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Summary

Network data are nowadays prevalent in various fields such as social and political sciences, eco-
nomics, biology, neurosciences, and others. This is due to the fact that the structure within many
systems can be described as connectivity pattern between entities. Together with modern sur-
veying and measuring technologies, a systematic collection of data in such a structural format
has recently become common practice. As a result, the statistical modeling of complex networks
has gained traction over the last decades. Analyzing network data from the statistical perspec-
tive, however, encounters specific difficulties stemming from high interdependencies between the
actors’ connections. Hence, such data structures require the development of specifically tailored
models.

This dissertation is concerned with the so-called graphon model, a specific framework for network
data, and it addresses aspects of estimation, extensions, and applications. More precisely, this the-
sis is divided into three parts: (i) the development of an estimation procedure for smooth graphons,
(ii) the additional incorporation of block structures by employing the graphon model in a mixture
model configuration, and (iii) the elaboration of a joint graphon estimation strategy for modeling
multiple networks simultaneously, which allows developing a procedure for nonparametric testing
on structural equivalence of networks.

The smooth graphon model for network data is a very flexible approach that enables capturing
diverse structural aspects, making it a valuable tool for learning the underlying network structure.
Moreover, the graphon model belongs to the class of node-specific latent variable models, where
“node” refers to the interacting objects. As for other latent variable models, the unobserved
quantities (in this case, the node positions) and the concrete model structure (the graphon) need
to be estimated based on each other. In the context of (i), we design a simultaneous estimation
by applying principles of the EM algorithm. In the E-step, MCMC techniques are employed to
approximate the marginal conditional mean of the node positions. To achieve a smooth functional
estimate for the graphon, we make use of linear B-spline regression, which represents the M-step.

Regarding general concepts of statistical network analysis, a common assumption is the emergence
of blockwise patterns as a result of the group-formation phenomenon. Following the intention of
(ii), we explicitly incorporate such a structure into the graphon model by combining its smooth
version with stochastic blockmodels. Applying such a modeling strategy allows to divide the
network into groups of actors which still possess smooth differences in their connectivity behavior.
Thus, this approach exploits the advantages of both the smooth graphon model and the stochastic
blockmodel. An adapted EM-type algorithm can be employed to fit this generalized model to given
network data.

The graphon model as a modeling framework has certain advantages compared to other ap-
proaches. On the one hand, the graphon can be viewed more broadly as general nonparametric
density function on networks. On the other hand, the size and structure of a network are de-
coupled in the model formulation, which is a deficit in many other models. In line with (iii),
we exploit these properties to develop a joint graphon estimation routine for modeling multiple
networks simultaneously. Corresponding estimation results enable to compare the structures of
networks directly. In this line, we construct a chi-squared test based on differences in the local
connectivity behavior, providing information on whether the networks are drawn from the same
distribution.

All the analytic concepts outlined above are elaborated in-depth, and their usability and appli-
cability are demonstrated by considering the performance on both simulated data and real-world
networks. Corresponding implementations are provided by open source Python packages which
are publicly available on https://github.com/BenjaminSischka.

https://github.com/BenjaminSischka




Zusammenfassung

Netzwerkdaten sind heute in verschiedenen Bereichen wie Sozial- und Politikwissenschaften, Wirtschaft,
Biologie, Neurowissenschaften und anderen weit verbreitet. Dies ist darauf zurückzuführen, dass sich die
Struktur vieler Systeme als Verbindungen zwischen Einheiten beschreiben lässt. Zusammen mit modernen
Umfrage- und Messtechniken ist die systematische Erfassung von Daten in einem solchen strukturellen
Format in letzter Zeit zur gängigen Praxis geworden. Infolgedessen hat die statistische Modellierung kom-
plexer Netzwerke in den letzten Jahrzehnten an Bedeutung gewonnen. Die Analyse von Netzwerkdaten
unter statistischen Gesichtspunkten stößt jedoch auf besondere Schwierigkeiten, die sich aus den starken
Abhängigkeiten zwischen den Verbindungen der Akteure ergeben. Solche Datenstrukturen erfordern daher
die Entwicklung spezifisch zugeschnittener Modelle.

Diese Dissertation befasst sich mit dem sogenannten Graphonmodell, einem spezifischen Rahmen für Net-
zwerkdaten, und behandelt Aspekte der Schätzung, Erweiterungen und Anwendungen. Genauer gesagt
gliedert sich diese Arbeit in drei Teile: (i) die Entwicklung eines Schätzverfahrens für glatte Graphone, (ii)
die zusätzliche Einbeziehung von Blockstrukturen durch die Verwendung des Graphonmodells in einer Mis-
chmodellkonfiguration und (iii) die Ausarbeitung einer gemeinsamen Graphonschätzungsstrategie zur gle-
ichzeitigen Modellierung mehrerer Netzwerke, die die Entwicklung eines Verfahrens zur nichtparametrischen
Prüfung auf strukturelle Äquivalenz von Netzwerken ermöglicht.

Das glatte Graphonmodell für Netzwerkdaten ist ein sehr flexibler Ansatz, der es ermöglicht, verschiedene
strukturelle Aspekte zu erfassen, was es zu einem wertvollen Instrument für das Lernen der zugrunde
liegenden Netzwerkstruktur macht. Außerdem gehört das Graphonmodell zur Klasse der knotenspezifis-
chen latenten Variablenmodelle, wobei “Knoten” der konzeptionelle Begriff für die interagierenden Objekte
ist. Wie bei anderen latenten Variablenmodellen müssen die unbeobachteten Größen (hier die Knotenpo-
sitionen) und die konkrete Modellstruktur (das Graphon) auf gegenseitiger Grundlage geschätzt werden.
Im Zusammenhang mit (i) entwerfen wir eine simultane Schätzung, indem wir die Prinzipien des EM-
Algorithmus anwenden. Im E-Schritt werden MCMC-Verfahren eingesetzt, um den marginalen bedingten
Mittelwert der Knotenpositionen zu approximieren. Um eine glatte funktionale Schätzung für das Graphon
zu erhalten, verwenden wir die lineare B-Spline-Regression, die den M-Schritt darstellt.

Im Hinblick auf allgemeine Konzepte der statistischen Netzwerkanalyse ist eine gängige Annahme das
Auftreten von blockweisen Mustern als Ergebnis des Gruppenbildungsphänomens. Im Sinne von (ii)
beziehen wir eine solche Struktur explizit in das Graphonmodell ein, indem wir seine glatte Version
mit stochastischen Blockmodellen kombinieren. Die Anwendung einer solchen Modellierungsstrategie er-
möglicht es, das Netzwerk in Gruppen von Akteuren zu unterteilen, die dennoch glatte Unterschiede in ihrem
Konnektivitätsverhalten aufweisen. Somit nutzt dieser Ansatz die Vorteile sowohl des glatten Graphonmod-
ells als auch des stochastischen Blockmodells. Ein angepasster EM-Algorithmus kann verwendet werden,
um dieses verallgemeinerte Modell an gegebene Netzwerkdaten anzupassen.

Das Graphonmodell als Modellierungsrahmen hat im Vergleich zu anderen Ansätzen bestimmte Vorteile.
Einerseits kann das Graphon im weiteren Sinne als allgemeine nichtparametrische Dichtefunktion für Netzw-
erke betrachtet werden. Zum anderen sind Größe und Struktur eines Netzwerks in der Modellformulierung
entkoppelt, was ein Defizit vieler anderer Modelle darstellt. Im Einklang mit (iii) nutzen wir diese Eigen-
schaften, um eine gemeinsame Graphon-Schätzroutine für die gleichzeitige Modellierung mehrerer Netzw-
erke zu entwickeln. Entsprechende Schätzergebnisse ermöglichen es, die Strukturen von Netzwerken direkt
zu vergleichen. In diesem Zusammenhang konstruieren wir einen Chi-Quadrat-Test, der auf Unterschieden
im lokalen Konnektivitätsverhalten basiert und Auskunft darüber gibt, ob die Netzwerke aus der gleichen
Verteilung stammen.

Alle oben skizzierten Analysekonzepte werden eingehend erläutert, und ihre Nutzbarkeit und Anwend-
barkeit wird anhand der Tauglichkeit sowohl in Bezug auf simulierte Daten als auch auf reale Netzwerke
demonstriert. Entsprechende Implementierungen werden durch Open-Source Python-Pakete bereitgestellt,
die auf https://github.com/BenjaminSischka öffentlich zugänglich sind.

https://github.com/BenjaminSischka
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Part I.

Introduction



1. Overview

Network data arise these days in various fields as an intuitive measurement for describing different
kinds of systems. In general, network-structured data represent some sort of connectivity pattern
between some type of entities, entailing a versatility that makes them applicable to abstracting
diverse real-world situations. A network as such consists of a set of nodes, representing the actors
or objects that are somehow related, and a set of edges, which reflect the formed relationships.
The growing amount of network data, evoked by an increasing interest in analyzing corresponding
systems, consequently requires the development of statistical tools for modeling and analyzing such
kind of data. As a particular challenge in this context, network-structured data usually possess a
complex dependency structure. Hence, customized methodological approaches are necessary for
analyzing this specific data format. This dissertation contributes to the field of statistical network
analysis by extending previous methods and developing new ones. The subject matters of these
contributions can be sketched as follows.

Nonparametric Modeling of Network Data. One very flexible framework in the network context
is the so-called graphon model. As a theoretical construct, it arises from the theories of graph
limits and exchangeable random graphs. Moreover, the structural specification in this model is
constituted by a bivariate function called graphon, which can be interpreted more broadly as
density or intensity function on networks. Since this function can flexibly vary in shape and, in
principle, does not rely on any parameterization, the graphon model is considered a nonparametric
representation of network structures. As such, the graphon model is known to be able to represent
complex structural aspects and even to fully cover other models, such as the stochastic blockmodel
and the latent distance model. Yet, in contrast to the latter approaches, the graphon model cannot
be reduced to such explicit structural properties as clusterability or distance-based representability
(which specifically also implicates assortativity). Moreover, the graphon model can be linked to
methods that rely on network statistics. In this line, corresponding representations have been
formulated for simple exponential random graph models. Note that all these capabilities become
possible because of the graphon model’s high flexibility, which, on the other hand, entails a high
complexity when it comes to estimation. In Part II of this thesis, we demonstrate how concepts
of the EM algorithm, in combination with MCMC techniques and spline-based approaches, can
be used to develop a smooth graphon estimation routine.

Stochastic Equivalence and Its Relaxation. One phenomenon that has been experienced reg-
ularly during the extensive analysis of networks over the last decades is the formation of blocks.
The constitution of these blocks is characterized by a grouping of nodes that exhibit a similar con-
nectivity behavior. A model that is specifically dedicated to uncovering such structural behavior is
the stochastic blockmodel. In order to fit this model to network data, one usually has to estimate
both the group memberships and the blockwise connectivity structure. The crucial assumption
for the stochastic blockmodel to be legitimate is the stochastic equivalence. This implies that
nodes from the same block have the exact same connection probabilities to all other nodes, which
appears to be a rather rigorous assumption. A relaxation of that might be the setup where the
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1. Overview

nodes decompose into blocks that permit slight differences in the stochastic connectivity behavior.
Following the terming of “stochastic equivalence”, this might be referred to as “stochastic similar-
ity.” In fact, real-world networks could most likely be represented much more accurately by such
a modified framework since strict equivalence seems to be an unrealistic assumption. In Part III,
we rely on this intuition and incorporate smooth differences into the stochastic blockmodel by
formulating a piecewise smooth graphon model. The lines of discontinuity might then also be
interpreted as structural breaks.

Statistical Testing on Structural Equivalence. Although the literature on statistical network
analysis has extensively increased in recent years, it mainly focused on describing and modeling
global structural patterns or specific structural aspects. One facet that has not been dealt with
in such depth is the statistical testing on structural equivalence of networks. With regard to
general network comparison, several strategies have been developed to contrast the overall struc-
tural behavior. Yet, these methods rely almost exclusively on descriptive statistics and thus do
not provide any distributional assumptions on the resulting distance metric. Apparently, such
approaches prohibit drawing inference in the probabilistic sense. A reason for the shortcoming
of inference-based methods lies in the fact that testing on whether two networks are drawn from
the same distribution is a particularly difficult task per se. A given network is, in its entirety,
usually considered a single observation of a specific system, which, in the comparison context,
means to contrast unknown underlying distributions based on only one realization each. As an
additional issue in this regard, the networks might be of different sizes, causing a natural aspect
of dissimilarity. A corresponding distributional specification thus requires the ability to reason-
ably define a probability measure on networks in a size-detached manner. We formulate such a
model-based distribution in Part IV by making use of the graphon model. In particular, we apply
a joint graphon estimation to model multiple networks simultaneously. This provides a general
network alignment, which, in turn, can be used to contrast networks of different sizes on the edge
level.

Outline of this Thesis. The first part of this dissertation briefly introduces the general research
topic dealt with in the three subsequent main parts. This introductory part is organized as
follows. In Chapter 2, we outline the characteristics of network data and what distinguishes it
from other kinds of data structures. In addition, this includes a brief overview of the most common
models for analyzing network data. To complement the chapter, we discuss potential strategies
for comparing the structures between networks. A detailed introduction to the graphon model as
the central modeling approach in this dissertation follows in Chapter 3. Starting with its general
formulation and interpretation, we further discuss difficulties and potential strategies with respect
to its estimation, as well as possible applications in the context of the concrete analysis of network
structures. Chapter 4 concludes the introduction with a short review of the current research in the
graphon literature, a small summary of the contributions of this thesis, and a brief outlook. This
first part of the dissertation is followed by the actual contributions, which can be roughly outlined
as follows. In Part II, we develop a smooth graphon estimation routine based on MCMC techniques
and spline-based approaches. An extension of the class of smooth graphon models is formulated
in Part III, where we propose a unification with the stochastic blockmodel. Finally, in Part IV,
we formulate a joint graphon estimation strategy which we utilize to develop a nonparametric
test on networks. In particular, this allows to draw statistical inference with regard to structural
equivalence, which still appears to be an open challenge in the network analysis literature.

2



2. Statistical Network Analysis

To make the concepts and formulations used in this thesis more comprehensible, we start by
introducing and formalizing the type of data we are dealing with. In that line, we elucidate
the particular character of network-structured data and emphasize the difficulties arising when
pursuing to analyze them. Based on that, we give a brief outline of statistical modeling approaches
specifically developed for such data structures. To complement the notion of network data and
corresponding modeling concepts, we discuss possible strategies for network comparison.

2.1. Formalization of Network Data

The usage of network-structured data allows to capture the essential features of diverse systems.
In general, a network construct consists of entities and relations or interactions between them. For
example, this might represent friendships among members of a social group (Eagle et al., 2009),
the trading between nations (Bhattacharya et al., 2008), interactions of proteins (Schwikowski
et al., 2000), or the functional coactivation within the human brain (Bassett et al., 2018, Crossley
et al., 2013).

Networks and Graphs. As a universal concept, the formulation of networks allows abstracting
the structure within a system of interrelated objects. In a more mathematical way, a network is
usually conceptualized as a graph G = (V, E), where V and E ⊆ V2(×W) represent the set of nodes
(or vertices, inspiring the notation of V) and edges, respectively. The additional usage of W ⊆
R facilitates edges to possess weights, allowing to indicate differing strengths of connectedness.
Hence, in the general graph representation, the set of edges E comprises pairs of nodes equipped
with corresponding weights, i.e. (vi, vj , wvivj ) with i, j ∈ {1, . . . , N}. The size (or order) of a
graph—or of the corresponding network—is usually defined by N = |V|, where |·| is the cardinality
of a set. (Note that, contrarily, some works define |E| as the size of a network.) While the term
“network” refers mostly to a collection of interrelated elements as a notional object or, similarly, to
its graphical representation consisting of dots or circles and connecting lines, a “graph” formalizes
this vague concept. As such, a graph enables to properly define (mathematical) operations. In
this light, the field of graph theory provides a whole bunch of definitions, propositions, and
useful techniques for accomplishing meaningful transformations, extracting desired information,
and solving specific problems. In the present thesis, we specifically focus on simple undirected
graphs, i.e. graphs that only indicate whether two nodes are connected or not. Transferred to
the network context, this refers to instances where links do not possess a distinct strength or a
certain direction. As for the graph specification, we consequently neither observe any associated
weights (which is tantamount to setting wvivj = 1 for all present edges) nor distinguish between
the (unweighted) edges (vi, vj) and (vj , vi). In addition, throughout the entire dissertation, we
assume the graphs to be free of self-loops, meaning (vi, vi) /∈ E for all vi ∈ V. As a consequence of
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2. Statistical Network Analysis

the undirectedness, we can further substitute the two tuples (vi, vj) and (vj , vi) by the (unordered)
set {vi, vj}.

Adjacency Matrix. Instead of relying on E , often also referred to as edge list (where the ordering
aspect of a typical list object is neglected), the connectivity within a simple undirected graph can
alternatively be described by the so-called adjacency matrix Y = [Yvivj ]i,j=1,...,N ∈ {0, 1}N×N .
The entries of this adjacency matrix are given by the individual edge variables Yvivj ∈ {0, 1}
for i, j = 1, . . . , N , representing either the presence ({vi, vj} ∈ E , encoded as 1) or the absence
({vi, vj} /∈ E , encoded as 0) of the connection between nodes vi and vj . Taking into account
that edges are undirected and self-loops are omitted, it generally holds that Yvivj ≡ Yvjvi and
Yvivi ≡ 0 for all i, j = 1, . . . , N . The realizations of the edge variables and the adjacency matrix
are denoted by yvivj and y = [yvivj ]i,j=1,...,N , respectively. Note that to simplify notation, the
nodes are commonly labeled from 1 to N . This shortens the expression of the adjacency matrix
to Y = [Yij ]i,j=1,...,N , and of other quantities analogously. The structure exhibited in any simple
undirected graph can be fully represented by the corresponding adjacency matrix. Hence, a
graph of this type can equivalently be specified through G = (V,y). In contrast to the edge list
format, a matrix representation allows for performing graph calculations by applying calculations
on matrices. One commonly used method from the ensemble of matrix calculations is, for example,
the spectral decomposition, often applied for graph clustering (Rohe et al., 2011) or estimating the
edge probability matrix under specific model assumptions (Chatterjee, 2015). In this dissertation,
we also rely on the adjacency matrix as the object that quantifies the present structure (or, at
least, on the edge variables contained therein).

2.2. The Nature of Networks

Dependency Structure. The aspect that differentiates networks as complex structural objects
from ordinarily structured data considered in classical statistical frameworks—i.e. tabular data
which are assumed to consist of independent and identically distributed (i.i.d.) observations—is
the inherent dependency structure. This dependency is very pronounced in the context of net-
works since the relationships between individuals usually strongly affect each other. Putting it
more contrastively, in an ordinary data set as a collection of individual measurements, the inter-
relation among observations is “(nearly) structureless,” whereas “in the case of network data, the
[dependency] structure is the data” (Crane, 2018, p. 3). In other words, classical statistics treats
dependence as a confounding factor that is tackled, if at all, by simple structural assumptions,
while in the analysis of networks, the inherent dependency structure is what one aims—more or
less explicitly—to model. In the various disciplines applying statistical network analysis, differ-
ent recurring phenomena with respect to such dependencies have been identified. In most cases,
these phenomena can be brought into line and explained with behavioral patterns well-known in
the respective domains. Common behaviors in networks are denominated, for instance, in the
social sciences, which is the field with perhaps the longest tradition in network analysis. Popular
observed patterns are, for example, “the friend of my friend is my friend” (also known as triadic
closure effect) or more wide-ranging cohesive structures, i.e. group-forming effects. However, the
dependencies among the relations might be much more complex. In any case, classical approaches
for statistical modeling cannot be easily adopted. Thus, the analysis of networks requires the
development of novel methods taking these particular circumstances into account.

4



2.3 Statistical Modeling Approaches

Special Structural Features. Besides the complex dependency structure, there are further in-
trinsic aspects that contradict classical statistical principles and thus need to be paid specific
attention to when modeling real-world networks. A common issue in such data structures is that
of sparsity, indicating a marginal proportion of existing versus possible edges, i.e. |E| ≪

(N
2
)
. This

often appears in the form of a power-law degree distribution (Albert and Barabási, 2002) or other
compositions that entail a still well-connected graph in terms of global connectedness. Since the
latter property is contrary to corresponding expectations under classical paradigms, the sparsity
condition is especially challenging. Such a well-connectedness of graphs can be similarly con-
ceptualized by the small-world property (Watts and Strogatz, 1998), which additionally implies
the triadic closure effect. Another connectivity pattern associated with heterogeneous behavior—
which is closer to what has already previously been pursued to capture by statistical models—is
the formation of groups of nodes (Holland et al., 1983). If these groups appear to be more strongly
connected within than between themselves, they are usually referred to as communities (Girvan
and Newman, 2002).

Altogether, modeling network data requires the consideration of diverse aspects, many of which
are contrary to the way of thinking that has prevailed in the statistical modeling literature in the
past.

2.3. Statistical Modeling Approaches

In the last decades, many different methods for modeling complex random graphs have been pro-
posed and extensively developed. Survey articles that demonstrate the state of the art in statistical
network analysis have been published by Goldenberg et al. (2009), Snijders (2011), Hunter et al.
(2012), Fienberg (2012), and Salter-Townshend et al. (2012). Monographs in this field outlin-
ing the extensive methodological development since its beginnings are given by Kolaczyk (2009),
Lusher et al. (2013), Kolaczyk and Csardi (2014), Kolaczyk (2017), Newman (2018), and Crane
(2018). Altogether, there exist various strategies for describing and modeling network data, which
rely on a compendium of diverse concepts. We emphasize that some of these methods are also
naturally able to model directed, weighted, or bipartite networks or to incorporate covariates on
the node or edge level. For other models, there might exist corresponding extensions. Nonethe-
less, since the focus of this dissertation is on simple undirected graphs, the following overview is
restricted to models for this data setting. The description for “broader” models is narrowed down
accordingly.

As a major distinction besides different capacities, the existing modeling strategies can also be
distinguished according to their underlying paradigm, which can be of either static or dynamic
nature. Under the static paradigm, the purpose is to model the topology of a single network
instance. That is, to uncover the structure of a fully evolved connectivity pattern. In contrast,
the dynamic paradigm implies considering a network not only as a fixed and “final” construct but
from the perspective of an evolutionary process consisting of successively occurring events.

2.3.1. Stochastic Network Processes

Evolutionary Structure. Investigating the structural formation within a network on the level of
the underlying stochastic process apparently involves some kind of temporal component. This

5



2. Statistical Network Analysis

consequently entails data in a longitudinal format. Under this paradigm, the goal is to model the
underlying stochastic process that forms the network. Possible events serving as the intermediate
evolutionary steps are the formation (or disappearance) of edges, but potentially also the emer-
gence (or disappearance) of nodes. The most popular modeling strategy in this direction is the
stochastic actor-oriented model (Snijders et al., 2010), which was specifically developed for social
networks. The basic idea here is a scenario where actors are aware of the occurrences and (at least
to some extent) in control of their relationships. The intention of this approach is to model the
upcoming events conditional on the respective current state of the network. A similar framework
can be developed for an edge-oriented perspective (Snijders and Koskinen, 2013).

Network Dynamics. In the last years, methods that have been primarily developed for covering
the topology of networks were extended towards the dynamic perspective. Works in this direction
are, among others, Hanneke et al. (2010) and Krivitsky and Handcock (2014) (for exponential
random graph models), Matias and Miele (2017) (for stochastic blockmodels), and Pensky (2019)
(for graphon models, see below for a description of the respective original model). Yet, these
approaches do not strive for actually modeling the underlying stochastic process. Instead, they
aim for incorporating information on different states of the network to improve the precision of
the model or to extend the framework towards a time-varying specification.

Considering the network’s stochastic process instead of its topology seems to provide richer infor-
mation simply because it does not only exhaust knowledge about the presence or absence of edges
but also about the time of their emergence or disappearance. More specifically, edges might occur
only temporarily and disappear after a while, which would not be recorded by the final network
topology at all. Nonetheless, networks are not always the outcome of an evolutionary process or,
at least, do not simply disclose information about the immanent intermediate steps. Moreover,
one might often be particularly interested in the topological structure of a network rather than
how it evolved over time.

2.3.2. Network Topology

In this thesis, we follow the static paradigm, which means pursuing the intention to model the
topology of a fully evolved network. Approaches of this category can be distinguished by the
strategies used for formalizing the dependency structure.

Subgraph Frequencies. One of the two tendencies in this direction can be confined to capturing
a network’s structure by specific network statistics. To be precise, these statistics are commonly
defined as the frequencies of prespecified subgraphs, providing information on the prevalence of
local connectivity patterns. The workhorse model in this context is the exponential random graph
model, often also referred to as p∗ model (Frank and Strauss, 1986, Robins et al., 2007). The
underlying intuition of this framework is to formulate a probability distribution on networks on
the basis of subgraph counts. In the classical design, this can be specified through

P(Y = y; η) = exp(η⊤s(y))
υ(η) ,

where η = (η1, . . . , ηm)⊤ ∈ Rm is a parameter vector, s(·) is a vector operation returning the counts
of m (prespecified) subgraphs, and υ(η) is a normalizing constant, ensuring that ∑y∈YN

P(Y =
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y; η) = 1 with YN being the set of all simple undirected graphs of size N . The concept of
exponential random graph models arises from the generalization of Markov graphs (Wasserman
and Pattison, 1996). Concurrently, the exponential random graph model describes an extension
of the p1 model, which, as a model for directed graphs, specifically aims at capturing the effects of
reciprocity as well as in- and outgoing attractiveness (Holland and Leinhardt, 1981). The concrete
specification of this model, meaning the predefinition of what kind of subgraphs are relevant, needs
to be done based on subject-matter expertise (Robins et al., 2007, Lusher et al., 2013).

Latent Variable Models. The second main model class focused on capturing the completed net-
work topology comprises the node-specific latent variable models (see Matias and Robin, 2014 for
an overview). Methods of this class follow the universal assumption that the complex dependency
structure within a network can be ascribed to nodal quantities with respect to some underlying
(more or less complex) structural construct. A generic specification of this model class can be
given through

Yij | ξi, ξj
ind.∼ Bernoulli(h(ξi, ξj)) for i < j, (1)

where 0 ≤ h(·, ·) ≤ 1 represents a corresponding overall connectivity pattern. Adopting the
assumptions of simple undirected graphs, it generally holds that Yji ≡ Yij and Yii ≡ 0. Model
formulation (1) clearly underlines that the connection probability for node pair (i, j) depends
exclusively on the corresponding nodal quantities ξi and ξj . Depending on the concrete model
choice, these quantities are considered either as random variables themselves (due to either a
corresponding model specification or a Bayesian perspective) or simply as unknown but fixed
parameters. Moreover, we stress that ξi is used as a scalar in many frameworks, although it can
generally be of multivariate form.

This general class of latent variable models accounts for a large part of the literature on statistical
network analysis. In fact, it includes some of the most extensively discussed and frequently applied
methods for modeling network data, the most popular of which we will briefly introduce in the
next section. In this regard, it seems worth noting that these approaches possess different abilities
and qualifications to cover the diverse structural aspects that might be present in network data.
This is despite the fact that they are all inspired by the same notion, namely that the structure
within networks can be boiled down to nodal quantities referring to some more or less complex
structural construct.

2.3.3. Node-Specific Latent Variable Models

Latent Node Positions. In line with general latent variable framework (1), Hoff et al. (2002)
developed an approach according to which the network’s nodes are situated in an (Euclidean)
latent space in which distances provide full information about connection probabilities. In its
simple form, the latent distance model can be formalized as

P(Yij = 1 | Xi = xi,Xj = xj ; β) = exp(β0 − β1∥xi − xj∥)
1 + exp(β0 − β1∥xi − xj∥) , (2)

where β = (β0, β1)⊤ ∈ R2 is a coefficient vector and Xi is the latent position of node i—potentially
located in the metric space (RJ , ∥·∥) with J ∈ N. Note that the coefficient β1 is only required (and
identifiable) if the latent space is bounded. In the normalized version, Xi is assumed to be lying
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within [0, 1]J . The domain of the node positions is often referred to as latent social space, implying
that coordinates might be translated into certain social attributes or vice versa. Beyond its
classical interpretation, this approach can be extended towards a model-based clustering technique,
where the latent positions are assumed to follow a mixture of multivariate normal distributions
(Handcock et al., 2007).

Node Clustering. A more tailored approach for clustering the nodes of a network is given by the
stochastic blockmodel. This model was originally formulated by Holland et al. (1983), whereas
Snijders and Nowicki (1997, 2001) first tackled the issue of a posteriori blockmodeling. In this
approach, the latent variables represent group memberships, denoted by Zi ∈ {1, . . . ,K} for
i = 1, . . . , N , where K represents the number of groups. These memberships are then brought
together with edge probabilities specified between and within groups, denoted by pkl ∈ [0, 1] for
k, l = 1, . . . ,K. To be precise, the network data is assumed to be generated through

Yij | Zi, Zj ∼ Bernoulli(pZiZj ).

The individual probabilities pkl with k, l = 1, . . . ,K are often gathered in the blockwise edge
probability matrix P = [pkl]k,l=1,...,K ∈ [0, 1]K×K , where, in the undirected setting, it holds that
plk = pkl. Commonly, the group memberships are, in turn, assumed to independently follow a
categorical distribution in the form of

P(Zi = k; α) = αk for k = 1, . . . ,K

with α = (α1, . . . , αK) ∈ [0, 1]K and ∑k αk = 1. The entries of the vector α can consequently
be interpreted as the (expected) group proportions. In this overall setup, the specification of K
is apparently an essential aspect of the model itself. Information on that is only rarely given a
priori in real-world scenarios, which is why it usually needs to be inferred from the data as well.
To do so, there exist various methods in the blockmodeling literature, which rely on, for example,
log-likelihood ratio statistics (Wang and Bickel, 2017), Bayesian inference under MCMC-based
approximations (Newman and Reinert, 2016, Riolo et al., 2017), or cross-validation techniques
(Chen and Lei, 2018).

Apparently, the general intuition of the stochastic blockmodel is the assumption that the overall
heterogeneity between the nodes can be explained by global node set V dividing into groups of
individuals with homogeneous behavior. In formulae, this means that there exists a partition
C1, . . . , CK with ⋃k Ck = V such that, for all k = 1, . . . ,K,

P(Yij = 1) = P(Yi′j = 1) for all i, i′ ∈ Ck and j ∈ V.

In turn, this implies that the set of all edge variables, {Yij : i, j ∈ V, i < j}, as the complete
connectivity pattern, can be divided into subsets of edge variables, {Yij : i ∈ Ck, j ∈ Cl} with
k, l = 1 . . . ,K, within which a homogeneous density applies. Such a strict homogeneity, however,
might not always be appropriate and thus might be relaxed towards a more continually adapted
edge density.

Local Edge Density. To specify the edge density on a more local level, one could make use of a
more detailed specification. More precisely, instead of relying on the somehow artificial assumption
of strict blockwise homogeneity—defined through the specification of (α,P )—, the edge density
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could be determined pointwise. To do so, the groups of homogeneous nodes could be chosen to
be infinitesimally small (in relation to the overall number of nodes). This conception is closely
related to Szemerédi’s regularity lemma (1978). According to that, the set of nodes of every large
enough graph can be partitioned into a bounded number of groups such that the connectivity
behavior between different groups is almost homogeneous, i.e. can be well approximated by a
constant edge density. In the end, this breaks down to specifying an individual edge probability
for each pair of nodes. This can be achieved by defining a local edge density in the form of a
bivariate function. Note that “local” here refers to the position within the latent domain, which
can alternatively be illustrated by ordering the adjacency matrix according to this latent scale
(cf. Figure 1 below). In this sense, such a framework can be interpreted as mapping the entries
of the two-dimensional adjacency matrix grid-wise into the domain of the bivariate function to
get corresponding edge probabilities. Following this intuition, one ends up with the graphon
model (Lovász and Szegedy, 2006, Borgs et al., 2008, Borgs et al., 2012), which covers exactly the
formulated specification of a local edge density. Apart from general definitions, this model is fully
specified through the eponymous bivariate function, i.e. the graphon. We will present a precise
formulation of the graphon model in the next chapter. For the moment, however, we want to
remain with its non-formalized conceptualization. As a further aspect, the graphon model arises
from the theories of graph limits and exchangeable random graphs (Diaconis and Janson, 2008, see
also Section 4). Still, it can likewise be interpreted as the local edge density. In this regard, it also
covers the stochastic blockmodel, which is exemplarily demonstrated through a corresponding
graphon specification by Latouche and Robin (2016, Fig. 1), see also Part III, Section 3.3 of
Chapter 6. Conversely, many works have argued that the graphon model can be approximated by
an extensive stochastic blockmodel and presented corresponding results on theoretical convergence
rates (Wolfe and Olhede, 2013, Gao et al., 2015, Klopp et al., 2017). Hence, the graphon model
can be considered a nonparametric extension of the stochastic blockmodel (Borgs et al., 2018a,
p. 2) or as a blockmodel on an arbitrarily fine scale (Bickel and Chen, 2009, p. 21069). From a
more practical view, other authors exploited the blockwise approximation to construct a concrete
estimation technique (Airoldi et al., 2013, Chan and Airoldi, 2014, Yang et al., 2014).

Overall, the graphon model enables to specify a local edge density on networks, i.e. to assign
an individual probability to each edge variable. Hence, the graphon model appears as a suitable
choice for capturing the structure within a network in a nonparametric fashion. Lastly, this makes
it specifically appropriate for comparing networks on a distributional basis, as it is elaborated in
detail in Part IV. The following section presents common techniques for contrasting network
data.

2.4. Network Comparison

As in classical statistics, comparing different samples, i.e. observed data sets in the form of
y(g) = [y(g)

ij ]i,j=1,...,N(g) with g ∈ {1, . . . , G}, is an important yet not fully resolved problem in
the network context. To give an example, one might be interested in whether and how the func-
tional connectivity in the human brain differs for people suffering from autism spectrum disorder
compared to a typical-development group (Song et al., 2019, Subbaraju et al., 2017, Pascual-Belda
et al., 2018). Yet, for the complex structure inherent in network data, this task becomes much
more difficult than for classical data formats. This problem aggravates even more when one seeks

9
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a comparison on the basis of statistical inference, which is due to the difficulty of defining a uni-
versal network distribution that is invariant to specific individual network features such as size or
even edge density.

Node Correspondence-Based Approaches. The most straightforward setting in the network
comparison context is the situation where several connectivity patterns have been observed on
the same set of nodes. That is, for all pairs of networks, (g, g′) ∈ {1, . . . , G}2, there exists a
permutation κ : {1, . . . , N} → {1, . . . , N} such that v(g′)

κ(i) = v
(g)
i for all i = 1, . . . , N , where

N = N (1) = . . . = N (G). This allows to directly calculate distances between corresponding
adjacency matrices or other network-related matrices that carry substantial information (Koutra
et al., 2013, Koutra et al., 2016, Liu et al., 2018). However, in most cases, there is no a priori
knowledge about this node correspondence. That means a direct comparison of connection statuses
between networks, i.e. checking y(g)

ij against y(g′)
κ(i)κ(j), requires first to infer the node mapping κ(·)

(Milenković et al., 2010, Kuchaiev and Pržulj, 2011, Memišević and Pržulj, 2012). This is usually
done by maximizing

∑
i,j
j>i

[
y

(g)
ij y

(g′)
κ(i)κ(j) + (1 − y

(g)
ij )(1 − y

(g′)
κ(i)κ(j))

]
, if the connectivity behavior

underlies the dense regime∑
i,j
j>i

y
(g)
ij y

(g′)
κ(i)κ(j) , otherwise

(3)

with respect to κ(·). Such a mapping can also be accomplished for networks of unequal sizes,
where, without loss of generality, |V(g)| ≤ |V(g′)|, although this obviously prohibits a bijective
node mapping. As a consequence, some information within the data gets lost, namely the one
about the |V(g′)| − |V(g)| nodes that drop out of network g′ as being not assigned. Moreover, the
computational task of finding the optimal node mapping according to (3) is, in principle, NP-
complete and thus can only be solved approximately. Lastly, the direct comparison of connection
statutes might not always be the most accurate strategy for uncovering structural differences
between separate networks.

Structural Network Comparison. As an alternative, networks could be compared by relying on
a more general representation of the present structure, i.e. without exploiting an explicit node
correspondence. To do so, one needs first to quantitatively capture the underlying structures in
a node label-independent manner, where, in the next step, one can appropriately compare these
structural representations between networks. The specific approach chosen for representing the
underlying structure apparently affects the capability of uncovering the differences of interest. As
for classical frameworks, the structure can generally be captured by relying either on descriptive
or model-based methods. Regarding descriptive approaches, Newman (2018, pp. 364 ff.) and
Anderson et al. (1999, pp. 242 f.) formulate a comparison based on standard network features.
One step further, Wilson and Zhu (2008) and Gera et al. (2018) rely on the graph spectrum to
uncover differences in network structures. Another large part of the literature on feature-based
strategies deals with graphlets, where the intuition is representing structure through frequencies
of prespecified subgraphs, see e.g. Pržulj et al. (2004), Pržulj (2007), Yaveroğlu et al. (2014),
Ali et al. (2014), and Faisal et al. (2017). However, as a general drawback of descriptive com-
parison methods, they apparently do not allow drawing statistical inference. As a potential way
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out, Anderson et al. (1999) and Butts (2008) suggest applying (a multivariate generalization of)
conditional uniform graph distributions. On the other hand, model-based approaches for network
comparison are rather rare. This is due to the fact that most network models impose specifications
that are related to individual network attributes. For example, exponential random graph models
involve coefficients that have different meanings for different total numbers of nodes. Similar issues
arise for other frameworks. A stochastic blockmodel-based approach has been developed by On-
nela et al. (2012), who compare summary statistics of the networks’ disintegration processes. But
still, this approach does not provide the possibility of drawing statistical inference. For further
reading into this direction, survey articles for network comparison are given by Soundarajan et al.
(2014), Yaveroğlu et al. (2015), Emmert-Streib et al. (2016), and Tantardini et al. (2019). Beyond
the limitation to networks, Marron and Alonso (2014) discuss more generally how complex data
objects—such as adjacency matrices—might be compared.

Graphon-Based Comparison of Network Structures. The graphon model as a probabilistic
framework for network data can be viewed as outstanding with regard to the comparison task.
In this context, we stress that the graphon can serve as both the central underlying object of a
model-induced probability measure and a descriptive entity that captures the network structure
on a fine resolution. From both perspectives, the graphon can be interpreted as (local) density
or intensity function on networks. (These aspects are described in detail in the next section.)
Given that, the graphon can be considered as an overall characterizing network feature that,
like nothing else, uniquely covers the global structure. Furthermore, in the graphon model, the
general probabilistic specification and individual network properties, like the number of nodes,
are naturally decoupled. Taking all this together makes the graphon model an optimal choice for
network comparison. Thus, as a first intuition, one might think of separately fitting the graphon
model to different networks and subsequently comparing the resulting estimates. However, the
graphon model is known to suffer from severe identifiability issues, which arise from the fact that
any permutation of a graphon yields the same generating process as the original one (Diaconis
and Janson, 2008, Sec. 7). Consequently, the comparison of separate graphon model fits appears
to be a complex matter. To circumvent this issue, the graphon approach can instead be employed
to model multiple networks simultaneously. The results of the joint graphon estimation can then
be utilized to formulate an appropriate network comparison strategy. To be precise, the aligned
node positions—under certain smoothness assumptions—can be interpreted as a relaxed node
correspondence that does not stipulate a one-to-one mapping but rather identifies small fuzzy
groups of nodes with similar structural roles. With respect to the underlying graphon model,
which induces a proper network distribution, this approach allows to formalize a statistical testing
procedure on equivalence of the underlying network structures and to detect relevant microscopic
differences. A concrete elaboration of this approach is given in detail in Part IV. In the next
chapter, we will introduce the graphon model in detail, and, in doing so, it will also become more
apparent why the graphon model is a specifically useful tool for comparison purposes.
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In this chapter, we will introduce and discuss the graphon model in detail. This includes its formal
definition, distinctive properties, specific difficulties in the estimation, and a potential scope of
application. In the following formulations, we will illuminate the graphon from two perspectives,
namely as a naturally emerging limiting construct and as the central object of a nonparametric
data-generating process. In this light, the graphon model provides an outstanding framework for
statistical network analysis.

To further provide a theoretical background on the graphon’s origination, in the Appendix, we
give an overview of the concepts relevant to the development of the graphon model. These are
graph limits and exchangeable random graphs, described in detail from page 37 on.

3.1. Formulation and Interpretation

Graphon Model as Data-Generating Process. In classical graphon theory, which has been
mainly introduced and developed by Lovász and Szegedy (2006), Borgs et al. (2006), Diaconis
and Janson (2008), Bollobás et al. (2007), and Borgs et al. (2008), a graphon is a bivariate and
symmetric [0, 1]-valued function defined on a probability space. In particular, the graphon model
can be formulated as a data-generating process through the following two successive steps. First,
we draw the node-specific latent quantities U1, . . . , UN through

Ui
i.i.d.∼ Uniform[0, 1] for all i = 1, . . . , N. (4a)

Secondly, and conditional on the realizations of the latent quantities, i.e. given U1 = u1, . . . , UN =
uN , we sample the edge variables independently in the form of

Yij | Ui = ui, Uj = uj ∼ Bernoulli(w(ui, uj)), (4b)

where the function w : [0, 1]2 → [0, 1] with w(u, v) = w(v, u) for all u, v ∈ [0, 1] represents the
graphon. This formulation specifically implies that the network entries only depend on the latent
nodal variables, which, with respect to their latent domain [0, 1], are often also referred to as
latent node positions. Given that, it is easy to see that the graphon model belongs to the class of
node-specific latent variable models as defined through generic model specification (1).

Generating Exchangeable Graphs. The graphon model can further be used to formalize the
generalized process of exchangeable arrays (cf. formulation (15) of the Appendix) in an itemized
manner. This can be done by defining

Yij ≡ H(U0, Ui, Uj , Uij) ≡
{

1 , if Uij ≤ wU0(Ui, Uj)
0 , otherwise,
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where {wu0(·, ·) : u0 ∈ [0, 1]} is a corresponding uncountable set of graphons from which an
element is chosen conditional on U0 (Lloyd et al., 2012, Sec. 2.2). From the perspective of ergodic
systems, one can alternatively formulate the distribution of a simple exchangeable random graph
of infinite size through

P(Y∞ ∈ A) =
∫

P(Y∞ ∈ A; wU0(·, ·))µ(dU0) =
∫ 1

0
P(Y∞ ∈ A; wu0(·, ·)) du0

for any (symmetric) A ⊆ {0, 1}∞×∞, where µ(·) is the probability measure induced by the standard
uniform distribution, see Diaconis and Janson (2008, Thm. 1.2) and Orbanz and Roy (2015, Sec.
3–B). Apparently, when using this process to model a single network, one neither has information
about the entire graphon set (instead, information is only given about wu0(·, ·) with U0 = u0) nor is
one interested in inferring all the graphons. This is especially the case since we are usually “only”
interested in the structure of the network at hand rather than in the structures of networks as they
might result under another U0. Still, this makes it impossible to infer the complete exchangeable
array process based on a single observation. Bickel and Chen (2009) thus call the variable U0
unidentifiable for single samples (where even if the graph were infinite, it would not provide
further information in that regard). The plain graphon model (4) could instead be interpreted
as a constrained version of exchangeable array process (15) of the Appendix, where one assumes
H(·, ·, ·, ·) to be constant in its first argument, i.e. for any u0 ∈ [0, 1] it holds that

H(u0, ·, ·, ·) ≡ H(1, ·, ·, ·) which is due to wu0(·, ·) ≡ w1(·, ·).

Crane (2018) calls exchangeable arrays of this subclass to be dissociated since U0 becomes irrel-
evant. Nonetheless, random graphs that are generated by graphon process (4) generally possess
the property of exchangeability (see formulation (14) of the Appendix).

Graphon as Graph Limit Object. This limitation on the general representation of exchangeable
graphs does, however, not affect the graphon model’s ability to serve as graph limit object. As
described in the Appendix, for a convergent graph sequence, the homomorphism density of any
subgraph G′ converges towards a fixed value cG′ . Moreover, according to the induced sampling
distribution (cf. formulation (12) of the Appendix), the probability of a graph sample reflecting the
connectedness of a prespecified subgraph also converges towards cG′ . Such a connectivity behavior
can be shown to apply to the graphon model as a data-generating process, under which it can
also be directly quantified. More precisely, with respect to a prespecified subgraph G′ = (V ′,y′),
let Y = [Yij ]i,j=1,...,N ′ be the connectivity pattern of a graph Gw(·,·)

N ′ = (VN ′ ,YN ′) of size N ′ = |V ′|
that is generated according to process (4). Then we can formulate that

P(Yij = 1, i < j : y′
ij = 1 ; w(·, ·)) = P(G′ ⊆ Gw(·,·)

N ′ ) =
∫

[0,1]N′

∏
i<j:
y′

ij=1

w (ui, uj)
N ′∏
i=1

dui

︸ ︷︷ ︸
=:t(G′,w(·,·))

,

where y′ = [y′
ij ]i,j=1,...,N ′ represents the concrete connectivity pattern of G′. That means the

probability that a graphon-generated graph exhibits the connectedness of prespecified pattern G′

can be calculated by solving the integral on the right-hand side. Based on that, one furthermore
can formulate a two-stage sampling scheme by assuming Gw(·,·)

N = (VN ,YN ) to be generated
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through graphon process (4) and Gw(·,·)
N

∣∣
N ′ being a corresponding induced subgraph sample under

uniform node drawing with replacement. (This can be interpreted as the reverse perspective of
getting from graph limit formulation (11) to limit sampling distribution (12).) Under this setting,
we get

t(G′,Gw(·,·)
N ) = P(G′ ⊆ Gw(·,·)

N

∣∣
N ′)

=
∑

y∈YN

P(G′ ⊆ Gw(·,·)
N

∣∣
N ′ | YN = y) · P(YN = y; w(·, ·))

=
∑

y∈YN

t(G′,Gw(·,·)
N (VN ,YN = y)) · P(YN = y; w(·, ·)) p−→ t(G′, w(·, ·)).

(5)

Hence, for a graphon-generated graph, we can clearly attribute the a priori probability of a random
node collection to form a prespecified connectivity pattern. Note that the only reason why the
expression in (5) “only” converges towards t(G′, w(·, ·))—instead of being equal—is given through
the possibility of drawing from Gw(·,·)

N the same nodes multiple times. This effect, however, vanishes
for a growing graph Gw(·,·)

N . To complete the reasoning and get from result (5) to the concept of
graph limits, it is easy to argue that Gw(·,·)

N can be considered as the current state of a corresponding
graph sequence. To demonstrate this, we start with Gw(·,·)

1 = (V1 = {1},y1 = (0)) and u1 = (u1),
where u1 is the realization of U1 ∼ Uniform[0, 1]. For obtaining graph Gw(·,·)

N+1 = (VN+1,yN+1), we
then perform the following steps:

1. Draw UN+1 ∼ Uniform[0, 1].

2. Conditional on UN+1 = uN+1, draw Yi,N+1 | Ui = ui, UN+1 = uN+1 ∼ Bernoulli(w(ui, uN+1))
for all i = 1, . . . , N .

3. Set yN+1 =
(

yN y⊤
*

y* 0

)
with y∗ = (y1,N+1, . . . , yN,N+1).

4. Finally, define Gw(·,·)
N+1 = (VN ∪ {N + 1},yN+1).

Together with result (5), we can conclude that a graph sequence (Gw(·,·)
N = (VN ,YN ))N=1,2,...

that is generated using graphon process (4) is stochastically convergent (see definition (11) of
the Appendix). To be precise, the homomorphism density of any subgraph G′ converges with
respect to Gw(·,·)

N towards t(G′, w(·, ·)). To highlight the capability of the graphon model in this
regard, we refer to the major finding of Lovász and Szegedy (2006), which is comprehensibly
expressed by Lovász (2012) in Theorem 11.21: “For any convergent sequence [(GN )N=1,2,...] of
simple graphs, there exists a graphon [w(·, ·)] such that [t(G′,GN ) → t(G′, w(·, ·))] for every simple
graph [G′].” In other words, no matter how complex the structure of a convergent graph sequence
is, it can be described in the form of a graphon. With regard to the property of a graph sequence
being convergent, we lastly emphasize that this can be illustrated by considering the sequence
of adjacency matrices. Looking at Figure 1 reveals a clearly evolving structure in the three
progressive adjacency matrices on the left. Scaling the adjacency matrices towards [0, 1]2 and
considering them as graphons with codomain {0, 1} allows for a proper definition of convergence
with respect to the so-called cut distance (Lovász, 2012, Sec. 8). Note, however, that for this kind
of reconciliation, information about the ordering of the nodes must be given. For real-world data,
this can be inferred from the estimation.
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Figure 1.: Graphon as the limiting object of a convergent graph sequence. The first three plots show the
(ordered) adjacency matrices of the growing graph at states with N = 80, 150, and 1000, respectively. The
depicted “pixel pictures” are coded with white and black for 0 and 1, respectively. The rightmost plot
illustrates the corresponding graphon.

3.2. Identifiability and Complexity

When applying the graphon framework to describe and model network data, it is important
to discuss the general identifiability and complexity of this type of model. This is specifically
relevant when it comes to developing strategies for inferring the graphon model from data, as
further discussed below.

Non-Uniqueness of the Graphon Model. An important aspect of the graphon model concern-
ing its estimation and interpretation is the identifiability issue. With regard to the fact that
the graphon model can be applied as a flexible nonparametric framework for network data (cf.
Section 2.3.3, paragraph about local edge density), it is important to note that its representa-
tion is not unique. To be precise, the specification of data generating process (4) is ambigu-
ous with respect to w(·, ·). This is due to the fact that for any measure-preserving bijection
φ : [0, 1] → [0, 1], the jointly permuted graphon w′(u, v) := w(φ(u), φ(v)) describes the exact
same network model as w(·, ·) itself. Here, “jointly permuted” refers to the two arguments of
w(·, ·) and “measure-preserving” means that µ(φ−1(A)) = µ(A) for any measurable sets A ⊆ [0, 1],
where φ−1(A) := {a ∈ [0, 1] : φ(a) ∈ A} and µ(·) is again the probability measure induced by
the standard uniform distribution. Diaconis and Janson (2008) state that the non-uniqueness
in process (4) is even more complicated. More generally, they show that two graphons w(·, ·)
and w′(·, ·) represent the same network model if and only if there exist two measure-preserving
mappings φ,φ′ : [0, 1] → [0, 1]—which are not necessarily bijections—such that

w(φ(u), φ(v)) = w′(φ′(u), φ′(v)) for almost all (u, v)⊤ ∈ [0, 1]2. (6)

As a simple example to illustrate this, they consider the two graphons w(u, v) = uv and w′(u, v) =
(2u mod 1)(2v mod 1) in combination with the two mappings φ(u) = 2u mod 1 and φ′(u) = u.
Under these specifications, relation (6) holds, but φ(·) is not bijective and thus there exists no
transformation φ̃′(·) to achieve w′(φ̃′(·), φ̃′(·)) ≡ w(·, ·).
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Figure 2.: Histogram approximation of graphon (8) with ordering according to canonical representation (7).
Left: graphon representation according to definition. Three right plots: histogram approximation in canon-
ical representation based on a resolution of 10, 30, and 50 blocks, respectively.

Guaranteeing Uniqueness. To circumvent this identifiability issue and to conceive uniqueness,
some papers postulate that

g(u) =
∫
w(u, v) dv is strictly increasing, (7)

see e.g. Bickel and Chen (2009), Chan and Airoldi (2014), Yang et al. (2014), or Latouche and
Robin (2016). Graphon formulations that fulfill this assumption are called to be of canonical
form. (Since some works suggested that g(·) being monotone non-decreasing would be sufficient
for guaranteeing uniqueness, it seems important to stress that this is actually not true, see e.g.
Borgs et al., 2010.) Note that the distribution of g(Ui) with Ui following distributional assump-
tion (4a) can be interpreted as the (asymptotic) distribution of the degree proportion. So together,
condition (7) appears to be well interpretable and, more importantly, very convenient for the es-
timation. Specifically, Yang et al. (2014) and Chan and Airoldi (2014) exploit the implication
of ui < uj if g(ui) < g(uj) to justify their degree-based node ordering strategy. More precisely,
they assume the empirical degree to be a reasonable estimate of the expected degree and thus
order the rows and columns of the adjacency matrix according to the degree realizations. In this
regard, condition (7) might yield only an imperfect identification, especially when the marginal
function possesses a low slope. The failure to identify plausible node positions under such a set-
ting is demonstrated in Figure 2 of Part II. In addition, see Nowicki and Snijders (2001, Sec. 4)
for an argumentation against an analogous identification strategy in the stochastic blockmodel
framework.

Requirements for Graphon Estimation. With regard to condition (7), we stress that there is
an even more important aspect to consider, namely the strong restriction on the generality of the
graphon model. To give an example, condition (7) excludes the model specification

w(u, v) = (uv)2 + ((1 − u)(1 − v))2 (8)

since there exists no measure-preserving function φ(·) such that w(φ(·), φ(·)) is well-defined and
fulfills condition (7). To be precise, it holds for all u ∈ [0, 1] that g(u) = g(1 − u) while the slices
w(u, ·) and w(1 − u, ·) are completely different, at least for values of u that are not close to 0.5.
As a potential workaround, one could choose a histogram approximation and order the blocks
accordingly. This is illustrated in Figure 2. (Note that, strictly speaking, the ordering here only
fulfills a non-decreasing profile of g(·).) This strategy, however, does not lead to a well-defined
limit, and an intermediate stage with many blocks results in the loss of the smoothness of w(·, ·).
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In this regard, the smoothness property is an essential requirement to make graphon estimation
feasible (Wolfe and Olhede, 2013, Gao et al., 2015). The canonical condition, on the other hand,
only serves to reduce complexity and to simplify the estimation. Hence, it seems worthwhile to
look out for an estimation procedure that does not require restrictive condition (7). This is exactly
what we aim for in Part II of this thesis, where we allow graphons to be descended from a more
general model class without the canonical constraint.

Apparently, when refusing such a strong restriction on the graphon’s marginal function, inferring
the node positions becomes much more complicated. A natural approach to overcome this issue
seems to be estimating U and w(·, ·) simultaneously. This, in turn, requires an iterative estimation
procedure. In this regard, we want to point out potential issues that might occur when solving
the estimation problem in a self-referential fashion.

Pitfalls under Iterative Estimation. Applying an iterative procedure for tackling graphon es-
timation means estimating U and w(·, ·) separately but conditional on the current state of the
respective other quantity. Such an approach is generally suitable to estimate models that depend
on unobserved latent variables (McLachlan and Krishnan, 2007). However, it also requires paying
particular attention to possible identifiability issues as they are highly predominant in the graphon
model. More precisely, as a consequence of identifiability issue (6), there is not just one ground-
truth graphon w(·, ·) that could be identified as the prescribed estimation target. Instead, one
aims to estimate any graphon from its equivalence class. Such an equivalence class can be defined
with respect to formulation (6) and the existence of corresponding measure-preserving mappings
φ,φ′ : [0, 1] → [0, 1], or, equivalently, through a set of all w′ : [0, 1]2 → [0, 1] that fulfill

P(YN = y;w(·, ·)) = P(YN = y;w′(·, ·)) for all y ∈ YN and N ≥ 2.

The question which then arises is whether there exists a representative in the equivalence class to
which an iterative procedure might converge. In this dissertation, we apply an EM-type algorithm
as a technique often used in the context of latent variables (Dempster et al., 1977). Specifically,
this implies the usage of the marginal conditional expectations. Based on that, we can directly
formulate a requirement on the class of graphon models for the estimation via an EM-type algo-
rithm. That is, the ground-truth graphon needs to represent an equivalence class that includes
at least one representative w(·, ·) which is identifiable with respect to E(Ui | y;w(·, ·)). This
graphon representation then serves as a stationary state of the algorithm since performing the
E-step conditional on w(·, ·) would yield persistent estimates for the node positions. (Note that
under a fully Bayesian approach, e.g. when employing an overall MCMC technique, this kind of
identifiability issue is often referred to as label switching problem, see Stephens, 2000. Due to the
additional stochasticity in the Bayesian context, this becomes even more complicated.) To give
an intuition of what this is about, we consider the counterexamples from Figure 3. Regarding
the left graphon, it exhibits a global symmetry, which is manifested in a way such that, for any
observed network y, it holds for any u = (u1, . . . , uN ) ∈ [0, 1]N that f(u | y) = f(1 − u | y)
with 1 − u = (1 − u1, . . . , 1 − uN ). This especially implies that the marginal conditional dis-
tribution f(ui | y) for any node i is symmetric around 0.5. Hence, this specification leads to
E(Ui | y;w(·, ·)) = 0.5 for all i = 1, . . . , N . Consequently, the latent positions are not marginally
identifiable. The model on the right is an analogous example of the partially symmetric case.
Here, the latent positions that correspond to the segments delimited by white and black lines,
respectively, are, as a whole, arbitrarily exchangeable. Nevertheless, with respect to such (par-
tially) symmetric models, we emphasize that this kind of behavior can be viewed as exceptional.
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3. Graphon Model

Figure 3.: Graphons that are not properly estimable with an EM-type algorithm. Left: globally symmetric
graphon specification where for any u ∈ [0, 1] it holds that w(u, v) = w(1 −u, 1 − v) for all v ∈ [0, 1]. Right:
partially symmetric model where segments delimited by white and black lines, respectively, are reversely
symmetric, i.e. w(u, v) = w(φ(u), 1 − v) for all v ∈ [0, 1] with φ(u) = 0.85 − (u− 0.1) for any u ∈ [0.1, 0.3]).

Therefore, it should only rarely represent the ground truth for real-world networks. In fact, this
symmetry-free condition can be interpreted as a modification of the twin-free condition formulated
in Borgs et al. (2010). In that regard, two points ui, uj ∈ [0, 1] are called twins if w(ui, ·) ≡ w(uj , ·),
and w(·, ·) is called twin-free if there exist no twins. Lastly, we emphasize that the assumption of
w(·, ·) being not symmetric in the above sense is a much less restrictive condition than canonical
condition (7).

Having discussed the specific difficulties in graphon estimation, we next give a brief overview of
the estimation approaches proposed so far.

3.3. Estimation and Inference

As for other models with latent variables, the estimation becomes particularly difficult because
neither the latent node positions nor the desired graphon specification is known. In addition, unlike
in ordinary models with latent variables, the node positions are mutually dependent conditional
on the connectivity pattern even when the graphon is fixed, i.e.

[ (Ui1 , . . . , Uin)⊥̸⊥ (Uj1 , . . . , Ujn′ ) ] | Y = y; w(·, ·) (9)

for any disjoint, non-empty subsets {i1, . . . , in}, {j1, . . . , jn′} ⊆ {1, . . . , N} with n, n′ ∈ {1, . . . , N−
1}. As a consequence of that, the node positions can be determined in a plausible way only with
respect to each other. The severe identifiability issue described above exacerbates the estimation’s
complexity. Nonetheless, the graphon model has gained a lot of attention during the last decade,
mainly stimulated by Diaconis and Janson (2008), Lovász (2012), and Bickel and Chen (2009),
and various estimation procedures have been proposed in the statistical literature.

Theoretical Approaches. Wolfe and Olhede (2013) develop a nonparametric graphon approxi-
mation by applying converging stochastic blockmodels, see also Rohe et al. (2011) and Choi et al.
(2012) for the general idea of stochastic blockmodels with a growing number of clusters. Choi
and Wolfe (2014) and Choi (2017) extend this strategy towards the situation of bipartite graphs
with separately exchangeable arrays. Olhede and Wolfe (2014) adopt the stochastic blockmodel
approximation to formulate a histogram estimator with a global bandwidth considered as a tuning
parameter. Gao et al. (2015) and Klopp et al. (2017) exploit these representation forms to discuss
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3.3 Estimation and Inference

optimal convergence rates for nonparametric graphon estimation in the dense and sparse regime,
respectively. To do so, they rely on constrained least squares estimators, see also Gao et al. (2016,
Sec. 4.3) for (partially observed and potentially sparse) bipartite graphs or Gao et al. (2020, Sec.
5.7) for a Bayesian approach. Following these approaches, however, generally requires information
about either the oracle or the optimally assigned node ordering. Except for very small networks,
such an optimization is a computationally infeasible task. Nonetheless, the stochastic blockmodel
approximation is generally one of the most propagated strategies in the graphon estimation liter-
ature, which can be concretely implemented by appropriate node ordering techniques.

Feasible Blockmodeling Approaches. An efficient implementation for fitting the histogram ap-
proximation is proposed by Amini and Levina (2018, Sec. 7). To be precise, they employ semidef-
inite programming approaches that naturally entail convenient regularization effects. As an al-
ternative, Chan and Airoldi (2014) and Yang et al. (2014) focus on graphon estimation under re-
strictive canonical condition (7). This makes the graphon identifiable with respect to its marginal
function g(·) and thus allows to solve the ordering task by sorting the nodes with respect to their
observed or estimated degrees. Applying the histogram estimator and potentially smoothing the
resulting histogram completes their approaches. Assuming multiple observations of the connec-
tivity pattern among a given node set, Airoldi et al. (2013) calculate distances between node pairs
based on which they infer corresponding blocks. By subsequently applying the stochastic block-
model approximation, they are able to show consistency of the corresponding graphon estimate.
In this direction, Zhang et al. (2017) develop an estimation of the distances between node positions
under the scenario of a single graph observation. By inferring individual local neighborhoods, they
construct a consistent smoothing estimator.

Probability Matrix Estimation. Many papers reduce the graphon estimation task to the problem
of estimating the probability matrix that generates the observed adjacency matrix in the sense of
independent Bernoulli trials. To be precise, they pursue to infer information about the individual
edge probabilities, i.e.

P(Yij = 1 | Ui = ui, Uj = uj) = w(ui, uj),

which is often referred to as estimating an “inhomogeneous” Erdős-Rényi model (Klopp et al., 2017,
Sec. 1). Taking this perspective, the estimation is no longer reliant on a concrete specification of
the model formulation (U = (U1, . . . , UN ), w(·, ·)). Instead, for estimating the edge probabilities
w(ui, uj), it is sufficient to smooth over “neighboring” edges, i.e. edges with position (ui′ , uj′) such
that ∥(ui, uj)⊤ − (ui′ , uj′)⊤∥ ≈ 0, where ∥ · ∥ is the Euclidean distance. The rationale for doing so
is apparently the assumption of

w(ui, uj) ≈ w(ui′ , uj′) if ∥(ui, uj)⊤ − (ui′ , uj′)⊤∥ ≈ 0.

In turn, the distances of node positions Ui and Uj can, in one way or another, be inferred from
the nodal connectivity behaviors yi• = (yi1, . . . , yiN ) with i = 1, . . . , N . Note that in this context,
the distances do not rely on specific node positions. As a consequence, such approaches allow
for circumventing the identifiability issue described above. Among others, some of the previously
mentioned works follow this narrowed perspective, see Gao et al. (2015), Klopp et al. (2017),
Gao et al. (2016), Gao et al. (2020), and Zhang et al. (2017). In a different direction, Chatterjee
(2015, Sec. 2.6) relies on spectral analysis and uses singular value decomposition with a universal
thresholding rule for graphon estimation. Based on that, he provides error rates which implicate

19



3. Graphon Model

consistency, see also Xu (2018). Note that the intuition of such a spectral method is to reduce the
data complexity by curtailing the rank of the matrix, hence often referred to as low-rank matrix
completion technique (Li et al., 2020). This can also be interpreted as smoothing out unusual
appearances.

General Shortcomings of Previous Approaches. As outlined above, graphon estimation has
been extensively elaborated so far from a theoretical point of view. Works following this perspec-
tive mostly apply the histogram approach or a more general stochastic blockmodel approximation.
This specifically means to formulate the graphon as a piecewise constant, discontinuous function.
In many real-world settings, however, it is more reasonable to assume a smooth transition in the
connectivity behavior (Airoldi et al., 2013, Olhede and Wolfe, 2014). In addition, discontinuous
estimates are often more difficult to interpret since nodes with nearby positions can be assigned to
different bins, providing no direct information about the present similarity in connectivity behav-
ior. On the other hand, most concretely implemented estimation procedures make unfavorable
but crucial assumptions. This includes repeated observations for the same node set (which is
only rarely the case in real-world applications) and the existence of a canonical representation,
describing a strong restriction on the generality of graphon models. Moreover, estimating merely
the edge probability matrix is apparently different from estimating the graphon itself and pro-
vides less global structural information. For example, it does not yield a complete picture of the
relations between nodes since it usually does not specify concrete node positions on a measurable
scale. Furthermore, the probability matrix estimate does not enable to simulate new networks
larger than the observed one. Altogether, the previous compendium of graphon estimation rou-
tines lacks techniques for a more fundamental graphon estimation. This is addressed in Part II
and Part III, where we aim to estimate smooth graphons and mixtures of smooth graphons,
respectively.

3.4. Applications and Links to Other Models

With reference to the last section, we have seen that graphon estimation is a complex matter due
to the high complexity inherent in the model. On the other hand, its great flexibility makes it
a very useful tool for modeling complex networks. In fact, while graphons were initially studied
as limiting objects of large graphs, they have meanwhile been demonstrated to serve as a rich
nonparametric modeling framework for finite networks as well. The structural scope covered by
this model class is quite large and involves diverse structural aspects. Overall, the graphon model
is very powerful when it comes to analyzing real-world networks.

Practical Applications. The graphon model can be employed for addressing different application
problems, some of which are the following. First, the model provides a well-interpretable visual-
ization of the structure within a network, which allows to draw conclusions about the network’s
composition. Second, and with regard to an interpretation on the node level, the model provides
information for investigating the “position” of an actor within the network. Other node-specific
characteristics, like centrality measures, can also be more accurately specified. While the empirical
counterparts are naturally subject to randomness, this can be offset by relying on the (inferred)
graphon model (Avella-Medina et al., 2020). Third, the graphon model can be utilized as a simple
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simulation tool that allows to sample from a generative process that mirrors the data. Such a
simulation approach facilitates networks of arbitrary sizes since the specification of w(·, ·) is un-
related to N . Fourth, as for other node-specific latent variable models, estimation procedures for
graphons can be constructed and implemented such that missing values can be easily handled by
just removing them from the calculations. In addition, predictions for individual edges can also
be easily deduced. Taken together, the graphon model can be employed as a sophisticated edge-
prediction method for incomplete network data (Zhang et al., 2017). Lastly, since the graphon
can be interpreted as density or intensity function on networks, this model seems particularly
suitable for network comparison. This is also supported by a model specification under which the
network’s size and structure are decoupled.

Note that the aspects listed above are only a selection of useful applications that by no means
claims to be exhaustive. In any case, these aspects underpin the exploratory character of the
graphon framework and support its applicability for analyzing network data. The first two issues
mentioned above are dealt with in Part II and Part III, where the former part additionally considers
aspect four. Part IV focuses on the last aspect, i.e. network comparison.

Furthermore, as a very flexible tool that is able to represent different types of network structures,
graphon models are intrinsically related to other models. In particular, a more or less direct
connection can be established to other node-specific latent variable models.

Formulation of the Erdős-Rényi-Gilbert Model. The works of Erdős and Rényi (1960) and
Gilbert (1959) are one of the earliest in the field of formalizing and modeling random graphs and,
together with other papers of these authors, they perhaps can be seen as laying the foundation of
statistical network analysis. Considering an undirected graph of size N , Erdős and Rényi (1960)
formulated a generative process where the set of edges results from drawing uniformly at ran-
dom |E| connections from all possible ones. Specifically, this means that, under a fixed number of
present connections, all graphs with |E| edges are equally likely. On the other hand, Gilbert (1959)
introduced a slightly different model where each connection emerges with a fixed overall probabil-
ity. Consequently, the Gilbert model involves an additional layer of randomness. Moreover, it can
be exactly represented by the graphon model with w(·, ·) being specified as globally constant at
the predefined edge probability. The general assumption of this model specification is apparently
an overall homogeneous behavior among all nodes. Although many theoretical properties could
be derived for this model class, it turned out quickly that it is most often not suitable for mod-
eling real-world networks. As a consequence of this shortcoming, it was the concrete intention
of later models to incorporate some heterogeneity in one way or another. In this direction, also
the graphon model can be interpreted as an “inhomogeneous” Erdős-Rényi-Gilbert model (Klopp
et al., 2017).

Stochastic Blockmodel Representation. It is well known that the stochastic blockmodel can
also be interpreted as a mixture of Erdős-Rényi-Gilbert models and, in fact, some works have made
use of this modeling perspective, see e.g. Daudin et al. (2008). As such, the stochastic blockmodel
is also covered by the graphon model and can be accordingly reformulated (see Latouche and
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Robin, 2016 or, for the reverse link, Olhede and Wolfe, 2014 and Airoldi et al., 2013). To do so,
w(·, ·) is formulated as a piecewise constant step function with a rectangular pattern, i.e.

w(u, v) =
K∑
k=1

K∑
l=1

1{ζk−1≤u<ζk}1{ζl−1≤v<ζl}pkl, (10)

where ζk = ∑k
l=1 αl for k = 1, . . . ,K and (P = [pkl]k,l=1,...,K , α = [αk]k=1,...,K) is the specification

of the stochastic blockmodel with K groups as defined in Section 2.3.3. In this regard, the
graphon model can be seen as a generalization of the stochastic blockmodel. As a theoretical use
case of this unifying perspective, Bickel and Chen (2009) derive conditions under which different
types of modularities yield consistent assignments in the blockmodel framework. Regarding the
practical modeling aspect, blockmodels have a long-standing tradition in applied network analysis,
especially in the context of social sciences, see e.g. the collective volume edited by Scott and
Carrington (2011). This applicability might, to some extent, transfer to the more general graphon
model. Its estimation, however, usually does not provide information about a suitable clustering of
nodes. Instead, the graphon model can be interpreted as an arrangement of nodes that—at least
partially—follows a smooth transition in the connectivity behavior (which is more appropriate
than a strict block structure in many situations). Nonetheless, grouping the network’s nodes is
often a proclaimed goal in concrete applications and specifically convenient to interpret. Despite
the graphon model’s general capability to cover block structures, so far, its estimation has not
been intended to explicitly do so. We address this deficit in Part III by adapting the specification
of the graphon model accordingly. First, in Chapter 6, we estimate stochastic blockmodels by
relying on the corresponding graphon representation. Based on that, and with regard to model
specification (10), we then relax the restriction of w(·, ·) possessing only strictly constant plateaus,
see Chapter 7. The resulting model specification consequently provides a framework that is
commonly more flexible and more realistic than the stochastic blockmodel. At the same time, its
estimation results still allow to infer groups of actors.

Extension to the Degree-Corrected Stochastic Blockmodel. As for the classical stochastic
blockmodel, it can be illustrated that the graphon model also covers its degree-corrected ver-
sion (Karrer and Newman, 2011). The difference between the classical and the degree-corrected
blockmodel refers to the individuality of nodes’ attractiveness. While in the standard variant,
the stochastic equivalence within groups also involves the expected degree, this is implemented in
a node-wise individual fashion in the degree-corrected approach. The latter model thus implies
incorporating a degree heterogeneity into the fundamentally equivalent behavior within blocks.
To represent such a connectivity through the graphon model, we can again rely on the model spec-
ification from Chapter 7 of Part III. According to those formulations, there are potentially smooth
shifts within groups that induce a varying behavior for nodes from the same block. These shifts
can also be exploited to represent differences in attractiveness. To be precise, for k = 1, . . . ,K
one can formulate

w(u, ·) ≡ ak(u) · w(ζk−1, ·) for all u ∈ (ζk−1, ζk),

where ak : [0, 1] → R+ is a continuous monotone non-decreasing function fulfilling ak(ζk−1) = 1.
This setting entails that two nodes from the same group will reveal the same basic connectivity
behavior (stochastically) but differ in the expected degree. Note that ak(·) is restricted through
ak(ζk) ≤ minv{1/w(ζk−1, v)}, which is a consequence of the Bernoulli-type stochastic blockmodel
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Figure 4.: Degree-corrected stochastic blockmodel with two communities of same size in graphon represen-
tation. The two left plots illustrate the graphon specification w(·, ·) and its corresponding slices w(u, ·)
with coloring according to u ∈ [0, 1], respectively. The two plots on the right represent twice the same sim-
ulated network of size N = 300, where node colors indicate once ui ∈ [0, 1] (left) and once the community
membership (right). Note that, according to the representation, the node colors of the left network directly
correspond to the colors of the slices, meaning that, for example, dark reddish nodes follow the behavior
described by the dark red profile.

that does not occur in the Poisson variant. As a workaround, slices might not only be strict
multiples of each other but differ slightly in profiles. Such a graphon specification is illustrated in
Figure 4, where slices of the same group exhibit similar but shifted profiles that imply fundamen-
tally similar connectivity behaviors with varying attractiveness.

Approximation of the Latent Distance Model. Furthermore, the graphon model is able to
represent the latent distance model of any dimension J ∈ N (Bickel et al., 2011, p. 2282), or at least
to approximate it arbitrarily well. A concrete specification with respect to the one-dimensional
distance model is given by Chan and Airoldi (2014, Sec. 5.1), see also Matias and Robin (2014, Sec.
2.2). To formulate a general connection, we again rely on the graphon specification from Chapter 7
of Part III. The intuition of this strategy is then decomposing the latent metric space SJ—which
is assumed to be bounded—into SJ−1 × S and subsequently partitioning SJ−1 into fine segments.
If the volumes of the segments are small enough, it is reasonable to neglect distances within these
segments. In this line, referring to the node positions contained therein, these segments specify the
corresponding blocks of the blockwise graphon specification. The behavioral differences resulting
through the distances in the direction of the J-th dimension are captured by the smooth differences
within the blocks formed in the graphon model. Increasing the number of segments and letting
their volumes converge towards zero improves the accuracy of the deduced graphon representation
with respect to the initial latent distance model. By employing this concrete relation, the graphon
model allows to approximate the latent distance model arbitrarily well. An illustration of this
link is depicted in Figure 5. As latent distance model used in this example, we employ the
normalized Euclidean variant of two dimensions. That means the latent space is given by [0, 1]2
and equipped with the Euclidean distance measure ∥ · ∥. Referring to model specification (2),
the left plot visualizes the edge probabilities under the setting with β0 = 0 and β1 =

√
2−1

and from the perspective of a node with position xi = (0.1, 0.45)⊤. In this graphic, the x-axis
and y-axis represent the scales of the values xj1 and xj2, respectively, for the reference position
xj = (xj1, xj2)⊤. The second plot illustrates the corresponding discretization under a resolution
of K = 10, which seems to preserve the original structure quite accurately. For this discretized
version, a corresponding graphon specification can be directly formulated, which is shown in the
third plot. Comparing the edge probabilities induced by the two-dimensional latent distance
model with those from the corresponding graphon approximation (rightmost plot of Figure 5)
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Figure 5.: Approximating the normalized two-dimensional latent distance model through the graphon
model. The two left plots illustrate the latent distance model with β0 = 0 and β1 =

√
2−1 (see for-

mulation (2)) and its “discretization”, each with the perspective from xi = (0.1, 0.45)⊤. Here, the x-axis
and y-axis refer to xj1 and xj2, respectively, yielding xj = (xj1, xj2)⊤. The third plot shows the graphon
representation that serves as a corresponding approximation. On the right, simulated edge probabilities
from the graphon representation are plotted against the corresponding equivalents from the latent distance
model. For illustrative purposes, the black cross visualized in all plots the position of the edge probability
for nodes i and j with xi = (0.1, 0.45)⊤ and xj = (0.3, 0.83)⊤. Specifically, for the graphon approximation,
the position is given as ({⌊0.45/ 1

K ⌋ + 0.1}/K, {⌊0.83/ 1
K ⌋ + 0.3}/K)⊤ = (0.41, 0.83)⊤ with K = 10.

reveals that a resolution of K = 10 already leads to a close approximation. Note, however, that
such a graphon specification does not converge towards a continuous function, which is why there
is no well-defined model for K = ∞. Yet, such an approximation appears appropriate and similar
results can also be achieved for latent distance models of higher dimensions. Lastly, according to
this relation, one can, to some extent, transfer the interpretation of the latent distance model.
That is, the latent space of the Ui, i.e. the unit interval, can be considered as reflecting an
underlying latent social space, where nearby positions imply similar social attributes, at least
within blocks.

Connection to Exponential Random Graph Models. As emphasized in the first paragraph of
Section 3.1, the graphon model belongs to the latent space approaches (see Section 2.3.2). As
such, it conceptually differs from approaches that explicitly focus on modeling and explaining local
structural patterns like the exponential random graph model. Nonetheless, the graphon model
also captures endogenous structural processes, although this is often difficult to attribute or to
explicitly incorporate. More precisely, the distribution of the frequency of any motif (meaning
simple finite subgraph) is uniquely characterized by the graphon model. This is described in detail
by Lovász and Szegedy (2006). An intuition on that can be given by performing the calculations
from (5) under an induced subgraph sampling without replacement for the drawing of nodes (cf.
injective homomorphism density (13) of the Appendix). For this purpose, let Gw(·,·)

N = (VN ,YN ) be
a random graph generated through graphon process (4) and Gw(·,·)

N

∣∣w/o-r
N ′ a corresponding induced

subgraph sample of size N ′ under uniform node drawing without replacement. Then it holds
that

P(G′ ⊆ Gw(·,·)
N

∣∣w/o-r
N ′ ) = t(G′, w(·, ·)) =

∫
[0,1]N′

∏
i<j:
y′

ij=1

w (ui, uj)
N ′∏
i=1

dui.

Hence, the probability that N ′ nodes—which have been drawn uniformly at random and without
replacement from a graphon-generated graph—exhibit the connectedness prescribed by G′ can
be directly calculated by solving the integral on the right-hand side. (Considering exemplarily
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triangular structure G′ from Figure 6, then the probability of drawing a triangle can be specified
as
∫∫∫

w(u1, u2)w(u1, u3)w(u2, u3) du1 du2 du3.) Given additionally that the graphon model de-
scribes a stationary random graph-generating process, the expectation for the number of motif
occurrences can be directly calculated, see Picard et al. (2008). To be precise, and with regard
to the classical notation in the exponential random graph model (see also Section 2.3.2), one can
formulate that

E(sG′(YN ); w(·, ·)) =
(
N

N ′

)
ρ(G′) t(G′, w(·, ·)),

where sG′(YN ) specifies the counts of subgraph G′ and ρ(G′) is the number of non-redundant
permutations of G′. For example, ρ(G′) is three in the two-star case and one for the triangle,
where possible concrete forms of realization can be specified as

• (1) {{v′
1, v

′
2}, {v′

1, v
′
3}} (2) {{v′

1, v
′
2}, {v′

2, v
′
3}} (3) {{v′

1, v
′
3}, {v′

2, v
′
3}} and

• (1) {{v′
1, v

′
2, v

′
3}},

respectively. Note that, however, deriving the full distribution of sG′(YN ) is rather complex. This
is because different subgraphs of Gw(·,·)

N , that are potential locations where the connectedness of
G′ might occur, can overlap, which thus induces a dependency on the individual occurrence prob-
ability. Addressing this issue, Latouche and Robin (2016) formulate a closed-form expression of
the (variational posterior) distribution of motif frequencies under particular circumstances. Coul-
son et al. (2016) apply the Stein–Chen method to achieve an appropriate Poisson approximation.
Conversely, Bickel et al. (2011) establish a sequence of subgraph patterns that is sufficient for
the graphon. Moreover, they study the asymptotic behavior when applying corresponding plug-
in estimators based on the method of moments approach. Further direct connections between
the graphon model and the exponential random graph model are elaborated by Chatterjee and
Diaconis (2013), Yin et al. (2016), and Krioukov (2016). More precisely, they aim to construct
graphon specifications that are closely related to exponential random graph models with basic
network statistics like the number of edges, two-stars, or triangles. Overall, defining a concrete
distribution for subgraph counts as in the exponential random graph model is not straightforward
for the graphon model, but it is possible in principle.

Taking together all the relations outlined above, a link to all key methods of statistical network
analysis can be established.
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In this last introductory chapter, we briefly want to recap the role of network data, outline the
current state of research in the graphon model literature, and highlight the contributions of this
thesis. Lastly, we will discuss research questions that have been left open and describe further
paths that could be taken.

Emergence of Network Science. The field of statistical network analysis has started to grow
tremendously in the last two decades, especially in recent years. The popularity of modeling such
data structures is driven by the fact that many systems from various disciplines can be represented
as networks. Thus, the competence to study and analyze these objects offers the potential to gain
deeper insights into the phenomena taking place therein. Even though the analysis of real-world
networks in the form of graphs can be traced back to the first half of the 20th century (e.g. see
Moreno, 1934 and Simmel and Wolff, 1950), the more recent interest in this area has perhaps been
stimulated in large part by Watts and Strogatz (1998). Already during the early stages, it became
apparent quite quickly that classical statistical approaches could not be transferred directly to
the network context. As a consequence, a new methodological branch arose, intending to cover
the particular dependency structure inherent in such type of data. In fact, as the network science
community grew and researchers worldwide started to intensively investigate network data, a
vast methodological compendium has evolved. This includes a considerable ensemble of different
modeling frameworks, which all have their own motivations and capabilities for covering different
structural aspects. More general hurdles in the modeling context, with which research has been
concerned over the last years, are graphs with directed or weighted connections, large networks,
sparsity, dynamic structures, and the presence of node- or edge-wise covariates. In particular,
these issues were also discussed for the graphon model, which, on the one hand, is a quite new
method compared to other network approaches and, on the other hand, has so far been considered
primarily as a theoretical construct rather than a practical modeling strategy.

Current State of Graphon Research. In its classical version, the graphon model has been in-
troduced for simple undirected graphs without additional exogenous effects (Lovász and Szegedy,
2006, Borgs et al., 2006, Bollobás et al., 2007). Moreover, the first proposed approaches for fit-
ting the model to network data described estimation routines that are based on an optimal node
positioning (Wolfe and Olhede, 2013, Gao et al., 2015). Such an optimization task, however, is
known to be NP-hard. Thus, to make the model more applicable, several works in the graphon
literature aimed for extending the model and developing feasible estimation algorithms. In this
line, Bickel and Chen (2009) introduced a global scaling parameter depending on the network size
to also allow for modeling sparse networks. A more flexible approach in this regard is given by
the graphon processes of Caron and Fox (2017), Borgs et al. (2018a), and Borgs et al. (2019a),
which extend the graphon’s domain from [0, 1]2 to R2

+ and assume a point process for the emer-
gence of nodes with respect to the time scale R+. Further works that address representing graph
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limits under the sparse regime are given by Bollobás and Riordan (2013), Borgs et al. (2015),
Borgs et al. (2018b), and Borgs et al. (2019b). Moreover, an approach to extend the graphon
model towards dynamic networks is presented by Pensky (2019). To formulate such a dynamic
framework, the graphon can be augmented by an additional dimension for time parameter t, i.e.
wt(u, v) = w(u, v, t). For the directed case, Diaconis and Janson (2008, Sec. 9) proposed what
they call digraphon, a specification that basically consists of multiple graphons determining point-
wise the probabilities of a multinomial-distributed dyadic event (Yij , Yji). By formulating a joint
probability for the dyadic pattern, this strategy aims to take account of reciprocity directly, see
also Cai et al. (2016). Lovász and Vesztergombi (2013) generalized this approach by allowing for
even more categories than the four possible dyadic outcomes. A notion for limits of weighted
graphs has been elaborated in Lovász (2012, Sec. 17), Diao et al. (2015), and Borgs et al. (2018a).
Note that this requires first to agree on an appropriate notion of graph homomorphisms under
the weighted setting, which is not unambiguous (Freedman et al., 2006). Furthermore, model-
ing strategies for incorporating covariates into the graphon model have been elaborated. Su et al.
(2020), Mao et al. (2021), and Chandna et al. (2022) followed the intuition that the latent space of
the node positions, i.e. the interval [0, 1], reflects a compressed scale for latent (social) attributes.
In this line, they formulated a model framework where similar node features imply nearby node
positions and vice versa. In contrast, Latouche et al. (2018) applied a logistic regression model
where, under the usage of a link function, a residual graphon complements the effect of covariates
on the edge probability. Taking all this together, the graphon model can apparently be extended
into various directions and thus presumably will still unfold a great potential to model real-world
networks. To this end, the development of graphon estimation approaches has been the subject of
large parts of the literature, see Section 3.3. Yet, most of these works are limited in different ways,
such as taking an exclusively theoretical perspective (Olhede and Wolfe, 2014, Gao et al., 2015),
considering the reduced problem of matrix estimation (Chatterjee, 2015, Zhang et al., 2017), or
applying a strongly restricted model class (Chan and Airoldi, 2014, Yang et al., 2014).

Main Contributions. Until now, the graphon model has hardly been used by practitioners at
all. For one thing, this is because estimation results are difficult to interpret. However, more
importantly, estimation procedures proposed so far are not suitable for applications because they
either do not provide feasible algorithms or imply too restrictive assumptions (cf. Section 3.3). In
Part II, we aim to address these shortcomings by presenting a practicable estimation routine that
yields reasonable results and showcasing the graphon model’s potential applicability. With regard
to simulations and real-world examples, it can be clearly demonstrated that this method allows
to appropriately capture the underlying network structure. One step further, the graphon model
is well known to be generally able to cover diverse structural aspects. This leads to intrinsic links
to the most common frameworks developed for modeling network structures, as emphasized in
Section 3.4. We can show that some of these modeling approaches can even be precisely covered by
the graphon model when applying appropriate representation formats. Following this direction,
in Chapter 6 of Part III, we adapt the methodological approach developed in Part II to enable
capturing block structures via the graphon model. These formulations are extended in subsequent
Chapter 7, where we additionally incorporate smooth behavioral changes within blocks. From a
different perspective, this can also be interpreted as including structural breaks into the smooth
graphon model. Again, by analyzing synthetic and real-world networks, we can demonstrate that
such a model specification has high capabilities to capture complex structures. As an additional
use case of the model formulation in Chapter 7 of Part III, we can show that this allows to
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establish graphon-based representations of further related network models. An attribute that
most of these other modeling approaches lack, however, is the potential to compare networks, see
Section 2.4. The graphon model, on the other hand, provides a predestined framework in this
regard. In Part IV, we take advantage of this circumstance and develop a size-independent testing
procedure on the equivalence of network structures. In this regard, the nonparametric comparison
of networks on the basis of statistical inference has remained an unsolved challenge up to now.

Open Issues and Future Work. Even though many works extend the graphon model in a more
applicable direction, most of these approaches cannot be readily applied in practice. This is pri-
marily because corresponding model formulations still lack proper estimation strategies. In this
regard, an iterative approach as the one proposed in Part II—which allows for estimating the
graphon and the latent positions simultaneously—might also provide an appropriate approach
for “upgraded” graphon models. In fact, first attempts in this direction lead to satisfying results.
This includes scenarios of networks with weighted edges, dynamic structure, and covariates, where
corresponding frameworks can be taken from the theoretical approaches developed in the papers
above. Yet, formulating and implementing proper extensions of this estimation procedure is a
complicated task in itself, at which one will face diverse difficulties. Moreover, when applying
corresponding algorithms to large networks, the bottleneck is the iteration step of determining
the highly dependent node positions (cf. expression (9)). Potential strategies to overcome this
issue might be, for example, a variational EM approach or a limited evaluation by relying on a
representative node subsample. Moreover, to achieve consistency, which is generally not provided
for the EM-type algorithm, one might switch to the MCEM strategy (McLachlan and Krishnan,
2007, Sec. 6.3). That is, employing intermediate states of the Gibbs-sampled node positions in-
dividually instead of taking summary values such as marginal means. The theoretical guarantees
generally provided by the MCEM algorithm might potentially also be transferable to the graphon
estimation setting. Having said that, in our studies, we found that the MCEM approach results
in less pronounced and blurrier outcomes, which is why we decided to utilize the EM-type ap-
proach. (Note that MCEM techniques would also allow to overcome the issue of “symmetric”
graphons as a pitfall under iterative estimation, see last paragraph of Section 3.2. This is be-
cause the intermediate states of the sampling sequence of node positions are individually reliable
even though their summarization is not.) Furthermore, with regard to the model formulation
of Chapter 7 of Part III, it seems worthwhile to elaborate the relations to other models more
thoroughly. This should also include studies about how accurately one can recover structures
of theoretical graphon representations imitating other modeling frameworks. This is particularly
relevant considering that it often remains unclear which modeling strategy is optimal for capturing
the present network structure. To tackle this issue, Li et al. (2020) developed a cross-validation
procedure for model selection in the network context, whereas Ghasemian et al. (2020) and Li and
Le (2021) discussed the mixing of several model fits based on different weighting strategies. How-
ever, such computationally intensive methods could be circumvented if a unified, overall superior
model could be found. Altogether, modeling and capturing the structure in complex networks
remains a challenge that will continue to concern scientific communities of various fields for some
time to come. This is especially so since such data structures have just demonstrated their ability
to reveal fascinating phenomena in complex systems.
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Appendix

Graph Limits and Exchangeable Random Graphs

As stated in the main part of the Introduction, the graphon model is a theoretical construct that
derives likewise from the theory of graph limits and the theory of exchangeable random graphs.
These two general concepts follow theoretical notions about complex graphs, which as such, often
appear to be reasonable and beneficial when modeling real-world networks in the form of their
graph representations.

Graph Homomorphism. To start with, the concept of graph limits is, in turn, based on the
concept of graph homomorphisms, meaning adjacency-preserving maps (Lovász, 2012). To be
precise, a graph homomorphism from graph G′ = (V ′, E ′) to graph G = (V, E) is defined through
a node mapping Γ : V ′ → V such that {v′

i, v
′
j} ∈ E ′ implies {Γ(v′

i),Γ(v′
j)} ∈ E . In this context,

G′ is said to be homomorphic to G, if there exists any homomorphism from G′ to G. In addition,
the number of homomorphisms of G′ into G is usually denoted by hom(G′,G). Moreover, the
homomorphism density as normalized homomorphism number is defined as

t(G′,G) = hom(G′,G)
|V||V ′| ∈ [0, 1].

To give an example, consider the two graphs G′ and G in Figure 6. For calculating hom(G′,G), we
are interested in the number of node triplets (v1, v2, v3)G in G that mirror the connectedness in
the node triple (1, 2, 3)G′ of G′. In general, with “connectedness” we mean exclusively the present,
not the absent edges. Here, we find that

hom(G′,G) = |{(1, 2, 4)G , (1, 4, 2)G , (2, 1, 4)G , (2, 4, 1)G , (4, 1, 2)G , (4, 2, 1)G ,

(1, 3, 4)G , (1, 4, 3)G , (3, 1, 4)G , (3, 4, 1)G , (4, 1, 3)G , (4, 3, 1)G}| = 12.

Based on that, we can directly calculate t(G′,G) = 12/63 ≈ 5.56%.

Figure 6.: Exemplary graphs to illustrate the concepts of graph homomorphism, number of homomorphisms,
and homomorphism density.
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Graph Limits. As one step further, we consider the scenario of graphs arising from (potentially
stochastic) processes and, based on that, we define corresponding graph sequences as (GN =
(VN , EN ))N=1,2,... with |VN | = N , for which holds that VN ⊂ VN+1 and EN ⊆ EN+1. The theory of
graph limits now postulates that the graph sequence (GN = (VN , EN ))N=1,2,... is convergent if the
homomorphism density of any fixed and finite subgraph G′ with respect to GN converges (Lovász
and Szegedy, 2006, Borgs et al., 2006, Borgs et al., 2008). That means, for any finite subgraph G′

there exists a value cG′ ∈ [0, 1] such that

t(G′,GN ) −→ cG′ . (11)

As far as it does not hold that cG′ = 0 for every G′ with |E ′| ≥ 1, this apparently supposes
an underlying process that describes the dense regime, i.e. under which |EN | = O

((N
2
))

. If
the generative process is assumed to be stochastic, convergence (11) needs to be understood as
convergence in probability. Note that, in fact, the graph sequence does not necessarily comprise
a record for all N ∈ N. Specifically, some processes might imply that multiple nodes emerge
simultaneously. In any case, the associated graph size is assumed to converge to infinity.

Induced Distribution on Induced Subgraph Sampling. In general, the homomorphism density
can also be interpreted as the probability that N ′ = |V ′| nodes from G = (V, E), which are
chosen uniformly at random—with replacement and under consideration of the order—, exhibit
the connectedness prespecified by G′ = (V ′, E ′). Thus, homomorphism densities can be used to
specify corresponding sampling distributions. As a sampling strategy, we here assume the induced
subgraph sampling under uniform drawing from V with replacement. That means, the graph
sample G

∣∣
N ′ = (V

∣∣
N ′ , E

∣∣
N ′) consists of the sampled nodes v∗

1, . . . , v
∗
N ′ and all the edges to be found

in G among theses nodes. Nodes that are drawn repeatedly are just labeled separately, where the
edges connected to the origin nodes will be included for all repeated nodes. To be precise, let
Γ∗ : V

∣∣
N ′ → V be the node assignment resulting from the random draw. Then {v∗

i , v
∗
j } ∈ E

∣∣
N ′

if and only if {Γ∗(v∗
i ),Γ∗(v∗

j )} ∈ E . Under this setting, the sampling distribution induced by the
homomorphism densities can be defined through

P({v∗
i , v

∗
j } ∈ E

∣∣
N ′ , i < j : {v′

i, v
′
j} ∈ E ′) = t(G′,G).

Combined with the graph limit concept, that means that, for convergent graph sequence (GN =
(VN , EN ))N=1,2,..., the probability of GN

∣∣
N ′ mirroring the connectedness within G′ converges to-

wards cG′ (where we still assume that the sample size N ′ reflects the size of G′). In formulae, that
can be expressed as

P(G′ ⊆ GN
∣∣
N ′) = t(G′,GN ) −→ cG′ , (12)

where G′ ⊆ GN
∣∣
N ′ means that the connectedness of G′ is reflected in GN

∣∣
N ′ , i.e.

{v′
i, v

′
j} ∈ E ′ ⇒ {v∗

i , v
∗
j } ∈ E

∣∣
N ′ for all i, j = 1, . . . , N ′ with i < j.

Applicability of Graph Limit Theory. When describing or analyzing networks represented as
graphs, the utility of the graph limit concept is two-fold. On the one hand, this theoretical
perspective allows to conceptualize graph structures in a more customized way and thus to es-
tablish new approaches for solving specific problems. In fact, “many results [e.g. about reg-
ularity] can be stated and proved for graphons in a more natural and cleaner way.” (Lovász,

38



Graph Limits and Exchangeable Random Graphs

2012, p. 18.) On the other hand, and with regard to a more practical evaluation, the fre-
quencies of local patterns can be used to specify sensible model-based processes. This is es-
pecially suitable because these frequencies already provide much information about the inherent
structure, even if the consideration is restricted to a few prescribed subgraph patterns. For in-
stance, again consider the triangular pattern on the left-hand side of Figure 6, generally defined
as G′ = ({1, 2, 3}, {{1, 2}, {1, 3}, {2, 3}}). Setting its frequency in relation to the frequency of
two-stars (defined as G′′ = ({1, 2, 3}, {{1, 2}, {1, 3}})) can then be used to quantify transitivity,
which in turn serves as an adequate measure to assess the triadic closure effect. Focusing on the
frequency of subgraphs is also the strategy that motivates the exponential random graph model
(Robins et al., 2007).

Link to Subgraph Frequencies. Note that the homomorphism density is not equivalent to the
(relative) subgraph frequency. This is simply because graph homomorphisms are not necessarily
injective; plus, for the homomorphism number, all isomorphic pattern repetitions are counted
separately. The latter source of deviation can be easily overcome by dividing hom(G′,G) by the
number of isomorphic transformations. This might be useful to avoid redundancy in the counting
process and to get results that are easier to interpret. For example, with regard to the triangle
example from Figure 6, considering {1, 2, 4}G as a single occurrence of pattern G′ rather than
treating all six isomorphic representations as individual ones might seem more intuitive. On the
other hand, the non-injective nature can be solved by introducing a corresponding counterpart.
Let therefore Γinj(·) be a node-mapping as before but injective, and inj(G′,G) be the corresponding
number of injective homomorphisms from G′ to G. Then we can define the injective homomorphism
density as

tinj(G′,G) = inj(G′,G)
|V|! / (|V| − |V ′|)! , (13)

see Borgs et al. (2008). Analogously, this can be interpreted as the probability that N ′ nodes
that are randomly chosen from G without replacement possess the connectedness of G′. We
stress, however, that the difference between t(G′,G) and tinj(G′,G) vanishes for a growing graph
since the number of possibilities for choosing the same nodes multiple times gets negligible in
comparison with all possible sample combinations. Taking additionally the number of isomorphic
transformations into account allows for formulating a direct connection to subgraph frequencies.
Again, with regard to the graphs from Figure 6, the absolute and relative frequency of triangles
in G can be calculated as 12/6 = 2 and (12/6)/(120/6) = 10%, respectively.

Overall, we emphasize that graph limit theory provides powerful tools and opens up new oppor-
tunities for analyzing networks. Moreover, the limiting object resulting from this theory—which
can be defined as the graphon (see main part)—can be used as an approximation of a large dense
graph. At that, the limiting object is often easier to handle for performing analytic calculations.

Exchangeable Random Graphs. Apparently, when dealing with graph limits, the connectivity-
related objective is the relative structural pattern rather than the absolute one. More precisely,
for specifying the homomorphism densities, one is not interested in how concrete nodes contribute
to specific subgraph frequencies. A differentiation of nodes might be carried out a posteriori
according to their structural role in the network but in no way a priori. Hence, the concrete labels
of the nodes are of no meaning and can be arbitrarily exchanged. This concept is thus called
exchangeability. In that sense, applying a (node-)exchangeable model means that the perspective
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on the network is always the same, no matter which nodal viewpoint is taken. With regard
to an underlying generative process M (also interpretable as a concrete model specification),
exchangeability can be formulated as the probabilistic invariance with respect to arbitrary node
relabeling, i.e.

P(Y = [yij ]i,j=1,...,N ; M) = P(Y = [yψ(i)ψ(j)]i,j=1,...,N ; M) (14)

for any permutation ψ : {1, . . . , N} → {1, . . . , N}. This concept of exchangeability can be further
transferred to infinite binary arrays Y = [Yij ]i,j=1,2,..., which, in the network context, would
represent the adjacency matrix of an infinite graph. The infinite array Y = [Yij ]i,j=1,2,... is then
called (jointly) exchangeable if for any N ∈ N

P(Yij = yij , i, j ∈ {1, . . . , N}) = P(Yij = yψ(i)ψ(j) , i, j ∈ {1, . . . , N})

for all [yij ]i,j=1,...,N ∈ {0, 1}N×N and all permutations ψ(·) on {1, . . . , N}. Hoover (1979) and
Aldous (1981) found out that the generative process of any exchangeable random {0, 1}-valued
array Y = [Yij ]i,j=1,2,... can be described as follows. Let U0, Ui, and Uij with i, j = 1, 2, . . .
be independently Uniform[0, 1]-distributed random variables, then there exists a corresponding
function H : [0, 1]4 → {0, 1} such that one can formulate

Yij ≡ H(U0, Ui, Uj , Uij). (15)

For symmetric arrays, which are the objects emerging in the undirected graph setting, one addi-
tionally assumes symmetry in the second and third arguments, i.e. H(·, ui, uj , ·) ≡ H(·, uj , ui, ·)
for all ui, uj ∈ [0, 1]. Moreover, to prevent self-loops, one specifies H(·, ui, ui, ·) ≡ 0. In the context
of graphs, Ui and Uij correspond to node-specific and edge-specific variables, respectively, whereas
U0 represents a global effect. In honor of the founders of this theory, proposition (15) is nowadays
often referred to as the Aldous-Hoover theorem.

Given the notions of graph limits and exchangeable random graphs, this brings us directly to the
graphon model. In this sense, it is demonstrated in the main part of the Introduction that the
graphon model derives from the generic process (15) and, at the same time, addresses graph limit
properties (11) and (12).
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5. Smooth Graphon Estimation

Contributing Article.

Sischka, B. and Kauermann, G. (2022). EM-Based Smooth Graphon Estimation Using MCMC
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Software Implementation.

The method developed and formulated in the paper is implemented in a free and open source
Python package that is publicly available on GitHub:

https://github.com/BenjaminSischka/GraphonPy.git

Moreover, all data sets used for demonstrating the applicability of our approach are freely acces-
sible. For information on concrete sources, see the specifications in the paper.
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A B S T R A C T   

This paper proposes the estimation of a smooth graphon model for network data analysis using principles of the 
EM algorithm. The approach considers both variability with respect to ordering the nodes of a network and 
smooth estimation of the graphon by nonparametric regression. To do so, (linear) B-splines are used, which allow 
for smooth estimation of the graphon, conditional on the node ordering. This provides the M-step. The true 
ordering of the nodes arising from the graphon model remains unobserved and MCMC techniques are employed 
to obtain position samples conditional on the network. This yields the E-step. Combining both steps gives an EM- 
based approach for smooth graphon estimation. Unlike common other methods, this procedure does not require 
the restriction of a monotonic marginal function. The proposed graphon estimate allows to explore node-ordering 
strategies and therefore to compare the common degree-based node ranking with the ordering conditional on the 
network. Variability and uncertainty are taken into account relying on the MCMC sequences. Examples and 
simulation studies support the applicability of the approach.   

1. Introduction 

The analysis of network data has achieved increasing interest in the 
last years. Goldenberg et al. (2010), Hunter et al. (2012), Fienberg 
(2012), Snijders (2011), and Salter-Townshend et al. (2012), respec-
tively, published survey articles demonstrating the state of the art in the 
field. We also refer to Kolaczyk (2009), Kolaczyk and Csárdi (2014), and 
Lusher et al. (2013) for monographs in the field of statistical network 
data analysis, see also Kolaczyk (2017). The statistical workhorse 
models for explaining structural patterns in static network data are 
exponential random graph models (ERGM), stochastic blockmodels (SBM) 
and latent distance models. More explicitly, ERGMs make use of an 
exponential family distribution to model the network’s adjacency matrix 
based on frequencies of local structural patterns. This model class was 
proposed by Frank and Strauss (1986) and is extensively discussed in 
Snijders et al. (2006). In comparison, SBMs as well as latent distance 
models make use of nodal latent quantities to determine specifically 
pairwise connection probabilities between nodes, which is done with 
reference to a parameterized model specification. These model classes 
were proposed in their fundamental forms by Holland et al. (1983) and 
Hoff et al. (2002), respectively. Regarding the SBM, we also refer to 
Snijders and Nowicki (1997) and Nowicki and Snijders (2001) for the 

introduction of a posteriori blockmodeling. 
A different modeling strategy, which is also based on nodal latent 

quantities, results from comprehending the network adjacency matrix 
Y = [Yij]i,j=1,…,N ∈ {0,1}N×N to be generated by a graphon model. This 
model as data generating process comes into play by assuming that we 
draw N random variables 

U1,…,UN ∼
i.i.d. Uniform[0, 1] (1)  

and, given Ui and Uj, simulate the network entries Yij conditionally 
independently through 

Yij|Ui = ui,Uj = uj ∼ Binomial(1,w(ui, uj)). (2)  

In this context, the function w(⋅, ⋅) is called a graphon (=graph function). 
In case of undirected networks, we additionally require symmetry so 
that Yij = Yji for i < j, and hence in principle we assume w(u,v) = w(v,u). 
This is what we focus on in this work. (Note that although the extension 
to directed networks seems convincing, one would need to take care of 
consequences concerning the theory of graph limits and exchangeable 
random graphs from which the graphon model concept is originated, see 
Lovász and Szegedy, 2006 or Diaconis and Janson, 2008.) We also stick 
with the commonly used convention of excluding self-loops, which 
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means Yii = 0 for i = 1, …, N. In general, this model specification implies 
a dense network. To be precise, the number of edges increases propor-
tionally to the squared number of nodes. Note that there also exist ex-
tensions for sparse networks. For example, Bickel and Chen (2009) make 
use of a global scale parameter which depends on the network size. 
However, such straightforward modifications often have other draw-
backs like the prevention of finite but densely connected clusters or 
hubs. This is why here, we stick with the initial model formulation. 

The graphon model is of practical use for different application 
problems. First, the model yields a convenient visualization of the 
network and its embedded structure, which allows characterizing the 
network’s organization and composition. In this regard, the graphon 
estimate can be used to compare networks of different sizes. Secondly, at 
the actor level, the model enables to investigate the “position” of a node 
in the network. Besides, other measures of node relevance such as cen-
trality can also be derived faithfully, even in the presence of uncertainty 
under which the empirical counterparts might fail (Avella-Medina et al., 
2018). Thirdly, the graphon model provides a simple simulation tool for 
sampling from a general model that mirrors the data. In this light, with 
regard to incomplete network data, missing links can be easily predicted 
(Zhang et al., 2017). All these aspects underpin the exploratory char-
acter of the graphon approach and support its applicability for network 
data analysis. 

In order to properly apply the graphon model and correctly interpret 
the results in the later sections, the interpretation of the model is sub-
sequently discussed in more detail. In addition, we illustrate particular 
difficulties and common pitfalls that need to be considered when 
developing a suitable estimation routine for the graphon model. 

1.1. Interpretability and comparison with other models 

The graphon model is a very flexible tool for representing different 
types of network structures. Hence, it is inherently related to other 
models, especially to those that are also based on latent variables. In this 
regard, the graphon model can be seen as a generalization of the SBM if 
smoothness of the graphon is neglected. The associated graphon is 
discontinuous because the SBM was developed to cover blockwise 
structural equivalence, which intrinsically describes a discrete, i.e., non- 
smooth concept. To be precise, any blockmodel can be represented as a 
graphon model by formulating w(⋅, ⋅) as a piecewise constant step 
function with a rectangular pattern, as illustrated by Latouche and Robin 
(2016), for example. The height and size of the rectangles are deter-
mined by the edge probabilities and community proportions in the given 
SBM, respectively. As a theoretical use case of this unifying perspective, 
Bickel and Chen (2009) derive conditions under which modularities 
yield consistent assignments in the blockmodel framework. Regarding 
the practical data modeling aspect, blockmodels have a long-standing 
tradition in applied network analysis, especially in the context of so-
cial sciences, see e.g. the collective volume edited by Scott and Car-
rington (2011). Hence, seeing the graphon model in this light provides 
an intuition for its applicability and emphasizes its field of application. 
This perspective can be broadened by relaxing the graphon represen-
tation as a strict step function. More precisely, continuous shifts within 
the blocks can be incorporated, yielding an extension of the SBM 
framework. The smooth graphon model, on the other hand, technically 
excludes strict block structures but can be interpreted as a partitioning of 
the network with smooth transitions in the connectivity behavior, which 
is often more plausible (especially when many actors would fall between 
clusters). Furthermore, the smooth graphon model involves simple 
latent distance models (e.g., see Matias and Robin, 2014, Section 2.2 or 
Chan and Airoldi, 2014, Section 5.1). From this perspective, the latent 
space [0, 1] of the Ui can be considered as a covering of, for example, 
social space spanned by (unobserved) social attributes, as motivated by 
Hoff et al. (2002). In general, supposing that w(⋅, ⋅) is smooth implies 
that two nodes i and j with ui ≈ uj are associated with similar slices, i.e., 
w(ui, v) ≈ w(uj, v) for all v ∈ [0,1]. Therefore, a fundamental implication 

of the smooth graphon approach is a structural similarity (in probabil-
ities) of nodes which are close with respect to the latent quantity. 
However, the changes in connectivity are smooth (as opposed to SBMs), 
and edge probabilities are not monotonic in relation to the distance of 
latent quantities (as opposed to latent distance models). In this light, 
node positions cannot simply be interpreted as community memberships 
and do not directly reflect the relationships between actors. Rather, they 
specify a more sophisticated (local) position within the network. 

In addition to the points made above, the more conceptual issue of 
endogenous network structure in graphon models is discussed in Section 
A.1 of the Appendix. This also includes a comparison with ERGMs. Thus, 
a connection can be established to all key methods of statistical network 
analysis. 

1.2. Identifiability 

As a very flexible approach for modeling network data, the graphon 
model suffers from non-identifiability, meaning that w(⋅, ⋅) is not unique 
with regard to the data generating process (2). This is because, for any 
measure-preserving bijection φ : [0, 1] → [0, 1], the permuted graphon 
w′

(u, v) = w(φ(u),φ(v)) yields the same network model as w(⋅, ⋅) itself. 
More generally, as has been stated by Diaconis and Janson (2008), two 
graphons w(⋅, ⋅) and w′

(⋅, ⋅) represent the same generating model if and 
only if there exist two measure-preserving mappings – not necessarily 
bijections – φ and φ′ : [0, 1] → [0, 1] such that w(φ(u),φ(v)) = w′

(φ′

(u),
φ′

(v)) for almost all (u,v) ∈ [0,1]2. Some papers therefore add a further 
attribute to achieve uniqueness, see e.g. Bickel and Chen (2009), Chan 
and Airoldi (2014), or Yang et al. (2014). The common setting to do so is 
to postulate that 

g(u) =
∫

w(u, v)dv (3)  

is strictly increasing in u, which leads to the so-called canonical repre-
sentation of the graphon w(⋅,⋅). Note that the distribution of g(Ui) with Ui 
following (1) can be interpreted as the (asymptotic) distribution of the 
degree proportion. However, the additional condition (3) implies a 
strong restriction of the model’s generality. This appears especially in 
combination with the common assumption of smoothness, meaning that 
w(⋅, ⋅) satisfies (at least piecewise) some Lipschitz or Hölder condition, e. 
g. see Olhede and Wolfe (2014), Chan and Airoldi (2014), or Gao et al. 
(2015a). For instance, considering the smooth graphon w(u,v) = (uv)2 +
((1 − u)(1 − v))2, it holds for all u ∈ [0, 1] \ {0.5} that g(u) = g(1 − u) 
while the slices w(u, ⋅) and w(1 − u, ⋅) are completely different. There-
fore, a rearrangement with respect to fulfilling (3) does not yield a 
well-defined graphon in this case, which implies that the data generating 
model does not possess a canonical representation. Regarding the gen-
eral intention of these graphon attributes, the smoothness of w(⋅, ⋅) is 
required to make graphon estimation feasible, while the canonical 
condition yields a unique representation and therefore reduces the 
complexity. However, the simplified arrangement of w(⋅, ⋅) under (3) is 
only required for certain estimation procedures. Specifically, ap-
proaches that rely on a degree-based node ordering exploit the impli-
cation of g(ui) < g(uj) ⇒ ui < uj, meaning that the higher the expected 
degree (given by N ⋅ g(ui)), the higher the latent quantity. Considering 
that this also applies asymptotically to the empirical degrees provides a 
justification for the degree-based ranking strategy. As an advantage in 
terms of generalization, this is not required for our approach, as will be 
illustrated in the following sections. We therefore consider the more 
general class of graphon models without the canonical constraint. This is 
a substantial advance compared to all methods requiring the canonical 
form because a smooth transition in the connectivity behavior only in 
the direction of an increasing degree does not seem to be a plausible 
assumption for real-world networks in general. Still, to enable equal 
conditions, we additionally discuss estimation under restriction (3). 
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1.3. Developments in graphon estimation 

The estimation of graphon models has recently found attention in the 
statistical literature. Wolfe and Olhede (2013) and Yang et al. (2014) 
discuss nonparametric graphon estimation including tests on the val-
idity of prespecified graphon shapes, see also Bickel and Chen (2009), 
Airoldi et al. (2013), Chan and Airoldi (2014), and Olhede and Wolfe 
(2014). In all these works, the formulated estimation procedure is based 
on approximating the graphon by an SBM, often also called histogram 
estimator. This is generally one of the most propagated strategies in the 
graphon estimation literature, see also Choi and Wolfe (2014) and Choi 
(2017). Gao et al. (2015a) discuss optimal graphon estimation for this 
kind of approximation. SBMs are, however, discontinuous models by 
definition, meaning that the associated graphon is discontinuous, i.e. not 
smooth. In this paper, in contrast, we focus on smooth graphon esti-
mation. For a general discussion on graphon models, we refer to Borgs 
et al. (2008), Lovász (2012), Diaconis and Janson (2008), Bickel and 
Chen (2009), and Orbanz and Roy (2014). Further, You (2020) lately 
launched an R package for graphon estimation. 

Expanding the scope of the objective, graphon estimation can 
generally be reduced to probability matrix estimation, where the goal is 
to gain information about the specific edge probabilities P(Yij = 1|Ui =

ui,Uj = uj) = w(ui,uj). From this perspective, the Ui are not well-defined 
components. (Instead, only their mutual proximity is employed.) Thus, 
it allows circumventing the identifiability issue mentioned above, which 
results from a model formulation that is not unique with respect to those 
Ui. Following this intuition, Chatterjee (2015) provides convergence 
results for general matrix estimation using singular value decomposi-
tion, see also Xu (2017). Gao et al. (2015a) and Klopp et al. (2017) make 
use of constrained least squares estimators for the edge probabilities to 
establish optimal rates of convergence in theory. Gao et al. (2016) 
extend this towards partially observed matrices/networks with biclus-
tering structures, see also Gao et al. (2015b) for a Bayesian approach. 
Zhang et al. (2017) develop a routine to estimate the edge probability 
matrix by applying neighborhood smoothing. Su et al. (2020) build upon 
this approach to incorporate nodal covariates, where they assume that 
nearby nodes with respect to Ui have similar node features and vice 
versa. However, all those works about probability matrix estimation 
describe a procedure to estimate specific graphon values at unspecific 
positions. This does apparently not lead to a smooth graphon estimate 
on the domain [0, 1]2, which is the focus of this work. 

In this paper, we propose to use penalized linear B-splines for graphon 
estimation since this easily allows to accommodate side constraints for 
the resulting estimate, e.g., symmetry in the form of w(u, v) = w(v, u) or 
condition (3) if required. This, in contrast, is difficult to accommodate in 

histogram or kernel-based estimation. For this B-spline regression 
approach, we borrow ideas suggested in Kauermann et al. (2013) for 
copula estimation. In this context, penalized estimation with B-splines 
has a long-standing tradition in data smoothing, starting with Eilers and 
Marx (1996) and Ruppert et al. (2003, 2009), see also Wood (2017b). 
Here, we extend this idea to graphon estimation. However, for 
smoothing the network data, we need information about the latent Ui, 
which in turn can only be estimated in relation to w(⋅, ⋅). Since the 
B-spline regression coefficients and the latent quantities Ui need to be 
estimated simultaneously, this is a typical task for an EM-type algorithm. 
Having a closer look at the E-step, MCMC techniques can be applied to 
approximate the complex conditional distribution of the Ui numerically. 
Together, this yields an MCEM algorithm. We recommend applying this 
procedure to networks with roughly a hundred to a thousand nodes, 
which should ensure both satisfying results and an acceptable bound for 
computational complexity. 

The rest of the paper is organized as follows. Section 2 displays the 
main ideas of pursuing an EM-based algorithm for smooth graphon 
estimation. Section 3 describes the procedure in detail. Sections 4 and 5 
showcase results for both simulations and real-world data examples, 
respectively. A discussion concludes the paper. 

2. Graphon representation and EM motivation 

We assume that the graphon w : [0, 1]2→[0, 1] is a smooth function, 
meaning that it satisfies some Lipschitz condition in the sense that there 
exists a constant M ≥ 0 such that 

|w(u, v) − w(u′

, v′

)| ≤ M‖(u, v)⊤ − (u′

, v′

)
⊤
‖ forall u, u′

, v, v′

∈ [0, 1]
(4)  

with ||⋅|| being the Euclidean norm. We say that w(⋅, ⋅) has a canonical 
representation if g(u) =

∫
w(u, v)dv is strictly increasing. We further as-

sume that w(⋅, ⋅) is symmetric and generates a network of size N through 
the following process. For N independently and uniformly distributed 
variables 

Ui ∼
i.i.d. Uniform[0, 1], i = 1,…,N,

we obtain the conditionally independent and symmetric network 
through 

P(Yij = 1|Ui = ui,Uj = uj) = w(ui, uj) (5)  

for 1 ≤ i < j ≤N, where Yji =Yij and Yii = 0. Regarding the modeling 
perspective, the variables Ui usually remain unobservable and as data 
we only obtain the observed network adjacency matrix y = [yij]i,j=1,…,N. 
Hence, the estimation of w(⋅, ⋅) involves the exploration of these latent 
variables. We therefore propose to tackle the estimation of w(⋅, ⋅) by 
using an EM algorithm. Specifically, we calculate (or rather approximate 
by simulation) the expected value E(U|y), representing the E-step. This, 
in turn, allows the estimation of w(⋅, ⋅) by using smoothing techniques, 
representing the M-step. For the E-step, we look at the conditional dis-
tribution of U = (U1, …, UN) given Y. Since U1, …, UN are independently 
Uniform[0, 1]-distributed, for u = (u1, …, uN), we obtain 

f (u|y)∝
∏

i,j

j>i

w(ui, uj)
yij (1 − w(ui, uj))

1− yij .

If we look at the univariate distribution of a single variable Uk given the 
entire network Y, this results through 

fk(uk|y)∝
∫

…
∫ ∏

i,j
j>i

w(ui, uj)
yij (1 − w(ui, uj))

1− yij du1…duk− 1duk+1…duN .

(6) 

Fig. 1. Normalized univariate linear B-spline basis, used as input for the tensor 
product operation to reformulate the graphon w(⋅, ⋅) as a B-spline function. The 
(equidistant) inner knots are denoted by τj with j = 1, …, K. 
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Apparently, both the joint and the marginal conditional distributions are 
too complex to be calculated analytically, in particular if N is large. We 
will therefore explore (6) by pursuing an MCMC approach, from which 
estimates of the latent values can easily be derived. Subsequently, in the 
M-step, we smooth the data relying on these current estimates for U1, …, 
UN. To do so, we make use of penalized B-spline regression, meaning 
that in (5), we express the graphon w(⋅, ⋅) as (approximate) B-spline 
function B(⋅, ⋅)θ and then estimate the vector of unknown spline co-
efficients θ by maximizing the penalized likelihood. Here, B(⋅, ⋅) = B 
(⋅) ⊗ B(⋅) represents a fixed bivariate spline basis constructed as tensor 
product of univariate linear spline bases, see Fig. 1. In theory, we require 
that there exists a parameter specification θ such that the true w(⋅, ⋅) is 
approximated sufficiently well by B(⋅, ⋅)θ. This, however, is guaranteed 
due to the smoothness assumption from (4) since any smooth function 
can be approximated through the B-spline representation with arbitrary 
accuracy (if the dimension of the basis is chosen high enough). Both the 
E- and the M-step will be introduced in detail below. Before doing so, 
however, we propose a simple first E-step which, in other approaches, is 
the presented estimate but here should serve as initialization of the EM 
algorithm. 

In recent literature, the need of the latent Ui for estimating w(⋅, ⋅) is 
usually circumvented by smoothing the ordered observed adjacency 
matrix y. Yet, in doing so, the preceding rearrangement of the rows and 
columns of the adjacency matrix should somehow reflect the ordering of 
the Ui. To be precise, this proceeding pursues to imitate the permutation 
ψ : {1, …, N} → {1, …, N} under which Uψ(i) ≤Uψ(j) for i < j, implying 
that Uψ(i) =U(i) with U(1) ≤U(2) ≤ … ≤U(N) defining the ordered vari-
ables Ui. However, since the Ui, i = 1, …, N, are not observable, we also 
have no direct information about ψ(⋅), which therefore needs to be 
estimated differently. A common approach to do so is to make use of the 
degree, i.e., to exploit the permutation ψ̂ : {1,…,N}→{1,…,N} under 
which 

degree(ψ̂ (i)) ≤ degree(ψ̂ (j)) (7)  

for i < j. This ordering strategy is applied directly for graphon estimation 
by Yang et al. (2014) and Chan and Airoldi (2014). The latter authors 
even derive asymptotic pointwise convergence rates for ψ̂ (⋅) towards 

ψ(⋅) in the sense that |ψ(k) − ψ̂ (k)|/N →
p

0 for all k = 1, …, N under 
N → ∞. However, that being said, applying ψ̂ (⋅) as an estimate for ψ(⋅) 
requires the assumption from (3) of a strictly increasing g(⋅), and even 
under the canonical condition, it might lead to unsatisfying results. We 
therefore consider it as a starting estimate in the initial E-step which will 
be improved in further iterations. Thus, we are also able to compare the 
degree ranking proposed by others and our final EM-based ordering. 
Note that B-spline regression, in contrast to matrix smoothing tech-
niques, requires specific positions of the latent quantities. Hence, in 
order to make the degree-based ordering applicable, we derive an initial 
estimate for Uk through 

û(0)
k =

rank(degree(k))
N + 1

, (8)  

where rank(degree(k)) is the rank from smallest to largest of the kth 
element of the tuple (degree(i) : i = 1, …, N). At that, tied ranks are 
broken up and assigned uniquely to consecutive integer values in 
random order. This is equivalent to defining û(0)

ψ̂ (k)
= k/(N+ 1), where i/ 

(N + 1), i = 1, …, N, represent the expected values of N ordered inde-
pendently Uniform[0, 1]-distributed variables. These estimates can be 
considered as an eligible initialization which allows to properly proceed 
with the EM algorithm. Besides, for an initial M-step, we can replace w(⋅ 
, ⋅) in (5) by its empirical version ŵ(0)

(⋅, ⋅), which we define by 

ŵ(0)
(u, v) = yψ̂ (⌈u N⌉)ψ̂ (⌈v N⌉)

,

where ⌈u N⌉ represents the smallest integer value greater or equal to u N. 

Note that ŵ(0)
(⋅, ⋅) just mimics the degree-ordered adjacency matrix 

scaled towards the unit square. Taken together, these calculations pro-
vide the initial estimates in the EM algorithm introduced in the next 
section. 

3. EM algorithm for smooth graphons 

3.1. MCMC approach for the E-step 

We pursue the E-step by exploiting the conditional distribution of U. 
This is done by constructing an appropriate MCMC Gibbs sampling 
scheme based on the full-conditional distribution of Uk. Note that by 
conditioning on Y and all Ui except for Uk, one gets 

fk(uk|u1,…, uk− 1, uk+1,…, uN , y)∝
∏

j∕=k

w(uk, uj)
ykj (1 − w(uk, uj))

1− ykj . (9)  

Additionally following the standard setting in the E-step and pretending 
that the graphon w(⋅, ⋅) is known, this allows us to easily draw from (9) 
using Gibbs sampling. To do so, we assume u<t> = (u<t>

1 ,…, u<t>
N ) to be 

the current state of the Markov chain. To update the kth component, we 
then set u<t+1>

i := u<t>
i for i ∕= k, while u<t+1>

k is obtained by drawing 
from (9). For this purpose, we make use of a normal proposal using a 
logit link. To be specific, let z<t>

k = log(u<t>
k /(1 − u<t>

k )) = logit (u<t>
k ). 

We then propose to draw z∗k = z<t>
k + Normal(0, σ2) under an appropriate 

choice for the variance σ2 and set u∗
k = logit− 1(z∗k) = exp(z∗k)/(1+

exp(z∗k)). Hence, the proposal density for Uk is proportional to 

q(u∗
k |u

<t>
k ) =

∂u∗
k

∂z∗k
ϕ(z∗k |z

<t>
k )

∝
1

u∗
k(1 − u∗

k)
exp
(

−
1
2
(logit (u∗

k) − logit (u<t>
k ))

2

σ2

)

,

where ϕ(⋅) is the standard normal density. Consequently, the ratio of 
proposals equals 

qk(u<t>
k |u∗

k)

qk(u∗
k |u<t>

k )
=

u∗
k(1 − u∗

k)

u<t>
k (1 − u<t>

k )
.

The proposed value u∗
k is accepted (which means setting u<t+1>

k := u∗
k) 

with probability 

min

{

1,
∏

j∕=k

[(
w(u∗

k ,u<t>
j )

w(u<t>
k ,u<t>

j )

)ykj
(

1 − w(u∗
k ,u<t>

j )

1 − w(u<t>
k ,u<t>

j )

)1− ykj
]

u∗
k(1 − u∗

k)

u<t>
k (1 − u<t>

k )

}

If we do not accept u∗
k, we set u<t+1>

k := u<t>
k . This update strategy will be 

performed for all components k = 1, …, N throughout the sequence 
t + 1, …, t +N. The consecutive continuation of successively updating 
all components completes the MCMC sampling. Based on the resulting 
Markov chain, we can then approximate the marginal conditional mean 
E(Uk|y) by taking the sample mean of the simulated values, observing an 
appropriate burn-in phase of the Gibbs sampler. To be specific, we use 
the MCMC sequence to estimate the conditional mean in the mth itera-
tion of the EM algorithm through 

u(m)

k =
1
n
∑n+b

s=1+b
u<s⋅N⋅r>

k , (10)  

where b ∈ ℕ represents a burn-in parameter, r ∈ ℕ describes a thinning 
factor, and n is the number of MCMC states which are taken into ac-
count. We then use the ranks of the conditional means to reorder the 
network matrix accordingly. This corresponds to setting the value of Uk 
according to (8) to 

B. Sischka and G. Kauermann                                                                                                                                                                                                               

47



Social Networks 68 (2022) 279–295

283

û(m)

k =
rank(u(m)

k )

N + 1
. (11)  

We denote the final estimate resulting from (11) after convergence of the 
EM algorithm by ̂uEM

k . Returning to the fact that w(⋅, ⋅) is unknown, in the 
next section, we describe its estimation conditional on the results from 
the E-step, which provides the M-step. 

3.2. Spline-based graphon estimation for the M-step 

3.2.1. Linear B-spline regression 
For smooth estimation of the graphon w(⋅, ⋅), we first formulate a 

spline-based approximation through 

wspline
θ (u, v) = B(u, v) θ = [B(u) ⊗ B(v)]θ, (12)  

where ⊗ is the Kronecker product and B(u) ∈ ℝ1×K is a linear B-spline 
basis on [0, 1], normalized to have a maximum value of one, cf. Fig. 1. 
The parameter vector θ ∈ ℝK2 

is indexed through 

θ = (θ11,…, θ1K , θ21,…, θK1,…, θKK)
⊤
.

Using (12), we obtain the likelihood 

l(θ) =
∑

i,j

j∕=i

[
yij log

(
Bijθ

)
+
(
1 − yij

)
log
(
1 − Bijθ

) ]
,

where Bij = B(ui) ⊗ B(uj). Taking the derivative leads to the score 
function 

s(θ) =
∑

i,j

j∕=i

B⊤
ij

(
yij

wspline
θ (ui, uj)

−
1 − yij

1 − wspline
θ (ui, uj)

)

Moreover, taking the expected second order derivative leads to the 
Fisher matrix 

F(θ) =
∑

i,j

j∕=i

B⊤
ij Bij

[
wspline

θ
(
ui, uj

)
⋅
(
1 − wspline

θ
(
ui, uj

) ) ]− 1
.

Our intention is to maximize l(θ), which could be done by Fisher scoring. 
The resulting maximizer does, however, not lead to a proper estimate by 
default, meaning to fulfill symmetry and boundedness. Furthermore, in 
case we aim to estimate a graphon with canonical representation, we 
need to incorporate the constraint from (3). We therefore impose addi-
tional (linear) side constraints on θ. Considering the canonical condi-
tion, we get the marginal function from (12) through 

gspline
θ (u) =

[

B(u) ⊗
∫ 1

0
B(v)dv

]

θ. (13)  

For normalized B-splines, we can easily calculate the integral, and for a 
standardized basis with equidistant knots, we obtain 
∫ 1

0
B(v)dv =

(∫ 1

0
B1(v)dv,

∫ 1

0
B2(v)dv,…,

∫ 1

0
BK(v)dv

)

=
1

K − 1

(
1
2
, 1,…, 1,

1
2

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
=:A

.

This allows rewriting (13) as gspline
θ (u) = [B(u) ⊗ A]θ. Hence, the mar-

ginal function gspline
θ (⋅) is also expressed as a (univariate) linear B-spline 

function and a monotonicity constraint is easily accommodated by 
postulating monotonicity at the knots τ1, …, τK. That is to say, we need 

gspline
θ (τl) − gspline

θ (τl− 1) > 0 ⇔ [(B(τl) − B(τl− 1) ) ⊗ A ]θ > 0 (14)  

for l = 2, …, K, which is a linear constraint on the coefficient vector. 
Imposing symmetry on the graphon can also easily be accommodated as 
linear constraints in the form of θpq = θqp for p ∕= q. Finally, we need 
wspline

θ (⋅, ⋅) to be bounded to [0, 1], which is again a linear constraint in 
the form of 0 ≤ θpq ≤ 1. All in all, we can formulate the side constraints 
as Cθ ≥ (0, − 1)⊤ and Dθ = 0 for matrices C and D chosen accordingly, 
where the constraint from (14) to impose a canonical representation can 
be added as desired (with >0 then being replaced by ≥0). Incorporating 
the above linear constraints into the task of maximizing l(θ), we obtain a 
quadratic programming problem, which can be solved using standard 
software (see e.g. Andersen et al., 2004 or Turlach and Weingessel, 
2013). 

3.2.2. Penalized estimation 
Following the motivation and idea underlying penalized spline 

estimation (see Eilers and Marx, 1996 or Ruppert et al., 2009), we 
additionally impose a penalty on the coefficients to achieve smoothness. 
This is necessary since we intend to choose a large K, and unpenalized 
estimation will lead to wiggled estimates. To do so, we penalize the 
difference between “neighboring” elements of θ. Let therefore 

L =

⎛

⎜
⎜
⎜
⎜
⎝

1 − 1 0 … 0
0 1 − 1 … 0
⋮ ⋱ ⋮
0 … 0 1 − 1

⎞

⎟
⎟
⎟
⎟
⎠

∈ ℝ(K− 1)×K  

be the first order difference matrix. We then penalize [L ⊗ I]θ and 
[I ⊗ L]θ, where I is the identity matrix of size K. This leads to the 
penalized likelihood 

lP(θ, λ) = l(θ) −
1
2

λθ⊤Pθ,

where P = (L ⊗ I)⊤(L ⊗ I) + (I ⊗ L)⊤(I ⊗ L) and λ serves as smoothing 
parameter. The corresponding penalized score function is given through 

sP(θ, λ) = s(θ) − λPθ  

and the penalized Fisher matrix in the form of 

FP(θ, λ) = F(θ) + λP.

Following this methodology, the estimate apparently depends on the 
penalty parameter λ, which is expressed in the notation. Setting 
λ → 0 yields an unpenalized fit, while setting λ → ∞ leads to a constant 
graphon, i.e. an Erdős-Rényi model. Therefore, a data-driven approach 
is necessary in order to determine the smoothing parameter λ. Here, we 
follow Kauermann et al. (2013) and make use of the Akaike Information 
Criterion (AIC) (Hurvich and Tsai, 1989, see also Burnham and Ander-
son, 2010). To do so, we define the corrected AIC through 

AICc(λ) = − 2 l(θ̂P) + 2 df(λ) +
2 df(λ)(df(λ) + 1)

(N(N − 1)) − df(λ) − 1
,

where θ̂P is the penalized parameter estimate and df(λ) represents the 
degrees of freedom of the model. We define the latter in the common 
way as the trace of the product of the inverse penalized Fisher matrix 
and the unpenalized Fisher matrix, see Wood (2017a, page 211 ff.), i.e., 

df(λ) = tr
{

F− 1
P (θ̂P, λ)F(θ̂P)

}

with tr{M} being the trace of a matrix M. We subsequently denote by 
ŵ(1)

(⋅, ⋅) and ŵEM
(⋅, ⋅) the penalized B-spline estimates of w(⋅, ⋅) in the 

first and the final EM iteration (i.e. after convergence), meaning that 
ŵ(1)

(⋅, ⋅) and ŵEM
(⋅, ⋅) are based on û(0)

= (û(0)
1 ,…, û(0)

N ) and ûEM
= (ûEM

1 ,
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…, ûEM
N ), respectively. Hence, these two estimates allow to evaluate the 

gain achieved by our EM approach in comparison with the unprocessed 
degree ordering proposed by others. As is well known, the EM algorithm 
can be trapped at local maxima of the likelihood (or, in this case, at local 
minima of the corrected AIC). Thus, depending on the specific data 
situation, it might be recommendable to repeat the algorithm several 
times to achieve an optimal fit. 

3.3. Information on ranking 

As discussed earlier, the Ui are uniformly distributed and it is helpful 
to order them such that U(1) ≤U(2) ≤ … ≤U(N). Considering the degree- 
based ordering ψ̂ (⋅) from (7) as appropriate representative that provides 
a permutation-invariant labeling (under appropriate handling of ties), 
this allows to define the (degree-related) ranking density fψ̂ (k)(uψ̂ (k)|y). 

For the sake of simplicity, we collapse ψ̂ (k) to (k) so that henceforth 
f(k)(u(k)|y) and U(k) refer to the node with the kth lowest degree. (For 

other quantities, the notation applies accordingly.) This ranking density, 
however, is again difficult or even impossible to calculate analytically. 
For a numerical approximation, the full-conditional density of U(k) can 
be given as 

f(k)(u(k)|u(− k), y)∝
∏

i∕=k

w(u(k), u(i))
y(k)(i) (1 − w(u(k), u(i)))

1− y(k)(i) , (15)  

where the indices of u(− k) = (u(1), …, u(k− 1), u(k+1), …, u(N)) and y(k)(i) 
refer to the node labeling after the permutation according to the degree- 
based ordering. In that regard, the MCMC sequence (after burn-in phase 
and appropriate thinning) provides information about the conditional 
distribution of U given the network Y. Hence, for the marginal condi-
tional distribution of U(k), we can follow a Monte Carlo integration 
approach, see Gelfand and Smith (1990, Sections 2.2 and 2.3), and 
calculate 

f(k)(u(k)|y) ≈
1
n

∑n+b

s=1+b
f(k)(u(k)|u<s⋅N⋅r>

(− k) , y), (16)  

where u<t>
(− k) = (u<t>

(1) ,…, u<t>
(k− 1), u

<t>
(k+1),…, u<t>

(N)
) is the tth state of the Gibbs 

sampling sequence without the kth component after degree-related 
permutation and b, r, and n are interpreted as in (10). For this pur-
pose, the unspecified normalizing constant in (15) can be approximated 
by a Riemann sum since we assume w(⋅, ⋅) to fulfill certain continuity 
properties. Moreover, again considering w(⋅, ⋅) as unknown, we employ 

ŵ(1)
(⋅, ⋅) or ŵEM

(⋅, ⋅) as estimate in (15) and denote by ̂f
(1)
(k) (⋅|y) or ̂f

EM
(k) (⋅|y)

the resulting outcome of (16), respectively. This allows to directly assess 
the appropriateness of both the degree-based and the EM-based node 

Table 1 
Exemplary graphons considered for simulations. For the second graphon speci-
fication, Φ(⋅) and F𝒩(0,0.25)(⋅) denote the cumulative distribution functions of the 
normal distribution with parameterization (μ, σ2) = (0, 1) and (0, 0.25), 
respectively.  

ID Graphon 

1 w1(u,v) = 0.8(1 − u)(1 − v)+ 0.85(u⋅v)
2 w2(u,v) = 0.5⋅{F𝒩(0,0.25)(Φ− 1(u))⋅F𝒩(0,0.25)(Φ− 1(v))+ [1 − F𝒩(0,0.25)(Φ− 1(u))]⋅ 

[1 − F𝒩(0,0.25)(Φ− 1(v))]}

Fig. 2. Graphon estimation based on linear B- 
splines (including the canonical restriction from 
(14)) and û(0) for Graphon 1 (top left) from 
Table 1. The “one-step” graphon estimate ŵ(1)

(⋅ 
, ⋅) given a simulated network of size N = 500 is 
depicted at the top right. The plot at the bottom 
left illustrates the estimated û(0)

i versus the true 
simulated ui. The three lower right plots show 
the approximated conditional distribution of 
U(k) (based on the MCMC sequence and with 
respect to the given graphon estimate) for some 
selected indices. The dashed vertical lines (see 
also numbers in the box annotations) represent 
the estimates û(0)

(k) .   

B. Sischka and G. Kauermann                                                                                                                                                                                                               

49



Social Networks 68 (2022) 279–295

285

ordering, relating them to the corresponding graphon estimates. This 
completes the procedure of the EM-type algorithm and any related 
evaluation concepts. 

4. Simulation studies 

For evaluating our graphon estimation approach, we first consider 
networks generated from a known ground truth. More precisely, for each 
of the two graphons from Table 1, we simulate networks with dimension 
N = 500 using the data generating process (5). The first graphon has a 

canonical representation, while the second is more general and does not 
possess a representation such that g(⋅) from (3) is strictly increasing. 

4.1. Canonical graphon estimation 

We start with Graphon 1 and demonstrate the benefits of applying 
the E- and M-step iteratively. This will be done in comparison with 
ordering the nodes based on the degree, i.e., using ψ̂ (⋅), and applying the 
M-step only once. We call the latter approach the “one-step” estimator 
since it corresponds to applying one iterative step of the EM algorithm. 
This approach is comparable to other degree-based graphon estimation 
procedures. Note that by proceeding with the EM algorithm, the 
ordering strategy does no longer rely merely on the marginalized con-
nectivity, but on the full information about connectivity behavior. To be 
precise, the ordering is then based on yi• = (yi1, …, yiN) instead of degree 
(i) =

∑
jyij. Thus, applying further iterations should generally improve 

the model fit. To evaluate this with regard to Graphon 1, we first 
consider the “one-step” estimate ŵ(1)

(⋅,⋅), which is shown in the top right 
panel in Fig. 2. Apparently, this model fit is not convincing when 
compared to the true graphon at the top left, which can be traced back to 
poor estimates of the Ui. To illustrate this, we compare û(0)

i as defined in 
(8) with the true simulated values ui, see the bottom left plot in Fig. 2. 
Obviously, no concordance is visible, which reveals the inadequacy of 
the degree-based node ordering. In addition, we estimate the ranking 
density of U(k) as proposed in (16), which, for three selected indices, is 
plotted in the bottom right panels, including the corresponding initial 
estimates û(0)

(k) (vertical dashed lines). This shows that the û(0)
(k) are not 

well represented by the respective conditional distributions. 

Fig. 3. Graphon estimation for Graphon 1 (top 
left) from Table 1, based on the EM algorithm 
using û(0) from (8) as initialization and 
excluding the canonical restriction from (14). 
The final graphon estimate ŵEM

(⋅, ⋅) given a 
simulated network of size N = 500 is depicted 
at the top right. The plot at the bottom left il-
lustrates the comparison between the estimated 
ûEM

i and the true simulated ui. The three plots at 
the bottom right show for some selected indices 
the approximated conditional distribution of 
U(k) with respect to the graphon estimate in the 
top right panel. The dashed vertical lines (see 
also numbers in the box annotations) represent 
the estimates ûEM

(k) .   

Fig. 4. Trajectory of the estimate ŵ(m)
(u, v) for Graphon 1 from Table 1 at 

selected positions (u, v) ∈ [0, 1]2 for the proceeding EM iterations m = 1, …, 30. 
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Fig. 5. Graphon estimation for the non- 
canonical Graphon 2 (top left) from Table 1, 
based on the EM algorithm using û(0) from (8) 
as initialization and excluding the canonical 
restriction from (14). The final graphon esti-
mate ŵEM

(⋅, ⋅) given a simulated network of size 
N = 500 is depicted at the top right. The plot at 
the bottom left illustrates the estimated ûEM

i 
versus the true simulated ui. The three lower 
right plots show for some selected indices the 
approximated conditional distribution of U(k) 
with respect to the graphon estimate in the top 
right panel. The dashed vertical lines (see also 
numbers in the box annotations) represent the 
estimates ûEM

(k) .   

Fig. 6. Final graphon estimates ŵEM
(⋅, ⋅) for the non-canonical Graphon 2 from Table 1, based on the EM algorithm using different uninformative random ini-

tializations. For all six repetitions, the same simulated network of size N = 500 was used. Additionally, the corresponding penalized likelihood and the corrected AIC 
are given beneath each estimation result. 
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Accordingly, the conformity between ŵ(1)
(⋅, ⋅) and û(0) is rather poor. 

Summarizing the estimation results, we can conclude that in this case 
the degree ordering is not suitable to achieve an appropriate estimate of 
the true node ordering with respect to the data generating model. This 
happens even though the graphon has a canonical representation. 
Consequently, the “one-step” estimator also results in a very poor fit to 
the underlying true graphon. 

To correct the node ordering and to improve the graphon estimate, 
we subsequently iterate between the E- and the M-step. The final EM 
estimate (i.e., after convergence) for Graphon 1 is shown in the top right 
plot in Fig. 3, where, in contrast to ŵ(1)

(⋅, ⋅), the true structure is clearly 
captured. Regarding the final EM-based estimates ûEM

i , the comparison 
with the true values ui now reveals a reasonable ordering (see Fig. 3, 

bottom left). Moreover, here the conditional distributions of U(k) in 
relation to the estimates ûEM

(k) indicate a plausible positioning for the 
same selected indices as above (bottom right plots). As an overall 
conclusion, the proposed EM algorithm provides convincing results even 
if the initial node ordering based on the degree is not adequate. 

Finally, to explore the convergence rate, we evaluate graphon values 
at selected positions throughout the algorithm, which is illustrated in 
Fig. 4. In doing so, we see that after about eight to twelve iterations a 
reasonable convergence occurs. Note that although Graphon 1 has a 
canonical representation, the canonical restriction from (14) has not 
been incorporated in the proceeding EM iterations. This is because the 
unrestricted estimate turned out to be similarly good. 

4.2. Non-canonical graphon estimation 

For a further evaluation, we now look at Graphon 2, which does not 
provide a canonical representation and thus is intractable for simple 
degree-based estimation procedures. We demonstrate that our proposed 
method, however, is also able to handle such unrestricted graphons. The 
marginal function g(⋅) as defined in (3) is constant here at 0.25, meaning 
that the degree is completely uninformative with regard to the node 
ordering. Nonetheless, we stick with the degree-based initialization as 

Table 2 
Details about real-world networks used as application examples.   

Number of 
nodes 

Average 
degree 

Overall 
density 

Facebook friendships 333 15.13 0.046 
Military alliances 141 24.16 0.173 
Human brain functional 

coactivations 
638 58.39 0.092  

Fig. 7. Facebook ego network with node coloring referring to û(0)
i (left) and ûEM

i (right).  

Fig. 8. Graphon estimation for the Facebook ego network. The graphon estimate ŵEM
(⋅, ⋅) (in log scale) is depicted on the left. The three plots on the right show the 

approximated conditional distribution of U(k) (with respect to the given graphon estimate) for some selected indices. The dashed vertical lines (see also numbers in 
the box annotations) represent the estimates ûEM

(k) . 
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proposed above to show that the EM algorithm is capable of capturing 
the underlying structure even under improper initialization. We exclude 
the canonical side constraint from (14) since we now explicitly want to 
enable a flexible marginal function. The final graphon estimate ŵEM

(⋅, ⋅)
for a simulated network of dimension N = 500 is depicted in the top right 
plot in Fig. 5, where the structure of the true graphon (top left) is fully 
captured. This is accompanied by a very good concordance between the 
estimated ûEM

i and the true ui. Consequently, the estimates ûEM
(k) are well 

covered by the corresponding ranking densities after (16), which is 
illustrated for three selected indices in the stacked plots at the bottom 
right. 

To showcase the performance of our method in more depth, we 
consider another simulated network (N = 500) under Graphon 2 and 
apply the estimation procedure several times with different random 
initializations. More precisely, instead of using the degree-based 
ordering from (8), we set û(0) as a random permutation of (i/(N + 1) : 
i = 1, …, N). This proceeding then also exemplarily characterizes the 

appearance of the EM algorithm being trapped at local minima of the 
AIC. Fig. 6 illustrates the final estimates for six such randomly initialized 
repetitions. Although we start each run with a completely uninformative 
random initialization, in four out of six final estimates, the structure of 
the original graphon can instantly and clearly be recognized. Yet, the 
estimates in the top right and bottom left panels seem to display 
differing structures. In fact, these estimates exhibit the appearance of 
segment swaps and reversals. For instance, in the graphon estimate in 
the bottom left panel, the upper and the lower parts of the domain [0, 1] 
are swapped and, in addition, the originally lower, here upper part is 
reversed. However, as mentioned in Section 1.2, applying permutations 
to the graphon has no effect on the network generating model itself. In 
this light, the structure of the true graphon is always well captured, 
albeit in some cases in a different form of representation. Thus, our al-
gorithm yields very good estimates even under uninformative initial 
node ordering and is therefore not (crucially) dependent on the initial-
ization. Nevertheless, the results can be distinguished. Looking at the 
respective AIC values beneath the graphon estimates in Fig. 6, we see 
that the four smoother estimates result in smaller values, while the 
occurrence of a “jump” – caused by an only piecewise correct merging of 
nodes – leads to increased AIC values. This illustrates that a random 
node ordering as initial E-step can be applied in combination with the 
AIC in order to obtain an optimal smooth graphon estimate. 

Having demonstrated the applicability of our approach, the above 
results can furthermore be employed to exemplify possible use cases. 
Regarding the fact that the estimates from Figs. 5 and 6 are based on 
different simulated networks, they can be considered as independent 
and therefore allow to conduct a structural comparison on the basis of 
graphon estimates. This is elaborated in Section A.2 of the Appendix. 

5. Real-world data examples 

We complete the paper by analyzing real-world networks. To do so, 
we consider network data from three different domains, namely from 

Fig. 9. Graphon estimation for the military 
alliance network (top left, with coloring refer-
ring to ûEM

i ∈ [0, 1]). The graphon estimate 
ŵEM

(⋅, ⋅) (in log scale) is depicted at the top 
right. The lower plot shows the world map, 
using the same color scheme for ûEM

i . As an 
isolated group, China, Cuba, and North Korea 
(colored in pink) have not been included in the 
estimation routine. Countries which have no 
strong agreement with any other country and 
hence do not appear in the data set are colored 
in gray.   

Table 3 
List of non-allied states with highest edge probabilities and allied states with 
lowest edge probabilities, first five relationships each. The estimated edge 
probabilities are derived from the fitted graphon model.  

Status States Edge probability 

Non-allied 

Ethiopia – Ivory Coast 0.5673 
Mauritania – Sudan 0.5651 
Finland – Turkey 0.5578 
Mauritania – Yemen 0.5533 
Ethiopia – Sierra Leone 0.5495 

Allied 

France – Senegal 0.0199 
Central African Republic – France 0.0214 
France – Gabon 0.0218 
Comoros – France 0.0234 
Sudan – Uganda 0.0679  
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sociology, political science, and neuroscience. Details about the net-
works are given in Table 2, which reveal differences in size and average 
degree. However, all considered networks have an overall density of 
almost or more than five percent and therefore can be seen as rather 
dense graphs. For the EM-based graphon estimation, we use degree 
ordering as initialization where the structure seems appropriate. 
Otherwise, we apply random initialization and select the best outcome 
over several repetitions. 

5.1. Facebook ego network 

A very common application and one of the roots of social network 
analysis are friendship networks. Here, we consider a Facebook ego 
network which has been collected by McAuley and Leskovec (2012) 
and is available on the Stanford Large Network Dataset Collection 
(Leskovec and Krevl, 2014). This ego network, consisting of 333 actors, 
is depicted in Fig. 7 with two different node orderings (represented by 
coloring). The left panel illustrates the initial degree ordering, while on 
the right, coloring refers to the final EM ordering. The latter seems 
much more appropriate with respect to the network structure. Hence, 
the initial degree ordering can be improved distinctly through our 
iterative proceeding. Moreover, the inherent structure of the network 
can be recognized in the corresponding final graphon estimate ŵEM

(⋅,
⋅), which is shown on the left in Fig. 8. For example, the connectivity 
pattern among the bundle of nodes in the center of the lower network 
part with roughly ûEM

i ∈ [0.65,1] (see right network) is captured in the 
graphon estimate through the intense region at the bottom right. 
Similarly, other connected node bunches can also be allocated. In 
addition to this recognizable structure, the estimates ûEM

(k) for some 
selected indices are adequately represented by the corresponding 
conditional distributions of U(k), which underlines the appropriateness 
of the graphon estimate ŵEM

(⋅, ⋅). Exploiting the possibility of repre-
senting network structure in the form of graphons, we can, in addition, 
compare this ego network to another one. This is outlined in Section 

A.2 of the Appendix. 

5.2. Military alliance network 

As second real-world network example, we consider strong military 
alliances among the world’s nations. For that purpose, we use data from 
the Alliance Treaty Obligations and Provisions project (Leeds et al., 
2002), which provide information about all kinds of military alliance 
agreements over an extensive period. To extract a network with sub-
stantial connections, here we define the presence of a strong military 
alliance when two states have entered into an offensive or defensive 
pact, meaning when they have signed a treaty which forces the one 
country to intervene by active military support if the other country 
comes into a conflict with offensive or defensive actions, respectively. 
Furthermore, we truncate the data to agreements that were in force in 
2016 as the most recent available year. The best final estimation results 
of the EM algorithm over several repetitions with random initial node 
ordering are illustrated in Fig. 9. The graphon estimate in the top right 
panel exhibits a very pronounced assortative structure, meaning that 
links predominantly occur between pairs of nodes whose latent quan-
tities are close. In the smooth graphon model, such an elevated region 
around the diagonal generally implies that similar connectivity behavior 
and connectedness are accompanied by each other, comparable to an 
assortative community structure in the SBM. To verify the assortativity 
and compare the discovered structure, the results of an SBM fitted to this 
network are provided in Section A.3 of the Appendix. The SBM result 
confirms the assortative structure but lacks information on within- and 
between-group positions, which, in contrast, is provided by the graphon 
model. The ordering illustrated in the top left network in Fig. 9 reflects, 
for example, the position of the United States (light blue in-between 
node in the upper network part) in between the South American states 
(bluish node bundle) and the European states (cyanish node bundle), 
whereas, in the blockmodeling approach, it would be assigned either to 
one of those two groups or as a group on its own (as in the fit in Section 
A.3). The final ordering of the other nodes also appears reasonable with 

Fig. 10. Graphon estimation for the functional coactivation network of the human brain (top left, with coloring referring to ûEM
i ∈ [0,1]). The graphon estimate ŵEM

(⋅ 
, ⋅) (in log scale) is depicted at the top right. The lower three plots show the local positions of the human brain regions in anatomical space in side view (left), front 
view (middle), and top view (right), using the same color scheme for ûEM

i . 
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respect to the network structure. Transferring this ordering by coloring 
the world map (see the bottom part of Fig. 9) reveals a strong conformity 
between geographic closeness and closeness with respect to the latent 
quantity. Together with the assortative structure, this means that 
countries which are geographically close form similar military alliances 
and, moreover, are more likely to be allied with each other. Further-
more, taking the perspective of link prediction, we can easily evaluate 
which relationships are extraordinary. To do so, we select the non-allied 
states which have the highest edge probabilities and the allied ones 
which have the lowest, see Table 3. This indeed reveals exceptional 
cases such as the relation between Finland and Turkey (both integrated 
into the Western states but not allied) or the outstanding alliances be-
tween France and some African states. (Note that links which are to be 
estimated can easily be left out in the graphon estimation procedure if 
desired, i.e., set to “N/A”.) 

5.3. Human brain functional coactivation network 

To conclude the real-world examples, we consider a functional 
coactivation network of the human brain which has been constructed 
through a meta-analysis by Crossley et al. (2013) and which is available 
in the Brain Connectivity Toolbox (Rubinov and Sporns, 2010a, see also 
Rubinov and Sporns, 2010b for detailed description). Their weighted 
network matrix represents the “estimated […] similarity (Jaccard index) 
of the activation patterns across experimental tasks between each pair of 
638 brain regions” (Crossley et al., 2013). In addition, to preserve 
sparsity, “[t]he coactivation matrix was probabilistically thresholded 
such that […] no edge was drawn […] if the Jaccard index between a 
pair of regions was not significantly greater than expected under the null 
hypothesis” (p-value of 0.01 and corrected for false discovery rate). 
Consequently, we apply a threshold of slightly above zero to obtain a 
binary adjacency matrix, meaning that we include a link between each 
pair of brain regions whose activation coincide significantly. The 
resulting network with a density of approximately 9.2 percent is 
depicted in the top left panel in Fig. 10. For the evaluation, we again 
consider the best outcome of the EM algorithm over several repetitions 
with random initialization. The resulting node ordering is illustrated in 
the top left network with coloring referring to ûEM

i . The corresponding 
graphon estimate in the top right plot again reveals an assortative 
structure but, in addition, exhibits a conspicuous pattern of functional 
coactivations of some segments which are separated with respect to the 
latent dimension. Regarding the spatial positions of the brain regions, 
the lower three plots show a strong relation between closeness in 
anatomical space and closeness of the ̂uEM

i . Nevertheless, there also seem 
to be areas which have a similar color pattern (indicating a similar 
coactivation pattern) but are spatially separated. In fact, the interaction 
and coactivation of distant brain areas is a familiar phenomenon in 
neuroscience and can also be seen in Crossley et al. (2013), who pursue a 
blockmodeling strategy. Yet, we argue that through the graphon model 
more insights can again be gained in terms of within- and 
between-group positions. To directly compare the insights acquired, the 
SBM with four communities in Crossley et al. (2013) is reconstructed in 
Section A.3 of the Appendix. This clearly shows that a strict clustering 
into groups does not fully suit the smooth transition in coactivation, 
which, however, can be discovered by the graphon model. Overall, we 
can demonstrate that the EM approach for estimating smooth graphons 
provides additional insights into network structures. 

6. Discussion and conclusion 

This paper proposes a novel estimation routine for smooth graphon 
estimation which explicitly takes the variability of ordering the nodes 
into account. The proposed semiparametric approach based on (linear) 
B-splines allows to incorporate relevant properties into the estimation, 
such as symmetry or the common canonical constraint if desired. 

Exploring the conditional distribution of the latent positions by applying 
Gibbs sampling illuminates the uncertainty about the degree ordering 
and its distribution. Both steps combined give an EM-type algorithm 
which enables flexible graphon estimation even in large networks. The 
proposed procedure outperforms available feasible routines in three 
aspects, where we draw comparisons with the sorting-and-smoothing 
algorithm (Chan and Airoldi, 2014), the stochastic blockmodel 
approximation (Airoldi et al., 2013), the universal singular value 
thresholding (Chatterjee, 2015), and the neighborhood smoothing 
(Zhang et al., 2017). First, the B-spline estimate can guarantee a smooth 
outcome, which goes also beyond estimating “merely” the edge proba-
bility matrix. Secondly, the constraint from (3) of a strictly increasing 
marginal function, which is a major limitation of the generality of 
graphon models, is not required. (This also applies in some aspects to the 
universal singular value thresholding and the neighborhood smoothing 
approach, but only with regard to the estimation. For the (visual) rep-
resentation, ordering the resulting edge probability matrix appropri-
ately remains an open issue if (3) does not apply.) Thirdly, based on the 
calculations of the conditional distribution of U given Y embedded in the 
EM algorithm, one can gain information about the applied node 
ordering and assess its underlying uncertainty. 

The proposed approach can also be used in other related models like 
the stochastic blockmodel (SBM), where one assumes that nodes cluster 
and form simple Erdős-Rényi models within and between the clusters. 
Apparently, SBMs do not have a smooth underlying graphon structure, 
so that the procedure presented in this paper would need to be adjusted 
and further developed. This is accomplished in a separate paper (De 
Nicola et al., 2020, Section 4.3). Although MCEM-based approaches 
already exist in the SBM estimation literature (see e.g. Daudin et al., 
2008), an extension of our method could provide an innovative 
perspective by additionally enabling the estimation of a mixture of SBM 
and smooth graphon model, i.e., a model of distinct communities but 
with smoothly differing profiles within these communities. This exten-
sion, however, lies beyond the scope of this paper. 

Moreover, the introduced procedure makes an extension towards 
directed networks seem to be convincing. Yet, one needs to bear in mind 
the consequences concerning the theory of graph limits and exchange-
able random graphs. Besides, also incorporating exogenous covariates is 
conceivable by formulating logit(P(Yij = 1|Ui = ui,Uj = uj),X = x) =

w(ui, uj)+ x⊤β, which should be estimable by extending the EM 
approach. However, both extensions require a thorough elaboration. 

Overall, graphon estimation provides an interesting tool for network 
visualization, as demonstrated in the examples. This allows for exploring 
network structure and classifying node relevance at the individual level. 
From the perspective of link prediction, missing edges can be estimated 
and extraordinary connections can be detected. Besides, the resulting 
graphon estimate captures network heterogeneity independently of the 
network size, and therefore it can be used to compare the structure of 
more than one network. In this respect, graphon estimation is more than 
a modeling exercise but also serves as a tool for exploratory network 
data analysis and could potentially contribute to statistical inference on 
random graphs. 

We have implemented the EM-based graphon estimation routine 
described in the paper in a free and open source Python package, which 
is publicly available on https://github.com/BenjaminSischka/Graph 
onPy.git (Sischka, 2021). 
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Appendix 

A.1 Endogenous network structure in graphon models 

The graphon model belongs to the latent space approaches (see Matias and Robin, 2014 for an overview). Hence, it conceptually differs from 
approaches which explicitly focus on modeling and explaining local structural patterns like the ERGM. However, the graphon model also involves 
endogenous structural processes, although this is often difficult to attribute. More precisely, the distribution of the frequency of any motif (meaning 
simple finite subgraph) is uniquely characterized by the graphon model, as described by Lovász and Szegedy (2006). Latouche and Robin (2016) 
derive a closed-form expression of the (variational posterior) distribution of motif frequencies under particular circumstances. Even though this 

Fig. 11. Two graphon estimates ŵEM
(⋅, ⋅) for the non-canonical Graphon 2 from Table 1, based on different simulated networks of size N = 500. Apparently, the 

inherent structure in these two models is very similar, which implies comparable behavioral patterns in the two underlying networks. 

Fig. 12. Graphon estimation for Facebook ego networks. The upper row shows the two ego networks with respective sizes of 333 and 168 actors, where the coloring 
refers to the latent quantities. The corresponding graphon estimates are shown in the lower row. Although the inherent structures exhibit similarities, connections 
between separated actors are more pronounced in the right model. 
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relation does not describe a universal local behavioral pattern as in the ERGM, it provides information about a global pattern. For instance, global 
transitivity can be expressed by 
∫ ∫ ∫

w(ui, uj)w(ui, uk)w(uj, uk)duidujduk,

which is the probability that three arbitrary nodes i, j, and k form a triangle. Conversely, Bickel et al. (2011) establish a sequence of subgraph patterns, 
called wheels, which fully determine the graphon structure and from which they derive a method of moments estimator. We also refer to Chatterjee 
and Diaconis (2013) as well as Yin et al. (2016) who elaborate a direct connection between the graphon model and the ERGM, at least for simple 
statistics, such as the number of two-stars or triangles, and in the case of dense graphs. He and Zheng (2015) make use of this connection and propose 
to use asymptotic properties of graphons to derive estimates in high dimensional ERGMs. Moreover, a connection in the situation of sparse graphs is 
given by Krioukov (2016), who also focuses on the edge-triangle model. Altogether, endogenous network structure exists in graphon models as well (at 
least on a global scale), but it is not straightforward to either derive or include a concrete specification of this kind of structure since the model follows 
a different conception. 

Fig. 13. Stochastic blockmodeling of the mili-
tary alliance network. The network with com-
munities indicated by different colors is 
illustrated at the top left. The estimate edge 
probability matrix – represented as graphon in 
log scale – is shown at the top right. The two 
lower plots depict the world map with coloring 
referring to the results of the SBM (upper map) 
and the graphon model (lower map, cf. Fig. 9). 
In both models, the isolated group, consisting of 
China, Cuba, and North Korea (colored in pink), 
was not included in the estimation routine. 
Countries which have no strong agreement with 
any other country and hence do not appear in 
the data set are colored in gray.   
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A.2 Examples of network structure comparison 

Graphon models represent an outstanding tool for comparing the structure of networks. To demonstrate this, we resume two of the examples 
presented above, namely the non-canonical graphon model from Section 4.2 and the Facebook ego network from Section 5.1. 

First, regarding the artificial non-canonical graphon model from Section 4.2, graphon estimates have been carried out for two different simulated 
networks of size N = 500, confer Figs. 5 and 6, respectively. To compare the structure of these two networks, we contrast the corresponding estimates 
in Fig. 11. To be precise, here we illustrate once again the one-run estimate from the top right panel in Fig. 5 and the AIC-optimal estimate in the 
middle of the lower row from Fig. 6. Apparently, these two graphons exhibit a very similar structural pattern. In both model fits, there are regions at 
both ends which imply an aggregation of nodes that are densely connected among themselves but sparsely connected to the respective other ones. The 
transition between those regions is modeled smoothly in both cases. In summary, comparing the estimation results reveals that the two underlying 
networks exhibit a very similar structure. Moreover, it provides a strong indication of what is in fact the ground truth, namely that the two networks 
originate from the same distribution model. 

As a second example, we consider the Facebook ego network presented in Section 5.1, which we now want to compare with another ego network 
with 168 actors that has also been collected by McAuley and Leskovec (2012). The two ego networks with coloring referring to node positioning and 
the corresponding graphon estimates are illustrated in Fig. 12. Comparing the two graphons reveals similar structural patterns, where a global as-
sortative structure is prominent in both model fits. This includes in particular a bundle of densely connected nodes represented by the intense region at 
the bottom right. However, regarding the right network, the corresponding graphon estimate also exhibits intense regions offside the diagonal, which, 
in this form, is not present in the left estimate. Therefore, the two networks reveal relevant structural differences and do presumably not originate from 
the same distribution model. 

A.3 Advantages of the graphon model over the SBM 

Making use of the graphon model often provides more detailed insights into the network structure than applying an SBM. To demonstrate this, we 
again consider the military alliance network from Section 5.2 and the human brain network from Section 5.3, where we now additionally fit an SBM to 
both networks. The results for the military alliance network are illustrated in Fig. 13, where the number of seven communities can be deduced by 
applying the AIC. The estimated edge probability matrix, which is represented as a graphon on the top right, confirms the assortative structure found 
by the graphon estimate in Fig. 9. The assignment of the nodes is depicted by the coloring in the top left network and exhibits a reasonable clustering. 

Fig. 14. Stochastic blockmodeling of the functional coactivation network of the human brain. The top left plot shows the network with clusters indicated by colors. 
The estimated edge probability matrix is depicted as a graphon (in log scale) at the top right. The lower two rows show the regions’ assignment according to the SBM 
(middle row) and the graphon model (lower row, cf. Fig. 10) with respect to anatomical space (in side, front, and top view, respectively). 

B. Sischka and G. Kauermann                                                                                                                                                                                                               

58



Social Networks 68 (2022) 279–295

294

Comparing these results transferred to the world map with the results from the graphon model (see the two lower plots, respectively) reveals a very 
similar assignment. However, in this context, the graphon model provides not only a (smooth) division into groups but also information about within- 
and between-group positions. For instance, the relations between the African countries are captured on a finer and fluent scale, yielding a more 
detailed picture of the constellation. To be precise, this higher resolution allows to compare countries individually and not only based on their 
community memberships, where countries from the same community (different communities) might still be quite different (similar). On top of that, in 
the SBM, the United States simply forms a group on its own, whereas the graphon model reveals its position between the European states and the South 
American states and therefore its role as a connective actor between these two groups. (Note that the chosen group ordering in the SBM, which might 
suggest similar conclusions, here is based on the ordering in the graphon model but is generally arbitrary.) Similar circumstances can be pointed out 
for the human brain network, with results of the fitted SBM illustrated in Fig. 14. For the blockmodel estimation, here we follow Crossley et al. (2013) 
and perform the procedure of Newman (2006) with four groups. Again, the division of the nodes shows a reasonable clustering, where the blockmodel 
structure now exhibits high connectivity not only within but also between groups (see the two plots in the upper row, respectively). This pattern of an 
intense connectivity between separated node bundles is also exhibited in the graphon estimate from Fig. 10. Comparing the node assignments in the 
SBM and the graphon model with regard to anatomical space (see plots in the two lower rows, respectively), we see that the nodes are merged 
similarly. However, the graphon model additionally provides positions within and between groups. For example, considering the blockmodel’s orange 
central cluster in the left representation (side view), the results from the graphon model reveal that the brain regions in the upper and lower area (with 
dark and light orange shades, respectively) are more similar to each other than to regions from the respective other area. Moreover, according to the 
positioning in the graphon model, the transition from the orange to the cyan community occurs at the lower central border between those com-
munities. In conclusion, considering the graphon model as a smooth node clustering, we gain additional insights into both the within-group positions 
and the transitions between groups. 
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In this paper, we propose combining the stochastic blockmodel and the smooth
graphon model, two of the most prominent modeling approaches in statistical network
analysis. In doing so, we bring both perspectives together and utilize their modeling
capacities in a joint framework. Stochastic blockmodels are generally used for parti-
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follow the intuition that the nodes can be arranged on a one-dimensional scale such
that closeness implies a similar behavior in connectivity. Both frameworks belong
to the class of node-specific latent variable models, entailing a natural relationship.
While these two modeling concepts have developed more or less independently, this
paper proposes their generalization towards stochastic block smooth graphon mod-
els. Such a combined approach enables to exploit the advantages of both worlds.
Employing concepts of the EM-type algorithm allows us to develop a correspond-
ing estimation routine, where MCMC techniques are used to accomplish the E-step.
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1 Introduction

The statistical modeling of complex networks has gained increasing interest over the last two

decades, and much development has taken place in this area. Network-structured data arise

in many application fields and corresponding modeling frameworks are used in sociology,

biology, neuroscience, computer science, and others. To demonstrate the state of the art in

statistical network data analysis, survey articles have been published by Goldenberg et al.

(2009), Snijders (2011), Hunter et al. (2012), Fienberg (2012), and Salter-Townshend et al.

(2012). Moreover, monographs in this field are given by Kolaczyk (2009), Lusher et al.

(2013), Kolaczyk and Csardi (2014), and Kolaczyk (2017).

In order to capture the underlying structure within a given network, various modeling

strategies based on different concepts have been developed. One ubiquitous model class in

this context is given by the Node-Specific Latent Variable Models, see Matias and Robin

(2014) for an overview. The general notion in this rather broad model class is the assump-

tion that, for a network comprising nodes 1, . . . , N , the edge variables Yij, i, j = 1, . . . , N ,

can be characterized as independent when conditioning on the node-specific latent quanti-

ties ξ1, . . . , ξN . To be precise, the generic model design can be formulated via independent

Bernoulli random variables with corresponding success probabilities, i.e.

Yij | ξi, ξj
ind.∼ Bernoulli(h(ξi, ξj)), (1)

where 0 ≤ h(·, ·) ≤ 1 characterizes an overall connectivity pattern. This especially means

that the connection probability for node pair (i, j) depends exclusively on the associated

quantities ξi and ξj. Depending on the concrete model, these quantities are either random

variables themselves or simply unknown but fixed parameters. Moreover, ξi can be mul-

tivariate, even though it is used as a scalar in many frameworks. Lastly, data-generating

process (1) is generally defined for any i, j = 1, . . . , N . However, in the case of undirected

networks without self-loops, it is only performed for i < j, with the additional setting of

Yji ≡ Yij and Yii ≡ 0. This scenario is what we focus on in this work.

The general framework sketched above includes several well-known models in the field
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of statistical network analysis. The most popular ones of this type are the Stochastic

Blockmodel (Holland et al., 1983, Snijders and Nowicki, 1997 and 2001) as well as its

variants (Airoldi et al., 2008, Karrer and Newman, 2011), the Latent Distance Model (Hoff

and coauthors, 2002, 2007, 2009, 2021, Ma et al., 2020), and the Graphon Model (Lovász

and coauthors, 2006, 2007, 2010, Diaconis and Janson, 2007). Following the same notion,

namely a connectivity structure that only depends on node-specific latent variables, entails

a natural relationship among these modeling approaches. Yet, it is well known that they

possess very different capacities for representing the diverse structural aspects discovered

in real-world networks. However, it is often unknown beforehand what the requirements

for the model are in terms of structural expressiveness, implying that the question of which

modeling strategy is best able to capture the present network structure cannot be clearly

answered. To detect the best method from an ensemble of models and corresponding

estimation algorithms, Li et al. (2020) recently developed a cross-validation procedure for

model selection in the network context, see also Gao and Ma (2020). One step further,

Ghasemian et al. (2020) and Li and Le (2021) discuss mixing several model fits based on

different weighting strategies.

Although all node-specific latent variable models are more or less closely related by

construction, little attention has been paid to the proper representation or integration of

one model by another or to combining multiple models in a joint framework. As an ad-

vantage, such a model unification offers a new perspective that potentially provides a more

flexible modeling strategy. Steps in this direction have been taken by, for example, Fos-

dick et al. (2019, Sec. 3), who developed a Latent Space Stochastic Blockmodel, where the

within-community structure is modeled as a latent distance model. In a similar direction,

Schweinberger and Handcock (2015) combined the stochastic blockmodel with the Expo-

nential Random Graph Model (ERGM). The resultant Hierarchical Exponential Random

Graph Model (HERGM) intends to fit a global ERGM only to the denser within-community

structure. ERGMs are, however, beyond formulation (1) and instead seek to model the

frequency of prespecified structural patterns.

In this paper, we pick up the idea of model (1) but aim to formalize and estimate the un-
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derlying connectivity structure h(·, ·) in a way that allows us to unite previous approaches.

To do so, we combine stochastic blockmodels with (smooth) graphon models, leading to an

extension that is able to capture the expressiveness of both models simultaneously. In order

to fit this model to network data, we utilize previous results on smooth graphon estimation

(Sischka and Kauermann, 2022) and EM-based stochastic blockmodel estimation (Daudin

et al., 2008, De Nicola et al., 2022). The resulting method is flexible and feasible for even

large networks.

The rest of the paper is structured as follows. In Section 2, we first briefly describe

stochastic blockmodels and smooth graphon models. Building on that, we formalize their

combination, leading to our novel modeling approach. For its estimation, we develop an

EM-type algorithm, which is elaborated in Section 3. This includes the formulation of a

criterion for choosing the number of groups. The capability of our method is demonstrated

in Section 4, which is done with respect to simulations and real-world networks. The

discussion in Section 5 completes the paper.

2 Conceptualizing the Stochastic Block Smooth Gra-

phon Model

2.1 Stochastic Blockmodel

In the literature on statistical network analysis, the stochastic blockmodel (SBM) is an

extensively developed tool for modeling clustering structures in networks, see Newman

(2006), Choi et al. (2012), Peixoto (2012), Bickel et al. (2013), and others. In its classical

version, one assumes that each node, i = 1, . . . , N , can be uniquely assigned to one of

K ∈ N groups—often also referred to as communities—, such that the probability of two

nodes being connected only depends on their group memberships. More precisely, the

data-generating process can be formulated as drawing at first the node assignments Zi,
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i = 1, . . . , N , independently from a categorical distribution given through

P(Zi = k;α) = αk with k = 1, . . . , K, α = (α1, . . . , αK) ∈ [0, 1]K and
∑

k

αk = 1. (2)

Based on that, the edge variables are simulated under conditional independence through

Yij | Zi, Zj ∼ Bernoulli(pZiZj
) (3)

for i < j, where Yji ≡ Yij and Yii ≡ 0 by definition. In these formulations, α represents the

vector of (expected) group proportions and pZiZj
is the corresponding entry of the block-

related edge probability matrix P = [pkl]k,l=1,...,K ∈ [0, 1]K×K . Referring to formulation

(1), this construction is apparently equivalent to setting ξi = Zi and h(Zi, Zj) = pZiZj
.

Moreover, this modeling framework can also be viewed as a mixture of Erdős-Rényi-Gilbert

models (Daudin et al., 2008). This is because the edge variables between all pairs of nodes

from two particular communities or within one community are assumed to be independent

and to have the same probability.

Although the model formulation is simple, the estimation is not straightforward. This

is because both the latent community memberships and the model parameters need to be

estimated. The literature of a posterior blockmodeling starts with the work of Snijders

and Nowicki (1997, 2001) and since then has been elaborated extensively (Handcock et al.,

2007, Decelle et al., 2011, Rohe et al., 2011, Choi et al., 2012, Peixoto, 2017, and others).

As an additional hurdle in this framework, also the number of communities has usually

to be inferred from the data. Works taking this issue into account or specifically focusing

thereon are, among others, Kemp et al. (2006), Wang and Bickel (2017), Chen and Lei

(2018), Newman and Reinert (2016), Riolo et al. (2017), and Geng et al. (2019).

2.2 Smooth Graphon Model

Another modeling approach that makes use of latent quantities to capture complex net-

work structures is the graphon model. In contrast to the SBM, the latent variables in

the graphon model are scaled continuously on [0, 1], but again the nodes’ connectivity is
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assumed to depend only on those quantities. The data-generating process induced by the

graphon model can more precisely be formulated as follows. First, the latent quantities are

independently drawn from a uniform distribution, i.e.

Ui
i.i.d.∼ Uniform(0, 1) (4)

for i = 1, . . . , N . Secondly, the network entries are sampled conditionally independently in

the form of

Yij | Ui, Uj ∼ Bernoulli(w(Ui, Uj)) (5)

for i < j, where again Yji ≡ Yij and Yii ≡ 0. The bivariate function w : [0, 1]2 → [0, 1] is the

so-called graphon. Choosing ξi = Ui and h(Ui, Uj) = w(Ui, Uj) yields the representation

in the form of (1). In comparison with the SBM, the graphon model does usually not

decompose a network into groups of equally behaving actors. Instead, it facilitates more

flexible structures, which is due to the unlimited possibilities of specifying w(·, ·). In other

words, w(·, ·) has a higher complexity than (α,P ), especially for small K, which is the more

usual setting. On the other hand, it is possible to construct the graphon model such that it

covers any stochastic blockmodel, see e.g. Latouche and Robin (2016, Fig. 1) or De Nicola

et al. (2022, Sec. 3.3). However, when it comes to estimation, the high complexity of w(·, ·)
is problematic and thus must be brought under control by applying additional constraints.

A common approach to do so is to assume smoothness, meaning that w(·, ·) fulfills some

Hölder or Lipschitz condition (Olhede and Wolfe, 2014, Gao et al., 2015, Klopp et al., 2017).

This framework is what we call Smooth Graphon Model (SGM). Relying on this smoothness

assumption, many works apply histogram estimators, often also interpreted as SBM-type

approximation, see e.g. Wolfe and Olhede (2013), Airoldi et al. (2013), Chan and Airoldi

(2014), or Yang et al. (2014). In order to get a continuous function out of such a piecewise

constant representation, Li et al. (2022) specify graphons by constructing the value at

each position (u, v) through a mixture over such blockwise probabilities, with weights as

continuous functions of (u, v). As another approach to continuous graphon estimation,
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Lloyd et al. (2012) formulate a Bayesian modeling framework with Gaussian process priors,

see also Orbanz and Roy (2015) for a more general formulation. Sischka and Kauermann

(2022) guarantee a smooth and stable estimation of w(·, ·) by making use of (linear) B-

spline regression. In contrast, some other works waive strict smoothness assumptions on

w(·, ·), see Chatterjee (2015) and Zhang et al. (2017). However, these methods do not aim

at estimating w(·, ·) but solely the edge probabilities P(Yij = 1 | Ui, Uj;w(·, ·)).

2.3 Stochastic Block Smooth Graphon Model

Both the SBM and the SGM are based on underlying assumptions which appear to be re-

strictive conditions—namely strict homogeneity within the communities and overall smooth-

ness, respectively. Therefore, we pursue to design a new model class which does not suffer

from such limitations. To do so, we combine the two modeling approaches towards what

we call a Stochastic Block Smooth Graphon Model (SBSGM). To be specific, we assume

the node assignments Zi to be drawn from (2) and draw independently Ui from (4) for

i = 1, . . . , N . Then (3) and (5) are replaced by

Yij | Zi, Zj, Ui, Uj i.i.d.∼ Bernoulli(w̃ZiZj
(Ui, Uj)), (6)

where, for each pair of blocks and also within blocks, connectivity is now formulated by

an individual smooth graphon w̃kl(·, ·), k, l = 1, . . . , K. Apparently, if K = 1 we obtain an

SGM, while all w̃kl(·, ·) being constant yields an SBM.

This model can be reformulated in a compact form by conflating the node assignments

(2) and the latent quantities (4) in the following way. We draw Ui from (4) and, given Ui,

i = 1, . . . , N , we formulate for i < j

Yij | Ui, Uj i.i.d.∼ Bernoulli(wζ(Ui, Uj)), (7)

where wζ(·, ·) is a partitioned graphon which is smooth within the blocks spanned by

ζ = (ζ0 = 0, ζ1, . . . , ζK = 1), meaning within (ζk−1, ζk) × (ζl−1, ζl) for k, l = 1, . . . , K. To
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Figure 1: Exemplary stochastic block smooth graphon model with three communities.
wζ(·, ·) is represented as heat map on the left. A simulated network of size 500 based on
this SBSGM is given on the right, with node coloring referring to the simulated Ui’s. This
network exhibits a clear community structure (global division) but also smooth transitions
within the communities (local structure).

be precise, transforming the formulation from (6) to (7) implies that ζk =
∑k

l=1 αl and

wζ(u, v) = w̃kukv

(
u− ζku−1
ζku − ζku−1

,
v − ζkv−1
ζkv − ζkv−1

)

with ku ∈ {1, . . . , K} being given through ζku−1 ≤ u < ζku , i.e. ku =
∑

k 1{u≥ζk}. We

also here remain with the common convention of symmetry (Yji ≡ Yij) and the absence of

self-loops (Yii ≡ 0). An exemplary SBSGM together with a simulated network is illustrated

in Figure 1. As a special property in terms of expressiveness, this model allows for smooth

local structures under a global division into groups.

Note that the assumption of such a piecewise smooth structure in the context of graphon

models has also been proposed before, see e.g. Airoldi et al. (2013) or Zhang et al. (2017).

Nonetheless, there is a major conceptional distinction in the modeling perspective pursued

here. While in previous works, lines of discontinuity were merely allowed, we now explicitly

incorporate them as structural breaks. We stress that this novel modeling approach—

which also rules the estimation—has a substantial impact on uncovering the network’s

underlying structure. The fact that previous graphon estimation approaches are not able

to fully capture block structures is showcased, for example, by Li and Le (2021), who
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observe an improvement in accuracy when mixing graphon fits with SBM estimates. By the

applications in Section 4 and the comparative analysis in Section 3.2 of the Supplementary

Material, we demonstrate that our method is able to capture both the block structure and

the smooth differences.

2.4 Piecewise Smoothness and Semiparametric Model Formula-

tion

In general, we define the SBSGM to be specified by a piecewise Lipschitz graphon with

lines of discontinuity. In this context, a graphon w(·, ·) satisfies piecewise the Lipschitz

condition if there exist boundaries 0 = ζ0 < ζ1 < . . . < ζK = 1 and a constant M ≥ 0 such

that for all u, u′ ∈ (ζk−1, ζk), v, v′ ∈ (ζl−1, ζl)

|w(u, v)− w(u′, v′)| ≤M‖(u, v)> − (u′, v′)>‖ (8)

for any k, l = 1, . . . , K, where ‖ · ‖ is the Euclidean norm. We indicate this attribute in

the notation by making use of the subscript ζ, meaning that wζ(·, ·) is piecewise Lipschitz

continuous with respect to ζ. In the case of M = 0, this implies the representation of an

SBM.

To achieve a semiparametric framework from this theoretical model formulation, we

follow the spline-based approach of Sischka and Kauermann (2022), extending it to the

piecewise smooth format. This can be realized by constructing a mixture of B-splines. To

be precise, we formulate blockwise B-spline functions on disjoint bases in the form of

wspline
ζ,γ (u, v) =

∑

k,l

1{ζk−1≤u<ζk}1{ζl−1≤v<ζl}[Bk(u)⊗Bl(v)]γkl, (9)

where ⊗ is the Kronecker product and Bk(·) = (Bk1(·), . . . , BkLk
(·)) ∈ R1×Lk is a linear

B-spline basis on [ζk−1, ζk], normalized to have maximum value 1 (see Figure 2 for a color-

coded exemplification). The inner knots of the k-th one-dimensional B-spline component

with length Lk are denoted by τ k = (τk1, . . . , τkLk
), where τk1 = ζk−1 and τkLk

= ζk.
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Figure 2: Disjoint univariate linear B-spline bases, colored in blue, orange, green, and
red, respectively. Applying the tensor product yields the basis to construct blockwise
independent B-spline functions for approaching SBSGMs. Note that this illustration shows
the special case of equal community proportions.

Moreover, τ = (τ 1, . . . , τK) denotes the overall vector of B-spline knots, and the complete

parameter vector is given in the form of

γ = (γ>11, . . . ,γ
>
1K ,γ

>
21, . . . ,γ

>
KK)>

with γkl = (γkl,11, . . . , γkl,1Ll
, γkl,21, . . . , γkl,LkLl

)>.

This piecewise B-spline representation serves as suitable approximation of wζ(·, ·), where

the approximation error

√∫∫ ∣∣∣wζ(u, v)− wspline
ζ,γ (u, v)

∣∣∣
2

du dv

can be arbitrarily reduced by increasing L1, . . . , LK accordingly. In general, we choose a

sufficiently large total basis length L = |τ |, which is then divided among the segments in

proportion to their extents. The Lk inner knots of the k-th component are subsequently

located equidistantly within [ζk−1, ζk], which completes the specification of B-spline formu-

lation (9).

The above representation allows to apply penalized B-spline regression readily. The
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capability of such a framework as well as the general role of penalized semiparametric

modeling concepts are discussed, for example, by Eilers and Marx (1996), Ruppert et al.

(2003), Wood (2017), and Kauermann and Opsomer (2011).

2.5 Identifiability Issue

As discussed above, SBSGMs describe specific forms of the graphon model, which is why

it likewise suffers from non-identifiability. To be precise, Diaconis and Janson (2007) show

that two graphons w(·, ·) and w′(·, ·) describe the same network-generating process if and

only if there exist two measure-preserving functions ϕ, ϕ′ : [0, 1]→ [0, 1] such that

w(ϕ(u), ϕ(v)) = w′(ϕ′(u), ϕ′(v)) (10)

for almost all (u, v)> ∈ [0, 1]2. To circumvent this identifiability issue and to guarantee

uniqueness, some papers have postulated that

g(u) =

∫
w(u, v) dv (11)

is strictly increasing, see e.g. Bickel and Chen (2009) or Chan and Airoldi (2014). This,

however, is a strong restriction on the generality of the graphon model. To give an ex-

ample, it excludes the model with w(u, v) = (uv)2 + ((1 − u)(1 − v))2 since there exists

no measurable-preserving function ϕ : [0, 1] → [0, 1] such that w(ϕ(·), ϕ(·)) is well-defined

and fulfills condition (11). We therefore avoid employing such a restrictive uniqueness as-

sumption. Instead, we emphasize that identifiability issues such as label switching are an

inherent problem in all mixture models (see e.g. Stephens, 2000), which can often be han-

dled through appropriate estimation routines. A further discussion on this issue—including

conditions that allow us to derive a proper estimate—is given in the Supplementary Mate-

rial.
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3 EM-type Algorithm

For fitting the SBSGM to a given network, the latent positions U1, . . . , UN and the pa-

rameters ζ and γ need to be estimated simultaneously. This is a typical task for an

EM algorithm, which aims at deriving information about unknown quantities in an itera-

tive way. Regarding the inherent community structure, we assume the number of groups,

K ∈ N, as given for now. A discussion on that issue is provided in Section 3.3.

3.1 MCMC E-Step

The conditional distribution of U given y is rather complex, and hence calculating the

expectation cannot be solved analytically. Therefore, we apply MCMC techniques for

carrying out the E-step. In that regard, the full-conditional distribution of Ui can be

formulated as

f(ui | u1, . . . , ui−1, ui+1, . . . , uN ,y) ∝
∏

j 6=i
wζ(ui, uj)

yij(1− wζ(ui, uj))
1−yij . (12)

Based on that, we can construct a Gibbs sampler, which allows consecutive drawings for

U1, . . . , UN . For its concrete implementation, we replace wζ(·, ·) by its current estimate.

Finally, we derive reliable means for the node positions by appropriately summarizing the

MCMC sequence. Technical details are provided in the Appendix.

We are however faced with an additional identifiability issue, which we want to motivate

as follows. Assume first an SBSGM as in (7), but allow the distribution of the latent quan-

tities Ui to be not necessarily uniform but arbitrarily continuous instead. In this scenario,

the SBSGM specification is broadened to (F (·), wζ(·, ·)) with F (·) as the distribution of the

Ui’s. An equivalent network-generating process can then not only be constructed through

permutations as in (10) but also by taking any strictly increasing continuous transformation

ϕ′ : [0, 1]→ [0, 1] and specifying F ′(·) ≡ F (ϕ′−1(·)) and

w′ζ′(·, ·) ≡ wζ(ϕ′
−1

(·), ϕ′−1(·)) (13)
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with ζ ′k = ϕ′(ζk) for k = 1, . . . , K − 1. (Note that in comparison with formulation (10),

here ϕ′(·) implies a modification of the probability measure on the domain [0, 1], and there-

fore it is no measure-preserving transformation—except for ϕ′(u) = u.) The two models

(F (·), wζ(·, ·)) and (F ′(·), w′ζ′(·, ·)) are then not distinguishable in terms of the probability

mass function induced on networks, causing an additional identifiability issue which, in

fact, cannot be resolved by the EM algorithm. As a matter of conception, the EM algo-

rithm aims at optimally fitting the data and not at accurately recovering the underlying

model framework. Consequently, this needs to be handled post hoc, where we aim for

model specification (F ′(·), w′ζ′(·, ·)) with F ′(·) representing the uniform distribution. We

tackle this issue by making use of two separate transformations ϕ′1, ϕ
′
2 : [0, 1] → [0, 1],

adjusting between and within groups, respectively. This is sketched in Figure 3, where we

demonstrate both the theoretical and the empirical implementation. Adjustment 1 ensures

that the extent of a component complies with its associated probability mass or relative fre-

quency, respectively. This apparently involves adapting the component boundaries, which,

compared to the blockmodeling framework, is analogous to adjusting community propor-

tions. Adjustment 2 effects that the distribution within groups is uniform. Further details

on the concrete implementation in the algorithm are given in the Appendix. We denote

the final result of the E-step in the m-th iteration, i.e. the outcome achieved through Gibbs

sampling and applying Adjustment 1 and Adjustment 2, by Û
′′(m)

= (Û
′′(m)
1 , . . . , Û

′′(m)
N ).

3.2 M-Step

3.2.1 Linear B-Spline Regression

In consequence of representing the SBSGM as a mixture of (linear) B-splines as in (9),

we are now able to view the estimation as semiparametric regression problem, which can

be solved via maximum likelihood approach. Given the spline formulation, the full log-
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Figure 3: Adjustment of the distribution of the Ui’s and the community boundaries. Top:
Three distributions for the latent quantities Ui which are equivalent in terms of repre-
senting the same data-generating process (under applying transformation (13) to wζ(·, ·)
accordingly). The solid line represents the density f(u), while the dashed line illustrates
the frequency density over the communities, i.e. P(Ui ∈ [ζk−1, ζk))/(ζk − ζk−1). Bottom:
Implementation of the adjustment in the algorithm with regard to the empirical cumu-
lative distribution function (including the realizations of U1, . . . , UN as vertical bars at
the bottom). The gray star illustrates the proportion of the two communities against the
community boundary.
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likelihood results in

`(γ) =
∑

i,j
j 6=i

∑

k,l

1{ζ̂(m+1)
k−1 ≤Û ′′(m)

i <ζ̂
(m+1)
k }1{ζ̂(m+1)

l−1 ≤Û ′′(m)
j <ζ̂

(m+1)
l }

·
[
yij log

(
B

(m+1)
kl,ij γkl

)
+ (1− yij) log

(
1−B(m+1)

kl,ij γkl

)]
,

where B
(m+1)
kl,ij = B

(m+1)
k (Û

′′(m)
i ) ⊗ B(m+1)

l (Û
′′(m)
j ) and B

(m+1)
k (·) is the B-spline basis on

[ζ̂
(m+1)
k−1 , ζ̂

(m+1)
k ]. Taking the derivative leads to the score function

s(γ) =
∑

i,j
j 6=i

∑

k,l

1{ζ̂(m+1)
k−1 ≤Û ′′(m)

i <ζ̂
(m+1)
k }1{ζ̂(m+1)

l−1 ≤Û ′′(m)
j <ζ̂

(m+1)
l }

·B(m+1)
kl,ij

>

 yij

w
ζ̂
(m+1)

,γ
(Û
′′(m)
i , Û

′′(m)
j )

− 1− yij
1− w

ζ̂
(m+1)

,γ
(Û
′′(m)
i , Û

′′(m)
j )


 .

Moreover, taking the expected second-order derivative gives us the Fisher matrix

F (γ) =
∑

i,j
j 6=i

∑

k,l

1{ζ̂(m+1)
k−1 ≤Û ′′(m)

i <ζ̂
(m+1)
k }1{ζ̂(m+1)

l−1 ≤Û ′′(m)
j <ζ̂

(m+1)
l }

·B(m+1)
kl,ij

>
B

(m+1)
kl,ij

[
w

ζ̂
(m+1)

,γ

(
Û
′′(m)
i , Û

′′(m)
j

)
·
(

1− w
ζ̂
(m+1)

,γ

(
Û
′′(m)
i , Û

′′(m)
j

))]−1
.

Based on that, `(γ) could now be maximized using Fisher scoring. However, we additionally

need to ensure that the resulting estimate of wζ(·, ·) in the (m+ 1)-th EM iteration fulfills

symmetry and boundedness, which is why we impose additional (linear) side constraints

on γ. To guarantee symmetry, we accommodate γkl,pq = γlk,qp for all k, l ∈ {1, . . . , K} and

p 6= q. Moreover, the condition of wspline
ζ,γ (·, ·) being bounded to [0, 1] can be formulated

as 0 ≤ γkl,pq ≤ 1. These two side constraints are of linear form and can be incorporated

through Gγ ≥ (0>,−1>)> and Aγ = 0 with matrices G and A chosen accordingly.

0 = (0, . . . , 0)> and 1 = (1, . . . , 1)> are vectors of corresponding sizes. Consequently,

maximizing `(γ) with respect to the postulated side constraints can be considered as an

(iterated) quadratic programming problem, which can be solved using standard software
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(see e.g. Andersen et al., 2016 or Turlach and Weingessel, 2013).

3.2.2 Penalized Estimation

Following the ideas underlying the penalized spline estimation (see Eilers and Marx, 1996

or Ruppert et al., 2009), we additionally impose a penalty on the coefficients to achieve

smoothness. This is necessary since we intend to choose the total basis length L of the mix-

ture of B-splines to be large and unpenalized estimation will lead to wiggled estimates. For

inducing smoothness within the components, we penalize the difference between “neigh-

boring” elements of γkl. Let therefore

Dk =




1 −1 0 . . . 0

0 1 −1 . . . 0
...

. . .
...

0 . . . 0 1 −1



∈ R(Lk−1)×Lk

be the first-order difference matrix. We then penalize [Dk ⊗ I l]γkl and [Ik ⊗Dl]γkl, where

Ik is the identity matrix of size Lk. This leads to the penalized log-likelihood

`p(γ,λ) = `(γ)− 1

2
γ>Qλγ,

where Qλ is the diagonal matrix diag{λ11Q11, . . . , λ1KQ1K , λ21Q21, . . . , λKKQKK} with

Qkl = (Dk ⊗ I l)> (Dk ⊗ I l) + (Ik ⊗Dl)
> (Ik ⊗Dl) and λ = (λ11, . . . , λ1K , λ21, . . . , λKK)

serving as vector of smoothing parameters for the respective blocks. In this configuration,

the resulting estimate apparently depends on the penalty parameter vector λ. Setting

λkl → 0 for k, l = 1, . . . , K yields an unpenalized fit, while setting λkl → ∞ leads to a

piecewise constant SBSGM, i.e. an SBM. Therefore, the smoothing parameter vector λ

needs to be chosen in a data-driven way. For example, this can be realized by relying

on the Akaike Information Criterion (AIC) (see Hurvich and Tsai, 1989 or Burnham and
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Anderson, 2002). In the present context, this can be formulated as

AIC(λ) = −2 `(γ̂p) + 2 df(λ), (14)

where γ̂p is the penalized parameter estimate and df(λ) represents the cumulated degrees

of freedom within the blocks. We define the latter in the usual way as the trace of the

product of the inverse penalized Fisher matrix [F p]−1(γ̂p,λ) and the unpenalized Fisher

matrix, see Wood (2017, page 211 and the following pages). To be precise, we define

df(λ) = tr
{

[F p]−1(γ̂p,λ)F (γ̂p)
}

with tr{·} as the trace of a matrix. Making use of dfkl(λkl) = tr{[F p
kl]
−1(γ̂pkl, λkl)F kl(γ̂

p
kl)}

with F kl(γ̂
p
kl) being the submatrix of F (γ̂p) which refers to the subvector γ̂pkl (and for

the penalized fisher matrix equivalently), this calculation can be reduced to df(λ) =
∑

k,l dfkl(λkl) since [F p]−1(γ̂p,λ) and F (γ̂p) are both block diagonal matrices. Applying

this simplification, we can rephrase (14) to

AIC(λ) =
∑

k,l

{−2 `kl(γ̂
p
kl) + 2 dfkl(λkl)} , (15)

where `kl(·) is the partial likelihood of all potential connections falling into the (k, l)-th

component. This representation allows us to optimize for λkl separately. Following this

procedure finally leads us to parameter estimate γ̂(m+1) in the (m + 1)-th iteration of the

EM algorithm.

Note that the presented estimation routine might appear to be time-consuming and

computationally intensive when compared to more efficient algorithms for related models.

However, we emphasize that such approaches cannot be simply adopted due to the higher

complexity of the SBSGM. Moreover, this iterative procedure promises a high accuracy, as

demonstrated by the applications in Section 4 and the comparative analysis in Section 3.2

of the Supplementary Material. A detailed discussion on that is given in Section 1.2 of the

Supplementary Material.
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3.3 Choice of the Number of Communities

As for the SBM, the number of communities, K, is an essential parameter that, in real-

world networks, is usually unknown. Preferably, this should also be inferred from the data.

For this purpose, we take up two different intuitions, which can finally be brought together

to construct an appropriate model selection criterion.

On the one hand, one might think of adopting methods for determining the number

of communities from the SBM context. A common strategy under this framework relies

on the Integrated Classification Likelihood (ICL) criterion (Daudin et al., 2008, Côme and

Latouche, 2015, Mariadassou et al., 2010). However, for applying this to the SBSGM, one

needs to observe the more complex structure. This is especially so because the structural

complexity within communities and the number of groups can compensate for each other

to a certain extent.

As an alternative approach, one could exploit the already formulated AIC from (14) by

extending it towards a model selection strategy with respect to K. This can be accom-

plished by adding a corresponding term, for which we propose to apply the concept of the

Bayesian Information Criterion (BIC). Combined with the previous formulation, this yields

a mixing of AIC and BIC. To be precise, we select the smoothing parameter using the AIC

as described above, but for the number of blocks, we impose a stronger penalty by replac-

ing the factor of two with the logarithmized sample size. We consider this to be in line

with Burnham and Anderson (2004), who conclude that the AIC is more reliable when the

ground truth can be described through many tapering effects (smooth within-community

structure), whereas the BIC is preferable when there exist only a few large effects (number

of groups).

To formulate the BIC part, we first need to carefully think about how the model com-

plexity grows with an increasing number of groups and what the corresponding sample size

is. The degrees of freedom originating from the number of groups comprise two aspects, the

K−1 boundary parameters ζ1, . . . , ζK−1 and the K2 basis connectivity parameters between

and within communities (comparable to P in the SBM context). The corresponding sample

sizes are N (= number of nodes) for the boundary parameters and N(N − 1) (= number
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of edges) for the connectivity parameters. In regard to extending criterion (14), we ad-

ditionally have to take into account that the second component thereof already includes

the degrees of freedom that are induced by the basis connectivity parameters. This can be

easily seen by setting λkl →∞, leading to df(λ) = K2. To correct for this, K2 needs to be

subtracted from df(λ), which, however, has no effect on the optimization with respect to

λ. Putting all together, we achieve the complete model selection criterion

−2 `(ζ̂K , γ̂K) + 2 {df(λ̂K)−K2}+ log{N(N − 1)}K2 + log{N} (K − 1), (16)

where ζ̂K , γ̂K , and λ̂K are the final estimates according to the above EM procedure under

a fixed K. We emphasize that criterion (16) is equivalent to the ICL up to the different

parameterization of the log-likelihood and the term 2 {df(λ̂K) − K2} for penalizing the

smooth structure within communities. When setting λkl → ∞ for k, l = 1, . . . , K, the

criterion even reduces exactly to the ICL for SBMs.

4 Application

We investigate the performance of our approach with respect to both simulated and real-

world networks. For an “uninformative” implementation, we initialize the algorithm by

setting (U1, . . . , UN) to a random permutation of (i/(N + 1) : i = 1, . . . , N). At the same

time, we place the community boundaries equidistantly within [0, 1], i.e. we set ζ̂
(0)
k = k/K

for k = 0, . . . , K. Since different initializations might lead to different final results, we

repeat the estimation procedure with varying random permutations for Û
(0)

and, in the

end, choose the best outcome. As a rough guideline, we recommend five to ten random

repetitions. Moreover, if the number of groups is unknown beforehand, we fit the SBSGM

with varying K and employ criterion (16) to select the optimal estimate. The variability

of the final result under different initializations of U and settings of K as well as the

overall prediction performance is illustrated for all of the following applications in Figure 4

and Figure 5 of the Supplementary Material, respectively. These evaluations include the

comparison with state-of-the-art methods for uncovering the structure in complex networks.
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K 1 2 3 4 5 6

Assortative network
8.960 8.978 8.953 8.956 8.963 8.981

(see Section 4.1.1)

Core-periphery network
9.799 9.804 9.825 9.833 9.843 9.846

(Section 4.1.2)

Network with differing
10.287 10.330 10.394 10.373 10.402 10.422preferences

(Section 4.1.3)

Political blogs
15.928 15.663 15.785 15.991 16.214 16.173

(Section 4.2.1)

Human brain
13.256 13.197 13.133 13.142 13.206 13.287functional coactivations

(Section 4.2.3)

K 5 6 7 8 9 10

Military alliances
2.578∗ 2.379∗ 2.268∗ 2.412∗ 2.807∗ 2.973∗

(Section 4.2.2)

Table 1: Resulting values of criterion (16) for all network examples considered in Section 4.
Specification refers to the factor of 104 (∗or 103). The lowest value per network is highlighted
in bold.

4.1 Synthetic Networks

In the scenario of simulations, we order the final estimate according to the ground-truth

model, involving the within- and between-group arrangement. That is, we apply ϕ : [0, 1]→
[0, 1] from (10) to swap communities and reverse within-group arrangements from back to

front if visibly adequate.

4.1.1 Assortative Structure with Smooth Within-Group Differences

To showcase the general applicability of our method, we first consider again the SBSGM

from Figure 1. Starting with determining the number of groups, the first row of Table 1

shows the corresponding values for criterion (16). This suggests choosing the correct num-

ber of three communities. The corresponding estimation results, i.e. under K = 3, are

illustrated in Figure 4. It can be clearly seen that the estimate of wζ(·, ·) (top right plot)
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Figure 4: Estimation results for the synthetic SBSGM from Figure 1 (shown again at top
left, rescaled according to the estimate’s range from 0 to 0.45). The top right plot shows the
final estimate of wζ(·, ·), i.e. after convergence of the algorithm. The estimation is based
on the simulated network of size N = 500 at the bottom left, where nodes are colored
according to Ûi ∈ [0, 1]. A comparison between the simulated Ui’s and their estimates is
illustrated at the bottom right.
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Figure 5: Estimation results for two synthetic SBSGMs (upper row). The left model is
illustrated by two different representations, including different numbers of groups. The
corresponding estimates with number of groups adopted from the model representations
above are illustrated in the lower row. The estimation is based on simulated networks of
size N = 500.

precisely captures the structure of the true model (top left). In line with this, comparing

the estimated node positions with the true simulated ones (bottom right) reveals that the

latent quantities are appropriately recovered. More precisely, all three truly underlying

groups are clearly separated, and, in addition, also the within-community positions are

well replicated. Altogether, the underlying structure can be accurately uncovered.

4.1.2 Core-Periphery Structure

As a second simulation example, we consider the model at the top left of Figure 5, which

is illustrated as two different formations. Apparently, the “true” number of groups here

is K = 1, meaning that the left model is preferred. Hence, the estimation procedure

should only follow that representation, regardless of the applied K. We demonstrate that

our algorithm adheres to that by fitting the model with both settings, K = 1 and K =

2, which also helps to understand the algorithm’s intuition. The results for simulated

networks of size N = 500 are illustrated in the lower row of the left-hand side of Figure 5.
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Both estimates follow the “single-community” representation, demonstrating the method’s

implicit strategy of merging similar nodes. In addition, a comparison of the estimates with

regard to minimizing criterion (16) (see second row of Table 1) reveals that the model fit

with K = 1 seems preferable over the one with K = 2.

4.1.3 Mixture of Assortative and Disassortative Structures under Equal Over-

all Attractiveness

We now amend the previous situation in the following spirit, where we refer to the repre-

sentation with two communities. Instead of nodes being generally either weakly or strongly

connected, they should now be either strongly connected within their own group and weakly

connected into the respective other group or vice versa. This leads us to the SBSGM spec-

ification represented in the top right plot of Figure 5. More precisely, all nodes in this

model have the same expected degree, where nodes being weakly connected within their

own community compensated for their lack of attractiveness by reaching out to members

of the respective other community. This kind of structure clearly cannot be collapsed to a

single-community SBSGM. More importantly, it also cannot be captured by the SBM even

under degree correction. Our algorithm is however still able to fully capture the underlying

structure, as shown by the estimate at the bottom right. Note that applying criterion (16)

in this case actually suggests choosing K = 1 (third row of Table 1). This wrong specifica-

tion might be caused by the fact that the structural break at 0.5 is only half. Besides, the

decision is quite close compared to the setting of K = 2.

4.2 Real-World Networks

For evaluating our method with regard to real-world examples, we consider three networks

from different domains, comprising social and political sciences as well as neurosciences.

Besides their different domains, the networks vary in their inherent structure, including

the overall density. An overview of the networks’ most relevant summarizing attributes is

given in Table 2.
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Number of nodes Average degree Overall density

Political blogs 1222 27.31 0.022

Military alliances 141 24.16 0.173

Human brain
638 58.39 0.092

functional coactivations

Table 2: Details about real-world networks used as application examples.

4.2.1 Political Blogs

The political blog network has been assembled by Adamic and Glance (2005) and consists

of 1222 nodes (after extracting the largest connected component). These nodes represent

political blogs of which 586 are liberal and 636 are conservative, according to manual

labeling (Adamic and Glance, 2005). An edge between two blogs illustrates a web link

pointing from one blog to another within a single-day snapshot in 2005. For our purpose,

these links are interpreted in an undirected fashion. The resultant network is illustrated

in the top plot of Figure 6, with nodes exhibiting political labels. (Note that this is the

same network used by Karrer and Newman (2011) for demonstrating the enhancement

achieved through their degree-corrected variant of the SBM.) Criterion (16) here suggests

an SBSGM with K = 2 (see fourth row of Table 1), which is in accordance with the

number of political orientations. Moreover, the predicted group assignments (bottom right

plot) reveal a broad concordance with the manually assigned labels. This is additionally

underpinned by a similar size ratio of 565 (mostly liberals) to 657 (mostly conservatives).

Information beyond community memberships can be gained through the within-community

positions visualized in the middle right plot. Together with the estimate of wζ(·, ·) (middle

left plot), they reveal, for example, a local structure that is dominated by a division into

core and periphery nodes. The emergence of such a core-periphery structure is a well-

known phenomenon in the linking of the World Wide Web, of which the considered blogs

are an extraction. In a more specific sense, this core-periphery structure mirrors the blogs’

“sociability,” i.e. their involvement in the political discourse. The narrow intense regions

in ŵζ(·, ·) and the steep slopes in its marginal function (cf. formulation (11); bottom left
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Figure 6: SBSGM estimation for the political blog network (top plot, with blue for ‘liberal’
and red for ‘conservative’). The estimate of wζ(·, ·) (in log scale) is depicted at the middle
left. The plot at the bottom left illustrates the corresponding marginal function ĝζ(u) =∫
ŵζ(u, v) dv. In the right column of the two lower rows, the network is shown with

coloring referring once to the node positions Ûi (top) and once to the derived community
memberships (bottom).
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plot) further indicate the presence of hubs, meaning small subgroups of nodes that are

much more densely connected than others. Lastly, the model fit reveals a domination

of assortative structures since the overall intensity within the two communities is much

higher than between them. Together with the inferred grouping by political orientations,

this indicates that blogs tend to link to blogs from the same political side rather than to

blogs of the respective other side.

4.2.2 Military Alliances

As a second real-world example, we consider the military alliances among the world’s na-

tions. These data have been gathered and are provided by the Alliance Treaty Obligations

and Provisions project (Leeds et al., 2002). More specifically, from the available data, we

extract only the strong military alliances which were lately in force. That means an edge

between two countries is inserted if they have a current military agreement that constitutes

an offensive or defensive pact which would force the one country to militarily intervene when

the other one has come into an offensive or defensive military conflict. This network, which,

according to criterion (16), decomposes into seven communities (see last row of Table 1),

is illustrated in the top right plot of Figure 7. Also in this data example, the estimate of

wζ(·, ·) (top left) reveals a very dominant assortative structure, even though few groups also

strongly connect to other groups. Further conclusions about political constellations can be

drawn by transferring the inferred node positions and the deduced community memberships

to the world map, as shown in the two lower plots. The resulting communities exhibit a

composition of almost exclusively neighboring states, implying that those arrange similar

strong military alliances. Relating this to the discovered assortative structure allows to

additionally conclude that countries which are geographically close are likely to form mili-

tary alliances. Consulting further the within-community positions provides insight into the

communities’ local formation. For example, the arrangement of the yellow community goes

from Southern Africa via Central/East Africa to West Africa. In general, the structure

within the network seems to be well captured by node clustering with smooth within-group

differences.
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Figure 7: SBSGM estimation for the military alliance network. The estimate of wζ(·, ·)
(in log scale) and the network with node coloring referring to Ûi ∈ [0, 1] are depicted
at the top left and top right, respectively. The two lower plots show the world map with
colors indicating the precise positions in the SBSGM (middle) and the resulting community
memberships (bottom). China, Cuba, and North Korea (colored in pink) form an isolated
group and therefore have been excluded from the estimation procedure. Countries which
do not appear in the data set and thus are assumed not to have any strong military alliance
are colored in gray.
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4.2.3 Human Brain Functional Coactivations

We conclude the real-world data examples by considering the human brain functional coac-

tivation network. This network has been assembled by Crossley et al. (2013) via meta-

analysis and is accessible through the Brain Connectivity Toolbox (Rubinov and Sporns,

2010). More precisely, the provided weighted network matrix represents the “estimated

[. . . ] similarity (Jaccard index) of the activation patterns across experimental tasks be-

tween each pair of 638 brain regions” (Crossley et al., 2013), where this similarity is addi-

tionally “probabilistically thresholded.” Based on that, we construct an unweighted graph

by including a link between all pairs of brain regions which have a significant similarity,

meaning a positive score in the original data set. For the arising network, determining

the number of groups using criterion (16) yields three communities (see last-but-one row

of Table 1). The decision, however, seems rather tight, and Crossley et al. (2013) choose

a regular SBM with four communities for fitting these data. Hence, we also here choose

K = 4, which allows a direct comparison of the results. The resulting SBSGM fit is il-

lustrated in Figure 8. In this application, ŵζ(·, ·) (top left) again reveals an assortative

structure. However, it is comparatively less pronounced, implicating that similar behav-

ior and connectedness are less strongly associated. Regarding the inferred clustering in

anatomical representation (bottom row), the results look very similar to those derived by

Crossley et al. (2013, Fig. 1, A). They label their inferred communities anatomically as

occipital, central, frontoparietal, and default-mode module. As the biggest difference to

that, our method proposes to merge the occipital and the frontoparietal part (yielding the

red group) and instead to split the central module into an upper and a lower section (light

green and cyan node set, respectively). Yet, the within-group positions of the merged red

community reveal analogically a certain disintegration into brain regions of the occipital

and the frontoparietal module. Hence, the additional information about structural patterns

within communities here allows to uncover a clustering of nodes at a higher resolution. (For

the sake of completeness, the SBSGM fit with K = 3 is illustrated in the Supplementary

Material. These results look quite similar, but they reveal a more extensive exploitation of

capturing group structures through smooth differences.)
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Figure 8: SBSGM estimation for the human brain functional coactivation network (top
right, coloring referring to Ûi ∈ [0, 1]). The estimate of wζ(·, ·) (in log scale) is depicted
at the top left. The lower six plots show the local positions of the human brain regions in
anatomical space with coloring referring to Ûi ∈ [0, 1] (middle row) and derived community
memberships (bottom row). The different angles show side view (left column), front view
(middle column), and top view (right column).
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Altogether, the applications demonstrate that our novel approach is a very flexible mod-

eling tool. As such, the SBSGM allows to precisely capture the structure within complex

networks, which consequently yields a high prediction accuracy (see Supplementary Ma-

terial). Moreover, the strict node clustering paired with within-group positions provides

favorable interpretability. These features make the SBSGM a helpful tool that enables to

gain further insight and to draw more profound scientific conclusions.

5 Discussion and Conclusion

Despite their close relationship, the stochastic blockmodel and the (smooth) graphon model

have mainly been developed separately until now. To address this shortcoming, the paper

aimed at combining both model formulations to create a novel modeling approach that

generalizes the two detached concepts in a unified framework. The resulting stochastic

block smooth graphon model consequently unites the individual capabilities of the two

initial approaches. These are the clustering of networks (SBM) and the representation

of local structures by formulating smoothly changing connectivity behaviors (SGM). By

utilizing previous results on SBM and SGM estimation, we developed an EM-type algorithm

for reliably estimating the (semiparametric) model specification.

Although the SBSGM arises from combining the SBM and the SGM, connections to

other statistical network models can be established. In this line, an approximation of

the latent distance model (Hoff et al., 2002) can be formulated for any dimension by

appropriately partitioning and mapping the latent space to the unit interval as the domain

of the SBSGM. Moreover, our method allows to cover the structure of the degree-corrected

SBM (Karrer and Newman, 2011) in a natural way. This can be accomplished by restricting

the slices wζ(u, ·) to be proportional within communities, i.e. by setting wζ(u, ·) ≡ c ·
wζ(u0, ·) for u ∈ [ζku0−1, ζku0 ) with c ∈ R+. Such a specification consequently implies an

equivalent connectivity behavior with different attractiveness. The applicability to such a

situation has been demonstrated by the political blog example of Section 4.2.1. Finally, we

argue that—from a conceptional perspective—the SBSGM is also related to the hierarchical

exponential random graph model developed by Schweinberger and Handcock (2015). This
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is because in both models, the set of nodes is divided into “neighborhoods” (Schweinberger

and Handcock, 2015) within which the structure is then modeled by a further approach,

namely an ERGM or multiple SGMs, respectively. In this regard, the HERGM could be

enhanced by modeling the between-neighborhood structure through an SBSGM instead

of an SBM. Lastly, a connection between the graphon model and the ERGM has been

elaborated by Chatterjee and Diaconis (2013), Yin et al. (2016), and Krioukov (2016).

Further details on the links to other models are provided in the Supplementary Material.

Besides its theoretical capabilities and connections, we demonstrated the practical appli-

cability of the SBSGM. This has been done with respect to both simulated and real-world

networks. The estimation results of Section 4 clearly reveal that our novel modeling ap-

proach of clustering nodes into groups with smooth structural differences is able to capture

various types of complex structural patterns. Overall, the SBSGM is a very flexible tool

for modeling complex networks, which helps to uncover the network’s structure in more

detail and thus enables to get a better understanding of the underlying processes.
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SUPPLEMENTARY MATERIAL

The Supplementary Material comprises elaborations about intuition and justification of

the EM-type algorithm, computational issues, links to other models, and an evaluation of

the algorithm’s concrete performance in comparison with other methods. Moreover, we

have implemented the EM-based estimation routine described in the paper in a free and

open source Python package, which is publicly available on github (https://github.com/

BenjaminSischka/SBSGMest.git, Sischka, 2022).
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Appendix

Gibbs Sampling of Node Positions and Subsequent Adjustments

In the EM-type algorithm presented in the paper, we apply the Gibbs sampler in the E-

step to achieve appropriate node positions conditional on Y = y and given wζ(·, ·). That
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means, we aim to stepwise update the i-th component of the current state of the Markov

chain, U<t> = (U<t>
1 , . . . , U<t>

N ). This is done by setting U<t+1>
j := U<t>

j for j 6= i and for

U<t+1>
i drawing from the full-conditional distribution as formulated in (12) of the paper.

To do so, we make use of a mixture proposal which differentiates between remaining within

and switching the community. This is appropriate due to different structural relations

with respect to U<t>
i , where nearby positions within the same community imply similar

connectivity patterns. To this end, we split the proposing procedure into two separate

steps. First, we randomly choose the proposal type, i.e. either remaining within or switch-

ing the community. This is done by drawing from a Bernoulli distribution with ν ∈ [0, 1]

as the probability of remaining within the group. Secondly, conditional on the proposal

type, we either draw from [ζki−1, ζki) or from [0, 1] \ [ζki−1, ζki), where ki ∈ {1, . . . , K} is

the community including U<t>
i , i.e. U<t>

i ∈ [ζki−1, ζki). For a proposal within the cur-

rent community, we employ a normal distribution under a compressed logit link. To be

precise, we first define V <t>
i = log{(U<t>

i − ζki−1)/(ζki − U<t>
i )}, then we draw V ∗i from

Normal(V <t>
i , σ2) with an appropriate value for the variance σ2, and finally we calculate

U∗i = {exp(V ∗i )/(1 + exp(V ∗i ))} · (ζki − ζki−1) + ζki−1. Consequently, for U∗i ∈ [ζki−1, ζki),

the proposal density follows

p(U∗i | U<t>
i ) ∝ ν · 1

(U∗i − ζki−1)(ζki − U∗i )
· exp

{
− 1

2σ2

[
log {(U∗i − ζki−1)/(ζki − U∗i )}

− log
{

(U<t>
i − ζki−1)/(ζki − U<t>

i )
} ]2

}
,

yielding a ratio of proposals in the form of

p(U<t>
i | U∗i )

p(U∗i | U<t>
i )

=
(U∗i − ζki−1)(ζki − U∗i )

(U<t>
i − ζki−1)(ζki − U<t>

i )
.

Regarding the proposal under switching the community, no information about the relation

to U<t>
i is given beforehand. Hence, in this case, we apply a uniform proposal restricted to

the segments of all other groups. To be precise, for U∗i we draw from a uniform distribution

with the support [0, ζki−1) ∪ [ζki , 1]. This means that the proposal density is given as

p(U∗i | U<t>
i ) = (1− ν)/(1− (ζki − ζki−1)) ·1{U∗i ∈[0,ζki−1)∪[ζki ,1]}, yielding for U∗i ∈ [ζk∗i−1, ζk∗i )
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with k∗i 6= ki a proposal ratio of

p(U<t>
i | U∗i )

p(U∗i | U<t>
i )

=
1− (ζki − ζki−1)
1− (ζk∗i − ζk∗i−1)

.

Having defined the proceeding for proposing a new position for node i, including the

calculations of the corresponding density ratios, we are now able to specify the acceptance

probability. Hence, we accept the proposed value and therefore set U<t+1>
i := U∗i with a

probability of

min

{
1,

∏

j 6=i

[(
wζ(U∗i , U

<t>
j )

wζ(U<t>
i , U<t>

j )

)yij ( 1− wζ(U∗i , U
<t>
j )

1− wζ(U<t>
i , U<t>

j )

)1−yij]
p(U<t>

i | U∗i )

p(U∗i | U<t>
i )

}
.

If we do not accept U∗i , we set U<t+1>
i := U<t>

i . The consecutive drawing and updating of

the components U1, . . . , UN then provides a proper Gibbs sampling sequence. After cutting

the burn-in phase and appropriate thinning, calculating the sample mean of the simulated

values consequently yields an approximation of the marginal conditional mean E(Ui | y).

To be precise, for appropriately estimating Ui in the m-th iteration of the EM algorithm,

we define

Û
(m)
i =

1

n

n+b∑

s=1+b

U<s·N ·r>
i , (17)

where b ∈ N represents a burn-in parameter, r ∈ N describes a thinning factor, and n is

the number of MCMC states which are taken into account.

However, as discussed in Section 3.1 of the paper, these estimates need to be further

adjusted in a two-fold manner, which also involves adjusting the community boundaries.

Starting with Adjustment 1, we relocate the boundaries ζk such that the group allocations

correspond to the proportions of the realized groups, meaning we set

ζ̂
(m+1)
k =

∑
i 1{Û(m)

i <ζ̂
(m)
k }

N
.

Note that this calculation represents an estimate of the transformation ϕ′1(ζ̂
(m)
k ) with ϕ′1(·)
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as described in Section 3.1 of the paper. In fact, it is advisable to make small adjustments

in early iterations since, in the beginning, the result of the E-step is rather rough. We

therefore make use of step-size adjustments in the form of

ζ̂
(m+1)
k = δ(m+1)

∑
i 1{Û(m)

i <ζ̂
(m)
k }

N
+
(
1− δ(m+1)

) k
K
.

In this specification, the weighting δ(m+1) ∈ [0, 1] with δ(m+1) ≥ δ(m) induces a step-size

adaptation from a priori equidistant boundaries to boundaries implied by observed fre-

quencies. Such step-size adaptation is recommendable to prevent the community size from

shrinking too substantially before the structure of the community has properly evolved. In

general, δ(m+1) is chosen to be one in the last iteration. This concludes Adjustment 1 with

respect to the community boundaries.

We proceed with applying Adjustment 1 and Adjustment 2 to the posterior means

derived from expression (17). To do so, we order all Û
(m)
i in the original blocks by ranks

and rescale them to the new blocks defined through [ζ̂
(m+1)
k−1 , ζ̂

(m+1)
k ). That means, we

first assign communities through C(m)
k = (i ∈ {1, . . . , N} : ζ̂

(m)
k−1 ≤ Û

(m)
i < ζ̂

(m)
k ) with

sizes N
(m)
k = |C(m)

k |. To enforce equidistant adjusted positions within the new community

boundaries, we then calculate for all j ∈ C(m)
k

Û
′′(m)
j =

rankk(Û
(m)
j )

N
(m)
k + 1

(ζ̂
(m+1)
k − ζ̂(m+1)

k−1 ) + ζ̂
(m+1)
k−1 (18)

with rankk(Û
(m)
j ) being the rank from smallest to largest of the element Û

(m)
j within all

positions in community k, i.e. within the tuple (Û
(m)
i : i ∈ C(m)

k ). These calculations, which

represent an estimate of ϕ′2◦ϕ′1(Û (m)
j ) with ϕ′1(·) and ϕ′2(·) as described in Section 3.1 of the

paper, are applied to all communities k = 1, . . . , K. This concludes applying Adjustment 1

and Adjustment 2 to the latent quantities.
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1 Notes on the EM-type Algorithm

1.1 Intuition and Justification

As a consequence of the identifiability issue (see Section 2.5 of the paper), there is not
just one ground-truth SBSGM wζ(·, ·) that could be identified as the prescribed estimation
target. Instead, assuming that the network Y ∈ {0, 1}N×N is in fact generated from
SBSGM wζ(·, ·), we aim at reconstructing any SBSGM w′ζ′(·, ·) from its equivalence class.
In this context, such an equivalence class could be specified by referring to Diaconis and
Janson (2007) and defining it as the set of all SBSGMs w′ζ′(·, ·) for which two measure-

preserving functions ϕ, ϕ′ : [0, 1]→ [0, 1] exist such that wζ(ϕ(u), ϕ(v)) = w′ζ′(ϕ
′(u), ϕ′(v))

for almost every (u, v)> ∈ [0, 1]2. In the spirit of the cut distance from Lovász (2012, eq.
8.16), this means for wζ(·, ·) and w′ζ′(·, ·)

inf
ϕ,ϕ′∈M

∫∫
|wζ(ϕ(u), ϕ(v))− w′ζ′(ϕ′(u), ϕ′(v))|2 du dv = 0,

whereM is the set of all measure-preserving permutations on [0, 1]. However, as an alter-
native specification which omits the rearrangements ϕ(·) and ϕ′(·), we define an equivalence
classWwζ(·,·) of wζ(·, ·) as the set of all symmetric measurable functions w′ζ′ : [0, 1]2 → [0, 1]
for which

lim
N→∞

∑

y∈{0,1}N×N

Pwζ(·,·)(Y = y) log
Pwζ(·,·)(Y = y)

Pw′
ζ′ (·,·)(Y = y)

= 0.

That means the Kullback-Leibler divergence between the probability functions induced by
wζ(·, ·) and w′ζ′(·, ·) on a network with diverging size should be zero. As is well-known,

Benjamin Sischka is Research Assistant, Department of Statistics, Ludwig-Maximilians-Universität
München, 80539 München, Germany (E-mail: benjamin.sischka@stat.uni-muenchen.de). Göran
Kauermann is Professor, Department of Statistics, Ludwig-Maximilians-Universität München, 80539
München, Germany (E-mail: goeran.kauermann@stat.uni-muenchen.de).
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maximizing the likelihood is asymptotically equivalent to minimizing the Kullback-Leibler
divergence, where the former one is what we pursue by our estimation procedure. More pre-
cisely, we exploit the concepts of the EM-type algorithm to derive the (penalized) maximum
likelihood estimate for (ζ,γ). In this context, note that despite the non-identifiability,

(a) an objective log-likelihood with respect to (ζ,γ) and given y can still be formulated
properly in the form of maxU `(ζ,γ;y,U), and

(b) under mild conditions, both the E- and the M-step still lead to an increase of the
log-likelihood, i.e.

`(ζ̂
(m)
, γ̂(m);y, Û

(m−1)
) <
−→

E-step

`(ζ̂
(m)
, γ̂(m);y, Û

(m)
) <
−→

M-step

`(ζ̂
(m+1)

, γ̂(m+1);y, Û
(m)

)

(1)

if a (local) maximum has not already been reached.

So in combination with the implication on the Kullback-Leibler divergence, this maxi-
mization of the log-likelihood ensures that the algorithm approaches an SBSGM from the
equivalence class Wwζ(·,·) for N →∞.

Following the above argumentation, the EM-type algorithm yields proper results if
formulation (1) applies. At that, the second inequality is apparently always true since
maximizing the log-likelihood is exactly what the M-step aims at. Therefore, the required
conditions can be brought down to ensuring that the E-step yields proper predictions
of the latent positions. According to the E-step’s construction (see equation (17) of the
paper’s Appendix), this is based on a marginalization of the results from the Gibbs sampler
conditional on y and given an estimate of wζ(·, ·). Thus, we require that at least for
one w′ζ′(·, ·) ∈ Wwζ(·,·), the latent positions are identifiable with respect to marginalizing

the conditional distribution. This is only violated if the SBSGM possesses a (partially)
symmetric structure. Exemplary cases of such a scenario are given in Figure 1. Regarding
the left model, for any observed network y, it holds for any u = (u1, . . . , uN) ∈ [0, 1]1×N

that f(u |y) = f(u′ |y) with u′ = (1 − u1, . . . , 1 − uN). This especially implies that
the marginalized conditional distribution for any node is symmetric around 0.5 and thus
leads to E(Ui |y) = 0.5 for all i = 1, . . . , N . Consequently, for this SBSGM, the latent
positions are not marginally identifiable. The model on the right is an analogous example
for the smooth case, where the latent positions which correspond to the segments delimited
by white and black lines, respectively, are as a whole arbitrarily exchangeable (in reverse
fashion, meaning 0.1 7→ 0.85, 0.3 7→ 0.65, and mapping in-between values accordingly).

However, these kind of (partially) symmetric models can be viewed as very excep-
tional cases and thus should only rarely represent the ground truth in real-world networks.
Nevertheless, we require the assumption that the true underlying model is not (partially)
symmetric. If this assumption holds, a reasonable positioning by performing the E-step is
guaranteed when it is based on the true model w′ζ′(·, ·). From there, it is easy to see that

w′ζ′(·, ·) is a stationary state of the described algorithm. Thus, its approximation in the form

of w′ spline
ζ′,γ′ (·, ·) is (asymptotically) one of the global maxima—among the approximations
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Figure 1: SBSGMs with non-identifiable latent positions under marginalization of the con-
ditional distribution. Left: overall symmetric model in the SBM context. Right: partially
symmetric model in the SGM setting.

of other elements from Wwζ(·,·)—of the log-likelihood with appropriate latent positions, i.e.
maxU `(ζ,γ;y,U).

1.2 Computational Intensiveness

Besides the fact that our proposed estimation routine can be demonstrated to provide
accurate SBSGM fits, the algorithm appears to be computationally intensive. In regard
to efficiency, it is well known that iterative procedures are inherently more expensive in
computational terms than non-iterative techniques providing immediate estimation results.
In the context of graphon estimation, the latter includes approaches such as histogram
estimators based on marginal sorting strategies (Chan and Airoldi, 2014, Yang et al., 2014),
spectral methods (Chatterjee, 2015, Xu, 2018), and neighboring smoothing (Zhang et al.,
2017). Yet, we stress that these procedures are associated with a reduction in goodness of
fit, accepted in favor of beneficial structural concepts. To be precise, degree-based ordering
strategies require restrictive condition (11), spectral methods assume an (efficient) linear
separability, and determining neighbors based on observed connectivity behaviors involves
the total randomness inherent in the stochastic difference

∑
j(Yij − Yi′j)2. (To underline

the latter, Avella-Medina et al., 2020 have demonstrated that centrality can be measured
more robustly by relying on derived graphon estimates than by simply extracting it from
the observed network.) In particular, these drawbacks are detached from and exist despite
potential consistency properties. Iterative estimation methods, on the other hand, are
known to be able to capture present structures in more detail since they aim at aligning
the estimates of multiple unknown quantities. This strategy consequently entails a finer-
tuned model fit.

To make iterative estimation approaches more efficient, different strategies have been
proposed in recent years. In the context of modeling networks based on latent variables,
the most computationally expensive part is determining the latent nodal quantities. Aim-
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ing for a more efficient estimation of mixed-membership SBMs, Mørup et al. (2011) and Li
et al. (2016) adapted MCMC techniques by additionally incorporating a group-related split-
merge scheme and a stochastic gradient approach, respectively. The resulting methods have
lower computational complexity and therefore become more feasible for larger networks. A
further approach for speeding up iterative estimation in the context of community detec-
tion is given by Narasimhamurthy et al. (2008), where they propose a two-stage clustering
scheme. In the first stage, they achieve a rough partition by applying a computationally
tractable, non-iterative technique. Based on that, they utilize more demanding approaches
to get a more precise splitting in the second stage. Note, however, that the SBSGM in-
volves a much more complex structure both within and between groups, which is why more
efficient grouping strategies cannot be readily applied. As a different alternative, Karrer
and Newman (2011) make use of greedy search techniques for estimating degree-corrected
SBMs, see also Airoldi et al. (2013) for graphon estimation based on multiple graph ob-
servations. Such a strategy can be interpreted as a maximization-maximization approach
with respect to the log-likelihood. In this scenario, the latent quantities are individually
optimized based on the full-conditional likelihood. Yet, as stated by Fortunato (2010, p.
9), “despite the improvements and refinements of the last years, the accuracy of greedy
optimization is not that good, as compared with other techniques.” A common concept
to make specifically the EM algorithm more feasible is to rely on variational approaches;
see e.g. Daudin et al. (2008) for its application in the SBM framework. However, this
requires the existence of a suitable approximate distribution in the E-step. In the SBSGM
context, this would need to appropriately cover the complex within- and between-group
distribution.

Overall, adopting more computationally efficient methods for the SBSGM framework
seems challenging, especially when the model’s accuracy is a key aspect. Nonetheless, as a
straightforward improvement in terms of speeding up the estimation, one could employ an
informative initialization that results in faster convergence. Strategies into this direction
are discussed in Section 3.3.

2 Link to Other Models

The SBSGM possesses relationships to other network models which are beyond the regular
SBM and the SGM. Here, we frame the connection to some selected models.

2.1 Degree-Corrected SBM

The SBSGM is not only able to cover the regular SBM but can further reflect its degree-
corrected version that has been introduced by Karrer and Newman (2011). To do so, we
define the following pattern within the SBSGM segments. Denoting by [ζk−1, ζk) with k =
1, . . . , K the group-specific intervals, then we specify for the SBSGM slices at u ∈ (ζk−1, ζk)
(under particular consideration of symmetry in the form of wζ(u, v) = wζ(v, u))

wζ(u, ·) ≡ ak(u) · wζ(ζk−1, ·)
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Figure 2: SBSGM representing a degree-corrected SBM with two communities. The
SBSGM wζ(·, ·) is shown in the top left, while the corresponding slices wζ(u, ·) are il-
lustrated in the top right, exhibiting a more or less proportional profile within the groups.
The bottom row shows twice the same simulated network of size N = 500 but with dif-
ferent coloring; on the left, it refers to the Ui, and on the right, it illustrates the resulting
community memberships (specified by Ui < 0.5 and Ui ≥ 0.5).

with ak : [0, 1] → R+ being a continuous monotone non-decreasing function which fulfills
that ak(ζk−1) = 1. Apparently, in this setting, two nodes from the same community will
reveal the same basic connectivity behavior (stochastically) but will differ in the degree
proportion. For example, to model additionally the presence of hubs, one could choose an
exponential profile for ak(·), resulting in a node majority with lower degrees and a few nodes
(hubs) having considerably higher degrees. Note that ak(·) is restricted through ak(ζk) ≤
minv{1/wζ(ζk−1, v)}, meaning that the growth factor is limited by the inverse of the highest
edge probability at the lower bound. This restriction of the degree heterogeneity within a
community does not exist in the Poisson-type SBM but is a consequence of the Bernoulli-
type SBM. However, one can circumvent this type-specific issue by allowing the slices to
not only be strict multiples of each other but also to differ slightly in the profile, meaning
especially to have a higher increase at low values than at values that are already high. An
example of such a model is given in Figure 2. Considering the SBSGM slices wζ(u, ·) at the
top right, they have similar but shifted profiles. Consequently, in the two representations
of a simulated network at the bottom row, the nodes from the same community exhibit
fundamentally similar connectivities but differ in attractiveness.
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2.2 Latent Distance Model

A further model class which has relation to the SBSGM is the latent distance model (LDM)
introduced by Hoff et al. (2002). In its simple form it can be formulated as

P(Yij = 1|X i = xi,Xj = xj;β) =
exp(β0 − β1‖xi − xj‖)

1 + exp(β0 − β1‖xi − xj‖)
,

where β = (β0, β1)
> ∈ R2 is a coefficient vector and X i is the latent position of node

i—potentially located in the metric space (RJ , ‖ · ‖) with J ∈ N. The coefficient β1 is
only required (and identifiable) if the latent space is bounded. We here consider the stan-
dardized version, meaning that we assume X i to be lying within [0, 1]J . An approximate
representation in the form of an SBSGM as formulated in (8) of the paper can then be
achieved by decomposing the latent space into [0, 1]J−1× [0, 1] and subsequently partition-
ing [0, 1]J−1 into an increasing number of segments with volumes converging to zero. In
doing so, the number of segments determines the number of “communities”, i.e. K, and
the changes resulting through the distances in direction of the J-th dimension are captured
within the intervals (ζk−1, ζk). Consequently, starting with the one-dimensional version

with prior distribution Xi
i.i.d.∼ Uniform(0, 1), this can be exactly represented by the SGM,

choosing

wβ(u, v) =
exp(β0 − β1|u− v|)

1 + exp(β0 − β1|u− v|)
. (2)

Similar connections are formulated by Matias and Robin (2014, Sec. 2.2), as well as Chan
and Airoldi (2014, Sec. 5.1). In contrast, the two-dimensional LDM with uniform prior
distribution on [0, 1]2 can be approximated arbitrarily well by the SBSGM through

wK,β(u, v) =
K∑

k=1

K∑

l=1

1{u∈[ k−1
K

, k
K )}1{v∈[ l−1

K
, l
K )}wkl;K,β(u, v), (3)

where K2 ∈ N is the number of segments into which the latent space [0, 1]2 is partitioned
and

wkl;K,β(u, v) =

exp

(
β0 − β1

√(
|k−l|
K

)2
+ |(Ku− k)− (Kv − l)|2

)

1 + exp

(
β0 − β1

√(
|k−l|
K

)2
+ |(Ku− k)− (Kv − l)|2

)

for k, l = 1, . . . , K. For K → ∞, this SBSGM specification converges towards the exact
representation of the two-dimensional distance model. Specifically, the odds ratio of an
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Figure 3: SBSGM representation of the LDM with uniform prior distribution on the unit
space. Left: exact representation from (2) of the one-dimensional version with (β0, β1) =
(0, 1); middle: SBSGM-type approximation from (3) of the two-dimensional version with

(β0, β1) = (0,
√

2
−1

) and partition parameter K = 10. The coefficient β1 has been adapted
such that the edge probability for the widest possible distance is equivalent for 1D and 2D.
Right: edge probabilities for node pairs with simulated positions for the 2D distance model
(horizontal axis) transformed into the SBSGM (vertical axis).

edge with respect to the LDM and its SGBSM-type approximation can be bounded by

PLDM(Yij = 1|X i = xi,Xj = xj;β)

1− PLDM(Yij = 1|X i = xi,Xj = xj;β)

PSBSGM(Yij = 1|Ui = ψ(xi), Uj = ψ(xj);β)

1− PSBSGM(Yij = 1|Ui = ψ(xi), Uj = ψ(xj);β)

∈
[
exp

(
±β1
K

)]
K→∞−→ [1± 0],

where the mapping ψ : [0, 1]2 → [0, 1] for xi = (xi1, xi2) ∈ [0, 1]2 is defined through

ψ(xi) =
xi1
K

+
K∑

k=1

1{xi2∈[ k−1
K

, k
K )}. (4)

However, the SBSGM from (3) does not converge towards a continuous function, which
is why for K = ∞ this does not yield a well-defined model. The SBSGM representation
of the one- and two-dimensional LDM with uniform prior distribution in the unit space
are illustrated in Figure 3. In addition, with regard to the SBSGM-type approximation
of the two-dimensional LDM, the edge probabilities from the exact model and the ap-
proximation are plotted against each other for a hundred thousand simulated node pairs
(right panel). This illustration demonstrates that the approximation is already close for a
partition parameter of K = 10. In a similar way, also LDMs of higher dimension can be
approximated.

Note that under the more general circumstances of X i being not uniformly distributed
within [0, 1]J , it follows that also the regular mapping ψ(X i) (like in (4) for the two-
dimensional case) is not uniformly distributed. However, there exists a monotonically
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increasing function ϕ : [0, 1] → [0, 1] such that ϕ ◦ ψ(X i) ∼ Uniform(0, 1). Referring to
the regular SBSGM-type approximation wK,β(·, ·) (like in (3) for the two-dimensional case),
the SBSGM then instead could be specified as w′K,β(u, v) = wK,β(ϕ−1(u), ϕ−1(v)), where
ϕ−1(u) := max{v : ϕ(v) = u}.

2.3 Hierarchical Exponential Random Graph Model

A conceptual connection to the SBSGM is also given for the hierarchical exponential ran-
dom graph model (HERGM) developed by Schweinberger and Handcock (2015). Starting
with the standard exponential random graph model (ERGM), a link to the graphon model
has be described by Chatterjee and Diaconis (2013) as well as Yin et al. (2016), at least for
simple statistics like the number of two-stars and triangles and in the case of dense graphs.
They make use of this relation to achieve asymptotic properties about the ERGM, which
primarily concerns the normalizing constant and extremal behaviors. Krioukov (2016) has
independently established a connection for sparse networks through expanding the domain
of the graphon onto R2, where the focus also lies on the rather simple edge-triangle ERGM.
The groundwork for the connection between these two models with differing conceptions
was in particular laid by Lovász and Szegedy (2006) and Borgs et al. (2007). While the
ERGM aims to capture structural patterns directly, the graphon model as limiting graph
object has the intention to cover network structure through making use of additional latent
quantities (see Matias and Robin, 2014 for an overview of latent variable models). Yet,
recent works pursued to derive motif frequencies for graphon models (see e.g. Latouche and
Robin, 2016) and therefore give further rise to the connection of these two models. For
example, the overall probability of three random nodes forming a triangle

∫∫∫
w(ui, uj)w(ui, uk)w(uj, uk) dui duj duk

can be interpreted as expected global transitivity. Conversely, Bickel et al. (2011) estab-
lished a sequence of patterns—called wheels—for which they can show that the graphon
model is identifiable. So altogether, considering that there is a link between the ERGM
and the graphon model, we draw the conclusion that there is also a connection between
the HERGM and the SBSGM. Both approaches aim to divide the former global model
into multiple local models to describe local dependence (see Schweinberger and Handcock,
2015). Therefore, both model extensions follow the same intuition.

3 Investigation on the Method’s Behavior and Perfor-

mance

Beyond theoretical considerations about the capacity of our model and the effectiveness of
the proposed estimation procedure, we want to evaluate the method’s concrete applicability.
By visual checks, this has already been carried out in Section 4 of the paper. Sticking with
these applications, we now want to get more detailed insights into the method’s behavior
and how well it performs, also with respect to competing state-of-the-art approaches. To
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do so, we investigate two quantitative aspects. On the one hand, we analyze its sensitivity
with respect to initialization, providing information about the algorithm’s stability. On
the other hand, an assessment of its capacity to uncover underlying structures is given.
As competing methods, we consider the degree-corrected stochastic blockmodel (DCSBM,
Karrer and Newman, 2011), the universal singular value thresholding strategy (USVT,
Chatterjee, 2015), and the neighborhood smoothing approach (NBSM, Zhang et al., 2017).
For these modeling techniques, we employ the software packages graspologic (DCSBM,
Jaewon et al., 2019) and randnet (USVT and NBSM, Li et al., 2021).

3.1 Robustness with Respect to Initialization

The impact of the concrete starting values for U can be investigated by considering the
variability of the log-likelihood resulting from the final estimate. To this end, we repeatedly
fit an SBSGM with different starting values, yielding an empirical distribution of P(Y =
y | Û ; ζ̂K , γ̂K). The results are illustrated in Figure 4, where, for each number of groups,
we repeated the estimation routine ten times.

Regarding the simulation examples illustrated in the left column, the variability of the
log-likelihood seems relatively low compared to the variation among the competing meth-
ods. Moreover, for each of the networks, the center of the likelihood distribution is close
to the log-likelihood under the true underlying model. Lastly, the outcomes distinguished
by the number of groups reveal a clear separation in their tendencies.

The results for the real-world networks are depicted in the right column of Figure 4. The
variability of the derived log-likelihood values here seems to be a bit higher but still within
a very acceptable range. The sub-distributions reflecting the different group numbers are
again clearly separated, demonstrating the explicit impact of K. Regarding the location of
the likelihood distribution, it always lies between the log-likelihood results of the competing
methods. This suggests that the SBSGM acts as a composite model that unites the different
structural aspects covered by the other approaches. Referring to the illustrated variability
under fixed group number, the precision of the model fit seems to depend only weakly on
the model’s initialization. Note that in the military alliance network, the deviation between
differing numbers of groups is relatively high, indicating that the group structure plays a
predominant role.

3.2 Performance in Prediction Accuracy

In a next step, we aim for investigating and comparing the capacity of covering underlying
network structures. In the scenario of simulations, this can be done by relying on the
differences between true and inferred edge probabilities. To be precise, we consider the
root-mean-square error √√√√

1(
N
2

)
∑

i,j
j>i

[
h(ξi, ξj)− ̂h(ξi, ξj)

]2
.

The results for the graphon models from Section 4.1 and the corresponding simulated
network data are illustrated in the top plot of Figure 5. For the graphon with smoothly
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Figure 4: Distribution of the log-likelihood as it results under repeatedly fitting the SBSGM
with different random initializations; illustrations refer to the networks from Section 4.
The stacked histogram illustrates the overall outcome as well as its subdivision according
to different numbers of groups. For comparison reasons, the log-likelihood is additionally
depicted for the three competing methods DCSBM, USVT, and NBSM, as well as for the
true underlying model (in the simulation scenarios).
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Figure 5: Top plot: root-mean-square error between true underlying and inferred edge
probabilities based on indicated modeling frameworks. Results refer to the simulation
scenarios from Section 4.1 of the paper with simulated networks of size N = 500. Bottom
part: receiver operating characteristic curves (upper row) and precision-recall curves (lower
row) for real-world networks from Section 4.2 (main paper). Predictions refer to network
entries that have been randomly modified to imitate unstructured noise. Proportions of
(potentially) modified entries are 10% for political blog and human brain network and 30%
for military alliance network. Values given in the legend (in square brackets after model
specifications) declare the area under the curve.
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varying assortative structures from Section 4.1.1, illustrated in Figure 4 (main paper), our
method is slightly better than the competing approaches, where, altogether, the differences
between the methods’ performances are rather small. For the core-periphery structured
graphon from Section 4.1.2 (main paper; left-hand side of Figure 5), the DCSBM and the
SBSGM perform distinctly better than the methods USVT and NBSM. The high accuracy
of the DCSBM can be explained by the fact that the data-generating model can be exactly
represented as single-community SBM with degree heterogeneity. In contrast, the graphon
from Section 4.1.3, which describes a mixture of assortative and disassortative structures—
depicted at the right-hand side of Figure 5 of the paper—, can noticeably be best modeled
by the SBSGM. This is as expected since the structural assumptions of all the competing
methods are only poorly met.

To evaluate the performance on the real-world examples, we investigate the prediction
accuracy. Apparently, to not give advantages to approaches that tend to overfit, the evalu-
ation needs to be done on a “left-out” sample. Since the competing methods can however
not (directly) deal with missing information about the presence of edges, this must be
handled differently. For a comparative analysis, Zhang et al. (2017) thus consider the task
of predicting missing edges. To do so, they randomly choose a set of network entries be-
forehand and set the values to zero by default. For this set of edge variables, the predicted
edge probabilities and the actually observed values can then be compared. Yet, removing
present edges only and not adding additional edges describes an unbalanced modification of
the network. Li et al. (2020) therefore propose a different cross-validation strategy, where
they substitute the randomly drawn network entries with the estimates obtained from a
low-rank-based matrix completion algorithm. This, however, tends to give advantage to the
USVT strategy, which can be interpreted as and is highly related to other low-rank-based
matrix completion techniques. Hence, the USVT model fit will only be marginally affected
by such network modifications. As a consequence, we propose a different approach which
aims at a natural way of removing structure. In this respect, we consider the Erdős-Rényi-
Gilbert model as the “structureless” representative among network-generating processes.
We therefore propose to substitute the observations of the randomly chosen network entries
by a sample from the Erdős-Rényi-Gilbert model with the same density as present in the
observed network.

Based on this modification strategy, we investigate the prediction accuracy with re-
spect to the (potentially) modified network entries. A proper quantification can then be
constructed by relying on the Receiver Operating Characteristic (ROC) or the Precision
Recall (PR) relation, depending on how balanced present versus absent edges are. The
Area-Under-the-Curve (AUC) metric additionally provides a scalar reference value. The
corresponding results for the real-world networks from Section 4.2 of the paper are illus-
trated in the bottom part of Figure 5. For all three examples, the ROC curve of the SBSGM
exhibits a profile that is preferable over the other ones. That is also underpinned by the
corresponding AUC, which is the highest for the SBSGM. Comparing the three compet-
ing methods among each other, the political blog and the military alliance network reveal
better results under the DCSBM, indicating that they are inherently characterized by a
predominant block structure. This is not the case for the human brain functional coacti-
vation network. Similar results can be observed for the PR curve, according to which the
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SBSGM yields the best predictions except for the political blog network. For the latter, we
see that the USVT strategy provides slightly better results when the focus is on correctly
recovering present edges. Altogether, the results obtained here coincide with the findings
of Li and Le (2021), according to which a mixing of inferred block structures and graphon
estimates leads to an improvement in prediction accuracy.

3.3 Running Time

Finally, note that with regard to running times, it takes the considered competitors only
a few seconds to complete for networks with a few hundred nodes, whereas the current
implementation of our SBSGM algorithm takes several minutes to a few hours (including
finding the optimal K). However, we stress that there are crucial differences in the ob-
jective. While other methods only seek to estimate the edge probabilities, our algorithm
aims for recovering the underlying data-generating process, which additionally provides
information on, for example, grouping structures. In particular, reconstructing the gener-
ating process often enables to easily extend the model in terms of covariates, representing
weighted or dynamic networks, or incorporating other competencies. In contrast, this is
often very difficult for heuristic approaches, where the key intention lies in fast prediction
under straight structural assumptions.

Nonetheless, as a strategy to cut computational costs in the proposed approach, ap-
plying an “informative” initialization appears promisingly in order to achieve much faster
convergence. Reasonable starting values for U could exemplarily be derived through em-
ploying multidimensional scaling to the nodes’ connectivity, i.e. yi• = (yi1, . . . , yiN), utiliz-
ing the reduction to one dimension. This follows the intuition of the SBSGM, according to
which (per block) nearby nodes behave similarly. In this framework, ζ can be initialized

by determining the largest gaps within Û
(0)

or the highest differences between connec-
tivity after ordering the nodes accordingly. Alternatively, the results of the DCSBM can
be used as initialization, which seems particularly reasonable after the close connection
formulated in Section 2.1. For this initialization strategy, the grouping of nodes can be
directly adopted, whereas the ordering within communities can be derived from the nodes’
individual attractiveness.

These two informative initializations are additionally implemented in the provided
Python package. In several simulations, we have found these informative starting con-
figurations to yield very good results while cutting computational costs by more than half.
Yet, if the focus is on finding the best possible estimate rather than getting results fast, as
in the presented applications, we recommend the repetition strategy under different random
initializations.

4 Human Brain Functional Coactivation Network –

Model Fit with K = 3

As pointed out in Section 4.2.3 of the paper, we applied an SBSGM with four communities
for fitting the human brain functional coactivation network even though the algorithm
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inferred three, cf. Table 1 of the paper. This has been done for comparison purposes. For
the sake of completeness, we here additionally illustrate the SBSGM estimate for the setting
of K = 3, see Figure 6. The differences to the model fit from Figure 8 of the paper can
be broken down quite clearly into two aspects, where we again refer to the categorization
made in Crossley et al. (2013). On the one hand, the frontoparietal part is now detached
from the occipital scope and instead merged with the lower section of the central module.
On the other hand, here the upper section of the central module is integrated into the
default-mode part. All other arrangement facets are more or less identical.

Figure 6: SBSGM estimation results for the human brain functional coactivation network
under the setting of K = 3. Top left: estimate of wζ(·, ·) (in log scale). Top right: network

with node coloring referring to Ûi ∈ [0, 1]. Bottom part: local positions of the human brain
regions in anatomical space with coloring illustrating precise node positions (middle row)
and derived community memberships (bottom row). Different angles illustrate side view
(left column), front view (middle column), and top view (right column).
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8. Graphon-Based Network Comparison
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All data sets used to demonstrate the applicability of our testing procedure are freely accessible.
For information on concrete sources, see the specifications in the paper.
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The conceptual idea of utilizing the graphon model to compare the structures between networks
came from Göran Kauermann (see Section 3). The joint graphon estimation routine (Section 4)
was mainly formulated by Benjamin Sischka, who also entirely elaborated the subsequent testing
procedure (Section 5). Moreover, Benjamin Sischka reviewed and put into context the previously
developed concepts for network comparison (Section 2) and conducted the simulation and appli-
cation studies (Section 6). The latter task specifically included the implementation of the whole
strategy. An initial draft of the complete manuscript was prepared by Benjamin Sischka. Besides
the initial idea and his general support, Göran Kauermann was involved in extensive proofreading.
Lastly, the idea of extending the method towards detecting differences between networks at the
microscopic level can be attributed to Benjamin Sischka, which also applies to the corresponding
elaborations (see Supplementary Material).
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Abstract

This paper focuses on the comparison of networks on the basis of statistical inference.
For that purpose, we rely on smooth graphon models as a nonparametric modeling
strategy that is able to capture complex structural patterns. The graphon itself
can be viewed more broadly as density or intensity function on networks, making
the model a natural choice for comparison purposes. Extending graphon estimation
towards modeling multiple networks simultaneously consequently provides substan-
tial information about the (dis-)similarity between networks. Fitting such a joint
model—which can be accomplished by applying an EM-type algorithm—provides a
joint graphon estimate plus a corresponding prediction of the node positions for each
network. In particular, it entails a generalized network alignment, where nearby
nodes play similar structural roles in their respective domains. Given that, we con-
struct a chi-squared test on equivalence of network structures. Simulation studies and
real-world examples support the applicability of our network comparison strategy.

Keywords: Network Comparison, EM Algorithm, Gibbs Sampler, B-Spline Regression,
Chi-Squared Test
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1 Introduction

The field of statistical modeling and analysis of complex networks has gained strongly in-

creasing interest over the last two decades. This is driven by the fact that different types of

systems can be reasonably formalized as relationships between individuals or interactions

between objects. Analyzing such structures consequently allows to uncover and describe

the phenomena that affect these systems. Network-structured data arise in various fields,

for example, social and political sciences, economics, biology, neurosciences, and many

others. In this regard, a connectivity pattern between entities might describe friendships

among members of a social group (Eagle et al., 2009), the trading between nations (Bhat-

tacharya et al., 2008), interactions of proteins (Schwikowski et al., 2000), or the functional

coactivation within the human brain (Bassett et al., 2018, Crossley et al., 2013).

In many situations, uncovering the underlying connectivity structure is not the only

concern but also the comparison of akin networks and the exploration of potential differ-

ences. For example, this might be of interest in the context of brain coactivation. Recently,

a lot of work has been going on investigating how the functional connectivity in the brain

differs when people are affected by cognitive disorders like Alzheimer’s disease or autism

spectrum disorder (Song et al., 2019, Subbaraju et al., 2017, Pascual-Belda et al., 2018).

Two such functional coactivation networks—resulting from respectively averaging over the

measurements of two different subject groups—are illustrated in Figure 1. The posed re-

search question in this context apparently also involves the inquiry of whether a significant

difference in the brain processes is observable at all, which additionally might depend on

the environmental conditions like resting state, external stimuli, etc. More generally, this

can be phrased as a hypothesis test on structural equivalence of two networks.

To this end, we pursue constructing a model-based approach for network comparison
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Figure 1: Functional coactivation networks of the human brain. The illustrated connec-
tivity patterns result from averaging over multiple measurements for subjects with autism
spectrum disorder (left) and typical development (right). Do these networks reveal a sig-
nificant structural difference?

that allows for formal statistical testing. More precisely, we aim to test whether two net-

works can be considered independent samples drawn from the same probability distribution.

This is apparently in itself a technically difficult question since the two networks can have

different sizes, and hence the two distributions need to be somehow different. Therefore,

it is crucial that the applied distributional framework constitutes a rather universal prob-

ability measure. In fact, this is not a trivial property, and many network models entail

conceptual issues that impede a direct comparison. For example, in the Exponential Ran-

dom Graph Model (Robins et al., 2007), a concrete model parameterization has different

implications for different network sizes, making corresponding coefficient estimates hardly

comparable. Hence, it is necessary to rely on distributional models where the specification

of size and edge probabilities can be explicitly disentangled.

For such a comparative analysis of networks, we will demonstrate that Graphon Models

(Lovász and Szegedy, 2006, Diaconis and Janson, 2008) are a very useful tool. First, the

graphon model is very flexible and able to capture complex network structures. Secondly,

the graphon itself can be interpreted as nonparametric density or intensity function on
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networks. Both together make the graphon an overall characterizing network feature that,

like nothing else, uniquely covers the structure in a comprehensive way. Hence, the graphon

framework appears as a natural choice for comparison purposes. Lastly, the model’s design

fulfills the above requirement of decoupling the network’s structure and size, allowing for

modeling multiple networks simultaneously (Navarro and Segarra, 2022).

The rest of the paper is organized as follows. In Section 2, we start with reviewing

methods from the network comparison literature. A formalization of the test problem we

want to tackle in this work is then concretely specified and discussed in Section 3. The

involved smooth graphon estimation in its capacity as the joint modeling approach is for-

mulated in Section 4. Based on this joint graphon model, in Section 5, we develop a network

comparison strategy for testing on equivalence of the underlying structures. The general

applicability of the complete approach is demonstrated in Section 6, where we consider

its performance on simulated and real-world data. This involves the method’s ability to

uncover the underlying structure by joint graphon estimation, as well as the qualification

of the subsequent testing procedure. The discussion and conclusion in Section 7 completes

the paper.

2 Concepts for Network Comparison

When reviewing the literature on network comparison, it is worth noting that all proposed

strategies are naturally based on a specific concept of capturing network structures. In gen-

eral, the various approaches available for comparing networks can be broadly distinguished

according to whether they rely on a descriptive or a model-based structural framework.

Survey articles in this field are given by Soundarajan et al. (2014), Yaveroğlu et al. (2015),

Emmert-Streib et al. (2016), and Tantardini et al. (2019). A more general perspective on
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how complex data objects—such as adjacency matrices—might be compared is pointed out

by Marron and Alonso (2014). Consulting this compendium clearly reveals a lack of model-

based approaches in the context of network comparison. This is specifically deficient since

drawing statistical inference is only possible under some kind of distributional assumption.

The different strategies for network comparison proposed in the literature—irrespective of

the capacity for drawing inference—are briefly reviewed hereafter.

Starting with approaches that are based on extracted network statistics, the most in-

tuitive strategy is probably to simply compare global characteristics such as the clustering

coefficient or the average path length (Newman, 2018, pp. 364 ff., Butts, 2008, p. 31).

However, this captures the overall network structure only very poorly since completely dif-

ferently structured networks can apparently still possess the same global statistics. As a

more advanced approach, Wilson and Zhu (2008) consider the differences in the graph spec-

tra, see also Gera et al. (2018). Yet, for the spectrum, it is often unclear which information

in terms of local structural properties is extracted from the network. In addition, spectral

methods can be strongly affected by small structural changes under specific circumstances.

Taken together, such approaches often ascribe too little importance to the attributes of

interest, leading to an over- or underrating of the structural dissimilarity at hand.

Another branch of the literature on descriptive network comparison relies on the con-

cept of graphlets, i.e. prespecified subgraph patterns that are assumed to be sufficient for

describing the present structure. Papers that, in one way or another, consider differences

in the frequencies of graphlets are, among others, Pržulj et al. (2004), Pržulj (2007), Ali

et al. (2014), and Faisal et al. (2017). Since the counting procedure is rather complex for

larger graphlets, it is sort of a consensus to include only those that consist of no more than

five nodes. However, this seems somehow arbitrary and incomplete in terms of capturing
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all structural aspects. Moreover, Yaveroğlu et al. (2014) found high correlations among

the graphlet-related statistics, including complete redundancies. In contrast, model-based

approaches specify the complete distribution of frequencies over all kinds of subgraphs.

A connection between subgraph frequencies and the concrete specification of the graphon

model is exemplarily elaborated in Borgs et al. (2008), Bickel et al. (2011), and Latouche

and Robin (2016).

Overall, descriptive network statistics entail two general shortcomings. First, it is very

difficult to assess in which parts of the networks the key differences are accommodated.

To be precise, the nodes or edges (present or absent) that contribute most to a quantified

structural discrepancy can only hardly be detected. Second, and more importantly, de-

scriptive methods lack, by nature, the ability to draw inference in the probabilistic sense.

Specifically, they provide no information on whether the found deviation between networks

is plausible to be ascribed to randomness or whether there is a significant structural dis-

similarity. Butts (2008) aims to overcome this deficit by applying a simplistic conditional

uniform graph distribution.

On the other hand, probabilistic models for network data allow to induce distributions

on network patterns that extend to desired distributional assumptions on structural differ-

ences. As a consequence, these modeling approaches might potentially serve as structural

construct used for comparison purposes. Yet, they possess individual conceptual shortcom-

ings that often impede a direct comparison. While, for example, the Latent Distance Model

(Hoff et al., 2002) does not provide any model-related key component to be compared, co-

efficient estimates from the exponential random graph model are not directly comparable

across separated networks. The graphon model and the Stochastic Blockmodel (Holland

et al., 1983, Snijders and Nowicki, 1997 and 2001) suffer from identifiability issues (see e.g.
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Diaconis and Janson, 2008, Thm. 7.1) that make a comparison of corresponding individual

estimates complicated. The latter model’s adaptivity is additionally highly dependent on

the choice of the number of blocks. Onnela et al. (2012) tackle this issue by observing

the networks’ complete disintegration processes, which they subsequently summarize by

the profiles of well-known network statistics. Integrating over the profiles’ differences and

applying principle component analysis for summarization yields the final distance mea-

sure, which has been demonstrated to provide reasonable results in terms of leading to a

good classification. However, to the best of our knowledge, there exists no (model-based)

nonparametric test on the equivalence of network structures.

In this paper, we aim to address this shortcoming, which we tackle by striking new

paths. As a general concept for this approach, we follow the intuition of fitting a joint

model to multiple networks simultaneously. For that purpose, we resort to the smooth

graphon model as an appropriate and very powerful framework. Such a joint modeling

strategy consequently circumvents the need for post-hoc alignment of individual model

fits and yields an outcome that provides substantial information for comparison purposes.

More precisely, it allows for directly relating the networks at hand on the microscopic scale,

which, in the literature, is often referred to as “network alignment” (Kuchaiev et al., 2010).

However, as an essential distinction to classical network alignment strategies, this method

does not seek to find a node-wise one-to-one mapping. Instead, it implies a mapping of

local components, meaning small fuzzy groups of nodes with similar structural roles in

their respective domains. Based on this network alignment, a structural comparison at

the microscopic level becomes possible. Aggregating local differences finally enables to

construct a test on structural equivalence of networks.
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3 Notation and Formulation of the Test Problem

We consider the setting where two undirected networks of possibly different sizes N (1)

and N (2) have been observed. Let y(g) = [y
(g)
ij ]i,j=1,...,N(g) for g = 1, 2 denote the two

respective adjacency matrices, where, for i, j = 1, . . . , N (g), y
(g)
ij = 1 if in network g an

edge between nodes i and j exists and y
(g)
ij = 0 otherwise. That specifically means that

y(g) ∈ {0, 1}N(g)×N(g)
. We assume the networks to be undirected so that y

(g)
ij = y

(g)
ji .

Additionally, the diagonal elements are set to zero, i.e. y
(g)
ii = 0, reflecting the absence of

self-loops. In general, we consider y(g) to be a realization of a random network Y (g) of size

N (g) which is subject to probability mass P(Y (g) = y(g) ;N (g)). The question we aim to

tackle is whether y(1) and y(2) are drawn from the same distribution. To suitably specify

such a distribution, we rely on the smooth graphon model. The data-generating process

is thereby as follows. Assume that we independently draw uniformly distributed random

variables

U
(g)
i ∼ Uniform[0, 1] for i = 1, . . . , N (g) and g = 1, 2. (1)

Conditional on U (g) = (U
(g)
1 , . . . , U

(g)

N(g)), we then draw the edges i.i.d. through

Y
(g)
ij | (U (g) = u(g)) ∼ Binomial(1, w(g)(u

(g)
i , u

(g)
j )) for j > i (2)

with u(g) = (u
(g)
1 , . . . , u

(g)

N(g)) ∈ [0, 1]N
(g)

and under the setting of Y
(g)
ij ≡ Y

(g)
ji for j < i and

Y
(g)
ii ≡ 0. In this modeling framework, the function w(g) : [0, 1]2 → [0, 1], which specifies the

structural behavior of the emerging network, is called graphon (see Lovász and Szegedy,

2006 and Diaconis and Janson, 2008). Here, in particular, we assume w(g)(·, ·) to be smooth

according to some Hölder or Lipschitz condition (cf. Wolfe and Olhede, 2013 or Chan and

Airoldi, 2014). Relying on this data-generating process, the graphon-based probability
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model can be defined through

Y (g) ∼ P
(
Y (g) = · ; w(g)(·, ·), N (g)

)
. (3)

In this distribution model, the network’s size and structure are apparently dissociated,

which therefore allows for a size-independent comparison of underlying structures. Hence,

our goal is to develop a statistical test on the hypothesis

H0 : w
(1)(·, ·) ≡ w(2)(·, ·). (4)

In this context, we emphasize that data-generating process (2) is not unique because it

is invariant to permutations of w(g)(·, ·), as discussed in detail by Diaconis and Janson

(2008, Sec. 7). Thus, the formulation of H0 needs to be understood from the perspective

of corresponding equivalence classes, implying that w(1)(·, ·) and w(2)(·, ·) are rather viewed

from a theoretical perspective. Nonetheless, for the concrete implementation of the test

procedure, we employ a concrete representation of the two graphons. Specifically, under

the assumption of H0 being true, we call the coinciding manifestation the joint graphon.

This can be formalized as

wjoint(u, v) := w(1)(u, v) = w(2)(u, v) for all (u, v)⊤ ∈ [0, 1]2.

Since w(1)(·, ·) and w(2)(·, ·) are assumed to be smooth—at least for one possible arrange-

ment, and, in particular, the one we consider here—, this also holds for wjoint(·, ·). Given

such a concrete representation of the joint graphon, the node position vectors u(1) and u(2)

referring to wjoint(·, ·) then provide a specific type of network alignment. This is what we
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utilize for a direct comparison of y(1) and y(2). However, one typically observes neither u(1)

and u(2) nor wjoint(·, ·). Thus, in order to achieve this alignment, we first need to formulate

an appropriate estimation procedure for the joint graphon model.

4 EM-Based Joint Graphon Estimation

In this section, we present an iterative estimation procedure for the joint smooth graphon

model under the assumption that null hypothesis (4) is true. To do so, we follow the EM-

based estimation routine of Sischka and Kauermann (2022a), extending it to the situation

of two networks.

4.1 MCMC E-Step

Starting with the E-step of our iterative algorithm, we assume the joint graphon wjoint(·, ·)

to be known for the moment. Based on that, the latent positions of the networks can be

separately determined using MCMC techniques. To be precise, we apply Gibbs sampling

by formulating the full conditional distribution of U
(g)
i through

f(u
(g)
i | u(g)1 , . . . , u

(g)
i−1, u

(g)
i+1, . . . , u

(g)

N(g) ,y
(g))

∝
∏

j ̸=i

wjoint(u
(g)
i , u

(g)
j )y

(g)
ij [1− wjoint(u

(g)
i , u

(g)
j )]1−y

(g)
ij (5)

for all i = 1, . . . , N (g) and g = 1, 2. Details on the concrete implementation of the Gibbs

sampler are given in Section A of the Appendix. The resulting MCMC sequence (after

cutting the burn-in period and appropriate thinning) then reflects the joint conditional

distribution f(u(g) | y(g)). Thus, the marginal conditional means of the latent positions,

i.e. E(U (g)
i | Y (g) = y(g)) for i = 1, . . . , N (g), can be approximated by taking the mean
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over the MCMC samples, which we denote by ū(g) = (ū
(g)
1 , . . . , ū

(g)

N(g)). This posterior

mean vector, however, requires further adjustments due to additional identifiability issues

which cannot be coped with the standard EM-type algorithm. To illustrate this, let model

assumption (1) be more relaxed in the sense that the U
(g)
i ’s might follow any continuous

distribution F (g)(·). Under this configuration, the model (F (g)(·), w(g)(·, ·)) is equivalent to

any other model (F (g)′(·), w(g)′(·, ·)) constructed through

F (g)′(u′) := F (g)(φ(u′)) and w(g)′(u′, v′) := w(g)(φ(u′), φ(v′))

with φ : [0, 1] → [0, 1] being a strictly increasing continuous function (that is, in contrast

to Diaconis and Janson, 2008, Sec. 7, not measure-preserving). Specifically, that means

P
(
Y (g) = · ; F (g)(·), w(g)(·, ·), N (g)

)
≡ P

(
Y (g) = · ; F (g)′(·), w(g)′(·, ·), N (g)

)

for all N (g) ≥ 2. As a matter of conception, this issue cannot be solved by the EM algorithm

since it aims at specifying a model that adapts optimally to the given data instead of

perfectly recovering the underlying model structure. Consequently, the EM approach is not

able to distinguish between the two conceptually equivalent model specifications (F (g)(·),

w(g)(·, ·)) and (F (g)′(·), w(g)′(·, ·)). Nonetheless, this identifiability issue can simply be

tackled by adjusting ū(g) before estimating the graphon in the M-step. To do so, we just

impose that the inferred node positions follow an ideal sample drawn from the standard

uniform distribution. That is, we set

û
(g)
i =

rank(ū
(g)
i )

N (g) + 1
,
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where rank(ū
(g)
i ) is the rank from smallest to largest of element ū

(g)
i within ū(g). In this

context, note that the values i/(N (g) + 1) with i = 1, . . . , N (g) represent the expectations

of N (g) ordered random variables that are independently drawn from the standard uniform

distribution. As a result, with û(g) = (û
(g)
1 , . . . , û

(g)

N(g)) we obtain a plausible realization

of the node positions of network g. Apparently, this relies on the current joint graphon

estimate ŵjoint(·, ·), which is applied as substitute in conditional distribution (5). In the

next step, we formulate the procedure for updating ŵjoint(·, ·) given û(1) and û(2).

4.2 Spline-Based M-Step

For a semiparametric estimation of the joint smooth graphon, we choose a linear B-spline

regression approach. To this end, we assume the joint graphon to be approximated through

wjoint
θ (u, v) = B(u, v)θ = [B(u)⊗B(v)]θ,

where ⊗ is the Kronecker product, B(u) ∈ R1×L is a linear B-spline basis on [0, 1], normal-

ized to have a maximum value of one, and θ ∈ RL2
is the parameter vector to be estimated.

The inner B-spline knots are specified as lying equidistantly on a regular 2D grid within

[0, 1]2, where θ is indexed accordingly through θ = (θ11, . . . , θ1L, θ21, . . . , θLL)
⊤. Based on

this representation and given the node positions û(1) and û(2), we formulate the marginal

log-likelihood over both networks as

ℓ(θ) =
∑

g

∑

i,j
j ̸=i

[
y
(g)
ij log

(
B

(g)
ij θ
)
+
(
1− y

(g)
ij

)
log
(
1−B

(g)
ij θ
)]
, (6)

where B
(g)
ij = B(û

(g)
i )⊗B(û

(g)
j ). Furthermore, through standard calculations, we are able

to derive the score function s(θ) and the Fisher information F (θ), as demonstrated in
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Section B of the Appendix. Fisher scoring can then be used to maximize ℓ(θ). In addition,

we include side constraints to ensure that wjoint
θ (·, ·) is bounded to [0, 1] and symmetric. In

the linear B-spline setting, this means restricting the parameters by the conditions

θkl ≥ 0 , θkl ≤ 1 , and θkl − θlk = 0

for all l > k. Apparently, all three conditions are of linear form and thus can be written

in matrix format. Taken together, the Fisher scoring becomes a quadratic programming

problem that can be solved using standard software (see Andersen et al., 2016 or Turlach

and Weingessel, 2013).

Moreover, we intend to add penalization on the B-spline estimate. As outlined in

Eilers and Marx (1996) and Ruppert et al. (2003, 2009), penalized spline estimation under

the setting of a rather large spline basis yields a preferable outcome since it guarantees

a functional fit that covers the data adequately but is still smooth. Thus, this approach

enables to precisely capture the underlying structure while avoiding overfitting. To realize

this, we add a first-order penalty, meaning that “neighboring” elements of θ get penalized.

For the log-likelihood, the score function, and the Fisher information, this leads to the

penalized versions in the form of

ℓp(θ, λ) = ℓ(θ)− 1

2
λθ⊤Pθ , sp(θ, λ) = s(θ)− λPθ ,

and F p(θ, λ) = F (θ) + λP ,

(7)

respectively, where P is a penalization matrix of appropriate shape (see Section B of the

Appendix). For an adequate choice of the penalty parameter λ in the two-dimensional spline

regression, we follow Kauermann et al. (2013) and apply the corrected Akaike Information

Criterion (AICc, see Hurvich and Tsai, 1989 and Burnham and Anderson, 2002). This is

13

138



defined as

AICc(λ) = −2 ℓ(θ̂p) + 2 df(λ) +
2 df(λ)[df(λ) + 1]

N(N − 1)− df(λ)− 1
,

where θ̂p is the corresponding penalized parameter estimate and df(λ) specifies the degrees

of freedom of the penalized B-spline function. More precisely, according to Wood (2017,

pp. 211 ff.), the latter is defined trough

df(λ) = tr
{
F−1

p (θ̂p, λ)F (θ̂p)
}

with tr{·} being the trace of a matrix. A numerical optimization of the corrected AIC with

respect to λ concludes the estimation of θ, resulting in the eventual estimate ŵjoint(·, ·) of

the current M-step.

Finally, the EM-type estimation procedure described above—meaning the consecutive

repetition of the E- and M-step until convergence is achieved—allows us to adequately esti-

mate both the joint graphon wjoint(·, ·) and the corresponding node positions u(1) and u(2)

of the two networks. Based on these results, we are now able to formulate an appropriate

test procedure.

5 Two-Sample Test on Network Structures

Returning to the test problem raised in Section 3, we now develop a statistical test proce-

dure on hypothesis (4), i.e. whether y(1) and y(2) are drawn from the same distribution. To

do so, we utilize the network alignment resulting from the (inferred) joint smooth graphon

model. More precisely, we exploit the fact that two edge variables Y
(1)
i1j1

and Y
(2)
i2j2

that

have nearby positions—i.e. for which the distance between (u
(1)
i1
, u

(1)
j1
)⊤ and (u

(2)
i2
, u

(2)
j2
)⊤ is

small—possess similar probabilities to form a connection. In a more formalized way, this
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Figure 2: Dividing the unit square as domain of the graphon model into small segments
for comparing network structure on a microscopic level. Left: division of wjoint(·, ·) into

approximately piecewise-constant rectangles. Middle and right: edge positions (u
(g)
i , u

(g)
j )⊤

of two simulated networks with respect to wjoint(·, ·); weakly colored crosses and intensively
colored circles represent absent and present edges, respectively. The two networks can be
compared by pairwise contrasting the edge proportions within the labeled rectangles.

means that, from ∥(u(1)i1
, u

(1)
j1
)⊤ − (u

(2)
i2
, u

(2)
j2
)⊤∥ ≈ 0, it follows that

P(Y (1)
i1j1

= 1 | U (1)
i1

= u
(1)
i1
, U

(1)
j1

= u
(1)
j1
)

≈ P(Y (2)
i2j2

= 1 | U (2)
i2

= u
(2)
i2
, U

(2)
j2

= u
(2)
j2
),

where ∥ · ∥ is the Euclidean distance. Following this intuition, we divide the unit square

into small segments and compare between networks the ratio of present versus absent edges

occurring in these segments (see Figure 2 for an exemplary division). For that purpose, we

choose a suitable K ∈ N, specify a corresponding boundary sequence a0 = 0 < a1 < . . . <

aK = 1, and define the following two quantities for l, k = 1, . . . , K with l ≥ k:

d
(g)
kl =

∑

i,j
j>i

y
(g)
ij 1{u(g)

i ∈[ak−1,ak)}1{u(g)
j ∈[al−1,al)}

m
(g)
kl =

∑

i,j
j>i

1{u(g)
i ∈[ak−1,ak)}1{u(g)

j ∈[al−1,al)}.

(8)
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This means d
(g)
kl and m

(g)
kl represent the number of present (y

(g)
ij = 1) and a priori potential

(y
(g)
ij ∈ {0, 1}) edges of network g, respectively, within the constructed rectangle [ak−1, ak)×

[al−1, al). The corresponding cross-network counts can be calculated by dkl = d
(1)
kl + d

(2)
kl

and mkl = m
(1)
kl + m

(2)
kl . Since wjoint(·, ·) is smooth, we further assume that the induced

probability on edge variables within [ak−1, ak)× [al−1, al) is approximately constant. That

allows for putting the observed ratios between present and absent edges in direct relation.

In this light, we formulate the following contingency table to keep track of homogeneity

between the networks within rectangle (k, l):

d
(1)
kl d

(2)
kl dkl

m
(1)
kl − d

(1)
kl m

(2)
kl − d

(2)
kl mkl − dkl

m
(1)
kl m

(2)
kl mkl

Apparently, if H0 is assumed to be true, we would expect the proportions of present edges,

d
(1)
kl /m

(1)
kl and d

(2)
kl /m

(2)
kl , to be similar. This can be assessed by contrasting the observed

numbers of edges with their expectations conditional on the given margin totals, which is

in line with the construction of Fisher’s exact test on 2 × 2 contingency tables. In this

regard, the theoretical random counterpart of d
(1)
kl can be defined as

D
(1)
kl =

∑

i,j
j>i

Y
(1)
ij 1{u(1)

i ∈[ak−1,ak)}1{u(1)
j ∈[al−1,al)},

for which under H0 it approximately holds that

D
(1)
kl | dkl ∼ Hyp

(
mkl, dkl,m

(1)
kl

)
with E

(1)
kl := E(D(1)

kl | dkl) = m
(1)
kl

dkl
mkl

and V
(1)
kl := V(D(1)

kl | dkl) = m
(1)
kl

dkl
mkl

mkl − dkl
mkl

mkl −m
(1)
kl

mkl − 1
.

(9)
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Based on these specifications, we define our test statistic as

T =
∑

k,l
l≥k

(
D

(1)
kl − E

(1)
kl

)2

V
(1)
kl

with realization t =
∑

k,l
l≥k

(
d
(1)
kl − E

(1)
kl

)2

V
(1)
kl

. (10)

Note that we only include the quantities of the first network due to the symmetry of the

hypergeometric distribution. Moreover, summands for which V
(1)
kl = 0—resulting from

m
(1)
kl , mkl − m

(1)
kl , dkl, or mkl − dkl being zero—carry no relevant information and thus

can simply be omitted from the calculation. In contrast, if m
(1)
kl is large, mkl and dkl are

large compared to m
(1)
kl , and dkl/mkl is not close to zero or one, then D

(1)
kl is known to be

approximately normally distributed. Given that, we can conclude that

T
a∼ χ2

K(K+1)/2 (11)

since, in this scenario, the test statistic is essentially the sum of squared (conditionally)

independent random variables that approximately follow a standard normal distribution.

If the latter condition does not apply, and assumption (11) is not reasonable to hold, we

still can simulate a sample of the theoretical distribution by drawing D
(1)
kl | dkl according to

(9) and calculating T as in (10). In both cases, we can easily derive a critical value c1−α to

be compared with the realization t of the test statistic. To do so, we pick the corresponding

(1 − α)-quantile of either the theoretical distribution χ2
K(K+1)/2 or the simulated sample.

Finally, we reject null hypothesis (4) at the significance level of α if t > c1−α. The choice of

an appropriate K applied for these calculations is discussed in Section C of the Appendix.

Note that altogether the presented test procedure follows a conception similar to the one

underlying the log-rank test for time-to-event data.

Apparently, when conducting the test procedure on real-world networks, we obtain the
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joint graphon and the corresponding alignment of the networks by applying the estimation

procedure described in Section 4. In the end, this enables us to appropriately approximate

test statistic (10). In this context, it is important to consider the general behavior of the

joint graphon estimation under the alternative, that is, if hypothesis (4) does not hold. We

stress that the intuition of the estimation procedure is to align the two networks as well as

possible with respect to some suitable joint graphon model. Consequently, the expectation

of T will be higher the more the true graphons w(1)(·, ·) and w(2)(·, ·) differ after “optimal”

alignment. This clearly implies that the power of our test is higher for instances that

deviate more strongly from the null hypothesis.

6 Applications

In this section, we showcase the applicability of the joint graphon estimation routine and

the subsequent testing procedure. To give a comprehensive insight, this comprises both

simulated and real-world networks. For an optimal estimation result and to best approxi-

mate test statistic (10), we repeat the estimation and testing procedure several times. In a

modeling-oriented context, we would then typically pick the outcome with the lowest cor-

rected AIC. However, since here the focus is on the statistical testing aspect, we choose the

estimation result which leads to the highest p-value, assuming that this provides an optimal

lower bound for the outcome under the (potentially existing) oracle network alignment.

18

143



6.1 Simulation Studies

6.1.1 Exemplary Application to Synthetic Data

To demonstrate the general capability of the joint graphon estimation and the performance

of the subsequent testing procedure, we consider the graphon in the top left plot of Figure 3.

Its formation is inspired by and can be interpreted as a stochastic blockmodel with smooth

transitions between communities. Based on this ground-truth model specification, we sim-

ulate two networks with N (1) = 200 and N (2) = 300 by making use of data-generating

process (2). To recover the underlying structure, we then apply the presented EM-type

algorithm, where, for initialization, we make use of an uninformative random node posi-

tioning. After several iterations, we achieve the reasonable joint graphon estimate at the

top right, which fully captures the structure of the ground-truth graphon. Relying on the

accompanying estimated node positions, we subsequently conduct the testing procedure on

whether the underlying distributions are equivalent. To this end, we start with calculating

the rectangle-wise differences according to the construction of test statistic (10). The re-

sults are depicted as a heat map at the bottom left plot of Figure 3. This reveals that the

difference in the local edge density is rather low to moderate in most rectangles, whereas

it is distinctly higher in a few others. Aggregating these differences yields a test statistic

of 203.2 as depicted by the black solid vertical line at the bottom right. Contrasting this

result with the simulated 95% quantile of the distribution of T under H0 as the critical

value (red dashed vertical line) yields no rejection. Hence, the underlying distributions

of the two networks do not significantly differ with respect to a significance level of 5%.

As a final remark with regard to the bottom right plot, the simulated distribution of T

(black solid step function) and its theoretical approximation (blue dashed curve)—both

relying on the assumption of H0 being true—are very close to one another. Consequently,
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Figure 3: Joint graphon estimation for simulated networks with subsequent testing on
equivalence of the underlying distribution models. The top row shows the true and the
jointly estimated graphon on the left and right, respectively. The realizations of the terms
of test statistic (10), representing the dissimilarities of the two networks per rectangle, are

visualized at the bottom left, where m
(g)
kl ≥ 100 for k ̸= l and ≥ 45 otherwise. The final

result of the test statistic (black solid vertical line) as well as its distribution under H0 are
illustrated at the bottom right, where the black solid step function and the blue dashed
curve depict the simulated and the asymptotic chi-squared distribution, respectively. The
red dashed vertical lines visualize the critical values at a significance level of 5%, derived
from the simulated (upper line) and the asymptotic distribution (lower line).
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they also provide very similar critical values, namely 243.6 and 244.8, respectively. This

demonstrates that asymptotic distribution (11) represents a good approximation.

6.1.2 Performance Analysis under H0

To evaluate the performance of the testing procedure in this example more profoundly,

we repeat the above proceeding 400 times, with newly simulated networks in each trial

(remaining with N (1) = 200 and N (2) = 300). Note that we run the estimation procedure

always ten times (with different random node positions as varying initialization) and finally

pick the highest p-value as the actual result for the given network pair. These repetitions

already provide a broad insight into the method’s performance under the given setting.

An even more extensive evaluation becomes possible when, in contrast to the proceeding

above, the testing procedure is performed on the basis of the oracle node positions. This

allows us to dramatically reduce the computational burden since it releases us from the

preceding (computationally expensive) model estimation. As a consequence, we are able to

increase the number of conducted tests to 10, 000. From these two repetition studies (using

either û(g) or u(g)), we obtain rejection rates of 6.5% and 6.15% under the estimated and

oracle node positioning, respectively. That means the test is slightly overconfident relative

to the nominal significance level of 5%. The top row of Figure 4 shows additionally the em-

pirical distributions of the observed p-values, illustrated as densities (left) and cumulative

distribution functions (right). In accordance with the mildly inflated rejection rates, this

exhibits a slight tendency to underestimate the p-value, i.e. interpreting the discrepancy as

too high in distributional terms.
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Figure 4: Performance of the testing procedure with regard to the resulting p-value; results
are simulation-based. Top: empirical distribution of the p-value under H0, illustrated as
density and cumulative distribution function on the left and right, respectively. The black
dashed lines illustrate the desired distributional behavior of an optimal test. Number of
repetitions for estimated / oracle node positions: 400 / 10, 000. Bottom: distribution of
the p-value under H1 and the usage of oracle node positions (in box plot format); based on
1, 000 repetitions each. The x-axis illustrates different settings according to formulation (12)
(higher value of γ implies stronger deviation from H0). The black dashed horizontal line
represents the 5% significance level, and the orange curve illustrates the corresponding
power.
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6.1.3 Performance Analysis under H1

Conclusively, we are interested in evaluating the test performance under a false null hy-

pothesis, which apparently requires formulating a suitable alternative. To this end, we

“shrink” the heterogeneity within the graphon such that the present structure becomes

less pronounced. The resulting graphon specification consequently tends more towards an

Erdős–Rényi model, with the global density remaining unchanged. To be precise, based on

w(1)(·, ·), we formulate

w(2)(u, v) := (1− γ)w(1)(u, v) + γ w̄(1) (12)

with γ ∈ [0, 1] and w̄(1) =
∫∫

w(1)(u, v) du dv. Apparently, increasing the mixing parameter

γ leads to a stronger deviation from H0. At the same time, this setting guarantees an

optimal alignment of w(1)(·, ·) and w(2)(·, ·), meaning that there exists no rearrangement

of w(2)(·, ·) that is closer to w(1)(·, ·) than specification (12). For this experiment, we

again choose N (1) = 200 and N (2) = 300. Moreover, here we rely exclusively on the

oracle node positions. This provides a lower bound of the power since the rejection rate

can be expected to be higher when using estimated node positions instead (cf. previous

analysis under H0). The results for this setup are presented in the bottom plot of Figure 4,

where the distribution of the resulting p-value is illustrated for different settings of γ.

The orange curve additionally visualizes the resulting power, i.e. the proportion of cases

with p < 0.05. These results clearly show that the probability of detecting the false null

hypothesis monotonically increases as the parameter γ gets larger, which underpins the

appropriateness of our test procedure.

Overall, the obtained simulation results demonstrate that the elaborated estimation and
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testing procedure yields reasonable results for assessing structural differences between net-

works. Building upon these findings, we next want to investigate the method’s performance

on real-world data.

6.2 Real-World Examples

6.2.1 Facebook Ego Networks

As a first real-world example, we consider two Facebook ego networks which have been

assembled by Leskovec and McAuley (2012) and are publicly available on the Stanford

Large Network Dataset Collection (Leskovec and Krevl, 2014). The two ego networks

consist of 333 and 168 individuals, respectively, where the ego nodes are not included.

An illustration of these networks is given in the top row of Figure 5, with nodes being

colored according to resulting positions. In both networks, these final estimated node

positions appear to be in line with the given network structure in terms of reflecting the

nodes’ embedding within the network. Moreover, they seem to be aligned across networks.

For example, in both networks, the reddish nodes represent the rather centric individuals,

whereas the nodes from the dark blue spectrum constitute a moderately interconnected

branch that is more detached from the rest of the network. However, the segment-wise

differences depicted at the bottom left in Figure 5 exhibit some severe deviations. This

can be clearly traced back to the blockwise division of the adjacency matrices as it results

from partitioning the domain of edge positions (middle row). The aggregated differences

ultimately result in a test statistic that is far from the sector of plausible values under the

null hypothesis, as illustrated at the bottom right. Consequently, we can conclude that the

structural behavior in the two networks differs significantly.
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Figure 5: Comparison of two Facebook ego networks. Top: illustration of networks with
coloring referring to estimated node positions. Middle: ordered adjacency matrices divided
into blockwise segments. Bottom left: segment-wise differences between the two networks
with m

(g)
kl ≥ 100 for k ̸= l and ≥ 45 otherwise; gray rectangles do not contain any observed

edges (dkl = 0) and thus provide no information. Bottom right: realization of test statistic
(black solid vertical line) plus corresponding distribution under H0 (black solid step func-
tion and blue dashed curve represent simulated and asymptotic chi-squared distribution,
respectively); critical values derived from the two types of distributions are represented by
the upper and the lower red dashed vertical line.
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6.2.2 Human Brain Functional Coactivation Networks

In the second real-world application, we are concerned with differences in the human brain

coactivation structure. To be precise, we compare two types of individuals, one with autism

spectrum disorder (ASD) and the other with typical development (TD). In particular, we

are interested in whether the functional connectivity within the brain significantly differs

between these two groups (cf. the introductory example from Figure 1). For this analysis, we

use resting-state functional magnetic resonance imaging data from the Autism Brain Imag-

ing Data Exchange project (ABIDE I, 2013). More specifically, we employ preprocessed

data provided by the Preprocessed Connectomes Project platform (PCP, 2015). Based on

these person-specific datasets, we first calculate correlations between brain regions with

respect to concurrent activation over time. Aggregating the results of participants from

the same clinical group and employing an appropriate threshold finally yields the network-

structured data which we aim to compare. To be precise, by performing the described

preprocessing, we achieve for both groups, ASD and TD, a global connectivity pattern be-

tween 116 prespecified relevant brain regions. Note that these regions are the same for both

groups, which is why this could also be viewed as a comparison task under known node

correspondence. However, we emphasize that in neurosciences, the transfer of competencies

between brain regions is a well-known phenomenon, wherefore the general functional con-

nectivity structure might be of greater relevance than the functional connection between

specific regions. Further details on the acquisition and adequate transformation of the data

are provided in Section D of the Appendix.

For analyzing the differences in the brain coactivation structure between the two di-

agnostic groups, we again start with appropriately aligning the two networks. This is

apparently done by employing the joint graphon estimation routine. The resulting node
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positions in relation to the embedding of nodes within the networks are illustrated in the

top row of Figure 6. Again this reveals a plausible allocation of the nodes in the joint

graphon model. The structural evolvement can further be evaluated by consulting the

correspondingly ordered adjacency matrices (see middle row), where the red dashed lines

represent the blockwise division resulting from the assignment of the edge positions to the

rectangles in [0, 1]. At first view, the formed structure looks quite similar in both matrices.

Yet, on closer inspection, some blocks can be found where the density seems considerably

different. This is also observed in the rectangle-wise differences depicted in the bottom left

plot. In the end, aggregating these differences leads to rejecting the null hypothesis, as

represented at the bottom right. To be precise, this test decision is based on a resulting

p-value of 0.013 (with reference to the simulated distribution under H0).

Given that this outcome does not support an utterly unambiguous decision of the

conducted test procedure, one might additionally be interested in the nature of the inferred

differences. To address this, in Section 1.2 of the Supplementary Material, we localize

different behavior between the networks on the microscopic scale. Note that this can also

be derived more or less directly from the joint graphon model. Moreover, for comparison

reasons, we repeated the above analysis for two randomly selected disjoint subgroups of the

TD group. According to the results illustrated in Figure 3 of the Supplementary Material,

in this scenario, we do not observe a significant overall deviation. This further underlines

the findings about the dissimilarity between the ASD and the TD group.

7 Discussion and Conclusion

In the network comparison literature, the task of drawing statistical inference appears

to be an open challenge up to now. We addressed this shortcoming in this paper by
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Figure 6: Comparison of functional coactivation in the human brain between groups of
subjects with autism spectrum disorder and with typical development. The top row shows
the networks of the ASD and the TD group on the left- and right-hand side, respectively.
All illustration aspects are equivalent to the representation in Figure 5. The number of
nodes per rectangle is again given by m

(g)
kl ≥ 100 for k ̸= l and ≥ 45 otherwise, where

N/A’s in the blockwise differences result from dkl or mkl − dkl being zero.
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developing a nonparametric test on the equivalence of network structures. To do so, we

utilized the smooth graphon model as a powerful tool for both describing and modeling the

structure in complex networks. More precisely, extending previous estimation approaches

towards a joint modeling framework allowed us to formulate a more generalized network

alignment. Given that, local structure comparison can be carried out to uncover differences

on the microscopic scale. Adequately aggregating these local differences finally enables to

construct an appropriate nonparametric testing procedure on network data. Applying this

comparison strategy to simulated and real-world networks clearly demonstrated its general

applicability.

As outlined before, a crucial point for the proposed approach to work is the graphon

model’s property of decoupling structure and size. In the same line, one could think

of further decoupling the global density by following the approach of Bickel and Chen

(2009), i.e. by introducing network-related quantities ρ(g) that serve as individual density

coefficients. Specifically, this means modifying formulation (2) by employing ρ(g)w(g)(·, ·),

where ρ̂(g) = [N (g)(N (g) − 1)]−1
∑

i,j y
(g)
ij could serve as an estimate that is independent of

the rest of the structure. Such a framework consequentially might lead to a more balanced

comparison strategy.

Beyond the applications presented in the previous section, which all refer to the situation

with two networks, the method could easily be extended to cases with multiple or even a

single network. For example, in the one-sample setting, to test whether a given network

follows a hypothetical distribution P(Y = · ; w(·, ·), N), we could first align the network

with the theoretical graphon. That is, applying the E-step based on w(·, ·). Given this

alignment, we could then turn distributional assumption (9) into a binomial distribution

with the rectangle-specific mean over w(·, ·) as success probability, and, based on that,
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calculate the test statistic as in (10).

Besides the testing aspect, our approach could further be used to uncover relevant

differences between networks on the microscopic scale. To be precise, determining the nodes

or edges (present or absent) that contribute most to a quantified structural discrepancy

between networks is possibly interesting in many situations. This is further elaborated in

Section 1.1 of the Supplementary Material.

As a last application case, the joint graphon estimation could further be used to

predict edges between separated networks by considering the cross-sample probabilities

wjoint(u
(1)
i1
, u

(2)
i2
). This might be of interest when two (or more) networks are assumed to

be samples of a larger global network. To the best of our knowledge, this has not been

pursued by any other approach so far and hence constitutes a novel perspective. As a

particular hurdle in this framework, the sampling strategy that is supposed for the drawing

of subnetworks needs to be taken into account in the estimation routine. As far as this is

not the Simple Induced Subgraph Sampling, where one selects a simple random sample of

nodes within which all edges are observed, further adaptations are required. Hence, this

lies beyond the scope of the paper.

SUPPLEMENTARY MATERIAL

Supplementary Manuscript: (i) Description for deriving differences between networks

at the microscopic level. As exemplary application, the two brain networks from

Section 6.2.2 are considered.

(ii) Replication of the test on functional coactivation networks for two subgroups of

the typical-development group (confer Section 6.2.2).

Python-package for testing on structural equivalence: Python-package containing the
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code to perform the comparison methods described in the paper. The package also

contains the preprocessed data of the human brain functional coactivation networks

(see Section 6.2.2). (GNU zipped tar file)
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Appendix

A Implementation of the Gibbs Sampler

In an iterative joint graphon estimation procedure, the joint posterior distribution of the

node positions given wjoint(·, ·) can be simulated by constructing a Gibbs sampler. We stress

that the node positions are independent between networks and thus the Gibbs sampling

procedure can be conducted for each network separately. The MCMC framework is then

build upon full conditional distribution (5) and can be formulated as follows. For the

successive updating procedure, we consider u(g), <t> = (u
(g), <t>
1 , . . . , u

(g), <t>

N(g) ) to be the

current state of the Markov chain. In the (t + 1)-th step, component i is then updated

according to (5), where all other components remain unchanged, i.e. u
(g), <t+1>
j := u

(g), <t>
j

for j ̸= i. To do so, we propose a new position u
(g), ∗
i by drawing from a normal distribution

under the application of a logit link. To be precise, we first calculate

v
(g), <t>
i = logit(u

(g), <t>
i ) = log

(
u
(g), <t>
i

1− u
(g), <t>
i

)
,

then we add a normal term in the form of v
(g), ∗
i = v

(g), <t>
i +Normal(0, σ2

v), and finally we

accomplish the retransformation through

u
(g), ∗
i = logit−1(v

(g), ∗
i ) =

exp(v
(g), ∗
i )

1 + exp(v
(g), ∗
i )

.

In this setting, the variance σ2
v should be chosen such that a balance between a wide-ranging

exploration and a high acceptance rate is achieved. Given these formulations, the proposal
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density can be written as

q(u
(g), ∗
i |u(g), <t>

i ) =
∂u

(g), ∗
i

∂z
(g), ∗
i

ϕ(z
(g), ∗
i |z(g), <t>

i )

∝ 1

u
(g), ∗
i (1− u

(g), ∗
i )

· exp
(
−1

2

(logit (u
(g), ∗
i )− logit (u

(g), <t>
i ))2

σ2

)
,

which leads to a proposal ratio of

q(u
(g), <t>
i |u(g), ∗i )

q(u
(g), ∗
i |u(g), <t>

i )
=

u
(g), ∗
i (1− u

(g), ∗
i )

u
(g), <t>
i (1− u

(g), <t>
i )

.

In combination with the likelihood ration, the acceptance probability of the proposal, i.e.

the probability for setting u
(g), <t+1>
i := u

(g), ∗
i , can be calculated through

min



1,

∏

j ̸=i



(

w(u
(g), ∗
i , u

(g), <t>
j )

w(u
(g), <t>
i , u

(g), <t>
j )

)yij

·
(

1− w(u
(g), ∗
i , u

(g), <t>
j )

1− w(u
(g), <t>
i , u

(g), <t>
j )

)1−yij

 u

(g), ∗
i (1− u

(g), ∗
i )

u
(g), <t>
i (1− u

(g), <t>
i )



 .

In case the decision yields a rejection of the proposal, we set u
(g), <t+1>
i := u

(g), <t>
i . Ap-

plying this updating strategy, which comprises the proposal of a new position plus the

decision about its acceptance, to all i = 1, . . . , N (g) completes one global update. Finally,

we achieve a proper Gibbs sampling routine through consecutively repeating this global up-

dating scheme. After cutting the burn-in period and applying an appropriate thinning, this

approach yields a sample of the desired joint posterior distribution of the node positions.
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B Derivative and Penalization of the B-Spline Function

As has been show in Section 4.2, the log-likelihood of a B-spline function can be straight-

forwardly extended towards the situation with multiple datasets. Given the formulation

from (6), the score function can be calculated as

s(θ) =

[
∂ℓ(θ)

∂θ

]⊤

=
∑

g

∑

i,j
j ̸=i

[B
(g)
ij ]⊤

(
y
(g)
ij

wjoint
θ (û

(g)
i , û

(g)
j )

−
1− y

(g)
ij

1− wjoint
θ (û

(g)
i , û

(g)
j )

)
.

This, in turn, leads to the Fisher information in the form of

F (θ) = −E
(
∂s(θ)

∂θ

)

=
∑

g

∑

i,j
j ̸=i

[B
(g)
ij ]⊤B(g)

ij

[
wjoint

θ

(
û
(g)
i , û

(g)
j

)
·
(
1− wjoint

θ

(
û
(g)
i , û

(g)
j

))]−1

.

These results can then be used to implement the Fisher scoring procedure, where in (7) we

additionally add a penalization term to guarantee a smooth estimation result. For penaliz-

ing “neighborhood” elements of the parameter vector θ = (θ11, . . . , θ1L, θ21, . . . , θLL)
⊤, the

penalization matrix can be formulated through

P = (JL ⊗ IL)
⊤ (JL ⊗ IL) + (IL ⊗ JL)

⊤ (IL ⊗ JL) ,
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where IL is the identity matrix of size L and

JL =




1 −1 0 · · · 0

0 1 −1 · · · 0

...
. . .

...

0 · · · 0 1 −1




∈ R(L−1)×L.

C Choosing the Number and Extent of Rectangles

In order to appropriately test null hypothesis (4), in Section 5, we have developed an

approach that relies on the partition of the graphon’s domain. According to formulation (8),

that involves the number of rectangles, K, as well as their concrete specification in the form

of [ak−1, ak)× [al−1, al). In this regard, we emphasize that two aspects need to be observed.

On the one hand, the joint graphon should be approximately constant within rectangles,

requiring [ak−1, ak) × [al−1, al) to be not too expansive. On the other hand, the amount

of edge variables per network falling into these blocks should be high, which needs rather

broad rectangles. Thus, a trade-off between these two opposed requirements should be

reached. In general, we choose K to grow more slowly than both network dimensions,

e.g. scaling as ming

√
N (g). Note that choosing K = 1 would imply to test whether the

two networks possess the same global density under the assumption of a joint Erdős–Rényi

model. Having determined a suitable value for K, we then simply specify the boundaries

of the rectangles through ak = k/K for k = 0, . . . , K. In combination with the subsequent

adjustment of the latent positions as described in Section 4.1, which leads to equidistance

of the estimates û
(g)
i , a general lower bound for the amount of contained nodes per interval,
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N
(g)
k , can be derived. To be precise, we can formulate

N
(g)
k =

∣∣∣∣
{
i ∈ {1, . . . , N (g)} :

i

N (g) + 1
∈ [ak−1, ak)

}∣∣∣∣ ≥
⌊
1

K
(N (g) + 1)

⌋
,

where ⌊x⌋ returns the largest integer smaller than or equal to x. Given that, K could

also be chosen such that, per network, a prescribed minimum amount of edge variables per

rectangle (N
(g)
k N

(g)
l for l > k and N

(g)
k (N

(g)
k − 1)/2 for l = k) is guaranteed.

As a final remark, we emphasize that with regard to the rectangle-based test statis-

tic, it seems natural to alternatively apply a histogram estimator (Chan and Airoldi, 2014

or Olhede and Wolfe, 2014). However, the smooth graphon estimation adapted from Sis-

chka and Kauermann (2022b) considers a global node ordering which refers not only to

separated intervals but to the entire domain of [0, 1]. This consequently facilitates the iter-

ative estimation procedure and thus leads to a more plausible and faster converging node

positioning.

D Acquiring and Processing of Brain Functional Activation Data

The data we use for analyzing differences in the functional brain activation are originally

provided by the Autism Brain Imaging Data Exchange project (ABIDE I, 2013, Di Martino

et al., 2014). However, we make use of preprocessed data that are directly accessible through

the Preprocessed Connectomes Project platform (PCP, 2015, Craddock et al., 2013). To be

precise, we here apply the Connectome Computation System pipeline (Xu et al., 2015) and

the reduction to the Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002).

For each participant, this yields a dataset that consists of activity measurements over time

for 116 prespecified brain regions (a.k.a. regions of interest). Based on these temporal

activity measurements, we calculate Pearson’s correlation coefficient between all pairs of
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brain regions which, per participant, leads to the corresponding functional connectivity

matrix (Song et al., 2019, Subbaraju et al., 2017). For this analysis, we rely on the data from

New York University, comprising 73 ASD patients and 98 TD subjects. For aggregating

these connectivity patterns per clinical group, we apply Fisher’s transformation to the

pairwise correlation coefficients, calculate their mean for all pairs of brain regions, and

finally retransform these means (Pascual-Belda et al., 2018). This yields for both diagnostic

groups a 116×116 weighted connectivity matrix which we binarize by employing a threshold

of 0.4. Based on that, the two final networks we obtain both possess a global density of

about 30%. With regard to the choice of the threshold, Song et al. (2019) have found that

this has only minor effects when comparing the networks.
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Benjamin Sischka and Göran Kauermann
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1 Detecting Differences on the Microscopic Scale

1.1 Methodological Construction

In addition to the testing aspect, the network alignment based on the joint smooth graphon

model also allows for determining structural differences on the edge level. In that regard,

we are especially interested in differences that occur when inferring the structure separately.

To address this, we first fit two separate graphon models to the two networks individually.

To be precise, for this operation, we employ the node positions obtained from estimating

the joint graphon model and then perform the M-step as described in Section 4.2 of the

paper but reduced to the use of only y(1) or y(2). This yields the separate estimates ŵ(1)(·, ·)

and ŵ(2)(·, ·), respectively. Based on that, for g1, g2 = 1, 2 with g1 ̸= g2, we calculate

ŵdiff
(g1)(g2)

(u, v) =
ŵ(g1)(u, v)− ŵ(g2)(u, v)√

{ŵ(1)(u, v) [1− ŵ(1)(u, v)] + ŵ(2)(u, v) [1− ŵ(2)(u, v)]} /2

for (u, v)⊤ ∈ [0, 1]2. With regard to data-generating process (2), this can be interpreted as

the difference between expectations in relation to the averaged standard deviation. Hence,

|ŵdiff
(g1)(g2)

(·, ·)| provides an appropriate measure to quantify the local differences between
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the found graphon structures. Moreover, it can be considered as a smoothed version of

the impact on test statistic (10). In turn, the contribution of the present or absent edge

between node pair (i, j) of network g1 to the difference in the inferred structure can be

quantified by evaluating





ŵdiff,+
(g1)(g2)

(û
(g1)
i , û

(g1)
j ) , if y

(g1)
ij = 1

ŵdiff,+
(g2)(g1)

(û
(g1)
i , û

(g1)
j ) , otherwise

with ŵdiff,+
(g1)(g2)

(u, v) = max{0, ŵdiff
(g1)(g2)

(u, v)}. In particular, this means that the contribution

is zero if the considered present or absent edge is contrary to the direction of the detected

difference. Note that also here, the estimated node positions û
(g1)
i are the ones stemming

from the network alignment, meaning the positions resulting from estimating the joint

graphon model. We stress that this approach is different from determining the deviation of

present or absent edges from their “transferred” expectation, i.e. from simply calculating

|y(g1)ij − ŵ(g2)(û
(g1)
i , û

(g1)
j )|. Instead, here we aim to highlight those connections that, in one

way or another, collectively have enough impact to actually affect the inferred structure.

To provide an illustrative intuition, this approach for detecting deviating behavior on the

microscopic scale is additionally illustrated in Figure 1. This representation allows to

graphically demonstrate the single steps and thus to make the procedure much clearer.

1.2 Application to Human Brain Coactivation Example

The analysis of the functional coactivation in the human brain has yielded a rather narrow

test decision with regard to the two clinical groups, see Section 6.2.2 of the paper. Hence,

we now additionally analyze the differences at the microscopic level. To quantify these

differences, we make use of the approach described above. The corresponding results for this

2

170



Figure 1: Detecting differences in networks at the microscopic level by employing the joint graphon-
based alignment technique. The final network representations at the bottom row illustrate extraor-
dinary absent edges in network 1 and extraordinary present edges in network 2 on the left and the
converse on the right. The steps to get there are as follows: (i) Align networks based on joint smooth
graphon estimation. (ii) Estimate individual graphons for disjoint networks separately. (iii) Calculate
relative differences between graphon estimates [→ ŵdiff

(g1)(g2)
(·, ·)]. (iv) Evaluating the function of relative

differences at the edge positions provides information about contributions to the inferred structural
deviation. This assessment is restricted to present or absent edges that are opposed to the formation
of equivalent structures.
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method are illustrated in Figure 2, where the ASD and the TD group are represented on the

left and right, respectively. In all these illustrations, the node coloring refers to the positions

inferred through the joint graphon estimation procedure. For comparison reasons, the first

row depicts again the functional connectivity networks just as obtained after preprocessing

(cf. Figure 6 of the paper). The second row shows the present edges in both networks

which form collectives that are exceptional with respect to the structure uncovered from

the respective other network. Here, the intensity of the depicted connections represents the

magnitude of distinctiveness on an inverse log scale. The most extraordinary absent edges—

also with respect to the structure of the respective other network and with magnitude

represented by the inversely log-scaled intensity—are visualized at the bottom row. Based

on these illustrations, we can conclude that, for example, the interconnection between the

dark bluish nodes is much denser in the ASD group than in the TD group. Similar results

are revealed for the interconnection between nodes from the green to the yellow color

spectrum. In contrast, the connections between the dark orange and the cyan node bundle

seem to be much more for the TD group. With regard to the test procedure carried out in

the paper, these microscopic differences can be seen as a rough division of the calculated

overall discrepancy represented in the form of the test statistic t.

Taking these analytical results together with the finding from the paper, we can (i) infer

that the functional connectivity significantly differs between the ASD and the TD group

and (ii) provide information on what these differences are composed of.
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Figure 2: Localization of differences in the functional coactivation within the human brain.
The results for the two clinical groups ASD and TD are represented in the left and the
right column, respectively. Top: resulting connectivity between the 116 considered brain
regions after preprocessing; degree of nodes is illustrated by log-scaled node size. The
lower four plots show observed present edges (middle) and absent edges (bottom) that
form extraordinary structural patterns with respect to the structure found in the respective
other network. The node sizes visualize the nodes’ impact (log scale) as aggregation over
the impact of attached edges.
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Figure 3: Comparison of the human brain functional coactivation between two subgroups
of the TD group. Top: networks of subgroups with coloring referring to the inferred
node positions. Bottom left: differences in rectangles according to the construction of
test statistic (10) in the paper. Bottom right: result of the test statistic, including the
simulated and the theoretical distribution plus their corresponding critical values used for
comparison.

2 Comparison of Brain Coactivation Between Typical-

Development Subgroups

To further demonstrate that the found significant differences in the brain coactivation

between the ASD and the TD group are meaningful (see Section 6.2.2 of the paper), we

here repeat the analysis for two randomly selected subgroups of the TD group. The results

are illustrated in Figure 3. Considering the formation of the two networks in the top row,
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inclusive of the nodes’ positional embedding found by the algorithm, this seems very similar

for the two subgroups. This is also reflected by the differences in rectangles (bottom left)

and the final realization of the test statistic (bottom right). Comparing the latter with the

corresponding critical value shows that no significant difference on the global scale can be

found.
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