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Abstract

In this thesis we explore mathematical foundations of scattering amplitudes both in string
theory and quantum field theories. Scattering amplitudes are the contact point between
theoretical and experimental physics. They are used to check theoretical results in ex-
periments for example Standard Model predictions are tested in LHC measurements of
cross sections. Furthermore, they can be used to understand the underlying theoretical
structure as well.

There are two main ways to discuss tree-level scattering amplitudes: First, in the
bottom up approach one can study amplitudes in different quantum field theories with
various matter contents and symmetries. Second, one can use the top down approach and
employ string theory as the high energy quantum gravity and study scattering processes in
string theory. Then, one can relate them to different field theories in the low energy limit.
Utilising these methods one can not only construct more efficient methods to calculate
scattering processes (e.g. spinor-helicity formalism) but also establish structural relations
among different theories (e.g. gauge/gravity duality).

Our discussion in this thesis stands in the middle of the two aforementioned meth-
ods. We discuss Riemann surfaces and define advanced topological structures on top of
them namely the twisted cohomology. In particular, we explain the recent development
regarding twisted forms/cycles that allows us to construct different tree-level scattering
amplitudes [5], [6 [7] both in string theory and quantum field theories. Here, we use the
relationship between string theory and quantum field theories (i.e.the low energy limit
of string theory) to introduce an algorithm by which we are able to produce new twisted
forms. The intersection numbers of these new twisted forms can be used to calculate
scattering amplitudes of different theories more efficiently.

Furthermore, we take advantage of this new mathematical method and study the
structure of scattering amplitudes. In particular, we explore the double copy construction
[§] in two separate avenues. First we construct the first ever double copy for the massive
spin-2 field through string theory. We show that this massive double copy can be compared
to bimetric gravity [9]. Second, we discuss the role of the twisted cohomology in double
copy and put forward a novel method to understand the double copy construction [§]
in terms of twisted differentials as well as producing (and suggesting) new double copy
theories.
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Zusammenfassung

In dieser Arbeit untersuchen wir die mathematischen Grundlagen von Streuamplituden sowohl
in Stringtheorie als auch in Quantenfeldtheorie. Streuamplituden sind die Schnittstelle zwischen
theorerischer und experimenteller Physik. Sie kénnen dafiir verwendet werden, die Vorhersagen
des Standardmodells der Teilchenphysik fiir Streuamplituden von Gluonen und Quarks mit den
Versuchsdaten zu vergleichen. Eine weitere Anwendung von Streuamplituden ist der Vergleich
der zugrundeliegenden Struktur von verschiedenen theoretischen Modellen.

Man kann ”Baumniveau” Streuamplituden mit zwei unterschiedlichen Herangehensweise un-
tersuchen: Bei der ersten Methode, dem ”Bottom-up” Ansatz, brechnet und analysiert man
Streuamplituden von verschiedenen Quantenfeldtheorien, die unterschiedliche Felder und Sym-
metrien enthalten. Beim zweiten (Top-down) Ansatz benutzt man Streuamplituden, die in
Stringtheorie brechnet wurden, welche eine Vervollstindigung von Quantenfeldtheorien im ul-
travioletten Breich darstellt, um im Grenzwert fiir niedrige Energie eine Verbindung zu Streuam-
plituden, die man aus Quantenfeldtheorien erhélt, herzustellen. Diese beide Methoden werden
in diese Arbeit verwendet, um zum einen ein neues Berechnungsverfahren fiir Streuamplituden
zu entwickeln (z.B. Spinor-Helicity Formalismus) und zum andren eine Verbindung zwischen
ansonsten vollstédndig verschiedene Theorien herzustellen (z.B. die Dualitit zwischen Eich- und
Gravitationstheorien).

Diese Arbeit stellt eine Verbindung zwischen den beiden genannten Methoden her. Dafiir
betrachten wir Riemannfliche und definieren topologische Strukturen némlich ” Twisted Ko-
homologie”. Insbesondere, untersuchen wir die neulich entwickelten " Twisted Forms/Cycles”,
welche die Berechnung von verschiedenen Baumniveau Streuamplituden von Stringtheorie und
Quantenfeldtheorien ermoglichen [ [0, [7]. Wir benutzen die Beziehung zwischen Streuampli-
tuden in Stringtheorie unf Quantenfeldtheorie, welche durch Grenzwert fiir niedrige Energien
gegeben ist, um einen Algorithmus zu entwickeln, mit dem wir neue ”twisted forms” herstellen
konnen. Die Schnittzahl dieser neuen ”Twisted forms” koénnen wir zur effiziente Berechnung
von Amplituden in Quantenfeldtheorien verwenden.

AuBerdem benutzen wir die ”twisted Kohomologie”, um Strukturen in Streuamplituden zu
finden und zu untersuchen. Insbesondere betrachten wir dabei Baumniveau Streuamplituden in
der Doppelkopie sowohl fiir massive als auch masselos Zusténde. Fiir Massive spin-2 konstruieren
wir die Doppelkopie einer Streuamplituden in Stringtheorie . Dariiber hinaus stellen wir fest,
dass diese Doppelkopie einer Streuamplituden vergleichbar mit einer bimetrischen Gravitations-
theorie (eine Theorie mit massive und masslose Felder mit spin-2 [9]) bis zur kubischen Ordnung
ist. Des Weiteren diskutieren wir die Rolle der ”twisted Kohomologie” in der Doppelkopie und
argumentieren, wie man dieser neuentwickelten Methode die Doppelkopie-Konstruktion [§] in
Form von ”twisted differential” verstehen und neuer Doppelkopie-Theorien konstruieren kann.
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Chapter 1

Introduction

Quantum field theory (QFT) is one of the main tools that we have invented in theoretical
physics to model the universe. It employs sophisticated mathematical structures from
functional analysis to algebraic geometry to produce a vivid picture of the observable
universe to date. One of the main shortcomings of the current formulation of quantum
field theory (as is used in the Standard Model of particle physics (SM)) is the accom-
modation of gravity into the formalism. Attempts to produce a consistent notion of the
quantum field theory of gravity, also known as quantum gravity, started at the same time
as the advent of quantum mechanics. As of the time of writing this thesis, the most
mathematically consistent formalism of quantum gravity is string theory. It provides the
construction that, among other states, includes a graviton (massless spin-2) state. More
importantly, this graviton (massless spin-2) state interacts with other states in the theory
in a ghost free and mathematically consistent way. In addition, due to the existence of the
conformally symmetric two-dimensional world sheet the usual UV divergence issues do
not appear in string theory [10],[IT],[I2]. All of these good features come at the expense
of introducing higher mathematical structures in string theory such as algebraic topology,
number theory, K-theory, etc [13]. String theory like the Standard Model is a S-matrix
theory and one of the main objects in any quantum field theories with the S-matrix
formulations is the scattering amplitude (i.e.elements of the S-matrix). The scattering
amplitude gives the probability of transitioning from one state to another within the
asymptotic Hilbert space of the theory E] These probabilities become complicated when
the theory has nontrivial interactions and the only practical method to calculate such
interactions is weak coupling perturbation theory] Understanding scattering amplitudes
has far-reaching uses than just the transition probability between states one of the more
notable programs is the amplitudhedron [15] which establishes that scattering amplitudes
can be defined (regardless of Lagrangian) as volumes of mathematical object called am-
plitudhedron described by Polygons. In case of string theory since it can be considered
as high energy completion of Standard Model one can take the amplitude and construct
effective actions by taking the string-length to zero (particle limit) and expanding the

1By asymptotic we mean the Hilbert space corresponding to the free part of the theory.
2for a review on non-perturbative methods cf. [14]
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Figure 1.1: Effective amplitudes upon taking length of string [ — 0

amplitude in the length of the string. In this limit string scattering amplitudes will have
different pole structures which correspond to different field theoretic scattering channels.
For example, as we depicted in figure for the 4-point scattering upon taking the
effective limit the pole structure correspond to s, ¢, and u channels.

Effective actions

Generic scattering amplitude involves Lorentz invariant terms of polarizations and
momenta of the states

A(&[,pj) :F(Oé/,gi'pj,pi’pj,gi'gj). (1.0.1)

One can construct an effective Lagrangian, corresponding to a set of matter field
¢;, with the replacement:

& — ¢ pi— 10,

F(a/, Ei " DjyPi - DjyEi - 5j) N Z amﬁsz(gbi, 0:0) , (1.0.2)

truncated in orders of /.

This means that associated with every scattering amplitude of string theory (or any
UV completion of SM) there is an effective quantum field theory in the low energy limit,
determined by the expansion in o/. Many different theories have been constructed through
the effective action method such as general relativity (GR) and Yang-Mills (YM) [111
16]. In earlier times this construction of effective actions was done to show that indeed
string theory is indeed a good candidate for quantum gravity since it is inclusive of
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already established theories as low energy limits. In contrast, we can use this method in
reverse, meaning we accept that string theory is a quantum gravity theory and construct
the effective actions for theories whose formulations are cumbersome using established
quantum field theory methods. Specifically, we looked at theories involving massive spin-
2 fields [3| [4]. It has taken a lot of effort and discussions by different groups to produce a
ghost free formulation of massive spin-2 theory known as dRGT-gravity [17]. Additionally,
coupling the massive spin-2 to matter fields, in particular, to graviton (massless spin-2)
required the same amount of attention (as the formulation of the ghost free pure massive
spin-2) which was done by Hassan and Rosen [I§] and it is known as bimetric gravity.
However, in both of these cases, it is still an open problem how one can dynamically
generate the mass of the spin-2 field. That is where our discussion of string theory comes
into play. Since string theory already includes gravity and many other theories as low
energy limits, we can try to establish the massive spin-2 as an effective action of string
theory and subsequently define the connection of massive spin-2 to other theories including
massless spin-2 i.e. gravity. Having this in mind we looked at two candidates one open
and one closed string state and found the following structure:

Bimetric as an effective action

Expanding the massive spin-2 bimetric potential and comparing it with string ef-
fective Lagrangian we obtain:

e Massive spin two closed string: Full match up to cubic order.

e Massive spin two open string: Same Lagrangian with different coefficients.

Effective field theory is not the only avenue through which one can study string scat-
tering amplitudes. As scattering amplitudes are maps between different states, under-
standing their algebraic topology /geometry implications can help us to understand duali-
ties (symmetries of Hilbert spaces) such as color-kinematic duality [19]. One of the latest
methods in the study of scattering amplitudes is intersection of twisted forms. It has been
shown [5],[7, [6] that many scattering amplitudes including string scattering amplitudes can
be written as intersection numbers of twisted forms. These are differential forms ¢ which
can be defined over the moduli space of Riemann surfaces with local structure associated
with differential operator V,, := d + wA which defines the following cohomology:

Twisted cohomology

_ V,m — closed forms

HEL(X, Vi) =

(1.0.3)

V. m — ezact forms

The dual space H™ can be obtained from H', by sending w — —w. The inter-

—Ww

section number on the twisted cohomology groups is the invariant pairing between
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two forms ¢ € HT' and defined by the integral

(rodoi= [l no-. (1.0.4)
Mo,n

String amplitudes are also defined over the moduli space of Riemann surfaces with
genus g and n punctures M, ,, and one can show that associated to any string scattering
amplitude A(n) we can find twisted forms ¢4 ,[7]. Hence by using the relation between
string theory and other theories (as low energy limits of string theory) we can define
twisted forms for those effective field theory amplitudes. This is the second part of our
study [2, I]. We managed to construct two new twisted forms with the use of string
theory:

New twisted forms

Using the superstring mixed open-closed amplitude we have:

n+r—3
A\ dziF<8’ L Di'hi = 5ﬂ>. (1.0.5)

+,nr ) )
ie1 i j < j o~ J

Having done the same for the bosonic string we have:

n+r—3
&Bosom‘c — /\ dZZ G( € Pj DiPj Ei &5 ) ] (106)

+,nr ) )
i1 i j o~ J o~ J

We derive to explain and discuss F' and G functions in the coming chapter 5

Since the intersection numbers of twisted forms are defined over Riemann surfaces
without boundary, in order to obtain the above results we had to introduce an embedding
of the disk onto the sphere.

Furthermore, we managed to use the CHY formalism of scattering amplitudes to show
that these two twisted forms indeed correspond to Einstein Yang-Mills and Weyl Yang-
Mills respectively. The CHY formalism [20] is a formulation of scattering amplitude as an
integral localized over solutions of scattering equations and it has its roots in ambitwistor
string theory [21] and is defined as:



QFT
Scattering
amplitudes

Choosing vacuum conditions
Ambitwistor
String theory

Figure 1.2: Relation among different fields

CHY integral representation

Acmy(n) = / dfin H'a(fa) Zi(p. e, 2)Ir(p,c, 2),

a=1
) M;" (1.0.7)
a * Mb
a = - y == 1, ceey .

b#a

J

Where f, is a set of scattering equations. Both formulations CHY and ambitwistor
include only massless states, however, one can try to use the intersection numbers to
describe massive states [7].

Additionally, we use the algebraic structure of twisted cohomology to establish rela-
tions among different amplitudes as well as describe the color kinematic (CK) duality.
CK duality states that in a scattering amplitude of gauge theories, one can find a set of
kinematic variables (functions of polarization and momenta) that satisfy the same Jacobi
identity of the gauge algebra. These kinematic variables can replace the gauge factors
in the amplitude. This replacement leads to a description of double copy known as BCJ
double copy [8, 19, 22]. The double copy in scattering amplitude processes refers to the
relation between gauge and gravity theories schematically this can be written as:

gauge @ gauge ~ gravity .

In this work, we propose a new description of this duality in the language of intersection
theory.
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Double copy in Intersection theory

For two theories T and T5 given by the intersection numbers
Ty = (01, ™)., Ty = (2, ¢*'™), (1.0.8)

respectively, one schematically obtains for their double copy:
Ty ®Ts = (o}, %) . (1.0.9)

This thesis is dedicated to explaining and establishing the results which we have in-

troduced above. The structure of the thesis is as follows:

I

I1.

I1I.

. Mathematical preliminaries: This part includes the first two chapters of this work.
In chapter [2| we discuss the basics of Riemann surfaces since, we need them for both
intersection numbers as well as string scattering amplitudes. In this chapter, we are
also introducing the standard de Rahm cohomology over Riemann surfaces as well as
defining the moduli space of (punctured) Riemann surfaces. The moduli space is the
domain over which our amplitude integrations are defined. In chapter [3|we introduce
the twist structure over the Riemann surfaces and extend it to the homology/coho-
mology formalism and construct the twisted de Rahm cohomology. Having defined
the twisted forms (and twisted cycles) we then define the tools that we employ to
construct numbers out of them specifically, the twist period and twisted intersection
number. Both are defined as integrals over the Riemann surfaces. Generally, these
integrals will be related to elliptic functions [23, 24]. We finish chapter [3| by giving
the saddle point approximation of the intersection number which we are going to
use to validate and test our results.

Physics preliminaries: In part II, we will give a short but concise discussion of two
main physical topics of this work. First, from the quantum field theory perspective,
in chapter 4] we explain the CHY formalism and how it can be used to produce
scattering amplitudes of different quantum field theories. Then, we will go through
the list of theories that we are using in this work from Yang-Mills and general
relativity to bimetric gravity. We give their matter content as well as their CHY
formulation. In chapter [ we delve into string theory and discuss its origins and
its features. Our goal is to introduce the matter content of string theory (string
spectrum) together with details of calculation of string scattering amplitude. We
finish this chapter by discussing the KLT double copy [25]. This is the relation
between closed and open string amplitudes schematically defined as:

Aopen ®Aopen ~ Aclosed

Scattering amplitudes: In the final part we will present our results and explain
how we produce them. In chapter [f] we evident how different types of amplitudes
(QFT and string amplitudes) can be constructed using the intersection of twisted
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IV.

forms that we introduce in earlier chapters. We discuss both string and quantum
field theory amplitudes and explain how the saddle point approximation and CHY
formalism can be used to create an algorithm by which one can construct new twisted
forms using solely string amplitudes. We explain our results namely, the two new
twisted forms and their construction in detail. In addition, we show that these new
twisted forms can be used to describe amplitudes of several different quantum field
theories such as Einstein Yang-Mills and Weyl Yang-Mills. We finish our results in
chapter 7, where we address double copy constructions both in string theory and
intersection theory. First, we use pure string scattering amplitude to produce the
bimetric gravity. We use open and closed string states as candidates for the massive
spin-2 field. Looking at closed string candidate gives us the opportunity to construct
the first-ever massive double copy of string amplitudes to this date. We conclude
the chapter by giving a new description of double copy with the use of intersection
numbers. We explain how the double copy and color-kinematic duality can arise in a
theory whose intersection number amplitude description includes the " twisted
form. We use this to conjecture new double copies, such as higher derivative gravity.

We finish this thesis with remarks on open questions and future directions of the
study of Riemann surfaces, scattering amplitudes, and elliptic integrals.



1. Introduction




Part 1

Mathematical Preliminaries






Chapter 2

Riemann Surfaces

2.1 Preface

Riemann surfaces are the centerpiece of many studies in theoretical physics as well as
mathematics. In physics, Riemann surfaces appear in different fields from condensed
matter physics to string theory. Our interest in them starts (but is not limited) with
string theory applications. In string theory, Riemann surfaces are used to describe string
worldsheets and they are prominent in the string scattering amplitudes since any n-point
string amplitude involves an integration over the moduli space of the associated Riemann
surface. Therefore, given the relation between string and QFT amplitudes, studying these
surfaces and their moduli is going to help us better understand scattering amplitudes
both at string theory and QFT level. Furthermore, we are going to define and explore,
in the coming chapters, the intersection number of twisted forms over Riemann surfaces.
These intersection numbers will produce a class of Feynman integrals that are related
to amplitudes, independent of string theory or any other QFT. Hence, having a general
overview of these objects is going to be beneficial for our purposes. As summary, this
chapter includes the following topics:

1. Basics of Riemann surfaces
2. Monodromy

3. De Rahm and singular cohomology

W

. Moduli space of Riemann surfaces

Needless to say, the topic of Riemann surfaces is a vast field of research and we are not
even going to attempt to be exhaustive in the topics that we discuss here. Therefore, we
invite the reader to the following references for further reading on the topic [26], 27, 28] 29].
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2.2 Basics of Riemann surfaces

Definition 2.2.1. A Riemann surface X is a Hausdorff topological space together
with a collection of open sets U, € X where U,s cover X (i.e. X =|JU,). For each a we

have the homeomorphism
Yo : Uy = Uy,

where U, is an open set in C with the property that the transition map v, o wgl is
Holomorphic on its domain of definition.

A reader who is familiar with manifolds can see that a Riemann surface is a connected
complex manifold with the complex dimension one and the atlas (U,, Ua,z/)a). If one
identifies C as R? then the Riemann surface is a manifold of real dimension two. Note
that the converse is not always true i.e. not all 2 real-dimensional manifolds are Riemann
surfaces. This is due to the holomorphicity requirement on the transition maps.

In particular, we can also describe a Riemann surface as a Riemannian manifold M
mod Weyl (conformal) transformations. Therefore, the Riemann surface is invariant under
the following symmetries:

e Diffeomorphism transformation: This is the group of all diffeomorphism transfor-
mations from manifold X to itself:

f:M— M,

s F (2.2.1)

where f and its inverse f~! are differentiable and bijection.

e Weyl (conformal) transformations: The set of local transformations that rescale the
metric by a positive number namely:

o:M—M, @peC™,
z = p(z), (2.2.2)
©*'g=Ag, for A >0,

where ¢*g is the standard pullback of the metric g under (z).

So we have two equivalent description of a Riemann surface either a complex manifold
with holomorphic transformations or a 2d real manifold which is also invariant under the
Weyl scaling.

Euler character and Genus

Two of the topological invariants that are mainly used in the study of Riemann surfaces
are Fuler character and genus. They characterize some of topological properties of the
surface. We have the following definitions:
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Figure 2.1: A generic Riemann surface with ¢ = 3 and b = 0 meaning it has three holes and no
boundary

Euler character

e (Genus is an integer number counting the number of holes in a surface.

e Fuler character of a surface X with genus g and b boundary components is
another integer defines as:

X(X)=2-29g—-0b.

7

In particular, for a 2 dimensional Riemannian manifold (X, g) we can define the Euler
character with the Einstein-Hilbert action:

/Xd%\/—_g = dry(X). (2.2.3)

Now we can look at two simple yet important examples

Example (2.1); Riemann surfaces
I

1. Any open set in C is a Riemann surface. In particular, as we are going
to see later the upper half plane H = {z € C : Im(z) > 0} is a Riemann
surface. Through the following Mobius transformation H can be mapped to
the Riemann disk Dy = {w : |w|, < 1}:

zZ—1
241

w =

2. Riemann Sphere S;. The sphere is the one point compactification of the
complex plane C by adding the point co i.e.

SQZCU{OO}.

3. The two torus T? is a genus one (g = 1) Riemann surface defined as:

T2:Sl><51.
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Re(z)
Figure 2.2: The upper half plane and Sphere as Riemann surfaces

The first two examples are going to be used extensively in the following chapters as they
correspond to open and closed string worldsheets.

Next we define the M6bius map. This map is going to be important since it corresponds
to the coordinate transformation under PSL(2,R) and PSL(2, C), two important groups
in our future discussions.

Definition 2.2.2. Given a Riemann surfaces X, one can define the Mobius transformation
between over an open subset U C X with complex coordinate (z, z):

az+b
cz+d’

Z =

where, a,b,c,d € R or C with ad —bc=1. (2.2.4)

This map describes the action of PSL(2,R) or PSL(2,C) on a Riemann surface X with
coordinates z;. The former corresponds to the automorphisms of the upper half plane
H (i.e. Aut(H) = PSL(2,R)) and the latter corresponds to the automorphisms of the
Riemann sphere Sy (i.e. Aut(Sy) = PSL(2,C)).

2.2.1 Riemann surfaces with marked points (punctured)

One other possible way to define Riemann surfaces is to define them as algebraic curves.
To avoid confusion we should make the terminology clear. From the point of view of real
coordinates, Riemann surfaces are indeed a two-dimensional surface. However, from the
complex analysis point of view, a Riemann surface is a one-dimensional algebraic curve.
Therefore, we can define a Riemann surface as a set of solutions in complex projective
plane CP". This method is going to be particularly useful when we are going to look
at string scattering amplitudes in the coming chapters. Given set of zeros of function
P(z,w) € C as:
P:C?*—C,

X ={(z,w) € C?. P(z,w) =0}. (2.2.5)

Then X can be made into a Riemann surface if for every point (zg,0) € C? one of the
two derivatives P, or P, are non-zero (for the details of the proof cf. [26]).
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Example (2.2): Riemann surfaces with marked points

Take a Riemann surface defined by the following equations :
w? = f(2) = (z—21)(z — 2)(2 — 23)...(z — 2n) .

There are branch points at each of the points {21, 22, 23, ..., 2, }

Using this notion we can see that generic polynomials will produce multi-sheet Rie-
mann surfaces. Meaning, upon projecting the Riemann surface S C X to C there are at
least two points of .S mapped to each point of C.

2.3 Monodromy

The Monodromy of a universal covering on Riemann surfaces has great importance to our
discussion. Since we are going to discuss Riemann surfaces with punctures and integration
over them then, understanding the monodromy of these particular Riemann surfaces is
necessary in the present work. Therefore, we are going to give the definition and examples
of these types of monodromies. In the following, we are going to have physical applications
in mind for more mathematical-oriented examples and discussion we invite the reader
to the following references [27, 26]. First, we need to define the fundamental group.
Generically speaking, this group corresponds to loops on a given topological space:

Definition 2.3.1. Given a topological space Y a loop based at yq is defined to be con-
tinuous map:
V() :[0,1] =Y

such that v(0) = (1) = yo. A homotopy is a continuous deformation between two given
loops with the same base. Namely two loops associated to v, and 9 both based at y, are
homotopic to each other iff there exists a continuous map h(r,t) such that

he[0,1] x[0,1] =Y.
e h(0,t) = h(1,t) =y for all t.
e h(r,0) =~ (r) and h(r,1) = y(r) for r € [0,1].

The hotompic relation is an equivalence relation between two given loops. So the first
fundamental group is given by:

all loops based at
7T1(Y> ?Jo) = { P yo} .

homotopy

This definition is very general and can be applied to topological spaces. However, we will
focus on Riemann surfaces. We want to describe how going around loops on a Riemann
surface X affects the holomorphic functions over that surface. Since these functions take
values in the covering of a Riemann surface, we need to understand the homotopy group
within the covering map.



16 2. Riemann Surfaces

Definition 2.3.2. A map p: X — Y is called a local homeomorphism (and X is called
a covering space of Y) if around each point of # € X there is an open neighbourhood U
such that p|y is a homeomorphism to its image in Y

Definition 2.3.3. A proper local homeomorphism is a covering map.
The number of points in the inverse image of a point, under a covering map, is locally

constant (since the base space is connected). This number is called the number of sheets
of the covering. To see this better we can look at some simple examples:

Example (2.3): Examples of covering maps and their sheet number

1. The map from

R — St
L it (2.3.6)
is a covering map with infinitely many sheets
2. The map
Sy — Sy,
2 (2.3.7)
22",

for a fixed positive integer n, is a covering with n sheets.

3. Let f(z) be a complex polynomial considered as a map C — C, and let F' be
the set of critical points of f(z). Then the induced map C— f~}(F) — C—F
is a covering map and has deg(f(z)) sheets.

Putting the homotopy group and the covering together we can now define the monodromy.

Definition 2.3.4. Given two Riemann surfaces X and Y with the covering map p : X —
Y. Let yg € Y be a base point we define

J=mY,p), and F=p (),

where F is called the fiber of p. The action of the group J on F is a group permutation
and is called monodromy.

Let x € F and a € J then take a to be a loop C': [0,1] — Y. Lift C to get a path
in X with v(0) = x, then we can define the action of the group J map as:

FxJ—F,

rXxa=7y(1). (238)

It is illuminating if we take a look at a very simple example of the z? function:
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Example (2.4): Some covering maps and their sheets number

Take the function in the example for n = 2:

S S.
Prma e (2.3.9)

2z

Given a point zy and then the map p~'(zg) is the square root of zy which has two

elements we label them by 4+ and —. we can order them without loss of generality:
F=p2) =z~ {z,2}. (2.3.10)

Now, the loop C': [0,1] — Sy centered at zy can be defined as:
Y(t). = 20€2™ . (2.3.11)
We can see that going around the loop multiplies the roots by a minus sign:
F' = pH(e?™2,) = Vzpelm = /zpe™ = — /7. (2.3.12)

The set of roots is still the same (since they differ only by an overall sign) but their
order has reversed. We have:

F'=p 1 (e®™z) ~ {2_, 24} (2.3.13)

This permutation is the monodromy of p.

Looking back at the definition of Riemann surfaces with marked points (2.2.5). We can
see that since Riemann surfaces defined in this way does not include the branch point
C — {cirital points of f} (it is "punctured”) then integration over contours (loops) on the
Riemann surface X which is defined over the covering space of the surfaces X will include
the monodromy of the cover around the punctures.

2.4 Calculus on Riemann surfaces

It is clear that in order to perform any local computation (i.e.differentiation and inte-
gration) over a Riemann surface we require to construct the calculus. We are going to
see that while discussing the contour integration of holomorphic functions over Riemann
surfaces ,the monodromies of cover of the Riemann surface becomes relevant. We assume
that the reader is familiar with the standard concepts of vector spaces and manifolds and
tensor products (cf. standard references [27, 30]). We start with a set of definitions:

1. The tangent space T, X of the complex manifold X over the point p is the set of all
possible vectors at the point p given by the differential of the of all possible curves C'
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going through p. The tangent space is a vector space which is spanned by {9.., 0z, }
for a n-dimensional complex manifold.

2. The cotangent space Ty X is the dual space of the T, X and is spanned by {dz;, dz;}
in case of the n dimensional complex manifold.

Differential forms

e All holomorphic functions over a Riemann surface belong to the cotangent
space and are called zero forms. The space of all holomorphic functions is
denoted by Q°(X).

g(z) € Q°(X).

e An elements of 77X are called one forms. The space of one forms can be
decomposed into holomorphic and anti-holomorphic parts and is denoted by

QLX) = QX)W e Q% (X). Tt can be written as:
a=> g(2)d%®Y G(2)dz,  a€Qu(X),

holomorphic form: 3 = Z gi(2)dz; dg; =0, (2.4.14)

7

anti-holomorphic form: 3 = Zgi(z)dzi 0g; =0,

where g;(z) are zero forms

e Elements of T, X are called vectors (as they are vectors tangent to the point
p). A vector V can be written as:

V= Z fi(z)azi & Z .]Zi(fg)aii )
holomorphic vector: W = Z fi(2)0., , dfi =0, (2.4.15)
anti-holomorphic vector: W = Z fi(2)0s, dfi=0.

We can check the duality between the vectors and forms and see that by acting
on each other we obtain complex functions:

Vi)=Y (fi(Z)gi(Z) + fi(z)?]i(z)) € Q°(X).

(2

Using the tensor product ” ® 7 and tensoring the elements of the tangent bundle one
will arrive at the general notion of tensors for a discussion on tensors cf. 27, [30]. The
objects that are relevant to the current work are a special class of forms that are known as
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holomorphic/anti-holomorphic differential forms. Differential forms are defined by using
the exterior algebra equipped with a product called wedge product:

Differential forms

First, we define the anti-summarized tensor product known as wedge product:
aANf:=a®p—-FRa. (2.4.16)

A holomorphic basis element for n forms is defined as:

/\dz,- =dn Ndz Ndzz N\ ... Ndz, . (2.4.17)

The elements of the space of n forms are denoted by Q"(X). Now we can define
the differential d acting on forms as:
d: Q"(X) — QX))
d: Q""(X) — QumHL(X)
df(z) = 0. f(2)d= f(z) € Q(X), (2.4.18)
(dd)f = ddf =0,
dlaAB)=daAB+(-1)fandd acQ¥X).

We invite the reader to check for the second example in [2.4] that indeed d(«) is in QZ(X).
Given the differential operator d, we can categorize forms into different cases:

o Exact forms: A form that is differential of a lower order form is called ezact.
Meaning o € /(X)) is an exact from iff

3BV HX) : a=dp.

e Closed forms: A forms whose differential is zero is called closed. Meaning, o €
Q/(X) is a closed from iff
da=0.

Since d? = 0 all exact forms are closed but not all closed forms are exact. Further, using
the definition of the differential we can see that on a complex manifold with dimension n
we have a particular form:

o= Saufe D At (A da) e

do=da=0— Q"(X) =0, m>n,

(2.4.19)

and « is known as the top form. In addition, we can see that there are no forms higher
than the top form. Having defined the differential, we are ready to define the integration
over a Riemann surface:



20 2. Riemann Surfaces

Integral of forms

Suppose X is an orientedﬂ Riemann surface and § is a (1,1)—from with compact
support and supported on the domain of a coordinate chart on X. Meaning, in
these local coordinates we have:

B = f(z,2)dzNdz,

then we define the integral of 5 over X by:

/XB = /f(z,,?)dzdé = %/f(x + iy, — 1y)dzdy . (2.4.20)
C R?

Similarly for a holomorphic (anti-holomorphic) differential form o € Q"°(X) (or
Q%1(X)) the integration will be over a path v C X. Therefore, we have:

[/04 = 7f(z)dz = /f(:r +iy)(dx + idy) . (2.4.21)

?All Riemann surfaces that we are considering are oriented

We want to consider is contour integration over holomorphic functions that have branch
points, which is the accumulation point of monodromy, differential forms and integration.

2.4.1 Contour integration of punctured Riemann surfaces

For a function f(z,z) with a set of poles and branch points F' to be well defined we
have to remove the points from the Riemann surface and obtain the Riemann surface
with punctures (X\F). However, in doing so the integration becomes ill defines since
there is a nontrivial isomorphism between loops in X'\ F' and loops in the covering C.
In particular, this affects contour integration since a contour C' is a loop on a Riemann
surface X, and when we want to perform the integration of the function f(z,z) over the
covering of X i.e.C we have to define the monodromy of the curve going around the
points. In order to do this we define the following functional:

Monodromy functional

Given a contour integration C' we define the monodromy of the holomorphic (anti-
holomorphic) form I(z) (1(2)) as:

Monc{I(2)} := Mondromy of the function going around the contour C'. (2.4.22)

Let us explain this in an example:
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Example (2.6): Monodromy functional

We have the holomorphic function I(z) = z2/® over the disk and we take the loop
v C Dy going along the boundary which corresponds to the loop in C' C C with
the following monodromy:

f{ I(z) = ]fc Monc{I(2)} := /C 1 dal(z) + €™ / dxl(z) =0. (2.4.23)

Ca

y=0D,

Figure 2.3: Loop v and contour C

Here, we have taken the radius of the semi-circle Cy contour to zero and therefore
it is not appearing in the integral

7

We finish this section by looking at a special function that we are going to encounter a
lot in this work namely the Koba-Nielsen factor.

2.4.2 Koba-Nielsen monodromies

The Koba-Nielsen factor was first constructed in the meason amplitudes [31, 32] but in
string theory it can be seen as the contraction of the plane wave vertex operators we are
going to discuss this in detail in chapter [5] For the discussion of this section, we take
this factor as a holomorphic function and calculate its monodromy over a given contour
integral. We start by giving the expression of the Koba-Nielsen (KN) factor:

Koba-Nielesn factor

Given a set of complex points z in the complex plane and non integer real variables
(; associated to each point i.e.

z:={z:2 € C},

¢:= {Cz' (G € R\Z}- (2.4.24)
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We can define the KN factor as:

EN =[]z — z1%9. (2.4.25)

1>7

We can see that the KN factor is a holomorphic function with branch points at z; —z; = 0.
Looking at the third example we gave for the monodromy in example 2.3 we can take
the KN factor to be the function f(z), Therefore, the KN defines a map from Riemann
surface to the complex numbers so it defines a is a covering and we can calculate the
monodromy around a loop. We take the Riemann surface to be the disk Dy and the loop
v to be a contour integration going around the boundary. By using the map in example
the disk is mapped to the upper half-plane and the boundary is mapped to the real
line. Therefore, the variables z; = z; become real:

n

fdleN:f d:z:ll_[]mi—xj
v Tk

i>j

i, (2.4.26)

Now we can define the monodromy concerning a contour integration as:

Monodromy of KN factor

Given a contour integration v we can w.l.g. order the branch points along the
direction of the contour noted by o : {xy < 23 < x4 < ..., z,,} we have:

fdleN:% d.le’.%'l — Ty
0 R

i>j

W, (2.4.27)

'xl -contour

3 4 . n
€iﬂ51"f: emf.g ¢ emﬁl.ig s etﬂéréé

y 0N N o A
Xy X3 X4 X

Figure 2.4: The monodromy for variable x; of the Koba-Nielsen factor.
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We obtain the monodromy of the KN factor:

Mong, {KN} = ™) KN
(- Cj Ty >, (2428)

0 T < Ij.

F(o) =Y f(G -G, zy), f(Ci'Cijﬂla%):{

>]

We should note here that our choice fixed the positions of the variables in the Koba-
Nilesen to be on the real line. Generically, this needs not to be true we can have some of
the variables in the bulk of the disk. However, this case is irrelevant to our discussion/f]

2.5 Singular homology and De Rahm cohomology

So far we have discussed the differential forms and integration over Riemann surfaces. We
now want to introduce two important structures over the differential forms that we are
going to use throughout this work, namely: singular homology and de Rahm cohomology.
Geometrically, singular homology studies and classifies loops on a given manifold. In
order to formalize that we need to define the chain complex and the associated boundary
operator:

Definition 2.5.1. A chain complex is a collection of abelian groups G; indexed by integers
together with a sequence of homomorphism 0 : G; — G,_; such that 9% : G; — G;_5 is
zero. The operator 0 is called the boundary operator or differential.

Singular Homology

If G, = ({G;},0) is a chain complex then we define its homology to be the graded

group:
B ker 0:C; — C;_4

HZ(G*) N im 0 : Oi+1 — Cz '

(2.5.29)

Simply stated, homology puts all possible cycles with vanishing boundary, that can be
deformed to each other by a boundary of another cycle, in the same class. There is a dual
space to the homology with the dual operator to the boundary operator § known as the
singular cohomology denoted by:

; ker ¢ : CZ — Ci+1
H'(G,) = - .
(G) zm5:Ci,1—>C'i

(2.5.30)

Given the properties of the exterior differential that we discussed in ([2.4.18)), we can see
that the differential can be used to define chain complex and is dual to the homology
(since 0, and dz; are dual). This is known as the de Rahm cohomology and is defined as:

'We are going to see in the chapter [5|that this case will correspond to EYM amplitudes.
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De Rahm cohomology

The ith de Rahm cohomology group pf X is the complex vector space:

kerd:Q; — QY closed i-froms

HL(X) = (2.5.31)

imd:Q_1 — exact i-froms

Given the fact that the differential of a top form on a manifold is zero i.e. da'®? = 0 and
all other forms above the top forms are identically zero. The cohomology group is also
capped at the n cohomology group meaning;:

H'(X)=0, i>n. (2.5.32)

The de Rahm theorem relates the singular cohomology and the de Rahm cohomology.It
states that there is an isomorphism

H'(G,) — Ho(X)

2.5.1 Poincare duality

The Poincare duality gives us the relation between homology and the cohomology groups
namely:

Theorem 1. Let M be a complex manifold of complex dimension n. Then there is the
following isomorphism:

HY(X) = H,_;o(X). (2.5.33)

Meaning, to any differential o we can associate a cycle c.

2.5.2 Intersection number

There are different instances in that we use the space of forms with compact support
(Q.(X)). For example, we defined the integration over the space of compactly supported
forms. The other one would be the intersection number. The definition of the intersection
number goes through the Poincare duality which has the following implication.

Intersecion number

Let v be loop over the Riemann surface X then integration over 7 yields a linear
map:

(2.5.34)
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Then by the use of the Poincare duality, we have that for any loop v there is a
compactly supported form 6 over X such that:

]V(W):/XQ/\(U. (2.5.35)

Now, the integral only depends on the class of 6 (due to Stokes’ theorem). Therefore
we can define the intersection number as the bilinear paring:

H{(X) x H(X) — C,
(6.0 / bAw. (2.5.36)

where 6 € H!(X).

We are going to use this definition of intersection number for the rest of this work.

2.6 Moduli space of Riemann surfaces

As we have seen so far there are a lot of topological and analytical features associated
with the Riemann surfaces from monodromy to cohomology. Now we want to discuss the
classification of Riemann surfaces. Meaning, we want to define the class of all Riemann
surfaces that can be continuously deformed to each other using a continuous variable.
Therefore, we can make a bigger space (space of all possible Riemann surfaces) from
these variables. In this bigger space, each point describes a Riemann surface and it is
known as Moduli space of Riemann surface. Here we are mostly following [1T, 26].

First, we can see the simple topological classification of Riemann surfaces, namely the
genus classification. We know that all surfaces with the same genus are homeomorphic
to each other. For example, all genus zero Riemann surfaces (without boundary) are
homeomorphic to sphere Ss or all genus one Riemann surfaces are homeomorphic to torus
T? (a Doughnut is the same as a cup with handle). However, this topological information
is not enough we need the information about the local structure to be added to this
equivalency between Riemann surfaces. Therefore, we define the classes as:

Equivalent classes of Riemann surfaces

Two Riemann surfaces are equivalent if there is a homeomorphism between them
that preserves geometry (in other words they are holomorphically isomorphic). This
map takes holomorphic functions to holomorphic functions.

Since we are still using the subset of homeomorphisms between Riemann surfaces we still
have the genus classification i.e. we cannot map surfaces with different genus to each other.
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The main difference is that not all surfaces with a given genus are equivalentﬂ and we
now need to take into account the local geometries i.e. the metric on the surface. So, we
can classify surfaces with their metrics. We define the space of all possible metrics of
the surface X with genus g as G,(X). However, as we discussed the Riemann surface is
invariant under diffeomorphisms and Weyl transformations. Therefore any two metrics
g1 and go in G,(X) that are related by diffeomorphism and/or Weyl transformation will
correspond to the same surface. Therefore, we define the moduli space of a Riemann
surface X as:

Moduli space of Riemann surface X,

Gy (X)
(diff x Weyl),

M(X), = (2.6.37)

A few simple examples are in order:

Example (2.7): Example of moduli spaces

1. Riemann sphere: The moduli space of the Riemann sphere is trivial "one
point” meaning, all possible metrics on a Riemann sphere are equivalent up
to Weyl x diff transformations.

2. Torus: The moduli space of the T2 is the upper half plane mod PSL(2,Z)

One of the main tools that we are going to use is the uniformization theorem which states
that any simply connected Riemann surface is holomorphically isomorphic to one of the
following three:

e The Riemann sphere Ss.
e The complex plane C.

e The upper half-plane H or equivalently the unit disc D.

Therefore, using the uniformization theorem we can classify all genus zero Riemann sur-
faces. For example, using the theorem we can see that all compact genus zero Riemann
surfaces are isomorphic to the Riemann sphere S; and hence have trivial moduli (see
example [2.6]).

2.6.1 Punctured Riemann surfaces

All of the discussion in this work will be over Riemann surfaces with marked (punctured)
points. Hence, we are going to take a closer look at the moduli space of Riemann sur-
faces with n punctures X,,. We take the positions of n punctures as a configuration of

2since, as mentioned, we do not have the full homeomorphisms only the geometry preserving homeo-

morphisms
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X, therefore, for every possible configuration/position of punctures we have a different
Riemann surface. Therefore, we can add the positions to the moduli space coordinates.
Therefore we modify the definition (2.6.37)) as:

Moduli space of punctured Riemann surfaces X, ,

Gy x X"
(diff x Weyl),
Since each puncture can be at any position in X we have n copies of X i.e. X™.
Then the coordinate of the M(X),,, will be (71, 9, ..., Tk, 21, 22, ..., 2n )

M(X)yp = (2.6.38)

metric moduli puncture positions

For the genus zero case, we have the following:

go x X" B X"
(dlﬁ X Weyl)g VCKg(X) ’

M(X)opn = (2.6.39)

where the Voga(X) is the volume of the conformal killing group of the surface X. This is
the subgroup of the (diff x Weyl), that keeps the metric invariant and therefore remains
after the quotient of Gy. The conformal killing group for the sphere is PSL(2, C), and for
the disk is PSL(2,R). One can easily implement the conformal killing group by (gauge)
fixing the positions of some of the punctures. As an important set of examples (to our
work) we take a look at the moduli space of n-punctured Riemann sphere and disk.

Example (2.8): Moduli space of Sy and D,

1. M(S2)on = {(21, 22, 23, .., 2n) € (S2)"/PSL(2,C)} = (Sy)" % = (CP')"~3.

2. M(Da)on = {(x1, 2, %5, ..., 2a) € (R)"/PSL(2,R)} = (R)" .

Here we have fixed three positions to remove the conformal killing volume.
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Chapter 3

Intersection number of twisted forms

3.1 Preface

In recent years thanks to the work by Mizera [7] twisted cohomology was brought into the
scene of theoretical physics. In particular, in two very close fields of scattering amplitudes:

1. Defining twisted differential forms that describe tree level amplitudes of specific
theory 1l 2} 5.

2. Calculation of elliptic integrals that appear in loop field theory amplitudes [23] [33].

The main difference between the two topics is that in the first the properties of the
associated field theory (mass, interactions, color kinematic duality, etc) are reflected in
the twisted form. However, in the second case, one wants to calculate only the elliptic
integral regardless of the theory that gave rise to it. In this chapter, we are going to give
an overview of the Intersection theory of twisted forms. We will discuss the following:

1. First, we are going to define twisted cohomology/homology. We are going to explain
what is a twisted form/cycle.

2. Second we will introduce the intersection number associated with twisted forms.
Then we present different methods to calculate them.

3. Finally, we will use these methods in practice and explain in detail how these in-
tersection numbers are calculated with different examples. We finish by looking at
some limits and commenting on their relevance to the next chapters.

3.2 Basics of twisted cohomology

In this section, we are going to give the basics of twisted de Rahm cohomology. We are
going to be following mathematical literature [34] with the physicist twist on them. We
are going to summarize the important practical results that will use in the last section.
However, We believe it is important to understand the mathematical foundations of this
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topic. So we start with the basic definitions. Like the de Rahm cohomology on any
manifold, we have the analogous theorem to de Rahm theorem but before giving the
theorem we need to define the main ingredient i.e. locally constant sheaf or local system.

Definition 3.2.1. A Sheaf S on a space X is an assignment of a set S(U) to each open
set U C X with the "restriction map”

puv : S(U)— S(V), when VcU.

Definition 3.2.2. A [ocal constant sheaf or local system on a space X is a sheaf S such
that for any point € X there is an open neighborhood U containing x such that S|y is
constant sheaf.

As an example we have the local constant sheaf or local system L, as:
L, 7 (X)— C*

7] = exp (/W)7 w : closed. (3.2.1)

Here L, is the locally constant sheaf of solutions V,h = 0, h € Q2 (M) which is the rank
one complex local system on X. In fact, we have more: There is a bijection between the
representation of the first fundamental group 7!(X) and local systems on X [35]. Now
we modify the definition of homology:

Definition 3.2.3. Let G be an Abelian group and A, be the standard complex on X.
Then the tensor product A, ® G is a chain complex with the differential 0 ® 1. We define
homology group with coefficient in G by:

H,(X;G) =Hy(A,®G), (3.2.2)

Where H,(A, ® G) is the homology with respect to the "new” boundary operator.

We can take the local sheaf £, which is an Abelian representation of the first fundamental
group 71 (X). Hence, we have the homology group with coefficient in £, as:

Hy(X: L) = Hy(A, @ La) . (3.2.3)

An element of the twisted homology is called a twisted cycle and is defined as:

Cyw=0C,®exp (/w) : (3.2.4)

~

where C, is standard cycle over manifold X.
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Twisted de Rahm cohomology

Let w be a closed holomorphic one form on M. The covariant derivative with respect

to w is defined by:
V., =d+wA,

Qu(X)P = Q(X)P @ exp (/w) :

5

Then, the (smooth) twisted de Rahm cohomology complex of X is (Q,(X)?, V,,).
We denote the cohomology of (Q,(X)?,V,,) by H? we have

{e e 2(X) | Viwp =0}
Va8 (M) '

(3.2.5)

HE(M,V4,)

(3.2.6)

Theorem 2. Given the twisted singular cohomology HZ(X, L,,) the map:

A :=HP(X,V,) — HP(X,L,),

] = ([5] ®€xp(/7w) — [ ® exp(/f)) — /Cg exp(lw)> | (3.2.7)

to the de Rahm cohomology is a vector space isomorphism.

An important choice for w which we are going to use throughout this work is

W = Z /\z . )‘j dlog(z, — Zj) s

1<i<j<n
for this choice we have the following cycle:

n—3
Cyp = C, @ ™0 H |2i — 2;

i=1

where K'N is the Koba-Nielsen factor we introduced in (2.4.25). In simpler words, this
means that for each cycle that goes around branch points, we associate a complex number
to that part of the loop that goes around branch points. We are going to discuss this
twist further in the next subsection.

NN =C @ KN, (3.2.8)

3.2.1 Hyperplane twisted cohomology

So far we have introduced the twisted de Rahm cohomology as an abstract construction.
Now we will explicitly choose a twist w which enables us to give examples and perform
calculations. Looking at the definition ([3.2.6) any covariant holomorphic one-formcan
be a candidate for the twist w. One of the more important cases of twisted de Rahm
cohomologies is the case of complements of hyperplane as general hypergeometric functions
[36, B7]. An l-arrangement of set IC of hyperplanes is a finite set of distinct hyperplanes
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in the [ dimensional complex (projective) space C! (note that [ is not the number of the
hyperplanes). We define the complement of K by M (K) = C'\ Ugex H. Then, we define
the logarithmic one-form wpy of a hyperplane H, with the defining linear polynomial, ay

as:
wy = dlogay, where: H = ker(ay) . (3.2.9)

A weight X\ of K is defined by:

We define the logarithmic one-form by:

WK, A) =Y Agwr, Y Ag=0. (3.2.11)

HeK

Then, we have the twisted de Rahm cohomology with respect to this one-form:
H(M,V,)~ H(M,L,), Ve =d+w(K, A, (3.2.12)

where L, is the rank one local system on M (K) whose monodromy around a hyperplane
H e K is exp{—i2nr Ay} we can also define the multivalued analytic function U (K, \) on
M(K) as:
UK, N) = H o
HeK (3.2.13)
w(l,\) =dlog UK, N).

All of these definitions are going to be given physical meaning when we get to discuss
string amplitudes in the coming sections.

Example (3.1): Dimension one case

The twisted de Rahm cohomology in one dimension (I = 1) is the complex line
minus some points. Let K be the set of points in C and A = (\;,7 € K) be its
weights. Taking the coordinate z of C we have the following:

Uik = [1G-n,

peK

wkc, ) =3, dz

PR
peEK p

(3.2.14)

We finish this section with a discussion on a particular version of the hyperplane
twisted cohomology. Given a [ arrangement hyperplane twisted cohomology setup, we
choose the set of polynomial hyperplanes in C**! to be the following:

K= {Oéij = 0},

Oéij:Zi—Zj.

(3.2.15)
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Therefore, the twist w will be for a given set of weights \;;:
ij i

The complement space of I has the following form:

M(K) = C\ | J{(z — 2) =0} (3.2.17)
tj
This setup will be used in the amplitude discussion.

3.2.2 Dual spaces

In order to construct an intersection number we need the dual space to the HP(M, V).
One can see that the local constant sheaf £, has the natural dual space £_, which is
given by:

Lo@L_y=e"xe =1, (3.2.18)

Therefore, we have the homology with the local coefficients in £_,, i.e. H(M,V_,) as
the dual space of the H(M,V,,). However, there is another possibility. We can take the
complex conjugation of the homology H (M, V_,) and use the complex dual i.e. H(M, V)
as the dual space. This space also has its own dual local sheaf H (M, V=;). There is a nice
isomorphism between the dual twisted cohomologies thanks to Hanamura and Yoshida
[38]:

H'~H"_.

v v (3.2.19)

H" ~ H-.
So, we can use these spaces interchangeably. However, after choosing the elements one has
to be careful to not mix them in the middle of calculations since the parings of elements
will be inverse matrices of each other. Lastly, thanks to work by Amato it was shown
that the only nontrivial cohomology /homology group is for k = dim®m?lez M.

3.3 Numbers from twisted homology: Intersections
and periods

So far, we have discussed the basics of twisted homology and we have defined cohomologies

and their duals. Now we use this machinery to obtain complex numbers from these objects.

As we mentioned in section We have two main tools:

e Twisted periods

e Intersection numbers
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3.3.1 Twisted periods

The twisted period is defined as the paring of a cycle in the homology Hy(M, V) and
a twisted differential form in the cohomology H*(M, V). The simplest way to produce
numbers out of these two objects is by integration numbers. We have the following:

twisted period

Let ¢, € H¥(M,V,) be a twisted k-form and C, € Hy(M,V_,) be a twisted
k—cycle. Then, we define their paring by:

(Colpsho = /C KNg, . (3.3.20)

This gives rise to period integrals on moduli space. The Euler-Mellin integral rep-
resentations for different hypergeometric functions can be interpreted as this pairing
[23, 34]). A similar construction applies for dual cycles Cs of the twisted homology group
H_ “(M, L_,) with the cycle

Cs@ KN, (3.3.21)

which in turn gives rise to the period integrals:

(Cs@KN Y )= | KN'p_. (3.3.22)
Cyp

3.3.2 Intersection number

Now, we build up a very important tool in our work namely the intersection number of
twisted de Rahm cohomology. As mentioned before we will look at the twisted cohomology
H¥*(M, V) where twisted forms are associated with the positions of hyperplanes and M
is a k dimensional complex projective space. In particular, we consider the intersection of
holomorphic top formdon M. First, we need to take care of the fact that space of twisted
differential k—forms on M, (i.e. D¥(M)) is not compactly supported. In order to use the
definition of the intersection number over these forms we need to compactify this
space. This is done via the isomorphism «* [7, 34]:

W HM(M, V) — HF (M, V), (3.3.23)

where H*(M, V,,) is the cohomology of the twisted k—forms with compact support. The
map ¢, implicitly solves also another problem. As we mentioned we take the holomorphic
top forms. However, any wedge of holomorphic top forms will be zero. The isomorphism
1, introduces anti holomorphic direction and we avoid the zero wedgd? Our main task
throughout this section will be to realize the map (* for twisted forms. Having this setup
we can define the intersection number of two twisted top forms:

!This means that for a top form ¢ we have dp = Vo =0
2we see this in detail whilst giving the proof of the intersection number.
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Intersection number

Let ¢ € H*(M,V,) and ¢, € H*(M,V_,) be two twisted k—forms (top forms).
Then, we define their intersection number by:

(- 90+WH / NPy (3.3.24)

“Notice that we are using (|) for periods and (,) for intersection numbers

v

In order to construct the intersection number we chose the second twisted form from the
dual cohomology H*(M,V_,,) so that the result of the intersection number will
be C number not an element of the group G as in . One can choose the twisted form
to be in the complex conjugate dual space, i.e. H*(M, V). In the subsequent chapters
we are going discuss different uses of this intersection number. For now, we employ the
twisted dual forms in H*(M,V_,). First, we give the result for the intersection number
and then we give a sample of the proof [34]. The intersection number (3.3.24)) is given by:

Intersection number

Let p_ € H*(M,V,) and ¢, € H*(M,V_,) be two twisted k—forms. Then, we define their
intersection number by:

(p-rpadoi= [ bloo) Ay = mi 3R 4V, (3.3.25)

where z, = (z1,...,2;) € CF are the poles of (¢ V_,1¢_)(in the local coordinates of complex
manifold M). We take the multidimensional residue Res., as the following:

ﬁe_(/szp(cijV;lcp,) = Res,—,, (Res,—s, , (Reso—zy ,((Resa—z, 01V 0 )00)). (3.3.26)

Several points are in order:

e First, we have implicitly assumed that both forms ¢_ and ¢, are dependent on
all the coordinate (21, 23, ..., 2z¢). This is not necessary: For example, one of the
twisted forms can be dependent on (21, z4, 25) and the other (zs, 23, z4) in that case
we have to look at the common coordinate (cf.[34]). This will not be relevant
for our discussions we always assume the top form. Therefore, we always have all
coordinates of the space.

e The equation we take the residue layer by layer (from z; to z;). Of course, the result
is not dependent on the ordering of the layer. However, it can be easier to do the
calculation in one particular order.

Now is a good time to look at some examples of intersection numbers:
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Example (3.2): Example of intersection number of twisted forms

We look at the simple example in which the manifold is C? with the local coordinates
(z,w). In order to be able to picture the arrangement of the hyperplanes we project
the coordinates to their real parts. We introduce the following hyperplanes:

f1 = Re(z) — 2,
fo = Re(2) + Re(w) — 2, (3.3.27)
f3 = Re(w) — 5.

Therefore, the domain of integration is given by: M(K) = C*\ ,_,{f; = 0}. Now
we have the twisted one form and the twisted forms as:

3
w=Y_ Ndlog fi = \idlog fi + Aadlog fo + Asdlog f
i=1 (3.3.28)
fi fs
_=dlog=— =, = dlog == .
2 g A P+ g f2

The intersection number of ¢_ and ¢, then is given by:

1
(-, 1) = to(p-) N = - (3.3.29)
M(K) 2
(z,w)
X:CP'\O{f;:O}
Re(2)
fi=Re(z) -2
Re(w)
>, =Re(w) -5

Figure 3.1: Example of intersection number of logarithmic forms in hyperplane geometry
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3.3.3 Proof for the £k =1 case

As discussed, in order to calculate the integral in (3.3.24]) we need to construct a twisted
form with compact support as an element of the de Rahm twisted cohomology. The main
idea behind the proof is as follows:

1. First, given a twisted form ¢ with poles at z;. We remove from its support open
neighborhoods U; centered at given pole z;.

2. Since we want to preserve the cohomology we amend the removed patches with a
function ; for each z; with the following property:

W 1s reqular at z;

3.3.30
Plu; = waz . ( )

3. Now we glue this new function and replace it with the removed patch.

Let us build this structure concretely. Given the twisted form ¢ with poles at
z ={z1, 29, 23, ..., 2.} and Riemann surface X. we can always find an open neighborhood
U, centered at each z; that does not intersect any other neighborhood. Meaning:

Then, take V; C U; and D; : U;\V; and define the following function over the X:

he(t) =9 0<h,(t),<1 te D, (3.3.32)
h.(t) =0, te Uy,

where Uf is the complement of U;. One can see clearly that function the h,,(t) patches
any function defined over z; by multiplication. Further, one can also see that function
h,,(t) cannot be pure holomorphic (since a holomorphic function over a bounded disk
must be constant). This is the main point, as we mentioned before, the anti-holomorphic
parts are added to ¢,(p) through compactifying isomorphism.
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Figure 3.2: The set U; and V; around punctures z;

So we define the compactified version of ¢ as the following:

(@) = = D Valiha(®) ol = Vs (3.3.33)

First of all, we can see that ¢, (¢) is in the same cohomology class as ¢ since their difference
is a total derivative. We can check that indeed ¢, () has compact support over X:

= ¢+ Z <90hz,- (t) + thid(hs, (t))> (3.3.34)
() = ¢+ Z ph, (1)) + Z id(he,(t))

J

Vv vV
zero on the punctures  regular on the punctures

The last part, which is computational, is to find the functions 1); this means that we have
to solve the following equation for every patch U;:

olu, = Voo = diby + w AN ;. (3.3.35)
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However, the V! is not invertible so we solve this equation by series expansion. We

expand the twisted form ¢ and the function ¢ in the local coordinates around z;:

a
o(z) = ( L b ap+arz + ....)dz,

Zq
P(2) = cm", (3.3.36)
m=0
b-y
w(z) = +bo+ b1zi + ... |dz.
Zi

Now, we can plug this back into the equation (3.3.35) and we have:
p=dv+wA,

a—i - m—1 b—l - m
+ap+ a1z +.... |dz = E memz dz + +byg+biz; + ... | A E Cm?;dz
( 2 0 1 > 7 < 2 0 1 ) —

m=0

o) m—1 00
m—1 m—1
g Me,y, + E AqCm—q—1 |2 = E b1z .
m=0

m=0 q=-—1
(3.3.37)
This equation can be solved for ¢, and the series will converge in the neighborhood U; [34].
Therefore, we have the function v in terms of the Laurent expansion. We can calculate
the intersection number with the use of Stokes’ and the residue theorem:

(o, 04) Z/Mbw(w)Aw:/M <¢_va(¢ihzi<t))> A

= — Z /{m (%’szi (t)) o = 2mi Z Res,—., (Vi)

= 2mi Z Res.—..(V o _¢.).

(3.3.38)

Let us make an important contrast here: In the generic case we have a k dimen-
sional space. So each z; corresponds to a complex dimension. The twisted form can have
many poles along each dimension and therefore we had a sequence of residues. In the
example above we put £ = 1 (so only one complex dimension) and the last sum runs over
residues of the poles in z.

3.3.4 Twisted period relations

We finish this section by discussing the last paring among the homology/cohomology
elements that we have omitted so far. In the twisted period case we discussed the pairing
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between twisted cycles and twisted differentials. Then, for the intersection numbers we
used the Poincare duality and paired two twisted differentials. Now, we want to see what
is the pairing of two cycles and explain the relationship between all these pairings.

Saddle point approximation

Given a k-twisted cycle C,, € Hy(M,V,) and a dual twisted cycle C~'57_w €
Hyi(M,V_,) the paring between them is given by (dim Hy) X (dim Hj,) period ma-
trix:

[Coyor Cs,—uij = Sij - (3.3.39)

Using the fact that the only nontrivial cohomology group is given by the complex dimen-
sion of M we can use the Poincare polynomial to write the dimension (rank) of H*(M,V,,)
in terms of the FEuler character for a D complex dimensional space [39):

(-1)PdimH"(M,V,,) = x(M). (3.3.40)

One can construct a basis of x(M)? period integrals 1T, cf. [40]. Conversely, we have

XM and {Cs1U of twisted cycles as the

the inverse matrix S~' with two bases {C,}}=

following the intersection matrix:
(C,@KN|Cs@ KN~Y) =51, (3.3.41)

This gives rise to the twisted period relations [34]. Using this matrix element we introduce
the last proposition in this section thanks to Mizera [7] which is very useful to expand
the intersection numbers.

Saddle point approximation

Let U =2V =2 W = X be four isomorphic complex vector spaces with non-
degenerate bilinear pairings denoted by (u,v), (u,z), (w,z), (w,v) for u € U,
veV,weW and x € X which are normalized. Then the bilinears between basis
vectors {u,}4mY € U, {v,}3mv € V, {wJ4mW e W, {z,}¥mX € X, are related
by:
dimU
<Ua|1'd> = Z <U'a|vb>5bc<wc|xd>a (3342)

b,c=1
Where S is a (dimU) x (dim,U) matrix with entries S, := (w)|v)) where the

orthonormal basis vectors are denoted by {vY}%"? € V and the inverse S™' as
St = (wa|vy).

So we can summarize the parings in the following:
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Space ‘ H* ‘ H”
H* (P p4) (Criwles)
Intersecion number Twisted period
Hy <SOJC~Y i) [C'y,waéé,fw]ij = Sij
Twisted period Period matriz

Table 3.1: Different parings of a twisted differential form: First with a dual twisted form and second
with a twisted cycle

3.4 Saddle point approximation

The intersection number that we introduced in (3.3.24) is an integral over the space
M(K). We further discussed, the case of logarithmic forms, where we can use the residue
method to calculate the value of the intersection number. However, it might not be always
the case that we have the tools to calculate their residues or that the twisted forms are
not logarithmic. Therefore, the result that we discussed so far is not going to help us
to obtain intersection numbers. It is fortunate that under proper conditions there are
extensive mathematical theories to approximate integrals. We can use these methods to
calculate intersection numbers without actually calculating the integrals. The method
that we are going to discuss in this section is the saddle point approximation. First, we
can look at the definition and property of the saddle point approximation:

Saddle point approximation

For a given integral of the form:

n/2
2 1
/ I(z)exp{Ag(2)}dz ~ nill M T(2) +ON Y |, (3.4.43)
C )\ det g//(z())ij
where C'is a fixed contour in the complex z plane and I(z) and g(z) are analytic
function in some region D C C". The second derivative g;; is the Hessian matrix
of the function g(z) and zy is the non degenerate saddle point:

20 0.9(2) =0,
v Pg(z) (3.4.44)

U]

The saddle point approximation is based on the method of steepest decent [41]. More
importantly, in order to be able to perform the above expansion we had to make use of
the complex Morse lemma which states the following:
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Complex Morse lemma

Let g(z) be a holomorphic function and zy be a non-degenerate saddle point. Then
near 2o, there exist a local coordinate such that g(z) is exactly quadratic:

20:09(2) =0,  and g¢"(20) #0,

1 3.4.45
A(wy, wa, ...y wy) , such that g(w) = g(z0) + 5 Z piw? . ( )
i=1

Using the saddle point approximation we can approximate the intersection number given
in . The first, thing to notice is that the form of the integral in the intersection
number is not of the form given in ([3.4.43). In order to bring the integral of the intersection
number into the format that we need for our discussion we make use of proposition [3.3.4]
We set U = H* | X =U = H¥, W = H¥ and V,”* and since we are going to use this
approximation for the moduli space of punctured Riemann surface we can use the fact
that the Euler character is given by [42]:

X(Mos) = (=1)"*(n = 3)!,

and set the dimension of the top cohomology to (n—3). Then, we have for the two twisted
top forms p_ = ¢_(2)dz""3 and v, = ¢, (2)dz""3 the following expansion:

<90—7 (p—i-)w = Z<@—|C~( i7—w>Sij<O’ijw

1,

0o (3.4.46)

Using the integral formula of the periods in (3.3.20]), we have:

(o = 300 1Co ) S (Corpulhe

:2;:/0%, /ij exp{ /7 —w} ¢_(2) Sy ezzrp{ /Ww} ¢+(2),
(- ) = Z (/C

: emp{ /WW} 95(2)> Sij </C7 exp{ —/WIM} %5+(Z)> ;

7 J

(3.4.47)
which is equivalent to the twisted Riemann period relations by Cho and Matsumoto [43].
For an orthonormal basis of the spaces HY  and H¥_ (for example Park-Taylor basis) we
can set S;; = d;;. We are now ready to use the saddle point approximation for the two
integrals in the last expression. We have for the twist

w= Z i+ A dlog(z — z;) ,

1<i<j<n
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the following:

(s 4w = Z (/C
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(3.4.48)
Above we have used the following definitions:
82 W Morse n—2
H,L“ — Y lergna ;
821_ azj H2 Wi ,
' = (3.4.49)

Mi—wi—O}.
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w = Zwidzi, 2 {z e C3
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Using this expansion we can formulate the saddle point approximation of the intersection
number of twisted top forms:

Saddle point approximation of the intersection number

Using the definition of the Koba-Nielsen factor in terms of the local coefficient we
have:

: 1 L T
lim (o, ¢4 )0 = Z (det in KN lim ¢_(z) KN™' lim <,0+(2))
1] —2

o’ —o0 ' —o0 o’ —o0

2

_ Z (hma/ﬂoo @*(

Z) limy/ o0 (ﬁ+(2)>
n—2 )
H W; 2=z
i=1
(3.4.50)
where z;s are solutions to w; = 0. We can make use of the delta distribution and
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write the sum over saddle points w; = 0 as complex integral:

i (oo i) = /M (/\dz>6<w><algnm¢_<z> a@gnoogmz)). (3.4.51)

In the subsequent chapters, we are going to see why the integral formulation of the
intersection number’s saddle point approximation is useful.
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Chapter 4

Quantum field theories and
amplitudes

4.1 Preface

In this chapter, we are going to give a short introduction to some specific quantum field
theories and their amplitudes. Throughout this work we make contact with all of these
theories and therefore, we want to explain their matter content and Lagrangian (if avail-
able). The amplitude formulation that we are going to use for these theories is not the
normal Feynman integral (diagram) amplitudes instead we use the CHY integral repre-
sentations. Hence, we discuss the CHY integral formula for a given quantum field theory
first. Then, one by one we go through different theories and provide their matter content
Lagrangian and CHY amplitudes. In the coming chapters, we will try to produce bimetric
gravity both through pure string theory amplitudes and intersection numbers. Therefore
at the end of this chapter we discuss bimetric gravity in more detail.

4.2 CHY representation

The CHY formulation of the tree level scattering amplitudes is one of the new structural
methods to formulate scattering amplitudes in terms of integrals over Riemann surfaces
[20]. Tt has its origin in ambitwistor strings. The ambitwistor string has been defined as a
chiral string theory. By construction, it only contains left-moving world—sheet fields, has
no massive states and its tree level amplitudes reproduce the CHY formulae for massless
scattering [2I]. Furthermore, it has been shown that its action can be constructed using
the tensionless string limit (o/ — oo) [44]. This correspondence works at both classical
and quantum levels. The CHY formalism provides an integral formula for scattering
amplitudes localized over solutions of the scattering equations. These equations are given

by:
fo=> P (4.2.1)
b=1

)
Oaq — Op
b#a



48 4. Quantum field theories and amplitudes

Here p,s are on-shell, massless momenta associated to a given scattering [20) 45 [46].
Therefore, a tree level scattering amplitude of massless particles can be written as an
integral over moduli space of punctured Riemann surface with a theory-dependent inte-
grand which can always be factorized into left and right functions. It has the following
form known as CHY representation:

CHY integral representation

Acry(n) = / i, H’5<fa) Tu(p,e,0)Ir(p,e,0),

Moo a=1
DPa - Po
=y e =1, n, 4.2.2
[ ; p—— a n ( )
b#a
d"o,
djty = —— 20
SL(2,C)

The prime above the product means that it should be taken after quotienting the
SL(2,C) and fixing three positions (cf.[20]). We should also note that in order
to distinguish the string world sheet coordinates and the CHY formulation we are
using o,s instead of zs for the complex variables.

The integrands Zy(p,e,0) and Zg(p,e,0) are unique to the underlying theory. For
example, for the two basic theories of general relativity and Yang-Mills, we have:

CHY for GR and YM

The CHY integral for the amplitude of n pure gravitons in GR

AGE () — / dpin T 8/ PEGPE G, (42.3)
a=1

MO,'!L

and pure n gluons in YM is given by

A = [ o T (806,21, (4.2.0)

Mo,n

We are going to describe the matrix v, in the following section.

We gather the known CHY formulae that we are using in the following two tables.
The first one represents all the spin-0 and spin-1 theories and the second will be dedicated
to spin-2 theories.



4.2 CHY representation

49

4.2.1 Spin-one and zero theories

First, for the spin-1/scalar fields, we have:

Theory CHY representation Amplitude
bi-adjoint scalar C.Cn n color scalar
Einstein Pt'4, Pf's), n gravitons
Yang-Mills C,Pf', n gluons
7 graviton
Einstein Yang-Mills Pf'WUg Pty n gluon
special Galilean n higher derivative
(sGal) (Pf'A,)? scalars
NLSM C,(Pf'A,)? n scalars
Born—Infeld
(BI) (Pt'A,)% Pty n spin 1

Einstein—Maxwell

(EM)

PEX, Pf'0Ug P,

r gravitons
n photons

Dirac Born—Infeld
(DBI)

PEX, PfUg  (PfA,., )2

r gluons
n color scalars

Yang-Mills scalar
(YMS)

PEX, PfUs  Cotr

r gluons
n color scalars

Generalized Yang-Mills Scalar r gluons
(gen.YMS) C.PtUs Cpyr n color scalars
Extended Dirac Born-Infeld r gluons
(ext.DBI) C,PtUg (Pf'A, ., )? n higher derivative scalars
n gluons
(DF)? C. W11 1 (higher derivative)
n
(DF)*Photon (Pt'A,)? W11 4 n higher derivative photons

n

Table 4.1: Known spin-zero (scalar field) and spin-1 (gauge field) theories and their CHY representa-

tions.
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4.2.2 Spin-2 theories

for the spin 2 theories we have the following:

Theory CHY representation Amplitude

GR Pf'4, Pf'4, n gravitons

Conformal Gravity (CG) Pt'y, W11 1 n gravitons (Weyl)

n

2 n gravitons
(Weyl)® or R? (Wll...1> (higher derivative)

Table 4.2: Known CHY integrands for spin 2 theories

In table the PfL denotes the pfaffian of matrix L and the Pf'L denotes the reduced
pfaffian of L meaning removals of two rows and two columns (the result of the integrals
does not depend on the choice of these rows and columns) as for the matrix L,, we have:

/ — (_1)k+l
Pf'L, = Pf Ly , (4.2.5)

Rk — &l

with the index k,[l denoting removals of rows k,l and columns k,l. The two complex
factors C,, i.e. Park-Taylor form, and X are given by:

1

Cn — )
(o1 — 09)(09 — 03)....(0,, — 01) ( )
4.2.6
1
Xap = TaT b ¢ 7& b7
0 a=1b.
The matrices in the CHY representation are defined in the same way as [20]:
A —CT
Py, = (C B ) , (4.2.7)
with the three n X n matrices:
Aij = { Pip; ; j , Gij = kA o Bi= { €i€; ' ]-
ey 17 e i# e 7
(4.2.8)
Furthermore, by using PfM? = det M we have the following relation:
det A
U (PFA,)2. (4.2.9)

2kl
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where A,, is the submatrix of v,, The two extended Vg, and Vg, are given by:

Aab Aaj (_Ct)ab
Us.. = | A Ay (—Chy | - (4.2.10)
Cap Cyj B,

The submatrices have the same definition as (4.2.7) with the index (ab) and (ij) are
related to gravitons and photon legs respectively. For the Wg we have:

_ A, _Cg-kr
Vg = (Cn+r B, > , (4.2.11)

with the three r x r—submatrices:

n—+r
. . Ei'Pk - . .
A = 07 =7 C.. — _ZAO'i*O'k’ t=17 B. — 0, 1=
ij = PiPj i ) ij = 5_’“?&’ » i T Eivgj i
oi—0j —b i# ] oi—0j
t J

(4.2.12)
The function Wy, is used e.g.in [47] and the set L of indices of the function Wy, refer to a
product of Lam—Yao cycles:

Wi =16 =11 (Z %) . (4.2.13)
J#i

In the next section, we are going to give a summary of these theories.

4.3 Effective actions and their CHY amplitudes

In tables and we introduce many different theories and their CHY amplitude
representation. Now want to explore their Lagrangians, matter content, and amplitudes.
In fact, we need to emphasize that for some of these theories, the exact form of their
Lagrangian is not known or different names are used by various authors. Note that for
the theories that do not include gravity we set the flat metric and therefore the invariant
measure is d%z in d-dimension.

4.3.1 Einstein Yang-Mills (EYM)

As the name appropriately suggests Einstein Yang-Mills theory is the coupling of GR to
a non-abelian SU(N) Yang-Mills. Therefore it has the following Lagrangian:

1 1
L =——F"'F,.+R. 3.
=g EYM 1 pva T+ (4.3.14)
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The amplitude of n gluons and r gravitons in EYM theory is given by the CHY integral
formulation:

n+4r—2
Apyu(n;r) = / Aptnsr H 5(fr) Cu(P9hg )Pt . (4.3.15)

MO,n-H

We can see upon putting n = 0 we have pure GR (graviton) amplitude (4.2.3) and by
putting » = 0 we have pure Yang-Mills (gluon) amplitude (|4.2.4))

4.3.2 Special Galilean (sGal)

Galilean theories in d dimension are defined as scalar effective field theories involving
higher derivative interactions in the potential [48], 49] namely

d—1

Léa =~ awa S+ g0 (09)*(0,0"¢)"" (4.3.16)

n=3

or variants thereof [50]. The Galilean theory is called special if it features a Z, symmetry.
The amplitude of n scalars in this theory [50] can be written in terms of CHY formulation
in the following way:

Ascar(n) = / diin ﬁé(fk) (PF'A,)* . (4.3.17)

Mo,n

4.3.3 Non-linear sigma model (NLSM)

The non-linear sigma model (NLSM) is defined as a theory with scalars ® together with
an embedding onto a manifold M with a non-linear interaction potential V' (®). The
theory for N scalars fields ® satisfying a U(N) symmetry can be written in terms of
Cayley parametrization [50]:

ENLSM = &Tr{ 8;[](@)6“[](@) } s (4318)
with
U(®) = (1+ D) (1 - \D)*. (4.3.19)

The field ® may be written in the adjoint representation as ® = ¢/T! with T being the
generators of U(N). Upon expanding U(®) in terms of ® yields the usual scalar kinetic
term. The scattering amplitude of this theory involving n scalars [50] can be given in
terms of the CHY formulation as:

ANLSM(”) = / dpm H5 fk Pf/ ) (4320)

Mo,n
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4.3.4 Born-Infeld theory (BI)

The Born-Infeld theory is the non-linear generalization of Maxwell theory [51]. The
Lagrangian for this theory in d = 4 is given by the non-linear interaction

£BI = 872 <\/—det4(77w, + KFWJ — 1) s (4321)

where the scale ¢ can be related to the inverse string tension o’ as £ = 27wa’. The n—point
amplitude of this theory [50] can be expressed as CHY representation in terms of the
following localization integral:

n—2

Api(n) = / din T]5(f1) PEwn (PP A,)? (4.3.22)

Mo,n

4.3.5 Generalized Yang—Mills Scalar (gen.YMS)

Generalized Yang-Mills Scalar (gen.YMS) is described by YM gauge theory coupled to
scalars ¢* with both one color a and one flavor index a [50] i.e.:

»Cgen.YMS — _iFéwFauu _ %(Duqbad)Q DY fabCfdbE ¢ad¢bb¢cé. (4323)
If the second set of labels a also represents color indices we have two color groups and
obtain YM plus a cubic bi-adjoint scalar theory Y M + ¢*. Furthermore, without the
three-point interaction A — 0 in the Lagrangian (4.3.23)) we are obtaining Yang-Mills
Scalar (YMS) theory. As in the definition of the group structure of the theory
at hand is extended by a flavor group for multiple scalars ¢*. However, here we shall
consider only one scalar in the adjoint representation of the gauge group with a single
trace for the flavor group. As proposed above, we can construct the CHY representation
of the gen.YMS amplitude involving r gluons and n scalars:

n4+r—2
Agen.YMS(n; T) = / d,un-i-r H 5(fk) Cn Pqusr Cn-‘rr . (4324)
MO,n+'r k=2

4.3.6 Extended Dirac Born—Infeld

There are two extensions of the Born—Infeld (BI) theory, which we will discuss throughout
this work. Firstly, there is the Dirac Born—Infeld (DBI) theory. This theory is defined as
a scalar extension of the BI theory (4.3.21]) with n scalars and the Lagrangian is given by
[50):

EDBI = €_2 <\/—det4(17,w — 628,u¢18,/¢1 + KF/,LV) — 1> . (4325)
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Furthermore, one can extend this theory by generalizing the scalar kinetic term by the
function U(®P) given in (4.3.19)) leading to the extended DBI theory (ext.DBI) with the
corresponding Lagrangian

2
Lezt.opr =177 <\/—det4(n,w - f r(0,U10,U) — 2°W,,, + (F,,) — ) . (4.3.26)

A2
and: 0,
Z Sy £) yame Tr (9, ® ®%0,® PHm=k-1), (4.3.27)
m=1 k=0

For A — 0 the expression (4.3.26)) yields the DBI action (4.3.25)), while we recover NSLM
for £ — 0, respectively. The amplitude for ext.DBI involving r gluons and n scalars can
be constructed as

n—+r—2

Aext.DBI(n; T) = / dﬂn-&-r H 5(fk) Cn Pf“DST (Pf/An—i-r)Qa (4328)

MO,n+r k=2

which is the CHY amplitude given in [50]. The double copy structure of BI, DBI, and
ext.DBI theories will be discussed in chapter [7} Finally, let us review some of the basics
of the vector theories appearing in Table 4.1}

4.3.7 Higher derivative gauge theory (DF')?

In the literature, there is a variety of higher derivative gauge theories denoted by (DF)2.
Here we use the following definition from [52]:

1 1
S(DLF =2 P42 (D"

g aaQ (e% a v g QL (e%
5 3 5 (D )2+§ C*yp FWFb“ +§ d*P P 7. (4.3.29)

Lpry =
In particular, we have the higher order cubic gauge interaction and gauge covariant deriva-
tive

facha uFb IJFC’Y
Duso = 0up” — lg(T"“)“ﬁ As 6P

respectively, with ¢ in a real representation R and real generators of the gauge group
(T&)*3. This theory has six propagating degrees of freedom. One accounting for the
"auxiliary” scalar field ¢, which is not considered in the scattering amplitude under
consideration. In addition, we have five degrees of freedom from the higher derivative
gauge theory which includes a negative norm state (i.e.ghost). The amplitude of this
theory, which describes the scattering of n higher derivative spin—one vectors, is given by
the CHY formulation:

(4.3.30)

n—2

Appyz(n) = / dpn [T 6(f1) Ca Wrp.1 - (4.3.31)

Moo k=2 -
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4.3.8 (DF)? — Photon

Next, the (DF)? — Photon theory involves a higher derivative U(1) gauge theory in the
Einstein gravity background. The relevant Lagrangian is given by:

1 1 1 1 1
— a2 2 2 « 63
\/—_—gﬁ(DF)Q—Photon —ﬁR + Z(D#F ) —+ gRF — éli DﬂFaﬁD F'U‘PYF,ygF
X (4.3.32)
+ Emz(DuFO‘B)zF2 + O(xY).

The amplitude A(ppy2_photon(n) involving n photons can be computed by [53]:

n—2
Aprp-viwenn) = [ dn TL8(5) Wya_y (PALP. (43.39)
Ve o Y

In (4.3.33) we have the submatrix A,, defined in (4.2.8)) and the function Wy 1 is given
——

in equation (6.3.39). We can now turn into spin 2 theories in table and provide a brief
review of their properties and features.

4.3.9 Conformal Gravity

We start with conformal gravity (CG). This name is associated with different theories. The
simplest definition corresponds to the (Weyl)? action (pure (Weyl)? conformal gravity),
le.

Loc =ty V=9 Wias)?, (4.3.34)
with the coupling constant sy and W, the Weyl tensor

1

1
Wapys = Rapys— 3 (Rar 985 — Ras9py+ Rssgary — Raygas) + A R(9ar986 — Gas9sy) » (4.3.35)

which has the same symmetry properties (w.r.t.its indices) as the Riemann tensor R,g+s.
In addition to the square of the Riemann tensor the square of the Weyl tensor is the
second independent quadratic curvature invariant. We have the following relation:

1
W#VPUW‘LWPU = Rgg +2 <RHVR‘LW — g R2) , (4336)

with the Gauss-Bonnet term
Rop = Ry R"™"7 — 4 R, R*™ + R?, (4.3.37)

which for d = 4 reduces to a topological surface term. The latter can be added to the
action without changing the (classical) theory in a spacetime which is asymptotically
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Minkowski. Therefore, in d = 4 the Lagrangian (4.3.34]) can be written in terms of the
Riemann scalar R and Ricci tensor R, as:

1
Log = Kyt V—9g (gRQ - R“”RW) : (4.3.38)

As stated in the table the scattering amplitude Acg(n) of this theory involving n
spin-2 particles can be represented as the following CHY representation [53]

n—2

Acg(n) = / i [ 6(F) PEw, Wiy 1, (4.3.39)
k=2 v

Mo,n - n

Conformal gravity theoryﬂ propagates six degrees of freedom (packaged into the metric
gu) Which contain a massless spin-two (two degrees of freedom), a massless spin—one (two
dof.), and a massless ghost spin-two fields (two degrees) [55]. Conformal gravity exhibits
the double copy structure [52]:

Conformal Gravity = (DF)* @ Y M . (4.3.40)

Note that both factors (DF)? and Y M have vectors flu and A,, respectively, which tensor
according to .
Ay ®A, = guw ® B, ®a¢, (4.3.41)

and giving rise to a graviton g,,, an antisymmetric two—form B, and a dilaton field ¢.
Looking at the double copy we evidence the origin of the massless spin-1 degrees
of freedom as descending from the YM theory and the massless spin-2 and ghost spin—two
fields are stemming from (DF)?. In chapter [7| we will discuss this double copy in terms
of intersection numbers

4.3.10 Einstein—Weyl gravity

Einstein-Weyl gravity is a modification of GR by adding the square of the Weyl tensor
[55], 56):

Low = V=g (m* R+ i Wias) (4342
Above, the parameter m relates to the string scale m? ~ o/~! (likewise to the Planck
scale m ~ Mpancc). In fact, the mass parameter m interpolates between two-derivative
and four-derivative theories. In this way, by taking the limit o/ — oo we reproduce pure
(Weyl)? conformal gravity. Similar to equation (6.3.38) we have:

o’ —o0

"'We should emphasize here that although this therory has been hinted to be related to conformal
gravity (the naming is clear evidence) it has not been shown to exactly correspond to the conformal
gravity in the form of . What has been shown for 4-point amplitude is that it corresponds to
Berkovits-Witten super conformal gravity [54]. However, looking at the bosonic part of the theory it will
correspond to Weyl+axion thoery[52].
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On the other hand, for o/ — 0 we end up at (non—pure) Einstein gravity. It can be
shown, that the EW action describes both massless and massive spin-2 states up
to total derivatives. EW gravity has seven degrees of freedom accounting for two degrees
of freedom from the standard massless spin—two graviton and an additional five (ghost)
dof. for the massive spin-two field all packaged inside g,,. In fact, starting from an action
for a particular bimetric gravity with the two spin-two fields g,, and f,, with a mass
term for the latter and eliminating f,, through its equations of motion yields
[57]. We shall return to these properties in subsection [7.4.3|

4.3.11 Weyl® or R? gravity

Another spin-2 higher derivative theory can be constructed through the six derivative
terms like Weyl® or R3. Some speculation about the existence of Weyl® is made in [58],
where arguments on dimensional analysis are presented leading to the following CHY

representation:
n—2

Aoy (n) = / dpn [ 6(f2) (WM)Z. (4.3.44)

Mo,n n

4.4 Bimetric and higher derivative gravity

4.4.1 Bimetric theory
Introduction

Here we are going to give a quick overview of bimetric theory, we are going to start by
defining the theory and going through the construction of Lagrangian and then we are
going to discuss different limits of this theory to other known theories (GR and massive
gravity). Finally, we are going to look at the perturbative expansion of the bimetric action
up to cubic order which we will use to compare with effective actions obtained from string
amplitudes.

The field content of the bimetric theory consists of two spin-2 tensor fields i.e. a metric
9w and f, field, both are dynamical [9,[59]. The task at hand is to construct a Lagrangian
out of these two fields such that it satisfies the symmetries i.e. two sets of Lorenz symmetry
of each field (which we treat as gauge symmetries) and also the diagonal subgroup of two
diffeomorphisms associated with the two metrics. So schematically we have

Lpg=1L . +LL  +V(fg). (4.4.45)

kinetic kinetic

To write the correct action we have to be aware of several issues: The introduction of the
second tensor field f,, and its interactions with g,, can cause the breaking of the diffeo-
morphism invariance and results in an increased number of propagating degrees of freedom
from 2 to 2+4 = 6. Further, these interaction terms without proper constraint will create
a ghost-like scalar degree of freedom known as Boulware-Deser ghosts. Therefore, we need
careful analysis of the Hamiltonian and imposing Dirac constraints that would give us the
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necessary conditions on the potential V(f, ¢) in order to have a healthy ghost free theory
for the detail of these constraints and calculations can be found in [I8, [59].

4.4.2 Bimetric action

Considering all that mentioned before we can now write the action for the massive bimetric
and discuss different aspects of it. The ghost-free action for Hassan-Rosen bimetric theory
is given by [9]

SHR:mE/\/§d$4R(g)+mfc/\/?dx4R(f) —2m4/\/§ZBnen(glf), (4.4.46)

where m, and my are Planck masses associated with each of the two metrics and m =

/mgmy. The e,(S) is defined as:

]' 1% 12
en(S) = m&“wz“'“n’\”“'“)‘46,,1,,2.,,%,\"““,,\4Sui...S#Z . (4.4.47)

Here we defined 3,, = bnw. b,s are parameters of the potential which measure inter-
action strengths. However, out of five of them (i.e. 0 to 4), two are not contributing since
ep and ey are proportional to the cosmological constants of the g,, and f,, prospectively.

The equations of motion for both fields are Einstein-type equations. We have:

1 m?
R,ul/(g) - éR(g) uy—i_ﬁv;},qu(ga fvﬁn) :07

) 7754 (4.4.48)
Ruu(f) - §R(f>f/“’ + m_?cvufy(g7 f7 571) = 07

where V9 and V/ are defined as:
3

V5, (95 £2B0) = Gup Y (=1)"Ba(Yi))5(S)

fou<g7 f7 Bn) = f,LLp Z(_1>nﬁ4—n(}/(n))2(s_l> y (4449)
(Y)5(S) = 3 en(S)(S")0

n=0
The potential term in the Lagrangian breaks the two diffeomorphisms associated
with each of the spin 2 fields (although each Ricci scalar in (4.4.46]) is diffeo-invariant).
However, the action is invariant under the diagonal subgroup of the two diffeomorphisms
(coordinate) transformations which can be characterized by

SXH = g,
5€guu - _2gp(uvu)£p7 (4450)
5£fuv = _2fp(uvl/)€p'
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Here the V is defined as the covariant derivative compatible with the fuv tensor. There-
fore, we can count degrees of freedom of 2 symmetric spin 2 fields which each have 10
degrees of freedom. By gauge fixing we can remove 4 degrees of freedom from each of them
and end up with 12 dof in total. Next, we should take into account the Bianchi identity
which can take the form V#V7 =0 or @“Vuf = (. Using this we can remove 4 more from
the remaining degrees of freedom which brings our counting to 12 — 4 = 8 dof. This is
consistent with the expectation of having 2 propagating degrees of freedom from massless
and 5 from massive spin 2 fields. However, here we have an extra degree of freedom, which
gives rise to a Boulware-Deser ghost. This means that we need more constraints to elim-
inate this ghost. The corresponding constraint which removes the canonical momentum
of the ghost mode is shown to exist [59].

4.4.3 Coupling to matter and GR limit

The only known matter fields which can be coupled to the bimetric Lagrangian without
introducing ghosts are:

/\/_dx4£ g, ® /\/_z (f, ), (4.4.51)

where £,, and L, are standard minimally coupled matter Lagrangians as in GR and
stand for sets of matter fields of any kind. Also, it has been shown [60], 61], 62] that it is
not possible to couple the same (dynamical) matter field to both metrics using minimal
couplings since it will reintroduce the Boulware-Deser ghost.

In the equations of motion, the matter couplings enter in the form of stress-energy
tensors

LG ®) 1 ST (f®))

= = —— : 4.4.52
N VT A B 1 4452
So we get the modified bimetric equations in presence of matter couplings as
m4 1
" "o 4.4.53
m4 L s ( )
Guw(f) + —2 (9, f. Bn) = _QT/J
my My

Now, we can have a look at the two important limits of bimetric gravity to GR and
massive gravity.

GR limits

What we want to show here is that, unlike massive gravity, bimetric gravity has a well-
defined GR limit. Also, one can note that since the bimetric theory, that we have intro-
duced so far, is symmetric with respect to g, and f,, one can choose either of them to be
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the metric associated with the resulting GR theory after taking the limit. Here we take
g, but one can choose f,,, and just follow the same steps.

The starting point is the observation that the bimetric potential satisfies the following
relation,

VIGVE + LIV — gVt = 0. (4.4.54)
With the use of this relatlon, one can combine the equations of motion (4.4.63]) and obtain

4 1
9"Gpulg) + *det(/gT )G ) [GVEL = (T fUTL) (44.55)

g g

Now, we can look at the parameter a = % and we can see that in the limit @ — 0 the

)
last equation reduces to

m? 1

9""G(9) + m—giVJ = m—g(g“pT,?y + f1T,) (4.4.56)
Under the condition that there are no matter couplings to the second metric f,, we have
T J,, = 0 and therefore we can take the divergence of the equation with the covariant
derivative that is compatible with the metric g,,. This divergence for covariantly con-
served sources would give V' = constant on-shell. Finally, the equation will reduce to the
Einstein equation for a single physical metric g,,, with Planck mass m, and cosmological
constant g—;‘v

g9

m* 1

g,uu + g Vguu = mg Tgy . (4457)

So we can define the GR limit of bimetric theory as
a— 0, my=const, TJV =0. (4.4.58)

It is worth noting that these set of conditions will deform the equation of motion of the
fuv to a pure algebraic equation
V5, =0. (4.4.59)

The generic solutions to this equation are proportional backgrounds f,, = ¢*g,, with ¢
determined by the condition Af(c) = 0 which we are going to discuss shortly.

4.4.4 Massive gravity limits

Having looked at the o — 0 limit we can look at the other possible & — oo limit. We are
going to show that this limit will give us massive gravity from the bimetric gravity. This

limit is defined as
B 1 1 -
a = 00, Mg = const. WT‘“’ = m_ch"” = const.
m? (4.4.60)
By =—%, By=const. B, =const, forn<3.
m
f
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Here the limits have been defined in such a way that we can reconstruct the massive
gravity by decoupling f,, from g,,. Meaning we have introduced a new mass scale M and
stress-energy tensor T here so that we have a mass scaling of massive metric fuv- Also,
the scaling of 34 is required to keep a cosmological constant term for f,,. Now, the f,, is
given by

1

=T (4.4.61)

4
Gy ) + =5 B =

which is an Einstein equation with cosmological constant g—;‘ B4 and Planck mass M.
g

Thus, the limit does the decoupling of the two metrics as mentioned above. Now, we
can use equation to obtain a solution for f,, and replace it in the equation of
motion for g,,.

The resulting equation for g,, will be the same as the one obtained by massive gravity
action with the fixed reference metric f,, that solves the Einstein equations. For example
by putting f,., = 1,, one can reconstruct dRGT [I7] massive gravity from bimetric gravity.
However, this not only covers all massive gravity theories but also includes more possible
theories that do not have a massive gravity counterpart (i.e.they become singular for
a — 00).

4.4.5 Proportional Background and mass Eigenstates

Given the theory at hand, we need to discuss some solutions of this theory in which one
can compute the interaction terms and compare them to the effective action calculated
from the string amplitudes [63].

The simplest and yet remarkably important class of solutions to the bimetric equations
of motion in vacuum is obtained by making an ansatz that conformally relates the two
metrics f,, = ¢(r)?g,,, where c(x) is a space-time dependent function. Putting this back
into one of the forms of the Bianchi identity (e.g. V#V¢ = 0) will can see that c(r) is a
constant. So we have:

fur = G ¢ = const. (4.4.62)

Therefore, the set of equations of motions for f,, and g,, will take the familiar form:

m4

G (9) + NG =0, Ay = @(60 + 3¢y + 3B + 3 Bs)
g

) (4.4.63)

=z (cBr + 3By + 3¢ B3 + c*By) .

Guu(9) + MG = 0, Ay = —2

my
Given the fact that the Einstein tensor is scale-invariant (i.e. G(c?g) = G(g)). The pro-
portional background includes all solutions of GR. The type of the solution we get is
dependent on As which in turn fixes the proportionality constant ¢ of our ansatz in terms
of the parameters of the theory and hence it specifies the solution completely. Further,
one can look deeper and observe that by taking the difference between the two equations

in (4.4.63]) we end up with the condition:
Ay(c) = As(c). (4.4.64)
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This relation can be used to determine fs.

Perturbation and mass eingensates

Now, we are going to look at the usual setup to discuss the perturbation around the
vacuum created by the proportional Background solution introduced above. Here, we
have the expansion of the two fields:

gMV = gMV + 69;,&1/ f;,cl/ - Cquy + 6f,u,y . (4465)

The variation of the square-root matrix is given by

1
GoudS? = 2—0(5 fuw — C*0g,) - (4.4.66)

In this expansion the equations of motion (4.4.63) will be

. 1. _
8505%0 — Ny (69 — éGﬂmaagm) — NG (050 — 00055) =0

v

) gﬁ"(sfpa - ‘/_\f<5f/“/ - %GﬂVGPU(Spr) _ OK*QNG#p(é'SS o (55553) =0 (4467)

174

Here N is dependent on ¢, «a, and 3, and can be read off explicitly from the Fierz-Pauli
mass. Also, we have used of rescale invariance of the metric to rewrite:

G =(1+a*P) G,
A, = (1+a?A) A, (4.4.68)
R(G)pw = NG .
The kinematic operator gﬁl‘f around the background G, is well known and given by
~ 1 _ _ _ _ _ - -
& = —3 55(5UVV2+G'°"VMV,,—(55V"VM—(55VUVM—G"’"GWV2+GWVPVU , (4.4.69)
In which the V is the covariant derivative with respect to background metric G, .
One can diagonalize the above equations and write them in terms of a massless and a

massive perturbation. It is clear that these diagonal fields are the mass eigenstates of
bimetric gravity [64]. To check this we can use the diagonalized form of the fields as

1
6G oy = 0G0 + @0 fr, M, = %(cﬁw — P0G - (4.4.70)
Plugging these definitions back into (4.4.67)) one will get,
~ _ 1 -
ENOG e — Ng(0G ) — §GW(5G) =0,

. . (4.4.71)
El0Mpo — Ay (0My, — 5 G0 M) + %(WW — GuOM) =0,
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which are perturbative equations of motion for massless and massive spin-2 fields, re-
spectively. The trace 0G and 0M are defined with respect to background metric G,
(i.e.0G = G, 0G") and the Fierz-Pauli mass is defined as

_ 14 a?c?)? m* 1
Mip = QN = —%(cﬂl + 2623y + 2 33), (4.4.72)

where ¢ can be regarded as a function of the Planck mass. Here s can be determined
with the condition (4.4.64). We can associate two propagating degrees of freedom to G/,
and the remaining five to 0M .

The linearised action up to the quadratic order in terms of the mass eigenstate is

1 —a?

1
S[0G,0M] = /d4x g] [ﬁéR(éG) + m—PIL:éR(éG) + LER(0M) + L3n(0M)

ampy

1
+ L2 5(6M) + m—mch(éG, 5M)1 :
(4.4.73)

Here we have collected terms with respect to the number of fields that appear in the
interactions we have

1
LER(0G) =1 | V786GV ,0G — V3G,V ,6G" = 2V, V06" 4 2V,0G,,, V" 5G

+2A(0G* 5G y — %56‘2) ,

2
L2,(5M) = — mj P (§M,, 6M™ — 5M?),

1
LER(G) =7 |66 (V,16G 0 V,0G" = V,6GV,0G + 2V,6GV b, +2V,0G,, VP0G — 2V ,0GV b,

+2V,0G,, V,0G" — 4V,0G 1,V 8GY, — 2P0,V hy, + 2V 458G, V7 0GY)
1
50GOG (V,0G 1o V,6G" = V,0GV ,0G + 2V,6GV?6G, + 2V,0G,,,V*6G

A
2V, 8GV0G ) — 3 (8G° — 65GOG,,0G" +8OGOGLICY) |
(4.4.74)
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L35(6G, 6M) =

_ Mpp
24«

~ mip(1+a®)(B1 + Be)
da(By + B2 + B3)

+ 12[M][GM] + 3[G][M?] — 12[GM?]) + *([M]? — 6[M][M?] + 5[M3])]

e3(M) [—2[M}3+9[MHM2] — T[M?] + a(=3[G][M]*

- % |t — apajean - 261 + o)

1
+7 {G’“’ (0, Mpe0, MP? — 8, MO, M + 28, MO, M}, + 20, M0, M — 20,M8° M,
+ 20, M, 05 M?? — 40, M 507 M, — 20, M, 0 M, + 20, M,,,0° M)

1
+ 5 G (0,MO”M — 0, M,,,0° M" — 20, MO, M"" + 2apMWaVMW)}

+ % [M“” (0Gpo 0y MP7 — 0, GO, M + 07 G0y M + 8, Glup®” M — 9,Gl0° M

4 0,G7 0, M, — 20,GP7 0, M, + 0,GO” M, + 0° Gy 0” My — 20,Glu00, MP”

= 20°G100° My, + 20°G g0, MZ + 8° GO, M, — 9°GO,M,,)

+ %M(@,,GE)E)O”M = 0,G0° MM — 0,G0, M — 9,G" D, M + 28PGW8”MW)} .
(4:4.75)

In the last term, we gathered all cubic interactions originating from the bimetric potential.
Meaning, all possible terms that one can write in a ghost free theory consist of a massive
and a massless spin-2 field. There are no terms of the form éGOGIM present, meaning
that there is no decay of massive state into massless gravitons at tree level. Also, note
that there are no 0GOGAOG terms present and thus all the self-interaction of massless
gravitons come from the Einstein-Hilbert term. The construction of the double copy
(7.4.152) may be related to some limit of bimetric gravity. The starting point of this map
is the connection between higher derivative gravity and bimetric gravity. We are going to
discuss higher derivative gravity and the relation to the bimetric gravity in chapter [6]



Chapter 5

String perturbation theory

5.1 Preface

In this chapter, we are going to give a review of string perturbation theory. By the end
of this chapter we will have a solid foundation for the following topics:

1. String theory and its symmetries
2. Scattering amplitudes in string theory

In the first section, we are going to discuss string theory. This famous topic has been the
subject of so many great books and reviews throughout the past 50 years. However, in
order to be consistent and self-sufficient we are going to give a recap of the topic from the
scattering amplitude point of view. Therefore, we will look at the Lagrangian formalism of
string theory as a sigma model. Then we are going to expand the discussion to conformal
field theory (CFT). We are going to explain the framework of CFTs and how amplitudes
are calculated in a generic CFT. We invite the reader to see the following (noninclusive)
references for more details of the basics of string theory [10), 1], 12], [65]. Then, having
looked at CFT structures we will use them in string theory to discuss the following:

e String quantization and spectrum.
e Gauge fixing and BRST quantization.
e Vertex operators for different mass levels.

Calculation of string S matrix elements (n-point functions) .

5.2 Superstring theory

String theory is a natural extension of the classical and quantum mechanical notion of
particles. Specifically, in contrast to the zero-dimensional object (i.e.a particle) which is
moving in spacetime and creating a world line, one can extend it to any m dimensional
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object which is swiping a world-volume (X) in spacetime. This topic was first addressed
by Dirac back in 1962 discussing the motion of an extended object in a gravitational field.
The action for this m dimensional object in a d dimension background with a metric g,
is given by the Nambo-Goto type Lagrangian:

XroXV
X0 ) (5.2.1)

Sm—e:vtedned _ —T/ dV = —T/ d m~+1 —d ta pnv -
. 5 t Cag| 9 do® OJob

where T is the tension of the world-volume and X*(oq, 09, ..., 0py1) is the map from the
m + 1 dimensional world-volume to the embedding spacetime (cf. figure . The action

X Xy 4

X"(0)

4

Figure 5.1: Particle’s world-line vs string’s world-sheet

Xa

is the volume of the world-volume and the equation of motion naturally extremises
this area. Although this action has an understandable geometrical interpretation it is not
suitable for quantization due to the square root of the field X*(oy, 09, ..., 0pmy1). By quan-
tization we mean either old covariant quantization (OCQ) using the creation/annihilation
operators (which requires mode expansion around a solution of classical equations of mo-
tion) or the path-integral quantization which involves BRST symmetry and associated
ghost systems. Therefore, we need another action describing the field X* (o1, 09, ..., 0pm11)
with the same classical equations of motion as the action in and use it for quanti-
zation. This requirement is the definition of a sigma model which is a theory describing
fields that swipe an embedded volume.

For the purposes of the current work, we are going to restrict ourselves to a one-
dimensional extended object with a two-dimensional world-sheet (¥). Having set the
world-sheet to be two-dimensional one can write the corresponding (Polyakov) action to

(5.2.1)) in the following way as a sigma model:

. 1
Si)osonzc _ _4 / / dodr /_hgm/ haﬁaaXN(O_, T)aﬁXV(O', T) )
™ Jw»

S{ermwmc _ _4_ / dUdT\/—_hg/W ha5i¢ﬂpaaﬂ¢y’ (522)
T Jx

Ssuperstm’ng — Sl + S2 + SAu:ra



5.2 Superstring theory 67

where (o, 7) are the coordinates on the world-sheet and indices (p,v) and (o, ) run over
spacetime and world-sheet coordinates, respectively. Here we have written two types
of actions S for a bosonic spacetime field and S, for a fermionic spacetime field. We
require both fields in order to have bosons and fermions in the matter content of the
resulting theory. One of the more important results of including bosons and fermions is
supersymmetry (SUSY) which is the symmetry that relates bosons and fermions to each
other. We are going to discuss the details of supersymmetry in the coming sections. We
should point out that to have local supersymmetry we need to add additional action with
some auziliary fields that we labeled as Sy, [10, 11, 12].

5.2.1 Symmetries and gauge invariance

We take the action in as the ”string action” and from now on we are going to use
this action and its associated S-matrix for the current work. The first thing to study about
this action is its symmetries. They can be used as constraining conditions on scattering
amplitudes. There are two type of symmetries local and global [12]:

1. Global symmetry: Poincare invariance of the target space. This symmetry acts on

the fields as:
(SX/J' = AHUXV + CLH; A;u/ = _AV,LL )

5.2.3
Sh*? = 0. (5:2.3)
Where the matrix A, is constant.
2. Local symmetries:
e Supersymmetry and Super Weyl rescaling
Q(boson) — (fermion).
e Diffeomorphism invariance of the string world—sheet
OXH = —£Y0, X",
: (5.2.4)
Ohag = =(Vals + Vp&a) -
e Weyl rescaling
0XH =0, (5.2.5)
6h*? = 2\h°P. o

The A,, and a" are the generators of the Lorentz transformations and translations, re-
spectively. Using these symmetries one can fix the world-sheet metric to conformal gauge.
Meaning, set the metric to be flat Minkowski metric locally: hos = 745. In addition, one
can fix the superconformal gauge which removes S3 from and give us the action
that we are going to use from now on as superstring action:

1

SSuperstring - _
4o/

/ d20<8aX“(a, 7)0%X (0, 7) + i/ p° O/%) +Ax.  (5.2.6)
>
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The last term Ay is the coupling A to Euler character y of the surface. This term, as
we discussed in rises when one takes into account the Ricci (i.e. gravity) term on the
two-dimensional Riemann surface. As expected it is topological and counts the genus g of
the surface. Later in this chapter, we see that this term is related to the string coupling g
which, as we will show, controls the string interactions (i.e. the coupling of interactions).
The energy-momentum tensor of this action is then given by variation with respect to the
metric. However, as this theory is supersymmetric there is a fermionic counterpart to the
energy-momentum tensor which is computed through variation of the action with respect
to gravitino y®. A careful reader might notice that in action there is no gravitino.
The reason for that is after the superconformal gauge fixing it disappears from the action.
Therefore, in order to calculate the fermionic energy-momentum tensor one has to look at
the full action before gauge fixing. Doing so we have the two energy-momentum tensors
as follows:

1 1 [ — i
Tgﬂ =T <8QX“35XM - éhaﬂavXMavXu> - i<¢ﬂpaaﬁ¢“ + ¢Mpﬁaa¢u)7

« 1 / 2 «

Here, we have fixed the tension of the surface as T' = ﬁ and therefore the length of the

(5.2.7)

string is given by [ = 2mval.

We should point out the importance of the energy-momentum tensor. It generates
the aforementioned symmetries of the theory. The mode expansion of this tensor will
give raise to the operators generating symmetries by acting on the states. They form
symmetry algebras of the theory which we are going to discuss later.

The full equations of motion are given by the variation of the action with respect to
the fields X#, h*? " and x* and we have:

05 1
—- = p— — Ozﬁ H = |:| H =
59 Oe¢jﬁm/M1%X) XH =0,

;TS:(HPC" W =0,

s (5.2.8)
=0— T =0,

has

59 o

@:O%TFIO

While computing the variations of the action for the differential equations of motion one
has to impose different boundary conditions. These conditions will give rise to different
types of strings. For the fields X* we obtain:

e non-periodic boundary conditions:
1. Neumann boundary condition:

X =0, X* =0,

o=0 o=l
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where [ is the length of the string.

2. Drichlet boundary condition:

sX*| =0, sx¢| =o.

o=0 o=l

These two boundary conditions will give rise to four different possibilities (NN)-
(DN)-(ND)-(DD) all of which are known as open String.

e periodic boundary condition:
XH(1,0) = X*(T,1), 07 X*(7,0) = 07 X*(1,1), has(T,0) = hap(T,1).
This condition will correspond to loops which is known as closed strings.

Similarly, one has boundary conditions for field ¢/*. However, since the field ¥* is fermion
on the world-sheet there are more possible boundary conditions known as Ramond and
Neveu-Schwarz we have the following:

e non-periodic boundary conditions (for open strings):
PH(1,0) = £407(7,0),  PH(7,1) = 4" (7, 1), (5.2.9)

The overall relative sign between v and 1 is a matter of convention. We follow here
the standard notation setting:

H(r,0) =" (7,0),  PH(r,1) = +P" (7, D), (5.2.10)
The plus sign is for Ramond Sector and the minus sign is for Neveu-Schwarz sector.

e periodic boundary condition (for closed strings):

Yo+ 1) = +y* (o), oo+ 1) =+9"(0) Ramond (R) sector,

Yo+ 1) = =y (o), o +1) = =" (0) Neveu-Schwarz (NS) sector.
(5.2.11)

Since the choice for the boundary of the left and right movers (closed string) are inde-
pendent one can have (NS-NS), (R-R), (NS-R), and (R-NS) sectors. The strings in the
R sectors are spacetime fermions and the strings in the NS sectors are spacetime bosons.
Therefore, (NS-NS), (R-R) sectors of closed strings are spacetime boson and (NS-R) and
(R-NS) are spacetime fermions.
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D-branes and Chan-Paton factor

One of the more important consequences of the Dirichlet boundary condition is the ex-
istence of D-branes. It was shown at the start of the second string revolution that the
endpoints of the open string with the Dirichlet boundary condition can be considered as
extended dynamical objects [66]. The inclusion of these objects in spacetime will break the
Poincare symmetry. For D brane with dimension 7 in d dimension we have the following
decompositionE]:

SO(1,d—1) — SO(1,r — 1) x SO(d —r). (5.2.12)

This decomposition will affect tensors in spacetime, in particular, the momenta of the
fields. We define the D matrix associated with the brane in the following

In the flat background, we have the diagonal D matrix:

D~ 5""5 (g,.ﬂ) c paralle? to brane, (5.2.13)
—d"; (i,j) € perpendicular to brane.
Then for a generic vector V', we have:
1 1
Vi = 5 (V+DV), V= 5 (V=DV), (5.2.14)

and the momentum conservation will be:

S vl =o. (5.2.15)

2

This is due to the remaining Poincare group SO(1,r — 1).

In addition, at the end points of each open string (the geometrical position of the brane),
we find degrees of freedom associated with the parallel directions to the brane. These
extra degrees of freedom can be gathered in representations of a U(n) Lie group. All open
strings transform in n x n adjoint representation under this U(n) symmetry. So we can
write the open string state as:

lopen) = |m, k;a) = |m, k) @ T, (5.2.16)

where a is the label of the U(n) adjoint representation (associated Gell-Mann matrices
T® representing the generators of Lie algebra). In the construction of gauge theories as
effective actions this Chan-Paton symmetry is related to the gauge group of the field
theory.

1Usually the time direction is always parallel to the brane.
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5.3 Conformal field theory description

In this section, we give a lightning introduction to 2d conformal field theory by using
string theory as an example (for further detail cf. [67, 68]). We also give the important
results that we are going to use in the following sections and chapters. In the first step,
we are going to change coordinates and map the world-sheet coordinates (o, 7) to complex
coordinate (z,%) via:

z=T+io0, zZ=1T1—1l0. (5.3.17)

From now on we are going to use the complex coordinates since they let us the tools of
complex analysis. In these coordinates the action ([5.2.1]) will be:

. 1 _ _ ., —
gouwerseng = [ ez (28X“(z,z)aXu(z,z) + o/ (DY, +w“am>>- (5.3.18)

The equations of motion are given by:

JOXH = DoXH =0,

o (5.3.19)
) = 0 = 0.

Using the definition of holomorphic and anti-holomorphic functions over complex plane
we can see that the on-shell fields 9X*(z) and 1*(z) are holomorphic and fields X*(Z)
and ¢ (%) are anti-holomorphic. This is going to be useful in the conformal field theory
discussion.

Conformal Symmetry

We start the analysis by looking at the conformal symmetry group Con f(3,1). It includes
three types of transformations:

e Poincare
= A" x¥ + at; A, =—-A,, — M, =i(x,0, —x,0,),
v 0 1 p (Tu i) (5.3.20)
P, = —i0,.
e Dilatation
™" = aat —— D = —ix,0". (5.3.21)
e Special conformal transformations:
B g M2
= T e K, = —i(2*0, — 2x,2,0"). (5.3.22)

C1—2a-1+ a2x2

Above we gave the transformations of the conformal group and their infinitesimal rep-
resentations. Geometrically speaking conformal group maps infinitesimal squares to in-
finitesimal squares but rescales them by a position-dependent factor. Since the action
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(5.2.1) (or (5.3.18)) is invariant under these transformations we can consider string the-
ory as defined in the action (5.3.18)) as a free conformal field theory. The conformal
symmetry can be also seen on the level of the energy-momentum tensor. In particular,
all conformal field theories have a traceless energy-momentum tensor meaning:

Conformal field theory — T*, = 0. (5.3.23)

This tracelessness should hold on both classical and quantum levels. Requiring the energy-
momentum tensor to be traceless on the quantum level (which is known as the Weyl
anomaly) forces us to fix the dimension of the embedding spacetime. This dimension is
known as the critical dimension. For superstring theory it is d = 10 and for bosonic string
it is d = 26.

Critial dimension

For superstring theory the Weyl anomaly will be proportional to:
3 !
(T",) ~ §D —15=0— D = 10. (5.3.24)

A similar analysis for the pure bosonic string will give D = 26

Primary fields

Now we are going to look at the building blocks of a conformal field theory: Primary
fields. In order to do that let us start with the Lorentz group SO(3,1) as an example.
Following special relativity one wants to impose that physical fields transform covariantly
under the Lorentz group. This requires physical fields to be in a representations of the
Lorentz group which are known generally as tensor of the group (e.g.scalar ¢, vector A,
etc). Consequently, Lorentz invariant actions can be written as scalar functions which are
the inner product of tensors.

The same logic applies here to the conformal group. Since we want to write theories
that exhibit conformal symmetries we need the field content to be covariant under the
conformal transformations. These fields are known as primary fields. Formally, one can
define them as follows:

Primary field

Ifz— f z)_a conformal transformation and field ¢(z,Z) a primary field of conformal
weight (h, h) then:

V(%) o 0 (27) = (?) (§—f> WIELTE).  (5325)

if f € PSL(2,C) then the field is called quasi-primary.
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Not all fields in a CFT need to be (quasi) primary there can also be secondary fields. We
can see that the fields 0X* amd ¢* are conformal primary fields with weights hx = 1
and hq/, = %

5.3.1 Radial ordering and OPE

One of the important tasks in calculating n point functions in canonically quantized
quantum field theories is to tzme order the products of creation and annihilation operators.
This is due to the inherent ambiguity of the order of multiplication of the quantum
operators.

Time ordering for quantum field ¢

<mnmmm~wm(ﬂmm)w (5.3.26)

The notion of time ordering is defined as:

T(M%W@ﬁ>:{ ol)otea) ol = o (5.821)

P(xa)p(x1)  a§ > b,

In 2d CFTs, given the properties of conformal symmetry, one can always map the time
direction to the radial distance to the origin of the complex plane (which is the trans-
formation we introduced in ([5.3.17))). Therefore, the notion of time ordering is replaced
with radial ordering and one can define it similarly

Radial ordering for conformal field 1

(0] Hw(zi,?i)lm = <0|R<H¢(zi7§i)> |0). (5.3.28)

=1

Then the radial ordering defined as:

(5.3.29)

R(¢<Zl,§1)¢(z2’§2)) — { ¢(Z1,§1)1/)(22,72) ‘zﬂ > |Z2|7

Y(22,Z2)0(21,21) 22| > |21],

where |z is the distance of field ¢(z1,Z;) to the origin.

Wick’s theorem

We finish this section with Wick’s theorem. This is the most important tool to calculate
any quantum field theory (including conformal field theory) n-point amplitude. We are
going to use this theorem extensively while calculating any string amplitude.
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Theorem (3.1): Wick theorem

Theorem 3. Any time (radial) ordered product of operators can be written as a
sum over normal ordered products of these operators where distinct pairs of the
operator are contracted in all possible ways. Explicitly:

R<H¢(2i7§i)> = <H1/J(Zi,§¢)> +: <H¢(Zi7zi)> :+regular terms. (5.3.30)

Vv Vv
contraction Normal ordered

A product of operators P is normal ordered (Wick ordered) when all creation op-
erators are to the left of all annihilation operators and it is denoted by the 7: P .”
sign.

Therefore, in the CFT the functional dependence of operator products, when they contract
(i.e. get close to each other z; — z3), is important. This requires the notion of the operator
product expansion (OPE) which states that two local operators close together can be
approximated to arbitrary accuracy by a sum of local operators [12], [67, [69]. Formally, we
have:

0i(21,71)0j(22,%2) = Y _ C* (21 — 22)) On(22, %) , (5.3.31)

where C};*((21 — #2)) is a meromorphic function of (z — w). Using the OPEs of the

Z Cf;((zl - Zg))@k(ZZa ?2)
k

Figure 5.2: OPE of two operators at (21,%1) and (22, %2)

conformal fields one can perform the contractions of Wick’s theorem. Using the definition
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of a primary field ¢ (w,w) in (5.3.25) one can show that in a given CFT with energy-
momentum tensor 7'(z) the OPE of the T'(z)y(w,w) is given by:

_ - (5.3.32)

7

above the ”...” means terms that are regular in z — w. We use this notation for regular
terms throughout this work.

n-point function of primary fields

Having a conformal (superconformal) symmetry for a given theory constrains the type
of functions that can appear in the OPE of the primary fields. Since the primary fields
behave as in equation then the resulting OPE should also behave the same way.
Therefore, the form of two and three-point functions are fixed up to constant coefficients.

Primary fields correlation

Taking v;(z) to be a holomorphic primary field with conformal dimension h; then
we have for the two and three-point functions (the anti-holomorphic case is similar
with conformal weight h;):

dijOn, h;
(hi(2)v;(w)) = m,

5.3.33
Cia3 ( )

<¢1(Zl)w2(z2)¢3(23)> = (212)h1+h27h3(Zlg)h1+h37h2 (223)h2+h37h1 >

where Zij = Zi — Zj.

As a very important example, we can take the superstring action in (5.2.6) and write
down the OPEs of the primary fields 0X* and ¢* in the following as:
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Disk Sphere

XM ()XY (w) ~ —a'In(z —w) + ... | X*(2) X" (w) ~ —3a'In(z —w) + ...

XH(2) X" (W) ~ —/ In(z — ) + ... X#(2) X (W) ~ 0

OXH(2)0XY (w) ~ =20 + s | OXM(2)0X " (w) ~ =30/ s + .

OXM(2)0X" (W) ~ =20 + . OXHM(2)0XY (W) ~ 0
V)P (w) ~ s PH() (W) ~ oy e
PH(2) (@) ~ L e ()" (@) ~ 0

Table 5.1: Two point functions of different fields over sphere and disk

First, we note that the field X* is not primary but since we need to use the OPE to de-
rive other OPEs we included it in the list. Second, the contractions between holomorphic
and anti-holomorphic fields are dependent on the Riemann surface of the world—sheet for
example over the sphere there are no mixed contractions. Whereas for the disk there are
contractions between the holomorphic and anti-holomorphic fields. In order to study tree
level amplitudes we do not need to look for more Riemann surfaces and these OPEs will
be sufficient to calculate all amplitudes required for the present work.

5.3.2 Mode expansion and Virasoro algebra

To construct the physical spectrum in canonical quantization of superstring theory we
require two ingredients:

e Creation and annihilation operators
e Symmetry generators to constrain physical state conditions.

For the first ingredient, we should (Fourier) mode expand the primary fields . X* and ¢*
on shell (i.e. on the solution of equations of motion). Using the equations of motion given
in (5.3.19) we have the following expansion for the field content of superstring theory [11]:

/2 o 12 o
o ak _— o ar
0X"(z) = ﬂ(g) > o 9XM(E) = —Z(§> D

z
m=—00

| meee (5.3.34)
by —p by
"= @ =

reZ-+v reZ+v
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where for v = 0 we have the Ramond and for v = % we have Neveu-Schwarz sectors. The
energy-momentum tensors (5.2.7)) in complex coordinates are given by:

1 ~ 1 - = 1—p —
Tp(z) = —— : OX"OX,, = S0y Tp(3) = —— 1 OX"0X,, — ?p“a%,

1/2 1/2 (5.3.35)
| 2 S | 2 —p=
Tp(z) =1 <&> YroX,; Tp(zZ) =1 <5> Y oX,.
Therefore, for the energy-momentum tensors, we have the following expansion:
o0 Lm _ B oo Em
Ts(x)= ) i Ts)= ), =i,
e . S p (5.3.36)
Tr(2) = Z e Tr(z) = Z R
r€Z+v reZ+v

where v defines the RNS sectors as above. Upon using the canonical quantization condi-
tion one obtains the following algebra for the modes [10] 1Tl 12, [65]:

Mode Algebra for RNS superstring

First, we have the canonical quantization condition:

ab car] = ah o] = mn" dpmino -
(s ] = [0, G = mn™ O (5.3.37)
{b¢> bg} = {bﬁ? bg} = 77’“/5r+s,0 .

Using these algebras and the definition (5.2.7) of T and Tr on obtain the well

known supervirasoro algebra:

C
[Lm7 Ln] = (m — n)Lm+n + E(ms — m)5m+n70.
C
{Gry Gs} = 2Lr+s + E(SrJrs,O- (5338)
m — 2r
[Lma GT] = 9 Gm+r-

where r € Z for the Ramond sector and r € Z + % for the Neveu-Schwarz sector of
superstring theory.

Central charge

In the supervirasoro algebra, we have been using the factor ¢ without explanation. Here
we are going to define ¢ which is known as central charge. We should start by explaining
that one of the main features of CFTs in physics is that they do not require a Lagrangian
description. Meaning, to have a CF'T one does not need an action as in . As we
discussed the singular part of the OPEs are fixed through the conformal symmetry. So
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the only necessary objects are the primary fields and the algebra of the modes. In order to
fix the algebra one has to take into account that the Virasoro algebra admits extensions.
Meaning, one can add a term to the algebra without breaking it.

This is known as central extension and can be parameterized by a central charge c. We
have noted this extension in the algebra in the commutation of L,,s. The central
charge for a given CF'T is associated with the "soft” breaking of the conformal symmetry.
Physically speaking, it means how a given CF'T reacts to the introduction of macroscopic
length into the theory, for example a boundary [67]. Further, given the central charge,
the form of the OPE of the energy-momentum tenor is fixed:

c/2 2T (w) N OT (w)

T(2)T(w) = (z—w)t (z—w)? (z—w)

(5.3.39)

Therefore, giving the primary fields together with the ¢ will be sufficient to define a CFT.

5.4 Supersymmetry

So far, in our discussion we have used the concept of supersymmetry sporadically. Here
we are going to give a very brief introduction to the topic [70]. As we mentioned in
the beginning supersymmetry is the symmetry that relates (maps) bosons to fermions.
Quantum field theories originally had two types of symmetries:

e Internal symmetries like gauge symmetries. Mathematically speaking these are de-
fined as extra structures (bundles) on top of the spacetime manifold. Normally they
are compact Lie groups like U(1), SU(N), etc (with some generator G).

e On the other hand, there are external symmetries that are associated with the
(isometries of) spacetime manifold itself, i.e. Poincare symmetry. The Poincare sym-
metry is generated through rotations M, and translations P,.

All fields in quantum field theories are in a representation of the spacetime symmetry
(e.g. they are scalar, vector, tensor, etc). In contrast, this is not the case for internal sym-
metries, for example, not all fields are eclectically charged. These two types of symmetries
commute with each other meaning we we can write the full symmetry as a product:

[Gv PM] = [Gv M#V] =0,

. . . (5.4.40)
Symmetries: Poincare ® internal symmetry group.

Further, it was shown that any attempt to enlarge the above structure will result in a
trivial theory (i.e. S—matrix= 1). This is known as the Coleman-Mandula no go theorem
[71]. Like any other no go theorem it was circumvented by avoiding one or more of the
assumptions. In this case, Coleman-Mandula assumed that the additional group is a Lie
group with a commuting Lie algebra with bosonic generators (one can see that P, and M,
are in the tensor representation of the Poincare group). Therefore, it was circumvented by
assuming that the "new” symmetry does not have a commuting but an anti-commuting
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algebra with fermionic generators [72, [73]. This is a generalization of the Lie algebra
known as graded Lie algebra schematically we have:

Lie algebra: [A, B] = —[B, 4],

_ . (5.4.41)
graded Lie algebra: [A, B] = (—1)"[B, A].

This change in the assumption to the Coleman-Mandula no-go-theorem allowed for a
symmetry with fermionic generators @), where o = 1,2 index is the SU(2) representation
index. The algebra of supersymmetry generators are given by:

[QO” PH] =0, [Qa? Ga] =0,
Q5 M) = 50" sQur {Qu @3} = 20",P (5.4.42)
Q*=0.

This type of symmetry is called Supersymmetry (SUSY) and a theory that exhibits this
symmetry is supersymmetric like the superstring theory we have introduced so far. Look-
ing at the above algebra one can readily see that supersymmetry leaves the internal
symmetry and the Hamiltonian (which is the conserved charge of the translation current
P,) intact and just affects the Lorentz generators. In other words, while acting on a phys-
ical fields by a supersymmetry generator (charge) preserves the mass and the charge of
the fields, it will change its representation under the Lorentz group. Since the generator
is fermionic it will map bosons to fermions and fermions to bosons. In short, for a state
with mass m, spin s and charge ¢ of the internal group we haveE]:

Qlm,q,s) =|m,q,s £ %>. (5.4.43)
In a supersymmetric theory the fields are going to be in representations of SUSY which
means that states form multiplets through the action of the supersymmetry operator ()
as demonstrated above. All of the states inside a multiplet have the same mass and
charge but different spins. Looking at the algebra we see that the representation of the
supersymmery depends on the mass of the states for the massive states we have:

{Qa, Qs} = 2mb 4,
and for the massless states we have
— 10
{QOHQIB} =2F (0 0) .
Therefore, for the massive case we have states with spins (s, s+ %, s) and for the massless

case we have states with helicities (A, A + 1) and (=X, =X — 1) in order to preserve CPT
symmetry.

2The plus-minus in the spin depends on the choice of the representation of the ) is not important
since whatever the sign of @, @ will be the reverse and both are always present so its a matter of choice
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The fact that @ is nilpotent will insure that the multiplets are finite (i.e. the number
of states inside the multiplet is finite). Looking back at the above example we have the
massive states (with choice ot plus sign for the Q):

Q|m7Qa S) - |m7Q7 s+ _>7

@|m7 q, 8) - ‘ma q,S — §>7 (5444)

Qlm.a,5+ 3) = @@l 0.)) = m.q. ),

and the multiplet will be:

|m,q,8> ‘m7Q7 S>
( |m,q,s—|—%)> S ( |m,q,s—%>> . (5.4.45)
So far, we have only mentioned theories with one supersymmetry i.e. there is only one Q.
However, it is possible to have more than one Q! with I = 1,2,3,..., N this is known as
extended SUSY. The value of N will determine the extended SUSY of a theory.

Since multiplets are invariant under all of the extended SUSY, having more than one
SUSY generator creates a rotation symmetry among the SUSY generators. In case of
more than one @ we can always rotate the Qs meaning supersymmetric theories (and
multiplet) are invariant under:

Q' =AQ’. (5.4.46)

Since Q7 are complex the \;; are going to be elements of SU(N). Therefore, a theory
with extended N supersymmetry has an extra SU(N') symmetry known as R—symmetry.
We finish this section by mentioning the two types of supersymmetry that we encounter
in studying superstrings

e World-sheet SUSY: This is the supersymmetry associated with the action .
It is seen as the map between bosonic field 0X* to fermionic field ¥*. As we are
going to see in the next section there can be different numbers of supersymmetries
on the world-sheet.

e Spacetime SUSY: This type of supersymmetry is associated with the spacetime fields
and produced through the content of the superstrings. It is realized in the effective
actions constructed through string theory amplitudes like supergravities.

We should emphasize being bosons and fermions on the world-sheet and spacetime are
completely different subjects. For example, we have the spin-2 massless state in the
superstring that contains both X and 1 fields, as well as its superpartner gravitino,
which also contains both X and # fields. The number of supersymmetry in the spacetime
SUSY actions are NV = 1 for open strings and NV = 2 for closed strings. Through
various compactifications the number of SUSY can be enhanced or broken for example
compacitfying over a six-torus will enhance spacetime SUSY to N = 8 (cf. [12} 1T}, 65} 10]).
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5.5 String spectrum

This section is one of the more important parts of this work. Here, we introduce the
spectrum of the closed and open superstring theoryﬂ We are going to do so in three steps:
First, we construct the states using the covariant method of creation and annihilation
operators. Second, we will give the little group and spacetime Lorentz representation of
each state and finally we introduce the notion of operator state correspondence and give
the vertex operator associated with each state.

We start by introducing different types of superstring theories. There are five consis-
tent superstrings known so far:

e Type I: String theory involve both open and closed strings with N' = 1 supersym-
metry with the gauge group SO(32) or Eg X Fg.

e Type ITA: Closed string theory with with N' = (1,1) world-sheet supersymmetry.
The left and right movers of this theory are of opposite chirality. So, it is a non-chiral
theory.

e Type IIB: Closed string theory with with A" = (1,1) world-sheet supersymmetry.
The left and right movers of this theory are of same chirality. So, it is a chiral
theory.

e s x Eg and SO(32) Heterotic: Closed string theory whose left movers are 26 dimen-
sional bosonic string and 16 dimensional of these are compactified on torus and the
right movers are 10 superstring modes with A/ = (0, 1) world-sheet supersymmetry

For the current work, we are only going to look at the (universal) (NS,NS) part of Type
IT superstrings in the background of D-branes interacting with NS open strings.

5.5.1 Construction of States

The most intuitive method to construct the states of the superstring is to do it in the old
covariant method. In this method every expansion coefficient introduced in section [5.3.2]
will be a quantum operator satisfying the canonical commutation or anti-commutation
relations for bosons and fermions, respectively. In the superstring case, we have two
primary fields with the corresponding creation and annihilation operators namely:

_ oo " 5.5.47
D) o D), B(E) < (5, (5547)

where m is an integer and r is a half integer numbers. The complex conjugate operators
are related to each other by the change of positive and negative modes (i.e. the integer
m):

0X"(2) < (aky,aff),  9X"(2) & (ah,all"),
wopt

() = o (a9t =a*, .

—n?

3We mention the results for bosonic string theory whenever it is necessary
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To evaluate the mass of different string states it is easier follow the recipe of canonical
quantization in the light cone coordinates given by:

. 1
toam, o), 1=2,...D—1; e — L B

V2

Therefore, the index p of the oscilators (o, /) decomposes the same way to u = (£, 1).

One finds the Hamiltonian of the light cone action (5.2.6) by using the number operator
N which is defined for the RNS superstring as:

= (x

N = Ng+ Np = Zai_nozfl+27“bi_rbi,

n>0 r>0 5 548
| er+N-1  Ns, (5.548)
o'p? + N R.
Using p? = —m? the mass operator will be given by:
N -1 NS
a'm? = { N 2 P ’ (5.5.49)

In this mass operator we have avoided the contribution from the D—branesF_f].
To construct a state we need to define the vacuum and act by creation and annihilation
operators ([5.5.47)) on it. We define the vacuum as the state annihilated by positive modes:

String state

akl0y =0 For all n > 0,

5.5.50
b*|0) =0  For all r > 0. ( )

One can make other choices for the vacuum in particular one can choose positive
modes for holomorphic fields and negative norms for anti-holomorphic fields this
will give rise to ambitwistor constructions in string theory [74]. Then, a generic
string state can be given by[%

vy = [0 0%, 10). (5.5.51)

k.l

Using the mass operator in (5.5.49) will give us the following mass for the state:

S+ — NS-sector.
k I

5.5.52
Yok DT R-sector, ( )
k I

a'm*(|7)) =

4The D-brane contribution is given by ﬁ(AX )2 where AX is the distance between two D-branes
that open string starts and end between them.
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%Since we want to use BRST symmetry in the next section and we do not need to use the
transverse coordinates in BRST quantization to fix the gauge we also avoided the light cone
coordinates here.

5.5.2 BRST symmetry and ghost system

There are many different symmetries involved in the superstring theory from superconfor-
mal symmetry to Chan-Paton gauge symmetries. Any physical state should be constrained
with all the symmetries of the theory. Therefore, not every possible combination of the
creation operator as written in (5.5.51)) are part of the spectrum and we have to constrain
them with physical conditions. Here, we are going to provide the physical state conditions
using the supervirasoro algebra modes acting on the states:

Physical conditions

There are two types of conditions that we are going to put on the states:
e Symmetry constraints
e Positive norm constraints

As we discussed before, the symmetries of superstring are generated through currents
that are given by the energy-momentum tensor. A state will be invariant (physical) if its
variation is zero and since the mode expansion of T and Tr are the generators
of superconformal symmetry one can define the following conditions for open strings:

Gr”thyS> =0
L |Vphys) =0 (5.5.53)
LOthys»’) =0

Here all modes are positive (i.e.r,m > 0). For the closed string, we should add the
anti-holomorphic partner of these relations, meaning;:

a1”")/10111/8> =0,
Lm|7phys> = 07 (5554)
L0|7phy8> =0,

as well as the level matching condition:
Lo — Lo|Yphys) = 0. (5.5.55)

This condition insures that the masses and conformal weight of the left and right mover
fields are the same.
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The second type of constraint is the positive norm constraint. Meaning, we want the
physical states to have positive norms:

([} > 0.

This is implemented through the normal ordering constant inside Ly which has been fixed
for the NS sector. This constraint is satisfied when V¥ = —1 for NS sector and o =0
for R sector . This condition has a more important consequence since the eigenvalue of
the operator Lg is the conformal weight of a given CF'T state. Then this condition means
that all physical states have conformal dimension zero:

Lol phys) = 0= Lo|Vphys) = (0)[Yphys) — hy = 0. (5.5.56)

It is clear that checking every single state, for every constraint given above, is an exhaus-
tive task. Further, if one wants to use the path integral formulation (which we are going
to do in the next section) this method is not applicable. The solution is to use the BRST
symmetry. Here, we are going to provide a brief review of this symmetry and how it
works in practice. As mentioned the BRST symmetry is most useful in the path integral
formulation where one’s goal is to fix gauge symmetries and avoid integrating over an
infinite measure. In order to achieve that in the path integral formulation one uses the
method by Faddeev-popov [75]. To implement the system we need to introduce two more
conformal field theories:

e The b — ¢ ghost system of anti-commuting bosons that is given by the following
action:

1 — _
She = o / d?z(bOc + bOe). (5.5.57)
T
with the equations of motion:
Oc=0b =0, ¢ = 0b = 0. (5.5.58)

Here, as it can be seen by equations of motion and dimensional analyses of the
action b(z) is a holomorphic (b(%) is an anti-holomorphic) function with conformal
dimension (h,h) = (2,0) ((h,h) = (0,2)) and c¢(z) is a holomorphic (¢(Z) anti-

holomorphic) function with conformal dimension (h, h) = (—1,0) ((h, h) = (0, —1)).

The b — ¢ ghost system is responsible for fixing the gauge for the bosonic part (X*)
of the action (5.2.6). In addition, we need the energy-momentum tensor}

T = 2:9c(2)b(2) : + : ¢(2)b(z) : . (5.5.59)

e The B — ~ system of commuting fermions is the superpartner of b — ¢ system. It is
given by the action:

1 _ _
S = > / d*z(B0y + BO7) . (5.5.60)

5The anti-holomorphic part is obtained by complex conjugation
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This system also has a holomorphic field 3(z) (anti-holomorphic field 3(%)) with
conformal dimension

and (z) is a holomorphic (3(Z) anti-holomorphic) function with conformal dimen-

sion ] 3
Similarly, one can define the following energy-momentum tensorﬂ
3 1
To = —5 v (z)B(z) : —5 v(2)0B(2) : . (5.5.61)

An easier way of working with the theory of 8 — v system is by bosnization which
assigns boson fields (¢, x) to (5,7) as:

= e %eX9 — ePeX .
f=eeiOx,  y=ete (5.5.62)

together with the following OPEs:
P(2)p(w) ~In(z —w),  x(2)x(w) ~In(z —w). (5.5.63)

Finally, as we mentioned in the case of the matter fields X* and ¢* (cf. (5.2.7])) we noted
there was the superpartner of the matter energy-momentum tensor corresponding to the
gravitino. Similarly, there is a superpartner to the energy-momentum tensors ([5.5.61)) and
(5.5.59)) coming from the variation of the action with respect to the gravitino. We denote
1 b7c7ﬁ7’y 3 3 3 .
it by T and it is given by:

TP = % cy(2)b(z) : — :e(2)0B(2) : —g 1 0c(2)B(z) « . (5.5.64)

We can summarise the mass and conformal weight of the fields in the full theory in the
following tables. We have the mass dimensions:

Field | o | X™c| v |Q|v™ |8, Ts|b T
Mass dimension | =2 | —1 [-1/2][0 [1/2] 3/2 | 2

and similarly for the conformal weight:

Operator H 0X™(2) ‘ Y™ (2) ‘ 04%(2) ‘ oie'pX (2)
Weight || (1,0) | (1/2,0) | (=3a(a+2),0) | (°F,0)

6This is the holomorphic part of the energy-momentum tensor the anti-holomorphic has the same
form with the anti-holomorphic fields.
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for the ghost system:

Operator H b ‘ c ‘ 15} ‘ v
Weight || (=1,0) | (2,0) | (3,0) | (—3

29

,0)

Therefore, taking all these parts together we can write the full gauge fized string action:

Ssuperstring :SX + Sz/l + Sb*C 4 Sﬁ*’Y’

gauge fized
1 2 - B 1 ThAT
superst?'zng — d d_ = XH = X = H H
Sgauge fized 47T/ zaz [a,a (2,2)0X,(2,2) + 010+ 4700, (5.5.65)
+2 (bécz + b9 + By + BW) + AX.

Now we can construct the nilpotent BRST charge in terms of the energy-momentum
tensors (5.5.59),(5.5.61)),(5.5.64) we get[}

dz
QBrsT = 7{) ! %]BRST

= f; %{ : C(Z) [Tg’w(z) + %(Tgc + Tg77)(2> Dt (5566)
:y(2) [TF){QZ’(Z) + %TIZ;’C’B’W(Z)] : }

Here, we have used the notation: 75" (2) = TX (2)+ T} (2) and TV (2) = TE (2) + T (2).
One can check that this charge is indeed nilpotent Q%zsr = 0 and therefore one can
define the BRST cohomology with the action of Q)grsr on the states. We can use this
cohomology to define the physical states. A state is said to be BRST invariant if it is
annihilated by Q) prsr:

Qprsr|y) =0 (5.5.67)

We discussed the generic definition of cohomology in chapter 2 (cf. and mentioned that
a state that is BRST invariant as in is either of the form |a) = Qprsr|d) (ie. exact
state) or not. The exact state o has zero norm due to the nilpotency and hermiticity of
the BRST charge operator ({(a|QQ|a) = 0). Since the BRST charge commutes with the
Hamiltonian these exact states will decouple from the S-matrix of the theory. Therefore,
one can define the physical state in the Hilbert state of the string theory as:

"The Q is defined in the same way with anti-holomorphic energy-momentum tensors.
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Physical state

A state |y) is physical if it is closed under the BRST cohomology but not exact.
Meaning;:

17) € H pun,

@srsr|y) =0, ) # Qla), V).

Therefore, a generic state in the Hilbert space can be decomposed as the following
product:

(5.5.68)

7)€ Hpwr,= [7) = | X5¢) @ loeigsn) -
matter fields ghost field (5569)

One can show by direct computation that the condition (5.5.68) is equivalent to the
conditions in . The ghost part of the state is the permissible vacuum of
the b—c and §—~ system. These two theories similar as the matter fields are CFTs. They
have oscillation modes and therefore a vacuum state that is annihilated by all non-negative
modes and contains the zero modes. These zero modes commute with the Hamiltonian
of the respective systems [| This results in a degeneracy of the vacuum. Under the b — ¢
system is easy to consider since the b — ¢ fields are anti-commuting i.e. Graffmann the
zero modes by and ¢y will have only two eigenstates denoted by | |) and | T). The two
degenerate states in terms of field modes of the b — ¢ system are given by:

‘ l> - Cl|0>b—C7
| 1) = coc1]|0)p—e.

In order to satisfy all conditions in (5.5.53) and (5.5.54)) we had to choose | |) for the

vacuum string state. Furthermore, the ghosts always cancel the the light cone coordinates
x* therefore we do not need to use the transverse indices (4, j) for the creation annihilation
operators while constructing the states.

The situation for 8 — ~ is more complicated. Since we cannot use the Grassmann
properties (they are commuting fields) we will have infinite equivalent possibilities which
are known as ghost picture we will get back to this in the next section when we construct
the vertex operators.

(5.5.70)

5.5.3 Operator state correspondence and Vertex operator

So far our discussion on string theory as a 2d CFT has been done in two parallel paths.
First, we have the operator formulation. We introduced the full action of the gauge fixed
superstring and gave the primary fields which upon quantization become local opera-
tors. Second, in order to construct the states of superstring theory we followed covariant

8By (this is not the zero mode of he matter field v, it is the mode expansion of the field b) and cg
commute with LS*C similarly for 8y and g
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quantization meaning we had the mode expansion of the matter fields acting on the vac-
uum and created a generic state in . Now, we want to point out the relationship
between local operator and a given state in the CFT. This is known as operator-state
correspondence with the following statement:

Operator-state correspondence

There is an isomorphism between the local operators on the complex plane C and
the initial state on a cylinder.
It is not difficult to check that the isomorphism map is given by:

S xR — C,
Ciw , (5.5.71)
Z—e wW =T+ 10.
One can clearly see that the circle at 7 = —o0 is mapped to the origin and the
circle 7 = 0o is mapped to the infinity.
z
=

Figure 5.3: Map from cylinder to complex plane

This map gives us the power to map the propagation of closed stringﬂ to operators on
the complex plane with the initial state given as the local operator at the origin which
is known as wverter operator. We are going to discuss extensively the implication and
application of this operator and map in the next section. For now, we give the general
recipe to construct vertex operator associated with any state of the form in the
NS sector. We have the following construction:

9The same map exists for open string mapping the ribbon to the upper half plane
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Vertex operator for open string

The generic state |y) = |X;v;a) ®| [be;qs,) has two parts: a matter part and a
————

——
matter fields ghost fields
ghost (b — ¢/B — ) part. For the matter part we have:

|X7 1?; a>matter fields — Ta H blilrl —nk ’0> (5572)
k,l

where T is the generator of the Chan-Paton symmetry Then, we introduce the
Fourier back transformation map of the creation modes o, and b” .. Takingn € Z*
and 7 is the positive half integer Z + 5 L (NS sector):

dz .
‘O) — %e ,
2 i d 2 S
L= 29X - "XH(0 5.5.73
o, (a) § 5noxr(z) — (a) X0, (557
dz
= § oo () — (o)
2m (r — %)
Therefore, the matter part of the vertex operator will be:
X595 @ matter fietas = T | [ 0,0, 10) = T - F(O 290" X") : . (5.5.74)
k,l

above we have used normal ordering for the vertex operator. In the ghost part
we have the following state | |,.) ® |qs.) ghost charges- Functionally, the choice of
the state | |5.) amounts to adding ¢(z) to the matter vertex operator or using the
integrated vertex operator. The contribution of the the § —~ system enters through
the bosonized field ¢. Putting all together we have:

V(030" 0" X7, 6) @ | Lye) = e(z) T : V(@39 0" XY, ¢) - . (5.5.75)

We will address the ¢ dependence (i.e. |gg) ghost charge) 1 the picture changing sec-
tion.

Finally, the last thing is to impose the BRST condition on the local vertex
operator. From the operator-state correspondence we know that the acting on states is
mapped to commutation of operators. Meaning, the vertex operator should commute
with QQprsr up to a total derivative:

[@BrsT, V] = total derivative. (5.5.76)
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Integrated vertex operator

We should emphasize some small but important subtlety. The operator state correspon-
dence, as we introduced it in the form of the equation ([5.5.73)), results in the following

map:

Integrated vertex operator

apen) = c(2)V ~ / 02V (2),

(5.5.77)
|7€losed> — C(Z)E(E)V ~ /dzd?V(z,?)

The ¢(z)V is known as unintegrated vertex operator and [dzV(z) as integrated
vertex operator.

In this work, we construct the integrated vertex operators by building the integrand
V(2) and do the integration while calculating the scattering amplitude. Therefore, we are
not going to add ¢(z) while constructing the vertex operator later we are going to take
care of the b — ¢ system in the path integral formulation.

String coupling

Before we construct the spectrum we need to take into account the topological term
associated with the Euler character. As we mentioned in the beginning this term arises
due to the (non-dynamical) gravity on the two-dimensional world-sheet. This factor in
the full amplitude only affects the relative weight of terms with different world—sheet
topologies to each other. Meaning, that we have a different factor for genus g = 0
(e.g.sphere) surface compared to the genus one g = 1 (e.g, torus). Therefore, the factor
eStor = ¢~ in can be seen as the coupling controlling the string interactions
gs. Looking at the definition of the Euler character for the emission and absorption of
the open and closed strings we have disk and sphere worldsheets, respectively. So we can
define the open string and closed string couplings as:

Mo
open string:Disk with n punctures — x =2 — 29 — b+ 5

closed string:Sphere with n punctures — x =2 — 29 — b+ n.,

Mized open and closed string:Disk with (n,,n.) punctures — x =2 — 29 — b+ % + N,

(5.5.78)
where ¢ is the genus and b is the number of the boundaries of the surface. Now, if we
look at the generic n point puncture case for disk and sphere topologies we have:

n, open string over disk: (9 =0,b=1) = ACDHFA — e’\(e%A)”" ,
A(2—0)+ncA _ €2A<€/\)nc .

(5.5.79)
n. closed string over sphere: (9 =0,b=0)=¢
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Since adding a puncture changes the Euler character by one, in order to systematically take
this increase into account for different amplitudes (with different number of punctures)
we first factor out the common (puncture independent) part 2 — 2g — b and then define
in the remaining:
1

open string — ez — 0,

b g T ) (5.5.80)

closed string — e = g. — g. ~ ¢g,,.
and add a factor of g, and g. to the vertex operator of the open and closed string,
respectively:

open string: Vi(x) — g,V (),

closed string: V,4(2,2) — g:.Vy7(2, Z).
The overall factors e** and e* will remain in the action and will be added in the path
integral.

Picture changing

As we mentioned the construction of the state |¢a ) ghost charges T€QUIres taking into account
the infinite degeneracy associated with the zero modes of the  — v system. This infinite
degeneracy cannot be resolved. Therefore, all vertex operators associated with string state
will have infinitely many versions each associated with a degenerate state. One can label
the degenerate state with a charge ¢ known as the picture number. In order to construct
the picture number we are going to use the bosonized version of the § — v system that
we introduced before in (5.5.62). In the bosonized 8 — ~ system the ¢ dependence of the
vertex operator is of the following form:

V(0FpH 0" XY, 6)|  ~ et (5.5.82)
lag,~)
where ¢ is the picture number. For the purpose of our work, we are going to discuss the
canonical picture number (picture number ¢ = —1) of vertex operators and explain for
a given vertex operator with a chosen picture number how one can change the picture
number with the use of the picture changing operator.

The constraint that we use to fix the picture number of a vertex operator for a given
matter state |X;1) is the conformal weight condition we set in ((5.5.56]). There we no-
ticed that using the physical state conditions the full physical state must have conformal
dimension zero. Hence we have the following condition:

h(lv) =h( | X59) @ | loeiasq) =0
———

~——
matter fields  ghost charges

= h( [ X54) )+ h(] loeigsy)) =0
~—— N——

matter fields ghost charges (5583)
= h( [ X59) )+ h(| Lbe) +1(lg54)) = hm + he + h(lgp,))) = 0
N—— —
matter fields ghost charges

= By —14hyg=1=hy=1—h,,.
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This will constrain the value of the ¢ for a given matter state. As an important example
let us look at the NS massless state:

Example (5.1): NS massless vector boson

The NS vacuum from the matter section is given by |0) and the ground state is
given by 70", /2]()}. Adding the ghost part we obtain :

T b51/2’0> @ | Lp-c;qp—r) = go T e? b51/2‘0> Q| lo-c),

g6 L, 1 (5.5.84)
B 500 L) = (—5d = @) + (-1 +(5) =0 = g = —1
Then, the vertex operator with picture number ¢ = —1 is given by:

V(i, X,0) @ Lpe) = g0 T* e PFe™X @ 1),

X 5.5.85
V0, X, 0) = gy T® e g™ k2 =0, (5.5.85)

This is the canonical vertex operator for the massless vector boson in type I NS
superstring theory.

The final piece of the puzzle of picture number is the picture-changing operator. We need
to define an operator whose action on the state does not change the physical state condi-
tion while changing the picture number. Clearly, since we want to keep the state physical,
we are going to use the BRST charge. Looking back at the definition of the Q) prsr we see
that the part associated with the superpartner of the matter energy-momentum tensor is

given by:
0% — _ }[ L yxe— L2 j{ 4z ety Ox0 (5.5.86)
F 2711 F 2V o J 2mi g

Here we have to use the bosonization of 7 in and the superpartner energy-
momentum tensor in . One can see, given the exponential of ¢, this part of the
BRST charge has picture number ¢ = +1 and therefore it can increase the picture number
by one while acting on a state. All physical states commute up to a total derivative with
all parts of the BRST operator including Q§¢ Hence, one can define the picture-changing
operator as the following:

Picture changing operator

Py=Qr" e, (5.5.87)
with the action on the vertex operator with picture charge ¢, V¢ defined ad’|
VIt = lim Py (w)V? = lim e?™T5% (w) VI(2). (5.5.88)

The limit will pick the terms proportional to 2° in the OPEs of the product fields.

“For the anti-holomorphic picture number § we use P
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Let us demonstrate how this picture changing works in an example:

Example (5.2):Picture changing

We start by looking at the vertex operator of the massless boson we defined in the
canonical ghost picture in (5.5.85)) up to a numerical normalization we had:

VE =g, T e gt ™ k2 =0. (5.5.89)

The picture changing will be:

w—z

=g, T &,linz e®(w) (\/Z¢/L3XM> (w) (etbcwueile) (2)
=g, T" \/zc(z) hin [<e¢(w)e¢(z)> (%(w)wy(Z)) <8Xy(w)eik~X(z)>
=go T \/ZC(Z) ul}llg

of ik” ik-X(z) ik X
ik z XM ? (2) — .
X ( e w)e +0XH"(2)e Oz — w)

Ve =90 T lim Pii(w)VY = lim e‘ﬁ(w)Tg’w(w) <e¢cw”eik'x>

(5.5.90)

<(z W)+ O — w)2> ( T () ()0 - w))

(z —w)

Multiplying the above expression and taking the limit w — 2z we obtain the vertex
operator for the massless opens string boson in the ¢ = 0 picture number as:

VE)“ =g, T° /% <8X“ _ 2i0/(/€ . ¢)¢M> (Z)eik'X(Z), k2 — Q. (5.5.91)

5.5.4 String vertex-spectrum

Now we are ready to write down the spectrum of closed and open string states. Through-
out this work we are interested in amplitudes and theories involving bosons (e.g. gauge
fields or gravitons). Therefore, we are going to look at the NS sector of open strings and
(NS,NS) sector of closed strings (which is the common part of both type ITA and IIB)]
We start with the vacuum and then act on it with creation operator. After imposing the
BRST symmetry we obtain the physical state. All vertex operators in this section are the
integrand of the integrated vertex operator and they are in the canonical picture number
(—1). For the open string, we have the following states ordered by their masses:

1. The vacuum of the NS string is denoted by |0) and the vertex operator is given by

a plane wave:
0) = go X0, R =

9The (R,R) sector is also bosonic however it is not useful for the current work
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This state is a tachyon. This is a systemic problem of the string Hilbert space
which is cured by projecting out the problematic states. This is known as GSO
projection[l;r] which truncates the spectrum so that it is tachyon free while the space-
time supersymmetry is preserved. In fact, the different superstring theories that we
introduced at the beginning of this section were constructed after the GSO projec-
tion. From now on we only list states that are in the Hilbert space after the GSO
projection.

. The first excited state is given by the action of the fermionic creation operator:

V') pl0ia) < eugoe”® T re™X, k2 =0. (5.5.92)

. The next excited state can be made with both bosonic o and fermionic b¥ opera-

tors. We have the following:

<bli3/2 + bﬁl/Qbil/Qbim + 0‘“1”’1/2) 05 a)
(5.5.93)
goe ) T (H#aw + Byt + z'BW@X“w”> (2)e* X,

The polarization vectors associated with each term in this vertex operator will in-
clude unphysical degrees of freedom. Therefore, we have to enforce the BRST
constraint on the vertex operator. This is done by commuting the vertex operator
with the BRST charge and requiring that it vanishes up to a total derivative, which
constraints the polarization vectors as [76], [77]:

EFE,x =0,
[QBrsT, V] = total derivative = 2d'k*B,, + H, =0, (5.5.94)
B:, +k'H, = 0.

A solution to this system of equations that accounts for all 128 degrees of freedom
can be given by setting H, = 0. Therefore, after invoking the BRST symmetry on
this generic vertex operator we end up with the following physical states:

e One massive spin-2 state that has propagating 44 degrees of freedom in 10
dimension with the vertex operator:

Vo = go T° Bue 0 (z'axw> (2)e ),

1
B=—=  Bu=0 By=0 B.k"=0.

(5.5.95)

"Tn GSO projection states are labed by projecting operator (—1)f where F is the fermion number
F =3 .0b",b,. One can chose different projection by taking positive or negative sign for holomorphic
and anti-holomorphic sectors.
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e The 3-from field propagating 84 degrees of freedom in 10 dimension as the
following:

V—l =g, T Eﬂy}\e—qb(z) (wu¢u¢A) (Z>€ik’-X(z)’

1
> =—— By =0 E k= 0.

OZ,

(5.5.96)

e The remaining part associated to the dyY* will decouple after imposing the
BRST constraint H,, = 0.

For the discussion of our current work, we do not need more than the first massive level.
We summarize the details of these states in the following table:

State M? Vertex operator Little group | Representation

|0) -1 e~ PeihX(2) SO(9) 1 .

b2, 510) 0 goe™ e X () SO@’) | (8),

[]
Oy o0 1001 0l0) | | o T Buae ) <w“¢”¢k) ()X 1 80(9) 84 ﬁ
(1]

ayb” ,[0) Lo g, T Be ?@ (10X 1Y) (2)ekX ) SO(9) 44

Table 5.2: Open string spectrum in the NS sector.

We finish this section by constructing the closed string NS-NS sector of the superstring.
To do that we used the well-known fact that the Hilbert space of closed string is the
tensor product of two open string Hilbert spaces:

Hclosed - Hopen & Hopenu

_ . _ _ _ 5.5.97
VClOSEd(/{C, kc)qﬁ _ Vquen(k‘o) > V;pen(k‘o), kg _ 4]63; ki _ 4]{:3‘ ( )
The level matching condition ([5.5.55)) forces the conformal weight of anti-holomorphic
sector to be equal to the holomorphic sector of the closed string:

h=h.

This can also be seen as the representation of double copy on the string Hilbert space
level. Further, the process of double copying geometrically corresponds to gluing both
ends of the open string together. Therefore, the Chan-Paton factors will be traced out
and give the identity matrix. Using this double copy construction one can construct the
following table of states for the (NS-NS) closed string:
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State M? Vertex operator Little group Representation

|0) —4 e~ 9(2)=0() ik X SO(9) 1 o

Bl pl0) | 0 | gee 0@y (2)y" (2)e XD | SO®8) | (8),® (8), | Ll L]

Table 5.3: Spectrum of NS-NS closed string

For the first massive level, we have the following possibilities:

1. First, we can multiply the two "spin-2” states as

alilbli1/2|0> ® 5&156—1/2|0>~
The vertex operator will be:
Vi1 = s Ge € PO 0XH(2,7) (2)0X (2, 2) P (2)e*¥ D, (5.5.98)
The SO(9) little group representation is given by the product:
[T ol 1=44x44=9109495 ® 450 ® 44 ® 36 ® 1 (5.5.99)

. Second, we can multiply the two 3-forms states:

bﬁ1/zbil/2bgl/2’0> ® 5‘11/2531/2511/2!@
The vertex operator will be:
—(2)—d(z v «@ =0 NTA =\ 2,z
Voro1 = wansy e € "0 (20" (2)0%(2) § ()9 ()P ()N,
(5.5.100)
The SO(9) little group representation is given by the product:

E@E =84 x84 =2772® 1980 ® 924 ® 594 © 126 ® 84 ® 44 ® 36 ® 1. (5.5.101)

. Third, we can multiply the two 3-forms and the massive spin-2 states:

b7 j9b%1)2b%12]0) ® 5&165—1/2|0>'
The vertex operator will be:
Vo1 = Eans e e~ 0(2)—6(2) @/J“(Z)Lb”(z)z/)a(z)gX’\(z,E)Ed(z)ei’“{(z@,
(5.5.102)
with the group representation in SO(9) as:

@@ [ ]=84x44 = 2457 ® 924 ® 231 ® 84. (5.5.103)

The degrees of freedom in each vertex operator are coded inside the polarization vectors
and by constraining the polarization one can pick the intended tensor representation under
the little group decomposition.
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5.6 String interactions

In this section, we are going to discuss superstring interactions. Our dissuasion is designed
to be self-consistent and sufficient to understand this topic from the beginning to the
calculation of massive tree level amplitudes in superstring theory. In contrast to the
previous chapter we are not going to use light cone quantization instead, we are using the
path-integral quantization of string theory.

5.6.1 Geometrical picture

First, we give some geometrical intuition on string interactions. As discussed before super-
string theory is defined as the two-dimensional world—sheet embedded in 10 dimensional
spaceE[ Therefore, propagation and interaction involving string states also include 2d
surfaces. In figure we have depicted the free propagation open and closed strings.

T

_6

Figure 5.4: Open and closes string propagating as Ribbon and Cylinder respectively

T

The interaction for string theories also is defined over a surface (as depicted in figure
this is of one the most consequential differences between string theory and quantum
field theories. Since in field theory, the interaction is localized at a point (figure in
spacetime, it can be defined in Lorentz invariant formulations. Therefore it will happen
at the same point for all Lorentz frames. However, given the surface interaction in string
theory (figure different reference frames will see the interaction happen at different
points in their respective time. The most important consequence of this feature is that
at any local neighborhood of a string interaction, it looks like a free propagation. This
fact also manifest itself in the fact that string theory as defined in the action ([5.2.6) is a
free theory in terms of the world—sheet matter fields (i.e. 0X* and ¥*). We are going to
see the exact computational ramification of this in the following sections.

The next order of business is to understand the scattering diagrams in terms of Rie-
mann surfaces. As we have advertised in the previous chapters the string scattering (for
example the two scatterings depicted in the figure correspond to a Riemann surface.
To define a scattering amplitude (i.e. S-matrix element) we need to define asymptotic
Hilbert spaces H;, and H,,;. Then, the scattering amplitude would be the probability of

1296 dimensions for bosonic string
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[kiy

1k3) [k3)

[ k2) I55)

Figure 5.5: String theory interactions vs field theory interactions. In the string case, we have depicted
three different time slices following two Lorenz reference frames ¢ and .

transitioning from the initial state |I) € H;, to the final state |F') € H,,;. Namely :
S(I — F):=(I|F); for |I) € Hy,, |F) € Huu. (5.6.104)

Note that generically the states |I) and |F") can be multi-string (analog to multi-particle)
states. To look at string scattering amplitudes we take two in and out Hilbert spaces as
defined in the previous section for the open and closed string spectrum meaning:

n-open string: Hy, . = @ HY
i=1

open
m
. 5.6.105
m-closed string: HY .., = @ ay. ( )
i=1
Mized n-open and m-closed strings: Hy " = Hp T sed s

where all the H"s are the same single string Hilbert spaces (for closed and open strings,
respectively) and we used the (i) notation for the direct sum whereas the H™ denotes the
n string (closed or open) Hilbert space.

The associated Riemann surface of a given string scattering can be given by using the
operator-state correspondence that we introduced in [5.5.3, To do so let us present the
picture of a string scattering in terms of S-Matrix perturbation theory.

e First, we chose the initial state from the asymptotic Hilbert space associated with
the scattering i.e. H;,:
|I) € Hip.

e Second, this state propagates from the infinite past freely until it interacts locally
e Third, they interact locally according to the interaction rules of superstring theory.

S(I,F):|I) —|F).
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e Finally, after the interaction, the resulting states propagate, again freely, to the
infinite future and they are elements of the final Hilbert space H,,;

M S

Figure 5.6: Scattering amplitude of closed and open string from infinite past/future to/from the inter-
action surface

Irs)

Our task is to introduce the method to calculate all four steps that we sketched above.
For the first and last steps the map which we introduced before, is very useful.
Since the string state propagates from infinity to the interaction surface and from the
interaction surface back to infinity, the interaction point is the half cylinder and so we
can use the map to isomorphe the semi-infinite cylinder to a local disk glued on top
of the interaction surface (see figure [5.7).

Figure 5.7: Mapping the half cylinder to the disk with puncture
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Since we are dealing with the half cylinder (i.e. 7 coordinate in figure goes from
infinity to the 7y reaching interaction surface) after mapping it to the complex plane
according to the we obtain a disk centered at z; (as in figure that has a
boundary and can be deformed. Therefore, we can shrink it to the point of the z;. This
construction then makes the surface of scattering amplitude a Riemann sphere with the
states inserted as a local operator at the point of a puncture (e.g.at z;). We can repeat
this for all states involved in the scattering. Similarly, for the open string, we can map
the ribbon to the real line with a marked point, and upon shrinking the line we get a
puncture at x;. Therefore, we can define the surface of string scattering amplitude as the
following;:

String scattering amplitude

Any string scattering amplitude involving open, closed, or mixed string states can
be mapped to a punctured Riemann surface, where the states are inserted as local
operators (vertex operators) into the point of the punctures. For pure open and
mixed open-closed amplitude the surface will have a boundary (e.g. disk, annulus,
etc) and for the pure closed string the Riemann surface will not have a boundary
(e.g. sphere, torus, etc).

J

Therefore, all of the notions that we introduced in the mathematical preliminaries can be
used in the calculation of the string scattering amplitudes.

5.6.2 Scattering amplitude

So far we have introduced the calculational prerequisites and the geometrical setup of a
generic scattering amplitude namely:

e Construction of the physical string vertex operators.

e Wick’s theorem as the main method of calculating the radial-ordered n—point func-
tions.

e The punctured Riemann surface as the world—sheet of the interaction surface.

Now, we need to put all these three pillars of our setup into action. The natural way
to see the use of all we have done so far is the path integral formulation of superstring
theory.

Path integral

We have for the path integral the following for the superstring action (|5.3.18)):

dXdyd j
D / pdg exp{ _Ssuperstmng} . (5.6.106)
deff x Weyl
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Here we have to use the b—c and S —y ghost systems to gauge fix by adding the following
(Feddeev-Popov like terms):

App = /dc dbexp{—S"~¢} + /dﬁ dyexp{—S"77}. (5.6.107)

Therefore, what remains from integration over all possible metrics is the sum of all possible
compact topologies.

Using the above definition of the path integral and the operator state correspondence we
can write an element of the S—matrix as:

S—matrix element

We have s generic formula for the expectation value of an operator F(z,Z):

dX dipdg ) i
F nx — Gsuperstring
Z / deffx Weyl ( ) eXp{ } (56108)

compact
topologies

above, the factor e "X* is the overall factor we took out in (5.5.79)). Using operator state
correspondence an element of S—matrix involving n states going to m states (n|m) can
be written as the vacuum expectation value of the vertex operators:

(I|F) = 0|Hb"P v T o 0%, 10) =

k.l

= <H/d22¢¢jh V8 (z0,7) - ﬁ/dzzj\ﬁh Vi (2,%5) - > (5.6.109)
n+m

H /szlF Vi (a1, )>

The vertex operator have the picture number ¢;. we should point out here that we have
not yet fixed the gauge to the superconformal gauge (i.e.setting the world—sheet metric
hag = 1Map). This is the task of the ghost part of the integral which we will discuss shortly.
Now, we have the following path integral definition for this element:

n+m
(I|F) = H / P/ =h Vi (,7) < ) =

dXd d 71+7n )
Z / IZ) g < /d2ZlF V(Zl,Zl) ) efnx)\ eXp{—SSUPGTSt”ng}.

deffx Weyl

(5.6.110)

compact
topologies

First, we have to take care of the measure. As mentioned we use the Faddeev-Popov
ghost system to implement the superconformal gauge. This part of the path integral
calculation is involved. However, the results that are relevant to our discussion, i.e. the tree
level amplitudes, are rather simple to obtain. Therefore, we leave the detailed discussion
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on the ghost path integral to references [10, 11, 12] and only give the relevant results.
Fortunately, in the tree level scattering amplitudes there is a minimal contribution from
the ghost systems which fixes the superconformal gauge:

e The b — ¢ system: Only the zero modes of the c fields are relevant. These modes
are related to the conformal killing group (CKV) of the world-sheet. Further, there
are no b moduli that we have to take care at the genus zero level.

e The g — v system: The only relevant part for the tree level amplitude is that in the
vertex operator insertions, the picture number should be overall —2 for holomorphic
and anti-holomorphic sectors independently. Meaning, for open string qoiq = —2
and for closes string giota; = (—2, —2). We implement this by adding a delta function

(5(2%’ +2).

We arrive now at the following formula for the scattering amplitude:

Tree-level gauge fixed Path integral

n+m
s(I,F):/ddeKH/ &2 VU (21, 7) qu+2)
=1

Vekv

; (5.6.111)
X 5gh05t einx/\ exp{_SSUpeTStT"Lng} :
5ghost = det ng‘

For the dimension of the matrix ng and its determinant one needs to make use of the
Riemann-Roch theorem.

Using this formula for the tree level amplitude we find a simple result for a given Riemann
surface X. For the ghost part, in the case of a g = 0 orientable surface, the choices are
either disk or sphere:

Disk: det C¢; = C,_(c(21)c(22)c(23)) p, = Ch, 212223231,
Sghost = Sphere: det Cf; = CF (c(z1)c(22)c(23)E(Z1)E(Z2)E(Z3)) s, (5.6.112)

—C§2|le\ |Z23| \231|2‘

Now, we can take the matter part. We have already taken into account the string coupling
in the definition of the vertex operators (5.5.81) and from now on we look at only tree
level amplitudes so g = 0. We have the following:

n—+m
S(I F) _/dde (H P4y, z) (qu+2)> shost €

- Vokv

(5.6.113)

. exp{ R (2@X“<z7z>éxu<z,z> o (T, + @“a@) }
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Next, we exchange the order of the integrals: The dz integral is now over the moduli
space of the punctured Riemann surface M, ,:

n+m n+m
S(I; F) H G /d)ﬁhp(]‘[ Vi (2, 7) qu+2> Sghost € "X

Monim =7 VOKG

X exp{ - ﬁ dzdz (28X“(2,2)5Xu(z,§) + o/ (PO, + E"aﬁu)) },

go X Mn+r

where MO,n+m = m

(5.6.114)
Here we had to quotient the part of the world-sheet symmetries associated with the
conformal killing group. This symmetry is a remnant of the diff x Weyl symmetry after
gauge fixing. For the disk, it is SL(2,R) and sphere, it is SL(2,C). In practice, the
quotient can be done by:

dzzl
SL(2,R)

d2Zl
SL(2,C)

— Fix three real positions in z;.

=

=1

(5.6.115)

— Fix three complex positions in z;.

=

=1

Further, g is the space of all metrics on a genus zero Riemann surface which for the
tree level amplitudes that we are going to consider is one element set i.e. flat metric. The
M.+, is the moduli space of n + r-punctured Riemann surface (see our discussion in
section . Now, the inner integral will give the following vacuum expectation value:

n+m dQZl n+m
S(I; F) /M Vore Sghost € "X < H Vi 2k, Z1) (ZQk+2)> ;

0,n+m l 1 X
(5.6.116)
where X is the associated Riemann surface (e.g.disk, sphere,...). Since the action is a
free action (no interaction term only kinetic terms) we can use the standard techniques
of Wick’s theorem that we introduced before to calculate the scattering amplitude:

n+m 9 n—+m
d°z —nx A t
S(I; F) :/ ———— Oghost € XN ORI S gk +2) Conx{ V& (21, 21)}
Mo,ntm 11:[1 Voka ! (Z ) kl_Il

(5.6.117)
where Conx{F(z,Z)} means all possible pair contractions of the functional F' given the
Riemann surface X. It is worth reminding the reader of the reason that we only take
the pair contractions. In principle, Wick’s theorem requires all possible contractions.
However, as we explained in the previous section, locally, all string interactions are free
string propagations and therefore we only have pair contractions. This also can be seen in
the functional form of the path integral as it is a free theory and only has free propagation.
In addition, we have the constant CP**" coming out of the expectation value together
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with the ghost counterpart C%, that we introduced in (5.6.112)), and e=*. They can be
fixed for the disk and sphere as:

1
- matter
e O, Cpetter = O, = o
° 5.6.118
—2A g matter 8 ( )
CPCLORNT = O =

Furthermore, when performing the contractions the holomorphic condition on the matter
fields will enforce the spacetime momentum conservation [12], [69] (this can also be seen in
the zero modes of the matter path integral). Therefore, in all amplitudes the momentum

conservation as
D ki=0
is implied.

Before looking at examples of scattering amplitude it is very useful to look at another
method to repackage the contractions in (5.6.117) in terms of Grassmann integral [10].
Looking closer at the Wick’s theorem we see that after each contraction the associated
fields are removed and replaced with the OPE, therefore, if we associate Graimann vari-
ables (6,0) to each matter field as (8X“,w“,$u) — (9@8)(“,61#“,9@“) we can use the
properties of GraBmann integrals and rewrite the contractions. For example for n open
superstrings spin-1 states we have the following:

Aopen(plap23p3a apn) =
i 0,0
/ dun/HdGidGi il
C‘Y =1 zk - Zl
(5.6.119)

In the case of closed strings one has to add the anti-holomorphic part with the same
integrand to the amplitude. For the detail of how to write the vertex operator and the
contractions in terms of Grassmann variables see Appendix [A]

Oiﬂ-pi'p- +525515+2(91*9)9761p

12 J J J J J J

exp{a Z =% T o 16,0, x KN.
i#£j

Example of string scattering amplitudes

We finish this section by giving some examples of string amplitudes to see how equation
(5.6.117)) works in practice. The very first and important example is the n-point tachyonic
amplitude. As we mentioned before the vacuum of the NS sector is a tachyon and is
projected out from the spectrum through the GSO projection. Therefore, it is not present
in any consistent string amplitude. However, the plane wave e?*X) contractions, which
are associated with this amplitude is always present in all string amplitudes (with different
values of k? depending on the mass of the state) since all vertex operators have a plane
wave factor. This contraction is so famous that it has been named the Koba-Nielsen factor
[31] and we introduced it already in chapter 2l This factor plays a central role in the KLT
relations and intersection discussions we do in the coming sections. So let us take a look
at this factor and calculate its form from string amplitudes.



5.6 String interactions 105

Example (5.3): n-point tachyon (Koba-Nielsen)

The vertex operator is given by the plane wave ad’
V(z, k) = emX@), (5.6.120)

The Riemann surface is the disk that is punctured over the boundary with n injec-
tion of this vertex operator. We can fix three positions (z1, 2, x,) and change the
measure from a product over n to n — 3 dx;s. Then, the amplitude will be:

= /del < cVi(xy) = Vixg) = Vixg) o s V(zy) - > (5.6.121)

Do

Doing the contraction using the OPEs in ([5.1) we have:

n—1 n
Ak, ko, ko k) Z/Hdl’z I | ==
=2

1<i<j

Ricks (5.6.122)

The integrand in the above amplitude is the famous Koba-Nielsen factor for the
open string.
ENPMa, k) = [ loi— aylt.

1<i<j

(5.6.123)

We have a similar calculation for closed strings with just anti-holomorphic fields
added to the vertex operators. For closed strings we have:

KNosed(y 7z k k) = H |z — 24

1<i<j

K-k kik;

|z — %

(5.6.124)

“We do not add the picture number and ghost factor since it is not in the spectrum from the
beginning.

Using the result of this example we can build a decomposition of the contractions given
in . We saw in the construction of the vertex operator that all of them include
a plane wave factor X and in the previous example we calculated the contractions of
plane wave factors. Therefore, we can decompose the contraction functional in ((5.6.117))
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for open strings (i.e. only holomorphic fields) as

Conp, {] [ Vi(z)} = Conp,{[ [ e™ 1} x Conp,{rest},
o = (5.6.125)

Conp,{[[ Vi(zr)} = KN x I(2),

where we name all leftover contractions I(z) which is a holomorphic function. Then, the
amplitude will take the form:

open . — KN _[/
AP (ky, kg, ki, oy ago/ HSL 2R (2). (5.6.126)

Ozl]_

The prime means that we added the z dependence inside 5%;0“ to the function I(z).
Similarly, for the closed string, we have:

1 - d?z — -/
closed kv ko k. ... kn — _/ —l KN KN I/ I (Z).
A ( 1, 2, v3, ) ) Oé/gCQ Mo lH1 SL(27 C) X (Z) X (Z>

(5.6.127)
These formulae are going to be useful when we compare the string amplitudes to parings
in twisted homology.
The next set of examples will include different three point tree level amplitudes i.e. 3-
open strings, 3-closed strings, and (2, 1) mixed open-closed strings.

Example (5.4): 3 open string amplitude

The next important example is the simplest: three massless open strings amplitude which has
vertex operators in two pictures:

VH (2, k,€) = eugo,T % Pptett X =0 e¢-k=0,

) 5.6.128
Vi (x, k,e) = go T* 1/% <8X“ — 2ia’ (k - 1/})1/)“) (z)etkX(2) E*=0; e-k=0 ( )

The Riemann surface for the pure open string is the disk with punctures on the boundary which
is mapped to the upper half-plane with the open strings on the real line. In this case we have
three punctures. So we have the following scattering amplitude:

3
dx
A(k1,k27k3)=/M WIR) Sghost € NCpatter <H Vi (K, ) (qu+2)>
0,3 |=1 ’

3
= /M03 llj[ SLC(Z;,lfi) e Cp, CRIe (c(a1)e(w2)e(x3)) b, < s VE (1) v VE (22) 2 Vi (23) - >
8 1=1 Da

(5.6.129)
Now, we can quotient the SL(2, R) by fixing all three positions of the open strings to (21, 2, z3) —
(0,1,00). This is the standard choice that we are going to use repeatedly in this work. So by
fixing these positions the integral disappears. However, we are going to do this at the end. Here

D»
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we want to show that constructions makes the integrand x; independent without the gauge fixing
implemented:

A(kl, kQ, kg T12L23T31 TT(TaTbTC)ElL&y&a

’\FgO/M HSL?R)

0,3 |—=1

X < : 6_4)(11)1#(351)“6”“)((“) - e_¢(z2)1/)(m2)“eiklx(r2) - <8Xa — 2ia’ (k - w)1/}a> (mg)eik'x(“) : >

Do
(5.6.130)
Using the OPEs of the X* and y* fields we can do the contractions:
g X dwy
A(ky, ko, k3) = =2 —  Tp(TTbTC
( 1, 2 3) \/& MOYSZ[[I SL(Q,R) ( )
K o KV o Hofy l/ozkllr
X EHEUEi l$12$23$31 (— n L " 2 + " 3 " 3 )],
T12713 L1223 T13%23
g S duy
A k/’ k k — o T TaTch 123 ;Luk,a uaku uaku )
(k1, ko, k3) \/J</M013 11 SL(Z,R)) 7 ( ) X EuEnEn [NMET 0" kY + 0tk
(5.6.131)

Now, we can see that the last "integrand” is not dependent on any of positions x; and in fact
the quotienting CKV is necessary to avoid infinities coming out of the integral. So we have the
following result for three massless open strings:

A(kh k27 k?)) =

Yo
/o

Tr(T°T’T°) x e erel, [n’“’k? + nVOkY + n““kgl : (5.6.132)

One can readily check that this amplitude (which is exact o) is the exact same form of
the three point Yang-Mills amplitude [I1]. The next example is the three closed string
amplitude. The important part is that not only it will show how to work out sphere
amplitude but also we can demonstrate the amplitude double copy feature between open
and closed strings:

Example (5.5): 3 closed string amplitude

For the three massless closed string amplitude, we have the vertex operators in two pictures:

0,0)(, = _ Ye el o NH = . v o v kX (2,%)
Vc (27 %€, k) - J Euv 0X" + E(k ’ TPW (Z) i0X" + E(k ’ 7/’)1/1 (Z) e )
VC(_l"_l)(Z,E,(?, k‘) =G Ew € z)q/} ( ) —¢(z)wu(z) eik-X(z,E) ,

=0, k'-gn=0, =0

(5.6.133)

The Riemann surface for the pure closed string is the punctured sphere Ss. In this case three
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punctures. So we have the following scattering amplitude:
3

dzzl
A _ s —2X ~ymatter ; 2
(k1 k2, ks3) /MO,SHSL(27C) Ognost €T, <H V" (a1, k) (Zq + )>

3

Sa
& <l - atter ¢S = = =
/MOSI 1 SL B C) )‘Cg20 tt §gf2Lost < : Vfl(zl,zl,kl) o Vﬁ1(227227k2) o %M(Zg,Z;;,kg) . >

(5.6.134)
Now, we can quotient the measure by the volume of SL(2,C) by fixing all three positions of
closed strings to (z1, 22, 23) — (0,1,00). As before the integral cancels out and we get from the
pair contractions:

Sa

3

g
A(kl’kQ) kg) = a/QCQQ |‘|Z12|2|’223|2|Z31|2 5L1V1€i2l/2623y3
(&

x < Lm0 E (2 (e N 1T e O e m Oy ()12 (7, ) 2 R X (720

: [iéxw + %(k@)w“ (zg)} [iaXW + %(kgw)w(zs)} eihaX (22.7) . > ]
Sa

(5.6.135)
Using the OPEs of the X* and ¢* fields (5.1) over the sphere we see that the contractions will
decompose into holomorphic and anti-holomorphic sectors:

g
Ak, kg, ks) = C,E}LMEZM €5 |72/ 23] 281

y [(nﬂllt2k53 n nHlltszS nltlusk,gw _ nltzﬂBkjé“) (nulugkllfg. N ,'71/1V2 k;‘s B nulugkéﬁz _ nygyakgl

Z12213 Z12%23 213223 Z12Z13 Z12%23 Z13%Z23
(5.6.136)
So the result for the amplitude of three massless closed strings is:
k If k e 1 2 3
( 15 ~2, 3) /EM1V1€M2V2€H3V3
(5.6.137)

(nmuz kﬁts + 77#2#3 ké“ + 77#1#3 k§t2> <77V1 v2 kTS + nV2V3 k12/1 + 77111 V3 kgz) .

Looking at the result of the closed string amplitude (5.6.137]) we can exhibit the double
copy structure of the amplitude. Given the on-shell conditions one can always decomposes
the polarization tensor of the spin-2 field as the tensor product of two spin-1 fields:

Euns = Em D €y

Using this decomposition the amplitude of the three closed strings can be regrouped as:

1/2
Ak ks) = | 05 ) chahami | 1R R gtk
12 (5.6.138)
® 9e 6;532533 77”1”2]{:?3—#77”2”3]{551 _|_77V1V3/€§2 :

a/
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comparing this with our three point open string amplitude ((5.6.132]) we can see the double
copy:

Adosed () 1y pg) ~ AP (ky, ko, y) @ AP (ky, ko, k). (5.6.139)
where a tracing out of the two sets of Chan-Paton generators is understood. Next, we are
going to look at the two open and one closed string amplitude. We have:

Example (5.6): 2 open and 1 closed string amplitude

We have an amplitude of two massless open strings and a massless closed string. For the open
strings, we have the vertex operators in two pictures:

VH (2, k,€) = eugoT % Ppre* X k2 =0 e k=0,

2 ) 5.6.140
Ve (x, kye) = go T (| = (axu — 2ia/ (k - ¢)w#> (2)e*XE) k2 =0, . k=0, ( )
o
For the closed string, we have the following possibilities:
(0,0)(, = e 5 o T v o v iqX (2,%)
V99N z,z,e,q) = o [z@X” + E(qw)ﬂj (z)} [z&X + E(wa (2)| e"?* %2
(5.6.141)

‘/C(_l’_l)(,z’f?g,q) = Jc EHV e-%(z)aﬂ(z) e—(b(z)wl/(z) eiq.X(ZE) )
q2 = Oa 8“/1. = Oa

This amplitude can be considered as an closed string scattered off of a D-brane (cf. [5.2.1]).
Therefore, the momentum conservation will be along the brane and we have the following:

1 1 _
q=§(q+Dq)+§(q—Dq)=qu+qL—>q=Dq

1
k1+/€2+§(q+Dq):O

(5.6.142)

The Riemann surface for the mixed open-closed strings is the disk with punctures on the boundary
for open string states and punctures on the interior of the disk for the closed string. We map the
disk to the upper half-plane with the open strings on the real line and the closed string on the
upper half-plane. Therefore, we have three punctures: Two real and one complex. So we have the
following scattering process:

. dz1dzod?z3 X g (-1) (1) (0,0) -
A(2;1) = SL2.R) dghost € CD2<VO (€1, k1, 20)Vy ™ (€2, ko, 22) (€q7QaZ3723)> .
24, dz1dzod?z _ e X (21)  —b(ze) v ik X (2
e < T T e

= o — —a . o . .
x (10X (z) + S (@0 (26)] [0 (20) + 5 (qu)? (z3)] 14X (2020 >
Do
(5.6.143)
We have the following on—shell constraints (A.2.7)) for the polarization and momenta of the am-
plitude:
Eaf = Ea REp
kte, =0, ¢“cag = (%€ap =0
kl'kgikl'q:kg'qio
ki -ko=k -¢=ky-¢=0.

(5.6.144)
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Here, we have used z for the position of the open strings but it should be clear that they are real.
Doing the contractions we have (up to overall numerical normalization):

da:ldargd z3 EuEvEQER
= ,2 qhost -
21— %2
9“” gaﬁ k{212 kS 212
x — + — -
Z1 — %2 (2’3 — 23) (Zl — 23)(22 — 23) (Zl — 23)(22 — 2’3)
5.6.145
1 k210 ¢ g ¢ g ( :
+ = = — | - +
2 (21—23)(22—23) Z1 — k3 22 — Z3 Z1 — k3 22 — Z3

1 kL 210 " g ¢ g
+ = - — — + — -
2 (2’1 —23)(22—2’3) Z1 — R3 R9 — Z3 21 — k322 — X3

which with the choice of spacetime-filling brane (i.e. (Dg)* = ¢*) can be simplified to

A(2;1) =

Jdec le d22d223 (E3k‘1) 1 1

o’ ﬂ@R)%m{@lzﬁm%W2zM@%A %@W@@+2ﬁﬂﬁwﬂ
wl_axa_éiﬁi_@x@_z@[‘iﬁﬁ@@w>+i@ﬁﬁ@2@+”&@“%'“ﬂ}’

We have the result for two massess open, and one massless closed strings:

ledZQd z3 (63 . k‘1)

A =5 | TSR o o= Pl — )P

(5.6.146)
X { — (e2e3)(1q) + (e1€3)(e29) + (6162)(531@)} -

Now, we can quotient the volume of SL(2,R) by three real positions of the two open strings and
real (or imaginary part) of the closed string to (z1, 22, Rz3) — (2, —z,0).

5.7 Amplitude double copy: KLT relations
So far, we have encountered various notions of double copy in string theory.
e First, we saw (cf.[5.5.3)) that at the level of the coupling, we have:

92 ~ g.. (5.7.147)

e Second, while constructing the Hilbert space we used the fact that the closed string
Hilbert space is the tensor product of two open string Hilbert spaces.

Heosea = Hopen ® Hopen- (57148)

The natural continuation to this line of different double copies is to ask whether this
double copy relation can be extended to S—matrix elements i.e.scattering amplitudes.
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This question for pure closed string amplitudes was answered by the Kawai-Lewellen-Tye
in 1986 [25]. In their landmark work they showed that the amplitude of pure closed strings
can be written as the product of two open strings. Schematically we have:

Actosed () = F(k, k) APM(E) x A (E). (5.7.149)
In this section, we are going to go through this equation. We are going to show the proof

of this relation, discuss the function F(k,k) and show how one can use this to calculate
closed string amplitudes with only calculating open string amplitudes.

5.7.1 KLT relations

We start by giving the derivation for the equation . First, let us motivate the
intuition behind this formula by discussing the geometrical description of the double
copy. We showed in the previous sections that the open string amplitude corresponds to
a punctured disk. This can be viewed as a punctured hemisphere. Therefore, by gluing
two hemispheres (i.e. amplitudes) together at their boundaries one will get a punctured

sphere (see figure [5.8).

AP (k)

‘gﬂglf‘“d( C])

PR
Figure 5.8: Gluing two open strings disk amplitudes will give a (sphere) closed string amplitude

The main issue with this gluing is the map from two integrals over punctured real lines
fRn ® fRn to an in~tegral over the punctured complex plane an‘ This is the point where
the function F'(k, k) comes into play. It makes sure that the this map ( fRn ® fRn — fcn)
is single valued. This is the main result of the KLT amplitude relations. However, they
do it in the reverse order. In order words, they take the closed string integral which is
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integrated over the punctured complex plane and decompose it into two real integrals.
Schematically the map is given by:

/ 1<z,z,q)HF(k(q),z;(q))( / Iz k) @ / f(z,z%)), (5.7.150)

Here, we calculate the precise form of the KLT relation for pure closed string amplitude.
Looking at the definition of the amplitude we gave in (5.6.117) we have the following
integral:

n

closed d2zl ~ _
A (QI7Q27Q37' 7QTL H q Q7Z7Z>7

Vera

(5.7.151)
1(2,%) 1= Ognost € "2 CRoMer ConSQ{H ViG> Gy Zms Zm) 3

m=1
We drop the picture number since this construction works for both bosonic and superstring
amplitudes and it will not affect calculations. First, we look at the vertex operators
Vi (2k, Zr) using the fact that the Hilbert space of closed string is the double copy of open
strings as well as the operator state correspondence will result in the decomposition of
the closed string vertex operator into two open string vertex operators one holomorphic
and one anti-holomorphic:

closed = ~ open yopen
Vi 7 (Zms Zmy Qs ) = Vil (2ims @m) @ Vo (Zins i)
59h05t 6—n52)\ C«matter _ 59h08t —nD2>\ Cmatter ® 59h05t —nD2>\ Omatter

(5.7.152)
Looking at the OPEs given in the table[5.1] we can see that for the case of the sphere there
are no cross contractions between holomorphlc (0X", ¢*) and anti-holomorphic (X*, ")
fields. Therefore, the contraction function Cong, will be decomposed into holomorphic
and anti-holomorphic parts, Namely:

COI’ISQ{ H V,Z(zma Ema Am, gm)}

m=1
= Cong,{ [[ Vi(2m. gm)} @ Cong, { [ [ Vip.(Zon: Gim) } (5.7.153)
m=1 m=1
o 1
- COIIDQ{H V Zm7 Qm)} ® COIIDQ{H V Zm7 qu)

m=1

In the last line, we have changed the contraction surface from the sphere to the disk (to be
able to make contact with the open string amplitude). However, the OPEs on the sphere
are the same as on the disk only up to numerical factors which are taken into account by

rescaling the momentum (the factor  in the vertex operators).

1 1
T = kO Z
1= 5

13This is also known as the doubling trick.

=7
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Plugging this back into ((5.7.151]) we have:

n

d221
Aclosed _ /
(q17q27Q37 aqn) . 11;11 VCKG

X (%host e "2 Conp,{ H Vin(zZm, ko) @ Sghost e D2 Conp,{ H Vi Zm, k:o)) ,

m=1

m=1
closed o o dzzl open o FOpen _ 75
AL ey kg, kg, k) = [ ] LP(z, k) @ I, (2, k) |.
" =1

-~ Voka

(5.7.154)

Above, we have used the definition of the open string amplitude integrand given in

(5.6.117]). This nice form of the closed string amplitude is very close to a double copy of

open string amplitudes. The last but most important step left is to change the integration

from the punctured sphere to the boundary of the punctured disk. So start at the measure,

without loss of generality we use the CKV and fix three positions. After removing them
from the product we obtain the following:

n—1 n—1
/Hdzzl—/Hdz dz,
=2 =2

z = x; +1y;; zZ=x; — 1y, (57155)

n—1 A\ "3 -1
)
dzdz=| = /dxl/dyl.

Naively, one would think that by using the last equation our task is finished. We have
two real integrals and the integrands decomposed as in . However, this does not
work if we plug the last line back into the we see that we cannot regroup each
integral as open string amplitudes, because the variables in the integrand are
complex (z or Z) and not real (z or y). Therefore, we need two real variables to replace
z and z in the integrand. This is the main idea behind the KLT paper which can be
summarized in the following steps:

1. First, take the imaginary part of each complex variable z; (i.e.y;) and consider it as
an independent variable.

2. Second, do an analytic continuation on the real variable y; into the complex plain.
Meaning, now y; is complex:
Y =y + iwy,

and the complex variables will be:

Z] :$Z+Z<yl+luﬂ> =T _wl_{—iyl? (57156)
Zr = —i(y +iw) = x; +w — iy, -
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Therefore, in this continuation (z,yf), the original integration (dz, dz) can be rep-
resented as a complex integral over the contour of C, := w; = 0 for y;. Meaning:

n—1 AN\ P31
1
dzpdz; = | = dx dyy 5.7.157

@, = Im(yf) y[(' — Plane

G

¥ = Re(yf)

Figure 5.9: The contour of the disk integral for the analytically continued yf. Cj corresponds to the
real integral of original y;.

3. The most involved step is that we now rotate the C, contour around the complex
plane from the real axis to the imaginary axis and call it C as in figure |5.10
Therefore, the yf goes from being pure real (on the contour Cj) to pure imaginary
(on the contour Cy). This is possible due to the fact that there are no obstructions
(poles, genus, etc) along the rotation. The only important factor, that we should
take care of, is the monodromy of the integrand while rotating the contour. We can
use the Cauchy’s theorem as the following:

iﬁwz@nz/’@ﬁawrgédwz@n+/"dwzwﬁzo
o 1

oo

—0o0

/ dyZ(y;) = — /C dy;Z(y;) = — / dy; Monc, {Z(y;)} (5.7.158)

[e.e]

:ﬂMM%g@%

R

where the function Mong,{Z} gives the monodromy around each critical point of Z
given the contour C) as we defined in ([2.4.22]).
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w; = Im(yf)
v/ — Plane
Cs
. %
ix
G
in-x |4
G
¥ = Re(y)
—i(l —x)
A
'y
—ix
COG

Figure 5.10: Rotating the contour Cy to C; in the complex yf variable. The poles associated with y
are on the imaginary line. We have depicted them for the four point case and they are given by +ix and
+i(l — x).

4. Now we go back to the closed string amplitude integral:
n—1 A\ "3 n-1
— _ 1 . .
/H dz dz I(z,Z) = (5) H/ da:l/ dy; Z(x; — wi + iy, v + wp — iy;)
1=2 1=2 /R o
A\ P31
i
= <§> H/dxl /dwl MOTLCl{I(l’l — wy, Xy —i—wl)}.
R

R
(5.7.159)

The main difference to the real variable case we had in ([5.7.155|) is that since over
the contour C, the real part of y is zero, the variables (z;,%;) inside the integral
are real and given by:

n=8 = —w, Z=mn:=1+uw, (5.7.160)

5. Finally, for convenience we change the variables from (z;,w;) to (&, ;) and we have
the following integral

/Hdz dz I(z,2) ) 3H/d§l/d77l Monc, {Z(&,m)}, (5.7.161)

ZQR

Now we can look back at the pure closed string amplitude in (5.7.154]) and implement
equation (5.7.161). We can see that the holomorphic functions I(z) — I(£) and anti-
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holomorphic functions I(z) — I(n). Using this we have:

n 2
Aclosed(k17 k?27 k?37 - kn) _ / H d Z] (]gpen<z7 ko) ®72pen(z7 F))
S,

Vi
w1, VCKG

B n 3H/d§l/d77l ]WO’ILC1 {]gpen<§ ko) Open( F)}

=2y

(5.7.162)

Looking at the form of the open string integrand in we can see that the branch
points correspond to the Koba-Nielsen factor (since the field contractions will give integer
powers of z; — z;). Therefore, the branch points of 7 are at z; — z; = 0 and Z; — Z; = 0.
We can easily read the position of the branch points for each y;. They are all on the
imaginary axis and given by:

y=ilz—&, y=—ilz—mn), (5.7.163)

Using the position of the branch points we can use the monodromy discussion we did in
the first chapter (Cf. and calculate the monodromy of the integrand. For a given
ordering of the variables £ as o and n as o', over the real line the monodromy of the
integrand (as given by the decomposition ([5.6.125))) corresponds to the mondromy of the
KN since the other contractions give integer contribution to the phase F'. We obtain:

MO?”LCl {Igpen(gm k’o) Zpe”( UHF)} _ eiTI'F(O',O'I) ]spen(f’ kﬁo) open( ko)

= Zf(ki'/fj;(fi = &)s (i = m5)), (5.7.164)
i>7
_ _ ki-kj &n<0
f(k‘i-kj,f,n)—{ 0 &n >0

We plug this back into (5.7.162)) using the fact that the two real line integrations for &

and 7 correspond to all possible relative permutations we obtain:

ACZOSEd(ql,QQ,C]:?,,.-.,qn _ n 3H/d€l/dnl emF(aa) Iopen(g k’) open( F)

ZQR

- / Hd5 reehe [ TLan 72" . F9) e’

R RZQ

Adosed(Q1, G, Q3 oons qn) _ (i)n—:s ZBMF(UJ,)AZPETL(O—) ®‘7lzpen(al)‘
(5.7.165)
This is the famous KLT formula and it shows the double copy relation as closed string
amplitudes can be written as the product of open string amplitudes. We saw this relation
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explicitly in the amplitude examples. For the three point amplitude there are no integrals
and therefore the function F(o,0’) = 0. Meaning:

Actosed (g gy, q3) = AP (o) @ AT (o), (5.7.166)

The computational use of this relation is present even in the simple three point case,
because the KLT formalism only requires open string amplitudes therefore the number
of contractions is going to be half of the closed string counterpart. This comes at the
expense of computing the function F'(o,0’) for different orderings of external legs (o, o’).
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Part 111

Scattering Amplitudes and Double
Copies






Chapter 6

Amplitudes from intersection
numbers

6.1 Preface

In this chapter, we will describe how all the topics that we have discussed, in both mathe-
matical and physical preliminaries, go together and produce our results. The intersection
number of twisted forms has been used in recent years to construct a new method to
describe amplitudes as well as amplitude relations [5, [6 [7]. The goal of this chapter is to
introduce the algorithm we use in order to produce new twisted forms, as well as, give a
new understanding of double copy construction in terms of twisted cohomology [1I, 2].

First, we discuss the relationship between twisted homology/cohomology and string
scattering amplitudes. In short, we are going to show that all string amplitudes can
be written in terms of twisted cohomology. The most important implication of this
relation for us is that we can look at string amplitudes and bring them to the form that is
comparable with intersection numbers of twisted forms and then look at the equivalency
between the two formulations and construct new twisted forms. The motivation behind
our procedure is straightforward: in the intersection theory formalism (as we have seen so
far) there are no notions of a physical system. A twisted form, originally, does not carry
any information about physical properties such as the mass or spin of a state. Therefore,
constructing amplitudes of physical states becomes a matter of guessing. In contrast,
while using string theory we can choose the states that we are scattering, meaning we
know their masses, spins, etc. Hence, going through string scattering amplitudes enables
us to look for twisted forms of specific amplitudes involving desired physical states.

6.2 Setup

We can now gather ingredients which we will take from previous chapters to construct
our algorithm to build new twisted forms as depicted in figure We start with twisted
cohomology. We are going to use full mathematical setup we introduced in chapters
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String amplitude Intersection number of CHY Representation
Twisted forms

I(Z’ Z) <(pl > (pZ)m JC IR(Z)IL(Z)

Moy,

New twisted from
P> P2

Figure 6.1: The method we use to construct new twisted forms

and [3] In particular, we are going to use the intersection number formula and its saddle
point approximation. Let us remind ourselves of those two formulae:

Ingredient I: Intersection theory

(0, 01 )u :Z/ (=) Aoy
. n—3 (6.2.1)
Jm (.= [ ( /\dz) (ahjnooso () Jm gz >>

From our discussions in chapter [b we are taking the spectrum of the string which we
introduced in section [5.5.4] as well as the integral formula of the generic string scattering
amplitude:

Ingredient II: String scattering amplitude

'I'L

dzzl —nv A u _
(Sghost e X H : Vk(Zk, zk) :
X

VCKG
d2 Z]
Verka

A(kh k27 /
M

Ak, ko, ..y ky) = /
M

on =1

n
—nxA matter =

5ghost e C(X ConX{H W(Z/m Zk:)}

0n =1 k=1

(6.2.2)

Finally, from the CHY representation of quantum field theory amplitudes, that we dis-
cussed in chapter [4) we take the CHY integral representation of a given scattering ampli-
tude:
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Ingredient III: CHY integral representation

Aoy (n) = / dn T 6(F2) T (o, ) Tpp, 2, 0)
Mo 7 (6.2.3)

_ Pa - Do .
fa:Zm s afl,...,n,

b=1
b#a

One can already see the apparent similarities between the three formulations. In the next
section, we are going to make this relation concrete.

6.3 Construction of amplitudes in twisted cohomol-
ogy

The very first step, in our construction, is the domain of integration. We have three
different integrals: The intersection number, the string scattering amplitude, and CHY
integral formula. We are not going to touch the latter since we use it as evidence that our
results indeed produce the amplitude that we claim. Therefore, we have two ingredients
left, i.e. the string amplitude which is integrated over the moduli space of the punctured
Riemann surfaces and the intersection number of twisted forms over Riemann surfaces.
In order to construct a twisted cohomology which matches the string amplitudes we take
the space of the twisted cohomology to be the moduli space of the punctured Riemann
surface i.e. M = My,,. Therefore, the cohomology in the local sheaf (see theorem [2]) will
be:
(UNS O (MO,n)

p=1v®eh® e HMon, L)

The fact that M, is invariant under SL(2, C) (see section [2.6)) induces the same invari-

ance over the twisted cohomology 1D Meaning, the two parts v and e* should have
the opposite Mobius charg(ﬂ Now we can choose the following hyperplane twist:

(6.3.4)

fii= ) Iz = z)
i (6.3.5)
w=a Z 2pip; dln(z; — z5), sz‘ p;=0
tj

1<i,j<n

with n on—shell momenta p;. The factor o is chosen such that w is dimensionless.
Now, with this w we construct the twisted cohomology and the twisted forms on the
moduli space of punctured sphere M, ,, := CP" 3. We consider only the top twisted

IThis is another way of saying that under a SL(2,C) transformation (2.2.4)) each term in the tensor
product should transform opposite to the other
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forms, therefore, we consider (n — 3)-twisted forms ¢ as elements in cohomology equiva-
lence classes
o+ Vi, (6.3.6)

with a rational n — 4 form £ and the Gauss—Manin connection Vi, = d + wA with d the
exterior derivative and closed holohmorphic one—form (twist) w (6.3.5)). As we discussed,
we have the (n — 3)-th twisted cohomology group (see the discussion in chapter |3)):

n—3 o {‘P € Qn73<M07n> | Viwp = 0}
ik Mo Vo) = g 03 (Man)

(6.3.7)

The dual space H"_? can be obtained from HY_ by sending w — —w. The intersection
number on the twisted cohomology groups is the invariant pairing between two forms

@0y € H'? and defined by the integral ((3.3.24)

(D1r Y = (— ‘“) [ wtone, (65)

21

0,n

over the space My,,. The map 1,(py) € H,? is the restriction of the twisted form over
the compact support H*(Mogn, V) of HZ*(Mo,, V,,). Otherwise, the integral over
the moduli space M,,, would not be well-defined since the latter is non—compact. Now,
we can have our first example of a twisted form with this twist.

Example (6.1):Examples of twisted forms

The (n — 3) (Parke-Taylor) form which is also known as color form is given by:

d, _
PT (o) = =Cn(0) dp, € HY? | 0€8S,.
(20(1) = 202)) - - - (Zo(n=1) — Zo(m)) *
(6.3.9)
Above we have the measure
dptn, = ZjkZ1 %k H dz; , (6.3.10)

1=1

i¢{j,k,l}

which is a degree n — 3 holomorphic form on M, ,,, with z;, 2, 2; being three arbi-
trary marked points fixed by SL(2, C) invariance.

Further, one can see that the Koba—Nielsen factor can be constructed in terms of w as

KN = H |Zz . Zj|2a’pi'pj - ef’yw 7 (6.3.11)

1<i j<n

for some path ~.

Intersection numbers are always rational functions of kinematic invariants with
simple poles in the kinematic invariants. The following concrete computation of intersec-
tion numbers for a particular choice of color form will be very illuminating.
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Example (6.2): Intersection number of Park-Taylor factors

we start by the PT'(1,2,3,4) for both ¢1. In this case, we have n = 4, therefore, the top form on
Mo.4 is a one form. we assume the variables (zg, 23, 24) are fixed at (w2, w3, ws) and z; = z then
we have four cases: First we have z — wa:

dz PT(2,3,4) PT(2,3,4)
ot = - + + e
(z — wo)(wy — w3)(wsg — wy)(wy — 2) Z — Wsy Wy — Wo
512 513 S14 a’sio 0/513 a'siy (6 s 12)
w=da + + = + + + .
zZ — W2 Z — W3 zZ — W2 Z — W2 W — W3 W2 — W4y

and therefore we can directly calculate the compactifing functions ¢ = V! = Z cm 2™ through

m=0
the expansion (|3.3.37)):

b_ 1
o= —+ = PT(2,3,4)——,

a—1 Q’S12
bo — anc w4iw2 - (wO; Slu?;g + wO; 511:)&4) a’im (6313)

o =~ 0990 _ p7(2,3,4)
(1+a_y) (1+ o's12)
= PT(2,3,4) 513 (s — ws)

812(1 + O/Slg) (’LUQ — ’LU4)(U)2 — ’(Ug) ’

and similarly we have for the :

b = icz = PT(2,3 4)( LI o1 (2 = wa)(wa = ws) +> (6.3.14)

0 a’s19 812(1 + O/Slg) (’LUQ — w4)(w2 — wg)

Similarly, for z — w4 we have:

b_ 1
co=—+ = PT(2,3,4)——,
a_1 a’s14
1 a’sys o/sl- 1
bO _ aoco W2 —Wy - <w4—if)2 + w4—12133> a/814
0= ~——22 = PT(2,3,4)
(1+a_y) (1+/s14) (6.3.15)

- PT(2,3,4)< o (wa — ) ) :

814(1 —+ 0/814) (’(Uz — U}4)(’UJ3 — 11)4)

Y= Zcmz PT234)< L | 513 (Z—w4)(w2—w3)>,

sy s14(1 4+ os14) (w2 — wa)(ws — wy)

and finally for z — w3 we obtain:

_ dz B 1 n
o+ = (z — wo)(wo — w3)(wsg — wy)(wy — 2)  (wo —w3)2(wz —wy)2

S12 513 S14 0/813 0/512 a'si4 (6 ’ 16)
/
w=a«a + + = + + + ...,

zZ — W2 Z — Ws zZ — W2 Z — Ws w2 — W3 W2 — W4
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note that the there are no poles in PT(1,2,3,4) for z — ws. We have for the expansions:

b_
Co = —t = 0,
a_1
o = bo — agCp - 1 1
YTt asy) (wa—ws)?(ws —wa)? (1+o/sy3) (6.3.17)

(wq — wo) (2 —ws)
(we — w3) (w3 — wy) (1 + 's13)

=" cmz™ = PT(2,3,4)
m=0

and so we can calculate the intersection number:

1

4
(PT(1,2,3,4), PT(1,2,3,4)),, = 2mi ¥ Res.—., (o) = asn T

=2

(6.3.18)

J

Here we evidence that, despite the definition (6.3.8)) and the twist involve higher
orders in o the localization procedure entering the computation of the intersection number
(6.3.8)) provides pure field—theory results. In fact, the intersection numbers localize
near the boundary 0 M, ,, of the moduli space where two or more points z; coalesce. While
the space of ordinary (n — 3)—forms ¢ is (n — 2)! dimensional the space of twisted
(n —3)—forms (i.e. the (n — 3) Betti number) is given, by using of the Poincare polynomial
by the Euler character.

dim(H2 %) = x(Moy) = (n—3)!,

Also the twisted homology group HY 4(Mon, ehv) = HY (Mg, KN), which we now
associate with the (multivalued) Koba-Nielsen function K N, is (n—3)! dimensional. As we
discussed in ((3.2.8)) elements of the latter are specified by a cycle C., and local coefficients

(6.3.11)) as:

C, = {(z1, 22,23, ..., Tp_3 € R”_3|xa(1) < Ta@2) < Ta@g) < - < Tg(n-3)}

6.3.19
Cho=C,®KN . (6.3.19)

The twisted homology cycles (6.3.19) are Poincare dual to the twisted cohomology H'™®
and one can consider the following pairing as (cf.[3.3.20):

c,

The first thing to notice is that the period (|6.3.20]) has taken the form of an open string
amplitude. Looking back at the open string amplitude formula (5.6.126)) we see that up
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to constants we have:

Ao}?en(l{jl’]{jQ,]{jg, ceny /MD H SL 2 R Z/ Hle KN ]

Vl 1
(Cy @ KNJpy) = /C KN o, |

= AP (ky, Ky, ks, k) = Y (C, @ KNp.) .

' (6.3.21)

As we mentioned in equation (3.2.19) one can choose for the dual twisted form to be
H*(M(A), V). Then, the dual homology objects and can be related by
replacing KN~! and KN. The pairing H"® and H”* is more suited to describe closed
string world-sheet integrals. Specifically, we can compare a paring of two forms p, and
w4 and closed string amplitudes. Using the formula for closed strings we can
see that the closed string amplitudes up to constants will be:

Aok kg ks, Ky, / Hd%, IKN? I(2) x I(2) ,
Mo,n
it (6.3.22)
(Prs04) Hdzzl IKNP> ¢ Aoy ¢ € HX®, oy € HYP
Mo =1

In particular, in this language the twisted period relations can be interpreted as
KLT relations [78]. We shall make use of this isomorphism while constructing our twisted
forms for EYM amplitude. To make contact with amplitudes, let us present examples
of twisted forms. Worldsheet string correlators are borrowed to construct these twisted
forms for field theories. Plugging the latter into the intersection number (|6.3.8)) yields a
(CHY) field theory amplitudes.

Looking now at the integral itself we can use the saddle point approximation that
we constructed in section with an arbitrary orthonormal basis and obtain the saddle
point approximation of the intersection number of w introduced in (6.3.5)):

n—3
lm (@, o) :/c . (/\d2>5(w)< lim ¢, (z) lim ¢_(z ))
a’—00 pr— L a’—o00 a’—00
n—3
w:Zwidzi; Wz':Z Pi ' Dj
2i — 2;
i=1 ¢ J

A keen-eyed reader will immediately see that this is the exact CHY formula with the
scattering equations given by w;s.

(6.3.23)

6.3.1 CHY Amplitudes from twisted cohomology pairing

As we mentioned, there is a direct relation between saddle point approximation of the
intersection number of twisted forms (6.3.23) and the CHY integral representation of



128 6. Amplitudes from intersection numbers

amplitudes. Here, we are going to make this relation concrete and provide a list of already-
known examples. We discussed the CHY integrals in chapter There, we mentioned
that the amplitude for a given theory is written in terms of an integral, localized over the
solutions of the scattering equations:

Aciy(n) / i H 5(f.) T (0., 0)Ti(p, 1)
MOn (6324)

p
fo = g a=1,...,n,
Ua_ab
b;ﬁa

Furthermore, we discussed the saddle point approximation of intersection numbers and
we showed for the twist given in (6.3.5)) that we have the following:

n—3
lim (o 1), /C ( A dz) 5(w) ( lm g(z) lm gz >>
=1
n—3 Di -
w= Zwidzi; Z — Z]
=1

7#7

(6.3.25)

By comparing the two formulations we arrive at the following relation:

Intersection number vs CHY

limit of the intersection numbers lim (¢, ), ~ CHY integral

6.3.26
ali—l}loo@:t(pagvz) A I(p7€7U)L7R ( )

The last relation is the important relation in our discussions and we are going to use it
extensively. In both directions, this relation is practical. Meaning, we take an intersec-
tion number of two twisted forms then take its limit and construct new CHY integrands.
Conversely, we can look at known CHY integrands and construct limits of twisted forms.
In addition to these two, we make further use of this relation: we will, in the next sec-
tions, construct twisted forms based on the string theory spectrum. Then with the use of
this relation we check that our stringy motivated twisted form is producing the desired
amplitude. The main difference between reverse engineering twisted forms and string
theory-motivated ones is that with string theory we obtain the full-functional structure of
the twisted form. In contrast, reverse engineering only gives us the limit of twisted form
functions. We use the following algorithm to construct twisted forms:
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Intersection number vs CHY

1. We chose the state in string theory that is describing the desired features
(spin, mass, etc).

2. Then we calculate the amplitude of that state.

3. Using the relations (6.3.21)) and (6.3.22)) we read off candidate twisted forms
from the integrands.

4. Finally we plug the intersection number of candidate twisted forms into the
limit in (6.3.26)) and calculate the CHY integral.

We accept a twisted form if it produces the correct CHY integrand.

The first example, that we use to showcase the above discussion, is the twisted form of
Yang-Mills (YM) amplitude. We start by searching for the string state associated with
vector gauge bosons i.e. we need a spin-1 state that is massless, and charged under the
gauge group SU(N). Looking at the spectrum of the open NS string, that we gave in
table [5.2, we can see that the first excited state has all of the desired propertie’] The
amplitude of n such state in the Grassmann notation is given by [10]:

Aopen(p17p27p37 7p71) =

)
d, [ T do:d6;
[ oo [ Lm0 22

0;0;p; - p; + 00565 -5 +2(0; — 0,)0;; - p;
2 iYjPi " Pj T YiVjci " &j i — Yj)Yici Py
exp{—a Z 2 T 10,6, x KN,

i#]
(6.3.27)
Using the relation (6.3.21)) we have the following twisted form:
9i9-pi *Pj +§1é€1 &5 +2(91 — 9)@51 * D
gauge 2 J J J J J J
dun/HdG do; exp{ a Z e T a0, .
i#]

(6.3.28)

Now, we are ready to plug this back in ((6.3.26]) and obtain the CHY integrand associated
with this twisted form:

lim paruee — / Hd0 de

Iip:= lim Aga“g‘f:/Hda db;

IL7RZ
Z; —Zj

{ B Z 0i9jpi * Dy + éiﬁ_jsi =y + 2(01 — 0])9_161 * Py }

i#j
2k — 21 Py 0 ( |
6.3.29

In the last line, we have regrouped the terms in the exponential in a matrix notation
where rows and columns are associated to (6; 6;). The matrix ¥ has the exact form
that of (4.2.7). Using the properties of Grassmannian integrals (cf. appendix [A]) we can

2Here we are pretending that we do not know that this state gives Yang-Mills theory as effective
action.
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compute integral in terms of Pfaffian of the matrix W:

ILR — hm (pgauge /Hd& d(g o — 2 eXp{ — Z(QZ 9_1)‘11@] (zz) } = Pf"Ifn,
i#i ’

(6.3.30)
Now, reminding ourselves of the CHY integral formula (4.2.4]) for Yang-Mills amplitudes

we see that this is one of the integrands. Indeed if we calculate the saddle point limit of
the intersection number of this twisted form with the Park-Taylor factor we have

lim (™, 909¢) = / s </\ dZ) ( lim $@"(z)  lim @9 (z >>
ol -0 cpP"—
(6.3.31)

/\dZ C Pf\IJ AYM(ppr?'“apn)a
Ccp"— 3

So, we have successfully constructed a twisted form arising from string theory. This

twisted form and many other similar twisted forms were constructed by Mizera [6]. We
gather them in the following table:

Theory O—n w+n  CHY representation Amplitude
bi-adjoint scalar gpi"’lgr gpflgr C.C, n color scalar
Einstein geee o Pty P4, n gravitons
Yang-Mills @O i C,Pt'y, n gluons
n higher derivative
YM+(DF)? peelor phosonic 77 gluons
Einstein-Weyl | @79 plpsonic ?7? n spin 2
special Galilean n higher derivative
(sGal) psealar - pscalar (Pt'A,)* scalars
NLSM QT (piatar C,(Pf'A,)* n scalars
Born—Infeld
(BI) pEealar g (Pf'A,)?* Pty n spin 1

Table 6.1: Known theories, their pairs of twisted forms and their CHY representations

The twisted forms in table assume the following form:
Te(TeTe ... To) . ,
= To(T T ... T°) PT(1,2
21— 29) (22 — 23) ... (2, — 21) r( ) (

color

ey =dpn
(

’ ..,’I’L),
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99p7p+9_19_€1€+2(01*0)9_1€,p
gauge_d d9 d9 k l 2 J J J J J J
oL un/H L ep| —a > o T a0, :

i#£]
scalar det A kl]
@i,nl = dpn (Pf'A,)? = dpy, ﬁy (6.3.32)
L#57] 0:0;c; - 0:0,0,0;¢; -
bosonic __ - [ p] i0iU05€; - €5
ol _dun( ) /Hd9d9 exp{§<iv — o2

QHOO

— Wip..1 dpn -
——

n

Actually, all twisted forms in table are derived from string theory, which in turn
also motivated the corresponding CHY descriptions. For instance, ¢9%*9¢ as we showed,
refers to superstring theory and is relevant to describe both SYM and GR amplitudes.
Therefore, it is natural to discuss the twisted form %" stemming from bosonic string
theory. While the partial gluon subamplitudes Ay (1, ...,n) are the building blocks for
the open superstring amplitudes [79, 80, [81], i.e

A open (1,7m(2,...,n—2),n—1,n)

superstring

— Z Z(w|T) Slplmh Aym (1, p(2,...,n—2),n—1,n), (6.3.33)

p1765n73

with the iterated disk integrals Z(w|7) = Z(1,7(2,...,n — 2),n — 1,n|1,7(2,...,n —
2),n,n — 1), the same role is played by the subamplitudes B(1,...,n) for (DF)?> +Y M
gauge theory for the open bosonic string [82], i.e

boson‘jﬁﬁezt'ring (17 7-[-(27 e 7” - 2) n— 1 n)
= Y Z(x|7) Slplth B, p(2,...,n—2),n—1,n) . (6.3.34)

P TeSn 3

Above the KLT kernel S[p|7]; is given by the k! x kl-matrix [83], [84]

Slolple := S(O)[a(l k) | p(1, = H (plth + Zp”ptgﬁ(’rg,tg)> , (6.3.35)

t=1 r<t

with j, = o(j) and 0(r,,t,) = 1 if the ordering of the legs r,,t, is the same in both
o(1,...,k)and p(1,..., k), and zero otherwise. By comparing the two expressions (6.3.33))
and (/6.3.34) it is natural to construct from the latter the twisted form %" relevant
to a (DF)* +Y M theory. The latter involves couplings of YM and (DF')? theory. The
bosonic field theory of the latter is defined by the following Lagrangian [52]

1 1
£YM+(DF)2 _ 5 (DﬂFa,ul/>2 o g F3 + 5 (Dugpa)2 + g CaabgpaFinbuy
1

g By 57_1 2/ a2t 272

(6.3.36)
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with the field content comprising a massless gluon, a massive gluon and a massive scalar.
The Lagrangian of (DF)?>-theory was displayed in eq. . To the latter, the YM
part is added as a mass deformation, which in total gives rise to the Lagrangian (6.3.36)).
As a consequence, there are mass terms proportional to m? for the fields ¢® and F e
Within bosonic string theory this mass is related to the string tension as

m? = —a/!, (6.3.37)

accounting for the string tachyonic modes representing both the massive gluon and the
massive scalar. In fact, for @/ — 0 we recover pure YM theory (after multiplying the
Lagrangian by an overall factor of m~2 = /), while for o/ — oo we obtain (DF')? theory.
Hence, after taking the limit o/ — oo the mass goes to zero and the Lagrangian
boils down to the (DF)?-theory, i.e.

lim ‘CYM—i—(DF)Q(O/) ~ £DF2 s (6338)

a/

with the latter referring to (4.3.29)). This is consistent with the CHY construction, which
works only for massless theories. Likewise, the o/ — oo limit of the intersection number
discards the mass term and reproduces the massless (DF)? theory. In for
@Posonic we have introduced the function WEL which arises in its o’ — oo limit. Notice,
that Wiy 1 is produced from the twisted form (*°" in the limit o/ — co. In this limit

bosonic

the twisted form ¢%57"* can be used for describing the (DF)?* theory. The limit o/ — oo
removes in 5™ all the contractions €;€; in agreement with the absence of those terms

in the (DF)? theory. Therefore, we define the following form:

. 1\ o _ n 0.0, - p;
bosonic __ iYicq ' .
=1 n

i#]
(6.3.39)
The last equality is up to an overall sign. On the other hand, for the CHY representation
of the Y M + (DF)? theory, we cannot use the limit o/ — oo since this theory is massive
with the mass given by . As a consequence, taking the limit o/ — oo removes the
mass term in referring to the YM part of this theory. As discussed before, in this
limit, only the CHY representation of the (DF)?~theory is reproduced.

A similar situation applies to Einstein-Weyl theory (cf.subsection . In this
case, the mass term refers to the Einstein term and one obtains only the conformal
gravity (i.e. Weyl) amplitude in the limit o/ — oo. Additionally, this also relates to the
notion of massive CHY amplitudes. To conclude while we do have representations in
twisted intersection theory for amplitudes of both Y M + (DF)? and (DF)? theories we
only have CHY representations for the latter. The same is true for conformal gravity and
Einstein-Weyl theories, cf. Section [7.4]

3We defined the function W first in (4.2.13).
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6.4 Construction of new twisted forms

One of the main results of this work is to use the method that we described above to
construct new twisted forms that correspond to amplitudes of different field theories. As
mentioned in our algorithm we are going to use both bosonic and superstring amplitudes
as building blocks. Our new results are the following:

o pEYM for Einstein Yang-Mills amplitude.
o phosonic for Weyl Yang-Mills and higher derivative gravity.

For both of these new twisted forms we are going to use an embedding of the disk onto
the sphere which we are going to motivate and explain in subsequent sections.

We start with the Einstein Yang-Mils (EYM) theory. We take the conventional superstring
theory to provide twisted forms which are suitable to describe EYM amplitudes in their
o/ — oo limit i.e. massless spin-2 and spin-1 states in superstrings. While the selection
of the relevant twisted form from to describe pure gauge and gravity amplitudes
follows from an analog expression in open superstring theory the description of
the EYM amplitudes is different due to the presence of both gluons and gravitons. In
fact, in string theory such an amplitude is described by a superstring disk amplitude
involving both open and closed strings [85]. Due to the boundary of the disk world-sheet
interactions between holomorphic and anti-holomorphic closed string fields appear. This
mixing has to be taken into account when building the twisted forms relevant to EYM
amplitudes. In this section, we prepare the necessary steps for constructing the latter. In
particular, we shall promote the disk correlator onto a larger space by some field extension
of the open string vertex operator. This map promotes the string theory on the disk to a
holomorphic theory on the sphere.

6.4.1 Embedding of the disk onto the sphere

In the setup for ambitwistor strings as well as intersection theory all results are derived on
the sphere [6 45] 21]. Therefore, to construct new twisted forms within our construction
we should establish an embedding of the amplitude on the disk onto the sphere. In order
to do so, we may analytically continue the positions of the open string fields x; and treat
them as complex coordinates z; € C living on an auxiliary sphere world-sheet. This
continuation also requires promoting the fields of the open string vertex operators
and (A.2.5]), which are defined over the real line (boundary of the upper half plane), to
the full complex plane and analyzing their holomorphic and anti-holomorphic properties.
In order to accomplish this we shall look at their equations of motion:

dOX" =0 ,
o =0, (6.4.40)
o =0.

Preserving these equations of motion we have:
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Open string sphere embedding

We can define an embedding of the n open string vertex positions x; € R located
on the boundary of the disk onto the sphere z; € C as:

Li = %4

L di=1,....n. (6.4.41)

Similarly, we define an embedding of the open string fields on the disk onto the
sphere compatible with the equations of motion as:

) " ~H§ 0X — 0X
X(@H%X()+X():>{hX k(X + X) (6.4.42)

PH(x) — P (2) -

In addition, to adopt a given color ordering from the disk an anti-holomorphic
gauge current J¢(2) is appended to each open string vertex operator. In total, the
string vertex operators on the sphere will be defined as:

‘/:)(Eiv klaxz) — ‘/;)(gia ki7zi> elkl)?(EZ) JNCZ(EZ) ) 1= 1a cee,
‘/;(887qsa ZnJrsaszrs) — ‘/c = ‘/o<€saq=sazn+s> ‘/O(g&a/sazn+5) 9 S = 1, s 7T .
(6.4.43)

J

Thus, the open string vertex operators acquire an additional anti-holomorphic field de-
pendence, while the closed string vertex operators remain untouched. In this embedding
we also promote the conformal Killing group from SL(2,R) to SL(2, C) and the full disk
correlator (.. .)p, has to be the treated as if it was defined on the sphere (...)s,. Meaning,
for the generic disk correlator of n open and r closed strings:

< ﬁ%(sia ki? zl) ﬁ ‘/0(557 ds, Zn+s) Zn+s)> ) (6444)

D
i=1 s=1 2

we shall now consider the product of correlators on the double cover S:

<H%(€i7ki7zi) H‘/C(ES7QS7Z71+87271+8)>D2 (6445)
i=1 s=1
— < Zl_[l ‘/;)(51'7 ]Cl', Zi) 6“%2(21.) L];[l ‘/6(85, s, Zn+s, 2n+s)>52 X <j61 (21) ... an (Zn)>32 .

In particular, the map (|6.4.43)) changes the Koba—Nielsen factor to a correlator on the

double cover S,

KNp, — KNg, (6.4.46)
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with

n

n T T
KNs, =[] 1z — 2" % ] lz0ss — 2zasal®*® T] 1] 200 — 2l**** = KN - KN |

i<y a<b i=1 a=1
(6.4.47)
which in turn can be split into a pair of pure holomorphic and anti-holomorphic factors
n T n T
KN = H(ZJ —2z)" Fiks H(Zn—f—b — Zggn)® 0 H H(za+n —z)® Fida
i<j a<b i=1 a=1
n—+r
i<j
" , 0y (6.4.48)
KN = H(zj o zi)a iks H(§n+b - Ea-i-n)a fdade H H(za—kn - Ei)a Fida
i<j a<b i=1 a=1
n—+r

_ 'oymy 0
= Z) P = eh ¥ )

J

Il
—

i<j

respectively. Similar to (6.3.11]) in (6.4.48)) we have defined the one-forms w and @ spec-
ifying the twisted cohomologies H"*"~3 and H2*"~3  respectively.

It is worth pointing out the resemblance of our embedding to the construction of
heterotic string theory in which one has a superstring sector for the right movers and a
bosonic string sector for the left movers. However, one crucial difference is that we are
dealing with a left and right supersymmetric closed string sector and only extend the
real variables of the open string. It would be interesting to find connections between our
construction and the heterotic ambitwistor string.

6.4.2 Sphere integrand from the superstring disk embedding

In this secton we summarize our procedure to extract twisted forms from superstring
disk amplitudes amplitudes A(n;r) which results in the amplitudes for EYM theory. The
superstring amplitude involves n open and r closed strings. The closed string spectrum,
as we discussed in chapter [ includes the graviton state and the open string describes
the gluon (massless charged vector state) cf. . These states are described by vertex
operators given in subsection Since we are interested in the construction of twisted
forms we suppress the complex integral over the vertex operator positions and consider
only the disk correlator ((6.4.44)), which computes the integrand Z(n;r) for the superstring
disk amplitude A(n;r). Now, we reformulate the disk correlator as a sphere
correlator by extending the open string vertex operators onto the complex plane
using . The specific color ordering of the open strings along the disk boundary
is adopted by the gauge current correlator. The gauge correlator (J(z)...J(Z,))s,
decomposes into a sum over various gauge group structures. Since we are only concerned
with a single trace color structure of the form Tr(7 ...T“") we shall project the gauge
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current correlator onto the relevant color form (6.3.9)):

<j61(zl) . j6n<,zn)>52 s TY(T¢ ... T) C(1,2,. .., n) (6.4.49)
with: .
C(1,2,...,n) = PR T e R (6.4.50)

As the next step, we analyze the field contractions of the correlator (6.4.45) and express
the field interactions in terms of the GraBmann formalism (A.1.2). This leads to the
following integrand:

2
n+2r 9192

I(n;r) =C(1,2,...,n) ><< /(1:[ d6,;do;)

Z1 — %9

X exp {’ikl . (X —l—)?) + 919_151 -0X + 91\/ak'1 Sh 4+ 9_1\/561 . w}

X exp {zkn (X 4 X) 4 Opbnen - OX + 0 kn -0 + Oz - w}
X exp {i(h X 4G - X 4 Op10n16nt1 - OX + OVl qr -0 + 01 Vlen g - ¢

+0n+2én+2gn+1 - 9X + 9n+2\/67q~1 cp+ 9_n+2\/6?5~n+1 E}

X €Xp {iQT - X+ iar : X + 027‘+n71§2r+n715n+r -0X + 027‘+n71\/a%° : ¢ =+ 9_2r+n71 Wsrﬂrr : '(/}
+ 92r+n§2r+ngn+'r 5)}: + 92r+n\/aar E + 9_2r+n\/&gn+r : @} >S .
2
(6.4.51)
The background ghost charge is taken into account by the term % and we have labeled
the external momenta as:

open strings: {ki, k..., kn},

' o ’ _ 6.4.52
Closed strings: {q1,q1, 492, G2, -, @, Gr } » ( )

The integrand (6.4.51)) can be further simplified such that the fermionic variables 6;0;
resemble the pattern dictated by the map (6.4.43)). To simplify we introduce the (ordered)
generalized coordinates as:

{Ch ceey CTH-QT} = {Z17 Z2y «evy Zny Bl Bty Bn42) Bn42y -0y 5 “n4rs zn+7‘} 3
{51, ey €n+27'} = {81, €2y --yEn,Ent1, gn+17 En+2, grnJrQ, ceey Entry gn+7'} s (6453)
(6.4.54)

Note that we deliberately chose the first set {(} to not be minimal. We are going to take
the complex conjugation whenever necessary and it is important to keep this ordering of
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the elements in each set. Having these new variables we can use the matrix notation in
Grmann variables and regroup the integrand in the following way:

n+2r = =
010 P < > < ) 1, 0:0,6:6,(& - &)
df;df; — i | ) £ = Ji7gViv\Si " S5)
o= [ T 2% oo {50 5 (5) e () =30 5 0208
/ 0 1 0,0;0,0,(& - &)
X exp ~a? ( > ( );l: 3}
5 2 GG

><C(1,2,...,n) x KN -KN .
(6.4.55)
where we have used the matrix definitions and introduced the two sets S and S,
given by:
S§:={1,2,3,..,n,n+1,n+3,...n+2r—1},

6.4.56
S={n+2,n+4,...,n+2r}. ( )

Here, S, represents the set of indices accounting for the anti-holomorphic parts of the r
graviton vertex operators , while § is the set of indices labeling the holomorphic
parts of both gluons and gravitons. By applying the relation we can read two
twisted forms

@i?f A yr / H 9192 deidg_i

G~
Xexp{_a/ZZ( )¢n+r (qj)}exp{i azﬁeeﬁ fz §]>}7
1,jES J 1,jES
N = dpnyy C(1,2,..n) [ ] d0:df; ex Loe > b tzp %
QO:tnr Hn+r 9 Ly eeey . WY p 9 Z 9@ r ej B
i€Sy 1,jESr G—C

xexp{i 0429099 gj)},
1,JESy CJ)

The first twisted form is not new it is already known as p9**9¢ through the identification:

z1=(y, 1=1,..., n
Zntk=Cnt2k—1> k=10m
EYM _  _gauge

Spinr = Pi n+r (6457)

Ontk=0nt2k-1

Ops 1 =0pg2k_1, k=1, .

In fact, it was expected that we obtain the twisted form associated with the superstring
amplitudes since we are extending the superstring disk amplitudes which is the origin of
the @99, In contrast, the second twisted form that is labeled as $%Y M is new. We
claim that the intersection number of this twisted form together with ¢9*“9¢ corresponds

4Note that in (6.3.22)) we have one of the forms to be complex conjugate and an element of Hg. By
taking the complex conjugation in our procedure we construct the counterpart of this form in H,,.
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to the EYM amplitude. Again, following our algorithm we can check this by comparing
the tensionless limit (o/ — o00) of the intersection number to the CHY formula for this

amplitude (4.3.15)):
n+r—2

fim (25,5 = [ dier T] 0(8) GV )P, . (6459
k=2

a’/—0o0
MOJH»T'

which is indeed the CHY representation of the EYM amplitude.

Example 2 gluon and 1 graviton EYM amplitudes

In this subsection, we are going to explicitly compute the string amplitude involving two
gluons and one graviton and show how our algorithm works to construct twisted forms.
The corresponding amplitude is described by a disk world—sheet with two open and one
closed string states. We calculated this amplitude in example with the standard
contraction method. Note that the result is exact to all orders in o’. In the
following, we shall only be interested in the integrand of and treat the latter as
a complex function depending on the three vertex positions z; € C. Following the steps
in (A.1.1) we shall now introduce fermionic variables 6;,6; to describe the integrand of

the amplitude (5.6.143)). We can write the integrand as:

21 — 22

7(2;1) = < / d6,df, d6,dF,d0dFd64dA, 6.9,
X exp[ikl - X + 919161 -0X + ‘91\/&]@’1 : @Z) + 9_1\/561 : 77[)]
X exp[ikz - X + 925282 -0X + ‘92\/516’2 : w + H_QWEQ . w] (6459)
X exp[iq - X + Za X + Q30_353 -0X + 93\/5(] : 1/J + 9_3\/383 : 1/1
+@@@5%+@M&@E+&%ﬁgﬁ> ,
Do=S5

which in turn can be expressed in terms of the Grafmann integral . We should note
here that due to the kinematics of this amplitude, the disk and sphere correlators
result in the same terms. We open up the sums above and expand the exponential up
to the quadratic order in the fermionic variables 6;,; which leads to a non-vanishing
Grafimann integral:

4 _ _——
0.0, [ (Bi6ser - ) (Bsbocs - ),
(2 1) :0/2/1_[ S d&idéz{( 1651 - @) (Babae 62)6494(
1=1

21 — 22 (Zl - 2’3)(23 - 22)

21—23 22—53

(€3 - k1) n (€5 - kz))

L Bobes ) BiBres ) 94§4<<53 k), G- kﬂ) (6.4.60)

(23 — Z1)<22 — 23) 21 — 33 Z9 — 23

4 (@25182 . 81)0353 ((83 . ]i]l) 4 (63 . k2)>94§4<<g3 . kl) i (gg . kg)) } ‘

(290 — 21) Z1— 23 Zy — 23 Z1 — Z3 2y — Z3
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Many of the possible terms vanish due to the on-shell conditions ([5.6.144)). In fact, using
momentum conservation and performing the Grafmann integrals we arrive at

(€3 k1)

L) = O e Pl — =)

5 {(52 ~e3)(e1-q) — (e1-e3)(e2-q) — (e1-€2)(es k2)} :

(6.4.61)
which agrees with . The result (6.4.61)) may be compared with the four open
superstring amplitude following from for n=4. However, the main differences in
the case at hand originate from applying the on-shell condition ({5.6.144)) which discards
all the terms proportional to p; - p; and leads to . Furthermore, due to ¢/, =0 in
there is no contribution from the bosonic contraction (0X0X).

We now rewrite (6.4.61]) in terms of matrix notation and Grafimann integration. For
this, we introduce the 8 x 8 matrix with a block structure

D =, @ 0y (6.4.62)
which splits into the 6 x 6 block matrix W3 =

0 0 0 —€1:q _ e1-ke —e2-ky —e3-k1
z21—23 21—22 zZ2—21 Z3—Z1
0 0 0 —e1-ko —eo-ky _ _E2+q —e3-ko
Z1—Z22 Z2—21 Z2—23 22 —2Z3
0 0 0 —€1-q —e2-q —ez-k1 _ ezks
Z1—Z3 Zo—Z3 Z3—Z21 zZ3—Z2
€1-q €1-ko €1k €1-q 0 €1-€2 €1-€3 )
21—23 Z1—22 21—22 Z1—23 zZ1—z2 Z1—2Z23
ea-k1 eo-k1 + €29 €29 _ E1°€2 0 £9-E3
Z2—2Z1 Z2—21 zZ2—23 zZ2—23 Z1—Z22 22—23
ez-ky e3-ka e3-ki e3-ko _ E1'€3 _ €2:€3 0
zZ3—Z21 Z2—2Z23 Z3—Z1 zZ3—Z2 Z1—Z3 Z2—Z23 ( )
6.4.63
and the following 2 x 2 block matrix:
0 ez-k1zZa
_ o Z13%23
Vi=( g 5" (6.4.64)
Z13%23

We have defined the matrix (6.4.62) as concatenation in order to properly describe the
action of the Gramann matrix notation. More precisely, we define:

4 3
= 1 [ 0; = 0; = )
Z(gj g;) v (@) = Z(ej 0;)V; (&) + (04 04)04 (91) : (6.4.65)
2,j=1 i,7=1

With these preparations and applying the well-known formula for the Grafimann integrals

we obtain
/ [ [ d6:d6; exp{ > (6, 6)M (g) } —Pf M , (6.4.66)
i=1 !

1,j=1

with M being a 2m x 2m matrix. We can express ((6.4.61)) as:

4 4
I(2:1) = / 11 zfl_@; d0;df; exp {0/2 > (0 0,)uEY (Z) }
=1 '

ij=1
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05
4 = ~
0,0 ~ o _ &k
- / [T d0idb; exp S o (05 01 05 05) 32 Ol £ aze,g, 2t
im1 *1 T2 0 213223
03
P2
= PfI, 8 — PfU, PfU, . (6.4.67)
21 — 29

According to the definition (4.2.5) the prime at the Pfaffian accounts for the additional
factor —— in the integral and we have used the definition of Pf¥,; as shown in |7.3.76}

21 —%2

PID, = (g5 k) — 22— (6.4.68)

213223

Above, we again used that we may set €3 = 3. Note, that the anti-holomorphic part
of the graviton vertex and hence half of its fermionic variables (94,54) are nested
into the block diagonal matrix W;, which is concatenated with W3, cf. also . As
a consequence, this procedure yields a different Gramannian structure than in the pure
open superstring case .

Let us make some comments. Firstly, the expression is identical to the inte-
grand of the disk amplitude . This is due to K Np, = 1 and our comment after eq.
(5.6.146)) that we are dealing with an all-order exact expression in /. All these properties
are special due to the three—particle kinematics and the on-shell conditions . As
a consequence of exactness in o/ the three-point amplitude behaves identically
in the o/ — 0 and o/ — oo limits, i.e. the integrand is uniform in o’.

Equipped with the results from the previous sections here we want to check our newly
constructed twisted form PFYM to express the EYM amplitude involving two gluons and
one graviton by an appropriate intersection number (6.3.8)). Then, the CHY amplitude
(4.3.15)) is found in the leading o/ — oo limit of the latter as:

Acny(2:1) = 1im {0 ) - (6.4.69)

In the following, we shall motivate the construction of our two twisted forms by calculating
the string scattering contractions (6.4.51]), which furnishes the following direct product
structure of two GraBlimann integrals

3 3
2= 1122 o100 (3))
=1

3,j=1

X /d04d54 exp {04,2 (84 0_4)\1J1 (2—4) } KN m s
4

with the matrices W3 and ¥, given in . Above we have appended Koba—Nielsen
factors, which of course are trivial K Np, =|KN|*= 1 due to kinematical structure of this
amplitude . The expression ((6.4.70)) reminds us of a KLT-like product, which
connects a holomorphic and anti-holomorphic sector yet without any color ordering. We

(6.4.70)
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will associate the first holomorphic factor of (6.4.70) to be an element of HTJ)”_?’. On
the other hand, by using the isomorphism (3.2.19) between dual twisted cohomologies we
may associate the second anti-holomorphic factor of (6.4.70) with a twisted form from
H"T"=3 by imposing the map:
Zi—z , t=1....,n+r,
KN — KN'. (6.4.71)

With these preparations, as our first twisted form, we can choose:

3 3
0,0 _ . 0,
EYM __ | | 1v2 2 2 : i
(Ipi,Q;l = dug /i:1 7 — 2 dﬁzdﬁl exXp {Oé (ej 6]')\113 (01> } s (6472)

ij=1

which as we mentioned before is the same as ¢%37°. For the second twisted form, we now

choose

pin =dus C(1,2) /d6’4d9_4 exp {0/2(64 04)W, <g4> } , (6.4.73)
! Z|—2)
subject to (6.4.71)), which entails:
ol (.0 PR = (e hy) —2 (6.4.74)
e _821’;;51 0 7 Hame = 8 T s o

In order to properly describe the color ordering of (6.4.76)) we have augmented (6.4.73])
with the following Park-Taylor factor:

1
(21— 22)(22 — 21)

Eventually, computing the intersection number ([6.3.8)) of our two twisted forms (6.4.72))
and (6.4.73)) yields

Aoy (1) = @M, oM = [

C(1,2) = (6.4.75)

d21d22d23 (83 . kl)
SL(2, C) (2’1 — 22)2<21 — 23)2(22 - 23)2

(6.4.76)
X {(52 ~e3)(e1-q) — (e1-e3)(e2-q) + (1 - €2)(e3 - /ﬁ)} )

which is the CHY amplitude given in (4.3.15). Actually, in the case at hand the o/ — oo
limit (6.4.76)) is exact in o/, i.e.:

Acry(2;1) = lim. (@5 ™M o ™M (6.4.77)

No lower orders in o show up due to the limited number of contractions for this case.
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6.4.3 Sphere integrand from the bosonic string disk embedding

Similar to the superstring we can now apply the embedding to the bosonic string ampli-
tude. While the twisted form 45" may directly be derived from the bosonic string disk
amplitude for the construction of the form {53:05,{’7;“ we apply the embedding of disk fields
onto the sphere . We chose the massless states of both closed and open strings.
The structure of the amplitude is given similar to the superstring as a correlator over the
disk:

n

<H‘/Obosonic(€i’ ki, Zi) H ‘/Cbosonic(gsj s, Znss, Zn+s)>D (6478)

i=1 s=1 2

Following the embedding (6.4.42)) we then obtain the following integrand:

n+2r
016

Ibosom'c(n;r) :C(LQ’,TL) X < /(H d@ldgl)
i=1

21 — 22

X exp {Zkl . (X +)/Z> + 610_151 . 8X}

X exp {z’kn (X + )N() + 0,0, - 8X}

X exXp {qu - X + Zal . 5(: + 0n+1§n+15n+1 . aX +9n+2§n+2gn+1 . 55(:}

X exp {iqr - X +iq, - X + Or+n-102r1n—18n1r - OX + Oz 001 nEnpr 55{} >S
2

(6.4.79)
In this integrand we again used the same labeling (6.4.52)) for the momenta. One can
see the difference between the two integrands (6.4.79)) and (6.4.51)) is the absence of the
fermionic string field ¢ in the contractions. We can regroup this integrand with the use

of the function
Py Ei " Dj €' Pj
W = —+ >y — |, (6.4.80)
1.1 H(Z DD )

Z
ieR \jeN Y JER
J#i

which has been introduced in [82] and generalizes (4.2.13]) and also describes the Weyl-

YM theory. The set N' encompasses all open string labels while the set R comprises all
closed string labels. We have the integrand (6.4.79)) as:

T

, —~ 1 0:0,0:0;(&; - &)
Thosonic(p:p) = C(1,2, ..., n)W. x exp} 4 —a L =0 6.4.81
(nir) = C( S p{ TR S T (6.4.81)

In the function (6.4.80)) the diagonal elements of the C-block (4.2.8) entering the matrix
¥, in (4.2.7) appear. A special limit of the function (6.4.80)) is exhibited in (6.3.32)),




6.5 Theories from the Einstein Yang-Mills form @F* Y 143

which gives rise to 1) and stems from the twisted form gpb"s"mc originating from
open bosonic string theory. Here, we want to construct the new twisted form goff‘jf’;“
associated with ([6.4.80). Following the structure in (6.3.22) we can write the twisted

form gagf‘;‘”;w as:

n4+r—2

. 1\
Soinr _d:unJrT (ia)

i=1
Dj € "Dy 91§193§J51 cEj
xexpy EVO D06 DA S SN
i J ; i J y

i€ER

Finally, we take the o/ — oo limit as

ah_rp S’EZ?L:)ZZC C H (Z Z gizi] ) d,un—i-r = C W&) d,un—i-r )

i€R \ jeN “ij JER M
J#i
(6.4.82)
which comprises the color form C,, (over the set of legs N) and the function Wyq 1
——

referring to the set of legs R introduced in (6.4.80)). We are going to discuss and explore,
in the coming section, theories that can be described through this newly constrcuted
twsited form.

6.5 Theories from the Einstein Yang-Mills form ¢4’

We built the first extension of table in the previous section. There, we have shown
that one can extend the twisted intersection description to Einstein Yang-Mills
(EYM) amplitudes by introducing an embedding formalism. Concretely, we introduced
the twisted form:

~EYM __ 2 0; ¢ 0.
P+ T d,unJrr 1, 2, 3 / H d@ d9 exp {—Oé Z (HZ \IIT éj

1€Sr 1,jESr

L, 0:6;6:0;(& - &)
xexp{iﬁaz ZZZ—]Z]VJ}

1,JESr

G—¢

(6.5.83)
With ([6.5.83)) we have the following addition to table

Theory | ¢_ o CHY representation Amplitude

EYM | pf00 o974 C, PfWg, Pf'th,y, 7 gravitons, n gluons

Table 6.2: Twisted forms for EYM amplitude and its CHY representation.
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to construct EYM amplitudes involving n gluons and r gravitons as:

n+r—2
: ~EY M : SEYM »
Apyar(nir) = lim (G0 04780, = / dpnr [T 0(F) lim GEVET QT8

a’ —oo

MO,n+T k=2
n+r—2

_ / ditnsr  [] 0(fs) Cu PEWs, PEY,y, .
k=2

MO,TH»T
(6.5.84)

Actually, we can go further by looking at other theories, which have similar CHY struc-
tures to EYM amplitude. The first extension originates from paring @#* M with other
twisted forms from (6.3.32) and comparing with the corresponding CHY rep-
resentation [50]. This way it is straightforward to construct amplitudes for generalized
Yang-Mills scalar (gen.YMS) and extended Dirac Born—Infeld theory (ext.DBI) supple-
menting our table by the following content:

Theory Y- o CHY representation Amplitude
G lized Yang-Mills Scal r gluons
e lzigenngnl%/ls)l PR QEYM el C.PtVs Cp v n color scalars
i - r gluons
EXtcndCd(gl‘ia]chB]?)om Infeld eV predler C,PfWUg, (P’ Apy,)®  n higher derivative scalars

Table 6.3: Additional theories that can be described through the new twisted form @Y,

In order to verify table we compute the intersection numbers in the limit
o/ — oo given by using involving the pairs of twisted forms for gen.YMS and
ext.DBI and compare the results with their corresponding CHY representations. We
discussed the CHY integral of the gen.YMS in (4.3.23]) we had

ntr—2
Agenyus(nir) = lim (97 GTIN), = / dpner [T 0(fi) Jim g, G2
Momir k=2
n—+r—2
= [ e TT 6000 € P, Cor
Mot k=2

(6.5.85)
Similarly, we had for the Extended Driac Born-Infeld theory, that we introduced in chapter
, the CHY integrand given in(4.3.26]). The amplitude for ext.DBI involving r gluons and
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J’L;'f‘

n scalars can be constructed through the following intersection number

n+r—2

Aext.DBI(n; T) = aliinm<¢fﬁi§a @E};{\;I>w = / d:un-&-r H 5(fk) O}/iinoo (ﬁs—cflnliz @f?{z{\f )
Mo mnir k=2
n+r—2
= [ e TT 0) CaPrOS, (PEALL)
Mo, ntr k=2

(6.5.86)
which is the CHY representation given in [50]. The double copy structure of BI, DBI, and
ext.DBI theories will be discussed in section (resulting in the representations (|7.4.130)),

(7.4.124), and ([7.4.133)), respectively).

6.6 Theories with the Einstein—-Maxwell form @E%T

Above we have used the twisted form of EYM amplitude to compute the in-
tersection number (6.3.23]) for the amplitudes of EYM, gen.YMS and ext.DBI theories
which are given in (6.5.84), (4.3.24), and (4.3.28), respectively. While for the latter set
of theories the CHY representations are constructed in [50], their corresponding twisted
forms had not been constructed. Similarly, the twisted form for Einstein-Maxwell (EM)
theory, i.e. Einstein gravity with an U(1)™ gauge group, as it arises from compactification
of m dimensions, can be used to construct other amplitudes for theories that interact
with Maxwell theory. One would expect these theories to be defined in some limit of the
Yang-Mills theory. We organize them in the following table based on [50)].

Theory CHY representation Amplitude
Einstein—-Maxwell r gravitons
(EM) PEX, Pf'Us  Pf'4,, n photons
Dirac Born-Infeld r gluons
(DBI) PfX, Pf'Ug  (Pf'A,..)*> n color scalars
Yang-Mills scalar r gluons
(YMS) PIX, Pi'Us  Cpir n color scalars

Table 6.4: Known theories yet without twisted form description.

The matrix Wg, is similar to the object Wg introduced in [2]. The latter is a (2r) x (2r)—
matrix with only those indices included, which refer to the highest spin particles of the
theory under consideration. On the other hand, the object Vg, isa (2r+n) x (2r+n)-
matrix with an additional sector contributing to the lower spin particles. More concretely,
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for EM amplitude we have [50]

Aab Aaj (_Ot)ab
Us,, = | 4w Ay (=C" | (6.6.87)
Cab Caj Bab

described by the sets of graviton indices a,b € {1,...,r} and the photon (gluon) indices
i,7 € {1,...,n}. In cases of DBI and YMS amplitudes, we have the sets of gluon indices
a,b € {1,...,r} and the scalar indices i,j € {1,...,n}. The only common part in the
CHY representation of all three theories is comprised of the Pfaffian PfX,, of the n x n
matrix X with matrix elements:

: b
Xp={ = ¢ 70 (6.6.88)
0 a=1b.

This Pfaffian describes a correlator involving an even number of n fermions, i.e.:

(¥(21) ... ¥(z)) = PLX,, (6.6.89)

Therefore, the number n of photons must be even. The twisted form of EM amplitude
can be represented by the following (n + r)—form:

~ 00 1 0.\" 0.
~EM | | 0. kY1 2 71 /j
Pf oy = Ay r / db;do; p— exp {—2a E (0) Ve (9> } x PfX, ,

1ES), i,je{rm} J
(6.6.90)
where we have used the Pfaffian in equation (6.6.89). We should emphasize that we did not
construct this twisted form directly from string theory and so it does not contain any o’
corrections (it is exact). One can attempt to produce this twisted form by taking the limit
SU(N) — U(1) of @M. However, this limit is not possible since the interactions of the
gauge boson are governed by the SU(N) algebra (in particular the structure constant) and
taking this limit is ill-defined. Further, open strings with just U(1) charges will decouple
from the rest of the spectrum [11] and therefore there are no good candidates within critical
string theory. Further investigation on different compactification-spectrums might give
us better candidates to build the twisted form from Maxwell theory which includes string
corrections.
Taking this twisted form ¥/ together with the twisted form for Yang-Mills ampli-

tude, cp“ff;ﬂer, we can construct the Einstein-Maxwell amplitude
n+r—2
Apur(nir) = lim (@00, @) = / dpsr [ 0(fe) lim @70%, GEIL.
MO,n+7‘ k=2
n+4r—2
= / Al r H 5(fx) PEX, PI'Ug — Pf'y.,
M k=2
0,n+r

(6.6.91)
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involving r gravitons and n photons. Similar constructions can be established for the two
other theories displayed in table In total, we have the following pairings of twisted
forms:

Theory | ¢_ o Amplitude
r graviton

EM e M n photon
r gluons

DBI | picdlar pEM — p color scalars

r gluons
YMS | peler — pEM - n color scalars

Table 6.5: Theories which can be described by ¢FAL .

6.7 New theories involving @’somic

So far, we have discussed the theories involving the new twisted form @FYf. In this
section we take a look at gbﬁfi"ﬁ“ We should point out that all these theories are new

theories from amplitude considerations and hence we did not put them in the preliminary
chapter [4

6.7.1 Generalized Weyl scalar

We introduce the so-called generalized Weyl scalar similar to the generalized YM scalar
amplitude . Meaning, we have DF? (cf.section coupled to a scalar theory
in the adjoint representation of the SU(N) gauge group. We set the following Lagrangian
for the theory:

- 1 ad abe pabé sad 1bb i cé
Loenprs = V=g (m* R+ 5! Wi,5) = 5(Dud™)” + X f [ 66l (6.7.92)

Since we know that the Weyl and adjoint scalar theories are associated with functions

W11 1 and C,, respectively. We can pair them by extending the W71 1 to Wll...l by
—— — ——

our embeddingﬂ This means with the paring of our newly constructed twisted form in
(6.4.82)) and the color form @‘j;’f,‘{frr we can describe this theory. In the o/ — oo limit we
conjecture the corresponding CHY integrand from the twisted intersection (/6.3.8]):

a@@(@ﬁ;ﬁﬁw, P e~ Co W11 1 Crgr - (6.7.93)

5As we say this is a conjecture. However, it is an educated guess since in all previous cases
(e.g.gen.YMS, EYM, etc.) coupling the higher spin theory to a lower spin required the embedded twisted
form of the higher spin theory.
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6.7.2 Weyl-YM

Similarly, to the EYM amplitude we can construct the Weyl-YM theory. Meaning, we
can replace the ”Einstein” part of the theory with Weyl gravity (see section 4.3.10]). We
conjecture the following Lagrangian for this theory:

1 va
Lwyn =+v—g (m* R+ k2 W,.5) — 1 Fava s (6.7.94)
For the EYM amplitude we used the open and closed superstring together with the un-
derlying embedding formalism to construct @?i]‘f , while gpb"somc is derived from ((6.4.43))

involving the open and closed bosonic string. Therefore, we can construct this amplitude

using the limit of the intersection number of G*57" together with ¢?*}%° we have:

o’ —o00

lim (@5, 4w = Ca W11 1 Vs - (6.7.95)

T

6.7.3 Weyl3-DF?

Finally, we finish this chapter with the Weyl3-DF? theory. The CHY amplitude of the
Weyl? theory is given by the Wiy 1 function (cf.section . As we discussed it is
known from previous work by Mizera [6] that this function can be obtained through the
tensionless (o — oo) limit of ¢ In addition, we know that similar to the Weyl?,
the DF? amplitude it is given by the same function. Therefore, we plan to construct an
extension of the Weyl® theory that can be paired with the DF? theory. We are going to
use the EYM theory as our guiding tool. In that case, one has the function Pfi),, in the
same role as Wiy ;. If we square the function we obtain gravity (spin-2) theory otherwise
it corresponds to the gauge theory (YM). In comparison, the extension of matrix 1,, was
constructed in [20] and was the function Pfi)g . Paring it with Pf,,, produced the EYM
amplitude. This extension in the CHY formulation corresponds to the embedding of the
disk, that we introduced in section [6.4.1] in the twisted form language. Therefore, we
follow the same steps but now with WH 1 & gpb"soﬁw We build the embedded version of
the twisted form @bosgmc in section and denote it by @bg‘fﬁw. By putting together
the two twisted form gpbosomc and gpoffﬂc we can conjecture the following amplitude for
the Weyl3-DF? theory:

Tim (@hosonie, o), =~ € Wy, 1 W1 - (6.7.96)

T n—+r

We refrain to give a specific Lagrangian for this theory since the WeyP in the context of
CHY formulation given in [21] does not have a Lagrangian formulation yet.



Chapter 7

Double copy and amplitude relations

7.1 Preface

In this chapter, we are going to discuss double copy and amplitude relations both in string
theory and intersection numbers. We first look at the connection between intersection
theory and BCJ-KK amplitude relations [7, [8, 22, R86]. We give a proof for the BCJ-
KK relations from the equivalent classes in twisted cohomology theory. Then, we use
intersection formulation of the amplitude relations to expand the EYM amplitude (that
we found in the previous chapter) in terms of pure Yang-Mills amplitudes [40, [87].

Next, we turn to the double copy of massive states in string theory [3] 4]. Historically,
string theory is the origin of the concept of the double copy construction as we discussed
in section [5.71 The KLT double copy [25] was one of the first works that introduced
the notion (gauge)? ~ gravity. However, their work and the subsequent discussions on
this topic were primarily done for massless states (except for attempts involving massive
scalars)[88] 89, 90, O1]. Here, we attempt to produce the massive spin-2 state as described
in bimetric gravity (which we introduced in chapter {4)) from string theory, using both the
double copy and non-double copy methods.

We finish the section by making an observation regarding the relation between BCJ
double copy [22, 92, 03, 04, 05, 06] and twisted cohomology. In short, we are going to
claim that the theories, which can be BCJ double copied, are the ones that have %" in
their twisted representation. We are going to support this claim by looking at different
examples as well as showing that for any two such theories, the resulting double copy has
a KLT matrix representation.

7.2 Amplitude relations from intersection theory

7.2.1 BCJ-KK amplitude relations

The BCJ-KK amplitude relations are the set of relations among gauge amplitudes that
relate different color ordered subamplitudes to each other [8, 19, 86]. The starting point
is the fact that all tree level gauge amplitudes can be written as the following sum of color
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ordered subamplitudes:

A™Mm) =3 ﬁ;? =3 Aoy, (7.2.1)

where 7 is the set of all tree graphs that have only cubic vertices with n external legs
(there are (2n—5)!! such graphs) with the set of internal legs t. The A(o,)s are the colored
order amplitudes with respect to the ordering of the graph o,. The ¢,s are color factors
associated with each cubic vertex operator (which is given by the structure constant of the
gauge group) and n,s are the corresponding kinematic numerators of the amplitude. The
very first non-trivial relation (aside from cyclic symmetry and reversal) was the photon
decoupling which was generalized by Kleiss and Kuijf (KK relations) as [86]:

T

e Photon decoupling:

> AL o(2,3,4,..,n)) =0.
o€cyclic (722)

e KK relations:

AL {a},n, {8}) = (=1 Y. Al {atn). (7.2.3)

oi€OP({a}.{8}7)

where OP({a},{B8}") stands for ordered permutation of the set o and the transposed of
the set 3.

The next set of relations among the color ordered amplitudes came as the consequence
of color algebra. The important structure among the c.s is that they can be grouped into
triplets (7, j, k), which are associated to the s,t and u channels leg orderings, that satisfy
the Jacobi identity:

¢ +c¢j+ ¢, =0. (7.2.4)
This gave rise to the so-called color kinematic duality. 1t states that for every triplet
(1, J, k) graphs of tree level amplitudes whose color factors satisfy the Jacobi relations there

exists a set of numerators n;,n; and ny of those amplitudes (up to gauge transformation)
that satisfy the same Jacobi relations meaning;:

ci+cj+ce=0 < ni+n;+n,=0. (7.2.5)

Since the color ordered amplitudes A(o,) are functions of the n;s the above identity
imposes relations among associated color ordered amplitudes. These are known as the
BCJ relations and can have the following representation:

n—1

> - (patps+ o +p)AR2,,3, 0 i+ 1, n) = 0. (7.2.6)

=1

These sets of relations will exhaust a basis for the color ordered amplitudes. Starting
with n! possible permutations, after implementing the BCJ-KK relations we obtain the
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(n — 3)! basis. Although every theory that exhibits the color kinematic duality
will have a BCJ-KK basis (i.e. the color ordered subamplitudes will obey the BCJ-KK
relations) [22] 9] the converse has not yet been proven but highly motivated. Meaning a
gauge theory whose color ordered subamplitudes will obey the BCJ-KK relations would
exhibit color kinematic duality. These relations were proven in string theory in [97] and
[98] through string monodromy relations. There also works discussing these relation on
the loop level (i.e. world-sheets with genus bigger than zero [99],]100],[101])

7.2.2 Amplitude relations in intersection theory

It has been discussed in [5] that the fundamental KK and BCJ relations, in the language

of twisted cohomology, may be understood as the equivalence class relation associated

with the derivative (exact twisted form) of the color form ¢, i.e.:

[on + Vo] = [pn] = (d £ dwA) 2" ~0€ HLT® . (7.2.7)

Recall, that we are using both notations ¢“°" and PT(1,2,...,n) for the color form
interchangeably. To derive amplitude relations in intersection theory we first note that
dw corresponds to the scattering equations (4.2.1)), i.e.:

n—2 n—2
8 ..
Z Zi wit S > (7.2.8)
=2 j#i Y
Secondly, to simplify the calculation we introduce the insertion function Ins(7);xs:

ij

Ins(7),x := 7.2.9
(i = (729

which acts on the color form PT(1,...,n) as operator:
ns(i);x PT(1,2,3,. .., 5,k,..on) = PT(1,2,3,... . j,i,k,...n) . (7.2.10)

Therefore, by using momentum conservation and performing some rearrangements we can
write S; in terms of Ins(i); as

S =" x(i); Ins(i);411 , (7.2.11)

where (1), is defined as:
J
w(i); =pi- Y P - (7.2.12)
k=2

Now, by using ¢e" | = PT(1,2,...,n — 1) and dp%", = 0 we rewrite (7.2.7) in the
following way:
® = (d+ dwh) gpjff,fj’"_l = +(dwA) gog;lgil
(7.2.13)
(] AT, = (Sudza )T, 0 € HZ P
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Above dw|g,, projects onto the one—form part dz, of dw. Eventually, from ((7.2.13)) we
deduce the following relation

n—2 n—2
> a(n); Ins(n); ;1 PT(1,2,3,...,n—1) = Y _x(n); PT(1,2,3,...j,n,j+1...,n—1) =0,
Jj#n Jj#n

(7.2.14)
which assumes the form of a BCJ relation. To produce the BCJ relations for YM ampli-
tudes we shall calculate the fowling intersection number

(2%, @)y = (207, (SudznN) LT 1)

n—2
= (e, Zx(n)jPT(l, 2,3, ., 0,m,7+1..,n—1)),
n—2
= a(n); ("0 PT(1,2,3,..j,n,j+ 1n—1)), =0,
j#n

Ay]\/[(17273,..:];l,j+1...7n—1)
from which the BCJ relation for YM amplitudes follows:

n—2

> w(n); Ayu(1,2,3, ., 4,n,j+1.,n—1)=0. (7.2.16)
i#n

On the other hand, for the KK relations we start at the n + 1-form
pPma(on) == PT(1,2, .. L p, L +1,.....m)

with n 4 1 legs. One additional leg denoted by p = n + 1 is appended such that there are
in total n + 1 legs. Furthermore o; denotes the particular ordering of those n + 1 legs as:

- (1,2,...,0,p,l +1,....,n). As a consequence of the KK relations for PT factors, we
have the identity:

> (o) ZPT 2, Lpl+1l,...,n)=0. (7.2.17)
=1

Inserting (7.2.17) into the intersection number (6.3.8) appended by ©?*/% yields

n

g“ﬁi‘ipthflﬁil o)) = D (M, ¢ (o) =0, (7.2.18)
=1

from which, the KK relation for YM amplitudes of generic helicity configurations follows:

> Avwm(1,2,. . Lpl+1,..n)=0. (7.2.19)
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7.2.3 Expansion of EYM amplitude

From chapter , we know that any intersection number (6.3.8) may be expanded w.r.t.,a
(n—=3)!
orthonormal basis of n—forms |J {®,.} € H',* Generally, together with the dual

a=1

(n—3)!
basis |J {®Y,} € H"_? with the intersection matrix as: (see proposition (3.3.4))
b=1

(D40, Y ) = Oap - (7.2.20)

We have the following expansion of twisted n—forms ¢?, ¢*

(n—3)!

‘p—ll— = Z <(I)\i,a’ ¢+>w (I)-i—,a ) (7'2'21)
a=1
(n—3)!

502_ = Z <¢—»¢)+,b>w (I)\i,b ) (7'2'22)
b=1

respectively, for the case of @, , = PT(a) leading to the following expansion of the
intersection number:

(m—3)!

(Pl ) = > (PTY(a),p})e (22, PT())e - (7.2.23)

a=1

Choosing @} = @P¥M 2 = QFYM — 99 the orthogonal decomposition (7.2.23)
can be used to express EYM amplitudes in terms of a linear combination of (a basis)
m :=n + r-point YM subamplitudes [2]:

(m=3)!
Apym(n;r) = lim Z (PTY(a), 27000, Ayu(a) . (7.2.24)

a’ —o00

In addition, we may use BCJ-KK relations for further simplifications of Ay y/(a).
To determine the expansion coefficients (PT"V(a), Cp’f?\f )o in ([7.2.24) we exemplify the
one graviton case r = 1. We label the momentum of this one graviton by p = n+1. From

[2] we have for the EYM twisted form @/}

n—1
lim e M = dpnga PT(1,...,n) Z(gp : xl)ﬂ
a’—oo —1 Zl,pzp,l—I—l (7 5 25)

n—1

= d:un—l-l Z(gp 'Z’l) PT( 27 7l7p7l+ 1 7n) )

=1
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l

with the definition zj' = ) k%. Inserting (7.2.25)) into (7.2.24) yields:
j=1

Apyu(n;1) = lim Y~ (PTY(a), g5 ™) Ay ()

o’ —o00
QESnfB

et (7.2.26)
Z Z(Ep.a:l) <PTV( ), PT(1,2,....0,p, 1 +1,....n)), Ayu(a) .

aES,_3 =1

Notice, that above the a/~dependence (i.e. string scale not to be mistaken with the order-
ing) has dropped. Now we can use the orthonormality condition ([7.2.20)), i.e.

(PTY (), PT(8))w = dap (7.2.27)

to label the ordering of PT(1,2,...,1,p,l + 1,...,n) by o; and ([7.2.26]) becomes

Apyu(n;1) = Z i(sp -x7) (PTY (), PT(07))w Ay (@) .

a€S,_3 =1

> i(gp 1) Oag, Ay (@) (7.2.28)

a€S,_3 =1

= (gp-m) Aym(1,2,.. Lp,l+1,...n) |
=1

This is the expansion of the EYM amplitude involving 1 graviton and n gluons in terms
of color ordered subamplitudes of n + 1 pure gluons, which Was first calculated in [102].
Next, let us also evaluate the coefficients (PT"(a), ¢%}) )., in ( for the two graviton
case r = 2. Again, the starting point is the twisted form gpfﬂ ¥ for the EYM amplitude
given in [2]

hm Sf’inz = dpn4+2 PT(1,2,3,. /Hd@ do; exp{ 2 Z (Z) U, <ZJ>}
j

i€Ss 1,JES2 G—G
= djinto PT(l, 2,3,..., n) Pf'0, , (7.2.29)

with Sy = {n+2,n+4}. To compute the coefficient (PT,’, gE¥*) of the decomposition

a

(7.2.24)) we expand the twisted form ((7.2.29)) in terms of a PT basis (for a derivation we
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refer to [7.3.78). We have:

lim SDEYM
n—1
dﬂn+2{ S (eg - 2)(Ep - ) PT(L,2, s p, L1, ks g k4 1, em) + (p > g)
k>1=1
n-1 -1 (7.2.30)
(sp Q) Eq Ty ZPT —1 » 4, jal - 17pvla"'7n) + (p<—) q)
=1 7=2
1 n—1 l
-3 (ep- &4 SPZZPT —1,9,p0,7, s l,...,n)+(p<—>q)}.
=1 Jj=2

Now we proceed similar to the one graviton case and insert ([7.2.30) into (7.2.24)) and
apply the orthonormality condition ([7.2.27)) to get:

(n—3)!
Apyu(n;2) = lim > (PTY(a), g™ Ava(a)
a=1
n—1
Z Eq- ZL’l 51) xk)AYM( 7"'7l7p7 [ + 17 “'k7Q7 k + ]-a 7n) + (p — Q)
k>1=1
. o (7.2.31)
ng q gq Xy ZAYM —1 q»]7l_1ap>lv7n)+(pHQ)
=1 J=2
1
_EZ 5p gq SplZAYM 1qp7]7 la7n)+(p<—)q)

This result provides the expansion of the EYM amplitude involving n gluons and two
gravitons in terms of pure YM n + 2—point subamplitudes. The expression has
been already given in [103] using the expansion of CHY integrand, while here we applied
twisted intersection theory to derive it.

7.3 Massive spin-2 double copy from string theory

For the past fifty years string scattering amplitudes have been used for various purposes.
We have discussed in the previous chapters the two main ones. The effective actions
through the low energy limit of string theory and double copy structure between massless
gauge and gravity theories (KLT). In this section, we are going to make use of both.
We try to answer whether or not the full bimetric gravity (cf.subsection can be
produced as an effective action of a string amplitudes. In addition, using the string
amplitudes, we try to construct a double copy for this theory. The latter is more nuanced
since it would involve a double copy description for a massive spin-2 state. Recently,



156 7. Double copy and amplitude relations

there have been attempts to construct such a double copy through field theory ansatz
[90], 104}, T05] mainly using the massive vector field (Proca Yang-Mills) and double copy
of it’s amplitudes. However, these either failed or broke down at the level of higher point
tree level amplitude.

Our aim is now to use string theory states to: First, produce the bimetric action in
the mass eigenstate (or a limit of it) through string states. Second, using the double copy
of string amplitudes we try to construct bimetric gravity as a double copy. Looking at the
spectrum of the NS sector that we constructed in the section we have two possible
candidates:

e Open string: It is the first massive level of the open string state given in the last
row of table We refer to it as the boundary state

e Closed string: The closed string state is constructed as the tensor product of two
open strings in the first mass level.

So far, we have avoided string compactifications. However, in order to make contact
with the results of bimetric gravity we need to reduce (i.e. compactify) the dimension of
spacetime from 10 (or 26 for bosonic string) to 4-dimensions. This is a very vast and
deep topic and here we are going to state the results and explain the consequence of the
compactification procedure. There are many good references such as [10} 11}, 12} 106}, [T07]
we refer the reader to them for details.

7.3.1 Compactification to four dimensions

The goal of compactification in string theory is to reduce the number of dimensions
from 10 (or 26 in the bosonic string) to four dimensions. So that the resulting effective
actions are comparable with our visible universe. The geometrical picture is to take the 10
dimensional spacetime manifold and wrap six dimensions around a compactifying manifold
and then take the size of that manifold to be small. The means that the spacetime and
its isometries break into a product manifold structure. We have the following structure:

RLQ N R1,3 ® M6 7

7.3.32
SO(1,9) — SO(1,3) ® G, (7.3.32)

where Mg is the internal manifold and the group G is the symmetry associated with
it. Having established this structure the spacetime fields of our theory (0X°,¢®) will
decompose into internal and external parts as:

0X* = (0X*,02M),
P = (P, oM, (7.3.33)
«=0,1,2,...,9, p=01,23,  M=45,..09.

In the above decompositions the fields (92, M) and (0X*, ") are the internal and
external fields, respectively. Given the fact that we have a product space, the correlators
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will take the following form:

v

v v v n"
(XH(20) X" (%)) = =2/ In(z; — z;),  (PM(z)Y"(2))) = (zi—2)
i T
(X4 (2) 2" () = 0, (W ()Y () = 0, (7.3.31)
5MN
(ZM(2)Z% (2))) = =20/6"V In(2; — 25), (T ()T () = )
Zi — Zj
We can see that, because of the product space structure ([7.3.32)), there are no contractions
between internal and external fields. Now we turn to the CFT operators and how they
are modified under compactification. First, we have to note that the field content of the
compactify theory which in this case is a superconformal field theory, contains more than
than just internal and external matter fields. Because, depending on the internal manifold
Mg, by compactifying, the SUSY supercurrent will also separate into external and internal
spin fields X! which in turn might break or enhance the spacetime supersymmetry. We
will discuss the following cases with different supersymmetry:

e N = 4: This is the case for compactifying on a six-dimensional torus Mg = 17" which
is the maximally supersymmetric case (enhancement). The internal symmetry group
in this case will be G = SO(6) = SU(4) with the Lie algebra: g = s0(6) x u(1)°.

e N = 2: This amount of SUSY can be achieved through internal manifolds like
Mg = K3 x T? orientifold with D5/D9 branes. The internal symmetry group is
G = SU(2) and the Lie algebra g = su(2) x u(1).

e N = 1: This theory can be constructed with the Calabi-Yau orientfold D3/D7 or
D5/D9 . The internal symmetry group is G = U(1) and the Lie algebra g = u(1).

From the point of view of the four dimensional physics the internal supercurrents 3! pro-
duce Kac-Moody currents J'7 (I and J are the supersymmetry indices) with conformal
dimension one which are now physical. The OPE of these currents for extended SUSY
(i.e. N =2,4) are:
MY (w) = I+ (z—w) T (w) +
(7.3.35)
S22 (w) ~ (2 —w) e (w),

where T is the identity matrix and '’ (w) conformal weight § field. For N =1 we have
enhancement to N = 2 due to the current J and the two corresponding spin fields ¥*(z)
are associated to the opposite U(1) charges defined as:

ST (w) = I L E - o) T (w) 4+ (7.3.36)
We should point out that in the case of compactification, it is not always possible to express
the current J/ as a function of (internal or external) world sheet fields. This is not an
issue, since for a field in a conformal field theory we only require the conformal weight and
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OPEs with other fields, which we do have for J!” currents. Each of these currents J* is
going to be charged under the internal symmetry associated to the compactification and
their contractions are governed by the algebra of the Lie group of the internal symmetry.
Hence, we can separate the abelian and non-abelian cases:

e Abelian U(1) case: This is the case for ' =1 SUSY where the R-symmetry is U(1).
So the algebra of the Kac-Moody current g = u(1). The contraction then will be:

(T()T () = —— =2 (T (2)T ()T (2)) ~ 0. (7.3.37)

The current J can be written in terms of a free boson CFT H(z) as:

J(2)=idH(), D)=, 0(z) = eV

(7.3.38)
(H(2)H(w)) =In(z —w).

e Non-abelian G = SU(2): This is the case for extended N' = 2 SUSY where the
R-symmetry is SU(2). So the algebra of the Kac-Moody currents is the following

N =2=g=su(2) xu(l). (7.3.39)

There are two currents one J associated to the U(1) and a SU(2) in the triplet
representation J4 with the contractions:

5AB iv2 EABC

jA(Zl)jB(Z2) ~—+ jC(ZQ),
212 Z12
(7.3.40)
" B . B SABC

the e8¢ is the structure constant of the su(2) Lie algebra. In the same fashion as
the previous case, we can construct both currents J and J? as:

= i0H,(z), = i0Hs(z)

Je) =i (2) J 10Hs(2) (7.3.41)

(H(z)H(w)) =In(z — w) .

where Hy(z) and Hj(z) are two decoupled free scalar CFTs with the same OPE as
H(z).

e Non-abelian G = SU(4): This is the case for extended N' = 4 SUSY where the
R-symmetry is SU(4). We can write the current J™¥(z) in terms of the world
sheet fields as:

1

TN (z) = 7 MOV (2, TIM(z) =82M(z2). (7.3.42)
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where UM and 0Z(z) are the internal fields of 9%(z) and 0X*(z) respectively. So
the algebra of the Kac-Moody currents will be:

N =4=g=su(4) xu(l) =su(6) x u(1)®, (7.3.43)
and for the current 7 (z) the OPEs are given by:

SS9

Trn (22) T (22) ~ 2P+ =2 50 T ()
12
. (7.3.44)
MN PR _ V2 N [P sRIM N[P sR] cM
(T (@) Ticr(22)T 7R () = —1—— | ka6 — 6" ailay |
<12413%23

So, for each case of supersymmetry we have the current and the algebra needed to calculate
the contractions.

Internal energy-momentum tensor

We need one more ingredient to be able to calculate vertex operators in a compactified
string. That is the internal fermionic energy-momentum tensor. As we showed in
the picture changing operator is constructed out of the fermionic energy-momentum tensor
Tr. So in order to be able to change the picture of the vertex operators, for the calculation
of amplitudes, we need to know the structure of Ty in different compactifications as well
as its OPE with internal ﬁeldsﬂ We have for our different cases the following:

e N = 1: The internal spin fields of SUSY charges are ¥ and ¥~ associated to the
current J(z) of the U(1) R-symmetry. Therefore, the internal fermionic energy-
momentum tensor is constructed separately in the same way with the opposite U(1)
charges:

1
Trinte = §(le{z‘nt + TI;,z‘nt) ) (7.3.45)

and together with the OPE:

1 D)

)

T (2)Tg gy (w) = i\/gm

+ T (W) Ty (w) + ... (7.3.46)

e N = 2: Given the two currents of the N’ = 2 case namely J and J 4 which are
decoupled, the internal energy-momentum tensor of the A/ = 2 is also a sum of two
decoupled energy-momentum tensors associated with each internal CFT:

Trint = Ty + Thian (7.3.47)

!There are no mixed contraction with internal and external fields therefore we only need OPEs with
internal fields
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Tg5, is associated to the CFT of the U(1) current (the Hy(z) CFT) and it can be
written in terms of the bosonic field H, and the internal complex boson ZM field

as:

o= r A5
TF,iSt = 2—\/%(2826 s 1i0Ze™). (7.3.48)

The other energy-momentum tensor Tﬁ:ist is a doublet under SU(2) and has two
components of opposite charge i\% under J?2 and can be written as:

2

_ 1 .

Trte = 5 2 X(ai2). (7.3.49
i=1

where A\’ and g; are two conformal fields with conformal weights % and g, respectively.
We have the following OPEs:

nglst(z )TI%:iSt (w) ~ regular,

9i(2)T*(w) ~ regular,

gi(2) A (w) ~ regular, (7.3.50)
(TA)ij : I .

—— N - — tLON +....

o V) = () O

In the last line, we have the Pauli matrices 74s.

N (2) T (w) =

e N = 4: For this case we could write the current Jyn and Jjs in terms of internal

fields U™ and 0ZM (with no need of bosonization). The internal energy-momentum
tensor then is given by:

. 6
1
Trint = —== »_ YM0Z" (7.3.51)
2v2a 5
and the OPE:
11
T w) = 55— WHOZT (W) +
oo/ (7.3.52)
TM(2) T (w) = 2\IJM+....

(z —w)

7.3.2 Spectrum of compactified string

Now, that we have the internal energy-momentum tensors we need to look at the spectrum
of the superstring after compactification and choose our candidates for bimetric gravity.
As we discussed in chapter [f] the bimetric gravity in the mass eigenstate is the interact-
ing theory of massive and massless spin-2 fields. Therefore, we need a massless spin-2
(i.e. graviton) and a massive spin-2 states in the compactified superstring spectrum. We
do not need to look further than the first massive level of NS open string which includes,
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after compactification, a massive spin-1 and a massive spin-2 states. For the massive
spin-2 candidate both massive spin-1 and spin-2 states are useful. We can use the former
and implement the KLT double copy to create a massive spin-2 closed string state and
the latter as the direct candidate for the bimetric massive spin-2. We should point out
that there are wnfinitely many massive spin-1 and spin-2 states in the string spectrum
[10, 1T}, 12]. However, we chose the lightest levels to probe and so we have the following
spectrum for the compactified superstring [70, [77]:

e level 0: It always contains a single massless vector multiplet, whose structure is as

follows
N=1: (1,1/2) , 2+ 2p, (7.3.53a)
N=2: (1,2(1/2),2(0)) , 4p+4r, (7.3.53b)
N=4: (1,41/2),6(0)) , 8p+ 8, (7.3.53¢)

So the massless candidate is straightforward: We have only one choice for each
SUSY (the first vector state in the multiplet). It has the same universal vertex
operator for all compactifications as:

2 A
Vo(ere0) = 077 2 o, (100 — 20 wyur(a) o)
a
V(’l)(z,g, q) = go T, ef¢>(Z)¢u(Z) i X(=2)

[

(7.3.54)

¢ =0, ¢ -e,=0.

Since the picture zero vertex operator does not depend on the internal fields and
currents, it only contracts with the external T» and hence picture (—1) vertex
operator has the same structure as the non-compact case.

e level 1: It always contains one massive spin-2 multiplet, whose structure is per case

as follows
N=1: (2,2(3/2),1) , 8g+8p, (7.3.55a)
N =2: (2,4(3/2),6(1),4(1/2),0) , 24p+ 24, (7.3.55b)
N=4: (2,8(3/2),27(1),48(1/2),42(0)) , 128+ 128y, (7.3.55¢)

Therefore, for the massive candidate we have two choices: First, we have the spin-2 states
in the multiplet (the spin-2 state at top of the each multiplet) which like graviton state
has the following universal, independent of internal fields, form:

Véfl)(z, B,p) = __Jo__ qa p—2) B 10X™(2)Y"(2) ePX ()

(2a/)1/2
V) (z,00k) = 22 T B, [i0XH(2)0X" (2) — 2i0 00" (2)0" (2)
(2e) (7.3.56)
+2a’ (kv)(2) " (2)0X*(z)] ehX ()
p2 = _i ) B[mn} =0 ) memn =0 ) Bmm =0.
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Second, we have the vector spin-1 states in the multiplets that can be KLT double copied
into massive closed string spin-2 states. They have the following vertex operators:

For N =1:
/ .
Vi a,p) = g0y T a0 ()T (2) €74 (7.3.5a)

l

2o/

Vi (z,a,p) = go Ta, { [i0X"(2) +2d/ (p- )Y (2)] T(2),  (7.3.57h)

+ [TFfint - Tﬁint] } ")

1
pP=-— , p-a=0. (7.3.57¢)
a
For N =2
- o .
Vi (z,a,p) = goy/ 5 T () T4 (z) et (7.3.58a)

[10X"(2) +2d (p-)H(z)] T4(z)  (7.3.58b)

V(O) z,a, — TaaA{ ’
A ( p) gO I \/ﬂ

2 1 A
pP=—— , p-a =0. (7.3.58¢)
a
For N =4
_ o s X (x
Vi V(za,p) = 9o\ 5 T e " @y g (2) TN (2) e, (7.3.59)

?

NG [10X"(2) + 20/ (p- ¥)*(2)] TN (2), (7.3.59D)

Vflo)(z,a,p) = 0o T“any {

PV, ZN]} SiPX ()

1
p? = -— ., P N =90. (7.3.59¢)

Q@
The calculation of picture changing is given in appendix [C.3] where we look at the open
spin states. For closed strings, we are going to explain later, we use the double copy of

the open string vertex operator.
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7.3.3 Open string spin-2 state

Our first candidate is the massive spin-2 from the open superstring, together with the
massless graviton which is the standard NS-NS closed string graviton. For the massive

and the massless states, we have the vertex operators given in ([7.3.56)) and ([7.3.54)),
respectively. We use these states and calculate the following amplitudes:

e three point scattering of massive spin-2 A(MMM).
e two massive and one massless spin-2 scattering A(MMG).

Since these two amplitudes involve both open and closed strings, we need to define the
D-brane configuration of the open strings. We set a spacetime-filling brane with the D
matrix defined as:

Dt=¢" | D" =Dig™=g" | (Dg=¢q" , uv=0,...,3, (7.3.60)
and the following kinematics (cf.[5.2.1)):

open string: (ki, ks),
Closes string: (~q,2a) = (24,2 Da) (7.3.61)
oses string: (-q,=q) = (3¢, = s
g 2q72q 2q72 q ’

Momentum conservation (ki + k2 +¢)) = 0.

The first amplitude is the scattering of three massive spin-2 states. The Riemann surface
is the disk with the three open string states inserted on the boundary of it.

3
d$l

3
Aopen(g’ O) — / H m 5gh08t e_Angatter <H : Vk(ZL‘l, k’l) : >
Mo,z =1 ’ k=1 Dy

3

= & A9 matter
_/,MO’BESL(Q’R) e "Cp,Cp" " (e(z1)e(w2)e(ws)) p,

(7.3.62)
< cVog(xy, k) o Vg (o, k) 2 V(xs, k) > :
Do
1
= O/g <C(£L'1>C(CC2)C<ZC3)>D2 < : V,l(xl,kl) o V,1($2,k2) o %(Q?g,kg) : > s
o Do
with the momentum conservation and massive on-shell condition:
9 1

k14 ko + k3 =0, ki = ——. (7.3.63)
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Plugging vertex operators back in:

Aopen(3, O) = %($12$23$31> < 2T 67¢(z1) Oé/lw ZaX”(iL‘l)wV(fﬂg) eile(:m) .

L Tt e9(@2) aZ, 10X " (2) ) (x2) etk X (@) .. T, [i0X"(23)0X" (x3)
(7.3.64)

— 21/ O (w3)” (w3) + 20 (ksw))(23) ¢”(w3)8X“(x3)] et X (ws) >

Do

We can remove the integration by fixing the three points with the conformal killing group
and after performing the Wick contractions we see that all the coordinate dependence
drops out. We obtain:

A(3,0) = ETe(To{T02 To}) {3 (22/)°Tr(at - a2 - a?) + (20)
{(/ﬁ 0 k) (0 al) 4 (ke - 0P - ko) (@ - al) 4 (ks - ol - ks)(0? - 03)
+3k1-a2-a1-a3-k2+3k2-a3-a2-a1-k3+3k3-a1-a3-a2-k1]
+(2a) [(kl 02 k) (ks a3l ky) + (ks - 0P - ko) (s - b - a? - ky)

+(ks-at - k3) (k- a? - a® - k?g)i| } .

(7.3.65)
As we can observe this amplitude is exact in the orders of o/. The next amplitude will be
the mixed amplitude of two massive and one massles spin-2 i.e. two open and one closed
strings. Therefore, the interaction world—sheet is a punctured disk with open strings on
the boundary and the closed string in the bulk (figure :

dSUldIEQdQZg
SL(2,R)

2 2
959c dridxod®z3 _ _
= o CD2(X“1V1CVH2V26Q5 m(ﬁ]l — Z)(wl - Z)(Z — Z)

A1) = Sgnost € O, (VD ek, 20) VI (@, b, 22) VOO e, 0,28, %) )

Do

X <T“ e~ 0@1) jox 1 (z1)Y" (x1) etk X (x1) b e_(f’(m)i@X“?(xg)w”Q(mQ) ethaX (22)

Fvar— o ——a T, o igX (23,7
X |iDX° () + S (Dgh)i" (z3)] [10XP (z8) + 5 () (z9) | e4X7) >
D
© o (7.3.66)
We can see that fixing the conformal killing group by quotienting the volume SL(2,R)
is not going cancel the integral completely. In particular, we can do the following fixing:

(r1,29,2,2) — (x,—x,1,—1), (7.3.67)
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X

XL

N

Figure 7.1: Scattering of one closed string from two open strings on a brane

where we have fixed the three real values consisting of two real numbers in z (real and
imaginary part of z) and the sum of the position of two open strings x5 = —x;. With this
fixing, the ghost factor dgp.s+ and the Koba-Nielsen will have the following form:

(c(x1)c(2)c(Z)) = (x1 — 2)(21 — 2)(2 — Z) = 2i(x — i) (z + 1) .

7.3.68
KN(Z,I) — 4s+1 |IL’|S+2((L'2 + 1)—3 ) ( )

Although it is a three point amplitude the closed string acts as two open strings with left
and write momenta (¢, ¢) acting as two momenta. Therefore, we can define the 4-point-like
the Mandelstam variables:

s=a (k1 + ke)? = =2+ 2d’ki1ky = —2d' k1 - g,
t=a/(k; +k3)* = -1+ d'kiq, (7.3.69)
u=d(k +ki)?=—-1+a'kDgq,
where we have defined:

Dq)*
-

n
w= =

(7.3.70)

Now we can do the tedious task of performing the Wick contractions. For the details see
We can regroup the amplitude in the following way:

4
A@2,1) = Zo e (107) YT A, (7.3.71)

=1



166 7. Double copy and amplitude relations

where
A — Y Ofl O{2 e ?dx|x|s+2(a:2 + 1)_5 (z—1)(x+1) { QrVEAPT + ARVEApS
1 RAZ po = pv o 2z (z—1)*(z+1) (z—i)(z+1i)4
—*;u/)i)\pa Euun/\pa i Fuum)\pa i A;u/n/\po i (I)pwn)\po
+(x )3 (z+1)2 + (@—0)2(z44)3 2 (z—0)F 2 (z+i)F 2 (z—i)3(z+0) (7372)
i \I,Mumkpo' i Quunkpo‘ }
2 (z—i)(z+1i)3 2 (z—i)2(z+i)2 [ >
s o0 s _s z—1)(z+i PHrVEP Ao ﬁ,u,z/np Ao
Ay = ap,adew 7f da |z|T2 (22 4 1)~ (2)33()2 ){ T CEOE
Q,u,wep)\a @uwsp)\a RHuVEPAT i SuVEpAT i §uump)\a (7373)
R ) B )| ) Ty e L O P R EE R
+l THVEPAG i j:[,tulip)\o' 1 Uuunpgka 1 fjp,umpgAa 1 Wuwipg/\o}
2 (z—1i)2(z+1) 2 (z—1)(z+i)? 4 (z—i)? 4 (z+4)? 4 (z—1i)(z+1)
s o0 s _g(z—i)(x+i GrvEp Ao HHVEP Ao
Ay = Palade, | dojalta?+ 1) e (S g
JrVEpPAC JHvEpAC _ . [(HVEpAC . . LHVEpAT o MHVEPAT 7374
Ry Rl oy ) R o) i e I e ey ( )
N;Lunpgko' Op.urapg/\o'
+ z+1 + T—1 } ’
S Ao s s —s(x—1)(x+i UK BHVEP
A4 = 4 04,1{)\0%06#,/9 f dl‘|$| +2($2+1) (T{AM p+m
—o0 (7.3.75)

CHvEp AHLvEp . FRVEp . Fuvep
o+ e T TS } :
Above, we have ordered the A;s in such a way that the index i corresponds to the power

(71 — x9)". We can solveﬂ these integrals and find the following results:

. s 21“(3"'1)1“(3‘53) w3/29=s=2(5— 3)sec(’725)
A= o {0 - R e 0
(7.3.76)
—_ T sgl r 3‘53 msec( 5 )T 3‘53
_411(:"'_2) ( r(2+g) )+1_16(Q+_Qf) r(g—g)ﬁ(s ) )
s ~ ﬁzfsflsr s-2kl ~ T s-2kl T 5-53
Ay = g4 {_(P+P) F(§+2§ ) (5+5) ( F(2+g) )
(7.3.77)
~ I(=)r((s Vm2~sr
—tw+ ) iW”WW—7ﬁfl}
1 gs 7r3/22_ssec(%s \/EQ—S-HF(S-*;)
A = e - @ m RS - - p P
(7.3.78)

2We used Mathematica in this case.
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RN PO e < vRr(s) (-1 [r(=59)]
A= E4{2A r(3+1) —(C+4) r(3+1) +(E-F) AT ’

(7.3.79)
We should emphasize that the result ((7.3.71)) is the e:z:aciﬂ result of the two massive open
strings and one massless closed string amplitude. Our next task is to take the low energy
limit of this amplitude and produce the effective Lagrangian for the both amplitudes

A(2;1) and .A(3;0).

Amplitude expansion

We are facing a very fundamental problem of finding low energy effective actions for
massive string states. As we described before in section [5.5.4] states in string spectrum
have the mass:

M? =

n
—, where n e W
o

. This mass formula in the low energy limit o/ — 0 creates two classes of states.
e The massless states which remain massless in this limit.
e The massive levels all of which upon taking this limit will have infinite mass.

This is known as the decoupling of the massive modes in the low energy string actions.
By taking this limit one would only keep the massless states (the rest will be infinitely
heavy). This is one of the main reasons that before [3] there were not many discussions
on massive string effective actions.

Having this in mind, let us look at our amplitude . We have gamma functions
(the solutions of integrals) that depend on the kinematic Mandelstam variables. We want
to expand these functions in the limit o/ — 0. This limit is where we face the decoupling
problem. If the states were massless we did not have any issues. We would have plugged
on-shell conditions back in gamma functions and expand them in o/ — 0 limit. However,
we have massive states involved and this means that their momenta scale with o', in
particular:

k; ~ é, whereas q~1.
Therefore, we need to be really careful while taking the low energy limit. Taking this
scaling into account we see that

o' —0

Oé/ kl : k’g — 1, (7380)
while /
o ks q 0. (7.3.81)
Using (7.3.69)), this yields
sT00 or ¢ 1, (7.3.82)

3There are no higher order . All corrections terms are included in the gamma functions.
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instead of the naive limit value s *=9 —2. Now, the issue is to justify which of the two
formulations of s in to choose and use for our expansion. In order to do that we
go back to the construction of the low energy effective string action. We can clearly see
that only taking o/ — 0 leads to two different choices. So we need an additional condition
for the limit. The new scale that we take into account is o/k?. Since different poles in
the gamma functions correspond to exchange of internal strings with the mass equal to
the value of the pole [I1], in order to obtain the leading order contribution (associated
with the massless internal exchange) we should expand the gamma function at pole zero
i.e. the value of the Mandelstam must go to zero. Therefore we amend the low energy
effective string condition:

Low energy limit

We rewrite all functions in terms of formulation of s that goes to zero as o/ — 0 we

have:

o — 0
/ (7.3.83)
s=-2a"ky-q—0

Doing so, we rewrite s dependence in the gamma functions in eq. (7.3.76)),(7.3.77)),(7.3.78))
and in terms of the vanishing s and expand in the limit o/ — 0. Therefore, using
the method we described above we have the following consistent low energy limit of the
two massive open and one massless closes string amplitude:

Low energy o/ expansion

A2,1) = g. { — Tr(a' - a?) e, ks + (e - a? - al),, kl'kS
+(e-al - a?) kK 4+ (e o - o) kg + (e - ot - a?) . kY q”

+Tr(e- ot - a?) (ky - q) + 5 [Tr(e - o)y, —2(at -2 a?),,

+Tr(e - at)a? )] q“q”} + O (a?) .

(7.3.84)

Due to the truncation we can see that this expansion is not exact in o since we have the
exchange of the string state between the open and closed strings which as we mentioned
corresponds to the poles of the gamma function. This means we have higher-order string
corrections in this expansion which are out of the scope of our current work.
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Effective Lagrangian

In order to produce an effective Lagrangian out of these terms we follow the standard
replacement for amplitudes:

au — My, € — G, (k)" — 0", (7.3.85)

Using these replacement rules on the M? amplitude that we found in (7.3.65)) we obtain
a effective cubic order Lagrangian for M, as:

Effective Lagrangian M3

£t = 5 { [MP] + 20/ M [0, M0, MP* — 30, My507 MY
(7.3.86)
40 00 My OP MEO" My |

Similarly, for the amplitude of two massive and one massless states ([7.3.84]) we arrive
at the following:

Effective Lagrangian GM?

L8 = g0 |G (0, MpoD, M — 40,M,,07 MY)

(7.3.87)
+ MY (9,Gpd, MP” — a,,GWaVMw)} .

We will compare and contrast these results with the bimetric gravity at the end of
this section. But first we take a look at the closed string candidate as well.

7.3.4 Closed string spin-2 state

Now, we turn to the closed string candidate for the massive spin-2 field of the bimetric
theory. Our method is as follows: We take the massive spin-1 open string states that we

identified in ([7.3.57) together with the massless vector we discussed in subsection m
Then, we calculate three-point tree level amplitudes for different cases:

e Scattering A(M M M) of three massive spin-1.
e Scattering A(MMG@G) of two massive and one massless spinl.
o Scattering A(MGG) of two massless and one massive spin-1.

These amplitudes will involve massive and massless spin-1 vectors. So, using the KLT
double copy (cf.section we produce closed string amplitude. Since we have the
massive/massless spin-1 fields the double copied amplitudes will correspond to the mas-
sive/massless spin-2 states. This is a nontrivial but easy to see, since the polarization of
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the double copied amplitude will be the tensor product of the polarization of two spin-1
states (i.e. ay, = €, ®¢,), it will be transverse and traceless. Therefore, it will correspond
to the correct propagating degrees of freedom for massive/massless spin-2 fields (two and
five degrees of freedom for massless and massive spin-2 fields, respectively).
Furthermore, since we are looking at the three point amplitude the KLT factor in ([5.7.165|
is going to be trivial (no kinematic dependence). Therefore, we only need to functionally
multiply the amplitudes, meaning:

Aglosed — Agpen ® Agpe" (7388)

We have three different possible vertex operators each associated with a different number
of SUSY. Looking at the vertex operators in ((7.3.57)). We can see that the main differences
are in the internal current J* and the picture zero of the vertex operators (as a result of
different internal energy-momentum tensors). Since we are using the type II string theoey
we must to take both amplitudes from the same supersymmetry. Therefore, we are going
to have the following double copies:

Nopen -1 ®Nopen =1 = Nclosed — 2’

Nopen -9 ®Nopen —92 = Nclosed — 4’ (7389)

Nopen —4 ®Nopen =4 = Nclosed — 8.

All of the amplitudes are three-point open string amplitudes with the following structure:
3

dLL’l 3
Aopen<k17 kg, kg) — / e S host ef)\cvaatter . Vk (l'la kl) .
Mo,z E SL(27 R) ! b }E

3
= L —Ag matter

Do

(7.3.90)
X < . V_l(l‘l,]ﬁ) . V_l(I‘Q,k’g) . Vb(l‘g,k’g) . >
_ ! (e(x1)c(z2)c(x3)) D, < s Vog(xy, k) o Vg (o, ke) 2 Vo(xs, k) >

/
& Go

Do

In the last line, we have used the fact that the SL(2, R) invariance will fix the positions
and remove the world—sheet integral. Now we can plug back vertex operators from (|7.3.57))
and calculate the contractionﬁ,

Agaa = \5;7 €1y €2y €33 Tr([T, T°)T¢) K Nyan B2,
Asaa = J5 ey azn Tr([T7 T T¢) KNaaa B* (T3,

(
(7.3.91)
Aaaa = 5—27 ayy, agy €3y Te([T%, TP T¢) KNaaa B (T7 T5)

Aaaa = 5 ayaz a3 Te([T TT¢) KNaaa B (T T5 T3)

4As we also showed in the example the contractions will also be position independent
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where a;, is to be understood as a;,, a;“u and a%N and J* as J;, J and JMYN for

N = 1,2,4, respectively and the bold A is the notation for massive legs. The B**
contraction function is given by:

B = <Clc203><€_¢1€_¢2>{(¢f¢5> [(z'ple 10X3) + (ip2Xs iaX@}

(7.3.92)
20 [(0f (- ) o) = (Ot (0]}

There are some important points to emphasize:

e First, we have the Chan-Paton factors in the amplitudes these should not be mixed
with the Lie algebra of the currents.

e Second, there are extra terms in the vertex operator arising in the picture changing
procedure that would have spoiled the structure we have here. However, upon
performing the contractions they all vanish and hence they have no impact on the

results (see [C.3).

e Third, we can see from the second amplitude in that regardless of the theory
(and supersymmetry) we will have a one-point function of the current () in the
decay channel of the massive field to two massless fields. This one-point function
will force the amplitude to be zero in all cases:

N=1,24 _
ATt =0. (7.3.93)

This is in agreement with the Landau and Yang theorem that massive particles
cannot decay into particles of the same helicity. This result has been extended to
higher spins in [I08], which we are going to refer to also in the case of spin-2 field
after the double copy.

e Looking at the OPE of different currents we see in ((7.3.37) that for the N' = 1
case the three-point function of ;s vanishes. Therefore, for this case we also have
vanishing amplitude:

AL =0. (7.3.94)

e Finally, we calculated the standard massless open string spin-1 amplitude in the
example [5.6.2] So we just use the result of the amplitude when necessary.

After multiplying all the functions and polarizations we have the following results for each
case:
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Massive spin-1 amplitudes

N=1,2,4 Yo b
Apas = \/_,f‘”(al-azpl-53+a2~e3p2-a1—1—53~a1p3-a2),
«

N=2 _ Yo rabe ABC (. A B c B C A c A B
AAAA__,f € (al-a2p1-a3+a2-a3p2-a1+a3-a1p3-a2),

Vo

N=4 9o  rabe (,MN ML NL ML , NL MN NL _MN ML
AAAA:\/EJCM(% "Gy Tpr-Qz T Hay Tcaz "p2rap s +az’-a) T P3c Qg )
(7.3.95)

where in A% the Kac-Moody SU(2) indices of ai' and a are implicitly contracted
with each other, while in AYZ% the Kac-Moody SO(6) are contracted, namely a; - ay

stands for a}’™ - ad’™. Recall that a?'" is anti-symmetric explicitly w.r.t.,the interchange

of M and N.
Now we can construct the closed string spin-2 amplitudes M as the following sym-
metric double copies:

Meaee = Aaaa ® «ZAAA . Maev = Aaaa ® -ZAAA
(7.3.96)

My = Aaaa ® -ZAAA , My =Aaaa ® «ZAAA

where A = A is the anti holomorphic left mover of A. In the three point amplitude
case, this is not going to affect us since there is no position dependence left in amplitudes.
First, after constructing the double copy the massless case we obtain the famous (graviton)
result:

Mgfgé’% = Yo [(kl ce3 ki) Tr(er - €2) +2ky €1 62785 Fy
(7.3.97)
+ cyclic permutations .

Second, as mentioned for the case of one massive and two massless amplitude we have
vanishing amplitude:

MPZ2A8 — 0, (7.3.98)

For the other mixture of two massive and one massless case amplitude, we have:

Mﬁ\\ﬁ;é’g = Y [(k’l ce-k)Tr(ar - ag) + 2k a1 -ag-e- by
(7.3.99)

+ cyclic permutations,

where in MA/31. and M35, we have the Kac-Moody SU(2) and SO(6) indices, respec-

tively. These indices are implicitly contracted with each other. For example for /4" and
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BB in SU(2) and aMNM'N and QPO in 50(6) we have:

(k- g k) Tr(a - €)

(ky - aé‘”NMN' k) Tr(aMNMINT. gy

(k1 - ag - k)Tr(ag <€) = { (7.3.100)

Finally, For the all massive cases, we have:

M]M]V[M O

SABC_A'B'C’ cc’ AA BB’
MMMM = 9gc€ € [(k’l “Qg o kl)Tr(Oﬁ cay )

+ 2k 0‘114 oy P 043C kl] + cyclic permutations
MMMM = YJe [(k‘ Ozé\[LN/L, k1) Tr(o) MNM'N' aé\/lL]V[’L/)

! ’ rrt rrt
4 2ky - QMNMIN' | (MIM'L | (NIN'L

2 3 1] + cyclic permutations .

(7.3.101)

Effective Lagrangian

Having all the spin-2 amplitudes, we are ready to construct the low energy effective La-
grangians. In this case, we have a much easier task since there is no integration left
(unlike the previous open string case) and all amplitudes are exact in orders of o/. There-
fore, we only need to follow the standard procedure as before and perform the following
replacements for both spin-1 and spin-2 amplitudes:

o — M,

wy Ew — G

a, — Aj, €, — AL, p—ididt. (7.3.102)

ws

We have for the spin-1 amplitudes the following effective Lagrangians:

Massive spin-1 effective lagrangian

N=124 Yo abc a vb pc
LT = T (00 A
E =1,2,4 O7

AZA

N=1,2, Yo abc a v c a ve
£A2Al24 _ = fFab [(3“14,,) A bAu +2A7 (0"A%) A } ; (7.3.103)
EABC (auAZA) AVbBAZC, N = 27

o Yo abe a v c _
Lan= 51 (" AZMN) AVPMEACNL - N =4,
0, N=2,.

5Every index is associated with a different Kac-Moody i.e. in af4" A is index in the one SU(2) and
A’ is index in another SU(2) current. Similarly for the SO(6).
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This result is the massive spin-1 effective action from string theory. Although this was
not our goal, this is a pleasant side result. One can see the structure of the Proca action
which is the Yang-Mills theory deformed by the mass term m?A, A in the effective £ 43
terms. Therefore, this state can also be considered as a string candidate for the Proca
field theory. In addition, one can check that the A? terms are indeed gauge invariant
(upon replacement of one polarization with on-shell momenta).

Similarly, for the closed string amplitudes upon replacing we obtain the
following effective Lagrangians:

Massive spin-2 effective lagrangian

LA = 9. G (0,6 00,G* — 20,607 GE)

‘Cg/2:]\37478 =0,
LAY = g [ 6 (0, M0, M — 40, My M)

(7.3.104)
+ 2M"(9,G e 0, M?” — apGWaVMpU)] ’
£§\\4/3:478 = Gc M (auMpaauMpU - 28VM0080MS) ’
LYy =0
M3 = Y-

There are several points about these effective actions to note:

e The first observation is the universal form of the massless graviton in all possible
supersymmetry cases.

e As expected the decay channel of massive spin-2 state to massless spin-2 state is
forbidden by vanishing of Lg2,.

e For the case of N = 2 supersymmetry the U(1) current algebra enforces £4752 = 0
meaning, it is a trivial candidate at the cubic level.

7.3.5 Comparison to bimetric gravity

We can now compare both our effective Lagrangian results for open string ((7.3.86)),(7.3.87)),
and for closed string with bimetric Lagrangian. From the bimetric Lagrangian in
the mass eigenbasis we take all cubic interactions. Therefore, looking at (4.4.74)),(4.4.75)
and changing the notation from (6G,,,0M,,) to (G,,, M,,). We will have the following
Lagrangian terms:

Bimetric 3 point interactive Lagrangian

bim - 1

= s G (0G0, G — 20, GY) (7.3.1050)
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L =0, (7.3.105b)
[’lélﬁ2 - ; |:GMV (auMPUaVMpU - 481/M,0080Mp) ’
mgm H
- 2MH (DGO MO = 0G0, M) | (7.3.105¢)
. —B1 + B3) (1 + a2)3/2m
£b1r3n — ( 61 g M3
M 6« [M7]
(1-0a?)

+ — M*"(0,M,,0,M"° — 20, M ,,0° M?) . 7.3.105d
mgam ( Hee P “) ( )

Before we proceed we should make a very important point. As a keen reader will notice
all the terms in our three Lagrangians i.e. bimetric, open string effective Lagrangian and
closed string effective Lagrangian are the same up to relative numerical factors. This is
not a coincidence. We are looking at the tree level three-point terms that are Lorenz
invariant and ghost free. These terms are the only possible terms. However, this does
not mean that our discussion is trivial. In the open string case we manage to define a
consistent way to obtain an effective Lagrangian and avoid the issue with the tower of
states with an integer gap. Further, in the closed string case, we have produced the first
massive double copy for string amplitudes and we are going to check whether or not these
massive spin-2 amplitude for open and closed strings will match the bimetric theory.

Open string massive spin-2 state

We can now compare the first amplitude we calculated involving massive spin-2 open string
states. As we mentioned all allowed terms compatible with symmetries are available in
both bimetric theory and our effective Lagrangians. Looking at the bimetric expansion
(7.3.105d)) and comparing it with the low energy Lagrangian for the massive open string

state ((7.3.86|) and ([7.3.87)) we can construct the following parametric relation:

Parameter constraints

Comparing the graviton case we matched with the following identification between
the string coupling and the bimetric mass
1 | o m f

A e where: a=_— (7.3.106)
gV g
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For the terms involving the massive spin-2 state, we a have numerical discrepancy:

M™ (8, M,p0, M — 2 8,M,,0° M?)
bimetric
, i i (7.3.107)
vs MM (8, M,pd,M? — 4 0,M,,0° M?),

open string

Given this issue, we refrain from comparing further the couplings. However, let us look
at this issue a bit deeper. The cubic term in question is coming from massive spin-2 self-
interaction. These interactions as we discussed in section are governed by a Einstein-
Hilbert type action which is the consequence of having two sets of diffeomorphisms in the
bimetric theory. So this comparison tells us that the open string effective action at the
cubic level does not respect the diffeomorphisms. Does this mean string theory has ghosts
or bad degrees of freedom given this discrepancy? The answer is no! String theory is ghost
free and this apparent problem will be resolved if one computes all higher derivative (and
higher order ) corrections and resum all of them [57]. However, what this means is that
this open string state is not a good candidate to represent the massive spin-2 theory as
depicted by bimetric and dRGT [I7, (18] in the low energy o/ truncated level.

Closed string massive spin-2 state

Now, we turn to the result in for the closed string case. We see that the relative
numerical factors are a perfect match (unlike the previous case). However, in string
theory, there is only one free parameter o’ so to accommodate for that, we have to fix the
bimetric parameters ;. Therefore, we have matched the bimetric Lagrangian for specific
points in the parameter space:

Parameter constraints

As before we have the universal graviton coupling:

. h y 7.3.108
= g, where: o = . L.
mgV'1+ a? g my ( )

For the terms involving the massive spin-2 fields we have the following universal
(with respect to different SUSY cases) constraint:

4
m2(1+ a?) (B1 + 262 + ) = = (7.3.109)
For the rest of the terms we have a split between N’ = 2 and N = 4, 8 cases:

N:2:>61;63 ) Oé;la

(7.3.110)
N=48=p=0 , a~062.
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In all three cases N' = 2,4,8 matching the GM? will result in the first constraint
B1 = Ps. For N = 2 we have that the M3 Lagrangian vanishes and hence we have a = 1.
In the other two cases matching the M? Lagrangian will result in equation a®? +a—1 =10
solving it for positive a we give the above result.

Note that for all cases we have that L2, vanishes. This, as we discussed, originates
from the spin-1 amplitude . However, it is a very important feature as it has been
argued that the absence of the decay channel for the massive spin-2 fields to gravitons is
a feature that only ghost free bimetric theory enjoys [64].

7.4 Double copy in intersection theory

One of the most intriguing features of double copy relations is the connection between
spin-1 and spin-2 theories and their symmetries. Likewise, the relation between gauge in-
variance for spin-1 theories and diffeomorphism invariance associated with spin-2 theories.
It has been argued in [52] that taking two spin-1 theories that satisfy color-kinematics du-
ality and double copying them results in a spin-2 theory that is invariant under linearized
diffeomorphism. This important feature requires further investigation and understanding
for the massive case which is notably challenging [89]. In that case, one needs to clar-
ify the role of CK duality and the corresponding KK-BCJ amplitude relations. Then,
with this information one may construct massive spin-1 theories which satisfy this duality
and check the corresponding double copied theory against diffeomorphism invariance for
massive spin-2 theories, e.g. dRGT gravity.

In intersection theory, double copies can simply be constructed by pairing two theories
whose description in terms of intersection numbers comprise a color—form por =
PT(a). The latter constitutes an orthonormal basis, i.e.

<(I)+,aa CI)!,b>w = 5ab ) (I)-i-,a = PT(CL) ) (74111)

and this fact allows us to simply "glue” two different theories both containing such a
color—form ler,

Double copy in intersection theory

Concretely, for two theories T and 75 given by the intersection numbers
T = (@}, ™) Ty = (o2, 0" ,) (7.4.112)
respectively. One schematically obtains for their double copy:
Ty ®Ts = (¢, %) . (7.4.113)

More precisely, with the orthonormal basis ([7.4.111)) we have

(m—3)!

oL = Y (PTV(a).¢})e PT(a)

a=1
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(m—3)!
Pt = 3 (¢, PT(b), PTV(b) (7.4.114)
b=1
and with o
(PTV(a),¢})w = D, Slal] (PT(b), ¢} ) ,

we consider the following manipulations leading to a double copy expression

(m=3)!
(Pl 02y = > (PTV(a), ¢} )w (°, PT(a)).

(miili)!
= Y (¢?, PT(a))., Slalb) (PT(b), ¢} ).
.
= Ti(a) Slalb] T2(b) , (7.4.115)

a,b=1

with the intersection form or KLT kernel S[a|b] given in (6.3.35)). Therefore, the
two theories ([7.4.112)) involving a color form in their twisted intersection forms give

rise to the double copy ([7.4.115)) denoted by T} ® T5.

7.4.1 Collections of known double copies

Here, we compile a list of different double copy constructions from pairs of theories dis-
cussed before. All of these theories exhibit a color form " in their twisted intersection
form . We will see how in each case what are the underlying theories and how
the double copy of the theory and the amplitude (as v — oo limit of the intersection
number) is constructed. The main point of this section is to motivate our proposal on the
relationship between BCJ double copy and the twisted cohomology.

(i) Special Galilean theory
We start with the special Galilean theory described by gluing two identical NSLM|

theories
Ti(a) = Avrsu(a) = lim (PT(a), 915" ) .
Ty(0) = Ayssar(b) = lim ("2 PT()), (7.4116)
with we construct the double copy T} ® T, of Galilean theory
Asgar(n) = Tm (o3, 0370, (7.4.117)

6Non linear sigma model
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(if)

(iii)

describing the scattering of n scalars with higher derivative interaction (4.3.16]), i.e.:

(n=3)!
Ascal( Z Anrsm(a) Slalb] Anpsa(b) - (7.4.118)

a,b=1

Einstein—Yang-Mills (EYM) Secondly, we consider a double copy from gen.YMS
and YM theories

Tl (CL) = Agen.YMS(a) = alll_{nOO(PT(a)u @f?;«{\;[>w s
TZ(b) = AYM(b> = <90g(fzrﬁrerv PT(b)>w ) (74119)
to construct the double copy T; ® Ty of EYM amplitudes [2]

Apyu(n;r) = lim (09 g0, (7.4.120)

describing the scattering of n gluons and r gravitons [50]

(m—3)!

AEYM TL T‘ Z .Agen YMS [a|b] .AYM(b) s (7.4.121)

ab=1
with m =n +r.
Dirac-Born-Infeld (DBI)
Thirdly, we glue together YMS and NSLM theories
Ti(a) = Avwis(a) = lim (PT(a), $74,).
Ty(b) = Anscu(b) = Lim (p*99" PT(b))., (7.4.122)

o/ —o0

to construct the double copy T} ® T, of DBI amplitudes

Appr(n;r) = lim (o4 o), (7.4.123)

o’ —oo

describing the scattering of r gluons and n scalars [50]:

-ADBI n T Z AYMS a|b] ANLSM(b)- (74124)

a,b=1

Einstein-Maxwell (EM)

Furthermore, EM can be written as a double copy of the following two theories

Ti(a) = Ayus(a) = lim (PT(a), @V}, ) |

o/ —o0
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T5(b) = Aym(b) = (@55, PT(b))w - (7.4.125)
giving rise to the double copy 177 ® T, of EM amplitudes

Apu(n;r) = lim (gpgm,ﬁiew@f]\fr> , (7.4.126)

o’ —o0

involving r gravitons and n photons [50]:

Apnr(n;r) Z Ay ars(a) Slalp] Ay (D) . (7.4.127)

a,b=1

(v) Born-Infeld (BI) theory

The amplitudes of Born—Infeld theory can be written as a double copy of the fol-
lowing two theories:

Thi(a) = Anrsu(a) = lim (PT(a), g P
To(b) = Ay n(b) = <909_mflgeaPT(b)>w : (7.4.128)

Then, the double copy T7 ® T3 yields the BI amplitudes

Apr(n) = lim (@99, o548, . (7.4.129)

o’ —oo

accounting for the scattering of n gluons:

Apr(n Z Anrsar(a) Slalb] Ay (b) . (7.4.130)
a,b=1

(vi) Extended Dirac Born-Infeld (ext.DBI) theory
In addition to BI and DBI the amplitudes of ext.DBI theory can be written as the

double copy of the following two theories:
Ti(a) = Anrsu(a) = lim (PT(a), PYmir)w
Ty(b) = Agenyus(b) = (@M, PT(b))., (7.4.131)

—,n;r)

Then, the double copy 177 ® T yields the ext.DBI amplitudes

Aco.ppr(n,r) = lim (EVM o5 (7.4.132)

o’ —o00
accounting for the scattering of r gluons and n higher derivative scalars as:

(m—3)!

Aczt.oBr(n,r) Z Anrsm(a) Slalb] Agenyms(b) (7.4.133)

a,b=1
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(vii)

(viii)

(DF)? — photon theory
Finally, the last spin-1 theory we have is the amplitudes (4.3.33)) of (DF)?> — photon
theory can be written as a double copy of the following two theories:

Ti(a) = Axrsu(a) = lim (PT(a), 95" ) |
T5(b) = Apry(b) = <¢B°somc PT (b)), (7.4.134)
The double copy T7 ® T, for the amplitudes

A(DFy2—photon(n) = lim (P picaler) . (7.4.135)

o’ —o00

involving n higher derivative photons gives:

A(DF)2—Photon (1) = Z Anrsa(a) Slalb] Apry(b) . (7.4.136)

Note, that this double copy involves Einstein gravity and higher—derivative photon
terms, cf. equation (4.3.32]).

Conformal gravity
According to table the scattering amplitude Acg(n) of this theory involving n
spin-2 particles can be represented as a double copy in agreement with the CHY
representation [53]

n—2
Acg(n) ~ lim <80‘[iaﬁgeytpf°§omc>w = / dpn [ [ 0(fe) P W1, (7.4.137)
o Mo k=2 —

This intersection number can be written as the following expansion:

Acg(n) = lim <909“de,90’1"?§’”“>°)

o’ —oo

(7.4.138)
Z Ay ar(a) Slalb] App32(b) ~YM ® (DF)?*,

a,b=1
matching the already known double copy [52].

Einstein—Weyl
The EW gravity scattering amplitudes Agw (n) involving n gravitons can be con-
structed through bosonic string amplitudes [82]. According to (4.3.43) in the limit
o/ — oo the Einstein-Hilbert part of the EW theory decouples and therefore the
CHY representation of this theory cannot be constructed by applying this limit at
the intersection number of twisted forms. On the other hand, by using the
bosonic string content one can write the amplitudes of the full theory as [5] (cf. also
table :

Apwy (n) = (g1use, ghosonic), (7.4.139)
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The double copy structure of this theory is given by:
Einstein-Weyl = [YM + (DF)’] @ Y M ~ (@9, Ql050m), . (7.4.140)

Note, that according to (6.3.38)) and (4.3.43)) in the limit o/ — oo the double copy
structure ([7.4.140)) will reduce to the double copy of conformal gravity (4.3.40). On

the other hand, for o/ — 0 we obtain the double copy for non—pure Einstein gravity
including an antisymmetric tensor and a dilaton scalar, cf. also (4.3.41]).

Actually, the double copy structure resembles the heterotic string. The
amplitudes for the closed heterotic string also referred to as GR+R? can be calcu-
lated by using the KLT relations implementing the open bosonic string amplitude
together with the open superstring amplitude (6.3.33). The action up to
order o/® was derived in [16]

1

2
Sheterotic string — _? /ddx \/5 {R - $(6M¢>2 - EHQ (74141)

/

e a4 ) 0t

where ¢ represents the dilaton and H,,, = 3 (8[MBVp] + %wﬁi’RabW> is the field

strength of the anti-symmetric B—field and the Chern—-Simons form w. Note, that
in the linear order in o' corresponds to the Gauss-Bonnet term (4.3.37)).
In the limit o’ — 0 we recover standard GR including an antisymmetric tensor and
a dilaton scalar, cf. . Likewise, in this limit o/ — 0 the double copy structure

(7.4.140)) boils down to Y M ® Y M.
Weyl® or R?

The amplitude structure of the Weyl?® can be reproduced by the intersection number

(6.3.8) involving a pair of the twisted forms (/6.3.39)
Aweys(n) = lim (pP%0me plosonie) - (7.4.142)

leading to the following CHY representation:

n—2

Appoyss(n) = / dn 1808 (V10 (7.4.143)

Moo k=2 M

Looking at equation (4.3.31)) it is evident that this integrand is built from two sectors
accounting for the (DF)? theory. Therefore, the twisted form (6.3.39)) gives rise to
the double copy structure of the amplitude (4.3.44)), i.e.:

Weyl® = (DF)* ® (DF)?* , (7.4.144)

or likewise [52]:
(DF)?* ® (DF)* ~ (VR)> + R* . (7.4.145)
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(xi) Weyl*-DF?
The Weyl>-DF? can be considered as double copy of a (DF)? with (DF)? + ¢?
theory. More specifically, we shall use the fact that the amplitude of Weyl*~(DF)?
theory may be described by the two twisted forms gplfﬁ’ﬂc and gbﬁ_f‘ﬁfﬁw The Weyl?-
(DF)? theory can be considered as an exotic cousin of EYM theory. Its CHY

representation is assumed to take the following form (cf. subsection [6.7.3)):

. 1 b ic  ~b ]
Aweyi—(pryz(nir) = lim (@270, ).,

n+r—2
_ (7.4.146)
= / dptsr 1] 005) CW11 W11 1 -
MO k=2 r n-+r
,n+r

The formula ([7.4.146)) is a conjecture, which presumably may be proven by am-
bitwistor construction [58]. However, this goes beyond the scope of this work and
thus we write the Weyl*-(DF)? theory in terms of the following double copy of
theories:

Weyl® — (DF)*> = (DF)* ® [(DF)* + ¢°] = (DF)* ® (DF)* + (DF)?. (7.4.147)

In table we summarized all double copied theories with their originating theories.
These are previously known and newly constructed double copies from theories containing
a color form ¢®". e.g.the double copy of a (DF)? theory with itself gives rise to the
amplitudes of six—derivative gravity R® originating from the bosonic ambitwistor string
[53]. Note, in contrast double copying F'* amplitudes leads to the amplitudes produced
by Einstein gravity coupled to a dilaton field ¢ and deformed by operators of the form
dR? and R?® [109]. On the other hand, the conformal supergravity (CSG) amplitudes (of
the non-minimal Berkovits—Witten type theory [54]) from table follow from double
copying (DF)? and SYM theory [52]. From table [7.1]it can be evidenced that there are
new double copies of theories that can be constructed only by using the property that the
color form provides CK duality and can be used as an essential part to double copy two
different theories. Besides, there is a close relation between string theory and the content
of table utilizing the inherent double copy of the closed string in terms of open strings
(cf. [25, 82, 110]). Moreover, we find a double copy for higher derivative (HD) gravity and
bigravity to be discussed in subsections [7.4.3|
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Theory Ty T CHY representation
sGal NSLM NSLM (Pf'A,)*
EYM gen.YMS YM C.PfUs Pty
DBI YMS NSLM  PIX, Pf'Wg  (PfA,,,)°
EM YMS YM PfX, Pf'Ug P,
BI NSLM YM (Pf'A,)? Pf'y,
ext.DBI NSLM YM C, PfUs (Pf A, )
(DF)*Photon NSLM (DF)? (P A2 W1y 1
—~
Conformal gravity YM (DF)? Py, W11 1
n
Einstein-Weyl YM YM+(DF)? not known
2
Weyl® or R? (DF)? (DF)? Wi
n
Weyl-DF? | (DF)*+¢*  (DF) CaWi1. aWi1..1

Table 7.1: Double copies T} ® T» through twisted form description (]7.4.112[) and (]7.4.113[).

7.4.2 Formal algebraic double copies

In the previous section, we used the known and newly constructed twisted form description
of theories to produce double copies. However, there is an additional way to make double
copies with the use of a biadjoint scalar. Since the biadjoint scalar is described through
two color forms " (cf. table it can act as the identity in the space of theories. This
feature is already shown in the KLT matrix analysis [49, 111] and here we are going to
provide an intersection theory argument for it. Let us take the intersection double copy
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setup we had in ([7.4.115]) and take one of the theories to be the biadjoint scalar. We have:

Tbiadj — <§OC_OIOT, @flm), T, = <¢T27 Soi?lor> 7
(m—=3)!
Thiaaj @ T = <%0}H<P2,> = Z <PTV(a), (p‘ffl‘”>w <¢37 PT(a)).,
a=1
(m—3)!

= (PT"(a), o) (92, PT(a))y = (¢, PT(a))e = T3

(.
a=1 ~~

(sab

(7.4.148)
So we can evident that the biadjoint scalar acts as the identiy element in the set of theories.
Therefore, we can use the elements of table and from a set. Together with the tensor
product and the biadjoint as the identity elemen. This set forms a wunital magma. Using
this we can construct new elements of the set of theories by multiplying. For example the

double copy construction of EYM amplitude amounts to:

gen.YMS®@YM = [YM +¢*] @ YM = (YM®YM) +YM = GR+YM = EYM . (7.4.149)
Furthermore, in Table we have:

gen.YMS ® YMS = [YM + ¢*] ® YMS = (YM ® YMS) + YMS = EM + YMS . (7.4.150)

On the other hand, double copying two copies of gen.YMS amplitudes have been argued
to produce amplitudes in Einstein—Yang-Mills—scalar (EYMS) theory. The latter simply
follows from the compactification of EYM theory [20} 50, 112]. This result can also be
anticipated from the decomposition:

gen. YMS ® gen.YMS = gen. YMS ® [Y M + ¢°] = EY M + gen.YMS . (7.4.151)

Putting all of these in the next table the four double copies (7.4.121)), (7.4.124]),
(7.4.127) and ([7.4.133)) are also tabulated among some new constructions like EM ampli-
tude squared.

Theory ® YMS gen.YMS NLSM YM

YMS EM?Z EM + YMS DBI EM

gen.YMS | EM + YMS EYMS ext.DBI EYM

Table 7.2: Table of different double copies

This notion is particularly powerful since it does not require knowledge about the resulting
theory after double copies and we can use this formulation to investigate the space of
theories.
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7.4.3 Double copy of Y M + (DF)? theory and higher derivative
gravity

In this section we look at one of the main use of the algebraic double copy method, which

we discussed in the last section namely the double copy of Y M + (DF)? theory and show

that it can be related to higher derivative (HD) gravity. Looking at table we can

write the double copy of the Y M + (DF)? theory in terms of known spin-2 theories in
the following way:
[(DF)?+YM]® [(DF)*+Y M|
~(YM®YM)+ (DF?*® DF*)+(DF?®@ Y M)+ (YM @ DF?) (7.4.152)
GR RS cG ca o

~GR+CGy+CGy+ R* ~GR+ CG + O(R) .

Since the amplitude of the Y M + (DF)? theory is described by the intersection number
(6.3.8) of s and " we can write the amplitude of the resulting double copied
theory as:

Afn) = (ghonre, o) (7.415)
The twisted form gplfjf”ic stems from the bosonic string and is given in (6.3.32). The
amplitude only involves the metric g,, described by the higher derivative La-
grangian, which comprises the conformal term+GR+R? corrections . Therefore,
looking at the structure of the double copy in we see that this amplitude corre-
sponds to the interaction of n spin-2 fields (i.e. g,,) with higher derivative interactions.
Hence, it is worth looking at the theories known as HD gravity. The latter can be defined
by the following Lagrangian [113]:

1
L=m. /g |MR(g)+ s (532 — R“”RW> + O(R?) (7.4.154)
with the following equations of motion
A
B, + A—; G +O(R) =0, (7.4.155)

where B, and G, are the Bach and Einstein tensors, respectively. Some possible can-
didates for the O(R?) operators in gravity can be found in [114]. The Lagrangian in
describes GR plus Weyl (conformal) interactions together with higher order
curvature corrections O(R?). Comparing this Lagrangian to the double copy structure in
(7.4.152)) we can see that the content and the type of interactions are the same.

Actually, the amplitudes for the closed bosonic string also referred to as GR+R*+R3
can be calculated by using the KLT relations and the open bosonic string amplitudes
(6.3.34). The action up to order /> was derived in [I15]

2 1
S closed = _? A%z \/,a {R - ﬁ(auqb)g — —H? (74156)

bosonic string 12
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/

+ e (Runp BV — 4R, R + RY)

1

2 —4¢ [
+a“e (16
where ¢ represents the dilaton and H,,, = 30,5, is the field strength of the anti-
symmetric B—field. Note, that in the linear order in o' corresponds to the
Gauss-Bonnet term which for d = 4 reduces to a topological surface term. In (7.4.152
there is also the higher order correction R?, which in the bosonic closed string (7.4.156
originates at quadratic order in o/?R3. It should be emphasized that in higher-point
gravitational amplitudes the order o/ cannot be reproduced from the double copy of the
o order of the corresponding open bosonic string amplitudes due to additional
a?(, F* contributions from a single open string sector [109, 116, 117].

It is worth mentioning that HD gravity may be related to bimetric gravity. The latter
is constructed through interactions of two spin two fields g,, and f,, with a nonlinear
interacting potential [18]. It has been shown [II8] that by expanding the potential of
bimetric gravity around a specific solution of f,, in terms of g, and integrating out f,,
one can match the Lagrangian of bimetric gravity to that of HD gravity. Therefore, the
intersection number associated with the amplitude in (7.4.153)) can also be related to
some particular parameters of the integrated bimetric gravity known as partially massless
bimetric gravity, cf. subsection [7.4.3]

1
R“VagRaﬂApRpr — ERwaﬂRuAﬁkaupa) + O(o/g) }7

Bimetric theory as a double copy

We discussed bimetric gravity in detail in section there is a special limit of this theory
known as partially massless (PM) bimetric theory, which is defined over the following
background solution to eliminate f,, [11§]

2
o = a2 + m—ZPW +Om™), (7.4.157)
where P, is the Schouten tensor defined as:
1 R
P,=—|\R,———9. 7.4.158

Plugging this relation back in the bimetric theory we can integrate out the field f,,.
In [I18] it was shown that the kinetic term of the second metric f,, and the bimetric
potential assume the following form (in arbitrary dimension):

m?>\/gV (S; Bn) = m2\/§Z Bnen(S) ~ Ao /g1 + kR(g)]

A1 d 2 uv 3
VI (4<d_1)R R RW)+(9(R),

VIR ~ (A VaRla) = S5V (o~ 1R ) + O().
(7.4.159)
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The parameters A;(3,,) are dimensionless. For simplicity, we absorbed other dimensionless
parameters, e.g. v in (7.4.157)), in the parameters A;. For details of the calculation we refer
to [I18]. We fix the parameters 3, in such a way that the term including the cosmological
constant vanishes i.e. Ay = 0. For the full fledged PM bimetric gravity, one has to fix all
remaining /3, so that also As(f5,) = 0 [118]. The last two terms of correspond to

the CG Lagrangian . More concretely, one has the following identity, cf.
_d
4(d - 1)
with Rgp the Gauss-Bonnet term, which is a total derivative in four dimensions and can
be discarded in the Lagrangian. After putting for d = 4 the relations back into

(4.4.46|) we have evidence that there are two copies of CG together with the kinetic term
for the first metric g, described by GR. Concretely, we obtain:

(Wowas)? = Rap + ( R? — R’“’RW> : (7.4.160)

As (1 5
L=m? /g |R(g9)+ *ASR(g) — azﬁ (§R2 — RF RW>
(7.4.161)
Al 1 2 v 3
—2W §R — R"R,, + O(R) .
Combining the terms ([7.4.161)) into the action we reproduce ([7.4.154)) with:

)\1 = (1 —|—Oé2A§) y
1 7.4.162
)\3 =T (2A1 + O[2A3) . ( )

m

Then, the resulting Lagrangian describes a HD gravity with higher order cor-
rections due to the bimetric theory. Calculating the equations of motions for the action
(7.4.154)) in the leading orderﬂ of m? one ends up with the same constraints as
in EW theory (cf. [I19]) and the comment below equation (4.3.43). Recall, that we have
eliminated f,, through and obtained the Lagrangian @ Therefore we
can relate the intersection number to the amplitude of the PM bimetric gravity.

Similar to EW theory PM bimetric gravity propagates seven degrees of freedom (pack-
aged into the metric g, ), which contain a massless spin-2 and a massive spin-2 states. In
PM bimetric gravity the scattering amplitude A(n) describes the interaction of n spin-2
fields g,,. The latter is described by the Lagrangian comprising the conformal
term+GR+R? corrections. Eventually, the amplitude A(n) may be computed by using
(6.3.8) and is given by the intersection number . Looking at table we may
anticipate for PM bimetric gravity the double copy structure .

In addition to GR in there are the two CG theories originating in ([7.4.161}).
The latter can be combined in one single subject to (7.4.162)), while the R® term is of
higher order m*. A final comment is that choosing the potential in bimetric action
as

V(B;S) = m? [(fi)* = " fiu] (7.4.163)

"Note, that R® is of order m?*.
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leads to Einstein-Weyl gravity. This has been pointed out in [56] and also commented
below equation (4.3.43)). Finally, a detailed discussion on string scattering amplitudes for
full bimetric gravity with comments on their double copy structure can be found in [3] [4].
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Chapter 8

Conclusions

In this thesis, we have studied Riemann surfaces and their applications to scattering
amplitudes. We saw that Riemann surfaces appear as the natural underlying world-
sheet of string theory amplitudes, CHY formalism and twisted intersection theory. We
discussed the spectrum of the superstring and use the low energy limit (o — 0) to produce
effective actions. In particular, we calculated the string amplitude with massive external
legs both with spin-2 states in open and closed string sector. Specifically, for the massive
closed string state, we constructed for the first time the double copy of massive states in
superstring theory. Furthermore, by taking the low energy limit we managed to produce
the effective action of the massive spin-2 field, which we compared up to cubic order, with
the massive gravity in the context of bimetric theory.

Cubic Effective Lagrangian

i — 2 L0320/ M [0, M o0, M7 — 1 0, M0 MY
(8.0.1)
+da” auaVMpgangaaMW} .
L8 = 90| G (0, Mpod, M — 40,M,,07 MY)
(8.0.2)
+MH(8,G 0, MP” — apGWaVMfw)}

where the numeric factor x is the only difference between closed and open strings.

We have:
Open string spin-2 < k =4

Closed string spin-2 < k = 2 (8.0.3)

Bimetric potnetial < k = 2

As a result, we observe that for closed string massive spin-2 state as double copy we
have a perfect match up to a particular choice of parameters in bimetric theory.

Furthermore, by studying Riemann surfaces, we also observed that adding additional
structure namely the differential twist w on top of the standard de Rahm cohomology
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creates the twisted cohomology.

Twisted de Rahm cohomology

Ve i=d=E£wA (8.0.4)

Then, the (smooth) twisted de Rahm cohomology complex of X is (Q,(X)?, V).
Denote the cohomology of (Q,(X)?,V,,) by H? we have

P (X —
HY (M, V) = P ELE) ’ji“’@ i (8.0.5)
Vo QN (M)

Similar to any other mathematical description more structure gives us more expressive
power. In the case of twisted homology/cohomology, we immediately see that one can
describe closed and open string amplitudes in terms of intersection numbers of twisted
forms.

Amplitudes in twisted cohomology

AP (ky, ko ks, .. k) = (C, @ KN = KN
(K1, ko, ks ) <v [ c. P+ (8.0.6)

C,® KN € H, 3(Mo,V.), @y € H" (Mg, V)

Adosed( ey ko ks, o kn) = (@4l :/ KN|? ¢y Ao
(1, ko, ks ) = (P+lp) MM\ 1 &4 ANy (8.0.7)

¢ € HZ®, py e HY?

Exploiting this relation among string amplitudes and intersection numbers we pro-
duced new twisted forms @Y and @iesene while the former is associated with the
superstring mixed open-closed amplitudes the latter with the bosonic mixed open-closed
amplitudes. Then, we used the CHY formalism of scattering amplitudes to provide proof
that these twisted forms produce a family of Einstein Yang-Mills and Weyl Yang-Mills

type amplitudes, respectively.

In addition we used the twisted cohomology description of the amplitude relations and
proposed a new method to understand the BCJ double copy. In particular, we evident
that all theories with ®°" will elevade to a double copy with a KLT matrix.

Double copy in Intersection theory

For two theories T} and 75 given by the intersection numbers

Tl — <90}H (pcolor> T2 — <(,02,7 SOcolm"> (808)
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we consider the following manipulations leading to a double copy expression
(m—=3)!
(Pl 0”) = D (PTY(a),¢})w (¢*, PT(a)).
a=1
(m=3)!
= (0%, PT(a)). Slalt] (PT(b), ¢} ).
a,b=1
(m—3)!
a,b=1
with the intersection form or KLT matrix S[a|b] given in (6.3.35)).

Since the origin of the BCJ double copy is in the color-kinematic duality, this formu-
lation can be used in the future to generalize the notion of the color-kinematic duality.

This study opens up more avenues of research in the field of amplitudes and Feyn-
man integrals. For instance, the very first extension would be to ask what twisted forms
describe massive string amplitudes. This question has its own challenges since the CHY
formulation, that we discussed here, includes exclusively the massless amplitudes (be-
cause of its origins in ambitwistor strings). Therefore, one cannot provide a field theory
amplitude directly. Conversely, it might open up a path to a formulation of CHY integral
for massive amplitudes. One may wonder what would happen if we take the massive su-
perstring amplitude, that we provided in this work for the bimetric effective action, and
construct the twisted form associated with it. Furthermore one-loop double copies may
be constructed in similar way as we did here starting from [120].

The other area of research involving intersection numbers is Feynman integrals as we
mentioned in the chapter |3| intersection numbers can be related to the Euler integral
representation of hypergeometric functions as well as the Baikov representation of the
Feynman integrals [24]. The intersection numbers do not carry physical information on
their own. Meaning, we can use them in different contexts. For example, one can write
loop amplitudes integrals as intersection number of twisted forms and use the lower loop
(e.g. one loop) twisted forms to describe higher loops [33].
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Appendix A

Grassmann formulation of string
Scattering amplitude

A.1 Preface

In this appendix we introduce the Grassmann variables, integrals and how to write vertex
operators in terms of these variables. We mostly follow [10]. As we discussed, string
amplitudes are described by a punctured Riemann surface with each puncture representing
a vertex operator position associated to creation or annihilation of a string state. e.g.,the
closed superstring tree-level amplitude assumes the form

A(n) = / dpn, (V (1,01, 21) ...V (€ny Dy 20n)) / H |2 — 2| 2PiPi |F(p,e)|?

MO,n 1<J

(A.1.1)
with the measure (6.3.10) and the twisted gauge form ((6.3.27)):

F(p —d,un/HdeG R ex (Z iPi - pj T Vibje €J+7( j)0ic PJ>'

Zk — %l it Zp — 25 — o 1919]

(A.1.2)
Here, we deal with the massless states of the closed and open superstring describing
a graviton and a gluon, respectively. Scattering amplitudes of Mixed open and closed
strings at tree level are described by a disk worldsheet. In the sequel we shall introduce
some necessary tools for computing disk amplitudes. Later we shall use the latter to
construct twisted forms for EYM amplitudes. For this it is instrumental that we look at
the standard vertex operators of superstring theory in terms of Gramann variables [10].

A.2 Vertex operators

The open string vertex positions x; are located at the boundary of the disk, while closed
string vertex positions z; are inserted in the bulk of the disk. The momentum and polar-
ization of a massless gluon are given by k, and €,, respectively. Similarly, for a massless
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graviton we have the left— and right-moving momenta ¢,, g, and the polarization €,,. To
cancel the ghost background charge on the genus zero Riemann surface we define their
vertex operators in the zero and (—1)—ghost pictures. We have the following list of vertex
operators:

e Open string vertex operator in zero—ghost picturd}
VO (x,6,k) = ¢, [0X" + o/ (k- )] k¥

—>/d6’d0 exp{zk;-X+9ég-aX+e\/Jk;-¢+é\/Je-¢}
(A.2.3)

e Closed string vertex operator in (0,0)-ghost picture:

N

VOO(=,7,6,q) = 2 [ DX + @3] [0X7 + T(qp)u (2)| ¥
— /d@ldéldegde_g exp {zq - X + Za )’Z + Hlélé -0X + 91\/&(] . 1/}

+ él\/aé“ . w + 92@26 . 55(: + 62\/55 YZ—F gz\/aé" . QZ} .
(A.2.4)

e Open string vertex operator in the (—1)—ghost picture:

VD (z, 0, k) = g, e ?@ypi(z) P X@ /d9 exp{ik- X +0c-¢} . (A.25)

o

e Closed string vertex operator in the (—1, —1) picture:
VLD (2,26, q) = e, e POH(Z) e 0Oy (2) X2

—>/d9d9 exp{z‘q-xma-)?%g-@heew} . (A.2.6)

Finally, for the string S—matrix the following on—shell conditions must be imposed:

E=¢=0,

A.2.7
kte, =0, ¢ =0, ey =0. ( )

These are the standard massless, transverse and traceless conditions of on-shell string
states.

!The map of the string vertex operators to their GraBmann representations is also given. For this we
have removed the ghost field ¢ by noting that the total ghost charge of (—2) in the amplitude must be
contributed by choosing those ghost pictures such that a factor (e~¢(@)e=?(@:)) = (z; —x;)~1 is exhibited.
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EYM string amplitude

B.1 The case of one graviton EYM amplitude

In this section, we perform the first steps towards extending our result for two
gluons and one graviton to the generic case by increasing the number of gluons, i.e. open
strings in the underlying string correlator . To simplify the Graimann integral
(6.4.51)) we perform similar steps, which took us from ([6.4.59) to (6.4.67). In addition,
following subsection for the open and closed string states we introduce the unifying

notation (subject to 41 = €,41):

{gla "'7€n+2} = {8175% "'7€n7€n+1agn+1} P
{pla "'7pn+2} = {k17k2"'7kHJQIaal} .

With these preparations we can write ((6.4.51)) as

n+2
9,0, .
I(n;1)=C(1,2,...,n / db;db; KN-KN
) =2 o) [ JLdas, 22
n+1 = n+1 A
9 (0:0,&i - p;) (0:6;& - &)
X exp {a ( ; Zi — Zj F o/—léﬂj + ; Zi — Zj F O/_leigj

i#j

ntl n n+1
+ i (0:0:€ - p)) 4 i (0:0,pi - p;)
o AT AT /10,0, zi — 2; F o/710,0;
i

. (0n+2§n+2£n+2 'pj)
" Z Znt1 — Zj F 710, 100;

j=1

i>j

(B.1.1)

Let us make some comments. Firstly, KN - KN is the Koba—Nielsen factor (6.3.11]) for

n+1 closed strings. Secondly, comparing (B.1.1)) with (6.4.67) we evidence that the main
difference is the additional last term in the exponential of (B.1.1). It accounts for the
new type of interactions between the anti-holomorphic field 0.X from the single graviton
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vertex and the anti-holomorphic open string fields e®X () from the gluon vertices subject
to the map . On the other hand, the disk amplitude involves additional
interactions between holomorphic and anti—holomorphic fields which are accounted for by
the additional terms produced by the map .

At any rate, due to special kinematics of the three—point amplitude ((5.6.144)) to arrive
at :6.4.67# we did not apply the embedding , but simply rewrote the disk integrand
(6.4.59) in terms of (A.1.2). Nevertheless, applying the map at (6.4.59) yields
the same result (6.4.67). In order to see this let us look at the equation (B.1.1]), which
for the case n =2 and KN = 1 becomes:

4
Z(2;1) = C(1,2) /Hdeidei 2191_9222
=1

3 = 3 5o
X exp {0/2< Z (91'9]'5@ ‘pj) + Z (Qz‘ejfi : fj)

Zi — Zj F o/*lelﬂj = Zi — Zj F @/7101‘9]'

4,j=1

i#£]
3 ~ 3 2 =
(0:0:&: - pj) (0:0,pi - p;) (040484 - pj)
+ ; Zi — Z; F o/—lezﬂj + ; Zi —Zj F 0/—191-6’j + Z Z3 — Ej + a’—194€j ’
i#j

(B.1.2)
Expanding the exponential in (B.1.2|) w.r.t.,the fermionic variables and using the trace-
lessness condition of the graviton polarization gives:

T(21) = C(1,2) / f[ 02 1g,a; {(919351'Q)(H?’eﬁ?"62)221(9494g3'k1)

(21 — 23)(22 — 23) (%1 — Z3)(Z2 — Z3)

(B.1.3)

(929352 : Q)(§351€3 : 61)521(9_49453 : k1) (515251 '52)(539363 : /f1)§21(§494§3 : k1)
(21 — 23)(22 — 23)(Z1 — Z3)(%2 — Z3) (21— 23)(22 — 23) (21 — Z3)(Fa — Z3) |

Up to the color factor (6.4.75)) the expression ([B.1.3)) agrees with (6.4.60]) subject to the
reality condition z; = z; and 2z, = Z3 of the two open string positions on the disk.

Now, we proceed similar as in subsection by making profit of the KLT like con-
struction of EYM amplitudes established by the map . We shall construct from
our integrand a pair of twisted forms ¢, ¢, whose intersection number (¢, p_),
will give, in its o/ — oo limit, the EYM amplitude formula of the CHY formalism (4.3.15)).
For the case of n gluons and one graviton the latter yields the integrand:

Toi1(1,2,...,n;q9) =C(1,2,...,n) Cy PV, 11(ks,q,€,0) . (B.1.4)

Here, C(1,2,...,n) is the Parke-Taylor factor (6.3.9) and C,, is defined as:

n—1
qu = (5q : ml) Ol = PfUg, = PfU, | (B.1.5)
=1 01,0141,
The latter will be identified with the gauge correlator (6.4.50)) of the integrand (B.1.1)),

which will be associated to the twisted form @ZY' in the same way as proposed in
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subsection . To find the correct description of C,, = PfW; and P{'W,,,;(k,, ¢, ,0) we
proceed as follows.

First, note that the denominators in the exponential proliferate terms subleading in
o/, in particular:

0:0;(6 &) _ 0058 &) | i 00,0056 &)

Zi — Zj + 06/71(91'6]' Zi — Zj (Zi — Zj)2

With this information the integrand (B.1.1]) can be cast into the following form:

n+2

I(n;1) = / H d6;do;

eXp {0/2 ¢19n+2§n+2} ’KNP

n+1 n+1 =~ = (B16)
0; 1 0,0;0,0;(& - &)
X exp { —a'? ( ) nl(_]):lz—a’ J 7 .
{ g; T\ 2 g; (20 = 2)?
i#i
In (B.1.6) we have introduced (2n + 2) x (2n + 2) matrix (4.2.11])
_ (A5 —Cii
\Ijn+1 \I]Sn+1 — (CZ] B,U ) - 5 n+]_ {1 n,n+ 1} 5 (Bl?)

with the (n+1) x (n+ 1) matrices A, B and C being the same as 7)) with o; replaced
by z;, [=1,...,n+ 1. Furthermore, we have defined the 2 x 2 matrlx \Ill.

\plz(o wl) , wlzzw. (B.1.8)

-1y 0 1 Zn+l — Zj

Similar as in (6.4.62)) we can construct the (2n+4) x (2n+4) matrix ¥™! of holomorphic
and anti holomorphic block structure

gD =, @y (B.1.9)
to write the full order o’? of the exponential of (B.1.6)) in terms of the concatenation:

nif(@j 0;) Wb (Zi) %(9 0;) Vi1 (g) + (o Onya) Wy (Q””) . (B.L.10)

)
i,j=1 i,j=1 nt2

Eventually, with this block structure we are now able to construct our pair of twisted
forms. We take the holomorphic part of (B.1.6) (described by ¥, ; and the subleading
term) supplemented by the Parke-Taylor factor (6.4.50) to amount to the form @ I

n+1 0.0 1 n+1 P
1V2 ~ — 5
Pim = dini / H o dbdfiexp {50/2 S0 6,) 0 (§> }

ij=1

1 /M4@@@@@r§)
X exp { + 3¢ ”ZZI (2 — )2 .
i#A]

(B.1.11)
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Furthermore, we extract the anti-holomorphic part of (B.1.6) and apply the isomorphism
(6.4.71)) to arrive at our second twisted form twisted form @F¥ Y-

_ _ _ 0,
@i?;{\i[ = d/ﬁ,ﬂ.l C(l, 2, c. ,n) /d6n+2d6n+2 exp {06/2 (9n+2 9n+2>\I’1 < +2> }

9n+2

Z]—2]

(B.1.12)

The two twisted forms (B.1.11)) and (B.1.12) (p_- = @ELY and ¢, = @2 are our

candidates for reproducing the EYM integrand (B.1.4)). In fact, with (B.1.11]) and (B.1.12])
we are now able to derive the EYM amplitude from (6.3.23)). The twisted forms in

equations (B.1.11]) and (B.1.12)) are of the appropriate form for taking the o/ — oo limit:

s 0,0 1, 0
. N o 1V2 ~ i _
a2y = [ Tlonan 22 ool 20 S amen (7) frow
Pf12
= — " 4L 0@ ™) =PI, + 0™,
21 — %9
lim éi};]\f = C(l, 2, c. ,77,) /d9n+2d9n+2 exXp {@/2 (9n+2 §n+2)\:[l]_ (Z—n+2) }
a/—o0 T n+2 _
Z1—2
=C(1,2....,n) PRy |__ .
(B.1.13)

Plugging the expressions (|6.4.50|) and (B.1.13)) into (6.3.23)) yields the final expression for
the EYM amplitude:

n+1
. -~ / X R ~EYM
A(L 27 o 7n; 1) = 1/1111 <(pf?:1{\147 90€?7/1{\14>w = / d:un+1 H 5(ffl) l,lm gpf}l/M(pn,l
o/ —o0 ™ iy o’ —oo
0,n+1
n+1 /
pPiw,|_ PO,
= / dftni1 H,(S(fa) (-2 )(IZLTZZZ ) (;_Z) :
Mo a1 1 2 2 3) - \®*n 1
(B.1.14)

In the leading order in o’ this result agrees with the expression given in (4.3.15)) for the
Einstein Yang-Mills amplitude in the CHY formalism. The terms O(a/~!) subleading in

o/ originate from the limit (B.1.13]).

B.2 The generic case of (n,7) EYM amplitude

In this section we shall determine the pair of twisted forms ¥ M and $F M for the multi-

graviton case. To illuminate the structure and changes compared to the one—graviton case
we first derive the amplitude involving n gluons and two gravitons. Equipped with these
preparations we then move to the generic case of n gluons and r gravitons.
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B.2.1 Twisted form and intersections for amplitudes of n gluons
and two gravitons

In this subsection we consider the disk amplitude involving n gluons and two
gravitons. Subject to (6.4.43]) we embed the latter onto the sphere and arrive at .
As already anticipated above for the construction of the twisted differentials we do not
need the position integrals and may focus on the integrand (6.4.51) written in terms
of Grafimann variables. For the case at hand we introduce the unifying notation for
polarizations &;, momenta p; and positions (; exhibited in , more precisely (subject
t0 Epgi = Epyiy 1= 1,...,7)

{Cla "'7€n+4} = {21722’ ...,Zn,Zn+1,Zn+17Zn+2,Zn+2} 5
{517 ---7£n+4} = {61,52, -~-7€n7€n+lygn+17€n+27gn+2} s (B215)
{pla --'7pn+4} = {klka-“akanlaalaq%gQ} 5

and perform the field contractions using the correlators on the sphere. With these prepa-
rations the integrand (|6.4.51)) assumes the following form:

n+4
Z(n;2) = / Hde ag, %

G-G
n+3 n+3 2
P (6:9,& - p)) (69, - &)
XeXp{Oé (; Cz C:FO/ 1&6) ”2:1 CZ C:FO/ 166
i#£] P>
i,j#Nn+2 i, j#ENn+2
e G — C:FO/ 199 —~ G — C]q:a/ 169
z,];fﬁ?«I»Q 7,,‘7;>7;,7+2
n Z _ (9_1'99'& g 2)) n i _ (%eifi g2))
i, j€{n+2,n+4} i — gj + O/_leiej =t Ci — Cj + a/_lgiej
i j¢{n+1,n+3}

i€{n+2,n+4}

j=n+2 Ci — it 0/—102-0]- j=n+2 G — Cj + O/_lez’gj

i=n+4 i=n+4

P G N N U0 ), )} KN .ET

(B.2.16)
Note, that in the first four terms in the exponential account for the holomorphic
field contractions, while the last four terms represent the anti—-holomorphic field contrac-
tions subject to the map . Furthermore, KN - KN is the Koba Nielsen factor
@ for n+ 2 closed strings. In the following we explicitly outline the steps leading to
@ and discuss the underlying matrix structure w.r.t.,the fermionic variables. First
of all, we discuss the anti-holomorphic sector of the two-graviton case. Looking at o'
order terms we encounter two contributions. Firstly, there is the correlator of the bosonic
part of one graviton vertex ({A.2.4)) with both the open string exponentials stemming from
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the map (6.4.43)) and a single exponential from the second graviton (with 2, = 2, — z,):

15 - ki X iga X (Z - entl .k g"’H‘C]z
<~n+ 8X“z+1 Hezz (zi) % ¢'e2 (Zn+2)>:,l: Z_ — + i _

i=1 i—1 Zi 7 Zn+1 Zn4+2 — Zn+1
o kL ETk B g
mn .
E B +1 — + 1= —
i—1 i T Zn+1 Z — Zn+1 Zn4+2 — Zn+1
n—1 ~n+1 n—1
Pk B Shhe | 2y
=1 —1 J +1
i—1 zz Zn+1 zn - En-l—l zn—|—2 - Zn—|—1
n—1 n—1 _
Z e ki Z etk (E" - @2)Znne
=1 = —1 = — + 11— —
i=1 Zi = 2n+1 =1 Zn T Zn41 Zn4+2n+1%n,n+1
n—l = ~n+1 =
nt1 Zni (et 2)Znn+2
=1 (E k‘z) — — — — + 11— —
i=1 (ZZ - Zn-i-l)(Zn - Zn+l) Zn+2,n+1%n,n+1
n—1 n—1 _ ~nt1 _
~ ~n+1 ALI+1 (EM - q2)Znmae
= —1 (8 . k’z) — — — — —+ 1— —
i=1 =3 (zl B Z"+1)(Zl+1 - zn+1) Zn+2n+1%n,n+1

n—1 _ —

z z

. 1 I,1+1 1 n+2,n . —n+2

=1 (gn—‘,— fEl)— + (ng— . QQ)f = :n+ .
=1 Zln+12n+1,14+1 Zn4+2,n+1%n+1,n

(B.2.17)
The above correlator Z"2 amounts to the generalized version of the expression (B.1.5))
for the case of more than one graviton. In the last line of the first term in the
sum is exactly and the second term takes into account the additional interaction
with the second graviton. For =' the upper index [ indicates the corresponding pair of
Grafimann variables in the anti-holomorphic sector. For the case at hand we have

n

(20 0 DX (Z,11) (H etkiX <2i>> x X2 G2y — g g =02 (B2.18)

=1

and similarly for the second graviton we encounter:

<9n+49n+4 . +2 8X“2 Zn+2 (H eki X ) X qul“lgul (Znt1) > = 9n+49n+4 Znte (B219)

Secondly, there is the fermionic piece from the anti-holomorphic parts of the two graviton
vertex operators (|A.2.4)):

6n+2§n+29n+4§n+4 < meq w ’*ﬂ+2w,u2q "¢>

= = Ent1 * Ent2 q1 " g2 Entl @ Ent2 " Q1
= 0n+20n+29n+49n+4 — — — — + = — — —
Zn+1 T Zn42 fn+l T Rn+2 Zn4+1 7 Zn42 Zn+l T Rn42

a En gn :
- - (9n+29n+4+1—_+2) <9n+29n+4%)

Zn41 — Zn+42 Zn41 — Zn+42
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+ <§n+28n+4M) (8n+2gn+4M> . (B220)

Zn+l T Rndt2 Zntl — En—i—2

The expressions ([B.2.18)), (B.2.19) and (B.2.20)) can be extracted from the last four terms

of the exponential (B.2.16|). Let us now comprise all terms into a matrix. We have the
following relation

< (H eikiX(Zi)) exp{iq; - X + 0n+2§n+2gn+l - 0X + Ont2q1 - ZZ + e_n+2gn+1 : ?Z}

=1
x exp{iGz - X + Onabpia€ni2 - OX + 044G - + OpyaBin - ¢}>S (B.2.21)
2 a' —o0
t
1 0, 0.
= exp _0/2 71 \112 ’J + O(O/_l) 7
2 2. |a 0;
i,j€{n+2,n+4}
where W, is given by:
0 _qiq2 =n+2 End2qr
Zn+1,n+2 j Zn+2,n+1
Q192 0 —E€n+1°92 —n+4
_ Zn+1,n+2 _ Zn+1,n+2 ~ - _
\112 - _=n+2 En+1'G2 0 Ent1Eni2 : (B'2'22)
:'_J E'rH»l,'rH»Q _ — En+1,'n+2
_ Ent2q1 _m=n+4 _ Entl1Eni2 0
E’r1,~l»2,'r1,+1 - E714»1,714»2

The matrix (B.2.22)) is the same expression (denoted by Wg) defined in already in equa-
tion (4.2.11) of [20] for the two-graviton case. Here, =" and ="** are the objects
introduced in and and correspond to the two anti-holomorphic graviton
fields labelled by n 4 2 and n + 4, respectively. Putting everything together, for the anti
holomorphic part we have:

EN 'I(n;2)| we =0C(1,2,...,n)

holomorphic
o’ —o0

X / I d6:d6: exp{%o/? > (Z)t% ("j) }+0(o/1) (B.2.23)

i€{n+2,n+4} i,j€{n+2,n+4}

<

=C(1,2,...,n) PfUy + O’ ) .

For the holomorphic part of (B.2.17)) we are dealing with n + r = n 4+ 2 open superstring
vertex operators which can be described by the pure open superstring disk amplitude,
which is related to the Pfaffian of the matrix U, o:

holomorphic - < H ‘/;7(5.77 k]’ Z]) H ‘/;)(Eh ql’ Zl)>
Jj=1 So

o’ —o0 =1

n 2
— < Vo(ej, ki, 2) HVO(&,%ZZ)>
j=1 D2

KN Z(n;2)

o/ —o0

(B.2.24)
— Pf/\pn+2 .

o’ —oo

=1
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It is clear that these contractions give rise to the first four terms of the integrand (B.2.16))
as they are identical to contractions of the n+2 open strings given in the standard formula
(A.1.2). After putting together the anti-holomorphic (B.2.23]) and holomorphic (B.2.24])

parts we have

lim KN ' Z(n; 2)‘

a’ —o0o

KN~ I(n;2)

=C(1,2,...,n)
holomorphic
x PfUy PEU,, 0+ O(a/) |
(B.2.25)
with the (2n 4+ 4) x (2n + 4) matrix ¥, o and the 4 x 4 matrix ¥y both assuming the

form of (4.2.11)) with entries (4.2.12))

Ay~
<mH=wS:(G%lg)
ij ij

anti-
holomorphic

, S={l,....,n,n+1,n+2}, (B.2.26)

o1=¢, 1=1,..., n+1
on+2=Cn+3
Uy = Vg, = Ay =G , So={n+1,n+2}, (B.2.27)
Ol] B’L] o= Cl 1=1,..., n

on+1=Cn+2> Tn+2=Cnt4a

respectively. Finally, noting the expansion of denominator terms w.r.t.,o’

00,(6-6) _ 00,(6-&) | 00,0056 - &)
G-GFa00 GG G-Gr

with (B.2.26)) and (B.2.27) we can write the integrand (B.2.16)) in terms of the generalized
notation (B.2.15)) as the following product:

n+4

6 | B gt 6, 1, & 600,00, - &)
/TIIdeH h — exp{2 > (0) Ytz <4>:t2a 2. TGoor

i,j=1 i,j=1
i,j#n+2 i,j#Nn+2

1 2 0; ! 9j 1 ’ Hﬂjgiaj(fi'fj)

“"p{z S (o) () ¥ HnE
i,j€E{n+2,n+4} i,j€E{n+2,n+4} ? J

% C(1,2,...,n) x KN-KN.

(B.2.28)

(B.2.29)
Our integrand furnishes a KLT like structure factorizing holomorphic and anti-
holomorphic terms. In addition, to this factorized form the two sets of fermionic variables
U {6;,0;} and U {66} can be attributed, respectively.
je{1,...,n+1,n+3} i€{n+2,n+4}
Eventually, after these preparations we are able to construct the pair of twisted forms

oY and @Y. Similarly to (B.1.11) we take the pure holomorphic part of (B.2.29) to

constitute the twisted form ‘Pin;

n+3 9192 n+3 t 0.
o2t = dnes [ T s 22 expd 50% 57 (§) v ()
— 82 J

i,j=1
L¢n+2 i,j#Nn+2
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n+3
Xexp{:l: sl > 9999 &) fﬂ)}, (B.2.30)

i,7=1
i,j#EN+2

with W, 5 defined in (B.2.26). To find our second twisted form @Y we take the anti-
holomorphic part of (B.2.29) and apply the isomorphism (6.4.71)) to arrive at:

12

t
> ) « 0; 0
905}1/1 9 = diinto C( . ,n)/ H df;df; exp {2 Z <91> U, <0§) }

i€{n+2,n+4} i,je€{n+2,n+4} $—G
X exp{ =+ 50/ Z w . (B.2.31)
y (G —¢)
i,je{n+2,n+4}

Our two twisted forms ¢_ = @F¥Y and ¢, = ¥} reproduce the EYM integrand in

the o/ — oo limit m These limits can be determined as:

n+3 0.0 1 n+3 0: t 0.
ot T 82 fbi 2 (e ()0
ij= i J
i#nt2 i jomte
_ Piv,

G — ¢ + 0@ =PV, + O,

2 N '
hm 80?;]\;[ =C(1,2,...,n) / H df;db; exp {O; Z <%> Uy <€J> }

1€{n+2,n+4} i,j€{n+2,n+4}

=<

:l: O(a/—l) — C(]., 2, . ,n) Pf\IjQ‘Z["Cl + O(O/—l)
(B.2.32)
Using these limits in (|6.3.23)) gives the final result for EYM amplitude in the CHY
formalism:

n+2

~EYM
Aln;2) = ah_rfl <30??/1A24’90E{1A24> = / dlnt2 | | 8(fa) hm @Elr/z]\g Pt 2
Mo,n+2 (B 5 33)
n+2 / /N
N / d,U/nJrQ Hlé(fa) Pf\Ij2|Zl —Q Pf \Ijn+2
M a=1 <Zl - 22)(22 - Z3) e (Zn - Zl)
0,n+2

B.2.2 Twisted form and intersections for amplitudes of n gluons
and r gravitons

Finally, in this subsection we extend our results for EYM amplitudes to the all multiplicity
case. We shall consider the EYM amplitude involving n gluons and r gravitons. We start

with the correlator (6.4.45]) on the sphere, which can be expressed in terms of GrafSimann
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variables as given in (6.4.51f). Performing the Wick contractions on the sphere we obtain
for the integrand:
i,J,€S % _7 GS

n—+2r
Z(n;r) /H C0102 de,;db; exp{ (
i#£]

0 0, i&i - &) (0:8;pi - pj) (eieifi o2

+ ) + + > —

s G — ¢ F o108, s G— ¢ F a0, G-GF a'=10,0;
>3 i>] 1€ESy

(8,0, - pj) (0:0:&; - pj)
ZCZ G Fa/716,0; ZCZ ¢ F /10,0,

(0;0,&; 0;0:& - & 0;0:p; - p;
+ Z i&i /pjl) + Z _ (7 ;i€ /fjl) + Z _ (7 f14 /pjl)
e € — G F a/710:0; G G GF AT GG F a0,
1#£] i>j i>]
xC(1,2,....,n) x KN -KN .
(B.2.34)
In (B.2.34)) we have introduced the two sets S and §,., given by:

S ={1,2,3,...n,n+1,n+3,...,n+2r—1},

B.2.35
S={n+2,n+4,...n+2r}. ( )

Here, S, represents the set of indices accounting for the anti—-holomorphic parts of the r
graviton vertex operators , while S is the set of indices labelling the holomorphic
parts of both gluons and gravitons. Furthermore, in the exponential of the sums
run over indices denoting fermionic variables 6;,6;, the set of the generalized momenta
pi, polarizations &;, and positions (; defined in (B.2.15). As in the first four
terms in the exponential account for the holomorphic field contractions, while the last
four terms represent the anti—-holomorphic field contractions subject to the map .
Additionally, KN - KN is the Koba-Nielsen factor for n 4 r closed strings.

We shall follow similar steps as in the previous subsection to extract from a
pair of twisted forms suitable for describing the multi-leg EYM amplitude. Let us first
look at the CHY integral introduced in for this general case

Zoir(n;r) =C(1,2,...,n) PIU, P, (ke Ga,€,0) , (B.2.36)

with C(1,2,...,n) being the Parke-Taylor factor (6.3.9)). As in our constructions above
the latter is to be identified with the gauge current factor C in (B.2.34]) which enters the

definition of G 1.

Again, by using (B.2.28)) in the exponential of the integrand (B.2.34)) we may disen-
tangle quadratic from linear orders in o’. As a consequence the eight sums accounting for

the quadratic order o’? can compactly be written as

7 0, 7 0
Z(Qi 0i) W ir 0.t Z (0; 0;)9, 7] (B.2.37)
ijes 17 ijes, !

with the (2n+ 2r) x (2n + 2r) matrix ¥,,,, and the 2r x 2r matrix ¥, both assuming the
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form of (4.2.11)) with entries (4.2.12))

A (.
Uy = Vg = 7 ﬂ)
v ° (Cz'j Bj;

, S={l,....n,n+1,...,n+7r},

o1=¢, l= ,n
In+k= <n+2k 1 k:l """ r

(B.2.38)

U, =Ty = Aij —Cji . S,={n+2,...,n+2r}, (B.2.39)
7 Cij Bz‘j o1={; n

Un+k:6n+2k* k=1,..., r

respectively. After taking into account the linear order in o originating from the expansion
(B.2.28)) with the above matrices (B.2.38) and (B.2.39)) the integrand (B.2.34]) can be cast

mto:

n—+2r n.n
. 0162 p < ) <9j> 1, 9i9j9z‘9j(§z"§j)}
I(n: d6;d0; - wir () £ SIS SIS
i) = /H (-G { : ”2635 g T2 JZE:S G =GP
, 0 . 1, 00,0056 &)
ol () 0, (4 <1e 9]
{ Zj;g ] 2 i,jggr <C1, C])

xC(1,2,...,n) x KN -KN .
(B.2.40)
Again, our integrand furnishes a KL T like structure factorizing holomorphic and
anti-holomorphic terms. In addition, to this factorized form in lines of m the two

sets of fermionic variables U {6;,6;} and |J {6;,0;} can be attributed, respectively.
1€S,
Now, we are prepared to construct the pair of twisted forms {7 and @Y M. As

first differential form we define:

P = dier [ ] do.do

i€S 1 - 2
1, (Qi)t (0]-) 1, 0:0,0:0;(& - &)
X exp{ —« =) Voir | 5 expl £ -« .
{ 2 z% b A 2 z;s (G =¢)
(B.2.41)

In this form ¢f¥M as we mentioned in the chapter , can be identified with the twisted

gauge form ([6.3.27)), i.e.:
P = ein (B.2.42)

For the second twisted form gof’;]\f we take the anti-holomorphic part of (B.2.34]) and
apply the isomorphism (6.4.71)):

_ - 1 0\ 0;
EYM __ I | 2 2 : i
Y+ ;T d,un+r C(la 27 s 7n> / dezdez €xp {504 (91> \Ijr (9?) }

€S, 1,JESy

G—G

xexp{:t ~a' 0996 fl 53)}. (B.2.43)

1,jESr
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With these two twisted forms ((6.4.57) and (B.2.43)) we can compute the EYM amplitude
through the expression for the intersection number ((6.3.23)) in the o/ — oo limit. For this

we determine the following limits:

_ 1 NG .
Jii“oo‘ﬁg% _ / I1 dﬁideicfl_ez : exp{Qaa 3 (z) ., (ZQ } + O

IS i,j€S

Pfw)2
-7 _ng + 0™ =P, + O,

A 2) 1 ‘ t /
lim @’iii‘f:C(l,Z...,n) /H do;do; exp{2a’2 Z <gi> v, <gj>}

o’ —0o0
€S, i,JESy

= 0(1,2, e ,n) Pf‘l’T‘Zl_’Cl + 0(0/—1) )

+ (9(0/_1)
=<

(B.2.44)

Putting the limits (B.2.44) into (6.3.23]) subject to the choice ¢, = @f?f and p_ =
EYM vields the EYM amplitude for n gluons and r gravitons:

Spf,n;r
n—l—'r/ AEYM
A7) = lim 0 = [ dpner T 000 tim 6222 50
Mo,n+r a=1
TL+T, Pqur’z ; Pf/\Ijn_Hn (B245)
== d n—+r 0 a =
/ it Ul S E2 Py Py S P
MO,n+T -

This is the integral formula for the Einstein Yang-Mills amplitude (4.3.15) formulated in
the CHY formalism for the generic case of n gluons and r gravitons.



Appendix C

Massive string amplitudes

In this appendix we are going to provide some detail on the results and calculations we
discussed in chapter [0] for the string amplitude with massive external legs.

C.1 Calculations for A(2,1)

C.1.1 Sample contractions

Using the disk correlators (5.1)) and Wick’s theorem we perform the contractions in
(7.3.66]). The formulae are long and here we only present one of the shorter examples:
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_aT< aX/i< ) ik1 X ( acl) aXp<x2) iko X (z2) - eiq)?(z) - ein(z) :>

X (- ) 1 e ) (A ()9 () : (q(2)THE) o (q(2) v (2) o) =

(l_/35 . [2a/k§k/fg)\a7gnpg)\o'] gl _ O/k‘fq”gAglV”‘ _ O/(Dq)'ikfg)‘glw"
8 (z1—22)%(2—%)2 (z1—22)3(z1—2)(2—%)2 (z1—2)3(z1—2)(2—2)?
a/kgqu)\olu,u, a/kg(Dq)pg)\o'lu,u
TR o e ol ey o e
|:20élk‘§k‘f—gﬁp:| [quO'V;L_*_g)\VFHO'[,L} B |:2alk§k,i’_gnp:| [qaf)\uu+gouh)\u:|
(x1—22)3(21—2)(22—2)(2—%) (e1—22)3(21-2) (22 —2)(2—2)
_I_l a/qnqukaluu + (Dq)pgkaluy,
2 (z1—22)2(z1—2)(z2—2)(2—%)? 2 (z1— :62)2(551 2)(z2—%2)(2—2)?
41 o/ (Dg)"qPg 71"k 4+ 1__ o'(Dg)*(Dg)*givn
2 (x1—22)2%(z1—2)(z2—2)(2—%)? 2 (z1— 22)2(11 —z)(z2—2)(2—2)?
+a/kg(Dq)pq)\fo'up.+a/k2m(Dq)pgkuho,u . a/kijqnqkfauu_;'_a/qumgz\uho'u C 1 1
(z1—22)2(z1—2)(x2—2)2(2—2) (z1—22)2(z1—2)%(22—2)(2—2) ( e )
a/kgqpqaf)\u,u,_i_alkgquo'uh)\p, . a/(Dq)nklfqafkup,_i_a/(Dq)mkfgouh)\p
(21—22)%(21-2)(22—2)*(2—2) (21—x2)%(21-2)%(22—2)(2—2)
_ a/quKqaf)‘”“—kalquHgU"hA“ _ a/(Dq)nklfq)\fouu_i_a/(Dq)nkfl’g)\uﬁvu
(z1—22)%(z1—2)(z1—2)(22—2)(2—2) (z1—22)2(z1—2)(x1—2) (22—2)(2—2)
+a/kg(Dq)pqcfkuu+a/k2n(Dq)pgauh)\,u, a/kgqpq)\fa‘uu+alk§qu)\1/%0'u
(x1—22)*(z1-2)(v2—72) (x2—Z) (2~ %) (z1—32)?(x1—2)(22—2) (22— %) (2—%)
+1 o/q"(Dg)Pq* [T +a/q" (Dg)Pg " h7H | 1 o/ (Dg)*qPq” fAV+a’ (Dg)*q° g7" hM!
2 (z1—2)(z1—2)2(v2—2)2(2—2) 2 (z1—x2)(21—2)2(22—2)2%(2—2)
1 1__alg"PqrforhtalqtgPg ok + 1 '(Dg)*(Dg)?q*[7"*+a/ (Dq)" (Dq)* g*" h*
2 (z1—22)(z1—2)2(x2—2)(22—2)(2—2) (z1—22)(z1—2)(z1—2)(22—2)2(2—2)
4 1__aq"qPq7f MM alq qPg ANy la '(Dq)*(Dq)Pq° fA"+a' (Dg)* (Dg)Pg7" h
2 (z1—22)(z1—2)(21-%) (22 —2)*(2—%) (z1—22)(z1-2)%(v2—2)(x2—2) (2~ %)

—i—la (D9)"q°q* f7"" +o/ (Dq)"qP g h7"+a/q" (Dq)Pq" f""+a'q ”(DQ)"g"”hA“}

(z1—x2) (21 —2)(21—2) (w2 —2) (22—2) (2—Z)

In the above contraction we have introduced [*, h‘“’,%’“’ and fHA, f’“”\, that we define
as follows

" = —q- DgD" + (Dq)"(Dq)", (C.1.2)
BV — v = (Dq)*(Dq)” — D*q - Dq, (C.1.3)
A — A = _(Dg)*D"* + D*N(Dgq)" . (C.1.4)

For convenience, we also define the objects

Col/)\ — gO'I/q)\ + g>\l/q0' dO',U)‘ = _DU/’L(Dq))‘ —+ DA'U‘(_D(])U’ (015)

b

that will appear within certain kinematic packages.
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C.1.2 The kinematic packages

Here, we list our resulting expressions for all kinematic packages. They are exact in o/
(i.e.no truncation), with their constituent terms ordered from the highest power (a/?) to
the lowest (a/t).

Packages for A;
Omve — LB | — (Dky)*q*(Dq)’g™q" + (Dkz)"q"(Da)' g™ ¢°

+kYq®(Dq)? D°*(Dq)* — kY q“(DQ)"D“‘(DQ)”]

(C.1.6)
+%Oél2 |:Dpuq gm/ A Dpuq g)\l/q
—g"(Dq)"D™(Dq)* + g (Dg)* D¥(Dq)’|
e — 1o |~ K (Dg)q? D(Dg) + k(Dg)*e? DM (Dq)”
+(Dk))" (D)’ g ¢* = (Dk1)* (Dq)"¢" 9" |
(C.1.7)

+La2[ + g7 (D) D (Dg)* — g (Dg)* D¥(Dg)”
_D/{qugm/ A + Dn,qug)\chr

Bhves q*(Dq)? D7 (Dq)* + k{q"q*D**(Dq)* — ki q"q” D*(Dq)”
(Dka) ( 0)"(Dq) g°" q* — (Dk2)"q"q"g°"q* + (Dk1)"q"*(Dq)"g°" ¢*
+(Dky)*(Dq)" (Dq)'”g*”q” + (Dky)q"q g™ q° — (Dk1)"q"(Dq) g™ ¢°

+k5q"(Dq)* DM (Dq)” + kY (Dq)"(Dq)? D°*(Dg)*

—ky (DQ)”(DQ)"DA“(DQ)”} +50” [ — ™" D (Dg)* + g™'q" D(Dq)”

Lo
g

+D?(Dq)" g™ q* DP“(DQ)”gA”q"}
(C.1.8)
D [ — ki (Dq)*(Dq)? D7*(Dg)* + k3q"q" D (Dq)” — kiq*q” D7(Dg)*
+k5(Dq)"(Dq)? DM(Dq)” + (Dk2)"(Dq)"q* g™ q° — (Dk1)"q"q" g™ ¢°
—(Dk1)"(Dq)"(Dq)P g™ q° — k{(Dq)"q" D*(Dq)° + (Dk1) q"¢"9°" ¢*
—(Dk2)"(Dq)"q°g°"¢* + k¥ (Dq)"q? D°*(Dg)*
+(Dk1)"(Dq)"(Dq)"g°"q A] + ta” [ + ¢ q"D°*(Dq)* — g*"q" D™ (Dq)°

—D"(Dq)’g”"¢* + D"*(Dq)’g™'q “]
(C.1.9)



212 C. Massive string amplitudes

D — Lo g% (Dg)Pq(Dg)” D — ¢*(Dg)q* D**(Dg)"
(C.1.10)
—¢"(Dq)’g™ (Dq)”(Dq)" + ¢"(Dq)* g™ D7 qu}

ApvEART - — %0/3[— (Dq)"q°q”(Dg)* D" + (Dq)"q q” D*(Dq)”
(C.1.11)
+(Dq)*q g (D@)M(Dq)* — (Dq)*q?g° DM qu}
QrAT = 1—160/3[ (Dg)"q"(Dg)’ 9" ¢* = (Dg)"q"(Dq) g™ ¢
+(Dq)q"(Dg)’ D*(Dq)” +¢"¢°¢’ (D)7 D" — ¢"¢°¢* D" (Dg)"
—q"q"9™ (Dq) (Dq)" + q"¢"¢* D" ¢Dq + (Dq)"*(Dq)*q*(Dq)° D"*
—(Dq)*(Dq)*q*D°*(Dq)" — (Dq)*(Dq)* g™ (Dq)° (Dg)*

+(Dq)"(Dq)?g* D" qDq — (Dq)"q"(Dq)? D°*(Dq)*

(C.1.12)
L [(Dq)”(DQ)“q gt = (Dg)* (D) g™ ¢
"‘(DQ)V(DQ)”QPDA“(DQ) — ¢“¢°¢°(Dg)*D™ + ¢"¢"q" D(Dq)”
+q"q° 9™ (Dg)*(Dg)" — q”q”g"”DA“ ¢Dq — (Dq)"(Dq)*q" (Dg)* D"
+(Dq)"(Dq) q3 D*(Dq)* + (Dq)"(Dq)?g°" (Dg)*(Dq)"
—(Dq)"(Dq)Pg° D ¢Dq — (DQ)V(DQ)HQPDU“(DCDA]
(C.1.13)
Qurrdee = o — (Dq)"q"¢" D°*(Dq)* — (Dq)"(Dq)*(Dq)? D°*(Dq)*
—(Dg)"q"q* g™ q° + (Dq)"q qﬂDk“(DQ) + (Dq)*(Dq)"(Dq)*g°" ¢
—(Dq)*(Dq)" (Dq)”gA”qUJr (Dq)"q°q*(Dq)° D" + (Dq)"q¢"¢"9°" ¢*
—(Dq)*q*g*(Dq)’ (Dg)* + (Dq)"q* g™ D" q¢Dq
¢*(Dq)Pq° D*(Dq)* + ¢*(Dq) g°* (Dg)*(Dq)*

)
(Dq)"(Dq)*(Dq)? DM (Dq)” — q*(Dq) g” D qDq

+ o+

—q*(Dq)*q° (Dg)*D"* — (Dq)”‘q"q*D"“(DQ)”]

(C.1.14)
and
I'= a}{/\afmew [HvEApo 4 @“”"’\p"} , A= a}{/\afwew [A’“’“’\p" — A“”“’\p"] (C.1.15)
0 = aba%asw [@’“’“)‘P" — pHrEALT _ E“””’\PU] (C.1.16)
A = a}dafmew [A“””Ap" 4 pHvEAPT E’“’“AP”] (C.1.17)

(1]

= Oél)\OZQ 6uu A,ul/m\pa + \I],ul/n)\po _ Q,LLI/KJ)\pU + E,uun)\po _ 2zuun)\pa:| (C 1 18)
KA po s
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Y = Oéllﬁ/\a?)agul’ [@,ul/n)\pa _ (I)/u//i/\pa + Quum\pa _ 2Euym\po + Eul/n)\pa (0119)
Q+ = Oé’]%)\azaé\“y [ _ A,ul/n)\pa + @ulxn)\pa _ (I)/u//i/\pa _ \Ij/u//i/\pa + QQ;U/H)\,OJ
(C.1.20)
_3Euun)\p0' + 32pun)\pai|
O = 05,10\05?)05;”/ [ _ A,ul/n)\po + @uun)\pa _ (I)/u//i/\pa _ \I,/u//i/\pa + QQ;U/H)\,OO'
(C.1.21)

_3Eyun)\po' + 32uyn)\pai|

Packages for A,

pree = 3 o[k (Dk2)"q"(Dq)"] = 0 [D"k{q" + g™ (Dq)? (Dks)"] + ja'g™ D™
(C.1.22)

o [(Dk)ky (D) ") = 10 ((Dk)"g” (Da)* + D™gPk) + o D

Prvkp
(C.1.23)

1
4

QUi a” [[—kT ¢"(Dk)"(Dq)? + k{q"(Dk2)"q” + (Dks)*(Dq)* kY (Dg)"

i
—(Dko)*(Dq) k3 q"1g" — kik5(Dq)? DM (Dq)” + D*(Dg)*ki k5 (Dgq)”
+(Dka)"k5(Dq) g™ ¢ + (Dk2)*q"k{ g™ " + k{ q"ky D7*(Dg)*
—(Dky)"k5(Dq)? g7 ¢* — k{q"k{ D*(Dq)” — g"”qA(Dkz)“q“kﬂ
+30” [[g””(Dq)p(Dkl)” — g™"q"(Dk)" + D*"kiq" — Dk} (Dq)*]g™”

+g"™kK{D¥'(Dq)” — D7(Dq)*g™ k{ — D™ k5 g™ q” + g“”qAD”“kS]
(C.1.24)

Quere = Lo [=(Dk)*(Da) ke’ = (Dky)(Day*ksa + (Dka)*(Da)" s (Dg)

i
+(Dk1)*k3q°¢")g* + DM(Dq) k3 k5q” + D(Dq)”ky (Dq)*ky
—D"(Dq) kyksq” — D7*(Dq) k3 (Dq)“ky — g*'q° (Dk1)"(Dq)" kY
—9q"(Dk1)"k5q” + g ¢*(Dk1)* (Dq) kY + g"”qA(Dkl)“ké‘qp]
+302|[Dq°ky — D™ (Dq)’ky + g (Dks)"(Dq)" — g™ (Dk1)"q"]g*

—D(Dq)7g" k5 + D7"(Dg) g™ k5 + g™ q" D*k{ — g"”CJ*D“"kT]
(C.1.25)
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Rivepre = fal? [[—(Dkl)’“‘kTq“qp — (Dk)"k{ (Dg)*(Dg)” + (Dk1)*k3q"(Dg)?
—(Dka)"k3q°q” — (Dka)"k5 (Dq)"(Dq)? + (Dks)kY (Dq)"q]g*
—DY(Dq)"k{(Dq)"k{ — DM(Dq)k{k3q” + DM(Dq)” ks q*k{
+DM(Dq)? k5 k5 (Dq)? + D*(Dq) kY (Dq)*k; + D7 (Dq) kY k5q°
—D7(Dq)* k5 q"k; — D*(Dq) ks k5(Dq)? — g™ q° (Dky)*q" kY
—9™q° (Dk1)*k5(Dq)? + g™ ¢ (Dka)*(Dq)"ky + g q° (Dk2)* k5 q°
+97 N (Dk)"q k] + g7 ¢ (Dk1)"k5(Dq)? — g7 q*(Dk2)"(Dq)"k{
—97 ¢ (Dka) k5"

+50”[+g" ¢ (Dkp)* + D™ (Dq)?ky + g**(Dhk2)q" + D*kg (D Q)Z]Cg A1026)

Suer = —ga®| = [(Dq)"q"(Dk2)"(Dq)” + (Dg)*(Dq) kY q"]g*
+k1q"qN(Dq)” D" — k5 (Dq)*q* D" (Dq)” — k3 (Dq)’g* (Dq)” (Dq)*
~k{q"*D7"(Dq)" + k3 (Dq)*q*(Dq)” D" — k{q"¢™ (Dq)’ (Dq)*
+k5(Dq)?g* D" qDq + k{q°g* D" ¢Dq

—§0”[(Dg)*q" D + (Dq)*(Dq)* g™'19*
(C.1.27)

S — Lo |(Dg)# (D) kyg? + (Dg)"¢?(Dky )*(Dg)]g*
+k5q + (Dg)"k7] [ — ¢°(Dg)* D" + q° D (Dq)” + g°*(Dg)*(Dg)"

—g° DM quH — 50*[(Dg)*(Dq)*g"™ + (Dq)"q" D**]g*"
(C.1.28)
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T = 5 |[(Dg)”(Dq)*(Dk2)"(Dq)” + (Dg)*(Dg) ki (Dg)"
—(Dg)"(Dq)’k3q" — (Dq)"q"(Dk1)"(Dq)” + (Dq)”q"(Dk2)"q”
+(Dq)" "k "9 — [(Dq)~"kf + k5q”] [qA [(Dq) D" — D°*(Dq)"]
+9™ [ = (Dq)*(Dg)* + D" quH
~ "k + K5(Dq)’] [(Da)” [~ D™(Dg)* + D¥(Dq)’]

+(Dg)* [ - 97 ¢ + gA”qa}H $0%[(Dq)"(Dq)" D" + (Dq)!q g 19
(C.1.29)

Trse = ol {[(DQ)“Q“/%’Z ¢ + (Dg)"(Dq)?(Dk1)*(Dq)* — (Dg)"(Dg)"kiq”
+(Dq)*(Dq)"k(Dq)* — (Dq)"q*(Dk1)"q" + (Dq)"q"(Dk2)"(Dq)"]g*
+[k{q" + k5(Dq)”] [qf’[ — (Dg)*D"" + DM(Dq)"] + ¢°* [(Dq)*(Dq)"
~D¥qDg]| + [ - (Da)'q"k{ — (Dg)"k5(Da)’] [ - 670> + g™ ¢°]
+[(Dg)"k5q” + (Dq)"¢"k{] [ = D**(Dg)* + D*(Dq)°|

_lO/Q[(qutqﬁgpu + (Dq)u(Dq>pDnu]g)\a

(C.1.30)
e = LaBq5(Dq)?(Dq)*(Dq)” + ¢"(Dq) qDq D** — q"(Dq)?(Dq)" (Dq)"]
_ 10/2 (]'{(DQ)’)DVM
(C.1.31)
g = La”®[(Dq)*¢’(Dg)*(Dq)” + (Dq)"q’qDgq D"* — (Dq)"q*(Dq)* (¢D)"]
—30% (Dq)rq* D""
(C.1.32)
wene — Lo |(Dg)*(Dg)"(Da)*(Da)” + (Da)*(Da) a*¢’
~[g"¢” + (Dq)*(Dq)*] [ — ¢Dg D" + (DCD”(DQ)“]] (C.1.33)
—§ [ D"(Dq)?(Dq)* — D*"q°q")
and
P = al\a2,e,,9" PP, P =ap,02,6,9" PP (C.1.34)

S = alyale,, [ — Qrene] (C.1.35)
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S = Oéflg,\a?;gg/ﬂ/ [guunpAU _ @/;U/Hp)\o'] <0136)
U = a};)\agogw [Up,unpg)\o . Quuﬁp)\a 4 Ruw-cp)\a . TNVNP/\U} <C137)
(7 = a/l{)\af)agwj [ﬁpynpgAU _ @;wnpko + R,ul/np)\o _ Tpunp)\a} <0138)

W = a}l{)\ai‘jgw/ [W,uunpgz\a + Qulmp)\a + @,uunp)\a _ QR,anp)\J
_ (C.1.39)

+TyunpAcr + T,uwcp)ur}

W = a;)\aiggl,u/ [W,uw:pg)\o + Q;wnp)\o + @,uw:p)\cr _ 2R,uwzp)\cr

(C.1.40)

_I_T,uuﬁp)\o + T,ul/np/\o}

Packages for Aj

Grrr = o [(Dko) (k5 (Dq)? + (Dhs)"kyq*k{] — o5 [DPk{kS + g k{ (Dky)* ]
(C.1.41)

Hivee = o2 [(Dky)"kSkSq” + (Dky k5 (Dg)"k{) — o [ (Dky )" k§ + D™ k{ky ]
(C.1.42)

1o = 1o L[~ (Dho)kgk5(Da) — Dk Wa*h — (DRy)KkS (D)
+(Dks)!k{ (Dq)"k7 + (Dka )k k5q” — (Dhks)"k5q"kY] g7 — k{ksky d°
+(Dks) kKD 7 |+ Lo [DPkgkS g

+gﬂy(Dk1>“k‘f g)\a + %gnpk,zl/ dcr,u/\ _ %gnp(Dk,Q)/,L CUV/\]

(C.1.43)
Juesere = Lo [ — (Dhy)ky (Dg)*k{ — (Dky)*k{ k5" + (Dhy kK
+(Dhk1)“k5 k5 (Dq)? — (Dha)k5 (Da)"k{ — (Dha) k5 k50°] * .
— (DR RER] € + RERERE a7} + o [DkERS

97 (Dk)*k5g"7 + S (Dhy ) 7 — Lok do]

UVKPAO 1
K 8

ot { [~ (DR (Do) k5(Da)? — (Da)" K"K} — (Dka)* (D) q°K
— (D) kY RE(Dq)?) 9 + KEkLg o+ + kgkfg™ v }

+§0” [g K (Dq)" + D™ (Dq) k59™ — 59" [7" — 59" g™ 5("(‘;}1 -
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Livsde = 5o {[(Dq)“k”k“q“r(Dkl) (Dg)"(Dq)"ky + (Dk1)"(Dq)"k5q°

+(Da) ks (Dg) k{1 g™ + REREG” [ + Kskfg™ 1 |

+%a/2 [_ Dn,uk,i?(Dq)y _ ng(Dq) kn Ao %gnpqcr f)\u/,L _ %gnpgozz(h)\,u} )
C.1.46

o

dmne — L { [ (Dka)(Da)" (Dg)*K{ + (Dky)(Dg)*I5 (Do)
+(Dq)"k3q"ky + (Dky)"(Dq)"q"ky — (Dq)"k{ (Dq)"ky — (Dq)"kyk3q”
H(D) k55 (Da)? — (Do) (Do) ke?] 4 + (D) Kgiden

_(Dq)uké{kfcm/)\} 4+ L 1 OéQ[ p(Dq)Vdau)\_anp(Dq)qu/)\}
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(C.1.47)
Nrvwse = La/3 [ — (Dq)*(Dq) k5q” — (Dg)*(Dq)" (Dq)*kf 4 (Dq)~ k1" (C.1.48)
+h5q] + ko [D"gkS + DYK{(Dq)"] -
omree = o [ = (Dg)*(Dq)"k5(Dq)” — (Dg)*(Dq) ¢k} (C.1.49)
HRGEI 4 K5 (D)) + o [DYP(Dg)Pkg + DY kq"] h
and
G = a}w\aiaawg/\a GHvee H:a;)\azgewg)“’ Hwvee
K = a}lﬂ)\aiaeuy [K,uzzﬁp)\o' + %qunp)\a] , L = 01,1{)\01‘2)(75“” |:L/J,I/I€p)\0' _ %J,LLVHP)\U]
N = 04,1.0\04?,08#1/ |:4Nuw@pg>\a + 2M;u//§p>\a _ I/,LI/I{/))\O’ + J,ul/np)\a}
0O = aflﬁ;)\azo'EHV [40;wmpg)\cr _ 2M,u1//{p)\o + ],ul/np/\o _ J,Lwnp)\cr]
(C.1.50)
Packages for A,
A = o 19— (Dg)(Dg)” k5
(C.1.51)

+10” [Dkgks — 1 — (Dg)(Da)*)g] — o/ Dg

BrvEe - — —0/3 [(Dk'l)uklf + (DkQ)ng} /{ng’f + %@,2 [(Dkl)uklu + (Dkz)uklj]g
(C.1.52)
Crne = o (Dky ) k§ksk] — 3 (Dky)* ks g™ (C.1.53)
Arrr = o (Do) K K§h — 30" (Dka)! ki g™ (C.1.54)
(

i

1.55)

Ervse = 2 [(DEYE(Dq)” 4 (Dg)"k3)k5kD + 22 [(Dky)*(Dq)” + (Dg) kY
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e _ % [(Dk2)“(Dq)” + (Dg)"k¥] kk? — aTz [(Dk2)"(Dq)” + (Dq)" kY] g"*

(C.1.56)
and
A = alalewg’ A C = o)yl 6,9 CHP A =al A E g Arvrp
E = am\amswg ”[QE‘“’“” + B‘“’“”} , F= ozm\apaswg ”[QF“”’“” — B‘“’“”]
(C.1.57)

C.1.3 Computation of the relevant integrals

To calculate the integrals of x that appear in our calculation, we first observe that

fjgdﬂﬂ”%ﬁ—t—l)”% = 2f drx*2(x®> + 1) (x +14)(z — 1)

—s /rs s—1 (C158)
r(s+1)
Similarly,
~+o0 s —s (x+i)(z—i —+0o0 s z+1)(x—1
JEZ dalal 3 (@ + 1) R = [T a2 (o 4 1)) = o 4+ T
(C.1.59)
J7Z dala 2 (@ + 1) SR — [T || 2 (o2 4 1) — 1 T
(C.1.60)
J dafo] 2 (2?4 1) G = [ de [P (2 + 1)) = 1o+ T (C.161)
J da |z (a2 + 1)) — f da |+ (2 + 1)) — 1 — T
(C.1.62)
_{O du |o]**2 (22 4 1)~ 12hlED :_{o du |z *2 (2 + 1)) — 1 + T (C.1.63)
o0 . . oo
Jda a2 (a2 4 1) DD [ g a2 (a2 4 1) D = 1 T (C.1.64)
f dl“l’|s+2(l’2 +1)" s(z;—(z;(a:z);) _ f dx\:v|s+2(:v2 + 1)—3(22—&)&?) =Ig—1Ig
—0o0 —00
(C.1.65)
7{0 dx ‘I|S+2(I2 +1)° % = f dx ‘x|5+2(x + 1) % =Iy+ 1y (C.1.66)
[ da o2 (2 4 1)) — |2 (02 4 1) D — 1y — Ty

(C.1.67)
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f dw|x|s+2(x2+1)””;25%;” - _ f dx|x|s+2(x2+1)*5% —Ir — I
(C.1.68)
f dl’|$‘|s+2(l‘2+1)78% — f dl’|l‘|s+2(l‘2—f—1)78(3;‘(_;)_’(_::)_32) :IG)+TG) (0169)
Jodw a2 + 1) — [ g | (a2 4 1) D T
(C.1.70)
[ dwle|2(2? + 1)75% = [ do|z]**2(a? + 1)73% — I +T1o.
(C.1.71)
where
1 2_3\/?1“(571) -F(§)2 :
o= gy o] R (€172
2
r(s)’ ,5—1F3512 .
Ip = Q(FQ(S)) 4 lrgs) ) if R(s) >1 (C.1.73)
. 7r3/22_s_1sec(LS) 7;7T(871)CSC(LS)F 5) .
I = — F(%fg)r(gﬁ) r(7§71)1“2(s+3)2 if R(s) >0 (C.1.74)
i/m2—sT( &tL
Ix = fi(—rm) if R(s) >0 (C.1.75)
s—1 s+1 i s 2
L, = 15 )F(Q;S))+ PG R > 1 (C.1.76)
—5—2 TS s+1
Ip = —% if R(s) > -1 (C.1.77)
_s s s i s+1 s+3
o= )r(2+1)rz(;()s++2;;( SIC2E) i w(s) >0 (C.1.78)
s—1 s+l (s El
I, = G ZF)(LQS(QH)F(Q) it R(s) > 1 (C.1.79)
WCSC(LS)F(§+1) i7r3/22_ssec(7r—s) .
Iy = — QF(;%);(S) - F(%fg)l‘(;) if R(s) >2 (C.1.80)
_g s s i s+1 s+3
Iy = a )F(2+2)F<112(ZI§)F( Fr(e5) if R(s)>0 (C.1.81)
I o 952 7r(s—3)sec(%) i(s+3)F(%) iR 1 C.1.82

Iy = M) | TEE) i sy > o (C.1.83)

(C.1.84)
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C.1.4 Expansions

Ay

= (P+P)

= C=A)[Z+ind ki -ks+gm(6+72) (ki - k3)> + O ()]

—(O+A) [Z —7ma k- ks + l7T(16 +72) o (ky - k3)? + O (%) ]
+E+3) [ —ma ki - ks + 57(48 + 72) o (ky - k3)* + O (o) ]
Qe — Q) [— Sma by ks + Ima (k- ks)? + O (o) ]

— [Tr(a at)a Wq“q” +Tr(e - o?)a,,q"¢” —2(a' - - ?)wg'q’] + O (o)

16

(C.1.85)

[%’N k- ky+ma? (k- k)2 + O (0/3)}

F(S+S) [T —Lm3a? (k- ks)? + O (a®)]

+(U +U) (2 —Sma ki - ks + 15m(24 4+ 72) o (ky - k3)® + O (%) ] (C.1.86)
FW W) [ = Za kg ks +ma? (k- k3)? + O ()]

?[Tr(e-a' - a®) ki g+ (- a' - a?)u kg + (- a® - o)kl "]

+0(a’?)

e

Ay = (G+H)[—F—5ma”? (k- ks)* + O ()]
+(K = L) [+ 7% (k- k3)* + O () ]
+(N+0) [ina ki - ks — ma’ (ki - k3)* + O (o) |
= Za%[(e- 0 al)u kY + (- ol - o) kK] + O(a®)

(C.1.87)

= Alrd ki ks —Ara”(ky - k3)? + O (o) ]

C+A)[T—1na by ky+ Sm(24+72)  (ky - k3)? + O (o) ]
F)[ima ky - ks —ma? (ki - k3)* + O (%) ]

= —Ta?Tr(al-a?) e kS + O(a?),

E (C.1.88)

where ¢ is related to k3 and k4 via the definitions ([7.3.70)) on the disk and in the special
case (|7.3.60)).
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C.2 Calculations for the A(3,0) amplitude

C.2.1 Contractions for the supersymmetric case

Performing the contractions in ([7.3.64)) using the disk correlators in table (5.1)) we obtain
X, = ig—wﬁxégzés |:(20/)2 [ngVQQHINSQMQVS + gV1V2gu1V3gu2u3}

+(20/)3 [ngzgumz kiﬁ k/{s — gV gk kll’a‘ ki@ — g2 ghivs kIMB /C'lfQ (C.2.89)
IR g R — (20 g KR

X, = z‘gﬁ[(20/)29”1“39“1“29”2”3—(2a’)3g”1“39”2”3k’1‘2k§“] (C.2.90)

T12%713%323

Xy = it {(20/)°] = g g R + g g R + g g R

T12T13T323

v1v3 .H2 1.V2 vov3 1.H1 1.V1 v1v3 1.H1 1.2
— gtk g 3k1 k3 — gh2Hs g2 3k2 k3 + gh2Hs g 3]{32 kg}

—|—(20/)4 [gugug k13/1 ]{3?3 ki@ kgl . gu11/3 kgz kits ki& k,gl} } 7
(C.2.91)
where we have used momentum conservation ([7.3.63|) and the on—shell conditions. For X’
we have also used the fact that the polarization tensors are symmetric in particular for
the case of a3 This was necessary for both the term with no momenta and the one

u3vs”
with two momenta in order to extract the overall z—dependence of Aj.

C.2.2 Contractions for the bosonic case
—(: OXIMOX et X 9XIPOX etk X2 1 9XEBOX B etksXs 1)

(20/)3‘2“; { |:g/-’¢1,u2 gl’lﬂBgV2V3 _l’_ gN1N2 g’/l VSgVZ,UB _l’_ g,ul v2 gl/l,u3 g#2V3 _l’_ g,ul v2 gV1V3 g/.LQ,ug

2 2
T12T13%23

_|_gH1u3 gV1M2 gV2V3 + ngMS gV1 v2 nga + gul VBng,U2 gV2M3 + gul v3 gV1V2 guwg]
—I—40/ [gltm?, gV1 v3 ki@ k? + gmuz gl/l v ]{/2“ k:g3 + g#2#391/21/3 kéﬂ kgl
_|_gﬂl,ung2,LL3 ]{;TB ]{12’1 + guluz gV2V3 ki% ]{;51 _ guluz gl’lﬂ3 le3 ]{;? _ gulm gV1V3 ]{;/113 ]{;T2
=g gIIBRI R — gt g R R — gt gtk Ryt — giiR g kP Ry
_|_g1/1,u2gugu3 k.llf?, kgl + glll;,czgugug kiLS k.gl _ gV1M3 g,ugug k11/2 k.gl _ gV1M3gV2V3 kiLZ k,gli|
~160% g R KRS — g KRR R 4+ gk KRR

803 K2 R RS R e k! } .
(C.2.92)
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Notice that (C.2.89)—(C.2.92) are valid strictly when contracted with the polarization
tensors within the amplitude and that we are able to factorize their x—dependence and

write it as the overall prefactor ;2
123713123

C.3 Picture changing operator with 7;,,

In this section we show how to we calculated the picture zero vertex operators in ,
7.3.58), and (7.3.59). After the compactification, Ty (z) is given in three different forms
7.3.45)), (7.3.47)), and associated to each comapctification and SUSY. For all cases
N =1,2,4, since Tgnt(2) is decoupled from matter fields we only need to look at the in-
ternal current J* contractions with the internal energy momentum tensor. Consequently,
we look at each case individually:

e N =1 case the picture (—1) is given by:

/ .
VA(za.p) = g0y | 5 T € 0,0 ()7 (2) 7 (C:3.93)
As we discussed in the ((5.5.88)), we should calculate the following limit:

VO (z,a,p) = 9o T"a,
: z 1 2 —(w 7 w
x lim o) [T (2) 4 T (= >}{2—m¢ax (2) x e ) gt (w) T (w) X >}

(C.3.94)
from which, using the the OPE (7.3.46)), we find
VA0, = 00T { S5 0K+ 20 (- 0)09(2)] T (9
(C.3.95)

+77b [ Fint TF_,int] } eipX(Z) :

Here we can directly observe that the internal contribution to the vertex operator
(the last term) involves one space time fermion whose odd-point contraction is
always zero and therefore it decouples from out three-point calculations.

e N = 2 case we had the following picture zero vertex operator with the internal
current J4:

- o —o(z ) z
Vi V(z.0.p) = g0\ [ 5 T* 7 a9 (2) T (2) X0 (C.3.96)
Using the Ty in (7.3.47) and OPEs in (7.3.50) we have the action of the picture

changing operator as:

w—2z

Vi) (z2,0,p) = go T aZ} Tim e )<TF e (2) + = N (2) gi(2)>
(C.3.97)

e~ W) b () TA (w) ePX (W)
 { e HOX (2) x 1) ) A w) X}
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Noticing that Ti55 and g; are decoupled from the rest of the fields present in
VAf_l)(z, a,p), we find that

VP (2,a,p) = g, T} { 5 [10XH(2) + 20/ (p - P)yH(2)] T(2)

(C.3.98)
-
e Finally, for the N/ = 4 case, the picture zero vertex operator was:
- o a ,—¢(2 7 z
VA (z000) = gy G T 0l g (2) 7N (2) X (C.3.99)

and therefore we have the limit:

Vf(lo) (w,a,p) =g, T aﬂ“f

x i ¢? o (2) L\Féa/ BOX (2) x ) g (w) MV (1) X )
(C.3.100)

Upon using the energy momentum tensor ([7.3.51)) and the OPEs (|7.3.52)) we find

VO Gi0) = g0 Tl { Gi0X0(2) + 200 (- ) ()] T2
(C.3.101)
+pH \Il[MazN]} X (2)
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