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2. Introduction 

2.1 Ovarian cancer 

Ovarian cancer (OV) is a frequent female reproductive organ malignancy, with the high-

est death rate among three gynecological tumors [1]. According to the World Health Or-

ganization (WHO), in 2020, 314000 newly diagnosed cases of OV were reported; annu-

ally, 207000 related deaths occur worldwide due to OV, thus posing a serious threat to 

women's health. 

Histological classification of ovarian tumors by the WHO categorizes them into sex cord-

stromal, epithelial, metastatic, and germ cell tumors among which epithelial tumors are 

predominant, accounting for nearly 70% of all ovarian tumor cases [3]. The biological 

behavior of ovarian tumors with different histological types varies. Approximately 90% 

of ovarian malignant tumor cases are of epithelial ovarian cancer (EOC) and are mainly 

divided into serous ovarian cancer (SOC), endometrioid carcinoma, mucinous carcinoma, 

undifferentiated carcinoma, and clear cell carcinoma according to the morphology and 

histological structure observed under the microscope [4]. Among them, SOC is the most 

malignant histological type, and nearly 70% of EOC is SOC. 

In 2004, Malpica et al., according to the degree of nuclear atypia and mitotic index, clas-

sified SOC into high-grade SOC (HGSOC) and low-grade SOC (LGSOC) [5]. Genetic 

characteristics, origin sites, and carcinogenic patterns between these grades are different, 

and thus, are two completely different tumor types [6-9]. The incidence rate of HGSOC 

accounts for 75% of EOC. As the symptoms of early onset remain undetected, more than 

70% of patients are diagnosed in the advanced stage. The 10- and 5-year survival rates of 

patients with advanced HGSOC are only 15% and less than 30%, respectively [10]. 

HGSOC grow rapidly and are highly malignant and invasive, usually accompanied by 

TP53 and BRCA1/2 mutations [9, 11, 12]. LGSOC cases are relatively rare and often 

accompanied by prodromal lesions. Most of them are in the early clinical stage carrying 

KRAS and BRAF mutations and generally have a good prognosis [13, 14]. 

Surgery combined with chemotherapy based on platinum and paclitaxel is the traditional 

treatment for EOC. The classic cisplatin plus paclitaxel treatment scheme is effective for 

platinum-sensitive patients; however, 70% of EOC patients are at risk of drug resistance 

and recurrence [15]. With the continuous development of targeted drug molecular re-

search, the treatment mode of EOC has gradually changed, and comprises antiangiogenic 
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drugs [16], poly ADP-ribose polymerase (PARP) inhibitors [17], etc., for maintenance 

treatment and posterior OV therapy; these have become an important part of OV treat-

ment [17, 18]. However, EOC is highly heterogeneous, and thus, patients with the same 

tumor stage and pathological grade have different prognoses. Herein, we attempted to 

identify new markers for diagnosis and prognostic prediction of EOC patients. Our re-

search has important clinical value for clinical diagnosis, individualized precise treatment, 

and prognostic prediction of EOC. 

2.2 Tumor microenvironment (TME) 

TME comprises extracellular matrix (ECM), tumor cells, interstitial cells surrounding the 

tumor cells (including immune cells, fibroblasts, adipocytes, and endothelial cells), and 

signaling molecules (like cytokines and chemokines) [19, 20]. Both primary TME and 

TME formed by distant metastasis play a crucial role in tumor cell metastasis, prolifera-

tion, invasion, drug resistance, and maintaining tumor cell stemness.  

 

In TME, ECM (including collagen, fibronectin, laminin, etc.) can activate intracellular 

FAK, ERK, and other signaling pathways by binding to tumor cell surface receptors in-

cluding integrin, thus enhancing tumor cell invasion, proliferation, and migration [21, 22]. 

The new abnormal blood vessels formed around the tumor tissue not only promote the 

formation of an anoxic and acidic environment around the tumor, reduce the number of 

immune cells, and inhibit the killing ability of immune cells against tumor cells but also 

limit the efficiency of drug delivery systems, thus promoting cancer [23]. Siglec-10 ex-

pressed by tumor-associated macrophages (TAMs) promote tumor cell immune escape 

by interacting with CD24 expressed in these cells [24]. The activation of endoplasmic 

reticulum stress response factor, XBP1, in dendritic cells (DCs) in TME can weaken its 

antigen presentation ability, resulting in loss of the ability to initiate and maintain T-cell 

dependent anti-tumor immunity and promoting the malignant progression of tumors [25]. 

As a critical component of the TME, cancer-associated fibroblasts (CAFs) can promote 

tumor progression by interacting with tumor cells or other TME components. Tumor cells 

affect the recruitment of CAFs precursors and induce epithelial cell transformation into 

CAFs by epithelial-mesenchymal transition (EMT) [26] or endothelial cells by endothe-

lial-to-mesenchymal transition (EndMT) [27]. Concurrently, CAFs secrete several 
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growth factors, cytokines, and ECM proteins, promoting the proliferation, invasion, drug 

resistance, and metastasis of tumor cells, and affecting tumor prognosis [28-30]. 

 

In the early stage with ascites/peritoneal fluid, tumor cells spread through the peritoneum 

to form metastatic lesions, a TME feature in OV [31]. OV is a solid tumor that shows 

unique growth. It develops, metastasizes, and relapses in the abdominal cavity, thus form-

ing a unique TME characterized by ascites, hypoxia, and hypoglycemia [32]. The malig-

nant ascites in EOC patients are rich in tumor-promoting soluble factors, extracellular 

vesicles, exfoliated cancer cells, and different immune cells, including T cells, natural 

killer (NK) cells, and TAMs. The increase in ascites volume can promote the formation 

of a tumor-appropriate TME, thus making OV resistant to chemotherapy [33]. Compared 

to LGSOC patients, CAFs in the ascites of HGSOC patients are abundant and adhere to 

the surrounding OV cells to form spheres, thus enhancing the tumor cell adhesion ability, 

promoting metastasis and drug resistance, and inhibiting tumor cell apoptosis [34, 35]. 

Therefore, an in-depth evaluation of the molecular mechanism in TME involved in the 

malignant progression of EOC and TME-related early diagnostic and prognostic markers 

have guiding significance for clinical decision-making for these patients. 

 

In this study, we obtained the RNA-sequencing (RNA-seq) data of SOC patients in FIGO 

III and IV stages from The Cancer Genome Atlas (TCGA) database. According to the 

expression of TME genes, the patients with advanced stage SOC were re-divided into 

three subtypes using the NMF algorithm. Meanwhile, we constructed an 11-gene signa-

ture based on TME genes. The signature can be used for prognostic prediction of ad-

vanced SOC and evaluating immunotherapeutic efficacy. 

2.3 Immune checkpoint inhibitors 

The immune checkpoint is the key to maintaining the self-tolerance of the body and pro-

tecting the tissues from self-attack after reacting to pathogens. Immune checkpoints in-

clude T-cell immunoglobulin and mucin-3 (TIM-3), PD-1 and its ligand PD-L1, lympho-

cyte activating gene 3 (LAG-3), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) [36]. 

A mechanism of tumor escape from immune surveillance is the abnormal upregulation of 

immune checkpoint expression, which in TME can significantly inhibit the intensity and 

duration of immune responses [37]. The level of PD-L1 in OV increases and is related to 
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poor prognosis, suggesting that PD-1/PD-L1 has a key role in tumor immune responses 

[38]. 

Immune checkpoint inhibitors (ICIs) are humanized or fully humanized human immuno-

globulin G (IgG) monoclonal antibodies, unlike traditional drugs that directly act on can-

cer cells. ICIs can activate the human immune system and target tumor cells by blocking 

PD-1/PD-L1 and CTLA-4/B7 signaling transduction by a specific combination [39]. 

The Keynote-028 study showed that the objective response rate of 26 patients with PD-

L1 positive epithelial OV after receiving pabolizumab treatment was 11.5%, and the dis-

ease control rate was 34.6% [40]. Phase Ib open-label cohort study (NCT01772004) in-

cluded 125 patients with refractory/recurrent OV who received avelumab treatment, 

showing an objective response rate of 9.7% and a disease control rate of 52% [41]. The 

effect of ICIs on OV patients is limited. Not all OV patients benefit from ICIs. Combina-

tion chemotherapy and targeted therapy or identifying markers that can predict the benefit 

of immunotherapy is a potential research direction. In this study, we used the dataset of 

immunotherapy genes to verify the predictive ability of the risk model based on TME-

related genes for immunotherapeutic efficacy. The results showed that patients in the low-

RS group had a greater likelihood of benefitting from immunotherapy.  

2.4 Lipid metabolism 

Abnormal metabolism is a common feature of tumors. The metabolic abnormalities of 

malignant tumors show the six following characteristics [42]: (1) uncontrolled glucose 

and amino acid uptake; (2) speculative access to nutrition; (3) synthesis of biomacromol-

ecules and NADPH from the intermediate products of glycolysis and/or tricarboxylic acid 

cycle; (4) increased demand for nitrogen source; (5) metabolite driven gene expression 

abnormalities, and (6) metabolite interactions with the TME. Among these, abnormal li-

pid metabolism, especially the increase in the de novo fatty acid synthesis pathway, is 

implicated in the above processes. 

Lipids, an important hydrophobic nutrient in the human body, include triacylglycerol, 

glyceryl phosphate, sterol, and sphingolipids. It plays an important role in cell membrane 

formation, cellular metabolism, energy storage, and signal transduction, and participates 

in the processes of inflammation, immunity, cellular proliferation, and cell differentiation 

[43, 44]. The activity and expression of enzymes participating in lipid metabolism in var-

ious tumor cells increase and the synthesis of endogenous fatty acids is enhanced [45, 46], 
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suggesting that abnormal lipid metabolism may serve a critical role in the development 

and occurrence of tumors.  

Early extensive metastasis is the main feature of OV, characterized by extensive dissem-

ination in the pelvis and abdomen and omental infiltration. Co-culture of primary human 

omental adipocytes with OV cells shows lipolysis of adipocytes and β-oxidation of tumor 

cells which provide an energy source for the growth and metastasis of OV cells [47]. 

Changes in lipid metabolism may occur at various stages of EOC [48]. EOC cells take up 

lipids in several ways to meet the high energy requirements during cell growth and sig-

naling changes during carcinogenesis. Studies have shown that genes involved in endog-

enous lipid metabolism and cholesterol biosynthesis are downregulated in OV cells, in-

dicating that in the presence of primary adipocytes, OV cells rely more on the uptake of 

exogenous lipids and cholesterol than on the endogenous synthesis of fatty acids [49]. 

Several lipid metabolism pathways, especially those related to fatty acid biosynthesis and 

phospholipid and its enzyme system, are closely associated with the malignant progres-

sion of OV. Fatty acid synthase (FASN), the key regulator of endogenous fatty acid syn-

thesis, is overexpressed in OV, and its high expression is related to drug resistance and 

poor prognosis of these patients [50-52]. For platinum-resistant OV cells, inhibition of 

FASN can reduce the level of fatty acid metabolism, and combination with platinum 

drugs can inhibit the β-oxidation of fatty acids, jointly promoting tumor cell apoptosis 

[52]. Fatty acid binding protein 4 (FABP4) overexpressed at the adipocyte tumor cell 

interface in the OV cell membrane, functions as an intracellular lipid chaperone. Inhibi-

tion of FABP4 can reduce lipid accumulation in OV cells and invasion of tumor cells 

mediated by omental adipocytes [47, 53]. Lysophosphatidic acid (LPA) is a growth fac-

tor-like phospholipid produced by OV cells and mesothelial cells secreted into the peri-

toneal cavity. It is highly expressed in ascites of OV patients and can promote tumor 

angiogenesis by inducing the secretion of angiogenic factors including IL-8 and vascular 

endothelial growth factor (VEGF) [55]. LPA can also activate the downstream 

Ga12/13/RhoA signaling pathway through the LPA-1 receptor and LPA-2 receptor to 

induce the phosphorylation of ERM protein, thus promoting the metastasis of OV cells 

[56]. The development and occurrence of tumors are accompanied by several lipid-related 

gene changes and assessing the changes in lipid metabolism may provide a novel target 

for the treatment of OV. 
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Herein, we clustered the RNA-seq data of SOC patients from TCGA database into two 

subtypes (C1 and C2) according to lipid metabolism-related genes using the NMF algo-

rithm, and the prognosis of the C2 subtype was found to be significantly better than that 

of the C1 subtype. Furthermore, an 11-gene signature was constructed using the Least 

absolute shrinkage and selection operator (LASSO) regression, which could predict the 

prognoses of SOC patients and guide clinical decision-making. The hub gene in the model, 

PTGER3, was also verified using paraffin-embedded tissue samples from clinical OV 

patients. The level of PTGER3 expression in the high-risk scoring group was significantly 

higher compared to the low-RS group. PTGER3, or EP3, is a G protein-coupled receptor. 

PTGER3 is widely present across various tissues and organs and participates in different 

pathological and physiological processes in the body, including the regulation of antico-

agulation and contraction of the uterine muscle layer in early pregnancy [57]. To date, the 

mechanism underlying the role of PTGER3 in lipid metabolism remains unclear, but re-

search shows that compared to M2 macrophages, the expression of PTGER3 in M1 type 

macrophages is up-regulated in the placenta of patients with recurrent abortion during 

early pregnancy [58]. Thus, lipid metabolism and TME are inextricably linked, and the 

role of their interaction in tumor progression needs further investigation. 

2.5 Crosstalk between TME and lipid metabolism 

TME has a non-immune microenvironment dominated by fibroblasts and tumor cells and 

an immune microenvironment dominated by immune cells [59]. Abnormal lipid metabo-

lism can affect tumor progression and immune responses simultaneously. The prolifera-

tion of tumor cells requires massive amounts of lipids for the synthesis of cell membranes 

and organelles. Tumor cells can promote the exogenous uptake of lipids by up-regulating 

lipid transport-related proteins, enhance endogenous synthesis by regulating lipid produc-

tion pathways, and secrete lipids by activating fat cells. Besides serving as the basic struc-

tural component and important energy source of immune cells, lipids also affect the pro-

liferation and differentiation of immune cells and immune responses to tumor cells [60]. 

Fatty acid and lipid accumulation exert different effects on different immune cells. Fatty 

acid accumulation in TME can induce the loss of immune functions in more than 8 kinds 

of immune cells with anti-tumor effects, which is more conducive to the survival of tumor 

cells. Studies have shown that excessive levels of free fatty acids (FFA) can inhibit CTL-

mediated tumor cell killing, and this inhibition can be restored by reducing the level of 

FFAs [61]. Tissue-resident memory (TRM) T cells maintain cell survival by consuming 
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exogenous FFAs, thus participating in anti-tumor responses [62-64]. Lipid aggregation 

usually leads to immunosuppression. DC is an antigen-presenting cell necessary for ini-

tiating and maintaining T-cell-dependent anti-tumor immunity. Activation of FASN in 

OV cells can lead to abnormal lipid accumulation and tumor-infiltrating DCs (TIDCs) to 

damage the activation of T cells due to excessive lipid intake [65, 66]. Different FA up-

take types show differential effects on anti-tumor immune responses of macrophages. 

Some studies have shown that lipid accumulation occurs in macrophages from mice over-

expressing monoglyceride lipase (MGLL), and these macrophages preferentially polarize 

to the M1-type in response to cancer-specific stimuli [67]. The enrichment of long-chain 

omega-3 (ω-3) FA can significantly inhibit the polarization and secretion functions of 

M2 macrophages in the mouse prostate tumor model [68, 69]. Therefore, crosstalk be-

tween TME and lipid metabolism exists. The demand of tumor cells for lipids increases 

their amount in TME, while lipid-rich TME further affects the phenotype and function of 

tumor-infiltrating immune cells [70]. Therefore, assessing changes in the lipid metabo-

lism of immune cells in TME may provide new ideas for developing new and effective 

anti-tumor methods. 

2.6 Molecular classification and prognostic prediction model for OV 

The expression profiling of OV was obtained from TCGA, which can be divided into the 

following four subtypes: immunoreactivity, proliferation, differentiation, and interstitial 

[71]. Each subtype reflects different levels and patterns of immune cell infiltration. In 

clinical practice, patients belonging to the interstitial subtype are few, and immune-reac-

tive, value-added, and differentiated subtypes are the most common [72]. Gene expres-

sion profiles can be used to identify prognosis-related genes in various cancer types [73, 

74]. However, the gene expression profile is unsuitable for judging the prognosis of pa-

tients in clinical practice, because it requires the sequencing of fresh frozen tissues, de-

tection of a large number of genes, and complex statistical analysis, incurring a high cost 

economically with poor repeatability of sequencing results. Therefore, developing a prog-

nostic model for routine analysis like immunohistochemistry is of significance.  

With the development of high-throughput sequencing technologies and the wide applica-

tion of bioinformatics, many large cancer databases, including GEO and TCGA, provide 

researchers with the possibility to analyze large-scale gene expression data. For example, 

Wang et al. clustered OV patients into two subtypes using necroptosis-related genes and 
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constructed a 5-gene signature. There was a significant difference in the prognoses be-

tween high-risk groups [75]. Feng et al. used ferroptosis and iron metabolism-related 

genes to identify differentially expressed lncRNAs related to prognosis and build a prog-

nostic model which could predict prognoses and treatment responses of OV patients [76]. 

The 8-gene prognostic model constructed by Bi et al. using glycolysis-related genes could 

predict the prognosis of OV patients and their immune responses [77]. In this study, un-

like in other signatures [78-80], the 11-gene signature constructed using TME-related 

genes showed the best performance in a period of more than 60 months, indicating that 

our risk model was not only suitable for predicting the survival of patients over five years 

but was also a better predictor for a period fewer than 60 months. Based on lipid metab-

olism-related genes, we re-clustered OV patients into two subtypes (C1 and C2). The 

prognosis of the C2 subtype was significantly better relative to the C1 subtype. By com-

paring the immune scores of six different lymphocytes between the two subtypes, the 

median immune score of six lymphocytes in C1 was found to be significantly higher than 

that of the C2 subtype. Therefore, we reasonably speculated that lipid metabolism-related 

genes may affect the prognosis of OV patients by remodeling TME.  

2.7 Aim of the present research 

The purpose of this doctoral thesis was to identify new markers for predicting the prog-

nosis and immunotherapeutic efficacy of SOC. Manuscript 1 aimed to utilize lipid me-

tabolism-related genes to divide OV patients into two subtypes. The prognosis of patients 

with the C1 subtype was significantly poor relative to that of the patients with the C2 

subtype. The lipid metabolism-related genes were further used to construct an 11-gene 

signature, which can predict the prognosis of OV patients. Manuscript 2 aimed to use 

TME-related genes to construct an 11-gene signature, and the risk signature can not only 

predict the prognosis, but also the efficacy of PD-1 immunotherapy in patients with ad-

vanced SOC.   
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3. Summary 
The current doctoral dissertation was conducted to evaluate new markers for the progno-

sis of patients with SOC. For Manuscript 1, RNA sequencing data of SOC patients were 

obtained from the TCGA and GEO databases. SOC patients were divided into two sub-

types based on lipid metabolism-related genes. Differentially expressed genes between 

the subtypes were significantly enriched with regard to regulation of the activation of 

leukocytes, T cells, lymphocytes, and other signaling pathways. Further, a signature of 

eleven genes including PI3, RGS, ADORA3, CH25H, CCDC80, PTGER3, MATK, 

KLRB1, CCL19, CXCL9, and CXCL10, was established. Real-world samples were used 

to confirm that PTGER3 was up-regulated in the high-RS group, as indicated by immuno-

histochemistry. The lipid metabolism-related gene signature may be used as a potential 

prognostic marker of SOC. In Manuscript 2, the multi-gene signature that was established 

based on TME-related genes was shown to facilitate prognosis and predict immune re-

sponses of patients with advanced SOC. 
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4. Zusammenfassung  
Diese Dissertation wurde durchgeführt um neue Marker für die Prognose von Patienten 

mit serösem Ovarialkarzinom (SOC) zu evaluieren. Für Manuskript 1 wurden RNA-Se-

quenzierungsdaten von Patienten mit SOC aus den TCGA- und GEO-Datenbanken bezo-

gen. SOC-Patienten wurden basierend auf Genen assoziiert mit dem Fettstoffwechsel in 

zwei Subtypen eingeteilt. Differentiell exprimierte Gene zwischen den beiden Subtypen 

waren signifikant angereichert hinsichtlich der Regulierung der Aktivierung von Leuko-

zyten, T-Zellen, Lymphozyten und anderen Signalwegen. Eine 11-Gen-Signatur ein-

schließlich PI3, RGS, ADORA3, CH25H, CCDC80, PTGER3, MATK, KLRB1, CCL19, 

CXCL9 und CXCL10 wurde weiter konstruiert. Patientenproben wurden verwendet, um 

durch immunhistochemische Färbung zu bestätigen, dass PTGER3 in der Hoch-RS-

Gruppe hochreguliert war. Die fettstoffwechselbezogene Gensignatur könnte als poten-

zieller prognostischer Marker für SOC verwendet werden. In Manuskript 2 wird gezeigt, 

dass die Multi-Gen-Signatur auf der Grundlage von Tumor-Mikro-Milieu-verwandten 

Genen die Prognose von Patienten mit fortgeschrittenem SOC ermöglicht und deren Im-

munantworten vorhersagen kann. 
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