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2. Introduction

2.1 Ovarian cancer

Ovarian cancer (OV) is a frequent female reproductive organ malignancy, with the high-
est death rate among three gynecological tumors [1]. According to the World Health Or-
ganization (WHO), in 2020, 314000 newly diagnosed cases of OV were reported; annu-
ally, 207000 related deaths occur worldwide due to OV, thus posing a serious threat to

women's health.

Histological classification of ovarian tumors by the WHO categorizes them into sex cord-
stromal, epithelial, metastatic, and germ cell tumors among which epithelial tumors are
predominant, accounting for nearly 70% of all ovarian tumor cases [3]. The biological
behavior of ovarian tumors with different histological types varies. Approximately 90%
of ovarian malignant tumor cases are of epithelial ovarian cancer (EOC) and are mainly
divided into serous ovarian cancer (SOC), endometrioid carcinoma, mucinous carcinoma,
undifferentiated carcinoma, and clear cell carcinoma according to the morphology and
histological structure observed under the microscope [4]. Among them, SOC is the most

malignant histological type, and nearly 70% of EOC is SOC.

In 2004, Malpica et al., according to the degree of nuclear atypia and mitotic index, clas-
sified SOC into high-grade SOC (HGSOC) and low-grade SOC (LGSOC) [5]. Genetic
characteristics, origin sites, and carcinogenic patterns between these grades are different,
and thus, are two completely different tumor types [6-9]. The incidence rate of HGSOC
accounts for 75% of EOC. As the symptoms of early onset remain undetected, more than
70% of patients are diagnosed in the advanced stage. The 10- and 5-year survival rates of
patients with advanced HGSOC are only 15% and less than 30%, respectively [10].
HGSOC grow rapidly and are highly malignant and invasive, usually accompanied by
TP53 and BRCA1/2 mutations [9, 11, 12]. LGSOC cases are relatively rare and often
accompanied by prodromal lesions. Most of them are in the early clinical stage carrying

KRAS and BRAF mutations and generally have a good prognosis [13, 14].

Surgery combined with chemotherapy based on platinum and paclitaxel is the traditional
treatment for EOC. The classic cisplatin plus paclitaxel treatment scheme is effective for
platinum-sensitive patients; however, 70% of EOC patients are at risk of drug resistance
and recurrence [15]. With the continuous development of targeted drug molecular re-

search, the treatment mode of EOC has gradually changed, and comprises antiangiogenic
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drugs [16], poly ADP-ribose polymerase (PARP) inhibitors [17], etc., for maintenance
treatment and posterior OV therapy; these have become an important part of OV treat-
ment [17, 18]. However, EOC is highly heterogeneous, and thus, patients with the same
tumor stage and pathological grade have different prognoses. Herein, we attempted to
identify new markers for diagnosis and prognostic prediction of EOC patients. Our re-
search has important clinical value for clinical diagnosis, individualized precise treatment,

and prognostic prediction of EOC.

2.2 Tumor microenvironment (TME)

TME comprises extracellular matrix (ECM), tumor cells, interstitial cells surrounding the
tumor cells (including immune cells, fibroblasts, adipocytes, and endothelial cells), and
signaling molecules (like cytokines and chemokines) [19, 20]. Both primary TME and
TME formed by distant metastasis play a crucial role in tumor cell metastasis, prolifera-

tion, invasion, drug resistance, and maintaining tumor cell stemness.

In TME, ECM (including collagen, fibronectin, laminin, etc.) can activate intracellular
FAK, ERK, and other signaling pathways by binding to tumor cell surface receptors in-
cluding integrin, thus enhancing tumor cell invasion, proliferation, and migration [21, 22].
The new abnormal blood vessels formed around the tumor tissue not only promote the
formation of an anoxic and acidic environment around the tumor, reduce the number of
immune cells, and inhibit the killing ability of immune cells against tumor cells but also
limit the efficiency of drug delivery systems, thus promoting cancer [23]. Siglec-10 ex-
pressed by tumor-associated macrophages (TAMs) promote tumor cell immune escape
by interacting with CD24 expressed in these cells [24]. The activation of endoplasmic
reticulum stress response factor, XBP1, in dendritic cells (DCs) in TME can weaken its
antigen presentation ability, resulting in loss of the ability to initiate and maintain T-cell
dependent anti-tumor immunity and promoting the malignant progression of tumors [25].
As a critical component of the TME, cancer-associated fibroblasts (CAFs) can promote
tumor progression by interacting with tumor cells or other TME components. Tumor cells
affect the recruitment of CAFs precursors and induce epithelial cell transformation into
CAFs by epithelial-mesenchymal transition (EMT) [26] or endothelial cells by endothe-

lial-to-mesenchymal transition (EndMT) [27]. Concurrently, CAFs secrete several
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growth factors, cytokines, and ECM proteins, promoting the proliferation, invasion, drug

resistance, and metastasis of tumor cells, and affecting tumor prognosis [28-30].

In the early stage with ascites/peritoneal fluid, tumor cells spread through the peritoneum
to form metastatic lesions, a TME feature in OV [31]. OV is a solid tumor that shows
unique growth. It develops, metastasizes, and relapses in the abdominal cavity, thus form-
ing a unique TME characterized by ascites, hypoxia, and hypoglycemia [32]. The malig-
nant ascites in EOC patients are rich in tumor-promoting soluble factors, extracellular
vesicles, exfoliated cancer cells, and different immune cells, including T cells, natural
killer (NK) cells, and TAMs. The increase in ascites volume can promote the formation
of a tumor-appropriate TME, thus making OV resistant to chemotherapy [33]. Compared
to LGSOC patients, CAFs in the ascites of HGSOC patients are abundant and adhere to
the surrounding OV cells to form spheres, thus enhancing the tumor cell adhesion ability,
promoting metastasis and drug resistance, and inhibiting tumor cell apoptosis [34, 35].
Therefore, an in-depth evaluation of the molecular mechanism in TME involved in the
malignant progression of EOC and TME-related early diagnostic and prognostic markers

have guiding significance for clinical decision-making for these patients.

In this study, we obtained the RNA-sequencing (RNA-seq) data of SOC patients in FIGO
III and IV stages from The Cancer Genome Atlas (TCGA) database. According to the
expression of TME genes, the patients with advanced stage SOC were re-divided into
three subtypes using the NMF algorithm. Meanwhile, we constructed an 11-gene signa-
ture based on TME genes. The signature can be used for prognostic prediction of ad-

vanced SOC and evaluating immunotherapeutic efficacy.

2.3 Immune checkpoint inhibitors

The immune checkpoint is the key to maintaining the self-tolerance of the body and pro-
tecting the tissues from self-attack after reacting to pathogens. Immune checkpoints in-
clude T-cell immunoglobulin and mucin-3 (TIM-3), PD-1 and its ligand PD-L1, lympho-
cyte activating gene 3 (LAG-3), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) [36].
A mechanism of tumor escape from immune surveillance is the abnormal upregulation of
immune checkpoint expression, which in TME can significantly inhibit the intensity and

duration of immune responses [37]. The level of PD-L1 in OV increases and is related to
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poor prognosis, suggesting that PD-1/PD-L1 has a key role in tumor immune responses

[38].

Immune checkpoint inhibitors (ICIs) are humanized or fully humanized human immuno-
globulin G (IgG) monoclonal antibodies, unlike traditional drugs that directly act on can-
cer cells. ICIs can activate the human immune system and target tumor cells by blocking

PD-1/PD-L1 and CTLA-4/B7 signaling transduction by a specific combination [39].

The Keynote-028 study showed that the objective response rate of 26 patients with PD-
L1 positive epithelial OV after receiving pabolizumab treatment was 11.5%, and the dis-
ease control rate was 34.6% [40]. Phase Ib open-label cohort study (NCT01772004) in-
cluded 125 patients with refractory/recurrent OV who received avelumab treatment,
showing an objective response rate of 9.7% and a disease control rate of 52% [41]. The
effect of ICIs on OV patients is limited. Not all OV patients benefit from ICIs. Combina-
tion chemotherapy and targeted therapy or identifying markers that can predict the benefit
of immunotherapy is a potential research direction. In this study, we used the dataset of
immunotherapy genes to verify the predictive ability of the risk model based on TME-
related genes for immunotherapeutic efficacy. The results showed that patients in the low-

RS group had a greater likelihood of benefitting from immunotherapy.

2.4 Lipid metabolism

Abnormal metabolism is a common feature of tumors. The metabolic abnormalities of
malignant tumors show the six following characteristics [42]: (1) uncontrolled glucose
and amino acid uptake; (2) speculative access to nutrition; (3) synthesis of biomacromol-
ecules and NADPH from the intermediate products of glycolysis and/or tricarboxylic acid
cycle; (4) increased demand for nitrogen source; (5) metabolite driven gene expression
abnormalities, and (6) metabolite interactions with the TME. Among these, abnormal li-
pid metabolism, especially the increase in the de novo fatty acid synthesis pathway, is

implicated in the above processes.

Lipids, an important hydrophobic nutrient in the human body, include triacylglycerol,
glyceryl phosphate, sterol, and sphingolipids. It plays an important role in cell membrane
formation, cellular metabolism, energy storage, and signal transduction, and participates
in the processes of inflammation, immunity, cellular proliferation, and cell differentiation
[43, 44]. The activity and expression of enzymes participating in lipid metabolism in var-

ious tumor cells increase and the synthesis of endogenous fatty acids is enhanced [45, 46],
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suggesting that abnormal lipid metabolism may serve a critical role in the development

and occurrence of tumors.

Early extensive metastasis is the main feature of OV, characterized by extensive dissem-
ination in the pelvis and abdomen and omental infiltration. Co-culture of primary human
omental adipocytes with OV cells shows lipolysis of adipocytes and B-oxidation of tumor
cells which provide an energy source for the growth and metastasis of OV cells [47].
Changes in lipid metabolism may occur at various stages of EOC [48]. EOC cells take up
lipids in several ways to meet the high energy requirements during cell growth and sig-
naling changes during carcinogenesis. Studies have shown that genes involved in endog-
enous lipid metabolism and cholesterol biosynthesis are downregulated in OV cells, in-
dicating that in the presence of primary adipocytes, OV cells rely more on the uptake of
exogenous lipids and cholesterol than on the endogenous synthesis of fatty acids [49].
Several lipid metabolism pathways, especially those related to fatty acid biosynthesis and
phospholipid and its enzyme system, are closely associated with the malignant progres-
sion of OV. Fatty acid synthase (FASN), the key regulator of endogenous fatty acid syn-
thesis, is overexpressed in OV, and its high expression is related to drug resistance and
poor prognosis of these patients [50-52]. For platinum-resistant OV cells, inhibition of
FASN can reduce the level of fatty acid metabolism, and combination with platinum
drugs can inhibit the B-oxidation of fatty acids, jointly promoting tumor cell apoptosis
[52]. Fatty acid binding protein 4 (FABP4) overexpressed at the adipocyte tumor cell
interface in the OV cell membrane, functions as an intracellular lipid chaperone. Inhibi-
tion of FABP4 can reduce lipid accumulation in OV cells and invasion of tumor cells
mediated by omental adipocytes [47, 53]. Lysophosphatidic acid (LPA) is a growth fac-
tor-like phospholipid produced by OV cells and mesothelial cells secreted into the peri-
toneal cavity. It is highly expressed in ascites of OV patients and can promote tumor
angiogenesis by inducing the secretion of angiogenic factors including IL-8 and vascular
endothelial growth factor (VEGF) [55]. LPA can also activate the downstream
Gal2/13/RhoA signaling pathway through the LPA-1 receptor and LPA-2 receptor to
induce the phosphorylation of ERM protein, thus promoting the metastasis of OV cells
[56]. The development and occurrence of tumors are accompanied by several lipid-related
gene changes and assessing the changes in lipid metabolism may provide a novel target

for the treatment of OV.
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Herein, we clustered the RNA-seq data of SOC patients from TCGA database into two
subtypes (C1 and C2) according to lipid metabolism-related genes using the NMF algo-
rithm, and the prognosis of the C2 subtype was found to be significantly better than that
of the C1 subtype. Furthermore, an 11-gene signature was constructed using the Least
absolute shrinkage and selection operator (LASSO) regression, which could predict the
prognoses of SOC patients and guide clinical decision-making. The hub gene in the model,
PTGER3, was also verified using paraffin-embedded tissue samples from clinical OV
patients. The level of PTGER3 expression in the high-risk scoring group was significantly
higher compared to the low-RS group. PTGER3, or EP3, is a G protein-coupled receptor.
PTGER3 is widely present across various tissues and organs and participates in different
pathological and physiological processes in the body, including the regulation of antico-
agulation and contraction of the uterine muscle layer in early pregnancy [57]. To date, the
mechanism underlying the role of PTGER3 in lipid metabolism remains unclear, but re-
search shows that compared to M2 macrophages, the expression of PTGER3 in M1 type
macrophages is up-regulated in the placenta of patients with recurrent abortion during
early pregnancy [58]. Thus, lipid metabolism and TME are inextricably linked, and the

role of their interaction in tumor progression needs further investigation.

2.5 Crosstalk between TME and lipid metabolism

TME has a non-immune microenvironment dominated by fibroblasts and tumor cells and
an immune microenvironment dominated by immune cells [59]. Abnormal lipid metabo-
lism can affect tumor progression and immune responses simultaneously. The prolifera-
tion of tumor cells requires massive amounts of lipids for the synthesis of cell membranes
and organelles. Tumor cells can promote the exogenous uptake of lipids by up-regulating
lipid transport-related proteins, enhance endogenous synthesis by regulating lipid produc-
tion pathways, and secrete lipids by activating fat cells. Besides serving as the basic struc-
tural component and important energy source of immune cells, lipids also affect the pro-

liferation and differentiation of immune cells and immune responses to tumor cells [60].

Fatty acid and lipid accumulation exert different effects on different immune cells. Fatty
acid accumulation in TME can induce the loss of immune functions in more than 8 kinds
of immune cells with anti-tumor effects, which is more conducive to the survival of tumor
cells. Studies have shown that excessive levels of free fatty acids (FFA) can inhibit CTL-
mediated tumor cell killing, and this inhibition can be restored by reducing the level of

FFAs [61]. Tissue-resident memory (TRM) T cells maintain cell survival by consuming
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exogenous FFAs, thus participating in anti-tumor responses [62-64]. Lipid aggregation
usually leads to immunosuppression. DC is an antigen-presenting cell necessary for ini-
tiating and maintaining T-cell-dependent anti-tumor immunity. Activation of FASN in
OV cells can lead to abnormal lipid accumulation and tumor-infiltrating DCs (TIDCs) to
damage the activation of T cells due to excessive lipid intake [65, 66]. Different FA up-
take types show differential effects on anti-tumor immune responses of macrophages.
Some studies have shown that lipid accumulation occurs in macrophages from mice over-
expressing monoglyceride lipase (MGLL), and these macrophages preferentially polarize
to the M1-type in response to cancer-specific stimuli [67]. The enrichment of long-chain
omega-3 (w-3) FA can significantly inhibit the polarization and secretion functions of
M2 macrophages in the mouse prostate tumor model [68, 69]. Therefore, crosstalk be-
tween TME and lipid metabolism exists. The demand of tumor cells for lipids increases
their amount in TME, while lipid-rich TME further affects the phenotype and function of
tumor-infiltrating immune cells [70]. Therefore, assessing changes in the lipid metabo-
lism of immune cells in TME may provide new ideas for developing new and effective

anti-tumor methods.

2.6 Molecular classification and prognostic prediction model for OV

The expression profiling of OV was obtained from TCGA, which can be divided into the
following four subtypes: immunoreactivity, proliferation, differentiation, and interstitial
[71]. Each subtype reflects different levels and patterns of immune cell infiltration. In
clinical practice, patients belonging to the interstitial subtype are few, and immune-reac-
tive, value-added, and differentiated subtypes are the most common [72]. Gene expres-
sion profiles can be used to identify prognosis-related genes in various cancer types [73,
74]. However, the gene expression profile is unsuitable for judging the prognosis of pa-
tients in clinical practice, because it requires the sequencing of fresh frozen tissues, de-
tection of a large number of genes, and complex statistical analysis, incurring a high cost
economically with poor repeatability of sequencing results. Therefore, developing a prog-

nostic model for routine analysis like immunohistochemistry is of significance.

With the development of high-throughput sequencing technologies and the wide applica-
tion of bioinformatics, many large cancer databases, including GEO and TCGA, provide
researchers with the possibility to analyze large-scale gene expression data. For example,

Wang et al. clustered OV patients into two subtypes using necroptosis-related genes and
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constructed a 5-gene signature. There was a significant difference in the prognoses be-
tween high-risk groups [75]. Feng et al. used ferroptosis and iron metabolism-related
genes to identify differentially expressed IncRNAs related to prognosis and build a prog-
nostic model which could predict prognoses and treatment responses of OV patients [76].
The 8-gene prognostic model constructed by Bi et al. using glycolysis-related genes could
predict the prognosis of OV patients and their immune responses [77]. In this study, un-
like in other signatures [78-80], the 11-gene signature constructed using TME-related
genes showed the best performance in a period of more than 60 months, indicating that
our risk model was not only suitable for predicting the survival of patients over five years
but was also a better predictor for a period fewer than 60 months. Based on lipid metab-
olism-related genes, we re-clustered OV patients into two subtypes (C1 and C2). The
prognosis of the C2 subtype was significantly better relative to the C1 subtype. By com-
paring the immune scores of six different lymphocytes between the two subtypes, the
median immune score of six lymphocytes in C1 was found to be significantly higher than
that of the C2 subtype. Therefore, we reasonably speculated that lipid metabolism-related
genes may affect the prognosis of OV patients by remodeling TME.

2.7  Aim of the present research

The purpose of this doctoral thesis was to identify new markers for predicting the prog-
nosis and immunotherapeutic efficacy of SOC. Manuscript 1 aimed to utilize lipid me-
tabolism-related genes to divide OV patients into two subtypes. The prognosis of patients
with the C1 subtype was significantly poor relative to that of the patients with the C2
subtype. The lipid metabolism-related genes were further used to construct an 11-gene
signature, which can predict the prognosis of OV patients. Manuscript 2 aimed to use
TME-related genes to construct an 11-gene signature, and the risk signature can not only
predict the prognosis, but also the efficacy of PD-1 immunotherapy in patients with ad-

vanced SOC.
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3. Summary

The current doctoral dissertation was conducted to evaluate new markers for the progno-
sis of patients with SOC. For Manuscript 1, RNA sequencing data of SOC patients were
obtained from the TCGA and GEO databases. SOC patients were divided into two sub-
types based on lipid metabolism-related genes. Differentially expressed genes between
the subtypes were significantly enriched with regard to regulation of the activation of
leukocytes, T cells, lymphocytes, and other signaling pathways. Further, a signature of
eleven genes including PI3, RGS, ADORA3, CH25H, CCDC80, PTGER3, MATK,
KLRB1, CCL19, CXCL9, and CXCL10, was established. Real-world samples were used
to confirm that PTGER3 was up-regulated in the high-RS group, as indicated by immuno-
histochemistry. The lipid metabolism-related gene signature may be used as a potential
prognostic marker of SOC. In Manuscript 2, the multi-gene signature that was established
based on TME-related genes was shown to facilitate prognosis and predict immune re-

sponses of patients with advanced SOC.
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4. Zusammenfassung

Diese Dissertation wurde durchgefiihrt um neue Marker fiir die Prognose von Patienten
mit serosem Ovarialkarzinom (SOC) zu evaluieren. Fiir Manuskript 1 wurden RNA-Se-
quenzierungsdaten von Patienten mit SOC aus den TCGA- und GEO-Datenbanken bezo-
gen. SOC-Patienten wurden basierend auf Genen assoziiert mit dem Fettstoffwechsel in
zwei Subtypen eingeteilt. Differentiell exprimierte Gene zwischen den beiden Subtypen
waren signifikant angereichert hinsichtlich der Regulierung der Aktivierung von Leuko-
zyten, T-Zellen, Lymphozyten und anderen Signalwegen. Eine 11-Gen-Signatur ein-
schlieBlich PI3, RGS, ADORA3, CH25H, CCDC80, PTGER3, MATK, KLRB1, CCL19,
CXCL9 und CXCL10 wurde weiter konstruiert. Patientenproben wurden verwendet, um
durch immunhistochemische Firbung zu bestitigen, dass PTGER3 in der Hoch-RS-
Gruppe hochreguliert war. Die fettstoffwechselbezogene Gensignatur kdnnte als poten-
zieller prognostischer Marker fiir SOC verwendet werden. In Manuskript 2 wird gezeigt,
dass die Multi-Gen-Signatur auf der Grundlage von Tumor-Mikro-Milieu-verwandten
Genen die Prognose von Patienten mit fortgeschrittenem SOC ermdglicht und deren Im-

munantworten vorhersagen kann.
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Abstract: (1) Background: Biomarkers might play a significant role in predicting the clinical outcomes
of patients with ovarian cancer. By analyzing lipid metabolism genes, future perspectives may be
uncovered; (2) Methods: RNA-seq data for serous ovarian cancer were downloaded from The Cancer
Genome Atlas and Gene Expression Omnibus databases. The non-negative matrix factorization
package in programming language R was used to classify molecular subtypes of lipid metabolism
genes and the limma package in R was performed for functional enrichment analysis. Through lasso
regression, we constructed a multi-gene prognosis model; (3) Results: Two molecular subtypes were
obtained and an 11-gene signature was constructed (PI3, RGS, ADORA3, CH25H, CCDC80, PTGER3,
MATK, KLRB1, CCL19, CXCL9 and CXCL10). Our prognostic model shows a good independent
prognostic ability in ovarian cancer. In a nomogram, the predictive efficiency was notably superior to
that of traditional clinical features. Related to known models in ovarian cancer with a comparable
amount of genes, ours has the highest concordance index; (4) Conclusions: We propose an 11-gene
signature prognosis prediction model based on lipid metabolism genes in serous ovarian cancer.

Keywords: ovarian neoplasms; lipid metabolism; genes; The Cancer Genome Atlas (TCGA); Gene
Expression Omnibus (GEO)

1. Introduction

Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancies worldwide [1].
It has a high mortality, constituting 3.3% of all malignant diseases and claiming 5.6% of gynecological
cancer-related deaths of women in Germany. [2]. Although the prognosis has been improved to a certain
degree by surgical treatment, platinum-based chemotherapy, bevacizumab and poly ADP ribose polymerase
inhibitors, the 5-year survival of patients with advanced stage EOC is poor at only 20-30% [3,4]. Therefore,
when investigating new therapeutic options it is of clinical importance to identify reliable prognostic
markers or models to more accurately study their role in the occurrence and development of EOC.

Int. J. Mol. Sci. 2020, 21, 9169; doi:10.3390/ijms21239169 www.mdpi.comfjournal/ijms
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To date, many driver genes have already been identified. For instance, BRCA1, BRCA2, p53,
KRAS, PIK3CA, CTNNB1 and PTEN can be implicated in the development of EOC [5]. EPOR is known
for its biological effect on tumor growth [6], TTC30A and LRRC8D regulate the expression of host
proteins [7], Tfcp2l1 may be involved in the differentiation of ovarian tumor stem cells [8] and the
expression of FOXML is correlated with chemotherapy resistance and poor prognosis in patients with
non-serous epithelial EOC [9].

Recent studies suggest that lipid metabolism disorders may represent important metabolic markers
for cancer cells in general. Metabolic reprogramming, including changes in lipid metabolism, can occur
in tumor cells and the tumor microenvironment and has impact on the growth, proliferation, invasion
and metastasis of cancer cells [10-13]. Braicu et al. [14] conducted a comprehensive lipidomics analysis
on the serum samples of 147 EOC patients and 98 control subjects with benign ovarian tumors or
non-tumorous diseases. They revealed that a variety of lipid molecules could act as prognostic markers
for EOC, due to their superior efficacy compared to CA125. Furthermore, EOC cells are known to be
more aggressive after reprogramming lipid metabolism in an ascites microenvironment. Targeting
the signal transduction axis of lipid metabolism can effectively prevent peritoneal metastasis of EOC
under experimental circumstances [15]. Niemi et al. [10] showed that changes in lipid metabolism
can occur in various stages of EOC and can become intensified in a consistent pattern with advanced
cancer stages.

However, the role and the prognostic value of genes related to lipid metabolism in EOC remain to
be clarified, since a lack of large-scale EOC sample populations, especially for validation sets, constrains
the reliability and validity of previous research results. However, in an era of big data, the emergence
of genome-sequencing technologies and data [16~19] may help in tumor diagnosis and prognosis
prediction [20].

Accordingly, we collected genes related to lipid metabolism and constructed molecular subtypes
of serous EOC based on lipid metabolism genes according to The Cancer Genome Atlas (TCGA) and the
Gene Expression Omnibus (GEO) databases. After this, we established an 11-gene signature prognosis
prediction model to validate its performance in a large panel of tumors.

2. Results
2.1. Molecular Subtypes of Lipid Metabolism-Related Genes

2.1.1. Identification of Two Molecular Subtypes

After preprocessing, a total of 751 lipid metabolism genes from our serous EOC samples qualified
for subsequent analysis (Supplementary Table S1). We then conducted a univariable Cox analysis
using the coxph function to obtain 64 prognostic genes (p < 0.05). The expression matrix of these genes
was obtained and the TCGA samples were divided into two clusters through the non-negative matrix
factorization (NMF) algorithm (Supplementary Figure S1). The levels of expression of the 64 genes
in the two subtypes are shown in Figure 1a and they differ significantly between cluster 1 (C1) and
cluster 2 (C2). Furthermore, the log-rank test showed a significant difference in the overall survival
(OS) between these two groups (p = 0.026) (Figure 1b) with a better prognosis among C2: 36.82 months
in C1 vs. 43.61 months in C2. When we analyzed the disease-specific survival, we were able to confirm
a significant difference between both clusters (p = 0.033) (data not shown).

2.1.2. Relationship between Two Subtypes and Immunity

It is known that the expression of immune genes is associated with different genomic aberrations in
gynecological cancers [21] and Yang et al. [22] showed the dependence of tumor-infiltrating lymphocyte
type on different types of EOC. To include an immunological viewpoint on our two clusters we used
the Tumor Immune Estimation Resource (TIMER) tool. We then compared the immune scores for six
different lymphocytes between C1 and C2 (Figure 2, Supplementary Table 52). Overall, the median
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immune scores of the six types of lymphocytes are significantly higher in the C1 than in the C2 subtype
(p < 0.01): B cells 0.076 vs. 0.072, CD4+ T cells 0.152 vs. 0.135, CD8+ T cells 0.181 vs. 0.147, neutrophil
cells 0.143 vs. 0.109, macrophages 0.072 vs. 0.053, dendritic cells 0.517 vs. 0.453.
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Figure 1. Identification of two molecular subtypes: (a) Heat map of clustering of 64 prognosis-related
genes. (b) Survival curve of molecular subtypes including hazard ratio (HR) with 95% confidence interval
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Figure 2. Tumor Immune Estimation Resource (TIMER) immune scores for cluster 1 (C1) and cluster 2 (C2)
subtypes with the p-value in between for: (a) B cells; (b) CD4+ T cells; (¢) CD8+ T cells; (d) neutrophil cells;
(e) macrophages; (f) dendritic cells.
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2.2. Analysis of DEGs between Subtypes

2.2.1. The DEGs in C2 Subtype Were Mainly Downregulated

A total of 925 differentially expressed genes (DEGs) between the two subtypes were identified
(Supplementary Table S3). As shown in Supplementary Figure S2, in C2 subtype, 193 genes were upregulated
in comparison to C1, whereas 732 genes were downregulated when compared to C1.

2.2.2. DEGs Are Enriched in Tumor-Related Pathways

We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO)
functional enrichment analysis on these 925 DEGs using the clusterProfiler package. The DEGs were
collectively enriched to 1871 biological process annotations and there were 749 significant annotations
with a false discovery rate (FDR) < 0 (Supplementary Table S4a). For visualization, we selected the top
ten functional annotations according to FDR. As shown in Figure 3a, genes are significantly enriched
e.g., in regulation of leukocyte activation, T cell activation, regulation of lymphocyte activation and many
more. Similarly, 66 significant functional annotations were enriched in the molecular function region
(FDR < 0.01) and 58 significant functional annotations were enriched in the cellular component region
(FDR < 0.01) (Figure 3b,c, Supplementary Table S4b,c). Under the scope of the KEGG database, DEGs were
significantly enriched in 39 pathogenetic pathways, e.g., for rheumatoid arthritis or inflammatory bowel
disease (Figure 3d, Supplementary Table S4d).

Biological process

Molecular function

[ R

® O]

Cellular component

Figure 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional
enrichment analysis on 925 differentially expressed genes (DEGs) with each top ten annotations in: (a)
Biological process subsection of GO; (b) molecular function subsection of GO; (c) cellular component
subsection of GO; (d) KEGG pathways.
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2.3. Construction of a Prognostic Risk Model

2.3.1. Randomly Grouping of Training and Testing Cohort

The final training cohort had a total of 253 samples and the testing cohort had 110 samples in total.
The difference between them was analyzed using a chi-square test. The results showed that the grouping
was reasonable and no significant differences were found between the groups comparing event rate,
Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) stage, age and grade (Table 1).

Table 1. Sample information of The Cancer Genome Atlas (TCGA) training and testing cohorts.

Clinical feature Training Cohort ~ Testing Cohort  X-Squared p-Value
Censored 9 42
Event Dead 154 68 0.0028 0.9575
I 0 1
m 15 5
FIGO stage il 198 87 3.9129 04179
v 37 17
None 3 0
<60 132 59
Age >60 121 51 0.0202 0.8870
Gl 1 0
G2 29 13
Grade G3 217 93 2.7958 0.5926
G4 0 1
None 6 3

2.3.2. Univariable Analysis of Training Cohort

We used the training cohort to conduct a univariable analysis on each gene by using survival coxph
function package. A p-value less than 0.05 was selected as the threshold. We found 30 prognosis-related
significant DEGs (Supplementary Figure S3, Supplementary Table S5).

2.3.3. Construction of the 11-Gene Signature Using Lasso Regression

Lasso Cox regression analysis was performed to compress the 30 genes from Section 2.3.2. As seen
in Supplementary Figure S4a, with decreased lambda, the number of independent variable coefficients
approaching zero increased gradually. The model is optimal, which means stable, when lambda = 0.0686
(Supplementary Figure S4b). Therefore, we selected 11 genes under the condition of lambda = 0.0686 as
the target genes (Supplementary Table S6): PI3, RGS1, ADORA3, CH25H, CCDC80, PTGER3, MATK,
KLRB1, CCL19, CXCL9 and CXCL10. These 11 genes were analyzed by multivariate Cox analysis to
obtain each coefficient.

2.3.4. Construction and Evaluation of a Risk Model

The 11-gene risk model was established according to the following formula:

risk score (RS) =

(0.0004 * expression level of PI3)
+(0.0044 = expression level of RGS1)
+(0.0227 + expression level of ADORA3)
+(0.0103 = expression level of CH25H)
+(0.0078 * expression level of CCDC80)
+(0.0510 * expression level of PTGER3)
+(0.0357 * expression level of MATK)
+(—0.0640 » expression level of KLRB1
+(=0.0294 + expression level of CCL19
+(=0.0020  expression level of CXCL9
+(-0.0006 = expression level of CXCL10).

A 2o SN
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The risk score (RS) of each sample was calculated and consequently the median RS was applied
as the threshold to subdivide the training cohort into a high-risk group (HRG) and a low-risk group
(LRG). Considering the overall distribution of the sample’s OS, we evaluated the 2-year, 3-year and
5-year predictive effect of the model. In the receiver operating characteristic (ROC) curve the 5-year
area under the curve (AUC) was 0.724 in the training cohort. We observed a significant difference in
the Kaplan-Meier (KM) curve between the HRG and the LRG (Figure 4a).
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Figure 4. Construction and evaluation of the 11-gene risk model with each receiver operating characteristic
(ROC) curve (area under the curve (AUC) of the 2-year, 3-year and 5-year predictive effect) above and
the KM (Kaplan-Meier) curve comparing high-risk group (HRG) and low-risk group (LRG) beneath for:
(a) TCGA training cohort; (b) TCGA testing cohort; (c) TCGA-(epithelial ovarian cancer (EOC) cohort;
(d) GEO Series 32026 (GSE32026) cohort.

To verify the stability and reliability of the model, we also calculated the prediction performance
of this model in the testing cohort for the 2-, 3- and 5-year predictive effect. The result of the testing
cohort showed a 5-year AUC of 0.726 and confirmed a significant difference between the HRG and
the LRG in the KM curve (Figure 4b). The results of the ROC curve analysis and the KM curve of the
whole TCGA-EOC cohort (Figure 4c), as well as the independent external validation through GEO
Series 32026 (GSE32026), saw identical results (Figure 4d).

Among these 11 genes, expression levels of PI3, RGS1, ADORA3, CH25H, CCDC80, PTGER3
and MATK were upregulated in the HRG compared with the LRG. In contrast, the expression levels
of KLRB1, CCL19, CXCL9 and CXCL10 were upregulated in the LRG, showing a consistent pattern
within the training and the validation cohorts (Supplementary Figure S5).

In order to evaluate the stability of the model, we conducted 1000 random samplings at different
proportions from all the TCGA-EOC samples. We found significance in 997 out of 1000 times when the
sampling ratio was 0.5 (Supplementary Figure S6). This confirmed a lower sampling bias.

2.4. Univariable and Multivariable Analysis of Gene Signature

To identify the independence of the 11-gene signature model in clinical application, we conducted
univariable and multivariable Cox regression analysis to investigate the relevant hazard ratio (HR), 95%
confidence interval (CI) of HR and the p-value. We systematically analyzed the clinical information
of TCGA patients including age, FIGO stage, grade and our RS of the 11-gene signature (Table 2).
Univariable Cox regression analysis found that the RS was significantly related to survival (HR = 1.593,
95% CI: 1.377-1.843, p = 3.77E-10). Moreover, the corresponding multivariable Cox regression analysis
found that the RS also correlated significantly with survival (HR = 1.534, 95% CI: 1.322-1.780, p = 1.65E-08)
(Supplementary Figure S7).
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Table 2. Univariable and multivariable analysis of the TCGA cohort.
Univariable Analysis Multivariable Analysis
Clinical Feature
HR 95% CI p-Value HR 95% CI p-Value

FIGO stage 1.929 0.856—4.349 0.1130 1.705 0.742-3.917 0.2080

Age 1.186 0.791-1.778 0.4090 1.087 0.718-1.646 0.6940

Grade 1.291 0.992-1.680 0.0576 1.193 0.910-1.566 0.2020

RS 1.593 1.377-1.843 <0.001 1.534 1.322-1.780 <0.001

2.5. Survival Curves of Risk Models in Different Clinical Subgroups

In order to verify the effect of our model on clinical subgroup characteristics, we classified the
TCGA-EOC cohort according to the different clinical characteristics from Table 1. Significant differences
were found between the HRG and the LRG in FIGO stage IIT and IV (p < 0.05) (Figure 5a,b). Due to
an insufficient amount of stage I and Il samples, we did not analyze them. G1 samples were also
not examined because of the lack of data. G2 sample differences between both groups were not
significant (Figure 5¢), whereas G3 samples showed a significant difference (p < 0.01) (Figure 5d).
Patient samples <60 years as well as >60 years showed a significant difference between the HRG and

the LRG (p < 0.0001) (Figure 5e,f).
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Figure 5. KM curves of overall survival (OS) of the 11-gene risk model in different clinical subgroups:
(a) Fédération Internationale de Gynécologie et d’Obstétrique (FIGO) stage III; (b) FIGO stage IV;
(c) grade G2; (d) grade G3; (e) age <60 years; (f) age >60 years.

2.6. Survival Prognosis on Different Mutation Subtypes in the Risk Model

To verify the effectiveness of our model on different common mutation subtypes of EOC, the
TCGA-EOC cohort was classified according to different single nucleotide variant types. In TCGA
there are a total of 436 exon sequencing samples. Here, we saw 411 altered ones (=94.27%). Mutations
of TP53 and TTN dominated this classification (Figure 6a). Consequently, we conducted the KM
curves for the 363 RNA-Seq samples and found that, regardless of with/without a TP53/TNN mutation,
prognosis in the HRG was worse compared to the LRG (Figure 6b—e).
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Figure 6. Analysis of the 11-gene signature model in different single nucleotide mutations: (a) Distribution
of common single nucleotide mutations in EOC with 94.27% samples altered; (b) KM curve of TP53-mutated
samples; (c) KM curve of not TP53-mutated samples; (d) KM curve of TTN-mutated samples; (e) KM
curve of not TP53-mutated samples.

2.7. Construction of Nomogram Model Based on RS and Clinical Features

We combined the traditional clinical features FIGO stage, age and grade with our RS to construct
anomogram model to predict the OS of EOC patients (Figure 7a). In the modeling results the RS has
the greatest impact on survival prediction. Calibration plots were used to visualize the performances
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of the nomograms. The 2-year, 3-year and 5-year calibration plots demonstrated the performance of
our model (Figure 7b).
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Figure 7. Construction of nomogram model: (a) Nomogram predicting 2-, 3- and 5-year OS for patients
with EOC. The nomogram is applied by adding up the points identified on the points scale for each
variable to a total points amount. Finally, beneath the total points, the probability of 2-, 3- or 5-year
survival is projected on the bottom scales. (b) Calibration curves for nomogram predicted 2-, 3- and
5-year OS for patients with EOC in relation to actual survival.

Under consideration of the nomogram, we saw its notably superior predictive ability compared to
clinical features themselves or the RS alone. The concordance index (C-index) of the nomogram was
the highest (0.663) compared to the other variables, as seen in Table 3.

Table 3. Comparison of concordance indexes (C-indexes) between clinical features, risk score (RS)
and nomogram.

Variables C-Index 95% CI of C-Index p-Value
FIGO stage 0.609 0.523-0.696 0.013
Age 0.619 0.547-0.690 0.001
Grade 0.593 0.508-0.678 0.032
RS 0.658 0.602-0.684 <0.001
Nomogram 0.663 0.625-0.701 <0.001

2.8. ROC Curve and DCA of Nomogram Model

To demonstrate putative advantages of the nomogram model, we compared the 2-, 3- and 5-year
ROC curves of the single variables against the nomogram curve. The highest AUC each was seen
for the nomogram model (Figure 8a—c). Furthermore, a decision curve analysis (DCA) confirmed
our expectations. The net benefit in 2-, 3- and 5-year predictions was the highest in the combined
nomogram model compared to the single variable models (Figure 8d—f). These methods showed the
improved clinical utility of our nomogram model.
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Figure 8. The time-dependent ROC curve and decision curve analysis (DCA) on the nomogram
compared to single variable models. Through the ROC curves the accuracy of the models was tested
for: (a) 2-year survival; (b) 3-year survival; (c) 5-year survival. The DCA curves can evaluate the clinical
benefit of the nomograms and the scope of application. Black indicates that all samples are negative
and none are treated, therefore the net benefit is 0. Grey indicates that all samples are positive and
all are treated. The x-axis represents threshold probabilities of patients having: (d) 2-year survival;
(e) 3-year survival; (f) 5-year survival.

2.9. Comparison of the 11-Gene Risk Model with Other Models

Five prognosis-related risk models were selected, including a 19-gene signature from Yang et al. [23],
a 32-gene signature from Willis et al. [24], a 10-gene signature from Wang et al. [25], a 7-gene signature
from Sabatier et al. [26] and a 101-gene signature from Millstein et al. [27] to compare with our 11-gene
model. To ensure comparability, we calculated a RS of the TCGA-EOC cohort for all five models using the
same methods as in our gene signature but based on the corresponding genes of each model. As described,
samples were divided into a HRG and a LRG with the median as the threshold. The ROC and KM curves
of the five models are shown in Figure 9a—e. Only the AUC of Millstein et al. [27] averaged above our
model. No significant difference in prognosis was found among the 7-gene signature, whereas all others
confirmed significant differences between the HRG and the LRG.

To compare the predictive performance of these models on EOC, we used the restricted mean
survival (RMS) package in R [28] to calculate the C-index of all six models including the 11-gene model.
The highest C-index was seen in the 101-gene model, while our C-index ranks second (Figure 9f). We used
the RMS time to evaluate the predictive effect of the six models at different time points. The RMS curves
showed that the six models had an overlap of 58 months. Under the condition of <58 months, our 11-gene
risk model performed better than the models from Yang et al. [23], Willis et al. [24], Wang et al. [25] and
Millstein et al. [27] (Figure 9g). Thus, our risk model is more suitable to evaluate the data of <5-year OS.
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Figure 9. Comparison of the 11-gene risk model with other models: (a) The ROC and KM curves of
the 19-gene signature (Yang et al.); (b) the ROC and KM curves of the 32-gene signature (Willis et al.);
(c) the ROC and KM curves of the 10-gene signature (Wang et al.); (d) the ROC and KM curves of the
7-gene signature (Sabatier et al.); (e) the ROC and KM curves of the 101-gene signature (Millstein et al.).
(f) Concordance indexes (C-indexes) of the six prognostic risk models; (g) Restricted mean survival
(RMS) time curve of the six prognostic risk models (the dashed line indicates the overlap of 58 months).

2.10. Expression of a Gene Product from the 11-Gene Signature in an EOC Cohort

In a representative EOC cohort from our hospital we measured the expression of the prostaglandin

E2 receptor 3 (EP3) encoded by PTGER3, which is upregulated in the HRG compared to the LRG.

An immunohistochemistry (IHC) score >1 represents elevated expression of EP3, while an IHC score <1
shows low expression. In parallel to the 11-gene signature, higher expression of PTGER3'’s gene product
EP3 is correlated with poor OS in both the whole cohort and the serous subgroup (Figure 10). Even without
having found any significance, this finding supports the functionality of the 11-gene signature and could
act as a basis for further confirmation of the 11-gene signature in a clinical context.
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Figure 10. KM curve comparing OS between high prostaglandin E2 receptor 3 (EP3) expression
(immunohistochemistry (IHC) score >1) and low EP3 expression (IHC score <1) in an EOC cohort for:
(a) all histological subtypes (1 = 151); (b) serous subtype (1 = 108).

2.11. Translational Level Validation Related to Signature Genes

In order to analyze the translational levels of more signature genes besides PTGER3, the Human
Protein Atlas (HPA) database was used. ADORA3, CH25H, CCL19, CXCL9 and CXCL10 were not
recorded in the database. The results of PI3, RGS1, CCDC80, PTGER3, MATK and KLRB1 are shown in
Figure 11a—f. We found that the expression intensity and quantity of PI3, RGS1, PTGER3 and CCDC80
in ovarian cancer tissue was higher than that in normal ovarian tissue. In contrast, KLRB1’s expression
intensity and quantity in normal tissue was higher than that in the tumor tissue. Both findings concur
with the expression profile in our 11-gene signature. The expression intensity of MATK in ovarian
cancer tissue was lower than that in normal tissue, but had a higher expression quantity, which cannot
be clearly correlated with the polarity of our signature.
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Figure 11. Translational level validation of six genes from the 11-gene signature using the Human
Protein Atlas (HPA): (a) expression of PI3; (b) expression of RGS1; (c) expression of KLRBI; (d) expression
of MATK; (e) expression of PTGER3; (f) expression of CCDC80.
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3. Discussion

Due to the lack of early detection and prevention, 70% of EOC patients present in an advanced stage
with distant metastases upon diagnosis, making ovarian carcinoma the leading cause of death among
malignant gynecological tumors [1,2,29]. Traditional prognostic criteria are not sufficient in accurately
predicting the survival of an individual patient. Multiple large cancer databases, such as TCGA
and GEO, offer researchers the opportunity to analyze gene expression data and the corresponding
clinical information on a large scale [30,31]. Until now, previous studies on gene expression have seen
modifications in the molecular signature between benign and malignant tumors or low and advanced
tumor stages [32-34]. Meanwhile, lipidomic analyses of serum samples have confirmed differences in
the lipid profile depending on the tumor’s dignity [14] and have even been shown to prevent peritoneal
metastases when targeting the lipid metabolism signaling axis [15].

Consequently, in this study, 363 EOC samples from the TCGA were subdivided, based on 751
lipid metabolism-related genes, into two subtypes. We report that the prognosis of the C1 subtype
is significantly poorer than that of the C2 subtype. This finding suggests that lipid-based molecular
subtypes can be used, to a certain extent, as an indication for evaluating the prognosis of patients.

To study the individual role of all the genes of both subtypes, we obtained 925 DEGs, of which 193
were upregulated and 732 were downregulated in the C2 compared to the C1 subtype. These genes
were mainly active in the regulation of leukocyte activation, T cell activation, regulation of lymphocyte
activation and other immunological functions. The immune cell infiltration scores in C1 were found to
be significantly higher than in the C2 subtype. Numerous other studies have pointed out the prognostic
significance of tumor-infiltrating lymphocytes in other various cancers [35-38]. It has been reported that
tumor infiltration by a subpopulation of CD4+ T cells with immunosuppressive properties predicted
reduced survival in EOC [39,40]. Therefore, we can infer that the C1 subtype has a worse prognosis
partly because the proportion of CD4+ and CD8+ T cells in the C1 subtype is larger than that in the
C2 subtype, as an excessive immune enhancement process might also be a sign of poor prognosis
for patients.

Currently, studies on the effect of lipid metabolism on tumor immune functions are being carried out
to examine a potential link between both lipids and immune regulation. Interestingly, Wefers et al. [41]
discovered that the dysregulation of lipid metabolism in the ascites of EOC patients can affect the
immune system by regulating T cell proliferation.

Out of the 925 DEGs, we constructed an 11-gene prognostic risk model based on the genes PI3,
RGS1, ADORA3, CH25H, CCDC80, PTGER3, MATK, KLRB1, CCL19, CXCL9 and CXCL10. This model
shows a strong robustness and can be used in the prognosis predictions of EOC patients. Calibration
plots demonstrated that our nomogram is superior in terms of predictive performance when compared to
the grading and FIGO stage. Traditional scores like TNM or FIGO depend on an anatomical spread and,
therefore, cannot reflect the biological heterogeneity of EOC [3], which may affect their accuracy.

This is the first prognostic model based on lipid metabolism expression profile. Compared with
five other prognostic risk models [23-27] for EOC, the predictive effect of our model at different time
points shows that within a survival period of less than 58 months, our 11-gene risk model is the most
powerful. Although the model from Millstein et al. [27] has a very high 5-year AUC, it should be
noted that their model involves a very large amount of genes, indicating higher costs and consequently
reduced clinical utility. Among these 101 genes, the top five genes were TAP1, ZFHX4, CXCL9, FBN1
and PTGERS3 (p < 0.001), which is interesting because PTGER3 and CXCL9 are in our 11-gene model
as well.

While other models did not use the lipid metabolism approach, they also used mainly TCGA data
as a base [23-25,27]. Only Sabatier et al. [26] used their own patient cohort. In the 19-gene signature,
they initially performed a combination with clinical data, which we did as well in the nomogram [23].
In the model from Wang et al. [25] they already evaluated ten biomarkers from the candidate genes
and achieved a 100% accuracy. To optimize an early diagnosis of EOC this access via biomarkers
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remains promising and encouraged us to take a more detailed look into some of the 11 genes selected
in our model.

PI3 is located on chromosome 20q 12-13.1 [42,43] and encodes elafin, also known as peptidase
inhibitor 3. It is reported to be highly expressed in high-grade serous EOC and is associated with
a poor prognosis [44,45]. Wei et al. [46] suggested that elafin selectively regulates the sensitivity of EOC
cells to genotoxic drug-induced apoptosis. Our results show that the higher the risk value, the higher
the expression of PI3 and the poorer the prognosis of EOC patients, which is consistent with the
experimental results.

The regulator of G protein signaling 1 is encoded through RGS1, located on chromosome 1q 31.2 [47].
There is increasing evidence for aberrantly differentiated expression of certain members of this protein
family in various cancers and their capability of mediating the proliferation or migration of cancer cells [48].
A study had shown that RGS1 is highly expressed in advanced cervical cancer and is associated with
cancer progression [49]. So far, besides our identification of RGS1 as a negative prognosticator in this
11-gene model, no other study reported a role of RGS1 in EOC.

Adenosine receptors are a class of purinergic G protein-coupled receptors with adenosine as
an endogenous ligand [50], and ADORAS3 codes for one of them. In humans, they are involved in the
induction of p53-mediated apoptosis. Consequently, in lung cancer cell lines it is used as a target for
antibody-based therapy in p53 mutant tumors [51]. In parallel to RGS1, the biological role of ADORA3
in EOC has not been clarified yet but it should be a target for future research due to its high expression
in ovarian tissue, as seen in databases.

The gene product of CH25H is cholesterol 25-hydroxylase, which catalyzes the formation of
25-hydroxycholesterol and thereby results in an inhibitive effect on cholesterol biosynthetic enzymes.
It is derived and secreted by U87MG and GM133 glioblastoma cell lines and may be involved in the
recruitment of immune-competent cells [52,53]. Mittempergher et al. [54] found that CH25H expression
is correlated with the prognosis of breast cancer patients and is an independent predictor of distant
metastasis, which is consistent with our data.

The prostaglandin receptor EP3, encoded by PTGERS, is one of the four identified receptors that
mediate the effects of prostaglandin E2 [55]. In previous work, our IHC assay showed that EP3 is highly
expressed in tissues of clear cell ovarian carcinomas and is a prognostic factor in tumor-associated
mucin-1 negative EOC [56]. In this model, high expression of EP3 was grouped into the HRG, indicating
poor prognosis, which concurs with the previous experimental results. An analysis of the whole patient
cohort from Czogalla et al. [56] for both all histologic subtypes and serous subtype also confirmed the
correlation between EP3 as a “high-risk” gene and the clinical data. Additionally to EOC, in our lab,
EP3 has been identified as an independent risk factor for the survival prognosis of patients with other
gynecological malignancies, such as cervical [57], endometrial [58] and breast cancer [59].

In a meta-analysis of the pan-carcinoma resources and expression characteristics of 18,000 human
tumors, Gentles et al. [60] found that KLRB1 is the most favorable pan-cancer prognosis gene and is
a marker for enhanced innate immune characteristics in different T cell subsets. Consistent with the
results of previous studies, we found that the high expression of KLRB1 was located in the LRG with
a good prognosis.

However, several limitations in the current research should be considered. Firstly, the TCGA
database is mainly constrained to Caucasian and African populations. Therefore, a robust nomogram
should be further validated within multicenter clinical trials and prospective studies. Secondly, we do
not have experimental data for the majority of these genes to prove the correlation between the 11-gene
signature and the prognosis of EOC. Some of these genes have yet to be reported in the context of
EOC. Moreover, we need more external independent datasets to further verify our signature even if we
proved the robustness of our signature in the GSE32026 verification cohort.

A follow-up study to analyze the translational levels of the proteins belonging to these 11 genes
is under work. In clinical environments, this gene signature can primarily be used as an additional tool,
as it still must be validated in large patient cohorts. In actuality, the signature might support the shared
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decision-making for or against an incriminating therapy in special patient groups, e.g., very old patients
or others with relevant comorbidities. Another aspect in regards to personalized treatment could be
the patient’s RS as an indicator for the adaptation of gyneco-oncological aftercare intervals. Finally,
biomarkers or therapeutic drugs resulting from our or other gene signatures mentioned would naturally
be the biggest therapeutic gain but need a lot of further research. Nevertheless, in an upcoming era of
next generation sequencing and gene expression profiling, which we already use as standard critical
diagnostic tests in breast cancer treatment, multiple prognostic gene signatures will grow in relevance
in our clinical decision-making.

4. Materials and Methods

4.1. Ovarian Cancer Cohort Source and Preprocessing

The gene expression profiles and clinical follow-up information of EOC were downloaded using the
TCGA Genomic Data Commons Application Programming Interface. This cohort contains the expression
profile information of 379 RNA-Seq samples of serous EOC. GSE32026 data, downloaded from GEO,
covering 260 samples. Human lipid metabolism-related pathways were downloaded from Molecular
Signature Database (version 7.0). Herein, a total of 776 lipid metabolism genes (Supplementary Table S7)
were sorted out from the six lipid metabolism pathways from the databases KEGG and Reactome
(Table 4).

Table 4. Lipid metabolism-related pathways in the Molecular Signature Database.

Pathway Database Gene Count
Peroxisome proliferator activated receptor alpha Reactome 119
Metabolism of lipids Reactome 738
Sphingolipid metabolism Reactome 89
Transcriptional regulation of white adipocyte differentiation Reactome 84
Glycerophospholipid metabolism KEGG 77
Fatty acid metabolism Reactome 77

Total: 1184

Unique: 776

The RNA-Seq data from the TCGA were preprocessed by removing the samples without clinical
follow-up information, removing the genes with fragments per kilobase of exon model per million reads
mapped less than one and retaining the lipid metabolism gene expression profile. The same procedures were
performed on the GSE32026 cohort and the benign tissue samples were removed. A total of 363 samples
from the TCGA cohort along with 230 samples from the GSE32026 cohort remained (Table 5).

Table 5. Clinical features of the remaining TCGA and GEO Series 32026 (GSE32026) cohort.

Clinical Feature TCGA GSE32026
Event Censored 141 116
Dead 222 114
I 1
11 20
FIGO stage 111 285
v 54
None 3
<60 191
Age >60 172
G1 1,
G2 42
Grade G3 310
G4 1
None 9
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4.2. Identification of Molecular Subtypes Using NMF Algorithm

We extracted the expression of these 776 lipid metabolism genes from the TCGA expression profile
data and retained the samples with a gene expression level above zero; 751 genes remained. Univariable
Cox analysis was performed using the coxph function in R package to determine the genes that are
correlated with the prognosis expressed as OS of EOC (p < 0.05). The NMF was used to cluster the EOC
samples under the condition of standard NMF “brunet” for 50 iterations by extracting biological correlation
coefficients and internal feature structures of the gene expression matrix. The number of clusters k was
identified from 2-10. The average contour width of the common member matrix was determined using
the NMF package and the minimum member of each subclass was set to 10. We calculated the optimal
number of clusters. The selection was based on the following parameters: cophenetic, residual sum of
squares and silhouette.

4.3. Comparison of Molecular Subtype Immune Scores with TIMER

TIMER is a web server for comprehensive analysis of tumor-infiltrating immune cells [61]. The levels of
six tumor-infiltrating immune subsets are precalculated for 10,897 tumors from 32 cancer types. It provides
six major analytic modules that allow users to interactively explore the associations between immune
infiltrates and a wide spectrum of factors, including gene expression, clinical outcome, somatic mutations
and somatic copy number alterations.

4.4. Functional Analysis of DEGs

We used the limma package (version 3.42) in R to calculate the DEGs between the different
molecular subtypes and filtered these genes in accordance with the threshold of a FDR < 0.05 and
[log2(foldchange)| > 1 [62]. Further analysis of the DEGs was performed using clusterProfiler package
(version 3.13) [63]. KEGG and GO functional enrichment analysis was conducted. KEGG, a database for
the systematic analysis of gene functions, associates genomic information with gene functions and aims to
reveal the genetic and chemical blueprint of life. GO enrichment analysis covers three areas including cell
components, molecular function, and biological processes.

4.5. Sample Preparation

Firstly, the 363 samples in the TCGA cohort were divided into a training cohort and a validation
cohort. In order to prevent the bias of random allocation from undermining the stability of the subsequent
modeling, all samples were put back into random groups for 100-times in advance. Herein, the group
sampling of the training and validation cohorts was performed in the ratio of 7:3. The most suitable
training and validation cohorts were selected according to the following conditions:

e The two cohorts are similar in age distribution, FIGO stage, follow-up time and death rate of patients.

e  The gene expression profiles of the two data sets that were randomly grouped were close in the
number of classified samples.

Finally, the training set had a total of 253 samples and the validation set had 110 samples in total.

The difference between the training set and the validation set was analyzed using a chi-square test.

4.6. Lasso Regression Analysis

We further compressed the genes using lasso regression to reduce the number of genes in the risk
model. The lasso method is a compression estimation used to build a more refined model by constructing

a penalty function, thereby compressing some coefficients and setting some coefficients to zero [64].

Therefore, it retains the advantage of contraction in subsets. It is a biased estimation that can be used to
process complex collinearity data and can realize the simultaneous selection of variables during parameter
estimation to optimize the multicollinearity problem in regression analysis. When applying the glmnet
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package for lasso Cox regression analysis, we used 3-fold cross validation for model construction and
analyzed the ClI in each lambda [65].

4.7. Stability Assessment of Risk Model

In order to evaluate the impact of random sampling on the stability of the model, we conducted
1000 instances of random sampling at various proportions in all TCGA samples to evaluate the times
of significant difference in the prognosis of the HRG and the LRG samples.

4.8. Construction of Nomogram Combined with RS and Clinical Features

Nomogram is a method to display the results of the risk model intuitively and effectively. Itis
conveniently applied in the prediction of the outcome. It uses the length of the line to represent the
different variables, thereby exhibiting the effect of different variable values on the outcome. We used
the TCGA-EOC cohort to build a nomogram that combines FIGO stage, age, grade and RS.

4.9. Analysis of DCA

DCA is a simple method to evaluate clinical predictive models, diagnostic tests and molecular
markers. It was initially used as a novel analytical technique that incorporated the clinical consequences
of a decision to quantify the clinical utility of a prediction nomogram. Therefore, the DCA can decide
whether the predictive nomogram is clinically useful or not. The best model is one with a high net
benefit as calculated within the favorable probability.

4.10. IHC of EP3 in an EOC Patient Cohort

The specimens derived from a cohort consisting of 151 patients with epithelial EOC (serous: n = 108,
endometrioid: # = 20, clear cell: # = 11, mucinous 1 = 12) who underwent radical cytoreductive surgery in
our department between 1990 and 2002. Diagnoses were done by a specialized gynecologic pathologist.
Advanced disease (FIGO IIB-IV) presented in approximately three quarters of the specimens. Mean age
at primary diagnosis was 58.9 years. All patients, except FIGO stage IA, received adjuvant platinum-based
chemotherapy. Lifetime data were taken from our patient charts, the Munich Cancer Registry and aftercare
calendars. The study was carried out in compliance with the guidelines of the Helsinki Declaration of
1964 (last revision October 2018). All participants gave their written informed consent.

The procedure of IHC has been previously described in our lab [57-59]. We stained tissue microarrays
of the EOC samples of paraffin-embedded and formalin-fixed tissues after epitope retrieval with primary
polyclonal anti-EP3 rabbit IgG (Abcam, Cambridge, UK). Afterwards, detection was performed via
polymer method with ZytoChem Plus HRP Polymer System mouse/ rabbit (Zytomed Systems, Berlin,
Germany) and the chromogen diaminobenzidine (Dako, Hamburg, Germany).

The THC staining was assessed semiquantitatively, according to Remmele and Stegner [66], using the
IHC score. EP3 expression was regarded as negative with an IHC score 0-1 and as positive with an IHC
score >1. Expression-dependent differences in OS were tested by chi-square statistic of the Log-Rank
test (Mantel-Cox) in KM curves with SPSS Statistics 25 (IBM, Chicago, IL, USA).

4.11. Translational Level Validation of Signature Genes

The HPA was initiated in 2003 and shows the expression and localization of human proteins
across tissues and organs. It is based on deep RNA-seq from 37 major tissue types and IHC on tissue
microarrays containing 44 different tissue types. Altogether, 76 different cell types, covering all major
parts of the human body, have been analyzed manually and the data are presented as histology-based
annotation of protein expression levels. The antibody-based protein profiles are qualitative and describe
the spatial distribution, cell type specificity and the rough relative abundance of proteins in these tissues,
whereas the mRNA data provide quantitative data on the average gene expression within an entire
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tissue. For each gene, the immunohistochemical staining profile is matched with mRNA data and
gene/protein characterization data to yield an “annotated protein expression” profile.

5. Conclusions

In conclusion, we propose the first 11-gene signature (PI3, RGS1, ADORA3, CH25H, CCDC80,
PTGER3, MATK, KLRB1, CCL19, CXCL9 and CXCL10) prediction model based on lipid metabolism-related
genes in EOC. Despite different drawbacks of the current analysis, this model may be an interesting
approach for a molecular diagnostic test assessing the prognosis and possible risk factors of EOC patients.
Furthermore, the development of biomarkers based on this gene signature could represent a perspective
for the clinical care of cancer patients.
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Simple Summary: The expression of tumor microenvironment-related genes is known to be cor-
related with ovarian cancer patients’ prognosis. Immunotherapeutic targets are in part located in
this complex cluster of cells and soluble factors. In our study, we constructed a prognostic 11-gene
signature for advanced serous ovarian cancer from tumor microenvironment-related genes through
lasso regression. The established risk score can quantify the prognosis of ovarian cancer patients more
accurately and is able to predict the putative biological response of cancer samples to a programmed
death ligand 1 blocking immunotherapy. This might empower the role of immunotherapy in ovarian
cancer through its usage in future study protocols.

Abstract: (1) Background: The tumor microenvironment is involved in the growth and proliferation
of malignant tumors and in the process of resistance towards systemic and targeted therapies. A
correlation between the gene expression profile of the tumor microenvironment and the prognosis of
ovarian cancer patients is already known. (2) Methods: Based on data from The Cancer Genome Atlas
(379 RNA sequencing samples), we constructed a prognostic 11-gene signature (SNRPA1, CCL19,
CXCL11, CDC5L, APCDD1, LPAR2, PI3, PLEKHF1, CCDC80, CPXM1 and CTAG2) for Fédération
Internationale de Gynécologie et d’Obstétrique stage Il and IV serous ovarian cancer through lasso
regression. (3) Results: The established risk score was able to predict the 1-, 3- and 5-year prognoses
more accurately than previously known models. (4) Conclusions: We were able to confirm the
predictive power of this model when we applied it to cervical and urothelial cancer, supporting its
pan-cancer usability. We found that immune checkpoint genes correlate negatively with a higher risk
score. Based on this information, we used our risk score to predict the biological response of cancer
samples to an anti-programmed death ligand 1 immunotherapy, which could be useful for future
clinical studies on immunotherapy in ovarian cancer.

Keywords: ovarian neoplasms; tumor microenvironment; genes; The Cancer Genome Atlas (TCGA);
immunotherapy
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1. Introduction

Ovarian cancer (OC) has the highest mortality rate among malignancies originating in
the female reproductive system. Given the continuous improvement of both diagnostic
techniques and treatment methods, the prevalence and survival rate of OC patients have
increased during the past 15 years. More specifically, the prevalence of OC was recently
reported to be 10 times higher than its incidence [1]. OC accounts for 3.3% of all malignant
diseases in women in Germany and the cancer-related mortality rate is high, accounting
for 5.6% of all malignancy-related deaths [2]. Advanced-stage serous ovarian cancer (SOC)
is the cause of most OC deaths. Although 80% of patients significantly benefit from surgery
and chemotherapy, they usually relapse and metastasize and are, therefore, incurable.
Approximately two-thirds will experience a relapse after receiving several lines of therapy
and die within 10 years of the first diagnosis [3,4].

At present, Fédération Internationale de Gynécologie et d’Obstétrique (FIGO), TNM
stage and BRCA1/2 status are the most relevant clinical variables to guide the management
of SOC patients [5]. However, due to the high heterogeneity of SOC, which is the most
important and representative entity, among others, the prognosis of patients with similar
clinical characteristics can be very different. In addition, the analysis of messenger RNA
expression, microRNA expression, promoter methylation and DNA copy number in 489
high-grade SOCs from The Cancer Genome Atlas (TCGA) indicated different molecular
signatures in tumors with serous histology. Moreover, a defective homologous recombina-
tion is critical for choosing a maintenance therapy in the first-line situation at present [6].
Therefore, by using gene signatures as biomarkers, personalized therapy can be optimized
and, subsequently, the clinical outcome of advanced-stage SOC patients could be improved.

The tumor microenvironment (TME) consists of a complex system of immune, in-
flammation and myeloid-derived suppressor cells as well as fibroblasts, macrophages,
vasculature and various soluble factors [7,8]. Generally, this dynamic biological system
sustains the development of malignant tumors and plays a crucial regulatory role in the
emergence of resistance to chemotherapy and targeted therapy [9,10]. Previous studies
have shown that upregulated expression of TME genes might correlate with the clinical
outcome of OC patients. In particular, increased levels of the serum-soluble tumor necrosis
factor receptor 2 may indicate a poor prognosis, as it was significantly higher in sam-
ples collected from malignant tumors compared to samples from benign neoplasms [11].
Furthermore, the presence of tumor-associated macrophages was associated with tumor
progression, including cell invasion, metastasis, angiogenesis and early recurrence [8,12,13].
In contrast, another analysis of 1731 tumors obtained from SOC patients indicated that
high levels of activated dendritic tumor-infiltrating lymphocytes were associated with a
good prognosis [14,15].

Taken together, these results indicate that exploring the TME has an important role in
assessing the prognosis of OC patients and angiogenesis or immune checkpoint inhibitors,
which are currently in phase II/III clinical trials, and represent targeted therapies to TME
components [16-18]. Considering that the TME in OC tumors is highly heterogeneous [19],
a TME-related gene signature might improve the accuracy of predicting clinical response to
targeted therapy. Consequently, with this study, we are aiming to design a gene signature
based on TME-related genes and, further, we will attempt to use the developed signature
to predict the response to immune checkpoint inhibitors.

2. Materials and Methods
2.1. Data Download and Preprocessing

The Genomic Data Commons Application Programming Interface portal was used to
download the gene expression profiles from SOC patients. The data based on TCGA and
the cohort contained 379 RNA sequencing samples. We processed the RNA sequencing data
of TCGA by removing the samples without clinical follow-up information and retaining
the expression profile of TME-related genes only for FIGO stage Il and IV samples. Finally,
347 SOC samples were included.
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Moreover, for external validation, the Australian OC cohort from the International
Cancer Genome Consortium (ICGC) was downloaded. Samples without clinical follow-up
information were removed and only FIGO stage III and IV samples were retained. After
this process, 93 samples from the ICGC cohort remained.

TME-related genes were obtained from published research [20-26], which, after sort-
ing, provided 4061 genes (Table S1).

2.2. Identification of Molecular Subtypes Using Non-Negative Matrix Factorization (NMF) Algorithm

The expression levels of the 4061 TME genes were extracted from TCGA expression
profile and a univariable Cox analysis was performed using the coxph function [27,28]
to obtain prognostic genes of OC (p < 0.01). NMF was used to cluster the samples for
50 iterations by extracting biological correlation coefficients and internal feature structures
of the prognostic gene expression matrix [29]. The number of clusters k was from 2-10.
When k = 3, the cluster demonstrated proper stability and performance, resulting in the
clusters 1, 2 and 3 (C1, C2 and C3). The selection was based on cophenetic and residual
sum of squares (rss) (Figure S1).

2.3. Comparison of Immune Scores between Clusters

Using the Microenvironment Cell Populations (MCP) counter [26], we compared the
immune scores among CD8+ T cells, cytotoxic lymphocytes, B cells, neutrophils, monocytic
cells, myeloid dendritic cells, endothelial cells and fibroblasts between C1, C2 and C3.

2.4. Sample Preparation

The 347 TCGA samples were divided into training and testing cohorts with the caret
package, which is a standard tool in building a prediction model [30]. This package focuses
on simplifying model training and tuning across a wide variety of modeling techniques.
It also includes methods for preprocessing training data, calculating variable importance
and model visualizations. To prevent the bias of random allocation from undermining
the stability of the subsequent modeling, all samples were put back into random groups
100 times in advance [31]. Herein, the group sampling of training and testing cohorts were
performed in a ratio of 7:3. The most suitable training and testing cohorts were selected
according to the following conditions: the two cohorts were similar in age distribution,
FIGO stage and follow-up time. The gene expression profiles of the two randomly grouped
cohorts were similar in the number of classified samples.

2.5. Lasso Regression Analysis

We further used lasso Cox regression to reduce the number of genes in the risk model.
The lasso method is a regularization estimation used to build a more refined model by
constructing a penalty function, thereby compressing some coefficients and setting some
coefficients to zero [32]. When applying the glmnet package for lasso Cox analysis, we used
10-fold cross-validation for the model construction and analyzed the confidence intervals
(ClIs) in each lambda [33].

2.6. Construction of Nomogram Combined with Risk Score (RS) and Clinical Features

A nomogram is a method to display the results of the risk model intuitively and
effectively, conveniently applied in prediction of the outcome [34]. It uses the length of the
scale to represent different variables (RS, clinical features), thereby exhibiting the effect of
their values on the outcome. We used TCGA cohort to build a nomogram that combined
different prognostic variables.

2.7. Prediction Model Evaluation

To compare more than two groups, a Kruskal-Wallis test and one-way ANOVA
were used as nonparametric and parametric tests, respectively. The Kaplan-Meier (KM)
method was used to calculate the overall survival (OS) and a log-rank test determined
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the significance. The clinical utility of the prognostic model was evaluated based on the
receiver operating characteristic (ROC) curve and decision curve analysis (DCA). We used
the concordance index (C-index) to compare the prediction performance between different
models. All statistical analyses utilized R software (version 3.6.1).

2.8. Immunotherapy Prediction

To predict the response to immunotherapy, we selected the IMvigor 210 cohort with
urogenital cancer patients who received a programmed death ligand 1 (PD-L1) blocking
therapy [35]. The IMvigor210CoreBiologies package was used to extract clinical information
and gene expression profile information, which were converted from counts to transcripts
per million and further log2 processed. This cohort consists of 348 samples, including
232 deaths and 116 censored. After PD-L1 treatment, samples were classified into the
following categories according to the patient’s response: complete response (CR), partial
response (PR), stable disease (SD) and progressive disease (PD). Among them, CR and PR
are recognized as patients who respond to immunotherapy. SD and PD are recognized as
patients who do not respond to immunotherapy. The value for the neoantigen (NEO) and
the tumor mutation burden (TMB) of each sample is also given in this cohort. For further
details, please refer to Table S2.

3. Results
3.1. Immune Scores Indicate Different Patterns According to Molecular Subtypes in OC

There were 347 OC samples from TCGA and 93 from the ICGC after preprocessing
(Table 1). In the expression matrix of the whole TCGA cohort with 4061 genes, 87 prognostic
TME-related genes (p < 0.01) were obtained by univariable Cox analysis (Table S3). Out of
these genes, three clusters were built using NMF as described in Section 2.2. TCGA-OC
samples were than divided into three clusters: C1, C2 and C3 (Figure 1a). Comparison of
OS and progression-free survival (PFS) between the three clusters showed significant differ-
ences (Figure 1b—g). The majority of the immune scores, including CD8+ T cells, cytotoxic
lymphocytes, B cells, neutrophils, monocytic cells, myeloid dendritic cells, endothelial cells
and fibroblasts, revealed significant differences among the subtypes as well (Figure 1Th-o).

Table 1. Sample information from The Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) Australian ovarian cancer (OC) cohort.

Clinical Feature TCGA ICGC-Australian
Ev Censored 125 19
e Dead 22 74
I 290 79
FIGO stage v 57 e
Gl 1
G2 35
Grade G3 302
G4 1
None 8
Yes 322
Chemotherapy No 2%
R Yes 186
ecurrence No 161
<60 192
Age >60 155
No 55
1-10 mm 25
Residual disease 11-20 mm 164
>20 mm 69
Unknown 34
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Figure 1. Comparison of the three clusters 1, 2 and 3 (C1, C2 and C3): (a) Consensus map clustered via the non-negative
matrix factorization (NMF) algorithm. (b—g) Overall survival (OS) and progression-free survival (PFS) showed significant
differences. (h—o0) Immune scores of cells of the tumor microenvironment (TME) showed significant differences. (p)
Percentage of the four molecular subtypes accounting for each of the three clusters.

According to TCGA research network, SOC can be divided into four molecular sub-

3.2. Establishment of a Predictive RS Based on TME-Related Genes

types according to their expression of mRNA: differentiated, immunoreactive, mesenchy-
mal and proliferative [36]. While these subtypes are based on the expression of all genes
from TME and OC cells, our three clusters model included exclusively TME-related genes.
When comparing C1, C2 and C3 with the existing TCGA classification based on the typ-
ing of all genes, we found that the immunoreactive subtype accounted for 55.43% of
C1, mesenchymal subtype for 52.04% of C2 and proliferative subtype for 50.98% of C3

(Figure 1p).

The training cohort was composed of 243 samples and the testing cohort of 104 samples

(Table 2). The results of the chi-squared test showed no significant differences in FIGO stage,
grade, chemotherapy and recurrence status between them (p > 0.05), which confirmed the
success of randomization.
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Table 2. Comparison of TCGA training and testing cohort.
Clinical Feature TCGA Training Cohort ~ TCGA Testing Cohort p-Value

Censored 92 33

Event Dead 151 7 0.3333
11T 201 89

FIGO stage v 4 15 0.6165
G1 1 0
G2 22 13

Grade G3 212 90 0.5779
G4 1 0
None 7 1
Yes 227 95

Chemotherapy No 16 9 0.6481
Yes 128 58

Recurrence No 115 16 0.6803
<60 140 52

G >60 103 5 Qa3
No 41 14
. 1-10 mm 114 50

1};_5“1“?‘1 11-20 mm 17 8 0.8823
R >20 mm 46 23
Unknown 25 9

The univariable Cox proportional hazard regression was conducted on the training
cohort using the survival coxph function. Ninety-two prognostic TME-related genes were
subsequently identified within the threshold of p < 0.01 (Table S4). The glmnet package [33]
was used to further narrow the range of genes, while still maintaining high accuracy.
From the change trajectory of independent variables, we can see that as lambda gradually
decreased, the number of independent variable coefficients tending towards zero gradually
increased (Figure S2a). We used 10-fold cross-validation to build the model and to analyze
the CI under each lambda. We saw that the model performance was best when lambda
was —2.8700 (Figure S2b). For this reason, we selected 24 genes according to the minimum
lambda = 0.0566 as candidate genes. The Akaike information criterion algorithm was used
to reduce the number of genes further and, finally, 11 genes were obtained, constructing
this formula:

risk score (RS) =
—(5.9449 x SNRPAT)
— (6.9887 x CCL19)
— (4.4685 x CXCL11)
— (6.9226 x CDC5L)
— (6.1777 x APCDD1)
— (8.9229 x LPAR2)
+(0.2541 x PI3)
+(1.7480 x PLEKHFI)
+(5.4819 x CCDC80)
+(0.3243 x CPXMT1)
+(0.7416 x CTAG2).

The p-ROC package was used to analyze the prognostic classification effect of the RS
in the training cohort. The 5-year ROC of the model was 0.78. According to the expression
of the RS, we were able to divide the samples into a high-risk group (HRG) and a low-risk
group (LRG) with the median as our cut-off.

A KM survival analysis showed that the prognosis of the HRG was significantly
poorer than that of the LRG (Figure 2a). To validate the accuracy of our model, we applied
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the same analysis on TCGA testing cohort, the entire TCGA cohort (TCGA training and
testing cohort taken together) and the Australian ICGC cohort (Figure 2b—d). All KM
curves showed a significant difference between the HRG and the LRG. In the three TCGA
cohorts, the 5-year AUCs of the model were 0.78, 0.78 and 0.77. In the ICGC cohort, the
1-year AUC was 0.73. Meanwhile, the 3-year and 5-year AUCs were 0.59, partly because
the median follow-up time used by the ICGC was shorter than the one used by TCGA.
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Figure 2. Construction and validation of the TME-related 11-gene risk score (RS) for serous ovarian cancer (SOC) with
1-, 3- and 5-year receiver operating characteristic (ROC) and OS Kaplan-Meier (KM) curves within the different cohorts:
(a) TCGA training cohort; (b) TCGA testing cohort; (c) entire TCGA cohort; (d) Australian ICGC cohort.

3.3. RS Assessment in Subgoups Presenting Different Clinical Features or Mutation Statuses

Further, we categorized patient subgroups by age (<60 years and >60 years), FIGO
stage (IIL, IV), recurrence and chemotherapy status. In addition, we divided the samples
into the HRG and LRG based on the already mentioned RS. In most cases, we found a
significant difference in the prognosis between the HRG and the LRG (Figure 3a-g). Only
the no chemotherapy status showed no significant difference in OS between both groups
(Figure 3h). Our data indicate that our prediction model is able to predict OS according to
age, FIGO stage IIl and IV, recurrence and chemotherapy status.

We then extracted the mutation status from all TCGA OC exon sequencing samples.

Our aim was to verify whether our model could apply to different mutations as identified
by TCGA. More specifically, TP53, TTN, MUC16 and CSMD3, genes with the highest
mutation frequency in OC, were included (Figure S3). For our TCGA cohort, we identified
mutation status in 250 samples (in 97 samples the mutation status was unclear). All
subgroups confirmed significant differences in the OS between the HRG and the LRG
(Figure 3i,k,1,n—p). The subgroup without a TP53 mutation and the one with a MUC16
mutation showed no significance (Figure 3j,m).
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Figure 3. Evaluation of the 11-gene risk model in different subgroups with OS KM curves comparing the high-risk group
(HRG) and the low-risk group (LRG): (a-h) Subgroups with different clinical features; (i-p) subgroups with different mutations.

3.4. TME-Related Genes Correlate with Clinical Outcome

We next employed univariable and multivariable Cox regression to analyze the rela-
tionship between RS and OS (Table 3). Our analysis revealed that RS is an independent risk
factor with a hazard ratio (HR) of 2.499. A similar result was indicated by residual disease
(HR = 1.70). In contrast, chemotherapy is an independent protective factor (HR = 0.35).
FIGO stage, grade and recurrence showed no significance.

Consequently, we constructed a nomogram model including residual disease, RS
and chemotherapy status. It showed that RS had the greatest impact on the prediction of
survival rate (Figure 4a). Calibration plots visualized the 3-year and 5-year performance
and showed that our nomogram is close to the 45° line that represents the optimum in
prediction [37] (Figure 4b). In the 3-year ROC curve, the AUC of the nomogram was larger
than other clinical variables, which can be seen in Figure 4c. However, in the 5-year ROC
curve, the RS exceeded the nomogram and had the largest AUC (Figure 4d). Further, we
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used DCA to evaluate the effectiveness of the model [38]. The standardized net benefit
confirmed the 3-year predictive value in OS of the nomogram (Figure 4e) and the 5-year

predictive value in OS of the RS (Figure 4f) when compared using a single clinical variable.

Table 3. Univariable and multivariable Cox regression to analyze the relationship between the RS

and clinical prognosis.

Univariable Analysis

Multivariable Analysis

Variables
HR 95% CI p-Value HR 95% CI p-Value
FIGO stage 1.16 0.82-1.66 0.408 124 0.86-1.78 0.251
Grade 1.03 0.67-1.58 0.884 112 0.73-1.71 0.620
Chemotherapy 0.29 0.18-0.48 <0.001 0.35 0.20-0.59 <0.001
Recurrence 1.15 0.86-1.54 0.353 1.21 0.89-1.65 0.227
Age 0.79 0.60-1.04 0.097 0.79 0.59-1.05 0.101
Residual disease 2.06 1.29-3.26 0.001 1.70 1.06-2.73 0.027
RS 219 1.53-3.15 <0.001 1.73 1.17-2.55 <0.006
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Figure 4. Clinical value of the predictive model: (a) Nomogram predicting the 3- and 5-year OS for patients. The points
identified on the point scale of each variable are totaled. Finally, beneath the total points, the probability of 3- or 5-year
survival is projected on the scales below. (b) Calibration curves for the nomogram predicted 3- and 5-year OS for patients in
relation to actual survival. (c,d) ROC curves of the nomograms compared with other clinical variables. (e f) Decision curve
analysis (DCA) curves can evaluate the clinical benefit of the nomograms and their potential scope of application. Black
indicates that all samples are negative and none are treated, therefore the net benefit is zero. Gray indicates that all samples
are positive and all are treated. The x-axis represents the threshold probabilities.
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3.5. The 11-Gene Signature Risk Model as a Novel Predictive RS in OC

To compare the prediction performance of our 11-gene signature with other models,
we selected four other reported risk models: a 5-gene [39], an 8-gene [40], a 10-gene [41] and
a 7-gene signature [42]. To make them comparable, we calculated the RS of each dataset
using the same method (multivariable Cox regression analysis). In the validation of these
results, we included the corresponding genes in these four models and then evaluated the
ROC. The samples were subsequently divided into the HRG and the LRG according to
the median RS value. The prognosis for the HRG and LRG was significant across all four
models. However, the ROC curves showed a lower AUC, therefore, they were poorer in
predicting the prognoses when compared to our model (Figure 5a—d).
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Figure 5. Comparison of the 11-gene risk model with other established models: (a-d) ROC and KM curves of four other
published gene-signatures. (e) Concordance index (C-index) of the five prognostic risk models including our model, which
has the highest C-index. (f) Restricted mean survival (RMS) time curve of all five prognostic risk models, revealing an

overlap of 60 months.
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The restricted mean survival (RMS) package was used to calculate the C-index of all
prognostic signatures. Our model had the highest C-index with 0.641 (Figure 5e). With
the RMS time, an evaluation of the predictive effect of the signatures at different time
points was possible. As a result, our gene signature performed best at a time period greater
than 60 months. This indicates that our model is not only suitable for predicting patient
survival greater than five years, but is also the leading predictor at less than 60 months
when compared with the other models (Figure 5f).

3.6. The 11-Gene Signature Risk Model Validation in Another Gynecological Cancer

We ran gene set enrichment analysis on samples within the HRG and LRG in or-
der to show a possible over-proportional representation of essential signaling cascades.
Thereby, we found the following immune and metabolism pathways with the associated
normalized enrichment score (NES) and the adjusted p-value (g-value) enriched in the HRG
(Figure 6a):

KEGG_PATHWAYS_IN_CANCER
(NES = 0.4600, g = 0.0049),
KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY
(NES = 0.5604, g = 0.0030),
REACTOME_ADAPTIVE_IMMUNE_SYSTEM
(NES = 0.4685, g = 0.0010),
REACTOME_CYTOKINE_SIGNALING_IN_IMMUNE_SYSTEM
(NES = 0.4100, g = 0.0030),
REACTOME_METABOLISM_OF_LIPIDS
(NES = 0.4862, g = 0.0010).

Our analysis showed differences in the RS among OC subtypes as identified by
TCGA [36]. More specifically, the RS was significantly higher in the mesenchymal subtype
than in the differentiated, immunoreactive and proliferative subtypes. Moreover, the RS
in the immunoreactive subtype was significantly lower than in the differentiated subtype.
In conclusion, to a certain extent, our model is able to distinguish between the different
molecular OC subtypes (Figure 6b).

Along with the pathway analysis in Figure 6a, we extracted the single gene expression
of representative genes for generic pathway targets in gynecological oncology: immune
checkpoints, DNA replication, mismatch repair and epithelial-mesenchymal transition
(EMT). We then analyzed the correlation between the RS and these genes. RS was negatively
correlated with immune checkpoint genes (PDCD1, CD274 and CTLA4). In contrast, they
were positively correlated with EMT-related genes (FAP, TAGLN and LOXL?2) (Figure 6c).

To validate our 11-gene risk model in another gynecological cancer, we selected the
cervical squamous cell carcinoma (CESC) cohort from TCGA. In this aim, our 11-gene RS
was able to divide CESC samples into the HRG and LRG. The KM curve indicated that the
prognosis of patients included in the HRG was significantly worse (p = 0.024) (Figure 6d).

Moreover, studies have shown that through the integration of genomic and proteomic
characteristics, three molecular subtypes of cervical cancer can be distinguished. These are
classified as the following: hormone, PI3K-AKT and EMT [43]. Given the predictive value
of RS in OC molecular subtypes, the RS was able to differentiate among CESC subtypes: for
the EMT subtype, the RS was significantly higher than the one obtained for the hormone
subtype (Figure 6e).

We used the MCP counter and Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression data (ESTIMATE) to calculate different immune (cell)
scores of the CESC samples and then calculated their correlation with the RS. It showed
that the RS was negatively correlated with the stromal, immune and ESTIMATE score as
well as with many immune and stromal cell lines (Figure 6f).

58



59

Cancers 2021, 13,3343 120f 19
[— Comison
— TN TN SN, N RRNE STSTEN = e P B SHE PDCD1 .
L on O RCETToR SN TN VM7 PGS . e
ot - co274
b & :&‘ [r— i @@ Moo
. 5 =082 POLE2
e ; Py " o4
g ~ p0031 FEN1
z 2l € « [o2
2 § " veve @)
s | ¥ 5 i
5 S 2 . . e 1 POLD3 .. 00
H]l 900100 8B L | vsis @@ 02
L I]I‘llu b anul e L e e B T T g * wr v @@O L
. Bk lm\ﬂl‘nxluuuulnui R P AP
£ 2 - . : mewn @ -6
2 & - ° LoxL2
] Kruskal-Wallis, p < 0,001 @ !
& 10 2000 3000 4000 RS E - - b m T Q0002 =0
. PO RS R EEEEEEE
Rank i ordered dataset & P A R FEE 838 pgEs8
S <
& «
(a) (b) (c)
Conetaion
+ HRG 10
ESTIMATE score
100 R ; puooem immune score (@) Moz
— eefme Stromal o0 |
7 oraiscoe. (@@ Moo
Zom | Fibroblasts
9 04
F - Endothelial cells
Som Neutrophils 0@
2 @ Myeloid dendric cels
Ew Monocytic cells 000 | [
p=0.024 vyVvw
o Boels -02
0% NK cells i
= T o Cytotendc lymphocytes
Number at risk CD84 T cells e
v 128 w0 © 2 0 @l Kruskal-Wails, p'= 0,068 T cells 8
s o 2 . 0 o oo |
T EJ % = T 2-4g0zwzzzoones
& & ”5535&§§5§5§§§
& SgkraRdz il
8 z s § Fs @ § ot
=3 & (CE |
3 A a
§
(d) (e) U}

Figure 6. Functional analysis and pan-cancer verification of the model: (a) The main pathway groups overexpressed in
the HRG. (b) RS comparison of the four molecular subtypes of TCGA OC. (c) Correlation between RS of OC samples and
expression of representative genes for generic pathway targets in gynecological oncology (Pearson method). (d) OS of the
HRG and the LRG in the KM curve when applying the 11-gene signature on the cervical squamous cell carcinoma (CESC)
cohort. (e) RS comparison of the three molecular subtypes of TCGA CESC. (f) Correlation between RS of CESC samples and
immune scores (Pearson method).

3.7. Prediction of Response to Intmunotherapy Based on 11-Gene Risk Model

To date, immunotherapy does not play a major role in the therapy of OC [44,45]. How-
ever, new predictive biomarkers would be crucial for patient selection for immunotherapy.
To explore whether our 11-gene model and subsequently the RS could predict the response
to immunotherapy, we analyzed our immune signature in patients with urogenital cancer
who received immunotherapy. We identified the IMvigor 210 cohort [35], which included
gene expression and clinical responses from patients treated with PD-L1 blocking therapy.
Comparing the HRG and LRG which were previously divided according to the RS, com-
plete and partial immune responders accounted for 17.3% in the HRG and 27.3% in the
LRG. Taken together, our results confirm the accuracy of the RS in another cancer entity
(Figure 7a).
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Figure 7. Prediction of potential immunotherapy using the RS in the IMvigor 210 cohort with human metastatic urothelial
carcinoma samples from patients receiving programmed death ligand 1 (PD-L1) blocking immunotherapy: (a) The KM
curve dividing the cohort into an HRG and an LRG according to the RS. (b) ROC curve for the prediction of treatment
response to PD-L1 blocking therapy comparing tumor mutation burden (TMB), neoantigen (NEO), RS and the combination
of all three. (c) Correlation between RS, immune cell score (IC-score), TMB and NEO. (d) RS according to the effectiveness

of immunotherapy expressed as complete response (CR), partial response (PR), stable disease (SD) or progressive disease
(PD). (e) RS according to different IC scores.

We combined our RS, the NEO and the TMB from the IMvigor 210 cohort [35] by
logical regression to determine the treatment response and found that the AUC of this
combination was as high as 91.7%. This is higher than both of the other single values:
NEO (AUC = 0.701) and TMB (AUC = 0.636) (Figure 7b). We calculated the correla-
tion between RS, NEO and TMB, as well as different immune scores using the MCP
counter and found that the RS negatively correlated with all of them except fibroblasts
(Figure 7c). Moreover, the RS showed significantly higher values (p = 0.035) in patients
with PD compared to patients with CR. However, it was not able (p > 0.05) to distinguish
between PR and SD (Figure 7d). Applying our RS to the IMvigor 210 cohort, we were
able to significantly distinguish an immune cell score (IC score) of 0 from 1 (p = 0.008)
as well as from 2+ (p < 0.001). The IC score categorizes tumors according to the percent-
age of PD-L1-positive immune cells (macrophages, dendritic cells and T cells): ICO = 0%,
IC1 < 5%, IC2+ > 5%. In general, there was a significantly negative correlation between the
RS and the IC score (Figure 7e). Additionally, an immunophenotypic analysis showed a low
RS to be significantly associated with an immune inflamed phenotype (data not shown).

4. Discussion

The main finding of our study is the establishment of a powerful predictive model
based on a TME-related gene signature in advanced-stage SOC.

As discussed in more detail below, we think it is crucial to explore prognostic markers
given the TME’s heterogeneity [46-48], to predict clinical response to targeted therapies.

In our study, 347 advanced-stage SOC samples and 4061 TME-related genes from
TCGA were analyzed. We applied biostatistical methods to establish three molecular
clusters. Additionally, immune scores, representing the proportion of several TME-related
cell types, were compared between the clusters and showed significant differences. These
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results were in line with the concept of a heterogeneous TME. Furthermore, correlation
analyses with clinical parameters such as OS and PFS resulted in significant differences
between these clusters as well.

In the present study, we showed that our 11-gene risk model (SNRPA1, CCL19, CXCL11,
CDC5L, APCDD1, LPAR2, P13, PLEKHF1, CCDC80, CPXM1 and CTAG2) is able to indicate
the prognosis of advanced-stage SOC patients. Previous studies investigated several genes,
included in our signature, in an oncological context. For example, the mTOR pathway is
able to participate in the malignant progression of hepatocellular carcinomas by activating
SNRPA1 [49]. In contrast, an elevated expression of SNRPAT would decrease our RS in
OC patients. However, the role of CTAG2, coding for one of several tumor-associated
autoantibodies that may have the ability to allow earlier diagnosis of SOC [50], is in line
with our results. Even CCL19, transcribed by fibroblasts, inhibits the growth of lung cancer
by promoting local anti-tumor T cell response [51] and CXCL11 is known to be used as an
enhancer of vaccine-induced CD8+ T cellular immunity [52].

The multivariable Cox regression analysis showed that the RS was an independent
prognostic risk factor and remained robust when verified with internal and external cohorts.
Next, we compared the HRG and LRG in defined subgroups, such as with or without a
TP53 mutation. While low-grade SOC is frequently characterized by KRAS, BRAF, PTEN
and CTNNBI mutations, high-grade SOC expresses TP53 mutations as its main molecular
feature [53]. However, the correlation between TP53, the type of mutation and the prognosis
of SOC is still controversial [54-57]. While our study is not able to close this gap in the
knowledge, the RS showed a highly significant difference between the HRG and the LRG
in the TP53 mutated samples. Consequently, the RS can offer a resilient risk stratification in
the huge group of high-grade SOC patients.

Nomograms are well established biostatistical methods in predicting the prognosis of
patients with OC [58-62]. However, for the first time, we have constructed an advanced-
stage SOC nomogram based on the TME-RS. ROC curve and DCA confirmed that the RS can
accurately evaluate the prognosis of patients. When we compared our risk model to four
other prognostic risk signatures from Wang et al. [39], Yue et al. [40], Wang et al. [41] and
Sabatier et al. [42], our C-index demonstrated the highest AUC. These results indicate that
the overall performance of our proposed model is superior to others. When we transferred
this RS model to another gyneco-oncological entity, cervical cancer, it confirmed the ability
to safely differentiate between the prognoses of an HRG and an LRG and between several
molecular subtypes, all of which demonstrate potential pan-cancer usability.

Furthermore, our RS was strongly correlated with EMT-related genes. In contrast,
immune checkpoints, DNA replication and mismatch repair were negatively correlated to
the RS. Theoretically, a higher degree of immune infiltration in the LRG, partly represented
through immune checkpoints, could account for greater immune defense capacity and
consequently a better prognosis. Vice versa, the positively correlated EMT genes might
cause OC’s higher tendency to metastasize and a worse prognosis in the HRG.

In recent years, several clinical trials investigating immune checkpoint inhibitors in
gynecological cancers were initiated and have attracted considerable attention [63]. Never-
theless, recently, study results on the PD-L1 inhibitors avelumab [44] and atezolizumab [45]
revealed disappointing results in OC, as neither reached their primary endpoint of PFS.
Additionally, for the programmed death 1 inhibitor pembrolizumab, we are still lacking
encouraging phase III studies. This might be caused by the relatively small TMB in OC
compared with other entities such as endometrial cancer [64]. Since immunotherapy gene
datasets with clinical correlation for OC are not available, we selected another dataset which
was obtained from samples of metastatic urothelial cancer treated with a PD-L1 block-
ade [35]. Hereby, our RS confirmed its performance in another cancer entity. Moreover, the
accuracy of the prediction of a response to an anti-PD-L1 therapy is immensely increased
by up to 91.7% if the RS is combined with NEO and TMB. This power is supported by the
RS'’s ability to significantly differentiate CR from PD and distinguish between IC0 and IC1
as well as IC2+. Interestingly, our RS is negatively correlated with the PD-L1 expression,
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which could be caused by a known phenomenon: “adaptive immune resistance” [65]. Here,
when tumor cells are attacked by the immune system, interferon gamma is overexpressed
through the active anti-tumor immune response. This induces the expression of PD-L1,
indicating a strong attack by the immune system and in our case possibly leading to a
better prognosis of the LRG patients [66,67]. The prognostic ability of our RS is supported
through the correlation of a low RS with an immune inflamed phenotype, one of the three
different phenotypes of immunology that most solid tumors exhibit [68]. Checkpoint
inhibitors have already exerted anti-tumoral effects in this immunophenotype [69], which
confirms our findings.

Of course, there are some limitations to this study. Firstly, as this is a retrospective
study and interpatient variability is wide, and the results should be further verified in
prospective studies. Secondly, all the SOC transcriptome data used were derived only from
TCGA and ICGC databases. Lastly, estimations on the possible causality between gene
expression and clinical findings, drawn in the discussion, need to be validated via further
translational research trials. Hence, this unselected view on all TME-related genes was one
of the initial aims of this study and can also be seen as a potential strength.

5. Conclusions

In conclusion, our study proposes a TME-related risk model to be implemented in the
assessment of advanced-stage SOC patients. First, the accuracy of our RS to predict the
biological response of cancer samples to an anti-PD-L1 immunotherapy could be clinically
important. Even though several clinical trials failed to show a clinical benefit for checkpoint
inhibition in OC patients [44,45], our RS might improve patient selection in future trials.
Lastly, the establishment of a novel prognostic tool to predict a patient’s prognosis based
on an 11-gene signature might elevate prognostic accuracy, therefore encouraging users
to combine several gene signatures. In this aim, the combination of this TME-related
risk model with the gene signature based on lipid metabolism [70], which was recently
published by our group, might be an option.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13133343/s1, Figure S1. Expression of prognostic TME-related genes between the
three clusters: (a—) Heatmaps comparing C1, C2 and C3. (d) The cophenetic correlation coefficient is
used to reflect the stability of the cluster obtained from NMF. (e) rss is used to reflect the clustering
performance of the model. Figure S2. Analysis of lasso regression: (a) Changing trajectory of each
independent variable (the abscissa represents the corrected lambda and the ordinate represents the
coefficient of the independent variable). (b) Log value of the independent variable lambda (the
abscissa represents the CI of each lambda, and the ordinate represents errors in cross-validation).
Figure S3. Distribution of common single nucleotide mutations in OC using TCGA biolinks package
with 94.27% of samples altered. Table S1. The 4061 transcriptome-specific TME-related genes. Table
S2. IMvigor 210 cohort. Table S3. The 87 prognostic TME-related genes from the entire TCGA cohort
to establish C1, C2 and C3. Table S4. The 92 prognostic TME-related genes from TCGA training
cohort to establish the RS.
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