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Abstract

A consistent gravitational effective field theory is not guaranteed to have a UV comple-

tion to Quantum Gravity. If it does, it belongs to the very restricted Landscape, while if

it does not, it belongs to the Swampland. The Swampland Program aims at formulating

an interconnected set of qualitative criteria, the Swampland Conjectures, which all the-

ories in the Landscape should respect. The conjectures have profound implications for

low-energy physics. String theory, as a theory of Quantum Gravity, is inherently related

to the Swampland program. On the one hand, String Theory provides necessary evi-

dence for formulating sensible conjectures. On the other hand, Swampland conjectures

can uncover previously unidentified objects and consistency conditions in String Theory.

The Dark Dimension proposal approaches the Cosmological Constant problem with

insights from the Swampland Program combined with observational data. It makes a

concrete prediction that our universe should have one extra mesoscopic dimension of a

few micrometers. We propose a first string realization for the Dark Dimension proposal,

using a common feature of string compactifications in the presence of higher-form fluxes,

a strongly warped throat.

The Cobordism Conjecture is related to the absence of global symmetries in Quantum

Gravity and prohibits global cobordism charges. In practice, we start with a suitable

approximation which admits such charges and then appropriately trivialize them, break-

ing or gauging the global symmetry. In the case of gauging, we study the interplay of

K-theory and cobordism charges and how this behaves under dimensional reduction to

give charge neutrality conditions, commonly known as tadpole cancelation conditions.

In the context of breaking, we work in the geometric framework of dynamical cobor-

dism, which relates dynamical tadpoles to cobordism. We identify a formerly unknown,

cobordism-predicted 7-brane and provide its explicit description.
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Zusammenfassung

Bei einer konsistenten Formulierung einer gravitativen effektiven Feldtheorie ist es nicht

garantiert, dass sie eine UV-Vervollständigung zur Quantengravitation hat. Wenn dies

der Fall ist, gehört sie zur sehr eingeschränkten Landscape, wenn nicht, gehört sie zum

Swampland. Das Swampland-Programm zielt darauf ab, eine Reihe miteinander ver-

bundener qualitativer Kriterien zu formulieren, die Swampland-Vermutungen, die alle

Theorien in der Landscape erfüllen sollten. Die Vermutungen haben tiefgreifende Aus-

wirkungen auf die Niederenergiephysik. Die Stringtheorie als eine Theorie der Quan-

tengravitation ist von Natur aus mit dem Swampland-Programm verbunden. Einerseits

liefert die Stringtheorie die notwendigen Hinweise für die Formulierung sinnvoller Ver-

mutungen. Andererseits können Swampland-Vermutungen bisher unentdeckte Objekte

und Konsistenzbedingungen in der Stringtheorie aufdecken.

Das Konzept der Dunklen Dimension begegnet dem Problem der kosmologischen

Konstante mit Erkenntnissen aus dem Swampland-Programm in Kombination mit Be-

obachtungsdaten. Es führt zu einer konkreten Vorhersage, dass unser Universum eine

zusätzliche mesoskopische Dimension von einigen Mikrometern haben sollte. Wir schla-

gen eine erste String-Realisierung für den Vorschlag der Dunklen Dimension vor, indem

wir ein gemeinsames Merkmal von String-Kompaktifizierungen in Gegenwart von Flüssen

höherer Formen, eine Warped Throat Geometrie, nutzen.

Die Kobordismus-Vermutung hängt mit der Abwesenheit globaler Symmetrien in

der Quantengravitation zusammen und verbietet globale Kobordismus-Ladungen. In der

Praxis beginnen wir mit einer geeigneten Annäherung, die solche Ladungen zulässt und

trivialisieren sie dann in geeigneter Weise, indem wir die globale Symmetrie brechen

oder eichen. Im Falle der Eichung untersuchen wir das Zusammenspiel von K-Theorie

und Kobordismus-Ladungen und wie es sich bei einer Dimensionsreduktion verhält, um

Ladungsneutralitätsbedingungen zu erhalten, die allgemein als Tadpole-Cancellation-

Bedingungen bekannt sind. Im Kontext der Symmetriebrechung arbeiten wir im Rahmen

des dynamischen Kobordismus, der Dynamical Tadpoles mit dem Kobordismustheorie

in Beziehung setzt. Wir identifizieren eine bisher unbekannte, durch Kobordismus vor-

hergesagte 7-Brane und beschreiben sie explizit.
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Chapter 1

Introduction

1.1 The need for Quantum Gravity

The beginning of the previous century was marked by the development of groundbreaking

theories: Quantum Mechanics [1], Special Relativity [2], and General Relativity (GR) [3].

Special Relativity and Quantum Mechanics were soon made compatible in the framework

of Quantum Field Theory, and the Standard Model (SM) has proven to be exceptionally

successful in explaining and unifying electromagnetism, weak and strong fundamental

interactions. However, any attempt to directly include gravity in a perturbative QFT

framework breaks down at the Planck scale Mp ≃ 1019 GeV due to the presence of

irrelevant operators that render the theory non-renormalizable [4].

One might wonder why there is a need for such a unified theory of Quantum Gravity.

Apart from the continuous strive in theoretical physics for identifying the bigger, more

complete picture, we have clear indications that the Standard Model or General Rela-

tivity alone do not suffice to explain all observations. The observed positive and small

value of the cosmological constant [5] is such a puzzle.

Semiclassical gravity is an approximation that treats matter as quantum fields, while

spacetime is regarded as classical. Non-renormalization issues are avoided by truncating

the theory at the one-loop level. Despite not being a full theory of Quantum Gravity,

semiclassical gravity has led to important insights regarding cases where the quantum

nature of gravity becomes significant. These include cosmological perturbations [6] and

black hole physics.

Let us elaborate on the latter, focusing on four spacetime dimensions. Black holes

arise as solutions to the GR equations of motion, parametrized by their mass, angular

momentum, and charge. Black holes have been observed recently through gravitational

waves [7, 8] and direct imaging [9, 10]. Due to their large sizes, these observed black

holes are likely of astrophysical origin, yet primordial black holes [11,12], i.e., black holes

created in the very early universe due to fluctuations, have not been excluded [13, 14].



2 1. Introduction

The radius rH of a black hole of mass M is rH ∼ lpM/Mp, with lp ≃ 8 · 10−35 m the

Planck length andMp the Planck mass. For any black hole of at least a few solar masses,

the curvature close to the horizon R ∼ 1/r2H is very small. Hence semiclassical gravity

is a good approximation. Work by Bekenstein and Hawking in this framework leads to

a groundbreaking thermodynamical description of black holes [12, 15–18], assigning to

them the so-called Bekenstein-Hawking entropy

SBH =
A

4G
, (1.1)

where A ∼ (M/Mp)2l2p is the surface area of the black hole. At this point, we can already

see that semiclassical gravity is a useful, yet incomplete, approach to Quantum Gravity.

SBH signals that the black hole should be comprised of adequately many microstates,

but semiclassical gravity does not provide such a description. Luckily, we have a better

option at hand.

1.2 String Theory as a theory of Quantum Gravity

The fundamental degree of freedom in perturbative string theory is a spatially extended

one-dimensional string moving through a d-dimensional spacetime, delineating a two-

dimensional world-sheet. The action is given in analogy to the length of the world-line

for the point particle, as the area of the world-sheet. We distinguish between closed

and open strings depending on whether the endpoints of the string are identified or not.

This is a remarkably meaningful boundary condition, as it influences the spectrum of

fields described by the oscillation modes of each string. What is of interest to us is that

the quantized closed string spectrum includes a massless spin-two mode, while the open

string spectrum contains a massless spin-one mode.

Historically, it was first noticed that the open string spin-one mode interacted accord-

ing to Yang-Mills theory in a specific low-energy limit [19]. Soon after, it was realized

by Scherk and Schwarz [20] that the massless closed string spin-two mode was indeed

a graviton since, at low energies, its interactions precisely reproduced GR. Combining

these two facts, the authors proposed that string theory should be interpreted as the

“quantum theory of gravity, unified with the other forces”.

There are some undisputable arguments in favor of string theory as the theory of

Quantum Gravity, apart from the coexistence of GR and Yang-Mills theory in the same

framework. In particular, the issue of the non-renormalizability of GR is resolved; in

string theory, there are no point interactions. The interactions now are described by the

joining and splitting of strings, and the Feynman diagrams schematically transform as in

figure 1.1. In general, for the scattering of n closed strings, the world-sheet topologically

becomes some compact Riemann manifold of genus g, with n infinite cylinders glued to it.

The corresponding diagrams are (UV-)finite for each loop order, hence renormalized [21].
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Figure 1.1: Sketch of field theory (left) versus string theory (right) scattering process.

String theory has also been remarkably successful in tackling black hole physics. The

Bekenstein-Hawking entropy has been reproduced in the seminal paper of Strominger

and Vafa [22], where an explicit counting of microstates for certain supersymmetric black

holes in terms of BPS solitons was performed.

1.3 From the Landscape to the Swampland

The landscape . . .

String theory has to satisfy several non-trivial checks to be consistent. We will briefly

review some of them in the next chapters 2 and 3, but let us already sketch the picture

at this point.

The simplest string theory is the bosonic string theory. A plethora of conditions need

to be imposed to quantize the theory, ranging from the closure of the quantum algebra to

the vanishing of the Weyl anomaly, and they all unequivocally necessitate that bosonic

string theory lives in d = 26 dimensions. Setting aside the extra dimensions, attempts for

sensible phenomenological descriptions using just the bosonic string are plagued by two

main problems: firstly, the presence of a closed string-tachyon, signaling some important

instability, and secondly, the lack of any fermions in the spectrum.

Both these issues can successfully be treated with the introduction of fermions in the

world-sheet action. Typically this happens in a supersymmetric fashion, where one adds

terms in the world-sheet action so that it is invariant under supersymmetry (SUSY)

transformations. This time, tachyonic modes can be removed through some appropriate

projection, which simultaneously may render the spacetime spectrum supersymmetric.

The consistency of the superstring imposes d = 10.

Customarily, one tries to construct a four-dimensional effective field theory by “hiding

away” the extra dimensions through compactification. The specifics of this process, like

the shape and size of the compactification manifold or fluxes going through it, leave

a strong imprint on the four-dimensional physics and are responsible for the physical

properties of the EFT, such as the amount of supersymmetry, couplings, and masses of
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fields. Each different set of choices gives a different EFT, and all these EFT together

form the String Landscape. Depending on the starting framework, the estimations for

the size of the landscape range from 10500 [23] to 10272.000 [24]. Perhaps even more

impressively, very large numbers of models with MSSM-like gauge groups have been

identified [25], or, more recently, even the exact chiral spectrum of the Standard Model

was found in a quadrillion models [26].

The sheer size of the landscape initially led to the idea that any consistent quantum

gauge theory can be found somewhere in the string landscape - the issue was effectively

weeding out the physically non-interesting models until the phenomenologically relevant

could be identified.

. . . and the Swampland

A radical change of perspective was initiated in 2005 [27]. The fundamental idea was

that not all consistent-looking low-energy effective field theories can be UV-completed

to Quantum Gravity. Those that can form the Landscape, while the much broader

set of those that cannot form the Swampland . The Swampland Program [27] aims at

distinguishing these two sets of theories via swampland conjectures, i.e., quantitative

criteria that only theories in the landscape satisfy, with far-reaching implications.

For instance, two conjectures with striking cosmological implications are the (refined)

de Sitter Swampland Conjecture (dSC) [28, 29] and the Trans-Planckian Censorship

Conjecture (TCC) [30]. The dSC is mainly motivated by the lack of well-controlled dS

constructions in string theory and proposes that no de Sitter extrema (resp. minima)

are allowed in an EFT that can be UV-completed to QG. The TCC states that no

subplanckian modes may stretch enough to become transplackian and allows for dS

minima if sufficiently short-lived. These conjectures can contradict certain models that

describe the accelerated expansion of the universe, such as slow-roll single-field inflation

[31,32].

The Swampland Program goes far beyond merely formulating conjectures. It en-

compasses a vibrant research activity, including sharpening the conjectures, uncovering

hidden interrelations, and studying their implications. Perhaps even more importantly,

the Swampland Program aims to bring us closer to the true nature of Quantum Gravity.

1.4 Outline of the thesis

This thesis aims to showcase how the Swampland Program can help us better understand

Quantum Gravity. For this reason, the main part of this thesis will focus on three papers

that concern different corners of the Program. Without entering any details, let us briefly

sketch the areas of interest for the rest of this thesis. In chapter 5, we will approach the



1.4 Outline 5

phenomenological side of the Swampland, discussing the string theoretical realization

of the Dark Dimension proposal [33], which uses insights from the Swampland and

string theory to interpret observational and experimental data, leading to a potentially

experimentally testable proposal for the existence of an extra dimension of mesoscopic

size. In chapter 6, motivated by the conjectured absence of (a certain topological version

of) global symmetries in Quantum Gravity, we perform a formal analysis that explores

the mathematical structure of string theory and its imprint on physics. Finally, in

chapter 7, we study a certain non-supersymmetric version of string theory, where, using

a Swampland Conjecture as a guiding principle, we find evidence for a new, formerly

unknown object.

The material is organized in the remaining chapters as follows:

Chapter 2 is a concise introduction to the superstring theories used throughout this

work. We discuss the 10d massless bosonic spectrum; we take a first look at the simplest

compactification example. We discuss D-branes, their classification schemes, and the

effective theories for the bosonic fields and the localized objects. Experts may safely

skip this chapter, yet its inclusion is deemed necessary both for completeness and for

setting the conventions used in the remainder of the thesis. The only part of the chapter

that goes beyond standard textbook-level material is the D-brane and K-theory section

2.5.

Chapter 3 concerns compactifications to lower dimensions and, in particular, d = 4.

We start by introducing compactification manifolds and their necessary properties, and

we present the 4d supergravity spectra. The complicated issue of moduli stabilization

will be discussed, both at tree-level and beyond, and two attempts at constructing de

Sitter vacua in string theory are outlined. Chapter 2 and 3 are complementary to each

other and serve to illustrate how the Landscape of string theory is populated and, at the

same time, that there are serious constraints in string model building that stem from

the quantum nature of gravity.

Chapter 4 aims to familiarize the reader with the fundamental ideas of the Swamp-

land Program and the Conjectures that will become relevant in the main part of the

thesis. In particular, we will discuss the No Global Symmetries Conjecture and the

related Cobordism Conjecture, which will play a significant role in later chapters. More-

over, we will introduce the conjectures and concepts necessary for formulating the Dark

Dimension proposal, mostly focusing on the Distance Conjecture and some of its impli-

cations.

Chapters 5, 6, and 7 concern research conducted by the author and collaborators.

The three works presented here vary in their goals, methods, and level of formality, but

all fit nicely within the Swampland Program.

Chapter 5 is our most phenomenologically oriented chapter and focuses on a very ex-
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citing recent development in the Swampland Program, the Dark Dimension proposal [33],

which makes use of swampland ideas and experimental data to confront the cosmologi-

cal constant problem, making a concrete, experimentally verifiable prediction. Our work

was the first attempt at a string realization of the proposal, using certain features of

strongly warped compactifications. We point out difficulties in rendering such a realiza-

tion compatible with observational data.

Chapters 6 and 7 aim at a better understanding of the trivialization of global symme-

tries in string theory. Both examine the Cobordism Conjecture [34], which reflects the

uniqueness of Quantum Gravity. These two chapters focus on the two complementary

ways of trivializing global charges, gauging and breaking, respectively.

In particular, in chapter 6, which is the most formal part of the thesis, we use the

Cobordism Conjecture and a proposed correspondence between cobordism and K-theory

[35], that K-theory and cobordism charges should combine to give tadpole cancelation

conditions. We examine whether this correspondence persists when considering non-

trivial manifolds relevant for dimensional reduction. Section 6.4 is devoted to computing

the K-theory and cobordism groups of such manifolds, using the Atiyah-Hirzebruch

spectral sequence, while we finish the chapter with the physical interpretation of the

results in section 6.5. The upshot of this chapter is that not only does the cobordism

conjecture hold in this generalized setup, but also the proposed correspondence to K-

theory behaves as required under dimensional reduction.

In chapter 7, we use the Dynamical Cobordism framework of [36, 37] to study a

particular example of a domain wall in a non-supersymmetric string theory. The back-

reacted spacetime solution has a finite spatial extent, and cobordism-breaking defects

are expected to generate this behavior. We provide an explicit description of these

defects and realize that these are novel, previously unidentified items in string theory,

showcasing that Swampland ideas point to fruitful unexplored territory within string

theory.

Finally, some concluding thoughts are presented in chapter 8.

Relevant Publications

Chapters 5, 6, and 7 of this thesis rely heavily on work published in the following papers:

• The Dark Dimension in a Warped Throat [38]

R. Blumenhagen, M. Brinkmann, A. Makridou.

ArXiV:2208.01057, published in: Phys.Lett.B 838 (2023) 137699.

• Dimensional Reduction of Cobordism and K-theory [39]

R. Blumenhagen, N. Cribiori, C. Kneissl, A. Makridou.

https://arxiv.org/abs/2208.01057


1.4 Outline 7

ArXiV:2208.01656, published in: JHEP 03 (2023) 181

• Dynamical cobordism of a domain wall and its companion defect 7-brane [40]

R. Blumenhagen, N. Cribiori, C. Kneissl, A. Makridou.

ArXiV:2205.09782, published in: JHEP 08 (2022) 204.

The following papers were also published during the author’s doctoral studies but are

not included in the present thesis:

• Swampland conjectures for an almost topological gravity theory [41]

R. Álvarez-Garćıa, R. Blumenhagen, C. Kneissl, A. Makridou, L. Schlechter.

ArXiV:2107.07546, published in: Phys.Lett.B 825 (2022) 136861.

• dS quantum breaking, swampland conjectures and thermal strings [42]

R. Blumenhagen, C. Kneissl, A. Makridou.

ArXiV:2011.13956, published in: JHEP 10 (2021) 157.

https://arxiv.org/abs/2208.01656
https://arxiv.org/abs/2205.09782
https://arxiv.org/abs/2107.07546
https://arxiv.org/abs/2011.13956
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Chapter 2

A Superstring Theory Primer

The present chapter summarizes the necessary background material on which concepts

of the following chapters will be based and sets our conventions. The reader familiar

with superstring theory may safely skip this chapter, as the level will mostly not exceed

standard textbook material, except possibly for the K-theory classification of D-branes.

The treatment here mainly follows the lines of the textbook [43], while [21, 44–47] have

also been useful.

It is beyond the scope of this thesis to provide a full introduction to string theory, so

a certain level of familiarity with basic string and conformal field theory concepts, such

as modular and conformal invariance, is assumed.

2.1 The different superstring theories

There exists a plethora of conditions leading to a particular effective description of string

theory. Some of them are intrinsically related to the consistency of the theory, either

at the classical or quantum level. Such a requirement is the modular invariance of the

theory/partition function. On a similar footing, we also have anomaly cancellation -

this is also related to the so-called tadpole cancellation. The consistency of theory is also

intertwined with conditions often required for gauge theories, such as unitarity. As the

totality of these necessary consistency conditions is considered, one is forced to define

string theories that can only live in a certain number of spacetime dimensions. On the

other hand, one can go beyond simply requiring a consistent theory and try to find a

phenomenologically relevant theory. In this endeavor, among the usually desired proper-

ties of the theory, one can find the presence of chiral fermions, (partial) supersymmetry

breaking, a gauge group that is compatible with the Standard Model, and of course

the existence of only four (non-compact) spacetime dimensions. It is unclear how all

these “optional” requirements can be simultaneously fulfilled, i.e., how to realize every

aspect of the Standard Model is unknown. However, a clear roadmap exists that ensures



10 2. A Superstring Theory Primer

the fulfillment of all the necessary conditions on which more involved constructions are

based.

Type Sector Spectrum

IIA NS-NS GMN , BMN , ϕ

R-R C1, C3

IIB NS-NS GMN , BMN , ϕ

R-R C†
4, C2, C0

Het(E8 × E8) GMN , BMN , ϕ

C1 in adj. of E8 × E8

Het(SO(32)) GMN , BMN , ϕ

C1 in adj. of SO(32)

I NS-NS GMN , ϕ

R-R C2

open AM in adj. of SO(32)

Table 2.1: Massless bosonic spectrum of the five superstring theories. The indices in the

higher-form fields in the R-R sector have been suppressed, and C†
4 has a self-dual field

strength.

In this (and the following) chapter, we will sketch the most significant steps in this

procedure. Our starting point will be critical superstring theory, defined consistently

in 10-dimensional spacetime. Five distinct supersymmetric theories exist, differing in

the amount of supersymmetry (i.e., the number of supercharges) they possess and the

properties of their spectrum. The theories with N = 2 supersymmetry and 32 super-

charges in 10d are the IIA and IIB theories, while type I and the two heterotic theories

Het(E8 × E8), Het(SO(32)), with gauge groups E8 × E8 and SO(32), only preserve 16

supercharges. We summarize the massless bosonic spectrum of these theories, split into

the R-R and NS-NS sectors1, in table 2.1. As this thesis does not involve heterotic

constructions, we mostly focus on type I and II cases and refer the interested reader to

the textbooks [21,43–47].

1How these sectors (and their naming conventions) arise will be discussed in subsequent sections

2.2.1, 2.2.2.
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2.2 Towards the consistent spectrum

This section reviews two basic concepts that enter a string theoretical construction.

Given our later focus on D-branes, we start by reviewing the world-sheet boundary

conditions in section 2.2.1, while the GSO projection in section 2.2.2 serves as a starting

point for our discussion of the Sugimoto model in 7.3.1.

2.2.1 Boundary conditions

The possible world-sheet boundary conditions (BC) follow from the variations of the

world-sheet action with respect to the fields. Whether dealing with open or closed string

degrees of freedom also plays a role. Parametrizing the world-sheet Σ by the coordinates

(τ, σ), one gets the following list of boundary conditions:

• For the closed string bosons XM , with M = 0, . . . , d − 1, where 0 ≤ σ ≤ 2π,

−∞ < τ < ∞ and with periodicity condition XM (τ, σ) = XM (τ, σ + 2π), the

world-sheet has the topology of a cylinder. Due to the identification of the ends of

the string, the two surface-term contributions to the variation of the action cancel

out and no additional condition needs to be imposed.

• For the open string, now 0 ≤ σ ≤ π, so the boundary of the strip-shaped world-

sheet has two disjoint components ∂Σ1, ∂Σ2 at σ = 0, π respectively. The vanishing

of the boundary terms can be achieved by imposing the following BC:

– Dirichlet (D) BC : ∂τX
M
∣∣
∂Σi

= 0, i = 1, 2.

– Neumann (N) BC : ∂σX
M
∣∣
∂Σi

= 0, i = 1, 2.

Either of these conditions can be independently imposed at each endpoint, so, in

reality, there are four possible combinations of boundary conditions: (NN), (ND),

(DN), (DD). Moreover, there is no need to impose the same BC in all the spacetime

directions.

The physical meaning of the two types of BC is clear: an endpoint with a Dirich-

let boundary condition is fixed, selecting a privileged point and hence breaking

Poincaré invariance. On the other hand, a Neumann boundary condition signifies

that no momentum flow is allowed at the end of the string.

At this point, we are ready to introduce the so-called D-branes. Consider a configu-

ration in a d-dimensional theory, where (p+1) spacetime dimensions Xm,m = 0, . . . , p,

have NN boundary conditions, while the remaining (d − p − 1) directions Xα, α =

p+1, . . . , d−1, obey DD boundary conditions. The open string endpoints are then fixed

in the DD spacetime directions but can move freely in the (p+1) NN directions. Hence
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we have a (p+1)-dimensional hypersurface on which the string endpoints move. This

hypersurface actually defines a Dp-brane, with D standing for Dirichlet. We will discuss

D-branes in more detail in section 2.4.

Consistently introducing the world-sheet fermions ψM =
(ψM

+

ψM
−

)
to the action requires

suitable boundary conditions. Since the fermionic part of the action, and hence the rele-

vant equations of motion, are quadratic in the fermionic variations, the fermions can be

either periodic or antiperiodic along the length of the string (σ−direction). Once again,

we distinguish between the closed and open string cases, and the fermionic boundary

conditions for the chiral fermion ψ+ and the antichiral fermion ψ− are as follows:

• For the closed string, the chiral and antichiral fermions do not mix. Hence we have

the following:

– Ramond (R) boundary conditions:

ψM+ (σ) = +ψM+ (σ + 2π), (2.1a)

ψM− (σ) = +ψM− (σ + 2π), (2.1b)

– Neveu-Schwarz (NS) boundary conditions:

ψM+ (σ) = −ψM+ (σ + 2π), (2.2a)

ψM− (σ) = −ψM− (σ + 2π). (2.2b)

These boundary conditions can be chosen independently for each spinorial compo-

nent, so, in total, there are four possibilities: (R, R), (R, NS), (NS, R), (NS, NS).

Poincaré invariance requires that all spacetime dimensions obey the same bound-

ary condition.

• For the open string, there is mixing between the chiral and antichiral fermions, and

the admissible boundary conditions are ψM+ (σ)
∣∣
∂Σi

= ±ψM− (σ)
∣∣
∂Σi

. One should

also impose Neumann or Dirichlet boundary conditions on the fermions at each

endpoint. Splitting the d spacetime indices M = (α, i) into (p + 1) Neumann

directions with α = 0, . . . , p, and (d − p − 1) Dirichlet directions with i = p +

1, . . . , d− 1, we define the matrix DMN = (ηαβ,−δij). Using this auxiliary matrix,

one can summarize the boundary conditions for the open string as

ψM+ (0) = DM
Nψ

N
− (0), (2.3a)

ψM+ (2π) = ηDM
Nψ

N
− (2π), (2.3b)

where the η-value in equation (2.3b) above encodes the fermionic boundary condi-

tions:

– Ramond (R) boundary conditions: η = +1,

– Neveu-Schwarz (NS) boundary conditions: η = −1.
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Implications

Starting from a (supersymmetric) string action, we can schematically summarize the

computation of the quantized spectrum in the following steps: Solution of equations

of motion and selection of BC, mode expansion of the fields, construction of the cre-

ation/annihilation operators and the (super-)Virasoro generators, determination of the

ground states, generation of the full Hilbert space by acting on ground states with cre-

ation operators and imposing additional physical conditions.

During this quantization procedure, the fermionic boundary conditions become par-

ticularly important, as both the value of the ordering constant in the super-Virasoro

algebra and the modes entering the mode expansion of the fermionic fields are different

for the NS and R sectors. These dissimilarities between the two sectors translate into

a major difference in the respective vacuum representations. In particular, the Ramond

sector ground state |0⟩R is degenerate and turns out to be a representation of the Clif-

ford algebra. When constructing the open string spectrum, states in the NS sector are

spacetime bosons, while R states correspond to spacetime fermions. The closed string

spectrum is constructed analogously, considering two copies of the open string spectrum

and tensoring them. In that case, states in the (R, R) and (NS, NS) sectors are spacetime

bosons, while states in the mixed sectors (NS, R) and (R, NS) correspond to spacetime

fermions.

2.2.2 GSO Projection

At this point, one can straightforwardly compute the masses of the lowest-lying states.

However, the spectra initially constructed this way are pathological due to violating

modular invariance and including tachyons. Fortunately, there is a way to tackle these

problems systematically, called the Gliozzi-Scherk-Olive (GSO) projection [48, 49]. To

perform this projection, which truncates the spectrum and makes it spacetime super-

symmetric, one relies on the world-sheet fermion number F operator. More specifically,

one uses the operator (−1)F , which effectively counts whether the number of fermions

in the world-sheet is even or odd.

In practice, the GSO projection selects the allowed eigenvalue of (−1)F in each

state. For the NS sector of the open string, the physically admissible states are those

with (−1)F = +1 so that the tachyon is automatically removed. However, in the R

sector, there are two consistent choices, namely (−1)F = +1 and (−1)F = −1, giving

rise to states of different chiralities.

For the closed string, the spectrum arises by taking the tensor product of two open

string spectra. Now, instead of only having to fix the eigenvalues of (−1)F , we also need

to fix the eigenvalues of (−1)F̄ , i.e., we treat the left- and right-movers separately. The

NS states have all (−1)F = (−1)F̄ = +1, while for the R states the eigenvalues can
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be either ±1, so two inequivalent options arise: (−1)F = (−1)F̄ and (−1)F = −(−1)F̄ .

The former option gives rise to Type IIB superstring theory and the latter to Type IIA

superstring theory.

2.3 A few words on dualities

Dualities are among the most striking features of string theory and embody the fact

that seemingly different theories can be viewed as just distinct incarnations of the same

underlying theory in different regions of the moduli space. Dualities often become evident

upon compactifying some spacetime dimensions. We will discuss compactifications down

to four dimensions in more detail in chapter 3, but here we illustrate some basic concepts

by considering the simplest possible example, the compactification of just a boson on a

circle S1 of radius R.

2.3.1 Compactification on S1

Suppose we have the closed string bosonic fields XM , M = 0, . . . , d − 1 and consider

a compactification on a circle of radius R along the last spatial direction. For the

first d − 1 directions we have Xm(σ + 2π, τ) = Xm(σ, τ),m = 0, . . . , d − 2, while for

the (d − 1)-direction the string may also wrap the circle w times, so we have the less

restrictive periodicity condition Xd−1(σ + 2π, τ) = Xd−1(σ, τ) + 2πRw, where w ∈ Z
is called winding number. The spacetime momentum along the circle, pd−1, also called

internal momentum, now has to be quantized, i.e., pd−1 = n
R with n ∈ Z, to ensure the

wavefunction remains single-valued.

The compactification has many profound implications for the theory. It is beyond

the scope of the thesis to delve into such details, and we refer to the textbooks cited at

the beginning of this chapter for more insights. Here, we mention two very basic facts.

First, additional states appear in the theory, purely due to the compactification: in our

specific case, the Kaluza-Klein reduction (see for example [50]) gives two new massless

vectors, giving rise to a U(1)L×U(1)R symmetry, and a new scalar related to the radius

R, which is a modulus of the compactification. Moreover, in the first winding sector

n = w = ±1 and satisfying the level-matching constraint, we get additional states with

masses related to the compactification radius as

α′m2(R) =
α′

R2
+
R2

α′ − 2. (2.4)

There is a radius of special importance, R =
√
α′, the so-called self-dual radius. At this

point, states coming from the non-trivial winding sector become massless. In particu-

lar, we have four new massless vectors and eight new massless scalars, and the gauge

symmetry in the bosonic string case is enhanced to SU(2)L × SU(2)R.
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2.3.2 Compactification on S1/Z2

A straightforward way to reduce the amount of supersymmetry in the compactified

theory is by using orbifolds, i.e., spaces of singular geometry, arising as quotients of

manifolds by discrete groups. The orbifold action kills some supercharges so that the

lower-dimensional effective field theory has the desired amount of supersymmetry. Here

we illustrate some of the key features by sketching the case of the simplest example:

Compactifying a free boson X on a Z2-orbifold of the circle.

Consider a free boson X(σ, τ) compactified on S1, and a Z2 symmetry acting by

I1 : X(σ, τ) → −X(σ, τ). (2.5)

Gauging the discrete symmetry and taking the quotient, one identifies the fields X(σ, τ)

and −X(σ, τ). This can alternatively be viewed as compactifying on the Z2−orbifold of

the circle, which is a line segment with two fixed points at its ends. This action eliminates

the states of the Hilbert space which are not invariant under I1. However, it turns out

that the one-loop partition function constructed out of the remaining I1-invariant states

is not modular invariant. To fix this, one should include the twisted sector, which

includes new states, localized at the fixed points of the orbifold, contributing to the

partition function exactly in the way required to restore modular invariance. Moreover,

since there are two fixed points under the projection, the twisted sector states have a

two-fold degeneracy. This is a generic fact that will also persist in more involved orbifold

or orientifold compactifications.

2.3.3 T-duality

For the circle compactification, as is evident from equation (2.4), the mass spectrum

stays invariant under the transformation R→ α′

R , with the simultaneous exchange of the

momentum and winding mode quantum numbers w ↔ n. This is a particular incarnation

of the famous T-duality (see [51,52] for reviews), with the self-dual radius being the fixed

point of the transformation. This shows that the inequivalent circle compactifications

are those with either 0 < R ≤
√
α′, or, alternatively, with

√
α′ ≤ R.

Going one step further, one should look into how the mode expansions transform

under T-duality and generalize this to the superstring. This happens in a systematic

way, which we summarize below: For the bosonic modes, the left-moving sector remains

invariant, while the right-moving one picks up a minus sign: (XL, XR) → (XL,−XR).

Supersymmetry forces the world-sheet fermions to transform similarly as (ψ−, ψ+) →
(ψ−,−ψ+). This directly relates to the GSO projection since for T-duality along a

single circle the operator (−1)F picks up an extra sign. The GSO projections for type

IIA and type IIB theories are now exchanged, so we have that type IIB compactified

on a S1 of radius R is T-dual to type IIA on S1 of radius α′

R . This can be generalized
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to a higher number of compact dimensions; The two type II superstrings keep getting

exchanged under an odd number of T-dualities, while under an even number of T-

dualized dimensions they are mapped to themselves. However, one should keep in mind

that when compactifying on manifolds more complicated than S1 additional consistency

conditions arise. For instance, for TD, only even self-dual momentum lattices can occur.

Finally, as a nod to section 2.4, we note that the open string boundary conditions are

altered under T-duality. In particular, Dirichlet boundary conditions turn into Neumann

boundary conditions and vice versa.

2.3.4 The bigger picture: Duality web and M-theory

Our discussion of T-duality has made clear that a duality is some exact quantum equiv-

alence between two theories that initially seem to be different, by having, for instance,

different fundamental degrees of freedom, but in reality, are two incarnations of the same

theory in different regimes of the moduli space. Moreover, some clear prescription for

transitioning back and forth between the two duality frames should exist.

Through a non-trivial web of dualities, it can be shown that the five superstring

theories introduced in section 2.1 are not stand-alone theories but rather form nodes of

a so-called duality web, pictured in figure 2.1. Notice that this figure, apart from the

five superstring theories, also includes 11-dimensional supergravity. Extensive reviews

of the web of string dualities can be found, for instance, in [53–56], while here we only

provide a very brief overview.

Figure 2.1: Web of superstring theories and M-theory.

T-duality is a perturbative duality, i.e., it holds order-by-order in string perturbation
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theory. Apart from the two type II theories being T-dual to each other, it turns out that

also the two heterotic theories are T-dual upon compactification on a circle, hence related

at the perturbative level. Additional connections between theories can be uncovered

upon taking into account non-perturbative dualities, which map weakly-coupled theories

to strongly-coupled dual theories and vice versa. S-duality is such a non-perturbative

duality. Type IIB theory turns out to be self-dual under its action, while type I is S-dual

to Het(SO(32)).

M-theory

Let us step back and assume an 11-dimensional N = 1 theory exists. Then, type

IIA string theory, as a 10-dimensional non-chiral N = 2 theory, can be viewed as the

compactification of the postulated 11d theory on a circle. This 11d theory is the famous,

yet elusive, M-theory. The lowest-lying bosonic states of M-theory are known and form

the spectrum of 11d supergravity, which appears already in figure 2.1. They are the

metric Gµν and a 3-form field C3. A 2-brane, called M2-brane, charged under C3.

After the compactification, one additionally gets the scalar modulus corresponding to

the radius of the circle, as well as a vector and a 2-form. This is precisely the massless

bosonic content of type IIA. Interestingly, the IIA coupling constant relates to the size

of the circle, and in particular, the strong coupling limit in IIA corresponds to the circle

decompactifying and the 11th dimension opening up. Moreover, D0-branes in type IIA

are KK-modes of M-theory along the circle. Similarly, Het(E8 × E8) can be related to

M-theory compactified on a circle modded out by reflection.

F-theory

Since the relation of type IIA and heterotic theories to M-theory is established, one might

wonder how type IIB can make contact with M-theory. The answer lies in F-theory [57],

a non-perturbative formulation of type IIB theory, dual to M-theory.

F-theory provides a geometric interpretation of the SL(2,Z) symmetry of type IIB

by identifying it to the geometric symmetry of a torus. More specifically, F-theory is

postulated to be a 12-dimensional theory, which, upon compactification on a torus with

modulus τ , turns out to give type IIB. However, there are certain subtleties: the torus is

not completely geometric since there is no modulus corresponding to its volume, so in a

sense, the 12-dimensional theory is not truly physical, but it rather presents a convenient

way to study compactifications of type IIB to lower dimensions. The correspondence of

F-theory to M-theory also becomes clear upon compactification: M-theory compactified

on an elliptically fibered manifold M is equivalent to F-theory compactified on M ×S1.

F-theory has turned out to be a very powerful way to study non-perturbative string

compactifications in their geometric regime. Many interesting results can be found in
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the reviews [58, 59]. For future use in chapter 6, let us mention that F-theory on an

elliptically fibered Calabi-Yau fourfold is equivalent to type IIB compactified on the

base of the fourfold.

2.4 Branes and basic properties

2.4.1 Branes as charged objects

Up to now, we have only considered D-branes as the hypersurfaces on which open strings

end. In reality, they are much more than that, as they are dynamical objects that interact

gravitationally and are charged under higher-form fields [60].

Let us consider a generic p-brane2. Using the same conventions as for Dp-branes in

section 2.2.1, a p-brane is a (p+ 1)-dimensional object with world-volume Σp+1, where

p directions are spatial. Hence this brane couples electrically to a (p + 1)-form Cp+1.

The associated field-strength is Fp+2 = dCp+1; hence the (electric) charge of the brane

is given by integrating over a (d− p− 2)-dimensional sphere, as

Qe =

∫
Sd−p−2

⋆Fp+2. (2.6)

This is a straightforward generalization of Gauss’s law: One recovers the usual point-

particle case simply by taking p = 0.

Similarly to the usual 0-form gauge symmetry, the p-form gauge symmetry can also

have objects magnetically charged under it. The dimensionality of these objects is

(d−p−3), where (d−p−4) dimensions extend spatially - we hence have (d−p−4)−branes.

To see this, it suffices to consider the Hodge dual to the field strength ⋆Fp+2 = F̃d−p−2,

which in turn corresponds locally to the magnetic (d−p−3)-form potential via F̃d−p−2 =

dÃd−p−3. The magnetic charge is now given as

Qm =

∫
Sp+2

⋆F̃d−p−2 =

∫
Sp+2

Fp+2. (2.7)

Let us briefly summarize what higher-dimensional objects one has to consider for

superstring theories. The dimensional analysis shows that 0-forms couple electrically

to (-1)-branes and magnetically to 7-branes, 1-forms couple to electrically to 0-branes

and magnetically to 6-branes, 2-forms couple electrically to strings and magnetically

to 5-branes, 3-forms couple electrically to 2-branes and magnetically to 4-branes, and,

finally, 4-forms couple both electrically and magnetically to 3-branes.

In type IIB we are dealing with the even Ramond-Ramond potentials, C0, C2, C4,

while type IIA includes the odd fields C1, C3. Moreover, both type II theories also

include the NS-NS 2-form field B, projected out in type I.

2For the time being, we keep the type of the brane open: It could, for instance, be a D-brane or an

NS-brane.



2.4 Branes and basic properties 19

The NS-NS 2-form B couples to the string world-sheet, i.e., the fundamental string

F1 is charged under B3. The magnetic dual to the fundamental string now couples to

B̃10−2−2 = B̃6, i.e., is a 5-brane. This object is conventionally called the NS5-brane.

Unlike the NS-NS gauge fields, the R-R gauge fields do not couple to the string

world-sheet, but instead, they couple to higher-dimensional non-perturbative objects,

i.e., the D-branes. Type IIA then includes D2-, D4-, D6- and D8-branes, while type IIB

includes D(-1)-instantons and D1-, D3-, D5-, D7- and D9-branes. All the aforementioned

D-branes are supersymmetric and referred to as BPS D-branes.

The type I superstring theory arises by projecting type IIB states onto those invariant

under Ω : σ → l−σ, i.e., the states in the theory exhibit a world-sheet parity symmetry.

This projects away the NS-NS two-form B2 and the R-R C4. The BPS spectrum of

the type I theory then includes D1-, D5-, and D9-branes. In fact, the consistency of the

theory requires including D-branes together with appropriate charge-canceling O-planes.

2.4.2 D-branes and T-duality

One may wonder what happens to D-branes under T-duality. As mentioned in section

2.2.1, T-duality exchanges the Dirichlet and Neumann boundary conditions along the

direction it is performed. Hence, what happens to the D-brane depends on how it is

spatially located. Let us explain how this works with a simple, concrete example, keeping

in mind that the discussion generalizes in the expected fashion.

Suppose we initially consider a type IIB D3-brane and perform T-duality along the

single dimension X9. We expect the brane to transform into a Dp-brane with even p

since these are the objects present in type IIA. Two distinct options exist regarding

the placement of the D3 in spacetime, namely whether it extends along the T-dualized

dimension X9 or is localized in it. If the D3 extends along X9, this direction initially has

N boundary conditions that will become D boundary conditions. Hence the dimension

of the T-dual brane will be reduced by 1, i.e., it is a D2-brane. Conversely, if the brane

is initially transverse to X9, the initial boundary condition is D and flips to N, so the

T-dual brane will also extend along that direction. Hence, its dimensionality increases

by 1 to a D4-brane.

2.4.3 D-branes and gauge bundles

As we have already seen, D-branes can be viewed as the submanifolds on which open

strings end. One can consider several configurations, including stacks of branes, possibly

parallel or intersecting. In the case of a stack of N coincident Dp-branes, the endpoints

3Here the charged object corresponds to p = 1 - it is common to refer to the object as “string”

and not as “brane” in such cases. Similarly, for p = −1, the charged objects are often referred to as

“instantons”.
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of the string may be in any of the N branes. This is directly reflected in the quantized

spectrum of the string, which includes gluons that transform under a U(N) symmetry.

The way to quantify this is by using the so-called Chan-Paton factors [61], which prac-

tically are N × N matrices used as a basis in the string wavefunction expansion [62].

More importantly, the gluon configurations are described by a U(N) gauge bundle E,

which is a vector bundle that assigns a copy of CN at each point of the worldvolume of

the stack of the N Dp-branes. This gauge bundle that comes hand in hand with every

D-brane will become very significant regarding the classification schemes of D-branes.

2.5 Brane and charge classification schemes

In this section, we will briefly review two classification schemes for D-branes4, follow-

ing [63, 64] to a large extent. The homology classification is the older, yet phenomeni-

cally simpler, scheme for brane classification. The more recently proposed K-theory

classification, while slightly mathematically more involved, is suitable for addressing the

shortcoming of the homology classification and, as we will extensively discuss in chapter

6, naturally relates to cobordism.

2.5.1 Homology classification

Consider type II superstring theory, and suppose the spacetime topology is R×M9, where

R corresponds to the non-compact time direction and M9 is a compact manifold. This

ansatz allows for an evolution of the metric with time yet disallows topology-changing

processes. A p-brane will now extend along the time direction and wrap a p-dimensional

submanifold of M , which determines the charge carried by the brane. According to [65],

a brane, which carries a homology charge, is consistent if it does not have a boundary,

i.e., the submanifold wrapped by the brane does not have a boundary. By definition, a p-

submanifold without a boundary is a p-cycle. Moreover, the charge needs to be conserved

under small, continuous deformations of the p-cycle, i.e., the charge for homotopic cycles

is the same. At this point, one could think that a homotopic classification of charges

might be appropriate.

However, it turns out that not all non-trivial homotopy classes correspond to con-

served charges, i.e., branes initially wrapping those cycles can decay and are unstable.

In particular, the p-cycles that correspond to unstable branes are precisely those which

are themselves boundaries of (p + 1) submanifolds of M . This naturally leads to the

homology classification, since the homology group of M Hp(M) is defined as the group

4The classifications here have been proposed in several versions, regarding D-brane charges, D-brane

trajectories, or RR-fields. In this section, for concreteness, we will mostly focus on the classification of

D-brane charges.
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of p-cycles modulo cycles which are boundaries of (p+ 1)−submanifolds in M .

Homology groups are finitely generated abelian groups. As such, they are sums of

copies of the integers and copies of finite-order cyclic groups, according to

Hp(M) = bpZ⊕i kiZpi , (2.8)

where bp is the pth Betti number (defined in appendix A). The first part of this sum

is called the free part, while the second is the torsional part. A non-trivial homology

group signals that branes can be charged under this group. However, consider Hp = Zk.
Then, k-coincident p-branes would have a trivial charge, i.e., they can annihilate, which

physically translates into the emission of radiation. These torsionally charged branes

break all supersymmetry and are often called non-BPS branes.

There is one important subtlety one needs to take into account, and that is the

coefficients of the homology group. In the last paragraphs, we implicitly took integer

coefficients in the homology group, i.e., we discussed integral homology classesHp(M,Z).
This can be generalized to homology groups with any abelian group G as the coefficients,

i.e., Hp(M,G). The choice of G relates to the theory we are dealing with: Integer

coefficients become necessary whenever a Dirac quantization condition exists, like in

quantum gauge theories. On the other hand, theories such as supergravities, which arise

as the classical limits of superstring theories, do not require integral coefficients.

In particular, p-branes in supergravity are classified by real homology Hp(M ;R), i.e.,
homology with real coefficients. Real and integral cohomology are related by tensoring

with R, which kills the torsion part of the integral homology. Hence, the non-BPS branes,

which carry only torsional charge, are unstable in the classical/supergravity limit.

Finally, let us remark that even though the homology classification has been very

successful, there are some finer points it does not address satisfactorily. Some of the

charges it classifies correspond to branes that are anomalous [66], hence not physically

realized. Moreover, it also contains some charges that are not conserved [67]. Hence,

the true group classifying the p-brane charges should schematically be the homology

group minus the classes corresponding to anomalous branes, quotiented by the unstable

branes. This leads to a K-theoretical classification of charges.

2.5.2 K-theory classification

Basics of K-theory

Let us provide some basic definitions regarding (topological) K-theory, mainly follow-

ing the reviews [63, 64, 68], supplemented with material by Hatcher [69]. The material

presented here is very much physics-oriented and motivated. For the mathematically

inclined reader, we point to references such as [70] and the book by Atiyah [71].
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For concreteness, the definitions below concern complex K-theory. KO-theory, also

known as real K-theory, is defined similarly yet has slightly different properties and

additional intricacies. We will comment on that in due time.

K-theory is a generalized cohomology theory classifying vector bundles over a space

X. Consider a complex vector bundle E over the manifold X. Given a second bundle F

over the same base manifold X, one can construct a new vector bundle E ⊕ F over X

by taking the direct sum of the vector spaces fiberwise. Hence the “summation” of two

vector bundles is straightforward. The “subtraction”, which becomes relevant in string

theory for brane/antibrane stacks, is more complicated.

Subtracting two bundles E,F should be equivalent to adding a third bundle G to

both and then subtracting the direct sums. Denoting the subtraction operation by

(E,F ), this requirement translates to

(E,F ) = (E ⊕G,F ⊕G). (2.9)

Hence one can define addition and subtraction for pairs of complex vector bundles as

follows:

Addition :(E,F ) + (E′, F ′) = (E ⊕ E′, F ⊕ F ′), (2.10a)

Subtraction :(E,F )− (E′, F ′) = (E ⊕ F ′, F ⊕ E′). (2.10b)

Under the addition operation, the space of pairs of bundles (E,F ) gains a group struc-

ture. The pair (0, 0), 0 being the trivial bundle of rank 0, is the identity element,

while the inverse of an element (E,F ) is (F,E) = −(E,F ) since (E,F ) + (F,E) =

(E ⊕F, F ⊕E) = (G,G) = (0, 0). The group defined above, using the equations 2.10, is

the K-theory of X, denoted K0(X). The simplest choice is to set X = pt, which leads

to K0(pt) = Z.
Up to now, no specifications on the dimensions of the bundle have been set. Imposing

additionally that the ranks of the bundles in a pair are the same leads to the reduced

K-theory group K̃(X). More specifically, consider the map

φ[(E,F )] = rank(E)− rank(F ), (E,F ) ∈ K(X) . (2.11)

The reduced K-theory group is then defined as K̃(X) ≡ kerφ, where map φ is surjective

and the short exact sequence

0 → K̃(X) → K(X)
φ→ K(pt) → 0, (2.12)

is split. One then gets the Splitting Lemma for K-theory

K(X) = K(pt)⊕ K̃(X). (2.13)
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Higher K-theory groups

One can define higher reduced K-theory groups using the reduced suspension Σ. In

particular, the reduced higher K-theory groups are given by

K̃−n(X) = K̃(ΣnX) , (2.14)

for n ∈ Z, n ≥ 0. The higher K-theory groups have all negative indices, so the cobound-

ary maps increase dimension. Using the properties of the reduced suspension (see ap-

pendix C.4) and the known relation K(X) = K̃(X ⊔ pt) one can also define the higher

unreduced groups of the point in terms of the reduced groups of spheres Sn:

K̃(Sn) = K̃(ΣnS0) = K−n(pt), (2.15)

Plugging everything together, one can see that the splitting lemma also holds for the

higher groups

K−n(X) = K−n(pt)⊕ K̃−n(X). (2.16)

Finally, the (higher) K-theory groups satisfy Bott periodicity

K−n(X) = K−n+2(X). (2.17)

As we will see soon, the Bott periodicity is directly reflected in the spectrum of branes

in string theory.

Real K-theory

Without entering any subtleties, let us mention that real K-thory, conventionally also

known as KO-theory, is defined analogously to complex K-theory, with the notable differ-

ence that it now concerns real bundles. One can similarly define the reduced KO-theory

groups and the Splitting Lemma still applies, while the reduced suspension once again

defines the higher KO-theory groups. We summarize the relevant relationships below:

K̃O
−n

(X) = K̃O(ΣnX),

K̃O(Sn) = K̃O(ΣnS0) = KO−n(pt),

KO−n(X) = KO−n(pt)⊕ K̃O
−n

(X).

(2.18)

Finally, we remark that Bott periodicity is also a property of KO-theory, but this

time the period is different:

KO−n(X) = KO−n+8(X) . (2.19)

Let us close this section by presenting the K- and KO-theory groups for 0 ≤ n ≤ 10

in table 2.2, where Bott periodicity becomes evident.
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n 0 1 2 3 4 5 6 7 8 9 10

KO−n(pt) Z Z2 Z2 0 Z 0 0 0 Z Z2 Z2

K−n(pt) Z 0 Z 0 Z 0 Z 0 Z 0 Z

Table 2.2: K- and KO-groups of the point up to n = 10.

K-theory and charges

Let us now sketch how the K-theory groups of table 2.2 correspond to physical objects,

mainly following Witten’s arguments in [72], which builds upon the Sen Conjecture [73]

and the proposal by Minasian and Moore [74] that K-theory classifies R-R charges in

type II theories.

Let us consider type II superstring as our working theory. The simplest case of inter-

est is a p-brane and an anti-p-brane wrapped on the same submanifold W of the space-

time X. The system can be described by the quantized spectrum of the strings extending

between the two branes, i.e., we have the following four options (p, p), (p̄, p̄), (p̄, p), (p, p̄).

For the two strings starting and ending on the same object, i.e., the (p, p), (p̄, p̄) cases, the

usual GSO projection kills the NS sector tachyon. However, the mixed states (p̄, p), (p, p̄)

require the opposite GSO projection, and the tachyon survives. This signals that the

system is unstable, and the brane/antibrane pair is expected to annihilate. This setup

can be directly generalized to n p-branes and n anti-p-branes. The absence of D-brane

charges for the total system imposes that both stacks carry the same (on a topologi-

cal level) bundle E, and, once again, the (p, p̄)-sector tachyon is expected to cause the

system to annihilate.

Focusing on the IIB case, we can take p = 9 and consider some configuration of

n D9/n̄ D9-branes. Requiring tadpole cancellation fixes n = n̄, and we denote the U(n)

gauge bundle on the brane stack by E and the one on the antibrane stack by F . The

system is now characterized by the pair (E,F )5.

In order to classify the D-brane charge, we need to classify these pairs of bundles

modding out the effects of relevant physical processes, i.e., brane-antibrane creation and

annihilation. As we have just explained, a pair of n′ 9-branes and n̄′ = n′ anti-9-branes

carrying the same gauge bundle H are equivalent to the vacuum due to the presence

of the tachyon. Hence, the pair (E ⊕ H,F ⊕ H) should describe the same system as

(E,F ): This is the equivalence relation precisely defining K-theory. More precisely, since

tadpole cancellation requires that the ranks of the two bundles E,F are the same, one

reaches the conclusion that the tadpole-canceling 9 − 9̄ configurations are classified by

reduced K-theory K̃(X), while we can more generally say that in general type IIB 9− 9̄

5This discussion can become more accurate in the language of modules. Here for simplicity, we only

mention bundles and we refer to [64] for a more mathematically precise description.
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configurations are classified by K-theory K(X)6.

We can now turn our attention to type I and IIA theories. For type I, the general-

ization is straightforward since the theory also admits spacetime-filling 9-branes. Now,

a configuration with n 9-branes and n̄ 9̄-branes requires n − n̄ = 32 for tadpole cancel-

lation. Moreover, the stacks admit SO(n) and SO(n̄) gauge bundles, respectively. In

general, 9− 9̄ configurations are classified by KO-theory KO(X), while imposing tadpole

cancellation leads to the reduced group K̃O(X).

The situation in type IIA is a bit more complicated since no spacetime-filling branes

exist. However, this can be bypassed by considering bundles on X × S1. Now a type

IIA p-brane with p even will wrap an odd-dimensional submanifold Z ⊂ X. This can be

extended to Z ′ = w×Z ⊂ S1×X where w is a point in S1, which is of even codimension

in S1 ×X. Hence a brane wrapped on Z ′ determines an element of the higher K-theory

group K(S1 ×X) = K1(X), and, in general, D-brane charges of type IIA are classified

by K−1(X).

Finally, one needs to consider branes of higher codimensions. To this end, Sen’s

construction [75] is particularly useful. It allows to view lower-dimensional p-branes

with p < 9 as bound states of 2k−1 (p + 2k)-brane/antibrane pairs. The intricacies of

such constructions, especially at the global level, go beyond the scope of this thesis, and

here we merely present the main result:

• Type IIB Dp-brane charges are classified by K̃(S9−p).

• Type IIA Dp-brane charges are classified by K̃(S10−p) = K̃−1(S9−p).

• Type I Dp-brane charges are classified by K̃O(S9−p).

In all the cases above, the p-branes are pointlike with respect to Sn. We summarize the

type II and type I brane spectra and their respective K-theory charges in table 2.3.

2.6 Effective actions

The full superstring theories, with their infinite towers of massive states, are particularly

hard to work with. In practice, one often works at a specific energy regime where an

EFT description is possible. For string phenomenology, one is in a low-energy regime,

where “low” now means “much below the string scale Ms”, where one can safely dis-

regard the contributions of massive states. Provided the theory is weakly coupled and

higher-curvature corrections can be consistently ignored, there is a very convenient EFT

description of string theory in the form of supergravity actions. At leading order in α′, the

6To be more precise, one often needs to consider K-theory with compact support since X can be

non-compact.
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n 0 1 2 3 4 5 6 7 8 9 10

K̃O(Sn) Z Z2 Z2 0 Z 0 0 0 Z Z2 Z2

Type I D-brane D9 D̂8 D̂7 - D5 - - - D1 D̂0 D(̂−1)

K̃(Sn) Z 0 Z 0 Z 0 Z 0 Z 0 Z

Type IIB D-brane D9 - D7 - D5 - D3 - D1 - D(−1)

Type IIA D-brane D10 - D8 - D6 - D4 - D2 - D0

Table 2.3: KO- and K-theory classes and respective branes. Hats indicate non-BPS

branes.

only dimensionful parameter of the action, the EFT action can be derived by exploiting

spacetime and gauge symmetries and imposing conditions such as anomaly cancellation.

Imposing that the effective action reproduces the string theory amplitudes in the α′ → 0

limit is another way of determining the EFT action. The supergravity actions are not

the only relevant EFT actions. One can also find an EFT description for the localized

objects of the theory, namely the D-branes: this is the so-called Dirac-Born-Infeld (DBI)

action.

2.6.1 10d supergravity actions

Type IIB supergravity

The low-energy EFT corresponding to type IIB string theory is the so-called type IIB

supergravity. It is a (2,0) chiral supergravity theory. The 10d massless bosonic field

content of type IIB string theory is the graviton GMN , the 2-form B2 with field strength

H3 = dB2, and the dilaton ϕ in the NS-NS sector, and the even forms Cn, n = 0, 2, 4 in

the R-R sector. The field strengths are subsequently given by

F1 = dC0, (2.20a)

F3 = dC2 − C0dB2, (2.20b)

F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2, (2.20c)

where one should keep in mind that F5 is self-dual. Using these fields, one can write the

supergravity action in the string frame as follows:
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SIIB =
1

2κ210

∫
d10x

√
−G
[
e−2ϕ

(
R+ 4(∇ϕ)2 − 1

2
|H3|2

)
− 1

2
|F1|2 −

1

2
|F3|2 −

1

4
|F5|2

]
− 1

4κ210

∫
C4 ∧H3 ∧ F3,

(2.21)

where R is the Ricci scalar, the 10d gravitational coupling κ10 relates to α′ as

κ210 =
(4π2α′)4

4π
, (2.22)

and we denote
√
−G|Fp|2 =

√
−G 1

p!FM1...MpF
M1...Mp = Fp∧∗Fp, with ∗ being the Hodge

star operator for the 10-dimensional metric G. The gauge transformations

δB2 = dζ , δC0 = 0 δC2 = δΛ1 , δC4 = dΛ3 −
1

2
dB ∧ Λ1 +

1

2
dC2 ∧ ζ, (2.23)

leave the action (2.21) invariant, up to a total derivative.

The action (2.21) is composed of two terms, the former being the Ricci scalar and the

kinetic terms of the fields, and the latter being a Chern-Simons term, which is topological.

Importantly, the NS-NS and the R-R fields coupled to the dilaton differently. Moreover,

the self-duality of F5, F5 = ∗F5 needs to be imposed by hand since, for dimensional

reasons, it cannot be included in the action. Since the unconstrained F5 accounts for

too many degrees of freedom, an additional factor of 1
2 in front of the corresponding

kinetic term serves to fix this overcounting. Finally, let us note that the Ricci scalar in

the above action couples explicitly to the dilaton: this defines the so-called string frame.

However, it is possible to rescale the metric in order to go to the one conventionally

known as Einstein frame, where the Ricci scalar appears without coupling to other

fields7. In particular, the required rescaling is

GEMN = e−
ϕ
2GMN . (2.24)

In the Einstein frame, the action explicitly manifests the SL(2,R) symmetry of the

theory. To see this, we need to define the complex scalar τ , called axio-dilaton, and the

three-form G3 as:

τ = C0 + ie−ϕ, (2.25a)

G3 = F3 − ie−ϕH3 = dC2 − τdB2. (2.25b)

In this notation, the IIB supergravity action assumes the form:

SIIB =
1

2κ210

∫
d10x

√
−GE

(
RE − ∂Mτ∂

M τ̄

2
(
Im(τ)

)2 − 1

2

|G3|2

Im(τ)
− 1

4
|F5|2

)
− i

8κ210

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
.

(2.26)

7A very detailed overview of frames and conventions can be found in [76].
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In equation (2.26), the superscript E stands for Einstein frame. From now on this index

will be dropped since the distinction between the two frames is clear just by looking at

the Einstein-Hilbert term.

Type IIA supergravity

Type IIA supergravity is the low-energy limit of type IIA string theory and is a non-

chiral (1,1) supergravity theory. The NS-NS part of the spectrum is identical to type

IIB, while the R-R forms are now the odd C1, C3. The field strengths are given by

F2 = dC1, (2.27a)

F4 = dC3 − dB2 ∧ C1. (2.27b)

The IIA supergravity action in the string frame is:

SIIA =
1

2κ210

∫
d10x

√
−G
[
e−2ϕ

(
R+ 4(∇ϕ)2 − 1

2
|H3|2

)
− |F2|2 −

1

2
|F4|2

]
− 1

4κ210

∫
B2 ∧ dC3 ∧ dC3.

(2.28)

The gauge transformations which leave (2.28) invariant are:

δB2 = dζ , δC1 = dΛ0 , δC3 = dΛ2 − dBΛ0 . (2.29)

As a side remark, there is a possible deformation of the above action. In particular,

we can consider massive Type IIA supergravity, where a non-vanishing background field

strength F0 = −m is included in the action. This term acts as a mass term, called the

Romans mass [77].

Type IIA 10d supergravity can directly arise by dimensionally reducing 11d super-

gravity. 11d supergravity is considered the low-energy approximation of M-theory, and

the relevant fields, arranged in an 11d supersymmetry gravity multiplet, are the graviton

Ĝ, the 3-form Ĉ3, and the gravitino ψ̂, where the hats indicate we are dealing with 11d

fields. The bosonic piece of the 11d supergravity action is:

S11d =
1

2κ211

∫
d11x

√
−Ĝ
(
R̂ − 1

2
|dĈ3|2

)
− 1

12κ211

∫
Ĉ3 ∧ dĈ3 ∧ dĈ3. (2.30)

Type I supergravity

Let us now discuss type I supergravity. Now, some of the IIB degrees of freedom get

projected out due to being odd under world-sheet parity. On the other hand, there is an

additional SO(32) gauge field AaM and 32 space-filling D9-branes. Hence the supergravity

action will be the sum of two terms, the first similar to IIB supergravity, minus the
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projected-out field contributions, and the second being the super-Yang Mills action for

the gauge fields. Note that now the Chern-Simons term is absent due to B2 being

projected out. In the string frame, the action reads

SI =
1

2κ210

∫
d10x

√
−G
[
e−2ϕ

(
R+ 4(∇ϕ)2

)
− 1

2
|F3|2

]
− 1

2g210

∫ √
−Ge−ϕtrv(|FYM |2).

(2.31)

We have defined FYM = F aYMT
a as the Yang-Mills field strength, the trace runs over

the vector representation of SO(32), and the gravitational and Yang-Mills couplings are

related by
κ210
g210

= α′

4 . Moreover, the 3-form field strength F3 receives two Chern-Simons

correction terms.

F3 = dC2 −
α′

4
(ΩYM − ΩL), (2.32a)

ΩYM = tr
(
A ∧ dA− 2i

3
A ∧A ∧A

)
, (2.32b)

ΩL = tr
(
ω ∧ dω − 2

3
ω ∧ ω ∧ ω

)
. (2.32c)

These two terms combine, ultimately leading to the equation

dF3 =
α′

4

(
trR∧R− trF ∧ F

)
. (2.33a)

2.6.2 Dp-brane effective actions

In this subsection, we will discuss the effective action of a BPS Dp-brane, p ≤ 9. We

will focus on the action of a single Dp-brane so that we do not have to worry about non-

abelian contributions. The action consists of two terms. These are the Dirac-Born-Infeld

(DBI) term, which describes the couplings of the open string degrees of freedom to the

closed string bulk NS-NS fields and is a generalization of Maxwell theory to objects with

higher-dimensional world-volumes, and the Chern-Simons (CS) term, which captures the

couplings to the R-R higher-form fields. We will discuss each of these terms separately,

following [43,78].

DBI action

Let us start by introducing some necessary quantities. First of all, we have a gauge-

invariant field strength

2πα′F = B + 2πα′F. (2.34)

The p + 1 spacetime directions parallel to the brane are labeled by the Greek indices

α, β, . . . ∈ {0, . . . , p}, while the transverse directions are labeled by latin indices i, j, . . . ∈
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{p+ 1, . . . , 9}. The world-volume of the brane is denoted by W and is parametrized by

the coordinates ξα. Moreover, it is embedded in the 10-dimensional spacetime by the

functions XM (ξ), M = 0, . . . , 9. The bosonic part of the DBI action in the string frame

is [79–81]:

SDBI = −Tp
∫
W
dp+1ξe−ϕ(X)

√
−det

(
gαβ(X) + 2πα′Fαβ(X)

)
. (2.35)

Here gαβ = ∂αX
M∂βX

NGMN is the pullback of the string-frame spacetime metric on

the brane world-volume. As for the quantities entering through Fαβ, Bαβ is also pulled-

back to W, while F is just restricted to it. The multiplicative parameter in front of the

integral is the brane tension, which differs between type II and type I branes according

to

T IIp = 2πl−(p+1)
s , (2.36a)

T Ip =
√
2πl−(p+1)

s . (2.36b)

The position and the deformations of the brane in spacetime are parametrized by the

massless bosonic open string modes. These are the (p+1) gauge field components Aα(ξ)

and the (9− p) fluctuations of the transverse coordinates Xi(ξ) respectively.

The two-derivative order Lagrangian can be computed by expanding the determinant

in powers of the field strength. Setting for simplicity the scalars and B to zero, we have

SDBI = −Tp
∫
dp+1ξ

√
−ge−ϕ

(
1 +

1

4
(2πα′)2FαβF

αβ + . . .
)
, (2.37)

which, as expected, is the sum of the vacuum energy (term proportional to the brane

volume) and the gauge field kinetic term.

Chern-Simons action

The Chern-Simons part SCS of the open string effective action, also known as the Wess-

Zumino action, includes all the contributions from the R-R potentials. It is of paramount

importance for the consistency of the theory as it enters the Green-Scwharz anomaly

cancellation mechanism. In the string frame, it is given by [82,83]

SCS = −µp
∫
W
ch(2πα′F) ∧

√
Â(RT )

Â(RN )
∧
⊕
q

Cq
∣∣
p+1

. (2.38)

Above µp is the charge of the Dp-brane and is equal (opposite) to the tension Tp of the

D-brane (antibrane). Moreover, some characteristic polynomials enter equation (2.38).

These are the Chern character ch(2πα′F) = tr(e2πα
′F ) and the A-roof genus Â is the

A-roof genus, which can be expressed in terms of the Pontryagin classes pn. Explicit
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definitions for all the relevant characteristic classes are given in appendix B. The gauge

invariant field strength F is defined as in the DBI action (2.35), and the factor of 2πα′

serves to render it dimensionless. The arguments of Â are the dimensionless curvature

2-forms for the tangent and normal bundles of the brane, denoted by RT = 4π2α′RT =

l2sRT and RN = 4π2α′RN = l2sRN respectively.

The direct sum runs over all R-R potentials present in the theory8, but a (p+1)-form

is effectively picked out due to the integration over W. Note that there is no dependence

on the metric, explicit or implicit, in the Chern-Simons terms. This fact precisely shows

the topological nature of the term, which physically corresponds to the (topological)

charge of the D-brane [60].

2.6.3 Op-plane effective actions

Similarly to D-branes, orientifold planes (O-planes) can also be described by their effec-

tive action since they have tension and are charged under the relevant RR higher form

fields. The most notable difference between the D-brane and the O-plane effective ac-

tions is that O-planes do not have any world-volume fields. Following [43], we introduce

the notation Op(ϵ1,ϵ2), with ϵi = ±1, which allows us to consider orientifold planes with

both signs of charge/tension. Whenever the subscript is omitted, it should be assumed

that ϵ1 = ϵ2 = −1, i.e., the orientifold plane has negative tension and negative charge,

opposite to that of the D-branes. With these conventions, the two parts of the O-plane

effective action are [84]

SOp
(ϵ1,ϵ2)

DBI = −ϵ12p−4Tp

∫
W
dp+1ξe−ϕ

√
−det(gαβ), (2.39)

SOp
(ϵ1,ϵ2)

CS = ϵ22
p−4µp

∫
W

√
L(RT )

L(RN )
∧
⊕
q

Cq
∣∣
p+1

, (2.40)

where now the Hirzebruch L-polynomial (for definition see appendix B) enters the square

root instead of the A-roof genus, which appears in the D-brane case. Both integrals

involve integration over the world-volume W of the O-plane, which is the fixed locus of

the projection creating the O-plane. In contrast to the D-branes, this world-volume is

fixed and does not fluctuate; hence no scalars are needed to parameterize it.

Finally, note that there exists a prefactor of 2p−4 appearing in the actions (2.39), (2.40).

This reflects the fact that multiple Dp-branes are necessary to cancel the charge/tension

of an Op-plane fully. One well-known instance is that of p = 9 in type I, where one has

a single O9-plane extending over the full 10d space, and 32 D9-branes are required to

cancel its charge and tension.

8Here one usually uses all the fields present in the so-called democratic formulation, which is explicitly

self-dual and also includes a C8−p-form for every Cp RR form.
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Chapter 3

Compactifications and Moduli

Stabilization

3.1 Compactifications

Up to this point, we have given a lightning-fast review of some key concepts and ele-

ments of string theory, such as circle compactifications, D-branes, and O-planes. The

absence of conformal anomaly dictates that bosonic string theory is consistent only in

the critical dimension dc = 26, while superstring theory is defined in dc = 10. Reducing

the number of dimensions is usually desired for a phenomenologically relevant effective

field theory. As we have already seen in the circle example, this can be achieved through

compactifications. The details of the particular string compactification are paramount

for the physics of the four-dimensional theories, as they influence not only the spectrum

but also properties such as the amount of supersymmetry and the effective cosmological

constant. The study of string compactifications is interconnected with the richness of

the string landscape, so now we delve into a slightly more systematic view of the topic.

Useful resources for the study of string compactifications and their physical implications

include, among others [43,47,85–87].

3.1.1 Compactification manifolds

The starting point in a typical string theory compactification is the assumption that

the spacetime can be viewed locally as a product of two manifolds, one being a possi-

bly non-compact four-dimensional spacetime that preserves Poincaré invariance and the

other being a compact (dc− 4)-dimensional manifold, according to Mdc = M4×Kdc−4.

Compactness may be avoided if Kdc−4 has finite volume, which can be achieved for

non-compact manifolds with strong enough warping. The manifold on which we com-

pactify is conventionally called compactification or internal manifold. Under this simple
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assumption, the total metric takes the form

ds2 = gµνdx
µdxν + g̃mn(y)dy

mdyn , (3.1)

where XM = (xµ, ym), with xµ the four non-compact directions and ym the internal

directions. It would be naive to think that any compact manifold can be a compact-

ification manifold - as we have seen, string theory is often remarkably restrictive. In

practice, the following constraints should be respected:

– The size of the compact dimensions should be “moderate”: They cannot be too

large, as multiple large extra dimensions could be at odds with experiments [88].

On the other hand, considering manifolds of size smaller than the string scale

would also pose a significant hindrance invalidating the particularly convenient

supergravity description and necessitating quantum corrections.

– Supersymmetry necessitates the existence of a Killing spinor ϵ, i.e., a spinor which

satisfies ⟨∇M ϵ⟩ = 0 with∇M the covariant derivative on spinors. On a Riemannian

manifold, a necessary condition for this is the triviality of the Ricci tensor Rmn = 0,

i.e., the internal manifold needs to be Ricci-flat. Ricci-flatness is also useful from

a CFT viewpoint, as it, e.g., ensures Weyl invariance.

– A Killing spinor is a nowhere-vanishing covariantly constant spinor. A covariantly

constant spinor ϵ must be a singlet under the holonomy group H of the compact

manifold. For connected Riemann m-manifolds H ⊆ O(m), while if we impose that

the manifold is also oriented, we have H ⊆ SO(m). For a six-dimensional internal

manifold, if the holonomy group is reduced to SU(3) instead of SU(4) ∽ SO(6),

the existence of ϵ is guaranteed.

The so-called Calabi-Yau manifolds fulfill all the properties above1.

Definition:

A Calabi-Yau (CY) manifold X of dimension n is a Kähler manifold with

vanishing first Chern class c1(X) = 0.

The CY n-folds with n up to 4 are relevant for superstring compactifications. For

n = 1, there is a unique CY, the torus T 2. For n = 2, there is the (trivial) case of T 2×T 2

and the topologically unique so-called Kummer or K3 surface. For n = 3, however,

billions of CY3 manifolds have been enumerated, but whether this set is finite has not

been settled yet. Finally, the computational complexity increases dramatically for n = 4,

1In appendix A complex, Kähler and Calabi-Yau manifolds are discussed in more detail, while

appendix B explains characteristic classes, including the Chern classes.
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1

Figure 3.1: Hodge diamond of a Calabi Yau twofold K3.
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1

Figure 3.2: Hodge diamond of a Calabi Yau threefold CY3.

which is of interest for F-theory compactifications. While there is no known analytic

expression for the metrics of the non-trivial Calabi-Yau manifolds, recently, there have

been systematic attempts (see, e.g., [89–91]) to compute numerical CY metrics using

machine learning.

As discussed in appendix A, the topological data for complex manifolds are encoded

in their Hodge diamonds. Here we present the Hodge diamonds for K3 and CY3 surfaces,

which will be relevant later in this thesis.

It turns out most Hodge numbers are fixed due to the Calabi-Yau properties. Those

not fixed correspond to the so-called moduli. In the case of CY3, the h
1,1 Kähler moduli

parametrize the deformations of the Kähler structure of the Ricci-flat metric, while the

h2,1 moduli parametrize the deformations of the complex structure of the manifold. In

the case of the K3 manifold, all of them are fixed, so in this topological sense, K3 is

unique.

The Hodge diamond provides information about additional topological quantities.

The sum of all Hodge numbers in a row gives the Betti numbers br =
∑

p+q=r h
p,q, while

the alternating sum of the Betti numbers gives the Euler number χ(M) of the manifold

χ(M) =
∑

r(−1)rbr. Specifically for the CY threefold CY3, it is χ(CY3) = 2(h1,1−h1,2).
One can notice that the two Hodge diamonds above exhibit a high degree of sym-
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metry. Symmetry upon reflection along a vertical axis through the center of the Hodge

diamond corresponds to complex conjugation, and reflection along a horizontal axis cor-

responds to Hodge duality. In addition there is a mirror symmetry, which relates the

Hodge numbers of two mirror Calabi-Yau manifolds X, X̃ as hp,q(X) = hn−p,q(X̃), and

results in opposite Euler numbers χ(X) = −χ(X̃).

3.1.2 Compactification and spectrum

Now that we have introduced the mathematical background of compactification, we are

ready to discuss the compactification of type II supergravities on Calabi-Yau threefolds.

The supergravity approximation is well justified as long as the energies in play are

well below the masses of the massive string states, i.e., E ≪ 1/α′. Moreover, the

compactification manifold’s characteristic length scale L should be much larger than

the string length, i.e., L2 ≫ α′. This allows us to neglect α′-corrections, which become

relevant at scales L ∼
√
α′ and could alter the interaction terms present. In the absence of

such corrections, the Kaluza-Klein reduction of supergravity, restricting to the massless

modes of the wave operator in the internal manifold, is a good approximation to the

actual string compactification.

Type IIB

Type IIB is a N = 2 chiral supergravity. In ten dimensions, the spectrum consists of

the single gravity multiplet with bosonic content {GMN , B2, C2, C4, C0, ϕ}, withM,N =

0, . . . , 9, and fermionic content: {ψ−
M , ψ̃

−
M , λ

+, λ̃+}, where the superscripts denote chi-

rality and spinorial indices are suppressed.

To get the four-dimensional spectrum, one practically splits the spacetime indices in

a SU(3)-covariant way, since this is the holonomy group of the internal manifold, toM =

(µ, i, ı̃). The Greek indices run over the four non-compact dimensions, while the latin

indices run in the internal space. The situation for the bosons is quite clear. Looking at

the example of C2, it now potentially splits into C2µν , C2µi, C2µ, C2iȷ̃. However, we know

that no 1-cycles exist in the CY2; hence C2µi, C2µ are actually not realized. Moreover,

there are h1,1 2-cycles, so we have h1,1 4d bosons C2iȷ̃, depending on which (1,1)-cycle is

relevant. A subtlety arises when considering C4 since one has to take into account the

halving of degrees of freedom due to the self-duality condition. The fermions decompose

similarly. For instance, the positive chirality dilatino λ+ decomposes as λ+ ∼ λαη ⊕
λ̄α̇ηı̄ ⊕ λαηı̄ȷ̄ ⊕ λ̄α̇ηı̄ȷ̄k̄. Taking everything into account, the 4d spectrum gets arranged

2By assumption, the Calabi-Yau manifolds we consider are such that π1(CY3) = 0. In general, there

exist Calabi-Yau manifolds with π1(CY3) = Zn, for some integer n, i.e. with torsion in H1(CY3;Z).
Typical examples are the free quotient of Calabi-Yaus without torsion, such as the free quotient of the

quintic P4[5]/Z5. For instance, they have been investigated in [92,93].
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in N = 2 supergravity multiplets, according to table 3.1, where we only explicitly write

out the bosons and not their fermionic superpartners.

N = 2 Multiplet Bosonic components Multiplicity

Gravity gµν , C
†
4µijk 1

Hypermultiplet ϕ, a,Bµν , C2µν 1

Hypermultiplet giȷ̄, Biȷ̄, C2iȷ̄, C
†
4µνiȷ̄ h1,1

Vector multiplet C†
4µiȷ̄k̄

, gij , gı̄ȷ̄ h2,1

Table 3.1: Massless spectrum of type IIB compactified on CY3 .

Type IIA

The situation in type IIA is similar. The starting spectrum is now a non-chiral supergrav-

ity multiplet with bosonic content {GMN , BMN , C3MNP , C1M , ϕ}, with M,N = 0, . . . , 9

and fermionic content{ψ+
M , ψ̃

−
M , λ

+, λ−}, with spinorial indices again suppressed. The

4d spectrum after the compactification on the CY threefold is given in table 3.2.

N = 2 Multiplet Bosonic components Multiplicity

Gravity gµν , C1µ 1

Hypermultiplet ϕ,Bµν , C3ijk, C3ı̄ȷ̄k̄ 1

Hypermultiplet gij , gı̄ȷ̄, C3iȷ̄k̄, C3ı̄jk h2,1

Vector multiplet C3µiȷ̄, giȷ̄, Biȷ̄ h1,1

Table 3.2: Massless spectrum of type IIA compactified on CY3 .

Tables 3.1 and 3.2 indicate a deeper structure. In particular, the two spectra are ex-

changed upon exchanging h1,1 and h2,1, i.e., type IIB compactified on a CY manifold X

is dual to type IIA compactified on the mirror manifold X̃.

3.2 Moduli stabilization

Several massless moduli appear in the 4d spectrum. However, this is incompatible with

a sensible phenomenological model since massless bosons would lead to deviations from

Newton’s law that are not observed [94]. Hence there should be some mechanism that

makes them massive enough. This happens by considering additional “ingredients” in

the string compactification, such as fluxes, branes, and O-planes, which generate a 4d
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effective potential for the scalars. This procedure of generating masses for the moduli

is called moduli stabilization. The so-called string vacua are then the extrema of the

potential. The value of the potential at the vacuum V0 determines which geometry

describes the 4d spacetime:

– For V0 < 0 we have a vacuum corresponding to an Anti-de-Sitter (AdS) 4d space-

time, which can be either supersymmetric or non-supersymmetric.

– For V0 = 0 we have a vacuum corresponding to a Minkowski 4d spacetime, which

also can be supersymmetric or non-supersymmetric.

– For V0 > 0, we have a vacuum corresponding to a de-Sitter (dS) 4d spacetime. In

this case, all supersymmetry is necessarily broken.

In any semi-realistic compactification, apart from giving masses to the moduli fields,

one should also consider the couplings. Two types of couplings are relevant, gravitational

and gauge couplings. Consider a pretty minimalistic setup, where we compactify type

II superstring on a CY3 of volume Vx and include a spacetime-filling Dp-brane, which

wraps a (p − 3)-cycle of volume Vc in the internal manifold. The initial 10d effective

action contains an Einstein-Hilbert term
M8

p,10

(2π)6

∫
d10x

√
−GR(10), where we now explicitly

denote that the Planck mass Mp,10 and the Ricci tensor R(10) are 10d quantities. This

term gets dimensionally reduced to 4d as Vx
∫
d4x

√
−GR(4). It is then clear that the

4d Planck Mass Mp,4 or simply Mp can be expressed in terms of the higher-dimensional

Planck mass and the volume of the compactification manifold:

M2
p ≡ 8π

κ24
=

8πVx
κ210

≡ Vx(2π)
6M8

p,10 =
8M2

s Vx
g2s l

6
s

. (3.2)

Notice that when the volume of the compactification manifold becomes infinite, the 4d

Planck mass follows the same trend. The gravitational coupling then goes to zero, and

gravity decouples. Similarly, from the dimensional reduction of the DBI action for the

Dp-brane, we find that the 4d gauge couplings can be written as

1

g2YM
≡ VC
g2Dp

=
Vc

2πgsl
p−3
s

. (3.3)

Note that the product Mpg
2
YM is independent of the string coupling.

3.2.1 Orbifold compactifications

Type II CY orientifold compactifications, i.e., compactifications on Calabi-Yau manifolds

on which we perform a discrete orientifold projection, allow forN = 1 in four dimensions.

The reader should be aware that the CY orbifold compactifications are also very similar
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in the sense that a usually discrete projection is invoked, but this time without an

orientation-reversal piece.

More concretely, for an orientifold, one divides the string theory by GΩ ≡ G ∪ ΩpS

where G is a group of target space symmetries and ΩpS is a symmetry of the theory

on M/G, written as a combination of the world-sheet parity operator Ωp with some

appropriate operator S. In particular, Ωp acts as

Ωp : (σ, τ) → (2π − σ, τ), (3.4)

in the open string case, so it interchanges the two endpoints of the string, and as

Ωp : (σ, τ) → (π − σ, τ), (3.5)

in the closed string case, so it exchanges the left- and right-moving sectors. As for

the operator S, it usually includes some target-space symmetry σ3, the fixed points of

which give the orientifold planes. In principle, one can treat the orientifold Ωp as two

operations in a row, first orbifolding by G and then performing an orientifold projection

but treating both steps at once is also possible.

Our discussion will concern orientifold compactification on a Calabi-Yau threefold

X, i.e., the total space will be R1,3 × X, and for simplicity, we will set the “orbifold”

part of the projection to G = 1. X can be described by local complex coordinates

zi, i = 1, 2, 3, which allow us to write the holomorphic three-form as Ω = dz1 ∧ dz2 ∧ dz3

and the Kähler form as ω = i
2

∑3
i=1 dz

i ∧ dz̄i. Since σ acts qualitatively differently on

type IIB and type IIA theories, we discuss them separately.

Type IIB case

In this case, σ is a discrete holomorphic isometry of X, which leaves the metric and the

complex structure invariant. Its pullback σ∗ is

σ∗(ω) = ω, σ∗(Ω) = ±Ω. (3.6)

In practice, σ sends the local coordinates to ±zi. The sign of σ∗(Ω) depends on how

many of the three coordinates flip sign, and we distinguish the two cases:

– Even number of sign flips: σ∗(Ω) = +Ω. This means either 0 or 2 directions flip

signs. The dimensionality of the fixed points is then 10 or 6 (since we flip the

sign of two complex dimensions), respectively, and the O-planes introduced are,

accordingly, O9- and O5-planes. To reach this conclusion, we also use that σ acts

trivially on the 4d part of the space; hence the O-planes are spacetime-filling.

3It should be clear by the context that we are not referring to the world-sheet coordinate σ.
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– Odd number of sign flips: σ∗(Ω) = −Ω. We now have 1 or 3 minus signs, which

lead to codimension-2 and -6 objects in the compact space. Hence the O-planes

accompanying this action are O7 and O3, respectively.

The discussion above generalizes to fermions by supersymmetry. The combination

SΩp needs to be an involution to have spacetime-invariant fermions; more specifically, a

gravitino must remain after the projection. Hence, in the two cases above, the operator

S turns out to be S = σ for an even number of sign flips and S = σ(−1)FL for an odd

number of sign flips, where FL is the left-moving spacetime fermion number.

Finally, the choice of orientifold projection, through the tadpole cancellation con-

ditions, dictates which Dp-branes can be present. For type IIB, the projection with

O9/05-planes can also have D9/D5-branes, while the 07/O3-plane case is compatible

with D7/D3-branes.

The orientifold projection can reduce the amount of supersymmetry to N = 1. Hence

the 4d fields should be arranged in such multiplets. This happens naturally since only

the fields invariant under the projection remain in the spectrum. In particular, the

cohomology groups split into H∗ = H∗
− ⊕ H∗

+, i.e., odd and even subgroups under the

σ̄-action. Moreover, the fields B2 and C2 are odd under Ω(−1)FL , while g, ϕ, C0 and C4

are intrinsically even. The spectrum then is arranged in multiplets as shown in table

3.3.

N = 1 Multiplet Bosonic Field Content Multiplicity

Gravity gµν 1

Chiral (Kähler) Tα = vα + iCα h+1,1

Chiral (Complex structure) UA = i
∫
Ω3 ∧ αA h−2,1

Chiral (axio-dilaton) S = e−ϕ + iC0 1

Chiral Ga = ca − iSba h−1,1

Table 3.3: Massless spectrum of type IIB compactified on a CY orientifold.

Type IIA case

The main difference between type IIA and the previously discussed type IIB case is that

now σ is (part of) an antiholomorphic involution. For this reason, it is often encountered

in the literature as σ̄, but we will not adopt this notation. The pullbacks are now

σ∗(ω) = −ω, σ∗(Ω) = Ω̄. (3.7)
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Now σ exchanges the local coordinates zi with their conjugates z̄i. Unlike the type IIB

case, we do not have multiple options4, and now since three real dimensions flip sign the

only O-planes present are O6-planes. Moreover the anti-holomorphic involution is given

by S = σ(−1)FL and once again preserves N = 1 supersymmetry.

3.2.2 Introducing fluxes

String compactifications may be generalized in a non-trivial way by including non-

vanishing background fluxes. The so-called flux compactification serves the aim of sta-

bilizing the moduli, as the fluxes generate tree-level potentials for the scalars. The

fluxes induce some backreaction on the compactification manifold, which is no longer

Ricci-flat. While in type IIA orientifolds it is possible to stabilize all moduli using only

fluxes [95, 96], this is impossible in type IIB. Then one must consider non-perturbative

effects and carefully balance them against the tree-level effects. We will discuss such

examples in section 3.2.3.

Compactification à la GKP

One of the most prominent examples of flux compactification is type IIB compactification

on a Calabi-Yau orientifold with fluxes and D3/D7 branes. This is usually called a

GKP compactification, named after Giddings, Kachru, and Polchinski [97]. In such a

compactification the fluxes can only stabilize the axio-dilaton and the complex structure

moduli.

The starting point is the 10d type IIB supergravity action in the Einstein frame

(2.26), which we repeat for the reader’s convenience, and where one also includes a term

Sloc for the localized sources, which in this case are D3/D7-branes and O3-planes.

SIIB =
1

2κ210

∫
d10x

√
−GE

(
RE − ∂Mτ∂

M τ̄

2
(
Im(τ)

)2 −1

2

|G3|2

Im(τ)
− 1

4
|F5|2

)
− i

8κ210

∫
C4 ∧G3 ∧ Ḡ3

Im(τ)
+ Sloc,

(3.8)

where G3 = dC2 − τdB2. Notice that the axio-dilaton multiplet of table 3.3 relates to

the 10d axio-dilaton τ through τ = iS.

We consider compactifications with F1 = 0 and 3-form fluxes without sources that

consequently define cohomology classes in X since

dF3 = 0, dH3 = 0. (3.9)

4This is due to the absence of homology 1- and 5-cycles that would allow for spacetime-filling O4-

and O6-planes.
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Keeping the description general, with γ any non-trivial 3-cycle in X, the well-definedness

of the partition function necessitates a Dirac quantization condition for the fluxes [47]:

1

2πα′

∫
γ
F3 ∈ 2πZ,

1

2πα′

∫
γ
H3 ∈ 2πZ. (3.10)

Moreover, the self-dual F̃5 form needs to obey the Bianchi identity

dF̃5 = H3 ∧ F3 + 2κ210µ3ρ3,loc, (3.11)

where ρ3,loc is the (yet unspecified) localized source contribution. The presence of

fluxes/branes induces backreaction on the metric. The first term on the right-hand-

side of (3.11) can be interpreted as an effective charge induced by the fluxes given by

Nflux =
1

l2s

∫
X
H3 ∧ F3. (3.12)

Since we are interested in solutions that preserve 4d Poincaré invariance, we can make

the following warped ansatz:

ds210 = eA(y)ηµνdx
µdxν + e−A(y)g̃mndy

mdyn, (3.13)

where xµ denote the 4d coordinates and ym the internal coordinates. Similarly, one can

postulate that self-dual five-form flux F̃5 takes the form

F̃5 = (1 + ∗)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3, (3.14)

with α(y) a function on the compact space, in accordance with the desired Poincaré

invariance and the relevant Bianchi identity.

It turns out that the ansatze (3.13), (3.14) can only be made compatible with the

equations of motion in the presence of localized sources, in accordance with the no-go

theorem of [98]. Moreover, it is necessary to have an imaginary self-dual (ISD) three-

form G3 to maintain the 4d Poincaré invariance. The ISD condition actually serves to

relate the two yet undetermined quantities α,A as α = e4A.

Integrating equation (3.11), we get a R-R tadpole cancellation condition [99,100] for

the C4 R-R form:
1

2
Nflux +ND3 −

1

4
NO3 = 0. (3.15)

Here ND3 is the number of D3-branes, also including the contributions to the D3-charge

coming from D7-branes, NO3 denotes the negative contributions coming from O-planes,

and Nflux is the effective charge define in equation (3.12). For ISD G3, it is always

Nflux > 0, so the presence of the O3-planes is necessary to cancel the C4-tadpole.

This tadpole cancellation condition can also be expressed in the F-theory language,

as [101]
1

2

∫
CY4

G4 ∧G4 +ND3 −
1

24
χ(CY4) = 0, (3.16)
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with χ = 6(8 + h1,1 + h3,1 − h2,1) the Euler number of the fourfold. While (3.16) does

not seem to impose any direct threat for moduli stabilization a priori, recently, the

tadpole conjecture [102] (see also [103–107] for more recent developments) postulates

that full moduli stabilization for a large number of h3,1 complex structure moduli might

be obstructed by such tadpole cancellation conditions.

Whenever the supergravity approximation is good, i.e., we are in a large volume

regime where the fluxes are dilute, the system has a convenient 4d effective description

in the language of N = 1 supergravity, which we review in the “Aside” box below.

Aside: Basics of 4d N = 1 Supergravity

Consider N = 1 supergravity in four dimensions, with chiral multiplets Φi and

antichiral multiplets Φi
a. The EFT description of the theory is determined via

the following two quantities:

• Kähler Potential K(Φi,Φi):

This leads to (possibly non-canonical) kinetic terms of the form

Giȷ̄∂µΦ
i∂νΦ

iȷ̄
, where the Kähler metric is given by

Giȷ̄ =
∂2K

∂Φi∂Φ
ȷ̄ . (3.17)

The naming choice is not accidental: There is a direct geometric interpre-

tation in terms of a Kähler manifold, with the Φi’s being the coordinates.

Canonical kinetic terms correspond to a flat manifold.

• Superpotential W (Φi): This is a holomorphic function of the chiral super-

fields encoding interaction terms. The superpotential is protected against

perturbative corrections by non-renormalization theorems [108] but may re-

ceive non-perturbative corrections.

The Kähler potential and the superpotential combine to give the (F-term) scalar

potential:

VF (Φ
i,Φ

ı̄
) = eκ

2
4K(Giȷ̄DiWDȷ̄W − 3κ24|W |2), (3.18)

where κ4 =
8π
M2

p
and Di = ∂i + κ24(∂iK) is the Kähler derivative.

aFor simplicity, we do not include any gauge fields in the description, but we note the

supergravity language can also appropriately describe such interactions.

In our case, the invariance of the equations of motion and the conditions we require

to solve them under the rescaling g̃mn → λ2g̃mn shows that there should be a Kähler

modulus T parametrizing the overall volume of the internal manifold via (ReT )3/2 =
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Vol(X). To simplify the description we postulate that this is the only Kähler modulus

present.

The Kähler potential, setting κ4 = 1, is:

K = KT +KCS,S (3.19a)

= −3 ln
[
− i(T − T̄ )

]
− ln

[
− i(S − S̄)

]
− ln

(
− i

∫
X
Ω ∧ Ω̄

)
. (3.19b)

The expression above is valid at the large-volume regime. We do not include any

quantum correction at this stage; whether this is a valid assumption should be checked

a posteriori. The superpotential is of Gukov-Vafa- Witten [109, 110] type and can be

computed as

W =
1

κ210

∫
X
G3 ∧ Ω. (3.20)

The quantities above combine to give the scalar potential

V = eK
(
Gab̄DaWD̄b̄W̄ − 3|W |2

)
= eKGij̄DiWD̄j̄W̄ , (3.21)

The indices a, b initially run over all moduli. However, the potential enjoys a no-scale

structure: the terms contributed by the Kähler derivatives of the superpotential with

respect to the Kähler moduli precisely cancel out the −3|W |2 term. This results in

a final positive-definite scalar potential that only depends on the axio-dilaton and the

complex structure moduli, which we collectively denote by the i, j indices. As such, the

Kähler moduli cannot be stabilized. The no-scale structure is intrinsically related to the

classical Kähler potential: even if more Kähler moduli are present beyond just T , the

relation Giȷ̄KiKȷ̄ still holds. However, α
′-corrections destroy this structure.

Clearly, the potential (3.21) is positive-definite and admits Minkowski vacua. In

particular, the Minkowski vacua are only achievable when DiW = 0. If, additionally,

DTW = 0, these Minkowski vacua are also supersymmetric. These conditions turn out

to be in direct correspondence with the nature of G3: Minkowski vacua are only possible

when G3 is ISD, and supersymmetry additionally requires that G3 is primitive, i.e., it

has only a (2,1) component.

3.2.3 Beyond fluxes: Non-perturbative effects

As we have seen, in type IIB compactifications, it is impossible to stabilize the Kähler

moduli due to the no-scale structure of the scalar potential. To this end, one needs

to include some additional effect that will generate a T-dependent contribution to the

superpotential and the scalar potential. We will provide examples of this type of mod-

uli stabilization by presenting two constructions of very high phenomenological interest.

Both constructions follow the same theme, i.e., the starting point in a type IIB CY

orientifold, where fluxes are turned on to stabilize the complex structure moduli and the
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axio-dilaton, some non-perturbative effect is used to stabilize the Kähler moduli, leading

to an AdS vacuum. This AdS vacuum is then uplifted to dS via some supersymmetry-

breaking contribution. We will delve into the specifics of both constructions in the

remainder of this section. Before doing so, we want to emphasize that neither con-

struction is fully controlled. An ongoing debate revolves around the validity of these

constructions, and possible weak points have been identified, especially considering the

uplift procedure.

KKLT

The KKLT construction [111], named after Kachru, Kallosh, Linde, and Trivedi, is

probably the most cited attempt to construct a de Sitter vacuum in a string theoretical

framework. It is often referred to as a “three-step procedure”, but one should keep in

mind that the steps are meant as a way to keep track of the computation but do not reflect

the actual physical process, which should happen at once. The three aforementioned

steps go as follows:

• Step 1: This is just a compactification á la GKP: The scalar potential is given

by (3.21). If one does not explicitly demand a supersymmetric vacuum, then G3

can have two pieces, the primitive (2,1) and the non-supersymmetric (0,3) part.

The (0,3)-part leads to a non-zero value W0 at the minimum of the potential. We

assume that the fluxes fix the axio-dilaton and the complex structure moduli to

high-enough masses to be considered frozen for the following step.

• Step 2: The stabilization of T happens by including an explicitly T -dependent

term to the superpotential, which must be of non-perturbative nature due to the

non-renormalization property of W . In particular, the non-perturbative contribu-

tions are of the form

Wnp = ce−2πaT , (3.22)

where c is a one-loop determinant, in general, depending on the complex structure

moduli, and a is a positive constant depending on the microscopic origin of the

correction term. This comes from Euclidean D3-brane instantons [112] or by stacks

of D7-branes wrapping 3-cycles, undergoing gluino condensation. Hence, after

freezing out the moduli of step 1, the superpotential becomes

W (T ) =W0 + ce−2πaT , (3.23)

and T is stabilized by DTW = 0 at T = τ0, corresponding to

W0 = −ce−2πaτ0
(
1 +

4πa

3
τ0
)
. (3.24)
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Whether this exponentially small value of W0 is physically achievable has been

questioned. Recent progress has been achieved in [113–116].

After stabilizing the T modulus, the supersymmetric AdS 4d vacuum is

V0 = −2π2a2c2e−4πaτ0

3τ0
. (3.25)

• Step 3: The uplift is a delicate process, balancing out the negative value of the AdS

potential by some supersymmetry-breaking effect, such that a) the total potential

still admits a minimum, and b) the value at this minimum is positive, yet close to

zero. The simplest way to do this is to include anti-D3-branes, which contribute

to the scalar potential like [117]

Vup =
D

(T + T )3
, (3.26)

with D a constant depending on the number of antibranes and the specifics of the

model. It turns out that this term gets exponentially suppressed by the warp fac-

tor e4Amin since the anti-D3-branes naturally settle at the bottom of any possibly

present throat in the compactification manifold. This exponential suppression of

the supersymmetry-breaking contribution is crucial for achieving a minimum in

the total potential. We will discuss strongly warped throats and their physical im-

plications more extensively in chapter 5. Note that the anti-D3-branes contribute

to the (C4) tadpole condition

ND3 −ND3 +Nflux −
1

2
NO3 = 0. (3.27)

In practice, both the number of antibranes and the number of flux quanta (through

the warp factor) influence the D-coefficient in the uplift potential. The full poten-

tial finally reads

V =
πace−2πaτ

τ2

(
2πacτe−2πaτ

3
+W0 + ce−2πaτ

)
+

D

8τ3
, (3.28)

and for an appropriate selection of fluxes, it seems to lead to a dS vacuum.

Several aspects of the KKLT construction have been scrutinized, and no clear consensus

exists in the community regarding its controllability or, in its absence, what is the

issue that leads to the failure of the construction. While we acknowledge this is a very

interesting discussion with important implications,here we merely point to recent reviews

related to dS in string theory [118,119] and references therein.
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Large Volume Scenario

Let us briefly review the Large Volume Scenario (LVS) [120] by comparing its salient

features to KKLT. For simplicity, instead of presenting the scenario in its full generality,

we only sketch a case where the compactification manifold is of Swiss-cheese type and is

parametrized by two Kähler moduli Tb, Ts, corresponding to the overall volume and the

size of the “holes”, respectively. A manifold that indeed realizes h1,1 = 2 is CP4 [120]. For

a detailed description of the full scenario and important phenomenological applications,

we point the reader to, e.g., [121]. To stabilize the moduli, one proceeds as follows:

• The stabilization of the complex structure moduli and the axio-dilaton at a para-

metrically large scale happens similarly to KKLT, using 3-form fluxes.

• The Kähler moduli are stabilized via a combination of two effects. On the one

hand, the Euclidean D3-brane instantons wrapped on the small cycle contribute a

term Ws = Ase
−asTs , similarly to KKLT. On the other hand, the novelty of the

LVS lies in also including the leading α′-correction to the Kähler potential for the

Kähler moduli, which now becomes

K = −2 log

(
1

9
√
2
(τ

3/2
b − τ3/2s ) +

ξ

2g
3/2
s

)
. (3.29)

Here ξ > 0 is a constant and τi = Re(Ti). Approximating the overall volume of

the internal manifold by V ≈ τ
3/2
b , one can explicitly compute the scalar potential

in terms of τs,V. The potential consists of three terms, and an AdS minimum can

be found. There, V ∼ √
τse

aτs ≫ 1, and all the terms exhibit the same scaling, so:

VAdS ∼ − 1

τs
e−3aτs ∼ 1

V3
. (3.30)

The LVS AdS vacuum has two main differences compared to the KKLT one. First,

since it arises as a balance of three terms, no tuning is necessary for the value of

W0. Second, it is not supersymmetric.

• The uplift to dS happens again by introducing an explicit effect that contributes

positively to the scalar potential. If this ingredient is an anti-D3-brane, similarly

to the KKLT case, the brane will dynamically go to the tip of the throat, giving a

redshifted contribution.

The controllability and stability of the LVS construction are not guaranteed and have

been the topic of debate. Part of the criticism originates from within the Swampland

Program, which will be the subject of the following chapter.
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Chapter 4

The Swampland Program

This chapter constitutes a selective view of the Swampland Program, aiming to expose

the reader to the main idea and only some conjectures relevant to our work. The

interested reader may benefit from a plethora of excellent lecture notes and reviews

of developments in the field [119,122–127].

4.1 Main idea

Our discussion has only partially uncovered the many possibilities for low-energy ef-

fective field theories coming from string theory. In particular, we have seen that for

any consistent four-dimensional model, there is a multitude of intertwined parameters

and choices that influence the properties of the final theory: We have (superficially)

discussed some of them, including the compactification manifold, potential orientifold

projections and the accompanying O-planes, D-branes, non-trivial background fluxes.

Considering all possible choices, one constructs the string theory landscape. Some fa-

mous estimates about the size of this landscape have been performed, ranging from

10500 vacua for IIB compactifications [23] to even 10272.000 in the framework of F-theory

compactifications [24].

However, one should not forget that consistent vacua do not arise randomly. On the

contrary, string theory has a clear-cut set of constraints and consistency requirements

that significantly reduce the possible vacua. Let us list a few: modular invariance,

conformal invariance, absence of anomalies, tadpole cancellation, and unitarity. Hence

string theory is pretty restrictive at a fundamental level. In particular, at a certain

energy scale, only a finite number of vacua is postulated to be present [128]. This is not

accidental but rather intrinsically related to the fact that string theory is a theory of

quantum gravity.

The Swampland Program [27] aims to deepen our understanding of the fundamental

constraints accompanying a consistent theory of quantum gravity. In particular, the main
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idea is that a low-energy effective field theory might seem consistent as a stand-alone

theory, but coupling the theory to gravity may uproot its consistency. This naturally

leads to the following definitions:

Landscape/Swampland Definition: [27]

Consider the set of consistent effective-field theories, where consistency is based

on EFT criteria, such as the absence of anomalies and unitarity. The subset of

these theories that can be UV-completed to a theory of Quantum Gravity(QG)

are said to belong in the landscape, while the complementary subset of theories

that do not admit such a completion form the swampland.

QG

LandscapeLandscape

En
er
gy
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e

Th
eo
ry
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Swampland

Figure 4.1: Schematic Depiction of the landscape and the swampland.

4.2 Some fundamental conjectures

The Swampland Program culminates in developing an intricate set of interconnected

swampland conjectures, which are quantitative statements of conjectural nature that are

postulated only to be true for theories in the landscape. Interestingly, the conjectures
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are customarily trivially satisfied upon decoupling gravity. Some of these conjectures

are supported by our understanding of black hole physics, which are systems where the

quantum nature of gravity becomes evident. Other conjectures are motivated by some

universal behavior of well-controlled string theory vacua or the absence of it. Mutual

support between conjectures is another factor that lends credence to the whole web of

conjectures, hinting at some underlying physical reasoning.

Formulating conjectures is only a part of the Swampland Program. A significant

effort is also being made regarding testing the conjectures and understanding their regime

of applicability and limitations, properly refining or generalizing them.

Multiple conjectures, e.g., [28–30, 34, 129–145], have been formulated, refined, and

generalized to this date. It goes far beyond the scope of this thesis to try even to

enumerate all of them, let alone review them. However, allow us a few comments on

some general themes that arise.

As shown in figure 4.2, three conjectures can be viewed as the pillars of the Swamp-

land Program. These are the No Global Symmetries Conjecture (see, for instance, [146]),

the Distance Conjecture [130], and the Weak Gravity Conjecture [129]. The rich web of

conjectures surrounding them has its own very high merit but can usually be related in

one or more ways to one or more of these three conjectures. In this thesis, only the first

two of the conjectures mentioned will become relevant, so the next part of this chapter

will be devoted to presenting their basic features.

4.3 No Global Symmetries Conjecture

The first swampland conjecture we will discuss is the No Global Symmetries Conjec-

ture. This particular idea/statement was already hinted at/formulated well before the

beginning of the Swampland Program, starting already in the 1950s and throughout the

last century, see, e.g., [147–150], and had the status of a “folk theorem” [146]. While

there is no preferred paper to which the conjecture is attributed, [146] is one of the

most frequently cited references. The conjecture itself is quite straightforward, yet the

implications are very deep.

No Global Symmetries Conjecture (see e.g. [146]):

A theory coupled to gravity cannot have any exact global symmetries.

4.3.1 Supporting arguments

The statement above stands as a conjecture; however, there have been strong arguments

to support it. The most widespread are the black hole argument and the holographic

argument, outlined below.



52 4. The Swampland Program

Distance

 Conjecture

No Global 

Symmetries

 Conjecture

Weak Gravity

 Conjecture

Scalar WGC

Lattice WGC

Convex 

Dimension

Conjecture

Cobordism

Conjecture

supersymmetric

AdS


Conjecture

Completeness

Conjecture No free 


Parameters

Conjecture

de Sitter

 Conjecture

Trans-Planckian

Censorship 

Conjecture

AdS Distance

Conjecture

Emergent 

String


Conjecture

Figure 4.2: The swampland conjectures form an intricate web of interconnected state-

ments. Note that the conjectures depicted above and the interrelations explicitly drawn

are very far from complete.

The black hole argument

The first argument against the existence of global charges is the so-called black hole

argument. In this case, strong support comes from black hole physics/thermodynamics,

and one does not need to resort to explicit string theoretical examples. Several variations

of this argument for an abelian global symmetry can be found in the literature, e.g.,

in [34,129,146,149]. A nice overview of the historical evolution of the BH argument can

be found in the TASI lecture notes [151]. Here we sketch the argument in [146], which

had the novelty of using the covariant entropy bound.

The argument goes as follows: One starts with the assumption that quantum gravity

admits a continuous global symmetry - for simplicity, we discuss U(1) here. Hence a

particle can be charged with some large charge Q. Suppose that now this Q-charged
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particle is thrown into an uncharged black hole1. Since we are dealing with a quantum

gravitational theory, the black hole will start evaporating through Hawking radiation

[18]. However, the evaporation process is blind to this global charge, as the horizon

may depend only on the mass, angular momentum, and gauge charges [152], and the

outgoing radiation spectrum does not carry the global charge, or, equivalently, carries

equal amounts of positive and negative global charge. Assuming there is no direct

violation of the charge conservation, which would immediately invalidate our starting

assumption, the global charge Q remains in the black hole. The black hole will continue

shedding its mass and shrinking, and evaporation terminates, leaving behind a remnant

of charge Q and size R ∼ Λ−1
QG, with ΛQG the cut-off of our effective theory. This happens

for an arbitrarily large initial charge Q, resulting in an infinite number of remnants.

The covariant entropy bound [153,154] bounds (from above) the entropy at any finite

spacetime region by the entropy of a black hole occupying the same spacetime region.

Having infinitely many remnants clearly violates this bound, signaling an inconsistency in

the effective theory. One can alternatively argue that a theory with an infinite number of

remnants is problematic due to the nullification of the renormalized Planck constant [155]

or simply due to our lack of observational evidence for the remnants.

One way to avoid such inconsistencies is to consider a gauged continuous symmetry.

Consider this time a gauged U(1), as in [151]: the gauge field lines are penetrating the

horizon, hence driving the black hole evaporation towards depletion of the charge [149].

The final state is either the total evaporation of the black hole or a black hole with

M = Mextr saturating the extremality bound [16]. The extremality bound leads to an

upper value for the charge within a specific space, which, combined with the charge

quantization, leads to only a finite number of states in accordance with the covariant

entropy bound. Hence gauging the global symmetry renders it compatible with quantum

gravity.

One might wonder if there is any other hidden assumption that can lead to a loophole.

Indeed, there is: the quantum gravity theory should allow for a unitary black hole

evaporation, consistent with the Bekenstein-Hawking entropy formula [156]. This is not

always the case for theories of three or fewer spacetime dimensions, where examples of

global symmetries have been identified [156].

Finally, the last limitation of the black hole argument is the type of global symmetry.

Up to now, we have only discussed continuous global symmetries. It turns out that the

argument also goes through for infinite discrete symmetries, such as SL(2,Z), but it

fails for finite discrete symmetries, such as Zn. Luckily, the holographic argument also

covers these discrete symmetries.

1This staring setup can also be viewed in a slightly different light: one can put together enough

massive particles of charge qi, such that the system gravitationally collapses into a black hole of charge∑
i qi = Q.
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The holographic argument

The holographic argument [157, 158] applies to theories that admit a holographic de-

scription and can be roughly sketched as follows:2 Assuming a global symmetry in the

bulk, a local operator ϕ(x) can be charged under it. The global symmetry extends to

the boundary CFT. If one splits the boundary into disjoint spatial regions {Ri}, the
action of the unitary operator U(g) representing the symmetry can also be split up into

a product of U(g,Ri), each of them localized on some disjoint cover of the boundary

spatial slice, as

U(g) = U(g,R1) · U(g,R2) · . . . · U(g,Rn)Uedge, (4.1)

with Uedge an operator with support close to the boundaries of the Ri which takes care

of the arbitrariness at those boundaries. However, since the partition into Ri can be

chosen arbitrarily, one can have Ri small enough, such that the union of their respective

entanglement wedges does not contain the central part of the bulk, see figure 4.3. This

means that the charged operator ϕ(x) localized at the center of the graph would then

commute with Ug, which leads to an obvious contradiction.

Once again, running the previous argument does not lead to contradiction if one

starts with a long-range gauge symmetry in the bulk instead of a global one. In that case,

Wilson lines would attach any charged operator to the boundary, always intersecting the

entanglement wedges, no matter how small. Then U(g,Ri) would be able to detect the

charged operator, hence avoiding any inconsistency.

One final comment regarding the holographic argument: There is no direct restriction

on the nature of postulated problematic global symmetry - it applies equally well to

continuous or discrete p-form global symmetries, at least for 0 ≤ p ≤ d− 2.

4.3.2 Generalized higher-form symmetries and their trivialization

The No Global Symmetries conjecture is believed to hold when the notion of symmetry

is extended, i.e., not only for ordinary zero-form symmetries but also for generalized

symmetries. For instance, it was argued in [156] that one can appropriately modify

the black hole argument to include higher-form symmetries [159]. Works regarding this

generalized version of the conjecture concern, for instance, higher-form symmetries [160],

non-invertible symmetries [161,162] and Chern-Weil symmetries [163].

Here we will provide a brief overview of higher-form global symmetries [159] since

they will prove relevant for our discussion of cobordism in 4.4. Recent pedagogical

reviews of such symmetries can be found in [151,164].

2The holographic “dictionary” or the following short section is taken for granted, for more detailed

explanations, we refer the interested reader to the original papers.



4.3 No Global Symmetries Conjecture 55
R1

R7

R6

R3

R5

R4

R2R8

Figure 4.3: The entanglement wedges (colored regions) on which the boundary global

symmetry operator is supported does not contain the center of the bulk where the

charged operator ϕ(x) is located.

Let us first describe a usual 0-form global symmetry in d spacetime dimensions using

the conventions of [151]. This symmetry acts on local operators, i.e., operators living on

a point. The charged objects are particles with a (0 + 1)-dimensional world-line. The

charge is measured on codimension-one surfaces through spacetime, and the symmetry

operators are hence of the form U(Σd−1, g), where Σd−1 is a closed (d− 1)-dimensional

manifold. In case the symmetry is continuous, there exists a conserved 1-form current j

and a corresponding (d− 1)-form current Jd−1, which is closed, i.e., dJd−1 = 0.

Similarly, a p-form global symmetry acts on operators supported on p spatial dimen-

sions. The charged objects have (p+ 1)-dimensional world-volumes, and the symmetry

operators are of the form U(Σd−p−1, g), i.e., the closed manifold Σ is now of codimension-

(p + 1). The associated conserved current for a continuous symmetry is a (p + 1)-form

jp+1, while one can describe the symmetry using the closed (d − p − 1)-form current

dJd−p−1 = 0.

The question that naturally arises is how to deal with a theory that seems to have a

(continuous) global symmetry, at least at the energy scales accessible through the EFT.

Two possible resolutions trivialize the global symmetry and place the theory back into

the landscape: the symmetry can either be broken or gauged. The former option means

that the initially conserved current dJd−p−1 = 0 is either not conserved anymore due to

the presence of symmetry-breaking defects ∆, i.e., 0 ̸= dJd−p−1 = δ(d−p)(∆), while for

the latter option one couples the current to a (p+1)-form gauge field via Ap+1∧Jd−p−1,

which in turn leads to Jp+1 being exact.

The upshot of the No Global Symmetries conjecture is that quantum gravity is not

compatible with any global symmetries. Suppose we start with an EFT with such a

global (not gauge) symmetry, which must be broken. The conjecture does not indicate

the energy scale at which the global symmetry should break or how much the deviation

from an exact global symmetry should be. In practice, we are dealing with a very well-
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accepted conjecture with little predictive power. One can try to circumvent this issue

by making a bolder proposal [165], imposing that the symmetry is strongly broken. This

leads to more precise quantitative statements, similar to other well-known conjectures,

such as the Weak Gravity Conjecture or the Distance Conjecture.

There exists, however, another way in which the absence of global symmetries can

lead to concrete predictions. This relies on further generalizing the notion of symmetry

to include topological charges. To properly discuss this, let us introduce cobordism.

4.4 Cobordism Conjecture and implications

4.4.1 Cobordism

Quantum gravity naturally involves topology-altering processes [166–169], which be-

come particularly relevant at Planck-length scales [170]. Cobordism is a way to define

equivalence classes of manifolds permitting certain topology changes. Cobordism is a

generalized homology theory classifying compact manifolds of the same dimension, i.e.,

it can be defined axiomatically similarly to a usual homology theory, with the notable

exception that the higher groups of the point do not have to vanish [171,172].

Definition:

Two smooth, closed, unoriented manifoldsM1,M2 of real dimension k are cobor-

dant, i.e. M1 ∼ M2, if there exists a manifold W of real dimension k + 1 such

that

M1 ⊔M2 = ∂W , (4.2)

i.e., the boundary of W is the disjoint union of M1, M2.

M1 M2

W

Figure 4.4: The manifolds M1, M2 are cobordant, as M1 ⊔M2 = ∂W .

A single manifold M , which itself is a boundary of a higher dimensional manifold, is

by definition cobordant to the empty set, hence belongs to the trivial cobordism class

[M ] = [∅] = 0. Considering the disjoint union as a group operation, one turns the

cobordism equivalence classes into a group. Since any manifold is cobordant to itself,

one can see that two copies of the same manifoldM are in the trivial cobordism class - it
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suffices to smoothly fold the cylinder connecting the two copies in half. Hence the inverse

element ofM under the disjoint union isM itself. These properties are sketched in figure

4.5. One important consequence of using the disjoint union as the group operation is

that the cobordism group is always abelian.

M

M

[M] + [M] = [M ⊔ M] = 0

M

N

[∅] = 0[M ⊔ N] = [M] + [N]

∅M ∅

Figure 4.5: The disjoint union is the operation under which cobordism is a group. From

left to right: addition, identity element (vacuum), inverse element.

One can systematically restrict the allowed topology changes by considering cobor-

dism groups with a ξ-structure, Ωξk. The ξ-structure usually encodes restrictions on

the allowed tangential structure of the manifolds M , such as having an orientation or

admitting fermions. In general, the structure is of paramount importance for physical

applications, as it dictates which type of topology transformations are compatible with

the kinematics of the physical theory.

Depending on the structure, the definition of the cobordism group needs to be ap-

propriately modified. For instance, the cobordism group operation between two oriented

manifolds M,N is M ⊔ N̄ , i.e., it is necessary to reverse the orientation of the second

manifold.

The cobordism groups introduced above as Ωξk are not the most general cobordism

groups that can be defined. One can specify an additional topological space X, of

dimension possibly different than k, or even infinite, and can then define Ωξk(X), i.e.,

the ξ-cobordism groups of X. Consider continuous maps f : M1 → X and g : M2 → X.

The pairs (M1, f) and (M2, g) are cobordant if there is a cobordism W , such that ∂W =

M1 ⊔M2, together with a map h : W → X appropriately restricting to f and g at the

boundary ∂W . This is schematically depicted in figure 4.6. These equivalence classes

once again turn into a group under disjoint union, and one gets the group Ωξk(X). This

more general definition includes our former definition of cobordism groups. In the case

X = pt, the necessary continuous maps trivially exist, and we have Ωξk ≡ Ωξk(pt).

The cobordism groups of X are generally larger than those of the point. This state-

ment can be made precise using the Splitting Lemma for abelian groups. Consider the

forgetful map

ϕ : Ωξk(X) → Ωξk(pt) , (4.3)
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Figure 4.6: The pairs (M1, f), (M2, h) are cobordant, as M1 ⊔M2 = ∂W and g|M1 = f ,

g|M2 = h with all the maps continuous.

with ϕ([M,f ]) = [M ]. The reduced cobordism group Ω̃ξn(X) is given by the kernel of this

map, i.e., kerϕ ≡ Ω̃ξn(X). By definition, we also have Ω̃ξn(pt) = 0. Since ϕ is surjective,

one gets the short exact sequence

0 −→ Ω̃ξn(X) −→ Ωξn(X)
ϕ−→ Ωξn(pt) −→ 0, (4.4)

which is split. Therefore, Ωξk is given by the simplest possible combination of the other

two groups, their direct sum, as

Ωξk(X) = Ωξk(pt)⊕ Ω̃ξk(X). (4.5)

The above construction is independent of the selected structure. Hence the Splitting

Lemma for Cobordism (4.5) holds for any ξ.

The reader might recall from section 2.5.2 that a similar relation exists for the K-

and KO-theory groups. This is not accidental but rather indicative of a deeper relation

between cobordism and K-theory, which has profound physical implications and will be

the main subject of our upcoming chapter 6.

4.4.2 Cobordism and Quantum Gravity

Cobordism is a natural language to describe equivalence classes of quantum gravitational

theories since it encompasses the topology-changing processes. Compact manifolds are

useful for going from a higher-dimensional theory to a phenomenologically relevant four-

dimensional one. Consider, for instance, type IIA and type IIB theories: Type IIB

compactified on a circle of radius r is T-dual to type IIA compactified on a circle of dual

radius r′. It is natural to assume that these theories belong in some common equivalence

class of Ωξ1. Since the web of dualities in string theory goes much beyond T-duality, one

can assume this is only part of the bigger picture.
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This idea was explored in [34], where the Cobordism Group of Quantum Gravity ΩQG,

with the superscript standing for the -still unknown- Quantum Gravity structure, was

introduced. Staring with a d-dimensional theory and compactifying on a k-dimensional

compact manifold down to D = d−k dimensions, two complementary definitions of ΩQG

were proposed:

– ΩQG,D: This group classifies all D-dimensional theories of quantum gravity, where

the D-dimensions can be non-compact. The group interpolates between theories

that differ by QG-allowed finite-energy processes.

– ΩQGk : This group classifies all theories compactified on a k-dimensional manifold.

Evidently, if D = d − k, this physically should match ΩQG,D. Using ΩQGk is

often more convenient, being much closer to the usual definition of cobordism and

avoiding the non-compactness complications. The full, uncompactified quantum-

gravitational theory also can be probed by looking at ΩQG0 .

From now on, we will only consider ΩQGk , and, more generally, Ωξk. Physically, the

picture is as follows: The starting point is the d-dimensional theory, and then one

compactifies on the compact manifoldMk
i , getting a D-dimensional effective field theory

EFTi. If M1 ∼ M2, a finite-energy domain wall exists between the two EFTs. The

trivial class is even more interesting: no D-dimensional EFT corresponds to the empty

set, and spacetime ceases existing. Hence, any compactification on M ∼ ∅ leads to a D-

dimensional EFT in which a bubble of nothing [173] can pop up and expand, consuming

all of the spacetime using a finite amount of energy [174].

Figure 4.7: Cobordant manifolds and associated EFTs.

4.4.3 Cobordism Conjecture

One can define cobordism invariants for any cobordism group Ωξ. These are functions

a :M → A, with A some abelian group, such that M1 ∼M2 =⇒ ai([M1]) = ai(M1) =

ai(M2) for all i, i.e., the cobordism invariants take the same values for all manifolds in

the same cobordism class. The number of cobordism invariants depends on the group

and is the same as the number of group generators. While the trivial cobordism class

[∅] = 0 always corresponds to vanishing cobordism invariants ai([∅]) = 0, any other
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class is characterized by at least one non-vanishing invariant. This effectively quantifies

the obstruction for M with a(M) ̸= 0 to disappear via a topologically allowed process -

alternatively, one can say that the cobordism invariants define topological global charges

and can write

Qi(M) = ai(M). (4.6)

Hence, a clear correspondence exists: Any non-trivial cobordism group leads to non-

trivial global charges, i.e., some p-form global symmetry. Using the dimensional “dictio-

nary” of section 4.3.2 and noting that the codimension-(p+1) symmetry operators now

live on the k-dimensional compactification manifolds, we have d− p− 1 = k. Hence, we

have

Ωξk ̸= 0 ↔ (d− k − 1)− form global symmetry. (4.7)

The charged objects should now have d− k − 1 spatial dimensions, hence are (d− k)−
dimensional. According to [34], they have an intuitive interpretation as gravitational

solitons [175]: Consider for example Ωξk ̸= 0 and Mk with α(M) ̸= 0. Consider also the

flat space Rk, and cut out spheres Sk−1 from each initial space, gluing them along the

cut-out spheres to formMk#Rk. This can be viewed as a defect with (d−k)-dimensional

world-volume. Hence the gravitational soliton interpretation is justified.

The black hole argument goes through for the cobordism charges [34], with the only

difference that now the global charge is topological. Since gauged symmetries evade

the argument, one could wonder whether the cobordism charges can be a priori gauged.

However, away from the manifold M , there is no way to detect its cobordism charge -

the space is locally identical to flat space. Hence, the symmetry is not gauged and poses

an inconsistency. This naturally leads to the Cobordism Conjecture.

Cobordism Conjecture [34]:

In a theory of quantum gravity, the cobordism groups ΩQG
k are trivial, i.e.

ΩQGk = 0. (4.8)

What is the relevant structure?

Since we do not know the full Quantum Gravity structure, we generically use an ap-

proximate quantum gravitational structure, denoted by Q̃G. The cobordism group ΩQ̃Gk
then classifies manifolds that admit the structure Q̃G, and which are cobordant if their

disjoint union is a Q̃G-manifold of one dimension more.

Let us list several well-motivated options for tangential structures Q̃G, which arise

before turning on gauge fields. In principle, the structure can also include data about

gauge fields or geometric data. A nice overview and more details on a mathematically
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precise definition of cobordism groups with certain structures can be found in [176].

Luckily, the cobordism groups of the point with the structures mentioned below are

known [177,178], and presented for 0 ≤ k ≤ 10 in table 4.1.

– ΩQ̃Gk = ΩSO
k : The SO-structure means that the relevant manifolds are orientable

and is ensured by the vanishing of the first Stiefel-Whitney class

w1(TM) = 0. (4.9)

All relevant Stiefel-Whitney classes are defined in appendix B. This requirement

is usually a bit weak, but upon also considering gauge fields, it is enough to lead

to non-trivial results, such as the existence of Dp-branes [34].

– ΩQ̃Gk = ΩSpin
k : This is one of the most straightforward structures one can demand.

The Spin tangential structure ensures that the manifolds are spin so that spinors

can be consistently defined. This is necessary for any supersymmetric theory, so

it is a good starting point for type II supergravities and string theories. The

mathematical condition that ensures that a manifold M is spin, and hence can be

classified in ΩSpin
k is:

w1(TM) = 0 & w2(TM) = 0, (4.10)

where w2 is the second Stiefel-Whitney class. Clearly, any orientable manifold with

w2(TM) = 0 is also spin.

– ΩQ̃Gk = ΩPin+

k : If we want to consider a non-orientable theory, such as M-theory,

it is clear that none of the above structures is suitable. It was argued in [179] that

the relevant structure, in this case, is Pin+, defined by

w1(TM) ̸= 0 & w2(TM) = 0, (4.11)

and allows for spinors in a non-orientable manifold3.

– ΩQ̃Gk = ΩSpinc

k : F-theory relaxes the need for a Spin structure to that of a Spinc

structure. Spinc is defined as a choice of a lift of w2 from Z2-cohomology to Z-
cohomology, and for a manifold to be Spinc one needs

W3(TM) = βw2(TM) = 0. (4.12)

W3 is the third integral Stiefel-Whitney class, and β the Bockstein homomorphism,

corresponding to reduction modulo 2. It is clear that all Spin manifolds are Spinc,

but the inverse does not hold. Physically, Spin manifolds admit uncharged spinors,

while Spinc manifolds only admit charged spinors.

3There is a second structure that allows for such spinors, Pin−, which comes from the opposite

parity projection and requires w2(TM) + w2
1(TM) = 0.
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k 0 1 2 3 4 5 6 7 8 9 10

ΩSO
k Z 0 0 0 Z Z2 0 0 Z2 Z2

2 Z2

ΩSpin
k Z Z2 Z2 0 Z 0 0 0 Z2 Z2

2 Z3
2

ΩSpinc

k Z 0 Z 0 Z2 0 Z2 0 Z4 0 Z2 × Z4

ΩPin+

k Z2 0 Z2 Z2 Z16 0 0 0 Z2 × Z32 0 Z3
2

ΩString
k Z Z2 Z2 Z24 0 0 Z2 0 Z2 × Z Z2

2 Z6

Table 4.1: Cobordism groups Ωξk for various dimensions k and ξ-structures.

– ΩQ̃Gk = ΩString
k : For Heterotic theory, one starts with a Spin structure and on top

of it has to satisfy the constraint dH = p1(R)−p1(F )
2 . Whenever the gauge field F

vanishes, this leads to a String structure, defined by:

p1(R)

2
= 0, w1(TM) = 0 & w2(TM) = 0, (4.13)

where p1 is the first Pontrjagin class.

Much work has been dedicated recently to identifying sensible structure approxima-

tions for different string theories. For instance, in [176], it was proposed that one can

organize the approximations in terms of a Whitehead tower for the orthogonal group.

The situation becomes considerably more involved upon turning on gauge fields, yet

even in this case, progress has been made. Recently, for example, an explicit result for

cobordism groups Ωξ
het

of heterotic theory with non-trivial B-field was given in [180].

4.4.4 Implications

As shown in table 4.1, the approximate cobordism groups are far from trivial; hence

under these approximate structures, global symmetries are present. Identically to usual

higher-form symmetries, there are two ways to trivialize the cobordism global symmetry,

breaking or gauging. Let us discuss these options in slightly more detail.

– Breaking: In this case, one proceeds under the assumption that the reason that

the cobordism group ΩQ̃Gk does not vanish is having missed one or more (d−k−1)-

dimensional defect which explicitly breaks the symmetry. Including the defect leads

to a modified structure Q̃G + defect, now with ΩQ̃G+defect
k = 0, i.e. there exists a

map

ΩQ̃Gk → ΩQ̃G+defect
k . (4.14)

Following once again [34], one says that the cobordism charges in the kernel of the
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map above are killed. The formerly closed Jk current now satisfies

0 ̸= dJk =
∑
def j

δ(k+1)(∆d−k−1,j) , (4.15)

where the δ-functions are the Poincaré dual of the (d − k − 1)-cycles wrapped by

the defects.

– Gauging: In this case, similarly to the usual gauge symmetries, one imposes

that the cobordism charges over a compact manifold have to vanish. Even though

ΩQ̃Gk ̸= 0, the trivial class always belongs in this group. Hence all theories that arise

by compactifying on these trivial manifolds are not plagued by any inconsistency.

The map that describes this procedure is [34]

ΩQ̃G+g.fields
k → ΩQ̃Gk , (4.16)

and now the trivial classes are in the co-kernel of the map above. Conventionally,

one says that the cobordism chances are co-killed. The current Jk remains closed,

but this time it is also exact,

Jk = dFk−1 . (4.17)

Finally, we should note that, in reality, the above procedure is more complicated. For

instance, breaking by including a single defect in the structure might not fully trivialize

the group but only reduce its rank. Hence, a fully vanishing cobordism group requires

additional structure modification, either by gauging or breaking again. In general, the

whole procedure is iterative, and the calculation of each step is becoming increasingly

mathematically involved.

At this point, the usefulness of the Cobordism Conjecture should be crystal clear.

It is a highly predictive statement, which allows us to identify yet unknown defects.

Not only can a defect be predicted, but one has additional information about it, such

as its dimensionality. Moreover, the whole procedure does not explicitly depend on

supersymmetry - hence, the cobordism conjecture is a particularly useful way to probe

setups where traditional methods usually lack control.

The Cobordism Conjecture has gained much attention in the past few years, yield-

ing very interesting results. For instance, new non-supersymmetric objects have been

predicted [181,182] and described [183–186], while significant results have been achieved

regarding anomaly cancellation using cobordism - see, e.g., [181, 182, 187–190]. The

cobordism conjecture has been studied in an AdS background [191]. A connection to

the Ricci flow conjecture has been uncovered in [192]. A relation between K-theory

and cobordism, useful for gauging cobordism charges, has been established in [35]. Our

work [39] carefully examined this proposal and its implications and will be presented in
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chapter 6. Finally, a dynamical description of cobordism [37], with a direct connection

to the distance conjecture [36] has been established, and successfully implemented in a

wide range of setups [40,193–196]. Our work [40], which provides an explicit description

of a novel cobordism-predicted defect, will be the main subject of chapter 7.

While there is much more to say about cobordism, let us defer that to chapters 6

and 7, and allow us to continue our journey along the borders of the swampland.

4.5 Distance Conjecture and infinite distances

4.5.1 Distance Conjecture and variations

Before discussing the distance conjecture, we must discuss the concept of moduli space.

Any point of the moduli space is, in a sense, a different incarnation of a theory, and one

moves along the moduli space by changing the values of the moduli fields. In the case

of string theory, and particularly for supersymmetric compactifications, moduli spaces

naturally arise during the compactification procedure. The geometry of the compacti-

fication manifold and other details of the compactification, such as the positions of the

localized objects, are all encoded in the moduli fields. Moreover, this scalar moduli space

is equipped with a metric via the kinetic terms of the moduli, encoded in the Kähler

potential in supersymmetric cases. Hence the notion of distance is meaningful. Note

that at this stage, the moduli fields are massless; hence we do not consider any potential.

Several universal properties have been conjectured to hold for the moduli spaces of

theories of quantum gravity [130]: The moduli space M is of finite volume, yet, if one

starts from a point P in M, a different point Q ∈ M is postulated to exist such that the

geodesic distance between these two points d(P,Q) is larger than any positive number K.

In particular, for K → ∞, one talks about an infinite distance limit, depicted in figure

4.8. To accommodate infinite distances within a finite volume, M must have negative

curvature close to the infinite distance points.

P

Q

d(P, Q) → ∞

ℳ

Figure 4.8: Moduli space and infinite distance limit from point P .
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The Swampland Distance Conjecture [130] concerns the validity of the effective field

theory when transversing large distances in the moduli space. In particular, the most

striking behavior appears for these postulated infinite distance limits. Examples of such

limits include the volume of the compactification manifold going to infinity or the string

coupling gs going to zero. In fact, we have the most control over our effective theories

close to such limits in the asymptotic regime of the moduli space. For instance, the

supergravity approximation is only valid in such a regime.

Swampland Distance Conjecture (SDC) [130]:

In the scalar field moduli space of a theory coupled to gravity, when moving from

point p to point p0, there appears an infinite tower of states with mass scaling like

M(p) ∼M(p0)e
−λd(p0,p) (4.18)

with λ > 0 some constant of order 1 in Planck units and M(p0) some associated

mass scale. In an infinite distance limit, the tower becomes exponentially light.

The appearance of this infinite tower of light states signals that the initial theory is no

longer a good description of the physical system, and the cut-off of the EFT needs to

be appropriately adjusted. When exactly the control over the effective theory is lost,

and what the physical realization of the light tower of states is, are not clear a priori.

However, several variations of the Distance Conjecture attempt to answer these ques-

tions. We find it instructive to provide a partial list of these variations, refinements,

and generalizations, as they beautifully illustrate the range of directions in which the

Swampland Program extends:

• The Refined Swampland Distance Conjecture (rDC) [197,198] extends the range of

validity of SDC also to include non-vanishing potentials, i.e., non-massless moduli fields.

Moreover, the exponential behavior is postulated to become important over order-one

distances in Planck units.

• The Sharpened Distance Conjecture [199] bounds the value of λ for the lightest

tower in (4.18) by λ ≥ 1/
√
d− 2. Alternative (yet un-named) refinements were proposed

recently [200], placing an absolute upper bound on the tower mass scale in the interior

of moduli space.

• The AdS Distance Conjecture (ADC) [136] builds on the notion of distance be-

tween metrics, as it interprets the |Λ| → 0 limit for AdS as an infinite distance limit,

accompanied by infinite tower becoming light. We will expand on this in section 4.5.2.

• The Generalized Distance Conjecture (GDC) [136] is closely related to ADC and

postulates the appearance of an exponentially light tower for large variations of the gen-

eralized distance between metric for all Einstein spaces, including dS.
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• The Ricci flow conjecture [201] considers the Ricci flow for a family of metrics and

anticipates a tower becoming exponentially light at a fixed point at an infinite distance.

• The Black Hole Entropy Distance Conjecture [202] extends the Distance Conjec-

ture to black hole spacetimes and expresses the mass scale of the tower in terms of the

entropy.

• The Convex Hull Swampland Distance Conjecture [141] is a reformulation of SDC

in terms of a convex hull condition for a theory with multiple scalar towers characterized

by their charge-to-mass ratio.

• The CFT Distance Conjecture [139] considers infinite distance limits in CFTs,

proposing that they correspond to higher-spin points.

• The Gravitino Mass/Distance Conjecture [143,144] postulates that m3/2 → 0 is an

infinite distance limit, accompanied by an infinite tower of states becoming massless.

• The Cobordism Distance Conjecture [37] interprets infinite field distance limits as

running into a cobordism wall of nothing in the theory and gives scaling relations similar

to ADC. We will discuss this more extensively in chapter 7.

• The Emergent String Conjecture [137] concerns the light tower’s nature, proposing

only two possible physical realizations. It will be discussed in section 4.5.3.

4.5.2 AdS Distance Conjecture

Let us elaborate on some of the results of [136], where the near-flat limits of AdS (and

other Einstein spaces) were explored. We start with the formulation of the AdS Distance

Conjecture (ADC).

Anti-de Sitter Distance Conjecture (ADC) [136]:

For a quantum gravitational theory on a d-dimensional AdS space with cosmo-

logical constant Λ, there exists an infinite tower of states with mass scale m, in

Planck units, which behaves in the |Λ| → 0 limit as:

m ∼ |Λ|α, (4.19)

where α is an O(1) positive constant. The strong version of the conjecture addi-

tionally requires α = 1
2 for supersymmetric vacua.

The value of the constant α has great physical meaning: It was postulated in [136] that

it is always α ≥ 1
2 for AdS, which in turn prohibits parametric separation between the

scale of AdS and the scale of the massive states. For α ≥ 1
2 , if the tower satisfying (4.19)

is a KK tower, we cannot have scale separation between the scale of the internal manifold

and the AdS radius, i.e., the vacua are not truly four-dimensional. While most examples

support this claim, the question of scale separation for AdS vacua is not yet completely
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settled, as, for instance, the DGKT vacua [95] seem to exhibit scale separation, with

α = 7/18. Recent works on this topic include [203–219].

The Generalized Distance Conjecture (GDC) was also introduced in [136]. This is

a version of the distance conjecture which applies to all tensor fields, and in the case of

scalars, one recovers the original SDC. Practically, a field OM1...Mn has an accompanying

metric in the field space given by its kinetic terms, which allows the definition of a

generalized distance ∆. If the spacetime is a product manifold M = Xd × Yk, with S a

non-compact Einstein manifold and Y the internal manifold,then the limit of large field

variation one indeed gets a tower scaling like m ∼ e−α∆. This analysis is independent of

the sign of the cosmological constant and applies to de Sitter. Consequently, one expects

a scaling relation like ADC to hold for de Sitter, and we have

m ∼ Λα, (4.20)

where α is an order-one positive constant. We will refer to this relation/version of

the conjecture as the de Sitter Distance Conjecture (dSC), but we caution the reader

that there seems to be no universally adopted name in the wider literature. The main

difference to ADC is the value of the scaling constant. In this case, there is a strong

physical constraint, unitarity, which is embodied in the form of the Higuchi bound [220]

mspin≥2 ≳ Λ1/2 and imposes α ≤ 1
2 for Λ ≪ 1.

4.5.3 Emergent String Conjecture

The Emergent String Conjecture (ESC) [137] builds on the idea that in the infinite

distance limit, where one phenomenically loses control over the initial theory, there

exists a dual description. It proposes there are only two alternative realizations for this

dual description: either the emergence of a tensionless string or a decompactification.

The formulation of the original paper, presented in the box below, makes this statement

more precise.
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Emergent String Conjecture [137]:

For a d-dimensional theory of quantum gravity, the infinite distance limits in the

moduli space fall in either of the two categories:

– Equi-dimensional infinite distance limit : There, the theory reduces to a

weakly coupled string theory, i.e., the infinite tower of asymptotically mass-

less states forms the particle excitations of a unique weakly coupled tension-

less type II or heterotic string. This type of limit is conventionally called

tensionless string limit.

– Non-equidimensional infinite distance limit : There, the theory decompacti-

fies at least partially, i.e., the infinite tower of states corresponds to Kaluza-

Klein states along large dimensions, such that the total internal volume

diverges in units of the higher-dimensional Planck scale. This type of limit

is conventionally called decompactification limit.

The Emergent String Conjecture has been tested and verified in many non-trivial

setups, see for instance [137,221–229]. ESC will be used indirectly when explaining the

Dark Dimension Proposal [33], which will be the main subject of chapter 5.

4.6 Species scale and emergence

4.6.1 Species scale

When examining the range of validity of a gravitational theory, the Planck mass Mp

is naturally considered to be the UV cut-off. However, the appearance of infinite light

towers of states, quantified by the Distance Conjecture, directly lowers the cut-off of the

effective theory. There is a related well-established scale, the Species Scale [230, 231]

Λ̃, which precisely quantifies the UV cut-off in the presence of multiple species of light

particles. For an EFT coupled to gravity in d spacetime dimensions the species scale is

given by:

Λ̃ ≈ Mp

N
1

d−2
s

, (4.21)

where Ns is the number of particle species below Λ̃.

The Species Scale (4.21) can be motivated both perturbatively [230, 232] or non-

perturbatively [230, 231]. Consider d = 4 for simplicity. The perturbative estimation

considers the contributions to the graviton propagator coming from the Ns particle

species running in loops, and the species scale arises as the energy scale for which the

loop corrections become comparable to the tree-level term. Then, the one-loop graviton
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propagator reads [231,233]

π−1(p2) = 2p2
(
1− Nsp

2

120πM2
p

log
(
− p2

µ2
))
, (4.22)

with µ some scale related to the renormalization. Ignoring the log-factor4 the species

scale is such that the two terms inside the parenthesis are comparable, i.e., NΛ̃2

120πM2
p
∼

1 ↔ Λ̃ ∼ Mp√
Ns

, in accordance with (4.21).

At the non-perturbative level, one considers the smallest possible black hole within

the EFT, with radius rmin ≈ 1/Λ̃. For a large number of light modes, one can approx-

imate its entropy by S ∼ Ns. At the same time, the Bekenstein-Hawking entropy [16]

for the same black hole can be expressed as SBH =
M2

p

Λ̃2
. Equating these two entropy

expressions once again leads to (4.21).

In the context of the Swampland, where towers of light states are expected to appear,

the number of species effectively counts the number of states with masses m < Λ̃,

according to the perturbative picture above. As we have seen from the Emergent String

Conjecture, we expect two types of towers with different spacing and species scales.

For a KK tower signaling decompactification, the species scale is the higher-dimensional

Planck scale Mp,d+k, up to corrections due to the number of species in the theory that

do not belong to the tower. For an emergent string tower the species scale turns out to

be the string scale itself, up to logarithmic corrections.

There have been more recent developments regarding the species scale within the

swampland. In the context of 4d N = 2 theories, it was recently proposed in [234]

that a moduli-dependent species scale can be defined as Λ̃ ∼ 1√
F1
, with F1 the one-loop

topological free energy [235]. This claim was supported by a black hole argument in [236].

Moreover, the species scale has been analyzed from a thermodynamic perspective in [237].

Modular invariance was recently noticed to be useful for the calculation of a moduli-

dependent species scale [238]. Finally, the interplay of the moduli-dependent species

scale with other swampland conjectures has led to sensible bounds [239,240].

4.6.2 Emergence

The Emergence Proposal [241–243] makes use of the ubiquitous presence of towers of

light scalars in the asymptotic regimes of the moduli space to provide an underlying

physical principle behind some of the most robust swampland conjectures. Integrating

out the states in the towers can lead to the Distance Conjecture and the Weak Gravity

Conjecture and can hence be viewed as a unifying principle for the swampland web.

4Subtleties regarding the log-factor in the definition of the species scale were recently discussed, e.g.,

in [229,233].
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Emergence Proposal [241–243]

The dynamics (kinetic terms) for all fields are emergent in the infrared by inte-

grating out towers of states down from an ultraviolet scale Λs, which is below

the Planck scale. In its strong version, the Emergence proposal claims that the

tree-level kinetic terms vanish, while the mild version allows for tree-level terms

as long as the emergent kinetics term is of the same functional form.

Since emergence will play only a small part in the remainder of this thesis, we refrain

from providing more details and refer to a systematic study of the proposal and its

implications was performed in [233, 244]. We also find worth mentioning that recently

emergence in concrete orientifold compactification with 14 moduli was discussed in [229],

while its relation to the stability of dS was uncovered in [245].



Chapter 5

The Dark Dimension in a warped

throat

5.1 Preface

The Dark Dimension [33] is a recent idea by Montero, Vafa, and Valenzuela, which con-

fronts the observed value of the cosmological constant with insights from the Swampland

Program. In particular, the extremely small positive value of the observed cosmologi-

cal constant Λ indicates that our universe lies in some asymptotic region of the moduli

space, which, in turn, signals the appearance of a light infinite tower of states. Theoret-

ical arguments, in tandem with compliance with experimental and observational data,

lead to the prediction of a single mesoscopic extra dimension of the size of a few mi-

crons, accompanied by an infinite tower of states with masses scaling like m ∼ Λ
1
4 . This

proposal has a strong potential of being experimentally testable within a few years, so

further investigation is warranted.

The first part of this chapter, 5.2, will be a review of the Dark Dimension proposal,

effectively tying together the ideas and conjectures laid out in chapter 4 leading to the

single extra dimension and its signature Λ1/4 tower. Moreover, we will very briefly review

some implications of the proposal.

The second part of this chapter, 5.3, is based on our work [38], which discusses

a possible realization of the Dark Dimension proposal in string theory using a very

common feature of flux compactifications, the warped throat. We will start with a

review of the salient properties of the conifold [246] and the Klebanov-Strassler [247]

solution and how this fits within attempts to construct dS vacua within string theory.

In section 5.3.2, we will see how this reproduces the coveted Λ1/4-scaling, providing an

option for the Dark Dimension realization. Possible shortcomings of such a realization

are also discussed. Finally, in section 5.4, we close the chapter, commenting on newer
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developments regarding possible realizations of the Dark Dimension.

5.2 Reviewing the Dark Dimension proposal

The observed positive and small value of the cosmological constant [5] has been a long-

standing problem in theoretical physics. Together with the apparent B −L global sym-

metry [248], this can be interpreted as an indication that our universe is realized close

to some asymptotic limit of the moduli space. Assuming this is indeed the case led to

the Dark Dimension proposal in [33].

The starting point is that our universe is realized as some quasi-stable vacuum with

a positive cosmological constant or even as some slow-rolling potential with Λ > 0. One

of the core features of the Swampland program is the presence of light towers in such

asymptotic limits, and the incarnation of the distance conjecture suitable for our setup is

the de Sitter Distance Conjecture [136], according to which there exists a tower of light

states with mass scale scaling as m ∼ Λα. Equivalently, this corresponds to the potential

scaling like Λ ∼ m1/α, instead of the usual EFT expectation for Λ ∼ Λ0 + c ·m
1
α , with

the Λ0 being the contribution of the heavy modes. The vanishing of Λ0 is argued to be

intrinsically related to the modular invariance of string theory. The value of α is not

arbitrary. It was already noted in [136] that α ≤ 1/2 is required for compliance with

the Higuchi bound, while in [33] the case for α ≥ 1/d was made, based on the fact that

the one-loop term would generically scale like m1/d and a different scaling would require

some “magical” cancellation. Taking everything into account, the expected range for α

is 1
d ≤ α ≤ 1

2 .

At this point, one can use experimental input to fix α within this theoretically al-

lowed range of values. Torsion balance experiments [94] study deviations from the 1/r2

gravitational attraction law, and the state-of-the-art measurements exclude any devia-

tion for distances larger than 30µm, which means that the scale of a tower compatible

with the data must be m ≳ 6.6 meV [94]. Plugging in the values of Λ = 10−122M4
p

and d = 4 for our universe necessitates saturating α to its minimum value, α = 1/4, to

ensure compatibility with experimental data.

In fact, Λ1/4 ≈ 2.3meV, the energy scale where we expect the tower to kick in, which

is very close to the neutrino scale. This, together with the Emergent String Conjecture,

is a strong indication for the nature of the tower: for an emergent string tower, the

EFT would already break down at this scale, but we know an EFT description valid

for scales much higher than the neutrino scale - the Standard Model itself - and the

emergent string option is excluded. Hence, according to the ESC, the tower must be a

decompactification tower, and at least one extra dimension should open up.

Once again, we have experimental and observational input, leading to concrete
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bounds on the size R and the number n of extra dimensions [88]. Physically, the extra

dimensions are accompanied by KK-gravitons, which, in turn, leave an imprint on the

evolution of astrophysical objects. For instance, the emission of KK gravitons from su-

pernovae (SNe) cores after collapse can shorten the observable signal, leading to bounds

for the size extra dimensions [249]. Moreover, part of the KK-gravitons emitted over the

age of the universe is thought to eventually decay into photons, producing a detectable

background [250]. Finally, the larger-than-expected temperature of old neutron stars

may be explained by a halo of KK gravitons around them. The common feature of all

these bounds is that the size of the extra dimensions R decreases with the number of

extra dimensions n. The most stringent bounds [251] are due to neutron star excess

heat:

R ≤ 4.44 · 10−5m, if n = 1,

R ≤ 1.55 · 10−10m, if n = 2,

R ≤ 2.58 · 10−12m, if n = 3.

(5.1)

Since Λ−1/4 ≈ 88µm, the only case that can be conciliated with the experimental bounds

is that of n = 1, i.e., a single extra dimension, dubbed the Dark Dimension for reasons

that will become apparent later. To strike the delicate balance between theoretical

prediction and experimental bounds, it is necessary to introduce an explicit prefactor in

the scaling relation, as

Λ
1
4 = λm, (5.2)

with 10−4 ≤ λ ≤ 1. This range of λ ensures the tower does not deviate significantly from

the required 1/4-scaling, while simultaneously having a quasi-dS phase in the potential

and was explicitly verified in the case of a Casimir contribution [33]. For most applica-

tions, we can assume λ ∼ 10−1 − 10−3, so the size of the extra dimension is estimated

to be around:

R ∼ 0.1 µm− 10µm. (5.3)

Finally, the species scale associated with such a decompactification is M̂ = Mpl,5 =

m
1
3M

1
2
p ∼ λ−

1
3Λ

1
12M

2
3
p ∼ 109 − 1010 GeV .

The idea of extra dimensions of considerable size is not unique to the Dark Dimension

scenario. It was originally proposed in the Large Extra Dimensions (LED) model, com-

monly known as ADD after the authors Arkani-Hamed, Dimopoulos, Dvali [252, 253].

However, there are important differences stemming from the fact that the ADD model

aims at solving the electroweak Hierarchy problem and is not concerned with the value

of the cosmological constant. For instance, the relevant energy scales are different, and

the n ≥ 2 extra dimensions, in that case, are millimeter-sized.
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Some interesting implications

Let us briefly discuss some of its implications to motivate further why the Dark Dimen-

sion proposal is worth exploring.

One expects an excess of fermionic modes in the tower since the potential should

go to zero from above [254], with masses close to the neutrino scale. It is then natural

to interpret the tower as sterile right-handed neutrinos, similarly to [255]. Estimating

the mass of active neutrinos as mν ∼ y2 ⟨H⟩2 /M̂ and imposing that the masses of

active and sterile neutrinos are of the same order leads to a prediction for the Higgs

vacuum expectation value, ⟨H⟩ ∼ 1/y

√
M̂/R ∼ 10 − 103 GeV for Yukawa coupling

y ∼ 10−2 − 10−3, i.e., the electroweak scale can be related to the cosmological constant

as ⟨H⟩ ∼ Λ1/6 ∼ 10 − 103 GeV . It was shown recently in [256] that using the Grav-

itino Conjecture [143, 144] the supersymmetry breaking scale can also be related to the

cosmological constant as MSUSY ∼ Λ1/8 ∼ 10− 100 TeV .

As we have seen, the UV cut-off estimation is around M̂ ∼ 109 − 1010 GeV . This

energy scale is below the scale of 1011 GeV where the Higgs potential develops an

instability [257], and it is expected that effects from the new dimension opening up

will appropriately modify the potential resolving the instability. Another energy scale

close to M̂ is the so-called Greisen-Zatsepin-Kuzmin (GZK) limit [258,259], at 109 GeV ,

where a sharp cut-off in the flux of ultra-high-energy cosmic rays (UHECR) is observed.

In [260] it was noted that for λ = 10−3 the GZK scale precisely matches M̂ and the

Dark Dimension could be the reason behind the cosmic ray flux cut-off.

Going back to the cosmological side, one of the most attractive properties of the

Dark Dimension is that it provides not only one but two complementary dark matter

descriptions. In [261], primordial black holes were argued to fully account for the current

dark matter density since their decay rate would sufficiently slow down in the presence

of the mesoscopic fifth dimension. In [262], dark gravitons, i.e., KK gravitons along

the dark dimension, were shown to also lead to the observed dark matter density while

simultaneously providing a natural solution for the cosmological coincidence problem

[263]. These two proposals were found to be equivalent in [264], using a corpuscular

description of black holes as bound states of gravitons [265].

Finally, we want to remark that the Dark Dimension proposal is experimentally

testable. There are certain types of experiments whose next generation is expected

to be able to detect relevant signals, such as the next generation of torsion balance

experiments and the next generation of experiments probing the low- and high-redshift

universe. For the latter case, an explicit study of the characteristic modulation of the

21-cm lines due to the dark dimension was performed in [266]. Very recently, Auger

data [267] for UHECR were examined with respect to the dark dimension [268].
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5.3 Realization in a warped throat

The Dark Dimension proposal assumes that one starts in a quasi-de Sitter phase. An

extensive recent review of different approaches to constructing de Sitter in string theory

can be found in [118]. An explicit, well-controlled realization of dS in string theory is

a greatly challenging, if not impossible task [269], which needs to bypass known no-go

theorems [98,270]. In fact, the Swampland web includes several conjectures challenging

dS vacua: The dS Swampland Conjecture [28] prohibits any dS vacuum, the refined de

Sitter conjecture [29,134] prohibits stable dS vacua, while the trans-Planckian censorship

conjecture [30] allows for dS minima as long as they are short-lived enough. Additional

arguments against dS have appeared in [271,272] based on a description of dS as a coher-

ent state of gravitons and have been shown to relate to the aforementioned swampland

cojectures [42]. Luckily, the Dark Dimension scenario is indifferent to the specifics of

the dS phase- it goes through for stable, metastable, or unstable dS or even quasi-dS

solutions. The only real requirement is that one can define Λ. The original paper [33]

remained agnostic about the realization of dS. Our work [38] was the first to propose

a concrete setup realizing the desired scaling (5.2), using a common feature in string

compactifications, a strongly-warped throat. While the throat is a common ingredient

in dS uplifts of AdS vacua, in principle, our argument goes through even for rolling

potentials as long as the modes in the throat set the energy scale.

In section 3.2.2, we have seen that the presence of fluxes can induce warping in the

metric (3.13). A common approximation is to work in the dilute flux limit, where the

backreaction of the fluxes can be neglected. However, sometimes it is desirable to take the

backreaction into account. Such are the cases of KKLT and LVS, where one eventually

attempts to uplift the AdS vacuum to dS by including D3-branes. The contribution of

the branes needs to be such that the final positive value of the potential is tiny. This can

be naturally achieved by using a highly warped throat, such that the contribution of the

anti-branes, which naturally settle at the tip of the throat, gets appropriately redshifted

by the warp factor.

5.3.1 Conifold and Klebanov-Strassler throat

Let us introduce the conifold singularity [246] and its smoothened-out deformation, which

can be described by the Klebanov-Strassler solution [247].

Basic info on throats

The non-compact singular Calabi-Yau space, called conifold [246], can be described by

the quadric in C4

w2
1 + w2

2 + w2
3 + w2

4 = 0. (5.4)
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This surface is a cone with base the coset space T 1,1 = (SU(2)×SU(2))/U(1), topolog-

ically S2 × S3. The singularity at the origin wi = 0 can be smoothened by performing

a complex deformation, which renders the size of S3 at the origin finite. This is the

deformed conifold and is described by

w2
1 + w2

2 + w2
3 + w2

4 = Z, (5.5)

where Z is a complex structure modulus parametrizing the size of S3, called the conifold

modulus. The 6d metric of the deformed conifold is [246,273]

ds26 =
1

2
|S|

2
3K(y)

[
dy2 + (g5)2

3K3(y)
+ cosh2

(
y

2

)(
(g3)2 + (g4)2

)
+ sinh2

(
y

2

)(
(g1)2 + (g2)2

)]
,

(5.6)

where y is parametrizing the direction along the throat, and all the moduli dependence

is absorbed into S, an appropriate dimensionful rescaling of Z and

K(y) =

(
sinh(2y)− 2y

)1/3
21/3 sinh(y)

. (5.7)

The 1-forms gi, i = 1, . . . , 5 form a base of the cone [273] - they arise from the angular

variables in the base S2 ×S3, and they can be expressed in terms of the auxiliary forms

ei as:

g1 =
e1 − e3√

2
, g2 =

e2 − e4√
2

, g3 =
e1 + e3√

2
, g4 =

e2 + e4√
2

, g5 = e5, (5.8)

with
e1 ≡ − sin θ1dϕ1, e2 ≡ dθ1, e3 ≡ cosψ sin θ2dϕ2 − sinψdθ2,

e4 ≡ sinψ sin θ2dϕ2 + cosψdθ2, e5 ≡ dψ + cos θ1dϕ1 + cos θ2dϕ2.
(5.9)

This geometric description is physical in the context of type IIB orientifold compactifi-

cations. The 10d supergravity solution of the deformed conifold was given by Klebanov

and Strassler [247] and is a warped metric of the form

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)ds26. (5.10)

with ds26 given in equation (5.6). The throat is supported by the introduction of appro-

priate fluxes. There exist two relevant 3-cycles, the A-cycle, which effectively wraps the

S3 whose radius is parametrized by Z, and its dual B-cycle. Threading these cycles with

R-R and NS-NS fluxes, respectively, according to

1

2πα′

∫
A
F3 = 2πM,

1

2πα′

∫
B
H3 = −2πK, (5.11)
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induces a D3-tadpole contribution Nflux =M ·K. Solving the equations of motion leads

to the warp factor close to the tip of the throat [247]:

e−4A(y) = 2
2
3
(α′gsM)2

|S|
4
3

I(y), (5.12)

with

I(y) ∼ (gsM)2

|S|2

∫ ∞

y
dx
x cothx− 1

sinh2 x
(sinh(2x)− 2x)

1
3 , (5.13)

where we use the conventions of [274]. We express everything in terms of the conifold

modulus Z using that S = (α′)
3
2

√
g
3/2
s VwZ [274] and we get:

e−4A(y) ≈ 2
2
3
gsM

2

(Vw|Z|2)
I(y), (5.14)

with Vw the warped volume. Clearly, strong warping corresponds to Vw|Z|2 ≪ 1.

5.3.2 Mass scales in the presence of strong warping

The physical setup we want to consider is similar to that of section 3.2.3. We want to

uplift an AdS vacuum to dS and need the conifold singularity to appropriately redshift

the uplift contribution. We consider a setup with such warping that can be approximated

by a long KS throat glued to a bulk unwarped CY3 at the radial distance yUV, as sketched

in figure 5.1. It was shown in [275] that the details of this gluing do not influence the

warp factor, which turns out to be at leading order [247,276]

e−4A(y) ≈ 1 + 2
2
3
gsM

2

(V|Z|2)
I(y), (5.15)

with V ∼ τ
3
2 the total volume. For strong warping, the necessary condition is

V|Z|2 ≪ 1. (5.16)

Let us now consider moduli stabilization. Assuming that all other moduli (complex

structure and axio-dilaton) have been fixed by fluxes in the bulk, we consider the N = 1

low-energy effective action for Z, V [275,277]. The Kähler potential is

K = −2 log(V) + 2c′gsM
2|Z|

2
3

V
2
3

+ . . . , (5.17)

with the string coupling constant, as usual, related to the vacuum expectation value of

the dilaton gs = e⟨ϕ⟩, which is the real part of the axio-dilaton S = e−ϕ + iC0. The
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yUV

Figure 5.1: Schematic depiction of throat glued to bulk CY3.

superpotential, with fluxes as in (5.11), is of the Gukov-Vafa-Witten type and for |Z| ≪ 1

can be approximated by

W = −M Z

2πi
logZ + iKSZ + . . . , (5.18)

where the dots denote terms depending on the remaining moduli. The conifold modulus

is hence stabilized at the (exponentially small for appropriate fluxes) value

Z ∼ exp

(
−2πK

gsM

)
. (5.19)

Note that while the potential admits off-shell corrections [278], they are irrelevant for

our discussion since we stay close to the minimum. The conifold mass was computed

in [274] and is

mZ ≃ 1

(gsM2)
1
2

(
|Z|
V

) 1
3

. (5.20)

Let us consider the other mass scales entering the game. For an isotropic Calabi-Yau

threefold, the bulk KK tower has a mass scale

MKK ∼ 1

τ
∼ 1

V
2
3

. (5.21)

Naively, this would mean that a new dimension would first open up at MKK. However,

the warped throat induces a large anisotropy in our setup, which might feature lighter

states localized close to the tip of the throat. This is, in fact, true. In [274], the Laplace

equation close to the conifold was solved to first approximation, and it was found that

there exists a one-dimensional tower of redshifted KK modes mainly supported close to

the tip of the KS throat. Their masses scale similarly to the mass of Z as

mKK ∼ 1

(gsM2)
1
2 yUV

(
|Z|
V

) 1
3

. (5.22)
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This result was also confirmed numerically in [116,274]. The numerical analysis showed

that the KK masses (5.22) are more or less insensitive to the length of the throat yUV

beyond a critical length yUV > ỹUV = O(10), due to their localization close to the tip of

the throat.

Direct comparison of the bulk and throat KK scales shows that the throat modes are

much lighter since their masses are suppressed by both the exponentially small |Z| and
the factor gsM

2, which has to be large for the effective action to be controllable. Now,

effectively one dimension decompactifies once we reach energies mKK, so we have a 5d

EFT until we hit the energy scale m
(1)
KK of the next lighter KK tower, which signals the

decompactification of even more dimensions. Note that this tower is not necessarily a

bulk tower - it can, for instance, be localized the S3 in the throat, which is also strongly

redshifted.

Let us recap the situation: we are considering a generic type IIB orientifold com-

pactification in the vicinity of a conifold singularity. One can stabilize the bulk Kähler

moduli, the axio-dilaton, and the Kähler moduli using fluxes and some non-perturbative

effect, respectively, and we do not impose any condition regarding supersymmetry on the

minimum. The analysis of the EFT in the throat, where fluxes induce strong backreac-

tion, stabilizes the conifold modulus Z to an exponentially small value, and we uncover a

light tower of KK modes localized close to the tip of the throat and with masses similar

to mZ . Under these very general assumptions, both the KKLT and LVS AdS minima

are described by our setup.

Now is the time to take a leap of faith and perform the uplift, probably the biggest

assumption in our analysis. We set aside possible destabilization issues and proceed,

assuming the uplift works.

The uplift contribution to the scalar potential for an anti-D3-brane placed at the tip

of the KS throat is given by [274,279]

Vup ∼ 1

(gsM2)

(
|Z|
V

) 4
3

. (5.23)

Simple algebraic manipulations can relate it to the mass of the throat KK modes as

mKK ∼ 1

(gsM2)
1
4 yUV

∣∣Vup∣∣ 14 . (5.24)

Now, imposing that Vup ∼ |VAdS|, which holds for appropriate selection of fluxes, can be

used to relate |Z| to VAdS as

|Z|
V

∼ (gsM
2)

3
4

∣∣VAdS

∣∣ 34 . (5.25)

If the uplift works, leading to a meta-stable dS minimum, the cosmological constant

Λ in the dS minimum is given by Λ = Vup+VAdS ≳ 0. The delicate balancing of the AdS
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cosmological constant and the uplift contribution means that all three terms VAdS, Vup,Λ

scale in the same way with respect to the exponentially small |Z|/V.
In principle, one might expect that Λ could have a parametrically smaller value

through sufficient tuning of the warp factor, according to the “old” Landscape philos-

ophy1. However, the warp factor (5.14) depends on the fluxes and Z, which in turn is

determined by fluxes, according to (5.19). The fluxes compatible with any given com-

pactification are not arbitrary. First, they obey quantization conditions; hence they are

only integers. Moreover, as we have seen in equation (3.15), the tadpole cancellation

condition is a restrictive condition inherently related to the consistency of the theory,

which further limits the possible flux choices. Finally, on a slightly more speculative

level, the tadpole conjecture [102] is an additional condition that might hinder arbitrary

flux selection. Moreover, as shown in [278], the minimum should not move too far away

from its initial position. This suggests that in quantum gravity, the actual controllable

tuning is limited. We quantify this expectation by writing

Λ = λ′ |Vup|, λ′ < 1. (5.26)

Finally, we use equation (5.24) to arrive at the relation

Λ
1
4 = (gsM

2)
1
4 yUVλ

′mKK . (5.27)

This is precisely the postulated scaling relation (5.2) for the dark dimension scenario,

which we repeat here to allow for convenience

Λ
1
4 = λm. (5.28)

Direct comparison shows that in our setup λ = (gsM
2)

1
4 yUVλ

′.

Assuming that λ > 10−4 as argued in [33] supports the conclusion that λ′ cannot be

arbitrarily tuned, as it leads to

λ′ >
10−4

(gsM2)
1
4 yUV

. (5.29)

As a final remark, we note that the AdS vacuum before the uplift scales similarly

to the uplift term and Λ. This means that this AdS vacuum would be scale-separated,

in contradiction to the expectation of ADC that α ≥ 1
4 - now α = 1

4 . Once again, the

situation regarding scale separation is not crystal clear, especially after recent results that

point towards scale separation being achievable, so this is not an a priori inconsistency

in the proposed model. What is perhaps even more puzzling in our result is that a dS

minimum is behaving exactly in the way predicted by some of the most fundamental

1A landscape of AdS vacua could also contribute to the Λ tuning.
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principles of the swampland program, the (generalized) Distance Conjecture, while, at

the same time, violates the dS conjecture (and possibly TCC, depending on its lifetime).

However, our result persists as long as a strongly warped KS throat exists and the final

(quasi) dS vacuum or even quintessence potential is dominated by the energy scale in

the strongly warped throat. This is also relevant in case the uplifting procedure is not

fully controlled due to issues such as [116,280,281] for the KKLT scenario and [282,283]

for the LVS.

5.3.3 Intermediate mass scales

While the appearance of the required Λ
1
4 scaling seems undisputed, at least under the

assumptions made in our general analysis, there are more factors one needs to consider

to ensure the setup’s validity and compatibility with experimental bounds.

An issue that needs to be carefully examined on a case-by-case basis is the existence of

additional states, particularly towers. More specifically, in the Dark Dimension scenario,

the gravitational species scale Λgrav
sp =Mpl/

√
N = m

1/3
KKM

2/3
pl ∼ 109−10 GeV is estimated

as the scale arising by the decompactification of one extra dimension, i.e., taking into

account only the KK tower in this dimension. According to our discussion in section

4.6.1, any additional tower would lower this UV cut-off, as the number of species Ns

would increase. In our setup, such a tower that might be lighter than Λgrav
sp could, for

instance, arise from KK modes localized on the S3 in the throat.

Employing the emergence proposal of section 4.6.2, [274] showed that the effective

theory in the throat determined by the Kähler potential (5.17) and the superpotential

(5.18) comes with its own cut-off Λthroat
sp ∼ (gsM

2yUV)
2
3mKK. This signals that the

validity of the EFT stops above Λthroat
sp , where we expect additional non-perturbative

states to appear that need to be included in the effective action. Since Λthroat
sp < Λgrav

sp ,

these states would also become relevant for the correct determination of the gravitational

species scale. This whole discussion makes it clear that we cannot say anything conclusive

about the robustness of the warped throat as a means of realizing the Dark Dimension

proposal unless we are talking about specific examples where these intermediate mass

scales can be computed explicitly.

5.3.4 Example: uplifted LVS

Let us discuss how the 1/4−scaling appears in a specific, simple realization of LVS on a

Swiss-cheese type Calabi Yau with only two Kähler moduli, the volume modulus V ≃ τ
3
2
b

and τs. This is exactly the setup discussed in 3.2.3, and we remind the reader that τb is

stabilized non-perturbatively to a small value, while the volume modulus is stabilized at

V ∼ √
τs e

aτs . The value of the cosmological constant in the non-supersymmetric AdS



82 5. The Dark Dimension in a warped throat

minimum scales like

VAdS ∼ − 1

τs
e−3aτs ∼ 1

V3
, (5.30)

while the masses of the small and the large Kähler moduli scale as

mτb ∼
1

V
3
2

, mτs ∼
1

V
. (5.31)

For fluxes such that Vup ∼ |VAdS|, we express the value of the conifold modulus in terms

of the volume

|Z| ∼ (gsM
2)

3
4 V− 5

4 . (5.32)

Note that since V|Z|2 ∼ V− 3
2 , strong warping is guaranteed in the large volume regime

where we are working. The scale of the warped throat KK modes can now be expressed

in terms of the volume as mKK ∼ V
1
4
up ∼ 1/V

3
4 , while we can estimate the (naive) bulk

KK mass scale MKK ∼ 1/V
2
3 . Hence we have the following hierarchy of mass scales

mV < mτs < mKK < MKK . (5.33)

Both Kähler moduli and most complex structure moduli are lighter than the warped KK

scale mKK. The heaviest complex structure modulus is Z. Consistent with our general

analysis, the bulk KK modes are heavier than the throat ones. Their masses turn out

to differ only by a few orders of magnitude: A first estimation would be

MKK

mKK
∼ V

1
12 ∼ Λ− 1

36 ∼ 2 · 103, (5.34)

while taking into account the anisotropy of the bulk can give an even better estimation.

In that case Vol = r5b rs and we define the bulk KK scale as MKK ∼ 1
rb
. In this case, the

ratio increases by one order of magnitude:

MKK

mKK
∼ V

1
10 ∼ Λ− 1

30 ∼ 104. (5.35)

This shows that the corresponding length scale in the bulk is only by a factor of 10−3−
10−4 smaller than the length scale of the throat. Effectively, given the experimental

bounds (5.1), we are entering the n > 1 regime, which restricts the size of all the

decompactified dimensions much more drastically. This puts the uplifted LVS in tension

with the astrophysical bounds on KK modes in more than one large extra dimension,

and new physics is expected to appear below the species scale computed (naively) via

the throat KK modes.
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5.4 Recent developments and outlook

We have pointed out that a common aspect of stringy dS constructions, the strongly

warped throat, naturally gives rise to the main requirement of realizing the dark dimen-

sion scenario, the exponent α = 1/4 in the dS distance conjecture. Our assumptions have

been fairly general, using a setup where an AdS vacuum is uplifted to dS via an anti-

D3-brane localized at the tip of the throat. Our result is expected to persist even under

the milder assumption that the energy scale in the strongly warped throat dominates

the quasi-dS energy, even if the final dS phase is not strictly a vacuum.

However, the practical realization of the Dark Dimension proposal in such a setup is

not so simple. The appearance of additional modes below the gravitational species scale

lower the gravity cut-off, and one should be careful to take into account all such possible

towers. Moreover, in our concrete example of LVS, the bulk KK modes turned out to

be “too light”: they did not pose a problem for the validity of the effective theory per

se, but their associated length scale conflicted with experimental bounds on the size of

extra dimensions.

In the spirit of the Dark Dimension proposal, in [256], the value of the cosmolog-

ical constant Λ was related to the scale of supersymmetry breaking MSUSY, using the

Gravitino Conjecture, leading to a scaling of the form MSUSY ∼ Λ
1
8n , with n between

1 ≤ n ≤ 2 leading to a supersymmetry breaking scale compatible with current experi-

mental results - for instance, n = 1 corresponds to MSUSY ∼ O(10 − 100) TeV . While

this is a very interesting result on its own, we want to specifically comment on one result

of [256]: it was pointed out that our warped throat Dark Dimension realization in the

KKLT case, where AdS minimum is supersymmetric, leads to n = 1/2, hence seems to

be experimentally excluded.

All in all, a concrete stringy realization of the Dark Dimension scenario, while not

currently available, is certainly worth pursuing. Our proposed warped throat realization

has shown that achieving the necessary 1/4−scaling is just the first, not trivial, part of

the story. Additional constraints need to be checked and satisfied such that no other

directions decompactify simultaneously, the species scale does not get altered too much

due to the presence of other states, and the supersymmetry breaking scale remains

compatible with experimental constraints.

Finally, we must mention that more setups were identified that exhibit the Λ
1
4 -scaling:

The setup of [256] corresponds to Heterotic and type II STU models with three chiral

fields ϕi. Moreover, it has been pointed out [284] that the dS construction of [285] as a

negative-curvature compactification of M-theory also provides the required scaling.
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Chapter 6

Cobordism Conjecture and

Dimensional Reduction

6.1 Preface

As we have seen, non-vanishing cobordism groups generate global symmetries, which

must be trivialized to render a given theory compatible with quantum gravity. This hap-

pens either by gauging or by breaking the symmetry. This chapter is focused on the gaug-

ing of such cobordism groups. In fact, the cobordism groups will not be treated on their

own but in tandem with appropriate K/KO-theory groups. Blumenhagen and Cribiori

first proposed this joint treatment in [35] physically motivated by the open/closed string

duality [286], which can be viewed as a specific incarnation of gauge/gravity duality. Not

only does a solid mathematical background supporting this postulated relation exist, but

also non-trivial physical constraints are produced as a result.

As is common within the Swampland Program, a conjecture and its implications can

be tested under dimensional reduction, and here we have to study how the aforemen-

tioned Cobordism/K-theory correspondence behaves under dimensional reduction, i.e.,

when specifying a manifold on which our starting 10-dimensional theory is compactified.

In practice, one needs to go beyond the cobordism and K-theory groups of the point and

consider cobordism groups Ωξ(M) and K(M) of higher-dimensional manifolds M . This

is not arbitrary but has a solid mathematical footing. The proposed K-theory/cobordism

interplay relies on a mathematical correspondence between certain versions of cobordism

and K-theory. It is deeply rooted in the structure of such generalized (co)homology the-

ories and is based on well-established theorems, such as the Conner–Floyd [287] and the

Hopkins–Hovey [288] theorems.

This chapter will have the following structure: We will start by reviewing the proposal

of [35] in section 6.2, which will give us the chance to introduce the mathematical
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formalism relating the cobordism and K-theory groups of the point and what the physical

implications of their relation are. To test this proposal against dimensional reduction, we

will first explain in section 6.3 what our expectations are for the dimensional reduction

of an ordinary higher-form symmetry. Section 6.4 will be the most technical part of the

chapter and probably of this thesis. The goal is to compute cobordism and K-theory

groups of higher dimensional manifolds, such as spheres, tori, and Calabi-Yau manifolds.

To this end, we will introduce the Atiyah-Hirzebruch spectral sequence and apply its

homological and cohomological versions to cobordism and K-theory, respectively. We

aim to present a pedagogical overview of these techniques, which turn out to be very

useful for the study of cobordism and anomalies. However, for the reader who is mostly

interested in the physical interpretation, we gather our results in appendices D.1, D.2.

Section 6.5 will feature a systematic discussion of our results. In short, using the K-

theory/cobordism correspondence, we will replicate the expected symmetry-breaking

pattern, leading to sensible tadpole cancellation conditions, while taking into account

quantum mechanical effects. We interpret this as strong support towards both the

proposal of [35] and the original Cobordism Conjecture [34].

6.2 Cobordism and K-theory interplay

This section reviews some important insights and results first presented in [35].

As discussed in section 2.4, D-branes are inherently related to open strings, as they

can be viewed as the submanifolds on which the open strings end. The D-branes charges

are classified according to K-theory, and one can view the K-theoretical charge as an

obstruction for the brane to decay. This is reminiscent of a global charge, similar to

how the non-trivial cobordism charges of compact manifolds prevent them from being

consumed by an expanding bubble of nothing.

The K-theory charges carried by D-branes should vanish in a compact space. In

[289], it was argued that for uncancelled K-theoretical charges, global gauge anomalies

would appear in certain D-brane probes. Arguments in favor of the K-theory charge

cancellation from a swampland perspective were presented in [290, 291]. The fact that

D-branes source R-R fluxes was used to argue that the fluxes are also classified by K-

theory [292]; hence the K-theory charges are gauge charges. For the case of non-BPS

branes, where no higher-form R-R field directly couples to them, differential K-theory

still allows to associate a discrete gauge symmetry should be associated with them [293].

In short, the global K-theory symmetries should be gauged.

A central part of this chapter will be the assertion made in [35] that whenever a

suitable mathematical framework exists, cobordism charges will also be gauge charges,

entering the tadpole cancellation conditions jointly with the K-theoretical contributions.
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As a starting point, let us discuss which K-theory and cobordism groups will interest

us. On the K-theory side, we have already seen that the groups classifying the Dp-brane

charges are K−n(pt) = K̃(Sn), with n = d − p − 1 in the case of type IIB theory and

KO−n(pt) = K̃O(Sn), with n = d − p − 1 in the case of type I theory. For cobordism,

the situation is not so clear-cut as, in a sense, the cobordism group truly describing

string theories is ΩQG = 0. Hence, the suitable group depends on how we approximate

this structure. As we have seen in section 4.4.3, a sensible first approximation for type

I would be ΩSpin, since the fermionic matter of the theory is neutral. For type IIB/F-

theory, we consider ΩSpinc . There is a two-fold motivation for the Spinc structure. On

the one hand, it was argued in [34] that F-theory compactifications on elliptically fibered

CY induce a Spinc structure on the base manifolds. On the other hand, in the case of

trivial H-flux, the Freed-Witten anomaly is canceled for Spinc manifolds [66]. Hence our

working approximation will be ΩSpin for type I and ΩSpinc for type IIB/F-theory. We

gather all the relevant groups in table 6.1.

n 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
n (pt) Z Z2 Z2 0 Z 0 0 0 2Z 2Z2 3Z2

ΩSpinc
n (pt) Z 0 Z 0 2Z 0 2Z 0 4Z 0 4Z⊕ Z2

KO−n(pt) Z Z2 Z2 0 Z 0 0 0 Z Z2 Z2

K−n(pt) Z 0 Z 0 Z 0 Z 0 Z 0 Z

Table 6.1: Spin and Spinc cobordism groups of the point, higher KO- and K- theory

groups up to n = 10.

One can immediately notice the similarities between ΩSpin / KO, and ΩSpinc / K-theory.

For n < 8 and n < 4, respectively, these groups are isomorphic, while for higher values

of n, the K-theory groups are always contained in the cobordism ones.

This is not a coincidence but rather relates to a deeper mathematical structure

uncovered by Atiyah, Bott, and Shapiro [294]. The Atiyah-Bott-Shapiro(ABS) orienta-

tion [294] refers to both the orientation of complex K-theory over Spinc structures and

of KO-theory over Spin structures. For our purposes, it suffices to mention that there

exist maps

α : ΩSpin
n (pt) → KO−n(pt)

αc : ΩSpinc

n (pt) → K−n(pt),
(6.1)

which can be used to define isomorphisms between the groups [295]:

ΩSpin
n (pt)/ kerα ∼= KO−n(pt) , (6.2)

ΩSpinc

n (pt)/ kerαc ∼= K−n(pt) . (6.3)
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The explicit form of the above orientations is known at a fixed degree. For the Spin

case, it is given by the index of the Dirac operator on M [296]:

αn([M ]) =



Â(M) n = 8m,

Â(M)/2 n = 8m+ 4,

dimH mod 2 n = 8m+ 1,

dimH+ mod 2 n = 8m+ 2,

0 otherwise.

(6.4)

Here Â is the A-roof genus, defined in appendix B, and H (H+) is the space of (positive)

harmonic spinors. The expression for the Spinc case is simpler, and is given by the Todd

genus, i.e., the index of the Spinc Dirac operator:

αcn([M ]) = Td(M) ≡
∫
M

tdn(M) , (6.5)

the definition of which can be found in appendix B. Note that in all cases, since the

map acts on cobordism equivalence classes, the right-hand-side quantities are cobordism

invariants.

6.2.1 Physical implications: Gauging and tadpoles

The proposal of [35] relies on the existence of the ABS orientation and postulates that a

combination of K-theory and cobordism charges is gauged, not just K-theory. To make

this more concrete, we consider type IIB on a Spinc manifold, but the same should hold

for type I on a Spin manifold. The idea is that D-brane defect and cobordism charges

couple to the same gauge field, i.e., appear in the same tadpole cancellation condition.

Schematically, this happens as

dFn−1 = JKn + a(n) Jcobord
n , (6.6)

i.e., a linear combination of K-theory and cobordism global charges is gauged, with

the coefficient a(n) a priori unknown. Note that on the right-hand side, a contribution

will appear for each cobordism invariant, not only the one which appears in the ABS

orientation. Integrating such an equation leads to a charge neutrality condition, and it

was found in [35] that the condition arising this way is sensible and precisely reproduces

known string theoretical tadpole cancellation conditions.

The invariants of ΩSpinc
n (pt), for n up to 6, denoted as µjn, are presented below:

µ0 = td0(M) = 1 ,

µ2 = td2(M) =
1

2
c1(M) ,

µ14 = td4(M) =
1

12

(
c2(M) + c21(M)

)
, µ24 = c21(M) ,

µ16 = td6(M) =
1

24
c2(M) c1(M) , µ26 =

1

2
c31(M) .

(6.7)
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We have simplified the notation above by denoting ci(TM) simply by ci(M). Sometimes,

we will avoid displaying the argument altogether if the manifold we refer to is clear from

the context. The invariants in the left-side column are precisely those given by the

ABS orientation, while more invariants may be present depending on the corresponding

cobordism group. The cobordism n-form currents can be constructed using these invari-

ants, i.e., Jcobord
n =

∑
j∈inv a

(n)
j µjn, where the sum must run over all the all cobordism

invariants. As for K-theory, the currents arise using the delta functions over the localized

D-branes, i.e., JKn =
∑

i∈def Qiδ
(n)(∆10−n,i), where ∆10−n,i is the submanifold wrapped

by the i-th Dp-brane (with p = 9−n in type I/IIB) with charge Qi. The assertion of [35]

is that the integrated charge neutrality condition for a manifold M ∈ [M ] is then

0 =

∫
M
dFn−1 =

∫
M

∑
i∈def

Qi δ
(n)(∆10−n,i) +

∫
M

∑
j∈inv

a
(n)
j µjn . (6.8)

Interestingly, (6.8) is valid off-shell for all compact manifolds cobordant with M .

Let us clarify the proposal with two examples, first presented in [35]. The first

example will become relevant later in this chapter, where it will arise naturally as part

of a higher dimensional analysis.

Example 1: ΩSpinc

6 (pt) and K−6(pt)

We have ΩSpinc

6 (pt) = Z⊕ Z, so we expect two cobordism invariants contributing

to the current, and it classifies three-form global symmetries in 10d. Using the

µi6 invariants from equation (6.7) we have Jcobord
6 = a

(6)
1 c1c2/24 + a

(6)
2 c31/2. In

the K-theory side, K−6(pt) classifies D3-branes. Hence, the integrated tadpole

cancellation condition is

0 =

∫
M

∑
i∈def

Qi δ
(6)(∆4,i) +

∫
M

(
a
(6)
1

c1(M) c2(M)

24
+ a

(6)
2

c31(M)

2

)
. (6.9)

This expression is familiar from F-theory compactifications, and in particular

for coefficients a
(6)
1 = −12, a

(6)
2 = −30 it precisely reproduces the known D3-

tadpole cancellation condition for F-theory [101] on a smooth Calabi-Yau fourfold

elliptically fibered over a base M .

The following example illustrates how this correspondence plays out for type I theory,

where torsional classes may appear.
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Example 2: ΩSpin
2 (pt) and KO−2(pt)

We have ΩSpin
2 (pt) = Z2 so the cobordism current will come from the ABS

orientation Jcobord
2 = a(2)α2. In the KO-theory side, KO−2(pt) classifies non-BPS

D̂7-branes. Hence, the tadpole cancellation condition is

0 =

∫
M

∑
i

Qi δ
(2)(∆8,i)− a(2) α2(M) mod 2 . (6.10)

Now, the value of the coefficient is important, as for a(2), the cobordism contri-

bution decouples. Since M = S1
p × S1

p is a generator of ΩSpin
2 with α(M) = 1 and

is a valid background for type I theory, we can deduce that a(2) is even.

Note that in the examples above, there is no way to fix the relative coefficients a

priori without input from string theory. Such an achievement would be a great step

towards a bottom-up realization of string theory.

6.2.2 Fixing a background X

We have already seen that the cobordism and K-theory groups can be defined for higher-

dimensional manifolds X. In practice, such a background fixing is natural in string the-

ory, especially within the context of dimensional reduction. Moreover, in the proposed

correspondence of [35] is correct, it should behave appropriately under dimensional re-

duction on X, so specifying this background manifold constitutes a highly non-trivial

test.

When considering cobordism groups of the point, Ωξn(pt), one is looking at global

symmetries of the d-dimensional effective theory by scanning through all possible topolo-

gies of n-dimensional compact manifolds. Going from pt to X, the cobordism group is

generically enlarged, as already expected due to the Splitting Lemma. In particular,

the classes Ωξn(pt) will also be present in Ωξn(X), but new classes can appear, depend-

ing on the topology of X. Intuitively, passing from Ωξn(pt) to Ωξn(X), the rank of the

group increases, and we can interpret Ω̃ξn(X) as the part of global symmetries genuinely

stemming from having fixed a manifold X.

Up to now, we have only discussed the Atiyah-Bott-Shapiro orientation, mapping

cobordism groups of the point to K-groups of the point. Luckily, the actual mathematical

structure goes much deeper than that, and a framework suitable for higher-dimensional

manifolds exists. This is the Conner-Floyd [287] and the Hopkins-Hovey theorem [288].
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Hopkins and Hovey proved that the maps

ΩSpin
∗ (X)⊗

ΩSpin
∗

KO∗ → KO∗(X), (6.11)

ΩSpinc

∗ (X)⊗
ΩSpinc

∗
K∗ → K∗(X), (6.12)

are isomorphisms for any topological space X, i.e., KO-theory is isomorphic to the exten-

sion of scalars of Spinc cobordism theory. For more details regarding this isomorphism

and the extension of scalars we point to [35]. The existence of this isomorphism indicates

strongly that the K-theory/cobordism correspondence is extendable to X instead of pt.

To check this quantitatively, we need to compute such groups, at least for some treatable

classes of background manifolds X, and what kind of physical information they contain.

This will be extensively discussed in section 6.4 and 6.5, but for now let us see how these

global symmetries behave under dimensional reduction in ordinary cohomology.

6.3 Dimensional reduction of symmetries

To set our expectations for the dimensional reduction in the cobordism/K-theory picture,

let us review how global symmetries are dimensionally reduced in the usual cohomology

picture. In section 4.3.2, we have already seen that a continuous global p-form symmetry

in d dimensions is described by an associated closed current Jn, with n = d − p − 1.

Breaking requires the introduction of an appropriate defect such that

dJn = δ(n+1)(∆p) ̸= 0 , (6.13)

where ∆p is the cycle wrapped by the defect. Gauging requires gauge fields coupling

minimally to the current

S =

∫ (
−1

2
Fp+2 ∧ ∗Fp+2 + Cp+1 ∧ Jn + . . .

)
, Fp+2 = dCp+1, (6.14)

such that the current is trivial in cohomology, i.e., exact

Jn = (−1)p d ∗ Fp+2 . (6.15)

A dimensional reduction over a compact space X is performed via expanding the

various objects, such as currents and gauge fields, in a cohomological basis of X. The

expansion coefficients are fields propagating along the non-compact dimensions. Since

the charges are quantized, we consider singular cohomology with integer coefficients,

Hp(X;Z).
Compactifying the theory on a k-dimensional spaceX gives aD = (d−k)-dimensional

effective theory with (broken and gauged) symmetries inherited from the original theory.

A p-form symmetry in D dimensions can receive contributions from different (p+q)-form
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symmetries of the d-dimensional theory. These contributions are related to currents

Jn+m, with p = D − n − 1 and q = k − m, wrapping m = 0, 1, . . . , k cycles in X

and extending along n directions in the non-compact space. In a cohomology basis

ω(m)a ∈ Hm(X;Z), with a = 1, . . . , bm, bm the Betti numbers, we can decompose the

currents as

Jn+m =

bm∑
a=1

j(m)a
n ∧ ω(m)a . (6.16)

The set of currents j
(m)a
n , for a = 1, . . . bm and m = 0, . . . , k correspond to p-form

symmetries in D dimensions. If the Jn+m are closed, dJn+m = 0, they produce a lattice

of global p-form symmetries in D dimensions:

dj(m)a
n = 0, ∀ a = 1, . . . bm, ∀m = 0, . . . k . (6.17)

Breaking or gauging the global symmetries does not affect this structure, and we

generically expect a lattice of broken or gauged symmetries in the lower-dimensional

theory arising from different broken or gauged symmetries of the original theory. Let us

discuss how this works in more detail.

Breaking the currents Jn+m requires forms δ(n+m+1) in the d-dimensional theory such

that dJn+m = δ(n+m+1)(∆p+q) ̸= 0, with p+ q = d− n−m− 1. These forms represent

defects wrapping submanifolds ∆p+q = Πp×Σq of the d-dimensional space, where Πp is

a p-dimensional submanifold of the non-compact space and Σq is a q-dimensional cycle

of X. For the global symmetry to be broken in the D-dimensional theory, we take

p = D − n − 1 and q = k −m such that the defect has now codimension n + 1. The

n = 0 case, i.e., a (D − 1)-form global symmetry, corresponds to a domain wall in D

dimensions). The cohomology expansion is then

δ(n+m+1)(∆p+q) =

bm∑
a=1

δ(n+1)(Πp)
(m)a ∧ ω(m)a. (6.18)

Any defect δ(n+m+1) in d dimensions generates a lattice of codimension (n + 1) defects

in D dimensions, δ(n+1)(Πp)
(m)a, which can break the lattice of global currents (6.17):

dj(m)a
n = δ(n+1)(ΠD−n−1)

(m)a ̸= 0, (6.19)

with a = 1, . . . bm and m = 0, . . . , k.

Gauging the currents Jn+m means there exist field strengths Fn+m−1 in the d-

dimensional theory such that Jn+m = dFn+m−1, where Fn+m−1 is the magnetic dual

of the field strength in (6.15). The dimensional reduction of these Bianchi identities

can be performed simply by replacing Jn+m by Fn+m−1 in the breaking analysis and

repeating the same steps. Hence we find a lattice of (n−1)-form field strengths f
(m)a
n−1 in

D dimensions, which gauge the n-form currents j
(m)a
n , thus giving the Bianchi identities

j(m)a
n = df

(m)a
n−1 . (6.20)
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In general, the currents j
(m)a
n also contain contributions from localized delta functions

δ(n)(ΠD−n), arising from the reduction of D-branes in d dimensions.

After computing the cobordism and K-theory groups of X in the next section, we will

show that they exhibit the same pattern explained here for the dimensional reduction

of broken and gauged symmetries on X. We will see that the description in terms of

cobordism and K-theory provides an organizing principle for the various symmetries

in the dimensionally reduced theory, which is not transparent from the above analysis.

Indeed, contributions to a given (broken or gauged) p-form symmetry in D-dimensions

and its corresponding charged objects will be encoded into K−n(X) and ΩSpinc

k+n (X), for

p = D − 1− n and n ≥ 0. We will see that for −k ≤ n ≤ 0, the corresponding D-brane,

respectively gravitational soliton, does not consistently fit into the D-dimensional space

so that there does not exist any obvious physical interpretation of the cobordism and

K-theory groups. For type I, we have a similar story for ΩSpin
k+n(X) and KO−n(X). This

behavior under compactification further supports the interpretation of K-theory and

cobordism groups as higher-form charges in an effective field theory.

In the above dimensional reduction using (de Rham) singular (co)homology without

torsion, all objects in D dimensions arise from the naive dimensional reduction along

homological cycles inX. The appearance of torsion through the refinement to generalized

(co)homology theories can open up new decay channels of non-BPS branes, and new

stable torsion branes may appear on X, even if they were not present in d dimensions.

Moreover, for wrapped D-branes, quantum effects, such as the Freed-Witten anomaly,

can spoil these simple (classical) expectations. The description in terms of cobordism

and K-theory automatically takes care of these quantum effects.

6.4 Computing cobordism and K-theory on X

In this section, we compute cobordism and K-theory groups of higher dimensional spaces

using a technique known as Atiyah-Hirzebruch spectral sequence. We first provide a

pedagogical introduction to spectral sequences for generalized homology and cohomology,

and then we use them to compute physically relevant cobordism and K-theory groups,

respectively. The results of our computations can be found in appendices D.1 and D.2,

while their physical interpretation is discussed in section 6.5.

6.4.1 The Atiyah–Hirzebruch spectral sequence

The Atiyah–Hirzebruch spectral sequence (AHSS) is a tool for calculating generalized

(co)homology groups of certain manifolds using the (co)homology groups of some other,

usually simpler, manifold. It has been used in a string theoretical context already in [65,

67,92,93,187] among others. In this section, we will briefly review the main steps of these
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techniques and some relevant mathematical results to provide a self-contained exposition

of the subject. Standard references in the mathematical literature are, for example,

[171,172,297], for introductory material, and [70] for a physics-motivated treatment. A

nice, recent review with applications to anomaly cancellation in physics can be found,

e.g., in [187]. Supplementary background material is gathered in appendix C. In sections

6.4.2 and 6.4.3, we will use the homological AHSS to determine the cobordism groups

Ωξn(X) and the cohomological AHSS for K-groups K−n(X), with X a compact manifold

of dimension up to ten. In particular, we will have X = {Sk, T k,K3, CY3}, and to

ξ = Spin,Spinc due to the clear physical relevance .

Homological spectral sequence

Consider a possibly non-trivial fibration F → E → B. Having some knowledge of

the (generalized) homology of the base B and/or the fiber F , one can use the Atiyah–

Hirzebruch spectral sequence (AHSS) for homology as a tool to compute the homology of

the total space E, Gn(E). The AHSS is based on a filtration of Gn(E), i.e., a sequence

of subspaces . . . ⊂ Fp ⊂ Fp+1 ⊂ . . . whose union is Gn(E). In certain cases, it is also

possible to use the spectral sequence “backwards” and compute, for example, Gn(F ) from

the Gn(E). In practice, this is an approximate method, the accuracy of which improves

with each iterative step, finally stabilizing after a finite number of steps. Running the

process until the final step does not always give Gn(E); instead, it usually produces

an associated graded module, which must be solved case-by-case, requiring additional

information beyond the AHSS.

A spectral sequence consists of a sequence of objects Er, called pages, together with

endomorphisms dr that square to zero, called differentials, with r non-negative integers.

The pairs (Er, dr) are such that the (r + 1)-st page Er+1 is given by the homology of

the r-th page Er,

Er+1 ∼= H(Er) =
ker dr : Er → Er

Im dr : Er → Er
. (6.21)

The page Er and the differential dr fully determine the following page Er+1, but do

not fully determine the differentials dr+1. Intuitively, the spectral sequence calculates

a generalized (co)homology by first approximating it with ordinary (co)homology and

then refining the approximation through the action of the differentials.

For AHSS, the pages are bi-graded, i.e. Er = ⊕p,qE
r
p,q with p, q ∈ Z, and the differ-

entials dr have a bi-degree (−r, r+1), mapping between the bi-graded page elements as

dr : Erp,q → Erp−r,q+r−1.

A pictorial representation of the pages and the relevant differentials is often used,

as shown below in the figures 6.1 and 6.2. We assume that all entries outside the first

quadrant vanish, ensuring the termination of the homological spectral sequence after a

finite number of steps [171]. The horizontal axis refers to the p-value and the vertical
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to the q-value of an element of the nth page, Enp,q. Usually, one starts the sequence with

an explicit expression for the second page, E2.

5
...

...
...

...
...

4 E2
0,4 E2

1,4 E2
2,4 E2

3,4 E2
4,4 . . .

3 E2
0,3 E2

1,3 E2
2,3 E2

3,3 E2
4,3 . . .

2 E2
0,2 E2

1,2 E2
2,2 E2

3,2 E2
4,2 . . .

1 E2
0,1 E2

1,1 E2
2,1 E2

3,1 E2
4,1 . . .

0 E2
0,0 E2

1,0 E2
2,0 E2

3,0 E2
4,0 . . .

0 1 2 3 4 5

Figure 6.1: Example of a second page E2 of a first quadrant homological spectral se-

quence and all possible d2 differentials. The non-vanishing d2 are shown by purple and

blue arrows.

5
...

...
...

...
...

4 E3
0,4 E3

1,4 0 E3
3,4 E3

4,4 . . .

3 0 E3
1,3 E3

2,3 E3
3,3 0 . . .

2 E3
0,2 0 0 E3

3,2 E3
4,2 . . .

1 E3
0,1 0 E3

2,1 0 E3
4,1 . . .

0 E3
0,0 E3

1,0 E3
2,0 0 E3

4,0 . . .

0 1 2 3 4 5

Figure 6.2: Third page E3 of the same spectral sequence and all possibly non-vanishing

d3 differentials. The blue differentials have (co-)killed the page elements they were acting

on, while the purple ones let them partially survive. The black elements, on which no

differential acted, carried over intact to the next page, i.e., E3
p,q

∼= E2
p,q.

Acting on a page with the differential is called turning the page and leads to the next

page. The only elements that might differ between two consecutive pages are those

that non-vanishing differentials act on, while the rest carry over intact. No non-trivial

differential can act after a finite number of iterations for a sequence confined to the first

quadrant, such as a homological spectral sequence. Hence the sequence stabilizes at the

so-called E∞-page.

One computes the generalised homology groups Gn(E) using all diagonal elements

of E∞
p,q, with p + q = n. The spectral sequence is said to converge to Gn(E), i.e.,

E2
p,q ⇒ Gp+q. In the simplest case, there is just one element on the diagonal of E∞,

so a direct identification is possible, but usually one has to deal with a non-trivial

extension problem, especially when torsion is present. In the general case, one has
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Gr(Gn(E)) ∼=
⊕n

p=0E
∞
p,n−p and to obtain Gn(E) extra information is needed. We will

discuss specific examples and possible ways around the extension problem in the following

sections 6.4.2 and 6.4.3.

Having explained the general idea of a spectral sequence, let us apply it to our

initial problem of computing (generalized) homologies of the total space E for a fibration

F → E → B. One can distinguish three types of spectral sequences depending on what

kind of structure one has. First, let M be an abelian group and B path-connected. The

homological Serre spectral sequence is a first quadrant spectral sequence defined as

E2
p,q

∼= Hp(B;Hq(F ;M)) ⇒ Hp+q(E;M) . (6.22)

Second, for R a ring and B simply connected, we have the Leray-Serre spectral sequence

E2
p,q

∼= Hp(B;R⊗Hq(F ;R)) ⇒ Hp+q(E;R) . (6.23)

The Leray–Serre–Atiyah–Hirzebruch spectral sequence, or simplyAtiyah–Hirzebruch Spec-

tral Sequence is defined for an additive homology theory G∗ and a path-connected B

E2
p,q

∼= Hp(B;Gq(F )) ⇒ Gp+q(E) . (6.24)

Note that Hp(B;Gq(F )) = 0 for p < 0. This spectral sequence can be used for the

computation of cobordism groups.

Cohomological Spectral Sequence

As mentioned, for the computation of the K-theory groups K−n(X), we will employ

the cohomological version of the AHSS. Indeed, analogously to the discussion in the

previous section, one constructs spectral sequences to compute generalized cohomology

groups. One starts with a fibration fulfilling certain requirements and uses knowledge

of cohomological groups of some space (such as fiber or base) to deduce the generalized

cohomology of the desired space (such as the total space). Once again, we have a

collection of objects (Er, dr), where now the bi-grading of the differential is (r,−r + 1),

i.e. dr : E
p,q
r → Ep+r,q−r+1

r and the (r+1)-st page Er+1 given by the cohomology of the

Er page. In the pictorial representation, the pages of a cohomological spectral sequence

look very similar to those of a homological one, except that the differential arrows now

point in the opposite direction. Another difference is that now the sequence possesses a

cup product structure which may allow for a formal computation of the differentials.

The cohomological Serre spectral sequence is defined similarly to the homological one.

For the usual fibration F → E → B, with B path-connected and R a ring, there is a first

quadrant cohomological spectral sequence of algebras, converging (as a graded algebra)

as

Ep,q2 = Hp(B;Hq(F ;R)) ⇒ Hp+q(E;R) . (6.25)
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If π1(B) = 0 and R a field, the previous equation simplifies to

Ep,q2 = Hp(B)⊗Hq(F ;R) ⇒ Hp+q(E;R) . (6.26)

Since K-theory is a generalized cohomology theory, generalizing the Serre spectral se-

quence is necessary. This is the Atiyah–Hirzebruch spectral sequence, defined now for

G∗ a generalized cohomology theory and the fibration as in 6.25. Namely, there is a

half-plane cohomological spectral sequence

Ep,q2 = Hp(B;Gq(F )) ⇒ Gp+q(E) . (6.27)

Trivial fibration and vanishing edge differentials

Besides the extension problem, computing the differentials in a spectral sequence can

also be tedious. However, there are instances where one can generally show that they

vanish. This is the case for differentials from/to the edge of a given page when the AHSS

involves particularly simple fibrations.

Consider the trivial fibration

pt ↪−→ X
id→ X. (6.28)

The inclusion pt ↪−→ X is split by the constant map X → pt, implying that

Gn(pt) → Gn(X) (6.29)

is a split injection (G∗ being a generalized homology theory). On the other hand, this

is also a special case of a map known as the edge homomorphism. Indeed, consider the

fibration F → E → B, which generalizes (6.28). An edge homomorphism is defined as

Gn(F ) → H0(B;Gn(F )) = E2
0,n → E∞

0,n → Gn(E), (6.30)

where the last arrow is an injection while the others are surjections. As stated e.g. in

Theorem 9.10 of [171], this is equal to the map

Gn(F ) → Gn(E), (6.31)

induced by the inclusion F ↪−→ E. For F = pt and B = E = X, one should recover the

split injection (6.29) and thus

E2
0,n

∼= E∞
0,n. (6.32)

In other words, in this case, the entries survive to the final page, and any differential

acting on them

dr : Err,q → Er0,q+r−1, (6.33)

has to be zero. This observation greatly simplifies the calculation and will directly apply

to the upcoming computation of cobordism groups.
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6.4.2 Application to cobordism

In this section, we employ the homological version of the AHSS to compute cobordism

groups Ωξn(X) for non-trivial k-dimensional spaces X. Considering the trivial vibration

pt → X → X, we use the AHSS to determine Ωξn(X) from the known cobordism

groups of the point given in table 6.1. The trivial fibration allows us to avoid the

following complication: B is assumed to be path-connected but, in general, not simply

connected. When π1(B) ̸= 0, one deals with a system of local coefficients over B with

fiber Gq(F ) [171] and has to consider ordinary homology with local coefficients in (6.24).

However, if the fibration is trivial, this complication can be ignored [171]. Then, the

second page of the AHSS is given by

E2
p,q = Hp(X; Ωξq) . (6.34)

To avoid cluttering the expressions, in the remainder of this section, we use the shorthand

notation Ωξn(pt) ≡ Ωξn. Additionally, we will only show the parts of the pages relevant

to physical applications, i.e., p, q ≤ 10 (or less).

Computing Ωξn(Sk)

Before considering higher-dimensional spheres, we start with the straightforward yet

illustrative computation of Ωξn(S2). We present here the case where ξ = Spin, while the

similarly computed results for ξ = Spinc are relegated to the appendix D.1.

While a direct computation of Hp(S
2,ΩSpin

q ) is straightforward for low q, in general,

one turns to the universal coefficient theorem (see appendix C.2), according to which

there is a short exact sequence

0 → Hn(S
2;Z)⊗ ΩSpin

q → Hn(S
2; ΩSpin

q ) → Tor1(Hn−1(S
2;Z),ΩSpin

q ) → 0. (6.35)

Recalling the well-known homology groups

Hn(S
2;Z) =

{
Z for n = 0, 2,

0 otherwise
(6.36)

and the fact that Z is torsion-free, the second page (6.34) can be directly evaluated as

E2
p,q = Hp(S

2; ΩSpin
q ) ∼= Hp(S

2;Z)⊗ ΩSpin
q =

{
ΩSpin
q for p = 0, 2,

0 otherwise.
(6.37)

Hence the second page of the AHSS takes the following form:

There exist four differentials that could kill some of the page entries. However, they

all end on the first column of the page, and thus they vanish according to the edge

homomorphism reviewed in section 6.4.1. Thus, we immediately see that E2
p,q

∼= E3
p,q.
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10 ΩSpin
10 0 ΩSpin

10 0 0 0

9 ΩSpin
9 0 ΩSpin

9 0 0 0

8 ΩSpin
8 0 ΩSpin

8 0 0 0

7 ΩSpin
7 0 ΩSpin

7 0 0 0

6 ΩSpin
6 0 ΩSpin

6 0 0 0

5 ΩSpin
5 0 ΩSpin

5 0 0 0

4 ΩSpin
4 0 ΩSpin

4 0 0 0

3 ΩSpin
3 0 ΩSpin

3 0 0 0

2 ΩSpin
2 0 ΩSpin

2 0 0 0

1 ΩSpin
1 0 ΩSpin

1 0 0 0

0 ΩSpin
0 0 ΩSpin

0 0 0 0

0 1 2 3 4 5

=

10 3Z2 0 3Z2 0 0 0

9 2Z2 0 2Z2 0 0 0

8 2Z 0 2Z 0 0 0

7 0 0 0 0 0 0

6 0 0 0 0 0 0

5 0 0 0 0 0 0

4 Z 0 Z 0 0 0

3 0 0 0 0 0 0

2 Z2 0 Z2 0 0 0

1 Z2 0 Z2 0 0 0

0 Z 0 Z 0 0 0

0 1 2 3 4 5

Figure 6.3: Second (and final) page of AHSS for ΩSpin
n (S2).

n 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
n (S2) Z Z2 e(Z,Z2) Z2 e(Z2,Z) 0 Z 0 2Z 2Z2 e(2Z,3Z2)

Table 6.2: Cobordism groups ΩSpin
n (S2), n = 0, . . . , 10, up to extensions.

On the third page, no differentials can act, as their degree would be larger than any

possible degree difference between the non-zero elements. Therefore, E2
p,q

∼= E∞
p,q and we

arrive at the results in table 6.2, where we denote by e(A,B) the extension of A by B.

We can try to solve the extension problems using results reviewed in appendix C.1.

• e(Z,Z2): We have Ext1(Z,Z2) = 0 and thus there is only the trivial extension,

e(Z,Z2) = Z⊕ Z2.

• e(Z2,Z): Equation (C.6) gives Ext1(Z2,Z) = Z2. The two possible extensions are Z
and Z2⊕Z, so we need additional input to select the correct one. A simple strategy

would be to use the splitting lemma (4.5), which tells us that ΩSpin
4 (S2) should

contain a factor ΩSpin
4 = Z. However, such a factor is present in both options, so

we cannot draw any conclusion. In appendix C.5, we show (indirectly) that for

Ωξn(Sk) the extension is always trivial, therefore even in this case e(Z2,Z) = Z⊕Z2.

• e(2Z, 3Z2): We have Ext1(2Z, 3Z2) = 2Ext1(Z, 3Z2) = 5Ext1(Z,Z2) = 0, so the

trivial extension must be chosen.

We summarize our findings in the following table.
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n 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
n (S2) Z Z2 Z⊕ Z2 Z2 Z2 ⊕ Z 0 Z 0 2Z 2Z2 2Z⊕ 3Z2

Table 6.3: Cobordism groups ΩSpin
n (S2).

The calculation of ΩSpin
n (Sk) for higher k proceeds similarly. Since the only non-

vanishing homology classes are H0(S
k;Z) = Hk(S

k;Z) = Z and the universal coefficient

theorem applies, the second page for the trivial fibration pt → Sk → Sk looks very

similar to the one for S2, with the non-vanishing entries along the p = 0, k columns.

The only possibly non-vanishing differentials are dk, but they vanish due to the edge

homomorphism, and the computation proceeds exactly as before. For S1, the computa-

tion is even simpler since no differential can act for degree reasons. As explained at the

beginning of the present section, the fact that π1(S
1) ̸= 0 does not concern us since we

are using a trivial vibration.

The computation of the Spinc cobordism groups ΩSpinc
n (Sk) is similar. Now the

second page is

E2
p,q = Hp(S

k; ΩSpinc

q ) ∼= Hp(S
k;Z)⊗ ΩSpinc

q =

{
ΩSpinc
q for p = 0, k,

0 otherwise,
(6.38)

and the arguments for the ΩSpin
n (Sk) computation still go through. As proven in appendix

C.5, for both structures ξ = Spin,Spinc the final result can be compactly written as

Ωξn(S
k) = Ωξn(pt)⊕ Ωξn−k(pt) . (6.39)

Explicitly, the groups for n, k ≤ 10 are given in the appendix D.1.

Computing Ωξn(T 2)

For the two-torus, T 2 = S1×S1, we present the computations for ξ = Spin and ξ = Spinc

in parallel. Starting from the known homology groups

Hn(T
2;Z) =


Z for n = 0, 2,

2Z for n = 1,

0 otherwise,

(6.40)

and using the universal coefficient theorem again (with vanishing Tor1 group), one can

compute the second page

E2
p,q = Hp(T

2; Ωξq)
∼= Hp(T

2;Z)⊗ Ωξq =


Ωξq for p = 0, 2,

2Ωξq for p = 1,

0 otherwise .

(6.41)
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10 3Z2 6Z2 3Z2 0

9 2Z2 4Z2 2Z2 0

8 2Z 4Z 2Z 0

7 0 0 0 0

6 0 0 0 0

5 0 0 0 0

4 Z 2Z Z 0

3 0 0 0 0

2 Z2 2Z2 Z2 0

1 Z2 2Z2 Z2 0

0 Z 2Z Z 0

0 1 2 3

10 4Z⊕ Z2 8Z⊕ 2Z2 4Z⊕ Z2 0

9 0 0 0 0

8 4Z 8Z 4Z 0

7 0 0 0 0

6 2Z 4Z 2Z 0

5 0 0 0 0

4 2Z 4Z 2Z 0

3 0 0 0 0

2 Z 2Z Z 0

1 0 0 0 0

0 Z 2Z Z 0

0 1 2 3

Figure 6.4: Final pages of AHSS for ΩSpin
n (T 2) (left) and ΩSpinc

n (T 2) (right).

The second pages for the two structures ξ = Spin, Spinc are shown in figure 6.4. In

the Spin case, we have four differentials that could be non-trivial, but they vanish due

to the edge homomorphism. In the Spinc case, no differential can act for degree reasons.

Hence the second pages are, in fact, the final pages, and the results are shown in table

6.4, where we used the notation e(A,B,C) = e(A, e(B,C)).

n 0 1 2 3 4

ΩSpin
n (T 2) Z e(2Z,Z2) e(Z, 2Z2,Z2) e(Z2, 2Z2) e(Z2,Z)

ΩSpinc
n (T 2) Z 2Z e(Z,Z) 2Z e(Z, 2Z)

n 5 6 7 8 9 10

ΩSpin
n (T 2) 2Z Z 0 2Z e(4Z, 2Z2) e(2Z, 4Z2, 3Z2)

ΩSpinc
n (T 2) 4Z e(2Z, 2Z) 4Z e(2Z, 4Z) 8Z e(4Z, 4Z⊕ Z2)

Table 6.4: Cobordism groups ΩSpin
n (T 2) and ΩSpinc

n (T 2), n = 0, . . . , 10, up to extensions.

Two facts are crucial to solve the extension problems. First, the extensions of all free

abelian groups are trivial. Second, e(mZ, nZk) = mZ ⊕ nZk since Ext1(mZ, nZk) = 0.

However, since Ext1(Z2,Z2) = Z2, we cannot decide about e(Z2,Z2), which is either

2Z2 or Z4. A similar story applies for e(Z2,Z). Up to this point, our results are shown

in table 6.5. According to the general proof in appendix C.5, the remaining extension

problems should be trivial. There we generically show that the cobordism groups of
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n 0 1 2 3 4

ΩSpin
n (T 2) Z 2Z⊕ Z2 e(Z, 2Z2,Z2) e(Z2, 2Z2) e(Z2,Z)

ΩSpinc
n (T 2) Z 2Z 2Z 2Z 3Z

n 5 6 7 8 9 10

ΩSpin
n (T 2) 2Z Z 0 2Z 4Z⊕ 2Z2 e(2Z, 4Z2, 3Z2)

ΩSpinc
n (T 2) 4Z 4Z 4Z 6Z 8Z 8Z⊕ Z2

Table 6.5: Cobordism groups ΩSpin
n (T 2) and ΩSpinc

n (T 2), n = 0, . . . , 10.

k-dimensional tori have a simple decomposition,

Ωξn(T
k) =

k⊕
m=0

(
k

m

)
Ωξn−m(pt), (6.42)

for a generic structure ξ, which can be taken to be Spin or Spinc. The binomial coefficient

can be interpreted as the number of m-cycles on T k. Detailed results with all extensions

solved are reported in appendix D.1.

Computing ΩSpinc
n (K3)

To determine the cobordism groups of K3, we again start with the known result for

Hn(K3;Z).

Hn(K3;Z) =


Z for n = 0, 4,

22Z for n = 2,

0 otherwise,

(6.43)

where the non-vanishing Betti numbers of K3 are b0 = b4 = 1, b2 = 22. Once again, we

compute the second-page entries shown in figure 6.5 using the trivial fibration and the

universal coefficient theorem. For Spinc, all differentials are trivial for degree reasons,

so that we can conclude E2
p,q = E∞

p,q with

E2
p,q = Hp(K3; ΩSpinc

q ) ∼= Hp(K3;Z)⊗ ΩSpinc

q =


ΩSpinc
q for p = 0, 4,

22ΩSpinc
q for p = 2,

0 otherwise .

(6.44)

Up to n = 10, all extension problems are trivial, so we can express the final result as

ΩSpinc

n (K3) = ΩSpinc

n (pt) ⊕ Ω̃Spinc

n (K3)

= ΩSpinc

n (pt) ⊕ 22ΩSpinc

n−2 (pt) ⊕ ΩSpinc

n−4 (pt) .
(6.45)

In this formula, it is understood that cobordism groups with negative indices are set to

zero. The groups with n ≤ 10 are presented in table 6.6.
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10 4Z⊕ Z2 0 88Z⊕ 22Z2 0 4Z⊕ Z2 0 0 0

9 0 0 0 0 0 0 0 0

8 4Z 0 88Z 0 4Z 0 0 0

7 0 0 0 0 0 0 0 0

6 2Z 0 44Z 0 2Z 0 0 0

5 0 0 0 0 0 0 0 0

4 2Z 0 44Z 0 2Z 0 0 0

3 0 0 0 0 0 0 0 0

2 Z 0 22Z 0 Z 0 0 0

1 0 0 0 0 0 0 0 0

0 Z 0 22Z 0 Z 0 0 0

0 1 2 3 4 5 6 7

Figure 6.5: Second (and final) page of the AHSS for the computation of ΩSpinc
n (K3).

n 0 1 2 3 4 5 6 7 8 9 10

ΩSpinc
n (K3) Z 0 23Z 0 25Z 0 47Z 0 50Z 0 94Z⊕ Z2

Table 6.6: Cobordism groups ΩSpinc
n (K3), n = 0, . . . , 10.

Computing ΩSpinc
n (CY3)

The cobordism groups of a Calabi-Yau threefold are obtained similarly to those of K3.

We start with the known result

Hn(CY3;Z) =


Z for n = 0, 6,

b2 Z for n = 2, 4,

b3 Z for n = 3,

0 otherwise,

(6.46)

where bp are the CY3 Betti numbers, with bp = b6−p. The second page is given by

E2
p,q = Hp(CY3; Ω

Spinc

q )

∼= Hp(CY3;Z)⊗ ΩSpinc

q =


ΩSpinc
q for p = 0, 6,

b2Ω
Spinc
q for p = 2, 4,

b3Ω
Spinc
q for p = 3,

0 otherwise,

(6.47)

and shown explicitly in figure 6.6. This time five non-vanishing columns E2
p,q exist on

the second page, the elements of which are given by bpΩ
Spinc
q .
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10 4Z⊕ Z2 0 b2(4Z⊕ Z2) b3(4Z⊕ Z2) b2(4Z⊕ Z2) 0 4Z⊕ Z2 0

9 0 0 0 0 0 0 0 0

8 4Z 0 4b2Z 4b3Z 4b2Z 0 4Z 0

7 0 0 0 0 0 0 0 0

6 2Z 0 2b2Z 2b3Z 2b2Z 0 2Z 0

5 0 0 0 0 0 0 0 0

4 2Z 0 2b2Z 2b3Z 2b2Z 0 2Z 0

3 0 0 0 0 0 0 0 0

2 Z 0 b2Z b3Z b2Z 0 Z 0

1 0 0 0 0 0 0 0 0

0 Z 0 b2Z b3Z b2Z 0 Z 0

0 1 2 3 4 5 6 7

Figure 6.6: Second (and final) page of the AHSS for the computation of ΩSpinc
n (CY3).

One of the possibly non-vanishing differentials d3 : E3
6,q → E3

3,q+2 is displayed (for q = 0).

They eventually vanish for q ≤ 6.

None of the differentials dr with even r can act for degree reasons. However, two kinds

of third differentials can be non-trivial. The first class is

d3 : E3
3,q → E3

0,q+2 , (6.48)

which vanishes due to the edge homomorphism (see section 6.4.1). The second class acts

as

d3 : E3
6,q → E3

3,q+2 , (6.49)

which is, in principle, non-vanishing1. This differential is trivial up to q = 6 according

to Lemma 3.1 of [298]. We thus get the results in table 6.7.

6.4.3 Application to K-theory

Next, we perform similar computations for the K- and KO-theory groups on spheres, tori,

and Calabi-Yau manifolds. For this purpose, we employ the cohomological version of the

AHSS. Our computations will mostly involve K-theory, since the lack of torsional classes

significantly simplifies the calculation, but we also include some results for KO-groups

in sections 6.4.3 and 6.4.3.

1This differential is given by the homological dual of the cohomology operation Sq3Z, the (integral)

third Steenrod square (the operations Sqi are introduced briefly later on; see also the appendix C.3).

Interestingly, its triviality is the homological dual statement of the Freed-Witten anomaly cancellation

[65,67], which we will discuss later on in the K-theory calculations.
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n 0 1 2 3 4 5

ΩSpinc
n (CY3) Z 0 (b2 + 1)Z b3Z (2 + 2b2)Z b3Z

n 6 7 8 9 10

ΩSpinc
n (CY3) (3 + 3b2)Z 2b3Z (5 + 4b2)Z 2b3Z (6 + 6b2)Z⊕ Z2

Table 6.7: Cobordism groups ΩSpinc
n (CY3), n = 0, . . . , 10.

Computing K−n(Sk)

The K-theory groups of spheres Sk are known to be [172]

K−n(Sk) =


Z for k odd,

2Z for n, k even,

0 otherwise.

(6.50)

It is instructive to reproduce these results using the cohomological AHSS (6.27). As

usual, we use the trivial fibration pt → Sk → Sk, and we do not have to worry about

local coefficients. Recalling that

K−n(pt) =

{
Z for n even,

0 otherwise,
(6.51)

we have the second page

Ep,q2 = Hp(Sk;Kq(pt)) =

{
Z, for q even, p = 0, k,

0, otherwise .
(6.52)

Including the bottom quadrant (with q < 0) is essential to arrive at reasonable results,

respecting Bott periodicity.

For concreteness, consider X = S3. We are interested in the groups K−n(X), with

n > 0, so the relevant page elements lie on the p+ q = −n bands of the final page, which

now intersect the axes only once. The d2 differentials vanish so that Ep,q3 = Ep,q2 , but d3

may act non-trivially according to

d3 : E
0,q
3 → E3,q−2

3 , q even . (6.53)

Atiyah and Hirzebruch showed this differential [299] is an instance of a cohomological

operation known as (integral) Steenrod square (SqiZ)

Sq3Z : Hn(X;Z) → Hn+3(X;Z). (6.54)

Explicitly, it is given by the composition

d3 = Sq3Z = β ◦ Sq2 ◦ ρ, (6.55)
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6 Z 0 0 Z 0

5 0 0 0 0 0

4 Z 0 0 Z 0

3 0 0 0 0 0

2 Z 0 0 Z 0

1 0 0 0 0 0

0 Z 0 0 Z 0

-1 0 0 0 0 0

-2 Z 0 0 Z 0

-3 0 0 0 0 0

-4 Z 0 0 Z 0

-5 0 0 0 0 0

-6 Z 0 0 Z 0

Figure 6.7: Second (and final) page of the AHSS for the computation of K−n(S3). One

of the d3 differentials is shown explicitly. They all eventually vanish.

where ρ is the reduction modulo 2 and β the Bockstein homomorphism, namely

Sq3Z : Hn(X;Z) ρ−→ Hn(X;Z2)
Sq2−→ Hn+2(X;Z2)

β−→ Hn+3(X;Z). (6.56)

We refer the reader to the appendix C.3 for a more precise definition of Steenrod squares

and the Bockstein homomorphism and a summary of their main properties.

Fortunately, according to Theorem 4.8 of [70], all differentials (including d3) vanish

since no torsion is involved. This is a consequence of the Chern isomorphism

K0(X)⊗Z R ∼=
⊕
n

H2n(X;R), K−1(X)⊗Z R ∼=
⊕
n

H2n+1(X;R), (6.57)

which implies that if there is no torsion in cohomology, the AHSS for K-theory ter-

minates already on the second page. This fact will be used systematically through-

out the computations of K−n(X) groups. Moreover, the extension problem is always

trivial since only free abelian groups are present. Thus, for every odd value of k we

recover K−n(S2k+1) = Z. The situation for even k is simpler as, for degree reasons,

no differentials can act, so that Ep,q2 = Ep,q∞ . We recover then K−2n−1(S2k) = 0 and

K−2n(S2k) = 2Z. The final result, regardless is k is even or odd, can be expressed as

K−n(Sk) = K−n(pt)⊕K−k−n(pt) . (6.58)

Steenrod Squares and Freed-Witten anomalies

The vanishing of the Steenrod square d3 = Sq3Z, beyond significantly simplifying the

computation of K−n(Sk), has deep physical implications. It is known that type II D-
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branes in the absence of B field must wrap a Spinc manifold Y ; otherwise, they develop

a global Freed–Witten anomaly [66]. Given an element y ∈ Hn(X;Z), we have

Sq3Z(y) =W3(N) ∪ y, (6.59)

where N is the normal bundle of Y , the codimension-n submanifold Poincaré dual to y,

and ∪ is the cup product. Since Y is Spinc,W3(Y ) = β(w2(Y )) = 0. However, becauseX

is Spin and Y is oriented by assumption (in type II), one can show that w2(N) = w2(Y ),

implying W3(N) = W3(Y ) [66, 72]. Hence one can relate a trivial action of d3 in the

AHSS to the absence of Freed–Witten anomalies for a D-brane wrapping Y [65, 67].

Indeed, if E4 = ker d3/Im d3 is given in terms of the groups Hn(X;Z) without further

restrictions, all cohomology classes (and their dual cycles) survive. Otherwise, some

are removed when passing from cohomology to K-theory, or they change to a torsion

group [65]. Physically, they would correspond to D-branes which are anomalous or

unstable.

Computing K−n(T k)

Next, we consider the k-dimensional torus T k = (S1)k. One can either compute the

groups by using the AHSS, similarly to the sphere computation, or use the known results

for the reduced K-theory groups K̃−n(T k) and the decomposition (2.16).

The second approach is straightforward since we have [172]:

K̃−n(T k) =

{
2k−1Z for n odd,

(2k−1 − 1)Z for n even.
(6.60)

Since K−2n(pt) = Z and K−2n−1(pt) = 0, it follows immediately that

K−n(T k) = 2k−1Z, (6.61)

for n any integer. For the trivial case k = 1, the above result coincides with the sphere

computation, i.e., K−n(T 1) = Z, as expected.
The spectral sequence approach starts with the second page

Ep,q2 = Hp(T k;Kq(pt)) , (6.62)

and using the trivial fibration we get the expected result (6.61), upon realizing that once

again all differentials vanish since there is no torsion, so Ep,q2 = Ep,q∞ , and the extension

problem is trivial. The final result can be elegantly written as

K−n(T k) =

k⊕
m=0

(
k

m

)
K−m−n(pt) , (6.63)

where the binomial coefficient counts the number of m-cycles on T k, i.e., are the Betti

numbers bm.
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Computing K−n(K3)

For the computation of the K-theory groups on K3, the second page of the sequence is

shown in figure 6.8 and explicitly given by

Ep,q2 = Hp(K3;Kq(pt)) =


Z for p = 0, 4, q even,

22Z for p = 2, q even,

0 otherwise.

(6.64)

6 Z 0 22Z 0 Z
5 0 0 0 0 0

4 Z 0 22Z 0 Z
3 0 0 0 0 0

2 Z 0 22Z 0 Z
1 0 0 0 0 0

0 Z 0 22Z 0 Z
-1 0 0 0 0 0

-2 Z 0 22Z 0 Z
-3 0 0 0 0 0

-4 Z 0 22Z 0 Z
-5 0 0 0 0 0

-6 Z 0 22Z 0 0Z

Figure 6.8: Second (and final) page of the AHSS for the computation of K−n(K3).

No differentials can act non-trivially on the second page for degree reasons, so the

sequence promptly terminates. Thus, the final result reads

K−n(K3) =

{
0 for n odd,

24Z for n even.
(6.65)

Note that the factor 24 arises as b0+b2+b4 = 1+22+1 with bm being the Betti numbers

of K3. Therefore, we can also express the K-theory groups on K3 as

K−n(K3) =

4⊕
m=0

b4−m(K3)K−m−n(pt) . (6.66)

Computing K−n(CY3)

The computation of K−n(CY3) is similar to that of K3, so we directly present the second

page in figure 6.9. The only possibly non-vanishing differential is d3 : E
1,q
3 → E4,q−2

3 and
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6 Z 0 b2Z b3Z b2Z 0 Z
5 0 0 0 0 0 0 0

4 Z 0 b2Z b3Z b2Z 0 Z
3 0 0 0 0 0 0 0

2 Z 0 b2Z b3Z b2Z 0 Z
1 0 0 0 0 0 0 0

0 Z 0 b2Z b3Z b2Z 0 Z
-1 0 0 0 0 0 0 0

-2 Z 0 b2Z b3Z b2Z 0 Z
-3 0 0 0 0 0 0 0

-4 Z 0 b2Z b3Z b2Z 0 Z
-5 0 0 0 0 0 0 0

-6 Z 0 b2Z b3Z b2Z 0 Z

Figure 6.9: Second (and final) page of AHSS for computation of K−n(CY3).

vanishes due to lack of torsion. Given the triviality of the extension problem, we get

K−n(CY3) =

{
b3 Z if n odd,

(2 + 2b2)Z if n even.
(6.67)

Now the factor (2+2b2) arises as b0+b2+b4+b6, with b0 = b6 = 1 and b2 = b4, the Betti

numbers of the CY3. This result can also be found in Corollary 1.9 of [300]. Again, we

can elegantly express the K-theory groups on (simply connected) Calabi-Yau threefolds

as

K−n(CY3) =

6⊕
m=0

b6−m(CY3)K
−m−n(pt) . (6.68)

KO-groups of spheres and tori

The KO groups can be computed using the AHSS, but the presence of torsion leads to

possibly non-vanishing differentials. For spheres Sk, one can use the splitting lemma

and express the relevant groups as

KO−n(Sk) = K̃O(Sn+k)⊕ K̃O(Sn) = KO−n−k(pt)⊕KO−n(pt) . (6.69)

The full results for KO−n(Sk) for n, k ≤ 10 are provided in appendix D.2. For tori, it

was shown in [301] that

KO−n(T k) =
k⊕

m=0

(
k

m

)
KO−m−n(pt) . (6.70)
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Computing KO−n(K3)

For real K-theory, computations involving higher dimensional manifolds can become

complicated due to more involved differentials and extension problems. In fact, in the

case of CY3 the complexity of the computation goes beyond the scope of the present work.

We will however discuss a simpler Calabi-Yau case, K3. In this case, all differentials are

vanishing, and the computations can be performed up to extensions. The second page

of the spectral sequence is:

Ep,q2 = Hp(K3;KOq(pt)) =


KOq(pt) for p = 0, 4,

22KOq(pt) for p = 2,

0 otherwise.

(6.71)

Due to the form of the page, only the differentials d2 and d4 may be non-vanishing. At

7 Z2 0 22Z2 0 Z2

6 Z2 0 22Z2 0 Z2

5 0 0 0 0 0

4 Z 0 22Z 0 Z
3 0 0 0 0 0

2 0 0 0 0 0

1 0 0 0 0 0

0 Z 0 22Z 0 Z
-1 Z2 0 22Z2 0 Z2

-2 Z2 0 22Z2 0 Z2

-3 0 0 0 0 0

-4 Z 0 22Z 0 Z
-5 0 0 0 0 0

-6 0 0 0 0 0

-7 0 0 0 0 0

Figure 6.10: Second (and final) page of the AHSS for the computation of KO−n(K3).

degree two, we have

d2 : E
p,q
2 → Ep+2,q−1

2 , (6.72)

for p = 0, 2 and q = 0,−1, together with all of its periodic copies. The explicit form of

this differential is known to be [302,303]

d2 =

{
Sq2ρ : Hp(K3;KO0(pt)) → Hp+2(K3;KO−1(pt)) ,

Sq2 : Hp(K3;KO−1(pt)) → Hp+2(K3;KO−2(pt)),
(6.73)
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corresponding to q = 0,−1 respectively. Here, Sq2 : Hp(X;Z2) → Hp+2(X;Z2) is the

second Steenrod square and ρ is the reduction modulo 2. It turns out that d2 is vanishing

for X = K3: We discuss the case q = −1, but the analysis can be similarly extended to

q = 0. For any element y ∈ Hp(X;Z2), we can represent Sq2(y) = ι∗(w2(N)) ∪ y [304].

Here, N is the normal bundle of the submanifold Y ⊂ X, Poincaré dual to y and

ι∗ : Hp(Y ) → Hp(X) the cohomological push-forward. For p = 0, the differential

d2 vanishes since y is dual to the whole four dimensional manifold X = K3 which

is Spin, thus w1(N) = w2(N) = 0. Alternatively, it vanishes since Sq2(y) = 0 for

y ∈ H0(X;Z2), according to the properties of Sqi listed in appendix C.3). For p = 2,

the differential vanishes as well, since from the condition w2(X) = w1(X) = 0, one can

then prove w2(N) = 0 for a two-dimensional manifold Y not necessarily orientable [67].

Alternatively, for p = 2 we can write Sq2(y) = ν2 ∪ y (see equation (C.22)) and then

the second Wu class, ν2 = w2(X) +w1(X)2, vanishes since X = K3 is Spin. Thus, d2 is

trivial.

At degree four, we have the differential

d4 : E
0,−1
4 → E4,−4

4 . (6.74)

Since there cannot be non-trivial homomorphisms2 Zk → Z for k ≥ 2, this differential

must vanish and Ep,q2
∼= Ep,q∞ . Thus, one can read off the KO−n(K3) groups, which we

present in table 6.8 up to extensions.

n 0 1 2 3 4 5 6 7

KO−n(K3) Z⊕ e(22Z2,Z) Z2 Z2 ⊕ 22Z 0 2Z Z2 Z2 ⊕ 22Z 22Z2

Table 6.8: KO-groups KO−n(K3), n = 0, . . . , 7, up to extensions. The result can be

extrapolated to n ≥ 8 by Bott periodicity.

6.5 Physical interpretation

In this section, we show that the cobordism and K-theory groups of X we calculated can

be interpreted in terms of the dimensional reduction of global symmetries, in the spirit

of the discussion of section 6.3. For X ∈ {Sk, T k,K3, CY3}, all differentials and the

extension problems turned out to be trivial, significantly simplifying our analysis. Since

this was not the case for KO-theory and ΩSpin, we refrain from making any concrete

2This can be seen as follows. Consider the case ϕ : Z2 → Z, the generalisation to k > 2 being

straightforward. ϕ cannot be a non-trivial homomorphism since choosing ϕ(0) = 0 and ϕ(1) = 1 leads

to the contradiction 0 = ϕ(0) = ϕ(2) = ϕ(1) + ϕ(1) = 2. One has to set ϕ(1) = 0, hence ϕ is trivial.
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comments about these groups at this stage, and we defer this to future work, since a

more involved mathematical analysis is necessary.

However, even for the simpler K/ΩSpinc case complications could arise: A first major

obstacle would be turning on fluxes. For instance, non-trivial NS-NS three-form flux

H necesitates the use of H-twisted K-theory groups K−n
H (X) and the corresponding

cobordism groups ΩSpinc,H(X). For manifolds with W3 = 0, i.e., with a Spinc-structure,

the absence of Freed–Witten anomalies implies that the H-flux through a D-brane must

vanish. This will result in non-trivial differentials dr : E
p,q
r → Ep+r,q−r+1 in the AHSS.

Second, even in the purely geometric case, without fluxes, when computing for instance

KO−n(X), there could be non-trivial differentials, indicating, e.g., that certain cycles

are not Spin. An explicit verification of these expectations is left for future work.

6.5.1 General aspects

The final results of the AHSS computation for all our examples can be expressed in a

compact form. In particular, the K-theory groups K−n(X) of a k-dimensional manifold

X ∈ {Sk, T k,K3, CY3}, with n ≥ 0, turn out to be

K−n(X) =
k⊕

m=0

bk−m(X)K−n−m(pt) . (6.75)

This result has a clear interpretation in terms of D-branes: Consider d = 10 and

compactify the theory on the k-dimensional manifold X, such that the total space is

R1,d−k−1×X. Then, K−n(X) classifies all D-branes that are of codimension-n in the flat

space R1,d−k−1. From the d-dimensional point of view, these are given by codimension-

(n + m) branes wrapping (k − m)-cycles on the compact space X. Hence, the result

(6.75) reflects that the dimensional reduction performed following this geometrical rea-

soning is already the correct answer on these manifolds. The AHSS provides additional

information: none of the wrapped D-branes experiences a Freed–Witten anomaly nor

that there is an instantonic decay channel.

The relation (6.75) connects to the completeness hypothesis [305]. We can regard

the right-hand side of (6.75) as a lattice of charges (q1, . . . ,qk), where each entry qm is

a charge vector with bk−m components.3 The lattice sites are populated independently

of one another, meaning that, in general, the full spectrum of charges (or rather stable

states with that given charge) is complete. To understand the point, consider the simple

two-dimensional situation in which the lattice is just Z⊕Z. In this case, one not only has

stable bound states of branes associated to, say, (1, 0) and (0, 1), but also to (1, 1). Thus,

3In principle, this could be slightly inaccurate: the groups of the point might be direct sums, so

one of them could correspond to more sites in the lattice. Here, we neglect this complication, since the

analysis can be straightforwardly generalized.
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what the relation (6.75) means is that any non-vanishing element (q1, . . . ,qk) must be

associated with a stable object and, in this sense, the spectrum is complete. In general,

the situation might become highly involved, especially in the presence of multicharged

or non-BPS branes, but K-theory should give the correct answer.

For cobordism groups we found similarly that for n ≥ 0 there exists the compact

expression

ΩSpinc

n+k (X) =
k⊕

m=0

bk−m(X) ΩSpinc

n+m (pt) . (6.76)

We will comment on the −k ≤ n < 0 case later, but for n > −k we propose the following

intuitive interpretation of this result:

Recalling that in the definition of Ωn(X) we introduce continuous maps f : M →
X, for every n-dimensional compact manifold M , such that [M,f ] ∈ Ωn(X). A non-

vanishing term labeled by m in the sum on the right-hand side indicates that the map

f : M → X from the (n + k)-dimensional manifold M to the k-dimensional manifold

X is such that M is wrapped around a non-trivial (k −m)-cycle of X, while the map

introduces no other obstruction in the remaining (n +m) directions of M . Since there

are bk−m different (k −m)-cycles on X, we get bk−m factors of ΩSpinc

n+m (pt) in the total

cobordism group ΩSpinc

n+k (X).

Taking into account that the objects charged under the cobordism groups Ωn(pt) are

the (d−n)-dimensional gravitational solitons mentioned in section 4.4.3, there is a similar

interpretation to the K-theory groups: ΩSpinc

n+k (X) classifies all gravitational solitons that

are of codimension n in the flat space R1,d−k−1. From the full d-dimensional point of

view, they are given by the set of all codimension-(n+m) objects wrapping (k−m)-cycles

on the compact space X.

Concretely, defining a basis {Σam} of m-cycles on X, with a = 1, . . . , bm(X), and

taking into account that ΩSpinc
even (pt) = Z, for a given m-charge vector

qm = (q1m, . . . , q
bm
m ) ∈ Zbm , (6.77)

the map f is such the (n+ k)-dimensional manifold Mn+k is wrapped qam times around

the m-cycle Σam of X - we can think of the m-cycle as shared between M and X.

For all values of the index n+k, we want to figure out how to organize the information

contained in K-theory and cobordism groups of X to reconstruct tadpole cancellation

conditions as a bottom-up approach to string theory. We assume n ≥ 0 for the time

being.

Given the previous results, we can understand how the Hopkins–Hovey isomorphism

applies to cobordism and K-theory groups of higher-dimensional manifolds X. First, we

bring the K-theory result (6.75) into the same form as (6.76), converting the K-theory
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group from generalized cohomology to homology:

K−n(X) = Kn+k(X), (6.78)

valid forX a k-dimensional Spinc manifold. The analogous result holds for real K-theory,

namely

KO−n(X) = KOn+k(X), (6.79)

for X a k-dimensional Spin manifold. Both equations (6.78),(6.79) follow e.g. from

Theorem 2.9 of section V of [306], after recalling that a manifold is K-oriented (resp. KO-

oriented) iff it is Spinc (resp. Spin).Therefore, for n ≥ 0, the ABS orientation can be

extended to a map

αcX : ΩSpinc

n+k (X) → Kn+k(X), (6.80)

acting as αc in (6.4) on each term ΩSpinc

n+k−m(pt). Dividing by the kernel of this map pro-

vides an isomorphism between cobordism and K-theory classes on X, directly inherited

from the isomorphism between ΩSpinc
n (pt) and Kn(pt). We expect the analogous result

for the relation between Spin cobordism groups ΩSpin
n+k(X) and the real K-theory classes

KOn+k(X) for X ∈ {Sk, T k}, where we could explicitly verify that the groups have the

same compact, convenient decomposition.

As expected, there exists a unifying interpretation in terms of global symmetries.

In our examples, the groups Kn+k(X) and ΩSpinc

n+k (X) classify all global (D − 1 − n)-

form charges in the non-compact D = d−k dimensions, that arise from the dimensional

reduction of global d−1−n, d−2−n, . . . , d−1−k−n form charges along the k, k−1, . . . , 0

cycles of X. Due to the simple underlying structure, these global symmetries follow the

usual rules of dimensional reduction. As we explained in section 6.3, if a global symmetry

in D dimensions descends from a global symmetry in d dimensions, then its gauging

involves the dimensionally reduced gauge field in d dimensions and also the corresponding

dimensionally reduced D-branes (defects). The full tadpole cancellation condition in D

dimensions arises from the dimensional reduction of the tadpole cancellation condition

in d dimensions. Let us now make this more explicit through an extensive example.

6.5.2 Example: Type IIB on a Calabi-Yau threefold

Consider ten-dimensional type IIB superstring compactified on a Calabi-Yau threefold

X. On the K-theory side, we have

K0(X) = b6K
0(pt)︸ ︷︷ ︸
Z

⊕ b4K
−2(pt)︸ ︷︷ ︸
Z

⊕ b2K
−4(pt)︸ ︷︷ ︸
Z

⊕ b0K
−6(pt)︸ ︷︷ ︸
Z

, (6.81)

with b0 = b6 = 1. The corresponding D-branes are of codimension zero in the flat

R1,3 space, the four terms in the right-hand side of (6.81) correspond respectively to
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D9-branes wrapping the entire CY3, D7-branes wrapping the b4 4-cycles of the CY3,

D5-branes wrapping the b2 2-cycles of the CY3 and finally D3-branes being point-like

on the CY3. At the next level, we have

K−1(X) = b3K
−4(pt)︸ ︷︷ ︸
Z

, (6.82)

corresponding to a codimension-one brane in R1,3 arising by D5-branes wrapping any 3-

cycle on the CY3. As already explained, In accordance with the completeness hypothesis,

for all multi-charges, corresponding bound states of the single-charged states should

exist.

On the cobordism side we have

ΩSpinc

6 (X) = b6Ω
Spinc

0 (pt)︸ ︷︷ ︸
Z

⊕ b4Ω
Spinc

2 (pt)︸ ︷︷ ︸
Z

⊕ b2Ω
Spinc

4 (pt)︸ ︷︷ ︸
Z⊕Z

⊕ b0Ω
Spinc

6 (pt)︸ ︷︷ ︸
Z⊕Z

. (6.83)

This corresponds to a (3b2 + 3)-dimensional lattice of Z-valued global 3-form charges in

R1,3, arising from the dimensional reduction of the ten-dimensional 9-form, 7-form, 5-

form, and 3-form global symmetries along the 6-, 4-, 2-, 0-cycles of the CY3 respectively.

At the next level

ΩSpinc

7 (X) = b3Ω
Spinc

4 (pt)︸ ︷︷ ︸
Z⊕Z

, (6.84)

similarly corresponding to a lattice of global 2-form symmetries coming from the dimen-

sional reduction of the 10-dimensional 5-form symmetry on the 3-cycles of the CY3.

Tadpole reconstruction

Through the example of type IIB on CY3, we will explain how to relate the information

contained in the cobordism and K-theory groups of X and construct appropriate tadpole

cancellation conditions. Fundamentally, the idea is precisely that of [35], but now each

of the groups K−n(X),ΩSpinc

k+n (X) decomposes to multiple pieces, each of them being a

group of the point, hence contributes to multiple cancellation conditions. Let us make

this more concrete.

Consider a six-dimensional Spinc-manifold M6 classified by ΩSpinc

6 (X) but, contrary

to the Calabi-Yau X, not necessarily a solution to the string theory equations of motion.

In this sense, M6 can be off-shell. The same manifold must also lie in the right-hand

side contributions bmΩ
Spinc

6−m (pt). Since a continuous map f : M6 → X must exist,

the manifold M6 shares some m-cycles with the fixed background space X. Which m-

cycles are shared depends on the non-zero entries in the charge vector (6.77). Then, the

magnetic (6 − m)-form currents are obtained from the cobordism invariants (6.7), for

M = M6. We propose that this time the magnetic (6 − m)-form currents are defined
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by expanding their right-hand sides into a basis of those (6−m)-forms in H6−m(M6;Z)
that also lie in H6−m(X;Z) (again depending on the entries in the charge vector).

ˆ̃Jm,i(M6) =

bm∑
a=1

αam,i q
a
mΣam + . . . , (6.85)

where the dots indicate more contributions along m-cycles of M6 that do not lie in X.

Note that the (co)homology ofM6 can, in principle, be bigger than that of X. Since this

expansion is also valid for M6 ̸= X, we can go slightly off-shell. Generally, topological

K-theory and cobordism groups classify all global charges that can be present in the

theory, irrespective of properties like supersymmetry or being on-shell.

The ABS orientation, together with the fact that K-theory global symmetries are

gauged, lead to the following tadpole cancellation conditions, as in [35].

First, we look at ΩSpinc

0 (pt) and K0(pt). ΩSpinc

0 (pt) = Z gives rise to a single global 3-

form symmetry in 4d, with the trivial magnetic current J̃0(M6) = td0(M6) = 1. In 10d,

the corresponding 9-form symmetry is gauged with the charged objects being D9-branes,

classified by K0(pt) = Z. This leads to the tadpole condition

N δ(0)(M6) + a(0) td0(M6) = 0, (6.86)

where δ(0)(M6) denotes the 0-form Poincaré dual to the 6-cycle M6 wrapped by the

stack of N D9-branes. This 0-form comes from the ten-dimensional delta δ(0)(R1,3 ×
M6) = δ(0)(R1,3)∧ δ(0)(M6). For a

(0) = 0,−32, this is the usual D9-tadpole cancellation

condition in type IIB/type I string theory.

Second, we have ΩSpinc

2 (pt) and K−2(pt). b4Ω
Spinc

2 (pt) = b4Z gives rise to b4 global

3-form symmetries in 4d, with preserved magnetic 0-form currents j̃
(2)a
0 given by the

expansion of the ten-dimensional 2-form current J̃2(M6) = td2(M6) in a cohomological

basis ω(2)a ∈ H2(X;Z):

J̃2(M6) =

b4∑
a=1

j̃
(2)a
0 ∧ ω(2)a . (6.87)

Since b4 = b2, this is the Poincaré dual to the expansion (6.85) and we have incorporated

the charges qa4 into the coefficients. For a D7-brane classified by K−2(pt), wrapping 4-

cycles Σ4 ∈ H4(M6;Z) in X (times the flat space R1,3), we can expand its Poincaré dual

2-form as

δ(2)(R1,3 × Σ4) =

b4∑
a=1

δ(0)(R1,3)(2)a ∧ ω(2)a . (6.88)

In 10d, the gauging of the corresponding 7-form global symmetry is associated with a

tadpole constraint ∑
j∈def

Nj δ
(2)(R1,3 × Σ4,j) + a(2)

c1(M6)

2
= 0. (6.89)
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Upon expansion in a cohomological basis of H2(X;Z) = b4Z this leads to b4 = b2 tadpole

cancellation conditions. For a(2) = −24 and M6 being the base B3 of an elliptically

fibered Calabi-Yau fourfold, (6.89) is the 7-brane tadpole constraint of F-theory. Note

that forM6 = X, c1(X) = 0, and the tadpole cancellation condition simplifies. However,

the power of our formalism is that we can go off-shell and detect terms that could appear

in principle, even if they are absent for the on-shell configurations.

Third, we consider ΩSpinc

4 (pt) and K−4(pt). b2Ω
Spinc

4 (pt) = b2 (Z⊕ Z) gives rise to

2b2 global 3-form symmetries in 4d. The ABS orientation between K-theory and cobor-

dism is not an isomorphism, but we consider the contributions from all the cobordism

invariants, according to [35]. The preserved magnetic 0-form currents j̃
(4)a
0,i , i = 1, 2, in

D = 4 are given by the expansion of the ten-dimensional 4-form currents J̃4,i(M6) in a

cohomological basis ω̂(4)a of H4(X;Z) as

J̃4,i(M6) =

b2∑
a=1

j̃
(4)a
0,i ∧ ω̂(4)a . (6.90)

K−4(pt) classifies D5-branes wrapping 2-cycles Σ̂2 onM6 that are shared with X (times

the flat space R1,3). Their Poincaré duals can be expanded similarly to (6.90). The

gauging of the 10d 5-form symmetry gives a tadpole condition of the form

∑
j∈def

Nj δ
(4)(R1,3 × Σ̂2,j) + a

(4)
1

(
c2(M6) + c21(M6)

12

)
+ a

(4)
2 c21(M6) = 0. (6.91)

Upon expansion in a cohomological basis of H4(X;Z) = b2Z, one obtains b2 = b4

tadpole cancellation conditions. Two setups are described by (6.91): the type I string

on X = K3 × T 2 for a
(4)
1 = −12 and a

(4)
2 = 3/2, and the Ωσ orientifold of type IIB on

X = K3× T 2 [307,308] for a
(4)
1 = −24 and a

(4)
2 = 0.

Finally, we have ΩSpinc

6 (pt) and K−6(pt). ΩSpinc

6 (pt) = Z⊕Z gives two global 3-form

symmetries in 4d, with preserved magnetic 0-form currents ȷ̃
(6)
0,i , i = 1, 2 (again in D = 4)

given by the reduction of the ten-dimensional 6-form currents J̃6,i(M6) along the volume

6-form of M6,

J̃6,i(M6) = ȷ̃
(6)
0,i vol(M6) . (6.92)

K−6(pt) point-like D3-branes on M6. The gauging of the 10d 3-form symmetry implies

a tadpole condition of the general form

∑
j∈def

Nj δ
(6)(R1,3 × ptj) + a

(6)
1 c2(M6)

c1(M6)

24
+ a

(6)
2

c31(M6)

2
= 0 . (6.93)

For a
(6)
1 = −12 and a

(6)
2 = −30, this tadpole condition corresponds to F-theory com-

pactified on a smooth elliptically fibered Calabi-Yau fourfold with base M6 = B3. For
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a Calabi-Yau manifold, such as M6 = X, the two contributions from cobordism vanish,

but the off-shell nature of cobordism makes them visible.

At the next level, we findK−1(X) = b3K
−4(pt) = b3Z and ΩSpinc

7 (X) = b3Ω
Spinc

4 (pt) =

b3(Z ⊕ Z) which are associated to 2-form symmetries in 4d, arising from the reduction

of the global 5-form symmetries along the b3 3-cycles of X. For ΩSpinc

7 (X), the 2b3

preserved magnetic 1-form currents ȷ̃
(3)a
1,i , with i = 1, 2, in D = 4 are given by the dimen-

sional reduction of the ten-dimensional 4-form currents J̃4,i(M6) along the basis 3-forms

ω(3)a ∈ H3(X;Z), and are given schematically by

J̃4,i(M6) =

b3∑
a=1

ȷ̃
(3)a
1,i ∧ ω(3)a , (6.94)

where the currents ȷ̃
(3)a
1,i may be vanishing. The D5-brane defects wrapping 3-cycles Σ3

on M6 shared with X times a three-dimensional submanifold Π3 of the flat space R1,3

can be expanded as

δ(4)(Π3 × Σ3) =

b3∑
a=1

δ(1)(Π3)
(3)a ∧ ω(3)a. (6.95)

In 10d, the global symmetry of K−4(pt) is gauged with a magnetic Bianchi identity

dF̃3 =
∑
j∈def

Nj δ
(4)(Π3,j × Σ3,j) + a

(4)
1 J̃4,1(M6) + a

(4)
2 J̃4,2(M6) . (6.96)

Expanding the magnetic field strength as

F̃3 =

b3∑
a=1

f̃
(3)a
0 ∧ ω(3)a, (6.97)

leads to b3 Bianchi identities for the four-dimensional 0-forms

df̃
(3)a
0 =

∑
j∈def

Nj δ
(1)(Π3,j)

(3)a + a
(4)
1 j̃

(3)a
1,1 + a

(4)
2 j̃

(3)a
1,2 . (6.98)

The discussion at the next level, for groups such as ΩSpinc

8 (X) and ΩSpinc

9 (X), together

with their K-theory counterparts, proceeds along the same lines.

6.5.3 Fate of low-dimensional ΩSpinc

n (X)

Our discussion up to now has not involved the low-dimensional cobordism groups,

ΩSpinc

n+k (X) with −k ≤ n < 0. These groups are formally non-vanishing, hence one could

expect them to be accompanied by tadpole conditions, as for their higher-dimensional

counterparts.



6.6 Summary and outlook 119

However, it turns out there is a fundamental difference between these groups. To

explain it, let us consider which K-theory groups would enter the same tadpoles as the

lower-dimensional cobordism groups. These are Kn+k(X) = K−n(X) with −k ≤ n < 0.

For concreteness, we pick once again the well-studied example of CY3, and we consider

K2(CY3). Extrapolating the relation (6.75) to n = −2, we would get

K2(X) =
6⊕

m=2

b6−m(X)K2−m(pt) = b4(X)K0(pt)⊕ . . . , (6.99)

where we removed from the sum the term K2(pt), associated to m = 0, which formally

is not vanishing, but is unphysical due to the negative codimension it would require for

the brane. In addition, it does not have a counterpart in the cobordism side (6.76).

What seems to be physical is the term K0(pt), which corresponds formally to a D9-

brane wrapped on a 4-cycle of the CY3. However, the D9-brane fills completely the 10d

spacetime, so in reality, it must wrap a 6-chain in CY3, i.e., a 4-cycle times a 2-chain.

This is, however, a topologically trivial configuration, hence the physical interpretation

of these K-theory groups Kn+k(X) is questionable. This precisely matches the intuitive

picture we have about K−n(X): for n < 0, we practically have to do with negative

codimension branes in the D = (d − k)-dimensional spacetime - this does not seem to

have a real physical meaning.

Now that the D-brane picture indicates that these lower-dimensional groups are

unphysical, we can check if the cobordism side provides a matching intuition. In fact,

we can think of the objects charged under the non-trivial cobordism groups ΩSpinc

n+k (X)

as gravitational solitons of codimension n in the (d−k)-dimensional non-compact space.

For −k ≤ n < 0, even though the group formally does not vanish, the solitons would

not fit in our spacetime, hence we expect this group to be unphysical.

All in all, we have strong indications to disregard these groups. In a sense, the

cobordism/K-theory correspondence goes through nicely even in this case.

6.6 Summary and outlook

Our analysis strongly supports the Cobordism Conjecture and the subsequent proposal

of [35], that whenever an appropriate map exists on the mathematical side, such as the

Hopkins-Hovey isomorphism between K-theory and Spinc cobordism (or KO-theory and

Spin cobordism) the global symmetries associated to both groups are gauged simultane-

ously, though a joint tadpole cancellation condition. We have studied how this proposal

behaves when fixing a topological space as a background. To this end, we employed

the Atiyah-Hirzebruch spectral sequence to compute cobordism and K-theory groups of

simple, higher dimensional manifolds often encountered in string theory, such as tori

and CY manifolds. We found that performing the dimensional reduction through the
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AHSS gives results consistent with the usual dimensional reduction in cohomology, but

additionally takes into account quantum mechanical effects, such as the absence of a

Freed-Witten anomaly. These results for K-theory and cobordism, combined nicely into

tadpoles, compatible with our known tadpole cancellation conditions in string theory.

This project can be extended in multiple directions. Most straightforwardly, it would

be of interest to verify the cobordism/K-theory correspondence in cases with torsion, i.e.,

calculate the elusive differentials and extension problems for KO-theory and ΩSpin. More

complicated structures and incorporating gauge fields in the game would be a possible

next, non-trivial, step. This could truly demonstrate the power of the AHSS and the

way it takes into account quantum mechanical effects.

In a different direction, one could try to figure out how the relative coefficients

arise in the tadpoles, and how they relate to discrete symmetries. Additionally, we

could try and identify all the different setups where some version of the Hopkins-Hovey

isomorphism might apply. Since we know that cobordism does not rely on the presence

of supersymmetry, could this correspondence, for instance, be relevant for some non-

supersymmetric theory?



Chapter 7

Dynamical Cobordism: One

explicit example

7.1 Preface

Cobordism is a very powerful framework, which allows us to study setups over which

we usually have little control. Such a case was exemplified in the previous chapter 6,

where the interplay of cobordism and K-theory allowed us to uncover tadpoles in their

most general form, including terms that appear only for off-shell configuration. Another

case that is less accessible with our conventional methods concerns non-supersymmetric

setups. Up to now, we have only discussed supersymmetric string theories and explicit

supersymmetry breaking, for instance through the anti-D3-uplift in the warped throat.

In reality, there is an additional set of consistent, anomaly-free ten-dimensional string

theories that arise from a supersymmetric world-sheet, yet do not enjoy any spacetime su-

persymmetry. These theories might have undesirable features, such as tachyonic modes,

or no spacetime fermions. However, there exist three theories among them which are

both tachyon-free and include fermions in their spectrum, so, from a phenomenological

standpoint, deserve further attention. In particular, these are the USp(32) theory, com-

monly also referred to as the Sugimoto model [309], the U(32) type 0’B theory [310,311]

and the SO(16) × SO(16) heterotic theory [312, 313]. These models have attracted at-

tention within the Swampland Program (see e.g., [228, 314]), since they help provide a

more complete description of the Landscape.

It turns out that certain non-supersymmetric setups, including non-supersymmetric

10d strings, can indeed be efficiently probed using cobordism.

Supersymmetry-breaking vacua are expected to feature dynamical tadpoles [315,

316]. These tadpoles are fundamentally different from topological tadpoles, such as the

R-R we have encountered so far, in the sense that they do not signal a fundamental
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inconsistency in the theory. Instead, they can be viewed as an indication that we have

not identified the true vacuum of the theory - in fact, the true vacuum is not expected

to be maximally symmetric, but rather correspond to a spacetime-dependent solution.

These solutions generically have peculiar features, such as singularities where the string

coupling diverges.

Recently, it was proposed that these spacetime-dependent configurations, sourced by

dynamical tadpoles, admit a description in the framework of Dynamical Cobordism [36,

37]. This is a complementary framework to the usual topological study of cobordism, and

provides a geometrical picture describing the spacetime-ending defects at finite spacetime

distance. Locally, these defects are argued to exhibit a universal scaling behaviour,

quantified in a single critical exponent [36,37].

In this chapter, we will use this framework to study the backreaction of a non-

supersymmetric, positive-tension domain wall, described aptly within the Dynamical

Cobordism framework. The singularities in the solution in the presence of this domain

wall will be interpreted as an indication for the existence of an end-of-the-world defect,

and we will manage to provide an explicit description of this cobordism-predicted object.

This chapter will have the following structure: In section 7.2 we will review the salient

features of the Dynamical Cobordism framework. In section 7.3, we first comment on

the Sugimoto model, and then introduce the T-dual version of Blumenhagen-Font [317]

which admits a 16 × D8 + O8++ stack that can be viewed as a neutral domain wall.

We will study the backreaction of this domain wall following [317] and interpret it with

respect to Dynamical Cobordism. In section 7.4 we construct the (local) solution of the

dilaton-gravity equations of motion around the cobordism-predicted end-of-the-world

(ETW) defect. This solution turns out to not correspond to any known codimension-

two object in string theory, signaling a possible novel defect.

7.2 Dynamical cobordism: Idea and scaling relations

Dynamical Cobordism [36,37,193] is a framework that gives a geometrical description to

the configurations that can end spacetime, as predicted by the Cobordism Conjecture.

This is achieved via the study of theories that feature dynamical tadpoles, i.e., potentials

without minima that do not admit maximally symmetric solutions. These potentials

admit spacetime-dependent solutions, dubbed dynamical cobordisms in [36, 37], which

feature singularities at finite spacetime distance.

In [36] two universal features of these solutions were identified:
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• For a dynamical tadpole governed by an order parameter T , the spacetime-

dependent solution of the equations of motion cannot be extended beyond a crit-

ical spacetime distance ∆, scaling with respect to T as

∆−n ∼ T , (7.1)

with n an O(1) constant.

• The physical mechanism cutting off spacetime at ∆ is a cobordism defect of

the initial theory.

This behavior was confirmed in several setups, including the Sugimoto Model [309],

massive type IIA theory, and our familiar from chapter 5 Klebanov-Strassler solution.

In [37], this behavior was studied with respect to the scalars contributing to the

potential. It was realized that one can differentiate two cases: the scalars can either

remain at finite distance or go to infinity. The postulated cobordism defect at the

singularity will then be either a domain wall interpolating between different theories or

a wall of nothing capping of spacetime, respectively. In this work, we will focus on the

second case, which is reminiscent of the Distance Conjecture. The following conjecture

was proposed:

Cobordism Distance Conjecture [37]:

Every infinite field distance limit of an effective theory consistent with quantum

gravity, can be realized by running into a cobordism wall of nothing in (possibly

a suitable compactification of) the theory.

It was shown for several examples in [37] that the following scaling laws hold close

to the singularity (in Planck units)

∆ ∼ e−
1
2
δD, |R| ∼ eδD, (7.2)

with D the field distance and δ a positive coefficient. In [193] a general formalism for the

local effective description of Dynamical Cobordism was provided, precisely reproducing

this scaling behavior. Note that the terminology of End of The World (ETW) brane

was used to describe the singular sources in the effective field theory.

Finally, let us comment on some more recent developments. The Dynamical Cobor-

dism framework proved suitable to describe also time-dependent solutions with a spacelike-

singularity denoting the beginning of time [194], small black hole solutions [195], and

AdS/CFT [318].
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7.3 Non-supersymmetric string theory and the backreacted

domain wall

7.3.1 The Sugimoto model and its T-dual

In [309] the consistency conditions for the D9−D9 system in type I were studied. For

n D9- and m anti-D9-branes, and gauge group USp(n) × USp(m), the theory turned

out to be anomaly free for m− n = 32. The tachyon-free case, commonly referred to as

the Sugimoto model, corresponds to the pair (m,n) = (32, 0), i.e., the gauge groups is

USp(32). In practice, this theory is similar to the usual type I string theory, with the

significant difference that now the orientifold projection creates O9-planes with positive

charge and tension, denoted O9++. This is necessary to cancel the R-R tadpole, since the

gauge sector includes 32 anti-D9-branes, but comes at the cost of leaving an uncancelled

NS-NS tadpole for the dilaton. Moreover, the Möbius amplitude of the model is non-

vanishing, so supersymmetry is explicitly broken.

The effective Lagrangian of the Sugimoto model in the Einstein frame is [319]

SE =
1

2κ210

∫
d10x

√
G
[
R− 1

2
(∂Φ)2

]
− T9

∫
d10x

√
G · 64e

3Φ
2 + . . . , (7.3)

with T9 the tension.

The equations of motion were shown to have the so-called Dudas-Mourad solu-

tion [319], a warped metric with 9d Poincaré symmetry and the tenth dimension sponta-

neously compactified on an interval. The Dudas-Mourad solution was shown in [37,193]

to satisfy the dynamical cobordism scalings (7.2). While we will not further discuss

this solution, we want to remark that it is still a subject of active research, see e.g.,

[196,320–323].

In [317] a T-dual version of the Sugimoto model was constructed, by performing a

T-duality along the tenth direction. The result was a model with two positively charged

O8++-planes, with 16 anti-D8-branes at each fixed point to cancel the R-R charge lo-

cally. The original action describing this setup included the contributions from the

stacks at both fixed points. However, it turned out that the solution was spontaneously

compactified on a circle along the tenth dimension, hence due to the periodicity one

can equivalently consider an action with only one neutral stack. Similarly to the Dudas-

Mourad solution, the Blumenhagen-Font solution featured singularities at finite distance,

hence we find it worthwhile to revisit it with respect to Dynamical Cobordism.

7.3.2 Backreacted domain wall

We decide to generalize our setup a bit more, and we consider the backreaction of a

gauge-neutral, non-supersymmetric 9-dimensional domain wall carrying only a positive
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tension and coupling to the dilaton like a D-brane, i.e. with the factor exp(−Φ) in its

action. Such a domain wall could be a non-BPS D8-brane of type I string theory or as a

local R-R tadpole-free 16×D8 +O8++ stack in the Blumenhagen-Font model, and will

be generically addressed as a neutral domain wall.

We consider a configuration where the neutral domain wall, carrying positive tension

T , is located at the position r = 0 in the transversal directions. At leading order, its

supergravity action is

S =
1

2κ210

∫
d10x

√
−G

(
R− 1

2
(∂Φ)2

)
− T

∫
d10x

√
−g e

5
4
Φ δ(r), (7.4)

where GMN denotes the metric in ten dimensions and gµν = δMµ δ
N
ν GMN the induced

metric on the nine-dimensional worldvolume of the brane. Moreover, one has κ210 =

l8s/(4π), with ls the string length - this is the action of [317] with a single source.

The gravity equation of motion reads

RMN − 1

2
GMNR− 1

2

(
∂MΦ∂NΦ− 1

2
GMN (∂Φ)

2

)
=

− λ δµMδ
ν
N gµν

√
g

G
e

5
4
Φ δ(r),

(7.5)

with λ = κ210T , while the dilaton equation of motion is

∂M

(√
−GGMN ∂NΦ

)
=

5

2
λ
√
−g e

5
4
Φ δ(r) . (7.6)

These non-linear equations share some features with the backreaction of BPS branes,

but are much harder to solve due to the lack of supersymmetry.

7.3.3 Solutions breaking 9D Poincaré symmetry

As expected, there exists no solution preserving 9D Poincaré invariance, but, following

[317], we can find a solution preserving 8D Poincaré invariance and featuring a single

non-trivial longitudinal direction y. The general ansatz for the metric is

ds2 = e2A(r,y)ds28 + e2B(r,y)(dr2 + dy2), (7.7)

and we separate the dependence of the warp factors A, B and the dilaton Φ on the

coordinates r and y, i.e.

A(r, y) = A(r) + U(y) , B(r, y) = B(r) + V (y) ,

Φ(r, y) = χ(r) + ψ(y) .
(7.8)

For such a separation of variables, the ansatz (7.7) turns out to be the most general one.
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The equations of motion give the following five, a priori independent, equations. The

one coming from the variation δGµν is(
7A′′ + 28(A′)2 +B′′ + 1

4(χ
′)2
)
+
(
7Ü + 28(U̇)2 + V̈ + 1

4(ψ̇)
2
)

= −λ eB+V e
5
4
Φ δ(r) .

(7.9)

The prime denotes the derivative with respect to r and the dot the derivative with

respect to y. For δGrr and δGyy, we obtain(
28(A′)2 + 8A′B′ − 1

4(χ
′)2
)
+
(
8Ü + 36(U̇)2 − 8U̇ V̇ + 1

4(ψ̇)
2
)
= 0,(

8A′′ + 36(A′)2 − 8A′B′ + 1
4(χ

′)2
)
+
(
28(U̇)2 + 8U̇ V̇ − 1

4(ψ̇)
2
)

= −λ eB+V e
5
4
Φ δ(r) ,

(7.10)

and for the off-diagonal δGry

− 8A′U̇ + 8B′U̇ + 8A′V̇ − 1
2χ

′ψ̇ = 0 . (7.11)

Finally, the dilaton equation of motion is(
χ′′ + 8A′χ′

)
+
(
ψ̈ + 8U̇ ψ̇

)
=

5

2
λ eB+V e

5
4
Φ δ(r) . (7.12)

Summing the two equations in (7.10) gives the simpler equation

8
(
A′′ + 8(A′)2

)
+ 8
(
Ü + 8(U̇)2

)
= −λ eB+V e

5
4
Φ δ(r) . (7.13)

We first solve these equations in the bulk and then implement the δ-source via a

jump of the first derivatives A′, B′, χ′ at r = 0, precisely as in [317], and we present the

solutions right away.

Solution 0

This is a physically uninteresting solution, which we merely include for completeness.

A(r) =
1

8
log
∣∣∣ sin [8K(|r| − R

2 )
] ∣∣∣, B(r) = − 7

16
log
∣∣∣ sin [8K(|r| − R

2 )
] ∣∣∣,

χ(r) = ϕ0, U(y) = ±Ky, V (y) = ±9

2
Ky, ψ(y) = 0.

(7.14)

The jump conditions fix cot (4KR) = 0, with minimal solution K = π/(8R). Conse-

quently, the jumps in A′(r) and B′(r) at r = 0 are vanishing separately. This implies

λe
5
4
ϕ0 ∼ cot (4KR) = 0 and thus the string coupling vanishes. Therefore, this solution

does not describe the backreaction of a positive tension object, and from now on we

completely disregard it.
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Solution I

From (7.13) we see that both expressions in the brackets need to be constant (away from

the sources). Hence A(r) and U(y) must be functions of trigonometric and hyperbolic

type respectively (or vice versa). All the equations of motion and boundary conditions

are satisfied by the following functions

A(r) = B(r) =
1

8
log
∣∣∣ sin [8K(|r| − R

2 )
] ∣∣∣,

χ(r) = −3

2
log
∣∣∣ tan [4K(|r| − R

2 )
] ∣∣∣+ ϕ0,

U(y) = −K y, ψ(y) = V (y) = 0 ,

(7.15)

where the integration constant ϕ0 is related to the string coupling constant. Moreover,

the appearing parameters satisfy

cos(4KR) =
3

5
, e

5
4
ϕ0 = 3

(
5

2

) 1
8 K

λ
∼ 1

λR
. (7.16)

The second relation nicely reflects that the compactness of the r direction is a conse-

quence of the backreaction of the neutral domain wall, since for ϕ0 → −∞, i.e., gs → 0,

the compact space decompactifies.

The direction transversal to the neutral domain wall is spontaneously compactified

on a S1 of a size proportional to R. One could alternatively think that the r-direction

may be an interval of finite proper size, but since there is no distinguished singular point

in the y-direction, this would lead to a pair of ETW 8-branes at r = −R/2 and r = R/2.

However, an 8-brane is not consistent with the singularities (7.17) of the solution at

these points. Moreover, since the solution (7.15) features only trigonometric functions,

we safely conclude the r-direction is circular.

The proper length of the y-direction is infinite, so we cannot find walls of nothing in

this solution - equivalently, walls of nothing are infinitely far away and thus cannot be

captured by our effective description. A coordinate of finite proper length is necessary

for an interpretation in terms of local dynamical cobordism. At r = ±R/2 there appear

logarithmic singularities in the warp factors and the dilaton

A(r) = B(r) ∼ 1

8
log ρ , χ(r) ∼ −3

2
log ρ, (7.17)

with ρ = |r| − R/2. This leads to curvature singularities, where the string coupling

diverges. The appearance of such a singularity at ρ = 0 was already observed in [317],

but back then its physical meaning stood as a puzzle. Now, these singularities are to be

expected in the dynamical cobordism framework - we will come back to this issue after

discussing Solution II.
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Solution II

Let us now review the more involved Solution II. The equations in the bulk still ad-

mit three free parameters, α,K,R, which are restricted by implementing the 8-brane

boundary conditions at r = 0. The r-dependent solutions satisfying the proper jump

conditions at r = 0 are

A(r) =
1

8
log
∣∣∣ sin [8K(|r| − R

2 )
] ∣∣∣,

χ(r) =
α±

8
log
∣∣∣ sin [8K(|r| − R

2 )
] ∣∣∣∓ 2 log

∣∣∣ tan [4K(|r| − R
2 )
] ∣∣∣+ ϕ0,

B(r) =
µ

8
log
∣∣∣ sin [8K(|r| − R

2 )
] ∣∣∣∓ α±

8
log
∣∣∣ tan [4K(|r| − R

2 )
] ∣∣∣,

(7.18)

with r ∈ [−R
2 ,

R
2 ]. The parameters appearing above are defined as

µ =
α2

16
+

5α

4
+ 1 , for α± = −4(5∓ 4

√
2) , (7.19)

where the latter are the positive and the negative root of

α2 + 40α− 112 = 0 . (7.20)

The consistency of the boundary conditions requires

cos(4KR) = ± 16

α± + 20
=

1√
2
, (7.21)

with the minimal solution K = π/(16R). The integration constant ϕ0 is related to the

string coupling constant and has to satisfy

e
5
4
ϕ0 =

π

λR
e−B− 5

4
(χ−ϕ0)

∣∣∣
r=0

=
π

λR

√
2
(√

2− 1
)2√2

. (7.22)

Again, the circle parametrized by R decompactifies as the string coupling goes to zero.

The solutions for the y-dependent functions are a bit simpler and read

U(y) =
1

8
log
(
cosh [8K y]

)
, ψ(y) = αU(y) , V (y) = −5α

4
U(y) , (7.23)

i.e., all three functions are proportional to each other. An integration constant was

used to render the solution symmetric around y = 0. We will denote the present two

solutions as II±, with the superscripts referring to the roots α± respectively. As we will

see shortly, only Solution II+ leads to a finite size for the y-direction. For this solution,

we show the three r-dependent functions in figure 7.1, and notice they all have a kink

at the location r = 0 of the neutral domain wall but exhibit a singularity at r = ±R/2.
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Figure 7.1: For Solution II+, the three functions A(r), B(r) and χ(r) are shown from

left to right for R = 1 in a double period r ∈ [−R,R].

Introducing the coordinate close to the singularity, ρ = r − R/2, and expanding

sin[8K(|r| − R
2 )] ≃ 8Kρ, the behavior of these three functions close to ρ = 0 is

A(ρ) ≃ 1

8
log ρ , χ(ρ) ≃ 1

8
(α+ − 16) log ρ , B(ρ) ≃ 1

8
(µ− α+) log ρ . (7.24)

Since (α+ − 16) < 0 while (µ − α+) > 0, for ρ → 0 the warp factors A and B go to

zero while the string coupling gs = exp(Φ) goes to infinity, i.e., it is a strong coupling

singularity.

7.3.4 The geometry of the solution

In this section, we try to provide an intuitive description of the stringy geometry of the

Solutions II±. We mainly work in the string frame, while we will mention some results

in the Einstein frame as well.

In the string frame, the proper length of the y-direction (at fixed r) is

Ly =

∫ ∞

−∞
dy eV (y)+ 1

4
ψ(y) =

∫ ∞

−∞
dy
(
cosh

[
π
2Ry

] )−α
8
. (7.25)

This length can only be finite for positive α, so Solution II− is, similarly to Solution I,

incompatible with the Dynamical Cobordism description. For Solution II+, one finds

instead

Ly =
2R√
π

Γ
(
α+

16

)
Γ
(
α+

16 + 1
2

) ≈ 4.7R . (7.26)

In the Einstein frame, the situation is qualitatively similar: Solutions I and II− still

exhibit an infinite proper length Ly, while for Solution II+ it is finite, just rescaled to

≈ 3.9R.

Since (7.26) is finite, there are two end-of-the-world walls at a finite distance from

one another, describable within the same effective description. In view of the cobordism

conjecture, which hints at a (10 − 1 − 1) = 8-dimensional defect since the compact

manifold is 1-dimensional, and by taking the logarithmic singularity at |r| = R/2 into
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account, we expect two corresponding ETW 7-branes located in the (r, y)-plane at

ETW1 : (r, y) = (R/2,−∞) , ETW2 : (r, y) = (R/2,+∞) . (7.27)

In the following, we focus on Solution II+. The string-frame proper length in the r-

direction (at fixed y) is

Lr =

∫ R/2

−R/2
dr eB(r)+ 1

4
χ(r) = 2

∫ 0

−R/2
dr

(
sin
[
π
2R

(
r + R

2

)])µ
8
+α+

32(
tan

[
π
4R

(
r + R

2

)])α+

8
+ 1

2

≈ 2.1R (7.28)

and, despite a singularity of the integrand at r = ±R/2, is finite. In the Einstein frame,

it remains finite (≈ 0.9R). The area of the compact (r, y)-space is then finite in the

string frame:

Area =

∫
drdy

√
GrrGyy = Lr Ly ≈ 9.9R2. (7.29)

Taking the y- and r-dependence of the lengths Lr and Ly respectively into account,

we get the following picture: In the string frame, the circle gets warped with the y

coordinate as

R(y) = eV (y)+ 1
4
ψ(y)R = e−α

+U(y)R −→
y→±∞

0 . (7.30)

The behavior in the Einstein frame is qualitatively similar, R(y) = e−
5
4
α+U(y)R. As for

Ly, close to the singularity at r = R/2 it is multiplied with the exponential of

B(r) +
1

4
χ(r) ≃ 1

8

(
(α+)2

16
+
α+

2
− 3

)
log ρ ≈ −0.16 log ρ, (7.31)

and its proper length diverges at ρ → 0. On the contrary, in the Einstein frame the

warp factor becomes

B(r) ≃ 1

8

(
(α+)2

16
+
α+

4
+ 1

)
log ρ ≈ 0.26 log ρ, (7.32)

and thus the proper length goes to zero as ρ→ 0.

Therefore, at the presumed location of the ETW 7-branes, in the string frame the

size of the circle in the r-direction tends to zero, while the length of the interval in the

y-direction goes to infinity, such that the area stays finite. This means that topologically

this space is the unreduced suspension of the circle, S(S1) = S2. In figure 7.2, we provide

a schematic representation of the solution in the string frame. The two gray circles on

the left and on the right-hand side of the upper figure actually have zero size and should

be considered points. This is sketched in the bottom part of the figure.

In the Einstein frame, the distance between the two ETW 7-branes at r = R/2

goes to zero, and the space in the (r, y)-plane is topologically the reduced suspension

Σ(S1) = S2.



7.3 Non-supersymmetric string theory and the backreacted domain wall131

Figure 7.2: Schematic view of the string frame geometry.
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Dynamical Cobordism interpretation

To make contact with the Dynamical Cobordism framework of section 7.2, we need to

verify that at the singularity the scaling relations (7.1) and (7.2) are satisfied. In our

setup, ∆ can be expressed in terms of the tension T ∼ λ exp(54ϕ0) of the neutral domain

wall

∆ ∼ Ly ∼ T −1, (7.33)

where we used (7.22), so by direct comparison to (7.1) we have n = 1.

Consider the ETW 7-brane located at y = +∞ and |r| = R/2. The proper length

of the circle in the r-direction goes to zero at y = +∞, so all trajectories specified by

a fixed r and y → +∞ do reach the ETW 7-brane location. Note that e.g. trajectories

with a fixed finite value of y and r → R/2 do not reach the ETW 7-brane location.

For the string-frame distance close to the location of the ETW brane, we can ap-

proximate

∆ ∼
∫ ∞

y
dy′ e−

πα
16R

y′ ∼ e−
πα
16R

y . (7.34)

The field distance is ψ(y) ∼ πα
16Ry and we can define the canonically normalized field

D = ψ(y)/
√
2, so we get the scaling relation 1

∆ ∼ e−
√
2D , (7.35)

1Actually, we have neglected the r-dependence in ∆. Including it leads to a power law correction of

the type ∆ ∼ ρ(1−2
√
2)e−

√
2D.



132 7. Dynamical Cobordism: One explicit example

so the field-distance scaling relation in the string frame leads to δs = 2
√
2. In the

Einstein frame, we have ∆ ∼ e−
5πα
64

y ∼ e−
5
4

√
2D and thus δE = 5

2

√
2.

To verify we have indeed a dynamical cobordism, the critical exponent for the cur-

vature scaling relation in (7.2) must be the same. For the general warped ansatz of the

10D metric (7.7), the Ricci scalar is

R = −e−2B
(
16□A+ 72 (∇A)2 + 2□B

)
. (7.36)

Thus, in the string frame, we have

|R| ∼ e−2(V (y)+ 1
4
ψ(y)) ∼ e2

√
2D , (7.37)

which indeed consistently gives again δs = 2
√
2. Similarly, in the Einstein frame we have

|R| ∼ e−2V (y) ∼ e
5
2

√
2D, i.e., we find again δE = 5

2

√
2.

We can conclude then that the scalings (7.2) are indeed satisfied, and the singularities

of the solution correspond to spacetime-ending defects.

7.3.5 Cobordism interpretation

Let us discuss how the original cobordism conjecture relates to these spacetime-dependent

solutions. Both solutions I and II featured a spontaneous compactification on the cir-

cle, a one-dimensional manifold, so the relevant cobordism group is Ωξ1 ̸= 0, with the

structure ξ left open for the time being. We interpret the singularities of all solutions as

indications of an inconsistency in the theory, which can be traced back to a non-vanishing

global cobordism charge. However, only solution II+ adheres to the dynamical cobor-

dism framework, where the singularity is interpreted as a cobordism defect, rather than

an inconsistency.

This non-vanishing cobordism group can be trivialized through breaking or gauging.

Breaking predicts in this case an 8-dimensional defect, alternatively viewed as a 7-brane.

For gauging, as we have discussed extensively in chapter 6, if there is an ABS orientation

relating the cobordism group to an appropriate K-theory group, the cobordism charges

can enter the same charge neutrality condition as K-theoretical charges. Gauging, in

the absence of the ABS orientation, simply means that the cobordism charge over the

compact manifold should vanish, i.e., the manifold should belong in the trivial cobordism

class.

Let us go back to the ξ-structure. Perhaps the simplest assumption would be ξ =Spin,

since we want fermions in our effective theory, and then ΩSpin
1 = Z2 ̸= 0. Whether this

group will be gauged or broken depends on the physical setup we are dealing with: this

is either the D8/O8 stack in the T-dual of the Sugimoto model or a non-BPS type I

brane.
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The non-BPS D̂8-brane carries a Z2 KO-theory charge - if the structure is indeed

Spin, we would expect the cobordism charge to combine with KO-theoretical contribu-

tions in a joint tadpole cancellation condition. However, as explained in example 2 in

section 6.2.1, following [35], we expect the coefficient of the cobordism contribution to

be even, so the two charges decouple. Then the KO-theoretical charge would have to

vanish on a compact space, hence a single non-BPS brane would be inconsistent. We

can try to speculate how this relates to the solutions we have found: For solutions I and

II−, the singularities do not have a dynamical interpretation, yet have singularities. We

can interpret this as a sign of inconsistency due to the uncancelled KO-charge.

The stack of D8/O8++ on the other hand could in principle have an accompanying

cobordism-breaking defect. We don’t expect the cobordism/K-theory correspondence

to go through since this T-dual model is not classified by KO-theory. In fact, in the

Sugimoto model, the branes are classified by the symplectic K-theory KSp [309]. Since

the Blumenhagen-Font solution concerns its T-dual setup, we still expect the charged

objects to be classified by KSp, just with an appropriate shift. On the other hand,

breaking such a symmetry predicts the existence of 7-brane defects which can be nicely

identified with the ETW-branes of Local Dynamical Cobordism. This situation would

correspond to Solution II+, where the singularities are actually at finite distance and

spacetime closes off. In this picture, one could try to identify the topological S1 as the

generator of ΩSpin
1 . As we have seen, the size of this S1 shrinks to zero at the positions

of the two ETW-branes and thus the boundary conditions for the fermions should be

periodic.

7.4 The ETW 7-brane

The cobordism conjecture suggests that the singularity for Solution II+ can be cured by

introducing an appropriate pair of ETW 7-branes. The main restriction is that close to

the core, this solution should show be able to close off the singularity found for Solution

II+.

Thus, we are looking for a 7-brane solution to the equations of motion (7.5) and (7.6)

that preserves 8D Poincaré symmetry, that has log ρ singularities close to its core at

ρ→ 0 and, as figure 7.2 suggests, that is non-isotropic in the two transversal directions.

The tension of the brane and its dependence on the dilaton are not determined a priori,

but will be determined along the way.

7.4.1 Solution breaking rotational symmetry

We make a non-isotropic ansatz for the Einstein-frame metric

ds2 = e2Â(ρ,φ)ds28 + e2B̂(ρ,φ)(dρ2 + ρ2dφ2), (7.38)
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with a separated dependence of the warp factors and the dilaton on the radial coordinate

ρ and the angular coordinate and φ, i.e.

Â(ρ, φ) = Â(ρ) + Û(φ) , B̂(ρ, φ) = B̂(ρ) + V̂ (φ) ,

Φ̂(ρ, φ) = χ̂(ρ) + ψ̂(φ) .
(7.39)

The hat sets apart the various quantities here from the similar ones in the 9-dimensional

neutral domain wall solution.

The equations of motion are very similar to the ones for the 9d domain wall. For the

variation δgµν we get the equation

(
7Â′′ + 7

Â′

ρ
+ 28(Â′)2 + B̂′′ +

B̂′

ρ
+ 1

4(χ̂
′)2
)

+
1

ρ2

(
7
¨̂
U + 28(

˙̂
U)2 +

¨̂
V + 1

4(
˙̂
ψ)2
)
= −λ̂ eaΦ̂ 1

2πρ
δ(ρ) ,

(7.40)

where the tension λ̂ and the parameter a are left undetermined. The prime denotes the

derivative with respect to ρ and the dot is the derivative with respect to φ. For the two

variations δgρρ and δgφφ we obtain

(
8
Â′

ρ
+ 28(Â′)2 + 8Â′B̂′ − 1

4(χ̂
′)2
)
+

1

ρ2

(
8
¨̂
U + 36(

˙̂
U)2 − 8

˙̂
U

˙̂
V + 1

4(
˙̂
ψ)2
)
= 0,

(
8Â′′ + 36(Â′)2 − 8Â′B̂′ +

1

4
(χ̂′)2

)
+

1

ρ2

(
28(

˙̂
U)2 + 8

˙̂
U

˙̂
V − 1

4
(
˙̂
ψ)2
)
= 0 ,

(7.41)

and for the off-diagonal δgρφ

8
˙̂
U

ρ
− 8Â′ ˙̂U + 8B̂′ ˙̂U + 8Â′ ˙̂V − 1

2
χ̂′ ˙̂ψ = 0 . (7.42)

Finally, the dilaton equation of motion becomes(
χ̂′′ +

χ̂′

ρ
+ 8Â′χ̂′

)
+

1

ρ2

(
¨̂
ψ + 8

˙̂
U

˙̂
ψ
)
= 2aλ eaΦ̂

1

2πρ
δ(ρ) . (7.43)

Exactly as before, summing the two equations in (7.41) gives a simpler one: equation

8
(
Â′′ +

Â′

ρ
+ 8(Â′)2

)
+

8

ρ2

(
¨̂
U + 8(

˙̂
U)2

)
= 0 . (7.44)

The main difference in comparison to the previous section, is the appearance of some

extra 1/ρ-terms. For instance, they contain the 2D Laplacian in polar coordinates

□F (ρ, φ) =
1

ρ
∂ρ(ρ ∂ρF ) +

1

ρ2
∂2φF . (7.45)
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A pair of solutions: ETW 7±-branes

Remarkably, the new equations of motion admit a three-parameter bulk solution which

is similar to the one from the previous section. Now it is the ρ-dependent functions that

are of hyperbolic type

Â(ρ) =
1

8
log

(
cosh

[
8K̂ log

( ρ
ρ0

)])
,

χ̂(ρ) = α̂Â(ρ),

B̂(ρ) = − log
( ρ
ρ0

)
+
(
α̂2

32 − 7
2

)
Â(ρ) ,

(7.46)

where at this stage α̂, K̂ and the dimensionful parameter ρ0 are still undetermined. The

angle-dependent solutions are instead

Û(φ) =
1

8
log
∣∣ cos(8K̂φ) ∣∣,

ψ̂(φ) =
α̂

8
log
∣∣ cos(8K̂φ) ∣∣± 2 log

∣∣∣ tan(4K̂φ+
π

4

) ∣∣∣,
V̂ (φ) = −

(
α̂2

32 − 9
2

)
Û(φ) +

α̂

16
ψ̂(φ) ,

(7.47)

where due to the periodicity of the cosine-function we have φ ∈ [0, π
4K̂

]. The sign in the

second line is in fact a free parameter, so in reality, we have a pair of solutions. Flipping

this sign is the same as shifting the argument of the tan-function by −π/2, which is the

same as flipping the sign of K̂. We denote this pair of solutions as ETW 7±-branes and

from now on we invoke the freedom to choose K̂ > 0.

Finally, each of the quantities in the solutions (7.46) and (7.47) can be shifted by

arbitrary integration constants, which have been omitted here for simplicity but will

become relevant soon: getting our desired delta source configuration can be guaranteed

by fixing one of these constants.

7.4.2 Brane sources

Given the bulk solution, we would like now to study its behavior at the boundary. To

this end, we include the δ-function source on the right-hand side of the equations of

motion.

First, we notice that f̂ = log ρ is the 2D Green’s function satisfying

□ρf̂ ≡ f̂ ′′ +
f̂ ′

ρ
=

1

ρ
δ(ρ) = 2πδ2(y⃗) . (7.48)

To understand where potential δ-functions can appear, we do not initially specify Â(ρ),

but instead make the ansatz

χ̂(ρ) = α̂Â(ρ) , B̂(ρ) = − log(ρ/ρ0)︸ ︷︷ ︸
B̃(ρ)

+
(
α̂2

32 − 7
2

)
Â(ρ),

(7.49)
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together with the solution (7.47) for the angle-dependent functions. Inserting this ansatz

into the equation of motion shows that only three of them potentially develop δ-terms,

according to

δGµν : □ρB̃ +
(
α̂2+112

32

)(
□ρÂ+ 8(Â′)2 − 8K̂2

ρ2

)
= ′′δ(ρ)′′ ,

δGφφ : 8

(
□ρÂ+ 8(Â′)2 − 8K̂2

ρ2

)
= ′′δ(ρ)′′ ,

δΦ : α̂

(
□ρÂ+ 8(Â′)2 − 8K̂2

ρ2

)
= ′′δ(ρ)′′ ,

(7.50)

with the δGρρ and δGρφ gravity equations of motion leading to no source term. Here,

with ′′δ(ρ)′′ we indicate potential source terms with generic coefficients.

The term □ρB̃ in the first equation generates the source term in (7.40) for a = 0 and

λ̂ = 2π. he second potential contribution on the right-hand side of (7.50) is related to

Â, and in particular the specific combination

Â′′ +
Â′

ρ
+ 8(Â′)2 − 8K̂2

ρ2
= 0 , for ρ ̸= 0 . (7.51)

Since Â(ρ) ≃ −K̂ log ρ/ρ0 for ρ ≪ ρ0, this could lead to another two-dimensional δ-

source. However, equation (7.50) indicates that this source comes from an 8-brane

wrapping the φ direction. Alternatively, this term could be zero even at the core, ρ = 0,

an then the right-hand side of the last two equations in (7.50) would vanish identically.

This is actually the physical setup we would like to describe, as it would avoid the

introduction of yet another 8-brane.

This is indeed a realizable option: notice that the first two terms in (7.51) recombine

into □ρÂ and thus give a δ2-term. Integrating them over a disc of small radius ε0 yields∫
Dε0

dρdφ ρ □ρÂ = −2πK̂ . (7.52)

Hence the remaining two terms in (7.51) need to somehow cancel out the contribution

(7.52), to avoid the appearance of additional sources. Note that all four terms scale like

±1/ρ2 close to the core. To obtain the desired cancellation, we invoke the freedom to

choose arbitrary integration constants in the ansatz. After a redefinition of the coor-

dinates xµ and ρ, we are left with one physical integration constant, usually identified

with ϕ̂0. We make this integration constant explicit in our ansatz for Â(ρ), as

Â(ρ) =
1

8
log

(
cosh

[
8K̂ log

( ρ
ρ0

)])
+
ϕ̂0
α̂
. (7.53)
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Then, the last two terms in (7.51) can be written as

8(Â′)2 − 8K̂2

ρ2
= 8

(
Â′ − K̂

ρ

)(
Â′ +

K̂

ρ

)

≃ −16K̂

ρ
∂ρ

(
Â(ρ) + K̂ log

(
ρ

ρ0

))
,

(7.54)

so that integrating over a disc of small radius ε0 and invoking Stoke’s theorem one gets∫
Dε0

dρdφ ρ

(
8(Â′)2 − 1

8ρ2

)
= −32πK̂

α̂
ϕ̂0 . (7.55)

that may cancel the contribution (7.52). We conclude that the behavior of the peculiar

expression (7.51) at the core depends on the value of an integration constant. Without

specifying this parameter, the expression is ambiguous. For the specific value ϕ̂0 =

−α̂/16, the term (7.55) cancels against (7.52) and (7.51) vanishes everywhere. In this

case, the only physical δ-source term on the left-hand side of (7.50) arises from the

contribution B̃, which can be reproduced by a 7-brane localized at ρ = 0 with Einstein-

frame action

S7 = −T7
∫
d10x

√
−g δ(ρ)

2πρ
. (7.56)

Since there is no contribution in the dilaton equation, we need to set a = 0 and choose

λ̂ = κ210T7 = 2π. Note that for a 7-brane λ̂ is dimensionless.

7.4.3 Comparison to Solution II+

Let us now verify whether this object behaves in the desired way close to the core ρ = 0,

i.e., in the same way as the singular geometry (7.24) of Solution II+. The parameter

capturing the local behavior close to the ETW-wall in the string frame is the critical

exponent δs = 2
√
2 in the scaling relation (7.2). If we have identified the end-of-the-world

defect, it should scale in the same way.

The ρ-dependent functions (7.46) close to ρ = 0 read

Â(ρ) ≃ −K̂ log ρ , χ̂(ρ) ≃ −K̂α̂ log ρ ,

B̂(ρ) ≃ −K̂
(
α̂2

32 − 7
2 + 1

K̂

)
log ρ .

(7.57)

The string-frame distance to the core is

∆ ∼
∫ ρ

0
dρ′ eB̂(ρ′)+ 1

4
χ̂(ρ′) ∼ ρ

−K̂
(

α̂2

32
+ α̂

4
− 7

2

)
, (7.58)

and for K̂ > 0 it is finite only if α̂
2

32 +
α̂
4 −

7
2 < 0. This distance can be expressed in terms

of the canonically normalized field D = χ̂/
√
2 as

∆ ∼ exp
(√

2
α̂

(
α̂2

32 + α̂
4 − 7

2

)
D
)
, (7.59)
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By comparison to the scaling relation (7.2), we get δs = 2
√
2 (with ∆ finite) precisely

for

α̂ = α+ = 4(4
√
2− 5) . (7.60)

As for the scalar curvature, we find close to ρ = 0, and in the string frame

|R| ∼ 1

ρ2
e−2(B̂(ρ)+ 1

4
χ̂(ρ)) ∼ ρ

2K̂
(

α̂2

32
+ α̂

4
− 7

2

)
∼ e2

√
2D, (7.61)

in accordance with the scaling behavior (7.2), again for δs = 2
√
2. In the Einstein-frame,

we similarly found δE = 5
2

√
2, consistently leading to α̂ = α+, as well. Thus, close to the

core, the coordinate ρ in the 7-brane solution corresponds to the coordinate y (or better

∆) in the original domain wall solution, for y → ±∞. Similarly, the φ-coordinate for

the ETW 7-brane solution (7.47) is related to the periodic r-coordinate of the domain

wall (7.18) via 8K̂φ = 8K(|r| − 3R/2) = π
2R |r| −

3π
4 . Therefore, depending on K̂, the

former domain wall coordinate r parametrizes a segment of the φ circular coordinate.

Choosing the value K̂ = 1/8 gives 2π-periodicity to φ.

The main result from this scaling analysis is that indeed the non-isotropic ETW 7-

brane solution has the right properties close to the core to close off the singularity found

in the neutral domain wall solution.

Let us review the parameters entering these two solutions and their physical meaning.

The bulk solution for neutral domain wall the admitted five parameters,

α, K, R, eϕ0 , λ . (7.62)

The jump conditions at the core and requiring a finite size for the spontaneously com-

pactified longitudinal direction, such that the dynamical cobordism framework was ap-

plicable, fixed α = 4(4
√
2− 5) and led to the two conditions

K =
π

16R
, e

5
4
ϕ0 ∼ 1

λR
. (7.63)

We were left with two unconstrained parameters like e.g. the radius R and the overall

scale of the string coupling constant gs = eϕ0 . In a concrete string theory setting, the

tension would also be fixed. Note that for large radius R the string coupling becomes

small so that one expects to have good control over the employed low-energy effective

action, which is just dilaton-gravity in this case.

For the 7-brane, we started with five parameters in the bulk

α̂, K̂, ρ0, e
ϕ̂0 , λ̂ , (7.64)

but ensuring the appropriate δ-function was contributing fixed the tension λ̂ = 2π and

gave rise to one relation

ϕ0 ∼ α̂, (7.65)
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leaving us with three free parameters. Requiring that the 7-brane closes off the singu-

larities present in the neutral domain wall solution (i.e. that it is really the ETW-brane)

fixed the parameter α̂ = α+. While we are left again with two free parameters, K̂ and

the radial scale ρ0, the string coupling constant is fixed at gs = exp(−α̂/16) ≈ 0.85,

which is at the boundary of controllability over the utilized low-energy effective action.

However, the dilaton-gravity solution per se is valid for arbitrary values of α̂ and con-

sequently gs. Therefore, we can retain perturbative control and are thus confident that

the solution captures some physical features of the ETW 7-brane.

7.4.4 The geometry of the ETW 7-brane

The geometry around the ETW 7±-branes is particularly interesting, matching our ex-

pectations for a cobordism defect that caps off spacetime. We set from now on K̂ = 1/8,

so that φ is 2π-periodic and can be expressed intuitively in conventional polar plots.

First, we display the ρ-dependent functions (7.49) with (7.53) in figure 7.3 below.
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Figure 7.3: The three functions Â(ρ), B̂(ρ) and χ̂(ρ), displayed from left to right. We

have chosen ρ0 = 1 and ϕ0 = −α̂/16.

The figure reflects the discussed-log ρ behavior close to the core and no further singular-

ities appear. The finite proper length of the radial direction in the string frame can be

computed as

Lρ =

∫ ∞

0
dρ eB̂(ρ)+ 1

4
χ̂(ρ) =

∫ ∞

0
dρ

ρ0
ρ

(
cosh

[
log
( ρ
ρ0

)]) 1
8

(
α̂2

32
+ α̂

4
− 7

2

)
≈ 7.38 ρ0 . (7.66)

The angular dependence for the ETW 7−-brane is displayed in figure 7.4. The

solution is clearly non-isotropic, with a singular behavior at the two angles φ1 = π/2

and φ2 = 3π/2. At φ1 the string coupling goes to zero, whereas at φ2 it diverges.

The proper length of the angular direction in the string frame is

Lφ =

∫ 2π

0
dφ eV (φ)+ 1

4
ψ(φ)

=

∫ 2π

0
dφ
∣∣∣ cosφ∣∣∣ 18( α̂2

32
+ α̂

4
+ 9

2

)∣∣∣ tan(φ
2
+
π

4

) ∣∣∣± 1
8
(α̂+4)

≈ 1.07 (2π) .

(7.67)

In fact, while both Lρ and Lφ are finite, the area A = L̃ρLφ diverges, since it involves



140 7. Dynamical Cobordism: One explicit example

1 2 3 4 5 6

-0.4

-0.3

-0.2

-0.1

1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

1 2 3 4 5 6

-10

-5

5

10

15

Figure 7.4: The three functions Û(φ), V̂ (ϕ), ψ̂(φ) for the ETW 7− brane. For the 7+

brane the plots are just shifted by π.

the divergent integral

L̃ρ =

∫ ∞

0
dρ ρ eB̂(ρ)+ 1

4
χ̂(ρ) → ∞ . (7.68)

Hence, the ETW 7±-brane solution is non-compact. We find the contour plot of the

warp factor exp(V (φ) + 1
4ψ(φ)) in figure 7.5 particularly instructive.
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Figure 7.5: Contour plot of the φ-dependent warp factor exp(V (φ) + 1
4ψ(φ)) in string

frame. For a more intuitive depiction, we have chosen φ = 0 along the negative vertical

axis.

This figure makes the structure of the ETW-branes clear: at the weak coupling

direction, φ = ∓π/2 for the 7± brane, the length scale shrinks to zero and geometry

disappears into nothing. At the opposite, strong coupling direction, φ = ±π/2 for the

7± brane, the length scale goes to infinity. This reflects the expected divergent behavior

(7.31). Note that for each φ ̸= ∓π/2 (for the 7± brane), the string coupling diverges as

one radially approaches the core at ρ = 0.

The picture in the Einstein frame is slightly different, as can already be expected

from the middle plot in figure 7.4. The radial length scale goes to zero for both φ = π/2

and φ = −π/2. This is still consistent with equation (7.32), just lacks the immediate

visual confirmation that spacetime ends “away from the two branes”.
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7.5 Summary and recent developments

In this chapter, we discussed the Dynamical Cobordism framework as a way to probe

the cobordism defects present in setups with Dynamical Tadpoles. While there are

many settings in the literature where the Local Dynamical Cobordism description, with

its postulated scaling, has proven to be very successful, we tried to go a step beyond

identifying the cobordism singularities. In particular, after studying the backreaction

of a non-supersymmetric 9-dimensional gauge-neutral domain wall and describing the

induced spacetime singularities in the dynamical cobordism framework, we tried to pro-

vide an explicit description for the accompanying cobordism defect. We have identified

a promising candidate: we found an explicit solution to the leading order string equa-

tions of motion, describing a defect 7±-brane that can close off the singularities. These

ETW-branes have a non-isotropic geometry around them, thus breaking the rotational

symmetry in the transversal directions. They have positive tension λ̂ = κ210T7± = 2π

and, even more interestingly, in the string frame are governed by an action

S = −T7±
∫
d10x

√
−g e−2Φ δ2(r⃗) . (7.69)

This does not coincide with any other 8-dimensional object in the string literature, so

it is a promising candidate for a new object in string theory, predicted and detected

through cobordism.

Before closing off this chapter, we must mention the recent results of Blumenhagen-

Kneissl-Wang [196], which effectively is an extensive generalization of our setup: This

newer paper extended our analysis to a generalized Dudas-Mourad and a generalized

Blumenhagen-Font model in arbitrary dimensions. An impressive analysis identified

codimension-1 and codimension-2 ETW -branes as solutions to the supergravity equa-

tions of motion, some charged and some uncharged. Interestingly, apart from new defects

with novel couplings, just like in our example, regular BPS branes could also be detected

in this framework. This result lends much credence to this full line of research since it

points towards both the dynamical cobordism framework being correct and signals that

the analysis is sensible since it can describe the D-branes.

Of course, there are many open directions one could still explore. The physical

interpretation of the solution I, II− is still unclear since the non-BPS brane proposal was

mostly speculative. For the ETW-branes of our work and of [196], a stability analysis

would be interesting, especially given that we have to do with a non-supersymmetric

theory, to begin with. Moreover, it would be interesting to find whether this behavior

persists in higher codimensions, both in the case that the original domain wall is of

higher codimension but also in the case that at the singularity, multiple scalar fields go

to infinity.
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Chapter 8

Closing words

Now that we have reached the end, it is time to return to the very start of this thesis -

the title. By now, it should be clear what the significance of each term is.

First and foremost, the Swampland Program has been the framework on which this

work was based. It provides a clear guideline on how to make contact between Gravity

and Quantum Field Theory by delineating the set of theories that can be UV-completed

to Quantum Gravity from those who cannot, through a set of quantitative, predictive

statements, the Swampland Conjectures. While the Swampland Conjectures can be

used to make predictions about low-energy theories, much of their value is inherently

linked with their formulation procedure. A convincing Swampland Conjecture is well

supported, with arguments in its favor stemming from string theoretical models, black

hole physics, and/or holography, or even partially proven. Hence one can learn a lot

trying to formulate a conjecture, testing it, or attempting to violate it.

The largest part of this thesis treated Cobordism through the lens of the Cobor-

dism Conjecture. In particular, we studied both types of charge trivialization: gauging

and breaking. In both cases, we used auxiliary frameworks that intertwined the Cobor-

dism Conjecture with Tadpoles - yet the type and physical meaning of these tadpoles is

radically different.

On the gauging side, discussed in chapter 6, the relevant tadpoles appear in tadpole

cancellation conditions, which are inescapable consistency conditions inherently related

to the quantum nature of gravity. A solid mathematical background establishes a corre-

spondence between cobordism and K-theory groups, which are known to be gauged. The

proposal of [35], that cobordism and K-theory global charges can be jointly gauged leads

to tadpole cancellation conditions involving both K-theory and cobordism invariants. We

tested this proposal under dimensional reduction and uncovered that it reproduces all

expected patterns expected from the usual dimensional reduction in cohomology, while

simultaneously taking care of quantum mechanical effects. The tadpole cancellation

conditions arising from this bottom-up procedure are compatible with known tadpole
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conditions in string theory, supporting the K-theory/cobordism interplay even further.

On the breaking side, our analysis in chapter 7 relates to dynamical tadpoles, which

do not signal a pathology of the theory, rather than the lack of maximally symmetric

vacua. The induced spacetime-dependent solutions often feature singularities, inter-

preted in the Dynamical Cobordism [36, 37] framework as cobordism end-of-the-world

defects. We study the backreaction of a non-supersymmetric, positive tension domain

wall and verify that the induced singularities behave in accordance with the Dynami-

cal Cobordism picture. We provide an explicit description of the cobordism-predicted

defects as novel highly anisotropic solutions to the dilaton-gravity equations of motion.

Both works related to cobordism exhibit how powerful it is as a framework. We

uncovered tadpole cancellation conditions valid off-shell and gathered evidence for a

previously unknown object in string theory. One can only imagine that the Cobordism

Conjecture will further improve our knowledge of string theory.

Another part of the thesis concerned the Dark Dimension and its string theoretical

realization. The small positive observed value of the cosmological constant can be viewed

as an indication that our universe is realized at an asymptotic limit of the moduli space

[33], leading to a tower of light states with masses scaling like m ∼ Λ1/4, which signals

the decompactification of one extra mesoscopic dimension. As became clear from our

discussion in chapter 5, the identification of a tower of states exhibiting the Λ1/4 scaling,

such as the highly redshifted KK modes at the tip of a Klebanov-Strassler throat, can

be viewed as a “proof of concept” for the feasibility of the proposal. For a concrete

realization, however, it is necessary to adopt a more holistic approach, emphasizing

both the consistency of the full string model and its compatibility with experimental

and observational constraints.

There are many open promising directions for each of these aforementioned projects,

already discussed in the respective chapters. Here, we want to close off this thesis

by focusing on the bigger picture: The Swampland program is a promising avenue for

connecting the real world and string theory and improving our formal understanding of

quantum gravity. Exciting times are ahead!



Appendix A

Basic mathematical prerequisites

This appendix includes supplementary material to the main part of the thesis, mostly

concerning mathematical background and results. In section A we summarize basic

facts regarding Kähler and Calabi-Yau manifolds, in section B we review some invari-

ant polynomials and characteristic classes which become relevant both in our cobordism

discussion and also for Chern-Simons actions and anomaly cancellation. For the afore-

mentioned sections, we will mostly follow [43,324,325].

A.1 Complex manifolds

Definition:

A complex n-dimensional manifold is a differentiable manifold, with an open

covering {Ua∈A} and coordinate functions zi : Ui → Cn such that the transition

functions za ◦ z−1
b between any Ua, Ub are holomorphic wherever defined.

In practice, a complex manifold is a space that locally looks like Cn. One can easily

see that any n-dimensional complex manifold is a real manifold of dimension 2n, while

the opposite is not always true. In terms of local coordinates, one can write:

zi = x2i−1 + ix2i , z̄i = x2i−1 − ix2i , i = 1, . . . , n. (A.1)

Then a real one form ω can be decomposed as:

ω =

2n∑
µ=1

ωµdx
µ ≡ ω(1,0) + ω(0,1), (A.2)

where the superscript (1,0) denotes a holomorphic 1-form, while (0,1) corresponds to an

antiholomorphic 1-form. In general, a form of degree (p,0) is a holomorphic p-form and
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similarly for the anti-holomorphic case. Denoting by Ω(p,q) the set of (p+q)-forms of

type (p,q), forms of higher degree r decompose as:

Ωr =
⊕
p+q=r

Ω(p,q). (A.3)

Moreover, there exists the differential operator d, which is nilpotent d2 = 0, and decom-

poses as d = ∂+ ∂̄, where ∂ : Ω(p,q) → Ω(p+1,q) and ∂̄ : Ω(p,q) → Ω(p,q+1). The nilpotency

of d results in ∂2 = ∂̄2 = 0.

A.2 Kähler manifolds

Let us now introduce a Hermitian metric on a complex manifold. This is something

that all complex manifolds admit.

Definition:

A hermitian metric is a tensor field of the form ds2 = 2
∑n

i,j=1 giȷ̄dz
1 ⊗ dz̄j ,

such that gjī = g∗iȷ̄, with giȷ̄ positive-definite.

To any hermitian metric one can naturally associate a real (1,1)-form, as:

ω = i
n∑

i,j=1

giȷ̄dz
i ∧ dz̄j . (A.4)

The volume form can be expressed as dvol = ωn. If now the additional requirement

dω = 0 is met, i.e., the associated two-form to the Hermitian metric is closed, we are

dealing with a Kähler metric. In this case ω is also called the kähler form. In the main

text of the thesis, we will mostly denote this form with J . We are now ready to give the

definition for a Kähler manifold.

Definition:

A Kähler manifold is a complex manifold together with a Kähler metric, i.e., a

Hermitian metric with a closed associated (1,1)-form, the Kähler form.

The fact that ω is closed has a consequence of great importance: One can show that

there exists a real function K, the Kähler potential, so that one can always locally express

the metric in terms of derivatives of the Kähler potential. More specifically, locally it

holds:

giȷ̄ = ∂i∂̄ȷ̄K. (A.5)

Kähler manifolds exhibit one additional important property. The fact that their metric

is of the special form specified above results in the vanishing of many of the Christoffel
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symbols. More specifically, the (0,1) and (1,0) tangent spaces do not mix. This way, one

can see that for the holonomy group of a Kähler manifold we have H ⊆ U(n) ⊂ SO(n).

Cohomology of Kähler manifolds

Since we are dealing with complex manifolds, instead of the usual de Rham cohomol-

ogy, the relevant cohomology classification will be the Dolbeault cohomology. Roughly

speaking, it is defined in a similar fashion to the de Rham case, replacing the differential

d with the operator ∂̄ : Ω(p,q) → Ω(p,q+1). The Dolbeault cohomology groups over a

manifold M are defined schematically as:

H
(p,q)

∂̄
(M) =

{ωp,q : ∂̄ωp,q = 0}
{ωp,q : ωp,q = ∂̄αp,q−1}

(A.6)

Let us introduce a few more bits of terminology. The dimensions of the Dolbeault

cohomology groups are denoted by hp,q and are called Hodge numbers. For compact

Kähler manifolds they are finite. For manifolds of low dimension, they are usually

arranged in the so-called Hodge diamond. For a manifold of (complex) dimension 3 the

Hodge diamond has the following form:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h3,0 h2,1 h1,2 h0,3

h3,1 h2,2 h1,3

h3,2 h2,3

h3,3

One can show that for n-dimensional Kähler manifolds the following hold:

• hp,q = hq,p,

• hp,q = hn−p,n−q,

• hp,p > 0, p = 1, . . . , n.

Finally, both the Euler number χ and the Betti numbers br of a manifold can be written

in terms of the Hodge numbers:∑
p+q=r

hp,q = br, χ(M) =
∑
p,q

(−1)p+qhp,q =
∑
r

(−1)rbr. (A.7)
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A.3 Calabi-Yau manifolds

As we have already seen in the main part of the thesis, a Calabi-Yau is a Ricci-flat

compact Kähler manifold. Since we are interested in compactifying down to 4d, the

relevant Calabi-Yau’s are the threefolds, which have Hodge diamonds of the form shown

above. The properties listed above allow us to significantly reduce the number of un-

known Hodge numbers, down to only two: h1,1, h2,1. Let us sketch how this happens.

To start with, there exists a unique holomorphic (3,0)-form, hence h3,0 = h0,3 = 1. Since

CY manifolds have reduced holonomy, hp,0 = 0 for p ̸= 0, n. Hence h1,0 = h2,0 = 0, and

by the properties above also h0,1 = h0,2 = 0 and h1,3 = h3,1 = h2,3 = h3,2 = 0. More-

over, since we only have 1 connected component, h0,0 = h3,3 = 1. So the only a priori

undetermined Hodge numbers are h1,1 = h2,2 and h2,1 = h1,2. The Hodge diamond for

a Calabi-Yau threefold CY3 hence becomes:

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

The definition above is not unique. One can equivalently define the Calabi-Yau

n−fold as a compact, complex manifold that admits a (unique) Ricci-Flat metric gab̄.

The equivalence of these two statements is not trivial. Calabi initially conjectured [326]

that a vanishing c1 implies the existence of a unique Ricci-flat Kähler metric and provided

the proof [327] for compact Kähler manifolds.

The following equivalent properties follow directly from the definition:

– A unique covariantly constant (n, 0)-form Ω exists.

– A unique holomorphic (n, 0)-form Ω exists.

– The holonomy group of the manifold is H ⊆ SU(n).
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Characteristic Classes

In this section we attempt to gather some basic facts and properties of several char-

acteristic classes that are relevant in the main part of the thesis. Our presentation

closely follows [324]. A less physics-oriented introductory reference can be found in [69],

while [304] is one of the classic references in the topic.

B.1 Chern classes

Consider a complex vector bundle E
π−→ M with fiber F = Ck, and with the base

manifold M being m−dimensional. The structure group G is a subgroup of GL(k,C),
and we denote the g-valued gauge potential and field strength by A and F respectively.

Definition:

The total Chern class c(F) is defined by:

c(F) ≡ det

(
I +

iF
2π

)
. (B.1)

It is a direct sum of even-degree forms:

c(F) = 1 + c1(F) + c2(F) + . . . , (B.2)

with cj(F) ∈ Ω2j(M) being the jth Chern class.

The Chern classes cj(F) with 2j > m vanish trivially for dimensional reasons, while the

series terminates at ck(F) = det
(
iF
2π

)
, and for j > k cj(F) = 0. For a general F one can
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express the individual Chern classes as follows:

c0(F) = 1, (B.3a)

c1(F) =
i

2π
trF , (B.3b)

c2(F) =
1

2

(
i

2π

)2

[trF ∧ trF − tr(F ∧ F)], (B.3c)

. . .

ck(F) =

(
i

2π

)k
detF . (B.3d)

For convenience, we will often just refer to the Chern class using only the vector bundle

as the argument, i.e. ch(E), instead of specifying the curvature FE . While there are

many important properties of the Chern classes, let us here simply state that the total

Chern class of a Whitney sum bundle E ⊕F , where F = Cl π′
−→M is another bundle, is

c(E ⊕ F ) = c(E) ∧ c(F ). (B.4)

For further properties of Chern classes, we point the interested reader to [324], which

we very closely follow throughout this appendix.

Moreover, since it will be of use for the later definition of Todd classes, let us define

the total Chern class of a complex line bundle L as

c(L) = 1 + c1(L) ≡ 1 + x. (B.5)

Obviously, the series terminates at c1 since for the line bundle any higher-rank forms

are vanishing trivially. The so-called splitting principle states that the Chern class of an

n-dimensional bundle E is the same as the Chern class of a Whitney sum of line bundles,

c(E) =
∏n
i=1(1 + xi), where now xi is the first Chern class of the line bundle Li.

B.2 Chern characters

Consider again the complex vector bundle F −→ E
π−→ M with fibre F = Ck, M

m−dimensional, structure group G a subgroup of GL(k,C), and g-valued gauge po-

tential A and field strength F .
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Definition:

The total Chern character ch(F) is defined by:

ch(F) ≡ tr exp

(
iF
2π

)
=
∑
j=1

1

j!
tr

(
iF
2π

)j
. (B.6)

The jth Chern character is defined by:

chj(F) ≡ 1

j!
tr

(
iF
2π

)j
. (B.7)

The series terminates since cj(F) vanishes for 2j > m. For a general F one can write

the Chern characters in terms of Chern classes as follows:

ch0(F) = k, (B.8a)

ch1(F) = c1(F), (B.8b)

ch2(F) =
1

2

(
c1(F)2 − 2c2(F)

)2
, (B.8c)

. . .

where we remind the reader that k is the fiber dimension of the bundle. Again, for

simplicity, we will often just use the bundle as the argument. Suppose again that we

have two vector bundles E,F over M. The Chern characters for the tensor product and

the Whitney sum are given in terms of the Chern characters of the individual bundles

as:

ch(E ⊗ F ) = ch(E) ∧ ch(F ), (B.9a)

ch(E ⊕ F ) = ch(E)⊕ ch(F ). (B.9b)

B.3 Todd classes

As before in this appendix, we consider the complex vector bundle E −→ M , where per

the splitting principle c(E) =
∏m
i=1(1 + xi).
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Definition:

The Todd class Td(F) is defined by:

Td(F) =
∏
j

xj
1− e−xj

, (B.10)

and it can be expanded in terms of the Chern classes of F as

Td(F) = 1 +
1

2
c1(F) +

1

12

(
c1(F)2 + c2(F)

)
+ . . . (B.11)

Let us provide the explicit expressions for the first four terms of (B.11), where for ease

of notation we suppress the argument F of all Chern classes.

Td0(F) = 1, (B.12a)

Td1(F) =
1

2
c1, (B.12b)

Td2(F) =
1

12
(c21 + c2), (B.12c)

Td3(F) =
1

24
(c1c2), (B.12d)

Td4(F) =
1

720
(−c41 + 4c21c2 + 3c22 + c1c3 − c4). (B.12e)

Finally, for the Whitney sum of two complex vector bundles E,F over M we have

Td(E ⊕ F ) = Td(E) ∧ Td(F ). (B.13)

As expected, in the same fashion as the Chern classes, the Todd class of the Whitney

sum is the product of the individual classes.

B.4 Pontrjagin classes

The setup for the definition of Pontrjagin classes is somewhat different than before since

now we consider a real vector bundle E, of real dimension dimRE = k, over an m-

dimensional manifold M. The structure group G is now (a subgroup of) O(k) and the

field strength F is skew-symmetric.
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Definition:

The total Pontrjagin class p(F) is defined by:

p(F) ≡ det

(
I +

F
2π

)
=

(
I − F

2π

)
, (B.14)

where the second equality is due to the skew-symmetry of F . It is an even function

in F expanded as

p(F) = 1 + p1(F) + p2(F) + . . . , (B.15)

with pj(F) ∈ H4j(M ;R) being the jth Pontrjagin class .

In terms of F the first few Pontrjagin classes are

p1(F) = −1

2

(
1

2π

)2

trF2, (B.16a)

p2(F) =
1

8

(
1

2π

)4(
(trF2)2 − 2trF4

)
, (B.16b)

p3(F) =
1

48

(
1

2π

)6(
− (trF2)3 + 6trF2trF4 − 8trF6

)
, (B.16c)

p4(F) =
1

384

(
1

2π

)8(
(trF2)4 − 12(trF2)2trF4 (B.16d)

+ 32trF2trF6 + 12(trF4)4 − 48trF8
)
, (B.16e)

. . .

p[k/2](F) =

(
1

2π

)k
detF . (B.16f)

It is also possible to express the Pontrjagin classes in terms of Chern classes. To this

end, one first should address the discrepancy between the type of fibers in the definitions

of the two classes - this happens by complexifying the real fiber E, which results in the

complex fiber EC. Then we have

pj(E) = (−1)jc2j(E
C). (B.17)

Finally, let us mention that for Whitney sums it holds that

p(E ⊕ F ) = p(E) ∧ p(F ). (B.18)

B.5 Hirzebruch L-polynomial

Considering the same setup as for the Pontrjagin classes, we can define a different in-

variant polynomial, which becomes important in the context of the Hirzebruch signature

theorem.
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Definition:

The Hirzebruch L-polynomial L(x) is defined by:

L(x) =

k∏
j=1

xj
tanhxj

=

k∏
j=1

(
1 +

∑
n≥1

(−1)n−1 22n

(2n)!
Bnx

2n
j

)
, (B.19)

where Bn are the Bernoulli numbers.

The L-polynomial can be expressed in terms of Pontrjagin classes, and we present the

first few terms

L1(F) =
1

3
p1, (B.20a)

L2(F) =
1

45
(−p21 + 7p2), (B.20b)

L3(F) =
1

945
(2p31 − 13p1p2 + 62p3), (B.20c)

. . .

where we have suppressed the argument F in the Pontrjagin classes for notational clarity.

Additionally, as for the Pontrjagin classes, it holds

L(E ⊕ F ) = L(E) ∧ L(F ). (B.21)

B.6 Â genus

There is another polynomial of great importance for physics that directly relates to the

Pontrjagin classes and is an even function of xj .

Definition:

The Â (A-roof) genus Â(F) or Dirac genus is defined by:

Â(F) =
k∏
j=1

xj/2

sinh(xj/2)
=

k∏
j=1

(
1 +

∑
n≥1

(−1)n
22n − 2

(2n)!
Bnx

2n
j

)
, (B.22)

Bn being the Bernoulli numbers.
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The first few terms of the series expansion are

Â1(F) = − 1

24
p1, (B.23a)

Â2(F) =
1

5760
(7p21 − 4p2), (B.23b)

Â3(F) =
1

967680
(−31p31 + 44p1p2 − 16p3), (B.23c)

. . . .

Finally, for the Whitney sum we have

Â(E ⊕ F ) = Â(E) ∧ Â(F ). (B.24)

B.7 Stiefel-Whitney classes

The last classes we will introduce are the so-called Stiefel-Whitney classes. These are

classes of great importance for physics, as they relate to whether spinors are admissible

in certain manifolds, and they are defined using real bundles. We present here the

axiomatic formulation of [69].

Consider the real vector bundle E −→ B. There is a unique sequence of functions

w1, w2, . . . assigning to the vector bundle a class wi(E) ∈ H i(B;Z2), satisfying

the properties:

• wi(f
∗(E)) = f∗(wi(E)) for a pullback f∗(E).

• w(E1 ⊕ E2) = w(E1)⌣ w(E2), where w = 1 + w1 + w2 + . . . ∈ H∗(B;Z2).

• wi(E) = 0 if i > dimE.

• For the canonical line bundle E → RP∞, w1(E) is a generator of

H1(RP∞;Z2)

The sum w(E) = 1 + w1(E) + w2(E) + . . . is the total Stiefel-Whitney class,

and wi is the ith Stiefel Whitney class.
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Appendix C

Elements of differential topology

C.1 Short exact sequences, extensions, and Ext

Consider the abelian groups A, B, and C. A short sequence

0 −→ B
β−→ C

α−→ A −→ 0 (C.1)

is exact, if the map β is injective and the map α surjective, i.e. if ker(α) = Im(β). Then

C is called an extension of A by B, denoted as C = e(A,B). According to the Splitting

Lemma for abelian groups, the extension is trivial, i.e., C = A ⊕ B, iff there is a left

inverse to β iff there is a right inverse to α. Then the short exact sequence is split.

In general, the extension is not necessarily unique and there can be more extensions

besides the trivial one. Equivalence classes of extensions of A by B are in one-to-

one correspondence with elements of the group Ext1(A,B), with the trivial extension

corresponding to 0.

The definition and main properties of the groups Extn(A,B) can be found in e.g.,

[328], chapter 3. As stated in Lemma 3.3.1, if A and B are abelian Extn(A,B) = 0 for

n ≥ 2. It is Ext0(A,B) = Hom(A,B), while Ext1(A,B) classifies extensions of A by B,

as anticipated above. Two useful properties of these groups are

Extn(⊕iAi, B) = ΠiExt
n(Ai, B), (C.2)

Extn(A,ΠiBi) = ΠiExt
n(A,Bi), (C.3)

with the direct product and direct sum coinciding for abelian groups. For cyclic groups,

we recall the results

Ext1(Z,Z) = 0, (C.4)

Ext1(Z,Zn) = 0, (C.5)

Ext1(Zn,Z) = Zn, (C.6)

Ext1(Zm,Zn) = Zk, (C.7)
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where k = GCD(m,n). All of this is used in the calculations of section 6.4

Let us give two simple examples to illustrate how everything works in a combined

way. Let us consider the short exact sequence

0 → Z2 → e(Z2,Z2) → Z2 → 0. (C.8)

Since Ext1(Z2,Z2) = Z2, e(Z2,Z2) is not split, instead we have two possible extensions.

Indeed, it is well-known that there are two short exact sequences

0 → Z2 → Z4 → Z2 → 0, (C.9)

0 → Z2 → Z2 ⊕ Z2 → Z2 → 0. (C.10)

Instead, the short exact sequence

0 → Z3 → Z6 → Z2 → 0, (C.11)

is split, since Ext1(Z2,Z3) = 0.

C.2 Universal Coefficient Theorem

The universal coefficient theorem (see e.g. [328]) can be used to express (co)homology

groups of a topological space X with coefficients in a left Z-module A in terms of

(co)homology groups with coefficients in Z. It can be formulated both for homology

and cohomology.

The version for homology groups states that there is a short (noncanonically) split

exact sequence

0 → Hn(X)⊗A→ Hn(X;A) → Tor1(Hn−1(X), A) → 0. (C.12)

The definition of the groups Torn(A,B) can be found e.g. in [328], chapter 3. As stated

in Proposition 3.1.2 and 3.1.4, if A and B are abelian, Torn(A,B) are torsion abelian

groups and they vanish for n ≥ 2; if A is also torsion free, Tor1(A,B) = 0. The version

for cohomology groups states that there is a short (noncanonically) split exact sequence

0 → Ext1Hn−1(X;A) → Hn(X;A) → Hom(Hn−1(X), A) → 0. (C.13)

C.3 Properties of Steenrod squares

In this appendix, we collect some useful facts about Steenrod squares. For a nice,

pedagogical review and for more information, we refer the reader to [329] and references

therein. A standard textbook is [304]. We will work at prime 2, but it is possible to

generalize the discussion to any prime p.
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A cohomology operation of degree i is a map

Hn(X;Z2) → Hn+i(X;Z2). (C.14)

It is said to be stable if it commutes with the suspension isomorphism. Steenrod squares,

Sqi, are stable cohomology operations of degree i satisfying the following defining prop-

erties, for any i ≥ 0:

a) Sq0 = Id;

b) Sqi(x) = x ∪ x, for x ∈ H i(X;Z2);

c) Sqi(x) = 0, for x ∈ Hj(X;Z2) and j < i;

d) Sqi(x ∪ y) =
∑

m+n=i

Sqm(x) ∪ Sqn(y) (Cartan formula).

e) Sqi◦Sqj =
⌊i/2⌋∑
k=0

(
j − k − 1

i− 2k

)
mod 2

Sqi+j−k◦Sqk, for 0 < i < 2j. (Adem relation).

The map Sq1 ≡ β̃ is an example of a Bockstein homomorphism. It is associated with

the short exact sequence

0 → Z2
×2→ Z4

ρ→ Z2 → 0, (C.15)

where the first map is multiplication by 2 and the second (ρ) is the reduction modulo 2,

which induces the long exact sequence

. . .
β̃→ Hn(X;Z2)

×2→ Hn(X;Z4)
ρ→ Hn(X;Z2)

β̃→ Hn+1(X;Z2) → . . . . (C.16)

Here, β̃ is the connecting homomorphism between cohomology groups of different degree.

Another Bockstein homomorphism, called β in the main text, can be constructed in

association with the short exact sequence

0 → Z ×2→ Z ρ→ Z2 → 0, (C.17)

inducing in turn the long exact sequence

. . .
β→ Hn(X;Z) ×2→ Hn(X;Z) ρ→ Hn(X,Z2)

β→ Hn+1(X,Z) → . . . . (C.18)

The two Bocksteins are related by

β̃ = ρ ◦ β. (C.19)

At odd degree i = 2k + 1, one can define an integral lift of the Steenrod squares,

Sq2m+1
Z = β ◦ Sq2m, (C.20)
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which is such that ρ ◦ Sq2m+1
Z = Sq2m+1 and maps Hn(X;Z2) → Hn+i(X;Z). One

further gets a map between integral cohomology by first reducing modulo 2 and then

acting with SqiZ,

SqiZ ◦ ρ : Hn(X;Z) → Hn+i(X;Z). (C.21)

An integral lift of Sqi for even i = 2m does not exist.1

Given an element x ∈ Hk−i(X;Z2), with k = dim(X), the action of the Steenrod

squares can be defined as

Sqi(x) = νi ∪ x, (C.22)

where νi ∈ H i(X;Z2) is the i-th Wu class of X (more precisely, of a real vector bundle

over X of rank k, which we generically take to be the tangent bundle), such that νi = 0

if i > k− i. Since the total Wu class is the Steenrod square of the total Stiefel-Whitney

class, one can express each of the single Wu classes in terms of Stiefel-Whitney classes.

At lower degree, one has

ν1 = w1,

ν2 = w2 + w1 ∪ w1,

ν3 = w1 ∪ w2.

(C.23)

In certain cases, one can give an alternative action of Sqi, namely (see e.g. [65, 67])

Sqi(y) = ι∗(wi(N)) ∪ y, (C.24)

where y ∈ Hn(X;Z2), N is the normal bundle of the submanifold Y ⊂ X Poincaré dual

to y and ι : Y → X is the inclusion.2 This is most convenient for physical purposes, such

as checking the absence of Freed–Witten anomalies for branes wrapping Y , on which we

comment in section 6.4.3 (there, following [65, 67], we directly employ the integral lift

W3(N) of w3(N) and omit the pushforward ι∗).

C.4 Wedge sum, smash product and reduced suspension

Consider two pointed topological spaces (X,x0) and (Y, y0). The wedge sum, X ∨ Y , is

defined as

X ∨ Y = X ⊔ Y/ ∼, (C.25)

1This can be proven as follows. Suppose it exists an integral lift for the even case, Sq2m = ρ ◦Sq2mZ .

Exactness of the sequence (C.18) means that kerβ = Imρ, implying in turn β ◦Sq2m = β(ρ(Sq2mZ )) = 0.

However, this is contradiction with the Adem relation Sq1 ◦ Sq2m = Sq2m+1 ̸= 0 (recall Sq1 = ρ ◦ β).

Thus, such an integral lift Sq2mZ cannot exist.
2More in general [304], one can define an action Sqi(u) = π∗(wi(ξ)) ∪ u, with u ∈ Hk(E;Z2) and

wi(ξ) ∈ Hi(B;Z2), for any k-plane bundle ξ : F → E
π→ B of which the normal bundle N(B) is a

particular case.
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where the equivalence relation identifies the two base points x0 and y0. The smash

product, X ∧ Y , is defined as the quotient of the cartesian product by the wedge sum

X ∧ Y =
X × Y

X ∨ Y
(C.26)

It satisfies the properties

X ∧ Y ∼= Y ∧X, (C.27)

(X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧X), (C.28)

where the symbol ∼= means homeomorphic as topological spaces.

Consider then the n-sphere Sn. The reduced suspension of X is defined as

ΣX ∼= S1 ∧X. (C.29)

The construction can be iterated

ΣnX ∼= Sn ∧X. (C.30)

An important case is when X = Sk, thus giving

ΣnSk ∼= Sn+k. (C.31)

We also recall that

Σ0 ∧X ∼= S0 ∧X ∼= X, (C.32)

where S0 ∼= pt ⊔ pt. Another useful formula is

Σ(X × Y ) ∼= ΣX ∨ ΣY ∨ Σ(X ∧ Y ). (C.33)

C.5 Cobordism groups of spheres and tori

It can be proved by induction that for a generic structure ξ the cobordism groups of

spheres Sk and tori T k have a simple decompositions in terms of the respective cobordism

groups of the point, namely

Ωξn(S
k) = Ωξn(pt)⊕ Ωξn−k(pt), (C.34)

Ωξn(T
k) =

k⊕
i=0

(
k

i

)
Ωξn−i(pt), (C.35)

where groups with negative index are assumed to be vanishing.

We start from the cobordism groups of spheres, Sk. For S1, we have

Ωξn(S
1) = Ωξn(pt)⊕ Ω̃ξn(S

1) = Ωξn(pt)⊕ Ω̃ξn(Σ(S
0))

= Ωξn(pt)⊕ Ω̃ξn−1(S
0) = Ωξn(pt)⊕ Ωξn−1(pt).

(C.36)
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The suspension axiom Ω̃ξn(ΣX) = Ω̃ξn−1(X) [171] justifies the step from the first to the

second line, while in the last step we used that Ω̃ξn(S0) = Ωξn(pt), which follows from

Ωξn(S
0) = Ωξn(pt ⊔ pt) = Ωξn(pt)⊕ Ω∗

n(pt) = Ωξn(pt)⊕ Ω̃ξn(S
0). (C.37)

Assuming the formula to hold for Sk, we prove it for Sk+1. Using again the Splitting

Lemma (4.5) and the suspension axiom, we have

Ωξn(S
k+1) = Ωξn(pt)⊕ Ω̃ξn(S

k+1) = Ωξn(pt)⊕ Ω̃ξn(Σ(S
k))

= Ωξn(pt)⊕ Ω̃ξn−1(S
k) = Ωξn(pt)⊕ Ωξn−k−1(pt).

(C.38)

This proves (C.34) by induction.

Considering the cobordism groups of tori, T k, the result for T 1 = S1 is already

proven in (C.36). Hence, we only assume the formula holds for T k and we prove it for

T k+1. To this end, using (C.33), we can split

Σ(T k × S1) = Σ(T k) ∨ Σ(S1) ∨ Σ(T k ∧ S1) (C.39)

and therefore

Ωξn(T
k+1) = Ωξn(pt) ⊕ Ω̃ξn+1(Σ(T

k+1)) = Ωξn(pt) ⊕ Ω̃ξn+1(Σ(T
k × S1))

= Ωξn(pt) ⊕ Ω̃ξn+1(Σ(T
k)) ⊕ Ω̃ξn+1(Σ(S

1)) ⊕ Ω̃ξn+1(Σ
2(T k))

= Ωξn(pt) ⊕ Ω̃ξn(T
k) ⊕ Ω̃ξn(S

1) ⊕ Ω̃ξn−1(T
k)

= Ωξn(T
k) ⊕ Ωξn−1(T

k),

(C.40)

where we used Ω̃(X ∨ Y ) = Ω̃(X) ⊕ Ω̃(Y ), valid for reduced generalized homology

theories [171]. We can finally demonstrate that

Ωξn(T
k+1) = Ωξn−1(T

k) ⊕ Ωξn(T
k)

=

k⊕
i=0

(
k

i

)
Ωξn−1−i(pt)⊕

k⊕
i=0

(
k

i

)
Ωξn−i(pt)

=

k+1⊕
i=1

(
k

i− 1

)
Ωξn−i(pt)⊕

k⊕
i=0

(
k

i

)
Ωξn−i(pt)

=
k+1⊕
i=0

(
k

i− 1

)
Ωξn−i(pt)⊕

k+1⊕
i=0

(
k

i

)
Ωξn−i(pt)

=
k+1⊕
i=0

(
k + 1

i

)
Ωξn−i(pt).

(C.41)

In the fourth line, zero was added to both terms, while for the last step Pascal’s formula

was applied. This concludes the proof of (C.35) by induction.



Appendix D

Tables of Cobordism and

K-theory Groups

D.1 Tables of Cobordism Groups

n 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
n (S1) Z Z2 ⊕ Z 2Z2 Z2 Z Z 0 0 2Z 2Z2 ⊕ 2Z 5Z2

ΩSpin
n (S2) Z Z2 Z2 ⊕ Z Z2 Z2 ⊕ Z 0 Z 0 2Z 2Z2 3Z2 ⊕ 2Z

ΩSpin
n (S3) Z Z2 Z2 Z Z2 ⊕ Z Z2 0 Z 2Z 2Z2 3Z2

ΩSpin
n (S4) Z Z2 Z2 0 2Z Z2 Z2 Z 3Z 2Z2 3Z2

ΩSpin
n (S5) Z Z2 Z2 0 Z Z Z2 0 2Z 2Z2 ⊕ Z 3Z2

ΩSpin
n (S6) Z Z2 Z2 0 Z 0 Z Z2 Z2 ⊕ 2Z 2Z2 3Z2 ⊕ Z

ΩSpin
n (S7) Z Z2 Z2 0 Z 0 0 Z Z2 ⊕ 2Z 3Z2 3Z2

ΩSpin
n (S8) Z Z2 Z2 0 Z 0 0 0 3Z 3Z2 4Z2

ΩSpin
n (S9) Z Z2 Z2 0 Z 0 0 0 2Z 2Z2 ⊕ Z 4Z2

ΩSpin
n (S10) Z Z2 Z2 0 Z 0 0 0 2Z 2Z2 3Z2 ⊕ Z

Table D.1: Cobordism groups ΩSpin
n (Sk), k = 1, . . . , 10.

m 0 1 2 3 4 5 6 7 8 9 10

ΩSpin
n (T 2) Z 2Z⊕ Z2 Z⊕ 3Z2 3Z2 Z2 ⊕ Z 2Z Z 0 2Z 2Z2 ⊕ 4Z 7Z2 ⊕ 2Z

ΩSpinc
n (T 2) Z 2Z 2Z 2Z 3Z 4Z 4Z 4Z 6Z 8Z 8Z⊕ Z2

Table D.2: Cobordism groups of 2-torus ΩSpin
n (T 2), ΩSpinc

n (T 2).
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n 0 1 2 3 4 5 6 7 8 9 10

ΩSpinc
n (S1) Z Z Z Z 2Z 2Z 2Z 2Z 4Z 4Z 4Z⊕ Z2

ΩSpinc
n (S2) Z 0 2Z 0 3Z 0 4Z 0 6Z 0 8Z⊕ Z2

ΩSpinc
n (S3) Z 0 Z Z 2Z Z 0 2Z 4Z 2Z 4Z⊕ Z2

ΩSpinc
n (S4) Z 0 Z 0 3Z 0 3Z 0 6Z 0 6Z⊕ Z2

ΩSpinc
n (S5) Z 0 Z 0 2Z Z 2Z Z 4Z 2Z 4Z⊕ Z2

ΩSpinc
n (S6) Z 0 Z 0 2Z 0 3Z 0 5Z 0 6Z⊕ Z2

ΩSpinc
n (S7) Z 0 Z 0 2Z 0 2Z Z 4Z Z 4Z⊕ Z2

ΩSpinc
n (S8) Z 0 Z 0 2Z 0 2Z 0 5Z 0 5Z⊕ Z2

ΩSpinc
n (S9) Z 0 Z 0 2Z 0 2Z 0 4Z Z 4Z⊕ Z2

ΩSpinc
n (S10) Z 0 Z 0 2Z 0 2Z 0 4Z 0 5Z⊕ Z2

Table D.3: Spinc cobordism groups of spheres ΩSpinc
n (Sk), k = 1, . . . , 10.

n 0 1 2 3 4 5 6 7 8 9

ΩSpinc
n (K3) Z 0 23Z 0 25Z 0 47Z 0 50Z 0

ΩSpinc
n (CY3) Z 0 (b2 + 1)Z b3Z (2 + 2b2)Z b3Z (3 + 3b2)Z 2b3Z (5 + 4b2)Z 2b3Z

Table D.4: Spinc cobordism groups of CY manifolds ΩSpinc
n (K3), ΩSpinc

n (CY3). We omit

the n = 10 case where the extension problem is not solved.

D.2 Tables of K- and KO-theory groups
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n 0 1

K−n(S1) Z Z
K−n(S2) 2Z 0

K−n(S3) Z Z
K−n(S4) 2Z 0

K−n(S5) Z Z
K−n(S6) 2Z 0

K−n(S7) Z Z
K−n(S8) 2Z 0

n 0 1

K−n(T 2) 2Z 2Z
K−n(T 3) 4Z 4Z
K−n(T 4) 8Z 8Z
K−n(T 5) 16Z 16Z
K−n(T 6) 32Z 32Z
K−n(T 7) 64Z 64Z
K−n(T 8) 128Z 128Z

n 0 1

K−n(K3) 24Z 0

K−n(CY3) (2 + 2b2)Z b3Z

Table D.5: K-groups of spheres, tori, and Calabi-Yau twofolds and threefolds.

n 0 1 2 3 4 5 6 7 8

KO−n(S1) Z⊕ Z2 2Z2 Z2 Z Z 0 0 Z Z⊕ Z2

KO−n(S2) Z⊕ Z2 Z2 Z2 ⊕ Z 0 Z 0 Z Z2 Z⊕ Z2

KO−n(S3) Z Z2 ⊕ Z Z2 0 Z Z Z2 Z2 Z
KO−n(S4) 2Z Z2 Z2 0 2Z Z2 Z2 0 2Z
KO−n(S5) Z Z2 Z2 Z Z⊕ Z2 Z2 0 Z Z
KO−n(S6) Z Z2 Z2 ⊕ Z Z2 Z⊕ Z2 0 Z 0 Z
KO−n(S7) Z Z2 ⊕ Z 2Z2 Z2 Z Z 0 0 Z
KO−n(S8) 2Z 2Z2 2Z2 0 2Z 0 0 0 2Z

Table D.6: KO-groups of spheres KO−n(Sk), k = 1, . . . , 8. Note that Bott periodicity

is respected in a two-fold way, i.e. KO−n(Sk) = KO−n±8(Sk) = KO−n(Sk+8).

n 0 1 2 3 4 5 6 7

KO−n(T 2) Z⊕ 3Z2 3Z2 Z⊕ Z2 2Z Z 0 Z 2Z⊕ Z2

KO−n(T 3) Z⊕ 6Z2 Z⊕ 4Z2 3Z⊕ Z2 3Z Z Z 3Z⊕ Z2 3Z⊕ 4Z2

KO−n(T 4) 2Z⊕ 10Z2 4Z⊕ 5Z2 6Z⊕ Z2 4Z 2Z 4Z⊕ Z2 6Z⊕ 5Z2 4Z⊕ 10Z2

KO−n(T 5) 6Z⊕ 15Z2 10Z⊕ Z2 10Z⊕ 6Z2 6Z 6Z⊕ Z2 10Z⊕ 6Z2 10Z⊕ 15Z2 6Z⊕ 20Z2

KO−n(T 6) 16Z⊕ 21Z2 20Z⊕ 7Z2 16Z⊕ Z2 12Z⊕ Z2 16Z⊕ 7Z2 20Z⊕ 21Z2 16Z⊕ 35Z2 12Z⊕ 35Z2

KO−n(T 7) 36Z⊕ 28Z2 36Z⊕ 8Z2 28Z⊕ 2Z2 28Z⊕ 8Z2 36Z⊕ 28Z2 36Z⊕ 56Z2 28Z⊕ 70Z2 28Z⊕ 56Z2

KO−n(T 8) 72Z⊕ 36Z2 64Z⊕ 10Z2 56Z⊕ 10Z2 64Z⊕ 36Z2 72Z⊕ 84Z2 64Z⊕ 126Z2 56Z⊕ 126Z2 64Z⊕ 84Z2

Table D.7: KO-groups of tori KO−n(T k), k = 2, . . . , 8.
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[43] R. Blumenhagen, D. Lüst, and S. Theisen, Basic concepts of string theory. Theoretical and

Mathematical Physics. Springer, Heidelberg, Germany, 2013.

[44] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge

Monographs on Mathematical Physics. Cambridge University Press, 12, 2007.

[45] K. Becker, M. Becker, and J. H. Schwarz, String theory and M-theory: A modern introduction.

Cambridge University Press, 12, 2006.

[46] E. Kiritsis, String theory in a nutshell. Princeton University Press, USA, 2007.

[47] L. E. Ibanez and A. M. Uranga, String theory and particle physics: An introduction to string

phenomenology. Cambridge University Press, 2, 2012.

[48] F. Gliozzi, J. Scherk, and D. I. Olive, “Supergravity and the Spinor Dual Model,” Phys. Lett. B

65 (1976) 282–286.

[49] F. Gliozzi, J. Scherk, and D. I. Olive, “Supersymmetry, Supergravity Theories and the Dual

Spinor Model,” Nucl. Phys. B 122 (1977) 253–290.

[50] T. Appelquist, A. Chodos, and P. G. O. Freund, Modern Kaluza-Klein Theories.

Addison-Wesley, 1987.

[51] A. Giveon, M. Porrati, and E. Rabinovici, “Target space duality in string theory,” Phys. Rept.

244 (1994) 77–202, hep-th/9401139.

[52] E. Alvarez, L. Alvarez-Gaume, and Y. Lozano, “An Introduction to T duality in string theory,”

Nucl. Phys. B Proc. Suppl. 41 (1995) 1–20, hep-th/9410237.

[53] J. H. Schwarz, “Lectures on superstring and M theory dualities: Given at ICTP Spring School

and at TASI Summer School,” Nucl. Phys. B Proc. Suppl. 55 (1997) 1–32, hep-th/9607201.

[54] C. Vafa, “Lectures on strings and dualities,” in ICTP Summer School in High-energy Physics

and Cosmology, pp. 66–119. 2, 1997. hep-th/9702201.

[55] A. Sen, “An Introduction to nonperturbative string theory,” in A Newton Institute

Euroconference on Duality and Supersymmetric Theories, pp. 297–413. 2, 1998. hep-th/9802051.

[56] J. Polchinski, “Dualities of Fields and Strings,” Stud. Hist. Phil. Sci. B 59 (2017) 6–20,

1412.5704.

[57] C. Vafa, “Evidence for F theory,” Nucl. Phys. B 469 (1996) 403–418, hep-th/9602022.

[58] T. Weigand, “F-theory,” PoS TASI2017 (2018) 016, 1806.01854.

[59] F. Marchesano, B. Schellekens, and T. Weigand, “D-brane and F-theory Model Building,”

2212.07443.

[60] J. Polchinski, “Dirichlet Branes and Ramond-Ramond charges,” Phys. Rev. Lett. 75 (1995)

4724–4727, hep-th/9510017.

[61] J. E. Paton and H.-M. Chan, “Generalized veneziano model with isospin,” Nucl. Phys. B 10

(1969) 516–520.

http://www.arXiv.org/abs/2205.09782
http://www.arXiv.org/abs/2107.07546
http://www.arXiv.org/abs/2011.13956
http://www.arXiv.org/abs/hep-th/9401139
http://www.arXiv.org/abs/hep-th/9410237
http://www.arXiv.org/abs/hep-th/9607201
http://www.arXiv.org/abs/hep-th/9702201
http://www.arXiv.org/abs/hep-th/9802051
http://www.arXiv.org/abs/1412.5704
http://www.arXiv.org/abs/hep-th/9602022
http://www.arXiv.org/abs/1806.01854
http://www.arXiv.org/abs/2212.07443
http://www.arXiv.org/abs/hep-th/9510017


170 BIBLIOGRAPHY

[62] C. V. Johnson, D-branes. Cambridge Monographs on Mathematical Physics. Cambridge

University Press, 2005.

[63] J. Evslin, “What does(n’t) K-theory classify?,” hep-th/0610328.

[64] E. Witten, “Overview of K theory applied to strings,” Int. J. Mod. Phys. A 16 (2001) 693–706,

hep-th/0007175.

[65] J. M. Maldacena, G. W. Moore, and N. Seiberg, “D-brane instantons and K theory charges,”

JHEP 11 (2001) 062, hep-th/0108100.

[66] D. S. Freed and E. Witten, “Anomalies in string theory with D-branes,” Asian J. Math. 3 (1999)

819, hep-th/9907189.

[67] D.-E. Diaconescu, G. W. Moore, and E. Witten, “E(8) gauge theory, and a derivation of K

theory from M theory,” Adv. Theor. Math. Phys. 6 (2003) 1031–1134, hep-th/0005090.

[68] K. Olsen and R. J. Szabo, “Constructing D-branes from K theory,” Adv. Theor. Math. Phys. 3

(1999) 889–1025, hep-th/9907140.

[69] A. Hatcher, “Vector bundles & K-theory book,” 2017.
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[90] P. Berglund, G. Butbaia, T. Hübsch, V. Jejjala, D. Mayorga Peña, C. Mishra, and J. Tan,

“Machine Learned Calabi-Yau Metrics and Curvature,” 2211.09801.

[91] M. Gerdes and S. Krippendorf, “CYJAX: A package for Calabi-Yau metrics with JAX,”

2211.12520.

[92] I. Brunner and J. Distler, “Torsion D-branes in nongeometrical phases,” Adv. Theor. Math.

Phys. 5 (2002) 265–309, hep-th/0102018.

[93] I. Brunner, J. Distler, and R. Mahajan, “Return of the torsion D-branes,” Adv. Theor. Math.

Phys. 5 (2002) 311–352, hep-th/0106262.

[94] J. G. Lee, E. G. Adelberger, T. S. Cook, S. M. Fleischer, and B. R. Heckel, “New Test of the

Gravitational 1/r2 Law at Separations down to 52 µm,” Phys. Rev. Lett. 124 (2020), no. 10,

101101, 2002.11761.

[95] O. DeWolfe, A. Giryavets, S. Kachru, and W. Taylor, “Type IIA moduli stabilization,” JHEP 07

(2005) 066, hep-th/0505160.

[96] P. G. Camara, A. Font, and L. E. Ibanez, “Fluxes, moduli fixing and MSSM-like vacua in a

simple IIA orientifold,” JHEP 09 (2005) 013, hep-th/0506066.

[97] S. B. Giddings, S. Kachru, and J. Polchinski, “Hierarchies from fluxes in string

compactifications,” Phys. Rev. D 66 (2002) 106006, hep-th/0105097.

[98] J. M. Maldacena and C. Nunez, “Supergravity description of field theories on curved manifolds

and a no go theorem,” Int. J. Mod. Phys. A 16 (2001) 822–855, hep-th/0007018.

[99] A. Sagnotti, “Open Strings and their Symmetry Groups,” in NATO Advanced Summer Institute

on Nonperturbative Quantum Field Theory (Cargese Summer Institute). 9, 1987.

hep-th/0208020.

[100] E. G. Gimon and J. Polchinski, “Consistency conditions for orientifolds and D-manifolds,” Phys.

Rev. D 54 (1996) 1667–1676, hep-th/9601038.

[101] S. Sethi, C. Vafa, and E. Witten, “Constraints on low dimensional string compactifications,”

Nucl. Phys. B 480 (1996) 213–224, hep-th/9606122.
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[326] E. Calabi, “Thé space of Kahler metrics,” in Proc. Inter. Congress. Math. 1954.

[327] S.-T. Yau, “On the Ricci curvature of a compact kähler manifold and the complex monge-ampére
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Aleks, Antonia, Andreas, Davide, Thomas, Marco, Ivano, Yixuan, Chuying, Joaquin,

Benjamin, as well as former group members Alessandra, Chrysoula, Saskia, and Vero. I

wish you all the best for the future.

To my current and past office mates, Pouria, Christian, David, Max - thank you for

the pleasant atmosphere, all the discussions, and, at times, the emotional support.
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