Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München

Oxidation of Modified DNA Nucleobases: Computational Study

von

Vasilii Korotenko

aus

Togliatti, Russland

Erklärung

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 1. Jahnuar 2019 von Herrn Prof. Dr. Hendrik Zipse betreut.

Eidesstattliche Versicherung

Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, 15.01.2023

Vasilii Korotenko

Dissertation eingereicht am 15.02.2023

- 1. Gutachter:Prof. Dr. Hendrik Zipse
- 2. Gutachter: Prof. Dr. Christian Ochsenfeld

Mündliche Prüfung am 03.03.2023

List of Publications

F. Zott, V. Korotenko, H. Zipse «The pH-Dependence of the Hydration of 5-Formylcytosine-an Experimental and Theoretical Study» *ChemBioChem* 2021

V. Korotenko, H. Zipse « The Stability of Oxygen-Centered Radicals and its Response to Hydrogen Bonding Interactions» *J. Comp. Chem.* 2023

V. Korotenko, F. Zott, H. Zipse «The Acid-Base Equilibrium and C-H Bond Dissociation Energies of Modified Pyrimidine DNA Bases: The Influence of the Hydrate Form of 5fC» *J. Phys. Chem.* 2023

A. Kastrati, A. Kremsmair, A. S. Sunagatullina, V. Korotenko, Y. C. Guersoy, S. K. Rout, F. Lima, C. E. Brocklehurst, K. Karaghiosoff, H. Zipse, P. Knochel «Calculation-Assisted Regioselective Functionalization of the Imidazo[1,2-a]pyrazine Scaffold via Zinc and Magnesium Organometallic Intermediates» *Chem. Sci.* 2023

Acknowledgments

My deepest gratitude goes to Prof. Dr. Hendrik Zipse for the interesting and beautiful time in his research group, for support and for inspiration! Critical way of thinking, ideas, questions, comments, constructive discussions from Professor Zipse do help! I do appreciate everything that I have got from my Teacher and I will never forget. Vielen herzlichen Dank! I thank Prof. Dr. Christian Ochsenfeld for agreeing to be my Zweitgutachter!

I am extremely grateful to all present as well as former members of our research group, to all my teachers from the Mendeleev University in Moscow, and to all my friends in Germany, Russia and Ukraine! I thank Ludwig-Maximillians-Universität München and SFB1309 for financial support, and Leibniz-Rechenzentrum München for providing computational facilities.

Thank you very much to my family for the constant guidance, warmth and love!

«The laws of Nature are written in the language of mathematics» Galileo Galilei

«Truth is revealed in silence to those who seek it» Dmitri Mendeleev

«The most incomprehensible thing about the universe is that it is comprehensible» Albert Einstein

«Shut up and calculate! » David Mermin

«vi veri veniversum vivus vici»

VVVVV

Dedicated to My Family

List of Abbreviations and Symbols

°C	Degree Celsius
‡	Transition state
Å	Ångstrøm
a.u.	atomic units
aug-cc-pVXZ	Dunning's correlation consistent basis set (X = D (double), X = T (triple), X = Q (quadruple)) augmented (aug) with diffuse functions
B2-PLYP	double-hybrid density functional by Grimme
B3LYP	the hybrid density functional including Becke's three-parameter exchange functional and Lee-Yang-Parr's correlation functional
BSSE	basis set superposition error
calc.	calculated
CBS	complete basis set
CCSD(T)	coupled-cluster with single and double and perturbative triple excitations
DFT	density functional theory
eqn.	equation
Etot	total energy
EWG	electron withdrawing group
exp.	experimental
G2	Gaussian-2 theory
G2(MP2)	cheaper variation of G2
G3	Gaussian-3 theory
G3B3	G3 with geometries and zero-point vibrational energies calculated at
	B3LYP/6-31G(d) level of theory
G3large	an extension of 6-311G(d,p) basis set with more flexible polarization functions (2df) and polarization of the core electrons (3d2f on Na-Ar). This basis set is used as the 'limiting HF' basis set in the G3 method.
G3MP2large	G3large basis set excluding core polarization functions.
h	Planck constant $(6.62 \times 10^{-34} \text{ J s})$
НОМО	highest occupied molecular orbital
k	rate constant
k	kilo
k_B	Boltzmann constant ($1.38 \times 10^{-23} \text{ J K}^{-1}$)
LUMO	lowest unoccupied molecular orbital
MAD	mean absolute deviation
MO	molecular orbital
mol	mole
MP2(FC)	second-order Møller–Plesset perturbation theory with frozen core approximation
MP2(FULL)	second-order Møller–Plesset perturbation theory; inner-core electrons are included
NBO	natural bond orbital
NMR	nuclear magnetic resonance
NPA	natural population analysis
PCM	polarizable continuum model
SMD	solvent model based on density
р <i>К</i> а	negative lg of acid dissociation constant (K_a)
ppm	parts per million
К	common organic substituent or (R)-configured enantiomer or universal

	(-, (0, 2), 4, 5, 10, 1, -), 1-)
DIF	gas constant (8.314510 J mol ⁻ K ⁻)
RHF	restricted Hartree-Fock
S	(S)-configured enantiomer or Entropy
SCF	self-consistent field
SCS-MP2	spin-component scaled second-order Møller–Plesset perturbation theory
Τ	Temperature
t1/2	half-life time
TS	transition state
TZVP	Ahlrichs triple- ζ basis sets with one set of polarization functions
TZVPP	Ahlrichs triple- ζ basis sets with two sets of polarization functions
UAHF	United Atom for Hartree-Fock
UAKS	United atom Kohn-Sham
vs.	Versus
X-YZ+G(ndf,mpd)	valence-double- ζ basis set by Pople and coworkers supplemented by polarization (df,pd) and diffuse (+ or ++) functions, <i>e.g.</i> 6-31+G(2d,p)
X-YZW+G(ndf,mpd)	valence-triple- ζ basis set by Pople and coworkers supplemented by polarization (df,pd) and diffuse (+ or ++) functions, <i>e.g.</i> 6-311++G(2d,2p)
ZPE	zero-point energy
δ	chemical shift
ΔG_{298}	Gibbs free energy at 298K
ΔH_{298}	enthalpy at 298K
σ	shielding

Summary

In this work, the oxidizing properties of oxygen-centered radicals and the reducing properties of epigenetically modified DNA bases were studied. Special attention was paid to the equilibrium of the hydration reaction of 5-formylcytosine, because the corresponding hydrate product can be very easily oxidized. All this together allowed us to propose and thermodynamically evaluate the mechanism of the 1,5-Dimethylcytosine autoxidation reaction.

The Stability of Oxygen-Centered Radicals and its Response to Hydrogen Bonding Interactions

The radical stabilization energy (RSE) of various alkoxy/aryloxy/peroxy radicals, as well as TEMPO and triplet dioxygen (${}^{3}O_{2}$) has been explored at a variety of theoretical levels. Good correlations between RSE_{theor} and RSE_{exp} are found for hybrid DFT methods, for compound schemes such as G3B3-D3, and also for DLPNO-CCSD(T) calculations. The effects of hydrogen bonding interactions on the stability of oxygen-centered radicals have been probed

by addition of a single solvating water molecule. While this water molecule always acts as a H-bond donor to the oxygencentered radical itself, it can act as a H-bond donor or acceptor to the respective closed-shell parent.

The Redox Properties of Modified DNA Bases: C-H Bond Dissociation Energies

The properties of the oxidation products of 5mC and 5mU in their protonated, neutral and deprotonated forms were studied. Radical stabilization energies (RSE) have been calculated at the SMD(H₂O)/(U)B3LYP-D3 and SMD(H₂O)/DLPNO-CCSD(T) levels of theory. In the derivatives of uracil and cytosine, among the substituents at the 5th position, the following trend in BDE values is observed: 5dhm- < 5hm- < 5f- (where 5dhm is dihydroxymethyl, 5hm — hydroxymethyl, 5f — formyl). It has been established that the charge distribution will strongly affect the reactivity of both closed- and open-shell systems. Protonation increases the calculated BDE(C-H) values in cytosine derivatives, while

deprotonation decreases them in uracil derivatives. Addition of one explicit water does not change the results notably. Attaching a complementary base increases the calculated BDE(C-H) value and does not change the observed trend.

The pH-Dependence of the Hydration of 5-Formylcytosine: An Experimental and Theoretical Study

5-Formylcytosine is an important nucleobase in epigenetic regulation, whose hydrate form has been implicated in the formation of 5-carboxycytosine as well as oligonucleotide binding events. The hydrate content of 5-formylcytosine and its uracil derivative has now been

quantified using a combination of NMR and mass spectroscopic measurements as well as theoretical studies. Small amounts of hydrate can be identified for the protonated form of 5-formylcytosine and for neutral 5-formyluracil. For neutral 5formylcytosine, however, direct detection of the hydrate was not possible due to its very low abundance. This is in full agreement with theoretical estimates.

Autoxidation of 1,5-Dimethylcytosine: Computational Study

The (aut)oxidation reaction of 1,5-dimethylcytosine (1,5-dmC) was studied using DFT and DLPNO-CCSD(T) levels of theory. The autoxidation of 5mC is unlikely to occur through initiation by triplet oxygen unimolecular through decomposition or of hydroperoxides. All endergonic bimolecular chain reactions between neural closed-shell compounds and free radicals involve the transfer of a hydrogen atom to form a product with a higher BDE value. The thermodynamics of the presented mechanism, in principle, agrees with the experimental kinetics. We assume that the protonation (pH < 7) of oxidizable nucleic acids inhibits the oxidation process by increasing the BDE(C-H) values.

Table of Contents

1. Introduction	1
Molecular basis of epigenetics	
DNA methylation	
DNA damage and oxygen radical toxicity	2
2. The Stability of Oxygen-Centered Radicals and its Response to Hydrogen Bonding Interactions	
2.1. Manuscript	
Introduction	
Methods	6
Methodological considerations	
Theoretical methods:	
Conformational analysis:	·····7
Experimental data:	
Results	
Influence of theoretical methods	
The stability of alkoxy radicals in the absence of intermolecular interactions	
The effects of monosolvation	
The effects of monosolvation on the stability of aryloxy radicals	
The effects of monosolvation on the stability of peroxy radicals	
Acknowledgments	
References and Notes	
2.2 Supplementary information	
·SI	
1 Methodology	
1.1 Computational methodology	24
1.1. Computational methodology	23
1.2. Control results	
2. No ovnlicit wator	
2. NO explicit water 2.1. Calculated DSE values and correlation with experiment	
2.1. Calculated NSE values and correlation with experiment	
2.2. DESt structures and NDO charges	
2.5. NDO Charges unreferice - radical vs alconol	
2.4. NSE values and the law data	40
2.0. Opp. ovnligit water	90 100
3. One explicit water 2.1. Calculated DSE A and DSE Divalues:	
3.1. Calculated RSE-A difference values	101
3.2. Entitalples of complexation	103
3.3. Dest structures 2.4. Selected data – U denor and U acceptor conformers onlywww.www.www.www.www.www.	103
2. The Dedex Dreparties of Medified DNA Pases. CH Pand Dissociation Energies	110
3. The Redux Properties of Modified DNA Bases - CH Bond Dissociation Energies	150
	101
	151
	152
Results and discussion	104
Calculated BDE(C-П) values	104
Effect of base pairing	155
Effect of base pairing	150
Conclusions	157
Reletences	157
	159
-SI 1. Concret requite	159
1. General results	160
	10
1.2. DUE SUDIES	162
1.3. DDE values in C, U, TITIC, TIMU and their best by enthalpy structures	163
1.4. DDE values in G_C, sinc_inc and their best by enthalpy structures	105
 DE values III A_U, 9IIIA_IMU and their best by enthalpy structures. Detailed resultences. 	
2. Detailed results	170
2.1. DUE Values in L and 1mL.	1/8
Z.Z. DDE Values III U anu TITIU	182

2.3. Effect of base pairing on BDE values	
2.4. Base pairing enthalpies in G_C and 9mG_1mC	
2.5. Base pairing enthalpies in A_U and 9mA_1mU	190
3. Boltzmann averaged data	192
3.1. Reference compound	
3.2. C and 1mC	
3.3. U and 1mU·····	197
3.4. G_C and 9mG_1mC	
3.5. A U and 9mA 1mU	202
4. The pH-Dependence of the Hydration of 5-Formylcytosine - an Experimental and Theoretical Study	
4.1 Manuscript	205
Results and discussion	
Isotopic exchange experiment	
NMR identification and guantification	
Theoretical determination of ΔG	207
Conclusion	209
Experimental section	
Acknowledgements	
Conflict of interest	210
Data availability statement	210
References	
5. Autoxidation of 1,5-Dimethyl-Cytosine - Computational Study	213
5.1 Manuscript	214
Introduction	214
Computational details	
Results	219
Conclusions	
References	
6. Appendix	
6.1. Conformational Analysis Tools	224
Energy sorting script (ESS)	
Centroid comparison script (CCS)	
Full combinatoric comparison	227
Restricted combinatoric comparison based on geometry expansion	229
Restricted combinatoric comparison based on RMSD	
Geometry expansion comparison	231
Sorted geometries comparison	232
Benchmark	233
Strategy of stochastic conformational search	
7. CV	

1. Introduction

Genetics (from the Greek $\gamma \epsilon \nu \eta \tau \omega \zeta$ – "generating, originating from someone") is a branch of biology that studies genes, genetic variations and heredity in organisms.

Gene (ancient Greek $\gamma \acute{e} vo\varsigma$ – genus – meaning generation or birth or gender) - in classical genetics - a hereditary factor that carries information about a certain trait or function of an organism, and which is a structural and functional unit of heredity. In this capacity, the term "gene" was introduced in 1905 by the Danish botanist, plant physiologist and geneticist Wilhelm Johannsen. ¹ In nature and in living cells, a gene is presented as a sequence of nucleotides in DNA (in some viruses - RNA) that codes for the synthesis of a gene product, either RNA or protein. ² Although this is not necessarily. For example, in the popular-science book by evolutionary biologist Richard Dawkins «The Selfish Gene», it is stated that any "replicator" molecule capable of self-copying or catalyzing the synthesis of its copies (autocatalysis) can be called a "gene". ³ Currently there is no universal definition of a gene that would satisfy all researchers.

Epigenetics (ancient Greek $\dot{\epsilon}\pi\iota$ - is a prefix denoting being on something or being placed on something) is a section of genetics. Epigenetics studies inherited changes in gene activity during cell growth and division (Epigenetic inheritance) - changes in protein synthesis caused by mechanisms that do not change the nucleotide sequence in DNA. Epigenetic changes persist in a number of mitotic divisions of somatic cells and can also be passed on to the next generations. Regulators of protein synthesis (activity of genetic sequences) - DNA methylation and demethylation, histone acetylation and deacetylation, phosphorylation and dephosphorylation of transcription factors and other intracellular mechanisms.⁴

Epigenome is a set of molecular markers that regulate the activity of genes, but do not change the primary structure of DNA.

Molecular basis of epigenetics

The molecular basis of epigenetics is complex, and it does not affect the primary structure of DNA, but changes the activity of certain genes.⁵ This explains why only the genes necessary for their specific activity are expressed in differentiated cells of a multicellular organism. A feature of epigenetic changes is that they are preserved during cell division. It is known that most epigenetic changes occur only within the lifetime of one organism. At the same time, if the change in DNA occurred in the sperm or egg, then some epigenetic manifestations can be transmitted from one generation to another.⁶

DNA methylation

The most well studied epigenetic mechanism to date is the methylation of DNA cytosine bases. Intensive studies of the role of methylation in the regulation of genetic expression, including during aging, began in the 1970s by the pioneering work of B. F. Vanyushin and G. D. Berdyshev et al. The process of DNA methylation consists in the addition of a methyl group to cytosine as part of a CpG dinucleotide at the C5 position of the cytosine ring. DNA methylation is mainly characteristic of eukaryotes. In humans, about 1% of genomic DNA is methylated. Three enzymes, called DNA methyltransferases 1, 3a and 3b (DNMT1, DNMT3a and DNMT3b), are responsible for the process of DNA methylation. (Figure 1) It is suggested that DNMT3a and DNMT3b are de novo methyltransferases that shape the DNA methylation

profile in the early stages of development, while DNMT1 maintains DNA methylation at later stages of an organism's life. The DNMT1 enzyme has a high affinity for 5-methylcytosine. When DNMT1 finds a "semi-methylated site" (a site where only one DNA strand has cytosine methylated), it methylates the cytosine on the second strand at the same site. The function of methylation is to activate/inactivate a gene. In most cases, methylation of the promoter regions of a gene results in suppression of gene activity. It has been shown that even minor changes in the degree of DNA methylation can significantly change the level of gene expression. ⁷⁻¹⁰

Figure 1. The mechanism of DNA methylation. DNA methylation is exerted by DNA methyltransferases (DNMTs). DNMTs at the 5'-position of cytosine residues in CpG dinucleotides transfers methyl groups from SAM (S-adenosylmethionine) to SAH (S-adenosylhomocysteine); thus, 5-methylcytosine is formed.

DNA damage and oxygen radical toxicity

DNA damage is a change in the chemical structure of DNA, such as a single-strand or doublestrand break in the sugar-phosphate backbone of DNA, loss or chemical change of nitrogenous bases, cross-linking of DNA chains, cross-linking of DNA-protein. The structure of DNA in a cell is regularly disrupted due to the fact that during natural metabolism, compounds are formed that have the ability to damage DNA. These compounds include reactive oxygen species, reactive nitrogen species, reactive carbonyl groups, lipid peroxidation products, and alkylating agents.¹¹ The frequency of DNA damage caused by exposure to natural cellular metabolites reaches, according to some estimates, tens of thousands of events per day per cell.¹² DNA can also be damaged by external agents such as ionizing radiation or chemical mutagens.

DNA damage must be distinguished from mutations. DNA damages are abnormal chemical structures in DNA, while mutations are changes in the sequence of standard base pairs: A (adenosine), T (thymidine), G (guanosine), C (cytidine).

Most DNA damage can be repaired during DNA repair, but DNA repair, firstly, is not completely effective, and secondly, in some cases, DNA damage repair leads to errors and, as a result, to the occurrence of mutations. In addition, there is evidence that the process of repair of some DNA damages, namely DNA double-strand breaks, can lead to epigenetic changes in the form of methylation of the surrounding DNA and, as a result, silencing of gene expression.¹³

DNA damage can trigger programmed cell death, i.e., apoptosis.¹⁴ Uncorrected DNA damage can accumulate in non-dividing post-mitotic cells, such as brain cells or muscle cells in adult mammals, and may be the cause of aging.¹⁵ In dividing cells, such as intestinal epithelial cells or hematopoietic bone marrow cells, errors in DNA damage repair can lead to mutations that are passed on to subsequent generations of cells, and some of these mutations may have oncogenic potential.

In aerobic life forms, the energy necessary for the implementation of biological functions is produced by mitochondria along the electron transport chain. Reactive oxygen species (ROS), which have the potential to harm cells, are produced along with energy. ROS can damage lipids, DNA, RNA, and proteins, which in theory contribute to physiological changes during aging.

ROS occur as a normal product of cellular metabolism. Among them, the main instigator of oxidative damage is hydrogen peroxide (H₂O₂), which arises from superoxide secreted by mitochondria. Catalase and superoxide dismutase mitigate the damaging effects of hydrogen peroxide and superoxide, respectively, by converting these substances into oxygen and hydrogen peroxide (which later turns into water) - that is, they produce harmless molecules. However, these transformations are not 100% effective, and peroxide residues remain in the cells. Although ROS are a product of the normal functioning of cells, their excess leads to detrimental consequences. ^{16,17}

References

- [1] W. Johannsen. Arvelighedslærens elementer, 1905.
- [2] H. Pearson, Nature 2006, 441, 398.
- [3] R. Dawkins, N. Davis. The selfish gene; Macat Library, 2017.
- [4] C. Dupont, D. R. Armant, C. A. Brenner. Seminars in reproductive medicine, 2009, pp 351.
- [5] A. Watanabe, Y. Yamada, S. Yamanaka, *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* 2013, 368, 20120292.
- [6] V. L. Chandler, Cell 2007, 128, 641.
- [7] B. A. Buck-Koehntop, P.-A. Defossez, *Epigenetics* 2013, 8, 131.
- [8] S. Seisenberger, J. R. Peat, T. A. Hore, F. Santos, W. Dean, W. Reik, *Philos. Trans. R. Soc. Lond., B, Biol. Sci.* **2013**, *368*, 20110330.
- [9] G. Kelsey, R. Feil, Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2013, 368, 20110336.
- [10] M. Ciechomska, L. Roszkowski, W. Maslinski, Cells 2019, 8, 953.
- [11] R. De Bont, N. Van Larebeke, Mutagenesis 2004, 19, 169.
- [12] C. Bernstein, A. Prasad, V. Nfonsam, H. Bernstein, Prof. Clark Chen (Ed.), InTech 2013.
- [13] H. M. O'Hagan, H. P. Mohammad, S. B. Baylin, PLoS Genet. 2008, 4, e1000155.
- [14] W. P. Roos, B. Kaina, *Cancer Lett.* 2013, 332, 237.
- [15] A. A. Freitas, J. P. De Magalhães, Mutat. Res. Rev. Mutat. Res. 2011, 728, 12.

[16] L. Packer. Understanding the Process of Aging: The Roles of Mitochondria: Free Radicals, and Antioxidants; CRC Press, **1999**.

[17] J. A. Imlay, S. Linn, Science 1988, 240, 1302.

2. The Stability of Oxygen-Centered Radicals and its Response to Hydrogen Bonding Interactions

Vasily Korotenko and Hendrik Zipse*

Submitted manuscript.

Author contributions: The project was conceived by V.K. and H.Z. The computational study was performed by V.K. The manuscript was written by V.K.

The radical stabilization energy (RSE) of various alkoxy/aryloxy/peroxy radicals, as well as TEMPO and triplet dioxygen ($^{3}O_{2}$) has been explored at a variety of theoretical levels. Good correlations between RSE_{theor} and RSE_{exp} are found for hybrid DFT methods, for compound schemes such as G3B3-D3, and also for DLPNO-CCSD(T) calculations. The effects of hydrogen bonding interactions on the stability of oxygen-centered radicals have been probed by addition of a single solvating water molecule. While this water molecule always acts as a H-bond donor to the oxygen-centered radical itself, it can act as a H-bond donor or acceptor to the respective closed-shell parent.

The Stability of Oxygen-Centered Radicals and its Response to Hydrogen Bonding Interactions

Vasily Korotenko¹, Hendrik Zipse²

Correspondence to: Hendrik Zipse (E-mail: *zipse@cup.uni-muenchen.de*)

^{1,2} Department of Chemistry, LMU München, Butenandtstrasse 5-13, 81377 München, Germany

ABSTRACT

The stability of various alkoxy/aryloxy/peroxy radicals, as well as TEMPO and triplet dioxygen $({}^{3}O_{2})$ has been explored at a variety of theoretical levels. Good correlations between RSE_{theor} and RSE_{exp} are found for hybrid DFT methods, for compound schemes such as G3B3-D3, and also for DLPNO-CCSD(T) calculations. The effects of hydrogen bonding interactions on the stability of oxygen-centered radicals have been probed by addition of a single solvating water molecule. While this water molecule always acts as a H-bond donor to the oxygen-centered radical itself, it can act as a H-bond donor or acceptor to the respective closed-shell parent.

KEYWORDS

radicals, thermodynamic stability, isodesmic equations, *ab initio* calculations, hydrogen abstraction, hydrogen bonding

Introduction

Oxygen-centered radicals play a central role in radical reactions as diverse as the autoxidation of lipids and its inhibition through antioxidants, the cumol hydroperoxide process for the production of acetone and phenol, or the reduction of ribonucleotides by class I reductase.¹⁻⁸ The ribonucleotide radicals involved in these reactions vary largely in terms of their kinetic and thermodynamic properties (Figure 1). On the high-activity end of the scale we may find the hydroxyl radical (•OH, 1), whose often very short lifetime in solution-phase experiments is tightly connected to its low thermochemical stability. Oxygen-centered radicals of intermediate stability are those derived from phenoxy radical (2), either in the context of the antioxidative activity of phenols such as α -tocopherol (3), or in enzyme-mediated reactions involving tyrosyl radicals (4).9-11

FIGURE 1 O-Centered radicals involved in common radical reactions: hydroxyl radical (1), phenoxy radical (2), α -tocopheryl radical (3), tyrosyl radical (4), and TEMPO radical (5).

On the low-activity end we can find nitroxyl radicals such as (2,2,6,6-tetramethylpiperidin-1-yl)oxy radical (TEMPO, **5**), whose kinetic and thermochemical stability is high enough to allow

bottling and shipping at ambient temperature. The electronic structure of oxygen-centered radicals is typically characterized by the presence of two lone pairs at the spin-carrying oxygen atom as shown in Figure 2. Interactions between oxygen-centered radicals and their condensed-phase environments depends, among others, on specific interactions of these lone pair orbitals and the unpaired spin with suitable interaction partners. Three specific types of interaction have to be anticipated based on earlier precedent as shown in Figure 2 for water as a molecular probe. These include: (a) hydrogen bonding interactions, where one of the RO• radical lone pair orbitals acts as the hydrogen bond acceptor; (b) single-electron hydrogen bond (SEHB) interactions involving the RO• radical SOMO and the $\sigma^*(OH)$ orbital of water; and (c) 2c3e "hemibond" interactions ¹² between the RO• radical SOMO and one of the water lone pair orbitals. In the following we analyze the impact of these interactions on the thermodynamic stability of oxygen-centered radicals RO• as a function of the substituent R.

(a) Hydrogen bonding interactions

(b) Singe-electron hydrogen bond (SEHB) interactions

(c) "Hemibond" (2c3e) interactions

FIGURE 2 Possible interaction types between oxygen-centered radicals RO• and a water molecule.

H-bond acceptor

FIGURE 3 Interaction of an explicit water molecule with oxygen-centered radicals RO• and the respective parent alcohols ROH.

Methods

WWW.C-CHEM.ORG

H R-Ó

Methodological considerations

The thermodynamic stability of O-centered radicals can be characterized by the O-H bond dissociation energy (BDE(OH)) of the respective alcohols as defined in reaction 1 in Figure 3, larger values indicating thermochemically less stable radicals. Variations of BDE(OH) values can conveniently be expressed relative to a common reference system such as hydroxyl radical (1) through the formal hydrogen atom transfer reaction shown in reaction 2 in Figure 3. The reaction enthalpy at 298.15 K calculated for this isodesmic hydrogen transfer reaction is sometimes referred to as the radical stabilization energy (RSE) of radical RO• as it reflects, to a certain extent, the influence of substituent R on the properties of radical RO•. Combination of these RSE values with the experimentally determined BDE value of water¹³ of BDE(OH, 1H)

WWW.CHEMISTRYVIEWS.COM

Journal of Computational Chemistry

= +497.3 \pm 0.1 kJ mol⁻¹ as expressed in eq. 1 provides an indirect and accurate way for the determination of BDE(OH) values in alcohols ROH.¹⁴⁻²⁰

 $BDE(RO-H) = RSE(RO \bullet) + BDE_{exp}(HO-H)$ (eq. 1)

 $\Delta RSE = RSE-A/D(RO \bullet) - RSE(RO \bullet) =$

 $= \Delta H_{c1}^{gas}(RO \bullet) - \Delta H_{c1}^{gas}(ROH) \quad (eq. 2)$

 $BDE-A/D(RO-H) = BDE(RO-H) + \Delta RSE$ (eq. 3)

Aside from serving as a general indicator of radical stability, the BDE(OH) values also provide the basis for assessing the thermodynamics of hydrogen transfer reactions between O-centered radicals and hydrogen atom donors. The experimental determination of BDE(OH) values has only in selected cases been possible with "chemical accuracy", which is often taken to be at the 1 kcal mol⁻¹ (or 4 kJ mol⁻¹) limit. In order to provide accurate values for a broader range of systems, efforts have in recent years been undertaken to identify theoretical methods for the accurate calculation of bond dissociation energies.

Theoretical methods

The theoretical methods used in these types of studies range from DFT-based methods (for extended systems),²¹⁻²⁴ wavefunction-based methods involving perturbation theory such as the ROMP2(FC)/6-311+G(3df,2p) approach,^{12,18} double-hybrid functionals such as B2-PLYP,^{25,26} all the way to highly elaborate compound schemes such as G3(MP2)-RAD,^{14-20,27-32} G3B3,^{33,34} CBS-QB3,³⁵ or the Weizmann-family ³⁶ of methods. More recently the DLPNO-CCSD(T) method for open-shell systems has emerged as an additional tool for the accurate description of larger radicals, in particular when combined with the complete basis set (CBS) extrapolation scheme.³⁷⁻³⁹ The underlying geometries employed in the above-mentioned theoretical approaches are often optimized using hybrid DFT methods. The compound G3B3 method, for example, employs geometries optimized at the (U)B3LYP/6-31G(d)40-42 level of theory.

Particularly for larger molecular systems, the geometries optimized with or without corrective terms for London dispersion interactions (e.g. the D3 corrections parameterized by Grimme et al.)^{43,44} may differ considerably. Preliminary calculations of selected RO• radicals furthermore indicated that consistent structural data require a basis set at least as large as 6-31+G(d,p) (see SI for further details). The subsequent results are therefore based on geometries optimized at the (U)B3LYP-D3/6-31+G(d,p) level of theory.

Conformational analysis

The initial structures of molecular complexes were generated randomly using the «kick» algorithm.^{45,46} Geometry optimizations have been performed using the (U)B3LYP hybrid functional, either alone or complemented by the D3 dispersion correction.44 The 6-31G(d) and 6-31+G(d,p) all electron basis sets have been used for all elements. Frequency calculations have been carried out to verify that the optimized structures are true minima. Thermochemical corrections to H^{gas} and G^{gas} at 298.15 K were calculated using the rigid rotor/harmonic oscillator model.⁴⁷ The symbol (^{gas}) denotes a gas phase standard state of 1 atm. The individuality of the found conformers was confirmed using an energy criterion $\Delta E_{tot} > 10^{-7}$ Hartree⁴⁸ and comparing geometries by distances between each atom and the centroid point.49 A detailed description of both algorithms can be found in the SI.

Experimental data

Table 1 contains RSE and BDE(OH) values for systems selected such that they represent the three most relevant classes of substituents in O-centered radicals: (a) radicals with alkyl substituents attached to the spin-bearing oxygen atom such as methoxy radical (**6**); (b) radicals with π -systems attached to the radical center as is the case in phenoxy radical (**2**) or formyloxy radical (**20**); and (c) radicals with lone-pair donors attached to the radical oxygen as is found in peroxy radicals or in nitroxyl radicals such as TEMPO (**5**). The last column in Table 1 collects

experimentally determined BDE(OH) values together with the respective RSE(RO•) values obtained according to reaction 2 in Figure 3. In several cases data from different experimental sources have been considered, and the currently most accurate recommended value is labeled in bold. Wherever available, data form the Active Thermochemical Tables (ATcT) have been employed.¹³ The O-H bond enthalpy in water of $BDE(OH) = 497.3\pm0.3 \text{ kJ mol}^{-1}$ represents the upper bond enthalpy limit and thus an important reference for all other systems considered here. ^{13,51} For the O-H bond enthalpy in *t*-BuOH (**7H**) photoelectron spectroscopy measurements⁵⁰ yield a value of 444.9 kJ mol⁻¹, while thermochemical measurements yield a slightly larger value of 446.8 kJ mol^{-1.51} The BDE(OH) for methanol (6H) has an ATcT value of 440.4 kJ mol⁻ ¹, which is closely matched by data from photoelectron spectroscopy.⁵⁰ The O-H bond enthalpy in ethanol (9H) at $BDE(OH) = 440.4\pm0.5$ kJ mol⁻¹ is practically identical to that in methanol, which implies only a minor effect through the different alkyl substituents.^{13,53} Stabilizing effects through further elongations in the alkyl chain remain moderate as can be seen from BDE(OH) = 432.3 kJ mol⁻¹ for *n*-butanol (11H),⁵² as are the effects of benzylic substituents as in benzyl alcohol (8H) with $BDE(OH) = 442.7 \text{ kJ mol}^{-1.53} \text{ or in cumyl alcohol}$ PhC(CH₃)₂OH (**10H**) with BDE(OH) = $438.2 \text{ kJ mol}^{-1}$ ¹.⁵⁴ The most accurate gas phase measurements for phenol (2H) have been reported by Ashfold and coworkers at 0 K.⁵⁵ As stated previously,¹⁵ the addition of thermal corrections (0.6 kJ mol⁻¹) to the experimentally determined RSE values vields the most accurate values of BDE(OH) = 365.0 kJ mol⁻¹ for phenol (2H) and BDE(OH) = 356.6 kJ mol⁻¹ for *para*-methylphenol (**14H**). Combination of the value for 2H with known substituent effects 56,57 we obtain reference BDE(OH) values for substituted phenols X-PhOH with $X = NH_2$ (324±13) and $X = NO_2$ (390±8). The O-H bond energies in hydroperoxides are quite similar to those in phenols, the value for the parent hydrogen peroxide (H₂O₂, 13H) amounting to BDE(OH) = 365.7 ± 0.2 kJ mol⁻¹ and

Journal of Computational Chemistry

4

that for methylhydroperoxide 15H being only slightly lower at BDE(OH) = 358.4 ± 0.7 kJ mol⁻¹. This latter value is closely similar to a recent comparative analysis of alkylhydroperoxides,⁵⁸ but somewhat lower than earlier estimates based on gas phase kinetics measurements.^{59,60} The currently available BDE(OH) data for PhCH₂OOH (**16H**) of BDE(OH) = 365 kJ mol^{-1} and t-BuOOH (17H) of BDE(OH) = 352.3±8.8 kJ mol⁻¹ are somewhat less accurate and have also seen less attention than most other systems in Table 1.^{60,61} For TEMPO-H (**5H**) we adopt the currently recommended BDE(OH) value in heptane solution of 293.2 kJ mol⁻¹.62,63 Triplet dioxygen (³O₂, **19**) is also included here as an important oxygen-based radical, despite the fact that it carries a triplet ground state and thus differs from all other systems in Table 1. It is nevertheless included here due to its frequent involvement in oxidation reactions and its debatable role in direct hydrogen atom abstractions from hydrocarbon substrates. The rather low value of BDE(OH) = 205.8 kJ mol⁻¹ in radical HOO• (13) already implies that direct hydrogen atom abstractions from hydrocarbon substrates by ³O₂ are thermochemically rather unfavorable.

Results

Influence of theoretical methods

Basis set effects were studied for (U)B2PLYP and DLPNO-CCSD(T) calculations using (U)B3LYP-D3/6-31+G(d,p) optimized geometries. The twopoint (cc-pVTZ and cc-pVQZ) extrapolation strategy was employed for DLPNO-CCSD(T) calculations to estimate the complete basis set limit.^{38,64} In general, changing the basis set from cc-pVTZ to cc-pVQZ in case of both (U)B2PLYP and DLPNO-CCSD(T) makes the radical stabilization energy as defined by reaction 2 in Figure 3 slightly more negative and also leads to a small improvement of the correlation coefficient with experimental values R^2 (Table 1). The rather moderate magnitude of these effects suggests that calculations with basis sets of

TABLE 1 RSE(RO•) values for selected O-centered radicals (in kJ mol⁻¹) calculated at various levels of theory together with available experimental data (and the associated BDE(O-H) data) ordered by experimental BDE(RO•) values.

Radical	RSE(RO•)							BDE(RO•)		
_	DFT ^[a]	(U)B2	2PLYP ^[b,c]	DLI	DLPNO-CCSD(T) ^[b,c]		G3B3-D3		exp.	exp.
		TZ	QZ	ΤZ	QZ	CBS	[b]	[d]		
HO• (1)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+497.3±0.1 ^[13] +497.1±0.3 ^[65]
HC(O)O• (20)	-35.2	-40.0	-43.3	-14.3	-18.6	-20.9	-30.2	-27.6	-28.4±0.6	+468.89±0.56 ^[13]
<i>t</i> -Bu-O• (7)	-57.7	-49.9	-52.3	-42.8	-45.4	-46.7	-47.2	-47.7	-52.4±2.8	+444.9±2.8 ^[50,66] +446.8±4.2 ^[51]
PhCH₂O• (8)	-65.0	-57.3	-59.2	-48.4	-50.8	-52.2	-54.8	-55.5	-54.6±8.8	+442.7±8.8 ^[53,66]
CH ₃ O• (6)	-65.3	-58.6	-60.3	-53.4	-55.5	-56.6	-55.3	-55.8	-56.9±0.3	+440.4±0.3 ^[13] +440.2±3.0 ^[51,66] +437.7±2.8 ^[50]
CH ₃ CH ₂ O• (9)	-66.6	-58.7	-60.4	-52.5	-54.6	-55.7	-57.5	-54.8	-56.9±0.5	+440.4±0.5 ^[13] +441.0±5.9 ^[51, 66] +438.1±3.3 ^[50]
PhC(CH ₃) ₂ O• (10)	-58.1	-50.5	-53.2	-40.9	-43.7	-45.1	-45.9	-47.8	-59.1±1.0	+438.2±1.0 ^[54, 66]
<i>n</i> -Bu-O• (11)	-66.8	-59.1	-61.1	-52.2	-54.5	-55.7	-52.9	-55.3	-65.0	+432.3 ^[52]
<i>p</i> -nitro-PhO• (12)	-114.5	-97.7	-100.8	-100.8	-104.3	-106.1	-113.4	-106.0	-107±8	+390±8^[56, 15] +396±8 ^[56]
HOO• (13)	-134.4	-133.7	-135.8	-124.9	-128.1	-129.6	-129.2	-129.6	-131.6±0.2	+365.7±0.2 ^[13]
PhO• (2)	-132.9	-114.2	-117.7	-116.3	-121.0	-123.6	-121.1	-121.6	-132.3±0.5	+365±0.5 ^[15] +371.3±2.3 ^[56] +367.1±0.9 ^[13] +362.7±3.0 ^[67]
PhCH ₂ -OO• (16)	-139.0	-136.4	-140.4	-122.1	-125.9	-128.0	-126.5	-131.5	-132.3	+365 ^[61]
CH ₃ OO• (15)	-141.8	-139.4	-142.4	-128.9	-132.8	-134.7	-133.0	-135.8	-138.9±0.7	+358.4 \pm 0.7 ^[13] +370.3 \pm 2.1 ^[59, 66] +367.3 \pm 4 ^[60] +357 \pm 5 ^[58]
<i>p</i> -methyl-PhO• (14)	-141.3	-122.5	-126.3	-122.5	-127.6	-130.5	-128.8	-129.3	-140.7±0.6	+356.6±0.6 ^[15] +363±4 ^[67]
t-Bu-OO• (17)	-148.5	-145.6	-149.1	-132.7	-136.8	-138.7	-140.8	-141.5	-145±8.8	+352.3±8.8 ^[60, 66]
<i>p</i> -amino-PhO• (18)	-168.8	-152.2	-156.1	-143.9	-149.3	-152.4	-153.3	-153.8	-173±13	+324±13 ^[67,15] +331±13 ^[67]
TEMPO (5)	-208.0	-206.4	-210.9	-185.1	-191.7	-195.4	-198.0	-198.4	-204.1±0.4	+293.2±0.4 ^[62] +291.2 ^[63]
³ O ₂ (19)	-274.6	-291.7	-294.4	-283.8	-288.0	-290.1	-289.1	-289.2	-291.5±0.2	+205.8±0.27 ^[13]
MSE	-2.8	3.3	0.4	12.1	8.3	6.4	5.4	5.2		
MUE	5.5	6.6	7.0	12.1	8.3	6.4	5.4	5.3		
R ²	0.9956	0.9823	0.9830	0.9906	0.9926	0.9936	0.9938	0.9935		

[a] "DFT" - (U)B3LYP-D3/6-31+G(d,p); [b] Using (U)B3LYP-D3/6-31+G(d,p) optimized geometries; [c] "TZ, QZ" - cc-pVTZ, cc-pVQZ; [d] Using (U)B3LYP-D3/6-31G(d) optimized geometries.

FIGURE 4 Correlation plots for (a) DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p) and (b) G3B3-D3.

quadruple zeta quality may only be required in exceptional cases. In Table 1 it can be seen that DLPNO-CCSD(T)/CBS and G3B3-D3 results are quite similar for most systems, the largest difference (-20.9 vs. -27.7 kJ/mol) being that for formyloxy radical (20). Correlations for the RSE values calculated at G3B3-D3 and DLPNO-CCSD(T)/CBS levels with the corresponding experimental data is shown in Figure 4. Both have positive mean signed errors (MSE) and mean unsigned errors (MUE) of almost identical magnitude, which implies that the calculated radical stabilities are systematically smaller than experimental values. Perusal of Table 1 indicates this to result mainly from the values for the four phenoxy radicals 2, 12, 14, and 18. The economical (U)B3LYP-D3/6-31+G(d,p) method employed for geometry optimization shows, in comparison, an impressively good correlation.

The stability of alkoxy radicals in the absence of intermolecular interactions

The stabilities of oxygen-centered radicals as collected in Table 1 and shown graphically in Figure 4 depend significantly more on the attached substituents than carbon- or nitrogencentered radicals. The underlying mechanisms for these substituent effects have been

discussed earlier and will therefore be reiterated here only briefly.^{68,69} Alkyl substituents are moderately stabilizing with RSE values around kJ mol⁻¹ through hyperconjugative 62±5 interactions between the oxygen-based SOMO and the neighboring C-C and C-H bonds. The latter appear somewhat more effective as can be seen from the stability difference between the methoxy and tert-butoxy radicals (6 vs. 7). The stability of aryl- and acyloxy radicals varies widely as a function of the structure of the attached π -system. On the low stability side this includes the formyloxy radical (20) with RSE(20) = -28.4 kJ mol⁻¹, whose delicate electronic structure has been noted in earlier theoretical studies.⁷⁰ The phenoxy radical **2** is, in comparison, much more stable at RSE(2) = -132.3 kJ mol⁻¹, and displays an impressive stability variation of more than 50 kJ mol⁻¹ between its 4nitro- and 4-amino-substituted variants (12 vs. 18). Peroxy radicals are similarly stable as phenoxy radical 2. For the alkyl-substituted cases 15, 16, and 17 included here we note that their stability is only moderately higher as compared to the parent HOO• radical at RSE(13) = -131.6 kJ mol⁻¹. Nitroxyl radicals such as TEMPO are, in comparison, significantly more stable at RSE(5) = -204 kJ mol⁻¹, which illustrates the superior

10

Journal of Computational Chemistry

ability of amino- as compared to alkoxy-groups to act as electron donors. The even higher stability of triplet dioxygen at RSE(**19**) = -291.5 kJ mol⁻¹ simply documents the unique electronic structure of this system,⁷¹ that cannot (and should not) be compared directly with all other O-centered (doublet state) radicals in this study.

The effects of monosolvation

The principal interaction modes of explicit water molecules with oxygen-centered radicals RO• have already been detailed in Figure 2. When assessing the impact of these interactions on radical stability as defined earlier in reaction 2 in Figure 3, we also have to decide on the interaction of water with the parent alcohols. One obvious interaction scheme is shown in reaction 2-A in Figure 3, where the parent alcohols act as hydrogen-bond acceptors in very much the same way as the oxygen-centered radicals. Radical stabilization energies calculated with these interaction types will be designated "RSE-A" and reflect, in addition to the influences of substituent R, the change in hydrogen bond strength to the alcohol oxygen on radical formation. Alternatively, the parent alcohols may also act as a hydrogen-bond donor to the water molecule probe, while the oxygencentered radical remains to act as a hydrogenbond acceptor as expressed in reaction 2-D in Figure 3. Radical stabilization energies calculated according to this latter definition will be designated "RSE-D". In the following we will first analyze how RSE-A values differ from the gas phase values presented before in Table 1.

The smallest system, where the influence of water complexation can be explored, is the H_2O/HO • radical reference system itself (that is, R = H in Figure 2). This involves the water dimer on the reactant side, whose hydrogen-bound structure has been studied in large detail experimentally as well as theoretically.⁷²⁻⁷⁴ Whether or not minima other than the structure shown in Figure 5 exist on the potential energy surface depends largely on the theoretical method.⁷⁵ At the B3LYP-D3/6-31+G(d,p) level employed here only one true minimum can be

located on the PES. This minimum is characterized by a hydrogen bonding distance of 191.2 pm. Three true minima are found for the complex of hydroxyl radical **1** with water at the level.76 UB3LYP-D3/6-31+G(d,p) In the energetically most favorable structure the HO• radical acts as hydrogen bond donor, while the roles are reversed in the second-best structure 1a_2 located 8.0 kJ mol⁻¹ higher in energy (DLPNO-CCSD(T)/CBS results).77-81 This latter structure corresponds to the hydrogen bonding situation shown in Figure 2a and is characterized by a hydrogen bonding distance of 203.2 pm. The energetically least stable minimum corresponds to a "hemibond" structure 1a_3 best described by the orbital interaction described before in Figure 2c and is located 13.0 kJ mol⁻¹ higher. Concentrating on water complex 1a_2 with the hydrogen-bonding pattern shown in Figure 2a, a radical stabilization energy of RSE-A(1a) = +4.1 kJ mol⁻¹ is obtained at the DLPNO-CCSD(T)/CBS level of theory. By definition, the corresponding RSE value in the absence of hydrogen bonding interactions with water is 0.0 kJ mol⁻¹, and we may thus conclude that hydrogen-bond formation to the oxygen atom of the HO• radical is destabilizing by +4.1 kJ mol⁻¹. From the geometrical data and the ESP plots for the water complexes **1Ha** and **1a_2**, as well as the SD plot for **1a 2** we can see that the underlying hydrogen bonding interactions correspond to those expected from the principal interaction types presented in Figure 2.

Analysis of the energetically best water complexes of all other radicals studied here shows that the hydrogen-bonding pattern described by Figure 2a is present in all of these. Interactions of types (b) and (c) can also be identified for some of the radicals, but these are systematically less stable and thus have a comparatively low Boltzmann population with little impact on the calculated RSE values. Further structural analysis of the water complexes of O-radicals and their parent alcohols indicates that more than one contact typically exists between the complexation partners. These can be C-H···Ow,^{80,82,83} Ar···Hw

^{80,84} and other weak «secondary» intermolecular interactions,⁸⁵ or a second hydrogen bond (as in the case of peroxy radicals and the corresponding peroxide parents, see below). These additional interactions are stabilizing in nature and thus influence both the water/substrate complexation energies and their structural characteristics. As а consequence, the water/substrate complexation energies show only poor correlations with single structural parameters such as hydrogen bond distances.

The molecular orbitals of phenoxy radical **2** shown as an example in Figure 6 allow, in combination with the associated molecular electrostatic potential (ESP), for a better understanding of the intermolecular interactions. The 24 α and 24 β (HOMO) orbitals have a similar shape and contribute to the electron density on the oxygen atom along the aromatic ring plane, to which the 25 α (SOMO) and 25 β (LUMO) orbitals show a perpendicular orientation.

FIGURE 5 2D- and 3D-structures, quantum theory of atoms in molecules (QTAIM), electrostatic potential (ESP), electron localization function (ELF=0.90 a.u.), spin density (SD=0.01 a.u.) for water dimer **1Ha** and the water complexes of hydroxyl radical **1a_1** - **1a_3**. For the latter three complexes relative enthalpies Δ H^{gas} (kJ mol⁻¹) calculated at the (U)B3LYP-D3/6-31+G(d,p) (DFT) and DLPNO-CCSD(T)/CBS (CBS) levels are also given.

Journal of Computational Chemistry

		RSE(RO∙)								
R Accepto	-0, ог н н^0	Ac	R-O ceptor H H ^{-O}		D	R-O H Donor				
Radi	cal		Alcohol			Alcohol				
		DFT ^[a]	CBS ^[b]	G3B3-D3 ^[c]	DFT ^[a]	CBS ^[b]	G3B3-D3 ^[c]			
HO•	(1)	+6.1	+4.1	+4.1 ^[d]	+6.1	+4.1	+4.1 ^[d]			
HC(O)O•	(20)	-39.4	-10.3	-23.9	-9.0	+16.4	+3.1			
				-15.0 ^[d]			+11.5 ^[d]			
t-Bu-O∙	(7)	-55.1	-44.3	-44.6	-62.9	-49.5	-52.7			
PhCH ₂ O•	(8)	-56.6	-45.2	-45.0	-56.5	-43.6	-44.8			
CH₃O●	(6)	-60.6	-53.7	-51.6	-63.4	-55.3	-55.7			
CH ₃ CH ₂ O●	(9)	-60.1	-51.5	-50.2	-65.7	-55.1	-56.1			
PhC(CH₃)₂O●	(10)	-55.1	-41.5	-44.3	-53.5	-38.8	-40.1			
<i>n</i> -Bu-O●	(11)	-62.7	-53.1	-52.2	-68.5	-57.1	-57.5			
<i>p</i> -nitro-PhO●	(12)	-125.3	-115.3	-114.8	-104.7	-98.1	-95.6			
HOO•	(13)	-142.9	-137.1	-137.6	-142.9	-137.1	-137.6			
PhO∙	(2)	-144.0	-132.5	-130.4	-133.4	-124.0	-118.9			
PhCH₂OO•	(16)	-137.5	-126.8	-129.3	-127.5	-116.3	-118.7			
CH₃OO∙	(15)	-143.5	-136.0	-137.3	-132.3	-124.9	-126.1			
<i>p</i> -methyl-PhO•	(14)	-153.1	-140.0	-138.5	-143.8	-132.7	-128.3			
t-Bu-OO∙	(17)	-149.6	-139.5	-144.5	-137.1	-127.8	-131.8			
<i>p</i> -amino-PhO•	(18)	-183.2	-163.9	-165.7	-176.3	-158.2	-160.9			
TEMPO •	(5)	-215.5	-203.4	-208.8	-198.6	-189.8	-191.4			
•00•	(19)				-236.4	-258.2	-257.6			

[a] (U)B3LYP-D3/6-31+G(d,p) level of theory

[b] DLPNO-CCSD(T)/CBS using (U)B3LYP-D3/6-31+G(d,p) optimized geometries

[c] Using (U)B3LYP-D3/6-31G(d) optimized geometries

[d] Using (U)B3LYP-D3/6-31+G(d,p) optimized geometries

Since there is no electron in the LUMO, this leads to the formation of two more negative ESPregions on oxygen favorable for hydrogen bonding interactions. All oxygen-centered radicals studied here have a similar electronic structure at the radical center. The second effect, which can affect the charge distribution on the radical center, is based on the concept of σ -holes as reported previously for sulphur-,⁸⁶ nitrogen-,⁸⁷ and halogen-containing compounds.⁸⁸ The electron density of the oxygen atom is slightly shifted towards the covalent bond along the C-O• (or O-O•) axis, the effect being most visible for peroxy radials.

The effects of monosolvation on the stability of alkoxy radicals

The RSE-A values of alkoxy radicals listed in Table 2 are somewhat less negative than the RSE values in Table 1. These radicals are thus

destabilized through mono-complexation with water, the destabilization varying between 2.6 kJ mol⁻¹ for n-BuO• (11) and 7.0 kJ mol⁻¹ for $PhCH_2O \bullet$ (8). These changes imply that the complexation energies for the parent alcohols (acting as H-bond acceptors) are larger than those for the respective radicals. This may, at least in part, differences in the oxygen atom partial charges (NBO), which are significantly smaller on the radical oxygen as compared to those in the parent alcohols (see SI). Changing the role of the parent alcohol to that of the Hbond donor yields the alkoxy radical RSE-D values in Table 2, which are closely similar to the RSE values of uncomplexed alkoxy radicals in Table1. Only for the benzyloxy-type radicals 8 and 19 are the RSE-D values similarly less negative than already found for the RSE-A values, the largest change being that for benzyloxy radical **8** with a $\Delta\Delta$ RSE = +8.6 kJ/mol.

The effects of monosolvation on the stability of aryloxy radicals

The monosolvation enthalpy $\Delta H_{c1}^{gas}(ArO \bullet)$ increases systematically when moving from acceptor- to donor-substituted phenoxy radicals, the lowest value being found for radical p-NO₂-PhO• ($\Delta H_{c1}^{gas}(12)$ = -20.1 kJ mol⁻¹) and the highest for p-NH₂-PhO• ($\Delta H_{c1}^{gas}(18) = -25.5 \text{ kJ mol}^{-1}$) at DLPNO-CCSD(T)/CBS level. This is accompanied by a decrease in the hydrogen bonding distances r(O•…H) of 195.2 pm for radical 12 and 183.3 pm for 18, and an increase in the partial charge of the radical oxygen atom of -0.46 in radical 12 and -0.55 in radical 18. It should be added that the NBO charge of the radical oxygen atom in aryloxy radicals amounts to only 70% of the charge of the same atom in the parent phenols. From a structural point of view, the aryloxy radical water complexes are largely similar in that the water is located in the aryl group ring plane. That this type of orientation provides the most effective interaction with the oxygen lone pair electron density is easily seen in Figure 6.

Comparing the RSE-A and RSE-D values for arvloxy radicals in Table 2 we note that these are actually guite different. In a very general sense, these differences result from phenols being much better hydrogen bond donors as compared to acceptors. Focusing first on the RSE-A values, we note that these are systematically larger (more negative) by approx. 10 kJ mol⁻¹ as compared to the RSE values for aryloxy radicals in Table 1. This shift results from differences complexation in energies ΔH_{c1}^{gas} (ArOH) for the parent phenols, which are approx. 10 kJ mol⁻¹ smaller than for the resulting phenoxy radicals. Taking the parent phenol system as an example, we have $\Delta H_{c1}^{gas}(2H) = -13.1 \text{ kJ mol}^{-1} \text{ vs. } \Delta H_{c1}^{gas}(2) = -21.7 \text{ kJ mol}^{-1}$. The difference of these values of $\Delta\Delta H_{c1}^{gas}$ = -8.6 kJ mol⁻¹ is closely similar to the difference in RSE(2) and RSE-A(2) values (-123.6 vs. -132.5 kJ mol⁻¹. The range of RSE-D values listed for aryloxy radicals in Table 2 (-98.1 for radical 12 to -158.2 for radical 18) is somewhat larger than the range

of RSE values in Table 1 (from -106.1 for radical **12** to -152.4 for radical **18**). This is due to the fact that p-NO₂-PhOH is a much better H-bond donor as compared to the donor-substituted phenols **14H** and **18H**. As a result, we find that p-NO₂-PhO• is destabilized and p-NH₂-PhO• is (weakly) stabilized when their respective parent phenol (**2H**) system we find that RSE and RSE-D values are almost identical (-123.6 vs. -124.0 kJ mol⁻¹).

The effects of monosolvation on the stability of peroxy radicals, triplet dioxygen and TEMPO

The monosolvation enthalpies $\Delta H^{gas}_{c1}(\text{ROO}\bullet)$ for the radicals CH_3OO+, t-BuOO+ and PhCH_2OO+ are -13.6. -13.8. -17.0 kJ mol⁻¹. respectively. While for peroxides such as CH₃OOH, t-BuOOH and PhCH₂OOH interacting with water as a Hacceptor ΔH_{c1}^{gas} (ROOH), these values are -13.9, -13.0 and -18.1 kJ mol⁻¹. These closely similar complexation energies of alkylperoxy radicals and alkylhydroperoxides imply that their RSE and RSE-A values are almost identical. Alkylhydroperoxides are, however, much better hydrogen bond donors than acceptors. As a consequence, the RSE-D values for alkylperoxy radicals are much smaller (less stabilizing) than the respective RSE values. For methylperoxy radical (CH₃OO•, 15) as the smallest system in this group, the difference amounts to RSE-D = -124.9 kJ mol⁻¹ vs. RSE = -134.7 kJ mol⁻¹.

For HOO• (13) as the smallest possible peroxy radical the situation is much more complicated due to multiple interactions between the solvating water molecules and the HOO $\bullet/(H_2O_2)$ interaction partners. The minima identified for these systems at the DLPNO-CCSD(T)/CBS// (U)B3LYP-D3/6-31+G(d,p) level of theory are shown in Figure 9 together with the respective relative stabilities. The best conformer of the $HOOH \cdots H_2O$ complex is of cyclic type (Figure 9a) with two H-bonds, in which the HOOH molecule can be considered as both Hа $accepting(r(O_{alk} \cdots HOH) = 227.5 \text{ pm})$ and a Hdonating $(r(OH_{alk}\cdots OH_2) = 190.1 \text{ pm})$ system at the same time. The presence of two H-bonds

Journal of Computational Chemistry

FIGURE 6. Orbital analysis for phenoxy radical (2) and the best conformation of its complex with one water molecule (**2a_1**). Electrostatic potential (a), spin density (SD=0.005 a.u.) (b), and molecular orbitals (c) calculated at the UB3LYP-D3/6-31+G(d,p) level of theory.

gives this complex a rather low monosolvation enthalpy of $\Delta H_{c1}^{gas}(\mathbf{13H}) = -22.5 \text{ kJ mol}^{-1}$. This type of structure was established experimentally by matrix isolation infrared spectroscopy.⁸⁹ For the HOO•····H₂O complex we identify the three conformations shown in Figure 9e-g. The most stable conformation is also of cyclic type (Figure 9e) and is very similar to the best conformer of the HOOH····H₂O complex. In this structure, the HOO• radical is interacting with water as both a H-acceptor and a H-donor through two H-bonds: 1) between the hydrogen of water and the spinbearing oxygen with $r(O \bullet \dots HOH) = 246.9 \text{ pm};$ and 2) between the hydrogen of the HOO• radical and the oxygen of water with $r(OH_{alk} \dots OH_2) = 177 \text{ pm}.$ This structure has been described already in earlier theoretical⁹⁰ and experimental^{91,92} studies. The other two conformers of the HOO• \dots H₂O complex are more than 20 kJ mol⁻¹ less stable because they

FIGURE 7. BDE(OH) and BDE-A(OH) values (DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p) results).

Journal of Computational Chemistry

FIGURE 8. BDE(OH) and BDE-D(OH) values (DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p) results).

PUTATIONAL

FIGURE 9. Relative ΔH^{gas} values (in kJ mol⁻¹) for the HOOH····H₂O (a - d) and HOO•····H₂O (e - g) complexes (DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p) results).

contain only one H-bond with r(O•····HOH) distances of 204.6 to 206.4 pm as shown in Figure 9. Although the water complexes of radical 13 and its parent 13H share large structural similarities, the complexation energy of radical 13 is significantly more favorable at ΔH_{c1}^{gas} (13) = -29.7 kJ mol⁻¹. This difference of 7.5 kJ mol⁻¹ translates into a significant stabilization of radical 13 and the associated values of RSE(13) = -129.6 kJ mol⁻¹ and RSE-A(13) = -137.1 kJ mol⁻¹. Given the simultaneous presence of multiple Hbonding interactions in the water complexes in Figure 9, RSE-A and RSE-D values are taken to be identical for this system. For triplet oxygen $({}^{3}O_{2},$ 19) the HOO• radical represents (formally) the parent alcohol. The list of conformers presented in Figure 9 for the HOO•····H₂O complex lacks a structure where the HO group oxygen interacts with water as the H-bond acceptor, and calculation of an RSE-A values is therefore no possible. Acting as a H-bond donor as in Figure 9e, radical 13 forms a much more stable water complex as compared to triplet oxygen. This leads to a very substantial difference between RSE(19) = -290.1 kJ mol⁻¹ and RSE-D(19) = -258.1 kJ mol⁻¹. The TEMPO radical (5) as the most stable (doublet) system considered here forms a water complex characterized by a comparatively short H-bond of $r(O \bullet \cdots HOH) = 182.7$ pm and a

complexation energy of $\Delta H_{c1}^{gas} = -22.8 \text{ kJ mol}^{-1}$. This value is larger as compared to that for the closed-shell TEMPOL parent acting as a H-bond acceptor ($\Delta H_{c1}^{gas} = -15.1 \text{ kJ mol}^{-1}$), which implies that RSE-A(**5**) = -212.2 \text{ kJ mol}^{-1} is more negative (more stabilizing) than RSE(**5**) = -195.4 \text{ kJ mol}^{-1}. However, TEMPOL is a much better H-bond donor (than acceptor), which is also reflected in RSE-D(**5**) = -189.8 \text{ kJ mol}^{-1}.

The final system considered here is HC(O)O• radical **20**, whose electronic structure varies significantly as a function of the level of theory. This is also the reason for the largely different RSE values obtained from DFT, DLPNO-CCSD(T)/CBS, and G3B3-D3 calculations (Table 1). The water complexes of formic acid (**20H**) are more stable as compared to the water complex of radical **20**, and the RSE-A and RSE-D values are thus less negative (less stabilizing) as compared to RSE(**20**) = -20.9 kJ mol⁻¹. Formic acid is a particularly good H-bond donor, which leads to RSE-D(**20**) = +16.4 kJ mol⁻¹.

Conclusions

The range of (formally) oxygen-centered radicals considered here ranges from the comparatively unstable hydroxyl radical (1), alkoxy radicals such as $CH_3O\bullet$ (6), aryloxy radicals such as PhO•

Journal of Computational Chemistry

COMPUTATIONAL

(2), peroxy radicals such as $CH_3OO \bullet$ (15) and nitroxy radicals such as TEMPO (5). The most favorable water complexes identified for these systems all correspond to type (a) shown in Figure 2. The alternative interaction modes described as the SEHB or 2c3e hemibond are found only in (some) higher energy conformers of the water/radical complexes. The influence of water complexation on the respective RSE values is smallest for the group of alkoxy radicals and largest for the group of aryloxy radicals. The parent alcohol system can act as H-bond donor or acceptor in almost all systems, which gives rise to the associated RSE-A and RSE-D values. The difference between BDE-A and BDE-D simply reflects the difference in hydrogen bonding in the closed shell parent. Selecting the thermochemically most stable alcohol/water complex leads to the smaller (less negative) of the RSE-A or RSE-D values. For most of the systems considered here, this is the RSE-D values, the exceptions being the alkoxy radicals $CH_3O\bullet$, $CH_3CH_2O\bullet$, *n*-Bu-O• and *t*-Bu-O•.

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for financial support via SFB1309 (PID 325871075).

((Additional Supporting Information may be found in the online version of this article.))

References and Notes

J. Stubbe, W. A. van Der Donk, *Chem. Rev.* **1998**, *98*, 2661.
 H. Eklund, U. Uhlin, M. Färnegårdh, D. T.

Logan, P. Nordlund, *Prog. Biophys. Mol. Biol.* **2001**, *77*, 177.

[3] J. Stubbe, D. G. Nocera, C. S. Yee, M. C. Chang, *Chem. Rev.* **2003**, *103*, 2167.

[4] M. Kolberg, K. R. Strand, P. Graff, K. K. Andersson, *Biochim Biophys Acta Proteins Proteom* **2004**, *1699*, 1.

[5] M. Bennati, F. Lendzian, M. Schmittel, H. Zipse, *Biol. Chem.* **2005**, *386*, 1007.

[6] J. Fritscher, E. Artin, S. Wnuk, G. Bar, J. H. Robblee, S. Kacprzak, M. Kaupp, R. G. Griffin, M. Bennati, J. Stubbe, *J. Am. Chem. Soc.* **2005**, *127*, 7729.

[7] P. Nordlund, P. Reichard, *Annu. Rev. Biochem.* **2006**, *75*, 681.

[8] H. Zipse, E. Artin, S. Wnuk, G. J. Lohman, D. Martino, R. G. Griffin, S. Kacprzak, M. Kaupp, B. Hoffman, M. Bennati, *J. Am. Chem. Soc.* **2009**, *131*, 200.

[9] A. Benjdia, K. Heil, T. R. Barends, T. Carell, I.
Schlichting, *Nucleic Acids Res.* 2012, 40, 9308.
[10] A. C. Kneuttinger, K. Heil, G. Kashiwazaki, T.
Carell, *Chem. Commun.* 2013, 49, 722.

[11] J. Hioe, H. Zipse, *Chem. Eur. J.* **2012**, *18*, 16463.

[12] D. M. Chipman, J. Phys. Chem. A **2011**, 115, 1161.

[13] ATcT, <u>http://atct.anl.gov/</u>.

[14] J. Hioe, H. Zipse, Org. Biomol. Chem. **2010**, *8*, 3609.

[15] J. Hioe, H. Zipse, *Faraday Discuss.* **2010**, *145*, 301.

[16] K. Condic-Jurkic, H. Zipse, D. M. Smith, *J. Comput. Chem.* **2010**, *31*, 1024.

[17] K. Čondić-Jurkić, V. T. Perchyonok, H. Zipse,
D. M. Smith, *J. Comput. Chem.* **2008**, *29*, 2425.
[18] W. Tantawy, H. Zipse. Wiley Online Library,

2007. [19] J. Hioe, A. Karton, J. L. Martin, H. Zipse, *Chem. Eur. J.* **2010**, *16*, 6861.

[20] M. Coote, C. Lin, H. Zipse. Wiley, New Jersey, **2010**.

[21] E. I. Izgorodina, D. R. Brittain, J. L. Hodgson,

E. H. Krenske, C. Y. Lin, M. Namazian, M. L.

Coote, J. Phys. Chem. A **2007**, 111, 10754.

[22] D. Moran, R. Jacob, G. P. Wood, M. L.

Coote, M. J. Davies, R. A. O'Hair, C. J. Easton, L.

Radom, Helv. Chim. Acta 2006, 89, 2254.

[23] Y. Zhao, D. G. Truhlar, *J. Phys. Chem. A* **2008**, *112*, 1095.

[24] J. Zheng, Y. Zhao, D. G. Truhlar, *J. Phys. Chem. A* **2007**, *111*, 4632.

[25] S. Grimme, J. Chem. Phys. 2006, 124, 034108.

[26] D. C. Graham, A. S. Menon, L. Goerigk, S. Grimme, L. Radom, *J. Phys. Chem. A* **2009**, *113*, 9861.

[27] D. J. Henry, C. J. Parkinson, L. Radom, *J. Phys. Chem. A* **2002**, *106*, 7927.

[28] D. J. Henry, M. B. Sullivan, L. Radom, J. Chem. Phys. 2003, 118, 4849. [29] S. D. Wetmore, D. M. Smith, J. T. Bennett, L. Radom, J. Am. Chem. Soc. 2002, 124, 14054. [30] S. D. Wetmore, D. M. Smith, B. T. Golding, L. Radom, J. Am. Chem. Soc. 2001, 123, 7963. [31] D. M. Smith, W. Buckel, H. Zipse, Angew. Chem. Int. Ed. 2003, 42, 1867. [32] L. Curtis, K. Raghavachari, J. Pople, J. Chem. Phys 1993, 98, 1293. [33] A. G. Baboul, L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 1999, 110, 7650. [34] L. A. Curtiss, P. C. Redfern, K. Raghavachari, J. Chem. Phys. 2007, 126, 084108. [35] J. A. Montgomery Jr, M. J. Frisch, J. W. Ochterski, G. A. Petersson, J. Chem. Phys. 2000, 112, 6532. [36] J. M. Martin, G. de Oliveira, J. Chem. Phys. **1999**, *111*, 1843. [37] A. Altun, F. Neese, G. Bistoni, Beilstein J. Org. Chem. 2018, 14, 919. [38] F. Neese, E. F. Valeev, J. Chem. Theory Comput. 2011, 7, 33. [39] M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, F. Neese, J. Chem. Phys. 2017, 146, 164105. [40] A. D. Beck, J. Chem. Phys 1993, 98, 5648. [41] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B **1988**, *37*, 785. [42] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257. [43] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456. [44] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104. [45] D. Šakić, M. Hanževački, D. M. Smith, V. Vrček, Org. Biomol. Chem. 2015, 13, 11740. [46] D. Šakić, <u>https://kick.science/KICK.html</u>. [47] E. Suarez, N. Diaz, D. Suarez, J. Chem. Theory Comput. 2011, 7, 2638. [48] V. Korotenko, https://github.com/vnkorotenko/ess. [49] V. Korotenko, https://github.com/vnkorotenko/ccs. [50] K. M. Ervin, V. F. DeTuri, J. Phys. Chem. A 2002, 106, 9947.

[51] D. R. Reed, M. C. Hare, A. Fattahi, G. Chung, M. S. Gordon, S. R. Kass, J. Am. Chem. Soc. 2003, 125.4643. [52] E. T. Denisov, V. Tumanov, Russ. Chem. Rev. 2005, 74, 825. [53] A. Fattahi, S. R. Kass, J. Org. Chem. 2004, *69*, 9176. [54] T. Denisova, E. Denisov, Kinet. Catal. 2006, 47, 121. [55] M. G. Nix, A. L. Devine, B. Cronin, R. N. Dixon, M. N. Ashfold, J. Chem. Phys. 2006, 125, 133318. [56] R. M. Borges dos Santos, J. A. Martinho Simões, J. Phys. Chem. Ref. Data 1998, 27, 707. [57] M. Lucarini, P. Pedrielli, G. F. Pedulli, S. Cabiddu, C. Fattuoni, J. Org. Chem. 1996, 61, 9259. [58] H. Wang, J. W. Bozzelli, J. Chem. Eng. Data **2016**, *61*, 1836. [59] O. Kondo, S. W. Benson, J. Phys. Chem. 1984, 88, 6675. [60] S. J. Blanksby, T. M. Ramond, G. E. Davico, M. R. Nimlos, S. Kato, V. M. Bierbaum, W. C. Lineberger, G. B. Ellison, M. Okumura, J. Am. Chem. Soc. 2001, 123, 9585. [61] M. Jonsson, J. Phys. Chem. 1996, 100, 6814. [62] P. S. Billone, P. A. Johnson, S. Lin, J. Scaiano, G. A. DiLabio, K. Ingold, J. Org. Chem. **2011**, *76*, 631. [63] L. Mahoney, G. Mendenhall, K. Ingold, J. Am. Chem. Soc. 1973, 95, 8610. [64] A. Altun, F. Neese, G. Bistoni, J. Org. Chem. **2018**, *14*, 919. [65] B. Ruscic, A. F. Wagner, L. B. Harding, R. L. Asher, D. Feller, D. A. Dixon, K. A. Peterson, Y. Song, X. Qian, C.-Y. Ng, J. Phys. Chem. A 2002, 106, 2727. [66] Y.-R. Luo. Comprehensive handbook of chemical bond energies; CRC press, 2007. [67] P. Mulder, H.-G. Korth, D. A. Pratt, G. A. DiLabio, L. Valgimigli, G. Pedulli, K. Ingold, J. Phys. Chem. A 2005, 109, 2647. [68] H. Zipse, Radicals in Synthesis I 2006, 163. [69] J. Hioe, H. Zipse, Encyclopedia of Radicals in Chemistry, Biology and Materials 2012. [70] W. M. Fabian, R. Janoschek, J. Mol. Struct. Theochem 2005, 713, 227.

Journal of Computational Chemistry

WWW.CHEMISTRYVIEWS.COM ChemistryViews

COMPUTATIONAL CHEMISTRY

[71] W. T. Borden, R. Hoffmann, T. Stuyver, B. Chen, J. Am. Chem. Soc. 2017, 139, 9010. [72] A. Mukhopadhyay, W. T. Cole, R. J. Saykally, Chem. Phys. Lett. 2015, 633, 13. [73] A. Mukhopadhyay, S. S. Xantheas, R. J. Saykally, Chem. Phys. Lett. 2018, 700, 163. [74] A. Engdahl, G. Karlström, B. Nelander, J. Chem. Phys. 2003, 118, 7797. [75] J. A. Plumley, J. Dannenberg, J. Comput. Chem. 2011, 32, 1519. [76] P. Cabral do Couto, R. Guedes, B. Costa Cabral, J. Martinho Simoes, J. Chem. Phys. 2003, 119, 7344. [77] Y. Ohshima, K. Sato, Y. Sumiyoshi, Y. Endo, J. Am. Chem. Soc. 2005, 127, 1108. [78] S. Aloisio, J. S. Francisco, Acc. Chem. Res. 2000, 33, 825. [79] D. P. Schofield, H. G. Kjaergaard, J. Chem. Phys. 2004, 120, 6930. [80] Z. Zhou, Y. Qu, A. Fu, B. Du, F. He, H. Gao, Int. J. Quantum Chem 2002, 89, 550. [81] M. P. DeMatteo, J. S. Poole, X. Shi, R. Sachdeva, P. G. Hatcher, C. M. Hadad, M. S. Platz, J. Am. Chem. Soc. 2005, 127, 7094.

[82] M. A. Allodi, M. E. Dunn, J. Livada, K. N. Kirschner, G. C. Shields, J. Phys. Chem. A 2006, 110.13283. [83] U. Koch, P. L. Popelier, J. Phys. Chem. 1995, *99,* 9747. [84] S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 2000, 122, 11450. [85] M. J. Calhorda, Chem. Commun. 2000, 801. [86] M. R. Koebel, A. Cooper, G. Schmadeke, S. Jeon, M. Narayan, S. Sirimulla, J. Chem. Inf. Model 2016, 56, 2298. [87] R. Shukla, D. Chopra, *Physical Chemistry* Chemical Physics 2016, 18, 29946. [88] A. Priimagi, G. Cavallo, P. Metrangolo, G. Resnati, Acc. Chem. Res. 2013, 46, 2686. [89] A. Engdahl, B. Nelander, *Physical Chemistry* Chemical Physics 2000, 2, 3967. [90] S. Aloisio, J. Francisco, J. Phys. Chem. A **1998**, *102*, 1899. [91] S. Aloisio, J. S. Francisco, R. R. Friedl, J. Phys. Chem. A 2000, 104, 6597. [92] B. Nelander, J. Phys. Chem. A 1997, 101,

9092.

GRAPHICAL ABSTRACT

The thermodynamic stability of various alkoxy/aryloxy/peroxy radicals, as well as TEMPO and triplet dioxygen has been explored at a variety of theoretical levels. The effects of hydrogen bonding interactions on the stability of oxygen-centered radicals have been probed by addition of a single solvating water molecule.

Journal of Computational Chemistry

2.2

Supplementary Information

The Stability of Oxygen-Centered Radicals and its Response to Hydrogen Bonding Interactions

1. Methodology
Computational Methodology

Theoretical methods

Geometry optimizations have been performed using the B3LYP hybrid functional, complemented by the D3 dispersion correction. Geometry optimizations have been performed with the 6-31+G(d,p) basis set. Geometry optimizations have also been performed with the smaller 6-31G(d) basis set for selected cases. Thermal corrections to enthalpies at 298.15 K have been calculated at the same level as the geometry optimizations using the rigid rotor/harmonic oscillator model using unscaled frequencies. We note in passing, that the C_{2v} structure of formyloxy radical **20** is a transition state at UB3LYP-D3/6-31G(d) level, but a true minimum at the UB3LYP-D3/6-31+G(d,p) level. If not stated otherwise, all results reported on the following pages refer to (U)B3LYP-D3/6-31+G(d,p) geometries.

The generation of initial random structures with explicit water (intermolecular dimers) was done using the "kick" algorithm.^{1,2} The individuality (lack of repetition) of the found conformers was confirmed using an energy criterion ($\Delta E_{tot} > 10^{-7}$ Hartree)³ and comparing geometries by distances between each atom and the centroid point.⁴

Single point calculations have been performed for all geometries optimized at the UB3LYP-D3/6-31+G(d,p) level at the double-hybrid (U)B2PLYP/cc-pVTZ and (U)B2PLYP/cc-pVQZ levels, then also for the coupled cluster DLPNO-CCSD(T)/cc-pVTZ, DLPNO-CCSD(T)/cc-pVQZ theories implemented in ORCA, and finally for the composite method G3B3-D3. One water molecule was added to the resulting geometries in a random position, followed by optimization at the (U)B3LYP-D3/6-31+G(d,p) level of theory in the gas phase and followed by the same single point calculations as before. All calculations have been performed with *Gaussian 09, rev. D.01,* except for DLPNO-CCSD(T) calculations, which were performed with *ORCA 4.0.2*.

DLPNO-CCSD(T)/CBS

The energies were calculated for a temperature of 298.15 K in the gas phase and the thermal corrections to the enthalpy and Gibb's free energy were obtained at the (U)B3LYP-D3/6-31+G(d,p) level of theory using unscaled frequencies. DLPNO-CCSD(T) calculations have been performed with the cc-pVTZ (n=3) and cc-pVQZ (m=4) basis sets using "TightSCF" and "TightPNO" settings. The complete basis set (CBS) limits of the reference energies E_{HF} and correlation energies E_c were calculated according to:

$$E_{HF}^{CBS} = \frac{E_{HF}^{(n)} \times e^{-\alpha\sqrt{m}} - E_{HF}^{(m)} \times e^{-\alpha\sqrt{n}}}{e^{-\alpha\sqrt{m}} - e^{-\alpha\sqrt{n}}}$$
(1)

$$E_{corr}^{CBS} = \frac{n^{\beta} E_{corr}^{(n)} - m^{\beta} E_{corr}^{(m)}}{n^{\beta} - m^{\beta}}$$
(2)

$$E_{DLPNO}^{CBS} = E_{HF}^{CBS} + E_{corr}^{CBS}$$
(3)

For the given pair of basis set, cc-pVTZ and cc-pVQZ i.e for the 3/4 extrapolation (n=3 and m=4) the values of constants α = 5.46, and β = 3.05 were used. ^{5,6} The final DLPNO-CCSD(T)/CBS total energies were then obtained as the sum of individual terms: E_{HF}^{CBS} and E_{corr}^{CBS} . Finally, the thermal corrections obtained from the optimized geometries were added to E_{tot}(DLPNO-CCSD(T)/CBS) to yield the respective enthalpies H₂₉₈.

G3B3-D3 scheme

According to the G3B3-D3 scheme, enthalpies were calculated as follows:

H298(G3B3-D3) =	$E_{tot}(QCISD/6-31G(d))/B3LYP-D3/BASIS) + \Delta E(+) + \Delta E(2df,p) + \Delta E(G3large)$
	+ $\Delta E(HLC)$ + ΔH_{therm}
$\Delta E(+) =$	<i>E</i> _{tot} (MP4/6-31+G(d)//B3LYP-D3/ BASIS) - <i>E</i> _{tot} (MP4/6-31G(d)//B3LYP-D3/ BASIS)
$\Delta E(2df,p) =$	<i>E</i> _{tot} (MP4/6-31G(2df,p) //B3LYP-D3/ BASIS) - <i>E</i> _{tot} (MP4/6-31G(d) //B3LYP-D3/ BASIS)
$\Delta E(G3large) =$	<i>E</i> _{tot} (MP2/G3large//B3LYP-D3/ BASIS) - <i>E</i> _{tot} (MP2/6-31G(2df,p)//B3LYP-D3/ BASIS) -
	<i>E</i> _{tot} (MP2/6-31+G(d) //B3LYP-D3/ BASIS) + <i>E</i> _{tot} (MP2/6-31G(d)//B3LYP-D3/ BASIS)
ΔH_{therm} -	thermal corrections to enthalpies at standard state conditions
	(Scaling factor = 0.96, B3LYP-D3/ BASIS)
BASIS	6-31G(d)
	6-31+G(d,p)
$\Delta E(HLC) =$	-A*beta – B*(alpha - beta)
A = 6.760 mHartrees	

A = 6.760 mHartrees

B = 3.233 mHartrees

alpha = No. of alpha valence electrons

beta = No. of beta valence electrons

Radical	alpha	beta	$\Delta E(HLC)$	Alcohol	alpha	beta	$\Delta E(HLC)$
HO∙	4	3	-0.023513	НОН	4	4	-0.027040
CH3O•	7	6	-0.043793	СНЗОН	7	7	-0.047320
CH3CH2O•	10	9	-0.064073	CH3CH2OH	10	10	-0.067600
BuO∙	16	15	-0.104633	BuOH	16	16	-0.108160
t-BuO∙	16	15	-0.104633	t-BuOH	16	16	-0.108160
PhCH2O•	21	20	-0.138433	PhCH2OH	21	21	-0.141960
PhC(CH3)2O•	27	26	-0.178993	PhC(CH3)2OH	27	27	-0.182520
PhO∙	18	17	-0.118153	PhOH	18	18	-0.121680
p-nitro-PhO•	26	25	-0.172233	p-nitro-PhOH	26	26	-0.175760
p-methyl-PhO•	21	20	-0.138433	p-methyl-PhOH	21	21	-0.141960
p-amino-PhO•	21	20	-0.138433	p-amino-PhOH	21	21	-0.141960
H00•	7	6	-0.043793	НООН	7	7	-0.047320
CH300•	10	9	-0.064073	СНЗООН	10	10	-0.067600
t-BuOO∙	19	18	-0.124913	t-BuOOH	19	19	-0.128440
PhCH2OO•	24	23	-0.158713	PhCH2OOH	24	24	-0.162240
TEMPO •	33	32	-0.219553	TEMPOH	33	33	-0.223080
•00•	7	5	-0.040266	H00•	7	6	-0.043793
HCO2•	9	8	-0.057313	HCO2H	9	9	-0.060840

The energies were calculated for a temperature of 298.15 K in the gas phase and the thermal corrections to the enthalpy and Gibb's free energy were obtained at the (U)B3LYP-D3/**BASIS** level of theory using a scaling factor of 0.960.

References

[1] D. Šakić, https://kick.science/KICK.html.

[2] "A computational study of the chlorination and hydroxylation of amines by hypochlorous acid", D. Šakić, M. Hanževački, D. M. Smith, V. Vrček, *Org. Biomol. Chem.* **2015**, *13*, 11740 - 11752.

[3] V. Korotenko, https://github.com/vnkorotenko/ess.

[4] V. Korotenko, https://github.com/vnkorotenko/ccs.

[5] A. Altun, F. Neese and G. Bistoni, *Beilstein J. Org. Chem.* 2018, 14, 919.

[6] F. Neese and E. F. Valeev J. Chem. Theory Comput. 2011, 7, 33

Conformational Search

Energy Sorting Script (ESS)

The «Energy Sorting Script» allows you to discard unnecessary calculation results, **possibly** containing repeating structures using energy criterion (Δ Etot > 10⁻⁷ a.u. by default).

	Options								
-7	Etot criterion 0.0000001								
-6	Etot criterion 0.000001								
-5	Etot criterion 0.00001								
-4	Etot criterion 0.0001								
-3	Etot criterion 0.001								
-Z	zero criterion (criterion 0 a.u.)								
-C	to enter your Etot criterion manually (0.000001 a.u. by default)								
-S	to enforce singlet output: <s<sup>2>=0.0000</s<sup>								
-lm	Search for local minima (by default)								
-ts	Search for transitional states								
-a	you need all files in the list (without any exclusion)								

The general algorithm of ESS includes the following steps

1) Extraction of the most imoptarnt data from a list of Gaussian-log files: filename, ZPE1, δ H.1, δ G.1, E_{tot} , \langle S² \rangle , 1-st frequency. Check, if 1-st frequency > 0.

2) Sorting the list of extracted data in ascending order of E_{tot}.

3) Comparison by E_{tot} . Each log-file will be compared with the previos one by E_{tot} using the following criterion: If $\Delta E_{tot} > 10^{-7}$ Hartree (by default) then it makes sense to consider this file. Otherwise: the current file is most likely a "replicant/duplicate", **possibly** containing the same structure as in previous file.

Benefits:

- Allows you to reduce the number of conformers in the list quickly

Disadvantages:

- The "replicant" structures can still be presented in the list, because this analysis does not take into account geometry:

First example: Geometries can be almost the same, but have slightly different energies due to the difference in the number of geometry-convergence steps or in the number of SCF steps. The second example: a radical particle with the same geometry can have two different wave functions that differ greatly in energy.

- Loss of structures (which is very rare, but possible) with a high conformational lability of the molecule, two different conformers can have almost the same energy (with a difference of less than ΔE_{tot} criterion). In this case, the structure will be eliminated from the list.

Centroid Comparison Script (CCS)

The analysis of certain interatomic distances and visualization of geometry is widely used by chemists all over the world. However, when it comes to a large number of structures and the search for individual conformations among them, "manual" methods take a lot of time and do not exclude human error.

The «Centroid Comparison Script» allows you to discard unnecessary xyz-files or Gaussian logfiles, **possibly** containing repeating structures comparing geometries by distances between each atom and centroid point. CCS is applicable only in chemistry, but wherever it comes to searching for individual geometries (just need to change the length units and criterion). (Figure S1 and Figure S2)

Figure S2. ethylene glycol molecule. The lines correspond to (a) covalent bonds and (b) distances between atoms and centroid (purple point).

Algorithm/Principle	General options:
Sorted Geometries Comparison	 1) <u>xyz/log files:</u> create your own ".ccs" input-list file, where the geometries are sorted as you want (by any property). Each geometry will be compared to the previous one ccs ccs -s 2) <u>log files:</u> comparison of energy-neighboring geometries (just a special case). In this case, ESS will generate an input-list ess;ccs ess -(option);ccs -(option)

Sorted Geometries Comparison

To start, you need to create a ".ccs" input-list file, where the geometries are sorted as you want (by any property). If you want to make a comparison of energy-neighboring geometries, you need a special input-list, where the geometries are sorted by energy. Such a list can be crated using ESS.

In this cases, the algorithm of CCS includes the following steps

1) Reading of the Geometry from each xyz/log file (G - matrix). The number of atoms ${\bf n}$ must be the same in all files

$$\mathbf{G} = \begin{bmatrix} x_1 & y_1 & z_1 \\ \dots & \dots & \dots \\ x_i & y_i & z_i \\ x_n & y_n & z_n \end{bmatrix}$$

2) Calculation of Centroid point *C* (x_c ; y_c ; z_c) for each geometry:

$$x_c = \frac{\sum_{i=0}^{n} x_i}{\sum_{i=0}^{n} y_i}$$
$$y_c = \frac{\sum_{i=0}^{n} y_i}{\sum_{i=0}^{n} z_i}$$

and definition of **C** – matrix with **n** lines **for each geometry**:

$$\mathbf{C} = \begin{bmatrix} x_c & y_c & z_c \\ \dots & \dots & \dots \\ x_c & y_c & z_c \\ x_c & y_c & z_c \end{bmatrix}$$

3) Calculation of L – matrix for each geometry, which contains «xyz-components of the absolute distance l_i from *i*th atom to the C_{xyz} point (*i* =1 to *n*):

$$\mathbf{L} = |\mathbf{C} - \mathbf{G}| = \begin{bmatrix} x_c & y_c & z_c \\ \dots & \dots & \dots \\ x_c & y_c & z_c \\ x_c & y_c & z_c \end{bmatrix} - \begin{bmatrix} x_1 & y_1 & z_1 \\ \dots & \dots & \dots \\ x_i & y_i & z_i \\ x_n & y_n & z_n \end{bmatrix} = \begin{bmatrix} l_1^x & l_1^y & l_1^z \\ \dots & \dots & \dots \\ l_i^x & l_i^y & l_i^z \\ l_n^x & l_n^y & l_n^z \end{bmatrix}$$

In other words, **L** – matrix contains the modulus of the difference in the coordinates of each atom l_i^x , l_i^y , l_i^z (*i* =1 to *n*) and coordinates the C_{xyz} point:

$$\begin{aligned} l_i^x &= |x_c - x_i| \\ l_i^y &= |y_c - y_i| \\ l_i^z &= |z_c - z_i| \end{aligned}$$

Which is needed to calculate the distancies

$$l_{i} = \sqrt{(l_{i}^{x})^{2} + (l_{i}^{y})^{2} + (l_{i}^{z})^{2}}$$

And to define the **I** – column-matrix
$$\mathbf{I} = \begin{bmatrix} l_{1} \\ \dots \\ l_{i} \\ l_{n} \end{bmatrix}$$

4) Calculation of $\Delta \mathbf{l}$ – column-matrices: $\Delta \mathbf{l}_j = |\mathbf{l}_j - \mathbf{l}_{j-1}|$, where *j* is the geometry number (*j* = 2 to *N*, *N* is the number of geometries). $\Delta \mathbf{l}_j$ – column-matrices will be computed sequentially for (*N* – 1) geometries.

5) Geometry-individuality criterion. Each considered j-th geometry will be compared with the previous one j-th geometry using the following criterion: If at least one element of $\Delta \mathbf{l}_j$ is > 0.02 Angström, then the j-th geometry can be considered different from the previous one and, therefore, "individual". Otherwise: the j-th geometry is a "replicant" of previous geometry.

Figure S1.3.1. The calculated BDE(OH) values and the highest BDE-A(OH)/BDE-D(OH) value. (DLPNO-CCSD(T)/CBS)

2. No explicit water

Radical					RSE((RO•)				BDE(RO•)
_	DFT ^[a]	(U)B2	2PLYP ^[b,c]	DLF	PNO-CCS	D(T) ^[b,c]	G3	B3-D3	exp.	exp.
		ΤZ	QZ	ΤZ	QZ	CBS	[b]	[d]		
HO• (1)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	+497.3±0.1^[13] +497.1±0.3 ^[65]
HC(O)O• (20)	-35.2	-40.0	-43.3	-14.3	-18.6	-20.9	-30.2	-27.6	-28.4±0.6	+468.89±0.56 ^[13]
<i>t</i> -Bu-O• (7)	-57.7	-49.9	-52.3	-42.8	-45.4	-46.7	-47.2	-47.7	-52.4±2.8	+444.9±2.8^[50,66] +446.8±4.2 ^[51]
PhCH₂O• (8)	-65.0	-57.3	-59.2	-48.4	-50.8	-52.2	-54.8	-55.5	-54.6±8.8	+442.7±8.8 ^[53,66]
CH ₃ O• (6)	-65.3	-58.6	-60.3	-53.4	-55.5	-56.6	-55.3	-55.8	-56.9±0.3	+440.4±0.3 ^[13] +440.2±3.0 ^[51,66] +437.7±2.8 ^[50]
CH ₃ CH ₂ O• (9)	-66.6	-58.7	-60.4	-52.5	-54.6	-55.7	-57.5	-54.8	-56.9±0.5	+440.4±0.5 ^[13] +441.0±5.9 ^[51, 66] +438.1±3.3 ^[50]
PhC(CH ₃) ₂ O• (10)	-58.1	-50.5	-53.2	-40.9	-43.7	-45.1	-45.9	-47.8	-59.1±1.0	+438.2±1.0 ^[54, 66]
<i>n</i> -Bu-O• (11)	-66.8	-59.1	-61.1	-52.2	-54.5	-55.7	-52.9	-55.3	-65.0	+432.3 ^[52]
<i>p</i> -nitro-PhO• (12)	-114.5	-97.7	-100.8	-100.8	-104.3	-106.1	-113.4	-106.0	-107±8	+390±8 ^[56, 15] +396±8 ^[56]
HOO• (13)	-134.4	-133.7	-135.8	-124.9	-128.1	-129.6	-129.2	-129.6	-131.6±0.2	+365.7±0.2 ^[13]
PhO• (2)	-132.9	-114.2	-117.7	-116.3	-121.0	-123.6	-121.1	-121.6	-132.3±0.5	+365±0.5 ^[15] +371.3±2.3 ^[56] +367.1±0.9 ^[13] +362.7±3.0 ^[67]
PhCH ₂ -OO• (16)	-139.0	-136.4	-140.4	-122.1	-125.9	-128.0	-126.5	-131.5	-132.3	+365 ^[61]
CH₃OO• (15)	-141.8	-139.4	-142.4	-128.9	-132.8	-134.7	-133.0	-135.8	-138.9±0.7	+358.4 \pm 0.7 ^[13] +370.3 \pm 2.1 ^[59, 66] +367.3 \pm 4 ^[60] +357 \pm 5 ^[58]
<i>p</i> -methyl-PhO• (14)	-141.3	-122.5	-126.3	-122.5	-127.6	-130.5	-128.8	-129.3	-140.7±0.6	+356.6±0.6 ^[15] +363±4 ^[67]
t-Bu-OO• (17)	-148.5	-145.6	-149.1	-132.7	-136.8	-138.7	-140.8	-141.5	-145±8.8	+352.3±8.8 ^[60, 66]
<i>p</i> -amino-PhO• (18)	-168.8	-152.2	-156.1	-143.9	-149.3	-152.4	-153.3	-153.8	-173±13	+324±13^[67,15] +331±13 ^[67]
TEMPO (5)	-208.0	-206.4	-210.9	-185.1	-191.7	-195.4	-198.0	-198.4	-204.1±0.4	+293.2±0.4 ^[62] +291.2 ^[63]
³ O ₂ (19)	-274.6	-291.7	-294.4	-283.8	-288.0	-290.1	-289.1	-289.2	-291.5±0.2	+205.8±0.27 ^[13]
MSE	-2.8	3.3	0.4	12.1	8.3	6.4	5.4	5.2		
MUE	5.5	6.6	7.0	12.1	8.3	6.4	5.4	5.3		
R ²	0.9956	0.9823	0.9830	0.9906	0.9926	0.9936	0.9938	0.9935		

TABLE 2.1.1 RSE(RO•) values for selected O-centered radicals (in kJ mol⁻¹) calculated at various levels of theory together with available experimental data (and the associated BDE(O-H) data) ordered by experimental BDE(RO•) values.

[a] "DFT" - (U)B3LYP-D3/6-31+G(d,p); [b] Using (U)B3LYP-D3/6-31+G(d,p) optimized geometries; [c] "TZ, QZ" - cc-pVTZ, cc-pVQZ; [d] Using (U)B3LYP-D3/6-31G(d) optimized geometries.

b	G3B3-D3 ι	using (U)B3LYP-D3/	/6-31+G(d.p)	geometries.
~	0000 00 0		,00211 00,	0 0 1 0 0 0 0 0	Beometries

Formulas Used for Statistical Analysis							
Mean Signed Error	$MUE(RSE) = \frac{\sum_{i=1}^{n} RSE_{i(calc)} - RSE_{i(exp)}}{n}$						
Mean Unsigned Error	$MUE(RSE) = \frac{\sum_{i=1}^{n} RSE_{i(calc)} - RSE_{i(exp)} }{n}$						

Formulas Used for Statistical Analysis

Figure S2.2.1. Calculated at the (U)B3LYP-D3/6-31+G(d,p) level of theory NBO charges (in a.u.). Best by enthalpy structures.

H										H	H
R-O					R-0.			R-O•		R - 0	R - 0
	Al	cohol			I	Radical		$\Delta = Rad$	ical m	inus Alcohol	Alcohol
					_			Δ		∆ rel. to HO•	Δ rel. to HOH
Name		att. atom	0	Н	att. atom	0•	Н	att. atom	0•/0	0•/0	Н
НОН	(1H)	0.499	-0.997	0.499	0.443	-0.443	-	-0.056	0.554	0.000	0.000
CH₃OH	(6H)	-0.333	-0.782	0.497	-0.391	-0.304	-	-0.058	0.478	-0.076	-0.002
CH ₃ CH ₂ OH	(9H)	-0.125	-0.789	0.500	-0.193	-0.312	-	-0.068	0.477	-0.077	0.001
<i>n</i> -Bu-OH	(11H)	-0.116	-0.791	0.501	-0.183	-0.315	-	-0.067	0.476	-0.078	0.002
t-Bu-OH	(7H)	0.219	-0.785	0.494	0.174	-0.319	-	-0.045	0.466	-0.088	-0.005
PhCH ₂ OH	(8H)	-0.128	-0.774	0.498	-0.184	-0.321	-	-0.056	0.453	-0.101	-0.001
PhC(CH₃)₂OH	(10H)	0.224	-0.779	0.499	0.184	-0.314	-	-0.040	0.465	-0.089	0.000
PhOH	(2H)	0.308	-0.712	0.509	0.354	-0.491	-	0.046	0.221	-0.333	0.010
<i>p</i> -nitro-PhOH	(12H)	0.341	-0.693	0.516	0.367	-0.460	-	0.026	0.233	-0.321	0.017
<i>p</i> -methyl-PhOH	(14H)	0.301	-0.714	0.508	0.357	-0.504	-	0.056	0.210	-0.344	0.009
<i>p</i> -amino-PhOH	(18H)	0.275	-0.720	0.507	0.356	-0.545	-	0.081	0.175	-0.379	0.008
НООН	(13H)	-0.495	-0.495	0.495	-0.355	-0.145	-	0.140	0.350	-0.204	-0.004
CH₃OOH	(15H)	-0.327	-0.502	0.501	-0.177	-0.171	-	0.150	0.331	-0.223	0.002
t-Bu-OOH	(17H)	-0.332	-0.505	0.499	-0.178	-0.184	-	0.154	0.321	-0.233	0.000
PhCH ₂ OOH	(16H)	-0.317	-0.493	0.497	-0.170	-0.175	-	0.147	0.318	-0.236	-0.002
TEMPOH	(5H)	-0.259	-0.645	0.511	-0.007	-0.435	-	0.252	0.210	-0.344	0.012
HOO•	(19H)	-0.145	-0.355	0.500	0.000	0.000	-	0.145	0.355	-0.199	0.001
HC(O)OH	(20H)	0.637	-0.723	0.518	0.584	-0.433	-	-0.053	0.290	-0.264	0.019
							Type:		Av	verage values	
							Alkoxy	-0.056	0.469	-0.085	-0.001
							Aroma	0.052	0.210	-0.344	0.011
							Peroxy	0.148	0.330	-0.224	-0.001

Table S2.3.1. The calculated NBO charges (a.u.) at the (U)B3LYP-D3/6-31+G(d,p) level of theory

Figure 2.4.06. Reaction of hydroxyl radical (1) with methanol (6H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G298)
(U)B3LYP/6-31G(d)	-56.59	-60.86	-63.80
(U)B3LYP-D3/6-31G(d)	-55.41	-59.76	-62.73
(U)B3LYP/6-31+G(d,p)	-61.59	-66.46	-69.27
(U)B3LYP-D3/6-31+G(d,p)	-60.39	-65.35	-68.18
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-53.64	-58.60	-61.43
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-55.34	-60.30	-63.13
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-53.04	-57.99	-60.82
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-54.75	-59.71	-62.54
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-48.42	-53.38	-56.21
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-50.53	-55.49	-58.32
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-51.67	-56.63	-59.46
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-51.43	-56.19	-58.97
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-51.60	-55.77	-58.70
DLPNO-CCSD(T)/aug-cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-50.47	-55.43	-58.25
DLPNO-CCSD(T)/aug-cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-51.53	-56.49	-59.32
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-52.19	-57.15	-59.98
exp.ª		-56.96±0.29	

 Table S2.4.06a.
 Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S06.

^a Data from ATcT, version 1.122p, **2020**: BDE(O-H,**8H**) = +440.36±0.29 kJ/mol and BDE(O-H,**1H**) = +497.32±0.26 kJ/mol.

			07		U			
system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
CH3O1 (Cs, 2A')	-115.0504625	-115.0097145	-115.0365955	-115.0511257	-115.0104527	-115.0373377	-115.0511257	-115.0104527
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
СНЗОН	-115.7144073	-115.6587003	-115.6856603	-115.7155275	-115.6598675	-115.6868175	-115.7155275	-115.6598675
		(2)			· · · · · · · · · · · · · · · · · · ·			

 Table S2.4.06b.
 Energy values for all systems shown in Figure 2.4.06.

 Table S2.4.06c.
 Energy values for all systems shown in Figure 2.4.06.

system	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G298
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
6						
CH3O1 (Cs, 2A')	-115.0632984	-115.0229614	-115.0498824	-115.0639558	-115.0236958	-115.0506198
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
6H						
СНЗОН	-115.7348716	-115.6793556	-115.7063976	-115.7359964	-115.6805264	-115.7075604

		<u> </u>				
system	E _{tot}	H ₂₉₈				
	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		
1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
6						
CH3O1 (Cs, 2A')	-115.0039947	-115.0220418	-115.0019654	-115.0199688	-115.0011447	-114.9623067
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
6H						
CH3OH (Cs)	-115.6765979	-115.6964227	-115.6765979	-115.6964227	-115.6812416	-115.6277836

 Table S2.4.06d.
 Energy values for all systems shown in Figure 2.4.06.

			-						
system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈			
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-			
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/			
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)			
1H									
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889			
6									
CH3O1 (C2v, 2A1)	-114.8744982	-114.8342382	-114.9095010	-114.8692410	-114.9308974	-114.8906374			
1									
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360			
6H									
CH3OH_a (Cs)	-115.5503371	-115.4948671	-115.5884523	-115.5329823	-115.6116900	-115.5562200			
^(a) Using	^(a) Using structures and thermal corrections from gas phase (U)B3LYP-D3/6-31+G(d,p) calculations.								

Table S2.4.06e. Energy values for all systems shown in Figure 2.4.06.

system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈	
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	
	aug-cc-pVTZ ^(a)	aug-cc-pVTZ ^(a)	aug-cc-pVQZ ^(a)	aug-cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)	
1H							
НОН	-76.3421010	-76.3170370	-76.3633066	-76.3382426	-76.3762075	-76.3511435	
6							
CH3O1 (C2v, 2A1)	-114.8845740	-114.8443140	-114.9132689	-114.8730089	-114.9307765	-114.8905165	
1							
НО	-75.6455007	-75.6337577	-75.6642373	-75.6524943	-75.6755624	-75.6638194	
6H							
CH3OH a (Cs)	-115.5619522	-115.5064822	-115.5927114	-115.5372414	-115.6115434	-115.5560734	

 Table S2.4.06f. Energy values for all systems shown in Figure 2.4.06.

Figure 2.4.09. Reaction of hydroxyl radical (1) with ethanol (9H).

Table S2.4.09a. Radical	stabilization energies	(RSE values)) calculated for the	e systems shown in Fig. S09.

level of theory	RSE (Etot)	RSE (<i>H</i> 298)	RSE (<i>G</i> 298)	
(U)B3LYP/6-31G(d)	-56.98	-61.65	-66.16	
(U)B3LYP-D3/6-31G(d)	-55.05	-59.75	-64.19	
(U)B3LYP/6-31+G(d,p)	-62.57	-68.06	-74.83	
(U)B3LYP-D3/6-31+G(d,p)	-60.93	-66.59	-75.08	

-53.09	-58.74	-67.24
-54.76	-60.41	-68.91
-52.44	-58.10	-66.59
-54.12	-59.78	-68.28
-46.89	-52.54	-61.04
-48.98	-54.63	-63.13
-50.09	-55.75	-64.24
-50.25	-55.63	-64.13
-50.41	-54.82	-59.02
	-56.90±0.47	
	-53.09 -54.76 -52.44 -54.12 -46.89 -48.98 -50.09 -50.25 -50.41	-53.09 -58.74 -54.76 -60.41 -52.44 -58.10 -54.12 -59.78 -46.89 -52.54 -48.98 -54.63 -50.09 -55.75 -50.25 -55.63 -50.41 -54.82 -56.90±0.47

^a Data from ATcT, version 1.122p, **2020**: BDE(O-H,**9H**) = +440.4±0.47 kJ/mol and BDE(O-H,**1H**) = +497.3±0.26 kJ/mol.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
CH3CH2O1	-154.3704925	-154.3000375	-154.3310565	-154.3730829	-154.3026259	-154.3335789	-154.3730829	-154.3026259
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
CH3CH2OH2	-155.0342872	-154.9487212	-154.9792212	-155.0376201	-154.9520431	-154.9825051	-155.0376201	-154.9520431
CH3CH2OH1	-155.0338010	-154.9482710	-154.9788490	-155.0370190	-154.9514750	-154.9820180	-155.0370190	-154.9514750

Table S2.4.09b. Energy values for all systems shown in Figure 2.4.09.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	U)B3LYP/ (U)B3LYP-D3/ (U)B3LYP-D3/		(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
9						
CH3CH2O1 (Cs, 2A'')	-154.3867795	-154.3170895	-154.3491505	-154.3893563	-154.3197153	-154.3523993
aco_046 (C1)	-154.3867916	-154.318040	-154.348421	-154.3893683	-154.320652	-154.351032
		(imag=-32 cm ⁻¹)			(imag=-94 cm ⁻¹)	
aco_048 (Cs, 2A')	-154.3851784	-154.314233	-154.344918	-154.3879434	-154.316939	-154.347572
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
9H						
CH3CH2OH2	-155.0579793	-154.9728763	-155.0035473	-155.0611896	-154.9760736	-155.0067086
CH3CH2OH1	-155.0578617	-154.9727427	-155.0033617	-155.0611891	-154.9760591	-155.0066361

system	Etot (U)B2PLYP/	E _{tot} (U)B2PLYP/	Etot ROB2PLYP/	Etot ROB2PLYP/	E _{tot} G3B3-D3 ^(a)	H ₂₉₈ G3B3-D3 ^(a)
111		cc-pvQz*		ιι-μνιμε		
11						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
9						
CH3CH2O1 (Cs, 2A'')	-154.2971560	-154.3207632	-154.2951120	-154.3186759	-154.3047057	-154.2375537
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
9H						
CH3CH2OH2	-154.9699707	-154.9953673	-154.9699707	-154.9953673	-154.9852549	-154.9032439
CH3CH2OH1	-154.9699405	-154.9951846	-154.9699405	-154.9951846	-154.9850646	-154.9030416

Table S2.4.09d. Energy values for all systems shown in Figure 2.4.09.

Table S2.4.09e. Energy values for all systems shown in Figure 2.4.09.

system	E _{tot}	H ₂₉₈	E _{tot}	H ₂₉₈	E _{tot}	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
9						
CH3CH2O1	-154.1182432	-154.0486022	-154.1647101	-154.0950691	-154.1933252	-154.1236842
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
9H						
CH3CH2OH2	-154.7946678	-154.7095518	-154.8442520	-154.7591360	-154.8747197	-154.7896037
CH3CH2OH1	-154.7946648	-154.7095348	-154.8441048	-154.7589748	-154.8744933	-154.7893633

Figure 2.4.11. Reaction of hydroxyl radical (1) with butan-1-ol (11H).

level of theory	RSE (Etot)	RSE (<i>H</i> 298)	RSE (G298)
(U)B3LYP/6-31G(d)	-58.13	-62.37	-66.29
(U)B3LYP-D3/6-31G(d)	-55.81	-60.05	-63.91
(U)B3LYP/6-31+G(d,p)	-63.76	-68.53	-72.76
(U)B3LYP-D3/6-31+G(d,p)	-61.86	-66.82	-70.90
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-54.16	-59.08	-63.14
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-56.12	-61.09	-65.17
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-53.50	-58.42	-62.48
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-55.48	-60.44	-64.52
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-47.26	-52.18	-56.24
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-49.57	-54.53	-58.61
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-50.69	-55.65	-59.73
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-51.32	-56.06	-60.12
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-51.33	-55.29	-58.85
exp.ª		-65.0	

Table S2.4.11a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S11.

^a Data from Luo: BDE(O-H,10H) = 432.3 kJ/mol and BDE(O-H,1H) = +497.3±0.26 kJ/mol.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
BuO2	-232.9987830	-232.8681760	-232.9059800	-233.0069065	-232.8761235	-232.9137135	-233.0069065	-232.8761235
BuO1	-232.9980840	-232.8675370	-232.9056420	-233.0065627	-232.8755107	-232.9126417	-233.0065627	-232.8755107
BuO3	-232.9977243	-232.8668453	-232.9046183	-233.0062990	-232.8752520	-232.9129010	-233.0062990	-232.8752520
BuO4	-232.9977207	-232.8668297	-232.9042277	-233.0059762	-232.8752722	-232.9131782	-233.0059762	-232.8752722
BuO5	-232.9969602	-232.8660772	-232.9039222	-233.0052939	-232.8742469	-232.9118869	-233.0052939	-232.8742469
1								
HO	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
BuOH1a	-233.6621392	-233.5165842	-233.5540952	-233.6711543	-233.5254253	-233.5627453	-233.6711543	-233.5254253
BuOH3a	-233.6617267	-233.5161497	-233.5539047	-233.6708159	-233.5250509	-233.5625299	-233.6708159	-233.5250509
BuOH4d	-233.6617348	-233.5161358	-233.5537578	-233.6706388	-233.5247928	-233.5622398	-233.6706388	-233.5247928
BuOH8b	-233.6614778	-233.5159728	-233.5535948	-233.6704040	-233.5246490	-233.5622080	-233.6704040	-233.5246490
BuOH7b	-233.6610820	-233.5155740	-233.5534160	-233.6702934	-233.5246134	-233.5620404	-233.6702934	-233.5246134
BuOH5c	-233.6611277	-233.5155037	-233.5531677	-233.6701375	-233.5243535	-233.5614555	-233.6701375	-233.5243535
BuOH2b	-233.6604354	-233.5148584	-233.5522204	-233.6700435	-233.5242295	-233.5615375	-233.6700435	-233.5242295
BuOH6b	-233.6604228	-233.5148118	-233.5525458	-233.6696355	-233.5239465	-233.5615925	-233.6696355	-233.5239465
BuOH9b	-233.6603463	-233.5147843	-233.5527183	-233.6696134	-233.5238694	-233.5615234	-233.6696134	-233.5238694
BuOH11d	-233.6603144	-233.5147744	-233.5526024	-233.6695075	-233.5237015	-233.5612005	-233.6695075	-233.5237015
BuOH10d	-233.6602097	-233.5146347	-233.5525017	-233.6692881	-233.5235221	-233.5611611	-233.6692881	-233.5235221
BuOH13c	-233.6596674	-233.5141594	-233.5520504	-233.6687985	-233.5231165	-233.5605805	-233.6687985	-233.5231165
BuOH12c	-233.6594432	-233.5139442	-233.5516212	-233.6686221	-233.5229191	-233.5605821	-233.6686221	-233.5229191
BuOH14b	-233.6588521	-233.5132181	-233.5506531	-233.6685382	-233.5227432	-233.5599272	-233.6685382	-233.5227432

 Table S2.4.11b.
 Energy values for all systems shown in Figure 2.4.11.

Table S2.4.11c. Energy values for all systems shown in Figure 2.4.11.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/

	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
11						
BuO2	-233.0217124	-232.8921674	-232.9302304	-233.0297641	-232.9001131	-232.9380521
BuO1	-233.0214397	-232.8919897	-232.9305047	-233.0293178	-232.8997018	-232.9379428
BuO3	-233.0204473	-232.8907043	-232.9286873	-233.0291945	-232.8990965	-232.9362975
BuO4	-233.0203871	-232.8904551	-232.9279411	-233.0289513	-232.8990383	-232.9368183
BuO5	-233.0201910	-232.8903140	-232.9282720	-233.0285104	-232.8984694	-232.9362054
1						
HO	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
11H						
BuOH1a	-233.6924589	-233.5477729	-233.5855489	-233.7012452	-233.5563822	-233.5939542
BuOH3a	-233.6924131	-233.5476431	-233.5855601	-233.7011493	-233.5563023	-233.5938833
BuOH4d	-233.6923781	-233.5476731	-233.5856881	-233.7011378	-233.5562348	-233.5938448
BuOH8b	-233.6922101	-233.5475401	-233.5853211	-233.7010850	-233.5561360	-233.5938480
BuOH7b	-233.6920950	-233.5473680	-233.5851510	-233.7009170	-233.5560300	-233.5938400
BuOH5c	-233.6911913	-233.5464723	-233.5843093	-233.7004921	-233.5555171	-233.5931101
BuOH2b	-233.6910875	-233.5463215	-233.5842075	-233.7004379	-233.5555169	-233.5931219
BuOH6b	-233.6909736	-233.5461846	-233.5841036	-233.7002095	-233.5552895	-233.5929505
BuOH9b	-233.6908362	-233.5461362	-233.5842032	-233.7000503	-233.5550603	-233.5927253
BuOH11d	-233.6907994	-233.5460374	-233.5840814	-233.6998676	-233.5549106	-233.5927036
BuOH10d	-233.6906130	-233.5459200	-233.5838340	-233.6997775	-233.5548785	-233.5926975
BuOH13c	-233.6898427	-233.5451917	-233.5830827	-233.6993142	-233.5544542	-233.5919492
BuOH12c	-233.6897395	-233.5450705	-233.5828115	-233.6991397	-233.5543017	-233.5919787
BuOH14b	-233.6889250	-233.5441750	-233.5817330	-233.6985592	-233.5536582	-233.5910272

system	E _{tot} (U)B2PLYP/ cc-pVTZ ^(a)	E _{tot} (U)B2PLYP/ cc-pVQZ ^(a)	E _{tot} ROB2PLYP/ cc-pVTZ ^(a)	E _{tot} ROB2PLYP/ cc-pVQZ ^(a)	E _{tot} G3B3-D3 ^(a)	H ₂₉₈ G3B3-D3 ^(a)
1H	·	•	·	·		
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
11						
BuO2	-232.8733134	-232.9081892	-232.8712630	-232.9060968	-232.9035794	-232.7786424
BuO1	-232.8727876	-232.9077365	-232.8707404	-232.9056479	-232.9030192	-232.7781122
BuO4	-232.8723463	-232.9071420	-232.8702949	-232.9050508	-232.9028292	-232.7776482
BuO3	-232.8721355	-232.9069549	-232.8700752	-232.9048532	-232.9028110	-232.7774600
BuO5	-232.8716952	-232.9066543	-232.8696505	-232.9045687	-232.9022632	-232.7769612
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
11H						
BuOH3a	-233.5457192	-233.5820935	-233.5457192	-233.5820935	-233.5837189	-233.4441669
BuOH1a	-233.5456783	-233.5822729	-233.5456783	-233.5822729	-233.5834397	-233.4439037
BuOH8b	-233.5454449	-233.5820545	-233.5454449	-233.5820545	-233.5833682	-233.4437772
BuOH7b	-233.5453002	-233.5820542	-233.5453002	-233.5820542	-233.5832980	-233.4437210
BuOH5c	-233.5448676	-233.5812089	-233.5448676	-233.5812089	-233.5833293	-233.4436923
BuOH2b	-233.5447033	-233.5812766	-233.5447033	-233.5812766	-233.5831367	-233.4435297
BuOH6b	-233.5442216	-233.5807083	-233.5442216	-233.5807083	-233.5829271	-233.4432701
BuOH9b	-233.5441709	-233.5807769	-233.5441709	-233.5807769	-233.5825409	-233.4429349
BuOH11d	-233.5439692	-233.5805607	-233.5439692	-233.5805607	-233.5823455	-233.4426705
BuOH10d	-233.5439524	-233.5806799	-233.5439524	-233.5806799	-233.5822416	-233.4426536
BuOH13c	-233.5436734	-233.5797188	-233.5436734	-233.5797188	-233.5821199	-233.4424759
BuOH12c	-233.5434557	-233.5797732	-233.5434557	-233.5797732	-233.5813472	-233.4418192
BuOH14b	-233.5425506	-233.5789423	-233.5425506	-233.5789423	-233.5812418	-233.4416938
BuOH4d	-233.5454460	-233.5819698	-233.5454460	-233.5819698	-233.5806613	-233.4410733

Table S2.4.11d. Energy values for all systems shown in Figure 2.4.11.

system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
11						
BuO2	-232.5974867	-232.4678357	-232.6668970	-232.5372460	-232.7099355	-232.5802845
BuO1	-232.5968699	-232.4672539	-232.6663850	-232.5367690	-232.7094682	-232.5798522
BuO4	-232.5967538	-232.4668408	-232.6661280	-232.5362150	-232.7091664	-232.5792534
BuO3	-232.5964513	-232.4663533	-232.6659109	-232.5358129	-232.7090021	-232.5789041
BuO5	-232.5960289	-232.4659879	-232.6655576	-232.5355166	-232.7086471	-232.5786061
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
11H						
BuOH3a	-233.2737701	-233.1289231	-233.3460570	-233.2012100	-233.3908444	-233.2459974
BuOH1a	-233.2737260	-233.1288630	-233.3462147	-233.2013517	-233.3911029	-233.2462399
BuOH4d	-233.2735506	-233.1286476	-233.3459832	-233.2010802	-233.3908254	-233.2459224
BuOH8b	-233.2734356	-233.1284866	-233.3459396	-233.2009906	-233.3908047	-233.2458557
BuOH7b	-233.2732629	-233.1283759	-233.3459134	-233.2010264	-233.3908625	-233.2459755
BuOH5c	-233.2732046	-233.1282296	-233.3454552	-233.2004802	-233.3902274	-233.2452524
BuOH2b	-233.2730703	-233.1281493	-233.3455324	-233.2006114	-233.3904093	-233.2454883
BuOH6b	-233.2726810	-233.1277610	-233.3450941	-233.2001741	-233.3899345	-233.2450145
BuOH9b	-233.2724105	-233.1274205	-233.3449075	-233.1999175	-233.3897679	-233.2447779
BuOH11d	-233.2721929	-233.1272359	-233.3446828	-233.1997258	-233.3895435	-233.2445865
BuOH10d	-233.2721762	-233.1272772	-233.3447944	-233.1998954	-233.3897273	-233.2448283
BuOH13c	-233.2719398	-233.1270798	-233.3439269	-233.1990669	-233.3885970	-233.2437370
BuOH12c	-233.2716520	-233.1268140	-233.3438979	-233.1990599	-233.3886942	-233.2438562
BuOH14b	-233.2709413	-233.1260403	-233.3432681	-233.1983671	-233.3880658	-233.2431648

Table S2.4.11e. Energy values for all systems shown in Figure 2.4.11.

Figure 2.4.07. Reaction of hydroxyl radical (1) with *tert*-butanol (7H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G ₂₉₈)
(U)B3LYP/6-31G(d)	-54.34	-54.46	-58.70
(U)B3LYP-D3/6-31G(d)	-51.81	-52.05	-56.28
(U)B3LYP/6-31+G(d,p)	-59.78	-60.10	-64.09
(U)B3LYP-D3/6-31+G(d,p)	-57.25	-57.69	-61.71
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-49.48	-49.92	-53.93
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-51.82	-52.26	-56.28
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-49.02	-49.46	-53.48
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-51.40	-51.83	-55.85
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-42.34	-42.78	-46.80
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-44.98	-45.41	-49.43
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-46.31	-46.75	-50.77
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-47.41	-47.83	-51.80
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-47.49	-47.72	-51.90
exp.ª		-52.4±2.8	

Table S2.4.07a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S07.

^a Data from Y. R. Luo, *Comprehensive Handbook of Chemical Bond Energies*, CRC Press, **2007**:

BDE(O-H,7H) = +444.9±2.8 kJ/mol, and BDE(O-H,1H) = +497.3±0.26 kJ/mol from ATcT, version 1.122p, 2020.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
t-BuO2	-233.0061692	-232.8756412	-232.9126312	-233.0157245	-232.8849935	-232.9217565	-233.0157245	-232.8849935
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
t-BuOH	-233.6709712	-233.5270612	-233.5636382	-233.6814959	-233.5373449	-233.5736929	-233.6814959	-233.5373449

Table S2.4.07b. Energy values for all systems shown in Figure 2.4.07.

 Table S2.4.07c.
 Energy values for all systems shown in Figure 2.4.07.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
7						
t-BuO2 (Cs, 2A')	-233.0294718	-232.8998388	-232.9368568	-233.0390287	-232.9091897	-232.9459787
aco_025 (Cs, 2A'')	-233.0290142	-232.900906	-232.937476	-233.0385699	-232.910266	-232.946618
		(imag=-541 cm ⁻¹)			(imag=-545 cm ⁻¹)	
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
7H						
t-BuOH (Cs)	-233.7017358	-233.5586568	-233.5953428	-233.7122651	-233.5689381	-233.6053831

Table S2.4.07d. Energy values for all systems shown in Figure 2.4.07.

system	E _{tot} (U)B2PLYP/ cc-pVTZ ^(a)	E _{tot} (U)B2PLYP/ cc-pVQZ ^(a)	E _{tot} ROB2PLYP/ cc-pVTZ ^(a)	E _{tot} ROB2PLYP/ cc-pVQZ ^(a)	E _{tot} G3B3-D3 ^(a)	H ₂₉₈ G3B3-D3 ^(a)
1H				·		
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
7						
t-BuO2 (C2v, 2A')	-232.8818521	-232.9168271	-232.8798819	-232.9148179	-232.9151268	-232.7899888
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
7H						
t-BuOH (Cs)	-233.5560423	-233.5925489	-233.5560423	-233.5925489	-233.5967583	-233.4586483

Table S2.4.07e. Energy values for all systems shown in Figure 2.4.07.

				-		
system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
7						
t-BuO2	-232.6073098	-232.4774708	-232.6768785	-232.5470395	-232.7200341	-232.5901951
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
7H						
t-BuOH	-233.2854644	-233.1421374	-233.3579451	-233.2146181	-233.4028691	-233.2595421

Figure 2.4.08. Reaction of hydroxyl radical (1) with benzyl alcohol (8H).

			0
level of theory	RSE (Etot)	RSE (H298)	RSE (<i>G</i> 298)
(U)B3LYP/6-31G(d)	-56.11	-60.71	-66.08
(U)B3LYP-D3/6-31G(d)	-53.49	-58.21	-63.88
(U)B3LYP/6-31+G(d,p)	-62.01	-67.22	-74.55
(U)B3LYP-D3/6-31+G(d,p)	-59.79	-65.03	-71.37
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-52.05	-57.29	-63.62
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-54.01	-59.25	-65.58
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-51.24	-56.48	-62.81
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-53.21	-58.45	-64.79
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-43.15	-48.39	-54.72
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-45.60	-50.84	-57.17
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-46.93	-52.17	-58.50
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-47.90	-52.91	-59.21
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-50.98	-55.49	-61.13
exp.ª		-54.6±8.8	

Table S2.4.08a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S08.

^a Data from Y. R. Luo, *Comprehensive Handbook of Chemical Bond Energies*, CRC Press, **2007**: BDE(O-H,**8H**) = +442.7±8.8 kJ/mol, and BDE(O-H,**1H**) = +497.3±0.26 kJ/mol from ATcT, version 1.122p, **2020**.

				V			
Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
-346.1064815	-345.9798925	-346.0201305	-346.1154124	-345.9888184	-346.0290204	-346.1154124	-345.9888184
-346.1036245	-345.9754945	-346.0158025	-346.1126664	-345.9844814	-346.0246234	-346.1126664	-345.9844814
-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
-346.7706079	-346.6289339	-346.6683239	-346.7805436	-346.6388216	-346.6780636	-346.7805436	-346.6388216
-346.7676339	-346.6262269	-346.6662869	-346.7771928	-346.6357488	-346.6757048	-346.7771928	-346.6357488
	Etot (U)B3LYP/ 6-31G(d) -76.4089533 -346.1064815 -346.1036245 -346.1036245 -346.7706079 -346.7706079 -346.7676339	Etot H298 (U)B3LYP/ (U)B3LYP/ 6-31G(d) 6-31G(d) -76.4089533 -76.3840103 -76.4089533 -76.3840103 -346.1064815 -345.9798925 -346.1036245 -345.9754945 -75.7234548 -75.7118458 -346.7706079 -346.6289339 -346.7676339 -346.6262269	Etot H298 G298 (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ 6-31G(d) 6-31G(d) 6-31G(d) -76.4089533 -76.3840103 -76.4054563 -346.1064815 -345.9798925 -346.0201305 -346.1036245 -345.9754945 -346.0158025 -75.7234548 -75.7118458 -75.7320928 -346.7706079 -346.6289339 -346.66683239 -346.7676339 -346.6262269 -346.6662869	Etot H298 G298 Etot (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ (U)B3LYP-D3/ 6-31G(d) 6-31G(d) 6-31G(d) 6-31G(d) 6-31G(d) -76.4089533 -76.3840103 -76.4054563 -76.4089616 -346.1064815 -345.9798925 -346.0201305 -346.1154124 -346.1036245 -345.9754945 -346.0158025 -346.1126664 -75.7234548 -75.7118458 -75.7320928 -75.7234554 -346.7706079 -346.6289339 -346.66683239 -346.7805436 -346.7676339 -346.6262269 -346.6662869 -346.7771928	Etot H298 G298 Etot H298 (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ (U)B3LYP-D3/ (U)B3LYP-D3/ 6-31G(d) 6-31G(d) 6-31G(d) 6-31G(d) 6-31G(d) 6-31G(d) -76.4089533 -76.3840103 -76.4054563 -76.4089616 -76.3840216 -76.4089533 -76.3840103 -76.4054563 -76.4089616 -76.3840216 -346.1064815 -345.9798925 -346.0201305 -346.1154124 -345.9888184 -346.1036245 -345.9754945 -346.0158025 -346.1126664 -345.9844814 - - - - - - -75.7234548 -75.7118458 -75.7320928 -75.7234554 -75.7118464 - - - - - - -346.7706079 -346.6289339 -346.6683239 -346.7805436 -346.6388216 -346.7676339 -346.6262269 -346.6662869 -346.7771928 -346.6357488	Etot H298 G298 Etot H298 G298 (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ (U)B3LYP/D3/ (U)B3LYP-D3/ (U)B3LYP-D3/	Etot H298 G298 Etot H298 G298 Etot (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ (U)B3LYP/ (U)B3LYP-D3/ (U)B3

 Table S2.4.08b.
 Energy values for all systems shown in Figure 2.4.08.

 Table S2.4.08c.
 Energy values for all systems shown in Figure 2.4.08.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
8						
PhCH2O2	-346.1329494	-346.0070054	-346.0488394	-346.1418805	-346.0159255	-346.0571055
PhCH2O3	-346.1309376	-346.0032836	-346.0431956	-346.1399605	-346.0122495	-346.0520855
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
8H						
PhCH2OH2	-346.8043660	-346.6631100	-346.7033420	-346.8141481	-346.6728761	-346.7128311

PhCH2OH1 -346.8024913 -346.6614553 -346.7019423 -346.8120519 -346.6709759

system	E _{tot} (U)B2PLYP/	E _{tot} (U)B2PLYP/ cc-p\/Q7 ^(a)	E _{tot} ROB2PLYP/	E _{tot} ROB2PLYP/ cc-p\/Q7 ^(a)	E _{tot} G3B3-D3 ^(a)	H ₂₉₈ G3B3-D3 ^(a)
14	cc-pv12**	cc-pvQz**		cc-pvQ2**		
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
8						
PhCH2O2	-345.9318607	-345.9809661	-345.9276395	-345.9772125	-345.9630602	-345.8416012
PhCH2O3	-345.9295758	-345.9791939	-345.9297530	-345.9788164	-345.9615045	-345.8383745
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
8H						
PhCH2OH2	-346.6050709	-346.6558554	-346.6050709	-346.6558554	-346.6445051	-346.5083291
PhCH2OH1	-346.6031632	-346.6541702	-346.6031632	-346.6541702	-346.6428540	-346.5068630

 Table S2.4.08d.
 Energy values for all systems shown in Figure 2.4.08.

^(a) Using structures and thermal corrections from gas phase (U)B3LYP-D3/6-31+G(d,p) calculations.

 Table S2.4.08e.
 Energy values for all systems shown in Figure 2.4.08.

system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
8						
PhCH2O2	-345.4882378	-345.3622828	-345.5872641	-345.4613091	-345.6488115	-345.5228565
PhCH2O3	-345.4862255	-345.3585145	-345.5855293	-345.4578183	-345.6471397	-345.5194287
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
8H						

PhCH2OH2	-346.1660865	-346.0248145	-346.2680938	-346.1268218	-346.3314114	-346.1901394	
PhCH2OH1	-346.1642151	-346.0231391	-346.2664407	-346.1253647	-346.3298593	-346.1887833	

Figure 2.4.10. Reaction of hydroxyl radical (1) with 1-methyl-1-phenylethanol (10H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G298)
(U)B3LYP/6-31G(d)	-54.76	-55.33	-59.46
(U)B3LYP-D3/6-31G(d)	-51.46	-52.12	-56.07
(U)B3LYP/6-31+G(d,p)	-60.65	-61.43	-64.51
(U)B3LYP-D3/6-31+G(d,p)	-57.39	-58.14	-61.26
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-49.76	-50.52	-53.64
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-52.47	-53.23	-56.35
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-49.27	-50.03	-53.14
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-52.02	-52.77	-55.89
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-40.12	-40.87	-43.99
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-42.96	-43.72	-46.84
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-44.32	-45.08	-48.20
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-46.54	-47.27	-50.34
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-47.14	-47.75	-51.66
exp.ª		-59.1±1.0	

Table S2.4.10a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S10.

^a Data from Luo: BDE(O-H,**10H**) = 438.2±1.0 kJ/mol and BDE(O-H,**1H**) = +497.32±0.26 kJ/mol.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
PhCCH32O3	-424.7402226	-424.5535866	-424.5992576	-424.7574653	-424.5705623	-424.6159603	-424.7574653	-424.5705623
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
PhCCH32OH2	-425.4048644	-425.2046754	-425.2499734	-425.4233696	-425.2228876	-425.2679796	-425.4233696	-425.2228876
PhCCH32OH3	-425.4036179	-425.2035569	-425.2486589	-425.4218145	-425.2214955	-425.2663825	-425.4218145	-425.2214955
PhCCH32OH1	-425.4004136	-425.2003086	-425.2456136	-425.4188141	-425.2184151	-425.2634991	-425.4188141	-425.2184151

Table S2.4.10b. Energy values for all systems shown in Figure 2.4.10.

Table S2.4.10c. Energy values to	or all systems :	shown in Figure 2.4.10.
----------------------------------	------------------	-------------------------

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
10						
PhCCH32O3	-424.7729961	-424.5872501	-424.6330391	-424.7902359	-424.6042189	-424.6497179
PhCCH32O2_a	-424.7713547	-424.5852387	-424.6304687	-424.7884533	-424.6021313	-424.6471403
1						
HO	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131

10H						
PhCCH32OH2	-425.4449289	-425.2455609	-425.2913669	-425.4634197	-425.2637937	-425.3092917
PhCCH32OH3	-425.4442997	-425.2450797	-425.2904917	-425.4625048	-425.2630198	-425.3081938
PhCCH32OH1	-425.4416282	-425.2423312	-425.2878762	-425.4600159	-425.2604259	-425.3056789

 Table S2.4.10d.
 Energy values for all systems shown in Figure 2.4.10.

system	Etot	Etot	Etot	Etot	Etot	H ₂₉₈
	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		
1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
10						
PhCCH32O2_a	-424.5128475	-424.5735088	-424.5108970	-424.5715188	-424.5737640	-424.3944330
PhCCH32O3	-424.5149930	-424.5753891	-424.5130078	-424.5733688	-424.5716634	-424.3920444
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
10H						
PhCCH32OH2	-425.1890748	-425.2508629	-425.1890748	-425.2508629	-425.2557235	-425.0633075
PhCCH32OH3	-425.1882979	-425.2502678	-425.1882979	-425.2502678	-425.2549421	-425.0626581
PhCCH32OH1	-425.1855216	-425.2478144	-425.1855216	-425.2478144	-425.2528812	-425.0604962

Table S2.4.10e. Energy values for all systems shown in Figure 2.4.10.

system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
10						
PhCCH32O3	-423.9769476	-423.7909306	-424.0987877	-423.9127707	-424.1746592	-423.9886422
PhCCH32O2_a	-423.9747497	-423.7884277	-424.0967353	-423.9104133	-424.1726537	-423.9863317
-------------	--------------	--------------	--------------	--------------	--------------	--------------
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
10H						
PhCCH32OH2	-424.6559510	-424.4563250	-424.7806203	-424.5809943	-424.8582514	-424.6586254
PhCCH32OH3	-424.6550229	-424.4555379	-424.7799400	-424.5804550	-424.8576901	-424.6582051
PhCCH32OH1	-424.6525200	-424.4529300	-424.7776556	-424.5780656	-424.8554775	-424.6558875

Figure 2.4.2. Reaction of hydroxyl radical (1) with phenol (2H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G298)
(U)B3LYP/6-31G(d)	-126.73	-126.54	-128.81
(U)B3LYP-D3/6-31G(d)	-125.38	-125.18	-129.13
(U)B3LYP/6-31+G(d,p)	-134.32	-134.27	-136.39
(U)B3LYP-D3/6-31+G(d,p)	-132.94	-132.91	-134.98
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-114.21	-114.17	-116.25
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-117.73	-117.69	-119.77
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-123.27	-123.23	-125.31
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-127.36	-127.32	-129.40
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-116.37	-116.34	-118.41
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-121.02	-120.98	-123.06
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-123.59	-123.55	-125.63
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-121.54	-121.52	-123.53
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-121.74	-121.61	-123.80
DLPNO-CCSD(T)/aug-cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-120.82	-120.78	-122.86
DLPNO-CCSD(T)/aug-cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-122.84	-122.80	-124.88
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-124.17	-124.13	-126.21
exp.ª		-130.2±1	

Table S2.4.2a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S2.

^a Data from ATcT, version 1.122p, **2020**: BDE(O-H,**2H**) = +367.06±0.88 kJ/mol and BDE(O-H,**1H**) = +497.32±0.26 kJ/mol.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
PhO	-306.8276418	-306.7296468	-306.7647298	-306.8336783	-306.7356833	-306.7714233	-306.8336783	-306.7356833
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
PhOH	-307.4648705	-307.3536155	-307.3890335	-307.4714286	-307.3601816	-307.3956126	-307.4714286	-307.3601816

Table S2.4.2b. Energy values for all systems shown in Figure 2.4.2.

 Table S2.4.2c.
 Energy values for all systems shown in Figure 2.4.2.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
2						
PhO	-306.8501209	-306.7524479	-306.7875909	-306.8561593	-306.7584873	-306.7936333
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
2H						
PhOH	-307.4939951	-307.3830151	-307.4185411	-307.5005653	-307.3895863	-307.4251283

 Table S2.4.02d.
 Energy values for all systems shown in Figure 2.4.02.

	61	1			
system E	tot Etot	Etot	Etot	Etot	H ₂₉₈

	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		
1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
2						
PhO	-306.6751109	-306.7188728	-306.6767639	-306.7206944	-306.6979178	-306.6037158
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
2H						
PhOH	-307.3246457	-307.3694926	-307.3246457	-307.3694926	-307.3513146	-307.2443096

 Table S2.4.02e.
 Energy values for all systems shown in Figure 2.4.02.

				0		
system	E _{tot}	H ₂₉₈	E _{tot}	H ₂₉₈	E _{tot}	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
2						
PhO	-306.2831089	-306.1854369	-306.3712242	-306.2735522	-306.4258729	-306.3282009
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
2H						
PhOH	-306.9330674	-306.8220884	-307.0233275	-306.9123485	-307.0792747	-306.9682957

system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	aug-cc-pVTZ ^(a)	aug-cc-pVTZ ^(a)	aug-cc-pVQZ ^(a)	aug-cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3421010	-76.3170370	-76.3633066	-76.3382426	-76.3762075	-76.3511435
2						
PhO	-306.3043704	-306.2066984	-306.3796221	-306.2819501	-306.4259593	-306.3282873
1						
НО	-75.6455007	-75.6337577	-75.6642373	-75.6524943	-75.6755624	-75.6638194
2H						
PhOH	-306.9549525	-306.8439735	-307.0319049	-306.9209259	-307.0793106	-306.9683316

 Table S2.4.02f.
 Energy values for all systems shown in Figure 2.4.02.

Figure 2.4.12. Reaction of hydroxyl radical (1) with *para*-nitrophenol (12H).

Table S2.4.12a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S12.

level of theory	RSE (Etot)	RSE (H298)	RSE (<i>G</i> 298)

(U)B3LYP/6-31G(d)	-108.01	-108.75	-114.01
(U)B3LYP-D3/6-31G(d)	-106.62	-107.38	-112.73
(U)B3LYP/6-31+G(d,p)	-115.03	-115.86	-119.43
(U)B3LYP-D3/6-31+G(d,p)	-113.62	-114.48	-118.18
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-96.85	-97.71	-101.41
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-99.95	-100.80	-104.50
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-107.86	-108.72	-112.42
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-111.59	-112.45	-116.14
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-99.90	-100.75	-104.45
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-103.47	-104.33	-108.03
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-105.28	-106.14	-109.84
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-105.10	-105.94	-109.58
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-105.29	-106.03	-109.60
exp. ^a		-107±8	

^a Data from BDE(phenol) + differences: BDE(O-H,**12H**) = +390 kJ/mol and BDE(O-H,**1H**) = +497.3±0.26 kJ/mol.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
p-nitro-PhO	-511.3246544	-511.2217224	-511.2644874	-511.3343591	-511.2313801	-511.2741841	-511.3343591	-511.2313801
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
p-nitro-PhOH	-511.9690131	-511.8524651	-511.8944281	-511.9792564	-511.8626564	-511.9046234	-511.9792564	-511.8626564

Table S2.4.12b. Energy values for all systems shown in Figure 2.4.12.

Table S2.4.12c. Energy values for all systems shown in Figure 2.4.12.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
12						
p-nitro-PhO	-511.3543582	-511.2519102	-511.2942482	-511.3640726	-511.2615766	-511.3039696
1						
HO	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
12H						
p-nitro-PhOH	-512.0055779	-511.8894909	-511.9316579	-512.0158385	-511.8996945	-511.9418665

 Table S2.4.12d.
 Energy values for all systems shown in Figure 2.4.12.

system	Etot	Etot	Etot	Etot	Etot	H ₂₉₈
	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		

1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
12						
p-nitro-PhO	-511.1293617	-511.2042454	-511.1317579	-511.2068325	-511.1188068	-511.0198088
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
12H						
p-nitro-PhOH	-511.7855079	-511.8616374	-511.7855079	-511.8616374	-511.7784629	-511.6663379

Table S2.4.12e. Energy values for all systems shown in Figure 2.4.12.

			-			
system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
12						
p-nitro-PhO	-510.5070854	-510.4045894	-510.6579347	-510.5554387	-510.7509593	-510.6484633
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
12H						
p-nitro-PhOH	-511.1633196	-511.0471756	-511.3167213	-511.2005773	-511.4113329	-511.2951889

Figure 2.4.14. Reaction of hydroxyl radical (1) with para-methylphenol (14H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G298)
(U)B3LYP/6-31G(d)	-134.00	-133.65	-138.84
(U)B3LYP-D3/6-31G(d)	-132.69	-132.32	-137.34
(U)B3LYP/6-31+G(d,p)	-142.94	-142.62	-147.81
(U)B3LYP-D3/6-31+G(d,p)	-141.62	-141.31	-146.92
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-122.83	-122.52	-128.13
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-126.64	-126.32	-131.93
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-132.29	-131.97	-137.59
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-136.63	-136.31	-141.93
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-122.82	-122.51	-128.12
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-127.94	-127.63	-133.24
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-130.77	-130.46	-136.07
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-129.41	-129.13	-134.67
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-129.66	-129.33	-134.27
exp.ª		-140.7±0.6	

Table S2.4.14a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S14.

^a Data from Ashfold + therm. corr. = +356.6±0.6 kJ/mol and BDE(O-H,1H) = +497.3±0.3 kJ/mol.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
p-methyl-PhO	-346.1477847	-346.0203167	-346.0614857	-346.1565726	-346.0290566	-346.0699926	-346.1565726	-346.0290566
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
p-methyl-PhOH	-346.7822458	-346.6415768	-346.6819678	-346.7915385	-346.6508335	-346.6910575	-346.7915385	-346.6508335

Table S2.4.14b. Energy values for all systems shown in Figure 2.4.14.

 Table S2.4.14c.
 Energy values for all systems shown in Figure 2.4.14.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
14						
p-methyl-PhO	-346.1734913	-346.0466003	-346.0885413	-346.1822805	-346.0553415	-346.0966435
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
14H						
p-methyl-PhOH	-346.8140799	-346.6739899	-346.7151419	-346.8233808	-346.6832408	-346.7235918

 Table S2.4.14d.
 Energy values for all systems shown in Figure 2.4.14.

			01	1	U		
system Etot Etot Etot H298	system	Etot	Etot	Etot	Etot	Etot	H ₂₉₈

	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		
1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
14						
p-methyl-PhO	-345.9690763	-346.0186311	-345.9708795	-346.0205899	-346.0035663	-345.8811533
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
14H						
p-methyl-PhOH	-346.6153264	-346.6658572	-346.6153264	-346.6658572	-346.6539630	-346.5188470

 Table S2.4.14e.
 Energy values for all systems shown in Figure 2.4.14.

		Ţ,				
system	E _{tot}	H ₂₉₈	E _{tot}	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
14						
p-methyl-PhO	-345.5276291	-345.4006901	-345.6274476	-345.5005086	-345.6894405	-345.5625015
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
14H						
p-methyl-PhOH	-346.1751319	-346.0349919	-346.2769142	-346.1367742	-346.3401060	-346.1999660

Figure 2.4.18. Reaction of hydroxyl radical (1) with *para*-aminophenol (18H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G ₂₉₈)
(U)B3LYP/6-31G(d)	-162.12	-160.56	-163.75
(U)B3LYP-D3/6-31G(d)	-160.75	-159.19	-162.33
(U)B3LYP/6-31+G(d,p)	-171.55	-170.17	-173.87
(U)B3LYP-D3/6-31+G(d,p)	-170.16	-168.79	-172.43
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-153.57	-152.20	-155.84
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-157.47	-156.10	-159.73
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-162.43	-161.06	-164.69
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-166.73	-165.36	-169.00
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-145.23	-143.86	-147.50
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-150.71	-149.34	-152.98
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-153.72	-152.35	-155.99
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-154.90	-153.60	-157.17
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-155.26	-153.79	-156.86
exp.		-173.3±13	

 Table S2.4.18a.
 Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S18.

^a Data from BDE(phenol) + differences: BDE(O-H,**18H**) = +324 \pm 13 kJ/mol and BDE(O-H,**1H**) = +497.3 \pm 0.26 kJ/mol.

system	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
p-amino-PhO	-362.1909425	-362.0744315	-362.1132415	-362.1990804	-362.0825174	-362.1213144	-362.1990804	-362.0825174
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
p-amino-PhOH	-362.8146946	-362.6854416	-362.7242356	-362.8233617	-362.6940607	-362.7328587	-362.8233617	-362.6940607

Table S2.4.18b. Energy values for all systems shown in Figure 2.4.18.

 Table S2.4.18c.
 Energy values for all systems shown in Figure 2.4.18.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
18						
p-amino-PhO	-362.2234108	-362.1073228	-362.1465658	-362.2315504	-362.1154094	-362.1546404
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
18H						
p-amino-PhOH	-362.8531025	-362.7242165	-362.7632395	-362.8617811	-362.7328411	-362.7718741

 Table S2.4.18d.
 Energy values for all systems shown in Figure 2.4.18.

system	Etot	Etot	Etot	Etot	Etot	H ₂₉₈
	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		

1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
18						
p-amino-PhO	-362.0246647	-362.0779902	-362.0262405	-362.0796717	-362.0479265	-361.9358735
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
18H						
p-amino-PhOH	-362.6592078	-362.7134726	-362.6592078	-362.7134726	-362.6886165	-362.5642495

Table S2.4.18e. Energy values for all systems shown in Figure 2.4.18.

			-			
system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
18						
p-amino-PhO	-361.5657277	-361.4495867	-361.6723153	-361.5561743	-361.7382645	-361.6221235
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
18H						
p-amino-PhOH	-362.2046941	-362.0757541	-362.3131096	-362.1841696	-362.3801877	-362.2512477

Figure 2.4.13. Reaction of hydroxyl radical (1) with H₂O₂ (13H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G298)
(U)B3LYP/6-31G(d)	-135.06	-133.19	-136.64
(U)B3LYP-D3/6-31G(d)	-134.39	-132.54	-136.00
(U)B3LYP/6-31+G(d,p)	-136.72	-135.11	-138.63
(U)B3LYP-D3/6-31+G(d,p)	-136.04	-134.44	-137.97
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-135.35	-133.74	-137.27
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-137.42	-135.81	-139.34
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-134.94	-133.33	-136.86
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-136.94	-135.34	-138.87
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-126.53	-124.93	-128.46
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-129.74	-128.13	-131.66
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-131.22	-129.61	-133.14
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-131.22	-129.72	-133.16
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-131.32	-129.58	-132.95
exp.ª		-131.6±0.3	

Table S2.4.13a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S13.

^a Data from ATcT, version 1.122p, **2020**: BDE(O-H,**20H**) = +365.7±0.2 kJ/mol, and BDE(O-H,**1H**) = +497.3±0.26 kJ/mol.

system	E _{tot}		G298	Etot		G298	E _{tot}	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
HOO	-150.8991566	-150.8813206	-150.9073126	-150.8992506	-150.8814286	-150.9074216	-150.8992506	-150.8814286
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6Н								
НООН	-151.5332131	-151.5027541	-151.5286321	-151.5335686	-151.5031236	-151.5289966	-151.5335686	-151.5031236

 Table S2.4.13b.
 Energy values for all systems shown in Figure 2.4.13.

Table S2.4.13c. Energy values for all systems shown in Figure 2.4.13.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
13						
HOO	-150.9154499	-150.8975419	-150.9235339	-150.9155454	-150.8976514	-150.9236434
1						
HO	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
13H						
НООН	-151.5584082	-151.5277912	-151.5536292	-151.5587701	-151.5281671	-151.5540011

 Table S2.4.13d.
 Energy values for all systems shown in Figure 2.4.13.

system	Etot	Etot	Etot	Etot	Etot	H ₂₉₈
	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		

1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
13						
НОО	-150.8703607	-150.8942711	-150.8684061	-150.8922435	-150.8434495	-150.8261135
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
13H						
НООН	-151.5118436	-151.5373906	-151.5118436	-151.5373906	-151.4931587	-151.4635857

 Table S2.4.13e.
 Energy values for all systems shown in Figure 2.4.13.

			-			
system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
13						
HOO	-150.7118999	-150.6940059	-150.7586317	-150.7407377	-150.7870706	-150.7691766
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
13H						
НООН	-151.3579884	-151.3273854	-151.4074133	-151.3768103	-151.4375673	-151.4069643

Figure 2.4.15. Reaction of hydroxyl radical (1) with methylhydroperoxide (15H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G ₂₉₈)
(U)B3LYP/6-31G(d)	-140.35	-137.05	-139.77
(U)B3LYP-D3/6-31G(d)	-139.33	-136.00	-138.67
(U)B3LYP/6-31+G(d,p)	-145.83	-142.76	-145.03
(U)B3LYP-D3/6-31+G(d,p)	-144.91	-141.81	-144.08
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-142.50	-139.40	-141.66
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-145.47	-142.37	-144.63
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-142.25	-139.15	-141.41
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-145.17	-142.07	-144.34
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-131.98	-128.88	-131.14
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-135.92	-132.82	-135.08
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-137.84	-134.74	-137.00
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-138.68	-135.76	-137.92
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-138.97	-135.83	-138.39
exp.ª		-138.9±0.7	

 Table S2.4.15a.
 Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S15.

^a Data from ATcT, version 1.122p, **2020**: BDE(O-H,**20H**) = +358.4±0.7 kJ/mol, and BDE(O-H,**1H**) = +497.3±0.26 kJ/mol.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
CH300	-190.2152309	-190.1671729	-190.1976739	-190.2169841	-190.1689551	-190.1993841	-190.2169841	-190.1689551
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6Н								
СНЗООН	-190.8472716	-190.7871376	-190.8178026	-190.8494226	-190.7893316	-190.8199416	-190.8494226	-190.7893316

Table S2.4.15b. Energy values for all systems shown in Figure 2.4.15.

Table S2.4.15c. Energy values for all systems shown in Figure 2.4.15.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
15						
CH300	-190.2302571	-190.1825091	-190.2130471	-190.2320066	-190.1842896	-190.2147596
1						
HO	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
15H						
CH3OOH	-190.8697446	-190.8098426	-190.8407066	-190.8718538	-190.8119958	-190.8427918

 Table S2.4.15d.
 Energy values for all systems shown in Figure 2.4.15.

system	Etot	Etot	Etot	Etot	Etot	H ₂₉₈
	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		

1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
15						
CH300	-190.1531043	-190.1823439	-190.1512118	-190.1803841	-190.1352199	-190.0891709
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
15H						
СНЗООН	-190.7918641	-190.8223973	-190.7918641	-190.8223973	-190.7820853	-190.7243413

 Table S2.4.15e.
 Energy values for all systems shown in Figure 2.4.15.

			-			
system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
15						
CH300	-189.9426161	-189.8948991	-190.0006686	-189.9529516	-190.0362578	-189.9885408
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
15H						
СНЗООН	-190.5866319	-190.5267739	-190.6470982	-190.5872402	-190.6842307	-190.6243727

Figure 2.4.17. Reaction of hydroxyl radical (1) with *tert*-butylhydroperoxide (17H).

level of theory	RSE (Etot)	RSE (<i>H</i> 298)	RSE (<i>G</i> 298)
(U)B3LYP/6-31G(d)	-147.64	-144.46	-147.57
(U)B3LYP-D3/6-31G(d)	-145.53	-142.46	-145.82
(U)B3LYP/6-31+G(d,p)	-153.37	-150.38	-153.31
(U)B3LYP-D3/6-31+G(d,p)	-151.51	-148.53	-151.52
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-148.61	-145.62	-148.62
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-152.03	-149.05	-152.04
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-148.35	-145.36	-148.36
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-151.76	-148.78	-151.77
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-135.65	-132.67	-135.66
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-139.76	-136.77	-139.77
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-141.68	-138.70	-141.69
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-144.05	-141.23	-144.13
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-144.44	-141.54	-144.80
exp.ª		-145.0±8.8	

 Table S2.4.17a.
 Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S17.

^a Data from Y. R. Luo, *Comprehensive Handbook of Chemical Bond Energies*, CRC Press, **2007**: BDE(O-H,**17H**) = +352.3±8.8 kJ/mol, and BDE(O-H,**1H**) = +497.32±0.26 kJ/mol from ATcT, version 1.122p, **2020**.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
t-BuOO	-308.1728880	-308.0365530	-308.0763790	-308.1846740	-308.0480870	-308.0875810	-308.1846740	-308.0480870
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
t-BuOOH	-308.8021547	-308.6536937	-308.6935347	-308.8147520	-308.6660010	-308.7054170	-308.8147520	-308.6660010

Table S2.4.17b. Energy values for all systems shown in Figure 2.4.17.

 Table S2.4.17c.
 Energy values for all systems shown in Figure 2.4.17.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
17						
t-BuOO	-308.1980644	-308.0626394	-308.1025574	-308.2098349	-308.0741619	-308.1137439
1						
HO	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
17H						
t-BuOOH	-308.8346817	-308.6870727	-308.7270627	-308.8471683	-308.6993103	-308.7389393

 Table S2.4.17d.
 Energy values for all systems shown in Figure 2.4.17.

system	Etot	E _{tot}	E _{tot}	Etot	Etot	H ₂₉₈
	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)

	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		
1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
17						
t-BuOO	-308.0336903	-308.0797199	-308.0317937	-308.0777678	-308.0527741	-307.9219711
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
17H						
t-BuOOH	-308.6701245	-308.7172723	-308.6701245	-308.7172723	-308.6975953	-308.5550563

 Table S2.4.17e.
 Energy values for all systems shown in Figure 2.4.17.

system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
17						
t-BuOO	-307.6785042	-307.5428312	-307.7709584	-307.6352854	-307.8282657	-307.6925927
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
17H						
t-BuOOH	-308.3211194	-308.1732614	-308.4159253	-308.2680673	-308.4747768	-308.3269188

Figure 2.4.16. Reaction of hydroxyl radical (1) with benzylhydroperoxide (16H).

U			0
level of theory	RSE (Etot)	RSE (H298)	RSE (G ₂₉₈)
(U)B3LYP/6-31G(d)	-137.96	-134.65	-140.54
(U)B3LYP-D3/6-31G(d)	-135.12	-131.78	-137.00
(U)B3LYP/6-31+G(d,p)	-145.60	-142.80	-146.77
(U)B3LYP-D3/6-31+G(d,p)	-141.84	-138.96	-141.51
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-139.26	-136.38	-138.93
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-143.26	-140.39	-142.94
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-139.02	-136.15	-138.70
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-142.99	-140.12	-142.67
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-125.17	-122.11	-123.95
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-128.98	-125.94	-128.49
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-130.85	-127.98	-130.53
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-132.30	-129.41	-131.69
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-134.46	-131.54	-139.18
exp.		-132.3±0.3	

Table S2.4.16a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S16.

system	Etot (U)B3LYP/	H ₂₉₈ (U)B3LYP/	G ₂₉₈ (U)B3LYP/	E _{tot} (U)B3LYP-D3/	H ₂₉₈ (U)B3LYP-D3/	G ₂₉₈ (U)B3LYP-D3/	E _{tot} G3B3-D3 ^(a)	H ₂₉₈ G3B3-D3 ^(a)
411	6-31G(0)	0-31G(0)	6-31G(0)	0-31G(0)	0-31G(0)	0-31G(0)		
18								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
PhCH2OO2	-421.2692892	-421.1353372	-421.1781722	-421.2801031	-421.1460881	-421.1887191	-421.2801031	-421.1460881
1								
HO	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
PhCH2OOH2	-421.9022409	-421.7562149	-421.7990289	-421.9141460	-421.7680700	-421.8104730	-421.9141460	-421.7680700
PhCH2OOH1	-421.9004122	-421.7545342	-421.7977782	-421.9117365	-421.7658185	-421.8088525	-421.9117365	-421.7658185
PhCH2OOH3	-421.9003551	-421.7543561	-421.7980481	-421.9110300	-421.7649900	-421.8085820	-421.9110300	-421.7649900
		()			·		•	

 Table S2.4.16b.
 Energy values for all systems shown in Figure 2.4.16.

Table S2.4.16c. Energy values for all systems shown in Figure 2.4.16.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
16						
PhCH2OO2	-421.2988378	-421.1655038	-421.2091178	-421.3089740	-421.1754890	-421.2184210
PhCH2OO1	-421.2983249	-421.1649089	-421.2080809	-421.3089690	-421.1755570	-421.2191140
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
16H						
PhCH2OOH2	-421.9384143	-421.7928243	-421.8361113	-421.9499920	-421.8043500	-421.8481240
PhCH2OOH1	-421.9375716	-421.7919936	-421.8357956	-421.9481777	-421.8025387	-421.8462557
PhCH2OOH3	-421.9368591	-421.7913811	-421.8355861	-421.9480209	-421.8025659	-421.8461189

system	E _{tot} (U)B2PLYP/ cc-pVTZ ^(a)	E _{tot} (U)B2PLYP/ cc-pVQZ ^(a)	E _{tot} ROB2PLYP/ cc-pVTZ ^(a)	E _{tot} ROB2PLYP/ cc-pVQZ ^(a)	E _{tot} G3B3-D3 ^(a)	H ₂₉₈ G3B3-D3 ^(a)
1H		1 -		1 2		
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
16						
PhCH2OO2	-421.0799534	-421.1404838	-421.0780505	-421.1385181	-421.0971400	-420.9684030
PhCH2OO1	-421.0799473	-421.1407249	-421.0780623	-421.1387748	-421.0970035	-420.9683345
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
16H						
PhCH2OOH2	-421.7199465	-421.7816211	-421.7199465	-421.7816211	-421.7464354	-421.6059904
PhCH2OOH1	-421.7185023	-421.7805234	-421.7185023	-421.7805234	-421.7444901	-421.6042201
PhCH2OOH3	-421.7180897	-421.7798046	-421.7180897	-421.7798046	-421.7445778	-421.6041308

Table S2.4.16d. Energy values for all systems shown in Figure 2.4.16.

 Table S2.4.16e.
 Energy values for all systems shown in Figure 2.4.16.

system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
16						
PhCH2OO2	-420.5560187	-420.4225337	-420.6780395	-420.5445545	-420.7536764	-420.6201914
PhCH2OO1	-420.5556774	-420.4222654	-420.6779711	-420.5445591	-420.7537359	-420.6203239
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
16H						

PhCH2OOH2	-421.2026278	-421.0569858	-421.3271089	-421.1814669	-421.4043728	-421.2587308
PhCH2OOH3	-421.2006539	-421.0551989	-421.3251306	-421.1796756	-421.4023864	-421.2569314
PhCH2OOH1	-421.2006098	-421.0549708	-421.3253563	-421.1797173	-421.4027087	-421.2570697

Figure 2.4.19. Reaction of hydroxyl radical (1) with hydroperoxy radical (19H).

level of theory	RSE (Etot)	RSE (<i>H</i> 298)	RSE (<i>G</i> 298)
(U)B3LYP/6-31G(d)	-279.31	-272.52	-268.57
(U)B3LYP-D3/6-31G(d)	-279.09	-272.27	-268.31
(U)B3LYP/6-31+G(d,p)	-281.35	-274.89	-270.90
(U)B3LYP-D3/6-31+G(d,p)	-281.12	-274.63	-270.64
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-298.15	-291.66	-287.68
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-300.85	-294.36	-290.38
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-302.11	-295.61	-291.63
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-305.11	-298.62	-294.63
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-290.27	-283.78	-279.79
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-294.46	-287.97	-283.98
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-296.59	-290.10	-286.12
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-295.60	-289.38	-285.38
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-295.76	-289.23	-285.26
exp.ª		-291.54±0.26	

 Table S2.4.19a.
 Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S19.

^a Data from ATcT, version 1.122p, **2020**: BDE(O-H,**19H**) = +205.78±0.15 kJ/mol and BDE(O-H,**1H**) = +497.32±0.26 kJ/mol.

system	Etot	H ₂₉₈	G298	E _{tot}	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
302	-150.3200421	-150.3129551	-150.3362411	-150.3200431	-150.3129561	-150.3362421	-150.3200431	-150.3129561
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
HOO	-150.8991566	-150.8813206	-150.9073126	-150.8992506	-150.8814286	-150.9074216	-150.8992506	-150.8814286

Table S2.4.19b. Energy values for all systems shown in Figure 2.4.19.

Table S2.4.19c. Energy values for all systems shown in Figure 2.4.19.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
19						
302	-150.3275770	-150.3205310	-150.3438180	-150.3275780	-150.3205320	-150.3438190
1						
HO	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
19H = 13						
HOO	-150.9154499	-150.8975419	-150.9235339	-150.9155454	-150.8976514	-150.9236434

 Table S2.4.19d.
 Energy values for all systems shown in Figure 2.4.19.

system	Etot	Etot	Etot	Etot	Etot	H ₂₉₈
	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		

1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
19						
302	-150.2908867	-150.3134009	-150.2886401	-150.3111485	-150.2563506	-150.2494526
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
19H						
HOO	-150.8703607	-150.8942711	-150.8684061	-150.8922435	-150.8434495	-150.8261135

 Table S2.4.19e.
 Energy values for all systems shown in Figure 2.4.19.

system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
19						
302	-150.1281765	-150.1211305	-150.1725887	-150.1655427	-150.1995636	-150.1925176
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
19H						
HOO	-150.7118999	-150.6940059	-150.7586317	-150.7407377	-150.7870706	-150.7691766

Figure 2.4.5. Reaction of hydroxyl radical (1) with TEMPOL (5H).

Table S2.4.5a. Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S5.

		0
RSE (Etot)	RSE (H298)	RSE (G298)
-208.08	-204.52	-210.10
-203.51	-199.91	-205.07
-216.05	-212.62	-218.14
-211.51	-208.04	-213.20
-209.85	-206.37	-211.54
-214.41	-210.93	-216.10
-211.42	-207.94	-213.11
-216.13	-212.65	-217.82
-188.61	-185.13	-190.30
-195.20	-191.72	-196.88
-198.87	-195.39	-200.56
-201.62	-198.45	-203.80
-201.80	-198.39	-203.49
	-204.1±0.1	
	RSE (<i>E</i> tot) -208.08 -203.51 -216.05 -211.51 -209.85 -214.41 -211.42 -216.13 -188.61 -195.20 -198.87 -201.62 -201.80	RSE (Etot) RSE (H298) -208.08 -204.52 -203.51 -199.91 -216.05 -212.62 -211.51 -208.04 -209.85 -206.37 -214.41 -210.93 -211.42 -207.94 -216.13 -212.65 -211.42 -207.94 -216.13 -212.65 -211.42 -207.94 -216.13 -212.65 -206.37 -195.39 -198.87 -195.39 -201.62 -198.45 -201.80 -198.39 -201.80 -198.39

^a Data from P. S. Billone et al., *J. Org. Chem.* **2011**, *76*, 631: BDE(OH,**5H**) = +293.2±0.1 kJ/mol, and BDE(O-H,**1H**) = +497.3±0.26 kJ/mol from ATcT, version 1.122p, **2020**.

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298	Etot	H ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
1H								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
TEMPO	-483.7197701	-483.4434671	-483.4931981	-483.7522734	-483.4751944	-483.5241904	-483.7522734	-483.4751944
1								
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
TEMPOH	-484.3260144	-484.0377324	-484.0865404	-484.3602668	-484.0712278	-484.1194568	-484.3602668	-484.0712278
TEMPOHa	-484.3211407	-484.0330287	-484.0818167	-484.3553775	-484.0665905	-484.1148865	-484.3553775	-484.0665905

Table S2.4.5b. Energy values for all systems shown in Figure 2.4.5.

 Table S2.4.5c.
 Energy values for all systems shown in Figure 2.4.5.

system	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
5						
TEMPO	-483.7593238	-483.4848158	-483.5346488	-483.7917897	-483.5165127	-483.5656387
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
5H						
TEMPOH	-484.3720665	-484.0855425	-484.1344615	-484.4062695	-484.1189965	-484.1673425
TEMPOHa	-484.3664172	-484.0801492	-484.1292272	-484.4006378	-484.1136918	-484.1622828

 Table S2.4.05d.
 Energy values for all systems shown in Figure 2.4.05.

system Etot Etot Etot H298	8

	(U)B2PLYP/	(U)B2PLYP/	ROB2PLYP/	ROB2PLYP/	G3B3-D3 ^(a)	G3B3-D3 ^(a)
	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)		
1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
5						
TEMPO	-483.4551278	-483.5261475	-483.4539279	-483.5249550	-483.5500125	-483.2847835
1						
НО	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.7044006	-75.6929956
5H						
ТЕМРОН	-484.0682342	-484.1399418	-484.0682342	-484.1399418	-484.1729051	-483.8960771
TEMPOHa	-484.0631096	-484.1348510	-484.0631096	-484.1348510	-484.1673548	-483.8908888

Table S2.4.05e. Energy values for all systems shown in Figure 2.4.05.

system	E _{tot}	H ₂₉₈	E _{tot}	H ₂₉₈	E _{tot}	H ₂₉₈
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
5						
TEMPO	-482.8768639	-482.6015869	-483.0199279	-482.7446509	-483.1092606	-482.8339836
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
5H						
TEMPOH	-483.4993076	-483.2120346	-483.6437777	-483.3565047	-483.7339877	-483.4467147
TEMPOHa	-483.4939624	-483.2070164	-483.6384003	-483.3514543	-483.7285490	-483.4416030

Figure 2.4.20. Reaction of hydroxyl radical (1) with formic acid (20H).

level of theory	RSE (Etot)	RSE (H298)	RSE (G298)
(U)B3LYP/6-31G(d)	-20.27	-31.00	-37.30
(U)B3LYP-D3/6-31G(d)	-18.79	-29.46	-35.37
(U)B3LYP/6-31+G(d,p)	-25.90	-36.62	-41.08
(U)B3LYP-D3/6-31+G(d,p)	-24.40	-35.20	-39.95
(U)B2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-29.23	-40.03	-44.77
(U)B2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-32.51	-43.31	-48.06
ROB2PLYP/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-31.80	-42.60	-47.35
ROB2PLYP/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-35.33	-46.13	-50.88
DLPNO-CCSD(T)/cc-pVTZ//(U)B3LYP-D3/6-31+G(d,p)	-3.47	-14.27	-19.02
DLPNO-CCSD(T)/cc-pVQZ//(U)B3LYP-D3/6-31+G(d,p)	-7.81	-18.61	-23.36
DLPNO-CCSD(T)/CBS//(U)B3LYP-D3/6-31+G(d,p)	-10.14	-20.94	-25.68
G3B3-D3//(U)B3LYP-D3/6-31+G(d,p)	-17.42	-27.69	-32.49
G3B3-D3//(U)B3LYP-D3/6-31G(d)	-17.47	-27.62	-33.58
exp. (ATcT) ^a		-28.4	

 Table S2.4.20a.
 Radical stabilization energies (RSE values) calculated for the systems shown in Fig. S20.

^a Data from ATcT, version 1.122p, **2020**: BDE(O-H,**20H**) = +468.89±0.56 kJ/mol, and BDE(O-H,**1H**) = +497.32±0.26 kJ/mol.

system	E _{tot} (U)B3LYP/	H ₂₉₈ (U)B3LYP/	G ₂₉₈ (U)B3LYP/	E _{tot} (U)B3LYP-D3/	H ₂₉₈ (U)B3LYP-D3/	G ₂₉₈ (U)B3LYP-D3/	E _{tot} G3B3-D3 ^(a)	H ₂₉₈ G3B3-D3 ^(a)
14	6-31G(0)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)		
10								
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676	-76.4089616	-76.3840216
6								
HCO2	-189.0776800	-189.0570660	-189.0864530	-189.0781279	-189.0575149	-189.0867509	-189.0781279	-189.0575149
1								
HO	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934	-75.7234554	-75.7118464
6H								
НСО2На	-189.7554578	-189.7174248	-189.7456088	-189.7564772	-189.7184702	-189.7466522	-189.7564772	-189.7184702
HCO2Hb	-189.7471686	-189.7094546	-189.7377206	-189.7480022	-189.7103442	-189.7386152	-189.7480022	-189.7103442

Table S2.4.20b. Energy values for all systems shown in Figure 2.4.20.

 Table S2.4.20b.
 Energy values for all systems shown in Figure 2.4.20.

system	E _{tot} (U)B3LYP/	H ₂₉₈ (U)B3LYP/	G ₂₉₈ (U)B3LYP/	E _{tot} (U)B3LYP-D3/	H ₂₉₈ (U)B3LYP-D3/	G ₂₉₈ (U)B3LYP-D3/
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)
1H						
НОН	-76.4089533	-76.3840103	-76.4054563	-76.4089616	-76.3840216	-76.4054676
20						
aco_001 (C2v, 2A1)	-189.0776793	-189.058093	-189.085761	-189.0781260	-189.058577	-189.086246
		(imag = -137 cm)			(imag=-165 cm)	
HCO2 (Cs, 2A')	-189.0776800	-189.0570660	-189.0864530	-189.0781279	-189.0575149	-189.0867509
1						
НО	-75.7234548	-75.7118458	-75.7320928	-75.7234554	-75.7118464	-75.7320934
20H						
HCO2Ha (Cs)	-189.7554578	-189.7174248	-189.7456088	-189.7564772	-189.7184702	-189.7466522
HCO2Hb	-189.7471686	-189.7094546	-189.7377206	-189.7480022	-189.7103442	-189.7386152

system	Etot	H ₂₉₈	G298	Etot	H ₂₉₈	G298
	(U)B3LYP/	(U)B3LYP/	(U)B3LYP/	(U)B3LYP-D3/	(U)B3LYP-D3/	(U)B3LYP-D3/
	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)	6-31+G(d,p)
1H						
НОН	-76.4340477	-76.4089807	-76.4304097	-76.4340566	-76.4089926	-76.4304206
20						
HCO2 (C2v, 2A1)	-189.0903268	-189.0698328	-189.0985538	-189.0907760	-189.0703340	-189.0991610
1						
НО	-75.7390146	-75.7272716	-75.7475126	-75.7390151	-75.7272721	-75.7475131
20H						
HCO2Ha (Cs)	-189.7754950	-189.7375950	-189.7658030	-189.7765237	-189.7386467	-189.7668527
HCO2Hb	-189.7679416	-189.7303366	-189.7586206	-189.7687813	-189.7312323	-189.7595213

 Table S2.4.20c.
 Energy values for all systems shown in Figure 2.4.20.

Table S2.4.20d. Energy values for all systems shown in Figure 2.4.20.

		51	1	5		
system	E _{tot} (U)B2PLYP/ cc-pVTZ ^(a)	E _{tot} (U)B2PLYP/ cc-pVQZ ^(a)	E _{tot} ROB2PLYP/ cc-pVTZ ^(a)	E _{tot} ROB2PLYP/ cc-pVQZ ^(a)	E _{tot} G3B3-D3 ^(a)	H ₂₉₈ G3B3-D3 ^(a)
1H						
НОН	-76.4068145	-76.4221036	-76.4068145	-76.4221036	-76.4040880	-76.3798740
20						
HCO2 (C2v, 2A1)	-189.0292999	-189.0580772	-189.0284838	-189.0573040	-189.0003540	-188.9805090
1						
aco_018sp1	-75.7137796	-75.7266444	-75.7119819	-75.7247971	-75.6929956	-75.7132366
20H						
HCO2Ha (Cs)	-189.7112031	-189.7411536	-189.7112031	-189.7411536	-189.6934067	-189.6568397
HCO2Hb	-189.7040618	-189.7343918	-189.7040618	-189.7343918	-189.6867002	-189.6504422
system	Etot	H ₂₉₈	Etot	H ₂₉₈	Etot	H ₂₉₈
--------	------------------------	------------------------	------------------------	------------------------	--------------------	--------------------
	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-	DLPNO-
	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/	CCSD(T)/
	cc-pVTZ ^(a)	cc-pVTZ ^(a)	cc-pVQZ ^(a)	cc-pVQZ ^(a)	CBS ^(a)	CBS ^(a)
1H						
НОН	-76.3319273	-76.3068633	-76.3594799	-76.3344159	-76.3759529	-76.3508889
20						
HCO2	-188.8076281	-188.7871861	-188.8648682	-188.8444262	-188.8997778	-188.8793358
1						
НО	-75.6376446	-75.6259016	-75.6612830	-75.6495400	-75.6754790	-75.6637360
20H						
HCO2Ha	-189.5005886	-189.4627116	-189.5600910	-189.5222140	-189.5963911	-189.5585141
HCO2Hb	-189.4934756	-189.4559266	-189.5532738	-189.5157248	-189.5896459	-189.5520969

 Table S2.4.20e.
 Energy values for all systems shown in Figure 2.4.20.

^(a) Using structures and thermal corrections from gas phase (U)B3LYP-D3/6-31+G(d,p) calculations.

Filename	<s<sup>2>^[a]</s<sup>	<s<sup>2>^[b]</s<sup>	<s<sup>2>^[c]</s<sup>	<s<sup>2>^[d]</s<sup>	<s<sup>2>^[e]</s<sup>	State [a]	State ^[b]	State ^[c]	State [d]	State ^[e]
BuO1	0.7537	0.7582	0.7582	0.7595	0.7595	2-A	2-A	2-A	2-A	2-A
BuO2	0.7537	0.7582	0.7582	0.7595	0.7595	2-A	2-A	2-A	2-A	2-A
BuO3	0.7538	0.7584	0.7584	0.7597	0.7597	2-A	2-A	2-A	2-A	2-A
BuO4	0.7537	0.7583	0.7583	0.7595	0.7595	2-A	2-A	2-A	2-A	2-A
BuO5	0.7537	0.7582	0.7582	0.7594	0.7594	2-A	2-A	2-A	2-A	2-A
CH3CH2O1	0.7537	0.7582	0.7582	0.7595	0.7595	2-A"	2-A"	2-A"	2-A"	2-A"
CH3O1	0.7535	0.7580	0.7580	0.7593	0.7593	2-A	2-A	2-A	2-A	2-A
CH3OO	0.7540	0.7602	0.7602	0.7629	0.7629	2-A	2-A	2-A	2-A	2-A
HCO2	0.7563	0.7669	0.7669	0.7678	0.7678	2-A1	2-A1	2-A1	2-A1	2-A1
НО	0.7524	0.7555	0.7555	0.7565	0.7565					
HOO	0.7538	0.7599	0.7599	0.7624	0.7624	2-A"	2-A"	2-A"	2-A"	2-A"
p-amino-PhO	0.7715	1.2899	1.2899	1.2695	1.2695	2-A'	2-A'	2-A'	2-A'	2-A'
PhCCH32O2_a	0.7542	1.2783	1.2783	1.2368	1.2792	2-A	2-A	2-A	2-A	2-A
PhCCH32O3	0.7536	1.2700	1.2700	1.2241	1.2241	2-A	2-A	2-A	2-A	2-A
PhCH2O2	0.7542	1.2797	1.2797	1.2322	1.2322	2-A"	2-A"	2-A"	2-A"	2-A"
PhCH2O3	0.7545	1.2865	1.2865	1.2448	1.2448	2-A'	2-A'	2-A'	2-A'	2-A'
PhCH2OO1	0.7542	1.2900	1.2900	1.2900	1.2900	2-A	2-A	2-A	2-A	2-A
PhCH2OO2	0.7542	0.7607	0.7633	0.7616	0.7640	2-A	2-A	2-A	2-A	2-A
PhO	0.7876	1.3859	1.3626	1.3843	1.3572	2-B1	2-B1	2-B1	2-B1	2-B1
p-methyl-PhO	0.7845	1.3749	1.3517	1.3725	1.3456	2-A	2-A	2-A	2-A	2-A
p-nitro-PhO	0.7911	1.4190	1.4062	1.4158	1.4008	2-B1	2-B1	2-B1	2-B1	2-B1
t-BuO2	0.7535	0.7581	0.7593	0.7587	0.7599	2-A'	2-A'	2-A'	2-A'	2-A'
t-BuOO	0.7542	0.7610	0.7634	0.7618	0.7642	2-A	2-A	2-A	2-A	2-A
TEMPO	0.7543	0.7675	0.7714	0.7688	0.7732	2-A'	2-A'	2-A'	2-A'	2-A'
302	2.0089	2.0351	2.0455	2.0370	2.0478	3-SGG	3-SGG	3-SGG	3-SGG	3-SGG
[a] UB3LYP-D3/	6-31+G(d,	p)								
[b] UHF/6-31G(d)									
[c] UHF/6-31+G	(d)									
[d] UHF/6-31G(2	2df,p)									
[e] UHF/GTlarge	2									

Table S2.5.1. Wavefunction-states for G3B3-D3//UB3LYP-D3/6-31+G(d,p)

Filename	<s<sup>2>^[a]</s<sup>	<s<sup>2>^[b]</s<sup>	<s<sup>2>^[c]</s<sup>	<s<sup>2>^[d]</s<sup>	<s<sup>2>^[e]</s<sup>	State [a]	State ^[b]	State ^[c]	State ^[d]	State ^[e]
BuO1	0.7537	0.7582	0.7595	0.7589	0.7602	2-A	2-A	2-A	2-A	2-A
BuO2	0.7537	0.7582	0.7595	0.7589	0.7602	2-A	2-A	2-A	2-A	2-A
BuO3	0.7538	0.7584	0.7597	0.7591	0.7604	2-A	2-A	2-A	2-A	2-A
BuO4	0.7537	0.7583	0.7595	0.7589	0.7602	2-A	2-A	2-A	2-A	2-A
BuO5	0.7537	0.7582	0.7594	0.7588	0.7602	2-A	2-A	2-A	2-A	2-A
CH3CH2O1	0.7537	0.7582	0.7595	0.7588	0.7602	2-A"	2-A"	2-A"	2-A"	2-A"
CH3O1	0.7535	0.7580	0.7593	0.7587	0.7600	2-A	2-A	2-A	2-A	2-A
CH300	0.7540	0.7602	0.7629	0.7610	0.7636	2-A	2-A	2-A	2-A	2-A
HCO2	0.7563	0.7669	0.7678	0.7673	0.7686	2-A1	2-A1	2-A1	2-A1	2-A1
НО	0.7524	0.7555	0.7565	0.7559	0.7568					
HOO	0.7538	0.7599	0.7624	0.7606	0.7629	2-A"	2-A"	2-A"	2-A"	2-A"
p-amino-PhO	0.7715	1.2899	1.2695	1.2884	1.2884	2-A'	2-A'	2-A'	2-A'	2-A'
PhCCH32O2_a	0.7542	1.2783	1.2368	1.2792	1.2308	2-A	2-A	2-A	2-A	2-A
PhCCH32O3	0.7536	1.2700	1.2241	1.2702	1.2168	2-A	2-A	2-A	2-A	2-A
PhCH2O2	0.7542	1.2797	1.2322	1.2797	1.2239	2-A"	2-A"	2-A"	2-A"	2-A"
PhCH2O3	0.7545	1.2865	1.2448	1.2881	1.2389	2-A'	2-A'	2-A'	2-A'	2-A'
PhCH2OO1	0.7542	1.2900	1.2479	1.2908	1.2416	2-A	2-A	2-A	2-A	2-A
PhCH2OO2	0.7542	1.2889	1.2466	1.2898	1.2401	2-A	2-A	2-A	2-A	2-A
PhO	0.7876	1.3859	1.3626	1.3843	1.3572	2-B1	2-B1	2-B1	2-B1	2-B1
p-methyl-PhO	0.7845	1.3749	1.3517	1.3725	1.3456	2-A	2-A	2-A	2-A	2-A
p-nitro-PhO	0.7911	1.9011	1.8755	1.8944	1.8732	2-B1	2-B1	2-B1	2-B1	2-B1
t-BuO2	0.7535	0.7581	0.7593	0.7587	0.7599	2-A'	2-A'	2-A'	2-A'	2-A'
t-BuOO	0.7542	0.7610	0.7634	0.7618	0.7642	2-A	2-A	2-A	2-A	2-A
TEMPO	0.7543	0.7675	0.7714	0.7688	0.7732	2-A'	2-A'	2-A'	2-A'	2-A'
302	2.0089	2.0351	2.0455	2.0370	2.0478	3-SGG	3-SGG	3-SGG	3-SGG	3-SGG
[a] UB3LYP-D3/	6-31+G(d,	p)								
[b] UHF/6-31G(d)									
[c] UHF/6-31+G	(d)									
[d] UHF/6-31G(2	2df <i>,</i> p)									
[e] UHF/GTlarge	<u>j</u>									

Table S2.5.2. Wavefunction-states for G3B3-D3//UB3LYP-D3/6-31+G(d,p) (opt=stable)

3. One explicit water

		RSE(RO∙)						
		Н						
			D (
R-O.			К -() \		R-C	$\mathbf{)}$	
Aceptor H		Acceptor H Donor H						
H ⁻⁽)		H					
Radical			Alcohol Alcoho					
		DFT ^[a] CBS ^[b] G3B3-D3 ^[c] DFT ^[a] CBS ^[b] G3B3-D						
HO∙	(1)	6.1 4.1 6.1 4.1						
HC(O)O•	(20)	-39.4	-10.3	-23.9	-9.0	16.4	3.1	
CH₃O●	(6)	-60.6	-53.7	-51.6	-63.4	-55.3	-55.7	
CH₃CH₂O●	(9)	-60.1	-51.5	-50.2	-65.7	-55.1	-56.1	
<i>n</i> -Bu-O●	(11)	-62.7	-53.1	-52.2	-68.5	-57.1	-57.5	
t-Bu-O∙	(7)	-55.1	-44.3	-44.6	-62.9	-49.5	-52.7	
PhCH₂O●	(8)	-56.6	-45.2	-45.0	-56.5	-43.6	-44.8	
PhC(CH₃)₂O●	(10)	-55.1	-41.5	-44.3	-53.5	-38.8	-40.1	
PhO∙	(2)	-144.0	-132.5	-130.4	-133.4	-124.0	-118.9	
<i>p</i> -nitro-PhO●	(12)	-125.3	-115.3	-114.8	-104.7	-98.1	-95.6	
<i>p</i> -methyl-PhO●	(14)	-153.1	-140.0	-138.5	-143.8	-132.7	-128.3	
<i>p</i> -amino-PhO●	(18)	-183.2	-163.9	-165.7	-176.3	-158.2	-160.9	
HOO•	(13)	-142.9	-137.1	-137.6	-142.9	-137.1	-137.6	
CH₃OO●	(15)	-143.5	-136.0	-137.3	-132.3	-124.9	-126.1	
t-Bu-OO●	(17)	-149.6	-139.5	-144.5	-137.1	-127.8	-131.8	
PhCH₂OO●	(16)	-137.5	-126.8	-129.3	-127.5	-116.3	-118.7	
TEMPO •	(5)	-215.5 -203.4 -208.8 -198.6 -189.8 -191.4						
•00•	•OO• (19) -236.4 -258.2 -257.6							
[a] (U)B3LYP-	-D3/6-3	31+G(d,p)) level of t	heory				
[b] DLPNO-CO	DLPNO-CCSD(T)/CBS using (U)B3LYP-D3/6-31+G(d,p) optimized geometries							
[c] Using (U)	33LYP-	D3/6-310	G(d) optim	nized geomet	ries			

Table S3.1.1. RSE-A and RSE-D values (kJ mol⁻¹) calculated for selected O-centered radicals

		ΔR	SE = ΔΔł	Hc1		. ,			
				D	H 		R-	0	
	R−Ó•			K-	U _\	Donor H			
	Acceptor H	I	I	Accepto	r H		Dener		
	н	0			H ⁻⁰		н	O H	
	Rad	ical		Alcoh	ol		Alcol	าดไ	
			DFT ^[a]	CBS ^[b]	G3B3-D3 ^[c]	DFT ^[a]	CBS ^[b]	G3B3-D3 ^[c]	
	HO∙	(1)	6.1	4.1		6.1	4.1		
	HC(O)O•	(20)	-4.2	10.7	3.7	26.2	37.3	30.7	
Alkoxy	CH₃O●	(6)	4.7	3.0	4.1	2.0	1.4	0.1	
Alkoxy	CH₃CH₂O●	(9)	6.5	4.3	4.6	0.9	0.7	-1.3	
Alkoxy	<i>n</i> -Bu-O∙	(11)	4.1	2.6	3.1	-1.6	-1.4	-2.2	
Alkoxy	t-Bu-O∙	(7)	2.5	2.5	3.1	-5.2	-2.7	-5.0	
Alkoxy	PhCH₂O●	(8) 8.5 7.0 10.5 8.5 8.6				10.7			
Alkoxy	PhC(CH₃)₂O●	(10)	10) 3.0 3.6 3.4 4.7				6.2	7.7	
Aroma	PhO∙	(2)	-11.1	-9.0	-8.8	-0.5	-0.5	2.7	
Aroma	<i>p</i> -nitro-PhO●	(12)	-10.8	-9.2	-8.8	9.8	8.1	10.4	
Aroma	<i>p</i> -methyl-PhO●	(14)	-11.8	-9.5	-9.2	-2.5	-2.3	1.1	
Aroma	<i>p</i> -amino-PhO●	(18)	-14.4	-11.6	-11.9	-7.5	-5.9	-7.1	
LP att.	H00•	(13)	-8.5	-7.5	-8.0	-8.5	-7.5	-8.0	
LP att.	CH₃OO●	(15)	-1.7	-1.2	-1.4	9.5	9.8	9.7	
LP att.	t-Bu-OO∙	(17)	-1.1	-0.8	-3.0	11.4	10.9	9.7	
LP att.	PhCH ₂ OO●	(16)	1.5	1.1	2.2	11.5	11.7	12.9	
LP att.	TEMPO •	(5)	-7.5	-8.0	-10.4	9.4	5.6	7.0	
LP att.	•00•	(19)				38.2	31.9	31.6	
[a] (U)B3	3LYP-D3/6-31+G(d,p)	level of theory							
[b] DLPN	[b] DLPNO-CCSD(T)/CBS using (U)B3LYP-D3/6-31+G(d,p) optimized geometries								
[c] Using (U)B3LYP-D3/6-31G(d) optimized geometries									
Δ	$RSE = \Delta \Delta H_{c1} =$	$\Delta\Delta H_{c1} < 0$		$\Delta\Delta H_{c1}$	≈ 0		$\Delta\Delta H_{c1}$	> 0	
$\Delta H_{c1}(RO \bullet H_2O) \qquad Negative$				Neutral Positive					
	minus	(Stabilization)	(Almost No Change) (Destabilizat					zation)	
Δł	H _{c1} (ROHH ₂ O)								

Table S3.1.2. The calculated for selected O-centered radicals ΔRSE ($\Delta \Delta H_{c1}$) values (kJ mol⁻¹)

$\Delta H_{c1}(Molecule + H_2O)$												
								H		D	0	
		R = 0	•				R-	Ó		K U		
	Acc	entor	` Ч			I	Accepto	r H	Donor H			
	1100	eptor	1				1		, <mark>Ó</mark> ,			
		Н	_0				Н Н Н				Н	
		Ra	dical			Alcohol				Alcoh	nol	
			DFT ^[a]	CBS ^[b]	G3B3-D3 ^[c]	DFT ^[a]	CBS ^[b]	G3B3-D3 ^[c]	DFT ^[a]	CBS ^[b]	G3B3-D3 ^[c]	
	HO•	(1)	-14.6	-9.9		-20.7	-14.1	-7.5	-20.7	-14.1	-7.5	
	HC(0)0•	(20)	-17.8	1.1	-2.9	-13.6	-9.5	-6.6	-44.1	-36.2	-33.6	
Alkoxy	CH₃O●	(6)	-18.6	-13.5	-11.1	-23.3	-16.5	-15.2	-20.6	-14.9	-11.2	
Alkoxy	CH ₃ CH ₂ O•	(9)	-19.5	-14.0	-12.2	-26.0	-18.3	-16.8	-20.4	-14.7	-11.0	
Alkoxy	<i>n</i> -Bu-O●	(11)	-22.7	-16.5	-14.9	-26.8	-19.0	-18.0	-21.0	-15.0	-12.6	
Alkoxy	t-Bu-O∙	(7)	-25.6	-18.1	-16.1	-28.1	-20.5	-19.2	-20.4	-15.3	-11.2	
Alkoxy	PhCH₂O•	(8)	-21.1	-14.5	-10.2	-29.6	-21.5	-20.7	-29.7	-23.1	-20.9	
Alkoxy	PhC(CH₃)₂O●	(10)	-25.7	-17.4	-16.3	-28.7	-21.0	-19.8	-30.4	-23.6	-24.0	
Aroma	PhO•	(2)	-29.5	-22.6	-20.5	-18.4	-13.6	-11.7	-29.0	-22.1	-23.1	
Aroma	<i>p</i> -nitro-PhO●	(12)	-27.2	-20.9	-18.8	-16.4	-11.7	-10.0	-37.0	-29.0	-29.2	
Aroma	<i>p</i> -methyl-PhO●	(14)	-30.6	-23.6	-21.5	-18.9	-14.1	-12.4	-28.1	-21.3	-22.6	
Aroma	<i>p</i> -amino-PhO●	(18)	-34.5	-26.5	-25.2	-20.1	-14.9	-13.2	-26.9	-20.6	-18.1	
LP att.	HOO•	(13)	-38.6	-30.9	-28.6	-30.1	-23.4	-20.6	-30.1	-23.4	-20.6	
LP att.	CH₃OO●	(15)	-19.9	-14.1	-11.9	-18.2	-12.9	-10.4	-29.4	-23.9	-21.5	
LP att.	t-Bu-OO∙	(17)	-20.4	-14.3	-14.8	-19.3	-13.5	-11.8	-31.8	-25.2	-24.5	
LP att.	PhCH ₂ OO•	(16)	-25.8	-17.7	-16.5	-27.3	-18.8	-18.7	-37.3	-29.4	-29.3	
LP att.	TEMPO•	(5)	-29.9	-23.7	-24.7	-22.4	-15.7	-14.2	-39.4	-29.3	-31.7	
LP att.	•00•	(19)	-0.4	1.0	3.0				-38.6	-30.9	-28.6	
[a] (U)B	3LYP-D3/6-31+G(d,p)	level o	of theory									
[b] DLPN	[b] DLPNO-CCSD(T)/CBS using (U)B3LYP-D3/6-31+G(d,p) optimized geometries											
[c] Using (U)B3LYP-D3/6-31G(d) optimized geometries												
	$\Delta RSE = \Delta \Delta H_{c1} =$			$\Delta\Delta H_{c1} <$	0		$\Delta\Delta H_{c1}$	≈ 0		$\Delta\Delta H_{c1}$	> 0	
$\Delta H_{c1}(RO \bullet H_2O)$ Negative					Neutral Positive				ve			
	minus		(S	tabilizat	ion)	(Alr	nost No	Change)	(1	Destabili	zation)	
	ΔHc1(ROHH2O)											

Fable S3.2.1. Δ H _{c1} (Molecule + H ₂)	D) values	(kJ mol ⁻¹) calculated for	r selected O-	centered radicals
---	-----------	-----------------------	------------------	---------------	-------------------

Figure S3.2.1. Calculated distances in selected t-BuOH...H₂O and t-BuO•...H₂O complexes. (U)B3LYP-D3/6-31+G(d,p) level of theory

(U)B3LYP-D3/6-31+G(d,p)

Figure S3.3.2. The best by H₂₉₈ structures. (U)B3LYP-D3/6-31G(d)

н	(U)B3I	YP-D3/6-	31G(d)	(U)B3LY	P-D3/6-32	L+G(d,p)
R-Ó	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈
í.						
O-H						
HOH (1Ha)				9.1	6.1	-0.9
HCO₂H	-46.1	-47.1	-46.5	-37.9	-39.4	-31.8
CH₃OH	-51.8	-56.1	-55.6	-55.4	-60.6	-64.2
CH ₃ CH ₂ OH	-49.1	-52.8	-57.5	-54.8	-60.1	-67.6
BuOH	-55.4	-59.1	-58.4	-57.9	-62.7	-67.5
t-BuOH	-47.5	-49.9	-65.5	-53.6	-55.1	-59.4
PhCH ₂ OH	-44.3	-49.0	-55.3	-53.5	-56.6	-64.9
PhC(CH ₃) ₂ OH	-48.4	-49.0	-53.6	-53.8	-55.1	-60.4
PhOH	-137.3	-136.5	-137.6	-144.6	-144.0	-144.8
p-nitro-PhOH	-118.4	-118.5	-121.4	-125.0	-125.3	-128.0
p-methyl-PhOH	-145.3	-144.3	-144.8	-154.0	-153.1	-153.0
p-amino-PhOH	-176.3	-173.9	-173.7	-185.2	-183.2	-185.5
HOOH	-144.3	-142.1	-143.6	-144.9	-142.9	-144.4
CH₃OOH	-141.1	-137.9	-140.5	-146.5	-143.5	-146.1
t-BuOOH	-144.9	-142.2	-148.0	-152.4	-149.6	-152.5
PhCH ₂ OOH	-133.2	-130.5	-135.0	-139.9	-137.5	-140.8
TEMPOH	-209.2	-205.3	-210.5	-219.6	-215.5	-215.8
HOO•						

Table S3.4.1. Calculated energies. Best selected conformers. (kJ mol⁻¹)

Table S3.4.2. Calculated energies. Best selected conformers.

H	DLPNO- (U)B3LY	CCSD(T)/co P-D3/6-31	c-pVTZ// L+G(d,p)	DLPNO-((U)B3LY	CCSD(T)/co 'P-D3/6-31	c-pVQZ// L+G(d,p)	DLPNC (U)B3LY	DLPNO-CCSD(T)/CBS// (U)B3LYP-D3/6-31+G(d,p)			
R-O	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈		
н Н О-Н											
НОН	8.1	5.0	-1.9	7.4	4.4	-2.6	7.2	4.1	-2.8		
HCO ₂ H	-7.6	-9.1	-1.5	-8.4	-9.8	-2.3	-8.8	-10.3	-2.7		
CH₃OH	-44.7	-49.9	-53.5	-47.1	-52.4	-55.9	-48.4	-53.7	-57.2		
CH ₃ CH ₂ OH	-41.5	-46.5	-53.6	-44.1	-49.8	-56.9	-45.7	-51.5	-58.5		
BuOH	-44.0	-48.7	-51.9	-46.8	-51.6	-55.9	-48.3	-53.1	-57.6		
t-BuOH	-38.4	-39.9	-44.1	-41.4	-42.9	-47.1	-42.8	-44.3	-48.5		
PhCH ₂ OH	-36.2	-39.8	-48.0	-38.9	-43.4	-50.7	-40.2	-45.2	-52.2		
PhC(CH ₃) ₂ OH	-35.5	-37.3	-42.2	-38.3	-40.2	-45.3	-39.6	-41.5	-46.7		
PhOH	-125.0	-124.4	-125.1	-130.3	-129.7	-130.4	-133.1	-132.5	-133.3		
p-nitro-PhOH	-109.3	-109.6	-112.3	-113.1	-113.4	-116.2	-115.1	-115.3	-118.1		
p-methyl-PhOH	-131.7	-130.9	-130.7	-137.7	-136.8	-136.7	-140.9	-140.0	-139.9		
p-amino-PhOH	-155.6	-153.6	-156.0	-162.3	-160.3	-162.7	-165.9	-163.9	-166.3		
НООН	-134.2	-132.2	-133.8	-336.6	-334.6	-336.1	-139.1	-137.1	-138.6		
CH₃OOH	-132.6	-129.6	-133.6	-136.9	-133.9	-138.2	-139.0	-136.0	-140.2		
t-BuOOH	-136.8	-133.9	-135.5	-140.8	-137.7	-141.1	-142.6	-139.5	-143.4		

PhCH ₂ OOH	-123.7	-121.2	-123.7	-127.6	-125.1	-128.8	-129.3	-126.8	-131.0
TEMPOH	-196.2	-192.2	-193.0	-203.4	-199.4	-199.8	-207.4	-203.4	-203.6
HOO•									

н		G3B3-D3	
R-Q	E _{tot}	H ₂₉₈	G ₂₉₈
H H			
О́-Н			
НОН			
HCO ₂ H	-17.0	-23.9	-23.3
CH₃OH	-47.6	-51.6	-54.0
CH ₃ CH ₂ OH	-45.9	-50.2	-56.2
BuOH	-48.5	-52.2	-55.8
t-BuOH	-43.6	-44.6	-50.2
PhCH ₂ OH	-39.6	-45.0	-52.0
PhC(CH ₃) ₂ OH	-43.1	-44.3	-49.4
PhOH	-131.1	-130.4	-131.4
p-nitro-PhOH	-114.6	-114.8	-117.6
p-methyl-PhOH	-139.5	-138.5	-139.0
p-amino-PhOH	-168.0	-165.7	-165.5
HOOH	-139.6	-137.6	-139.0
CH ₃ OOH	-139.5	-137.3	-148.6
t-BuOOH	-147.0	-144.5	-153.8
PhCH ₂ OOH	-131.9	-129.3	-138.4
TEMPOH	-211.9	-208.8	-213.7
HOO•			

Table S3.4.3. Calculated energies. Best selected conformers.

Table S3.4.4. Calculated energies. Best selected conformers. (kJ mol⁻¹)

н	(U)B3L	YP-D3/6-3	31G(d)	(U)B3LYP-D3/6-31+G(d,p)				
О-Н Н Н	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈		
HOH (1Ha)	-0.7	-2.4	-2.3	9.1	6.1	-0.9		
HCO ₂ H	-1.9	-4.9	-13.5	-6.0	-9.0	-11.4		
CH₃OH	-52.7	-56.9	-53.6	-58.5	-63.4	-63.6		
CH ₃ CH ₂ OH	-53.8	-57.5	-57.6	-60.9	-65.7	-67.2		
BuOH	-59.0	-62.4	-59.5	-64.5	-68.5	-67.3		
t-BuOH	-57.7	-59.4	-68.6	-62.1	-62.9	-60.3		
PhCH ₂ OH	-37.8	-42.5	-50.6	-54.1	-56.5	-64.0		
PhC(CH ₃) ₂ OH	-42.9	-43.3	-46.4	-52.8	-53.5	-57.0		
PhOH	-125.9	-125.4	-122.6	-133.2	-133.4	-134.8		
p-nitro-PhOH	-95.2	-95.9	-98.4	-103.0	-104.7	-110.2		
p-methyl-PhOH	-134.8	-134.2	-131.3	-143.8	-143.8	-145.1		
p-amino-PhOH	-167.4	-165.6	-166.5	-177.4	-176.3	-180.1		

НООН	-144.3	-142.1	-143.6	-144.9	-142.9	-144.4
CH₃OOH	-122.7	-121.2	-128.0	-134.5	-132.3	-138.8
t-BuOOH	-127.4	-126.1	-135.8	-139.1	-137.1	-147.5
PhCH ₂ OOH	-113.8	-112.3	-121.4	-129.3	-127.5	-134.0
TEMPOH	-185.6	-183.6	-194.3	-200.7	-198.6	-208.6
H00•	-223.5	-221.8	-243.9	-239.0	-236.4	-247.3

Н	DLPNO-0	CCSD(T)/co	c-pVTZ//	DLPNO-0	CCSD(T)/co	:-pVQZ//	DLPNO	D-CCSD(T)	/CBS//
	(U)B3LY	P-D3/6-31	.+G(d,p)	(U)B3LY	'P-D3/6-31	.+G(d,p)	(U)B3LY	P-D3/6-31	L+G(d,p)
U-H	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈
H									
R- <mark>O</mark>									
НОН	8.1	5.0	-1.9	7.4	4.4	-2.6	7.2	4.1	-2.8
HCO₂H	23.6	20.7	18.3	20.6	17.7	15.3	19.3	16.4	14.0
CH₃OH	-45.0	-49.8	-50.0	-48.6	-53.4	-53.6	-50.4	-55.3	-55.5
CH ₃ CH ₂ OH	-44.2	-48.7	-50.5	-47.9	-53.1	-54.4	-49.9	-55.1	-56.3
BuOH	-46.9	-51.0	-49.1	-51.1	-55.2	-54.0	-52.9	-57.1	-56.3
t-BuOH	-43.3	-44.2	-41.5	-46.9	-47.7	-45.1	-48.6	-49.5	-46.9
PhCH ₂ OH	-34.0	-36.9	-44.5	-37.6	-41.4	-49.0	-39.2	-43.6	-51.1
PhC(CH₃)₂OH	-31.8	-33.0	-36.5	-35.7	-37.1	-40.4	-37.5	-38.8	-42.2
PhOH	-112.9	-113.1	-114.5	-120.1	-120.3	-121.7	-123.8	-124.0	-125.4
p-nitro-PhOH	-88.1	-89.8	-95.4	-93.8	-95.5	-101.0	-96.4	-98.1	-103.6
p-methyl-PhOH	-120.8	-120.8	-122.1	-128.6	-128.7	-130.0	-132.7	-132.7	-134.0
p-amino-PhOH	-146.6	-145.6	-149.4	-155.0	-153.9	-157.7	-159.3	-158.2	-162.0
НООН	-134.2	-132.2	-133.8	-336.6	-334.6	-336.1	-139.1	-137.1	-138.6
CH₃OOH	-119.2	-117.0	-124.4	-124.7	-122.5	-130.3	-127.1	-124.9	-132.6
t-BuOOH	-122.8	-120.8	-129.7	-127.7	-125.7	-136.5	-129.8	-127.8	-139.2
PhCH ₂ OOH	-110.3	-108.5	-115.3	-115.8	-114.0	-123.1	-118.1	-116.3	-126.0
TEMPOH	-179.1	-177.1	-187.6	-187.6	-185.5	-195.6	-191.9	-189.8	-199.9
HOO•	-250.6	-248.1	-259.9	-257.7	-255.1	-265.4	-260.8	-258.2	-268.3

Table S3.4.5. Calculated energies. Best selected conformers.

Table S3.4.6	Calculated	energies.	Best selected	conformers.
10010 33.4.0.	culculated	chergies.	Dest selected	connormers.

Н	G3B3-D3		
<mark>O</mark> -H	E _{tot}	H ₂₉₈	G ₂₉₈
R-Ó			
HOH			
HCO ₂ H	11.9	3.1	-5.5
CH₃OH	-52.5	-55.7	-51.5
CH ₃ CH ₂ OH	-52.9	-56.1	-54.5
BuOH	-54.1	-57.5	-58.6
t-BuOH	-52.3	-52.7	-51.8
PhCH ₂ OH	-39.4	-44.8	-48.1
PhC(CH ₃) ₂ OH	-39.5	-40.1	-43.9

PhOH	-119.7	-118.9	-116.0
p-nitro-PhOH	-94.9	-95.6	-98.0
p-methyl-PhOH	-129.1	-128.3	-125.1
p-amino-PhOH	-162.6	-160.9	-161.7
НООН	-139.6	-137.6	-139.0
CH₃OOH	-126.9	-126.1	-143.1
t-BuOOH	-133.0	-131.8	-145.0
PhCH ₂ OOH	-120.1	-118.7	-132.4
TEMPOH	-193.2	-191.4	-202.2
HOO•	-259.4	-257.6	-279.7

Table S3.4.7. Calculated energies. Best selected conformers.

R-0•		(U)B3LYP-D3/6-31G(d)	
	Etot	H ₂₉₈	G ₂₉₈
Í Í			
<u> </u>			
HO• (1a_3)	-152.1465975	-152.1075655	-152.1389925
HCO ₂ •	-265.5075068	-265.4557999	-265.4920149
CH₃O●	-191.4729895	-191.4043425	-191.4402005
CH ₃ CH ₂ O●	-230.7961992	-230.6973862	-230.7366822
BuO∙	-309.4324787	-309.2734457	-309.3178948
t-BuO∙	-309.4416337	-309.2835411	-309.3314371
PhCH₂O●	-422.5383244	-422.3837184	-422.4321589
PhC(CH ₃) ₂ O•	-501.1833401	-500.9683192	-501.0211692
PhO•	-383.2606529	-383.1346519	-383.1779329
p-nitro-PhO•	-587.7600871	-587.6292461	-587.6797481
p-methyl-PhO•	-422.5839767	-422.4284437	-422.4767157
p-amino-PhO•	-438.6281654	-438.4835124	-438.5297314
HOO•	-227.3321060	-227.2858670	-227.3187590
CH₃OO●	-266.6397411	-266.5640601	-266.6028541
t-BuOO∙	-384.6083278	-384.4440058	-384.4920048
PhCH ₂ OO•	-497.7058911	-497.5440801	-497.5940221
TEMPO•	-560.1794735	-559.8743795	-559.9308634
³ O ₂	-226.7317449	-226.6981709	-226.7382699

Table S3.4.8. Calculated energies. Best selected conformers.

н	(U)B3LYP-D3/6-31G(d)				
R-O	E _{tot}	H ₂₉₈	G ₂₉₈		
<mark>0</mark> -H					
HOH (1Ha)	-152.8318213	-152.7788433	-152.8114843		
HCO₂H	-266.1754636	-266.1100416	-266.1476686		
CH₃OH	-192.1387684	-192.0551334	-192.0924013		
CH ₃ CH ₂ OH	-231.4630119	-231.3494369	-231.3881581		
BuOH	-310.0968831	-309.9230971	-309.9690111		

t-BuOH	-310.1090345	-309.9367035	-309.9798735
PhCH₂OH	-423.2069474	-423.0372224	-423.0844624
PhC(CH ₃) ₂ OH	-501.8504166	-501.6218206	-501.6741180
PhOH	-383.8938673	-383.7548543	-383.7989143
p-nitro-PhOH	-588.4005120	-588.2562720	-588.3068910
p-methyl-PhOH	-423.2141255	-423.0456714	-423.0949435
p-amino-PhOH	-439.2465281	-439.0894531	-439.1369321
HOOH	-227.9626681	-227.9039341	-227.9374491
CH₃OOH	-267.2715186	-267.1837066	-267.2227126
t-BuOOH	-385.2386526	-385.0620236	-385.1090206
PhCH ₂ OOH	-498.3406620	-498.1665520	-498.2159740
TEMPOH	-560.7853105	-560.4683745	-560.5240795
HOO•			

Table S3.4.9. Calculated energies. Best selected conformers.

н	(U)B3LYP-D3/6-31G(d)				
	Etot	H ₂₉₈	G ₂₉₈		
Ŭ-H					
н н					
R- <mark>O</mark>					
HOH (1Ha)	-152.8318213	-152.7788433	-152.8114843		
HCO ₂ H	-266.1922978	-266.1261058	-266.1602548		
CH₃OH	-192.1384134	-192.0548484	-192.0931620		
CH ₃ CH ₂ OH	-231.4612036	-231.3476606	-231.3881106		
BuOH	-310.0955283	-309.9218353	-309.9686020		
t-BuOH	-310.1051749	-309.9330899	-309.9786929		
PhCH ₂ OH	-423.2094341	-423.0397021	-423.0862631		
PhC(CH ₃) ₂ OH	-501.8525141	-501.6240046	-501.6768566		
PhOH	-383.8982015	-383.7590775	-383.8046154		
p-nitro-PhOH	-588.4093503	-588.2648783	-588.3156543		
p-methyl-PhOH	-423.2181494	-423.0495224	-423.1000770		
p-amino-PhOH	-439.2498947	-439.0926247	-439.1396891		
НООН	-227.9626681	-227.9039341	-227.9374491		
CH₃OOH	-267.2785038	-267.1900838	-267.2274928		
t-BuOOH	-385.2453165	-385.0681415	-385.1136735		
PhCH ₂ OOH	-498.3480630	-498.1734860	-498.2211500		
TEMPOH	-560.7942974	-560.4766384	-560.5302304		
H00•	-227.3321060	-227.2858670	-227.3187590		

Table S3.4.10. Calculated energies. Best selected conformers.

R-0•	G3B3-D3			
H L	E _{tot}	H ₂₉₈	G ₂₉₈	
<u>О</u> -Н				
HO• (1a_3)	-152.1122504	-152.0744734	-152.1060594	
HCO ₂ •	-265.4091505	-265.3614085	-265.3978575	
CH₃O●	-191.4122958	-191.3460168	-191.3821224	

CH ₃ CH ₂ O●	-230.7164502	-230.6213478	-230.6617478
BuO∙	-309.3162287	-309.1631007	-309.2106530
t-BuO∙	-309.3281339	-309.1752019	-309.2198349
PhCH₂O•	-422.3746434	-422.2258224	-422.2751354
PhC(CH ₃)₂O●	-500.9870737	-500.7799257	-500.8335177
PhO•	-383.1128539	-382.9912699	-383.0350319
p-nitro-PhO•	-587.5330314	-587.4066334	-587.4577874
p-methyl-PhO•	-422.4189092	-422.2688612	-422.3177302
p-amino-PhO•	-438.4648656	-438.3252636	-438.3720786
H00•	-227.2617016	-227.2169926	-227.2500566
CH₃OO•	-266.5462115	-266.4733965	-266.5163485
t-BuOO∙	-384.4652363	-384.3067463	-384.3567383
PhCH ₂ OO●	-497.5109813	-497.3548593	-497.4072126
TEMPO•	-559.9664068	-559.6724408	-559.7299918
³ O ₂	-226.6607931	-226.6282241	-226.6685121

Table S3.4.11. Calculated energies. Best selected conformers.

Н		G3B3-D3	
R-O	E _{tot}	H ₂₉₈	G ₂₉₈
Ĥ			
0-н			
HOH (1Ha)	-152.8139511	-152.7627571	-152.7955861
HCO₂H	-266.1023908	-266.0391758	-266.0770668
CH₃OH	-192.0938537	-192.0132317	-192.0496247
CH ₃ CH ₂ OH	-231.3986662	-231.2891112	-231.3284264
BuOH	-309.9974505	-309.8301055	-309.8775015
t-BuOH	-310.0112257	-309.8450937	-309.8888177
PhCH ₂ OH	-423.0592487	-422.8955737	-422.9434137
PhC(CH₃)₂OH	-501.6703425	-501.4499335	-501.5027995
PhOH	-383.7626171	-383.6285041	-383.6730841
p-nitro-PhOH	-588.1890769	-588.0497839	-588.1010879
p-methyl-PhOH	-423.0654797	-422.9029887	-422.9528898
p-amino-PhOH	-439.1005950	-438.9490270	-438.9971440
НООН	-227.9082240	-227.8514780	-227.8852070
CH ₃ OOH	-267.1927726	-267.1080006	-267.1478421
t-BuOOH	-385.1089389	-384.9385929	-384.9862339
PhCH ₂ OOH	-498.1604493	-497.9924913	-498.0425873
TEMPOH	-560.5853835	-560.2797865	-560.3366685
HOO•			

Table S3.4.12. Calculated energies. Best selected conformers.

HOH (1Ha)	-152.8139511	-152.7627571	-152.7955861
HCO₂H	-266.1133819	-266.0494709	-266.0838399
CH₃OH	-192.0920172	-192.0116942	-192.0505752
CH₃CH₂OH	-231.3960055	-231.2868775	-231.3290775
BuOH	-309.9953308	-309.8280738	-309.8764100
t-BuOH	-310.0079289	-309.8420229	-309.8881909
PhCH ₂ OH	-423.0593217	-422.8956457	-422.9449025
PhC(CH₃)₂OH	-501.6717311	-501.4515381	-501.5048779
PhOH	-383.7669725	-383.6328535	-383.6789295
p-nitro-PhOH	-588.1966054	-588.0571004	-588.1085504
p-methyl-PhOH	-423.0694455	-422.9068925	-422.9581645
p-amino-PhOH	-439.1026238	-438.9508818	-438.9985636
ноон	-227.9082240	-227.8514780	-227.8852070
CH₃OOH	-267.1975684	-267.1122364	-267.1499494
t-BuOOH	-385.1142760	-384.9434300	-384.9895810
PhCH₂OOH	-498.1649393	-497.9965503	-498.0448713
TEMPOH	-560.5925399	-560.2864389	-560.3410489
HOO•	-227.2617016	-227.2169926	-227.2500566

Table S3.4.13. Calculated energies. Best selected conformers.

R-0•	(U)B3LYP-D3/6-31+G(d,p)					
	E _{tot}	H ₂₉₈	G ₂₉₈			
O-H						
HO• (1a_2)	-152.1803707	-152.1418317	-152.1758067			
HCO ₂ •	-265.5374856	-265.4861126	-265.5207356			
CH₃O●	-191.5078593	-191.4397733	-191.4769883			
CH ₃ CH ₂ O•	-230.8339204	-230.7361309	-230.7774889			
BuO∙	-309.4755335	-309.3177405	-309.3652302			
t-BuO∙	-309.4854393	-309.3279283	-309.3728993			
PhCH ₂ O●	-422.5878221	-422.4329678	-422.4828748			
PhC(CH ₃) ₂ O•	-501.2368645	-501.0229939	-501.0766059			
PhO•	-383.3042402	-383.1787062	-383.2233942			
p-nitro-PhO•	-587.8111909	-587.6809379	-587.7327549			
p-methyl-PhO•	-422.6308106	-422.4760046	-422.5258676			
p-amino-PhO•	-438.6815915	-438.5375305	-438.5864275			
H00•	-227.3673314	-227.3213374	-227.3552984			
CH₃OO•	-266.6761922	-266.6008622	-266.6406838			
t-BuOO•	-384.6542691	-384.4909071	-384.5403479			
PhCH ₂ OO●	-497.7556124	-497.5943754	-497.6452677			
TEMPO •	-560.2400591	-559.9369001	-559.9939151			
³ O ₂	-226.7633108	-226.7296668	-226.7692103			

Conformer			
н	Etot	H ₂₉₈	G ₂₉₈
R-O			
<mark>О</mark> -Н			
HOH (1Ha)	-152.8788957	-152.8258677	-152.8583797
HCO₂H	-266.2180769	-266.1528269	-266.1915219
CH₃OH	-192.1818168	-192.0983958	-192.1354398
CH₃CH₂OH	-231.5081012	-231.3949692	-231.4346502
BuOH	-310.1485136	-309.9755826	-310.0224252
t-BuOH	-310.1600504	-309.9886454	-310.0331904
PhCH ₂ OH	-423.2624712	-423.0931452	-423.1410682
PhC(CH₃)₂OH	-501.9114064	-501.6837214	-501.7365260
PhOH	-383.9441927	-383.8055687	-383.8511607
p-nitro-PhOH	-588.4586379	-588.3149519	-588.3669089
p-methyl-PhOH	-423.2672077	-423.0994177	-423.1505107
p-amino-PhOH	-439.3061128	-439.1494888	-439.1986658
НООН	-228.0071774	-227.9486274	-227.9831884
CH₃OOH	-267.3154339	-267.2279209	-267.2679500
t-BuOOH	-385.2912534	-385.1156534	-385.1651574
PhCH ₂ OOH	-498.3973609	-498.2237399	-498.2745490
TEMPOH	-560.8514646	-560.5365226	-560.5946146
HOO•			
Table	S3.4.15. Calculated en	ergies. Best selected confo	ormers.
Ц		(U)B3LYP-D3/6-31+G(d.p)	
	Etot	H298	G298
<mark>0</mark> −H			
i i i			
,Н			
R-Ó			
HOH (1Ha)	-152.8788957	-152.8258677	-152.8583797
HCO₂H	-266.2302275	-266.1644195	-266.1993165
CH₃OH	-192.1806009	-192.0973579	-192.1356679
CH ₃ CH ₂ OH	-231.5057597	-231.3928417	-231.4348052
BuOH	-310.1460146	-309.9733856	-310.0225041
t-BuOH	-310.1568402	-309.9856822	-310.0328412
PhCH ₂ OH	-423.2622649	-423.0931739	-423.1413889
PhC(CH ₃) ₂ OH	-501.9117965	-501.6843555	-501.7378077
PhOH	-383.9485501	-383.8096111	-383.8549621
p-nitro-PhOH	-588.4669965	-588.3227945	-588.3736785
p-methyl-PhOH	-423.2710744	-423.1029364	-423.1534904
p-amino-PhOH	-439.3090547	-439.1520897	-439.2007237
НООН	-228.0071774	-227.9486274	-227.9831884
CH ₃ OOH	-267.3199916	-267.2321836	-267.2707406
t-BuOOH	-385.2963238	-385.1204028	-385.1670718

Table S3.4.14. Calculated energies. Best selected conformers.

PhCH ₂ OOH	-498.4013947	-498.2275437	-498.2771307	
TEMPOH -560.8586666		-560.5429816	-560.5973646	
HOO• -227.3673314		-227.3213374	-227.3579179	

Table \$3.4.16.	Calculated	energies.	Best s	elected	conformers.
10010 33.4.10.	culculatea	chergies.	DCJCJ	i ci ci ci cu	connormers.

R- O •	DLPNO-CCSD(T)/cc-pVTZ//			DLPNO-CCSD(T)/cc-pVQZ//			DLPNO-CCSD(T)/CBS//		
	(U)B3LYP-D3/6-31+G(d,p)		(U)B3LYP-D3/6-31+G(d,p)			(U)B3LYP-D3/6-31+G(d,p)			
	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈
<mark>Ò</mark> –Н									
HO• (1a_2)	-151.9757359	-151.9371969	-151.9711719	-152.0264294	-151.9878904	-152.0218654	-152.0569529	-152.0184139	-152.0523889
HCO₂●	-265.1474739	-265.0961009	-265.1307239	-265.2305141	-265.1791411	-265.2137641	-265.2811729	-265.2297999	-265.2644229
CH₃O●	-191.2148530	-191.1467670	-191.1839820	-191.2769642	-191.2088782	-191.2460932	-191.3147506	-191.2466646	-191.2838796
CH₃CH₂O●	-230.4591874	-230.3612794	-230.4026374	-230.5325112	-230.4348874	-230.4762454	-230.5774931	-230.4799053	-230.5212633
BuO∙	-308.9394218	-308.7817518	-308.8291523	-309.0357341	-308.8780641	-308.9257413	-309.0951137	-308.9374437	-308.9852008
t-BuO∙	-308.9498819	-308.7923709	-308.8373419	-309.0461061	-308.8885951	-308.9335661	-309.1054728	-308.9479618	-308.9929328
PhCH ₂ O•	-421.8296737	-421.6750180	-421.7249250	-421.9555656	-421.8012743	-421.8511813	-422.0333897	-421.8792789	-421.9291859
PhC(CH ₃)₂O●	-500.3191994	-500.1055304	-500.1591424	-500.4677291	-500.2540601	-500.3076721	-500.5598151	-500.3461461	-500.3997581
PhO•	-382.6267884	-382.5012544	-382.5459424	-382.7421138	-382.6165798	-382.6612678	-382.8132218	-382.6876878	-382.7323758
p-nitro-PhO•	-586.8501417	-586.7198887	-586.7717057	-587.0281254	-586.8978724	-586.9496894	-587.1375825	-587.0073295	-587.0591465
p-methyl-PhO•	-421.8716077	-421.7168017	-421.7666647	-421.9986961	-421.8438901	-421.8937531	-422.0771823	-421.9223763	-421.9722393
p-amino-PhO•	-437.9107155	-437.7666545	-437.8155515	-438.0446693	-437.9006083	-437.9495053	-438.1271767	-437.9831157	-438.0320127
HOO•	-227.0600436	-227.0140496	-227.0480106	-227.1332118	-227.0872178	-227.1211788	-227.1778250	-227.1318310	-227.1657920
CH₃OO●	-266.2831135	-266.2077835	-266.2479864	-266.3682003	-266.2928703	-266.3331999	-266.4201260	-266.3447960	-266.3850969
t-BuOO∙	-384.0197322	-383.8563702	-383.9053298	-384.1388190	-383.9754570	-384.0250708	-384.2122905	-384.0489285	-384.0987611
PhCH₂OO●	-496.8987114	-496.7374744	-496.7884838	-497.0473471	-496.8861101	-496.9379697	-497.1391863	-496.9779493	-497.0300677
TEMPO•	-559.2216329	-558.9184739	-558.9756730	-559.3914796	-559.0883206	-559.1453635	-559.4970514	-559.1938924	-559.2509074
•00•	-226.4612261	-226.4275761	-226.4670925	-226.5331585	-226.4995085	-226.5386392	-226.5766791	-226.5430291	-226.5821441

Table S3.4.17. Calculated energies. Best selected conformers.

Н	DLPNO-CCSD(T)/cc-pVTZ//			DLPNO-CCSD(T)/cc-pVQZ//			DLPNO-CCSD(T)/CBS//		
R-O	(U)B3LYP-D3/6-31+G(d,p)			(U)B3LYP-D3/6-31+G(d,p)			(U)B3LYP-D3/6-31+G(d,p)		
	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈
Г Н									
О-Н									
НОН (1На)	-152.6731057	-152.6200777	-152.6525897	-152.7274519	-152.6744239	-152.7069359	-152.7601617	-152.7071337	-152.7396457
HCO ₂ H	-265.8388504	-265.7736004	-265.8122954	-265.9255200	-265.8602700	-265.8989650	-265.9782849	-265.9130349	-265.9517299
CH₃OH	-191.8921279	-191.8087069	-191.8457509	-191.9572352	-191.8738142	-191.9108582	-191.9967983	-191.9133773	-191.9504213
CH ₃ CH ₂ OH	-231.1376808	-231.0245488	-231.0643876	-231.2139118	-231.1007798	-231.1406241	-231.2605770	-231.1474483	-231.1873123
BuOH	-309.6169486	-309.4441796	-309.4915421	-309.7161024	-309.5432970	-309.5905041	-309.7772099	-309.6043845	-309.6515895
t-BuOH	-309.6295403	-309.4581353	-309.5026803	-309.7285509	-309.5571459	-309.6016909	-309.7896487	-309.6182437	-309.6627887
PhCH₂OH	-422.5101644	-422.3408384	-422.3887764	-422.6389398	-422.4696138	-422.5179505	-422.7185359	-422.5492099	-422.5976598
PhC(CH₃)₂OH	-500.9999606	-500.7722756	-500.8252048	-501.1513211	-500.9236361	-500.9764792	-501.2451950	-501.0175100	-501.0703016
PhOH	-383.2734668	-383.1348428	-383.1804348	-383.3906950	-383.2520710	-383.2976630	-383.4629917	-383.3243677	-383.3699597
p-nitro-PhOH	-587.5028109	-587.3591249	-587.4110819	-587.6832398	-587.5395538	-587.5915108	-587.7942345	-587.6505485	-587.7025055
p-methyl-PhOH	-422.5157144	-422.3479244	-422.3990174	-422.6444568	-422.4766668	-422.5277598	-422.7239998	-422.5562098	-422.6073028
p-amino-PhOH	-438.5457292	-438.3891052	-438.4382822	-438.6810510	-438.5244270	-438.5736040	-438.7644517	-438.6078277	-438.6570047
НООН	-227.7032047	-227.6446547	-227.6792157	-227.7790261	-227.7204761	-227.7550371	-227.8253138	-227.7667638	-227.8013248

CH₃OOH	-266.9268820	-266.8393690	-266.8792684	-267.0142527	-266.9267397	-266.9666147	-267.0676725	-266.9801595	-267.0200345
t-BuOOH	-384.6619246	-384.4863490	-384.5358530	-384.7833855	-384.6078955	-384.6573995	-384.8584530	-384.6829630	-384.7324670
PhCH ₂ OOH	-497.5458882	-497.3722672	-497.4235143	-497.6969494	-497.5233284	-497.5749588	-497.7904095	-497.6167885	-497.6685184
TEMPOH	-559.8411803	-559.5262383	-559.5843303	-560.0121869	-559.6972449	-559.7553369	-560.1185319	-559.8035899	-559.8616819
HOO•									

H DLPNO-CCSD(T)/cc-pVTZ//			DLPNO-CCSD(T)/cc-pVQZ//			DLPNO-CCSD(T)/CBS//				
	(U)I	B3LYP-D3/6-31+G(0	d,p)	(U)	(U)B3LYP-D3/6-31+G(d,p)			(U)B3LYP-D3/6-31+G(d,p)		
Ų−H	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈	E _{tot}	H ₂₉₈	G ₂₉₈	
H H										
R- <mark>O</mark>										
НОН (1На)	-152.6731057	-152.6200777	-152.6525897	-152.7274519	-152.6744239	-152.7069359	-152.7601617	-152.7071337	-152.7396457	
HCO₂H	-265.8507511	-265.7849431	-265.8198401	-265.9365719	-265.8707639	-265.9056609	-265.9890000	-265.9231920	-265.9580890	
CH₃OH	-191.8920076	-191.8087646	-191.8470746	-191.9566571	-191.8734141	-191.9117241	-191.9960152	-191.9127722	-191.9510822	
CH ₃ CH ₂ OH	-231.1366266	-231.0237086	-231.0655436	-231.2124469	-231.0995289	-231.1416047	-231.2589655	-231.1460845	-231.1881745	
BuOH	-309.6158437	-309.4432827	-309.4926077	-309.7144797	-309.5419187	-309.5912437	-309.7754340	-309.6028510	-309.6520849	
t-BuOH	-309.6276702	-309.4565122	-309.5036712	-309.7264474	-309.5552894	-309.6024484	-309.7874221	-309.6162641	-309.6634231	
PhCH ₂ OH	-422.5110218	-422.3419388	-422.3901208	-422.6394570	-422.4703660	-422.5185810	-422.7189205	-422.5498295	-422.5980445	
PhC(CH ₃) ₂ OH	-501.0013758	-500.7739086	-500.8273988	-501.1523178	-500.9248224	-500.9783408	-501.2460177	-501.0185053	-501.0720407	
PhOH	-383.2780761	-383.1391371	-383.1844881	-383.3945793	-383.2556403	-383.3009913	-383.4665405	-383.3276015	-383.3729525	
p-nitro-PhOH	-587.5108550	-587.3666530	-587.4175370	-587.6905927	-587.5463907	-587.5972747	-587.8013309	-587.6571289	-587.7080129	
p-methyl-PhOH	-422.5198750	-422.3517370	-422.4022910	-422.6478996	-422.4797616	-422.5303156	-422.7271083	-422.5589703	-422.6095243	
p-amino-PhOH	-438.5491428	-438.3921778	-438.4408118	-438.6838460	-438.5268810	-438.5755150	-438.7669651	-438.6100001	-438.6586341	
НООН	-227.7032047	-227.6446547	-227.6792157	-227.7032047	-227.6446547	-227.6792157	-227.8253138	-227.7667638	-227.8013248	
CH₃OOH	-266.9319970	-266.8441890	-266.8827460	-267.0189016	-266.9310936	-266.9696506	-267.0721768	-266.9843688	-267.0229258	
t-BuOOH	-384.6672604	-384.4913394	-384.5380653	-384.7883871	-384.6124661	-384.6591351	-384.8633289	-384.6874079	-384.7340769	
PhCH₂OOH	-497.5509804	-497.3771294	-497.4267164	-497.7014254	-497.5275744	-497.5771614	-497.7946625	-497.6208115	-497.6703985	
ТЕМРОН	-559.8476818	-559.5319968	-559.5863798	-560.0182386	-559.7025536	-559.7569366	-560.1244299	-559.8087449	-559.8631279	
HOO•	-227.0600436	-227.0140496	-227.0502649	-227.1332118	-227.0872178	-227.1236033	-227.1778249	-227.1318309	-227.1682823	

Table S3.4.19. Calculated energies. Individual selected conformers.

Nº	R- O •	(U)B3LYP-D3/6-31G(d)				
		Etot	H ₂₉₈	G ₂₉₈		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
MIN	HO• (1a_3)	-152.1465975	-152.1075655	-152.1389925		
1	HO_aab (1a_3)	-152.1465975	-152.1075655	-152.1389925		
MIN	CH3O•	-191.4729895	-191.4043425	-191.4402005		
1	CH3O1_acd	-191.4729895	-191.4043425	-191.4402005		
2	CH3O1_aad	-191.4726359	-191.4039309	-191.4398819		
MIN	CH3CH2O•	-230.7961992	-230.6973862	-230.7366822		
1	CH3CH2O1_abd	-230.7961992	-230.6973862	-230.7364582		
2	CH3CH2O1_abo	-230.7957842	-230.6971192	-230.7366822		
3	CH3CH2O1_abx	-230.7951939	-230.6967789	-230.7363199		
4	CH3CH2O1_abj	-230.7960285	-230.6964685	-230.7353175		
5	CH3CH2O1_aav	-230.7948403	-230.6963913	-230.7365003		

6	CH3CH2O1_abz	-230.7956448	-230.6960388	-230.7348728
MIN	BuO∙	-309.4324787	-309.2734457	-309.3178948
1	BuO3_abc	-309.4324787	-309.2734457	-309.3176227
2	BuO2_aaa	-309.4314038	-309.2725758	-309.3178948
3	BuO3_aad	-309.4307874	-309.2717324	-309.3166044
4	BuO3_adf	-309.4310282	-309.2713832	-309.3155722
5	BuO4_adt	-309.4297304	-309.2709574	-309.3171954
6	BuO4_abg	-309.4305514	-309.2707834	-309.3157184
7	BuO3_aah	-309.4303135	-309.2706785	-309.3154845
8	BuO1_abl	-309.4294657	-309.2706147	-309.3174397
9	BuO4_ack	-309.4291498	-309.2704148	-309.3164408
10	BuO2_adh	-309.4298526	-309.2704086	-309.3165736
11	BuO2_aao	-309.4288749	-309.2704039	-309.3172439
12	BuO2_aac	-309.4289461	-309.2703831	-309.3168691
13	BuO4_adn	-309.4300321	-309.2703131	-309.3155341
14	BuO1_aat	-309.4301479	-309.2703019	-309.3162299
15	BuO2_adn	-309.4299518	-309.2702808	-309.3152538
16	BuO1_aax	-309.4288820	-309.2701110	-309.3169130
17	BuO2_abr	-309.4296972	-309.2700472	-309.3152192
18	BuO2_aaj	-309.4285452	-309.2700252	-309.3176912
19	BuO2_acg	-309.4286188	-309.2699878	-309.3166928
20	BuO5_aak	-309.4297069	-309.2698559	-309.3156319
21	BuO1_abq	-309.4297182	-309.2698532	-309.3158842
22	BuO4_aau	-309.4294783	-309.2697263	-309.3156173
23	BuO4_ace	-309.4283425	-309.2696075	-309.3160225
24	BuO5_add	-309.4293999	-309.2695969	-309.3156099
25	BuO1_aae	-309.4281213	-309.2695903	-309.3164563
26	BuO5_aah	-309.4292766	-309.2694316	-309.3151796
27	BuO4_aaq	-309.4290836	-309.2693626	-309.3149876
28	BuO5_acq	-309.4281446	-309.2692146	-309.3154356
29	BuO1_adh	-309.4278105	-309.2692075	-309.3161375
30	BuO5_aay	-309.4276476	-309.2690156	-309.3158126
31	BuO5_ads	-309.4287568	-309.2689258	-309.3149878
32	BuO5_abg	-309.4276559	-309.2689149	-309.3154499
33	BuO5_act	-309.4272073	-309.2687793	-309.3158073
34	BuO5_ach	-309.4274988	-309.2687378	-309.3152528
MIN	tBuO•	-309.4416337	-309.2835411	-309.3314371
1	t-BuO2_aai	-309.4415251	-309.2835411	-309.3314371
2	t-BuO2_aag	-309.4416337	-309.2830397	-309.3271307
		-422.5383244	-422.383/184	-422.4321589
1	PhCH2O2_aaj	-422.5383244	-422.3837184	-422.4318154
2		-422.53/09/9	-422.3834369	-422.4321589
3		-422.03/4320	-422.3829813	-422.4309005
1			-200.2082122	-501.0211092
2		-201.1020292	-200.2022135	-501.0211092
2		-501.1831008	-500.9085038	-501.0210088
3		-501.1020074	-500.9080344	-501.01990/4
4 5	Ph((H32O2_a_aut	-501.1855401	-500.9080141	-501.0194181
5		201.102/200	500.5075510	301.0130040

6	PhCCH32O2_a_aam	-501.1823342	-500.9670852	-501.0188872	
7	PhCCH32O3_aal	-501.1808938	-500.9661008	-501.0186888	
8	PhCCH32O3_abm	-501.1805091	-500.9657701	-501.0187921	
9	PhCCH32O3_abl	-501.1798823	-500.9651223	-501.0191623	
MIN	PhO•	-383.2606529	-383.1346519	-383.1779329	
1	PhO_aam	-383.2606529	-383.1346519	-383.1779329	
MIN	p-nitro-PhO∙	-587.7600871	-587.6292461	-587.6797481	
1	p-nitro-PhO_aac	-587.7600871	-587.6292461	-587.6797481	
MIN	p-methyl-PhO•	-422.5839767	-422.4284437	-422.4767157	
1	p-methyl-PhO_aah	-422.5839767	-422.4284437	-422.4767157	
MIN	p-amino-PhO•	-438.6281654	-438.4835124	-438.5297314	
1	p-amino-PhO_aav	-438.6281654	-438.4835124	-438.5297314	
MIN	HOO•	-227.3321060	-227.2858670	-227.3187590	
1	HOO_aaa	-227.3321060	-227.2858670	-227.3187590	
2	HOO_aaj	-227.3165603	-227.2713033	-227.3087103	
MIN	CH300•	-266.6397411	-266.5640601	-266.6028541	
1	CH3OO_aaa	-266.6397411	-266.5640601	-266.6028541	
2	CH3OO_aar	-266.6389780	-266.5633640	-266.6022530	
3	CH3OO_act	-266.6353934	-266.5599714	-266.6013634	
4	CH3OO_aaq	-266.6351932	-266.5598102	-266.6024582	
MIN	t-BuOO∙	-384.6083278	-384.4440058	-384.4920048	
1	t-BuOO_aal	-384.6083158	-384.4440058	-384.4920048	
2	t-BuOO_aaq	-384.6083278	-384.4439958	-384.4917268	
3	t-BuOO_acz	-384.6068333	-384.4426103	-384.4901113	
4	t-BuOO_aay	-384.6041102	-384.4401302	-384.4902332	
MIN	PhCH2OO•	-497.7058911	-497.5440801	-497.5940221	
1	PhCH2OO1_aae	-497.7058911	-497.5440801	-497.5940221	
2	PhCH2OO2_aar	-497.7056301	-497.5438571	-497.5939821	
3	PhCH2OO2_abo	-497.7033394	-497.5414894	-497.5909224	
4	PhCH2OO1_adc	-497.7024489	-497.5408689	-497.5928219	
5	PhCH2OO2_aak	-497.7017007	-497.5401147	-497.5912827	
6	PhCH2OO1_acd	-497.7014028	-497.5399038	-497.5914908	
7	PhCH2OO1_aai	-497.7012662	-497.5398532	-497.5924442	
8	PhCH2OO2_abq	-497.7010461	-497.5396831	-497.5908091	
9	PhCH2OO2_abb	-497.7007409	-497.5394549	-497.5917019	
10	PhCH2OO2_ace	-497.6989783	-497.5375523	-497.5911033	
11	PhCH2OO1_aaw	-497.6984610	-497.5370760	-497.5911030	
MIN	TEMPO	-560.1794735	-559.8743795	-559.9308634	
1	TEMPO_ack	-560.1794735	-559.8743795	-559.9306925	
2	TEMPO_aag	-560.1792257	-559.8742747	-559.9308347	
3	TEMPO_aai	-560.1791714	-559.8742064	-559.9308634	
4	TEMPO_aad	-560.1792210	-559.8742040	-559.9307350	
5	TEMPO_abk	-560.1779003	-559.8728653	-559.9295243	
6	TEMPO_aam	-560.1775945	-559.8726775	-559.9285995	
7	TEMPO_abp	-560.1775258	-559.8723938	-559.9283878	
MIN	•00•	-226.7317449	-226.6981709	-226.7382699	
1	3O2_aab	-226./317449	-226.6981709	-226./382699	
MIN	HCO2•	-265.5075068	-265.4557999	-265.4920149	
1	HCO2_aac	-265.5051349	-265.4557999	-265.4920149	

2	HCO2_aaw	-265.5075068	-265.4556378	-265.4896828
---	----------	--------------	--------------	--------------

	14510 001 11201 04104	acea energiest main				
N⁰	Н	(U)B3LYP-D3/6-31G(d)		
	$\mathbf{R} = \mathbf{O}'$	Etot	H ₂₉₈	G ₂₉₈		
	Г Н					
	0-H					
MIN	HOH (1Ha)	-152.8318213	-152.7788433	-152.8114843		
1	НОН_ааа (1На)	-152.8318213	-152.7788433	-152.8114843		
2	HOH_aaq	-152.8305406	-152.7776816	-152.8104666		
MIN	CH3OH	-192.1387684	-192.0551334	-192.0924013		
1	CH3OH_aaa	-192.1387684	-192.0551334	-192.0910744		
2	CH3OH_aac	-192.1384146	-192.0548476	-192.0909886		
3	CH3OH_aad	-192.1383573	-192.0547343	-192.0924013		
MIN	CH3CH2OH	-231.4630119	-231.3494369	-231.3881581		
1	CH3CH2OH1_aam	-231.4630119	-231.3494369	-231.3880259		
2	CH3CH2OH2_abq	-231.4625321	-231.3489141	-231.3875051		
3	CH3CH2OH1_aaa	-231.4622623	-231.3487053	-231.3871753		
4	CH3CH2OH2_aaw	-231.4611122	-231.3476282	-231.3864442		
5	CH3CH2OH1_aae	-231.4609752	-231.3474862	-231.3870562		
6	CH3CH2OH1_acl	-231.4607995	-231.3472355	-231.3863665		
7	CH3CH2OH1_aaf	-231.4604591	-231.3469341	-231.3881581		
MIN	BuOH	-310.0968831	-309.9230971	-309.9690111		
1	BuOH4d_aaa	-310.0968831	-309.9230971	-309.9690111		
2	BuOH5c_acz	-310.0967116	-309.9229606	-309.9678696		
3	BuOH3a_abw	-310.0965797	-309.9229407	-309.9681797		
4	BuOH5c_adg	-310.0966849	-309.9228719	-309.9678799		
5	BuOH5c_adh	-310.0966360	-309.9228390	-309.9673950		
6	BuOH2b_aaw	-310.0965356	-309.9226466	-309.9673536		
7	BuOH1a abc	-310.0961281	-309.9225111	-309.9682071		
8	 BuOH3a_ada	-310.0960100	-309.9223510	-309.9672660		
9	BuOH8b aam	-310.0959364	-309.9222194	-309.9680644		
10	BuOH14b abm	-310.0960351	-309.9221751	-309.9668281		
11	BuOH6b_aae	-310.0958568	-309.9221058	-309.9679808		
12	BuOH3a adj	-310.0956663	-309.9220503	-309.9668363		
13	BuOH4d acp	-310.0957650	-309.9220490	-309.9689930		
14	BuOH1a abz	-310.0957415	-309.9219515	-309.9665165		
15		-310.0955317	-309.9219407	-309.9674897		
16	 BuOH6b_abo	-310.0957716	-309.9219116	-309.9666556		
17	BuOH1a aax	-310.0952522	-309.9217712	-309.9676002		
18	BuOH3a abm	-310.0951620	-309.9216310	-309.9682810		
19	BuOH7b aaa	-310.0953738	-309.9216098	-309.9672118		
20	BuOH12c adf	-310.0954299	-309.9216079	-309.9661469		
21	BuOH8b aao	-310.0952782	-309.9215762	-309.9673102		
22	BuOH13c abc	-310.0952867	-309.9215307	-309.9655907		
23	BuOH2h acm	-310.0952752	-309.9214872	-309,9672432		
24	BuOH13c aau	-310.0951959	-309.9213909	-309,9661009		
	240200_4444	510.0001000	505.5220505	505.5001000		

Table S3.4.20. Calculated energies. Individual selected conformers.

25	BuOH1a_aad	-310.0948227	-309.9212337	-309.9671917
26	BuOH6b_aax	-310.0950194	-309.9211644	-309.9670024
27	BuOH11d_aak	-310.0948501	-309.9211211	-309.9670161
28	BuOH2b_abj	-310.0948069	-309.9210439	-309.9658819
29	BuOH3a_aah	-310.0944585	-309.9208475	-309.9671985
30	BuOH12c_abw	-310.0947876	-309.9208166	-309.9646186
31	BuOH6b_acr	-310.0946884	-309.9207834	-309.9662114
32	BuOH13c_aaa	-310.0943369	-309.9207829	-309.9664129
33	BuOH12c_aba	-310.0943047	-309.9205947	-309.9652267
34	BuOH3a_adm	-310.0940853	-309.9205793	-309.9683463
35	BuOH10d_aar	-310.0943452	-309.9205762	-309.9664272
36	BuOH10d_abi	-310.0944154	-309.9205564	-309.9660494
37	BuOH4d_aaq	-310.0939763	-309.9204653	-309.9676033
38	BuOH11d_aab	-310.0941816	-309.9204596	-309.9662436
39	BuOH4d_adc	-310.0940501	-309.9204111	-309.9675541
40	BuOH7b_aao	-310.0939229	-309.9203359	-309.9662969
41	BuOH2b_adp	-310.0940372	-309.9203222	-309.9655042
42	BuOH2b_abz	-310.0939254	-309.9202234	-309.9665014
43	BuOH8b_aal	-310.0940025	-309.9201935	-309.9659715
44	BuOH8b_aba	-310.0938485	-309.9201545	-309.9665155
45	BuOH5c_ado	-310.0939418	-309.9201488	-309.9665508
46	BuOH14b_adf	-310.0939106	-309.9201186	-309.9648676
47	BuOH14b_aag	-310.0938211	-309.9200301	-309.9650621
48	BuOH13c_aaz	-310.0934367	-309.9197327	-309.9658037
49	BuOH12c_abm	-310.0933458	-309.9195268	-309.9647658
50	BuOH14b_abi	-310.0933243	-309.9195263	-309.9643193
51	BuOH6b_aai	-310.0932690	-309.9195260	-309.9661070
52	BuOH10d_abd	-310.0929629	-309.9193449	-309.9652989
53	BuOH10d_acf	-310.0929783	-309.9192863	-309.9652873
54	BuOH10d_aab	-310.0929138	-309.9191308	-309.9656488
55	BuOH11d_ada	-310.0927448	-309.9189908	-309.9652498
56	BuOH12c_aas	-310.0922050	-309.9185270	-309.9633760
57	BuOH14b_aar	-310.0919647	-309.9183337	-309.9646067
MIN	tBuOH	-310.1090345	-309.9367035	-309.9798735
1	t-BuOH_ads	-310.1090345	-309.9367035	-309.9798735
2	t-BuOH_aar	-310.1078698	-309.9356678	-309.9790388
3	t-BuOH_abx	-310.1051120	-309.9330050	-309.9777460
MIN	PhCH2OH	-423.2069474	-423.0372224	-423.0844624
1	PhCH2OH2_aam	-423.2069474	-423.0372224	-423.0844624
2	PhCH2OH2_aae	-423.2065049	-423.0368399	-423.0840489
3	PhCH2OH1_aae	-423.2041475	-423.0344465	-423.0816815
4	PhCH2OH2_abc	-423.2037433	-423.0341233	-423.0823083
5	PhCH2OH1_adg	-423.2020263	-423.0324783	-423.0799413
MIN	PhC(CH3)2OH	-501.8504166	-501.6218206	-501.6741180
1	PhCCH32OH1_abp	-501.8504166	-501.6218206	-501.6733246
2	PhCCH32OH2_acf	-501.8503006	-501.6216656	-501.6739946
3	PhCCH32OH1_acl	-501.8502890	-501.6216540	-501.6741180
4	PhCCH32OH2_aaf	-501.8498454	-501.6213054	-501.6728384
5	PhCCH32OH3_aae	-501.8496603	-501.6211693	-501.6722743

6	PhCCH32OH1_abq	-501.8495829	-501.6209449	-501.6721109
7	PhCCH32OH2_aan	-501.8493368	-501.6207588	-501.6729698
8	PhCCH32OH1_aao	-501.8471231	-501.6185781	-501.6701991
9	PhCCH32OH1_acb	-501.8463524	-501.6177974	-501.6694924
10	PhCCH32OH3_ads	-501.8458870	-501.6176830	-501.6702970
11	PhCCH32OH3_adt	-501.8459161	-501.6174741	-501.6705451
12	PhCCH32OH3_abt	-501.8457134	-501.6172074	-501.6691584
13	PhCCH32OH1_abv	-501.8452340	-501.6168110	-501.6686940
MIN	PhOH	-383.8938673	-383.7548543	-383.7989143
1	PhOH_aae	-383.8938673	-383.7548543	-383.7989143
MIN	p-nitro-PhOH	-588.4005120	-588.2562720	-588.3068910
1	p-nitro-PhOH_aai	-588.4005120	-588.2562720	-588.3068910
MIN	p-methyl-PhOH	-423.2141255	-423.0456714	-423.0949435
1	p-methyl-PhOH_aca	-423.2141255	-423.0456705	-423.0949435
2	p-methyl-PhOH_aad	-423.2141244	-423.0456714	-423.0948264
MIN	p-amino-PhOH	-439.2465281	-439.0894531	-439.1369321
1	p-amino-PhOH_ach	-439.2465281	-439.0894531	-439.1369321
MIN	НООН	-227.9626681	-227.9039341	-227.9374491
1	HOOH_aab	-227.9626681	-227.9039341	-227.9374491
MIN	СНЗООН	-267.2715186	-267.1837066	-267.2227126
1	CH3OOH_aam	-267.2715186	-267.1837066	-267.2227126
2	CH3OOH_abj	-267.2711899	-267.1831489	-267.2224869
3	CH3OOH_adl	-267.2700475	-267.1824045	-267.2226915
MIN	t-BuOOH	-385.2386526	-385.0620236	-385.1090206
1	t-BuOOH_acm	-385.2386526	-385.0620236	-385.1090206
MIN	PhCH2OOH	-498.3406620	-498.1665520	-498.2159740
1	PhCH2OOH2_aan	-498.3406620	-498.1665520	-498.2159740
2	PhCH2OOH2_abr	-498.3393105	-498.1653365	-498.2147635
3	PhCH2OOH3_aah	-498.3379918	-498.1640528	-498.2137558
4	PhCH2OOH3_aae	-498.3370756	-498.1631916	-498.2129366
5	PhCH2OOH3_abg	-498.3363383	-498.1625513	-498.2127703
MIN	TEMPOH	-560.7853105	-560.4683745	-560.5240795
1	TEMPOH_aah	-560.7853105	-560.4683745	-560.5240795
2	TEMPOH_aag	-560.7846894	-560.4676444	-560.5232194
3	TEMPOH_adl	-560.7847137	-560.4676117	-560.5234447
4	TEMPOHa_add	-560.7801677	-560.4634627	-560.5198577
5	TEMPOHa_aaw	-560.7799902	-560.4633512	-560.5208452
MIN	HCO2H	-266.1754636	-266.1100416	-266.1476686
1	HCO2Ha_aab	-266.1754636	-266.1100416	-266.1476686

No		(II)B3I VP_D3/6_316/d)					
INP	H H	(U	JDSLTP-D3/0-31G	(u)			
	0-н			G 298			
	Ĥ						
	R-O						
MIN	HOH (1Ha)	-152.8318213	-152.7788433	-152.8114843			
1	НОН_ааа (1На)	-152.8318213	-152.7788433	-152.8114843			
2	HOH_aaq	-152.8305406	-152.7776816	-152.8104666			
MIN	CH3OH	-192.1384134	-192.0548484	-192.0931620			
1	CH3OH_aai	-192.1384134	-192.0548484	-192.0920964			
2	CH3OH_aby	-192.1377860	-192.0545340	-192.0931620			
3	CH3OH_aab	-192.1378897	-192.0544807	-192.0921067			
MIN	CH3CH2OH	-231.4612036	-231.3476606	-231.3881106			
1	CH3CH2OH1_aan	-231.4612036	-231.3476606	-231.3873066			
2	CH3CH2OH1_abb	-231.4606979	-231.3473929	-231.3870459			
3	CH3CH2OH1_aai	-231.4605585	-231.3470535	-231.3877855			
4	CH3CH2OH2_aan	-231.4594236	-231.3462596	-231.3881106			
5	CH3CH2OH2_aar	-231.4594427	-231.3461337	-231.3872397			
MIN	BuOH	-310.0955283	-309.9218353	-309.9686020			
1	BuOH13c_acf	-310.0955283	-309.9218353	-309.9669573			
2	BuOH1a_ads	-310.0952738	-309.9218108	-309.9674188			
3	BuOH3a_aar	-310.0952961	-309.9217911	-309.9675591			
4	BuOH13c_abh	-310.0953543	-309.9217363	-309.9663703			
5	BuOH1a_adh	-310.0952400	-309.9217130	-309.9674150			
6	BuOH6b_abc	-310.0953852	-309.9217122	-309.9665272			
7	BuOH2b_adi	-310.0951269	-309.9214209	-309.9667329			
8	BuOH5c_adn	-310.0948707	-309.9212147	-309.9670877			
9	BuOH5c_abp	-310.0945647	-309.9209097	-309.9670367			
10	BuOH3a_abi	-310.0940940	-309.9205250	-309.9686020			
11	BuOH14b_aaj	-310.0941628	-309.9204918	-309.9648298			
12	BuOH14b_abp	-310.0941465	-309.9204375	-309.9654035			
13	BuOH8b_abi	-310.0940798	-309.9204178	-309.9672238			
14	BuOH5c_aca	-310.0935844	-309.9198324	-309.9678294			
15	BuOH1a_abi	-310.0931485	-309.9197155	-309.9671155			
16	BuOH11d_aar	-310.0927707	-309.9192237	-309.9658797			
17	BuOH11d_aap	-310.0929504	-309.9191924	-309.9658754			
18	BuOH11d_acr	-310.0925534	-309.9190854	-309.9659164			
19	BuOH11d_aaw	-310.0925191	-309.9189731	-309.9658771			
20	BuOH7b_abs	-310.0921135	-309.9188655	-309.9676445			
21	BuOH7b_adg	-310.0921195	-309.9188495	-309.9675395			
22	BuOH2b_acw	-310.0925423	-309.9187953	-309.9666783			
23	BuOH7b_aag	-310.0921390	-309.9187820	-309.9669940			
24	BuOH7b_aat	-310.0921218	-309.9186848	-309.9664438			
25	BuOH11d_adr	-310.0922229	-309.9185459	-309.9666099			
26	BuOH12c_acg	-310.0918508	-309.9183448	-309.9662348			
27	BuOH12c_aco	-310.0916695	-309.9182725	-309.9661345			
28	BuOH12c aay	-310.0917452	-309.9181772	-309.9660602			

Table S3.4.21, Calculated energies, Individual select	ed conformers.
---	----------------

29	BuOH10d_acv	-310.0911148	-309.9177628	-309.9660938
30	BuOH10d_aae	-310.0911928	-309.9176398	-309.9651628
MIN	tBuOH	-310.1051749	-309.9330899	-309.9786929
1	t-BuOH_aap	-310.1051749	-309.9330899	-309.9786929
2	t-BuOH_aaa	-310.1048403	-309.9329803	-309.9780773
MIN	PhCH2OH	-423.2094341	-423.0397021	-423.0862631
1	PhCH2OH2_abd	-423.2094341	-423.0397021	-423.0862631
2	PhCH2OH1_abq	-423.2009243	-423.0318553	-423.0829833
3	PhCH2OH1_aar	-423.2007198	-423.0316838	-423.0825738
MIN	PhC(CH3)2OH	-501.8525141	-501.6240046	-501.6768566
1	PhCCH32OH1_adc	-501.8523846	-501.6240046	-501.6768566
2	PhCCH32OH1_aci	-501.8525141	-501.6239331	-501.6753841
3	PhCCH32OH2_adc	-501.8522595	-501.6238885	-501.6762005
4	PhCCH32OH3_aah	-501.8462174	-501.6180484	-501.6727324
5	PhCCH32OH3_acq	-501.8461026	-501.6179936	-501.6712196
MIN	PhOH	-383.8982015	-383.7590775	-383.8046154
1	PhOH_abt	-383.8982015	-383.7590775	-383.8031395
2	PhOH_act	-383.8980774	-383.7590534	-383.8046154
3	PhOH_abu	-383.8980447	-383.7588847	-383.8028247
MIN	p-nitro-PhOH	-588.4093503	-588.2648783	-588.3156543
1	p-nitro-PhOH_aae	-588.4093503	-588.2648783	-588.3156543
2	p-nitro-PhOH_aab	-588.4087967	-588.2643327	-588.3147547
MIN	p-methyl-PhOH	-423.2181494	-423.0495224	-423.1000770
1	p-methyl-PhOH_aay	-423.2179630	-423.0494390	-423.1000770
2	p-methyl-PhOH_abt	-423.2181494	-423.0495224	-423.0987424
3	p-methyl-PhOH_adp	-423.2180410	-423.0494110	-423.0983930
MIN	p-amino-PhOH	-439.2498947	-439.0926247	-439.1396891
1	p-amino-PhOH_aab	-439.2498947	-439.0926247	-439.1393327
2	p-amino-PhOH_aau	-439.2494673	-439.0922173	-439.1390053
3	p-amino-PhOH_aaa	-439.2493861	-439.0921631	-439.1396891
MIN	НООН	-227.9626681	-227.9039341	-227.9374491
1	HOOH_aab	-227.9626681	-227.9039341	-227.9374491
MIN	СНЗООН	-267.2785038	-267.1900838	-267.2274928
1	CH3OOH_aaq	-267.2785038	-267.1900838	-267.2274928
2	CH3OOH_aaf	-267.2774429	-267.1891539	-267.2267939
MIN	t-BuOOH	-385.2453165	-385.0681415	-385.1136735
1	t-BuOOH_acs	-385.2453165	-385.0681415	-385.1136735
2	t-BuOOH_acv	-385.2444670	-385.0674050	-385.1130930
MIN	PhCH2OOH	-498.3480630	-498.1734860	-498.2211500
1	PhCH2OOH2_aai	-498.3480630	-498.1734860	-498.2211500
2	PhCH2OOH1_abr	-498.3423271	-498.1678301	-498.2166751
3	PhCH2OOH2_aav	-498.3406827	-498.1665397	-498.2160427
4	PhCH2OOH3_aan	-498.3405167	-498.1663507	-498.2165387
5	PhCH2OOH1_adh	-498.3403045	-498.1661105	-498.2168415
6	PhCH2OOH3_abv	-498.3395469	-498.1655039	-498.2159699
7	PhCH2OOH3_abh	-498.3377985	-498.1639675	-498.2134945
MIN	TEMPOH	-560.7942974	-560.4766384	-560.5302304
1	TEMPOH_ach	-560.7942974	-560.4766384	-560.5302304
2	TEMPOHa_abr	-560.7793399	-560.4628629	-560.5198469

MIN	HOO•	-227.3321060	-227.2858670	-227.3187590	
1	HOO_aaa	-227.3321060	-227.2858670	-227.3187590	
MIN	HCO2H	-266.1922978	-266.1261058	-266.1602548	
1	HCO2Ha_aan	-266.1922978	-266.1261058	-266.1602548	
2	HCO2Hb_aad	-266.1769062	-266.1114562	-266.1495672	
3	HCO2Hb_aab	-266.1763272	-266.1109152	-266.1486852	

Table S3.4.22. Calculated energies. Individual selected conformers.

Nº	R- O •		G3B3-D3		UB3LYP-D3/	UHF/	UHF/	UHF/	UHF/	DE(HLC)
					6-31G(d)	6-31G(d)	6-31+G(d)	6-31G(2df,p)	GTlarge	
		Etot	H ₂₉₈	G ₂₉₈	<\$ ² >	<s<sup>2></s<sup>	<s<sup>2></s<sup>	<\$ ² >	<\$ ² >	
	Ó−H									
MIN	HO• (1a_3)	-152.1122504	-152.0744734	-152.1060594						
1	HO_aab (1a_3)	-152.1122504	-152.0744734	-152.1060594	0.7529	0.7563	0.7578	0.7568	0.7582	-0.0505530
MIN	CH3O•	-191.4122958	-191.3460168	-191.3821224						
1	CH3O1_acd	-191.4122958	-191.3460168	-191.3821058	0.7532	0.7586	0.7596	0.7592	0.7604	-0.0708330
2	CH3O1_aad	-191.4122744	-191.3459404	-191.3821224	0.7531	0.7586	0.7596	0.7592	0.7604	-0.0708330
MIN	CH3CH2O•	-230.7164502	-230.6213478	-230.6617478						
1	CH3CH2O1_abd	-230.7160225	-230.6206955	-230.6600895	0.7532	0.7587	0.7597	0.7593	0.7604	-0.0911130
2	CH3CH2O1_abo	-230.7162643	-230.6210753	-230.6609643	0.7533	0.7588	0.7597	0.7593	0.7605	-0.0911130
3	CH3CH2O1_abx	-230.7163008	-230.6213478	-230.6612198	0.7533	0.7588	0.7598	0.7593	0.7606	-0.0911130
4	CH3CH2O1_abj	-230.7162759	-230.6202319	-230.6594029	0.7532	0.7590	0.7599	0.7595	0.7605	-0.0911130
5	CH3CH2O1_aav	-230.7162948	-230.6213098	-230.6617478	0.7533	0.7587	0.7598	0.7593	0.7605	-0.0911130
6	CH3CH2O1_abz	-230.7164502	-230.6203632	-230.6595192	0.7532	0.7590	0.7599	0.7595	0.7606	-0.0911130
MIN	BuO∙	-309.3162287	-309.1631007	-309.2106530						
1	BuO3_abc	-309.3158039	-309.1624859	-309.2071679	0.7534	0.7590	0.7600	0.7596	0.7607	-0.1316730
2	BuO2_aaa	-309.3162287	-309.1631007	-309.2089317	0.7533	0.7588	0.7598	0.7594	0.7605	-0.1316730
3	BuO3_aad	-309.3150032	-309.1616632	-309.2070412	0.7534	0.7589	0.7598	0.7595	0.7606	-0.1316730
4	BuO3_adf	-309.3143120	-309.1604060	-309.2051000	0.7536	0.7598	0.7608	0.7604	0.7614	-0.1316730
5	BuO4_adt	-309.3148993	-309.1618233	-309.2085753	0.7533	0.7589	0.7598	0.7594	0.7606	-0.1316730
6	BuO4_abg	-309.3146182	-309.1605962	-309.2060352	0.7535	0.7596	0.7605	0.7601	0.7611	-0.1316730
7	BuO3_aah	-309.3147301	-309.1608341	-309.2061451	0.7536	0.7600	0.7610	0.7606	0.7616	-0.1316730
8	BuO1_abl	-309.3147576	-309.1616056	-309.2089456	0.7533	0.7587	0.7597	0.7593	0.7604	-0.1316730
9	BuO4_ack	-309.3137433	-309.1607013	-309.2072433	0.7532	0.7586	0.7596	0.7593	0.7604	-0.1316730
10	BuO2_adh	-309.3149657	-309.1612467	-309.2079237	0.7535	0.7596	0.7605	0.7602	0.7611	-0.1316730
11	BuO2_aao	-309.3153087	-309.1625177	-309.2098767	0.7533	0.7588	0.7598	0.7594	0.7606	-0.1316730
12	BuO2_aac	-309.3152405	-309.1623625	-309.2093655	0.7533	0.7588	0.7598	0.7594	0.7606	-0.1316730
13	BuO4_adn	-309.3145069	-309.1605299	-309.2062569	0.7535	0.7597	0.7607	0.7603	0.7613	-0.1316730
14	BuO1_aat	-309.3154765	-309.1613745	-309.2078115	0.7534	0.7595	0.7605	0.7600	0.7600	-0.1316730
15	BuO2_adn	-309.3146797	-309.1607457	-309.2062277	0.7534	0.7596	0.7605	0.7601	0.7611	-0.1316730
16	BuO1_aax	-309.3148631	-309.1617871	-309.2091041	0.7533	0.7588	0.7598	0.7594	0.7605	-0.1316730
17	BuO2_abr	-309.3150760	-309.1611620	-309.2068430	0.7535	0.7597	0.7606	0.7602	0.7613	-0.1316730
18	BuO2_aaj	-309.3153070	-309.1624700	-309.2106530	0.7533	0.7588	0.7598	0.7594	0.7606	-0.1316730
19	BuO2_acg	-309.3151996	-309.1622576	-309.2094776	0.7533	0.7588	0.7597	0.7594	0.7605	-0.1316730
20	BuO5_aak	-309.3149005	-309.1607955	-309.2070785	0.7534	0.7595	0.7605	0.7600	0.7611	-0.1316730
21	BuO1_abq	-309.3156923	-309.1615723	-309.2081123	0.7534	0.7595	0.7605	0.7601	0.7611	-0.1316730
22	BuO4_aau	-309.3145502	-309.1605412	-309.2069382	0.7535	0.7598	0.7607	0.7604	0.7614	-0.1316730
-----	------------------	--------------	--------------	--------------	--------	--------	--------	--------	--------	------------
23	BuO4_ace	-309.3145432	-309.1615042	-309.2084322	0.7533	0.7589	0.7598	0.7594	0.7606	-0.1316730
24	BuO5_add	-309.3151250	-309.1610660	-309.2075860	0.7534	0.7595	0.7605	0.7600	0.7611	-0.1316730
25	BuO1_aae	-309.3147382	-309.1618892	-309.2092732	0.7533	0.7588	0.7598	0.7594	0.7606	-0.1316730
26	BuO5_aah	-309.3143885	-309.1602895	-309.2065445	0.7534	0.7596	0.7606	0.7601	0.7612	-0.1316730
27	BuO4_aaq	-309.3146548	-309.1606748	-309.2068068	0.7535	0.7599	0.7608	0.7605	0.7615	-0.1316730
28	BuO5_acq	-309.3132668	-309.1600418	-309.2067738	0.7533	0.7587	0.7597	0.7594	0.7605	-0.1316730
29	BuO1_adh	-309.3147270	-309.1618100	-309.2092570	0.7533	0.7588	0.7598	0.7594	0.7606	-0.1316730
30	BuO5_aay	-309.3133391	-309.1603931	-309.2077091	0.7533	0.7587	0.7597	0.7593	0.7605	-0.1316730
31	BuO5_ads	-309.3145651	-309.1604781	-309.2070481	0.7534	0.7596	0.7606	0.7602	0.7612	-0.1316730
32	BuO5_abg	-309.3133543	-309.1603063	-309.2073573	0.7533	0.7588	0.7598	0.7594	0.7606	-0.1316730
33	BuO5_acf	-309.3138129	-309.1610589	-309.2086089	0.7533	0.7588	0.7598	0.7594	0.7606	-0.1316730
34	BuO5_ach	-309.3140010	-309.1609370	-309.2079640	0.7533	0.7587	0.7598	0.7593	0.7606	-0.1316730
MIN	tBuO∙	-309.3281339	-309.1752019	-309.2198349						
1	t-BuO2_aai	-309.3218621	-309.1694901	-309.2179541	0.7529	0.7581	0.7593	0.7588	0.7599	-0.1316730
2	t-BuO2_aag	-309.3281339	-309.1752019	-309.2198349	0.7532	0.7588	0.7596	0.7593	0.7602	-0.1316730
MIN	PhCH2O•	-422.3746434	-422.2258224	-422.2751354						
1	PhCH2O2_aaj	-422.3743574	-422.2252084	-422.2738934	0.7536	1.2737	1.2267	1.2738	1.2189	-0.1654730
2	PhCH2O2_aam	-422.3746434	-422.2258224	-422.2751354	0.7538	1.2715	1.2241	1.2713	1.2159	-0.1654730
3	PhCH2O2_aax	-422.3739053	-422.2248993	-422.2734183	0.7536	1.2622	1.2195	1.2617	1.2109	-0.1654730
MIN	PhC(CH3)2O•	-500.9870737	-500.7799257	-500.8335177						
1	PhCCH32O2_a_aau	-500.9869537	-500.7798597	-500.8335177	0.7534	1.2613	1.2152	1.2612	1.2077	-0.2060330
2	PhCCH32O2_a_abn	-500.9870737	-500.7799257	-500.8334387	0.7534	1.2613	1.2152	1.2613	1.2080	-0.2060330
3	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
4	PhCCH32O2_a_adc	-500.9864027	-500.7787577	-500.8309587	0.7545	1.2770	1.2369	1.2781	1.2315	-0.2060330
5	PhCCH32O2_a_aab	-500.9856322	-500.7779782	-500.8303882	0.7548	1.2799	1.2407	1.2814	1.2357	-0.2060330
6	PhCCH32O2_a_aam	-500.9855545	-500.7779795	-500.8305825	0.7545	1.2729	1.2365	1.2745	1.2315	-0.2060330
7	PhCCH32O3_aal	-500.9857074	-500.7785614	-500.8319594	0.7534	1.2752	1.2304	1.2745	1.2228	-0.2060330
8	PhCCH32O3_abm	-500.9852833	-500.7781893	-500.8320213	0.7534	1.2670	1.2250	1.2662	1.2172	-0.2060330
9	PhCCH32O3_abl	-500.9849894	-500.7778724	-500.8327244	0.7533	1.2606	1.2156	1.2606	1.2082	-0.2060330
MIN	PhO•	-383.1128539	-382.9912699	-383.0350319						
1	PhO_aam	-383.1128539	-382.9912699	-383.0350319	0.7867	1.3558	1.3328	1.3545	1.3282	-0.1451930
MIN	p-nitro-PhO•	-587.5330314	-587.4066334	-587.4577874						
1	p-nitro-PhO_aac	-587.5330314	-587.4066334	-587.4577874	0.7900	1.3971	1.3839	1.3938	1.3789	-0.1992730
1	p-methyl-PhO_aan	-422.4189092	-422.2688612	-422.3177302	0.7832	1.3413	1.3180	1.3392	1.312/	-0.1654730
1	p-amino-PhO_aav	-438.4648656	-438.3252636	-438.3720786	0.7692	1.2447	1.2242	1.2438	1.2204	-0.1654730
1	HOO_aaa	-227.2617016	-227.2169926	-227.2500566	0.7529	0.7609	0.7637	0.7616	0.7644	-0.0708330
2	HUU_aaj	-227.2526175	-227.2088055	-227.2464315	0.7528	0.7604	0.7624	0.7610	0.7631	-0.0708330
1	CH3OO_aaa	-266.5461916	-266.4731016	-266.5121866	0.7530	0.7611	0.7638	0.7619	0.7645	-0.0911130
2	CH3OO_aar	-266.5455184	-266.4724904	-266.5116724	0.7530	0.7611	0.7638	0.7619	0.7645	-0.0911130
3	CH300_act	-200.5450095	-266.4728155	-266.5145105	0.7529	0.7607	0.7631	0.7615	0.7639	-0.0911130
4		-200.3402115	-200.4/33905	-200.3103485	0.7530	0.7610	0.7634	0.761/	0.7642	-0.0911130
1	t-BuOO_aaa	-384.4052303	-384.306/463	-384.3553013	0.7533	0.7619	0.7644	0.7626	0.7651	-0.1519530
2	t BuOO_aaq	-384.4045089	-384.3059989	-384.3543429	0.7533	0.7610	0.7643	0.7620	0.7651	-0.1519530
3		-384.463/146	-384.3053036	-384.3534226	0.7533	0.7609	0.7631	0.7618	0.7639	-0.1519530
4		-384.4041943	-384.3060103	-384.338/383	0.7533	0.7015	0.7030	0.7622	0.7644	-0.1519530
2		-497.5109813	-497.3048093	-497.4054403	0.7532	1.2770	1.2301	1.2795	1.2301	-0.1857530
2		-497.5105440	-497.3544580	-497.4052280	0.7532	1.2/79	1.2300	1.2/92	1.2297	-0.1857530
1 3		-497.5077386	-497.3515796	-497.4016566	0.7534	1.2660	1.2257	1.2660	1.2187	-0.185/530

4	PhCH2OO1_adc	-497.5086430	-497.3527380	-497.4053420	0.7532	1.2811	1.2395	1.2819	1.2332	-0.1857530
5	PhCH2OO2_aak	-497.5071879	-497.3512769	-497.4030949	0.7534	1.2670	1.2227	1.2681	1.2161	-0.1857530
6	PhCH2OO1_acd	-497.5068066	-497.3509766	-497.4032166	0.7535	1.2689	1.2243	1.2700	1.2178	-0.1857530
7	PhCH2OO1_aai	-497.5080754	-497.3523194	-497.4055734	0.7532	1.2750	1.2319	1.2765	1.2261	-0.1857530
8	PhCH2OO2_abq	-497.5092722	-497.3535652	-497.4053512	0.7534	1.2700	1.2337	1.2713	1.2265	-0.1857530
9	PhCH2OO2_abb	-497.5092124	-497.3535754	-497.4064864	0.7534	1.2668	1.2303	1.2681	1.2229	-0.1857530
10	PhCH2OO2_ace	-497.5081321	-497.3523651	-497.4065761	0.7532	1.2781	1.2363	1.2793	1.2300	-0.1857530
11	PhCH2OO1_aaw	-497.5082536	-497.3525256	-497.4072126	0.7531	1.2782	1.2364	1.2794	1.2305	-0.1857530
1	TEMPO_ack	-559.9656607	-559.6716237	-559.7289527	0.7538	0.7692	0.7727	0.7705	0.7744	-0.2465930
2	TEMPO_aag	-559.9661668	-559.6722648	-559.7298428	0.7539	0.7695	0.7726	0.7710	0.7743	-0.2465930
3	TEMPO_aai	-559.9655184	-559.6716034	-559.7292784	0.7538	0.7691	0.7727	0.7704	0.7743	-0.2465930
4	TEMPO_aad	-559.9664068	-559.6724408	-559.7299918	0.7541	0.7707	0.7724	0.7721	0.7743	-0.2465930
5	TEMPO_abk	-559.9629954	-559.6690144	-559.7266904	0.7538	0.7693	0.7724	0.7707	0.7741	-0.2465930
6	TEMPO_aam	-559.9624144	-559.6685414	-559.7254854	0.7541	0.7697	0.7717	0.7712	0.7736	-0.2465930
7	TEMPO_abp	-559.9627372	-559.6686572	-559.7256742	0.7539	0.7681	0.7712	0.7697	0.7730	-0.2465930
1	3O2_aab	-226.6607931	-226.6282241	-226.6685121	2.0067	2.0354	2.0447	2.0374	2.0470	-0.0673060
1	HCO2_aac	-265.4091505	-265.3614085	-265.3978575	0.7548	0.7673	0.7685	0.7678	0.7693	-0.0843530
2	HCO2_aaw	-265.4084015	-265.3582555	-265.3925055	0.7552	0.7621	0.7634	0.7624	0.7637	-0.0843530

Table S3.4.23. Calculated energies. Individual selected conformers.

Nº	н		G3B3-D3		DE(HLC)
	R-O	E _{tot}	H ₂₉₈	G ₂₉₈	
	Ĥ				
	<u> </u>				
	O-H				
MIN	HOH (1Ha)	-152.8139511	-152.7627571	-152.7955861	
1	HOH_aaa (1Ha)	-152.8139511	-152.7627571	-152.7955861	-0.0540800
2	HOH_aaq	-152.8134637	-152.7623797	-152.7953567	-0.0540800
MIN	CH3OH	-192.0938537	-192.0132317	-192.0496247	
1	CH3OH_aaa	-192.0934020	-192.0127180	-192.0489070	-0.0743600
2	CH3OH_aac	-192.0938537	-192.0132317	-192.0496247	-0.0743600
3	CH3OH_aad	-192.0923554	-192.0116804	-192.0495974	-0.0743600
MIN	CH3CH2OH	-231.3986662	-231.2891112	-231.3284264	
1	CH3CH2OH1_aam	-231.3983824	-231.2888674	-231.3277954	-0.0946400
2	CH3CH2OH2_abq	-231.3986662	-231.2891112	-231.3280392	-0.0946400
3	CH3CH2OH1_aaa	-231.3976547	-231.2881557	-231.3269647	-0.0946400
4	CH3CH2OH2_aaw	-231.3974991	-231.2880701	-231.3272271	-0.0946400
5	CH3CH2OH1_aae	-231.3975441	-231.2881091	-231.3280211	-0.0946400
6	CH3CH2OH1_acl	-231.3950751	-231.2855651	-231.3250401	-0.0946400
7	CH3CH2OH1_aaf	-231.3963314	-231.2868594	-231.3284264	-0.0946400
MIN	BuOH	-309.9974505	-309.8301055	-309.8775015	
1	BuOH4d_aaa	-309.9974477	-309.8299467	-309.8763877	-0.1352000
2	BuOH5c_acz	-309.9968824	-309.8294134	-309.8748494	-0.1352000
3	BuOH3a_abw	-309.9965503	-309.8291883	-309.8749553	-0.1352000
4	BuOH5c_adg	-309.9964762	-309.8289492	-309.8744822	-0.1352000
5	BuOH5c_adh	-309.9960664	-309.8285554	-309.8736374	-0.1352000
6	BuOH2b_aaw	-309.9964467	-309.8288517	-309.8740797	-0.1352000
7	BuOH1a_abc	-309.9974505	-309.8301055	-309.8763335	-0.1352000

8	BuOH3a_ada	-309.9970122	-309.8296292	-309.8750742	-0.1352000
9	BuOH8b_aam	-309.9968276	-309.8293906	-309.8757636	-0.1352000
10	BuOH14b_abm	-309.9946381	-309.8270701	-309.8722441	-0.1352000
11	BuOH6b_aae	-309.9964508	-309.8289828	-309.8753838	-0.1352000
12	BuOH3a_adj	-309.9961744	-309.8288314	-309.8741494	-0.1352000
13	BuOH4d_acp	-309.9960312	-309.8285962	-309.8760672	-0.1352000
14	BuOH1a_abz	-309.9966523	-309.8291493	-309.8742383	-0.1352000
15	BuOH1a_ace	-309.9967955	-309.8294785	-309.8755565	-0.1352000
16	BuOH6b_abo	-309.9946750	-309.8271040	-309.8723730	-0.1352000
17	BuOH1a_aax	-309.9972834	-309.8300654	-309.8764304	-0.1352000
18	BuOH3a_abm	-309.9960721	-309.8288101	-309.8759941	-0.1352000
19	BuOH7b_aaa	-309.9970394	-309.8295584	-309.8756884	-0.1352000
20	BuOH12c_adf	-309.9953929	-309.8278589	-309.8729219	-0.1352000
21	BuOH8b_aao	-309.9962148	-309.8287908	-309.8750538	-0.1352000
22	BuOH13c_abc	-309.9941976	-309.8267236	-309.8713116	-0.1352000
23	BuOH2b_acm	-309.9967208	-309.8292178	-309.8754998	-0.1352000
24	BuOH13c_aau	-309.9953702	-309.8278502	-309.8730872	-0.1352000
25	BuOH1a_aad	-309.9962363	-309.8289193	-309.8754083	-0.1352000
26	BuOH6b_aax	-309.9950519	-309.8274859	-309.8738479	-0.1352000
27	BuOH11d_aak	-309.9955359	-309.8280879	-309.8745099	-0.1352000
28	BuOH2b_abj	-309.9959646	-309.8284856	-309.8738496	-0.1352000
29	BuOH3a_aah	-309.9959427	-309.8286077	-309.8754867	-0.1352000
30	BuOH12c_abw	-309.9945697	-309.8268957	-309.8712187	-0.1352000
31	BuOH6b_acr	-309.9949945	-309.8273785	-309.8733335	-0.1352000
32	BuOH13c_aaa	-309.9935693	-309.8262863	-309.8724463	-0.1352000
33	BuOH12c_aba	-309.9947252	-309.8272952	-309.8724552	-0.1352000
34	BuOH3a_adm	-309.9964395	-309.8292005	-309.8775015	-0.1352000
35	BuOH10d_aar	-309.9959358	-309.8284498	-309.8748278	-0.1352000
36	BuOH10d_abi	-309.9960411	-309.8284701	-309.8744891	-0.1352000
37	BuOH4d_aaq	-309.9963561	-309.8291121	-309.8767831	-0.1352000
38	BuOH11d_aab	-309.9950290	-309.8275870	-309.8738990	-0.1352000
39	BuOH4d_adc	-309.9959938	-309.8286308	-309.8763028	-0.1352000
40	BuOH7b_aao	-309.9957847	-309.8284687	-309.8749617	-0.1352000
41	BuOH2b_adp	-309.9940505	-309.8266165	-309.8723255	-0.1352000
42	BuOH2b_abz	-309.9959013	-309.8284793	-309.8752853	-0.1352000
43	BuOH8b_aal	-309.9937432	-309.8262152	-309.8725232	-0.1352000
44	BuOH8b_aba	-309.9959631	-309.8285471	-309.8754381	-0.1352000
45	BuOH5c_ado	-309.9954624	-309.8279554	-309.8748814	-0.1352000
46	BuOH14b_adf	-309.9927999	-309.8252949	-309.8705679	-0.1352000
47	BuOH14b_aag	-309.9935167	-309.8260107	-309.8715687	-0.1352000
48	BuOH13c_aaz	-309.9937654	-309.8263434	-309.8729394	-0.1352000
49	BuOH12c_abm	-309.9936116	-309.8260796	-309.8718446	-0.1352000
50	BuOH14b_abi	-309.9923221	-309.8248111	-309.8701281	-0.1352000
51	BuOH6b_aai	-309.9955914	-309.8281284	-309.8752384	-0.1352000
52	BuOH10d_abd	-309.9947228	-309.8273788	-309.8738628	-0.1352000
53	BuOH10d_act	-309.9947051	-309.8272911	-309.8738221	-0.1352000
54	BuOH10d_aab	-309.9947835	-309.8272835	-309.8743295	-0.1352000
55	BuOH11d_ada	-309.9924236	-309.8249476	-309.8/1/386	-0.1352000
56	BuOH12c_aas	-309.9926909	-309.8252909	-309.8706689	-0.1352000

-					
57	BuOH14b_aar	-309.9938144	-309.8264584	-309.8732604	-0.1352000
MIN	tBuOH	-310.0112257	-309.8450937	-309.8888177	
1	t-BuOH_ads	-310.0112257	-309.8450937	-309.8888177	-0.1352000
2	t-BuOH_aar	-310.0102642	-309.8442532	-309.8881812	-0.1352000
3	t-BuOH_abx	-310.0073518	-309.8414258	-309.8867308	-0.1352000
MIN	PhCH2OH	-423.0592487	-422.8955737	-422.9434137	
1	PhCH2OH2_aam	-423.0592487	-422.8955737	-422.9434137	-0.1690000
2	PhCH2OH2_aae	-423.0585729	-422.8949549	-422.9427639	-0.1690000
3	PhCH2OH1_aae	-423.0569630	-422.8933140	-422.9411450	-0.1690000
4	PhCH2OH2_abc	-423.0569375	-422.8933615	-422.9421475	-0.1690000
5	PhCH2OH1_adg	-423.0546034	-422.8910974	-422.9391614	-0.1690000
MIN	PhC(CH3)2OH	-501.6703425	-501.4499335	-501.5027995	
1	PhCCH32OH1_abp	-501.6703425	-501.4499335	-501.5022595	-0.2095600
2	PhCCH32OH2_acf	-501.6700204	-501.4495774	-501.5027254	-0.2095600
3	PhCCH32OH1_acl	-501.6699595	-501.4495165	-501.5027995	-0.2095600
4	PhCCH32OH2_aaf	-501.6700307	-501.4496747	-501.5020307	-0.2095600
5	PhCCH32OH3_aae	-501.6694276	-501.4491186	-501.5010466	-0.2095600
6	PhCCH32OH1_abq	-501.6690618	-501.4486148	-501.5006008	-0.2095600
7	PhCCH32OH2_aan	-501.6693224	-501.4489324	-501.5019644	-0.2095600
8	PhCCH32OH1_aao	-501.6680803	-501.4477193	-501.5001633	-0.2095600
9	PhCCH32OH1_acb	-500.9808353	-500.7604663	-500.8129823	-0.2095600
10	PhCCH32OH3_ads	-501.6675441	-501.4475061	-501.5009481	-0.2095600
11	PhCCH32OH3_adt	-501.6672284	-501.4469604	-501.5008604	-0.2095600
12	PhCCH32OH3_abt	-501.6661968	-501.4458748	-501.4986478	-0.2095600
13	PhCCH32OH1_abv	-500.9799139	-500.7596689	-500.8123769	-0.2095600
MIN	PhOH	-383.7626171	-383.6285041	-383.6730841	
1	PhOH_aae	-383.7626171	-383.6285041	-383.6730841	-0.1487200
MIN	p-nitro-PhOH	-588.1890769	-588.0497839	-588.1010879	
1	p-nitro-PhOH_aai	-588.1890769	-588.0497839	-588.1010879	-0.2028000
MIN	p-methyl-PhOH	-423.0654797	-422.9029887	-422.9528898	
1	p-methyl-PhOH_aca	-423.0654728	-422.9029788	-422.9528898	-0.1690000
2	p-methyl-PhOH_aad	-423.0654797	-422.9029887	-422.9527807	-0.1690000
MIN	p-amino-PhOH	-439.1005950	-438.9490270	-438.9971440	
1	p-amino-PhOH_ach	-439.1005950	-438.9490270	-438.9971440	-0.1690000
MIN	НООН	-227.9082240	-227.8514780	-227.8852070	
1	HOOH_aab	-227.9082240	-227.8514780	-227.8852070	-0.0743600
MIN	CH3OOH	-267.1927726	-267.1080006	-267.1478421	
1	CH3OOH_aam	-267.1927726	-267.1080006	-267.1473346	-0.0946400
2	CH3OOH_abj	-267.1925004	-267.1075094	-267.1471744	-0.0946400
3	CH3OOH_adl	-267.1918371	-267.1072191	-267.1478421	-0.0946400
MIN	t-BuOOH	-385.1089389	-384.9385929	-384.9862339	
1	t-BuOOH_acm	-385.1089389	-384.9385929	-384.9862339	-0.1554800
MIN	PhCH2OOH	-498.1604493	-497.9924913	-498.0425873	
1	PhCH2OOH2_aan	-498.1604493	-497.9924913	-498.0425873	-0.1892800
2	PhCH2OOH2_abr	-498.1583463	-497.9905153	-498.0406203	-0.1892800
3	PhCH2OOH3_aah	-498.1578201	-497.9900211	-498.0404041	-0.1892800
4	PhCH2OOH3_aae	-498.1566962	-497.9889442	-498.0393752	-0.1892800
5	PhCH2OOH3_abg	-498.1575673	-497.9899103	-498.0408133	-0.1892800
MIN	TEMPOH	-560.5853835	-560.2797865	-560.3366685	

1	TEMPOH_aah	-560.5850558	-560.2796128	-560.3363728	-0.2501200
2	TEMPOH_aag	-560.5847324	-560.2791874	-560.3358144	-0.2501200
3	TEMPOH_adl	-560.5853835	-560.2797865	-560.3366685	-0.2501200
4	TEMPOHa_add	-560.5808500	-560.2756330	-560.3330780	-0.2501200
5	TEMPOHa_aaw	-560.5802631	-560.2751081	-560.3336531	-0.2501200
MIN	HCO2H	-266.1023908	-266.0391758	-266.0770668	
1	HCO2Ha_aab	-266.1023908	-266.0391758	-266.0770668	-0.0878800

Table S3.4.24. Calculated energies. Individual selected conformers.

Nº	Н	G3B3-D3			DE(HLC)
		E _{tot}	H ₂₉₈	G ₂₉₈	
	U-H				
	Ē				
	H				
	R- <mark>O</mark>				
MIN	НОН	-152.8139511	-152.7627571	-152.7955861	
1	HOH_aaa	-152.8139511	-152.7627571	-152.7955861	-0.0540800
2	HOH_aaq	-152.8134637	-152.7623797	-152.7953567	-0.0540800
MIN	CH3OH	-192.0920172	-192.0116942	-192.0505752	
1	CH3OH_aai	-192.0917888	-192.0111698	-192.0486688	-0.0743600
2	CH3OH_aby	-192.0920172	-192.0116942	-192.0505752	-0.0743600
3	CH3OH_aab	-192.0909951	-192.0105231	-192.0484021	-0.0743600
MIN	CH3CH2OH	-231.3960055	-231.2868775	-231.3290775	
1	CH3CH2OH1_aan	-231.3959147	-231.2864257	-231.3264157	-0.0946400
2	CH3CH2OH1_abb	-231.3957584	-231.2864954	-231.3264944	-0.0946400
3	CH3CH2OH1_aai	-231.3958153	-231.2863623	-231.3274383	-0.0946400
4	CH3CH2OH2_aan	-231.3960055	-231.2868775	-231.3290775	-0.0946400
5	CH3CH2OH2_aar	-231.3948867	-231.2856197	-231.3270717	-0.0946400
MIN	BuOH	-309.9953308	-309.8280738	-309.8764100	
1	BuOH13c_acf	-309.9940603	-309.8266503	-309.8722963	-0.1352000
2	BuOH1a_ads	-309.9951931	-309.8279971	-309.8741371	-0.1352000
3	BuOH3a_aar	-309.9940836	-309.8268466	-309.8731466	-0.1352000
4	BuOH13c_abh	-309.9927020	-309.8253630	-309.8705220	-0.1352000
5	BuOH1a_adh	-309.9953308	-309.8280738	-309.8743078	-0.1352000
6	BuOH6b_abc	-309.9949594	-309.8275654	-309.8729074	-0.1352000
7	BuOH2b_adi	-309.9949229	-309.8274959	-309.8733369	-0.1352000
8	BuOH5c_adn	-309.9941650	-309.8267870	-309.8731880	-0.1352000
9	BuOH5c_abp	-309.9939119	-309.8265339	-309.8731899	-0.1352000
10	BuOH3a_abi	-309.9944584	-309.8271614	-309.8757674	-0.1352000
11	BuOH14b_aaj	-309.9922457	-309.8248537	-309.8697187	-0.1352000
12	BuOH14b_abp	-309.9935592	-309.8261302	-309.8716242	-0.1352000
13	BuOH8b_abi	-309.9943967	-309.8270077	-309.8743467	-0.1352000
14	BuOH5c_aca	-309.9940346	-309.8265636	-309.8750906	-0.1352000
15	BuOH1a_abi	-309.9934383	-309.8262693	-309.8742023	-0.1352000
16	BuOH11d_aar	-309.9929427	-309.8256637	-309.8728527	-0.1352000
17	BuOH11d_aap	-309.9932018	-309.8257218	-309.8729358	-0.1352000
18	BuOH11d_acr	-309.9929502	-309.8257462	-309.8731122	-0.1352000
19	BuOH11d_aaw	-309.9927643	-309.8254873	-309.8729233	-0.1352000

20	BuOH7b_abs	-309.9940910	-309.8270960	-309.8764100	-0.1352000
21	BuOH7b_adg	-309.9940178	-309.8270018	-309.8762288	-0.1352000
22	BuOH2b_acw	-309.9938170	-309.8263510	-309.8747630	-0.1352000
23	BuOH7b_aag	-309.9935854	-309.8264864	-309.8752344	-0.1352000
24	BuOH7b_aat	-309.9929290	-309.8257540	-309.8740480	-0.1352000
25	BuOH11d_adr	-309.9929170	-309.8255150	-309.8741110	-0.1352000
26	BuOH12c_acg	-309.9920393	-309.8248023	-309.8732233	-0.1352000
27	BuOH12c_aco	-309.9912925	-309.8241585	-309.8725525	-0.1352000
28	BuOH12c_aay	-309.9921730	-309.8248770	-309.8732910	-0.1352000
29	BuOH10d_acv	-309.9930156	-309.8259236	-309.8747886	-0.1352000
30	BuOH10d_aae	-309.9918373	-309.8245523	-309.8726083	-0.1352000
MIN	tBuOH	-310.0079289	-309.8420229	-309.8881909	
1	t-BuOH_aap	-310.0079289	-309.8420229	-309.8881909	-0.1352000
2	t-BuOH_aaa	-310.0075385	-309.8418445	-309.8875105	-0.1352000
MIN	PhCH2OH	-423.0593217	-422.8956457	-422.9449025	
1	PhCH2OH2_abd	-423.0593217	-422.8956457	-422.9428007	-0.1690000
2	PhCH2OH1_abq	-423.0562185	-422.8931625	-422.9449025	-0.1690000
3	PhCH2OH1_aar	-423.0544135	-422.8913875	-422.9428905	-0.1690000
MIN	PhC(CH3)2OH	-501.6717311	-501.4515381	-501.5048779	
1	PhCCH32OH1_adc	-501.6714059	-501.4512049	-501.5048779	-0.2095600
2	PhCCH32OH1_aci	-501.6711315	-501.4507405	-501.5030095	-0.2095600
3	PhCCH32OH2_adc	-501.6717311	-501.4515381	-501.5046721	-0.2095600
4	PhCCH32OH3_aah	-501.6681223	-501.4481133	-501.5036293	-0.2095600
5	PhCCH32OH3_acq	-501.6667593	-501.4468073	-501.5008663	-0.2095600
MIN	PhOH	-383.7669725	-383.6328535	-383.6789295	
1	PhOH_abt	-383.7652314	-383.6310204	-383.6755944	-0.1487200
2	PhOH_act	-383.7669725	-383.6328535	-383.6789295	-0.1487200
3	PhOH_abu	-383.7655713	-383.6313283	-383.6757773	-0.1487200
MIN	p-nitro-PhOH	-588.1966054	-588.0571004	-588.1085504	
1	p-nitro-PhOH_aae	-588.1966054	-588.0571004	-588.1085504	-0.2028000
2	p-nitro-PhOH_aab	-588.1948240	-588.0553260	-588.1064230	-0.2028000
MIN	p-methyl-PhOH	-423.0694455	-422.9068925	-422.9581645	
1	p-methyl-PhOH_aay	-423.0694455	-422.9068925	-422.9581645	-0.1690000
2	p-methyl-PhOH_abt	-423.0677270	-422.9050790	-422.9549250	-0.1690000
3	p-methyl-PhOH_adp	-423.0679566	-422.9053066	-422.9549156	-0.1690000
MIN	p-amino-PhOH	-439.1026238	-438.9508818	-438.9985636	
1	p-amino-PhOH_aab	-439.1026238	-438.9508818	-438.9982138	-0.1690000
2	p-amino-PhOH_aau	-439.1023231	-438.9505991	-438.9980121	-0.1690000
3	p-amino-PhOH_aaa	-439.1021106	-438.9504096	-438.9985636	-0.1690000
MIN	НООН	-227.9082240	-227.8514780	-227.8852070	
1	HOOH_aab	-227.9082240	-227.8514780	-227.8852070	-0.0743600
MIN	СНЗООН	-267.1975684	-267.1122364	-267.1499494	
1	CH3OOH_aaq	-267.1975684	-267.1122364	-267.1499494	-0.0946400
2	CH3OOH_aaf	-267.1966106	-267.1114016	-267.1493486	-0.0946400
MIN	t-BuOOH	-385.1142760	-384.9434300	-384.9895810	
1	t-BuOOH_acs	-385.1142760	-384.9434300	-384.9895810	-0.1554800
2	t-BuOOH_acv	-385.1128137	-384.9420727	-384.9883837	-0.1554800
MIN	PhCH2OOH	-498.1649393	-497.9965503	-498.0448713	
1	PhCH2OOH2_aai	-498.1649393	-497.9965503	-498.0448713	-0.1892800

-					
2	PhCH2OOH1_abr	-498.1617306	-497.9934146	-498.0429206	-0.1892800
3	PhCH2OOH2_aav	-498.1588279	-497.9908399	-498.0410159	-0.1892800
4	PhCH2OOH3_aan	-498.1601433	-497.9921423	-498.0429943	-0.1892800
5	PhCH2OOH1_adh	-498.1600304	-497.9919994	-498.0433974	-0.1892800
6	PhCH2OOH3_abv	-498.1592267	-497.9913407	-498.0424737	-0.1892800
7	PhCH2OOH3_abh	-498.1570598	-497.9893658	-498.0395718	-0.1892800
MIN	TEMPOH	-560.5925399	-560.2864389	-560.3410489	
1	TEMPOH_ach	-560.5925399	-560.2864389	-560.3410489	-0.2501200
2	TEMPOHa_abr	-560.5791991	-560.2741911	-560.3322351	-0.2501200
MIN	HOO•	-227.2617016	-227.2169926	-227.2500566	
1	HOO_aaa	-227.2617016	-227.2169926	-227.2500566	-0.0708330
MIN	HCO2H	-266.1133819	-266.0494709	-266.0838399	
1	HCO2Ha_aan	-266.1133819	-266.0494709	-266.0838399	-0.0878800
2	HCO2Hb_aad	-266.1043132	-266.0410792	-266.0794462	-0.0878800
3	HCO2Hb_aab	-266.1029124	-266.0397124	-266.0777404	-0.0878800

Table S3.4.25. Calculated energies. Individual selected conformers.

Nº	R- O •	(U)B3LYP-D3/6-31+G(d,p)			
		Etot	H ₂₉₈	G298	
	Г Ц				
	1				
	O-H				
MIN	HO• (1a_2)	-152.1803707	-152.1418317	-152.1758067	
1	HO_aab (1a_2)	-152.1803707	-152.1418317	-152.1758067	
MIN	CH30•	-191.5078593	-191.4397733	-191.4769883	
1	CH3O1_aab	-191.5078593	-191.4397733	-191.4769883	
MIN	CH3CH2O•	-230.8339204	-230.7361309	-230.7774889	
1	CH3CH2O1_aah	-230.8337179	-230.7361309	-230.7774889	
2	CH3CH2O1_aac	-230.8339204	-230.7359744	-230.7762974	
3	CH3CH2O1_acm	-230.8333250	-230.7345190	-230.7743110	
MIN	BuO•	-309.4755335	-309.3177405	-309.3652302	
1	BuO2_acz	-309.4754105	-309.3177405	-309.3639755	
2	BuO3_adb	-309.4755335	-309.3176655	-309.3628325	
3	BuO2_aal	-309.4741572	-309.3168312	-309.3652302	
4	BuO1_abu	-309.4741098	-309.3163738	-309.3638068	
5	BuO4_abu	-309.4739092	-309.3162202	-309.3626342	
6	BuO3_aay	-309.4739490	-309.3161860	-309.3638530	
7	BuO4_aap	-309.4733220	-309.3158440	-309.3641620	
8	BuO1_aab	-309.4745544	-309.3157644	-309.3624794	
9	BuO4_act	-309.4732997	-309.3156577	-309.3625107	
10	BuO4_acc	-309.4741205	-309.3155425	-309.3616005	
11	BuO3_aao	-309.4738983	-309.3155243	-309.3615113	
12	BuO5_aak	-309.4740568	-309.3153208	-309.3617828	
13	BuO2_acl	-309.4738593	-309.3153103	-309.3621633	
14	BuO5_abp	-309.4729077	-309.3152577	-309.3630507	
15	BuO4_aar	-309.4734705	-309.3148995	-309.3614435	
16	BuO5_abt	-309.4735974	-309.3148274	-309.3617224	
MIN	tBuO∙	-309.4854393	-309.3279283	-309.3728993	
1	t-BuO2_aaw	-309.4854393	-309.3279283	-309.3728993	

NAINI	DhCU20a	422 5020221	422 4220678	422 4020740
1	PIICH20	-422.5878221	-422.4329078	-422.4828748
2		-122.5005070	-422.4223010	.422.4020740
2		422.3070221	422.4322011	422.4750251
3		-422.3039033	-422.4520945	-422.4025905
4		-422.3033423	-422.4510515	-422.4009345
1		-501.2506045	-501.0229959	-501.0766059
2		-501.2500029 E01.256964E	-501.0229959	-501.0700059 E01.074902E
2		-501.2506045	-501.0225075	-501.0746955
3		-501.2354195	-501.0210423	-501.0749403
4		-501.2345706	-501.0208196	-501.0748476
5		-501.2344181	-501.0207631	-501.0754011
6	PhCCH32O2_a_ads	-501.2343904	-501.0203694	-501.0735924
MIN	PhO•	-383.3042402	-383.1787062	-383.2233942
1	PhO_ace	-383.3042402	-383.1787062	-383.2233942
MIN	p-nitro-PhO•	-587.8111909	-587.6809379	-587.7327549
1	p-nitro-PhO_aac	-587.8111909	-587.6809379	-587.7327549
MIN	p-methyl-PhO•	-422.6308106	-422.4760046	-422.5258676
1	p-methyl-PhO_aak	-422.6308106	-422.4760046	-422.5258676
MIN	p-amino-PhO•	-438.6815915	-438.5375305	-438.5864275
1	p-amino-PhO_abh	-438.6815915	-438.5375305	-438.5864275
MIN	HOO•	-227.3673314	-227.3213374	-227.3579179
1	HOO_aae	-227.3673314	-227.3213374	-227.3552984
2	HOO_aag	-227.3561194	-227.3107414	-227.3487464
3	HOO_adq	-227.3663789	-227.3205959	-227.3579179
MIN	CH300•	-266.6761922	-266.6008622	-266.6406838
1	CH3OO_adp	-266.6761922	-266.6008622	-266.6405222
2	CH3OO_aay	-266.6737808	-266.5985968	-266.6406838
3	CH3OO_aal	-266.6737601	-266.5985661	-266.6405381
MIN	t-BuOO∙	-384.6542691	-384.4909071	-384.5403479
1	t-BuOO_acq	-384.6542691	-384.4909071	-384.5385191
2	t-BuOO_aao	-384.6526906	-384.4894716	-384.5399576
3	t-BuOO_aad	-384.6525289	-384.4893629	-384.5403479
MIN	PhCH2OO•	-497.7556124	-497.5943754	-497.6452677
1	PhCH2OO2_adm	-497.7556124	-497.5943754	-497.6445764
2	PhCH2OO1_aae	-497.7536627	-497.5926197	-497.6449277
3	PhCH2OO2_adu	-497.7524067	-497.5916327	-497.6445787
4	PhCH2OO1_aaw	-497.7514360	-497.5905110	-497.6448980
5	PhCH2OO2_acs	-497.7512817	-497.5903167	-497.6446577
6	PhCH2OO1_aap	-497.7510737	-497.5901957	-497.6452677
MIN	TEMPO•	-560.2400591	-559.9369001	-559.9939151
1	TEMPO ace	-560.2400591	-559.9369001	-559.9939151
2	TEMPO aab	-560.2396722	-559.9365182	-559.9933102
3	TEMPO acg	-560.2394436	-559.9363246	-559.9936096
MIN	•00•	-226.7633108	-226.7296668	-226.7692103
1	302 aai	-226.7633108	-226.7296668	-226.7691958
2	3O2 aaa	-226.7632984	-226.7296484	-226.7687634
3	302 aam	-226.7632623	-226.7296103	-226,7692103
MIN	HC02•	-265.5374856	-265.4861126	-265.5207356
1	HCO2 acr	-265.5374856	-265,4861126	-265.5207356
	11002_001	203.337 4030	203.1001120	203.3207330

Nº	Conformer		(U)B3LYP-D3/6-31+G(d,p	p)
	н	Etot	H ₂₉₈	G ₂₉₈
	R-O			
	I V			
	I I			
	Ò-H			
MIN	HOH (1Ha)	-152 8788957	-152 8258677	-152 8583797
1		-152.8788957	-152.8258677	-152.8583797
MIN		-192.0700557	-192.0230077	-192.0303737
1	CH3OH aan	-192.1818168	-192.0983958	-192.1354398
MIN	СНЗСНЗОН	-231 5081012	-132.0303530	-132.13345502
1		-221.5081012	-231.3343032	-231.4340302
2		-221 5077721	-231.3949092	-231.4341282
2		221 5071262	221 2040002	221.4345201
		210 1495126	-231.3940902	231.4340302
1	BuOH	-310.1465130	-509.9755620	-510.0224252
2	BuOH4u_ade	-310.1465130	-509.9755620	-310.0222120
2	BuOH3a_ada	-310.1481396	-309.9754066	-310.0219756
3	BuOHSC_aap	-310.1482212	-309.9752952	-310.0207392
4	BuOH8b_aas	-310.1481201	-309.9752291	-310.021/8/1
5	BuOH1a_abs	-310.1479892	-309.9752202	-310.0224252
6	BuOH7b_aam	-310.1476566	-309.9747616	-310.0216/16
/	BuOH6b_aax	-310.14/5060	-309.9745080	-310.0207460
8	BuOH1a_adi	-310.14/1886	-309.9744106	-310.0211246
9	BuOH4d_aag	-310.14/1581	-309.9743051	-310.0217251
10	BuOH2b_ada	-310.14/1/86	-309.9742896	-310.0213696
11	BuOH8b_abv	-310.14/0356	-309.9742156	-310.0222346
12	BuOH3a_adl	-310.1467172	-309.9741702	-310.0219982
13	BuOH2b_ade	-310.14/1109	-309.9741439	-310.0199449
14	BuOH9b_abb	-310.14/1429	-309.9741099	-310.0203599
15	BuOH11d_aab	-310.1468974	-309.9739604	-310.0204954
16	BuOH5c_abn	-310.1464907	-309.9736617	-310.0216247
17	BuOH10d_acr	-310.1465335	-309.9735705	-310.0204905
18	BuOH14b_aah	-310.1463391	-309.9734341	-310.0187601
19	BuOH6b_aaf	-310.1463049	-309.9734119	-310.0210329
20	BuOH12c_acs	-310.1462615	-309.9733625	-310.0195335
21	BuOH13c_aau	-310.1460611	-309.9732861	-310.0194741
22	BuOH9b_abv	-310.1460831	-309.9731471	-310.0208251
23	BuOH11d_aai	-310.1459275	-309.9730015	-310.0206455
24	BuOH13c_abd	-310.1452507	-309.9725727	-310.0210757
25	BuOH12c_abd	-310.1451852	-309.9722512	-310.0178382
26	BuOH14b_aaa	-310.1448359	-309.9719919	-310.0192569
MIN	tBuOH	-310.1600504	-309.9886454	-310.0331904
1	t-BuOH_acj	-310.1600504	-309.9886454	-310.0331904
MIN	PhCH2OH	-423.2624712	-423.0931452	-423.1410682
1	PhCH2OH2_aae	-423.2624712	-423.0931452	-423.1406522
2	PhCH2OH2_aaa	-423.2598772	-423.0907282	-423.1410682

Table S3.4.26. Calculated energies. Individual selected conformers.

3	PhCH2OH1_aad	-423.2595190	-423.0903240	-423.1384540		
4	PhCH2OH1_adk	-423.2593230	-423.0902280	-423.1390810		
5	PhCH2OH2_aca	-423.2333044	-423.0734624	-423.1277024		
MIN	PhC(CH3)2OH	-501.9114064	-501.6837214	-501.7365260		
1	PhCCH32OH1_abo	-501.9114064	-501.6837214	-501.7364754		
2	PhCCH32OH1_abf	-501.9109790	-501.6832760	-501.7365260		
3	PhCCH32OH3_abn	-501.9099818	-501.6824948	-501.7353678		
4	PhCCH32OH1_ack	-501.9095178	-501.6820088	-501.7351898		
5	PhCCH32OH1_aal	-501.9082154	-501.6805144	-501.7329314		
6	PhCCH32OH1_adj	-501.9077085	-501.6801595	-501.7334465		
7	PhCCH32OH3_abt	-501.9077358	-501.6800828	-501.7328938		
MIN	PhOH	-383.9441927	-383.8055687	-383.8511607		
1	PhOH_aab	-383.9441927	-383.8055687	-383.8511607		
MIN	p-nitro-PhOH	-588.4586379	-588.3149519	-588.3669089		
1	p-nitro-PhOH_aak	-588.4586379	-588.3149519	-588.3669089		
MIN	p-methyl-PhOH	-423.2672077	-423.0994177	-423.1505107		
1	p-methyl-PhOH_aac	-423.2672077	-423.0994177	-423.1505107		
MIN	p-amino-PhOH	-439.3061128	-439.1494888	-439.1986658		
1	p-amino-PhOH_adq	-439.3061128	-439.1494888	-439.1986658		
2	p-amino-PhOH_adf	-439.3060507	-439.1494237	-439.1985517		
MIN	НООН	-228.0071774	-227.9486274	-227.9831884		
1	HOOH_aam	-228.0071774	-227.9486274	-227.9831884		
2	HOOH_acd	-228.0016627	-227.9434277	-227.9808447		
3	HOOH_acf	-228.0063729	-227.9479129	-227.9827669		
4	HOOH_acn	-228.0016418	-227.9434228	-227.9810958		
MIN	СНЗООН	-267.3160354	-267.2285244	-267.2694834		
1	CH3OOH_aax	-267.3160354	-267.2285244	-267.2694834		
2	CH3OOH_acq	-267.3154339	-267.2279209	-267.2677959		
3	CH3OOH_aau	-267.3152490	-267.2276890	-267.2679500		
MIN	t-BuOOH	-385.2912534	-385.1156534	-385.1651574		
1	t-BuOOH_aby	-385.2911434	-385.1156534	-385.1651574		
2	t-BuOOH_adj	-385.2912534	-385.1156264	-385.1639684		
MIN	PhCH2OOH	-498.3973609	-498.2237399	-498.2745490		
1	PhCH2OOH2_aag	-498.3973609	-498.2237399	-498.2736039		
2	PhCH2OOH3_abi	-498.3953730	-498.2220250	-498.2732340		
3	PhCH2OOH2_aai	-498.3937600	-498.2204550	-498.2745490		
4	PhCH2OOH3_aae	-498.3930040	-498.2197630	-498.2711130		
5	PhCH2OOH1_acj	-498.3923173	-498.2190423	-498.2719703		
MIN	TEMPOH	-560.8529015	-560.5378095	-560.5946146		
1	TEMPOHa_abx	-560.8529015	-560.5378095	-560.5935355		
2	TEMPOH_aab	-560.8514646	-560.5365226	-560.5946146		
3	TEMPOH_aba	-560.8514390	-560.5362450	-560.5941360		
4	TEMPOHa_ade	-560.8470410	-560.5323580	-560.5911660		
1	HCO2Ha_aaa	-266.2180769	-266.1528269	-266.1915219		
2	HCO2Hb_aap	-266.2118439	-266.1467599	-266.1854919		

Table S3.4.27. Calculated energies. Individual selected conformers.								
Nº		(U)B3LYP-D3/6-31+G(d,p)						

	Н	Etot	H ₂₉₈	G ₂₉₈
	U-H			
	E E			
D 41 D 1		452.0700057	452 0250677	452.0502707
MIN	HOH (1Ha)	-152.8788957	-152.8258677	-152.8583797
1	HOH_aaa (1Ha)	-152.8788957	-152.8258677	-152.8583797
MIN	CH3OH	-192.1806009	-192.0973579	-192.1356679
1	CH3OH_aad	-192.1806009	-192.0973579	-192.1356679
MIN	CH3CH2OH	-231.5057597	-231.3928417	-231.4348052
1		-231.5057597	-231.3928417	-231.4345447
2	CH3CH2OH2_aac	-231.5055962	-231.392/152	-231.4348052
MIN	BUOH	-310.1460146	-309.9733856	-310.0225041
1	BuOH4d_aam	-310.1460146	-309.9733856	-310.0204646
2	BuOH4d_aan	-310.1458135	-309.9732155	-310.0199015
3	BUOH3a_abg	-310.1457401	-309.9731791	-310.0225041
4	BuOH1a_abw	-310.1456670	-309.9730840	-310.0211910
5	BuOH4d_aaj	-310.1457031	-309.9730681	-310.0211031
6	BuOH6b_aaj	-310.1457266	-309.9729256	-310.0192076
/	BuOH6b_aco	-310.1454/34	-309.9727474	-310.018/914
8	BuOH/b_aac	-310.1452882	-309.9726582	-310.0218062
g	BuOH5c_aai	-310.1451066	-309.9723796	-310.0209866
10	BuOH2b_aad	-310.1449048	-309.9721828	-310.0211958
11	BuOH13c_aay	-310.1447026	-309.9719996	-310.0182506
12	BuOH9b_abm	-310.1445683	-309.9717783	-310.0202143
13	BuOH11d_aag	-310.1443988	-309.9716568	-310.0205268
14	BuOH10d_ace	-310.1441468	-309.9714628	-310.0200078
15	BuOH14b_abp	-310.1438578	-309.9711038	-310.0167318
16	BuOH12c_aay	-310.1436168	-309.9710228	-310.0197468
17	BuOH14b_aad	-310.1426844	-309.9700614	-310.0179524
MIN	tBuOH	-310.1568402	-309.9856822	-310.0328412
1	t-BuOH_abj	-310.1568402	-309.9856822	-310.0328412
MIN	PhCH2OH	-423.2622649	-423.0931739	-423.1413889
1	PhCH2OH2_abt	-423.2622649	-423.0931739	-423.1413889
2	PhCH2OH2_acy	-423.2619349	-423.0928519	-423.1409129
3	PhCH2OH1_aaw	-423.2576000	-423.0887560	-423.1403290
MIN	PhC(CH3)2OH	-501.9117965	-501.6843555	-501.7378077
1	PhCCH32OH2_abp	-501.9117965	-501.6843555	-501.7377925
2	PhCCH32OH1_adt	-501.9117847	-501.6842417	-501.7378077
3	PhCCH32OH2_act	-501.9113477	-501.6839507	-501.7373657
4	PhCCH32OH3_aah	-501.9080685	-501.6807175	-501.7363955
MIN	PhOH	-383.9485501	-383.8096111	-383.8549621
1	PhOH_abf	-383.9485501	-383.8096111	-383.8549621
MIN	p-nitro-PhOH	-588.4669965	-588.3227945	-588.3736785
1	p-nitro-PhOH_aab	-588.4669965	-588.3227945	-588.3736785
MIN	p-methyl-PhOH	-423.2710744	-423.1029364	-423.1534904
1	p-methyl-PhOH_aax	-423.2710744	-423.1029364	-423.1534904
MIN	p-amino-PhOH	-439.3090547	-439.1520897	-439.2007237

1	p-amino-PhOH_abd	-439.3090547	-439.1520897	-439.2007237
2	p-amino-PhOH_aab	-439.2698179	-439.1116649	-439.1539019
MIN	НООН	-228.0071774	-227.9486274	-227.9831884
1	HOOH_aam	-228.0071774	-227.9486274	-227.9831884
2	HOOH_acf	-228.0063729	-227.9479129	-227.9827669
MIN	CH3OOH	-267.3199916	-267.2321836	-267.2707406
1	CH3OOH_aac	-267.3199916	-267.2321836	-267.2707406
2	CH3OOH_aci	-267.3190828	-267.2313568	-267.2704078
MIN	t-BuOOH	-385.2963238	-385.1204028	-385.1670718
1	t-BuOOH_aav	-385.2963238	-385.1204028	-385.1670718
2	t-BuOOH_ace	-385.2949870	-385.1192420	-385.1665140
MIN	PhCH2OOH	-498.4013947	-498.2275437	-498.2771307
1	PhCH2OOH2_acb	-498.4013947	-498.2275437	-498.2771307
2	PhCH2OOH2_aak	-498.4008168	-498.2270908	-498.2768988
3	PhCH2OOH1_acd	-498.3978303	-498.2242093	-498.2754443
4	PhCH2OOH1_aar	-498.3963760	-498.2228730	-498.2742700
5	PhCH2OOH3_adj	-498.3960192	-498.2226332	-498.2740592
6	PhCH2OOH3_acq	-498.3960151	-498.2224901	-498.2737491
7	PhCH2OOH3_aad	-498.3951751	-498.2218671	-498.2736591
MIN	TEMPOH	-560.8586666	-560.5429816	-560.5973646
1	TEMPOH_aaq	-560.8586666	-560.5429816	-560.5973646
2	TEMPOHa_abd	-560.8450804	-560.5304954	-560.5889814
MIN	HOO•	-227.3673314	-227.3213374	-227.3579179
1	HOO_aae	-227.3673314	-227.3213374	-227.3552984
2	HOO_adq	-227.3663789	-227.3205959	-227.3579179
MIN	HCO2H	-266.2302275	-266.1644195	-266.1993165
1	HCO2Ha_acd	-266.2302275	-266.1644195	-266.1993165
2	HCO2Hb_aab	-266.2192902	-266.1538732	-266.1920022

Table S3.4.28. Calculated energies. Individual selected conformers.

Nº	R− 0 •		DLPNO-CCSD(T)/	cc-pVTZ//		DLPNO-CCSD(T)/cc-pVQZ//				DLPNO-CCSD(T)/CBS//			
			(U)B3LYP-D3/6-3	31+G(d,p)		(U)B3LYP-D3/6-31+G(d,p)				(U)B3LYP-D3/6-31+G(d,p)			
	Ĥ	E _{tot}	H ₂₉₈	G ₂₉₈	<\$²>	E _{tot}	H ₂₉₈	G ₂₉₈	<\$²>	E _{tot}	H ₂₉₈	G ₂₉₈	
	0-н												
MIN	HO• (1a_2)	-151.9757359	-151.9371969	-151.9711719		-152.0264294	-151.9878904	-152.0218654		-152.0569529	-152.0184139	-152.0523889	
2	HO_aab (1a_2)	-151.9757359	-151.9371969	-151.9711719	0.7565	-152.0264294	-151.9878904	-152.0218654	0.7570	-152.0569529	-152.0184139	-152.0523889	
MIN	CH30•	-191.2148530	-191.1467670	-191.1839820		-191.2769642	-191.2088782	-191.2460932		-191.3147506	-191.2466646	-191.2838796	
1	CH3O1_aab	-191.2148530	-191.1467670	-191.1839820	0.7599	-191.2769642	-191.2088782	-191.2460932	0.7603	-191.3147506	-191.2466646	-191.2838796	
MIN	CH3CH2O•	-230.4591874	-230.3612794	-230.4026374		-230.5325112	-230.4348874	-230.4762454		-230.5774931	-230.4799053	-230.5212633	
1	CH3CH2O1_aah	-230.4588664	-230.3612794	-230.4026374	0.7602	-230.5324744	-230.4348874	-230.4762454	0.7606	-230.5774923	-230.4799053	-230.5212633	
2	CH3CH2O1_aac	-230.4590022	-230.3610562	-230.4013792	0.7601	-230.5325085	-230.4345625	-230.4748855	0.7605	-230.5774931	-230.4795471	-230.5198701	
3	CH3CH2O1_acm	-230.4591874	-230.3603814	-230.4001734	0.7601	-230.5325112	-230.4337052	-230.4734972	0.7605	-230.5774105	-230.4786045	-230.5183965	
MIN	BuO∙	-308.9394218	-308.7817518	-308.8291523		-309.0357341	-308.8780641	-308.9257413		-309.0951137	-308.9374437	-308.9852008	
1	BuO2_acz	-308.9394218	-308.7817518	-308.8279868	0.7602	-309.0357341	-308.8780641	-308.9242991	0.7606	-309.0951137	-308.9374437	-308.9836787	
2	BuO3_adb	-308.9388118	-308.7809438	-308.8261108	0.7604	-309.0349102	-308.8770422	-308.9222092	0.7608	-309.0941984	-308.9363304	-308.9814974	
3	BuO2_aal	-308.9380793	-308.7807533	-308.8291523	0.7602	-309.0346683	-308.8773423	-308.9257413	0.7606	-309.0941278	-308.9368018	-308.9852008	
4	BuO1_abu	-308.9377818	-308.7800458	-308.8274788	0.7601	-309.0343653	-308.8766293	-308.9240623	0.7606	-309.0938198	-308.9360838	-308.9835168	
5	BuO4_abu	-308.9378445	-308.7801555	-308.8265695	0.7602	-309.0342211	-308.8765321	-308.9229461	0.7606	-309.0936213	-308.9359323	-308.9823463	

6	BuO3 aay	-308.9377405	-308.7799775	-308.8276445	0.7602	-309.0340177	-308.8762547	-308.9239217	0.7607	-309.0933587	-308.9355957	-308.9832627
7	BuO4_aap	-308.9372957	-308.7798177	-308.8281357	0.7602	-309.0338128	-308.8763348	-308.9246528	0.7607	-309.0932341	-308.9357561	-308.9840741
8	BuO1_aab	-308.9383738	-308.7795838	-308.8262988	0.7607	-309.0348528	-308.8760628	-308.9227778	0.7611	-309.0942795	-308.9354895	-308.9822045
9	BuO4_act	-308.9377411	-308.7800991	-308.8269521	0.7600	-309.0338535	-308.8762115	-308.9230645	0.7604	-309.0931232	-308.9354812	-308.9823342
10	BuO4_acc	-308.9376950	-308.7791170	-308.8251750	0.7610	-309.0339740	-308.8753960	-308.9214540	0.7614	-309.0933256	-308.9347476	-308.9808056
11	BuO3_aao	-308.9375812	-308.7792072	-308.8251942	0.7612	-309.0336444	-308.8752704	-308.9212574	0.7616	-309.0929108	-308.9345368	-308.9805238
12	BuO5_aak	-308.9377092	-308.7789732	-308.8254352	0.7607	-309.0340793	-308.8753433	-308.9218053	0.7611	-309.0934402	-308.9347042	-308.9811662
13	BuO2_acl	-308.9377993	-308.7792503	-308.8261033	0.7609	-309.0341591	-308.8756101	-308.9224631	0.7613	-309.0935102	-308.9349612	-308.9818142
14	BuO5_abp	-308.9366561	-308.7790061	-308.8267991	0.7601	-309.0333646	-308.8757146	-308.9235076	0.7606	-309.0928679	-308.9352179	-308.9830109
15	BuO4_aar	-308.9373283	-308.7787573	-308.8253013	0.7611	-309.0336385	-308.8750675	-308.9216115	0.7615	-309.0929806	-308.9344096	-308.9809536
16	BuO5_abt	-308.9372698	-308.7784998	-308.8253948	0.7608	-309.0337355	-308.8749655	-308.9218605	0.7613	-309.0931544	-308.9343844	-308.9812794
MIN	tBuO∙	-308.9498819	-308.7923709	-308.8373419		-309.0461061	-308.8885951	-308.9335661		-309.1054728	-308.9479618	-308.9929328
1	t-BuO2_aaw	-308.9498819	-308.7923709	-308.8373419	0.7599	-309.0461061	-308.8885951	-308.9335661	0.7603	-309.1054728	-308.9479618	-308.9929328
MIN	PhCH2O•	-421.8296737	-421.6750180	-421.7249250		-421.9555656	-421.8012743	-421.8511813		-422.0333897	-421.8792789	-421.9291859
1	PhCH2O2_aah	-421.8285580	-421.6750180	-421.7249250	0.7610	-421.9548143	-421.8012743	-421.8511813	0.7614	-422.0328189	-421.8792789	-421.9291859
2	PhCH2O3_aaj	-421.8296737	-421.6740527	-421.7214767	1.2549	-421.9555656	-421.7999446	-421.8473686	1.2540	-422.0333897	-421.8777687	-421.9251927
3	PhCH2O2_acc	-421.8281661	-421.6743551	-421.7246591	1.2191	-421.9545012	-421.8006902	-421.8509942	1.2176	-422.0325387	-421.8787277	-421.9290317
4	PhCH2O2_aaw	-421.8280694	-421.6743784	-421.7236614	0.8511	-421.9539295	-421.8002385	-421.8495215	0.8260	-422.0317128	-421.8780218	-421.9273048
MIN	PhC(CH3)2O•	-500.3191994	-500.1055304	-500.1591424		-500.4677291	-500.2540601	-500.3076721		-500.5598151	-500.3461461	-500.3997581
1	PhCCH32O2_a_aau	-500.3191994	-500.1055304	-500.1591424	0.7604	-500.4677291	-500.2540601	-500.3076721	0.7608	-500.5598151	-500.3461461	-500.3997581
2	PhCCH32O2_a_aam	-500.3181451	-500.1038481	-500.1561741	1.2577	-500.4667754	-500.2524784	-500.3048044	1.2569	-500.5589355	-500.3446385	-500.3969645
3	PhCCH32O3_acx	-500.3186717	-500.1048947	-500.1581927	0.7665	-500.4666561	-500.2528791	-500.3061771	0.7623	-500.5585025	-500.3447255	-500.3980235
4	PhCCH32O2_a_abh	-500.3177741	-500.1040231	-500.1580511	1.2442	-500.4663933	-500.2526423	-500.3066703	0.7743	-500.5583435	-500.3445925	-500.3986205
5	PhCCH32O3_abq	-500.3168987	-500.1032437	-500.1578817	0.8156	-500.4658018	-500.2521468	-500.3067848	0.8168	-500.5580671	-500.3444121	-500.3990501
6	PhCCH32O2_a_ads	-500.3168405	-500.1028195	-500.1560425	0.7600	-500.4651526	-500.2511316	-500.3043546	0.8443	-500.5572774	-500.3432564	-500.3964794
MIN	PhO•	-382.6267884	-382.5012544	-382.5459424		-382.7421138	-382.6165798	-382.6612678		-382.8132218	-382.6876878	-382.7323758
1	PhO_ace	-382.6267884	-382.5012544	-382.5459424	1.3416	-382.7421138	-382.6165798	-382.6612678	1.3406	-382.8132218	-382.6876878	-382.7323758
MIN	p-nitro-PhO•	-586.8501417	-586.7198887	-586.7717057	4 2 2 2 2 2	-587.0281254	-586.8978724	-586.9496894	1 200 1	-587.1375825	-587.0073295	-587.0591465
1	p-nitro-PhO_aac	-586.8501417	-586./19888/	-586.//1/05/	1.3882	-587.0281254	-586.8978724	-586.9496894	1.3894	-587.1375825	-587.0073295	-587.0591465
MIN	p-methyl-PhO•	-421.8/160//	-421./16801/	-421.7666647	4 2265	-421.9986961	-421.8438901	-421.8937531	4 2252	-422.07/1823	-421.9223763	-421.9722393
1	p-metnyi-PhO_aak	-421.8/160//	-421./16801/	-421.7666647	1.3265	-421.9986961	-421.8438901	-421.8937531	1.3253	-422.0771823	-421.9223763	-421.9722393
	p-amino-PhO	-437.9107155	-437.7666545	-437.8155515	1 2220	-438.0446693	-437.9006083	-437.9495053	1 2222	-438.1271767	-437.9831157	-438.0320127
		-437.9107155	-437.7000545	-437.8155515	1.2220	-438.0440093	-437.9006083	-437.9495053	1.2233	-438.1271707	-437.9831157	-438.0320127
1		-227.0000430	-227.0140490	-227.0480100	0 76 20	-227.1332110	-227.0672176	-227.1211788	0 7641	-227.1778250	-227.1318310	-227.1057920
2	HOO_aae	-227.0000430	-227.0140490	-227.0480100	0.7624	-227.1332118	-227.0872178	-227.1211788	0.7624	-227.1778230	-227.1318310	-227.1037920
2	HOO aar	-227.0493808	-227.0040038	-227.0420348	0.7024	-227.1232718	-227.0778308	-227.1159258	0.7034	-227.1080248	-227.1220498	-227.1000788
MIN	CH300.	-266 2831135	-266 2077835	-266 2479864	0.7025	-266 3682003	-266 2928703	-266 3331999	0.7052	-266 4201260	-266 3447960	-266 3850969
1	CH3OO adp	-266 2831135	-266 2077835	-266 2474435	0 7634	-266 3682003	-266 2928703	-266 3325303	0 7644	-266 4201200	-266 3447960	-266 3844560
2	CH300_aay	-266 2810775	-266 2058935	-266 2479805	0 7632	-266 3662969	-266 2911129	-266 3331999	0 7642	-266 4181939	-266 3430099	-266 3850969
3	CH300_aal	-266 2812084	-266 2060144	-266 2479864	0.7631	-266 3663192	-266 2911252	-266 3330972	0.7640	-266 4181815	-266 3429875	-266 3849595
MIN	t-BuOO•	-384.0197322	-383.8563702	-383.9053298	0001	-384.1388190	-383.9754570	-384.0250708	0010	-384.2122905	-384.0489285	-384.0987611
1	t-BuOO aco	-384.0197322	-383.8563702	-383.9039822	0.7642	-384.1388190	-383.9754570	-384.0230690	0.7651	-384.2122905	-384.0489285	-384.0965405
2	t-BuOO aao	-384.0178004	-383.8545814	-383.9050674	0.7638	-384.1374195	-383.9742005	-384.0246865	0.7647	-384.2110869	-384.0478679	-384.0983539
3	t-BuOO aad	-384.0175108	-383.8543448	-383.9053298	0.7641	-384.1372518	-383.9740858	-384.0250708	0.7649	-384.2109421	-384.0477761	-384.0987611
MIN	PhCH2OO•	-496.8987114	-496.7374744	-496.7884838		-497.0473471	-496.8861101	-496.9379697		-497.1391863	-496.9779493	-497.0300677
1	PhCH2OO2 adm	-496.8987114	-496.7374744	-496.7876754	0.7642	-497.0473471	-496.8861101	-496.9363111	0.7649	-497.1391863	-496.9779493	-497.0281503
2	PhCH2OO1 aae	-496.8964677	-496.7354247	-496.7877327	0.7640	-497.0457966	-496.8847536	-496.9370616	0.7649	-497.1379076	-496.9768646	-497.0291726
3	PhCH2OO2_adu	-496.8959457	-496.7351717	-496.7881177	0.7748	-497.0449558	-496.8841818	-496.9371278	0.7700	-497.1369690	-496.9761950	-497.0291410

4	PhCH2OO1_aaw	-496.8948460	-496.7339210	-496.7883080	0.7635	-497.0441426	-496.8832176	-496.9376046	0.7672	-497.1361891	-496.9752641	-497.0296511
5	PhCH2OO2_acs	-496.8948434	-496.7338784	-496.7882194	0.7727	-497.0441005	-496.8831355	-496.9374765	0.7736	-497.1361448	-496.9751798	-497.0295208
6	PhCH2OO1_aap	-496.8942898	-496.7334118	-496.7884838	0.7638	-497.0437757	-496.8828977	-496.9379697	0.7653	-497.1358737	-496.9749957	-497.0300677
MIN	TEMPO•	-559.2216329	-558.9184739	-558.9756730		-559.3914796	-559.0883206	-559.1453635		-559.4970514	-559.1938924	-559.2509074
1	TEMPO_ace	-559.2216329	-558.9184739	-558.9754889	0.7733	-559.3914796	-559.0883206	-559.1453356	0.7744	-559.4970514	-559.1938924	-559.2509074
2	TEMPO_aab	-559.2213938	-558.9182398	-558.9750318	0.7734	-559.3911281	-559.0879741	-559.1447661	0.7744	-559.4966593	-559.1935053	-559.2502973
3	TEMPO_acg	-559.2215070	-558.9183880	-558.9756730	0.7737	-559.3911975	-559.0880785	-559.1453635	0.7743	-559.4967180	-559.1935990	-559.2508840
MIN	•00•	-226.4612261	-226.4275761	-226.4670925		-226.5331585	-226.4995085	-226.5386392		-226.5766791	-226.5430291	-226.5821441
1	3O2_aai	-226.4610732	-226.4274292	-226.4669582	2.0432	-226.5326790	-226.4990350	-226.5385640	2.0472	-226.5760125	-226.5423685	-226.5818975
2	3O2_aaa	-226.4612261	-226.4275761	-226.4666911	2.0434	-226.5331585	-226.4995085	-226.5386235	2.0470	-226.5766791	-226.5430291	-226.5821441
3	302_aam	-226.4611445	-226.4274925	-226.4670925	2.0433	-226.5326912	-226.4990392	-226.5386392	2.0473	-226.5759895	-226.5423375	-226.5819375
MIN	HCO2•	-265.1474740	-265.0961010	-265.1307240		-265.2305141	-265.1791411	-265.2137641		-265.2811729	-265.2297999	-265.2644229
1	HCO2_acr	-265.1474740	-265.0961010	-265.1307240	0.7628	-265.2305141	-265.1791411	-265.2137641	0.7633	-265.2811729	-265.2297999	-265.2644229

Table S3.4.29. Calculated energies. Individual selected conformers.

Nº	Н	DLPNO-CCSD(T)/cc-pVTZ//			DLPNO-CCSD(T)/cc-pVQZ//			DLPNO-CCSD(T)/CBS//		
		(U)E	3LYP-D3/6-31+G	(d,p)	(U)E	3LYP-D3/6-31+G	(d,p)	(U)B	3LYP-D3/6-31+G	(d,p)
	R-O	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈
	11									
	H									
	0-н									
MIN	HOH (1Ha)	-152.6731057	-152.6200777	-152.6525897	-152.7274519	-152.6744239	-152.7069359	-152.7601617	-152.7071337	-152.7396457
1	HOH_aaa (1Ha)	-152.6731057	-152.6200777	-152.6525897	-152.7274519	-152.6744239	-152.7069359	-152.7601617	-152.7071337	-152.7396457
MIN	СНЗОН	-191.8921279	-191.8087069	-191.8457509	-191.9572352	-191.8738142	-191.9108582	-191.9967983	-191.9133773	-191.9504213
1	CH3OH_aap	-191.8921279	-191.8087069	-191.8457509	-191.9572352	-191.8738142	-191.9108582	-191.9967983	-191.9133773	-191.9504213
MIN	CH3CH2OH	-231.1376808	-231.0245488	-231.0643876	-231.2139118	-231.1007798	-231.1406241	-231.2605770	-231.1474483	-231.1873123
1	CH3CH2OH1_adi	-231.1376808	-231.0245488	-231.0637078	-231.2139118	-231.1007798	-231.1399388	-231.2605770	-231.1474450	-231.1866040
2	CH3CH2OH2_abj	-231.1376336	-231.0245376	-231.0643876	-231.2138701	-231.1007741	-231.1406241	-231.2605443	-231.1474483	-231.1872983
3	CH3CH2OH1_aaf	-231.1365169	-231.0234809	-231.0640409	-231.2130355	-231.0999995	-231.1405595	-231.2597883	-231.1467523	-231.1873123
MIN	BuOH	-309.6169486	-309.4441796	-309.4915421	-309.7161024	-309.5432970	-309.5905041	-309.7772099	-309.6043845	-309.6515895
1	BuOH4d_aae	-309.6169073	-309.4439763	-309.4906063	-309.7161024	-309.5431714	-309.5898014	-309.7772099	-309.6042789	-309.6509089
2	BuOH3a_ada	-309.6163497	-309.4436167	-309.4901857	-309.7157081	-309.5429751	-309.5895441	-309.7768852	-309.6041522	-309.6507212
3	BuOH5c_aap	-309.6167760	-309.4438500	-309.4892940	-309.7158193	-309.5428933	-309.5883373	-309.7768883	-309.6039623	-309.6494063
4	BuOH8b_aas	-309.6166517	-309.4437607	-309.4903187	-309.7159934	-309.5431024	-309.5896604	-309.7771556	-309.6042646	-309.6508226
5	BuOH1a_abs	-309.6169486	-309.4441796	-309.4913846	-309.7160660	-309.5432970	-309.5905020	-309.7771535	-309.6043845	-309.6515895
6	BuOH7b_aam	-309.6164326	-309.4435376	-309.4904476	-309.7157487	-309.5428537	-309.5897637	-309.7769086	-309.6040136	-309.6509236
7	BuOH6b_aax	-309.6159141	-309.4429161	-309.4891541	-309.7151058	-309.5421078	-309.5883458	-309.7762209	-309.6032229	-309.6494609
8	BuOH1a_adi	-309.6165653	-309.4437873	-309.4905013	-309.7155468	-309.5427688	-309.5894828	-309.7765518	-309.6037738	-309.6504878
9	BuOH4d_aag	-309.6153808	-309.4425278	-309.4899478	-309.7149782	-309.5421252	-309.5895452	-309.7762241	-309.6033711	-309.6507911
10	BuOH2b_ada	-309.6162778	-309.4433888	-309.4904688	-309.7153077	-309.5424187	-309.5894987	-309.7763513	-309.6034623	-309.6505423
11	BuOH8b_abv	-309.6152798	-309.4424598	-309.4904788	-309.7149118	-309.5420918	-309.5901108	-309.7761601	-309.6033401	-309.6513591
12	BuOH3a_adl	-309.6162611	-309.4437141	-309.4915421	-309.7152231	-309.5426761	-309.5905041	-309.7762153	-309.6036683	-309.6514963
13	BuOH2b_ade	-309.6165611	-309.4435941	-309.4893951	-309.7152765	-309.5423095	-309.5881105	-309.7761979	-309.6032309	-309.6490319
14	BuOH9b_abb	-309.6157015	-309.4426685	-309.4889185	-309.7149894	-309.5419564	-309.5882064	-309.7761205	-309.6030875	-309.6493375
15	BuOH11d_aab	-309.6153788	-309.4424418	-309.4889768	-309.7147112	-309.5417742	-309.5883092	-309.7758698	-309.6029328	-309.6494678
16	BuOH5c_abn	-309.6150479	-309.4422189	-309.4901819	-309.7144029	-309.5415739	-309.5895369	-309.7755447	-309.6027157	-309.6506787
17	BuOH10d_acr	-309.6153105	-309.4423475	-309.4892675	-309.7146087	-309.5416457	-309.5885657	-309.7757589	-309.6027959	-309.6497159
18	BuOH14b_aah	-309.6149870	-309.4420820	-309.4874080	-309.7137451	-309.5408401	-309.5861661	-309.7746838	-309.6017788	-309.6471048
19	BuOH6b_aaf	-309.6145137	-309.4416207	-309.4892417	-309.7141063	-309.5412133	-309.5888343	-309.7753556	-309.6024626	-309.6500836

20	BuOH12c_acs	-309.6155352	-309.4426362	-309.4888072	-309.7140954	-309.5411964	-309.5873674	-309.7749487	-309.6020497	-309.6482207
21	BuOH13c_aau	-309.6149118	-309.4421368	-309.4883248	-309.7137957	-309.5410207	-309.5872087	-309.7747997	-309.6020247	-309.6482127
22	BuOH9b_abv	-309.6143694	-309.4414334	-309.4891114	-309.7139691	-309.5410331	-309.5887111	-309.7752023	-309.6022663	-309.6499443
23	BuOH11d_aai	-309.6141896	-309.4412636	-309.4889076	-309.7137683	-309.5408423	-309.5884863	-309.7749947	-309.6020687	-309.6497127
24	BuOH13c_abd	-309.6136807	-309.4410027	-309.4895057	-309.7128293	-309.5401513	-309.5886543	-309.7738946	-309.6012166	-309.6497196
25	BuOH12c_abd	-309.6150363	-309.4421023	-309.4876893	-309.7134880	-309.5405540	-309.5861410	-309.7742884	-309.6013544	-309.6469414
26	BuOH14b_aaa	-309.6130309	-309.4401869	-309.4874519	-309.7125220	-309.5396780	-309.5869430	-309.7737171	-309.6008731	-309.6481381
MIN	tBuOH	-309.6295403	-309.4581353	-309.5026803	-309.7285509	-309.5571459	-309.6016909	-309.7896487	-309.6182437	-309.6627887
1	t-BuOH_acj	-309.6295403	-309.4581353	-309.5026803	-309.7285509	-309.5571459	-309.6016909	-309.7896487	-309.6182437	-309.6627887
MIN	PhCH2OH	-422.5101644	-422.3408384	-422.3887764	-422.6389398	-422.4696138	-422.5179505	-422.7185359	-422.5492099	-422.5976598
1	PhCH2OH2_aae	-422.5101644	-422.3408384	-422.3883454	-422.6389398	-422.4696138	-422.5171208	-422.7185359	-422.5492099	-422.5967169
2	PhCH2OH2_aaa	-422.5075854	-422.3384364	-422.3887764	-422.6367595	-422.4676105	-422.5179505	-422.7164688	-422.5473198	-422.5976598
3	PhCH2OH1_aad	-422.5077548	-422.3385598	-422.3866898	-422.6364834	-422.4672884	-422.5154184	-422.7160349	-422.5468399	-422.5949699
4	PhCH2OH1_adk	-422.5074274	-422.3383324	-422.3871854	-422.6362011	-422.4671061	-422.5159591	-422.7157604	-422.5466654	-422.5955184
5	PhCH2OH2_aca	-422.4773756	-422.3175336	-422.3717736	-422.6054117	-422.4455697	-422.4998097	-422.6843839	-422.5245419	-422.5787819
MIN	PhC(CH3)2OH	-500.9999606	-500.7722756	-500.8252048	-501.1513211	-500.9236361	-500.9764792	-501.2451950	-501.0175100	-501.0703016
1	PhCCH32OH1_abo	-500.9999606	-500.7722756	-500.8250296	-501.1513211	-500.9236361	-500.9763901	-501.2451950	-501.0175100	-501.0702640
2	PhCCH32OH1_abf	-500.9996578	-500.7719548	-500.8252048	-501.1509322	-500.9232292	-500.9764792	-501.2447546	-501.0170516	-501.0703016
3	PhCCH32OH3_abn	-500.9992887	-500.7718017	-500.8246747	-501.1501108	-500.9226238	-500.9754968	-501.2437311	-501.0162441	-501.0691171
4	PhCCH32OH1_ack	-500.9990503	-500.7715413	-500.8247223	-501.1499794	-500.9224704	-500.9756514	-501.2436539	-501.0161449	-501.0693259
5	PhCCH32OH1_aal	-500.9971921	-500.7694911	-500.8219081	-501.1483079	-500.9206069	-500.9730239	-501.2420490	-501.0143480	-501.0667650
6	PhCCH32OH1_adj	-500.9965721	-500.7690231	-500.8223101	-501.1482709	-500.9207219	-500.9740089	-501.2422747	-501.0147257	-501.0680127
7	PhCCH32OH3_abt	-500.9970403	-500.7693873	-500.8221983	-501.1483495	-500.9206965	-500.9735075	-501.2421655	-501.0145125	-501.0673235
MIN	PhOH	-383.2734668	-383.1348428	-383.1804348	-383.3906950	-383.2520710	-383.2976630	-383.4629917	-383.3243677	-383.3699597
1	PhOH_aab	-383.2734668	-383.1348428	-383.1804348	-383.3906950	-383.2520710	-383.2976630	-383.4629917	-383.3243677	-383.3699597
MIN	p-nitro-PhOH	-587.5028109	-587.3591249	-587.4110819	-587.6832398	-587.5395538	-587.5915108	-587.7942345	-587.6505485	-587.7025055
1	p-nitro-PhOH_aak	-587.5028109	-587.3591249	-587.4110819	-587.6832398	-587.5395538	-587.5915108	-587.7942345	-587.6505485	-587.7025055
MIN	p-methyl-PhOH	-422.5157144	-422.3479244	-422.3990174	-422.6444568	-422.4766668	-422.5277598	-422.7239998	-422.5562098	-422.6073028
1	p-methyl-PhOH_aac	-422.5157144	-422.3479244	-422.3990174	-422.6444568	-422.4766668	-422.5277598	-422.7239998	-422.5562098	-422.6073028
MIN	p-amino-PhOH	-438.5457292	-438.3891052	-438.4382822	-438.6810510	-438.5244270	-438.5736040	-438.7644517	-438.6078277	-438.6570047
1	p-amino-PhOH_adq	-438.5457292	-438.3891052	-438.4382822	-438.6810510	-438.5244270	-438.5736040	-438.7644517	-438.6078277	-438.6570047
2	p-amino-PhOH_adf	-438.5456081	-438.3889811	-438.4381091	-438.6809538	-438.5243268	-438.5734548	-438.7643647	-438.6077377	-438.6568657
MIN	НООН	-227.7032047	-227.6446547	-227.6792157	-227.7032047	-227.6446547	-227.6792157	-227.8253138	-227.7667638	-227.8013248
1	HOOH_aam	-227.7032047	-227.6446547	-227.6792157	-227.7032047	-227.6446547	-227.6792157	-227.8253138	-227.7667638	-227.8013248
2	HOOH_acd	-227.6975987	-227.6393637	-227.6767807	-227.6975987	-227.6393637	-227.6767807	-227.8203229	-227.7620879	-227.7995049
3	HOOH_act	-227.7023510	-227.6438910	-227.6787450	-227.7023510	-227.6438910	-227.6787450	-227.8245253	-227.7660653	-227.8009193
4	HOOH_acn	-227.6975095	-227.6392905	-227.6769635	-227.6975095	-227.6392905	-227.6769635	-227.8199653	-227.7617463	-227.7994193
MIN	СНЗООН	-266.9275901	-266.8400791	-266.8810381	-267.0148989	-266.9273879	-266.9683469	-267.0682908	-266.9807798	-267.0217388
1	CH3OOH_aax	-266.9275901	-266.8400791	-266.8810381	-267.0148989	-266.9273879	-266.9683469	-267.0682908	-266.9807798	-267.0217388
2	CH3OOH_acq	-266.9268820	-266.8393690	-266.8792440	-267.0142527	-266.9267397	-266.9666147	-267.0676725	-266.9801595	-267.0200345
3	CH3OOH_aau	-266.9265674	-266.8390074	-266.8792684	-267.0138973	-266.9263373	-266.9665983	-267.0673198	-266.9797598	-267.0200208
MIN	t-BuOOH	-384.6619246	-384.4863490	-384.5358530	-384.7833855	-384.6078955	-384.6573995	-384.8584530	-384.6829630	-384.7324670
1	t-BuOOH_aby	-384.6618390	-384.4863490	-384.5358530	-384.7833855	-384.6078955	-384.6573995	-384.8584530	-384.6829630	-384.7324670
2	t-BuOOH_adj	-384.6619246	-384.4862976	-384.5346396	-384.7833018	-384.6076748	-384.6560168	-384.8582964	-384.6826694	-384.7310114
MIN	PhCH2OOH	-497.5458882	-497.3722672	-497.4235143	-497.6969494	-497.5233284	-497.5749588	-497.7904095	-497.6167885	-497.6685184
1	PhCH2OOH2_aag	-497.5458882	-497.3722672	-497.4221312	-497.6969494	-497.5233284	-497.5731924	-497.7904095	-497.6167885	-497.6666525
2	PhCH2OOH3_abi	-497.5436716	-497.3703236	-497.4215326	-497.6949695	-497.5216215	-497.5728305	-497.7885235	-497.6151755	-497.6663845
3	PhCH2OOH2_aai	-497.5427253	-497.3694203	-497.4235143	-497.6941698	-497.5208648	-497.5749588	-497.7877294	-497.6144244	-497.6685184
4	PhCH2OOH3_aae	-497.5427805	-497.3695395	-497.4208895	-497.6931651	-497.5199241	-497.5712741	-497.7863272	-497.6130862	-497.6644362

5	PhCH2OOH1_acj	-497.5412760	-497.3680010	-497.4209290	-497.6928750	-497.5196000	-497.5725280	-497.7864931	-497.6132181	-497.6661461
MIN	TEMPOH	-559.8417605	-559.5266685	-559.5843303	-560.0121869	-559.6972449	-559.7553369	-560.1185319	-559.8035899	-559.8616819
1	TEMPOHa_abx	-559.8417605	-559.5266685	-559.5823945	-560.0121830	-559.6970910	-559.7528170	-560.1182613	-559.8031693	-559.8588953
2	TEMPOH_aab	-559.8411803	-559.5262383	-559.5843303	-560.0121869	-559.6972449	-559.7553369	-560.1185319	-559.8035899	-559.8616819
3	TEMPOH_aba	-559.8407255	-559.5255315	-559.5834225	-560.0119223	-559.6967283	-559.7546193	-560.1183517	-559.8031577	-559.8610487
4	TEMPOHa_ade	-559.8358576	-559.5211746	-559.5799826	-560.0075814	-559.6928984	-559.7517064	-560.1142119	-559.7995289	-559.8583369
MIN	HCO2H	-265.8388504	-265.7736004	-265.8122954	-265.9255200	-265.8602700	-265.8989650	-265.9782849	-265.9130349	-265.9517299
1	HCO2Ha_aaa	-265.8388504	-265.7736004	-265.8122954	-265.9255200	-265.8602700	-265.8989650	-265.9782849	-265.9130349	-265.9517299
2	HCO2Hb_aap	-265.8332961	-265.7682121	-265.8069441	-265.9198546	-265.8547706	-265.8935026	-265.9724850	-265.9074010	-265.9461330

Table S3.4.30. Calculated energies. Individual selected conformers.

NՉ	Н	DLPNO-CCSD(T)/cc-pVTZ//			DLPN	IO-CCSD(T)/cc-pV	'QZ//	DLPNO-CCSD(T)/CBS//		
	ι Ι	(U)B	3LYP-D3/6-31+G	(d,p)	(U)E	3LYP-D3/6-31+G	(d,p)	(U)B	3LYP-D3/6-31+G	(d,p)
	O-H	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈	Etot	H ₂₉₈	G ₂₉₈
	E E									
	H									
	R- <mark>O</mark>									
MIN	HOH (1Ha)	-152.6731057	-152.6200777	-152.6525897	-152.7274519	-152.6744239	-152.7069359	-152.7601617	-152.7071337	-152.7396457
1	HOH_aaa (1Ha)	-152.6731057	-152.6200777	-152.6525897	-152.7274519	-152.6744239	-152.7069359	-152.7601617	-152.7071337	-152.7396457
MIN	СНЗОН	-191.8920076	-191.8087646	-191.8470746	-191.9566571	-191.8734141	-191.9117241	-191.9960152	-191.9127722	-191.9510822
1	CH3OH_aad	-191.8920076	-191.8087646	-191.8470746	-191.9566571	-191.8734141	-191.9117241	-191.9960152	-191.9127722	-191.9510822
MIN	CH3CH2OH	-231.1366266	-231.0237086	-231.0655436	-231.2124469	-231.0995289	-231.1416047	-231.2589655	-231.1460845	-231.1881745
1	CH3CH2OH1_adc	-231.1366266	-231.0237086	-231.0654116	-231.2124469	-231.0995289	-231.1412319	-231.2589009	-231.1459829	-231.1876859
2	CH3CH2OH2_aac	-231.1363346	-231.0234536	-231.0655436	-231.2123957	-231.0995147	-231.1416047	-231.2589655	-231.1460845	-231.1881745
MIN	BuOH	-309.6158437	-309.4432827	-309.4926077	-309.7144797	-309.5419187	-309.5912437	-309.7754340	-309.6028510	-309.6520849
1	BuOH4d_aam	-309.6156970	-309.4430680	-309.4901470	-309.7144751	-309.5418461	-309.5889251	-309.7753901	-309.6027611	-309.6498401
2	BuOH4d_aan	-309.6154851	-309.4428871	-309.4895731	-309.7142748	-309.5416768	-309.5883628	-309.7751998	-309.6026018	-309.6492878
3	BuOH3a_abg	-309.6158437	-309.4432827	-309.4926077	-309.7144797	-309.5419187	-309.5912437	-309.7753209	-309.6027599	-309.6520849
4	BuOH1a_abw	-309.6155279	-309.4429449	-309.4910519	-309.7144592	-309.5418762	-309.5899832	-309.7754340	-309.6028510	-309.6509580
5	BuOH4d_aaj	-309.6153393	-309.4427043	-309.4907393	-309.7141723	-309.5415373	-309.5895723	-309.7751136	-309.6024786	-309.6505136
6	BuOH6b_aaj	-309.6153949	-309.4425939	-309.4888759	-309.7140911	-309.5412901	-309.5875721	-309.7749985	-309.6021975	-309.6484795
7	BuOH6b_aco	-309.6150789	-309.4423529	-309.4883969	-309.7138919	-309.5411659	-309.5872099	-309.7748499	-309.6021239	-309.6481679
8	BuOH7b_aac	-309.6149361	-309.4423061	-309.4914541	-309.7140608	-309.5414308	-309.5905788	-309.7751086	-309.6024786	-309.6516266
9	BuOH5c_aai	-309.6153161	-309.4425891	-309.4911961	-309.7138882	-309.5411612	-309.5897682	-309.7747014	-309.6019744	-309.6505814
10	BuOH2b_aad	-309.6149407	-309.4422187	-309.4912317	-309.7138309	-309.5411089	-309.5901219	-309.7747883	-309.6020663	-309.6510793
11	BuOH13c_aay	-309.6145750	-309.4418720	-309.4881230	-309.7129382	-309.5402352	-309.5864862	-309.7736984	-309.6009954	-309.6472464
12	BuOH9b_abm	-309.6143628	-309.4415728	-309.4900088	-309.7132438	-309.5404538	-309.5888898	-309.7741758	-309.6013858	-309.6498218
13	BuOH11d_aag	-309.6141664	-309.4414244	-309.4902944	-309.7130418	-309.5402998	-309.5891698	-309.7739730	-309.6012310	-309.6501010
14	BuOH10d_ace	-309.6138649	-309.4411809	-309.4897259	-309.7129556	-309.5402716	-309.5888166	-309.7739870	-309.6013030	-309.6498480
15	BuOH14b_abp	-309.6138453	-309.4410913	-309.4867193	-309.7123095	-309.5395555	-309.5851835	-309.7731185	-309.6003645	-309.6459925
16	BuOH12c_aay	-309.6135309	-309.4409369	-309.4896609	-309.7122183	-309.5396243	-309.5883483	-309.7731017	-309.6005077	-309.6492317
17	BuOH14b_aad	-309.6124393	-309.4398163	-309.4877073	-309.7110791	-309.5384561	-309.5863471	-309.7719546	-309.5993316	-309.6472226
MIN	tBuOH	-309.6276702	-309.4565122	-309.5036712	-309.7264474	-309.5552894	-309.6024484	-309.7874221	-309.6162641	-309.6634231
1	t-BuOH_abj	-309.6276702	-309.4565122	-309.5036712	-309.7264474	-309.5552894	-309.6024484	-309.7874221	-309.6162641	-309.6634231
MIN	PhCH2OH	-422.5110218	-422.3419388	-422.3901208	-422.6394570	-422.4703660	-422.5185810	-422.7189205	-422.5498295	-422.5980445
1	PhCH2OH2_abt	-422.5109968	-422.3419058	-422.3901208	-422.6394570	-422.4703660	-422.5185810	-422.7189205	-422.5498295	-422.5980445
2	PhCH2OH2_acy	-422.5110218	-422.3419388	-422.3899998	-422.6393019	-422.4702189	-422.5182799	-422.7186828	-422.5495998	-422.5976608
3	PhCH2OH1_aaw	-422.5069197	-422.3380757	-422.3896487	-422.6356443	-422.4668003	-422.5183733	-422.7151969	-422.5463529	-422.5979259
MIN	PhC(CH3)2OH	-501.0013758	-500.7739086	-500.8273988	-501.1523178	-500.9248224	-500.9783408	-501.2460177	-501.0185053	-501.0720407

1	PhCCH32OH2_abp	-501.0013496	-500.7739086	-500.8273456	-501.1522634	-500.9248224	-500.9782594	-501.2459463	-501.0185053	-501.0719423
2	PhCCH32OH1_adt	-501.0013758	-500.7738328	-500.8273988	-501.1523178	-500.9247748	-500.9783408	-501.2460177	-501.0184747	-501.0720407
3	PhCCH32OH2_act	-501.0011222	-500.7737252	-500.8271402	-501.1519694	-500.9245724	-500.9779874	-501.2456235	-501.0182265	-501.0716415
4	PhCCH32OH3_aah	-500.9981375	-500.7707865	-500.8264645	-501.1493162	-500.9219652	-500.9776432	-501.2431005	-501.0157495	-501.0714275
MIN	PhOH	-383.2780761	-383.1391371	-383.1844881	-383.3945793	-383.2556403	-383.3009913	-383.4665405	-383.3276015	-383.3729525
1	PhOH_abf	-383.2780761	-383.1391371	-383.1844881	-383.3945793	-383.2556403	-383.3009913	-383.4665405	-383.3276015	-383.3729525
MIN	p-nitro-PhOH	-587.5108550	-587.3666530	-587.4175370	-587.6905927	-587.5463907	-587.5972747	-587.8013309	-587.6571289	-587.7080129
1	p-nitro-PhOH_aab	-587.5108550	-587.3666530	-587.4175370	-587.6905927	-587.5463907	-587.5972747	-587.8013309	-587.6571289	-587.7080129
MIN	p-methyl-PhOH	-422.5198750	-422.3517370	-422.4022910	-422.6478996	-422.4797616	-422.5303156	-422.7271083	-422.5589703	-422.6095243
1	p-methyl-PhOH_aax	-422.5198750	-422.3517370	-422.4022910	-422.6478996	-422.4797616	-422.5303156	-422.7271083	-422.5589703	-422.6095243
MIN	p-amino-PhOH	-438.5491428	-438.3921778	-438.4408118	-438.6838460	-438.5268810	-438.5755150	-438.7669651	-438.6100001	-438.6586341
1	p-amino-PhOH_abd	-438.5491428	-438.3921778	-438.4408118	-438.6838460	-438.5268810	-438.5755150	-438.7669651	-438.6100001	-438.6586341
2	p-amino-PhOH_aab	-438.5135662	-438.3554132	-438.3976502	-438.6475855	-438.4894325	-438.5316695	-438.7303592	-438.5722062	-438.6144432
MIN	НООН	-227.7032047	-227.6446547	-227.6792157	-227.7032047	-227.6446547	-227.6792157	-227.8253138	-227.7667638	-227.8013248
1	HOOH_aam	-227.7032047	-227.6446547	-227.6792157	-227.7032047	-227.6446547	-227.6792157	-227.8253138	-227.7667638	-227.8013248
2	HOOH_acf	-227.7023510	-227.6438910	-227.6787450	-227.7023510	-227.6438910	-227.6787450	-227.8245253	-227.7660653	-227.8009193
MIN	СНЗООН	-266.9319970	-266.8441890	-266.8827460	-267.0189016	-266.9310936	-266.9696506	-267.0721768	-266.9843688	-267.0229258
1	CH3OOH_aac	-266.9319970	-266.8441890	-266.8827460	-267.0189016	-266.9310936	-266.9696506	-267.0721768	-266.9843688	-267.0229258
2	CH3OOH_aci	-266.9312443	-266.8435183	-266.8825693	-267.0181192	-266.9303932	-266.9694442	-267.0713804	-266.9836544	-267.0227054
MIN	t-BuOOH	-384.6672604	-384.4913394	-384.5380653	-384.7883871	-384.6124661	-384.6591351	-384.8633289	-384.6874079	-384.7340769
1	t-BuOOH_aav	-384.6672604	-384.4913394	-384.5380084	-384.7883871	-384.6124661	-384.6591351	-384.8633289	-384.6874079	-384.7340769
2	t-BuOOH_ace	-384.6665383	-384.4907933	-384.5380653	-384.7874946	-384.6117496	-384.6590216	-384.8623524	-384.6866074	-384.7338794
MIN	PhCH2OOH	-497.5509804	-497.3771294	-497.4267164	-497.7014254	-497.5275744	-497.5771614	-497.7946625	-497.6208115	-497.6703985
1	PhCH2OOH2_acb	-497.5509804	-497.3771294	-497.4267164	-497.7014254	-497.5275744	-497.5771614	-497.7946625	-497.6208115	-497.6703985
2	PhCH2OOH2_aak	-497.5504243	-497.3766983	-497.4265063	-497.7009235	-497.5271975	-497.5770055	-497.7941818	-497.6204558	-497.6702638
3	PhCH2OOH1_acd	-497.5473720	-497.3737510	-497.4249860	-497.6983979	-497.5247769	-497.5760119	-497.7918273	-497.6182063	-497.6694413
4	PhCH2OOH1_aar	-497.5461549	-497.3726519	-497.4240489	-497.6972670	-497.5237640	-497.5751610	-497.7907384	-497.6172354	-497.6686324
5	PhCH2OOH3_adj	-497.5459113	-497.3725253	-497.4239513	-497.6968023	-497.5234163	-497.5748423	-497.7901857	-497.6167997	-497.6682257
6	PhCH2OOH3_acq	-497.5456741	-497.3721491	-497.4234081	-497.6967199	-497.5231949	-497.5744539	-497.7901605	-497.6166355	-497.6678945
7	PhCH2OOH3_aad	-497.5453207	-497.3720127	-497.4238047	-497.6961215	-497.5228135	-497.5746055	-497.7894608	-497.6161528	-497.6679448
MIN	TEMPOH	-559.8476818	-559.5319968	-559.5863798	-560.0182386	-559.7025536	-559.7569366	-560.1244299	-559.8087449	-559.8631279
1	TEMPOH_aaq	-559.8476818	-559.5319968	-559.5863798	-560.0182386	-559.7025536	-559.7569366	-560.1244299	-559.8087449	-559.8631279
2	TEMPOHa_abd	-559.8359444	-559.5213594	-559.5798454	-560.0066661	-559.6920811	-559.7505671	-560.1128891	-559.7983041	-559.8567901
MIN	HOO•	-227.0600436	-227.0140496	-227.0502649	-227.1332118	-227.0872178	-227.1236033	-227.1778249	-227.1318309	-227.1682823
1	HOO_aae	-227.0600436	-227.0140496	-227.0480106	-227.1332118	-227.0872178	-227.1211788	-227.1778249	-227.1318309	-227.1657919
2	HOO_adq	-227.0587259	-227.0129429	-227.0502649	-227.1320643	-227.0862813	-227.1236033	-227.1767433	-227.1309603	-227.1682823
MIN	HCO2H	-265.8507511	-265.7849431	-265.8198401	-265.9365719	-265.8707639	-265.9056609	-265.9890000	-265.9231920	-265.9580890
1	HCO2Ha_acd	-265.8507511	-265.7849431	-265.8198401	-265.9365719	-265.8707639	-265.9056609	-265.9890000	-265.9231920	-265.9580890
2	HCO2Hb_aab	-265.8403897	-265.7749727	-265.8131017	-265.9266726	-265.8612556	-265.8993846	-265.9791870	-265.9137700	-265.9518990

3. The Redox Properties of Modified DNA Bases: C-H Bond Dissociation Energies

Vasily Korotenko, Hendrik Zipse

Submitted manuscript.

Author contributions: The project was conceived by V.K. and H.Z. The computational study was performed by V.K. The manuscript was written by V.K and H.Z. The supplementary information was prepared by V.K.

The properties of the oxidation products of 5mC and 5mU in their protonated, neutral and deprotonated forms were studied. Radical stabilization energies (RSE) have been calculated at the SMD(H₂O)/(U)B3LYP-D3 and SMD(H₂O)/DLPNO-CCSD(T) levels of theory. In the derivatives of uracil and cytosine, among the substituents at the 5th position, the following trend in BDE values is observed: 5dhm- < 5hm- < 5f- (where 5dhm is dihydroxymethyl, 5hm — hydroxymethyl, 5m — methyl, 5f — formyl). It has been established that the charge distribution will strongly affect the reactivity of both closed- and open-shell systems. Protonation increases the calculated BDE(C-H) values in cytosine derivatives, while deprotonation decreases them in uracil derivatives. Addition of one explicit water does not change the results notably. Attaching a complementary base increases the calculated BDE(C-H) value and does not change the observed trend.

The Redox Properties of Modified DNA Bases: C-H Bond Dissociation Energies

V. Korotenko, H. Zipse*

Dept. Chemistry, LMU Munich, Butenandtstr. 5-13, D-81377 Munich, Germany

Oxidation, thermodynamic stability, radical stabilization energy, radicals, isodesmic equations, DFT, DLPNO-CCSD(T), nucleic base

The properties of the oxidation products of 5mC and 5mU in their protonated, neutral and deprotonated forms were studied. Radical stabilization energies (RSE) have been calculated at the SMD(H₂O)/(U)B3LYP-D3 and SMD(H₂O)/DLPNO-CCSD(T) levels of theory. In the derivatives of uracil and cytosine, among the substituents at the 5th position, the following trend in BDE values is observed: 5dhm- < 5hm- < 5f- (where 5dhm is dihydroxymethyl, 5hm — hydroxymethyl, 5m — methyl, 5f — formyl). It has been established that the charge distribution will strongly affect the reactivity of both closed- and open-shell systems. Protonation increases the calculated BDE(C-H) values in cytosine derivatives, while deprotonation decreases them in uracil derivatives. Addition of one explicit water does not change the results notably. Attaching a complementary base increases the calculated BDE(C-H) value and does not change the observed trend.

Introduction

Epigenetic control of gene expression involves the methylation and demethylation of cytosine (C).¹ Therefore, the fundamental steps of the oxidation process of 5-methyl-cytosine are important to understand the reaction pathways under physiological conditions. Starting from 5-methylcytosine (5mC), the latter process is currently assumed to proceed in a stepwise manner with 5-hydroxymethylcytosine (5hmC), 5-formylcyctosine (5fC), 5-carboxycytosine (5caC) as discrete intermediates (Fig. 1).² While their formation in epigenetic regulation is controlled by 2-oxoglutarate dependent ten-eleven-translocation (TET) oxidases, unregulated formation of these intermediates is also observed in chemical oxidation reactions of 5mC. In aqueous solution all these cytosine derivatives are prone to undergo solvolytic deamination to the respective thymine (T, 5mU, 6) or uracil (U) derivatives (Figure 1).

It has been observed experimentally that 5-methyl-2'-deoxycytidine (5mdC) can be sequentially oxidized by air to 5-hydroxymethyl-2'-deoxycytidine (5hmdC), 5-formyl-2'-deoxycytidine (5fdC), 5-carboxy-2'-deoxycytidine (5hmdC) at 60.0°C and pH 7.4.³ In other work, authors⁴ report about the use of a biomimetic iron(IV)-oxo complex, reminiscent of the activity of TET enzymes. These studies show that 5hmC is preferentially turned over compared with 5mC and 5fC and this is in line with the calculated bond dissociation enthalpies.⁵ However, it has been noted that 5fC may partially exist in a hydrated form in aqueous solution. In our recent theoretical and experimental study,⁶ it has been found that in water solution there is > 0.5% of 5fC in hydrated form (5dhmC) and of about 2% of 5fU (5dhmU). BDE values for the hydrated forms of 5fC and 5fU are not yet available in the literature.

Figure 1. Cytosine derivatives formed during epigenetic gene regulation together with their deamination products. The wavy line 4indicates the C-H bonds for which the homolytic dissociation enthalpies (BDE) were calculated. DNMT - DNA methyltransferases, TET - ten-eleven translocation enzymes, BER - base excision repair.

It is well known from experimental data that cytosine derivatives 1-6 can be protonated^{7,8} in aqueous solution, while uracil derivatives 7-12 can be deprotonated.⁷⁻¹⁰ The protonated cytosine molecule might contribute significantly to the stabilization of the triplex C-G-C⁺ structure.^{11,12} Key parameters determining the ease of oxidation of these nucleotide bases are the respective homolytic C-H bond dissociation enthalpies (BDE). These are currently not available from experimental measurements, and we therefore report here the results of quantum chemical studies using a hierarchy of theoretical methods and employing the benzylic C-H bond enthalpy in toluene (Ph-CH₃) as a reference. The latter has been determined experimentally in the gas phase as **BDE**^{gas}_{exp}(PhCH₂-H) = +375.5 ± 2.5 kJ mol⁻¹.^{13,14} The protonation and deprotonation processes can affect BDE values by creating a positive or a negative charge on the nucleotide base and make its oxidation either more endergonic or more exergonic.

Computational details

BDE values were calculated relative to the reference compound using the isodesmic hydrogen transfer reaction in the solution phase (Figure 2) and equations 1-4, which allows more accurate determination of the stability of C-centered radicals and BDE values. ¹⁵ A «gas» symbol (^{gas}) denotes a standard state of 1 atm in the gas phase and «solution» (^{sol}) denotes 1 mol 1⁻¹ in the solution phase. Unlike the hydrogen abstraction reaction (HAR), the isodesmic hydrogen transfer reaction (HTR) involves products and substrates that are similar in stability and structure. To use this strategy, in addition to the calculated values of the formation enthalpy of reactants and products, the experimental value of **BDE**^{gas}_{exp}(PhCH₂-H) = +375.5 ± 2.5 kJ mol⁻¹ is required. ^{13,14}

Figure 2. Thermodynamic cycle used in the calculation of BDE(C-H) in solution phase.

$$RSE^{gas} = H^{gas}(R\bullet) + H^{gas}(PhCH_3) - H^{gas}(R-H) - H^{gas}(PhCH_2\bullet)$$
(1)

$$RSE^{sol} = H^{sol}(R\bullet) + H^{sol}(PhCH_3) - H^{sol}(R-H) - H^{sol}(PhCH_2\bullet)$$
(2)

$$\Delta RSE^{solv} = RSE^{sol} - RSE^{gas}$$
(3)

$$BDE^{sol}(C-H) = BDE^{gas}_{exp}(PhCH_2-H) + RSE^{gas} + \Delta RSE^{solv}$$
(4)

In this work, all geometries were optimized at the SMD(H₂O)/B3LYP-D3/6-31+G(d,p) level of theory with the SMD implicit solvent model ¹⁶ using Gaussian09, Revision D.01. The D3 version of Grimme's dispersion was added to the method of optimization to account for dispersion interactions.^{18,19} Since the relative tautomeric stability of the studied molecules is not trivial and can change due to solvation effects, we tested all possible tautomers. Tautomers also varied across base pairs, allowing for the possibility of intermolecular proton transfer. Using the expression $C_n^k = \frac{n!}{(n-k)! \cdot k!}$, one can estimate the number of possible tautomers of an asymmetric molecule having n lone pairs and k acidic protons (k \leq n). The initial geometries of tautomers were created manually and then fully optimized.

To identify the conformations of diol molecules and their radicals, a relaxed potential energy surface scan on two dihedral angles H-O-C-C (two hydroxyl groups) was performed. The conformations with the lowest energies on the potential energy surface were then fully optimized. For each studied nucleobase, all the stable tautomers and conformers were considered when calculating the Boltzmann-weighted enthalpies of formation in the solution phase H^{sol}. The individuality of the found conformers/tautomers was confirmed using an energy criterion of $\Delta E_{tot} > 10^{-7}$ a.u. and comparing geometries by distances between each atom and the centroid point.^{20,21} Thermochemical corrections to H^{sol} were calculated with GoodVibes using the quasi-harmonic approximation.²² Frequency calculations have been carried out to verify that the optimized structures are true minima.

Single point energies were calculated for the optimized geometries at the DLPNO-CCSD(T) level of theory.²³⁻²⁵ Two-point (cc-pVTZ and cc-pVQZ) extrapolation was employed at the DLPNO-CCSD(T) level to estimate a result obtained using a complete (infinitely large) basis set.^{24,26} Standard state solvation enthalpies ΔH^{solv} were computed as the difference between the solution phase enthalpy H^{sol} of the solution phase optimized molecule (SMD(H₂O)/(U)B3LYP-D3/6-31+G(d,p)), and the gas phase single point enthalpy H^{gas} ((U)B3LYP-D3/6-31+G(d,p)//SMD(H₂O)/(U)B3LYP-D3/6-31+G(d,p)):

$$\Delta H^{\text{solv}} = H^{\text{sol}} - H^{\text{gas}}$$
(5)

The solution phase enthalpies H^{sol} at the DLPNO-CCSD(T) level of theory are computed by combining the gas phase enthalpies with the solvation enthalpies ΔH^{solv} :

$$H^{sol} = E_{tot}^{DLPNO-CCSD(T)} + ZPE^{SMD/(U)B3LYP-D3} + \Delta H_{0K \to 298K}^{SMD/(U)B3LYP-D3} + \Delta H_{0K \to 298K}^{1atm \to 1M}$$
(6)
+ ΔH^{solv}

 $\Delta H_{0K \rightarrow 298K}^{1atm \rightarrow 1M} = +7.91 \text{ kJ mol}^{-1}$ is the enthalpy difference for converting from the standard state concentration of 1 atm to the standard state concentration of 1 mol l⁻¹.

The SMD implicit solvation model augmented with one explicit water molecule was also used to calculate BDE values. The optimized water-complexed geometries have been located by a stochastic search procedure. This procedure generates geometries with random arrangement water molecules around the respective structure.²⁷⁻²⁹ 100 random structures with one explicit water were generated for all species from Figure 1 and their C-centered radicals and then fully optimized. This procedure was made only for the most stable conformers/tautomers that contribute to the Boltzmann average E_{tot} values more than 2%. All the calculated BDE values in this work are Boltzmann averaged values.

Results and discussion

Calculated BDE(C-H) values

The calculated BDE and RSE values are presented in Table 1 and in Figure 3. The presence or absence of the 1-methyl group does not cause a large difference in the calculated BDEs. According to DLPNO-CCSD(T) results, the C-H bond in 5m1mC with calculated BDE = +387.5 kJ mol⁻¹ is slightly stronger (RSE = +12.0) than in toluene (exp. $+375.5 \pm 2.5$ kJ mol⁻¹). Protonation of 5m1mC makes C-H bond in p_5m1mC stronger, BDE = +394.4 kJ mol⁻¹ (RSE = +18.9). In the following, the RSE values are given in kJ mol⁻¹ in parentheses.

In 5hm1mC, the calculated BDE(C-H) = $+367.7 \text{ kJ mol}^{-1}$ is -7.8 kJ mol^{-1} smaller than in toluene. It is interesting to note that the best tautomer of r_5hm1mC is having a formyl group (Table S11) due to the migration of the proton H⁺ from the hydroxy group to the N3 atom. This radical tautomer is structurally similar to the protonated 5f1mC molecule. Protonation of 5hm1mC almost does not change BDE(C-H) = $+367.4 \text{ kJ mol}^{-1}$ value notably for p_5hm1mC.

It is more difficult to abstract a H atom from the 5-formyl group: in $5f1mC BDE(C-H) = +399.8 \text{ kJ} \text{ mol}^{-1} (+24.3)$, and protonation of 5f1mC makes the H abstraction in p_5f1mC even more endothermic with BDE(C-H) = +405.4 kJ mol^{-1} (+29.9).

Surprisingly, 5dhm1mC is having a very weak C-H bond with BDE = +322.1 kJ mol⁻¹ (-53.4). The most stable tautomer of r_5dhm1mC is having a carboxy group (See SI) because of migration of a H⁺ from the -C(OH)₂• group to the N3 atom. Protonation of 5dhm1mC has a very large effect on the BDE value, which gives +363.8 kJ mol⁻¹ (-11.7) in p_5dhm1mC. The protonated radical pr_5dhm1mC is also (like the neutral r_5dhm1mC radical) having a carboxy group, but in this case a proton H⁺ moves from the hydroxy (diol) to the amino group. Thus, we can make the general conclusion, that protonation of cytosine derivatives increases their BDE(C-H) values.

The C-H bond in 5m1mU has almost the same BDE = +381.6 kJ mol⁻¹ (+6.1) as in toluene. Deprotonation of 5m1mU slightly weakens C-H bond bringing BDE in d_5m1mU to +379.4 kJ mol⁻¹ (+3.9). The C-H bond strength in 5hm1mU is weaker than in toluene with BDE = +359.5 kJ mol⁻¹ (-16.0). Deprotonation of 5hm1mU has a large effect on BDE, which is equal to +352.2 kJ mol⁻¹ (-23.3) in d_5hm1mU, the most stable tautomer of dr_5hm1mU is having a formyl group (Table S11) because of moving a H⁺ from the hydroxy group to the N3 atom. It is more difficult to remove a H atom from the 5-formyl group, the BDE value in 5f1mU being +394.8 kJ mol⁻¹ (+19.3), while deprotonation of 5f1mU only slightly decreases BDE in d_5f1mU to +390.3 kJ mol⁻¹ (+14.8).

In 5dhm1mU, the C-H bond turns out to be is as strong as in 5hm1mU, but slightly weaker and corresponds to $BDE = +354.6 \text{ kJ mol}^{-1}$ (-20.9). Deprotonation of 5dhm1mU dramatically weakens C-H bond bringing its BDE value to +329.4 kJ mol⁻¹ (-46.1) in d_5dhm1mU, herein dr_5dhm1mU radical is having a carboxy group because of moving of H⁺ from hydroxy group to amino group. (Table S11) Thus, deprotonation decreases BDEs(C-H) in uracil derivatives

Table 1. The calculated Boltzmann avg. BDE(C-H) values in kJ mol⁻¹ at 298.15 K are presented for 5-substituted N-1-methyl-cytosine (1mC) and 5-substituted N-1-methyl-uracil (1mU) molecules.

		BDE (5-sub1mC)						BDE (5-sub1mC)					
5-sub.	q	-	_	+ H	I_2O	+ 9	mG	-	-	+ H	I ₂ O	+ 9	mA
		DFT	CBS	DFT	CBS	DFT	CBS	DFT	CBS	DFT	CBS	DFT	CBS
	-1							371.4	379.4	372.7	380.3		
m-	0	380.5	387.5	380.8	384.7	380.7	394.1	376.7	381.6	378.6	382.3	377.0	387.9
	+1	389.0	394.4	387.2	393.7								
	-1							324.6	352.2	325.9	350.9		
hm-	0	355.0	367.7	354.8	363.8	357.7	373.6	347.2	359.5	348.1	358.2	348.1	365.7
	+1	357.4	367.4	356.4	369.6								
	-1							386.4	390.3	387.4	390.6		
f-	0	397.7	399.8	406.2	407.6	396.8	405.8	392.5	394.8	393.1	395.7	391.2	399.8
	+1	404.3	405.4	403.7	403.4								
	-1							305.0	329.4	310.5	335.1		
dhm-	0	304.6	322.1	306.1	323.9	332.2	352.4	341.2	354.6	332.5	349.4	339.5	362.4
	+1	358.4	363.8	348.1	358.1								
RSE $-$ calculated \triangle BDE value relative to toluene													
BDE – the sum of the RSE value and exp. BDE(C-H) value of +375.5 kJ mol ⁻¹ (toluene)													
DFT $-$ SMD(H ₂ O)/(U)B3LYP-D3/6-31+G(d,p)													
	$CBS - SMD(H_2O)/DLPNO-CCSD(T)/CBS//SMD(H_2O)/(U)B3LYP-D3/6-31+G(d,p)$												

Effect of one explicit water on the calculated BDE(C-H) values

Introduction of one explicit water molecule in case of neutral 5f1mC increases the calculated BDE(C-H) value by +7.8 kJ mol⁻¹ (CBS; Table 1). Another case, in which a notable explicit-water-effect can be observed, is the protonated diol p_5dhm1mC with Δ BDE(C-H) = -5.7 kJ mol⁻¹. Also, a positive effect of +5.7 kJ mol⁻¹ can be seen for the deprotonated d_5dhm1mU diol molecule, while for its neutral 5dhm1mU form this effect is apposite with Δ BDE(C-H) = -5.1 kJ mol⁻¹. For the other molecules in Table 1 one explicit water molecule has almost no effect on the calculated BDE values.

Figure 3. The Boltzmann averaged BDE(C-H) values in kJ mol⁻¹ at 298.15 K without explicit water calculated at the SMD(H₂O)/DLPNO-CCSD(T)/CBS//SMD(H₂O)/(U)B3LYP-D3/6-31+G(d,p) level of theory.

Effect of base pairing

In the general case, the presence of a complementary base (guanine) increases the BDE(C-H) values in modified cytosines, which may play a role in protecting methylated/modified DNA from spontaneous oxidation. It is important to note that the relative position of the modified nucleobases on the BDE scale is maintained even when a complementary base is attached. The effect of adding of a complementary base ΔBDE_{sol} (+ c. base) is equal to the difference in complexation enthalpies between radical-base pair and neutral base-base pair:

$$\Delta BDE_{sol}(+ c. base) = BDE^{sol}(base + c. base) - BDE^{sol}(base) =$$
(7)
$$= \Delta H_{complex.}^{sol}(radical + c. base) - \Delta H_{complex.}^{sol}(base + c. base)$$
(7)
$$\Delta H_{complex.}^{sol}(base + c. base) = H^{sol}(base + c. base) - H^{sol}(base) - H^{sol}(c. base)$$
(8)
$$\Delta H_{complex.}^{sol}(radical + c. base) = H^{sol}(radical + c. base) - H^{sol}(radical) - H^{sol}(c. base)$$
(9)

Hydrogen bond interactions with a complementary pair cause³⁰ inter- and intramolecular redistribution of charges: 1) in pairs G-C type guanine G is negatively charged, modified cytosine C is positively charged, while in A-U type pairs adenine A is positively charged, modified uracil U is negatively charged; 2) atomic charges in the corresponding radical on the spin-carrying atoms become more positive, which reduces the radical stability. (See NBO and Mulliken charges in SI) This effect is about +5-8 kJ mol⁻¹ (CBS).

The 9mG...5dhm1mC complex should be considered separately, where the presence of a complementary base (9mG) blocks the resulting $5r_5dhm1mC$ radical from transferring an acidic proton from the spin-carrying $-C(OH)_2$ • group to the 3N atom, which additionally increases the BDE(C-H) value by +28 kJ mol⁻¹ (CBS).

These effects indicate that G-C type base pairs need to be detached from each other for a less energetically expensive oxidation. This is consistent with the structure of the TET2-DNA complex³¹, in which cytosine does not come into contact with guanine.

Conclusions

In the C and U derivatives, among the substituents in the 5th position, the following trend in BDE values is observed 5dhm- < 5hm- < 5m- < 5f- (where 5dhm is dihydroxymethyl, 5hm — hydroxymethyl, 5m — methyl, 5f — formyl). The presence or absence of the 1-methyl group has almost no effect on the calculated BDE_{sol}(C-H) values. The charge effect is clearly visible: protonation increases BDE_{sol}(C-H) in cytosine derivatives, while deprotonation decreases BDE_{sol}(C-H) in uracil derivatives. In general, one explicit water molecule does not cause a large difference in the calculated BDE values. The presence of a complementary base increases the BDE_{sol}(C-H) values in all studied modified nucleobases by +6-8 kJ mol⁻¹. The relative position of the modified nucleobases on the BDE_{sol}(C-H) scale is maintained even when a complementary base is attached. Consequently, base pairs (G-C) need to be detached from each other for a more facile C-H bond activation step.

Supporting Information Description

Supplementally information is attached as a separate document.

Acknowledgment

Thanks to SFB1309 for financial support.

References

- [1] E. Gibney, C. Nolan, *Heredity* **2010**, *105*, 4.
- [2] K. D. Rasmussen, K. Helin, *Genes Dev.* **2016**, *30*, 733.
- [3] S. Schiesser, T. Pfaffeneder, K. Sadeghian, B. Hackner, B. Steigenberger, A. S. Schröder, J. Steinbacher, G. Kashiwazaki, G. Höfner, K. T. Wanner, C. Ochsenfeld, T. Carell, *J. Am. Chem. Soc.* **2013**, *135*, 14593.
- [4] N. S. Jonasson, L. J. Daumann, *Chem. Eur. J.* **2019**, *25*, 12091.
- [5] L. Hu, J. Lu, J. Cheng, Q. Rao, Z. Li, H. Hou, Z. Lou, L. Zhang, W. Li, W. Gong, *Nature* **2015**, *527*, 118.
- [6] F. L. Zott, V. Korotenko, H. Zipse, *ChemBioChem* **2022**, *23*, e202100651.
- [7] S. Ganguly, K. K. Kundu, *Can. J. Chem.* **1994**, *72*, 1120.
- [8] J.-Y. Salpin, S. Guillaumont, J. Tortajada, L. Mac Aleese, J. Lemaire, P. Maitre, *ChemPhysChem* **2007**, *8*, 2235.
- [9] A. K. Chandra, M. T. Nguyen, T. Zeegers-Huyskens, J. Phys. Chem. A 1998, 102, 6010.
- [10] A. Semmeq, M. Badawi, A. Hasnaoui, S. Ouaskit, A. Monari, *Eur. J. Chem.* **2020**, *26*, 11340-11344.
- [11] C. Colominas, F. J. Luque, M. Orozco, J. Am. Chem. Soc. 1996, 118, 6811.
- [12] G. R. Pack, L. Wong, G. Lamm, Int. J. Quantum Chem 1998, 70, 1177.
- [13] Y.-R. Luo. Comprehensive handbook of chemical bond energies; CRC press, 2007.

- [14] S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255.
- [15] E. G. Bakalbassis, A. T. Lithoxoidou, A. P. Vafiadis, J. Phys. Chem. A 2003, 107, 8594.
- [16] C. J. Cramer, D. G. Truhlar, *Chemical Reviews* **1999**, *99*, 2161.
- [17] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
- J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J.
- Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, et. al. Gaussian, Inc., Wallingford CT, 2016.
- [18] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [19] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- [20] V. Korotenko, https://github.com/vnkorotenko/ess.
- [21] V. Korotenko, https://github.com/vnkorotenko/ccs.
- [22] G. Luchini, J. V. Alegre-Requena, I. Funes-Ardoiz, R. S. Paton, *F1000Research* 2020, 9, 291.
- [23] A. Altun, F. Neese, G. Bistoni, J. Chem. Theory Comput. 2018, 15, 215.
- [24] F. Neese, E. F. Valeev, J. Chem. Theory Comput. 2011, 7, 33.
- [25] M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, F. Neese, J. Chem. Phys. 2017, 146, 164105.
- [26] A. Altun, F. Neese, G. Bistoni, *Beilstein J. Org. Chem.* 2018, 14, 919.
- [27] M. Saunders, J. Comput. Chem. 2004, 25, 621.
- [28] D. Šakić, V. Vrček, J. Phys. Chem. A 2012, 116, 1298.
- [29] D. Šakić, https://kick.science/KICK.html.
- [30] C. Fonseca Guerra, F. M. Bickelhaupt, J. G. Snijders, E. J. Baerends, Chem. Eur. J. 1999, 5, 3581.
- [31] L. Hu, Z. Li, J. Cheng, Q. Rao, W. Gong, M. Liu, Y. G. Shi, J. Zhu, P. Wang, Y. Xu, Cell 2013, 155,

1545.

4.2

Supplementary Information

The Redox Properties of Cytosine derivatives: CH Bond Dissociation Energies

1. General Results

Figure 1.1.1. Thermodynamic cycle used in the calculation of BDE.

Figure 1.2.1. The Boltzmann averaged BDE(C-H) values in kJ mol-1 at 298.15 K without explicit water calculated at the SMD(H2O)/DLPNO-CCSD(T)/CBS//SMD(H2O)/(U)B3LYP-D3/6-31+G(d,p) level of theory.

		-H	-CH3	-H	-CH3	-H	-CH3	-H	-CH3
5-Sub.	q					BI	DE	BI	DE
		Molecule	Molecule	Radical	Radical	DI	T	CI	BS
m-	-1 0	دود وهر گر وهر گر	دود وفرقر رفر		دود وفوفر وفوفر	381.2	380.5	387.3	387.5
	1	دود دوهوقر وهوفر	دود دوفرو قر رفرو	دود د دوغو فر وفوفر	دود روهني رويز رويز	388.3	389.0	393.0	394.4
	-1								
hm-	0	30.00 .00.00	94 - 4 94 - 4 94 - 4 94 - 4 94 - 4 94 - 4 94 - 1		دوند دوهورور رفو فر	355.6	355.0	367.0	367.7
	1	دود دوهو کر وهو کر	دود بالارم بالارم بالارم	دود دوهو دو رهو هو	دود ر دوهروفود رفد	358.6	357.4	368.2	367.4
e	-1								
	0		دود وهي فر رفي فر			398.1	397.7	399.7	399.8
	1		دود و دوقر قر رفر قر رفر			405.0	404.3	405.7	405.4
	-1								
dhm-	0	a tagan Jagan	موري وهو هر روبر		دوندون دوندونون دوندر	304.2	304.6	321.5	322.1
	1	3000 9 ¹⁰ 91 9 ¹⁰ 91 9 ¹⁰ 91	دود در بالا مراجع بالا مراجع بالا مراجع بالا مراجع	نود و دوهرهود روهر	 دونونو رونونو رونون	353.9	358.4	372.1	363.8
ca-	0	a a a a a a a a a a a a a a a a a a a	دود دوفروفو وفوفر						
		دود و دوشوشور رشوشو	دود و دوهوهو رهوهو رهو						

Figure 1.3.1. The best by DFT-H* calculated C-structures and their BDE(C-H).

		-H	-CH3	-H	-CH3	-H	-CH ₃	-H	-CH ₃
5-Sub.	q					BI	DE	BI	DE
		Molecule	Molecule	Radical	Radical	D	FT	CI	3S
	-1	موقع گر وفروگر	وه و گر روز	دو هو هر و هو هر	يخي في رفي في رفي	370.6	371.4	379.6	379.4
m-	0	د فرقر قر فوفر	بر میں	يغي في يفي في	د و فر فر رفر فر رفر	378.1	376.7	382.9	381.6
	1								
	-1	د و قدر قر و قدو قر	ງ ³ ູ ອີ ງ ³ ູ ອີ ງ ³ ູ ອີ ງ	• * • • • • • • • • • • • • • • • • • •	د و همو هم ر هم و هم ر هم و	333.2	324.6	354.2	352.2
hm-	0	د ماند کر رام و کر			د و فی فر رفی فر رفی فر	346.7	347.2	359.9	359.5
	1								
	-1	د م ^{قر} و قر مفرقد	وني في رفي في رفي	6.9.6.9 		388.4	386.4	389.5	390.3
f-	0	م هو هر مهر هر	ب فی باغی باغی		0	392.4	392.5	394.2	394.8
	1								
	-1		وي من المراجع المراجع		دونگونگود رونگو رونگ	306.3	305.0	329.7	329.4
dhm-	0			م می می می این می مانچ هر	و و و و و و و و و و و و و و و و و و و	336.8	341.2	351.9	354.6
	1								
	-1		وي من						
ca-	0								

Figure 1.3.2. The best by DFT-H* calculated U-structures and their BDE(C-H).

	Substrate	Droduct	DDE	DDE
5-Sub.	Bost str	Product	DET	BDE CDS
m			381.7	394.2
	G_5mC1	G_r5mC1		
	0.0395 -0.0395 0.0000 0.0000	0.0330 -0.0330 0.9999 0.0001		
hm			361.0	379.1
	G_5hmC1	G_r5hmC1		
	0.0347 -0.0347	0.0284 -0.0284		
	0.0000 0.0000	0.9997 0.0003		
f			397.9	405.7
	G_5fC1	G_r5fC1		
	0.0241 -0.0241 0.0000 0.0000	0.0213 -0.0213 0.9988 0.0012		
dhm			333.4	352.4
	G_5dhmC1	G_r5dhmC11iss		
	0.0312 -0.0312	-0.0823 0.0823		
	$0.0000\ 0.0000$	1.0025 -0.0025		

Table 1.4.1. Structures (best by DFT-H*) and the calculated BDE values. Mulliken charges (above) and spin densities (below).

5-Sub	Substrate	Product	BDE	BDE
J-5u0.	Best str.	Best str.	BDE DFT 380.7 357.7 357.7 396.8 396.8	CBS
m	من محمد محمد محمد محمد محمد محمد محمد محمد		380.7	394.1
	9mG_1m5mC	9mG_1mr5mC		
	0.0251 -0.0251	0.0211 -0.0211		
	0.0000 0.0000	0.9998 0.0002		
hm	9,4,9,4,9,9,9, 9,4,9,4,9,9,9,9,9,9,9,9,9		357.7	373.6
	9mG_1m5hmCh	9mG_1mr5hmC1		
	0.0267 -0.0267	0.0173 -0.0173		
	0.0000 0.0000	0.9998 0.0002		
f			396.8	405.8
	9mG_1m5fC	9mG_1mr5fC		
	0.0165 -0.0165	0.0147 -0.0147		
	0.0000 0.0000	0.9976 0.0024		
dhm	موند روحون مرود مرود مرود مرود مرود مرود مرود مرود مرود مرود مرود مرود	مور مونون مونون مونون مونون مونون مونون مونون	332.2	352.4
	9mG_1m5dhmC1	9mG_1mr5dhmCt3ss		
	0.0213 -0.0213	-0.0951 0.0951		
	0.0000 0.0000	0.9985 0.0015		

Table 1.4.2. Structures (best by DFT-H*) and the calculated BDE values. Mulliken charges (above) and spin densities (below).

Table 1.4.3. Structures (best by DFT-H*). Mulliken charges (left column) and spin densities (right column).

Table 1.4.3. Structures (best by DFT-H*). Mulliken charges (left column) and spin densities (right column).

Table 1.4.4. Structures (best by DFT-H*). NBO charges (left column) and spin densities (right column).

Table 1.4.4. Structures (best by DFT-H*). NBO charges (left column) and spin densities (right column).

LINK /scr7/vasily/DNA/1mC/ /scr7/vasily/DNA/1mU/ /scr7/vasily/DNA/9mG_1mC/ /scr7/vasily/DNA/9mA_1mU/

Table 1.5.1. Structures (best by DFT-H*) and the calculated BDE values. Mulliken charges (above) and spin densities (below).

5-	Substrate	Product	BDE			
Sub.	Best str.	Best str.	DFT	CBS		
m	دور و و و و و و و و و و و و و و و و و و	مي مي مي مي مي هو مي مي هو مي مي مي وهو	377.0	387.9		
	9mA 1mT	9mA 1mr5mU				
	-0.0775 0.0775	-0.0783 0.0783				
	0.0000 0.0000	0.9997 0.0003				
hm	دور هر هر هر رو هر هر هر هر موجو در هر هر قر دور دور	نې و و و و و د و و و و و د و و و و د و و و د و و د و د	348.1	365.7		
	9mA 1m5hmU	9mA 1mr5hmU1				
	-0.0788 0.0788	-0.0762 0.0762				
	0.0000 0.0000	0.9995 0.0005				
f	مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ مَنْ		391.2	399.8		
	$9mA_1m5fII1$	$9m\Delta$ 1mr5fU				
	-0.0859 0.0859	-0.0859 0.0859				
	0.0000 0.0000	0.9980 0.0020				
dhm			339.5	362.4		
	9mA_1m5dhmI11	9mA 1mr5dhmU 3iss				
	-0.0884 0.0885	>mr_misumo_5155				
	0.0000 0.0000					

Table 1.5.2. Structures (best by DFT-H*) and the calculated BDE values. Mulliken charges (above) and spin densities (below).

Table 1.5.4. Structures (best by DFT-H*). NBO charges (left column) and spin densities (right column).

LINK /scr7/vasily/DNA/1mC/ /scr7/vasily/DNA/1mU/ /scr7/vasily/DNA/9mG_1mC/ /scr7/vasily/DNA/9mA_1mU/

2. Detailed results

Table 2.1.1. The Boltzmann averaged RSE and BDE values calculated at the (U)B3LYP-D3 and DLPNO	O-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic									
Approximation) (kJ/mol)										
Molecule Net Multipl RSE/BDE	DLPNO-CCSD(T)/BASIS//									

molecule	Charge	manupi	NOL/DDL	SMD/(U)B3LYP	-D3/6-31+G(d,p)		SMD/(U)B3LYP-D3/6-31+G(d,p)					
	-				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS
				solution	gas	solvation	gas	gas	gas	solution	solution	solution
				ΔH_{298}	ΔH_{298}	$\Delta\Delta H_{SOLV}$	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}
						=				+	+	+
						ARSE _{SOLV}				ARSE _{SOLV}	ARSE _{SOLV}	ARSE _{SOLV}
5mC	0	1	RSE	5.7	0.8	4.9	10.8	10.8	10.8	11.0	11.5	11.8
			BDE	381.2	376.3		386.3	386.3	386.3	386.5	387.0	387.3
p_5mC	1	1	RSE	12.8	13.4	-0.6	17.4	17.8	17.9	16.8	17.3	17.5
			BDE	388.3	388.9		392.9	393.3	393.4	392.3	392.8	393.0
5hmC	0	1	RSE	-19.9	-42.0	22.1	11.7	9.9	8.8	-7.0	-8.3	-8.5
			BDE	355.6	333.5		387.2	385.4	384.3	368.5	367.2	367.0
p_5hmC	1	1	RSE	-16.9	-37.5	20.6	-3.2	-2.4	-1.9	-6.8	-7.4	-7.3
			BDE	358.6	338.0		372.3	373.1	373.6	368.7	368.1	368.2
5fC	0	1	RSE	22.6	12.0	10.6	21.6	22.4	23.0	22.1	23.4	24.2
			BDE	398.1	387.5		397.1	397.9	398.5	397.6	398.9	399.7
p_5fC	1	1	RSE	29.5	25.2	4.3	25.2	26.1	26.8	28.4	29.4	30.2
			BDE	405.0	400.7		400.7	401.6	402.3	403.9	404.9	405.7
5dhmC	0	1	RSE	-71.3	-108.5	37.2	-44.4	-46.7	-48.0	-53.5	-53.4	-54.0
			BDE	304.2	267.0		331.1	328.8	327.5	322.0	322.1	321.5
p_5dhmC	1	1	RSE	-21.6	-30.7	9.2	-7.0	-7.1	-6.8	-17.9	-3.6	-3.4
			BDE	353.9	344.8		368.5	368.4	368.7	357.6	371.9	372.1

Table 2.1.2. The Boltzmann averaged RSE and BDE values calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic
Approximation) (kJ/mol)

Molecule	Net	Multipl	RSE/BDE				DLPNO-CCSD(T)/BASIS//						
	Charge			SMD/(U)B3LYF	-D3/6-31+G(d,p)			SMI	D/(U)B3L	YP-D3/6-31+	G(d,p)		
					Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS	
				solution	gas	solvation	gas	gas	gas	solution	solution	solution	
				ΔH_{298}	ΔH_{298}	$\Delta \Delta H_{SOLV}$	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	
						=				+	+	+	
						ARSE _{SOLV}				ARSE _{SOLV}	ARSE _{SOLV}	ARSE _{SOLV}	
1m5mC	0	1	RSE	5.0	-3.4	8.4	11.0	11.6	12.0	11.0	11.6	12.0	
			BDE	380.5	372.1		386.5	387.1	387.5	386.5	387.1	387.5	
p_1m5mC	1	1	RSE	13.5	12.9	0.7	18.8	19.0	19.2	18.4	18.7	18.9	
			BDE	389.0	388.4		394.3	394.5	394.7	393.9	394.2	394.4	
1m5hmC	0	1	RSE	-20.5	-46.1	25.6	0.1	0.1	-0.2	-6.7	-6.9	-7.8	
			BDE	355.0	329.4		375.6	375.6	375.3	368.8	368.6	367.7	
p_1m5hmC	1	1	RSE	-18.1	-37.6	19.6	-4.8	-3.4	-3.5	-7.9	-12.3	-8.1	
			BDE	357.4	337.9		370.7	372.1	372.0	367.6	363.2	367.4	
1m5fC	0	1	RSE	22.2	8.3	13.9	22.0	23.4	24.3	22.1	23.4	24.3	
			BDE	397.7	383.8		397.5	398.9	399.8	397.6	398.9	399.8	
p_1m5fC	1	1	RSE	28.8	24.3	4.5	25.2	26.4	27.5	28.0	28.5	29.9	
			BDE	404.3	399.8		400.7	401.9	403.0	403.5	404.0	405.4	
1m5dhmC	0	1	RSE	-70.9	-104.8	33.9	-53.7	-55.1	-55.9	-51.3	-52.4	-53.4	
			BDE	304.6	270.7		321.8	320.4	319.6	324.2	323.1	322.1	
p_1m5dhmC	1	1	RSE	-17.1	-25.8	8.7	-3.4	-2.4	-3.1	-12.9	-12.2	-11.7	
			BDE	358.4	349.7		372.1	373.1	372.4	362.6	363.3	363.8	

Table 2.1.3. The Boltzmann averaged RSE and BDE values calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems **WITH** the addition of explicit water. (Quasi-Harmonic Approximation) (kJ/mol)

Molecule	Net	Multipl	RSE/BDE				DLPNO-CCSD(T)/BASIS//					
	Charge			SMD/(U)B3LYF	P-D3/6-31+G(d,p)			SMI	D/(U)B3L	YP-D3/6-31+	G(d,p)	
					Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS
				solution	gas	solvation	gas	gas	gas	solution	solution	solution
				ΔH_{298}	ΔH_{298}	$\Delta \Delta H_{SOLV}$	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}
						=				+	+	+
						ARSE _{SOLV}				ARSE _{SOLV}	ARSE _{SOLV}	ARSE _{SOLV}
1m5mC	0	1	RSE	5.3	-5.4	10.7	20.5	14.4	5.9	1.7	12.4	9.2
			BDE	380.8	370.1		396.0	389.9	381.4	377.2	387.9	384.7
p_1m5mC	1	1	RSE	11.7	13.7	-1.9	16.7	17.1	17.3	17.5	17.9	18.2
			BDE	387.2	389.2		392.2	392.6	392.8	393.0	393.4	393.7
1m5hmC	0	1	RSE	-20.7	-43.9	23.2	-6.7	-3.4	-1.9	-12.9	-12.5	-11.7
			BDE	354.8	331.6		368.8	372.1	373.6	362.6	363.0	363.8
p_1m5hmC	1	1	RSE	-19.1	-29.0	9.9	-6.7	-5.9	-5.5	-5.9	-5.9	-5.9
			BDE	356.4	346.5		368.8	369.6	370.0	369.6	369.6	369.6
1m5fC	0	1	RSE	30.7	20.5	10.2	29.3	31.3	32.5	28.9	30.8	32.1
			BDE	406.2	396.0		404.8	406.8	408.0	404.4	406.3	407.6
p_1m5fC	1	1	RSE	28.2	21.9	6.2	27.7	29.0	29.9	25.2	26.8	27.9
			BDE	403.7	397.4		403.2	404.5	405.4	400.7	402.3	403.4
1m5dhmC	0	1	RSE	-69.4	-105.8	36.4	-59.5	-58.5	-58.1	-49.1	-52.1	-51.6
			BDE	306.1	269.7		316.0	317.0	317.4	326.4	323.4	323.9
p_1m5dhmC	1	1	RSE	-27.4	-28.5	1.1	-10.9	-10.8	-10.9	-15.3	-14.8	-17.4
			BDE	348.1	347.0		364.6	364.7	364.6	360.2	360.7	358.1

Table 2.1.4. The Boltzmann averaged $\triangle RSE$ and $\triangle BDE$ values calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory as difference in RSE and BDE values between systems WITH and WITHOUT the
addition of explicit water. (Quasi-Harmonic Approximation) (kJ/mol)

Molecule	Net Charge	Multipl	ARSE/ABDE	SMD/(U)B3LYF	P-D3/6-31+G(d,p)			S	DLPNO- MD/(U)B3	CCSD(T)/BAS LYP-D3/6-31+	IS// G(d,p)	
	U				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS
				solution	gas	solvation	gas	gas	gas	solution	solution	solution
				$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$	ΔΔΔH _{SOLV}	$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$	ΔΔH ₂₉₈	ΔΔH ₂₉₈	$\Delta\Delta H_{298}$
						- AARSE _{SOLV}				AARSESOLV	ΔΔRSE _{SOLV}	AARSESOLV
1m5mC	0	1	$\Delta RSE/\Delta BDE$	0.4	-2.0	0.0	9.4	2.9	-6.1	-9.3	0.8	-2.8
p_1m5mC	1	1	$\Delta RSE/\Delta BDE$	-1.8	0.8	0.0	-2.2	-2.0	-1.9	-0.8	-0.8	-0.7
1m5hmC	0	1	ΔRSE/ΔBDE	-0.2	2.1	0.0	-6.8	-3.5	-1.8	-6.1	-5.7	-3.9
p_1m5hmC	1	1	$\Delta RSE/\Delta BDE$	-1.0	8.6	0.0	-1.9	-2.6	-2.1	2.0	6.4	2.2
									-			
1m5fC	0	1	ARSE/ABDE	85	12.2	0.0	7.2	79	82	69	74	7.8
Timpre	0	1		0.5	12.2	0.0	7.2	1.5	0.2	0.7	/.1	7.0
p_1m5fC	1	1	$\Delta RSE/\Delta BDE$	-0.6	-2.4	0.0	2.5	2.6	2.4	-2.8	-1.7	-2.0
1.511.0	0	1		1.5	1.0		5.0	2.4	2.2	2.2	0.2	1.0
Im5dhmC	0	1	ARSE/ABDE	1.5	-1.0	0.0	-5.8	-5.4	-2.2	2.2	0.2	1.8
p_1m5dhmC	1	1	ARSE/ABDE	-10.3	-2.8	0.0	-7.5	-8.5	-7.8	-2.4	-2.7	-5.7
p_rinsumic				10.5	2.0	0.0		5.5		2.1	2.7	5.7

Table 2.2.1. The Boltzmann averaged RSE and BDE values calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems **WITHOUT** the addition of explicit water. (Quasi-Harmonic Approximation) (kJ/mol)

Molecule	Net	Multipl	RSE/BDE				DLPNO-CCSD(T)/BASIS//					
	Charge	_		SMD/(U)B3LYF	P-D3/6-31+G(d,p)			SMI	D/(U)B3L	YP-D3/6-31+	G(d,p)	
					Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS
				solution	gas	solvation	gas	gas	gas	solution	solution	solution
				ΔH_{298}	ΔH_{298}	ARSE _{SOLV}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}
										+	+	+
										ARSE _{SOLV}	ARSE _{SOLV}	ARSE _{SOLV}
d_5mU	-1	1	RSE	-4.9	-20.5	15.6	-13.2	-12.6	-12.2	2.5	3.4	4.1
			BDE	370.6	355.0		362.3	362.9	363.3	378.0	378.9	379.6
5mU	0	1	RSE	2.6	-3.4	5.9	0.7	1.2	1.4	6.6	7.1	7.4
			BDE	378.1	372.1		376.2	376.7	376.9	382.1	382.6	382.9
d_5hmU	-1	1	RSE	-42.3	-45.6	3.4	-30.6	-28.4	-27.6	-22.8	-21.9	-21.3
			BDE	333.2	329.9		344.9	347.1	347.9	352.7	353.6	354.2
5hmU	0	1	RSE	-28.8	-48.7	19.9	-40.0	-37.8	-36.6	-18.6	-16.6	-15.6
			BDE	346.7	326.8		335.5	337.7	338.9	356.9	358.9	359.9
d_5fU	-1	1	RSE	12.9	7.9	5.0	5.7	6.7	7.5	12.2	13.3	14.0
			BDE	388.4	383.4		381.2	382.2	383.0	387.7	388.8	389.5
5fU	0	1	RSE	16.9	19.6	-2.8	15.9	17.3	18.5	16.7	17.9	18.7
			BDE	392.4	395.1		391.4	392.8	394.0	392.2	393.4	394.2
d_5dhmU	-1	1	RSE	-69.2	-99.2	30.0	-79.0	-77.1	-76.7	-47.6	-46.1	-45.8
			BDE	306.3	276.3		296.5	298.4	298.8	327.9	329.4	329.7
5dhmU	0	1	RSE	-38.7	-70.9	32.2	-57.0	-55.9	-55.4	-24.8	-23.9	-23.6
			BDE	336.8	304.6		318.5	319.6	320.1	350.7	351.6	351.9

Table 2.2.2. The Boltzmann averaged RSE and BDE values calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems **WITHOUT** the addition of explicit water. (Quasi-Harmonic Approximation) (kJ/mol)

Molecule	Net	Multipl	RSE/BDE				DLPNO-CCSD(T)/BASIS//						
	Charge	_		SMD/(U)B3LYF	P-D3/6-31+G(d,p)			SML)/(U)B3L	YP-D3/6-31+	G(d,p)		
					Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS	
				solution	gas	solvation	gas	gas	gas	solution	solution	solution	
				ΔH_{298}	ΔH_{298}	ARSESOLV	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	
										+	+	+	
										ARSE _{SOLV}	ARSE _{SOLV}	ARSE _{SOLV}	
d_1m5mU	-1	1	RSE	-4.1	-19.3	15.2	-12.2	-11.7	-11.3	3.0	3.6	3.9	
			BDE	371.4	356.2		363.3	363.8	364.2	378.5	379.1	379.4	
1m5mU	0	1	RSE	1.2	-5.0	6.2	-0.7	-0.3	-0.1	5.5	5.9	6.1	
			BDE	376.7	370.5		374.8	375.2	375.4	381.0	381.4	381.6	
d_1m5hmU	-1	1	RSE	-50.9	-93.9	42.9	-67.1	-66.3	-66.3	-25.8	-23.8	-23.3	
			BDE	324.6	281.6		308.4	309.2	309.2	349.7	351.7	352.2	
1m5hmU	0	1	RSE	-28.3	-49.5	21.1	-40.8	-38.8	-37.8	-17.8	-16.5	-16.0	
			BDE	347.2	326.0		334.7	336.7	337.7	357.7	359.0	359.5	
d_1m5fU	-1	1	RSE	10.9	14.6	-3.6	12.9	14.3	15.6	12.5	13.9	14.8	
			BDE	386.4	390.1		388.4	389.8	391.1	388.0	389.4	390.3	
1m5fU	0	1	RSE	17.0	19.7	-2.7	16.6	18.0	19.3	17.0	18.3	19.3	
			BDE	392.5	395.2		392.1	393.5	394.8	392.5	393.8	394.8	
d_1m5dhmU	-1	1	RSE	-70.5	-104.7	34.2	-81.9	-81.1	-81.3	-46.5	-46.0	-46.1	
			BDE	305.0	270.8		293.6	294.4	294.2	329.0	329.5	329.4	
1m5dhmU	0	1	RSE	-34.3	-66.6	32.3	-57.7	-56.6	-56.0	-22.1	-21.2	-20.9	
			BDE	341.2	308.9		317.8	318.9	319.5	353.4	354.3	354.6	

Table 2.2.3. The Boltzmann averaged RSE and BDE values calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems **WITH** the addition of explicit water. (Quasi-Harmonic Approximation) (kJ/mol)

Molecule	Net	Multipl	RSE/BDE				DLPNO-CCSD(T)/BASIS//					
	Charge	_		SMD/(U)B3LYP	-D3/6-31+G(d,p)			SME)/(U)B3L	YP-D3/6-31+	G(d,p)	
					Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS
				solution	gas	solvation	gas	gas	gas	solution	solution	solution
				ΔH_{298}	ΔH_{298}	ARSE _{SOLV}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}	ΔH_{298}
										+	+	+
-										ARSE _{SOLV}	ARSE _{SOLV}	ARSE _{SOLV}
d_1m5mU	-1	1	RSE	-2.8	-16.1	13.3	4.0	4.4	4.7	3.6	4.3	4.8
			BDE	372.7	359.4		379.5	379.9	380.2	379.1	379.8	380.3
1m5mU	0	1	RSE	3.1	-2.6	5.7	5.3	6.8	7.7	6.3	6.5	6.8
			BDE	378.6	372.9		380.8	382.3	383.2	381.8	382.0	382.3
d_1m5hmU	-1	1	RSE	-49.6	-87.0	37.4	-28.0	-26.1	-25.6	-25.1	-24.6	-24.6
			BDE	325.9	288.5		347.5	349.4	349.9	350.4	350.9	350.9
1m5hmU	0	1	RSE	-27.4	-34.2	6.8	-10.0	-8.9	-8.2	-19.1	-18.0	-17.3
			BDE	348.1	341.3		365.5	366.6	367.3	356.4	357.5	358.2
d_1m5fU	-1	1	RSE	11.9	18.0	-6.1	9.1	10.5	11.7	13.2	14.3	15.1
			BDE	387.4	393.5		384.6	386.0	387.2	388.7	389.8	390.6
1m5fU	0	1	RSE	17.6	22.2	-4.6	17.1	18.2	19.3	16.6	19.0	20.2
			BDE	393.1	397.7		392.6	393.7	394.8	392.1	394.5	395.7
d_1m5dhmU	-1	1	RSE	-65.0	-98.7	33.7	-41.1	-42.5	-43.4	-38.3	-39.6	-40.4
			BDE	310.5	276.8		334.4	333.0	332.1	337.2	335.9	335.1
1m5dhmU	0	1	RSE	-43.0	-68.1	25.2	-31.9	-31.1	-30.8	-27.5	-26.4	-26.1
			BDE	332.5	307.4		343.6	344.4	344.7	348.0	349.1	349.4

Table 2.2.4. The Boltzmann averaged \triangle RSE and \triangle BDE values calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory as difference in RSE and BDE values between systems **WITH** and **WITHOUT** the addition of explicit water. (Quasi-Harmonic Approximation) (kJ/mol)

Molecule	Net Charge	Multipl	ARSE/ABDE	SMD/(U)B3LYF	P-D3/6-31+G(d,p)			S	DLPNO- MD/(U)B3	CCSD(T)/BAS LYP-D3/6-31+	IS// G(d,p)	
					Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS
				solution	gas	solvation	gas	gas	gas	solution	solution	solution
				$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$	AARSE_{SOLV}	$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$	$\Delta\Delta H_{298}$
										$\Delta \Delta RSE_{SOLV}$	$\Delta \Delta RSE_{SOLV}$	$\Delta \Delta RSE_{SOLV}$
d_1m5mU	-1	1	$\Delta RSE/\Delta BDE$	1.3	3.2	0.0	16.2	16.0	16.0	0.6	0.8	0.9
1m5mU	0	1	$\Delta RSE/\Delta BDE$	1.9	2.4	0.0	6.1	7.1	7.8	0.8	0.6	0.7
d 1m5hmU	1	1		1.4	6.0	0.0	20.1	40.2	40.7	0.6	0.7	1.2
u_minimu	-1	1	AKSE/ABDE	1.4	0.9	0.0	39.1	40.2	40.7	0.0	-0.7	-1.5
1m5hmU	0	1	ΔRSE/ΔBDE	0.9	15.2	0.0	30.8	29.9	29.6	-1.3	-1.4	-1.3
d_1m5fU	-1	1	$\Delta RSE/\Delta BDE$	0.9	3.4	0.0	-3.8	-3.8	-3.8	0.6	0.4	0.3
1	0	1		0.5	25	0.0	0.5	0.2	0.0	0.4	0.6	1.0
1m510	0	1	ARSE/ABDE	0.5	2.5	0.0	0.5	0.2	0.0	-0.4	0.6	1.0
d_1m5dhmU	-1	1	ΔRSE/ΔBDE	5.5	6.0	0.0	40.9	38.6	37.8	8.2	6.5	5.7
1m5dhmU	0	1	$\Delta RSE/\Delta BDE$	-8.7	-1.6	0.0	25.8	25.5	25.2	-5.4	-5.2	-5.1

		-	BDE		Complexation			
5-Sub.	a		DFT			DFT		
	-1	1mC	9mG_1mC	9mG effect	9mG_1mG	C 9mG_1m	$nC \qquad \Delta$	
	1					5-radica	11	
m-	-1	380.5	380.7	0.2	-48.8	-48.6	0.2	
111-	1	389.0	500.7	0.2	-+0.0	-+0.0	0.2	
	-1	507.0						
hm-	0	355.0	357.7	2.8	-49.1	-46.4	2.8	
	1	357.4						
	-1							
f-	0	397.7	396.8	-0.9	-46.4	-47.3	-0.9	
	1	404.3						
	-1							
dhm-	0	304.6	332.2	27.6	-50.2	-22.7	27.6	
	1	358.4						
			BDE		(Complexation		
-					•	Complexation		
5 Sub			CBS			CBS		
5-Sub.	q	1mC	CBS 9mG_1mC	9mG effect	9mG_1mC	CBS 9mG_1mC	Δ	
5-Sub.	q	1mC	CBS 9mG_1mC	9mG effect	9mG_1mC	CBS 9mG_1mC 5-radical	Δ	
5-Sub.	q -1	1mC	CBS 9mG_1mC	9mG effect	9mG_1mC	CBS 9mG_1mC 5-radical	Δ	
5-Sub. m-	q -1 0	1mC 387.5	CBS 9mG_1mC 394.1	9mG effect 6.6	9mG_1mC -39.5	CBS 9mG_1mC 5-radical -32.9	Δ 6.6	
5-Sub. m-	q -1 0 1	1mC 387.5 394.4	CBS 9mG_1mC 394.1	9mG effect 6.6	9mG_1mC -39.5	CBS 9mG_1mC 5-radical -32.9	Δ 6.6	
5-Sub. m-	q 1 0 1 -1	1mC 387.5 394.4	CBS 9mG_1mC 394.1	9mG effect 6.6	9mG_1mC -39.5	CBS 9mG_1mC 5-radical -32.9	Δ 6.6	
5-Sub. m- hm-	q -1 0 1 -1 0 1	1mC 387.5 394.4 367.7 367.4	CBS 9mG_1mC 394.1 373.6	9mG effect 6.6 5.9	9mG_1mC -39.5 -40.5	CBS 9mG_1mC 5-radical -32.9 -34.6	Δ 6.6 5.9	
5-Sub. m- hm-	q -1 -1 0 1 -1 0 1 -1 -1	1mC 387.5 394.4 367.7 367.4	CBS 9mG_1mC 394.1 373.6	9mG effect 6.6 5.9	9mG_1mC -39.5 -40.5	CBS 9mG_1mC 5-radical -32.9 -34.6	Δ 6.6 5.9	
5-Sub. m- hm-	q -1 0 1 -1 0 1 -1 0	1mC 387.5 394.4 367.7 367.4 399.8	CBS 9mG_1mC 394.1 373.6 405.8	9mG effect 6.6 5.9 6.0	9mG_1mC -39.5 -40.5 -39.1	CBS 9mG_1mC 5-radical -32.9 -34.6 -33.1	Δ 6.6 5.9 6.0	
5-Sub. m- hm- f-	q -1 0 1 -1 0 1 -1 0 1 0 1	1mC 387.5 394.4 367.7 367.4 399.8 405.4	CBS 9mG_1mC 394.1 373.6 405.8	9mG effect 6.6 5.9 6.0	9mG_1mC -39.5 -40.5 -39.1	CBS 9mG_1mC 5-radical -32.9 -34.6 -33.1	Δ 6.6 5.9 6.0	
5-Sub. m- hm- f-	q -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 -1	1mC 387.5 394.4 367.7 367.4 399.8 405.4	CBS 9mG_1mC 394.1 373.6 405.8	9mG effect 6.6 5.9 6.0	9mG_1mC -39.5 -40.5 -39.1	CBS 9mG_1mC 5-radical -32.9 -34.6 -33.1	Δ 6.6 5.9 6.0	
5-Sub. m- hm- f- dhm-	q -1 0 1 -1 0 1 -1 0 1 -1 0 0	1mC 387.5 394.4 367.7 367.4 399.8 405.4 322.1	CBS 9mG_1mC 394.1 373.6 405.8 352.4	9mG effect 6.6 5.9 6.0 30.3	9mG_1mC 39.5 40.5 39.1 39.3	CBS 9mG_1mC 5-radical -32.9 -34.6 -33.1 -9.0	Δ 6.6 5.9 6.0 30.3 2.4+27.9	

Table 2.3.1. Effect of base pairing on BDE values.

			BDE		Co	mplexation	
5-Sub.	a		DFT			DFT	1
	1	1mU	9mA_1mU	9mA effect	9mA_1mU	9mA_1mU 5-radical	Δ
	-1	371.4					
m-	0	376.7	377.0	0.3	-33.6	-33.3	0.3
	1						
	-1	324.6					
hm-	0	347.2	348.1	0.9	-36.4	-35.5	0.9
	1						
	-1	386.4					
f-	0	392.5	391.2	-1.4	-35.9	-37.2	-1.4
	1						
	-1	305.0					
11	0	341.2	339.5	-1.7	-36.7	-38.4	-1.7
dhm-	0						
dhm-	1						
dhm-	1		BDE CBS		Со	mplexation CBS	
dhm-	9 0	1mU	BDE CBS 9mA_1mU	9mA effect	Co 9mA_1mU	mplexation CBS 9mA_1mU 5-radical	Δ
dhm-	q -1	1mU 379.4	BDE CBS 9mA_1mU	9mA effect	Co 9mA_1mU	mplexation CBS 9mA_1mU 5-radical	Δ
dhm- 5-Sub. m-	q -1 0	1mU 379.4 381.6	BDE CBS 9mA_1mU 387.9	9mA effect 6.3	Co 	mplexation CBS 9mA_1mU 5-radical -21.3	Δ
dhm- 5-Sub. m-	q -1 0 1	1mU 379.4 381.6	BDE CBS 9mA_1mU 387.9	9mA effect 6.3	Co 	mplexation CBS 9mA_1mU 5-radical -21.3	Δ 6.3
dhm- 5-Sub. m-	q -1 0 1 -1	1mU 379.4 381.6 352.2	BDE CBS 9mA_1mU 387.9	9mA effect 6.3	Co 9mA_1mU -27.6	mplexation CBS 9mA_1mU 5-radical -21.3	Δ 6.3
dhm- 5-Sub. m- hm-	q -1 0 1 -1 0	1mU 379.4 381.6 352.2 359.5	BDE CBS 9mA_1mU 387.9 365.7	9mA effect 6.3 6.2	Co 9mA_1mU -27.6 -28.7	mplexation CBS 9mA_1mU 5-radical -21.3 -22.5	Δ 6.3 6.2
dhm- 5-Sub. m- hm-	q -1 0 1 -1 0 1 1	1mU 379.4 381.6 352.2 359.5	BDE CBS 9mA_1mU 387.9 365.7	9mA effect 6.3 6.2	Co 9mA_1mU -27.6 -28.7	mplexation CBS 9mA_1mU 5-radical -21.3 -22.5	Δ 6.3 6.2
dhm- 5-Sub. m- hm-	q -1 0 1 -1 0 1 -1 -1	1mU 379.4 381.6 352.2 359.5 390.3	BDE CBS 9mA_1mU 387.9 365.7	9mA effect 6.3 6.2	Co 9mA_1mU -27.6 -28.7	mplexation CBS 9mA_1mU 5-radical -21.3 -22.5	Δ 6.3 6.2
dhm- 5-Sub. m- hm-	q -1 0 1 -1 0 1 -1 0 1 -1 0	1mU 379.4 381.6 352.2 359.5 390.3 394.8	BDE CBS 9mA_1mU 387.9 365.7 399.8	9mA effect 6.3 6.2 5.0	Co 9mA_1mU -27.6 -28.7 -29.4	mplexation CBS 9mA_1mU 5-radical -21.3 -22.5 -22.5	Δ 6.3 6.2 5.0
dhm- 5-Sub. m- hm- f-	q -1 0 1 -1 0 1 -1 0 1 -1 0 1	1mU 379.4 381.6 352.2 359.5 390.3 394.8	BDE CBS 9mA_1mU 387.9 365.7 399.8	9mA effect 6.3 6.2 5.0	Co 9mA_1mU -27.6 -28.7 -29.4	mplexation CBS 9mA_1mU 5-radical -21.3 -22.5 -22.5	Δ 6.3 6.2 5.0
dhm- 5-Sub. m- hm- f-	q -1 0 1 -1 0 1 -1 0 1 -1 -1	1mU 379.4 381.6 352.2 359.5 390.3 394.8 329.4	BDE CBS 9mA_1mU 387.9 365.7 399.8	9mA effect 6.3 6.2 5.0	Co 9mA_1mU -27.6 -28.7 -29.4	mplexation CBS 9mA_1mU 5-radical -21.3 -22.5 -22.5	Δ 6.3 6.2 5.0
dhm- 5-Sub. m- hm- f- dhm-	q -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0	1mU 379.4 381.6 352.2 359.5 390.3 394.8 329.4 354.6	BDE CBS 9mA_1mU 387.9 365.7 399.8 362.4	9mA effect 6.3 6.2 5.0 7.8	Co 9mA_1mU -27.6 -28.7 -29.4 -30.8	mplexation CBS 9mA_1mU 5-radical -21.3 -22.5 -24.4 -23.0	Δ 6.3 6.2 5.0 7.8

Table 2.3.2. Effect of base pairing on BDE values.

	Subst	rate	Product	Subs	strate	Product	Comp D	lexation FT	Comp C	lexation BS
5-Sub.	File Name	File Name	File Name	Best str./ same str.	Best str.	Best str.	ΔH^*_{sol}	$\Delta\Delta H^*_{sol}$	ΔH_{sol}^{*}	$\Delta\Delta H^*_{sol}$
	C1	G	G_C1	دود موطق رهو هو	•	نېنې د هونې و _{دو} د و و و و و و د و و و و	-49.6	0.0	-40.4	0.0
	1mC	9mG	9mG_1mC	دود وهو رقو فر رق	0-9 ² 0-9-8-9 3-9-9 3-9-9 3-9-9 3-9-9	من م	-49.4	0.0	-40.1	0.0
m	1m5mC	9mG	9mG_1m5mC	دود وفي قر وفر فر	• • • • • • • • • • • • • • • • • • •	نومو ومحولات مرد مرد محولی محولی محولی محو	-48.8	0.0	-39.5	0.0
hm	1m5hmCh	9mG	9mG_1m5hmCh	نون بخریفی بغیفی	●	900) 2000 - 2000 - 2000 2000 - 2000 2000 - 200 2000 - 200 2000 - 200	-49.1	0.0	-40.5	0.0
f	1m5fCb	9mG	9mG_1m5fC	و میں رقبی قر رقبی قر	• • • • • • • • • • • • • • • • • • •	مين دو موري بقريقي دو بقريقي دفي دفي	-46.4	0.0	-39.1	0.0
dhm	1m5dhmCha	9mG	9mG_1m5dhmC1	دود و فروند رفت فرور رفت د	● ● ↓● ↓● ↓●	947 397 99 397 99 300 90 300 90 30000000000	-50.2	0.0	-39.3	0.0
	1m5caC7_a	9mG	9mG_1m5caC1	دود و دوهوهر دوهود	• • • • • • • • • • • • • • • • • • •	مې کې کې د د کې کې کې د کې کې کې د کې کې د کې	-43.1	0.0	-39.5	0.0
Ca	1m5caC3_b	9mG	9mG_1m5caC1	+3.8	• • • • • • • • • • • • • • • • • • •	من م	-46.9	-3.8		

Table 2.4.1. Structures and Boltzmann averaged complexation enthalpies calculated by SMD(H₂O)/(U)B3LYP-D3/6-31+G(d,p). The best conformer/tautomer in terms of enthalpy is shown ($\Delta\Delta H^*_{sol} = 0.0$), for not the best structures, the relative enthalpy ($\Delta\Delta H^*_{sol} > 0.0$) is assigned below

	Substra	te	Product	Subs	strate	Product	Comp D	lexation FT	Comp	lexation BS
	File Name	File Name	File Name	Best str./ same str.	Best str.	ΔH^*_{sol}	ΔH_{sol}^{*}	$\Delta\Delta H^*_{sol}$	ΔH_{sol}^{*}	$\Delta\Delta H^*_{sol}$
m	5r_1m5mC	9mG	9mG_1mr5mC	دون مېشې شر مېر شر	● 3 ⁰ ● 3 ⁻⁰ 3 ⁰ - 3 ⁰ 3 ⁰ 3 ⁰ 3 ⁰ 3	من محمد المحمو المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد	-48.6	0.0	-32.9	0.0
hm	5r_1m5hmC1c	9mG	9mG_1mr5hmC1	دود و دونشي فر وفو فر رفر	● 4 ● 4 5 0 5 5 0 5 5 0 5 5 0 5	د و دور روه و روم و رو رو و روم و رو رو و روم و رو رو م رو م	-46.4	0.0	-34.6	0.0
f	5r_1m5fCb	9mG	9mG_1mr5fC	• • • • • • • • • • •	●	ن من	-47.3	0.0	-33.1	0.0
	5r_1m5dhmCd9	9mG	9mG_1mr5dhmCt3ss	NEUTRAL	NEUTRAL	NEUTRAL	-22.7	0.0	-9.0	0.0
dhm	5r_1m5dhmCd9	9mG	9mG_1mr5dhmC	NEUTRAL	NEUTRAL	NEUTRAL +34.8 +34.7	+12.1	+34.8		
	5r_1m5dhmCa1	9mG	9mG_1mr5dhmC	+64.2 +62.6	9-9-3 9-9-9-9-9- 9-9-9 9-9-9 9-9-9	+34.8 +34.7	-52.1	+34.8 -64.2 = -29.4	-36.9	+34.7 -62.6 = -27.9

Table 2.4.2. Structures and Boltzmann averaged complexation enthalpies calculated by SMD(H₂O)/(U)B3LYP-D3/6-31+G(d,p). The best conformer/tautomer in terms of enthalpy is shown ($\Delta\Delta H^*_{sol} = 0.0$), for not the best structures, the relative enthalpy ($\Delta\Delta H^*_{sol} > 0.0$) is assigned below

	Substrate	¢	Product	Sub	ostrate	Product	Comp D	lexation DFT	Comp	lexation CBS
5- Sub.	File Name	File Name	File Name	Best str./ same str.	Best str.	ΔH_{sol}^{*}	ΔH^*_{sol}	$\Delta\Delta H^*_{sol}$	ΔH^*_{sol}	$\Delta\Delta H^*_{sol}$
	U14	А	A_U1	میں بھر ھر	ుత్తుత్తుతు పత్తుత్తుతు త్యాత	مېرىمى دەرىمىمەر موقى مۇمۇر مۇرىمى	-36.6	0.0	-29.6	0.0
	1mU3	9mA	9mA_1mU	د و فی د و فی فی رفی	يغ هوه مغربة مغربة مح	ن من	-34.3	0.0	-61.3	0.0
m	1m5mU	9mA	9mA_1mT	د میں قر مغرباتر رفار	يە ھەرە مەرەھىرە مۇرە	دومونون دوموره وقر موه دوهو قر رفر	-33.6	0.0	-27.6	0.0
hm	1m5hmU2	9mA	9mA_1m5hmU	د و هر ور د و هر هر د وه د	ية ويتي موجوعة وم موجوع	نوب و به و مر روب و به و مر روب و مروف و روب و مروف و روب و	-36.4	0.0	-28.7	0.0
	1m5fU3_	9mA	9mA_1m5fU1	دو هو هر وهر هر وهر	, , , , , , , , , , , , , , , , , , ,	ن میں میں اور میں میں میں میں میں میں میں میں میں میں	-35.9	0.0	-29.4	0.0
t	1m5fU3_a	9mA	9mA_1m5fU1	+0.5	, , , , , , , , , , , , , , , , , , ,	ر هوه می موند موجوع می هوه رفوه می رفو	-36.4	-0.5		

Table 2.5.1. Structures and complexation enthalpies calculated by $SMD(H_2O)/(U)B3LYP-D3/6-31+G(d,p)$

dhm	1m5dhmU_a_10	9mA	9mA_1m5dhmU1	و دونو دونه و دونو دونه د	, , , , , , , , , , , , , , , , , , ,	من م	-36.7	0.0	-30.8	0.0
са	1m5caU35_a	9mA	9mA_1m5caU1		موجع په وجو چې موجع	دون پې مې مې مې مې پې مې	-36.7	0.0	-29.1	0.0

Table 2.5.2. Structures and complexation enthalpies calculated by $SMD(H_2O)/(U)B3LYP-D3/6-31+G(d,p)$

	Substrate		Product	Sub	strate	Product	Comp D	lexation DFT	Comp	lexation BS
5- Sub.	File Name	File Name	File Name	Best str./ same str.	ΔH_{sol}^*	$\Delta\Delta H^*_{sol}$	ΔH^*_{sol}	$\Delta\Delta H^*_{sol}$	ΔH^*_{sol}	$\Delta\Delta H^*_{sol}$
m	5r_1m5mU	9mA	9mA_1mr5mU	د و قرق م و قرق رفر	, eg ,egeg ege	دي. دي. هي کې کر ه و ه د ه کې کر ره د	-33.3	0.0	-21.3	0.0
hm	5r_1m5hmU32_b	9mA	9mA_1mr5hmU1	و دو روند روند روند	, * , * , * , * , * , * , *	س موجود و معرفی می موجوع موجود محموم موجود محموم موجود	-35.5	0.0	-22.5	0.0
f	5r_1m5fU3_b	9mA	9mA_1mr5fU	مي شي م رغي شي رغي	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		-37.2	0.0	-24.4	0.0
dhm	5r_1m5dhmU_32_b_a	9mA	9mA_1mr5dhmU_3iss	ون و نوش و باش وشور باش وشور	,, ,, ,, ,, ,,	من من من من من من من من من من من من من من من من	-38.4	0.0	-23.0	0.0

3. Boltzmann Averaged Data

Table 3.1.1. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation)	
(for 1 mol at 1 atm)	

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS//						
	Charge	_	SMD/(U)B3LYP	-D3/6-31+G(d,p)				SMD/(U)B3LYP	-D3/6-31+G(d,p))		
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS	
			solution	gas	solvation	gas	gas	gas	solution	solution	solution	
			H ₂₉₈	H ₂₉₈	ΔH_{SOLV}	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	
					=				+	+	+	
					ΔE_{SOLV}				ΔE_{SOLV}	ΔE_{SOLV}	ΔE_{SOLV}	
CH3-Ph	0	1	-271.4636040	-271.4626275	-0.0009765	765 -270.9115772 -270.9889446 -271.0372150 -270.9125537 -270.9899211 -271.0					-271.0381915	
•CH2-Ph	0	2	-270.8246499	-270.8239369	-0.0007130	-270.2717247	-270.3478077	-270.3952238	-270.2724377	-270.3485207	-270.3959368	

Table 3.2.1. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS//						
	Charge	-	SMD/(U)B3LYP	-D3/6-31+G(d,p)			:	SMD/(U)B3LYP	-D3/6-31+G(d,p))		
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS	
			solution	gas	solvation	gas	gas	gas	solution	solution	solution	
			H_{298}	H ₂₉₈	ΔH_{SOLV}	H ₂₉₈	H ₂₉₈	H_{298}	H ₂₉₈	H ₂₉₈	H ₂₉₈	
					$\Delta E_{SOLV}^{=}$				$^+$ ΔE_{SOLV}	$^+$ ΔE_{SOLV}	$^+$ ΔE_{SOLV}	
С	0	1	-394.9002852	-394.8630216	-0.0372637	-394.1901311	-394.3090823	-394.3824296	-394.2229695	-394.3426726	-394.4163627	
p_C	1	1	-395.3402582	-395.2277152	-0.1125430	-394.5569036	-394.6731181	-394.7449135	-394.6664686	-394.7827477	-394.8546113	
5mC	0	1	-434.1948936	-434.1579944	-0.0368993	-433.4042339	-433.5347888	-433.6154152	-433.4368219	-433.5681545	-433.6491569	
r_5mC	0	2	-433.5537729	-433.5190049	-0.0347681	-432.7621167	-432.8913965	-432.9711715	-432.7924973	-432.9223705	-433.0023986	
p_5mC	1	1	-434.6358882	-434.5276891	-0.1081991	-433.7756603	-433.9036812	-433.9828680	-433.8809986	-434.0090800	-434.0883237	
pr_5mC	1	2	-433.9920718	-433.8838962	-0.1081756	-433.1289290	-433.2555416	-433.3338079	-433.2344797	-433.3611077	-433.4394111	
5hmC	0	1	-509.4145310	-509.3732999	-0.0412311	-508.5223747	-508.6772191	-508.7727253	-508.5592912	-508.7149302	-508.8108203	
r_5hmC	0	2	-508.7831389	-508.7505939	-0.0325450	-507.8864902	-508.0407372	-508.1358034	-507.9218394	-508.0766903	-508.1717891	
p_5hmC	1	1	-509.8541340	-509.7381814	-0.1159526	-508.8898892	-509.0421492	-509.1361814	-509.0028449	-509.1550559	-509.2491150	
pr_5hmC	1	2	-509.2216057	-509.1137582	-0.1078474	-508.2590957	-508.4097608	-508.5027522	-508.3653216	-508.5164837	-508.6096518	
5fC	0	1	-508.2303128	-508.1940904	-0.0362224	-507.3450550	-507.4973134	-507.5911362	-507.3773748	-507.5303044	-507.6244223	
r_5fC	0	2	-507.5827454	-507.5508132	-0.0319322	-506.7010189	-506.8516567	-506.9444084	-506.7288353	-506.8800087	-506.9729640	
p_5fC	1	1	-508.6646309	-508.5456219	-0.1190090	-507.6996487	-507.8490624	-507.9412490	-507.8176793	-507.9671595	-508.0594140	
pr_5fC	1	2	-508.0144230	-507.8973217	-0.1171014	-507.0518565	-507.1996266	-507.2906860	-507.1667467	-507.3145491	-507.4056583	
5dhmC	0	1	-584.6470168	-584.6006968	-0.0463199	-583.6539392	-583.8329866	-583.9434257	-583.6966148	-583.8764511	-583.9872316	
r_5dhmC	0	2	-584.0352135	-584.0033428	-0.0318706	-583.0451685	-583.2238161	-583.3339080	-583.0768619	-583.2553883	-583.3655281	
p_5dhmC	1	1	-585.0856230	-584.9676398	-0.1179832	-584.0234104	-584.1995284	-584.3083261	-584.1393633	-584.3154649	-584.4242682	
pr_5dhmC	1	2	-584.4548875	-584.3406585	-0.1142290	-583.3897198	-583.5645822	-583.6723995	-583.5060589	-583.6754214	-583.7832898	
L												
d_5caC	-1	1	-583.0421912	-582.9277882	-0.1144029	-581.9670249	-582.1509334	-582.2635259	-582.0814923	-582.2653868	-582.3779745	
5caC	0	1	-583.4839942	-583.4461629	-0.0378314	-582.5020037	-582.6786761	-582.7875733	-582.5348828	-582.7121301	-582.8213558	
p_5caC	1	1	-583.9180477	-583.8023071	-0.1157405	-582.8605021	-583.0342190	-583.1414065	-582.9753375	-583.1490837	-583.2563229	

 Table 3.2.2. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS//						
	Charge		SMD/(U)B3LYP	P-D3/6-31+G(d,p)				SMD/(U)B3LYP	-D3/6-31+G(d,p)			
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS	
			solution	gas	solvation	gas	gas	gas	solution	solution	solution	
			H ₂₉₈	H ₂₉₈	ΔH_{SOLV}	H ₂₉₈	H ₂₉₈	H_{298}	H_{298}	H_{298}	H ₂₉₈	
									+	+	+	
1.0	0	1	424 1929900	424 14021 (7	AE _{SOLV}	422 2005 446	422 5012512	122 (020 100	ΔE _{SOLV}	ΔE _{SOLV}	AE _{SOLV}	
ImC	0	1	-434.1828809	-434.148316/	-0.0345642	-433.3905446	-433.5213513	-433.6020400	-433.4251088	-433.5559155	-433.6366042	
p_1mC	I	1	-434.6242995	-434.5186796	-0.1056199	-433.7665914	-433.8941/13	-433.9731067	-433.8691372	-433.9968475	-434.0/586/9	
1m5mC	0	1	-473 4772959	-473 4425587	-0.0347372	-472 6041522	-472.7465964	-472.8346048	-472,6388893	-472,7813336	-472,8693420	
r 1m5mC	0	2	-472.8364535	-472.8051645	-0.0312890	-471.9632832	-472.1042371	-472.1912405	-471,9945722	-472.1355261	-472.2225295	
p 1m5mC	1	1	-473.9200379	-473.8181780	-0.1018599	-472.9851439	-473.1244898	-473.2107888	-473.0838835	-473.2233626	-473.3097423	
pr 1m5mC	1	2	-473.2759310	-473.1745921	-0.1013389	-472.3383798	-472.4763556	-472.5617533	-472.4367674	-472.5748317	-472.6602941	
. _												
1m5hmC	0	1	-548.6971223	-548.6575170	-0.0396054	-547.7218813	-547.8886965	-547.9915901	-547.7615266	-547.9286475	-548.0312196	
r_1m5hmC	0	2	-548.0659799	-548.0363757	-0.0296042	-547.0917352	-547.2572641	-547.3593939	-547.1239755	-547.2898562	-547.3919294	
p_1m5hmC	1	1	-549.1375754	-549.0283743	-0.1092011	-548.0988038	-548.2626612	-548.3635893	-548.2049976	-548.3599575	-548.4700231	
pr_1m5hmC	1	2	-548.5055028	-548.4040235	-0.1014793	-547.4682357	-547.6302613	-547.7303740	-547.5678811	-547.7232318	-547.8308546	
1m5fC	0	1	-547.5142059	-547.4808442	-0.0333618	-546.5472962	-546.7113818	-546.8125323	-546.5806589	-546.7447450	-546.8458955	
r_1m5fC	0	2	-546.8667838	-546.8389978	-0.0277859	-545.9043619	-546.0666441	-546.1665986	-545.9321438	-546.0944334	-546.1943918	
p_1m5fC	1	1	-547.9493050	-547.8388851	-0.1104199	-546.9105186	-547.0713535	-547.1707118	-547.0207721	-547.1816715	-547.2810553	
pr_1m5fC	1	2	-547.2993792	-547.1909313	-0.1084479	-546.2627613	-546.4218568	-546.5199468	-546.3699912	-546.5294036	-546.6274083	
1m5dhmC	0	1	-623.9295773	-623.8869992	-0.0425780	-622.8556760	-623.0464682	-623.1642105	-622.8988207	-623.0896872	-623.2074402	
r_1m5dhmC	0	2	-623.3176379	-623.2882291	-0.0294087	-622.2491941	-622.4392134	-622.5564204	-622.2782433	-622.4682335	-622.5855381	
p_1m5dhmC	1	1	-624.3695957	-624.2583499	-0.1112459	-623.2328294	-623.4206865	-623.5361777	-623.3419509	-623.5295365	-623.6454706	
pr_1m5dhmC	1	2	-623.7371530	-623.6294700	-0.1076830	-622.5975675	-622.7837497	-622.8986641	-622.7067502	-622.8927674	-623.0076679	
d_1m5caC	-1	1	-622.3248894	-622.2117856	-0.1131038	-621.1709784	-621.3658121	-621.4853136	-621.2840822	-621.4789159	-621.5984174	
1m5caC	0	1	-622.7680558	-622.7321466	-0.0359092	-621.7033812	-621.8918541	-622.0080775	-621.7379119	-621.9264868	-622.0424962	
p_1m5caC	1	1	-623.2027056	-623.0947087	-0.1079969	-622.0706377	-622.2557768	-622.3701232	-622.1784518	-622.3638313	-622.4780510	

Table 3.2.3. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITH the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS //						
	Charge	_	SMD/(U)B3LYP	-D3/6-31+G(d,p)				SMD/(U)B3LYP	-D3/6-31+G(d,p))		
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS	
			solution	gas	solvation	gas	gas	gas	solution	solution	solution	
			H ₂₉₈	H_{298}	ΔH_{SOLV}	H_{298}	H ₂₉₈	H_{298}	H_{298}	H_{298}	H ₂₉₈	
					=				+	+	+	
					ΔE_{SOLV}				ΔE_{SOLV}	ΔE_{SOLV}	ΔE_{SOLV}	
1m5mC	0	1	-549.9076660	-549.8669149	-0.0407511	-548.9244369	-549.0936364	-549.1979438	-548.9662454	-549.1355689	-549.2398756	
r_1m5mC	0	2	-549.2666813	-549.2302670	-0.0364143	-548.2808642	-548.4510728	-548.5577822	-548.3254747	-548.4894550	-548.5941195	
p_1m5mC	1	1	-550.3505541	-550.2550684	-0.0954857	-549.3160046	-549.4811336	-549.5833101	-549.4125569	-549.5778461	-549.6800806	
pr_1m5mC	1	2	-549.7071269	-549.6111720	-0.0959549	-548.6690705	-548.8327643	-548.9340105	-548.7657620	-548.9296099	-549.0308979	
1m5hmC	0	1	-625.1272570	-625.0831647	-0.0440923	-624.0418193	-624.2358525	-624.3552840	-624.0889121	-624.2822544	-624.4014369	
r_1m5hmC	0	2	-624.4961903	-624.4612101	-0.0349802	-623.4133832	-623.6048535	-623.7228807	-623.4536939	-623.6456273	-623.7636258	
p_1m5hmC	1	1	-625.5691043	-625.4671266	-0.1019777	-624.4316752	-624.6211194	-624.7381787	-624.5346008	-624.7244429	-624.8415118	
pr_1m5hmC	1	2	-624.9374176	-624.8394839	-0.0979337	-623.7981516	-623.9860266	-624.1020722	-623.8967259	-624.0852762	-624.2014925	
	-1	2										
1m5fC	0	1	-623.9436718	-623.9046318	-0.0390400	-622.8661426	-623.0573583	-623.1749587	-622.9071879	-623.0981599	-623.2156144	
r_1m5fC	0	2	-623.2930148	-623.2581321	-0.0348827	-622.2190376	-622.4082071	-622.5244705	-622.2560625	-622.4450125	-622.5611380	
p_1m5fC	1	1	-624.3813547	-624.2789275	-0.1024272	-623.2471137	-623.4337169	-623.5489590	-623.3499009	-623.5367215	-623.6520588	
pr_1m5fC	1	2	-623.7316709	-623.6318829	-0.0997881	-622.5990868	-622.7839151	-622.8979599	-622.7001758	-622.8851139	-622.9991651	
	-1	2										
1m5dhmC	0	1	-700.3599577	-700.3127200	-0.0472378	-699.1758447	-699.3940082	-699.5283679	-699.2274677	-699.4440190	-699.5776351	
r_1m5dhmC	0	2	-699.7474408	-699.7143130	-0.0331278	-698.5725055	-698.7889948	-698.9223577	-698.6060472	-698.8224703	-698.9550341	
p_1m5dhmC	1	1	-700.8005960	-700.6941548	-0.1064412	-699.5635963	-699.7771410	-699.9090081	-699.6715418	-699.8851161	-700.0157566	
pr_1m5dhmC	1	2	-700.1720863	-700.0663363	-0.1057500	-698.9283144	-699.1405597	-699.2715892	-699.0372466	-699.2493592	-699.3801233	
d_1m5caC	-1	1	-698.7562066	-698.6478637	-0.1083428	-697.5033405	-697.5033405	-697.8599491	-697.6125406	-697.6125406	-697.9692036	
1m5caC	0	1	-699.1990162	-699.1557079	-0.0433083	-698.0242067	-698.2387628	-698.3711174	-698.0662340	-698.2806319	-698.4130259	
p_1m5caC	1	1	-699.6356477	-699.5341491	-0.1014986	-698.4067503	-698.6176297	-698.7478558	-698.5084476	-698.7195556	-698.8498601	

Table 3.3.1. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS //								
	Charge	-	SMD/(U)B3LYP	-D3/6-31+G(d,p)		SMD/(U)B3LYP-D3/6-31+G(d,p)								
	-			Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS			
			solution	gas	solvation	gas	gas	gas	solution	solution	solution			
			H_{298}	H_{298}	ΔH_{SOLV}	H_{298}	H_{298}	H_{298}	H_{298}	H_{298}	H ₂₉₈			
					$\Delta E_{SOLV}^{=}$				$^+$ ΔE_{SOLV}	$^+$ ΔE_{SOLV}	$^+$ ΔE_{SOLV}			
d_U	-1	1	-414.3302851	-414.2305472	-0.0997379	-413.5342211	-413.6649952	-413.7449751	-413.6338620	-413.7645658	-413.8445978			
U	0	1	-414.7864773	-414.7597206	-0.0267567	-414.0749408	-414.2002966	-414.2775394	-414.1016974	-414.2270532	-414.3042960			
d_5mU	-1	1	-453.6242205	-453.5242098	-0.1000107	-452.7479646	-452.8899348	-452.9770540	-452.8478512	-452.9899794	-453.0773081			
dr_5mU	-1	2	-452.9871219	-452.8933095	-0.0938124	-452.1131348	-452.2536052	-452.3397274	-452.2067898	-452.3472763	-452.4334975			
5mU	0	1	-454.0822391	-454.0565933	-0.0256458	-453.2910403	-453.4278916	-453.5124007	-453.3166861	-453.4535374	-453.5380465			
r_5mU	0	2	-453.4423096	-453.4191907	-0.0231189	-452.6509246	-452.7863003	-452.8698648	-452.6740434	-452.8094191	-452.8929836			
d_5hmU	-1	1	-528.8462865	-528.7464771	-0.0998094	-527.8720926	-528.0389514	-528.1412151	-527.9718540	-528.1390391	-528.2415041			
dr_5hmU	-1	2	-528.2234248	-528.1251554	-0.0982694	-527.2438983	-527.4086343	-527.5097383	-527.3404187	-527.5059678	-527.6073686			
5hmU	0	1	-529.3010986	-529.2692072	-0.0318914	-528.4062670	-528.5678802	-528.6674695	-528.4387208	-528.6002476	-528.6997884			
r_5hmU	0	2	-528.6731301	-528.6490765	-0.0240536	-527.7816625	-527.9411291	-528.0394298	-527.8057054	-527.9651688	-528.0634690			
d_5fU	-1	1	-527.6652465	-527.5749671	-0.0902794	-526.7038296	-526.8672676	-526.9675542	-526.7949608	-526.9584859	-527.0586998			
dr_5fU	-1	2	-527.0213802	-526.9332749	-0.0881052	-526.0618171	-526.2235889	-526.3227121	-526.1501925	-526.3120103	-526.4111237			
5fU	0	1	-528.1109990	-528.0812198	-0.0297792	-527.2218447	-527.3802054	-527.4778449	-527.2530378	-527.4113322	-527.5088291			
r_5fU	0	2	-527.4656240	-527.4350570	-0.0305670	-526.5759266	-526.7324818	-526.8288189	-526.6065636	-526.7631184	-526.8594524			
d_5dhmU	-1	1	-604.0794988	-603.9651873	-0.1143115	-602.9964660	-603.1883838	-603.3058737	-603.1111220	-603.3028611	-603.4202683			
dr_5dhmU	-1	2	-603.4669081	-603.3642873	-0.1026208	-602.3866879	-602.5766077	-602.6931029	-602.4891356	-602.6790110	-602.7954745			
5dhmU	0	1	-604.5343668	-604.4965356	-0.0378312	-603.5380649	-603.7237970	-603.8382452	-603.5759197	-603.7615766	-603.8759492			
r_5dhmU	0	2	-603.9101616	-603.8848621	-0.0252996	-602.9199055	-603.1039447	-603.2173557	-602.9452461	-603.1292794	-603.2426678			
dd_5caU	-2	1	-602.4666676	-602.1558041	-0.3108635	-601.1754808	-601.3720381	-601.4915245	-601.4810899	-601.6788945	-601.7990454			
d_5caU	-1	1	-602.9248548	-602.8357105	-0.0891443	-601.8713919	-602.0591596	-602.1744431	-601.9606827	-602.1482991	-602.2635053			
5caU	0	1	-603.3699158	-603.3355081	-0.0344077	-602.3819889	-602.5647503	-602.6773400	-602.4164043	-602.5991654	-602.7117546			

Table 3.3.2. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl	DLPNO-CCSD(T)/BASIS //										
	Charge	-	SMD/(U)B3LYP	-D3/6-31+G(d,p)		SMD/(U)B3LYP-D3/6-31+G(d,p)							
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS		
			solution	gas	solvation	gas	gas	gas	solution	solution	solution		
			H ₂₉₈	H_{298}	ΔH_{SOLV}	H_{298}	H_{298}	H_{298}	H_{298}	H ₂₉₈	H ₂₉₈		
					=				+	+	+		
					ΔE_{SOLV}				ΔE_{SOLV}	ΔE_{SOLV}	ΔE_{SOLV}		
d_1mU	-1	1	-453.6090357	-453.4905081	-0.1185276	-452.7157914	-452.8584425	-452.9456590	-452.8343190	-452.9769701	-453.0641866		
1mU	0	1	-454.0697788	-454.0456597	-0.0241191	-453.2629161	-453.4165035	-453.4838306	-453.2911537	-453.4406225	-453.5122603		
d_1m5mU	-1	1	-492.9030190	-492.7858194	-0.1171996	-491.9316243	-492.0853931	-492.1797288	-492.0488239	-492.2025928	-492.2969285		
dr_1m5mU	-1	2	-492.2656226	-492.1544902	-0.1111324	-491.2964336	-491.4486981	-491.5420425	-491.4075660	-491.5598305	-491.6531749		
1m5mU	0	1	-493.3647614	-493.3421536	-0.0226078	-492.4957950	-492.6438314	-492.7353695	-492.5184028	-492.6664392	-492.7579773		
r_1m5mU	0	2	-492.7253469	-492.7053748	-0.0199721	-491.8562154	-492.0028104	-492.0934183	-491.8761875	-492.0227825	-492.1133904		
d_1m5hmU	-1	1	-568.1248431	-568.0114126	-0.1134304	-567.0594157	-567.2378106	-567.3471854	-567.1727954	-567.3511701	-567.4605404		
dr_1m5hmU	-1	2	-567.5052927	-567.4084798	-0.0968129	-566.4451210	-566.6219313	-566.7304575	-566.5424904	-566.7188535	-566.8271609		
1m5hmU	0	1	-568.5839058	-568.5549199	-0.0289859	-567.6110754	-567.7838892	-567.8905119	-567.6407342	-567.8134559	-567.9200324		
r_1m5hmU	0	2	-567.9557329	-567.9350639	-0.0206690	-566.9867507	-567.1575122	-567.2629009	-567.0073922	-567.1783493	-567.2838701		
d_1m5fU	-1	1	-566.9402439	-566.8323004	-0.1079435	-565.8814191	-566.0568917	-566.1644979	-565.9906179	-566.1660763	-566.2735195		
dr_1m5fU	-1	2	-566.2971239	-566.1880636	-0.1090603	-565.2366686	-565.4103166	-565.5165803	-565.3457239	-565.5193701	-565.6256291		
1m5fU	0	1	-567.3947807	-567.3681272	-0.0266536	-566.4275579	-566.5971494	-566.7018398	-566.4555113	-566.6250569	-566.7296194		
r_1m5fU	0	2	-566.7493358	-566.7219185	-0.0274173	-565.7813798	-565.9491405	-566.0525071	-565.8089080	-565.9766694	-566.0800324		
d_1m5dhmU	-1	1	-643.3610219	-643.2472046	-0.1138173	-642.1993575	-642.4018710	-642.5261223	-642.3133462	-642.5157907	-642.6399972		
dr_1m5dhmU	-1	2	-642.7489352	-642.6483947	-0.1005405	-641.5907117	-641.7916211	-641.9150794	-641.6909511	-641.8919296	-642.0152896		
1m5dhmU	0	1	-643.8179202	-643.7832937	-0.0346265	-642.7436965	-642.9406583	-643.0621544	-642.7782553	-642.9751516	-643.0965932		
r_1m5dhmU	0	2	-643.1920155	-643.1699588	-0.0220567	-642.1258227	-642.3210711	-642.4414893	-642.1465430	-642.3418437	-642.4623053		
dd_1m5caU	-2	1	-641.7428765	-641.4092049	-0.3336716	-640.3465100	-640.5554838	-640.6825624	-640.6801816	-640.8891554	-641.0162340		
d_1m5caU	-1	1	-642.2051778	-642.1033062	-0.1018715	-641.0595058	-641.2588416	-641.3812199	-641.1612901	-641.3605782	-641.4829313		
1m5caU	0	1	-642.6539236	-642.6228380	-0.0310856	-641.5881574	-641.7821900	-641.9018553	-641.6192513	-641.8132840	-641.9329493		

 Table 3.3.3. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITH the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS //							
	Charge	-	SMD/(U)B3LYP	-D3/6-31+G(d,p)		SMD/(U)B3LYP-D3/6-31+G(d,p)							
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS		
			solution	gas	solvation	gas	gas	gas	solution	solution	solution		
			H ₂₉₈	H_{298}	ΔH_{SOLV}	H_{298}	H_{298}	H_{298}	H_{298}	H_{298}	H_{298}		
					=				+	+	+		
					ΔE_{SOLV}				ΔE_{SOLV}	ΔE_{SOLV}	ΔE_{SOLV}		
d_1m5mU	-1	1	-569.3348997	-569.2219672	-0.1129324	-568.2632957	-568.4436454	-568.5542013	-568.3765561	-568.5569261	-568.6674824		
dr_1m5mU	-1	2	-568.6970106	-568.5894231	-0.1075875	-567.6270007	-567.8059250	-567.9155107	-567.7350626	-567.9138751	-568.0234002		
1m5mU	0	1	-569.7939381	-569.7627595	-0.0311786	-568.8126939	-568.9876531	-569.0956531	-568.8447766	-569.0196091	-569.1274253		
r_1m5mU	0	2	-569.1538187	-569.1250783	-0.0287405	-568.1729792	-568.3460866	-568.4529187	-568.2022736	-568.3757141	-568.4825881		
d_n1m5hmU	-1	1	-644.5572704	-644.4458597	-0.1114107	-643.3892885	-643.5944376	-643.7200997	-643.5024416	-643.7069231	-643.8323433		
dr_1m5hmU	-1	2	-643.9372036	-643.8402962	-0.0969074	-642.7743373	-642.9774685	-643.1020951	-642.8719039	-643.0748741	-643.1994606		
1m5hmU	0	1	-645.0149351	-644.9802946	-0.0346405	-643.9333504	-644.1323891	-644.2550638	-643.9690504	-644.1680957	-644.2907691		
r_1m5hmU	0	2	-644.3864266	-644.3546353	-0.0317914	-643.2998748	-643.4972239	-643.6187826	-643.3361928	-643.5335344	-643.6550878		
d_1m5fU	-1	1	-643.3712968	-643.2662239	-0.1050729	-642.2113012	-642.4134043	-642.5372039	-642.3180585	-642.5200915	-642.6437394		
dr_1m5fU	-1	2	-642.7278177	-642.6206776	-0.1071401	-641.5656541	-641.7659462	-641.8884199	-641.6729242	-641.8732331	-641.9957408		
1m5fU	0	1	-643.8235312	-643.7908247	-0.0327065	-642.7485889	-642.9443490	-643.0650163	-642.7813633	-642.9779151	-643.0988171		
r_1m5fU	0	2	-643.1778808	-643.1436697	-0.0342112	-642.1004619	-642.2945100	-642.4138991	-642.1349118	-642.3292804	-642.4488595		
d_1m5dhmU	-1	1	-719.7939418	-719.6814864	-0.1124554	-718.5299851	-718.7581544	-718.8982553	-718.6446181	-718.8728027	-719.0129127		
dr_1m5dhmU	-1	2	-719.1797571	-719.0803975	-0.0993596	-717.9186100	-718.1460244	-718.2856456	-718.0191084	-718.2464727	-718.3860526		
1m5dhmU	0	1	-720.2478560	-720.2070818	-0.0407743	-719.0638204	-719.2868344	-719.4242934	-719.1064785	-719.3295390	-719.4670096		
r_1m5dhmU	0	2	-719.6252724	-719.5943447	-0.0309276	-718.4456930	-718.6671254	-718.8036029	-718.4768312	-718.6981965	-718.8346812		
dd_1m5caU	-2	1	-718.1754864	-717.8586859	-0.3168004	-716.6926733	-716.9274261	-717.0704724	-717.0103045	-717.2450355	-717.3880003		
d_1m5caU	-1	1	-718.6363203	-718.5340537	-0.1022665	-717.3630599	-717.5901115	-717.7293293	-717.4856701	-717.7128186	-717.8520714		
1m5caU	0	1	-719.0824336	-719.0473340	-0.0350996	-717.9100384	-718.1302493	-718.2659196	-717.9454482	-718.1661159	-718.3020095		

Table 3.4.1. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS//						
	Charge	-	SMD/(U)B3LYP	-D3/6-31+G(d,p)				SMD/(U)B3LYP	-D3/6-31+G(d,p)			
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS	
			solution	gas	solvation	gas	gas	gas	solution	solution	solution	
			H ₂₉₈	H ₂₉₈	ΔH _{SOLV}	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	
					$\Delta E_{SOLV}^{=}$				ΔE_{SOLV}^+	ΔE_{SOLV}	ΔE_{SOLV}^+	
G_5mC	0	1	-976.7341745	-976.6831386	-0.0510358	-975.0015105	-975.2944940	-975.4756601	-975.0525505	-975.3455323	-975.5266977	
G_r5mC	0	2	-976.0928486	-976.0437996	-0.0490490	-974.3566246	-974.6481058	-974.8282631	-974.4056736	-974.6971547	-974.8773120	
	1	1										
	1	2										
G_5hmC	0	1	-1051.9532312	-1051.8941581	-0.0590731	-1050.1156746	-1050.4331207	-1050.6292241	-1050.1747477	-1050.4921938	-1050.6882972	
G_r5hmC	0	2	-1051.3197880	-1051.2640915	-0.0556965	-1049.4783334	-1049.7940234	-1049.9889830	-1049.5340300	-1049.8497199	-1050.0446795	
	1	1										
	1	2										
G_5fC	0	1	-1050.7691449	-1050.7142501	-0.0548947	-1048.9385966	-1049.2531381	-1049.4473908	-1048.9934923	-1049.3080339	-1049.5022865	
G_r5fC	0	2	-1050.1216451	-1050.0727206	-0.0489245	-1048.2940078	-1048.6066209	-1048.7995810	-1048.3429392	-1048.6555538	-1048.8485148	
	1	1										
	l	2										
C 5 thur C	0	1	1107 19(7512	1107 10(0700	0.000012	1125 251 4799	1125 5028502	1125 9027910	1105 2101 (04	1105 (52540)	1105.9644604	
G_5dhmC	0	1	-112/.180/513	-1127.1260700	-0.0606813	-1125.2514788	-1125.5928592	-1125.8037810	-1125.3121604	-1125.0535400	-1125.8044024	
G_roanmC	0	2	-1120.3038232	-1120.4930439	-0.0081//2	-1124.0113301	-1124.9520900	-1123.1024145	-1124.0799228	-1125.0200031	-1125.2510013	
	1	1										
	1	2										
	1	1										
G 5caC	-1	1	-1126 0215908	-1125 9664601	-0.0551307	-1124 0953731	-1124 4342010	-1124 6436063	-1124 1506462	-1124 4895635	-1124 6988755	
	1	1	1120.0215708	1123.700+001	0.0551507	1127.0755751	1124.4342919	1124.0450005	1124.1500402	1124.4075055	1124.0700733	

Table 3.4.2. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS//							
	Charge	_	SMD/(U)B3LYP	-D3/6-31+G(d,p)		SMD/(U)B3LYP-D3/6-31+G(d,p)							
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS		
			solution	gas	solvation	gas	gas	gas	solution	solution	solution		
			H ₂₉₈	H ₂₉₈	ΔH_{SOLV}	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈		
					=				+	+	+		
					ΔE_{SOLV}				ΔE_{SOLV}	ΔE_{SOLV}	ΔE_{SOLV}		
9mG_1m5mC	0	1	-1055.3009467	-1055.2560800	-0.0448667	-1053.4130116	-1053.7281926	-1053.9233484	-1053.4578783	-1053.7730593	-1053.9682151		
9mG_1mr5mC	0	2	-1054.6600169	-1054.6171231	-0.0428938	-1052.7681072	-1053.0818261	-1053.2759935	-1052.8110010	-1053.1247199	-1053.3188873		
	1	1											
	1	2											
9mG_1m5hmC	0	1	-1130.5208937	-1130.4686795	-0.0522143	-1128.5283412	-1128.8679885	-1129.0781160	-1128.5807377	-1128.9203706	-1129.1304829		
9mG_1mr5hmC	0	2	-1129.8887011	-1129.8374166	-0.0512845	-1127.8900139	-1128.2284384	-1128.4375782	-1127.9413623	-1128.2798089	-1128.4889495		
	1	1											
	1	2											
9mG_1m5fC	0	1	-1129.3369215	-1129.2881529	-0.0487686	-1127.3505999	-1127.6874995	-1127.8958386	-1127.3993684	-1127.7362680	-1127.9446071		
9mG_1mr5fC	0	2	-1128.6898606	-1128.6471047	-0.0427559	-1126.7061209	-1127.0410529	-1127.2480704	-1126.7488768	-1127.0838088	-1127.2908263		
	1	1											
	1	2											
0.01.511.0	0	1	1005 8508640	1205 (002045	0.0540.004	1202 ((20000	1204.02/7040	1004.0517(10	1000 010 (505	1204 00120 65	1004 00 (00 (0		
9mG_1m5dhmC	0	1	-1205./53/640	-1205.6993945	-0.0543694	-1203.6630990	-1204.026/840	-1204.251/613	-1203./1/6535	-1204.0812965	-1204.3062363		
9mG_1mr5dhmC	0	2	-1205.1313186	-1205.0706569	-0.0606618	-1203.0213084	-1203.3846601	-1203.6092433	-1203.0851/01	-1203.4483400	-1203.6727799		
	1	1											
	1	2											
	1	1											
0mC 1m5acC	-1	1	1204 5805406	1204 5407209	0.0499109	1202 5077052	1202 8600270	1202 0022007	1202 5567961	1202 0190060	1202 1412744		
9mG_1m5caC	1	1	-1204.3893406	-1204.3407208	-0.0488198	-1202.3077953	-1202.8090270	-1203.0923997	-1202.3307861	-1202.9180069	-1203.1413/44		
	1	1			1								

Table 3.5.1. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl	DLPNO-CCSD(T)/BASIS//										
	Charge	· ·	SMD/(U)B3LYP	-D3/6-31+G(d,p)		SMD/(U)B3LYP-D3/6-31+G(d,p)							
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS		
			solution	gas	solvation	gas	gas	gas	solution	solution	solution		
			H ₂₉₈	H ₂₉₈	ΔH _{SOLV}	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈	H ₂₉₈		
					=				+	+	+		
					ΔE_{SOLV}				ΔE_{SOLV}	ΔE_{SOLV}	ΔE_{SOLV}		
	-1	1											
	-1	2											
A_T	0	1	-921.3653902	-921.3252279	-0.0401623	-919.7352227	-920.0092200	-920.1787687	-919.7753877	-920.0493849	-920.2189334		
A_r5mU	0	2	-920.7256811	-920.6879801	-0.0377010	-919.0934326	-919.3658493	-919.5343713	-919.1311408	-919.4035571	-919.5720788		
	-1	1											
	-1	2	005 505 5505	004 5000544	0.0466074	0040546400	0051500550	005 00 10 50 1	00400000	0.05 10 5050 5	007 001 7 170		
A_5hmU	0	1	-996.5856637	-996.5389766	-0.0466871	-994.8516122	-995.1502773	-995.3348524	-994.8983059	-995.1969/06	-995.3815453		
A_r5hmU	0	2	-995.9568193	-995.9173163	-0.0395030	-994.2236198	-994.5201135	-994.7033791	-994.2631275	-994.5596186	-994.7428837		
	1	1											
	-1	1											
A 5fU	-1	2	005 2050642	005 2512242	0.0438402	002 6670152	002 0625700	004 1452882	002 7122252	004 0077561	004 1002128		
A_5fU	0	2	-995.3950043	-995.5512242	-0.0438402	-993.0070133	-993.9023799	-994.1432882	-993.7122333	-994.0077301	-994.1903128		
A_1510	0		-774.7477143	-774.7050950	-0.0442207	-775.0170433	-775.5154705	-775.4740142	-775.0042510	-775.5570701	-775.5572024		
	-1	1											
	-1	2											
A 5dhmU	0	1	-1071.8191427	-1071.7661888	-0.0529539	-1069.9834224	-1070.3061551	-1070.5055302	-1070.0363990	-1070.3591300	-1070.5585032		
A r5dhmU	0	2	-1071.1938224	-1071.1519910	-0.0418314	-1069.3607957	-1069.6818303	-1069.8801782	-1069.4023834	-1069.7234179	-1069.9217658		
	-2	1											
	-1	1											
A_5caU	0	1	-1070.6545301	-1070.6061163	-0.0484138	-1068.8275199	-1069.1474484	-1069.3450985	-1068.8761504	-1069.1960453	-1069.3936675		

Table 3.5.2. The Boltzmann averaged enthalpies calculated at the (U)B3LYP-D3 and DLPNO-CCSD(T) level of theory for the systems WITHOUT the addition of explicit water. (Quasi-Harmonic Approximation) (for 1 mol at 1 atm)

Molecule	Net	Multipl				DLPNO-CCSD(T)/BASIS//							
	Charge	•	SMD/(U)B3LYP	-D3/6-31+G(d,p)		SMD/(U)B3LYP-D3/6-31+G(d,p)							
				Single Point Wihtout SMD		cc-pVTZ	cc-pVQZ	CBS	cc-pVTZ	cc-pVQZ	CBS		
			solution	gas	solvation	gas	gas	gas	solution	solution	solution		
			H ₂₉₈	H ₂₉₈	ΔH_{SOLV}	H ₂₉₈	H ₂₉₈	H_{298}	H_{298}	H ₂₉₈	H ₂₉₈		
					$\Delta E_{SOLV}^{=}$				$^+$ ΔE_{SOLV}	$^+$ ΔE_{SOLV}	$^+$ ΔE_{SOLV}		
	-1	1											
	-1	2											
9mA_1mT	0	1	-999.9325973	-999.8984216	-0.0341757	-998.1464665	-998.4428088	-998.6264134	-998.1806422	-998.4769845	-998.6605891		
9mA_1mr5mU	0	2	-999.2930540	-999.2613811	-0.0316729	-997.5045858	-997.7993603	-997.9819359	-997.5362587	-997.8310332	-998.0136088		
	-1	1											
	-1	2											
9mA_1m5hmU	0	1	-1075.1527932	-1075.1123445	-0.0404487	-1073.2629440	-1073.5839952	-1073.7826483	-1073.3033927	-1073.6244439	-1073.8230970		
9mA_1mr5hmU	0	2	-1074.5242718	-1074.4909980	-0.0332738	-1072.6350663	-1072.9539559	-1073.1512910	-1072.6683403	-1072.9872301	-1073.1845653		
	-1	1											
0m A 1m5fU	-1	2	1072 0624700	1072 0250779	0.0274022	1072 070 4714	1072 2074552	1072 5042600	1072 1192222	1072 4262862	1072 6220479		
9mA_1mr5fU	0	2	-1073.9034709	1073 2804296	-0.0374932	-1072.0794714	-1072.3974333	-1072.3942000	-1072.1183323	-1072.4302802	-1072.0329478		
<u></u>	0		-10/3.3103490	-10/3.2004290	-0.0301202	-10/1.451001/	-10/1./4/0003	-10/1.2432440	-10/1.4/00011	-10/1./000033	-10/1.2014399		
	-1	1											
	-1	2											
9mA 1m5dhmU	0	1	-1150.3869361	-1150.3405320	-0.0464041	-1148.3953454	-1148.7404759	-1148.9539482	-1148.4418448	-1148.7869777	-1149.0004468		
9mA 1mr5dhmU	0	2	-1149.7616822	-1149.7253512	-0.0363310	-1147.7719723	-1148.1154290	-1148.3278605	-1147.8072899	-1148.1507466	-1148.3631781		
	-2	1											
	-1	1											
9mA_1m5caU	0	1	-1149.2229189	-1149.1809583	-0.0419606	-1147.2400838	-1147.5824475	-1147.7941995	-1147.2820456	-1147.6244087	-1147.8361604		

4. The pH-Dependence of the Hydration of 5-Formylcytosine: An Experimental and Theoretical Study

Fabian Zott, Vasily Korotenko, Hendrik Zipse

ChemBioChem, 2022, Wiley-VCH

Manuscript and SI: https://doi.org/10.1002/cbic.202100651

Author contributions:

The project was conceived by F.Z., V.K. and H.Z. The experimental study was performed by F.Z. The computational study was performed by V.K. The manuscript was jointly written by F.Z., V.K. and H.Z. The supplementary information was prepared by F.Z., V.K.

Copyright: Reprinted with permission from ChemBioChem, 2022

Copyright: 2022 Wiley-VCH

5-Formylcytosine is an important nucleobase in epigenetic regulation, whose hydrate form has been implicated in the formation of 5-carboxycytosine as well as oligonucleotide binding events. The hydrate content of 5-formylcytosine and its uracil derivative has now been quantified using a combination of NMR and mass spectroscopic measurements as well as theoretical studies. Small amounts of hydrate can be identified for the protonated form of 5formylcytosine and for neutral 5-formyluracil. For neutral 5-formylcytosine, however, direct detection of the hydrate was not possible due to its very low abundance. This is in full agreement with theoretical estimates.

chemical shift [ppm]
Check for updates European Chemical Societies Publishing

www.chembiochem.org

The pH-Dependence of the Hydration of 5-Formylcytosine: an Experimental and Theoretical Study

Fabian L. Zott^{+,[a]} Vasily Korotenko^{+,[a]} and Hendrik Zipse^{*,[a]}

5-Formylcytosine is an important nucleobase in epigenetic regulation, whose hydrate form has been implicated in the formation of 5-carboxycytosine as well as oligonucleotide binding events. The hydrate content of 5-formylcytosine and its uracil derivative has now been quantified using a combination of NMR and mass spectroscopic measurements as well as

Introduction

Epigenetic modifications add a further layer of information to the genetic code based on the linear sequencing of the four canonical DNA bases (A, C, G, T). This information may be encoded into the DNA by chemical modifications of the canonical nucleobases. For example, epigenetic modifications in the canonical nucleobase cytosine are known to control gene regulation in human cells and furthermore have implications in the development of cancer and other diseases.^[1-4] 5-Methylcytosine (mC, 2) as the most common modification is generated by an enzyme-catalyzed methylation at the C5 position of the cytosine base (1) and accounts for approximately 1% of all DNA bases in the human genome (Scheme 1).^[5,6] The active removal of the methyl group from mC (demethylation) in the human genome is an active field of research. Since direct C-C bond cleavage in 2 is highly unfavorable from a thermochemical point of view, no known mammalian enzyme employs this pathway for the demethylation of mC.^[7,8] Instead, the active DNA demethylation pathway known today employs a sequential oxidation of mC to caC (5) via hmC (3) and fC (4), catalyzed by the ten-eleven translocation (TET) family of enzymes (Scheme 1).^[9-24] Many other pathways have been proposed, that lead to direct decarboxylation and deformylation of caC and fC, and evidence for the direct deformylation in mammalian cells has been reported recently.^[25-28] This deformylation pathway would elegantly avoid the possible damage of DNA strands by the base excision repair (BER, Scheme 1) mechanisms for the active

[⁺] These authors contributed equally to this work.

theoretical studies. Small amounts of hydrate can be identified for the protonated form of 5-formylcytosine and for neutral 5formyluracil. For neutral 5-formylcytosine, however, direct detection of the hydrate was not possible due to its very low abundance. This is in full agreement with theoretical estimates.

Scheme 1. Possible pathways for methylation and oxidative demethylation of cytosine (DNMT: DNA methyltransferases; TET: ten-eleven translocation enzymes; BER: base excision repair).

demethylation of caC and fC via the DNA repair protein thymidine DNA glycosylase (TDG).[4,26,29] Since these oxidized cytosine derivatives have also been described as stable epigenetic markers, their susceptibility towards (spontaneous) oxidation is an important field of interest.^[30,31] Deaminated derivatives of fC such as 5-formyluracil (fU) can be formed by oxidative stress at thymine (T) sites via 5-hydroxymethyluracil (hmU), which is known to be toxic in mammalian cells.^[32-34] In mouse embryotic stem cells, it was found that deamination does not substantially contribute to hmU levels, and that TET enzymes facilitate the oxidation of thymine to hmU.[35] During the discovery of fC in embryonic stem cell DNA, the authors reported evidence for the presence of its hydrated form fhC (4_hyd).^[10] This gem-diol was detected in positive ion MS experiments and guantified at approximately 0.5% at the single nucleotide level. Whether the hydrated form of 5-formyl cytidine plays a role in structural or functional aspects of this base appears to depend on the specific system at hand.^[27-29] Burrows et al. reported on two unique formation events for fCcontaining DNA duplexes when studying the dynamics of DNA mismatch kinetics. These two events have a ratio of 5:1 and led to the proposal that fC exists in equilibrium with its hydrate fhC, each of which having different base-flipping kinetics.[36] Assuming the hydration reaction to be very slow, this implies

 [[]a] F. L. Zott,⁺ V. Korotenko,⁺ H. Zipse Department of Chemistry, LMU München Butenandtstrasse 5–13, 81377 München (Germany) E-mail: zipse@cup.uni-muenchen.de

Supporting information for this article is available on the WWW under https://doi.org/10.1002/cbic.202100651

^{© 2022} The Authors. ChemBioChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

ChemBioChem 2022, e202100651 (1 of 7)

^{© 2022} The Authors. ChemBioChem published by Wiley-VCH GmbH

an equilibrium constant for the hydration (K_{hyd}) of 0.2. This value is similar to known hydration constants of aldehydes carrying electron-withdrawing substituents.^[39,40] Experimental studies may, in some cases, also be impacted by the known conformational *syn/anti* dynamics of **4**.^[41,42] In a recent NMR study on the melting kinetics of 5-formylcytosine in dsDNA no evidence for the respective geminal diol form was found in ¹H or ¹³C NMR measurements.^[37] This does, of course, not exclude transient hydrate formation in TET2-mediated fC oxidation reactions.^[38] Direct measurements of the hydration equilibrium of fC have not yet been reported. Using a combined experimental/ theoretical approach, we will show in the following that this may be difficult to achieve.

Results and Discussion

For selected aldehydes carrying aromatic substituents (Scheme 2) the relevant equilibrium data for the hydration reaction has been collected in Table 1. We also include formaldehyde (6) and acetaldehyde (7) here as two well studied small reference systems. Benzaldehyde (8) was employed as a prototype for aldehydes

Scheme 2. Structures of aldehydes studied in this work

carrying aromatic substituents to verify the measurement strategy. 1-Methyl-5-formyluracil (**13b**), 5-formyluracil (**13a**), 5-formylcytosine (**4a**) and 1-methyl-5-formylcytosine (**4b**) have been synthesized and purified following modified procedures as described below. These model nucleobases retain the essential functionality of nucleotides while facilitating quantitative experimental and theoretical studies.^[42]

¹⁸O Isotopic exchange experiment

In order validate that the reversible addition of water to the aldehyde carbonyl group in **13b** leads to transient formation of the hydrate form **13b_hyd**, an ¹⁸O isotope exchange experiment was performed under neutral conditions (Figure 1). The results show that the formyl group reacts readily with H₂¹⁸O to yield the ¹⁸O-labelled nucleobase ¹⁸O-13b, most likely via the hydrated form **13b_hyd**. This latter conclusion is supported by analysis of the fragmentation patterns for **13b** and ¹⁸O-13b, and oxygen exchange of the other carbonyl groups present in **13b** can be ruled out (see Supporting Information Figures S3 and S4). The ¹⁸O isotope exchange, with the same results in fragmentation pattern analysis.

¹H NMR identification and quantification

The ¹H NMR spectrum of **13 b** in D₂O measured at a concentration of 3.1×10^{-3} mol L⁻¹ is shown in Figure 2. All ¹H resonances of aldehyde **13 b** are accompanied by additional resonances for its hydrate **13 b_hyd** at much lower intensities, which were also matched by NMR shift calculations. When measuring the same

System	K _w	К	<i>T</i> [°C]	⊿G _(exp) [kJ/mol]	Ref.
6	2 29 × 10 ³	41.2	25	_92	[42]
0	1.8×10^{3}	32.43	20	-85	[43]
7	1.06	0.0191	25	+98	[44]
,	1.08	0.0194	25	+98	[45]
	1 50	0.0270	25	+ 8 9	[46]
8	0.011	0.98×10^{-3}	25	+ 21 1	[47]
0	9.67×10^{-3}	1.74×10^{-4}	23	+213	this study
9	0.25 ± 0.1	4.50×10^{-3}	25	+134	[48]
10	0.115	2.07×10^{-3}	20	+ 15.1	[49]
p 10	5.1	0.920	25	+ 5.9	[49]
11	0.66	0.012	25	+11.0	[46]
n 11	199	3.58	25	-3.2	[50]
4a	2.25×10^{-3}	4.05×10^{-5}	22	$> + 24.8^{[c]}$	this study
	6.75×10^{-4}	1.22×10^{-5}	22	$< +27.8^{[h]}$	this study
4 b ^[c,d]	$< 450 \times 10^{-4}$	$< 8.11 \times 10^{-6}$	22	> + 28.8	this study
p 4b ^[a,b]	0.005	9.72×10^{-5}	22	+22.7	this study
P=	0.005	9.10×10^{-5}	30	+ 22.7	[14]
4 c ^[c]	$< 4.40 \times 10^{-4}$	$< 7.93 \times 10^{-6}$	22	> + 28.8	this study
p 4c ^[e]	0.007	1.23×10^{-4}	22	+ 22.1	this study
12 b ^[f]	0.25	0.0045	22	+13.3	[51]
13 a ^[g]	0.016	2.94×10^{-4}	22	+20.0	this study
13 b ^[g]	0.013	2.42×10^{-4}	22	+ 20.5	this study

ChemBioChem 2022, e202100651 (2 of 7)

© 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH

Figure 1. ¹⁸O isotope exchange experiment with **13b** (left side: **13b** at natural abundance; right side: ¹⁸O labelled **13b** after equilibration with $H_2^{-18}O$; only the [M]⁺ peak region is shown).

Figure 2. ¹H NMR spectra of 13 b and its hydrated form 13 b_hyd in D_2O at a concentration of 3.1×10^{-3} mol L⁻¹ together with the relevant signal assignments and calculated chemical shifts (in light blue).

sample of **13b** in anhydrous DMSO- d_{6r} no signals for the hydrates can be observed (see Supporting Information Figure S12). Quantification of the formyl- and the hydrated forms was achieved by using the ¹³C(¹H) satellite signals of **13b** as a reference. Assuming that a single ¹³C(¹H) satellite signal corresponds to 0.535% of the intensity of the parent ¹H signal, we find a 100:1.3 ratio for aldehyde **13b** and its hydrate **13b_hyd** by a standardized procedure (see Supporting Information for details).^[52] At a reaction temperature of 23 °C this corresponds to a free energy difference between the two forms of $\Delta G_{exp} = +20.5$ kJ mol⁻¹ (Table 1).

Studying 1-methyl-5-formylcytosine (**4b**) under the same conditions, no ¹H NMR signals could be detected at the theoretically calculated shift region for hydrate **4b_hyd** at neutral pH. Still, the ¹⁸O isotope experiment showed fast oxygen exchange under the same conditions. When acidifying the NMR sample to pH=2, distinct signals for the hydrate form (**p_4b_hyd**) arise at shift regions predicted *in silico* with an abundance of 0.5%

(Figure 3). This process is reversible upon neutralization excluding a kinetically controlled equilibrium, while deamination can be ruled out due to differences in chemical shifts (see Supporting Information). These observations are consistent with previous work by Carell et al., where levels of 0.5% p_4c_hyd have been detected by LC-MS measurements with water/acetonitrile (2 mM NH₄HCOO) under acidic conditions.^[14] Whether or not these conclusions are also valid at the full nucleoside level was subsequently studied for 5-formyl-2'-deoxycytidine (4c) through ¹H NMR measurements in D₂O. Under unbuffered conditions (pH=8.3) the hydrate signals proved too small for quantitative evaluation. Acidification to pH = 2.6 leads to hydrate signals closely similar to those observed before for 4b_hyd, and a free energy of hydration of $\Delta {\it G}_{\it exp}\,{=}\,{+}\,22.1~{\rm kJ\,mol^{\text{-1}}}$ was measured for protonated 4c (p 4c). In contrast to 4b, however, slow hydrolysis of nucleoside 4c can be observed under acidic conditions, which also implies that the hydration energy for 4b may be somewhat more reliable (see Supporting Information Figure S21). In any case we can conclude that protonation has a significant influence on the hydration equilibrium of 5-formylcytosine derivatives. In a more general sense this may also imply that the aldehyde/hydrate equilibrium of 5 fC can be shifted through specific environmental effects.In Table 1 all experimentally determined free energies of hydration $\Delta G_{\rm hyd}$ are listed along with important references for theoretical calculations. For systems where the $\Delta G_{\rm hyd}$ value could not be determined experimentally, the limits of detection and quantification (LOD and LOQ, see Supporting Information section S.5) are stated.

Chemistry Europe

European Chemical

Theoretical determination of ΔG_{hyd}

The hydration of aldehydes has been studied repeatedly using theoretical methods, but a reliable approach for the direct prediction of hydration energetics has not yet emerged.^[53] The performance of various theoretical approaches can be demon-

Figure 3. ¹H NMR spectra of the protonated form of **4b** and its hydrated form **4b**_hyd in D₂O at pH = 2 and a concentration of 5.8×10^{-3} mol L⁻¹ together with the relevant signal assignments and calculated chemical shifts (in light blue).

© 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH

ChemBioChem 2022, e202100651 (3 of 7)

	Gas phase	Gas phase			Water (SMD model)			
	DFT ^[a]	CCSD(T)/CBS ^[b,c]	G3B3	DFT ^[a]	CCSD(T)/CBS ^[b,c,d]	G3B3 ^[e]		
7	+ 17.5	+15.0	+15.8	+ 21.5	+ 16.2	+ 15.1	+ 9.8	
'(w1)	+12.2	+12.6	+11.5	+20.9	+ 17.6	+13.5	+9.8	
'(w2)	+0.5	+4.5	+ 1.5	+ 18.3	+ 14.7	+ 10.9	+9.8	
	+34.4	+ 27.3	+ 29.1	+44.1	+ 34.8	+ 32.4	+21.1	
3(w1)	+29.8	+24.2	+ 25.2	+ 42.6	+ 35.9	+35.7	+21.1	
(w2)	+ 17.8	+ 13.9	+14.1	+ 37.8	+ 37.7	+32.5	+ 21.1	

[a] B3LYP-D3/6-31 + G(d,p). [b] Using gas phase B3LYP-D3/6-31 + G(d,p) geometries. [c] Based on DLPNO-CCSD(T) single point calculations with the cc-pVTZ and cc-pVQZ basis sets. [d] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/

strated for acetaldehyde (7) as a well-characterized small reference system (Table 2), the hydration reaction of this system being endergonic by +9.8 kJ mol⁻¹ at 298.15 K.^[42,44] In order to address the effects of aqueous solvation appropriately, we employ a combination of continuum solvation models (here SMD) with different numbers of explicit water molecules (Figure 4). Analysis of the hydration energies of 7 with theoretical methods known to work well for the prediction of thermochemical data such as G3B3 or DLPNO-CCSD(T)/CBS shows this to be an endergonic process of around $\Delta G_{298} = +15$ kJ mol⁻¹ (see Supporting Information for additional validation studies). The B3LYP-D3/6-31+G(d,p) hybrid DFT method employed here for geometry optimizations gives, in

Figure 4. The hydration of acetaldehyde (7) in the absence and presence of solvating water molecules.

this case, a closely similar value. The addition of explicit water molecules as in 7(1 w) or 7(2 w) makes the reaction systematically less endergonic, and leads to a basically thermoneutral process in the presence of two explicit water molecules. This finding indicates that the hydration equilibrium in non-aqueous (or non-homogeneous) environments may be altered by specific hydrogen bonding interactions and may also provide a rationalization for the comparatively high levels of 5-formylcytosine hydrate in DNA duplex systems reported by Burrows et al.[36] The effects of bulk aqueous solvation have then been added with aid of the SMD continuum solvation model. This decreases the overall hydration energy and approaches the experimental value for the combination of the G3B3 compound scheme and two explicit water molecules. Similar validation steps have also been performed for benzaldehyde (8) as an aldehyde carrying an aromatic substituent and having a significantly less favorable hydration energy of $\Delta G_{298} = +21.1 \text{ kJ mol}^{-1}$. Again, the gas phase hydration energy becomes more favorable with each explicitly considered water molecule, while the additional consideration of bulk solvation with the SMD model leads to a notable increase. We note, however, that all theory combinations considered here predict the hydration reaction to be less favorable than observed experimentally by approximately 10 kJ mol⁻¹. Using the same theoretical methods and solvation strategies as before, hydration energies have been calculated for the aldehydes shown in Figure 2 (Table 3). In addition to neutral 1-methyl-5-formylcytosine (4b), this also includes its protonated form (p_4b) (Figure 5).

Figure 5. Experimental hydration free energies of selected aldehydes (* based on combination of the G3B3 $\Delta\Delta G_{298}$ values with the experimentally measured value for p_4b) as the reference).

ChemBioChem 2022, e202100651 (4 of 7)

^{© 2022} The Authors. ChemBioChem published by Wiley-VCH GmbH

Table 3. Hydration Gibbs free energies ($\Delta G_{298'}$ in kJ mol ⁻¹) for the aldehydes shown in Figure 2.							
Water (SMD model)					Exp.		
	No explicit	water molecules		One explici	t water molecule		
	DFT ^[a,d]	CCSD(T)/CBS ^[b,c,d]	G3B3 ^[e]	DFT ^[a,d]	CCSD(T)/CBS ^[b,c,d]	G3B3 ^[e]	
6	-3.7	-4.3	-2.4	-13.6	-12.0	-5.1	-9.2
7	21.5	16.2	15.1	20.9	17.6	13.5	9.8
8	44.1	34.8	32.4	42.6	35.9	35.7	21.1
9	32.9	26.2	23.6	27.2	23.0	23.8	13.4
10	38.9	29.9	27.7	37.4	31.4	26.5	15.1
11	28.0	22.3	24.8	31.1	27.1	20.1	11.0
4a	52.0	40.0	45.7	53.6	44.6	39.3	> 24.8/ $<$ 27.8 ^[f]
4b	54.4	42.3	46.6	55.3	46.1	42.7	>28.8
p_4b	42.3	36.3	36.3	42.5	35.8	36.1	22.7
12b	41.9	31.0	31.4	36.3	27.8	19.6	13.3
13a	38.5	34.3	29.0	39.1	35.6	31.3	20.0
13b	39.3	34.8	29.1	42.7	38.3	35.3	20.5
	02.0			12.7			

[a] B3LYP-D3/6-31 + G(d,p). [b] Using gas phase B3LYP-D3/6-31 + G(d,p) geometries. [c] Based on DLPNO-CCSD(T) single point calculations. [d] SMD solvation energies calculated at SMD(H2O)/B3LYP-D3/6-31 + G(d,p) level. [e] SMD solvation energies calculated at SMD(H2O)/B3LYP/6-31G(d) level. [f] Calculated from LOQ and LOD.

For most aldehydes considered here, the calculated hydration energies are overestimated to a similar extent as already observed for benzaldehyde (8). Due to the systematic nature of this phenomenon, good linear correlations can be observed between experimentally measured and theoretically calculated hydration energies in aqueous solution at SMD(H2O)/CCSD(T)/CBS or SMD(H2O)/G3B3 level with $R^2 = 0.95 - 0.97$. These correlations can be employed for an accurate estimate of the hydration energy difference between **4b** and its protonated form **p_4b**. Based on the values reported in Table 3 at the CBS or G3B3 level, this difference falls into the range of $\Delta\Delta G_{298} = 6.0-10.3$ kJ/mol. However, as already noted above, these values are generally somewhat too large and the correlations can be employed to scale these down to a more realistic value of $\Delta\Delta G_{298} = +5.1 \text{ kJ mol}^{-1}$. Combination with the experimentally measured value of $\Delta G_{298}(\mathbf{p_4b}) = +22.7 \text{ kJ mol}^{-1}$, this then yields $\Delta G_{298}(\mathbf{4b}) = +$ 27.8 $kJ\,mol^{-1}\!,$ which is closely similar to the limiting value of $\Delta G_{_{298}}$ (4 b) = > 28.8 kJ mol⁻¹ derived from the ¹H NMR measurements. The same approach yields a theoretically predicted value for the free base of ΔG_{298} (4 a) = +26.2 kJ mol⁻¹, being close to the experimental approximation derived from LOQ and LOD between +24.8-27.8 kJ mol⁻¹.

Conclusion

All experimental and theoretical studies presented here indicate that the hydrates of 5-formylcytosine (**4a**) and its N1-methylated derivative **4b** are just beyond the limit of what can be quantified reliably by ¹H NMR spectroscopy. The abundances of these species are expected to amount to less than 0.05% under unbuffered standard conditions in water at ambient temperature. Protonation at the N3 position under acidic conditions will increase hydrate formation such that its direct detection through ¹H NMR spectroscopy becomes feasible at an abundance of 0.53%. The hydrate form of 5-formyluridine as the formal deamination product of 5-formylcytosine is more abundant at 1.3% under neutral aqueous conditions. Despite these seemingly low values, the aldehyde hydrate forms may nevertheless play an essential role in oxidation reactions to the respective 5-carboxy derivatives in a way well established for aldehyde oxidations mediated by chemical oxidants or dehydrogenase enzymes.[38,54-56] In both areas evidence for the stabilization of hydrate intermediates through directed hydrogen bonding interactions has been found, which is in full support of the gas phase calculations with explicit water molecules in the current study. This may also provide a rational basis for the proposed high abundance of 5-formylcytosine hydrates reported by Burrows et al. in base-flipping kinetics studies.[36] A potential TET-mediated oxidation of fC through the respective hydrate^[38] moves this process mechanistically closer to that of hmC, where recent theoretical studies have established similar reaction barriers for initial O-H vs. C-H hydrogen abstraction steps.[19,57]

Experimental Section

Energy of hydration ΔG_{hyd} : The reaction of aldehydes (A) with water in aqueous solution yields the respective hydrate **A_hyd** according to Eq. (1). The position of this equilibrium is given through equilibrium constant *K*, which is defined through the equilibrium concentrations of reactants and products according to Eq. (2). In dilute solutions it is practical to consider the concentration of water as a constant with $[H_2O] = 55.5 \text{ mol I}^{-1}$ and combine this value with *K* into a new equilibrium constant *K*_w (sometimes also called K_{hyd}) according to Eq. (3). The true equilibrium constant *K* according to Eq. (4). According to the law of mass action, the equilibrium constant *K* relates to the free energy of the reaction shown in Eq. (1) as defined in Eq. (5).

© 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH

ChemBioChem 2022, e202100651 (5 of 7)

$$K = \frac{\left[A_{hyd}\right]}{\left[A\right] \times \left[H_2O\right]}$$

$$K \times [H_2 O] = K_w = \frac{[A_{hyd}]}{[A]}$$
(3)

$$K = \frac{K_w}{[H_2O]}$$
(4)

$$\Delta G = -\mathsf{R} T \, \mathsf{In}(\mathcal{K}) \tag{5}$$

¹⁸O Isotopic exchange experiments: Isotope exchange experiments were performed with an Advion ExpressionL compact mass spectrometer (CMS) by using the atmospheric solid analysis probe (ASAP) technique; 350 m/z, and acquisition speed 10000 m/z units per second. The ion source settings correspond to a capillary temperature of 250 °C, capillary voltage 110 V, source offset voltage 16 V, APCI source gas temperature 350 °C, and corona discharge voltage 4 µA. The obtained spectra were analyzed by using Advion CheMS Express software version 5.1.0.2. A trace amount of 13b and 4b was dissolved in 50 µL of ¹⁸O isotopically labeled water (97 atom %) under nitrogen atmosphere in an oven-dried GC vial and shaken for 1 h. The glass capillary of the ASAP probe was used quickly under hot conditions to exclude ambient moisture contamination. After background subtraction, the corresponding MS spectrum was obtained. For details see Supporting Information (S.3).

Ouantum chemical calculations: Geometry optimization was performed at the B3LYP-D3/6-31 + G(d,p) level of theory in gas phase.^[58-63] The solution state was modelled both through addition of explicit water molecules and through the implicit continuum solvation model (SMD).^[60] Free energies in solution are referenced to a standard state of 1 M through consideration of a standard state correction of $\Delta G_{0K-298K}^{1atm-1M} = +7.91 \text{ kJmol}^{-1}$. Single point energies were calculated for the optimized geometries using the DLPNO-CCSD(T) method.^[64-66] Two-point (cc-pVTZ and cc-pVQZ) extrapolation was employed at the DLPNO-CCSD(T) level of theory to estimate a result obtained using a complete (infinitely large) basis set.^[66] The isotropic chemical shielding values were calculated at the SMD(H₂O)/B3LYP/pcS-3//SMD(H₂O)/B3LYP-D3/6-31 + G(d,p) level of theory.^[59] The ¹H chemical shifts were referenced relative to chemically and structurally similar molecules (see Supporting Information). All calculations were performed using Gaussian 09, Revision D.01.^[68] To identify the conformations of diol molecules, a relaxed potential energy surface scan on two dihedral angles H–O–C–C (two hydroxyl groups) was performed at the SMD(H_2O)/ B3LYP-D3/6-31+G(d,p) level. The conformations with the lowest energies on the potential energy surface were then fully optimized at the SMD(H₂O)/B3LYP-D3/6-31 + G(d,p) level. The optimized water-complexed geometries have been located by a stochastic search procedure. This procedure generates an ensemble of initial random arrangements of water molecules around the respective structure, whose optimization at B3LYP-D3/6-31 + G(d,p) level then generates the minima used for all quantitative work.¹⁶

Synthesis of 4b: A solution of 1-methyl-5-hydroxymethylcytosine (119 mg, 0.77 mmol) and activated MnO_2 (333 mg, 3.84 mmol, 5eq) in 12 ml of anhydrous acetonitrile was stirred at room temperature for 20 h. The reaction mixture was then diluted with methanol (10 mL) and filtered (washed with methanol). The crude product was purified by flash column chromatography over silica gel (12% to 15% MeOH/5% NH₄OH/DCM) to afford a clean white powder (35 mg, 0.23 mmol, 30%). R_f (15% MeOH/5% NH₄OH/DCM)=0.54. ¹H-NMR (400 MHz, DMSO–D6, ppm): δ =9.41 (s, 1H, formyl-H), 8.64 (s, 1H, C₆-H), 7.98 (br-s, 1H, N-H₂), 7.79 (br-s, 1H, N-H₂), 3.37 (s, 1H,

 $-CH_3$). ¹³C-NMR (100 MHz, DMSO–D6, ppm): $\delta = 188.1$, 162.7, 160.2,

(2) 153.9, 104.3, 37.7. ¹H-NMR (400 MHz, D₂O, ppm): δ = 9.45 (s, 1H, formyl-*H*), 8.46 (s, 1H, C₆-*H*), 3.49 (s, 1H, $-CH_3$). ¹³C-NMR (100 MHz, D₂O, ppm): δ = 189.9, 163.0, 160.4, 157.0, 105.4, 38.3. EA: Calculated

- [%]: C: 47.06 N: 27.44 H: 4.61; Found [%]: C: 47.90 N: 26.09 H: 4.36. HR-MS (EI, 70 eV, M+): [C6H7N3O2+], calculated: 153.0533, found: 153.0533.
 - Synthesis of 13 b: 1,5-Dimethyluracil (0.50 g, 3.57 mmol) was dissolved in 170 mL distilled water, then K₂S₂O₈ (1.93 g, 7.14 mmol, 2 eq) was added portion-wise over 1 h at 85 °C and the reaction mixture was stirred for 16 h. After the TLC showed complete conversion of the reactant, the reaction mixture was cooled down to room temperature and the solvent was removed under high vacuum. The crude product was purified by flash column chromatography over silica gel (3%MeOH/2%AcOH/DCM to 10% MeOH/2%AcOH/DCM) to afford a clean white powder (302.63 mg, 1.96 mmol, 55%). ¹H-NMR (400 MHz, DMSO–D6, ppm): $\delta = 9.76$ (s, 1H, formyl-H), 8.48 (s, 1H, C5-H), 3.65 (br-s, 1H, N-H), 3.36 (s, 3H, –CH₃). ¹³C-NMR (100 MHz, DMSO–D6, ppm): δ=186.7, 163.0, 153.1, 151.0, 110.3, 36.8. ¹H-NMR (400 MHz, D_2O , ppm): $\delta = 9.58$ (s, 1H, formyl-H), 8.44 (s, 1H, C₆-H), 3.46 (s, 3H, -CH₃). ¹³C-NMR (100 MHz, D₂O, ppm): δ = 186.7, 163.0, 153.1, 151.0, 110.3, 36.8. EA: Calculated [%]: C: 46.76 N: 18.18 H: 3.92; Found [%]: C:48.49 N: 18.20 H: 3.98. HR-MS (EI, 70 eV, [M+]): [C6H6N2O3+], calculated: 154.0373, found: 154.0372.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for financial support via SFB1309 (PID 325871075). We also thank Felix Müller and Sophie Gutenthaler for helping with the purification of compounds and Stella Marie Bauer for the assistance in compound synthesis, as well as the Daumann group for a sample of SfdC (4c). Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: aldehyde hydrates · computational chemistry · DNA methylation · epigenetics · modified nucleic acids · TET enzymes

- [1] K. D. Robertson, Nat. Rev. Genet. 2005, 6, 597–610.
- [2] R. Lister, M. Pelizzola, R. H. Dowen, R. D. Hawkins, G. Hon, J. Tonti-Filippini, J. R. Nery, L. Lee, Z. Ye, Q.-M. Ngo, L. Edsall, J. Antosiewicz-Bourget, R. Stewart, V. Ruotti, A. H. Millar, J. A. Thomson, B. Ren, J. R. Ecker, *Nature* **2009**, *462*, 315–322.
- [3] A. M. Deaton, A. Bird, Genes Dev. 2011, 25, 1010-1022.
- [4] E.-A. Raiber, R. Hardisty, P. van Delft, S. Balasubramanian, Nat. Chem. Rev. 2017, 1, 0069.

© 2022 The Authors. ChemBioChem published by Wiley-VCH GmbH

ChemBioChem 2022, e202100651 (6 of 7)

- [5] A. Bird, Genes Dev. 2002, 16, 6-21.
- [6] M. G. Goll, T. H. Bestor, Annu. Rev. Biochem. 2005, 74, 481-514.
- [7] N. Bhutani, D. M. Burns, H. M. Blau, Cell 2011, 146, 866-872.
- [8] E. Kriukienė, V. Labrie, T. Khare, G. Urbanavičiūtė, A. Lapinaitė, K. Koncevičius, D. Li, T. Wang, S. Pai, C. Ptak, J. Gordevičius, S.-C. Wang, A. Petronis, S. Klimašauskas, *Nat. Commun.* 2013, *4*, 2190.
 [9] S. Kriaucionis, N. Heintz, *Science* 2009, 324, 929–930.
- [10] M. Tahiliani, K. P. Koh, Y. Shen, W. A. Pastor, H. Bandukwala, Y. Brudno, S. Agarwal, L. M. Iyer, D. R. Liu, L. Aravind, A. Rao, *Science* **2009**, *324*, 930–935.
- [11] S. Ito, A. C. D'Alessio, O. V. Taranova, K. Hong, L. C. Sowers, Y. Zhang, *Nature* 2010, 466, 1129–1133.
- [12] Y. F. He, B. Z. Li, Z. Li, P. Liu, Y. Wang, Q. Tang, J. Ding, Y. Jia, Z. Chen, L. Li, Y. Sun, X. Li, Q. Dai, C. X. Song, K. Zhang, C. He, G. L. Xu, *Science* **2011**, 333, 1303–1307.
- [13] S. Ito, L. Shen, Q. Dai, S. C. Wu, L. B. Collins, J. A. Swenberg, C. He, Y. Zhang, *Science* 2011, 333, 1300–1303.
- [14] T. Pfaffeneder, B. Hackner, M. Truß, M. Münzel, M. Müller, C. A. Deiml, C. Hagemeier, T. Carell, *Angew. Chem. Int. Ed.* **2011**, *50*, 7008–7012; *Angew. Chem.* **2011**, *123*, 7146–7150.
- [15] N. S. W. Jonasson, R. Janßen, A. Menke, F. L. Zott, H. Zipse, L. J. Daumann, *ChemBioChem* **2021**, *22*, 3333–3340.
- R. M. Kohli, Y. Zhang, *Nature* **2013**, *502*, 472–479.
 L. Hu, J. Lu, J. Cheng, Q. Rao, Z. Li, H. Hou, Z. Lou, L. Zhang, W. Li, W. Gong, M. Liu, C. Sun, X. Yin, J. Li, X. Tan, P. Wang, Y. Wang, D. Fang, Q.
- Cui, P. Yang, C. He, H. Jiang, C. Luo, Y. Xu, *Nature* 2015, *527*, 118–122.
 D. J. Crawford, M. Y. Liu, C. S. Nabel, X.-J. Cao, B. A. Garcia, R. M. Kohli, *J. Am. Chem. Soc.* 2016, 138, 730–733.
- [19] J. Lu, L. Hu, J. Cheng, D. Fang, C. Wang, K. Yu, H. Jiang, Q. Cui, Y. Xu, C. Luo, Phys. Chem. Chem. Phys. 2016, 18, 4728–4738.
- [20] M. Y. Liu, H. Torabifard, D. J. Crawford, J. E. DeNizio, X.-J. Cao, B. A. Garcia, G. A. Cisneros, R. M. Kohli, *Nat. Chem. Biol.* 2017, 13, 181–187.
- [21] J. E. DeNizio, M. Y. Liu, E. M. Leddin, G. A. Cisneros, R. M. Kohli, *Biochemistry* **2019** 58, 411–421
- Biochemistry 2019, 58, 411–421.
 [22] S. O. Waheed, S. S. Chaturvedi, T. G. Karabencheva-Christova, C. Z. Christov, ACS Catal. 2021, 11, 3877–3890.
- [23] M. B. Berger, A. R. Walker, E. A. Vazquez-Montelongo, G. A. Cisneros, *Phys. Chem. Chem. Phys.* 2021, 23, 22227–22240.
- [24] B. A. Caldwell, M. Y. Liu, R. D. Prasasya, T. Wang, J. E. DeNizio, N. A. Leu, N. Y. A. Amoh, C. Krapp, Y. Lan, E. J. Shields, R. Bonasio, C. J. Lengner, R. M. Kohli, M. S. Bartolomei, *Mol. Cell* **2021**, *81*, 859–869.
- [25] D. Globisch, M. Münzel, M. Müller, S. Michalakis, M. Wagner, S. Koch, T. Brückl, M. Biel, T. Carell, *PLoS One* 2010, *5*, e15367.
- [26] A. Maiti, A. C. Drohat, J. Biol. Chem. 2011, 286, 35334-35338.
- [27] S. Schiesser, T. Pfaffeneder, K. Sadeghian, B. Hackner, B. Steigenberger, A. S. Schröder, J. Steinbacher, G. Kashiwazaki, G. Höfner, K. T. Wanner, C. Ochsenfeld, T. Carell, J. Am. Chem. Soc. 2013, 135, 14593–14599.
- [28] K. Iwan, R. Rahimoff, A. Kirchner, F. Spada, A. S. Schröder, O. Kosmatchev, S. Ferizaj, J. Steinbacher, E. Parsa, M. Müller, T. Carell, Nat. Chem. Biol. 2018, 14, 72–78.
- [29] A. R. Weber, C. Krawczyk, A. B. Robertson, A. Kuśnierczyk, C. B. Vågbø, D. Schuermann, A. Klungland, P. Schär, Nat. Commun. 2016, 7, 10806.
- [30] M. Bachman, S. Uribe-Lewis, X. Yang, M. Williams, A. Murrell, S. Balasubramanian, Nat. Chem. 2014, 6, 1049–1055.
- [31] M. Bachman, S. Uribe-Lewis, X. Yang, H. E. Burgess, M. Iurlaro, W. Reik, A. Murrell, S. Balasubramanian, Nat. Chem. Biol. 2015, 11, 555–557.
- [32] S. Waschke, J. Reefschläger, D. Bärwolff, P. Langen, *Nature* 1975, 255, 629–630.
- [33] S. Bjelland, L. Eide, R. W. Time, R. Stote, I. Eftedal, G. Volden, E. Seeberg, *Biochemistry* 1995, 34, 14758–14764.
- [34] K. Kemmerich, F. A. Dingler, C. Rada, M. S. Neuberger, Nucleic Acids Res. 2012, 40, 6016–6025.
- [35] T. Pfaffeneder, F. Spada, M. Wagner, C. Brandmayr, S. K. Laube, D. Eisen, M. Truss, J. Steinbacher, B. Hackner, O. Kotljarova, D. Schuermann, S. Michalakis, O. Kosmatchev, S. Schiesser, B. Steigenberger, N. Raddaoui, G. Kashiwazaki, U. Müller, C. G. Spruijt, M. Vermeulen, H. Leonhardt, P. Schär, M. Müller, T. Carell, Nat. Chem. Biol. 2014, 10, 574–581.
- [36] R. P. Johnson, A. M. Fleming, R. T. Perera, C. J. Burrows, H. S. White, J. Am. Chem. Soc. 2017, 139, 2750–2756.
- [37] R. C. A. Dubini, A. Schön, M. Müller, T. Carell, P. Rovó, *Nucleic Acids Res.* 2020, 48, 8796–8807.

- [38] S. Sappa, D. Dey, B. Sudhamalla, K. Islam, J. Am. Chem. Soc. 2021, 143, 11891–11896.
- [39] S. H. Hilal, L. L. Bornander, L. A. Carreira, QSAR Comb. Sci. 2005, 24, 631– 638.
- [40] S. Huang, A. K. Miller, W. Wu, Tetrahedron Lett. 2009, 50, 6584–6585.
- [41] D. K. Rogstad, J. Heo, N. Vaidehi, W. A. Goddard, A. Burdzy, L. C. Sowers, *Biochemistry* 2004, 43, 5688–5697.
- [42] R. E. Hardisty, F. Kawasaki, A. B. Sahakyan, S. Balasubramanian, J. Am. Chem. Soc. 2015, 137, 9270–9272.
- [43] J. P. Guthrie, Can. J. Chem. 1978, 56, 962–973.
- [44] R. P. Bell, in Advances in Physical Organic Chemistry, Vol. 4 (Ed.: V. Gold), Academic Press, 1966, pp. 1–29.
- [45] J. L. Kurz, J. Am. Chem. Soc. 1967, 89, 3524-3528.
- [46] L. C. Gruen, P. T. McTigue, J. Chem. Soc. 1963, 5217–5223.
- [47] E. Lombardi, P. B. Sogo, J. Chem. Phys. 1960, 32, 635-636.
- [48] P. Greenzaid, J. Org. Chem. 1973, 38, 3164-3167.
- [49] J. Sayer, J. Org. Chem. 1975, 40, 2545-2547.
- [50] S. Cabani, P. Gianni, E. Matteoli, J. Phys. Chem. 1972, 76, 2959–2966.
- [51] S. Barman, K. L. Diehl, E. V. Anslyn, *RSC Adv.* 2014, *4*, 28893–28900.
 [52] A. Schön, E. Kaminska, F. Schelter, E. Ponkkonen, E. Korytiaková, S. Schiffers, T. Carell, *Angew. Chem. Int. Ed.* 2020, *59*, 5591–5594; *Angew.*
- Chem. 2020, 132, 5639–5643. [53] K. J. R. Rosman, P. D. P. Taylor, Pure Appl. Chem. 1998, 70, 217–235.
- [53] K. J. K. Kosman, P. D. P. Taylor, Pure Appl. Chem. 1996, 70, 217–255.
 [54] R. Gómez-Bombarelli, M. González-Pérez, M. T. Pérez-Prior, E. Calle, J.
- Casado, J. Phys. Chem. A 2009, 113, 11423–11428.
- [55] L. P. Olson, J. Luo, Ö. Almarsson, T. C. Bruice, *Biochemistry* 1996, 35, 9782–9791.
- [56] A.-K. C. Schmidt, C. B. W. Stark, Org. Lett. 2011, 13, 4164–4167.
 [57] A. J. K. Roth, M. Tretbar, C. B. W. Stark, Chem. Commun. 2015, 51, 14175–
- 14178.
- [58] H. Torabifard, G. A. Cisneros, Chem. Sci. 2018, 9, 8433-8445.
- [59] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- [60] F. Jensen, J. Chem. Theory Comput. 2008, 4, 719-727.
- [61] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378–6396.
- [62] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [63] T. J. Zuehlsdorff, C. M. Isborn, J. Chem. Phys. 2018, 148, 024110.
- [64] A. Nicolaides, A. Rauk, M. N. Glukhovtsev, L. Radom, J. Phys. Chem. 1996, 100, 17460–17464.
- [65] F. Neese, E. F. Valeev, J. Chem. Theory Comput. 2011, 7, 33–43.
 [66] M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, F. Neese, J. Chem. Phys. 2017, 146, 164105.
- [67] A. Altun, F. Neese, G. Bistoni, J. Chem. Theory Comput. 2019, 15, 215– 228.
- [68] A. Altun, F. Neese, G. Bistoni, Beilstein J. Org. Chem. 2018, 14, 919-929.
- [69] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 09, Rev. D.01, Wallingford, CT, **2009**.
- [70] M. Saunders, J. Comb. Chem. 2004, 25, 621–626.
- [71] D. Šakić, V. Vrček, J. Phys. Chem. A 2012, 116, 1298-1306.

Manuscript received: November 25, 2021 Revised manuscript received: January 24, 2022 Accepted manuscript online: January 27, 2022 Version of record online:

ChemBioChem 2022, e202100651 (7 of 7)

RESEARCH ARTICLE

The hydrate content of 5-formylcytosine and its uracil derivative has been identified and quantified using a combination of NMR and mass spectroscopic measurements as well as theoretical studies. We report a free energy of hydration for the hydration reactions of 5 fC and 5 fU. In case of 5 fC, acidification leads to an increased hydrate content of up to 0.5% in aqueous solution.

F. L. Zott, V. Korotenko, H. Zipse*

The pH-Dependence of the Hydration of 5-Formylcytosine: an Experimental and Theoretical Study

5. Autoxidation of 1,5-Dimethylcytosine:

Computational Study

Vasily Korotenko, Hendrik Zipse

Unpublished results. Manuscript under preparation.

Author contributions: The project was conceived by V.K. and H.Z. The computational study was performed by V.K. The manuscript was written by V.K.

The (aut)oxidation reaction of 1,5-dimethylcytosine (1,5-dmC) was studied using DFT and DLPNO-CCSD(T) levels of theory. The autoxidation of 5mC is unlikely to occur through initiation by triplet oxygen or through unimolecular decomposition of hydroperoxides. All endergonic bimolecular chain reactions between neural closed-shell compounds and free radicals involve the transfer of a hydrogen atom to form a product with a higher BDE value. The thermodynamics of the presented mechanism, in principle, agrees with the experimental kinetics. We assume that the protonation (pH < 7) of oxidizable nucleic acids inhibits the oxidation process by increasing the BDE(C-H) values.

Autoxidation of 1,5-Dimethylcytosine: Computational Study

V. Korotenko, H. Zipse*

Dept. Chemistry, LMU Munich, Butenandtstr. 5-13, D-81377 Munich, Germany

Oxidation, thermodynamic stability, radical stabilization energy, radicals, isodesmic equations, DFT, DLPNO-CCSD(T), nucleic base

The (aut)oxidation reaction of 1,5-dimethylcytosine (1,5-dmC) was studied using DFT and DLPNO-CCSD(T) levels of theory. The autoxidation of 5mC is unlikely to occur through initiation by triplet oxygen or through unimolecular decomposition of hydroperoxides. All endergonic bimolecular chain reactions between neural closed-shell compounds and free radicals involve the transfer of a hydrogen atom to form a product with a higher BDE value. The thermodynamics of the presented mechanism, in principle, agrees with the experimental kinetics. We assume that the protonation (pH < 7) of oxidizable nucleic acids inhibits the oxidation process by increasing the BDE(C-H) values.

Introduction

Autoxidation reactions are defined as oxidations which can be brought about by oxygen gas at normal temperatures without the intervention of a visible flame or of an electric spark. Execution of a controlled hydrocarbon autoxidation is a challenge receiving increasing attention in both academic and industrial research.¹ This work is focusing on the calculated enthalpies and free energies of the autoxidation 1,5-dimethylcytosine. It has been observed experimentally that 5-methyl-2'-deoxycytidine (5mdC) can be sequentially oxidized by air to 5-hydroxymethyl-2'-deoxycytidine (5hmdC), 5-formyl-2'-deoxycytidine (5fdC), 5-carboxy-2'-deoxycytidine (5hmdC).² (Figure 1) The mechanistic study of this reaction can help to better understand the chemical aspects of the oxidative epigenetic regulation of the DNA methylation.³ (Figure 2)

Figure 1. Experimental data reported in ref.² : a) oxidation products, and b) oxidation kinetics of 5mdC to 5hmdC (cyan), 5hmdC to 5fdC (blue), and 5fdC to 5cadC (green) at 60°C and pH 7.4. While 5hmdC is efficiently oxidized to 5fdC, 5fdC gives only a little 5cadC. Depicted are the means of triplicate experiments; error bars reflect the standard deviations.in the experiment.

Figure 2. Cytosine derivatives formed during epigenetic gene regulation together with their deamination products. The wavy line indicates the C-H bonds for which the homolytic dissociation enthalpies (BDE) were calculated. DNMT - DNA methyltransferases, TET - teneleven translocation enzymes, BER - base excision repair.

Autoxidation reactions involve chain initiation reactions, chain propagation and chain termination reactions. While the last two reaction types seem to be quite well established, the primary chain initiation reactions remain hypothetical.⁴ Possible initiation reactions are: (a) the unimolecular dissociation of hydroperoxides into benzyloxy radical and hydroxyl radical, (b) the bimolecular hydroperoxide decomposition, in which benzyloxy radical, benzylperoxy radical and a water molecule are formed or the direct reaction of the hydrocarbon with either (c) triplet oxygen or (d) ozone.⁵ Zipse and Sandhiya have investigated the autoxidation initiation reactions (a), (b) and (c) on the example of toluene, which is comparable to 1,5-dimethylcytosine. They used CBS, QB3, G4 and G3B3 calculations to come to the conclusion that the autoxidation of hydrocarbons is unlikely to occur through initiation by triplet oxygen (c) or through unimolecular decomposition of hydroperoxides (a) due to a high positive enthalpy (ΔH_{298} (c)=+169.9±2.0 kJ mol⁻¹ and ΔH_{298} (a)=+202.0±11.6 kJ mol⁻¹). The bimolecular hydroperoxide decomposition (b) is the reaction with the lowest enthalpy (ΔH_{298} (b)=+65.8±14.8 kJ mol⁻¹) and therefore the most favorable out of these three reactions, even though the enthalpy is still higher than zero.⁵

Originally it was considered that autoxidation reaction chains are initiated by the thermal decomposition of hydroperoxides contained in the substrate.⁶ If that was true, then the thermal oxidation of the same organic material would be quite reproducible, which is not the case, as shown by Gugumus in 1998. He observed that the lifetime of polypropylene decreases at a higher ozone level and came to the conclusion that hydroperoxide initiated chain oxidation is determining only the rate of oxidation after the induction period. This is assumed to be valid also for other organic materials.⁴ Considering the research done by Zipse, Sandhiya and Gugumus that was mentioned before the direct reaction of the hydrocarbon with ozone it is most likely to substantially contribute to the chain initiation.

First, the thermodynamics of oxidation will depend on the stability of the oxidizing species, which in this reaction are oxygen-centered radicals. In chapter 2, it has been established, that in the presence of one explicit water molecule, the BDE(O-H) values in alcohols become higher, which means that the RSE(RO•) values of the corresponding radicals become less

negative: the radicals are less stable (Figure 3). This allows us (very careful) to make a hypothesis that the oxygen-centered radicals show more activity in water solution than in gas phase, even just because alcohol has one hydrogen atom more than its O-radical, and can form at least one more stabilizing intermolecular hydrogen bond.

Figure 3. The calculated at the DLPNO-CCSD(T)/CBS level of theory BDE(O-O) values, BDE(O-H) values and the highest BDE-A(O-H)/BDE-D(O-H) values (best conformation by enthalpy) in kJ mol⁻¹.

Second, the thermodynamics of oxidation will depend on the BDE(C-H) values of the species being oxidized. In chapter 3 we showed, that in the derivatives of cytosine, among the substituent groups in the 5th position, the following trend in BDE(C-H) values is observed 5dhm- < 5hm- < 5f- (where 5dhm- substituent is dihydroxymethyl, 5hm — hydroxymethyl, 5m — methyl, 5f — formyl). It has been also established that the charge will strongly affect the reactivity of studied molecules: protonation increases the calculated BDE(C-H) values in cytosine derivatives (Figure 4). Based on this knowledge about the oxidizing and reducing agents under consideration, it is possible to propose a mechanism for the autoxidation of 1,5-dimethylcytosine, which is presented in Figures 5-7.

Figure 4. The calculated at the SMD(H₂O)/DLPNO-CCSD(T)/CBS level of theory BDE(C-H) values in kJ mol⁻¹.

Figure 5. The proposal mechanism of (aut)oxidation reaction: initiation, cycles 1-4. Stable products: 5hm1mC, 5f1mC.

Figure 6. The proposal mechanism of (aut)oxidation reaction: cycles 5-8. Stable products: 5f1mC, 5ca1mC.

Figure 7. The proposal mechanism of (aut)oxidation reaction: cycle 9 and some possible reactions between peroxides and 5f1mC. Stable product: 5ca1mC.

Computational details

In this work, all geometries were optimized at the SMD(H₂O)/(U)B3LYP-D3/6-31+G(d,p) level of theory with the SMD implicit solvent model⁷ using Gaussian09, Revision D.01.⁸ D3 version of Grimme's dispersion was added to the method of optimization to account the dispersion interactions.^{9,10} Since the relative tautomeric stability of the studied molecules is not trivial and can be changed due to solvation effects, we tested all possible tautomers. Using the expression $C_n^k = \frac{n!}{(n-k)! \cdot k!}$, one can estimate the number of possible tautomers of an asymmetric molecule having *n* lone pairs and *k* acidic protons ($k \le n$). The individuality of the found conformers/tautomers was confirmed using an energy criterion ($\Delta E_{tot} > 10^{-7}$ a.u.) and comparing geometries by distances between each atom and the centroid point.^{11,12} Frequency calculations have been carried out to verify that the optimized structures are real minima without any imaginary vibration frequency.

Frequency calculations have been carried out to verify that the optimized structures are true minima. Thermochemical corrections to H^{gas} and G^{gas} at 298.15 K were calculated with GoodVibes using the quasi-harmonic approximation.¹³ A «gas» symbol (^{gas}) denotes a standard state of 1 atm in the gas phase and «solution» (^{sol}) denotes 1 mol 1⁻¹ in the solution phase. For each studied nucleobase, all the stable tautomers and conformers were taken into account when calculating the Boltzmann-weighted values of E_{tot} , H^{sol} , and G^{sol} . The single point energies were also calculated for the optimized geometries at the DLPNO-CCSD(T) level.¹⁴⁻¹⁶ Two-point (cc-pVTZ and cc-pVQZ) extrapolation was employed at the DLPNO-CCSD(T) level of theory to estimate a result obtained using a complete (infinitely large) basis set.^{15,17} Standard state solvation free energies ΔG^{solv} were computed as the difference between the solution phase free energy G^{sol} of the solution phase optimized molecule (SMD(H₂O)/(U)B3LYP-D3/6-31+G(d,p)), and the gas phase single point free energy G^{gas} ((U)B3LYP-D3/6-31+G(d,p))/

$$\Delta G^{\rm solv} = G^{\rm sol} - G^{\rm gas}$$

The solution phase single-point free energies G^{sol} are computed by combining the gas phase free energies G^{gas} with the solvation free energies ΔG^{solv}

$$G^{\text{sol}} = E_{\text{tot}}^{\text{single-point}} + ZPE^{\text{SMD}/(\text{U})B3LYP-D3} + \Delta G_{0K \rightarrow 298K}^{\text{SMD}/(\text{U})B3LYP-D3} + \Delta G_{0K \rightarrow 298K}^{1atm \rightarrow 1M} + \Delta G^{\text{solv}}$$

 $\Delta G_{0K \rightarrow 298K}^{1atm \rightarrow 1M} = +7.91 \text{ kJ mol}^{-1}$ is the free energy difference for converting from the standard state concentration of 1 atm to the standard state concentration of 1 mol l⁻¹.

Results

The calculated results are presented in table 1. The calculations confirm that not only the enthalpy but also the free energy of the initiation reaction with triplet oxygen are highly positive making the reaction energetically not favorable (the most endothermic and endergonic reaction). This is due to the formation of a primary carbon radical from generally stable, biradical triplet oxygen. The enthalpy also matches very well with the enthalpy of reaction (c) found in the literature. If the depicted mechanism resembles the enzymatic cycle, TET enzymes likely increase reaction rates by stabilizing this highest-energy intermediate, which would also lower the activation energy according to the Bell-Evans-Polanyi principle. The highly reactive 5r 1,5-dmC is then oxidized by triplet oxygen in reaction 2. As the peroxy radical is more stable, this reaction is exothermic. But due to the reduction in moles and thus reduction of entropy, the liberated free energy is -7.91 kJ mol⁻¹ lower: this correction is included in all to all calculated free energies in this work for reactions with the increase (+7.91) or decrease (-7.91) of moles. It is noticeable that reaction 3 is also slightly endothermic and endergonic. The reason for this is that the corresponding BDE(C-H) value is significantly higher, than that of the ROO-H bond (the formation of primary doublet 5r_1,5-dmC is thermodynamically unfavorable). However, as the educt of reaction 3 is a doublet species as well, the reaction is much less endothermic and endergonic than the initiation. That would imply that the reverse reaction should dominate over the forward one. Since this reaction is just a small step in a larger

mechanism, there could still be a driving force through one of the following reactions making reaction 3 possible, for example if the formed hydroperoxide is rapidly consumed in reaction 4 or 5. That should be carefully considered from case to case and is not completely clear in this situation. According to Coote and co-workers reaction 3 is just not as relevant in autoxidation reactions as commonly assumed.¹⁸

Table 1. The calculated at the SMD(H₂O)/(U)B3LYP-D3/6-31+G(d,p)) and SMD(H₂O)/DLPNO-CCSD(T)/CBS levels of theory ΔH^{sol} and ΔG^{sol} values of the studied reactions in kJ mol⁻¹.

		Closed-shell		DFT		DLPNO	
Cycle	Reaction	Educt	Product	ΛH ^{sol}	AG ^{sol}	ΛH ^{sol}	AG ^{sol}
	1	5mC		153.7	146.8	170.8	164.0
		00		10017	1.0.0	17010	10.110
	2			-107.2	-67.4	-113.5	-73.6
1	3	5mC	5pmC	22.2	23.6	9.6	10.7
	4	5pmC	5hmC	-171.6	-174.6	-172.0	-173.6
2	5	5mC	5hmC	-54.3	-51.1	-66.9	-64.9
-	6	5pmC		-123.1	-129.3	-121.0	-126.8
3	7		5fC	-156.8	-188.3	-165.2	-196.8
			L		1		
	8	5pmC		-142.2	-146.5	-128.3	-132.3
4	9	5pmC	5pmC	19.1	17.2	7.3	5.5
	10		5fC	-156.8	-188.3	-165.2	-196.8
F	11	5hmC	5phmC	4.2	0.2	-21.3	-24.0
5	12			-116.8	-73.6	-115.5	-73.9
	13	5hpmC	5fC	7.7	-33.7	19.6	-21.6
	-						
C	14	5hmC		-147.7	-135.6	-172.0	-162.2
6	15		5dhmC (5fC)	-145.5	-151.9	-138.4	-143.2
			· · ·				
7	16	5fC		-2.7	-4.4	-22.8	-24.4
	17		5pcaC	-133.2	-93.1	-142.3	-102.0
Q	18	5dhmC (5fC)		-62.8	-67.0	-5.2	-4.2
0	19		5pdhmC	-56.0	-8.6	-137.8	-94.8
	20	5pdhmC	5caC	-42.3	-87.4	-27.7	-73.4
	21	5pdhmC	5pcaC	-37.9	-80.6	-31.6	-74.1
	22	5hmC + 5fC	5fC_5pmC	-28.9	29.1	-41.6	17.5
9	23	5fC_5pmC	5hmC	-333.8	-340.8	-316.2	-321.6
	24		5caC	47.4	-3.1	27.8	-25.6
	25		5hmC + 5 caC	-286.4	-343.9	-288.4	-347.2
	26	5phmC + 5 fC		-26.3	36.0	-	-
	27		5dhmC+ 5caC	-294.6	-354.2	-	-
	20			10.0	20.0		
	28	5pcaC + 5fC		-18.3	38.2	-	-
	29		5caC + 5caC	-335.5	-388.3	-	-
	20				22.6		
	30	HOOH + 5fC		-7.8	33.6	-	-
	<u>51</u>	1	HOH + 5caC	-341.5	-376.9	-	-
Orange	Endergon	c iimiting reaction	ons				
Yellow	Exergonic	reactions depen	dent on limiting r	eactions			
Green	Exergonic reactions or cycles						

Reaction 4 is exothermic and exergonic as a methyl radical is oxidized to an oxo-methyl radical. Here, among the three bonds (BDE(C-H, O-O, O-H) = +370.5, +230.9, +381.2 kJ mol⁻¹) in the 5pm1mC molecule, the weakest O-O bond breaks. This reaction really influences the overall enthalpy and free energy change of the reaction mechanism. Reaction 5 completes the second cycle and thus replenishes the central radical intermediate.

Reaction 6 starts cycle 3, where the C-H bond in the 5pm1mC molecule is breaking, which leads to the formation of an unstable radical 5r_5pm1mC, which then decomposes into a hydroxyl radical HO• and 5f1mC in reaction 7.

Reaction 8 starts the more complicated cycle 4, where the OH bond in the 5pm1mC molecule is breaking. Reaction 9 is slightly endergonic, because in the 5pm1mC molecule the BDE(C-H) value is slightly higher than the BDE(O-H) value. Cycle 4 is finishing with the formation of hydroxyl radical HO• and 5f1mC in a highly exothermic manner.

Reactions 11-15 are exergonic and can be a good reason for both the increased 5f1mC (product) and decreased 5hm1mC (educt) concentrations observed in the kinetics measurements. ² It should be noted that the resulting hydrate (~0.5%) in reaction 14 exergonic decomposes into 5f1mC (~99.5%) and HOH molecule.³

The percarboxylic acid 5pcaC that forms in cycles 7 and 8 can also serve as a source of the hydroxide radical HO• in cycle 1, in which case 5ca1mC will be one of the products of the cycle. Note that cycle 8 is generally exergonic, but it is thermodynamically limited by the positive free energy formation of the 5dhmC hydrate.³ The BDE(O-H, in the peroxy group) and BDE(O-O) scales in figure 3 show that among all the studied peroxides, 1m5pcaC has the strongest O-H and O-O bond. We hypothesize that this peroxide is the least active and can be seen in solution upon closer experimental examination.

Cycle 9 is exergonic; however, it is thermodynamically limited by the positive free energy formation of the 5f1mC_5pm1mC molecule (reaction 22). In this case, the 5f1mC_5pm1mC molecule will rather decompose into 5ca1mC and 5hm1mC than take part in cycle 9. In addition, we considered different variants of reaction 22: reactions 26, 28 and 30 - they are all endergonic and their products exergonic decompose with the formation of 5ca1mC (reactions 27, 29 and 31). Thus, the performed calculations show that the autoxidation of 1,5-dmC is thermodynamically probable. However, conclusions for biological systems should be made with caution, since the natural environment of cytosine has been completely ignored.

Conclusions

The current proposal mechanism is very similar with the toluene (aut)oxidation mechanism. ⁵ The (aut)oxidation of 5mC is unlikely to occur through initiation by triplet oxygen or through unimolecular decomposition of hydroperoxides, rather, by ozone.

All endergonic bimolecular chain reactions between neural compounds and free radicals involve the transfer of a hydrogen atom to form a neural compound with a higher BDE value.

Absolutely most of the reactions in the considered (aut)oxidation mechanism is exergonic, with the exception of endergonic reactions that are thermodynamically limiting: 1 (initiation) > 22 > 3 > 9.

Based on the considered mechanism, it is possible to explain the results of the kinetic experiment² shown in figure 1, where the following trend in the oxidation rate of molecules can be seen $\underline{SfC} > \underline{ScaC} > \underline{ShmC}$:

<u>**5fC**</u> is readily formed in exergonic cycles **3**, **5** and **6** and not readily consumed in the slightly exergonic cycle 8 (ΔG^{sol} of the cycle start -4.2 kJ/mol), so 5fC may accumulate in solution

<u>5caC</u> is formed predominantly in the cycle 8

<u>5hmC</u> is <u>hardly produced</u> in cycle **1** (ΔG^{sol} of the limiting reaction 3: +10.5 kJ/mol) and <u>very</u> <u>easily consumed</u> in exergonic cycles **5** and **6**

Lowering the pH value will likely slow down the oxidation process by protonating the nucleobases and increasing the BDE(C-H) values.

References

[1] C. E. Frank, *Chemical Reviews* **1950**, *46*, 155.

[2] S. Schiesser, T. Pfaffeneder, K. Sadeghian, B. Hackner, B. Steigenberger, A. S. Schröder, J. Steinbacher, G. Kashiwazaki, G. Höfner, K. T. Wanner, C. Ochsenfeld, T. Carell, *J. Am. Chem. Soc.* **2013**, *135*, 14593.

- [3] F. L. Zott, V. Korotenko, H. Zipse, *ChemBioChem* **2022**, *23*, e202100651.
- [4] F. Gugumus, *Polym. Degrad. Stab.* **1998**, *62*, 403.
- [5] L. Sandhiya, H. Zipse, *Chem. Eur. J.* **2015**, *21*, 14060.
- [6] J. Bolland, Proc. Math. Phys. Eng. Sci. 1946, 186, 218.
- [7] C. J. Cramer, D. G. Truhlar, *Chemical Reviews* **1999**, *99*, 2161.
- [8] M. Frisch, G. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, *Inc., Wallingford CT* **2009**, *201*.
- [9] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [10] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.
- [11] V. Korotenko, <u>https://github.com/vnkorotenko/ess</u>.
- [12] V. Korotenko, <u>https://github.com/vnkorotenko/ccs</u>.
- [13] G. Luchini, J. V. Alegre-Requena, I. Funes-Ardoiz, R. S. Paton, F1000Research 2020, 9, 291.
- [14] A. Altun, F. Neese, G. Bistoni, J. Chem. Theory Comput. 2018, 15, 215.
- [15] F. Neese, E. F. Valeev, J. Chem. Theory Comput. 2011, 7, 33.
- [16] M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, F. Neese, J. Chem. Phys. 2017, 146, 164105.
- [17] A. Altun, F. Neese, G. Bistoni, *Beilstein J. Org. Chem.* 2018, 14, 919.
- [18] G. Gryn'ova, J. L. Hodgson, M. L. Coote, Org. Biomol. Chem. 2011, 9, 480.

6. Appendix

6.1. Conformational Analysis Tools

Energy sorting script (ESS)

The Energy Sorting Script allows you to discard unnecessary calculation results, **possibly** containing repeating structures using energy criterion ($\Delta \text{Etot} > 10^{-7}$ a.u. by default).

Options		
-7	Etot criterion 0.0000001 a.u. (by default)	
-6	Etot criterion 0.000001 a.u.	
-5	Etot criterion 0.00001 a.u.	
-4	Etot criterion 0.0001 a.u.	
-3	Etot criterion 0.001 a.u.	
-Z	Zero criterion 0 a.u.	
-c	To enter your Etot criterion manually (0.0000001 a.u. by default)	
-S	To enforce singlet output: $\langle S^2 \rangle = 0.0000$	
-lm	Search for local minima (by default)	
-ts	Search for transitional states	
-a	You need all files in the list (without any exclusion)	
-H298	Sort by H298	
-G298	Sort by G298	

The general algorithm of ESS includes the following steps¹

1) Extraction of the most important data from a list of Gaussian-log files: filename, ZPE1, δ H.1, δ G.1, E_{tot} , \langle S² \rangle , 1-st frequency. Check, if 1-st frequency > 0.

2) Sorting the list of extracted data in ascending order of E_{tot} .

3) Comparison by E_{tot} . Each log-file will be compared with the previos one by E_{tot} using the following criterion: If $\Delta E_{tot} > 10^{-7}$ Hartree (by default) then it makes sense to consider this file. Otherwise: the current file is most likely a "replicant/duplicate", **possibly** containing the same structure as in previous file.

Benefits:

- Allows you to reduce the number of conformers in the list quickly

Disadvantages:

- The "replicant" structures can still be presented in the list, because this analysis does not take into account geometry:

First example: Geometries can be almost the same, but have slightly different energies due to the difference in the number of geometry-convergence steps or in the number of SCF steps.

The second example: a radical particle with the same geometry can have two different wave functions that differ greatly in energy.

- Loss of structures (which is very rare, but possible) with a high conformational lability of the molecule: two different conformers can have almost the same energy (with a difference of less than ΔE_{tot} criterion). In this case, the structure will be eliminated from the list.

Centroid comparison script (CCS)

The analysis of certain interatomic distances and visualization of geometry is widely used by chemists all over the world. However, when it comes to a large number of structures and the search for individual conformations among them, "manual" methods take a lot of time and do not exclude human error.

The Centroid Comparison Script allows you to discard unnecessary xyz-files or Gaussian logfiles, **possibly** containing repeating structures comparing geometries by distances between each atom and centroid point. ² CCS is applicable only in chemistry, but wherever it comes to searching for individual geometries (just need to change the length units and criterion). (Figure 1 and 2)

Figure 1. Equilateral (a) and Isosceles triangles (b). The lines correspond distances between triangle-vertices (gray points) and centroid (purple point).

Figure 2. Ethylene glycol molecule. The lines correspond to (a) covalent bonds and (b) distances between atoms and centroid (purple point).

Algorithm/Principle	Data	General options:
Full Combinatoric Comparison	unsorted sorted	xyz/log files: ccs -f (Most accurate/expensive)
Restricted Combinatoric Comparison Based on Geometry Expansion	unsorted sorted	xyz/log files: ccs -r ccs -u ccs (default for unsorted) (Very accurate/less expensive)
Geometry Expansion Comparison	unsorted sorted	xvz/log files: ccs -e
Center of Mass vs. Centroid Comparison	unsorted sorted	xyz/log files: ccs -cmc ccs -schwerpunkt
Sorted Geometries Comparison	sorted	 1) <u>xyz/log files:</u> create your own ".ccs" input-list file, where the geometries are sorted as you want (by any property). Each geometry will be compared to the previous one ccs ccs -s 2) <u>log files:</u> comparison of energy-neighboring geometries (just a special case). In this case, ESS will generate an input-list ess;ccs ess -(option);ccs -(option)

Other options:		
-nproc	number of parallel processes (1 by default; RCC,GEC)	
-dl	enter your Δ -length criterion (0.015 Å by default)	
-dlh	enter your Δ Expansion (Δ -lhash) criterion (0.001 Å by default per atom)	
-rm	to remove relpicants after analysis! Be carefull	
-symm	You have a symmetric molecule/system	
	(at. num. is NOT important by default)	
-nosymm	You have an asymmetric molecule/system	
	(at. num. is important by default)	
-num	(at. num. is important by default)	
-nonum	(at. num. is NOT important by default)	

Full combinatoric comparison

1) Reading of the Geometry from each xyz/log file (**G** - matrix). The number of atoms **n** must be the same in all files

$$\mathbf{G} = \begin{bmatrix} x_1 & y_1 & z_1 \\ \dots & \dots & \dots \\ x_i & y_i & z_i \\ x_n & y_n & z_n \end{bmatrix}$$

2) Calculation of Centroid point $C(x_c; y_c; z_c)$ for each geometry:

$$x_c = \frac{\sum_{i=0}^{n} x_i}{n}$$
$$y_c = \frac{\sum_{i=0}^{n} y_i}{n}$$
$$z_c = \frac{\sum_{i=0}^{n} z_i}{n}$$

and definition of **C** – matrix with **n** lines **for each geometry**:

$$\mathbf{C} = \begin{bmatrix} x_c & y_c & z_c \\ \dots & \dots & \dots \\ x_c & y_c & z_c \\ x_c & y_c & z_c \end{bmatrix}$$

3) Calculation of **L** – matrix **for each geometry**, which contains «xyz-components of the absolute distance l_i from *i*th atom to the C_{xyz} point (*i* =1 to *n*):

$$\mathbf{L} = \mathbf{G} - \mathbf{C} = \begin{bmatrix} x_1 & y_1 & z_1 \\ \dots & \dots & \dots \\ x_i & y_i & z_i \\ x_n & y_n & z_n \end{bmatrix} - \begin{bmatrix} x_c & y_c & z_c \\ \dots & \dots & \dots \\ x_c & y_c & z_c \\ x_c & y_c & z_c \end{bmatrix} = \begin{bmatrix} l_1^x & l_1^y & l_1^z \\ \dots & \dots & \dots \\ l_i^x & l_i^y & l_i^z \\ l_n^x & l_n^y & l_n^z \end{bmatrix}$$

This equation is equivalent to the translation of the molecule , leading to the alignment of the centroid with the origin C_{xyz} (0;0;0)

In other words, \mathbf{L} – matrix contains the difference in the coordinates of each atom x_i , y_i , z_i (i = 1 to n) and coordinates the C_{xyz} point:

$$l_i^x = x_i - x_c$$

$$l_i^y = y_i - y_c$$

$$l_i^z = z_i - z_c$$

Which is needed to calculate the distancies between each atom and the centroid point

$$l_i = \sqrt{(l_i^x)^2 + (l_i^y)^2 + (l_i^z)^2}$$

And to define the \mathbf{l} – column-matrix

$$\mathbf{l} = \begin{bmatrix} l_1 \\ \dots \\ l_i \\ l_n \end{bmatrix}$$

4) Calculation of $\Delta \mathbf{l}$ – column-matrices: $\Delta \mathbf{l}_j = |\mathbf{l}_j - \mathbf{l}_{ref}|$, where *j* is the geometry number (*j* = 2 to *N*, *N* is the number of geometries). \mathbf{l}_{ref} corresponds to the first structure in the **list**, which is individual by default. This structure will be used as a reference, with which all the other *N* – 1 structures will be compared

$$\Delta \mathbf{l}_{j} = \begin{bmatrix} l_{1} \\ \vdots \\ l_{l} \\ l_{l} \end{bmatrix}_{j} - \begin{bmatrix} l_{1} \\ \vdots \\ l_{l} \\ l_{l} \end{bmatrix}_{ref} = \begin{bmatrix} \Delta l_{1} \\ \vdots \\ \Delta l_{l} \\ \Delta l_{l} \end{bmatrix}_{j}$$
(Lenght Change)

 $\Delta \mathbf{f}_j$ – column-matrices will be computed sequentially for N-1 geometries in the list.

5) Geometry-individuality criterion. Each considered j-th geometry will be compared with the reference geometry using the following criterion: If at least one element of the Δl_j is > 0.02 Angström, then the j-th geometry can be considered different from the reference and it will be added to the **new list** for the **next iteration**) Otherwise: the j-th geometry is a "replicant" of the reference geometry. Start **next iteration** including steps 4 and 5 using **new list**. **Iterate** until the **new list** has >1 geometries. If only 1 **last** geometry is left in the **new list**, this is the **last individual**. Thus, the number of **iterations** will be equal to the number of individuals in total.

Restricted combinatoric comparison based on geometry expansion

1) See Full Combinatoric Comparison

2) See Full Combinatoric Comparison

3) Modification: Additionally, Geometric Expansion value will be calculated for each geometry n

$$l_{hash} = \sum_{i=0}^{n} l_i$$

4) **Modification**: Structures in the **list** should be ranked in ascending order of their Geometric Expansion (l_{hash} value). Δf_j

Calculation of $\Delta \mathbf{l}$ – column-matrices: $\Delta \mathbf{l}_{j} = |\mathbf{l}_{j} - \mathbf{l}_{ref}|$,

Only if $\Delta l_{hash_j} = \left| l_{hash_j} - l_{hash_{ref}} \right| < 0.01$ Angström (per atom); Otherwise: geometries are too different and no comparison is needed.

5) See Full Combinatoric Comparison

Restricted combinatoric comparison based on RMSD

Modification: Structures in the list should be ranked in ascending order of their RMSD value

Not robust to change of atomic numeration

Not robust/efficient for a symmetrical system or system which consists of symmetrical elements, for example:

Figure 3. Comparison of RMSD and Δl_{hash} : application to HO•..HOH complex.

"Rearranging the positions of the terms does not change the sum"

Algebra

This option would be suitable if:

- you want to analyze xyz files (the energy is unknown)

- you want to analyze log files without the ESS analysis first.

In this case, CCS will compare geometries by the sum of all distances (l_{hash} value). The Algorithm of CCS includes the following steps²

1) Reading of the Geometry from each xyz/log file (G - matrix). The number of atoms \mathbf{n} must be the same in all files

2) Calculation of Centroid point C (x_c ; y_c ; z_c) for each geometry

3) Calculation of the l – column-matrix and its l_{hash} value for each geometry

$$l_{hash} = \sum_{i=0}^{n} l_i$$

4) Calculation of Δl_{hash_j} – values: $\Delta l_{hash_j} = |l_{hash_j} - l_{hash_{j-1}}|$, where *j* is the geometry number (*j* = 2 to *N*, *N* is the number of geometries). Δl_{hash_j} –values will be computed sequentially for (*N* – 1) geometries ranked in ascending order of their l_{hash} value.

5) Geometry-individuality criterion. Each considered j-th geometry will be compared with the previous one j-th geometry using the corresponding Δl_{hash_j} -value and the following criterion: If $\Delta l_{hash_j} > 0.001$ Angström (per atom), then the j-th geometry is considered different from the previous one and, therefore, "individual". Otherwise: the j-th geometry is a "replicant" of j-th geometry.

Sorted geometries comparison

To start, you need to create a ".ccs" input-list file, where the geometries are sorted as you want (by any property). If you want to make aa comparison of energy-neighboring geometries, you need a special input-list, where the geometries are sorted by energy. Such a list can be crated using ESS.

In this cases, the algorithm of CCS includes the following steps

1) Reading of the Geometry from each xyz/log file (G - matrix). The number of atoms ${\bf n}$ must be the same in all files

2) Calculation of **C** – matrix **for each geometry**

3) Calculation of **l** – column-matrices

4) Calculation of $\Delta \mathbf{l}$ – column-matrices: $\Delta \mathbf{l}_j = |\mathbf{l}_j - \mathbf{l}_{j-1}|$, where *j* is the geometry number (*j* = 2 to *N*, *N* is the number of geometries). Matrices will be computed sequentially for (*N* – 1) geometries.

5) Geometry-individuality criterion. Each considered j-th geometry will be compared with the previous one j-th geometry using the following criterion: If at least one element of Δl_j is > 0.05 Angström, then the j-th geometry can be considered different from the previous one and, therefore, "individual". Otherwise: the j-th geometry is a "replicant" of previous geometry.

Benchmark

If all the structures you are considering are individual, using formula $C_N^k = \frac{N!}{(N-k)! \cdot k!}$ known from combinatorics, one can estimate the number of geometry-comparisons that occur in the full method (k=2 and N is the number of files ($k \le N$)).

Let's take a look at a set of geometries of the same system with the same number of atoms. A set of **random**-generated geometries usually contains 100% «individuals» and 0% «replicants». In practice, the percentage of «individuals» after geometry optimization, will decrease, but how much depends on the system (size; whether it is symmetrical or consists of symmetrical elements). In this example, the percentage in "**optimized**" of "individuals" \approx 40-50%, depending on the number of geometries considered.

Figure 4. Benchmark for ccs. Time is proportional to:

Time (ccs -f) \propto number of atoms, number of geometry-comparisons.

Time (ccs -r) \propto number of atoms, number of geometry-comparisons.

Time (ccs -e) \propto number of atoms, number of geometries.

Time (ccs -s) \propto number of atoms, number of geometries.

In case of large molecules, to decrease the time of calculation it is recommended to decrease the the number of atoms: create a list of atoms which you want to analyze "any_name.atoms"

Figure 5. Multitasking Benchmark with 200 structures

Figure 6. Multitasking Benchmark with 1000 structures

Strategy of stochastic conformational search

Sometimes we wonder how to generate random structures (intermolecular dimers, trimers, etc.) and make a stochastic conformational search.³⁻⁵ Here I will briefly describe the methodology of stochastic conformational search using a dimeric system (1 substrate molecule + 1 water molecule) as example

1) open or draw your molecule in GV5/GV6 and add one water molecule

2) save the geometry as example.com file

3) add "1" after coordinates of second atom

launch /scr7/vasily/scripts/kick/pre_kick_dimer

and enter the number of atoms in the second molecule: 3

4) open the generated example_kick file as text, select all, copy and past to "Input XYZ coordinates" WINDOW in the https://kick.science/KICK.html web-page5) use these parameters:

DISTANCE PARAMETER:	2.4 (ANGSTROM)
NUMBER OF NEW FILES:	20
MINIMAL DISTANCE:	2.0 (ANGSTROM)
NUMBER OF FRAGMENTS:	1

6) click the "GENERATE " button

7) Save the generated kick.xyz file as example_kicked in the same folder as the example.com8) Start DFT-optimization and frequencies calculation with/scr7/vasily/scripts/kick/kick_b3lyp-D3_6-31+Gdp

Data analysis AFTER the calculations:

9) sep -n 2

10) cd normal

11) 'ess' command

12) 'ccs' command

References

[1] V. Korotenko. https://github.com/vnkorotenko/ess.

[2] V. Korotenko. https://github.com/vnkorotenko/ccs.

- [3] D. Šakić, M. Hanževački, D. M. Smith, V. Vrček, Org. Biomol. Chem. 2015, 13, 11740.
- [4] D. Šakić. https://kick.science/KICK.html.
- [5] M. Saunders, J. Comput. Chem. 2004, 25, 621.

Curriculum Vitae

Personal Details

Name Born ORCID iD Mail (office) Tel. (office) Vasilii Korotenko 25 January 1994 0000-0002-2045-2536 <u>vakoch@cup.uni-muenchen.de</u> +49 89 2180 77741

Education 01.2019–present	Ph.D. in computational chemistry Ludwig-Maximilians-Universität München, Group Prof. Zipse, SFB 1309 Ph.D. thesis: «Oxidation of Modified DNA Nucleobases: Computational Study»
09.2016-08.2018	Master of science in theoretical and experimental chemistry Mendeleev University Moscow, Group Prof. Tsirelson Master thesis: «The electron gas pressure distribution in serine: neutral molecule, zwitterion, cluster, experimental crystal» Grade point average: 1.5 (excellent)
09.2012–08.2016	Bachelor of science in chemistry Mendeleev University Moscow, Group Prof. Tsirelson Bachelor thesis: «Quantum chemical study of intramolecular non-covalent interactions in the conformers of neutral serine and its zwitterion» Grade point average: 1.3 (excellent)
Professional Experience 09.2018–present	Research Assistant Ludwig-Maximilians-Universität München, Group Prof. Zipse Project SFB 1309: «Chemical Biology of Epigenetic Modifications» HPC system administrator: support, management, hardware, software Assistance in teaching activities (lab)
05.2015-08.2018	Research Assistant Mendeleev University Moscow, Group Prof. Tsirelson Project «Discrete structural model of a crystal with explicit representation of information on chemical bonding» HPC system administrator: support, management, hardware, software Assistance in teaching activities
04.2014-04.2015	Research Assistant Mendeleev University Moscow, analytical chemistry department Assistance in teaching activities (lab)

Further Education	
	Course "Dev Dio MS mosts SED, motoomies for oniconstice" TU Munich
	Course Baybiowis meets SFB: proteomics for epigenetics, 10 Munich
11.2017-05.2018	BI-CI German courses at the AStA Heinrich Heine University, Dusseldorf (Germany)
02.2018-03.2018	Practical workshop "Simulation von Biomolekülen", Heinrich Heine University.
	Institut für Theoretische Chemie und Computerchemie. Düsseldorf (Germany)
09.2017-11.2017	Practical workshop "Molecular dynamics", Moscow State University.
	Laboratory of chemical cybernetics Moscow (Russia)
Skills	1. Languages Spoken: English, German, Russian, Ukrainian
	2 Developer Energy Sorting Script (ESS) 2020
	https://github.com/ynkorotenko/ess
	3 Developer Centroid Comparison Script (CCS) 2020
	bttps://github.com/unkorotenko/acc
	A Tester (1-1-2) as int have the starbustic second marked 2020
	4. Tester. Kick script based on the stochastic search procedure. 2020
	nttps://kick.science/KiCK.ntml
	5. Programming languages: Python, MATLAB, VBA, Java, C++.
	6. Machine learning / neural networks: TensorFlow/Keras, PyTorch, SKLearn.
	7. Python libraries: NumPy, Matplotlib, Seaborn, Pandas, RDKit, SciPy,
	MDAnalysis
	8. Computational chemistry software: Gaussian, ORCA, Molpro, Psi4, GAMESS,
	Firefly, NAMD, VMD, GROMACS, CPMD, USPEX, Quantum ESPRESSO,
	WinXPRO, Multiwfn, HyperChem, Promolden, AIMAll, AIM2000.
	9. Graphical Software: PyMOL, VMD, ChemCraft, Avogadro, Blender, Mercury,
	ChemDraw

10. Other: Linux, SLURM, Git, BitBucket, Jira, MS Office, LaTeX, SQL, MongoDB

Publications:

F. Zott, V. Korotenko, H. Zipse «The pH-Dependence of the Hydration of 5-Formylcytosine-an Experimental and Theoretical Study» *ChemBioChem* 2021

V. Korotenko, H. Zipse « The Stability of Oxygen-Centered Radicals and its Response to Hydrogen Bonding Interactions» *J. Comp. Chem.* 2023

V. Korotenko, F. Zott, H. Zipse «The Acid-Base Equilibrium and C-H Bond Dissociation Energies of Modified Pyrimidine DNA Bases: The Influence of the Hydrate Form of 5fC» *J. Phys. Chem.* 2023

A. Kastrati, A. Kremsmair, A. S. Sunagatullina, V. Korotenko, Y. C. Guersoy, S. K. Rout, F. Lima, C. E. Brocklehurst, K. Karaghiosoff, H. Zipse, P. Knochel «Calculation-Assisted Regioselective Functionalization of the Imidazo[1,2-a]pyrazine Scaffold via Zinc and Magnesium Organometallic Intermediates» *Chem. Sci.* 2023

Conference presentations:

1. 3rd International Conference on Hydrogen Atom Transfer iCHAT 2022 «The Stability of Oxygen-Centred Radicals and its Response to Hydrogen Bonding Interactions»

2. International Congress of Young Scientists in Chemistry and Chemical Technology 2018 «The features of atomic interactions in serine in terms of the components of local electron pressure»

3. International Congress of Young Scientists in Chemistry and Chemical Technology 2017 Topic 1: «Non-Covalent Interactions in the Glutamic Acid Diamide Molecule According to Quantum-Chemical Calculations».

Topic 2: «Intramolecular electron gas pressure in serine: zwitterion, cluster, crystal»

4. International Congress of Young Scientists in Chemistry and Chemical Technology 2016 «Noncovalent interactions in neutral serine conformers by quantum chemical methods»

5. International Congress of Young Scientists in Chemistry and Chemical Technology 2015 «Analysis of intramolecular noncovalent interactions in DL-serine crystal: combined application of quantum chemical calculations and accurate x-ray diffraction method»

6. International Congress of Young Scientists in Chemistry and Chemical Technology 2014 «Potential energy surface and intramolecular noncovalent interactions in serine molecule»

7. International Congress of Young Scientists in Chemistry and Chemical Technology 2013 «Quantum-chemical modelling of the solvated L-serine molecule»

8. Modern Methods in Theoretical and Experimental Electrochemistry: conference — Plyos 2013 «Chemical and phase composition of Fe-Mo sediments obtained by electrodeposition from ammonium citrate solutions»