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Einführung

Kausaler Eliminativismus, der von Bertrand Russell berühmt vertreten wurde, argumen-

tiert, dass kausale Konzepte in der Wissenschaft keine Rolle spielen, weil die Gesetze in

der fundamentalen Physik zeitlich symmetrisch sind, was bedeutet, dass die Zukunft die

Vergangenheit genauso bestimmt, wie die Vergangenheit die Zukunft bestimmt (Russell

1912). Die Ansicht besagt, dass es keinen ontologischen Raum für kausale Beziehungen

gibt, weil eine präzise Beschreibung der Anfangszustände in Verbindung mit dem zugrunde

liegenden dynamischen Gesetz eine vollständige Beschreibung des Systemverhaltens in der

fundamentalen Physik liefert.

Während Russell die Existenz einer objektiven, zugrunde liegenden Kausalbeziehung auf

der mikroskopischen Ebene leugnete, gibt es mehrere Quellen von Asymmetrien, aus de-

nen kausale Vorstellungen auf der makroskopischen Ebene entstehen könnten. Beispiele

hierfür sind das Zweite Gesetz der Thermodynamik und der damit verbundene Zeitpfeil,

die Möglichkeit von Interventionen sowie die unterschiedlichen Perspektiven verschiedener

Akteure. Kausaler Eliminativismus wurde von Philosophen wie Nancy Cartwright mod-

eriert, um kausalen Vorstellungen den Weg zurück in die Wissenschaft zu ermöglichen,

insbesondere auf der makroskopischen Ebene. Für Cartwright besteht die Bedeutung

kausaler Vorstellungen darin, dass sie die Mittel zur Unterscheidung zwischen effektiven

und ineffektiven Strategien liefern: ”Kausale Gesetze können nicht beseitigt werden, denn

sie sind nötig, um die Unterscheidung zwischen effektiven und ineffektiven Strategien zu

begründen” (Cartwright 1979, S. 420).

Manipulierbarkeitstheorien der Kausalität sind eine etablierte Perspektive in der Philoso-
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phie der Wissenschaft, die Ursachen als Instrumente zur Manipulation von Effekten be-

trachten. Diese Theorien betonen, dass kausale Beziehungen durch die Fähigkeit zur In-

tervention und Manipulation von Variablen etabliert werden, wobei die Manipulation ein

entscheidendes Kriterium zur Unterscheidung zwischen effektiven und ineffektiven Strate-

gien darstellt. Obwohl Manipulierbarkeitstheorien der Kausalität historisch auf men-

schliche Interventionen ausgerichtet waren, haben zeitgenössische Versionen dieser The-

orien ihren Fokus erweitert, um allgemeinere Formen der Intervention zu berücksichtigen

und eine anthropozentrische Perspektive zu vermeiden.

Auf der anderen Seite konzentrieren sich probabilistische Theorien der Kausalität auf

die Idee, dass kausale Beziehungen in der Regel von probabilistischen Abhängigkeiten be-

gleitet werden. Normalerweise erhöht oder verringert ein EreignisX die Wahrscheinlichkeit

eines Ereignisses Y , wenn es dieses verursacht. Probabilistische Theorien der Kausalität

beschreiben kausale Abhängigkeiten in Bezug auf probabilistische Abhängigkeiten. Mit

anderen Worten versuchen sie, probabilistische Kriterien bereitzustellen, um zu entschei-

den, ob X Y verursacht, und behaupten oft, dass Kausalität das entsprechende Muster

probabilistischer Beziehungen ist. Die meisten probabilistischen Theorien der Kausalität

werden von den folgenden zentralen Intuitionen motiviert: (i) Eine Veränderung der Ur-

sache verändert ihre Effekte, und (ii) diese Veränderung zeigt sich in probabilistischen

Abhängigkeiten zwischen Ursache und Wirkung (siehe Williamson 2009).

Manipulierbarkeits- und probabilistische Theorien der Kausalität werden oft als

ergänzende Ansätze zur Erklärung von Kausalität angesehen. Manipulierbarkeitstheo-

rien bieten eine Möglichkeit, darüber nachzudenken, wie wir intervenieren können, um

bestimmte Effekte herbeizuführen oder zu verhindern, während probabilistische Theorien

eine Möglichkeit bieten, darüber nachzudenken, wie wir Vorhersagen über die Wahrschein-

lichkeit bestimmter Ereignisse basierend auf dem machen können, was wir über andere

Ereignisse wissen. Die Kombination von Manipulierbarkeits- und probabilistischen Theo-

rien der Kausalität hat zur Entwicklung von Berechnungsrahmen geführt, die probabilistis-

che Theorien verwenden, um kausale Beziehungen zu identifizieren und die Auswirkungen

bestimmter Interventionen vorherzusagen.
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Die Theorie der kausalen Bayes-Netzwerke, die hauptsächlich von Judea Pearl und Clark

Glymour entwickelt wurde (Pearl 2000, Spirtes et al. 2000), zeigt die erfolgreiche Integration

von Manipulierbarkeits- und probabilistischen Theorien der Kausalität. Die Theorie bietet

einen systematischen Ansatz zur Ableitung von kausalen Fakten aus statistischen Daten auf

der Grundlage von einigen wohl begründeten Axiomen. Ein Modell, das von der Theorie

der kausalen Bayes-Netzwerke generiert wird, wird oft als ”graphisches kausales Modell”

bezeichnet. Zwei zentrale Fragen, die ein graphisches kausales Modell zu beantworten

versucht, sind:

• Gegeben die beobachteten statistischen Daten, wie kann man die zugrunde liegenden

kausalen Beziehungen zwischen den Variablen entdecken?

• Gegeben die zugrunde liegenden kausalen Beziehungen, welche statistischen (Un-

)Abhängigkeiten sollten erwartet werden?

Die grundlegende Idee besteht darin, die kausalen Beziehungen zwischen den Variablen

eines Szenarios durch einen ”kausalen Graphen” zu repräsentieren. In einem kausalen

Graphen stellen die Knoten die Variablen des Szenarios dar und die Kanten repräsentieren

die Richtung der Kausalität zwischen den Variablen. Wenn also die Variable X die Ursache

der Variable Y ist, wird eine gerichtete Kante vom Knoten, der X entspricht, zum Knoten,

der Y entspricht, gezogen. Die Anwesenheit einer solchen Kante bedeutet, dass, wenn

man die Werte aller anderen Variablen außer X und Y in einem imaginären Experiment

festlegt, durch Änderung des Wertes von X der Wert von Y geändert wird, während das

Gegenteil nicht der Fall ist. In diesem Sinne ist die Theorie der kausalen Bayes-Netzwerke

eine Anwendung von Manipulabilitätstheorien der Kausalität in der Praxis.

Um die zuvor genannten Fragen zu beantworten, gehen graphische Kausalmodelle oft

davon aus, dass es einen zugrunde liegenden Daten-generierenden Prozess gibt, aus

dem die statistischen Daten stammen. Die Struktur eines solchen zugrunde liegenden

Prozesses wird dann durch Annahmen eingeschränkt, die durch unser Verständnis des

Kausalitätsbegriffs motiviert sind. Die ”kausale Markov-Bedingung” und die ”kausale
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Treuebedingung (causal faithfulness condition)” sind zwei bekannte Annahmen, die

graphische Kausalmodelle in der Regel verwenden, um statistische (Un-)Abhängigkeiten

mit Kausal (Un-)Abhängigkeiten in Verbindung zu bringen.

Während das Durchführen von Interventionen eine zuverlässige Möglichkeit ist, Kausal-

beziehungen zu identifizieren, ist dies aufgrund praktischer Gründe wie Kosten und Ethik

nicht immer möglich. In solchen Fällen muss die Identifizierung von Kausalbeziehungen

ausschließlich auf Beobachtungsdaten basieren. Dieser Ansatz wird in der Wissenschaft

seit mindestens dem siebzehnten Jahrhundert angewendet und ist beispielhaft für die Ar-

beit von Galileo, Pascal, Kepler und Newton (siehe Glymour et al. 2019). Ein wesentliches

Merkmal der Theorie der kausalen Bayes-Netzwerke ist, dass sie Kausalinferenz auf der

Grundlage von Beobachtungsdaten unterstützt. Obwohl die Theorie auf dem interven-

tionistischen Kausalitätsverständnis beruht, ermöglicht sie unter bestimmten Umständen

die Extraktion von Kausalwissen aus statistischen Daten ohne Durchführung von Inter-

ventionen. Es sei darauf hingewiesen, dass die Existenz von Methoden, die auf Beobach-

tungsdaten basieren, nicht im Widerspruch zum interventionistischen Konto stehen, da der

Interventionist diese Ergebnisse als Zeigen interpretieren kann, was passieren würde, wenn

bestimmte Interventionen durchgeführt würden (Woodward 2016a).

Observationsbasierte ”kausale Entdeckungsalgorithmen” sind eine Familie von berech-

nungsmethoden, die darauf abzielen, kausale Beziehungen aus beobachtungsdaten

aufzudecken. Diese Algorithmen verwenden statistische und berechnungstechniken, um

kausale Strukturen zu identifizieren, die mit den Daten übereinstimmen, und stützen sich

in der Regel auf Annahmen und Heuristiken, um die Suche nach dem plausibelsten kausalen

Modell zu leiten. Der ”Inductive Causation” (IC) (Verma 1993) und der Peter und Clark

(PC) (Spirtes et al. 2000) sind bekannte Beispiele für Entdeckungsalgorithmen unter vie-

len anderen (weitere Übersichten siehe Guo et al. 2020, Glymour et al. 2019). Kausale

Entdeckungsalgorithmen haben Anwendungen in verschiedenen Bereichen wie Wirtschaft,

Epidemiologie, Genetik und Neurowissenschaften.

Trotz dieser Vielfalt von Anwendungen wurde festgestellt, dass kausale Entdeckungsal-

gorithmen bei der Anwendung auf bestimmte Quantenkorrelationen, die aus verschränkten
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Quantensystemen entstehen, unbefriedigende Ergebnisse liefern. Insbesondere zeigten

Wood & Spekkens (2015), dass die derzeitige Form von Entdeckungsalgorithmen Korrela-

tionen, die Bells Ungleichung erfüllen, nicht von Korrelationen unterscheiden kann, die Bells

Ungleichung verletzen. Folglich können sie den Herausforderungen der kausalen Erklärung

von Quantenkorrelationen nicht gerecht werden. Das Problem zeigt daher einen schwer-

wiegenden Konflikt zwischen den zugrunde liegenden Axiomen der Theorie der kausalen

Bayes’schen Netzwerke und bestimmten Vorhersagen der Quantentheorie auf. 1

Zu beachten ist, dass das Problem, welches im letzten Absatz erwähnt wurde (eine

Spannung zwischen dem nicht-lokalen Charakter der Quantenverschränkung (Quantum

Entanglement) und der kausalen Entdeckungsalgorithmen), erst kürzlich entdeckt wurde.

Zusätzlich zu diesem Problem hat die Quantenverschränkung eine weitere bekannte

Schwierigkeit verursacht, die tatsächlich eine Spannung zwischen der Quantenmechanik

und der Relativität darstellt. Gemäß Näger (2016) nenne ich diese Probleme ”Das kausale

Problem der Verschränkung” und ”Das raumzeitliche Problem der Verschränkung” re-

spektive. Obwohl sich diese Dissertation hauptsächlich auf das kausale Problem der Ver-

schränkung konzentriert, ist es wichtig, das raumzeitliche Problem kurz zu erläutern, um

zwischen den beiden Problemen zu unterscheiden.

Das raumzeitliche Problem der Verschränkung befasst sich mit der Frage, wie ver-

schränkte Quantensysteme, die in räumlich getrennten Regionen der Raumzeit liegen,

statistische Abhängigkeiten aufweisen können. Genauer gesagt kann das raumzeitliche

Problem der Verschränkung als eine Inkonsistenz zwischen folgenden Aspekten angesehen

werden:

1. Die Vorhersagen der Quantenmechanik

2. Eine bestimmte Vorstellung von Lokalität, die durch die Relativitätstheorie motiviert

ist (d.h., dass kausale Einflüsse sich nicht schneller als das Licht ausbreiten können)

1Das Problem wurde von Philosophen bereits lange vor der Arbeit von Wood und Spekkens anerkannt.
Wissenschaftler wie Butterfield (1989), Hausman (1999), Glymour (2006) haben alle erkannt, dass Quan-
tenkorrelationen die Aufgabe erfordern, zumindest eine der Standardannahmen in der Theorie der kausalen
Bayes’schen Netzwerke aufzugeben. Die Arbeit von Wood und Spekkens hat jedoch die Aufmerksamkeit
vieler Forscher auf sich gezogen.
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3. Prinzipien kausaler Erklärungen (z.B. die Annahme, dass alle Korrelationen kausal

erklärt werden können)

Da die Vorhersagen der Quantenmechanik in verschiedenen Experimenten empirisch

bestätigt wurden (beispielsweise Aspect et al. 1982), kann das spatiotemporale Problem

als Dilemma zwischen der Aufgabe einer der beiden letztgenannten Annahmen betrachtet

werden. Um das spatiotemporale Problem zu lösen, wurden in der Literatur eine er-

hebliche Anzahl von Lösungen vorgeschlagen. Während einige dieser Ansätze nicht-lokale

Einflüsse postulieren (beispielsweise Egg & Esfeld 2014), tendieren die meisten Philosophen

und Physiker dazu, die Lokalität aufrechtzuerhalten und zu dem Schluss zu kommen,

dass zumindest eine der üblichen Prinzipien der kausalen Erklärung im quantenmechanis-

chen Bereich versagt. Nicht-Screening-off gemeinsamer Ursachen (Butterfield 1989), nicht-

kommutative gemeinsame Ursachen (Hofer-Szabó & Vecsernyés 2012), Retro-Kausalität

(Price & Wharton 2015) und Super-Determinismus (Hooft 2009) sind Beispiele für solche

Ansätze.

Das kausale Problem der Verschränkung ist eine neue Charakterisierung des Bell’schen

Theorems, nach dem es selbst dann, wenn alle spatiotemporalen Einschränkungen ignoriert

werden, immer noch einen Konflikt zwischen den Vorhersagen der Quantenmechanik und

den üblichen Prinzipien der kausalen Erklärung gibt. Dieser Konflikt entsteht, weil die

Verletzung der Bell-Ungleichung ohne die Verletzung mindestens eines Axioms der Theo-

rie der kausalen Bayes-Netzwerke nicht kausal erklärt werden kann. Die beiden betroffe-

nen Axiome sind die kausale Markov-Bedingung und die kausale Treuebedingung, die in

der Theorie der kausalen Bayes-Netzwerke stark motiviert sind. Im quantenmechanischen

Bereich führt das kausale Problem der Verschränkung zu einem Dilemma, dass entweder

nicht-kausale Korrelationen vorliegen, die die kausale Markov-Bedingung verletzen, oder

verursachte Unabhängigkeiten vorliegen, die die kausale Treuebedingung verletzen. Diese

Inkonsistenz zwischen den beiden Axiomen kann physikalisch als Konflikt zwischen nicht-

lokalen Verbindungen interpretiert werden, die notwendig sind, um Bell-Korrelationen

kausal zu erklären, und den empirisch bestätigten no-signaling Unabhängigkeiten. Das
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kausale Problem der Verschränkung wirft daher die Frage auf, warum Bell’sche nicht-lokale

Korrelationen nicht genutzt werden können, um superluminale Signale zu senden.

Eine mögliche Antwort auf das kausale Problem der Verschränkung besteht darin, zu

argumentieren, dass es die Unzulänglichkeit der Interventionsansicht im quantenmechanis-

chen Bereich aufdeckt. Daher müssen alternative Kausalitätskonten verwendet werden,

um Quantenkorrelationen zu erklären. Zum Beispiel können die kausale Prozessansicht

oder das kontrafaktische Kausalitätskonto verwendet werden, um Quantenkorrelationen

zu erklären. 2

Wenn man jedoch die Interventionsansicht im quantenmechanischen Bereich beibehal-

ten möchte, vielleicht weil sie eine präzise Methode zur Bestimmung effektiver Strategien

liefert, dann können zwei allgemeine Ansätze verfolgt werden, um das kausale Problem der

Verschränkung anzugehen:

1. Die Beibehaltung des klassischen Rahmens der Kausalmodellierung und die

Erklärung, warum bestimmte zugrunde liegende Annahmen des Rahmens im quan-

tenmechanischen Bereich versagen.

2. Die Ablehnung des gesamten klassischen Rahmens der Kausalmodellierung und die

Entwicklung einer explizit quantenmechanischen Verallgemeinerung des intervention-

istischen Kausalitätskonzepts.

Diese Arbeit diskutiert die beiden Ansätze zur kausalen Problematik der Verschränkung.

Der erste Ansatz, wie er von Glymour (2006) und Näger (2016) exemplarisch dargelegt

wird, lehnt grundlegende Prinzipien der kausalen Erklärung ab, wie etwa die kausale

Markow-Bedingung und die kausale Treuebedingung. Der zweite Ansatz, wie er von

Oreshkov et al. (2012), Barrett et al. (2019) und Shrapnel (2019) exemplarisch vertreten

2Zum Beispiel liefert Maudlins Untersuchung der kausalen Implikationen der Verletzung von Bells
Ungleichung, die auf einer kontrafaktischen Analyse von Kausalität und einer ausreichenden Bedingung
für eine kausale Verbindung zwischen raumartig getrennten Ereignissen beruht, Einblick in diese Frage.
Maudlin (2011) betrachtet vier Möglichkeiten: (1) Kein superluminaler Materie- oder Energieaustausch,
(2) Keine superluminalen Signale, (3) Keine superluminalen kausalen Einflüsse und (4) Kein superlu-
minaler Informationsaustausch. Er zeigt, dass die Verletzung keine Verstöße gegen die ersten beiden
Einschränkungen erfordert, sondern Verstöße gegen die letzten beiden.
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wird, versucht, die Konzepte von Knoten, Mechanismen und Interventionen im quanten-

mechanischen Bereich neu zu definieren. Während die Komplexität der quantenmech-

anischen Verschränkung die Akzeptanz von gegenintuitiven Ergebnissen erfordert, kann

die Ablehnung grundlegender Prinzipien unser Verständnis kausaler Beziehungen erheblich

beeinträchtigen. In Kapitel 2 untersucht die Arbeit diese Ansätze kritisch, aber das Haupt-

motiv ist die Einführung neuer Werkzeuge zur Untersuchung der kausalen Problematik der

Verschränkung.

Diese Arbeit geht das kausale Problem durch eine intrinsisch empirische Methode an.

Das Ziel besteht darin, die jüngsten Fortschritte im Maschinenlernen zu nutzen, um tradi-

tionelle Probleme in den Grundlagen der Quantenmechanik zu lösen. Insbesondere nutze

ich Maschinelles Lernen, um neue Erkenntnisse über den Begriff der Kausalität im quan-

tenmechanischen Bereich im Rahmen kausaler Bayes’scher Netzwerke zu gewinnen.

Maschinelles Lernen ist ein Studienbereich, der eine Vielzahl von Algorithmen und Mod-

ellierungstechniken umfasst, die es Systemen ermöglichen, aus Erfahrungen zu lernen und

bestimmte Aufgaben ohne explizite Programmierung auszuführen. In der Ära von Big

Data und hoch effizienten Algorithmen hat das Maschinenlernen weite Verbreitung ge-

funden und wird in verschiedenen Bereichen wie selbstfahrenden Autos, Wettervorhersage,

Arzneimittelforschung, Wirtschaft und Sozialwissenschaften genutzt. Trotz dieser weit ver-

breiteten Nutzung in empirischen und sozialen Wissenschaften wurde das Maschinenlernen

in grundlegenden Bereichen selten genutzt.

Die Hauptmotivation dieser Dissertation besteht darin, Machine Learning für grundle-

gende Debatten in der Quantenmechanik zu nutzen. Die in dieser Arbeit behandelten The-

men bilden ein Dreieck, dessen drei Eckpunkte Machine Learning, Quantenmechanik und

Kausales Modellieren sind. Die Arbeit umfasst zwei separate Projekte, die beide Machine

Learning-Algorithmen zur Entdeckung kausaler Beziehungen in simulierten Quantenexper-

imenten nutzen. Das erste Projekt basiert auf dem berüchtigten EPR-Bell-Szenario. Ziel

ist es, die Leistung verschiedener in der Literatur vorgeschlagener Modelle zur Lösung des

kausalen Problems der Verschränkung zu vergleichen. Die Rolle von Machine Learning im

ersten Projekt besteht darin, eine vereinheitlichende Arena für die empirische Bewertung
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zwischen verschiedenen Kandidatenmodellen zu schaffen. Das zweite Projekt betrachtet

Szenarien, deren zugrunde liegende kausale Strukturen bereits bekannt sind. Das Ziel

besteht darin, herauszufinden, inwieweit Machine Learning aus statistischen Daten ohne

explizite Interventionen die wahren kausalen Strukturen identifizieren kann. Daher fungiert

die Rolle von Machine Learning im zweiten Projekt eher als kausaler Entdeckungsalgorith-

mus, der an Quantensystemen arbeitet.

In den letzten Jahren haben sich kausale Inferenzmethoden auf der Basis von

beobachteten Daten stark weiterentwickelt, hauptsächlich dank der schnellen Fortschritte

im Bereich des Maschinellen Lernens und der Kombination mit kausalen Inferenztechniken.

Mein Fokus liegt auf einigen der jüngsten Entwicklungen, die die Kraft des Maschinellen

Lernens nutzen, um kausale Beziehungen in Situationen zu lernen, in denen herkömmliche

Methoden nicht anwendbar sind. Genauer gesagt kann ein kausaler Entdeckungsalgorith-

mus bei Fehlen zusätzlicher Informationen zu einem Szenario, wie der zeitlichen Reihen-

folge der Variablen oder der funktionalen Form von Mechanismen, kein eindeutiges kausales

Graphen liefern, und seine Ausgabe enthält eine Reihe von ungerichteten Kanten. Um diese

Einschränkung zu adressieren, wurde in den letzten Jahren eine Klasse von Entdeckungsal-

gorithmen entwickelt, die als ”paarweise Algorithmen” bekannt sind, deren Schwerpunkt

auf der Identifikation der kausalen Richtung in bivariaten Szenarien liegt, d.h. Szenarien,

die nur aus zwei Variablen bestehen (für Überblicke siehe Mooij et al. 2016, Guyon et al.

2019).

Die Grundidee der paarweisen Algorithmen besteht darin, dass statistische Daten neben

bedingten (Un)Abhängigkeiten verschiedene Arten von Asymmetrien enthalten, die zur

Erkennung der kausalen Richtung verwendet werden können. Die Asymmetrien können

eine Vielzahl von statistischen Eigenschaften umfassen, wie bedingte Entropie, gegenseit-

ige Information, Momente, Reste von Regressionen und Standardabweichung bedingter

Verteilungen. Paarweise Algorithmen können in zwei Kategorien eingeteilt werden: gener-

ative Algorithmen, die auf der Notion funktionaler kausaler Modelle (explizit oder implizit)

basieren, und diskriminative Algorithmen, die die kausale Richtung direkt mit einem Klas-

sifikationsalgorithmus bestimmen. Der in Kapitel 4 diskutierte Algorithmus ist generativ,
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während der in Kapitel 5 diskutierte Algorithmus diskriminativ ist.

Im Allgemeinen sind paarweisen Algorithmen hauptsächlich auf die Bemühungen von

Machine-Learning-Experten zurückzuführen, die an Kausalitätsinferenz-Methoden inter-

essiert sind, und haben zur Entdeckung neuer Aspekte der Theorie der kausalen Bayes-

Netzwerke geführt. Obwohl solche Methoden als Fortsetzung des interventionistischen

Kausalitätsansatzes verstanden werden können, haben sie weniger Aufmerksamkeit von

Philosophen erhalten. Obwohl Climenhaga et al. (2021) kürzlich die Themen aus

philosophischer Sicht untersucht hat. Die vorliegende Dissertation ist ein Versuch, diese

jüngsten Fortschritte zur Bewältigung des kausalen Problems der Verschränkung in der

Quantenmechanik zu nutzen.

Die Ergebnisse dieser Dissertation haben zwei wesentliche Beiträge zu den grundlegenden

Diskussionen in der Quantenmechanik. Der erste Beitrag besteht darin, die Idee zu un-

terstützen, dass ein interventionistischer Kausalitätsansatz im quantenmechanischen Bere-

ich möglich ist. Während viele glauben, dass der interventionistische Ansatz nicht auf den

quantenmechanischen Bereich anwendbar ist (zum Beispiel Pearl 2009, Koller & Friedman

2009), haben einige Physiker auf der Grundlage des interventionistischen Ansatzes kausale

Modelle für Quantensysteme vorgeschlagen (zum Beispiel Costa & Shrapnel 2016, Allen

et al. 2017). Die Ergebnisse dieser Dissertation (hauptsächlich Kapitel 5) unterstützen

letztere Idee und legen nahe, dass quantenmechanische Kausalbeziehungen durch gener-

alisierte Begriffe des interventionistischen Ansatzes beschrieben werden können. Es ist

jedoch notwendig zu betonen, dass diese Ergebnisse nicht bedeuten sollen, dass der inter-

ventionistische Ansatz der einzige Weg ist, um quantenmechanische Kausalbeziehungen zu

charakterisieren. Andere Ansätze wie Prozesstheorien der Kausalität (Salmon 1984, Dowe

2000) könnten auch eine solche Charakterisierung bieten. Diese Ansätze werden jedoch in

der vorliegenden Arbeit nicht untersucht.

Die zweite Beitrag dieser Dissertation besteht darin, die Idee zu unterstützen, dass Ma-

chine Learning ein zuverlässiges Instrument ist, um neue Perspektiven auf die Grundlagen

der Quantenmechanik zu erforschen. Zum Beispiel zeigt das erste Projekt, wie traditionelle

Diskussionen über das EPR-Bell-Szenario in Machine-Learning-Konzepte wie Verlustfunk-
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tionen umgewandelt und aus anderen Perspektiven betrachtet werden können. Darüber

hinaus zeigt das zweite Projekt das Potenzial der Kombination von Kausalmodellierung mit

Machine-Learning-Techniken, um einen quantenprozess kausal zu charakterisieren, auch

wenn begrenzte Informationen über den Prozess verfügbar sind. Im Allgemeinen beto-

nen die Ergebnisse dieser Arbeit das Potenzial von Machine-Learning-Ansätzen in den

Grundlagen der Quantenmechanik und eröffnen neue Wege für weitere Erforschung und

Untersuchung.

Inhalt

Diese Dissertation besteht aus sechs Kapiteln, einschließlich des aktuellen. Im Folgenden

wird eine kurze Übersicht über den Inhalt jedes Kapitels gegeben.

Kapitel 2 bildet das Fundament der gesamten Dissertation und umfasst drei Haupt-

themen: Machine Learning, Kausales Modellieren und Quantenmechanik. Der Ab-

schnitt Machine Learning vermittelt ein Verständnis der grundlegenden Konzepte von

überwachtem Lernen und dem Funktionsprinzip künstlicher neuronaler Netze. Der Ab-

schnitt zum Kausalen Modellieren gibt einen kurzen Überblick über das interventionistis-

che Kausalitätsmodell, gefolgt von einer Erklärung kausaler Bayes-Netzwerke, kausaler Ent-

deckungsalgorithmen und Paarweiser Methoden. Der Abschnitt zur Quantenmechanik geht

tiefer auf das kausale Problem der Verschränkung und deren Beziehung zu den kausalen

Markov- und Treueannahmen ein.

Kapitel 3 untersucht verschiedene Vorschläge zur Lösung des kausalen Problems der

Verschränkung. Die zentrale Aussage des Kapitels ist, dass es zwar gemeinhin als

Dilemma angesehen wird, im Quantenbereich entweder die kausale Markov-Bedingung oder

die Treueannahmen aufzugeben, jedoch alternative Möglichkeiten aufgrund verschiedener

physikalischer und philosophischer Überlegungen existieren. Das Kapitel zielt darauf ab,

diese Möglichkeiten zu untersuchen, ihre Gültigkeit zu bewerten, die Konsequenzen zu un-

tersuchen und die Zusammenhänge zwischen ihnen zu erforschen. Dieses Kapitel legt den

philosophischen und grundlegenden Grundstein für die Machine Learning-Projekte in den
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folgenden Kapiteln.

Kapitel 4 bietet einen neuen Ansatz zur Lösung des kausalen Problems im Kontext einer

kontinuierlichen Formulierung des EPR-Bell-Szenarios. Es wird ein Rahmen vorgestellt,

um unterschiedliche Vorschläge für das kausale Problem empirisch zu bewerten. Der Rah-

men basiert auf einem klassischen Algorithmus zur kausalen Entdeckung namens Causal

Generative Neural Network (Goudet et al. 2018), der anhand philosophischer Überlegungen

an das kausale Problem angepasst wurde. Die zentrale Idee besteht darin, die Vorher-

sagekraft verschiedener Kandidatenmodelle zu vergleichen und dasjenige zu finden, das

Daten generiert, deren Verteilung der ursprünglichen Quantendaten am nächsten kommt.

Dieser Rahmen ermöglicht den empirischen Vergleich einer breiten Palette von Modellen

für das kausale Problem, ohne im Markov-Faithfulness-Dilemma stecken zu bleiben.

Kapitel 5 untersucht Quantenszenarien, deren kausale Strukturen bereits bekannt

sind. Der Kern des Kapitels ist ein paarweiser Entdeckungsalgorithmus namens ”Ran-

domized Causation Coefficient” (Lopez-Paz et al. 2015). Obwohl der Algorithmus

ursprünglich zur Unterscheidung von Ursache und Wirkung in klassischen Szenarien

konzipiert wurde, wird er in mehreren Aspekten verallgemeinert, um einen Quan-

tenkausalitätsentdeckungsalgorithmus zu erstellen, der bivariante und multivariate Quan-

tenszenarien behandeln kann. Der resultierende Algorithmus funktioniert gut in verschiede-

nen simulierten Szenarien und hat Auswirkungen sowohl auf die Grundlagen der Quanten-

physik als auch auf die Quanten-Engineering.

Kapitel 6 bietet eine Zusammenfassung der aus verschiedenen Richtungen gezogenen

Schlussfolgerungen. Das Kapitel behandelt zwei Hauptpunkte: (1) die Auswirkungen

der vorliegenden Ergebnisse auf den interventionistischen Kausalitätsbegriff im Quanten-

domäne und (2) die Relevanz von Machine Learning für Diskussionen in der Philosophie

der Physik. Zusätzlich biete ich eine kurze Erklärung meiner Idee, wie die beiden Probleme

der Verschränkung miteinander verbunden werden können.



Chapter 1

Introduction

Causal eliminativism, famously advocated by Bertrand Russell, argues that causal con-

cepts have no role in science because the laws in fundamental physics are time-symmetric,

meaning that the future determines the past in the same way the past determines the future

(Russell 1912). The view contends that there is no ontological space for causal relations

because a precise description of initial states, coupled with the underlying dynamical law,

provides a complete description of system behavior in fundamental physics.

While Russell denied the existence of an objective, underlying relation of causation at the

microscopic level, there are several sources of asymmetries from which causal notions might

arise at the macroscopic level. Examples include the Second Law of Thermodynamics and

the associated arrow of time, the possibility of performing interventions, and the different

perspectives of different agents. More broadly, causal eliminativism was moderated by

philosophers such as Nancy Cartwright to allow for causal notions to make their way back

into science, particularly at the macroscopic level. For Cartwright, the importance of causal

notions is that they provide the means to distinguish effective strategies from ineffective

ones: “causal laws cannot be done away with, for they are needed to ground the distinction

between effective strategies and ineffective ones” (Cartwright 1979, p.420).

Manipulability theories of causation are a well-established perspective in the philoso-

phy of science that view causes as instruments for manipulating effects. These theories
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emphasize that causal relationships are established through the capacity to intervene and

manipulate variables, making manipulation a key criterion to differentiate between effective

and ineffective strategies. Although manipulability theories of causation have historically

focused on human intervention, contemporary versions of these theories have expanded

their scope to more general forms of intervention in order to avoid being anthropocentric.

On the other hand, probabilistic theories of causation focus on the idea that causal

relationships are typically accompanied by probabilistic dependencies. Normally, when

an event X causes an event Y , the former raises or lowers the probability of the latter.

Probabilistic theories of causation characterize causal dependencies in terms of probabilistic

dependencies. In other words, they attempt to provide probabilistic criteria to decide

whether X causes Y and often maintain that causation is the corresponding pattern of

probabilistic relationships. Most probabilistic theories of causation are motivated by the

following central intuitions: (i) changing a cause alters its effects, and (ii) this alteration

shows up in probabilistic dependencies between cause and effect (see Williamson 2009).

Manipulability and probabilistic theories of causation are often seen as complementary

approaches to understanding causation. Manipulability theories provide a way of thinking

about how we can intervene to bring about or prevent certain effects, while probabilistic

theories provide a way of thinking about how we can make predictions about the probability

of certain events occurring based on what we know about other events. The combination

of manipulability and probabilistic theories of causation has led to the development of

computational frameworks that use probabilistic theories to identify causal relationships

and predict the effects of certain interventions.

The theory of causal Bayesian networks, primarily developed by Judea Pearl and Clark

Glymour (Pearl 2000, Spirtes et al. 2000), exemplifies the successful integration of manipu-

lability and probabilistic theories of causation. The theory offers a systematic approach to

inferring causal facts from statistical data based on a few well-motivated axioms. A model

generated by the theory of causal Bayesian networks is often referred to as a “graphical

causal model.” Two central questions that a graphical causal model aims to answer are:
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• Given the observed statistical data, how can one discover the underlying causal re-

lationships between the variables?

• Given the underlying causal relationships, what statistical (in)dependencies should

be expected to be observed?

The basic idea is to represent the causal relationships among variables involved in a

scenario by a “causal graph”. In a causal graph, the nodes represent the variables of the

scenario, and the edges represent the direction of causation between the variables. Thus,

whenever variable X is the cause of variable Y , a directed edge is drawn from the node

corresponding to X to the node corresponding to Y . The presence of such an edge makes

the claim that if one fixes the values of all other variables except X and Y in an imaginary

experiment, then by changing the value of X, the value of Y changes, while the converse

is not true. In this sense, the theory of causal Bayesian networks is an instance of using

manipulability theories of causation in practice.

To answer the questions mentioned earlier, graphical causal models often presume the ex-

istence of an underlying data-generating process from which the statistical data is aroused.

The structure of such an underlying process is then constrained by assumptions motivated

by our understanding of the notion of causation. The “causal Markov condition” and

the “causal faithfulness condition” are two well-known assumptions that graphical causal

models usually make to relate statistical (in)dependencies to causal (in)dependencies.

While performing interventions is a reliable way to identify causal relationships, it is not

always feasible due to practical reasons such as cost and ethics. In such cases, identifying

causal relationships must be based solely on observational data. This approach has been

used in science since at least the seventeenth century, exemplified by the work of Galileo,

Pascal, Kepler, and Newton (see Glymour et al. 2019). An essential feature of the theory

of causal Bayesian networks is that it supports causal inference based on observational

data. That is, although the theory is based on the interventionist account of causation,

under certain circumstances, it allows for extracting causal knowledge from statistical data

without performing interventions. Note that the existence of observational-based methods
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does not conflict with the interventionist account because the interventionist can interpret

these results as showing what would happen if certain interventions were be performed

(Woodward 2016a).

Observational-based “causal discovery algorithms” are a family of computational meth-

ods that aim to uncover causal relationships from observational data. These algorithms

employ statistical and computational techniques to identify causal structures consistent

with the data and typically rely on assumptions and heuristics to guide the search for the

most plausible causal model. The Inductive Causation (IC) (Verma 1993) and the Peter

and Clark (PC) (Spirtes et al. 2000) algorithms are well-known examples of discovery al-

gorithms among others (for overviews see Guo et al. 2020, Glymour et al. 2019). Causal

discovery algorithms have applications in various fields, such as economics, epidemiology,

genetics, and neuroscience.

Despite such a diversity of applications, it has been noticed that causal discovery algo-

rithms exhibit unsatisfactory results when applied to certain quantum correlations arising

from entangled quantum systems. In particular, Wood & Spekkens (2015) showed that the

current form of discovery algorithms could not distinguish correlations that satisfy Bell’s

inequality from correlations that violate Bell’s inequality and, consequently, that they can-

not do justice to the challenges of explaining quantum correlations causally. Thus, the

problem demonstrates a serious conflict between the underlying axioms of the theory of

causal Bayesian networks and certain predictions of quantum theory.1

Note that the problem mentioned in the last paragraph (which is a tension between

the non-local character of quantum entanglement and causal discovery algorithms) has

been found only recently. In addition to this problem, quantum entanglement has caused

another well-known difficulty which, in fact, is a tension between Quantum Mechanics

and Relativity. Following Näger (2016), I call these problems “the causal problem of

1The issue has been acknowledged by philosophers well long before the work of Wood and Spekkens.
For instance, scholars such as Butterfield (1989), Hausman (1999), Glymour (2006) have all recognized
that quantum correlations require the abandonment of at least one of the standard assumptions in the
theory of causal Bayesian networks. However, the work by Wood and Spekkens has garnered the attention
of many researchers.
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entanglement” and “the spatiotemporal problem of entanglement,” respectively. Although

this dissertation primarily focuses on the causal problem of entanglement, it is important

to briefly explain the spatiotemporal problem to differentiate between the two problems.

The spatiotemporal problem of entanglement deals with the question of how entangled

quantum systems, being located in spacelike separated regions of spacetime, can exhibit

statistical dependencies. More precisely, the spatiotemporal problem of entanglement can

be regarded as an inconsistency between:

1. The predictions of Quantum Mechanics

2. A particular notion of locality motivated by Relativity (i.e., that causal influences

cannot propagate faster than light)

3. Principles of causal explanation (e.g., the assumption that all correlations can be

explained causally)

Since the predictions of Quantum Mechanics have been confirmed empirically in various

experiments (for example Aspect et al. 1982), the spatiotemporal problem can be seen

as a dilemma between abandoning either of the latter two assumptions. To deal with

the spatiotemporal problem, a significant number of solutions have been proposed in the

literature. While a few of these approaches postulate non-local influences (for example Egg

& Esfeld 2014), the majority of philosophers and physicists tend to uphold locality and

conclude that at least one of the usual principles of causal explanation fails in the quantum

domain. Non-screening off common causes (Butterfield 1989), non-commutative common

causes (Hofer-Szabó & Vecsernyés 2012), retro-causation (Price & Wharton 2015), and

super-determinism (Hooft 2009) are the examples of such accounts.

The causal problem of entanglement is a new characterization of Bell’s theorem, accord-

ing to which even if one disregards all spatiotemporal constraints, there is still a conflict

between the predictions of Quantum Mechanics and the usual principles of causal explana-

tion. This conflict emerges because the violation of Bell’s inequality cannot be explained

causally without violating at least one axiom of the theory of causal Bayesian networks.
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The two axioms in question are the causal Markov condition and the causal faithfulness

condition, which are highly motivated in the theory of causal Bayesian networks. In the

quantum domain, the causal problem of entanglement leads to a dilemma that either there

are uncaused correlations, which violate the causal Markov condition, or there are caused

independencies, which violate the causal faithfulness condition. This inconsistency be-

tween the two axioms can be viewed physically as a conflict between non-local connections

necessary to explain Bell correlations causally and the empirically confirmed no-signaling

independencies. Therefore, the causal problem of entanglement raises the question of why

Bell’s non-local correlations cannot be utilized to send superluminal signals.

One possible response to the causal problem of entanglement is to argue that it exposes

the inadequacy of the interventionist view in the quantum domain. Therefore, alternative

accounts of causation must be employed to account for quantum correlations. For example,

the causal process view or the counterfactual account of causation may be used to explain

quantum correlations.2

However, if one wishes to maintain the interventionist account in the quantum domain,

perhaps because it provides a precise method for determining effective strategies, then two

general approaches can be taken to address the causal problem of entanglement:

1. Maintaining the classical framework of causal modeling and explaining why certain

underlying assumptions of the framework fail in the quantum domain.

2. Rejecting the entire classical causal modeling framework and developing an explicitly

quantum generalization of the interventionist account of causation.

This thesis discusses the two approaches to the causal problem of entanglement. The first

approach, exemplified by Glymour (2006) and Näger (2016), rejects fundamental principles

2For instance, Maudlin’s investigation of the causal implications of the violation of Bell’s inequality,
based on a counterfactual analysis of causation and a sufficient condition for a causal connection between
spacelike separated events, provides insight into this issue. Maudlin (2011) considers four possibilities:
(1) no superluminal matter or energy transport, (2) no superluminal signals, (3) no superluminal causal
influences, and (4) no superluminal informational exchange. He shows that the violation does not require
violations of the first two constraints but requires violations of the second two.



7

of causal explanation, such as the causal Markov condition and causal faithfulness. The

second approach, exemplified by Oreshkov et al. (2012), Barrett et al. (2019), and Shrapnel

(2019), attempts to redefine the concepts of nodes, mechanisms, and interventions in the

quantum realm. While the complexities of quantum entanglement require acceptance of

counterintuitive results, rejecting fundamental principles can significantly affect our un-

derstanding of causal relationships. The thesis critically examines these approaches in

Chapter 2, but the primary motivation is to introduce new tools for studying the causal

problem of entanglement.

This thesis tackles the causal problem through an inherently empirical method. The

goal is to exploit recent advances in Machine Learning to tackle traditional problems in

the foundations of Quantum Mechanics. In particular, I exploit Machine Learning to shed

new light on the notion of causation in the quantum domain within the framework of causal

Bayesian networks.

Machine Learning is a field of study that encompasses a range of algorithms and modeling

techniques that allow systems to learn from experience and perform specific tasks without

explicit programming. In today’s era of big data and highly efficient algorithms, Machine

Learning has become widespread and is utilized in a variety of fields, such as self-driving

cars, weather forecasting, drug discovery, economics, and social sciences. Despite this

widespread usage in empirical and social sciences, Machine Learning has rarely been used

in foundational areas.

It is the primary motivation of the present dissertation to use Machine Learning for

foundational debates in Quantum Mechanics. The topics explored in this thesis form a

triangle, with the three vertices being Machine Learning, Quantum Mechanics, and Causal

Modeling. The thesis comprises two separate projects, both utilizing Machine Learning

algorithms to discover causal relationships in simulated quantum experiments. The first

project is based on the infamous EPR-Bell scenario. The aim is to compare the performance

of different models proposed in the literature to solve the causal problem of entanglement.

The role of Machine Learning in the first project is to build a unifying arena for empirical

judgment between different candidate models. The second project considers scenarios
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whose underlying causal structures are already known. The goal is to find out the extent

to which Machine Learning can identify the true causal structures from statistical data in

the absence of explicit interventions. Therefore, the role of Machine Learning in the second

project is more like a causal discovery algorithm functioning on quantum systems.

In recent years, causal inference methods based on observational data have developed a

lot, mostly thanks to the rapid advances in Machine Learning and their combination with

causal inference techniques. My attention is on some of the recent developments that use

the power of Machine Learning to learn causal relationships in situations where traditional

methods are inapplicable. To be precise, note that in the absence of additional information

about a scenario, such as the temporal order of the variables or the functional form of

mechanisms, a causal discovery algorithm cannot provide a unique causal graph, and its

output contains a number of undirected edges. To address this shortcoming, a class of

discovery algorithms, known as “pairwise algorithms”, has been developed in recent years,

whose focus is the identification of causal direction in bivariate scenarios, i.e., scenarios

consisting of only two variables (for overviews see Mooij et al. 2016, Guyon et al. 2019).

The basic idea of pairwise algorithms is that statistical data, in addition to conditional

(in)dependencies, contains various types of asymmetries that can be used to detect the

causal direction. The asymmetries can include a wide range of statistical properties, such

as conditional entropy, mutual information, moments, residuals of regressions, and stan-

dard deviation of conditional distributions. Pairwise algorithms can be divided into two

categories: generative algorithms, which are based (explicitly or implicitly) on the notion

of functional causal models, and discriminative algorithms, which directly determine the

causal direction using a classification algorithm. The algorithm discussed in Chapter 4 is

generative, while the algorithm discussed in Chapter 5 is discriminative.

In general, pairwise algorithms are primarily due to the efforts of Machine Learning

experts interested in causal inference methods and have led to the discovery of new aspects

of the theory of causal Bayesian networks. Although such methods can be understood

as the continuation of the interventionist account of causation, they have received less

attention from philosophers. Although Climenhaga et al. (2021) has recently examined
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the topics from a philosophical point of view. The current thesis is an attempt to use these

recent advances in facing the causal problem of entanglement.

The results of this thesis have two primary contributions to foundational discussions

in Quantum Mechanics. The first contribution is to support the idea that obtaining an

interventionist account of causation in the quantum domain is possible. While many believe

that the interventionist account does not apply to the quantum domain (for example Pearl

2009, Koller & Friedman 2009), some physicists have proposed causal models for quantum

systems on the basis of the interventionist account (for example Costa & Shrapnel 2016,

Allen et al. 2017). The results of this thesis (primarily Chapter 5) support the latter idea,

suggesting that quantum causal relations can be described through generalized notions of

the interventionist account. Nonetheless, as will be discussed later, to what extent such a

description can be considered causal is a fundamental question that cannot be answered

within the present results. It is also necessary to emphasize that these results are not meant

to suggest that the interventionist account is the only way to characterize quantum causal

relations. Other accounts, such as causal process theories of causation (Salmon 1984, Dowe

2000), might also provide such a characterization. However, the latter accounts are not

explored in the current thesis.

The second contribution of this thesis is to provide support for the idea that Machine

Learning is a reliable tool for exploring new perspectives on the foundations of Quantum

Mechanics. For instance, the first project demonstrates how the traditional discussions

about the EPR-Bell scenario can be transformed into Machine Learning concepts such

as loss function and looked at from other perspectives. Moreover, the second project

shows the potential of combining causal modeling with Machine Learning techniques to

causally characterize a quantum process even when limited information is available about

the process. In general, the results of this thesis highlight the potential of Machine Learning

approaches in the foundations of Quantum Mechanics and open up new avenues for further

exploration and investigation.
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Outline

This dissertation consists of six chapters, including the current one. In what follows, a

brief overview of the content of each chapter is provided.

Chapter 2 serves as a foundation for the entire dissertation, encompassing three main top-

ics: Machine Learning, Causal Modeling, and Quantum Mechanics. The Machine Learning

section provides an understanding of the basic concepts of supervised learning algorithms

and the functioning of artificial neural networks. The Causal Modeling section gives a brief

overview of the interventionist account of causation, followed by an explanation of causal

Bayesian networks, causal discovery algorithms, and pairwise methods. The Quantum Me-

chanics section delves deeper into the causal problem of entanglement and its relation to

the causal Markov and faithfulness assumptions.

Chapter 3 examines various proposals to address the causal problem of entanglement.

The central claim of the chapter is that while it is commonly believed that the causal

problem is a dilemma between abandoning either the causal Markov condition or the faith-

fulness assumptions in the quantum domain, alternative possibilities exist stemming from

various physical and philosophical considerations. The chapter aims to study these possi-

bilities, assess their validity, examine the consequences, and explore the interrelationships

between them. This chapter lays the philosophical and foundational groundwork for the

Machine Learning projects in subsequent chapters.

Chapter 4 offers a novel approach to tackling the causal problem in the context of a

continuous formulation of the EPR-Bell scenario. A framework is presented for empirically

evaluating different proposals for the causal problem. The framework is based on a classical

causal discovery algorithm called Causal Generative Neural Network (Goudet et al. 2018),

adapted to the causal problem in light of philosophical considerations. The key idea is to

compare the predictive power of various candidate models and find the one that generates

data whose distribution is closest to the original quantum data. This framework allows

for the empirical comparison of a wide range of proposed models for the causal problem
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without getting caught up in the Markov-faithfulness dilemma.

Chapter 5 studies quantum scenarios whose causal structures are already known. The

cornerstone of the chapter is a pairwise discovery algorithm called Randomized Causation

Coefficient (Lopez-Paz et al. 2015). While the said algorithm was originally designed to

distinguish cause and effect in classical scenarios, it is generalized in several ways to create

a quantum causal discovery algorithm that can handle bivariate and multivariate quantum

scenarios. The resulting algorithm performs well in various simulated scenarios and has

implications for both quantum foundations and quantum engineering.

Chapter 6 provides a summary of the conclusions drawn from different directions. The

chapter covers two main points: (1) the implications of the present results for the inter-

ventionist account of causation in the quantum domain, and (2) the relevance of Machine

Learning for discussions in the philosophy of physics. Additionally, I offer a brief explana-

tion of my idea on how to link the two problems of entanglement.
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Chapter 2

Foundations and Frameworks

This dissertation is an interdisciplinary work between the concepts of several research

fields, including Machine Learning, Causal Modeling, and Quantum Mechanics. In order

to create a consistent ground throughout the dissertation, I will introduce the definitions,

concepts, and notations of the three fields in the present chapter. Nonetheless, each field

encompasses a wide range of sub-fields that are not necessarily related to the topics of

the present dissertation. Consequently, I will address only those concepts that are truly

relevant to the topics of the current thesis.

2.1 Machine Learning

Machine Learning (ML) is a sub-field of Artificial Intelligence that aims to build models

that “learn” through experience, where learning from experience is formalized as follows.

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P , if its performance at tasks in T ,

as measured by P , improves with experience E (Mitchell & Mitchell 1997, p.

2).

The term Artificial Intelligence has no strict definition and refers to a broad range of top-

ics, including Machine Learning, natural language processing, computer vision, robotics,
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Figure 2.1: Deep Learning is a sub-field of Machine Learning which itself is a sub-field of
Artificial Intelligence.

planning, search, game playing, and intelligent agents. In contrast to Artificial Intelligence,

Machine Learning is a mathematically well-defined discipline and usually constructs pre-

dictive models from data instead of explicitly programming them. Deep Learning is part

of a family of Machine Learning methods based on artificial neural networks. Figure 2.1

depicts the relation between Artificial Intelligence, Machine Learning, and Deep Learning.

Suppose we have a dataset D that contains n observations (or data points). Also, assume

that a Machine Learning model is supposed to learn task T from dataset D . Based on

the nature of the data D and the task T , the learning problem can be divided into three

categories: (1) supervised, (2) unsupervised, and (3) semi-supervised.

• In a supervised problem, D is a labeled dataset, i.e., it contains the values of both

input variables X and output variables Y. The goal is to learn the functional relation

that maps variables X to variables Y.

• In an unsupervised problem, D is unlabeled, i.e., it contains merely the values of

X. The goal is to learn the inherent structure of X without being concerned about

Y.

• In a semi-supervised problem, a (small) part of D is labeled while the rest is

unlabeled. Similar to a supervised problem, the goal is to learn the functional re-

lation that maps X to Y. However, due to accessing a large number of unlabeled

observations, a combination of supervised and unsupervised techniques is used.
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Remark 2.1. Different research fields use different names to refer to input and output

variables. For instance, the input variables X are known as features, covariates, inde-

pendent, exogenous, or explanatory variables. Similarly, the output variables Y are known

as targets, outcomes, dependent, endogenous, or response variables.

Depending on the type of output variable(s), a supervised learning problem is either a

classification or regression problem.

• In a classification problem, the output(s) is a categorical variable whose values

are expressed by a limited number of classes or labels. Classification problems with

two and more than two classes are known as “binary” and “multiclass” classification

problems, respectively. Identification of covid-19 from explanatory variables (e.g.,

chest X-Ray and CT scan images) is an example of a binary classification.

• In a regression problem, the output(s) is a numerical variable that takes a contin-

uous range of values. Predicting the rental price of an apartment in Munich from

explanatory variables (e.g., living area, year of construction, and location) is an ex-

ample of a regression problem.

The present dissertation mostly deals with supervised learning tasks. Thus, in what

follows, I assume that dataset D is labeled and is represented as

D = ((X(1),Y(1)) , . . . , (X(n),Y(n))) ∈ (X × Y)n, (2.1)

where the tuple (X(i),Y(i)) denotes the ith observation in the dataset, and X and Y
respectively represent the input and output spaces. The goal is to learn a model that

automatically maps the input space to the output space. To this end, a technique called

“data splitting” is usually utilized. Data splitting is a well-known technique for training

and evaluating Machine Learning models. The idea is to divide the original dataset into

different parts and use each for a different purpose. Commonly, the dataset is divided into
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three disjoint subsets, i.e., training, validation, and test:

D = (Dtr,Dva,Dte). (2.2)

The training data is used to fit the model, i.e., optimizing the model parameters. The

validation data is not directly used for training but for monitoring the training quality

to avoid unwanted issues such as underfitting and overfitting (explained below). The

validation data is also used for tuning the model hyperparameters (explained below). The

test data is used to evaluate the final performance of the model after being trained. It is

also known as unseen data because the model cannot access it during training. The data

checks how well the trained model performs or generalizes on unseen data.

To learn a model f ∶ X → Y, a learning algorithm usually makes the assumption that

all observations in D are generated by an underlying data-generating process that is

characterized by a joint probability distribution PXY on X × Y. Because the true PXY is

unknown to the algorithm, it attempts to approximate the distribution structure partially.

While there are different approaches to achieving the said approximation, most supervised

algorithms have three components based on which their procedure can be described: (1)

hypothesis space, (2) risk, and (3) optimization.

Hypothesis Space

The hypothesis space is the space of all models a learning algorithm can use to predict the

output(s) from the inputs. That is, the hypothesis space declares what kinds of models are

allowed to be learned from the data. For instance, linear functions and neural networks

lead to different hypothesis spaces based on which their corresponding algorithms solve a

learning problem.

Note that a model f ∶ X → Y induced by a learning algorithm includes a set of parameters

that control the model’s behavior. The said parameters are divided into learnable and

non-learnable ones. The former refers to the parameters that can be inferred from the

training data during the learning process. The latter refers to the parameters that cannot
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be directly inferred from the training data, and the user must usually determine their

values before starting the learning process. Conventionally, the former is called model

parameters, while the latter is called model hyperparameters. I denote these by Θ

and Ω, respectively.

The hypothesis space restricts the form of parameters and hyperparameters that models

can exploit to map the input space to the output space. A too-simple hypothesis space

induces weak models and can lead to underfitting: a situation where a model is so weak

that it cannot learn the patterns of the training data and hence neither fits the training

data nor generalizes to test data. On the contrary, a complex hypothesis space induces

strong models and can lead to overfitting: a situation where a model is so strong that

it learns not only the training data but also captures the statistical fluctuations as actual

features. In such a case, the model achieves a very well performance on the seen data but

a poor performance on the unseen data.

Therefore, the complexity of the hypothesis space must be determined proportionally

to the complexity of the data under consideration. Moreover, to control the behavior of

models, a tuning strategy is required, with which the values of model hyperparameters are

determined. The strategy is called hyperparameter tuning and is usually based on the

validation data.

Risk & Loss

The notion of risk is used to quantify the quality of a specific model on a given dataset. It

is tied to the notion of the loss function.

Consider the model f ∶ X → Y again. The model takes a true input X(i) and returns an

estimated output Ŷ(i) = f(X(i)). The loss function quantifies how well (more accurately,

how badly) Ŷ(i) approximates Y(i). A loss function takes the true and estimated out-

puts and returns a real (typically, non-negative) number representing the quality of the

estimation. The smaller the values of L(Y(i), Ŷ(i)), the better Ŷ(i) approximates Y(i).

The average of the loss values over all observations in the given dataset is known as the
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empirical risk:

L (f) =
n

∑
i=1
L (Y(i), f (X(i))) (2.3)

Depending on the type of supervised problem (i.e., classification or regression), different

loss functions must be used. The cross-entropy loss is a standard loss for classification

problems. Assuming that there is only one output variable, i.e., the output is a one-

dimensional random variable, the cross-entropy loss is computed as:

L(Ŷ(i),Y(i)) = −
m

∑
j=1
δij log (p̂ij) (2.4)

wherem denotes the number of classification classes, and δij = 1 is ifYi = j and 0 otherwise.

p̂ij is the probability predicted by the model for the given observation, i.e., p̂ij = p(Y(i) =
j∣X(i)). The Lp losses are standard losses for regression problems. These losses computed

the p-norm of the difference between the true and estimated outputs:

L(Ŷ(i),Y(i)) = ∥Ŷ(i) −Y(i)∥
p
. (2.5)

Optimization

It is the goal of a supervised learning algorithm to find the model that minimizes the

empirical risk defined in Equation 2.3. Put differently, the algorithm searches for a vector

of optimal parameters Θ, leading to a model with the lowest empirical risk. This is

accomplished in the training phase of the algorithm, wherein the model parameters Θ are

iteratively adjusted in the light of the training data.

A common optimization scheme used for this purpose is gradient descent, an iterative

algorithm that finds local optima of differentiable functions. The said optimizer iteratively

updates Θ in the direction of the gradient of the empirical risk computed on the training

data:

Θt+1 =Θt − η∇ΘLtr, (2.6)

where t denotes the iteration index and η denotes the learning rate of the optimizer. In
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practice, more sophisticated methods such as stochastic gradient descent (SGD) and

Adaptive Moment Estimation (Adam) are used. Moreover, instead of computing the

full empirical risk, the contribution of a few observations is computed and optimized in

each iteration.

The training phase can be repeated as many times as the user specifies, i.e., the num-

ber of training iterations is an example of a model hyperparameter. To avoid unwanted

issues such as underfitting and overfitting, one should either (1) find a suitable value for

this hyperparameter before starting the algorithm or (2) exploit techniques such as early

stopping. Early stopping refers to a set of regularization techniques used in many ML

algorithms to avoid overfitting (Prechelt 1998). In a nutshell, an early-stopping algorithm

continuously monitors the quality of the Learning and terminates the training phase if the

model stops being optimized. How and when to terminate the training phase depends on

how the early-stopping algorithm is defined. It is common to check the model performance

on the validation dataset and adapt the algorithm through adjustable hyperparameters

such as patience, i.e., the number of iterations the algorithm waits before terminating the

training phase.

2.1.1 Deep Learning

Deep Learning refers to a particular type of Machine Learning algorithm wherein neural

networks are used as the building blocks of the hypothesis space. Deep Learning has pro-

gressed rapidly in recent years, primarily thanks to the high flexibility of neural networks.

Neural networks are applied to a variety of data types such as image data (Shen et al.

2017), video data (Ngiam et al. 2011), text data (Kowsari et al. 2017), speech data (Deng

et al. 2013), or tabular data (Gorishniy et al. 2021).

Neural networks can be used for both types of supervised learning problems, i.e., classi-

fication and regression. In this thesis, I use both forms. Depending on their architecture,

neural networks are divided into feed-forward and recurrent. While in the former, there

is no cycle in the network, the connections in the latter create cycles. In this thesis, I only
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use feed-forward networks. In particular, I only use multilayer perceptrons, a feed-

forward neural network that is fully connected. In the following, whenever I use the term

neural networks, I mean multilayer perceptrons.

A neural network consists of at least three layers: an input layer, an output layer, and

one or more hidden layers. The input variables X are connected to the input layer, and

the output variables Y are connected to the output layer. The whole network acts as a

learning model f ∶ X → Y. The more the number of hidden layers, the more the complexity

of the hypothesis space and the deeper the neural network.

Each hidden layer consists of a number of neurons or hidden units. Each neuron

has a set of learnable parameters called weights and bias. The mathematical operations

performed inside each neuron consist of two steps: an affine transformation followed by

a non-linear transformation. Thus, when the values x1, . . . , xp are given to the input of a

neuron, the neuron returns the following output:

ŷ = σ (
p

∑
i=1
wixi + b) (2.7)

where wi, b ∈ R denote respectively the weights and the bias of the neuron, and σ denotes

the activation function. The activation function is responsible for the non-linearity of

neural networks. Two widely used activation functions are the ReLU function (Rectified

Linear Unit: σ(x) =max(0, x)) and the sigmoid function (σ(x) = exp(x)
1+exp(x)).

Figure 2.2 illustrates a neural network with several hidden layers. To calculate the

outputs based on the network’s inputs, the outputs of the first hidden layer are calculated

based on the values of the input layer. Then, the outputs of the second hidden layer are

calculated based on the outputs of the first hidden layer. This procedure is repeated until

the last layer is reached. Therefore, the relation between the inputs and the outputs of the

network in Figure 2.2 is

⎧⎪⎪⎪⎨⎪⎪⎪⎩

fi(Z) = (σi (Z ⋅W i + bi))

Ŷ = fk ○ fk−1 ○ . . . ○ f1(X)
(2.8)
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Figure 2.2: Illustration of a multilayer perceptron. Each edge represents a weight W i[j, l]
and each node of a hidden layer processes its inputs based on Equation 2.7.

where the W i denotes the weight matrix corresponding to the neurons in the ith hidden

layer, i.e., W i[j, ∶] represents the weight vector of the jth neuron in the ith layer.

To train a neural network is to optimize its weights and biases in light of the training

data. Like other Machine Learning algorithms, the optimization is achieved iteratively. In

each iteration or training epoch, the loss function is evaluated by comparing Y and Ŷ.

Then, the loss gradient is calculated with respect to the model parameters (i.e., weights

and biases). Finally, the model parameters are updated in the direction of the loss gradient.

Optimizing the parameters in neural networks requires lots of differentiation calcula-

tions. Standard deep learning frameworks such as PyTorch and TensorFlow perform these

calculations automatically through the backpropagation algorithm.

Another aspect of the training procedure in neural networks is when Dtr is very large (i.e.,

it contains a large number of observations) or when the computations of the loss function

are very complicated. The mini-batch training strategy is used in such situations. In

this strategy, in each training epoch, the Dtr is randomly broken into several smaller parts

(or batches), and the optimization algorithm is performed on each batch. The strategy is

used to avoid issues related to the lack of memory in computer systems. Meanwhile, the

number of batches is a hyperparameter of the algorithm that the user must determine.
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2.1.2 Kernel Embedding

Many Machine Learning algorithms are based on the analysis of probability distributions of

the variables involved in a scenario. Since there is usually no access to original distributions,

these algorithms have to estimate the distribution as an initial step and then start the

analysis. In practice, such a strategy becomes almost impossible for high-dimensional

distributions (i.e., when the number of variables in a scenario is large).

Methods based on the kernel embedding of distributions overcome this problem by map-

ping distributions into an intermediate space, known as a Reproducing Kernel Hilbert

Space (RKHS), so that calculations on distributions can be performed on the image of the

distributions in the RKHS. The relevant framework for doing so is known as the kernel

mean embedding framework. Due to its unique features, the framework is widely used

in causal inference methods based on Machine Learning. Both algorithms I investigate in

my dissertation are based on the said framework; thus, I review the framework’s principles

in this section.

Let X ∈ X be a possibly multivariate random variable defined on the space X with the

probability distribution P.

Definition 2.1 (Kernel Function). A function k ∶ X × X → R is a kernel function,

or kernel, if it is symmetric, i.e., k(Xi,Xj) = k(Xj,Xi), and positive definite, i.e., the

following holds for any n ∈ N, any choice of X1, . . .Xn ∈ X , and any c1, . . . , cn ∈ R:

n

∑
i,j=1

cicjk (Xi,Xj) ≥ 0. (2.9)

According to a theorem proved in Aronszajn (1950), associated with each kernel function

k ∶ X × X → R there exists a unique feature space Hk and a unique feature map

ϕk ∶ X → Hk such that

k (X,X′) = ⟨ϕk(X), ϕk (X′)⟩Hk
(2.10)

The unique feature space is known as a reproducing kernel Hilbert space (RKHS),
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Figure 2.3: Embedding of marginal distributions: each distribution is mapped into a re-
producing kernel Hilbert space via an expectation operation.

a Hilbert space of functions f ∶ X → R equipped with inner products ⟨⋅, ⋅⟩Hk
and norms ∥⋅∥Hk

in which the element k(X, ⋅) satisfies the reproducing property ⟨f, k(X, ⋅)⟩Hk
= f(X)

for any f ∈ Hk and any X ∈ X .

To see the importance of the above result, notice that an inner product between two

vectors can be construed as a measure of similarity between the vectors. In the present

context, a vector represents a data point in a high-dimensional space such as the orig-

inal space X and the feature space Hk. The right-hand side of Equation 2.10 asserts

that computing the similarity measure between vectors in the feature space (i.e., ϕk(X)
and ϕk (X′)) requires a linear calculation. However, the left-hand side of Equation 2.10

represents a non-linear calculation between the vectors in the original space. Therefore,

Equation 2.10 implies that one can convert highly-complex non-linear calculations in the

original space into simple inner product calculations in the feature space.

The theorem reveals its power when applied to probability distributions rather than

single data points. In such a case, distributions are mapped into the RKHS, and complex

calculations on the distributions, such as similarities between distributions, are performed

efficiently on the image of the distributions in the RKHS (Muandet et al. 2017). The kernel

mean embedding framework represents a distribution P as the following mean function (see

Figure 2.3):

µk(P) ∶= ∫
X
k(X, ⋅)dP(X). (2.11)
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There are two essential points about the above method. First, if the embedding µk ∶ P→
µk(P) is an injective map, then no information is lost when mapping distributions into the

RKHS. Such a property is realized in characteristic kernel functions. Put differently, if a

characteristic kernel is used, the embedding preserves all information about a distribution

while allowing the computations to be performed on the RKHS.

Second, for a shift-invariant kernel function, i.e., k(X,Y) = ψ(X −Y), it is possible

to obtain a low-dimensional representation of distributions using the normalized Fourier

transform of the kernel. Given a high-dimensional distribution, it is possible to extract a

finite number of features from the distribution such that the extracted features represent

the most important properties of the distribution. Thus, shift-invariant kernel functions

allow one to represent a high-dimensional distribution through a 1-dimensional vector of

features.

The Gaussian and Laplace kernels are examples of kernel functions that are charac-

teristic and shift-invariant. Given a parameter σ > 0, which is known as bandwidth, the

two kernels are defined as

k (X,X′) = exp(−∥X −X
′∥22

2σ2
) , k (X,X′) = exp(−∥X −X

′∥1
σ

) . (2.12)

The two points mentioned above are the cornerstones of the Machine Learning algorithms

I investigate in Chapters 4 and 5. I utilize the Gaussian kernel function in both of the

chapters.
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2.2 Causal Modeling

This dissertation centers on the interventionist account of causation, specifically the theory

of causal Bayesian networks and its compatibility with Quantum Mechanics. It explores

recent developments in ML-based causal discovery algorithms to learn causal relationships

in scenarios where traditional methods are insufficient. This section outlines the key ele-

ments relevant to the main topic of the thesis. The section begins with a discussion of the

assumptions of causal Bayesian networks that are believed to be at the heart of the con-

flict with quantum correlations. This is followed by an examination of traditional causal

discovery algorithms and inference techniques based on ML.

2.2.1 Framework

Let V = {X1, . . . ,Xp} be a set of 1-dimensional random variables. Assume dataset D

contains n observations from the variables’ values in V. The dataset takes the following

form, wherein V(i) represents the variables’ values in the ith observation:

D = (V(1), . . . ,V(n)) with V(i) = (x(i)1 , . . . x
(i)
p ) (2.13)

Associated with these variables, a joint probability distribution P with density p can be

defined from which the observations in D are drawn randomly. Assume that some variables

in V are statistically independent while others reveal statistical dependencies. Besides the

statistical relationships, assume a set of causal relationships among the variables in V that

might be exploited to explain the observed statistics causally. Two central questions arise

here:

• Given the observed statistics, i.e., the dataset D , how can one discover the underlying

causal relationships?

• Given the causal relationships, what sorts of statistical (in)dependencies are expected
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to be observed?

The causal modeling framework provides tools for addressing these questions and enables

one to relate causal relations to statistical relations. In particular, the framework provides

inference schemes known as causal discovery algorithms, which enable one to infer the

causal relationships between variables from their statistical (in)dependencies.

The primary idea is to represent the causal relationships among the variables V through

a graph G. The nodes of such a graph denote the variables in V, and the edges represent

the causal directions among the variables, i.e., for a causal relation Xi → Xj, an edge is

sketched from Xi to Xj.

Remark 2.2. Because of the correspondence between the “variables” and the “nodes,”

I use the two terms interchangeably. Moreover, I label each node with the name of the

corresponding variable.

In the presence of complete knowledge about the causal directions between the variables,

the causal structure is represented by a directed acyclic graph (DAG). A directed acyclic

graph (DAG) G is a graph whose all edges are directed, with no cycle among the nodes.

G being acyclic means that no variable can (directly or indirectly) affect itself, while G
being directed means that all causal relationships within G have a determined direction.

Some basic terminology is needed to continue the discussion.

If there is a directed edge from Xi to Xj, the former is called the parent of the latter, and

the latter is called the child of the former. Similarly, if there are edges like Xi →Xj →Xk,

then Xi is a ancestor of Xk and Xk is a descendant of Xi. In the following, I denote the

set of all parents and non-descendants for the variable Xi by PAGi and NDGi , respectively.

Moreover, the values taken by the former variables are noted by paGi and ndGi , respectively.

A node with no incoming edge is called exogenous, and a node with at least one

incoming edge is called endogenous. Exogeneity of a node means that it is not under

the causal influence of any other variable within that graph. A graphical structure Xi →
Xk ←Xj is called collider (or v-structure), while graphical structures Xi →Xk →Xj and
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Xi ← Xk → Xj are called chain and fork, respectively. The skeleton of a DAG is the

undirected graph obtained by substituting all the directed edges with undirected ones.

The next topic to be discussed is the notion of statistical (in)dependence. In statis-

tics, two variables X and Y are said to be marginally independent if and only if

p(x, y) = p(x)p(y) for all x, y. That is, their joint distribution factorizes as the product

of two marginal distributions. Moreover, two variables X and Y are said to be condi-

tionally independent given Z if and only if p(x, y∣z) = p(x∣z)p(y∣z) for all x, y, z such

that p(z) > 0. That is, their joint distribution factorizes as the product of two conditional

distributions. I denote the sketched marginal and conditional independencies by X⊥⊥sY
and X⊥⊥sY ∣Z, where the subscript s is chosen to emphasize the “statistical” nature of these

relations. Moreover, I use the notations X /⊥⊥s Y and X /⊥⊥s Y ∣Z to denote the dependencies

corresponding to the above relations.

Remark 2.3. Statistical (in)dependence can be generalized to random vectors (i.e., mul-

tivariate random variables). For instance, random vectors X = [X1, . . . ,Xn]⊺ and Y =
[Y1, . . . , Ym]⊺ are marginally independent, denoted by X⊥⊥sY, if and only if there is no

dependence between the elements of X and the elements of Y:

p(x1, . . . , xn, y1, . . . , ym) = p(x1, . . . , xn)p(y1, . . . , ym) ∀xi, yj

The notion of statistical (in)dependence can be reflected in causal graphs through the

so-called “d-separation criterion” introduced by Pearl (1988). The d-separation criterion

is a graphical tool for identifying causally independent nodes within a causal graph. By

combining the criterion with the causal Markov condition (defined later), one can extract

all the conditional independencies implied by the graph.

Definition 2.2 (d-separation). In graph G, two disjoint subsets of nodes X and Y are

said to be d-separated by a third disjoint subset Z, denoted X⊥⊥cY∣Z, if for every path

between nodes in X and Y there exists a node Z such that (1) Z is either a “chain”

(X→ Z →Y) or a “fork” (X← Z →Y), and Z ∈ Z , or (2) Z is a “collider” (X→ Z ←Y),



28 2. Foundations and Frameworks

Figure 2.4: The d-separation criterion.

and neither Z nor any of its descendants are in Z.

The basic idea behind the d-separation criterion is that a suitable set of variables Z can

“block” the flow of causal influences between the variables withinX andY (see Figure 2.4).

Therefore, the criterion provides a way for a causal graph to extract causal (in)dependencies

in complex systems.

Definition 2.3 (Causal Sufficiency). The set of variables V is said to be causally suffi-

cient if it includes all of the common causes of pairs in V. That is, for all pairs Xi,Xj ∈V,

it holds that there no external common cause Xk /∈V.

With the basic definitions established, let us revisit the dataset D in Equation 2.2.1.

As mentioned in the Machine Learning section, most supervised algorithms presume the

existence of an underlying data-generating process, which is characterized by a distribution

P, and assume that data D is randomly sampled from P. Graphical causal models adopt

a similar strategy to supervised learning algorithms, but in addition, they impose further

constraints on the underlying generating process, which arise from the causal relationships

between the variables. This is a fundamental distinction between the two: while Machine

Learning models may not necessarily enforce constraints on the form of the underlying

generating process, causal models are designed to be sensitive to causal information. The
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causal Markov condition is an example of such additional constraints on the distribution

P.

Definition 2.4 (Causal Markov Condition (CMC)). The causal Markov condition

(CMC) can be expressed in various forms:

• Factorization: the joint distribution P factorizes as:

p (x1, . . . , xp) =
p

∏
i=1
p(xi∣paGi ) (2.14)

• Screen-off: each variable is independent of its non-descendants given its parents:

(Xi⊥⊥s NDGi ∣ PAGi ) ∀i = 1, . . . , p (2.15)

• Explanation & Discovery: causal independencies imply statistical independencies;

equivalently, statistical dependencies imply causal dependencies:

(X⊥⊥cY∣Z)⇒ (X⊥⊥sY∣Z) ≡ (X /⊥⊥s Y∣Z)⇒ (X /⊥⊥c Y∣Z) (2.16)

There are several points about the CMC, which I will discuss below. First, if the dis-

tribution P has a density p, it can be proven that the three forms mentioned above are

equivalent (see, e.g., Lauritzen 1996).

Second, each of the three mentioned forms has alternative names. The factorization

form is sometimes expressed as the “Markov property” of the distribution P relative to

the graph G. Other names for the screen-off form are the “local Markov property” and

the “parental Markov condition.” The explanation form (⊥⊥c ⇒ ⊥⊥s) is also called the “d-

separation form.” Note that the discovery form (i.e., /⊥⊥s ⇒ /⊥⊥c) is logically equivalent to

the explanation form. Following Näger (2016), the explanation and discovery form more

clearly demonstrate the content of the CMC in the context of causal discovery algorithms.

In future chapters, I often mean the explanation and discovery form when I refer to the

CMC.
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Third, the screen-off form can be seen as an extrapolation of Reichenbach’s principle

common cause (Reichenbach 1956) to directed acyclic graphs. The latter states that

if two variables X1 and X2 are statistically dependent but there is no direct causation

between them, there must be a common cause or confounder named X3 that, if taken

into account, screens off the statistical dependence between them, i.e., X1⊥⊥sX2∣X3 or

p(x1, x2∣x3) = p(x1∣x3)p(x2∣x3). In other words, the third variable explains their statistical

dependence. While Reichenbach’s principle is restricted to a common cause scenario, the

CMC generalizes this idea to more complex causal structures.

Fourth, one of the presumptions of the CMC is that the set V is causally sufficient,

meaning it includes all the common causes relevant to the pairs in V. If this assumption

is not satisfied (i.e., some latent common causes exist), the distribution P does not satisfy

the Markov condition relative to the graph G. However, as soon as the role of these latent

common causes is taken into account, the distribution P satisfies the CMC again.

As previously mentioned, the CMC is an additional constraint on the underlying data-

generating process. The importance of the CMC is that it can connect causal statements

to statistical ones. The CMC can be understood as the claim that the causal parent of each

variable contains all the relevant information to describe the distribution of that variable.

Therefore, by considering the role of causal parents, the joint distribution factorizes into

distinct conditional terms.

In a broader sense, the CMC ensures the possibility of performing so-called surgical inter-

ventions on the variables of a scenario. In a graphical representation, surgical intervention

on node Xi means that we cut all incoming edges of this variable and fix the value of Xi

through an intervention. Such intervention only changes the values of variables that are

causal descendants of Xi. Therefore, the CMC helps us find the causal structure between

variables through the concept of intervention.

Pearl expresses the notion of intervention through the primitive notion of causal mech-

anisms. In this expression, the values of variables are determined through deterministic

functions such as xi = fi(paG, Ei), where the function fi represents the functional form of

the causal mechanism associated with Xi, and Ei summarizes the impact of all excluded
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variables. For Pearl, deterministic relationships are behind the scenes of statistical rela-

tionships, and randomness in the data, expressed through the variables Ei, arises from our

epistemic ignorance.

I take causal relationships to be the fundamental building blocks both of physi-

cal reality and of human understanding of that reality, and I regard probabilis-

tic relationships as but the surface phenomena of the causal machinery that

underlies and propels our understanding of the world (Pearl 2000, xvi).

In this view, an intervention on a variable means changing the causal mechanism of that

variable to a new causal mechanism without changing the other mechanisms. Therefore,

an intervention on Xi can change the function fi to a constant value or replace it with

a new function such as gi. Such an intervention requires an assumption of independence

between the causal mechanisms of different variables, usually expressed under the name

of autonomy of causal mechanisms or independence of causal mechanisms. In

Chapter 3, I will talk more about this assumption.

Remark 2.4. Woodward provides a more advanced characterization of the notion of in-

tervention. Since the focus of this thesis is on discovery methods based on observational

data, I skip this characterization and refer the reader to Woodward (2007, p. 75).

Assuming that the underlying data-generating process arises from a set of autonomous

mechanisms allows one to precisely define a functional causal model associated with the

causal structure of a scenario.

Definition 2.5 (Functional Causal Model (FCM)). A functional causal model, also

known as a structural equation model, defined over a set of variables V is a triplet

F = (G, f ,PE), where G is a causal graph over V, f = {f1, . . . , fp} is a set of functions

representing the causal mechanisms among the variables, PE is a (product) joint distribu-

tion over independent noise terms E = {E1 . . .En}, such that:

Xi ∶= fi (Ei,PA
G
i ) , ∀i = 1, . . . , p (2.17)
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Figure 2.5: Example of a functional causal model: the graph nodesXi represent the original
observed variables, whereas fi and Ei represent the causal mechanisms and noise terms
postulated by the FCM. Left: original causal graph, middle: schematic representation of
the corresponding FCM, and right: structural equations postulated by the FCM.

In an FCM, each variable is assumed to be a deterministic function of its causes and some

noise terms, where the noises are assumed to be jointly independent. Figure 2.5 illustrates

how an FCM models the underlying causal mechanisms in a scenario. The functions in

this figure represent the causal mechanisms generating the variables. From Pearl’s point

of view, such functions are deterministic, while the noise terms are taken to be random,

arising from our ignorance about other factors influencing the variables.

Remark 2.5. While Pearl’s view on causal mechanisms is deterministic, functional causal

models can be used to model indeterministic scenarios, such as those found in Quantum

Mechanics. In such cases, the randomness associated with noise terms should be interpreted

as irreducible randomness inherent in the scenario rather than as epistemic randomness

arising from the observer’s lack of knowledge. This approach will be employed in Chapter

4.

Another assumption commonly made within the framework of causal Bayesian networks

is the causal Faithfulness condition.

Definition 2.6 (Causal Faithfulness Condition (CFC)). The causal faithfulness con-

dition (CFC) can be expressed as either of the following equivalent forms:
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• No Fine-Tuning: All statistical independencies induced by a causal model must origi-

nate from the d-separation relations holding in G, and not from the particular values

for the model parameters (Wood & Spekkens 2015).

• Explanation and Discovery: Causal dependencies imply statistical dependencies;

equivalently, statistical independencies imply causal independencies (Näger 2016):

(X /⊥⊥c Y∣Z)⇒ (X /⊥⊥s Y∣Z) ≡ (X⊥⊥sY∣Z)⇒ (X⊥⊥cY∣Z) (2.18)

Like the CMC, the CFC is a constraint that causal models use to restrict the structure

of the underlying data-generating process. However, the CFC’s role is not as significant as

the CMC. The CMC acts as a guideline principle, motivating one to find a causal explana-

tion for statistical correlations. In contrast, the CFC restricts the space of causal graphs

compatible with a probability distribution and reduces the degree of underdetermination

of causal structure by a probability distribution (Zhang & Spirtes 2016).

The CFC is justified by the fact that the parameters of unfaithful models must be chosen

from a zero-measure set, implying that the parameter values needed to violate the CFC are

unstable. In other words, if these parameters have slightly different values, the fine-tuning

would not occur, making the violation unlikely (Weinberger 2018). To illustrate this idea,

Pearl gives an example of an observer trying to distinguish between a chair and two chairs

positioned such that one hides the other. Pearl argues that it would be unlikely for the two

objects to align in such a way that one perfectly hides the other because this alignment

would be unstable relative to slight changes in environmental conditions or viewing angle

(Pearl 2009, p. 49). Chapter 3 will investigate the controversies surrounding these types

of arguments.

Definition 2.7 (CPDAG). A completed partially directed acyclic graph (CPDAG) is a

DAG wherein only edges belonging to v-structures, and those that would introduce additional

v-structures or cycles are directed.

Definition 2.8 (Markov Equivalent). G1 and G2 are said to be Markov equivalent if
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they induce the same set of d-separation relations. This is the case if and only if the two

DAGs have the same skeleton and the same set of v-structures (Pearl & Verma 1991). A

collection of all DAGs that are Markov equivalent is called a “Markov equivalence class”

and is represented by a CPDAG.

2.2.2 Causal Discovery Algorithms

Causal discovery algorithms refer to computational techniques for inferring causal facts

from statistical data. Given a dataset, a discovery algorithm finds a causal model that

might explain the underlying causal relationships among the variables in the scenario under

consideration. Discovery algorithms usually make four assumptions to identify the causal

structure of a scenario: (1) acyclicity, (2) CMC, (3) CFC, and (4) causal sufficiency.1

Under these assumptions, a discovery algorithm identifies the causal structure up to

a Markov equivalent class and represents it graphically by a CPDAG. This strategy is

followed in most “traditional” discovery algorithms. Discovery algorithms are traditionally

divided into three classes:

1. Constraint-based algorithms perform conditional independence tests to identify

independencies holding in a given dataset. The goal is to return a CPDAG compatible

with the statistical independencies. Under the assumptions mentioned above, the

CPDAG found in this way is unique. The Inductive Causation (IC) (Verma 1993) and

the Peter and Clark (PC) (Spirtes et al. 2000) algorithms are well-known examples

of this class. Both algorithms (i.e., IC and PC) have extended variants that relax

the sufficiency assumption and perform the discovery task in the presence of latent

confounders. The extended variant of the IC is the IC* algorithm (Verma 1993), while

the Fast Causal Inference (FCI) algorithm (Spirtes et al. 2000) is the PC extension.

2. Score-based algorithms treat the discovery task as an optimization problem. The

goal is to find a CPDAG that maximizes a pre-specified scoring function. The found

1The causal sufficiency assumption is relaxed in some algorithms.
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CPDAG is unique if the score function satisfies desirable properties (e.g., decom-

posable, score-equivalent, and consistent). An example of this class is the Greedy

Equivalent Search algorithm (Chickering 2002), which implements a greedy search

strategy and uses the Bayesian Information Criterion as its scoring function.

3. Hybrid algorithms combine techniques from the constraint-based and score-based

methods to make the structural learning process computationally efficient. The goal

is to find a CPDAG whose skeleton is compatible with the conditional independence

relations, and at the same time, the score is maximum. The Max-Min Hill-Climbing

(Tsamardinos et al. 2006) algorithm is a well-known example of a hybrid algorithm.

In the absence of additional information about a scenario, such as the temporal order of

the variables or the functional form of mechanisms, a discovery algorithm cannot provide

a unique DAG, and its output contains a number of undirected edges. To address this

shortcoming, another class of discovery algorithms, known as pairwise algorithms, has

been developed in recent years, whose focus is the identification of causal direction in

bivariate scenarios, i.e., scenarios consisting of only two variables.

To make a start, let us first formalize the problem that a pairwise algorithm is supposed

to solve. Consider a bivariate scenario composed of two variables X and Y in which

it is always the case that either X is a cause for Y (X → Y ), or Y is a cause for X

(Y → X). Given a sample from the joint distribution of X and Y , the goal is to discover

the true causal direction. Note that the two possible directions lead to causal models

that are Markov-equivalent, and therefore traditional causal discoveries are unable to solve

the problem. Moreover, no intervention is allowed to be performed on the variables, and

determining the causal direction must only be based on the given observational data.

Pairwise algorithms are designed to deal with such bivariate scenarios. The basic idea

of these algorithms is that statistical data, in addition to conditional independencies, con-

tains various types of asymmetries that can be used to detect the causal direction. The

asymmetries can include a wide range of statistical properties, such as conditional en-

tropy, mutual information, moments, residuals of regressions, and standard deviation of
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Figure 2.6: Statistical origin of asymmetries. Left: the scatter plot of X and Y ; Middle:
the estimated residual Êy = Ŷ −Y against the values of X; Right: the residual Êx = X̂ −X
against Y .

conditional distributions.

Remark 2.6. The Tübingen database2 contains over one hundred hand-collected, real-

world cause-effect samples (Mooij et al. 2016). These data are collected from different

domains, and the causal direction in each dataset is determined with the help of experts in

each domain. Pairwise algorithms are usually trained and tested on the said database.

Figure 2.6 illustrates an example of a bivariate scenario in which asymmetries lead to the

discovery of the causal direction. The underlying causal direction is X → Y , and the causal

mechanism is linear. To detect the causal direction in this scenario is to distinguish between

model Y = ayX + by +Ey & X⊥⊥sEy and model X = axY + bx+Ex & Y ⊥⊥sEx. To identify the

causal direction, one needs to fit two linear regression models, once from X to Y and once

from Y to X, and check which model leads to an error or residual that is independent of

the input variable. As seen in Figure 2.6 (middle image), only the independence relation

Êy⊥⊥sX holds, and therefore X → Y must be selected as the causal direction.

The previous example demonstrates a specific type of asymmetries arising when the

causal mechanism is linear, and the noise is non-Gaussian. The literature on pairwise

algorithms contains models encompassing more complex and non-linear scenarios. For

instance, additive noise models postulate Y = f(X)+E and post-nonlinear models postulate

2https://webdav.tuebingen.mpg.de/cause-effect/

https://webdav.tuebingen.mpg.de/cause-effect/


2.2 Causal Modeling 37

Y = f(g(X) +E). Nonetheless, pairwise algorithms are not restricted to models with pre-

determined functional forms.

In the two competitions (Guyon 2013, 2014), pairwise algorithms found a deeper re-

lationship with Machine Learning approaches. In these competitions, participants were

asked to solve the bivariate causal inference problem as a supervised Machine Learning

problem. That is, they had to design and train a Machine Learning algorithm that could

learn the causal direction in bivariate scenarios. The training and test data provided

to the participants were a mixture of real and synthetic data from various domains, in-

cluding chemistry, climatology, economy, epidemiology, medicine, physics, and sociology.

Participants used innovative methods to solve this problem, which paved the way for more

systematic approaches to pairwise discovery algorithms.

In general, pairwise algorithms can be divided into two categories: generative algorithms,

which are based (explicitly or implicitly) on the notion of functional causal models, and

discriminative algorithms, which directly determine the causal direction using a classifica-

tion algorithm. The CGNN algorithm, discussed in Chapter 4, is a generative algorithm,

while the RCC algorithm, discussed in Chapter 5, is a discriminative algorithm.
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2.3 Quantum Mechanics

Quantum Mechanics is a physical theory that deals with the behavior of particles at the

atomic and subatomic levels. Its unparalleled precision has led to significant advances in

various fields, including quantum chemistry, quantum optics, semiconductors, and medi-

cal imaging. However, the foundations of Quantum Mechanics have been the subject of

numerous debates due to its counter-intuitive properties, such as wave-particle duality,

Schrödinger’s cat paradox, Heisenberg’s uncertainty principle, the measurement problem,

the role of the observer, the reality of the wavefunction, quantum non-contextuality, and

quantum non-locality.

Although the standard formalism of quantum theory is precise, it is silent about how

to resolve these puzzles. Therefore, various interpretations of Quantum Mechanics have

emerged, including the Copenhagen, many-worlds, pilot-wave, retrocausal, superdetermin-

istic, and relational interpretations. These interpretations attempt to provide a perspective

on the underlying nature of the theory to describe intuitively why standard formalism is

the way it is.

This dissertation focuses on the conflict between the non-local character of quantum en-

tanglement and the assumptions usually made in the causal modeling framework. There-

fore, the other quantum puzzles and complexities will not be addressed. In the following

sections, I will briefly introduce the mathematical formalism of Quantum Mechanics and

explain how a famous Bell-type scenario is formulated. Then, I will discuss why quantum

non-locality arises from the heart of Quantum Mechanics formalism and why it conflicts

with the causal modeling framework.

2.3.1 Formalism

In Quantum Mechanics, a complex Hilbert space H is associated with each physical system,

which serves as the basis for all mathematical calculations used to make predictions about

the system. In this context, the term “system” refers to a physical object or a collection
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Figure 2.7: Preparation, Transformation, and Measurement procedures: a quantum system
is firstly prepared in a quantum state through a preparation procedure P . The state is
then transformed by procedure P . Finally, the system is measured by the measurement
procedure M .

of objects under consideration. Examples of quantum systems include simple objects like

electrons or complex collections like atoms or molecules.

The state of a quantum system is represented by a vector ∣ψ⟩ ∈ H or, more generally, an

operator ρ. Each quantum system has a set of physical quantities, such as position, linear

momentum, angular momentum, and energy, and these are represented in Quantum Me-

chanics by Hermitian operators such as A, where A = A†. The eigenvalues of the operator

A correspond to the possible values that can be measured for the corresponding physical

quantity. Unlike classical systems, where measurements are passive observations of phys-

ical properties, measurements affect systems in Quantum Mechanics. Thus, the physical

quantities of a quantum system cannot be described independently of the measurement

procedure.

Describing a system in Quantum Mechanics generally involves three procedures: prepa-

ration, transformation, and measurement. These procedures are illustrated in Figure 2.7.

First, the system is prepared in a particular quantum state. Then, the system undergoes

some interactions, which can lead to the transformation of the initial quantum state. Fi-

nally, a measurement is performed on the system to reveal the value of one of its physical

properties.

Axiom 2.1 (Preparation). A preparation P is associated with a trace-one positive op-

erator ρ, known as the density operator, acting on the Hilbert space H. The density

operator represents the quantum state of a system.

• If the density matrix ρ has Tr(ρ2) = 1, the system is in a “pure state”. Otherwise, it
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is in a “mixed state”.

• To prepare a mixed state, we probabilistically combine several pure states ∣ψi⟩ with
probabilities pi, giving us the density operator ρ = ∑i pi∣ψi⟩⟨ψi∣.

• When two systems with states ρA and ρB are combined, the quantum state of the

compound system is ρAB = ρA ⊗ ρB.

• To obtain the state of one sub-system, we trace out the other sub-system: ρA =
TrB(ρAB).

Axiom 2.2 (Transformation). A transformation T is associated with a completely-

positive, trace-nonincreasing linear map E ∶ ρ → E(ρ), transforming the density operator ρ

to a new density operator E(ρ).

• The map E is trace-nonincreasing, meaning that 0 ≤ Tr(E(ρ)) ≤ 1 for all density

operators ρ.

• The map E is linear, meaning that E(∑i piρi) = ∑i piE(ρi).

• The map E is completely positive, meaning that E(A) and (I ⊗E)(A) are positive for

any positive operator A.

Axiom 2.3 (Measurement). A measurement M is a special transformation associated

with a positive operator valued measure (POVM) Mm, where Mm is a positive operator

corresponding to the outcome m. The POVM satisfies the constraint ∑mMm = I. The

probability of obtaining outcome m from a measurement M for a system prepared using P

and then transformed by T is calculated by taking the trace of the product of the POVM

element Mm and the transformed density operator E(ρ):

p(m ∣ P,T,M) = Tr(MmE(ρ)) (2.19)
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2.3.2 A Bell-Type Scenario

Linearity of transformations in Quantum Mechanics allows for situations where the state

of a compound system can be non-factorizable, meaning it cannot be written as a tensor

product of the states of its sub-systems, ρAB ≠ ρA ⊗ ρB. In such a situation, the sub-

systems cannot be described by independent states but with the entangled state of their

composition. Quantum entanglement is a phenomenon unique to quantum systems and has

no counterpart in classical physics. A compound system in an entangled state can exhibit

a particular type of correlation between the physical properties of its sub-systems, which

remain even when the sub-systems are separated. Such statistical dependence between

the statistics (i.e., outcomes of measurements) of entangled systems is called non-local

correlations.

The non-local behavior of entangled particles has been a source of much debate in the

foundations of Quantum Mechanics. Following Maudlin (2011), the quantum connection

between entangled objects has at least three counter-intuitive features:

1. The quantum connection is unattenuated: no matter how far apart the two objects

are, the statistical dependencies between the objects remain the same and are not

affected by the spatial distance.

2. The quantum connection is discriminating: it is a private arrangement only re-

tained by objects that have interacted in the past.

3. The quantum connection is faster than light: unlike other physical interactions,

which are limited by the speed of light, the quantum connection appears to be in-

stantaneous.

The non-local nature of quantum entanglement and the indeterministic nature of quan-

tum theory leads to the idea that the description of Quantum Mechanics of systems may

be incomplete. “Hidden variable theories” are proposals that attempt to explain quan-

tum puzzles by postulating hypothetical entities. Einstein, Podolsky, and Rosen (EPR)
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famously formulated a paradoxical scenario in which (at least) one of the following condi-

tions must be wrong:

1. A particular notion of locality motivated by Relativity (“...no real change can take

place in the second system in consequence of anything that may be done to the first

system.”)

2. There exists a physical reality underlying Quantum Mechanics (“If, without in any

way disturbing a system, we can predict with certainty (i.e., with probability equal

to unity) the value of a physical quantity, then there exists an element of physical

reality corresponding to this physical quantity.”)

3. The description of quantum theory is complete.

By defending the first two conditions, the authors argued that the description of Quantum

Mechanics is incomplete and supported the idea of hidden variables (Einstein et al. 1935).

Bell’s theorem, proposed by John S. Bell in 1964, is a fundamental result in the founda-

tions of Quantum Mechanics (Bell 1964). It is a test of the compatibility of hidden variable

theories with Quantum Mechanics, designed to re-formulate the EPR idea in a more clear

way. Bell’s inequality is a mathematical expression that describes the expected correla-

tions between the outcomes of measurements performed on entangled particles. According

to Quantum Mechanics, this inequality can be violated, but according to hidden variable

theories, it cannot.

Bell formulated his theorem in the context of a physical scenario whose rationale is

very close to the EPR scenario; thus, I refer to it as the EPR-Bell scenario. The EPR-

Bell scenario is a thought experiment that involves two particles in an entangled state.

The experiment is designed to measure the correlation between the particles’ properties

and to compare it to the predictions of both Quantum Mechanics and hidden variable

theories. Bell’s inequality is derived from this scenario, and it states that the sum of

the correlations between the particles’ properties cannot exceed a certain value. If this

inequality is violated, it is an indication that Quantum Mechanics is correct and that there
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Figure 2.8: The CHSH scenario: two experimenters (Alice and Bob) locate in two spacelike
separated regions. Each experimenter is allowed to set its measuring device freely.

are no hidden variables that can explain the correlations.

The Aspect experiment, conducted in the 1980s, confirmed the prediction of Quantum

Mechanics that the Bell inequality is violated (Aspect et al. 1982). This experimental result

ruled out a large class of hidden variable theories. The CHSH version of the EPR-Bell

scenario, named after its inventors, Clauser, Horne, Shimony, and Holt, is a modification

of the original scenario that simplifies the experimental setup while preserving the essential

features of the experiment (Clauser et al. 1969).

Figure 2.8 provides a visual representation of the EPR-Bell scenario. In this scenario,

two experimenters named Alice and Bob are located in distant regions that are spacelike-

separated, which means that there is no causal influence between them. Entangled pairs of

particles are emitted from a preparation device and sent to Alice and Bob, each of whom

has a measurement device that measures the input particle. The measurement devices have

several settings that determine the type of measurement to be performed on the particle,

and experimenters can choose which measurement to apply to the input particle. In each

run of the experiment, when an experimenter chooses a variable setting and performs

a measurement, a measurement outcome appears. The experiment is repeated n times,

with pairs of entangled particles sent to both experimenters and measurement outcomes

appearing each time.

In the CHSH scenario, all variables in the experiment are binary, and their values are

typically represented as oA/B ∈ {−1,1} and sA/B ∈ {0,1}, respectively, denoting the outputs

and settings of Alice and Bob. The dataset D corresponding to this experiment includes
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the results of all runs and is in the form of:

D = (V(1), . . . ,V(n)) with V(i) = (o(i)A , o
(i)
B , s

(i)
A , s

(i)
B ) . (2.20)

Due to the quantum entanglement between the particles sent to the experimenters, quan-

tum theory predicts that non-local correlations can be observed in the dataset D . These

correlations can be expressed in the form of the CHSH inequality, which takes the following

form:

S = E [OAOB ∣0,0] +E [OAOB ∣0,1] +E [OAOB ∣1,0] −E [OAOB ∣1,1]≤ 2
√
2 (2.21)

where E [OAOB ∣i, j] represents the conditional expectation of the outcomes given the set-

tings, i.e., the average of the product of the two outcomes in runs in which Alice and Bob

have respectively chosen SA = i and SA = j. The value 2
√
2 is known as the Tsirelson bound

and is an upper limit on the strength of quantum correlations between distant events.

In addition to the conditional dependence between the outcomes, the dataset D contains

other statistical patterns from which causal information might be extracted. Remarkably,

the dataset satisfies the no-signaling relations, which assert that the outcome at one wing

of the experiment is independent of the setting at the opposite wing given the setting at

the first wing:

OA⊥⊥sSB ∣SA and OB⊥⊥sSA∣SB (2.22)

The no-signaling constraint ensures that no communication can occur between the wings

of the experiment. Another statistical relation that exists in D is that the two settings are

marginally independent, i.e., SA⊥⊥sSB. The justification for the independence between the

settings is straightforward: experimenters can choose their settings freely. If the shared

entangled state is non-maximal, the outcome at one wing is statistically dependent on the

setting at the same wing, i.e., OA /⊥⊥s SA and OB /⊥⊥s SB.

The above inequality and the statistical (in)dependencies mentioned above have been

confirmed empirically through experiments such as the Aspect experiment, indicating that
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the predictions of quantum theory are in perfect agreement with experimental results. The

violation of the CHSH inequality is considered one of the strongest pieces of evidence for

the non-locality of entanglement and has important implications for the foundations of

Quantum Mechanics.

2.3.3 The Causal Problem of Entanglement

Having explained statistical (in)dependencies in the EPR-Bell scenario, we can now explore

the question of what causal graph can explain these statistics. As we will see in the following

paragraphs, none of the causal graphs that adhere to the CMC and CFC assumptions

can reproduce the scenario’s statistics. Consequently, the CMC and CFC assumptions

contradict each other in the quantum domain, which leads to the so-called causal problem

of entanglement.

John Bell formulated an initial version of this problem. Bell’s original formulation was

based on physical considerations (e.g., the concept of local causality) rather than the CMC

and the CFC assumptions. Moreover, Bell’s formulation did not account for all types

of causal graphs that could be defined for the EPR-Bell scenario. A generalized version

of Bell’s argument is presented by Wood & Spekkens (2015), in which the authors show

that, regardless of the physical considerations Bell employed, it is possible to demonstrate

that no causal graph that complies with the acyclicity, CMC, and CFC assumptions can

account for the scenario’s statistics. This section reviews Bell’s formulation of the problem

and directs the reader to Wood & Spekkens (2015) for a more comprehensive argument.

The term “be-able” derives from the English verb “be” and refers to elements of a physical

theory that correspond to real objects in the physical world. For Bell, beables are the

primitives of a physical theory, and other concepts, such as observables and mathematical

operators, must ultimately be reducible to beables. Local beables are a particular type

of beables that can be assigned to a bounded region of spacetime. Suppose we have a

complete specification of the local beables of a region. In that case, we should be able to

express the probabilities the theory attaches to events occurring in that region in terms of
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Figure 2.9: The Local Causality assumption. Left: local beables in the shared region (Λ)
screen-off the probabilities in A and B. Right: The corresponding causal graph of the
CHSH scenario.

local beables.

Figure 2.9 (left) depicts a scenario where two events A and B occur in two spacelike

separated regions. The light cones associated with these regions have an overlapping region

that characterizes the causal past of the two. According to Bell, a theory that is locally

causal satisfies the following condition:

p (A,B∣M,N,Λ) = p (A∣M,Λ)p (B∣N,Λ) (2.23)

where M and N are the specifications of all local beables in the regions associated with A

and B, respectively, and Λ is the specification of local beables in the overlapping region.

The condition says that a complete specification of local beables in the overlapping region

“screens off” the probabilities of events in A and B.

Figure 2.9 (right) depicts the causal graph of the EPR-Bell scenario based on the idea of

local beables. Here, Λ represents a possible latent common cause for the outcomes in the

two wings of the experiment and contains all the necessary information to characterize the

entangled state shared by Alice and Bob. Since the entangled pair is prepared before the

settings are chosen, it is natural to treat Λ as an exogenous variable. Similarly, since the

value of the settings is determined before the outcomes, it is reasonable to represent the

causal dependence between the setting and outcome of each wing through a directed edge

from the setting to the outcome.

Although assuming the CMC and CFC, the causal graph in Figure 2.9 can explain
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some statistical (in)dependencies present in quantum statistics, it cannot reproduce the

Tsirelson bound. Let us first see what relations the graph does reproduce. First, the

no-signaling relations are satisfied due to the d-separation criterion (and thus the CMC

assumption). Similarly, the setting independence condition is reproduced due to the d-

separation criterion. Moreover, the statistical dependencies SA /⊥⊥s OA and SB /⊥⊥s OB are

reproduced because the CFC would be violated otherwise.

Nonetheless, the graph predicts the classical bound 2 instead of the Tsirelson bound

2
√
2. This discrepancy arises because, under the assumption of CMC, the joint distribution

induced by the graph takes on a specific form:

p (oA, oB, sA, sB, λ) = p (oA∣sA, λ)p (oB ∣sB, λ)p (sA)p (sB)p (λ) ∀oA, oB, sA, sB, λ (2.24)

From the above equation, the following condition is derived, which is known as factor-

izability condition:

p(oA, oB ∣i, j, λ) = p(oA, ∣i, λ)p(oB ∣j, λ) (2.25)

Since the latent variable Λ can take probabilistic values, one can formulate the S param-

eter in Equation 2.21 by averaging over all the values taken by the latent variable:

S = ∫ dλp(λ)S(λ) where S(λ) =∑
i,j

E [OAOB ∣i, j, λ] (−1)ij

Moreover, from the factorizability condition in Equation 2.25 it implies that the expec-

tation values of the outcomes can be factorized into separate terms, i.e., E [OAOB ∣i, j, λ] =



48 2. Foundations and Frameworks

Figure 2.10: Three major interpretations of Quantum Mechanics violate the CFC assump-
tion. Left: superluminal; Middle: superdeterministic; Right: retrocausal.

E [OA∣i, λ]E [OB ∣j, λ]. Therefore, S(λ) is expressed as

S(λ) =E [OA∣0, λ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

(E [OB ∣0, λ] +E [OB ∣1, λ])+

E [OA∣1, λ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

(E [OB ∣0, λ] −E [OB ∣1, λ])

Finally, given that the only values the outcomes can take are either −1 or +1, it holds

that ∣S(λ)∣ ≤ 2 and hence ∣S∣ ≤ 2. The inequality presented here is known as the CHSH in-

equality. The CHSH inequality provides the upper bound on the strength of correlations

in classical systems. That is, the upper bound for classical correlations is 2, in contrast to

the quantum correlations whose upper bound is given by the Tsirelson bound 2
√
2. There-

fore, the graph in Figure 2.9 cannot fully reproduce quantum statistics, mainly because it

predicts a weak strength for the correlations between the outcomes.

As previously noted, not only is the graph in Figure 2.9 unable to reproduce quantum

statistics faithfully, but any causal graph based on the assumptions of acyclicity, CMC, and

CFC cannot reproduce quantum statistics either. In particular, many proposed models for

the underlying causal structure in the EPR-Bell scenario, including those which exploit

superluminal, superdeterministic, and retrocausal influences, violate the CFC assumption

(see Figure 2.10).
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2.4 Conclusion

In this chapter, we have covered the fundamental concepts required for understanding

the subsequent chapters. A critical limitation of causal models in reproducing quantum

phenomena was highlighted, known as the causal problem of entanglement. The CMC

and CFC assumptions were also discussed, as they are fundamental concepts in causal

modeling. Moving forward, it is important to clarify the approach taken in exploring

interpretations of Quantum Mechanics in this thesis. Specifically, our arguments are based

on the causal modeling framework, and as such, we only consider interpretations that

can be expressed in the form of a causal graph. This includes interpretations such as

superluminal, superdeterministic, and retrocausal models. Whether other interpretations

of Quantum Mechanics, such as QBism and many-minds interpretations, can be examined

within the causal modeling framework is an interesting open question that is not addressed

in this thesis. Overall, this chapter has laid the foundation for the subsequent chapters,

which will explore various interpretations of Quantum Mechanics through the lens of causal

modeling.
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Chapter 3

Quantum Conflicts

It is commonly believed that the causal problem of entanglement is a dilemma between

abandoning either the CMC or the CFC assumptions in the quantum realm. While giving

up either of these assumptions might be a valid response to the problem, this chapter argues

that there are alternative possibilities stemming from various physical and philosophical

considerations. The chapter aims to study these possibilities, evaluate their validities,

examine their consequences, and explore their interrelationships. Moreover, the chapter

builds the philosophical and foundational roots for the subsequent chapters on ML ap-

proaches.

3.1 Causal Markov Condition (CMC)

The CMC assumption has a central role in the foundations of the causal modeling frame-

work, which has a twofold application. On the one hand, as a methodological principle, it

asserts that correlations require causal explanation. Thus, it guides one in searching for

causal explanations whenever logically independent variables exhibit correlations. On the

other hand, it is a bridging principle between statistical and causal facts. Thus, it builds

connections between statistical inference methods and causal inference methods.

Despite having such a central role, the causal problem of entanglement has led some
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researchers to doubt the CMC’s validity (or at least its range of validity). Most notably,

after examining a tripartite quantum scenario and failing to provide a causal explanation

for quantum correlations, Clark Glymour concluded that some phenomena might admit

no causal explanation or their causal explanation is not based on the CMC:

...there is no causal explanation of the phenomenon, or that there is a causal

explanation but it doesn’t satisfy the Markov assumption. ... It is not a truth

of logic that all experimental associations have a causal explanation, and it is

not a truth of logic that all causal relations satisfy the Markov Assumption.

That’s up to Nature (Glymour 2006, p. 124).

Although it may be tempting to abandon the CMC as a solution to the causal problem,

we must approach this suggestion with caution, as it raises many difficult questions. For

example, why does the CMC hold in classical scenarios but not in quantum scenarios?

Are there specific conditions under which the CMC applies? When should we search for

causation when some correlations can exist without causation? While Glymour acknowl-

edges these problems and reminds the reader to think of “why, then, does the Markov

Assumption work with our experiments on middle sized dry and wet goods, with climate,

and rats and drugs, and so much else?” (Glymour 2006, p. 125), he does not provide clear

answers.

To address these questions, we can reject the CMC based on its underlying assumptions.

This rejection can be justified by either (1) rejecting Reichenbach’s principle of common

cause or by (2) rejecting Pearl’s assumption of independence of noise terms in functional

causal models. I will briefly discuss and evaluate both of these proposals.

The status of Reichenbach’s principle has been widely debated in the philosophical litera-

ture, and there are many alleged counterexamples against its validity (see, e.g., Arntzenius

2019). As the CMC is a generalization of Reichenbach’s principle, any counterexample

against Reichenbach’s principle can be seen as a counterexample against the CMC. While

there are many proposals, I will focus on two subtle cases: interactive common causes

(Cartwright 1988) and separate common causes (Hofer-Szabó & Vecsernyés 2012).
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3.1.1 Interactive Common Causes

One approach to relinquishing Reichenbach’s principle (and therefore the CMC) is to accept

the essence of the principle but reject its screening-off condition. This means rejecting the

idea that the conditional probabilities of effect variables factorize given their complete

common cause. An example, originally from Cartwright, can help understand how this

can happen.

Consider a molecule that is initially in a state, which after a while breaks down into two

equally-sized fragments, each having its own final state. The initial state is the common

cause for the final states; however, it cannot entirely determine its effects. The only thing

that can be inferred from the common cause is that the fragments move with similar speeds

in opposite directions due to the conservation of linear momentum. As a result, the initial

state is a non-screening-off (or interactive) common cause for the final states. This example

can be generalized to a broader context, where there is a global quantity Q = f (q1, . . . , qn)
whose value is conserved due to some physical law. Whenever one of the local quantities qi

changes indeterministically, the other local quantities inevitably change so that the global

quantity remains constant. Here, Q is a common cause for the local quantities qi, but again

it is an interactive common cause for them.

Applying the idea of interactive common causes to the EPR-Bell scenario means consid-

ering an interactive common cause for the two outcomes such that the factorizability of

conditional probabilities does not hold. Figure 3.1 depicts this idea.

Interactive common causes can be a compelling solution to the causal problem, for they

preserve the methodological spirit of the CMC (i.e., correlations have causal explanations)

and resolve the conflict by slight modifications to the screening-off condition. However, a

study by Näger (2020) demonstrated that the correlations produced by interactive com-

mon causes are not strong enough to violate Bell inequalities. This means that although

interactive common causes do weaken the CMC, the weakening is insufficient to recon-

cile Quantum Mechanics with classical causal models. Thus, interactive common causes

in their current form are not a solution to the causal problem, and alternative solutions
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Figure 3.1: The causal graph of the EPR-Bell scenario in the presence of an interactive
common cause (the arc between the edges symbolizes the idea of interactive common
causes)

should be explored.

3.1.2 Separate Common Causes

Another approach for resolving the causal problem of entanglement based on Reichenbach’s

principle is to argue that Reichenbach’s principle is about one pair of correlated events,

whereas the EPR-Bell scenario concerns more than one pair. According to this argument,

the issue lies not with Reichenbach’s principle itself but with its application to the EPR-Bell

scenario.

To simplify matters, let us assume that both Alice and Bob’s setting variables are binary-

valued. This means that there are four possible setting choices, such as sA, sB ∈ {0,1} ⇒
(sA, sB) ∈ {(0,0), (0,1), (1,0), (1,1)}. When we say that the outcomes of the two wings

are correlated, we are actually referring to four pairs of correlated events (and hence four

common causes), each corresponding to one possible choice of settings.

Nonetheless, Bell inequalities derivations are based on the tacit assumption that there

exists a single common cause screening off all four correlations simultaneously. This as-

sumption is known as the idea of having “common” common causes (Szabó 2000). Contrary

to this idea is the notion of “separate” common causes, which asserts that corresponding

to each correlated event, there should exist one hypothetical common cause. Hence, sta-

tistical dependencies of the two outcomes must be explained by a “system” of separate
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Figure 3.2: The causal graph of the EPR-Bell scenario in the presence of separate common
causes.

common causes rather than a single common cause variable.

Figure 3.2 illustrates the causal structure of the EPR-Bell scenario in the presence of

separate common causes. There are four common causes, each responsible for one corre-

lation event, such as Λ00 being responsible for the outcomes’ correlation when Alice and

Bob choose sA = sB = 0.

According to Redei et al. (2013), an interesting feature of Figure 3.2 is that the graph

does not automatically lead to problematic conditions such as “hidden locality”.1

Thus, such a graph blocks the derivation of Bell inequalities. Moreover, it has been shown

that a separate common cause system can generate the statistics of Quantum Mechanics in

the EPR-Bell scenario with binary-valued settings (see proposition 9.10 Redei et al. 2013).

Separate common causes might be a legitimate proposal for resolving the causal problem

of entanglement. However, it is important to consider one caution.

The argument for separate common causes relies on the assumption that the settings

are discrete-valued variables, which results in a finite number of common causes. This

implies that the concept of separate common causes may not have a straightforward in-

terpretation when applied to continuous scenarios, such as the one to be examined in the

next chapter. Therefore, while separate common causes might block the derivation of Bell-

1The “hidden locality” condition says that given a pair of correlated outcomes and the hypothetical
common cause of that correlation, the probability of the outcome in one wing is independent of the direction

of the measurement in the other wing: O
(i)
A ⊥⊥S

(j)
B ∣(S

(i)
A ,Λij) and O

(j)
B ⊥⊥S

(i)
A ∣(S

(j)
B ,Λij).
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type inequalities, further justification is needed to establish its validity as a solution to

the causal problem. While there is one issue to consider, it may be possible to prove the

same statements for continuous variables or to implement heuristic ideas that approximate

continuous problems with discrete problems, such as by binning the continuous setting

variable and converting it into a set of discrete partitions.

3.1.3 Correlated Noises

One alternative to abandoning the Causal Markov Condition (CMC) is to question the

assumption that the noise terms in a functional causal model are statistically independent.

Correlated noise terms can invalidate Pearl’s derivation of the CMC and may necessitate

a new formulation that is not affected by quantum correlations. As Steel (2020, p.229)

suggests, it is necessary to provide a justification for assuming independent exogenous error

terms.

In my opinion, the straightforward argument for assuming independent noise terms is

that correlated noise terms can introduce statistical dependencies between variables with-

out acknowledging causal connections, which can undermine the validity of the whole causal

modeling approach. Therefore, postulating independent noise terms is a necessary assump-

tion for most causal modeling tasks. However, there are situations where the assumption

of independent noise terms may not hold. For example, in some cases, the noise terms

may be correlated due to unmeasured common causes or feedback loops in the causal sys-

tem. In such cases, the causal Markov condition may not hold, and other techniques, such

as instrumental variables, may be necessary to recover the causal relationships between

variables.

Overall, while the assumption of independent noise terms is a powerful simplification in

causal modeling, it is important to be aware of situations where this assumption may not

hold and to use appropriate techniques to address these challenges. I see two possibilities for

postulating correlated noises depending on whether or not the causal sufficiency condition
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is satisfied.2

Firstly, if the causal sufficiency condition is not met and the system is non-Markovian,

there may be correlated noise terms between variables whose common causes have not been

measured. However, these correlated noise terms will disappear as soon as the relevant

unmeasured common causes are added to the model. Pearl’s position on non-Markovian

models is as follows:

... such models - even if any exist in the macroscopic world - would have

limited utility as guides to decisions. For example, it is not clear how one

would predict the effects of interventions, save for explicitly listing the effect of

every conceivable intervention in advance. (Pearl 2009, p. 61)

By the way, correlated noises stemming from the first possibility (i.e., the existence of

common causes have not been detected) are less relevant to the EPR-Bell scenario since

the hidden variable Λ is a complete specification of all local beables of the overlapping

region of the two backward light cones, leaving no room for unmeasured common causes

to bring about correlated noises.

The second possibility arises when the causal sufficiency condition is satisfied from the

beginning, and correlated noise terms can arise due to non-separability caused by a meta-

mechanism influencing the causal mechanisms of the scenario. The origin of this meta-

mechanism and its mathematical modeling are discussed in detail in Section 3.3.2, but it

is worth noting that this possibility has exciting implications for the causal problem.

3.2 Causal Faithfulness Condition (CFC)

The CFC plays a critical role in the causal modeling framework, serving a dual purpose.

As a methodological principle, the CFC states that there is no reason to believe that causal

connections are hidden from observers, and hence, causally related variables are expected

2Recall that causal sufficiency is met when all the common causes of the measured variables have been
observed.



58 3. Quantum Conflicts

to display statistical dependencies. As a bridging principle, the CFC connects causal facts

to statistical facts.

In practice, the CFC is a crucial assumption for many constraint-based causal discovery

algorithms. These algorithms involve performing conditional independence tests, which

result in a set of Markov-equivalent models. The CFC is then employed to identify the

models whose conditional independence relations arise due to their graphical structure

rather than the fine-tuning of their parameters. This is the approach taken by Wood &

Spekkens (2015) to formulate the causal problem of entanglement: they assumed certain

independence relations (i.e., independence of setting variables and no-signaling conditions)

and searched for causal graphs that can reproduce these independencies under the CFC

assumption. The authors demonstrated that there is no causal graph that can faithfully

reproduce the statistics of Quantum Mechanics while respecting the CFC, thereby con-

cluding that three major interpretations of Quantum Mechanics are unsatisfactory since

they violate the CFC:

It follows that all three of the main approaches for providing a causal expla-

nation of Bell correlations, superluminal causes, superdeterminism and retro-

causal influences, are unsatisfactory, and they are all unsatisfactory for the

same reason (Wood & Spekkens 2015, p. 3).

Should we question the conclusion that the CFC confidently rules out three major inter-

pretations of Quantum Mechanics? The philosophical literature offers various strategies

to challenge this claim, one of the most notable being presented by Nancy Cartwright. In

her work, Cartwright (2001) focuses on the famous canceling path scenario, in which the

causal effect of one variable on another fades because the influence is carried by two paths

that cancel each other out. Cartwright raises the question of how to distinguish between

causally independent variables and variables subject to path cancellation. Her proposal

is that we should incorporate independent evidence about the relevant causal mechanisms

in our causal model alongside statistical observations. However, in the absence of such

independent evidence, we must exercise caution:
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Where we don’t know, we don’t know. When we have to proceed with lit-

tle information we should make the best evaluation we can for the case at

hand—and hedge our bets heavily; we should not proceed with false confidence

having plumped either for or against some specific hypothesis—like faithful-

ness—for how the given system works when we really have no idea (Cartwright

2001, p. 254).

What stance should we adopt towards the CFC in the causal problem of entanglement?

It is worth noting that we lack independent evidence regarding the underlying causal

mechanisms in the EPR-Bell scenario, as our knowledge is limited to a set of conditional

independence relations and a strong correlation between the two outcomes. In fact, one of

the primary motivations for formulating different interpretations of Quantum Mechanics is

our lack of understanding of the underlying mechanisms of QuantumMechanics. Therefore,

following Cartwright’s argument, we should not make any conclusive decisions either for

or against the CFC based on our limited knowledge.

However, how should we proceed with causal discovery in the EPR-Bell scenario if the

CFC fails? Should we accept the failure of the CFC and embrace the Quantum Mechanics

interpretations, or should we set aside the Quantum Mechanics interpretations and accept

the CFC? In the rest of this section, we will explore two general solutions to this problem:

(1) utilizing “natural fine-tuning” and (2) utilizing alternative tools for causal discovery

that go beyond the CFC.

3.2.1 Natural Fine-Tuning

As discussed in the previous chapter, the CFC assumption is motivated by the stability

demand, which suggests that causal models should be stable against external perturba-

tions. However, this demand can be challenged in cases where the counterbalance between

canceling paths is always stable. In the context of the causal problem of entanglement,

this is the approach proposed by Näger (2016).

What if the counterbalance between the two paths always remains stable? If the fine-
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tuning of causal parameters can be achieved in such a way that it always remains stable,

then the stability demand for postulating the CFC loses its functionality. This is precisely

the strategy that Näger (2016) suggests to deal with the causal problem of entanglement.

Näger argues that the no-signaling independencies observed in the EPR-Bell scenario

may be the result of internal canceling paths that are finely tuned by the laws of nature in

a nomological manner consistent with Quantum Mechanics. If the counterbalance between

different paths is naturally fine-tuned, then the causal model does not need to rely on

unstable canceling mechanisms. Näger explains:

The most convincing answer is provided by the quantum mechanical formalism

which assumes the laws of nature to have a specific form that guarantees that

causal parameters, which change due to disturbances, only change in a balanced

way (Näger 2016, p. 49).

In my view, Näger’s approach to the EPR-Bell scenario is both philosophically and phys-

ically compelling. Philosophically, the approach is consistent with Cartwright’s argument

and does not take a firm stance either for or against the CFC. Moreover, the approach

preserves the key concepts of causal explanations by introducing minor adjustments to the

implementations of stable fine-tuning. From a physical standpoint, the approach is sup-

ported by certain interpretations of Quantum Mechanics. There are at least two physical

models that explain how stable fine-tuning can be achieved in the EPR-Bell scenario. The

first model is based on the “quantum equilibrium hypothesis” and lends credence to super-

luminal causal models. The second model is based on ”internal symmetries” and supports

retrocausal models.

Quantum Equilibrium Hypothesis

In Bohmian mechanics, the possibility of superluminal signaling is prevented by relying

on the quantum equilibrium hypothesis. According to this hypothesis, in a Bohmian

world, the initial configuration of particles is determined by the Born rule. Without this

hypothesis, Bohmian mechanics could potentially violate the no-signaling independencies,
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allowing manipulation of the outcome on one wing by changing the setting on the other

wing. However, the existence of the quantum equilibrium hypothesis ensures that this is

not the case in Bohmian mechanics.

But can we reject Bohmian mechanics based on the violation of the CFC? I do not

think so because this type of fine-tuning is law-like and stable. A physical law, namely

the Born rule, is responsible for adjusting the initial configuration of particles, and this

leads to stable fine-tuning. Therefore, if there are independent justifications in favor of

the equilibrium hypothesis, fine-tuning in Bohmian mechanics is not problematic. In fact,

some proponents of Bohmian mechanics use this argument to defend their theory:

...Wood and Spekkens take this to be a case of fine-tuning. If, however, the

quantum equilibrium hypothesis can be justified in terms of the statistical be-

haviour arising from a typical initial configuration, as Dürr et al. (2013, ch. 2)

argue, there is nothing problematic about this fine-tuning (Egg & Esfeld 2014,

p. 9).

Internal Symmetries

The second example of stable fine-tuning is proposed by Almada et al. (2016), where a

retrocausal model is presented that satisfies the no-signaling condition through the in-

ternal symmetries of the model structure. The author correctly recognizes that internal

symmetries can naturally lead to stable fine-tuning:

...if one hopes to naturally restrict signalling without unnatural fine-tuning,

one should look for models with an abundance of symmetries (Almada et al.

2016, p. 13).

However, Almada’s model is not the only one that exploits stable fine-tuning. For ex-

ample, Weinstein (2018) presents a machine-learning model for reproducing the statistics

of the EPR-Bell scenario, where superluminal signals are blocked through the symmetries

of weights and biases within the hidden layers of the model. Another example is the

retrocausal model proposed by Argaman (2010).
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3.2.2 Beyond the CFC

If no independent evidence about the causal mechanisms of the EPR-Bell scenario is avail-

able, why not go beyond the CFC and use alternative criteria? In this way, we no longer

“proceed with false confidence having plumped either for or against” the CFC. Wood and

Spekkens also suggest this remedy:

CI-based (conditional-independence-based) causal discovery algorithms do not

do justice to Bell’s theorem. [Conditional] independencies simply do not provide

enough information. One needs a causal discovery algorithm that looks at the

strength of correlations to reproduce Bell’s conclusion (Wood & Spekkens 2015,

p. 17).

There are two systematic ways to extract causal information from statistical data: (1)

conditional independence relations and (2) structural and distributional details of variables

as an indication of the underlying functional forms of the causal mechanisms. While

constraint-based algorithms only use the first source, pairwise and score-based algorithms

are capable of using the second or even both sources. Accordingly, pairwise and score-

based algorithms do not usually require the CFC assumption for causal discovery. Many

algorithms fall into this type, and discussing all of them is beyond the scope of this section.

However, the basic idea is that the direction of causal mechanisms leaves some footprints

on the statistical data that differ from the conditional independence relations, and these

footprints can be detected by certain methods. Importantly, Machine Learning approaches

can be used to determine the direction of causality from these asymmetries. Chapter 4

and Chapter 5 will demonstrate how this idea can provide new tools to study the causal

problem of entanglement.

It is worth mentioning that, besides Machine Learning approaches, there are proposals to

weaken or generalize the notion of the CFC. For instance, Uhler et al. (2013) introduces a λ-

strong-faithfulness criterion based on the strength of correlations. Alternatively, Cavalcanti

(2018) suggests that a generalized CFC can be defined as follows: a causal model should
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not allow causal connections stronger than needed to explain the observed deviations from

the observed conditional independence relations in the EPR-Bell scenario.

In conclusion, the causal problem of entanglement does not necessarily lead to the rejec-

tion of fine-tuned interpretations of Quantum Mechanics. On the one hand, there are good

reasons to doubt the validity of the CFC in the quantum realm. On the other hand, there

are interesting alternative criteria of the CFC that can be exploited for causal discovery.

3.3 Non-separability Arguments

Quantum entanglement has another puzzling feature that takes the causal problem beyond

the debates surrounding CMC and CFC. This feature stems from the tension between the

non-local character of quantum entanglement and Relativity and leads to doubts about

the localizability of entangled objects. The central issue can be framed as follows:

... whether one can imagine that entangled objects are embedded in a relativis-

tic spacetime, is the central problem of entangled systems (Friebe et al. 2018,

p. 135).

It should be noted that the standard interpretation of Relativity requires that causal

processes propagate at most with the speed of light. That is, there are no causal processes

that propagate faster than light. A “causal process” between two variables refers to a chain

of causes and effects that connect the states of the two variables. A causal process has two

components: the relata (i.e., the states of the two variables) and the relation itself. To say

that a process is local is to say that the relata and the relation are both local. Hence, the

non-locality of a process can arise either from the non-locality of states or the non-locality

of relations.

In the context of the EPR-Bell scenario, quantum non-locality can thus arise from two

sources: (1) the non-locality of the ontic state of entangled objects or (2) the non-locality

of dynamics of the entangled objects. While many proposals in the physics literature tend

to accept the second option to address the EPR-Bell scenario, some arguments favor the
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first option. I refer to these arguments as “non-separability arguments” and discuss two

types of such proposals in the following sections: (1) non-localized states and (2) dependent

causal mechanisms.

3.3.1 Non-localized States

The essence of the current view is that the non-local behavior of quantum objects originates

from the fact that a pair of entangled particles should not be seen as a pair of distinct

objects located in different regions. Instead, the pair should be constructed as one entity

whose state is spread in the whole spacetime. Woodward has an obvious comment in this

direction:

One might go on to argue that the interactions of the electrons at the different

measuring devices are in fact not distinct events. One has instead a single wave

state extended over a large distance. So there is not only no causal explanation

of separate events, but no separate events to be [non-accidentally] connected

(Hausman & Woodward 1999, p. 657).

He makes a similar statement elsewhere to defend the reliability of the causal modeling

framework in dealing with entangled particles:

... there is no well defined notion of intervention on the spin state of one of the

separated particle pairs with respect to the other in EPR type experiments.

This would represent a limitation on the application of an interventionist ac-

count of causation only if there was reason to suppose that there is a direct

causal connection between these states. Hausman and Woodward argue there

is no such reason, hence that it is a virtue...that the interventionist account

does not commit us to such a connection (Woodward 2007, p. 70).

Figure 3.3 depicts a non-separable causal model that employs the concept of non-localized

states. The variable Λ denotes the non-localized state that extends over the whole space-

time due to the presence of entanglement. Being non-localized, Λ can be influenced by
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Figure 3.3: A non-separable causal model: Λ spreads throughout a whole spacetime region

both setting variables and can, in turn, influence both outcomes. This model adopts a

holistic view regarding quantum entanglement, as the states of all sub-regions depend on

the state of the whole region.

While this may seem like an unusual physical picture, there are observations that support

it. For example, entanglement connections are insensitive to spatial and temporal coordi-

nates of spacetime. They are “spatially insensitive” because the strength of entanglement

correlations does not change with increasing or decreasing the spatial distance between the

entangled particles. Similarly, they are “temporally insensitive” because the destruction

of entanglement (i.e., the collapse of the wavefunction) happens simultaneously.

Non-separable causal models may be attractive because they can avoid tensions with

the special theory of Relativity. Note that no definite temporal order can be assigned

between the two wings of the EPR-Bell experiment because they are spacelike-separated.

However, any causal model that postulates direct causation between the wings faces the

problem of frame dependency for the causal direction. Non-separable models do not face

this problem because they do not posit direct causation between the two wings. Despite this

argument, recent works in quantum causal models have criticized the non-separable model.

For instance, Shrapnel (2019) argues that by generalizing the notion of intervention for

quantum systems, one can break the correlation between the two outcomes and undermine

the view that the two objects are a single, indivisible event.
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3.3.2 Independence of Mechanisms

The concept of non-separability can also be understood in terms of the independence of

causal mechanisms. A causal mechanism is a function that maps the values of parent

nodes to a child node, and the number of causal mechanisms in a graph is equal to the

number of nodes. The independence of causal mechanisms assumes that each mechanism

is autonomous and operates independently of all others. This assumption is crucial to the

possibility of local interventions, i.e., changing one part of a system without affecting other

parts. As Pearl puts it:

The world consists of a huge number of autonomous and invariant linkages

or mechanisms, each corresponding to a physical process that constrains the

behaviour of a relatively small number of variables. Actions are local in the

space of mechanisms (Pearl 2009, p. 229).

Pearl does not explain why the world is decomposable in this way, nor does he sketch

how the world looks when the assumption is violated. He accepts the independence of

causal mechanisms as a primitive ontological fact and uses the assumption to guarantee

the possibility of local interventions, i.e., to alter one part of a system without altering the

other parts.

Although I accept that Pearl’s picture accords with everyday life experience and it might

be convincing to expect a classical world to behave in this way, I argue that the validity of

this picture in the quantum domain is not as straightforward as Pearl puts. First, quantum

systems exhibit puzzling behaviors that make it hard to believe that how these systems

behave always accords with everyday life experience. For instance, the non-local character

of quantum entangled particles should make us cautious about statements such as “actions

are [always] local”. Or, the Kochen–Specker theorem, which shows the impossibility of

non-contextually assigning properties to quantum systems (Kochen & Specker 1975), sug-

gests that, unlike any known classical system, quantum systems do not admit preexisting

properties. Second, we do not access a lower-level description of what happens in quantum
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mechanisms, so we do not know what those “small number of variables” are in a quantum

process. This would be a caveat for Pearl’s assertion since he utilizes these variables to

guarantee the independence of mechanisms.

For these reasons, I think it is essential to examine the validity of the independence of

causal mechanisms in the quantum realm instead of postulating it in the first place. To do

so, we must provide a precise definition of the independence of causal mechanisms. One

such definition is provided by Peters et al. (2017), a textbook that uses Machine Learning

approaches to causal modeling.

Definition 3.1 (Independence of Causal Mechanisms). The causal generative process

of a system is composed of autonomous modules that do not “influence” or “inform” each

other. In the probabilistic case, the conditional distribution of each variable given its parents

does not inform/influence the other conditional distributions.

Peters et al. (2017) point out that the above definition can be construed from two perspec-

tives: physical and information-theoretic. From a physical point of view, the independence

of causal mechanisms postulates that mechanisms do not “influence” each other. So, there

is no physical pathway or meta-mechanism that connects different mechanisms. From this

perspective, the independence of causal mechanisms guarantees the possibility of local in-

terventions: one part of a system can be changed without affecting the other parts because

mechanisms do not influence each other. From an information-theoretic point of view, the

independence of causal mechanisms postulates that mechanisms do not carry information

about each other; one cannot gain information about one mechanism by looking at the

informational content of other mechanisms.

It is essential to differentiate between two levels of information in this context. While the

effect variable is statistically dependent on the cause variable, the mechanism generating

the effect is informationally independent of the mechanism generating the cause. For

example, consider a scenario where X is the cause, and Y is the effect, i.e., X → Y . Due

to the causal connection between the two variables, X and Y are statistically dependent.

However, the independence of causal mechanisms asserts that the conditional distributions
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PX and PY ∣X are informationally independent because each distribution represents one

causal mechanism, and causal mechanisms are independent of each other.

Therefore, to precisely define the independence of causal mechanisms, one needs to es-

tablish a formal notion of “informational independence” between mechanisms. Janzing &

Schölkopf (2010) formalized this concept using Kolmogorov complexity and algorithmic

mutual information. The idea is to represent each mechanism with a bit-string and define

the Kolmogorov complexity of a mechanism as the length of the shortest program that

generates the corresponding bit-string on a universal Turing machine. Two mechanisms

are considered algorithmically or “informationally independent” if the length of the short-

est description of the two bit-strings together is not shorter than the sum of the shortest

individual descriptions. There are lots of technical details here, which I do not wish to

review here. Instead, I draw some concluding remarks about the connections between the

present discussion on the independence of causal mechanisms and the EPR-Bell scenario.

Firstly, the above discussion highlights that the independence of causal mechanisms can

be transformed from a primitive ontological fact to an assumption that is quantifiable in

different scenarios. For instance, in the EPR-Bell scenario, it is not necessary to assume

that the causal mechanisms of the outcomes are necessarily independent; the validity of

such independence can be quantified thanks to the tools provided by Machine Learning and

information theory. In the next chapter, I propose a functional causal model that violates

the independence of causal mechanisms and examine its predictive power in reproducing

the statistics of the EPR-Bell scenario.

Secondly, similar to the strategy adopted by Cavalcanti (2018) for generalizing the CFC

(see Section 3.2), a weakened version of the independence of causal mechanisms can be

proposed for the EPR-Bell scenario: a causal model should not allow dependent mecha-

nisms stronger than needed for reproducing the statistics of the EPR-Bell scenario. One

can thus study the causal problem of entanglement beyond the dichotomy of relinquishing

the CMC or the CFC.

Thirdly, the causal non-separability of entangled quantum states does not arise only

through the non-localizability of states; the violation of the independence of causal mech-
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anisms and hence the dependence between causal mechanisms can also bring about such

non-separability.

Fourthly, further research is required to understand how to achieve the violation of the

independence of causal mechanisms physically. One possibility is to assume the presence

of a meta-mechanism that affects the causal mechanisms. The former meta-mechanism

can be realized using correlated noises discussed in Section 3.1. Therefore, the weakening

of the independence of causal mechanisms can be interpreted as a relaxation of the CMC.

3.4 The Intervention Assumption

An assumption often made in causal models proposed for the EPR-Bell scenario is that

the settings are not affected by other variables, i.e., the settings are exogenous variables.

This is known as the “intervention assumption” and is justified by the assertion that the

experimenters have free will to select what to prepare and what to measure.

Rejecting the intervention assumption leads to models in which one or both settings are

causally influenced by other variables, e.g., by the device preparing the entangled particles.

This strategy is adopted by superdeterministic models. Figure 3.4 shows an example of a

superdeterministic model in which the hidden variable µ affects not only the settings but

also Λ, which itself is a hidden variable supposed to model the prepared state.

A well-known criticism of superdeterministic models is that they are often considered

conspiratorial, as they propose mysterious mechanisms that restrict the free will of exper-

imenters.3

However, I contend that the rejection of the intervention assumption does not necessarily

entail a conspiracy, especially if the responsible mechanism is mandated by natural laws

(even if these laws are yet to be discovered). The Pauli exclusion principle provides an ex-

ample of how a physical law can produce correlations without any conspiracy. Specifically,

two fermions can be correlated even if they have not interacted previously:

3There are more complaints against superdeterministic models; check Hossenfelder & Palmer (2020,
sec. 4) for some of the most popular objections and responses.
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Figure 3.4: Violation of the intervention assumption: the setting variables are causally
affected by other variables.

... there is a universal correlation of the EPR type which we do not have to clev-

erly set up, it is simply the total antisymmetrization of a many fermion state,

which does correlate the electrons of my body with those of any inhabitant of

the Andromeda galaxy (Lévy–Leblond 1985).

I conclude this section by stating that rejecting the intervention assumption is another

valid option in the debate surrounding the causal problem of entanglement. The option

would be more compelling when the laws of nature are responsible for violating the inter-

vention assumption. In such a case, there is a stable fine-tuning whose viability can be

justified by the arguments discussed in Section 3.2.

3.5 Causal Perspectivalism

This section points out that the standard causal modeling framework is incapable of ad-

dressing a set of causal models proposed for the EPR-Bell scenario. Such models can

neither be supported nor rejected in light of the causal problem.

To begin, note that Evans (2018) proposed a retrocausal model reproducing the EPR-

Bell statistics. At first, it seems that the model must be ruled out by the argument of Wood

& Spekkens (2015) because of being retrocausal and hence violating the CFC. However,
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Figure 3.5: A model with undirected edges: dependency of the outcomes is nomological
and not causal.

this is not a correct conclusion because the model cannot be characterized by the standard

interventionist account of causation.

Figure 3.5 depicts a graph corresponding to Evans’ retrocausal model. The graph rep-

resents a combination of causal and nomological dependencies, which is why some edges

are directed, and others are undirected. Particularly, dependencies of the outcomes with

the hidden variable are nomological, while dependencies of outcomes with the settings are

causal. The undirected edges do not support surgical interventions, so the model cannot

properly be described within the standard interventionist account underlying the causal

modeling framework.

Nevertheless, Evans argues that it is possible to accommodate the above graph within

the causal modeling framework if the interventionist account of causation is augmented by

causal perspectivalism. By doing so, causation becomes an agent-dependent notion realized

within a “block universe.” Here, causation has nothing to do with changing certain aspects

of the future or the past because all are equally fixed from an external perspective. Instead,

because agents’ epistemic constraints lead them to disagree about what should be taken

as fixed and controllable, causation might be defined for each agent differently.

In such a proposal, observers in different frames of reference would assign different direc-

tions to the undirected edges in the above graph. But no one is wrong because there is no

objective direction for nomologically related variables. For instance, Alice might consider

a causal model in which her measurement outcomes influence Bob’s outcomes, but at the
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same time, Bob considers a causal model in which his outcomes influence Alice’s outcomes.

Neither of the models is incorrect; the models are observer-dependent.

I conclude this section by saying that the standard causal modeling framework cannot

accommodate all the proposed causal models for the EPR-Bell. As a result, no-go theorems

derived within the standard framework have a limited scope in their conclusions. Of

particular importance are models that postulate a nomological dependence between the

two outcomes. These models evade the dichotomy of the CMC and CFC because the

standard interventionist account of causation does not provide a natural framework for

sketching such models.

3.6 Quantum Causal Modeling

This section investigates a fundamentally different approach to the causal problem of en-

tanglement that is arisen from the literature on process matrix formalism and quantum

causal models. According to this approach, instead of modifying one of the underlying

assumptions in the framework of classical causal models, one needs to generalize the whole

framework and equip it enough to deal with quantum systems. According to the present

view, the take-home message of the EPR-Bell scenario is to redefine fundamental notions

of the causal modeling framework, such as causal variables, mechanisms, and the notion

of intervention.

... to establish an account of causality in quantum theory’s own terms, without

assuming a separate realm of classical systems or measurement outcomes. The

account provides its own answer to many of the basic questions concerning

causality in a quantum universe (Barrett et al. 2019).

The literature on quantum foundations contains various proposed methods for general-

izing causal concepts to the quantum domain, and there is still no consensus on a single

formulation of quantum causal models. Nevertheless, there is a common ingredient among
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all the proposed formulations of quantum causal models focusing on which facilitates un-

derstanding the essence of quantum causal models.

To make a start, note that a fundamental assumption in classical causal models is that

the causal knowledge that can be inferred from a variable A using interventions on its

causal parents is expressible in terms of a conditional probability distribution pA∣pa(A).

Such an assumption is challenged in quantum causal models by arguing that conditional

probabilities are too restrictive to describe the informational content of quantum systems.

In a quantum causal model, a quantum system is represented by two Hilbert spaces, one

to represent the causal past of the system and the other to represent the causal future of

the same system, such that both spaces together represent the set of all possible interven-

tions that can be performed on the system. Under this assumption, the knowledge about a

system given its causal parent is represented by an exotic mathematical object called “con-

ditional density operator” ρA∣pa(A) (Leifer 2006) or equivalently by a “completely positive

map” (Costa & Shrapnel 2016).

From a mathematical point of view, conditional density operators provide richer alge-

braic structures compared to conditional probability distributions. For, the former allows

the transition from commutative algebras to non-commutative algebras. In such a new

framework, the concept of the joint probability distribution is replaced with a less intuitive

notion called process matrix (see, e.g. Oreshkov et al. 2012), the concept of intervention

takes a complex representation (see, e.g. Shrapnel 2019), the causal mechanism is repre-

sented by a unitary operator instead of a deterministic function (see, e.g. Barrett et al.

2019). More relevant to the present discussion is the screen-off condition in Reichenbach’s

principle, which finds its own translation in a quantum causal model. For example, Leifer

& Spekkens (2013) showed that Reichenbach’s principle holds in the quantum realm if the

screen-off condition is about the factorizability of conditional density operators rather than

conditional probability distributions.

Under these considerations, physicists have succeeded in formulating causal models that

are applicable to large quantum networks and can be used for quantum engineering pur-

poses. For instance, in a network consisting of a large number of interacting quantum
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Figure 3.6: The causal graph of the EPR-Bell scenario proposed by a quantum common
cause.

systems, a quantum causal model provides instructions on how to manipulate a set of

systems such that a preferred effect can be brought about in a specific system. In other

words, quantum causal models enable one to distinguish between effective and ineffective

strategies. Furthermore, the process matrix formalism can delineate scenarios beyond non-

relativistic Quantum Mechanics, such as those in which the global causal structure of a

scenario is affected by laws of physics. Examples of this category are process matrices that

are in a superposition of two or more certain causal structures or non-causal processes that

are incompatible with any combination of causal structures and hence do not admits any

causal explanation (see Branciard et al. 2015, Araújo et al. 2015). The process matrix has

led to the experimental implementation of exciting examples such as the quantum switch,

in which the causal order of a cause-effect scenario is in a superposition, i.e., a single event

can be a cause and an effect of another event at the same time (see Rubino et al. 2017,

Goswami et al. 2018).

3.6.1 Quantum Causal Models on the EPR-Bell Scenario

Quantum causal models have a straightforward causal story about the EPR-Bell scenario:

there is no direct causation between the two wings of the experiment, but the two wings

are under the influence of a common cause.

Figure 3.6 depicts the causal graph proposed by quantum causal models. In this graph,

a “quantum” common cause brings about the observed correlations between the two out-
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comes. This implies that the peculiarity of the EPR-Bell scenario does not originate from

the graphical structure (i.e., DAG) of the scenario. Rather, the peculiarity arises from the

nature of the common cause, which is something more than a classical random variable. Ac-

cording to this view, the main lesson from the EPR-Bell scenario is admitting that quantum

common causes require more complex mathematical machinery: conditional probabilities

should be replaced by conditional operators to reproduce the statistics of Quantum Me-

chanics. It appears that two general types of models can reproduce the statistics of the

EPR-Bell scenario: 4

• models that are parametrically conservative but structurally radical

• models that are parametrically radical but structurally conservative

The first type includes classical causal models proposed usually in the quantum founda-

tions literature. These models are “parametrically conservative” as they exploit classical

random variables and conditional probability distributions to represent variables and mech-

anisms in a causal model. These models are “structurally radical” because they are willing

to postulate weird causal structures such as superdeterministic and superluminal DAGs.

The second type includes quantum causal models. These are “parametrically radical”

as they use more complex objects to represent variables and mechanisms but are “struc-

turally conservative” because their corresponding DAG is a simple common cause, depicted

in Figure 3.6.

After explaining the fundamental concept of quantum causal models, the question arises:

to what extent can we consider the story presented by such models as “causal”?

If we limit the concept of causation to the interventionist account of causation and argue

that being causal means providing guidelines for distinguishing between effective and inef-

fective strategies, then the story can be considered causal. However, is it sufficient to reduce

the notion of causation to a set of operational instructions about effective and ineffective

strategies? Should not a causal story provide additional details about the phenomenon

under investigation?

4This terminology is borrowed from Daley et al. (2022).
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It is important to note that the quantum causal model’s story about Bell’s correlations

may not provide new insights into the nature of entanglement, but it still contributes to our

understanding of the phenomenon. Although the story does not address the causal ordering

among entangled particles or why entanglement connections are attenuation-free, it is a

step forward in our understanding of Quantum Mechanics and the causal relationships

within it.

... what the quantum causal modelling framework tells us about the Bell cor-

relations is simply what we already knew, i.e. that these correlations can be

produced in the lab by an agent who prepares a joint entangled state in the

causal past of both measurements (Adlam 2022, p. 18).

The above discussion can be investigated within a broader context by noting that the

common cause explanation provided by quantum causal models does not naturally fit

with the idea of local beables defended in Bell (1976). As mentioned in the previous

chapter, the term beable can be construed as elements of a physical theory that refer to

real objects in the world, in opposition to what is only observable. Local beables are those

that can be assigned to some bounded region of spacetime, i.e., a local beable lives in a

three-dimensional space or four-dimensional spacetime. For instance, the electric field in

Maxwell’s electromagnetic theory is an eligible candidate for being a local beable as it is a

quantity whose values can be expressed by assigning to the spacetime coordinates of the

region in which the field is defined. For Bell, the ultimate goal of local beables is to recast

all local observables of a theory in terms of local beables:

beables must include the settings of switches and knobs on experimental equip-

ment, the currents in coils, and the reading of instruments. “Observables” must

be made, somehow, out of beables. The theory of local beables should contain,

and give precise physical meaning to, the algebra of local observables. (Bell

1976, p. 52)

Suppose the common cause postulated in the EPR-Bell scenario is to be a local beable.

In that case, it must have a corresponding physical quantity living in a (3-dimensional



3.6 Quantum Causal Modeling 77

or 4-dimensional) physical space such that its mathematical representation is expressible

by assigning to spacetime coordinates of its defining region. Such a demand is respected

by a classical common cause represented by a classical random variable and assigned to a

particular region of spacetime. A quantum causal model seems incompatible with the local

beable demand, for the “quantum” common cause has no corresponding physical quantity

living in an ordinary physical space. In Shrapnel’s words:

... if Bell’s aim was to use beables in order to expunge the use of any mathe-

matical representational devices that move beyond classical random variables,

then clearly the quantum causal models fail in this respect (Shrapnel 2019, p.

20).

With this description, our previous question converts into the following question: To what

extent can a story whose constituent elements are not local beables be called “causal”?

To answer the present question, we must ask what reasons we have to postulate the

local beable condition in the first place. This is an important question, mainly because we

already know that quantum systems exhibit puzzling behaviors that make it hard to believe

that these systems can be represented by classical random variables. For example, the

Kochen–Specker theorem suggests that, unlike classical systems, quantum systems admit

no preexisting properties to be represented by classical random variables. It appears that

Bell’s motivation for demanding local beables roots back to the notion of “classical terms”

in Niels Bohr’s philosophy. In Bohr’s view, classical terms are essential because they provide

unambiguous language to communicate the results of experiments and observations:

It is decisive to recognize that, however far the phenomena transcend the scope

of classical physical explanation, the account of all evidence must be expressed

in classical terms. The argument is simply that by the word “experiment” we

refer to a situation where we can tell others what we have done and what we

have learned and that, therefore, the account of the experimental arrangement

and of the results of the observations must be expressed in unambiguous lan-
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guage with suitable application of the terminology of classical physics (Bohr

1949, p. 209).

Quoting the first sentence of the above paragraph, Bell explains his motivation for pos-

tulating local beables:

It is the ambition of the theory of local beables to bring these “classical terms”

into the equations, and not relegate them entirely to the surrounding talk (Bell

1976).

Hence, we cognitive agents require local beables to grasp the content of physical theories

in a way that our brain is adapted, i.e., in terms of classical notions. If this is a correct

characterization of the problem, then judging whether a quantum causal model provides a

causal story highly depends on the theoretical grounds of that particular quantum causal

model. If the quantum causal model in question provides a “secure transition” from the

quantum domain to the classical domain, its story might be considered causal. Here,

a secure transition is meant to be an explanation of the classical limit and the origin

of quantumness in causal models. Such a strategy is adopted in some proposed quantum

causal models (see, e.g. Costa & Shrapnel 2016); however, they are still far from a principled

transition to be accepted as an “unambiguous language.”

I conclude this section by asserting that quantum causal models offer a novel tool for

dealing with the causal problem of entanglement that inherently differs from traditional

approaches. The extent to which quantum causal models succeed in providing causal stories

about the quantum entanglement phenomenon depends highly on how they transit from

classical causal models to quantum causal models.

Quantum causal models are compelling from the perspective of locality considerations, for

they are structurally conservative; they can be, however, uncompelling from the perspective

of scientific realism and classical terms, for they are parametrically radical. Opposite

statements can be made about classical causal models. How to compare the two general

approaches (i.e., classical and quantum causal models) is an interesting question that has
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attracted less attention. Nonetheless, Daley et al. (2022) has recently proposed a numerical

technique in this direction.

3.7 Conclusion

The aim of this chapter was to shed new light on the causal problem of entanglement

by examining the sources of conflict between the axioms of the theory of causal Bayesian

networks and quantum correlations. To achieve this goal, the chapter explored various

possibilities for resolving the causal problem and analyzed the arguments for and against

each option, as well as their interrelationships.

The analysis presented in this chapter leads to several conclusions. First, resolving the

causal problem of entanglement does not necessarily require abandoning either the CMC or

the CFC assumptions. Alternative possibilities emerge when the underlying presumptions

are precisely addressed. Second, each possibility can be implemented in various ways,

leading to a new physical picture. For example, violating the CMC assumption can be

achieved by adopting interactive common causes, separate common causes, or correlated

noises. Third, not all possibilities presented in this chapter can adequately address the

causal problem of entanglement. For instance, interactive common causes cannot reproduce

quantum statistics, making them insufficient for resolving the causal problem. Fourth, the

vast potential of data-driven numerical methods has not been adequately explored in the

context of the causal problem, with only a few exceptions.

The next chapter will focus on an ML-based framework for adjudicating between dif-

ferent possibilities for resolving the causal problem, as mentioned in the first conclusion.

Specifically, the chapter will explore models that violate the CFC, such as retrocausal, su-

perdeterministic, and superluminal models, as well as models that violate the independence

of causal mechanisms. Although evaluating all the possibilities sketched in this chapter

is impossible due to the lack of translation for some options (e.g., causal perspectival-

ism), the methodological limitation of the framework should not reflect on the possibilities

themselves.
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Chapter 4

Machine Learning Analysis of

EPR-Bell Correlations1

In the previous chapters, we noticed that standard causal modeling techniques cannot

provide a causal explanation for quantum correlations. In particular, we noticed that

the statistical pattern of dependencies and independencies in the EPR-Bell scenario is so

weird that any discovery algorithm that assumes the CMC and CFC assumptions cannot

provide a causal graph for the scenario. We referred to this puzzle as the causal problem

of entanglement and examined various proposals for overcoming this puzzle in Chapter 3.

The present chapter offers an alternative way of tackling the causal problem, which

is empirical in spirit. I exploit recent advances in Machine Learning (ML) to build a

framework to adjudicate between various proposals for the causal problem empirically.

To this end, I take a classical causal discovery algorithm called Causal Generative Neural

Network (CGNN) and adapt it to the causal problem in light of philosophical considerations

discussed previously. The key idea is to compare the predictive power of different candidate

models and find the candidate that can generate data whose distribution is “closer” to the

1The present project is the result of my collaboration with Jan Dziewior from the Max-Planck-
Institute for Quantum Optics, 85748 Garching, Germany; Faculty of Physics, LMU Munich, 80797 Mu-
nich, Germany. Jan Dziewior has two main contributions to the project: (1) simulating the quantum
experiments, and (2) resolving the problem explained in Section 4.4. He has also written an early version
of Section 4.2.1.
The source code of this project can be found here: https://github.com/OmidCharrakh/Quantum_CGNN/

https://github.com/OmidCharrakh/Quantum_CGNN/
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original quantum data. How to generate data using a candidate model and how to quantify

the distance between two distributions are details that will be discussed during the chapter.

The essential point, however, is that the present framework can empirically compare a wide

range of proposed models for the causal problem without getting involved in the CMC-CFC

dilemma.

4.1 Introduction

The causal modeling literature contains a multitude of discovery algorithms (see Glymour

et al. 2019, Guo et al. 2020, for overviews). However, the CGNN benefits from a set of

features making it exceptionally suitable for the present work. In what follows, I point

out these features and explain why they fit nicely with the philosophical considerations

addressed in Chapter 3.

First, the CGNN does not require the CFC assumption for the task of causal discovery.

Apart from the technical flexibility it brings, this feature has two foundational implications

for the application of the CGNN to study the causal problem. On the one hand, it fulfills

Cartwright’s concern regarding the CFC (Cartwright 2001, p. 254). That is, “we should

not proceed with false confidence having plumped either for or against” the CFC, especially

when we are not certain about its validity in the context of quantum correlations. On the

other hand, it enables the CGNN to evaluate causal models originating from interpretations

of Quantum Mechanics that violate the CFC (e.g., superluminal, superdeterministic, and

retrocausal).

Second, the evaluation of the CGNN is based on the entire (i.e., joint) distribution

of a scenario, unlike conventional approaches to Bell-type inequalities where the focus

is merely on the conditional distribution of the outcomes given the settings. From a

statistical perspective, the joint distribution over the four variables contains much more

information than the conditional distribution of the outcomes, and therefore, judgments

based on the former are more reliable than judgments based on the latter. This feature

additionally satisfies Wood and Spekkens’ concern regarding the conditional-independence-
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based discovery algorithms. Recall that algorithms based on conditional independencies

“do not do justice to Bell’s theorem” because conditional “independencies simply do not

provide enough information,” and thus, one “needs a causal discovery algorithm that looks

at the strength of correlations to reproduce Bell’s conclusion” (Wood & Spekkens 2015, p.

17). The CGNN is an example of such an algorithm that looks not only at the strength of

correlations but also at the entire distribution of the scenario.

Third, the outputs of the CGNN go beyond a binary decision of whether or not a par-

ticular graph is the causal graph of a probability distribution. The algorithm assigns a

continuous score to a given candidate, where the score indicates the extent to which the

candidate can reproduce the original statistics of a scenario. It is possible to obtain even

further insights into a candidate by shedding light on the algorithm’s black box and scru-

tinizing its outputs. One can answer questions concerning the extent to which a candidate

can reproduce a particular marginal or conditional relation.

Fourth, the CGNN accomplishes the discovery task by relying on merely observational

data, i.e., it does not require any interventional scheme. This feature is necessary for any

discovery algorithm that is supposed to be applied to the causal problem, for the outcomes

are “uncontrollable” in the EPR-Bell scenario. In addition, the algorithm has strategies for

handling latent confounders (i.e., hidden variables), enabling one to evaluate candidates

exploiting hidden variables.

Fifth, the CGNN offers significant flexibility in the functional form of mechanisms and

the distribution of variables and noises, which sets it apart from many other discovery

algorithms that rely on functional causal models (henceforth, FCMs) like LiNGAM, ANM,

and PNL. This flexibility is due, in part, to the use of artificial neural networks to repre-

sent causal mechanisms. Neural networks are known for their ability to uncover complex

patterns in statistical data, allowing the CGNN to learn intricate functions for causal

mechanisms.

Despite all the enumerated capabilities of the CGNN, there is a challenge in utilizing the

algorithm for quantum scenarios. The CGNN is designed to work with continuous proba-

bility distributions and does not apply to typical quantum scenarios wherein the settings
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and the outcomes are discrete variables. To apply the CGNN to the causal problem, we

must go beyond the usual scenarios and simulate a Bell-type scenario wherein an entangled

state is shared between continuous quantum systems such that both outcomes and settings

are continuous.

The remainder of the chapter is organized as follows. Section 4.2 explains how to formu-

late and simulate a continuous EPR-Bell scenario as well as the statistical relations holding

in such a scenario. Section 4.3 describes the internal structure of the CGNN algorithm and

why it is necessary to insert specific changes into it to be applicable to the causal problem

of entanglement. Section 4.4 describes different criteria we use for distance quantification

between two probability distributions and how to relate these criteria to the notion of the

loss function. Section 4.5 discusses the candidates evaluated in this chapter and how to

tune their hyperparameters. Section 4.6 presents the adjudication results by sketching

several visualizations. Section 4.7 concludes.

4.2 Physical Scenario

To utilize the CGNN for studying the causal problem, it is necessary to go beyond the

conventional formulation of the EPR-Bell scenario and find a continuous variant. In what

follows, I briefly review the conventional formulation (i.e., the CHSH scenario) and then

explain how to generalize it.

4.2.1 Formulation and Simulation

Conventional

A conventional Bell-type scenario is a two-wing scenario (wings A and B) wherein the wings

are spacelike-separated, each containing a physical system. The statistics of such a scenario

is a joint distribution over outcomes of measurements on the two systems, conditioned on

the measurement settings applied at each wing. In the most basic setup, the two outcomes

OA and OB, and the two settings SA and SB are binary-valued variables.
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The physical realization of the said scenario consists of two spatially separated qubits,

the most simple form of a system capable of having quantum characteristics. To generate

the sought-after non-classical probability distributions, the two systems are taken to be in

an entangled state ∣Ψ⟩ with

∣Ψ⟩ = 1√
2
(∣00⟩ + ∣11⟩) , (4.1)

where ∣jk⟩ ∶= ∣j⟩ ⊗ ∣k⟩, with the two kets on the right-hand side belonging to the Hilbert

spaces of the first and second qubits, respectively, and {∣0⟩, ∣1⟩} denoting bases of both

Hilbert spaces.

Switching between non-commuting observables for measurements at the two wings is

necessary to obtain the desired distributions. A possible representation of the measured

observable σk in accordance with the setting parameter sk is given by

σk = cos sk σx + sin sk σz, (4.2)

where σx and σz are two Pauli-matrices corresponding to canonical observables on qubits.

Following the proposal by Clauser et al. (1969), recent Bell-tests choose two values each

for sA and sB to achieve a maximal violation of the CHSH inequality.

Continuous Variant

The scenario described above is suited for theoretical analysis and experimental imple-

mentation due to its clarity and simplicity. For our causal analysis, we require a scenario

wherein the outcomes and the settings have continuous probability distributions. Such

a generalization must contain the necessary features distinguishing quantum mechanical

phenomena from classical ones. To this end, turning towards physical systems described

by continuous Hilbert spaces is necessary.

In current experiments, the most common approach to Bell-type scenarios with

continuous-variable systems involves optical modes, where the infinite-dimensional discrete
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photon number space is parametrized via continuous quadrature variables Wenger et al.

(2003), Brask et al. (2012), Thearle et al. (2018). As the primary goal of these experiments

is to detect the violation of Bell inequalities, the measurements realize a binning resulting

in probability distributions over binary-valued outcomes.

We follow an approach similar to an experiment by Howell et al. (2004), where the

transversal position and momentum distributions of entangled photons are observed. We

pick up this scenario in our simulation by considering a pair of continuous systems and

allowing for a gradual transition between measuring a position (x) or a complementary

observable (k) on both systems, where [x,k] = i. Thus, the effective observables oA and

oB measured at the two wings can be represented by the following operator, in which sj

denotes values for the settings chosen from the interval [0,1]:

oj = cos(sjπ/2)x + sin(sjπ/2)k. (4.3)

Equation 4.3 allows the experimenters to choose their setting variables from a continuous

range of values. Here, s = 0 and s = 1 correspond to applying position and momentum

measurements. In addition, there is a continuous range for the outcome values associated

with each measurement choice.

In the conventional Bell-type scenario, the outcomes can be marginally independent of

the settings when the reduced state at each wing is maximally mixed:

OA⊥⊥s(SA, SB) & OB⊥⊥s(SA, SB) (4.4)

We want to preserve these independencies in our simulation. However, since there is

no analog to a maximally mixed state in continuous-variable systems, the choice of the

quantum state shared by the two wings is non-trivial. We adopt a joint state that yields

Gaussian marginal distributions such that the width of the marginals does not depend

on the settings. This leads to the entangled state ∣Φ⟩ represented by the wavefunction
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Φ(xA, xB) as

Φ(xA, xB) ∶= ⟨xAxB ∣Φ⟩ =
1√
π
exp(−x

2
A + x2B − 2cxAxB

2
√
1 − c2

) (4.5)

with the position bases {∣xA⟩}xA
and {∣xB⟩}xB

of the two wings and the free parameter

c ∈ [0,1[. The parameter c corresponds to the correlation between the spatial observables

xA and xB and satisfies the relation

c = ⟨xAxB⟩
∆xA∆xB

, (4.6)

which yields the standard definition of statistical correlation, written in Dirac notation.

Also, ∆xA and ∆xB denote the standard deviations of the respective marginal distribu-

tions.

The parameter c controls the degree of entanglement between the two systems. For the

case of c = 0, the two systems are entirely disentangled, while they have nonvanishing

entanglement otherwise. For the ideal case of c = 1, a strong correlation is observed when

measuring x at both wings, whereas a strong anti-correlation appears when measuring k

at both wings, and the correlation disappears when measuring x at one wing and k at

the other. For our simulation, we use a c close to but smaller than 1 because a perfectly

correlated state (i.e., c = 1) might be unphysical.

The physical model described above yields a conditional distribution over the outcomes

OA and OB given the settings SA and SB, i.e., p(OA,OB ∣SA, SB). It is possible to calculate

a closed mathematical formula for this conditional distribution in the eigenbases of the

observables in 4.3 by taking the partial Fourier transform of the state ∣Φ⟩ in 4.5. This

leads to the following equation:

p(OA = oA,OB = oB ∣SA = sA, SB = sB) =
k1
πk2

exp(− k1
k2

2 (o2A + o2B − 2ceffoAoB)) , (4.7)
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where k1 ∶=
√
1 − c2 and k2 ∶=

√
2−c2(1+cos(π(sA+sB)))

2 are real parameters and ceff = c cos ((s1+
s2)π/2) is the effective correlation value.

Remark 4.1. Equation 4.7 implies that if the settings SA and SB take uniform distribu-

tions, then the outcomes OA and OB take Gaussian distributions.

We use Equation 4.7 to simulate the joint distribution of the scenario, i.e.,

p(OA,OB, SA, SB). To this end, we posit uniform distributions over the setting variables

and obtain the outcomes. A sample data from the joint distribution is then the concate-

nation of these four variables’ values.

4.2.2 Statistical Properties

Having explained the physical grounds of our simulation, I now focus on some statistical

properties of our simulated data that are important from a causal discovery perspective.

To this end, I first provide a characterization of different types of relations holding in our

scenario and then present a set of visualizations representing the statistical properties at

different levels. Aside from providing deeper insights into our data, these visualizations

shall be construed as references to evaluate the predictive power of different candidates.

Dependencies and Independencies

Discovery algorithms check the statistical pattern of dependencies and independencies

to estimate the causal structure of a scenario. Thus, it is important to explore the

(un)conditional (in)dependence relations holding in a scenario. As the number of these

relations can be very large in general, discovery algorithms usually restrict their attention

to the conditional independence relations required for checking the d-separation criterion.

We know conditional independencies alone do not suffice for causal discovery in the EPR-

Bell scenario. So, I go beyond the d-separation criterion and present characterization of

all types of relations holding in our scenario. Such a characterization will be used in the

coming sections to build a heuristic loss function and evaluate the learning quality of the

candidates.
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Type Form Number Example

(1,0) Xi 4 OA

(1,1) Xi∣Xj 12 OA∣OB

(1,2) Xi∣XjXk 12 OA∣(OB, SA)
(1,3) Xi∣XjXkXl 4 OA∣(OB, SA, SB)
(2,0) XiXj 6 (OA,OB)
(2,1) XiXj ∣Xk 12 (OA,OB)∣SA

(2,2) XiXj ∣XkXl 6 (OA,OB)∣(SA, SB)
(3,0) XiXjXk 4 (OA,OB, SA)
(3,1) XiXjXk∣Xl 4 (OA,OB, SA)∣SB

(4,0) XiXjXkXl 1 (OA,OB, SA, SB)

Table 4.1: Different types of conditional relations in a four-variable scenario. In sum, there
are 65 relations.

Definition 4.1. Let V = {V1, . . . , Vp} be a set of variables, and X,Y ⊆ V be two disjoint

subsets of V. A conditional relation on X = {X1, . . .Xpx} given Y = {Y1, . . . Ypy} is a

statistical relation between the variables in X given the variables in Y and is denoted by

RX∣Y ∶= (X1...Xpx)∣(Y1...Ypy). (4.8)

In the above definition, px and py can be used to characterize RX∣Y and assign a “type” to

such a relation, where px and py are the numbers of conditioned and conditioning variables

respectively. I will henceforth use (px, py) to refer to the type of the conditional relation

RX∣Y. The total number of conditional relations that can be defined on a set of p variables

is

p−px

∑
py=0

p

∑
px=1

( p
px
)(p − px

py
). (4.9)

In the EPR-Bell scenario, four observed (non-hidden) variables exist, and the total num-

ber of relations to be investigated is equal to 65. Table 4.1 summarizes the type of these

relations. Of particular importance are the six relations of type (2,2), which describe the

conditional behavior of each pair of variables given another pair. These relations are as
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Figure 4.1: Marginal distributions of the four variables: the outcomes have Gaussian
distributions, while the settings have uniform distributions.

follows:

{(OA,OB)∣(SA, SB), (OA, SA)∣(OB, SB), (OA, SB)∣(OB, SA),

(OB, SA)∣(OA, SB), (OB, SB)∣(OA, SA), (SA, SB)∣(OA,OB)}.
(4.10)

Marginal Distributions

In Table 4.1, type (1,0) refers to univariate relations, i.e., how each variable behaves

irrespective of other variables. The marginal distribution of one of the outcomes is an

example of such behavior. Figure 4.1 depicts this behavior for our simulated data. The

figure confirms that the settings SA and SB have uniform distributions, while the outcomes

OA and OB have normal distributions.

Marginal Dependencies

In Table 4.1, type (2,0) refers to bivariate relations among each pair of variables irrespec-

tive of other variables. The marginal dependence between the two outcomes is an instance

of such a relation. Figure 4.2 evaluates such relations for our simulated data by exploiting

four dependency criteria: Pearson correlation coefficient, Spearman’s rank correlation coef-

ficient, Kendall rank correlation coefficient Abdi (2007), and adjusted mutual information

Vinh et al. (2010). The figure confirms that the simulated data exhibit no dependency of

type (2,0), i.e., all pairs of variables are marginally independent.
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Figure 4.2: Marginal independencies Figure 4.3: Conditional independence tests

Conditional Dependencies

In Table 4.1, type (2,2) refers to bivariate relations among each pair of variables condi-

tioned on the remaining pair. The conditional dependence of the two outcomes given the

two settings is an instance of such a relation. There are various approaches to investigating

such relations. For example, Figure 4.3 evaluates these relations within the framework of

statistical hypothesis testing, while Figure 4.4 pursues the same goal through the heuristic

notion of “correlation matrix.” I discuss both approaches in the following.

Conditional Independence Tests

In the framework of statistical hypothesis testing, where one pits a null hypothesis H0

against an alternative hypothesis H1 and exploits the notion of the p-value. A suitable

pair of hypotheses for testing the conditional independence between two variables X and

Y given a third Z is H0 ∶ X⊥⊥sY ∣Z versus H1 ∶ X /⊥⊥s Y ∣Z. A sufficiently small p-value

(typically ≤ 0.05) indicates strong evidence against the null hypothesis and implies the

conditional dependence X /⊥⊥s Y ∣Z, while a large p-value fails to reject the hypothesized

independence X⊥⊥sY ∣Z. In practice, there are different conditional independence tests;

the results presented here are based on the “Fast Independence Test” method proposed in

Chalupka et al. (2018). Figure 4.3 depicts the p-values of the six conditional independence

tests performed on the simulated data. The figure confirms that all pairs of variables are

conditionally dependent, given the remaining pair.
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Figure 4.4: Heatmaps associated to the simulated data.

Correlation Matrices and Heatmaps

Figure 4.4 provides an alternative view on relations of type (2,2) in the simulated data.

The six plots in this figure are heatmaps picturing the entries of a matrix that I refer to as

a “correlation matrix”. To understand these plots, one must first understand the notion

of a correlation matrix.

Let X = {X1,X2} and Y = {Y1, Y2} be two sets of continuous variables. A “correlation

matrix” MX∣Y is a matrix whose elements represent the correlation coefficients between

X1 and X2 in different partitions of the joint distribution of Y1 and Y2. To compute the

matrix, each of the conditioning variables (i.e., Y1 and Y2) is binned into m bins. Then, the

correlation coefficients between the conditioned variables (i.e., X1 and X2) are computed

for each bin. Algorithm 1 summarizes the said procedure.

Algorithm 1 Construction of a Correlation Matrix

Input: (X1,X2, Y1, Y2) (a sample from joint distribution, where Xs are conditioned vari-
ables and Y s are conditioning variables)

1: Bin the (Y1, Y2) into m2 bins {Bij(Y1, Y2)}
2: for each bin do
3: Find X

(ij)
1 and X

(ij)
2 via conditioning X1 and X2 on the bin

4: Compute the correlation coefficient cij between X
(ij)
1 and X

(ij)
2

5: Set MX∣Y[i, j] = cij
6: end for

Output: MX∣Y (correlation matrix)

Hence, the dimension of the correlation matrix is m ×m, and its elements are in the

interval [−1,+1]. The matrix not only reveals whether two variables are conditionally

dependent, but it also describes how intensely the two variables are correlated in different
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ranges of the conditioning variables.

Figure 4.4 visualizes the six correlation matrices computed for the simulated data. In

this figure, the positivity and negativity of the matrices’ elements are displayed by the

gradient of colors in the heatmap: darker colors correspond to values closer to minus one,

while lighter colors correspond to values closer to plus one. I focus on the first plot and

explain what it represents; the other plots can be interpreted similarly.

The first plot shows the conditional dependence of the two outcomes given the two set-

tings. The x-axis and y-axis of this plot correspond to the values of SA and SB; hence, each

axis is in the interval [0,1]. The plot indicates that the outcomes are conditionally depen-

dent given the settings: if both settings are close to zero (i.e., if position measurements are

performed at both wings), the outcomes will be perfectly correlated. In contrast, if both

settings are close to one (i.e., if momentum measurements are performed at both wings),

the outcomes will be anti-correlated.

Discovery Algorithms

Before discussing the CGNN algorithm, it is instructive to check the predictions of some

traditional discovery algorithms when applied to our simulated data. Figure 4.5 de-

picts the causal graphs predicted by six popular discovery algorithms, namely the PC

(constraint-based) Spirtes et al. (2000), GES (score-based) Chickering (2002), MMPC (hy-

brid) Tsamardinos, Aliferis & Statnikov (2003), IAMB (score-based) Tsamardinos, Aliferis,

Statnikov & Statnikov (2003), GS (score-based) Margaritis (2003), and LiNGAM (FCM-

based) Shimizu et al. (2006). Except for the LiNGAM algorithm, all the algorithms predict

that there is no causal connection between the four variables.

4.3 The CGNN Algorithm

The CGNN is a powerful discovery algorithm that combines lots of advanced techniques

from other discovery algorithms. This section introduces the internal structure of the

algorithm and explains the steps it follows to evaluate a candidate model. It is worth
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Figure 4.5: The graphs predicted by six discovery algorithms. Almost all the algorithms
predict that the variables are causally independent.

clarifying how the CGNN is linked to causal modeling and Machine Learning frameworks.

• The CGNN is “FCM-based”: it posits a set of deterministic functions to repre-

sent the causal mechanisms of a scenario. Nonetheless, the algorithm handles non-

deterministic scenarios because it postulates non-deterministic noise terms along with

deterministic functions.

• The CGNN is “pairwise-based”: it is obtained from a graphical generalization of a

pairwise algorithm with a similar name. The pairwise variant of the CGNN is tailored

to distinguish cause from effect, i.e., to distinguish between X → Y and X ← Y .

• The CGNN is “generative”: it generates synthetic data for a given candidate. The

data represents the joint distribution induced by the candidate.

• The CGNN is “score-based”: it assigns a score to a given candidate where the score

indicates the quality of the candidate’s synthetic data.

• The CGNN is “ML-based”: it uses artificial neural networks to estimate the causal

mechanisms of a scenario.

4.3.1 A Typical Scenario

Let X = {X1, . . . ,Xp} be a set of one-dimensional continuous variables which are causally

related by an underlying causal graph Gtrue. Given an “observational” sample data D from

the joint distribution PX and a set of candidate graphs G = {G1, . . . ,Gs}, the goal is to
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Figure 4.6: The CGNN uses generative neural networks to estimate causal mechanisms.
Left: candidate graph, middle: candidate FCM, and right: CGNN’s estimation.

discover the graph which is more probable to be Gtrue. The CGNN is designed to deal with

such a scenario and solves the problem in several steps.

For now, let us assume the scenario under consideration involves no latent variable, i.e.,

the “causal sufficiency” assumption holds. Therefore, the scenario involves p variables

interacting causally. An FCM for such a scenario postulates p noise terms {Ei} and p

functions {fi} to represent the causal mechanisms of the variables. In other words, fi

shows how the variable Xi is generated from its causal parents:

Xi ∶= fi(Xpa(Xi;G),Ei). (4.11)

Figure 4.6 depicts an example of such a scenario. The first figure on the left shows a can-

didate causal graph over the four variables, and the second figure shows the corresponding

FCM. The structural equations postulated by this FCM are as follows:

X1 = f1(E1)
X2 = f2(E2,X1)
X3 = f3(E3,X1)
X4 = f4(E4,X2,X3)

(4.12)

The CGNN models the said scenario by estimating the functional forms of the causal

mechanisms and modeling the noise terms. To model the noise terms, the algorithm draws
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samples from a continuous probability distribution such as Gaussian. To estimate the

mechanisms, it exploits neural networks, i.e., the functions fi are estimated by neural

networks. Once the estimation is completed, the algorithm generates data in accordance

with the topological order of the candidate causal graph:

X̂i = f̂i(X̂pa(Xi;G),Ei). (4.13)

Before explaining how this can be done systematically, I wish to make a few clarifying

remarks.

• The CGNN evaluates the candidates in G = {G1, . . . ,Gs} one by one by assigning a

score to each of them. The score assigned to a candidate represents the predictive

power of that candidate, i.e., the candidate’s capability to reproduce the ground truth

data.

• The set of candidates represents the “search space” of the algorithm. In principle,

the search space must contain all possible directed acyclic graphs (henceforth, DAGs)

definable over the variables in the scenario. However, evaluating all definable DAGs

is impossible, given the possibility of infinite latent variables. Even without latent

variables, estimating a causal graph from observational data is computationally ex-

pensive because the number of possible DAGs super-exponentially grows with the

number of nodes (Robinson 1977). For instance, the number of possible DAGs for a

scenario with 2, 3, 4, and 5 variables is 3, 25, 543, and 29281, respectively.

• The CGNN does not have an inherent method for the search space restriction, and

the user is supposed to provide a set of probable candidates to be evaluated by the

algorithm. Nonetheless, there exist some general strategies for restricting the search

space. For instance, before applying the CGNN, one can apply a constraint-based

algorithm and restrict the CGNN’s search space to edges about which the latter

algorithm is uncertain.
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• Regardless of how the search space is defined, the CGNN scoring workflow for a

candidate remains the same. Therefore, I focus on only one candidate and explain

how the CGNN assigns a score to it.

4.3.2 Algorithm Steps

Algorithm 2 summarizes the steps carried out during the CGNN scoring workflow. The

algorithm takes two ingredients as input: (1) a sample dataset from the joint distribution

of a scenario and (2) a candidate DAG to be evaluated by the algorithm. The output is

the score of the given candidate. The supplementary comments of each step are indicated

by the letter c and are explained in the following paragraphs.

Algorithm 2 The CGNN Scoring Workflow

Input: D (ground truth data) and G (candidate DAG)

1: Sort out D with respect to the topological order of G ▷ c1
2: Split D into training, validation, and test subsets ▷ c2
3: Initialize an FCM FΘ with model parameters Θ ▷ c3
4: while in training phase do ▷ c4
5: Generate synthetic data D̂Θ by the model FΘ ▷ c5
6: Quantify the training loss Ltr(Θ) =Mtr(Dtr, D̂Θ) ▷ c6

7: Quantify the validation loss Lva(Θ) =Mva(Dva, D̂Θ) ▷ c6
8: Update Θ by minimizing the training loss ▷ c7
9: if early stopping is satisfied then ▷ c8
10: Terminate the training phase
11: else
12: Continue
13: end if
14: end while
15: while in test phase do ▷ c9
16: Generate synthetic data D̂Θ⋆ ▷ c5
17: Quantify the test loss Lte =Mte(Dte, D̂Θ⋆) ▷ c6
18: end while
19: Compute the final score S = −L̄te ▷ c10

Output: S (candidate score)
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c1. Topological Ordering

The very first step is to sort the data D by the topological ordering of the graph G.
The topological ordering is found iteratively by first finding the source nodes (i.e., nodes

without parents), followed by the children of the source nodes, followed by the children

of the children of the source nodes until the algorithm reaches the sink nodes (i.e., nodes

without children). For instance, the topological ordering of the graph in Figure 4.6 is

[X1,X2,X3,X4] or [X1,X3,X2,X4].

c2. Splitting Data

Data splitting is a common technique for training and evaluating Machine Learning models.

The technique involves dividing a dataset into separate subsets, each serving a different

purpose. Typically, the data is split into three disjoint subsets: training, validation, and

test sets. Specifically, the data can be represented as follows:

D = (Dtr,Dva,Dte). (4.14)

c3. Initializing Model

As mentioned earlier, the CGNN postulates an FCM over the variables of a scenario and

uses generative neural networks to estimate the functional form of the causal mechanisms.

Thus, for a candidate graph G with p variables, the CGNN initializes an FCM F composed

of p neural networks. The initialized model has a large number of free parameters, the

values of which are set randomly at this step. These parameters, denoted by Θ, are the

“weights” and the “biases” of the neural networks and are to be optimized during the

training phase.

c4. Training Phase

To train an ML model is to optimize its parameters in light of the training data. The

optimization is an iterative process, i.e., it is done in several repetitive steps known as
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“epochs”. In each epoch, Dtr is broken down into small data “batches.” This is done

to overcome the issues that could arise due to storage limitations of a computer system,

especially when Dtr is large. The first training epoch ends when all data points in Dtr

are used exactly once. At this stage, the validation phase starts in which the model

performance is evaluated in light of Dva. Once done, the subsequent training epoch starts.

The training phase can be repeated as many times as the user specifies, i.e., the number

of training epochs is a hyperparameter that can be selected by the user. It is important

to set a suitable value for these parameters because a too-large and a too-small number

of training epochs can respectively lead to overfitting and underfitting, which are both

problematic and unwanted. To avoid such problems, one can either (1) find a suitable

value for the number of training epochs before starting the algorithm or (2) monitor the

model performance on both Dtr and Dva and terminate the training phase if there is a

risk of overfitting. We used the second strategy in the current project by implementing an

early-stopping algorithm.

c5. Synthesizing Data

In each training epoch, the model FΘ is used to generate synthetic data. Assuming the

neural estimator of the ith mechanism has one hidden layer with nh hidden units, the

estimation of Xi takes the following form:

X̂i = f̂i (X̂pa(Xi;G),Ei) =
nh

∑
k=1
w̄i

kσ
⎛
⎝ ∑
j∈pa(Xi;G)

wi
jkX̂j +wi

kEi + bik
⎞
⎠
+ b̄i (4.15)

where f̂y and Ŷ are respectively the neural estimations of the true mechanism fy and the

true variable Y . Moreover, σ is the “activation function”, w̄k, ŵk,wk ∈ R are the “weights,”

and bk, b̂ ∈ R are the “biases” of the neural network.

Remark 4.2. Equation 4.15 formulates a standard regression problem wherein the goal is

to estimate a target (i.e., Xi) in terms of a set of features (i.e., X̂pa(Xi;G) and Ei). Hence,

in principle, the CGNN could use other regression models instead of neural networks.
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Remark 4.3. The nonlinearity of the activation function allows the CGNN to estimate its

mechanisms with the nonlinear equation Y = f(X,E). From the perspective of regression

analysis, the CGNN is more general than algorithms such as LiNGAM and ANM, which

postulate more restrictive forms for causal mechanisms. The said models postulate Y =
αX + β +E and Y = f(X) +E, respectively. Such a generality comes at the price of non-

identifiability, especially if one does not limit the number of hidden layers and hidden units.

I will return to this point later.

Synthesizing data is carried out not only in the training phase but also in the test phase.

The rationale of the test phase remains unchanged, except that the weights and biases are

already optimized in the test phase and are no longer updated.

c6. Quantifying Loss

Loss quantification is a crucial step carried out in all three phases, i.e., the training, val-

idation, and test. A loss function, or a cost function, is a function that maps an event

onto a real number representing a “cost” associated with the event. The CGNN seeks a

candidate that generates the most “close” synthetic data D̂ to the original data D . Thus,

the cost is defined as the distance between the joint distributions of D̂ and D . To measure

the distance, one needs a “distance measure”M, a function that estimates the distance

from the two datasets.

The loss quantification differs depending on the learning phase (i.e., training, vali-

dation, or test). In the training phase, the synthetic data D̂ is compared with the

training data Dtr and the training loss is computed by the distance measure Mtr, i.e.,

Ltr(Θ) =Mtr(Dtr, D̂(Θ)). Similarly, the validation and test losses are quantified using

their corresponding datasets and distance measures.

Remark 4.4. In the Machine Learning literature, it is customary to take a single distance

measure for all three phases, i.e., Mtr =Mva =Mte. That is, the model is tested by the

same criterion with which it has been trained and validated. The original CGNN follows

this custom and uses the “Maximum Mean Discrepancy” (Gretton et al. 2006) for all the
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three phases. We abandon this convention and use different measures for reasons that will

be clarified later.

c7. Updating Parameters

The training phase of an ML model is nothing but solving an optimization problem wherein

the goal is to minimize the loss function. The theoretical ground of such an optimization

is based on the principle of “empirical risk minimization.” In artificial neural networks,

the optimization is achieved by the “stochastic gradient descent” and “backpropagation”

algorithms. I do not intend to get involved with the technical details of Machine Learning,

so I merely sketch the overall procedure.

In each training epoch, the gradient of the training loss Ltr(Θ) is calculated with respect

to the model parameters Θ. The said gradient provides the direction in which the training

loss can be reduced maximally in the space of the model parameters. The model parameters

are updated precisely in the said direction, i.e., Θnew = Θold − η∇ΘLtr. Here, η is the

“learning rate” of the algorithm, an adjustable hyperparameter that controls the step size

at each epoch while moving toward a minimum of a loss function.

During the training phase, the training loss gets smaller and smaller implying that the

synthetic distribution gets closer and closer to the original distribution. This usually

continues until the algorithm reaches a point where updating the parameters no longer

leads to a loss reduction. The ultimate hope is to capture the global optima Θ⋆, i.e., the

optimal set of parameters that minimizes the training loss function: Θ⋆ = argminΘ Ltr(Θ).

c8. Early Stopping

“Early stopping” refers to regularization techniques used in many ML algorithms to avoid

overfitting. In a nutshell, an early-stopping algorithm continuously monitors the quality

of the learning procedure and terminates the training phase if the model stops being opti-

mized. How and when to terminate the training phase depends on how an early-stopping

algorithm is defined. It is common to check the model performance on the validation
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dataset and adapt the algorithm through adjustable hyperparameters such as “patience”

(i.e., the number of epochs the algorithm waits before terminating the training phase).

Remark 4.5. The original CGNN neither has a validation phase nor exploits an early

stopping technique. We added these details to reach our candidates to their maximum

predictive power without worrying about the risk of overfitting.

c9. Test Phase

At the end of the training phase, the model parameters are optimized and will no longer

be updated. At this stage, the test phase begins. The test phase is carried out in several

epochs to obtain stable numerical results. In a test epoch, the CGNN generates synthetic

data and compares it with the test data. The final Lte is computed by averaging over all

the test epochs.

c10. Final Score

The last step is assigning a final score to the candidate G. If the algorithm is executed only

once, the final score is minus the mean of the test loss over the test epochs. However, it

is recommended to execute the whole algorithm multiple times and select the best result

as an indicator of the candidate’s performance. This strategy is used to lower the risk of

getting stuck at local optima. In the current project, we executed the algorithm four times

per candidate.

Remark 4.6. The original CGNN in Goudet et al. (2018) contains more details than what

was presented here. In particular, it (1) computes the importance of edges in a DAG and

prunes the unimportant ones, (2) optimizes a DAG structure by a hill-climbing algorithm,

and (3) penalizes a DAG if it attains too many edges. We do not need these additional

tools because our goal differs from the original CGNN.
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Figure 4.7: Latent confounder: the CGNN postulates a shared noise term between two
observed nodes if a latent confounder influences the nodes.

4.3.3 Latent Variables

The algorithm presented in the previous section is based on the causal sufficiency assump-

tion, i.e., the scenario under consideration was assumed to involve no latent variables. This

part briefly explains how the CGNN handles latent variables. Let Λ be a latent common

cause for the observed nodes Xi and Xj. The CGNN models Λ through a noise term

Eij shared between the two nodes, where the values of Eij are drawn from a continuous

probability distribution such as Gaussian. Figure 4.7 illustrates the FCM corresponding

to such a scenario. The rationale behind this strategy is that a noise term Ei represents

the causal effect of all unknown variables affecting a single observed node Xi. Yet, if the

latent Λ affects both Xi and Xj, its causal effect must be shared between the two observed

nodes via a shared noise term.

The only mode the original CGNN considers for a latent variable is to be an “exogenous

common cause.” That is, Λ is always assumed to be a common cause for some observed

nodes, but it is assumed not to be affected by any other observed nodes. Since some of

the proposed causal graphs for the EPR-Bell scenario include endogenous latent variables,

we generalize the above strategy as follows. Let Λ be a latent common cause for the

observed nodes Xi and Xj, which itself is affected by an observed node Xk. The latent Λ

is still modeled by a noise term Eij shared between Xi and Xj. However, the values of Eij

depend on Xk, i.e., Eij = fΛ(EΛ,Xk), where fΛ and EΛ respectively represent the causal
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Figure 4.8: The pairwise variant of the CGNN trains two neural networks. The left network
generates D̂ = (X, Ŷ ), while the right network generates D̂ = (X̂, Y ).

mechanism and the noise term corresponding to Λ. This leads to a new FCM that treats

a latent variable like an observed variable. We use a neural network to estimate fΛ and

draw samples from a Gaussian distribution to model EΛ.

4.3.4 Discussion

Before finalizing this section, I should address a few critical remarks about the methodology

of the CGNN algorithm and pairwise methods in general. To make a start, let us focus on

a bivariate scenario composed of two variables X and Y in which it is always the case that

either X is a cause for Y (X → Y ), or Y is a cause for X (Y → X). Given a sample from

the joint distribution of X and Y , the goal is to discover the true causal arrow.

The pairwise variant of the CGNN is designed to deal with such a question. It starts

by considering two neural networks corresponding to the two possible causal arrows (i.e.,

X → Y and Y →X). The first network presumes Y = fY (Ey,X) represents the true causal
mechanism of the pair, while the second network presumes X = fX(Ex, Y ) represents

the true mechanism, as depicted in Figure 4.8. After training both neural networks, the

algorithm generates two synthetic data and compares them with the true data D = (X,Y ).
Finally, the network that leads to a lower loss is chosen as the indicator of the true causal

arrow.

The idea behind the sketched strategy is that the direction of causation manifests itself

in the quality of the synthetic data: the network with the correct causal arrow leads
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to synthetic data that is closer to the true data, i.e., the true causal direction helps a

network having a higher predictive power. Goudet et al. (2018) have shown that this idea

successfully distinguishes cause from effect in many real-world examples of cause-effect

pairs. Despite such a success, it is well-known that standard causal modeling techniques

take the two causal models X → Y and Y → X indistinguishable, for the two models are

Markov-equivalent, i.e., they imply the same statistical pattern of (in)dependencies. If so,

the predictive power of Y = fY (Ey,X) and X = fX(Ex, Y ) must be the same. Yet, the

critical question is how pairwise methods can distinguish between indistinguishable cases.

The answer lies in the fact that pairwise methods are intentionally designed to be sensitive

to different footprints that the direction of causation leaves on data distributions. While the

most reliable footprint is the set of conditional (in)dependencies, there are other footprints

for identifying the causal direction. The difference between the complexities required to

estimate the mechanisms is an instance of such a causal footprint: the estimation of the

cause (from the effect) usually requires more complexity than the estimation of the effect

(from the cause).2

Therefore, by keeping the complexity of the two mechanisms the same, the predictive

power of the model that estimates the effect would be higher than the model that estimates

the cause. In the context of the CGNN, the complexity of mechanisms is reflected in the

number of hidden layers and units used by the neural networks. Therefore, the predictive

power of two neural networks can be compared only after fixing the number of hidden units

and hidden layers.

Another related point is that increasing the complexity usually leads to increased pre-

dictive power. For example, a neural network with several hidden layers is more powerful

than a network with only one hidden layer. In standard ML problems, where the aim is to

maximize the predictive power of a specific model, there is nothing wrong with increasing

the complexity as long as one ensures that issues such as overfitting or lack of memory

2While the validity of this assumption is confirmed in many empirical studies, there is no rigorous theo-
retical proof for it. Nonetheless, check Janzing (2007, 2019) for novel justifications of why this assumption
holds in practice.
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do not occur. In contrast, pairwise models keep the complexity of both models as low as

possible because too-high complexity makes them equally powerful, making it impossible

to distinguish between cause and effect. In other words, high complexity makes the causal

footprint dim and even disappear. Therefore, a compromising procedure is needed to op-

timize the complexity of the models: not so low that none of the two models can have a

good estimation and not so much that both become equally powerful. Section 4.5 explains

the compromising procedure we used for the current project.

4.4 Distance Quantification

The original CGNN utilizes the “MaximumMean Discrepancy” (MMD) as its loss function,

i.e., it uses the MMD to quantify the distance between the original data and the synthetic

data generated by a candidate graph. At the beginning of the current project, we also

used the MMD as the loss function. However, after applying it to quantum data, we

realized that the MMD is not general enough to effectively distinguish a dataset containing

quantum correlations from a completely uncorrelated one. To put it differently, the MMD

cannot effectively distinguish correlations that satisfy Bell inequalities from correlations

that violate Bell inequalities.3

This observation led us to a long journey to find alternative distance measures and

heuristically define our own criteria for distance quantification. In this section, I introduce

the MMD and our alternative measures. In addition, I explain how we systematically built

a custom loss function for the EPR-Bell scenario.

4.4.1 MMD: definition and problem

Suppose P and P̂ are two probability distributions, defined over Rp, from each of which

we have two data samples D and D̂ of size n. A distance measureM is a function that

3It is not the case that the MMD cannot detect any difference between these datasets. Instead, its
sensitivity to quantum correlations is so low that the MMD cannot be used alone for training a model on
quantum data.
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receives D and D̂ as input and returns a non-negative real number that estimates the

distance between P and P̂ as output. To this end, a distance measure compares the two

data in light of a set of statistical features.

The MMD is a distance measure defined based on the framework of the kernel mean

embedding introduced in Section 2.1.2. To quantify the distance, the MMD maps the two

distributions to an intermediate spaceHk and builds the so-called “kernel mean embedding”

µk(.) of each distribution within the said space. It then compares the two embeddings to

compute the distance between the distributions:

MMDk(P, P̂) = ∥µk(P) − µk(P̂)∥Hk
, (4.16)

where k is a “kernel function”, a real-valued symmetric function whose role is to measure

the similarities between two vectors by computing their inner products. The above equation

is suitable for distance quantification directly from the distributions. To estimate the

distance from the data samples, one has to use the empirical variant of the former equation:4

M̂MDk(D , D̂) =
1

n2

n

∑
i,j

k (xi, xj) +
1

n2

n

∑
i,j

k (x̂i, x̂j) −
2

n2

n

∑
i,j

k (xi, x̂j) . (4.17)

There exist theoretical guarantees about the ability of the MMD to distinguish between

any two distributions if the kernel function has a set of desirable properties. In particular,

for a characteristic kernel function such as Gaussian k (x, x̂) = exp (−γ ∣x − x̂∣22), it holds

that:

lim
n→∞

M̂MDk(D , D̂) = 0⇐⇒ P = P̂. (4.18)

The above result says that in the presence of an infinite number of data observations,

the MMD vanishes if and only if the two samples come from an identical distribution. To

put it differently, the MMD is guaranteed to distinguish non-identical distributions if it

uses a characteristic kernel and accesses infinite-sized samples from the two distributions.

4There are many interesting details about the underlying ideas of kernel methods. I skip these details
because they are beyond the scope of the present discussion. However, see Gretton et al. (2005) for a
systematic approach toward these notions.
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Despite this exciting guarantee, when we applied the MMD to quantum data, we noticed

that the MMD could not effectively distinguish between conditionally correlated and un-

correlated data. To understand the reason for this contradictory behavior, note that the

above guarantee holds if the sample sizes are arbitrarily large. In practice, it is impossible

to infinitely increase the data size because the computational complexity increases so much

that the computations become infeasible.

The said limitation dramatically lowers the sensitivity of the MMD to statistical features

representing the very nature of quantum entanglement. Consequently, there is a risk that

the MMD underestimates the distance between two datasets that are marginally close but

conditionally very distant. Such a deficiency poses a severe problem to the applicability of

the CGNN in adjudicating between different candidates in the EPR-Bell scenario. Because,

as will be illustrated in Section 4.6, most candidates can reproduce marginal relations,

while only a few of them can reproduce conditional relations. This situation led us to

build alternative measures for distance quantification between two distributions.

4.4.2 Alternative Measures

Table 4.2 represents the eight criteria we exploited for distance quantification in the cur-

rent project. Some of these criteria are entirely innovative, but others are inspired by

the statistics literature. The “backpropagation” column in this table indicates whether a

measure supports the backpropagation algorithm, i.e., whether the output of the measure

is differentiable with respect to its inputs. A measure that supports backpropagation can

be used in the training phase of the ML algorithm because its differentiability allows the

algorithm to update the model parameters by minimizing the loss values. A measure that

does not support backpropagation cannot be used in the training phase, but it can be used

in the test phase.

We used the first three measures for the training phase and all eight for the validation

and test phases. Hence, the first three measures are “seen” by the models (i.e., the models

have seen them during the training phase and have used them to update their parameters),
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Name Backpropagation Training Validation & Test

MMD cdt Yes Yes Yes

CorrD Yes Yes Yes

CndD Yes Yes Yes

MMD Fr Yes No Yes

CorrD N Yes No Yes

NpMom Yes No Yes

BinnedD No No Yes

EDF Marg No No Yes

Table 4.2: The measures used for distance quantification between two distributions.

while the other five are “unseen.” In the following, I give a brief explanation of each distance

measure:

• MMD CDT: the standard MMD measure defined in Equation 4.17. We took

the programming codes of this measure from the Causal Discovery Toolbox (CDT)

(Kalainathan & Goudet 2019).

• CorrD: a measure that considers all possible permutations of relations of types (2,2)
and (1,3). To this end, it compares the correlation matrices of the two distributions

by calculating the (1) joint distributions of two variables conditioned on the remaining

two and (2) distribution of one variable conditioned on the remaining three.

• CndD: a measure that considers all possible permutations of relations of types (1,3),
(2,2), (3,1), and (4,0). For each relation, it computes the corresponding conditional

distributions for the two datasets. Then, it compares the two distributions by com-

paring their first n moments.

• MMD Fr: a measure that approximates the standard MMD using the idea of Fourier

coefficients introduced by Lopez-Paz et al. (2015). It is faster than the standard MMD

but, similar to the standard MMD, cannot effectively detect conditional dependencies

in quantum data.
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• CorrD N: a measure that considers all possible permutations of relations of types

(2,0), (3,0), and (4,0). It compares the two distributions by calculating the corre-

lations between their marginals.

• NpMom: a measure that considers the relations of type (4,0). To compare the two

distributions, it compares their first n moments.

• BinnedD: a measure that bins the distributions into multidimensional histograms.

To compare the two distributions, it compares the patterns of the histograms.

• EDF Marg: a measure that is based on the distance between the empirical distri-

bution function (EDF) of marginals in the two distributions. For each variable (such

as OA), it calculates the distance between the EDFs in the two datasets and then

takes the average over all the variables.

4.4.3 Loss Function

Each of the eight measures listed in Table 4.4 has a set of hyperparameters controlling

its computational speed and sensitivity to different conditional relations. To build loss

functions that overcome the problem that the MMD faces, one should first tune the hy-

perparameters of the distance measures and then combine the distance measures in an

appropriate way. This part explains the systematic steps we followed to build our loss

functions.

Simulate Calibration Data

Besides the original quantum data, which is conditionally correlated, we simulate two

calibration datasets: (1) a correlated dataset whose distribution is precisely the same as

the original data and (2) an uncorrelated dataset whose marginal distribution is the same

as the original data but is conditionally uncorrelated. Let us denote the original and the

first calibration data by DC1 and DC2 . Also, let DU denote the second calibration data.
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These three datasets are used to check the sensitivity of each distance measure to different

types of conditional relations.

Calibrate Distance Measures

A distance measure takes two data samples and returns a non-negative output. The raw

output does not straightforwardly indicate whether the two data are close or far; rather,

it should be calibrated to be understandable. To this end, we calculate two reference

quantities for each distance measure Mj to represent lower and upper bounds on its

outputs. I refer to these quantities as “effective zero” and “benchmark” and denote them

by zj and bj, respectively:

• zj =Mj(DC1 ,DC2),

• bj =Mj(DC1 ,DU)

The signal-to-noise ratio (SNR) is computed from these quantities by sj = (bj − zj)/∆bj,
where the standard deviation ∆ is taken over several data batches. Note that the SNR

represents how reliably a measure can distinguish between correlated and uncorrelated

datasets so that it remains stable in the presence of statistical fluctuations. Hence, the

higher the SNR, the more reliable the measure outputs.

Tune Distance Measures

Each distance measure has some hyperparameters to be tuned. For instance, e.g., the

dimension of the correlation matrices created by the CorrD is one of its hyperparameters.

Besides measure-specific hyperparameters, the batch size of each measure is another hyper-

parameter to be tuned. The higher the batch size, the higher the SNR, but the lower the

computational speed. Nonetheless, depending on the mathematical operations a distance

measure performs internally, it may not be able to handle a high batch size.

To tune the hyperparameters of our measures (including the measure-specific ones and

the batch sizes), we exploited a trade-off strategy between the computational speed and
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the SNR of each measure. Regarding the batch sizes, we found that all measures could

handle a large batch size (i.e., 8000) except for the MMD, which required a low batch size

(i.e., 500).

Define Loss Functions

Given synthetic data D̂ generated by a candidate, the original quantum data DC1 , and a

set of distance measures {Mj}, we define our loss functions as follows:

L =∑
j

wjLj where Lj =
1

mj

mj

∑
k=1

Mj(D̂(k),D(k)C1
)

zj
(4.19)

with wj and mj representing the weight and the number of batches corresponding to

measure Mj. Furthermore, D̂(k) and D(k)C1
denote the kth batch of data D̂ and DC1 ,

respectively.

There are two remarks regarding the above strategy. First, assigning non-equal weights to

measures enforces the model to put more emphasis on the measures with higher weights.

Especially in the training phase, this forces the model parameters to be updated in a

desirable direction. In the training phase, we assigned the weights based on the SNRs, i.e.,

wj = sj
∑j sj

. In the test phase, we assigned equal weighting. Second, one of our measures

(i.e., the MMD) requires a different batch size. The above strategy enables one to combine

distance measures with different batch sizes and minimize them simultaneously.

4.5 Candidates

The CGNN does not have an inherent method for restricting its search space. Instead, the

algorithm expects the user to specify a set of appropriate candidates for the given data so

that the algorithm can adjudicate between the specified candidates. Therefore, to apply

the CGNN to the EPR-Bell scenario, we must determine a set of candidates in advance.

Fortunately, the quantum foundations literature contains many proposed models for the

underlying causal structure in the EPR-Bell scenario. Chapter 3 investigated some of these
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models in the context of the causal problem of entanglement. This includes interpretations

of Quantum Mechanics that violate the CFC assumption (such as superluminal, superde-

terministic, and retrocausal), models that violate the CMC assumption (such as separate

common causes and interactive common causes), and models that undermine the legiti-

macy of the classical causal modeling framework for studying quantum correlations (such

as quantum causal models and violations of the independence of mechanisms).

The CGNN provides a unified arena to judge between several of the above proposals.

The former statement should not be construed as the claim that the CGNN discovers the

underlying causal structure of the EPR-Bell scenario because many proposed models even

cannot be sketched within the current framework. Nevertheless, the framework provides a

good insight into the overall performance, strengths, and weaknesses of a given candidate

in reproducing quantum statistics. Table 4.3 contains the names and the graph of the

candidates examined in the current project. 5

The first six candidates can be straightforwardly implemented within the CGNN frame-

work by specifying their corresponding causal graphs. There are two particular candidates

marked in red, which require non-standard implementations, i.e., specific changes must be

inserted into the CGNN so that it can evaluate these candidates. In the following, I briefly

introduce each candidate.

Remark 4.7. There is a conceptual difference between the standard and non-standard

candidates: the essence of the standard models lies in their “causal graph”, while the essence

of the non-standard models lies in the specific “causal mechanisms” they prescribe.

5Besides these, we studied several other candidates. However, most of these candidates are not concep-
tually independent from the candidates presented in this chapter. Thus, I do not focus on them and put
a summary of their performance in the GitHub repository.
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Abb. Name Graph

DIS disconnected DAG

SAT saturated DAG

CCC classical common cause

NSS non-separability of states

SLM superluminal model

SDM superdeterministic model

SCC separate common causes

VIM violation of independence of mechanisms

Table 4.3: The candidates studied in the current project.
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4.5.1 Standard Implementations

DIS

A model in which no causal influence is exchanged between the nodes because they are

all disconnected. Therefore, the values of each node are generated from the noise terms

alone. The quality of the synthetic data generated by the DIS should be very low and can

be considered as a lower bound for other candidates. That is, all candidates are expected

to generate synthetic data with a quality higher than the DIS.

SAT

A model that is saturated with the maximum possible number of edges between the nodes

so that the graph remains a DAG. Since most nodes are causally informed of the other

nodes, the quality of data generated by the SAT should be very high and can be considered

as an upper bound for other candidates.

CCC

A popular model used to derive the CHSH inequality (Clauser et al. 1969). In this model,

each setting directly affects its outcome, and a common cause influences the two outcomes.

The common cause is “classical” in the sense that a classical random variable represents its

values. The CGNN models the said variable with a one-dimensional Gaussian distribution.

The expectation would be that the quality of data generated by the CCC is better than

the DIS, but it should not be able to reproduce quantum statistics completely. For more

explanation of such a view, please refer to Section 2.3.3.

NSS

A model that postulates that the underlying physical states of two entangled particles are

non-separable even when the particles are spacelike separated. According to this view,

when two objects become entangled, a non-localized state is created that spreads through-
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out the spacetime regions between the two wings of the experiment. Such a non-localized

state is denoted by Λ in Table 4.3. Here, both setting variables can influence Λ, and Λ can

influence the two outcomes. For more explanation of such a view, please refer to Section

3.3.

Remark 4.8. The NSS can be interpreted alternatively as a retrocausal model. Consider a

scenario wherein the choices of the experiments (i.e., the setting variables) can change the

underlying state of the entangled pair. Since the entangled state is prepared before starting

the experiment, the causal influence of the settings must transfer to Λ retrocausally. For

more explanation of such a model, see, for example, Wood & Spekkens (2015, p. 22).

SLM

A model in which one of the settings causally influences the outcome of the other wing.

Since the two wings are spacelike separated, the causal influence is transferred superlumi-

nally.

Remark 4.9. The graph presented here is not the only possibility for a superluminal model;

there are several other possibilities belonging to the family of superluminal models. I exam-

ine only one member of the family.

SDM

A model in which the choices that one or both experimenters make for their measurements

are not entirely free but depend on the underlying state of the entangled pair. The same

underlying state is responsible for correlating the outcomes. The SDM violates the inter-

vention assumption because it does not consider the “controllable” settings as exogenous

variables.

Remark 4.10. Figure 3.4 is another example of a superdeterministic model. Since the

two models belong to the same family, I do not discuss the results of the second model here.

However, it is worth mentioning that I applied the CGNN to both models, and the results

were similar as they should have been.
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4.5.2 Non-standard Implementations

SCC

The SCC is a model that aims to show that quantum correlations do not conflict with

Reichenbach’s principle of common cause. The original variant of this model is formulated

for a scenario wherein both settings and outcomes are binary-valued, Redei et al. (see,

e.g. 2013, p. 162). I have explained this model in Chapter 3 and do not intend to repeat

the details. Instead, I explain how to generalize the discrete variant of the model and

implement it within the CGNN framework.

The discrete SCC postulates four latent common causes Λij for the two outcomes, cor-

responding to the four possible setting choices. In each experiment run, when the exper-

imenters choose (SA = i, SB = j), Λij is activated, and the other three common causes

are deactivated. To extend the idea into a continuous scenario, one can partition the

joint distribution of the settings into four bins Bij and define four common causes corre-

sponding to the four bins. Similar to the discrete variant, in each experiment run, Λij is

activated whenever the experimenters’ choices locate in Bij, and the other common causes

are deactivated.

In the context of the CGNN, the four variables Λij are modeled by four independent

Gaussian distributions and sampled in every experiment run. To generate synthetic data,

depending on which bin the settings locate in, only one of the Λij is allowed to influence

the outcomes, and the values of the remaining common causes are discarded.

Remark 4.11. Choosing four common causes is not a must. In fact, the number of

common causes is a hyperparameter for the SCC. We chose four because we observed that

the SCC could generate high-quality data even with such a small number of bins.

VIM

The VIM refers to a model that violates one of the underlying assumptions of the causal

modeling framework, namely the “autonomy of causal mechanisms” or “independence of
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causal mechanisms.” Chapter 3 has already discussed this principle and has explained the

motivations for questioning its validity in the quantum realm. Here, I propose a model

that violates the principle and explain how to implement it within the CGNN framework.

Recall that, for a scenario with n causal variables, the CGNN posits n neural net-

works with the reasoning that each network estimates the causal mechanism of exactly one

variable. Yet, consider a situation in which a single causal mechanism is responsible for

simultaneously generating the two outcomes of the EPR-Bell scenario. In such a situation,

the outcomes are not two separate events but a single event generated by a single causal

mechanism. The functional form of such a mechanism is OA,OB = f(SA, SB). In other

words, not only do we not have two independent causal mechanisms, but also we have one

causal mechanism that generates two variables.

To implement such a model within the CGNN, three neural networks (instead of four)

are needed. The first two networks are standard and are used to estimate SA and SB. The

third network is non-standard and is used to estimate OA and OB simultaneously. The

latter has three inputs, i.e., (E,SA, SB), and two outputs, i.e., (OA,OB).

SA = fSA
(ESA

)
SB = fSB

(ESB
)

OA,OB = fO(EO, SA, SB)

(4.20)

Remark 4.12. The model proposed here is not the only possible model for violating the

independence of causal mechanisms. As before, I examine only one member of a family.

4.5.3 Hyperparameter Tuning

Hyperparameters are parameters of an ML model that cannot be inferred during the train-

ing phase but can affect the learning quality. For instance, the numbers of hidden layers

and hidden units are hyperparameters of a neural network. Depending on the internal

structure of an ML model and the purpose for which the model is designed, the values

of some hyperparameters play a critical role. In contrast, some hyperparameters are less
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Abbreviation Name Selected Value
nlayers number of hidden layers 1
nunits number of hidden units 40
bsmmd batch size of MMD measure 500
bsother batch size of other measures 8000
ntr
epochs number of training epochs 10000

nte
epochs number of test epochs 20

npatience patience of early stopping 100
nruns number of algorithm’s executions 4
η learning rate 0.01

Table 4.4: Hyperparameters of the CGNN

important since they do not impact the learning quality of the models. One must therefore

have strategies for tuning the hyperparameters depending on the purpose of the model un-

der consideration. Table 4.4 sketches CGNN’s hyperparameters and the values we selected

for each.

Remark 4.13. Besides the hyperparameters listed in Table 4.4, we tuned the hyperparam-

eters of the eight distance measures in Section 4.4.

In the case of the CGNN, the first four parameters in Table 4.4 are more critical than the

rest. The batch sizes are important because they control the behavior of the loss functions

by controlling the behavior of the distance measures, as was explained in Section 4.4. In

what follows, I describe how we tuned the first two hyperparameters.

Hidden Layers and Hidden Units

nlayers denotes the number of hidden layers that the CGNN uses in its neural networks to

estimate the causal mechanisms of a scenario. Similarly, nunits denotes the total number of

hidden units the CGNN uses in its hidden layers. Increasing nlayers and nunits increases the

model complexity and improves the learning quality of the models. However, high com-

plexity can dim the causal footprints and make distinguishing cause from effect impossible.

In contrast, low complexity can lead to underfitting, an instance where a model is so weak

that it neither fits the training data nor generalizes to new data.
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To combat the risk of dimming the causal footprints and underfitting the models at

the same time, we took the SAT as a reference model and examined its performance for

different nlayers and nunits.6 We found that only one hidden layer is sufficient for the SAT to

reproduce quantum statistics; thus, we set nlayers = 1. To optimize nunits, we implemented

separate SAT models with one hidden layer but with different hidden units in the interval

[5,80]. We observed that the SAT performance improves with increasing the number of

hidden units up to nunits = 40. Beyond this value, adding more hidden units did not

contribute to improving the learning quality. So, we selected 40 as the optimal number.

4.6 Results

Previous sections created the theoretical and computational grounds for building a judg-

ment framework between well-known causal models for the EPR-Bell scenario. The present

section discusses the results of this judgment. That is, under the assumption that the

CGNN is a valid framework for judging between different candidate models for the EPR-

Bell scenario, I address which model(s) are preferred. Aside from this central question, I

open the black box of the CGNN and present deeper insights about the performance of

each candidate.

4.6.1 Performance by Seen Measures

Figure 4.9 represents the candidates’ loss values at the end of the training and test phases.

The blue and the red bars indicate the training and the test loss values, respectively,

i.e., they represent the distance between the synthetic data of each candidate D̂ with the

training data Dtr and test data Dte. The error bars show the fluctuations of the losses in

different epochs; the shorter an error bar, the more stable the corresponding candidate.

The losses depicted in this figure are calculated by the seen measuresMtr (i.e., MMD cdt,

CorrD, and CndD). Hence, following the standard convention in ML, the same criteria

6Recall that the SAT should generate one of the best synthetic data.
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Figure 4.9: Performance on the seen measures: Loss values on the training and test
datasets, where both losses are calculated using the seen measures.

are used for model training and model testing. Nonetheless, I will relax the convention in

other figures. The figure suggests several points, listed below.

Firstly, the figure confirms a well-known point in ML: the training loss is larger than the

test loss. The reason is that an ML model never sees the test data during the training

phase, and hence its performance on the test data is slightly worse than its performance on

the training data. The figure also demonstrates that the differences between the training

and the test losses are not too high, suggesting that none of the models are overfitted.

Secondly, as expected, the CCC and the DIS reveal poor performance in reproducing

quantum statistics in both the training and the test phases. Given that the candidates could

fit to the training data unrestrictedly (i.e., their number of training epochs was unrestricted

unless a candidate stopped learning), the poor performance in the training phase signals

an essential feature of our framework. Namely, a candidate must have particular causal

edges to learn all conditional patterns in quantum data, and this is true regardless of how

many iterations the candidate fits to the training data. Because of the lack of these edges,

the CCC and the DIS cannot fully learn the patterns in the quantum data.

Thirdly, apart from the CCC and the DIS, other candidates are more or less capable

of learning and reproducing the quantum data. The SLM performs the best among the

candidates, even better than the SAT. After the SLM and the SAT, the performance order

is the SDM, the VIM, the NSS, and the SCC.

Fourthly, if we are to select only one candidate, we must declare that the CGNN prefers

the SLM. However, we need further analysis since our goal is more than a simple model
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Figure 4.10: Performance on all measures

selection.

4.6.2 Performance by all Measures

Figure 4.10 depicts another way of adjudicating between the candidates. In this figure,

the synthetic data of each candidate D̂ is compared with the test data Dte, but in light of

all the eight measures in Table 4.2. Recall that the first three measures are “seen” by the

candidates during the training phase, while the remaining five are “unseen” measures.

There are two motivations for monitoring the candidates’ performance by the seen and

unseen measures. On the one hand, in the absence of a universal criterion for distance

quantification between two distributions, it is safer to exploit a wide range of measures

to ensure that our distance quantification is sensitive to different types of conditional and

marginal relations. On the other hand, I aim to find out which candidate(s) are such well-

suited to quantum data that they can learn its patterns even if they have not explicitly

seen some criteria. A successful candidate in this context not only performs well on unseen

data but also performs well on unseen measures. The figure suggests several points, listed

as follows.

Firstly, the SLM and the SDM reveal the best performance and perform similarly in this

context. In contrast, the DIS and the CCC reveal the worst performance and perform

similarly.

Secondly, the CCC and the DIS cannot minimize the CorrD, while other candidates are

more or less successful in this task. Note that the CorrD is the important criterion that
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Figure 4.11: Learning progress of the SLM vs. CCC. The first and the second rows
correspond to the SLM and the CCC.

evaluates the candidates in reproducing relations of type (2,2) and (1,3).

Thirdly, in contrast to the previous figure, the NSS and the SAT reveal poor performance

in the current figure, primarily due to the inability of these two models to minimize the

NpMom criterion. Given that the NpMom is sensitive to relations of type (4,0), the figure
indicates that the NSS and SAT models are mainly incapable of learning these relations.

Fourthly, in a more general view, it appears that minimizing some of the measures is

“easy” for all or most candidates, while there are some measures that a few candidates can

minimize. The subsequent figure is dedicated to this concept.

4.6.3 Loss Progress

Figure 4.11 compares the learning progress of a successful candidate (SLM) versus an

unsuccessful (CCC) one. The figure depicts how the two candidates evolve in reducing

the eight distance measures during the training phase. For each candidate, there are eight

sub-figures corresponding to eight distance measures. Each sub-figure has two black lines

indicating the calibration quantities of the corresponding measure: the lower and upper

lines represent the “effective zero” and the “benchmark,” respectively. Hence, even the

worst candidate (i.e., the DIS) should be able to reduce all the measures to the upper lines,

while few candidates are expected to be so successful that they can reduce the distances

to the lower lines. The figure suggests several points, listed as follows.

Firstly, in the limit of many training epochs, the SLM can reduce all the eight distance
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Figure 4.12: The marginals generated by the DIS.

measures to their lower bounds, while the CCC can reduce only some of them.

Secondly, the figure shows the problem of the MMD loss function described in Section

4.4. To see the point, note that while the quality of the CCC synthetic data is very low and

most distance measures certify such low quality, the two measures MMD cdt and MMD Fr

are progressed towards the lower lines. Consequently, if our distance quantification was

merely based on the MMD, the CGNN could hardly distinguish between low-quality (e.g.,

CCC) and high-quality (e.g., SLM) datasets.

Thirdly, some distance measures shown in this figure are more sensitive to marginal

relations, while others are more sensitive to conditional relations. A measure such as

the EDF Marg belongs to the first category, while measures such as CorrD and BinnedD

belong to the second category. To see the reason, note that the unsuccessful CCC succeeds

in minimizing the first category while it cannot minimize the second category.

4.6.4 Marginal Distributions

Figure 4.12 examines the synthetic data of the DIS from the perspective of marginal dis-

tributions. Comparing this figure with Figure 4.1 reveals that the DIS has successfully

learned the relations of type (1,0). Such success should not surprise us because no causal

information must be exchanged between the nodes of a graph to generate these marginal

relations. Note that the same result holds for other candidates, i.e., they learn the marginal

distributions equally well.
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Figure 4.13: Heatmaps of the SLM vs. CCC. The first and the second rows correspond to
the SLM and the CCC.

Figure 4.14: Portions of the six conditional relations of type (2,2).

4.6.5 Heatmaps

Figure 4.13 compares the SLM and the CCC from the perspective of the six relations of

type (2,2). Comparing this figure with Figure 4.4 leads to a qualitative conclusion that

the SLM accurately learns relations of type (2,2), while the CCC cannot learn any of

these relations. For instance, the first plot in the second row reveals that the conditional

(OA,OB ∣SA, SB) in the original data is by no means similar to the same conditional in the

CCC data.

4.6.6 Conditional Portions

Figure 4.14 compares the candidates in learning the six relations of type (2,2). In the pre-

vious figures, we saw that all the candidates, except the DIS and CCC, can learn relations

of type (2,2). However, the present figure studies the six relations separately in the sense
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that it visualizes the contribution of these six relations in the average distance of type

(2,2). The motivation for making such a fine-grained comparison originates from the fact

that proposals for the EPR-Bell scenario mostly care about the relation (OA,OB ∣SA, SB)
and ignore other relations of type (2,2) such as (SA, SB ∣OA,OB). Through this analysis, I

aim to examine how symmetrically each candidate deals with the six relations.

The SLM (and the SDM to some extent) exhibits the best performance in this context

because it reproduces the six relations symmetrically regardless of the permutation order

of the variables. In contrast, reproducing (SA, SB ∣OA,OB) for the SCC, NSS, and VIM

is more challenging than reproducing (OA,OB ∣SA, SB). This observation supports what

was stated in the prior paragraph: since the primary goal of these models is to reproduce

(OA,OB ∣SA, SB), they pay less attention to the quality of (SA, SB ∣OA,OB).

4.7 Conclusion

The cornerstone of this chapter is the CGNN algorithm, a classical causal discovery algo-

rithm that combines techniques from Machine Learning and causal modeling. While the

original CGNN has nothing to do with the issues in the quantum foundations, by inserting

a set of changes to the algorithm, I adapted it to a new framework for studying the causal

problem of entanglement. The new framework overcomes the shortcomings of traditional

discovery algorithms, particularly the problem of constraint-based algorithms.

As was mentioned in Chapter 3, constraint-based algorithms cannot do justice to the

causal problem because they rely on conditional independence relations to estimate the

causal structure of a scenario. While conditional independence relations usually encapsu-

late reliable causal information, they are not the only resource for causal information. In

the EPR-Bell scenario, it is essential to look at the full (i.e., joint) distribution rather than

just conditional independencies because the latter does not provide enough information.

That is why Wood & Spekkens (2015) proposed the need for discovery algorithms that are

sensitive to the strength of correlations.

The framework discussed in this chapter follows the proposal of Wood & Spekkens (2015)
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and provides an inherently empirical tool to judge between a wide range of models for the

causal problem. It is, however, important to emphasize that there are many other models

for the EPR-Bell scenario that cannot be sketched with the current framework. Thus no

claim can be made about such models within the current framework.

Among the candidates examined in this project, the SLM and (to some extent) the SDM

delivered the best performance. By the best performance, I do not just mean getting

the lowest value for the loss function. I compared the learning quality of the candidates

from different perspectives using various distance measures, each being sensitive to some

statistical features in the datasets. For instance, while candidates such as the NSS, VIM,

and SCC can learn conditional relations, their learning quality is not very high. The said

candidates are not successful, especially in minimizing the “unseen measures” (see Figure

4.10) and symmetrical dealing with conditional relations (see Figure 4.14).

4.7.1 Objections

Two objections might be raised to the current framework and the way I interpreted the

results. I address these objections in what follows.

Empirical Approaches

The first objection is whether the current framework is inherently empirical, as I claim.

Can it be argued that the results obtained in this project are assumption-free and that

mere data leads to the results? The most crucial part of the framework about which this

concern can be raised is the distance measures used to adjudicate among the candidates.

The question is whether the data alone dictates the distance measures. Mainly because

each measure has several adjustable hyperparameters that cannot be inferred from the

data alone, i.e., additional assumptions are needed to tune these hyperparameters.

To some extent, the above objection is fair. Choosing appropriate distance measures

and tuning each measure requires many assumptions that are not necessarily data-driven.

Nonetheless, I argue that the framework is inherently empirical because all the complica-
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tions regarding the selection and tuning of the distance measures originate from the fact

that there is no universal measure for distance quantification between two probability dis-

tributions. If such a universal measure existed, we could take two datasets and estimate

the absolute distance between them. In that case, we would no longer need additional

assumptions for distance quantification: the candidate with the most compliance with the

actual causal graph would reproduce the closest data to the quantum data. In the ab-

sence of such a universal criterion, we must define our judgment criteria so widely that

the quality of the synthetic data of each candidate can be tested from different statistical

perspectives. Therefore, it can be said that this objection is mainly related to the lack of a

universal distance measure rather than the methodological foundations of the framework.

Interpretations of Quantum Mechanics

The second objection concerns an apparent conflict between interpretations of Quantum

Mechanics and the results presented in this chapter. It is generally believed that there

is an empirical equivalence between many interpretations of Quantum Mechanics and the

standard (i.e., operational) quantum theory. A famous example is the variant of Bohmian

mechanics defended by Dürr et al. (2013) that, despite all its ontological differences with

the standard quantum theory, it makes similar predictions at the operational level. The

question is whether the results discussed in this chapter contradict these empirical equiv-

alence results.

I argue that there is no contradiction. To explain the reason, I must first return to

the foundations of pairwise discovery algorithms. As detailed in Section 4.3, pairwise

algorithms are designed to distinguish between Markov-equivalent models. For example,

the pairwise variant of the CGNN distinguishes between two candidates X → Y and Y →X

by fitting two functions Y = f(X) and X = f(Y ) and comparing the quality of the data

generated by both candidates. Given that the two candidates are Markov-equivalent, the

two functions must yield the same quality if they acquire as much complexity as they need.

However, a pairwise algorithm does not maximize the complexity of the two functions
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because its ultimate goal is not model-fitting. Instead, the goal is to find a candidate

that generates the highest quality data with the lowest complexity with the justification

that the closer a candidate is to the actual causal graph, the less complexity it requires to

reproduce the data.

With such a description, I do not claim that the results presented in this chapter indicate

that quantum interpretations are empirically non-equivalent. Nor do I claim that some

interpretations cannot reproduce some statistical aspects of the original quantum data.

However, I do claim that some candidates require less complexity to learn the patterns in

quantum data, and these models are preferred from the CGNN perspective. Note that it is

enough to increase the complexity of each candidate (i.e., the number of hidden layers and

units) to observe the empirical equivalence. However, I do not increase the complexity of

the candidates arbitrarily because the goal is to find the candidate(s) which can reproduce

the quantum data with the lowest complexity.

Another related observation to the present discussion is that Daley et al. (2022) recently

proposed a method to empirically adjudicate between four candidate models for a Bell-

type scenario, including a quantum causal model (QCM), the SLM, the SDM, and the

CCC. Similar to the ideas presented in this chapter, the authors compared the candidates

based on their training and test errors. They demonstrated that the candidates achieved

different scores and concluded that the QCM outperformed the others7. To justify why

empirically-equivalent candidates exhibit different performances in their framework, the

authors referred to the phenomenon of overfitting. They argued that the SLM and SDM

are more prone to overfitting (compared to the QCM) because these candidates violate the

CFC assumption, and hence the conditional independencies they generate are achieved by

fine-tuning the parameters. In contrast, the causal graph of the QCM implies conditional

independence, and therefore it is less prone to overfitting. According to this argument, the

two candidates reveal poor performance because they mistake statistical fluctuations for

7It is worth noting that the method in Daley et al. (2022) differs from the one presented in this chapter
in several aspects, such as the discrete nature of their scenario, the use of optimization algorithms instead
of Machine Learning, and the judging criteria considering only (OA,OB ∣SA, SB) rather than the joint
distribution.
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real features during training.

Unfortunately, I did not find a way to directly implement a QCM within the CGNN

framework. However, I can state that the performance discrepancy among our candidates

is not due to overfitting. This is so because our framework combats the risk of overfitting by

early-stopping, and as shown in Figure 4.9, none of the candidates overfitted. Therefore,

I contend that the performance discrepancy in our framework is due to the complexity

discrepancy between the candidates. As such, the fact that the SLM outperforms the

other candidates can be taken as evidence that the SLM requires less complexity to learn

the quantum data.

4.7.2 Lessons

This chapter has two important lessons for future research. The first lesson concerns the

need for modifying the CFC in light of quantum correlations, while the second concerns

the advantages of Machine Learning in studying the causal problem of entanglement.

CFC Modification

The CFC asserts that two causally dependent variables are statistically dependent, or

conversely, two statistically independent variables are causally independent. The CFC is

usually justified by the argument that there is no reason to believe that causal connections

conspiratorially hide themselves from observers, so causally connected variables exhibit

statistical dependencies.

When applied to our EPR-Bell scenario, the CFC implies that all four variables are

causally disconnected because each pair is marginally independent. There are, of course,

some physical mechanisms connecting the variables, the footprints of which are revealed

only after examining the conditional relations between the variables. However, the question

is why the CFC does not consider such an important possibility. Why does the CFC

not check the conditional dependencies of two marginally independent variables before

declaring them causally disconnected?
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The phenomenon I am describing above is the existence of random variables that are

marginally independent but conditionally dependent. Such variables are not specific to

Quantum Mechanics. For instance, in the collider structure X → Z ← Y , it holds that

X⊥⊥sY , while X⊥⊥sY ∣Z.I believe that there are three possible answers to the question posed

above: (1) the no-conspiracy argument (which suggests that it is reasonable to assume that

causally connected variables do not hide their causal connections); (2) practical considera-

tions (checking conditional dependencies between two marginally independent variables can

be impractical because there may be infinitely many conditioning variables to consider);

and (3) the CFC is not problematic in typical examples such as the collider structure (in

such cases, the CFC concludes causal independence from marginal independence, and this

is a correct conclusion).

Nonetheless, the critical point about quantum correlations is that the pattern of marginal

independencies and conditional dependencies does not occur in a collider. In the EPR-Bell

scenario, the two outcomes are marginally independent while conditionally dependent,

given the two settings. Notably, the settings are not child nodes of the outcomes as in

a collider. The CFC becomes problematic in facing such a scenario. It appears that the

CFC needs some modifications in light of quantum correlations. To address this, we need

a modified version of the CFC that considers both marginal and conditional relations

between variables to make a decision about the causal connection between the variable.

Advantages of Machine Learning

The CGNN algorithm generalized in this chapter is only one of several approaches that

exploit Machine Learning techniques. There are many other ideas that the quantum foun-

dations community can utilize to address challenges related to quantum entanglement

phenomena. One promising idea is the development of custom loss functions whose mini-

mization leads to solving a desired complex problem. This approach may be particularly

useful in scenarios where multiple quantum systems interact simultaneously or when both

observational and interventional data are available. In the next chapter, I will introduce
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another algorithm for quantum systems, which is again based on Machine Learning tech-

niques and is more closely aligned with the concepts of quantum causal models. This

algorithm can estimate causal relationships in quantum networks with multiple interacting

quantum systems.



Chapter 5

Quantum Causal Discovery with

Machine Learning1

In the previous chapter, I presented a framework for studying the causal problem of quan-

tum entanglement using Machine Learning (ML). While this framework provides a useful

tool for evaluating candidate models of the EPR-Bell scenario, the lack of an independent

ground truth for verifying the adjudication results makes independent verification impos-

sible. This is due to the inherent nature of the causal problem of entanglement, where

apart from quantum data, there is no other information about the causal structure of the

scenario.

In contrast, this chapter focuses on supervised Machine Learning tasks and examines

quantum scenarios whose causal structures are already known. This enables the evaluation

of Machine Learning algorithms using independent ground truth. The cornerstone of the

chapter is the Randomized Causation Coefficient (RCC), a pairwise discovery algorithm

originally designed for distinguishing cause from effect in classical scenarios. I extend

the RCC in several ways to create a quantum causal discovery algorithm that handles

bivariate and multivariate quantum scenarios. The resulting algorithm performs well in

1The present project is the result of my collaboration with Jan Dziewior from the Max-Planck-
Institute for Quantum Optics, 85748 Garching, Germany; Faculty of Physics, LMU Munich, 80797 Munich,
Germany. Jan Dziewior has simulated the quantum experiments.
The source code of this project can be found here: https://github.com/OmidCharrakh/Quantum_RCC/

https://github.com/OmidCharrakh/Quantum_RCC/
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Figure 5.1: The idea of discriminative algorithms.

various simulated scenarios.

5.1 Introduction

Consider a bivariate scenario wherein there are only two variables, and it is always the

case that one variable is the cause and the other is the effect. A pairwise causal discov-

ery algorithm aims to distinguish cause from effect by examining a data sample from the

joint distribution of the scenario. To achieve this goal, a pairwise algorithm looks at the

hidden asymmetries (in the given data sample) that should arise because of the direction-

ality of causal relationships. There are two types of pairwise algorithms: generative and

discriminative.

A “generative” algorithm estimates the functional form of mechanisms for both causal

possibilities and generates synthetic data. Such an algorithm estimates the direction of

causation by comparing the original data sample with the synthetic samples. Examples of

generative algorithms include CGNN (Goudet et al. 2018), LiNGAM (Shimizu et al. 2006),

and IGCI (Janzing et al. 2012).

A “discriminative” algorithm converts the cause-effect problem into a classification prob-

lem to be tackled by Machine Learning algorithms (Goudet et al. 2019). Such an algo-

rithm builds a classifier, the output of which estimates the direction of causation. The

RCC algorithm (Lopez-Paz et al. 2015) discussed in the present chapter is an example

of discriminative pairwise models. Other examples include ProtoML (Almeida 2019) and

Jarfo (Minnaert 2019).

Figure 5.1 depicts how a discriminative algorithm works. The “feature construction”

is the most critical step in a discriminative algorithm. In this step, a set of features are

extracted from the given data sample so the classifier can recognize the causal direction
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from these extracted features. Following Goudet et al. (2019), there are three approaches

for feature construction: (1) manually constructing causally relevant features, (2) auto-

matically identifying causally relevant features from the training set, and (3) embedding

the sample into a fixed-size feature vector.

The RCC is a strong algorithm that follows the third approach for feature construction.

To this end, the RCC extracts a finite number of features by computing the empirical kernel

embedding of distributions in the reproducing kernel Hilbert space. In short, the main idea

is to systematically extract a set of causally relevant features out of the samples from the

joint distribution of cause and effect variables and let a classifier learn the relationship

between the extracted features and the direction of causation.

The original RCC is limited to one-dimensional random variables, i.e., it presumes that

both the cause and effect variables are one-dimensional. Once trained, the original RCC

can answer queries such as “Does altitude cause a change in temperature or vice versa?”

given a sample over these variables. The authors showed that the RCC reveals one of the

best performances in recognizing the causal direction in classical scenarios.

This chapter seeks to extend the methodology of the RCC to quantum scenarios. The

quantum scenarios discussed in this chapter consider the transmission of a quantum state

between two qubits through potentially noisy channels. The aim is to learn the direction

of the channel, and thus the causal direction, from the qubits’ states without explicitly

performing interventions. Since the original RCC is limited to probability distributions

over classical variables, it is nontrivial whether it applies to probabilistic descriptions of

quantum states (i.e., density matrices). To investigate this question, I extend the algorithm

work with three-dimensional random variables. I show that the algorithm can learn the

direction of causation in most cases.

In addition to bivariate quantum scenarios, I extend the RCC to multivariate quantum

scenarios. In the latter scenarios, multiple local labs exist where each lab transmits its

qubit state to other labs through potentially noisy channels. For such scenarios, I combine

the discriminative RCC with the generative CGNN and build an algorithm that takes the

states of all labs as inputs and returns the underlying causal graph as output. The resulting
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Figure 5.2: A quantum channel transmitting the quantum state of a qubit from Alice’s lab
to Bob’s lab.

algorithm does not require tomographically complete data to recover the underlying causal

graph.

The results obtained in this chapter suggest that the relevance of causal modeling and

Machine Learning techniques in the quantum realm is not restricted to fundamental dis-

cussions. These techniques have practical advantages in quantum engineering and process

tomography.

The remainder of the chapter is organized as follows. Section 5.2 discusses the physical

scenarios simulated in this chapter. Section 5.3 describes how the original RCC works. Sec-

tion 5.4 explains how I generalize the methodology of the RCC and the CGNN algorithms

and build a discovery algorithm applicable to quantum scenarios. Section 5.5 contains the

results of applying the discovery algorithm to the simulated quantum scenarios. Section 5.6

explains how the algorithms presented in this chapter relate to previous works in quantum

causal discovery and suggests ideas for future works by drawing the implications of the

current model.

5.2 Physical Scenario

Consider two experimenters, Alice and Bob, in two local labs, each with a qubit. The

experiment comprises several runs, in which one of the experimenters must send the state

of her/his qubit to another lab. Figure 5.2 depicts one of these runs wherein Alice sends

her state to Bob through a quantum channel. The state that Bob receives is not the same

as the initial state that Alice sends, for the state undergoes changes along the way.

Here, we are dealing with a cause-effect scenario among quantum states where Alice’s

state ρX is a cause for Bob’s state ρY . The reason why ρX can be construed as a cause for



5.2 Physical Scenario 137

ρY is that any change in the former brings out changes in the latter, while the converse

is not true. Therefore, the direction of the quantum channel indicates the direction of

causation.

The primary goal of the current project is to find out whether it is possible to determine

the direction of causation from the states. That is, whether it is possible to treat ρX and ρY

like classical random variables and infer the causal direction from the asymmetries hidden in

their statistics. Meanwhile, the goal is to identify the causal direction from “observational”

rather than “interventional” data. That is, we are not allowed to intervene explicitly on

one of the states and analyze the effect of the intervention on the other variable. Rather,

we are only allowed to get a sample S = (ρX , ρY ) from the joint distribution over the states

and determine whether the sample is compatible with ρX → ρY or ρX ← ρY .

5.2.1 States and Channels

In Quantum Mechanics, the state of a d−dimensional quantum system is represented by

a d × d complex matrix, which is known as a density matrix. A density matrix ρ is a

positive semi-definite and Hermitian operator of trace one that is defined on the Hilbert

space corresponding to the system. The density matrix can be viewed as a probability

distribution over pure states, with ρ = ∑i pi ∣ψi⟩ ⟨ψi∣ where pi is the probability of a given

pure state ∣ψi⟩ occurring.
A qubit is a 2−dimensional quantum system, the state of which is represented by a 2× 2

complex matrix. Since the space of matrices is a vector space, there are bases of matrices

that can be used to decompose any matrix. For qubits, such a basis consists of three Pauli

matrices, allowing a density matrix to be expressed as a 3−dimensional “Bloch vector”

(Bertlmann & Krammer 2008):

ρ = 1

2
(I + rxσx + ryσy + rzσz) (5.1)

Remark 5.1. From a statistical perspective, a classical bit can be represented by a 1-

dimensional binary-valued random variable, while a qubit can be represented by a 3-
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dimensional continuous random variable.

To describe the dynamics of quantum systems in the most general way, the “quantum

operations formalism” is usually used (see, e.g., Nielsen & Chuang 2010). The formalism

provides a powerful tool to calculate how state transformation occurs when a quantum

system is subjected to changes. Let a quantum system with the initial state ρi undergo

a transformation represented by E . According to the quantum operations formalism, the

relationship between the initial and final states is expressed by the following equation:

ρf = E(ρi) =∑
k

EkρiE
†
k. (5.2)

Equation 5.2 is known as the “operator-sum representation” of the quantum operation E ,
where operators {Ek} are called the “operation elements” for the quantum operation E . In
order to be a transformation legitimated by the axioms of Quantum Mechanics, E should be

a completely positive (CP) and non-trace-increasing map on the space of density matrices.

This implies that the operational elements must satisfy the condition ∑kE
†
kEk ≤ I.

A “quantum channel” is a trace-preserving quantum operation, i.e., the input and out-

puts of a quantum channel have the same trace. Therefore, for a quantum channel, it holds

that ∑kE
†
kEk = I. The trace-preserving property ensures that if a density matrix enters a

quantum channel, the output is again a density matrix.

In Figure 5.2, the state sent by Alice undergoes the following transformations on the way

to reaching Bob:

• First, an initial rotation is applied to the state: ρ2 = Rpreρ1R
†
pre.

• Then, the state enters a quantum channel: ρ3 = EA→B(ρ2).

• Next, a secondary rotation is applied: ρ4 = Rpostρ3R
†
post.

• Finally, a Gaussian noise is applied: ρ5 = ρ4 + N⃗ .

The channel EA→B is a probabilistic mixture of six different channels: (1) identity, (2)

dephasing on the σz basis, (3) dephasing on a random basis, (4) replacement by the pure
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Figure 5.3: The four causal labels of the second scenario.

state σz, (5) replacement by a random pure state, and (6) replacement by white noise.

Therefore, the relationship between the channel input and output is formulated as,

ρ3 =
6

∑
k=1
wkEkρ2E

†
k where

6

∑
k=1
wk = 1. (5.3)

Remark 5.2. The above stages involve several adjustable parameters, such as the weights

assigned to the six channels, the mean and variance of rotation strength in Rpre and Rpost,

and the level of noise introduced. Adjusting these parameters allows for the simulation of

different data-generating processes, resulting in a range of physically distinct scenarios.

5.2.2 Scenarios

Throughout the chapter, I consider three scenarios: two bivariate and one multivariate. In

what follows, I briefly explain each.

Scenario 1

The first scenario is the cause-effect scenario depicted in Figure 5.2. Given a sample

S = (ρX , ρY ), the goal is to predict the causal label of the sample. Two causal labels are

possible in this scenario: “forward” (ρX → ρY ) and “backward” (ρX ← ρY ).

Scenario 2

The second scenario is also bivariate. Given a sample S = (ρX , ρY ), the aim is to predict

the causal label. The causal labels are of four types (see Figure 5.3):

1. Forward: ρX causes ρY
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Figure 5.4: An example of a multivariate scenario with eight variables.

2. Backward: ρY cases ρX

3. Disconnected: ρX and ρY are disconnected causally.

4. Latent Common Cause: there is no causal edge between ρX and ρY , but a latent

common cause ρZ influences both.

Scenario 3

The third scenario involves multiple local labs, where each lab sends its qubit state to

others through various channels. This is a multivariate scenario, denoted as p−variate,
where p is the number of local labs. The aim is to recover the causal graph of the scenario

using a p−variate sample S = (ρ1, . . . , ρp) from the joint distribution of the variables. To

simulate this scenario, an 8−variate example is considered, which is shown in Figure 5.4.

Remark 5.3. In addition to quantum operations used in the bivariate scenarios (i.e., ro-

tations, channels, and noise), the multivariate scenario comprises an additional quantum

operation, namely quantum gates. The quantum gates combine the causal effects of incom-

ing edges to a node. I use a probabilistic mixture of three quantum gates: an averaging gate

and two controlled NOT (cNOT) gates. Similar to the quantum channels, the weights of

quantum gates are adjustable parameters.
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5.3 The RCC Algorithm

In the introduction, I mentioned that discriminative algorithms have a “feature construc-

tion” step in which appropriate statistical features are extracted or constructed from a

given probability distribution. The RCC is the cornerstone of the present chapter because

its feature construction is carried out systematically with minimal assumptions on the un-

derlying data-generating process. In this section, I explain how the RCC constructs its

features and trains a classifier on top of the constructed features.

5.3.1 Featurization

The feature construction of the RCC is based on the kernel mean embedding framework.

In this framework, probability distributions are mapped to a reproducing kernel Hilbert

space so that calculations on the distributions can be performed on the image of the

distributions in the said space (see Section 2.1.2 for the details). The authors prove that for

shift-invariant characteristic kernels (such as the Gaussian kernel), it is possible to obtain

a low-dimensional representation of distributions using the normalized Fourier transform

of the kernel. In particular, given the sample S from distribution P, the empirical low-

dimensional representation of the distribution is computed as:

µ̂k (S) =
√

2

m

1

∣S ∣∑
x∈S
[cos(w⊺1x + b1), . . . , cos(w⊺mx + bm)] ∈ Rm (5.4)

where wi is drawn from the normalized Fourier transform of k and b ∼ U[0,2π]. Moreover,

∣S ∣ denotes the sample size, and m is the desired number of features to be constructed from

the given sample. Hence, Equation 5.4 “featurizes” S by constructing m features from it.

In a bivariate scenario, the RCC exploits the following equation to featurize a joint

distribution PXY using sample S = {(xi, yi)}ni=1:

ν(S) = (µ̂k(Sx), µ̂k(Sy), µ̂k(Sxy)) ∈ R3m (5.5)
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where Sx = {xi}ni=1, Sy = {yi}ni=1, and Sxy = {(xi, yi)}ni=1. That is, 3m features are con-

structed, corresponding to the marginal distribution PX , marginal distribution PY , and

joint distribution PXY . Additionally, in a multivariate scenario, the RCC exploits the

following equation to featurize the conditional joint distribution PXY ∣Z using the sample

S = {(xi, yi, zi)}ni=1, where Sx = {xi}ni=1, Sy = {yi}ni=1, and Sxyz = {(xi, yi, zi)}ni=1:

ν(S) = (µ̂k(Sx), µ̂k(Sy), µ̂k(Sxyz)) ∈ R3m (5.6)

5.3.2 Classification

Bivariate

Suppose a set of bivariate labeled data D = {(Si, li)} in which Si = (Xi, Yi) = (xij, yij)ni

j=1 is

a sample drawn from the joint distribution PXiYi
and li characterizes the causal relationship

between Xi and Yi.

The goal is to build a classification model Π that estimates the causal label li from the

sample Si. The model does not estimate the label directly from the sample but from the

vector of features constructed from the sample:

Π ∶ ν(Si)Ð→ l̂i (5.7)

The label estimation formulated in this way is a supervised learning problem. To obtain

such a classification model, large amounts of labeled data must be given to Π so that the

model learns the relationship between samples and labels. This is done in the training

phase of the model, wherein each sample is featurized and fed to the model twice, one with

Si = (Xi, Yi) and the other with S ′i = (Yi,Xi). Once the model is trained, the test phase

begins. In the test phase, each sample is first featurized and then given to Π so that the

model predicts the causal label.

((Xi, Yi), l(i)xy ) , ((Yi,Xi), l(i)yx ) (5.8)
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Figure 5.5: The eight possible DAGs on three variables under the assumption that node
pairs have maximally one common cause.

Remark 5.4. To build an arbitrarily large training dataset, the original RCC paper pro-

poses a heuristic generative process to generate synthetic data samples. The said process

is based on a Gaussian mixture model whose hyperparameters are tuned in accordance with

the scenario under consideration. I skip discussing this process because it does not apply to

quantum scenarios. Instead, I propose an alternative generative model in the next section.

Multivariate

The method sketched above is applicable to bivariate scenarios because the number of

causal labels definable over two variables is very limited. For more than two variables, the

number of possible DAGs super-exponentially grows with the number of nodes; hence, it is

almost impossible to associate each causal DAG with one classification label. Consequently,

the sketched strategy must be modified to recover the causal graph in a multivariate sce-

nario.

First, notice that a causal edge Xi −Xj between nodes Xi and Xj in a DAG G can be

characterized by three labels: “forward” (Xi → Xj), “backward” (Xi ← Xj), and “discon-

nected” (Xi⊥⊥Xj). Denote these labels by +1, −1, and 0. Recovering the causal graph in

a multivariate scenario can be converted into a three-class classification problem in which

the classifier Π predicts the causal label of all pairs XiXj in a graph.

Nonetheless, the feature construction in the multivariate scenario for pair XiXj must be

computed conditioned on other variables. That is, instead of featurizing the marginal joint
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distribution of the pair, conditional joint distributions must be featurized using Equation

5.6.

Such a featurization scheme would be more feasible if one imposes the simplifying con-

straint that each pair of variables has at most one common cause. Therefore, to featurize

pair XiXj, it is enough to featurize conditional relations type (2,1), i.e., XiXj ∣Xk. In such

a situation, the causal DAG among every node triple is one of the eight graphs shown in

Figure 5.5.

To synthesize a training dataset for the classifier Π, the authors of the RCC suggest to

randomly draw N graphs from the eight possible DAGs in Figure 5.5 and generate samples

Si = (Xi, Yi, Zi) using the drawn graphs Gi:

((Xi, Yi, Zi),+lxy) , ((Yi, Zi,Xi),+lyz) , ((Xi, Zi, Yi),+lxz) ,

((Yi,Xi, Zi),−lxy) , ((Zi, Yi,Xi),−lyz) , ((Zi,Xi, Yi),−lxz) ,
(5.9)

where lxy, lyz, and lxz characterize the causal relationships between (Xi, Yi), (Yi, Zi), and
(Xi, Zi) in graph Gi.

Once the classifier Π is trained, it can take a sample S = (Xi,Xj,Xk) as input and

estimate the causal label between Xi and Xj given Xk. More precisely, the classifier

returns the probabilities of three labels (i.e., forward, backward, and disconnected), and

we take the label with the highest probability as the most probable label.

To recover the full causal DAG from the sample S = (X1, . . . ,Xp), it is enough to predict

the label of each pair XiXj separately. To this end, p−2 conditional relations like XiXj ∣Xk

must be considered to predict the label of the pair XiXj. To estimate the label XiXj, one

must predict the probabilities of all three labels and average over for all p − 2 conditional

relations. Finally, the label with the highest probability can be selected as the label of

XiXj.
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5.4 Quantum Causal Discovery

The current project generalizes the RCC in two ways. On the one hand, I use three-

dimensional variables instead of one-dimensional variables. Thus, I use the RCC to learn

the causal direction among quantum states rather than classical variables. Therefore, in

Equations 5.5 and 5.6, I replace X, Y , Z respectively by ρX , ρY , and ρZ . Note that no

part of the kernel mean embedding framework prevents us from such a generalization.

On the other hand, as mentioned in Remark 5.4, the generative process used by the

original RCC does not apply to the multivariate quantum scenario. Thus, my second

generalization introduces an alternative procedure for synthesizing training data for the

RCC classifier. The said procedure is based on the CGNN algorithm. However, as we shall

see, its implications go beyond the CGNN and RCC algorithms and are tied to discussions

in quantum tomography with incomplete data.

5.4.1 Generative Learning

Let ρ = {ρ1, . . . , ρp} represent the states of qubits in a p−variate quantum scenario. The

aim is to build a generative model F that takes an arbitrary causal graph G(l) as input

and generates a synthetic sample Ŝ(l) = (ρ̂(l)1 , . . . , ρ̂
(l)
p ):

F ∶ G(l) Ð→ Ŝ(l). (5.10)

To achieve such a generative model, I take the CGNN algorithm as a basis and insert two

modifications into it. To start, imagine that graph nodes in the CGNN algorithm represent

states of qubits rather than values of classical random variables. Figure 5.6 depicts the

corresponding FCM initialized by the CGNN. In this model, neural networks map the

Bloch vectors of parent nodes into the Bloch vectors of child nodes. That is, each neural

network estimates the functional form of a quantum channel from parents to children, i.e.,

ρ̂i = Êi(ρpa(ρi;G),Ei). (5.11)
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Figure 5.6: The generalized CGNN: the nodes represent quantum states, while the edges
represent quantum channnels.

Therefore, the CGNN plays the role of a generative model that receives a causal graph G(l)

as input and generates a synthetic sample Ŝ(l). However, the problem with this strategy is

that such a model can synthesize samples merely for graph G(l). To synthesize samples for

another given graph, one has to initialize another FCM whose causal structure corresponds

to the new graph. Therefore, to synthesize samples for m causal graphs, m FCMs must be

initialized. What is worse is that each initialized model requires a separate training dataset

to be trained on. Therefore, m real datasets must be available to train the m initialized

FCMs.

Such a training strategy is practically ineffective because the number of possible DAGs

in a multivariate scenario can be extremely large, and it is almost impossible to collect true

data for all these possibilities. For instance, for an 8−variate scenario, 783,702,329,343

causal graphs are definable!

To overcome this problem, I insert a second modification to the standard CGNN algo-

rithm, according to which the algorithm initializes only one FCM FΘ for all possible DAGs

definable over the p variables. In such a model, each node is connected to all other nodes

except itself. In the 8−variate scenario, this means the following functional relationships:

ρ̂1 = f̂1(E1, ρ̂2, . . . ρ̂8)
⋮
ρ̂8 = f̂8(E8, ρ̂1, . . . , ρ̂7)

(5.12)

The model FΘ is not inherently causal since it posits that variables depend on each other
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Figure 5.7: A graph in which only three nodes are causally related while the other nodes
are causally disconnected.

regardless of their causal relationships. However, by selecting a fragment of the model that

is compatible with a particular causal DAG, it is possible to convert it into a causal model

while leaving the rest of the model acausal.

Assuming the model is already trained and its parameters Θ are optimized, one can

activate a fragment of the model that is consistent with the DAG G and freeze the remaining

mechanisms. The activated fragment resembles the functional causal model initialized by

the standard CGNN and can generate synthetic data for the given DAG. However, the

frozen fragment is acausal and should not be modified when synthesizing data for the

given DAG.

To illustrate the idea, consider Figure 5.7 in which only three variables are causally

related. The structural equations for such a DAG are

ρ̂1 = f̂1(E1, 0⃗, ρ̂3, 0⃗, ρ̂5, , 0⃗, 0⃗, 0⃗)
ρ̂3 = f̂3(E3, 0⃗, 0⃗, ρ̂5, 0⃗, 0⃗, 0⃗, 0⃗)
ρ̂k = f̂k(Ek, 0⃗, 0⃗, 0⃗, 0⃗, 0⃗, 0⃗, 0⃗) ∀k ∈ {2,4,5,6,7,8}

(5.13)

where vectors 0⃗ = [0,0,0]⊺ are used whenever there is no causal connection between the

nodes. These vectors are used to temporarily destroy the edges that are absent in the given

DAG.

Figure 5.8 depicts how the model FΘ synthesizes data for these structural equations. In

this figure, only a fragment of FΘ that is compatible with the given graph is activated

while the other edges are temporarily destructed.
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Figure 5.8: An example of activating and freezing a model.

Model Training

Now I describe how to train the model FΘ. To this end, a training dataset Dtr =
{(S(l),G(l))}ml=1 consisting of m pairs are needed, where S(l) and G(l) are true data samples

and causal DAGs. There are two interesting points about the required samples and graphs,

both essential from the perspective of quantum tomography.

First, there is no need to use an excessive number of 783,702,329,343 true data samples

to train FΘ. It suffices to provide the model with a “sufficient number” of training pairs,

which means the number that enables the model to reconstruct the rest of the data. The

user can determine the appropriate number based on the needs she expects from the model.

Second, it is unnecessary to use complete data samples to train FΘ. Instead, one can

train the model with samples from the joint distribution over a subset of variables. For

example, in the 8−variate scenario, 3−variate data samples like S(l) = (ρ(l)i , ρ
(l)
j , ρ

(l)
k ) can be

used for training. To accomplish this, one should convert the model in a manner depicted

in Figure 5.8 and minimize the following training loss function:

Ltr(Θ) =
m

∑
l=1

∥S(l) − Ŝ(l)(Θ)∥Ô⇒∇ΘLtr
!= 0Ô⇒ Θ⋆ = argminΘ Ltr. (5.14)

The loss minimization scheme described in Equation 5.14 optimizes the model for synthe-

sizing 3−variate samples. Although the model generates 8−variate samples, the generated

data is guaranteed to be accurate up to the level of 3−variate joint distributions. One can,

of course, train a more powerful generative model that captures joint distributions over

more than three variables by training the model on more complete data samples.
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For the current project, I trained the model FΘ using merely 3−variate samples on the

eight graphs shown in Figure 5.5. While I could expand the training data and exploit more

sophisticated training samples, I decided to stick to 3−variate samples for two reasons.

On the one hand, from an experimental point of view, it is much easier to perform

joint measurements on a small number of qubits. Collecting 3−variate data samples is

much easier than, say 6−variate samples. Thus, as a quantum causal discovery task, the

preference is to rely on samples that are easier to be collected in a practical scenario.

On the other hand, recall that the primary purpose of the present generative model

is to synthesize samples for the RCC classifier. Given the simplifying constraint of the

RCC that there is maximally one common cause for each pair of nodes, it is sufficient to

synthesize samples that are accurate with respect to conditional relations of type (2,1)
and hence 3−variate joint distributions. Hence, I did not expand the training data because

the parsimonious 3−variate samples led to achieving the project goal, i.e., to recover the

causal graph by the RCC.

5.4.2 Pipeline

This section summarizes the training and prediction pipelines used in the current project.

I used 2688 3−variate samples for training FΘ. The said samples are used twice: (1) for

training the generative F and (2) for training the discriminativeΠ. Once the generative F

is trained, it can synthesize 8−variate samples for 8−node DAGs. For the current project,

I synthesized 400 8-variate samples associated with 400 random 8−node DAGs.

The raw graph created based on the RCC predictions may not be very accurate at the

global (i.e., graphical) level because it is based on the local information between the nodes.

To improve the quality of the graph, I apply two post-processing steps that utilize the F

model. These steps are inspired by Goudet et al. (2018) and are described below.

In the first step, less important edges are removed. To determine the importance of an

edge, I synthesize data samples with and without that edge using F and compare the

quality of the samples with the original data. If the quality difference between the two
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Algorithm 3 The RCC Training Workflow

Input: Dtr = {(S(l)tr ,G
(l)
tr )}ml=1 (training data) and {G(l)}nl=1 (p−node DAGs)

1: Initialize a discriminative model Π and a generative model F .
2: Train F on Dtr.
3: Synthesize p-variate samples for the p−node graphs using the trained F :

D̂ = {(Ŝ(l),F (G(l)))}

4: Initialize training data for the discriminative model DΠ
tr = {}.

5: for each 3−variate sample Sijk ∈ Dtr ∪ D̂ do
6: Compute the six permutations in Equation 5.9.
7: Featurize the permutations: fijk = ν(Sijk).
8: Add pair (fijk, lij) to DΠ

tr .
9: end for
10: Train Π on DΠ

tr .

Output: Π (trained discriminator)

samples is not significant, the edge is removed. Otherwise, it is kept (the significance

level is determined in the validation phase). In the second step, the remaining edges are

randomly reversed, and the corresponding data quality is checked. If the quality improves

significantly, the edge is reversed; otherwise, it is kept in its original direction.

5.5 Results

This section evaluates the performance of the RCC in simulated quantum scenarios. As

mentioned earlier, the evaluation is carried out in three quantum scenarios, the first two

being bivariate and the third being multivariate. Before describing the RCC performance,

let us describe the simulated data for these scenarios.

For the bivariate scenarios, 5000 data samples are simulated, and each of them is physi-

cally different. In other words, the quantum operations connecting ρX and ρY vary in each

sample. Recall that each quantum operation contains adjustable physical parameters, such

as the strength of rotations, noise, and the weights to combine different types of quantum

channels. To simulate each sample, random values for these parameters are drawn, and

the sample is generated using these values. After simulating the samples, they are split
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Algorithm 4 The RCC Prediction Workflow

Input: S = (ρ1, . . . , ρp) (p−variate sample), Π (trained discriminator)

1: Initialize an p × p adjacency matrix Araw

2: for each pair (ρi, ρj) do
3: Extract all 3−variate samples Sijk.
4: Featurize the samples: fijk = ν(Sijk) .
5: Predict probabilities for causal labels: P⃗ijk = P ijk

→ , P ijk
← , P ijk

⊥⊥ =Π(fijk)
6: Average the probabilities over conditioning variables: Pij =∑

k

P⃗ijk.

7: Fill out Araw[i, j] in accordance to max(Pij).
8: end for
9: Convert Araw into Ĝraw
10: if post-processing then:
11: Post-process Ĝraw to obtain Ĝpost.
12: Return Ĝpost.
13: else:
14: Return Ĝraw.
15: end if

Output: Ĝpost (predicted graph)

into training and test sets with a 70 ∶ 30 ratio. The classifier is trained and tested on the

training and test sets.

The multivariate scenario is physically different from the first two scenarios. In this

scenario, each node has a unique set of physical parameters that remain constant across

the samples. For example, in all samples, the quantum channel of the ith node takes the

constant form E(i)(ρ) =∑
k

w
(i)
k EkρE

†
k, and the weights w

(i)
k do not vary. This assumption is

well-motivated, especially if an underlying quantum process exists over all nodes. In such a

situation, the physical parameters of each node remain constant because they encapsulate

the functional form of the causal mechanism of the nodes.

Another point to note regarding the multivariate scenario is that the type of training

samples is different from the validation and test samples. Specifically, 2688 3−variate
samples are simulated for training, while 134 and 135 8−variate samples are simulated for

validation and testing, respectively.
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Figure 5.9: Confusion matrices for the bivariate scenarios. Left: performance in the first
scenario; Right: performance in the second scenario.

5.5.1 Bivariate

Figure 5.9 displays the confusion matrices for the first and second bivariate scenarios.

The rows and columns of the matrices correspond to the true and predicted causal labels,

respectively. The elementmij =M[i, j] in each matrix represents the percentage of samples

with the true label i that are predicted with label j. As shown in the figure, the RCC

accurately learns the causal labels in both scenarios, with an accuracy of 97.50% and 89.0%,

respectively.

The fact that the physical parameters of the test samples are different from the training

samples shows that the RCC detects causal labels irrespective of the underlying parameters

of a scenario. Said differently, the patterns the RCC learns during the training phase

are independent of the underlying parameters of data-generating processes; these are the

asymmetries in the probability distributions. Thus, as long as these asymmetries exist

in a sample, the algorithm can detect the direction of causation, but it may fail if the

asymmetries are weak or absent.

Figure 5.10 depicts a realization of the previous claim. In this figure, the accuracy of the

RCC is shown for different quantum channels. According to the figure, the accuracy of the

RCC for the identity channel is approximately 50%, i.e., the RCC is absolutely unable to

distinguish the causal direction in highly symmetric schemes such as the identity channel.
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Figure 5.10: The RCC accuracy for different channels.

Remark 5.5. From a causal modeling perspective, the direction of the identity channel

is not identifiable because the channel leads to a linear model with Gaussian noise. Such

models are identifiable if and only if the noise is non-Gaussian. For non-Gaussian noises,

the functional relationship between ρX and ρY is described by a LiNGAM, which has a

theoretical guarantee for its identifiability (see Shimizu et al. 2006).

5.5.2 Multivariate

Figure 5.11 shows the confusion matrices of the multivariate scenario before and after

post-processing the prediction. Recall that three causal labels can be assigned to a pair of

nodes: forward (→), backward (←), and disconnected (⊥⊥). The matrices indicate the per-

formance in classifying these three labels in the 135 testing graphs. Thus, the performance

is computed based on (82) × 3 × 135 predictions.

Before and after post-processing, 6.65 and 3.62 edges are misclassified per graph, i.e.,

84.0% and 85.6% accuracy. Figure 5.12 shows an example of one of the predicted graphs.

5.6 Discussion

In the previous section, I showed the success of the RCC in different quantum scenarios.

Specifically, combining the discriminative RCC with the generative CGNN delivered a
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Figure 5.11: Confusion matrices for the multivariate scenario. Left: before post-processing;
Right: after post-processing.

Figure 5.12: Example of a multivariate predication. Left: true graph, middle: raw predic-
tion, and right: post-processed prediction.
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powerful algorithm that can recover the causal graph of multivariate quantum scenarios

with limited training data. In this section, I will further describe the method and its

consequences. I begin with a brief overview of previous work in quantum causal discovery

and then discuss the implications of the current method. Finally, I present ideas for future

work.

5.6.1 Past

In recent years, several conceptual frameworks have been proposed to study the causal re-

lationships among quantum systems. The central idea of the said frameworks is that causal

relations among quantum systems do not follow the classical causal modeling framework

and, therefore, generalized principles of causal modeling must be employed to describe

causal relations in the quantum realm. Examples include Henson et al. (2014), Pienaar &

Brukner (2015), Costa & Shrapnel (2016), Allen et al. (2017), Barrett et al. (2019, 2021).

While a solid ground has been formed at the theoretical level to study causality in the

quantum realm, very few works have been done at the algorithmic level. The available

algorithms mostly apply to simple scenarios such as when the number of variables is small

(see, e.g., Ried et al. 2015, Fitzsimons et al. 2015, Chiribella & Ebler 2019). The following

two examples are more interesting because they pose fewer restrictions on the scenario

under consideration.

The first example is the algorithm introduced by Giarmatzi (2019). The algorithm is

a general quantum causal discovery algorithm formulated based on the “process matrix

formalism” introduced by Pienaar & Brukner (2015). For a multivariate quantum sce-

nario, the algorithm receives the process matrix as input and reconstructs the causal graph

through the sparsity patterns in the process matrix. The algorithm is general in that it

handles several causal circumstances. For instance, it detects whether the given process

matrix is “causally ordered” (i.e., whether the causal structure of the scenario admits a

DAG) or whether the process matrix represents a “Markovian” system (i.e., whether there

are latent common causes between the variables). Despite such generality, the fact that
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the input is a process matrix means that before causal discovery, a full quantum process

tomography must be performed. Since process tomography for high-dimensional quantum

systems requires a large number of measurements, the algorithm can hardly be exploited

in a real scenario.

The second example is the algorithm introduced by Bai et al. (2022). The algorithm

aims to solve the “causal unraveling” problem, formulated as follows. Given an unknown

quantum process with inputs X1, . . . ,Xn and outputs Y1, . . . , Ym, determine whether the

process can be broken into a set of interactions from a partition of inputs to a partition

of outputs and if so, determine which inputs and outputs are involved in each interaction.

In other words, the aim is to explore the causal order between the inputs and outputs of

an unknown quantum process through a series of measurements. The authors provide an

efficient algorithm that does not require full quantum process tomography. The key idea

is to perform a series of independence tests between the density matrices of the inputs and

outputs and recover the causal orders step by step. Hence, the algorithm can be construed

as a constraint-based method inherently similar to the PC algorithm (Spirtes et al. 2000).

The method presented in this chapter is most similar to the approach taken by Bai et al.

On the one hand, both methods do not require a complete tomographic characterization of

the process under consideration. Instead, they both infer the causal directions from pairs

of variables. On the other hand, my multivariate scenario can be reformulated as a causal

unraveling problem. For this, it is enough to divide the variables of the multivariate scenario

into two subsets (input and output) and pose that input variables are exogenous (i.e.,

causal interactions always start from the input variables and end with output variables).

By doing so, causal discovery in my method is equivalent to finding causal orders in Bai

et al. method. Nonetheless, the use of Machine Learning in quantum causal discovery is

unique to the method presented here. To the best of my knowledge, neither Bai et al.

(2022) nor any quantum causal discovery algorithms use Machine Learning as an organic

part of the algorithm.2

2Notice that Machine Learning approaches are used indirectly in tasks such as performing process
tomography more efficiently (see, e.g., Torlai et al. 2020).
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5.6.2 Present

The results obtained in this chapter have important implications in various research fields.

I divide these fields into Quantum Foundations, Artificial Intelligence, and Quantum En-

gineering. In the following, I address each of the parts.

Quantum Foundations

The main idea of the current project is to apply classical causal modeling tools to the

state of quantum systems instead of classical quantities such as measurement outcomes.

Consequently, I implicitly posit a causal model in which the variables are quantum states

and the mechanisms are quantum channels. The causal model constructed in this way is

conceptually similar to quantum causal models (QCMs). To see the reason, let us focus

on the framework proposed by Costa & Shrapnel (2016) as an example of a QCM.

Imagine a causal graph where each node represents a local lab with one input and one

output. The nodes are connected by edges transmitting the outputs of parent labs to

the inputs of child labs. Inside each lab, an experimenter exists who can perform any

intervention on the input system legitimated by axioms of Quantum Mechanics. Following

interventions, the experimenters emit the resulting systems as outputs. In such a model,

nodes are represented by collections of CP maps characterizing the evolution of quantum

systems before and after entering the labs. Moreover, causal mechanisms are represented

by CPTP maps transferring the outputs of parent nodes to the inputs of child nodes.

To see the similarities between the above and current approaches, notice that the current

project assumes that there is no intervention at the labs.3 Therefore, a system entering

and exiting a lab maintains its quantum state. Thus, the states themselves are sufficient

for representing the nodes, and there is no need for CP maps. Regarding the causal

mechanisms, both approaches utilize quantum channels to represent the transmissions of

parent systems to child systems.

Given such a conceptual similarity, the success of the RCC and the CGNN in causal

3I make this simplifying assumption to investigate the learning problem within an observational scheme.
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discovery among quantum systems should be construed as support for QCMs. In other

words, the fact that standard causal modeling and Machine Learning tools can be used

for quantum states suggests that the core ideas of causal modeling are valid in the quan-

tum realm. Especially because other fundamental conceptions in causal modeling (such as

the causal Markov condition and the faithfulness) are generalized by QCMs in a reason-

ably straightforward way, and quantum systems are shown to be compatible with these

generalizations (see, e.g., Shrapnel 2016).

Therefore, it seems that many conflicts between Quantum Mechanics and causal mod-

eling can be resolved if one applies the ideas of causal modeling at the level of quantum

states rather than observed quantities. While this might be a fair conclusion, an unre-

solved challenge persists, especially if QCMs are supposed to be more than mathematical

machinery for quantum computations. What would be the nature of a causal relationship

prescribed between non-observable entities such as quantum states? Or, what is the onto-

logical status of a causal mechanism acting among non-observables? In my opinion, this is

the most challenging question for QCMs, and the answer directly relates to the discussions

surrounding the reality of quantum states. To understand the status of causal mechanisms

in a QCM, the status of quantum states must be determined first.

The status of the quantum state has been debated since the early days of Quantum

Mechanics, and various answers have been given.4. I do not intend to enter into the

debate about the reality of the quantum state because it is beyond the scope of the present

discussion. However, I wish to emphasize the following two points.

First, understanding the nature of causal relationships in QCMs is not independent of

understanding the nature of quantum states because these models study causal relation-

ships not at the level of observables but at the level of quantum states. Of course, the

4According to the ontological models framework (Harrigan & Spekkens 2010), there are three possi-
bilities for interpreting quantum states: (1) anti-realist ψ-epistemic view (quantum states are epistemic
entities, but there is no deeper underlying reality), (2) realist ψ-epistemic (quantum states are epistemic,
and there is an underlying ontic state), (3) realist ψ-ontic (there is an underlying reality, and quantum
states correspond to states of physical reality). Note, however, that this characterization does not necessar-
ily reflect all views. For example, Callender (2015) argues that there is a fourth view that takes quantum
states as part of dynamical laws on top of ontic states.
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fact that algorithms like the RCC can accurately learn the direction of causation between

quantum states is good news for QCMs because it indicates the existence of such direc-

tionality at the level of states. However, to draw conclusions about the ontological status

of the said directionality, it is necessary to clarify the ontological status of quantum states.

Second, as argued in Chapter 3, providing a “secure transition” from the quantum domain

to the classical domain is a necessary condition to accept that a QCM tells a causal story

about a scenario. The secure transition is meant to be an explanation of the classical

limit and the origin of quantumness in an “unambiguous language” declared by Nils Bohr

(Bohr 1949, p. 209). I believe the same doctrine applies to the results presented here.

That is, to understand the ontological status of what the RCC has learned (i.e., causal

directions among quantum states), one must provide a secure transition to translate the

notion of causal direction from the level of states to the level of observables and interpret

the results at the level of the latter. Such a secure transition might be accomplished by

quantum decoherence (see, e.g., Zurek 2002). However, further studies should be conducted

to confirm this hypothesis.

Artificial Intelligence

Apart from Quantum Mechanics, the implications of the current project can be studied in

light of the interplay between Artificial Intelligence and causal modeling.

The first point is about discriminative causal learning algorithms such as the RCC. Un-

like standard Machine Learning algorithms, these can be trained and tested on physically

different datasets. For instance, in the Cause-Effect Pair Challenge (Guyon 2013) orga-

nized in 2013 on the Kaggle platform, the training and test datasets were selected from

lots of different domains such as chemistry, climatology, ecology, economy, engineering,

epidemiology, genomics, medicine, physics, and sociology. The high performance of an

algorithm like the RCC on such data suggests that real-world data contains a series of

universal causal signatures based on which the RCC could learn the direction of causation.

If this conclusion is correct, Machine Learning helps one discover the causal footprints re-
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gardless of the underlying physical theories. Consequently, one can expect that future AI

systems can learn causal facts about the physical world from the mere data (an example

of such systems in causal imaging is studied by Lopez-Paz et al. 2017).

The next point is about generative causal learning algorithms such as the CGNN. Re-

call that in the variant of the CGNN utilized in this chapter, I use 3-variate samples for

model training however synthesize 8-variate samples once the model is trained. Remark-

ably, the synthesized samples have high quality; they are distributionally very close to

the corresponding true 8-variate samples. Therefore, even though the model never sees

true 8-variate distributions during the training phase, it can estimate it from 3-variate

distributions.5

This is an astonishing result; it is like giving the machine individual parts of a picture

along with information about the relative position of each part and then asking the ma-

chine to put these parts together and build a new overall picture in accordance with a

new configuration of the parts. The fact that the generative algorithm of this chapter was

able to be trained well with minimal samples radiates the message that Machine Learn-

ing algorithms can work more efficiently with limited data if they have access to causal

information.

Quantum Engineering

The project indicates that Machine Learning empowers one to causally characterize a

quantum process even when limited information is available about the process. Therefore,

unlike the discovery algorithm presented by Costa & Shrapnel (2016), which requires full

quantum process tomography, the present algorithm performs causal discovery in the pres-

ence of limited training data. This feature is vital from a practical point of view, as the

number of measurements required for a full process tomography grows exponentially with

the number of systems involved.

5This strategy is justified only if one can postulate a “mother” generative process on top of all training
and test data. That is, only if a single underlying process exists that generates all data samples, either
3-variate or 8-variate samples. The existence of such a process is guaranteed in the multivariate quantum
scenario because all samples originate from a quantum process connecting the local labs.
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Another interesting fact about the presented models is that they can be modified partially

and used as an intermediate step for more expensive methods such as Costa & Shrapnel

(2016). For example, penalization techniques can be employed to push the RCC classifier to

spend less accuracy in “forward,” and “backward” labels and instead increase the accuracy

in “disconnected” label. The predictions of such a penalized model can then be used as the

starting point for other algorithms. Considering the cost-efficiency of the present models,

this strategy would be practically useful.

Apart from quantum process tomography, the current models can be trained to detect

signaling relations for data transmission in quantum networks. Such an application is

advantageous, especially in large quantum networks wherein full tomography is practically

impossible.

Finally, a necessary condition for a causal discriminative algorithm to generalize well

is seeing various types of asymmetries during the training phase. The more diverse the

training data, the more generalizable the model in the test phase. Notably, the required

asymmetries for training such algorithms can be partially obtained from other quantum

experiments. Consequently, the methods described here would be even more affordable if

Tübingen-like databases were created for real quantum experiments so that discriminative

algorithms can employ them as part of their training data.

5.6.3 Future

The current project can be extended in several directions. I divide these directions into

conceptual and technical levels and explain each separately.

Conceptual Level

1. As conjectured previously, there should be some universal causal signatures relying

on which the RCC detects the causal direction. What is the interpretation of these

signatures? What is the relationship between the features extracted in the feature

construction stage and the underlying physical parameters of a distribution? One
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strategy to answer the above questions is checking which features are most important

to the RCC classifier. In the Machine Learning literature, many techniques have been

invented for this task under the title of “input feature attribution.” For example, in

computer vision, there are methods to identify an image’s pixels (i.e., features) based

on which a classifier estimates a label. This technique is a subset of the “explainable

AI” field, and it can be imagined to be extended to the field of causal modeling and

quantum causal modeling (for a review of methods in the context of deep neural

networks, see, e.g., Samek et al. 2021).

2. In classical causal modeling, “identifiability theorems” specify certain conditions un-

der which the detection of causal direction from observational data is theoretically

guaranteed. LiNGAM (Shimizu et al. 2006), IGCI (Janzing et al. 2012), ANM (Hoyer

et al. 2008, Mooij et al. 2016), and PNL (Zhang & Hyvärinen 2009) are algorithms

based on identifiability theorems. Extending these results to the quantum domain

can lead to new discovery algorithms that guarantee the identifiability of the causal

direction for specific quantum processes. I mentioned an exemplary model in Remark

5.5, but this can be followed more systematically.

Technical Level

1. The current method can be combined with constraint-based algorithms such as the

algorithm presented in Bai et al. (2022). The RCC and the CGNN are based on pair-

wise methods, so their estimates are inherently local. On the contrary, the estimates

of a constraint-based algorithm are inherently global. For this reason, combining

such algorithms can increase their power.

2. The current project is based solely on observational schemes. To make it more prac-

tical, it should be combined with interventional schemes. That is, a principled way

must be found to combine the information gathered through both schemes. Machine

Learning ideas can be a breakthrough again. For example, Lee & Bareinboim (2018)

has shown that reinforcement learning can be used to efficiently understand which
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node and when to intervene. Another example is active learning, in which the ma-

chine asks the user to collect more information about the parts that the machine is

more uncertain about (see, e.g., He & Geng 2008).

3. The current project focuses only on qubits. A more general algorithm would consider

quantum systems with arbitrary input and output dimensions. Although this is a

straightforward generalization, it guarantees the method’s applicability for practical

purposes.
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Chapter 6

Conclusion

In this thesis, I have used Machine Learning to investigate the causal problem of entangle-

ment. The first three chapters provided an overview of the research motivations, required

tools, and models proposed in the literature to solve the causal problem. Chapters 4 and

5 introduced two Machine Learning algorithms for two quantum scenarios and discussed

their results. Rather than repeating specific implications and suggested lines for future

research in this chapter, I will provide more general explanations of the two main contri-

butions of this thesis: (1) the implications of recent findings for the interventionist account

of causation in the quantum domain, and (2) the relevance of Machine Learning for dis-

cussions related to the philosophy of physics. In the final section, I will briefly discuss the

spatiotemporal problem of entanglement and its relationship with the causal problem.

6.1 Interventionism after Quantum Correlations

Let us take a step back and re-examine the causal problem of entanglement. The problem

demonstrates that classical causal models cannot produce a graph that explains the statis-

tics of scenarios such as EPR-Bell. Therefore, Causal Bayesian networks do not apply to

the quantum domain due to conflicts in assumptions such as the causal Markov and causal

faithfulness conditions. This raises the question of what consequences the causal problem
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has for the interventionist account of causation in the quantum domain.

One possible response is that the causal problem demonstrates the inadequacy of the

interventionist view in the quantum domain. Therefore, alternative accounts of causation

must be used to explain quantum correlations. For example, the causal process view or the

counterfactual account of causation may be used to explain quantum correlations. I have

no issue with this response and believe that a pluralistic view of causation is necessary due

to the many peculiarities of Quantum Mechanics.

However, if we wish to retain the interventionist account in the quantum domain, per-

haps because we believe it provides a precise way to determine effective strategies, this

thesis becomes relevant. The results of Chapters 4 and 5 demonstrate that a version of

interventionism can be preserved in the quantum domain if we are willing to accept one of

the following two options: (1) causal relata in causal models for quantum systems are not

classical variables, or (2) causal conditions such as the faithfulness condition for quantum

systems require generalization. In the following, I will discuss these two conditions and

their implications.

Extended Causal Relata

In standard models of causal Bayesian networks, the causal relata are classical random vari-

ables whose values indicate the properties of the variables under consideration. However,

in the discovery algorithm presented in Chapter 5 and more generally in quantum causal

models, the causal relata are respectively the states of quantum systems and collections of

CP maps. If interventionism is to be applicable in the quantum domain, we must accept

that the causal relata and causal mechanisms between them will be unconventional.

The extent to which such a model can be considered causal has already been discussed

in Sections 3.6 and 5.6.2, where I put forward two criteria for a quantum causal model to

be considered causal. The first criterion is whether the model provides a secure transition

from the quantum domain to the classical domain. The second criterion is the ontological

status that the desired model assigns to quantum states. I will not repeat the discussion
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of these criteria here.

However, recognizing such a model has at least two motivations. First, quantum systems

lack measurement-independent properties, and thus their description using classical ran-

dom variables is unlikely, if not impossible. Second, interventions on quantum systems can

be described in the most general way through CPTP maps, and thus, causal relata must

be defined in a way that allows such intervention. As Woodward argues, the problem of

variable choice should be approached within a means/ends framework, where cognitive in-

quiries can have various goals or ends, and candidate criteria for variable choice are justified

by showing that they are effective means to these ends (Woodward 2016b, p. 1051).

Extended Faithfulness

To maintain the interventionist account in the quantum domain, an alternative approach

is to keep the causal relata in causal Bayesian networks classical and modify the classical

conditions of causal modeling, specifically the faithfulness condition. In such a view, the

variables and latent confounders in the EPR-Bell scenario should all be expressed with

classical random variables, but the faithfulness should be modified, recognizing that at

least the standard form of the faithfulness does not hold in this scenario. In such a view,

the fact that certain interpretations of Quantum Mechanics violate the faithfulness is not

only their weakness but shows their virtue in demonstrating the true source of conflict

between causal models and quantum correlations, namely the faithfulness.

In Chapter 4, I followed this path and evaluated models regardless of the faithfulness.

However, why is the faithfulness unreliable in the EPR-Bell scenario? I explained in detail

in Section 4.7.2 why the faithfulness may need modifications when dealing with quantum

correlations. Here, I will briefly review the argument.

One understanding of the faithfulness is to say that if two variables are causally depen-

dent, they must be statistically dependent, or equivalently if two variables are statistically

independent, they are causally independent. The first part of the statement ( /⊥⊥c⇒ /⊥⊥s) can
be justified in the way that the trace of causal connections must be reflected in the statis-
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tics of variables; otherwise, it would seem that causal connections conspiratorially hide

themselves from the observer. The second part of the statement (⊥⊥s ⇒ ⊥⊥c) is logically

equivalent to the first part and is more useful for the following argument.

Recall that in the scenario discussed in Chapter 4, all variables are statistically inde-

pendent, two by two. According to the faithfulness, all these variables should be causally

independent two by two, and no causal connection should exist between any of them. Does

one commit to a conspiracy if she asserts that some variables (e.g., the two outcomes) are

causally connected? I do not think so because the trace of entanglement (i.e., the correla-

tion between outcomes) can only be detected when the conditional dependence of outcomes

given the two settings is checked.

Quantum correlations reveal a generic circumstance in which two marginally independent

variables may be causally connected because the two variables are conditionally dependent.

The faithfulness ignores this generic case and, therefore, cannot hold in the EPR-Bell

scenario. Thus, if causal Bayesian networks are to have classical causal relata in the EPR-

Bell scenario, they must modify the faithfulness. However, modifying the faithfulness alone

is not enough because this condition is usually linked with the Markov condition trough

the d-separation criterion.

To modify the faithfulness and the d-separation criterion in the face of quantum cor-

relations, we need to consider the connection point of the two options mentioned for in-

terventionism. The faithfulness and d-separation should be modified to sketch the causal

relationships between quantum systems at the level of states, not just observables. In

other words, the revised criteria should be in a form that considers the existence of a

non-classical common cause for the two outcomes of the EPR-Bell scenario. This means

that the interventionist account in the quantum domain needs to consider the existence

of variables and mechanisms that cannot be shown in a standard way (classical random

variables). If we are willing to accept this conclusion, we can have a generalized version

of interventionism and benefit from it for identifying effective strategies in the quantum

domain.
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6.2 The Relevance of Machine Learning in Quantum

Mechanics

While Machine Learning is often used in empirical sciences, this thesis demonstrates its

relevance for foundational discussions, particularly in the context of Quantum Mechanics.

Chapters 4 and 5 provide insights that can be analyzed in three areas, which I will discuss

below.

Machine Learning for Model Selection

Chapter 4 demonstrates how Machine Learning can serve as a framework for model se-

lection, providing new perspectives on traditional debates in Quantum Mechanics. The

findings reveal that different loss functions can be customized to target various conditional

relations, enabling the evaluation of each model’s ability to learn such relations. Addition-

ally, the flexibility of artificial neural networks allowed for the implementation of models

whose causal content goes beyond causal graphs (e.g., SCC and VIM in Table 4.3), allowing

for comparisons within a single framework.

More broadly, the implications of the findings in Chapter 4 extend to discussions about

interpretability in Machine Learning. While model precision is usually the primary focus

of evaluation, it is sometimes necessary to delve deeper into the model’s inner workings to

answer more complex questions. Chapter 4 utilized various visualizations to accomplish

this, but other questions can be tackled in a similar manner. For example, one might

explore the relationship between a model’s internal parameters and the physical parameters

of the system being considered. This approach has been used by Weinstein (2017, 2018)

to investigate highly symmetric patterns in neural network weights and their connection

to the Almada et al. (2016) argument regarding the violation of the faithfulness due to

physical symmetries. These methods could be extended to other quantum foundations

discussions, such as contextuality scenarios and PR correlations.
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Machine Learning for Causal Asymmetries

The discovery algorithm presented in Chapter 5 consists of a generalized version of the

RCC (Lopez-Paz et al. 2015) and CGNN (Goudet et al. 2018) pairwise discovery algo-

rithms. Pairwise algorithms are designed to distinguish Markov equivalent scenarios (e.g.,

X → Y versus X ← Y ), revealing that conditional (in)dependencies are not the only re-

source for extracting causal information from observational data. Instead, different types

of asymmetries can restore the direction of causation. The RCC algorithm can automati-

cally extract such asymmetries from statistical data in a domain-free manner, which makes

it possible to train on data from multiple domains and test on data from other domains.

The success of this algorithm suggests that causal relationships have universal signatures

independent of different domains or underlying data-generating processes. Real-world data

contains causal asymmetries that are universal, cannot be detected by traditional methods

based on conditional dependencies, and do not require intervention to be detected. Machine

Learning can draw out these asymmetries.

This raises questions about the physical origin of such asymmetries and the philosophical

implications of such asymmetries for the epistemology of causation. Although a complete

analysis has not been done, specific situations have been studied in the literature.

For example, Climenhaga et al. (2021) discussed causal asymmetries from a philosophical

perspective, although the authors restricted asymmetries to noises. The authors noticed

that causal asymmetries allow one to extract causal knowledge from purely observational

data without intervention, thus taking the causal asymmetries as an alternative to random-

ized controlled trials. For these reasons, the authors argued that models based on causal

asymmetries, “call for a revision of the epistemology of causation.”Climenhaga et al. (2021,

p.15)

Regarding the physical origin of causal asymmetries, Janzing et al. (2016) argued that

such asymmetries can arise from a more general independence principle between causal

mechanisms. According to the principle, the causal mechanism of the cause variable is in-

formationally independent of the conditional mechanism of effect. The authors provided a
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thermodynamic interpretation of the independence principle, suggesting that causal asym-

metries might be related to the thermodynamic arrow of time.

Machine Learning provides significant capabilities to detect causal asymmetries, which

can bring about new foundational perspectives in the philosophy of physics and under-

standing of the notion of causation. Although more analysis is required to answer the

questions raised, the success of Machine Learning algorithms in extracting causal asym-

metries highlights the need to explore this area further.

Machine Learning for Causal Compositions

The generative algorithm introduced in Chapter 5 is an example of a Machine Learning

model can use causal information to compose inputs. Although the model was trained on

3−variate samples, it was able to perform well on 8-variate samples in the test phase. How

was the model able to generate high-quality 8-variate samples without ever having seen

any?

The answer lies in the model’s architecture. The architecture is designed to utilize

causal information to piece together the training samples like a puzzle and form an overall

picture of the data-generating process. This helps the model gain a better understanding

of the training samples and use them more intelligently to estimate the underlying data-

generating process.

The basic idea of the said method is based on the principle of compositionality and

recent efforts to apply it in Machine Learning, particularly in natural language processing.

These methods aim to test a trained model with data that is distributionally different from

the training data but follows the same semantic and syntactic composition rules. Studies

have shown that Machine Learning models that use causal reasoning principles deliver high

performance in such scenarios (Lake et al. 2015).

Therefore, this thesis also highlights the relevance of Machine Learning in composition

discussions through causal information. Although the example in Chapter 5 was a specific

case, these methods can be extended to other fields in quantum foundations.
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6.3 The Spatiotemporal Problem of Entanglement

While the focus of this dissertation was on the causal problem of entanglement, it is

worth noting the spatiotemporal problem of entanglement and its connection to the causal

problem. The spatiotemporal problem arises due to the conflict between quantum non-

locality and the theory of Relativity. Specifically, it asks whether quantum non-locality

violates Relativity and if not, how the apparent tension can be reconciled. The literature

offers various answers to this question, and I do not to enter debates surrounding these

answers. Instead, I want to clarify a natural link between these debates and and the causal

problem of entanglement.

In my opinion, the link between these two discussions is how causal models face the

measurement problem. In particular, the way a causal model addresses the measurement

problem has implications for the status of the wavefunction and how the model handles

the transition from quantumness to classicality. If Relativity is viewed as a geometric

constraint on the form of dynamical laws prescribed by a physical theory, then a model

must have a Lorenz-invariant transition to be consistent with Relativity. Therefore, I

propose that the measurement problem provides a natural connection between the two

problems of entanglement, and this idea warrants further investigation in future research.
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inequalities and their violation’, New Journal of Physics 18(1), 013008.

Brask, J. B., Brunner, N., Cavalcanti, D. & Leverrier, A. (2012), ‘Bell tests for continuous-

variable systems using hybrid measurements and heralded amplifiers’, Phys. Rev. A 85.

URL: https://link.aps.org/doi/10.1103/PhysRevA.85.042116



BIBLIOGRAPHY 175

Butterfield, J. (1989), ‘A space-time approach to the bell inequality’, Philosophical Con-

sequences of Quantum Theory pp. 114–144.

Callender, C. (2015), ‘One world, one beable’, Synthese 192(10), 3153–3177.

Cartwright, N. (1979), ‘Causal laws and effective strategies’, Noûs pp. 419–437.
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Oreshkov, O., Costa, F. & Brukner, Č. (2012), ‘Quantum correlations with no causal order’,

Nature communications 3(1), 1–8.

Pearl, J. (1988), Probabilistic reasoning in intelligent systems: networks of plausible infer-

ence, Morgan kaufmann.

Pearl, J. (2000), Causality: Models, Reasoning and Inference, 1 edn, Cambridge university

press.

Pearl, J. (2009), Causality, Cambridge university press.

Pearl, J. & Verma, T. (1991), A formal theory of inductive causation, University of Cali-

fornia (Los Angeles). Computer Science Department.

Peters, J., Janzing, D. & Schölkopf, B. (2017), Elements of causal inference, The MIT

Press.
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