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Summary

Idiopathic pulmonary fibrosis (IPF) and non-small cell lung cancer (NSCLC) are two
devastating pulmonary disorders, which are marked by excessive tissue production, ir-
reversible damage to lung structure, and eventually loss of pulmonary function. The
natural history of both diseases is characterized by chronic progression and represents a
fatal prognosis for the affected patients. Treatments are able to slow down the diseases’
progression, but to date no approved, curative treatment option exists. IPF is frequently
associated with lung cancer and both diseases’ pathogenesis share common hallmarks,
such as altered cellular phenotypes, misregulated biological pathways and mediators,
and similar genetic changes. We aimed to establish a link between the pathomecha-
nisms of IPF and NSCLC by analyzing patterns of gene expression alterations and to
further characterize the role of candidate genes in the pathogenesis of IPF.
NSCLC microarray datasets (GSE44077, GSE43458, GSE18842 ) from Gene Expres-

sion Omnibus (GEO) were analyzed and differentially expressed genes (DEGs) were
extracted. Gene set enrichment analysis (GSEA) was used to determine the enrichment
of DEGs from NSCLC in an IPF microarray dataset (GSE47460 ) and to describe the
subsequent list of candidate genes. Further characterization of these genes of interest
was achieved by annotation enrichment analysis, protein-protein interaction networks,
BioGPS, and principal component analysis. The final candidate genes were verified by
quantitative real-time polymerase chain reaction (qRT-PCR) as well as western blot
analysis in human and mouse lung tissue samples, human bronchial epithelial cells,
and primary murine alveolar epithelial type II (pmATII) cells. Finally, treatment of
bronchial epithelial cells with pro-fibrotic transforming growth factor beta 1 (TGF-β)
was performed and the expression of the candidate genes was analyzed.

IPF and NSCLC showed a significant pattern of shared gene expression alterations in
the GSEA. Further analysis revealed a common set of 92 equally misregulated genes in
IPF and NSCLC (log2 fold change > 1; adjusted p-value < 0.05), which demonstrated
an IPF-specific signature in the principal component analysis. Annotation enrichment
analysis of this gene set highlighted common themes, such as P53 regulation, extra-
cellular matrix (ECM) organization, cell cycle, and proliferation. Western blot and
qRT-PCR validated a significantly increased expression of the two candidate genes G
protein-coupled receptor 87 (GPR87) and phosphoserine aminotransferase 1 (PSAT1)
in NSCLC, IPF, and bleomycin-induced lung fibrosis in mice. TGF-β treatment of
bronchial epithelial cells resulted in a significant upregulation of GPR87 in vitro.

In summary, we demonstrated a pathogenic link between IPF and NSCLC, which
resulted in a subset of potential novel therapeutic targets. Further analysis of GPR87
and the other candidate genes might improve our understanding of IPF and enable novel
therapeutic strategies.
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Zusammenfassung

Die idiopathische Lungenfibrose (IPF) und das nichtkleinzellige Lungenkarzinom (NSCLC)
sind verheerende Erkrankungen, die durch überschießende Gewebeproduktion, irreversible
Lungenstrukturschäden und den Verlust der Lungenfunktion gekennzeichnet sind. Der
natürliche Krankheitsverlauf ist chronisch progredient und stellt für betroffene Patienten
eine tödliche Prognose dar. Eine Therapie kann das Fortschreiten dieser Erkrankungen
verlangsamen, bis heute existiert jedoch keine zugelassene, kurative Behandlungsmöglich-
keit. Die Pathogenese beider Erkrankungen weist gemeinsame Merkmale auf, wie den
Wechsel der zellulären Phänotypen, dysregulierte Signalwege und Mediatoren sowie
übereinstimmende genetische Veränderungen. Unser Ziel war, die Pathomechanismen
von IPF und NSCLC zu verknüpfen, indem Veränderungen der Genexpression analysiert
und die Rolle von spezifischen Genen in der Pathogenese von IPF charakterisiert wurden.

Mikroarray Datensätze zu NSCLC (GSE44077, GSE43458, GSE18842 ) von Gene Ex-
pression Omnibus (GEO) wurden analysiert und differentiell exprimierte Gene (DEGs)
identifiziert. Mittels Gene Set Enrichment Analyse (GSEA) wurde die Akkumulation
der DEGs aus NSCLC in einem Mikroarray Datensatz zu IPF (GSE47460 ) bestimmt
und eine Liste spezifischer Gene erstellt, welche durch Annotation Enrichment Analyse,
Protein-Protein-Interaktionsnetzwerke, BioGPS und Hauptkomponentenanalyse weiter
charakterisiert wurde. Diese Gene wurden mittels quantitativer Echtzeit-Polymerase-
Kettenreaktion (qRT-PCR) und Western Blot in Lungengewebeproben von Mensch und
Maus, humanen Bronchialepithelzellen und primären murinen Alveolarepithelzellen Typ
II (pmATII) verifiziert. Bronchialepithelzellen wurden mit pro-fibrotischem Transform-
ing Growth Factor Beta 1 (TGF-β) behandelt und die Genexpression wurde analysiert.

IPF und NSCLC zeigten in der GSEA signifikant übereinstimmende Veränderungen
der Genexpression. Die weiterführenden Analysen ergaben eine gemeinsame Gruppe
von 92 gleichermaßen dysregulierten Genen in IPF und NSCLC (log2 fold change >
1; p-Wert < 0,05), welche in der Hauptkomponentenanalyse eine IPF-spezifische Sig-
natur aufwiesen. Die Annotation Enrichment Analyse dieser Gruppe von Genen er-
gab übereinstimmende Aspekte, wie die Regulierung von P53, die Organisation der
extrazellulären Matrix, den Zellzyklus und die Proliferation. Western Blot und qRT-
PCR bestätigten eine signifikant erhöhte Expression des G Protein-Coupled Receptor
87 (GPR87) und der Phosphoserine Aminotransferase 1 (PSAT1) in NSCLC, IPF und
Bleomycin-induzierter Lungenfibrose bei Mäusen. Die Behandlung von Bronchialepi-
thelzellen mit TGF-β führte zu einer signifikanten Erhöhung von GPR87 in vitro.

Es konnte ein Zusammenhang der Pathogenesen von IPF und NSCLC gezeigt werden,
was zur Generierung einer Gruppe potentieller therapeutischer Zielgene geführt hat.
Weitere Analysen zu GPR87 und den restlichen Genen könnten unser Verständnis von
IPF verbessern und neue therapeutische Strategien ermöglichen.
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1 Introduction

1.1 Idiopathic pulmonary fibrosis

Chronic diseases of the respiratory system represent an enormous burden for the global
health care, being one of the most common causes of mortality worldwide [1]. The
expenses of personal health care, which were associated with chronic diseases of the
respiratory system, were estimated at $132.1 billion in the United States of America
(USA) in 2013 [2]. Moreover, these expenses have been subject to an average annual
increase of 3.7% since 1996 [2], which also coincides with the significant increase of
mortality related to chronic lung diseases in the USA from 1980 until 2014 [3].
Besides chronic obstructive pulmonary disease (COPD) and asthma, interstitial lung

diseases (ILDs) are also part of the group of chronic respiratory diseases. ILD, also known
as diffuse parenchymal lung disease (DPLD), is used as a generic term for at least 150 to
200 individual diseases [4, 5]. In 2013, the ILD related expenses of personal health care
were estimated at $10.9 billion in the USA [2]. Apart from this tremendous economic
impact, ILDs inflict an enormous burden on the affected patients due to their chronic and
sometimes fatal progression combined with severe symptoms, which frequently results
in comorbid depression [6] and a progressive reduction in quality of life [7].

Idiopathic pulmonary fibrosis (IPF) is one of the severe, irreversible ILDs and belongs
to the subgroup of idiopathic interstitial pneumonias (IIPs), which are subdivided into
major IIPs (acute interstitial pneumonia, cryptogenic organizing pneumonia, desqua-
mative interstitial pneumonia, idiopathic nonspecific interstitial pneumonia, idiopathic
pulmonary fibrosis, respiratory bronchiolitis-interstitial lung disease), rare IIPs (idio-
pathic lymphoid interstitial pneumonia, idiopathic pleuroparenchymal fibroelastosis),
and unclassifiable IIPs, according to the latest American Thoracic Society (ATS) and
European Respiratory Society (ERS) report [8]. In this context, IPF is considered the
most frequent form of IIPs [9], with its annual incidence being assessed at 2.8 to 9.3
cases per 100,000 [10]. The prevalence of IPF has been reported for various regions
and populations, which was summarized by Martinez et al. [11], indicating a prevalence
between 10 to 60 cases per 100,000 [11].

1.1.1 Clinical presentation of IPF

Idiopathic pulmonary fibrosis represents a severe disorder of the human lung due to
its irreversible and chronically progressing nature, which is marked by the advancing
formation of abundant lung tissue and the resulting deterioration of pulmonary function.

While the pathogenesis of IPF still remains subject to further research, it is commonly
accepted that age is related to the onset of IPF, which mostly affects the elderly popu-
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Introduction

lation aged 60 years and above [12]. In accordance with this, Raghu et al. [13] reported
a prevalence of 494.5 cases per 100,000 among adults older than 65 years in the USA in
2011, which was significantly higher compared to the IPF prevalence among the general
population. Besides the old age [12], multiple specific risk factors have been linked to
the development of IPF. The most frequent include tobacco smoking [14, 15], male sex
[9, 11, 12], work-related noxious substances [16], and several genetic alterations (e.g.
mucin 5B (MUC5B)) [17, 18].
The diagnosis of IPF represents a fatal prognosis for affected patients, with a reported

median survival time between 2.5 to 3.5 years [19]. Common symptoms described by
IPF patients include increasing dyspnea, the appearance of clubbed fingers due to the
chronic lack of oxygen, and dry cough, which are frequently accompanied by crackles on
auscultation of the lung [9, 12].
The diagnostic concept in case of potential IPF has been recently revised and pub-

lished as an international ATS/ERS/Japanese Respiratory Society (JRS)/Latin Ameri-
can Thoracic Society (ALAT) statement by Raghu et al. [12], which was further adopted
by Behr et al. [20] for the recent German guidelines on IPF. The process of confirming the
definite diagnosis of IPF still remains complex and sometimes lengthy, requiring the col-
laboration of different medical specialists and the performance of multiple examinations.
Due to its non-invasive nature combined with a high diagnostic value, the high-resolution
computed tomography (HRCT) is of significant importance in the context of diagnosing
IPF [12, 20]. The representative HRCT findings of an IPF lung are summarized as
so-called usual interstitial pneumonia (UIP) and are defined by specific hallmarks, such
as honeycombing with reticulation, traction bronchiectasis/bronchiolectasis and ground-
glass opacification, which are all typically observed in the basal parts of the lung and in
close proximity to the pleura (Figure 1.1) [12, 20, 21].

Figure 1.1: Hallmarks of usual interstitial pneumonia (UIP). High-resolution computed tomog-
raphy (HRCT) showing subpleural and basal honeycombing with reticulation (asterisk)
and traction bronchiectasis/bronchiolectasis (arrow) as the hallmarks of UIP [21] (Images
were adapted and reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature, Der Radiologe, Hamer et al. [21], Copyright © 2020).

In order to confirm the definite diagnosis of IPF, it is essentially important to exclude
other established fibrotic lung diseases in addition to the HRCT, and in case of indis-
tinct HRCT findings, complementary examinations are recommended, such as serological
testing, bronchoalveolar lavage, and lung biopsy for histopathology [12, 20].
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The therapy of IPF was very limited for a long time, which has been recently changed
by the introduction of the two substances nintedanib and pirfenidone. The latter has
received approval for the therapy of IPF in 2011 (European Union) and 2014 (USA) [22].
Beforehand, the safety and benefit of pirfenidone intake had been evaluated by three
large-scale, international, placebo-controlled and randomized phase 3 trials (ASCEND,
CAPACITY 004 and 006), which proved a significant, positive impact of pirfenidone
treatment on IPF disease progression, represented by progression-free survival and lesser
alterations in forced vital capacity (FVC) [23, 24]. In addition, Nathan et al. [25]
performed combined analyses of the ASCEND, CAPACITY 004 and 006 trials and
were able to prove a significant decrease of mortality with pirfenidone treatment. The
established route of administration is oral, enabling the anti-inflammatory and anti-
fibrotic effects of pirfenidone [25], which still remain subject to further research and seem
to be mediated through its broad impact on various pro-fibrotic and pro-inflammatory
factors, such as transforming growth factor beta 1 (TGF-β) and tumor necrosis factor-
alpha (TNF-α) [26].
Nintedanib was originally introduced as an anti-cancer drug [27], receiving approval

for the therapy of IPF in 2015 (European Union) and 2014 (USA) [22]. The treatment
with nintedanib was assessed by two international, randomized and placebo-controlled
phase 3 trials (INPULSIS-1 and -2), which showed a significant deceleration of the IPF
progression, measured by alterations in FVC [28]. The drug unfolds its anti-fibrotic
effects as an inhibitor of multiple receptor tyrosine kinases, such as vascular endothelial
growth factor receptor, platelet-derived growth factor receptor and fibroblast growth
factor receptor [27].

The current international guidelines recommend the use of either nintedanib or pir-
fenidone, while lung transplantation remains the last resort [29]. Apart from that, only
best supportive care (e.g. oxygen therapy) is available to IPF patients, which highlights
the importance and urgent need of new therapeutic strategies.

1.1.2 Pathomechanisms of IPF

IPF demonstrates a heterogeneous course of disease with almost stable, slow, or rapid
progression as well as acute exacerbations, eventually leading to early death of the
patient [30]. Therefore, curative treatment options seem indispensable, but despite the
important progress made, the pathomechanisms of IPF still remain subject to further
research.

Idiopathic pulmonary fibrosis is characterized by the progressive formation of abun-
dant lung tissue and the resulting deterioration of pulmonary function and structure.
Even though (myo-)fibroblasts appear to be the effector cells of these changes in IPF
lungs due to their redundant generation of extracellular matrix (ECM), the lung epithe-
lium is assumed to be the actual initiator and driver of the IPF pathogenesis [31]. The
current scientific consensus, based on recent findings, is that multiple, recurrent microin-
juries to the lung epithelium lead to reprogramming of the affected epithelial cells [9, 11,
31]. In individuals with IPF, this process occurs in already prematurely aged lung epithe-
lial cells, which seem to be particularly vulnerable [11]. Cellular senescence, a hallmark
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of aging, has been demonstrated to be a prominent feature of alveolar epithelial type II
(ATII) cells isolated from IPF lung tissue and bleomycin-induced lung fibrosis, and the
experimental treatment of these cells with senolytic drugs had a significant anti-fibrotic
effect [32]. In line with these findings, also telomere attrition is frequently detected in
fibrotic ATII cells of IPF patients [33, 34] as well as damage-associated genomic instabil-
ity [31]. Finally, genetic alterations have been proved to be a central feature of the IPF
pathogenesis, especially alterations to mucin 5B (MUC5B) represent an important risk
factor [35]. It is thought that these events lead to the release of numerous mediators (e.g.
TGF-β, TNF-α, Wnt/β-catenin), (myo-)fibroblast activation and a distorted process of
lung repair and regeneration with the subsequent deterioration of lung architecture with
its defining histological changes (Figure 1.2) [9, 31].

Figure 1.2: Deterioration of lung architecture in patients with IPF. Tissue sections of IPF and
donor lungs were stained with hematoxylin and eosin. The fibrotic tissue specimens showed
areas of dense fibrosis with destroyed lung architecture and fibroblast foci (asterisk). Scale
bars: 500µm upper row, 100µm lower row.

4



Introduction

1.1.3 Bleomycin-induced experimental model of IPF

The bleomycin-induced experimental model of pulmonary fibrosis in mice was used in
this thesis to further study idiopathic pulmonary fibrosis in an animal model. Bleomycin
was originally identified as anti-cancer drug and has been used for the therapy of multiple
types of cancer, such as germ cell tumors [36] and Hodgkin lymphoma [37]. The downside
to bleomycin treatment are its severe side effects on the lung in form of pneumonitis
with a gradual progression to lung fibrosis [38]. Therefore, bleomycin is used to model
idiopathic pulmonary fibrosis in various animal species.

Figure 1.3: Bleomycin-induced pulmonary fibrosis in mice. Tissue sections of mice treated with
bleomycin or phosphate-buffered saline (PBS) were harvested on day 14 after treatment
and stained with hematoxylin and eosin. Lungs from bleomycin-treated mice showed dense
pulmonary fibrosis. Scale bars: 50µm.

In the present study, bleomycin was intratracheally administered to C57BL/6N mice
(Figure 1.3), which is to date the most favored and best described animal model of
IPF [39–41]. The fibrotic destruction and remodeling of the alveolar structure upon
bleomycin instillation are most evident on day 14 after the treatment and gradually
develop after an early inflammatory phase, which is marked by infiltration of neutrophils
and reaches its maximum around day 7 [42, 43]. Beyond day 21 after the administration
of bleomycin, the course of the fibrotic phase has been reported to be highly variable
with possible resolution of the lung fibrosis, which is one of the major criticism [40,
42]. Besides this discrepancy, it has been demonstrated that the bleomycin-induced
experimental model of pulmonary fibrosis resembles several important features of human
IPF, such as the appearance of fibroblast foci, initial injury of the alveolar epithelium,
activation of (myo-)fibroblasts, and common mediators (e.g. TGF-β, TNF-α) [40, 43].
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1.2 Lung cancer in IPF

1.2.1 Non-small cell lung cancer

Lung cancer is another severe disease of the human lung, which also shows an irreversible,
chronic progression and is marked by exaggerated tissue production. Recent, interna-
tional studies on cancer statistics reported that lung carcinomas represent globally the
major cause of cancer-related deaths in males and females combined, with approximately
1.76 million deaths in 2018 [44–46]. Furthermore, lung cancer has been shown to have
the highest incidence world-wide among all types of cancer [46]. In line with this, lung
cancer accounts for the leading cause of cancer-related healthcare expenses in the Euro-
pean Union, with estimated 18.8 billion euros in 2009 [47].
Over the past decades research has made significant advancements in its understand-

ing of lung cancer pathomechanisms and its risk factors. The exposure to (passive)
tobacco smoking and its continuance remain the undisputed main etiologic factors for
the development of lung cancer, while recent studies identified further risk factors, such
as chronic or infectious lung diseases, genetic alterations, familial predisposition, and
occupational or environmental carcinogens (air pollution, radiation, asbestos) [48].
Upon clinical examination, lung cancer patients present with rather unspecific symp-

toms of dyspnea, hemoptysis, chronic cough, pain of chest/shoulders, fatigue, weight
loss, and fever, which usually appear not until advanced development of lung cancer
[49]. Therefore, the diagnosis and staging of lung cancer requires diagnostic imaging
with chest X-ray, computed tomography (CT), magnetic resonance imaging (MRI), or
positron-emission tomography (PET) and eventually tissue biopsies (CT-guided, bron-
choscopy, surgery) for the histological classification [50].
The World Health Organization (WHO) reworked the classification of lung cancer in

2015, dividing it into the major categories of small cell lung cancer (15%) and non-small
cell lung cancer (85%, NSCLC), which is further subdivided into the main entities of
squamous cell carcinoma (SCC), adenocarcinoma (AC), large cell carcinoma, and various
minor subtypes [51]. The present thesis was specifically focused on NSCLC because of
its epithelial origin.
Adenocarcinoma (40%) and squamous cell carcinoma (25-30%) represent the two ma-

jor histological subtypes of NSCLC, but differ considerably from each other [52]. SCC
mainly affects the male sex and patients with a smoking history, compared to AC, which
has been observed more frequently in female and nonsmoking patients [53]. Furthermore,
SCC predominantly originates from the bronchial epithelium and expresses cytokeratin 5
and 6 (KRT5/6), while AC predominantly develops from the alveolar epithelium, show-
ing napsin A and thyroid transcription factor 1 (TTF-1) expression [52]. Overall, the
adenocarcinoma shows a better prognosis with significantly higher survival rates [53].
The general therapy of lung cancer includes chemotherapy, radiotherapy, and surgery.

Over the past decades cancer therapy has advanced considerably and targeted therapies
have been developed, but there is still an urgent need for new, curative treatments.
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1.2.2 Similarities of IPF and NSCLC

The majority of patients with IPF is suffering from various comorbidities, with lung
cancer being frequently reported [7, 11]. Over the past years this association has received
increasing attention and studies have elucidated this relationship, while the underlying
pathomechanisms still remain unknown.
Recent, independent meta-analyses of epidemiological studies on lung cancer in IPF

populations estimated a prevalence of 13.74% [54] or 13.54% [55]. In addition, it has
been shown that lung cancer has a significantly increased incidence in IPF populations
with an estimated rate of 2.07 per 100 person years, compared to 0.2 - 0.7 per 100 person
years among non-IPF populations [54]. The risk for IPF patients to develop lung cancer
increases notably with the time that has passed since the initial diagnosis of IPF, which
is reflected by the rising cumulative incidence over the years (Figure 1.4) [56–60]. In
line with these findings, IPF has been described as an independent risk factor for the
development of lung cancer [54].

Figure 1.4: Cumulative incidence of lung cancer in IPF. Data has been extracted from recent
studies by Ozawa et al. [56], Tomassetti et al. [57], Kato et al. [58], Yoo et al. [59], and Song
et al. [60]. The cumulative incidence of lung cancer in IPF shows a notable increase over
time. Variations of the cumulative incidence occur due to differences in patient selection
criteria and study design.

The prognosis and outcome of IPF patients with diagnosed lung cancer have been
demonstrated to be markedly worse compared to IPF patients without lung cancer,
which is expressed by a significantly increased mortality and reduced survival rate [60].
Tomassetti et al. [57] have shown that lung cancer-associated complications, therapeutic
procedures, and progression are mainly responsible for the worse outcome of IPF patients
with lung cancer. In particular, the increased risk of acute exacerbations caused by lung
cancer-related treatments is of great significance [57, 61].
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The average IPF patient affected by lung cancer is characterized by male sex, old
age, emphysema, and a long history of smoking [58–60]. In contrast to the general
population, squamous cell carcinoma represents the predominant subtype of lung cancer
in IPF populations and is frequently found in peripheral, lower areas of the lung, which
are located in close proximity to the fibrotic lesions [55, 58, 59].
Besides these epidemiological connections, the underlying pathomechanisms still re-

main poorly understood - but both diseases seem to share common hallmarks in their
pathogenesis. The development and progression of lung cancer relies on the occurrence
of multiple genetic alterations in oncogenes and tumor suppressor genes, such as the
P53 gene [62, 63]. Similar mutations of the P53 gene and other lung cancer-related
genes have also been observed in IPF patients [64]. Epigenetic alterations, such as the
methylation of deoxyribonucleic acid (DNA), not only have been frequently identified
in IPF and NSCLC but also show a highly similar pattern in both diseases [65]. Fur-
thermore, a variety of biological pathways and mediators has been shown to be similarly
misregulated in lung cancer as well as in IPF. The Wnt/β-catenin signaling pathway,
for instance, is involved in the carcinogenesis of NSCLC, while in IPF it seems to be
important for cell proliferation and activation of fibroblasts [66, 67]. Eventually, other
common features, such as senescence, invasive behavior, and aberrant healing processes,
have been frequently discussed for both diseases.
Based on these similarities, we hypothesized that analyzing the commonalities of the

pathomechanisms of IPF and NSCLC will help to advance the knowledge about the
pathogenesis of both diseases and to discover potential therapeutic targets in IPF.

1.3 PSAT1 - Phosphoserine aminotransferase 1

Figure 1.5: Serine biosynthesis pathway. Schematic presentation of the serine biosynthesis path-
way with its main enzymes phosphoserine aminotransferase 1 (PSAT1), phosphoglycerate
dehydrogenase (PHGDH), and phosphoserine phosphatase (PSPH).

The phosphoserine aminotransferase 1 (PSAT1 ) gene encodes one of the three major
enzymes for the biosynthesis of serine (Figure 1.5). The amino acid serine has important
direct or indirect roles in many biological processes and pathways of the healthy cell,
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such as the folate cycle, methionine cycle, glutathione redox system, and the generation
of various amino acids, proteins, lipids, and nucleosides [68]. The gene expression of
PSAT1 is increased by the binding of activating transcription factor 4 (ATF4) to its
promoter region, which has been shown to be positively controlled by the nuclear factor
erythroid 2-related factor 2 (NRF2) [69, 70]. In addition, Guo et al. [71] demonstrated an
indirect upregulation of PSAT1 via the long non-coding ribonucleic acid (RNA) MEG8
in NSCLC cells, which supported the development and growth of lung cancer.

Alterations of the PSAT1 expression have been described in various types of cancer,
such as NSCLC [69, 72–74], esophageal squamous cell carcinoma [75], breast cancer [70,
76], and ovarian cancer [77]. Increased levels of PSAT1 were significantly connected to
a worse prognosis in these cancer patients [69, 70, 72, 74, 75, 77]. Furthermore, PSAT1
overexpression facilitates cell proliferation in a cyclin D1-dependent manner [70, 74] and
is related to metastasis, invasive behavior, and cell migration [72, 76].

Besides its contribution to oncogenesis, recent studies demonstrated that TGF-β pro-
motes the expression of PSAT1 in human lung fibroblasts, which in turn enables the for-
mation of collagen by myofibroblasts [78, 79]. Therefore, we hypothesized that PSAT1
represents a potential therapeutic target and its possible contribution to the pathogenesis
of IPF requires further investigation.

1.4 GPR87 - G protein-coupled receptor 87

The G protein-coupled receptor 87 (GPR87 ) gene is located on the chromosome 3q24 in
humans and encodes a seven-transmembrane receptor with 358 amino acids, which was
originally identified and published in 2001 by Wittenberger et al. [80]. The specific bio-
logical function of GPR87 still remains unknown, while Tabata et al. [81] deorphanized
the receptor and demonstrated lysophosphatidic acid (LPA) as a ligand for GPR87,
which was subsequently confirmed by Ochiai et al. [82]. However, recent data suggests
that LPA is a rather unspecific ligand with low binding affinity to GPR87, but to date
no other ligands have been identified [83]. The GPR87 signaling cascade is mediated
through activation of the G protein αq, αi, and α12/13 subunits (Figure 1.6) [83].
Given that GPR87 represents a member of the seven-transmembrane G protein-

coupled receptor family, studies were able to verify its predominant location on the
cell membrane [84]. Furthermore, the expression pattern of GPR87 in healthy, regular
tissue seems to be very specific and limited to only certain types of cells or tissue [84]. In
particular, the regular lung tissue and its epithelium showed a markedly low expression
of GPR87 [84, 85]. Increased expression levels of GPR87 have been demonstrated in
various cancer types, such as lung cancer [84–86], hepatocellular carcinoma [87], urothe-
lial carcinoma [88], pancreatic cancer [89], and multiple squamous cell carcinomas (skin,
cervix, pharynx, and larynx) [84]. Notably, this altered expression of GPR87 in lung
cancer was primarily found in NSCLC and particularly in SCC of the lung [85, 86].
The regular biological function of GPR87 remains unexplained, whereas it has been

shown to induce cell survival, proliferation, and anti-apoptotic effects in cancer, which is
at least partially mediated through its interaction with P53 [84, 89–92]. In addition, the
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significantly increased expression level of GPR87 in various types of cancer is correlated
with a worse prognosis and supports metastasis, migration, and invasion [86, 87, 89].

Figure 1.6: GPR87 signaling cascade. Schematic presentation of the G protein-coupled receptor
87 (GPR87) signaling cascade. Lysophosphatidic acid (LPA) or other unknown ligands
bind to GPR87 and induce various subsequent signaling pathways through αq, αi, and
α12/13 [83].

Recent studies demonstrated that GPR87 overexpression in cancer is promoted by acti-
vation of transcription through the binding of either histone H3.3 or the signal transducer
and activator of transcription 3 (STAT3) [93, 94].
The contribution of GPR87 to the pathogenesis of IPF is still unknown. Thus, we

hypothesized that GPR87 might contribute to cellular reprogramming in IPF and could
represent a novel therapeutic target, which needed further research.
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2 Aims of the study

IPF and NSCLC represent severe pulmonary disorders with a chronic progression and
irreversible damage to the lung. It is commonly accepted that IPF and NSCLC share epi-
demiologic similarities and common pathomechanistic features. To date no approved,
curative treatment exists for both diseases, which emphasizes the importance of fur-
ther understanding the involved common pathomechanisms to develop novel therapeu-
tic strategies and to discover possible targets for treatments. Hence, we hypothesized
that oncogenic, cancer-related signaling acts as an important driver of the IPF patho-
genesis and contributes to the lung epithelial cell alterations in IPF, such as cellular
reprogramming.

The major aims of the presented thesis were to:

1. Establish a possible relationship between the pathomechanisms of IPF and NSCLC
by elucidating common patterns of gene expression alterations.

2. Assemble and characterize a set of candidate genes commonly misregulated in IPF
and NSCLC.

3. Determine expression levels of particular candidate genes in lung tissue from
bleomycin-induced experimental lung fibrosis and IPF.

4. Analyze cell-specific expression of these candidate genes and identify mechanisms
that drive their misregulation in IPF.
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3 Materials and methods

3.1 Materials

3.1.1 Cell lines and primary cells

Table 3.1: Cell lines.

Cell line Origin Manufacturer/Distributor

16HBE14o− human bronchial epithelial cells, SV40
large T-antigen transformed

D. C. Gruenert, University of California;
San Francisco, CA, USA

A549 human epithelial cells from lung
carcinoma

ATCC, LGC Standards; Wesel, Germany

Table 3.2: Primary cells.

Cell type Origin Source

Primary human bronchial epithelial
cells (phBEC)

human lung tissue Asklepios Biobank for Lung Diseases;
Gauting, Germany
Lonza Group AG; Basel, Switzerland

Primary murine alveolar epithelial
type II (pmATII) cells

C57BL/6N mice Charles River Laboratories; Sulzfeld,
Germany

3.1.2 Human tissue

Human lung tissue specimens were provided by different organizations. The Biobank
of the Universities of Giessen and Marburg Lung Center (UGMLC), part of the DZL
Biobanking Platform, provided human idiopathic pulmonary fibrosis (IPF) and healthy
control specimens (Table 3.3). The human lung tissue samples were originally assembled
within the European IPF Registry (eurIPFreg) and Biobank project. The ethics com-
mittee of the Justus Liebig University, Giessen, Germany was officially informed and the
study protocol was authorized (Project 111/08 and 58/15). Informed consent was given
in written form by all participants included in the study.
Lung resections, explanted lungs, and lung tissue biopsies from the university hospi-

tal of the Ludwig-Maximilians-University (LMU), Munich, Germany and the Asklepios
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Table 3.3: Human IPF and control tissue, UGMLC Biobank.

Identification Disease status Age Gender Storage

IPF_1 IPF 24 female liquid nitrogen
IPF_2 IPF 49 male liquid nitrogen
IPF_3 IPF 55 male liquid nitrogen
IPF_4 IPF 39 female liquid nitrogen
IPF_5 IPF 62 female liquid nitrogen
IPF_6 IPF 62 male liquid nitrogen
IPF_7 IPF 36 male liquid nitrogen
IPF_8 IPF 48 male liquid nitrogen
IPF_9 IPF 31 female liquid nitrogen
IPF_10 IPF 44 female liquid nitrogen
IPF_11 IPF unknown unknown liquid nitrogen
IPF_12 IPF unknown unknown liquid nitrogen
IPF_13 IPF unknown unknown liquid nitrogen
IPF_14 IPF 48 male liquid nitrogen
Donor_1 healthy unknown unknown liquid nitrogen
Donor_2 healthy 72 female liquid nitrogen
Donor_3 healthy 61 male liquid nitrogen
Donor_4 healthy 42 male liquid nitrogen
Donor_5 healthy 44 female liquid nitrogen
Donor_6 healthy 31 male liquid nitrogen
Donor_7 healthy 41 female liquid nitrogen
Donor_8 healthy 58 male liquid nitrogen
Donor_9 healthy 53 male liquid nitrogen
Donor_10 healthy 48 female liquid nitrogen

Table 3.4: Lung tissue specimens for the isolation of phBECs and histology.

Identification Airway diameter Age Gender Storage

CPC_1 5-7mm 48 male liquid nitrogen
CPC_2 9mm 65 female liquid nitrogen
CPC_3 - unknown unknown liquid nitrogen
CPC_4 - 54 unknown liquid nitrogen

Biobank for Lung Diseases, Gauting, Germany were used for the isolation of phBECs
and histology (Table 3.4). Informed consent was given in written form by all participants
included in the study. The ethics committee of the Ludwig-Maximilians-University, Mu-
nich, Germany was officially informed and the study protocol was authorized (Project
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333-10). Furthermore, isolated phBECs were purchased from Lonza Group AG, Basel,
Switzerland (Table 3.5).

Table 3.5: phBECs from Lonza.

Identification Age Gender Storage

Lonza_1 49 female liquid nitrogen
Lonza_2 13 male liquid nitrogen
Lonza_3 62 female liquid nitrogen

Paired human lung specimens of lung cancer and corresponding control (CTRL) tissue
were provided by the Asklepios Biobank for Lung Diseases, Gauting, Germany (Table
3.6). The project was approved by the ethics committee of the Ludwig-Maximilians-
University, Munich, Germany (Project 623-15). Written informed consent was received
from all participants.

Table 3.6: Human lung cancer and control tissue, Asklepios Biobank.

Identification Disease status Age Gender Storage

027-001 T/N squamous cell carcinoma 64 female RNAlater
027-002 T/N squamous cell carcinoma 78 male RNAlater
027-003 T/N squamous cell carcinoma 64 male RNAlater
027-004 T/N squamous cell carcinoma 60 female RNAlater
027-005 T/N squamous cell carcinoma 50 female RNAlater
027-006 T/N squamous cell carcinoma 70 male RNAlater
027-007 T/N adenocarcinoma 45 female RNAlater
027-008 T/N adenocarcinoma 49 male RNAlater
027-009 T/N adenocarcinoma 42 female RNAlater
027-010 T/N adenocarcinoma 68 female RNAlater
027-011 T/N adenocarcinoma 58 female RNAlater

3.1.3 Animals

In general, the wild-type C57BL/6N mouse strain was used for all animal experiments
in this thesis. The pathogen-free mice were purchased from Charles River Laboratories,
Sulzfeld, Germany and were able to settle down for at least one week in the animal
facility of the Helmholtz Zentrum München.
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3.1.4 Laboratory equipment and software

Table 3.7: Laboratory equipment.

Product Manufacturer/Distributor

-20°C Freezer GNP 5255 Premium NoFrost Liebherr-International AG; Bulle, Switzerland
-20°C Freezer LGex 3410 MediLine Liebherr-International AG; Bulle, Switzerland
-80°C Freezer New Brunswick U570 HEF Eppendorf AG; Hamburg, Germany
+4°C Fridge LKv 3910 MediLine Liebherr-International AG; Bulle, Switzerland
A.S. Standard Fume Cupboard Vinitex Laboratory Systems; Sint-Oedenrode,

Netherlands
Autoclave DX-45 Systec GmbH; Linden, Germany
Autoclave VX-120 Systec GmbH; Linden, Germany
Axio Imager 2 Carl Zeiss AG; Oberkochen, Germany
Axiovert 40 C Carl Zeiss AG; Oberkochen, Germany
BD LSR II Flow Cytometer BD Biosciences; Franklin Lakes, NJ, USA
Biological Safety Cabinet, Class II, Herasafe
KS 18

Thermo Fisher Scientific Inc.; Waltham, MA, USA

Centrifuge 5424 R Eppendorf AG; Hamburg, Germany
Centrifuge 5430 Eppendorf AG; Hamburg, Germany
Centrifuge Corning LSE Mini
Microcentrifuge

Corning, Inc.; Corning, NY, USA

Centrifuge MIKRO 200 R Andreas Hettich GmbH & Co. KG; Tuttlingen,
Germany

Centrifuge MiniSpin Plus Eppendorf AG; Hamburg, Germany
Centrifuge ROTINA 420 R Andreas Hettich GmbH & Co. KG; Tuttlingen,

Germany
ChemiDoc XRS+ System Bio-Rad Laboratories, Inc.; Hercules, CA, USA
Cleaning Machine Miele G 7893 Miele & Cie. KG; Gütersloh, Germany
CO2 Incubator BBD 6220 Thermo Fisher Scientific Inc.; Waltham, MA, USA
Counting Chamber BLAUBRAND Neubauer
Improved

BRAND GmbH & Co. KG; Wertheim, Germany

Easypet Electronic Pipet Filler Eppendorf AG; Hamburg, Germany
Excellence Precision Balance XS4002S Mettler-Toledo, LLC; Columbus, OH, USA
Forma 8600 Series -86°C Ultra-Low
Temperature Chest Freezer

Thermo Fisher Scientific Inc.; Waltham, MA, USA

Hyrax M55 Rotary Microtome Carl Zeiss AG; Oberkochen, Germany
Ice Machine ZBE 110-35 ZIEGRA-Eismaschinen GmbH; Isernhagen,

Germany
LightCycler 480 Instrument II Roche Diagnostics; Rotkreuz, Switzerland
Liquid Nitrogen - APOLLO 200 Supply
Vessel

Cryotherm GmbH & Co. KG; Kirchen/Sieg,
Germany

Liquid Nitrogen - BIOSAFE 420
SCβ-Sample Storage System

Cryotherm GmbH & Co. KG; Kirchen/Sieg,
Germany
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Product Manufacturer/Distributor

Magnetic Stirrer Big Squid White IKA-Werke GmbH & Co. KG; Staufen, Germany
Magnetic Stirrer KMO 2 Basic IKA-Werke GmbH & Co. KG; Staufen, Germany
Mastercycler Nexus Eppendorf AG; Hamburg, Germany
Microbiological Incubator Heratherm IGS 60 Thermo Fisher Scientific Inc.; Waltham, MA, USA
Microm EC 350 - Modular Tissue
Embedding Center

Thermo Fisher Scientific Inc.; Waltham, MA, USA

Microm STP420D Tissue Processor Thermo Fisher Scientific Inc.; Waltham, MA, USA
Mikro-Dismembrator S Sartorius Stedim Biotech GmbH; Goettingen,

Germany
Milli-Q Advantage A10 Water Purification
System

Merck KGaA; Darmstadt, Germany

Mini-PROTEAN Tetra Vertical
Electrophoresis Cell

Bio-Rad Laboratories, Inc.; Hercules, CA, USA

MIRAX SCAN, Slide Scanner Carl Zeiss AG; Oberkochen, Germany
Mr. Frosty Freezing Container Thermo Fisher Scientific Inc.; Waltham, MA, USA
Multi-Axle-Rotating-Mixer, RM10W-30V VWR International, LLC; Radnor, PA, USA
Multipette E3x Eppendorf AG; Hamburg, Germany
NanoDrop 1000 Spectrophotometer Thermo Fisher Scientific Inc.; Waltham, MA, USA
pH Meter inoLab pH 720 Xylem Analytics Germany Sales GmbH & Co.

KG, WTW; Weilheim, Germany
Pipettes Research Plus Eppendorf AG; Hamburg, Germany
PowerPac Basic Power Supply Bio-Rad Laboratories, Inc.; Hercules, CA, USA
QuadroMACS Separator Miltenyi Biotec; Bergisch Gladbach, Germany
Shaker Duomax 1030 Heidolph Instruments GmbH & Co. KG;

Schwabach, Germany
Shaker MS 3 Basic IKA-Werke GmbH & Co. KG; Staufen, Germany
Shaker Polymax 1040 Heidolph Instruments GmbH & Co. KG;

Schwabach, Germany
Sunrise Absorbance Microplate Reader Tecan Group Ltd.; Männedorf, Switzerland
Surgical Instruments Fine Science Tools GmbH; Heidelberg, Germany
ThermoMixer Comfort Eppendorf AG; Hamburg, Germany
Vacuum Pump EcoVac System 4 schuett-biotec GmbH; Goettingen, Germany
Vacuum Pump N022 AN.18 KNF Neuberger GmbH; Freiburg, Germany
Water Bath Aqualine AL 12 LAUDA Dr. R. Wobser GmbH & Co. KG;

Lauda-Königshofen, Germany

Table 3.8: Software.

Software Developer/Distributor

AxioVision, Release 4.8 Carl Zeiss AG; Oberkochen, Germany
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Software Developer/Distributor

Bioconductor, Release 3.6 Bioconductor [95, 96];
https://www.bioconductor.org/

BioGPS The Scripps Research Institute; La Jolla, CA, USA
FlowJo Software, Version 9.6.4 FlowJo, LLC; Ashland, OR, USA
Gene Set Enrichment Analysis (GSEA),
Version 3.0

Broad Institute, Inc.; Cambridge, MA, USA

GraphPad Prism, Version 5.00 GraphPad Software, Inc.; San Diego, CA, USA
Image Lab Software, Version 5.2.1 Bio-Rad Laboratories, Inc.; Hercules, CA, USA
JabRef, Version 5.0 JabRef Authors; MIT License;

http://www.jabref.org/
LightCycler 480 Software, Version 1.5 Roche Diagnostics; Rotkreuz, Switzerland
Magellan - Data Analysis Software Tecan Group Ltd.; Männedorf, Switzerland
Microsoft Office 2010 Professional Plus Microsoft Corporation; Redmond, WA, USA
Microsoft Windows 7 Enterprise Microsoft Corporation; Redmond, WA, USA
R Statistical Software, Version 3.4.3 R Core Team; R Foundation for Statistical

Computing; Wien, Austria
RStudio, Version 1.1.383 RStudio; Boston, MA, USA
Salmon Software, Version 0.9.1 Rob Patro; GNU General Public License v3.0;

https://combine-lab.github.io/salmon/
TeX Live 2018 TeX user groups;

https://www.tug.org/texlive/
TeXstudio 2.12.16 Benito van der Zander; GNU General Public

License v2.0; https://www.texstudio.org/
ZEN Imaging Software Carl Zeiss AG; Oberkochen, Germany

3.1.5 Consumables

Table 3.9: Consumables.

Product Manufacturer/Distributor

Cannulas Sterican (20G, 21G, 26G) B. Braun Melsungen AG; Melsungen, Germany
CD31 MicroBeads Miltenyi Biotec; Bergisch Gladbach, Germany
CD45 MicroBeads Miltenyi Biotec; Bergisch Gladbach, Germany
Cell Culture Dishes Corning, Inc.; Corning, NY, USA
Cell Culture Flasks, EasYFlask 75cm2 Thermo Fisher Scientific Inc.; Waltham, MA, USA
Cell Culture Multiwell Plates Corning, Inc.; Corning, NY, USA

TPP Techno Plastic Products AG; Trasadingen,
Switzerland

Cell Scrapers and Lifters Corning, Inc.; Corning, NY, USA
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Product Manufacturer/Distributor

Chromium Steel Grinding Balls (9mm) Sartorius Stedim Biotech GmbH; Goettingen,
Germany

Combitips Advanced Eppendorf AG; Hamburg, Germany
Cover Glasses Paul Marienfeld GmbH & Co. KG;

Lauda-Königshofen, Germany
Cryogenic Tubes, Nalgene Thermo Fisher Scientific Inc.; Waltham, MA, USA
Falcon Conical Centrifuge Tubes (15ml,
50ml)

Corning, Inc.; Corning, NY, USA

Falcon Round Bottom Polystyrene Tubes,
14ml

Corning, Inc.; Corning, NY, USA

Filter Pipette Tips, SafeSeal-Tips
Professional

Biozym Scientific GmbH; Hessisch Oldendorf,
Germany

LS Columns Miltenyi Biotec; Bergisch Gladbach, Germany
Microscope Slides, Glass DWK Life Sciences GmbH; Wertheim/Main,

Germany
MicroSprayer Aerosolizer - Model IA-1C and
FMJ-250 High Pressure Syringe

Penn-Century, Inc.; Wyndmoor, PA, USA

Nitrocellulose Membrane Bio-Rad Laboratories, Inc.; Hercules, CA, USA
Nylon Filters (100µm, 20µm, 10µm) Sefar AG; Heiden, Switzerland
Parafilm Bemis Company, Inc.; Neenah, WI, USA
Pasteur Pipettes, Glass VWR International, LLC; Radnor, PA, USA
Pipette Tips Eppendorf AG; Hamburg, Germany

Kisker Biotech GmbH & Co. KG; Steinfurt,
Germany

Polymerase Chain Reaction (PCR) Plates Kisker Biotech GmbH & Co. KG; Steinfurt,
Germany

Pre-Separation Filters Miltenyi Biotec; Bergisch Gladbach, Germany
Reaction Tubes (0.5ml, 1.5ml, 2.0ml) Eppendorf AG; Hamburg, Germany

Greiner Bio-One International GmbH;
Kremsmünster, Austria

Sealing Film PCR Kisker Biotech GmbH & Co. KG; Steinfurt,
Germany

Sterile Scalpels B. Braun Melsungen AG; Melsungen, Germany
Sterile Serological Pipettes (2ml, 5ml, 10ml,
25ml, 50ml)

Greiner Bio-One International GmbH;
Kremsmünster, Austria

Syringes (1ml, 10ml, 20ml) B. Braun Melsungen AG; Melsungen, Germany
Whatman Grade 3MM Chr Blotting Paper GE Healthcare; Chicago, IL, USA
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3.1.6 Chemicals and recipes

Table 3.10: Chemicals.

Product Manufacturer/Distributor

10X PCR Buffer II Applied Biosystems, Thermo Fisher Scientific Inc.;
Waltham, MA, USA

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES)
Buffer Solution (1M)

Sigma-Aldrich; Saint Louis, MO, USA

87% Glycerol AppliChem GmbH; Darmstadt, Germany
Acetic Acid (glacial) 100% Merck KGaA; Darmstadt, Germany
Agarose, Low Gelling Temperature Sigma-Aldrich; Saint Louis, MO, USA
AKASOLV Aqua Care Carl Roth GmbH & Co. KG; Karlsruhe, Germany
Amersham ECL Prime Western Blotting
Detection Reagent

GE Healthcare; Chicago, IL, USA

Ammonium Peroxodisulfate (APS) AppliChem GmbH; Darmstadt, Germany
Atipamezole ORION Pharma GmbH; Hamburg, Germany
autoMACS Rinsing Solution Miltenyi Biotec; Bergisch Gladbach, Germany
Bleomycin Sulfate (Bleo) Sigma-Aldrich; Saint Louis, MO, USA
Bovine Serum Albumin (BSA) Sigma-Aldrich; Saint Louis, MO, USA
Bromophenol Blue AppliChem GmbH; Darmstadt, Germany
Collagen, Type I Solution Sigma-Aldrich; Saint Louis, MO, USA
cOmplete, Mini, Ethylenediaminetetraacetic
Acid (EDTA)-Free Protease Inhibitor
Cocktail

Roche Diagnostics; Rotkreuz, Switzerland

Deoxyribonucleoside Triphosphate (dNTP)
Mix (10mM each)

Thermo Fisher Scientific Inc.; Waltham, MA, USA

Dimethyl Sulfoxide (DMSO) Carl Roth GmbH & Co. KG; Karlsruhe, Germany
Disodium Hydrogen Phosphate (Na2HPO4) AppliChem GmbH; Darmstadt, Germany
Distilled Water Gibco, Thermo Fisher Scientific Inc.; Waltham,

MA, USA
Dithiothreitol (DTT) AppliChem GmbH; Darmstadt, Germany
Dulbecco’s Phosphate-Buffered Saline
(DPBS)

Gibco, Thermo Fisher Scientific Inc.; Waltham,
MA, USA

EDTA AppliChem GmbH; Darmstadt, Germany
Entellan Mounting Medium Sigma-Aldrich; Saint Louis, MO, USA
Eosin Y Solution 0.5% Carl Roth GmbH & Co. KG; Karlsruhe, Germany
Ethanol Absolute, p.a. AppliChem GmbH; Darmstadt, Germany
Fentanyl Janssen-Cilag GmbH; Neuss, Germany
Fetal Bovine Serum (FBS), Heat Inactivated PAN-Biotech GmbH; Aidenbach, Germany
Flumazenil Hexal AG; Holzkirchen, Germany
Glucose AppliChem GmbH; Darmstadt, Germany
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Product Manufacturer/Distributor

GlutaMAX Supplement Gibco, Thermo Fisher Scientific Inc.; Waltham,
MA, USA

Glycine, p.a. AppliChem GmbH; Darmstadt, Germany
Hank’s Balanced Salt Solution (HBSS),
Calcium, Magnesium, No Phenol Red

Gibco, Thermo Fisher Scientific Inc.; Waltham,
MA, USA

Hemalum Solution Acid, Mayer Carl Roth GmbH & Co. KG; Karlsruhe, Germany
HEPES Buffered Saline Solution Lonza Group AG; Basel, Switzerland
Hydrochloric Acid (HCl) AppliChem GmbH; Darmstadt, Germany
Isopropanol, p.a. AppliChem GmbH; Darmstadt, Germany
Ketamine bela-pharm GmbH & Co. KG; Vechta, Germany
LightCycler 480 SYBR Green I Master Roche Diagnostics; Rotkreuz, Switzerland
MACS BSA Stock Solution Miltenyi Biotec; Bergisch Gladbach, Germany
Magnesium Chloride (MgCl2) (25mM) Thermo Fisher Scientific Inc.; Waltham, MA, USA
Medetomidine ORION Pharma GmbH; Hamburg, Germany
Methanol, p.a. AppliChem GmbH; Darmstadt, Germany
Midazolam Roche Pharma AG; Grenzach-Wyhlen, Germany
N,N,N’,N’-Tetramethylethylenediamine
(TEMED)

AppliChem GmbH; Darmstadt, Germany

Naloxone PUREN Pharma GmbH & Co. KG; München,
Germany

Nonfat Dried Milk Powder AppliChem GmbH; Darmstadt, Germany
Paraffin Richard-Allan Scientific, Thermo Fisher Scientific

Inc.; Waltham, MA, USA
Paraformaldehyde (PFA) AppliChem GmbH; Darmstadt, Germany
Penicillin-Streptomycin (10,000U/ml) Gibco, Thermo Fisher Scientific Inc.; Waltham,

MA, USA
PhosSTOP Phosphatase Inhibitor Cocktail
Tablets

Roche Diagnostics; Rotkreuz, Switzerland

Ponceau S Solution Sigma-Aldrich; Saint Louis, MO, USA
Potassium Chloride (KCl) AppliChem GmbH; Darmstadt, Germany
Potassium Dihydrogen Phosphate (KH2PO4) AppliChem GmbH; Darmstadt, Germany
Quick Start Bradford 1x Dye Reagent Bio-Rad Laboratories, Inc.; Hercules, CA, USA
Random Hexamers (50µM) Invitrogen, Thermo Fisher Scientific Inc.;

Waltham, MA, USA
Recombinant Human Transforming Growth
Factor Beta 1 (TGF-β) Protein

R&D Systems, Inc.; Minneapolis, MN, USA

Restore PLUS Western Blot Stripping Buffer Thermo Fisher Scientific Inc.; Waltham, MA, USA
RNAlater Stabilization Solution Invitrogen, Thermo Fisher Scientific Inc.;

Waltham, MA, USA
Roti-Block Carl Roth GmbH & Co. KG; Karlsruhe, Germany
Rotiphorese Gel 30 (37.5:1) Carl Roth GmbH & Co. KG; Karlsruhe, Germany
Saline 0.9% B. Braun Melsungen AG; Melsungen, Germany
Sodium Chloride (NaCl) AppliChem GmbH; Darmstadt, Germany
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Product Manufacturer/Distributor

Sodium Dodecyl Sulfate (SDS) Carl Roth GmbH & Co. KG; Karlsruhe, Germany
SuperSignal West Dura Extended Duration
Substrate

Thermo Fisher Scientific Inc.; Waltham, MA, USA

SuperSignal West Femto Maximum
Sensitivity Substrate

Thermo Fisher Scientific Inc.; Waltham, MA, USA

Tissue Protein Extraction Reagent (T-PER) Thermo Fisher Scientific Inc.; Waltham, MA, USA
Tris-(Hydroxymethyl)-Aminomethane (Tris) AppliChem GmbH; Darmstadt, Germany
Trypan Blue Solution Sigma-Aldrich; Saint Louis, MO, USA
Tween 20 AppliChem GmbH; Darmstadt, Germany
UltraPure DNase/RNase-Free Distilled
Water

Invitrogen, Thermo Fisher Scientific Inc.;
Waltham, MA, USA

Xylazine bela-pharm GmbH & Co. KG; Vechta, Germany
Xylene AppliChem GmbH; Darmstadt, Germany

Table 3.11: Recipes.

Solution Compound Concentration/
Amount

(-)medium Dulbecco’s modified Eagle medium (DMEM)
Glucose
GlutaMAX
Penicillin-Streptomycin
HEPES

500ml
1.8g
10ml
5ml
5ml

(+)medium (-)medium
DNase I

250ml
10mg

APS 10% APS
H2O

10g
100ml

DTT solution DTT
H2O

0.61g
1ml

FACS buffer Phosphate-buffered saline (PBS) (1x)
BSA
EDTA

500ml
2% (w/v)
2mM

Laemmli sample buffer
(4x)

87% Glycerol
Tris/HCl 1.5M pH 8.8
Bromophenol blue
SDS
H2O (add up to a total volume of 9ml)
DTT solution (freshly added)

4ml
1.3ml
0.002g
0.8g
.
1ml

PBS pH 7.4 (10x) KCl
KH2PO4

Na2HPO4

NaCl
H2O (add up to a total volume of 2,000ml)
pH is adjusted to 7.4

4g
4g
28.8g
160g
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Solution Compound Concentration/
Amount

Running buffer (10x) Glycine
SDS
Tris
H2O (add up to a total volume of 2,000ml)

288.2g
20g
60.6g

SDS 10% SDS
H2O

10g
100ml

Transfer buffer (10x) Glycine
Tris
H2O (add up to a total volume of 2,000ml)

288g
60.6g

Transfer buffer (1x) Transfer buffer (10x)
Methanol
H2O

100ml
200ml
700ml

Tris/HCl 0.5M pH 6.8 Tris
H2O (add up to a total volume of 500ml)
HCl (pH is adjusted to 6.8)

30.285g

Tris/HCl 1.5M pH 8.8 Tris
H2O (add up to a total volume of 500ml)
HCl (pH is adjusted to 8.8)

90.855g

Tris-buffered saline
(TBS) pH 7.6 (10x)

NaCl
Tris
H2O (add up to a total volume of 1,000ml)
HCl (pH is adjusted to 7.6)

80g
24.2g

Tris-buffered saline with
Tween 20 (TBST) (1x)

TBS pH 7.6 (10x)
H2O
Tween 20

100ml
900ml
0.5ml

Western blot resolving gel
(10%)

H2O
Rotiphorese gel 30
Tris/HCl 1.5M pH 8.8
SDS 10%
APS 10%
TEMED

4.0ml
3.3ml
2.5ml
0.1ml
0.1ml
4µl

Western blot stacking gel
(5%)

H2O
Rotiphorese gel 30
Tris/HCl 0.5M pH 6.8
SDS 10%
APS 10%
TEMED

1.4ml
0.33ml
0.25ml
0.02ml
0.02ml
2µl
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3.1.7 Standards and kits

Table 3.12: Standards.

Product Manufacturer/Distributor

peqGOLD Protein Marker V VWR International, LLC; Radnor, PA, USA
Quick Start Bovine Serum Albumin
Standard (2mg/ml)

Bio-Rad Laboratories, Inc.; Hercules, CA, USA

Table 3.13: Kits.

Product Manufacturer/Distributor

peqGOLD DNase I Digest Kit VWR International, LLC; Radnor, PA, USA
peqGOLD Total Ribonucleic Acid (RNA)
Kit

VWR International, LLC; Radnor, PA, USA

Roti-Quick-Kit Carl Roth GmbH & Co. KG; Karlsruhe, Germany

3.1.8 Enzymes

Table 3.14: Enzymes.

Product Manufacturer/Distributor

Dispase Corning, Inc.; Corning, NY, USA
DNase I AppliChem GmbH; Darmstadt, Germany
MuLV Reverse Transcriptase (50U/µl) Applied Biosystems, Thermo Fisher Scientific Inc.;

Waltham, MA, USA
Pronase E Sigma-Aldrich; Saint Louis, MO, USA
RNase Inhibitor (20U/µl) Applied Biosystems, Thermo Fisher Scientific Inc.;

Waltham, MA, USA
Trypsin Neutralizing Solution Lonza Group AG; Basel, Switzerland
Trypsin/EDTA Solution Lonza Group AG; Basel, Switzerland
Trypsin-EDTA (0.25%) Gibco, Thermo Fisher Scientific Inc.; Waltham,

MA, USA
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3.1.9 Cell culture media

Table 3.15: Cell culture media.

Product Manufacturer/Distributor

Bronchial Epithelial Basal Medium (BEBM)
± BEGM SingleQuots

Lonza Group AG; Basel, Switzerland

DMEM - Low Glucose Sigma-Aldrich; Saint Louis, MO, USA
DMEM/F-12 Gibco, Thermo Fisher Scientific Inc.; Waltham,

MA, USA
Minimum Essential Media (MEM) -
L-Glutamine

Gibco, Thermo Fisher Scientific Inc.; Waltham,
MA, USA

3.1.10 Oligonucleotides

Primers for quantitative real-time polymerase chain reaction (qRT-PCR) were designed
with the Primer-BLAST web application [97] (https://www.ncbi.nlm.nih.gov/tools/
primer-blast/index.cgi; National Center for Biotechnology Information (NCBI); last
accessed: 10 October 2018). Therefore, the required sequences were extracted from the
NCBI nucleotide database (https://www.ncbi.nlm.nih.gov/nuccore; National Cen-
ter for Biotechnology Information (NCBI); last accessed: 10 October 2018).
Primers were designed to display a melting temperature of 61-67°C (optimum 64°C)

and to include all transcript variants of the respective gene. Furthermore, primers were
required to be exon-exon junction spanning, to provide a PCR product of 80-150 base
pairs (bp) length, and to display a low self complementarity with a GC content of 40-60%.
The oligonucleotides were purchased from Eurofins Genomics Germany GmbH, Ebers-
berg, Germany. Reconstitution of the primers was performed with DNase/RNase-free
distilled water. Subsequently, the primers were tested with serial dilutions of comple-
mentary deoxyribonucleic acid (cDNA) samples (undiluted, 1:8, 1:64, 1:512) for their
efficiency, specificity, and the appearance of primer dimers.

Table 3.16: Human qRT-PCR primers.

Gene Direction Sequence (5’ - 3’)

ANLN Forward
Reverse

GTTCTGGACAAGGTCCCCTTT
CCAGGCACCAAAACCACTAAC

BUB1 Forward
Reverse

CCTTCAAAACCAAAGGAGGAAGT
GTGAAGTCTCCTGGGCTCTT

CTHRC1 Forward
Reverse

GTGGCTCACTTCGGCTAAAA
CACAAAGTCCTTCCACAGAAGA
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Gene Direction Sequence (5’ - 3’)

GPR87 Forward
Reverse

CCAGCCACCACAATGAAAGAAAT
CGCTCCTGTTGCCTGAATTG

HPRT Forward
Reverse

AAGGACCCCACGAAGTGTTG
GGCTTTGTATTTTGCTTTTCCA

PAI1 Forward
Reverse

GACATCCTGGAACTGCCCTA
GGTCATGTTGCCTTTCCAGT

PSAT1 Forward
Reverse

GTGATTGTCCGTGATGACCTG
TGACGTAGATGCTGAAACATGG

Table 3.17: Murine qRT-PCR primers.

Gene Direction Sequence (5’ - 3’)

Anln Forward
Reverse

GCCTCCAAGTCCAAGGCTAT
GGGTAAAGTTGCTGGTACGC

Bub1 Forward
Reverse

GCCTGATGTTAGTCTAGTATGTGTT
CCTGTGGTTTCTCTCCTGAAC

Cthrc1 Forward
Reverse

AGGGAGGTGGTAGACCTGTATAA
CCCCTTTGAATCCATCCCGA

Gpr87 Forward
Reverse

CGCCACAATGAAAGAAATGAAACC
AGCCCCATTTTCTAGTTGTGATG

Hprt Forward
Reverse

CCTAAGATGAGCGCAAGTTGAA
CCACAGGACTAGAACACCTGCTAA

Psat1 Forward
Reverse

TGGAAGGAGTGCTGACTACG
GCTTGGGTCTGGAATTTTTGTG

3.1.11 Antibodies

The primary antibodies for western blot were diluted in Roti-Block, which permitted the
storage of the antibodies at 4°C for several weeks and multiple reuse of the antibodies.

Table 3.18: Primary antibodies, western blot.

Antibody Manufacturer/Distributor Species Dilution

Anti-α-SMA (A5228) Sigma-Aldrich; Saint Louis, MO, USA mouse 1:2,000
Anti-β-ACTIN (A3854) Sigma-Aldrich; Saint Louis, MO, USA mouse 1:50,000
Anti-CNN1 (NB110-55650) Novus Biologicals, LLC; Centennial, CO,

USA
rabbit 1:1,000

25



Materials and methods

Antibody Manufacturer/Distributor Species Dilution

Anti-GPR87 (NBP2-16728) Novus Biologicals, LLC; Centennial, CO,
USA

rabbit 1:1,000

Anti-PSAT1 (PA5-22124) Invitrogen, Thermo Fisher Scientific Inc.;
Waltham, MA, USA

rabbit 1:1,000

Table 3.19: Secondary antibodies, western blot.

Antibody Manufacturer/Distributor Species Dilution

Amersham ECL Mouse IgG,
HRP-Linked (NA931)

GE Healthcare; Chicago, IL, USA sheep 1:4,000

Amersham ECL Rabbit
IgG, HRP-Linked (NA934)

GE Healthcare; Chicago, IL, USA donkey 1:10,000

Table 3.20: Primary antibodies and isotype controls, FACS analysis.

Antibody Manufacturer/Distributor Species Dilution

Anti-CD326 (EpCAM)
(12-9326-42)

Invitrogen, Thermo Fisher Scientific Inc.;
Waltham, MA, USA

mouse 1:50

Anti-GPR87 (LS-A1580) LifeSpan Biosciences, Inc.; Seattle, WA,
USA

rabbit 1:200

Mouse IgG1 Kappa Isotype
Control, PE (12-4714-42)

Invitrogen, Thermo Fisher Scientific Inc.;
Waltham, MA, USA

mouse 1:50

Table 3.21: Secondary antibodies, FACS analysis.

Antibody Manufacturer/Distributor Species Dilution

Goat Anti-Rabbit IgG H&L
(ab130805)

Abcam plc; Cambridge, United Kingdom goat 1:50
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3.2 Methods

3.2.1 In silico methods

3.2.1.1 Public transcriptome profiling datasets

For the subsequent study we used publicly available transcriptome profiling datasets
from either microarray or RNA sequencing (RNA-Seq) experiments. Raw data was
downloaded from Gene Expression Omnibus (GEO) [98, 99] (https://www.ncbi.nlm.
nih.gov/geo/; National Center for Biotechnology Information (NCBI); last accessed: 10
October 2018) and the European Nucleotide Archive (ENA) [100] (https://www.ebi.
ac.uk/ena; European Molecular Biology Laboratory, European Bioinformatics Institute;
last accessed: 10 October 2018). Table 3.22 summarizes the analyzed datasets.

Table 3.22: Transcriptome profiling datasets.

Accession
number

Samples Description Contributors

GSE47460
[101–104]

• Idiopathic pulmonary
fibrosis (n = 121)

• Controls (n = 91)

Transcriptome analysis of different
interstitial lung diseases and
chronic obstructive pulmonary
disease (COPD), collected by the
Lung Genomics Research
Consortium.

Tedrow J,
Kaminski N,
Guardela BJ,
Schwartz DA

GSE32537
[105]

• Idiopathic pulmonary
fibrosis (n = 119)

• Controls (n = 50)

Transcriptome analysis of different
interstitial lung diseases.

Yang IV,
Coldren CD,
Leach SM,
Murphy E,
Lin J,
Burton R,
Groshong S,
Cool C,
Cosgrove GP,
Lynch D,
Brown KK,
Schwarz MI,
Fingerlin TE,
Schwartz DA

GSE44077
[106]

• Non-small cell lung
cancer (n = 37)

• Controls (n = 45)

Transcriptome analysis of NSCLC
and the proximate lung tissue.

Kadara H,
Yoo S,
Wistuba II

GSE43458
[107]

• Non-small cell lung
cancer (n = 80)

• Controls (n = 30)

Transcriptome analysis of lung
adenocarcinoma in nonsmoker and
smoker specimens.

Kadara H,
Wistuba II
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Accession
number

Samples Description Contributors

GSE18842
[108]

• Non-small cell lung
cancer (n = 46)

• Controls (n = 45)

Transcriptome analysis of NSCLC. Ramos AS,
Morales MG,
Gomez-Capilla
JA,
Muriel VP,
Farez-Vidal ME

GSE10921
[109]

• IPF lung fibroblasts
(n = 4)

• Control lung
fibroblasts (n = 3)

Transcriptome analysis of isolated
human lung fibroblasts from IPF
and control specimens.

Vuga LJ,
Kaminski N

GSE94555
[110]
(SRP098915)

• Idiopathic pulmonary
fibrosis (n = 3)

• Controls (n = 3)

Transcriptome analysis of human
alveolar epithelial type II (ATII)
cells in IPF.

Xu Y,
Whitsett J,
Stripp B,
Mizuno T,
Du Y

pmATII
[111]

Each sample (n)
consisted of six mice:

• pmATII cells from
bleomycin-induced
experimental lung
fibrosis (n = 3)

• pmATII cells from
control mice (n = 3)

Transcriptome analysis of isolated
primary ATII cells from
bleomycin-induced experimental
lung fibrosis in mice.

Königshoff M,
Kramer M,
Balsara N,
Wilhelm J,
Amarie OV,
Jahn A,
Rose F,
Fink L,
Seeger W,
Schaefer L,
Günther A,
Eickelberg O

3.2.1.2 Processing of RNA-Seq and microarray data

RNA-Seq data files were retrieved in the FASTQ data format and further handled
with the Salmon v0.9.1 software [112]. The required transcriptome index was gener-
ated from the latest Ensembl GRCh38 cDNA release 91 transcriptome data [113] (ftp:
//ftp.ensembl.org/pub/release-91/fasta/homo_sapiens/cdna; European Molecu-
lar Biology Laboratory, European Bioinformatics Institute, Wellcome Sanger Institute;
last accessed: 10 October 2018) with the recommended k -mer size of 31. Subsequently,
the raw RNA-Seq data files were processed with the quasi-mapping-based mode of the
Salmon software. The results of the transcript-level abundance quantification were fur-
ther analyzed with the R statistical software version 3.4.3 [114] and the RStudio version
1.1.383 [115], using the tximport package [116] to generate the definite gene-level count
estimates. Eventually, the DESeq2 package [117] was applied to sort out those genes
with less than 10 counts over all samples and to create a log2-based output of differential
gene expression for subsequent experiments.
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Microarray data files were handled with various software packages of the Bioconductor
release 3.6 [95, 96]. The affy package [118] was used to achieve background correction,
normalization, and log2 transformation of the expression values from Affymetrix mi-
croarray files. Subsequently, the Biobase [95] and limma [119] packages were applied to
generate an output file of differential gene expression for further analyses.

3.2.1.3 Differentially expressed genes

Microsoft Excel was used to assign the HUGO gene nomenclature committee (HGNC)
gene symbols to the respective microarray probe IDs or Ensembl gene IDs of each data
output (3.2.1.2). Entries without an assigned HGNC gene symbol were excluded from
further analyses. Subsequently, differentially expressed genes (DEGs) were extracted
and the respective gene sets were created. DEGs were specified as those genes with a
|log2 fold change| > 1.0 of expression between two conditions (e.g. disease and control)
and an adjusted p-value < 0.05 [120].

3.2.1.4 Venn diagram

Venn diagrams represent a significant tool to compare multiple lists of items. Thus, they
ease the creation and visualization of the overlap of predefined sets of genes. HGNC
gene symbols of up to three gene sets were extracted and the creation of Venn diagrams
was achieved with R statistical software version 3.4.3 [114], the RStudio version 1.1.383
[115], and the venn.diagram function of the VennDiagram package [121] with custom
parameters. All genes included in a Venn diagram were set as 100 percent and the
percentage of the respective areas was calculated [120]. Venn diagrams are not pictured
area-proportional. Finally, gene lists of the overlapping areas were generated using the
calculate.overlap function.

3.2.1.5 Annotation enrichment analysis

To analyze the enrichment of gene annotations, the public reference databases of the
Gene Ontology (GO) Consortium [122, 123], the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [124, 125], and the REACTOME project [126] were utilized. The
actual annotation enrichment analyses were conducted either with the stringApp v1.3.2
[127, 128] of the Cytoscape software platform v3.6.1 [129] or the GeneSCF v1.1 tool [130].
Results were further analyzed with Microsoft Excel. KEGG and REACTOME pathways
were stated significantly overrepresented if the analysis encountered more than two genes
of a particular pathway in a predefined set of genes, combined with a Benjamini and
Hochberg false discovery rate (FDR) < 0.05 [120]. GO terms were stated significantly
overrepresented if the analysis encountered at least two genes of a specific GO term in
a predefined set of genes, combined with a FDR < 0.05 [120].
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3.2.1.6 Protein-protein interaction networks

The stringApp v1.3.2 [127, 128] and the yFiles Layout Algorithms v1.0 of the Cytoscape
software platform v3.6.1 [129] were used to generate protein-protein interaction (PPI)
networks. The limit for the confidence score of protein-protein interactions was set to
0.9 for the subsequent compilation. Further analysis of the PPI networks was performed
with the stringApp v1.3.2.

3.2.1.7 BioGPS

The gene annotation database BioGPS [131–133] (http://biogps.org/#goto=welcome;
The Scripps Research Institute (TSRI); last accessed: 25 January 2019) was used to
explore the tissue- and cell-specific expression of single genes. The "human gene atlas"
microarray dataset (GSE1133 ) [134] was selected for the analysis. Results were saved
as high resolution images. Expression values were presented as arbitrary fluorescence
units.

3.2.1.8 Principal component analysis

Principal component analysis (PCA) was performed with the R statistical software v3.4.3
[114] and the RStudio v1.1.383 [115], using the R packages FactoMineR v1.41 [135],
devtools v1.13.6, and factoextra v1.0.5. Gene expression values were extracted from
the respective microarray dataset (Table 3.22). Subsequently, the PCA function was
used for the actual principal component analysis. Scree plots were generated with the
fviz_screeplot function and PCA biplots with the fviz_pca_biplot function.

3.2.1.9 Gene set enrichment analysis

Microarray and RNA-Seq data (Table 3.22), as well as the generated lists of DEGs
(3.2.1.3) were prepared for gene set enrichment analysis (GSEA) [136, 137] according
to the GSEA Wiki (http://software.broadinstitute.org/cancer/software/gsea/
wiki/index.php/Data_formats; Broad Institute of the Massachusetts Institute of Tech-
nology and Harvard; last accessed: 25 January 2019) and the respective data files were
created (Table 3.23).

Table 3.23: GSEA data files.

Data file Extension Content

Gene cluster text file format *.gct unranked datasets
Ranked list file format *.rnk pre-ranked datasets
Gene matrix file format *.gmx gene set files
Categorical class file format *.cls phenotype data
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Subsequently, the required data files were imported and gene set enrichment analyses
were executed with the GSEA software v3.0 [136, 137]. Basic and required settings were
applied as listed below (Table 3.24). The "phenotype" permutation type was used for
datasets with ≥ 14 samples, "gene_set" was used for datasets with less than 14 samples.
Default options were selected for the advanced settings. Gene sets were considered to
be significantly enriched with a nominal p-value < 0.05 and a FDR q-value < 0.05 [120].
The enrichment plots and heatmaps were created with the GSEA software.

Table 3.24: GSEA software settings.

Option Value

Number of permutations 1,000
Permutation type phenotype OR gene_set
Enrichment statistic weighted
Metric for ranking genes signal2noise
Gene list sorting mode real
Gene list ordering mode descending

3.2.1.10 Statistical analysis

In general, either GraphPad Prism version 5.00 for Windows or the R statistical software
v3.4.3 with RStudio v1.1.383 was used to conduct the statistical analyses. Furthermore,
all statistics on the enrichment of gene sets were computed automatically by the GSEA
software v3.0. Experimental groups were analyzed with the paired t-test (two-tailed), the
unpaired t-test (two-tailed), the repeated measures ANOVA with Bonferroni’s multiple
comparison test, or the one-way ANOVA with Bonferroni’s multiple comparison test.
Association of gene expression and pulmonary function was assessed with the Pearson
correlation analysis and linear regression. Further details on the respective statistical
method are described in the corresponding figure legend or paragraph of the results
section. If applicable, all values and data are presented as mean ± standard deviation
(SD). Results were stated statistically significant with a p-value < 0.05 (significance: *
p<0.05; ** p<0.01; *** p<0.001).

3.2.2 Animal model of bleomycin-induced pulmonary fibrosis

The official instructions and guidelines on animal experiments by the Helmholtz Zentrum
München were applied and all animal experiments were beforehand authorized by the
district government of Upper Bavaria, Germany (AZ: 55.2-1-54-2532-88-2012).

To standardize the mouse model used for this thesis, the wild-type C57BL/6N mouse
strain with an average age of six to eight weeks and body weight (BW) of 21-23g was
used for all experiments. All mice were subject to standard housing conditions, including
unrestricted access to drinking water and laboratory rodent diet.
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Subsequently, mice were anesthetized with an intraperitoneal (i.p.) injection of medeto-
midine (500µg/kg BW), midazolam (5mg/kg BW), and fentanyl (50µg/kg BW) (MMF)
and placed on a warming plate to keep their body temperature equal during the re-
maining process. The sedated mice were randomly divided into the control or bleomycin
group, weighed, marked with ear punches, and intratracheally intubated with an intra-
venous 20G catheter. Mice of the bleomycin group were administered a single dose of
2U/kg BW bleomycin sulfate (Bleo) dissolved in sterile Dulbecco’s phosphate-buffered
saline (DPBS) [120]. Mice of the control group were administered 50µl sterile DPBS
per animal [120]. Administration into the lung was achieved with the MicroSprayer
Aerosolizer. The anesthesia was antagonized by a subcutaneous (s.c.) injection of ati-
pamezole (2.5mg/kg BW), flumazenil (500µg/kg BW), and naloxone (1200µg/kg BW).
Mice were housed for another 14 days to develop bleomycin-induced pulmonary fibrosis

while the BW was controlled on day (d) 1, d7, d10, and d14. Eventually, mice were
sacrificed by i.p. injection of ketamine (100mg/kg BW) combined with xylazine (5mg/kg
BW) and subsequent exsanguination. To remove all of the blood, lungs were washed
out through the right ventricle of the heart with 20ml of 0.9% saline and eventually
harvested.

3.2.3 Cell biological methods

3.2.3.1 Isolation of primary murine alveolar epithelial type II cells

Isolation of primary murine alveolar epithelial type II (pmATII) cells was performed by
Julia Kipp, Anastasia van den Berg, and Kathrin Mutze. The applied method has been
published [111, 138] and was further modified by Mutze et al. [139].
Harvested lungs (3.2.2) were intratracheally intubated to inject 1.5ml of dispase and

0.3ml of 1% low gelling temperature agarose per lung. Afterwards, lungs were rinsed from
the outside with 0.9% saline and placed in 1.0ml dispase for 45min at room temperature.
Isolation of pmATII cells was further accomplished by separating each lung into its lobes,
which were placed in 5ml (+)medium and minced with forceps. The cell suspension was
filtered consecutively with 100µm, 20µm, and 10µm nylon filters. Subsequently, the
filtrate was centrifuged for 10min at 200g/RCF and 15°C. The remaining cell pellet was
resuspended in 1.0ml (+)medium and supplemented with (-)medium to a total amount
of 40ml, followed by incubation for 30min at 37°C in a humidified CO2 incubator on
uncoated petri dishes. Supernatant with floating cells was collected and centrifuged for
10min at 200g/RCF and 15°C, whereas adherent fibroblasts were discarded.
MACS cell separation buffer was added and cells were counted using the Neubauer

chamber. For depletion of CD31+ endothelial cells and CD45+ leukocytes, 90µl of MACS
cell separation buffer and 10µl of mouse CD31 and CD45 MicroBeads were added per 107

cells. The MACS separator was used, and the flow-through was collected and centrifuged
for 10min at 200g/RCF and 15°C. Eventually, the remaining cell pellet was resuspended
in (-)medium with 10% FBS and cells were counted using the Neubauer chamber. Cell
viability was assessed and each sample was pooled of four individual mice. The successful
isolation of pmATII cells was continuously monitored by verifying the cell purity with
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fluorescence-activated cell sorting (FACS) or immunofluorescence. Samples were either
snap-frozen or directly used for cell culture (3.2.3.3).

3.2.3.2 Isolation of primary human bronchial epithelial cells

Isolation of primary human bronchial epithelial cells (phBECs) was performed by Anas-
tasia van den Berg according to the previously published protocol by Smirnova et al.
[140] with modifications.

Only healthy lung tissue with regular histology was included for the isolation of ph-
BECs. The human lung specimens were placed in cold minimum essential media (MEM)
complemented with L-glutamine and 1% penicillin/streptomycin. Peripheral airways
were carefully dissected, the surrounding tissue was removed, and the remaining bronchi
were sliced lengthwise. The bronchial specimens were thoroughly rinsed with MEM com-
plemented with L-glutamine and 1% penicillin/streptomycin and placed in 1.0mg/ml
Pronase E for 20h at 4°C.
Subsequently, the epithelial cells were detached by scraping on the inner bronchial

surface with a scalpel. Cell aggregates were further divided and a single-cell suspension
was created by aspirating the cells multiple times with 20G and 26G cannulas. Fi-
nally, the cells were centrifuged for 5min at 300g/RCF and 4°C, and the cell pellet was
resuspended in BEBM basal medium supplemented with BEGM SingleQuots and 1%
penicillin/streptomycin. This cell suspension was incubated for 2-3h at 37°C in a hu-
midified CO2 incubator on uncoated petri dishes. Adherent fibroblasts were discarded,
while the supernatant with isolated phBECs was used for cell culture (3.2.3.3) or frozen.

3.2.3.3 Cell culture

If applicable, all cells were stored frozen in liquid nitrogen with 10% dimethyl sulfoxide
(DMSO) added. Before the initial seeding procedure, the frozen cells were quickly thawed
in a warm water bath at 37°C and resuspended in 13ml of their respective medium (Table
3.25). This cell suspension was centrifuged for 10min at 300g/RCF and room temper-
ature, the supernatant was aspirated, and the remaining cell pellet was resuspended in
the appropriate cell culture medium with 1% penicillin/streptomycin (Table 3.25) and
seeded in cell culture flasks or petri dishes.

All cell lines and isolated primary cells were cultured in their specific medium com-
plemented with 1% penicillin/streptomycin and FBS or individual growth supplements
(Table 3.25), in a humidified CO2 incubator with 37°C, 5.0% CO2, and 96.0% relative
humidity (%rH).

Passaging of all cell lines was carried out with their respective split ratio (Table 3.25),
as soon as the cell density reached approximately 80% of the cell culture flask or petri
dish. In this case, cells were washed with prewarmed sterile DPBS and incubated with
2ml trypsin for 5min at 37°C. For enhanced detachment, the cell culture flask or petri
dish was gently tapped against the hand. Cell culture medium was added to inactivate
the trypsin digestion. By thoroughly pipetting, a single-cell suspension was created and
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resuspended in its appropriate medium in a new cell culture flask or petri dish. Cell
lines were used and subcultured up to passage (p) 25.
Primary human bronchial epithelial cells were cultured on 10cm petri dishes coated

with collagen type 1 solution. The BEBM basal medium supplemented with BEGM
SingleQuots and 1% penicillin/streptomycin was changed every second day until approx-
imately 80% confluence was reached. Cells were washed with 5ml of HEPES buffered
saline solution to prevent the inactivation of trypsin. Subsequently, the cells were incu-
bated in 2ml trypsin/EDTA solution for 3-5min at 37°C and further detached by taping
against the petri dish. Trypsin was deactivated with 4ml trypsin neutralizing solution.
The cell suspension was centrifuged for 5min at 300g/RCF and room temperature and
resuspended in BEBM basal medium supplemented with BEGM SingleQuots and 1%
penicillin/streptomycin. Undifferentiated phBECs were cultured from p0 to p4.
Cell culture of primary murine alveolar epithelial type II cells was only possible directly

after the isolation. In general, the pmATII cells were cultured for at most 5 days because
of increasing alterations in the cell morphology [120].

Table 3.25: Cell culture media, additives, and split ratios.

Cell type Medium and additives Split ratio

16HBE14o− MEM + L-glutamine + 10% FBS 1:3
A549 DMEM/F-12 + 10% FBS 1:10
Primary human bronchial epithelial cells BEBM + BEGM SingleQuots 1:3, 1:4
Primary murine ATII cells (-)medium + 10% FBS none

3.2.3.4 Cell treatments

For the treatment of cells, a single-cell suspension was created and cells were counted
using the Neubauer chamber. The indicated number of cells was seeded in cell culture
well plates or petri dishes (Table 3.26) and incubated in their appropriate medium for
24h at 37°C (Table 3.25).

Table 3.26: Number of cells and cell culture dish for cell treatments.

Cell type Number of cells Cell culture dish

16HBE14o− 300,000 6-well cell culture plate
A549 300,000 6-well cell culture plate
Primary human bronchial epithelial cells 10,000 cells/cm2 6-well cell culture plate,

petri dishes
Primary murine ATII cells 1,000,000 12-well cell culture plate

34



Materials and methods

Subsequently, the corresponding starvation medium with 0.1% FBS or without the
BEGM SingleQuots was applied and the cells were starved for 24h at 37°C, to synchronize
their cell cycle and to deprive the cells of the present growth factors. Finally, the specific
treatment was added for the indicated period of time (Table 3.27). The treatment was
stopped by washing the cells with cold sterile DPBS. Cell culture well plates or petri
dishes were stored at -80°C for further processing.

Table 3.27: Cell treatment, concentrations, and time points.

Cell treatment Concentrations Time points

TGF-β 2ng/ml
5ng/ml

24h
4h, 6h, 24h

3.2.4 RNA expression analysis

3.2.4.1 RNA isolation

The complete process of RNA isolation from cell and tissue specimens was achieved
with the peqGOLD Total RNA Kit by adopting the manufacturer’s protocol with some
modifications.

3.2.4.1.1 Cells Cells were lysed by adding 350µl of RNA lysis buffer per well and
thoroughly scraping the cells from the cell culture plate with a cell lifter. The lysate
was pipetted onto deoxyribonucleic acid (DNA) removing columns, centrifuged for 1min
at 12,000g/RCF and 25°C, and 70% ethanol was added (1:1 ratio). This mixture was
transferred onto PerfectBind RNA columns. Hereafter, the same protocol was used for
the RNA isolation of cells and tissue samples (3.2.4.1.2).

The PerfectBind RNA columns were centrifuged for 1min at 10,000g/RCF and 25°C,
the flow-through was discarded, 400µl RNA wash buffer 1 were added, and the columns
were again centrifuged for 30sec at 10,000g/RCF and 25°C. The remaining DNA was
digested by using the peqGOLD DNase I Digest Kit with 15min incubation time at room
temperature. Subsequently, the PerfectBind RNA columns were washed successively
with 400µl RNA wash buffer 1 and twice with 600µl RNA wash buffer 2. The columns
were dried by centrifugation for 2min at 10,000g/RCF and 25°C. Eventually, the RNA
was eluted by adding 43µl of RNase-free water to each column and incubation for 5min
at room temperature. The isolated RNA was stored at -80°C.

3.2.4.1.2 Tissue Tissue specimens were homogenized in cryogenic tubes with 9mm
steel balls, using the Mikro-Dismembrator S with 3,000 revolutions per minute (rpm)
for 30sec. The homogenized tissue powder was dissolved in 1ml Roti-Quick 1 of the
Roti-Quick-Kit and incubated for 20min on ice. Subsequently, the Mikro-Dismembrator
S was used again with 3,000rpm for 10sec and 1ml of Roti-Quick 2 was added. The tubes
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were incubated for another 10min on ice and centrifuged for 15min at 13,000g/RCF and
4°C. The upper aqueous layer was recovered for further processing, and 1ml of 70%
ethanol was added. This mixture was pipetted onto PerfectBind RNA columns. The
samples were further processed as described in 3.2.4.1.1.

3.2.4.2 Determination of RNA concentration

The RNA concentration was determined using the NanoDrop 1000 with 1.0µl of isolated
RNA. RNase-free water was used for the calibration and as the blank measurement. A
260/280 ratio of absorbance greater or equal to 2.0 for RNA was defined as pure RNA.

3.2.4.3 Synthesis of complementary DNA

The synthesis of complementary DNA (cDNA) was achieved with the Mastercycler
nexus. Therefore, a total amount of either 2µg or 1µg RNA diluted in 20µl RNase-
free water was denaturated for 10min at 70°C and subsequently cooled down to 4°C.
Reverse transcription was started by adding 20µl of the mixed reagents (Table 3.28),
followed by 10min incubation at 20°C, 75min at 43°C, 5min at 99°C, and cooling down
to 4°C. In general, the cDNA was diluted with RNase-free water in a 1:5 ratio and stored
at -20°C.

Table 3.28: Master mix for synthesis of cDNA by reverse transcription.

Reagent Stock
concentration

Final
concentration

Volume

10X PCR Buffer II 100mM 20mM 4µl
MgCl2 solution 25mM 10mM 8µl
dNTP mix 10mM 1mM 2µl
Random Hexamers 50µM 5µM 2µl
RNase Inhibitor 20U/µl 1U/µl 1µl
MuLV Reverse Transcriptase 50U/µl 5U/µl 2µl
H2O 1µl
Total volume 20µl

3.2.4.4 Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (qRT-PCR) was performed with a total
volume of either 10µl or 20µl per sample, using the LightCycler 480 Instrument II. The
corresponding compositions of the master mix for qRT-PCRs are shown in table 3.29.
The specific qRT-PCR conditions are indicated in table 3.30. In general, all samples were
pipetted at least as duplicates, and for every qRT-PCR no template controls (NTC)
of RNase-free water were included. Normalization of the messenger ribonucleic acid
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(mRNA) expression data was achieved by including the housekeeping gene human or
mouse hypoxanthine-guanine phosphoribosyltransferase (HPRT, Hprt) for every sample.
The qRT-PCR results were analyzed using the LightCycler 480 software version 1.5.

Melting curves were generated for every primer pair and analyzed for contamination of
the samples or primer dimers. The mRNA expression data and therefore the amount of
gene transcripts were calculated and presented as ∆Ct values. This was achieved by the
following calculation ∆Ct value = Ct housekeeping gene - Ct target.

Table 3.29: Master mix for qRT-PCRs.

Reagent Stock
concentration

Final
concentration

Volume
human

Volume
mouse

LightCycler 480
SYBR Green I Master

2x 1x 10µl 5µl

Primer mix 10µM Forward primer
10µM Reverse primer

0.5µM Forward primer
0.5µM Reverse primer

1µl 0.5µl

H2O 4µl 2µl
cDNA 5µl 2.5µl
Total volume 20µl 10µl

Table 3.30: Specific qRT-PCR conditions.

qRT-PCR stage Number of cycles Temperature Time

Pre-incubation 1x 50°C 2min
Initial denaturation 1x 95°C 5min
Denaturation
Annealing
Extension

45x 95°C
59°C
72°C

5sec
5sec
10sec

Melting curve 1x 95°C
60°C
97°C

5sec
1min
continuous

Cooling 1x 40°C 30sec

3.2.5 Protein analysis

3.2.5.1 Protein isolation

Frozen tissue specimens were homogenized in cryogenic tubes with 9mm steel balls, using
the Mikro-Dismembrator S with 3,000rpm for 30sec. The homogenized tissue powder
was dissolved in 600µl of the lysis buffer, which was made up of 10ml tissue protein
extraction reagent (T-PER) supplemented with one tablet of cOmplete, Mini, EDTA-free
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protease inhibitor cocktail and PhosSTOP phosphatase inhibitor, respectively. Lysates
were incubated on ice for at least 30min, thoroughly mixed by pipetting, and eventually
centrifuged for 30min at 14,000g/RCF and 4°C. The cell pellet was discarded, and the
protein containing supernatant was collected and stored at -80°C for further analysis.

3.2.5.2 Preparation of protein samples

The protein concentrations of the isolated samples were quantified with the Bradford
protein assay by adopting the manufacturer’s protocol. The quick start BSA standard
(2mg/ml) was diluted to prepare BSA samples with the concentrations of 2,000µg/ml,
1,500µg/ml, 1,000µg/ml, 750µg/ml, 500µg/ml, 250µg/ml, 125µg/ml, and 0µg/ml. Sub-
sequently, 5µl of each protein sample and BSA standard were pipetted into separate wells
of a 96-well plate and 250µl quick start Bradford 1x dye reagent were added per well.
All protein samples and BSA standards were pipetted at least as duplicates. In a final
step, the absorbance at 595nm was measured with the Sunrise absorbance microplate
reader, the BSA standard curve was generated, and the final protein concentrations were
calculated.
For western blot analysis, an equal amount of 10-15µg protein per sample was mixed

with Laemmli sample buffer, dithiothreitol (DTT), and T-PER. Subsequently, the sam-
ples were incubated at 95°C for 5min, cooled down on ice, and stored at -20°C.

3.2.5.3 Western blot analysis

Equal amounts of the preprocessed protein samples were loaded onto 10% SDS polyacry-
lamide gels and SDS-polyacrylamide gel electrophoresis (Page) was performed with the
Mini-PROTEAN tetra vertical electrophoresis cell and running buffer (1x). A voltage
of 90V was applied for 15min, which allowed for even migration of all protein samples.
Subsequently, the voltage was increased to 120V for 90min.
The transfer of protein samples from 10% SDS polyacrylamide gels to nitrocellulose

membranes was achieved in transfer buffer (1x) by wet electroblotting with 300mA
for 90min. Subsequently, the nitrocellulose membranes were blocked for 1h at room
temperature in either Roti-Block or TBST (1x) with 5% nonfat dried milk powder
added, depending on the respective primary antibody. Afterwards, the required primary
antibodies were diluted with Roti-Block in the indicated ratio (Table 3.18), followed by
incubation of the membranes in the respective primary antibody solution for 1h at room
temperature or overnight at 4°C.
The blots were thoroughly washed three times with TBST (1x) and subsequently in-

cubated for 1h at room temperature in the appropriate secondary antibody (Table 3.19),
which was diluted in TBST (1x) with 5% nonfat dried milk powder added. Thereafter,
the blots were washed again three times with TBST (1x). The detection of proteins
was enabled with enhanced chemiluminescence, which was imaged with the ChemiDoc
XRS+ system. To estimate the correct protein size, the peqGOLD protein-marker V
was included for every membrane. Furthermore, β-ACTIN was used as loading control.
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3.2.5.4 Densitometric analysis

The western blot results were saved as image files and analyzed with the Image Lab soft-
ware version 5.2.1. The volume and intensity of each band was calculated and exported.
Furthermore, each band intensity was normalized using the corresponding β-ACTIN
band intensity.

3.2.6 Histology

3.2.6.1 Preparation of lung tissue specimens

Fixation of either lung tissue blocks (human) or whole lungs (mouse) was accomplished
by incubation of the tissue sections in 4% PFA for 18-24h. Subsequently, the indicated
process (Table 3.31) was executed with the Microm STP420D tissue processor and the
processed lung specimens were embedded in paraffin blocks with the Microm EC 350
modular tissue embedding center. The paraffin-embedded tissue blocks were stored at
4°C and sliced into 3-4µm thick sections with the Hyrax M55 rotary microtome. Tissue
slices were mounted onto microscope slides.

Table 3.31: Protocol for the Microm STP420D tissue processor.

Program cycle Reagent Time

1 4% PFA 60min
2 4% PFA 60min
3 50% ethanol 60min
4 70% ethanol 60min
5 96% ethanol 60min
6 96% ethanol 60min
7 100% ethanol 60min
8 100% ethanol 60min
9 Xylene 60min
10 Xylene 60min
11 Paraffin 30min
12 Paraffin 45min
13 Paraffin 45min
14 Paraffin 45min

3.2.6.2 Hematoxylin and eosin staining

To perform the hematoxylin and eosin (H&E) staining, the mounted tissue slices were
deparaffinized and rehydrated (Table 3.32). Subsequently, tissue slices were incubated
in hematoxylin for 5min, rinsed with distilled H2O, placed in tap water for 15min, and
finally dipped in 70% ethanol with 0.3% HCl for differentiation.
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The mounted tissue slices were washed again with tap water for 5min and subsequently
rinsed with distilled H2O for 2min. This was followed by the incubation in Eosin Y
solution for 3min and another washing step with distilled H2O.
In a final step, the tissue was dehydrated with ethanol (70%, 80%, 90%, and 100%)

and incubated twice in xylene for 5min. The slides were sealed for long-term storage by
mounting a cover glass with Entellan mounting medium.

Table 3.32: Deparaffinization and rehydration of tissue slices.

Stage Reagent Time

1 Xylene 5min
2 Xylene 5min
3 100% ethanol 2min
4 100% ethanol 2min
5 90% ethanol 1min
6 80% ethanol 1min
7 70% ethanol 1min
8 Distilled H2O 30sec

3.2.7 Fluorescence-activated cell sorting

Initially, a single-cell suspension was created and cells were counted using the Neubauer
chamber (see 3.2.3.3). The required number of cells was transferred into the wells of
a 96-well plate for the staining procedure. A total number of 250,000 cells per single
staining and 500,000 cells as unstained control were used. Cells were washed twice with
FACS buffer and incubated in the dark for 30min at 4°C in the primary antibody, which
was diluted in FACS buffer (Table 3.20). Thereafter, cells were washed again twice with
the FACS buffer.
If required, cells were incubated in the dark for 30min at 4°C in the appropriate sec-

ondary antibody (Table 3.21). Subsequently, the cells were washed twice with FACS
buffer. Isotype controls were always included to check for non-specific background stain-
ing (Table 3.20). Finally, cells were incubated in 4% PFA for 15min at room temperature,
washed twice with FACS buffer, and transferred into FACS tubes.
The fluorescence-activated cell sorting was performed with the BD LSR II flow cy-

tometer, and the results were analyzed with the FlowJo software version 9.6.4.
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4 Results

Indicated parts of the presented results have been previously published in Ulke et al.
[120]. Adapted and reprinted with permission of the American Thoracic Society (p. III).

4.1 Common pattern of gene expression alterations in IPF and
NSCLC

Given the various reports about an epidemiological correlation and similarities in the
pathomechanisms of IPF and NSCLC, we hypothesized that further elucidating this
possible relationship between the two diseases might lead to a better understanding
of the IPF pathogenesis. Initially, we sought to identify and compare differentially
expressed genes (DEGs) from IPF and NSCLC patients by analyzing microarray data.

Figure 4.1: Overlap of DEGs from IPF and NSCLC. Venn diagrams were generated from gene
sets that included the DEGs (|log2 fold change| > 1; adjusted p-value < 0.05) of the IPF
(GSE47460 ) or NSCLC (GSE44077 ) microarray dataset. Overlap of (A) upregulated
(9.76%; n = 92) and (B) downregulated DEGs (13.1%; n = 119) from IPF and NSCLC.
Total number of genes in the respective Venn diagram was defined as 100 percent.

To start with, the two publicly available microarray datasets GSE47460 (chronic lung
diseases) [101, 103, 104] and GSE44077 (NSCLC) [106] were downloaded from Gene
Expression Omnibus (GEO) [98, 99] (https://www.ncbi.nlm.nih.gov/geo/; National
Center for Biotechnology Information (NCBI); last accessed: 10 October 2018). The
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GSE47460 microarray dataset consisted of samples from COPD, interstitial lung dis-
eases, and control cases [101, 103]. Therefore, the dataset was reworked by retaining only
the IPF (n = 121) and control samples (n = 91). Afterwards, differentially expressed
genes (|log2 fold change| > 1 and adjusted p-value < 0.05) were extracted from both
datasets. Gene sets were created by including either up- or downregulated genes from the
respective dataset and were labeled as IPF gene set 1 (GSE47460 ; upregulated DEGs;
n = 586), IPF gene set 2 (GSE47460 ; downregulated DEGs; n = 292), NSCLC gene set
1 (GSE44077 ; upregulated DEGs; n = 449), and NSCLC gene set 4 (GSE44077 ; down-
regulated DEGs; n = 737). The generated overlap (Figure 4.1) revealed a shared subset
of equally misregulated genes in IPF and NSCLC. These results gave a first impression
of possible similarities among DEGs in both diseases but required further validation.

4.1.1 Significant enrichment of DEGs from NSCLC in the GSE47460 microarray

Gene set enrichment analysis (GSEA) allows the parallel analysis of multiple gene lists
for their enrichment in one of two individual phenotypes (e.g. IPF vs. control) from a
single dataset [136, 137]. Therefore, GSEA was used to verify and statistically quantify
the aforementioned overlap of DEGs from IPF and NSCLC (Figure 4.1).

Figure 4.2: Overlap of DEGs from three individual NSCLC microarray datasets. The
NSCLC gene sets 1-6 of DEGs (|log2 fold change| > 1; adjusted p-value < 0.05) from
three independent NSCLC microarray datasets (GSE44077, GSE43458, GSE18842 ) were
combined as Venn diagrams. Overlap of (A) upregulated (8.91%; n = 151) and (B) down-
regulated DEGs (19.4%; n = 424) in NSCLC. Total number of genes in the respective Venn
diagram was defined as 100 percent.

To further increase the significance of the GSEA, the two additional and independent
NSCLC microarray datasets GSE43458 [107] and GSE18842 [108] were downloaded
from GEO. Subsequently, the DEGs were identified and added to the respective gene
sets, which were labeled as NSCLC gene set 2 (GSE43458 ; upregulated DEGs; n =
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268), NSCLC gene set 5 (GSE43458 ; downregulated DEGs; n = 652), NSCLC gene
set 3 (GSE18842 ; upregulated DEGs; n = 1520), and NSCLC gene set 6 (GSE18842 ;
downregulated DEGs; n = 1931). Comparison of the DEGs from all three NSCLC
datasets showed a surprisingly small central overlap for upregulated (8.91%; n = 151) and
downregulated genes (19.4%; n = 424) (Figure 4.2). Hence, these data demonstrated the
individuality of the different NSCLC microarray datasets and confirmed the importance
of including all three in the subsequent GSEA with their corresponding gene sets.

GSEA was conducted, using the reworked GSE47460 microarray dataset with its
associated phenotypes (IPF vs. control) as the rank-ordered gene list. The enrichment
of the NSCLC gene sets 1-6 was analyzed and is demonstrated in Figure 4.3. The
NSCLC gene sets 1-3 (Figure 4.3A-C) showed a significant enrichment (FDR q-value <
0.05; Nominal p-value < 0.05) in the IPF phenotype, while the NSCLC gene sets 4-6
(Figure 4.3D-F) showed a significant negative enrichment (FDR q-value < 0.05; Nominal
p-value < 0.05) in the control phenotype [120]. Enrichment results are shown in Table
4.1.

Figure 4.3: Representation of the NSCLC gene sets in IPF vs. control. Enrichment plots
of the (A) NSCLC gene set 1 (GSE44077 ), (B) NSCLC gene set 2 (GSE43458 ), (C)
NSCLC gene set 3 (GSE18842 ), (D) NSCLC gene set 4 (GSE44077 ), (E) NSCLC gene set
5 (GSE43458 ), and (F) NSCLC gene set 6 (GSE18842 ) in the IPF dataset (GSE47460 ).
Significant enrichment (FDR q-value < 0.05; Nominal p-value < 0.05) was observed for
(A-C) NSCLC gene sets 1-3 in the IPF phenotype and (D-F) NSCLC gene sets 4-6 in
the control phenotype [120]. (Figure 4.3A-C were published in Ulke et al. [120] - modified.)
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Table 4.1: GSEA results for Figure 4.3. (Data was published in Ulke et al. [120] - modified.)

Dataset &
Phenotype

Enrichment
plot

Enrichment
Score (ES)

Normalized
Enrichment
Score (NES)

Nominal
p-value

FDR
q-value

FWER
p-value

GSE47460
(IPF vs.
control)

Figure 4.3A 0.8133 1.5512 < 0.001 0.0197 0.0340
Figure 4.3B 0.8585 1.5517 < 0.001 0.0295 0.0340
Figure 4.3C 0.7023 1.6995 < 0.001 0.0062 0.0040
Figure 4.3D -0.6623 -1.5307 0.0294 0.0207 0.0370
Figure 4.3E -0.6705 -1.5373 0.0277 0.0295 0.0350
Figure 4.3F -0.5902 -1.6607 0.0098 0.0124 0.0100

The IPF phenotype was defined as those genes with a higher mean expression in
the IPF cases compared to the controls, and therefore included all the genes that were
upregulated in IPF. In contrary, the control phenotype was defined as those genes with
a higher mean expression in the control cases compared to IPF, and therefore included
the genes that were downregulated in IPF. Hence, the enrichment results in Table 4.1
revealed that the genes upregulated in the three individual NSCLC microarray datasets
were found to be significantly enriched in those genes upregulated over all IPF samples
from the GSE47460 microarray dataset [120]. In line with these results, the genes
downregulated in the three individual NSCLC microarray datasets were found to be
significantly enriched among the genes downregulated over all IPF samples [120].
In a final step, all DEGs included in the respective NSCLC gene set 1-6 were listed

and their expression values were extracted from the GSE47460 dataset and visualized
as heatmaps (Figure 4.4 and 4.5). Interestingly, all six NSCLC gene sets were able
to produce a noticeable clustering of the IPF and control patients, which implied that
DEGs from NSCLC were also differentially expressed in IPF compared to control [120].
Overall, these results indicated the existence of a shared pattern of gene expression

alterations, which could be jointly responsible for a pathomechanistical connection of
IPF and NSCLC [120].

4.1.2 Generation of the leading-edge overlap

To narrow down the list of possible candidate genes for an in-depth analysis, we decided
to focus on the genes that on the one hand were upregulated in NSCLC and on the
other hand were enriched among those genes upregulated in IPF. GSEA generates the
leading-edge list of genes for each run, which consists of those genes responsible for the
enrichment score of a gene set in one of two individual phenotypes and constitutes the
key element of a gene set [136]. Furthermore, it has been reported that the analysis of
the leading-edge genes is most likely to uncover relevant mechanisms [136].
The leading-edge genes compiled by the GSEA runs for the NSCLC gene sets 1-3

of upregulated DEGs (Figure 4.3A-C) were withdrawn to their respective subset and
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Figure 4.4: Heatmaps visualizing the distribution of IPF and control samples via genes
upregulated in NSCLC. Expression levels for all genes included in the (A) NSCLC
gene set 1 (GSE44077 ), (B) NSCLC gene set 2 (GSE43458 ), or (C) NSCLC gene set
3 (GSE18842 ) were extracted from the GSE47460 dataset and visualized as heatmaps,
revealing a noticeable distribution in either IPF or control cases [120]. (Figure 4.4A was
published in Ulke et al. [120] - modified.)
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Figure 4.5: Heatmaps visualizing the distribution of IPF and control samples via genes
downregulated in NSCLC. Expression levels for all genes included in the (A) NSCLC
gene set 4 (GSE44077 ), (B) NSCLC gene set 5 (GSE43458 ), or (C) NSCLC gene set
6 (GSE18842 ) were extracted from the GSE47460 dataset and visualized as heatmaps,
revealing a noticeable distribution in either IPF or control cases.
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labeled as leading-edge gene list 1 (n = 206; 46% of the NSCLC gene set 1; GSE44077 ),
leading-edge gene list 2 (n = 136; 51% of the NSCLC gene set 2; GSE43458 ), and
leading-edge gene list 3 (n = 545; 36% of the NSCLC gene set 3; GSE18842 ) [120].
Subsequently, the overlap of the three leading-edge lists was generated and visualized

as Venn diagram (Figure 4.6), revealing the existence of a common core of 92 genes
(15.4%), which were withdrawn and merged into a new list labeled as the Overlap gene
set [120]. The complete process of assembling the Overlap gene set is shown in Figure
4.7, and an alphabetical list of the 92 genes is presented in Table 4.2.

Figure 4.6: Overlap of the leading-edge lists. The leading-edge gene lists 1-3 were generated
from their respective GSEA run (Figure 4.3A-C; upregulated DEGs) and visualized as
Venn diagram, which demonstrated an overlap of 92 genes (15.4%) [120]. Total number of
genes in the Venn diagram was defined as 100 percent. (Figure 4.6 was published in Ulke
et al. [120] - modified.)

To conclude, the Overlap gene set represented a highly compressed list of 92 genes
that were found significantly upregulated (log2 fold change > 1; adjusted p-value <
0.05) in all of the NSCLC microarray datasets (GSE44077, GSE43458, GSE18842 ) as
well as the GSE47460 (IPF) microarray dataset, and furthermore were part of all three
leading-edge gene lists [120]. Thus, we hypothesized that analyzing the Overlap gene set
could help to gain significant insight into the IPF pathogenesis.

4.1.3 Validation of the Overlap gene set

Next, we aimed to further validate the relevance of the Overlap gene set and to minimize
the possibility of analyzing an incidental and unassociated group of genes. Therefore,
an independent microarray dataset that characterized idiopathic interstitial pneumonias
(GSE32537 ) [105] was downloaded from GEO and processed for GSEA by including
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Figure 4.7: Process of generating the Overlap gene set. DEGs from three individual NSCLC mi-
croarray datasets (GSE44077, GSE43458, GSE18842 ) were extracted to the corresponding
gene sets (NSCLC gene set 1-3). Subsequently, GSEA was conducted and the overlap of
the leading-edge lists was created. (Figure 4.7 was published in Ulke et al. [120] - modified.)

Table 4.2: Overlap gene set in alphabetical order.

AIM2 CDK1 CYP24A1 GPX2 MKI67 RAD51AP1 TNFRSF21
AK4 CDKN3 DEPDC1 GREM1 MMP1 RALGPS2 TNS4
AKR1B10 CEACAM5 DLGAP5 HELLS MMP11 RPL39L TOP2A
ANLN CENPE ECT2 HIST1H4K MMP12 RRM2 TOX3
ASPM CENPF ETV4 HMMR MMP7 SERINC2 TPX2
ATP10B CEP55 EXO1 HS6ST2 MYBL2 SLC2A1 TTK
BUB1 CFB FAM83A ITGA11 NUF2 SLC44A5 TYMS
BUB1B CKAP2L FAP KDELR3 PBK SPINK1 UBE2T
CCNA2 COL10A1 FOXM1 KIAA0101 PDK1 SPP1
CCNB1 COL3A1 FUT2 KIF11 PLK1 STEAP1
CCNB2 CRABP2 GCNT3 KIF20A PPAP2C STIL
CDC45 CST1 GJB2 KIF4A PRSS2 SULF1
CDCA7 CTHRC1 GOLM1 LCN2 PSAT1 TCN1
CDH3 CXCL13 GPR87 MELK PYCR1 TDO2
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only IPF (n = 119) and control samples (n = 50). Hereupon, the Overlap gene set was
analyzed for its enrichment in the GSE32537 microarray dataset (Figure 4.8). GSEA
revealed a significant enrichment (ES = 0.7680; NES = 1.4905; Nominal p-value =
0.0389; FDR q-value = 0.0389; FWER p-value = 0.0190) of the Overlap gene set among
those genes upregulated in the IPF samples of the GSE32537 microarray dataset [120].

Figure 4.8: Representation of the Overlap gene set in the GSE32537 dataset. GSEA was
conducted to analyze the enrichment of the Overlap gene set in the GSE32537 dataset.
Significant enrichment (FDR q-value < 0.05; Nominal p-value < 0.05) was observed in the
IPF phenotype [120]. (Figure 4.8 was published in Ulke et al. [120] - modified.)

4.2 Analysis of the Overlap gene set

4.2.1 Principal component analysis

Principal component analysis (PCA) enables the depiction of large amounts of data
by reducing its complexity and thereby helps to detect distinctive features of the gene
expression and distribution of samples [141, 142].

The expression values of all 92 genes included in the Overlap gene set were extracted
for IPF (n = 122), COPD (n = 144), and control samples (n = 91) from the GSE47460
microarray dataset. Subsequently, PCA was performed for this newly assembled expres-
sion dataset (357 x 92 values). A total of 92 components were required to preserve 100%
of the variance of the original data, while the first 30 components already explained
more than 95% of the original variance (Appendix Table 1). The scree plot in Figure
4.9 demonstrates the variance that was explained by the respective principal compo-
nent 1-10. Results of the PCA were visualized as biplot for the first (PC1) and second
component (PC2) (Figure 4.10), which preserved 61.2% of the original variance (PC1
= 50.7%; PC2 = 10.5%). Interestingly, there was a noticeable pattern of the sample
distribution, especially along the PC1 (x-axis). IPF patients were clearly separated from
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Figure 4.9: Preserved variance plotted for the first ten principal components. The scree
plot was generated from the PCA results and displays the variance of the first ten PCs.

Figure 4.10: Principal component analysis presented as biplot. IPF (red square), COPD (green
circle), and CTRL samples (blue triangle) were plotted onto the first two principal com-
ponents (PC1; PC2). Weights of individual genes are presented as black arrows. Clear
separation of IPF from COPD and CTRL samples was observed.
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the other two groups, while the COPD patients and controls (CTRL) showed a striking
overlap (confidence ellipses = 0.90). Furthermore, most of the 92 genes demonstrated a
large weight for the displayed components (PC1/PC2) and pointed towards the cluster
of IPF samples (Figure 4.10, black arrows). Overall, these PCA results indicated an
IPF-specific pattern of the Overlap gene set.

4.2.2 Association of the Overlap gene set with specific cell types

The next question to be addressed, was if the Overlap gene set included a pattern of
genes, which could be linked to a distinct cell type. Therefore, we selected three publicly
available RNA-sequencing or microarray datasets that characterized the gene expression
of individual cell types isolated from fibrotic and control lungs.

Figure 4.11: Representation of the Overlap gene set in different cell types associated with
IPF. GSEA was executed to evaluate the enrichment of the Overlap gene set in three in-
dividual datasets (GSE94555, pmATII [111], GSE10921 ). Significant enrichment (FDR
q-value < 0.05; Nominal p-value < 0.05) was discovered in (A) the IPF phenotype of
isolated human ATII cells, (B) the fibrotic phenotype of isolated primary mouse ATII
cells, and (C) the control phenotype of isolated human lung fibroblasts [120]. (Figure
4.11A-C were published in Ulke et al. [120] - modified.)

Table 4.3: GSEA results for Figure 4.11. (Data was published in Ulke et al. [120] - modified.)

Gene set Enrichment
plot

Enrichment
Score (ES)

Normalized
Enrichment
Score (NES)

Nominal
p-value

FDR
q-value

FWER
p-value

Overlap
gene set

Figure 4.11A 0.6519 1.8353 < 0.001 < 0.001 < 0.001
Figure 4.11B 0.7876 2.3798 < 0.001 < 0.001 < 0.001
Figure 4.11C -0.5760 -2.2948 < 0.001 < 0.001 < 0.001

The RNA-sequencing dataset GSE94555 compared suspensions of primary human
ATII cells from IPF and control patients [110], the pmATII microarray dataset described
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primary murine ATII cells derived from the bleomycin model of lung fibrosis [111], and
the GSE10921 microarray dataset investigated primary human lung fibroblasts from
IPF and control patients [109]. Subsequently, the datasets were preprocessed and GSEA
was executed to evaluate a possible enrichment of the Overlap gene set in those three
datasets (Figure 4.11). The corresponding enrichment results are summarized in Table
4.3. It was apparent from this table that there existed a significant positive enrichment
(FDR q-value < 0.05; Nominal p-value < 0.05) of the Overlap gene set in both primary
ATII cell datasets (Figure 4.11A and B), while a significant negative enrichment (FDR
q-value < 0.05; Nominal p-value < 0.05) could be observed in the fibroblast dataset
(Figure 4.11C) [120]. Hence, these 92 genes seemed to constitute an essential group of
genes, which was significantly overrepresented within the upregulated genes of fibrotic
human and murine ATII cells, as well as in the human lung fibroblasts from nondiseased
control tissue [120].

4.2.3 Annotation enrichment analyses of the Overlap gene set

In a final step, we aimed to elucidate a common biological and mechanistic context of
the 92 genes by performing functional annotation enrichment analyses. To begin with,
the respective proteins for all genes of the Overlap gene set were identified and listed as
the Overlap protein list.

Table 4.4: Enriched REACTOME pathways (TOP 5). The full results are shown in the Ap-
pendix Table 2. (Data was published in Ulke et al. [120] - modified.)

Stable
identifier

Pathway FDR
value

p-value Genes

R-HSA-
69278

Cell Cycle, Mitotic 4.06E-10 1.27E-12 BUB1, BUB1B, CCNA2, CCNB1,
CCNB2, CDC45, CDK1, CENPE,
CENPF, FOXM1, HMMR, KIF20A,
MYBL2, NUF2, PLK1, RRM2,
TOP2A, TPX2, TYMS

R-HSA-
1640170

Cell Cycle 6.73E-10 4.19E-12 BUB1, BUB1B, CCNA2, CCNB1,
CCNB2, CDC45, CDK1, CENPE,
CENPF, EXO1, FOXM1, HMMR,
KIF20A, MYBL2, NUF2, PLK1,
RRM2, TOP2A, TPX2, TYMS

R-HSA-
156711

Polo-like kinase
mediated events

5.88E-08 5.49E-10 CCNB1, CCNB2, CENPF, FOXM1,
MYBL2, PLK1

R-HSA-
2500257

Resolution of
Sister Chromatid
Cohesion

2.43E-07 3.03E-09 BUB1, BUB1B, CCNB1, CCNB2,
CDK1, CENPE, CENPF, NUF2,
PLK1

R-HSA-
69273

Cyclin A/B1/B2
associated events
during G2/M
transition

3.37E-07 5.25E-09 CCNA2, CCNB1, CCNB2, CDK1,
FOXM1, PLK1
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Table 4.5: Enriched KEGG pathway maps. (Data was published in Ulke et al. [120] - modified.)

KEGG
identifier

Pathway map FDR
value

p-value Genes

hsa04110 Cell cycle 1.81E-06 1.62E-08 PLK1, BUB1, BUB1B, TTK, CDC45,
CCNA2, CCNB1, CCNB2, CDK1

hsa04914 Progesterone-
mediated oocyte
maturation

0.0007 1.18E-05 PLK1, BUB1, CCNA2, CCNB1,
CCNB2, CDK1

hsa04218 Cellular senescence 0.0058 0.0002 FOXM1, MYBL2, CCNA2, CCNB1,
CCNB2, CDK1

hsa04114 Oocyte meiosis 0.0091 0.0004 PLK1, BUB1, CCNB1, CCNB2,
CDK1

hsa04115 P53 signaling
pathway

0.0091 0.0004 RRM2, CCNB1, CCNB2, CDK1

Table 4.6: Enriched GO terms (TOP 5). The full results are shown in the Appendix Table 3.
(Data was published in Ulke et al. [120] - modified.)

Accession
number

GO term FDR
value

Genes

GO:0000278 Mitotic cell cycle 1.08E-13 HELLS, DLGAP5, CCNB1, CENPE, ANLN,
NUF2, CCNA2, CCNB2, MELK, PLK1, TPX2,
PBK, BUB1, TYMS, CDKN3, FOXM1,
HIST1H4K, RRM2, CENPF, ASPM, TTK,
CEP55, STIL, KIF4A, KIF20A, CDC45,
TOP2A

GO:1903047 Mitotic cell cycle
process

1.08E-13 HELLS, DLGAP5, CCNB1, CENPE, ANLN,
NUF2, CCNA2, CCNB2, MELK, PLK1, TPX2,
PBK, BUB1, TYMS, CDKN3, FOXM1, RRM2,
CENPF, ASPM, TTK, CEP55, STIL, KIF4A,
KIF20A, CDC45, TOP2A

GO:0007067 Mitotic nuclear
division

1.34E-11 MYBL2, HELLS, DLGAP5, CCNB1, CENPE,
ANLN, NUF2, CCNA2, CCNB2, PLK1, TPX2,
PBK, BUB1, CENPF, ASPM, CEP55, KIF4A,
CDK1

GO:0022402 Cell cycle process 1.34E-11 FAP, ECT2, HELLS, DLGAP5, CCNB1,
CENPE, ANLN, NUF2, CCNA2, CCNB2,
MELK, TPX2, PBK, BUB1, TYMS, CDKN3,
FOXM1, RRM2, CENPF, ASPM, MKI67,
CEP55, STIL, KIF4A, KIF20A, CDC45,
TOP2A

GO:0051301 Cell division 1.51E-11 ECT2, HELLS, CCNB1, KIF11, CENPE,
ANLN, NUF2, CCNA2, BUB1B, CCNB2,
PLK1, TPX2, BUB1, CENPF, ASPM, CEP55,
KIF4A, KIF20A, CDK1, TOP2A
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Primarily, the Overlap gene set was analyzed for its internal, functional relationships
and representation within various biological pathways. Therefore, the two reference
databases of the Kyoto Encyclopedia of Genes and Genomes (KEGG) [124, 125] and
the REACTOME [126] project were utilized. The comprehensive pathway enrichment
analysis encountered a significant overrepresentation (FDR < 0.05 and > 2 pathway
genes included in the Overlap gene set) of 67 individual REACTOME pathways (Table
4.4) and five KEGG pathway maps (Table 4.5) within the Overlap gene set [120]. Besides
this, the Gene Ontology (GO) Consortium [122, 123] database was utilized to scan the
Overlap gene set for commonly enriched GO terms. The analysis of all three major GO
domains (molecular function, cellular component, biological process) revealed a total of
171 significantly enriched GO terms (FDR < 0.05 and ≥ 2 genes included in the Overlap
gene set) (Table 4.6) [120]. Full results of the functional annotation enrichment analyses
are shown in the Appendix Tables 2 and 3.

Figure 4.12: Protein-protein interaction network of the Overlap protein list. The eight most
significant GO terms (Table 4.6) were selected. The corresponding proteins to those genes
included in the eight GO terms were marked with the respective colors in the network.
(Figure 4.12 was published in Ulke et al. [120] - reprinted with permission of the ATS.)
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The Overlap protein list was used to create a protein-protein interaction (PPI) network
with a preset limit of the confidence score of 0.9 (Figure 4.12). Thereby, only interactions
with high relevance and likelihood were included. The final PPI network contained 210
interactions (edges) between 42 of the initial 92 proteins (nodes) and revealed that the
Overlap protein list included a significant accumulation of interactions among its proteins
(p-value < 1.0E-16; average node degree = 4.6667; average local clustering coefficient =
0.3557) [120].
To summarize this section, the Overlap gene set seemed to constitute a batch of

functionally related genes, which shared a significant number of common interactions
and were particularly connected to the principal themes of cell cycle and proliferation,
extracellular matrix (ECM) organization, and P53 regulation [120].

4.3 Selection of candidate genes

After the in-depth analysis of the Overlap gene set, we aimed to select promising can-
didates from those 92 genes for further investigation. Therefore, an extensive literature
research was performed for the Overlap gene set. The candidate genes were chosen by
(1) their expression levels in the GSE47460 microarray dataset (Figure 4.13), (2) the
amount, quality, and types of reported scientific findings, (3) their individual weight and
direction towards the IPF cluster in the PCA (Figure 4.10), and (4) their appearance
in the functional annotation enrichment analyses (Section 4.2.3).

Figure 4.13: Expression of the candidate genes in the GSE47460 microarray dataset. The
expression values of ANLN, BUB1, CTHRC1, GPR87, and PSAT1 were extracted as
normalized log2-based signal intensities from the GSE47460 microarray dataset. The
mean expression was compared with the unpaired t-test for IPF (n = 121) and control
(n = 91). Data is shown as mean±SD. Significance: * p<0.05; ** p<0.01; *** p<0.001.
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Finally, the following six candidate genes were selected: ANLN, BUB1, CTHRC1,
ECT2, GPR87, and PSAT1. The subsequent analysis of ECT2 was published in Ulke
et al. [120] and is not further described in this thesis. The five remaining candidate
genes showed significantly increased expression levels in the IPF (n = 121) compared to
control (n = 91) samples of the GSE47460 microarray dataset (Figure 4.13; gene ex-
pression mean±SD IPF vs. control: ANLN 6.18±0.76 vs. 4.56±1.06; BUB1 6.17±0.61
vs. 5.56±0.73; CTHRC1 10.75±0.94 vs. 8.70±0.98; GPR87 6.88±1.85 vs. 3.28±1.42;
PSAT1 8.50±0.88 vs. 6.77±0.75).

4.3.1 Expression in human tissue samples

To further decrease the number of possible candidate genes, we sought to verify the
previously observed upregulation. Therefore, the mRNA expression levels of ANLN,
BUB1, CTHRC1, GPR87, and PSAT1 were analyzed by qRT-PCR in human whole
tissue samples of IPF and healthy donor lungs. Significantly increased mRNA expression
levels were observed for all five candidate genes in IPF compared to control specimens
(Figure 4.14; mRNA expression mean±SD IPF vs. control: ANLN -5.56±0.22 (n = 3)
vs. -7.87±0.49 (n = 5); BUB1 -3.36±0.51 (n = 6) vs. -4.26±0.65 (n = 5); CTHRC1
1.45±1.05 (n = 6) vs. -2.53±1.23 (n = 6); GPR87 -2.03±1.48 (n = 8) vs. -7.34±2.10
(n = 4); PSAT1 -0.77±0.59 (n = 12) vs. -1.92±0.96 (n = 9)).

Figure 4.14: mRNA expression levels of the candidate genes in IPF and control lung tissue.
The mRNA expression levels of ANLN, BUB1, CTHRC1, GPR87, and PSAT1 were
assessed by qRT-PCR in total RNA isolated from whole lung tissue specimens of IPF (n
= 3-12) and donor (n = 4-9). Significantly increased gene expression was observed for all
five genes. Expression levels were normalized to HPRT and are presented as ∆Ct. Data
is shown as mean±SD. Significance: * p<0.05; ** p<0.01; *** p<0.001; unpaired t-test.
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Subsequently, human whole lung tissue samples of non-small cell lung cancer (NSCLC)
patients with either adenocarcinoma (AC) or squamous cell carcinoma (SCC) were ex-
amined by qRT-PCR for their gene expression levels of the candidate genes. For this
purpose, paired specimens from single lung cancer patients were obtained (n = 4-6; tumor
and nondiseased control tissue). The results demonstrated a significant upregulation of
ANLN and GPR87 in the SCC tissue compared to control (Figure 4.15; mRNA expres-
sion mean±SD SCC vs. control: ANLN -5.61±1.14 vs. -7.80±1.08; GPR87 -2.41±2.49
vs. -5.89±1.29). Furthermore, CTHRC1 and PSAT1 were significantly increased in the
AC tissue samples compared to control (Figure 4.15; mRNA expression mean±SD AC
vs. control: CTHRC1 0.11±0.79 vs. -3.54±1.94; PSAT1 0.29±1.00 vs. -2.27±0.31).

Figure 4.15: mRNA expression levels of the candidate genes in paired NSCLC and control
lung tissue. Paired specimens from patients with either SCC (n = 6) or AC (n = 4-5)
were analyzed with qRT-PCR for their mRNA expression levels of the candidate genes.
Significantly increased gene expression was detected for ANLN and GPR87 in the SCC
samples as well as for CTHRC1 and PSAT1 in the AC samples. Expression levels were
normalized to HPRT and are presented as∆Ct. Data is shown as mean±SD. Significance:
* p<0.05; ** p<0.01; *** p<0.001; paired t-test.

4.3.2 Expression in the bleomycin-induced fibrotic mouse model

The model of bleomycin-induced experimental lung fibrosis represents a commonly used
and well characterized animal model of IPF. Therefore, we also aimed to verify the gene
expression levels of the candidate genes in whole lung tissue specimens from bleomycin-
treated mice and untreated controls. The mice were instilled with either 2U/kg body
weight of bleomycin sulphate (Bleo) or 50µl pure DPBS, and lungs were harvested on
day 7 or 14 for further analysis. Thereafter, the mRNA expression levels of Anln, Bub1,
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Cthrc1, Gpr87, and Psat1 were analyzed by qRT-PCR in the Bleo (n = 6-7) and DPBS (n
= 3-6) samples. Interestingly, there was no difference for Anln and Bub1, whereas Cthrc1
(d14), Gpr87 (d7 and d14), and Psat1 (d7 and d14) showed a significant upregulation
in bleomycin-induced lung fibrosis (Figure 4.16; mRNA expression mean±SD Bleo vs.
DPBS: Cthrc1 (d14) -2.67±0.70 vs. -5.21±0.71; Gpr87 (d7) -11.13±1.45 vs. -13.32±
±1.38; Gpr87 (d14) -11.25±0.98 vs. -13.76±0.48; Psat1 (d7) -1.70±0.58 vs. -2.65±0.43;
Psat1 (d14) -2.15±0.49 vs. -3.08±0.61).

Figure 4.16: mRNA expression levels of the candidate genes in bleomycin-induced lung
fibrosis. Mice were treated with either 2U/kg BW of Bleo or 50µl DPBS. Lungs were
removed on day 7 or 14 after the instillation. mRNA levels of the candidate genes were
evaluated with qRT-PCR for Bleo (n = 6-7) and DPBS (n = 3-6) specimens. Significant
upregulation in the bleomycin-treated mice was detected for Cthrc1 (d14), Gpr87 (d7,
d14), and Psat1 (d7, d14). Expression levels were normalized to Hprt and are presented
as ∆Ct. Data is shown as mean±SD. Significance: * p<0.05; ** p<0.01; *** p<0.001;
one-way ANOVA with Bonferroni’s multiple comparison test.

In conclusion, we observed the most reliable confirmation of altered gene expression
for GPR87 and PSAT1 in our specimens of IPF, NSCLC, and experimental lung fibrosis.
In combination with (1) the nonexistent scientific reports about their possible role in
the pathogenesis of IPF and (2) the possibility to study them in our animal model of
lung fibrosis, we decided to narrow down the candidate genes to GPR87 and PSAT1.

4.4 PSAT1 - Phosphoserine aminotransferase 1

The phosphoserine aminotransferase 1 (PSAT1) showed a significant upregulation on
mRNA level in the lungs of IPF patients as well as in the bleomycin model of lung fibrosis.
To confirm that this altered gene expression also led to increased protein levels of PSAT1,
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western blot analysis was performed on whole lung tissue specimens of IPF/control (n
= 6, each) and Bleo/DPBS control (n = 3, each). The PSAT1 protein expression was
significantly increased in IPF (Figure 4.17; rel. PSAT1 protein level mean±SD IPF vs.
control: 0.56±0.43 vs. 0.08±0.05) and bleomycin-induced lung fibrosis on day 7 and
14 (Figure 4.17; rel. PSAT1 protein level mean±SD Bleo vs. DPBS: d7 0.56±0.09 vs.
0.18±0.02; d14 0.35±0.05 vs. 0.18±0.01), which further supported the PSAT1 mRNA
expression data (Figure 4.14 and 4.16).

Figure 4.17: PSAT1 protein levels in IPF and experimental lung fibrosis. Western blot
analysis was conducted to analyze PSAT1 protein expression in IPF vs. control (n = 6,
each) and bleomycin-induced experimental lung fibrosis vs. DPBS control (n = 3, each).
Significantly increased PSAT1 levels were detected in IPF as well as in bleomycin-treated
lungs. Representative western blot (left) with its corresponding densitometric analysis
(right). β-ACTIN was used as loading control. Data is shown as mean±SD. Significance:
* p<0.05; ** p<0.01; *** p<0.001; unpaired t-test, one-way ANOVA with Bonferroni’s
multiple comparison test.

Subsequently, we aimed to assess the correlation between disease severity of IPF and
the expression level of PSAT1. The diffusing capacity of the lung for carbon monoxide
(DLCO) and the forced vital capacity (FVC) represent two aspects measured by pul-
monary function testing, which are regularly examined to estimate the disease stage of
IPF [143]. Therefore, the available DLCO and FVC measurements of all IPF subjects
were extracted from the GSE47460 microarray dataset and correlated to their respec-
tive expression levels of PSAT1. The Pearson correlation analysis revealed a significant
negative correlation between the PSAT1 expression levels and DLCO (n = 109; R2 =
0.14; p < 0.0001; Pearson r = -0.3741) as well as FVC (n = 118; R2 = 0.1226; p =
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0.0001; Pearson r = -0.3501) in IPF patients (Figure 4.18).

Figure 4.18: Correlation between PSAT1 expression and pulmonary function in IPF. The
DLCO, FVC, and PSAT1 expression values were extracted from the GSE47460 mi-
croarray dataset. Pearson correlation analysis revealed a significant negative correlation.
Linear regression analysis is shown as continuous line with the 95% confidence interval
(dashed lines).

Finally, we wanted to confirm the specific upregulation of PSAT1 in fibrotic alveolar
epithelial cells. Therefore, isolated primary mouse ATII cells were analyzed for their
mRNA expression levels of Psat1. qRT-PCR analysis revealed significantly increased
mRNA levels of Psat1 in the pmATII cells isolated from bleomycin-treated mice com-
pared to DPBS-treated control on day 14 after instillation (Figure 4.19; Psat1 mRNA
expression mean±SD Bleo vs. DPBS: 1.11±0.62 vs. -0.59±0.36; ** p<0.01).

Figure 4.19: Psat1 mRNA expression in primary mouse ATII cells. The mRNA levels of
Psat1 in isolated pmATII cells from bleomycin- and DPBS-treated mice on d14 after
instillation (n = 4, each) were assessed by qRT-PCR. Significantly increased Psat1 was
detected in the bleomycin-treated mice. Expression levels were normalized to Hprt and
are presented as ∆Ct. Data is shown as mean±SD. Significance: * p<0.05; ** p<0.01;
*** p<0.001; unpaired t-test.
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4.5 GPR87 - G protein-coupled receptor 87

4.5.1 Expression analysis of GPR87 on protein level

The G protein-coupled receptor 87 (GPR87) was our second gene of interest that was
significantly upregulated on mRNA level in lung specimens of IPF, SCC, and bleomycin-
induced experimental lung fibrosis. This was furthermore confirmed on protein level
by western blot analysis. GPR87 showed a significant upregulation in whole lung ho-
mogenate of IPF compared to donor specimens (Figure 4.20; rel. GPR87 protein level
mean±SD IPF vs. control: 0.35±0.27 vs. 0.08±0.10). The fibrotic phenotype of the
IPF samples was additionally supported by the significantly increased expression of the
mesenchymal markers α-smooth muscle actin (α-SMA) and Calponin 1 (CNN1) (Figure
4.20; rel. protein level mean±SD IPF vs. control: α-SMA 0.42±0.32 vs. 0.01±0.02,
CNN1 0.59±0.35 vs. 0.06±0.12).

Figure 4.20: GPR87 protein expression levels in IPF. Western blot was performed to analyze
the protein levels of GPR87 in whole lung homogenate of IPF and donors (n = 10, each).
Significantly increased GPR87, as well as α-SMA and CNN1 expression was found in the
IPF specimens. Representative western blot with the densitometric analyses. β-ACTIN
was used as loading control. Data is shown as mean±SD. Significance: * p<0.05; **
p<0.01; *** p<0.001; unpaired t-test.

In addition, GPR87 was significantly increased in whole lung homogenate of bleomycin-
treated mice compared to control on d14 after the instillation (Figure 4.21; rel. GPR87
protein level mean±SD Bleo vs. DPBS: d7 0.35±0.08 vs. 0.26±0.10; d14 0.54±0.10 vs.
0.25±0.11).
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Figure 4.21: GPR87 protein levels in experimental lung fibrosis. Expression of GPR87 was
analyzed by western blot in whole lung homogenate of bleomycin-treated mice compared
to DPBS control (n = 6, each). Significant upregulation of GPR87 was found on d14 after
the instillation of bleomycin. Representative western blot (left) with the densitometric
analysis (right). β-ACTIN was used as loading control. Data is shown as mean±SD.
Significance: * p<0.05; ** p<0.01; *** p<0.001; one-way ANOVA with Bonferroni’s
multiple comparison test.

4.5.2 Correlation of GPR87 with IPF disease severity

Subsequently, also the GPR87 expression levels from the GSE47460 microarray dataset
were correlated to their respective DLCO and FVC values. Results of the Pearson
correlation analysis revealed a slight but significant negative correlation with the DLCO
(n = 109; R2 = 0.0737; p = 0.0043; Pearson r = -0.2714) and FVC (n = 118; R2 =
0.0778; p = 0.0022; Pearson r = -0.2789) (Figure 4.22).

Figure 4.22: Correlation between GPR87 expression and pulmonary function in IPF. The
DLCO, FVC, and GPR87 expression values were extracted from the GSE47460 mi-
croarray dataset. Pearson correlation analysis revealed a significant negative correlation.
Linear regression analysis is shown as continuous line with the 95% confidence interval
(dashed lines).

4.5.3 Lung cell-specific expression of GPR87

In the beginning we also focused on alveolar epithelial type II cells, but besides a
very low baseline expression of Gpr87, we were not able to observe any difference
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Figure 4.23: Analysis of tissue- and cell-specific localization of GPR87 with BioGPS. The
tissue- and cell-specific expression of GPR87 in the GSE1133 microarray dataset (Ge-
neAtlas U133A, gcrma) was assessed with the help of BioGPS [131–133]. Image was
created with BioGPS and exported. Expression values are shown as arbitrary fluores-
cence units.
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between isolated pmATII cells from experimental lung fibrosis compared to control
(Figure 4.24A). To get an impression about a possible tissue- and cell-specific ex-
pression of GPR87, we used a gene annotation database. BioGPS [131–133] (http:
//biogps.org/#goto=genereport&id=53836; The Scripps Research Institute (TSRI);
last accessed: 25 January 2019) was used to analyze the "human gene atlas" microarray
dataset (GSE1133 ) [134]. Results revealed a prominent expression in bronchial epithe-
lial cells, especially compared to the low expression in whole lung tissue (Figure 4.23).
These findings were furthermore confirmed by qRT-PCR, measuring the expression lev-
els of GPR87 in cultured A549 (human epithelial lung carcinoma cell line), pmATII,
16HBE14o− (human bronchial epithelial cell line), and primary human bronchial ep-
ithelial cells (phBEC) (Figure 4.24B; GPR87, Gpr87 mRNA expression mean±SD:
A549 -11.80±0.87, pmATII -6.31±0.35, 16HBE14o− 0.07±0.38, phBEC 1.22±0.13; ***
p<0.001).

Figure 4.24: mRNA expression of GPR87 in specific lung cells. (A) Freshly isolated pmATII
cells from bleomycin- (n = 4) and PBS-treated (n = 3) mice were analyzed by qRT-PCR
for their mRNA levels of Gpr87. No significant difference was observed. (B) Cultured
A549 (n = 3), pmATII (n = 3), 16HBE14o− (n = 4), and phBEC (n = 3) cells were
analyzed by qRT-PCR for their expression levels of GPR87, Gpr87. Significantly higher
mRNA levels could be observed in the bronchial epithelial cells. Expression levels were
normalized to Hprt, HPRT and are presented as ∆Ct. Data is shown as mean±SD.
Significance: * p<0.05; ** p<0.01; *** p<0.001; unpaired t-test, one-way ANOVA with
Bonferroni’s multiple comparison test.

Moreover, these results were complemented by a Pearson correlation analysis. Expres-
sion values of GPR87 and bronchial epithelial basal cell markers, such as KRT5, TP63,
and KRT14 were extracted from the microarray datasets GSE47460 or GSE32537 for
the IPF cases. Results showed a strong, significant, and positive correlation of GPR87
with the corresponding expression levels of KRT5 (Figure 4.25A, GSE47460, n = 121,
R2 = 0.8721, p < 0.0001, Pearson r = 0.9339; Figure 4.25B, GSE32537, n = 119, R2

= 0.7501, p < 0.0001, Pearson r = 0.8661), TP63 (Figure 4.25C, GSE47460, n = 121,
R2 = 0.1726, p < 0.0001, Pearson r = 0.4155; Figure 4.25D, GSE32537, n = 119, R2 =
0.7550, p < 0.0001, Pearson r = 0.8689), and KRT14 (Figure 4.25E, GSE32537, n =
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119, R2 = 0.5088, p < 0.0001, Pearson r = 0.7133).

Figure 4.25: Correlation of GPR87 with bronchial epithelial basal cell markers. Expression
values were extracted from the respective microarray dataset for GPR87 (GSE47460,
GSE32537 ) as well as (A) KRT5 (GSE47460 ), (B) KRT5 (GSE32537 ), (C) TP63
(GSE47460 ), (D) TP63 (GSE32537 ), and (E) KRT14 (GSE32537 ). Pearson correla-
tion analysis revealed a significant positive correlation (A-E). Linear regression analysis
is shown as continuous line with the 95% confidence interval (dashed lines).
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4.5.4 TGF-β induced expression of GPR87 in vitro

Finally, we sought to investigate if the expression of GPR87 is influenced by the pro-
fibrotic mediator transforming growth factor beta 1 (TGF-β). Therefore, the cultured
human bronchial epithelial cell line 16HBE14o− was treated with 5ng/ml TGF-β for
4h, 6h, and 24h. The successful treatment was confirmed by significantly increased
expression levels of the plasminogen activator inhibitor 1 (PAI1 ) (Figure 4.26B; mRNA
expression mean±SD TGF-β vs. CTRL: 4h 6.91±0.25 vs. 4.55±0.28; 6h 6.61±0.31 vs.
4.44±0.59; 24h 6.53±0.38 vs. 4.61±0.35), a well-known downstream target of TGF-β
signaling [144]. Furthermore, the GPR87 mRNA levels were significantly increased upon
4h, 6h, and 24h of treatment (Figure 4.26A; mRNA expression mean±SD TGF-β vs.
CTRL: 4h 0.96±0.47 vs. 0.33±0.41; 6h 0.79±0.28 vs. 0.03±0.60; 24h 0.50±0.25 vs.
0.07±0.38).

Figure 4.26: Increased GPR87 expression after treatment with TGF-β. Cultured
16HBE14o− cells were treated with TGF-β for 4h, 6h, and 24h. The mRNA expres-
sion levels of (A) GPR87 and (B) PAI1 were analyzed by qRT-PCR. Results showed
a significant increase of GPR87 and PAI1 for all time points after TGF-β treatment.
Expression levels were normalized to HPRT and are presented as ∆Ct. Significance: *
p<0.05; ** p<0.01; *** p<0.001; repeated measures ANOVA with Bonferroni’s multiple
comparison test.

Subsequently, isolated primary human bronchial epithelial cells (phBECs) were cul-
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tured and treated with 2ng/ml TGF-β for 24h. qRT-PCR analysis revealed significantly
elevated levels of GPR87 (Figure 4.27A; mRNA expression mean±SD TGF-β vs. CTRL:
24h 0.98±0.20 vs. 0.06±0.23) and PAI1 (Figure 4.27B; mRNA expression mean±SD
TGF-β vs. CTRL: 24h 8.36±0.38 vs. 5.31±0.42) upon TGF-β treatment.

Figure 4.27: TGF-β induced upregulation of GPR87 in phBECs. Treatment of phBECs with
2ng/ml TGF-β for 24h resulted in significantly increased mRNA expression levels of (A)
GPR87 and (B) PAI1. Expression levels were normalized to HPRT and are presented
as ∆Ct. Significance: * p<0.05; ** p<0.01; *** p<0.001; paired t-test.

To summarize the results of the preceding sections, we were able to show that PSAT1
and GPR87 were also increased on protein level in IPF and bleomycin-induced lung
fibrosis in mice. Furthermore, while ATII cells seemed to be one of the primary sources
for the increased PSAT1 expression, GPR87 showed to be mainly expressed by bronchial
epithelial cells. In addition, we observed a significant upregulation of GPR87 upon TGF-
β treatment in vitro.
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5 Discussion

Chronic respiratory diseases significantly impact the lives of affected patients due to
their lasting nature and incurability. Two of these devastating and eventually lethal
pulmonary disorders, the idiopathic pulmonary fibrosis and non-small cell lung cancer
are marked by excessive tissue production and irreversible damage to lung structure as
well as function. Recent scientific advancement showed common pathomechanistic and
epidemiological characteristics of these diseases, which led to the assumption that there
exists a connection of both disorders.
In the present thesis, we aimed to elucidate this connection by analyzing patterns of

gene expression alterations in IPF and NSCLC. Furthermore, we focused on generating
a set of misregulated candidate genes and subsequently analyzing them in the context of
pulmonary fibrosis. We hypothesized that this approach leads to a better understanding
of the IPF pathogenesis and to the detection of novel therapeutic targets.
The results of the current study showed for the first time a significant link between

the pathogenesis of IPF and NSCLC, based on a systematic analysis of differentially ex-
pressed genes in both diseases. Up- and downregulated genes in NSCLC were extracted
from three microarray datasets (GSE44077, GSE43458, GSE18842 ) and analyzed for
their expression in IPF versus control samples (GSE47460 dataset), which allowed for
a strikingly clear separation of IPF and control. In accordance with these findings,
GSEA demonstrated a significant enrichment of DEGs from the three NSCLC microar-
ray datasets among those genes up- or downregulated in the IPF dataset (GSE47460 ).
These results eventually led to the generation of a set of 92 candidate genes, which were
significantly upregulated (log2 fold change > 1; adjusted p-value < 0.05) in NSCLC
and contributing to the IPF phenotype. The gene set showed an IPF-specific signature
and was especially enriched among fibrotic alveolar epithelial type II cells. Most impor-
tantly, this gene set was not only a random selection but showed a significant number of
common interactions as well as an enrichment of functional relationships. Subsequently,
those 92 candidate genes were evaluated and the G protein-coupled receptor 87 (GPR87)
as well as the phosphoserine aminotransferase 1 (PSAT1) were chosen for further anal-
ysis. Both genes were found to be significantly upregulated in whole tissue samples of
human IPF and bleomycin-induced lung fibrosis in mice. Moreover, PSAT1 upregulation
was mainly detected in ATII cells, whereas GPR87 was primarily expressed by bronchial
epithelial cells. Interestingly, the in vitro treatment of bronchial epithelial cells with the
pro-fibrotic mediator TGF-β resulted in a significant upregulation of GPR87.
Taken together, this study demonstrated a pathogenic link between IPF and NSCLC

by applying a top-down systems biology approach, which also resulted in a condensed
set of 92 candidate genes. Initial experiments revealed two promising targets (GPR87,
PSAT1) for novel therapeutic strategies, which require further analysis.
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5.1 Systems biology

Recent advances in science as well as rapidly developing technologies have brought the
field of systems biology more and more into the focus of general scientific interest. Sys-
tems biology is an approach to capture and understand the complexity of a system,
from single cells to the whole organism, by analyzing each individual element, their in-
teractions, and their functions in the respective system [145]. The omics techniques have
enabled the generation of massive and all-encompassing amounts of data on various levels
of an organism through the use of high-throughput methods, such as DNA microarrays
or RNA sequencing. This progress is fostered by the development of novel bioinformatic
analyses, which are possible due to the emergence of supercomputers and drastically
increased performance of the general information technology (IT) infrastructure.
The present study was conducted as a top-down systems biology approach, using

public transcriptome profiling datasets from RNA-Seq as well as microarrays. The top-
down approach is designed to collect the most complete data possible about largely
unknown systems in order to obtain a comprehensive overview and subsequently aims
to analyze the bottom level of single elements (e.g. individual genes, molecules), their
relationships, and interactions [145, 146]. This approach holds tremendous advantages,
since it does not require any knowledge at all about the involved mechanisms, instead
an overall picture is taken, which allows drawing conclusions and forming hypotheses
based on the observed correlations [146, 147]. IPF and NSCLC share various similar
pathogenetic mechanisms as well as epidemiological connections, such as IPF being an
independent risk factor for the development of lung cancer and a significantly increased
incidence rate of lung cancer in IPF populations [54]. This possible connection has
been extensively discussed in recent years, but the underlying pathomechanisms have
not been investigated beyond mere hypothesis generation. Due to this initial situation,
we decided to use the aforementioned top-down approach in order to reduce the risk of
biased decision-making based on speculations.

Another major strength of this approach lies within the possibility to simultaneously
examine more than just individual or a handful of elements through the intensive use
of omics techniques. The analysis of single elements at a time has usually required
systematic trial and error, which has not only been very time consuming, but has also
resulted in context being ignored and mechanisms being missed [146]. Moreover, the
individual analysis of each possibly involved element seems to be an impossible task
due to the large amount of unknown molecules [146]. In contrast, systems biology
allowed us to characterize and compare genome-wide changes at a given point in time
in different systems (e.g. healthy controls versus disease). Subsequently, we were able
to use these data to generate groups and networks of significantly altered elements and
analyze them for common patterns and biological functions. Finally, we have advanced to
the molecular level to extract individual elements of interest and examine them for their
function in the diseased system. Using this approach, we have significantly increased the
likelihood of detecting biologically relevant processes, since a simultaneous and uniform
change in the expression of a functionally related group of genes is significantly more
meaningful than a change in the expression of an individual gene [148].
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Systems biology heavily relies on the generation of large amounts of data, which on
the one hand provides the aforementioned advantages, but on the other hand can also
be seen as a weakness of this approach. The main challenge in this context is caused by
the exceedingly high dimensionality of the generated data, which requires bioinformatic
methods to simplify the data by reducing their dimensionality and organizing them in
such a way that we can evaluate and understand the results [147, 148]. Omics experi-
ments, such as microarrays, include several thousand variables for each sample, which a
human being could not grasp nor compare. However, simplifying data by reducing their
dimensionality is challenging and bears the risk of overfitting the model by selecting too
many variables as well as the risk of losing data, which can cause important aspects
to be missed. To realize the reduction of dimensionality, in this study we relied on
well established methods, such as gene set enrichment analysis and principal component
analysis. Thus, we tried to avoid the loss of significant data.
Furthermore, the top-down systems biology approach is based solely on the analysis of

distinct phenotypes, such as healthy controls, IPF, and NSCLC, which usually leads to
the adoption of mechanisms that are based on correlations only, but do not necessarily
reflect the reality [146, 147]. Therefore, to address this issue, we did not only focus
on idiopathic pulmonary fibrosis in the approach of this study, but also included a sec-
ond disease of the lung (NSCLC), since common pathomechanistic and epidemiological
characteristics of these two diseases are frequently discussed by recent literature. Both
disorders were initially compared to the respective controls, and subsequently an overlap
of the two analyses was generated to further condense the results. By focusing on this
overlap of two pathomechanistically similar diseases, we aimed to uncover significant
mechanisms that are relevant in reality. Finally, the proposed model was experimentally
validated by generating a protein-protein interaction network and performing annota-
tion enrichment analysis. Additional data on protein level in terms of proteomics were
not available at the time this study was performed.
To date, only few comparable studies have been published that performed a system-

atic comparison of IPF and NSCLC. Both Spek et al. [149] and Leng et al. [150] have
adopted a top-down systems biology approach for their respective study and also started
by analyzing public transcriptome profiling datasets. In addition, both studies partially
used the same datasets, such as GSE32537, GSE47460, and GSE18842, which were al-
ready used for the present thesis. However, the total number of samples included in this
thesis was higher than in the two comparable studies, especially the number of lung can-
cer samples. Furthermore, there exists a major difference in the definition of the cutoff
values for differentially expressed genes, which we defined as those genes with a |log2
fold change| > 1.0 and an adjusted p-value < 0.05. Spek et al. [149] as well as Leng et al.
[150] have chosen different approaches for the definition of their cutoff values with a fold
change > 1.5 and p-value < 0.01 [149] or solely a p-value < 0.05 [150], respectively. The
recommendations in current literature are to use a combined cutoff consisting of fold
change and p-value, with a high fold change increasing reproducibility and a balanced
p-value improving specificity and sensitivity [151]. Thus, we think that we meet these
recommendations with our cutoff values, while in particular the use of p-values alone as
in Leng et al. [150] is not advised [151]. Spek et al. [149] have not performed further
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experiments of dimensionality reduction, but have analyzed the enrichment of gene on-
tology terms. In contrast, Leng et al. [150] performed various methods of dimensionality
reduction as well as annotation enrichment analysis and finally supported their findings
by immunohistochemistry of human lung tissue.

In summary, the top-down systems biology approach has been shown to be an ap-
propriate strategy to elucidate the aforementioned research questions and to address
the aims of this study. Furthermore, this has significantly increased the likelihood of
discovering biologically relevant processes and making unbiased decisions.

5.1.1 Omics techniques

As already mentioned, almost all of the transcriptome profiling datasets used in this
thesis were from microarray studies, while only one dataset was from a RNA-Seq ex-
periment. In the past years, the popularity of the RNA-Seq technique and especially
the single-cell analysis has significantly increased, whereas the use of microarrays has
steadily declined [152]. DNA microarrays have played an important role in the area of
omics and have profoundly changed our ability to study the transcriptome [153]. Due
to their intensive use, DNA microarrays are very cost-effective and the available ana-
lytical tools are well developed, but there are some major restrictions to this technique
[153, 154]. First of all, only the expression of genes whose sequence is known and for
which a probe is present on the microarray can be analyzed, furthermore, it is not pos-
sible to accurately measure very low or high gene expression, the binding affinity of
different probes is varying, and there exists cross-hybridization as well as background
signaling [153, 154]. The RNA sequencing technique allows us to overcome many of the
restrictions mentioned above. There is no knowledge required about the gene sequences,
the technique works without the use of probes, background signaling is not an issue,
and gene expression can be measured accurately, even for those genes with very low or
high expression [153, 154]. Most importantly, the RNA sequencing technique can be
done with small amounts of RNA, which also enables single-cell analysis [154]. There-
fore, from today’s perspective, we would have performed the experiments with RNA-Seq
datasets. However, these were hardly available at the time of the experimental phase of
this thesis, and thus we primarily used microarray datasets. In particular, the analysis
of cell-specific expression (Figure 4.11) of the Overlap gene set would have been much
easier to perform by using single-cell analysis. This is of great interest because it has
been shown that the lung contains a wide variety of different cell types [155].

5.1.2 Gene set enrichment analysis

The use of omics techniques results in the generation of massive amounts of data, which
raise the importance of applying methods for dimensionality reduction. Furthermore, the
interpretation of omics data requires the exploration of common patterns and biological
functions among groups of significantly altered elements, instead of analyzing individual
targets. This is based on the assumption that diseases are associated with changes in
specific groups of genes rather than single genes [137]. Therefore, we relied on gene set
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enrichment analysis in the present thesis. GSEA has been first published and described
by Subramanian et al. [136] and Mootha et al. [137], who used it to analyze various
omics data of human cancer and diabetes mellitus.
GSEA is one of the various applications of gene set analysis, with the aim of studying

whole groups of genes instead of analyzing individual genes. The original idea behind
this method is to examine predefined sets of genes for their enrichment and thus their
relationship with one of two phenotypes (e.g. healthy controls versus disease) [137].
This is achieved through a multi-stage process and the use of specialized mathematical
algorithms, which analyze whether a predefined gene set shows a random, uniform dis-
tribution among a ranked dataset or a significant concentration within the differentially
expressed genes either at the top or the end of the ranked dataset [136]. GSEA is com-
puting an enrichment score for every gene set by using the so-called Kolmogorov-Smirnov
statistic, which has been modified to be correlation-weighted [136, 156]. Because this
statistical approach considers all genes of the ranked dataset, GSEA was classified as
a competitive method by Goeman et al. [157], which is based on the examination of
the null hypothesis that the gene set of interest contains at most as many DEGs as
the rest of the ranked dataset. Subsequently, the statistical significance is calculated
with a phenotype/sample permutation approach, which considers biologically relevant
gene dependencies [136, 156]. Finally, multiple hypothesis testing is conducted and the
leading-edge is assembled of those genes contributing most to the enrichment score [136].
To date, various approaches for gene set analysis have been published and multiple

comparative studies have been conducted to identify the most accurate method. The
scientific community has not reached agreement on a common standard for gene set
analysis, which is mainly due to missing standard datasets for testing and benchmark-
ing purposes [148]. All of the published methods have in common that they aim to
provide a statistical statement about the significance of a gene set of interest [158].
This is achieved either by a phenotype/sample permutation approach (e.g. GSEA) or
through gene sampling/permutation, which are based on the assumption of indepen-
dence of either phenotypes/samples or genes, respectively [157]. The use of gene set
analysis methods relying on gene sampling/permutation is strongly discouraged by cur-
rent literature because of the biologically irrational assumption of gene independence
and the proven impact of gene correlations/dependence on the significance of a gene
set [148, 156–159]. On the other hand, the phenotype/sample permutation approach
requires larger datasets with a certain amount of samples, which is not always feasible
[159]. To address this issue, GSEA also offers the option of gene sampling/permutation
for small datasets [136].
In addition to the competitive methods (e.g. GSEA), Goeman et al. [157] also de-

scribed the self-contained methods, which consider only those genes included in the gene
set of interest and which are favored by these authors. This view is based on the fact
that the self-contained methods are more powerful and restrictive, but this is actually
a major weakness of the approach and may result in a gene set being considered signif-
icant because of a single DEG [157, 159]. The null hypothesis being examined by the
self-contained approach states that there exist no DEGs in the gene set of interest [157].
Currently, there are no commonly accepted recommendations, standards, or guidelines
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for the specific use of the various gene set analysis methods. Therefore, we determined
the most suitable method for our study purposes. In contrast to the self-contained
methods, the competitive method GSEA seemed more reliable, balanced, and biologi-
cally relevant due to being less powerful and considering the whole dataset. In addition
to these advantages, GSEA also respects gene dependencies, is frequently updated by
its authors, and offers an easy-to-use software solution. In the present study, we re-
lied on large transcriptome profiling datasets to be able to use the phenotype/sample
permutation approach of GSEA, which is generally recommended by the current litera-
ture. However, we had to use the gene sampling/permutation approach in a few cases
because the available datasets were too small. Gene sampling/permutation is not rec-
ommended by recent publications and the results obtained by this approach have to be
interpreted with caution. This represents a limitation of the present study and requires
the assembling of larger datasets with a higher number of individual samples for future
research. But, although this approach is not recommended, it at least enabled us to
perform gene set analysis of small datasets and to formulate a working hypothesis for
subsequent analyses.

5.2 Animal models of IPF

The bleomycin-induced experimental model of pulmonary fibrosis in mice has already
been introduced in section 1.1.3. In short, the administration of bleomycin has been
shown to initiate pulmonary fibrosis as a severe side effect, which has been used for
decades to mimic IPF in animal models. Various results of the present thesis were
generated based on the murine bleomycin-induced experimental model of pulmonary
fibrosis, namely on the pmATII [111] microarray dataset and the use of isolated ATII
cells from bleomycin-treated mice. Furthermore, we planned on using this model for
future experiments, such as a Gpr87 knockout mouse.
To date, multiple animal models of IPF have been described, which use either dif-

ferent species (e.g. mice, hamsters, rats, dogs, primates) or different compounds (e.g.
bleomycin, asbestos, silica, cytokines, radiation) [160, 161]. The bleomycin-induced ex-
perimental model of pulmonary fibrosis in mice has been recommended by an official
ATS workshop report as standard for preclinical evaluation of IPF treatments [162].
This model has proved its clinical significance by contributing to the assessment and
approval of the IPF treatments with nintedanib and pirfenidone [161]. Furthermore, the
experimental pulmonary fibrosis caused by bleomycin has been thoroughly investigated
and described because this model is frequently used in IPF research. This comprehensive
knowledge represents a major strength of the bleomycin model. In addition, Peng et al.
[163] demonstrated that bleomycin-induced pulmonary fibrosis in mice largely resembles
human IPF at the molecular level.

In contrast to human IPF, the bleomycin model shows severe inflammation in the
first days after administration and rapid progression to pulmonary fibrosis, which is
self-limiting and eventually vanishes [42]. However, we relied on the murine bleomycin
model for the in vivo experiments because of its aforementioned strengths and missing
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alternatives. The dependence on this model is a limitation of the present study because
the selection of potential candidate genes was tied to their expression in the murine
bleomycin model. The two genes of interest Anln and Bub1 did not show a signifi-
cant and reproducible upregulation in the bleomycin model, unlike their significantly
increased expression in human IPF samples. Therefore, we had to exclude both genes
from further analyses. Future studies might reevaluate the original 92 candidate genes
for further investigation with the help of novel experimental in vivo settings or in vitro
lung organoids.

5.3 Relationship of IPF and NSCLC

In recent years, increasing evidence has been suggesting a pathomechanistic connection
between lung cancer and IPF. The risk of developing lung cancer increases significantly
over time for IPF patients, which is represented by an increase of the cumulative inci-
dence (Figure 1.4) [56–60]. However, the approved treatments of IPF with pirfenidone
and nintedanib have demonstrated a significant effect on decelerating the IPF disease
progression [24, 164]. This in turn could further increase the time-dependent risk of de-
veloping lung cancer and might lead to a rising incidence in IPF patients in the future.
The affected patients show a significantly worse prognosis and an increased risk of acute
exacerbations as well as other complications caused by treatments [57, 60]. Thus, there
exists an urgent need for curative therapeutic options, which stresses the importance
of understanding the involved pathomechanisms and revealing possible targets for novel
therapies. Initially, we aimed to further investigate and confirm the link between IPF
and lung cancer in the present study by quantifying shared patterns of gene expression
alterations and establishing a common foundation of both diseases.
We performed preliminary comparisons of differentially expressed genes in IPF and

NSCLC by using publicly available microarray datasets and generating Venn diagrams
(Figure 4.1). The analysis revealed an interesting overlap of DEGs and indicated a
possible connection of both diseases but required further quantification and statistical
evaluation. We decided not to include lung cancer in general for the subsequent analyses
but to solely focus on the subgroup of NSCLC because of the following reasons. First,
NSCLC has been demonstrated to mainly originate from the bronchial and alveolar
epithelium, which is assumed to play a key role in the pathogenesis of IPF [52]. Second,
the subgroup of NSCLC represents the most common form of lung cancer found in IPF
patients [58]. Though, comparing the two diseases, it is also important to note that
essential hallmarks of lung cancer have not been shown in IPF. Idiopathic pulmonary
fibrosis does not feature metastatic potential or the invasion of other organs besides the
lung, there exists no clonal expansion of affected cells, and somatic mutations have no
part in the IPF pathogenesis [165].
At the time the experiments were performed, only one extensive IPF microarray

dataset (GSE47460 ) with a sufficient number of individual samples existed. In con-
trast, multiple larger NSCLC microarray datasets (GSE44077, GSE43458, GSE18842 )
were available for the present study. Therefore, we sought to elucidate possible discrep-
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ancies of DEGs in those three NSCLC microarray datasets and to combine them for
the subsequent analysis. The generated overlap of the NSCLC datasets demonstrated
a surprisingly small number of common DEGs (Figure 4.2) and gave an impression of
their individuality. These results confirmed the importance of including all three NSCLC
datasets in the GSEA to further increase its significance. Moreover, comparing the ex-
tent of the IPF-NSCLC overlap (upregulated 9.76%; downregulated 13.1%) with the
NSCLC-NSCLC overlap (upregulated 8.91%; downregulated 19.4%), the percentage of
upregulated DEGs was almost the same. This further strengthened a possible link be-
tween the two diseases. Recently, the diagnostic guidelines for IPF have been revised and
published [12, 20]. The IPF microarray dataset has been assembled under the former
diagnostic guidelines and might have contained few samples that are no longer classi-
fied as IPF from today’s perspective. This should not have affected the actual results
because of the large number of individual samples included in the dataset.
GSEA (Section 5.1.2) has been used to obtain an assessment and statistical statement

about the enrichment of DEGs from NSCLC in the IPF dataset. The analysis uncovered
a shared pattern of significant gene expression alterations in IPF and NSCLC, which
proved a common foundation of both diseases on the level of gene expression and regu-
lation. These results were further supported by heatmaps (Figure 4.4 and 4.5), showing
a distinct separation of IPF and control cases based on their expression levels of those
genes included in the generated NSCLC gene sets. This common subset of similarly
misregulated genes may be involved in the common existence and the pathomechanistic
connection of IPF and NSCLC. Leng et al. [150] confirmed these results by analyzing
different publicly available microarray datasets of IPF and NSCLC. The authors re-
ported a subset of 79 DEGs, which they identified as potential common mediators for
the pathogenesis of both diseases [150]. However, no detailed list of the respective genes
was published, and a comparison to our subset of 92 genes was not possible.

In contrast, based on their analysis of DEGs in IPF and NSCLC, Spek et al. [149] ar-
gued against a common foundation of similar gene expression alterations, although they
reported a shared signature of DEGs and an enrichment of functional annotations. The
authors asserted that the number of common DEGs is rather small, especially compared
to the amount of directly opposed DEGs [149]. Relying solely on sheer numbers to draw
this kind of conclusion, one could also argue that the three NSCLC datasets (Figure
4.2) do not share significant similarities of gene expression alterations, but this is the
same disease in all three datasets. The total number might appear small because of the
individuality of all samples, but there exists a common core of DEGs for NSCLC as well
as for the comparison of IPF and NSCLC, which requires further analyses to verify its
significance. In this context, the present study would have benefited from the analysis
of datasets with paired IPF, NSCLC, and control samples. This kind of data did not
exist but should be addressed by future research.

In summary, we were able to demonstrate a common core of gene expression alterations
in IPF and NSCLC, which we could verify and statistically assess by using GSEA. These
results emphasize the connection of IPF and NSCLC. Furthermore, this core of DEGs
could be an important driver for the pathogenesis of both diseases, and its contribution
requires further analysis.
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5.4 Significance of the Overlap gene set

Subsequently, we aimed to use the results of the previous GSEA to assemble a gene
set of common upregulated DEGs, which we planned to further characterize in the
context of IPF. The leading-edge gene list is generated for each GSEA run and contains
those genes, which form the maximum enrichment score, constitute a key element of
the original gene set, and can represent a relevant functional subset [136]. Subramanian
et al. [136] recommend to rely on the leading-edge gene list, especially for gene sets with
high enrichment scores and when using manually assembled gene sets for GSEA. The
original NSCLC gene sets 1-3 of upregulated DEGs had high enrichment scores (Table
4.1) and were manually generated by extracting DEGs from NSCLC microarray datasets.
Therefore, we used the three leading-edge gene lists of the corresponding GSEA runs
and generated an overlap, which was labeled Overlap gene set. This condensed subset
included 92 genes that were significantly upregulated in all NSCLC microarray datasets,
enriched among the genes upregulated in IPF, and part of the leading-edge gene lists.
Manually assembled gene sets are based on artificial cutoff values, which could lead

to the inclusion of false positive or the exclusion of false negative genes. To avoid the
inclusion of false positive genes, we selected rather restrictive cutoff values (log2 fold
change > 1; adjusted p-value < 0.05) and combined this with the use of the leading-
edge gene lists. This approach might have led to the exclusion of false negative genes,
which had to be accepted. Therefore, we aimed to verify the expression of five candidate
genes of the Overlap gene set in lung tissue samples of NSCLC, human IPF, and murine
bleomycin-induced lung fibrosis. We were able to demonstrate a significantly increased
expression of ANLN, BUB1, CTHRC1, GPR87, and PSAT1 in human IPF. Cthrc1,
Gpr87, and Psat1 showed a significant upregulation on d14 in bleomycin-induced lung
fibrosis. Finally, ANLN and GPR87 were significantly upregulated in human lung tissue
of squamous cell carcinoma, whereas CTHRC1 and PSAT1 were increased in human
adenocarcinoma samples. These results indicated that individual candidate genes for
subsequent mechanistic studies had to be selected with caution because we were not able
to confirm all candidate genes in our tissue samples. Furthermore, it demonstrated the
importance of differentiating between the NSCLC subtypes of squamous cell carcinoma
and adenocarcinoma. Hence, GPR87 and PSAT1 were chosen for further analyses.

5.4.1 Overlap gene set reveals an IPF-specific signature

To analyze the Overlap gene set in the context of IPF, we sought to determine if this
subset showed an IPF-specific signature. Therefore, GSEA was performed to evaluate
the enrichment of the Overlap gene set in another independent IPF microarray dataset.
We observed a significant enrichment of the Overlap gene set in the IPF phenotype of
the dataset (Figure 4.8), which corroborated an IPF-specific signature of this gene set.
Subsequently, to further support these results, we performed principal component

analysis of the Overlap gene set. PCA represents a common technique for dimension-
ality reduction, which is required to analyze, summarize, and display large amounts of
data [148]. The individual principal components are computed with the help of mathe-
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matical algorithms, represent the maximum possible variance of the original data, and
are uncorrelated and perpendicular to each other [142]. In general, the first two or
three principal components are used to graphically display the individual samples of a
dataset in two or three dimensions, respectively. Instead of using all the gene expression
values of each sample, these two or three principal components are sufficient to visual-
ize the distribution of all samples, which helps to detect specific features, patterns, or
groups of these samples [142]. The individual genes can be visualized as vectors/arrows,
with the length representing the weight of the respective gene in regard to the principal
components [142].
Performing PCA of the Overlap gene set and its corresponding gene expression values

in the IPF, COPD, and control samples of the GSE47460 microarray dataset, we were
able to significantly reduce the dimensionality and to preserve a high amount of the orig-
inal variance (Figure 4.9 and 4.10). We observed an interesting overlap of the COPD
and control samples, whereas the IPF group showed a distinct, relevant separation from
the other two groups. In addition, the 92 genes had a large weight for the principal
components and directed at the IPF cluster. These results were supported by Leng
et al. [150], who also performed PCA and demonstrated a similar clustering and sepa-
ration of IPF and control samples, which was based on their subset of common DEGs.
The use of PCA could also be seen as a limitation because of the inevitable data loss
connected to the methods of dimensionality reduction. However, there exists no com-
mon alternative to plot and visualize such high dimensional data. In conclusion, these
results verified an IPF-specific signature of the Overlap gene set, which strengthened its
possible contribution to the pathogenesis of IPF.

5.4.2 Cell-specific association of the Overlap gene set

To further characterize the Overlap gene set, we analyzed the possibility of a cell-specific
association. Using GSEA, we were able to confirm a significant enrichment of the Over-
lap gene set among those genes upregulated in fibrotic ATII cells from human IPF and
murine bleomycin-induced pulmonary fibrosis (Figure 4.11 and Table 4.3). In contrast,
there was no significant enrichment in the IPF phenotype of isolated human lung fibrob-
lasts, which represent another major cell type involved in the development of IPF. This
cell-specific enrichment in fibrotic lung epithelial cells might have been influenced by
the use of NSCLC gene sets for the generation of the Overlap gene set because NSCLC
mostly originates from the lung epithelium [52, 120]. However, these GSEA runs con-
firmed an epithelial cell-specific signature of the Overlap gene set, which highlighted
the contribution of epithelial cells to the pathogenesis of IPF as well as NSCLC and
established a possible pathomechanistic link between both diseases. In addition, these
results supported the significance of the Overlap gene set in the context of IPF. Future
studies should further evaluate and specify the cell-specific association of the Overlap
gene set by using single-cell analysis.
Alterations of the phenotype, morphology, and function of epithelial cells in IPF were

defined as reprogramming by a recent workshop report on IPF [166]. The commonly ac-
cepted model of the IPF pathogenesis includes repetitive injuries to the lung epithelium,
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which eventually results in a distorted process of lung repair and regeneration and in
reprogramming of the lung epithelium [9]. Both alveolar and bronchial/airway epithelial
cells in IPF are significantly affected by this reprogramming [31]. The reprogrammed ep-
ithelium exhibits multiple alterations, such as increased proliferation, bronchiolar/basal
and ATII cell hyperplasia, squamous metaplasia, areas of bronchiolization, and hon-
eycombing [12, 120, 167, 168]. The honeycombed lesions represent fibrotic areas with
cystic structures that contain bronchial epithelium [12]. This infiltration of the alveolar
region by bronchial epithelial cells is also called bronchiolization [168]. Wistuba et al.
[169] reported various of these changes as precancerous lesions for the development of
NSCLC, especially for the formation of squamous cell carcinoma. This is of great interest
because SCC is the most common subtype of NSCLC in IPF patients [58].
In conclusion, the epithelial cell-specific association of the Overlap gene set verified

the hypothesis of lung epithelial cells as key drivers for the pathogenesis of IPF and
NSCLC. Hence, this reprogrammed epithelium might represent the connecting element
of both diseases. Common gene expression alterations (Overlap gene set) might induce
or support epithelial reprogramming, foster the development of IPF, and eventually lead
to the transition from precancerous lesions to the formation of NSCLC.

5.4.3 Overlap gene set includes enrichment of annotations

Performing annotation enrichment analyses of the Overlap gene set, we aimed to identify
common pathways, processes, molecular activities, and cellular localization. This was
required to ensure that the Overlap gene set was not just a random compilation but in-
cluded functionally related genes with a common biological and mechanistic background.
We used the public reference databases GO [122, 123], KEGG [124, 125], and REAC-
TOME [126] to conduct the analyses, which demonstrated a significant enrichment of
annotations in the Overlap gene set (Tables 4.4, 4.5, and 4.6; Appendix Tables 2 and 3).
In particular, the results revealed the principal themes of cell cycle, proliferation, ECM
organization, cellular senescence, and P53 signaling. Furthermore, the generation of a
protein-protein interaction network showed a significant amount of interactions between
the proteins, which corresponded to the 92 genes of the Overlap gene set. Overall, we
were able to prove that the Overlap gene set consists of functionally related genes that
exhibit multiple common interactions.
It is interesting to note that the annotation enrichment analyses uncovered principal

themes that are commonly associated with the development of IPF and NSCLC, which
ultimately confirmed the importance of the Overlap gene set and indicated an essential
role in the pathogenesis of both diseases. The altered and distorted regulation of the cell
cycle represents one of the key features of cancer development and causes unhampered
proliferation of the affected cells [170]. Hence, Eymin et al. [170] proposed the cell cycle
regulation as a possible target for novel cancer therapies. Besides NSCLC, the pathome-
chanistic feature of increased proliferation of the lung epithelium has also been reported
in IPF, which was associated with an increased expression of WNT1-inducible signaling
pathway protein 1 (WISP1) and epithelial cell transforming sequence 2 (ECT2), among
others [11, 111, 120]. Moreover, this hyperproliferation and even fibrosis were reduced
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by targeting and decreasing the activity of WISP1 or ECT2 [111, 120]. These results
were complemented by the principal theme of P53 signaling, which represents a tumor
suppressor gene that is commonly affected in lung cancer and leads to impaired cell
cycle regulation [170]. Alterations of P53 signaling have also been observed in IPF [168].
Furthermore, recent evidence suggests that the extracellular matrix is actively support-
ing and adding to the development of IPF and NSCLC, which has been correlated with
a distorted wound repair process in both diseases [171]. Finally, cellular senescence
is another important hallmark of the fibrotic lung epithelium, and the treatment with
senolytic drugs seemed to reduce the fibrotic potential [32]. Besides, it has been reported
that senescence might foster the development of human cancer by inducing extracellular
signaling [172]. These enriched principal themes seemed to represent important pro-
cesses for the development of IPF and NSCLC. Therefore, future studies could elucidate
individual themes with their corresponding set of genes and their contribution to the
pathogenesis of both diseases.

5.5 PSAT1 is upregulated in fibrotic ATII cells

The final aim of the present thesis was to translate the results of the systems biology ap-
proach into mechanistic studies. Therefore, we addressed individual genes of the Overlap
gene set and investigated their cell-specific expression as well as possible mechanisms
that could have been responsible for their misregulation in IPF. The phosphoserine
aminotransferase 1 (PSAT1 ) was the first candidate gene and represents a key enzyme
of the serine biosynthesis pathway (Figure 1.5). Initially, we analyzed the PSAT1 protein
levels in human IPF and bleomycin-induced lung fibrosis. Western blot analysis revealed
significantly increased protein levels of PSAT1 in IPF and bleomycin-treated lung tissue
(Figure 4.17). Most interestingly, we were able to confirm a cell-specific upregulation
of the Psat1 mRNA expression in isolated primary ATII cells from bleomycin-treated
mice (Figure 4.19), which was consistent with our analyses of the Overlap gene set. Fur-
thermore, there existed a significant negative correlation between the increased PSAT1
expression levels in IPF and the decreased DLCO as well as FVC measurements in these
patients (Figure 4.18). Overall, these results indicated a reliable upregulation of PSAT1
in pulmonary fibrosis, which was specifically expressed by the fibrotic ATII cells and
might contribute to the disease severity of IPF.
Besides its contribution to the pathogenesis of various cancer types, increased PSAT1

levels have also been reported in NSCLC, where it supported cell proliferation and tu-
mor progression [69, 72, 74]. PSAT1 expression is directly regulated by the transcription
factor ATF4, which in turn is controlled by NRF2 [69, 70]. However, the role of PSAT1
in the IPF pathogenesis remains subject of current research. An increasing number
of recent publications have reported that lung fibroblasts in human IPF are affected
by the process of metabolic reprogramming, which stimulates the cellular metabolism,
contributes to the transition from fibroblasts to myofibroblasts, supports ECM gener-
ation, and activates various processes [78, 79, 173, 174]. Furthermore, in this context
of metabolic reprogramming, it has been shown that TGF-β and the fibrotic lung envi-
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ronment induce an increased expression of the transcription factor ATF4, which leads
to a significantly elevated expression of all enzymes of the de novo glycine and serine
synthesis in lung fibroblasts and results in excessive collagen production [78, 79, 173,
174]. The activation of the serine biosynthesis pathway is particularly important because
glycine represents by far the most frequent amino acid in the collagen structure and the
production of glycine requires the amino acid serine as precursor [78, 174]. PSAT1 is
one of the essential key enzymes of this serine biosynthesis pathway and showed signif-
icantly increased protein and mRNA levels in response to TGF-β stimulation in lung
fibroblasts [79]. In addition, PSAT1 knockdown in lung fibroblasts disrupted the afore-
mentioned mechanism of TGF-β/ATF4-related signaling and resulted in an inhibition
of TGF-β-mediated collagen synthesis [79]. Zhu et al. [175] demonstrated that vitamin
D3 treatment of human lung fibroblasts decreased the PSAT1 expression levels, which
might affect metabolic reprogramming and diminish collagen production.
However, the contribution of PSAT1 upregulation in fibrotic ATII cells to the IPF

development requires further research. Human ATII cells are able to acquire a TGF-
β-mediated pro-fibrotic phenotype, express mesenchymal markers, and experience at
least partial epithelial-to-mesenchymal transition [176]. Therefore, we hypothesize that
pro-fibrotic ATII cells express increased TGF-β/ATF4-mediated PSAT1 in a fibrotic
environment. Thus, pro-fibrotic ATII cells might undergo metabolic reprogramming and
contribute to collagen production as well as ECM organization. This hypothesis is
supported by the fact that Selvarajah et al. [173] and O’Leary et al. [174] demonstrated
the highest ATF4 levels in hyperplastic ATII cells adjacent to fibroblast foci and only to a
lesser extent in lung fibroblasts. In summary, PSAT1 represents an interesting target for
the development of novel IPF and lung cancer therapies. Future studies should confirm
the mechanism of PSAT1 upregulation in fibrotic ATII cells and address its contribution
to the IPF pathogenesis.

5.6 GPR87 is expressed in HBECs and regulated by TGF-β

The G protein-coupled receptor 87 (GPR87 ) was the second candidate gene of the
Overlap gene set that was further characterized by in-depth analyses. GPR87 is part of
the G protein-coupled receptor family, but its biological function still remains unknown.
Although LPA represents a possible ligand for GPR87, it seems to be rather unspecific
with a low binding affinity [83]. To date, no other ligands for GPR87 have been described.
In addition, its contribution to the pathogenesis of IPF requires further research.
Western blot analysis confirmed significantly elevated protein levels of GPR87 in

bleomycin-induced murine lung fibrosis and human IPF, which was accompanied by
increased expression of the mesenchymal markers α-SMA and CNN1 (Figure 4.20 and
4.21). Furthermore, GPR87 expression levels showed a significant negative correlation
with DLCO and FVC measurements in IPF, which indicated a correlation of GPR87
and disease severity (Figure 4.22). The analysis of the "human gene atlas" microarray
dataset (GSE1133 ) [134] revealed an extraordinarily tissue- and cell-specific expression
of GPR87 in bronchial epithelial cells (Figure 4.23). We were able to confirm this
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cell-specific pattern by demonstrating significantly higher GPR87 expression in human
bronchial epithelial cells, compared to the alveolar epithelium (Figure 4.24). These re-
sults were further supported by a remarkable, significant correlation of GPR87 with the
expression of the basal cell markers KRT5, KRT14, and TP63 in human IPF (Figure
4.25). Moreover, a preliminary FACS analysis (n = 1) indicated the existence of a spe-
cific subset of GPR87 positive phBECs (Figure 5.1). Finally, we observed a significant
upregulation of GPR87 expression in vitro by treatment of human bronchial epithelial
cells with the pro-fibrotic mediator TGF-β (Figure 4.26 and 4.27).

Figure 5.1: FACS analysis of GPR87 staining in isolated phBECs. Preliminary FACS analysis
(n = 1) demonstrated successful GPR87 staining of a specific subset of isolated phBECs,
compared to control.

The family of G protein-coupled receptors has been described as one of the largest
groups of related receptors and represents a major target for the development of novel
drugs [80, 177]. These features in combination with the highly cell-specific expression
of GPR87 emphasize its possible role as target for novel IPF therapies. The restriction
of GPR87 expression to bronchial epithelial cells might help to limit the impact of
possible drugs on other cell types and to reduce the occurrence of side effects. Basal
cells serve as progenitor cells for the repair and regeneration of the bronchial epithelium
and express the basal cell markers KRT5, KRT14, and TP63 [168]. Taking into account
the preliminary FACS results of GPR87 expression in a specific subset of bronchial
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epithelial cells and the significant correlation of GPR87 expression with the basal cell
markers in IPF, we hypothesized that basal cells could be the major source of increased
GPR87 levels in IPF. We were able to confirm this hypothesis in our subsequent study
by Heinzelmann et al. [178], which demonstrated GPR87 expression in KRT5 positive
basal cells of IPF lung tissue and human cell culture experiments. Furthermore, we
verified the regulatory mechanism of TGF-β-induced upregulation of GPR87 expression
in bronchial epithelial cells, which has already been described in the present thesis [178].
This is an intriguing finding because TGF-β represents one of the major pro-fibrotic
mediators in IPF. Besides TGF-β, the GPR87 expression has also been reported to be
regulated by P53, which contributed to cell survival [90]. Although its precise role in IPF
remains subject to further research, Heinzelmann et al. [178] proposed an association of
GPR87 with the processes of airway remodeling and bronchiolization. The highlighted
role of GPR87 within the bronchial epithelium of the IPF lung corresponds with its
specific expression in SCC lung tissue, compared to AC samples (Figure 4.15).
Taken together, we propose that GPR87 is upregulated by TGF-β in basal cells of the

IPF lung and might contribute to IPF progression, bronchiolization, squamous metapla-
sia, and distorted basal cells, which subsequently supports the initiation of lung cancer
development in IPF. Therefore, GPR87 could represent a specific target for novel ther-
apeutic options, and its contribution requires further research.

5.7 Conclusion and outlook

IPF and lung cancer are devastating disorders of the human lung, which impose a poor
prognosis on affected patients because of the lack of curative treatment options. Hence,
there exists an urgent need for the development of novel therapies. This may require
the implementation of unusual strategies, which we have demonstrated in the present
thesis. We were able to confirm the existence of oncogenic, cancer-related signaling in
IPF, which may contribute to cellular reprogramming, support the IPF progression, and
promote alterations of the epithelium that facilitate the development of lung cancer.
In summary, this thesis established a relationship between the pathogenesis of IPF

and NSCLC by conducting a top-down systems biology approach and demonstrating
a common pattern of differentially expressed genes in both diseases. The subset of
common, upregulated DEGs exhibited an IPF-specific signature, was associated with
fibrotic lung epithelial cells, and showed a significant enrichment of shared interactions
and annotations. These results verified the pathomechanistic relationship by confirm-
ing the existence of a common subset of functionally related genes in IPF and NSCLC,
which included a shared biological and mechanistic background. Further analysis of
these common features may improve our understanding of the IPF pathogenesis and
lead to novel therapeutic targets. We were also able to prove the expression of selected
candidate genes in our tissue samples of IPF, NSCLC, and bleomycin-treated mice. Fi-
nally, we provided evidence that GPR87 and PSAT1 represent promising targets for the
development of IPF treatments. Overall, the present thesis implemented an uncommon,
novel strategy to broaden our knowledge about IPF and proved the practical relevance
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of an exploratory systems biology approach for the identification of specific targets and
subsequent mechanistic studies.
In conclusion, we propose that common gene expression alterations in the lung ep-

ithelium of IPF patients lead to morphological and cellular changes, which support IPF
progression and represent a basis for malignant transformations and the development of
lung cancer. Therefore, the oncogenic signaling in IPF provides an exciting opportunity
to target disease progression and cancer formation.

The present thesis provides various ideas for subsequent studies and future research.
In order to further elucidate the connection of IPF and NSCLC, future studies should
address the downregulated DEGs as well as those genes with an opposed misregulation
in both diseases. Furthermore, single-cell analysis of IPF lung tissue could help to
determine and verify the cell-specific enrichment of the Overlap gene set in IPF. Besides
this, the contribution of our results should also be evaluated in terms of cancer research
because we mainly focused our analyses on the context of IPF. Eventually, GPR87
represents a promising target for therapeutic strategies, and its contribution requires
further investigation of in vivo models, such as GPR87 knockout mice.
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Appendix

Indicated parts of the appendix have been previously published in Ulke et al. [120].
Adapted and reprinted with permission of the American Thoracic Society (p. III).

Table 1: Complete list of eigenvalues and variance for the PCA in section 4.2.1.

Eigenvalue Variance (%) Cumulative variance (%)

PC 1 70.25049569 50.70414838 50.70414838
PC 2 14.48757326 10.45658194 61.16073032
PC 3 8.702191229 6.280912198 67.44164252
PC 4 5.90068254 4.25888928 71.7005318
PC 5 4.428190431 3.196100219 74.89663202
PC 6 3.204893545 2.313170836 77.20980285
PC 7 2.496660336 1.801994917 79.01179777
PC 8 2.334185591 1.684726797 80.69652457
PC 9 2.16778493 1.564625099 82.26114966
PC 10 1.739052936 1.255182575 83.51633224
PC 11 1.511036918 1.090609245 84.60694149
PC 12 1.501548648 1.083760972 85.69070246
PC 13 1.209759347 0.8731585 86.56386096
PC 14 1.158564654 0.836208108 87.40006906
PC 15 1.097886177 0.792412681 88.19248175
PC 16 1.008233923 0.727705078 88.92018682
PC 17 0.944060463 0.681387104 89.60157393
PC 18 0.911155519 0.657637561 90.25921149
PC 19 0.784233348 0.566029942 90.82524143
PC 20 0.770446589 0.556079182 91.38132061
PC 21 0.732712957 0.528844475 91.91016509
PC 22 0.659757072 0.476187679 92.38635277
PC 23 0.636935767 0.459716125 92.84606889
PC 24 0.577747722 0.416996435 93.26306533
PC 25 0.547928308 0.39547391 93.65853924
PC 26 0.488356023 0.35247689 94.01101613
PC 27 0.470589072 0.339653377 94.3506695
PC 28 0.456582691 0.329544102 94.6802136
PC 29 0.414868338 0.299436261 94.97964987
PC 30 0.403982965 0.291579611 95.27122948
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Eigenvalue Variance (%) Cumulative variance (%)

PC 31 0.373466088 0.269553685 95.54078316
PC 32 0.339639873 0.245139203 95.78592236
PC 33 0.309039764 0.223053203 96.00897557
PC 34 0.289442653 0.208908749 96.21788432
PC 35 0.286877832 0.207057559 96.42494188
PC 36 0.257131886 0.185588061 96.61052994
PC 37 0.253716287 0.183122811 96.79365275
PC 38 0.240532616 0.173607336 96.96726008
PC 39 0.221959365 0.160201867 97.12746195
PC 40 0.207536188 0.149791764 97.27725372
PC 41 0.203643365 0.146982071 97.42423579
PC 42 0.185844442 0.134135483 97.55837127
PC 43 0.176177177 0.127158017 97.68552929
PC 44 0.168274533 0.121454188 97.80698347
PC 45 0.15263517 0.110166288 97.91714976
PC 46 0.150694247 0.108765403 98.02591517
PC 47 0.140783567 0.101612249 98.12752741
PC 48 0.137139739 0.098982272 98.22650969
PC 49 0.135080274 0.097495828 98.32400551
PC 50 0.130274445 0.094027163 98.41803268
PC 51 0.120020484 0.086626242 98.50465892
PC 52 0.117637416 0.084906234 98.58956515
PC 53 0.11396021 0.082252165 98.67181732
PC 54 0.11342309 0.081864492 98.75368181
PC 55 0.104380192 0.075337671 98.82901948
PC 56 0.094942203 0.068525688 98.89754517
PC 57 0.090939526 0.065636707 98.96318188
PC 58 0.088206945 0.063664434 99.02684631
PC 59 0.083102992 0.059980594 99.0868269
PC 60 0.079643946 0.057483985 99.14431089
PC 61 0.076172274 0.054978264 99.19928915
PC 62 0.073378034 0.052961487 99.25225064
PC 63 0.07077662 0.051083885 99.30333453
PC 64 0.064630628 0.046647941 99.34998247
PC 65 0.061702273 0.044534365 99.39451683
PC 66 0.05932446 0.04281815 99.43733498
PC 67 0.057710246 0.041653071 99.47898805
PC 68 0.054533553 0.039360254 99.51834831
PC 69 0.051248819 0.036989457 99.55533776
PC 70 0.049720068 0.035886063 99.59122383
PC 71 0.046254952 0.033385074 99.6246089
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Eigenvalue Variance (%) Cumulative variance (%)

PC 72 0.042421133 0.030617968 99.65522687
PC 73 0.040927555 0.02953996 99.68476683
PC 74 0.039417829 0.028450297 99.71321712
PC 75 0.038239874 0.027600094 99.74081722
PC 76 0.03614222 0.026086086 99.7669033
PC 77 0.034284396 0.024745179 99.79164848
PC 78 0.03150146 0.022736561 99.81438504
PC 79 0.028287802 0.020417065 99.83480211
PC 80 0.028008735 0.020215645 99.85501775
PC 81 0.026014838 0.018776525 99.87379428
PC 82 0.024534135 0.01770781 99.89150209
PC 83 0.021534439 0.015542743 99.90704483
PC 84 0.020649813 0.014904253 99.92194909
PC 85 0.019167242 0.01383419 99.93578327
PC 86 0.017554071 0.012669864 99.94845314
PC 87 0.015318827 0.01105655 99.95950969
PC 88 0.014299401 0.010320766 99.96983046
PC 89 0.012774248 0.009219968 99.97905042
PC 90 0.011442814 0.00825899 99.98730941
PC 91 0.009867428 0.007121936 99.99443135
PC 92 0.007715354 0.005568651 100

Table 2: Full results of the REACTOME pathway analysis (Table 4.4). (Data was partially
published in Ulke et al. [120] - modified.)

Stable
identifier

Pathway FDR
value

p-value Genes

R-HSA-
69278

Cell Cycle, Mitotic 4.06E-10 1.27E-12 BUB1, BUB1B, CCNA2, CCNB1,
CCNB2, CDC45, CDK1, CENPE,
CENPF, FOXM1, HMMR, KIF20A,
MYBL2, NUF2, PLK1, RRM2,
TOP2A, TPX2, TYMS

R-HSA-
1640170

Cell Cycle 6.73E-10 4.19E-12 BUB1, BUB1B, CCNA2, CCNB1,
CCNB2, CDC45, CDK1, CENPE,
CENPF, EXO1, FOXM1, HMMR,
KIF20A, MYBL2, NUF2, PLK1,
RRM2, TOP2A, TPX2, TYMS

R-HSA-
156711

Polo-like kinase
mediated events

5.88E-08 5.49E-10 CCNB1, CCNB2, CENPF, FOXM1,
MYBL2, PLK1

R-HSA-
2500257

Resolution of
Sister Chromatid
Cohesion

2.43E-07 3.03E-09 BUB1, BUB1B, CCNB1, CCNB2,
CDK1, CENPE, CENPF, NUF2,
PLK1
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Stable
identifier

Pathway FDR
value

p-value Genes

R-HSA-
69273

Cyclin A/B1/B2
associated events
during G2/M
transition

3.37E-07 5.25E-09 CCNA2, CCNB1, CCNB2, CDK1,
FOXM1, PLK1

R-HSA-
69620

Cell Cycle
Checkpoints

3.87E-07 7.24E-09 BUB1, BUB1B, CCNA2, CCNB1,
CCNB2, CDC45, CDK1, CENPE,
CENPF, EXO1, NUF2, PLK1

R-HSA-
69275

G2/M Transition 8.13E-07 1.84E-08 CCNA2, CCNB1, CCNB2, CDK1,
CENPF, FOXM1, HMMR, MYBL2,
PLK1, TPX2

R-HSA-
453274

Mitotic G2-G2/M
phases

8.13E-07 2.03E-08 CCNA2, CCNB1, CCNB2, CDK1,
CENPF, FOXM1, HMMR, MYBL2,
PLK1, TPX2

R-HSA-
2980767

Activation of
NIMA Kinases
NEK9, NEK6,
NEK7

4.73E-06 1.33E-07 CCNB1, CCNB2, CDK1, PLK1

R-HSA-
68877

Mitotic
Prometaphase

7.76E-06 2.42E-07 BUB1, BUB1B, CCNB1, CCNB2,
CDK1, CENPE, CENPF, NUF2,
PLK1

R-HSA-
453279

Mitotic G1-G1/S
phases

1.73E-05 5.91E-07 CCNA2, CCNB1, CDC45, CDK1,
MYBL2, RRM2, TOP2A, TYMS

R-HSA-
162658

Golgi Cisternae
Pericentriolar
Stack
Reorganization

3.21E-05 1.20E-06 CCNB1, CCNB2, CDK1, PLK1

R-HSA-
1442490

Collagen
degradation

4.71E-05 1.91E-06 MMP1, MMP11, MMP12, MMP7,
PRSS2

R-HSA-
69478

G2/M DNA
replication
checkpoint

0.0001 5.12E-06 CCNB1, CCNB2, CDK1

R-HSA-
68886

M Phase 0.0001 5.61E-06 BUB1, BUB1B, CCNB1, CCNB2,
CDK1, CENPE, CENPF, KIF20A,
NUF2, PLK1

R-HSA-
141444

Amplification of
signal from
unattached
kinetochores via a
MAD2 inhibitory
signal

0.0001 6.59E-06 BUB1, BUB1B, CENPE, CENPF,
NUF2, PLK1

R-HSA-
141424

Amplification of
signal from the
kinetochores

0.0001 6.59E-06 BUB1, BUB1B, CENPE, CENPF,
NUF2, PLK1

R-HSA-
176417

Phosphorylation of
Emi1

0.0001 7.65E-06 CCNB1, CDK1, PLK1
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Stable
identifier

Pathway FDR
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R-HSA-
1474244

Extracellular
matrix
organization

0.0002 1.10E-05 COL10A1, COL3A1, ITGA11,
MMP1, MMP11, MMP12, MMP7,
PRSS2, SPP1

R-HSA-
1538133

G0 and Early G1 0.0002 1.18E-05 CCNA2, CDK1, MYBL2, TOP2A

R-HSA-
539107

Activation of E2F1
target genes at
G1/S

0.0002 1.52E-05 CDC45, CDK1, RRM2, TYMS

R-HSA-
69205

G1/S-Specific
Transcription

0.0002 1.52E-05 CDC45, CDK1, RRM2, TYMS

R-HSA-
69618

Mitotic Spindle
Checkpoint

0.0002 1.55E-05 BUB1, BUB1B, CENPE, CENPF,
NUF2, PLK1

R-HSA-
1474228

Degradation of the
extracellular
matrix

0.0002 1.63E-05 MMP1, MMP11, MMP12, MMP7,
PRSS2, SPP1

R-HSA-
1592389

Activation of
Matrix
Metalloproteinases

0.0003 2.42E-05 MMP1, MMP11, MMP7, PRSS2

R-HSA-
5663220

RHO GTPases
Activate Formins

0.0003 2.59E-05 BUB1, BUB1B, CENPE, CENPF,
NUF2, PLK1

R-HSA-
2514853

Condensation of
Prometaphase
Chromosomes

0.0004 3.26E-05 CCNB1, CCNB2, CDK1

R-HSA-
176814

Activation of
APC/C and
APC/C:Cdc20
mediated
degradation of
mitotic proteins

0.0004 3.51E-05 BUB1B, CCNA2, CCNB1, CDK1,
PLK1

R-HSA-
69206

G1/S Transition 0.0004 3.81E-05 CCNA2, CCNB1, CDC45, CDK1,
RRM2, TYMS

R-HSA-
176408

Regulation of
APC/C activators
between G1/S and
early anaphase

0.0005 4.43E-05 BUB1B, CCNA2, CCNB1, CDK1,
PLK1

R-HSA-
6811434

COPI-dependent
Golgi-to-ER
retrograde traffic

0.0005 5.24E-05 CENPE, KDELR3, KIF11, KIF20A,
KIF4A

R-HSA-
174143

APC/C-mediated
degradation of cell
cycle proteins

0.0006 6.15E-05 BUB1B, CCNA2, CCNB1, CDK1,
PLK1

R-HSA-
453276

Regulation of
mitotic cell cycle

0.0006 6.15E-05 BUB1B, CCNA2, CCNB1, CDK1,
PLK1

R-HSA-
983189

Kinesins 0.0006 6.87E-05 CENPE, KIF11, KIF20A, KIF4A
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R-HSA-
1362300

Transcription of
E2F targets under
negative control by
p107 (RBL1) and
p130 (RBL2) in
complex with
HDAC1

0.0008 8.54E-05 CCNA2, CDK1, MYBL2

R-HSA-
2980766

Nuclear Envelope
Breakdown

0.0011 0.0001 CCNB1, CCNB2, CDK1, PLK1

R-HSA-
176412

Phosphorylation of
the APC/C

0.0012 0.0001 CCNB1, CDK1, PLK1

R-HSA-
2467813

Separation of
Sister Chromatids

0.0014 0.0002 BUB1, BUB1B, CENPE, CENPF,
NUF2, PLK1

R-HSA-
8852276

The role of GTSE1
in G2/M
progression after
G2 checkpoint

0.0017 0.0002 CCNB1, CCNB2, CDK1, PLK1

R-HSA-
68882

Mitotic Anaphase 0.0018 0.0002 BUB1, BUB1B, CENPE, CENPF,
NUF2, PLK1

R-HSA-
2555396

Mitotic Metaphase
and Anaphase

0.0018 0.0002 BUB1, BUB1B, CENPE, CENPF,
NUF2, PLK1

R-HSA-
8856688

Golgi-to-ER
retrograde
transport

0.0018 0.0002 CENPE, KDELR3, KIF11, KIF20A,
KIF4A

R-HSA-
8854518

AURKA
Activation by
TPX2

0.0030 0.0004 CDK1, HMMR, PLK1, TPX2

R-HSA-
176409

APC/C:Cdc20
mediated
degradation of
mitotic proteins

0.0034 0.0005 BUB1B, CCNA2, CCNB1, CDK1

R-HSA-
499943

Interconversion of
nucleotide di- and
triphosphates

0.0038 0.0005 AK4, RRM2, TYMS

R-HSA-
70614

Amino acid
synthesis and
interconversion
(transamination)

0.0044 0.0006 PSAT1, PYCR1, SERINC2

R-HSA-
3301854

Nuclear Pore
Complex (NPC)
Disassembly

0.0047 0.0007 CCNB1, CCNB2, CDK1

R-HSA-
69481

G2/M Checkpoints 0.0050 0.0008 CCNB1, CCNB2, CDC45, CDK1,
EXO1

R-HSA-
2565942

Regulation of
PLK1 Activity at
G2/M Transition

0.0052 0.0008 CCNB1, CCNB2, CDK1, PLK1
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R-HSA-
2299718

Condensation of
Prophase
Chromosomes

0.0074 0.0012 CCNB1, CDK1, PLK1

R-HSA-
195258

RHO GTPase
Effectors

0.0090 0.0015 BUB1, BUB1B, CENPE, CENPF,
NUF2, PLK1

R-HSA-
6791312

TP53 Regulates
Transcription of
Cell Cycle Genes

0.0099 0.0017 CCNA2, CCNB1, CDK1

R-HSA-
2132295

MHC class II
antigen
presentation

0.0099 0.0018 CENPE, KIF11, KIF20A, KIF4A

R-HSA-
6811442

Intra-Golgi and
retrograde
Golgi-to-ER traffic

0.0103 0.0019 CENPE, KDELR3, KIF11, KIF20A,
KIF4A

R-HSA-
68875

Mitotic Prophase 0.0105 0.0019 CCNB1, CCNB2, CDK1, PLK1

R-HSA-
194315

Signaling by Rho
GTPases

0.0130 0.0025 BUB1, BUB1B, CENPE, CENPF,
ECT2, NUF2, PLK1

R-HSA-
2022090

Assembly of
collagen fibrils and
other multimeric
structures

0.0138 0.0028 COL10A1, COL3A1, MMP7

R-HSA-
983231

Factors involved in
megakaryocyte
development and
platelet production

0.0227 0.0047 CENPE, KIF11, KIF20A, KIF4A

R-HSA-
174184

Cdc20:Phospho-
APC/C mediated
degradation of
Cyclin A

0.0237 0.0049 BUB1B, CCNA2, CDK1

R-HSA-
179419

APC:Cdc20
mediated
degradation of cell
cycle proteins prior
to satisfation of
the cell cycle
checkpoint

0.0242 0.0051 BUB1B, CCNA2, CDK1

R-HSA-
69473

G2/M DNA
damage checkpoint

0.0277 0.0061 CCNB1, CDK1, EXO1

R-HSA-
5633007

Regulation of
TP53 Activity

0.0302 0.0069 CCNA2, CDK1, EXO1, TPX2

R-HSA-
1430728

Metabolism 0.0302 0.0069 AK4, AKR1B10, CYP24A1, GPX2,
HMMR, HS6ST2, PDK1, PSAT1,
PYCR1, RPL39L, RRM2, SERINC2,
SLC2A1, SLC44A5, TCN1, TDO2,
TNFRSF21, TYMS
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R-HSA-
3700989

Transcriptional
Regulation by
TP53

0.0323 0.0075 CCNA2, CCNB1, CDK1, EXO1,
GPX2, TPX2

R-HSA-
1474290

Collagen formation 0.0378 0.0090 COL10A1, COL3A1, MMP7

R-HSA-
6804756

Regulation of
TP53 Activity
through
Phosphorylation

0.0396 0.0095 CCNA2, EXO1, TPX2

R-HSA-
15869

Metabolism of
nucleotides

0.0499 0.0124 AK4, RRM2, TYMS

Table 3: Full results of the GO term analysis (Table 4.6). (Data was partially published in Ulke
et al. [120] - modified.)

Accession
number

Term name FDR
value

Genes

GO:0000278 Mitotic cell cycle 1.08E-13 HELLS, DLGAP5, CCNB1, CENPE, ANLN,
NUF2, CCNA2, CCNB2, MELK, PLK1, TPX2,
PBK, BUB1, TYMS, CDKN3, FOXM1,
HIST1H4K, RRM2, CENPF, ASPM, TTK,
CEP55, STIL, KIF4A, KIF20A, CDC45,
TOP2A

GO:1903047 Mitotic cell cycle
process

1.08E-13 HELLS, DLGAP5, CCNB1, CENPE, ANLN,
NUF2, CCNA2, CCNB2, MELK, PLK1, TPX2,
PBK, BUB1, TYMS, CDKN3, FOXM1, RRM2,
CENPF, ASPM, TTK, CEP55, STIL, KIF4A,
KIF20A, CDC45, TOP2A

GO:0007067 Mitotic nuclear
division

1.34E-11 MYBL2, HELLS, DLGAP5, CCNB1, CENPE,
ANLN, NUF2, CCNA2, CCNB2, PLK1, TPX2,
PBK, BUB1, CENPF, ASPM, CEP55, KIF4A,
CDK1

GO:0022402 Cell cycle process 1.34E-11 FAP, ECT2, HELLS, DLGAP5, CCNB1,
CENPE, ANLN, NUF2, CCNA2, CCNB2,
MELK, TPX2, PBK, BUB1, TYMS, CDKN3,
FOXM1, RRM2, CENPF, ASPM, MKI67,
CEP55, STIL, KIF4A, KIF20A, CDC45,
TOP2A

GO:0051301 Cell division 1.51E-11 ECT2, HELLS, CCNB1, KIF11, CENPE,
ANLN, NUF2, CCNA2, BUB1B, CCNB2,
PLK1, TPX2, BUB1, CENPF, ASPM, CEP55,
KIF4A, KIF20A, CDK1, TOP2A
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GO:0000280 Nuclear division 2.83E-11 MYBL2, HELLS, DLGAP5, CCNB1, CENPE,
ANLN, NUF2, CCNA2, CCNB2, TPX2, PBK,
BUB1, CENPF, ASPM, MKI67, CEP55,
KIF4A, CDK1, TOP2A

GO:0007049 Cell cycle 4.37E-11 FAP, ECT2, HELLS, DLGAP5, CCNB1,
CENPE, ANLN, NUF2, CCNA2, CCNB2,
MELK, TPX2, PBK, BUB1, EXO1, TYMS,
CDKN3, FOXM1, HIST1H4K, RRM2, CENPF,
ASPM, MKI67, CEP55, STIL, KIF4A,
KIF20A, CDC45, TOP2A

GO:0005819 Spindle 1.21E-09 ECT2, DLGAP5, CCNB1, KIF11, CENPE,
BUB1B, PLK1, TPX2, CKAP2L, CENPF,
ASPM, TTK, KIF4A, KIF20A, CDK1

GO:0044772 Mitotic cell cycle
phase transition

8.75E-08 MYBL2, CCNB1, CCNA2, BUB1B, CCNB2,
MELK, PLK1, TYMS, CDKN3, FOXM1,
RRM2, CENPF, CDK1, CDC45

GO:0030496 Midbody 1.33E-07 ECT2, CENPE, PLK1, CENPF, ASPM,
CEP55, KIF4A, KIF20A, CDK1, SLC2A1

GO:0051726 Regulation of cell
cycle

1.92E-07 FAP, MYBL2, ECT2, DLGAP5, CCNB1,
KIF11, CENPE, ANLN, CCNB2, KIAA0101,
PLK1, TPX2, BUB1, CDKN3, FOXM1,
CENPF, ASPM, TTK, STIL, CDC45, TOP2A

GO:0000940 Condensed
chromosome outer
kinetochore

3.63E-07 CCNB1, BUB1B, PLK1, BUB1, CENPF

GO:0030071 Regulation of
mitotic
metaphase/anaphase
transition

1.15E-06 DLGAP5, CENPE, BUB1B, PLK1, BUB1,
CENPF, TTK

GO:0010564 Regulation of cell
cycle process

4.06E-06 FAP, ECT2, DLGAP5, CCNB1, KIF11,
CENPE, ANLN, CCNA2, PLK1, TPX2, BUB1,
FOXM1, CENPF, TTK, CDC45

GO:0000778 Condensed nuclear
chromosome
kinetochore

4.96E-06 CCNB1, BUB1B, PLK1, BUB1

GO:0015630 Microtubule
cytoskeleton

6.60E-06 ECT2, DLGAP5, CCNB1, KIF11, CENPE,
BUB1B, CCNB2, PLK1, TPX2, CKAP2L,
CENPF, ASPM, TTK, CEP55, STIL, KIF4A,
KIF20A, CDK1, CDC45

GO:1901990 Regulation of
mitotic cell cycle
phase transition

8.15E-06 DLGAP5, CCNB1, CENPE, ANLN, CCNA2,
BUB1B, PLK1, BUB1, CENPF, TTK, CDC45

GO:0000086 G2/M transition of
mitotic cell cycle

9.10E-06 MYBL2, CCNB1, CCNA2, CCNB2, MELK,
PLK1, FOXM1, CENPF, CDK1
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GO:0051983 Regulation of
chromosome
segregation

9.77E-06 ECT2, DLGAP5, CCNB1, PLK1, BUB1,
CENPF, TTK

GO:0000922 Spindle pole 1.37E-05 DLGAP5, CCNB1, KIF11, PLK1, TPX2,
CKAP2L, CENPF, ASPM

GO:0044430 Cytoskeletal part 1.92E-05 ECT2, DLGAP5, CCNB1, KIF11, CENPE,
ANLN, BUB1B, CCNB2, PLK1, TPX2,
CKAP2L, CENPF, ASPM, TTK, CEP55,
STIL, KIF4A, KIF20A, CDK1, CDC45,
SLC2A1

GO:0007346 Regulation of
mitotic cell cycle

3.90E-05 DLGAP5, CCNB1, KIF11, CENPE, ANLN,
CCNA2, PLK1, TPX2, BUB1, CENPF, TTK,
CDC45, TOP2A

GO:0007088 Regulation of
mitotic nuclear
division

4.03E-05 DLGAP5, KIF11, CENPE, ANLN, PLK1,
BUB1, CENPF, TTK

GO:0016043 Cellular
component
organization

6.02E-05 MYBL2, TOX3, HELLS, COL10A1, DLGAP5,
CCNB1, SULF1, MMP7, CDH3, CENPE,
ANLN, NUF2, CCNA2, CCNB2, KIAA0101,
GREM1, TPX2, PBK, BUB1, COL3A1,
ATP10B, ETV4, MMP1, ITGA11, CTHRC1,
HIST1H4K, RRM2, CENPF, ASPM, CRABP2,
MKI67, TTK, CEP55, KIF4A, GJB2, GOLM1,
KIF20A, CDK1, CDC45, TOP2A, SLC2A1

GO:0000281 Mitotic cytokinesis 6.33E-05 ANLN, PLK1, CEP55, KIF4A, KIF20A
GO:0007059 Chromosome

segregation
6.33E-05 DLGAP5, CCNB1, KIF11, CENPE, NUF2,

BUB1, CENPF, TTK, TOP2A
GO:0000942 Condensed nuclear

chromosome outer
kinetochore

6.71E-05 CCNB1, PLK1, BUB1

GO:0051439 Regulation of
ubiquitin-protein
ligase activity
involved in mitotic
cell cycle

7.42E-05 CCNB1, BUB1B, PLK1, BUB1, CENPF, TTK,
CDK1

GO:0051302 Regulation of cell
division

7.42E-05 ECT2, DLGAP5, KIF11, CENPE, ANLN,
PLK1, BUB1, CENPF, ASPM, TTK

GO:0032434 Regulation of
proteasomal
ubiquitin-
dependent protein
catabolic process

7.77E-05 DLGAP5, CENPE, BUB1B, PLK1, PBK,
BUB1, CENPF, TTK

GO:0000780 Condensed nuclear
chromosome,
centromeric region

8.37E-05 CCNB1, BUB1B, PLK1, BUB1
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GO:0000775 Chromosome,
centromeric region

9.07E-05 HELLS, CCNB1, CENPE, NUF2, PLK1,
BUB1, CENPF, MKI67

GO:0032435 Negative regulation
of proteasomal
ubiquitin-
dependent protein
catabolic process

9.12E-05 BUB1B, PLK1, PBK, BUB1, CENPF, TTK

GO:0007094 Mitotic spindle
assembly
checkpoint

1.37E-04 BUB1B, PLK1, BUB1, CENPF, TTK

GO:0000793 Condensed
chromosome

1.42E-04 CCNB1, CENPE, NUF2, PLK1, BUB1,
CENPF, MKI67, TOP2A

GO:1903050 Regulation of
proteolysis
involved in cellular
protein catabolic
process

1.49E-04 DLGAP5, CCNB1, CENPE, BUB1B, PLK1,
PBK, BUB1, CENPF, TTK, CDK1

GO:0000075 Cell cycle
checkpoint

1.50E-04 CCNA2, BUB1B, PLK1, BUB1, CENPF, TTK,
CDK1, CDC45, TOP2A

GO:1902589 Single-organism
organelle
organization

1.60E-04 MYBL2, HELLS, DLGAP5, CCNB1, CENPE,
ANLN, NUF2, CCNA2, CCNB2, KIAA0101,
TPX2, PBK, BUB1, HIST1H4K, CENPF,
ASPM, MKI67, TTK, CEP55, STIL, KIF4A,
KIF20A, CDK1, TOP2A

GO:0007093 Mitotic cell cycle
checkpoint

1.74E-04 CCNA2, BUB1B, PLK1, BUB1, CENPF, TTK,
CDK1, TOP2A

GO:0051782 Negative regulation
of cell division

1.84E-04 BUB1B, PLK1, BUB1, CENPF, ASPM, TTK

GO:0010965 Regulation of
mitotic sister
chromatid
separation

2.92E-04 DLGAP5, PLK1, BUB1, CENPF, TTK

GO:0007052 Mitotic spindle
organization

3.06E-04 MYBL2, KIF11, TTK, STIL, KIF4A

GO:0000226 Microtubule
cytoskeleton
organization

3.06E-04 MYBL2, CENPE, KIAA0101, PLK1, ASPM,
TTK, STIL, KIF4A, KIF20A, CDK1

GO:0044710 Single-organism
metabolic process

3.13E-04 MMP11, CYP24A1, RAD51AP1, COL10A1,
CCNB1, TCN1, SULF1, MMP7, PDK1,
BUB1B, TNFRSF21, KIAA0101, PLK1,
COL3A1, AK4, MMP1, PYCR1, PPAP2C,
FOXM1, HIST1H4K, AKR1B10, UBE2T,
CRABP2, SLC44A5, SERINC2, PSAT1,
GPX2, FUT2, HMMR, CDK1, GCNT3,
CDC45, TOP2A, SLC2A1, CFB, TDO2
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GO:0051340 Regulation of
ligase activity

3.13E-04 CCNB1, BUB1B, PLK1, BUB1, CENPF, TTK,
CDK1

GO:0000910 Cytokinesis 3.57E-04 ECT2, ANLN, PLK1, CEP55, KIF4A, KIF20A
GO:0007051 Spindle

organization
3.77E-04 MYBL2, KIF11, ASPM, TTK, STIL, KIF4A

GO:0000777 Condensed
chromosome
kinetochore

4.68E-04 CCNB1, CENPE, NUF2, PLK1, BUB1,
CENPF

GO:0000779 Condensed
chromosome,
centromeric region

5.78E-04 CCNB1, CENPE, NUF2, PLK1, BUB1,
CENPF

GO:0051338 Regulation of
transferase activity

6.01E-04 ECT2, CCNB1, CENPE, CCNA2, BUB1B,
PLK1, GREM1, TPX2, BUB1, CDKN3,
CENPF, TTK, STIL, SERINC2, CDK1

GO:0005856 Cytoskeleton 6.34E-04 ECT2, DLGAP5, TNS4, CCNB1, KIF11,
CENPE, ANLN, BUB1B, CCNB2, PLK1,
TPX2, CKAP2L, CENPF, ASPM, TTK,
CEP55, STIL, KIF4A, KIF20A, CDK1,
CDC45, SLC2A1

GO:0005737 Cytoplasm 7.50E-04 FAP, MMP11, CYP24A1, ECT2, DLGAP5,
TNS4, CCNB1, SULF1, KIF11, CDH3,
CENPE, ANLN, NUF2, CCNA2, CXCL13,
BUB1B, CCNB2, RPL39L, STEAP1, MELK,
KIAA0101, PLK1, TPX2, BUB1, COL3A1,
CKAP2L, CDCA7, ATP10B, TYMS, AK4,
PYCR1, CTHRC1, CDKN3, FOXM1,
AKR1B10, RRM2, CENPF, UBE2T, ASPM,
RALGPS2, AIM2, CRABP2, MKI67, CEP55,
STIL, KIF4A, PSAT1, GJB2, GOLM1, GPX2,
FUT2, HMMR, KIF20A, SPP1, CDK1,
GCNT3, KDELR3, CDC45, TOP2A, HS6ST2,
TDO2

GO:1902850 Microtubule
cytoskeleton
organization
involved in mitosis

7.62E-04 MYBL2, KIF11, CENPE, KIF4A

GO:0008283 Cell proliferation 7.82E-04 FAP, HELLS, DLGAP5, PDK1, BUB1B,
MELK, PLK1, TPX2, BUB1, CENPF, ASPM,
MKI67, STIL

GO:0006950 Response to stress 8.39E-04 RAD51AP1, ECT2, CCNB1, MMP7, KIF11,
CDH3, CENPE, CCNA2, LCN2, PDK1,
CXCL13, MELK, KIAA0101, PLK1, COL3A1,
EXO1, MMP1, PYCR1, FOXM1, UBE2T,
AIM2, MKI67, KIF4A, GJB2, GPX2, SPP1,
KDELR3, CDC45, TOP2A, SLC2A1, CFB
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GO:0005694 Chromosome 9.33E-04 MYBL2, HELLS, CCNB1, CENPE, NUF2,
PLK1, BUB1, HIST1H4K, CENPF, MKI67,
KIF4A, CDC45, TOP2A

GO:0000083 Regulation of
transcription
involved in G1/S
transition of
mitotic cell cycle

0.0010 TYMS, RRM2, CDK1, CDC45

GO:0007017 Microtubule-based
process

0.0010 MYBL2, DLGAP5, CENPE, KIAA0101, PLK1,
ASPM, TTK, STIL, KIF4A, KIF20A, CDK1

GO:1901991 Negative regulation
of mitotic cell cycle
phase transition

0.0011 CCNA2, BUB1B, PLK1, BUB1, CENPF, TTK,
CDK1

GO:0006915 Apoptotic process 0.0011 FAP, TOX3, ECT2, TNS4, SULF1, LCN2,
PDK1, BUB1B, TNFRSF21, GREM1, TPX2,
BUB1, CDCA7, AIM2, CDK1, TOP2A

GO:0050896 Response to
stimulus

0.0013 CYP24A1, RAD51AP1, ECT2, CCNB1,
SULF1, MMP7, KIF11, GPR87, CENPE,
NUF2, CCNA2, LCN2, PDK1, CXCL13,
BUB1B, TNFRSF21, KIAA0101, PLK1,
GREM1, PBK, BUB1, CST1, ETV4, AK4,
MMP1, ITGA11, PYCR1, CTHRC1,
HIST1H4K, AKR1B10, CENPF, UBE2T,
RALGPS2, CRABP2, MKI67, STIL, KIF4A,
GJB2, GPX2, SPP1, GCNT3, KDELR3,
CDC45, TOP2A, DEPDC1, SLC2A1, CFB

GO:0007275 Multicellular
organismal
development

0.0013 FAP, MMP11, ECT2, HELLS, COL10A1,
CCNB1, SULF1, CDH3, CENPE, ANLN,
CCNA2, CXCL13, CCNB2, TNFRSF21,
MELK, GREM1, EXO1, TYMS, ETV4, AK4,
ITGA11, CTHRC1, FOXM1, CENPF, ASPM,
CRABP2, MKI67, STIL, KIF4A, GJB2, SPP1,
CDK1, GCNT3, TOP2A

GO:0051297 Centrosome
organization

0.0013 KIF11, KIAA0101, PLK1, STIL, CDK1

GO:0048731 System
development

0.0015 FAP, ECT2, COL10A1, CCNB1, SULF1,
CDH3, ANLN, CCNA2, CXCL13, CCNB2,
TNFRSF21, MELK, GREM1, EXO1, TYMS,
ETV4, AK4, ITGA11, CTHRC1, FOXM1,
CENPF, ASPM, CRABP2, MKI67, STIL,
KIF4A, GJB2, SPP1, CDK1, GCNT3, TOP2A

GO:0022617 Extracellular
matrix disassembly

0.0018 MMP11, COL10A1, MMP7, COL3A1, MMP1,
SPP1
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GO:0006996 Organelle
organization

0.0018 MYBL2, TOX3, HELLS, DLGAP5, CCNB1,
CENPE, ANLN, NUF2, CCNA2, CCNB2,
KIAA0101, TPX2, PBK, BUB1, HIST1H4K,
CENPF, ASPM, MKI67, TTK, CEP55, STIL,
KIF4A, GOLM1, KIF20A, CDK1, CDC45,
TOP2A

GO:0030162 Regulation of
proteolysis

0.0020 DLGAP5, CCNB1, CENPE, BUB1B, PLK1,
PBK, BUB1, CST1, CENPF, AIM2, TTK,
CDK1, CFB

GO:0030574 Collagen catabolic
process

0.0023 MMP11, COL10A1, MMP7, COL3A1, MMP1

GO:0048519 Negative regulation
of biological
process

0.0023 FAP, MMP11, TOX3, CEACAM5, HELLS,
CCNB1, SULF1, GPR87, CDH3, CCNA2,
CXCL13, BUB1B, TNFRSF21, PLK1,
GREM1, PBK, BUB1, COL3A1, CST1, ETV4,
PYCR1, CTHRC1, CDKN3, FOXM1,
HIST1H4K, CENPF, ASPM, AIM2, TTK,
STIL, SPP1, KDELR3, TOP2A, DEPDC1

GO:0045786 Negative regulation
of cell cycle

0.0027 FAP, CCNA2, BUB1B, PLK1, BUB1, CDKN3,
CENPF, TTK, CDK1, TOP2A

GO:0006928 Movement of cell
or subcellular
component

0.0028 FAP, DLGAP5, KIF11, CENPE, ANLN,
CXCL13, GREM1, COL3A1, ETV4, MMP1,
ITGA11, CTHRC1, ASPM, KIF4A, KIF20A,
SPP1, CDK1

GO:0072686 Mitotic spindle 0.0030 ECT2, CENPE, ASPM, CDK1
GO:0045120 Pronucleus 0.0030 CCNA2, CENPF, SLC2A1
GO:0033554 Cellular response

to stress
0.0031 RAD51AP1, ECT2, CCNB1, CCNA2, PDK1,

MELK, KIAA0101, PLK1, EXO1, PYCR1,
FOXM1, UBE2T, MKI67, GJB2, SPP1,
KDELR3, CDC45, TOP2A, SLC2A1

GO:0048523 Negative regulation
of cellular process

0.0033 FAP, MMP11, TOX3, CEACAM5, HELLS,
CCNB1, SULF1, GPR87, CCNA2, CXCL13,
BUB1B, TNFRSF21, PLK1, GREM1, PBK,
BUB1, COL3A1, CST1, ETV4, PYCR1,
CTHRC1, CDKN3, FOXM1, HIST1H4K,
CENPF, ASPM, AIM2, TTK, STIL, SPP1,
TOP2A, DEPDC1

GO:0000819 Sister chromatid
segregation

0.0037 DLGAP5, CCNB1, CENPE, PLK1, TOP2A

GO:0006259 DNA metabolic
process

0.0038 RAD51AP1, HELLS, KIAA0101, FOXM1,
HIST1H4K, RRM2, CENPF, UBE2T, MKI67,
CDK1, CDC45, TOP2A

GO:0033044 Regulation of
chromosome
organization

0.0038 DLGAP5, CCNB1, PLK1, BUB1, CENPF,
TTK, CDC45
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GO:0044446 Intracellular
organelle part

0.0041 MMP11, CYP24A1, ECT2, HELLS, COL10A1,
DLGAP5, CCNB1, SULF1, KIF11, CENPE,
ANLN, NUF2, CCNA2, CCNB2, RPL39L,
STEAP1, KIAA0101, PLK1, TPX2, BUB1,
COL3A1, CKAP2L, CDCA7, EXO1, ATP10B,
ETV4, AK4, PYCR1, FOXM1, HIST1H4K,
RRM2, CENPF, UBE2T, ASPM, CRABP2,
TTK, CEP55, STIL, KIF4A, FUT2, KIF20A,
CDK1, GCNT3, KDELR3, CDC45, TOP2A,
DEPDC1, SLC2A1, HS6ST2

GO:0044707 Single-multicellular
organism process

0.0044 FAP, MMP11, CYP24A1, ECT2, HELLS,
COL10A1, CCNB1, SULF1, MMP7, KIF11,
CDH3, CENPE, CCNA2, CXCL13, CCNB2,
TNFRSF21, MELK, GREM1, CST1, EXO1,
TYMS, ETV4, AK4, MMP1, ITGA11,
CTHRC1, FOXM1, AKR1B10, CENPF,
ASPM, AIM2, CRABP2, MKI67, STIL,
KIF4A, SPP1, CDK1, GCNT3, TOP2A

GO:0044763 Single-organism
cellular process

0.0047 FAP, CYP24A1, TOX3, RAD51AP1, HELLS,
COL10A1, DLGAP5, TNS4, CCNB1, TCN1,
SULF1, MMP7, GPR87, CDH3, CENPE,
NUF2, CCNA2, LCN2, PDK1, CXCL13,
CCNB2, TNFRSF21, STEAP1, KIAA0101,
GREM1, TPX2, PBK, BUB1, COL3A1,
CDCA7, ATP10B, AK4, MMP1, ITGA11,
PYCR1, PPAP2C, CTHRC1, CDKN3,
HIST1H4K, AKR1B10, CENPF, UBE2T,
ASPM, RALGPS2, AIM2, MKI67, SLC44A5,
CEP55, STIL, KIF4A, PSAT1, FUT2,
KIF20A, GCNT3, CDC45, DEPDC1, HS6ST2,
TDO2

GO:0051984 Positive regulation
of chromosome
segregation

0.0048 DLGAP5, CCNB1, PLK1

GO:0007077 Mitotic nuclear
envelope
disassembly

0.0050 CCNB1, CCNB2, PLK1, CDK1

GO:0050790 Regulation of
catalytic activity

0.0054 ECT2, CCNB1, GPR87, CDH3, CENPE,
CCNA2, CXCL13, BUB1B, PLK1, GREM1,
TPX2, BUB1, CST1, CDKN3, CENPF,
RALGPS2, AIM2, TTK, STIL, SERINC2,
CDK1, DEPDC1

GO:0005871 Kinesin complex 0.0056 KIF11, CENPE, KIF4A, KIF20A
GO:0034508 Centromere

complex assembly
0.0061 HELLS, CENPE, HIST1H4K, CENPF

GO:0051303 Establishment of
chromosome
localization

0.0061 DLGAP5, CCNB1, CENPE, CENPF
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GO:0070013 Intracellular
organelle lumen

0.0062 MMP11, MYBL2, COL10A1, CCNB1, ANLN,
CCNA2, BUB1B, CCNB2, KIAA0101, PLK1,
TPX2, BUB1, COL3A1, CDCA7, EXO1,
ETV4, AK4, PYCR1, FOXM1, HIST1H4K,
RRM2, CENPF, UBE2T, CRABP2, MKI67,
KIF4A, KIF20A, CDK1, CDC45, TOP2A,
DEPDC1, HS6ST2

GO:0044427 Chromosomal part 0.0062 MYBL2, HELLS, CCNB1, CENPE, NUF2,
PLK1, BUB1, HIST1H4K, CENPF, MKI67,
CDC45

GO:0051179 Localization 0.0063 FAP, ECT2, DLGAP5, TNS4, CCNB1, TCN1,
MMP7, CENPE, ANLN, CXCL13, BUB1B,
STEAP1, PLK1, GREM1, COL3A1, ATP10B,
MMP1, ITGA11, CTHRC1, CENPF, ASPM,
AIM2, CRABP2, SLC44A5, CEP55, STIL,
SERINC2, KIF4A, KIF20A, SPP1, CDK1,
GCNT3, KDELR3

GO:0022411 Cellular
component
disassembly

0.0063 MMP11, COL10A1, CCNB1, MMP7, CCNB2,
COL3A1, MMP1, SPP1, CDK1, TOP2A

GO:0051225 Spindle assembly 0.0064 MYBL2, KIF11, ASPM, KIF4A
GO:0043232 Intracellular

non-membrane-
bounded
organelle

0.0065 MYBL2, ECT2, HELLS, DLGAP5, TNS4,
CCNB1, KIF11, CENPE, ANLN, NUF2,
CCNB2, RPL39L, PLK1, TPX2, BUB1,
CKAP2L, TYMS, ETV4, HIST1H4K, CENPF,
ASPM, TTK, CEP55, STIL, KIF4A, KIF20A,
CDK1, CDC45, SLC2A1

GO:0044421 Extracellular
region part

0.0066 FAP, MMP11, CEACAM5, COL10A1, TCN1,
SULF1, MMP7, LCN2, CXCL13, GREM1,
COL3A1, CST1, AK4, MMP1, CTHRC1,
HIST1H4K, AKR1B10, CRABP2, CEP55,
SERINC2, PSAT1, GOLM1, GPX2, FUT2,
SPP1, CDK1, GCNT3, SLC2A1, CFB, HS6ST2

GO:0007079 Mitotic
chromosome
movement towards
spindle pole

0.0067 DLGAP5, CENPE
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GO:0065007 Biological
regulation

0.0073 FAP, MMP11, CYP24A1, MYBL2, TOX3,
CEACAM5, RAD51AP1, ECT2, HELLS,
DLGAP5, CCNB1, SULF1, MMP7, KIF11,
GPR87, CDH3, CENPE, ANLN, NUF2,
CCNA2, LCN2, PDK1, CXCL13, TNFRSF21,
STEAP1, KIAA0101, PLK1, GREM1, TPX2,
PBK, COL3A1, CST1, CDCA7, ATP10B,
MMP1, ITGA11, PYCR1, CTHRC1, CDKN3,
FOXM1, HIST1H4K, AKR1B10, RRM2,
CENPF, ASPM, RALGPS2, AIM2, TTK,
STIL, SERINC2, KIF4A, GOLM1, SPP1,
CDC45, SLC2A1, CFB

GO:0060236 Regulation of
mitotic spindle
organization

0.0074 CCNB1, PLK1, TPX2

GO:0005813 Centrosome 0.0079 DLGAP5, CCNB1, CCNB2, PLK1, CKAP2L,
CEP55, STIL, CDK1, CDC45

GO:0005654 Nucleoplasm 0.0082 MYBL2, CCNB1, ANLN, CCNA2, CCNB2,
KIAA0101, PLK1, TPX2, BUB1, CDCA7,
EXO1, TYMS, FOXM1, HIST1H4K, RRM2,
CENPF, UBE2T, CRABP2, KIF4A, KIF20A,
CDK1, CDC45, TOP2A, DEPDC1, HS6ST2

GO:0005815 Microtubule
organizing center

0.0083 DLGAP5, CCNB1, BUB1B, CCNB2, PLK1,
CKAP2L, CEP55, STIL, CDK1, CDC45

GO:0051233 Spindle midzone 0.0085 CENPE, BUB1B, PLK1
GO:0032501 Multicellular

organismal process
0.0090 FAP, MMP11, CYP24A1, ECT2, HELLS,

COL10A1, CCNB1, SULF1, KIF11, CDH3,
CENPE, CCNA2, CXCL13, CCNB2, RPL39L,
TNFRSF21, MELK, GREM1, CST1, EXO1,
TYMS, ETV4, AK4, MMP1, ITGA11,
CTHRC1, FOXM1, AKR1B10, CENPF,
ASPM, AIM2, CRABP2, MKI67, STIL,
KIF4A, SPP1, CDK1, GCNT3, TOP2A

GO:0051128 Regulation of
cellular component
organization

0.0098 FAP, ECT2, DLGAP5, CCNB1, KIF11,
CENPE, ANLN, PDK1, CXCL13, PLK1,
GREM1, TPX2, BUB1, MMP1, FOXM1,
CENPF, AIM2, CRABP2, TTK, SPP1, CDC45

GO:0007264 Small GTPase
mediated signal
transduction

0.0098 ECT2, CENPE, NUF2, CCNA2, BUB1B,
PLK1, BUB1, HIST1H4K, CENPF, RALGPS2,
CDK1
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GO:0051716 Cellular response
to stimulus

0.0098 CYP24A1, RAD51AP1, ECT2, CCNB1,
SULF1, MMP7, GPR87, CDH3, CENPE,
NUF2, CCNA2, PDK1, CXCL13, BUB1B,
TNFRSF21, KIAA0101, PLK1, GREM1, PBK,
BUB1, EXO1, ITGA11, PYCR1, CTHRC1,
FOXM1, HIST1H4K, AKR1B10, CENPF,
UBE2T, RALGPS2, CRABP2, MKI67, STIL,
GJB2, SPP1, KDELR3, CDC45, TOP2A,
DEPDC1, SLC2A1

GO:0090307 Mitotic spindle
assembly

0.0098 MYBL2, KIF11, KIF4A

GO:0005615 Extracellular space 0.0098 FAP, TCN1, SULF1, MMP7, LCN2, CXCL13,
SPINK1, GREM1, COL3A1, CST1, CTHRC1,
GOLM1, SPP1, SLC2A1, CFB

GO:0000082 G1/S transition of
mitotic cell cycle

0.0109 CCNB1, TYMS, CDKN3, RRM2, CDK1,
CDC45

GO:0009894 Regulation of
catabolic process

0.0121 FAP, DLGAP5, CCNB1, CENPE, PDK1,
BUB1B, PLK1, PBK, BUB1, CENPF, TTK,
CDK1

GO:0050789 Regulation of
biological process

0.0121 FAP, MMP11, CYP24A1, MYBL2, TOX3,
CEACAM5, RAD51AP1, ECT2, HELLS,
DLGAP5, CCNB1, SULF1, MMP7, KIF11,
GPR87, CDH3, CENPE, ANLN, NUF2,
CCNA2, PDK1, CXCL13, CCNB2,
TNFRSF21, KIAA0101, PLK1, GREM1,
TPX2, PBK, COL3A1, CST1, CDCA7, TYMS,
MMP1, ITGA11, PYCR1, CTHRC1, CDKN3,
FOXM1, HIST1H4K, AKR1B10, RRM2,
CENPF, ASPM, RALGPS2, AIM2, TTK,
STIL, SERINC2, GOLM1, SPP1, CDC45,
SLC2A1, CFB

GO:0000794 Condensed nuclear
chromosome

0.0130 CCNB1, BUB1B, PLK1, BUB1

GO:0030198 Extracellular
matrix
organization

0.0134 COL10A1, SULF1, MMP7, GREM1, COL3A1,
MMP1, ITGA11, SPP1

GO:0031400 Negative regulation
of protein
modification
process

0.0136 CCNB1, BUB1B, SPINK1, PLK1, GREM1,
PBK, BUB1, FOXM1, CENPF, TTK

GO:0070507 Regulation of
microtubule
cytoskeleton
organization

0.0143 ECT2, CCNB1, KIF11, PLK1, TPX2

GO:0031329 Regulation of
cellular catabolic
process

0.0145 DLGAP5, CCNB1, CENPE, PDK1, BUB1B,
PLK1, PBK, BUB1, CENPF, TTK, CDK1
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GO:0031981 Nuclear lumen 0.0156 MYBL2, CCNB1, ANLN, CCNA2, BUB1B,
CCNB2, KIAA0101, PLK1, TPX2, BUB1,
CDCA7, EXO1, ETV4, FOXM1, HIST1H4K,
RRM2, CENPF, UBE2T, CRABP2, MKI67,
KIF4A, KIF20A, CDK1, CDC45, TOP2A,
DEPDC1, HS6ST2

GO:0071822 Protein complex
subunit
organization

0.0163 MMP11, MYBL2, ECT2, CCNB1, KIF11,
CENPE, ANLN, GREM1, COL3A1, RRM2,
CENPF, ASPM, TTK, STIL, KIF4A, SLC2A1

GO:0051093 Negative regulation
of developmental
process

0.0169 MMP11, CEACAM5, SULF1, CDH3,
TNFRSF21, GREM1, COL3A1, ETV4,
FOXM1, HIST1H4K, ASPM, SPP1

GO:0001939 Female pronucleus 0.0171 CCNA2, SLC2A1
GO:0048518 Positive regulation

of biological
process

0.0176 FAP, MYBL2, TOX3, ECT2, DLGAP5,
CCNB1, SULF1, CDH3, CENPE, CCNA2,
PDK1, CXCL13, TNFRSF21, MELK, PLK1,
GREM1, TPX2, BUB1, COL3A1, ETV4,
MMP1, CTHRC1, FOXM1, ASPM, RALGPS2,
AIM2, CRABP2, TTK, STIL, SERINC2,
SPP1, CDK1, CDC45, DEPDC1, CFB

GO:0006997 Nucleus
organization

0.0187 CCNB1, CCNB2, PLK1, GOLM1, CDK1

GO:0008152 Metabolic process 0.0187 FAP, MMP11, CYP24A1, MYBL2, TOX3,
RAD51AP1, HELLS, COL10A1, DLGAP5,
TCN1, SULF1, KIF11, CENPE, PDK1,
RPL39L, TNFRSF21, MELK, KIAA0101,
PLK1, PBK, BUB1, COL3A1, CDCA7,
ATP10B, ETV4, AK4, MMP1, PYCR1,
PPAP2C, CDKN3, FOXM1, HIST1H4K,
AKR1B10, CENPF, UBE2T, CRABP2,
MKI67, TTK, SLC44A5, SERINC2, KIF4A,
PSAT1, GPX2, FUT2, HMMR, KIF20A,
CDK1, KDELR3, CDC45, TOP2A, DEPDC1,
SLC2A1, CFB, TDO2

GO:0050794 Regulation of
cellular process

0.0189 FAP, MMP11, CYP24A1, MYBL2, TOX3,
CEACAM5, RAD51AP1, ECT2, HELLS,
DLGAP5, CCNB1, SULF1, MMP7, KIF11,
GPR87, CDH3, CENPE, ANLN, NUF2,
CCNA2, PDK1, CXCL13, CCNB2,
TNFRSF21, KIAA0101, PLK1, GREM1,
TPX2, PBK, COL3A1, CST1, CDCA7, TYMS,
MMP1, ITGA11, PYCR1, CTHRC1, CDKN3,
FOXM1, HIST1H4K, AKR1B10, RRM2,
CENPF, ASPM, RALGPS2, AIM2, TTK,
STIL, SPP1, KDELR3, CDC45, SLC2A1
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GO:0043933 Macromolecular
complex subunit
organization

0.0193 MMP11, MYBL2, TOX3, ECT2, HELLS,
CCNB1, KIF11, CENPE, ANLN, GREM1,
COL3A1, HIST1H4K, RRM2, CENPF, ASPM,
TTK, STIL, KIF4A, CDC45, SLC2A1

GO:0043168 Anion binding 0.0201 CEACAM5, HELLS, MMP7, KIF11, CENPE,
PDK1, CXCL13, BUB1B, MELK, PLK1,
TPX2, PBK, BUB1, ATP10B, TYMS, AK4,
UBE2T, CRABP2, MKI67, TTK, KIF4A,
PSAT1, KIF20A, CDK1, TOP2A, TDO2

GO:0005524 ATP binding 0.0201 HELLS, KIF11, CENPE, PDK1, BUB1B,
MELK, PLK1, TPX2, PBK, BUB1, ATP10B,
AK4, UBE2T, MKI67, TTK, KIF4A, KIF20A,
CDK1, TOP2A

GO:0003824 Catalytic activity 0.0203 FAP, MMP11, HELLS, DLGAP5, CCNB1,
SULF1, MMP7, KIF11, CENPE, PDK1,
BUB1B, MELK, PLK1, PBK, BUB1, EXO1,
ATP10B, TYMS, AK4, MMP1, PYCR1,
PPAP2C, CDKN3, HIST1H4K, AKR1B10,
RRM2, UBE2T, TTK, KIF4A, PSAT1, GPX2,
FUT2, KIF20A, CDK1, CDC45, TOP2A, CFB,
HS6ST2, TDO2

GO:0097367 Carbohydrate
derivative binding

0.0203 CEACAM5, HELLS, MMP7, KIF11, CENPE,
PDK1, CXCL13, BUB1B, MELK, PLK1,
TPX2, PBK, BUB1, ATP10B, AK4, UBE2T,
MKI67, TTK, KIF4A, HMMR, KIF20A,
CDK1, TOP2A

GO:0042127 Regulation of cell
proliferation

0.0212 FAP, CCNB1, SULF1, MMP7, CDH3, CCNA2,
CXCL13, TNFRSF21, GREM1, CDCA7,
ETV4, CTHRC1, CDKN3, FOXM1, ASPM,
TTK

GO:0044712 Single-organism
catabolic process

0.0212 MMP11, CYP24A1, COL10A1, MMP7,
BUB1B, PLK1, COL3A1, MMP1, AKR1B10,
FUT2, HMMR, TDO2

GO:0044767 Single-organism
developmental
process

0.0212 FAP, MMP11, CYP24A1, HELLS, COL10A1,
CCNB1, SULF1, MMP7, CDH3, CENPE,
ANLN, CCNA2, CXCL13, CCNB2,
TNFRSF21, MELK, GREM1, EXO1, TYMS,
AK4, ITGA11, CTHRC1, CENPF, ASPM,
CRABP2, MKI67, STIL, KIF4A, GJB2, SPP1,
CDK1, GCNT3, TOP2A

GO:0010631 Epithelial cell
migration

0.0212 FAP, ANLN, CXCL13, GREM1

GO:0048513 Organ development 0.0214 CCNB1, SULF1, CDH3, ANLN, CCNA2,
CXCL13, CCNB2, MELK, GREM1, TYMS,
ETV4, AK4, ITGA11, CTHRC1, FOXM1,
CENPF, ASPM, MKI67, STIL, GJB2, SPP1,
GCNT3, TOP2A
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GO:0065003 Macromolecular
complex assembly

0.0223 MYBL2, ECT2, HELLS, CCNB1, KIF11,
CENPE, ANLN, GREM1, RRM2, CENPF,
ASPM, KIF4A, CDC45, SLC2A1

GO:0090132 Epithelium
migration

0.0227 FAP, ANLN, CXCL13, GREM1

GO:0065009 Regulation of
molecular function

0.0228 ECT2, CCNB1, GPR87, CDH3, CENPE,
CCNA2, CXCL13, BUB1B, PLK1, GREM1,
TPX2, BUB1, CST1, CTHRC1, CDKN3,
CENPF, RALGPS2, AIM2, TTK, STIL,
SERINC2, CDK1, DEPDC1

GO:0001932 Regulation of
protein
phosphorylation

0.0228 ECT2, CCNB1, CENPE, CCNA2, SPINK1,
PLK1, GREM1, TPX2, PBK, CDKN3,
FOXM1, TTK, STIL, CDK1

GO:0002376 Immune system
process

0.0234 HELLS, MMP7, KIF11, CENPE, ANLN,
LCN2, CXCL13, CCNB2, TNFRSF21, MELK,
EXO1, MMP1, AIM2, KIF4A, SPP1, CDK1,
GCNT3, TOP2A, CFB

GO:0000070 Mitotic sister
chromatid
segregation

0.0234 DLGAP5, CCNB1, CENPE, PLK1

GO:0045787 Positive regulation
of cell cycle

0.0282 FAP, ECT2, DLGAP5, CCNB1, PLK1, STIL,
CDC45

GO:0051174 Regulation of
phosphorus
metabolic process

0.0286 ECT2, CCNB1, GPR87, CENPE, CCNA2,
PDK1, SPINK1, PLK1, GREM1, TPX2, PBK,
CDKN3, FOXM1, TTK, STIL, CDK1

GO:0071704 Organic substance
metabolic process

0.0294 FAP, MMP11, CYP24A1, MYBL2, TOX3,
RAD51AP1, HELLS, COL10A1, DLGAP5,
TCN1, SULF1, PDK1, RPL39L, TNFRSF21,
MELK, KIAA0101, PLK1, PBK, BUB1,
COL3A1, CDCA7, ETV4, AK4, MMP1,
PYCR1, PPAP2C, CDKN3, FOXM1,
HIST1H4K, AKR1B10, CENPF, UBE2T,
CRABP2, MKI67, TTK, SLC44A5, SERINC2,
PSAT1, GPX2, FUT2, HMMR, CDK1,
GCNT3, KDELR3, CDC45, TOP2A, DEPDC1,
SLC2A1, CFB, TDO2

GO:0034502 Protein
localization to
chromosome

0.0304 BUB1B, PLK1, CDK1

GO:2000026 Regulation of
multicellular
organismal
development

0.0304 ECT2, CCNB1, SULF1, CDH3, CXCL13,
TNFRSF21, GREM1, COL3A1, ETV4,
CTHRC1, HIST1H4K, CENPF, ASPM,
CRABP2, SPP1, CDK1

GO:0031572 G2 DNA damage
checkpoint

0.0304 CCNA2, PLK1, CDK1
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GO:0044699 Single-organism
process

0.0305 FAP, CYP24A1, TOX3, CEACAM5,
RAD51AP1, HELLS, COL10A1, DLGAP5,
TNS4, CCNB1, TCN1, SULF1, GPR87,
CENPE, NUF2, CCNA2, LCN2, PDK1,
CXCL13, RPL39L, TNFRSF21, STEAP1,
KIAA0101, GREM1, TPX2, PBK, CST1,
CDCA7, ATP10B, AK4, MMP1, ITGA11,
PYCR1, PPAP2C, CTHRC1, CDKN3,
HIST1H4K, AKR1B10, CENPF, UBE2T,
ASPM, RALGPS2, AIM2, SLC44A5, CEP55,
STIL, KIF4A, PSAT1, GPX2, FUT2, HMMR,
KIF20A, SPP1, CDC45, DEPDC1, CFB,
TDO2

GO:0007091 Metaphase/anaphase
transition of
mitotic cell cycle

0.0317 BUB1B, PLK1

GO:0044238 Primary metabolic
process

0.0317 FAP, MMP11, CYP24A1, MYBL2, TOX3,
RAD51AP1, HELLS, DLGAP5, SULF1,
MMP7, PDK1, RPL39L, TNFRSF21, MELK,
KIAA0101, PLK1, PBK, BUB1, COL3A1,
CDCA7, ETV4, AK4, MMP1, PYCR1,
PPAP2C, CDKN3, FOXM1, HIST1H4K,
AKR1B10, CENPF, UBE2T, CRABP2,
MKI67, TTK, SLC44A5, SERINC2, PSAT1,
GPX2, FUT2, HMMR, CDK1, GCNT3,
KDELR3, CDC45, TOP2A, DEPDC1,
SLC2A1, CFB, TDO2

GO:0007098 Centrosome cycle 0.0354 KIF11, STIL, CDK1
GO:0005874 Microtubule 0.0357 KIF11, CENPE, TPX2, ASPM, KIF4A,

KIF20A, CDK1
GO:0033043 Regulation of

organelle
organization

0.0367 ECT2, DLGAP5, CCNB1, KIF11, CENPE,
ANLN, PDK1, PLK1, TPX2, BUB1, CENPF,
TTK, CDC45

GO:0044424 Intracellular part 0.0369 FAP, MMP11, CYP24A1, TOX3, RAD51AP1,
ECT2, HELLS, DLGAP5, TNS4, CCNB1,
SULF1, KIF11, CDH3, CENPE, ANLN, NUF2,
CXCL13, BUB1B, CCNB2, RPL39L, STEAP1,
MELK, KIAA0101, PLK1, TPX2, PBK, BUB1,
COL3A1, CKAP2L, CDCA7, EXO1, ATP10B,
ETV4, AK4, PYCR1, CTHRC1, CDKN3,
FOXM1, HIST1H4K, AKR1B10, RRM2,
UBE2T, ASPM, RALGPS2, AIM2, CRABP2,
TTK, CEP55, STIL, KIF4A, PSAT1, GJB2,
GOLM1, GPX2, FUT2, HMMR, KIF20A,
SPP1, CDK1, GCNT3, KDELR3, CDC45,
DEPDC1, HS6ST2, TDO2

GO:0007010 Cytoskeleton
organization

0.0373 MYBL2, CENPE, ANLN, KIAA0101, PLK1,
ASPM, TTK, STIL, KIF4A, KIF20A, CDK1
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Accession
number

Term name FDR
value

Genes

GO:0051321 Meiotic cell cycle 0.0375 PLK1, EXO1, ASPM, MKI67, TOP2A
GO:0070271 Protein complex

biogenesis
0.0383 MYBL2, ECT2, CCNB1, KIF11, CENPE,

ANLN, GREM1, RRM2, CENPF, ASPM,
KIF4A, SLC2A1

GO:0006461 Protein complex
assembly

0.0383 MYBL2, ECT2, CCNB1, KIF11, CENPE,
ANLN, GREM1, RRM2, CENPF, ASPM,
KIF4A, SLC2A1

GO:0031570 DNA integrity
checkpoint

0.0383 CCNA2, PLK1, CDK1, CDC45, TOP2A

GO:0050793 Regulation of
developmental
process

0.0384 MMP11, CEACAM5, ECT2, CCNB1, SULF1,
CDH3, CXCL13, TNFRSF21, GREM1,
COL3A1, ETV4, CTHRC1, FOXM1,
HIST1H4K, CENPF, ASPM, CRABP2, SPP1,
CDK1

GO:0031399 Regulation of
protein
modification
process

0.0398 ECT2, CENPE, CCNA2, BUB1B, SPINK1,
PLK1, GREM1, TPX2, PBK, BUB1, CDKN3,
FOXM1, CENPF, TTK, STIL, CDK1

GO:0051310 Metaphase plate
congression

0.0398 CCNB1, CENPE, CENPF

GO:0051347 Positive regulation
of transferase
activity

0.0413 ECT2, CCNB1, CENPE, PLK1, GREM1,
TPX2, STIL, SERINC2, CDK1

GO:0032155 Cell division site
part

0.0415 ECT2, ANLN, CEP55

GO:0032153 Cell division site 0.0415 ECT2, ANLN, CEP55
GO:0044444 Cytoplasmic part 0.0415 MMP11, CYP24A1, ECT2, CCNB1, SULF1,

KIF11, CENPE, ANLN, NUF2, CXCL13,
BUB1B, CCNB2, RPL39L, STEAP1, MELK,
KIAA0101, PLK1, BUB1, COL3A1, ATP10B,
TYMS, AK4, PYCR1, CDKN3, AKR1B10,
RRM2, CENPF, AIM2, CRABP2, CEP55,
STIL, KIF4A, PSAT1, GJB2, GOLM1, GPX2,
FUT2, KIF20A, SPP1, CDK1, GCNT3,
KDELR3, HS6ST2, TDO2

GO:0044237 Cellular metabolic
process

0.0425 FAP, CYP24A1, MYBL2, TOX3, RAD51AP1,
HELLS, DLGAP5, TCN1, SULF1, MMP7,
PDK1, RPL39L, TNFRSF21, MELK,
KIAA0101, PLK1, PBK, BUB1, COL3A1,
CDCA7, ETV4, AK4, MMP1, PYCR1,
PPAP2C, CDKN3, FOXM1, HIST1H4K,
AKR1B10, CENPF, UBE2T, CRABP2,
MKI67, TTK, SLC44A5, SERINC2, PSAT1,
GPX2, FUT2, CDK1, GCNT3, KDELR3,
CDC45, TOP2A, DEPDC1, SLC2A1, HS6ST2,
TDO2
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GO:0000079 Regulation of
cyclin-dependent
protein
serine/threonine
kinase activity

0.0435 CCNA2, PLK1, CDKN3, STIL

GO:0030199 Collagen fibril
organization

0.0456 MMP11, GREM1, COL3A1

GO:0090068 Positive regulation
of cell cycle
process

0.0456 FAP, ECT2, DLGAP5, CCNB1, PLK1, CDC45

GO:0032502 Developmental
process

0.0456 FAP, MMP11, CYP24A1, HELLS, COL10A1,
CCNB1, SULF1, MMP7, CDH3, CENPE,
ANLN, CCNA2, CXCL13, CCNB2,
TNFRSF21, MELK, GREM1, EXO1, TYMS,
AK4, ITGA11, CTHRC1, CENPF, ASPM,
MKI67, STIL, KIF4A, GJB2, SPP1, CDK1,
GCNT3, TOP2A

GO:0045861 Negative regulation
of proteolysis

0.0458 BUB1B, PLK1, PBK, BUB1, CST1, CENPF,
TTK

GO:0045842 Positive regulation
of mitotic
metaphase/anaphase
transition

0.0480 DLGAP5, PLK1
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