minimal magnetic energy cost. This energy advantage leads to the
binding of holes. This picture however only holds in the regime J⊥ ≫ t⊥, where the
tunneling along the rungs is negligible compared to the spin exchange. Unfortunately,
these parameters are unphysical within the framework of the pure Fermi-Hubbard
model. A realization of this toy system had thus been lacking until now (see Ch. 4 for
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Figure 2.12: Pairing mechanism in ladder systems. The figure illustrates the pairing
mechanism in ladder systems, where spin exchange dominates over the tunneling
amplitude along the rungs. a, A doped ladder system with singlet bonds along the
rungs and two holes. b, If one hole moves through the system, it breaks the singlet
bonds on its way, thus increasing the magnetic energy of the system. c, If a second
hole moves along with the first hole, it restores the singlet bonds. Thus two holes
together can move through the system with minimal magnetic energy cost.

further explanation and realization of this system).

Physical realizations of ladders

Ladder systems have been realized in solid state materials, for example the series
Srn−1Cun+1O2n [171, 172], with compounds possessing antiferromagnetic spin ex-
change and a spin gap [173]. Similar materials, like Sr14−xCaxCu24O41, are ladder
compounds that have been shown to display superconductivity upon doping [87–
89, 174]. These realizations of ladder materials, and especially the observation of a su-
perconducting phase, inspired further interest in the investigation of ladder materials.
Quantum simulation offers a complementary path to solid state experiments, allow-
ing to extract microscopic observables and shed new light on the intriguing properties
of these systems. In the last 10 years, bosonic ladder systems have been realized in
cold atom experiments [158, 175] and enabled the observation of chiral currents and
the Meissner effect [176] relevant for superconductors exposed to magnetic fields. To
the best of our knowledge, the experiments carried out within this PhD thesis present
the first realization of fermionic ladders using cold atoms.

2.6 Symmetry-protected topological phases

Another intriguing topic of modern quantum physics is symmetry-protected topolog-
ical (SPT) phases. This phenomenon can also be studied in ladder systems. Undoped



24 Chapter 2. The Fermi-Hubbard model - theory and quantum simulation

Fermi-Hubbard ladders realize one of the most iconic topological phases, the so-called
Haldane phase [100, 101, 165]. In the following, we will introduce SPT phases as a spe-
cial class of topological phases and provide details about the Haldane phase and its
realization in spin-1/2 ladder systems.
The discovery of topological phases [90, 177] has led to a new understanding of phase
transitions. Instead of relying on symmetry-breaking and local order parameters, as
in the Landau-theory [91], these phases are distinct due to their topological properties.
While two topologically different phases might not be distinguishable locally, they
have distinct global topological properties, like a cylinder and a Möbius strip, which
locally look identical. The topological order parameters that identify the phases are
called topological invariants. Two states are in the same phase if they can be con-
tinuously transformed into one another without changing the topological invariant.
A common example of a topological invariant is the number of holes in a geometric
object. A donut cannot be transformed into a pretzel, without punching additional
holes, i.e. changing the topological invariant, while a donut can be transformed into
a cup while leaving the topology intact.
Topological quantum matter is intriguing, not only due to the rich topological prop-
erties, but also because it can display various exotic phenomena like quantized trans-
port [178], or excitations with fractional charge [179] that can be exploited for techno-
logical applications. The robustness of topological phases with respect to local pertur-
bations makes them prime candidates for application in quantum computation and
quantum memory [180–182]. Information encoded in a topological invariant is rel-
atively stable regarding system imperfections, which is highly relevant for reliable
information storage.
Topological phases can be classified into long-range entangled states, which are said
to have topological order, and short-range entangled states, which, if the Hamilto-
nian possesses a global symmetry, are said to have SPT order [183]. Quantum Hall
states [184] are an example of topological order, while topological insulators of non-
interacting fermions [185] and the spin-1 Haldane phase are examples of SPT-ordered
phases.
SPT phases are short-range entangled states that are characterized by a non-local or-
der parameter. They have an excitation gap in the bulk with a unique ground state
and robust degenerate edge states at the boundaries of the system. This is known as
bulk-edge-correspondence of topological phases [93, 95]. Two SPT states belong to the
same phase if they can be transformed into each other with a symmetry-preserving
deformation.

2.6.1 The Haldane phase

The Haldane phase is one of the most paradigmatic cases of a symmetry-protected
topological phase [96, 186, 187]. It appears in the ground state of antiferromagnetic
spin-1 Heisenberg chains and is named after Duncan Haldane, who received the No-
bel Prize 2016 (together with M. Kosterlitz and D. Thouless), for his work using topo-
logical concepts to describe spin chains (see e.g. [165]). A central aspect of that work is
the Haldane conjecture, stating that half-integer spin chains, such as spin-1/2 or spin-
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Figure 2.13: Hidden afm order in the Haldane phase.The figure illustrates the hidden
spin order in antiferromagnetic spin-1 chains. Green balls represent spin state Sz = 1,
grey balls Sz = 0 and yellow balls Sz = −1. The spin-spin correlations in the chain
(upper row) decay quickly, due to the varying appearance of spin states -1, 0 and 1.
However, if the spin Sz = 0 states are removed from the chain, also called “squeezed
space”[188], an antiferromagnetic ordering of the spins is revealed.

3/2 chains, are gapless with a power-law decay of spin correlations, while integer spin
chains are gapped and show exponentially decaying spin correlations [99, 102, 165].
The parity dependence of antiferromagnetic n-leg ladders discussed above is closely
related to this conjecture. A consequence of the Haldane conjecture is that only integer
spin chains have SPT order.
The Haldane phase of antiferromagnetic spin-1 chains is protected by an SO(3) sym-
metry (or its Z2 × Z2 subgroup), as well as by time-reversal symmetry. The ground
state of such a chain has no spontaneous symmetry breaking. Instead, it is a disor-
dered state with short-range magnetic correlations. However, a hidden, long-range
antiferromagnetic order can be revealed by employing a non-local string correlator.
This string correlator correlates two sites by taking into account all spins in between
them, thus connecting the sites with a string, instead of considering them separately,
i.e. only locally. The principle of this hidden correlation can be seen in Fig. 2.13. The
spin-1 chain displays no long-range spin order C(d). However, if the position of the
Sz = 0 states is taken into account, the hidden order of alternating spin Sz = 1 and
Sz = −1 becomes visible.
The Haldane chain furthermore displays a spin-excitation gap in the bulk and four-
fold degenerate edge states at the ends of the chain. These edge states carry spin-
1/2 excitations, where the bulk SO(3) symmetry fractionalizes into a SU(2) symme-
try [96, 187]. They are robust against perturbations that commute with the protecting
SO(3) spin rotation symmetry. The edge states furthermore have a finite localization
length ξ, meaning the spin-1/2 excitation is not fully localized on the edge site but
can penetrate into the bulk with exponentially decaying amplitude.

The AKLT model

To gain a better understanding of the Haldane phase, it is instructive to consider the
AKLT model, introduced by Affleck, Kennedy, Lieb, and Tasaki [189, 190]. The AKLT
model was designed to satisfy the requirements of the Haldane phase. It demon-
strates the mechanisms leading to the typical signatures of the Haldane phase, such
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Figure 2.14: Illustration of the AKLT model. Spin-1 objects (grey boxes) are com-
posed of two spin-1/2 objects (red and blue balls). The spin-1/2 objects form singlet
bonds (shaded bonds) with neighboring particles across two neighboring spin-1 ob-
jects. At the boundaries of the chain, there are spin-1/2 particles that are not bound
into singlets. These are free to point in any direction, i.e. to assume any linear combi-
nation of spin up and down. This degeneracy is indicated by the fading arrows.

as the fractional edge states and the hidden antiferromagnetic order. In this model, a
spin-1 particle is formed out of two spin-1/2 particles in a triplet state. Between the
spin-1 objects sit valence bonds, each connecting two spin-1/2 located in neighboring
spin-1. The idea is illustrated in Fig. 2.14. The valence bonds (singlets) fully define a
unique state in the bulk. However, the edges of the chain feature ‘free’ spin-1/2 par-
ticles, that cannot form singlets due to a missing neighbor. The edges thus support
four degenerate states |↑l ↓r⟩, |↓l ↑r⟩, |↑l ↑r⟩ and |↓l ↓r⟩. Due to the spin-1/2 degree of
freedom within this spin-1 chain, the edge states are said to be fractional.
The Hamiltonian describing this spin-1 chain connected by valence bonds is given by

ĤAKLT = ∑
j

P2(Ŝ1
j + Ŝ1

j+1)

= ∑
j

[
1
2

Ŝ1
jŜ1

j+1 +
1
6
(Ŝ1

jŜ1
j+1)

2 + 1/3
]

where Ŝ1
i is the spin-1 spin operator on site i, and P2(Ŝj + Ŝj+1) is a projector acting

on neighboring spin-1 objects, blocking them from forming a total spin-2 state. This
restriction produces the valence bonds. The model is related to the antiferromagnetic
spin-1 Heisenberg by being a spin-1 chain with antiferromagnetic interactions, but
with extra terms such that the AKLT state is the exact ground state. The advantage of
this model is the existence of an exact solution, which was provided with its proposal.
It thus offers crucial insight into the physics of spin-1 chains. Furthermore, it displays
the characteristics of the Haldane phase and illustrates the origin of these properties.
We have already seen how the fractional edge modes emerge from the spin-1/2 de-
scription of the AKLT chain. The hidden antiferromagnetic order arises similarly from
the spin-1/2 picture. Projecting the singlet states on spin-up and spin-downs leads to
perfectly alternating order of Sz = 1 and Sz = −1, with randomly placed Sz = 0
objects between them. The perfect anticorrelation of spins within a singlet ensures
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Figure 2.15: Mapping a ladder on a spin-1 chain. The illustration shows how an an-
tiferromagnetic spin-1/2 ladder with legs A and B can be mapped onto an AKLT-like
spin-1 chain. In the strong rung coupling regime J⊥ ≫ J∥, the spins form singlets
along the rungs on the ladder, which are translated to the valence bonds between
spin-1 objects of the AKLT model. By defining the spin-1 objects in diagonal unit
cells (grey diagonal boxes), each of them contains the endpoints of two different such
bonds. The endpoints of the ladder systems are rungs that are cut in half, only allow-
ing particles on one side. We note that the mapping to the spin-1 chain is not exact,
but both systems are adiabatically connected.

that a spin Sz = −1 can not be followed by another Sz = −1, without a Sz = +1
between them. The AKLT model also gives a visual idea of the short-range entangle-
ment involved in the Haldane phase and other SPT phases. It directly follows from
the construction and reaches only over two spin-1s. Strictly speaking, the Haldane
phase only exists at zero temperature in the thermodynamic limit. This can also be
understood from the AKLT model: At finite temperature, each of the singlets has a
finite probability for a triplet excitation. Since there are infinitely many singlets in
a chain at the thermodynamic limit, any finite temperature suffices to break at least
one singlet in the chain. This triplet destroys the hidden antiferromagnetic order, the
order parameter for the Haldane phase (see Eq. (2.14) below for details).

2.6.2 In Fermi-Hubbard ladders

The AKLT model illustrates how the Haldane phase can be understood from spin-1/2
fermions. In our platform, we construct the Haldane phase using Fermi-Hubbard
ladders in the Heisenberg regime of strong interactions. A natural implementation
involves ladders with antiferromagnetic leg coupling J∥ and ferromagnetic rung cou-
pling J⊥, thus forming spin-1 objects on the rungs of the ladder, which are connected
to a chain. Another possibility, which is conceptually closer to the singlet bonds of
the AKLT model, is antiferromagnetic ladders. In the strong rung coupling regime,
these form strong singlet bonds on the rungs, which correspond to the singlet bonds
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of the AKLT model. The spin-1 objects consequently have to be formed diagonally,
containing fermions of different rungs. The idea is illustrated in Fig. 2.15. We note
that the ladder system does not exactly map onto a spin-1 chain, since not all unit
cells have a combined spin of one, but a finite fraction contains spin-0. However, the
two systems can be adiabatically connected by including an additional diagonal cou-
pling term [101, 156]. This adiabatic connection starts from a system dominated by a
strong ferromagnetic diagonal coupling which is equivalent to the spin-1 chain. In-
cluding a finite J⊥ and reducing the diagonal coupling to zero constitutes a symmetry-
preserving transformation that does not close the gap [101]. Therefore, not only the
spin-1 chain but also the spin-1/2 two leg ladder with diagonal unit cell realizes the
Haldane phase for all finite couplings J⊥/J∥. The two systems thus share the same
universal SPT features, despite the finite singlet fraction in the unit cell for the ladder
system.
The Hamiltonian of the spin-1/2 ladder in the undoped Heisenberg regime is

Ĥ = J∥ ∑
x

y=A,B

Ŝx,y · Ŝx+1,y + J⊥ ∑
x

Ŝx,A · Ŝx,B (2.10)

with positive leg and rung couplings, J∥,⊥ and the spin-1/2 operators Ŝx,y at site (x, y)
with A, B denoting the two legs of the ladder. This Hamiltonian has a spin gap in the
bulk of the system, which, in the strong rung coupling limit J⊥ ≫ J∥, corresponds
to the energy cost J⊥ of exciting a singlet along the rung to a triplet state. However,
a finite spin gap persists for all finite couplings J⊥, even in the strong leg coupling
regime. We define a unit cell k as containing site (k + 1, A) and site (k, B). The spin in
the kth unit cell follows as

Ŝk = Ŝk+1,A + Ŝk,B, (2.11)

where the indices (A,B) indicate the two spin-1/2s in the same unit cell k. Ŝk is thus
an integer spin.
We note that the definition of the diagonal unit cell is crucial for the system to con-
nect to a spin-1 chain because the phase is dependent on the objects considered. The
system consisting of our diagonal unit cells realizes the Haldane phase. Furthermore,
the edge termination of the system only features fractional edge modes, if the system
is terminated in accordance with the unit cell definition. If a unit cell is cut in half at
the boundary, no edge states appear. This holds for the ladder system as well as for
the AKLT system. In comparison, Fig. 2.16 shows a spin-1/2 ladder with vertical unit
cells, each containing a full rung bond. Despite the very similar construction of the
system, the vertical unit cell system is not in an SPT phase, but in a trivial phase, i.e.
there is no symmetry-preserving transformation1 between this ladder, and the one in
Fig. 2.15 [192, 193]. The trivial ladder also does not show any edge states, when the
boundaries are chosen in accordance with the unit cell.
The differences between the trivial and the SPT system are also visible in their spec-
trum. Fig. 2.17 shows the energy levels of both systems. Depending on the total

1At least within the Heisenberg model, where charge fluctuations are forbidden [191]
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Figure 2.16: Mapping a ladder on a spin-0 chain. A ladder system can be mapped
on a spin-0 chain by choosing vertical unit cells. This approach is complementary to
the diagonal unit cells discussed earlier. We note that for finite J∥, the mapping is not
exact, because the unit cells contain a finite fraction of triplets. The systems are only
adiabatically connected, as it is symbolized by the arrow.
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Figure 2.17: Spectrum of ladders with different edge termination. The figure shows
the energy levels of the ladder system with diagonal unit cells (a) and vertical unit
cells (b) for a system length of L = 7 unit cells. a, The four ground states of the
Haldane chain. The small energy splitting between them is a finite size effect, deriving
from the finite overlap of the edge modes due to the finite localization length. The
lowest states correspond to three triplets and the slightly higher state to the singlet
state of the two edge spins. The spectrum in b shows one single ground state, which
is the state containing only rung singlets.
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magnetization
Mz = ∑

x,y
Sz

x,y , (2.12)

where Sz
x,y is the spin in z-direction on site (x, y). While both systems show the spin

gap of the bulk, the SPT system shows four ground states and the trivial system shows
only one ground state. The four ground states of the SPT system show a slight energy
splitting, which arises from the overlap of the two edge modes in the bulk. It thus
depends on the localization length ξ of the edge states and the system size L as

|δ| ∝ e−L/ξ , (2.13)

meaning the edge state splitting disappears in the thermodynamic limit. It can be seen
from the spectrum that the ground states either have total magnetization |Mz| = 1 or
Mz = 0. They correspond to three triplet states and one singlet state of the edge
modes.

2.6.3 Non-local string operators

The Haldane phase can be identified by detecting the already mentioned symmetry
fractionalization from SO(3) to SU(2) symmetry. This can be detected not only at the
edge of the system, but also within the bulk using string order parameters [194, 195]

gO,U(d) =

〈
Ôk

(
k+d−1

∏
l=k+1

Ûl

)
Ôk+d

〉
k

(2.14)

with an on-site symmetry Ûl, where l denotes the unit cell, and endpoint operator
Ôk. ⟨ ⟩k denotes the expectation value averaged over all unit cell positions k and d
denotes the string distance. This correlator probes the transformation behavior of the
bulk under a symmetry Ûl. An example, and in fact the symmetry that we will be
probing, is the π spin rotation around the z-axis

R̂z
l ≡ exp

(
iπŜz

l
)

(2.15)

The string-order correlator with Ûl = Rz
l can only be non-zero if the phase is sym-

metric under Rz
l . A finite string order is however not able to distinguish different

symmetric phases. The more surprising property is thus a vanishing string-order cor-
relator a symmetry under Ûl

2. For the correlator to vanish the endpoint operator Ôk
is relevant, whose symmetry acts as a selection rule for string order.
For the Haldane phase, the string operator for Ûl = Rz

l has long-range order, if the
endpoint operator Ôk is odd under spin flips Rx around the x-axis. This is the case for
the string order parameter gSz,Rz(d) with endpoint operator Ôk = Ŝz

k [194]. The string
operator vanishes if the endpoint operator is even under Rx, because Uz

l is odd under

2Note, however, that the string order can effectively vanish at certain points by coincidence. One
string order is thus not sufficient, to distinguish different phases. It needs two correlators with different
endpoint operators to reliably distinguish two phases [195]
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Rx. This condition can be satisfied g1,Rz(d), where Ôk = 1. This operator reveals
the symmetry fractionalization in the Haldane phase. The opposite behavior is found
in the topologically trivial phase, where gSz,Rz(d) vanishes and g1,Rz(d) is non-zero
even for d ≫ 1. One can thus identify the Haldane phase, and distinguish it from the
trivial phase, by comparing both string correlators. (for details and the derivation of
the string order parameters, see [195]).
We can interpret the long-range order in gSz,Rz(d) as the hidden antiferromagnetic
order discussed earlier, which appears when the unit cells containing spin mk = 0 are
removed from the chain. The operator Rz

l equals one, if it is applied to such a unit

cell containing Ŝz
k = 0, which is equal to removing it from the product

(
∏k+d−1

l=k+1 R̂z
l

)
.

Thus only unit cells containing Ŝz
k = ±1 contribute to the bulk of the string operator.

Due to Rz
l = −1 for Ŝz

k = ±1, the string switches sign at every unit cell containing
Ŝz

k = ±1. For a hidden AFM ordered chain it thus holds that gSz,Rz(d) < 0 for all
distances d > 0. Note that the string operator is zero if the endpoints contain a unit
cell with spin mk = 0.
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CHAPTER 3

The Experimental Setup

In this chapter the experimental apparatus is introduced. We will discuss the prepara-
tion routine with which we generate cold atomic clouds and how we employ optical
lattices to simulate the Fermi-Hubbard model. We describe the optical potential shap-
ing using a digital micromirror device (DMD), which has been implemented into the
apparatus within the course of this PhD thesis. Furthermore, the protocol for spin
resolution and simultaneous readout of two atomic planes is introduced. Finally, the
automated evaluation and feedback algorithms are presented, which allow running
the apparatus in a less supervised mode of operation.

3.1 Preparation of a cold atomic sample

Our experimental sequence takes about 20 s to produce a single experimental snap-
shot. About 80% of this time is dedicated to the production of a cold cloud of lithium
atoms, a step which has to be repeated for every snapshot. The main technological
tools in this step are laser trapping and cooling, as well as evaporative cooling. The
main experimental apparatus has been built by a previous generation of PhD stu-
dents [127, 196, 197].

Lithium

The experimental setup uses Lithium-6, a fermionic alkali metal isotope. Lithium
is suitable and commonly used for cold atom experiments [45, 198–201] because it
can be laser cooled at a commercially available wavelength and with its single va-
lence electron has a relatively simple level structure. With reachable temperatures of
T/TF = 0.05 in bulk systems [202], lithium can currently reach colder samples than
other fermionic species and is thus especially attractive for quantum simulation.
The level structure of 6Li is shown in Fig. 3.1a. The splitting between the F = 1/2
and F = 3/2 states of the ground state 2S1/2 is about 228 MHz, small enough to be
bridged using acousto-optic modulators (AOMs). The D1 and D2 transitions have
a wavelength of about 671 nm, with a fine-structure splitting of about 10 GHz. The
corresponding excited states 2P1/2 and 2P3/2 have a natural linewidth of Γ = 2π ·
5.87 MHz [203]. The next higher transition, reaching the 3P1/2 and 3P3/2 states, is
already in the ultraviolet (UV) regime with 323 nm. The transition has a width of
Γ = 2π · 159 kHz, while the natural linewidth of the 3P states is broadened to Γ =
2π · 754 kHz, due to an additional decay channel [204].
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c

Figure 3.1: Properties of Lithium. a, The level structure of 6Li is illustrated. The D1
and D2 transitions have a wavelength of about 671 nm, while the next higher transi-
tion has a wavelength of 323 nm. b, Hyperfine splitting of the ground state 2S1/2 of
6Li in a magnetic field. The three lowest states |1⟩, |2⟩, and |3⟩, which can form col-
lisionally stable mixtures, are marked in color. c, Scattering lengths ASC between the
three lowest hyperfine states versus magnetic field, given in units of the Bohr radius
aB. All three combinations of states possess a broad Feshbach resonance. The figure
is adopted from [121].

Under the influence of a magnetic field, the hyperfine levels of lithium split due to
the Zeeman effect (see Fig. 3.1b). In the experiment, we work with the lowest two
hyperfine states F = 1/2, mF = ±1/2, here labeled as states |1⟩ and |2⟩. At low fields
these two states experience an opposite splitting, meaning that a field gradient can
exert a force in opposite directions. We make use of this force for spin resolution (see
below). At few tens of Gauss, 6Li enters the Paschen-Back regime, where the nuclear
spin decouples from the electronic angular momentum. In this regime the two lowest
hyperfine states are shifted in the same direction, such that magnetic field gradients
affect both states equally, which we use for our magnetic evaporation.
At temperatures below quantum degeneracy, the collisions of different hyperfine states
are dominated by s-wave scattering, while same-spin fermions do not interact. The
strength of these contact interactions can effectively be described by the scattering
length aSC. In lithium, the interactions can be tuned using a broad Feshbach reso-
nance [202, 205], which is shown in Fig. 3.1c. By changing the magnetic field, the
scattering length between the spin states |1⟩ and |2⟩ can be tuned from negative to
strongly positive. The scattering length diverges at around 830 G. At zero field the
scattering length vanishes.
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Trapping and laser cooling of lithium atoms

In our setup, lithium is heated and effuses out of a steel chamber, which serves as
an atomic source. Inside an ultra-high vacuum setup, the fast lithium atoms are
slowed down in a Zeeman slower and subsequently captured in a magneto-optical
trap (MOT) on the D2 transition, which achieves temperatures of a few hundreds of
µK. In a second laser cooling step, the atomic sample is cooled to ∼60 µK in a UV
MOT using the narrow 2S1/2 to 3P3/2 transition. For details on the MOT and UV laser
setup see [196]. Repumping after the UV MOT ensures a balanced mixture of the
states |1⟩ and |2⟩.
The atoms are transferred from the UV MOT into a 100 W dipole trap originating
from a 1070 nm laser, a ‘magic’ wavelength with respect to the UV transition. This
means the states 2S1/2 and 3P3/2 have equal polarizability at this wavelength [206].
The cooling on the UV transition is thus not affected by the presence of the optical
trap. After the UV light is shut off, the atoms are transferred into a less deep but
more tightly focused dipole trap via optical evaporation. In the next step, the atomic
cloud needs to be moved into a glass cell. To achieve this transport, the focus of
the dipole trap is moved by about 30 cm by moving an air-bearing linear translation
stage on which the optics are mounted. The atoms follow the focus of the trap. The
full assembly of the vacuum setup can be found in [196].

In the glass cell

The main physics takes place in a glass cell, which offers increased optical access
compared to a metal chamber. When the atoms arrive in the horizontally transported
dipole trap, they are slowly loaded into a vertically crossed dipole trap via optical
evaporation. In the next step, we want to load a single plane of a vertical lattice. Single
plane loading is a challenge, as optical dipole traps have typical sizes much bigger
than the lattice spacing. In our experiment the vertical lattice spacing is comparably
large at 6 µm. To transfer the atoms into one vertical plane, we shape a strongly elliptic
trap that acts as a light sheet. The light sheet is projected from the side of the glass cell
through a high-NA lens of focal length f = 40 mm. We use laser light at a wavelength
of λ = 780 nm and achieve a gaussian waist of 1.7 µm in the vertical direction, which
strongly confines the atoms. From this trap we can transfer the atoms into a single
plane of our lattice.

Vertical superlattice

In the vertical direction, the apparatus is equipped with a lattice of as
z = 3 µm spac-

ing and a superlattice of al
z = 6 µm spacing. The bichromatic superlattice setup

can be seen in Fig. 3.2. Two laser beams with commensurate wavelengths (532 nm
and 1064 nm) are overlapped and sent into a temperature-stabilized low vacuum box,
where the path is split into two arms. The two arms recombine under an angle α = 10°
at the position of the atoms. The path length of the two arms is however not equal.
Instead, one arm is equipped with a delay line of ∆L = 56 cm, which enables ad-
justing the relative phase between the two lattices by shifting one of the two colors
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Figure 3.2: Bichromatic vertical superlattice. a, Setup of the bichromatic vertical
superlattice. Light of λ = 532 nm and light of λ = 1064 nm are overlapped and sent to
an aluminum box of low vacuum, where they are split at a 50:50 beamsplitter (BS). The
two arms interfere in the glass cell, creating a lattice and superlattice. b, Absorption
images of the atoms in the superlattice (upper image) with a spacing of 6 µm between
neighboring planes and of the atoms in the short lattice (lower image) with a spacing
of 3 µm. In these images, the lattices are loaded directly from the crossed dipole trap,
without the confining light sheet. Thus several planes are populated. OD optical
density. b is taken from [121].

in frequency. This bichromatic setup allows for high relative phase stability. The
vacuum box further stabilizes the optical path length, by minimizing pressure and
humidity fluctuations. Mutual phase stability of the two light sources is ensured by
using a common laser source. A 1064 nm Mephisto MOPA provides laser light for the
superlattice, while also providing seed light for a 1064 nm fiber amplifier (Azurlight
Systems), which is subsequently frequency doubled and thus provides the light for
the short lattice. Detailed descriptions of the setup and stability estimations can be
found in [121, 207].

Magnetic evaporation

We load the atoms into a single plane of the superlattice with a depth of 100 El
R. Once

a single plane is populated, we adiabatically turn on the short lattice to 50 Es
R. We set

the relative phase of the lattice such that we transfer all atoms into one lattice plane.
We then use magnetic evaporation to further cool down the atoms [208]. Using a
magnetic field offset of about 600 G, we tune the scattering length to 350 aB, with aB
being the Bohr radius. At this field we find the atoms in the Paschen-Back regime.
Over a time span of 5 s we ramp up a magnetic field gradient along the y-direction,
which effectively lowers the potential barrier of the trap and equally spills both spin
species. It thus preserves the balance of the spin mixture. Our evaporation reaches
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temperatures of about T/TF ≈ 0.1 [121].

3.2 Shaping and imaging a Fermi-Hubbard system

To simulate the Fermi-Hubbard model, we use a square optical lattice of spacings
ax = 1.18 µm and ay = 1.15 µm. The optical lattices are generated by two parallel
pairs of 1064 nm laser beams, which are focused through our high-NA objective and
form a standing wave in the focus, as it is described e.g. in [197]. After the magnetic
evaporation, the xy-lattice is ramped up within 100 ms to typical depths between 5 ER
and 12 ER. Simultaneously, the scattering length is tuned to its final value, typically
between 500 aB and 1500 aB. We usually work in the regime of 8 ≤ U/t ≤ 15.

3.2.1 Site-resolved potential shaping

The optical lattice generates a square lattice potential with harmonic confinement
and local potential inhomogeneities due to fringes in the laser beams. The fringes
largely derive from the lattice setup which passes through the objective. This images
small defects like dust and scratches on mirrors onto the atomic plane. We use a pro-
grammable light pattern to add a site-resolved repulsive potential on top of the lattice
grid. This allows us to compensate for the harmonic potential and fringes and create
a comparably flat system. We furthermore use this arbitrary potential to shape ladder
systems.
To generate the programmable optical potential we use a digital micromirror device
(DMD), similar as in [209]. A DMD is a two-dimensional array of small mirrors that
can be flipped individually to reflect an incoming beam. In our setup, we use a DMD
from Vialux (DLP V-7000 VIS) with specifications given in Table 3.1.

DMD parameters
DMD resolution 1024 x 768

Pixel pitch 13.6 µm
Pixel per lattice site ∼ 16 x 16
Wavelength used 650 nm

Refresh rate disabled

Table 3.1: Specifications of the DMD setup. This includes parameters specific to the
DMD, as well as parameters given by our optical setup. Pixel pitch is the distance
between the centers of neighboring pixels. Refresh rate is the regular refreshing of a
static image, which can be disabled in the software.

We illuminate this mirror array with incoherent light at a center wavelength of 650 nm,
which is blue detuned from the lithium transitions at 671 nm and thus creates a re-
pulsive potential. The light source is a superluminescent diode (SLED) from Exalos
(EXS0650-006-10-0B00030) with a linewidth of 6 nm and up to 10 mW output power.
We amplify the light using TA chips (EYP-TPA-0650-00250). Since TA chips at such
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Figure 3.3: DMD setup. Incoherent laser light at 650nm, which is coupled out of a
multimode fiber, illuminates the DMD pattern. The reflected pattern passes several
lenses for beam shaping. Close to the image plane after the first pair of lenses, a beam
profiling camera monitors the diffracted pattern using a small fraction of the total
intensity reflected at a polarizing beamsplitter cube (PBS). The beam is overlapped
with the fluorescence imaging path and is imaged onto the atomic plane. The light
intensity is stabilized by sending a small fraction to a photodiode.

short wavelengths decrease in output power within few weeks, and the initial power
from the diode is below the optimal seed power, we require three TA amplification
stages in row to achieve a stable power level. We then filter the amplified sponta-
neous emission, which can cause heating in the atomic system when it is close to
the atomic transition of 671 nm. The temporally incoherent light is then coupled into
a multimode fiber, where mode scrambling generates spatial incoherence out of the
temporally incoherent light [210]. Having both spatially and temporally incoherent
light greatly reduces the amount of light speckles when projecting the DMD pattern
onto the atomic system.
A sketch of the optical setup which illuminates the DMD and images the pattern
onto the atoms is shown in Fig. 3.3. We monitor the projected light pattern using a
beam profiling camera in an imaging plane which lies between the DMD surface and
the imaging plane on the atoms. The DMD beam path is overlapped on a dichroic
(SEM-FF662-FDi002-t3-50.8-D) with the fluorescence path that we use to image the
occupation in the optical lattice. The dichroic has a high surface flatness with a re-
flected wavefront error of λ/5. This minimizes the astigmatism introduced to the
beam focus. Note that the objective has a chromatic shift for 650 nm, as compared to
the focus position for the 671 nm light of the fluorescence signal. We compensate for
this by adjusting the position of the f = 1000 mm lens correspondingly.
For a given total laser intensity, each pixel of the DMD only allows for binary ampli-
tude control by flipping the mirror position. This means a single pixel does not al-
low for a continuous grayscale. However, diffraction-limited imaging leads to coarse
graining of the pattern. The images of several pixels overlap on the same lattice site.
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Figure 3.4: DMD pattern and projected potential. a, Programmed micromirror pat-
tern using error diffusion to reach an effective grayscale. b, Light pattern reflected
from the DMD, which was programmed with the pattern of a. c, Snapshot of the
atoms in the optical lattice with the additional potential created by the light pattern.
d, Average density calculated from 450 shots.

Each lattice site is thus addressed by about 250 individual pixels whose point-spread
functions partially overlap. A given amplitude on a lattice site is translated to a distri-
bution of switched mirrors using error diffusion [211], as it is explained for example
in [212].
Fig. 3.4a shows such a programmed DMD pattern, while Fig. 3.4b shows the light
pattern that is projected. Fig. 3.4c and d show an example shot and the corresponding
average density for this pattern. The pattern creates four independent ladder systems
that are separated by walls. A broad Gaussian-shaped pattern is added on top of
the ladders to compensate for the harmonic confinement of the optical lattice. The
average density hence does not show the Gaussian confinement. The low density on
the barriers indicate a clean separation between the ladders. No density feedback (see
below in section 3.3) was applied to the pattern to flatten the potential.

3.2.2 Spin resolution

The physics of the Fermi-Hubbard model, which we want to study with our machine,
is marked by a competition between spin and charge degrees of freedom. To extract
information about this competition, it is advantageous to have a detection that allows
to read out the full information of spin and charge for every snapshot. For undoped
systems in the Mott insulating regime, this can be done by a charge-only detection,
if one of the two spin states is removed by a state dependent pushout before detec-
tion [213]. An empty site in the detection can then be assigned the removed spin
state with high probability. At finite doping however, other detection schemes are
needed as it becomes impossible to distinguish dopants (holes) from the removed
spin species. In the course of this PhD thesis, our machine was changed from an
in-plane spin resolution [47], to an out-of-plane spin resolution using the vertical su-
perlattice introduced in Fig. 3.2.
After preparing the desired quantum state in the optical lattice we freeze the occupa-
tion distribution by ramping the physics lattices to 43 Exy

R . We then transfer the atoms
from a single plane of the z-lattice to a single plane of the z-superlattice. Then, a Stern-
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Figure 3.5: Spin splitting. a, Illustration of the Stern-Gerlach splitting in z−direction.
The magnetic field gradient leads to different potentials for the two spin species.
While for one species the ground state is localized in the left well, it is in the right
well for the other spin. They are thus adiabatically transferred into opposite wells.
b, Population of the two wells (planes) depending on the relative phase between lat-
tice and superlattice. Phase zero denotes the symmetric configuration. The central
plateau shows the region where the gradient is larger than the phase offset. Here, the
occupation is splitted according to their spin. c, Example shots of the two spin species
and reconstructed spin- and charge-resolved occupation of the original atomic plane.
The imaging technique is described in the following part.

Gerlach separation displaces the two spin states vertically, by ramping up a magnetic
field gradient in z-direction. For this, we stay in the regime of low magnetic field of
few G, for which the two spin states experience an opposite force. Additional to the
z-superlattice, we adiabatically turn back on the z-lattice in a symmetric double-well
configuration, such that the two spin states are transferred into opposite wells (see
Fig. 3.5a). To measure the sensitivity on the symmetric phase, we perform this spin
splitting sequence at different relative phases between the lattice and superlattice. If
the potential shift given by the gradient is stronger than the potential offset caused by
the phase, the spin species are transferred into opposite wells. However, if the phase
offset becomes too large, all atoms, independent of their spin, are transferred into the
same well. The plateau in Fig. 3.5b shows that for asymmetric phases less than 0.5 rad
from the symmetric phase, our splitting procedure reliably splits the cloud according
to the spin. The measurement is taken by imaging and reconstructing the occupation
in the two planes independently (see below for details on the site-resolved imaging).
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Figure 3.6: Geometric pumping scheme. a, Time-modulation of our superlattice
phase and corresponding transport of the atoms. i. Two atoms initially inhabit op-
posite wells of the same double well but are moved into different double wells (ii.)
by shifting the superlattice phase at deep z-lattice potential. iii. An adiabatic phase
sweep transfers the atoms to the opposite well within their respective double well,
which leaves the atoms 6 µm further separated than the initial position. b, Absorp-
tion images of the pumped planes taken from a side view. The first image shows two
planes in a double well configuration, the following images show the plane distance
after each pumping step. c, Pumping fidelity. The atom number of a single pumped
plane is plotted versus pumping steps. To increase the amount of pumping steps, we
reverse the pumping direction after three steps. The atom number is evaluated from
fluorescence images. A linear fit suggests a pumping fidelity of 98.9% for every three
pumping steps.

Fig. 3.5c shows an example image of a spin-splitted cloud and the reconstructed spin-
resolved occupation of the two-dimensional atomic system.
In order to image the two planes, they first need to be further separated in the verti-
cal direction. For this, we apply a charge pumping sequence similar to a topological
Thouless pump [178, 214, 215], by modulating our superlattice phase and amplitudes
in time. A single pumping step of our scheme is illustrated in Fig. 3.6a. The spin split-
ting leaves us with a symmetric double well configuration and a finite population
in both wells (step i. in the figure). We shift the lattice phase, while z-lattice and z-
superlattice are at their maximum depth. When we subsequently reduce the z-lattice
depth to 11 ER, we initialize the atoms in two distinct bands of distinct double wells
with a tilt ∆dw (step ii.). One population is initialized in the ground band of a double
well, while the other population inhabits the excited band of the neighboring double
well. These two bands have opposite Chern numbers [178, 214]. In the next step, we
adiabatically sweep the double well tilt from ∆dw to −∆dw (step iii.). The different
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Chern numbers of the bands lead to transport in opposite directions upon this phase
sweep. We then increase the z-lattice again to maximum depth. We repeat this ge-
ometric pumping sequence to increase the distance between the two spin layers far
beyond the depth of focus of our imaging system. A single pumping cycle separates
the atoms by al

z = 6 µm, giving a total of 21 µm after 3 steps together with the initial
Stern-Gerlach separation of 3 µm.
Our pumping sequence is not identical to a topological Thouless pump. The differ-
ence lies in the repetition of the initial non-adiabatic phase ramp. Since our setup only
allows for a phase range of less than 4π, we can not continuously, adiabatically move
the atoms while keeping them in the same band. Instead, we have to repeatedly re-
set the tilted double well configuration and do not complete a closed circle in phase
space. Nevertheless, we can continuously separate the two planes. This is demon-
strated in Fig. 3.6b, which shows absorption images of the populated planes in side
view.
We measure the pumping fidelity by preparing a single layer of atoms and pumping
it with our sequence. After three steps, we take fluorescence images and compare the
number of atoms to the atom number in the original plane. To increase the sensitivity
of our method, we repeat the measurement with six and nine pumping steps. In order
to not leave the central area of our lattice beams, we reverse the pumping direction
once after three steps. We achieve a pumping fidelity of 99.6% per pumping step, or
98.9% for three pumping steps (see Fig. 3.6c).

3.2.3 Bilayer imaging

In order to take spin-resolved snapshots, we need to take fluorescence pictures of both
spin species, which occupy planes of our lattice in a distance of 21 µm. Previously, we
achieved this by taking two subsequent fluorescence images and moving the high-NA
objective by the required distance between the two images. However, this approach
not only cost us 1 s per experimental cycle to move the objective, but it also caused
random shifts between the two planes on camera due to unpredictable movements of
the objective in xy-direction at every focus shift. As a result, the two planes had to be
matched separately in every shot. The matching algorithm was based on the assump-
tion that the original plane displays a Mott insulator with low doublon number (for
details see [216]). This method however fails for high doping or small systems.
To avoid these problems, we have introduced simultaneous imaging of both planes
(see Fig. 3.7a). The fluorescence light captured through the objective is split into two
paths, with one of the paths containing an additional telescope. the paths are then
recombined and sent onto the same EMCCD camera with a small offset in position,
such that they illuminate different areas of the camera chip. The additional telescope
has one lens on a motorized stage (Newport MFA-CC), which allows to adjust the
focus position from within the experimental sequence. This way the two spots on the
camera correspond to different foci in the atomic system. They are set to be 21 µm
apart from each other by adjusting the motorized telescope. The focal plane of the
objective is estimated to sit between the imaged planes, close to the original atomic
plane.
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Figure 3.7: Bilayer imaging. a, Bilayer imaging scheme. The unpolarized fluores-
cence signal collected from the high-NA objective is split at a polarizing beamsplit-
ter cube. One path passes through an additional telescope consisting of achromatic
lenses, one of them mounted on a motorized translation stage. The paths are recom-
bined with a small offset and captured on different areas on the camera chip, as seen
in the example snapshot. The snapshot shows a spin-split cloud with one spin species
on the upper left part of the snapshot and the other species on the lower right part.
The surrounding area of the camera field of view was cut out. b, shows the histograms
of counts per reconstructed lattice site for a data set of 1300 spin-split images. Both
the first imaging path (blue) and the second imaging path (red), which contains the
telescope, allow for a clear identification of atoms.

The example shot in Fig. 3.7a shows a spin-resolved box potential with few atoms
outside of the box potential. The antiferromagnetic correlations are visible from the
checkerboard pattern inside the box area. Fig. 3.7b shows the reconstruction his-
tograms for both paths. The pixel counts are summed up in each lattice site and an
occupation is assigned to the site. The histograms show a clear distinction between
occupied and non-occupied sites. Due to the spin splitting, doublons are separated
into different planes. In reconstructing the occupation from the fluorescence signal,
we thus only need to distinguish zero from one atom. The similarity of the histograms
shows that the additional telescope does not significantly influence the imaging qual-
ity.We find a PSF with 2d profiles of size σs

1 = 315 nm and σl
1 = 432 nm for the first

path, and σs
2 = 347 nm and σl

2 = 415 nm for the second path, where superscripts s (l)
denote the short (long) axis of the PSF.

3.3 Automatic evaluation and feedback procedure

Quantum gas microscopes require a lot of maintenance time and in operation the
machines are often not stable enough for unsupervised data taking. In our lab, we
have introduced several improvements like automatization, monitoring and feedback
procedures to increase the efficiency and stability of the lab. In the following, I will
mention a few key improvements.
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Running motorized mounts from the sequence control

Motorized mirror mounts allow for precise beam alignment without physically touch-
ing the experiment. This makes alignment procedures more efficient and avoids ther-
mal drifts from removing the protective doors around the optical table. Motorized
flip mounts can be used to insert optical elements into the beam path, which we use
for example to switch between fluorescence imaging and vertical absorption imaging.
We have recently implemented the addressing of these mounts into the experimental
control system. They can now be operated and scanned from the experimental se-
quence. This allows for remote alignment scans of most of our setups, for example
for the optical lattices. This upgrade paves the way towards automatic self-alignment
of the apparatus.

Z-lattice absolute phase feedback

Drifts of the z-superlattice absolute phase are detrimental to single-plane loading and
the imaging focus. Without active feedback, we observe phase shifts on the order of
π on timescales of 20 to 30 minutes. The largest contribution to phase instabilities
comes from thermal expansions of the aluminum plate on which the optics of the
lattice setup are mounted. We note that this does not significantly affect the relative
phase stability. To counteract these drifts, we stabilize the absolute plane position.
Every one out of seven experimental runs, we take an absorption image of the z-lattice
from the side, similar to Fig. 3.6b. A continuously running script awaits these pictures,
fits the plane position, and compares it to a fixed reference position. The error is
converted to an analog voltage output (using an Adafruit Feather M0), which is used
to control the temperature and thus wavelength of our 1064 nm laser seed (Mephisto
MOPA). The absolute phase stabilization relies on the phase difference accumulated
in the delay line and causes a commensurate shift for the lattice and the superlattice.

Occupation reconstruction

The occupation of the two imaged planes is continuously evaluated. This enables
monitoring of the total atom number as well as of the lattice phase. Monitoring these
quantities allows us to spot and solve instabilities as they occur. Due to our spin-
splitting technique, we also need to ensure the correct matching of the two imaged
planes. Continuous drifts can eventually lead to a wrong combination of the two spin
planes. A wrong match manifests itself in a sudden jump of the center pixel in one
of the planes. We continuously run a matching algorithm to detect such jumps and
shift the matching parameters accordingly. This procedure assures the correct spin
reconstruction for continuous data sets. The experimentalist operating the machine
only needs to verify the correct matching of the first snapshot.

DMD shift

To shape ladder systems with our DMD, we need to align the DMD potential to the
lattice grid with high precision. To keep the ladder positions aligned with the correct
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lattice sites, we need to compensate for (a) drifts in the lattice position and (b) drifts in
the DMD potential position. We compensate for (a) using the lattice phase monitoring
mentioned above. The lattice phase is translated to an absolute shift of the pattern
on the DMD chip. The compensation of (b) requires another observable: a feedback
script evaluates the ladder occupation and calculates the imbalance between the two
legs. A drift in the DMD pattern can be detected as an occupation imbalance, because
parts of the potential barrier will affect one side of the ladder. If the average imbalance
of the last 20 shots exceeds 5%, a shift is applied to the DMD pattern. The averaging
of 20 shots is done to reduce the influence of shot-to-shot fluctuations, but the optimal
number of shots depends on the system stability and can be adjusted manually in the
script.

Monitoring

We use the open-source monitoring system Grafana [217] to keep track of quantities
like the lab temperature and magnetic field, but also observables of our experimental
system like the total atom number and lattice phase. This system allows us to detect
and counteract problems before losing valuable measurement time. Atom number
drifts, for example, can trigger warning messages that reach us immediately. Time
traces of these observables helped us for example find the correlation between lab
temperature and z-superlattice phase. The improvements mentioned in this section
together have led to a more efficient operation of the experiment that requires less
active attention.
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CHAPTER 4

Magnetically Mediated Hole Pairing

In this chapter, we present the main result of the thesis, which is the microscopic
observation of hole pairing. The binding of such charge carriers is a key process in
the emergence of superconductivity, and a complete understanding of its origins in
unconventional superconductors is still lacking. Here, hole pairing is achieved ex-
perimentally by realizing mixed-dimensional ladder systems, which we introduce in
the first part of the chapter. We then present its experimental implementation using
our Fermi-gas microscope. We discuss the hole correlation, which reveals the exis-
tence of a bound state and contrast it to the repulsion of holes in the standard (not
mixed-dimensional) ladder configuration. Furthermore, the magnetic environment
that leads to the hole binding is characterized. Finally, we show that the presence of
several pairs leads to repulsive interaction of pairs. The numerical results presented
in this chapter were calculated by Annabelle Bohrdt.

4.1 Magnetic correlations in unconventional supercon-
ductors

While the origin of pairing in unconventional superconductors is still a topic of de-
bate, these strongly correlated materials have some ubiquitous features in common,
which might hint at the underlying physical processes at stake. Their phase diagrams,
as exemplified in Figure 4.1, display superconductivity emerging in the vicinity of
magnetic phases like ferro- and antiferromagnets. Some of these materials, like the
cuprates [61], layered organic [69] or graphene [73] based ones, exhibit superconduci-
tivty emerging upon doping antiferromagnetic Mott insulators. These discoveries
motivated considerable work aimed at understanding superconductivity mediated
by magnetic fluctuations [65].
The Fermi-Hubbard model captures many aspects of the high-TC superconducting
cuprates, including an antiferromagnetic Mott insulating state at half filling and a
competition between magnetic and kinetic energy upon doping. It thus has the po-
tential to shed light onto the mechanisms of high-TC superconductivity. The investi-
gation of magnetically mediated pairing in this model can furthermore affirm the rel-
evance of this process for unconventional superconductors in general. As discussed
in chapter 2, doped Fermi-Hubbard ladders allow accurate numerical solutions using
DMRG and are thus suitable for developing insight into the problem of pairing in
doped Mott insulators.
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a b c

Figure 4.1: Magnetically ordered phases in unconventional superconductors. The
exemplary phase diagrams show magnetic phases in the vicinity of the superconduct-
ing phase. a, Phase diagram of a cuprate superconductor versus temperature (y-axis)
and doping (x-axis). It shows an antiferromagnetic phase at low doping and a su-
perconducting phase upon increased doping. Diagram adapted from [218] b, Phase
diagram of magic-angle twisted trilayer graphene versus doping ν (x-axis) and tem-
perature (y-axis). The superconducting phase appears close to large ferromagnetic ar-
eas. Diagram adapted from [219]. c, Phase diagram of a cerium-based heavy fermion
superconductor versus pressure (x-axis) and temperature (y-axis). Upon increasing
the pressure, the material transitions from an antiferromagnet to a superconductor.
Diagram adapted from [220]. SC stands for superconductivity, PM for paramagnet,
FM ferromagnet, AF antiferromagnet.

A paradigmatic case for theoretical investigation, that has been studied early on and
exhibits large binding, is the regime where inter-chain magnetic exchange is larger
than single-particle interchain hopping [155]. These parameters could, however, not
be justified microscopically for condensed matter systems and are unphysical within
the framework of a pure Fermi-Hubbard system. The key motivation for our work
was to provide an experimental realization of this system that has originally been
considered a theoretical abstraction. We achieve this by extending Fermi-Hubbard
ladders at large interactions with a potential offset, which suppresses inter-chain
hopping while enhancing spin exchange, effectively realizing a mixed-dimensional
(mixD) system [221].

4.2 Pauli repulsion of holes

Pairing of holes has so far not been observed in cold atom systems. The main reason
for this is the typically extremely low binding energy much below the spin-exchange
energy J. Binding is thus not reachable for state-of-the-art quantum simulators, which
can reach temperatures of 0.5 to 0.7 J [56, 124], because they are not able to resolve the
energy gap between the bound and unbound state. Here, we apply a novel approach
by suppressing charge motion along one direction, which increases the binding en-
ergy to the order of the spin-exchange energy. This allows for the realization of bound
hole pairs in a quantum simulator and also delineates a strategy to increase the critical
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Figure 4.2: Pauli repulsion of holes in ladders. a, Illustration of a ladder system with
vanishing rung tunneling t⊥ = 0, but finite spin exchange J⊥ > 0. Together the two
holes can move through the whole system without breaking the spin singlets. Since
particles only move along the legs, they are not immediately affected in their kinetic
energy by the presence of another hole on the same rung. b, Illustration of a ladder
system with finite rung tunneling t⊥ > J⊥ > 0. Two holes experience a strong mutual
repulsion caused by the Pauli principle, which is depicted by the grey shaded area
that surrounds each hole. The kinetic energy cost of occupying the same rung is on
the order of t⊥. This is why it is energetically more favorable for holes to stay at a
certain distance from each other.

temperature for superconductivity.

The typically small binding energy far below J is caused by a competition of hole
binding and Pauli repulsion. To understand this, we first recall the origin of pairing
as illustrated in Ch. 2, Fig. 2.12. There we have discussed how binding is caused by
the interplay of magnetic energy and kinetic energy. While delocalization of a single
hole lowers kinetic energy, but increases magnetic energy, a bound pair can delocalize
and thus lower their kinetic energy without major disturbance of the magnetic order.
In particular, the shorter the average distance between the two holes, the smaller the
increase of magnetic energy. Given this picture, the pair size should ideally be small.
Since it originates from restoring the spin order, which is governed by the spin ex-
change energy, the binding energy one would expect a binding energy on the order
of J. However, this picture actually only holds when the rung tunneling t⊥ is small
compared to the rung spin exchange J⊥, as depicted in Fig. 4.2a. In the standard
Fermi-Hubbard model, where the spin exchange is derived as J⊥ = 4t2

⊥/U for U ≫ t,
the rung tunneling t⊥ is always the dominating energy scale over the spin exchange
J⊥. In this case, it is energetically unfavorable for two holes to be at a close distance.
The reason is the Pauli repulsion between two holes, as it is shown in Fig. 4.2b. If they
occupy neighboring sites, that site is blocked for the other hole, thus restricting the
hole from fluctuating on that site. This costs kinetic energy on the order of t⊥. Since
t⊥ > J⊥, the energy cost is larger than the energy advantage of forming a strongly
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bound hole pair at a short distance.
This does not mean, that pairing is not possible in Fermi-Hubbard systems. But it
means that pairs form at a certain distance, which maximizes the advantage of de-
localizing through the full system in pairs while keeping the disadvantage from re-
pulsion at a minimum. The size of the hole pair thus depends on the ratio between
tunneling and spin exchange. A finite magnetic energy cost is caused by the disturbed
magnetic order between the two holes. This competition between hole attraction and
hole repulsion effectively lowers the binding energy to values far below the spin ex-
change energy. In order to reduce the complexity of the pairing problem, early the-
oretical works considered the parameter regime where t⊥ is small. In this case, only
hole attraction contributes to the problem [155], as it is depicted in Fig. 4.2a.

4.3 The mixed-dimensional strategy

In order to realize a system where the rung spin exchange exceeds the tunneling, we
engineer a system where rung tunneling is strongly suppressed and becomes negligi-
bly small, while spin exchange along the rungs remains strong. Tunneling and spin
exchange in leg direction are not affected by the suppression of rung tunneling. Such a
system, which possesses spin exchange in all (both) directions, but in which tunneling
is restricted to lower (one) dimension, is in the following called a mixed-dimensional or
mixD system. It is described by the t − J ladder Hamiltonian of Eq. (2.7) with t⊥ = 0.
The system without suppression of tunneling, which corresponds to the t − J-limit of
a Fermi-Hubbard system with t⊥ > J⊥ > 0, we call the standard ladder.

4.3.1 Engineering an effective mixD model in a Fermi-Hubbard type
system

A mixD ladder system can be realized as an effective description of Fermi-Hubbard
ladders by adding a spin-independent potential offset between the two legs [221].
This can be understood from a single double well with a potential offset ∆ between the
two sites (see Fig. 4.3). For large enough ∆ ≫ t, a particle cannot tunnel from one site
of the double well to the other. Hopping is suppressed because the two corresponding
states |L⟩, the state localized on the left well, and |R⟩, the state localized on the right
well, are far detuned from each other.
However, if the other site of the double well is not empty, but occupied by a particle of
opposite spin, the two particles can switch positions via a virtual double occupancy.
Spin exchange is not suppressed, because the final state and the initial state have the
same energy. Thus a potential offset ∆ suppresses the tunneling between two sites,
but not the spin exchange [222].
The full Hamiltonian of the Fermi-Hubbard ladder system with potential offset is
given by

Ĥ = − ∑
⟨i,j⟩,σ

−t̃ij

(
ĉ†

i,σ ĉj,σ + h.c.
)
+ U ∑

i
n̂i,↑n̂i,↓ + ∆ ∑

i∈(x,y=1)
n̂i,
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ΔΔ

a b

Figure 4.3: Suppression of tunneling using a potential offset. a, A potential offset
∆ between two sites of a double well suppresses tunneling. The state shown on the
left, before the tunneling event, is far detuned from the state on the right, after the
tunneling event. b, Spin exchange is not suppressed by the potential offset ∆, because
both states, before and after the spin exchange, have the same energy.

where we use the notation U, t̃∥, t̃⊥ > 0 to refer to the bare Hubbard parameters
and distinguish them from the effective parameters t⊥, t∥, J⊥, J∥, which depend on ∆.
For ∆ ≫ 0, the Hubbard tunneling t̃⊥ ̸= t⊥ is eliminated from the Hamiltonian by
working in a time-dependent basis. The resulting t − J Hamiltonian reads

ĤtJL = ∑
x,y,σ

P̂
(
−t∥ ĉ†

x,y,σ ĉx+1,y,σ + h.c.
)
P̂ +

+ ∑
x,y

J∥

(
Ŝx,y · Ŝx+1,y −

n̂x,yn̂x+1,y

4

)
+ ∑

x
J⊥

(
Ŝx,0 · Ŝx,1 −

n̂x,0n̂x,1

4

)
,

where the spin exchange J⊥ gets increased by the potential offset due to a modified
energy level for double occupancies. The spin exchange in the presence of a potential
offset is given by [223, 224]

J⊥ =
2t̃⊥2

U + ∆
+

2t̃⊥2

U − ∆
, (4.1)

which means that it is enhanced for 0 ≪ ∆ ≪ U and switches sign from antiferro-
magnetic to ferromagnetic spin coupling for 0 < U ≪ ∆. The formula does not hold
for the case of ∆ = U, where the double occupancy is resonant with the state of one
particle per site and double occupancies are not suppressed anymore.

We note that this effective model does not capture the full physics, but only holds
for intermediate timescales where the system is in a metastable state. For small tilts
|∆| ≪ |t̃⊥| no such metastability exists but instead the system directly equilibrates
to a state where more holes are in the upper leg. Such a system is not described by
an effective Hamiltonian with mixed dimensionality, but by the full Hubbard model
with ∆ and t̃⊥ terms. In particular this means that tunneling cannot be suppressed
gradually by applying small potential offsets. If the potential offset is small, it leads to
a faster tunneling rate with a lower amplitude, meaning that the oscillation between
the wells becomes faster but only a fraction of the charge actually tunnels, similar to
detuned Rabi oscillations (see e.g. [225]).
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Figure 4.4: Pairing in mixD ladders and bilayers. The binding energies EB for mixD
ladder (a) and mixD bilayer (b) systems. The sketches illustrate the two systems and
their binding mechanisms, with holes colored in white and displaced singlet bonds
highlighted in green. The mixD ladder can be understood as a special case of the
mixD bilayer system. The figure is adapted from [221], where the curves are obtained
by comparing the ground state energy of a single hole to the energy of a hole in a
bound pair.

4.3.2 Strong binding in mixed-dimensional systems

Mixed-dimensional ladder systems show strong pairing with binding energies on the
order of the spin-exchange energy J⊥. The binding energies expected for different
ratios of leg tunneling and rung spin exchange t∥/J⊥ are calculated in [221]. In the
following, the theoretical findings of that work are summarized because they lay the
foundation for the experimental work presented within this chapter. The authors
find two different regimes, the strong coupling regime t∥ ≫ J⊥, where hole pairs are
highly mobile along the leg, and the tight-binding regime t∥ ≪ J⊥, which consists of
weakly coupled rungs. Note that for both regimes the spin exchange is assumed to
be dominant along the rung, i.e. J⊥ ≫ J∥.
Fig. 4.4a shows the binding energy of a mixD ladder system doped with two holes. In
the tight-binding regime, the binding energy approaches J⊥ in the limit of uncoupled
double wells on the rungs. The binding can be explained as the advantage of forming
the highest possible amount of singlets when the two holes occupy the same rung.
If t∥ > 0 the hole pair can move along the ladder, but remains heavy as long as the
tunneling is low. In the strong coupling limit the hole pairs are highly mobile and the
binding energy exceeds J⊥. The strong binding is caused because a single pair pre-
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vents several singlet bonds from being displaced by unbound holes. While the pairs
are still tightly bound, the strong leg coupling leads to fluctuations in the position
of the constituents of the pair. This fluctuation leads to a pair extension over several
sites. The light effective mass of pairs furthermore leads to high condensation tem-
peratures TC. Hence the mixD approach can potentially boost the critical temperature
for the superconducting phase.
In this thesis we realize an experimental system in between the tight-binding and
strong coupling regime with t∥ = 0.7J⊥. In this parameter regime, spin coupling
along the rung and dopant motion along the leg compete on similar energy scales.
Even though this regime has comparably low binding energy for a mixD system, it
still boost the binding energy by an order of magnitude compared to a standard sys-
tem. Therefore it allows the microscopic observation of the pairing mechanism and
investigation of its origin in the competition of hole motion and magnetic correlations.
We choose this parameter regime, and not larger leg couplings, due to experimental
limitations. In particular the small size of the system requires a separation of scales
between the pair size and the system length in order to distinguish pairs from un-
bound free holes.

4.4 System preparation: a ladder system with potential
offset

In order to probe the physics in mixD ladders, and compare them to standard ladders
with tunneling t⊥ > J⊥, we prepare both configurations in our Fermi-gas microscope
with the same sequence. The only difference between the preparation sequences is
the potential offset, which is either ∆ > t⊥ or ∆ = 0. To create mixD ladders, we
prepare a cold atomic cloud in a single layer of a vertical optical lattice with a balanced
mixture of the lowest two hyperfine states of lithium. We then adiabatically load the
atoms into the optical lattice in the xy-plane, while simultaneously applying a spin
independent light sift using our DMD. The resulting repulsive potential compensates

A B

a

Uncoupled 1D chains

t⟂ ¿ t ∥  and J⟂ ¿ J ∥

A B
¢

b

Apply offset

t⟂! 0 and J⟂  enhanced

A B
¢

c

Final parameters

t ∥ /J⟂ ≈ 0.7

Figure 4.5: Preparation sequence for mixD systems.a, We start by preparing nearly
uncoupled 1d chains (the legs of the ladder) with very high mobility along the chain.
b, We apply the potential offset ∆ to one leg of the legs while they are still uncoupled.
c, We slowly ramp the lattice depth to the final configuration: a mixD system with
J⊥ ≫ J∥. The potential offset prevents the particles from tunneling between the leg
during this preparation step.
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Figure 4.6: Sequence for the lattice ramps.The plots show the lattice depths in the
rung and leg direction of the ladders, as they are changed in time during the prepara-
tion sequence. They are ramped up in two steps to a regime of nearly decoupled legs.
There they are held for 5 ms, during which the DMD pattern is switched. Then they
are slowly ramped to the final system parameters.

for the harmonic confinement of the optical lattice beams and shapes the system into
the geometry of four two-leg ladders of length L = 7. A potential offset ∆ is then
added on top of the ladder configuration using the same DMD.
The full loading sequence takes part in three steps (a), (b) and (c) (see Fig. 4.5). (a)
The initial lattice ramp has two steps, in order to improve adiabaticity when turning
on the lattice. The first, slow ramp, slowly turns the rung lattice to Vr = 4 ER and the
leg lattice to Vl = 1 ER within 62 ms, and then the faster ramp increases the depth to
Vr = 20 ER and Vl = 3 ER within 38 ms. The DMD potential is ramped linearly within
the same time of 100 ms. The result is a system of two decoupled tubes, which will
later form the legs of the ladders.
(b) The optical potential offset ∆ is applied to one leg of each ladder. The DMD pat-
tern, which at this point is compensating the harmonic confinement and shaping the
ladders, is instantaneously switched, keeping the previous pattern but adding an ad-
ditional offset to one leg per ladder. Since the legs of the ladder are decoupled by
a 20 ER deep lattice, this quench of the potential does not induce considerable short-
term out-of-equilibrium time evolution. We hold in this configuration for 5 ms.
(c) The lattice potential is now slowly ramped to its final parameters of Vr = 6 ER
and Vl = 12 ER within 95 ms. The potential offset prevents the atoms from tunneling
between the legs during the full ramp. The details of the lattice ramps and their timing
can be seen in Fig. 4.6.
The main purpose of the three-part system preparation is to create a meta-stable state
with homogeneous distribution of doping over both legs, instead of the mass im-
balanced distribution which corresponds to the ground state of the system. The fi-
nal parameters give a repulsive on-site interaction of U = h × 4.29(10) kHz (with
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Figure 4.7: Potential offset calibration scan. A scan of the light intensity (x-axis)
of the potential offset between the two legs of the ladder. The peak in the doublon
number (y-axis) identifies the resonance condition ∆ = U.

a scattering length of as = 1310 aB), Hubbard tunneling t̃∥ = h × 78(10)Hz and
t̃⊥ = h × 303(23)Hz and the offset ∆ ≈ 0.5 U or ∆ = 0 depending on the config-
uration (mixD or standard). Note that the notation t̃∥ and t̃⊥ is used to describe the
bare Hubbard parameters, which are distinct from the effective mixD description us-
ing t∥ and t⊥. Since U/t̃⊥, U/t̃∥ ≥ 14, the system can be effectively described by
the t − J model. Along the legs, the t − J tunnel coupling is independent of ∆ and is
t∥ = t̃∥ = h × 78(10)Hz, yielding a spin exchange of J∥ = h × 5.7(1.5)Hz. Along the
rungs, the mixD system (∆/U ≈ 0.5) yields t⊥ = 0 and an enhanced spin exchange
J⊥ = h × 114(42)Hz. Without the potential offset, i.e. in the standard system (∆ = 0),
tunneling is unaffected, leading to t⊥ = t̃⊥ = h× 303(23)Hz and J⊥ = h× 86(13)Hz.

Potential offset calibration

The potential offset ∆ is crucial for the suppression of tunneling in the mixD sys-
tem. Its amplitude is directly proportional to the light intensity, which is controlled
by the DMD pattern. The calibration of ∆ is performed by varying the light intensity
between different experimental realizations and evaluating the number of doubly oc-
cupied sites (doublons) in the system. The result of such a scan can be seen in Fig. 4.7.
When the potential offset equals the interaction energy U, the doublon number in the
system increases, because the lowest band in the upper leg becomes resonant with
the interaction band of the lower leg. For a half-filled system of length L = 7, one
expects on average 3.5 doublons for this resonant condition. We however work with
a doped system, such that not each double well is filled with two particles that can
create doublons. Furthermore, our system is not perfectly homogeneous, despite a
feedback procedure to flatten the potential. This leads to a broadening of the U- res-
onance peak and a further reduction of the height of the peak. Together these two
factors lead to a maximum number of slightly above 2 doublons in the offset scan.
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Figure 4.8: Doping and magnetization statistics of the data set. a, Experimental
distribution of holes per ladder. The doping of the system lies at around 20% with a
maximum in the distribution for three holes. b, Histogram of the magnetization per
ladder. The most likely magnetization is Mz = 0 and Mz = 0.5, while the majority of
snapshots show a magnetization below two.

We repeat many such scans throughout the data taking, in order to take into account
drifts of the system. These drifts are mostly caused by changes in the beam profile of
the DMD setup. We observe typical shifts of the doublon peak of ∼ 10%. These time-
dependent drifts of the doublon peak and the uncertainty of determining U from each
single scan, yield an estimated uncertainty on ∆ of about ±15%. This uncertainty is
however not critical for the realization of a mixD setting, since any t⊥ ≪ ∆ ≪ U is
sufficient to suppress tunneling. The height of the offset value influences the precise
value of J⊥and thus contributes to its uncertainty.

4.5 System characterization

Our data collection consists of two types of measurements, one part charge-resolved
and another part spin-charge-resolved snapshots. In total we have taken 19 000 ex-
perimental shots, iterating between the mixD (∆ ≈ U/2) and standard (∆ = 0) con-
figuration. Of these snapshots, 61% have charge-only resolution and 39% are taken
with full spin and charge resolution.
Small drifts in the DMD pattern relative to the lattice sites strongly affect the poten-
tial landscape of the ladders, especially the balance between the two legs. We thus
keep track of the ladder potential by continuous automatic evaluation of the charge
distribution and regular feedback to the DMD pattern. If despite the monitoring and
regular feedback the average leg-to-leg occupation imbalance of standard ladders ex-
ceeds 2 holes, we dismiss the respective set of data due to the uncontrolled drift in the
potential.
For data analysis, unless otherwise mentioned, we only take into account ladder snap-
shots without double occupancies and with a leg-to-leg occupation imbalance of max-
imally one hole. Furthermore, most results are obtained in the subset with two to four
holes per ladder. If the data is postselected on different hole numbers, this is explic-
itly mentioned. This leaves us with more than 24 000 individual ladders, about half of
which contain between two and four holes, as can be seen in Fig. 4.8a. The majority



4.5 System characterization 57

a

0 2 4 6
x (site)

A

By 
(s

ite
)

0

1

D
en

si
ty

0

1

D
en

si
ty

0 2 4 6
x (site)

A

By 
(s

ite
)

b

Figure 4.9: Density of the mixD system. a, Average occupation without postselec-
tion. The charge distribution shows a clear imbalance, with the higher density on the
lower leg of the system. b, Density of the mixD system postselected on having no
doublons. The comparison between the two plots shows that doublons on the lower
leg have the largest contribution to the density imbalance between the legs.

of ladders contain three holes and thus a leg-to-leg imbalance of one particle. The
doping of the data set lies at around 20%. The majority of ladders show a magneti-
zation of |Mz| < 2 (see Fig. 4.8b). The magnetization distribution of the data set has
a maximum at Mz = 0 and a slight imbalance towards positive spin, which has been
observed before in our experiment, e.g. [121, 143] and might derive from a small spin
dependence in the evaporation process.
Despite our preparation sequence being aimed at the creation of ladders with an equal
population in both legs, we see a small density imbalance between the upper and
lower leg. Fig. 4.9a shows the average density of the mixD ladders without postse-
lection on doublon number or total occupation. Leg y = B, which has the additional
potential offset ∆ ≈ U/2, has a lower density than leg y = A. Doublon-hole fluctu-
ations make up the biggest contribution to this imbalance. In the standard system,
doublon-hole pairs appear along the rungs with probability ∼ (t̃⊥/U)2 [57] and the
chances for doublons to appear on one leg or the other are symmetric. In the mixD
system the potential offset lowers the energy difference between the doubly occupied
state and two singly occupied states to U − ∆, if the doublon sits on the lower leg.
The energy difference increases to U + ∆ for a doublon on the higher leg. This means
that doublon-hole fluctuations with the doublon on leg A are enhanced, while they
are suppressed for the doublon on leg B. Fig. 4.9b shows the same density plot, but
ladders with double occupancies are removed from the data. The density is more
homogeneous, with a small remaining imbalance, probably due to both static and
time-dependent imperfections in the potential pattern.
The spin correlations in the system are dominated by a high singlet fraction along the
rungs with an average of C(0, 1) = −0.38(1). The nearest-neighbor correlations along
the leg of C(1, 0) = −0.10(1) are however not negligible and indicate that coupling
along the leg plays a considerable role in the system. Fig. 4.10 shows a map of the
spin correlations for different positions in the ladder. While the rung correlations are
relatively independent of position and vary by only about 20 % of their value, the
leg correlations vary by about 65 % of their value. There is a tendency for the leg
correlation to be weaker in the center, but the trend is not significant.
In order to estimate the temperature of our system, we compare the measured rung
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Figure 4.10: Spin correlation map of the mixD system. The space resolved spin cor-
relations C(0, 1) and C(1, 0) are plotted as bonds, whose color indicates the strength
of the correlation. The endpoints of the bonds represent the position of the correlated
sites within the ladder.

spin correlations C(0, 1) to numerical (MPS) simulations at finite temperature. The
MPS snapshots are sampled to match the experimental hole distribution and account
for the experimental detection fidelity (details on the numerical simulations can be
found in Appendix B). Nearest-neighbor spin correlations are a suitable effective ther-
mometer, because they are directly related to temperature with a strong monotonous
dependence in our temperature regime. The mapping of this singlet strength C(0, 1)
to temperature is plotted in Fig. 4.11a.

The spin correlation vs. temperature calibration can be used to assign a temperature
to our data set. The average correlations along the rung in the doped mixD system
correspond to a temperature of

kBT = 0.77(2) J⊥.

However, our system is not well described by a single average spin correlation value,
but correlation strength varies in time and over the four simultaneously realized lad-
ders. Time-dependent variations are due to slow drifts in the evaporation procedure
and beam alignment. These drifts can lead to heating, for example due to mass trans-
port when loading the atoms into the optical lattice after magnetic evaporation. Spa-
tial differences in temperatures between the different ladders are due to differences
in the optical potential and varying degrees of exchange with the outer bath, which is
supposed to host particles of higher entropy.

We characterize the variations by computing rolling averages of the spin correlations
with a window size of about 24 h. Each of the four ladder positions is evaluated in-
dependently. Each shot is then assigned a temperature, based on the average spin
correlations in its time window. The distribution of these time-dependent spin corre-
lations is plotted in Fig. 4.11b. It reaches from C(0, 1) = −0.5 to C(0, 1) = −0.2 and
has a relatively flat maximum around the average spin correlation value. Fig. 4.11c
shows the distribution of temperature derived from the spin correlations in Fig. 4.11b,
which reaches from below kBT = 0.6 J⊥ to above kBT = 1.0 J⊥, with a long but thin
tail of even hotter temperatures.
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Figure 4.11: Temperature estimation of the data set. a, Rung singlet strength ver-
sus temperature. The spin correlations show a strong decay between temperatures of
0.1 J⊥ to 1.0 J⊥. The temperature calibration is based on finite temperature MPS snap-
shots. b, Distribution of the experimental singlet strength C(0, 1) in time windows
(rolling average) of about 24 h. Each time bin is assigned a temperature based on the
calibration curve of a. The resulting distribution of temperatures is plotted in c.

4.6 Hole pairing

In the following section we analyze the hole-hole correlation in the mixD system
and contrast it with the hole-hole correlation in the standard system. The mixD sys-
tem shows significant hole pairing of tightly bound pairs, while the standard system
shows repulsion of holes at close distances. Fig. 4.12 shows an example shot contain-
ing two holes on the same rung in the mixD ladder system, which is characteristic for
tightly bound pairs.
We find a high probability for snapshots to contain two neighboring holes. This is
shown in Fig. 4.13a, which shows the histograms of mutual hole distance d, for two
holes on different legs. The plotted quantity is described by the excess events

δh(d) = ∑
i−j=(d,1)

(⟨n̂h
i n̂h

j ⟩ − n2
h), (4.2)

where n̂h
i denotes the hole-density operator at position i. In this formula, we subtract

the global hole density nh, in order to correct for finite size effects. In a small system
and random hole distribution, short hole distances are more likely than large dis-
tances, because there are more possible combinations of short distances in the system.
Eq. (4.2) has this offset removed.
In the mixD ladders the occurrence of hole distance d = 0 is strongly enhanced
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Figure 4.12: Example snapshot of the mixD system.A single experimental snapshot
containing two holes on the same rung. While a single occurrence does not demon-
strate binding between these holes, the high probability of snapshots featuring holes
on the same rung leads to the conclusion of a bound state.

(Fig. 4.13a), corresponding to two holes on the same rung. The slight asymmetry
of the distribution is caused by optical potential inhomogeneities in our system. The
standard ladders on the other hand show strong repulsion on the same rung (Fig. 4.13b).
The positive excess events for larger distances do not indicate pairing, but derive
from the finite system size. If holes avoid close distances, the probability for larger
distances is in return increased.

4.6.1 Hole correlations

In order to characterize the pairing of holes in our system, and to exclude trivial effects
like bunching from potential inhomogeneities, we further investigate the signal. We
use the density-normalized, connected two-point correlator

g(2)h (r) =
1
Nr

∑
i−j=r

(
⟨n̂h

i n̂h
j ⟩

⟨n̂h
i ⟩⟨n̂h

j ⟩
− 1

)
, (4.3)

where Nr, the number of sites i, j at distance r, is a normalization of the sum in order
to obtain the average value. The function g(2)h (r) is a connected correlator, meaning it
removes uncorrelated contributions like potential inhomogeneities. These can influ-
ence the uncorrelated contributions because potential defects can lead to holes being
more likely in certain positions, independent of the presence of other holes. The corre-
lator g(2)h returns a negative value if the presence of a hole at position i makes the pres-
ence of a second hole at distance r less likely, and a positive value if it makes it more
likely. The correlator is bounded by −1 ≤ g(2)h (r) ≤ (1/nh − 1), where nh = Nh/2L
is the hole density with the number of holes Nh in the system. Note that we use the
more explicit notation g(2)h (dx, dy) instead of g(2)h (r), wherever the distance r is kept
fixed along one or two directions. In the following, we will consider hole correlations
within the same leg g(2)h (d, 0), as well as correlations between holes in different legs

g(2)h (d, 1), as depicted in the schematic ladder system on top of Fig. 4.14a.
The hole correlations between different legs (Fig. 4.14a) have a maximum at distance
d = 0 of g(2)h (0, 1) = 0.15(2), which correspond to two holes occupying the same rung.
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Figure 4.13: Excess events of hole distance in the mixD and standard ladder. The
figure shows the occurrence of excess events δh(d), that is the likelihood to find holes
at distance d compared to the infinite temperature distribution. a, for mixD ladders,
and b for standard ladders. Error bars denote one s.e.m.

This significantly positive connected correlation shows that holes pair in the mixD
ladder. The signal qualitatively agrees with the theoretical prediction. The measured
correlation value sharply drops at |d| = 1, which shows that the hole pairs are tightly
bound and mostly occupy the same rung. The exponential decrease of correlation
strength which is expected to occur with distance, is not visible in the plot due to the
presence of up to four holes per ladder. These additional holes are most likely to be
found at a distance of three to five sites from the pair, which can be seen by the broad
maximum of g(2)h (|d|, 1) around these distances. This broad distribution overshadows
the exponential extension of the pair and leads to a minimum at distance |d| = 1.
Fig. 4.14b shows the hole correlation g(2)h (|d|, 0) for several holes on the same leg. The
correlation is corrected for a finite-size offset (see below). The curve has a minimum
at distance d = 1, which shows repulsion of holes along the leg direction. This is
not surprising, as Pauli repulsion is only suppressed along the rungs, but remains
present along the leg. The visibility of this repulsion demonstrates the significant
mobility of holes along the leg. The correlator shows a broad maximum at distances
|d| = 3 to |d| = 5, because the holes try to maximize their mutual distance while
avoiding the system edge. Occupying the system edge comes with a high cost in
kinetic energy, because particles cannot delocalize into the wall. Note that the hole
correlation within the same leg and the hole correlation between opposite legs show
a qualitatively similar broad maximum around d = 4. This is most likely caused by
the same effect.

Finite size offset

Two-point density correlations, as well as spin correlations, are prone to finite-size
offsets in small systems. The reason is self-correlation at fixed particle number N.
Finding a particle at position r1 makes it less likely to find a particle at any other po-
sition r2 because only N − 1 particles are left to occupy other sites. These finite size
offsets do not affect hole correlations between opposite legs, because the hole density
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Figure 4.14: Hole-hole correlation in the mixD ladder. a, Hole-hole correlation
g(2)h (|d|, 1) of holes in opposite legs in the mixD ladder versus absolute distance |d|.
The correlator is illustrated by the sketch above the plot. A significant positive corre-
lation appears at distance d = 0, corresponding to two holes on the same rung and
indicating the presence of tightly bound pairs. The experimental data is compared to
the theoretical prediction at kBT = 0.8 J⊥ calculated using MPS (shaded line) and cor-
rected by the experimental detection fidelity. b, Offset corrected hole-hole correlation
g(2)h (|d|, 0) of holes in the same leg for the mixD ladder versus absolute distance |d|.
Illustrated by the sketch above the plot. The negative correlation at distance |d| = 1
shows that holes repel each other within the same leg. The error bars are calculated
by bootstrapping.

is independent for each leg due to the previously described preparation sequence.
Hence, self-correlation between positions in different legs does not appear. Hole cor-
relations within the same leg, however, are strongly affected by finite-size offsets. We
correct for these finite size offsets using

g(2)h (d, 0) =
1
Nd

∑
i−j=(d,0)

(
⟨n̂h

i n̂h
j ⟩

⟨n̂h
i ⟩⟨n̂h

j ⟩
Nl

Nl − 1
− L

L − 1

)
, (4.4)

where Nl is the number of holes in the leg and L is the length of the leg. The offset
correction applies a global correction, affecting the absolute value, but not the shape
of the curve. This offset correction is applied to the curve in Fig. 4.14b.

Standard ladder

The presence of tightly bound pairs in the mixD ladder setup stands in direct connec-
tion with the suppression of tunneling along the rungs. The suppression of tunneling
eliminates the Pauli repulsion between holes and thus strongly enhances the binding
energy and pair size. To confirm this, we compare the correlations of the mixD ladder
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Figure 4.15: Hole-hole correlation in the standard ladder. a, Hole-hole correlation
g(2)h (|d|, 1) of holes in opposite legs in the standard ladder versus absolute distance
|d|, as illustrated by the sketch. A strong negative correlation appears at distance
d = 0, indicating that holes avoid occupying the same rung. The experimental data is
compared to the theoretical prediction at kBT = 0.7 J⊥ calculated using MPS (shaded
line) and corrected by the experimental detection fidelity. The grey dashed line shows
MPS calculations with a random disorder ∼ t⊥ in the potential at kBT = 0.5 J⊥. b, Off-
set corrected hole-hole correlation g(2)h (|d|, 0) of holes in the same leg for the standard
ladder versus absolute distance |d|, as illustrated by the sketch above the plot. The
negative correlation at distance |d| = 1 shows, that holes repel each other within the
same leg. The error bars are calculated by bootstrapping.

to the standard ladder with strong rung tunneling t⊥ > J⊥.

Fig. 4.15a shows the hole correlation on opposite legs g(2)h (|d|, 1) in the standard sys-
tem. There is a strongly negative value at distance d = 0, which corresponds to strong
repulsion of holes along the same rung and shows that tightly bound pairs are ener-
getically unfavorable in this system. This does not show that pairing cannot exist in
this system, it only demonstrates that the system does not feature tightly bound pairs.
At our experimental temperatures, we cannot resolve small binding energies, and at
our system sizes, pairs of large sizes cannot be distinguished from random hole dis-
tributions. The measured hole correlator shows two small, but distinct maxima and
distances |d| = 2 and |d| = 5. We assume these are caused by the presence of up to
two holes per leg. The pattern is consistent with a checkerboard pattern of particles
and holes in the ladder system, which is to be expected if holes repel each other both
on the rungs as well as along the leg.
The numerical simulation (shaded line in Fig. 4.15a) qualitatively agrees with the ex-
perimental results, but shows a repulsion more than twice as strong as in the experi-
mental data. We attribute this discrepancy to inhomogeneities, which affect the tun-
neling probability in the standard ladder. We see in the MPS simulations that adding
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a random disorder to the standard ladder decreases the hole repulsion. For disorder
of order t⊥, we find a reduction that is even stronger than in the experimental data
and thus gives us an upper boundary for this type of disorder in the system. We
note that the simulated system with disorder does not reproduce our experimental
observations for distance d = 1. We attribute this to the type of the disorder, which
is random in the MPS data, but has systematic reasons in the experiment. We thus do
not expect to reproduce the exact experimental result with this simulation.
We can identify the DMD-shaped potential as the most likely source for these inho-
mogeneities. Residual light speckles and finite resolution introduce spatially varying
disorder to the ladder potential, while drifts of the ladder potential with respect to
the lattice grid can also cause a small offset between the two legs. When the potential
wall between ladders drifts partially onto the lattice sites, a small potential offset is
added onto one of the legs, but not the other one. Drifts as small as a fraction of a
lattice site can indeed already create a potential offset on the order of t⊥ between the
legs. We note that this has a negligible effect on the suppression of tunneling in the
mixD system. The quenched effective tunneling vanishes due to the potential offset
∆, which is much larger than the disorder in our system and therefore mostly insen-
sitive to it. Furthermore, spin-independent potential inhomogeneities, on the scale
present in the experiment, do not alter the spin exchange significantly, but only lead
to a small correction lying within the error bars of our system parameters.

Fig. 4.15b shows the hole correlator g(2)h (|d|, 0) of holes on the same leg. The value
at distance d = 1 is significantly negative, but smaller than in the mixD case. This
means there is repulsion along the leg, but the physics is mostly dominated by the
much stronger tunneling along the rungs. The correlation peaks at distance |d| = 4,
consistent with the repulsion along the legs in the mixD ladder.

4.6.2 Doping and magnetization dependence

To gain a better understanding of the system dependencies, we analyze how the pair-
ing strength depends on the doping and magnetization of the system. For that, we
consider the rung hole-hole correlation g(2)h (0, 1), which can be used as a measure of
the pairing strength due to the small pair size. In Fig. 4.16a we plot the dependence of
this pairing strength on the magnetization of the system. We see that the data points
are consistent with a trend towards less pairing at higher total magnetization. This
is to be expected, because the pairing is mediated by the magnetic correlations in the
system. these correlations get reduced for magnetization imbalance. A fully mag-
netized system would show neither singlets nor pairing. For the standard system,
on the other hand, magnetization does not affect the hole correlations, because Pauli
repulsion does not depend on the magnetic environment. Unfortunately, we do not
have enough data to analyze higher magnetization sectors. Due to the reduced statis-
tics of spin-resolved shots, averaging over magnetization sectors (horizontal bars in
Fig. 4.16a) was necessary in order to reduce the error bars on g(2)h (0, 1).
Furthermore, we investigate the dependence of pairing strength on doping, that is, on
the number of holes in the system. For this, we adjust the correlator g(2)h to compensate
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Figure 4.16: Doping and magnetization dependence of pairing. a, Rung hole corre-
lation g(2)h (0, 1) depending on the total magnetization |Mz| of the system for the mixD
(blue) and standard (brown) ladder. The pairing strength in the mixD system de-
creases with increasing magnetization imbalance. b, Rung hole correlation g(2)h (0, 1)
scaled with the hole density nh depending on the number of holes per leg for the
mixD (blue) and standard (brown) ladder. Within the error bars, we find this scaled
correlator to be independent of doping. The inset shows the correlator g(2)h , which de-
creases with doping but is consistent with the inherent density-dependent scaling of
the correlator, as it can be seen by the 1/nh fit (dashed line). Vertical error bars denote
one s.e.m. Horizontal error bars in a denote the magnetization bin width.

for its intrinsic density-dependent 1/nh scaling. Multiplying the correlator with this
scaling factor leads to an adjusted correlator g(2)h · nh, which is plotted in Fig. 4.16b.
The experimental results do not show a significant doping dependence. For pairing
in the mixD ladder, this is consistent with a system of independent pairs. The inset
of Fig. 4.16b shows the correlator g(2)h which is not corrected for its intrinsic density
dependence. This correlator decreases with increasing number of holes per leg but is
consistent with a 1/nh fit.

4.6.3 Binding energy

We estimate the binding energy of holes from the measured g(2)h (0, 1) correlator. To
that end, we analytically derive a formula for the binding energy based on the as-
sumption that the system is reasonably close to the uncoupled rung limit. We further-
more assume there are exactly two holes in the system and describe the bound state
by two holes occupying the same rung. We arrive at the following expression

Eb = −β−1 ln


(
1 + 3e−βJ⊥

) (
1 − g(2)h (0,1)

L−1

)
4
(

1 + g(2)h (0, 1)
)

 , (4.5)
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where β = 1/(kBT). The detailed derivation can be found in Appendix A.
We insert our estimated temperature of kBT = 0.77(2) J⊥, system length of L = 7, and
the measured value for the g(2)h (0, 1) correlator into this formula. Since our deriva-
tion assumes exactly one hole per leg, we cannot simply insert the correlation value
obtained from averaging over several density sectors. We can however use the mea-
sured correlation value for exactly one hole per leg, as in the inset of Fig. 4.16b and
apply a small correction to account for our detection fidelity. This leads to

Eb = 0.79(9) J⊥,

where the error derives from the error on the experimental value and the error on
the temperature estimation. We can reduce the error by using the correlation value
obtained from averaging over several density sectors. Using the insights obtained
from Fig. 4.16b, we can correct this correlation value by applying a density-dependent
nh correction factor. This yields

Eb = 0.82(6) J⊥, (4.6)

which is consistent with the previous result of exactly one hole per leg.
The experimentally derived binding energy is consistent with DMRG calculations,
which suggest a binding energy of Etheo

b = 0.81 J⊥. This is an order of magnitude
larger than the highest binding energy that can be achieved in a standard ladder with
the same interaction strength (see section 4.6.3 below for a detailed discussion of the
binding energy in the standard ladder). Finding strategies to increase the binding
energy is an essential ingredient to achieve higher temperature superconductivity, a
quest for quantum simulation and material science alike.

In Fig. 4.17, we have plotted the rung hole correlation g(2)h (0, 1) for different temper-
atures and binding energies as they are predicted by the derived formula of Eq. (4.5).
As expected, the hole correlator is strongly positive at very cold temperatures for all
binding energies. In this case mostly the ground state is occupied. Also for very high
temperatures all binding energies show the same behavior with the hole correlator
approaching zero. However, around the temperatures of our system, the hole corre-
lation turns negative for small binding energies around 0.5J⊥ and below. This makes
it impossible to detect binding through the g(2)h correlator in this temperature regime.
For Eb = 0.8J⊥, the correlator stays positive and binding can thus also be detected at
higher temperatures given enough statistics.

Negative correlation values g(2)h at intermediate temperatures happen when the bind-
ing energy is much smaller than the spin gap of the system. The reason is, that the
spectrum features more low-lying unbound states, than low-lying bound states, de-
spite the ground state being a bound one. This is illustrated in Fig. 4.18. We consider
only states that do not break the singlet gap. These states are relatively low in energy.
In that case, a ladder containing a pair has all spin directions fixed, because they all
form singlets. In a ladder with an unbound pair, however, there are four different
combinations of spin states, that do not break the singlet gap. That means there are
more unbound states with low energy than bound states. The unbound states are
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Figure 4.17: Hole correlation strength g(2)h (0, 1) as predicted by the simplified an-

alytic model. The rung correlation g(2)h (0, 1) as predicted by our model (Eq. (4.5))
is plotted against temperature for a binding energy of Eb = 0.3J⊥ (light blue),
Eb = 0.5J⊥ (blue) and Eb = 0.8J⊥ (dark blue). For our experimental system of
kBT = 0.77(2)J⊥, only the high binding energy yields a positive g(2)h (0, 1). The marker
indicates the experimental result.

Eb higher in energy than the paired state, but for intermediate temperatures T ≳ Eb,
due to the minimization of free energy, the system will be more likely to occupy an
unbound state than a paired state.

Binding energy in the standard ladder

The standard ladder is realized with t⊥ four times larger than t∥. For these parameters
and our experimental system size of L = 7, our theoretical calculations show no signa-
tures of a bound state. Even if we consider a much larger system of L = 80 containing
two holes, we see that the holes preferably occupy the opposite sides of the ladder.
Fig. 4.19 shows a map of the bare hole correlator ⟨n̂i

hn̂j
h⟩ at zero temperature for the

standard and the mixD system of length L = 80. The mixD system shows tightly
bound pairs, sitting preferably on the same rung and avoiding the system edge. The
standard system shows no such structure. Instead, one hole occupies one side of the

Eb

Espingap

Figure 4.18: Illustration of spin gap and binding energy in the spectrum. The low
energy part of the spectrum of a ladder system with two holes features more unbound
states than bound states. The difference between the binding energy and the spin gap
thus determines the sign of the hole correlator g(2)h (0, 1) at finite temperatures.
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Figure 4.19: Hole correlation in a large system. Maps showing the bare correlator
⟨n̂i

hn̂j
h⟩ in a system of L = 80 at zero temperature. The coupling parameters cor-

respond to the experimental system for mixD ladders (a) and standard ladders (b).
While holes are tightly bound in the mixD ladders, they avoid each other in the stan-
dard system. The calculations were carried out using DMRG.

ladder, between site x = 10 and site x = 40 and the other hole occupies the other
side of the ladder, between site x = 40 and site x = 70. The edges of the system are
not occupied because of the high associated energy cost. This shows that even in this
large system, no effect of pairing, meaning no degree of attraction between the holes,
can be seen. We however suspect that the binding energy is not completely zero, but
instead too small to be identified in our calculations.
The theoretical binding energies in standard ladders increase with increasing t∥, a
tendency that also holds for the mixD ladder [221]. We find the strongest binding en-
ergies in standard ladders for the isotropic case t⊥ = t∥, where we find EB = 0.006J⊥
for a ladder system of L = 7 and interactions strength similar to the experimental
system with U/t⊥ = 13.4. This means the binding energy we have achieved in the
mixD setting is about a factor of 13 larger than the highest achievable binding energy
for the standard ladder, even though the parameters of our mixD system are not op-
timized for large binding energies (see eg. Fig. 4.4a). For parameter regimes that are
not accessible from the pure Fermi-Hubbard model, as well as for lower U/t⊥ values,
higher binding energies are predicted in isotropic t − J ladders, e.g. [84, 155, 226].

4.6.4 Limits of the t− J-model as an effective description of Hubbard
ladders

Binding energies for isotropic t − J ladders derived from the Fermi-Hubbard model
have been predicted to be as large as 0.6 J [84, 226]. We however find that simulations
taking into account the full Fermi-Hubbard model predict considerably smaller bind-
ing. For the isotropic Fermi-Hubbard ladder we find, in agreement with [227], that
binding energies do not exceed 0.25J.
We attribute these discrepancies to the additional next-nearest neighbor tunneling
term (see section 2.4.1 and [102]), which arises in the derivation of the t − J model
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Figure 4.20: Numerical hole-hole correlation in different system sizes. a, Hole-
hole correlation g(2)h (|d|, 1) in a mixD system of different lengths between L = 7 and
L = 40 at a temperature of kBT = 0.7 J⊥ calculated using MPS. The hole doping is
kept constant at 15 % to 30 %. The points at |d| = 0 are plotted against system size in
b and show no significant trend for systems larger than L = 10.

but is often neglected because it is much smaller than the nearest-neighbor tunneling
term. Assuming a perfect antiferromagnetic checkerboard for the spin pattern, one
can however see that next-nearest neighbor tunneling is much more beneficial for
dopant delocalization because it does not disturb the spin pattern.
In our mixD ladder system, we avoid the discrepancy between the t − J and Fermi-
Hubbard model, because the only term arising is ∼ t2

∥/U ≪ J⊥, t∥ ≪ t⊥, which is
much smaller than the relevant energy scales in the system and can thus be omitted.
In the standard ladder, however, there are more possible processes like ∼ t∥t⊥/U. In
the isotropic regime and with lower U/t these terms become increasingly important
to the physics of the system. In that regime, the Fermi-Hubbard ladder is not well
approximated by the t − J ladder anymore. Even though it appears to make only
a quantitative difference in the binding energy in our ladders, the discrepancy can
quickly lead to qualitative differences in a system with many competing processes
and comparable energy scales.

4.6.5 Finite size effects

With a length of L = 7, the experimentally realized ladder system is relatively small.
To ensure that the physics we observe in this system is not dominated by finite-size
effects, we compare our results to numerical simulations of large systems. It has al-
ready been shown in Fig. 4.19a, that pairing persists in systems of length L = 80.
In Fig. 4.20a, the numerically simulated hole-hole correlations are plotted versus dis-
tance. We consider systems of several sizes at a temperature of kBT = 0.7 J⊥. The
main difference between the system sizes is that small systems show a negative cor-
relation for distances d > 1. This negative value is a consequence of finite-size ef-
fects. Fig. 4.20b shows the rung correlation value plotted against system size. Be-
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Figure 4.21: Singlet strength depending on doping. a, Rung spin correlations C(0, 1)
of the experimental system are plotted versus the number of holes in the system for
the mixD (blue) and standard (brown) ladders. For both systems, the singlet strength
decreases with increasing doping, but the slope is more shallow for the mixD system.
Dotted lines denote linear fits to the data. Error bars denote one s.e.m. b, Numerical
simulation of the spin rung correlation at a temperature of 0.1 J⊥, calculated using
MPS. The curve shows a strong even-versus-odd dependence on the hole number.

sides slightly higher correlation values for very small systems L ≤ 10, the correlation
strength seems to stagnate at a constant value.
We see a similar picture calculating the binding energy for different system lengths.
While the system of length L = 7 has a binding energy of Etheo

B = 0.81 J⊥, we find
that the value settles quickly to around Eb,∞ = 0.78 J⊥ for larger systems. For length
L = 40 rungs we find Eb,40 = 0.7805 J⊥ and for L = 80 rungs we find Eb,80 = 0.7797 J⊥.
This demonstrates that our system with its tightly bound pairs provides a good ap-
proximation to the physics in larger systems. While or L = 7 system is small, it is still
many times larger than the hole pair, which predominantly occupies a single rung.
The separation of lengthscales allows us to approximate the physics in the thermody-
namic limit despite the relatively small system size.

4.7 Magnetic environment

The pairing mechanism in our Fermi-Hubbard ladders, which we assume to simulate
pairing in unconventional superconductors, is mediated by the magnetic correlations
in the system. To understand better the important interplay of magnetic background
and hole pairs, we investigate the magnetic environment in the system.
Fig. 4.21a shows the rung spin correlations C(0, 1) for the mixD and standard ladders
depending on the number of holes in the system. The singlet strength decreases with
increasing hole number for both systems. They do, however, not decrease at the same
rate, but the correlations in the standard system decrease faster than in the mixD sys-
tem. This can be explained by the presence of pairs in the mixD system, while the
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standard system only contains independent holes. Mobile single holes shuffle around
the spin occupation in the system, thereby displacing the singlet bonds and decreas-
ing the singlet strength. In the mixD ladders, holes are bound in pairs, which can
freely move in the system without considerable damage to the spin environment. The
decrease in correlation strength is thus caused by unbound holes, whose kinetic en-
ergy competes with the magnetic order in the system. Due to the finite temperature in
the system, there are also unbound holes present in the mixD system. These still con-
siderably decrease the spin correlations. The linear fits highlight the different slopes,
which clearly distinguish between the mixD and the standard system. This not only
hints at the pairing mechanism, but also demonstrates the considerable mobility of
holes along the system.
We note that the mixed-dimensionality should be of minor effect in the undoped case,
yet the rung spin correlations of the mixD and standard ladders differ significantly for
the undoped system. We attribute this to heating in the mixD system caused by the
quenched optical potential offset.
Fig. 4.21b shows the numerically simulated rung spin correlation strength for the
mixD system at very low temperatures of kBT = 0.1 J⊥. There we see a strong even
versus odd effect, with odd numbers of holes leading to weaker correlations than
even numbers of holes. The explanation is that odd numbers of holes cannot pair up,
there will always be one hole left without a pair. This unpaired hole disturbs the spin
environment. Even though it is not expected at our temperatures, the experimental
data shows an onset of this behavior with a significant tick-tack pattern at low dop-
ing. This might be another indication that our system is not well described by a single
temperature value. We do, however, not see this behavior at higher doping.
We furthermore want to investigate the dependence of pairing strength on spin cor-
relations. For this, we make use of the temperature drifts of our system and the
time-dependent average rung spin correlations that we have assigned to our data.
In Fig. 4.22, we plot the rung hole correlations g(2)h (0, 1) for different singlet strengths,
which we have summarized in discrete bins. We see that the pairing in the mixD sys-
tem becomes significant around C(0, 1) = −0.3, or a temperature of about kBT = 1 J⊥.
The rung spin correlations then increase with increasing spin correlations. Since the
spin correlations are directly related to the temperature of the system, this is equiva-
lent to an increase in ground state fraction with decreasing temperature. The highest
reached correlations of g(2)h (0, 1) = 0.3(1) are however still smaller than the theoret-

ically achievable g(2)h (0, 1) > 1.2 for very low temperatures. This demonstrates that
our system, despite the large boost in binding energy, still displays significant tem-
perature limitations.
In the standard system, however, we do not see such a strong temperature depen-
dence in our regime. This is because the repulsion between holes is governed by
the energy scale of the tunneling t⊥ ≫ kBT, while pairing is governed by the spin
exchange J⊥.
The mobility of holes in the system is not only visible by unpaired holes breaking sin-
glet bonds, but can also be seen in the antiferromagnetic spin pattern along the leg.
This pattern gets stretched when holes, and especially hole pairs, move along the lad-
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Figure 4.22: Thermal unbinding of pairs. Rung hole correlations g(2)h (0, 1) for the
mixD (blue) and standard (brown) ladders binned by the rung spin correlations
C(0, 1). The temperature of the mixD system (top axis) is estimated by comparing
the spin correlations (lower axis) to theoretical values. The solid line is calculated us-
ing MPS and corrected by the experimental detection fidelity. We see unbinding of
pairs at low singlet strength, i.e. high temperature. Error bars denote one s.e.m.

der. This process is comparable to spin-charge separation in one dimension. A map of
spin correlations around a hole pair is shown in Fig. 4.23a. The spin pattern shows a
π phase shift at the position of the hole pair. In a perfect antiferromagnet, the nearest-
neighbor bonds (distance dx = 1) are negative, while the next-nearest-neighbor bond
(dx = 2) is positive, and the dx = 3 bond is negative again. However, when a hole
pair moved through this pattern, it stretches the pattern at the location of the pair and
reverses the sign of the spin correlations. The nearest neighbor bond then becomes
a next-nearest neighbor bond, which is indeed negative across the holes (bond ‘C’ in
Fig. 4.23a). Furthermore, the distance dx = 3 bond (‘D’) is positive, which is also
consistent with a stretched antiferromagnetic pattern. This clearly demonstrates the
mobility of the hole pair along the legs of the system, as opposed to a localized rung
pair, which merely cuts the system into two uncorrelated sides.

4.8 Pair interaction

In the following, we investigate the behavior of several hole pairs in the system. The
interplay of these bosonic objects is a key aspect of the emergence of superconductiv-
ity, which stands in competition with charge-density ordered states. In order to shed
light on their origin, we observe the interaction between pairs in our system.
In the following, for simplicity, we will identify pairs as two holes occupying the same
rung. This is justified by the hole correlations indicating that the short-ranged pairs
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Figure 4.23: Spin correlations around a hole pair. a, Map of spin correlations around
a hole pair in the mixD system. The colored bonds indicate the strength of the spin
correlator, and the endpoints of the bonds represent the position of the correlated sites
in the frame of the hole pair. For example, bond C denotes the spin correlation of next-
nearest-neighbors across a hole pair. The data used for the analysis includes up to four
holes, but no leg imbalance in the system. b, Quantitative values corresponding to the
bonds shown in a. The error bars denote one s.e.m.

in our mixD system predominantly occupy one rung. We quantify pair interactions
using the pair-pair correlator

g(2)pair(d) =
1
Nd

∑
x

(
⟨n̂p

x n̂p
x+d⟩

⟨n̂p
x⟩⟨n̂

p
x+d⟩

− 1

)
, (4.7)

where we have defined the pair operator n̂p
x , which is equal to 1 if both sites of rung

x are occupied by a hole, and 0 otherwise. The pair operator g(2)pair is analogous to the

hole operator g(2)h within a single leg and we thus apply the same finite size offset
correction that was introduced in Eq. (4.4).

To evaluate the g(2)paircorrelator, we consider the sub-set of our data which contains at

least two rung pairs. Fig. 4.24a shows the g(2)paircorrelator for ladders in this subset,
which in total contain between four and five holes. We find a peak at distance d = 4,
meaning that our pairs preferably have a mutual distance of four sites. This is the
maximal distance two pairs can assume without occupying the energetically expen-
sive system edge. The data points, however, have large error bars and the result does
not show clear statistical significance.
Fig. 4.24b shows the pair density in the system extracted from numerical simulations.
At low temperatures we see a clear maximum density at sites x = 1 and x = 5,
corresponding to a distance of d = 4, consistent with the experimental results. This
can be explained by pairs repelling each other. Since pairs lower their kinetic energy
by delocalizing, it is energetically expensive to be close to other pairs. At higher
temperatures, the signal washes out.
The density modulation caused by the interaction of pairs becomes more prominent
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Figure 4.24: Distribution of two rung hole pairs in the mixD ladders. a, Measured
pair-pair correlation g(2)pair(d) of rung hole pairs in the experimental system for 4-5
holes, i.e. not more than two pairs per ladder. Error bars were estimated using boot-
strapping. b, Theoretical (MPS) results for the density of rung pairs in the system for
temperatures from 0.1 J⊥ to 0.7 J⊥ and four holes in the system. The pairs maximize
their respective distance, while also avoiding the edge of the system.

when there are more holes in the system. A system of length L = 7 containing three
pairs shows a strong density pattern, because there there is a unique pattern that
avoids occupation on the edge of the system as well as pairs neighboring each other.
The optimal configuration is an alternating pattern of spins and holes, as illustrated in
the sketch of Fig. 4.25a. The corresponding plot shows the g(2)paircorrelator for ladders
containing between six and seven holes. We see a significant modulation, with peaks
at distance d = 2 and d = 4, consistent with the aforementioned pair distribution. The
numerically simulated pair density shown in Fig. 4.25b shows a density pattern which
as well is consistent with the experimental result. It shows high density of pairs on
sites x = 1, x = 3 and x = 5, corresponding to pair distances of d = 2 and d = 4. This
visibility in the pair density is a direct consequence of the open boundary conditions,
because the presence of sharp edges fixes the phase of the density modulation.
Both the experimental system and numerical simulations display a spatial structure
where pairs maximize their mutual distance. This repulsion between pairs is an in-
dication of the comparably high mobility of pairs in mixD settings, which could be
further enhanced by increasing the leg tunneling t∥in larger systems. Such highly
mobile pairs can potentially reach very high critical temperatures [221], and can be an
important ingredient for high-TC superconductivity.
The observed charge-density modulation of the pair distribution is reminiscent of
Friedel oscillations of indistinguishable fermions near an impurity [228], as well as of
charge-density-waves [229]. In our system of size L = 7 we cannot distinguish these
two phenomena, because we cannot see if the density modulation is of long range, as
in charge-density-waves, or if it quickly decays with distance like Friedel oscillations.
Larger systems are needed to distinguish between these effects.
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Figure 4.25: Distribution of three rung hole pairs in the mixD ladders. a, Mea-
sured pair-pair correlation g(2)pair(d) of rung hole pairs in the experimental system for
6-7 holes, i.e. up to three pairs per ladder. Error bars were estimated using boot-
strapping. b, Theoretical (MPS) results for the density of rung pairs in the system for
temperatures from 0.1 J⊥ to 0.7 J⊥ and six holes in the system. The pairs maximize
their respective distance, while also avoiding the edge of the system.

We investigate the distinction between these two phenomena theoretically, by per-
forming MPS calculations for larger system sizes. Fig. 4.26a shows the pair density
of a system of size L = 15 for different doping. We see that the wavelength of the
density modulation is doping-dependent, similar as in the experimental system. The
amplitude is strongest at the edge and slightly decays towards the center of the sys-
tem. This is explained by the edge pinning the phase of the modulation. We do not
see a settling of this decay within this system size. Fig. 4.26b shows the pair density of
a system of size L = 50 for a doping of 20%. The density pattern is most pronounced
at the edge of the system. After an initial decay, the amplitude stays rather constant
within the bulk of the system. We believe that this behavior is representative of the
thermodynamic limit, where we expect a charge-density wave to form.

4.9 Discussion

We have experimentally shown that magnetically mediated pairing exists in Fermi-
Hubbard-like systems. This emphasizes the relevance of magnetic correlations as a
potential origin for the pairing underlying high-TC phases. Furthermore, by demon-
strating a strongly increased binding energy, the experiment confirms that the effec-
tive mixD description is accurate. This is important, as for example higher-order pro-
cesses in the many-body system could modify the effective Hamiltonian significantly
at a finite U/t and ∆/t. We hope our demonstration motivates material scientists to
engineer materials with high binding energy by following the mixD route, and thus
potentially reach higher critical temperatures.
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Figure 4.26: Hole-hole correlation in the standard ladder. a, Pair density npair of a
system of size L = 15 at kBT = 0.1 J⊥ for eight holes (grey line) and ten holes (green
line) calculated using MPS. b, Pair density npair in the ground state for a system of
length L = 50 and a doping of 20 % calculated using DMRG. Shaded areas denote
one s.e.m.

4.9.1 System extensions

There are several possible ways in which our studies could be extended. As discussed
earlier, higher leg coupling t∥ leads to even higher binding energies. It, however, also
comes at the cost of larger pair sizes. The small pair size is essential for our study
in order to have a separation between system size and pair size. This allows us to
approximate the physics of the thermodynamic limit despite the short length. If the
pair size, however, becomes comparable to the system size, finite size effects become
dominant. Eventually the pair cannot be distinguished from free holes. It thus needs
larger systems to investigate settings with higher binding energy. The experimental
apparatus is currently under reconstruction and larger system sizes might be achieved
soon.
Another direction to follow up on this work is the extension to mixD bilayer systems
using bilayer quantum gas microscopes [55–57]. The system hosts pairs with strong
mobility in two dimensions and displays a BEC and a BCS regime which is tunable
via controlling the doping [221]. Instead of extending the system orthogonal to the
suppressed tunneling and creating a mixD bilayer system, one can also extend the
system in the direction of the suppressed tunneling. This leads to a two-dimensional
mixD system with suppressed tunneling in one direction. This kind of system features
robust stripes that form collective charge-density waves [230]. In general, systems
that go substantially beyond the two-leg ladder become very hard to simulate with
numerical methods. Thus quantum simulation of mixD models of higher dimensions
can have a computational advantage over classical computation.

4.9.2 Perspective on real materials

Since pairing is a prerequisite for superconductivity, it sets an upper bound for the
critical temperature. The pairs in mixD systems like the one we have demonstrated



4.9 Discussion 77

display high mobility, which can be increased even further by increasing t∥. This high
mobility in the mixD system, together with the extremely high binding energy, can
potentially lead to very high critical temperatures [221]. We have thus experimen-
tally shown a new route that not only boosts the binding of dopants but also has the
potential to increase the critical temperature for superconductivity.
For our findings to have implications for real superconductors, one needs to find ways
to modify the interplay of kinetic and exchange energies in solid state systems. One
way to suppress the kinetic energy without suppressing the super-exchange interac-
tion might be achieved by changing the lattice geometry and spin polarization. For
example, in a weakly doped system of fermions on a triangular lattice, the kinetic en-
ergy of holes becomes geometrically frustrated, and hence strongly suppressed, in the
regime of strong spin polarization [231]. In moiré systems, such as twisted graphene,
one often finds systems that include a combination of flat and broad bands. One can
control the kinetic energy and topology of electrons in the narrow band by varying
the twist angle. On the other hand, magnetism of electrons in the narrow band may be
dominated by interaction with electrons in the wider bands [232]. Furthermore, there
already are reports of materials like the ladder compound Sr14Cu24O41, that display
effects which resemble the results in our mixD system [233, 234]. These observa-
tions might be explained by very similar underlying physics, and if so constitute an
example of a material realization of our approach.
Our mixD setting might also be realized in an approach more closely related to our
experimental technique, which probes pairing in a metastable state. One example
is to use Floquet engineering to alter the effective exchange interactions in magnetic
materials, as suggested, for example, in [235]. We thereby also open new regimes for
dynamical superconductivity.
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CHAPTER 5

A symmetry-protected topological phase in
Fermi-Hubbard ladders

In this chapter we present the experimental realization of the symmetry-protected
Haldane phase using antiferromagnetic Fermi-Hubbard ladders in our quantum gas
microscope. The results of this project are partially covered within this PhD thesis,
other parts will be covered in a future PhD thesis due to the shared work on this
project. After introducing the relevance and advantage of investigating the Haldane
phase microscopically, we explain the preparation sequence and characterize the sys-
tem. We then go on to compare the string order parameters for the topological and
trivial phase and we investigate the system dependencies on system size and coupling
parameters. We furthermore detect and characterize the edge states of the system and
last but not least demonstrate an alternative realization of the Haldane phase involv-
ing ferromagnetic coupling along the rungs of the ladders. The numerical DMRG
results presented in this chapter were calculated by Julian Bibo and Ruben Verresen.

5.1 The Haldane phase under the microscope

The study of topological phases has gotten great attention in the last years, includ-
ing a Nobel prize ”for theoretical discoveries of topological phase transitions and
topological phases of matter” [236] in 2016, partially given to D. Haldane, who gives
his name to one of the most paradigmatic topological phases, the Haldane phase.
This symmetry-protected topological (SPT) phase appears in antiferromagnetic spin-
1 chains and is characterized by short-range magnetic correlations, a spin gap in the
bulk and fourfold degenerate spin-1/2 edge modes. The topological nature manifests
itself in a non-local long-range order parameter, which can be probed using string
operators.
Early solid state measurements on spin-1 chains, though not resolving the edge states,
found evidence for the fractional spin-1/2 edge modes, as well as a bulk spin gap us-
ing neutron scattering [237] and electron resonance experiments [238, 239] on solid
state materials. However, in order to reveal the non-local string order parameter, ac-
cess to the local spin states is required. This can only be achieved by detecting the
quantum many-body system with microscopic resolution. Quantum gas microscopy
thus offers a rich diagnostic tool to detect the string order and gain further inside into
such quantum phases of matter. A recent study has demonstrated these possibilities,
realizing an SPT phase in the Su-Schrieffer-Heeger (SSH) model of hardcore bosons
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Figure 5.1: Ladder potential and snapshot in topological configuration. The fig-
ure shows the optical potential that is created from overlapping the DMD pattern
and the optical lattices. We create four mutually disconnected ladder systems next
to each other in each experimental run in order to increase statistics. The ladders are
surrounded by a low density region which acts as a particle and entropy bath. An
experimental snapshot of a single ladder is shown on the right. The boundaries of the
ladder are not situated on a single rung, but show a tilted edge. This is achieved by
blocking one site of the outermost rung using the DMD potential.

by using Rydberg atoms in optical tweezers [240]. In our setup, we can implement
the Haldane phase based on antiferromagnetic spin-1/2 ladders, an approach that is
conceptually close to the AKLT model. Such simple models help to visualize the mi-
croscopic structure of the Haldane phase and reveal the mechanisms leading to its
characteristics, like the spin-1/2 edge states that emerge naturally from the spin-1/2
building blocks of our system. The implementation using ultracold atoms further-
more allows for a wide tuning range of coupling parameters and system sizes. We
can thus study the system in different regimes, and contrast it to the trivial phase
under the same experimental conditions and parameters.

5.2 System preparation

In our quantum gas microscope, we simulate Fermi-Hubbard two-leg ladders in the
Heisenberg regime with antiferromagnetic couplings. By combining diagonal pairs
of spins into unit cells, we effectively simulate an integer spin chain. This integer
spin chain is adiabatically connected to the antiferromagnetic spin-1 chain and thus
displays the same quantum phase in its ground state - the Haldane phase. The unit
cell definition and the relation to the Haldane phase are discussed in details in section
2.6).
To prepare the system, we load a cold cloud of a balanced mixture of the two lowest
hyperfine states of 6Li in a single plane of our vertical optical lattice. We then adiabat-
ically ramp up the optical lattices in xy-direction within 100 ms. Simultaneously, we
ramp up a repulsive optical potential created using our DMD. This repulsive pattern
compensates for the harmonic confinement of the lattice beams and shapes the two-
leg ladder potential, as it is illustrated in Fig. 5.1. The ladder potential has a special
tilted edge termination, which can be seen in the example shot in the same figure. The
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length hopping hopping interaction ratio
L (sites) t∥/h(Hz) t⊥/h(Hz) U/h(Hz) J⊥/J∥

5,6,7,9,11 250 280 3500 1.3(2)
5 330 38 4000 0.013(2)
5 300 130 3600 0.20(3)
5 340 280 3000 0.7(1)
5 250 280 3500 1.3(2)
5 150 300 3500 4.0(6)
5 130 390 3300 8(1)

Table 5.1: Experimental parameters. The parameters system size L, leg coupling t∥,
rung coupling t⊥, interaction U and the resulting ratio J⊥/J∥ are shown for all data
sets. The uncertainties are given for J⊥/J∥ and originate from a 5% uncertainty on
the hopping parameters t⊥ and t∥. For the length scan we keep all other parameters
constant, whereas the J⊥/J∥ scan demands a tuning of both tunnelling amplitudes in
order to keep both U/t∥ and U/t⊥ high. Where the topologically trivial geometry is
realized, it has the same parameters as the topological geometry.

edge termination is chosen to reflect the diagonal unit cell definition. Only if edge
termination and unit cell definition coincide, there is a well-defined unit cell on the
boundary of the system and the edge modes of the phase can be studied. We note that
because of the short-range entangled nature of SPT phases, the edge termination does
not affect the bulk physics. We change the edge termination to a straight cut, when
we realize the trivial phase of the straight unit cell. In the following we will refer
to the tilted-edge configuration as the topological configuration, because we choose
diagonal unit cells with this edge termination. Likewise, we refer to straight-edge
configuration as the trivial configuration, because we use the straight unit cell defini-
tion for the system with straight edges.
We individually tune the lattice depths to realize different parameter regimes and
choose the interaction strength in order to realize the approximate Heisenberg regime
of the Fermi-Hubbard model. The lattice depths range between 5 ER and 15 ER, while
the scattering length has up to 1200 aB and is adjusted using the broad Feshbach res-
onance of 6Li. Furthermore, we realize ladder of different length L to investigate the
influence of system size. Table 5.1 shows the parameters of the different data sets.
The optical potential shaping of the ladder system is separately adjusted for the dif-
ferent coupling parameters, because of the dependence of the harmonic confinement
on lattice depth. The procedure to achieve a flat potential within the ladder areas con-
sists of several feedback iterations. In each iteration we prepare systems with about
20% doping and average between 100 and 150 experimental shots, which we use as
feedback to the DMD pattern. We however note that system inhomogeneities on the
order of the tunneling strength are much smaller than the interaction energy U asso-
ciated with doublon excitations. The inhomogeneities thus do not significantly affect
the physics in the undoped Heisenberg regime, since the system stays incompressible
and the corrections to the spin exchange energy (see Eq. (4.1)) are small.
At the end of the experimental sequence, we freeze the atomic configuration by ramp-
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Figure 5.2: Density and atom number distribution. a, The figure shows the density
of the tilted-edge system at length L = 7 and is averaged over about 7500 single
snapshots. The four ladders are surrounded by a bath of low atomic density. b, shows
the normalized histograms of atom numbers in the bath region (upper plot) and in
each ladder (lower plot) for the data set of a. The atom number fluctuations in the bath
are, despite the lower average number, considerably higher than inside the ladders.
Almost one out of four ladders is half-filled with total atom number N = 14.

ing the xy−lattices to 43 Exy
R within 250 µs. We then take spin resolved images with

an imaging time of 2.5 s and a detection fidelity per atom of 96(1)%. We estimate
this detection fidelity by taking two subsequent images of the same atomic cloud and
comparing the occupation, combined with the pumping fidelity of our spin resolution
technique.

Data selection

In order to probe the physics of the Heisenberg model, we need to work at 0% dop-
ing. We thus postselect our data for exactly half-filling, meaning an occupation of 2L
particles per ladder. Furthermore, we allow up to one doublon hole pair in the sys-
tem and restrict the total magnetization per ladder to Mz = 0 or |Mz| = 1 and specify
the magnetization sector for each data point presented. Unless otherwise specified,
these restrictions hold for all experimental data presented within this chapter, except
density plots, which contain no postselection.

5.3 System characterization

The tailored potential yields a homogeneous filling of the system with sharp bound-
aries. The main data set, the measurement of the topological configuration at length
L = 7 unit cells, displays a remaining density variance over the system of 2 × 10−4

without postselection on atom number (see Fig. 5.2a). The bath region surrounding
the ladders acts as a buffer for fluctuations of the total atom number, as shown by the
histograms in Fig. 5.2b. As a result, almost one fourth of the ladders in the main data
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Figure 5.3: Average density of the topological and trivial configurations.The figure
shows the average atomic density of the topological, tilted-edge configuration (a) and
of the trivial, straight-edge configuration (b) for length L = 7 unit cells.

set have a total atom number N = 2L. The total magnetization |Mz| ≤ 1 for 87.5 % of
all ladders.

The trivial and topological configurations are realized with the same experimental
parameters and length in unit cells. They thus show a similar system flatness and
atom number distribution. Fig. 5.3 shows the average density profile of the trivial
and topological ladders at length L = 7. To extract the temperature of our atomic
system, we compare the measured spin correlations C(d) to numerical calculations
from exact diagonalization (ED) of the Heisenberg model at finite temperature. We
find a temperature of kBT ≈ 0.9(3) J∥ for the data set of length L = 7. Note, however,
that we realize different coupling parameters J⊥/J∥ at length L = 5, whose tempera-
ture value is consequently not constant in terms of J∥. We thus give our temperature
in entropy per particle S/N, which stays roughly constant at S/N = (0.3 − 0.45) kB
over the different coupling parameters.

Fig. 5.4a shows the nearest-neighbor spin correlation strength C(1) along rung and
leg of the ladders for different J⊥/J∥. The spin correlations along the rung vanish for
very small rung coupling J⊥ → 0, while the spin correlations along the leg have their
maximum of C(1) = −0.50(1) in this configuration. As the rung coupling increases
with respect to the leg coupling, the correlations increase along the rung and decrease
along the leg. At J⊥/J∥ = 8 the rung spin correlations reach C(1) = −0.58(1). From
these spin correlations, we estimate the singlet fraction along the rungs by assuming
that the system is SU(2) symmetric. This means, in particular, that the three triplet
states |↑↑⟩, |↓↓⟩, and |↑↓⟩+ |↓↑⟩ all appear with the same probability, and the proba-
bility of the |↑↓⟩+ |↓↑⟩ state can be derived from the observed probability of |↑↑⟩ and
|↓↓⟩ states. This means the rung singlet fraction can be calculated as

psing =
p0 − 0.5p1

p0 + p1
,

where p0 (p1) is the fraction of rungs with total rung magnetization mz(x) = 0 (|mz(x)| =
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Figure 5.4: Spin correlations and singlet fraction. a, Nearest-neighbor spin corre-
lations C(1) along the rungs and legs of the system of length L = 5 for different
coupling parameters J⊥/J∥. The shaded areas correspond to the correlations in the
Heisenberg model with an entropy per particle of S/N = (0.3 − 0.4) kB. The b, Ex-
perimentally estimated singlet fraction along the rungs of the system (see text). c,
Experimentally estimated triplet fraction in the diagonal unit cells (see text). While
the singlet fraction continuously increases with the rung coupling, the triplet fraction
peaks at comparable coupling J⊥ ≈ J∥. The x-axes of a,b,c are given as J⊥/(J⊥ + J∥),
which in the limit of uncoupled chains is zero and in the limit of uncoupled rungs
is one. The results are obtained from the magnetization sector Mz = 0. Error bars
denote one s.e.m. and are smaller than the markers if not visible.

1), where the total rung magnetization mz(x) is defined as

mz(x) = mz
x,A + mz

x,B. (5.1)

Similarly, the unit cell triplet fraction can be calculated from the unit cell singlet frac-
tion. Fig. 5.4b and c show the rung singlet and unit cell triplet fractions calculated
under this assumption. We see that the singlet fraction continuously rises with in-
creasing rung coupling and reaches almost 70% in the large rung coupling regime.
The triplet fraction, on the other hand, has its maximum of above 80% around the
point of isotropic coupling J⊥ ≈ J∥. We note that, even though our system does not
represent a purely spin-1 chain, we can simulate the physics of the Haldane phase.
The adiabatic mapping of the spin-1/2 ladder onto the antiferromagnetic spin-1 chain
ensures that the ladder system realizes the Haldane phase despite the presence of a
finite singlet fraction [101].

5.4 Signatures of the topological and the trivial phase

In order to investigate the signatures of the Haldane phase, we measure the correla-
tions in the bulk. For this we use the definition of the k-th unit cell, which is given
by the diagonal sites (k + 1,A) and (k,B) in the topological configuration, and vertical
sites (k,A) and (k,B) in the trivial configuration.
One of the characteristic properties of the Haldane phase is the short-range nature of
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Figure 5.5: Short-range unit cell spin correlations. The unit cell spin correlations
C1(d) are plotted for the trivial (topological) configuration in a (b) of length L = 7. The
trivial configuration displays low spin correlations independent of distance d. The
topological configuration features strong nearest-neighbor correlations, which decay
quickly with distance. At the maximum distance d = 6, which corresponds to the
correlation between the unit cells at the edge of the system, the correlation is partially
revived. The figure contains data of magnetization sector Mz = 0.

spin correlations

C1(d) = gSz,1 =
1
Nd

∑
x
⟨Ŝz

kŜz
k+x⟩ , (5.2)

which correlates the integer spin values between different unit cell positions. These
are plotted versus distance d in Fig. 5.5. Both systems show short-range or vanish-
ing correlations. The trivial configuration, which largely consists of spin-0 unit cells,
shows low correlation values at all distances. The topological configuration with its
majority spin-1 unit cells displays strong antiferromagnetic nearest-neighbor correla-
tions, which drop sharply with distance. At maximum distance d = 6 the correlation
value rises again. This corresponds to the correlation between the two edges of the
system. This can be explained by the bulk-edge correspondence: The bulk of the Hal-
dane phase has vanishing magnetization due to the singlet bonds between the spin-1.
At total magnetization Mz = 0 the spin-1/2 edge modes thus need to have opposite
spin states. The observation of the correlation between the edge unit cells thus indi-
cates the existence of edge states. We will investigate these edge states later, and for
now focus on the correlations in the bulk.

5.4.1 Measurement of the string order parameter

We have just seen that the spin correlations are vanishing in the bulk of both the
topological and the trivial configuration. However, there still is a hidden long-range
AFM order in the bulk of the topological configuration, which can be made visible
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Figure 5.6: String correlators in the trivial and topological configuration. The fig-
ure shows the measured string correlators gSz,Rz(d) (green circles) and g1,Rz(d) (grey
squares) in our experimental system for the trivial (a) and topological (b) configura-
tion and length L = 7. The comics above the plots illustrate the string correlation
measurement in the trivial and topological unit cells. The measurement is averaged
over about 2500 ladder instances with total magnetization Mz = 0. Error bars denote
one s.e.m. and are smaller than the markers where they are not visible.

with the string order parameter

gSz,Rz(d) =

〈
Ŝz

k

(
k+d−1

∏
l=k+1

eiπŜz
l

)
Ŝz

k+d

〉
, (5.3)

which corresponds to the general string correlators defined in Eq. (2.14) with end-
point correlator Ôk = Ŝz and bulk transformation under Ûl = R̂z

l ≡ exp
(
iπŜz

l
)
. This

string correlator reveals the hidden order by effectively evaluating spin correlations
in squeezed space. unit cells of spin Sz

k = 0 are neglected and only those unit cells
containing spin Sz

k = ±1 contribute to the correlator. In Fig. 5.6a we have evaluated
this correlator for the straight unit cells of the trivial configuration. The string correla-
tion values and its distance dependence are very similar to the local spin correlation
values C1(d) and we have thus not revealed a hidden order in the trivial configura-
tion. In the topological configuration, however, we find a non-zero correlation that
does not decay substantially over the whole system (see Fig. 5.6b). This is in stark
contrast to the short-ranged spin correlations observed in this system. The correlator
reveals the hidden AFM order, which is characteristic for the Haldane phase.

We furthermore evaluate the pure-string correlator

g1,Rz(d) =

〈
1̂k

(
k+d−1

∏
l=k+1

eiπŜz
l

)
1̂k+d

〉
, (5.4)
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with trivial endpoint correlator Ôk = 1̂k. This correlator is non-zero at d ≫ 1, if
the edges do not have half-integer spins [195]. Consequently, this string correlator is
non-zero in the topologically trivial configuration, and vanishes for large distances in
the topological configuration. Thereby, the pure-string correlator reveals symmetry
fractionalization in the topological configuration.
The measured correlation values for the pure-string correlator are plotted in Fig. 5.6
together with the string order parameter gSz,Rz(d). As expected, this correlator is non-
zero in the trivial configuration and almost vanishes in the topological configuration.
This opposite behavior of the two different string correlators identifies the Haldane
phase and distinguishes it from the topologically trivial phase, which is also clearly
identified by the behavior of the two string correlators. We note that the magnitudes
of the two correlators differ, because the endpoint correlator Ôk = 1̂k by definition is
normalized to one, while Ôk = Ŝz shows lower value even in a perfect spin-1 chain
due to the contribution of mz = 0 unit cells.

5.4.2 Coupling parameter dependence

In the following we investigate the dependence of the system with regard to varia-
tions in the coupling ratio J⊥/J∥. The SPT phase is expected to maintain the charge
gap in the bulk of the system and be robust for all 0 < J⊥, J∥ [101]. We measure
both string correlators, the pure-string correlator g1,Rz(d) and the spin string correla-
tor gSz,Rz(d) at maximum distance d = L − 1 in systems with different couplings and
for both configurations (see Fig. 5.7). The pure string correlator behaves qualitatively
very different in the two configurations and distinguishes the different phases. While
it is consistent with zero everywhere in the topological configuration, it is significantly
non-zero with monotonous slope in the trivial regime.
For the spin-string correlator the distinction between the two phases is less strong. In
the trivial phase we observe lower correlation values than in the topological phase,
but the evolution is very smooth. The charge gap becomes very small for small J⊥
and thus the signal can barely be distinguished from the trivial phase for small rung
couplings at our temperatures. In the topological phase, we find a maximum of the
string correlation value around equal couplings J⊥ ≈ J∥ with decreasing values to-
wards stronger rung couplings. This behavior is consistent with the zero temperature
behavior in the thermodynamic limit and derives solely from the probability to find
mz = 0 at the endpoint and not from imperfections in the hidden AFM order [101].
The change of unit cell from the trivial to the topological configuration can be made
a continuous transition with a suitable tuning parameter: In the trivial configuration,
the rung coupling J⊥is reduced until the two legs of the ladder are effectively dis-
connected chains. At this point the coupling between the legs is increased again, but
instead of coupling the two sites within the same unit cell, it is shifted in leg B by one
site to the right and couples sites of neighboring unit cells. In the J⊥ = 0 limit the
change of unit cell has no effect and we can draw a continuous phase diagram. The
ED calculations result in smooth theoretical lines which corroborates our argument.
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Figure 5.7: Influence of the spin coupling on the string order. The figure shows
the dependence of the string order parameters gSz,Rz(L − 1) (green markers) and
g1,Rz(L − 1) (grey markers) on the coupling strength J⊥/J∥. The string order pa-
rameters are evaluated at the maximum distance L − 1, thus stretching through the
full system. The trivial (left) and topological (right) configurations can be under-
stood as one continuously tunable system, connected via two uncoupled chains at
J⊥ = 0. The shaded lines are Heisenberg ED results for an entropy per particle be-
tween S/N = 0.3 kB and 0.45 kB. The system has a length of L = 5 unit cells, except
for the triangular markers, which are measured with a system length of L = 7 unit
cells. All ladders have total magnetization Mz = 0. Error bars denote one s.e.m. and
are smaller than the markers where they are not visible.

5.4.3 System size dependence

Our experimental system is relatively small and should not be considered to represent
the thermodynamic limit. We argue, however, that we can still observe the character-
istic signatures of the Haldane phase, which is vanishing local spin correlations and
non-local string order due to symmetry fractionalization. Nevertheless, we want to
investigate the effect of our small system size. For that we consider different system
sizes up to length L = 9 using ED and up to length L = 11 experimentally.
As it can be seen in Fig. 5.8a, the ground state fraction decreases quickly with sys-
tem size, even though the temperature is kept constant. The reason is that there are
only four ground states, corresponding to the four edge states and one single state in
the bulk, independent of the system length. At the same time the amount of excited
states grows with the system length, and thus the probability with which one of them
is populated. This means that our small system size is not a disadvantage for our ex-
perimental observation, but given our temperature it is necessary in order to achieve
a convincing signal of the Haldane phase.
This is demonstrated in Fig. 5.8b, where we plot the spin string correlator, which is
revealing the hidden AFM order. The plot shows that the string order is decaying
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Figure 5.8: System size dependence. The figure shows the influence of system size
on the ladders. a, Theoretical ground state (GS) fraction for a ladder system of length
L with the diagonal edge termination and coupling strength J⊥/J∥ = 1.3. The line
in (light) blue is calculated using ED of the Heisenberg model at a fixed entropy per
particle of S/N = 0.3 kB (0.45 kB). The ground state population decreases despite
the entropy per particle staying constant. b, The measured string order parameter
gSz,Rz(d) for systems of size L = 5, 7, 9, 11 in magnetization sector Mz = 0. Error bars
denote one s.e.m. and are smaller than the markers where they are not visible. The
shaded line shows finite temperature, infinite length calculations at our temperature
of kBT = 0.9 J∥ and coupling parameters J⊥/J∥ = 1.3.

slower in smaller systems and seems to settle at different values for each length. At
system size L = 11 the string order has decayed to a value consistent with zero at
distance d = 6. At this length the shape of the string correlator versus distance is
consistent with the shape in the thermodynamic limit at our temperature. Hence, at
this length and this temperature, the system can not be said to display the signatures
of the Haldane phase, because that would require a non-zero string order over the full
system.
Length L = 11 is the maximum length we can realize experimentally due to the har-
monic confinement of our lattices. For larger ladders we would need more power
for our DMD, in order to compensate the harmonic confinement and still be able to
project high barriers for the ladder potential. Length L = 9 was the maximum length
we could calculate with ED at finite temperature and was limited by computational
resources.

5.5 Edge states

We have already seen indications for the edge states when looking at the short-ranged
spin correlations of Fig. 5.5b. These spin correlations vanish after few unit cells, but
resurge in the correlation between the two edge states. This is due to the vanishing
bulk magnetization and the selected magnetization sector Mz = 0. It thus directly
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Figure 5.9: Average rung magnetization.We plot the average rung magnetization
mz(x) as a function of position x in ladders of length L = 7. As illustrated by the
comics above the plot, we measure ladder with straight (diagonal) edge termination
in a (b). We measure both in the magnetization sector Mz = 0 (blue markers) and
|Mz| = 1 (red markers). In the magnetization sector |Mz| = 1, we have averaged
the magnetization mz(x) of sector Mz = 1 with the magnetization −mz(x) of sector
Mz = −1. Error bars denote one s.e.m. and are smaller than the markers where they
are not visible.

demonstrates the bulk-edge correspondence.
In the magnetized sector on the other hand, the edge states carry the excess magneti-
zation, because the bulk has a strong singlet nature on the rungs. If the total magne-
tization is positive with Mz = +1, both edge modes thus carry an additional spin up.
In the following we will investigate the edge states more thoroughly by analyzing the
magnetization distribution in the total magnetization sector |Mz| = 1.

5.5.1 Detecting edge states

We reveal that the magnetization is rather located at the edge of the system by mea-
suring the rung averaged magnetization mz(x) (see Fig. 5.9). For vanishing total mag-
netization we do not see a significant dependence of magnetization on the rung po-
sition. In the magnetized sector |Mz| = 1, however, the rung magnetization shows
a clear dependence on the edge termination. While a straight-edge termination does
not lead to a position dependent magnetization, the tilted-edge termination shows a
localization of excess magnetization on the outermost rung. This signal comes from
the edge states of the system. We can furthermore see a first indication for a position
dependence of the magnetization within the bulk. Considering only the bulk of the
system, magnetization decreases towards the center of the system, which is caused by
the edge states not being completely localized on the edges, but penetrating into the
bulk with a fast decay. This signal is, however, very small and overshadowed by an
overall offset, which we attribute to the finite temperature of our system. Note that
here we have not used the unit cell definition, because the edge magnetization is more
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Figure 5.10: Spatial magnetization distribution in the tilted-edge ladder. Experi-
mental magnetization maps mz

x,y are shown in the strong coupling regime J⊥/J∥ =

8(1) and the close to isotropic regime J⊥/J∥ = 1.3(2) for ladders of length L = 5.
Ladders with total magnetization Mz = 0 doe not show a strong local magnetiza-
tion, whereas ladders with total magnetization |Mz| = 1 display strongly magnetized
edge sites and an alternating spin pattern for J⊥/J∥ = 1.3(2). The last row shows the
theoretical magnetization at zero temperature calculated using ED. It is qualitatively
similar to the experimental result, but with stronger edge magnetization and without
a magnetization offset in the bulk.

striking when averaging over the singlets along the rung and the isolated excess spin
on the very last site.
When considering the fully space resolved magnetization, one observes further struc-
tures in the ladder, which are hidden from the rung magnetization. Fig. 5.10 we show
the magnetization maps of ladders at length L = 5 in the strong rung coupling regime
J⊥ = 8(1)J∥ and in the close to isotropic regime J⊥ = 1.3(2)J∥. In the non-magnetized
sector we find again no structure in the magnetization, except for system inhomo-
geneities, because bulk and edges both have magnetization zero. In the Mz = ±1
sector, however, we detect the strong magnetization on the edge sites of system. In
the strong rung coupling regime the bulk displays a relatively homogeneous mag-
netization offset and a strong localization of the edge state, which does not visibly
penetrate into the bulk.
In comparison, in the regime with similar rung and leg coupling, the magnetization
map reveals an additional structure in the state. An alternating magnetization pattern
appears that resembles antiferromagnetic correlations (with an additional total mag-
netization offset), but with a pinned orientation. The pattern arises due to the edge
states being not fully localized on the outermost site, but leaking into the bulk with
a certain localization length. The excess spin on the edge can be said to polarize the
neighboring spin singlets, due to its delocalization on close by sites. This enforces a
fixed the phase of the AFM correlations in the bulk. In the theoretical zero tempera-
ture case, the structure is more pronounced and for both coupling regimes the edge
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Figure 5.11: Staggered unit cell magnetization. We plot the magnetization per unit
cell mz(k) for the topological configuration with system lengths L = 5 (b), L = 7 (c), L
= 9 (d), L = 11 (e). The data is inversion averaged to increase statistics. An illustration
of the plotted quantity is shown in a. The black lines show a fit to the data with the fit
function (5.5).

magnetization is considerably stronger, while the bulk does not show the magnetiza-
tion offset we see in the experimental data.

5.5.2 Decay length

The rung averaged data shown in the earlier Fig. 5.9 hides the staggered pattern,
which was revealed in the magnetization maps. Measuring the magnetization along
the unit cells, however, has the opposite effect of grouping sites according to the pat-
tern. Fig. 5.11a illustrates the summed magnetization mz(k) over the unit cells. This
quantity does not rely on the spin-1/2 representation of the Haldane phase which we
realize in our spin ladders, but is a measure of the edge states that also exists in pure
spin-1 systems.
Fig. 5.11b-e show the measured unit cell magnetization for different system lengths.
The strong magnetization of the edge unit cell derives from the excess spin inhabiting
the system edge with high probability. The exponentially localized AFM structure
of the magnetization is induced by the edge mode leaking into the bulk [241]. With
increasing length L the edge magnetization and the contrast of the AFM pattern de-
crease. This is due to the decreasing ground state fraction at longer system sizes. The
bulk magnetization offset decreases with increasing length, despite the lower ground
state fraction. This can be explained by the decreasing ratio of total magnetization
and sites in the system |Mz|/(2L). The excess spin is distributed over more sites.
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Figure 5.12: Measured edge state localization. The figure shows the fitted decay
lengths ξ versus length L in a and versus coupling parameters in b. Shaded lines
are indicate theoretical values calculated using ED of the Heisenberg model at fixed
entropy per particle of S/N = 0.3 kB in a, and both S/N = 0 kB and S/N = 0.3 kB in
b. The localization length increases with leg coupling J∥, but is independent of system
size L.

The data for each system size is well described by an exponential fit function

mz(k) = mB + mE

(
(−1)ke−k/ξ + (−1)(L−k−1)/ξ

)
, (5.5)

with bulk magnetization offset mB, edge magnetization mE and the decay length ξ.
This allows us to extract the localization length. In Fig. 5.12a the results of the fitted
decay lengths ξ are plotted versus system length L. Despite the decreasing ground
state fraction and decreasing edge magnetization and pattern visibility, we do not
observe a clear tendency in the decay length versus system size. Instead, the decay
length is relatively stable versus length. Small variations we attribute to experimental
imperfections. The theoretical calculations up to system length L = 9 suggest a decay
length completely independent of system size at our temperatures.

Fig. 5.12b shows the decay length for different coupling parameters. At strong rung
coupling J⊥ the edge states are almost completely localized on the edge unit cell.
This is due to the lack of coupling along the ladder. In this parameter regime, the
system basically consists of independent singlets and the excess magnetization has no
other place to sit, than the site that is not forming a singlet. As the leg coupling J∥ is
increased with respect to the rung coupling, the excess spins are still largely confined
to the edge of the system, but they can lower their kinetic energy by delocalizing
onto neighboring sites. The localization length thus increases with the leg coupling,
but eventually saturates due to a finite temperature cutoff. The edge mode can not
delocalize beyond the thermal coherence length of the system.

We verify that our experimental method for extracting the decay length ξ gives a
reliable estimate for the localization length. To this end, we relate the experimental
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Figure 5.13: Edge state localization at zero temperature. a, We compare the ap-
proaches to calculate the decay length ξ from different quantities. Using DMRG of
a Fermi-Hubbard ladder of large lengths L > 50 and U/t∥ = 13 at zero temperature,
we calculate the decay length of the magnetization pattern (purple squares) as it was
previously evaluated on the experimental data. We compare this to the localization
length derived from the edge state splitting (green circles). Furthermore, the bulk
correlation length is shown as blue triangles. When markers are not visible they co-
incide. The decay length from the magnetization pattern and the edge state splitting
agree with a deviation of less than 6 % of their values. b, Finite temperature results
for a system with L = 5 and entropy per particle S/N = 0 kB to 0.5kB in steps of 0.1 kB
with the lightest shading being the highest entropy. The decay length is calculated
from the magnetization pattern in the Heisenberg model using ED.

decay length, which is determined from the staggered magnetization

|mz(k)| ∝ e−k/ξ

to the theoretical localization length of the edge states at zero temperature. Numeri-
cally, the length over which the edge modes delocalize can be readily extracted from
the energy splitting δ between the triplet and singlet ground states at a given system
length via

|δ| ∝ e−L/ξ .

Using DMRG of the Fermi-Hubbard model, we calculate the decay length of the
magnetization pattern and the localization length from the edge state splitting (see
Fig. 5.13a) for different coupling strengths J⊥/J∥. Both quantities agree over the full
parameter range with deviations of less than 6 % of their value. Furthermore, we
compare the decay length to the bulk correlation length and find that this quantity
considerably deviates from the localization length and the magnetization pattern de-
cay. The magnetization pattern is thus not governed by the bulk correlation length.

This demonstrates that the localization length can indeed be extracted from the decay-
ing magnetization pattern. The difference between the two methods is, that the defi-
nition of the localization length via the edge state splitting depends on the spectrum
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Figure 5.14: Edge state splitting.a, Energy splitting between the four ground states
of the system in topological configuration. The ground states consist of three triplet
(red bars) states with equal energy and one singlet (blue bars) state. The energy dif-
ference ∆ts = Etriplet − Esinglet alternates its sign, with ∆ts > 0 for even system lengths
and ∆ts < 0 for odd system lengths. The absolute value of the split decreases with
increasing system size. b, Magnetization map of system length L = 6 and magne-
tization sector |Mz| = 1. At this length the alternating pattern can not extend over
the full system, because the AFM structure of the two edges cancel in the center. c,
Spin correlations C(1, d) for system length L = 6 (brown markers) and L = 5 (grey
markers) in magnetization sector Mz = 0. At both lengths the system shows strong
nearest neighbor correlations and edge-to-edge correlations. At even length L = 6, a
small alternating signal can be tracked through the system, similar to the magnetiza-
tion patterns observed at add lengths in the magnetized sector. At odd length L = 5,
the alternating signal cannot be observed through the system.

of the system, and is thus independent of temperature. The actual localization of the
edge state, however, changes with temperature due to factors like a finite temperature
cutoff. The decay of the magnetization pattern thus allows to extract a temperature-
dependent localization length, which closely agrees with the temperature-independent
definition at zero temperature.

In Fig. 5.13b we show the finite temperature decay length for a small system of L = 5
calculated from ED. We see that temperature effects play a minor role for the decay
length at strong rung coupling J⊥, but become dominant in the intermediate to strong
leg coupling regime. At low temperatures, the decay length diverges in this regime,
but at higher temperature the decay length reaches an upper limit and then stays
relatively constant in the regime 0 ≤ J⊥ ≤ J∥.
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5.5.3 Edge state energy splitting

In the thermodynamic limit, the Haldane phase has a bulk gap and four degenerate
ground states. In finite size systems, however, there is a finite energy splitting be-
tween the total spin Stot = 0 and total spin Stot = 1 states, which are the respective
singlet and triplet states of the edge modes. We have already made use of this edge
state splitting in the calculations of the localization length. Now we will investigate
the experimental signatures of the edge state splitting in our system. Fig. 5.14a shows
the energy levels of the four ground states. The singlet and triplet ground states dis-
play a small energy difference, which quickly decreases with system length. The en-
ergy difference arises from the overlap of the edge modes in the bulk of the system
due to their finite localization length. Depending on the parity of the system - whether
it has even or odd length L - the triplet state or the singlet state have lower energy.
This parity dependence can also be intuitively understood from the structure of the
singlet and triplet states at even and odd length. For this we consider the magnetiza-
tion map at |Mz| = 1 of a system at even length L = 6 (see Fig. 5.14b) and compare it
to the magnetization maps and patterns at odd length (Fig. 5.10 and Fig. 5.11). At even
length the magnetization pattern does not extend through the whole system, because
the phase of the pattern starting at the left edge and the phase of the pattern starting
at the right edge are shifted by π. They thus cancel in the center of the system, This
is in contrast to the odd length systems, where we observe alternating magnetization
patterns in the center of the bulk at length L = 7 and beyond. This gives an intuitive
picture of why the triplet states, which the |Mz| = 1 states are a subset of, have lower
energy at odd system length.
The singlet state, on the other hand, has an energy advantage for even system lengths.
To understand this, we consider magnetization sector Mz = 0, which is not identical
with the singlet state but allows for insights nevertheless. Fig. 5.14c shows the spin
correlation C(1, d) versus distance along the ladder. In this case, the alternating AFM
pattern fits with the even length system of L = 6, but cancels in the center of the odd
system of L = 5. This behavior is opposite to the structure of the system in the triplet
state and explains, why the singlet state has lower energy for systems of even length.

5.6 Using ferromagnetic rung coupling

We have shown a realization of the Haldane phase which is conceptually close to the
AKLT model. Our model consists of antiferromagnetically coupled spin-1/2 particles
in a ladder system (J⊥, J∥ > 0) leading to singlet character along the rungs and a unit
cell definition, that connects the neighboring unit cells with singlet bonds. This, how-
ever, is not the only way to realize the Haldane phase from a spin-1/2 ladder system.
An approach that is conceptually closer to the Heisenberg spin-1 chain uses ferro-
magnetic (FM) couplings (J⊥ < 0) on the rungs of the ladders and straight unit cells.
Ferromagnetic couplings directly lead to a high spin-1 fraction along the rungs, which
are chosen as the unit cells of the system. In the following we will demonstrate the re-
alization of ferromagnetic rung couplings and observe the signatures of the Haldane
phase in the system. We refer to this system as FM ladders, despite the leg coupling
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Figure 5.15: Preparing ladders with ferromagnetic rung coupling.a, A ladder system
with antiferromagnetic leg coupling J∥ > 0 and ferromagnetic rung coupling J⊥ < 0.
The unit cells are defined along the rungs. The colored oval bonds indicate triplet
bonds between the spins. b, Preparation scheme. We first prepare undoped, uncou-
pled chains. Then we apply an optical potential offset ∆ ≫ U and subsequently we
couple the chains by reducing the optical lattice depth in perpendicular direction.

being antiferromagnetic, in order to distinguish them from the completely antiferro-
magnetic spin ladders discussed until now, which we will refer to as AFM ladders.

System preparation

We can realize a ladder system with ferromagnetic coupling along the rungs, using a
similar preparation sequence as in Ch. 4. We first prepare undoped ladder consisting
of uncoupled 1D chains with a lattice depth of Vrung = 20 ER and Vleg = 3 ER. We then
apply an optical potential offset to one leg of each ladder using our DMD. We then
slowly ramp the system to the final parameters of Vrung = 6 ER anf Vleg = 7 ER within
100 ms (see also Fig. 5.15b). The optical potential offset between the legs of the ladder
is bigger than the interaction energy, ∆ ≫ U. According to Eq. (4.1), this leads to a
ferromagnetic rung coupling J⊥ < 0. The final FM system has coupling parameters
J⊥ = 1.2(2) J∥. The high optical potential offset of ∆ ≈ 1.5 U is susceptible to long
term drifts. To avoid taking into account data with ∆ ≤ U we had to discard data sets
that show an average rung correlation C(0, 1) ≤ 0.

System characterization

We confirm the realization of FM ladders by measuring the rung spin correlations
C(0, 1) = 0.07(1). The nearest neighbor spin correlations on the leg reach a value of
C(1, 0) = −0.38(1), which is stronger than the leg correlations in the AFM ladders at
comparable coupling strength. The spin correlations along the leg and rung do not
compete in the FM ladders, because the rungs tend to form triplets and the system
can effectively be understood as a 1D chain of spin-1 objects. This allows for higher
correlation along the leg as compared to AFM ladders because spins that form pure
singlets are fully entangled along the rung and thus cannot have correlations along
the leg. Fig. 5.16 shows a map of the nearest-neighbor correlations of the system. The
bonds along the rungs show positive correlations, while the bonds along the leg show
strongly negative correlations. On the edges of the system, the leg spin correlations
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are strongest. This is due to the reduced number of neighbors that the edge spins
have to entangle with.
We note that, similar to the AFM ladders, also the ground state of the FM ladders
does not display a 100 % triplet fraction in the unit cell at finite J⊥/J∥. The theoretical
ground state triplet fraction can be seen in Fig. 5.17. The triplet fraction is above
80 % for all couplings and rises monotonically with J⊥/J∥. It reaches its maximum at
J∥ = 0. At this point the zero temperature FM ladders consist of 100% triplets, but it
realizes a relatively uninteresting spin-1 chain of uncoupled spins. The AFM ladders,
in comparison, reach a maximum triplet fraction at the point of equal couplings J⊥ =
J∥ and display a decreasing value for higher rung coupling.

Signatures of the Haldane phase

To demonstrate the signatures of the Haldane phase in this system, we measure the
same observables as previously for the AFM ladders. Fig. 5.18a shows the string cor-
relators gSz,Rz and g1,Rz . The spin-string correlator stays finite over the whole system
with correlation values around gSz,Rz(d > 1) ≈ 0.1, comparable to the AMF ladders
in topological configuration. This reveals the hidden antiferromagnetic order in this
system. The pure-string correlator is smaller than the spin-string correlator for most
distances, except for distance d = 3. The two string correlators together are a clear
sign of the Haldane phase. However, longer chains would be required to assure that
the pure-string correlator decays to zero for all large distances d ≫ 1 and the point
at d = 3 is a short-distance effect. The inset of Fig. 5.18a shows the local spin correla-
tions C1(d) between unit cells. The spin correlations decay quickly with distance and
show a resurge in correlation value for maximum distance, indicating the edge states
in the system. However, the decay is slower than in the AFM ladders with a clear
alternating pattern up to distance d = 4 and a considerable correlation value at d = 3
of C1(3) = 0.092(7). The reason for this slightly longer-range spin correlation in the
unit cell is the effective 1D nature of the system, with spin correlations not competing
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Figure 5.16: Map of the spin correlations in the FM ladders.The space resolved spin
correlations C(0, 1) and C(1, 0) of the ferromagnetic ladders are plotted as bonds,
whose color indicates the strength of the correlation. The endpoints of the bonds
represent the position of the correlated sites within the ladder.
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Figure 5.17: Unit-cell triplet fraction. The figure shows the ground state unit cell
triplet fraction in the FM ladders with straight unit cell, compared to the AFM lad-
ders with diagonal unit cell. In the low rung coupling regime, both systems have a
comparable triplet fraction of about 85 %. The FM ladders reach their maximum in
the strong rung coupling machine with up to 100 % triplets. The AFM ladders, on the
other hand, reach the maximum triplet fraction at isotropic coupling J⊥ = J∥. The
figure is calculated using ED of the Heisenberg spin-1/2 model.

in the leg and rung direction.
The Haldane phase signatures include not only hidden AFM correlations but van-
ishing two-point spin correlations at large distances. At low temperatures and short
lengths of our FM ladders, the spin correlations do not vanish, and thus they cannot
be clearly identified as a finite-size version of the Haldane phase. Our temperatures,
however, are high enough, so that the spin correlations vanish sufficiently and we can
observe the features of the Haldane phase. In other words, temperature helps us to
reduce the correlation length in the system and recover the features of the Haldane
phase. This problem does not arise in the AFM ladders, because the spin correlations
are inherently shorter due to the competition of the two directions.
Fig. 5.18b shows the unit cell averaged magnetization |mz(k)| in the magnetized sector
|Mz| = 1. The strong magnetization on the outermost unit cell indicates the presence
of edge states. The additional majority spins in the system sit predominantly at the
edge of the system and induce an alternating magnetization pattern that decays to-
wards the center of the system. We extract a localization length of ξ = 1.3(1) sites,
which is consistent with the results obtained in the AFM ladders. Note that, in the
FM ladder realization of the Haldane phase, the edge mode is not strongly localized
on the outermost lattice site, but is equally shared between both sites of the outermost
unit cell.

5.7 Discussion

In this chapter, we have studied the physics of the Haldane phase using fermionic
two-leg ladders in the Heisenberg regime. We have demonstrated two different ap-



100 Chapter 5. A symmetry-protected topological phase in Fermi-Hubbard ladders

1 2 3 4 5 6
d (sites)

0.0

0.1

0.2

a

|g
,R

z (d
)|

|g
S

z ,
R

z (d
)|,

 

0 2 4 6
d (sites)

0.0

0.2

|C
1
(d

)|

0 1 2 3 4 5 6
Unit-cell position k

0.1

0.2

|m
z (

k)
|

b

𝟙

Figure 5.18: Signatures of the Haldane phase in ladders with ferromagnetic rung
coupling. a, The string-spin gSz,Rz and string-only g1,Rz correlators are evaluated as a
function of the rung distance d in straight-edge ladders (vertical unit cells) of length
L = 7 with FM coupling along the rungs, in the sector of fixed total magnetization
Mz = 0. Their behavior is analogous to the case of AFM ladders in the topological
configuration, indicating topological order. (Inset) The two-point spin-spin correlator
C1(d) decays rapidly to zero as a function of the distance d. b. In the magnetized
sector |Mz| = 1 of the rung-FM ladder, the (vertical) unit cell averaged magnetiza-
tion |mz(k)| shows a staggered pattern with decaying amplitude, similar to the one
observed in the AFM ladder in topological configuration, indicating the presence of
edge states.

proaches to realize this phase. One approach is based on antiferromagnetic ladders
with diagonal unit cells and a tilted-edge termination. The other one is a mixed
system with ferromagnetic rung couplings and antiferromagnetic leg couplings and
straight unit cells along the rungs of the system. We have observed the main signa-
tures of the Haldane phase in both systems. However, the AFM ladders are more
suitable to observe the features of the Haldane phase at finite system size, due to
the shorter bulk correlation length. We have thus used this system to investigate the
robustness of the phase with respect to different system lengths and coupling parame-
ters. We have compared the system to the trivial phase, which we have realized using
antiferromagnetic ladders with straight unit cells.
The FM ladders are symmetric with respect to the legs, meaning that exchanging the
particles in leg A with leg B does not change the system. This is in contrast to the AFM
ladders, where the outermost edge site is unique. For the FM ladders the symmetry
means that the edge state is not localized on the outermost lattice site, but equally
shared between both sites of the edge unit cell. In that sense, the system is closer to the
Haldane phase in a pure spin-1 chain, which is not divided into spin-1/2. The system
is however less close to the AKLT model, which is built up of spin-1/2s and the edge
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state is predominantly carried by the outermost spin-1/2. This confirms once more
the view, that the AFM ladders in the topological configuration are conceptually very
close to the AKLT model and thus present a very visual realization of the Haldane
phase, which can help to demystify its properties. The realization using FM ladders,
on the other hand, rather disguises the mechanisms of the Haldane phase, similar to
an antiferromagnetic spin-1 chain. We thus argue that the AFM ladders are a more
instructive way to demonstrate the Haldane phase. In the future, studies may extend
the two-leg ladder to a varying number of legs where one expects clear differences
between even and odd numbers of legs [242] and topological effects away from half-
filling [243], or investigate topological phases in higher dimensions [244].
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CHAPTER 6

Conclusion and Outlook

6.1 Conclusion

In this thesis, I have presented quantum simulation experiments of antiferromagnetic
Fermi-Hubbard ladders in the doped and undoped regimes. Spin-1/2 two-leg lad-
ders were realized using ultracold fermionic atoms in optical lattices with arbitrary
potential shaping. Harnessing the single site spin and density resolution of our quan-
tum gas microscope, we have extracted real space correlations in the spin and charge
sectors.
The main result of this thesis is the observation of magnetically mediated hole pairing
in doped systems. By engineering a mixed-dimensional system, in which dopant
motion is suppressed along one direction, we are able to confirm the formation of
tightly bound pairs. We have reached a binding energy of about EB = 0.8 J⊥, which
constitutes an increase of more than an order of magnitude as compared to a standard,
not mixed-dimensional ladder system. We have demonstrated the magnetic character
of the binding mechanism and found signatures of considerable hole mobility along
the system. At higher doping, a repulsive interaction between pairs was shown.
By demonstrating magnetically mediated hole pairing in a Fermi-Hubbard system,
we confirm the role of magnetic correlations for a pairing mechanism possibly un-
derlying unconventional superconductivity. Our mixed-dimensional approach delin-
eates a strategy to increase the critical temperature for superconductivity.
A further result presented within this thesis is the observation of signatures of the Hal-
dane phase. Mapping the spin-1/2 ladder system onto an integer spin chain has en-
abled the realization of a finite-size and finite-temperature version of this symmetry-
protected topological phase. We have revealed symmetry fractionalization and the
hidden antiferromagnetic order, which are characteristic of the Haldane spin-1 chain,
by measuring non-local string order correlators. We have demonstrated the existence
of edge states and extracted their localization length.
Besides the results of quantum simulating hole pairing and the Haldane phase, we
have also achieved technical progress in the course of this thesis. We have devel-
oped a bilayer imaging technique which enables our vertical spin resolution of two-
dimensional systems. Furthermore, we have equipped our experiment with a digital
micromirror device for arbitrary potential shaping. We have also implemented real-
time evaluation of the experimental snapshots and improved monitoring. Based on
this, we have introduced several automatic feedback algorithms for the optical poten-
tial and vertical lattice phase.
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Limitations

Even though we have demonstrated that magnetic correlations can mediate pairing,
the role of this mechanism in unconventional superconductors remains to be exper-
imentally verified. The biggest obstacle in the way of observing superconductivity
in our quantum gas microscope is the current temperature limitation. Colder sys-
tems are needed to reach the critical temperature for superconductivity, even for our
mixed-dimensional system. The same limitation holds for the realization of the Hal-
dane phase, as topological phases of matter only truly exist at zero temperature [93].
Getting closer to this ideal regime is needed in order to observe the signatures of these
phases in larger systems.
Besides temperature, system size is among our biggest experimental limitations. The
short length of our ladder system has prevented us from exploring pairing in ladders
with larger leg coupling, where even higher binding energies are expected [221]. The
small system size in this thesis made it necessary to go to low leg coupling in order to
reach a separation of scale between the pair size and the system size.

6.2 Outlook

The experimental results described within this thesis can be extended in several fu-
ture studies, some of which have already been mentioned in the discussion of the
respective chapters. In the following, we will thus give an overview of technical im-
provements that can overcome some of the technical limitations of the current setup.
We will then discuss possible future studies for our setup and the possibilities of quan-
tum simulation with ultracold fermions beyond the scope of our setup.

Technical improvements

Quantum gas microscopes are machines consisting of thousands of optical elements,
electronic devices, and mechanical constructions. This complexity means that the
failure of one component can make the whole machine inoperable. A future direction
to improve the stability and reliability of our setups is modularization. For exam-
ple, optical setups for different purposes can be standardized and placed in 19-inch
racks [245]. In case of failure, such a setup can be quickly replaced. Miniaturization
goes along a similar line, making setups more efficient and stable. A first step in this
direction has been taken in our group by using a home-designed optics mounting
system [246].
Imperfections in our optical lattice potential, as well as harmonic confinement, severely
limit our system size and also affect the physics of the system by altering the tunnel-
ing strength and leading to density inhomogeneities. A new lattice setup can sub-
stantially reduce imperfections by choosing a new beam path that avoids high-NA
lenses [207]. Furthermore, the red detuned lattice beams can be replaced by blue
detuned ones, which avoids harmonic confinement in trade-off for a smaller anti-
confinement. The experimental team of our lab is currently implementing these im-
provements with a new bichromatic superlattice setup for the xy-lattices, similar to
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the z-lattice design discussed within this thesis.

Reaching colder temperatures

To tackle the temperature limitation of fermionic quantum gas microscopes, several
cooling schemes have been proposed. A vertical superlattice can be utilized to couple
the system to an entropy bath [247, 248]. This bilayer cooling technique has homo-
geneous contact between the system and the bath. It is thus advantageous over a
reservoir surrounding the system in a two-dimensional plane, which is already being
used in our and other experiments [212, 249]. In addition to such entropy redistribu-
tion schemes one can prepare low entropy band insulators, which have a larger charge
gap than Mott insulators. The low entropy system is then adiabatically transformed
into an antiferromagnet, either using a superlattice and lattice for the band insulator
and Mott insulator or by introducing empty lattice sites around the system [59].
A different approach for effectively reaching colder systems is to reduce the lattice
spacing. A shorter lattice constant increases the energy scales of the system and thus
increases the absolute temperature required to reach low-temperature phases like su-
perconductivity. Shorter lattices can be achieved by using blue-detuned laser sources
in a retro-reflected configuration. spacings on the order of 200 nm could for example
be reached using blue laser diodes. Atoms in a lattice with spacings on this order
can not be resolved in situ, but quantum gas magnifiers [250] have the potential to
overcome this challenge.

Future experiments

Bilayer systems are an interesting direction for future investigations in our system.
Our vertical superlattice setup with its bilayer imaging is well equipped to study
this setting. Bilayer systems are expected to display strong pairing in the mixed-
dimensional setting, as it was discussed in the respective chapter. But also in the stan-
dard setting they are highly interesting systems that display a phase transition from
two- dimensional antiferromagnetic layers to a band insulator of singlets between the
layers [251]. Bilayer systems are highly relevant regarding the quantum simulation
of high-TC superconductivity because higher critical temperatures are expected for
the bilayer Hubbard model [252, 253]. Unfortunately, spin resolution in the vertical
direction is not possible for a bilayer system in our setup, but in-plane spin resolution
will be readily available with the new xy-superlattice setup.
Further experimental directions that can be explored with our system is the creation of
Mott-Hubbard excitons [254], which play an important role in semiconductor physics.
These doublon-hole pairs can be excited in our system by local or global periodic
modulation of the lattice potential. Another possible direction is to demonstrate col-
lisional or spin-exchange gates [255, 256]. If we encode a qubit in the two spin states,
we can realize a two-qubit gate by coupling two atoms for a well-defined time using
our superlattice potential. Through the spin-exchange interaction, the two spin states
become entangled and we can realize a

√
SWAP gate. The realization of high-fidelity

two-qubit gates in our system would be an important step towards programmable
quantum simulation with cold fermionic atoms.
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Programmability is an exciting direction to demonstrate and harness the quantum
advantage of the cold atom platform [8]. Near-deterministic initial state preparation
allows for the engineering of low entropy initial states. It also enables the time evo-
lution of arbitrary initial states, thereby vastly increasing the scope and precision of
quantum simulation. Initial state engineering has for example recently been demon-
strated for tunnel-coupled optical tweezers of fermionic atoms with full spin and den-
sity resolved readout [257].
Programmable quantum simulators can furthermore be used to construct the dynam-
ics of the system. The analogue evolution under the native Hamiltonian can be sup-
plemented with periodic digital gates. This is a field which is rapidly progressing
[258, 259], and programmable quantum simulators based on cold fermions are cur-
rently being construction, e.g. [260]. A hybrid approach of this kind offers new pos-
sibilities to simulate the dynamics of a whole range of Hamiltonians on a single ma-
chine, without the requirements of a full-fledged quantum computer, like the need for
error correction.
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Derivation of the binding energy

In order to estimate the binding energy of the paired state from the experimental data,
we compare the measured g(2)h (0, 1) correlation to an analytically tractable effective
Hamiltonian. We start from the t − J Hamiltonian (2.9) and neglect the two smallest
energy scales t∥, J∥, which are both below the estimated temperature T of our dataset.
Since the Hamiltonian then completely decouples into individual rungs, we can then
exactly diagonalize it. The eigenstates of each rung are the two-hole state |hh⟩, the
spin-hole states |sh, y, σ⟩, of which there are four, with leg index y = 0, 1 and spin
index σ =↑, ↓, the spin-singlet state |S⟩ and the three spin-triplet states |T, m⟩ with
m = −1, 0, 1. The corresponding eigenenergies are

ϵhh = V,
ϵsh = ϵT = 0 and
ϵS = −J⊥,

(A.1)

with a variable hh state energy V. In the uncoupled rung limit of t∥ = J∥ = 0, this
energy vanishes to V = 0, but for finite couplings t∥, J∥ ̸= 0, we expect a non-zero
renormalization. While V can be calculated perturbatively [261], we treat it as a free
parameter here and thus go beyond a perturbative analysis.

We consider the binding energy of our simplified model in the thermodynamic limit
L = ∞, which in the undoped ground state has an energy of E0h = −LJ⊥. A system
containing two independent holes has ground state energy 2(E1h − E0h) = 2J⊥, be-
cause it misses two singlets that are part of the undoped ground state. The ground
state energy of a system with two holes, however, is E2h − E0h = V + J⊥, due to one
missing singlet and the additional energy V of the two holes. The binding energy
follows as the difference between two independent holes and a pair of holes

Eb = 2E1h − E0h − E2h = J⊥ − V. (A.2)

For Eb > 0 the ground state of a doped system is paired.

To relate the binding energy to the measured g(2)h correlator, we perform a canonical
calculation assuming exactly one hole per leg. We remember the probability in a
canonical ensemble [262]

pi =
1
Z

e−Eiβ
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with the partition function
Z = ∑

i
e−Eiβ,

where β = 1/(kBT). The probability for two holes to occupy the same rung is thus
given by

phh =
L
Z

e−βEhh ZL−1
S , (A.3)

which is composed of L different rungs that can host the two holes and the different
combinations of singlets and triplets that are possible on the L − 1 other rungs

ZS = e−βES + 3e−βET ,

with ES and ET defined as in Eq. (A.1). The total partition function is given by

Z = Le−βEhh ZL−1
S + 4L(L − 1)e−2βEsh ZL−2

S .

Furthermore, following the definition of the g(2)h function in Eq. (4.3), we obtain the
relation

g(2)h (0, 1) =
phh/L
(1/L)2 − 1, (A.4)

where we have assumed a homogeneous density of ⟨n̂i⟩ = 2/(2L) on each site and
a homogeneous probability per rung of 1/L. Thus ⟨n̂h

i n̂h
j ⟩ = phh/L for fixed (i, j)

on one rung. There are thus L identical terms in the sum of g(2)h , which cancel with
N(0,1) = L.
Finally, inserting A.3 and A.2 into A.4, yields Eq. (4.5)

Eb = −β−1 ln


(
1 + 3e−βJ⊥

) (
1 − g(2)h (0,1)

L−1

)
4
(

1 + g(2)h (0, 1)
)

 .
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Numerical simulations

B.1 DMRG calculations for chapter 4

In chapter 4, the experimental results for the mixed-dimensional and standard lad-
ders are compared to theoretical expectations. Those calculations were carried out
by Annabelle Bohrdt. She performed simulations of the t − J model, Eq. (2.9), using
matrix product states (MPS). In the mixed-dimensional system, the simulated param-
eter regime is J∥/J⊥ = 0.047, t∥/J⊥ = 0.7 and t⊥ = 0. For the standard system the
parameters are J∥/J⊥ = 0.06, t∥/J⊥ = 0.9, and t⊥/J⊥ = 3.57. This corresponds to the
t − J model derived from a Fermi-Hubbard model with U/t⊥ = 14.16, t∥/t⊥ = 0.26,
and, in the mixed-dimensional case, ∆/U = 0.5. The MPS simulations are performed
using the TeNPy package [263, 264]. For ground state simulations, for example to
obtain the binding energies, the DMRG algorithm is used with a fixed Stot

z as well
as particle number sector. For simulations are finite temperature, the purification
method [265, 266] is used, where the Hilbert space is enlarged by an auxiliary site
a(i) per physical site i. The auxiliary degrees of freedom are traced out in order to
obtain the finite temperature state. The starting point is an infinite temperature state,
in which the physical and auxiliary degrees of freedom on each site are maximally
entangled. An entangler Hamiltonian [267] is implemented to prepare the infinite
temperature state of the t − J model. A chemical potential µ is introduced to control
the average number of holes in the system. The W I I-time-evolution method [268]
is then used to perform imaginary-time evolution up to the desired temperature.
Depending on the system size, model (standard t − J versus mixed-dimensional or
Fermi-Hubbard), doping, and temperature (finite temperature versus ground state),
a bond dimension between χ = 50 and χ = 400 is used. For the finite temperature
calculations, an imaginary time step of dt/J⊥ = 0.025 is employed. The results have
been carefully checked for convergence in the bond dimension as well as the size of
the time step. We benchmarked the MPS calculations by comparing them to exact
diagonalization for small system sizes and found the same results.
In order to directly compare to the experimental data, snapshots were directly sam-
pled from the matrix product state using the perfect sampling algorithm [269]. In
the evaluation of the snapshots, we account for the experimental detection fidelity
by randomly placing artificial holes in the MPS snapshots according to our detection
fidelity. We then apply the same filters regarding hole number and occupation im-
balance as for the experimental data and model the hole number distribution of the
experimental data by weighting the snapshots accordingly.
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B.2 Numerical calculations for chapter 5

In chapter 5, we employed two different numerical methods to obtain theoretical pre-
dictions for the experimentally measured observables. Exact diagonalization was
used for calculations of the Heisenberg model at small system sizes and for finite
temperatures. DMRG calculations were performed for the Fermi-Hubbard model by
Julian Bibo and Ruben Verresen, calculating the ground state at large system sizes.

ED calculations

The results in the Heisenberg regime were obtained using exact diagonalization (ED)
of our spin-1/2 ladders up to sizes of L = 9, limited by computational resources. For
each data point, the system size and geometry in the ED simulation are the same as
in the experimental data. The finite temperature results were obtained by using the
full spectrum. We specify the entropy per particle s = S/N, which we find to be
approximately independent of coupling parameters in the experimental realizations.

DMRG calculations

The results for large systems at zero temperature are calculated using the Density
Matrix Renormalization Group (DMRG) Ansatz [3] based on the TeNPy library (ver-
sion 0.3.0) [263]. The simulations of the ladder system go beyond the t − J-model
and take into account the full Fermi-Hubbard model. Total particle number and total
magnetization are conserved. To obtain the infinite length value of the string order
parameters, different lengths d ∈ [200, 400, ..., 1600] were calculated to make sure its
final value is converged. To numerically compare different approaches to extract the
decay length, a system with L = 100, U/t∥ = 13 is simulated at zero temperature.
The decay length of the edge magnetization is extracted from the ground state in the
sector Mz = 1 using a bond dimension χ = 1000. The maximal energy truncation
error is kept below 10−7 for all parameters. To obtain the localization length from the
energy splitting, the different spin sectors Mz ∈ {0, 1} are calculated. Choosing sys-
tem lengths of L ∈ [4, 8, ..., 52] and a bond dimension χ = 1000, the maximal energy
truncation error is again kept below 10−7.
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