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Zusammenfassung

In der Theorie der Gruppenfeldtheorie (GFT) der Quantengravitation löst sich das übliche
Raum-Zeit-Kontinuum mikroskopisch in diskrete Bausteine auf. Eine große Herausforderung
besteht darin, wie man aus diesen fundamentalen nicht-raumzeitlichen Freiheitsgraden
die auf dem Raum-Zeit-Kontinuum basierende Physik extrahieren kann. Im Allgemeinen
besteht jeder makroskopische Bereich des Raumes aus zahlreichen Bausteinen, und er kann
aus Mean-Field Kondensatzuständen extrahiert werden.

Innerhalb von GFT, welche über SU(2)-Gruppen definiert ist, kann das Kondensat
durch Spins unterschiedlicher Darstellungen charakterisiert werden. Im kosmologischen
Sektor kann man das Kondensat jedoch von einem bestimmten Typ wählen, dessen Spins
identisch sind. Dadurch kann die kombinatorische Struktur der GFT-Wechselwirkung ig-
noriert werden, was zu einer effektiv einfacheren Dynamik führt. Wir bezeichnen ver-
schiedene Spins als Moden, und wir extrahieren die kosmologische Entwicklung unter
Beitrag mehrerer Moden.

Zu früher kosmologischer Zeit herrscht Dominanz von kinetischen Termen, die zu Beschle-
unigungsexpansionen unmittelbar nach dem Bounce führen. Diese frühen Beschleunigun-
gen sind aber auch mit allen Moden nicht von langer Dauer. Wechselwirkungsterme sind
für die späte Beschleunigung notwendig. Insbesondere bei zwei Kondensatmoden können
wir eine phantomähnliche Expansion rein quanten-gravitativen Ursprungs erhalten, auch
ohne Phantom-Materie. Ein solches Verhalten kann durch die effektive equation of state
aufgezeigt werden, aus der wir auch die ungefähre Position des Phantom-Übergangs, der im
Ein-Moden-Fall fehlt, erhalten. Dieser erfolgt bei einer niedrigen Rotverschiebung, weswe-
gen die Einbeziehung der zweiten Mode nur zu späten Zeiten zu Modifizierungen führt.
Solche Modifikationen können den aktuellen Hubble-Wert H0, der aus Daten abgeleitet
wurde, erhöhen und somit zur Entlastung der H0-Spannung aufgrund von Quantengravi-
tationseffekten beitragen.

Darüber hinaus können wir durch die Berücksichtigung inhomogener Störungen in Kon-
densaten des Boulatov-Modells, einer 3d-GFT, die Dynamik eines Materiefeldes in Form
einer generalisierten Version des Amit-Roginsky (AR)-Modells erhalten. Im Gegensatz
zum kosmologischen Sektor berücksichtigen wir dabei die kombinatorischen Strukturen
der Wechselwirkungsterme.

Hierfür betrachten eine Klasse von Lösungen, um die perturbiert werden soll, und
wählen passende Störungen für den Angleich an die AR Freiheitsgrade. Die AR-Dynamik
emergiert im Kondensat unter zwei zusätzlichen Bedingungen, und die resultierende Wirkung
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ist eine Summe von AR-Modellen mit verschiedenen Spins. Diese Verallgemeinerung bricht
melonische Dominanz im large-N Grenzwert, aber kann in bestimmten Näherungen wieder-
hergestellt werden.



Abstract

As a theory of quantum gravity, in group field theory (GFT) the usual spacetime dissolves
microscopically into discretized building blocks. A major challenge is to understand how
the familiar laws of physics based on continuous spacetime can emerge from these funda-
mental, non-spatio-temporal elements. Generally, any macroscopic region of the spacetime
consists numerous number of building blocks, and the spacetime continuum can be ex-
tracted from condensate states at the mean field level.

In GFT over SU(2) group, the corresponding condensate can be characterized by spins
of different representations. For the cosmological sector, one can choose the condensate as
a particular type whose spins are identical, such that the combinatorial structure of the
GFT interaction can be ignored, which provides a simpler dynamics effectively. Different
spins are referred to as ‘modes’, and we want to study the cosmological evolution when
multiple modes contribute.

At early times, the dynamics of GFT is primarily governed by kinetic terms, resulting
in accelerated expansion right after the cosmic bounce. However, these early-time acceler-
ations are not long-lasting even when all modes are taken into account. Late-time accelera-
tion requires interaction terms, and in particular, when we consider two condensate modes,
we can obtain phantom-like evolution that arises purely from quantum gravity, without
any phantom matter. Such behaviour can be revealed through the effective equation of
state, from which the position of phantom crossing can be determined approximately. The
crossing occurs at a low red shift, which indicates that the inclusion of the second mode
modifies the single mode evolution only at late times. Such modifications can increase the
current Hubble value H0 inferred from data, which shed some lights in alleviating the H0
tension based on quantum gravity effects.

Furthermore, by considering inhomogeneous perturbations over the condensates of the
Boulatov model, a 3d GFT, we are able to get the dynamics of a matter field, in the
form of a generalized version of the Amit-Roginsky (AR) model. Unlike the cosmological
sector, the combinatorial structures of the interaction terms will be taken into account.
We consider a class of solutions to the equation of motion, which serves as the condensate
function to be perturbed, and choose suitable forms of perturbations to match the AR
degrees of freedom. The AR dynamics will emerge when the condensate satisfies two
additional conditions, and the resulting action will be a summation over the original AR
model of different spins. This generalization breaks the melonic dominance in the large-N
limit, but it can be restored under certain approximations.
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Chapter 1

Introduction

The quantization of gravity is one of the most important and challenging open problems in
theoretical physics. Despite several decades of efforts after the birth of general relativity
(GR) and quantum mechanics (QM), we are still far from a complete theory of quantum
gravity [1–3], which even made one to suspect that whether gravity needs to be quantized
or not1. Indeed, it’s very difficult to verify quantum gravity theories experimentally, as
in practice the Planck scale (where quantum gravity effects are expected to be relevant)
is much greater than we can reach in the lab2. And even conceptually, we are lacking of
conclusive proofs but only tentative arguments and beliefs that gravity should be quantized
as other fundamental forces do [12–18]. However, there is no doubt that in Planck scale,
where one needs to take into account both GR and QM, our understanding of space and
time should be changed completely.

For example, according to QM, when trying to probe shorter distances one needs higher
energy (density), while according to GR, when the energy density is high enough there
would be black holes, which prevents us from obtaining any useful information, as the
results of an experiment that tries to measure distance smaller than Planck length will
be hidden inside the horizon [19, 20]. Furthermore, when calculating Feynman diagrams
with loops in quantum field theory (QFT), one needs to integrate over virtual particles
with arbitrarily large energy, and hence lead to the formation of black holes as well [21].
The problem is, when black holes are formed, they can evaporate into particles of all
possible species according to Hawking radiation [22, 23]. Such processes are not possible in
ordinary QFT without gravity, and hadn’t been observed so far. In other words, GR and
QM won’t be able to tell us what will happen in Planck scale, therefore, their combination
will certainly lead to new physics. The search of quantum gravity theories is one, and a

1 In fact, it already takes decades of work to show that the first approach to quantum gravity, perturbative
quantum GR, that tries to incorporate methods from usual QFT, fails as the resulting theory is not
renormalizable [2, 4–8].

2 Very recently, using methods from quantum information theory, it’s argued that the quantum nature of
gravity can be revealed if gravity can entangle two previously non-entangled systems [9–11]. But still, such
table-top experiments are quite hard, as they require the preparation of two massive objects that have long
enough decoherence time to be entangled [9, 10].
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promising one, of the efforts to reveal what such new physics would look like.
At the same time, due to the extensive pursuit of quantizing gravity over a long pe-

riod, numerous quantum gravity theories have emerged, offering valuable insights into
the microscopic structure of spacetime [1]. Perturbatively, drawing from the experiences
gained in conventional QFT, one can attempt to decompose the spacetime metric into a
fixed background and a dynamic perturbation, leading to the theory of ‘gravitons’, which
are massless spin-2 particles. However, as mentioned earlier, this theory turns out to be
non-renormalizable, rendering it unsuitable as a fundamental theory. On the other hand,
the asymptotic safety approach [24] takes a non-perturbative path in quantizing gravity,
following the methods employed in QFT. Alternatively, string theory can be regarded as
a generalization of the perturbative approach, where point-like objects are extended to
string-like entities, introducing additional degrees of freedom and uncovering numerous
non-perturbative phenomena [25].

However, in this thesis we will not follow the approaches above that emphasis the par-
ticle aspect of quantum gravity. Instead, our analysis based on the canonical approaches,
that apply the quantization techniques from QM to the gravitational field, or spacetime,
thus resulting a background independent quantization. Following this route, one can arrive
at loop quantum gravity (LQG) [26], or it’s path integral formulation, spin foam models
[27] and tensorial group field theory (TGFT) [28, 29]. The later is the main focus of the
current thesis.

Indeed, without a complete theory of quantum gravity, we are not able to imagine the
exact picture of the physics in Planck scale, but the existing yet to be complete theories can
already provide us insightful glimpses for the microscopic structure of spacetime. Generally,
many quantum gravity approaches suggest that at the microscopic level, the usual notion of
spacetime continuum disappears [30], instead the discrete structure of one sort or another
would appear, and the macroscopic spacetime we are experiencing every day should emerge
from such abstract, non-spatio-temporal entities [31]. Therefore, it’s a common problem
faced by many quantum gravity theories to recover the usual description of the universe
in terms of a smooth spacetime and fields living on it, and their dynamics governed by (a
possibly modified version of) GR and effective QFT. The task is simpler in approaches that
in fact start from the same mathematical structures of effective field theory, like asymptotic
safety or string theory, which can still make use to a large extent of the usual intuition and
tools of spacetime physics (however, they may have then a harder time providing a precise
description of the fundamental degrees of freedom of the underlying spacetime itself). On
the other hand, for theories that take these abstract, non-spatio-temporal building blocks
as a starting point, one faces a more serious challenge. And the more distant their candidate
fundamental entities are from the usual notion we are familiar with, the harder to recover
the spacetime continuum from these quantum gravity theories. The set of such challenges
is often referred to as the issue of the emergence of spacetime in quantum gravity [31].

As we have mentioned, the main approach followed by this thesis, TGFT, belong to this
second kind of quantum gravity approaches, with their fundamental interaction processes
represented as simplicial complexes (of one dimension higher) [28, 29, 32–37]. In this
respect, however, they have the advantage that, despite their fully background independent
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and non-spatio-temporal character, they can still rely on tools from QFT to investigate
the emergence of spacetime from their quantum dynamics. This has been one important
motivation in the study of renormalization group flows and critical behaviour of numerous
TGFT models [32, 34–36, 38, 39]. TGFTs can also rely, for solving the same issue, on
the additional quantum geometric data labelling their fundamental quanta and enriching
their quantum dynamics. Indeed, while this makes their quantum states and amplitudes
more involved, it also provides a guideline for their spatio-temporal interpretation, and
makes even the simplest types of approximation schemes geometrically rich enough to be
interesting. From a phenomenological point of view, however, the ‘tensorial’ nature of the
field is not quite important, and we will focus on a subclass of TGFTs, the group field
theory (GFT) [28, 29, 40].

1.1 GFT condensates and cosmology
In chapter 2, we will give a short overview of the GFT formalism. Here we just note the
fact that, as we have mentioned, in GFT the continuous spacetime dissolves into discrete
building blocks, or quantas, and any macroscopic region of spacetime should emerge from
a large number of these building blocks [29]. In this case, the methods from statistical
mechanics can be applied, and one would expect that the actual spacetime should emerge
from some kind of condensates (see equation (2.15) for a definition), in which the field
operator has non-zero expectation value, in contrast to the vacuum state.

Based on these ideas, GFT condensate cosmology [41–51] provides a research pro-
gramme aiming at the extraction of spacetime physics, in particular cosmology, from GFTs.
It is based on the hypothesis that the emergent gravitational physics should be looked for
in the hydrodynamic approximation of the full GFT quantum dynamics, and focuses in
particular on condensate states, thus treating the universe as a peculiar quantum fluid,
made out of GFT quantas. A large number of recent analyses in this context have shown
not only the general viability of this strategy, but also that physically interesting results
can be obtained already in the mean field (or Gross-Pitaevskii) approximation.

In particular, for very early time, when our universe is close to Planck scale and quan-
tum gravity effects are expected to be important, it’s shown that, already in the single
mode1 case, in GFT condensate cosmology the singularity is replaced by a bounce [41–
43, 46], as one can expect from the cosmological sector of other approaches to quantum
gravity, such as loop quantum cosmology (LQC) [52–54]. Shortly after the bounce, de-
pend on the details of the value of GFT parameters, we either get a Friedman phase of
the universe, in the sense that the equation of motion in the model has the same form
as the Friedmann-Lemaître-Robertson-Walker (FLRW) equation with free massless scalar
field, provides the expected classical limit [42, 43]; or we enter an inflationary phase of
pure quantum gravitational origin without the need of inflaton, and it’s possible to tune
the GFT parameters to get a large enough number of e-folds suited for cosmological re-

1 Here the term ‘mode’ is similar as Fourier mode in Fourier expansion except in GFT we are dealing with
functions on groups and Peter-Weyl (PW) decomposition will be used.
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quirements [45, 55]. These results suggest that GFT condensate cosmology can already
reproduce some existing phenomenological or otherwise simplified models incorporating hy-
pothetical quantum gravity effects or specific features of existing fundamental formalisms
(such as LQC), hence provide a way to establish a solid connection between fundamental
quantum gravity formalisms and effective continuum physics of the usual spacetime.

On the one hand, however, quantum gravity effects in cosmology do not need to be
confined to the very early universe. Especially, in any emergent spacetime context notions
like separation of scales or locality, on which usual effective field theory reasoning is based,
are by definition approximate, and one should rather expect that the whole spacetime
structure and dynamics, including large scale features, could be discovered to be of direct
quantum gravity origin, as in the case of early universe.

On the other hand, although the ΛCDM model is very successful in describing the
evolution of our universe using only a few parameters [56, 57], the smallness of the value of
cosmological constant Λ [57, 58], i.e., the famous cosmological constant problem, remains a
challenge to fundamental physics. Furthermore, more seriously, the ΛCDM model wasn’t
able to explain some recent observational results, especially for the data of supernova [59–
61]. For example, many analyses show that we may currently be experiencing a phantom
phase [59, 62, 63], caused by some phantom dark energy with equation of state (EoS)
w less than −1, which is impossible in the ΛCDM model. Furthermore, we have the so
called H0 tension, which shows that the current value H0 of the Hubble parameter inferred
from the CMB [56] is smaller than the one from local measurements [61, 64]. And not so
surprisingly, one can actually alleviate the H0 tension by introducing a late time phantom
phase in the expansion of the universe [60, 65, 66], which provides an evidence for the need
to modify the expansion history of our universe.

Therefore, it’s natural to ask whether these cosmological anomalies can be alleviated,
or the late time acceleration can be extracted, with the help of quantum gravity effects.
Such issues are not discussed extensively in the GFT community yet. And in this thesis we
will try to fill this gap by showing that, when going beyond the single mode scenario, such
as considering two modes in our GFT condensate cosmology model, the phantom phase
can emerge naturally (see chapter 3 for details), without the need of any kind of phantom
matter in the sense of particle physics.

The result is interesting for two reasons. First, a proper field theoretic modelling of
phantom dark energy is challenging, if the phantom field is taken to be a fundamental
component of the universe. In fact, the negative kinetic term needed to have w < −1 leads
to vacuum instability, Lorentz violation or other pathology [67, 68]. Various solutions
have been proposed, for example involving several scalar fields [69], but with no conclusive
success. Second, in our model, on one hand the singularity in the very early universe can
be resolved by a bounce, and on the other hand the phantom phase can emerge in late
time. In fact, we can see in chapter 4 that in GFT condensate cosmology, when we have
a non-vanishing cosmological constant today, there had to be a bounce instead of the big
bang singularity. Therefore, in our formalism, the physics we are experiencing now and
the physics of the far past can be brought together, showing the effects of quantities of
very small scale, such as the Planck length, on observational results of very large scale,



1.2 Matter as perturbations over GFT condensates 5

the cosmological constant governing the accelerated acceleration of the whole universe at
current stage. The fact that cosmological anomalies can be resolved using the Planck scale
physics is also observed in LQC [70, 71].

1.2 Matter as perturbations over GFT condensates
Another open issue in GFT is how to incorporate matter fields into our formalism, which
is important if we want to discuss the cosmological evolution in a more realistic manner,
by including the real matter contents, such as the radiation and non-relativistic matter,
into consideration. It’s possible to couple directly the GFT with the free massless scalar
field, such that we can get the correct semi-classical limit for both gravity and matter field
[72]. There are also additional routes to get matter content in our formalism, for example
we can extract matter from the condensate itself as perturbations [73].

On the other hand, the usage of homogeneous and isotropic condensate in the GFT
condensate cosmology is successful in capturing the main feature of the cosmological evolu-
tion, but such simplification but also hides many detail structures of GFT, for example the
non-local and combinatorial nature of the interaction kernel. Going beyond homogene-
ity requires us to be able to distinguish different points of the spacetime, or in other words,
we need to have relational rods to set up spatial coordinates, similar as the relational clock
used to track time evolution. Such rods can also be modelled using free massless scalar
fields, which enables us to obtain a relational reference frame constructed from physical
system [51, 74]. Based on this matter frame, we can introduce inhomogeneities into the
condensate state, as a source of cosmological perturbation [51]. Going beyond isotropy,
on the other hand, usually requires us to deal with non-equilateral tetrahedra instead of
the equilateral ones [75, 76], such that the combinational nature of the kinetic and inter-
action term can be taken into account, which will certainly make the equation of motion
complicate compared to the case of homogeneous and isotropic cosmological evolution.

For the first step to combine inhomogeneity and anisotropy, in chapter 5 we will con-
sider a GFT model in 3d spacetime, the Boulatov model1 [77]. In fact, this is the first
GFT model that has been proposed, whose Feynman expansion around vacuum gives the
Ponzano-Regge (PR) amplitudes [29], corresponds to a discretization of 3d gravity [78, 79].
Surprisingly, it turns out that inhomogeneous perturbations over anisotropic condensates
can be viewed as a massive matter field, which is non-trivial as it’s still unclear on how to
incorporate a field with mass into the GFT formalism. The difficulty lies in the fact that to
get the correct dynamics of both gravitation and the matter field in the continuum limit,
the mass term of the matter field should be accounted by a non-trivial interaction term of
GFT [72]. So far only the free massless scalar field that can be implemented consistently in
GFT2, and the results of chapter 5 provide another way of dealing with matter in quantum
gravity theories, i.e., by viewing matter as emerged from the perturbations over condensate
states, we can leave aside the necessity of coupling external matter to gravity.

1 Which is easier to handle than the more realistic 4d models.
2 That’s why we always use them as relational time and rods.
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The idea of extracting matter degree of freedom from gravity is not new. In particular,
it’s already shown that perturbations over classical solutions of GFT dynamics can be
viewed as matter fields over flat spacetime in the 3d case [73] or the spacetime corresponds
to deformed special relativity in the 4d case [80]. These works mainly considered the
group representation of the GFT formalism, and haven’t introduced the relational time
and rods, which makes it difficult to interpret the resulting dynamics of the emerged
matter fields in the usual language we are familiar with in ordinary QFT. Such obstacles
can be overcome by introducing free massless scalar fields as physical frame, and working
in the spin representation, such that the ‘coordinate’ degrees of freedom decouple from
the group ones, which allows us to identify the dynamics of matter fields in the sense of
QFT, and we will see in chapter 5 that the resulting field theory is a generalization of the
so called Amit-Roginsky (AR) model [81, 82]. The model is interesting on its own as it’s
the only field theory we have known so far that has a cubic interaction but dominated by
melonic graphs in the large N limit [82], and the results in chapter 5 suggests that two
different type of fields, i.e., group field (which generates the spacetime continuum itself) on
the one hand, and the AR model (which lives on the spacetime continuum) on the other,
can be linked together in the GFT formalism.

1.3 An overview of the thesis
The thesis is organized as follows. In chapter 2, we will provide a brief introduction of the
GFT formalism and its cosmological sector based on condensates. We can see that GFT
can be second quantized, with quanta created by the creation operator ĉ†

x corresponds to a
4-valent vertex in LQG, which can be interpreted as a tetrahedron (see figure 2.1), and the
volume operator can be written using creation and annihilation operators. The dynamics
can be introduced using GFT action, where the time evolution is tracked by introducing
a free massless field ϕ as a relational clock. Based on these structures, one can construct
condensate states peaked on a given relational time ϕ0 (see the definition (2.15) of coherent
peaked state). Furthermore, we can focus on the isotropic and homogeneous sector of
condensates, from which the cosmological evolution can be extracted. Such evolution can
be written using the expectation value of the volume operator and its derivative respect to
relational time. Finally, two primary results, i.e., the resolution of the big bang singularity
and the emergence of classical limit are discussed.

Chapters 3 and 4 exhibit the applications of GFT condensate on cosmological evolution.
In chapter 3 we discuss the effects when including more than one mode into GFT condensate
cosmology formalism, with the promised phenomena of the emergence of phantom phase
for late time expansion. We first introduce the effective EoS w whose dynamics is the
central object of our analysis, summarize the main aspects of phantom dark energy, and
rewrite previous results of GFT condensate cosmology in single mode case using EoS. In
section 3.2, we consider the early universe dynamics right after the bounce, where the free
part in the quantum gravity condensate dominates. We take all quantum geometric modes
into account and show that the bounce is followed by an accelerated phase, but this phase
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is not long-lasting in general. The role of GFT interactions is considered in section 3.3,
where it’s shown that with interaction terms in the effective GFT action, the phantom
phase can emerge naturally accompanied by the de Sitter phase asymptotically, and it’s
also possible to obtain an inflationary scenario in early time while keeping the phantom
phase in the late universe.

In chapter 4, we discuss the cosmological effects of the model we obtained in more
detail. In section 4.1, we consider how to obtain the minimal value of EoS and the location
of the minimum. The last part of section 4.1 shows the relation between cosmological
constant and microscopic parameters of GFT. Section 4.2 shows how to introduce red shift
z in the GFT formalism, which allows us to discuss the deviations of expansion history of
our universe and the consequent effects on the current value H0 of Hubble parameter. And
it’s shown that the inclusion of the second mode will actually increase H0 when we try to
infer the value from data.

Chapter 5 deals with the emergence of matter fields from the perturbations over GFT
condensate. A brief review of the Boulatov model is given in section 5.1. In the following
section we recall the AR model and study the condition on the perturbations of classical
solutions of the equations of motion of the Boulatov model necessary to recover an effective
action in a similar form as the AR model. Section 5.3 discusses the existence of a melonic
dominance for our effective action. While it is unsettled for the moment whether it’s the
case in the most general setting, we exhibit additional conditions to enforce the melonic
dominance of our generalized AR model.

For simplicity, if not specified we will use the unit such that c = ℏ = 1, where c is the
speed of light and ℏ is the Planck constant.
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Chapter 2

Group field theory and cosmology

In this chapter we present some basics of the TGFT formalism and of quantum geometric
models (i.e., GFTs) for 4d quantum gravity in particular, with a focus on the elements on
which the extraction of cosmological dynamics is based. We only include the ingredients
that are needed as immediate background of the work presented in this thesis, especially
for chapter 3 and 4. For a more detailed introduction to TGFT we refer to existing
reviews [28, 29, 33, 40]. For the basics of GFT condensate cosmology see instead the
original work in [41, 42, 83, 84] and the reviews [43, 44, 47]. See also [48, 49] for the use of
coherent peaked states for the study of relational observables and their dynamics, and for
the discussion of their quantum fluctuations.

2.1 The formalism of group field theory
GFTs are quantum field theories defined over several copies of a Lie group G, which
replaces the usual spacetime manifold of standard field theories and does not have, to start
with, any spatiotemporal interpretation. The usual notion of space and time can only
emerge from a proper limit or a suitable scenario, such as the condensate state with a large
number of GFT quantas [29, 30]. In 4d quantum gravity models, the (usually complex)
field is a tensorial map φ : G×4 → C, φ(gv) = φ(g1, · · · , g4), where the rank of the tensor
is chosen equal to the dimension of the spacetime one intends to reconstruct [29]. GFTs
are understood, in fact, as field theory formulations of spacetime, more precisely of the
kinematics and dynamics of its fundamental constituents, rather than on spacetime as it is
the case for usual QFTs. The basic quanta of the theory can be depicted as combinatorial 3-
simplices, i.e. tetrahedra, labelled by the group-theoretic data, which encode their quantum
geometry (assumed to be space-like). Quantum states and boundary data of such models
will correspond to collections of such quanta. In the quantum geometric models proposed
to date the relevant group manifold is G = SL(2,C) or its rotation subgroup SU(2), since
the restrictions (for example the simplicity constraint [20, 85]) that the models impose on
the group-theoretic data to ensure a proper geometric interpretation of the simplices allows
(in the EPRL model [20, 86], for example) to map the two formulations of their quantum
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geometry [85–88]. For details on the quantum geometric conditions, we refer to the cited
literature. In the following we will take G = SU(2).

Following these geometric restrictions, the field φ(gv) is required to be right invariant,
φ(gvh) = φ(g1h, g2h, g3h, g4h) = φ(gv), ∀h ∈ G, and therefore φ(gv) ∈ L2(G×4/G). A
complete and orthonormal basis of L2(G×4/G) is given in terms of SU(2) Wigner repre-
sentation functions contracted by group intertwiners; these are called spin network vertex
functions. Such functions are obtained from the PW decomposition

φ(gv) =
∑

x

cxκx, (2.1)

with cx =
∫

d4gφ(gv)κx(gv) is the projection of field φ(gv) onto basis κx(gv), defined as:

κx(gv) =
∑
n

{[ 4∏
i=1

√
d(ji)Dji

mini
(gvi

)
]

Ij,ι
n

}
∈ L2(G×4/G), (2.2)

which are orthonormal under the normalized Haar measure
∫
G dg = 1, i.e.,∫

d4gκx(gv)κx′(gv) ≡
∫ ∏

i

dgvi
κx(gv)κx′(gv) = δx,x′ . (2.3)

In equation (2.2), Dj(g) is the Wigner matrix in the spin j representation of SU(2), i.e.,
Dj
mn(g) = ⟨j,m|g|j, n⟩ represents the matrix element of the group element g under the

representation of SU(2) of spin j, and Ij,ι
n is the intertwiner, belong to the invariant

space of tensor products of SU(2) representations. More precisely, in the 4d case we have
Ij,ι

n = Ij1,j2,j3,j4,ιn ∈ Inv {Vj1 ⊗ Vj2 ⊗ Vj3 ⊗ Vj4}, for representation space Vji labelled by spin
ji. For more details on the SU(2) recoupling theory, see the nice introduction [89].

As shown in figure 2.1, these basis functions can be associated graphically to a 4-
valent spin network vertex, i.e. a node with d = 4 open links associated with 4 spins
j = (j1, j2, j3, j4), together with angular momentum projections m, and the intertwiner
quantum number ι associated instead to the node itself [90]. Geometrically, one can think
the spin network vertex sitting inside the tetrahedron with the 4 links emanated from the
node crossing its 4 triangular faces. Following the quantization of simplicial geometry for
the tetrahedron (whose results are also consonant to the results obtained in the continuum
canonical loop quantum gravity context), such spin network states are eigenstates of rel-
evant geometric operators, with the spin labels ji determining the areas of the four faces,
while the intertwiner label specifying the volume of the tetrahedron.

Therefore, a GFT can be given based on either group elements of the representations, we
will call the former group representation and the latter spin representation. Furthermore,
there is an algebra representation based on the elements of Lie algebra su(2) of the group
SU(2) [29], but such representation will not concern us in this thesis. In the following
we will mainly work on the spin representation, where the calculations can be made more
explicit. The resulting quantas, in the second quantization of GFT, correspond to spin
network vertices in LQG, dual to the tetrahedra [90], as indicates by figure 2.1. The
group representation, on the other hand, will also be used occasionally, in particular for
writing down the GFT dynamics, where the action has a simpler form compared to the
spin representation [29, 42].
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j4

j3

j2

j1

(a) 4-valent vertex

j4

j3

j2

j1

(b) Dual tetrahedra

Figure 2.1: 4-valent vertex of a spin network and its dual tetrahedra.

2.1.1 Second quantization
GFTs can be dealt with in a second quantization language1 by promoting the fields and
their modes cx to operators [90],

φ̂(gv) =
∑

x

ĉxκx(gv), φ̂†(gv) =
∑

x

ĉ†
xκ̄x(gv), (2.4)

where the annihilation (creation) operator ĉx (ĉ†
x), annihilates (creates) spin network node

(or, equivalently, tetrahedron) labelled by x = (j,m, ι). We also have the following
commutation relations (assuming bosonic statistics)[

ĉx, ĉ
†
x′

]
= δx,x′ , [ĉx, ĉx′ ] =

[
ĉ†

x, ĉ
†
x′

]
= 0. (2.5)

The vacuum |0⟩, which is the state with no spacetime structure (geometrical or topo-
logical), is defined by ĉx |0⟩ = 0, ∀x. By acting the creation operator ĉ†

x repeatedly on |0⟩
we can construct the many-body states as usual, leading to the Fock space

F(H) =
∞
⊕
N=0

sym
{
H(1) ⊗ · · · ⊗ H(N)

}
, H = L2

(
G×4/G

)
,

where N denotes the number of tetrahedra in each sector of the Fock space (again, the
bosonic statistics is assumed). Extended topological structures, corresponding to simplicial
complexes formed by glued tetrahedra, or equivalently by graphs formed by connected spin
network vertices, can be put in precise correspondence with entangled many-body states

1 This second quantized formulation, however, is not directly the result of quantizing by standard canonical
methods the theory starting from the classical GFT action, due to the lack of external time parameters
on which such standard methods would rely. In fact, alternative ‘deparametrized’ formulation of the
same GFTs (after additional ‘matter’ degrees of freedom have been included; see the following sections)
exist [91, 92]. This timeless formalism can also be derived by more standard canonical quantization
methods from a ‘frozen’ perspective [93], looking at the GFT model as a peculiar constrained system.
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inside the Fock space, with the graph structure encoding exactly the entanglement pattern
among fundamental degrees of freedom [94].

For this formalism to be a compelling formulation of quantum gravity, one should be
able to extract the dynamics of spacetime continuum, and with a proper limiting procedure,
we should get classical GR. In particular, our universe, including its dynamical spacetime
geometry, should be shown to emerge from the quantum dynamics of these more abstract
fundamental entities. To do this, we need to construct geometrical operators, which can be
used to characterize the geometric properties of the spacetime in a way we are familiar with.
In the cosmological sector, second quantized versions of the various quantum geometric
operators can be then constructed. To be more specific, we are going to need the volume
operator, which is diagonal in the spin network basis with matrix elements depending on
the intertwiner label ι. Therefore, we can write [49]

V̂ =
∑
x,x′

V (ι, ι′)δx−{ι},x′−{ι′}ĉ
†
xĉx′ . (2.6)

The total volume of the universe can be then be given as the expectation value of the
volume operator in a condensate state, from which the continuous spacetime emerge. But
before we can write equation in analogy as FLRW equation, which governs the cosmological
evolution, we need to know how localize the building blocks, and in particular, to track
the evolution. Because as we emphasized before, in general there is no coordinate system
a priori in quantum gravity theories. In the following, we will tackle this issue by coupling
free massless scalar fields χa to GFT as relational frame, such that the usual notion of
spacetime manifold can be extracted.

2.1.2 Relational description
In a diffeomorphism invariant context, there is no preferred coordinate frames to begin
with. A convenient strategy to localize the building blocks is relational one in which
appropriate internal dynamical degrees of freedom of the theory are used as physical frames,
including rods and clock, with respect to which the location and evolution of the others
are defined [95, 96]. In many applications, and in GFT cosmology in particular, the role
of such a physical frame is played by non-interacting (and minimally coupled) scalar fields
χa (a = 0, 1, 2, 3 in our 4d case). Such degrees of freedom of scalar fields are added
to the quantum geometric ones in the fundamental definition of the GFT model. For the
matter frame to work, the first step is to extend the definition of GFT field to be the map
φ : G×4 × R×4 → C, and then the GFT action should be extended to include appropriate
coupling of the new degrees of freedom. The main guideline for constructing such extended
dynamics is in fact the same as for the pure geometry models: the GFT model is defined
in such a way that its perturbative expansion produces a sum over simplicial complexes
weighted by an appropriate discrete path integral for gravity, now coupled to free massless
scalar fields [41, 42, 72]. We will see how to use these requirements to fix the GFT kinetic
terms in next subsection.
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Let us stress that, while the interpretation of the new degrees of freedom, just like
that of the quantum geometric ones, is guided by the role they play at the discrete level
corresponding to GFT quanta and Feynman amplitudes, their actual physical meaning and
properties should be determined by the role they play at some effective continuum level.
The GFT cosmology programme is exactly aimed at extracting such effective description
and controlling the emerging physics of these quantum gravity models.

After quantization, the field operators will also be χa dependent, in particular the
commutation relation between annihilation and creation operator becomes [42, 51][

ĉx(χa), ĉ†
x′(χ′

a)
]

= δx,x′δ(4)(χa − χ′
a), [ĉx(χa), ĉx′(χ′

a)] =
[
ĉ†

x(χa), ĉ†
x′(χ′

a)
]

= 0. (2.7)

Correspondingly, the definition of other observables will include their dependence on
scalar field degrees of freedom. For example, the volume operator, counting the contribu-
tion from each GFT quantum, becomes

V̂ =
∫

d4χV̂ (χa) =
∫

dϕ
∑
x,x′

V (ι, ι′)δx−{ι},x′−{ι′}ĉ
†
x(χa)ĉx′(χa). (2.8)

Without introducing inhomogeneities, it’s enough to work with homogeneous conden-
sate. In this case, when acting on the condensate, the dependence on rods (indicated by
χi (with i = 1, 2, 3) fields) of the volume operator has no effects either. Therefore, for
simplicity we can keep only the dependence on relational time1 χ0 = ϕ, such that

V̂ =
∫

dϕV̂ (ϕ) =
∫

dϕ
∑
x,x′

V (ι, ι′)δx−{ι},x′−{ι′}ĉ
†
x(ϕ)ĉx′(ϕ). (2.9)

The relational strategy would then suggest to look for a definition of a relational observable
corresponding to the volume of the universe at given clock time, with the role of clock played
by the scalar field, and a first definition could be given by the quantity V̂ (ϕ) entering
the above expression. Indeed, this has been the definition adopted in much of the GFT
cosmology literature. Recently, an effective relational strategy has been proposed, in which
relational observables correspond to the expectation values of the generic GFT operators
in appropriately selected ‘clock-peaked’ states. We are going to illustrate this effective
strategy in the following, after discussing the dynamical aspects of the theory.

2.1.3 Dynamics
Classically, the dynamics of a given GFT model is specified by the action [42, 43, 45, 51]

S(φ̄, φ) =
∫

dgv1dgv2d4χv1d4χv2φ̄(gv1 , χa,v1)φ(gv2 , χa,v2)K(gv1 , gv2 ; (χa,v1 − χa,v2)2)

−
∞∑
n,m

λn+m

∫
d4χ


[
m∏
i=1

dgvi
φ̄(gvi

, χa)
]  n∏

j=1
dhvj

φ(hvj
, χa)

Vn+m(gv, hv)
 ,
(2.10)

1 Following the original paper [42], we let the relational time χ0 = ϕ for an easier comparison with previous
results.
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where K(gv1 , gv2 ; (χa,v1 − χa,v2)2) and Vn+m(gv, hv) = Vn+m(gv1 , · · · , gvm , hv1 , · · · , hvn) are
kinetic and interaction kernels respectively, whose explicit form can be determined by
requiring that its Feynman expansion provides the correct amplitudes obtained in spin
foam models [42], for example the Engle-Pereira-Rovelli-Livine (EPRL) model [85, 86, 97].
It’s worth emphasizing that the kinetic term K only depends on the square (χa,v1 −χa,v2)2

of the differences between the relational times associated to two building blocks (tetrahedra
labelled by v1 and v2), respectively. This is because that the Lagrangian density of a free
massless scalar field minimally coupled to gravity1,

L = 1
2

√
−ggµν∂µχa∂νχa, (2.11)

is invariant under the translation χa,v → χa,v + ca for some constants ca and the reflection
χa,v → −χa,v. These two symmetries have to be restored when we take the classical limit,
hence it’s natural to assume they are valid also at the quantum level in the GFT [42]. By
further assuming that the differences χa,v1 − χa,v2 is small, we can consider a derivative
expansion of the kinetic term [42, 49]. When acting on the coherent peaked state (CPS),
which we will discuss in subsection 2.2.1, terms other than the first two will be suppressed
in the presence of the peaking function (usually taken as Gaussian) [49]. Furthermore, the
first two terms correspond to mass term and the derivative terms ∂/(∂χa), respectively
[42, 49]. In particular, in the homogeneous case, we can ignore the rods and focus only on
the time derivative ∂/(∂χ0) = ∂/(∂ϕ).

Given that the kinetic term are fixed by symmetry considerations, a GFT is mainly
defined by specify the interaction term Vn+m, whose explicit form won’t concern us in the
cosmological sector of the thesis as the work is done in an effective level. In chapter 5,
however, the combinatorial detail of the interaction term would be important, and we will
write down the action (5.7) of Boulatov model [73, 77] explicitly, as an example of what
the interactions would look like.

Note that we have adopted a notation reminiscent of quantum many-body physics,
indicating that different interactions involving varying numbers of ‘spacetime atoms’ are
possible, and restricted to the case of pure quantum geometric data for simplicity of no-
tation. The interaction kernels are generically non-local with respect to such quantum
geometric data, in the sense that arguments in each interacted group field φ are not simply
identified to each other. When scalar field degrees of freedom are present, on the other
hand, typical interaction kernels are going to be local in them. The quantum dynamics
can be extracted from the partition function2

Z =
∫

DφDφ̄e−S(φ̄,φ),

1 gµν represents the metric of the spacetime under consideration, and there is no summation over the
subscript a.

2 This partition function can be seen as the result of rewriting in path integral form a ‘generally covariant
equilibrium partition function’ of quantum statistical type for a system of quantized simplices; see [98, 99].
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from which we get the Schwinger-Dyson equations [41, 43]

0 =
∫

DφDφ̄ δ

δφ̄

[
O(φ̄, φ)e−S(φ̄,φ)

]
=
〈
δO(φ̄, φ)

δφ̄
−O(φ̄, φ)δS(φ̄, φ)

δφ̄

〉
, (2.12)

where the vacuum expectation value ⟨· · ·⟩ is defined as

⟨O(φ̄, φ)⟩ =
∫

DφDφ̄O(φ̄, φ)e−S(φ̄,φ).

When quantum fluctuations are small, a mean field approximation is expected to be
valid. This means that at the leading order we need only consider the simplest one in the
series of Schwinger-Dyson equations〈

σ

∣∣∣∣∣δŜ(φ̂†, φ̂)
δφ̂†

∣∣∣∣∣σ
〉

= 0

for any state |σ⟩. In particular, if |σ⟩ is an eigenstate of the field operator, i.e.,

φ̂(gv, χa) |σ⟩ = σ(gv, χa) |σ⟩ (2.13)

for some eigenfunction σ(gv, ϕ), the dynamics can be expressed as equation of motion for
σ(gv, ϕ) obtained from the effective action

S(σ̄, σ) = ⟨σ|S(φ̂†, φ̂)|σ⟩. (2.14)

This approximation can also be seen as corresponding to approximating the full quan-
tum effective action of the field theory with its classical one, since the resulting equations
of motion are the ones obtained from the classical action replacing the GFT field with the
function σ(gv, ϕa). In the context of quantum many-body system, specifically quantum
liquids, this is the Gross-Pitaevskii approximation of the condensate hydrodynamics for
the condensate wave function σ(gv, ϕa).

With geometrical operators (from which we can extract geometric properties) and con-
densate state (from where the homogeneous universe emerges) in hand, we are able to
track the evolution of our universe by considering the expectation values. The remaining
issue is to construct the suitable condensate state |σ⟩ that captures our universe correctly,
as we will do in the following.

2.2 GFT condensate cosmology
As being mentioned, in this thesis we won’t consider inhomogeneities in the context of
cosmology, therefore for simplicity we will ignore the relational rods in the following dis-
cussion, and focus only on the relational time χ0 = ϕ. We will see in chapter 5 when we
consider perturbations, the relational rods have to be used to define inhomogeneity. Until
that, it’s enough to work solely with clock ϕ.
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In principle, arbitrary wave function can be used to define the condensate state, as
long as the resulting |σ⟩ is an eigenstate of the field operator, as indicated by equation
(2.13). But in general this way the quantum fluctuations are not controlled [48, 49]. For
a better control of the fluctuations, the wave function σ needs to be chosen such that the
resulting condensate state is peaked on a given relational time ϕ0, which lead us to the
notion of coherent peaked state [49]. Furthermore, although the universe extracted from
condensate states is homogeneous by definition, it’s in general not isotropic. We will see
later that imposing isotropy will further simplify our analysis by allowing us to split the
contributions to cosmological evolution into modes, whose dynamics are decoupled from
each other under our choice of interaction kernel.

2.2.1 Coherent peaked states
In our framework, the evolution of the universe can be expressed as the change of a spatial
slice of spacetime with respect to relational time ϕ. In order to introduce this dependence
of observables on the value of our clock and to get a better control over the quantum
fluctuations, we should work with states peaked on a fixed relational time ϕ0 [49]. The same
states should support the extraction of expectation values of geometrical observables, whose
non-vanishing indicates that a large number of fundamental GFT quantas are required,
such that the spacetime continuum can emerge with good approximations [42]. These two
considerations lead to the use of the coherent peaked state (CPS):

|σε;ϕ0, π0⟩ = N (σ) exp
(∫

(dg)4dϕσε(gv, ϕ;ϕ0, π0)φ̂†(gv, ϕ)
)

|0⟩ , (2.15)

with N (σ) is some normalization constant and |0⟩ is the vacuum state. The condensate
wave function σε(gv, ϕ;ϕ0, π0) is peaked on ϕ = ϕ0 and can be written as [48]

σε(gv, ϕ;ϕ0, π0) = ηε(ϕ− ϕ0, π0)σ̃(gv, ϕ), (2.16)

where ηε(ϕ− ϕ0, π0) is a peaking function (usually taken as a Gaussian, see equation (52)
in [49]) around ϕ0 with a typical width given by ε, and π0 is a further parameter controlling
the fluctuations of the operator corresponding to the conjugate momentum of the scalar
field ϕ. We further require that, the reduced condensate function σ̃(gv, ϕ), which is the
actual dynamical variable in the hydrodynamic approximation, should not modify the
peaking property of σε(gv, ϕ;ϕ0, π0), such that the peaking function ηε(ϕ − ϕ0, π0) fully
determines the peaking structure of the condensate state. It remains true, of course, that
the condensate state (2.15) is an eigenstate of GFT field operator

φ̂(gv, ϕ) |σε;ϕ0, π0⟩ = σε(gv, ϕ;ϕ0, π0) |σε;ϕ0, π0⟩ . (2.17)

One further condition imposed on the condensate wave function, motivated by geometric
considerations [41, 42, 49, 100], is invariance under both right and left diagonal group
actions

σ̃(hgvk, ϕ) = σ̃(gv, ϕ), ∀h, k ∈ SU(2). (2.18)
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2.2.2 Imposing isotropy

In the context of GFT condensate cosmology, it’s usually assumed that the condensate
wave function σ̃ takes the form of [42]

σ̃(gI , ϕ) =
∑
j

σ̃j(ϕ)Īj,ι+m Ij,ι+n d(j)2
4∏
l=1

Dj
mlnl

(gl), (2.19)

where we write j for j = (j1, j2, j3, j4) = (j, j, j, j), and similarly for m, n; Ij,ι+m is the
intertwiner labelled by ι+; d(j) = 2j + 1 is the dimension of the spin j representation and
Dj
mlnl

(gl) are the Wigner representation functions. The dependence on relational time is
then only encoded in σ̃j(ϕ) for each mode. Geometrically, such a restriction corresponds
to a tetrahedron with equal areas of the four faces (see figure 2.1) and a volume as large
as possible. The latter fact is the reason why we use ι+ instead of ι [42, 49].

Following [42], we will call these condensates as the isotropic ones. Since locally the
equilateral tetrahedron is the most isotropic one compared to other kind of tetrahedra. But
this doesn’t mean that the isotropic spacetime can only emerge from such condensates, as
there are many ways to implement isotropy. In particular, the Friedmann universe can
emerge from condensates labelled by spins not equal to each other, corresponding to non-
equilateral tetrahedra [76]. This is what one can expect as even an isotropic spacetime
admits anisotropic triangulations.

Therefore, in the current thesis, notions like isotropic and anisotropic are only defined
locally, not necessarily related to the corresponding property of the emerged spacetime.
More precisely, isotropic condensates refer to the ones whose wave function is labelled by
identical spins, geometrically corresponding to the equilateral tetrahedra in the 4d case, for
example. While on the contrary, anisotropic condensates indicate the fact when labelling
the condensate function there is at least one spin that is different from others, such that
the combinatorial details of the interaction terms would be important in determining its
behaviour. We emphasize that it’s possible for an isotropic space to emerge from the
anisotropic condensates, as we can see in chapter 5.

Note that, given the definition (2.15) of annihilation operator ĉx, we have

ĉx(ϕ) |σε;ϕ0, π0⟩ = ηε(ϕ− ϕ0, π0)σ̃j(ϕ)Īj,ι+m |σ⟩ , (2.20)

i.e., only for j1 = j2 = j3 = j4 = j the action of ĉx with x = (j,m, ι) is not vanishing.
In summary, when imposing isotropy the dynamics of GFT in the cosmological sector

will be encoded in a collection of functions σ̃j(ϕ), which we call modes, each of them can
be labelled by a single spin j1. By a suitable choice of the interaction kernel, the equations
of motion for different modes will decouple from each other, which simplifies further our
analysis of the cosmological evolution.

1 In the following we usually call it mode j for short.
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2.2.3 Effective dynamics
Having fixed the peaking function ηε(ϕ−ϕ0, π0), the dynamics of the condensate is encoded
in the evolution of the reduced condensate function σ̃(gv, ϕ). Furthermore, using the fact
(2.17) that the CPS |σε⟩ is an eigenstate of the field operator, the effective action, from
which the dynamics for each mode can be extracted, reads at mean field level [49]

S(¯̃σ, σ̃) =
∫

dϕ0⟨σε;ϕ0, π0|S(φ̂†, φ̂)|σε;ϕ0, π0⟩,

=
∫

dϕ0

∑
j

[
¯̃σj(ϕ0)σ̃′′(ϕ0) − 2iπ̃0 ¯̃σj(ϕ0)σ̃′

j(ϕ0) − ξ2
j
¯̃σj(ϕ0)σ̃j(ϕ0)

]
+ V(¯̃σ, σ̃)

 ,
(2.21)

where π̃0 = π0

επ2
0 − 1 , ξj is an effective parameter encoding the details of the kinetic term

of the fundamental GFT action (in the isotropic restriction), and ′ denotes derivative with
respect to ϕ0. Finally, V(¯̃σ, σ̃) is the interaction kernel, also determined by the underlying
GFT model. We refer to [49], and references cited therein, for more details.

The interaction term for quantum geometric GFT models remains quite involved also
in the isotropic restriction, and the corresponding dynamics is difficult to handle even
at this mean field level. For this practical reason, most analyses so far have neglected
the contribution coming from such interaction terms, which are expected to be anyway
subdominant with respect to the kinetic part1. In this work, on the other hand, we want
to focus exactly on how these interaction terms affect the effective cosmological dynamics,
especially at late times.

For doing so, we adopt a rather phenomenological approach, modelling these interac-
tions with a simple, rather general form, used also in previous work [45]:

V(¯̃σ, σ̃) =
∑
j

(
2λj
nj

|σ̃j(ϕ0)|nj + 2µj
n′
j

|σ̃j(ϕ0)|n
′
j

)
, (2.22)

where λj and µj are interaction couplings correspond to each mode j satisfy that |µj| ≪
|λj| ≪ |m2

j |, and we assume that n′
j > nj > 2. Albeit definitely simpler than full-blown

quantum geometric models, this choice still captures several relevant features of the same,
and hopefully key aspects of what we may expect to be universal effective behaviour. We
emphasize that at this stage our effective action is not derived from some underlying GFT
model. We choose the interaction kernel to be equation (2.22) as it is easy to handle and also
has a similar structure of some microscopic GFT theories, such as the one corresponding
to EPRL model [42]. In this sense, any GFT model that can reproduce such effective
action (under mean-field approximation or with some quantum corrections) would lead to
the same evolution of the universe that we will explore below.

1 This is also needed, in fact, for the perturbative form of the GFT quantum dynamics, where the connection
with spin foam models and lattice gravity path integral is established, to be of any relevance.
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Note that there is no cross term among different modes in the action, therefore the
equations of motion for different modes, labelled by j, decouple from each other. This
would simplify the analysis quite a bit. At the same time, some models like the EPRL
model decouple different modes in the isotropic restriction [42]. For more general GFT
actions, different modes can couple to each other (for example [101], in the Riemannian
setting) and the analysis would be more involved, we leave the study of behaviour of
coupled modes for future work.

In [45] this kind of interactions has been studied in the case in which only a single spin
mode contributes, and it has been shown that they affect the effective universe dynamics
in interesting ways. For example, it allows us to obtain an inflationary phase in the early
universe, accompanied by a contraction phase of the universe after the inflation, hence
results in a cyclic evolution [45].

Chapter 3 of this thesis improves the result obtained in [45], by considering the con-
tribution of more than one mode, and proved even more interesting results; in particular,
we will show that we can obtain an effective dark energy dynamics at late times, produced
directly from the underlying quantum gravity dynamics, without introducing any kind
of additional matter-like field. This way some pathologies faced by many phantom dark
energy models from the QFT perspective, such as the stability issue [68], can be avoided.

Before analysing the resulting dynamics for the universe volume, obtained from this
effective condensate action, let us recast it in a more convenient hydrodynamic form by
writing down the relevant equations of motion1. Varying the action (2.21) with respect to
¯̃σj we get [46, 49]

σ̃′′
j − 2iπ̃0σ̃j − ξ2

j σ̃j + 2λj|σ̃j|nj−2σ̃j + 2µj|σ̃j|n
′
j−2σ̃j = 0. (2.23)

Decomposing σ̃j(ϕ) = ρj(ϕ) exp[iθj(ϕ)] with real functions, ρj (condensate density) and θj
(condensate phase), the last equation splits to two equations, correspond to imaginary and
real parts respectively. Note that our system has a global U(1) symmetry, in the sense that
the effective action is invariant under the phase transformation θj(ϕ) → θj(ϕ) +αj for any
real constants αj, the imaginary part of equation (2.23) can be written as the conservation
condition Q′

j = 0 for the conserved quantities Qj for each mode. These conserved quantities
can be written in terms of modulus and phase functions as following [42, 49]

Qj = (θ′
j − π̃0)ρ2

j . (2.24)

The modulus part of equation (2.23) then becomes [42, 45, 49]

ρ′′
j −

Q2
j

ρ3
j

−m2
jρj + λjρ

nj−1
j + µjρ

n′
j−1
j = 0, (2.25)

where m2
j = ξ2

j − π̃2
0 is now both a function of the fundamental parameters of the model

(through ξj) and of the parameter ε characterizing the non-ideal nature of our clock. This
1 Since following equations only depend on ϕ0 and thus is no risk of confusion, for notation simplicity in the

following we will drop the subscript 0 and use ϕ to represent the relational time for a given spatial slice.
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equation can be directly integrated once, which gives another conserved quantity [42], as
a result of the symmetry of the system under ‘clock-time translation’ ϕ → ϕ+ c [45, 49],

Ej = 1
2(ρ′

j)2 − 1
2m

2
jρ

2
j +

Q2
j

2ρ2
j

+ λj
nj
ρ
nj

j + µj
n′
j

ρ
n′

j

j . (2.26)

As we will see, the total volume of the universe, as an expectation value of the volume
operator in condensate state |σ⟩, can be expressed as a sum over modes j, and the resulting
dynamics can be derived based on equations (2.25) and (2.26).

2.3 Volume dynamics
Combining the definitions of the volume operator (2.9) and the condensate state (2.15),
we see that the expectation value of V̂ at a given time takes the form (we restored the
subscript 0 for given relational time ϕ0 for the moment to avoid confusion)

V (ϕ0) = ⟨σε;ϕ0, π0|V̂ |σε;ϕ0, π0⟩
= ⟨σε;ϕ0, π0|

∫
dϕ

∑
x,x′

V (ι, ι′)δx−{ι},x′−{ι′}ĉ
†
x(ϕ)ĉx′(ϕ)|σε;ϕ0, π0⟩

≈
∑
j

Vjρj(ϕ0)2, (2.27)

where ρj = |σj| is the modulus of reduced condensate function σ̃, Vj ∝ l3pj
3/2 is the volume

contribution from each quantum (tetrahedron) in the spin j representation, and we have
used the intertwiner normalization condition ∑

m Ij,ι+m Īj,ι
′
+

m = δι+,ι′+ . The approximation
amounts to keeping only the dominant contribution to the saddle point approximation of
the peaking function coming from our choice of state [49].

The dynamics of the universe volume can now be obtained by differentiating V (ϕ)
respect to relational time and then substituting the equations (2.25) and (2.26) for ρj,
writing them in the form of modified FLRW equations [42]

(
V ′

3V

)2

=

2∑j Vj

√
2Ejρ2

j −Q2
j +m2

jρ
4
j − 2

nj
λjρ

nj+2
j − 2

n′
j
µjρ

n′
j+2
j

3∑k Vkρ
2
k


2

, (2.28)

V ′′

V
=

2∑j Vj

[
2Ej + 2m2

jρ
2
j −

(
1 + 2

nj

)
λjρ

nj

j −
(

1 + 2
n′

j

)
µjρ

n′
j

j

]
∑
k Vkρ

2
k

. (2.29)

Note that we only consider the expansion phase, so we chose the sector ρ′
j ≥ 0 when we

substituted equation (2.26).
We will focus on these two equations (2.28) and (2.29) in the following discussion,

by writing them in the form of standard cosmological equations in terms of an effective
EoS in relational language, and analysing its behaviour when the universe volume grows.
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The late time behaviour of the model, we will see, is particularly interesting and can
naturally describe a dark energy-driven acceleration, generated solely by pure quantum
gravity effects.

At this stage, we would like to emphasize that our approach, especially the work in
chapter 3 and chapter 4, is phenomenological, where we started from the effective action
(2.21) (with the effective interaction kernel (2.22)) in its general form, rather than derive
it from some fundamental GFT model, in the sense that the model is not restricted to a
condensate setting. GFT coherent states, as introduced above, might not provide a good
approximation to the effective GFT dynamics when the interactions are strong [92]. But
in the current work the use of CPS is to provide an easy way to explain the essential
concepts in GFT cosmology, and to give a template of how to extract effective dynamics
using mean-field approximation. The essential part is the condensation of a large number
GFT quantas, i.e. the building blocks of spacetime, such that the continuum limit can
be extracted. Suppose the true ground state is given by |Ω⟩, such that the expectation
value of the field operator σ(gv, ϕ) = ⟨Ω|φ̂|Ω⟩ does not vanish, then the full effective
action, including all quantum corrections, can still be written in the form of S = S(σ̄, σ),
just as in our case where we used the coherent state. We see this as the form that the
quantum effective action of some interesting model takes, after including (some) quantum
corrections, rather than taking it literally as the classical mean field dynamics of a model,
and hoping that it is not spoiled by quantum corrections, despite having strong interactions.

So, from this point of view, our analysis and results remain rather generic and hope-
fully robust. The main limitation comes, however, from the explicit form we use for the
expectation value of the total volume. In using equation (2.27), we actually assumed that
⟨Ω|ĉ†

x(ϕ)ĉx(ϕ)|Ω⟩ = ⟨Ω|ĉ†
x(ϕ)|Ω⟩ ⟨Ω|ĉx(ϕ)|Ω⟩, which is only exactly true for coherent states.

In general, there should be quantum fluctuations, marking the difference between the ac-
tual ground state and the coherent state, and hence the expectation value of the total
volume would be given by

V (ϕ0) = ⟨Ω|V̂ |Ω⟩ =
∑
j

Vjρj(ϕ0)2 + χ(ϕ)2, (2.30)

with χ(ϕ)2 specifies the fluctuations. Even though such fluctuations do not vanish for a
general ground state, we can expect that they would be suppressed (at least in relative
terms) when there are a large number of quantas, which is the case when we try to recover
the continuum universe. Furthermore, for the evolution the ground state |Ω⟩ should be
(relational) time-dependent, which means that the fluctuations χ(ϕ)2 should also depend on
the relational time ϕ. When plugged into the equation of motion, we can expect that such
fluctuations should also be suppressed over time, to give a stable ground state, such that
the system remains in the condensate phase. Therefore, as a leading order approximation,
we use the GFT field coherent state as our starting point, to be then improved by the
effects of fluctuations on the expectation value of the universe volume. We leave a detailed
analysis of fluctuations in the interacting case to future work.
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Despite these caveats, however, the approximation we are using can already provide
fruitful results. For example, the Big Bang singularity can be replaced by a bounce, and
short after that, a classical limit that captures correctly the Friedmann dynamics will
emerge [42].

Bounce. At very early time, the volume is small (so is the modulus ρj for each mode),
and the dynamics can be well approximated by the free evolution, ignoring the contribu-
tion from interactions. One can verify that, as long as one of the Qj’s is non-zero, the
corresponding ρj cannot reach 0, so that the square root in equation (2.28) is real. Conse-
quently, the total volume will not reach 0 and the classical big bang singularity is replaced
by a bounce [42]. More concretely, in the case where only one mode j0 contributes, the
modified FLRW equation (2.28) can be simplified to give (where the parameters correspond
to mode j0, which are omitted for simplicity) [42](

V ′

3V

)2

= 4 (m2ρ4 + 2Eρ2 −Q2)
9ρ4 ,

= 4m2

9 + 8Vj0E
9V −

4V 2
j0Q

2

9V 2 . (2.31)

It can be seen that for non-vanishing Qj0 , V ′ vanishes for finite volume V , indicates that
there should be a bounce. Furthermore, in chapter 3 we will see that when all modes are
taken into account, as they should be for the very early universe, there is still a bouncing
scenario, hence the appearance of the bounce is quite general in our formalism.

In fact, as it’s shown in [49], with the help of CPS, even if all the Qj’s vanish, the
bouncing scenario is obtained for a large class of parameters (those for which (2.26) does
not vanish for at least one j), and can thus be considered a rather general, albeit not
universal, consequence of the quantum gravity dynamics described by the GFT model.

Classical limit. As the volume grows, but before the GFT interactions become relevant,
we reach a regime where the dynamics can be well approximated by the FLRW equation
in the presence of a free massless field [42, 49]. In fact, when ρj is large ρ2

j ≫ Ej/m
2
j and

ρ3
j ≫ Q2

j/m
2
j while not so large such that |µj|ρ

n′
j−2
j ≪ |λj|ρ

nj−2
j ≪ m2

j , equations (2.28)
and (2.29) can be approximated by(

V ′

3V

)2

=
(

2∑j Vjmjρ
2
j

3∑k Vkρ
2
k

)2

,
V ′′

V
=
∑
j Vj

(
4m2

jρ
2
j

)
∑
k Vkρ

2
k

.

If at least for a dominant spin mode mj̃ ≈ const1, we can define m2
j̃

≡ 3πG in terms of an
effective dimensionless Newton constant G, and the equation takes the form of the FLRW
equation with a free massless scalar field in relational time [42, 46, 49](

V ′

V

)2

= V ′′

V
= 12πG.

1 Note that this is just a sufficient condition, not a necessary one.
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Furthermore, it can be shown that in the free case the lowest spin mode j0 will dominate
quickly [102], therefore it is sufficient that m2

j0 = 3πG to recover the FLRW equation. This
means that one can obtain the correct classical limit after the end of the bouncing scenario
from the effective GFT condensate hydrodynamics, before the GFT interactions start to
take over.

Let us also stress that the above results have been obtained by several different strate-
gies, beyond the specific one we illustrated above, thus confirming their solidity [91, 92].
Moreover, quantum fluctuations of the relevant geometric observables can be analysed in
some detail [48]; the analysis confirms that fluctuations are naturally suppressed at late
times, thus the semi-classical limit is reliable, and it allows putting precise constraints on
the range of values of the various parameters in the model, for which the same quantum
fluctuations remain under control in the bounce region at early times, and for which the
relational evolution remains valid as well, i.e. the chosen clock remains a good one.

The important issue becomes, then, how the GFT interactions modify the effective
dynamics. This is the issue we will tackle in the next chapter, extending the first analyses
of this issue, performed in [45, 103, 104].

2.4 Summary
In this chapter we presented a short overview of the GFT formalism and the application
of condensates in its cosmological sector. It’s been argued that GFTs are theories of
spacetime itself, from which the continuum physics can emerge. As many other quantum
gravity theories, in GFT there is no notion of space and time coordinates a priori, and we
explained how to reintroduce such concepts using the relational description. More precisely,
we can use free massless scalar fields as relational rods and clock. And in the cosmological
sector, we only consider the homogeneous condensates, or in other words, the condensate
wave function should be independent of spatial coordinates. Therefore, for condensate
cosmology it’s enough to have clock without taking into account relational rods.

Moreover, a further simplification comes from the fact that we only consider a special
type of condensates, the isotropic ones, such that the wave function can be characterized
by identical spins, corresponds to equilateral tetrahedron geometrically (in the 4d case).
With such restriction the combinatorial structure in the interaction term can be ignored,
leaving us a simpler action at the effective level. In particular, the equation of motion for
different modes decouple from each other, which is a basis for us to be able to consider
contributions to the cosmological evolution from only a few modes. The resulting volume
dynamics is in a form of the modified FLRW equation, from which we can already see that
the big bang singularity is replaced by a bounce scenario and a suitable classical limit can
be extracted from the single modes case.

Noting that FLRW equation describes an isotropic universe, which justifies our intro-
duction of the isotropic condensates. But we need to emphasize again that in this thesis
we only define isotropic or anisotropic condensate locally (or microscopically), in the sense
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that we call a condensate isotropic if it can be specified by identical spins. This is not a
necessary consequence of the fact that our universe being isotropic. In fact, we will see in
chapter 5 that, even the anisotropic condensate1 is able to provide us the flat space, which
is isotropic (in the macroscopic sense). But before that, let’s first consider the cosmological
consequences of GFT condensates in chapters 3 and 4.

1 In the microscopic sense, i.e., in the condensate function there is at least one spin that is different from
others.



Chapter 3

Phantom-like dark energy from GFT
condensates

Since its discovery [105, 106], the accelerating expansion of our universe, and the full
characterization of its features, remain main challenges for modern cosmology [57]. The
simplest candidate for the source of the acceleration would be the cosmological constant
Λ [57, 107], which lead us to the standard ΛCDM model. But the smallness of the observed
value of Λ [108], compared to the theoretical expectations from vacuum energy of QFT [57,
109] or from the renormalization flow of couplings in GR [58, 110, 111], making it difficult to
find a compelling origin of the cosmological constant. More seriously, as we have discussed,
the standard cosmological model is challenged by several recent observations, for example
there should be a phantom phase (w < −1), which is impossible in the ΛCDM model.

To go beyond that and address the possible phantom-like evolution, one can introduce
dynamical dark energy models [112], which basically means considering additional matter
fields (whose properties are peculiar in the sense that they should have negative pressure)
other than those found in the standard model of particle physics. Another route, besides
the more particle-theoretic approach, is to modify gravity theory [113]. In particular, the
quantum gravity effects can be viewed as modifications to GR at the effective level. For
example, the acceleration of universe can be reproduced within the formalism of asymp-
totically safe cosmology [114], of Dvali-Gabadadze-Porrati braneworld model [115], and
of condensate cosmology in GFT [50], without the need of dark energy or cosmological
constant. On the other hand, even if some dark energy fields do exist, their behaviour may
change due to the inclusion of gravity. For instance, some future singularities, that would
be encountered because there is no graceful exit of the phantom phase with solely phantom
dark energy field, could be avoided if one considers the quantum gravity effects [116].

In this thesis, particularly in this chapter, we adopt a similar approach of modify-
ing gravity. However, our modifications to General Relativity (GR) stem from quantum
gravity effects. Since our objective is to derive the cosmological evolution, it is natural
to employ a phenomenological approach. We focus on an effective description within the
hydrodynamic approximation, taking into account the fundamental quantum dynamics of
spacetime constituents. In this context, the condensate introduced in the previous chapter
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plays a central role. It allows us to extract the expectation values of relevant operators
and track their evolution with respect to the relational time ϕ.

Specifically, we will demonstrate that phantom-like dark energy can naturally emerge
from GFT condensate cosmology. What is remarkable is that this is achieved without
the need to introduce any specialized phantom matter. The cosmological acceleration is
generated by the interaction terms of the effective GFT action, and to get a phantom
phase while keeping our universe stable, so we can avoid future singularities such as Big
Rip [67, 117, 118], we need to consider contributions from at least two condensate modes.
Then it’s natural to ask how the inclusion of multiple modes will change the early time
evolution as well, which served as an insurance to show that without interaction terms,
we can’t get a long-lasting acceleration phase no matter how many modes are included in
the analysis. Before stepping into the detailed discussion, however, we need first to find
a proper quantity/observable that characterizes correctly the cosmological evolution. As
we will see in the following, the suitable choice for GFT condensate cosmology is w, the
effective equation of state.

3.1 Effective equation of state
The volume dynamics (2.28) and (2.29) obtained for GFT condensate cosmology, in fact
contain already all the information we need to describe the evolution of our universe.
However, they are not suitable for the comparison between our GFT cosmology results
with the standard ones obtained using more particle-theoretic approaches, as in the former
we are using the relational time ϕ while in the latter the cosmic time is usually used. The
value of the EoS, which can be derived from volume and its derivatives as well as keeping
all the relevant information (see appendix A.1), is independent of the clock we are chosen.
Furthermore, some observational results, such as that fact that we may be experiencing
a phantom phase now, are inferred directly from the value of EoS [59]. Therefore, in the
following we will choose the effective EoS as the main quantity to reveal the characteristics
of the cosmological evolution.

In a homogeneous universe, for example, the matter content is assumed to be a perfect
fluid and can be characterized by its energy density ρ and pressure p in a commoving frame.
The fluid then couples to the geometry, determining the cosmological evolution, through
its EoS w = p/ρ. For example, if the expanding universe is dominated by a fluid with
w < −1/3, then the expansion will be accelerating. Current cosmological observations
give a value w ≃ −1, thus we are indeed experiencing an accelerating expansion phase of
the universe. On the other hand, the usual matter content from the standard model would
give w = 1/3 for relativistic particles and w = 0 for non-relativistic particles, certainly
neither of which is able to generate the acceleration. As we have emphasized, although a
small positive cosmological constant could reproduce exactly w = −1 that could account
the current accelerating expansion of our universe, such a model won’t able to explain the
preferred value of w < −1 inferred from supernova data [59]. Some form of dynamical dark
energy model has to be considered.
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To see that the required phantom phase arises naturally in GFT condensate cosmology,
we need to consider the behaviour of the EoS corresponds to the GFT interaction. Or
more conveniently, we can introduce an effective EoS, deducted from the FLRW equation,
to represent the evolution history of our universe.

For a homogeneous and isotropic metric with scale factor a(t), the Hubble parameter
can be given by H = ȧ/a with the ˙ represents the derivative respect to cosmic time t.
Then the effective EoS can be defined as w = −1 − 2Ḣ/(3H2). In the GFT (and more
generally, quantum gravity) context, we cannot rely at the fundamental level on any time
coordinate or direction. We can use, instead, a relational definition of time in terms of
a physical clock, for example a free massless scalar field ϕ, as discussed in section 2. In
appendix A.1 we show that using this definition of relational time, the effective EoS w has
the form

w = 3 − 2V V ′′

(V ′)2 , (3.1)

where V is the total volume and the ′ indicates the derivative with respect to the relational
time ϕ, and we chose the time gauge, in which the volume V = a3 for scale factor a.

Using this effective EoS, all the effects produced on the evolution of the universe by
the underlying quantum gravity dynamics can be described as if they were due to some
effective matter field ψ satisfying wψ ≡ pψ/ρψ = w, with pψ and ρψ its pressure and energy
density, respectively.

We emphasize that the field ψ introduced this way is just a convenient rewriting of what
remains due to the fundamental quantum gravity dynamics. As such, it is not required
to possess the usual features of well-behaved matter field theories defined on cosmological
backgrounds, nor the desiderata of any effective QFT. For the same reason, we will not
discuss possible Lagrangians for ψ, or dwell any further into its properties qua matter field.

One main advantage of introducing the fictitious field ψ, beside making the analysis
of the volume evolution more practical, is that it helps to gain an intuitive understanding
of quantum effects on geometry, or more precisely, on the scalar curvature, which is a
rather tricky observable to define and compute in the fundamental quantum geometric
GFT context. In fact, suppose the energy-momentum tensor of field ψ is given by Tµν ,
then tracing the Einstein equation we see that the scalar curvature in a universe dominated
by ψ can be given by R = −T µµ = −(1+3wψ)ρψ, where we used the fact that T µµ = ρψ+3pψ
in the commoving frame. In particular, this helps to identify potentially singular regimes.
For example, if ρψ → ∞, we see that the scalar curvature diverges as well (except for
w ̸= −1/3, which, as we can see in subsection 3.1.1, will not lead to a divergent energy
density anyway); these correspond to Big Rip-like singularities, which is relevant for dark
energy models [117–120], and on which we are going to have more to say in the following.

3.1.1 The evolution of ψ
Now we recall the evolution of an effective field ψ endowed with the EoS w. We stress once
more that we intend this to be only an illustration of which properties a field of this type
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would have in the context of standard GR and effective QFT, making use of all the auxiliary
structures (topological manifold, coordinates, gauge conditions, etc.) that are useful tools
in such context. It is not a determination of the physical properties of a physical field,
corresponding to fundamental degrees of freedom and observables of our quantum gravity
formalism, but only an effective rewriting of quantum ‘pre-geometric’ gravity degrees of
freedom, which are not described in terms of similar auxiliary structures. For example, we
could define an energy density for the effective field ψ from the EoS w and the universe
volume V and study its properties, but there is no independent fundamental observable
corresponding to it, in the GFT algebra of (2nd quantized) observables.

Having clarified this important point, the energy density ρψ satisfies the conservation
equation ρ̇ψ + 3H(1 + w)ρψ = 0. Using the standard definition of Hubble parameter in
time gauge H = ȧ/a = V̇ /(3V ), this equation can be rewritten as

dρψ
dV + 1 + w

V
ρψ = 0, (3.2)

which can indeed be taken as a definition of the energy density in terms of quantities
corresponding to GFT observables. For constant w, equation (3.2) can be easily solved,
and the solution is given by

ρψ = ρψ0

V 1+w ,

with the ρψ0 is the constant of integration. For w > −1, the energy density ρψ decreases
as the volume grows, and tends to vanish when volume is large, as one can expect for
any ordinary matter in the sense of particle physics; for w = −1, the energy density is a
constant, corresponding to a cosmological constant, and would tend to dominate over any
other fluids with w > −1 at late times; for w < −1, on the other hand, ρψ increases as the
volume becomes larger, and would tend to diverge for V → ∞. Such a large energy density
with w < −1 will tear apart every thing in the universe, leaving no bound system at all
even when the size of the universe is finite, before the total volume diverges, as discussed
in [118]1. Furthermore, when ρψ diverges, the scalar curvature R = −(1 + 3wψ)ρψ would
approach to infinity as well, lead to Big Rip-like singularities.

The above discussion gives a first intuition for the possible late time evolution of our
universe, and of various issues constituting the dark energy problem. It should be clear,
however, that things are so simple only under the assumption of constant EoS w. Any dark
energy model which is based on a dynamical EoS would require a more detailed analysis.

A particularly interesting class of dark energy models is in fact based on fields with EoS
less than −1, producing a phantom (dark) energy, which is well compatible with present
observational constraints. And when the EoS became dynamics, i.e., not a constant any
more, it’s possible to avoid the Big Rip-like singularities even if the evolution is phantom-
like, as it happens for our GFT condensate cosmology model.

1 We thank Dr. Che-yu Chen for pointing out this reference.
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3.1.2 Phantom energy

The mentioned feature of phantom energy compared to other field-theoretic models with
w > −1, i.e. that its energy density increases as the universe volume grows, is the root
of various difficulties in constructing a viable field theoretic model of phantom energy. In
fact, w < −1 requires negative kinetic energy and leads to a violation of various energy
conditions [67, 68, 121]. The negative kinetic energy is also unbounded from below, and
straightforward introductions of a regularizing cut-off would lead, in general, to violations
of Lorentz symmetry [122].

While these are serious difficulties for such field-theoretic phantom models, phantom
energy cannot be ruled out based on cosmological data. On the contrary, several obser-
vations favour an EoS less than −1 [59, 62, 63, 123]. In addition, it has been recently
shown that the existence of phantom energy may alleviate the H0 tension [65, 124], i.e.
the fact that the value of the Hubble parameter when estimated from local observations of
supernova [64] is larger that what is deduced from CMB data [56]. These results suggest
possible discrepancies between the cosmological observation and the underlying matter
field description of particle physics. See [61] for a recent review of cosmological tensions.

Therefore, we seem to be facing a situation in which a phantom-like evolution of the
observed (late) universe struggles to find a compelling theoretical description. From our
quantum gravity viewpoint, based on a formalism in which spacetime is naturally seen as
emergent, the difficulties of a formulation of phantom energy in terms of a field theory
framework is not particularly worrying. We expect the whole background cosmological
dynamics, including its large-scale features, to be determined by the underlying quantum
gravity dynamics, and no fundamental phantom field needs to be part of the story. On
the other hand, our task is, first of all, to match cosmological observations, which is a
difficult challenge for all fundamental quantum gravity approaches, and for this aim an
effective phantom dark energy would be suitable. Indeed, we will show in the following
how phantom-like dark energy can emerge from our GFT condensate model.

For completeness, we mention that one can also tackle the phantom energy problem
in the context of modified gravity theories. That is, one can attribute the accelerated
expansion of the universe to a modification of the underlying gravitational dynamics, with
respect to GR, for example as the f(R) theory [125], rather than to new exotic matter
components. In such a way, one can bypass the difficulties of constructing a well-defined
matter field theory of phantom energy. This second approach is much closer in spirit to
the one we take within our quantum gravity framework, and the emergent cosmological
dynamics we extract from the fundamental quantum dynamics of ‘spacetime constituents’
could in principle be recast also in terms of some effective modified gravity theory.

Big Rip singularity. In the phantom phase, we have w < −1 and the energy density
(or Ricci scalar in the case of pure gravity) increases as volume grows, and it’s possible
(if the phantom phase lasts long enough) that such energy density can increase to infinity
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and tears apart everything in our universe1 [117, 118]. Such behaviour, however, can be
changed dramatically in the presence of quantum gravity effects. For example, in the
early universe, even ordinary matter with w > −1 can have phantom like behaviour due
to discreteness of quantum geometry [126]. And at late times, quantum gravity effects
can dissolve the Big Rip singularity in the presence of phantom matter with w < −1, as
studied in the LQC context [116] and also in semi-classical analyses [127]. Here we will not
consider the coupling between quantum gravity and matter, since the accelerated phase
with effective EoS w < −1 will emerge from pure quantum gravity effects in our model,
and the Big Rip singularity can be avoided due to a non-trivial time dependence of w.

Indeed, as mentioned above, when w is time dependent the evolution of (any effective)
ρψ can be rather involved. In particular, if w approaches to −1 fast enough, the phantom
energy density does not diverge but increases to a constant value, and the Big Rip singular-
ity can be avoided. For example, consider ρψ as a cosmological constant plus some matter
component with negative energy density, inversely proportional to the volume [128]. This
corresponds to a field ψ with wψ < −1, but that approaches −1 at large volume, so that
asymptotically we reach a de Sitter spacetime. This is referred to as phantom analogues
of de Sitter space in [128]. In subsections 3.3.2 and 3.3.3 we will see how exactly this kind
of behaviour emerges from our model of GFT condensate cosmology.

3.1.3 w from single-mode GFT condensates
Before moving on to our new analysis of multiple modes contributions to GFT cosmological
dynamics in the presence of interactions, let us rewrite some earlier results in terms of w,
as an illustration on how the information of universe evolution can be read out from EoS.
The result of [45] is equivalent to a study of the behaviour of the effective w under the
assumption that only a single mode j contributes to the dynamics, which is partially justi-
fied as the asymptotic dominance of a single mode when the universe expands is expected
also in the general case. The generalization of these results, i.e., including contribution
from other modes, constitutes an important part of this thesis.

As we will explain in the following, the presence of other modes changes the way in which
w approaches the asymptotic value, which is of important physical relevance, on top of
making the dynamics much richer in any intermediate regime. But still, the analysis in [45]
is already important to show how GFT interactions can have very interesting consequences
on the emergent cosmological dynamics, as we are going to discuss in this subsection.

With only a single mode j, substituting (2.28) and (2.29) in the definition (3.1) we
obtain the EoS

w =
−3Q2 + 4Eρ2 +m2ρ4 +

(
1 − 4

n

)
λρn+2 +

(
1 − 4

n′

)
µρn

′+2

−Q2 + 2Eρ2 +m2ρ4 − 2
n
λρn+2 − 2

n′µρn
′+2 , (3.3)

1 For a matter field with w < 0, its pressure would be negative. So intuitively, instead of squeezing things
together, the fields modelling dark energy (correspond to w ≃ −1) will tend to tear things apart. And when
the energy density, hence the absolute value of the pressure, is large enough, no stable bound structure
can exist any more [117, 118].
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where for simplicity we dropped the subscript j labelling different modes. Furthermore,
for a single mode the total volume1 V = Vj0ρ

2, which enables us to get the evolution EoS
as a function of the total volume, w = w(V ), even without solving the equation of motion.
This greatly simplifies the analysis.

Early time acceleration in the free case. At early times, the module ρ of the con-
densate is small (since the total volume is small), therefore the interaction terms can be
ignored. Here we set λ = µ = 0 in equation (3.3), then w is simply

w = −3Q2 + 4Eρ2 +m2ρ4

−Q2 + 2Eρ2 +m2ρ4 .

Similarly, the equation of motion (2.28), when constraining to the free case with a single
mode, simplifies to equation (2.31). At the bounce, we should have V ′ = 0, which requires
the equation

−Q2 + 2Eρ2 +mρ4 = 0,

from which we can get the value of ρ at the bounce

ρb = 1
m

√√
E2 +m2Q2 − E.

Putting the value ρb back into w we see that its denominator vanishes while its numerator is
negative, therefore near the bounce we have w → −∞, means that right after the bounce
the expansion of our universe is accelerating, as we expect in general from a bouncing
scenario2. However, we can show that this accelerating phase ends quickly, i.e., the volume
at the end of acceleration is not large compared to the volume at the bounce [45]. The
situation is similar even if we consider the contributions from all modes, as we shall see in
section 3.2.

It is worth mentioning that even if w → −∞ at the bounce, we do not run into
singularities due to the quick end of the acceleration phase and the fact that the total
volume has a minimum value Vb > 0. To see this we first note that for a single mode
(assumed to be mode j0), the total volume can be given by V = Vj0ρ

2, therefore the EoS
can be rewritten as

w =
−3Q2V 2

j0 + 4EVj0V +m2V 2

−Q2V 2
j0 + 2EVj0V +m2V 2 .

Then we substitute this EoS into the conservation equation (3.2) for the fictitious field ψ,
we get the solution

ρψ = ρ̃ψ∞

V 2 + 2E0Vj0
V 3

ρ̃ψ∞

m2 − Q2Vj0
V 4

ρ̃ψ∞

m2 ,

1 Here j0 represents the mode that being dominated, which we restored to avoid confusions.
2 The universe should expand which requires V ′ > 0 after the bounce, and at the bounce we have V ′

b = 0,
therefore we should also have V ′′

b > 0. Since the volume Vb at the bounce is also positive, from the
definition (3.1) of w we see that w → −∞ at the bounce is a general feature.
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where ρ̃ψ∞ is defined such that ρψV 2 → ρ̃ψ∞ as the total volume V → ∞. Since the
volume V ≥ Vb > 0 is bounded below, we see that the energy density ρψ remains finite,
hence there are no singularities. We also note that at the bounce we have ρψ(Vb) = 0.

Emergence of the FLRW universe. As we have explained in section 2.3, the classical
limit emerges already in the free case for large volume, where the module ρ is also expected
to be large, hence we can consider the expansion respect to ρ. At leading order in 1/ρ, we
have a constant value w = 1, corresponds to the EoS of a free massless scalar field χ0 = ϕ,
the one we introduced as the relational time in chapter 2. In fact, substituting w = 1 back
into its definition (3.1), simple algebraic manipulation shows that

V ′′

V
−
(
V ′

V

)2

= V V ′′ − (V )2

V 2 = d
dϕ

(
V ′

V

)
= 0,

hence V ′/V = const which characterizes the FLRW equation using the relational language
in the presence of a free massless field [42].

At the next order of 1/ρ, we can approximate w as

w = 1 + 2E
m2ρ2 , (3.4)

confirming that the effective EoS approaches 1 at large volume. Furthermore, for E > 0,
w approaches this asymptotic value from above; see figure 3.1. This is not the case when
we consider more than one mode, as we shall see in subsection 3.2.3.

An emergent inflationary phase from quantum gravity. The next question is how
the single-mode interactions change this picture, in particular concerning the early accel-
eration after the bounce. As showed in [45], one can indeed get a long-lasting accelerated
phase, in contrast to the free condensate. Furthermore, with two interaction terms this
acceleration can end properly, and the time that the acceleration lasts can be adjusted by
tuning couplings λ and µ [45]. What is missing, however, is a subsequent FLRW phase,
which is of course also crucial for a proper cosmological model.

Now let’s consider how to show the emergence of the long-lasting accelerated phase
through the evolution of the effective EoS. Since we assumed that |µ| ≪ |λ|, there is an
intermediate range, where m2ρ4 and µρn

′+2 are both small compared to λρn+2, and the
behaviour of w is determined by the λ term. The case with λ > 0 will give an additional
root of the denominator of w, corresponds to the maximum value of ρ and lead to a cyclic
universe very quickly after the bounce. Therefore, we need only consider the case with
λ < 0, where to the leading order we obtain w = 2 − n/2. We see that for n ≥ 5 the EoS
w < −1/3, which corresponds to an accelerating phase. In absence of other interactions,
this accelerated phase would simply not end. Otherwise, as ρ increases further, the µ term
becomes important compared to the λ term. If µ > 0, ρ′ will vanish again (besides the
point of minimal volume reached at the bounce), corresponding to the maximum value of
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ρ determined approximately by (other terms can be ignored when volume is very large)

2
n
λρn+2 = 2

n′µρ
n′+2,

near which w → ∞. This means the accelerating phase dominated by the λ term stops. By
adjusting the values of the couplings λ and µ we can make this phase lasts long enough to
account the observational constraints [45]. The magenta dash-dotted line in figure 3.4 shows
the behaviour of w when µ > 0 and we see that there is a nice inflationary phase with w =
−1/2. However, as anticipated, this inflationary phase ends when the volume approaches
its maximal value, being quickly followed by a contracting phase, with no FLRW phase
in between. The important take home message, however, is that interesting large scale
cosmological dynamics, like a long-lasting inflationary (or more generally, accelerated)
phase can be produced purely from fundamental quantum gravity dynamics, without the
need of any exotic matter field (here, an inflaton).

Phantom crossing. Finally, in this simpler single-mode context, we can ask whether
anything like a phantom-crossing can also be obtained as a result of the quantum gravity
dynamics.

As we explained above, when w < −1 we have phantom energy. For a dynamical w,
it is possible for w to change from w > −1 to w < −1, a phenomenon called phantom
crossing [129]. In our case, if µ < 0, ρ can keep growing until the µ term dominates, with
the asymptotic behaviour of the EoS given by

w → 2 − n′

2 + (n′ − n) n
′λ

2nµρ
n−n′

.

Since n′ > n, we see that for n ≥ 5, we have w < −1/3 as ρ grows and the acceleration
does not stop. And in contrast to the µ > 0 case, where the volume has a maximum value
after which the universe starts to collapse, when µ < 0 the total volume can grow forever.
Note that n′ > n and that both λ and µ are negative, thus we conclude that w approaches
its asymptotic value from above. For n′ = 6, we have w → −1, which mimics the behaviour
of a cosmological constant. Since w approaches this value from above, we have w > −1
after the end of early accelerating phase (which is dominated by the free parameters of the
condensate). We conclude that for a single mode with n′ ≤ 6, w cannot cross the phantom
divide w = −1. This is illustrated in figure 3.4 by the black solid line.

On the other hand, for n′ > 6 with µ < 0, the asymptotic value of w would be less than
−1, so phantom crossing is possible. But now the energy density of the fictitious field ψ
with effective EoS w will diverge as the volume of the universe grows. When the volume
is large enough, this energy density would produce a Big Rip singularity [117]. In section
3.3, we will show that in contrast to the single mode case considered here, when including
another mode into the contribution of the cosmological evolution, we can get an EoS w
that crosses the phantom divide, and that, instead of a Big Rip singularity, the phantom
analogues of de Sitter space [128] is obtained.
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Table 3.1 summarizes the influence of parameters in our model on the behaviour of the
cosmological evolution. Note that the early accelerating phase can be regarded as inflation
only when there is a graceful exit, or in other words, such phase has to end properly at
some point, which is not possible for the last row in the table, where µ < 0.

Inflationary
phase

FLRW
phase

Cyclic
behaviour

Late time
acceleration

Phantom
crossing

Big Rip

λ > 0 ✓

λ < 0 µ > 0 n ≥ 5 |λ| small ✓
µ < 0 |λ| small n′ ≥ 5 n′ > 6 n′ > 6

Table 3.1: The influence of parameters on the cosmological evolution in single mode case.
The blank cell indicates there is no such behaviour, the check mark ✓ means such behaviour
would occur, while other non-empty cells suggest that the behaviour would show up for
the given range for the parameters.

3.2 Acceleration in early time
Previously, we have seen that in our model of GFT condensate cosmology, a single mode
won’t able to generate the phantom phase while avoiding the Big Rip-like singularity. For
such a phase to emerge the inclusion of other modes is necessary [50]. But before we
discuss the details of the emergence, we will show in this section that the interactions are
also necessary, in the sense that, even with multiple modes, without interaction terms there
won’t be a long-lasting phantom phase.

Another reason for the study of multiple modes in the free case is that, in the early
universe, where the volume is small, and the free terms are dominated compared to the
interaction ones, we have no reason to expect one mode to dominate over the others, so
we should include the contributions from several modes into account. The inclusion of
other modes won’t change much of the result we discussed in last section, such that the
accelerating expansion is still not long-lasting and the asymptotic value of w remains 1.
What will change, however, is the way that w approaches to its asymptotics. In particular,
for the two modes case, w will approach 1 from below (see figure 3.1), which is not possible
in the single mode case. This provides some insights to the interacting case as well, where
the asymptotic value is −1 and when approaching it from below, we necessarily enter a
phantom phase. Section 3.3 will provide more details on the issue of late time behaviour
and phantom crossing.

3.2.1 Accelerated expansion in the free condensate
In the region we are going to consider we require that ρ′

j ≥ 0, and then the condition
V ′ = 0 for the volume at the bounce corresponds to requiring ρ′

j = 0, ∀j. The value of ρj
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at the bounce can be obtained by solving the equation ρ′
j = 0, where ρ′

j is obtained from
the definition (2.26) of the GFT ‘energy’ Ej as

ρ′
j(ϕ) = 1

ρj

√√√√2Ejρ2
j −Q2

j +m2
jρ

4
j − 2

nj
λjρ

nj+2
j − 2

n′
j

µjρ
n′

j+2. (3.5)

In the free case, at the bounce we have

ρbj = 1
mj

√√
E2
j +m2

jQ
2
j − Ej.

Given the initial value ρj(0) = ρbj, the differential equation (3.5) can be solved [46, 102]

ρj(ϕ) = 1
mj

√√
E2
j +m2

jQ
2
j cosh(2mjϕ) − Ej. (3.6)

Then the total volume (2.27) becomes

V =
∑
j

Vjρ
2
j =

∑
j

Vj
√
E2
j +m2

jQ
2
j

m2
j

cosh(2mjϕ) −
∑
j

VjEj
m2
j

. (3.7)

At the bounce we have ϕ = 0, where the volume is simply Vb = c1 − c2, with two constants
c1 and c2 are given by

c1 =
∑
j

Vj
√
E2
j +m2

jQ
2
j

m2
j

, c2 =
∑
j

VjEj
m2
j

. (3.8)

We can see that c1 > c2 > 0.
The volume should be convergent, in the sense that V is finite at any given rela-

tional time ϕ. In appendix A.2 we show that this is equivalent to the requirement that∑
j

Vj
m2
j

√
E2
j +m2

jQ
2
j converges and all the mj’s are bounded. A direct consequence is

that at sufficiently large ϕ, the volume is dominated by the mode with the largest value
of mj = m. This largest value defines, in this regime, the effective Newton’s constant
m2 = 3πG, and the dynamics reduces to the standard Friedmann equation with the mat-
ter content given by the free massless scalar field [42]. There are general arguments suggest
that mj is monotonically decreasing with j, so that, at large volume, it is the smallest spin
mode that eventually dominates [102].

3.2.2 Upper bound of the number of e-folds
Now we are ready to check if the inclusion of all modes can make the acceleration phase
after the bounce last long enough to be of phenomenological significance as a quantum
gravity-induced inflation, even in the free case.
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For simplicity, we introduce a function P (ϕ) to characterize the acceleration

P (ϕ) = −(V ′)2

2

(
w + 1

3

)
, (3.9)

which in the free case has the form

P (ϕ) =
∑
j

4Vj
√
E2
j +m2

jQ
2
j cosh(2mjϕ)

∑
k

Vk
m2
k

[√
E2
k +m2

kQ
2
k cosh(2mkϕ) − Ek

]

−5
3
∑
j

2Vj
mj

√
E2
j +m2

jQ
2
j sinh(2mjϕ)

∑
k

2Vk
mk

√
E2
k +m2

kQ
2
k sinh(mkϕ). (3.10)

The accelerating expansion requires w < −1/3, i.e. P (ϕ) > 0, while the decelerating phase
corresponds to P (ϕ) < 0.

At the bounce, where V ′ = 0, we have simply

P (0) =
∑
j

4Vj
√
E2
j +m2

jQ
2
j (c1 − c2) > 0, (3.11)

with c1 and c2 defined in (3.8), while for large ϕ, the volume is dominated by a single mode,
and equation (3.4) tells us that w → 1 when volume is large. This implies P (ϕ) < 0 at
large volume. Therefore, there is a point where P (ϕ) = 0 and the accelerating expansion
stops. We now identify this point and show that the accelerating phase at this early state
can not be long-lasting. More precisely, we will get an upper bound on the ratio Ve/Vb,
where Ve is the volume when acceleration ends, and Vb = c1 − c2 is the volume at the
bounce.

The time ϕe where the accelerating phase ends is determined by the requirement
P (ϕe) = 0. This equation is quite hard to solve for general mj’s. On the other hand,
if the acceleration is long-lasting, ϕe would be large, and around this point P (ϕ) changes
quickly. Therefore, we can introduce an approximated quantity Pm(ϕ), obtained by re-
placing cosh(2mjϕ) and sinh(2mjϕ) in (3.10) with cosh(2mϕ) and sinh(2mϕ) respectively,
where m is the maximum value of mj’s (which is shown to exist due to the convergence of
volume, see appendix A.2). We can write Pm(ϕ) as

Pm(ϕ) = −4m
3
[
cosh2(2

√
mϕ)

(
5c′2

1 − 3c1c
′′
1

)
+ cosh(2

√
mϕ)(3c′′

1c2) − 5c′2
1

]
,

with c1 and c2 are given by equation (3.8) and the two new constants c′
1 and c′

2 are

c′
1 =

∑
j

Vj
mmj

√
E2
j +m2

jQ
2
j , c

′′
1 =

∑
j

Vj
m2

√
E2
j +m2

jQ
2
j . (3.12)

We see that c1 > c′
1 > c′′

1 > 0. The equation Pm(ϕ) = 0 has a root ϕm and one has

cosh(2mϕm) =
−3c′′

1c2 +
√

9c′′
1c

2
2 + 20c′

1(5c′2
1 − 3c1c′′

1)
2(5c′2

1 − 3c1c′′
1) . (3.13)
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Since P (ϕ) changes quickly near ϕe, we have approximately ϕe ≈ ϕm, which in turn
leads to Ve = V (ϕe) ≈ V (ϕm) < Vm(ϕm). Here we define Vm similarly as Pm, i.e., replacing
cosh(2mjϕ) in the volume (3.7) with cosh(2mϕ), and therefore, at ϕ = ϕm we have

Vm(ϕm) = c1 cosh(2mϕm) − c2.

Then the ratio between volume at the end of acceleration and the volume at the bounce
satisfies

Ve
Vb

<
Vm(ϕm)
Vb

=
−3c1c

′′
1c2 + c1

√
9c′′

1c
2
2 + 20c′

1(5c′2
1 − 3c1c′′

1)
2(5c′2

1 − 3c1c′′
1)(c1 − c2)

− c2

c1 − c2
. (3.14)

with c1 and c2 are given by equation (3.8). Under the conditions c1 > c2 > 0 and c1 >
c′

1 > c′′
1 > 0, Vm(ϕm)/Vb has a maximum value

Vm(ϕm)
Vb

∣∣∣∣∣
max

= 1 + c1

c2
+ c1

c2

√
c1 + c2

c1 − c2
.

Therefore, the original volume ratio with j dependent mj has the upper bound

Ve
Vb

< 1 + c1

c2
+ c1

c2

√
c1 + c2

c1 − c2
, (3.15)

with c1 and c2 are defined in equation (3.8).
The bound goes to infinity when c2

c1
→ 0 or c2

c1
→ 1. However, since the total volume

V should be finite, both of c1 and c2 should be finite. Then, using their definition, we see
that c2

c1
→ 0 would require Ej → 0 for all j while c2

c1
→ 1 would require Q2

j → 0 (mj cannot
vanish otherwise c1 and c2 would diverge) for all j. Therefore, for general configurations
corresponding to non-vanishing Qj and Ej for some j, the bound on the number of e-folds
would not be large. While for vanishing Qj and Ej we need to find a different bound to
reach a reliable conclusion, it is clear that this would correspond to a rather special case,
thus of limited interest, especially in a phenomenological setting like we have considered
in this thesis.

We conclude that the expansion of the universe becomes decelerating quickly after the
bounce, confirming the results of [45] in a more general setting by including multiple modes
into consideration.

It is worth emphasizing that this initial accelerating expansion is in fact a general feature
of a bouncing universe, not necessarily linked to any inflationary-like scenario. Inflation as
usually understood should instead start later, during the radiation dominating phase [55].
Such later inflationary acceleration can indeed be reproduced as it has been shown in the
previous section, recalling the results of [45], when accounting for GFT interactions in our
condensate. As we discussed, however, single-mode interactions which are strong enough to
be relevant shortly after the bounce, and before a FLRW phase produced by the free GFT
dynamics, end up preventing that such a FLRW phase is realized after the inflationary one,
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in contrast to a physically viable cosmological model. One may wonder if the contribution
from multiple modes changes this picture. A moment of reflection, together with the
analysis we present in the next section, would convince that this may only be possible in
the presence of somewhat extreme fine-tuning of parameters and a very special behaviour
of the condensate density, since in practice it would require that the contributions from the
two interaction terms for the two modes approximately cancel for a long enough period in
the evolution of our universe, after the inflationary phase, so to effectively reproduce the
free dynamics and its FLRW phase. A situation of this type, even if possible in principle,
would be of little interest, unless somehow governed by some symmetry principle or some
other generic feature of the underlying quantum gravity model. Lacking this, we do not
consider it further in the following.

We discuss instead in detail the role of GFT interactions in producing an accelerated
expansion at even later times, in the next section. The important point to stress here
is that, as long as the interaction couplings are small compared to ‘mass’ term mj, the
behaviour of condensates can be well approximated by free solutions. Therefore, a very
short-lived accelerated expansion after the bounce followed by a decelerating phase remains
a general feature even in the presence of interactions. We are going to use this feature to
ensure that, whatever the detailed late time evolution of the universe in our model is,
an extended FLRW phase can be realized, before quantum gravity interactions become
relevant, as required by observations.

3.2.3 Equation of state after the end of acceleration
More precisely, after the end of the post-bounce acceleration, the expansion itself does
not stop and the volume of universe keeps growing. According to the free solution (3.6),
for large ϕ the module ρj increases exponentially. Therefore, the mode with largest mj

dominates quickly as the volume growing, which means the EoS will soon be dominated by
this single mode as well1. As we have already discussed, w will have the asymptotic value
w = 1 as in the single mode case, corresponding to the EoS of the free massless scalar field
that we are using as relational time. However, the inclusion of other modes changes the
precise way in which w approaches to the asymptotic value. Taking the two-modes case as
an example (for simplicity, we write ρ1,2 ≡ ρj1,j2 etc.). Assuming m1 > m2 and hence at
large volume we have ρ1 > ρ2, then w can be expanded as

w → 1 + 2V2ρ
2
2

V1ρ2
1

(
2
√
m2

m1
− 1 − m2

m1

)
.

Since 2
√
m1/m2 < 1 + m2/m1, we see that w < 1 which means that the EoS approaches

the asymptotic value (which is 1 here) from below, in contrast with the single mode case.
In figure 3.1 we compare the behaviour of w for free condensate in the two-modes and

1 In fact, as one can show that the mode has largest mj usually corresponds to j = 1/2, i.e., the smallest
spin possible [102]. Therefore, for the free case the large volume behaviour is usually dominated by the
modes with small spin [102]. We will see later in section 3.3.1 that this is also true in the interacting case.
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single-mode cases. At small volume near the bounce, w < 0 and its absolute value is
large; this corresponds to large acceleration right after the bounce. With the increase
in volume, w grows quickly and becomes larger than −1/3 soon, where the accelerated
expansion stops. Then w keeps growing and reaches its maximum value, after which w
starts to decrease. This behaviour is true for both the two-modes and single-mode cases.
As the volume grows further, the evolution of w starts to differ in the two cases. In the
two-modes case, w has a minimum value, which is smaller than 1, after which w starts to
increase again, and reaches w = 1 from below. In the single-mode case, instead, there is
no local minimum, and w keeps decreasing, and approaches the asymptotic value w = 1
from above. Something similar will happen in the interacting case. We will see that, for
interactions of order 6, the asymptotic value will be the phantom divide where w = −1.
Therefore, at large volume we have w < −1 and the phantom divide is crossed.
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Figure 3.1: The behaviour of w for different modes in the free case. Black solid line
considers contributions from both ρ1 and ρ2. Red dashed line shows the evolution of w
of mode ρ1, while magenta dash-dotted line shows ρ2 case. For the convenience we also
plotted the constant w = 1 using black dotted line. In the little box we showed the finer
structure at large volume. We see that w < 1 in the two modes case, while w > 1 in
both the single mode case ρ1 and ρ2. At large volume the value of w for ρ1 and ρ2 are
so close that they can’t be distinguished from each other in the plot. Parameters are
V1 = 1/3,m2

1 = 3, E1 = 5, Q2
1 = 9, V2 = 1/2, m2

2 = 2, E2 = 9, Q2
2 = 2.25.

3.3 Late time accelerated expansion
We now turn to the main focus of our analysis, i.e. the emergent cosmological dynamics
of interacting multi-modes condensates at late times.

In the last section, we have seen that for a free condensate, the accelerated expansion
only lasts for a short while after the bounce. As volume increases, the quantum gravity
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condensate would then be descried by a FLRW universe filled with a single massless scalar
field. For large condensate densities (and thus volume), however, we expect the interactions
to be relevant.

We first discuss how to solve the equation of motion for each mode, at least approxi-
mately. Then we extract the asymptotic behaviour of the effective EoS w in the two-modes
case, showing that it is possible for the phantom divide to be crossed, thus producing a
phantom-like dark energy purely from quantum gravity effects. In contrast to the single
mode case, moreover, the phantom crossing does not lead to a Big Rip singularity. Finally,
we also show that it is possible to produce at late times a more involved, if maybe less
phenomenologically interesting, combination of inflation-like and phantom-like evolution
in our model.

3.3.1 Large ρ behaviour of the interacting condensate
With interactions being included, the equation (3.5) becomes much harder to solve, and
in general the solution cannot be written in a close analytic form. Nevertheless, under our
assumption that |µj| ≪ |λj| ≪ m2

j , the equation of motion can be solved piece-wisely. For
simplicity, we first assume µj = 0; then for λj < 0 and ρj is large, the equation (3.5) can
be approximated as

ρ′
j(ϕ) =

√√√√−2λj
nj

ρ(ϕj)
nj
2 . (3.16)

This equation is much easier to solve than the exact one. The solution has the form

ρj(ϕ) =
 2
nj − 2

√√√√−2λj
nj

− 2
nj −2 1

(ϕj∞ − ϕ)
2

nj −2
, (3.17)

where ϕj∞ is a constant of integration, determined by initial conditions. It’s true that for
each mode j, the module ρj will diverge when ϕ → ϕj∞, which will lead to a divergent
volume as well. In other words, the total volume of our universe will diverge even at a
finite relational time ϕ, which may indicate some kind of future singularity such as the Big
Rip, where the volume diverges at a finite cosmic time t [117]. However, as we will discuss
in section 3.3.3, in our case the volume divergence at finite relational time ϕ does not
necessarily imply the existence of the Big Rip singularity. As one can see that the cosmic
time t could be infinite, like the total volume, even when the relational clock ϕ takes finite
value. Therefore, the divergence of volume still happens at the infinite cosmic time t, which
has no problem at all. In fact, if we consider the fictitious field ψ with EoS equals to w,
then for n ≤ 6 its energy density ρψ will remain finite for V → ∞; see subsection 3.3.3 for
more details.

The value of ϕj∞ in the approximate solution (3.17) can be fixed by matching the
solution (3.17) with the free one (3.6). In general, for the matching to be meaningful, the
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matching point1 ρj0 should be the one where solutions (3.6) and (3.17) are both expected
to be valid. Here, we choose ρj0 such that the ‘mass’ term equals to the interaction term
around it,

m2
jρ

2
j0 = −2λj

nj
ρ
nj

j0 , (3.18)

In other words, near ρj0, the two approximations we used, i.e., ignoring interactions in
obtaining (3.6) while only keeping them in obtaining (3.17), to solve the dynamical equation
reach their limit of validity. Solving equation (3.18) provides us the value ρj0 of module of
the condensate at the matching point

ρj0 =
(
njm

2
j

−2λj

) 1
nj −2

. (3.19)

Assuming that the free solution (3.6) is valid up to ρj0 for each individual j, then ϕj0 can
be determined by inverting equation (3.6), which gives

ϕj0 = 1
2mj

arccosh
Ej +m2

jρ
2
j0√

E2
j +m2

jQ
2
j

. (3.20)

Taking (ϕj0, ρj0) as an initial condition for the differential equation (3.16), inserting them
into the solution (3.17), and noting the fact that arccoshx → ln(2x) when x → ∞, we can
get an approximate value of the constant ϕj∞ as

ϕj∞ = −
ln[−λj/(2m2

j)]
(nj − 2)mj

+ 1
2mj

ln

 n
2

nj −2
j (2m2

j)√
E2
j +m2

jQ
2
j

− ln 2 − 1
mj

2
nj − 2 . (3.21)

At this point, we need to emphasize that equation (3.21) is only an approximation, ob-
tained by matching two approximate solutions (3.6) and (3.17), to the exact value of ϕj∞.
More specifically, the matching condition (3.18) is only approximate and shouldn’t be valid
in a more accurate setting. In principle, the accuracy can be improved by a finer matching,
in the sense that splitting the range of interest into more pieces, making suitable approx-
imations to the exact equation (2.26) in each region, getting the approximate solutions,
and matching them near each border of the splitting. The procedure is lengthy and not
quite useful in our setting as it’s hard to find a physical meaning for the matching points
in such a finer splitting.

Fortunately, there is another way to improve our approximation. In fact, the accuracy
of our approximate result (3.21) of ϕj∞ can be improved with the help of exact solutions in
special cases. As showed in appendix A.3, for nj = 4 the equation of motion (3.5) can be

1 Don’t confuse ρj0 with ρj0 . The former refers initial value (indicates by 0) for mode ρj , while the latter
indicates mode ρj0 with spin j0. That’s why in equation (3.19) the value of ρj0 is determined by parameters
of mode j instead of j0 or j0.
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solved using elliptic functions. Then using the fact that |λj| is small, an expansion of ϕj∞
can also be obtained. By comparing with the result in (3.21), we see that an additional
term ln 2 − 1

mj

2
nj − 2 should be added, and the corrected form of ϕj∞ becomes

ϕj∞ = −
ln[−λj/(2m2

j)]
(nj − 2)mj

+ 1
2mj

ln

 n
2

nj −2
j (2m2

j)√
E2
j +m2

jQ
2
j

 . (3.22)

One can check that when using the corrected value (3.22) of ϕj∞ in solution (3.17), the
matching condition (3.18) is not valid any more, which is normal as the condition is an
approximate one after all.

To see how well the correction (3.22) works, we can compare this form of ϕj∞ for a
given mode j with its numerical value, obtained by solving the equation of motion (3.5)
numerically and substituting a large ρj (here taken to be ρj = 108) into the solution.
The result is shown in figure 3.2. We see that our formula also works for non-integer nj
and, despite various approximations, the result is quite accurate at the order of λj. For
comparison, we also plot the original ϕ∞, given by (3.21) without correction, which shows
that the additional term indeed improves the accuracy of our result, especially for small n.
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Figure 3.2: Asymptotic value ϕ∞ for different n. Black solid line is obtained from equation
(3.22), the corrected value of ϕ∞. Red dashed line is the uncorrected value of ϕ∞, given by
equation (3.21). Blue circles show the numerical results obtained by solving the equation
of motion (3.5) numerically (with µj = 0) and set ρ to be large. Parameters are m2 =
2, E = 9, Q2 = 2.25, λ = −0.1.

It is clear from equation (3.22) that, for each mode j, the corresponding ϕj∞ is different.
Note that ρj(ϕ) diverges when ϕ = ϕj∞, hence the total volume V = ∑

j Vjρ
2
j will diverge
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when ϕ reaches ϕ∞ = min{ϕj∞}, the smallest one of the different ϕj∞’s corresponding to
different modes. Moreover, before ϕ reaches ϕ∞ but the total volume V is large enough,
the mode with ϕj∞ = ϕ∞ will become dominate. In other words, the asymptotic behaviour
of w is fixed by the single mode case, and the inclusion of other modes can only modify
the way of how w can reach its asymptotic value, similar as we have observed before in the
free case where the volume is small and interactions can be ignored.

To the leading order of λj, we have

∂ϕj∞
∂mj

=
ln[−λj/(2m2

j)]
(nj − 2)m2

j

.

For small |λj|, this derivative is less than 0, thus large mj will give small ϕj∞. Therefore,
also with interactions the condensate dynamics tends to be dominated by the mode with
largest mj, which in general corresponds to small-j modes, as one can expect from the
result of free case.

We emphasize that the solution (3.17) only works for negative couplings. In fact, if
we add another interaction term µj > 0, even under the assumption that |µj| ≪ |λj|, so
that the contribution of µj to the value of ϕj∞ can be ignored, the behaviour of ρj at
late times changes considerably. Explicitly, for µj > 0, from equation (3.5) we see that,
besides the bounce, ρ′

j(ϕ) = 0 has an additional solution for some large ρj, determined by
2
nj
λjρ

nj+2
j = 2

n′
j

µjρ
n′

j+2
j , which corresponds to the maximum value of ρj (and thus of the

volume) at late times. After that, to ensure ρ′
j is real, we should require that ρj starts to

decrease, and it leads to a periodic evolution of ρj and thus a cyclic universe (as in [45]).
Since |µj| ≪ |λj|, we can take the value of ϕ approximately as ϕ ≈ ϕj∞ where ρj first
reaches its maximum. Therefore, in the case with µj > 0, instead of being the largest
value that ϕ can reach (as in the single interaction case), ϕj∞ now should be regarded as a
half-period in the evolution of ρj, indicating that ρj actually starts to decrease for ϕ > ϕj.
On the other hand, for µj < 0, ρj can keep growing until ϕ reaches ϕj∞ where ρj diverges.

We will see in section 3.3.4 how the combination of two modes with opposite sign of µj
makes it possible for the effective EoS to cross the phantom divide w = −1.

3.3.2 Phantom crossing in the two-modes case
In this section we consider how the presence of two interacting modes, each with an in-
dividual contribution to the cosmological dynamics of the type we have illustrated above,
can shape it in very interesting ways at late times.

For simplicity, we use ρ1,2 to indicate ρj1,j2 and similarly for other parameters. Although
in previous sections we have seen that at sufficiently large volume there will be only one
mode dominating also in the interacting case, we will see that the inclusion of a second mode
does change the behaviour of the effective EoS w, and in particular how the asymptotic
value is approached, which is of direct cosmological relevance.

To begin with, we consider the case in which two modes both have a single interaction
term, i.e., we set µ1 = µ2 = 0. Since the coupling λ1 and λ2 are small, w will be dominated
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by the free part of condensate at small volume, and it will approach w = 1 from below
as volume grows. This is the needed FLRW universe of the standard cosmological model,
reached after the phase close to the big bang, here replaced by a quantum bounce. When
the volume becomes larger further, the interaction term for both modes increasingly con-
tributes to the condensate dynamics, until, for large enough values of ρj (and thus of the
volume), w will be dominated by the interaction terms instead. If further assuming that
n1 = n2 = n, and keeping only interaction terms in the expression for w, we will see that
w only depends on the ratio r = ρ2/ρ1 (as it was the case also in the free one we have
discussed in section 3.2.3), and we have

w = 3 − (2 + n)(V1 + r2V2)(V1λ1 + rnV2λ2)
2
(
V 2

1 λ1 + r2+nV 2
2 λ2 − 2r1+ n

2 V1V2
√
λ1λ2

)
= 2 − n

2 −
(
n

2 + 1
) V1V2r

2
(
rn/2−1 −

√
λ1/λ2

)2

(√
λ1/λ2V1 + V2rn/2+1

)2 . (3.23)

Since the parameters are all real and both couplings λ1 and λ2 are assumed to be negative,
we see that w ≤ 2 − n

2 . Recall that when the volume is large, one of the two modes will
dominate over the other, and then we have r → 0 or r → ∞. In either case w will approach
2 − n

2 from below, in contrast with the single mode case discussed in section 3.1.

There is a special case where r =
(
λ1

λ2

) 1
n−2

, for which w = 2 − n

2 is also a constant

within the approximation we have made. From our solution (3.17) for each mode at large
volume, we see that this indeed happens when ϕ1∞ = ϕ2∞. In fact, when ρ2 = rρ1 is
proportional to ρ1, we have V = V1ρ

2
1 + V2ρ

2
2 = (V1 + r2V2)ρ2

1, which is the same as the
single mode case with a modified volume of the building blocks, Ṽ1 = V1 + r2V2. And
therefore the EoS is the same as in the single mode case, which indeed approaches the
asymptotic value from above.

In figure 3.3 we plot the different behaviour of w in the cases ϕ1∞ < ϕ2∞ and ϕ1∞ = ϕ2∞
using numerical solutions of equation of motion (2.25) in the single interaction case µj = 0.

At small volume, the evolution is dominated by the free parameters, and the two case are
identical. At a larger volume but when ϕ is still away from ϕ1∞, the ratio r = ρ2(ϕ)/ρ1(ϕ)
changes slowly, and the behaviour of w in the two cases is still almost identical. As the
volume grows further, ϕ approaches to ϕ1∞, then in the case ϕ1∞ < ϕ2∞, ρ1 tends to ∞
and grows much fast than ρ2, leads to r → 0, and w approaches to the phantom divide
w = −1 from below. In the same regime, but for ϕ1∞ = ϕ2∞, we have r = (λ1/λ2)

1
4 , so

the last term in (3.23) vanishes1, and w will approach w = −1 from above, as in the single
mode case.

Now we consider the case n = 6 and assume that ϕ1∞ < ϕ2∞. Then at large volume
the first mode will dominate and r → 0. Expanding w in equation (3.23) with respect to

1 To plot the figure we have chosen n = 6 for its cosmological relevancies.
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Figure 3.3: The behaviour of w in the two modes case, where both modes have only
one interaction term. Black solid line shows the case where ϕ1∞ < ϕ2∞, while for red
dashed line we have ϕ1∞ = ϕ2∞. Two black dotted lines show w = 1 and the phantom
divide w = −1, respectively. Parameters are same as in figure 3.1 with additional ones
are λ1 = −10−8, µ1 = 0, µ2 = 0, n1 = n2 = 6 and λ2 = −9.5 × 10−8 for ϕ1∞ < ϕ2∞,
λ2 = −9.5725 × 10−8 for ϕ1∞ = ϕ2∞.

r gives simply

w = −1 − 4V2

V1
r2 = −1 − 4V2

V1

ρ2(ϕ)2

ρ1(ϕ)2 .

Therefore, when n = 6 the phantom divide w = −1 can be crossed at large volume and the
corresponding effective field ψ behaves just like a phantom energy, whose energy density
increases as the volume of universe grows.

This is our main result, showing how a phantom-like dark energy dynamics at late
times can be produced, under rather general conditions (albeit in a simplified model, and
of course in a specific regime of the full theory) purely from quantum gravity effects, i.e.
as an effective description of the underlying quantum dynamics of spacetime constituents.

One may then worry about whether this effective phantom energy, like in many field
theoretic models, leads to a Big Rip singularity at later times also in our model. We
will discuss this issue in subsection 3.3.3, showing that the effective energy density ρψ,
defined from the EoS w, remains bounded in our model, tending towards to a finite value
at asymptotically large volumes. To see this, we need some further approximation for the
EoS w, which we anticipate below.

Since ϕ1∞ < ϕ2∞, and for large volume we have ϕ → ϕ1∞, we see that ρ2 is nearly a
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constant given by ρ2(ϕ1∞). Using the solution (3.17) for n = 6, we get

ρ2(ϕ1∞) =
1

2

√
−λ2

3

− 1
2 1

(ϕ2∞ − ϕ1∞) 1
2
.

Furthermore, when ϕ → ϕ1∞ the first mode ρ1 would be much larger than ρ2, hence in
computing the total volume we can ignore ρ2 and let V = V1ρ

2
1. Inserting this approximate

expression back in the expression for w, we get

w = −1 − b

V
, (3.24)

where b = 4V2ρ
2
2(ϕ1∞) is a constant. Notice again that b > 0, thus we have w < −1, and

the phantom divide w = −1 had to be crossed somewhere.
We will see in chapter 4, as shown by figure 4.1, that our approximation (3.24) becomes

accurate quickly after w passes its minimum and starts to increasing again, hence can be
used to extract some cosmological observables, such as the changes of current Hubble
parameter H0 due to the appearance of the phantom phase (see section 4.2).

3.3.3 The Big Rip singularity
As we have emphasized, and in the presence of interactions, we can see from the solution
(3.17) that, ρj becomes singular for ϕ = ϕj∞, which means that the volume will also diverge
at finite relational time ϕ∞ = min{ϕj∞}. Now we are going to explain why this does not
necessarily lead to a Big Rip singularity, which is usually expected to exist for a phantom
like evolution, especially for constant EoS with w < −1. We will see that such singularities
can be avoided in our setting due to the fact that w is dynamical and approaches to −1
very fast.

Let’s consider the fictitious field ψ we introduced whose EoS equals to w given by
equation (3.24). Its energy density ρψ, defined by the EoS itself, satisfies the conservation
equation (3.2). Substituting the approximated EoS (3.24) into equation (3.2), we get

dρψ
dV − bρψ

V 2 = 0.

This equation can be solved in a close form

ρψ = ρψ0e− b
V ≈ ρψ0 − ρψ0b

V
, (3.25)

where ρψ0 is a constant of integration, representing the asymptotic value of ρψ when volume
approaches to infinity.

Therefore, we see that in our model the energy density has a constant asymptotic value,
which has the same effect as a cosmological constant, instead of blowing up when the volume
is large. From this point of view, our model leads to a de Sitter spacetime asymptotically,
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with no Big Rip-like singularities [118]. In fact, our model effectively belongs to the class
of models considered in [128], where the Big Rip singularity is avoided even in presence
of phantom matter by assuming that ρψ can be obtained as a constant part plus some
matter with negative energy density. Exactly this type of scenario is reproduced from the
fundamental quantum gravity dynamics.

From the results above, one may suspect that the future singularities won’t occur in the
phantom scenario as long as the EoS w → −1 for large volume, or putting it differently, the
de Sitter spacetime with finite scalar curvature can be reached asymptotically if w has −1
as its limit. But we need to stress that it’s not the case. The truth is, in order to obtain a
de Sitter spacetime asymptotically, it’s only necessary but not sufficient to require that w
approaches to the phantom divide w = −1 at large volume. We need also to demand that
w approaches to w = −1 fast enough, as it happens naturally in our case without further
adjustments on the formalism or parameters.

To see that it’s not trivial in avoiding the Big Rip-like singularities, we can assume
that, when volume V is larger than some given V0, the EoS is given approximately by

w = −1 − b

ln(V/V0)
,

which approaches to −1 as well for large V . Substituting this into the conservation equation
(3.2), the evolution of the phantom energy density ρψ now reads

ρψ = ρψ0

[
ln
(
V

V0

)]b
,

where ρψ0 is again a constant, now given by the energy density at volume V = eV0. In this
case ρψ diverges when V → ∞, and the asymptotic de Sitter spacetime can’t be obtained.
Furthermore, as we discussed in subsection 3.1.2, when the energy density is large enough
all bound systems in the universe will be destroyed at a finite volume and hence such kind
of phantom evolution should be avoided [118].

3.3.4 Combining inflation-like and phantom-like acceleration
We have seen that we can reproduce naturally the late time acceleration behaviour of our
observed universe by considering two condensate modes, for which has only one interaction
term respectively. We also have reasons to expect that the late-time cosmological dynamics
is dominated by a single interaction (that of the highest order, if more than one is allowed
with comparable weights by the parameters of the model). Thus, we can claim some degree
of generality for our main results.

However, it is interesting to ask how the late-time dynamics, after a FLRW phase, is
affected by the presence of multiple interactions, for each mode. This could be relevant
for further cosmological applications, but it also has purely theoretical motivations. For
example, although n = 6 interactions are needed to reproduce phantom crossing, most
quantum geometric GFT models include n = 5 interactions because they come from the
simplicial construction of their (lattice gravity and spin foam) amplitudes [29].
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So, we conclude our present analysis by considering briefly the case in which two spin
modes both have two interactions, with the new couplings being µ1 and µ2.

When both µ1 and µ2 are less than 0, both modes would produce a divergent condensate
density eventually and lead to a similar result as the previous single interaction case. On
the other hand, when both µ1 and µ2 are positive, there would be a turning point for the
condensate density for each mode, after which ρj starts to decrease, and the corresponding
universe would become cyclic, as in the single mode case. The more interesting case,
therefore, is when µ1 and µ2 have different signs.

We assume then that µ1 < 0 while µ2 > 0. As shown in [45], the mode ρ2 alone can
lead to a long-lasting inflationary-like phase. Now, with an additional mode ρ1, we can
have both the late time phantom-like acceleration and an inflationary-like phase before it.

With two interactions, we have three different cases according to the relative magnitude
between ϕ1∞ and ϕ2∞. Since µ2 > 0, ϕ2∞ would be the half-period of the ρ2 mode rather
than the maximum value that ϕ can reach as ρ2 → ∞. For ϕ1∞ < ϕ2∞, the ρ1 mode
would increase faster than the ρ2 mode, and dominates before inflation can end, leading to
a similar dynamics as in the single interaction case. On the other hand, for ϕ1∞ > ϕ2∞, ρ2
will reach its maximum value before ρ1 diverges. For large volume, but with ϕ < ϕ2∞, the
ρ2 mode would dominate and hence inflation can end. But since near ρ2∞, ρ2 decreases
very quickly, the total volume will also decrease for a while and then increase again when
the ρ1 mode takes over. Let us look at the resulting dynamics in more detail, considering
the case where ϕ1∞ = ϕ2∞ and assuming n1 = n2 = 5, n′

1 = n′
2 = 6.

Since the absolute value of the couplings |µ1,2| is much less than |λ1,2|, there would still
be a region where the λ interaction terms dominate. Furthermore, we can also ignore the
influence of µ terms on the value of ϕj∞, and the solution of each mode can still be given
by equation (3.17) in this regime, with ϕ1∞ = ϕ2∞. Then, as we discussed, in such case
the ratio ρ1/ρ2 becomes a constant and the contribution from two modes cancels, leaves a
constant EoS w = −1

2 in this region, corresponding to an inflationary-like phase.
As the volume increases, the µ terms become important. In this region, the EoS w will

increase first, and inflation will end after w > −1/3. Afterwards, w decreases again to cross
the phantom divide w = −1. At very large volume, the EoS can still be approximated by
w = −1 − b/V , in the same form of (3.24), only this time with the constant b should be

given by b = 4V2ρ
2
2(ϕ2∞) = 144

25
V2λ

2
2

µ2
2

, which can be determined with only the parameters
from the second mode.

We compared the behaviour of w in two modes case and single mode case in figure
3.4. What needs to be stressed is that, although the inflationary phase can end, the exit
is not as graceful as one would expect in the standard cosmology models, in the sense
that there is no long-lasting Friedmann phase after the end of inflation in our case. As
indicates by figure 3.4, w drops fast again after the end of inflation to enter the phantom
phase. Therefore, our combination of inflationary and phantom phases is not as successful
as one would expect, but nevertheless the result provides a template of how to make the
combination possible in GFT condensate cosmology.
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As in the single mode case, table 3.2 summarizes the effects of parameters on the
evolution behaviour in the two modes case. As we have explained, the inflationary phase
should be accompanied by a proper exit, hence such phase won’t occur with only a single
interaction term in each mode. Since the case of positive λ is already discussed in the
single mode case, here we only consider the case λ1 < 0 and λ2 < 0. Furthermore, for
simplicity we set n1 = n2 = n and n′

1 = n′
2 = n′.

Inflationary phase Cyclic
behaviour

Late time
acceleration

Phantom
crossing

Big Rip

Single
interaction

ϕ1∞ = ϕ2∞ n ≥ 5 n > 6 n > 6
ϕ1∞ < ϕ2∞ n ≥ 5 n ≥ 6 n > 6

Two
interactions

µ1 > 0, µ2 > 0 n ≥ 5 ✓
µ1 < 0, µ2 < 0 n′ ≥ 5 n′ ≥ 6 n′ > 6
µ1 < 0, µ2 > 0 ϕ1∞ = ϕ2∞, n ≥ 5 n′ ≥ 5 n′ ≥ 6 n′ > 6

Table 3.2: The influence of parameters on the cosmological evolution in two modes case.
The meaning of symbols is the same as in table 3.1. There is no need to include FLRW
phase, as it will always occur for the case considered in the current table.

0 10 20

lnV

−2

−1

0

1

w

Two modes

Mode ρ1

Mode ρ2

(a) Behaviour of w in the interacting case

0 2 4 6

z

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

w

(b) w versus redshift in two modes case

Figure 3.4: The behaviour of w in the interacting case. As in figure 3.1, the black solid line
shows w in two modes case, red dashed line shows single mode case with ρ1, and magenta
dash-dotted line shows single mode case with ρ2. At large volume w for ρ1 and ρ2 differs
significantly as the couplings µ1 and µ2 have different signs. The two black dotted lines
represent w = −0.5 and w = −1 respectively. In 3.4(b) we plot the behaviour of w with
respect to redshift z in the two modes case. The redshift is defined by z = a0/a− 1, where
scale factor a = V 1/3 and a0 is its current value. Parameters are same as in figure 3.1
with additional ones are given by λ1 = −10−8, µ1 = −10−12, λ2 = −1.4757 × 10−7, µ2 =
1.2 × 10−12 and n1 = n2 = 5, n′

1 = n′
2 = 6.



50 3. Phantom-like dark energy from GFT condensates

3.4 Summary
In this chapter, we have analysed the emergent cosmological dynamics corresponding to the
mean field hydrodynamics of quantum gravity condensates, within the (tensorial) group
field theory formalism. The main focus of the current work is the behaviour of the effective
equation of state w when there are more than one condensate modes in the contribution
to the cosmological evolution, which is an extension of previous works in the context of
GFT condensate cosmology, where one usually considers only a single mode.

We argued that, the effective EoS is suitable for the study of cosmological evolution
in the context of GFT condensate, and rewritten several previous results in terms of w.
Then following the evolution of w, we first considered the free case in the GFT condensate
dynamics, which corresponds to the early time in the universe evolution where the volume
is small, hence the interaction terms in the effective GFT action can be ignored. The
inclusion of multiple modes into consideration doesn’t change much of the previous results,
i.e., the big bang singularity can still be resolved by the bounce, followed by a short-lasting
period of acceleration, and asymptotically the Friedmann phase will emerge, where w = 1
corresponds to the free massless scalar fields ϕ. What changes is the way w approaches to
1, yet this is not quite important as w = 1 is not a significant value in cosmology, partially
because such a behaviour can be explained by the ϕ field without going beyond ordinary
QFT. More importantly, our result can be viewed as a consistency check of the GFT
condensate cosmology formalism, since near the bounce the total volume of our universe is
small, there is no reason to expect that one mode can dominate over others, and we need
to take all the modes into consideration. We have shown that, qualitatively the conclusions
obtained from the analysis in the single mode case are still valid, which, on the other hand,
shown the necessity of interactions in accounting the late time evolution of our universe.

After including interactions into the picture, the situation becomes more interesting.
The main reason is that now the asymptotic value of w can be tuned by changing the order
n of the interaction terms. In particular, when n = 6 we have w = −1 asymptotically,
corresponds to the cosmological constant, which is certainly more interesting than the
w = 1 case. To see the effects of GFT interactions to the evolution of w, especially in
the two-modes case, we first solve the equation of motion (2.26) of the GFT condensate
approximately in the large volume limit, from which we can see that for each mode j the
solution diverges for some ϕ = ϕj∞. Then we substitute the solutions (3.17) of the two
modes under consideration to the definition (3.1) of the effective EoS for GFT cosmology to
arrive at the result (3.23), which is less than −1 for n = 6, allowing us to obtain a phantom
phase. The expression (3.23) can be further simplified by noting that w only depend on
the ratio r = ρ2/ρ1, which towards to 0 when volume is large if ϕ1∞ < ϕ2∞, therefore, the
result can be expanded respect to r, which results in the simple expression (3.24). Since
in our context of GFT condensate cosmology, the EoS we obtained approaches to w = −1
fast enough, one can show that the Big Rip-like singularities can be avoided. Finally, we
showed that it’s possible in our formalism to deal with inflationary and phantom phases
simultaneously without the need of inflaton nor phantom dark energy.

It’s fair to say that our results obtained in this chapter are mainly qualitative, for
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example we have only shown the existence of the phantom phase or the non-existence
of the future singularities, without paying much attention to the details of the phantom
behaviour, such as how the phantom crossing close to us or what is the minimum value
of w1. And we haven’t considered the possible observational consequences of our results.
These issues will be dealt with in the next chapter, where we will identify the minimum
point of w, explain why the phantom crossing need to happen recently, and how the
inclusion of the second mode will change the observed values of some quantity, such as the
current value H0 of the Hubble parameter.

1 Since in our model w changes from values close to 1 to the asymptotic value −1, from below, there has to
be a point where w reaches its minimum. As can be seen from figure 3.3.
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Chapter 4

Observational consequences of the
phantom phase

In the last chapter, we have seen that GFT interactions and the number of condensate
modes that being taken into account are both relevant for the late time accelerating ex-
pansion of our universe. The extraction of the effective EoS from our GFT condensate
cosmology model makes it easier to track the cosmological evolution and to compare the
results with those obtained in other cosmological models. In particular, we have shown
that a late time phantom phase, followed by an asymptotic de Sitter phase, exists in our
GFT cosmology model.

As we have mentioned before, these results, although quite informative in extracting
cosmological consequences of the quantum gravity effects from our GFT formalism, are
only qualitative, and don’t have observational relevance directly. In this chapter, we will
try to fill this gap between our results and observations, by extracting approximately
the minimum value of w, identifying cosmological constant in the de Sitter phase using
GFT parameters, and showing that how the inclusion of a second condensate mode into
consideration will change the current Hubble parameter H0, compared to the single mode
case. What’s important is that the current value H0 of the Hubble parameter can be
observed directly. The last result indicates that quantum gravity effects might be helpful
in alleviating the H0 tension [60, 61], hence provides a window of testing quantum gravity
theories using cosmological observations [3].

4.1 Behaviour of the effective equation of state

We have argued in section 3.3.1 that when ρ is large, we can ignore Ej, Qj and mj

terms in the equation of motion (2.26), which provides us the approximated equation
(3.16). Furthermore, for the cosmological relevance, we need a cosmological constant in
the de Sitter phase, corresponds to w = −1, which requires interaction terms of order 6.
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Therefore, by setting n = 6 in the solution (3.17) we get

ρj(ϕ) = 31/4√
2
√

−λj (ϕj∞ − ϕ)
, (4.1)

with ϕj∞ is a constant depend on parameters of each mode. It’s worth emphasizing again
that when the volume is very large, the mode with smallest ϕj∞ will dominate, and for
n = 6 we have w = −1, corresponds to the asymptotic de Sitter spacetime. The appearance
of other modes will modify the way we approach such an asymptotic regime, in particular,
as we have discussed in section 3.3, with two-modes a phantom phase will emerge before
the de Sitter spacetime shows up. More specifically, tracking the evolution of the EoS
w (from the red dashed line of figure 3.3, for example), we see that near the end of the
Friedmann phase, w decreases quickly from values close to 1 to values less than −1, and
then increases again to reach the asymptotic value −1. Therefore, there have to be a point
where w = −1 exactly, i.e., the point of phantom crossing, as well as a point where w
reaches its minimum. We will see in the following that these two points are actually close
to each other, and the latter can be given in a close analytical form in our formalism, at
least approximately.

4.1.1 Location of phantom crossing
At the first sight, one may suspect that to get the position of phantom crossing we just need
to substitute the solution (4.1) of ρj into the total volume (2.27), and then into the effective
EoS (3.1) to get the relation w = w(ϕ). From which we can solve the equation w(ϕ) = −1
to obtain the position where the phantom divide w = −1 is crossed. A moment of reflection
shows that it’s not as simple as one originally expects. In obtaining solutions in the form
of (4.1) we have ignored free parameters like Ej, Qj and mj, therefore, when substituting
them into w, we can only get an effective EoS depends only on the interaction couplings,
or in other words, what we can obtain is in the form of (3.23). The problem is, for n = 6
the approximation (3.23) always gives w < −1 for any ρ1 and ρ2. Therefore, to get the
position of phantom crossing, one has to restore, at least partially, the contributions from
free parameters to the EoS, which requires us to solve the equation of motion (2.26) without
ignoring the free parameters. But as we have mentioned before, the task is formidable at
current stage1.

One can work around this by noting that the phantom crossing has to occur between
the end of Friedman phase (where w ≃ 1) and the point where w reaches its minimal value.
Furthermore, as we can see below, that the latter two positions are actually close to each
other, hence we can take the position of phantom crossing as the point where Friedman
phase ends or w reaches its minimal value.

Minimal value of w. The alternative way proposed above depends on the assumption
that the approximation (3.23) still has minimum value as the exact EoS, or putting it

1 And that’s the reason why we are looking approximate solutions of the form (3.17) in the first place.
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differently, we assumed that the equation w′(ϕ) = 0 respect to ϕ indeed has real positive
roots even when we ignore the free parameters. This assumption can be verified if we can
find the required root explicitly. In fact, taking derivative respect to relational time ϕ on
both sides of effective EoS (3.1), we obtain

w′ = −
2
[
(V ′)2 V ′′ − 2V (V ′′)2 + V V ′V ′′′

]
(V ′)3 . (4.2)

In the two modes case, the total volume (2.27) reduces to

V (ϕ) = V1ρ
2
1(ϕ) + V2ρ

2
2(ϕ).

When the volume is large, substituting the total volume and the corresponding solutions
(4.1) into the derivative (4.2) of EoS, we obtain

w′ = 4V1V2(λ1λ2)
3
2 (ϕ2∞ − ϕ1∞)2[

V2λ1
√

−λ2 (ϕ1∞ − ϕ)2 + V1
√

−λ1λ2 (ϕ2∞ − ϕ)2
]3

×
[
V2λ1

√
−λ2 (ϕ1∞ − ϕ)2 (2ϕ+ ϕ1∞ − 3ϕ2∞) + V1

√
−λ1λ2 (ϕ2∞ − ϕ)2 (2ϕ− 3ϕ1∞ + ϕ2∞)

]
.

(4.3)

We see that if ϕ1∞ = ϕ2∞ then w′ = 0 as we expected from equation (3.23), which gives
constant value in this case. For ϕ1∞ ̸= ϕ2∞, demanding w′ = 0 is equivalent to the
requirement of the vanishing of the second line in the right hand side of equation (4.3),
which provides us a cubic equation respect to ϕ

V2λ1

√
−λ2 (ϕ1∞ − ϕ)2 (2ϕ+ ϕ1∞ − 3ϕ2∞) + V1

√
−λ1λ2 (ϕ2∞ − ϕ)2 (2ϕ− 3ϕ1∞ + ϕ2∞) = 0.

(4.4)

In principle, this equation can be solved exactly, but as one can imagine that the solution
is lengthy as usual for cubic equations, and such a complex form might not be quite useful.
So for now it would be sufficient to consider approximate solutions. In fact, at the minima
the value of ϕ is close to ϕ1∞, so we can assume that ϕ = ϕ1∞ − δ and then expand w′

with respect to δ. To the first order, we have

w′ = 4V2λ1 (6δ + ϕ1∞ − ϕ2∞)
V1

√
λ1λ2(ϕ2∞ − ϕ1∞)2 . (4.5)

Solving w′ = 0 gives

δ = ϕ2∞ − ϕ1∞

6 , (4.6)
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which results in

Vmin,w = −
3
√

3
(
V2λ1

√
−λ2 + 7V1

√
−λ1λ2

)
7λ1λ2 (ϕ2∞ − ϕ1∞) = 3

√
3

7(ϕ2∞ − ϕ1∞)

(
V2√
−λ2

+ 7V1√
−λ1

)
,

(4.7)

wmin = V 2
2 λ1 + 2401V 2

1 λ2 − 1106V1V2
√
λ1λ2(

V2
√

−λ1 + 49V1
√

−λ2
)2 = −1 − 1008V1V2

√
λ1λ2(

V2
√

−λ1 + 49V1
√

−λ2
)2 .

(4.8)

Note that Vmin,w is of the same order as 1/
√
λj, around which the mass term m2

jρ
2
j

and interaction term λjρ
6
j/3 in the equation of motion (2.28) are of the same order, i.e.,

equation (3.18) is valid approximately, which indicates the end of the Friedman phase.
Furthermore, the phantom crossing, where the EoS w starts to become less than −1, should
happen before w reaches its minimum. And since Vmin,w is close to the end of Friedman
phase, we see that the universe becomes phantom like soon after Friedman phase ends,
and w will reach its minimum soon after phantom crossing.
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Figure 4.1: The comparison between the exact value and approximate value of EoS w. Red
dashed line shows the exact numerical value of w, being part of the same line in figure 3.3 in
the region specified here, while the black dash-dotted line shows the approximation (3.24).
Parameters are the same as in figure 3.3.

Beyond the minimum. On the other hand, as can be seen from figure 4.1, the approx-
imation (3.24) becomes accurate quickly after w reaches its minimum value and starts to
increase. In fact, we can substitute Vmin,w into our approximation (3.24), and obtain

w = −1 − 56V2
√

−λ1

3V2
√

−λ1 + 21V1
√

−λ2
= −1 − 56V1V2

√
λ1λ2

3V1V2
√
λ1λ2 − 21V 2

1 λ2
. (4.9)
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This is close to the minimal value (4.8), which means that w can be approximated using
(3.24) soon after w passes its minimum value. Furthermore, the approximation (3.24)
approaches to −1 quickly, which means that, in the phantom phase, w can only deviate
from −1 significantly near its minimum.

We conclude that after phantom crossing, w will approach to its asymptotically value
−1 quickly in our model. Therefore, if we are experiencing a phantom phase, the phantom
crossing must happen recently. We emphasize that this is not trivial, as our model unifies
two observational facts:

1. the phantom crossing happens recently, and

2. w deviates from −1 notably.

Our claim is that these two facts are related in our model, i.e., the reason why w may have
a notable deviation from −1 is that phantom happens recently with a low red shift and
vice verse.

Furthermore, since the phantom crossing only happens recently, the evolution of EoS
w in the two modes case can be viewed as a slight modification of the single mode one at
late times. Then the cosmological quantities, such as H0, the current Hubble parameter,
will also be modified slightly [66]. We will see in section 4.2 that in the presence of the
phantom phase, H0 will increase, which shed some light in alleviating the H0 tension based
on quantum gravity effects.

4.1.2 Explicit expression of cosmological constant as function of
GFT quantities

Other than estimating the position of phantom crossing, our GFT model also allows us
to identify the cosmological constant using microscopic parameters of GFT. In fact, note
that long after the phantom crossing, we will enter the de Sitter regime asymptotically, at
which the volume of the universe is very large, the interaction term in GFT will become
dominant. In such region we can ignore the contributions from other terms and only keep
interactions in the equation of motion (2.28). Furthermore, we have seen in chapter 3 that
in such a region only a single mode dominates [50], where the canonical momentum πϕ of
the relational time ϕ should be of the form [42]

πϕ = Q1.

On the other hand, for the free massless scalar field ϕ in a FLRW spacetime, the canonical
momentum should have the form πϕ = V ϕ̇ [45], which gives ϕ̇ = Q1/V . Substituting ϕ̇
into the relation (A.2) between Hubble parameter H and ϕ̇, we get the relation between
H and the ratio V ′/V in the single mode case [45, 50]

H = Q1

3
V ′

V
. (4.10)
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Therefore, in the asymptotic de Sitter regime we obtain

H2 = 8
9Q

2
1

(
−λ1

6V 2
1

)
= 1

3

[
4Q2

1
3V 2

1
(−λ1)

]
. (4.11)

Comparing this equation with the ΛCDM model at late time, we see that the cosmological
constant is determined by the microscopic parameters of GFT model [45]

Λ = 4Q2
1

3V 2
1

(−λ1). (4.12)

We would like to stress the following points of relation (4.12) between the cosmological
constant Λ and GFT parameters

• Λ is determined by the parameters of a single mode despite that two modes are
considered; this could have been expected since the asymptotic de Sitter regime is
determined by mode ρ1, after all;

• For a non-vanishing Λ, we see that Q1 ̸= 0, and hence the volume can never reach
zero, which implying a bounce [42]. Although there is no evidence that Qj’s should
be non-vanishing [49]1, we see now the cosmological constant would provide such
a requirement that the Q1 can’t be zero and hence lead to a bounce [42], which
resolves the Big Bang singularity. In other words, besides the CMB, which indicates
that that our universe was in a hot dense state in the far past, we see now that the
non-vanishing cosmological constant Λ itself would be a remnant of the expansion
history of our universe in the very beginning. A similar situation also happens in the
inflationary scenario [130, 131];

• Λ doesn’t depend on mj, hence the mass renormalization of GFT model will not
change the value of cosmological constant;

• Since V1 is the volume of a spacetime quanta, and Q1 is an integral constant from the
equation of motion, they are both remain the same under renormalization. Hence, Λ
will strongly depend on the interaction coupling, whose renormalization will possibly
lead to a small value of cosmological constant. A detailed analysis of the renormal-
ization of coupling will leave to future work.

4.2 The deviation of Hubble parameter H0 compared
to single mode case

In the previous section we have seen how to identify the cosmological constant with mi-
croscopic parameters of GFT. However, if we are experiencing a phantom phase as we
mentioned before, it could be hard to observe the cosmological constant Λ directly, because

1 See, for example, equation (75) in [49].
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its value given by equation (4.12) is an asymptotic one, which is not directly accessible
as we haven’t reached the future de Sitter regime yet. On the other hand, by fitting the
observed data [59], we can get the preferred evolution of w, from which we can identify its
minimal point as well, which can be compared to the value (4.7), or to be more precise,
the corresponding red shift zmin,w, we obtained in last section1. In this sense, the position
where w reaches its minimum can be observed, albeit not directly.

One quantity, that of direct observational relevance (especially for observations related
to supernova [57, 61]), is the current value H0 of the Hubble parameter, whose value can
be fixed by fitting data with cosmological models. In principle, for our model emerged
from two modes, we can get H0 directly by fitting with data, which is cumbersome as
there are many GFT parameters that being involved. We can use an easier way, however,
by noting the fact that the phantom crossing only occurred recently, as we argued in last
section. Therefore, compared to the single mode case, where the value of H0 is easier to
fix, the two-modes evolution can be viewed as a slight modification at late times. This
modification will result in a small deviation δH0, and approximately we can set the current
Hubble value in two-modes case as H0 + δH0, where H0 is the value obtained from single
mode evolution.

Here we made a first step towards showing the effects of including a second mode on
the quantities that can be observed directly. In fact, we can see that this will increase the
preferred value of the current Hubble parameterH0, compared to the single mode case when
fitting some cosmological data. Although it’s not of our concern for the moment, we need
to stress that the same happens in the realistic cosmological models. In fact, L. Heisenberg
et al. observed in [66] that in general the appearance of a late time phantom phase in
the evolution of our universe, can increase the current Hubble parameter H0 inferred from
CMB data [132], and hence to alleviate the H0 tension [60, 61]. In the following we will use
the same methods to check the effects of the inclusion of a second mode into consideration,
compared to the single mode case. But one need to be aware that unlike the case in [66],
our results below don’t have direct observation relevance at current stage, as we are not
dealing with the realistic matter contents that fill up our universe.

To begin, noting that for a single mode, we can simply substitute equation (2.28) into
equation (4.10) to obtain [45],

H2
single = 8Q2

1
9

(
εQ1

V 4 + εE1

V 3 + εm1

V 2 + ελ1

)
, (4.13)

with the parameters

εQ1 = −Q2
1

2 V 2
1 , εE1 = V1E1, εm1 = m2

1
2 , ελ1 = − λ1

6V 2
1
.

In terms of red shift z such that (1+z)3 = V0/V for the current volume V0, equation (4.13)
1 It’s worth emphasizing that the comparison can be quantitate only when we are able to, in our GFT for-

malism, take into account the realistic matter contents, like radiation with w = 1/3 and more importantly
the non-relativistic matter with w = 0.
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can be written as

H2
single = H2

0

[
ΩQ1(1 + z)12 + ΩE1(1 + z)9 + Ωm1(1 + z)6 + Ωλ1

]
, (4.14)

where we defined

H2
0 = 8Q2

1
9

(
εQ1

V 4
0

+ εE1

V 3
0

+ εm1

V 2
0

+ ελ1

)
,

ΩQ1 = 1
H2

0

8Q2
1

9
εQ1

V 4
0
, ΩE1 = 1

H2
0

8Q2
1

9
εE1

V 3
0
,

Ωm1 = 1
H2

0

8Q2
1

9
εm1

V 2
0
, Ωλ1 = 1

H2
0

8Q2
1

9 ελ1 ,

such that ΩQ1 + ΩE1 + Ωm1 + Ωλ1 = 1, and the value of H0 can be determined using the
observed data. Since the current volume V0 should be very large, and in general εQ1 , εE1

and εm1 are of same order, one would expect that ΩQ1 ≪ ΩE1 ≪ Ωm1 , therefore, in practice
we can just ignore ΩQ1 and ΩE1 for small red shift z. Following [66], when the expansion
history is modified (for example by including a second GFT mode), such that1

H(H0) = Hsingle(H0) + δH, (4.15)

the preferred value of H0, obtained by fitting data using H(H0), will change compared to
that using Hsingle(H0), and the deviation can be given through the response function RH0

as we can see below.

4.2.1 Deviation δH in the presence of the second mode
In the presence of the second mode, the expansion history of our universe will be modified.
Effectively, such modification can be viewed as adding a fictitious phantom matter ψ (as
we introduced in section 3.1) with the effective EoS wψ = w, where the latter w refers to
the EoS obtained in our GFT cosmology model. Then the modified expansion history in
the presence of the second mode can be written in the form

H2 = H2
0

[
ΩQ1(1 + z)12 + ΩE1(1 + z)9 + Ωm1(1 + z)6 + Ωλ1e

∫ z

0
3(1+w(z′))

1+z′ dz′
]
. (4.16)

The Hubble parameter H can already be determined numerically since we have the nu-
merical results for the evolution of w (used to plot the red dashed line of figures 3.3 and
4.1), which proves useful in determining the deviations δH and δH0 (as can be seen from
the figure 4.2(b) and the last column of table 4.1). But the numerical results are not
very informative in revealing certain properties of δH, for which an analytic formula is

1 Note that H = H(z) should be a function of the red shift z of the form (4.16). We write H(H0) to stress
the fact that to fix the whole history H, one needs to infer the value of parameters, including H0, from
data.
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more preferable. Therefore, we will also consider using, in sacrificing of some accuracy, the
approximation (3.24) of w, which can be rewritten using red shift z as

w = −1 − b

V0
(1 + z)3,

= −1 + (1 + w0)(1 + z)3, (4.17)

where V0 is the current volume, the red shift z satisfies (1 + z)3 = V0/V , and we have
defined current value w0 of the EoS such that

w0 = w(z)|z=0 = −1 − b

V0
. (4.18)

The approximation (4.17) allows to evaluate the integral in the Hubble parameter
(4.16), which results in

H2 = H2
0

(
ΩQ1(1 + z)12 + ΩE1(1 + z)9 + Ωm1(1 + z)6 + Ωλ1 exp

{
(1 + w0)

[
(1 + z)3 − 1

]})
.

(4.19)

Therefore, the relative modification δH/Hsingle can be given by (for simplicity, we ignore
terms proportional to ΩQ1 and ΩE1 , since they are small)

δH

Hsingle
= H −Hsingle

Hsingle
,

= −1 +

√√√√Ωm1(1 + z)6 + Ωλ1 exp {(1 + w0) [(1 + z)3 − 1]}
Ωm1(1 + z)6 + Ωλ1

. (4.20)

Since in the presence of the second mode, the universe will enter a phantom phase, we have
1 + w0 < 0, which means δH/Hsingle is negative, as shown in figure 4.2. Furthermore, we
can see that the deviation is non-vanishing only around its minimal value, determined by

d
dz

δH

Hsingle
≈ 3(1 + w0)Ωλ1(1 + z)2 {Ωm1(1 + z)3 [(1 + z)3 − 2] − Ωλ1}

2 [Ωm1(1 + z)6 + Ωλ1 ]2
= 0,

where we used the fact that 1 + w0 is small. In our model, Ωm1 is usually much smaller
than Ωλ1

1, hence the solution to last equation can be approximated as

zmin,δH =
(

Ωλ1

Ωm1

) 1
6

− 1. (4.21)

Later we will see that this value is close to the minimal position of the so-called response
function RH0 (see equation (4.30) for definition), hence the modification introduced by
including a second mode will indeed change H0, according to the integral (4.29).

1 This is acceptable as one would expect that the contribution from free massless scalar field (which has
EoS w = 1) should vanish faster than the radiation (which has w = 1/3), and the latter can already be
ignored nowadays.
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(b) Exact result

Figure 4.2: The deviation δH in the presence of the second mode. 4.2(a): obtained from
the approximated w (4.17), corresponds to black line of figure 4.1; 4.2(b): obtained from
the exact result of w (calculated numerically), corresponds to red dashed line of figure
4.1. Apparently, the numerical value of w improves the accuracy of the result, but the
qualitative result remains the same. Data is the same as in figure 4.1.

It’s true that our approximation (4.17) of w deviates from the exact one quickly when
z is large (as can be seen from figure 4.1), which results in a not that small deviation δH,
as can be seen from figure 4.2(a). While from figure 4.2(b), we see that using the exact
behaviour of w instead, obtained by numerical methods, indeed improves the accuracy,
which results in a smaller deviation of δH and δH0 (see the last column of table 4.1).
What we would like to emphasize is, however, the qualitative feature remains the same,
and the approximation (4.17) is useful when we try to determine the minimal point of the
deviation, which is given by equation (4.21). It is impossible to write the result in the close
analytic form if we only consider the exact yet numerical results of w.

Before we continue, we need to emphasize that in our model the choice of w0 is not
independent of other parameters. In fact, according to the relation (4.18) between w0 and
V0, we see that the value of w0 will determine V0 as well, which is used in defining the
red shift z. In other words, the choice of w0 will determine what we called ‘now’ in our
model. Correspondingly, the value of relative energy density, such as Ωm1 and Ωλ1 will also
change, but this is not because we used a modified expansion history, instead the changed
is due to that we defined a new point where z = 0. This is different with the case in [66],
where the definition of ‘now’ should not change. Therefore, in our case we only need one
response function (instead of two in [66]), RH0 .
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4.2.2 The response function RH0

Now, for a small deviation of the expansion history δH with the form of (4.15), the preferred
value of H0 when fitting with observed data should be changed such that [66]

H(H0 + δH0) = Hsingle(H0) + ∆H. (4.22)

To the first order we should have [66]

∆H
Hsingle

= H2
0

H2
single

δH0

H0
+ δH

Hsingle
. (4.23)

And in general, every cosmological quantity g(z) will have the variation as following [66]

∆g(z)
g(z) = Ig(z)

δH0

Hsingle
+
∫ ∞

0

dxz
1 + xz

Rg(xz, z)
δH(xz)
Hsingle(xz)

. (4.24)

In particular, for angular diameter distance [66]

dA(z) = 1
1 + z

∫ z

0

dz
Hsingle(z)

, (4.25)

we have

IdA
(z) = − 1

χ(z)

∫ z

0
dxz

H2
0

H3
single

, (4.26)

RdA
(z) = −(1 + xz)

θ(z − xz)
χ(z)Hsingle(xz)

, (4.27)

where χ(z) is the conformal distance

χ(z) =
∫ z

0

dxz
Hsingle(xz)

. (4.28)

Substituting equation (4.28) and the FLRW equation for single mode (4.13) into equations
(4.26) and (4.27), we see that both IdA

and RdA
are independent of H0.

To see how the inclusion of the second mode will change the value of H0, we need an
observable that is fixed for both single and two mode cases [66]. For example, we can
consider the angular diameter distance at the end of bounce scenario (with red shift z∗)1,
whose deviation due to the modification of the expansion history is simply

∆d∗
A

d∗
A

= I∗
dA

δH

H0
+
∫ ∞

0

dxz
1 + xz

R∗
dA

δH

Hsingle
,

where we write d∗
A = dA(z∗) (and similarly for I∗

dA
and R∗

dA
) for simplicity. Note that d∗

A

is an observable and its value should not change no matter how we modify the expansion
1 Currently, it’s unclear how to determine the exact value of z∗ in our GFT model, but the exact value of
z∗ is not important as long as it’s large enough. In the following we will simply take z∗ = 1000.
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history, i.e., we require ∆d∗
A ≃ 0. This provides us the variation of δH0 due to the

modification of expansion history [66]
δH0

H0
=
∫ ∞

0

dxz
1 + xz

RH0

δH

Hsingle
, (4.29)

where the response function

RH0 = −
R∗
dA

I∗
dA

, (4.30)

which is also independent ofH0 as same as I∗
dA

andR∗
dA

. SinceH(z) ≥ 0 in the whole history
of our universe, we see that χ(z) > 0 and IdA

< 0, RdA
< 0, which results in RH0 < 0

as well, as shown in figure 4.3. On the other hand, the appearance of second mode will
introduce phantom crossing, which results a negative δH. Therefore, the preferred value
H0 will increase compared to the single mode case.
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Figure 4.3: The response function RH0 . The data is same as in figure 4.1. Note that
for w0 = −1.03 we have V0 = 1.296 × 108. Then the Hubble parameter in Planck units is
H0 = 3.5×10−4, much larger than the value inferred from the Planck data, which in Planck
units reads H0 = 1.18×10−61 (in SI units the value is H0 = 67.4 km s−1 Mpc−1 [56]). The
exact estimation of H0 in our model from CMB data requires including the non-relativistic
matter into GFT, which is out of reach for the moment. And we leave this issue for future
works.

Before we move on, let’s take a closer look at the behaviour of response function RH0 .
For xz < z∗, we have

d
dxz

R∗
dA

= − 1
χ∗

[
1

Hsingle(xz)
− 1 + xz
Hsingle(xz)2

d
dxz

Hsingle(xz)
]
.

The minimal value is determined by d
dxz

R∗
dA

= 0, which requires

1
Hsingle(xz)

− 1 + xz
Hsingle(xz)2

d
dxz

Hsingle(xz) = 0.
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Substituting the FLRW equation for single mode (4.13), and ignore ΩQ1 and ΩE1 since
they are small, we get

6Ωm1(1 + z)6 = Ωm1(1 + z)6 + Ωλ1 . (4.31)

Therefore, at the minimal value of RH0 , we have the red shift

zmin,RH0
=
(

Ωλ1

5Ωm1

) 1
6

, (4.32)

around which, we have Ωλ1 ≃ 5Ωm1(1 + z)6. Therefore, when the response function RH0

deviates from 0 significantly, we see that in the FLRW equation (4.13) the contribution
from matter term has the same order as the cosmological constant term. This is just where
the universe enters phantom phase and the contribution from the second mode becomes
noticeable. This can also be seen from the fact that by comparing equations (4.21) and
(4.32)

zmin,RH0
= 1

51/6 zmin,δH + 1
51/6 − 1.

We see that zmin,RH0
and zmin,δH are close to each other, which means there would be an

overlap for the regions where H deviates from Hsingle and RH0 deviates from 0 respectively.
Therefore, the preferred Hubble parameter H0 will indeed change according to equation
(4.29).

In fact, substituting equations (4.30) and (4.20) into equation (4.29) we can get the
change of preferred H0 in the presence of the second mode. Several results for different
w0 are shown in table 4.1. We see that when including a second mode into our GFT
cosmology model, the value of H0 inferred from data will increase. This is one would
expect as a phantom phase (which is inevitable in GFT cosmology with two modes) can
alleviate the Hubble tension by increasing H0 inferred from CMB data [66].

Table 4.1: The deviation of H0 in the presence of the second mode. The 4th column lists
results obtained using w in the approximated form (4.17), while the last column lists the
result obtained using numerical value of w from chapter 3.

w0 V0 Ωm1
δH0/H0
(approx)

δH0/H0
(numerical)

−1.03 1.30 × 108 1.79 × 10−8 0.700 0.269
−1.06 6.92 × 107 6.27 × 10−8 0.706 0.271
−1.09 4.74 × 107 1.34 × 10−7 0.711 0.260
−1.12 3.61 × 107 2.30 × 10−7 0.715 0.253

We emphasize again that in GFT cosmology the choice of w0 (the current value of EoS)
will also change the current volume V0 and hence the energy density Ωm1 of matter. This
fact is also reflected from table 4.1.
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4.3 Summary
In this chapter, we investigated several cosmological sequences when including two modes
in GFT cosmology. The effects can be encoded in the effective EoS w, and based on our
previous results of chapter 3 we know that in the two modes case a phantom phase will
emerge in the late time evolution of the universe [50], hence there should be a point where
the phantom crossing1 occurs, i.e. w crosses the line w = −1. Finding the exact position
of phantom crossing can be cumbersome, hence we took a detour by noting the fact that
phantom crossing has to happen between the end of the Friedman phase and the minimum
point of w, and shown that the latter two positions are close to each other. Therefore,
approximately we can assume that the position of phantom crossing is either the end point
of Friedman phase or the minimum point of w. On the other hand, soon after the phantom
crossing we can use the approximation (3.24) of w, which approaches to w = −1 quickly. In
other words, the universe will enter the de Sitter regime quickly after the phantom crossing,
hence if we are experiencing a phantom phase, the phantom crossing must happen recently
with a low red shift.

In the de Sitter regime, the evolution is dominated by a single mode, and we can extract
the cosmological constant (4.12) using microscopic parameters from GFT. Interestingly,
we see that a non-vanishing Λ will necessarily require a bounce in the very early universe.
Therefore, Λ can be viewed as a remnant of the history of the universe in the far past,
where we should have a bounce instead of the Big Bang singularity.

Furthermore, using the method from [66], we showed how the second mode will change
the preferred value of H0 when we fit data using our GFT cosmology model. To this end,
we approximate the effects of the second mode using the fictitious field ψ we introduced in
section 3.1, with EoS given by (3.24), such that the modified FLRW equation has the form
of (4.16). Then we can see that the deviation δH is negative, as shown in figure 4.2, because
the field ψ is phantom like. Furthermore, we see that δH/H is non-vanishing only around
its minimum point, which is also close to the minimum point of response function RH0 .
Therefore, the non-vanishing region of δH/H and RH0 are overlapped. This is important
as otherwise the current value H0 of Hubble parameter will not change no matter how the
expansion history (4.16) being modified. Finally, carrying out the integration in equation
(4.29) we obtain the deviation δH0/H0 of current Hubble parameter as shown in table 4.1,
and the deviation is positive as we expected. It’s worth mentioning that we also calculated
the deviation δH and δH0 using exact w obtained by numerical calculations, indeed the
accuracy is improved, but the result is qualitatively the same as the one obtained using
the approximation (3.24).

1 Which is defined as where the EoS w changes from values larger than −1 to less than −1.



Chapter 5

Generalized Amit-Roginsky model as
perturbations

In the previous chapters, we have discussed the phenomenological effects of homogeneous
and isotropic condensate states in GFT, with a focus on the cosmological evolution. These
two requirements dramatically simplified our analysis of the GFT dynamics, by allowing
us to use an effective action of the form (2.21). At the same time, however, these simpli-
fications also hide the internal structure, especially the combinatorial ones which specify
the interaction terms, of the underlying GFT models. On the one hand, this suggests that
our result is quite general, valid for any GFT model that has the same effective description
as we introduced before in the homogeneous and isotropic sector; on the other hand, such
generality also means the lacking of the ability to distinguish or verify different microscopic
GFT models from their cosmological consequences.

As we mentioned in section 1.2, these limitations can be overcome by introducing either
inhomogeneities perturbations [51, 74] or anisotropic condensates represented graphically
by non-equilateral tetrahedra (in the 4d case) or triangle (in the 3d case we are going to
consider below) [75, 76]. In particular, for the latter improvement we need more than one
spin j to specify the condensate wave function σ in the spin representation, hence the
details of the combinatorial structure of the kinetic and interaction kernel of GFT action
need to be taken into account, which will modify the evolution of our universe compared
to the isotropic case, as well as provide new observables beyond the total volume [75, 76].

In this chapter, we are going to consider the inhomogeneous perturbations over the
homogeneous but anisotropic GFT condensates. The analysis focuses on the 3d GFT
model which, despite lacking of cosmological relevancies, is simpler to deal with compared
to the 4d case. We emphasize again that when dealing with anisotropic condensates it’s
necessary to take into account the combinatorial structure, which means that we have to
go beyond the effective action of the form (2.21) and consider a detailed microscopic model
instead. In the 3d case, a suitable candidate is the Boulatov model [77], whose partition
function represents a completion of the resummation of Ponzano-Regge amplitudes [29] of
the discretized 3d gravity [78, 79].

We will see that with a suitable choice of the condensates, the dynamics of the pertur-
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bations would be a generalization of the Amit-Roginsky model (whose action is given by
(5.34)) [81], in the sense that the resulting action is a summation over spin j, which label
different modes of the inhomogeneous perturbation over condensates under consideration,
such that each summand has the similar form as the AR model. The AR model is inter-
esting in itself as it’s the only field with an interaction of odd order that admits a melonic
dominance in the large-N limit1 [82]. We won’t discuss such properties in much detail, as
what’s important for us is the fact it’s possible to obtain an effective continuum QFT in
flat space from the quantum gravity model.

5.1 Boulatov model coupled to matter frame
In its original form [77], there are no reference frames in the Boulatov model, making
it difficult to introduce inhomogeneous perturbations (even the concept of inhomogeneity
itself) or provide a field theoretic meaning to the emergent fields [73, 80]. To overcome
such difficulties we will show how to couple free massless scalar fields χi as relational
rods with the Boulatov model, in the same way of introducing the relational clock ϕ into
GFT formalism, as we did in chapter 2. With the help of reference frame χi, we can
define homogeneous as the property that independent of χi. This way the homogeneous
condensate wave functions, that we are going to perturb, would be those that solves the
equation of motion of the original Boulatov model without coupling to matter frames.
Before we dive into the details, let’s start with a short review of the Boulatov model, with
a focus on the materials we are going to need in the following discussion.

5.1.1 A brief introduction of the Boulatov model
The Boulatov model [77] is a 3d GFT model, which as usual is defined by functions
on multi-copies of a certain group manifold. Following [77] we choose the group here
to be G = SU(2). Then the field under consideration would be a complex function2

T : SU(2)×3 → C, which is further required to be invariant under the right action of
SU(2) due to geometrical considerations (same as in the 4d case, see section 2.1)

T (g1h, g2h, g3h) = T (g1, g2, g3), ∀h ∈ SU(2). (5.1)

and to satisfy the reality condition [73]

T (g1, g2, g3) = T̄ (g3, g2, g1). (5.2)

In the original paper [77], it is further required to have cyclic symmetry in the group
elements gi such that T (g1, g2, g3) = T (g3, g2, g1). But this property plays no role for the

1 A thorough introduction of melonic dominance or large-N limit is out the scope of current thesis, see [133]
for a review of these two and other related concepts.

2 Here we use T for the 3d group field to avoid possible confusion with the 4d case, where the field is
represented by φ.
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current work and even makes it difficult to find explicit solutions, so we simply ignore it
and continue. But we will see that under suitable approximations, we can actually obtain
the cyclic symmetric solution of the Boulatov dynamics, see equation (5.27) for the group
representation or (5.28) for the spin representation.

The combinatorial structure, which is the defining property of a given GFT model, is
reflected through the interaction terms. Usually the interactions are non-local, in the sense
that each field appears in the interaction has different set of arguments, in contrary to the
ordinary QFT where the Lagrangian densities, and especially the interactions, are defined
for each spacetime point. With these subtleties in mind, we can write the action of the
Boulatov model in the form [73, 77]

S[T ] = µ2

2

∫
dg1dg2dg3T (g1, g2, g3)T̄ (g1, g2, g3)

− λ

4!

∫ 6∏
i=1

dgiT (g1, g2, g3)T (g3, g5, g4)T (g4, g2, g6)T (g6, g5, g1), (5.3)

where µ is the mass of the field and λ the coupling constant. Furthermore, with the help
of the reality condition (5.2), we see that the equation of motion of the field T (g1, g2, g3),
obtained by varying the action (5.3) respect to T (g1, g2, g3), reads

µ2T (g3, g2, g1) = λ

3!

∫
dg4dg5dg6T (g3, g5, g4)T (g4, g2, g6)T (g6, g5, g1). (5.4)

As we emphasized in section 2.1, for any GFT it’s also possible to work in the spin
representation, with the help of Peter-Weyl decomposition. In the 3d case, the invariant
space Inv {Vj1 ⊗ Vj2 ⊗ Vj3} is only 1 dimensional, hence we don’t need the intertwiner label
ι and the intertwiners are just 3j symbols (see appendix B for a basic introduction) [89].
Therefore, the basis function, or more precisely, the spin network vertex function κx has
the form

κj1,j2,j3m1,m2,m3 =
∑

n1,n2,n3

3∏
i=1

√
2ji + 1Dji

mini
(gi)

(
j1 j2 j3
n1 n2 n3

)
,

with the 3j symbol
(
j1 j2 j3
n1 n2 n3

)
of SU(2).

Therefore, under the PW decomposition, the field T can be expanded in the form (rely
on the invariance property (5.1) of the T field)

T (g1, g2, g3) =
∑

{j,m,n}
Tm1m2m3
j1j2j3

3∏
i=1

√
2ji + 1Dji

mini
(gi)

(
j1 j2 j3
n1 n2 n3

)
. (5.5)

Moreover, the sum on {j} denotes the summation over j1, j2 and j3 (respectively for {m}
and {n}). The coefficients Tm1m2m3

j1j2j3 can be computed using the orthogonality of Wigner
matrices as

Tm1m2m3
j1j2j3 =

∫ ( 3∏
i=1

dgi
)∑

{n}
T (g1, g2, g3)

3∏
i=1

√
2ji + 1D̄ji

mini
(gi)

(
j1 j2 j3
n1 n2 n3

)
. (5.6)
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Using this decomposition, the integral over the Wigner matrix Dj(g) can be performed
explicitly, allowing us to get the spin representation of the Boulatov action (5.3)1 [77]

SB[T ] =
∑

j1,j2,j3

µ2

2 |Tm1,m2,m3
j1,j2,j3 |2 − λ

4!
∑
j1,..,j6

{
j1 j2 j3
j4 j5 j6

}
T 46j , (5.7)

where the kinetic term is

|Tm1,m2,m3
j1,j2,j3 |2 =

∑
j1,j2,j3

m1,m2,m3

(−1)
∑3

i=1(ji−mi)Tm1,m2,m3
j1,j2,j3 T−m1,−m2,−m3

j1,j2,j3 , (5.8)

and in the interaction term, T 46j encodes the contraction of the magnetic indices mi of the
field in the same manner as the 6j symbol (see appendix B for the convention of the 6j
symbol used in this thesis), i.e.,

T 46j =
∑

{j,m}
(−1)

∑6
i=1(ji−mi)T−m1,−m2,−m3

j1j2j3 Tm3,m5,−m4
j3j5j4 Tm4,m2,−m6

j4j2j6 Tm1,−m5,m1
j6j5j1 . (5.9)

Correspondingly, the equation of motion (5.4) now becomes

µ2Tm1,m2,m3
j1,j2,j3 = λ

3!
∑

j4,j5,j6

{
j1 j2 j3
j4 j5 j6

}
T

46j

\{m1,m2,m3}, (5.10)

where

T
46j

\{m1,m2,m3} =
∑

m4,m5,m6

(−1)
∑6

i=4(ji−mi)Tm3,m5,−m4
j3j5j4 Tm4,m2,−m6

j4j2j6 Tm6,−m5,m1
j6j5j1 , (5.11)

is the field T where the three magnetic indices m1,m2 and m3 are not summed over.
Again, it’s possible to get the algebra representation of the Boulatov model by working

with Lie algebra su(2) [29], but it’s irrelevant for our purpose here. In this chapter, it’s also
enough to have in hand the group and spin representations, just as the case in previous
chapters. Moreover, as we will see the following calculations are mainly done in the spin
representation, yet the group representation are mainly used for its notation simplicity.

5.1.2 Matter degrees of freedom
The Boulatov model introduced above is independent of any coordinate systems in its own,
as in the case of many other quantum gravity theories. Then the problems are, again, how
to extract the continuous spacetime from the model, and how to label different points of
the resulting continuum in such a way that the fields, in the sense of ordinary QFT, can be
defined. As we have seen in chapter 2, the physical frame can be introduced by coupling

1 The partition function corresponds to the action (5.3) or (5.7) can be viewed as the summation of PR am-
plitudes [29, 77], whose semi-classical limit corresponds to the Regge action for 3d discretized gravity [78].
The detail deviation of such partition function will not concern us here, for more information see [29, 77].
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GFT with matter fields, the same is true for Boulatov model. In a sense that contrary to
cosmology case, for the Boulatov model of 3d gravity we can ignore the clock χ0 = ϕ and
only consider relational rods, to help us in distinguishing different points of the space, and
allow us to introduce the inhomogeneous perturbations over the condensates [51].

More precisely, in three dimensions, one uses three free massless scalar fields χ =
(χ1, χ2, χ3), which has no obstacle to be implemented in the GFT formalism, as relational
rods that constitute the matter reference frame [51, 74]. The resulting field T now extends
to the form T (g1, g2, g3; χ) : SU(2)3 × R3 → C. One can expect that in the classical limit,
the relational rods χi have the same Lagrangian density (2.11) as the relational time ϕ we
introduced before in the cosmological setting. Therefore, the Boulatov model coupled to χi
should also be invariant under the translations χi → χi + ci and the reflections χi → −χi
[42, 49, 51]. The corresponding derivative expansion of the kinetic term will then provide a

new differential term ∇ =
(
∂

∂χ1
,
∂

∂χ2
,
∂

∂χ3

)
respect to the matter frame, and the original

action (5.3) extends to1

S[T ] =
∫

[dg]3d3χ

[
1
2∇T (g1, g2, g3; χ)∇T̄ (g1, g2, g3; χ) + µ2

2 T (g1, g2, g3; χ)T̄ (g1, g2, g3; χ)
]

− λ

4!

∫ 6∏
i=1

dgid3χT (g1, g2, g3; χ)T (g3, g5, g4; χ)T (g4, g2, g6; χ)T (g6, g5, g1; χ). (5.12)

The modified equation of motion resulted from the new action (5.12) has the form

∇2T (g3, g2, g1; χ) + µ2T (g3, g2, g1; χ)

= λ

3!

∫
dg4dg5dg6T (g3, g5, g4; χ)T (g4, g2, g6; χ)T (g6, g5, g1; χ). (5.13)

As before, we can write equations (5.12) and (5.13) in the spin representation. For the
action we have

SB[T (χ)] =
∑

j1,j2,j3

∫
d3χ

[
1
2
∣∣∣∇Tm1,m2,m3

j1,j2,j3 (χ)
∣∣∣2 + µ2

2
∣∣∣Tm1,m2,m3
j1,j2,j3 (χ)

∣∣∣2

− λ

4!
∑
j1,..,j6

{
j1 j2 j3
j4 j5 j6

}∫
d3χT (χ)46j

 . (5.14)

And the equation of motion in the spin representation can be written as

∇2Tm1,m2,m3
j1,j2,j3 (χ) + µ2Tm1,m2,m3

j1,j2,j3 (χ) = λ

3!
∑

j4,j5,j6

{
j1 j2 j3
j4 j5 j6

}
T (χ)46j

\{m1,m2,m3}. (5.15)

1 Note that this action should not be confused with that of a dynamical Boulatov model of [134] where a
Laplace-Beltrami operator acts on the group manifold.
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5.1.3 Homogeneous but anisotropic condensates as solutions
Having introduced the relational frame and specified the dynamics of the Boulatov model
above, we are ready to discuss the required homogeneous but anisotropic condensates, to
be perturbed in the following. For a state to be condensate, the expectation value of
the field operator respect to it, or condensate function in short, should be non-vanishing.
And furthermore, such function should satisfy the classical equation of motion (5.13) (or
(5.15)), hence can be identified with the solution T . Being homogeneous, the condensate
T should be independent of the reference frame χ1. In this case, equation (5.13) reduces
to equation (5.4). This relational rods only enter the picture later on when we consider
perturbations. A one parameter family of solutions parametrized by normalized functions
f : SU(2) → C was proposed in [73]. The associated solution, or in other words, the
condensate function Tf , can be given by

Tf (g1, g2, g3) = µ

√
3!
λ

∫
dhδ(g1h)f(g2h)δ(g3h), (5.16)

where δ(g) is the Dirac delta function over the group SU(2) such that∫
dhδ(h) = 1,

∫
dhδ(h)f(h) = f(I), (5.17)

with I is the identity of SU(2) group. To see the meaning of the normalization of f , we can
substitute the solution (5.16) back into the right hand side of the equation of motion (5.4),

λ

3!

∫
dg4dg5dg6Tf (g3, g5, g4)Tf (g4, g2, g6)Tf (g6, g5, g1)

= λµ3

3!

∫
dg4dg5dg6

(
3!
λ

)√
3!
λ

∫
dh1δ(g3h1)f(g5h1)δ(g4h1)

×
∫

dh2δ(g4h2)f(g2h2)δ(g6h2)
∫

dh3δ(g6h3)f(g5h3)δ(g1h3),

= µ3

√
3!
λ

∫
dg5

∫
dh1dh2dh3δ(g3h1)f(g5h1)δ(h1h

−1
2 )f(g2h2)δ(h2h

−1
3 )f(g5h3)δ(g1h3),

= µ3

√
3!
λ

∫
dg5

∫
dh3dh2δ(g3h2)f(g5h2)f(g2h2)δ(h2h

−1
3 )f(g5h3)δ(g6h3),

= µ3

√
3!
λ

∫
dg5

∫
dh3δ(g2h3)f(g5h3)f(g2h3)f(g5h3)δ(g1h3),

=
∫

d(g5h3)f 2(g5h3) × µ2

µ
√

3!
λ

∫
dh3δ(g1h3)f(g2h3)δ(g3h3)

 ,
=
∫

d(g5h3)f 2(g5h3) ×
[
µ2Tf (g1, g2, g3)

]
,

1 And that’s why we didn’t need to consider relational rods in the cosmological sector, as they won’t change
the dynamics without considering inhomogeneous perturbations.
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which equals to the left hand side of the equation of motion (5.13) only if the function f(g)
is normalized such that ∫

dhf(h)2 = 1. (5.18)

In other words, the normalization of f is required for Tf given by equation (5.16) to really
be a solution.

We can also write this solution in spin representation. In fact, substituting the solution
(5.16) into the general PW coefficients (5.6) we obtain

(Tf )m1,m2,m3
j1,j2,j3 = µ

√
3!
λ

√
dj1dj3

∑
l2

f j2m2,l2

(
j1 j2 j3
m1 m2 m3

)
, (5.19)

where dj = 2j+1 is the dimension of the spin j representation, and f jmn are the coefficients
in the PW decomposition of f(g)

f jmn =
√

2j + 1
∫

dgf(g)D̄j
mn(g), (5.20)

and the corresponding normalization condition becomes∑
j,m,n

(−1)m−nf jmnf
j
−m,−n = 1. (5.21)

Before we move on, let us make quick remarks on this class of solutions and its special
form which is regularized by the ‘heat kernel’. Firstly, (5.16) is not symmetric under the
permutations of the group elements gi since g2 plays a preferential role through f . Secondly,
the presence of Dirac delta function in the expression (5.16) leads to several divergences.
For example, the action (5.13) is divergent when evaluated on this solution due to the
appearance of the factor δ(I) in the action. This can also be seen from the PW expansion
of the Dirac delta over SU(2)

δ(g) =
∑
j,m

(2j + 1)Dj
mm(g). (5.22)

In fact, noting that Dj
mm(I) = δmm = 1, we have

δ(I) =
∑
j

m=j∑
m=−j

(2j + 1)δmm,

=
∑
j

(2j + 1)2 → ∞,

Therefore, we need to regularize our solution, which can be achieved via different meth-
ods. For example, one possible solution would be to introduce a cut-off parameter J in
the PW expansion of T (g1, g2, g3), thus making the action finite. Here, we will instead use
a heat kernel regularization to make all quantities well-defined, at the cost of only having
an approximate solution to the equations of motion. To do so, we introduce a new real
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parameter ε. For any function f of SU(2) with coefficients f jmn in its PW expansion, we
define its heat kernel regularization as (dj = 2j + 1)

fε(g) =
∑
j,m,n

√
djf

j
mnD

j
mn(g)e−εCj (5.23)

with Cj is the Casimir of the spin j representation of SU(2). This function is well-defined
for any ε > 0 and by taking the limit ε → 0 we get back the initial function f . In particular,
for the Dirac delta function of SU(2), its heat kernel regularization is

δε(g) =
∑
j,m

djD
j
mm(g)e−εCj . (5.24)

Note that this function is not normalized in the sense of equation (5.18). If we denote
its norm as α−2

ε , the normalized function associated to δε is (dj = 2j + 1)

∆ε(g) =
∑
j,m,n

√
dj(∆ε)jmnDj

mn(g)e−εCj , (5.25)

where the PW coefficients (∆ε)jmn has the form

(∆ε)jmn = αε
√
djδmne−εCj . (5.26)

Using ∆ε(g), we can build now a regularized and symmetric field

Tε(g1, g2, g3) = µ

√
3!
λ

∫
dhδε(g1h)∆ε(g2h)δε(g3h) = µαε

√
3!
λ

∫
dhδε(g1h)δε(g2h)δε(g3h).

(5.27)
We need to stress that, however, Tε(g1, g2, g3) is only an approximate solution of the homo-
geneous equation of motion, i.e. it is a solution only at leading order in ε. The coefficients
of its PW expansion are given by

(Tε)m1m2m3
j1j2j3

= µαε

√
3!
λ

3∏
i=1

√
djie−εCji

(
j1 j2 j3
m1 m2 m3

)
, (5.28)

which has the same symmetric properties under permutations as 3j symbols. Therefore,
we can see that the 3j symbols, accompanied by necessary coefficients, are solutions to
the Boulatov dynamics. In the following we will refer equation (5.28) as the heat kernel
regularized solution.

Let’s stress that solutions obtained in this section are in general anisotropic, in the
local sense that we have emphasized before, i.e., in general we need three different spins to
specify a solution, which corresponds to a non-equilateral triangle with different length for
each edge. This means locally (inside a build block, here the triangle) one can distinguish
different directions, which is impossible for an isotropic space. On the contrary, in the
cosmological sector as we illustrated in chapter 2, we only need one spin j to specify the
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condensate function σ, correspondingly the directions are indistinguishable, which leads to
isotropy required by the cosmological principle.

When perturbing over the solution (5.19) or (5.28), one can get the effective action for
the perturbation in the AR form as we promised. But the conditions for the emergence of
the AR model are actually weaker than that and independent of explicit solutions. We will
see that the AR-like dynamics can emerge from the condensate function1 T that satisfies
two conditions (5.45) and (5.45). Although these conditions contain several arbitrary
constants, that can only be fixed by substituting the explicit solutions, such as equations
(5.19) and (5.28).

Furthermore, as one can expect that for the AR-like dynamics to emerge, we need the
correct degrees of freedom that match to AR ones, which requires a suitable form of the
perturbations, as we are going to discuss below.

5.1.4 Inhomogeneous perturbations over the condensates
Although we have mentioned inhomogeneous perturbations several times before, we didn’t
show explicitly what this means. In fact, one reason why we consider perturbations is that
the equation of motion (5.15) is hard to solve, while we have in hand a family of explicit
solutions to its homogeneous counterpart, (5.10). Therefore, as an approximation, we can
assume that the whole solution Tψ(χ), can be expressed as a homogeneous part T , which
solves (5.10), and a small inhomogeneous perturbation ψ(χ).

Moreover, by taking into account that we need to match the degrees of freedom of
the AR model, the two-dimensional perturbations over the group manifold, as introduced
in [73], should be used. We further require matter frame dependence of the perturba-
tion to take into account the inhomogeneity. Therefore, in the group representation, the
condensate Tψ can be written in the form

Tψ(g1, g2, g3; χ) = T (g1, g2, g3) + ξψ(g1, g3; χ), (5.29)

where T (g1, g2, g3) is a solution to the equation of motion (5.4), not necessarily to be
the solution Tf we discussed above, ψ(g1, g3; χ) is the inhomogeneous perturbation whose
dynamics will be determined below, and ξ is a real parameter with 0 < ξ ≪ 1, indicates
that the perturbations is small. The PW coefficients of the perturbation are given by

ψm1m2m3
j1j2j3 (χ) =

∑
{n}

∫
[dg]3ψ(g1, g3; χ)

3∏
i=1

√
2ji + 1D̄ji

mini

(
j1 j2 j3
n1 n2 n3

)

≡ δj2,0δm2,0δ
j1,j3

√
2j1 + 1ψj1m1,m3(χ), (5.30)

where we used the fact that when j2 ̸= 0 the coefficients vanish, and when j2 = 0 the
equation (B.9) can be used for simplifications. The scaling factor

√
2j1 + 1 in the last line

1 It’s worth emphasizing that being a condensate function, T has to solve the equation of motion (5.15), or
in the homogeneous case, (5.10). Furthermore, any solution of equation (5.10) is also a solution of (5.15).



76 5. Generalized Amit-Roginsky model as perturbations

of equation (5.30) is introduced for later convenience. Therefore, in spin representation,
the inhomogeneous condensate Tψ can be written as

(Tψ)m1m2m3
j1j2j3 (χ) = Tm1m2m3

j1j2j3 + ξδj2,0δm2,0δ
j1,j3ψj1m1,m3(χ). (5.31)

Substituting (5.31) into the action (5.14), we get the action for the perturbed solution
SB[Tψ(χ)] = SB[T ] + ξ2 · Seff [ψ] + O(ξ4), (5.32)

where the first order in ξ vanishes since T is a solution to the equation of motion. The
action Seff [ψ] represents the effective action of the perturbation field ψjmn and contains
corrections up to ξ. Therefore, ξ2Seff [ψ] contains corrections up to order ξ3.

It is the main objective of the current chapter to get an explicit form of the effective
action Seff [ψ]. Generally, Seff [ψ] would be quite involving unless the homogeneous con-
densate T satisfies certain conditions. We will see that to get a generalization of the AR
action, two conditions, (5.41) and (5.45), are required. And one can verify that these
conditions are valid for the solution (5.28) automatically, and for solution (5.19) if f jmn
satisfy the condition (5.55). Furthermore, since the AR model involves a field ϕjm(χ) (see
equation (5.34) for the action and the involving fields of AR model) that transforms in a
representation of SU(2) and thus carrying only one magnetic index m, we will specialize
the perturbations ψ under consideration to the following form

ψj1m1m3(χ) =
∑
m

√
2j1 + 1ϕj1m(χ)

(
j1 j1 j1
m1 m m3

)
. (5.33)

As a mild spoiler, we will see that when two conditions (5.41) and (5.45) are satisfied,
the effective dynamics of the perturbation of the form (5.33) will be determined by the
action (5.49), which is a summation over AR models of different spin j. When the explicit
solution (5.28) is substituted, several coefficients in the action (5.49) can be fixed, results
in (5.61) and (5.62).

5.2 Amit-Roginsky model as perturbations over con-
densates

With the proper perturbations, we are ready to see how the AR-like action can emerge
from the Boulatov model. We mentioned before that the AR model [81] is a cubic field
theory, for a scalar field ϕjm(χ) with an internal vector symmetry, in the sense that ϕjm
transforms under the global SO(3) (or SU(2)) group in the same way as vectors in the spin
j representation. The N = 2j + 1 fields ϕjm coupled to themselves through the 3j symbol
for a fixed value of the spin j, such that the interaction term is invariant under the action
of SO(3). In fact, we can write the action of AR model in the form [81, 82]

SAR[ϕ] =
∫

ddx
{

1
2
∑
m

(−1)j−m
[
(∇ϕjm)(∇ϕj−m) + µϕjmϕ

j
−m

]
+

∑
m1,m2,m3

λ

3!
√

2j + 1
(

j j j
m1 m2 m3

)
ϕj−m1ϕ

j
−m2ϕ

j
−m3

}
. (5.34)
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The model is interesting as it’s the only model whose interaction is cubic in field ϕjm,
and at the same time dominated by the so-called melonic graphs when N = 2j + 1 is
large [82]. Melonic graphs are characterized by their distinct topology, featuring a tree-like
structure with multiple internal lines connecting at a common vertex [82, 135].

The significance of melonic dominance lies in the fact that in the presense of it, the
calculations and analyses of the Feynman graph can be simplified. The tree-like struc-
ture of melonic diagrams allows for certain summations and calculations to be performed
analytically, leading to more tractable computations. This simplification becomes particu-
larly advantageous when studying the renormalization properties of a theory, as it provides
insights into the behavior of the theory at different energy scales [135].

However, in our generalized AR model, derived from Boulatov dynamics, we observe a
loss of melonic dominance due to the inclusion of a summation over the spin j. Conducting
a comprehensive renormalization analysis of the entire model goes beyond the scope of this
thesis. Instead, our focus will be on demonstrating that the melonic dominance can be
restored by employing appropriate approximations.

It can be seen that the effective action Seff [ψ] (or Seff [ϕ]) contains quadratic and cubic
terms of ψ (or ϕ), which we will consider separately in the following. For simplicity, we
omit from now to explicitly write the dependency on the matter frame χ.

5.2.1 Quadratic term
The quadratic term in ξ receives three kinds of contributions when substituting perturba-
tion (5.31) into the Boulatov action (5.14). The kinetic term of Boulatov model gives rise
to one contribution of the form ψψ. Then, the interaction term gives two distinct type of
contributions, either of the form TTψψ or TψTψ, depending on how the two perturbation
fields are connected in the action. Schematically, we get the TTψψ term when the two per-
turbation fields ψjmn share two magnetic indices, while in the TψTψ term they only share
one. The two of them give different contribution to the effective action. In the following,
we will consider the ψψ, TTψψ and TψTψ terms respectively.

ψψ term. The kinetic term ∑
j1,j2,j3

∣∣∣(Tψ)m1,m2,m3
j1,j2,j3 (χ)

∣∣∣2 of the Boulatov action gives the
following contribution to the effective action:∑

j1,j2,j3
m1,m2,m3

(−1)
∑3

i=1(ji−mi)
[
δj2,0δm2,0δ

j1,j3ψj1m1,m3

] [
δj2,0δ−m2,0δ

j1,j3ψj1−m1,−m3

]

=
∑

j1,m1,m3
m,m′

(−1)2j1−m1−m3ϕj1mϕ
j1
m′(2j1 + 1)

(
j1 j1 j1
m1 m m3

)(
j1 j1 j1

−m1 m′ −m3

)

=
∑
j1,m1

(−1)j1−m1ϕj1m1ϕ
j1
−m1 . (5.35)

This term is simply the quadratic term of the AR action (5.34). Note that this contribution
is independent of the solution Tm1m2m3

j1j2j3 , therefore it does not impose any restriction on the
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homogeneous solution considered.

TTψψ term. There are four terms of type1 TTψψ. Each of them has the same contri-
bution to the effective action as

∑
m1,··· ,m6
j1,··· ,j6

{
j1 j2 j3
j4 j5 j6

}
(−1)

∑
i
(ji−mi)T−m1,−m2,−m3

j1j2j3 Tm3,m5,−m4
j3j5j4

×δj2,0δm2,0δ
j4,j6ψj4m4,−m6δ

j5,0δm5,0δ
j6,j1ψj6m6,m1

=
∑

m1,m3,m4,m6
j1,j3,j4,j6

{
j1 0 j3
j4 0 j6

}
(−1)

∑
i ̸=2,5(ji−mi)T−m1,0,−m3

j1,0,j3 Tm3,0,−m4
j3,0,j4 δj4,j6δj6,j1ψj1m4,−m6ψ

j1
m6,m1

=
∑

m1,m3,m4,m6
j1

(−1)6j1−
∑

i ̸=2,5 miT−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1 ψj1m4,−m6ψ
j1
m1,m6

=
∑

j1,m1,m6,m4

[∑
m3

(−1)−m3−m4T−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1

]
(−1)2j1−m1−m6ψj1m4,−m6ψ

j1
m1,m6 (5.36)

Therefore, if the homogeneous solution Tm1m2m3
j1j2j3 satisfies the following condition∑

m3

(−1)−m3−m4T−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1 = c1,j1δm1,−m4 , (5.37)

for some arbitrary constants c1,j1 , the contribution (5.36) from TTψψ term will reduce to

∑
m1,··· ,m6
j1,··· ,j6

{
j1 j2 j3
j4 j5 j6

}
(−1)

∑
i
(ji−mi)T−m1,−m2,−m3

j1j2j3 Tm3,m5,−m4
j3j5j4

×δj2,0δm2,0δ
j4,j6ψj4m4,−m6δ

j5,0δm5,0δ
j6,j1ψj6m6,m1

=
∑

j1,m1,m6,m4

[∑
m3

(−1)−m3−m4T−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1

]
(−1)2j1−m1−m6ψj1m4,−m6ψ

j1
m1,m6 ,

(5.38)

and when specializing to perturbations of the form (5.33) we get

∑
m1,··· ,m6
j1,··· ,j6

{
j1 j2 j3
j4 j5 j6

}
(−1)

∑
i
(ji−mi)T−m1,−m2,−m3

j1j2j3 Tm3,m5,−m4
j3j5j4

×δj2,0δm2,0δ
j4,j6ψj4m4,−m6δ

j5,0δm5,0δ
j6,j1ψj6m6,m1

=
∑
j1,m1

c1,j1(−1)j1−m1ϕj1m1ϕ
j1
−m1 . (5.39)

which is the kinetic term of the AR model.
1 Which can be obtained by permutations of the fields that keeping the combinatorial structure, i.e., the

four terms are TTψψ, ψTTψ, ψψTT and TψψT respectively.
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The coefficients c1,j1 remain arbitrary if we only require that T to be condensate, but
can be fixed by using the explicit solutions, such as (5.19) and (5.28). On the other hand,
we have to point out that the condition (5.37) is not an independent one. In fact, as we
can see in the following, when the condition (5.45), obtained by the cubic term later, is
satisfied, the condition (5.37) establishes automatically.

TψTψ term. The remaining two quadratic contributions from the interaction term of the
Boulatov model are of the form1 TψTψ. Each of these terms contributes to the effective
action as

∑
m1,··· ,m6
j1,··· ,j6

(−1)
∑

i
(ji−mi)T−m1,−m2,−m3

j1j2j3 δj5,0δm5,0δ
j3,j4ψj3m3,−m4

×Tm4,m2,−m6
j4j2j6 δj5,0δm5,0δ

j1,j6ψj6m6m1

{
j1 j2 j3
j4 j5 j6

}

=
∑

m1,m3,m4,m6
j1,j3

(−1)j1+j3−m4−m6ψj3m3,−m4ψ
j1
m6,m1

1√
(2j1 + 1)(2j3 + 1)

×
∑
j2,m2

(−1)
∑3

i=1(2ji−mi)T−m1,−m2,−m3
j1,j2,j3 Tm4,m2,−m6

j3,j2,j1 . (5.40)

For a general solution of the equation of motion, this term leads to a non-diagonal kinetic
term for the ψ fields, of different spins j1 and j3. To get the correct AR dynamics, we need
to get rid of these non-diagonal terms, which can be achieved if the homogeneous solution
T satisfies the condition

∑
j2,m2

(−1)
∑3

i=1(2ji−mi)T−m1,−m2,−m3
j1,j2,j3 Tm4,m2,−m6

j3,j2,j1 = c2,j1c2,j3δm1,−m6δm3,m4 . (5.41)

Under the condition (5.41), the contribution (5.40) becomes

∑
m1,m3,m4,m6

j1,j3

(−1)j1+j3−m4−m6ψj3m3,−m4ψ
j1
m6,m1

1√
(2j1 + 1)(2j3 + 1)

×
∑
j2,m2

(−1)
∑3

i=1(2ji−mi)T−m1,−m2,−m3
j1,j2,j3 Tm4,m2,−m6

j3,j2,j1

=
 ∑
j1,m1

(−1)j1−m1
c2,j1√
2j1 + 1ψ

j1
m1,−m1

2

. (5.42)

1 The other term of the same type is ψTψT .
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Substituting the required form (5.33) of the perturbations to the term inside the bracket,
we obtain

∑
j1,m1

(−1)j1−m1
c2,j1√
2j1 + 1ψ

j1
m1,−m1 =

∑
j1,m1,m

(−1)j1−m1c2,j1ϕ
j1
m

(
j1 j1 j1
m1 m −m1

)
,

=
∑
j1

c2,j1ϕ
j1
0
∑
m1

(−1)j1−m1

(
j1 j1 j1
m1 0 −m1

)
,

=
∑
j1

c2,j1ϕ
j1
0 δj1,0

√
2j1 + 1,

= c2,0ϕ
0
0, (5.43)

where the equation (B.8) is used. Therefore, the quadratic term obtained from TψTψ term
can also be made diagonal under a proper choice of the condensate function T . This closes
our calculations for the quadratic term, and we can now turn to the cubic term, which
should have a similar form as the AR interaction in the action (5.34).

5.2.2 Cubic term
There is only one type of cubic contribution which comes from the interaction term of the
Boulatov model, which can be represented by the form Tψψψ. There are four such terms1,
and they all contribute as

∑
{j,m}

(−1)
∑

i

(ji−mi)
T−m1,−m2,−m3
j1,j2,j3 δj5,0δm5,0ψ

j3
m3,−m4δ

j2,0δm2,0ψ
j4
m4,−m6δ

j5,0δm5,0ψ
j6
m6,m1

{
j1 j2 j3
j4 j5 j6

}

=
∑

m1,m3,m4,m6
j1

(−1)
−
∑

i̸=2,5
−mi

T−m1,0,−m3
j1,0,j1

(−1)2j1

2j1 + 1ψ
j1
m3,−m4ψ

j1
m4,−m6ψ

j1
m6,m1 . (5.44)

If we demand the following condition for T

T−m1,0,−m3
j1,0,j1 = c3,j1(−1)−m3δm1,−m3 , (5.45)

for some coefficient c3,j1 , the contribution (5.44) becomes

∑
m1,m3,m4,m6

j1

(−1)−
∑

i̸=2,5 miT−m1,0,−m3
j1,0,j1

(−1)2j1

2j1 + 1ψ
j1
m3,−m4ψ

j1
m4,−m6ψ

j1
m6,m1

=
∑

m3,m4,m6
j1

(−1)2j1−m3−m4−m6
c3,j1

2j1 + 1ψ
j1
m3,−m4ψ

j1
m4,−m6ψ

j1
m6,−m3 . (5.46)

1 The full list of the terms under this type is Tψψψ, ψTψψ, ψψTψ and ψψψT .
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After substituting the required form (5.33) of the perturbation, we get the desired inter-
action corresponds to AR model∑

m1,m3,m4,m6
j1

(−1)−
∑

i ̸=2,5 miT−m1,0,−m3
j1,0,j1

(−1)2j1

2j1 + 1ψ
j1
m3,−m4ψ

j1
m4,−m6ψ

j1
m6,m1

=
∑

m3,m4,m6
j1

(−1)2j1−m3−m4−m6
c3,j1

2j1 + 1
∑

m,m′,m′′
ϕj1mϕ

j1
m′ϕ

j1
m′′

×
(

j1 j1 j1
m3 m −m4

)(
j1 j1 j1
m4 m′ −m6

)(
j1 j1 j1
m6 m′′ −m3

)

× (−1)j1
∑

m3,m4,m6

(−1)3j1−m3−m4−m6

(
j1 j1 j1
m −m4 m3

)(
j1 j1 j1
m6 m′′ −m3

)(
j1 j1 j1

−m6 m4 m′

)

=
∑

m,m′,m′′

j1

c3,j1
2j1 + 1

{
j1 j1 j1
j1 j1 j1

}
ϕj1mϕ

j1
m′ϕ

j1
m′′

(
j1 j1 j1
m m′ m′′

)
. (5.47)

In the calculation, we have used equations (B.4) and (B.11), and the fact that (−1)2j1 = 1
since j1 here has to be an integer for a non-vanishing 3j symbol.

Noting that if we substitute the condition (5.45) to the left hand side of the condition
(5.37) obtained from TψTψ term, the result is∑

m3

(−1)−m3−m4T−m1,0,−m3
j1,0,j1 Tm3,0,−m4

j1,0,j1

=
∑
m3

(−1)−m3−m4c3,j1(−1)−m3δm1,−m3 × c3,j1(−1)−m4δ−m3,−m4 ,

= c2
3,j1δm1,−m4 ,

which means that the condition (5.37) is satisfied automatically once we demand (5.45),
and the constants c1,j1 and c3,j1 are related by

c1,j1 = c2
3,j1 . (5.48)

5.2.3 Emergence of the generalized Amit-Roginsky model
Now we are ready to extract AR model from the Boulatove action (5.14), based on two
conditions (5.41) and (5.45) we discussed in last subsection. Our main result is the effective
action (5.61) and (5.62) for each mode ϕjm of the perturbation (defined through equation
(5.33)). We can see that the form of these actions are the same as the AR ones [81, 82].

The effective action for the perturbation ψ. Putting together different terms we
computed in the last subsection, we see that when the conditions (5.41) and (5.45) are
satisfied, the inhomogeneous perturbation ϕjm(χ) of the form given by equation (5.33)
would have a similar dynamics as in the AR model, such that the action can be written as

S[ϕjm] = S0[ϕ0
0] +

∑
j>0

Sj[ϕjm], (5.49)
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where

S0[ϕ0
0] =

∫
d3χ

(
1
2

{
(∇ϕ0

0)2 +
[
µ2 + λ

3!(2c
2
3,0 + c2

2,0)
]

(ϕ0
0)2
}

− ξλ

3! c3,0
(
ϕ0

0

)3
)
, (5.50)

and

Sj[ϕjm] =
∫

d3χ

{
1
2

[
|∇ϕjn|2 +

(
µ2 + λ

3!c
2
3,j

)
|ϕjn|2

]

−c3,j1
2dj

ξλ

3!

{
j j j
j j j

} ∑
m1,m2,m3

ϕjm1ϕ
j
m2ϕ

j
m3

(
j j j
m1 m2 m3

)}
, (5.51)

where ∑n |ϕjn|2 = ∑
n(−1)j−nϕjnϕ

j
−n. The fields ϕjm with different spin label j decouple and

each of them has the form of the AR action with j-dependent mass and coupling terms.
And again, the coefficients c2,j and c3,j can be given explicitly after substituting solutions
(5.19) and (5.28).

Computing coefficients ci. We compute explicitly here the coefficients c1,j, c3,j and
c2,j for the homogeneous solution (5.16) to check that these conditions are compatible with
our homogeneous solution. Substituting (5.16) into condition (5.45), we obtain

µ

√
3!
λ
dj1f

0
00

(
j1 0 j1

−m1 0 −m3

)
= µ

√
3!dj1
λ

f 0
00(−1)j1+m3δm1,−m3 = c3,j1(−1)−m3δm1,−m3 ,

(5.52)
which leads to

c3,j =

(−1)jµ
√

3!dj
λ
f 0

00 if j ∈ N

0 otherwise
. (5.53)

On the other hand, condition (5.41) yields
3!µ2

λ

∑
j2,m2

(−1)
∑3

i=1(4ji−mi)dj1dj3
∑
n2,l2

f j2−m2,−n2f
j2
m2,l2

(
j1 j3 j2
m1 m3 n2

)(
j1 j3 j2

−m6 m4 l2

)
= c2,j1c2,j3δm1,−m6δm3,m4 , (5.54)

which leads to the condition for f j2m2n2∑
m2

(−1)n2−m2f j2−m2,−n2f
j2
m2,l2 = dj2c

2
f,j2δn2,l2 , (5.55)

for some new constants cf,j2 . Together with the normalization condition (5.18) for f jmn, we
get the condition that these new constants should satisfy

1 =
∑

j2,m2,n2,l2

(−1)n2−m2f j2−m2,−n2f
j2
m2,l2δn2,l2 ,

=
∑
j2

d2
j2c

2
f,j2 . (5.56)

And we can get the explicit form (5.58) of cf,j2 by substituting the heat kernel regularized
solution (5.28).
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Using the heat kernel regularized solution. It’s true that we can’t fix the coefficients
c2,j and c3,j completely with only the explicit solution (5.19), because (5.19) still contains
an arbitrary function f . Therefore, to fix these coefficients completely, we need to use the
solution (5.28) instead. Substituting the PW coefficients (5.26) of the regularized delta
function ∆ε into the equation (5.53), we see that for j ∈ N, the constants c3,j become

c3,j = (−1)jµ
√

3!dj
λ

(∆ε)0
00 = (−1)jµ

√
3!dj
λ
αε. (5.57)

And the coefficients cf,j would have the form

cf,j = αεe−εCj . (5.58)

Since equation (5.28) is only an approximate solution, we see that the condition (5.41)
can only be satisfied approximately at first order in ε. Indeed, at first order in ε, equa-
tion (B.7) gives

∑
j,m

dje−2εCj

(
j1 j2 j
m1 m2 m

)(
j1 j2 j
m′

1 m′
2 m

)
≈ δm′

1m1δm′
2m2 . (5.59)

Hence the coefficients c2,j of the condition (5.41) can then be determined as

c2,j = µdjαε

√
3!
λ
. (5.60)

This way we have fixed all the arbitrary coefficients appear in the conditions that T should
satisfy, and it follows that the effective action obtained by using heat kernel regularized
homogeneous solution (5.28) is

S0[ϕ0
0] =

∫
d3χ

{
1
2
[
(∇ϕ0

0)2 + µ2
(
1 + 3α2

ε

)
(ϕ0

0)2
]

−
√
λξµαε√

3!

(
ϕ0

0

)3
}
, (5.61)

Sj[ϕjm] =
∫

d3χ
{1

2
[
|∇ϕjn|2 + µ2

(
1 + djα

2
ε

)
|ϕjn|2

]
−(−1)j√

3!

√
λξµαε

2
√
dj

{
j j j
j j j

} ∑
m1,m2,m3

ϕjm1ϕ
j
m2ϕ

j
m3

(
j j j
m1 m2 m3

) ,
(5.62)

where the first equation corresponds to a massive scalar without internal degree of freedom,
while the second equation is exactly the AR action for spin j, with mass and interaction
coupling depend on fundamental GFT coupling and the spin index j. This shows that the
AR model can be obtained as a particular perturbation (of the form (5.33)) around clas-
sical solutions of the Boulatov model, provided that the homogeneous solution T satisfies
conditions given by equations (5.41) and (5.45).
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5.3 Melonic dominance
As already mentioned before, an important feature of AR model is the dominance of
melonic graphs at large N = 2j + 1 limit. However, the main difference between the
effective action (5.49) and the original AR action is the presence of the sum over spins j.
Therefore, we have to check whether this new summation spoils the existence of a melonic
limit or not. Even though the general behaviour of {3nj} symbols as functions of j is an
open issue [136–139], one can qualitatively study the behaviour of the Feynman amplitudes
of the model and give additional constraints to ensure the existence of the melonic limit.

One thing to be noted is that in the action (5.49) we deal with the j = 0 and j ̸= 0
cases separately, as technically ϕ0

0 for j = 0 is just an ordinary scalar field and can’t be
regarded as an AR one. In the following discussions, however, it’s not of much different
whether we take into account ϕ0

0 or not, and including such field will make it easier in
performing summations. Therefore, in the following we will set ϕ0

0 at the same footing as
other fields ϕjm, for simplicity. And without further specification the summation over j are
assumed to start from j = 0.

5.3.1 Feynman amplitudes for the non-regularized solution
For simplicity reasons, we will drop below the heat kernel regularization and work with
the actions given by Equation (5.51), including the sum over spin labels j. As in the AR
model, each Feynman diagram γ of our new model consists of isoscalar part Iγ and isospin
part Aγ [81, 82]

Aγ =
∑
j

cγ

(
λ{6j}

3!
√

2j + 1

)v
IγAγ, (5.63)

where cγ is the combinatorial factor of the diagram. The melonic graphs are fully 2-particle
reducible (F2PR) diagrams, i.e. they always admit a 2-cut which gives another melonic
graph with fewer vertices, until the trivial graph is reached. For a F2PR diagram, the
corresponding amplitude decomposes to [82]

AF2PR =
∑
j

(2j + 1)1−3n{6j}2n, (5.64)

with for a graph with v = 2n vertices. For a graph that is not fully 2-particle reducible
(NF2PR), on the other hand, the Feynman amplitude can be factorized as a product of
2-particle irreducible graphs

ANF2PR =
∑
j

(2j + 1)−n0−2n
k∏
i=1

A{3nij}{6j}2n, (5.65)

where n is one half of the number of vertices v, which also has the form

n = 1 + n0 − k +
k∑
i=1

ni, (5.66)
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and A{3nij} is the amplitude of a three-particle irreducible diagrams with 2ni vertices,
constituted by {3nij} symbols [82].

When N = 2j + 1 goes to infinity, the amplitudes AF2PR is conjectured to obey the
following bound [81]

ANF2PR ≤
∑
j

(2j + 1)1−3n−α{6j}2n, (5.67)

for some positive real number α > 0. Asymptotically, when N → ∞, both n ≥ 1 and the
6j symbol are small with respect to N . Therefore, we get the following bound

AF2PR <
∑
j

N1−3n =
∑
j

(2j + 1)1−3n =
(
1 − 21−3n

)
ζ(3n− 1), (5.68)

where ζ is the Riemann zeta function, which is a monotonically decreasing finite function of
n. In performing the summation we have used the fact that

∑
j

1
(2j + 1)α =

(
1 − 2−α

)
ζ(α),

which can be deduced from the following observation

ζ(α) =
∞∑
n=1

1
nα
,

=
∞∑
j=0

1
(2j + 1)α +

∞∑
j=1

1
(2j)α ,

=
∞∑
j=0

1
(2j + 1)α + 1

2α ζ(α),

If one assumes that the bound (5.67) holds for any value of N = 2j + 1, then the
amplitude of a NF2PR graphs is also finite. If the bound (5.67) fails to hold for values of
N satisfying N < Nt for some bound Nt, then the sum from N = 1 to N = Nt is still a finite
number, while the sum from N = Nt is finite as well. Therefore, it is possible that ANF2PR
is comparable with AF2PR since the maximal value of ζ(3n− 1) is only π2/6 ≃ 1.645.

One can thus conclude that the sum over j can dramatically change the amplitude
of a Feynman graphs of the AR model and spoil the melonic limit at large j. In fact,
it is one can expect as there is no melonic dominance in the Feynman expansions in the
theory of ordinary scalar field ϕ0

0, and for other fields ϕjm with finite j, the situation is not
of much different. The melonic limit can only be obtained if we take the limit j → ∞.
Such observation also provides us a way to restore the melonic dominance with suitable
approximations, as we are going to illustrate in the following subsection.

5.3.2 Restoring the melonic dominance
One naive way to restore the melonic dominance is to further specialize the form of the
perturbation (5.31) in order to enforce the selection of one spin j, thus getting rid of the
sum over spin labels and leading to the original AR model

(Tψ)m1m2m3
j1j2j3 (χ) = Tm1m2m3

j1j2j3 + δj1jδj2,0δm2,0ψ
j1
m1,m3(χ), (5.69)
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such that we get exactly the AR model without any generalization, which possesses the
property of melonic dominance in the limit of large N = 2j + 1 [81, 82].

Another way to recover melonic dominance is to work with the approximate solu-
tion (5.27). Indeed, when j2 = 0 the solution takes the form:

(Tε)m1m2m3
j1j2j3 = µαε

√
3!
λ

e−2εCj1

√
2j1 + 1(−1)j1−m1δj1,j3δm1,−m3 . (5.70)

For ε = 1
2N(N + 1) , the expression above scales as

√
2j1 + 1 for j1 < N . Hence, in the

PW expansion, the coefficients with larger j are dominant, and the coefficients (Tε)m1m2m3
j1j2j3

with ji < N0 for some threshold N0 can be neglected. At first order in ε one then has

(Tψ)m1m2m3
j1j2j3 (χ) ≃

{
Tm1m2m3
j1j2j3 + δj1jδj2,0δm2,0ψ

j1
m1,m3(χ), N0 ≤ ji ≤ N

0, otherwise .

Such perturbations ϕjm will lead to the isospin part of the amplitude of the form

Aγ =
j=N∑
j=N0

cγ

(
λ{6j}

3!
√

2j + 1

)v
IγAγ, (5.71)

which becomes an infinitesimal again for large N0 and N , while the NF2PR graphs are
higher order infinitesimals as in the original AR model. The melonic dominance is thus
restored under suitable approximations.

5.4 Summary
In this chapter, we showed how a homogeneous but anisotropic condensate state looks
like in GFT, and how to introduce inhomogeneous perturbations over such states. For
simplicity, we considered a 3d GFT, the Boulatov model, instead of the 4d case. In fact,
what we relied on is a slightly generalized version of the original Boulatov model, with the
additional coupling with free massless scalar fields χ, served as matter reference frame,
which is required to introduce properly the notion of inhomogeneity. The condensate can
be represented by a function T , corresponds to the expectation value of GFT field operator,
and has to be a solution of the classical equation of motion. Generally, without imposing
isotropic condition on purpose, such solutions would be anisotropic, hence the combinato-
rial structure of the interaction term is important in determining the GFT dynamics [73],
in contrast to the cosmological sector we discussed previously.

Furthermore, with a proper choice of the inhomogeneous perturbations, one can show
that a generalized version of AR model emerges if the condensate T satisfies certain condi-
tions. Although the study of classical solutions to GFT dynamics (including the Boulatov
model) is basically an unknown area, with only a few exceptions [29, 73, 80], our result is
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quite general without using any explicit solutions, i.e., to get an AR-like action it’s suffi-
cient to require T to be a solution. The explicit solutions are only needed later when we
try to fix several coefficients appearing in such action.

The main difference between our effective action (5.49) for the perturbation and the
usual AR model is the presence of the summation on the spin index j. This difference,
have significant consequences on the Feynman expansions of the AR model. Most notably,
in our generalized version, the Feynman graph is not dominated by melonic diagrams when
we take the large N = 2j + 1 limit. This is actually what one can expect, though, as even
for the original AR model, the melonic dominance can only be obtained when N is large,
and is absent for a finite N [82]. This observation also provides us a way to restore the
melonic dominance, i.e., the limit can be restored if we remove the modes with finite spin
j. We can achieve this either by specializing the type of perturbation considered, or by
making use of the heat kernel regularization and taking a double scaling limit.
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Chapter 6

Discussion

In this thesis, we have shown how to extract physical consequences of quantum gravity
effects from GFT condensates, including both isotropic and anisotropic ones. We empha-
size again that in thesis the terms isotropic and anisotropic are defined locally, used to
distinguish situations whether we can characterize the condensate function by identical
spins, such that the combinatorial structure of GFT interactions can be ignored in the
isotropic case. They are not necessarily related to the corresponding properties of the
emerged spacetime, and in particular an isotropic spacetime allows triangulations based
on anisotropic building blocks [76].

The isotropic condensate. As we have seen in chapter 2, the way we implement
isotropy by forcing spins to be identical could simplify our analysis of the GFT dynamics
significantly. The main reason is the decoupling of dynamics for different modes under such
simplification, which made it possible to consider the contribution to volume of each mode
individually, without affecting the dynamics of other modes. In other words, we can safely
set most of the modes to vanish without changing the evolution of one or two modes of
interest, making it easier to extract some useful information of the cosmological evolution
from the modified FLRW equations (2.28) and (2.29).

Based on the volume and its derivatives, we can introduce a useful quantity, the effective
equation of state w, to reveal properties of the evolution otherwise hard to identify. In
particular, some previous results in GFT condensate cosmology can be rewritten using w,
and we can see that at the bounce w → −∞, corresponds to an expansion with infinite
accelerations, but such accelerating phase won’t last long before we enter the Friedmann
phase. The inclusion of other modes doesn’t change the qualitative behaviour of the
expansion, which can be viewed as a consistency check of the GFT formalism, since in the
early universe the volume is small and no mode should be taken dominant.

At late times of the universe evolution, the volume is large and GFT interactions
should be taken into account. The equation of motion (2.26) for each mode can be solved
approximately at the large volume limit, and the solution (3.17) diverges at finite relational
time ϕ = ϕj∞ for each mode ρj. This indicates that asymptotically there is indeed only a
single mode, which has the smallest ϕj∞, becomes dominant. The EoS w also approaches
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to a constant value as the volume grows, and in particular, for interactions with n = 6,
we see that w → −1, which corresponds to the cosmological constant. Including other
modes won’t change the asymptotic value of w, but the way how the asymptote is reached.
For example, as we discussed in chapter 3, in the two modes case with n = 6 interaction
term, a phantom phase can emerge where w < −1 and the EoS reaches −1 from below,
which is impossible for the single mode case. The appearance of the phantom phase in our
model is of purely quantum gravity origin. Furthermore, with a slightly more complicate
interaction kernel, it’s also possible to combine inflationary and phantom phases together,
without the need of inflaton nor dark energy field.

The nature of the phantom behaviour can be investigated further with suitable ap-
proximations. For example, we are able to show that the phantom crossing should happen
recently in our model, and its position should also close to the location where w reaches
its minimum. This result suggests that the evolution in the two modes case can be seen as
a small deviation at late times compared to the single mode case. When fitting the model
with possible data, such modifications will increase the value of current Hubble parame-
ter H0 as shown in table 4.1. In standard ΛCDM model, such increasing is required to
alleviate the H0 tension [66], which reveals the discrepancy between CMB and supernova
data [61]. At current stage, we are not able to couple the full realistic matter content of
our universe to GFT, making it hard to test our formalism by actual observations. But
at least our result shows the potential of solving cosmological puzzles based on quantum
gravity effects.

The anisotropic condensate. When we come to the anisotropic condensates, whose
wave function can’t be labelled by identical spins, the dynamics of different modes couple
together in the interaction term and one is not allowed to separate a certain mode out.
To be more precise, it’s not possible to assume as before that only a few modes contribute
while set other modes to vanish, as the equation of motion would be invalid under such as-
sumptions. One can imagine how complicated it could be if one tries to calculate geometric
quantities, such as the total volume we introduced in the cosmological sector.

Fortunately, it’s possible to reveal interesting physical information from the anisotropic
condensate without considering these geometrical quantities. As we have seen in chapter 5,
by considering perturbations over the condensate, we are able to extract dynamics of matter
fields, in particular the AR model of a scalar field with internal SO(3) symmetry [81, 82].
The emergence of the AR model based on the perturbations of the form (5.33) which
matches degrees of freedom of the AR field, and the fact that condensate function T is a
solution of equation of motion and satisfy two conditions (5.41) and (5.45). In fact, what
we obtain is a slightly generalized version of the AR model, with an additional summation
over spins in the effective action of the perturbations. There are arbitrary coefficients in
the action (which can be traced back to the conditions (5.41) and (5.45)), that can only
be fixed by substituting explicit solutions. The important lesson that worth mentioning is
that, the matter field we extracted this way can be massive, which is interesting from the
GFT perspective as it’s usually hard to implement massive fields in our context [72].



91

The AR model, and our generalization to it, are field theories in the ordinary QFT,
and in particular, they are defined over flat space. This is one can expect as for 3d, gravity
has no local degree of freedom, and the solution of Einstein equations without matter can
only be flat [140, 141]. What’s puzzling is how the flat space, which is isotropic as well,
would emerge from the complicated contributions of the modes that constitute the solution.
Indeed, we can say that even an isotropic space admits anisotropic triangulations, but how
exactly it works is still unclear.

Outlooks. More generally, one may ask what kind of spacetime can be extracted from
GFT formalism, or how can we identify the structure of a spacetime corresponds to a
given solution (hence should correspond to a condensate as well) of the GFT dynamics?
The simple examples illustrated previously in this thesis can only show that it’s possible
to extract the macroscopic phenomena from the underlying microscopic quantum gravity
theories, but not able to answer such questions in a more general setting. In particular, can
we get any concrete criterion on the condensates such that the emerged spacetime would
be isotropic?

The proper definition of isotropy seems to relate to the way we embed the building
blocks into the emerged spacetime [75, 76]. In the 4d case, for example, one can define the
isotropy using equilateral tetrahedra and then the introduction of condensate corresponds
to non-equilateral ones would result in anisotropies [76]. But this doesn’t explain why we
need to consider the equilateral tetrahedra in the first place, and as we have seen in the
case of Boulatov mode, the space resulted from a bunch of non-equilateral building blocks
can still be isotropic. In the later case, although it’s possible to extract phenomenological
results without using geometrical quantities, they are required for a detailed analysis of
the underlying spacetime. One needs to find a proper way to work out the summation
over spins when different modes coupled together. At the current stage, the few examples
available in the GFT community didn’t provide many clues to address these issues.

Besides the above issue regarding the emerged spacetime, the use of isotropic condensate
in the cosmological setting also introduces other simplifications or limitations.

One technical point is that in such case we are allowed to use an effective interaction
kernel (2.22), in the sense that under the isotropic restriction, our dynamics only incorpo-
rates some aspects of known models in the isotropic restriction (for example, the fact that
different spin modes decouple, as in the EPRL model), but not their detailed expression.
In other words, as we noted, the approach we have taken is rather phenomenological, not
working with any specific GFT model but with a rather general expression. On the one
hand, this has the advantage of ensuring a certain degree of generality for our results,
but on the other the method followed in this thesis should be complemented by a careful
analysis of specific GFT models (including the study of their renormalization group flow),
to make sure that our expression captures their relevant features at this cosmological level,
or to extract new ingredients that need to be added to the phenomenological expression,
as potentially changing the resulting cosmological evolution.

As a basis for such effective phenomenological approach, we also used the mean-field
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approximation, which may not be trusted at late times, where the interactions become
large (indeed, recent analyses confirm this worry [92]). But, we emphasize again, in our
work the only true relevant ingredients are encoded in the choice of effective action. We
used the simplest (mean field) approximation to it for simplicity, and for a closer contact
with previous works in the literature, but one can easily consider a more general setting.
The main point of our results is that including more than one mode in such effective action
can indeed change the evolution of the universe, especially at late times, before one single
mode becomes dominating.

More precisely, in order to obtain the expression (2.27) for the total volume, we used
the mean-field approximation based on coherent states. However, for more general states,
we do not expect that the template for the derivation of relational volume observable and
its dynamics would be much different. Like in ordinary quantum field theory, the generic
quantum effective action for GFTs is also a function of the effective mean field correspond-
ing to the expectation value of the field operator in the true vacuum/ground state of the
theory (rather than the simple coherent state we used), and a similar approximation in
which such mean field is suitably peaked with respect to the relational clock would lead
to the desired expression for corresponding observables as well. In this sense, as we have
already pointed out in chapter 2, the effective action we used actually takes into account
already the quantum corrections, and shouldn’t be viewed simply as obtaining from the
mean-field approximation and subjecting modifications from quantum fluctuations.

From an even broader perspective, our universe is way too simple to be fully realistic.
At least we need to improve our analysis to include additional matter content, starting from
general interacting scalar fields [72] but including then also the typical fluid components
used in standard cosmological scenarios, such as radiation and the non-relativistic matter.
Furthermore, in our analysis of the cosmological evolution we only considered isotropic and
homogeneous universes spacetime, thus ignored the effects from anisotropies and inhomo-
geneities, even at a perturbative level, on the evolution of the universe. Interesting work in
both these directions have been done, in the GFT cosmology literature [51, 74–76, 142, 143].
A possible way to see how the massive matter fields will change the cosmological evolution
is to use the matter emerged from inhomogeneities, as we have seen in chapter 5, albeit for
the Boulatov model of 3d gravity. If we can implement the same procedure in the more
realistic 4d case, the cosmological effects come from massive matter can then be viewed as
back reactions of perturbations to the background homogeneous condensate, similarly as
in the standard cosmological scenario [144, 145].

Ideally, we should combine the methods used in this thesis together, i.e., working in
a microscopic GFT model without ignoring the combinatorial structure of the interaction
term, as well as studying the behaviour of the full geometric quantity like the total volume
in this case where different modes coupled to each other. The isotropic property of our
universe could emerge more naturally without enforcing the equilateral constrain. Based
on which, a proper description of the cosmological inhomogeneities is also needed to make
solid contact with cosmological observations and truly embed physical cosmology within
our quantum gravity framework. This remains our main goal.



Appendix A

Effective equation of state,
convergence of total volume and ϕj∞

In this appendix, we show in detail the derivation of several results in 3, which omitted
in the main text. We will show how the EoS in relational language can be derived, how
the boundedness of the mass term of GFT is resulted from the requirement that the total
volume should be finite, and how the value of ϕj∞ can be corrected by comparison with
the case where nj = 4.

A.1 The effective equation of state
We want to define the EoS of the content in the universe using only geometrical quantities.
From the FLRW equation in a universe filled with different matter contents (represented
by i)

H2 = 1
3
∑
i

ρi, Ḣ = −1
2
∑
i

(ρi + pi) = −1
2
∑
i

(1 + wi)ρi,

where H = ȧ
a

is the Hubble parameter, ˙ represents derivative respect to commoving time,
and wi = pi/ρi is the EoS for matter species. We can define an effective EoS as

1 + w = − 2Ḣ
3H2 . (A.1)

In the relational time ϕ, we have

H = ȧ

a
= 1

3
V ′

V
ϕ̇. (A.2)

Using the fact that πϕ = ϕ̇V is a conserved quantity, we have 0 = ϕ̈V + ϕ̇V̇ = ϕ̈V + ϕ̇2V ′,
and ϕ̈ can be solved as

ϕ̈ = −V ′

V
ϕ̇2.
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Therefore we have [45]

Ḣ = 1
3

d
dϕ

V ′

V
ϕ̇2 + 1

3
V ′

V
ϕ̈ = 1

3
V ′′

V
ϕ̇2 − 1

3

(
V ′

V

)2

− 1
3

(
V ′

V

)2

ϕ̇2 = 1
3 ϕ̇

2

V ′′

V
− 2

(
V ′

V

)2
 .

And the EoS can be rewritten as

w = −2
3
Ḣ

H2 − 1 = −2
[

VV ′′

(V ′)2 − 2
]

− 1 = 3 − 2VV ′′

(V ′)2 . (A.3)

When the evolution of the EoS is known, the evolution of volume of universe can be
recovered. To do this, we first introduce the relational Hubble parameter1

G = V ′

V
. (A.4)

Then the effective EoS (A.3) can be written by

w = 1 − 2G′

G2 . (A.5)

Suppose that w is known, the equation is an ordinary differential equation of G and can
be solved by

G =
(∫ ϕ

ϕ0

w(χ) − 1
2 dχ+ 1

G0

)−1

, (A.6)

where G0 = G(ϕ0) is the initial value of G. Then the definition (A.4) of G becomes a
differential equation of volume V , and can be solved as

ln V =
∫ ϕ

ϕ0
dκ
(∫ κ

ϕ0

w(χ) − 1
2 dχ+ 1

G0

)−1

+ ln V0, (A.7)

with V0 = V(ϕ0). Hence, the evolution of volume respect to relational time ϕ is recovered.

A.2 The consequences of the convergence of total vol-
ume V

In this appendix we consider how the convergence of V will constrain parameters in our
model. When ϕ is large, we will have√

E2
j +m2

jQ
2
j cosh(2mjϕ) − Ej >

√
E2
j +m2

jQ
2
j .

1 Using the relation between volume and scale factor V = a3, we see that the relation between Hubble

parameter H and the relational one G is H = ȧ

a
= a′

a
ϕ̇ = G

3 ϕ̇.
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Therefore, if V is convergent, the series
∑
j

Vj
m2
j

√
E2
j +m2

jQ
2
j (A.8)

must also be convergent. Then if mj is unbounded in the sense that mj → ∞ for j →
∞, V would certainly be divergent cause in terms with sufficient large j, we will have
cosh(2mjϕ) → ∞ for non-zero ϕ. Therefore, the convergence of V also requires mj to be
bounded.

Conversely, if series (A.8) is convergent and ∀j, mj ≤ m with a given m, then

cosh(2mjϕ) ≤ cosh(2mϕ),

which leads to the convergence of series
∑
j

[
Vj
m2
j

√
E2
j +m2

jQ
2
j cosh(2mϕ)

]
= cosh(2mϕ)

∑
j

Vj
m2
j

√
E2
j +m2

jQ
2
j ,

since its right hand side is convergent according to our assumption. Therefore, series
∑
j

[
Vj
m2
j

√
E2
j +m2

jQ
2
j cosh(2mjϕ)

]
(A.9)

converges as well. Furthermore, since Ej <
√
E2
j +m2

jQ
2
j , we see that

∑
j

VjEj
m2
j

is also

convergent.
In conclusion, if we require ρ′

j = 0 at the bounce for all j, then V is convergent if

and only if
∑
j

Vj
mj

√
E2
j +mjQ2

j converges and mj’s are bounded. Just as we referred in

section 3.2.

A.3 Behaviour of ϕj∞ in nj = 4 case for small λj
Here we consider the large ρj behaviour for nj = 4 case, where we have an exact solution.
In fact, for nj = 4, the solution of equation of motion (3.5) with µj = 0 can be expressed
using elliptic functions. With the convention that F (ϕ,m) =

∫ ϕ
0

1√
1−m sin2(θ)

dθ, we have
the solution for a given mode j with λj < 0 [146]

ϕ =
√

2
−λ(ω3 − ω1)

F

sin−1


√√√√ρ2

j − ω3

ρ2
j − ω2

 , ω2 − ω1

ω3 − ω1

 , (A.10)

where ω3 > ω2 > ω1 are three real roots of the polynomial

P (χ) = χ3 − m2

2λ χ
2 − E

λ
χ+ 2Q2

λ
, (A.11)
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and the solution valid for ρj >
√
ω3. Note that |λj| should be small enough such that the

three roots of the polynomial (A.11) are all real. Setting ρj → ∞ in the solution (A.10),
we get the exact asymptotic value ϕj∞ in nj = 4 case

ϕj∞ =
√

2
−λj(ω3 − ω1)

K
(
ω2 − ω1

ω3 − ω1

)
. (A.12)

Now we consider the behaviour of this ϕj∞ for small |λj|. To do this, we need first find the
approximate roots for the polynomial (A.11). At the first order of λj, these roots are

ω1 =
2m2

j

2λj
+ 2Ej
m2
j

+
2E2

j

m6
j

λj,

ω2 = Ej −
√
E2
j +m2

jQ
2
j +

Q4
j

(
1 + Ej√

E2
j +m2

jQ
2
j

)
4m2

j

(
Ej −

√
E2
j +m2

jQ
2
j

)2λj,

ω3 =
Q2
j

Ej +
√
E2
j +m2

jQ
2
j

+
Q4
j

(
1 − Ej√

E2
j +m2

jQ
2
j

)
4m2

j(Ej +
√
E2
j +m2

jQ
2
j)2

λj.

Then, putting these approximations of roots into equation (A.12), we can further expand
ϕj∞ with respect to small λj using the expansion K(x) → ln 4√

1−x for x → 1, and we will
obtain the same result as given by the corrected value (3.22) of ϕj∞.



Appendix B

Definitions and identities from SU(2)
recoupling theory

We give several definitions and properties related to SU(2) recoupling theory used in the
article. All those properties are classical results on recoupling theory of SU(2), and we refer
the interested reader to Ilkka Mäkinen’s introduction [89] on the topic for more details.

B.1 Haar measure and Wigner matrices
From the Peter-Weyl theorem, the Wigner matrices Dj

mn(g) form an orthogonal basis of
the functions f : SU(2) → C. This orthogonality relation is encoded in the Haar measure
via the relation ∫

dgDj
mn(g)D̄j′

m′n′(g) = 1
(2j + 1)δ

jj′
δmm′δnn′ , (B.1)

where the Wigner matrices satisfy

Dj
mn(g) = (−1)m−nD̄j

−m,−n(g). (B.2)

B.2 3j-symbol and its properties
The 3j symbol is invariant under the action of SU(2) group,

Dj1
m1n1D

j2
m2n2D

j3
m3n3

(
j1 j2 j3
n1 n2 n3

)
=
(

j1 j2 j3
m1 m2 m3

)
. (B.3)

It’s also invariant under the even permutations of indices, while it acquires an additional
phase under odd permutations(

j1 j2 j3
m1 m2 m3

)
= (−1)

∑3
i=a

(ja−ma)
(

j1 j3 j2
m1 m3 m2

)
. (B.4)
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The same phase also appear if we replace mi by their negative(
j1 j2 j3

−m1 −m2 −m3

)
= (−1)

∑3
i=a

(ja−ma)
(

j1 j2 j3
m1 m2 m3

)
. (B.5)

The 3j symbols satisfy two orthonormal relations

(2j3 + 1)
∑

m1,m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j′

3
m1 m2 m′

3

)
= δj3,j′

3
δm3,m′

3
, (B.6)

∑
j3,m3

(2j3 + 1)
(

j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m′

1 m′
2 m3

)
= δm1,m′

2
δm2,m′

2
, (B.7)

Finally, when one of the magnetic moment (say m3) vanishes, then the 3j symbol
vanishes unless m1 = −m2, and we have

∑
m

(−1)j−m
(

j j k
m −m 0

)
=

√
2k + 1δk,0. (B.8)

And in particular for k = 0 we have(
j1 0 j3
n1 0 n3

)
= δj1,j3

1√
2j1 + 1(−1)j1+n1δn1,−n3 (B.9)

B.3 6j-symbol and its properties
The 6j symbol is defined as{

j1 j2 j3
j4 j5 j6

}
=
∑
ji,mi

(−1)
∑6

a=1(ja−ma)
(

j1 j2 j3
−m1 −m2 −m3

)(
j1 j5 j6
m1 −m5 m6

)

·
(

j4 j2 j6
m4 m2 −m6

)(
j4 j5 j3

−m4 m5 m3

)
. (B.10)

It enjoys several symmetries properties that we do not make use of in the main body. We
refer the interested reader to [89] where they are explicitly mentioned.

Using the 6j symbol we have
∑

n1,n2,n3

(−1)
∑3

a=1(ka−na)
(

j1 k2 k3
m1 −n2 n3

)(
k1 j2 k3
n1 m2 −n3

)(
k1 k2 j3

−n1 n2 m3

)

=
{
j1 j2 j3
k1 k2 k3

}(
j1 j2 j3
m1 m2 m3

)
. (B.11)

Finally, when one of the spin index (say j6) vanishes we have{
j1 j2 j3
j4 j5 0

}
= δj1,j5δj2,j4√

dj1dj2
(−1)j1+j2+j3{j1 j2 j3}. (B.12)
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