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Summary

While the modern field of genomics is exploding with new experimental techniques that push
the limits of what is possible, computational methods designed to process and extract useful
information from these data try to keep up in order to reliably improve our understanding
of gene regulation. In this thesis, we developed reproducible computational pipelines and
algorithms to study gene regulation at different levels or stages. We begin by reviewing core
ideas required for understanding cells and their regulatory mechanisms and the main ex-
perimental sequencing-based assays used to characterize biological systems at the molecular
level. We then introduce the two separate projects that comprise this thesis.

In our first project, we dissect the contribution of three competing pathways involved in
heterochromatic silencing, namely, Pol IT occupancy (PO), transcription efficiency (TE), and
RNA stability (RS), by comparing heterochromatic and euchromatic regions in Schizosac-
charomyces pombe (S.pombe). We characterize each of these regulatory pathways as ratios
between expression levels of corresponding high-throughput sequencing assays, PO ("*ChIP-
seq/“'ChIP-seq), TE (RIP-seq/ChIP-seq) and RS (pA-RNA/RIP-seq), and quantify the
relative effects that mutants lacking core components associated with each pathway (i.e.,
chromatin modifiers, RNAi, and RNA degradation) have on heterochromatic silencing.

In our second project, we study how dynamic biological processes, such as development,
are regulated and can be characterized at the molecular level by complex (non-linear) single-
cell RNA sequencing (scRNA-seq) trajectories, focusing on how such processes can be com-
pared using our novel tool Trajan. We introduce TrajanR, our accompanying R package, that
facilitates the standardization and pre-processing of Trajan input data, trajectory inference,
and alignment computation under different parameter schemes and provides various visu-
alization options, enabling the analysis of scRNA-seq trajectories in complex settings. We
demonstrate the accuracy of Trajan’s alignments through extensive experimentation on sim-
ulated data. We also showcase how our TrajanR package facilitates the study of scRNA-seq
data based on the analysis of two independent real-world datasets.

Finally, we conclude with a discussion of both projects presented in this thesis and an
outlook for the future.
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Chapter 1

Introduction

The cell is the fundamental unit of all living organisms; it provides structure to the organism,
absorbs and converts nutrients into energy, and executes other specialized functions. Since
its discovery by Robert Hooke (Hyllner et al., [2015) in 1665, made possible by the earlier in-
vention of the microscope, there have been substantial efforts to categorize the many human
and non-human cell types and link them to their distinct functions. Initially, efforts were
limited to morphological features accessible via light microscopy, such as size and shape,
which are still significant predictors of cellular function. However, over time, other experi-
mental approaches, such as stainings and immunochemical assays, were developed to further
characterize tissues and cell types.

In the latter half of the 20th century, following the discovery of the genome and its struc-
ture and, ultimately, the construction of the first human reference genome in 2003 (Lander
et al., 2001} [Venter et al., [2001), a plethora of sequencing techniques were created to advance
our understanding of the inner workings of cells and the genetic code. In the last decades,
the development of high-throughput, next-generation sequencing technologies, such as RNA
sequencing (RNA-seq) (Mortazavi et al., 2008) and single-cell RNA sequencing (scRNA-
seq) (Tang et al) 2009), has enabled the unbiased characterization of tissues and cellular
programs at the molecular level, while related sequencing-based biochemical assays, such as
chromatin immunoprecipitation sequencing (ChIP-seq) and RNA immunoprecipitation se-
quencing (RIP-seq), have aided in the understanding of genomic regulatory mechanisms by
targeting specific, DNA-protein and RNA-protein interactions, respectively.

We now know that two cells in an organism can differ in many ways. Nevertheless, they
both possess identical genetic material (i.e., DNA sequence) carrying the full set of instruc-
tions to synthesize all the RNA molecules and proteins the organism will ever need. The
differences between these cells arise at multiple levels, in a cell-type and developmental-stage-
specific manner, where not only the code but also its tight regulation is critical. All these
complex regulatory mechanisms can be summarized under the term: genomic regulation,
which is diagrammatically depicted in Figure and extends the principles of possible in-
formation flow as first stated by the central dogma of molecular biology (Crickl 1958; Hewitt],
2020), as discussed below.
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Figure 1.1: Flow of biological information. Adapted from (Mukherjee, 2016])

In this thesis, we developed computational methods to study different aspects of gene
regulation based on various high-throughput sequencing technologies. In the following Sec-
tions, we introduce some of the basic mechanisms used by cells to regulate the expression
of genes. More biological sections in this chapter are based on the classic reference in cell
biology (Alberts et al [2022); see the original publication for a more detailed and in-depth
discussion. Finally, before delving deeper into some of these regulatory mechanisms, we re-
view and introduce a set of sequencing-based experimental techniques used throughout this
thesis to investigate the molecular composition of tissues and cells.

1.1 Genome regulation

According to a simplified view of the so-called “central dogma of molecular biology” (Wat-
son,, (1965; |Crick, 1958) (Figure , genetic information in the form of genomic sequences,
encoded into functional units called genes, flows only in one direction: from Deoxyribonu-
cleic acid (DNA) to Ribonucleic acid (RNA), during transcription, and from RNA to protein,
during translation, from where it can no longer escape. Thus, genes serve as templates for
producing proteins that perform a wide range of tasks, including constructing bodily struc-
tures, regulating chemical reactions, and transmitting information between and within cells.
It is now evident that not only the actual genomic sequences but also their interactions are es-
sential for genome regulation, which is a significantly more intricate process than previously
believed, with information flowing in multiple directions and including multiple feedback
mechanisms, such as those illustrated in Figure [1.1}
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Figure 1.2: Simplified central dogma of molecular biology: DNA makes RNA makes proteins

1.1.1 Gene Expression

Chromosomes, threadlike structures that store genetic material, comprise a single, extraor-
dinarily long DNA molecule containing a linear array of numerous genes and many proteins.
However, only a small fraction of all this DNA encodes for proteins or RNA molecules with
known functional properties. The first level of genomic control involves DNA’s composi-
tion and spatial organization into a higher-order structure called chromatin and its different
states: euchromatin and heterochromatin. In Section (1.2, we review how these distinct
states facilitate or restrict access to the transcriptional machinery and regulate the subse-
quent transcriptional process, called transcriptional regulation.

During transcription, the DNA sequence of a gene is transformed into an RNA molecule
known as precursor messenger RNA (pre-mRNA), initiating a series of activities known
collectively as gene expression that result in the transformation of a gene into a functional
product. A gene is said to be “on” if it is being transcribed into RNA, and only a fraction
of the genes in a cell are active at any given moment. For example, a typical human cell
expresses only 30-60% of its approximately 25.000 genes at a relevant level (Alberts et al.l,
2022)). Thus, distinct cell types can be characterized by the set of specific genes they express.
Moreover, by examining changes in gene expression patterns over time or across conditions,
one can capture the dynamic nature of biological processes or responses to perturbations and
environmental changes, such as signaling from neighboring cells. In Section 1.3 we review
how such dynamic biological processes can be characterized at the gene expression level from
scRNA-seq snapshot data using trajectory inference (TT) methods.

In addition to transcription initiation and transcription regulation, the expression of
most genes is controlled at multiple levels, co-transcriptionally or once transcription has
been completed. These post-transcriptional requlatory mechanisms control gene expression
at the RNA level and regulate the distribution and stability of transcripts within the cell.
In Section [1.2] we mention all known post-transcriptional regulatory mechanisms, focusing
on mRNA degradation in particular. The final phase of gene expression is translation, dur-
ing which mRNAs are converted into the amino acid sequences that constitute proteins.
Although translational and post-translational mechanisms are essential for proper cellular
regulation, a comprehensive review of these mechanisms is beyond the scope of this thesis.

Experimental sequencing-based methods, combined with appropriate downstream com-
putational methods, are routinely used and have become the standard technique for profiling
gene expression and, thus, the most popular approach for investigating genome regulation.
In the following [Section], we provide a brief overview of how these technologies have evolved
over the last few decades.
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1.1.2 Sequencing technologies

The process of sequencing DNA involves identifying the specific nucleic acid sequence, or ar-
rangement of nucleotides in DNA, which has become an essential technique in basic and
applied biological research. In the early 1970s, the first DNA sequences were obtained us-
ing laborious methods to isolate oligonucleotides and their subsequent separation based on
two-dimensional chromatography (Jou et al., [1972)). In 1977, an alternative method called
the Sanger chain termination method (Sanger et al., [1977)) was used to sequence the first
ever complete genome for the bacteriophage ®X174, for which a Nobel prize was awarded
in 1980. Instruments based on Sanger sequencing, called “first-generation”, with important
improvements in safety and automation in the late 1980s, eased the experimental procedure
and increased sequencing throughput. Such instruments dominated the sequencing world
for the next decades and were extensively employed in the Human Genome Project (Lander
et al., 2001; [Venter et al.; |2001)), but their non-quantitative nature was their main not yet
foreseeable limitation.

In 2005, Solexa (acquired by Illumina in early 2007) introduced the first short-read se-
quencer, with significantly higher throughput, based on a fundamentally different princi-
ple called sequencing by synthesis (SBS) (McPherson, 2009). Similar short-read instru-
ments, built on massive parallel sequencing, followed in a wave of “next-generation” (NGS)
or “second-generation” sequencing methods. The throughput of NGS methods increased
rapidly, outpacing Moore’s law and marking the beginning of high throughput sequencing
(HTS), with one of the most well-known applications being whole-transcriptome sequencing,
also known as RNA-seq. This, linked to an exponential decrease in sequencing costs and
the more quantitative nature of the data available, completely revolutionized the field of ge-
nomics. Previous to the invention of RNA-seq, hybridization-based methods were designed
to target the expression of a specific gene or set of genes (Wang et al., 2009). Hybridization-
based techniques were limited by the necessity of prior knowledge of the genomic sequences
being targeted, making it difficult to distinguish transcript isoforms of the same gene, and less
precise expression levels due to high-background levels originating from cross-hybridization,
as well as a more limited dynamic range due to the continuous nature of the signal. Fur-
thermore, comparing the expression levels of different samples is not simple and involves
complicated normalizing techniques. One of the key advantages of RNA-seq, concerning
previous methods, is that it allows simultaneously discovering and quantifying transcrip-
tomes.

In the last decade, RNA-seq and related HTS technologies have become one of the most
precise methods for studying functional elements in the genome and other molecular com-
ponents of cells and tissues under different conditions at an unprecedented resolution (Wold
and Myers, 2007)). Thanks to these next-generation sequencing platforms, researchers may
now easily examine any organism’s genome, transcriptome, and epigenome. Note that al-
though the majority of sequencing technologies used in this thesis are referred to as RNA
sequencing, they are sequencing cDNA that has been reverse-transcribed from the original
input RNA and are, in fact, DNA sequencing technologies. The only exception is ChIP-seq,
where the input for sequencing is actual DNA. We should emphasize that this is a com-
mon abuse of the term in the field and that methods differ mostly in how DNA or RNA is
extracted from samples and matching sequencing libraries are generated. However, the se-
quencing remains fundamentally the same and is typically done using Illumina instruments.
We use RNA sequencing technologies that aim to identify and quantify the expression of
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genomic sequences in a given biological sample at the tissue-level (bulk RNA-seq) or the in-
dividual cell-level (scRNA-seq), and additional techniques based on DNA /RNA-seq coupled
with other biochemical assays to identify and quantify corresponding genomic interactions
(ChIP-seq and RIP-seq). We have focused on the analysis of Illumina short-read data, but
most steps remain the same for other alternative sequencing technologies. For additional
information on the various next-generation sequencing methods, see (Goodwin et al.| (2016]).
Third-generation sequencing technologies, which allow for the sequencing of much longer
reads but present their own challenges, are reviewed in |Stark et al. (2019) but are beyond
the scope of this thesis.

1.2 Transcriptional and post-transcriptional regulation

1.2.1 Transcriptional regulation

Prior to initiating the production of a certain protein, the appropriate mRNA molecule must
be created through transcription. The enzymes that carry out the transcription of DNA into
RNA are called RNA polymerases, and in order for transcription to begin, an RNA poly-
merase needs to gain access to exposed DNA. In eukaryotes, DNA is tightly bonded and
wrapped around an octameric core of histone proteins, forming repetitive arrays of DNA-
protein particles known as nucleosomes. Around 200 nucleotide pairs separate nucleosomes
that interact with adjacent nucleosomes to form a denser chromatin fiber. Such chromatin
structure must be highly dynamic for DNA to be accessible. Unwrapping and rewrapping
occur spontaneously, and chromatin-remodeling complexes are the general strategy for re-
versibly altering local chromatin structure in a cell. These remodeling complexes permit
nucleosome cores to be relocated, rebuilt with various histones, or removed entirely to re-
veal the underlying DNA. Furthermore, once the RNA polymerase has gained access to a
DNA template, a group of other proteins known as general transcription factors are required
to initiate transcription, and additional proteins such as transcription activator proteins,
chromatin remodeling complexes, and histone-modifying enzymes, are required to activate
transcription. These regulatory complexes are abundant in cells and are localized to certain
chromatin regions at the appropriate moments.

Different chromatin configurations are possible based on a broad range of reversible cova-
lent modifications of the four distinct histones in the nucleosome core, including methylation,
acetylation, phosphorylation and ubiquitination. These chromatin modifications are herita-
ble and result in different regulatory properties essential for proper genome stability, yet
their source is not the actual genetic code sequence. Therefore, they are an example of
epigenetic (“on top of” genetics) regulatory mechanisms. The specific combination of mod-
ifications that nucleosomes are marked with governs their interactions with other proteins.
When protein modules from a larger protein complex attach to modified nucleosomes in a
chromatin region, these marks are read and attract other proteins with different functions.

Broadly speaking, the two major chromatin forms are euchromatin and heterochromatin,
which were first discovered due to their distinct staining properties (Passarge, 1979)). Denser
regions of chromatin that stain strongly are typically located at the nucleus’s periphery and
are known as heterochromatin. In contrast, less stainable regions located largely in the nu-
cleus’s center are known as euchromatin. Euchromatin is rich in genes and correlates with
high transcription levels, whereas a key role of heterochromatin’s dense DNA packing is to
silence the few genes it contains. Within the chromosome, heterochromatin is typically lo-
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cated near centromeres and telomeres, although it is also present in many other chromosomal
locations. There are two major types of heterochromatin, each with its own set of covalent
histone modifications spread by different reader-writer enzyme complexes. Constitutive het-
erochromatin is established on repetitive DNA sequences and identified by the H3K9me3
mark. Constitutive heterochromatin is mostly present around centromeres and telomeres
and inhibits both gene expression and genetic recombination. Facultative heterochromatin
spreads over the genome, its presence can be adjusted, and it plays an important role in
gene regulation. Facultative heterochromatin is identified by H3K27me3 and, in some cases,
H3K9me3 marks.

For a comprehensive review of the different biochemical pathways involved in the regu-
lation of heterochromatin and the associated silencing of these regions, see |[Bronner| (2017)).

1.2.2 Post-transcriptional regulation

During the elongation phase of transcription, the nascent RNA undergoes three crucial forms
of processing:

e 5’-end capping
e Alternative RNA splicing
e 3’-end polyadenylation

Only correctly processed mRNAs can pass through nuclear pore complexes to be later trans-
lated into protein in the cytoplasm. Other post-transcriptional regulatory mechanisms exist,
i.e., all processes that occur between the transcription and translation stages, and thus con-
trol the generation of distinct gene expression patterns observed in cells at the RNA level,
including:

e RNA editing

e Export from the nucleus to the cytosol

e Localization of mRNAs in the cytoplasm
e Translation initiation

e mRNA degradation (or mRNA stability)

mRNA stability, is one particularly important post-transcriptional regulatory mechanism.
Due to the constant turnover of mRNA, steady-state mRNA levels are defined by RNA syn-
thesis (transcription) rates and corresponding decay (degradation). If a newly synthesized
transcript is rapidly degraded, it will not have time to be translated or to participate in any
regulatory pathway; consequently, it will appear as though the corresponding gene is silent.
The 5’-end capping and 3’-end polyadenylation, or poly(A) tail, increase the stability of tran-
scribed mRNAs. Thus, the shortening of the poly(A) tail is one of the first steps in RNA
degradation, mediated by the Ccrd-Not complex, the predominant deadenylase complex.
Deadenylation of the transcript is followed by either decapping of the 5" end and subsequent
5-3” digestion by the Xrnl/2 exonucleases or by 3’-5’ degradation via the exosome.
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In Chapter 2] we dissect the contributions of 3 different pathways to the silencing observed
in heterochromatic regions of Schizosaccharomyces pombe (S.pombe) through a combination
of both transcriptional silencing and RNA degradation. The first mechanism under study
suggests reduced accessibility of RNA Polymerase II (RNA Pol II) to heterochromatic re-
gions. We quantify changes in Pol II occupancy between WT and mutant strains devoid
of the necessary machinery to form heterochromatin by measuring per-gene occupancy lev-
els of RNA Pol II with Chromatin immunoprecipitation sequencing (ChIP-seq). The next
mechanism at the level of transcriptional silencing involves the possibility that although
RNA Pol II can, in principle, access DNA, other mechanisms might be hindering the actual
transcription of RNAs. To investigate this, we quantify per-gene nascent RNA levels with
Pol II bound nascent RNA sequencing (RIP-seq), and define corresponding transcription
efficiencies in each mutant as the ratio of nascent RNA levels to previously computed RNA
Pol IT occupancy levels. The last mode of silencing considered in the study relates to the
recruitment of RNA degradation machinery by heterochromatin, hindering the subsequent
expression of certain types of RNAs. We quantify per-gene steady-state RNA levels with
RNA-seq, both for total RNA and poly A enriched RNA (pA-RNA), and define correspond-
ing RNA stabilities as the ratio of pA-RNA (or total RNA) levels to previously computed
nascent RNA levels.

1.3 Gene expression dynamics

In the previous Section, we have focused on studying certain regulatory mechanisms from a
bulk and static perspective. We quantified the effect perturbations have on a large population
of cells at the molecular level by comparing them to a control group or homeostatic state.
When using bulk RNA-seq, for instance, measurements are limited to the average gene
expression levels across a vast population of cells, which may be insufficient to characterize
highly diverse systems or complex tissues. In addition, many cellular processes of interest,
such as cell differentiation or reprogramming, are not static but rather dynamic biological
processes.

1.3.1 Single-cell RNA-seq and trajectory inference (TI) methods

To address these limitations, single-cell RNA sequencing (scRNA-seq) was developed to mea-
sure the transcriptomic patterns of individual cells. Various protocols and technologies for
high-throughput scRNA-seq are now available, and new ones are continuously being devel-
oped. In comparison to its bulk counterpart, a typical scRNA-seq experiment begins with
the dissociation of cells from a tissue and the isolation of single-cells using specialized tech-
niques, such as the deposition of individual cells in micro-well plates or capturing individual
cells employing microfluidic droplet-based platforms. Despite its own challenges, such as the
relatively small amounts of mRNA collected from single cells and the typical use of unique
molecular identifiers (UMI) to correct for amplification biases, the subsequent sequencing
steps are similar to the analysis of pooled bulk RNA-seq libraries, except that each sam-
ple corresponds to a single cell. Moreover, a single snapshot of scRNA-seq data collected
during a dynamic process will comprise cells at various stages along this process. There-
fore, cell-level information can be used to infer lineage relationships across cell types and
states computationally using trajectory inference (TI) methods (Cannoodt et al., 2016al).
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In scenarios with larger time scales, where some cell populations arise before or after a sin-
gle sampling instance, time-series scRNA-seq data can be collected by obtaining multiple
scRNA-seq snapshots at different time points and analyzed using the same methods (Tran
and Bader, 2020). TI approaches aim to reconstruct a trajectory in which individual cells
are ordered based on their transcriptomic similarity, using pseudo-time as a parametrization
of these continuous transitions between observed cell states. In this sense, the pseudo-time
associated with a given cell is the distance in transcriptomic space between that cell and
the origin of the trajectory. Although pseudo-time can often be interpreted as an increas-
ing function of chronological time, their specific functional relationship is arbitrary and
trajectory-specific. Monocle (Trapnell et al) 2014) was the first TT method to be devel-
oped, and like other early proponents, was limited to the analysis of biological processes
that simple linear trajectories could characterize. Newer versions of Monocle (Qiu et al.
2017; |Cao et all 2019), and other state-of-the-art TT methods allow the reconstruction of
more complex topologies, which are characteristic of more complex biological processes such
as development, in which trajectories typically contain multiple branching patterns leading
to the various possible cell fates. A recent extensive benchmark of 45 TT methods by [Saelens
et al| (2019)) concluded that while there are TT methods that perform significantly better
than others, like Slingshot (Street et al., 2018), Monocle2 (Qiu et al., [2017), PAGA (Wolf
et al., 2019), and Scorpius (Cannoodt et al., 2016b)), there is no “one-size-fits-all” method
that works well on every dataset and highlights that performance was strongly dependent
on the type of trajectory topology present in the underlying data.

1.3.2 Alignment of complex single-cell trajectories

When a pair of trajectories from a related but potentially distinct process is available, it is
natural to be interested in identifying differences and similarities between the two. By com-
paring the molecular programs executed by cells following biological processes under different
conditions, we can improve our understanding of cellular regulatory mechanisms, as well as
of health and disease. For example, comparing two single-cell trajectories, one characterized
by normal muscle cell differentiation and the other by fibroblast reprogramming into muscle
cells, revealed the critical molecular determinants for effective reprogramming (Cacchiarelli
et al., 2018). Alternatively, comparing trajectories derived from two species can illuminate
on the evolutionary differences between both organisms (Alpert et al., 2018). The main is-
sue preventing direct comparison between these pseudo-time trajectories is that pseudo-time
is not a global attribute of a dataset but is defined in a trajectory-specific manner, which
means that pseudo-times defined in two separate trajectories are in different systems of refer-
ence. In order to make two trajectories comparable, gene expression patterns of cells ordered
along different pseudo-times can be used to match or align cells along a common pseudo-
time axis. Trajectories in the examples above were aligned using dynamic time warping
(DTW) (Vintsyuk, |1968)), in which two time-series that evolve at different times or speeds
can be stretched and compressed to find an optimal “warping path” such that the two signals
are mapped into a common system of reference. Due to the inherent one-dimensional nature
of time-series, DTW is limited to the analysis of simple linear trajectories. Typically, when
dealing with complex trajectories, analysis often relies on identifying and selecting a single
path from each trajectory, followed by alignment using DTW. This means that prior biologi-
cal knowledge, which may not always be available, or additional computational methods are
required to identify a “core” path of interest that contains biologically relevant information
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previous to alignment. Lastly, information from other cell lineages represented by alternate
paths distinct from the core path, which could in theory help guide the alignment, is com-
pletely ignored by such approaches.

In Chapter [3, we introduce Trajan, a novel method that generalizes the comparison and
alignment of simple linear scRNA-seq trajectories to arbitrary trajectory types that can be
represented as rooted trees, such as bifurcating or binary graph topologies. Trajan aligns all
paths in a pair of complex single-cell trajectories automatically and consistently, identifying
the correspondence between biological processes and improving on the multiple pair-wise
alignment between individual lineages. We made an effort to integrate our software with the
pre-existing dynverse framework (Saelens et al., 2019), enabling and facilitating the inference
of single-cell trajectories with any of the 504+ methods available. The result is our novel
R package, TrajanR, which standardizes the pre-processing of Trajan input data, allows
alignment computation under different parameter schemes, and provides various visualization
options.
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2.1 Introduction

Heterochromatin is essential to maintain genome stability and transcriptional regulation.
Defects in heterochromatin formation lead to aberrant centromere and telomere function,
aneuploidy and cancer. In fission yeast, constitutive heterochromatin is established at
centromeres, subtelomeres and the silent mating type (mat) locus (Allshire and Ekwall,
2015). At centromeric repeats, RNAI is essential for heterochromatin formation as Arg-
onaute, guided by small RNAs, recruits the H3K9 methyltransferase complex CLRC to
chromatin (Halic and Moazed, [2010; Holoch and Moazed, 2015; Marasovic et al., 2013; [Mar-
tienssen and Moazed, |2015; |[Ugolini and Halic, 2018} [Verdel et al., 2004; |Volpe et al., 2002]).
This leads to deposition of the repressive H3K9 methylation (H3K9me) mark by Clr4, re-
cruitment of HP1 proteins Chp2 and Swi6, and heterochromatin formation (Allshire and
Ekwall, 2015; [Holoch and Moazed, 2015; [Martienssen and Moazed, |2015)).

Current data suggest that heterochromatic silencing occurs through a combination of
transcriptional silencing and RNA degradation. At the level of transcriptional silencing, HP1
proteins bind H3K9me nucleosomes and recruit downstream-acting complexes (Castel and
Martienssen, 2013; Motamedi et al., [2008; Zocco et al.,[2016)). HP1 protein Chp2 recruits the
complex SHREC to deacetylate chromatin and to remodel nucleosomes in heterochromatin,
which is required for silencing (Motamedi et al., [2008; Creamer et al., [2014; Sugiyama et al.|
2007)). These activities were suggested to reduce RNA Pol II access (Chen and Widom, 2005}
Schuettengruber et al., 2007).

Heterochromatin is also thought to promote recruitment of the RNA degradation ma-
chinery to degrade nascent transcripts (Marasovic et al., 2013) (Bronner et al, 2017, Biihler
et al.l 2008; |Cotobal et al.| 2015; |Pisacane and Halic, |2017; Reyes-Turcu et al., [2010; Reyes-
Turcu and Grewal, 2012; Sugiyama et al., |2016). In fission yeast, RNA Pol Il-transcribed
heterochromatic transcripts are polyadenylated (pA) products and undergo degradation by
the RNAi pathway, by the Ccrd—Not complex and by the exosome (Bronner et al., 2017).
The first step of mRNA degradation is generally shortening of the 3’ pA tail by the Ccrd—Not
complex and Pan nucleases (Wahle and Winkler, |2013)). This induces removal of the 5" cap
which enables 5'-3’ exonucleases Xrnl/2 (Exo2 and Dhpl in S. pombe) and 3'-5" degradation
by the exosome (Rrp6) (Houseley et al., 2006]).

How transcriptional silencing and RNA degradation pathways collaborate and their rel-
ative contributions to silencing are not known. In this study, we quantified the contribution
of these pathways to heterochromatic silencing by analyzing RNA Pol I occupancy, nascent
RNA and steady-state RNA in different fission yeast mutants. We also defined the hete-
rochromatic factors that contribute to transcriptional silencing and/or RNA degradation.
We found that transcriptional silencing occurs through reduced RNA Pol II accessibility,
as previously proposed, but, unexpectedly, also through reduced transcriptional efficiency,
a mechanism not previously implicated in silencing. Our data revealed that RNA Pol II
transcriptional output is lower at heterochromatic loci compared to euchromatic loci rela-
tive to levels of RNA Pol II occupancy. We determined that the Ccrd—Not complex and
H3K9 methylation are essential for the reduced transcriptional efficiency at heterochromatin
and quantified the contributions of heterochromatin factors to the reductions in RNA Pol II
occupancy, transcriptional efficiency and RNA stability.
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2.2 Methods

Supplementary Material contains information on strain construction and the preparation
of sequencing libraries.

Analysis of sequencing data

Sequencing reads obtained in the poly(A) RNA sequencing (pA RNA), Pol IT ChIP, nascent
RNA sequencing (Pol IT RIP) and total RNA sequencing experiments were mapped to the S.
pombe reference genome (PomBase, release 2018) using splice-aware alignment tool STAR
version 2.7.3a (Dobin et al) [2013). Alignment of RIP-seq and RNA-seq data was per-
formed with STAR default parameters. Unspliced alignments of ChIP-seq data was enforced
through parameters ‘—alignIntronMax 1’ and ‘~alignEndsType EndTokEnd’. Reads mapping
to ribosomal RNA have been removed from further analysis.

Genomic read counts were obtained using a custom script that extended basic htseq-
count (Anders et al., [2015) functionality with ‘“mode intersection-strict’ option. Addition-
ally, for RNA assays pA RNA, Pol IT RIP and total RNA, we used the ‘—stranded yes’ option
to identify the strand the read originated from. Only reads that mapped uniquely and reads
that mapped to less than 16 locations within heterochromatic regions were counted. We
chose 16 as multi-mapping threshold for heterochromatic genes to eliminate low-complexity
reads without discarding reads originating from heterochromatic regions (dg/dh have 12-13
copies). We did not try to resolve the origin of multi-mapping reads, but instead counted
all reads that mapped to one representative copy of dg/dh. We normalized gene counts by
gene length and sequencing depth using Transcripts Per Million (TPM). Finally, average
TPM values were computed for protein-coding and heterochromatic genes across biological
replicates with a Spearman correlation coefficient of log transformed gene expression values
of at least 0.8.

For the analysis in Supplemental [SI[B, we obtained relative intronic read counts by first
counting the number of reads overlaping each intronic region, normalizing this count by the
length of the intron, and finally dividing this normalized count by the total number of reads
mapping to the corresponding gene, normalized again by the gene length.

Read coverages (as shown for example in Figure 2.1]A) were obtained using a custom
python script that uses STAR read alignments as input and returns corresponding coverages
in wiggle format. The script generates a coverage profile x;, by counting the number of
read alignments x overlaping each genomic location 7. Multi-mapping reads in this case
fractionally contribute 1/NH to corresponding locations in the coverage profile, where NH
is the number locations the read maps to. For visualization we used a custom R script
that normalizes each profile by sequencing depth, making them comparable across datasets.
Here, sequencing depth is computed as milions of reads that map to protein-coding genes or
heterochromatic regions.

2.2.1 t-distributed stochastic neighbor embedding (t-SNE)

For each mutant, we created a high-dimensional vector containing Pol II occupancy and
transcription efficiency log transformed TPM values of all heterochromatic genes. In order to
visualize this high-dimensional data and their relationships, we used scikit-learn’s (Pedregosa
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et al., [2011)) implementation of t-SNE with ‘perplexity = 5’ parameter, to reduce the data
to two dimensions as shown in Figure 2.5A.

2.2.2 IP-Input subtraction in ChIP-seq data

For normalization of ChIP-seq data based on Input data, we used the three core centromeric
regions to define the background component of the IP data. These are the longest regions
with very low transcription and we thus scale Input data to match the IP data along these
regions (Diaz et al., [2012). More specifically, for each of the three regions we computed for
each ChIP-seq sample a coverage profile z; and a coverage profile y; for the corresponding
[P-Input sample, and computed a scaling factor A using the following equation:

1=1 i=1

where n is the gene length. We take the median of the three A values as our final scaling
factor. In Supplemental we show that this normalization notably reduces the read
coverage within these regions in wild-type cells.

2.2.3 Transcription Efficiency, RNA Stability and Pol II Occupancy

For each mutant, let Ocnrp, Orrp and 0,4 grna denote the average TPM value of a given gene
obtained from Pol I ChIP-seq, Pol II RIP-seq and pA RNA-seq experiments, respectively,
as described above. We compute transcription efficiency as the amount of newly synthesised
RNA (Pol IT RIP) relative to the level of Pol I Occupancy (Pol II ChIP):

0
Transcription Efficiency = —-- (2.2)
ChIP
RNA levels being the result of RNA synthesis and degradation, we define RNA stability

as the ratio of steady state RNA levels (pA RNA-seq) over the amount of newly synthesised
RNA (Pol IT RIP):

Opa_
RNA Stability = -24—2N4 (2.3)
Orrp
Changes in Pol II occupancy were quantified by the log fold change of Pol II occupancy
levels (Pol II ChIP) in each mutant (mu) relative to wild-type (wt) cells:

APol 11 = log, (thﬂ> (2.4)
ChIP

As described above, we compute ratios of averaged TPM values across replicates, similar

to [Thoreen et al. (2012)), to obtain quantitative measures of transcription efficiency, RNA

stability, and changes in Pol II occupancy. Since different experiments are unpaired, we

visualize variability in these ratios by combining all possible pairs of replicates between the

two assays involved in each of the three quantities and provide the standard error of the
mean (SEM) in Supplemental [S2]
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2.2.4 Calculation of pathways’ contributions to silencing

Since the transcriptional output is proportional to Pol IT occupancy, transcriptional efficiency;,
and RNA stability, we quantify the RNA output by:

RNA output = [APol II] - [Transcription Efficiency] - [RNA Stability] (2.5)

0 0,4
RNA output = 0cnp - (95;) : ( pgRiiVA) (2.6)



16 2. Ccr4—Not complex reduces transcription efficiency in heterochromatin

2.3 Results

Transcriptional silencing and degradation of heterochromatic RNA

To dissect the contributions of transcriptional silencing and RNA degradation to heterochro-
matic silencing, we analyzed RNA Pol II occupancy, nascent RNA, and steady-state RNA
at heterochromatic and euchromatic regions in fission yeast (Figure shows data for
specific genomic regions from wild-type cells). For Pol IT occupancy, we performed ChIP-seq
analyses of serine 2 phosphorylated (S2P)-RNA Pol II-bound DNA. To correct for noise, we
subtracted scaled input data from all RNA Pol IT ChIP-seq datasets. For normalization, the
background component was defined based on the centromeric central core (Cenp-A contain-
ing chromatin), a region with low occupancy in RNA Pol II ChIP-seq; we thus subtracted
input so that this region would show near zero signal (Supplemental , see also Meth-
ods). For nascent RNA, we performed RNA-seq of S2P-RNA Pol II-bound RNA (Pol II
RIP) and assessed the quality of nascent RNA by examining retention of intronic sequences,
which are strongly enriched in nascent RNA (Supplemental [SIB, C). For steady-state RNA,
we sequenced polyadenylated (pA) RNA and total RNA; both datasets showed compara-
ble levels of heterochromatic transcripts, indicating that these are mostly polyadenylated
(Supplemental and E).

To determine how heterochromatin changes RNA Pol II accessibility, we compared RNA
Pol IT occupancy in wild-type cells and in clr4A cells, which lack H3K9 methyltransferase
Clr4 and thus do not have H3K9me or heterochromatin (Marasovic et al., [2013)) (Figure
2.1B). Error bars for all the data are shown in Supplemental . We did not detect sub-
stantial differences in RNA Pol II occupancy at protein-coding genes between wild-type and
clrdA cells. At heterochromatic regions, the effects varied according to the specific locus:
at centromeric dg/dh and subtelomeric tlh repeats (tlh and SPAC212.10), RNA Pol II oc-
cupancy was ~4-fold higher in clrdA cells compared to wild-type cells (Figure and
Supplemental , B). At other subtelomeric regions and at the mat locus, we observed
smaller change in RNA Pol IT occupancy in the absence of heterochromatin (Figure
and Supplemental Table [S2)).

Our data also showed that RNA Pol II complexes can be present in heterochromatic
regions, but they do not always actively transcribe or produce nascent RNA. For example,
in wild-type cells, heterochromatic tlh1 and subtelomeric ftm1 loci show similar RNA Pol II
occupancy, but ftm1 produces substantially more nascent RNA (Figure ) To analyze this
relationship further, we plotted the nascent RNA levels over chromatin-bound RNA Pol II
for individual loci in wild-type cells (Figure ); we also calculated the ratio between those
measurements, which informs on how much nascent RNA is synthesized relative to RNA Pol
IT occupancy at any given locus (Figure ) We define this parameter as transcription
efficiency. Error bars for all the data are shown in Supplemental [S2B.

We found a linear relationship between RNA Pol II occupancy and nascent RNA when
examining ~5000 euchromatic, protein-coding loci in wild-type cells, indicating that tran-
scription efficiency was constant across the examined euchromatic loci. In contrast, het-
erochromatic loci showed lower transcriptional efficiency (8-fold on average) compared to
protein-coding loci (Figure 2.1IC), and this observation applied to all heterochromatic re-
gions in fission yeast. Thus, our data indicate that, in wild-type cells, heterochromatic loci
are less efficiently transcribed than protein-coding loci that have the same amount of RNA
Pol 11, suggesting that RNA Pol IT does not productively transcribe heterochromatic regions.
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Figure 2.1: Heterochromatic repeats have reduced RNA Pol I occupancy, Transcription Efficiency
and RNA stability. (A) Analysis of the next-generation sequencing data showing occupancy of
S2P-RNA Pol IT (ChIP-seq), nascent RNA (S2P-Pol II RIP-seq), steady-state RNA levels (pA
RNA-seq) and H3K9me2 levels (ChIP-seq) at subtelomeric and pericentromeric regions in S. pombe
wild-type cells. Gene locations are indicated as boxes below the coverage and color-coded: gray,
protein-coding genes; purple, centromeric dg, dh; green, subtelomeric loci tlh and SPAC212.10;
blue, other subtelomeric genes. (B) Box plot showing RNA Pol II occupancy (S2P-Pol II ChIP-
seq) in wild-type cells relative to clr4A cells for protein-coding genes (gray), mat locus (orange),
and subtelomeric genes (blue). The sequencing data for clr4A are shown in . For protein-coding
genes, individual transcript are shown as circles; bottom and top of the box correspond to lower
and upper quartiles of the data, bar is the median and whiskers are median +1.5 times interquartile
range. Colored symbols on the right show centromeric dg and dh (dark purple), subtelomeric tlh
and SPAC212.10 (dark green), and cenH (orange). Solid/transparent color show + and — strand
respectively. Each data point is the average of at least two independent samples. (C) Transcription
efficiency in wild-type cells. Left, S2P-Pol II ChIP-seq (Pol II occupancy) data plotted over S2P-
Pol 1T RIP-seq data (nascent RNA). TPM, transcripts per million. Gray circles are individual
protein-coding genes; regression line is also shown in purple. Also plotted are centromeric dg and
dh (dark purple for + strand, bright purple for - strand) and tlh and SPAC212.10 (dark green
for + strand, bright green for — strand) and cenH (orange). Each data point is the average of at
least two independent samples. Right, box plot showing transcription efficiency distributions by
gene categories, data are plotted and color-coded as in panel B. (D) RNA stability in wild-type
cells. Left, pA RNA-seq (steady-state RNA) data plotted over S2P-Pol II RIP seq data (nascent
RNA). TPM, transcripts per million. Data are plotted as defined for panel (C). Right, box plot
showing RNA stability (pA RNA/Pol II RIP) distribution by gene categories, data are plotted
and color-coded as in panel (B). Figure reproduced from Monteagudo-Mesas et al.| (2022) licensed
under | Creative Commons CC BY.

Next, we calculated the ratio of steady-state RNA to nascent RNA, which informs on
the stability of a specific transcript. Error bars for all the data are shown in Supplemental
[S2C. Notably, we found that a subset of heterochromatic transcripts was less stable than the
average transcript from a protein-coding loci (Figure ) This subset of unstable hete-
rochromatic RNAs includes transcripts from centromeric dg/dh and subtelomeric tlh regions,
which are known to be degraded by RNAi and by the Ccrd—Not complex, respectively (Halic
and Moazed, 2010; Marasovic et al., [2013; Bronner et al., 2017). For transcripts derived
from the other subtelomeric genes or from the mat locus, RNA stability was comparable
to transcripts from protein-coding genes (Figure ), indicating that those loci primarily
undergo transcriptional silencing, with no major role for RNA degradation in their silencing.

2.3.1 Effect of heterochromatin on silencing pathways

Our data indicate that three different pathways can contribute to silencing of heterochro-
matin: RNA Pol I occupancy, transcriptional efficiency and RNA degradation. To further
examine the impact of heterochromatin structure on those pathways, we compared the con-
tributions from each of them at heterochromatic loci in wild-type and clr4dA cells.

We found that RNA Pol IT transcribes repetitive regions more efficiently in the clr4A cells
compared to wild-type cells. RNA Pol IT occupancy at centromeric dg/dh and subtelomeric
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tlh repeats was ~four-fold higher in clrdA cells relative to wild-type cells, but the increase
in nascent RNA was ~twenty-fold (Figure and B). The data also demonstrate that
heterochromatin structure contributes to reduced transcriptional efficiency: in clrdA cells, all
heterochromatic regions (centromeres, subtelomeres and the mat locus) reach transcriptional
efficiency that is comparable to euchromatic regions (Figure ) Moreover, transcription
efficiency is the single mode of heterochromatic silencing that acts in all heterochromatic
regions.

We next assessed RNA stability in the absence of heterochromatin structure. We observed
that subtelomeric tlh RNA has similarly low stability in clr4A compared to wild-type cells,
indicating that multiple pathways degrade RNA from subtelomeric tlh repeats, indepen-
dently of heterochromatin structure, in agreement with previous observations (Figure
and E) (Bronner et al., 2017). In contrast, centromeric dg/dh transcripts showed increased
stability in clr4A compared to wild-type cells, indicating that heterochromatin structure is
required for degradation of those transcripts.

These data from clr4A cells also confirm our observations with wild-type cells: at cen-
tromeric dg/dh, silencing results from a combination of reduced RNA Pol II occupancy
(Figure ), reduced transcriptional efficiency (Figure ) and increased RNA degrada-
tion (Figure ), whereas for subtelomeric tlh repeats, silencing occurs primarily at the
transcriptional level.

We quantified the relative contribution of each pathway to heterochromatic silencing, by
comparing data from wild-type and clr4dA cells. In wild-type cells, RNA degradation and
transcriptional silencing contribute similarly to silencing of centromeric repeats (~38% and
~62%, respectively) (Figure ) wherein transcriptional silencing can be further parsed out
into RNA Pol IT occupancy (~36%) and transcriptional efficiency (~26%). At subtelomeric
tlh repeats, heterochromatic silencing occurs primarily by transcriptional silencing (~92%)
(Figure ), which is predominately mediated through reduced transcriptional efficiency
(~66%). A similar pattern is observed at the remaining subtelomeric regions and mat locus:
at mat locus silencing is mostly transcriptional, with transcriptional efficiency (~70%) being
the major silencing pathway (Supplemental [SIF, G).

2.3.2 Contribution of heterochromatin factors to distinct silencing pathways

Next, we analyzed RNA Pol II occupancy, transcriptional efficiency and RNA degradation
in strains defective in the RNAi machinery (agolA), lacking chromatin modifiers (clr3A,
mit1lA, chp2A and swi6A) or RNA degradation components (rrp6A, exo2A, cafl A, ccrdA
and mot2A) (Supplemental ; error bars between replicates shown in Supplemental
[S2] Chp2 and Swi6 are HP1 family proteins; wherein Chp2 recruits the SHREC complex
to chromatin. SHREC subunits, Mitl and Clr3, are a chromatin remodeler and a histone
deacetylase, respectively (Motamedi et al., [2008; Sugiyama et al., 2007)). Rrp6 is a component
of the exosome complex; Exo2 is a 5’ to 3’ exonuclease. Cafl, Ccrd and Mot2 are components
of the Ccrd—Not deadenylase complex.

Our data show that reduced RNA Pol IT occupancy at centromeric repeats requires RNAi
(Figure and Supplemental [S3A, [S4A-C), HP1 proteins, components of SHREC (Figure
and Supplemental , E, , B) and Exo02 and Rrp6 of the RNA degradation ma-
chinery (Figure and Supplemental —D). At subtelomeric tlh repeats, only chromatin
modifiers are required to limit RNA Pol IT occupancy (Figure and Supplemental [S3[B,
[S4D, E, [S5A, B), whereas at the remaining subtelomeric genes and at the cenH element of
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Figure 2.2: Contribution of distinct pathways to heterochromatic silencing. (A) RNA Pol II occu-
pancy (Pol IT ChIP-seq) in clr4A cells relative to wild-type cells for indicated gene categories; data
are the same as in Figure [2.1]B, with inverted ratios. (B) Nascent RNA (Pol II RIP) in wild type
and clr4A cells. Data are plotted as defined for Figure . (C) Transcription efficiency (Pol II
RIP / Pol II ChIP) in wild-type and clr4A cells. Data are plotted as defined for Figure 2.1B. (D)
Steady state RNA (pA RNA-seq) shown for wild-type and clr4A cells. Data are plotted as defined
for Figure 2.1B. (E) RNA stability (pA RNA / Pol II RIP) in wild type and clr4A cells. Data
are plotted as defined for Figure . (F, G) Bar chart showing fold change in quantitative mea-
sures (ratios of average TPM, see Methods) of the three pathways (Pol II occupancy, transcription
efficiency and RNA stability) at centromeric dg and dh (D) and at subtelomeric tlh (E) in clrdA
cells, relative to wild type. Pie charts show relative contribution of each pathway to heterochro-
matic silencing at repeats in wild-type cells. Average of at least two independent samples is shown
for all figures. Figure reproduced from Monteagudo-Mesas et al.| (2022)) licensed under | Creative
Commons CC BY.
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the mat locus, RNA Pol II occupancy was increased in absence of several chromatin mod-

ifiers and rrp6 (Figure and Supplemental [S3C, D, [S4E, [S5A). Finally, the Ccrd-Not

complex components showed little effect on RNA Pol II occupancy at all heterochromatic

regions (Figure and Supplemental [SA-C).

The reduced transcriptional efficiency at heterochromatic loci depends on most chromatin
modifiers (Clr4, HP1 proteins and SHREC complex), but not on RNA degradation factors
Rrp6 and Exo2 (Figure and Supplemental . Those chromatin modifiers seem to
reduce transcriptional efficiency more than RNA Pol II occupancy (Supplemental , an
effect similar to what we had observed in clr4A cells. The strongest effect on transcriptional
efficiency in heterochromatic regions was observed for components of the Ccrd—Not complex
(Figure and Supplemental [S3). The Ccrd-Not deadenylase complex could affect tran-
scriptional efficiency indirectly, through changes in RNA levels of other factors involved in
heterochromatin formation. However, analysis of nascent RNA, total RNA and pA RNA
data show that RNA levels of factors involved in heterochromatin formation do not change
substantially in cafl A cells compared to wild-type cells (Supplemental ) This suggests
a direct effect of Ccrd—Not on transcriptional efficiency.

Although RNA Pol II occupancy at tlh repeats is comparable in caflA and wild-type
cells, caflA cells produce ~10 fold more nascent RNA from that locus than wild-type cells
(Figure ) Thus transcriptional efficiency is increased in all heterochromatic regions in
caflA cells, to a level comparable to protein-coding genes (Figure , F). To determine if
Ccrd—Not mediated reduction in transcription efficiency occurs post-heterochromatin forma-
tion, we analyzed H3K9me levels in wild-type and caflA cells. Notably, H3K9me levels are
only slightly affected at tlh and centromeric dg/dh repeats in caflA cells (Supplemental [STF),
indicating that increased transcriptional efficiency does not interfere with H3K9me deposi-
tion. Thus, Cafl reduces transcriptional efficiency at heterochromatin loci after H3K9me is
deposited and heterochromatin is established; in fact, Cafl requires H3K9me and heterochro-
matin for its activity. In absence of heterochromatin, transcriptional efficiency is strongly
increased, as seen by our data on clrdA (Figure ) Moreover, in caflAagolA cells, which
lack both H3K9me and small RNAs (Bronner et al., 2017)), transcriptional efficiency is not
further increased , suggesting that Ccrd—Not is the primary cause of reduced transcrip-
tional efficiency in heterochromatin. In sum, our data show that the Ccrd—Not complex is
required to reduce transcriptional efficiency in heterochromatic regions and that it modulates
RNA Pol II activity in a heterochromatin-dependent way.

To test if the deadenylase activity of the Ccrd—Not complex is required for reduction of
transcriptional efficiency in heterochromatin, we introduced point mutations into the active
site of the two deadenylases in the complex, Cafl and Cecr4 (Bronner et al., 2017). The mu-
tations in the active sites led to an increase in transcriptional efficiency at heterochromatin
loci that was comparable to the effect seen with gene deletions (Figure ), suggesting
that the nuclease activity is required for reduced transcriptional efficiency. The deadeny-
lase activity of the Ccrd—Not complex requires an accessible 3 RNA end, which is not the
case with nascent RNA, where the 3’ end is engaged with RNA Pol II. It is possible that
our Pol II-RIP assay also detects chromatin-bound RNA that are targeted by the Ccrd—Not
complex (Bronner et al., [2017)), thus contributing to reducing transcriptional efficiency. Al-
ternatively, Ccrd—Not might bind backtracked nascent RNAs (Dutta et al., [ 2015; Kruk et al.|
2011))) which would have accessible 3’ ends, and this could potentially stall RNA Pol II.

In support of a direct effect on transcription, we observed changes in RNA Pol II dis-
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Figure 2.3: RNA Pol II occupancy and transcription efficiency in different mutants. (A, B) Box
plots showing ratio of RNA Pol II occupancy (S2P-Pol II ChIP-seq) in mutants compared to wild
type over indicated genes. Shown are mutants in factors involved in heterochromatin formation
and RNA degradation (A) or Ccrd—Not complex components (B). Data are plotted as defined for
Figure 2.1B. (C, D) Box plot showing transcription efficiency (Pol II RIP / Pol II ChIP) over
indicated genes in wild type and mutants in factors involved in heterochromatin formation and
RNA degradation (C) or in Ccr4d—Not complex components (D). Data are plotted as defined for
Figure . (E) Analysis of the next-generation sequencing data showing occupancy of S2P RNA
Pol IT (ChIP-seq) and nascent RNA (S2P-Pol IT RIP-seq) at subtelomeric regions in S. pombe wild-
type and caflA cells. Gene locations are indicated as boxes below the coverage and color-coded:
green, subtelomeric loci tlh and SPAC212.10; blue, other subtelomeric genes. (F) Transcription
efficiency in caflA cells. S2P-Pol II ChIP-seq (Pol II occupancy) data plotted over S2P-Pol II
RIP-seq data (nascent RNA). TPM, transcripts per million. Gray circles are individual protein-
coding genes; regression line is also shown in purple. Also plotted are centromeric dg and dh (dark
purple for + strand, bright purple for — strand) and tlh and SPAC212.10 (dark green for + strand,
bright green for - strand). Each data point is the average of at least two independent samples. (G)
Quantification of RNA Pol II occupancy (S2P-Pol IT ChIP-seq) at tlh promoter region and tlh gene
body in indicated wild type and mutant strains. Figure reproduced from |Monteagudo-Mesas et al.|
(2022)) licensed under | Creative Commons CC BY.
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tribution upon deletion of the Ccrd—Not complex at the tlh locus (Figure , G and
Supplemental ) Whereas RNA Pol I occupancy at the promoter and 5 end of the tlh
gene in cafl A and wild-type cells is comparable (Figure ), we observe strong reduction
of RNA Pol II occupancy in the gene body in the mutant, suggesting higher RNA Pol II
processivity (Figure , G). Similar changes are observed in deletions of all components of
the Ccrd—Not complex (Supplemental), especially in mot2A cells, but not in deletions of
chromatin complexes such as swi6 or clr3 (Supplemental ) Notably, deletion of Ccrd—Not
components did not change RNA Pol II profiles in euchromatic regions (Supplemental )
These data indicate that the Ccerd—Not complex directly affects the RNA Pol II distribution
in heterochromatic regions.

Our data reveal that low RNA stability contributes primarily to the silencing of cen-
tromeric dg and dh transcripts (Figure and Supplemental [S3]A), with exception of dh+
transcripts which are degraded in an RNAi- and heterochromatin-independent way. This
effect requires RNAi (Agol) and H3K9me (Clr4), but not other heterochromatic factors or
individual RNA degradation factors examined (Figure ) Among the latter, only deletion
of ex02 showed a small increase in RNA stability at the centromeric region, suggesting that
multiple RNA degradation pathways act redundantly to degrade heterochromatic transcripts
(Figure and Supplemental ) In contrast, deficiency in the Cerd—Not complex com-
ponents increased degradation of heterochromatic transcripts compared to wild-type cells.
This effect is consistent with increased transcriptional efficiency in this mutant, leading to
higher amounts of nascent RNA (Figure and Supplemental [S3] [SID), which would re-
cruit the RNAi machinery to these regions, thus leading to increased degradation (Bronner
et al., 2017).

2.3.3 Contribution of individual proteins to the heterochromatic silencing pathways

For all the mutant strains examined here, we quantified the level of silencing imposed by
each of the three pathways (Pol II occupancy, transcriptional efficiency, RNA stability) at
different heterochromatic loci (Figure 2.4C, D and Supplemental [SIE, F). It should be also
noted that the three pathways do not operate independently in cells. The quantification of
each pathway’s contribution to heterochromatic silencing was calculated relative to clr4A,
which was defined as a complete loss of heterochromatic silencing. We observed that Agol is
essential for all three silencing pathways at the centromeric region; in fact, heterochromatic
silencing is completely lost in strains lacking RNAi. In the strains bearing deletions of
chromatin modifiers, silencing overall was strongly reduced, but each pathway was still active.
In contrast, deletions of RNA degradation factors led to more limited loss of silencing, with
varying effects between centromeric and subtelomeric regions.

We had previously shown that the Ccrd—Not complex degrades subtelomeric RNA redun-
dantly with RNAi (Bronner et al. 2017). Our new data show that the Ccr4-Not complex
is also required for silencing at the transcriptional level, regulating transcriptional efficiency
at all heterochromatic loci (Figure , D and Supplemental . Although transcriptional
efficiency is increased in caflA, ccrdA and mot2A cells, the overall loss of silencing at cen-
tromeric repeats is small and increased transcriptional efficiency is compensated by reduced
RNA Pol IT occupancy and increased RNA degradation (Figures 3B, D, 4B and Supple-
mental [S3). The loss of silencing in caflA, ccrdA and mot2A cells was more pronounced at
subtelomeric tlh repeats (compared to centromeric loci), since transcriptional efficiency is the
dominant silencing pathway in those regions, and increased degradation by RNAi (Bronner
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Figure 2.4: Contribution of individual factors to each pathway of heterochromatic silencing. (A,
B) Box plot showing RNA stability (pA RNA/Pol II RIP) over indicated genes in wild type and
mutants in factors involved in heterochromatin formation and RNA degradation (A) or Ccr4d-Not
complex components (B). Data are plotted as defined for Figure . (C, D) Bar charts displaying
contribution of each of the pathways that are still active in the mutants to silencing at centromeric

dg/dh regions

(C) and subtelomeric tlh regions (D). The height of each bar corresponds to the fold

change in RNA output relative to wild-type. The relative contribution of each pathway was com-
puted as fold change in quantitative measures (ratios of average TPM, see Materials and Methods)

relative to cIr4A. Figure reproduced from Monteagudo-Mesas et al. (2022 licensed under| Creative
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Figure 2.5: Heterochromatic silencing is a combination of reduced RNA Pol II occupancy, Transcrip-
tion Efficiency and RNA stability. (A) The t-distributed stochastic neighbor embedding (t-SNE)
plot showing two dimensional embedding of Pol II occupancy and transcription efficiency. Close
proximity of mutants visualizes similarities in transcriptional silencing. (B) Schematic presentation
of how different proteins involved in heterochromatin formation or RNA degradation contribute to
heterochromatic silencing. Three pathways are important for heterochromatic silencing: transcrip-
tional silencing (consisting of Pol IT occupancy and transcription efficiency) and RNA degradation.
Figure reproduced from [Monteagudo-Mesas et al. (2022) licensed under | Creative Commons CC
BY.

, is not sufficient to compensate for its loss (Figure , D). Notably, at sub-
telomeric regions other than tlh and at the mat locus, the transcriptional efficiency pathway
remains active in almost all mutant strains examined; the exceptions were mutants for the
components of the Ccr4d—Not complex, in which transcriptional efficiency is abolished but
other pathways were fully functional (Supplemental [SIE, F). These data show that Ccrd-Not
complex specifically affects transcriptional efficiency.

We projected log transformed TPM values of Pol II occupancy and transcription efficiency
across all heterochromatic genes into two-dimensional space using t-distributed stochastic
neighbor embedding (t-SNE). In agreement with our previous calculations (Figures 3 and
4), the t-SNE plot shows that the components of the Ccr4d-Not complex cafl, ccrd and mot2
co-localize, indicating their specialized role in transcriptional silencing (Figure )
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2.4 Discussion

Our data show that heterochromatic silencing occurs through different mechanisms. First,
RNA Pol II accessibility is reduced at heterochromatic regions, which also reduces overall
transcription at those loci (Figure ) Second, we identified transcriptional efficiency as a
new mode of heterochromatic silencing; although RNA Pol II is present at heterochromatic
loci, transcriptional efficiency is reduced by heterochromatin and the Ccrd—Not complex
(Figure [2.5B). This mode of silencing operates/occurs at all heterochromatic regions in
fission yeast. Third, the final component of heterochromatic silencing is RNA degradation
by RNAi and several RNA degradation factors, including the Cerd—Not complex.

Reduced RNA Pol II access was initially proposed as the major mode of heterochromatic
silencing and has been observed in many organisms (Feng and Michaels| 2015; (Grewal and
Elgin, 2007). In fact, we observed that RNA Pol II occupancy at centromeres strongly
increased in cells bearing mutations that greatly affect H3K9me levels, such as clr4A or
agolA (Okita et al., 2019). Components of the heterochromatin pathway that act down-
stream of H3K9me, such as HP1 proteins, are required to reduce RNA Pol II occupancy, but
to a lesser extent than Clr4. Notably, RNA degradation factors Exo2 and Rrp6 contribute
to reduced RNA Pol IT occupancy at the centromeric region, in agreement with our previous
finding that RNA degradation is required for formation of heterochromatic domains (Bronner
et al., 2017).

In addition to reduced RNA Pol II occupancy, we identified reduced transcriptional ef-
ficiency as another mode of transcriptional silencing. Although RNA Pol II is present at
heterochromatic regions, the RNA it produces (nascent RNA levels) is proportionally lower
than in euchromatic regions. This silencing mode occurs at all heterochromatic regions in
fission yeast cells and might be conserved in other organisms as well. In fact, this mode of
silencing might be analogous to SIR-mediated silencing in S. cerevisiae, wherein transcrip-
tion is initiated but elongation is blocked by the SIR complex, which maintains RNA Pol II
in a stalled conformation (Johnson et al., [2013). We found that heterochromatin is essential
to reduce transcriptional efficiency: in the absence of H3K9me, transcription efficiency at
heterochromatic loci is increased to the level comparable to euchromatic genes. These re-
sults also show that reduced transcriptional efficiency is not encoded in the DNA sequence
itself, but it is controlled by the heterochromatin. We show that reduced transcriptional
efficiency is mediated by the Ccrd—Not complex, as transcriptional efficiency increased to
the level of protein-coding genes in caflA cells. Notably, H3K9me levels at subtelomeric tlh
and centromeric dg/dh repeats were only modestly affected in caflA cells (Bronner et al.)
2017;|Cotobal et al| 2015; Sugiyama et al 2016), indicating that heterochromatin formation
is functional in those cells. Thus, the Ccrd—Not complex regulates transcriptional efficiency
post-heterochromatin formation, but H3K9me and heterochromatin are required for this reg-
ulation by the Ccr4d-Not complex. The observed reduction in transcription efficiency is likely
a combination of reduced transcription by RNA Pol IT and degradation of chromatin bound
RNA. RNAIi, Ccr4-Not and the Rix1 complex were suggested to co-transcriptionally degrade
heterochromatic transcripts in fission yeast (Holoch and Moazed, 2015} Verdel et al.l 2004}
Bronner et al., 2017; Holla et al., 2020; Shipkovenska et al., 2020). In wild-type fission yeast,
centromeric dg/dh transcripts are targeted by RNAi, whereas subtelomeric tlh transcripts
are not. Our data show that transcriptional efficiency is reduced at both centromeric dg/dh
transcripts and subtelomeric tlh transcripts, suggesting that the reduction does not occur via
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co-transcriptional degradation by RNAi. Moreover, in cafl A cells transcriptional efficiency
in heterochromatin is comparable to protein coding genes, however, both tlh and centromeric
dg/dh transcripts remain to be degraded by RNAi (Bronner et al., 2017). This indicates
that RNAi degradation has only a minor contribution to the observed reduction in transcrip-
tional efficiency. Notably, our data show that mutations in the active site of the Ccrd—Not
deadenylases lead to an increase in transcriptional efficiency comparable to that seen with
gene deletions, suggesting that nuclease activity is required for reduced transcriptional ef-
ficiency. This also suggests that the Ccrd—Not complex might degrade chromatin-bound
RNA, which might co-purify with nascent RNA. Alternatively, the deadenylase activity of
Ccrd—Not might directly regulate RNA Pol II. In support of this, we observe changes in the
RNA Pol II distribution, which was reduced in tlh gene body upon deletion of Ccrd—Not
subunits. This suggests higher processivity of elongating RNA Pol II in those mutants com-
pared to wild-type cells. Ccr4d—Not was initially described as a chromatin-associated complex
involved in transcription (Miller and Reesel |2012), and later shown to act as a transcription
elongation factor that would reactivate arrested RNA Pol II (Dutta et al. |2015; Kruk et al.|
2011). It is plausible that, in the presence of heterochromatic marks, Ccrd—Not exhibits
the opposite effect and stalls RNA Pol II, perhaps by targeting backtracked nascent RNAs
that have accessible 3’ ends. Recently, Ccrd—Not was shown to be required for DNA-damage
dependent ubiquitination and degradation of RNA Pol II (Jiang et al. [2019)), and stalling
of RNA Pol IT by Cecrd—Not could require RNA Pol II ubiquitination. Furthermore, the
Cerd—Not complex is recruited to RNA Pol IT by the histone chaperone Spt6 (Dronamraju
et al, 2018)), which was also implicated in heterochromatin formation in fission yeast (Kiely
et al., 2011)). Altogether, these various observations support the concept that Ccrd—Not is
recruited to chromatin and regulates RNA Pol II transcription.

Our data show that RNA degradation contributes to heterochromatic silencing at cen-
tromeric repeats and tlh, but not at other subtelomeric genes or at the mat locus. RNA
degradation at the centromeric region is dependent on RNAi and heterochromatin, but those
are not required for RNA degradation at subtelomeric tlh repeats. This observation is in
agreement with the previous report that RNA is degraded at subtelomeric tlh repeats by
parallel mechanisms that are heterochromatin-dependent and -independent (Bronner et al.,
2017).

In conclusion, we identified a new mode of heterochromatic silencing termed transcrip-
tional efficiency. This mode of silencing depends on H3K9me and the Ccrd—Not complex
and acts as a dominant silencing pathway at most heterochromatic loci in fission yeast.
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Chapter 3

Dynamic pseudo-time warping of
complex trajectories

This Chapter builds on top of our previous work:

e Van Hoan Do*, Mislav Blazevi¢*, Pablo Monteagudo-Mesas, Luka Borozan, Khaled
Elbassioni, Soeren Laue, Francisca Rojas Ringeling, Domagoj Matijevic and Stefan

Canzar. Dynamic pseudo-time warping of complex single-cell trajectories. bioRxiv,
2019.

The main contributions presented in this Chapter are being summarized into a manuscript:

e In preparation: Pablo Monteagudo-Mesas*, Van Hoan Do*, Mislav Blazevi¢*, Luka
Borozan, Khaled Elbassioni, Soeren Laue, Francisca Rojas Ringeling, Domagoj Mati-
jevic and Stefan Canzar. TrajanR enables the accurate alignment and comparison of
complex scRNA-seq trajectories. (2023).

Section (Introduction), is based on our prior work (Do et al. 2019) and has been re-
vised in order to contextualize our method in light of recent published work. In Section
(Preliminaries), we motivate and introduce the problem of aligning complex single-cell RNA
sequencing (scRNA-seq) trajectories, as well as the limitations of current approaches based
on DTW to align linear scRNA-seq trajectories. This content has also been adapted from
our prior work (Do et al., 2019).

After that, our main contributions are presented:
e Implementation of TrajanR package
e Extensive experimentation on simulated datasets
e Metric conformity analysis
e Analysis of two real datasets

Additional experiments and theoretical work, which were included in our original publication,
are described in (Dol [2021)) and (Borozan, 2021), and are referenced for completeness but
omitted from this Chapter.
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3.1 Introduction

Single-cell RNA sequencing (scRNA-seq) has allowed the detailed dissection of biological
processes such as differentiation, development, and cell reprogramming. Using so-called
trajectory inference (TI) methods (Saclens et al. [2019), like Monocle2 (Qiu et al. 2017),
PAGA (Wolf et al., [2019) or Slingshot (Street et al., 2018]), cells in a scRNA-seq dataset
are ordered based on their transcriptomic similarities into trajectories describing continuous
transitions between cells states. Progression in these scRNA-seq trajectories is parametrized
by pseudotime, defined for each cell as the distance along the trajectory from the trajectory’s
origin or root. The analysis of such trajectories enables the characterization of changes in
gene expression driving these dynamic processes. An alternative approach to studying cells
undergoing dynamic processes is RNA velocity, where splice and unspliced counts are used
to indirectly infer cells’ future gene expression states based on their current state. Although
it has limitations, RNA velocity provides valuable and complementary information. For
example, it can help in finding a trajectory’s root or, more recently, in guiding the whole
trajectory inference process (e.g., CellPath (Zhang et al., 2021) and CellRank (Lange et al.,
2022)). As described throughout this Chapter, much can be learned from the comparative
analysis of scRNA-seq trajectories. Comparing gene expression dynamics along trajectories
from two conditions can aid in elucidating the key differences between them and the regu-
latory programs underpinning the biological process under study. For example, comparing
the trajectories underlying a given differentiation process in two species would shed light on
the evolutionary differences between these organisms. Comparing the trajectory describing a
normal developmental process to that affected by a particular mutation would yield insights
into disease mechanisms.

The main issue preventing the comparison of gene expression dynamics along a given
pair of trajectories is that pseudotime is defined in a trajectory-specific manner, render-
ing the actual pseudotime values between trajectories not directly comparable. Dynamic
time warping (DTW) is a class of algorithms for comparing two time-series that advance at
different speeds (Vintsyuk, [1968). It was originally developed in the context of automatic
speech recognition but has gained increasing popularity in the comparison of single-cell tra-
jectories (Alpert et al., 2018; Cacchiarelli et al, [2018; |[Ellwanger et al.| 2018]). Similar to a
pairwise sequence alignment that allows for insertions and deletions, DTW finds a mapping
(warping) between similar elements in the two sequences to overcome locally stretched and
compressed sections. In single-cell trajectories, where cells are ordered along pseudotime,
gene expression values are used to establish a common pseudotime axis along which expres-
sion kinetics become comparable between different conditions by matching similar cells in
both trajectories. An alternative approach, in which one combines both scRNA-seq datasets
and attempts to learn a joint trajectory, is likely to fail due to batch effects confounding the
trajectory inference process or differences between biological processes that cannot be easily
reconciled into a single trajectory (Cacchiarelli et al., 2018]). Moreover, in |Sugihara et al.
(2022), the authors demonstrated the superior accuracy and robustness of DTW alignments
when compared against state-of-the-art data integration methods, where the datasets were
integrated and subsequently, a common trajectory was inferred on the merged dataset.
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The main limitation of DTW is that it can only compare two time-series at a time. Thus
current methods for comparing single-cell trajectories are restricted to linear trajectories.
Complex single-cell trajectories (e.g., branching, tree-like, etc.) are needed to characterize
many biological processes in development and differentiation and in response to perturba-
tions (Qiu et al., 2017). When dealing with complex trajectories, one must manually select
individual paths or lineages from both trajectories before applying DTW. In these cases, prior
information, such as a set of specific marker genes, would be necessary to pick the correct
or most relevant path to align, but this information is often unavailable. Another potential
caveat of DTW is that it ignores cells on alternative paths and could amplify the signal
used to infer the mapping between trajectories. Lastly, very recent work (Laidlaw et al.,
2022; Sumanaweera et al., 2023)has highlighted further limitations of DTW when aligning
trajectories containing unmatched regions due to its constraint to match every time-point in
one trajectory to at least one time-point in the other.

In our previous work (Do et al., 2019)), we introduced Trajan, a novel method to compare
and align complex scRNA-seq trajectories with multiple branch points diverting cells into
alternative fates (Figure . Trajan automatically identifies the correspondence between
biological processes in two trajectories and aligns all of them simultaneously, taking into
account their overlap. Since cells diverted into different fates share a common ancestry, they
cannot be treated as independent. Their independent pairwise alignment (using DTW) could
introduce inconsistencies concerning the mapping of common progenitor cells. Akin to the
extension of pairwise alignments to multiple sequence alignment, we seek the best alignment
between all corresponding pairs of paths that agree on common progenitor cells. To this
end, Trajan adopts arboreal matchings (Bocker et al., 2013) to capture globally consistent
similarities between trajectories.

In the following Sections, we demonstrate the accuracy of Trajan alignments through
extensive experimentation on simulated data. We also introduce TrajanR, an R package
designed to improve the standardization and pre-processing of Trajan’s input data and show-
case its utility on two separate real datasets.
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3.2 Preliminaries

In the following sections, we review the concept of DTW, the current approach to the align-
ment of linear trajectories, and how to generalize to the alignment of complex trajectories
using arboreal matchings. Arboreal matchings were introduced in the context of phyloge-
netic trees (Bocker et al. 2013) and set the theoretical basis for alignment of scRNA-seq
trajectories with Trajan. The review on DTW and generalization to arboreal matchings
has been adapted from our original publication (Do et al., [2019). We have summarized the
different implementations available in Trajan and refer the reader to our previous work for
additional information and mathematical proofs.

3.2.1 Dynamic time warping

Dynamic time warping (DTW) is the algorithmic workhorse underlying current alignment
methods used to compare linear single-cell RNA-seq trajectories (Alpert et al., [2018} Cac-
chiarelli et al., [2018). As in classical sequence alignment, DTW matches similar elements
in two sequences while preserving their order. However, since the main idea is to account
for the different speeds at which the two sequences advance, each element in one sequence
can be mapped to one or more elements in the other sequence, see Figure (left).

More formally, given two time-series:
(i)iz, (yj);,z:l (3.1)
and a distance or similarity measure between time-points:
d(zs,y;) =0, Va; € ()i, V5 € (yY5)7 (3.2)

We define a warping:

p=(p1,---,pL) (3.3)

as a sequence of index-pairs: py = (ng,my) € [1:n] x [1:m] for £ € [1: L], that satisfies the
following three conditions:

i Boundary: p1 = (1,1) and py, = (n,m).
ii Monotonicity: ny <ng <--- <npandm; <my <--- < my.
iii Step size: por1 — pe € {(1,0),(0,1),(1,1)} for £ € [1: L — 1].

Note that, as exemplified in Figure |3.1] an alignment that preserves the order between
two sequences, represented as matched edges between time-points, may not contain a pair
of crossing edges.
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Figure 3.1: An example of a warping (left) and an arboreal matching (right) between two time-
series. Figure reproduced from original publication (Do et al., 2019).

The goal of DTW is to find a warping p such that the total distance between mapped

elements is minimized:
L

Cp(x’ y) = Z d(xnw ymz)'

(=1

In classic DTW, the optimal warping can be computed by a dynamic program (DP) that
solves:

D(i,j) = d(z;,y;) + min{D(: — 1,j — 1), D(¢ — 1,5),D(4,j — 1)} (3.4)

There are various extensions of the classic DTW described above that can be mainly
classified as:

e Restricting the range of the mapping to a certain window (Laidlaw et al., 2022)
e Assigning different weights to different types of steps
e Using different step patterns (e.g. pr1 —pr € {(1,1),(1,2),(2,1)})

If not stated otherwise, throughout this Chapter we consider the classic DTW as the
default scheme (Zhao and Itti, |2018)), similar to previous publications (Alpert et al., 2018}
Cacchiarelli et al.; 2018; |Cannoodt et al., [2021)). Classic DT'W provides enough flexibility for
most single-cell alignment tasks, however, we note that DTW might not be robust under the
choice of these parameters. In Section [3.4.1, we used DTW with different step patterns to
compute alignments for the same dataset, and show that results vary substantially between
different schemes. Similarly, as discussed later, the choice of a penalty scheme for individual
cells during Trajan alignments will influence the overall results.

3.2.2 Arboreal matchings

We propose a generalization of DTW from time-series (i.e. linear trajectories or individual
paths) to rooted trees (i.e. non-linear or complex trajectories). Each lineage or path in tree
T} should be aligned to at most one lineage/path in 75, and vice versa, while preserving the
order of nodes along the paths. In addition, we require all alignments to be consistent, that
is, every node must be matched to the same node in all pairwise alignments it is part of.
Such notion of consistent path-by-path alignment of trees, was first introduced in |Bocker
et al.| (2013) and termed arboreal matching.
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More formally, given two rooted trees:
Ty = Vi, Er), To=(Va, Ey) (3.5)
and a distance or similarity measure between nodes in the trees:
d(u;,v;) >0, Vu; € V,Vu; € Vs, (3.6)
We define an arboreal matching:
M= (my,...,mp) (3.7)
as a one-to-one correspondence between nodes in trees T} and 75 such that:
ug is a descendant of u; <= wj is a descendant of vy, V(uy,vy1), (uz,ve) € M (3.8)

The task at hand is an optimization problem in which we want to find an arboreal match-
ing M that minimizes the cost in Equation [3.9] so that the total distance between mapped
elements is minimized (1st term), while flexibly penalizing those elements that remain un-
matched in M (2nd and 3rd terms):

(M= > dwv)+ Y dw—-)+ Y d=v), (39)
(u,'u)EM ueViy veVy
u unmatched v unmatched

where the cost or penalty scheme of leaving a node unmatched is:
e d(u,—) >0 for node u € V}
e d(—,v) >0 for node v € Vj,

In contrast to DTW, an arboreal matching M matches each node (time-point/cell) to at
most one similar node in the other tree (trajectory), allowing for nodes in each pair of trees
to be unmatched. In light of recent work (Laidlaw et al., 2022; Sumanaweera et al.| 2023)),
the flexibility to leave regions of the trajectory unmatched should be regarded as a strength
of our method, as it addresses a limitation of DTW, where mismatched regions between
trajectories are not properly handled.

An example arboreal matching between two simple paths is shown in Figure (right).
In this case, non-crossing edges match similar regions between the two time-series, while
compressed /stretched or distinct regions are represented by unmatched nodes. Note that,
when comparing time-series or simple paths (i.e. linear trajectories), arboreal matchings are
as flexible as DTW. In the methods and experiments of our original publication (Do et al.,
2019), we show that given an appropriate penalty for unmatched nodes, the optimal DTW
and the optimal arboreal matching produce comparable distance/similarity measures. In
Section we further demonstrate that when aligning linear trajectories DTW and Tra-
jan produce solutions of comparable accuracy based on a novel metric proposed in|Cannoodt
et al.| (2021), the ABWAP score.

In the following [Section] we summarize the different strategies available in Trajan for
computing arboreal matchings, including both exact/optimal and heuristic/sub-optimal so-
lutions.
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3.2.3 Computing arboreal matchings with Trajan

Trajan provides 2 main implementations for computing arboreal matchings:
e An efficient branch-and-cut algorithm
e An FPT algorithm for small number of cell fates

Although not explicitly implemented in Trajan, in the following we briefly describe
a naive ILP formulation for solving the minimum weight arboreal matching problem.

For a more in depth discussion of each implementation see the original publication (Do
et al., [2019). For further details on how to run Trajan, and an example workflow using
trajectories generated with Monocle2 (Qiu et all, [2017)), we refer the reader to Trajan’s
GitHub repository (https://github.com/canzarlab/Trajan).

Naive ILP formulation

As described in (Bocker et al., 2013), we aim to find a minimum weight arboreal matching
between two rooted trees Ty = (Vi, Ey), Ty = (V4, E»), i.e. an arboreal matching that min-
imizes the cost in Equation [3.9] In order to solve this minimization problem, we rephrase
it as a maximization problem (Equation E[), such that the cost of the optimal alignment
differs as much as possible from the cost of the worst possible alignment, where all cells
are unmatched. We formulate an ILP with constraints that explicitly forbid the two
possible types of ancestry violations (Z), see Figure .

Figure 3.2: Pair of crossing edges (blue) extended to a clique of crossing edges (left) and pair
of semi-independent edges (blue) extended to a clique of semi-independent edges (right). Figure
reproduced from original publication (Do et al., |2019).

Feasible arboreal matchings can not include:

i A pair of crossing edges, ensuring that the order of nodes in both trees is preserved
equivalently to DTW, Figure (left).

ii A pair of nodes on the same root-to-leaf path that match a pair of nodes on different
root-to-leaf paths, ensuring the consistenncy of the alignment, Figure (right).
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The first type of constraint is analogous to enforcing monoticity in DTW, while the second
type of constraint stems from the simultaneous comparison of multiple paths and prevents
arbitrary jumps between branched biological processes.

max Z‘Vl Z|V2 (i,7)xi (P)

Val .
5. t. ijl z; <1 Vi=1...|V (3.10)
i
ZL:J%J‘S 1 Vi=1...|Vs, (3.11)
T + Lk, S 1 V{(l7]), (kvl)} S I7 (312)
Tij S {O, 1}, (313)

where:
e 1, ,: indicator variables that denote the presence or absence of an edge (3, j)
e w(i,j)=d(i,—)+d(—,j) — d(i,j): weights associated with an edge (i, j)

Note that, additional constraints (3.10) and (3.11]) ensure that nodes in each respective tree
are selected at most once.

As demonstrated in our previous experiments (Do et al 2019), such a naive ILP formu-
lation does not allow for the practical alignment of trajectories consisting of as few as 100
cells. In Do et al| (2019), we presented a meticulously designed branch-and-cut algorithm
that enables the comparison of realistic complex single-cell trajectories. In the following
[Section] we outline the main ingredients of such implementation.

An efficient branch-and-cut algorithm

A branch-and-cut algorithm is a combinatorial optimization technique used to solve ILPs.
It typically entails executing a branch-and-bound algorithm and utilizing cutting planes to
refine LP-relaxations. Our branch-and-cut algorithm main ingredients are:

e Cuts that trim the LP-relaxation closer to the convex hull of feasible arboreal matchings
e Polynomial-time algorithms that can find these cuts on demand
e Several strategies to obtain integral solutions: optimal or sub-optimal

— An ezact branch-and-bound (bnb) scheme

— Multiple sub-optimal heuristic strategies

While the first step provides a tighter relaxation of the naive ILP formulation, the corre-
sponding solutions are still fractional in general. As outlined above, in order to obtain opti-
mal integral solutions Trajan implements an exact branch-and-bound scheme, whose worst
case exponential run-time can become computationally expensive for certain instances. For
that reason, Trajan also implements several heuristic strategies to find integral solutions.
These faster but approximate approaches address the need for tailored trade-offs between
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accuracy and speed imposed by different single-cell sequencing technologies, which assay a
variable number of genes in hundreds to millions of cells. Improvements provided by our
branch-and-cut scheme can be seen in Do et al.| (2019) run-time experiments.

An FPT algorithm for small number of cell fates

Finally, since the typical number of alternative fates in trajectories inferred by current TI
methods is not excessively high, we have also implemented a fixed-parameter tractable (FPT)
algorithm parametrized by k: the total number of cell fates or lineages in the trajectories.
Typically, FPT algorithms are exponential in the size of a fixed parameter (e.g. number of
cell fates) but polynomial in the size of the input (e.g. number of cells). This means that
the problem can be solved efficiently for small values of the fixed parameter, and in our case,
that there is an efficient algorithm for solving arboreal matchings for trajectories with small
number of cell lineages. In brief, the FPT algorithm guesses the correspondence between
paths in the two trajectories and applies a dynamic program similar to [Zhang and Shasha
(2006)) to align them optimally. The total run-time is O(n*m?k!), where k is the smaller
number of leaves among the two trees comprising n and m nodes, respectively.
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3.3 Methods

In the following Section, we provide an overview of our method for the alignment of complex
scRNA-seq trajectories, Trajan. Next, we describe TrajanR, our accompanying R software
package to Trajan, and one of the main contributions to this Chapter. Finally, we describe
how the scRNA-seq data used in our experiments was simulated using the state-of-the-art
simulator, dyngen (Cannoodt et al., 2021), as well as the definition of various metrics used
to evaluate accuracy.

3.3.1 Overview of the method

Expression

00000000000
Aligned Pseudo-time

Figure 3.3: Trajan workflow. From complex scRNA-seq trajectory inference to alignment of pseudo-
time scales into a common system of reference. Figure reproduced from original publication (Do
et al., 2019).

The main workflow of our novel trajectory alignment tool Trajan is outlined in Figure [3.3]
First, a pair of complex trajectories needs to be reconstructed from scRNA-seq data using
any of the existing TT methods (Saelens et al.; |[2019). After adequate pre-processing of the
inferred trajectories, which typically involves the selection and smoothing of highly-variable
gene expression profiles, we need to transform the data into a format suitable for Trajan. The
following files need to be provided for each trajectory (input/output formats are described
in more detail in Trajan’s GitHub repository):

e Edge set: t{i}.tree
e Map: t{i}.map

Additionally, a distance matriz between all pairs of cells needs to be provided, with an extra
row and column that assigns a penalty to the corresponding cell in each trajectory.

e Distance matrix: distance_matrix.csv

For further details on the installation of Trajan, documentation and an example workflow
based on Monocle2 generated trajectories, we refer the reader to Trajan’s GitHub repository
(https://github.com/canzarlab/Trajan).
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Once all the necessary files are provided, Trajan solves a minimum weight arboreal match-
ing problem (see Section by computing an optimal or approrimate alignment between
trajectories, based on the user needs, by running any of the available implementations. For
simplicity, in Figure [3.3] only the alignment between a pair of paths or lineages is shown,
but note that Trajan finds a consistent alignment between all paths in both trajectories.
Trajan’s output consists of the actual alignment between cells in both trajectories, and the
cost associated to the alignment solution as defined in Equation [3.9] Using matched cells
as anchors, individual pseudotimes scales are set into a common system of reference along
which expression kinetics are directly comparable. Moreover, the cost associated with the
alignment defines a notion of distance/similarity between trajectories (see Section .
As described in Section [3.2.3] Trajan implements multiple strategies to compute arboreal
matchings between any pair of scRNA-seq trajectories. An exact FPT algorithm that returns
solutions at a significantly reduced computational cost for trajectories with small number of
cell fates. An efficient branch-and-cut algorithm with an optimal branch-and-bound scheme
or alternatively several heuristic strategies that return sub-optimal but faster solutions.

In the next [Section] we introduce our TrajanR package, whose integration with dynverse
enables the inference of trajectories using any of the available TT methods and facilitates the
pre-processing, standardization, alignment and visualization of data.

3.3.2 TrajanR: integration with dynverse

In recent work, the authors of Saelens et al.| (2019) introduced the dynverse framework,
where more than 50 trajectory inferece (TI) methods were wrapped into a common abstrac-
tion model. TrajanR builds upon this work by integrating Trajan with dynverse, providing
all functions essential to process output data obtained from any TI method available in
dynverse into input suitable for Trajan. Moreover, we provide an object-oriented framework
that simplifies the computation of trajectory alignments with Trajan. This becomes specially
useful when computing multiple alignments under slightly different parameter schemes, or
using multiple TT methods, enabling and facilitating more complex experimentation. Tra-
janR also provides multiple visualization options for trajectories, trajectory alignments, and
gene expression dynamics. For further details on the installation of TrajanR and use-
case workflows based on test data, we refer the reader to TrajanR’s GitHub repository
(https://github.com/pablommesas/trajanR).

In brief, TrajanR builds on top of the trajectory abstraction model proposed in dyn-
verse (Saelens et all, 2019)), see Figure [3.4] which offers a common multi-layered framework
for describing scRNA-seq trajectories:

e Topology: overall structure of the trajectory described by a network of milestones.
e Branch assignment: association between cells and edges in the milestone network.

e Cell positions: describe specific order of cells within each associated branch in the
milestone network.

The abstraction model is sufficiently general that the output of most TI methods can be
easily represented in this format, which, after suitable pre-processing, will serve as Trajan’s
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Figure 3.4: Trajectory Model Abstraction. Figure reproduced with permission from Springer Na-
ture (Saelens et al., [2019).

input. In fact, Trajan is somewhat more restrictive than the original model in terms of the
types of structures that are permitted. Thus, TrajanR is limited to the analysis of tree-like
topologies (i.e. topologies with cycles are not allowed) and cells must be uniquely associated
with one branch (i.e. delayed commitment regions are not allowed).

Initially, preparing input data for Trajan required the manual pre-processing of each TI
method-specific output. In our original publication (Do et all [2019), inspired by previous
work (Alpert et all 2018} (Cacchiarelli et al. |2018)), we created example scripts to adapt the
output of Monocle 2 (Qiu et al| [2017) into a format suitable for Trajan. With the intro-
duction of TrajanR, the pre-processing of data from any TI method has been standardized
through the use of dynverse’s common abstraction model. Starting from a single or multiple
dyno objects containing pre-computed scRNA-seq trajectories, a Trajan object, the main
data structure in TrajanR, can be easily initialized. Then, various built-in methods defined
for the Trajan object ease the application of individual subsequent computational steps: ex-
port data, run alignment, visualization, etc. Moreover, this modular framework facilitated
the implementation of multiple parameter schemes in TrajanR, enabling the study of the ro-
bustness of Trajan alignments. The most important parameter, the cell representation, has a
huge influence on the results and refers to what “cells” actually represent in the abstraction
model. The motivation behind the cell representation parameter is similar to the “trajectory
alignment” use-case in (Cannoodt et al.| (2021), where the authors evaluated the impact of
interpolating data when aligning linear trajectories, by comparing classic DTW (Vintsyukl,
1968) to cellAlign (Alpert et all 2018). It can take two possible values:

e Raw cells (r) represent cells as present in the original scRNA-seq count/expression
matrices.

e Smoothed cells (s) represent a, typically, smaller set of interpolated cells constructed
by smoothing the gene expression profiles of raw cells.

Smoothing helps de-noising single cell measurements (Alpert et al., 2018) and, potentially,
scaling computation in downstream analysis for very large number of cells. As demonstrated
by our metric conformity analysis (see Section , these should be considered as comple-
mentary views of the data, as each mode captures different aspects of the biological process
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under investigation.

Other parameters that need to be defined in the alignments, relate to more technical aspects
(i.e. distance metric) or directly to the optimization process (i.e. penalty scheme), and have
important but milder effects on the results. In practice, any distance metric can be used to
compute cell-to-cell dissimilarity, which is summarized into a distance matrix for Trajan to
use. In our metric conformity analysis, we explored both the Euclidean metric (eucl) and the
Pearson correlation (pear). Similarly, any penalty scheme can be used that defines the cost
of leaving cells unmatched in the alignment. In our metric conformity analysis, we explored
two such penalty schemes: the average (avg) and the maximun (maz) scheme, where the
cost of leaving a particular cell unmatched is defined by the average and maximun distance,
respectively, from that cell to every other cell.

In Section [3.4.3, we showcase how Trajan’s integration with dynverse can ease and help
with the analysis and visualization of complex scRNA-seq trajectories, by examining two
separate real datasets.

3.3.3 Experiments using simulated data with Dyngen

In order to simulate data for our experiments, we used dyngen (Cannoodt et al. [2021)), a
recent simulation engine capable of generating scRNA-seq data based on pre-defined network
topologies or backbones. Dyngen generates scRNA-seq gene expression matrices, based on
a given backbone type (e.g. linear, bifurcating, etc.), meant to represent different dynamic
biological processes at the single-cell level. In Section |3.4] we perform 3 separate experi-
ments based on simulated data with dyngen. We have simulated two independent datasets,
containing linear and complex trajectories, respectively, and a third dataset obtained by
perturbing the dataset with complex trajectories. Thus, each dataset contains trajecto-
ries of different characteristics, that will be used to quantify different aspects of Trajan’s
alignments.

Similar to the “trajectory alignment” use-case presented in (Cannoodt et al. (2021), our
first dataset includes a total of 40 pairs of linear trajectories simulated using 4 slightly differ-
ent linear backbones (10 pairs for each backbone type). Each trajectory pair is characterized
by sharing a common gene regulatory network (GRN), but generated using different kinetics
resulting in two “sub-datasets” describing a similar but non-identical dynamical process.

Our second simulated dataset includes a total of 40 pairs of complex trajectories, based
on a binary tree backbone model with increasing levels of complexity (10 pairs for each
complexity level). Complexity levels are determined by the number of branching events
present in the trajectory (num_modifications), with bifurcating trajectories being the sim-
plest (num_modifications=1) and binary trees with five alternative outcomes being the most
complex ones (num_modifications=4), see Figure . The simulation process is identical to
that of linear trajectories outlined above, resulting in two instances of a similar but non-
identical dynamical process.

In both datasets, we will use the the Area Between Worst And Prediction (ABWAP)
metric to assess the accuracy of our alignments, a novel metric described in (Cannoodt et al.
(2021)). First, before computing the ABWAP scores, the respective pseudotimes in each
trajectory need to be re-scaled between 0 and 1. As previously described, a trajectory
alignment induces a matching between trajectories ()i, (y;)7L, represented as a sequence
of index pairs M = (py,...,pr) with p; = (n,my) € [1 : n] x [1 : m] for £ € [1 : L],
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Figure 3.5: Example representations for trajectories included in the complex trajectories
dataset. Depicted are the different binary tree backbones with increasing levels of complexity
(num_modifications).

see Figure (left) for a visual representation of two example matchings. Note that, the
pseudotimes ptq, pts associated with each index pair are by construction ordered in ascending
order. The ABWAP metric is defined as:

ABWAP (M, pty, pta) = 1 — Area_under_curve (pt1[1, ..., L], pto[1, ..., L]) (3.14)

In Figure [3.6] (right), we illustrate the intuition behind this metric.
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Figure 3.6: Area Between Worst And Prediction (ABWAP) metric for linear scRNA-seq trajec-
tories. (left) Ground-truth alignment according to the trajectories respective pseudotimes and
predicted alignment using DTW. (right) Evaluation of the ABWAP score for the predicted align-
ment, which is equal to the area between the path generated by our prediction and the path
corresponding to the worst possible matching of pseudotimes. The largest the difference, the closer
we get to the best possible prediction with ABWAP=1, where matched pseudotimes are identical
for every pair of aligned cells. Figure adapted from (Cannoodt et al., [2021)) licensed under CC BY
4.0.
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Our third simulated dataset, used in the sub-sampling experiment in Section |3.4.1] is
actually a perturbed version of the second dataset containing complex trajectories. It also
includes a total of 40 pairs of tree-like trajectories with different levels of complexity. To
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generate it, we picked the first trajectory in each trajectory pair and randomly sub-sampled
it twice to get a new pair of trajectories, discarding both trajectories in the original pair.

Given the natural correspondence between cells in a pair of sub-sampled trajectories, we
can evaluate alignments based on the number of true positives (TP), false positives (FP)
and false negatives (FN) matchings, and their associated precision and recall. In brief, the
problem we are interested in can be reduced to evaluating the consistency between two sets:
the ground-truth matchings (P) and the predicted (M) matchings. The set P is defined
by matching identical cells present in both trajectories and leaving cells unique to each
trajectory unmatched, whereas the set M is defined by a Trajan alignment solution. Given
M and P, we define the following sub-sets:

TP=PNM
FP=M\P (3.15)
FN =P\ M

Note that, the TNs set is not relevant in our context since it describes all possible cell match-
ings not present in the ground-truth, which is huge and very little informative. Moreover,
given the absolute numbers of TPs, FPs and FNs we define:

TP

TP+ FP
TP

TP+ FN

Precision:

(3.16)
Recall:

Precision and recall, describe rates rather than absolute numbers, which helps to eliminate
the confounding effect of having different set sizes.
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3.4 Results

3.4.1 From paths to trees: DTW vs arboreal matchings

In our original publication (Do et al., 2019), we illustrated through experimentation that, for
linear trajectories, optimal solutions computed using DTW are identical to those obtained
by Trajan given an adequate penalty scheme. In the following Section, we complement our
previous results by showing that alignments of simulated linear trajectories using classic
DTW, cellAlign or Trajan, yield comparable scores based on the novel metric introduced
in (Cannoodt et al.| (2021): the Area Between Worst And Prediction (ABWAP). Moreover,
we demonstrate that the choice of a given step pattern has a big influence on the final
DTW alignment solution. Next, we aim to demonstrate that for compler trajectories, Tra-
jan alignments based on arboreal matchings, that try to simultaneously and consistently
align all paths in both trajectories, provide and improvement in ABWAP scores with re-
spect to multiple pair-wise alignments between individual lineages, where information from
alternative paths is ignored, as in DTW. Finally, analogously to |Do et al.| (2019), where we
demonstrated Trajan’s accuracy through a series of sub-sampling experiments on real data,
we complement our previous perturbation experiment with a similar experiment based on
simulated data with dyngen. The goal here is twofold: to further assess Trajan’s accuracy
using precision and recall measures, and to see if we can detect an improvement in accuracy
by using full-graph information during alignment, to multiple pair-wise alignments between
individual lineages.

Linear trajectories comparison to DTW

We begin by analyzing a simulated dataset containing a total of 40 pairs of linear trajecto-
ries, see Section for details on the data generation and metric definition. We align each
pair of trajectories using classic DTW, cellAlign and Trajan, and evaluate the corresponding
alignments based on the ABWAP metric. Here, classic DTW and cellAlign, were run with
default parameters using Euclidean distance and ’symmetric2’ step pattern, whereas for Tra-
jan alignments we used the raw cells representation, average penalty scheme and Euclidean
distance parameter combination.

In Figure 3.7 we recapitulate the results obtained for classic DTW and cellAlign in
the original publication (Cannoodt et al., 2021)), and demonstrate that Trajan results are
comparable to those obtained by cellAlign. We should point out that, in general, special care
should be taken when comparing ABWAP scores between warpings (the output of DTW and
cellAlign) and matchings (the output of Trajan). In contrast to warpings, where every cell
must be matched to at least one other cell, in warpings we can leave cells unmatched, which
could result in sparse alignments with very few cells matched but very high ABWAP scores
in extreme cases. In practice, such behavior is not observed in any of our datasets.

Next, we assessed the influence of different DTW step patterns and Trajan alternative
distance and penalty parameter combinations in the resulting alignments, see Figure [3.8
Results demonstrate a big influence on the parameters used, which is likely due to the
simulated data characteristics. Both trajectories represent very similar dynamical processes,
with the same number of cells, and based on the definition of ABWAP, trivial matchings
where each cell is matched to the corresponding cell in increasing order tend to have very
high ABWAP scores. Thus, DTW step patterns that favor oblique steps (e.g. symmetricl),
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Figure 3.7: Comparison of trajectory alignment methods classic DTW, cellAlign and Trajan using
ABWAP scores for dataset of 40 linear trajectories generated with dynverse.
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Figure 3.8: Influence of step pattern, metric and penalty scheme on trajectory alignment. Com-
parison of trajectory alignment methods using ABWAP scores for dataset containing 40 pairs of
linear trajectories generated with dynverse. (top) DTW and cellAlign ABWAP scores for different
step patterns: asymmetric, rabinerJuang, symmetricl and symmetric2. (bottom) Trajan AB-
WAP scores for different metrics: euclidean and pearson correlation; and penalty schemes: max
and avg. ABWAP scores in our dataset are not robust to the choice of step pattern, metric or
penalty scheme.

and similarly, Trajan penalty schemes for which leaving nodes unmatched becomes quite
costly (e.g. max), tend to favor such trivial matchings and lead to ABWAP scores close to
1.
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Binary tree trajectories: Graph vs Path

In this Section, we extend the previous “trajectory alignment” use-case to the study of com-
plex trajectories. We simulated a total of 40 pairs of complex trajectories with different levels
of complexity (num_modifications=1,2,3,4), determined by the number of branching events
present in the trajectory, see Section for details on the data generation. As depicted in
Figure 3.9, by focusing on Trajan alignments alone, we compare the quality of alignments
obtained using full-graphs as input (i.e. simultaneously and consistently aligning all paths in
both trajectories) to pair-wise alignments between individual paths determined by lineages
in each trajectory (i.e. completely ignoring information from alternative lineages). In order
to make both schemes comparable based on ABWAP scores, we “linearize” full-graph align-
ments into individual lineage alignments. The goal is to demonstrate the potential benefit of
pooling information from different lineages during the alignment of full-graphs. Note that, in
the second case, the correct matching between lineages is provided by construction, whereas
in the first case it is inferred from the data alone, which is one of the key strengths of our

method.
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Figure 3.9: Schematic representation of the two different alignment schemes under investigation:
full-graph alignments (t vs t’) and pair-wise alignments between individual paths (p; vs p’;).

In Figure [3.10, we show ABWAP scores associated with Trajan alignments using the
raw cells representation, average penalty scheme and Euclidean distance parameter com-
bination. We have stratified trajectories by complexity-level and compared corresponding
alignments at the lineage-level between both schemes: full-graph (red) and path-wise
(green and blue) alignments. Note that, for path-wise alignments we considered two differ-
ent approaches: own and fix penalty. First, we implemented a naive approach (own penalty)
where linear trajectories associated to each lineage are extracted from corresponding trees
prior to alignment, and given directly to Trajan as input. In this scenario, cell penalties
used in the alignment will be calculated based only on cells present in that specific lineage,
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meaning that the same cell might have different penalties in different lineages/alignments.
Thus, results from such an approach will be confounded by cell penalties, since cell penalties
will be lineage/alignment-specific, hindering the comparison we are interested in, meaning
that we will not know if the observed differences originate from Trajan successfully pooling
information across lineages or simply due to a different penalty scheme. For that reason, we
implemented a second strategy (fix penalty) where we fix the penalty of each cell to that used
in the full-graph alignment. In this scenario, cell penalties are calculated based on all cells in
the trajectory, ensuring that differences in results originate from topology alone. Comparing
both the own (green) and fix (blue) penalty schemes, we note that indeed using different
cell penalties has a measurable effect on the alignments, although is there is no superior
approach. On the other hand, comparing full-graph (red) alignments to alignments using
either of the path-wise (green and blue) approaches, demonstrate the superior accuracy of
the full-graph approach in every complexity level and almost every lineage. Thus, our results
suggest that pooling of information across alternative paths, indeed increases the accuracy
of the alignments.
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Figure 3.10: Comparison of full-graph and multiple path-wise Trajan’s alignments based on AB-
WAP scores for dataset with 40 complex trajectories generated with dynverse. Trajan alignments
were based on: raw cells representation, avg penalty scheme and Euclidean distance parameter
combination. Trajectories are stratified by complexity-level (num_modifications=1,2,3,4) and each
trajectory is further split into individual lineages (1,2,3,4,5) for comparison purposes. Shown are
ABWAP scores associated to each linear alignment computed under 3 different schemes: full-graph
(red) and path-wise (green and blue) alignments.

In Supplemental Figure[SI0, we show equivalent ABWAP scores for other Trajan schemes.

Sub-sampling Experiment: precision and recall

In our third experiment using dyngen simulated data, we perform a perturbation experi-
ment re-using the data from our previous Section, see Section for details on the data
generation. We picked the first trajectory in each trajectory pair and randomly sub-sample
it twice to get a new pair of trajectories, discarding both trajectories in the original pair.
We perform this procedure at different sub-sampling levels (i.e. 90%, 80%, 70% and 20%
of cells). As in our previous experiments, we use Trajan to compute alignments for these
new dataset of perturbed trajectories and evaluate their accuracy. However, since in our
sub-sampled dataset there is a natural correspondence between cells in both trajectories,
instead of using ABWAP scores, we can evaluate the alignments based on the more intuitive
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number of true positives (TP), false positives (FP) and false negatives (FN) matchings, and
their associated precision and recall. Moreover, since we are still interested in assessing the
potential influence of pooling information across alternative paths, we compute alignments
using full-graphs (red), with subsequent linearization, and compare them to corresponding
multiple pair-wise alignments between individual lineages, using either own penalty (green)
or fix penalty (blue) approaches as described above.
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Figure 3.11: Sub-sampling experiment evaluating Trajan alignments by precision and recall scores
in 40 complex trajectories generated with dynverse and perturbed at different levels. Sub-sampling
of 80% of cells (top) and Sub-sampling of 20% of cells (bottom). Trajan alignments were based
on: raw cells representation, avg penalty scheme and Euclidean distance parameter combination.
Trajectories are stratified by complexity-level (num_modifications=1,2,3,4) and each trajectory is
further split into individual lineages (1,2,3,4,5) for comparison purposes. Shown are precision and
recall associated to each linear alignment computed under 3 different schemes: full-graph (red) and
path-wise (green and blue) alignments.

In Figure [3.11] (top), we show the precision and recall scores obtained for the 80% sub-
sampling experiment. Median precision values are very high, above 0.9 in all complexity
levels, lineages and schemes, indicating low amount of FP’s (Supplementary Figure, and
demonstrating no benefit in the use of full-graph alignments. Similarly, recall values are even
higher, very close or identical to one in all complexity levels, lineages and schemes, meaning
that there are almost no FN’s (Supplementary Figure . Sub-sampling experiments of
70% and 90% of cells were also considered (not shown), and lead to similar results. In order
to investigate the alignments behaviour in a more extreme case and assess the effect that
the number of cells has in these metrics, we considered the sub-sampling of only 20% of
cells and show results in Figure (bottom). Since a smaller percentage of cells were
sampled, the precision falls significantly due to the smaller overlap between cells in both
trajectories, leading to an increase in the number of FP’s predictions. This is to be expected,
since matching between neighboring cells that are similar but not identical should not be
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significantly penalized. Notably, the persistent extremely high recall means that there are
still very low number of FNs, which implies that if a cell is present in both trajectories
Trajan will almost never make the wrong match. All these results together, demonstrate the
overall high accuracy of Trajan alignments. On the other hand, they also suggests that the
task at hand might be too simple and show no benefit in the full-graph approach. Matching
identical cells will contribute no cost at all, whereas matching close but non-identical cells
will increase the cost slightly, with very little room for full-graph alignments to improve the
solutions.

3.4.2 Metric conformity

In order to complement our previous results on the accuracy of Trajan, in the following Sec-
tion we carry out a full metric conformity analysis equivalent to the one presented in Saelens
et al| (2019), and demonstrate that Trajan’s objective value can be used as an accurate
metric to compare any pair of scRNA-seq trajectories. In other words, we show that Trajan
can be used as an integrative measure of similarity /dissimilarity between pairs of scRNA-seq
trajectories, successfully capturing their most relevant biological aspects, and opening the
door to many different types of analysis.

As previously described, see Section Trajan’s output does not only include the ac-
tual matching/alignment between a given trajectory pair, but also provides a cost associated
with the alignment solution. As first introduced in [Bocker et al.| (2013)), the cost associated
with an optimal alignment between any pair of trajectories is a quantitative measure that
can be used to define a notion of similarity/dissimilarity between them, the higher the cost
the more dissimilar the trajectories. Motivated by the need to evaluate the accuracy of
trajectories inferred with different TT methods, a metric conformity analysis was developed
in the landmark TT benchmark (Saelens et al., 2019) to assess the suitability of different
metrics, based on a set of rules that should be fulfilled by a good or “faithfull” (Agrawal
et al., 2021)) similarity/distance measure. The main idea is to perturb a trajectory at mul-
tiple levels, in order to evaluate how these changes are reflected by the distance measure
when comparing perturbed and unperturbed versions of the same trajectory, and whether
these changes conform to our expectations based on a set of pre-defined rules for each type
of perturbation. A robust metric should detect certain changes and be unaffected by others,
consequently, conformity will be defined differently in each rule. For example, shuffling the
position of cells with-in each branch of a trajectory for an increasing percentage of cells,
and comparing these to the unperturbed trajectory, intuitively, should lead to increasing
distances between trajectories (or decreasing similarity scores, defined between 0 and 1, with
1 representing identical trajectories). In our metric conformity analysis, we used a subset
of the rules in the original study (Saelens et al. 2019) because some of them could not
be accommodated into our framework. One additional rule was included to measure the
impact of the trajectory’s root, which was not considered in the original publication, since
all previous metrics ignored this information. Rules marked with "*" denote perturbations
where neither the ordering of cells nor their gene expressions have been altered, for which
we have deviated from the authors original definitions and modified the meaning of “con-
formity”. Based on the assumption that there is no absolute measure of pseudotime, which
motivates the whole idea of pseudotime alignment, cell sequences should be allowed to be
locally stretched and compressed to match one another. Thus, as long as cell orderings are
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not modified, we suggest that such perturbations should leave the metric unaffected. Lastly,
in our metric conformity analysis, datasets with very small number (n = 10, 20) of cells were
discarded because after being perturbed resulted in artifacts.

Based on the framework provided in Saelens et al. (2019)), we simulated all necessary trajec-
tories using the dyntoy package.

The final set of rules included in our analysis are the following:

1.

10.

11.

12.

13.

14.

15.

Same score on identity: The score should be approximately the same when com-
paring the trajectory to itself.

. Local cell shuffling: Shuffling the positions of cells within each edge should lower the

score. This is equivalent to changing the cellular position locally.

. Edge shuffling: Shuffling the edges in the milestone network should lower the score.

This is equivalent to changing the cellular positions only globally.

Local and global cell shuffling: Shuffling the positions of cells should lower the
score. This is equivalent to changing the cellular position both locally and globally.

. Changing positions locally and/or globally: Changing the cellular position locally

AND globally should lower the score more than any of the two individually.

. Cell filtering: Removing cells from the trajectory should lower the score.

. Move cells to start milestone: Moving the cells closer to their start milestone

should lower the score. Note that, cells were moved closer to the start milestone using

_ warp magnitude
percentage,,,, = percentage .

. Move cells to closest milestone*: Moving the cells closer to their nearest milestone

without altering cell order should leave the score unaffected.

. Length shuffling*: Shuffling the lengths of the edges of the milestone network without

altering cell order should leave the score unaffected.

Cells into small subedges: Moving some cells into short subedges should lower the
score.

Bifurcation merging: Merging the two branches after a bifurcation point should
lower the score.

Bifurcation merging and changing cell positions: Merging the two branches of
a bifurcation and changing the cells positions should lower the score more than any of
the two individually.

Bifurcation concatentation: Concatenating one branch of a bifurcation to the other
bifurcation branch should lower the score.

Linear splitting: Splitting a linear trajectory into a bifurcation should lower the
score.

Change of topology: Changing the topology of the trajectory should lower the score.
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16. Cells on milestones vs edges: A score should behave similarly both when cells are
located on the milestones (as is the case in real datasets) or on the edges between
milestones (as is the case in synthetic datasets).

17. Change root node: Changing the root node defines a different trajectory and should
lower the score.

For more details on formal conformity definitions and intuitive visualizations of the types
of perturbations associated to each rule, we refer the reader to the Supplementary Material
in Saelens et al.| (2019).

1. Same score on identity
2. Local cell shuffling

3. Edge shuffling

4. Local and global cell
shuffling

5. Changing positions locally
and/or globally

6. Cell filtering

7. Move cells to start
milestone

8. Move cells to closest
milestone

HEEN .
Bl Fails

9. Length shuffling
10. Cells into small subedges

11. Bifurcation merging

12. Bifurcation merging and
changing cell positions

13. Bifurcation concatentation
14. Linear splitting

15. Change of topology

16. Cells on milestones vs
edges

17. Change root node . . . .

Figure 3.12: Overview Metric Conformity
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Our results are summarized in Figure In total 17 rules (rows) were evaluated using
12 different metrics (columns). The color scheme depicts whether the metric captures (blue)
the expected behavior of a given rule, or fails to capture it (red). The first 4 columns
represent the metrics used in Saelens et al.| (2019)), which look at individual aspects of the
trajectory separately, the rest of columns represent multiple runs of Trajan using different
parameter scheme combinations (see Section . One of the main advantadges of Trajan
with respect to the other metrics is that it integrates multiple aspects, topology, cell ordering
and gene expression, into a single measure.

As previously described (see Section , the cell representation parameter defines the
two possible representations of what is meant by “cells” in the abstraction model. As shown
in the choice of cell representation has a big influence on the results. It can take one of
two different values: raw cells (R), where cells in the original scRNA-seq count/expression
matrices are used directly, or smooth cells (S), where a set of interpolated cells are constructed
by smoothing the gene expression profiles of raw cells. The other parameters, distance metric
used to compute the cell-to-cell dissimilarity and the penalty scheme describing the cost of
leaving cells unmatched during the optimization process, are still important but have milder
effect on the results. In our metric conformity analysis we explored the following parameter
combinations (n=23=8):

e Cell representation:

— Raw cells (R)
— Smooth cells (S)

e Distance metric:

— Euclidean metric (eucl)

— Pearson correlation (pear)
e Penalty scheme:

— Average (avg)

— Maximun (max)

Our results recapitulate those obtained by Saelens et al.[(2019) for metrics: corry;s, HIM,
WCOT features ANA Flpranenes, where each separate metric aims to capture different aspects of the
trajectory (e.g. topology, gene expression, etc.). The correlation between geodesic distances
(corrgs), builds on the idea that if the position of a cell is the same in both trajectories, its
relative distances to all other cells in the trajectory should also be the same, and computes
a correlation between geodesic distances from the two trajectories. The Wcor feqrures, ranks
genes according to their importance in predicting the positions of cells in the trajectory
and compares the two rankings by calculating their pearson correlation. The HIM metric
(Hamming-Ipsen-Mikhailov distance) assesses the similarity in the topology between two
trajectories, regardless of where the cells were positioned. Fly,.qnenes assesses whether cells
are clustered similarly in both trajectories, first by mapping each cell to its closest branch
and evaluate the consistency between clusters based on the Jaccard similarity. For Trajan,
our results demonstrate that we are capable of integrating all those different aspects into a
single measure and conform to all those rules that we would expect to. Note that, for Trajan
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schemes based on raw cells, first four columns after dashed line in Figure [3.12 our distance
metrics successfully conform to Rules 8 and 9, where the perturbation has not altered cell
ordering. On the other hand, Trajan schemes based on smooth cells will be indirectly in-
fluenced by these perturbations during the interpolation process, giving rise to differences
in smoothed gene expression profiles that are successfully detected. This emphasizes the
complementary view of both cell representations, depending on the context, we may want
to highlight or just ignore these changes. Note that, because the smoothing process is very
sensitive to global changes, additional local changes (see Rule 5: ”Changing positions lo-
cally and/or globally) do not have much influence, specially when coupled with max penalty
scheme. Potential issues related to smoothing, and how much influence should cells have
in their local neighborhood, are flexibly controlled through a kernel size parameter. Also
noteworthy is that, for most smooth cells schemes, grouping cells into milestones will have an
impact (see Rule 16: “Cells on milestones vs edges”). This challenges the grouping of cells
into milestones, as is done in reference trajectories for real datasets in |Saelens et al. (2019),
which is an obvious limitation when no ground-truth is available. Interestingly, this did not
affect raw cells because the way cells were collapsed into the milestones did not affect cell
ordering. Finally, Rule 17: “Change root node”, which measures the influence of the rooting
and directionality of the trajectory and is of crucial biological interest, is not captured by
any of the previously defined metrics but is captured by every Trajan scheme.

In summary, these results demonstrate that Trajan can be used as a measure or notion of
similarity /dissimilarity between trajectories, providing a framework for comparing complex
trajectories and opening the door to many different types of analysis. For example, given a
ground-truth trajectory, Trajan could be used to compare trajectories inferred by different
TT methods against the reference to assess individual method performance. Alternatively,
when no ground-truth is present, one could use Trajan to compare trajectories inferred
with different TT methods to each other, to assess similarity and consistency between them.
In Section [3.4.3] we investigate two separate real datasets and showcase how our TrajanR
package facilitates both of these types of analyses.

3.4.3 Experiments: Real Data

In our original publication (Do et al., 2019), we demonstrated Trajan’s utility by analyzing
several real-world datasets. In particular, we re-analyzed two public single-cell datasets (Cac-
chiarelli et al.; 2018|) characterizing two related dynamic biological processes, where complex
trajectories had been previously described: a human skeletal muscle myoblast (HSMM) dif-
ferentiation dataset and a dataset containing human fibroblasts undergoing MY OD-mediated
myogenic reprogramming (hFib-MyoD) We showed that Trajan was capable of recovering
the key biological findings in [Cacchiarelli et al.| (2018)), without the need to manually select
core-paths from each trajectory prior to alignment, as required by DTW. Since our initial
publication, another method called CAPITAL (Sugihara et al., [2022) has been published
that finds correspondence between paths in both trajectories using cluster-level information,
before computing an alignment between a selected pair of paths at the cell-level using DTW.
In this Section, we aim to showcase the benefits of TrajanR’s integration with dynverse in
the analysis of complex scRNA-seq trajectories using two additional real-world datasets. In
the first dataset (Treutlein et al.| 2016), we re-analyze the direct reprogramming of mouse
embryonic fibroblast (MEF) to induced neuronal cells (iN). Our aim is to show how, given a
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single dataset, multiple TI methods can be used to infer trajectories characterizing the same
biological process, and how Trajan can be used to compare these trajectories quantitatively
to improve our understanding of the underlying process as characterized by the individual
TT methods. In the second dataset (Klaus et al., 2019)), we compare the differentiation from
neural progenitor cells (NPC) to mature neurons in control individuals and patients with
neuronal heterotopia, derived and sequenced using two different experimental protocols, 3D
organoids (Smart-seq2) and 2D cultures (10x Genomics). Our goal is to show how, given
a pair of datasets from related biological processes obtained under different conditions, or
even sequenced using different protocols, Trajan alignments can act as an alternative to data
integration methods, allowing direct comparison of trajectories inferred separately to better
understand similarities/differences between these inferred processes. Moreover, by leverag-
ing our TrajanR package, we demonstrate the importance of complementary analysis using
different TI methods and different Trajan parameter combinations.

Direct reprogramming from fibroblast to neurons

The first dataset under consideration, [Treutlein et al.| (2016)), is one of the real datasets
included in the dynbenchmark package (Saelens et al., 2019), where it was used to evaluate
different trajectory inference (TI) methods against a reference or ground-truth trajectory
provided by the package’s authors. The issue with such reference trajectories derived from
real datasets is that, unlike simulated data where all necessary information is known, knowl-
edge about the process under investigation is limited. If we knew how to identify exact
trajectories from scRNA-seq data alone, we would not need TI methods in the first place,
and, in general, additional sources of information are needed to guide the reference con-
struction but may not always be available. For that reason, the authors did not aim to
create exact references, but rather construct approximate trajectories that are biologically
relevant, and complemented their analysis with extensive evaluation on simulated data. In
dynbenchmark, real datasets were labeled as "gold standard’ if their reference trajectory was
obtained independently of gene expression, such as using cell sorting information, and as
"silver standard’ otherwise, where the reference trajectory was typically obtained by cluster-
ing gene expression values. For the [Treutlein et al.| (2016) dataset, the reference trajectory
was constructed based on the cluster annotations provided by the authors of the original
publication and it was classified as silver standard. Independently of whether silver or gold
standard, cells in reference trajectories from both types of real datasets are grouped into dis-
crete milestone, see Figure |3.14] with no attempt to further infer the relative order of cells
or their pseudotimes. Consequently, reference trajectories provided by dynverse define very
“coarse” representations and do not have the same level of resolution as trajectories obtained
by TT methods. However, a few interesting points can be made by leveraging dynverse to
compute multiple trajectories with different TT methods for single dataset and using Tra-
janR to compute corresponding alignments, not only against the reference but also between
trajectories obtained for each method.
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It has previously been pointed out that there is no ’one-size-fits-all’ method that works
well on every dataset (Saelens et al 2019; Todorov et al., [2020)). As a result, employing mul-
tiple TT methods and comparing their results may help in developing a better understanding
of the underlying biological process being studied. As demonstrated in our metric conformity
analysis, see Section [3.4.2] Trajan provides a quantitative framework for comparing any pair
of complex trajectories, whereas TrajanR facilitates the inference of multiple trajectories
and efficiently computes corresponding alignments between every pair of trajectories, while
providing several visualization options. We start by computing scRNA-seq trajectories with
any of the 50+ TI methods that have been wrapped into the dynverse framework (Saelens
et al., [2019). Due to visualization limitations, we restrict our analysis to 4 state-of-the-art
TT methods: Slingshot (Street et al 2018)), PAGA (Wolf et al., 2019), Monocle (Qiu et al.
2017) and SCORPIUS (Cannoodt et al., 2016b).

Reference Slingshot PAGA Tree Monocle ICA SCORPIUS

o

d2_induced d2_intermediate d5_earlyiN d5_intermediate MEF Myocyte Neuron

Figure 3.13: Overview of low-dimensional cell embeddings for dynverse’s (Treutlein et al., 2016])
dataset, overlayed with corresponding scRNA-seq trajectories inferred using 4 state-of-the-art TI
methods. Trajectories describe the direct reprogramming of mouse embryonic fibroblast (MEF)
to induced neuronal cells (iN). Dynverse provides a reference or ground-truth trajectory of the
biological process under consideration. Cells are colored using the reference cell state annotation

Figure depicts a low-dimensional representation of cells in our dataset describing
the direct reprogramming from mouse embryonic fibroblast (MEF) to induced neuronal cells
(iN), as well as a representation of the different trajectories inferred using the aforementioned
TI methods. Cells were sequenced at different time points (0 days, 2 days, 5 days, and
20 days) after induced over-expression of the Ascll transcription factor, which shifts gene
expression towards transcription factors specific to the neural program. However, as the
process progresses, a myogenic program interferes with the neural program, resulting in
the formation of unwanted myocyte-like cells and decreasing the effectiveness of the direct
reprogramming process (Parra et al., 2019). In Figure (left), the reference trajectory
characterizes the dynamical process followed by cells: from MEF (yellow), through two
intermediate states (day 2: orange and day 5: green) and an induced state (red), before
cells in an early induced neuron stage (turquoise) branch into either of the two alternative
cell fates: neurons (blue) or myocytes (purple). Note that, the use of different TT methods
results in a wide variety of scRNA-seq trajectories with different topologies. For example,
Slingshot and PAGA correctly inferred a complex branching topology, whereas Monocle and
SCORPIUS inferred a simple linear one.
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Reference Slingshot PAGA Tree Monocle ICA SCORPIUS

d2_induced © d2_intermediate © d5_earlyiN © d5_intermediate = MEF © Myocyte © Neuron
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Figure 3.14: Overview of Trajan alignments for inferred scRNA-seq trajectories from dyn-
verse’s (Treutlein et al., [2016) dataset using 4 state-of-the-art TI methods. The reference or
ground-truth trajectory is fixed and we show the alignments against all inferred trajectories. Both
Trajan cell representations are shown: raw cells scheme (top) and smoothed cells scheme (bottom)
representations. Cells are colored using the reference cell state annotation.

In Figure m (top), we show a representation of the Trajan alignments obtained by
comparing reference and inferred trajectories using the raw cells representation, Euclidean
distance and avg penalty scheme parameter combination. Note that, as previously stated,
cells in the reference trajectory are grouped into discrete clusters associated with milestone
in the trajectory, and thus the relative ordering between cells within these cluster, i.e. the
cells local pseudotimes, is just being ignored. When aligned against the reference, it becomes
very clear that PAGA correctly inferred the overall trajectory, while other methods fail to
correctly identify the early iN to mature neuron branch (Monocle and SCORPIUS), or sug-
gest an earlier branching event (Slingshot) that hinders the alignment of the neuronal fate
branch. In this particular case, such effect can be explained by the unbalanced distribution
of cells between the iN (n = 32) and the myocyte (n = 89) cell fate branches, which creates
an almost linear trajectory that favors linear methods over more complex ones that struggle
to find the correct location of the branching event. Noteworthy, PAGA is capable of finding
the correct branching point and therefore has the highest score (Slingshot: 39.289; PAGA:
32.785; Monocle: 39.044; SCORPIUS: 38.206). One way to remedy this issue, at least par-
tially, is to instead use the smoothed cell representation of the trajectory, which will even out
or balance the number cells in each cell fate branch as can be seen in Figure (bottom).
Note that, in the the smoothed cell representation of Slingshot’s trajectory, Trajan correctly
aligns both cell fate branches: myocytes and neurons.
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Finally, in [3.15] we showcase the visualization of aligned gene expression profiles along
pseudotime, representing the gene expression dynamics of MEF cells undergoing neuronal
reprogramming in both cell representations: (top) raw and (bottom) smoothed cells repre-
sentations. The color scheme indicates the assignment of cells to branches in each trajectory.
We only show the top four highly variable genes, which are method-specific in the smoothed
cell representation. We note that, due to scRNA-seq nature and inherent variability between
cells, smoothed cells provide a better representation of individual gene behavior.

Reference Slingshot PAGA Tree Monocle ICA SCORPIUS
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Figure 3.15: Overview of aligned gene expression profiles between reference and inferred scRNA-
seq trajectories from dynverse’s (Treutlein et al., 2016|) dataset. Both Trajan cell representations
are shown: raw cells scheme (top) and smoothed cells scheme (bottom) representations. Only a
subset of highly-variable genes are shown.
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Altered neuronal migratory trajectories

The second dataset under consideration, |[Klaus et al. (2019), aimed at characterizing an
altered neuronal state that arises during neuronal differentiation in patients with periven-
tricular heterotopia (PH). The differentiation process from neural progenitor cells (NPCs)
to mature neurons, was studied by comparing samples derived from control individuals to
patient samples with mutations in either of the cadherin receptor-ligand pair DCHS1/FAT4,
which result in the altered phenotype. Initially, control and mutant states were character-
ized using samples derived from three-dimensional (3D) organoids, and these results were
subsequently validated using samples derived from two-dimensional (2D) cell cultures. Ad-
ditionally, these two separate datasets were sequenced using different scRNA-seq protocols,
3D organoids were sequenced using the Smart-seq2 protocol, whereas 2D cell cultures were
sequenced using 10x Genomics. In the following analysis, we focus on the comparison of tra-
jectories derived from these two different protocols rather than explicitly comparing healthy
and diseased states. We use this dataset to motivate the usefulness of our alignment ap-
proach, by providing an alternative to data integration methods (Sugihara et al., |[2022). Note
that, in this case there is no ’ground-truth’ or reference trajectory, so we can’t use Trajan
to compare inferred trajectories against a reference. Moreover, rather than comparing tra-
jectories inferred from a single dataset using different T1 approaches, we will demonstrate
how to compare trajectories derived from two different datasets under different conditions.

Slingshot PAGA Tree Monocle ICA SCORPIUS

10X Genomics Smart-seq2

Figure 3.16: Overview of low-dimensional cell embeddings for (Klaus et al., |2019)) datasets, over-
layed with corresponding scRNA-seq trajectories inferred using 4 state-of-the-art TI methods. Tra-
jectories describe the differentiation of neural progenitor cells (NPCs) to mature neurons where we
have merged both 3D organoids (Smart-seq2) and 2D culture (10x Genomics) datasets into a single
dataset. Cells are colored by sequencing-protocol.

Similarly to the previous [Section] we computed trajectories using four state-of-the-art T1I
methods. First, we analyzed a combined or merged version of the neural heterotopia datasets
in order to reconstruct a joint trajectory, shown in Figure [3.16] where we have colored cells
by sequencing protocol. Interestingly, while all approaches are capable of reconstructing
trajectories for such dataset, inferred trajectories are heavily influenced by the origin of the
data, meaning that cells sequenced using different protocols do not mix correctly. This is a
common phenomenon in high-throughput data, known as batch-effect, observed even when
the same technologies are used to sequence the data but samples were processed separately or
in different batches, leading to non-interesting or non-biological factors to significantly influ-
ence variation in the resulting data (Leek et al.,|2010). The recent emergence of multimodal-
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omics data at single-cell resolution, as well as the desire to combine measurements collected
from multiple technological sources of a common biological process, has prompted the devel-
opment of data integration methods that attempt to answer an even more general problem.
How do we link or connect data together, derived from different sources, by removing non-
interesting technical variation while keeping relevant biological one? (Luecken et al.; 2022)
Data integration is a very challenging problem, as well as an ongoing open and active field
of research, in which individual solutions are based on distinct principles and assumptions,
and hence optimize for different goals (Argelaguet et al., [2021). The authors of Sugihara
et al.| (2022)), highlighted the limitations of current data integration approaches by inferring
a common trajectory after integrating separate scRNA-seq datasets, which could lead to
unexpected results, such as mixing cells that are not closely related. Here, we showcase how
Trajan can offer an alternative to such methods when analyzing scRNA-seq trajectories, by
inferring trajectories for each dataset separately and using the alignment of trajectories as
the “integration” step, effectively putting datasets into a common system of reference.

Slingshot PAGA Tree Monocle ICA SCORPIUS

Control Dchs1 Fat4

Slingshot PAGA Tree Monocle ICA SCORPIUS

Slingshot PAGA Tree Monocle ICA SCORPIUS

Figure 3.17: Overview of low-dimensional cell embeddings for (Klaus et al., [2019)) datasets, over-
layed with corresponding scRNA-seq trajectories inferred using 4 state-of-the-art TT methods. Tra-
jectories describe the differentiation of neural progenitor cells (NPCs) to mature neurons in 3D
organoids (top), 2D culture (middle) and merged datasets (bottom), respectively. Cells are
colored using sample condition.
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We used the same 4 T1 methods to compute trajectories for both neuronal heterotopia
datasets separately, see Figure [3.17 (top) organoids (middle) 2D culture, and kept the
results for the merged dataset (bottom) for completeness. In this case, we have colored
cells by sample condition. Again, the use of different TI methods results in a variety of
scRNA-seq trajectory topologies. Here, Monocle and PAGA inferred trajectories with more
complex topologies, whereas Slingshot and SCORPIUS inferred linear ones. Note that, all
trajectories seem to consistently mix DCHS1 and FAT4 mutants, suggesting that those share
common transcriptional features different from the control, as was previously noted in
(2019). Interestingly, Slingshot and SCORPIUS fail to identify the altered neuronal
subpopulation present in both datasets, described in [Klaus et al.| (2019)).

Figure 3.18: Low-dimensional cell embeddings for (Klaus et al. 2019) datasets, overlayed with
corresponding scRNA-seq trajectories inferred with Monocle. Trajectories describe the differen-
tiation of neural progenitor cells (NPCs) to mature neurons in 3D organoids (top), 2D culture
(middle) and merged datasets (bottom), respectively. Cells are colored by expression of selected
marker genes: NPCs (PAX6, VIM), neurons (STMN2, MAPT) and altered neuronal state (ROBO3,
CNTNZ2). Blue: low expression and red: high expression.

For simplicity and based on the results of Klaus et al.| (2019), we focus on the trajectories
obtained using Monocle, the same method used in the original publication (see their Figure
4). Our results recapitulate those reported in the original publication for both datasets, and
we extend the analysis by visualizing the expression of specific marker genes using dynverse
and by computing alignments and corresponding gene expression dynamics using TrajanR.
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In Monocle’s trajectory for the organoid dataset, see Figure [3.17] we detect a specific sub-
population of neurons that diverges from the main NPC to neuron differentiation trajectory,
and is unique to the mutant conditions. This altered neuronal population is characterized
by the expression of neuronal marker genes such as STMN2 and MAPT, and the expression
of genes specific to the altered neuronal state such as ROBO3 and CNTN2, see Figure [3.18]
(top). It is worth noting, that there appears to be an earlier smaller branching event, with a
very high percentage of mutant cells (96%), which we believe characterizes NPCs cells that
fail to reprogram, since they lack expression of neuronal marker genes STMN2 and MAPT
but express NPC marker genes PAX6 and VIM (see Figure . Equivalently, in Monocle’s
trajectory for the 2D culture dataset, see Figure m (middle), we detect two subpopula-
tions of cells that bifurcate from the main NPC to neuron differentiation trajectory. In this
case, however, subpopulations include cells from both the control and mutant conditions.
The earlier branching event includes a high percentage of cells from the mutant condition
(81%), whereas the second branching event includes a moderate percentage of cells from the
mutant condition (66%). Simple visual inspection of the lower dimensional embedding is
insufficient to fully understand the biological process under investigation. Moreover, due to
the dataset’s unbalanced nature (63% mutant and 37% control), one question that arises
naturally is whether these branches are the corresponding counterparts to those present in
the 3D organoid dataset.

Monocle ICA Slingshot PAGA Tree Monocle ICA SCORPIUS

Control © Dchsl  Fat4
Monocle ICA Slingshot PAGA Tree Monocle ICA SCORPIUS

Figure 3.19: Overview of Trajan alignments between inferred scRNA-seq trajectories from [Klaus
et al.| (2019) datasets. Use Monocle’s trajectory for the 2D culture dataset as “reference” and show
alignments against all trajectories inferred for the 3D organoid dataset. Both Trajan cell represen-
tations are shown: raw cells scheme (top) and smoothed cells scheme (bottom) representations.
Cells are colored using sample condition, for raw cells, and by assignment to closest milestone, for
smoothed cells.

Similar to the previous section, we leverage TrajanR to compute all pair-wise alignments
across trajectories obtained for each of these datasets. To showcase the visualization of such
alignments, in Figure [3.19) we fix the Monocle trajectory from the 2D culture dataset and
plot the corresponding alignments to all other trajectories in the 3D organoid dataset. We
used both cell representations, (top) raw cells and (bottom) smoothed cells, and fixed Eu-
clidean distance and avg penalty scheme parameters. Except for PAGA’s alignment using
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the raw cell representation, which returned a trajectory in apparent contradiction to the
“reference” obtained with Monocle, these alignments demonstrate that Trajan is capable of
successfully aligning the main NPC to neuron differentiation path between distinct trajecto-
ries. Note that, in PAGA’s alignment using the smoothed cell representation we are indeed
capable of recovering similar results, highlighting once again the importance of these two
complementary approaches. Next, for simplicity and to make our results more comparable
to [Klaus et al.| (2019), we again focus the rest of the analysis on a single alignment using
both Monocle’s trajectories, the same trajectories as in the original publication.

Neuron
Altered
Neuron. ..\ \\\ 3D Dataset
Neuron S ARRARNERERRERE oo o i ) :
NPC
Altered
. NPC
PR s U 2D Dataset
Altered N
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i NPC
grouping Control Dchs1 Fatd Altered [
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Figure 3.20: Trajan alignment of both Monocle’s scRNA-seq trajectories obtained for the 2D culture
and 3D organoid datasets in Klaus et al.| (2019)). Both Trajan cell representations are shown: raw
cells scheme (left) and smoothed cells scheme (right) representations. Cells are colored using
sample condition, for raw cells, and by assignment to closest milestone, for smoothed cells.

In Figure we visualize the alignment of both Monocle’s trajectories, on the left using
the raw cells representation and on the right using the smoothed cells representation. Note
that, in the raw cells representation all end state branches are matched to their counterpart
between the two datasets, whereas on the smoothed cell representation we see that the
altered NPC branch is left unmatched. This inconsistency between schemes, and the sparsity
of alignments on the central region, demands for further investigation. In Figure [3.21] we
visualize the corresponding gene expression dynamics. The actual aligned gene expression
profiles are shown on the left, while the middle and right gene expression profiles correspond
to the individual, 2D culture and 3D organoid trajectories, respectively, prior to alignment.
The color scheme indicates the assignment of cells to branches in each trajectory, but are not
consistent across aligned and individual profiles. In order to map branches in the aligned gene
expression profiles (left) to corresponding branches in the individual gene expression profiles
(middle and right) one needs to look at the actual expression values. By looking at the
aligned gene expression profiles (left), note that the two first marker genes VIM (NPC) and
STMN2 (neuron) are nicely aligned between the two datasets, whereas for the last marker
gene ROBO3 (altered neuron) the aligned profiles do not match very well, specially right
after the central region. By closer inspection of the individual gene expression profiles, we
note that for the 2D culture dataset (middle) there is a peak of expression for the ROBO3
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marker gene around the central region before any branching point, and no expression at all of
ROBO3 on the branch supposed to contain the altered neuronal state. This results suggest
that the trajectory inferred by Monocle for the 2D culture dataset is not consistent with our
biological assumptions, meaning that, although there is a subpopulation of altered neurons
it has been placed in the middle of the trajectory rather than as a separate branch. On the
other hand, for the 3D organoid dataset (middle), as expected there is no expression at all
of the ROBO3 marker gene previous to the branching point, followed by a sudden increase
in expression for the branch containing the altered neuronal state.
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Figure 3.21: Aligned gene expression profiles (left) between 2D culture and 3D organoids inferred
scRNA-seq trajectories from |[Klaus et al. (2019) datasets. Gene expression profiles for 2D culture
(middle) and 3D organoid (middle) inferred scRNA-seq trajectories, previous to alignment. Only
a subset of marker genes are shown: NPCs (VIM), neurons (STMN2) and altered neuronal state
(ROBO3).

Multiple lessons can be learned from our analysis. First, every trajectory inference
method will almost certainly return a trajectory given an input dataset, but it is the user’s
responsibility to assess the trajectory’s meaningfulness and whether it accurately describes
the biological process under consideration. A tool like Trajan, which can compare different
trajectories and assess their similarity and consistency, is a good starting point. Special care
must be taken during the feature selection step, as each set of features will tell a different
story, and multiple stories may be played simultaneously at different strength levels. In our
analysis, we used the same 286 genes that were found to be relevant for this particular bio-
logical process in the original publication (Klaus et al.; [2019), while the differences between
healthy and altered neurons were pin-pointed to just a few marker genes, highlighting that
differences between different but related biological processes can be very subtle. In this case,
the ROBO3 was strong enough to distinguish between the two neuronal states in the 3D
organoid dataset, but it was not for the 2D culture. These issues highlight the importance
of complementary analysis, not only by employing different TI methods, but also by being
able to compare them under various Trajan schemes and by inspecting corresponding gene
expression profiles. Our package TrajanR facilitates the computation and visualization of
these multiple schemes simultaneously.
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3.5 Conclusion

We described our novel tool Trajan, first introduced in Do et al.| (2019), that allows for the
first time the alignment of complex (non-linear) scRNA-seq trajectories at the cell-level. In
Trajan, we adopt arboreal matchings (Bocker et al.| 2013)) to perform alignments between any
pair of single-cell trajectories both, enabling the meaningful comparison of gene expression
dynamics along a common pseudotime scale, and defining a notion of similarity/distance
between trajectories.

Trajan does not make any assumptions concerning the algorithm used to reconstruct
the trajectory and can in principle be coupled with any available reconstruction method.
We have introduced our accompanying R package, TrajanR, which integrates with previous
work (Saelens et al., 2019), making Trajan seamlessly compatible with any of the 50+ TI
methods implemented in the dynverse package. TrajanR also facilitates the standardization
and pre-processing of Trajan input data, alignment computation using multiple parameter
combinations, and a variety of visualization options, enabling the analysis of scRNA-seq
trajectories in complex settings.

Through extensive experimentation on synthetic data generated with the recent simu-
lation engine, dyngen (Cannoodt et al., [2021)), we demonstrate the accuracy of Trajan’s
alignments. In a set of linear trajectories, we compare DTW and Trajan alignments based
on ABWAP scores, a novel metric introduced in |Cannoodt et al. (2021), to demonstrate
the equivalence of both approaches in the case of simple/linear trajectories. In a set of
more complex, tree-like, trajectories we focus on Trajan alignments to showcase the im-
provement achieved by the simultaneous and consistent alignment between all paths using
the full-graph information, as opposed to multiple individual path-wise alignments where
information about alternative lineages is being ignored, as in DTW. In a sub-sampling ex-
periment, we demonstrate the high accuracy of Trajan alignments based on precision and
recall, as an alternative metric to ABWAP scores. Through a full metric conformity anal-
ysis, we demonstrate empirically that Trajan’s notion of similarity/dissimilarity between
single-cell trajectories conforms to our biological expectations, providing a framework for
comparing complex trajectories and opening the door to many different types of analysis.
Finally, we showcase how the analysis of real data is facilitated using our TrajanR package
to examine two independent real-world datasets. In the first dataset, where a ground-truth
trajectory is available, Trajan can be used to compare trajectories inferred by different TI
methods against the reference to assess method performance. In the second dataset, which
contained two datasets derived and sequenced using different experimental protocols, we
showcase how Trajan alignments can act as an alternative to data integration methods, and
how assessing consistency between different trajectories helps to better understand the un-
derlying biological processes driving these trajectories. Importantly, throughout the whole
Chapter we demonstrate the importance of complementary analysis using different Trajan
parameter combinations, and based on our real data experiments we highlight the need to
evaluate multiple TT methods, all which is enormously facilitate by our TrajanR package.



Chapter 4

Conclusion and outlook

4.1 Conclusion

In this thesis, we developed reproducible computational pipelines an algorithms that enable
the study of genomic regulation in biological systems.

In Chapter 2, we aimed to quantify the relative contribution of transcriptional silencing
and RNA degradation to heterochromatic silencing. In order to do that, we analyzed RNA
Pol IT occupancy (ChIP-seq), levels of nascent RNA (RIP-seq) and levels steady-state RNA
(RNA-seq) in different mutants of Schizosaccharomyces pombe (S. pombe). We found that
transcriptional silencing consists of two components, reduced RNA Pol II accessibility and,
unexpectedly, reduced transcriptional efficiency. Heterochromatic loci showed lower tran-
scriptional output compared to euchromatic loci, even when comparable amounts of RNA
Pol IT were present in both types of regions. We determined that the Ccrd—Not complex and
H3K9 methylation are required for reduced transcriptional efficiency in heterochromatin and
that a subset of heterochromatic RNA is degraded more rapidly than euchromatic RNA.
Finally, we quantified the contribution of different chromatin modifiers, RNAi and RNA
degradation to each silencing pathway. Our results show that several pathways contribute
to heterochromatic silencing in a locus-specific manner and reveal transcriptional efficiency
as a new mechanism of silencing.

In Chapter 3, we describe our novel tool Trajan, previously introduced in Do et al.| (2019),
the first method for the alignment of complex (non-linear) scRNA-seq trajectories at the cell-
level. In Trajan, we adopt arboreal matchings (Bocker et al., 2013) to automatically identify
the correspondence between biological processes, characterized by a pair of single-cell tra-
jectories, by aligning all their lineages simultaneously and consistently, enabling the direct
comparison of gene expression dynamics along a common pseudotime axis and providing
a notion of similarity/distance between trajectories. Using simulated data with different
characteristics, we performed multiple experiments to evaluate different aspects of Trajan’s
alignments based on ABWAP scores, a novel metric introduced in (Cannoodt et al.| (2021]).
In a dataset of linear trajectories, we show that Trajan alignments are comparable in ac-
curacy to those obtained by linear trajectories restricted, DTW-based methods, providing
an alternative that generalizes to the alignment of complex trajectories. Since our initial
publication, a method called CAPITAL (Sugihara et al.,2022) was published that is capable
of finding the correspondence between paths in a pair of complex trajectories using cluster-
level information. CAPITAL uses those matched lineages to provide an actual alignment at
the cell-level, but as in previous methods it is limited to independent pair-wise DTW-based
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alignments, completely ignoring information from alternative lineages that could help im-
proving the alignment, as demonstrated in our experiments with complex trajectories. In a
sub-sampling experiment, we further show the overall high accuracy of Trajan alignments
based on alternative precision and recall metrics.  Moreover, through a full metric con-
formity analysis, we demonstrate empirically that Trajan’s notion of similarity /dissimilarity
between single-cell trajectories conforms to our biological expectations, providing a frame-
work for comparing complex trajectories and opening the door to many different types of
analysis. Lastly, we introduced TrajanR, our accompanying R package that integrates with
the dynverse framework (Saelens et al., 2019), allowing the computation of single-cell trajec-
tories with any of the 50+ TT methods implemented in the package and used for subsequent
analysis with Trajan. TrajanR facilitates the standardization and pre-processing of Trajan
input data, alignment computation using multiple parameter combinations, and provides a
variety of visualization options, enabling the analysis of scRNA-seq trajectories in complex
settings. Throughout the Chapter, we demonstrate the importance of complementary anal-
ysis, either by evaluating multiple TT methods or trying multiple parameter combinations,
all which is enormously facilitated by our TrajanR package. Finally, we showcase how our
TrajanR package enables and facilitates the study of scRNA-seq data based on the analysis
of two independent real-world datasets.

4.2 Outlook

4.2.1 Ccr4—Not complex reduces transcription efficiency in heterochromatin

In our study, we created an end-to-end Snakemake workflow for the quantification of RNA-
seq, ChIP-seq and RIP-seq data, together with several Jupyter Notebooks for downstream
analysis and visualization. We established a framework to characterize specific regulatory
pathways by a rate or ratio between expression levels of corresponding high-throughput
sequencing assays, e.g. Pol II occupancy (™“ChIP-seq/**ChIP-seq), transcription efficiency
(RIP-seq/ChIP-seq) and RNA stability (pA-RNA/RIP-seq), and compare those rates under
different conditions. Based on the analysis of over a hundred samples from different S. pombe
mutant strains and sequencing-protocols, we identified the impact that certain mutations
have, in a loci and strand-specific manner, on the distinct regulatory pathways. Our modular,
reproducible and scalable implementation, permits the extension of the study to many more
samples and conditions, and should be easily adaptable to the study of other regions of
interest and even different species were a reference genome and transcriptome are available.
Finally, a similar framework, could be used to study other genomic regulatory pathways
by defining alternative ratios and obtaining the corresponding sequencing data under the
adequate conditions.
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4.2.2 Dynamic pseudo-time warping of complex trajectories

We have extensively benchmarked and showcased the utility of Trajan and TrajanR in both
real and simulated data. We hope that our framework will be well received by users and
method developers in the single-cell community, as it facilitates and sheds light on the study
and interpretation of scRNA-seq trajectories, an increasingly common approach in scRNA-
seq analysis. We anticipate several possible extensions to our work. While our analysis was
restricted to arboreal matchings between rooted trees, in the Appendix of Do et al.| (2019) we
discuss the generalization of arboreal matchings to directed acyclic graphs (DAGs), which
describe biologically relevant processes such as the convergence of previously divergent cell
states. In order to keep up with the increasing size of scRNA-seq datasets, TrajanR’s pre-
processing will need to be significantly improved and sped up. At present, the smoothed
cell representation can be used to infer a smaller set of interpolated cells, which aids in
scaling subsequent computations. An alternative strategy would be to couple TrajanR with
a geometrical sketching method (Do et al., |2020) that down-samples the total number of
cells while preserving the full transcriptomic diversity of the data. More importantly, the
importance of TrajanR’s integration with dynverse in conjunction with our framework for
comparing complex single-cell trajectories cannot be emphasized enough. For example, us-
ing different TT methods to infer multiple trajectories for the same dataset and leveraging
Trajan to compute pair-wise alignments between each pair of trajectories, one could provide
a consensus prediction of which method performs best for that dataset based on the sim-
ilarities and distances between methods as well as their consistencies and inconsistencies.
In addition, using a similar supervised consensus approach and a sufficiently diverse and
comprehensive set of simulated trajectories, it should be possible to train a classifier that
learns under what circumstances a method outperforms others.
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4. Conclusion and outlook




Appendix A

Supplementary Material

A.1 Ccr4-Not complex reduces transcription efficiency in heterochromatin

Strain construction

All S. pombe strains used in this study are listed in Supplemental Table [S1] Strains were
generated like described in Bronner et al.| (2017). The strains were constructed by electropo-
ration (Biorad MicroPulser program ShS) with a PCR-based gene targeting product leading
to deletion of specific genes. For genomic integration, a PCR with long overhang primers
according to [Bahler et al. (1998) was performed and the product transformed. Positive
transformants were selected on YES plates containing 100-200 pg/ml antibiotics and were
confirmed by PCR and sequencing.

Total RNA isolation

Total RNA was isolated of a 2 ml yeast culture with OD600 of 1.0 applying the hot phenol
method. The pellet was resuspended in 500 ul lysis buffer (300 mM NaOAc pH 5.2, 10 mM
EDTA, 1% SDS) and 500 pl phenol-chloroform-isoamylalcohol (25:24:1, Roth) and incubated
at 65°C for 10 min with constant mixing. The organic and aqueous fractions were separated
by centrifugation at 20 000 x g for 10 min. Nucleic acids in the aqueous fraction were
precipitated with ethanol and then treated with DNAse I (Thermo Scientific) for 1 h at
37°C. DNAse was removed by a second phenol-chloroform-isoamylalcohol extraction and
ethanol precipitation.

poly(A) RNA sequencing

The poly(A) RNA library was obtained using the NEBNext Ultra IT Directional RNA Library
Prep Kit for Illumina (NEB) including the NEBNext Poly(A) mRNA Magnetic Isolation
Module. Libraries were sequenced on Illumina HiSeq platform.

Chromatin immunoprecipitation sequencing (ChIP-seq)

50 ml yeast cultures with an OD600 of 1.2 were cross-linked with 1% formaldehyde (Roth)
for 15 min at room temperature. The reaction was quenched with 125 mM glycine for 5
min. The frozen pellet was resuspended in 500 pl lysis buffer (250 mM KCI, 1x Triton-X,
0.1% SDS, 0.1% Na-desoxycholate, 50 mM HEPES pH 7.5, 2 mM EDTA, 2 mM EGTA, 5
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mM MgCl12, 0.1% Nonidet P-40, 20% glycerol) with 1 mM PMSF and Complete EDTA free
Protease Inhibitor Cocktail (Roche). Lysis was performed with 0.25-0.5 mm glass beads
(Roth) and the BioSpec FastPrep-24 bead beater (MP-Biomedicals), 8 cycles at 6.5 m/s
for 30s and 3 min on ice. DNA was sheared by sonication (Bioruptor, Diagenode) 35 times
for 30 s with a 30 s break. Cell debris was removed by centrifugation at 13 000 x g for
15 min. The crude lysate was normalized based on the RNA and Protein concentration
(Nanodrop, Thermo Scientific) and incubated with 1.2 pg immobilized (Dynabeads Protein
A, Thermo Scientific) antibody against Anti-RNA polymerase II CTD repeat YSPTSPS
(phospho S2) antibody - ChIP Grade (ab5095, abcam) for at least 2 h at 4°C. The resin
with immunoprecipitates was washed five times with each 1 ml of lysis buffer and eluted
with 150 ul of elution buffer (50 mM Tris-HCI pH 8.0, 10 mM EDTA, 1% SDS) at 65°C for
15 min. Cross-linking was reversed at 95°C for 15 min and subsequent RNase A (Thermo
Scientific) digest for 30 min followed by Proteinase K (Roche) digest for at least 2 h at 37°C.
DNA was recovered by phenol-chloroform—isoamylalcohol (25:24:1, Roth) extraction with
subsequent ethanol precipitation. For sequencing, a ChIP-seq library was made using the
NEBNext Ultra I DNA Library Prep Kit for Illumina kit (NEB). Libraries were sequenced
on Illumina HiSeq platform.

Pol IT bound nascent RNA sequencing (RIP-seq)

RNA IP was performed like ChIP but without RNase A digest, using Anti-RNA polymerase
IT CTD repeat YSPTSPS (phospho S2) antibody—ChIP Grade (ab5095, abcam). After
phenol-chloroform-isoamylalcohol extraction, DNA was digested with DNAse I (Thermo Sci-
entific) for 2 h at 37°C. RNA was recovered with a second phenol-chloroform-isoamylalcohol
purification and ethanol precipitation. Sequencing libraries were produced using the NEB-
Next Ultra II Directional RNA Library Prep Kit for Illumina (NEB). Libraries were se-
quenced on [lumina HiSeq platform.
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Figure S1: Silencing in wild-type cells. (A) Analysis of S2P-Pol II ChIPseq read counts from wild
type cells at centromeric central core (CenpA chromatin) before and after normalized input sub-
traction. Note that after subtraction most reads from this region, defined as noise, are removed.
(B) Quantification of intronic reads in pA RNA, total RNA, Pol II RIP and Pol IT ChIP data. The
data reveal high retention of intronic reads in Pol IT RIP data. Bottom and top of the box corre-
spond to lower and upper quartiles of the data, bar is the median and whiskers are median +/-1.5
times interquartile range. (C) Analysis of the next-generation sequencing data showing comparison
between nascent RNA (RIP) and total RNA (pA) sequencing. Note the presence of intronic reads
in Pol IT RIP data, indicating nascent RNAs. (D) Analysis of the next-generation sequencing data
showing steady state RNA levels (total RNA-seq and pA RNA seq) and H3K9me?2 levels (ChIP-seq)
at pericentromeric regions in S. pombe wild-type cells. Locations of genes are indicated as boxes
below the coverage according the color code: purple = dg, dh. (E) Quantification of total and pA
RNA reads over dg and dh transcripts showing that dg+/dg- and dh+/dh- transcripts are similarly
polyadenylated. (F, G) Bar chart showing fold change in quantitative measures (ratios of average
TPM, see Methods) of the three pathways (Pol II occupancy, transcription efficiency and RNA
stability) at (F') other subtelomeric genes and (G) mat locus. Pie charts show relative contribution
of each pathway to heterochromatic silencing at repeats in wild-type cells. Average of at least two
independent samples is shown for all figures. Figure reproduced from Monteagudo-Mesas et al.
(2022)) licensed under  Creative Commons CC BY.
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Figure S2: Confidence intervals. Standard error between replicates for RNA Pol II occupancy,
transcriptional efficiency and RNA degradation at centromeric dg/dh and subtelomeric tlh repeats.
Figure reproduced from Monteagudo-Mesas et al.| (2022) licensed under | Creative Commons CC
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Figure S3: Silencing in mutant cells. Bar chart showing fold change in quantitative measures (ratios
of average TPM, see Methods) of the three pathways (Pol IT occupancy, transcription efficiency and
RNA stability) at (A) centromeric repeats, (B) subtelomeric tlh repeats, (C) other subtelomeric
genes and (D) mat locus. Pie charts show relative contribution of each pathway to heterochromatic
silencing at repeats in wild-type cells. Average of at least two independent samples is shown for all
figures. Figure reproduced from Monteagudo-Mesas et al.[(2022)) licensed under Creative Commons
CC BY.
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Figure S4: Next-Generation-Sequencing analysis of S2P-Pol 1T ChIP-seq (Pol II occupancy), S2P-
Pol II RIP-seq (nascent RNA) and pA RNA-seq (steady state RNA) at subtelomeric and cen-
tromeric repeats, and at the mat locus. Locations of genes are indicated as boxes below the cover-
age according the color code: gray = protein coding; purple = dg, dh; green = tlh, SPAC212.10,
blue = other heterochromatic genes, orange = mat locus. (A) wild type (B) clr4A (C) agolA
(D) swi6A (E) chp2A. Figure reproduced from Monteagudo-Mesas et al. (2022) licensed under
Creative Commons CC BY.



https://creativecommons.org/licenses/
https://creativecommons.org/licenses/

76 A. Supplementary Material

chel I].I.I‘l Bk 16 K 24 Kb az‘ku mr?l'l;!m 3TEE W a?E‘!KD mmﬂlﬂ 10k Eﬂ‘llﬂ
e [ e e — 6~ - ke
| — - B | SN T I | gl _ [,
%a . b E g E
{ﬂ
B

Figure S5: Next-Generation-Sequencing analysis of S2P-Pol I ChIP-seq (Pol II occupancy), S2P-
Pol II RIP-seq (nascent RNA) and pA RNA-seq (steady state RNA) at subtelomeric and cen-
tromeric repeats, and at the mat locus. Locations of genes are indicated as boxes below the coverage
according the color code: gray = protein coding; purple = dg, dh; green = tlh, SPAC212.10, blue
= other heterochromatic genes; orange = mat locus. (A) mitlA (B) clr3A (C) rrp6A (D) exo2A.
Figure reproduced from [Monteagudo-Mesas et al. (2022) licensed under | Creative Commons CC|

BY]
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Figure S6: Next-Generation-Sequencing analysis of S2P-Pol I ChIP-seq (Pol II occupancy), S2P-
Pol II RIP-seq (nascent RNA) and pA RNA-seq (steady state RNA) at subtelomeric and cen-
tromeric repeats, and at the mat locus. Locations of genes are indicated as boxes below the coverage
according the color code: gray = protein coding; purple = dg, dh; green = tlh, SPAC212.10, blue =
other heterochromatic genes; orange = mat locus. (A) caflA (B) mot2A (C) ccrdA (D) cafl*cerd™
(E) caflAagolA. Figure reproduced from Monteagudo-Mesas et al.| (2022) licensed under  Creative
Commons CC BY.
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Figure S7: (A, B) Box plot showing S2P-Pol IT RIP-seq data in wild-type and mutant cells. Nascent
RNA analysis is shown for individual mutants affecting (A) heterochromatin formation and RNA
degradation or (B) the Ccr4-Not complex. Data are plotted as defined for Figure 1B. (C, D)
pA RNA-seq results (steady state RNA) shown as box plot for individual wild-type and mutants
affecting (C) heterochromatin formation and RNA degradation or (D) the Ccrd-Not complex. Data
are plotted as defined for Figure 1B. (E) Box plot showing ratio of RNA levels in S2P-Pol II RIP-seq,
total RNA and pA RNA data. Protein coding genes are shown in grey and genes involved in RNAi
and heterochromatin formation are shown in yellow. (F) Box plot showing H3K9me2 ChIP-seq
data. H3K9me2 analysis is shown for individual mutants affecting heterochromatin formation or
RNA degradation. Data are plotted as defined for Figure 1B. Average of at least two independent
samples is shown. Figure reproduced from Monteagudo-Mesas et al.| (2022) licensed under | Creative
Commons CC BY.
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Figure S8: (A) Box plots showing RNA Pol IT occupancy, transcription efficiency and RNA stability
over indicated genes in caflAagolA cells. Data are plotted as defined for Figure 1B. (B) Box plots
showing nascent and steady state RNA over indicated genes in cafl AagolA cells. Data are plotted
as defined for Figure 1B. Figure reproduced from Monteagudo-Mesas et al.| (2022)) licensed under
Creative Commons CC BY.
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Figure S9: (A) Analysis of the next-generation sequencing data showing occupancy of S2P RNA
Pol II (ChIP-seq) and nascent RNA (S2P-Pol II RIP-seq) at subtelomeric regions in S. pombe
mot2A, ccrdA and cafl*cerd*® cells. Gene locations are indicated as boxes below the coverage and
color-coded: green, subtelomeric loci tlh and SPAC212.10; blue, other subtelomeric genes. (B)
Quantification of RNA Pol IT occupancy (S2P-Pol IT ChIP-seq) at tlh promoter region and tlh gene
body in indicated wild type and mutant strains. (C) Analysis of the next-generation sequencing
data showing occupancy of S2P RNA Pol II (ChIP-seq) and nascent RNA (S2P-Pol IT RIP-seq) at
euchromatic gene actin in S. pombe caflA cells. Gene locations are indicated as boxes below the
coverage. (D) RNA stability in caflA cells. pA RNA-seq (steady state RNA) data plotted over
S2P-Pol IT RIP-seq data (nascent RNA). TPM, transcripts per million. Gray circles are individual
protein-coding genes; regression line is also shown in purple. Also plotted are centromeric dg and
dh (dark purple for 4 strand, bright purple for - strand) and tlh and SPAC212.10 (dark green for +
strand, bright green for — strand) and cenH (orange). Each data point is the average of at least two
independent samples. (E) Bar chart displaying contribution of each pathway that is still active in
the mutants to the silencing of other subtelomeric genes. The height of each bar corresponds to the
fold change in RNA output relative to wild-type. The relative contribution of each pathway was
computed as fold change in quantitative measures (ratios of average TPM, see Methods) relative to
clr4dA. (F) Bar chart displaying contribution of each pathway that is still active in the mutants to
the silencing at the mat locus silencing. The height of each bar corresponds to the fold change in
RNA output relative to wild-type. The relative contribution of each pathway was computed as fold
change in quantitative measures (ratios of average TPM, see Methods) relative to clr4A. Figure
reproduced from [Monteagudo-Mesas et al.| (2022) licensed under  Creative Commons CC BY.
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Tables

Table S1: Supplemental Table S1: Strains used in this study

Strain id  Description

65 h90 otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 natMX6::3xFLAG-agol

63 h+ otrlR(Sphl)::urad+ ura4-DS/E leul-32 ade6-M210

80 h+ otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 clr4A::kanMX6

638 h+ otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 agolA::kanMX6

301 h90 mat3::urad+ ura4-DS/E leul-32 ade6-M210 swi6A::natMX6

324 h90 mat3::urad+ ura4-DS/E leul-32 ade6-M210 chp2A::kanMX6

491 h+ leul-32 ura4-D18 imr1R(NCol)::urad+ oril ade6-216 mit1A::kanMX6

302 h+ otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 clr3A::TAP-kanMX6

504 h+ otr1R::ura4, urad-DS/E, ade6-M216; leul-32, his7-366
natMX6::3xFLAG-agol rrp6A::kanMX6

530 h+ otr1R(Sphl)::urad+ ura4-DS/E leul-32 ade6-M210 natMX6::3xFLAG-agol
ex02A::kanMX6

510 h90 otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 natMX6::3xFLAG-agol
caflA::kanMX6

591 h90, ade6-D1, his3-D1, leul-3, ura4-D18, otr1R(Sphl)::ade6™,
TAS-his3*-tell(L), TASurad "-tel2(L), cafl A::kanMX6

544 h90 otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 natMX6::3xFLAG-agol
cerd A::hphMX6

1168 h90, ade6-D1, his3-D1, leul-3, ura4-D18, otr1R(Sphl)::ade6™,

TAS-his3*-tell(L), TASurad " -tel2(L),
ccrdH664A-cerd Terminator::hphMX6, nat::cafl promotercafl D53AD243AD174A

1022 h90 otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 natMX6::3xFLAG-agol
mot2A::kanMX6

1023 h90 otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 natMX6::3xFLAG-agol
mot2A::kanM X6

523 h90 otr1R(Sphl)::urad+ urad-DS/E leul-32 ade6-M210 caflA::kanMX6
agolA::hph

Table S2: Supplemental Table S2: List of heterochromatic genes

Region Gene id

Subtelomeric 'SPAC212.09¢’, 'SPNCRNA.70’, 'SPAC212.08¢’, 'SPAC212.07¢’, 'SPAC212.12",
'SPAC212.06¢’, 'SPAC212.04¢’, *'SPAC212.03’, 'SPAC212.02", 'SPAC212.01¢’,
'SPAC977.01°, 'SPACO77.18", 'SPAC977.02’, 'SPAC977.03", "'SPACO77.04’,
'SPAC212.05¢"

mat locus 'SPMTR.01’, ’FP565355_region_1..2120’, '"FP565355_region_9170..13408’,
"FP565355_region_15609..16735°, "FP565355_region_18009..20128’
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Figure S10: Comparison of full-graph and multiple path-wise Trajan’s alignments based on ABWAP
scores for dataset with 40 complex trajectories generated with dynverse. All possible parameter
combinations for Trajan alignments are shown: raw and smoothed cells representation, avg and
max penalty scheme and Euclidean distance and Pearson correlation. Trajectories are stratified
by complexity-level (num_modifications=1,2,3,4) and each trajectory is further split into individual
lineages (1,2,3,4,5) for comparison purposes. Shown are ABWAP scores associated to each linear
alignment computed under 3 different schemes: full-graph (red) and path-wise (green and blue)
alignments.
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Figure S11: Sub-sampling experiment evaluating Trajan alignments by number of true positives
(TP), false positives (FP) and false negatives (FN) in 40 complex trajectories generated with dyn-
verse and perturbed at different levels. (top) Sub-sampling of 80% of cells (bottom) Sub-sampling
of 20% of cells Trajan alignments were based on: raw cells representation, avg penalty scheme
and Euclidean distance parameter combination. Trajectories are stratified by complexity-level
(num_modifications=1,2,3,4) and each trajectory is further split into individual lineages (1,2,3,4,5)
for comparison purposes. Shown are TPs, FPs and FNs associated to each linear alignment com-
puted under 3 different schemes: full-graph (red) and path-wise (green and blue) alignments.
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Figure S12: Sub-sampling experiment of 40 complex trajectories generated with dynverse and
perturbed using 20% of cells. Evaluate Trajan alignments using number of (left) true positives
(TP), (middle) false positives (FP) and (right) false negatives (FN). Trajan alignments were based
on: raw cells representation, avg penalty scheme and Euclidean distance parameter combination.
Trajectories are stratified by complexity-level (num_modifications=1,2,3,4) and each trajectory is
further split into individual lineages (1,2,3,4,5) for comparison purposes. Shown are TPs, FPs and
FNs associated to each linear alignment computed under 3 different schemes: full-graph (red) and
path-wise (green and blue) alignments.
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