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Zusammenfassung

Automatisiertes maschinelles Lernen (AutoML) zielt darauf ab, Effizienz und Zugänglichkeit
von Methoden des maschinellen Lernens (ML) zu erhöhen, indem komplexe Aufgaben wie die
Modell- und Hyperparameterauswahl mithilfe von Optimierungsmethoden automatisiert werden.
Während AutoML-Systeme, insbesondere die Hyperparameter-Optimierung (HPO), im Vergle-
ich zu manuellen, expertengesteuerten Prozessen Effizienzgewinne demonstriert haben, wird die
Forderung nach Erklärbarkeit derzeit kaum erfüllt.

Die Arbeit verbindet die beiden aufstrebenden Bereiche AutoML und Explainable AI auf sys-
tematische Weise und trägt mit verschiedenen methodischen Ansätzen zu einer verbesserten
Erklärbarkeit im Kontext von AutoML bei. Hierbei werden drei Ebenen von Erklärbarkeit-
sanforderungen unterschieden: Erklärbarkeit des Modells (welches von einem AutoML-System
zurückgegeben wird), Erklärbarkeit der induzierenden Mechanismen oder Lernalgorithmen, und
Erklärbarkeit der Mechanismen und Komponenten von AutoML-Systemen selbst.

Der erste Teil dieser Arbeit befasst sich mit der Anforderung der Erklärbarkeit von Modellen, die
von AutoML-Systemen zurückgegeben werden. Der erste Beitrag gibt einen Überblick über die
multikriterielle Hyperparameter-Optimierung im Allgemeinen und motiviert Interpretierbarkeit
und Modell Sparsity als weitere Ziele von HPO. Im zweiten Beitrag dieser Arbeit wurde ein
effizientes multikriterielles HPO-Verfahren entwickelt, das sowohl die prädiktive Performanz als
auch die Modell Sparsity als ein Kriterium der Modellerklärbarkeit optimiert.

Der zweite Teil der Arbeit befasst sich mit der Erklärbarkeit von Lernalgorithmen oder induzieren-
den Mechanismen, mit welchen während eines AutoML-Prozesses experimentiert wird. Der drit-
ter Beitrag stellt eine neue Methode vor, die Partial Dependence Plots erweitert, um Effekte von
Hyperparametern der Lernalgorithmen auf die prädiktive Performance darzustellen. Die Meth-
ode berücksichtigt post-hoc eine mögliche Stichprobenverzerrung, die typischerweise in den von
AutoML-Systemen erzeugten experimentellen Daten vorhanden ist. Im vierten Artikel wird eine
Methode vorgestellt, mit der das Problem der Stichprobenverzerrung ex-ante behoben werden
kann. Hierbei wird die Suchstrategie eines Optimierers so angepasst, dass die Genauigkeit der
Erklärungen in Bezug auf die geschätzte Hyperparameter-Effekte gezielt optimiert wird.

Der letzte Teil der Arbeit beschäftigt sich mit der Erklärbarkeit von Mechanismen und Kom-
ponenten von AutoML-Systemen selbst. Ziel ist es, zu erklären, warum bestimmte Optimierer
und ihre Komponenten, die in AutoML-Systemen verwendet werden, besser funktionieren als
andere. Im fünften Beitrag dieser Arbeit wird eine gründliche Analyse von Multifidelity-HPO-
Algorithmen vorgestellt. Die Arbeit beinhaltet ein flexibles Software-Framework für Multifidelity-
HPO-Algorithmen, über welches optimiert wird. Die Ergebnisse werden mithilfe einer Ablation-
sanalyse analysiert. Diese Arbeit wurde durch eine effiziente Multifidelity-Benchmarking-Suite
(YAHPO gym) erleichtert, die den sechsten Beitrag dieser Arbeit darstellt.





Summary

Automated machine learning (AutoML) aims at increasing the efficiency and accessibility of ma-
chine learning (ML) techniques by automating complex tasks like model and hyperparameter
selection through optimization. While AutoML systems and hyperparameter optimization (HPO)
frameworks have demonstrated efficiency gains compared to manual expert-driven processes, the
requirement for explainability is currently hardly satisfied.

The work connects the two emerging fields of AutoML and explainable AI in a systematic man-
ner. The thesis includes diverse methodological approaches towards increased explainability in
the context of AutoML. Throughout this thesis, three levels of explainability requirements are
distinguished: (1) explainability of the final model, (2) explainability of the leraning algorithm,
that found the model, and (3) explainability of the AutoML system, that configured the learning
algorithm, that found the model.

The first part of this thesis addresses the requirement of explainability of models returned by Au-
toML systems. The first contributing article reviews multi-objective hyperparameter optimization
in general and motivates interpretability and sparsity as further objectives of HPO. In the second
contributing article, we develop an efficient multi-objective HPO method that optimizes for both
predictive performance and model sparsity as one criterion of model explainability.

The second part of the thesis deals with the explainability of the learning algorithms or inducing
mechanisms experimented with during an AutoML process. A third contributing article presents a
novel method that extends partial dependence plots to generate insights on the effects of hyperpa-
rameters of learning algorithms on performance. The technique accounts in a post-hoc manner for
sampling bias typically present in experimental data generated by AutoML systems. The fourth
contributing article introduces a method to address the problem of a sampling bias ex-ante by
adapting the search strategy of an optimizer to account for the reliability of explanations in terms
of hyperparameter effects.

The final part of the thesis deals with the explainability of the mechanisms and components
of AutoML systems. The aim is to explain why specific optimizers and their components used
within AutoML systems work better than others. A fifth contributing article presents a thorough
evaluation of multi-fidelity HPO algorithms. An expressive and flexible framework of multi-
fidelity HPO algorithms is introduced and automatically configured through optimization, and
the outcomes are analyzed through an ablation analysis. This work has been facilitated by an
efficient multi-fidelity benchmarking suite (YAHPO gym), which is the sixth contribution of this
thesis.
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Part I.

Motivation and background





1. Motivation

The growing importance of automated machine learning

“Virtually all technologies introduced [...] do something better, cheaper, sooner or more reliably”,
as stated in an article published back in 1998 by the OECD (1998) discussing the opportunities and
risks associated with new technologies of the upcoming twenty-five years. machine learning (ML)
(ML) is among those technologies that have played an essential role in the past decade. ML relies
on learning algorithms to automatically identify patterns and relationships in data without the
need for explicit programming. According to Shalev-Shwartz and Ben-David (2014), the input
to a learning algorithm is training data, representing experience. The output is some expertise,
typically in the form of a model capable of making predictions or decisions about new data
inputs. Through the widespread availability of data and computational resources, ML has become
one of the fastest-growing fields in computer science, with applications in various industries and
domains. The past few years have brought forth remarkable applications. It was demonstrated
that better product recommendations (Portugal et al., 2018) can be given, manufacturing processes
can be cheaper through predictive maintenance (Zonta et al., 2020), new drug compounds can be
discovered sooner (Vamathevan et al., 2019), and anomalies in medical data can be detected more
reliably (Park et al., 2019; Ardila et al., 2019; Baloglu et al., 2019) with the help of ML tools.

The ML lifecycle involves several stages, including (1) understanding and defining an underlying
problem, (2) collecting, managing, and making data accessible, (3) developing a model, as well
as (4) deploying and maintaining it in a production environment. Successful development and
deployment of ML models have been a (mostly) manual process that requires, among others,
a high level of domain expertise, statistical understanding and ML knowledge, and data and
software engineering skills (Baskarada and Koronios, 2017). Organizations may lack the expertise
or resources to successfully develop and deploy ML models, which hinders them from realizing the
full potential of ML. At the core of the ML lifecycle is the development of the model itself, which
typically comprises data pre-processing, feature engineering, model selection, and hyperparameter
optimization. Any of these steps requires a multitude of decisions to be made, which ultimately
add to a complex space where individual choices can significantly impact final model performance.
Even experts have difficulty dealing with this complex decision space efficiently despite years of
experience. Users with little or no ML expertise find it challenging to overcome this barrier (Hutter
et al., 2019) at all.

Holding the promise of increasing efficiency of ML development and democratizing ML as tech-
nology, automated machine learning (AutoML) has attracted great interest in the ML community
in recent years (Hutter et al., 2019). AutoML aims at streamlining the ML process by formulat-
ing relevant decisions to be made throughout the ML process as configurations of a pipeline and
finding the best one via optimization. Applications of AutoML in a wide range of domains demon-
strate that a systematic and efficient search through configurations of a well-designed pipeline can
bring remarkable ML tools into practice. Successful applications can be found in the healthcare

3



1. Motivation

industry (Mustafa and Azghadi, 2021) with example uses in biomarker discovery (Karaglani et al.,
2020), survival prediction for diseases like COVID-19 (Ikemura et al., 2021) or cardiovascular dis-
eases (Alaa et al., 2019). Other fields of applications include manufacturing (Krauß et al., 2020),
or finance (Yang et al., 2022). AutoML has the potential to give us better models, provide them
cheaper and sooner by reducing the need for specialized knowledge, and deliver model quality
reliably independent of human errors.

Risks associated with the use of AutoML

Undisputably, any new technology can transform the world for the better while simultaneously
creating new dangers and risks (OECD, 1998). This is arguably true for AutoML.

One type of risk stems from the fact that it is often challenging to assess and avoid unintended be-
havior of ML models such as unethical or unfair decisions (e.g., a bias towards African-Americans
in predicting the risk of a person to recommit another crime (Mehrabi et al., 2021)), vulner-
ability to attacks (e.g., adversarial attacks against neural networks in cyberspace (Akhtar and
Mian, 2018)), inconsistent model behavior as a response to a domain shift (e.g., real-world digi-
tal histopathology differing from training data due to differences in the data acquisition pipeline
(Stacke et al., 2021)), or otherwise unintended model behavior. The black-box nature of most
modern ML models makes it challenging to understand, quantify and control potential risks.
Even experts are rarely able to understand and explain model decisions. Just as AutoML could
bring beneficial models into practice, AutoML could potentially also speed up the deployment of
models unknowingly of highly unintended behavior and destructive influence on society.

As AutoML becomes more prevalent, risks may arise due to organizations becoming increasingly
dependent on AutoML tools while losing control over and understanding of the modeling pro-
cess itself. A well-performing AutoML system provided via a service interface, requiring, in the
most extreme, no more than uploading data and pressing a button to develop an ML model, is
likely to cause organizations to lose more and more understanding and knowledge of the learning
process. Knowledge and intuition about which preprocessing methods, learning algorithms, and
hyperparameters work best might not be built or maintained within organizations. It might be
even more challenging to relate modeling decisions to model behavior and to understand and
counter suboptimal or unexpected outcomes than today. In the face of changing business needs or
technological developments, this could mean a loss of flexibility and adaptability for organizations.
Furthermore, understanding how ML algorithms work is the key to scientific discoveries (Hutter
et al., 2014) and the advancement of the state of the art in ML.

Another consideration concerns the risks associated with a lack of understanding why specific
AutoML systems are superior to others. High-performing AutoML tools may be designed as
overly complex and unsustainable frameworks because crucial design decisions can not be distin-
guished from ineffective ones. Researchers, who aim to develop more efficient or more sustainable
AutoML tools, might err in the dark because there is a lack of understanding of the key per-
formance drivers of AutoML tools. There is at least still the (usually effortful and non-trivial)
possibility for open-source tools to deduce the importance of certain design decisions based on
available code, publications, and well-designed benchmarking experiments. Unfortunately, many
commercial AutoML tools are offered as service tools without publicly available code, and users
interact with such tools only via interfaces. Focusing on the benefits of AutoML tools, companies
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may become dependent on service tools that they often can neither access as open-source code
nor understand. There is a danger that a few prominent players will control the availability and
accessibility of AutoML, and others can neither replicate nor control them properly.

Considering all the potential offered by AutoML, it is nevertheless essential to be aware of the
technology’s risks and limitations and establish appropriate safeguards.

Understandability is key to evaluate and control risks

How can we broadly deploy AutoML as a technology and deliver on all of its promises – democra-
tizing ML as a technology, improving the efficiency of the ML lifecycle, and improving real-world
outcomes through more accurate models – while hedging against the associated risks?

This work advocates that a reasonable level of control of AutoML systems requires a solid under-
standing of the complex underlying black-box mechanisms involved in AutoML in the first place.
We believe that an increased understanding of AutoML systems is required at different levels: On
the level of ML models, on the level of ML algorithms or inducing mechanisms, and on the level
of AutoML systems themselves. We emphasize that the type and desired level of understanding
depends on whom we regard as the user of the AutoML system. We broadly distinguish ML
practitioners, domain experts, and AutoML researchers as three main user segments, which are
further described in Table 1.

Expertise
User group Domain ML AutoML Motivation

Domain expert high low low Access ML as technology
ML practitioners low high low Increase efficiency and performance

AutoML researcher low high high Build better AutoML tools

Table 1.1.: A rough distinction into main user groups of AutoML, motivated by Zöller et al. (2022),
as well as their motivation for using AutoML. AutoML may enable domain experts to
use ML as technology at all and bring in their domain knowledge. ML practitioners
hope to increase efficiency of model development processes. AutoML researchers study
AutoML systems to build better and and more efficient tools.

Understanding ML models The main output of running an AutoML system on a real-world
dataset is an ML model. The ultimate goal is to deploy such a model in a practical setting.
Ideally, developing a model with AutoML only requires pushing button, waiting for the AutoML
system to complete its execution and transferring the model into a production environment. How
can organizations explain or justify the model decisions to affected individuals or tell them what
to change to realize a different conclusion? How can we detect that a model discriminates against
certain social groups or returns otherwise unfair or unethical decisions? How can such a model
be audited against certain requirements such as fairness, privacy, reliability, or causality (Molnar,
2022; Doshi-Velez and Kim, 2017)? In certain cases, there is no need to understand why a
specific prediction was made. Particularly if models are deployed in low-risk environments and
if the underlying problem is well understood (Molnar, 2022), a carefully performed evaluation of
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1. Motivation

model performance may be sufficient to gain enough trust that a model will behave reasonably
in deployment. However, suppose models have a high impact, for example, in highly regulated
domains like healthcare or finance. In that case, understandability should be an indispensable
requirement to ensure flaws in the model can be assessed early on before causing broader harm to
individuals or society. The opinion of the European Commission (Hamon et al., 2020) and the draft
of an artificial intelligence (AI) regulatory framework proposal1 support this view. Depending on
the industry, the capability of explaining and understanding model behavior should be an essential
requirement for AutoML systems. It is especially domain experts who need to justify using a model
given a domain for which this kind of explainability is highly relevant.

Understanding ML algorithms Traditionally, manual experimentation with different preprocess-
ing methods, feature engineering techniques, learning algorithms, and hyperparameters to come
up with a well-performing ML pipeline given a problem had been the key task for ML practi-
tioners. Despite demonstrated superiority of automated approaches (Bergstra et al., 2011; Hutter
et al., 2019; Erickson et al., 2020), many ML practitioners still tend to use HPO methods with
low sampling efficiency or manual tuning (Hasebrook et al., 2022). One reason they prefer man-
ual tuning is that it helps understand how hyperparameters influence the respective ML models.
Typical questions asked are which hyperparameters are crucial to high performance and what
a hyperparameter’s effect on performance looks like. A study conducted by Zöller et al. (2022)
also gave additional evidence that such insights would increase trust that ML practitioners would
place into an AutoML system. On the other hand, a better understanding of the inducing mech-
anism and the effects of hyperparameters may also be beneficial for AutoML researchers as it
can help maintain flexibility and adaptability in times of changing business needs or technologi-
cal developments. Let us consider a hypothetical scenario where relationships in future datasets
were considerably more complex than the ones we encounter today. It is plausible that the ex-
isting hypothesis spaces, covered by conventional AutoML tools, may be inadequate in modeling
the intricate relationships within these datasets. However, suppose we possessed a comprehen-
sive knowledge of the hyperparameters that impact the capacity of a hypothesis space. In that
case, we could strategically extend the respective hyperparameter domains, thereby overcoming
the data challenges more efficiently. Furthermore, understanding which learning algorithms and
hyperparameters work best in which types of application domains could help advance AutoML
research and development faster. Generating insights about the functioning of ML algorithms and
the influence of hyperparameters is key to advancing scientific discoveries (Hutter et al., 2014) and
could help advance the state of the art. Already today, we do not know much about how certain
architecture decisions and hyperparameters in the context of deep neural networks impact model
performance, and research has started to explain specific mechanisms (Santurkar et al., 2018). We
advocate designing AutoML systems that do not only return a recommendation in a take-it-or-
leave-it manner (Zöller et al., 2022) but return in addition insights gained about the underlying
ML algorithms. We believe that these types of insights are most relevant to ML practitioners and
AutoML researchers rather than domain experts.

Understanding AutoML systems AutoML systems typically combine a rich pipeline covering
various preprocessing operators, feature engineering variants, learning algorithms, and hyperpa-

1European Commission (2021). Proposal for a regulation of the European parliament and council laying down
harmonized rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts.
COM/2021/206 final. https://artificialintelligenceact.eu/the-act/.
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rameter choices with a powerful optimizer that searches over the respective search space given a
dataset. The potential of a robust, efficient, and safe implementation of an AutoML system is
vast: Turning any task for which data is available into a prediction machine. There is commercial
interest behind: big tech players like Google or Amazon put considerable resources into developing
their AutoML systems. There are also increasingly many non-commercial open-source AutoML
frameworks developed by the community (Zöller and Huber, 2021). Which of these AutoML sys-
tems work best? Why is one tool superior to the others? Do some AutoML systems only work
well on certain tasks? Does an algorithmic difference impact performance, or is it related to a
superior implementation? Are there ineffective components of AutoML implementations (e.g.,
too large search pipelines, optimizers with too much overhead) that do not impact performance,
making it more complex than it has to be? It should be of interest to society and particularly the
research community to maintain a solid understanding of AutoML as a technology, its drivers, and
its limitations to avoid misuse of and maintain control over such a powerful technology. Moreover,
understanding an AutoML system’s workings will help us advance the state of the art and build
more sustainable AutoML systems instead of sticking to unexplained design choices from prior
work. Even though first broad initiatives to compare AutoML tools (Gijsbers et al., 2022) exist,
we still need to generate a more profound knowledge about what AutoML systems work best and
why and for which types of applications, keeping in mind that the no-free-lunch theorem (Wolpert
and Macready, 1997) also applies to AutoML.

Explainability in AutoML

AutoML has made significant technical advances and performs solidly in many areas today (Zöller
and Huber, 2021), but has yet to achieve widespread adoption, particularly in non-tech domains
(Serband et al., 2020). We are in an area of tension between potential overregulation and under-
regulation of such automated systems, between the non-utilization of a promising technology and
exposure to risks we are incapable of comprehending.

We believe that it is important to prioritize the design of AutoML systems, which give users a
level of understanding to allow them to interact safely, robustly, and ethically with AutoML in
the long-term and help us build trust into those systems and making informed decisions in the
short term.

This work contributes to more understandable AutoML at the levels introduced: models, learning
algorithms, and AutoML systems. At all these three levels, we face a similar challenge: the
object we wish to comprehend is a complex, often black-box object which is by nature difficult to
understand for humans. The work connects the two emerging fields of AutoML and explainable
AI. While the field of explainable AI has so far mainly focused on explaining model behavior, we
expand respective concepts, discuss them in relation to AutoML and show methodological ways
of building explainability into AutoML systems.

Section 2 will provide background on the topic of AutoML and explainability: First, a formal
definition of ML, HPO, AutoML, and algorithm configuration (AC) is given in Section 2.1 and
looked at from a multi-level inference perspective in Section 2.2. An overview of state of the art
HPO algorithms and AutoML frameworks is given in Section 2.3, and the general field explain-
ability as a subfield of ML is introduced in Section 2.4. Section 3 provides a systematic view on
the field of explainable AutoML based on the different levels of inference (model, inducer, and
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1. Motivation

AutoML system level) and assesses the current state of the art in this field. Parts 4, 5, and 6 are
the core of this thesis and present methodological advancements to the current state of the art.
Finally, we discuss potential future works to advance the field further and ultimately create more
explainable AutoML systems.
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2. Background

2.1. Definitions

In this section, we introduce the concepts of supervised ML, HPO, AutoML, and AC, which
represent elemental foundations of this work, in a formalized manner.

2.1.1. Supervised machine learning

The goal of supervised ML is to fit a model f : X → Rg, g ∈ N, based on a (training) dataset
D with observations

(
x(i), y(i)

)
∈ X × Y, i ∈ {1, 2, ..., n}, so that it generalizes well on new

observations (x, y) drawn independently from an unknown, underlying distribution Pxy (Bischl
et al., 2021). The observations in D are assumed to be independent and identically distributed
samples drawn Pxy. The concept of the (true) generalization error captures a model’s ability to
make accurate predictions on unseen data

R(f) := E(x,y)∼Pxy
[L(y, f(x))] , (2.1)

where the loss function L : Y ×Rg → R+
0 is a measure of deviation between true label y and the

prediction f(x). Many different loss functions do exist; common examples for loss functions are
L2 loss L (y, f(x)) = (f(x)− y)2 or L1 loss L (y, f(x)) = |f(x)− y| for regression tasks (Y ⊆ R),
and 0-1-loss L (y, f(x)) = 1[y·f(x)>0] or Bernoulli loss L (y, f(x)) = −y ·f(x)+ log (1 + exp (f(x)))
for binary classification tasks (y ∈ {0, 1}). There are also appropriately designed loss functions for
other types of tasks, such as for multi-label classification (Dı́ez et al., 2015) or survival prediction
(Lee et al., 2022).

The process of fitting a model f from a dataset D is also referred to as model training or model
fitting (Bischl et al., 2021). We define model training formally via an inducer function I, also
referred to as ML learner. Configured through a vector of hyperparameters λ ∈ Λ, the inducer
I maps a dataset D to a model f : X → Rg in the hypothesis space H, which is the set of
all functions f (hypotheses) that the dataset could hypothetically be mapped to by the inducer
I. Throughout this thesis, we assume that H is defined as a parameterized family of functions
H := {f : X → Y | f(x) = fθ(x) for θ ∈ Θ} and consequently define

I : D× Λ→ Θ
(D,λ) 7→ θ,

(2.2)
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2. Background

where D is the set of all datasets an inducer can take as input.

Many modern ML algorithms rely on empirical risk minimization (ERM), i.e., the minimization of
the empirical risk Remp(θ) := ∑

(x,y)∈D L (y, fθ(x)) over Θ. It should be noted that Remp is only
a proxy of the true generalization error R, which is the actual quantity of interest. In particular,
efficient optimization over a hypothesis space that is too rich in relation to the complexity of a
dataset can result in a model with a generalization error that is considerably higher than the
empirical risk. This is a common phenomenon that is referred to as overfitting (Bischl et al.,
2021).

The capability of I to return a well-generalizing model given a dataset of size n with
hyperparameter configuration (HPC) λ, measured via a observation-wise loss1 function L, is
defined as

GE(I,λ, n, L) := ED∼Pn
xy ,(x,y)∼Pxy

[L(y, I(D,λ)(x))] , (2.3)

where the expected value is taken over a training dataset D and test sample (x, y) sampled
independent and identically distributed (i.i.d.) from Pxy.

Usually, Pxy is unknown in practice and the generalization error GE must be estimated from a
single, given dataset D. Therefore, GE is estimated through holdout

ĜE (I,λ,D, (Jtrain, Jtest) , L) = 1
ntest

∑

(x,y)∈DJtest

L (y, I (DJtrain λ) (x)) , (2.4)

where Dtrain :=
{(

x(i), y(i)
)
∈ D | i ∈ Jtrain

}
and Dtest :=

{(
x(i), y(i)

)
∈ D | i ∈ Jtest

}
represent

a partition of the dataset D of size ntrain and ntest respectively, indexed through index vectors
Jtrain ∈ {1, 2, ..., n}ntrain and Jtest ∈ {1, 2, ..., n}ntest . To reduce the variance of the estimator,
resampling strategies can be applied which essentially compute Estimate (2.4) repeatedly for
different train-test-splits J =

{(
J

(b)
train, J

(b)
test
)}

b=1,...,B
and aggregate2 those estimates

ĜE (I,λ,D,J , L) = 1
|J |

∑

(Jtrain,Jtest)∈J
ĜE (I,λ,D, (Jtrain, Jtest) , L) . (2.5)

A popular variant is k-fold-cross-validation (CV), where the available data D is split into k par-
titions of same size where training sets are disjoint from each other.

Common learning algorithms are linear regression or regression trees for regression, and logis-
tic regression or decision trees for classification tasks. Ensembling-based methods like bagging

1For the sake of simplicity, we use the above definition; if a non-pointwise performance measure ρ is
used (such as the area-under-the-curve, AUC), the generalization error is defined via GE(I,λ, ntrain, ρ) :=
ED,Dtest∼Pxy

[
ρ
(
ytest,FDtest,I(D,λ)

)]
, with FDtest,I(D,λ) the matrix of predictions of the model I(D,λ) on Dtest

and ytest is the vector of labels of test dataset Dtest. For more information, see also Bischl et al. (2021).
2Here, we show the formula for aggregation via the mean function. However, also other aggregation functions

could be used (Bischl et al., 2021).
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(Breiman, 1996), e.g., random forests (Breiman, 2001), or boosting (Friedman, 2001), e.g., xg-
boost (Chen and Guestrin, 2016), have become popular in recent years. Neural networks have
gained a lot of attention recently, particuarly due to their ability to handle complex data types
such as image and text data. Secondary properties beyond the capability to generalize – such
as model complexity (Molnar et al., 2019), robustness (Scher and Trügler, 2022), and fairness
(Corbett-Davies and Goel, 2018) – are often associated with the respective model class, even
though it may be challenging to quantify these properties.

2.1.2. Hyperparameter optimization and automated machine learning

The capability of the trained model to generalize well on unseen data typically depends on the
chosen HPC λ in a non-trivial and subtle way (Bischl et al., 2021). Identifying well-performing
HPCs is a complex task requiring expert experience, unwritten rules of thumb, or sometimes brute-
force search (Snoek et al., 2012). Therefore, one tries to solve the decision problem by formalizing
it as an optimization problem, the HPO problem, and running an efficient optimizer over it to
reduce human effort and improve generalization performance (Feurer and Hutter, 2019).

The goal of (automated) HPO is to identify a HPC λ ∈ Λ̃ leading to an inducer I that generalizes
well on a given dataset D. We call Λ̃ =⊂ Λ̃1 × Λ̃2 × · · · × Λ̃l ⊆ Λ the search space, a typically
box-constrained sub-space of Λ which contains all hyperparameters and respective ranges that are
searched over during optimization. The general HPO problem is formally defined as

λ∗ ∈ arg minλ∈Λ̃ c(λ) (2.6)

where λ∗ denotes the theoretical optimum, and c(λ) is a shorthand for the estimated general-
ization error ĜE (I,λ,D,J , L), taking I,D,J and L as fixed. Note that HPO problem can be
extended by additional criteria, such as different metrics for the generalization error, or metrics
indicative of fairness, robustness, sparsity, model complexity, or model interpretability. We then
term the problem as multi-objective HPO problem. Additional criteria can be either introduced
as constraints (constrained HPO problem) or as additional objectives c : Λ→ Rm,m ≥ 1, (multi-
objective HPO problem).

An HPO algorithm A, defined as

A : D× Γ→ Λ
(D,γ) 7→ λ,

(2.7)

takes a dataset D as input and returns a HPC which is then used to train a final model on the
data D. An HPO algorithm may be configured through a design configuration γ ∈ Γ. We also
regard the chosen inducer I and the specification of the search space Λ̃ as part of the input γ to
the algorithm A. In classical HPO, the choice of the inducer I and search space Λ̃ are typically
left to the user of an HPO framework. In contrast, AutoML tools come with a definition of the
inducer I (typically, a pipeline inducer as illustrated in Figure 2.1) as well as a defined search
space Λ̃, taking those decisions from the user.
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The HPO problem (2.6) is generally classified as an expensive black-box optimization problem
(Feurer and Hutter, 2019), as typically no analytic information about c(λ) is available, and an
evaluation of c(λ) is expensive as it involves training a model to estimate the generalization error
of a model trained with HPC λ on the dataset D. HPO algorithms are therefore typically required
to be sample-efficient optimizers (i.e., requiring a low number of evaluations of c) that do not rely
on analytical (e.g., gradient) information. They are also required to be able to operate efficiently
on mixed3 and possibly hierarchical4 search spaces which are common to HPO problems.

Deriving a model from raw data typically requires a series of sequential decisions to be taken that
may influence generalization performance. The generalization of the classical HPO problem to
also cover model selection commonly referred to as the Combined Algorithm Selection and Hy-
perparameter (CASH) (Thornton et al., 2013) problem. We can extend our understanding of an
inducer I from only performing model training to also performing model selection by introduc-
ing an additional parent-level hyperparameter that selects between different learning algorithms.
Optimization of hyperparameters of the different learning algorithms is made conditional on the
learning algorithm selected (Thornton et al., 2013). Beyond that, a whole pipeline of nodes, each
of which may represent preprocessing operations, a learner, or postprocessing operations, can be
considered an inducer I (Bischl et al., 2021). Similar to how model selection can be formalized by
introducing a categorical parent-level hyperparameter which represents model choice, a branching
between different preprocessing or postprocessing operators can be represented by an additional
categorical hyperparameter. This way, our definition of the HPO problem (2.6) covers both HPO
in the narrow sense (i.e., the optimization of hyperparameters of a learning algorithm) and the
broader sense (i.e., the optimization of configuration of an. ML pipeline). Figure 2.1 shows a
simple example of an ML pipeline along with the respective (hierarchical) search space spanned
up by this pipeline (see Table 2.1).

Neural architecture search (NAS) is a subfield of AutoML which focuses on automating architec-
ture engineering of deep neural networks (Elsken et al., 2019), intending to find the best possible
architecture for a particular task. Through formulating a suitable search space over architectures,
NAS can be solved through HPO. Another subfield of AutoML is meta-learning (Vanschoren,
2018), which refers to the science of systematically observing how different ML approaches per-
form on a wide range of learning tasks and exploiting this knowledge to learn new tasks faster
than otherwise possible. This thesis focuses on HPO-based AutoML, and mostly on AutoML for
tabular data tasks. We discuss the relevancy of this work for NAS and meta-learning, as well as
potential future research directions in Part 7.

The key principle of AutoML is the definition of such a pipeline and running an efficient optimizer
over the configurations of this pipeline (Bischl et al., 2021).

2.1.3. Algorithm configuration for AutoML systems

HPO aims to find a HPC λ of the inducer I which leads to a well-generalizing model on a specific
dataset D. For HPO and AutoML frameworks to be as useful as possible in practice, they should
be designed to perform well on a broad range of different tasks (i.e., datasets from different
data-generating processes). There is a multitude of design choices to be made by researchers or

3Containing continuous, discrete, and/or categorical HPs
4Containing conditionality, i.e., there is at least one HP λi is only active when another HP λj is an element of a

given subset of Λj and inactive otherwise, i.e., not affecting the resulting learner (Thornton et al., 2013).
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Figure 2.1.: Example illustration of a reasonably simple ML pipeline including imputation for
missing values (mean, median), dimensionality reduction (PCA, no dimensionality
reduction), two models (support vector machine and linear model), and hyperpa-
rameters of the SVM. For PCA, there is a hierarchical dependency on the integer
parameter k (hidden dimension). The SVM model has a hierarchical dependence on
the kernel type (radial vs. linear). The radial kernel has another hierarchical depen-
dency on two numeric hyperparameters. The configuration space spanned up by this
pipeline is mixed-hierarchical.

developers of AutoML systems: choosing the optimizer (e.g., Bayesian optimization (Snoek et al.,
2012) or Hyperband (Li et al., 2017)), configuring the optimizer (e.g., the size and type of the
initial design, the acquisition function, the surrogate model and further hyperparameters of the
optimizer (Lindauer et al., 2019)), as well as the specific design of the pipeline to be tuned over.
While the pipeline design ultimately influences the richness of the hypothesis space realizable
within an AutoML system, the choice and design of the optimizer affect how efficiently the best
configuration λ (and thus also the best model in the hypothesis space) can be found. All these
design choices span a – typically mixed-hierarchical – space of design choices, leading to differences
in performance of AutoML systems (Gijsbers et al., 2022).

Expressing all these decisions as design parameters γ ∈ Γ, we formulate the design of an AutoML
framework as an optimization problem. Let A be the HPO algorithm, configured via a design
configuration parameter γ, which takes a dataset D and returns a HPC λ ∈ Λ. The AC problem
for designing an HPO algorithm (or, more broadly, an AutoML system) that works well across a
range of problem instances (i.e., different tasks) is defined as

γ∗ ∈ arg minγ∈ΓEω∼PΩ [ζ(A(ω,γ))] , (2.8)
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Hyperparameter Type Range Dependency

Imputation λimp categorical {mean, median} –
Dimensionality reduction λdim categorical {PCA, none} –

Hidden dimension λdim, k integer {1, 2, ..., kmax} λdim = PCA
Model λmodel categorical {SVM, LM} –

Kernel type λkernel categorical {radial, linear} λmodel = SVM
Kernel lengthscale λγ numeric [γmin,γmax] ⊆ R+

0 λkernel = radial
Regularization constant λC numeric [Cmin, Cmax] ⊆ R+

0 λmodel = SVM

Table 2.1.: Search space spanned up by the hyperparameters of the example pipeline shown in
Figure 2.1. The table shows the type of the hyperparameters (categorical, integer,
and numeric) and shows respective ranges. The hyperparameter k, representing the
hidden dimension, is only active the principal component analysis (PCA) is chosen as
dimensionality reduction method. The SVM hyperparameters kernel type λkernel and
regularization constant λC are only active if the SVM is chosen as model. If the radial
basis function kernel k(x,x′) = exp

(−γ‖x− x′‖2) is chosen, the hyperparameter γ
becomes active.

where ζ is a cost metric (a metric for generalization performance and/or secondary metrics for
fairness, robustness, complexity of a respective outcome) and Ω is the space of problem instances.
Since the distribution over problem instances PΩ is usually unknown, we approximate the objective
function through a mean estimate

γ̂ ∈ arg minγ∈Γ κ(γ), (2.9)

with κ(γ) := 1
K

∑
ω∈W ζ(A(ω,γ)) and W = {ω(1), ω(2), ..., ω(K)} ⊆ ΩK a set of K ∈ N prob-

lem instances, for example taken from benchmarking platforms like OpenML (Vanschoren et al.,
2013).

We define a solver to the AC problem (2.9) as

C :
⋃

k∈N
Ωk → Γ

W 7→ γ,

(2.10)

where Ω is the set of all problem instances.

The key difference between the AC problem and the HPO problem is that the HPO problem
optimizes for a single problem instance, while the AC problem optimizes across multiple problem
instances. An HPO algorithm should provide a configuration λ for which the inducer I returns
a well-generalizing model for the given dataset D. A solver to the AC problem for HPO should
return a configuration γ, which results in an HPO algorithm that will perform well on problem
instances sampled from PΩ.

The AC problem in the context of HPO and AutoML also constitutes an expensive black-box
problem: The analytical from of κ(γ) is not known, and an evaluation of κ requires running A
multiple times, which in turn requires evaluating c several times.
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2.2. A multi-level inference perspective on AutoML

The term inference refers to the process of reasoning or drawing conclusions based on available
evidence or information. In this section, we point out how the three concepts introduced in Section
2.1 can be seen as types of inference and how they are intertwined in terms of a multilevel inference
perspective.

First-level inference The primary goal in ML is to identify a model f , as specified by its model
parameters θ, from training data D so that it generalizes well on new data. In other words, ML
aims to infer model parameters θ̂ from D

θ̂ = I(D,λ). (2.11)

Usually, the inducer I, parameterized by λ, internally solves an optimization problem

θ̂ ∈ arg minθ∈ΘRemp(θ) (2.12)

We refer to Equation (2.11) as first-level inference. The input (a dataset D) is mapped to an
output (model parameters θ̂ specifying a model f) through an inducer function I that usually
relies on minimizing the first-level objective (2.12). The inducer is commonly parameterized by
hyperparameters λ ∈ Λ, which may influence the effectiveness and efficiency of the inducer I to
return a well-generalizing model f .

Second-level inference The goal of HPO is to find a configuration λ to set the stage for successful
first-level inference. Hyperparameters λ usually must be set before first-level inference (2.11).
The process of (automatically) finding a good HPC prior to model training can be understood as
another type of inference: inferring a HPC λ̂ from data D

λ̂ = A(D,γ). (2.13)

The HPO algorithm A, parameterized by γ, internally solves an optimization problem

λ̂ ∈ arg minλ∈Λ c(λ) (2.14)

We refer to Equation (2.13) as second-level inference. The input (a dataset D) is mapped to an out-
put (hyperparameters λ) through a function A that usually relies on minimizing the second-level
objective (2.14). The HPO algorithm A is again parameterized by a (second-level) hyperparameter
γ ∈ Γ, which may influence the effectiveness and efficiency of the HPO algorithm A to return a
well-generalizing inducer I.
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Note that we use the terms first- and second-level5 inference in line with Guyon et al. (2010),
who coined the term multi-level inference as a learning problem organized into a hierarchy of
learning problems. The two levels show parallels: An inducing mechanism (I and A, respectively),
parameterized by a hyperparameter (λ and γ, respectively), is used to infer a parameter (θ̂ and
λ̂, respectively) from data, by internally solving an optimization problem (objectives (2.12) and
(2.14), respectively). We emphasize the nested character of the two optimization problems: A
single evaluation of the second-level objective for a HPC λ requires performing first-level inference
repeatedly. The outcome of the second-level inference, a HPC λ̂, sets the frame for where first-level
optimization is taking place and is thus an often success-critical input to first-level inference.

Third-level inference The goal of AC for HPO is to find a configuration γ that will set the
stage for successful second-level inference. The configuration of an HPO algorithm (or, more
generally, an AutoML system) has to be set prior to the use of such an algorithm or framework
in a way such that it ideally performs well on a broad set of problem instances. The process of
(automatically) designing a well-configured HPO algorithm can be again understood as a type of
inference: inferring a configuration γ̂ from data W (a set of different problem instances)

γ̂ = C (W) . (2.15)

An (HPO) algorithm configurator C internally solves an optimization problem

γ̂ ∈ arg minγ∈Γ κ(γ) (2.16)

We refer to Equation (2.15) as third-level inference. The input (a set of problem instances W)
is mapped to an output (second-level hyperparameters γ) through a function C that relies on
minimizing the third-level objective (2.14).

As suggested by Guyon et al. (2010), a multi-level perspective can introduce further inference
levels. Here, we introduced a third level, setting the stage for second-level inference. We again
emphasize that the different levels of inference are nested within each other: An evaluation of
the third-level objective requires multiple evaluations of the second-level objective, which again
requires multiple evaluations of the first-level objective. Figure 2.2 schematically visualizes how
the different problems are intertwined.

5Note that (Franceschi et al., 2018) refer to the first and second level objective as inner and outer objective.
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Figure 2.2.: This schematic representation illustrates the parallels and nested characters between
the different levels of inference. For each level, there is an inducing mechanisms (I,
A, and C, respectively), configured by a hyperparameter (λ, and γ, respectively)
which infers a lower-level parameter (θ̂, λ̂ and γ̂, respectively). Note that we do
not introduce a further hyperparameter to configure C even though also C can be
considered configured by some higher-level hyperparameter.

2.3. Algorithms and frameworks

This section gives an overview of common HPO algorithms and AutoML frameworks. Note that
this overview is not exhaustive and will not go into the details of individual algorithms and
frameworks. In Chapter 3, we will provide an in-depth view of HPO and AutoML frameworks
from an explainability perspective.

2.3.1. HPO algorithms

An HPO algorithm A is designed to solve the HPO problem (2.6). Bischl et al. (2021) characterize
HPO algorithms by how the trade-offs exploration-vs-exploitation and the inference-vs-search
trade-offs are handled; further relevant characteristics of HPO algorithms are parallelizability,
noise handling, multi-fidelity, and how they can handle search space complexity.

Two of the simplest algorithms are grid search (GS) and random search (RS). GS evaluates every
grid point of a discretized search space Λ̃ ⊆ Λ exhaustively. RS evaluates HPCs randomly drawn
from an (e.g., uniform) distribution over Λ̃. Still today, RS is a ubiquitous algorithm because
it is simple and works remarkably well in the context of HPO due to the often low effective
dimensionality of the problems occurring there (Bergstra and Bengio, 2012).

Over the past several years, the use of Bayesian optimization (BO) (Mockus, 1974; Jones et al.,
1998) to solve HPO problems (Snoek et al., 2012) has increased considerably because of its demon-
strated superiority over RS in the context of HPO (Turner et al., 2021). BO is a black-box opti-
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mization algorithm which sequentially proposes configurations λ(1), ...,λ(T ) on which the objective
is evaluated cλ(1) , ..., cλ(T ) . BO is based on the idea of learning from the collection of all evaluated
points, also referred to as archive AT =

{(
λ(i), cλ(i)

)}
i=1,...,T

, to choose the next configuration
λ(T+1) as efficiently as possible. This is operationalized by training a surrogate ĉ on the archive
AT and feeding it into an acquisition function a : Λ → R to estimate the utility of evaluating
an (unseen) configuration λ. Typically, a probabilistic model is chosen as a surrogate model,
such as a Gaussian process (Rasmussen, 2003). This allows not only considering the predicted
performance of an HPC but also (posterior) uncertainty within an acquisition function. Based
on predicted performance and (posterior) uncertainty, acquisition functions typically trade off
exploration (i.e., sampling in regions with few data points and high posterior uncertainty) and ex-
ploitation (i.e., sampling in regions with low mean). Commonly used acquisition functions are the
expected improvement (EI) (Jones et al., 1998), the lower confidence bound (LCB) (Jones, 2001;
Srinivas et al., 2010), entropy search (Hennig and Schuler, 2012; Hernández-Lobato et al., 2014)
and knowledge gradient (Wu et al., 2017). Song et al. (2022) demonstrate how many acquisition
functions (e.g., EI) can be equivalently obtained by a likelihood-free formulation, thus extending
BO to a broader class of models and acquisition functions. Extensions of BO to multi-objective
problems do exist as well (Knowles, 2006; Ponweiser et al., 2008; Belakaria et al., 2019).

Another class of optimization algorithms applied to HPO problems are evolutionary strategies
(ES), as very aptly summarized by Bischl et al. (2021). Examples are the (single-objective)
CMAE-ES algorithm (Hansen and Auger, 2011), e.g., used in the context of HPO for deep neural
networks (Loshchilov and Hutter, 2016). ES can be straightforwardly extended to also address
multi-objective problems; a popular multi-objective algorithm is the NSGA-II (Deb et al., 2002),
for example incorporated in the AutoML framework TPOT (Le et al., 2020). Figure 2.3 illustrates
typical behavior of the GS, RS, BO, and ES.

In the context of increasing dataset sizes and increasingly complex models making performance
evaluation more expensive, multi-fidelity algorithms have become a common technique to lower
the resources for evaluations within HPO (Feurer and Hutter, 2019). Multifidelity algorithms are
a class of optimization algorithms that leverage lower fidelity evaluations (e.g., training a neural
network for fewer epochs) to optimize an objective function more efficiently. A popular example
is the Hyperband (Li et al., 2017) algorithm, which is based on successive halving (Jamieson
and Talwalkar, 2016), and extensions to it like BOHB (Falkner et al., 2018). Hyperband starts
with a set of models trained at a low resource level (for example, the number of epochs a neural
network is trained), typically resulting in a low-fidelity approximation of the objective value. The
models with the best approximated function value are progressed into the next stage (e.g., half
of the models), where they are retrained with increased resources (e.g., doubled resources). This
process is repeated based on a fixed schedule, optimized for computational efficiency and fulfilling
convergence properties.

Most established HPO libraries rely on variants of the algorithms introduced above. SMAC
(Hutter et al., 2011), for example, implements an interleaving strategy, iterating between BO
with a random forest surrogate model and randomly sampled configurations. The framework
optuna (Akiba et al., 2019) allows the user to select between different samplers, including, but
not limited to, GS, RS, BO with Tree-structured Parzen estimators (Bergstra et al., 2011), and
CMA-ES, which can flexibly be combined with pruners (e.g., Hyperband) to foster efficiency.
More exhaustive overviews over HPO frameworks are given by Bischl et al. (2021) and Zöller and
Huber (2021).
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Figure 2.3.: Shown are example runs of four optimization algorithms – GS, RS, BO, and CMAE-
ES – on the Styblinski-Tang function as objective. GS evaluates on a specified grid
of configurations, potentially missing out good configurations in between grid points.
RS evaluates points randomly chosen from a distribution (here: uniform). BO iterates
between exploration and exploitation. ES, here, the CMAE-ES, often have a high risk
of getting stuck in local minima.

2.3.2. AutoML frameworks

Typically, an AutoML framework consists of two main components: a pipeline definition and an
optimizer. The optimizer generally is an HPO algorithm capable of optimizing over a search space
defined based on the pipeline.

There is a variety of open-source software packages for AutoML. Many of those use variants
of BO as optimizers. One of the first AutoML frameworks was Auto-WEKA (Thornton et al.,
2013), which employs SMAC (Hutter et al., 2011) to search over the space of configurations of the
WEKA Java ML library. auto-sklearn (Feurer et al., 2015) uses SMAC to search over a pipeline
defined via the scikit-learn ML library, in combination with meta-learning and ensembling. H2O
AutoML (LeDell and Poirier, 2020) succeeds with simple, straightforward techniques like RS and
stacking. Some systems focus on NAS as a subarea of AutoML, such as Auto-keras (Jin et al.,
2019), which use BO with a special kernel and acquisition function optimizer to search over a
space of network architectures. The tool ATM (Swearingen et al., 2017) uses bandit learning in
combination with BO. FLAML (Wang et al., 2021) performs sampling based on the estimated cost
for improvement (ECI) and randomized direct search. MLJAR (P lońska and P loński, 2021) can be
run in different modes, e.g., based on the HPO framework optuna or just ensembling and stacking.
AutoML frameworks based on ES are less common but still worth mentioning. TPOT (Le et al.,
2020) uses genetic algorithms to optimize ML pipelines. Also GAMA (Gijsbers and Vanschoren,
2019) is based on genetic programming. Mohr et al. (2018) propose to alternatively understand
the problem AutoML tries to solve as hierarchical planning problems and have developed the
AutoML system MLPlan based on hierarchical task networks. AutoGluon uses ensembling of
models and stacking them in layers (Erickson et al., 2020). Coors et al. (2021) have developed an
AutoML system that constructs an interpretable additive model.

There are other AutoML frameworks that focus on particular application areas: AMLBID
(Garouani et al., 2021) for industrial applications, LightAutoML (Vakhrushev et al., 2021) for
financial applications, and AutoPrognosis (Alaa and van der Schaar, 2018) for clinical prognostic
modeling.
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Beyond that, it should be noted that several commercial AutoML platforms are available on
the market, including DataRobot, H2O Driverless AI, Google Cloud AutoML, Microsoft Azure
AutoML, and Rapidminer.
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2.4. Explainability in machine learning

In this section, we give background on explainability in general and point out how explainability
relates to concepts such as interpretability, fairness, trust, and interactivity.

What is explainability? In linguistic usage, explanations provide answers to questions that
present a certain level of intellectual difficulty (Bromberger, 1992). The term explainability ex-
presses the capability of giving an answer to a specific question asked. In the field of AI and ML,
explainability refers to the degree to which the decisions made by an ML model or system can
be explained to and understood by humans. In this context, an explanation is often “the answer
to a why-question” (Miller, 2019). Based on the exact sense of the word, the term explainability
raises among philosophers the question of whether a fact can ever be shown to be ultimate and
unexplainable (Bromberger, 1992). We use the term explainability – somewhat apart from the
exact literal sense of the word – as the capability of finding good enough explanations to relevant
and non-trivial questions about an ML model or system.

Note that the field of explainability in AI primarily focuses on the explainability of ML models.
We will use the term explainability in the context of AutoML (see Chapter 3) more broadly to
explain in human-understandable terms how system maps inputs to outputs.

What constitutes a good explanation? When it comes to what is a good explanation, we follow
Gilpin et al. (2018) who argue for assessing the quality of explanations via their

• interpretability, i.e., the ability of describing the internals of a system in a way understand-
able to a human6

• completeness, i.e., the ability to describe the operation of a system in an accurate way.

Gilpin et al. (2018) note that these two desiderata of explanations are typically conflicting: the
most accurate explanations are not easily interpretable by people, and conversely, the most inter-
pretable descriptions often do not provide predictive power.

Many authors do not differentiate between the closely tied concepts of explainability and inter-
pretability (Miller, 2019; Molnar, 2022), and the community is using these concepts interchange-
ably. Still today, the terms hold no agreed-upon meaning, and definitions lack mathematical rigor
(Doshi-Velez and Kim, 2017). All definitions share that a human subject is in the center and
that interpretability depends on the target explainee (Carvalho et al., 2019). We will further on
always assume that explainability of a system is our target and will dub methods as interpretability
methods, which shall be both human-understandable and complete to achieve explainability.

Just as there is no consensus on what interpretability is in the first place, there is no consensus
on how explainability can and should be measured. Doshi-Velez and Kim (2017) propose different
ways to evaluate interpretability: Application-level evaluation, referring to putting an explanation
into the product and having it tested by the end user; human-level evaluation, which refers
to a simplified setting in which typically laypersons evaluate explanations; and function-level

6Lipton (2018) define interpretability as “the ability to explain or to present in understandable terms to a human”;
Doran et al. (2017) define interpretable systems as systems where users cannot only see but also study and
understand how inputs are mathematically mapped to outputs.
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evaluation, which does not require humans but instead tries to find a proxy measure that is
related to increased explainability (e.g., model complexity).

Types of interpretability Molnar (2022) distinguishes interpretability methods via the following
criteria7:

• intrinsic or post-hoc: Is interpretability achieved by restricting the complexity of a system
(intrinsic) or by applying methods that analyze the system afterward (post-hoc)?
An example of an intrinsically interpretable model is the linear model, for which humans
understand model parameters in simple terms. For models that are not inherently inter-
pretable, interpretability can be achieved by applying a method like a partial dependence
plot (PDP) (Friedman, 2001) post-hoc to a model or system.

• Result of interpretation method: To which question does the interpretation method provide
an answer?
Examples are effect estimates (How does an input influence the output? Does it have a
positive, negative, linear or nonlinear effect on the outcome?), importance (Which input
feature influences the outcome most?), counterfactual explanations (What needs to change
in the input such that the output of the system changes?)

• Local or global: Does the interpretation method explain an individual instance or the entire
(system) behavior?
Examples of a local method are counterfactual explanations since they relate to a specific
instance, not the overall system. PDPs, for example, provide an interpretation of the whole
system.

• (Model-/system-)specific or agnostic: Is the explanation method limited to a specific (model-
/system-)class or is it agnostic?
An example of an agnostic method is PDP or permutation feature importance (PFI) because
they internally only require a model or system to return an output for a given input.

We refer to Molnar (2022) for a more exhaustive overview of different interpretability methods.

The importance of explainable systems Explainability of models and systems is important for
several reasons:

• Understanding: Explainability allows users to understand how a model or system makes
decisions. Understandability can make debugging, error analysis, and model selection easier.

• Trust: Trust is the confidence and reliance users have in a model or system. Explainability
fostering understandability can be essential for building trust and gaining confidence in ML
and automated systems.

7We mostly follow those criteria but extend this notion from model interpretability to system interpretability in
general, so they also fit the concept of explainability within AutoML.
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2.4 Explainability in machine learning

• Fairness: Fairness refers to the idea that a model or system should not make biased or
discriminatory decisions. Explainability can be important for promoting fairness in ML,
as it allows users to understand how a model or system makes decisions and helps identify
potential biases or unfairnesses.

• Interactivity: Interactivity refers to the degree to which users can interact with and modify a
model or system. Explainability can be important for promoting interactivity in ML because
users need to understand the internals of a model or system to some degree to interact with
the systems in a sensible manner.

• Regulation: In some contexts, laws or regulations may require interpretability of models or
systems that significantly impact people’s lives to reduce the risk of unintended consequences
to society.

Overall, interpretability is closely related to several other essential concepts in ML, including
fairness, trust, and interactivity.
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Part II.

A systematic view on explainable
automated machine learning





3. Levels of explainability in the context of
AutoML

Most literature on explainability in the field of ML refers to model explainability. We argue that
in the context of AutoML, explainability may not only play a role on the level of ML models, the
outcome of first-level inference (2.11), but on all three levels of inference introduced in Section
2.2. We discuss the role of explainability in the AutoML systematically, and review and classify
existing frameworks in Table 3.3.

3.1. Model explainability

Automated HPO aims to identify a HPC λ of an inducer I leading to a model f with a low gen-
eralization error. HPO algorithms focusing solely on generalization performance may be adequate
for use cases (1) when no significant consequences for unacceptable results are to be expected
or (2) if the problem is sufficiently well-studied and validated (Doshi-Velez and Kim, 2017). As
pointed out in Section 2.4, there may be a need to explain the model, the outcome of an AutoML
system. This need is particularly evident in areas where model decisions can profoundly impact
human lives or where the system is considered high risk for other reasons.

The explainability of models can be a vital requirement for different stakeholders; stakeholder
groups may contrast in the types of questions they ask about model behavior. Global interpre-
tations, which describe the average behavior of an ML model, may be of interest to modelers (or
executors of an AutoML system) who may want to understand the general mechanisms in the
data or debug a model (Molnar, 2022). Local interpretations, which aim to explain individual
predictions rather than global model behavior, are of particular interest to stakeholders who have
to communicate and justify decisions based on a model (e.g., loan company officers being an-
swerable for why the loan company rejected a loan). Policymakers, regulators, auditors, or other
stakeholders with specific responsibilities may be interested in global and local interpretations to
ensure no unintended social consequences.

Formally, the system we are trying to interpret is a (predictive) model

fθ : X → Rg

x 7→ ŷ,
(3.1)

as the output of first-level inference (2.11) the context of AutoML systems. Primarily, stakeholders
are interested in the relationship between input x ∈ X to a predictive model and its output
ŷ = fθ(x). Example questions that stakeholders seek explanations for include (Molnar, 2022):
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3. Levels of explainability in the context of AutoML

• Feature effects: How does an input feature xj impact the model output ŷ on average?

• Feature importance: Which input feature j does influence the output f(x) most on average?

• Feature interaction: To what degree to predictions result from joint effects xj · xk of the
features?

• Counterfactual explanations: How does the input, x, need to change, x̃, to realize another
model outcome?

AutoML systems are often solely designed to achieve high generalization performance (Hutter
et al., 2011; Thornton et al., 2013; Feurer et al., 2015) and therefore cover a rich hypothesis space
of complex, nonlinear black-box models. This may run the risk of choosing a complex black-
box model, even though a more interpretable model exists with almost no loss in generalization
performance. To assess the trade-off between predictive performance and interpretability, Freitas
(2019) performed multiple runs of the AutoML framework AutoWEKA over the search space,
which includes both inherently interpretable (white-box) as well as black-box models. They then
compared the best white-box against the best black-box model. They find that often only a small
loss in predictive accuracy (often, less than 1%) needs to be sacrificed for higher interpretability.

We see three ways of designing model explainability into AutoML systems, which can complement
each other.

AutoML and usage of post-hoc IML methods (A) One approach to explainability of models
returned by an AutoML system is to apply post-hoc methods to the returned model. Techni-
cally, any valid interpretability method such as permutation feature importance (Strobl et al.,
2008), partial dependence plots (Friedman, 2001), or methods to obtain counterfactual explana-
tions (Wachter et al., 2017; Dandl et al., 2020) can be used. Particularly model-agnostic methods
qualify for being used for this purpose. Otherwise, an interpretation technique needs to be chosen
conditional on the model class selected by the AutoML tool, which brings additional complexity.
Appropriate interpretability methods should be implemented into AutoML systems for enhanced
usability. The advantage of coupling AutoML with post-hoc, model-agnostic interpretability meth-
ods is that the search performed by the AutoML system is unaffected. We stress, however, that
interpretability methods come with their pitfalls (Molnar et al., 2020). In particular, there is no
one-fits-all interpretability method, and users of AutoML tools must carefully verify assumptions
behind interpretability methods.

Examples of frameworks, including post-hoc interpretability methods, are AMLBID (Garouani
et al., 2021) and MLJar (P lońska and P loński, 2021), which have built-in methods like SHAP
values and feature importance. Commercial platforms for AutoML also often offer post-hoc model
explainability features. For example, H20 Driverless AI (LeDell and Poirier, 2020) provides
an interpretability toolbox providing access to interpretability methods like SHAP (Lundberg
and Lee, 2017), PDPs (Friedman, 2001) and individual conditional expectation (ICE) (Goldstein
et al., 2015). Also, DataRobot offers a model-agnostic explainability framework for feature impact,
feature effects, and prediction explanations. Vertex AI, an ML platform developed by Google,
allows using AutoML in combination with an explanation component, which provides a user with
example-based explanations (Cai et al., 2019). In addition, they give access to feature-based
explanations for both tabular and image data based on Shapley values (Lundberg and Lee, 2017),
integrated gradients (Sundararajan et al., 2017), and XRAI (Kapishnikov et al., 2019).
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3.1 Model explainability

AutoML comprising inherently interpretable models (B) Another way to design explainability
into AutoML systems is defining search spaces that only contain inherently interpretable mod-
els like the (normal) linear regression, logistic regression, or decision trees. Designing AutoML
frameworks with only inherently interpretable models is aligned with the opinion of Rudin (2019),
who strongly argues in favor of designing and using inherently interpretable models, stressing
that post-hoc methods often provide explanations that are not faithful to what the original model
computes or do not provide enough detail. The disadvantage of this variant is that the hypothesis
space is limited, which can lead to models with less predictive power. We also emphasize that
complex feature engineering operators may make the final prediction system less interpretable, so
the pipeline should consider only implementing interpretable preprocessing operations.

An example of an inherently interpretable AutoML system is autocompboost (Coors et al., 2021),
which is based on component-wise boosting (Schmid and Hothorn, 2008). Some AutoML sys-
tems can be run in an alternative mode where explainability is enforced through a search space
restriction. Examples are LightAutoML (Vakhrushev et al., 2021), an AutoML framework de-
signed for financial applications, or AutoGluon, which can be run on a search space restricted
to interpretable tree-based models (Greedy CART decision tree, Hierarchical shrinkage tree, fast
interpretable greedy-tree sum, RuleFit). auto-sklearn allows restricting the search space to an
arbitrary subset of models and processing operators specified by the user. MLJar can be run in
Explain mode, which combines a restricted search space and additional post-hoc interpretability
methods.

Multi-objective AutoML (C) Predictive performance and model interpretability are often con-
flicting objectives. Different applications may require different trade-offs between the two objec-
tives. As observed by Freitas (2019), it might be only a neglectable drop in predictive performance
that must be sacrificed to replace a black-box model with an inherently interpretable one. The
criterion of model interpretability can be formulated as constraint1 to the HPO problem (2.6), or
alternatively, be designed into the objective function through scalarization. However, both intro-
ducing a constraint and defining a scalarization can be challenging since it requires specifying the
trade-off between predictive performance and interpretability a-priori. We suggest formulating
the problem (2.6) as a multi-objective problem with predictive performance as primary and other
measures related to model interpretability or model complexity as secondary objectives. Such a
multi-objective AutoML system would be able to present the user with several solution candidates
representing different trade-offs between the conflicting objectives. A multi-objective AutoML tool
was developed by Pfisterer et al. (2019), allowing a user to optimize for multiple measures related
to fairness or interpretability at the same time. One main challenge of such systems is finding
a reasonable measure for model interpretability to be used as an objective. There are several
attempts to quantify model interpretability, for example, by using proxies like model complexity
Molnar et al. (2019). Ultimately, the difficulty of making interpretability measurable can be traced
back to a lack of a mathematically sound definition of interpretability in the community.

Comparatively speaking, all approaches have their advantages and disadvantages. A clear dis-
advantage of AutoML in combination with post-hoc methods (A) is potentially unfaithful ex-
planations due to using interpretability methods under wrong assumptions. The disadvantage

1Note that the restriction to the search space of only inherently interpretable models (B) corresponds to placing
a constraint over the search space.
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3. Levels of explainability in the context of AutoML

Figure 3.1.: Example of different solutions in configuration space Λ representing different trade-offs
between the objectives predictive performance and model complexity (representing a
proxy for model interpretability). Imagine that model A represents a random forest,
model B represents a linear model with no features dropped, and model C represents
a linear model with some features dropped. Suppose generalization performance is
more important to a user. In that case, the user could choose de random forest and
apply an IML method such as the PDP to analyze feature effects (which may be
an unfaithful representation of the true effect because of interactions in the data,
for example). Alternatively, if model interpretability is valued higher, a user could
choose the linear model B, which is inherently interpretable. An additional reduction
of model complexity through a drop in features, as in model C might not be worth
the drop in performance.

of AutoML covering only inherently interpretable model classes (B) is that possibly better func-
tioning, more complex models are not explored. We believe it should be left to the user, who is
ideally also a domain expert, to decide how much loss in predictive performance can or should be
taken in favor of higher interpretability, which can be facilitated through multi-objective AutoML
systems (C). The most interpretable model can additionally be interpreted with post-hoc methods
as needed.

3.2. Machine learning algorithm explainability

Beyond the explainability of the model as the final output of an AutoML system, the explainability
of the learning algorithm I (or, more generally, of the inducing mechanism) is a requirement
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3.2 Machine learning algorithm explainability

specific stakeholders may demand. Hasebrook et al. (2022); Drozdal et al. (2020); Garouani et al.
(2021) assessed the lack of interpretability on this level as one of the reasons for the lack of adoption
of AutoML systems and HPO. Hasebrook et al. (2022) tried to understand why practitioners still
prefer manual tuning over automated approaches and identified the lack of comprehension about
how certain hyperparameters influence ML models one of the reasons. Garouani et al. (2021)
state that acceptance of, and trust in, an AutoML system highly depends on the transparency of
its recommendations. Similarly, Drozdal et al. (2020) argue that a lack of confidence in AutoML
tools slows or blocks broad adoption while warning that transparency without understandability
will not lead to increased trust. Garouani et al. (2021) very aptly demand that AutoML designers
and system builders present not only the final model results coming out of the system but also
the pipeline steps and decisions made in each of those steps, along with the model generation
process.

Explainability on this level will be mostly of relevance to ML practitioners and developers of
AutoML systems who want to comprehend decisions of an AutoML system based on a general
understanding of the relationship between inputs to modeling (the data D and hyperparameters
λ) and the output (the model and its properties). Beyond providing a general understanding,
which is a benefit in itself, such insights can help answer other questions related to the correct
operation or diagnostics of an AutoML system, such as: Did AutoML system run long enough or
did it sufficiently explore the search space (Garouani et al., 2021)? Is the behavior and output of
the AutoML system plausible? The explainability of the learning algorithm or inducer is also of
general interest to the research communities. AutoML systems can be seen as huge experimen-
tation systems experimenting with various modeling choices and assessing the respective output.
Methods of interpretability developed to analyze this data could help generate new insights into
how learning algorithms work. Similar to the above, decision-makers, regulators, auditors, or
other stakeholders with special responsibilities may need to explain how a learning algorithm
works before approving a model.

Here, our goal is to ensure explainability of the inducing mechanism2

I : D× Λ→ Θ
(D,λ) 7→ θ,

(3.2)

as the output of second-level inference in the context of AutoML systems. Typically, we are
interested in the relationship between hyperparameters and properties of the model fθ. Typical
questions that stakeholders may seek explanations for include:

• Hyperparameter effects: How do specific hyperparameter λj (incl. selected model) influence
model properties like generalization performance? (Hasebrook et al., 2022)

• Hyperparameter importance: Which hyperparameters j are important to realize certain
model properties? (Hutter et al., 2014; Probst et al., 2019; Biedenkapp et al., 2017)

• Hyperparameter interaction: To what degree are model properties result from joint effects
λj · λk of hyperparameters? (Hutter et al., 2014)

2Note again, that even decisions like preprocessing or model selection can be seen as part of an inducing mechanism
I and encoded into hyperparameters λ

31



3. Levels of explainability in the context of AutoML

Figure 3.2.: Two hypothetical scenarios for the marginal effects of a hyperparameter λj . Hyper-
parameter importance assessed based on effects, e.g., as performed in (Hutter et al.,
2014), might assess the hyperparameter in the left scenario as more important than in
the right one because the hyperparameter is responsible for a bigger range of general-
ization performance. Assessing hyperparameter importance via ablation (Biedenkapp
et al., 2017) might come to the contrary conclusion because only a slight change in
the hyperparameter in the left scenario might cause a big change in performance.
Another notion might be the importance of tuning a hyperparameter (Probst et al.,
2019). In the left scenario, it might not be as important to tune the hyperparameter
because we have a fairly good chance of achieving good performance by picking a
moderate value for the hyperparameter as opposed to the right scenario.

Properties of interest are certainly generalization performance of the resulting model but may also
include secondary properties like interpretability, fairness, and robustness. For example, it may be
of interest to what degree a high generalization performance of neural networks results from the
interaction between learning rate and momentum or to what degree the interpretability of neural
networks depends on the interaction between the number of layers and the size of a layer. We
also emphasize that the above list could be extended by other questions relevant to stakeholders
that have been less discovered, for example, questions around counterfactuals (e.g., what is the
minimal change in the modeling process to obtain a fair model?) or causal relationships. We stress
that for many concepts investigated, there may be no clear, agreed-upon definition, for example,
for the concept of hyperparameter importance as illustrated in Figure 3.2.

For interpretation, the archive (i.e., all configurations evaluated during an optimization run), as
well as surrogate models (either already used during the optimization, if model-based optimization
has taken place or post-hoc fitted on the archive), can be used. We observe two distinct variants
used in practice:

Visualization tools (A) Some AutoML systems and HPO tools offer visual analytics tools that
can be used to explore the artifacts from optimization runs. Commonly integrated visualizations
are parallel coordinate plots (Weidele et al., 2020; Akiba et al., 2019), visualizing a performance
metric against different hyperparameter configurations, or visualization of the pipeline structures
explored by an AutoML system (Ono et al., 2021). Figure 3.3 illustrates common visualization
tools and a hypothetical conclusion a user could draw from them. Appropriate use of visualizations
(or combinations of different visualizations) of artifacts like the archive may allow for conclusions
on concepts like hyperparameter effects and importance if interpreted correctly. The clear advan-
tage is that there is no estimation with potential errors but only a simple visualization. On the
other hand, it is left to the user to perform pattern recognition and draw conclusions on their
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3.2 Machine learning algorithm explainability

Figure 3.3.: The figure shows different visualizations of the AutoML process, based on which a
user of an AutoML system may conclude: the archive (left), a progress plot (middle),
and a parallel coordinates plot (right).

questions, requiring expertise and time. In particular, the more complex and high-dimensional a
search space is, the more difficult it is typically to conclude from simple visualizations.

Examples of frameworks that include visualization tools to explain the impact of hyperparame-
ters are the HPO framework optuna (Akiba et al., 2019). ATMSeer, an extension to the AutoML
framework ATM, does provide access to interactive tools to visualize performance against hyper-
parameters to assist users in refining the search space of AutoML and analyzing the results. Also,
the AutoML tool GAMA (Gijsbers and Vanschoren, 2019) does provide an analysis functionality
that has a set of visualization presets allowing to assess, for example, performance metrics against
pipeline sizes.

There are also stand-alone visualization tools that can be used in combination with existing
AutoML frameworks. One example is Hypertendril (Park et al., 2021), a visual analytics dashboard
for HPO of deep neural networks to facilitate human interaction. Further examples are AutoAIViz
(Weidele et al., 2020), a visualization toolbox based on conditional parallel coordinate plot, and
XAutoML (Zöller et al., 2022), who propose a dashboard with interactive visualization tools
and interpretability methods, and PipelineProfiler (Ono et al., 2021), an interactive visualization
tool allowing to explore different pipeline configurations explored by an AutoML run. CAVE
(Biedenkapp et al., 2018) and its successor deepCAVE (Sass et al., 2022) are interactive dashboards
for analyzing AutoML runs with both simple visualization but also more advanced interpretability
methods.

Interpretability methods (B) While visualization methods can provide insights, it is still up
to the user to detect patterns and draw conclusions. Thus, visualization tools may not suffice to
answer all relevant questions satisfactorily. Alternatively, a surrogate model fitted on the archive3

can be used to derive explanations. If this surrogate model is not inherently explainable, post-hoc
interpretability methods can be used. For example, hyperparameter importance can be estimated
efficiently through a functional ANOVA (Hutter et al., 2014) or an ablation analysis (Biedenkapp
et al., 2017), based on a surrogate model. In theory, the whole toolbox of model-agnostic post-hoc

3Note that if BO is used for HPO, the respective surrogate model can be interpreted directly.
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interpretability methods could be applied to such a surrogate model to explain the relationship
between hyperparameters of the inducer and model properties. However, assumptions behind
interpretability methods must be carefully investigated. Many interpretability methods have re-
quirements such as the absence of hyperparameter interactions which can rarely be assumed in
the context of HPO.

Interpretability methods for accomplishing explainability at the inducer level are not yet broadly
available in HPO frameworks and AutoML tools. One example is the AutoML framework AML-
BID (Garouani et al., 2021), which provides access to hyperparameter importance in its explainer
module. The HPO framework optuna presents the user with hyperparameter importance values
(Akiba et al., 2019). Also, standalone visualization tools like the ones of Park et al. (2021), Zöller
et al. (2022), Sass et al. (2022) give access to hyperparameter importance. Biedenkapp et al.
(2017) and Sass et al. (2022) also offer a visualization of the configuration footprint, which is
generated through a 2D projection of the configuration space through multi-dimensional scaling.
One work that is very different from the previous ones, but all the more interesting and relevant,
is the system of Real et al. (2020). Real et al. (2020) introduce a novel framework to automatically
search for ML algorithms from scratch based on using simple mathematical operations as building
blocks only. An analysis of which ML algorithm adaptions are found by the model in relation to
the dataset inputted allows a deeper understanding of how AutoML systems work. Explainability
features are, however, not implemented into their framework.

3.3. AutoML system explainability

Lastly, we discuss third-level explainability in the context of AutoML, by which we understand
finding answers to questions of what AutoML frameworks work better than others and why.

Explainability at this level is especially important for AutoML researchers and the research com-
munity. Often, AutoML systems are proposed and published without rigorous proof of superior
performance in comparison to other AutoML tools and without insights into what causes one
AutoML system to perform better than another AutoML system. Research progress may be
based on a kind of unsystematic, manual forward search, reusing design decisions from previously
published work and extending them on a trial-and-error basis. As a result, we as a research com-
munity may be making slower progress than we possibly could because the effect of design options
of AutoML systems is not adequately explored and understood. Furthermore, for safe usage of
AutoML systems, it may be of importance to not only understand which AutoML systems work
best on average but also understand which AutoML systems work best on which types of tasks. It
should be in the highest interest of the research community to maintain a profound understanding
of the workings of a technology such powerful as AutoML.

Formally, we are interested in understanding the relationship between configuration choices γ of
AutoML systems and the output (and downstream properties) of an accordingly designed AutoML
system

A : D× γ → λ

(D,γ) 7→ λ.
(3.3)
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Design choices γ may include the optimizer (e.g., RS, BO, Hyperband, or any combinations
thereof) along with configurations of the optimizer itself, and the design of pipeline to be searched
over. Example questions asked by the research community may include:

• Which AutoML system performs best on average (or by data domain, respectively)?

• What is the effect of a specific configuration parameter (e.g., a parameter controlling explo-
ration vs. exploitation) on the efficiency of the AutoML system?

• What design choice is most important to the performance of an AutoML system?

• What design choices are irrelevant to achieve high performance of an AutoML system and
can be dropped in favor of simplicity?

We distinguish two approaches, ideally to be used in combination with each other.

Benchmarking of AutoML tools (A) To answer questions around which AutoML tools work
better than others, AutoML tools should be subject to a representative benchmark. Conducting
high-quality benchmarks is expensive and prone to several types of errors (Gijsbers et al., 2022):
Introducing a selection bias when picking benchmarking datasets, errors in installation and config-
uration of the respective frameworks, or choosing an appropriate set of metrics to compare results
on. Most HPO and AutoML frameworks include benchmarks in their publications, but the set of
benchmarking datasets does not follow a standardized setup (Jin et al., 2019; Zimmer et al., 2021;
Vakhrushev et al., 2021; Wang et al., 2021; Lindauer et al., 2022).

This carries the risk of cherry-picking and bias in the reported results. To allow for a more
standardized comparison, some authors mimic the setup used by prior work (Mohr et al., 2018).
Most notably, Gijsbers et al. (2022) have developed a standardized benchmark of AutoML systems
which allow for easy integration of AutoML frameworks and perform end-to-end evaluations on
carefully curated sets of open data sets. Some authors (Coors et al., 2021; Erickson et al., 2020;
Wang et al., 2021) already have included the results of this benchmark in their papers. A broad
range of AutoML frameworks has been integrated into the benchmark by Gijsbers et al. (2022),
including autosklearn (Doshi-Velez and Kim, 2020), FLAML (Wang et al., 2021), GAMA (Gijsbers
and Vanschoren, 2019), H2O AutoML (LeDell and Poirier, 2020), LightAutoML (Vakhrushev
et al., 2021), MLJar (P lońska and P loński, 2021). Zimmer et al. (2021) have introduced a new,
standardized benchmark called LCBench to benchmark multi-fidelity optimization algorithms.
This benchmark is based on the AutoML benchmark of Gijsbers et al. (2022) but has been
adapted to be more suitable for multi-fidelity optimization.

While the initiative of Gijsbers et al. (2022) is undoubted of great value, and we stress that such
standardized benchmarks should be included in published work, standardized benchmarking suites
are still to be improved by the community to support more types of problems (e.g., multi-objective
problems) and to study secondary properties of AutoML frameworks (such as their ability to return
fair models, model complexity or interpretability). We also emphasize the need for considering
the performance of AutoML frameworks in specific domains of applications. For example, Conrad
et al. (2022) have benchmarked AutoML frameworks for material design. Also, we observed a lack
of standardized benchmarks for complex data types (images, text, speech).

35



3. Levels of explainability in the context of AutoML

Sensitivity analysis of AutoML tools (B) The field of sensitivity analysis (Saltelli et al., 2008;
Iooss and Lemâıtre, 2015) studies how the output of a system is influenced by its inputs. In
the context of this thesis, the system of interest is an AutoML system, the input are design
configurations of the AutoML system, the output of the system is a proposed configuration which
is eventually relates to a model and its properties. Arguably, the most obvious question is why one
AutoML system works better than another one, and what is the design decision driving this. One
key challenge is the expensiveness of evaluating the Objective (2.8) for different types of inputs,
as it requires running an AutoML system on multiple tasks. In addition, the performance of an
AutoML system can depend on many design factors, so that a high-dimensional input must be
compared to multiple outputs, making it even more difficult to conduct a methodologically sound
study in practice.

Ablation analysis is a commonly encountered method in the field of AutoML and ML in general
to study the differences of a source configuration γ (typically, a default configuration) against
a target configuration (typically, a newly proposed configuration) by modifying one factor at a
time (Fawcett and Hoos, 2016). Many AutoML systems indeed include an ablation analysis in
their respective publications. AutoGluon (Erickson et al., 2020), for example, conclude through
an ablation analysis that iterated repetitions of bagging, multi-layer stacking, bagging, and neural
networks as base models to multi-layer stack ensembling are crucial to the performance of their
proposed system. The authors of optuna (Akiba et al., 2019) deduce that their pruning component
plays a crucial role by studying the performance gained from their pruning procedure based on
successive halving in combination with tree-parzen estimators and RS by comparing it against
a run with the pruning component being disabled as well as to median pruning as implemented
in Vizier (Golovin et al., 2017). The authors of the AutoML tools Autopytorch (Zimmer et al.,
2021) perform an ablation analysis concluding that the performance of the system is driven by BO
with hyperband (BOHB) (as compared to plain BO), warm-starting optimization on a greedily
constructed portfolio of limited size (compared to a simple portfolio construction including all in-
cumbent configurations found on meta-datasets), and ensembling over a diverse set of ensembles.
Notably, the authors of AutoKeras (Jin et al., 2019) conducted a parameter sensitivity analysis
investigating the influences of two most important hyperparameters two their method – a param-
eter handling exploration vs. exploitation and a kernel parameter balancing the distance of layers
and skip connections. Similarly, other authors (Vakhrushev et al., 2021; Wang et al., 2021) also
include ablation analyses into their work to justify that each of their proposed design choices is
justified since a removal would decrease the performance of the system considerably.

Most authors choose one-factor-at-a-time (OFAT) analyses, where only one configuration is
changed while all others are constant. While the advantage of this method is that it is sim-
ple to understand and, in combination with a restricted number of configurations investigated as
inputs, comparatively cheap to conduct, it comes with clear disadvantages. Most and foremost,
OFAT can miss important interactions between configurations. By only changing one variable at
a time, OFAT analysis can miss important interactions that may significantly impact the outcome
of the experiment (Czitrom, 1999). Furthermore, they are often criticized for leaving important
areas of the input space unexplored (Saltelli et al., 2008).

Furthermore, it should be noted that most authors conduct ablation analyses between their system
including a set of proposed designed choices (target) vs. their system with those designed choices
turned off (source). More relevant to the community is, however, analyzing the difference between
their system including a set of proposed design choices (target) vs. a state-of-the-art AutoML
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system (typically, not their own AutoML system) as a baseline, serving to answer the question
of why their proposed AutoML system works better than another one. While most authors
do not conduct such an analysis, Mohr et al. (2018) is a notable exception, who analyzes the
effect of individual design choices of their AutoML system MLPlan and puts this into relation to
design choices of AutoWEKA (Thornton et al., 2013). It should furthermore be noted that when
comparing against other AutoML tools, the difference between algorithm and implementation
may play a role, and that superiority of one AutoML tool may not only come from an algorithmic
design choice but may go back to a specific implementation.
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Explainability on level of
Framework model (1) inducer (2) AutoML system (3)

AMLBID (Garouani et al., 2021) (A) (B) 7

AutoxgboostMC (Pfisterer et al., 2019) (C) 7 7

AutoCompBoost (Coors et al., 2021) (B) 7 (A*)
AutoGluon (Erickson et al., 2020) (B) 7 (A*,B)

Auto-keras (Jin et al., 2019) 7 7 (A,B)
Auto-pytorch (Jin et al., 2019) 7 7 (A,B)

Autosklearn (Doshi-Velez and Kim, 2020) (B) 7 7

AutoWEKA (Thornton et al., 2013) 7 7 7

ATM / ATMSeer (Swearingen et al., 2017) 7 (A) 7

DataRobot (A) 7 7

FLAML (Wang et al., 2021) 7 7 (A*, B)
GAMA (Gijsbers and Vanschoren, 2019) 7 (A) (B)

Vertex AI (A) 7 7

Hyperopt-sklearn (Komer et al., 2019) 7 7 7

H20 AutoML (LeDell and Poirier, 2020) (A) 7 (A*)
LightAutoML (Vakhrushev et al., 2021) 2.0 (B) 7 (A*,B)

MLJar (P lońska and P loński, 2021) (A,B) 7 (A*)
MLPlan (Mohr et al., 2018) 7 7 (A,B)
Optuna (Akiba et al., 2019) 7 (A,B)

SMAC (Lindauer et al., 2022) 7 7 (A)
TPOT (Le et al., 2020) 7 7 (A)

Table 3.1.: This table summarizes how explainability is implemented within common AutoML
frameworks. Explainability on the level of the model (1) means that an AutoML
system supports features to enforce or support explainability of the model returned
by an AutoML system, either through the implementation of post-hoc methods into
the AutoML framework (A), through a search space restricted to explainable models
only (B) or through multi-objective optimization with an additional objective related
to explainability (C). Explainability of the inducer (2) means that the AutoML system
supports functionality to generate knowledge about the working of the inducer, either
by providing simple visualizations (A) or more advanced interpretability methods (B).
Third, AutoML systems had been classified as to whether there is an openly accessible
benchmark (A) and a sensitivity analysis on design choices of the AutoML system.
For commercial tools, the information listed relies on openly accessible data (i.e., the
website of the tool) and might therefore be incomplete.
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4.1. Multi-Objective Hyperparameter Optimization – An Overview

This paper provides an overview of the field of multi-objective HPO for ML, presents applica-
tions and summarizes the state-of-the-art of different multi-objective HPO algorithms, including
evolutionary algorithm (EA)s and BO. The paper discusses model interpretability as one of the
additional objectives to be optimized. The paper contributes to provide a broad understanding of
the field of multi-objective HPO in general, also covering multi-objective HPO and AutoML for
model explainability, see Section 3.1 – Multi-objective AutoML (C).
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Hyperparameter optimization constitutes a large part of typical modern machine learning workflows. This
arises from the fact that machine learning methods and corresponding preprocessing steps often only yield
optimal performance when hyperparameters are properly tuned. But in many applications, we are not only
interested in optimizing ML pipelines solely for predictive accuracy; additional metrics or constraints must be
considered when determining an optimal configuration, resulting in a multi-objective optimization problem.
This is often neglected in practice, due to a lack of knowledge and readily available software implementations
for multi-objective hyperparameter optimization. In this work, we introduce the reader to the basics of multi-
objective hyperparameter optimization and motivate its usefulness in applied ML. Furthermore, we provide
an extensive survey of existing optimization strategies, both from the domain of evolutionary algorithms
and Bayesian optimization. We illustrate the utility of MOO in several specific ML applications, considering
objectives such as operating conditions, prediction time, sparseness, fairness, interpretability and robustness.

CCS Concepts: • Computingmethodologies→ Supervised learning; • Theory of computation→ Evo-
lutionary algorithms; • Applied computing→Multi-criterion optimization and decision-making.

Additional KeyWords and Phrases: Multi-Objective Hyperparameter Optimization, Neural Architecture Search,
Bayesian Optimization

1 INTRODUCTION
With the immense popularity of machine learning (ML) and data-driven solutions for many do-
mains [229], the demand for automating the creation of suitable ML pipelines has strongly in-
creased [126]. Automated machine learning (AutoML) and automated hyperparameter optimization
(HPO) promise to simplify the ML process by enabling less experienced practitioners to optimally
configured ML models for a variety of tasks - reducing manual effort and improving performance at
∗Both authors contributed equally to this research.
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the same time [30, 109, 126, 184, 264]. HPO is often classified as a black-box optimization problem,
a type of optimization problem where only the outputs of the function to be optimized can be
observed and no analytic expression of the underlying function is known. Furthermore, these
optimization problems are often noisy and expensive [12]. Another challenge in HPO is that there
is rarely a clear-cut, obvious, single performance metric, which is in stark contrast to the setup
often described in many algorithm-centric research papers and introductory books [109, 126, 181].
Nowadays, models and pipelines are held to a high standard, as the ML process (as currently
realized in many businesses and institutions) comes with a number of different stakeholders. While
predictive performance measures are still decisive in most cases, models must be reliable, robust,
accountable for their decisions, efficient for seamless deployment, and so on. For example, in
many internet-of-things applications, an ML model is deployed on edge devices like smartphones,
watches, and embedded systems [117]. Power consumption, memory capacity, and latency can be
limiting factors when deploying models in such settings, and obvious trade-offs between these
factors and predictive performance exist. The current state-of-the-art models in computer vision
and natural language processing with millions or billions of weights are not applicable in such
settings [24]. Even putting aside secondary-order objectives like efficiency, interpretability etc.,
expressing just predictive performance as a single metric can frequently be challenging. The most
well known example of this is arguably in medical applications: For a diagnostic test, solely looking
at misclassification rates is ill-advised: Misclassifying a sick patient as healthy (false negative) has
usually much more severe consequences than classifying a healthy person erroneously as sick (false
positive), i.e., different misclassification costs, which are often unknown or hard to quantify, have
to be considered [87]. Of course, multiple objectives can in principle be aggregated into a single
metric, which converts a multi-objective optimization (MOO) problem to a single-objective one
(SOO). However, it is often unclear how a trade-off between different objectives should be defined a
priori, i.e., before possible alternative solutions are known [41]. In this paper, we argue that there is
substantial merit in directly approaching a multi-objective HPO (MOHPO) problem as such and give
a comprehensive review of methods, tools and applications; preliminary work [29, 116] supports
our view. Furthermore, other prominent work in ML research - aside from HPO - has advocated for
a multi-objective perspective [128, 135, 190]. For example, as argued in Mierswa [190], many ML
and data mining applications inherently concern trade-offs and thus should be approached via an
MOO formulation and MOO methods. And even if the main interest lies in a single objective it still
might be advantageous to approach the problem via MOO methods since they have the potential to
reduce local minimas in this case [151]. MOO algorithms seek to approximate the set of efficient or
Pareto-optimal solutions. These solutions have different trade-offs, but it is not possible to improve
any objective without degrading at least one other objective. This set of Pareto optimal solutions
can then be analyzed by domain experts in a post-hoc manner, and an informed decision can be
made as to which trade-off should be used in the application, without requiring the user to specify
this a priory [135, 137].

This paper provides a comprehensive review on the topic of MOHPO, explains the most pop-
ular algorithms, discusses main challenges and opportunities, and surveys existing applications.
We restrict the scope of this paper to the realm of supervised ML. Unsupervised ML, in contrast,
entails a different set of metrics to the scenario studied in our manuscript and is largely governed
by custom, usecase-specific measures [86, 203] and sometimes even visual inspection of results.
The rest of the paper is structured as follows. First we define the MOHPO problem in Section 2.
Section 3 presents the theoretical foundations of MOO, i.e., how to evaluate sets of candidate
solutions. Then, we introduce several important MOHPO methods in Section 4, such as variants
of Bayesian Optimization (BO) and also Hyperband. Finally, Section 5 introduces a number of
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applications for MOHPO and their associated objectives. We will categorize these applications
through exploring three overarching perspectives on the ML process: (1) Performance metrics,
(2) metrics that measure costs and restrictions at deployment like efficiency, and (3) metrics that
enforce reliability and interpretability.

2 HYPERPARAMETER OPTIMIZATION
2.1 The machine learning problem

Taxonomy of black-box problems

Stochasticity Domain Codomain Evaluation cost

deterministic

stochastic,
homoscedastic

stochastic,
heteroscedastic

dimensionality

type

low dim 𝑑

high dim 𝑑

numerical

purely categorical

mixed numerical
and categorical

hierarchical /
structured

single-objective ℝ

multi-objective
ℝ𝑚,𝑚 ∈ {2, 3, 4}

many objective
ℝ𝑚,𝑚 ≥ 5

cheap

expensive

Fig. 1. Taxonomy of common black-box optimization problems. Attributes that are related to MOHPO - and
therefore a substantial focus in this paper - are highlighted.

The fundamental ML problem can be defined as follows. Let D be a dataset with 𝑛 input-output
pairs

(
x(𝑖) , 𝑦 (𝑖) ) ∈ X × Y, which are independent and identically distributed (i.i.d.) from a data-

generating distributionℙ𝑥𝑦 . AnML algorithmI (·,𝝀) configured by hyperparameters 𝝀 ∈ Λmaps a
datasetD to a model 𝑓 : X → ℝ𝑔 in the hypothesis spaceH via I : (𝔻 × Λ) → H , where𝔻 is the
set of all finite datasets. With a slight abuse of notation we will also write I𝝀 if the hyperparameter
𝝀 is fixed, i.e., I𝝀 (D) = I(D,𝝀).What we would like to optimize is the expected generalization
performance 𝐺𝐸 of our model, when trained on D, on new unseen data (x, 𝑦) ∉ D, i.e.,

GE(I,𝝀, 𝑛, 𝐿) = 𝔼 [𝐿(𝑦,I𝝀 (D)(x))] (1)

with the expectation taken over the random data D of size 𝑛 and a fresh test sample (x, 𝑦), both
independently sampled from ℙ𝑥𝑦 . Since the data generating distribution ℙ𝑥𝑦 is usually unknown,
also GE has to be estimated. To do so, the dataD is split into 𝐵 training and test sets by a resampling

4. Contributions to explainability of models returned by AutoML systems

44



4 Karl and Pielok, et al.

method D𝑏
train and D𝑏

test such that D = D𝑏
train ¤∪ D𝑏

test, 𝑏 = 1, . . . , 𝐵. The expected generalization
error can then be computed as

ĜE (I,J , 𝐿,𝝀) := 1
𝐵

𝐵∑︁
𝑏=1

1
|D𝑏

test |
∑︁

(x,𝑦) ∈D𝑏
test

𝐿
(
𝑦,I𝝀 (D𝑏

train) (x)
)

(2)

whereJ is the set of train-test-splits. Often, just a regularized error on the training data is minimized
with a with point-wise loss function 𝐿 (𝑦, 𝑓 (x)) : Y ×ℝ𝑔 → ℝ.

𝑓 = argmin
𝑓 ∈H

Remp (𝑓 ) + [𝐽 (𝑓 ), with Remp (𝑓 ) :=
∑︁

(x,𝑦) ∈D
𝐿 (𝑦, 𝑓 (x)) , (3)

The regularizer 𝐽 (𝑓 ) expresses a preference (or prior in the Bayesian sense) for simpler models
and is usually formulated as some kind of norm on the parameter vector, e.g., the L2 norm for a
ridge penalty, and its strength is controlled by an HP [. 1 Most learning algorithms are configured
by a possibly large number of hyperparameters 𝝀 that control the hypothesis space or the fitting
procedure. Usually, the generalization error ĜE (I,J , 𝐿,𝝀) critically depends on the choice of 𝝀.
In most cases, the analytical relationship of hyperparameters and generalization error is unknown,
and even to experts it is not clear how to choose optimal hyperparameter values. Hyperparameter
optimization aims to minimize the estimated generalization error ĜE for a given dataset D using
the hyperparameter configuration (HPC) 𝝀: min

𝝀∈Λ̃
ĜE (I,𝝀) , where Λ̃, a bounded subspace of the

hyperparameter space Λ, is the so-called search-space or domain in the context of the above
optimization problem. Note that it is important to not use any test data during training or HPO as
this could lead to an optimistic bias. Instead, nested resampling techniques should be applied [31]:
The data is split into an optimization setDoptim and a test setDtest. During the optimization process,
the model performance should only be assessed by an (inner) resampling technique, e.g., cross-
validation, on Doptim, whereas Dtest should only be used for the final assessment of the chosen
model(s). A simple alternative is simply splitting Doptim into two datasets Dtrain and Dval, which
leads to the widely known train/val/test-split. Afterwards, a resulting non-dominated solution set
can be determined on Dtest based on the solution candidates found on Doptim. In practice, it is very
important to have no hidden information leakage from test set to training, which may for example
happen when preprocessing (such as missing value imputation or feature selection) is done on the
combined set. The estimate based on a single train-test-split can have a high variance, for example
because of a strong dependence on the data split. To counter this, an (outer) resampling strategy
like cross-validation is usually used, and the average of the estimated generalizations of the quality
indicator on (D (𝑘)

optim,D
(𝑘)
test) with 𝑘 ∈ ℕ is reported.

2.2 Black box optimization
As there is generally no analytical expression of the general hyperparameter optimization problem,
it forms a black-box function. Black-box functions can be characterized according to different at-
tributes (see Figure 1), which influence the difficulty of the problem. For further fundamental details
on SOO for HPO see [30]. In an ML scenario, we are often interested in the generalization error with
respect to more than one loss as well as further relevant criteria like robustness, interpretability,
sparseness, or efficiency of a resulting model [135]. Therefore, we introduce a generalized definition

1This can already be seen as a simple scalarization of a multi-objective problem, as we combine the different measures
for empirical risk and regularization into a weighted sum. Mierswa [190] derives the two conflicting objectives from
this scalarized version and presents an explicit multi-objective formulation of the optimization problem (minimizing the
regularized empirical risk).
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of the hyperparameter optimization problem that takes into account𝑚 criteria: Given a number of
evaluation criteria 𝑐1 : Λ → ℝ, . . . , 𝑐𝑚 : Λ → ℝwith𝑚 ∈ ℕ, we define 𝑐 : Λ → ℝ𝑚 to assign an
𝑚-dimensional cost vector to a HPC 𝝀. The estimated generalization error ĜE is one evaluation
criterion that is commonly used, but many further criteria will be discussed in this paper. The
general multi-objective hyperparameter optimization problem can be defined as

min
𝝀∈Λ

𝑐 (𝝀) = min
𝝀∈Λ

(𝑐1 (𝝀), 𝑐2 (𝝀), . . . , 𝑐𝑚 (𝝀)) . (4)

Without loss of generality, we assume that all criteria are minimized. The domain Λ of the
problem is called numerical if only numeric HPs 𝝀 are optimized. By including additional discrete
hyperparameters, like the type of kernel used in a support sector machine (SVM), the search space
becomes mixed numerical and categorical. Mixed search spaces already require adaption of some
optimization strategies, such as BO, which we will discuss in Section 4.3. It can also be necessary to
introduce further conditional hierarchies between hyperparameters. For example, when optimizing
over different kernel types of an SVM, the 𝛾 kernel hyperparameter is only valid if the kernel
type is set to Radial Basis Function (RBF), while for a polynomial kernel, a hyperparameter for the
polynomial degree must be specified. These conditional hierarchies can become highly complicated
- especially when moving from pure HPO to optimizing over full ML pipelines, i.e., AutoML, or over
neural network architectures, referred to as neural architecture search (NAS) [88, 200, 215]. The
dimensionality of the search space dim(Λ̃) also directly influences the difficulty of the problem:
While it might be desirable to include as many hyperparameters as possible (since it is often
unknown which hyperparameters are actually important), this increases the complexity of the
optimization problem and requires an increasingly larger budget of (expensive) evaluations. The
co-domain, also called objective space, i.e., ℝ𝑚 , of the problem is characterized by the number of
objectives𝑚. Objective functions 𝑐𝑖 , 𝑖 ∈ {1, 2, ...,𝑚} can be characterized by their evaluation cost and
stochasticity. Some evaluation criteria are deterministic, such as the required memory of a model on
hard disk. Other criteria can only be measured with some additional noise, e.g., the generalization
performance discussed above. We generally assume that all objective functions are black-boxes,
i.e., analytical information about 𝑐𝑖 is not available, even though there are exceptions to this (e.g.,
number of parameters in some models). To record the evaluated hyperparameter configurations and
their respective scores, we introduce the so-called archive A = ((𝝀 (1) , 𝑐 (𝝀 (1) )), (𝝀 (2) , 𝑐 (𝝀 (2) )), . . . ),
with A [𝑡+1] = A [𝑡 ] ∪ (𝝀+, 𝑐 (𝝀+)) if a single configuration is presented by an algorithm that
iteratively proposes hyperparameter configurations.

Example 1. Consider a standard scenario in which we would like to train a deep neural network for
object detection on images. Assume that𝑚 = 2 criteria are relevant: While predictive performance is one
criterion (𝑐1) to be optimized, we also optimize for memory consumption (𝑐2) of the network at prediction
time, as the model is deployed on a mobile phone. Both criteria depend on the hyperparameters and
architectural choices of the network Λ = (_1, _2), and they are potentially conflicting: Memory-efficient
models are usually less complex and may use special types of convolutions [117]. An insufficient
capacity of the model may result in bad generalization. The trade-off between the two objectives is
a priori unknown, because neither the range of generalization performance nor the user’s hardware
constraints are known (we explore scenarios like this one in Section 5.2). Ideally, we would like to have
a set of solutions with different optimal trade-offs in the two objectives. We will formalize this notion
in Section 3.2.

2.3 Multi-objective machine learning
A concept closely related but different to MOHPO is multi-objective machine learning. To un-
derstand the difference, it is important to differentiate between first level model parameters (e.g.,
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weights of a neural network or learned decision rules) and second order hyperparameters (HPs)
(e.g., neural network architectures and optimizers) [30]. Model parameters are fixed by the ML
algorithm at training time in accordance to one or multiple metrics, whereas HPs are chosen by
the ML practitioner before training and influence the behavior of the learning algorithm and the
structure of its associated hypothesis space. We define multi-objective ML methods as those that
focus on learning first level parameters (sometimes together with second level hyperparameters).
Our work, in contrast, concentrates on hyperparameter optimization for ML algorithms, i.e., tuning
second level HPs. An example to further illustrate this distinction can be found in Suttorp and
Igel [241]: The authors examine both tuning model parameters and hyperparameters in order
to improve performance of a support vector machine (SVM). To provide a clearer picture and to
enable a better distinction, we try to give an overview of existing approaches and inherent pros
and cons in multi-objective ML before we continue. While this section focuses on summarizing
key ideas, a more comprehensive summary and case study of such approaches was conducted
in Jin and Sendhoff [137]. Broadly, multi-objective ML approaches try to internally balance for
improved generalization, multiple error metrics or improved interpretability to obtain more diversity
in ensemble members and many other criteria (c.f. Jin and Sendhoff [137] for a list of existing
approaches). Another potential advantage of internally optimizing multiple objectives is that it
may help the ML algorithm to escape local optima, thus improving the accuracy of the ML model.
To provide an example, Iglesia et al. [127] use a variant of NSGA-II (c.f. Section 4.2.3) to learn
association rules that are accurate, simple and diverse. However, trade-offs are not exposed as
hyperparameters to be tuned, but instead the method yields a set of rules, which approximate the
Pareto set. Feature selection is a topic that borders MOHPO and multi-objective ML and is often
handled in a multi-objective manner [18, 29, 191]. We consider feature selection as closely related
to HPO and will therefore dedicate large portions of Section 5.6 to this topic. However, it should be
noted that feature selection is often grouped with multi-objective ML, as e.g., in Jin [135].

3 FOUNDATIONS OF MULTI-OBJECTIVE OPTIMIZATION
3.1 Objectives and constraints
In the context of this paper, objectives refer to the evaluation criteria of the ML model 𝑐1 : Λ̃ →
ℝ, . . . , 𝑐𝑚 : Λ̃ → ℝwith𝑚 ∈ ℕ. While oftentimes we simply aim to minimize these objectives, in
real-world applications, we may well face a constrained HPO problem of the form:

minimize
𝝀∈Λ̃

𝑐 (𝝀)
subject to 𝑘1 (𝝀) = 0, . . . , 𝑘𝑛 (𝝀) = 0 (equality constraints),

𝑘1 (𝝀) ≥ 0, . . . , 𝑘�̂� (𝝀) ≥ 0 (inequality constraints),

where 𝑐 : Λ̃ → ℝ𝑚 as before. It is the task of an ML practitioner to translate a real-world problem
into an ML task - and therefore objectives and constraints - to measure the quality and feasibility
of a given model. Depending on the use case it has to be carefully considered whether to frame a
requirement to an ML model as an objective or a constraint. For example, is it important to have
a model as memory-efficient as possible or is memory requirement limited by a hard constraint?
Finding high performing and efficient deep learning architectures has emerged as a prominent
task recently, coining the term hardware-aware NAS (HW-NAS) [24]. Successful approaches exist
that frame the HW-NAS problem as a constrained optimization problem [44, 244] or a MOO
problem [78, 182]. It should be noted that constrained optimization comes with its own set of
challenges that are orthogonal to the multi-objective aspect we focus on in this paper. We therefore
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exclude constrained optimization from our work - only mentioning it in absolutely crucial parts
and giving helpful references to the reader when appropriate.

3.2 Pareto optimality
A HPC 𝝀 ∈ Λ̃ (Pareto-)dominates another configuration 𝝀′, written as2 𝝀 ≺ 𝝀′, if and only if

∀𝑖 ∈ {1, ...,𝑚} : 𝑐𝑖 (𝝀) ≤ 𝑐𝑖 (𝝀′) ∧
∃ 𝑗 ∈ {1, ...,𝑚} : 𝑐 𝑗 (𝝀) < 𝑐 𝑗 (𝝀′) . (5)

In other words: 𝝀 dominates 𝝀′, if and only if there is no criterion 𝑐𝑖 in which 𝝀′ is superior to 𝝀,
and at least one criterion 𝑐 𝑗 in which 𝝀 is strictly better. For example, if the number of false positive
and number of false negative classifications are the two criteria of interest, a HPC configuration 𝝀
dominates 𝝀′ if the model trained by I(·,𝝀) shows (at most) as many false positives as the model
trained by I(·,𝝀′), but produces less false negatives at prediction time.
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Fig. 2. Illustration for a two-dimensional MOO problem with two objectives 𝑐1 and 𝑐2. The left plot shows
the search space Λ̃, and the right plot shows the objective space ℝ2. Configurations for which no other
configuration 𝝀 has lower objective values in both objectives - the estimated Pareto set (left) - and their
mapping to the co-domain - the estimated Pareto front (right) - are highlighted.

We say 𝝀 weakly dominates 𝝀′, written as 𝝀 ⪯ 𝝀′, if and only if 𝝀 ≺ 𝝀′ or ∀𝑖 ∈ {1, . . . ,𝑚} 𝑐𝑖 (𝝀) =
𝑐𝑖 (𝝀′). A configuration 𝝀∗ is called non-dominated or (Pareto) optimal if and only if there is no
other 𝝀 ∈ Λ̃ that dominates 𝝀∗. Pareto dominance defines only a partial order over Λ̃, i.e., two
configurations 𝝀 and 𝝀′ can also be incomparable. This situation arises if there exist 𝑖, 𝑗 ∈ {1, . . . ,𝑚}
for which 𝑐𝑖 (𝝀) < 𝑐𝑖 (𝝀′) but also 𝑐 𝑗 (𝝀′) < 𝑐 𝑗 (𝝀). Hence, in contrast to single-objective optimization,
there is in general no unique single best solution 𝝀∗, but a set of Pareto optimal solutions that are
pairwise incomparable with regard to ≺. This set of solutions is referred to as the Pareto (optimal)
set or efficient frontier [10] and defined as

P :=
{
𝝀 ∈ Λ̃ | � 𝝀′ ∈ Λ̃ s.t. 𝝀′ ≺ 𝝀

}
. (6)

2In some literature, the direction of the domination relationship is reversed, i.e., they write 𝝀′ ≺ 𝝀 if 𝝀 dominates 𝝀′. We
choose our notation because it naturally fits the minimization perspective taken in this paper.
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The image of P under 𝑐 , written as 𝑐 (P), is referred to as the Pareto front (see Figure 2). The
goal of a multi-objective optimizer that solves (4) is not to find a single best configuration 𝝀∗, but
rather a set of configurations P̂ that approximates the Pareto set P well.
Example 2. Continuing from Example 1, we compare two potential neural networks: network A

and network B. Network A with configuration 𝝀𝐴 has an accuracy of 𝑐1 (𝝀𝐴) = 0.87 and memory
consumption of 𝑐2 (𝝀𝐴) = 127, while network B with 𝝀𝐵 has the same accuracy 𝑐1 (𝝀𝐵) = 0.87 but
lower memory consumption 𝑐2 (𝝀𝐵) = 112. Consequently, network A is dominated by network B as
𝝀𝐵 ≺ 𝝀𝐴. Considering a third network, network C, with 𝑐1 (𝝀𝐶 ) = 0.89 and 𝑐2 (𝝀𝐶 ) = 180, we can see
that both 𝝀𝐶 and 𝝀𝐵 are non-dominated, and thus the current best approximation of the Pareto set is
P̂ = {𝝀𝐵,𝝀𝐶 }.
3.3 Evaluation
The result of a multi-objective algorithm is P̂, the set of points of the estimated Pareto front. In
order to evaluate this set or compare it to other sets, one must define what it means for a Pareto
front to be better than another. Usually, this comparison is quantitatively based on so-called quality
indicators.

3.3.1 Comparing solution sets. Let Λ̂A and Λ̂B be two non-dominated solution sets - i.e., within
each set, no configuration is dominated by another configuration. The associated approximated
Pareto fronts are denoted by A and B respectively, i.e., 𝑐 (Λ̂A) = A and 𝑐 (Λ̂B) = B. According
to Zitzler et al. [271], A is said to weakly dominate B, denoted as A ⪯ B, if for every solution
𝝀𝑏 ∈ Λ̂B there is at least one solution 𝝀𝑎 ∈ Λ̂A which weakly dominates 𝝀𝑏 . A is furthermore said
to be better than B, denoted asA ⊲B, ifA ⪯ B, but not every solution of Λ̂A is weakly dominated
by any solution in Λ̂B , i.e., A ⪯̸ B. This represents the weakest form of superiority between two
approximations of the Pareto front. Note that these order relationships defined for A and B can
directly be transferred to the associated solution sets Λ̂A and Λ̂B . How well a single solution set
represents the Pareto front can be divided into four qualities [166]:
Convergence The proximity to the true Pareto front
Spread The coverage of the Pareto front
Uniformity The evenness of the distribution of the solutions
Cardinality The number of solutions
The combination of spread and uniformity is also referred to as diversity. One way of comparing
these qualities is to visualize the solution sets. For bi-objective optimization problems, this can
be straightforwardly done. However, for a higher number of objectives, the visualization and
decision-making process based on this visualization can become substantially more challenging.
Tušar and Filipič [251] offer a review of existing visualization methods.

3.3.2 Quality indicators. An objective measurement of the quantitative difference between solution
sets is clearly desirable for comparing algorithms. Therefore, many quality indicators 𝐼 - which map
the approximation of the Pareto front to a real number representing the quality of a set of solutions -
were proposed. An extensive overview of these indicators can be found in Li and Yao [166]. Quality
indicators that focus on all four qualities listed above can be divided into distance-based, which
require the knowledge of the true Pareto front or a suitable approximation of it, and volume-based,
which measure the volume between the approximated Pareto Front and a method-specific point.
Common distance-based quality indicators are the inverted generational distance [57], Dist2 [60]
and the 𝜖-indicator [271]. Common volume-based indicators are hypervolume indicator [270], the
R class of indicators [106], and the integrated preference functional [47]. The most popular quality
indicator is the hypervolume indicator [270], also called dominated hypervolume or S-metric,
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since it does not require any prior knowledge of the Pareto front. The hypervolume, HV, of an
approximation of the Pareto front A can be defined as the combined volume of the dominated
hypercubes domHC𝒓 of all solution points 𝝀𝑎 ∈ Λ̂A regarding a reference point 𝒓 , i.e.,

HV𝒓 (A) := ` ©«
⋃

𝝀𝑎 ∈Λ̂A

domHC𝒓 (𝝀𝑎)ª®¬
,

where ` is the Lebesgue measure and the dominated hypercube

domHC𝒓 (𝝀𝑎) := {𝒖 ∈ ℝ𝑚 | 𝑐𝑖 (𝝀𝑎) ≤ 𝒖𝑖 ≤ 𝒓𝑖 ∀𝑖 ∈ {1, . . . ,𝑚}}.
HV is illustrated in Figure 3 (left). The hypervolume indicator is strictly Pareto compliant [269],

i.e., for all solution sets Λ̂A and Λ̂B , it holds that

B ⊲A ⇒ HV𝒓 (B) < HV𝒓 (A) .
Hence for the true Pareto front, the HV reaches its maximum. In practice, the nadir point, which is
constructed from the worst objective values, is often used as the reference point. For a guideline on
how to set a reference point, see [129]. Based on a quality indicator estimate, MOO strategies can
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Fig. 3. The plot shows the hypervolume indicator (the area of the blue shaded region) regarding the reference
point (1, 1) (marked in red).

be evaluated over different benchmark datasets by using the Nemenyi post hoc test [71], where the
strategies are compared pairwise to find the best-performing one under a significance level of 𝛼 .

4 MULTI-OBJECTIVE OPTIMIZATION METHODS
This work in general and the following section in particular, focus on a posteriori methods, i.e.,
those that return a set of configurations P̂ that tries to approximate the true Pareto set P as
well as possible. We will also explore some a priori methods, i.e., those that will only return one
configuration depending on preferences set before optimization. Finally, we will discuss integration
of user preferences to customize certain methods in Section 4.5.1. While a multitude of very specific
methods for MOO exist across various domains, we try to mainly focus on those that are actually
applied to MOHPO.
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4.1 Naive approaches
4.1.1 Scalarization. Scalarization transforms a multi-objective goal into a single-objective one,
i.e., it is a function 𝑠 : ℝ𝑚 × T → ℝ that maps𝑚 criteria to a single criterion to be optimized,
configured by scalarization hyperparameters 𝜏 ∈ T . Having only one objective often simplifies
the optimization problem [192]. However, there are two main drawbacks to using scalarization for
MOO [137]: The scalarization hyperparameters 𝜏 must be chosen sensibly, such that the single-
objective represents the desired relationship between the multiple criteria – which is not trivial,
especially without extensive prior knowledge of the optimization problem. We will outline three
popular scalariztaion techniques:

Weighted sum approach. One of the most well-known scalarization techniques, where one looks
for the optimal solution to:

min
𝝀∈Λ̃

𝑚∑︁
𝑖=1

𝜏𝑖𝑐𝑖 (𝝀). (7)

It can be shown [77] that for a solution �̂� of (7), it holds that if

𝜏𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚 ⇒ �̂� is non-dominated in Λ̃. (8)

Additionally, it holds for convex Λ̃ and convex functions 𝑐𝑖 , 𝑖 = 1, . . . ,𝑚 that for every non-
dominated solution �̂� there exist 𝜏𝑖 ≥ 0, 𝑖 = 1, . . . ,𝑚, such that �̂� is the respective solution
of (7); however the weighted sum might perform poorly for nonconvex problems [77].

Tchebycheff approach. The weighted Tchebycheff problem is formulated as:

min
𝝀∈Λ̃

max
𝑖=1,...,𝑚

[𝜏𝑖 |𝑐𝑖 (𝝀) − 𝑧∗𝑖 |], (9)

where 𝑧∗𝑖 = 𝑚𝑖𝑛𝝀∈Λ̃𝑐𝑖 (𝝀) 𝑓 𝑜𝑟 𝑖 = 1, . . . ,𝑚 defines the (ideal) reference point. For every optimal
solution 𝝀∗ there exists one combination of weights 𝜏 , so that 𝝀∗ is the optimal solution to the
optimization problem 9 defined through 𝜏 .

𝜖-constraint approach. As outlined in Section 3.1, in some instances it might be feasible to
formulate one or more of the objectives as constraints. A MOO problem can also be reduced to a
single scalar optimization problem by turning all but one objective constraints, as in the 𝜖-constraint
method: Given𝑚 − 1 constants (𝜖2, . . . , 𝜖𝑚) ∈ R𝑚−1,

min
𝝀∈Λ̃

𝑓1 (𝝀), subject to 𝑓2 (𝝀) ≤ 𝜖1, . . . , 𝑓𝑚 (𝝀) ≤ 𝜖𝑚 . (10)

However, much like parameters in the weighted sum method, constraints must be sensibly chosen,
which can prove to be challenging a priori and without sufficient domain knowledge.

These techniques (e.g., weighted sum method, Tchebycheff method) are the same ones used in
the MOEA/D Evolutionary Algorithm as outlined in Section 4.2.3 or the BO technique ParEGO as
outlined in Section 4.3.2, where several scalar optimization problems are created in place of the
multi-objective one.

4.1.2 Random and grid search. Random and grid search are very basic and robust algorithms for
single-objective HPO [30]. Random search is generally preferred, as it is an anytime algorithm
and scales better in the case of low effective dimensionality of an HPO problem with low-impact
parameters [26]; it often provides a surprisingly competitive baseline. Modifying random and grid
search for MOO is trivial: as all points are independently spawned and evaluated, one simply returns
all non-dominated solutions from the archive. Random and grid search can serve as reasonable
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Fig. 4. Basic loop of an evolutionary algorithm.

baselines when introducing more sophisticated optimization methods - similar to the single-
objective case. This procedure is adopted in a number of MOHPO works [128, 207, 230]

4.2 Evolutionary algorithms
Evolutionary algorithms (EAs) are general black-box optimization heuristics inspired by principles
of natural evolution. This section provides a brief introduction, followed by some prominent
examples of multi-objective EAs. EAs haven been used in HPO and AutoML applications, such as
in the popular AutoML framework TPOT [201]. Swarm Intelligence methods are related to and
share many of the advantages and disadvantages of EAs. They can be utilized for multi-objective
optimization [89] and have been examined for MOHPO and feature selection in select works
(e.g., Xue et al. [260], Bacanin et al. [13]).

4.2.1 Fundamentals of evolutionary algorithms. Evolutionary algorithms (EAs) are population-
based, randomized meta-heuristics, inspired by principles of natural evolution. Historically, different
variants have been independently developed such as genetic algorithms, evolution strategies and
evolutionary programming. These are now generally subsumed under the term “evolutionary
algorithm". EAs start by (often randomly) initializing a population of solutions and evaluating them.
Then, in every iteration (often called generation), the better solutions are (often probabilistically)
selected as parents and used to generate new solutions, so-called offspring. The two main operators
to generate new solutions are crossover, which tries to recombine information from two parents into
an offspring, and mutation, which randomly perturbs a solution. The resulting offspring solutions
are then evaluated and inserted into the population. Since the population size is kept constant, some
solutions have to be removed (survival selection), and once again usually the better solutions are
chosen to survive with a higher probability. If the stopping criterion reached, the best encountered
solution is returned, otherwise the next iteration starts. A schematic overview of a generation
can be found in Figure 4. EAs are popular optimization methods for the following reasons: (i) no
specific domain knowledge is necessary (at least for baseline results) [3], (ii) ease of implementa-
tion [3], (iii) low likelihood of becoming trapped in local minima [252], (iv) general robustness and
flexibility [101], and (v) straightforward parallelization [3]. They are widely employed in practice
and known for successfully dealing with complex problems and complex search spaces where other
optimizers may fail [109]. Furthermore, because they are population-based, EAs are particularly
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well suited for multi-objective optimization, as they can simultaneously search for a set of solutions
that approximate the Pareto front.

4.2.2 Multi-objective evolutionary algorithms (MOEAs). When applying EAs to a multi-objective
problem, the only component that needs changing is the selection step (selecting parents and
selecting survivors to the next generation). Whereas in single-objective optimization the objective
function can be used to rank individuals and select the better ones, as discussed in Section 3.2,
in multi-objective optimization there are many Pareto-optimal solutions with different trade-offs
between the objectives, and we are interested in finding a good approximation of the Pareto front.
Recent works categorize MOEAs into three classes [80]:

• Pareto dominance-based algorithms use two-levels for ranking: On the first level, Pareto
dominance is used for a coarse ranking (usually non-dominated sorting, see below), while on
the second level usually some sort of diversity measure is used to refine the ranking of the
first level.

• Decomposition-based algorithms utilize scalarization (see Section 4.1.1) to decompose the
original problem into a number of single-objective subproblems with different parametriza-
tions, which are then solved simultaneously.

• Indicator-based algorithms use only a single metric, such as the hypervolume indicator, and
selection is governed by a solution’s marginal contribution to the indicator.

In the following, we will provide a prominent example for each category.

4.2.3 Prominent MOEAs.

NSGA-II (Pareto dominance-based). The non-dominated sorting genetic algorithm (NSGA-II) [68]
is still one of the most popular MOEAs. In many benchmark studies in the field, it serves as a
popular baseline [207, 252]. Being Pareto dominance based, it first uses non-dominated sorting to
obtain an initial coarse ranking of the population. This iteratively determines the non-dominated
solutions, assigns them to the next available class, and removes them from consideration. Among
the solutions in each obtained class, the extreme solutions (best in each objective) are ranked
highest, and the remaining solutions are ranked according to the crowding distance, the sum of
differences between an individual’s left and right neighbor, in each objective, where large crowding
distances are preferred. While this works very well for problems with two objectives, it breaks down
in case of a larger number of objectives, as the non-dominated sorting becomes less discriminative,
and the left and right neighbor in each objective are often different solutions. NSGA-III [67, 131]
has been developed as an alternative for problems with a higher number of objectives, but shares
many similarities with decomposition-based algorithms.

MOEA/D (Decomposition-based). The Multi-objective Evolutionary Algorithm based on Decom-
position (MOEA/D) decomposes the multi-objective problem into a finite number 𝑁 of scalar
optimization problems that are then optimized simultaneously [266]. Each single optimization
problem usually uses a Tschebyscheff scalarization, see Section 4.1.1. In theory, each solution to
such a scalar problem should be a point on the Pareto front of the original multi-objective problem.
The distribution of solutions on the Pareto front is thus governed by the set of scalarizations chosen,
and it is challenging to identify scalarizations without a good knowledge of the Pareto frontier.
Rather than solving the different scalarized problems independently, the idea is to solve them
simultaneously, and allow the different search processes to influence each other. In a nutshell,
the population comprises of the best solution found so far for each of the sub-problems. In every
generation, a new offspring is created for each sub-problem by randomly selecting two parents
from the sub-problem’s neighborhood, performing crossover and mutation, and re-inserting the
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individual into the population. The new individual replaces all individuals in the population for
which it is better with respect to the corresponding sub-problem. In effect, this means mating is
restricted to among individuals from the same region of the non-dominated frontier, and diversity
in the population is maintained implicitly by the definition of the different sub-problems.

SMS-EMOA (Indicator-based). The S metric selection evolutionary multi-objective optimization
algorithm (SMS-EMOA) [79] also uses the non-dominated sorting algorithm from NSGA-II for an
initial coarse ranking, but then uses an individual’s marginal hypervolume contribution for as a
secondary criterion. The marginal hypervolume of an individual 𝑖 is the difference in hypervolume
between the population R including individual 𝑖 , and excluding individual 𝑖:

Δ𝐻𝑉 (𝑖,R) := 𝐻𝑉 (R) − 𝐻𝑉 (R \ 𝑖) (11)
Different from the other two algorithms above, SMS-EMOA only produces one offspring per
generation, adds it to the population and then discards the worst solution based on the ranking
just described.

For more details on the above MOEAs, different MOEAs, and according applications, please refer
to Coello et al. [56], Abraham and Jain [3], Deb [65], and Branke et al. [39]. The main disadvantage of
many evolutionary algorithms is their relatively slow convergence (compared to other optimization
methods) and the need for many evaluations; for more computationally expensive ML problems, a
multi-objective HPO can become very costly when tackling it with these methods [65]. To alleviate
this problems, MOEAs have been combined with surrogate-modelling techniques (e.g.,[181]) or
gradient-based local search (e.g., [158]). EAs can further be found in several multi-objective AutoML
solutions, such as TPOT [200] or FEDOT [216].

4.2.4 Relevant software and implementations. Two very established packages which offer EMOAs
are PlatEMO3 and pymoo4. They both offer a wide range of EMOAs and can be generally recom-
mended. The mle-hyperopt5 package offers directly MOHPO via NSGA-II using internally the
nevergrad6 package.

4.3 Model-based optimization
4.3.1 Bayesian Optimization. In the following, the basic concepts of Bayesian optimization (BO)
are shown. For more detailed information, see [30]. BO has become increasingly popular as a global
optimization technique for expensive black-box functions, and specifically for HPO [125, 139, 239].
BO is an iterative algorithm with the key strategy of modelling the mapping 𝝀 ↦→ 𝑐 (𝝀) based on
observed performance values found in the archiveA via (non-linear) regression. This approximating
model is called a surrogate model. Typical choices for the surrogate model are Gaussian processes
(GPs) or random forests. BO starts on an archive A of evaluated configurations, typically sampled
randomly, using e.g., Latin Hypercube Sampling or Sobol sampling [34]. BO then uses the archive to
fit the surrogate model, which for each 𝝀 produces both an estimate of performance 𝑐 (𝝀) as well as
an estimate of prediction uncertainty �̂� (𝝀), which then gives rise to a predictive distribution for each
possible HPC. Based on the predictive distribution, BO computes a cheap-to-evaluate acquisition
function 𝑢 (𝝀) that encodes a trade-off between exploitation and exploration where exploitation
favours solutions with high predicted performance, while exploration favours solutions with high
uncertainty of the surrogate model because the surrounding area has not been explored sufficiently
yet. Instead of directly looking for the optimum of the expensive objective, the acquisition function
3https://github.com/BIMK/PlatEMO
4https://github.com/anyoptimization/pymoo
5https://github.com/mle-infrastructure/mle-hyperopt
6https://github.com/facebookresearch/nevergrad
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𝑢 (𝝀) is optimized in order to identify a new candidate 𝝀+ for evaluation. The true objective value
𝑐 (𝝀+) of the proposed HPC 𝝀+ – generated by optimization of 𝑢 (𝝀) – is finally evaluated and added
to the archive A. The surrogate model is updated, and BO iterates until a predefined termination
criterion is reached.

Simple acquisition functions. A very popular acquisition function is the expected improvement (EI)
[139]). EI was introduced in connection with GPs that have a Bayesian interpretation, expressing
the posterior distribution of the true performance value given already observed values as a Gaussian
random variable 𝐶 (𝝀) with 𝐶 (𝝀) ∼ N (𝑐 (𝝀), �̂� (𝝀)2). A further, very simple acquisition function is
the lower confidence bound (LCB) [138]. The LCB treats local uncertainty as an additive bonus at
each 𝝀 to enforce exploration, which can be controlled with a control parameter ^.

4.3.2 Multi-objective Bayesian Optimization. The previously presented BO framework can be
extended to simultaneously optimize a set of possibly conflicting black-boxes. In particular, the
multi-objective extensions to the BO framework (MO-BO) can be categorized into two categories
as shown in Figure 5.

Multi-objective model-
based optimization

Surrogate based
on scalarization

Surrogate for each output

ParEGO

. . .

Aggregating
Acquisition Function

Multiple
Acquisition Functions Information-Theoretic

SMS-EGO

𝜖-EGO

EHI

. . .

Multi-EGO

MOEA/D-EGO

. . .

PESMO

MESMO

. . .

Fig. 5. Different multi-objective model-based optimization approaches.

A simple approach is to create a new objective by scalarizing the multi-dimensional output of
𝑐 (𝝀) to a single value (see Section 4.1.1). Some MO-BO methods utilize one or more scalarizations of
the MOO problem to fit surrogates in order to approximate the Pareto front. Algorithms that do not
use scalarization of the outcomes instead train independent surrogates for each output dimension.
By having a prediction for each output dimension, we can either obtain an acquisition function for
each dimension and use a multi-objective optimizer to obtain a set of promising configurations,
or we can build an acquisition function that aggregates the predictions for each dimension into
a single-objective acquisition function. In the following, we discuss some of these approaches in
more detail.

Scalarization and ParEGO . ParEGO is a scalarization-based extension of BO to MOO problems
proposed by Knowles [149]. This method is built on the assumption that the Pareto front can be
approximated by solving a number of single-objective problems that are scalarized variants of
the𝑚 objective functions (see Section 4.1.1). In ParEGO, we proceed as follows: First, we must
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determine a set of scalarization weights that will be used throughout all BO-iterations. This set of
weights should ensure that the Pareto front is explored evenly. Therefore, we create the set of all
possible weight vectors using the following rule:{

𝜶 = (𝛼1, 𝛼2, ..., 𝛼𝑚)
�����
𝑚∑︁
𝑗=1

𝛼 𝑗 = 1 ∧ 𝛼 𝑗 =
𝑙

𝑠
, 𝑙 ∈ {0, 1, ..., 𝑠}

}
, (12)

which generates
(𝑠+𝑚−1
𝑚−1

)
different weight vectors. Second, the output space of each of our 𝑚

objectives is normalized to [0, 1]. Finally, in each iteration of ParEGO, we create the scalarized
objective using the so-called augmented Tchebycheff function [149]:

𝑐𝜶 (𝝀) = max
𝑗 ∈{1,...,𝑚}

(
𝛼 𝑗𝑐 𝑗 (𝝀)

) + 𝜌 [𝜶 · 𝑐 (𝝀)], (13)

where 𝜌 is a small positive constant and 𝜶 is a weight vector drawn uniformly from the set in (12).
Instead of only using the linear second term, the first term with the Tschebycheff norm is added
to ensure that we are able to find a solution in the non-convex parts of the Pareto front. In each
iteration, a surrogate model is fitted on the design with scalarized outcomes

{(
𝝀 (𝑖) , 𝑐𝜶 (𝝀 (𝑖) )

)}
𝑖
,

and the EI is optimized on this model to propose a new HPC. ParEGO can easily be extended to
parallel batch proposals. In order to propose a batch of size 𝑞, Horn et al. [116] suggest to sample
𝑞 different weight vectors per iteration in a stratified manner. New design points are proposed
by fitting 𝑞 surrogates to the 𝑞 differently scalarized outcomes in the design and optimizing the
acquisition function on each of the 𝑞 surrogate models in parallel. One concern with ParEGO and
scalarizing-based solutions in general is that the uniformly sampled weights do not necessarily
result in the best distribution of nondominated points. An advantage of ParEGO is that it can be
easily adapted to focus the search on one objective by limiting the maximum weights of the others.

EHI. (or EHVI) Emmerich et al. [82] propose to use the expected improvement over the S-
metric (i.e., hypervolume) as an acquisition function for MO-BO. Here, a surrogate model for each
objective is fitted individually. The EHI is then calculated as the expectation of the hypervolume
improvement over the distribution of outcomes as predicted by the surrogate models. A drawback
of hypervolume-based BO is that a non-trivial multidimensional integral must be evaluated to
calculate the expectation of hypervolume improvement. It is possible to use Monte-Carlo-based
approximations [81], and the KMAC method [262] to efficiently calculate the EHI criterion with
complexity𝑂 (𝑛 log𝑛) in three dimensions and𝑂 (𝑛 ⌊𝑚/2⌋) in𝑚 dimensions. Additionally, Emmerich
et al. [83] propose a more efficient means of calculating the EHI with a complexity of𝑂 (𝑛 log𝑛) for
𝑚 = 2. However, these methods are significantly more complex than the other presented MO-BO
infill criteria. To obtain batch-proposals, Yang et al. [263] propose dividing the objective space into
several sub-objective spaces and then search for the optimal solutions in each sub-objective space
by using a truncated EHI.

SMS-EGO. The S-Metric Selection-based Efficient Global Optimization (SMS-EGO) algorithm
is another popular extension of MO-BO. This method was proposed by Ponweiser et al. [217]
and extends the idea of the EHI by employing an infill criterion: In each BO iteration, SMS-EGO
approximates each of the𝑚 objectives with a separate surrogate model. For each objective, we
compute the LCB and denote the resulting𝑚-dimensional outcome with 𝒖LCB. The desirability of
a configuration 𝝀 is derived from the increment of the dominated hypervolume when 𝒖LCB (𝝀) is
added to the current Pareto front approximation P̂:

𝑢SMS (𝝀) = HV𝒓

(
P̂ ∪ 𝒖LCB (𝝀)

)
− HV𝒓 (P̂) − 𝑝, (14)
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with a penalty 𝑝 and with the reference point 𝒓 chosen as max(P̂) + 1𝑚 (under the assumption
that all objectives are to be minimized). The penalty 𝑝 increases the worse 𝑐 (𝝀) is compared to the
current Pareto front. To prevent the selection of configurations close to P̂, SMS-EGO assigns also a
penalty to points within an 𝜖-range of P̂. However, the penalty is in this case only influenced by the
objectives inferior to the approximated Pareto front. If 𝒖LCB (𝝀) is a dominated solution, 𝑢SMS (𝝀)
would be zero without the penalty term 𝑝 , making the optimization of the acquisition function
more challenging. Therefore, to guide the search towards non-dominated solutions in areas of
dominated solutions, a penalty 𝑝 is added for each point that dominates the solution candidate.
Otherwise, if 𝒖LCB (𝝀) is a non-dominated solution, the penalty is zero.

Multi-EGO. In each BO iteration, Multi-EGO approximates each of the 𝑚 objectives with a
separate surrogate model from which a single-objective acquisition function is obtained. Jeong
and Obayashi [133] use Gaussian processes for the surrogates and EI as the individual acquisition
functions. The𝑚 acquisition functions are optimized jointly as an MOO problem itself using a
multi-objective genetic algorithm (in principal any MOEA can be used here), resulting in a set of
candidates with non-dominated acquisition function values. From this set, Multi-EGO then selects
multiple points to be evaluated. This naturally lends to parallelization, as there are always multiple
proposals generated in each iteration.

MESMO and PESMO. Common information-theoretic acquisition functions are multi-objective
maximum entropy search (MESMO) and predictive entropy searc (PESMO) proposed by Belakaria
et al. [21] and Hernández-Lobato et al. [110] respectively. Information theoretic multi-objective
acquisition functions model each black-box with an independent surrogate model. The resulting
Pareto set is modelled as a random variable. Hence, we can compute the entropy of the location
of the Pareto set. The lower this entropy is, the more we know about the location of the Pareto
set. These acquisition functions represent the expected reduction of entropy if a point is evaluated.
Information theoretic acquisition functions are linear combinations of the expected entropy of the
whole predictive distributions of every black-box. Hence, the utility of every point represents a
global measure of the uncertainty of the input space and not a local and heuristic measure of the
particular point, as in other acquisition functions. Thus, in theory they should explore the search
space more efficiently [21, 110].

4.3.3 Extensions and open challenges of Bayesian Optimization. So far, we have seen the classical
multi-objective scenario where a set of black-box functions is simultaneously optimized. However,
there are extensions of BO to a wider range of MOO scenarios. MOO scenarios can, for example,
be constrained. Such constraints, as mentioned in the previous section, might also be black-boxes
that can be approximated by surrogate models. An example of such a scenario is the simultaneous
optimization of the prediction error and time of prediction of a deep neural network constrained to
some particular physical storage size required for its implementation on a chip. Another interesting
and unsolved problem is to model the dependencies of various black-boxes. Intuitively, if expert
knowledge suggests that there is a correlation between the black-boxes, we could infer the value
of one black box by knowing values of another black-box. For example, if we are simultaneously
optimizing the prediction error and prediction speed of a deep neural network, we can hypothesize
that a negative correlation exists between them. By knowing a result with a low prediction error, it
may be likely that prediction speed is slow. This could possibly allow forgoing evaluation of that
black-box, especially if it will incur a significant loss of computational (or other) resources. Modeling
independent surrogates for every black-box does not take into account potential correlations. We
could model these dependencies by using a multi-output GP and a specific acquisition function that
considers the information computed by the multi-output GP [172, 196]. Furthermore, the structure
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of the search space of HPO problems raises challenges to be addressed by optimizers. In particular
in AutoML and NAS, the search spaces are often characterized by high dimensionality, the presence
of both numerical and categorical variables, and hierarchies between hyperparameters. Modeling
the relationship between HPs and model performance is particularly challenging in such scenarios.
These issues have been increasingly discussed for single-objective HPO. To efficiently optimize
over high-dimensional spaces, Wang et al. [257] propose random embeddings. To accommodate
mixed-hierarchical spaces, there are several approaches reaching from GPs with special kernel
functions [162] to other model classes that are inherently capable of representing mixed-hierarchical
hyperparameters by linear models [64], random forests [125], or kernel density estimation [25].
These challenges equally apply to the MOO setting, and need to be addressed accordingly in future
research. Modelling the causal relations of the input space variables in MOO potentially reduces the
size of the input space [4]. Some optimization problems involve a mix of expensive black-boxes and
cheap ones. In order to solve these scenarios, a hybrid methodology between decoupled MO-BO
and metaheuristics can be suggested. In particular, cheaper black-boxes could be optimized with
metaheuristics and more expensive ones with BO. The noise of the black-boxes can also vary across
the input space. Other ideas are to extend automatic BO, i.e., approaches which try to adapt the
control parameters of BO itself automatically, to the multi-objective setting [186] or implement
asynchronous multi-objective BO to never leave any black-box or resource idle. Finally, non-myopic
BO can be extended to the multi-objective setting [134].

4.3.4 Relevant software and implementations. Table 1 compares BO frameworkswithmulti objective
capabilities. We identified as suitable well-established frameworks Dragonfly [142], HyperMap-
per [197], Openbox [168], Ax7, trieste8, BoTorch [15] and GPflowOpt [152]. We checked if they offer
scalarization-based approaches (e.g., ParEGO), EHVI-based approaches (e.g., EHVI, QNEHVI) or
MESMO, and if they can handle constraints and use computational resources in parallel.

Table 1. BO frameworks which offer MO support

Dragonfly HyperMapper OpenBox Ax trieste BoTorch GPflowOpt
Scalarization-based ✓ ✓ ✓ ✓ ✓ ✓ ×

EHVI-based × × ✓ ✓ ✓ ✓ ✓
MESMO × × ✓ × × × ×

Constraints × ✓ ✓ ✓ ✓ ✓ ×
Parallel ✓ ✓ ✓ ✓ ✓ ✓ ×

4.4 Multi-fidelity optimization
Assuming the existence of cheaper approximate functions, multi-fidelity optimization is a popular
choice for expensive-to-evaluate black-box optimization target functions in many application
domains like aerodynamics [93] or industrial design [119]. These approximations tend to be noisy
or less accurate in general, but present a cheaper option to estimate an evaluation of the original
function, when a multitude of evaluations are infeasible due to the incurred computational cost.
Multi-fidelity optimization has been established for single-objective hyperparameter tuning [164]
and has become a desirable mode of optimization especially for deep learning models, that are
very costly to fully train and evaluate [85, 164, 165]. Instead of optimizing configuration selection,
7https://ax.dev/
8https://secondmind-labs.github.io/trieste/
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Fig. 6. Exemplary bracket run (figure inspired by Hutter et al. [126]). Faint lines represent future performance
of HPCs that were discarded early.

as in model-based optimization, multi-fidelity methods for HPO aim at optimizing configuration
evaluation, i.e., allocate resources to the different configurations chosen for evaluation in an efficient
manner. In contrast to other applications, where one might have access to only one or few fidelities
(e.g., one cheap computer simulation for an expensive aerodynamics optimization problem), ML
presents a continuum of fidelities to choose from. Typical examples for this are the number of
epochs a deep learning model is trained, how much training data is provided for model training or
resolution of input images in computer vision. The idea is to allocate more resources (i.e., additional
epochs, increased training data etc.) to promising configurations while discarding worse performing
configurations without sacrificing a lot of resources. This is achieved by starting all configurations
on a lower fidelity (i.e., less resources) and then promoting only the well-performing configurations
to a higher fidelity. This idea is shown in Figure 6. Essentially, multi-fidelity approaches for single-
criteria HPO were originally intended to build on top of the already quite competitive random
search with improved resource allocation. These approaches have since been enhanced by the
use of model-based optimization for drawing configurations instead of random sampling [85] and
asynchronous execution [148]. The same holds true in the multi-objective setting as recent works
have shown [230, 231]. Multi-fidelity extensions like Hyperband can be carried over to the MO
setting by simply defining a suitable performance indicator to decide where increased resource
allocation is desirable, which could be achieved in numerous ways. Existing approaches have done
this via scalarization using random weights [230] or non-dominated sorting [227, 231]. Taking
multi-fidelity one step further, it can also be combined with BO, which remains one of the open
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challenges for MOO: This has been done in single-objective HPO, where configurations are no
longer sampled randomly (as in traditional Hyperband), but via BO [85]. Therefore, instead of
enhancing random search, multi-fidelity methods are used to enhance BO in this case [85].

4.5 Further issues
4.5.1 Focusing optimization through user preferences. A growing body of literature is exploring
the integration of decision maker (DM) preferences into multi-objective optimization [36, 256].
Depending on when the user preferences are elicited relative to the optimization process, these
methods are generally divided into a priori (before optimization), progressive (during optimization),
and a posteriori (after optimization) approaches [37]. The majority of literature on multi-objective
optimization aims to find a good approximation of the entire Pareto front, providing the decision
maker with a variety of alternatives to choose from after optimization, so falls into the a posteriori
category. There are, however, at last three reasons for taking preference information into account
earlier [36]:
(1) It will allow to provide the DM with a more relevant sample of Pareto optimal alternatives.

This could either be a smaller set of only the most relevant (to the DM) alternatives, or a
more fine-grained resolution of the most relevant parts of the Pareto frontier.

(2) By focusing the search onto the relevant part of the search space, we expect the optimization
algorithm to find these solutions more quickly. This is particularly important in computa-
tionally expensive applications such as hyperparameter optimization.

(3) As the number of objectives increases, it becomes more and more difficult to create an
approximation to the complete Pareto optimal frontier. This is partly because of the increasing
number of Pareto optimal solutions, but also because with an increasing number of objectives,
almost all solutions in a random sample of solutions become non-dominated [130], rendering
dominance as selection criterion less useful. DM preference information can re-introduce the
necessary order relation.

Several ways to specify preferences have been proposed, including reference points (an "ideal"
solution), constraints (minimum acceptable qualities for each objective), maximal/minimal trade-
offs (how much is the DM willing to sacrifice at most in one criterion to improve another criterion
by one unit) and desirability functions (non-linear scaling of each objective to [0, 1]). Rather than
asking the DM to specify preferences explicitly, preferences can also be learned [95] by asking the
DM to rank pairs or small sets of solutions, or to pick the most preferred solution from a set. This
has the advantage that the DM just has to compare solutions, which is something they should be
comfortable doing. Finally, people have observed that DMs often select a solution from the Pareto
frontier that “sticks out" in the sense that improving it slightly in either objective would lead to a
significant deterioration in the other. These solutions are often called "knees", and it is possible to
specifically search for them without having to ask the DM anything (e.g., [38]).

4.5.2 Noisy environments. If an MOO problem is noisy, we do not have direct access to the objective
values 𝑐1, . . . , 𝑐𝑚 , but instead we only have measurements 𝑐1, . . . , 𝑐𝑚 with

𝑐𝑖 = 𝑐𝑖 + 𝜖𝑖 ∀𝑖 = 1, . . . ,𝑚 (15)

where 𝜖𝑖 is the observational noise in the 𝑖-th objective modeled as a random variable. Noise in
the evaluation plays a major role also in most MOHPO problems, e.g., because generalization
error estimates in Eq. (2) are based on a finite dataset sampled from a much larger universe, the
random sequence of the data as it is presented during training has an impact on the performance,
or a stochastic optimizer is used during training. Clearly, noise is challenging for optimization,
whether single-objective or multi-objective. It may lead to false performance comparisons such
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as for example an incorrectly inferred dominance relationship between two HPCs. This may
mean some dominated solutions are classified as non-dominated and thus incorrectly returned
by the algorithm, while some Pareto-optimal solutions are discarded incorrectly because they
are perceived as being dominated. It may also lead to an over-optimistic estimate of the Pareto
frontier, as most solutions returned as non-dominated were “lucky" in their evaluation. One simple
way to reduce the effect of noise is to evaluate each solution multiple times and optimize based
on mean values. While this reduces the standard error, it is computationally very expensive
and may be impractical for HPO. Researchers in the evolutionary computation community have
developed a wealth of methods to cope with noisy evaluations, including the use of statistical tests
(e.g., Syberfeldt et al. [243], Park and Ryu [205]), the use of surrogate models (e.g., Branke et al. [40]),
probabilistic dominance [122], or integrating statistical ranking and selection techniques [161]. A
relatively simple yet effective method seems to be the rolling tide EA [91] which alternates between
sampling new candidates and refining the archive, i.e., re-evaluating promising HPCs, in each
optimization iteration. For BO, the noise can be accounted for by using re-interpolation [153] or
in a straightforward way by choosing GP regression (rather than interpolation) and appropriate
acquisition functions, see, e.g., Astudillo and Frazier [11], Daulton et al. [62], Hernández-Lobato
et al. [110], Horn et al. [115], Knowles et al. [150], Rojas Gonzalez et al. [223], Rojas-Gonzalez
and Van Nieuwenhuyse [224]. Also heteroscedastic models to deal with input space noise in the
presence of several objectives like the models presented in Villacampa-Calvo et al. [253] can be
used for BO. A recent survey on multi-objective optimization methods under noise with a provable
convergence to a local non-dominated set has been provided by Hunter et al. [123], older surveys
with a somewhat broader scope can be found in Gutjahr and Pichler [103], Jin and Branke [136].

4.5.3 Realistic evaluation of multi-objective optimization methods. When applying MOHPO in
a real world setting it is crucial to understand how a solution will behave on unseen data after
deployment. In standard HPO this is achieved via a 3-way split of the data in train, validation and
test sets, or, more generally, as nested resampling (c.f. Section 3). In Section 3.3.2 different measures
for the quality of multi-objective optimization have been introduced. While these measures are
generally useful to evaluate the performance over the whole objective space, decision makers are
ultimately only interested in a single solution (selected from the Pareto set) for deployment and
later use. This usually implies a human-in-the-loop. For a single train/validation/test split, this is
easily achievable: The decision maker needs to look at the Pareto front computed on the validation
set, choose the configuration they would like to use and then evaluate its performance on the
test set. Extending this approach to nested resampling, multiple Pareto fronts are generated, one
for each outer fold. Here, for a drill-down to to a single solution would imply that the decision
maker needs to make these choices for each outer loop, which can become impractical and can
make larger benchmark studies difficult to conduct efficiently. What can be implemented in an
automatic fashion, is the evaluation of each generated Pareto front on its associated outer test
set in an unbiased fashion. Here, similarly as in nested resampling in single objective HPO, each
Pareto set candidate would be trained on the joint training and validation set, and evaluated on the
test set. This results in a new unbiased Pareto front, for each outer iteration, and measures like
hypervolume can also be calculated from the outer results in an unbiased fashion. Furthermore,
attainment surfaces [92] have been introduced to study the performance of general multi-objective
noisy optimization by visualizing the Pareto fronts of multiple runs simultaneously. They can be
used to either visualize the set of all returned fronts evaluated on the validation sets, or, as described
above, on the outer test sets. In general, proper MOHPO evaluation is understudied and an open
challenge for further research.
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4.6 Relevant benchmarks and results
In general, relevant benchmarks comparing different multi-objective optimizers for HPO mostly
were conducted in the context of new optimizers being proposed (see, e.g., Guerrero-Viu et al. 99,
Hernández-Lobato et al. 110, Schmucker et al. 230). We start by giving a brief summary of interesting
findings in the literature. The experiments conducted in Horn [113] reveal the weaknesses of
utilizing grid search in the context of multi-objective HPO when tuning hyperparameters of
an SVM for binary classification (classification error and training time as targets) compared to
sequential model-based optimization techniques in the sense that grid search fails to provide
a good Pareto front approximation. Random search on the contrary has shown good results
and even outperformed some model-based optimization methods (i.e., ParEGO, SMS-EGO and
PESMO) when applied to a fairness-related multi-objective HPO task [230]. While an exhaustive
benchmark comparing the performance of random and grid search onmulti-objective HPO problems
is missing at this point in time, random search can generally be recommended as a baseline when
conducting experiments [230]. Horn and Bischl [114] found that ParEGO and SMS-EGO were able
to outperform an NSGA-II variant and latin hypercube-sampling when tuning over multiple models
with hierarchical structure in binary classification tasks (9 datasets) where the objectives have
been FPR and FNR. In Horn et al. [115] the authors investigated the performance of noise-resistant
SMS-EGO variants, the rolling tide EA (RTEA) and approaches based on random search while
tuning an SVM on 9 binary classification tasks with FPR and FNR as objectives. Here, RTEA and a
repeated variant of SMS-EGO were ranked best among all competitors. Hernández-Lobato et al.
[110] compared PESMO to EHVI, ParEGO and SMS-EGO when tuning the hyperparameters of
a feed-forward neural network on the MNIST dataset with classification error and prediction
time as objectives. Here, PESMO outperformed all competitors, especially if few evaluations were
available. Guerrero-Viu et al. [99] conducted a NAS+HPO benchmark tuning the architecture and
hyperparameters of a CNN on classification tasks using the Oxford Flowers and MNIST Fashion
datasets. They propose an EMOA extended by successive halving, a multi-objective BOHB variant,
an EHVI variant, a multi-objective extension of BANANAS [258] and a BULK & CUT optimizer
which first tries to find large and accurate models in the beginning and subsequently prunes
them. In general, the EHVI variant and BULK & CUT optimizer slightly outperformed the other
approaches [214]. Recent standardized HPO benchmark suites like HPOBench [76] and YAHPO
Gym [214] include some support for multi-objective use cases, which emphasizes the trend towards
MOHPO in the research community. In [214], the authors present YAHPO Gym, a benchmark suite
for HPO, and illustrate the potential of YAHPO Gym’s MOHPO benchmark problems by comparing
seven multi-objective optimizers on the YAHPO-MO benchmark (v1.0), a collection of 25 MOHPO
problems given by tuning hyperparameters of an elastic net, random forest, gradient boosting tree,
decision tree, funnel-shaped MLP net, or an ML pipeline on various OpenML tasks. The number
of objectives ranges from two to four. Objectives are given by at least one performance metric
(e.g., accuracy), and interpretability metrics (such as the number of features used or the interaction
strength of features as introduced in Section 5) or metrics regarding computational efficiency such
as memory required to store the model. The optimization budget (number of evaluations) is scaled
with respect to the search space dimensionality and ranges from 77 to 267 objective evaluations.
[214] compare random search, random search (x4), ParEGO, SMS-EGO, EHVI, Multi-EGO and a
mixed integer evolution strategy (MIES; Li et al. 167) relying on Gaussian and discrete uniform
mutation and uniform crossover. All model-based optimizers use random forests as surrogate
models, for more details see [214]. Random search (x4) samples four configurations uniformly at
random (in parallel) at each optimizer iteration. Regarding performance evaluation the anytime
hypervolume indicator (computed on normalized objectives) was considered. Looking at mean ranks
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Fig. 7. Overview of application scenarios for MOHPO.

over all benchmark problems, random search (x4) outperforms all competitors after having used
25% of the optimization budget (which was expected due to random search (x4) having evaluated
four times more configurations in total compared to the competitors). However, with respect to
final performance, Multi-EGO, ParEGO and MIES are on par with or outperform random search
(x4), while EHVI or SMS-EGO fail to consistently outperform the vanilla random search. Looking at
each benchmark problem separately, results indicate strong performance differences of optimizers
with respect to the hypervolume indicator. Especially MIES performs exceptionally well on some
benchmark problems but only shows average performance on others. While this benchmark study
is a first step towards an exhaustive multi-objective benchmark, plenty of work still needs to be
done to be able to give general recommendations regarding when to use which multi-objective
optimizer.

5 OBJECTIVES AND APPLICATIONS
In the following, we will give an overview of relevant metrics for ML models, interesting use cases
and application domains for MOHPO. We organize this section by examining three aspects of ML
model evaluation:

Prediction performance. In most cases, prediction performance is of primary importance. Which
performance metric aligns best with the goals and costs associated with an ML task is not always
readily apparent, especially if misprediction costs are hard to quantify or even unknown. We discuss
the case where multiple performance metrics with unquantifiable trade-offs are relevant by the
example of ROC analysis in classification.

Computational efficiency. Computational efficiency is a prime example for the difficulty of finding
an appropriate metric. The desire for a memory or energy efficient model is often difficult to
operationalize because it is not as straightforward to measure model efficiency. We will examine
various possible ways and present a usecase where efficiency and prediction performance are
optimized simultaneously.

Fairness, interpretability, robustness and sparseness. Many applications areas require ML models
to fulfill higher standards than only high predictive performance. First, we explore Fairness and
Interpretability as objectives. We further examine Robustness of ML models to domain shift, per-
turbations and adversarial attacks as a prerequisite/objective, as robust models inspire a higher
degree of trust. Finally we will venture into the topic of sparse ML models, where the number of
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features is minimized in some manner. Sparseness itself is not necessarily a desirable quality, but
may be a suitable proxy for model complexity/interpretability, data acquisition cost and/or even
performance. The term FAT-ML (Fairness, Accountability and Transparency in Machine Learning)
has been coined and has gained some traction recently9. There is considerable overlap between the
objectives examined here and FAT-ML, but FAT-ML also entails external characteristics, such as
e.g., responsibility which is encompassed in the accountability aspect.

A visual representation of the remaining sections can be found in Figure 7. It should be noted
that interactions between different objectives are worth studying. Objectives may be positively
correlated, for example a model with high predictive accuracy might be expected to also perform
well measured in other performance metrics like AUC [49]. Similarly, a sparse model is expected to
be more efficient as well as more interpretable. Objectives might also be conflicting. A more complex
model might for example perform better in terms of accuracy, but might be less interpretable. It is
hard to quantify these relationships without a comprehensive benchmark, but we will try to shed
light on them wherever relevant.

5.1 Prediction performance
HPO has traditionally been focusing on optimizing for predictive performance measured by a single
performance metric. It can, however, also be beneficial to optimize multiple different prediction
metrics simultaneously; particularly, if a trade-off between different metrics cannot be specified
a priori. An abundance of prediction metrics have been defined for various ML tasks and the
appropriate choice depends on the specific use case and available data and we will therefore
not provide a comprehensive overview. Good examples for the diversity in metrics can be found
for classification, one of the most widely utilized ML tasks, in Figure 3.1 of Japkowicz and Shah
[132] and for time series forecasting, a much more specific application, in Figure 2.3 of Svetunkov
[242]. Different performance metrics may penalize prediction errors in distinct ways, and therefore
prediction metrics are more or less correlated [49, 268]. These correlations have been extensively
studied for some (widely used) metric pairs [58, 63, 121]. Here, as in general MOHPO, we argue it
may be of merit to apply MOHPO in a case where the user is interested in two or more, possibly
conflicting prediction metrics and/or trade-offs.

5.1.1 ROC analysis. Many binary classification models predict scores or probabilities that are
then converted to predicted classes by applying a decision threshold. Different decision threshold
values will result in different trade-offs between performance measures. A higher decision threshold
may for example reduce the number of false positives, but may also reduce the number of true
positives at the same time. This trade-off is often visualized by the receiver operating curve (ROC),
where true positive rate (TPR) is plotted against false positive rate (FPR) for different threshold
values. Similarly, the precision-recall curve visualizes TPR versus positive predicted value (PPV),
respectively. Because improving one classification metric by varying the decision threshold is
typically associated with deteriorating performance with respect to the other, choosing a decision
threshold based on a ROC analysis a fundamentally multi-objective problem, where the decision
threshold can be viewed as an additional hyperparameter. As the decision threshold has no impact
on the model itself, it can be optimized post-hoc and tuning is therefore fairly cheap [30]. An
approach to address this optimization problem is to formulate it as a single-objective problem by
e.g., aggregating elements of the confusion matrix (F-Measure) or the ROC curve (AUC) into a
single metric. As a result, by reducing the natural two-objective optimization problem to a single
one, one only optimizes a classifier’s general ability to discriminate both classes. However, not
9See e.g., https://facctconference.org/ or https://www.fatml.org/.
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Fig. 8. Scheme showing two intersecting, non-dominant ROC curves with similar AUC in green and one
ROC curve that is fully dominated in blue. The resulting Pareto front is marked through a dashed black line.

all information is preserved. An example can be seen in Figure 8, where two ROC curves lead to
a similar AUC but present quite distinct shapes. It may be desirable to consider the ROC curves
for different HP configurations with different ROC curves for a final solution. One can follow the
approaches in e.g., Lévesque et al. [163], Chatelain et al. [52], and Bernard et al. [27] and combine
the information from each iteration in one ROC front that displays all Pareto-optimal trade-offs
between TPR and FPR. This preserves all relevant information from individual evaluations and
allows for decisions in accordance to user- or case-specific preferences. In our example in Figure 8,
the final combined model would then show the same performance, i.e., trade-offs, as the dashed
black line. A similar approach has been introduced for regression: The Regression Error Character-
istic (REC) Curves, which examines trade-offs between error tolerance and percentage of points
within the tolerance [28].

Extending these ideas to a multi-class setting, where each class has unique associated misclas-
sification costs, brings new challenges. The number of different misclassification errors grows
quadratically with the number of classes 𝑔, leading to increasingly high-dimensional surfaces.
Naturally, one wants to minimize all the different misclassification errors simultaneously. An
in-depth exploration of this challenge and how to solve it can be found in Everson and Fieldsend
[84]: The authors define the ROC surface for a 𝑔-class classification problem and try to optimize for
the respective 𝑔(𝑔 − 1) misclassification rates by an EA. Multi-class ROC problems are therefore
generally seen as a MOO problem and closely related to the core topic of this work [84, 90]. They
are generally solved through (i) single-model approaches, where one classifier is identified, and
once the costs are known at prediction time, a suitable trade-off on that classifier’s ROC surface
is then found, or (ii) multi-model approaches that produce a pool of suitable classifiers that are
available at prediction time [27]. The optimal ROC surface can be viewed as a Pareto front; in this
case the search space is the space of classifiers, and every classifier corresponds to a ROC curve.
A classifier is non-dominated if any part of its ROC curve is non-dominated and the length of
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the non-dominated part of the ROC can be used as the crowding distance. It should be noted that
the principle of AUC as a metric of the classifier’s general ability to discriminate both classes in
the binary case does not carry over to the multi-class setting [75]. Hand and Till [105] attempt to
generalize and adapt AUC from a binary setting to a meaningful metric for the multi-class setting.
In binary classification, the ROC curve is generated through varying the decision threshold, which
is quite cheap and can be done after each iteration in a hyperparameter optimization problem. In
a 𝑔-class setting during prediction, the classifier will generally output a vector of probabilities or
some measure of confidence that a sample belongs to the corresponding class 𝑐𝑖 Bernard et al. [27]:

ℎ(𝑥) = [ℎ(𝑐1 |𝑥), ℎ(𝑐2 |𝑥), . . . , ℎ(𝑐𝑔 |𝑥)]
To generate a decision rule, a vector of weights 𝑤 = (𝑤1,𝑤2, ...,𝑤𝑔) is applied, and the highest
value is chosen. To obtain a ROC surface similar to the ROC curve in binary classification, a large
number of different weight vectors would have to be evaluated, which incurs larger additional
costs and makes it no longer trivial to obtain post-hoc for each configuration [27].

Applications and exemplary use case. An illustrative example is given by Chatelain et al. [52],
who attempt to identify well-performing configurations of SVMs in a binary classification setting
with unknown misclassification costs. Their use-case is based on digit recognition from incoming
handwritten mail document images. While shown to be effective at similar tasks [198], SVMs are
notorious for extreme effects of hyperparameters on performance [52]. Chatelain et al. [52] introduce
two parameters 𝐶− and 𝐶+ as penalties for misclassifying the respective classes (namely, digit vs.
non-digit) and use them during training of the SVM. They tune for these two hyperparameters along
with 𝛾 , the kernel parameter for the radial basis function kernel. Using NSGA-II (see Section 4.2.3),
they evolve a pool of non-dominated hyperparameter configurations, thus approximating the
Pareto optimal set. Another application can be found in Horn and Bischl [114], where ParEGO
and SMS-EGO (see Section 4.3) have been applied to jointly minimize the false-negative rate and
false-positive rate of an SVM on a variety of binary classification tasks from different domains.

5.1.2 Other applications and examples for multiple prediction performance metrics. This section
outlines a few examples where trade-offs between several prediction performance metrics are
examined and MOHPO is applied accordingly.

Natural language processing. Language and human speech in general are quite complex and in
turn natural language processing (NLP) tasks are notoriously hard to evaluate. One such example
is the recent subfield of natural language generation (NLG): The quality of the resulting texts has
to be quantified, but may depend on the use case and different aspects such as semantics, syntax,
lexical overlap, fluency, coherency [143]. Sai et al. [225] show that across several popular metrics
for NLG tasks, no single metric correlates with all desirable aspects. In a related application of
MOHPO, Schmucker et al. [231] use successive halving to optimize perplexity and word error rate
for transformer based language models as one of their application examples.

Object detection. Given an image, object detection is used to determinewhether there are instances
of a given type and where they are located [174]. This introduces aspects of both regression (how
close is the proposed bounding box of the object compared to the ground truth?) and classification
(are all objects identified correctly?) into the task. Widely used metrics include precision and
recall, but this naturally only focuses on one aspect of the task, as one needs to formerly define
when something is a true prediction or a false prediction. Liddle et al. [170] propose to specifically
examine two aspects of object detection in a multi-objective manner during evaluation: (i) detection
rate 𝐷𝑅 = # correctly located objects

# objects in the image and (ii) false alarm rate 𝐹𝐴𝑅 = # falsely reported objects
# objects in the image . Aside from these
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prediction performance metrics, detection speed is often crucial, which makes evaluation with a
single metric even more challenging [174].

5.2 Computational efficiency
Technical constraints have always limited ML research and application, but with the increasing
prominence of deep learning, efficiency in ML has become an important topic [228, 244, 245, 255].
This section will not address efficiency of the actual optimization process – be it model search,
hyperparameter optimization or NAS [14, 173, 245], which is an active research area in its own
right. In the context of this work, we see efficiency as a desirable quality of an ML model with a
given HP configuration in terms of computational effort needed for training or prediction10. When
taking efficiency into account, a common scenario is the existence of resource limitations which
have to be respected, e.g., the memory consumption of the model has to be below the available
memory to allow for deployment. In these scenarios it may be more useful to the practitioner to
formulate a constrained (single-objective or multi-objective, depending on the remaining objectives)
optimization problem. Another approach to interpret efficiency in the context of an ML model is
Feature Efficiency, whichwill be addressed in Section 5.6.When looking at hardware implementation,
we can roughly differentiate between energy-efficient andmemory-efficientmodels. In the following,
we will introduce several metrics that can be used to measure a model’s efficiency.

5.2.1 Efficiency metrics and approaches. We will in the following give an introduction to three
broad approaches to quantifying efficiency in the context of machine learning models and present
one related use case each. A comprehensive overview of publications applying MOHPO with at
least one objective related to efficiency can be found in Appendix A11.

Energy consumption and computational complexity. Limiting computational complexity reduces
the number of operations performed in a model and therefore generally leads to rather energy-
efficient models. Lu et al. [182] give an overview of suitable measures for computational complexity
of deep learning models: number of active nodes, number of active connections between the nodes,
number of parameters and number of floating-point operations (FLOPs). From experiments, they
conclude that FLOPs are the ideal metric and move on to optimize for it in a multi-objective
NAS along with accuracy for image classification architectures. This matches with other research
papers; FLOPs have long been used in ML – especially in deep learning publications over the last
decade – to describe the complexity or even size of a model, for example, in the introductions
of ResNet by He et al. [108] or ShuffleNet by Zhang et al. [267]. An alternative to FLOPs is to
use Multiply-Accumulate (MAC) operations, but the relationship to FLOPs is roughly linear [118].
Another approach to measure energy consumption is through the use of an appropriate simulator
like Aladdin as introduced in Shao et al. [235]. It is designed to simulate the energy consumption of
NNs given the right information (C code describing the operations performed by the NN) and is
used for evaluation of architectures [111, 222].
Example Application - Wang et al. [254] aim to tackle the issue of complex deep learning models
for computer vision and the challenges these extremely deep architectures pose for deployment on

10The optimization process can become more efficient if it focuses on efficient candidates during optimization. An example of
this correlation is the expected improvement per second acquisition function [239] in BO, which often prefers configurations
that are quick to evaluate.
11While some applications of MOHPO such as prediction performance have too many publications to provide a reasonable
and comprehensive overview in the scope of this work, others like e.g., interpretability have only recently been introduced
and only few related publications exist. Efficiency in MOHPO is established and at the same time still somewhat novel.
We therefore believe this comprehensive review – to the best of our knowledge the first of its kind – to be a worthwile
contribution.
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e.g., edge devices. They employ a multi-objective approach to identify models suitable for image
classification that are not only highly accurate, but also cope with a minimal amount of FLOPs.
Convolutional Neural Networks [160] are a popular choice of model for image classification today,
and many complex architectures are used for various computer vision tasks. One such example is
DenseNet [120] which consists of several blocks of dense layers connected via convolutional layers
and pooling layers. Wang et al. [254] uses the the hyperparameters of its dense blocks as the search
space for the architecture search. This includes the number of layers and the growth for the dense
blocks as well as typical deep learning hyperparameters, such as maximum epochs or learning
rate. From this search space, a population is initiated, and Particle Swarm Optimization [237] is
used to find a Pareto front. In experiments on the CIFAR-10 dataset, some of the identified models
outperform DenseNet-121 and other DenseNet configurations while being less complex with a
smaller number of FLOPs.

Model size andmemory consumption. Especially in deep learningmodels, model size and efficiency
will often go hand in hand, as employing more parameters (i.e., greater model size) generally results
in more FLOPs. The parameters are mostly weights, and their number can be straightforwardly
derived in deep learning architectures. Several publications have used the number of parameters
as proxy for the efficiency of a deep learning model. For example Howard et al. [117] introduced
MobileNets, which are specifically designed for efficient deployment on edge devices. They in-
troduce separable convolutions to reduce the number of parameters needed for a top-performing
Convolutional Neural Network.
Example Application - Loni et al. [177] present their framework DeepMaker to identify efficient and
accurate models for embedded devices. The objectives are classification accuracy and model size
(number of trainable network weights); they also discovered a high correlation between the latter
and prediction time. NSGA-II is used to search the space of discrete hyperparameters (activation
function, number of condense blocks, number of convolution layers per block, learning rate, kernel
size and optimizer). Their approach has some similarity to multi-fidelity optimization, as during
optimization sampled architectures are only trained for 16 epochs to decide for the optimal choice,
but the final performance is reported after training the selected architecture for 300 epochs. The
method is tested on MNIST; CIFAR-10 and CIFAR-100.

Prediction and training time. The model is usually trained upon deployment, or the training is
not as time-critical, so we are mostly interested in minimizing prediction time. However, some
applications and deployment strategies require frequent retraining of the model. In which case,
training time can be a crucial factor as well. While often a crucial metric, prediction time is very
hard to measure reliably due to various differences in the computing environment [182]. Prediction
time may also correlate strongly with energy efficiency metrics, Rajagopal et al. [220] use FLOPs as
a proxy for inference latency.
Example Application - PESMO is introduced in Hernández-Lobato et al. [110] and applied to several
MOO problems, one of which is finding fast and accurate NNs for image classification on MNIST.
They tune a variety of hyperparameters: The number of hidden units per layer (between 50 and 300),
the number of layers (between 1 and 3), the learning rate, the amount of dropout, and the level of ℓ1
and ℓ2 regularization [110]. The objectives are prediction error and prediction time - measured here
as the time it takes for the network to predict 10.000 images. A ratio is then computed with the time
the fastest network in the search space requires for this task. PESMO is compared against SMS-EGO,
ParEGO and EHI among others and shows superior performance in terms of hypervolume. Their
follow-up paper [111] deals with a similar use case.

Dong et al. [72] examine bi-objective NAS for image classification optimizing for classification
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accuracy and FLOPs, the number of parameters and prediction time respectively. It may sometimes
be relevant to optimize a model with two efficiency metrics along with a primary performance
metric; examples for this can be found in Chu et al. [55], Elsken et al. [78], Lu et al. [180]. Chu
et al. [55] present a framework that allows incorporation of constraints with respect to the three
objectives in a task of the super-resolution domain: peak signal-to-noise-ratio or structural sim-
ilarity index as performance metrics, FLOPs, and the number of model parameters. Note, that
this section already delves heavily into the topic of HW-NAS, but only from a multi-objective
point of view. Single-objective and constrained approaches [24] are also widespread in addressing
these challenges. Benmeziane et al. [24] provide a comprehensive survey on HW-NAS for a reader
interested in this subtopic.

In context of the full software/hardware stack, Lokhmotov et al. [176] tunes the hyperparameters
of MobileNets for test accuracy and prediction time on an image classification task.

5.3 Fairness
When algorithmic decisions made by ML models impact the lives of humans, it is important to
avoid introducing bias that adversely affects sub-groups of the population [19, 112]. As an illustrat-
ing example, consider a bank’s decision-making process for loan applications. Ethical and legal
requirements dictate that a model should not discriminate applicants because of protected attributes,
such as gender or race. Simultaneously, the bank wishes to prioritize predicting loan defaults as
accurately as possible in order to maximize profits. Jointly optimizing those objectives can provide
additional clarity to decision-makers by informing them of possible trade-offs while yielding models
that satisfy fairness metrics, allowing them to make an informed decision regarding which models
to deploy and enables the use of fair models.

For a survey on different fairness perspectives and metrics, we refer to two excellent surveys
by Mehrabi et al. [189] and Pessach and Shmueli [212], as well as a benchmark by [94] for a more
comprehensive take on fair ML than is possible in the scope of this paper. The general goal of
fair ML is to detect and potentially mitigate biases arising due to the use of ML models. For this
reason, several fairness metrics as well as debiasing methods have been proposed. The choice of the
correct metric depends on the context a decision is made in [272], see e.g., [226] who propose a
Fairness Tree that maps applicable metrics to different problem settings. While a variety of causal
and individual fairness notions exist, so-called (statistical) group fairness metrics are widely used
in practice, since they are easy to implement and do not require access to the underlying (causal)
data generating mechanism. Given a protected attribute 𝐴 (e.g., race), an outcome 𝑋 , and a binary
predictor 𝑌𝑏 , several criteria can be derived [19], and we provide three widely used examples:

• Equalized Odds (Independence):

𝑃𝑟 (𝑌𝑏 = 1|𝐴 = 1, 𝑌 = 𝑦) = 𝑃𝑟 (𝑌𝑏 = 1|𝐴 = 0, 𝑌 = 𝑦), 𝑦 ∈ {0, 1}
Fulfilling this essentially requires equal true positive and false positive rates between sub-
populations. More generally, independence on the conditional 𝑌 is required. Equalized odds
for a binary predictor is the most relevant example of such an independence measure [107].

• Equality of Opportunity (Sufficiency):

𝑃𝑟 (𝑌𝑏 = 1|𝐴 = 1, 𝑌 = 1) = 𝑃𝑟 (𝑌𝑏 = 1|𝐴 = 0, 𝑌 = 1)
This criterion is a relaxation of equalized odds, as only independence on the event 𝑌 = 1,
which denotes the advantageous outcome (e.g. getting approved for a loan) here, is required.
It therefore constitutes equality of opportunity [107].
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• Calibration is another desirable criterion for classifiers, especially in the context of fairness,
where calibrated probabilities in all groups may be required. For a classifier ℎ(𝑥) that yields
predicted probability, calibration requires that:

∀
𝑎∈{0,1}

∀
𝑝∈[0;1]

𝑃𝑟 (𝑌𝑏 = 1|𝐴 = 𝑎, ℎ(𝑥) = 𝑝) = 𝑝.

Many fairness metrics metrics operate on a Fairness Tensor [145] and essentially measure
differences in performance metrics such as 𝐹𝑃𝑅 or 𝐹𝑂𝑅 between protected groups.

Applications and exemplary use case. Existing approaches towards improving a ML-algorithm’s
fairness mainly focus on decreasing discrepancies in classifier performance between sub-groups or
individuals (e.g., in [19, 156]). This is achieved e.g., by pre-processing the data (e.g., [141]), imposing
fairness constraints during model fits [156] or by post-processing model predictions [5, 107].
Those methods in turn often come with hyperparameters that can be further tuned in order to
emphasize fairness during training [230, 231]. Several approaches towards optimizing (model-)
hyperparameters for fairness in a multi-objective fashion have been proposed. While Pfisterer
et al. [213] propose multi-objective BO to jointly optimize fairness criteria as well as prediction
accuracy, [211] propose a constrained BO approach, where the fairness metric is constrained to a
small deviation from optimal fairness while predictive accuracy is optimized. Pelegrina et al. [210]
use a MOEA to optimize simultaneously for fairness metrics and performance in an attempt to
find a fair PCA. Yet another approach is introduced in Martinez et al. [188], where each sensitive
group risk is a separate objective, also leading to a MOHPO problem for choosing a classifier. It is
interesting to note that fairness can be heavily influenced not only by parameters of the debiasing
method, but also by the choice of ML algorithm and hyperparameters [213]. One popular dataset
studied in the context of Fairness is the COMPAS (Correctional Offender Management Profiling
for Alternative Sanctions) data [8]. The goal of COMPAS is to predict the risk that a criminal
defendant will re-offend. The goal is to obtain a prediction that is accurate but simultaneously not
biased towards individuals of any race. In the following example, the latter quantity is measured
via 𝜏𝐹𝑃𝑅 =

𝐹𝑃𝑅𝑆0
𝐹𝑃𝑅𝑆1

(optimal for 𝜏𝐹𝑃𝑅 = 1, where 𝐹𝑃𝑅𝑆 is the false positive rate on group 𝑆 with 𝑆0
and 𝑆1 is the advantaged and disadvantaged group, respectively). The effect of applying several
debiasing strategies – interpolating between no debiasing and full debiasing – is shown in Figure 9.
A random forest (𝑅𝐹 ) model is trained with different debiasing techniques: Reweighing [141],
Equalized Odds [107], and Natural Language Processing [5]. As can be observed, these different
strategies and debiasing strengths lead to different trade-offs, thus resulting in a MOO problem. It
is important to note that existing approaches (including the ones we cover here) often propagate a
solely technological solution to a socio-technical problem [112]. While MOO for fairness can solve
the technological aspects of this problem, it cannot be forgotten that the social aspects must also be
addressed [232]. Furthermore, practitioners must not only take into account the model itself, but
also the data used to train the algorithm [202, 248], the process behind the collection and labeling
of such data, and eventual feedback loops arising from use of potentially biased models.

5.4 Interpretability
In order to make an ML model’s decisions more transparent, different methods that aim at providing
human-understandable explanations have been proposed (c.f. [194]). Requirements for interpretabil-
ity generally range from models derived from fully interpretable model classes to interpretability
via post-hoc interpretation techniques. For example, the former is required to satisfy regulatory
constraints in the banking sector [42, 50] and can be thought of as a constraint on the search space
when selecting a model. The latter is often used to understand functional relationships between
features and target variables in an ML context (i.e., understanding the model) or to understand
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Fig. 9. Effect of 3 different debiasing strategies on the fairness-accuracy trade-off on the COMPAS dataset
measured on test data. Figure obtained from [5]

single decisions made by a trained algorithm [194]. In addition, interpretability techniques can be
helpful to debug errors made by models (e.g., errors stemming from mislabeled data or spuriously
drawn correlations [155]). While many explanations can be either directly derived from the model
class (e.g., decision trees and generalized linear models), interpretability techniques either focus on
a single model class [204, 233] or aremodel-agnostic [9, 183]. The latter is especially desirable, as this
allows the user to explain arbitrary models resulting from tuning over various model classes. On the
other hand, interpretability methods can produce misleading results if a model is too complex or the
explainability technique is unreliable due to them e.g., using additional features [147, 194]. Quan-
tifying interpretability, i.e., determining how complex the predictive decisions of a given model are,
could be a first step towards obtaining models that provide reliable explanations and interpretable
models. Quantifying interpretability of a model is not straightforward, as terms like interpretability,
explainability, and complexity are highly subjective expressions [171, 194, 195]. First approaches
to metrics that can be used as a proxy for interpretability on tabular data have been proposed, as
shown e.g., in Molnar et al. [195]. While explainability for non-tabular application domains may
be equally interesting, no methods that allow quantifying the interpretability of e.g., computer
vision models have been proposed to date. A popular proxy for model complexity (and therefore
interpretability) is sparseness, i.e., the number of features. We explore this concept further in the
context of MOHPO in Section 5.6. Molnar et al. [195] propose 2 additional metrics aside from
sparseness to quantify interpretability on tabular data, which we will briefly summarize here12:

• Complexity of main effects Molnar et al. [195] propose to determine the average shape
complexity of Accumulated Local Effects (ALE) [9] main effects by the number of parameters
needed to approximate the curve with linear segments. The Main Effect Complexity (MEC)
is defined as:

𝑀𝐸𝐶 =
1∑𝑝
𝑗=1𝑉𝑗

𝑝∑︁
𝑗=1
𝑉𝑗 ·𝑀𝐸𝐶 𝑗 , (16)

12A detailed derivation and explanation can be found in Molnar [194], Molnar et al. [195]
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where 𝑉𝑗 = 1
𝑛

∑𝑛
𝑖=1 (𝑓𝑗,𝐴𝐿𝐸 (𝑥 (𝑖) ))2 and𝑀𝐸𝐶 𝑗 = 𝐾 +∑𝐾

𝑘=1 I𝛽1,𝑘>0 − 1. 𝐾 is the number of linear
segments needed for a good-enough approximation, 𝑝 is the number of features, 𝛽1, 𝑘 the
slope of the 𝑘 − 𝑡ℎ linear segment, and 𝑛 the number of samples.

• Interaction Strength Quantifying the impact of interaction effects is relevant when expla-
nations are required, as most interpretability techniques use linear relationships to obtain
explanations. Interaction strength 𝐼𝐴𝑆 can be measured as the fraction of variance that cannot
be explained by main effects:

𝐼𝐴𝑆 =
E(𝐿(𝑓 , 𝑓𝐴𝐿𝐸1𝑠𝑡 ))
E(𝐿(𝑓 , 𝑓0)) ≥ 0, (17)

where 𝑓 is the prediction function, 𝑓𝐴𝐿𝐸1𝑠𝑡 the sum of first order ALE effects, and 𝑓0 the mean
of predictions.

Applications and exemplary use case. Molnar et al. [195] aim to find an accurate and interpretable
model to predict the quality of white wines (on a scale from 0 to 10) [59]. In order to accomplish this,
they define a large search space of several models (SVM, gradient boosted trees, and random forest,
among others) with a number of tunable hyperparameters and optimize for four objectives: cross-
validated mean absolute error, number of features used, main effect complexity, and interaction
strength. They conduct the optimization with ParEGO (see Section 4.3.2) over 500 iterations to
find good trade-offs between these objectives. Carmichael et al. [48] perform MOHPO for deep
learning architectures to find optimal trade-offs between accuracy and introspectability for image
classification tasks on ImageNet-16-120, CIFAR-10 and MNIST.

5.5 Robustness
In many use cases, it is highly desirable to identify and deploy robust ML models, i.e., models that
are able to maintain good performance despite variation in the input data [66, 96]. Robustness
in the context of ML is only loosely defined. We broadly distinguish between robustness of the
training procedure and robustness of the fitted model, which have both been described in literature.
We focus on the latter, i.e., the susceptibility of a trained model to shifts of the data in the prediction
step. While most research into robustness focuses on images, we aim to look at a general case.
We mostly consider a classification setting in the following sections, but we also aim to provide
information as to how this differs for regression where appropriate.

5.5.1 Robustness metrics and approaches. While generally seen as important and relevant, there
are no tried and proven metrics to assess the robustness of ML models, nor a proper taxonomy.
The taxonomy in [247] provides an overview of possible changes to the input data. While centered
around image data, many ideas can be carried over to other types of data. They distinguish between
natural and synthetic changes to the input data. Natural changes equate to changes to the dataset
relying solely on unmodified data points, whereas synthetic changes allow for modification (e.g.,
perturbations) of data points. We differentiate between three types of changes:

Distribution shift. Our notion of a distribution shift refers to changes of either the marginal
distribution of the target or the distribution of the features (conditional on the target) on a macro
level. This concept is often associated with domain adaption (which is becoming increasingly
popular as a research area, see Zhang et al. [265] for an introduction). Several typical real-world
examples would be the increase in temperature of a manufacturing environment that leads to a
change in sensor readings, or an image classification task previously trained and tested on only
well-lit pictures suddenly exposed to darker pictures, or different weather conditions. Typical
metrics used to assess robustness in the context of distribution shifts are effective robustness
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𝜌 (𝑓 ) = 𝑎𝑐𝑐2 (𝑓 ) − 𝛽 (𝑎𝑐𝑐1 (𝑓 )), where 𝑎𝑐𝑐1, 𝑎𝑐𝑐2 are the accuracies pre- and post- domain shift, and
𝛽 is the chosen baseline accuracy on the shifted test set. Duchi and Namkoong [74] show that
optimizing a model for robustness in the context of distribution shift equates to optimizing it
for performance on the tails. They then propose to reformulate the optimization problem from
optimizing for average performance to instead using a metric that upweights the regions with the
highest loss. They dub this reformulated optimization problem the distributionally robust problem.
Indeed, the notion of distributionally robust optimization has existed for some time and has been
applied to both data-driven and ML problems [70, 219].

Adversarial examples. Adversarial examples have recently generated substantial interest from the
visual deep learning community [6, 98, 249], because a model that is very susceptible to adversarial
attacks (the use of adversarial examples) is not as trustworthy. Prominent examples from image
data present pictures with small perturbations – often undetectable to a human observer – that
"trick" the ML model into false classification, whereas the original image was classified correctly.
Adversarial examples are well-known in image data [259] but have been shown in other types
of data, such as text [124], sequence [53], or tabular data [17]. Oftentimes, adversarial examples
generated through perturbation are in focus, but different adversarial attacks generally lead to
different measures [208]. A popular metric to assess robustness in the context of adversarial
examples is adversarial accuracy [185, 187, 250]. Adversarial accuracy measures the percentage
of samples that are (still) correctly classified after the adversarial attack [250]. In practice the
user would conduct the adversarial attack and then calculate adversarial accuracy from the new
predictions. For adversarial perturbations in an Y-ball around each point, a typical adversarial attack
in classification, it can be defined as:

E[𝟙(𝑓 (𝑥∗) = 𝑐𝑥 )], 𝑤ℎ𝑒𝑟𝑒 𝑥∗ = argmax
𝑑 (𝑥 ′,𝑥) ≤𝜖

𝐿(𝑥 ′, 𝑐𝑥 ), (18)

where 𝑐𝑥 is the respective class label. Two metrics for adversarial robustness in computer vision
were originally defined in Bastani et al. [20] and have also been employed by Buzhinsky et al. [43]:
adversarial frequency and adversarial severity. Adversarial frequency 𝜙 is measured as the accuracy
on a worst-case input in an ℓ𝑝 Y-ball around each point 𝑥∗:

𝜙 (𝑓 , Y) B 𝑃 (𝜌 (𝑓 , 𝑥∗) ≤ Y),
where 𝜌 (𝑓 , 𝑥∗) is the minimum distance Ŷ for some well-defined metric 𝑑 , so that ∃ 𝑥, 𝑑 (𝑥, 𝑥∗) ≤
Ŷ : 𝑓 (𝑥) ≠ 𝑓 (𝑥∗) with 𝑓 as a classifier. Adversarial severity ` is defined as the expected minimum
distance to an adversarial example from the input for some Y [20]:

` (𝑓 , Y) B 𝐸 [𝜌 (𝑓 , 𝑥∗) | 𝜌 (𝑓 , 𝑥∗) ≤ Y],
with 𝜌, 𝑓 , 𝑥∗ as before. While Bastani et al. [20] deem adversarial frequency to be generally the more
important metric of the two, significant work centers around the minimum distance to creating an
adversarial example, especially for neural networks [209]. In Rauber et al. [221], this subsequently
prompted the unification of various adversarial attacks and measurement of robustness through
minimum required perturbation.

Perturbations. Perturbations are oftentimes strongly linked to the construction of adversarial
examples in deep learning [159]. This can be seen as a logical connection, as one would often look
for an adversarial example within some 𝜖-ball (see above). Laugros et al. [159] argue and show that
robustness in the context of common perturbations and adversarial robustness are independent
attributes of a model. Their work focuses on image data and includes some transformations – like
a change in brightness – that we would classify as a domain shift. One of the most common ways
to perturb data is the addition of Gaussian noise, which is also included in their work. A simple
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measure for robustness regarding such a perturbation is presented in Pfisterer et al. [213]. Adding
random Gaussian noise 𝑁 (0, 𝜖) 13 to input data 𝑋 is a typical way to introduce perturbations. One
can then compare the loss derived from a relevant measure 𝐿 on the changed input data to the loss
on unperturbed data:

|𝐿(𝑋,𝑌 ) − 𝐿(𝑋 + 𝑁 (0, 𝜖), 𝑌 ) |.
Of course, the same procedure can be applied to other types of perturbations. In Gilmer et al. [97], the
authors argue and provide evidence that susceptibility to adversarial examples and perturbations
– at least for image data – are actually two symptoms of the same underlying problem, and
thus, optimizing for robustness against adversarial attacks and more general corruption through
perturbations should go hand-in-hand. In general, perturbations and adversarial examples are
closely related, and – as seen above – substantial research in the computer vision community
focuses on adversarial perturbations [6, 43, 97]. Niu et al. [199] give a comprehensive overview
on perturbations to data in machine translation (mainly synthetic misspellings and letter case
changing) and define a variety of suitable measures for model robustness in the context of those
perturbations.

5.5.2 A note on robustness and uncertainty quantification. Uncertainty quantification, especially
in the context for deep learning, has become a heavily researched topic and is often mentioned
in conjunction with robustness of ML models [157]. To the best of our knowledge, optimizing an
ML model’s configuration for proper uncertainty quantification or minimal uncertainty is not an
established method – and integrating a respective metric into MOHPO is even less so. We will
therefore restrict this brief section to exploring the connection between uncertainty quantification
and robustness as well as other relevant objectives. The total uncertainty of a model can be divided
into aleatoric uncertainty and epistemic uncertainty. While the former is inherent to observations,
the latter accounts for uncertainty in the model parameters and can be explained away with
additional data [144]. Models that are better calibrated with respect to uncertainty tend to suffer
less from adversarial examples [157, 238]. Along the same lines, robustness regarding domain shift
and predictive performance on out-of-distribution samples are closely linked to (and even used as
a measure of) predictive uncertainty [157]. As perturbations are often used to model noise in the
data, a connection between this type of robustness and aleatoric uncertainty is easily conjectured.
Indeed, Kendall and Gal [144] show that using the quantification of aleatoric uncertainty has a
beneficial effect on the robustness in the context of noise, i.e., perturbations. Finally, uncertainty
quantification can be relevant to the interpretability of an ML model. As argued in Kendall and Gal
[144], a proper quantification of the model’s uncertainty adds an extra layer of explainability and
might aid in the prevention of critical mistakes, thus increasing the trustworthiness of the model.

5.5.3 Application and exemplary use case. The main goal of Guo et al. [102] is to identify network
architectures that are robust with respect to adversarial attacks. To this end, the authors employ
one-shot NAS [23]. Essentially, this entails defining a search space with several operations: An
architecture is specified through hyperparameters 𝛼 = {𝛼 (𝑖, 𝑗)

𝑘
| 𝛼 (𝑖, 𝑗)

𝑘
∈ {0, 1}, 𝑖, 𝑗 = 1, ..., 𝑁 , 𝑘 =

1, ..., 𝑛} that represents the inclusion (𝛼 (𝑖, 𝑗)
𝑘

= 1) or exclusion (𝛼 (𝑖, 𝑗)
𝑘

= 0) of a transformation from a
pool of 𝑛 transformations14 between nodes 𝑖, 𝑗 of a graph representing a computational cell in the
network. After initial training of a supernet, i.e., all hyperparameters set to 1, architectures are drawn
through random search, fine-tuned and evaluated. While the optimization is not strictly multi-
objective, this is not as important when conducting what is essentially a random search, because
subsequent trials are not influenced by prior ones. The authors then examine different architectures
13𝜖 is generally 0.001 − 0.01 times the range of the numerical feature
143 × 3-separable convolution, identity, and zero in this case.
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Fig. 10. Overview and classification of several architectures examined by Guo et al. [102] with respect to
objectives number of parameters and adversarial accuracy.

and compare the desirable qualities of robustness in the context of adversarial examples and model
size to identify suitable models. This is illustrated for a few select architectures in Figure 10.

5.6 Sparseness via Feature Selection
In ML, we often face high-dimensional tasks with a large number of features. However, frequently
only a small fraction of all features is informative. Sparse models, i.e., models which use relatively
few features, are often desirable. If too many features are considered by a model, . . .

• . . . the relationship between features and model prediction may be hard to understand and
interpret [104] (see Section 5.4),

• . . . the cost for model fitting or inference may increase, either in terms of storage, computation,
or in terms of actual costs for measuring or acquiring the data [193],

• . . . the predictive performance of a model might even suffer because of the the curse of
dimensionality [22].

The severity of the effects depends on the machine learning algorithm used; some algorithms
scale worse than others with regards to the number of features, and some (e.g., k-nearest neighbors
algorithm) suffer more from the curse of dimensionality than others. Because of these potential
drawbacks, it may often be desirable to perform feature selection before or during training. Feature
selection is inherently an MOO problem, as model performance and sparsity tend to be conflicting
objectives; a lower number of features often means a lower performance due to reduced information.
However, for a certain model and configuration there will be a specific desirable quantity of features,
that is probably not the maximum number of features [154]: Including less features will likely
decrease the performance due to lack of information, whereas including too many features will
create an abundance of information and the configuration suffers increasingly from the curse
of dimensionality. In the following, we will provide an overview of common feature selection
techniques with an emphasis on their connection and possible combination with MOHPO. Feature
selection approaches are generally categorized into three sections in accordance to how the evaluate
feature configurations [7]:

Embedded methods. methods perform feature selection as part of the model fitting process. For
example, empirical risk minimization with L0 or L1 regularization shrinks irrelevant coefficients
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towards zero, and can therefore automatically produce sparse models during training. For exam-
ple, Louizos et al. [179] train sparse neural networks via L0 penalization. As another example, trees
and tree-based methods can inherently produce sparse models by limiting the number of used
features through the maximal tree depth. As feature selection is performed as part of model fitting,
no separate search technique must be used. The drawback of embedded methods is that they are
specific to the model in use.

Filter methods. approaches use proxies to rank feature subsets by their likely explanatory power
independent of the learning algorithm. Single measures – for instance, information theoretic
measures – correlation measures, distance measures, or consistency measures [61] are calculated
and used for evaluation of different feature subsets. Filtering is usually applied before model
training.

Wrapper methods. search over the space of selected features to optimize model performance [154].
Because they take the learner algorithm performance into account directly, they often yield better
performance than filter methods. However, they are computationally more expensive because model
performance evaluations are generally noisy and relatively expensive. Additionally, exhaustively
trying all possible combinations is usually computationally infeasible. Because wrapper methods
can use general optimization algorithms, they are the most amenable to extensions to MOO [7].
Hybrid approaches can also be utilized, as in Bommert et al. [33] and Binder et al. [29], where hybrid
filter-wrapper approaches are proposed to limit the complexity of the search spaces. This is desirable
as BO surrogate models for feature selection must be modeled on a potentially high-dimensional
and combinatorial search space (see Eq. (19)).

5.6.1 Sparseness Metrics. Aside from the simplest form, namely minimizing the number of used
features, it may be of interest to formulate other objectives in relation to sparsity by e.g., weighting
the features:

• (Weighted) Number of Features included in the model
𝑝∑︁
𝑗=1

𝑤 𝑗𝑠 𝑗 .

If features have different costs, e.g., because they have different acquisition costs if a model is
intended to be applied in real life, different weights can be introduced for this purpose.

• Stability of Feature Selection: In some applications the main goal of the analysis is the
identification of important features. In bioinformatics, for example, performance plays a
subordinate role in the analysis of omics data. The aim is to identify important genes for later
examination in the laboratory. Besides predictive performance and the number of selected
features, a third objective quantifying the stability of feature selection is introduced e.g., by
comparing sets of selected features resulting from different resampling iterations.

We argue that it is reasonable and efficient to consider feature selection and hyperparameter
optimization in a joint step and will briefly mention some approaches that do so: Binder et al.
[29] examine an approach including feature selection and hyperparameter optimization of ML
models and benchmark EAs as well as BO methods. Bouraoui et al. [35] propose a similar approach,
unifying model and feature selection, restricted to SVMs. Several MOEAs are used for conjoint
MOHPO and feature selection in Sopov and Ivanov [240] with application to emotion recognition.
Liuliakov and Hammer [175] proposed a combined feature selection HPO AutoML tool based on
TPOT.
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5.6.2 Applications and exemplary use case. In general, the task of feature selection implies search
over a binary space {0, 1}𝑝 with 𝑠𝑖 = I[feature 𝑖 is included]. To simultaneously perform hyperpa-
rameter optimization, we formulate the joint search space of feature and hyperparameter configu-
rations

{0, 1}𝑝 × Λ̃. (19)
The dimensionality of this space grows exponentially with the number of available features,

which makes the optimization problem particularly challenging. Additionally, there may be com-
plex interactions between features and hyperparameter configurations. Expensive evaluation like
wrapper evaluation techniques raise the need for efficient search methods. Evolutionary algorithms
(see Section 4.2) are widely used for feature selection due to their ability to handle complex search
spaces, [1, 261], but recent works have presented BO methods (see Section 4.3) as a more efficient
alternative [29, 33]. Aside from exploring one exemplary use case, we will highlight a few select
examples of feature selection in the context of MOHPO. A comprehensive review with additional
examples can be found in Al-Tashi et al. [7] and specifically for Evolutionary Computation methods
in Xue et al. [261]15. We highlight two works in the scope of multi-objective feature selection.
Bommert et al. [32] state feature selection as a MOHPO problem with three objectives: predictive
performance, number of features selected, and stability of feature selection. Furthermore, they
provide a comprehensive comparison of stability measures. They tune hyperparameters of the
underlying ML pipelines (feature filter plus classification learner) that are relevant to the sparseness
objectives via random search to identify desirable trade-offs. All classification pipelines have been
tuned w.r.t. the aforementioned three criteria. In the next step, all configurations that are not within
a 5% tolerance of the best predictive performance identified so far are discarded. The remaining con-
figurations are shown in Figure 11 for an exemplary dataset. The figure demonstrates one takeaway
message of the benchmark: In comparison with the single-criterion tuning approach (marked by the
triangle in Figure 11), the multi-objective approach additionally reveals hyperparameter settings
that yield models with comparable or even better performance. At the same time, these additional
identified model configurations require fewer features, and the feature selection is more stable.
Binder et al. [29] recently showed that model-based optimization - even more than evolutionary
approaches - offer great performance enhancement compared to random search, which was used
in Bommert et al. [32].

6 DISCUSSION AND OPEN CHALLENGES
This paper has presented an overview of the concepts, methods and applications of MOHPO - as well
as related concepts - and provide a guide to the ML practitioner delving into this particular topic. It is
evident there is merit to formulating ML problems in a multi-objective manner, as many application
examples support. Single-objective ML tasks, tuned to a pure prediction performance metric, are no
longer in keeping with the state-of-the-art for manyML applications, as models have to meet certain
standards with respect to secondary goals. While this presents new challenges to the ML expert with
regard to optimization and algorithm selection, proper methods can provide the user with a suite of
Pareto optimal trade-offs to choose a suitable model. As the topic of MOHPO and multi-objective
pipeline creation and model selection is not fully established, the available software (not for MOO,
but specifically MOHPO) is limited, but good implementations exist for several standard methods.
Finally, we want to emphasize the lack of proper and extensive benchmarks for the field of MOHPO,
which could shed some further light on strengths and weaknesses of different methods on a variety
15This workmainly includes works that reduce feature selection to a single-objective problem, but also several multi-objective
approaches.
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Fig. 11. Excerpt from results in Bommert et al. [32]: Different combinations of feature filters and classification
learners tuned on the eating dataset (OpenML-ID 1233). Shown are points from the 3D Pareto front (projected
into 2D space of stability measure vs. mean number of selected features) that are within the 5% threshold
of the best predictive performance identified so far on the training set. Points that appear to be dominated
in this 2D representation are in fact non-dominated due to higher accuracy. All three visualized criteria are
evaluated on independent test sets.

of MOHPO tasks. The discrepancy in widespread vs. sparse use of MOHPO depending on the
application at hand may also appear striking. ROC analysis and multi-objective feature selection
are established and well researched areas; the body of literature for MOHPO including efficiency
objectives has grown rapidly in the past few years with the ascent of deep learning and HW-
NAS. With the recent trends to integrate FAT-ML related standards into the ML process, MOHPO
with applications to interpretability and fairness is currently becoming increasingly relevant, but
few works have been published that deal with these objectives. Integrating user preferences in a
meaningful way either a priori or during the optimization process (see Section 4.5.1) remains a
challenge that could help efficiency and transparency of MOHPO. It should be noted that MOHPO -
compared to single-objective HPO - already improves in terms of transparency, simply by not having
to reduce to a single metric and the result being a collection of trade-offs and not only a single HP
configuration. Another challenge is MOHPO beyond supervised learning: We have focused in this
work on supervised learning, but unsupervised methods like anomaly detection or clustering also
depend heavily on HPs. As in single-objective HPO [30], the difficulty of performance evaluation
and lack of standardized metrics complicate the application of the presented methods. Aside from
"typical" performance measures, other objectives like e.g., efficiency can still be concretely evaluated
and may be included in (MO)HPO of unsupervised methods.
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4.2. Multi-Objective Hyperparameter Tuning and Feature Selection
using Filter Ensembles
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ABSTRACT
Both feature selection and hyperparameter tuning are key tasks
in machine learning. Hyperparameter tuning is often useful to in-
crease model performance, while feature selection is undertaken to
attain sparse models. Sparsity may yield better model interpretabil-
ity and lower cost of data acquisition, data handling and model
inference. While sparsity may have a beneficial or detrimental ef-
fect on predictive performance, a small drop in performance may be
acceptable in return for a substantial gain in sparseness. We there-
fore treat feature selection as a multi-objective optimization task.
We perform hyperparameter tuning and feature selection simulta-
neously because the choice of features of a model may influence
what hyperparameters perform well.

We present, benchmark, and compare two different approaches
for multi-objective joint hyperparameter optimization and feature
selection: The first uses multi-objective model-based optimization.
The second is an evolutionary NSGA-II-based wrapper approach
to feature selection which incorporates specialized sampling, mu-
tation and recombination operators. Both methods make use of
parameterized filter ensembles.

While model-based optimization needs fewer objective evalua-
tions to achieve good performance, it incurs computational over-
head compared to the NSGA-II, so the preferred choice depends on
the cost of evaluating a model on given data.

CCS CONCEPTS
· Theory of computation → Evolutionary algorithms; Non-
convex optimization;Mixed discrete-continuous optimization; ·Com-
puting methodologies → Supervised learning; Feature selec-
tion;

KEYWORDS
Feature Selection, Hyperparameter Optimization, Multiobjective
Optimization, Evolutionary Algorithms, Model-based Optimization
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1 INTRODUCTION
Machine learning models often need to satisfy multiple objectives
simultaneously to accomodate the nature of a practical setting. Usu-
ally the main goal is predictive performance. Especially on large
and complex datasets this necessitates highly nonlinear algorithms,
which have hyperparameters that need to be chosen carefully. Hy-
perparameter optimization poses a substantial challenge in machine
learning: Besides few model-specific methods [16, 30], there are no
general analytic representations of model performance w.r.t. hyper-
parameter settings. Performance therefore needs to be estimated
using test-set evaluation or cross-validation. Hyperparameter opti-
mization is therefore an expensive black-box optimization problem.

Besides predictive performance, model sparsity is frequently
another desirable objective. According to Guyon and Elisseeff [17],
sparser models help with interpretability, i.e. a better understanding
of the underlying process that generated the data. In addition to that,
predictions can be made faster and more cost-effectively. Sparser
models may even have better predictive performance, since they
regularize against overfitting.

The process of feature selection aims to select a small subset of
relevant features while still constructing models with sufficient or
even optimal predictive performance. There are two distinct model-
agnostic approaches to feature selection [17]: Filters and wrappers.
Filters use proxy measures to rank features by their estimated ex-
planatory power, independently of the learning algorithm being
employed. These include information theoretic measures, corre-
lation measures, distance measures or consistency measures [8].
In contrast, wrappers [28] optimize model test-set performance di-
rectly over the space of feature subsets. Because every feature subset
evaluation requires either one or multiple model fits, exhaustive
search is usually infeasible, and a black-box discrete optimization
search strategy is necessary. Commonly used are simple greedy
methods like forward or backward search. More advanced methods
like evolutionary algorithms can improve upon this [37]. Because
*These authors contributed equally to this work.

471

4. Contributions to explainability of models returned by AutoML systems

92



GECCO ’20, July 8–12, 2020, Cancún, Mexico M. Binder, J. Moosbauer et al.

they directly optimize learner performance, wrappers often yield
better results [37].

Feature selection is often considered as a single-objective task.
Sometimes the feature selection step is only used to optimize perfor-
mance [28]. However, in many applications it is desirable to forego
a small drop in performance for a substantial gain in sparseness.
This leads to a natural treatment of the feature selection problem as
a multi-objective optimization problem: Maximize predictive perfor-
mance while minimizing the number of features selected. Feature
selection methods may aggregate model performance and number
of features into a single objective function through a penalization
term [37]. However, this implies a trade-off between performance
and sparsity must be specified a-priori, which may be difficult.

Multi-objective optimizationmethods try to find a set of solutions
that represent different trade-offs between the goals, enabling the
user to consider the possible alternatives and to choose a fitting
solution a-posteriori. This is beneficial for feature selection [36].

Hyperparameter optimization and feature selection are often
performed in separate steps. We argue that jointly optimizing over
the combined spaces of hyperparameters and feature subsets is
beneficial and appropriate: The optimal choice of hyperparameter
configuration is very likely to depend on the specific features that
are included and vice-versa. Also, it is likely more computationally
efficient to explore the joint spaces simultaneously. When using the
wrapper approach this combination is not trivial: The exponentially
large binary search space of selected features now has to be fused
with the mixed numeric-categorical space of hyperparameters.

We present and adapt model-agnostic holistic approaches for
both aspects discussed above: multi-objective and joint optimiza-
tion of hyperparameters and feature sets. To guide the search, our
methods make use of combinations of feature filter scores which
are combined in a filter ensemble.

Our approaches can be considered hybrid filter-wrappers: they
are fundamentally łwrapperž-based, because they optimize model-
performance, but also make use of filters.

2 RELATED WORK AND CONTRIBUTIONS
In recent literature, Bayesian optimization (łBOž), also referred to as
model-based optimization, has become a popular method for hyper-
parameter tuning of learning algorithms [33], often outperforming
simple grid search or random search. Originally, BO generally re-
lied on a Gaussian process (GP) model, such as in the Efficient
Global Optimization (EGO) algorithm [24]. However, the GP does
not typically scale well to high dimensions and large numbers of
data points. Random forests have been proposed as an alternative
surrogate model, as used in the popular SMAC hyperparameter
optimization method [22].

Automated machine learning (AutoML) deals with the configura-
tion and optimization of complete machine learning pipelines, often
encompassing data pre-processing, ML models, ensembling, and
possibly post-processing steps. AutoML may encompass choosing
among the many different possibilities of what method to use at
each stage of the pipeline, optimizing the hyperparameters for these
methods, and combining them in ways that yield well-performing
ensembles. Feature selection by filter or wrapper methods is an

important pre-processing step already part of some AutoML frame-
works. Consequently, AutoML has the potential to jointly optimize
hyperparameters and included features. autosklearn [14] for exam-
ple integrates a filter-based feature selector, parameterized by a
filter measure and a percentage indicating the fraction of highest-
ranked features to be included. Bayesian optimization is used to
find the optimal filter (among a set of possible filters) and the best
feature selection rate. The AutoML framework TPOT [31] uses an
evolutionary algorithm to search over different machine learning
pipelines, and also provides different feature selection strategies in
its search space. TPOT can perform multi-objective optimization
with regard to model performance and model complexity, mea-
sured as the number of processing steps, but it does not take model
sparsity into account.

However, even though hyperparameter optimization and feature
selection are both present in some AutoML frameworks, it is not
their goal to find a good trade-off between predictive performance
and sparseness. Feature selection is merely used to improve pre-
dictive performance, without considering the preference for sparse
models in light of better interpretability or other benefits. In fact,
these frameworks often tend to produce considerably complex mod-
els. They may even introduce additional features through feature
engineering in pursuit of increasing predictive performance as the
only goal. The results are often large and heterogeneous ensembles
that are hard to interpret and deploy [32].

Evolutionary algorithms are especially well suited for multi-
objective optimization. According to the survey by Xue et al. [37],
genetic algorithms (GAs) are among the most commonly applied
techniques for multi-objective feature selection. Inspired by natural
evolution, GAs apply recombination and mutation operators to
iteratively improve the population of solution candidates. Through
techniques like non-dominated sorting [9, 25], genetic algorithms
have become a powerful tool for multi-objective optimization. Sev-
eral GA-based methods have been proposed for the task of wrapper-
based feature selection [13, 18, 35].

There have been first investigations on simultaneous multi-
objective hyperparameter optimization and feature selection using
GAs: Bouraoui et al. [4] proposed an SVM-wrapper approach based
on the NSGA-II, using a shared representation of the feature con-
figuration and algorithm hyperparameters. While their method of
combining the search spaces is similar to our GA-based approach,
Bouraoui et al. [4] do not use specialized initialization and muta-
tion operators that we have found to be necessary for good per-
formance1. Another limitation is that their approach is not model
agnostic but limited to SVMs only.

Numerous methods have been proposed for feature filtering, and
there are known ways of combining filters into filter ensembles.
These may rely on applying the same filter on diverse datasets
(łhomogeneous approachž), or different filters on the same dataset
(łheterogeneous approachž), and there are different ways of ag-
gregating the filter rankings [3]. We extend the heterogeneous
approach into a hybrid filter-wrapper selection method by optimiz-
ing a parameterized ranking aggregator.

1See the Ablation Study in the Supplement, where their approach, łVariant (1)ž, is
outperformed by all our methods on every dataset and learning algorithm with no
exception.
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There has been a lot of research on feature selection and hyper-
parameter optimization. However, we found that there is no general
algorithm or framework to perform model-agnostic simultaneous
hyperparameter optimization and feature selection for predictive
performance and model sparsity in a multi-objective fashion. We
therefore choose to tackle this problem from two directions. First we
adapt a standard evolutionary multi-objective optimization method,
the NSGA-II, for the particular problem of feature selection and
hyperparameter tuning. We contrast this with a classical hyperpa-
rameter optimization algorithm, based on BO, extended to perform
feature selection.

Our main contributions are:
(1) We adapt the NSGA-II to the problem at hand by introducing

specialized sampling and mutation operators that make use
of filter ensembles to enhance optimization performance.

(2) We investigate how multi-objective Bayesian optimization
(MOBO) can be used for this problem and propose an effec-
tive method that uses a filter ensemble for feature selection.

(3) By conducting a benchmark of these approaches on a variety
of tasks for different machine learning algorithms, we pro-
vide a comparison between our approaches and show how
these algorithms perform compared to suitable baselines.

3 PROBLEM STATEMENT
We consider the machine learning problem of a given feature space
X of vectors with p components (łfeaturesž), an arbitrary outcome
spaceY (for example {−1, 1} for a binary classification task), and a
performance measure L : Rд×Y → Rmeasuring the quality of pre-
dictions (inRд ) given ground truth values.д is 1 for regression tasks,
and equal to the number possible outcome classes for classification.
Data samples D =

{(
x(1),y(1)

)
, . . . ,

(
x(n),y(n)

)}
∈ (X × Y)n are

assumed to be n i.i.d. realizations of random variables (X ,Y ) which
follow a joint distribution PXY . A dataset is thus characterized by
n, the number of samples available, and p, the number of features.

Let Aλ,s be a learning algorithm that takes the given dataset
D and constructs a model f : X → Rд . The learning algorithm is
parameterized by the feature configuration vector s ∈ {0, 1}p , where
sj = 1 denotes that feature j is included in themodel. The sparseness
of the resulting model is thus determined by the Hamming weight
of s , i.e. the number of components of s that are 1. Hyperparameters
of the learning algorithm are summarized in a vector λ ∈ Λ. Λ is a
(possibly mixed) bounded space and may contain numeric, integer,
and categorical values2.

In general we are trying to construct a model f = Aλ,s (D)
whichminimizes the generalization error GE[f ] = EPXY [L(f (x),y)].
However, the generalization error can only be estimated using in-
sample data ĜE[Aλ,s ,D] through a resampling technique such as
cross-validation.

This setup gives rise to the bi-objective hyperparameter opti-
mization and feature selection problem:

min
λ∈Λ,s ∈{0,1}p

(
ĜE

[Aλ,s ,D
]
,

p∑
i=1

cisi ,

)
.

2Hierarchical dependencies of hyperparameters, e.g. kernel hyperparameters that
appear only if a specific kernel is chosen, are a common extension but not considered
in this work.

The setup regards estimated generalization error as one objective
and the cost of features considered as another.

It is possible, and a trivial extension of our method, to consider
arbitrary costs ci for each feature i . However, in our benchmarks
we limit ourselves to equal costs ci = 1/p. The resulting measure
corresponds to the fraction of selected features, ffrac = 1

p
∑
i si ,

ranging from 0 to 1.

4 MULTI-OBJECTIVE HYPERPARAMETER
TUNING AND FEATURE SELECTION: TWO
APPROACHES

Our two methods are based on two popular multi-objective opti-
mization methods, adapted for the particular task of hyperparam-
eter tuning and feature selection: A model-based approach, and
an approach based on an evolutionary algorithm. Both approaches
make use of feature filters to accelerate the search.

4.1 Feature Filters and Filter Ensembles
The number of possible feature configurations s is exponential in p,
so a large number of performance evaluations would be necessary
to explore the performance space. Therefore, both our optimiza-
tion approaches make use of feature filters. These are methods that
heuristically score individual features according to their apparent
relevance for the outcome variable. Because there are various meth-
ods to estimate this relevance, we consider a collection ofM feature
filters, which generate scores Fm (D)j ,m = 1, . . . ,M , j = 1, . . . ,p
for each feature j of a training dataset D. Different methods may
generate scores on different scales, but we rank-transform and scale
these scores to values ranging in equi-distant steps from least (value
of 0) to most (value of 1) relevant for the outcome variable.

We propose combining multiple filter methods into filter ensem-
bles similarly to Dittman et al. [12], but extending their method by
using weighted average rank aggregation. The ensemble filter score
EFj for feature j is calculated as the weighted average according to
weight vectorw ∈ [0, 1]M ,∑i wi = 1:

EFj (w) =
M∑

m=1
wmFm (D)j . (1)

The weighting parameter w can be optimized, extending the
filter into a hybrid filter-wrapper approach.

4.2 Bayesian Optimization Approach
Bayesian optimization (BO), also often referred to as sequential
model-based optimization, has been successfully used for machine
learning hyperparameter optimization in many applications [33].
The principle of BO is based on two steps, which are performed in
turn. First, a so-called surrogate model is fitted to model the rela-
tionship between decision variables (e.g. hyperparameter values)
and the objective value (e.g. estimated generalization performance).
This model generates cheap approximations of the (generally expen-
sive to evaluate) objective function values. In a second step, an infill
criterion is used to find promising decision values to be evaluated
on this expensive function. The infill criterion has to face a trade-off
between łexploitationžÐevaluating points for which the surrogate
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GA-MO-FE: NSGA-II with feature ensemble mutation

λ1 λ2 ... λk w1 w2 ... wM s1 s2 s3 s4 ... sp

GA-MO: NSGA-II with Hamming-weight preserving mutation

λ1 λ2 ... λk s1 s2 s3 s4 ... sp

GA-MO-FE-NJ: NSGA-II for features; hyperparameters fixed

λ1 λ2 ... λk w1 w2 ... wM s1 s2 s3 s4 ... sp

BO-MO-FE, BO-SO-FE, BO-MO-FE-NJ: BO with filter ensemble

λ1 λ2 ... λk w1 w2 ... wM ffrac

BO-MO, BO-SO: BO with individual filter selection

λ1 λ2 ... λk m ffrac

Figure 1: Representation of individuals in different variants
of our proposed optimization methods as described in Sec-
tion 5.3; λ, w, and s are vectors as described in Section 4.

predicts good performanceÐand łexplorationžÐevaluating points
where predictive uncertainty is high.

There are differentways of adapting BO to performmulti-objective
Bayesian optimization (łMOBOž) [21], which has been applied
successfully to hyperparameter tuning [19]. We chose the Parego
method [27]. Parego scalarizes the different objectives through the
Chebyshev norm using a random weight vector, which is sampled
again for every point being proposed. Parego has the advantage over
many other MOBO methods of only requiring a single surrogate
model fit for a proposed point [19], but other MOBO approaches
can trivially be used as a substitute within our method.

The number of possible feature configurations is exponential
in p, so a large number of evaluations would be necessary to fit
an accurate surrogate model on performance values. We therefore
investigate the use of prior knowledge from feature filter scores to
reduce the dimensionality of the search space. Instead of searching
over the discrete space of possible feature configuration vectors
s ∈ {0, 1}p , we restrict the search space to the fraction of selected
features ffrac ∈ [0, 1]. The explicit feature configuration s results
from selecting the ffrac most highly ranked features according
to an individual filter (4.2.1) or according to the filter ensemble
(4.2.2). This re-parametrization reduces the set of possible feature
configurations being considered, and it may miss features that work
well in combination but get a poor filter score because they perform
poorly individually. Ultimate performance therefore depends on the
quality of the filters being used, and we investigate methods that
use combinations of filters to lessen the dependency on individual
filter performance and therefore boost overall performance.

Two possible methods for simultaneous use of multiple feature
filter methods are considered (see also Figure 1):

4.2.1 Individual filter selection. In this method, we introduce
a discrete filter selection hyperparameter m, as well as a feature
fraction hyperparameter ffrac ∈ [0, 1]. For each model evaluation,
only the most relevant ⌈p · ffrac⌉ features, according to filter with

indexm, are included in the model. This approach is similar to the
one taken in auto-sklearn [14], although there the feature selection
problem was not considered as a multi-objective problem.

4.2.2 Filter ensemble selection. This method uses the filter en-
semble as shown in Equation 1 and introduces the vector w , as
well as the aforementioned feature fraction ffrac, as hyperparam-
eters. The most relevant ⌈p · ffrac⌉ features, according to EFj (w),
are included in the model.

4.3 Evolutionary Approach
The Nondominated Sorting Genetic Algorithm II (NSGA-II) [10] is
an evolutionary multi-objective algorithm that uses nondominated-
sorting to preferably select individuals close to the Pareto-front
of the problem. It iterates through generations of each a reproduc-
tion, a crossover, a mutation, and a survival step that generate the
population of the next generation.

GAs often represent individuals as vectors of binary, discrete, or
continuous values, depending on the optimization problem. Because
hyperparameters generally have various types, we use the Carte-
sian products of operators that operate in different ways on the
various types, following Li et al. [29]. This means e.g. that numeric
hyperparameters undergo Gaussian mutation, while categorical
hyperparameters undergo uniform mutation etc. Table 4 in the
supplement summarizes the chosen recombination and mutation
operators for the respective hyperparameter types. For the hyper-
parameter mutations, we use self-adapting step sizes and mutation
probabilities as suggested by Li et al. [29].

The feature configuration vector parameter s plays a special
role, because s maps to the objective of the fraction of selected
features, which is being optimized, in a straightforward manner.
We therefore consider the initialization and mutation of s in detail.

4.3.1 Geometric initialization. A naive approach for feature con-
figuration initializationwould be Bernoulli-sampling of each feature
selection bit si individually, possibly biased towards a low expected
number of selected features to favor relatively sparse solutions [1].
However, this gives rise to a binomial distribution of the number
of selected features

∑
i si with standard deviation ∼ O

(√
p
)
. For

even moderately large values of p, this fails to cover the objective
space evenly along the dimension of the selected feature fraction.
Figure 6 in the supplement illustrates this. We propose to sample
values of s such that the sum of selected features covers the whole
feature fraction objective. Therefore, we elect to use a truncated
geometric distribution of number of included features to encode
our preference for sparse models. This is achieved by sampling the
desired number of included features S as a truncated geometrically
distributed random integer between 0 and p, and then uniformly
sampling from all vectors s that satisfy

∑
i si = S .

The method introduces the success probability of the geometric
distribution as a configuration parameter. It can be set by the user
to encode a relative preference for sparsity. We chose to use an em-
pirically determined value by fitting decision trees on 100 random
subsets of 90% of the data set and determining the average number
of distinct split variables.

4.3.2 Filter-ensemble based initialization. It is possible to en-
hance the geometric initialization by including prior knowledge
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gained from feature filter methods. The goal is to select the features
that have high filter scores with larger probability than the ones
with lower ranking, while still having an approximately geometric
distribution over the number of total features selected. We make the
initial distribution of bit j dependent on the filter ensemble value as
described in equation 1, withw uniformly randomly sampled from
the simplexw ∈ [0, 1]M ,

∑M
m=1wm = 1. For each individual to be

initialized, we first sample S as in 4.3.1. Each bit j is then sampled
from a Bernoulli-distribution with parameter:

πB(w, S) =
EFj (w) (S + 1)

EFj (w)S + (
1 − EFj (w)) (p − S) + 1 . (2)

4.3.3 Hamming-weight preserving mutation. Performing ran-
dom bit-flip mutation on the feature selection vector entails simi-
lar problems to Bernoulli-initialization: a bit-flip with probability
πMutbin is equivalent to erasing a bit with probability 2πMutbin and
sampling it anew from a 1

2 -Bernoulli distribution. This biases the
mutation result towards the 1

2 point of the feature fraction objective.
Instead, we choose to approximately preserve the Hamming weight.
This is done by sampling erased bits from a Bernoulli-distribution
with parameter πB = (S + 1)/(p + 2), where S = ∑

i si is the Ham-
ming weight of the original vector.

4.3.4 Filter-ensemble based mutation. Just as for initialization,
mutation can be made dependent on feature filter ensemble ranks to
preferentially include more relevant features. As in the Hamming-
weight preserving mutation, each bit is erased with a probability
of 2πMutbin and then drawn from a Bernoulli-distribution. The pa-
rameter is as in equation 2 for filter-based initialization, with S the
Hamming weight of the original vector, and w a weighting vec-
tor. This weighting vector itself becomes part of the search space
to achieve self-adaption, as described in Li et al. [29], which re-
sults in w being optimized during the NSGA-II run. This way, the
Hamming-weight is (approximately) preserved.

4.4 Implementation and Reproducibility
All proposed methods are implemented and publicly accessible
through the mosmafs R package published on CRAN3, using the mlr
[2] machine learning framework as backend. For full reproducibility
of the results we publish the code used to perform the benchmark
experiments on Github4.

5 EXPERIMENTS
We conduct experiments to answer the following research questions
empirically:

(1) Evolutionary vs. Bayesian Optimization: How do the proposed
methodsÐthe evolutionary and the Bayesian optimization
approachÐperform relative to each other?

(2) Effect of Filter Ensembles: Do the methods benefit from using
filter ensembles?

(3) Multi-Objective vs. Single-Objective: Does multi-objective op-
timization find much sparser solutions without a major loss
in predictive performance compared to single-objective opti-
mization?

3https://CRAN.R-project.org/package=mosmafs
4https://github.com/compstat-lmu/mosmafs/tree/master

Table 1: Description of the datasets being used. n denotes the
number of observations and p the total number of features.
The class ratio gives the proportional size of the smaller out-
come class. The dataset id (did) is the unique identifier for
the dataset on the OpenML platform [34].

name n p class ratio n/p did
wdbc 569 30 0.37 18.97 1510
ionosphere 351 33 0.36 10.64 59
sonar 208 60 0.47 3.47 40
hill-valley 1212 100 0.50 12.12 1479
tecator 240 124 0.43 1.94 851
semeion 319 256 0.50 1.25 41973
madeline 3140 259 0.50 12.12 41144
lsvt 126 307 0.33 0.41 1484
madelon 2600 500 0.50 5.20 1485
isolet 600 617 0.50 0.97 41966
cnae-9 240 282 0.50 0.85 41967
arcene 200 9961 0.44 0.02 1458
AP_Breast_Colon 630 10935 0.45 0.06 1145
AP_Colon_Kidney 546 10935 0.48 0.05 1137

(4) Simultaneous Hyperparameter Tuning and Feature Selection:
Is it beneficial to perform hyperparameter optimization and
feature selection simultaneously compared to performing the
tasks sequentially?

5.1 Benchmark Datasets
Because our implementation is based off the mlr framework, it can
work with a wide variety of regression and classification tasks, even
in conditions of missing values or class imbalance. However, we
conduct our experiments on a set of well-behaved problems to limit
the scope of the experiments necessary to show effectiveness.

We consider real-world binary classification tasks that are pub-
licly accessible through the OpenML platform [34] (see Table 1). To
eliminate algorithmic factors that might influence the result (like
class imbalance correction, feature encoding, or handling of miss-
ing values), we included datasets fulfilling the following criteria:
(roughly) balanced outcome classes, a purely numeric feature space,
and no missing values. Further, datasets have been chosen to repre-
sent a large variety in terms of dimensionality (30 ≤ p ≤ 10937)5
and in terms of instances per dimension (0.02 ≤ n/p ≤ 18.97).

5.2 Learning Algorithms and their
Hyperparameters

We consider three different classifiers that are tuned by the op-
timization algorithms proposed in Section 4: The support vector
machine classifier (SVM) [6] with Gaussian kernel, extreme gradi-
ent boosting (xgboost) [5] and the kernelized k-nearest-neighbor
classifier (kknn) [39]. We decided to consider these learners because
they represent three very distinct learning paradigms, and because
they are generally regarded responsive to hyperparameter tuning.
The hyperparameter spaces that are being tuned over are presented
5To limit the computational resources necessary for our experiments we did not
investigate even larger datasets.
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Table 2: Hyperparameter spaces over which tuning was
performed for the three learning algorithms xgboost, sup-
port vector machine and kernelized k-Nearest-Neighors re-
spectively. Ranges marked with ∗ were tuned on a loga-
rithmic scale. For the large datasets madeline, madelon,
arcene, AP_Breast_Colon and AP_Colon_Kidney, the xg-
boost nrounds parameter was set fixed to 2000 and early
stopping after 10 rounds was enabled.

SVM xgboost
kernel rbfdot nrounds {1, 2, . . . , 2000}
sigma [2−10, 210] ∗ eta [0.01, 0.2]
C [2−10, 210] ∗ gamma [2−7, 26] ∗

max_depth {3, . . . , 20}
kknn colsample_bytree [0.5, 1]

k {1, 2, . . . , 50} colsample_bylevel [0.5, 1]
distance [1, 100] lambda [2−10, 210] ∗
kernel {rectangular, alpha [2−10, 210] ∗

optimal, subsample [0.5, 1]
triangular,
biweight}

in Table 2. They also react differently to high dimensionality: kknn
is vulnerable to the łcurse of dimensionalityž, the SVM is a regular-
ized modeling algorithm, and the xgboost algorithm does implicit
feature selection because it is a tree-based learner.

5.3 Algorithms
We perform hyperparameter optimization and feature selection
for the learners described in Section 5.2. The datasets used are
presented in Section 5.1. We use different configurations of our
methods for comparisons described in the following. See also Fig-
ure 1 for a schematic representation of individual configuration
vectors used in each method.

To answer research question 1, comparing the evolutionary and
Bayesian optimization methods, we consider:

GA-MO-FE The NSGA2 with filter ensemble based initializa-
tion (as in 4.3.2) and mutation (as in 4.3.4).

BO-MO-FE Multi-objective Bayesian optimization with filter
ensemble selection as described in 4.2.2.

To study research question 2, i.e. the contribution of filter ensem-
bles to the methods, we compare both methods to these algorithms
without filter ensembles:

GA-MO The NSGA2 with filter ensemble based initialization
(as in 4.3.2) but without filter-based mutation, instead only
using Hamming-weight preserving mutation as in 4.3.3.

BO-MO Multi-objective Bayesian optimization with individual
filter selection, as described in 4.2.1.

We illuminate research question 3 by considering feature selec-
tion and hyperparameter optimization as a single-objective task,
run with the following methods:

BO-SO Single-objective Bayesian optimization with individual
filter selection (see 4.2.1)Ðthis is a method similar to auto-
sklearn’s approach [14] which we consider to be a state-of-
the-art approach.

BO-SO-FE Single-objective Bayesian optimization with filter
ensemble selection (see 4.2.2), which is our strongest single
objective baseline.

To address research question 4, we consider variants of our algo-
rithms that perform feature selection and hyperparameter optimiza-
tion in separate steps. We construct two algorithms to approximate
the most straightforward simplifications to non-joint optimization.
Note that the GA-approach has a focus on feature selection, while
the BO-approach is more directed at hyperparameter tuning.

GA-MO-FE-NJ We initially optimize hyperparameters for the
learning algorithms on each dataset by running standard
single objective BO on the full datasets without performing
feature selection, through 500 model evaluations. The re-
sulting hyperparameter values are then fixed, while our full
NSGA2-variant (using both filter ensemble initialization and
mutation) only performs multi-objective feature selection.

BO-MO-FE-NJ To optimize hyperparameters and filterweights
we use the BO-SO-FE method, and then evaluate the fi-
nal model with the fixed hyperparameters. We iterate over
equally spaced ffrac values and evaluate the model with all
filters. This constructs a set of models with different trade-
offs between sparsity and model performance, from which
we construct a Pareto-set.

The methods have access to M = 5 filter methods6: Informa-
tion Gain, Random Forest Feature Importance [23], Joint Mutual
Information (JMI) [38], Minimal Conditional Mutual Information
Maximization (CMIM) [15], Area Under the Curve (AUC).

All NSGA2 variants use µ = 80 as population and λ = 15 as
offspring size which Khan and Baig [26] found to perform well
in a feature selection setting. We choose an overall per-individual
mutation probability of 0.3 and an overall per-pair-of-individuals
crossover probability of 0.7.

Our Bayesian optimization methods use a random forest as sur-
rogate to model the mixed discrete and continuous hyperparameter
space similar to the state-of-the-art hyperparameter optimization
toolbox SMAC [22]. The infill criterion used is LCB [7]. In each
iteration, a batch of 15 configurations is proposed in parallel as
described in Horn et al. [20].

5.4 Evaluation
We measure the performance of resulting models by their mean
misclassification error (mmce = 1

n
∑
i Iy (i ),ŷ (i ) ) on a validation set

with ground truth values y(i) and model predictions ŷ(i).
To get an estimate of the optimization performance that is un-

biased by potential overtuning, we performed nested resampling:
During the whole optimization run, each optimization algorithm
is only allowed to assess model performance mmceoptim through
(inner) cross-validation (CV) on a optimization setDoptim. The final
performance of the algorithm is reported as the performance of
6The methods were chosen by running many filters on a range of datasets and per-
forming hierarchical clustering on the differences of their feature rankings; see the
Supplement for more details.
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the solution candidates trained on Doptim and evaluated on a test
set Dtest. This procedure is repeated 10 times on outer CV folds(
D(k )

optim,D
(k )
test

)
,k = 1, ..., 10.

As a proper multi-objective performance measure we consider
the dominated hypervolume [40] (domHV) with reference point
W = (1, 1), which corresponds to the worst possible values w.r.t.
the two objectives. To prevent overtuning effects from skewing our
results, we proceed as follows:

(1) We let each optimization algorithm report its Pareto set,
taking into account only Doptim. This corresponds to re-
turning non-dominated individuals w.r.t. (mmceoptim, ffrac).
GA-based methods take only candidates from their current
generation, while BO-based methods get the Pareto set of
all candidates seen so far.

(2) We calculate the generalization dominated hypervolume
domHVgen, i.e. the hypervolume that is dominated by this
Pareto set of candidate configurationsw.r.t. the (mmcetest, ffrac)
evaluated on Dtest.7

For each of the experiments, we allow 2000 model evaluations,
with one evaluation corresponding to computing a single inner
10-fold CV on Doptim. This corresponds to approximately 130 it-
erations for both the model-based and the evolutionary approach.
We test performance differences for significance using the critical
difference test of Demšar [11], which is a non-parametric test for
comparison of different methods on different datasets.

6 RESULTS
6.1 Evolutionary vs. Bayesian Optimization,

Effect of Filter Ensembles
The global rank analysis as well as a critical difference test [11] pre-
sented in Figure 2 show that our most advanced BO-based method,
BO-MO-FE, significantly outperforms all GA methods. The opti-
mization trace seems to indicate that including the feature ensemble
also confers an advantage, possibly because linear combinations of
filters can perform better than any individual filter. This difference
is not statistically significant after 2000 evaluations, however.

Figure 5 shows an additional aspect to take into consideration:
overall runtime. BO-MO-FE usually has a slight performance ad-
vantage over GA-MO-FE in absolute terms, but comes with com-
putational overhead that may have to be considered if individual
model performance evaluations are relatively fast. The overhead
comes mostly from surrogate model fitting and infill optimization,
with runtime dependent on the number of hyperparameters, but
independent of dataset size. The overhead becomes less relevant
when optimizing large datasets or slow models.

6.2 Multi-Objective vs. Single-Objective
The goal of ourmulti-objectivemethods is not to optimize predictive
performance by itself, and instead to explore the optimal trade-offs
between performance and sparseness. It is still interesting to look at
the best performing model configurations being found by the multi-
objective methods, and to compare them to the best models found
7Note that domHVgen is not the same as the dominated hypervolume of a population
on the test set. Instead, only the individuals that are non-dominated according to
Doptim are used to calculate their dominated hypervolume on Dtest .

Table 3: domHVgen after 2000 evaluations of simultaneous
hyperparameter tuning / feature selection methods com-
pared to corresponding non-simultaneous methods. Best re-
sults for GA and BO in bold. Values averaged over datasets,
see supplement for results by dataset.

Learner BO-MO-FE BO-MO-FE-NJ GA-MO-FE GA-MO-FE-NJ
kknn 0.9217 0.8670 0.9108 0.9134
SVM 0.9331 0.8719 0.9241 0.8892
xgboost 0.9164 0.8940 0.9165 0.9121

by single-objective methods, as done in Figure 4. Here, again, the
BO methods outperform GA methods. Except for the kknn learning
algorithm, the MO-method is on par with the SO methods.

The BO-SO method employs a feature filtering step, and the
models it chooses will often be sparse to some degree, for regular-
ization. Figure 3 compares the BO-SOmethod to the multi-objective
methods in terms of both sparseness and predictive performance:
For each learning algorithm, dataset, and CV fold of BO-SO, the best
performing models from BO-MO-FE and GA-MO-FE were chosen
that are at least as sparse. Note that the length of arrows in this
figure depends mainly on the size of the population returned by the
methods and is not directly of interest. Instead the slope should be
considered, with steeper arrows pointing to the right indicating a
cheaper trade for sparseness vs. performance (and arrows pointing
to the left indicating results outperforming BO-SO). The plot shows
that both MO methods often found much sparser models than the
SO baseline while giving up very little in predictive performance.

6.3 Simultaneous Hyperparameter Tuning and
Feature Selection

Table 3 shows the domHVgen of our joint optimization methods,
compared to their non-joint correspondents. In most cases the joint
optimization confers a considerable performance advantage, espe-
cially compared to the BO-SO-FE-NJ method. We assume that the
advantage of joint over non-joint methods depends on the interac-
tion strength of hyperparameter performance and sparseness.

7 CONCLUSION
Our results show that both evolutionary approaches and model-
based approaches can efficiently perform model-agnostic multi-
objective optimization to simultaneously tune hyperparameters
and select features. We have also shown that performing these tasks
simultaneously has an advantage over running them separately.

Our experiments suggest that using multi-objective model-based
optimization to tune feature inclusion based on single filter works
well, although a parameterized filter ensemble performs better.

Our other proposed method based on an NSGA-II enhanced with
specialized initialization and mutation sampling seems to perform
almost as well, although it does not reach the level of the best
Bayesian optimization based approach. The advantage of the NSGA-
II, however, is that it does not introduce as much computational
overhead, which can make up a considerable part of overall runtime
if model performance evaluations themselves are cheap.
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Figure 2: Comparison of different methods. Top: the results
of a global rank analysis based on domHVgen to compare the
proposed methods BO-MO(-FE) and GA-MO(-FE), i.e. both
the BO and GA with and without filter ensemble. Ranks
are computed per dataset and algorithm (ties are ranked by
their average rank) and then averaged.Higher values are bet-
ter. Bottom: Non-parametric critical difference test [11] per-
formed after the full budget of 2000 evaluations at signifi-
cance level α = 0.05, based on domHVgen rank as above. The
BO-MO-FE method statistically significantly outperforms
all GA methods, although the absolute difference is small
(see Figure 5).
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performance over GA-MO-FE, but at a cost in runtime.

Our final recommendation is therefore to use the Bayesian opti-
mization approach in combination with parameterized Filter ensem-
bles if model evaluations are expensive, if computational resources
are cheap, and if it is important to get configurations that per-
form very close to optimal, given their sparseness. The NSGA-II
approach is suitable if model evaluations are cheap and if marginal
degradation of performance are acceptable.
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5. Contributions to explainability of the learning
algorithm

5.1. Explaining Hyperparameter Optimization via Partial Dependence
Plots

The paper presents a method based on PDPs that allows for visualizing the effects of hyperparam-
eters on model performance in the presence of a sampling bias in a more accurate way through
a partitioning approach. It can be classified as methodological contribution to ML algorithm
explainability via an interpretability method, see Section 3.2 – Interpretability methods (B).

Contributing article:

Moosbauer*, J., Herbinger*, J., Casalicchio, G., Lindauer, M., Bischl, B. (2021). Explaining
Hyperparameter Optimization via Partial Dependence Plots. Advances in Neural Information
Processing Systems 34 (NeurIPS 2021), pp. 2280–2291.

Author contributions:

Julia Moosbauer and Julia Herbinger developed the project idea with continuous support from
Giuseppe Casalicchio. Julia Moosbauer has developed the idea of leveraging an uncertainty esti-
mate to improve interpretability measures and derived the uncertainty estimate for PDPs. Julia
Herbinger has formed the initial core idea for the partitioning method to identify subregions
based on uncertainty estimates with support from Giuseppe Casalicchio. The algorithm was de-
veloped by Julia Moobauer based on an initial tree-splitting algorithm implemented by Giuseppe
Casalicchio and has been substantially improved by Julia Herbinger. Julia Moosbauer and Julia
Herbinger jointly designed and conducted the experiments. Evaluation metrics for the benchmark
were defined by Julia Herbinger and improved by Julia Moosbauer. Julia Moosbauer has imple-
mented the benchmark on synthetic functions, and Julia Herbinger has implemented the deep
learning benchmark. The manuscript was drafted jointly by Julia Moosbauer and Julia Herbinger
with overall equal contributions. All authors contributed to revisions of the paper. Giuseppe
Casalicchio, Marius Lindauer, and Bernd Bischl gave valuable input throughout the project and
suggested several notable modifications.

Supplementary material available at:

• Appendix: https://papers.nips.cc/paper/2021/file/
12ced2db6f0193dda91ba86224ea1cd8-Supplemental.pdf
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Abstract

Automated hyperparameter optimization (HPO) can support practitioners to obtain
peak performance in machine learning models. However, there is often a lack of
valuable insights into the effects of different hyperparameters on the final model
performance. This lack of explainability makes it difficult to trust and understand
the automated HPO process and its results. We suggest using interpretable machine
learning (IML) to gain insights from the experimental data obtained during HPO
with Bayesian optimization (BO). BO tends to focus on promising regions with
potential high-performance configurations and thus induces a sampling bias. Hence,
many IML techniques, such as the partial dependence plot (PDP), carry the risk of
generating biased interpretations. By leveraging the posterior uncertainty of the
BO surrogate model, we introduce a variant of the PDP with estimated confidence
bands. We propose to partition the hyperparameter space to obtain more confident
and reliable PDPs in relevant sub-regions. In an experimental study, we provide
quantitative evidence for the increased quality of the PDPs within sub-regions.

1 Introduction

Most machine learning (ML) algorithms are highly configurable. Their hyperparameters must be
chosen carefully, as their choice often impacts the model performance. Even for experts, it can be
challenging to find well-performing hyperparameter configurations. Automated machine learning
(AutoML) systems and methods for automated HPO have been shown to yield considerable efficiency
compared to manual tuning by human experts [Snoek et al., 2012]. However, these approaches
mainly return a well-performing configuration and leave users without insights into decisions of
the optimization process. Questions about the importance of hyperparameters or their effects on
the resulting performance often remain unanswered. Not all data scientists trust the outcome of an
AutoML system due to the lack of transparency [Drozdal et al., 2020]. Consequently, they might not
deploy an AutoML model, despite all performance gains. Providing insights into the search process
may help increase trust and facilitate interactive and exploratory processes: A data scientist could
monitor the AutoML process and make changes to it (e.g., restricting or expanding the search space)
already during optimization to anticipate unintended results.

Transparency, trust, and understanding of the inner workings of an AutoML system can be increased
by interpreting the internal surrogate model of an AutoML approach. For example, BO trains a
surrogate model to approximate the relationship between hyperparameter configurations and model
performance. It is used to guide the optimization process towards the most promising regions of the
hyperparameter space. Hence, surrogate models implicitly contain information about the influence of

⇤These authors contributed equally to this work.
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hyperparameters. If the interpretation of the surrogate matches with a data scientist’s expectation,
confidence in the correct functioning of the system may be increased. If these do not match, it
provides an opportunity to look either for bugs in the code or for new theoretical insights.

We propose to analyze surrogate models with methods from IML to provide insights into the results
of HPO. In the context of BO, typical choices for surrogate models are flexible, probabilistic black-
box models, such as Gaussian processes (GP) or random forests. Interpreting the effect of single
hyperparameters on the performance of the model to be tuned is analogous to interpreting the
feature effect of the black-box surrogate model. We focus on the PDP [Friedman, 2001], which is
a widely-used method2 to visualize the average marginal effect of single features on a black-box
model’s prediction. When applied to surrogate models, they provide information on how a specific
hyperparameter influences the estimated model performance. However, applying PDPs out of the box
to surrogate models might lead to misleading conclusions. Efficient optimizers such as BO tend to
focus on exploiting promising regions of the hyperparameter space while leaving other regions less
explored. Therefore, a sampling bias in input space is introduced, which in turn can lead to a poor fit
and biased interpretations in underexplored regions of the space.

Contributions: We study the problem of sampling bias in experimental data produced by AutoML
systems and the resulting bias of the surrogate model and assess its implications on PDPs. We then
derive an uncertainty measure for PDPs of probabilistic surrogate models. In addition, we propose a
method that splits the hyperparameter space into interpretable sub-regions of varying uncertainty to
obtain sub-regions with more reliable and confident PDP estimates. In the context of BO, we provide
evidence for the usefulness of our proposed methods on a synthetic function and in an experimental
study in which we optimize the architecture and hyperparameters of a deep neural network. Our
Supplementary Material provides (A) more background related to uncertainty estimates, (B) notes on
how our methods are applied to hierarchical hyperparameter spaces, (C) details on the experimental
setup and more detailed results, (D) a link to the source code.

Reproducibility and Open Science: The implementation of the proposed methods as well as
reproducible scripts for the experimental analysis are provided in a public git-repository3.

2 Background and Related Work

Recent research has begun to question whether the evaluation of an AutoML system should be purely
based on the generated models’ predictive performance without considering interpretability [Hutter
et al., 2014a, Pfisterer et al., 2019, Freitas, 2019, Xanthopoulos et al., 2020]. Interpreting AutoML
systems can be categorized as (1) interpreting the resulting ML model on the underlying dataset, or
(2) interpreting the HPO process itself. In this paper, we focus on the latter.

Let c : ⇤ ! R be a black-box cost function, mapping a hyperparameter configuration � = (�1, ...,�d)
to the model error4 obtained by a learning algorithm with configuration �. The hyperparameter space
may be mixed, containing categorical and continuous hyperparameters. The goal of HPO is to find
�⇤ 2 arg min�2⇤ c(�). Throughout the paper, we assume that a surrogate model ĉ : ⇤ ! R is given
as an approximation to c. If the surrogate is assumed to be a GP, ĉ(�) is a random variable following
a Gaussian posterior distribution. In particular, for any finite indexed family of hyperparameter
configurations

�
�(1), ...,�(k)

�
2 ⇤k, the vector of estimated performance values is Gaussian with a

posterior mean m̂ =
�
m̂

�
�(i)

��
i=1,...,k

and covariance K̂ =
⇣
k̂
�
�(i),�(j)

�⌘
i,j=1,...,k

.

Hyperparameter Importance. Understanding which hyperparameters influence model performance
can provide valuable insights into the tuning strategy [Probst et al., 2019]. To quantify relevance
of hyperparameters, models that inherently quantify feature relevance – e.g., GPs with ARD kernel
[Neil, 1996] – can be used as surrogate models. Hutter et al. [2014a] quantified the importance of
hyperparameters based on a random forest fitted on data generated by BO, for which the importance
of both the main and the interaction effects of hyperparameters was calculated by a functional
ANOVA approach. Similarly, Sharma et al. [2019] quantified the hyperparameter importance of

2There exist various implementations [Greenwell, 2017, Pedregosa et al., 2011]), extensions [Greenwell
et al., 2018, Goldstein et al., 2015] and applications [Friedman and Meulman, 2003, Cutler et al., 2007].

3https://github.com/slds-lmu/paper_2021_xautoml
4Typically, the model error is estimated via cross-validation or hold-out testing.
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residual neural networks. These works highlight how useful it is to quantify the importance of
hyperparameters. However, importance scores do not show how a specific hyperparameter affects
the model performance according to the surrogate model. Therefore, we propose to visualize the
assumed marginal effect of a hyperparameter. A model-agnostic interpretation method that can be
used for this purpose is the PDP.

PDPs for Hyperparameters. Let S ⇢ {1, 2, ..., d} denote an index set of features, and let C =
{1, 2, ..., d} \ S be its complement. The partial dependence (PD) function [Friedman, 2001] of
c : ⇤ ! R for hyperparameter(s) S is defined as5

cS(�S) := E�C
[c(�)] =

Z

⇤C

c(�S ,�C) dP(�C). (1)

When analyzing the PDP of hyperparameters, we are usually interested in how their values �S impact
model performance uniformly across the hyperparameter space. In line with prior work [Hutter et al.,
2014a], we therefore assume P to be the uniform distribution over ⇤C . Computing cS(�S) exactly is
usually not possible because c is unknown and expensive to evaluate in the context of HPO. Thus,
the posterior mean m̂ of the probabilistic surrogate model ĉ(�) is commonly used as a proxy for c.
Furthermore, the integral may not be analytically tractable for arbitrary surrogate models ĉ. Hence,
the integral is approximated by Monte Carlo integration, i.e.,

ĉS (�S) =
1

n

Xn

i=1
m̂

⇣
�S ,�

(i)
C

⌘
(2)

for a sample
⇣
�

(i)
C

⌘
i=1,...,n

⇠ P(�C). m̂
⇣
�S ,�

(i)
C

⌘
represents the marginal effect of �S for one

specific instance i. Individual conditional expectation (ICE) curves [Goldstein et al., 2015] visualize
the marginal effect of the i-th observation by plotting the value of m̂

⇣
�S ,�

(i)
C

⌘
against �S for a

set of grid points6 �
(g)
S 2 ⇤S , g 2 {1, ..., G}. Analogously, the PDP visualizes ĉS(�S) against the

grid points. Following from Eq. 2, the PDP visualizes the average over all ICE curves. In HPO, the
marginal predicted performance is a related concept. Instead of approximating the integral via Monte
Carlo, the integral over ĉ is computed exactly. Hutter et al. [2014a] propose an efficient approach to
compute this integral for random forest surrogate models.

Uncertainty Quantification in PDPs. Quantifying the uncertainty of PDPs provides additional
information about the reliability of the mean estimator. Hutter et al. [2014a] quantified the model
uncertainty specifically for random forests as surrogates in BO by calculating the standard deviation of
the marginal predictions of the individual trees. However, this procedure is not applicable to general
probabilistic surrogate models, such as the commonly used GP. There are approaches that quantify the
uncertainty for ML models that do not provide uncertainty estimates out-of-the-box. Cafri and Bailey
[2016] suggested a bootstrap approach for tree ensembles to quantify the uncertainties of effects
based on PDPs. Another approach to quantify the uncertainty of PDPs is to leverage the ICE curves.
For example, Greenwell [2017] implemented a method that marginalizes over the mean ± standard
deviation of the ICE curves for each grid point. However, this approach quantifies the underlying
uncertainty of the data at hand rather than the model uncertainty, as explained in Appendix A.1. A
model-agnostic estimate based on uncertainty estimates for probabilistic models is missing so far.

Subgroup PDPs. Recently, a new research direction concentrates on finding more reliable PDP
estimates within subgroups of observations. Molnar et al. [2020] focused on problems in PDP
estimation with correlated features. To that end, they apply transformation trees to find homogeneous
subgroups and then visualize a PDP for each subgroup. Grömping [2020] looked at the same problem
and also uses subgroup PDPs, where ICE curves are grouped regarding a correlated feature. Britton
[2019] applied a clustering approach to group ICE curves to find interactions between features.
However, none of these approaches aim at finding subgroups where reliable PDP estimates have
low uncertainty. Additionally, to the best of our knowledge, nothing similar exists for analyzing
experimental data created by HPO.

5To keep notation simple, we denote c(�) as a function of two arguments (�S ,�C) to differentiate compo-
nents in the index set S from those in the complement. The integral shall be understood as a multiple integral of
c where �j , j 2 C, are integrated out.

6Grid points are typically chosen as an equidistant grid or sampled from P(�S). The granularity G is chosen
by the user. For categorical features, the granularity typically corresponds to the number of categories.
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Figure 1: Illustration of the sampling bias when
optimizing the 2D Styblinski Tang function with
BO and the Lower Confidence Bound (LCB)
acquisition function a(�) = m̂(�) + ⌧ · ŝ(�)
for ⌧ = 0.1 (left) and ⌧ = 2 (middle) vs. data
sampled uniformly at random (right).

Figure 2: The two horizontal cuts (left) yield two
ICE curves (right) showing the mean prediction
and uncertainty band against �1 for ĉ with ⌧ =
0.1 on the 2D Styblinski-Tang function. The
upper ICE curve deviates more from the true
effect (black) and shows a higher uncertainty.

3 Biased Sampling in HPO

Visualizing the marginal effect of hyperparameters of surrogate models via PDPs can be misleading.
We show that this problem is due to the sequential nature of BO, which generates dependent instances
(i.e., hyperparameter configurations) and thereby introduces a sampling and a resulting model bias.
To save computational resources in contrast to grid search or random search, efficient optimizers
like BO tend to exploit promising regions of the hyperparameter space while other regions are less
explored (see Figure 1). Consequently, predictions of surrogate models are usually more accurate with
less uncertainty in well-explored regions and less accurate with high uncertainty in under-explored
regions. This model bias also affects the PD estimate (see Figure 2). ICE curves may be biased and
less confident if they are computed in poorly-learned regions where the model has not seen much data
before. Under the assumption of uniformly distributed hyperparameters, poorly-learned regions are
incorporated in the PD estimate with the same weight as well-learned regions. ICE curves belonging
to regions with high uncertainty may obfuscate well-learned effects of ICE curves belonging to other
regions when they are aggregated to a PDP. Hence, the model bias may also lead to a less reliable
PD estimate. PDPs visualizing only the mean estimator of Eq. (2) do not provide insights into the
reliability of the PD estimate and how it is affected by the described model bias.

4 Quantifying Uncertainty in PDPs

Figure 3: PDPs (blue) with confidence bands for
surrogates trained on data created by BO and LCB
with ⌧ = 0.1 (left), ⌧ = 1 (middle) and uniform
i.i.d. dataset (right) vs. the true PD (black).

Pointwise uncertainty estimates of a probabilis-
tic model provide insights into the reliability of
the prediction ĉ(�) for a specific configuration
�. This uncertainty directly correlates with how
explored the region around � is. Hence, includ-
ing the model’s uncertainty structure into the PD
estimate enables users to understand in which
regions the PDP is more reliable and which parts
of the PDP must be cautiously interpreted.7 We
now extend the PDP of Eq. (2) to probabilistic
surrogate models ĉ (e.g., a GP). Let �S be a
fixed grid point and

⇣
�

(i)
C

⌘
i=1,...,n

⇠ P (�C)

a sample that is used to compute the Monte
Carlo estimate of Eq. (2). The vector of predicted performances at the grid point �S is
ĉ (�S) =

⇣
ĉ
⇣
�S ,�

(i)
C

⌘⌘
i=1,...,n

with (posterior) mean m̂ (�S) :=
⇣
m̂

⇣
�S ,�

(i)
C

⌘⌘
i=1,...,n

and

7Note that we aim at representing model uncertainty in a PD estimate, and not the variability of the mean
prediction (see Appendix A.1 for a more detailed justification).
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a (posterior) covariance K̂ (�S) :=
⇣
k̂
⇣⇣

�S ,�
(i)
C

⌘
,
⇣
�S ,�

(j)
C

⌘⌘⌘
i,j=1,...,n

. Thus, ĉS (�S) =

1
n

Pn
i=1 ĉ

⇣
�S ,�

(i)
C

⌘
is a random variable itself. The expected value of ĉS (�S) corresponds to the

PD of the posterior mean function m̂ at �S , i.e.:

m̂S (�S) = Eĉ [ĉS (�S)] = Eĉ


1

n

Xn

i=1
ĉ
⇣
�S ,�

(i)
C

⌘�
=

1

n

Xn

i=1
m̂

⇣
�S ,�

(i)
C

⌘
. (3)

The variance of ĉS (�S) is

ŝ2
S(�S) = Vĉ [ĉS (�S)] = Vĉ


1

n

Xn

i=1
ĉ
⇣
�S ,�

(i)
C

⌘�
=

1

n2
1>K̂ (�S) 1. (4)

For the above estimate, it is important that the kernel is correctly specified such that the covariance
structure is modeled properly by the surrogate model. Eq. (4) can be approximated empirically by
treating the pairwise covariances as unknown, i.e.:

ŝ2
S (�S) ⇡ 1

n

Xn

i=1
K̂ (�S)i,i . (5)

In Appendix A.2, we show empirically that this approximation is less sensitive to kernel misspecifi-
cations. Please note that the variance estimate and the mean estimate can also be applied to other
probabilistic models, such as GAMLSS8, transformation trees, or a random forest. An example for
PDPs with uncertainty estimates is shown in Figure 3 for different degrees of a sampling bias.

5 Regional PDPs via Confidence Splitting

As discussed in Section 3, (efficient) optimization may imply that the sampling is biased, which in
turn can produce misleading interpretations when IML is naively applied. We now aim to identify sub-
regions ⇤0 ⇢ ⇤ of the hyperparameter space in which the PD can be estimated with high confidence,
and separate those from sub-regions in which it cannot be estimated reliably. In particular, we identify
sub-regions in which poorly-learned effects do not obfuscate the well-learned effects along each grid
point, thereby allowing the user to draw conclusions with higher confidence. By partitioning the
entire hyperparameter space through a tree-based approach into disjoint and interpretable sub-regions,
a more detailed understanding of the sampling process and hyperparameter effects is achieved. Users
can either study the hyperparameter effect of a (confident) sub-region individually or understand the
exploration-exploitation sampling of HPO by considering the complete tree structure. The result of
this procedure for a single split is shown in Figure 5.

The PD estimate on the entire hyperparameter space ⇤ is computed by sampling the Monte Carlo
estimate (�

(i)
C )i2N ⇠ P(�C), N := {1, 2, ..., n}. We now introduce the PD estimate on a sub-

region ⇤0 ⇢ ⇤ simply as (�
(i)
C )i2N 0 only using N 0 = {i 2 N}�(i)2⇤0 . Since we are interested in the

marginal effect of the hyperparameter(s) S at each �S 2 ⇤S , we will usually visualize the PD for the
whole range ⇤S . Thus, all obtained sub-regions should be of the form ⇤0 = ⇤S ⇥⇤0

C with ⇤0
C ⇢ ⇤C .

This corresponds to an average of ICE curves in the set i 2 N 0. The pseudo-code to partition a
hyperparameter (sub-)space ⇤ and corresponding sample (�

(i)
C )i2N 2 ⇤C , N ✓ {1, ..., n}, into

two child regions is shown in Algorithm 1. This splitting is recursively applied in a CART9-like
procedure [Breiman et al., 1984b] to expand a full tree structure, with the usual stopping criteria (e.g.,
a maximum number of splits, a minimum size of a region, or a minimum improvement in each node).
In each leaf node, the sub-regional PDP and its corresponding uncertainty estimate are computed by
aggregating over all contained ICE curves.

The criterion to evaluate a specific partitioning is based on the idea of grouping ICE curves with
similar uncertainty structure. To be more exact, we evaluate the impurity of a PD estimate on a
sub-region ⇤0 with the help of the associated set of observations N 0 = {i 2 N}

�
(i)
C 2⇤0

C

, also referred
to as nodes, as follows: For each grid point �S , we use the L2 loss in L (�S , N 0) to evaluate how the

8Generalized additive models for location, scale and shape
9Classification and regression trees
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Figure 4: ICE curves of ŝ of �S for the left
(green) and right (blue) sub-region after the first
split. The darker lines represent the respective
PDPs. The orange vertical line marks the value
�S of the optimal configuration.

N

Nl Nr

�j < 6.9 �j � 6.9

Figure 5: Example of two estimated PDPs (blue
line) and 95% confidence bands after one parti-
tioning step. The orange vertical line is the value
of �S from the optimal configuration, the black
curve is the true PD estimate cS(�S).

uncertainty varies across all ICE estimates i 2 N 0 using ŝ2
S|N 0 (�S) := 1

|N 0|
P

i2N 0 ŝ2
⇣
�S ,�

(i)
C

⌘

and aggregate the loss L (�S , N 0) over all grid points in RL2(N 0):

L (�S , N 0) =
X

i2N 0

⇣
ŝ2

⇣
�S ,�

(i)
C

⌘
� ŝ2

S|N 0 (�S)
⌘2

and RL2(N 0) =
XG

g=1
L(�

(g)
S , N 0). (6)

Algorithm 1: Tree-based Partitioning
input: N
for j 2 C do

for Every split t on hyperparameter �j do
N j,t

l = {i 2 N}
�

(i)
j t

N j,t
r = {i 2 N}

�
(i)
j >t

I(j, t) = RL2(N j,t
l ) + RL2(N j,t

r )
end for

end for
Choose

⇣
j⇤, t⇤�⇤

j

⌘
2 arg minj,t I(j, t)

Return N j,t
l and N j,t

r for (j, t) =
⇣
j⇤, t⇤�⇤

j

⌘

Hence, we measure the pointwise L2-distance
between ICE curves of the variance function
ŝ2(�S ,�

(i)
C ) and its PD estimate ŝ2

S|N 0 (�S)

within a sub-region N 0. This seems reasonable,
as ICE curves in well-explored regions of the
search space should, on average, have a lower
uncertainty than those in less-explored regions.
However, since we only split according to hy-
perparameters in C but not in S, the partition-
ing does not cut off less explored regions w.r.t.
�S . Thus, the chosen split criterion groups ICE
curves of the uncertainty estimate such that we
receive sub-regions associated with low costs c
(and thus high relevance for a user) to be more
confident in well-explored regions of �S and
less confident in under-explored regions. Fig-
ure 4 shows that ICE curves of the uncertainty
measure with high uncertainty over the entire

range of �S are grouped together (right sub-region). Those with low uncertainty close to the optimal
configuration of �S and increasing uncertainties for less suitable configurations are grouped together
by curve similarities in the left sub-region. The respective PDPs are illustrated in Figure 5, where
the confidence band in the left sub-region decreased compared to the confidence band of the global
PDP especially for grid points close to the optimal value of �S . Hence, by grouping observations
with similar ICE curves of the variance function, resulting sub-regional PDPs with confidence bands
provide the user with the information of which sub-regions of ⇤C are well-explored and lead to more
reliable PDP estimates. Furthermore, the user will know which ranges of �S can be interpreted
reliably and which ones need to be regarded with caution.

To sum up, the splitting procedure provides interpretable, disjoint sub-regions of the hyperparameter
space. Based on the defined impurity measure, PDPs with high reliability can be identified and
analyzed. In particular, the method provides more confident and reliable estimates in the sub-region
containing the optimal configuration. Which PDPs are most interesting to explore depends on the
question the user would like to answer. If the main interest lies in understanding the optimization and
exploring the sampling process, a user might want to keep the number of sub-regions relatively low
by performing only a few partitioning steps. Subsequently, one would investigate the overall structure
of the sub-regions and the individual sub-regional PDPs. If users are more interested in interpreting
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hyperparameter effects only in the most relevant sub-region(s), they may want to split deeper and
only look at sub-regions that are more confident than the global PDP.

Due to the nature of the splitting procedure, the PDP estimate on the entire hyperparameter space is a
weighted average of the respective sub-regional PDPs. Hence, the global PDP estimate is decomposed
into several sub-regional PDP estimates. Furthermore, note that the proposed method does not assume
a numeric hyperparameter space, since the uncertainty estimates as well as ICE and PDP estimates
can also be calculated for categorical features. Thus, it is applicable to problems with mixed spaces
as long as a probabilistic surrogate model – and particularly its uncertainty estimates – are available.
In Appendix B we describe how our method is applied to hierarchical hyperparameter spaces.

Since the proposed method is an instance of the CART algorithm, finding the optimal split for a cate-
gorical variable with q levels generally involves checking 2q subsets. This becomes computationally
infeasible for high values of q. It remains an open question for future work if this can be sped by an
optimal procedure as in regression with L2 loss [Fisher, 1958] and binary classification [Breiman
et al., 1984a] or by a clever heuristic as for multiclass classification Wright and König [2019].

6 Experimental Analysis

In this section, we validate the effectiveness of the introduced methods. We formulate two main
hypotheses: First, experimental data affected by the sampling bias lead to biased surrogate models and
thus to unreliable and misleading PDPs. Second, the proposed partitioning allows us to identify an
interpretable sub-region (around the optimal configuration) that yields a more reliable and confident
PDP estimate. In a first experiment, we apply our methods to BO runs on a synthetic function. In this
controlled setup, we investigate the validity of our hypotheses with regards to problems of different
dimensionality and different degrees of sampling bias. In a second experiment, we evaluate our PDP
partitioning in the context of HPO for neural networks on a variety of tabular datasets.

We assess the sampling bias of the optimization design points by comparing their empirical distribu-
tion to a uniform distribution via Maximum Mean Discrepancy (MMD) [Gretton et al., 2012, Molnar
et al., 2020], which is covered in more detail in the Appendix C.1. We measure the reliability of
a PDP, i.e., the degree to which a user can rely on the estimate of the PD estimate, by comparing
it to the true PD cS(�S) as defined in Eq. (1). More specifically, for every grid point �(g)

S , we
compute the negative log-likelihood (NLL) of cS(�S) under the distribution of ĉS (�S) pointwise
for every grid point �(g)

S . The confidence of a PDP is illustrated by the width of its confidence bands
m̂S (�S) ± q1�↵/2 · ŝS (�S), with q1�↵/2 denoting the (1 � ↵/2)-quantile of a standard normal
distribution. We measure the confidence by assessing ŝS(�S) pointwise for every grid point. In
particular, we consider the mean confidence (MC) across all grid points 1

G

PG
g=1 ŝ

⇣
�

(g)
S

⌘
as well as

the confidence at the grid point closest to �̂S abbreviated by OC, with �̂ being the best configuration
evaluated by the optimizer. To evaluate the performance of the confidence splitting, we report the
above metrics on the sub-region that contains the best configuration evaluated by the optimizer,
assuming that this region is of particular interest for a user of HPO. PDPs are computed with regards
to single features for G = 20 equidistant grid points and n = 1000 Monte Carlo samples.

6.1 BO on a Synthetic Function

We consider the d-dimensional Styblinski-Tang function c : [�5, 5]
d ! R, � 7!

1
2

Pd
i=1

�
�4

i + 16�2
i + 5�i

�
for d 2 {3, 5, 8}. Since the PD is the same for each dimension i,

we only present the effects of �1. We performed BO with a GP surrogate model with a Matérn-3/2
kernel and the LCB acquisition function a(�) = m̂(�)+⌧ · ŝ(�) with different values ⌧ 2 {0.1, 1, 5}
to control the sampling bias. We compute the global PDP with confidence bands estimated according
to Eq. (5) for the GP surrogate model ĉ that was fitted in the last iteration of BO. We ran Algorithm 1,
and computed the PDP in the sub-region containing the optimal configuration. All computations were
repeated 30 times. Further details on the setup are given in Appendix C.2.1.
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Figure 6: The figure presents the MC
(left) and the NLL (right) for d 2
{3, 5, 8} for a high (⌧ = 0.1), medium
(⌧ = 1), and low (⌧ = 5) sampling
bias across 30 replications. With a lower
sampling bias, we obtain narrower confi-
dence bands and a lower NLL.

Table 1: The table shows the relative improvement of the
MC and the NLL via Algorithm 1 with 1 and 3 splits,
compared to the global PDP along with the sampling
bias for a ⌧ = 0.1 (high), ⌧ = 2 (medium), and ⌧ = 5
(low). Results are averaged across 30 replications.

� MC (%) � NLL (%)

d MMD nsp = 1 nsp = 3 nsp = 1 nsp = 3

3 low (0.18) 7.65 13.64 5.89 10.92
3 medium (0.51) 12.86 36.92 4.78 7.70
3 high (0.56) 16.52 34.84 2.77 -1.62
5 low (0.15) 6.63 15.45 2.82 6.05
5 medium (0.45) 19.67 37.28 4.05 7.80
5 high (0.53) 11.99 33.06 -3.86 -1.93
8 low (0.11) 3.58 9.67 0.84 2.40
8 medium (0.42) 8.86 23.03 1.51 3.30
8 high (0.56) 6.59 19.84 1.53 4.29

As presented in Figure 6, the PDPs for surrogate models trained on less biased data (measured by
the MMD) yield lower values of the NLL, as well as lower values for the MC. Table 1 shows that
a single tree-based split reduces the MC by up to almost 20%, and up to 37% when performing 3
partitioning steps. Additionally, the NLL improves with an increasing number of partitioning steps in
most cases. The results on the synthetic functions support our second hypothesis that the tree-based
partitioning improves the reliability in terms of the NLL and the confidence of the PD estimates. The
improvement of the MC is higher for a medium to high sampling bias, compared to scenarios that are
less affected by sampling bias. We observe that (particularly for high sampling bias) there are some
outlier cases in which the NLL worsens. More detailed results are shown in Appendix C.3.1.

6.2 HPO on Deep Learning

In a second experiment, we investigate HPO in the context of a surrogate benchmark [Eggensperger
et al., 2015] based on the LCBench data [Zimmer et al., 2021]. For each of the 35 different OpenML
[Vanschoren et al., 2013] classification tasks, LCBench provides access to evaluations of a deep
neural network on 2000 configurations randomly drawn from the configuration space defined by
Auto-PyTorch Tabular (see Table 5 in Appendix C.2). For each task, we trained a random forest as
an empirical performance model that predicts the balanced validation error of the neural network
for a given configuration. These empirical performance models serve as cheap to evaluate objective
functions, which efficiently approximate the result of the real-world experiment of running a deep
learning configuration on an LCBench instance. BO then acts on this empirical performance model
as its objective10.

For each task, we ran BO to obtain the optimal architecture and hyperparameter configuration. Again,
we used a GP with a Matérn-3/2 kernel and LCB with ⌧ = 1. Each BO run was allotted a budget
of 200 objective function evaluations. We computed the PDPs and their confidences, which are
estimated according to Eq. (5), based on the surrogate model ĉ after the final iteration. We performed
tree-based partitioning with up to 6 splits based on a uniformly distributed dataset of size n = 1000.
All computations were statistically repeated 30 times. Further details are provided in Appendix C.2.2.

For the real-world data example, we focus on answering the second hypothesis, i.e., whether the tree-
based Algorithm 1 improves the reliability of the PD estimates. We compare the PDP in sub-regions
after 6 splits with the global PDP. We computed the relative improvement of the confidence (MC and
OC) and the NLL of the sub-regional PDP compared to the respective estimates for the global PDP.
As shown in Table 2, the MC of the PDPs is on average reduced by 30% to 52%, depending on the
hyperparameter. At the optimal configuration �̂S , the improvement even increases to 50% � 62%.
Thus, PDP estimates for all hyperparameters are on average – independent of the underlying dataset
– clearly more confident in the relevant sub-regions when compared to the global PD estimates,
especially around the optimal configuration �̂S . In addition to the MC, the NLL simultaneously
improves. In Appendix C.3.2, we provide details regarding the evaluated metrics on the level of the
dataset and demonstrate that our split criterion outperforms other impurity measures regarding MC

10Please note that the random forest is only used as a surrogate in order to construct an efficient benchmark
objective, and not as a surrogate in the BO algorithm, where we use a GP.
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and OC. Furthermore, we emphasize in Appendix C.3.2 the significance of our results by providing a
comparison to a naive baseline method.

Figure 7: PDP (blue) and confidence band (grey) of the GP for hyperparameter max. number of
units (batch size) on the left (right) side. The black line shows the PDP of the meta surrogate model
representing the true PDP estimate. The orange vertical line marks the optimal configuration �̂S . The
relative improvements from the global PDP to the sub-regional PDP after 6 splits are for max. number
of units (batch size): � MC = 61.6% (28.4%), � OC = 63.5% (62.2%), � NLL = 48.6% (30.1%).

Table 2: Relative improvement of MC, OC, and
NLL on hyperparameter level. The table shows the
respective mean (standard deviation) of the average
relative improvement over 30 replications for each
dataset and 6 splits.

Hyperparameter � MC (%) � OC (%) � NLL (%)

Batch size 40.8 (14.9) 61.9 (13.5) 19.8 (19.5)
Learning rate 50.2 (13.7) 57.6 (14.4) 17.9 (20.5)
Max. dropout 49.7 (15.4) 62.4 (11.9) 17.4 (18.2)
Max. units 51.1 (15.2) 58.6 (12.7) 24.6 (22.0)
Momentum 51.7 (14.5) 58.3 (12.7) 19.7 (21.7)
Number of layers 30.6 (16.4) 50.9 (16.6) 13.8 (32.5)
Weight decay 36.3 (22.6) 61.0 (13.1) 11.9 (19.7)

To further study our suggested method, we now
highlight a few individual experiments. We
chose one iteration of the shuttle dataset. On
the two left plots of Figure 7, we see that the
true PDP estimate for max. number of units is de-
creasing, while the globally estimated PDP trend
is increasing and thus misleading. Although the
confidence band already indicates that the PDP
cannot be reliably interpreted on the entire hy-
perparameter space, it remains challenging to
draw any conclusions from it. After perform-
ing 6 splits, we receive a confident and reliable
PD estimate on an interpretable sub-region. The
same plots are depicted for the hyperparameter
batch size on the right part of Figure 7. This
example illustrates that the confidence band might not always shrink uniformly over the entire range
of �S during the partitioning, but often particularly around the optimal configuration �̂S .

7 Discussion and Conclusion

In this paper, we showed that partial dependence estimates for surrogate models fitted on experimental
data generated by efficient hyperparameter optimization can be unreliable due to an underlying
sampling bias. We extended PDPs by an uncertainty estimate to provide users with more information
regarding the reliability of the mean estimator. Furthermore, we introduced a tree-based partitioning
approach for PDPs, where we leverage the uncertainty estimator to decompose the hyperparameter
space into interpretable, disjoint sub-regions. We showed with two experimental studies that we
generate, on average, more confident and more reliable regional PDP estimates in the sub-region
containing the optimal configuration compared to the global PDP.

One of the main limitations of PDPs is that they bear the risk of providing misleading results if applied
to correlated data in the presence of interactions, especially for nonparametric models [Grömping,
2020]. However, existing alternatives that visualize the global marginal effect of a feature such as
accumulated local effect (ALE) plots [Apley and Zhu, 2020] do also not provide a fully satisfying
solution to this problem [Grömping, 2020]. As a solution to this problem, Grömping [2020] suggests
stratified PDPs by conditioning on a correlated and potentially interacting feature to group ICE curves.
This idea is in the spirit of our introduced tree-based partitioning algorithm. However, in the context
of BO we might assume the distribution in Eq. (1) to be uniform and therefore no correlations are
present. Instead of correlated features, we are faced with a sampling bias (see Section 3) where
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we observe regions of varying uncertainty. Hence, instead of stratifying with respect to correlated
features and aggregating ICE curves in regions with less correlated features, we stratify with respect
to uncertainty and aggregate ICE curves in regions with low uncertainty variation. Nonetheless, it
might be interesting to compare our approach with approaches based on the considerations made by
Grömping [2020] – or potentially improved ALE curves.

Another limitation when using single-feature PDPs as in our examples is that hyperparameter
interactions are not visible. However, two-way interactions can be visualized by plotting two-
dimensional PDPs within sub-regions. Another possibility to detect interactions is to look at ICE
curves within the sub-regions. If the shape of ICE curves within a sub-region is very heterogeneous, it
indicates that the hyperparameter under consideration interacts with one of the other hyperparameters.
Hence, having the additional possibility to look at ICE curves of individual observations within a
sub-region is an advantage compared to other global feature effect plots such as ALE plots [Apley
and Zhu, 2020], as they are not defined on an observational level. While we mainly discussed GP
surrogate models on a numerical hyperparameter space in our examples, our methods are applicable to
a wide variety of distributional regression models and also for mixed and hierarchical hyperparameter
spaces. We also considered in Appendix C.3.2 different impurity measures. While the one introduced
in this paper performed best in our experimental settings, this impurity measure as well as other
components are exchangeable within the proposed algorithm. In the future, we will study our method
on more complex, hierarchical configuration spaces for neural architecture search.

The proposed interpretation method is based on a surrogate and consequently does provide insights
about what the AutoML system has learned, which in turn allows plausibility checks and may increase
trust in the system. To what extent this allows conclusions on the true underlying hyperparameter
effects depends on the quality of the surrogate. How to efficiently perform model diagnostics to ensure
a high surrogate quality before applying interpretability techniques is subject to future research.

While we focused on providing better explanations without generating any additional experimental
data, it might be interesting to investigate in future work how confidence and reliability of IML
methods can be increased most efficiently when a user is allowed to conduct additional experiments.

Overall, we believe that increasing interpretability of AutoML will pave the way for human-centered
AutoML. Our vision is that users will be able to better understand the reasoning and the sampling
process of AutoML systems and thus can either trust and accept the results of the AutoML system or
interact with it in a feedback loop based on the gained insights and their preferences. How users can
then best interact with AutoML (beyond simple changes of the configuration space) will be left open
for future research.
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5. Contributions to explainability of the learning algorithm

5.2. Improving Accuracy of Interpretability Measures in
Hyperparameter Optimization via Bayesian Algorithm Execution

The paper presents an improved model-based sampling strategy for HPO which increases the
accuracy of interpretability methods applied on a respective surrogate model without a consider-
able drop in optimization performance. While Chapter 5.1 proposes an improved interpretability
method to account for a sampling bias post-hoc without changing the sampling, this paper im-
proves the sampling directly. It can thus be also be classified into Section 3.2 – Interpretability
methods (B).

Contributing article:

Moosbauer, J., Casalicchio, G., Lindauer, M., Bischl, B. (2023). Improving Accuracy of Inter-
pretability Measures in Hyperparameter Optimization via Bayesian Algorithm Execution. arXiv
preprint arXiv:2206.05447 .
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The idea for the project and for the method was developed by Julia Moosbauer. The whole paper
was drafted and, in most parts, written by Julia Moosbauer. All experiments were conducted
by Julia Moosbauer. All authors contributed to revisions of the paper. Giuseppe Casalichhio,
Marius Lindauer, and Bernd Bischl gave valuable input throughout the project and suggested
several notable modifications.

Supplementary material available at:
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Abstract

Despite all the benefits of automated hyperparameter optimization (HPO), most modern
HPO algorithms are black-boxes themselves. This makes it difficult to understand the de-
cision process which leads to the selected configuration, reduces trust in HPO, and thus
hinders its broad adoption. Here, we study the combination of HPO with interpretable
machine learning (IML) methods such as partial dependence plots. These techniques are
more and more used to explain the marginal effect of hyperparameters on the black-box cost
function or to quantify the importance of hyperparameters. However, if such methods are
naively applied to the experimental data of the HPO process in a post-hoc manner, the un-
derlying sampling bias of the optimizer can distort interpretations. We propose a modified
HPO method which efficiently balances the search for the global optimum w.r.t. predictive
performance and the reliable estimation of IML explanations of an underlying black-box
function by coupling Bayesian optimization and Bayesian Algorithm Execution. On bench-
mark cases of both synthetic objectives and HPO of a neural network, we demonstrate that
our method returns more reliable explanations of the underlying black-box without a loss
of optimization performance.

1 Introduction

The performance of machine learning (ML) models usually depends on many decisions, such as the choice of
a learning algorithm and its hyperparameter configurations. Manually reaching these decisions is usually a
tedious trial-and-error process. Automated machine learning (AutoML), e.g., hyperparameter optimization
(HPO), can support developers and researchers in this regard. By framing these decisions as an optimization
problem and solving them using efficient black-box optimizers such as Bayesian Optimization (BO), HPO
is demonstrably more efficient than manual tuning, and grid or random search (Bergstra et al., 2011; Snoek
et al., 2012; Turner et al., 2020; Bischl et al., 2021). However, there is still a lack of confidence in AutoML
systems and a reluctance to trust the returned best configuration (Drozdal et al., 2020). One reason for
why some practitioners still today prefer manual tuning over automated HPO is that existing systems lack
the ability to convey an understanding of hyperparameter importance and how certain hyperparameters
affect model performance (Hasebrook et al., 2022), helping them to understand why a final configuration
was chosen.
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Desirable insights into hyperparameter effects or importance could in principle be generated by applying
methods of interpretable machine learning (IML) to experimental data from the HPO process, specifically
the final surrogate model generated by BO based on this HPO-data. However, these methods – even though
possible from a technical perspective and used before (Hutter et al., 2014; Van Rijn & Hutter, 2018; Young
et al., 2018; Head et al., 2022) – should be used with caution in this context. The main reason is a sampling
bias caused by the desire for efficient optimization during HPO (Moosbauer et al., 2021): Efficient optimizers
typically sample more configurations in promising regions with potentially well-performing hyperparameter
configurations, while other regions are underrepresented. This sampling bias introduces a surrogate-model
bias in under-explored regions as the surrogate model is subject to high uncertainty in these regions. Con-
sequently, explanations of HPO runs, such as partial dependence plots (PDPs) (Friedman, 2001), can be
misleading as they also rely on artificially created evaluations in under-explored regions. Moosbauer et al.
(2021) had been the first to address this issue, and had proposed an approach to identify well-explored,
rather small subregions in which PDPs can be estimated accurately. While this is valuable, it still does not
allow to accurately estimate hyperparameter effects globally.

To anticipate these unintended effects of this sampling bias as effectively as possible already during the HPO
process, we propose a modified BO algorithm that efficiently searches for the global optimum and accurate
IML estimates of the underlying black-box function at the same time. We build on the concept of Bayesian
Algorithm Execution (BAX) (Neiswanger et al., 2021) to estimate the expected information gain (EIG)
(Lindley, 1956) of configurations w.r.t. the output of an interpretation method. We ultimately couple BO
with BAX and propose BOBAX as an efficient method that searches for accurate interpretations without
a relevant loss of optimization performance. Our proposed method is generic as it is applicable to any BO
variant (e.g., different acquisition functions or probabilistic surrogate models). As IML technique we focus
on PDPs (Friedman, 2001), which estimate the marginal effect(s) of features (in our case: hyperparameters)
on the output by visualizing a marginal 1D or 2D function. PDPs constitute an established IML technique
(Lemmens & Croux, 2006; Cutler et al., 2007; Wenger & Olden, 2012; Zhang et al., 2018), have been in use
for more than 20 years to analyze ML models, and have recently gained further interest in IML and XAI,
and are also increasingly used to analyze hyperparameter effects in HPO and AutoML (Young et al., 2018;
Zela et al., 2018; Head et al., 2022). We point out that our technique is in principle not limited to PDPs, but
can be combined with any IML technique which can be quantitatively estimated from a surrogate model.

In a benchmark study, we demonstrate how BOBAX consistently yields more reliable estimates for marginal
effects estimated via the partial dependence method while maintaining the same level of optimization ef-
ficiency as commonly used methods. Finally, we demonstrate how BOBAX can give reliable insights into
hyperparameter effects of a neural network during tuning yielding state-of-the-art performance. We believe
that through our generic method, the potential of IML methods can be unlocked in the context of HPO, thus
paving the way for more interpretability of and trust into human-centered HPO. Our contributions include:

1. The direct optimization for an accurate estimation of IML statistics, e.g., marginal effects for single or
multiple hyperparameters, as part of BO for HPO, making HPO interpretable and more trustworthy;

2. The combination of BO and Bayesian Algorithm Execution (BAX), dubbed BOBAX, where BAX
is used to guide the search towards more accurate estimation of IML statistics;

3. Thorough study of different variants of BOBAX and baselines on synthetic functions; and

4. Empirical evidence that budget allocation regarding IML estimates does not come at the expense of
significantly reduced optimization performance on a deep learning HPO benchmark.

2 Background

In this section, we formalize HPO and BO as the context of our work. We also give an overview of Bayesian
Algorithm Execution (BAX) as it serves as basis for our work.

Hyperparameter Optimization The aim of HPO is to efficiently find a well-performing configuration of
a learning algorithm. HPO is therefore commonly formalized as finding the minimizer λ∗ ∈ arg minλ∈Λ c(λ)
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of a black-box cost function c : Λ → R which maps a hyperparameter configuration λ = (λ1, ..., λd) ∈ Λ to
the validation error of the model trained by a learning algorithm run using λ. The hyperparameter space
Λ = Λ1 × ...×Λd can be mixed, containing categorical and continuous hyperparameters. Particularly in the
context of AutoML, where whole machine learning pipeline configurations are optimized over, Λ may even
contain hierarchical dependencies between hyperparameters (Thornton et al., 2013; Olson & Moore, 2016).

Bayesian Optimization BO is a black-box optimization algorithm which has become increasingly popular
in the context of HPO (Jones et al., 1998; Snoek et al., 2012). BO sequentially chooses configurations
λ(1), ..., λ(T ) that are evaluated cλ(1) , ..., cλ(T ) to obtain an archive AT =

{(
λ(i), cλ(i)

)}
i=1,...,T

. To choose
the next configuration λ(T +1) as efficiently as possible, a surrogate model ĉ is estimated on the archive AT ,
and a new point is proposed based on an acquisition function that leverages information from the surrogate
model ĉ. Typically, we chose a probabilistic model and estimate a distribution over c, denoted by p(c | AT ).
A common choice are Gaussian processes c ∼ GP (µ, k), characterized by a mean function µ : Λ → R and
a covariance function k : Λ × Λ → R. Acquisition functions usually trade off exploration (i.e., sampling in
regions with few data points and high posterior uncertainty) and exploitation (i.e., sampling in regions with
low mean). Common examples are the expected improvement (EI) (Jones et al., 1998), the lower confidence
bound (LCB) (Jones, 2001; Srinivas et al., 2010), entropy search (Hennig & Schuler, 2012; Hernández-Lobato
et al., 2014) and knowledge gradient (Wu et al., 2017).

Marginal Effects of Hyperparameters Practitioners of HPO are often interested in whether and how
individual hyperparameters affect model performance. Not only is there a desire to gain model compre-
hension Hasebrook et al. (2022), also such insights can influence decisions, for example whether to tune a
hyperparameter or not (Probst et al., 2019), or modify hyperparameter ranges. One interpretation measure
that the community is looking at (Hutter et al., 2014; Zela et al., 2018; Young et al., 2018; Van Rijn & Hutter,
2018; Zöller et al., 2022) is the marginal effect of one or multiple hyperparameters λS , S ⊂ {1, 2, ..., d} on
model performance, which is defined as1

cS(λS) := EλR
[c(λ)] =

∫

ΛR

c(λS , λR) dP(λR). (1)

In the context of HPO, P is typically assumed to be the uniform distribution over ΛR since we are inter-
ested in how hyperparameter values λS impact model performance uniformly across the hyperparameter
space (Hutter et al., 2014; Moosbauer et al., 2021). Since computing Eq. (1) analytically is usually possible,
the PDP method (Friedman, 2001) approximates the integral, as in Eq. (1), by Monte Carlo approximation.

Information-based Bayesian Algorithm Execution Information-based Bayesian Algorithm Execution
(BAX) extends the idea of using entropy search for estimating global optima to estimating other properties
of a function f : X → R (Neiswanger et al., 2021). Similar to BO, BAX tries to sequentially choose points
x(i) ∈ X in order to estimate the quantity of interest accurately with as few evaluations as possible. It is
assumed that the quantity of interest can be computed as the output OA := OA(f) of running an algorithm
A on f , e.g. top-k estimation on a finite set, computing level sets or finding shortest paths.

Similarly to BO, BAX sequentially builds a probabilistic model p(f | AT ), e.g., a GP, over an archive of
evaluated points AT . Based on p(f | AT ), they derive the posterior distribution over the algorithm output
p(OA | AT ). To build the archive AT as efficiently as possible, they choose to evaluate the point x(T +1)

which maximizes the expected information gain about the algorithm output OA

EIGT (x) := H [OA|AT ]− Efx|AT
[H [OA|AT +1]] , (2)

where H denotes the entropy, and AT +1 := AT ∪ {(x, fx)} with fx the (unrevealed) value of f at x.
1To keep notation simple, we denote c(λ) as a function of two arguments (λS , λR) to differentiate components in the index

set S from those in the complement R = {1, 2, ..., d} \ S. The integral shall be understood as a multiple integral of c where λj ,
j ∈ R, are integrated out.

3

5.2 Improving Accuracy of Interpretability Measures in Hyperparameter Optimization via Bayesian
Algorithm Execution

117



Neiswanger et al. (2021) propose an acquisition function to approximate the EIG in Eq. (2). In its simplest
form, the algorithm output OA in the EIG is replaced by the algorithm’s execution path eA, i.e., the sequence
of all evaluations the algorithmA traverses, which thus gives full information about the output. The expected
information gain estimated based on the execution path eA is given by

EIGe
T (x) = H [eA|AT ]− Efx|AT

[H [eA|AT +1]]
= H [fx|AT ]− EeA|AT

[H [fx|AT , eA]] .
(3)

where they used the symmetry of the mutual information to come up with the latter expression. The first
term H [fx|AT ] is the entropy of the posterior predictive distribution at an input x and can be computed
in closed form. The second term can be estimated as follows: A number of npath samples f̃ ∼ p(f | AT )
is drawn from the posterior process. The algorithm A is run on each of the samples f̃ to produce sample
execution paths ẽA, yielding samples ẽA ∼ p(eA | AT ), used to estimate the second term as described by
Neiswanger et al. (2021).

3 Related Work

Interpretability in AutoML refers either to (1) the interpretation of the resulting model returned by an
AutoML system (Xanthopoulos et al., 2020; Binder et al., 2020; Carmichael et al., 2021; Coors et al., 2021),
or (2) the interpretation of hyperparameter effects and importance (Moosbauer et al., 2021). We focus on
the latter, specifically the construction of accurate and unbiased estimators for, e.g., hyperparameter effects
in HPO.

There are HPO and AutoML frameworks that provide visualisations and interpretability statistics as ad-
ditional outputs, e.g., Google Vizier (Golovin et al., 2017) and xAutoML (Zöller et al., 2022) provide an
interactive dashboard visualizing the progress of the optimization and insights via parallel coordinate plots
and multi-dimensional scaling on the optimizer footprint. Similarly, the HPO frameworks optuna (Akiba
et al., 2019) or scikit-optimize (Head et al., 2022) allow for quick and simple visualization of optimization
progress and results. However, such relatively simple visualizations do not give a deeper understanding of
which hyperparameter influence model performance in what way.

In the context of HPO, practitioners are commonly interested on the marginal effects of hyperparameters
on model performance Hutter et al. (2014); Young et al. (2018); Zela et al. (2018) or the importance of
hyperparameters on model performance (Hutter et al., 2014; Biedenkapp et al., 2017; Van Rijn & Hutter,
2018; Probst et al., 2019). The latter is often directly derived from marginal effects of hyperparameters
(Hutter et al., 2014). Established HPO frameworks (Head et al., 2022; Akiba et al., 2019) as well as
visualization toolboxes Zöller et al. (2022) already make implementations of these methods accessible to
users, however they neither discuss nor address a distortion of those arising due to a sampling bias. While
all of these approaches have their merits, none of them address the imprecision in the estimates of these
interpretive measures caused by sample bias that is present in the archive sampled by BO, since BO tends
to exploit promising regions while leaving other regions unexplored. So far, only Moosbauer et al. (2021)
explicitly proposed a post-hoc method that is able to identify subspaces of the configuration space in which
accurate and unbiased PDPs can be computed. However, the method does not provide more accurate global
IML estimates. To our knowledge, we are the first to propose a method that improves the sampling process
of HPO to provide more accurate global estimates of such IML methods.

4 BOBAX: Enhanced Estimation of Interpretability Measures for HPO

We present our main contribution: BOBAX that efficiently searches for accurate marginal effect estimates
of hyperparameters while maintaining competitive HPO performance.

4
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4.1 Expected Information Gain for Partial Dependence

We first derive the information gained with regards to the estimate of a marginal effect of a hyperparameter
λS if we observe performance cλ(T +1) for a hyperparameter configuration λ(T +1). To this end, we quantify
and analyze how a marginal effect is estimated in the context of HPO. Two types of approximations are
performed: First, instead of estimating the marginal effect with regards to the true, but unknown and
expensive objective c, we estimate the marginal effect of the surrogate model ĉ 2, with ĉ denoting the posterior
mean of a probabilistic model p(c | AT ). Secondly, we use the partial dependence method (Friedman, 2001)
for efficient estimation of marginal effects of ĉ : Λ→ R, which estimates Eq. (1) by Monte-Carlo sampling:

φλS
= 1

n

n∑

i=1
ĉ

(
λS , λ

(i)
R

)
, (4)

with λS fixed and λ
(i)
R

i.i.d.∼ P(λR) a Monte-Carlo sample drawn from a uniform distribution P. To bound
the computational effort to compute the PDP, Eq. (4) is evaluated for a (typically equidistant) set of grid
points {λ(j)

S }j=1,...,G. The PDP visualizes φλS
against λS .

To define the expected information gain for partial dependence EIGPDP, we have the partial dependence
method in terms of a formal execution path (see also Algorithm 1): We iterate over all grid points, and
compute the mean prediction ĉ(g,i). The execution path eA thus corresponds to the Cartesian product(

λ
(g)
S , λ

(i)
R

)
for g ∈ {1, ..., G} and i ∈ {1, ..., n} of all grid points λ

(g)
S and the Monte-Carlo samples λ

(i)
R .

As proposed by Neiswanger et al. (2021) as one variant, we estimate the information gained with regards
to the execution path of eA instead of estimating the execution path with regards to the algorithm output
OA. Note that Neiswanger et al. (2021) argued that the criterion in Eq. (3) is in general suboptimal, if
for example large parts of the execution path eA do not have an influence on the algorithm output. We
argue, however, that it is not applicable to our use-case since every element in the execution path of the PD
method contributes with equal weight to the computation of the partial dependence. Figure 1 illustrates the
computation of the PD based on the execution path, as well as the computation of the EIGPDP.

2Constructed by BO, usually this will be the final surrogate model of the BO run, but this can also be applied interactively
to intermediate models
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Algorithm 1 PD algorithm with explicit
execution path eA

Input G, ĉ,
(

λ
(i)
R

)
i.i.d.∼ P(λR)

(
λ

(1)
S , ..., λ

(G)
S

)
← equidist. grid on ΛS

for g ∈ {1, 2, ..., G} do
for i ∈ {1, 2, ..., n} do

λ(g,i) ←
(

λ
(g)
S , λ

(i)
R

)

ĉ(g,i) ← ĉ
(
λ(g,i))

eA ← eA ∪
(
λ(g,i), ĉ(g,i))

end for
φ

λ
(g)
S

← 1
n

∑n
i=1 ĉ(g,i)

end for
Return

(
λ

(g)
S , φ

λ
(g)
S

)
, g = 1, ..., G Figure 1: Shown are the elements of eA (blue) PD method.

The grey points show the configurations in the archive which
are used by BO to construct the surrogate model. The green
configuration is sampled by EI (showing more exploitation)
while the orange point is the point maximizing the informa-
tion gained about the PD estimate.

4.2 BOBAX: Efficient Optimization and Search for More Accurate Interpretability Measures

Given the EIGPDP for PD, the optimization for interpretability of hyperparameter effects as part of BO is
possible by using the EIGPDP as acquisition function. However, interpretability alone is rarely of primary
interest in practice; rather, the goal is to identify well-performing configurations and obtaining reasonable
interpretations at the same time. We propose a method, dubbed BOBAX, that allows to efficiently search
for explanations without a relevant loss of optimization efficiency.

BOBAX is an interleaving strategy which performs BO, and iterates between using the EI (or any other
suited acquisition function) and the EIGPDP as acquisition function. Although we have investigated also
more complex variants (see Appendix B.2), interleaving EIGPDP in every k-th iteration is simple yet efficient.
The smaller k is, the higher is the weight of optimizing for accurate interpretations in a BO run. We note
that this strategy can replace other interleaving exploration strategies, such as random samples (Hutter
et al., 2011), since optimizing for interpretability can be seen as another strategy to cover the entire space
in an efficient manner.3

From a practitioner’s point of view, it may be reasonable to consider accuracy of interpretations rather as
a constraint than an objective function to optimize for. As soon as this constraint is fulfilled, a user may
want to invest all remaining budget into optimization only. Therefore, we also propose an adaptive variant
of BOBAX, dubbed a-BOBAX, which performs the interleaving strategy in BOBAX as described above in a
first phase, and transitions into optimization only in a second phase as soon as the constraint is fulfilled. To
allow a user to input a meaningful constraint, the constraint must itself be interpretable by a user. Therefore,
we define this constraint by a desired average width of confidence intervals around PD estimates, using the
definition4 of Moosbauer et al. (2021). As an example, a user may want to specify a tolerance ±1% in
validation accuracy in estimation of PDs (see green tolerance bands in Figure 3 for illustration).

3One might have also considered addressing this as a multi-objective problem since we have two objectives: (i) finding the
optimum and (ii) obtaining good PDPs. However, usually post-hoc multi-objective optimizers construct a Pareto front of a
set of multiple candidate solution, which we are not interested in here. Instead, in each iteration of BO, the optimizer has to
choose a concrete trade-off between both objectives. For dynamically balancing out this trade-off, please also refer to the next
section.

4Confidence intervals are defined as φ
λ

(g)
S

± q1−α/2 · ŝ
λ

(g)
S

around the PD estimate. ŝ
λ

(g)
S

denotes the uncertainty of a PD
estimate for a grid point g. As default, we look at α = 0.05.
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4.3 Theoretical and Practical Considerations

Runtime Complexity Since BOBAX comes with additional overhead, we discuss this here in more detail.
The computation of the expectation requires posterior samples of the execution path eA ∼ p(eA | AT ). This
is achieved by sampling from the posterior GP c̃ ∼ p(c | AT ) and execution of OA on those samples, which
may produce a computational overhead depending on the costs of running OA. We assume that executing
OA is neglectable in terms of runtime. However, to compute the entropy H [cλ|AT , eA], the posterior process
needs to be trained based on AT ∪ eA (which has size T + n · G). Thus, the overall runtime complexity is
dominated by O

(
npath · (T + n)3)

, as we compute the entropy npath times to approximate the expectation
and since training a GP is cubic in the number of data points. Therefore, we recommend to keep an eye on
the runtime overhead of the calculation of EIGPDP in relation to evaluating c (e.g., training and evaluating an
ML algorithm). Especially in the context of deep learning, the evaluation of a single configuration is usually
by orders of magnitude higher than that of computing the EIGPDP

5. Also, we would like to emphasize that
the implementation of our method is based on GPflow (Matthews et al., 2017), which allows fast execution
of GPs on GPUs. Since GPUs are typically in use for training in the context of DL anyway, they can easily
be leveraged in between iterations to speed up the computation of the EIGPDP.

Marginal Effects for Multiple Hyperparameters Until now we have assumed that a user specifies a
single hyperparameter of interest λS for which we will compute the PD. However, it is difficult to prioritize
the hyperparameter of interest a-priori. Fortunately, it is possible to extend the execution path to compute
EIGPDP by the respective execution paths of the PDs with regards to all variables eA = eA,λ1 ∪ eA,λ2 ∪
... ∪ eA,λd

. We investigate the differences between EIGPDP for a single hyperparameter vs. for multiple
hyperparameters in more detail in Appendix C; in the practical use-case (see Section 6), we compute the
EIGPDP for multiple hyperparameters.

5 Benchmark

In this section, we present experiments to demonstrate the validity of our method. In particular, we look at:

Hypothesis H1 Performing BO with EIGPDP as acquisition function is more efficient than random search
in optimizing for accurate interpretations

Hypothesis H2 Through BOBAX the accuracy of marginal effect estimates is clearly improved without
a significant loss of optimization performance.

5.1 Experimental Setup

Objective Functions We apply our method to synthetic functions which are treated as black-box function
during optimization: Branin (d = 2), Camelback (d = 2), Stylinski-Tang (d = 3), Hartmann3 (d = 3) and
Hartmann6 (d = 6).

Algorithms To investigate H1, we consider BO with EIGPDP as acquisition function (BAX). For H2, we
consider BOBAX as described in Algorithm 2, where we iterate evenly (k = 2) between EI and EIGPDP as
acquisition function. Following Neiswanger et al. (2021) we set the number of execution path samples to 20
to approximate the expectation in Eq. (3) in both variants. As strong baseline for accurate PDs we consider
random search (RS) and BO with posterior variance as acquistion function (PVAR) as a pure exploration
case of LCB. As strong baseline for optimization we consider BO with EI (BO-EI). Further variants of our
methods (e.g., different frequencies of interleaving) and additional baselines (such as BO with LCB with
different exploration factors, or BO with EI and random interleaving) are described in Appendix C.

Evaluation We evaluate the accuracy of PD estimates by comparing the PD φ
(g)
S (estimated based on ĉ)

against the PD φ̃
(g)
S computed on the ground-truth objective function c, approximated with the same sample

5In our case, the computation of the EIGPDP was ranging from the order of a few seconds to a few minutes.
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Figure 2: The first three plots show the estimated PD with 95% confidence interval (blue) based on the
surrogate model ĉ after T = 30 iterations vs. the true marginal effect (black). BAX and BOBAX yield more
accurate estimates for the PD as compared the BO with EI. The right plot shows the cumulative regret
for the three methods. BAX, which is not performing optimization at all, is also clearly outperformed in
optimization performance. BOBAX reaches the optimization result of BO with EI only after a few more
iterations.

λ
(i)
R and the same grid size G. As measure we use the L1 distance dL1 := 1

G

∑G
g=1

∣∣∣φ(g)
S − φ̃

(g)
S

∣∣∣ averaged
over all grid points. To assess optimization performance, we report the simple regret c(λ̂) − c(λ∗), where
λ∗ denotes the theoretical optimum of a function, and λ̂ ∈ argmin {cλ | (λ, cλ) ∈ AT } is the best found
configuration during optimization.

Further Configurations A Gaussian process with a squared exponential kernel is used as surrogate
model for all BO variants, and PDs are estimated on the respective surrogate models. For RS, a GP (with
same configuration) is fitted on AT and the PD is computed thereon. Acquisition function optimization
is performed by randomly sampling 1500 configurations, evaluating the respective acquisition function and
returning the best. Each (BO) run is given a maximum number of 30 · d function evaluations.

Reproducibility and Open Science The implementation of methods as well as reproducible scripts for
all experiments are publicly made available. Each experiment is replicated 20 times based 20 different seeds
fixed across all variants. More details on the code and on computational can be found in Appendix E.

5.2 H1: More accurate interpretations

Our experiments support hypothesis H1, i.e., we can achieve more accurate PD estimates more efficiently
through targeted sampling via the EIGPDP. An example run on the Branin function shown in Figure 2
illustrates the behavior of the methods that is observable across all experiments: BAX is yielding clearly
more accurate PDPs than BO with EI already after few iterations. Figure 4 in Appendix C.2 supports that
PDs estimated on data produced by BO with EI might provide not only quantitatively, but also qualitatively
wrong information in terms of ranking the values φ

λ
(g)
S

differently than the ground-truth. As expected,
increased accuracy of interpretations through BAX comes to the cost of optimization efficiency. Results
aggregated across all problems and replications confirm this behavior on a broader scale, see Table 16. BAX
is producing more accurate PDPs than RS (which can be assumed to converge against the true marginal
effect) already at early stages, and is strongly significantly (α = 1%) outperforming RS with less iterations.
We conclude that both BAX and PVAR can contribute to approximating the true marginal effect well, but
BAX is converging faster. In addition, BO with EI is significantly outperformed in terms of accuracy of
PDPs, which supports our assumption of lowered quality caused through a heavy sampling bias.

6We note that the different functions live on different scales s.t. we normalized it by showing relative metrics wrt baselines,
such RS for PDP estimates and EI for optimization regret.
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Table 1: Left: L1 error of the estimated PDP w.r.t. the ground truth PDP, relative to RS as baseline.
Negative values mean a relative reduction of the L1 error compared to random search. Right: Optimization
relative to BO-EI as baseline. Results are averaged across all 20 replications. Best values are bold, and
values are underlined if not significantly worse than the best based on a Post-Hoc Friedman test (α = 1%),
see also Demsar (2006); García et al. (2010) and Appendix C.1 for more details.

Relative dL1(PDP) after
25% 50% 75% 100%

Max. iterations spent
RS 0.00 0.00 0.00 0.00

BO-EI 0.18 0.39 0.47 0.67
PVAR 0.13 -0.08 0.08 0.14

BAX -0.17 -0.20 -0.07 0.00
BOBAX -0.14 -0.16 -0.04 0.03

Relative optimization regret after
25% 50% 75% 100%

Max. iterations spent
RS 2.42 160.99 530.70 951.47

BO-EI 0.00 0.00 0.00 0.00
PVAR 3.38 232.14 741.69 1887.22

BAX 2.27 242.062 602.15 1408.62
BOBAX 1.68 5.04 4.73 3.26

5.3 H2: More accurate interpretations at no relevant loss of optimization efficiency

Our experiments also support hypothesis H2, i.e., with BOBAX we can achieve clearly more accurate PD
estimates while maintaining a competitive level of optimization efficiency. Table 1 compares the accuracy
of PD estimates (measured via dL1) and optimization regret as compared to baselines RS and BO-EI,
respectively, aggregated over all five objective functions. (BO)BAX allows for more accurate PDPs than the
other methods, with diminishing relative distance to RS, while BO with EI is clearly outperformed. On the
other hand, it can be observed that BOBAX is giving optimization performance comparable to BO with EI
throughout the course of optimization, whereas RS is clearly outperformed. So, BOBAX combines the best
of both worlds: good interpretability (even better than RS) and efficient optimization (on par with BO-EI).
Figure 5 in Appendix C.2 shows that this effect is visible for all objective function, but the strength of the
effect depends on the objective functions.

We conclude that our experiments support that BOBAX makes no (or only little) compromises in optimiza-
tion performance, but yields clearly better estimates of marginal effects at the same time.

6 Practical HPO Application
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Figure 3: Comparing PDP evolution for number of iterations for EI and BAX. BAX returns fairly certain
PDPs early on, whereas BO with EI requires much more time.

We demonstrate a-BOBAX on a concrete HPO scenario, following the setup of Moosbauer et al. (2021).
We tune common hyperparameters of a neural network with regards to balanced validation accuracy on
15 different datasets respresenting different tasks from different domains (see Tables 5, 6 in Appendix D)
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Table 2: Iterations needed to reach the desired precision of PD estimate of ±1.5 balanced accuracy points,
accuracy of the final PD based on the L1 error to the ground truth, as well as the final model performance
reached. Results are averaged across all 30 replications and all 15 datasets. Best values are bold, and values
are underlined if not significantly worse than the best based on a Post-Hoc Friedman test (α = 1%), see also
Demsar (2006); García et al. (2010) and Appendix C.1 for more details.

Iterations to desired precision Rel. dL1 (PDP) 1 - Balanced Accuracy
RS 14.91 0.49 22.56

BO-EI 22.59 0.57 19.38
BAX 9.85 0.51 23.97

a-BOBAX 11.56 0.52 19.94

using the interface provided by YAHPO gym (Pfisterer et al., 2021). We compare RS, EI, BAX, and
adaptive BOBAX (a-BOBAX). In a-BOBAX, we set the desired width of confidence intervals to ±1.5%
balanced accuracy points; we emphasize thought, that this value can be set by the user. For a-BOBAX, we
compute the EIGPDP jointly for the PDPs of learning rate, dropout, max. number of units, weight decay,
and momentum. The respective methods ran under the same conditions as in Section 5, but were replicated
30 times.

Figure 3 shows how accuracy of the PD estimate increases over time for BO with EI vs. BAX. We observe
that BAX is clearly more efficient in returning an accurate estimate, which is in line with the results we
observed in Section 5. As motivated in Section 4.2, a practitioner might prefer to rather ensure a minimum
accuracy of IML measures, and therefore, handle this rather as a constraint than as an objective. Table 2 is
showing the time to reach the desired precision of ±1.5% for the PDP, as well as final accuracy of PDs and
final optimization performance, aggregated over all experiments an replications. We observe that a-BOBAX
is (i) significantly faster in reaching the desired precision threshold, allowing a user to interact earlier with
confidence, (ii) is comparable to RS in terms of final accurate representation of PDs, and (iii) comparable to
BO-EI in terms of optimization performance. Note that the effect again depends strongly on the respective
dataset (see Figures 7, 8, 9 in Appendix D.2).

7 Discussion and Conclusion

Findings We proposed (adaptive) BOBAX, modifying Bayesian Optimization (BO) for black-box opti-
mization and HPO to enhance interpretability of the optimization problem at hand. We achieved this by
adapting BAX to optimize for accurate marginal effects and then interleaved BO and BAX. We further
showed that BOBAX can significantly enhance the accuracy of PD estimates during an optimization proce-
dure, while not losing optimization performance.

Usage If a user has some desired precision of the IML estimates in mind, a-BOBAX allows them to make
use of BAX only until this level is not reached yet and will focus on the optimization quality afterwards.
This simple, yet efficient strategy allows to get the most out of the overall budget.

Critical View and Limitations Even though the usage of EIG is beneficial to the quality of a PD
estimate, there are also examples where no significant improvement is observed. We assume that this par-
ticularly holds for hyperparameters that have a simple (and therefore easy-to-learn) effect on performance.
Consequently, the marginal effect is easily learned for any of the methods. In addition to using the adaptive
version of BOBAX, we recommend dropping these simple-to-learn hyperparameters from the joint compu-
tation of the EIG (4.3) as soon as the PDPs are sufficiently certain. Furthermore, our method comes at a
computational overhead, being slightly larger than traditional BO since computing EIG with BAX costs a
bit more compute time. In terms of application to HPO, we expect that the cost for training and validat-
ing hyperparameter configurations or architectures of neural networks will be much larger than BOBAX’s
overhead in most relevant cases.
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Outlook We believe that BOBAX will contribute in particular towards more human-centered HPO, where
developers can start inspecting intermediate results as soon as desired confidence was reached and then
adapt the configuration space if necessary. Although we focused on PDPs as an interpretability method,
extending our BOBAX idea to other IML approaches would be straightforward and opens up new follow up
directions. As one next step, we envision extending BOBAX to the multi-fidelity setting (Li et al., 2017;
Falkner et al., 2018) which is required for more expensive HPO and AutoML problems. Last but not least,
we emphasize that we developed BOBAX primarily for HPO problems, but it can also be applied to any
black-box optimization problem, e.g., in engineering or chemistry.
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6. Contributions to explainability of the AutoML
system

6.1. Automated Benchmark-Driven Design and Explanation of
Hyperparameter Optimizers

The work unifies the most common multi-fidelity HPO optimizers in a configurable framework.
Following the programming-by-optimization optimization principle, a search space comprising a
multitude of HPO optimizers is searched over efficiently by BO, and an ablation analysis is per-
formed to challenge whether design choices are critical to performance or could be replaced by
simpler design choices. This work presents a principled approach to the explanation of hyperpa-
rameter optimizers and contributes to gaining a more holistic understanding of which algorithmic
components are driving performance. It can thus be classified methodologically as a contribution
to Section 3.3 – Sensitivity analysis of AutoML tools (B).

Contributing article:

Moosbauer, J., Binder, M., Schneider, L., Pfisterer, F., Becker, M., Lang, M., Kotthoff, L., Bischl.,
B. (2022). Automated Benchmark-Driven Design and Explanation of Hyperparameter Optimizers.
IEEE Transactions on Evolutionary Computation, vol. 26, no. 6, pp. 1336–1350.
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state-of-the-art algorithm implementations were conducted by Julia Moosbauer. Code for the
experiments for algorithm analysis was written by Lennart Schneider (ablation studies), Mar-
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Automated Benchmark-Driven Design and
Explanation of Hyperparameter Optimizers

Julia Moosbauer , Martin Binder, Lennart Schneider , Florian Pfisterer , Marc Becker,
Michel Lang, Lars Kotthoff , and Bernd Bischl

Abstract—Automated hyperparameter optimization (HPO) has
gained great popularity and is an important component of most
automated machine learning frameworks. However, the process
of designing HPO algorithms is still an unsystematic and man-
ual process: new algorithms are often built on top of prior work,
where limitations are identified and improvements are proposed.
Even though this approach is guided by expert knowledge, it is
still somewhat arbitrary. The process rarely allows for gaining
a holistic understanding of which algorithmic components drive
performance and carries the risk of overlooking good algorithmic
design choices. We present a principled approach to automated
benchmark-driven algorithm design applied to multifidelity HPO
(MF-HPO). First, we formalize a rich space of MF-HPO candi-
dates that includes, but is not limited to, common existing HPO
algorithms and then present a configurable framework covering
this space. To find the best candidate automatically and sys-
tematically, we follow a programming-by-optimization approach
and search over the space of algorithm candidates via Bayesian
optimization. We challenge whether the found design choices
are necessary or could be replaced by more naive and simpler
ones by performing an ablation analysis. We observe that using
a relatively simple configuration (in some ways, simpler than
established methods) performs very well as long as some critical
configuration parameters are set to the right value.
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I. INTRODUCTION

MACHINE learning (ML) is, in many regards, an
optimization problem, and many ML methods can be

expressed as algorithms that perform loss minimization with
respect to a given objective function. The higher-level task of
selecting the ML method and its configuration is often framed
as an optimization problem as well, sometimes referred to as
a hyperparameter optimization (HPO) [1] or combined algo-
rithm selection and HPO (CASH) problem [2]. Successfully
addressing this problem can lead to large performance gains
compared to simply using defaults, and in the context of auto-
mated ML (AutoML), the use of HPO can make ML more
accessible to nonexperts. Because of their potential benefits to
ML performance and usability, it is of particular interest to
design optimization algorithms that perform particularly well
on the HPO problem.

Optimization problems arise in many fields of science and
engineering, but as the no-free-lunch theorem states, there is
no one optimization algorithm that solves all problems equally
well [3]. To design suitable optimizers, it is therefore important
to understand the characteristics of HPO.

1) Black-Box: The objective usually provides no analytical
information [4], such as a gradient. Thus, the applica-
tion of many traditional optimization methods, such as
BFGS, is rendered inappropriate or at least questionable.

2) Complex Search Space: The search space of the
optimization problem is often high-dimensional and
may contain continuous, integer-valued, and categori-
cal dimensions. Often, there are dependencies between
dimensions or even specific hyperparameter values [5].

3) Expensive: A single evaluation of the objective function
may take hours or days. Thus, the total number of pos-
sible function evaluations is often severely limited [4].

4) Low-Fidelity Approximations Possible: An approxima-
tion of the true objective value at lower expense can
often be obtained, for example, through a partial evalu-
ation [6].

5) Low Effective Dimensionality: The landscape of the
objective function can usually be approximated well by
a function of a small subset of all dimensions [7].

Recent HPO and AutoML research has focused on finding
and improving optimization algorithms that work particu-
larly well under these conditions. A common approach is to
tackle HPO by estimating a local or global structure of the
objective landscape by some form of the predictive model.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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This introduces additional overhead and complexity with the
aim of reducing the overall number of expensive objective
evaluations necessary to find an approximate optimum. Typical
representatives of this approach are Bayesian optimization
(BO) [8] algorithms and frameworks based on BO, which
are global optimization schemes based on a nonlinear regres-
sion model, e.g., a Gaussian process or random forest. They
have shown significant improvements in performance com-
pared to other methods [9] but carry a significant overhead.
Furthermore, BO is somewhat difficult to parallelize due to
its sequential nature, although many variants exist (e.g., [10],
[11], [12], and [13]).

Multifidelity HPO (MF-HPO) algorithms aim to accelerate
the optimization process by exploiting cheaper proxy func-
tions of the objective function itself (e.g., by training ML
models on a smaller subsample of the available training data,
or by running fewer training iterations). Bandit-based algo-
rithms like Hyperband (HB) [14] have become particularly
popular because of their good tradeoff between optimization
performance and simplicity.

Progress in the field of HPO often consists of iterative
improvements of established algorithms. Considerable work
exists, for example, to improve the limitations of HB: asyn-
chronous successive halving (ASHA) [15] proposes a sophis-
ticated way to make efficient use of parallel resources, BO HB
(BOHB) [16] improves performance during later parts of
a run by incorporating surrogate assistance into HB, and
asynchronous BOHB (A-BOHB) [17] unites a bandit-based
optimization scheme using model-based guidance with asyn-
chronous parallelization.

While these conceptual extensions of HPO all have their
respective merit, it is often somewhat overlooked that the
simplicity of an optimization algorithm (i.e., how difficult
modifications and extensions are, and on how many depen-
dencies a system relies [18]) heavily influences its adoption
in practice. Random search (RS), for example, still enjoys
great popularity, as it is extremely simple to implement and
parallelize, has almost no overhead, and is able to take
advantage of the aforementioned low effective dimensional-
ity [7]. Furthermore, algorithmic developments identify and
address limitations of prior research, but rarely question core
algorithmic choices that have been made in the original imple-
mentation. Many multifidelity algorithms, for example, are
extensions and further developments of HB that take the fixed
successive halving (SH) schedule [19] for granted. The pro-
cess of designing a good MF-HPO optimizer in practice—and
many other algorithmic solutions in science in general—can
therefore often feel somewhat like a “manual stochastic local
search on the meta level.” The drawback of this manual pro-
cedure is that the design space of all HPO algorithms is
not systematically searched, and parts of the design space
are excluded by prior algorithmic decisions. If “established”
algorithms are not challenged, there is a risk that algo-
rithms that work well will be overlooked, and it is often
hard to identify what algorithmic components make a dif-
ference. In particular, it is possible that overly complicated
algorithms are developed by extending “established” designs,
only some of which contribute meaningfully to performance

gains. Sometimes certain technical components of an algo-
rithm, which are neither exposed nor discussed in detail, may
also influence performance significantly.

A. Contributions

We make a principled demonstration of how HPO algorithm
design can be performed systematically and automatically with
a benchmark-driven approach following the programming-by-
optimization paradigm [20]. In particular, the contributions of
this work are as follows.

1) Formalization: We formalize the design space of MF-
HPO algorithms and demonstrate that established MF-
HPO algorithms represent instances within this space.

2) Framework: Based on this formalization, we present
a rich, configurable framework for MF-HPO algo-
rithms, whose software implementation we call surro-
gate model-assisted HB (SMASHY).

3) Configuration: Based on the formalization and frame-
work, we follow an empirical approach to design an
MF-HPO algorithm by optimization, given a large
benchmark suite. This configuration procedure does not
only consider performance but also, e.g., the simplicity
of the design.

4) Benchmark: As in general any HPO algorithm will be
applied in a diverse set of application scenarios, we
evaluate the performance of our newly designed algo-
rithm on a representative set of problems that were not
previously used for its configuration (i.e., a clean test-
set approach on the meta-level) and compare them with
established implementations of HPO methods.

5) Explanation: For the resulting MF-HPO system, we
systematically assess and explain the effect of differ-
ent design choices on overall algorithmic performance.
Furthermore, we investigate the behavior of algorithmic
design components in the context of specific problem
scenarios; i.e., we investigate which algorithmic com-
ponents lead to performance improvements for simple
HPO with numeric hyperparameters, AutoML pipeline
configuration, and neural architecture search.

II. RELATED WORK

HPO is one of the most essential components of current
AutoML methods [1], and MF-HPO has recently become
more prominent, given that cheap, low-fidelity evaluations
have proven useful to speed up optimization, especially for
expensive HPO of complex ML algorithms on larger data
sets [14]. While AutoML tools have historically relied on a
limited set of HPO methods, we argue that the optimal HPO
method depends on problem characteristics, and therefore a
systematic development of HPO methods under consideration
of problem characteristics is required. Approaches toward such
systematic development have often relied on a high-level lan-
guage or template that allows expressing solution algorithms
for a given problem class, e.g., to solve constraint satisfaction
problems [21], [22], [23], satisfiability problems [24], schedul-
ing problems [25], or general multiobjective combinatorial
problems [26], [27].
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Even if a high-level language is available, manual config-
uration of such frameworks is laborious and requires expert
knowledge. This motivates the design philosophy of “pro-
gramming by optimization” [20] (PBO), which advocates for
allowing algorithmic choices in a software system (instead
of fixing them at the time of implementation) and automatic
configuration by optimization for a given problem context.

As one approach to automatic and efficient algorithm con-
figuration, racing-based strategies have been used to design
optimization algorithms. For example, iterated F-RACE [28]
has been used for the automatic design of multiobjective ant
colony optimization algorithms [26]. Similarly, IRACE [29]
has been used for the automatic design multiobjective evo-
lutionary algorithms [27] or to meta-configure the parame-
ters IRACE itself [30]. Another commonly used framework
is SMAC [5], which extends the sequential model-based
optimization paradigm (SMBO, see also Section IV-A2) to an
algorithm configuration setting. This is achieved through the
use of an intensification procedure that governs across how
many problem instances each configuration is evaluated, trad-
ing off computational cost against confidence regarding the
superiority of a given configuration. While such intensification
mechanisms have been used in other work before [31], [32],
SMAC also uses instance features describing properties of a
problem instance are used to train the empirical performance
model predicting the performance of a configuration on a new
problem instance. Besides racing and sequential model-based
approaches, genetic algorithms have also been used to evolve
optimal solvers [33].

We argue that the design of HPO algorithms can be seen
as an instance of PBO. However, while there are many
approaches that focus on individual algorithmic choices (e.g.,
the choice of a surrogate model for BO [34]), we are not
aware of many cases where PBO is applied to designing
HPO systems themselves. One exception is [35], who use
SMACv3 [36] to automatically configure BO for HPO from
a flexible search space of components. We take a similar
approach here in that the algorithmic choices are exposed as
hyperparameters that can be tuned. However, unlike [35], we
do not configure an established HPO method (such as BO)
with a predefined structure and associated control parame-
ters (e.g., varying the surrogate model of BO). Instead, we
introduce a new configurable algorithmic framework, which
covers many different MF-HPO structures, including well-
established principles for multifidelity handling (e.g., SH)
as well as new approaches (e.g., equal batch size in all
proposals).

In addition to designing well-performing algorithms, it is
equally important to facilitate an understanding of the effects
of all considered design choices. The field of sensitivity anal-
ysis (SA) comprises a multitude of methods to assess the
importance of input factors on the output of a mathematical
model [37]. Functional ANOVA (fANOVA) methods, which
decompose the response of a (mathematical) model or func-
tion into lower-order components, are a widely studied method
in the field of SA, dating back to [38]. This class of methods
has also become popular in the field of ML to analyze the
importance of hyperparameters [39].

Popular ways of analyzing effects of algorithmic effects
in ML and algorithm configuration are ablation studies [40].
This involves measuring the performance when removing
one or more of algorithmic subcomponents to understand
the relative contribution of the ablated components to over-
all performance. There are different ways of performing an
ablation analysis; probably the most common approach is
leave-one-component-out (LOCO) ablation [41]. In the context
of algorithm configuration, Fawcett and Hoos [40] proposed
an ablation approach that links a source configuration (e.g., the
default) to a target (e.g., the optimized configuration) through
an ablation path.

Nevertheless, many existing works that propose or improve
HPO or algorithm configuration systems do not analyze the
algorithmic choices of an optimized system, and the ones
that do perform relatively straightforward analyses. For exam-
ple, Minton [21] compared the designs and their approach
finds automatically to the designs expert humans generated.
López-Ibáñez and Stützle [42] performed ANOVA and non-
parametric Friedman tests to investigate in detail the effects
that algorithmic choices, found through automatic configura-
tion [26], have on the performance of multiobjective ant colony
optimization algorithms. de Nobel et al. [43] presented a mod-
ular framework for CMA-ES variants on which they perform
optimization; in particular, they investigate how the optimized
configuration changes when the search space is enlarged by
introducing new components.

III. METHODOLOGY

A. Supervised Machine Learning

Supervised ML typically deals with a dataset (which is,
mathematically speaking, a tuple) D = ((x(i), y(i))) ∈ (X×Y)n

of n observations, assumed to be drawn i.i.d. from a data-
generating distribution Pxy. An ML model is a function
f̂ : X → Rg that assigns a prediction to a feature vector
from X .1 f̂ is itself constructed by an inducer function I, i.e.,
the model-fitting algorithm. The inducer I : (D,λ) �→ f̂ uses
training data D and a vector of hyperparameters λ ∈ � that
govern its behavior. The overall goal of supervised ML is to
derive a model f̂ from a data set D so that f̂ predicts data sam-
pled from Pxy best. The quality of a prediction is measured
as the discrepancy between predictions and ground truth. This
is operationalized by the loss function L : Y × Rg → R+0 ,
which is to be minimized during model fitting. In contrast to
the optimization problems that we will define in Sections III-B
and III-C, we term this the “first-level” optimization problem.

The expectation of the loss value of predictions made for
data samples drawn from Pxy is the generalization error

GE := E(x,y)∼Pxy

[
L
(

y, f̂ (x)
)]

(1)

which cannot be computed directly if Pxy is not known beyond
the available data D. Therefore, one often uses so-called
resampling techniques that fit models on Niter subsamples
D[Jj] and evaluate them on complements D[−Jj] of these

1where g allows handling of multioutput regression, as well as multiclass
classification with g classes by returning decision scores.
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subsets to obtain an estimate of the generalization error

ĜE(I,λ, J) = 1

Niter

Niter∑
j=1

L
(
y
[−Jj

]
, I

(
D

[
Jj

]
,λ

)(
x
[−Jj

]))
. (2)

Depending on the resampling method, the inducer I, and
the quantity of data in D, estimating the generalization
error ĜE(I,λ, J) can require large amounts of computational
resources.

B. Hyperparameter Optimization

The goal of HPO is to identify a hyperparameter configura-
tion that performs well in terms of the estimated generalization
error in (2). Often, optimization only concerns a subspace
of available hyperparameters because some hyperparameters
might be set based on prior knowledge or due to other
constraints. One would therefore split up the space of hyperpa-
rameters � into a subspace of hyperparameters �S over which
optimization takes place, and the remaining hyperparameters
�C = �/�S for which values λC are given exogenously. We
define the HPO problem as

λ∗S ∈ argmin
λS∈�S

c(λS) = argmin
λS∈�S

ĜE(I, (λS,λC), J). (3)

Here, λ∗S denotes a theoretical optimum, and c(λS) is a short-
hand for the estimated generalization error in (2). We refer to
Problem 3 as the “second-level” optimization problem.

Hyperparameters can be either continuous, discrete, or cat-
egorical, and search spaces are often a mix of the different
types. The search space may be hierarchical, i.e., some sub-
ordinate hyperparameters can only be set in a meaningful
way if another parent hyperparameter takes a certain value. In
particular, many AutoML frameworks perform optimization
over a hierarchical hyperparameter space that represents the
components of a complex ML pipeline [1].

Many HPO algorithms can be characterized by how they
handle two different tradeoffs: 1) the exploration versus
exploitation tradeoff refers to how much budget an optimizer
spends on either trying to directly exploit the currently avail-
able knowledge base by evaluating very close to the currently
best candidates (e.g., local search) or whether it explores the
search space to gather new knowledge (e.g., RS) and 2) the
inference versus search tradeoff refers to how much time and
overhead is spent to induce a model from the currently avail-
able archive data in order to exploit past evaluations as much
as possible. Other relevant aspects that HPO algorithms differ
in are: Parallelizability, i.e., how many configurations a tuner
can (reasonably) propose at the same time; global versus local
behavior of the optimizer, i.e., if updates are always quite close
to already evaluated configurations; noise handling, i.e., if the
optimizer takes into account that the estimated generalization
error is noisy; search space complexity, i.e., if and how hier-
archical search spaces can be handled; multifidelity, i.e., if the
optimizer uses cheaper evaluations to infer performance on the
full data.

Multifidelity methods make use of the fact that the resam-
pling procedure in (2) can be modified in multiple ways to
make evaluation cheaper: one can 1) reduce the training sizes

|Jj| via subsampling, as model evaluation complexity is often
at least linear in training set size or 2) change some compo-
nents in λ in a way that makes model fits cheaper. Examples
of 2) are reducing the overall number of training cycles per-
formed by a neural network fitting process or reducing the
number of base learner fits in a bagging or boosting method.
These modifications can both increase the variance of ĜE and
introduce an (often pessimistic) bias, as models trained on
smaller datasets or with values of λ that make fitting cheaper
often have worse generalization errors.

We introduce a fidelity parameter r ∈ (0, 1] that influences
the resource requirements of the evaluation of ĜE and define

c(λS; r) := ĜE(I, (λS,λC(r)), J(r)). (4)

With this definition, we make the choice that r should influence
the evaluation cost of ĜE only by modifying the resampling,
J(r) or by modifying a hyperparameter λC(r). Typically, r only
affects one of these aspects at a time, and if it affects λC, it
only affects a single hyperparameter dimension.

Note that we normally assume that a higher fidelity r
returns a better model in terms of the estimate of the gener-
alization error, and the best estimate is returned for r = 1.
Therefore, r enters the expression in a way where it can
influence performance but is not searched over. We define
c(λS) := c(λS; 1) as in [44], and the optimization problem
remains as in (3).

This assumption may be violated in some scenarios,
and model performance could worsen for a higher value
of r (e.g., a neural network, which may overfit on a
small dataset if trained for too many epochs). In this
case, we define the optimization problem as (λ∗S, r∗) ∈
argminλS∈�S,r∈(0,1] c(λS; r).

The resource requirements of evaluating c(λ; r) can have a
complicated relationship with λ and r; in practice, r is chosen
in such a way that it has an overwhelming and linear influence
on resource demand. The overall cost of optimization up to a
given point in the optimization process is therefore assumed to
be the cumulative sum of the values of r of all evaluations of
c(λ; r) up to that point. We can also interpret r as the fraction
of the budget of a single full fidelity model evaluation that
must be spent for evaluating c(λ; r).

Given the definition of the HPO problem, we present an
(MF-)HPO algorithm for a single, synchronous worker in its
most generic form in Algorithm 1. Until a predetermined bud-
get is exhausted, such an algorithm decides in every iteration
1) which configuration(s) λS to evaluate next and 2) which
fidelity r to use for evaluation; nonmultifidelity algorithms set
this to r = 1 as default. The algorithm makes use of an archive
A, a database recording previously proposed hyperparameter
configurations and, if available, their evaluation results. This
database can be shared among multiple worker processes that
optimize concurrently.

The optimization process can be accelerated by making
efficient use of parallel resources. We distinguish between
synchronous and asynchronous scheduling. The former starts
multiple evaluations synchronously at the same time and waits
until all of these have finished. To be more precise, a number
of k > 1 configurations are proposed in line 2 and evaluated
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Algorithm 1 Generic HPO Algorithm
1: while budget is not exhausted do
2: Propose

(
λ
(i)
S , r(i)

)
, i = 1, ..., k, based on archive A

3: Write proposals into a shared archive A
4: Estimate generalization error(s) c

(
λ
(i)
S ; r(i)

)

5: Write results into shared archive A
6: end while
7: Wait for workers to synchronize
8: Return best configuration in archive A

in parallel in line 4, all within the inner loop of Algorithm 1.
Given K available parallel resources, it should be ensured that
the number k of configurations scheduled in parallel is not
significantly smaller than K and that the evaluation runtimes
amongst these k configurations do not differ significantly in
order to avoid unnecessarily idling single parallel resources.
In contrast, for asynchronous scheduling, Algorithm 1 is
run individually in K separate worker processes. Given a
shared archive that is synchronized between the workers,
every worker can independently schedule new configurations
to evaluate.

C. Algorithm Design and Configuration

Our goal will be to design and configure a new HPO
algorithm based on a superset of design choices included in
previously published HPO methods. We are interested in find-
ing a configuration (or making design choices) based on a set
of training instances that works across a broad set of future
problem instances. This problem is called algorithm configu-
ration [5], [45]. It is quite similar to HPO; a major difference
is that algorithm configuration optimizes the configuration of
an arbitrary algorithm over a diverse set of often heteroge-
neous instances for optimal average performance, while HPO
performs a per-instance configuration of an ML inducer for
a single data set. We introduce the following notation for
consistency with the relevant literature: γ denotes configura-
tion parameters controlling our optimizer A, while λ denotes
hyperparameters optimized by our optimizer, controlling our
inducer I. The algorithm configuration problem can be for-
mally stated as follows. Given an algorithm A : �× � → �

parameterized by γ ∈ � and a distribution P� over problem
instances � together with a cost metric ζ , we must find
a parameter setting γ ∗ that minimizes the expected ζ(A)

over P�

γ ∗ ∈ argmin
γ∈�

Eω∼P�

[
ζ (A(ω, γ ))

]
. (5)

In our example, � corresponds to the space of possible com-
ponents of our HPO method and � corresponds to a class of
HPO problems (i.e., ML methods and datasets on which they
are evaluated) for which their configuration should be optimal.
Based on a training set of representative instances {ωi} drawn
from P�, a configuration γ ∗ that minimizes c across these
instances should be chosen through optimization. When nec-
essary, we refer to this process as the “third-level” optimization
problem to distinguish it from the optimization performed by
the HPO algorithm A, i.e., the second-level optimization.

Algorithm 2 SMASHY Algorithm
Configuration Parameters: batch size schedule μ(b), number

of fidelity stages s, survival rate ηsurv, fidelity rate ηfid, SAMPLE
method (either SAMPLETOURNAMENT or SAMPLEPROGRESSIVE),
batch_method (one of equal, SH, or HB), total budget B; fur-
ther configuration parameters of SAMPLE: Ifsurr , Pλ(A), ρ(t),(

N0
s (t), N1

s (t)
)

, ntrn.

State Variables: Expended budget fraction t ← 0, bracket
counter b ← 1 (remains 1 for batch_method ∈ {equal, SH}),
current fidelity r← 1, batch of proposed configurations C ← ∅

1: while t < 1 do

2: if r = 1 then 	 Generate new batch of configurations
3: r← (ηfid)b−s

4: C← SAMPLE
(

A, μ(b), r;Ifsur ,Pλ(A),

ρ(t),
(

N0
s (t), N1

s (t)
)
, ntrn

)
5: if batch_method = HB then
6: b← (b mod s) + 1
7: end if
8: else 	 Progress fidelity
9: r← r · ηfid

10: C← SELECT_TOP(C, |C|/ηsurv)
11: if batch_method = equal then
12: μ̃← μ(b)− |C|
13: C← C ∪ SAMPLE

(
A, μ̃, r;Ifsur ,Pλ(A),

ρ(t),
(

N0
s (t), N1

s (t)
)
, ntrn

)
14: end if
15: end if

16: Evaluate configuration(s) c(λS; r) for all λS ∈ C
17: Write results into shared archive A
18: t← t + r · |C|/B 	 Update budget spent
19: end while

IV. FORMALIZING BROAD CLASS OF

MF-HPO ALGORITHMS

We aim to find an HPO algorithm that performs particu-
larly well in the multifidelity setting. To design an algorithm
by optimization, we propose a framework and search space of
HPO algorithm candidates that cover a large class of possible
algorithms and focus on a subclass of algorithms similar to HB
because of their favorable properties. This subclass focuses on
multifidelity algorithms that use a predefined schedule of geo-
metrically increasing fidelity evaluations containing algorithms
like HB [14] and BOHB [16].

The basis of this framework is presented in Algorithm 2,
which can be configured by combining algorithmic building
blocks in novel ways. The main difference to Algorithm 1
is that the Propose part is specified more explicitly. At its
core, Algorithm 2 consists of two parts: 1) sampling new con-
figurations at low fidelities (lines 2–7) and 2) increasing the
fidelity for existing configurations (lines 8–14). In contrast to
Algorithm 1, Algorithm 2 makes use of state variables t, b,
and r to account for optimization progress. However, these
variables are only shown in Algorithm 2 for clarity and can,
in principle, be inferred from the archive A. As argued in
Section III, every single worker instance of Algorithm 1 can, in
principle, be scheduled asynchronously, but we do not consider
this in this work.
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TABLE I
RS, BO, SH, HB, AND BOHB AS INSTANCES OF ALGORITHM 2. η, ρ , AND Ns ARE CONFIGURATION PARAMETERS OF THE RESPECTIVE ALGORITHMS.

“—” DENOTES THAT THE VALUE HAS NO INFLUENCE ON THE ALGORITHM IN THIS CONFIGURATION. *: BO AND BOHB USE INDUCERS THAT

PRODUCE NONSTANDARD MODEL FUNCTIONS, WHICH DO NOT AIM TO PREDICT THE ACTUAL PERFORMANCE OF CONFIGURATIONS, AND INSTEAD

CALCULATE THE VALUE OF AN ACQUISITION FUNCTION SUCH AS EI [4] (FOR BO) OR THE RATIO OF TWO KERNEL DENSITY ESTIMATOR (KDE)
MODELS (FOR BOHB). †: IN A SMALL DEPARTURE FROM BOHB, ALGORITHM 2 USES THE KDE ESTIMATE OF GOOD POINTS FOR ALL SAMPLED

POINTS, EVEN WHEN RANDOMLY INTERLEAVED. BOHB RANDOMLY INTERLEAVES FROM A UNIFORM DISTRIBUTION

In its first iteration, Algorithm 2 uses a SAMPLE-subroutine
to initialize the initial batch C of μ solution candidates. The
fidelity of the evaluation of the proposed configurations is
refined iteratively; when all configurations in the batch have
been evaluated with given fidelity r, the top 1/ηsurv fraction of
configurations is evaluated with a fidelity that is increased by
a factor of ηfid. When the fidelity cannot be further increased
for a batch because all of its configurations were evaluated
at full fidelity r = 1, they are set aside, and a new batch of
configurations is sampled.

The SAMPLE subroutine creates new configurations to
be evaluated, possibly using information from the archive
to propose points that are likely to perform well. We allow
that any inducer Ifsur that produces a surrogate model fsur
can be used for model-assisted sampling. The subroutine
works by at first sampling a number of points from a given
generating distribution Pλ(A). The performance of these
points is then predicted using the surrogate model, and
points with unfavorable predictions are discarded in a process
we refer to as filtering. This process is repeated until the
requested number μ of nondiscarded points is obtained. Ns

and ρ have the same function as in [16] (see Section IV-A5),
with the filter factor Ns controlling the number of sampled
points needed for each of the μ points returned, and ρ

controlling the fraction of points that are not filtered. Thus,
the configuration space of sampling methods also includes
purely random sampling, as in HB, by setting ρ = 1. The
influence of the surrogate model on sampled candidates
is larger when 1) the number of sampled configurations
Ns is large or 2) the fraction ρ of candidates sampled at
random is small. We present two slightly different SAMPLE

algorithms: SAMPLETOURNAMENT (Algorithm 3) and
SAMPLEPROGRESSIVE (Algorithm 4) based on this principle
(see Appendix A in the supplementary material). Both allow
to use different Ns values for different points they sample,
parameterized by N0

s and N1
s .

While hyperparameters λS are proposed by one of the two
SAMPLE methods, the fidelity hyperparameter r follows a fixed
schedule similar to SH [19] and HB [14], with a few exten-
sions. For one, the survivor factor ηsurv can be a different value
from the fidelity scaling factor ηfid. Furthermore, the algorithm
allows three scheduling modes, controlled by batch_method:
SH does SH. The HB mode evaluates brackets, as performed by
HB. While μ(b) is, in principle, a free configuration parameter

for every value of b, we choose to set μ(b) so that total bud-
get expenditure is approximately equal between all brackets.
This follows the principle used in HB, but the dependency on
ηsurv and ηfid is more complex and determined dynamically.
Finally, equal batch_method uses equal batch sizes for every
evaluation. Individuals that perform badly at low fidelity are
removed, as in SH, but new individuals are sampled to fill up
batches to the original size. Because new individuals are added
to the batches at all fidelity steps, it is not necessary to use
brackets with different initial fidelities, and therefore, only a
single repeating bracket b = 1 is used. The equal method is
an original contribution of this work and was designed to be
similar to HB while using parallel resources more efficiently;
the two batch scheduling methods are illustrated in Fig. 1.

If the exploration–exploitation tradeoff is not balanced
properly, the optimization progress can either stagnate or func-
tion evaluations are wasted due to too much exploration of
uninteresting regions of the search space. However, the rel-
ative importance of exploration and exploitation can change
throughout the course of optimization, where exploration per-
formed later during the optimization is not as useful as during
the beginning. The given configuration space makes it pos-
sible to make the exploration–exploitation tradeoff dependent
on optimization progress by providing the option to make ρ(t)
and (N0

s (t), N1
s (t)) dependent on the proportion of exhausted

total budget at every configuration proposal step. It is likely
that large values of ρ(t)/small values of N·s(t) perform better
when t is small. Conversely, it is likely that small ρ(t)/large
N·s(t) work well for large t.

A. Common MF-HPO Algorithms Covered by Algorithm 2

The following describes a few common HPO algorithms
that can be instantiated within this framework; see Table I for
specific configuration parameter settings within Algorithm 2
that correspond to these algorithms.

1) Random Search: Configurations λS are drawn (uni-
formly) at random, and every configuration is evaluated with
full fidelity r = 1. Parallelization is straightforward, as
configurations are drawn independently.

2) Bayesian Optimization [8]: The configuration that max-
imizes an acquisition function a(λ) (e.g., expected improve-
ment, EI [4]) is proposed and evaluated with the full fidelity
r = 1. a(λ) is based on a surrogate model trained on the
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(a) (b)

(c)

(d) (e)

Fig. 1. Illustration of the different batch_methods used, corresponding to the values of ηfid = ηsurv = 2, s = 4, and μ = 8. The tables show the (a) HB method
and (b) equal method. Shown are the number |C| and fidelity value r of configurations being evaluated in the iterations i of the various brackets counted
by b. Except for i, the variables are the same as in Algorithm 2. Subfigures (c)–(e) illustrate resource utilization by the batch methods, given availability of
parallel resources. (c) Naively scheduling the configuration evaluations one batch after another can make use of available parallel resources but leaves many
of them idle. (d) Hypothetical way of scheduling configuration evaluations of different brackets at the same time so that all configurations with the same
r-value are scheduled together utilizes resources more efficiently, but the number of evaluations in each batch still varies. (e) Simpler equal batch scheduling
method always evaluates the same number of configurations within each batch and, therefore, makes optimal use of available parallel resources.

archive A. BO can be parallelized by either using methods
that can propose multiple points at the same time using a
single surrogate model or, alternatively, by fitting a surrogate
model on the anticipated outcome of configurations that were
proposed but not yet evaluated [11]. BO can be represented in
Algorithm 2 by using an inducer Ifsurr that produces a function
fsurr equal to the composition of model prediction and acqui-
sition function. In its basic form, BO is not an MF algorithm
and therefore always sets r = 1.

3) Successive Halving [19]: SH, also called sequential
halving [46], is a simple multifidelity optimization algorithm
that combines the random sampling of configurations with a
fixed schedule for r. At the beginning, a batch of μ configura-
tions is sampled randomly and evaluated with an initial fidelity
rmin < 1. This is followed by repeated “halving” steps, where
the top fraction η−1 of configurations is kept and evaluated
after r is increased by a factor of η, until the maximum fidelity
value is reached. The schedule is chosen to keep the total sum
of all evaluated r constant in each batch. Both ηsurv and ηfid
in Algorithm 2 correspond to SH’s η-parameter.

4) Hyperband [14]: Similar to SH, HB uses a fixed sched-
ule for the fidelity parameter r, but it augments SH by
using multiple brackets b of SH runs starting at different
rmin(b) and with different μ(b). The number of brackets is

set to

s = ⌊
logη(1/rmin)

⌋+ 1 (6)

which coincides with the number of fidelity steps that can
be performed on a geometric scale on the interval [rmin, 1].
In bracket b ∈ {1, 2, . . . , s}, a number of μ(b) samples are
initially sampled and evaluated with initial fidelity r = ηs−b.
μ(b) is chosen such that each bracket needs an approximately
similar amount of budget: μ(b) = �s · (ηs−b/s− b+ 1)�.

5) Bayesian Optimization Hyperband [16]: Model-based
methods outperform HB when a relatively large amount of
budget is available and many objective function evaluations
can be performed. BOHB was created to overcome this draw-
back. This method iterates through SH brackets like HB,
but, instead of sampling new configurations randomly, it uses
information from the archive to propose points that are likely
to perform well. A total number of Ns configurations are
proposed for evaluation; ρ are sampled at random, and the
rest are chosen based on a surrogate model induced on the
evaluated configurations in A. The models used by BOHB
are a pair of KDEs of the top and bottom configurations in
A, similar to the process in [47]. To implement BOHB in
Algorithm 2, one, therefore, needs to use an inducer Ifsurr that
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TABLE II
THREE BENCHMARK COLLECTIONS OF YAHPO GYM USED IN OUR BENCHMARK

produces a function that calculates the ratio of kernel densities,
an unusual kind of regression model.

B. Limitations and Further MF-HPO Algorithms

The following lists notable HPO algorithms not currently
covered by the optimization space of Algorithm 1. They were
excluded because they differ in too substantial ways from the
other algorithms considered here.

1) FABOLAS [48]: Fabolas is a continuous multifidelity
BO method, where the conditional validation error is mod-
eled as a Gaussian process using a complex kernel-capturing
covariance with the training set fraction r ∈ (0, 1] to allow for
adaptive evaluation at different resource levels.

2) Asynchronous Successive Halving [15] and
Asynchronous Hyperband: HB, as well as SH, have the
drawback that batch sizes decrease throughout the stages
of an SH run, preventing efficient utilization of parallel
resources. ASHA is an effective method to parallelize SH
by an asynchronous parallelization scheme. A shared archive
across a number of different workers is maintained. Instead
of waiting until all n configurations of a batch have been
evaluated for fidelity r, every free worker queries the shared
archive A for “promotable” configurations (i.e., configurations
that belong to the fraction of top η−1 configurations evaluated
with the same fidelity). Asynchronous HB works similarly.

3) Asynchronous BOHB [17]: A-BOHB, an asynchronous
extension of BOHB where configurations are sampled from a
joint Gaussian Process, explicitly capturing correlations across
fidelities. In contrast to ASHA and asynchronous versions of
BOHB in the original BOHB publication [16], A-BOHB does
not perform synchronization after each stage but instead uses
a stopping rule [49] to asynchronously determine whether a
configuration should continue to run or be terminated.

V. EXPERIMENTAL ANALYSIS

Given the formalization of the framework in Section IV, our
goal is to find the best representative (out of this class of algo-
rithms) by solving the third-level optimization problem in (5),
and explain the role of specific algorithmic components in a
benchmark-driven approach. We aim to answer the following
research questions.
RQ1: How does the optimal configuration of our MF-HPO

framework differ between problem scenarios, i.e., do
different problem scenarios benefit from different HPO
algorithms?

RQ2: How does our optimized MF-HPO algorithm compare
to other established HPO implementations?

RQ3: Does the successive-halving fidelity schedule have an
advantage over the simpler equal-batch-size schedule?

RQ4: What is the effect of using multifidelity methods in
general?

RQ5a: Does changing SAMPLE configuration parameters
throughout the optimization process offer an advan-
tage?

RQ5b: Does (more complicated) surrogate-assisted sampling
in SAMPLE provide an advantage over using simple
random sampling with surrogate filtering?

RQ6: What effect do different surrogate models (or using no
model at all) have on performance?

RQ7: Does the equal-batch-size schedule give an advantage
over established methods when parallel resources are
available?

We rely on benchmark scenarios of the YAHPO Gym bench-
mark suite [50], each of which provides a number of related
instances of optimization problems. The benchmark scenar-
ios we have chosen cover three important application areas
of AutoML: HPO of a neural network (lcbench), AutoML
pipeline configuration (rbv2_super), and neural architecture
search (nb301). These classes of problems do not only repre-
sent common and relevant tasks for researchers and practitioners
in the field; as presented in Table II, they are also quite differ-
ent with regards to: 1) the dimensionality of the search space;
2) hyperparameter types (categorical, integer, and continuous);
and 3) whether there are hierarchical dependencies between
hyperparameters. More details on the characteristics of the
problem classes are given in Appendix B in the supplementary
material. To avoid an optimistic bias in the analysis caused
by over-adaption to the random peculiarities of the particular
instances used during configuration, we are using meta-holdout
splits on the level of HPO problem instances (see Appendix D
in the supplementary material). This means that for analyzing
the performance of a configured candidate of Algorithm 2,
we are evaluating this candidate by running it on instances
that were not seen during configuration. Algorithm 2 is always
run with a budget limit corresponding to 30 · d full fidelity
evaluations (where d is the dimension of the problem instance).

A. Algorithm Design via Configuration

First, we describe the experiments we conducted to config-
ure Algorithm 2 via optimization.

We follow the PBO principle and configure Algorithm 2
by optimizing separately for different HPO scenarios, namely,
for lcbench and rbv2_super, resulting in two optimized con-
figurations γ ∗lcbench and γ ∗rbv2_super, respectively. The nb301
scenario is not used for configuration, but exclusively for
subsequent analysis.

For the algorithm configuration of our framework (third
level), the performance objective Eω∼P�

[ζ(A(ω, γ ))] for a
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TABLE III
SUMMARY OF EXPERIMENT. SHOWN ARE THE VARIOUS OPTIMIZER CONFIGURATIONS γ THAT WERE OBTAINED FROM OPTIMIZATIONS WITH

DIFFERENT CONSTRAINTS. “NAME”: THE NAME BY WHICH WE REFER TO THE CONFIGURATION IN THE TEXT. “RQ”: THE RESEARCH QUESTION

THAT MAINLY RELATES TO THE CONFIGURATION. “OPTIMIZE”: WHETHER THE GIVEN CONFIGURATION WAS OBTAINED BY CONDUCTING A

(POSSIBLY CONSTRAINED) OPTIMIZATION (�), OR BY SUBSTITUTING VALUES INTO THE GLOBAL OPTIMUM γ ∗

configuration γ in (5) is estimated by running Algorithm 2
(i.e., second-level optimization) configured by γ on a set of
problem instances and taking the average of observed per-
formances. For this, all problem instances included in the
respective benchmark scenario that has not been held out for
subsequent analysis are used. As a configuration for our frame-
work, we use BO with the lower confidence bound acquisition
function [51] with interleaved random configurations every
three evaluations.2 Configuration is repeated three times for
each scenario, each running for 60 h, with different random
seeds. To get the overall best configuration, the set of all
evaluated configurations γ (i.e., the third-level optimization
archive) is combined into a single data set for each scenario.
To estimate the actual best configuration, a common identi-
fication criterion [52] is used: a surrogate model is fitted on
the combined datasets and the optimum among the in-sample
predictions of this model is used (γ ∗lcbench and γ ∗rbv2_super,
respectively). We also store the (surrogate-smoothed) optima
of all three individual optimization runs and record the range
of configuration parameter values to obtain an estimate of the
uncertainty of the overall optimal configurations.

The search space used for the optimization of Algorithm 2
is shown in Table V in Appendix C in the supplemen-
tary material. While the batch size μ is constant in the
equal batch_method, it changes for every bracket when
batch_method is HB. The batch sizes μ(2), μ(3), . . . are con-
structed from μ(1) dynamically as described in Section IV.
The search space contains several surrogate learners: Random
forests [53] (RF), K-nearest-neighbors with k set to 1 (KNN1),
kernelized K-nearest-neighbors with “optimal” weighting [54]
(KKNN7), and the ratio of density predictions of good and bad
points, similar to tree parzen estimators [47] without a hierar-
chical structure as in BOHB [16] (TPE). For the prefiltering
sample distribution Pλ(A), we evaluate both uniform sampling
(uniform), and sampling from the estimated density of good
points as done in BOHB [16] (KDE). filter_mb determines
whether the surrogate model makes predictions assuming the
highest fidelity value r observed (TRUE), as opposed to assum-
ing the fidelity of the points being sampled; in the framework
of the SAMPLE Algorithms 3 and 4 in Appendix A in the
supplementary material, this influences the behavior of Ifsurr .

2Note that this optimizer used for third-level optimization is not an instance
of Algorithm 2.

Note that the maximum number of fidelity steps per batch s is
not part of the search space and instead inferred automatically
from ηfid and the lower bound for r that is given as part of
the optimization problem instance. As in HB, it is set to the
largest number of stages that is possible given ηfid and the
lower bound on r according to (6).

B. Algorithm Analysis

Our goal in this work is not only to determine configu-
rations of Algorithm 2 that perform well on the respective
benchmarking scenarios but also to determine what effect indi-
vidual components have on performance. However, performing
a complete SA would be prohibitively computationally expen-
sive, as it would require evaluation of the objective (i.e.,
running Algorithm 2) in an experimental design of differ-
ent configurations. Instead, we evaluate the performance of
the candidate configurations found in Section V-A and alter-
native configurations—which are chosen in a way to allow
for answering our research questions—on the benchmark test
instances which were held out during configuration. A sim-
ple method to answer many of these questions is to take the
optimized configuration of Algorithm 2 and swap components
of it for simpler components (or removing them completely),
thereby performing a one-factor-at-a-time analysis or an abla-
tion study. However, the optimal values of some components
may interact strongly with other components. We, therefore,
auto-configure the framework several times under certain con-
straints dictated by our particular research question at hand.
For example, to investigate the effect of varying ntrn and Ns

over t, we run the optimization of Algorithm 2 with the con-
straint n(0) to be equal to n(1) and compare the resulting
configuration to the overall optimum γ . Table III lists the dif-
ferent values of γ we generate under different constraints. For
each value of γ , we run the, respectively, configured HPO
algorithm on both the lcbench and the rbv2_super scenario,
and (unless stated otherwise) once each for batch_method set
to equal and HB. We refer to an optimized configuration that
was obtained on the lcbench scenario with batch_method set to
equal as γ ∗lcbench[equal], and to the overall optimum (i.e.,
the better of γ ∗lcbench[equal] and γ ∗lcbench[HB]) as γ ∗lcbench;
similar for rbv2_super.
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Fig. 2. Beeswarm plot of the best configurations according to the surrogate model over the meta-optimization archive of γ ∗. Shown are the top 80
configuration points (according to the surrogate-model-predicted performance) that were evaluated during optimization. Levels of discrete parameters are
shown. Most numeric parameters are on a log-scale (left axis), except for ρ(0) and ρ(1), which are on a linear scale (right axis). Instead of showing both
N0

s (t) and N1
s (t), their geometric mean Ns(t) is shown. The highlighted large points are γ ∗[HB] and γ ∗[EQUAL], which were found on both benchmark

scenarios.

Every evaluation of a framework configuration, i.e., a com-
plete HPO run on a problem instance, is repeated 30 times
(with different random seeds) to allow for statistical analysis.

The analysis of our research questions is based on the fol-
lowing tables and visualizations. Table VI in Appendix D in
the supplementary material shows the configuration parameters
that were selected for each benchmark scenario with various
search space restrictions. We perform all optimization runs con-
strained to the fidelity scheduling equal and HB, respectively,
and denote the resulting optimal configurations γ ∗[equal] and
γ ∗[HB]. Fig. 2 shows the configuration values of the top 80 eval-
uated points according to their surrogate-predicted performance.
The ranges covered by the bee swarms are again an indica-
tor of approximate ranges of configuration values that can be
expected to work well. Fig. 4 shows the final performance at
30 ·d full-budget evaluations for all optimization runs that were
performed. The standard error shown is the estimated standard
deviation of the mean of benchmark-instance-wise performance,
representing uncertainty about the “true” performance mean if
an infinite number of benchmark instances of the given class
of problems were available.

We now describe in more detail how we operational-
ize each of the research question RQ1–RQ7 and report
results.

RQ1: How does the optimal configuration differ between
problem scenarios, i.e., do different problem scenarios benefit
from different HPO algorithms?

Setup: We investigate the difference in the values that
γ ∗lcbench and γ ∗rbv2_super take, and put this difference in per-
spective by comparing it to the uncertainty of these values.

To evaluate how well γ ∗lcbench and γ ∗rbv2_super generalize to
other problem scenarios, we evaluate them on the respective
instances of scenarios that they were not configured on.

Results: As can be seen in Table VI in the supplementary
material and in Fig. 2, many of the selected components of the
γ ∗ are relatively close to each other across the two scenarios
on which they were optimized, relative to their uncertainty
ranges. Ifsurr is chosen as KNN1 on rbv2_super, but can also
use KKNN7 on lcbench, which in fact seems to be slightly
preferred. This is interesting as KNN-based models are rarely
considered in surrogate-based HPO; the typically preferred
random forest model was not selected. Pλ(A) takes any of the
two values for rbv2_super, but is chosen to be KDE in lcbench.
Finally, ρ(0) is close to 1 in the beginning on rbv2_super,
and closer to 0 (although still greater than ρ(1)) for
lcbench.

The degree to which the differences in γ ∗ influence the
outcome can be observed in Fig. 4. The optimized results gen-
eralize well to test instances from the same scenario as they
were configured on. Fig. 3 shows the optimization progress
(on unseen test instances) of configurations if configured on
the same scenario versus configurations that were configured
on a different scenario. We see, for example, a clear advantage
of the configurations that we obtained by optimizing directly
on lcbench when we evaluate them on their respective held out
test instances. We suspect that this difference in performance is
mainly due to the different choices of surrogate model classes
Ifsurr as well as the random interleave fraction ρ (cf. Fig. 2),
and that specific settings for these two algorithmic components
are needed for lcbench to reach optimal performance.
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Fig. 3. Optimization progress (mean normalized regret) of serial evaluation on each benchmark scenario as well as 32× parallel evaluation on lcbench.
Different configurations of Algorithm 2 are executed on benchmark functions that have not been used for the meta-optimization itself, and the progress of
these algorithm runs is shown. “γ ∗(lcbench bm equal)” is the configuration obtained from optimizing on lcbench with batch_method equal, other labels
are constructed similarly. Shown is the mean over 30 evaluations, averaged over all available test benchmark instances for each of the three scenarios. The
uncertainty bands show the standard error over the test instances. Note the log-scale on the x-axis. Regret is calculated as the difference between the best
evaluation performance so far and the overall best value found on each benchmark instance over all experiments; normalized such that 1 corresponds to
the median of the performance of all randomly sampled full-fidelity evaluations. We plot performance values observed by the HPO algorithm which depend
on evaluation fidelity. This is the reason for the initially “slow” convergence of algorithms that makes their first full-fidelity evaluation late. Note that μ of
γ ∗[equal] was set to 32 for the parallel evaluations, and HB and BOHB were only naïvely parallelized to simulate a synchronous “single optimizer, multiple
workers” environment. See Fig. 6 in Appendix E in the supplementary material for a larger version.

Fig. 4. Mean normalized regret of final performance on “test” benchmark instances for the configuration, shown in Table III. Shown is the mean over 30
evaluations, averaged over all available test benchmark instances for each of the three scenarios. The uncertainty bands show the standard error over instance
means. Regret is calculated as the difference between the best evaluation performance so far and the overall best value on each benchmark instance over all
experiments; normalized such that 1 corresponds to the median of the performance of all randomly sampled full-fidelity evaluations.

This is not the case for the rbv2_super scenario, where none
of the different algorithms seem to clearly exploit the problem
structure of rbv2_super better than others.

RQ2: How does the optimized algorithm compare to other
established HPO implementations?

Setup: We evaluate several well-known HPO algorithms
in their default configuration on the same benchmark
instances: for BOHB [16], we use the implementation found
in HpBandSter3 (version 0.7.4); for HB [14], we use

3https://github.com/automl/HpBandSter

mlr3hyperband4 (version 0.1.2); and for SMAC [5], we
use the SMACv3 package5 (version 1.0.1). We also con-
struct a traditional Gaussian process-based BO (GPBO) [4]
with mlrMBO6 (version 1.1.5). As GPBO works best with
numerical search spaces, we only evaluate it on lcbench. Note
that GPBO, SMAC, and RS are not multifidelity algorithms
and therefore always evaluate points with maximum
fidelity 1.

4https://cran.r-project.org/package=mlr3hyperband
5https://github.com/automl/SMAC3
6https://cran.r-project.org/package=mlrMBO
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Fig. 5. Critical difference plot [55] comparing the performance of different algorithms across all instances and scenarios. For each of the three scenarios, the
mean performance (across replications) for each of the six algorithms is computed (γ ∗[HB] is equal to γ ∗lcbench[HB] for instances of the lcbench scenario, and
to γ ∗rbv[HB] for the rbv2_super scenario; same for γ ∗[EQUAL]). The critical difference test is based on the ranks of the algorithms computed per scenario
and instance. Lower ranks are better. Horizontal bold bars indicate that there is no significant difference between algorithms (α = 1%). GPBO, which was
not evaluated on all scenarios, is not included. (a) Intermediate optimization budget of 100 full evaluations. (b) Full evaluation budget (final performance).

Results: The performance curves for the mean normalized
regret are shown in Fig. 3, and the final performance values
at 30 ·d full-fidelity evaluations are shown in Fig. 4. A critical
difference plot and test can be seen in Fig. 5(b). The behavior
of RS, HB, BOHB, and SMAC is not surprising; initially, RS
and SMAC perform the same, as SMAC evaluates an initial
random design. After this, the performance of SMAC improves
quickly. HB and BOHB initially both perform better than RS
or SMAC because of their multifidelity evaluations, but there
is little difference between them. After a while, BOHB starts
to outperform HB because of its surrogate-based sampling,
which aligns with the observations in [16]. Therefore, BOHB
performs well for most budgets, often being the best optimizer
for a budget of one as well as for 100 full-fidelity evalu-
ations. Given its multifidelity characteristics, HB is a good
choice for low budgets, while SMAC is well suited for larger
optimization budgets. Our framework is very competitive on
both lcbench and rbv2_super, but is outperformed by SMAC
on nb301. We assume that this is because Algorithm 2 was
not explicitly optimized for the nb301 scenario.

Although our framework was only optimized for
performance at 30 · d evaluations, it is also competitive
with BOHB after fewer evaluations, as seen in Fig. 5(b).

RQ3: Does the successive-halving fidelity schedule have an
advantage over the (simpler) equal-batch-size schedule?

Setup: It is likely that the type of fidelity scheduling used
interacts with other configuration parameters. Therefore, we
investigate the difference of resulting optimal configurations
γ ∗[equal] and γ ∗[HB].

Results: In both scenarios, the batch method HB is ultimately
selected for the optimum γ ∗, although Fig. 5(a) and (b) shows
that the difference to batch size equal is not statistically
significant at α = 1%. We observe that the equal fidelity
scheduling mode has several advantages: it is much simpler
than HB as it does not need to keep track of SH brackets and
does not need to adapt μ(b) to make the expended budget
at each bracket approximately equal. As another benefit, it
allows for easy parallel scheduling of evaluations (see also
Fig. 1). This is because it always schedules the same number
of function evaluations at a time, which can therefore be run
synchronously.

RQ4: What is the effect of using multifidelity methods in
general?

Setup: We evaluate the performance of a modified γ ∗ where
the number of fidelity stages s is set to 1, thus ensuring that
configurations are only evaluated with maximum fidelity 1.7

Results: Our results show the superiority of MF-HPO meth-
ods compared to HPO methods that do not make use of
lower-fidelity approximations. Fig. 5(a) suggests that multi-
fidelity methods are significantly better than their nonmultifi-
delity counterparts if optimization is stopped at an intermediate
overall budget corresponding to 100 full-fidelity evaluations.
To be more precise, we see that BOHB as well as both
optimized variants γ ∗[equal] and γ ∗[HB] (optimized for
the respective scenario, respectively) significantly outperform
SMAC under this strict budget constraint. In line with [14],
HB significantly outperforms RS for this budget. On the other
hand, Fig. 5(b) provides evidence that multifidelity methods
can achieve performance on the same level as state-of-the-art
methods that do not make use of low-fidelity approxima-
tions (e.g., SMAC) for larger budgets. We conclude that a
properly designed multifidelity mechanism provides substan-
tial improvements of anytime performance without affecting
performance for larger budgets negatively. In our opinion, the
gain in anytime performance justifies the additional algorith-
mic complexity that is introduced by multifidelity methods.

RQ5a and RQ5b: Does changing SAMPLE configuration
parameters throughout the optimization process offer an
advantage? Does (more complicated) surrogate-assisted sam-
pling in SAMPLE provide an advantage over using simple
random sampling with surrogate filtering?

Setup: To investigate RQ5a (i.e., the effect of the depen-
dence of ρ, ntrn and the Ns configuration parameters on t),
we performed an optimization where this t-dependence was
removed. As these parameters are interpolated between the
values at t = 0 and t = 1, this corresponds to restricting the
search space to where these values are equal, as shown for γ2
in Table III. In addition to this, we ran another optimization
where we further restricted N0

s and N1
s to be equal, ntrn to

be 1, and only the tournament filter_method be used for
RQ5b. The performance of the resulting configurations gives
an indication of the performance that is lost for the gain in
simplicity.

7Because s is not part of the search space � and is instead given by 6, this
is achieved by setting ηfid to ∞.
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Results: The observations made for γ2 (forbidding change
over time) and γ3 (forbidding change over time and within
each batch) are slightly contradictory. In particular, the nb301
performance of γ lcbench

2 [HB] is a visible outlier with regards
to optimization performance. There is no obvious explanation
from inspecting the configuration parameters of γ lcbench

2 [HB],
but it is possible that it is an accidental “good fit” of
configuration parameters to the specific landscape of nb301.

On lcbench and rbv2_super, the impact of restricting the
search space is smaller and within the uncertainty of the
performance of a single configuration. However, we note that
both changing configuration parameters over time and within
each batch sample introduce significant complexity to the
algorithm; thus we prefer the restricted optimization results
over γ ∗.

RQ6: What effect do different surrogate models (or using
no model at all) have on performance?

Setup: We evaluate the overall result γ ∗[equal] with Ifsur

set to each of the inducers in the original search space
(see Table V in the supplementary material). Furthermore,
γ ∗[equal] is evaluated with ρ set to 1 (i.e., all points are
sampled randomly from a distribution that may be nonuni-
form), and finally, with ρ = 1 and Pλ(A) = uniform (i.e.,
all points are sampled completely uniformly at random).

Results: Surprisingly, the simple k-nearest-neighbors algo-
rithm seems to be chosen consistently by the algorithm
configuration for both lcbench and rbv2_super (see Fig. 2),
either with a value of k = 1 or k = 7. This result is in
line with what we already speculated for RQ1. Our ablation
experiments suggest that the performance of the optimizer is
on average best when using this surrogate learner, even though
the differences do not seem to be significant. KNN1 is there-
fore a reasonable, and simpler, alternative to more complex
surrogate learners like the TPE-based method proposed for
the original BOHB algorithm.

RQ7: Does the equal-batch-size schedule give an advan-
tage over established methods when parallel resources are
available?

Setup: The optimization of ML methods that are expen-
sive to evaluate is often done in parallel; we evaluate the
performance of our method and other methods in a (simu-
lated) parallel setting. We evaluate γ ∗[equal] with μ set to
32 and with an optimization budget of 30 · 4 · d, where d is
the dimensionality of the optimization problem. We compare
it to GPBO with qLCB [10] for 32 parallel evaluations and
simulate parallel execution of RS by running 30 · 4 · d ran-
dom evaluations. Both BOHB and SMAC offer parallelized
versions, but the YAHPO Gym benchmark package does not
yet provide support for asynchronous parallel evaluations [50].
However, since HB and BOHB propose evaluations in batches,
we compared HB and BOHB by accounting for submitted
batches in increments of 32, essentially simulating a sin-
gle HB/BOHB optimizer sending evaluations to 32 parallel
workers and waiting for their completion synchronously.

Results: Fig. 3 shows that our algorithm is competitive with
GPBO—a state-of-the-art synchronously parallel optimization
algorithm—when evaluated with 32 parallel resources. This
result also shows the main advantage that the equal fidelity

schedule has over scheduling like HB, as synchronously paral-
lelizing HB or BOHB puts them at a great disadvantage over
even RS. For HB and BOHB, it is necessary to use asyn-
chronously parallelized methods [15], [17] or use an archive
shared between multiple workers [16] to obtain competitive
results. However, synchronous objective evaluations are much
easier to implement in many environments than asynchronous
communication between workers, making the advantage of the
simplicity of the equal schedule even more pronounced.

C. Reproducibility and Open Science

The implementation of the framework in Algorithm 2 and
reproducible scripts for the algorithm configuration and anal-
ysis are available in public repositories.8 All data that were
generated by our analyses are available as well.

VI. CONCLUSION

We presented a principled approach and framework to
benchmark-driven algorithm design and applied it to generic
MF-HPO. We formalized the search space of multifidelity
hyperparameter optimizers and created a rich and configurable
optimization framework. Given the search space, we used
BO for meta-optimization of our framework on two different
problem scenarios within the field of AutoML and evaluated
the result on held out test problems and an entirely held out
test scenario. We evaluated the configured optimizers and com-
pared to BOHB, HB, SMAC, and a simple RS as reference.
We performed an extensive analysis of the effect of different
algorithmic components on performance, while also consid-
ering the additional algorithmic complexity they introduce.
Our configured framework showed equal and in some cases
superior performance to widely used HPO algorithms.

The additional algorithmic complexity introduced by mul-
tifidelity evaluations provides substantial benefits. However,
based on our experiments, we argue that design choices made
by established multifidelity optimizers like BOHB can be
replaced by simpler choices: For example, the (more com-
plex) SH schedule is not significantly better than a schedule
using equal batch sizes, which allows for more efficient
parallelization.

A KDE-based sampling of points to propose, whether fil-
tered by a surrogate model or not, was consistently chosen by
our framework. This detail, which is not usually presented as
the main feature of BOHB, seems to have an unexpectedly
large impact. On the other hand, our optimization results sug-
gest that a surprisingly simple surrogate learner (knn, k = 1)

can perform even better.
Some components of our search space with large algorith-

mic complexity have not shown much benefits. Optimization
on rbv2_super did choose time-varying random interleav-
ing, and overall, more aggressive filtering late during an
optimization run (Ns(1) > Ns(0)) was slightly favored,
but the results did not consistently outperform a configu-
ration obtained from a restricted optimization that excluded
time-varying configuration parameters.

8https://github.com/mlr-org/smashy,
https://github.com/compstat-lmu/paper_2021_benchmarking_special_issue
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Our analysis of the set of best observed performances during
optimization indicates that there is a large agreement between
benchmark scenarios about what the optimal γ ∗ configuration
should be, with parameters that control (model-based) sam-
pling and the surrogate model being the notable exception.
This suggests that there may be a set of configuration param-
eters that are either generally good for many ML problems,
or have little impact on performance and can therefore be set
to the simplest value. However, some configuration param-
eters should be adapted to the properties of the particular
given optimization problem. The meta-optimization frame-
work presented in this work can be used in future work to
investigate the relationship between features of optimization
problems and related optimal configurations.

Other fruitful directions for future work include the more in-
depth evaluation of asynchronous evaluations; asynchronous
methods are important nowadays where parallel resources are
plentiful, but current widely used surrogate-based benchmarks
do not allow for easy asynchronous evaluations. Suggested
methods, such as waiting with a sleep-timer for an appropriate
amount [16], are impractical for meta-optimization.
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6. Contributions to explainability of the AutoML system

6.2. YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity
Benchmark for Hyperparameter Optimization

YAHPO Gym is an surrogate-based benchmark which allows to evaluate HPO methods on a mul-
titude of benchmark scenarios and for multiple objectives. The benchmark has been designed on
surrogates, which allows conducting benchmark studies considerably more cost-effective as com-
pared to benchmarking on real problem instances. Since computational costs can be a limitation
to running expressive benchmark studies and ablation analyses, this work clearly facilitates bench-
marking and thus contributes to enhancing explainability of AutoML frameworks, see Section 3.3
– Benchmarking of AutoML tools (A) and Sensitivity analysis of AutoML tools (B).

Contributing article:

Pfisterer, F., Schneider, L., Moosbauer, J., and Binder, M., Bischl, B. (2022). YAHPO Gym -
An Efficient Multi-Objective Multi-Fidelity Benchmark for Hyperparameter Optimization. Pro-
ceedings of the First International Conference on Automated Machine Learning, Proceedings of
Machine Learning Research vol. 188, pp. 3/1–39.

Author contributions:

Florian Pfisterer and Lennart Schneider contributed equally. The core idea for the system orig-
inated from Florian Pfisterer who also developed initial code and a first version of the system.
Florian Pfisterer re-implemented the underlying software with the help by Lennart Schneider. Flo-
rian Pfisterer, Lennart Schneider, and Martin Binder collected samples from relevant benchmarks
and performance datasets. Lennart Schneider contributed several improvements to software, sta-
bility, and functionality as well as automated tuning. Martin Binder, Julia Moosbauer, and Bernd
Bischl advised throughout this process. Lennart Schneider and Florian Pfisterer jointly developed
the experiments, which were executed by Lennart Schneider who also contributed implementa-
tions of relevant baseline algorithms. Florian Pfisterer and Lennart Schneider jointly authored
the resulting manuscript with input and improvements by Martin Binder, Julia Moosbauer, and
Bernd Bischl.

Supplementary material available at:

• R package: https://github.com/slds-lmu/yahpo_gym

• Supplementary material:
https://proceedings.mlr.press/v188/pfisterer22a.html (full paper)
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YAHPO Gym - An Efficient Multi-Objective Multi-Fidelity
Benchmark for Hyperparameter Optimization

Florian Pfisterer1,2 Lennart Schneider1,2 Julia Moosbauer1 Martin Binder1 Bernd Bischl1

1Department of Statistics, LMU Munich, Germany
2Equal contributions

Abstract When developing and analyzing new hyperparameter optimization methods, it is vital to
empirically evaluate and compare them on well-curated benchmark suites. In this work, we
propose a new set of challenging and relevant benchmark problems motivated by desirable
properties and requirements for such benchmarks. Our new surrogate-based benchmark
collection consists of 14 scenarios that in total constitute over 700 multi-fidelity hyper-
parameter optimization problems, which all enable multi-objective hyperparameter opti-
mization. Furthermore, we empirically compare surrogate-based benchmarks to the more
widely-used tabular benchmarks, and demonstrate that the latter may produce unfaithful
results regarding the performance ranking of HPO methods. We examine and compare our
benchmark collection with respect to defined requirements and propose a single-objective
as well as a multi-objective benchmark suite on which we compare 7 single-objective and
7 multi-objective optimizers in a benchmark experiment. Our software is available at
[https://github.com/slds-lmu/yahpo_gym].

1 Introduction
Hyperparameter optimization (HPO) of machine learning (ML) models is a crucial step for achiev-
ing good predictive performance [43]. Over the last ten years, a large and still growing set of HPO
tuning methods based on different principles has been developed [31, 66, 38]. A particularly inter-
esting development aremulti-fidelitymethods, whichmake use of relatively cheap approximations
of a given true objective, thereby achieving good performance relatively quickly [44, 21, 35], as
well as multi-objective methods, which allow for simultaneous optimization of multiple objectives
[40]. While different HPO methods found considerable adoption in practice, it is by no means
clear which method performs best under which circumstances. In order to investigate this, it is
necessary to evaluate these methods on testbeds that are ideally 𝑖) highly efficient, 𝑖𝑖) include a
sufficient amount of representative and diverse benchmark instances and 𝑖𝑖𝑖) are easy to set up
and integrate with different optimizer APIs. Furthermore, benchmarks have found use in meta-
learning [70, 74, 59] and meta-optimization [49, 53]. In those settings, a larger number of poten-
tially relevant optimization problems is required in order to obtain results that generalize beyond
the set of (meta-)training instances. Simultaneously, those applications require a large number
of evaluations that make obtaining real evaluations prohibitively expensive, indicating a need for
benchmarks that are cheap to query.

Several benchmarks that aim to address this, each of which are collections of multiple bench-
mark instances, have been proposed [69, 15, 60, 19]. Benchmark instances can be classified into
four categories: (i) synthetic functions, (ii) benchmarks incorporating real evaluations, (iii) tab-
ular benchmarks based on pre-evaluated grid points, and (iv) surrogate benchmarks making use
of meta-models that approximate the relationship between configurations and performance met-
rics. Each category has various advantages and drawbacks. Synthetic functions can be evaluated
quickly but are often not representative for the type of problems encountered in practice; real
evaluations on the other hand are often prohibitively expensive, especially in the context of larger
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benchmarks and neural architecture search (NAS). Tabular benchmarks, while cheap to evaluate,
rely on a pre-defined grid which changes the optimization problem and can potentially lead to
biases. Surrogate benchmarks are also cheap to query but require high quality surrogates in order
to avoid introducing bias. While benchmark suites have found some use in scientific publications,
they are not used ubiquitously. This lack of permeation – and consequently the lack of a standard
test bed – can result in researchers choosing benchmark problems that favor their own method,
leading to the publication of biased results. The problem of cherry picking, also termed rigging the
lottery [14], can be ameliorated through the use of standardized testing infrastructure along with
a detailed definition of evaluation criteria that are widely adapted.

We therefore observe a clear need for benchmark libraries that provide unified interfaces to
a variety of cheap to evaluate, realistic, and practically relevant benchmarking problems that are
defined across diverse search spaces. In this work, we propose YAHPO Gym, a surrogate-based
benchmark library including a collection of over 700 benchmark instances defined across 14
scenarios. Scenarios are comprised of evaluations of one given machine learning algorithm on
different datasets (= instances) and therefore share the same search space and performance
metrics. It contains a versioned set of surrogate models that allow for multi-fidelity evaluations
of multiple objectives. Our library is licensed under the Apache 2.0 license and can be freely used
and extended by the community. Usage and available functionality is extensively documented1.

Contributions: We introduce YAHPO Gym, a surrogate-based benchmark for machine-
learning HPO. We conceptually demonstrate that tabular benchmarks may induce bias in perfor-
mance estimation and ranking of HPO methods, and that this happens to a lesser degree with
surrogate benchmarks. We argue that our surrogate benchmark YAHPO Gymmeets all desiderata
for a good benchmark, providing faithful results, fast evaluation, relevant problems and realistic
objective landscapes both on local as well as global scales. In order to demonstrate this, we conduct
an extensive evaluation of the proposed surrogates indicating that our surrogate models indeed
provide high quality approximations. We propose two benchmark suites for single-objective and
multi-objective evaluation comprised of a subset of our instances and demonstrate how they can
be used with YAHPO Gym in a multi-fidelity and a multi-objective optimization benchmark.

2 Related Work

Several efforts to provide unified testbeds for black-box optimization exist. For general pur-
pose black-box optimization, COCO [29] provides a collection of various synthetic black-box
benchmark functions, while kurobako [56] is a collection of various general black-box optimizers
and benchmark problems. Similarly, Bayesmark [69] includes several benchmarks for Bayesian
Optimization on real problems and LassoBench [64] provides a benchmark for high-dimensional
optimization problems. HPOlib [15] was one of the first to propose a common test bed for
empirically assessing the performance of HPO methods. It provides a common API to access
synthetic test functions, real-world HPO problems, tabular benchmarks as well as some surrogate
benchmarks and found use in empirical benchmark studies [6]. Its successor HPOBench [19] offers
similar capabilities, focussing on reproducible containerized benchmarks. It offers 12 benchmark
scenarios and more than 100 test instances. Recently, [60] introduced HPO-B, a large-scale
reproducible (tabular) benchmark for black-box HPO based on OpenML [71]. HPO-B2 relies on 16
search spaces that were evaluated sparsely on 101 datasets. PROFET [37] in contrast is not based
on real datasets but uses a generative meta-model to generate synthetic but realistic benchmark
instances. In the past, tabular benchmarks have been used frequently to speed up experiments
in the context of HPO [66, 23, 72, 22] and NAS (c.f. [50]). Eggensperger et al. [17] compared

1Documentation and data are available at https://github.com/slds-lmu/yahpo_gym.
2We consider the published v2 version for comparison. Surrogates are only available in the v3 version.
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Table 1: Comparison of HPO Benchmark Suites.

Suite Types #Collections #HPs MF MO TF Async H Time† Memory†

YAHPO Gym S 14 2-38 ✓ ✓ ✓ (-) ✓ 0.4∗𝑠 0.1 GB
HPOBench R/T/S 12 4-26 ✓ ✓ (-) − (-) 12.2s 0.2 GB
HPO-B (v2) T/(S) 16 2-18 − − ✓ − − 18.8s 3.7 GB
MF: Multi-fidelity; MO: Multi-objective, TF: Transfer-HPO, Async: Asynchronous evaluation; H: hierarchical search spaces.
✓: fully supported; (-): partially supported; -: not supported; R/T/S:real/tabular/surrogate.
† : Runtime and memory footprint for 300 iterations of Random Search on an SVM instance. ∗: allowing for batched evaluation, YAHPO Gym takes only 0.13𝑠 .

different instance surrogate models for 9 different HPO problems and concluded that the results
of benchmarks run on surrogate models generally closely mimic those of benchmarks using
the actual evaluations that they are derived from, if performance measures of the surrogate
models indicate that they predict the underlying objective values sufficiently well (cross-validated
Spearman’s 𝜌 between 0.9 and 1 [17]). Similar observations have been made in the context of
algorithm configuration [18] and NAS [65].

We compare YAHPO Gym with the recently published benchmarks HPOBench [19] and HPO-
B [60] in Table 1. Our library relies on high quality surrogates that allow for multi-fidelity as well
as multi-objective evaluation. While existing benchmark suites could in principle be used to con-
struct multi-objective benchmarks, they do not offer full support: HPOBench contains only few
instances that allow evaluating multiple metrics and offers no unified API to query those, while
HPO-B does not support multiple objectives at all. Furthermore, neither propose a concrete evalu-
ation protocol, opening up a multiplicity of (benchmark) design choices which can lead to incon-
clusive results (c.f. [55]). Instead of relying on containerization to allow for portability, our library
relies on neural network surrogates compressed using ONNX [3], allowing for reproducibility and
portability while simultaneously being extremely fast and efficient due to minimal overhead. This
is demonstrated in a small experiment where we measure runtime and memory consumption for
evaluating 300 random configurations on SVM search spaces also shown in Table 1, demonstrat-
ing that our software is more time and memory efficient. See details in Supplement B.2. While
YAHPOGym provides the flexibility to design and execute any subset of the provided benchmarks,
we also propose two fully specified testbeds for single- and multi-objective optimization that were
specifically selected to cover a diverse set of relevant instances while being less extensive. See
details in Supplement E.2 and Supplement E.3.

3 Background

3.1 Hyperparameter Optimization

An ML learner or inducer I configured by hyperparameters 𝝀 ∈ Λ maps a dataset D ∈ D to
a model 𝑓 , i.e., I : D × Λ → H, (D,𝝀) ↦→ 𝑓 . HPO methods for ML aim to identify a well-
performing hyperparameter configuration (HPC) 𝝀 ∈ Λ̃ for I𝝀 [10]. Typically, the considered
search space Λ̃ ⊂ Λ is a subspace of the set of all possible HPCs: Λ̃ = Λ̃1 × Λ̃2 × · · · × Λ̃𝑑 , where
Λ̃𝑖 is a bounded subset of the domain of the 𝑖-th hyperparameter Λ𝑖 . This Λ̃𝑖 can be either real,
integer, or category valued, and the search space can contain dependent hyperparameters, leading
to a possibly hierarchical search space. We formally define the (potentially multi-objective) HPO
problem as:

𝝀∗ ∈ argmin
𝝀∈Λ̃

𝑐 (𝝀), with 𝑐 : Λ̃ → R𝑚, (1)

where 𝝀∗ denotes the theoretical optimum and 𝑐 maps an arbitrary HPC to (possibly multiple)
target metrics. The classical HPO problem is defined as 𝝀∗ ∈ argmin𝝀∈Λ̃ ĜE(𝝀), i.e., the goal is
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to minimize the estimated generalization error, see [10] for further details. Instead of optimizing
only for predictive performance, other metrics such as model sparsity or computational efficiency
of prediction (e.g., MACs and FLOPs or model size and memory usage) could be included, resulting
in a multi-objective HPO problem [62, 30, 7, 57, 27]. 𝑐 (𝝀) is a black-box function, as it usually has
no closed-form mathematical representation, and analytic gradient information is generally not
available. Furthermore, the evaluation of 𝑐 (𝝀) can take a significant amount of time. Therefore,
the minimization of 𝑐 (𝝀) forms an expensive black-box optimization problem.

Many HPO problems allow for approximations of the objective to a varying fidelity, making
multi-fidelity optimization a viable option [44, 62, 35]. For example, in the context of fitting neural
networks, it is possible to stop or pause training runs early when performance does not indicate
a promising final result [67]. Another possibility is given by reducing the fraction of the dataset
Dtrain used for training [38], since the complexity of evaluating 𝑐 (𝝀) is often at least linear in
|Dtrain |. Formally, the possibility of multi-fidelity evaluation can be represented in the form of a
“budget” hyperparameter which we denote by 𝜆budget as a component of 𝝀.

3.2 Hyperparameter Optimization Benchmarks
Benchmark suites are comprised of a set of benchmark instances that each define an optimization
problem to be solved. We formally define benchmark instances adapted from [19] as:
Definition 1 (Benchmark Instance) A benchmark instance consists of a function 𝑔 : Λ → R𝑚,𝑚 ∈
N+, and a bounded hyperparameter space Λ̃ which is the Cartesian product of hyperparameters
Λ̃1, . . . , Λ̃𝑑 . Multi-fidelity benchmarks can be queried at lower fidelities by varying the budget pa-
rameter Λ̃budget ∈ Λ̃.While hyperparameters Λ̃𝑖 can be continuous, integer, ordinal or categorical, we
require at least ordinal scales for the fidelity parameter(s) Λbudget. We call a benchmark instance
multi-objective if the number of objectives𝑚 > 1 and single-objective otherwise.
We consider HPO benchmark instances estimating the generalization error 𝑔(𝝀) = ĜE(I,J , 𝜌,𝝀)
given an inducer I , resampling J , and performance metric(s) 𝜌 , along with other possibly rele-
vant metrics (computational cost, memory, ...). Real instances are based on actually performing
these evaluations during the benchmark, while tabular instances are based on a fixed set of pre-
recorded evaluations. Instances based on surrogates in turn approximate the functional relation-
ship between 𝝀 and 𝑔(𝝀). For clarity, we provide more precise definitions of synthetic, tabular and
surrogate instances in Supplement B.3. Real instances rely on live evaluations of the generalization
error and are therefore often prohibitively computationally expensive, especially when consider-
ing larger benchmarks or meta-learning scenarios across many tasks [70, 59, 24]. Practitioners
therefore often rely on tabular or surrogate benchmarks for large benchmark studies because they
are often cheaper to evaluate by orders of magnitude. For tabular benchmarks, a large collection
of pre-computed hyperparameter performance mappings is provided, which serves as a look-up
table during runs of HPO methods. This has the downside of constraining the search space to
precomputed evaluations, essentially turning the optimization problem from a continuous/mixed
space to a discrete optimization problem. Surrogate benchmarks can strike a balance between the
efficiency and faithful approximation to the real problem by learning the functional relationship
between hyperparameters and performance values yielding an approximation 𝑔(𝝀) of 𝑔(𝝀). This
allows evaluations across the full search space Λ̃ while being considerably cheaper to evaluate.
The usefulness of surrogates in turn relies on the approximation quality of the surrogate model.
We present an in-depth analysis of approximation qualities of the surrogates employed in YAHPO
Gym in Supplement E.1.

Definition 2 (Benchmark Scenario) A benchmark scenario consists of a set of𝐾 functions 𝑔𝑘 : Λ →
Y ⊆ R𝑚,𝑚 ∈ N+, 𝑘 ∈ {1, ..., 𝐾} corresponding to a set of Benchmark Instances. Each instance
within a scenario shares the same bounded hyperparameter space Λ̃ (and therefore fidelity parameters)
as well as the same co-domain Y .
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Table 2: YAHPO Gym Benchmarks.

Scenario Search Space #Instances Target Metrics Fidelity H

rbv2_super 38D: Mixed 103 9: perf(6) + rt(2) + mem fraction ✓
rbv2_svm 6D: Mixed 106 9: perf(6) + rt(2) + mem fraction ✓
rbv2_rpart 5D: Mixed 117 9: perf(6) + rt(2) + mem fraction
rbv2_aknn 6D: Mixed 118 9: perf(6) + rt(2) + mem fraction
rbv2_glmnet 3D: Mixed 115 9: perf(6) + rt(2) + mem fraction
rbv2_ranger 8D: Mixed 119 9: perf(6) + rt(2) + mem fraction ✓
rbv2_xgboost 14D: Mixed 119 9: perf(6) + rt(2) + mem fraction ✓
nb301 34D: Categorical 1 2: perf(1) + rt(1) epoch ✓
lcbench 7D: Numeric 34 6: perf(5) + rt(1) epoch
iaml_super 28D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
iaml_rpart 4D: Numeric 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction
iaml_glmnet 2D: Numeric 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction
iaml_ranger 8D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
iaml_xgboost 13D: Mixed 4 12: perf(4) + inp(3) + rt(2) + mem(3) fraction ✓
Mixed = numeric and categorical hyperparameters; perf = performance measures; rt = train/predict time; mem = memory consumption; inp = interpretability measures; H
= Hierarchical search space. We do not include the fidelity parameter in the search space dimensionality.

A scenario is therefore a collection of instances sharing the same search space and objective(s),
e.g., allowing for hyperparameter transfer learning between instances of the scenario. Benchmark
Suites in turn are sets of instances that do not need to share the same objectives, but instead can
consist of instances stemming from different scenarios.

4 YAHPO Gym

Motivated by the need for efficient and faithful benchmarks for HPO, we develop YAHPO Gym
based on a set of Criteria for HPO Benchmarks discussed in Supplement B.1. YAHPO Gym is ex-
plicitly designed to use surrogate-based benchmarks only. It consists of a collection of 14 scenarios
that can be evaluated across a total of ∼ 700 instances. Each benchmark instance consists of an
objective function that is parameterized in the form of a ConfigSpace Python object [48], making
the search space computer-readable and readily usable with a range of existing HPO implemen-
tations. The objective function generates a prediction using the instance surrogate model, which
is a compressed neural network. Table 2 provides an overview of all benchmark scenarios avail-
able in YAHPO Gym. We describe data sources as well as the full search spaces in Supplement F.
We want to highlight the rbv2_super collection, which reflects an AutoML pipeline: It is, to our
knowledge, the first available benchmark simulating a combined algorithm and hyperparameter
selection problem [68] in the form of a high dimensional hierarchical search space by introducing
the algorithm as an additional tunable hyperparameter.

In YAHPO Gym, every scenario allows for querying objective values at lower fidelities, en-
abling efficient benchmarking of multi-fidelity HPO methods. Analogously, every benchmark al-
lows for returning multiple target metrics as criteria, enabling benchmarking of multi-objective
HPO methods. Finally, almost all benchmark scenarios provide problems on a large number of
instances (mostly ranging from 34 to 119), allowing for benchmarking of transfer-learning HPO
methods. Predictions as well as sampling can be made reproducible through seeding. In order to
achieve portability while still being efficient, YAHPO Gym uses fitted neural networks compressed
via ONNX [3] as surrogate models. Our neural networks are ResNets for tabular data [26] consist-
ing of up to 8 layers with a width of up to 512 and hyperparameters individually tuned for each
scenario. We refer the reader to Supplement D for details regarding architecture and fitting proce-
dure. Surrogate models have very small memory and inference time overhead and are compatible
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BenchmarkSet(s, i)

get_opt_space()
objective_function(xs)

instances (1,...,K)
targets

ConfigSpace

{’t1’: 0.95, ..., ’t5’: 0.87}

(a) YAHPO Gym’s core functionality (s: scenario,
i: instance, xs: configuration). Evaluating
objective_function for a given configuration xs
returns a dictionary of predicted metrics for a given
scenario and instance.

from yahpo_gym import *

b = BenchmarkSet('lcbench', instance='3945')

# Sample a point from the ConfigSpace

xs = b.get_opt_space().sample_configuration(1)

# Evaluate the configuration

b.objective_function(xs)

(b) Python code for instantiating a benchmark in-
stance, sampling a new configuration and evaluat-
ing the objective function.

Figure 1: API overview.

across platforms and operating systems. In contrast to other benchmarks, evaluating 𝑐 (𝝀) requires
only 10 − 100 ms and only 100MB of memory. In fact, YAHPO Gym’s current infrastructure is so
lightweight, it can easily be integrated in any existing toolbox or benchmark suite.

4.1 Suites: YAHPO-SO & YAHPO-MO

Together with YAHPO Gym, we propose two carefully selected benchmark suites. They constitute
a proposal for surrogate-based benchmarks of HPO problems. We call those YAHPO-SO (single-
objective, 20 instances) and YAHPO-MO (multi-objective, 25 instances). Together with the set of
instances, we provide specific evaluation criteria, such as the budget available for optimization and
number of stochastic replications as well as metrics to be used and fully specified search spaces
which can be obtained from our software. Instances were selected across all scenarios taking into
account approximation quality of the underlying surrogate and diversity. We consider those bench-
marks a first draft for such a benchmark set (version v1.0) and explicitly invite the community to
jointly work on a larger, more comprehensively evaluated set of benchmark instances. Details
with respect to how instances were selected, and a full list of included instances, can be found in
Supplement C.2. We conduct a benchmark providing anytime performance for a large variety of
baselines on the proposed benchmark suites.

5 Tabular or Surrogate Benchmarks?

Consider the true objective 𝑐 (𝝀) of a real benchmark instance with 𝑐 : Λ̃ → R in the single-
objective setting. In a tabular benchmark, the domain of the objective function is implicitly dis-
cretized into a finite grid Λ̃discrete of the original domain and pre-evaluated at these points and
the benchmark objective 𝑐tabular(𝝀) is thus the original 𝑐 (𝝀) restricted to Λ̃discrete. The extent to
which discretization affects the faithfulness of tabular benchmarks depends on the nature and di-
mensionality of the search space: It disregards local structure in the response function and might
even impose fixed fidelity schedules, should evaluations not be available at all budget levels. In
order to assess the magnitude of this effect, we investigate the practical effects of discretization
in the following experiment by comparing 8 black-box optimizers on tabular, surrogate and real
versions of 5 synthethic multi-fidelity functions of varying dimensionality (Branin2D, Currin2D,
Hartmann3D/6D, and Borehole8D [35]). The tabular benchmark is constructed by drawing and
evaluating 106 points from a grid. Surrogates are then fitted using those points. We compare
Random Search (RS), several versions of Bayesian optimization (BO) and Hyperband (HB, [44])
across all settings. BO is configured with algorithm surrogate model either a Gaussian process
(BO_GP), ensemble of feed-forward neural networks (BO_NN, [73]) or random forest (BO_RF, [12])
and acquisition function optimizer either Nelder-Mead/exhaustive search3 (*_DF [54]) or Random

3for tabular benchmarks
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Figure 2: Mean normalized regret (top) and mean ranks (bottom) of different HPO methods on dif-
ferent benchmarks. Ribbons represent standard errors. The gray vertical line indicates the
cumulative budget used for the initial design of BO methods. Performance measures of the
surrogate benchmarks are stated after the benchmark function. 30 replications.

Search (*_RS). We describe additional details regarding the benchmark setup in Supplement E.1
and briefly present results: Figure 2 shows the anytime performance and mean rank of each HPO
method split for the real, surrogate, and tabular benchmark on the Hartmann6D and Borehole8D
test functions. We observe very similar performance traces of HPO methods on surrogate ver-
sions of benchmarks compared to real versions (Figure 2, top). However, in tabular benchmarks,
we notice that for some problems, the BO methods converge substantially faster to a lower mean
normalized regret (especially for BO_GP_*), which can possibly be explained by the much simpler
infill optimization problem solved in the tabular case. Moreover, Hyperband appears to consis-
tently perform better on tabular benchmarks. We further investigate average rankings over all
replications (Figure 2, bottom). Each benchmark function yields an average ranking of HPO meth-
ods (e.g., with respect to final performance). Using consensus rankings, we can arrive at a single
ranking over all benchmark functions [51] for a given benchmark type. We use the optimization
based symmetric difference (SD) [36] minimizing rank reversals to compare both the surrogate
and tabular inferred consensus rankings with the “ground truth” real function consensus ranking.
We observe that consensus rankings obtained using surrogate benchmarks (permutation order 2)
match more closely than tabular benchmarks (permutation order 5). We again provide additional
details in Supplement E.1.

6 A Benchmark of HPO Methods on YAHPO Gym
We now demonstrate how YAHPO Gym can be used in practice to benchmark different HPOmeth-
ods. We benchmark 7 single-objective HPO methods on YAHPO-SO and 7 multi-objective HPO
methods on YAHPO-MO and want to answer the following research questions: (RQ1) Do multi-
fidelity (single-objective) HPOmethods improve over full-fidelity methods? (RQ2)Do advanced multi-
objective HPO methods improve over Random Search?
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6.1 RQ1: Do multi-fidelity (single-objective) HPO methods improve over full-fidelity methods?

We compare Random Search and SMAC (SMAC4HPO facade; [47]) to the multi-fidelity methods
Hyperband [44], BOHB [21], DEHB [4], SMAC-HB (SMAC4MF facade; [47]) and optuna ([2]; TPE
sampler and median pruner following successive halving steps). More details on the experimental
setup and HPO methods is given in Supplement E.2. All optimizers are run for a total budget of
⌈20 + 40 · √search_space_dim ⌉ full-fidelity evaluations with 30 replications. Figure 3a shows the
average rank of HPO methods with respect to their anytime performance. Figure 3b and Figure 3c
show critical difference plots (𝛼 = 0.05) of mean ranks after 25% and 100% of the optimization bud-
get. The corresponding Friedman tests indicate significant differences (𝑝 < 0.001) in both cases.
We observe that all multi-fidelity optimizers outperform Random Search with respect to interme-
diate performance (25% of optimization budget) and optuna, BOHB, SMAC-HB and Hyperband
also outperform SMAC. With respect to final performance, SMAC takes the lead closely followed
by SMAC-HB with other multi-fidelity optimizers slightly falling behind. We conclude that multi-
fidelity HPO methods indeed improve over full-fidelity methods, but only with respect to interme-
diate performance. Our results are in line with what has been reported in other benchmarks [19]
with the exception that optuna seems more competitive in our benchmark, while DEHB is less
competitive. One reason for this difference might be that we include hierarchical search spaces in
contrast to previous work.
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Figure 3: Results of YAHPO-SO single-objective benchmark across 7 optimizers (20 instances).

6.2 RQ2: Do advanced multi-objective HPO methods improve over Random Search?

We compare Random Search, Random Search x4 (Random Search with quadrupled budget as
a strong baseline), ParEGO [40], SMS-EGO [61], EHVI [20], MEGO [33] and MIES [46] on
multi-objective HPO problems with 2 − 4 objectives. More details on the experimental setup
and HPO methods is given in Supplement E.3. All optimizers are run for a total budget of
⌈20 + 40 · √search_space_dim ⌉ full-fidelity evaluations for 30 replications. Figure 4a shows the
average rank of HPO methods with respect to their anytime performance (determined based on
the normalized Hypervolume Indicator). Figure 4b and Figure 4c show critical difference plots
(𝛼 = 0.05) of these ranks after 25% and 100% of the optimization budget. The corresponding
Friedman tests indicate significant differences (𝑝 < 0.001) in both cases. We observe that not all
methods significantly improve over Random Search with respect to final performance, i.e., EHVI
and SMS-EGO fail to do so. Especially with respect to intermediate performance (25% of optimiza-
tion budget), Random x4 outperforms all competitors. However, with respect to final performance,
MEGO, ParEGO and MIES yield similar performance catching up to Random x4. We conclude that,
in general, advanced multi-objective HPO methods improve over Random Search but also want
to highlight that optimizer performance strongly varies with respect to the different benchmark
instances.
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Figure 4: Results of the YAHPO-MO multi-objective benchmark across 7 optimizers (25 instances).

In total, both benchmarks described in this section took the equivalent of 139.57 CPU days
using YAHPO Gym. We estimate that the YAHPO-SO benchmark, would take 14.75 CPU years
when running real benchmarks, while our benchmark using YAHPO Gym took only 397.51 CPU
hours, essentially speeding up evaluation by a factor of ∼ 300.

7 Conclusions, Limitations and Broader Impact

We present YAHPO Gym, a multi-fidelity, multi-objective benchmark for HPO. Our benchmark
is based on surrogates, which strike a favorable trade-off between faithfulness and efficiency,
which we demonstrate in various experiments throughout our paper before conducting a large
scale benchmark of modern single- and multi-objective optimizers. An as of yet under-explored
domain are asynchronous optimization algorithms, which have recently gained popularity [45].
This has been studied in surrogate-based benchmarks by predicting runtimes and pausing the ob-
jective function for the predicted runtime, lowering computational demand for benchmarks but
leading to a large waiting time [21]. In future work we plan on introducing faster-than-real time
asynchronous benchmarking based on predicted runtimes.

Limitations. YAHPOGym is based on surrogatemodels and therefore heavily relies on the faithful-
ness of those models in order to allow for valid conclusions. We have comprehensively evaluated
surrogate models and provide a detailed report of performance metrics, hoping to demonstrate the
faithfulness of our surrogates, but can only do so to a certain degree. We are furthermore aware
that the real HPO problems modeled in our surrogates are in fact stochastic, and results can vary
depending on randomness of the fitting procedure, data splits or initialization. We therefore pro-
vide a set of noisy surrogate models that intend to model the stochasticity of the problems using
an ensemble of neural networks, but simultaneously allow for full control of the stochastic process
by using random seeds.

Broader Impact. This manuscript presents a set of surrogate-based benchmarks for HPO. As such,
our work does not have direct implications on society or individuals, but can lead to such indirectly
if new methods are developed based on it. We would like to emphasize the possible societal &
environmental benefits. First, we hope our benchmarks can improve the state of benchmarking
in hyperparameter optimization contexts, leading to better tracking of progress in the discipline.
Second, and more important, we hope that experiments based on YAHPO Gym can drastically
reduce computational cost of hyperparameter optimization experiments. This type of experiments
is usually extremely expensive, if real experiments are run for the evaluation of each HPC, which
can be sped up by large factors if cheap approximations through surrogates are available.
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8 Reproducibility Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 7.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 7.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-
tal results, including all requirements (e.g., requirements.txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a url)? [Yes] The full code for experiments, figures and table can be obtained
from the following GitHub repositories:

i. Software: https://github.com/slds-lmu/yahpo_gym
ii. Documentation: https://slds-lmu.github.io/yahpo_gym/
iii. Surrogates & Search Spaces: https://github.com/slds-lmu/yahpo_data
iv. Code for Results: https://github.com/slds-lmu/yahpo_exps

(b) Did you include the raw results of running the given instructions on the given code
and data? [Yes] We make the full data used to train our surrogates available at https:
//syncandshare.lrz.de/getlink/fiCMkzqj1bv1LfCUyvZKmLvd/.

(c) Did you include scripts and commands that can be used to generate the figures and tables
in your paper based on the raw results of the code, data, and instructions given? [Yes] See
https://github.com/slds-lmu/yahpo_exps.

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] See Supplement F for search
spaces, the code repository as well as the software repository for further fixed hyperpa-
rameters.

(f) Did you ensure that you compared different methods (including your own) exactly on the
same benchmarks, including the same datasets, search space, code for training and hyper-
parameters for that code? [Yes] This is explicitly guaranteed by our software.

(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] Partially, see sections throughout the supplementary material.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes]
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(i) Did you compare performance over time? [Yes] Anytime performances are reported in all
relevant figures throughout the paper.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] We
perform 30 replications for each run. Random seeds can be obtained from the accompany-
ing code.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] All figures reporting experimental results include error bars.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] Surrogate
benchmarks.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
gpus, internal cluster, or cloud provider)? [Yes] We state the total computation as well as
CO2 equivalent in the respective section and briefly summarize here: Tuning and fitting
surrogates required a total of 45 GPU-days (116 kg CO2-equivalent on NVIDIA DGX-A100
instances) while the main experiments require 139.57 CPU days across all replications (263
kg CO2 equivalent). The tabular vs. surrogate benchmark required 22 CPU-hours (2 kg
CO2) equivalent.

(n) Did you report how you tuned hyperparameters, andwhat time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and
also hyperparameters of your own method)? [Yes] We report tuning of surrogates in the
supplementary material.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, throughout the paper
and explicitly in Supplement F for datasets we base our surrogates on.

(b) Did you mention the license of the assets? [Yes] Yes, see Supplement F.
(c) Did you include any new assets either in the supplemental material or as a url?

[Yes] Yes, trained surrogates are available at https://github.com/slds-lmu/yahpo_data.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Data is meta-data about ML experiments and we do not consider
any personal data. All used data is available via OSS Licenses and no consent was required.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Data is only metadata about ML experiments.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-
cable? [N/A] No crowd sourcing.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(irb) approvals, if applicable? [N/A] No IRB was required.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent
on participant compensation? [N/A]
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7. Conclusion and future work

This thesis has highlighted the importance of explainability for ensuring responsible and safe
interaction with AutoML systems. By formally and systematically connecting the emerging fields
of AutoML and explainable AI, this work aims to provide the community with a comprehensive
and unified understanding of explainable AutoML. The key contributions of this thesis lie in
the three distinct levels at which explainability can be a requirement – model, algorithm, and
AutoML system explainability. However, as we strive towards more explainable AutoML systems,
many questions remain unanswered, problems unresolved, and several avenues of research remain
unexplored.

Model explainability In recent years, there has been significant growth in the field of explain-
ability in ML, and many interpretability methods have emerged. Although it may appear that
the entire range of post-hoc interpretability methods can be straightforwardly applied to models
generated by AutoML systems, it is important to consider that interpretability methods may come
with their pitfalls and may provide inaccurate and wrong information if applied in the wrong con-
text (Molnar et al., 2020). If AutoML developers make an attempt to integrate interpretability
methods into AutoML systems for better usability and accessability, AutoML systems should au-
tomatically verify assumptions underlying respective interpretability methods (e.g., checking for
correlated features), return uncertainty estimates for interpretability methods and issue warnings
in case assumptions are violated. Ideally, AutoML systems should also be capable of selecting the
most appropriate interpretability method based on the assumptions underlying the interpretation
method.

One promising approach to designing AutoML systems that prioritize model explainability are
multi-objective systems that incorporate a preference for explainability, because a user does not
have to a-priori define the trade-off between multiple objectives. The key to the successful im-
plementation of multi-objective AutoML systems that take explainability into account is that
explainability can be quantified in an objective and model-agnostic manner. Although there have
been some model-agnostic methods proposed in the past for measuring model explainability, such
as using model complexity as a proxy (Molnar et al., 2019) or using explainability metrics based
on ordinary language philosophy (Sovrano and Vitali, 2021), it is still open to future work to
integrate the most suitable metric into AutoML systems.

In high-risk domains, it may be valuable to develop AutoML systems that enable users to discover
causal relationships within models. Beyond discovering and presenting causal relationships, it
would be intriguing to investigate whether users presented with causal relationships modeled by
a candidate model can provide interactive feedback during an AutoML process on desired and
undesired causal relationships, thereby guiding the optimization process. For example, consider
a use case where a car insurance company aims to price insurance for car owners by predicting
their accident rates, assuming a latent variable of aggressive driving that increases the likelihood
of accidents (desired causal relationship), as well as the likelihood that people prefer red cars
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(undesired causal relationship), which people with certain characteristics also prefer. Suppose an
AutoML system could identify suspected causal relationships throughout the optimization process
and enable users to investigate and reject undesired ones (e.g., confounding effects or discriminative
causal relationships), which could then be used as a constraint by the AutoML system to find a
better model that does not account undesired causal relationships.

Staying along the lines of more interactive AutoML that is accessible to domain experts without
ML expertise, it would be compelling to investigate the possibility of creating AutoML systems
that can incorporate human-understandable input. This input might involve expectations or
restrictions on model behavior. In other words, beyond looking into AutoML only returning
human-understandable outputs, it would also be interesting to see whether AutoML system can
be designed to take human-understandable inputs.

Safe and reliable interaction with AutoML systems in highly regulated domains like insurance,
finance, and healthcare can be facilitated by explainability. However, explainability may not be
sufficient for safety, and applications in highly regulated domains may require AutoML systems
to provide statistical guarantees on the returned models’ performance.

Algorithm explainability To achieve successful algorithm explainability, the community needs
to put a concerted effort into agreeing on definitions and establishing a shared understanding
of concepts related to algorithm explainability, as illustrated by the example of hyperparameter
importance in Figure 3.2. Additionally, it is important to identify and prioritize the key questions
we aim to answer to generate a more comprehensive understanding of algorithm behavior (be-
yond simple hyperparameter importance and effects) and then develop appropriate interpretability
methods accordingly. To this end, it might be worthwhile exploring the combination of local con-
cepts of interpretability like counterfactuals with AutoML, which may help answer questions such
as what is the minimum change required in a learning algorithm to achieve a desired level of
reliability or interpretability or to eliminate a specific unintended causal relationship in the final
model.

Moreover, the interpretations of algorithm behavior generated by interpretability methods can
still be highly technical and difficult to process, even for experts. In many cases, it may still re-
quire considerable human effort to examine a multitude of hyperparameter importance scores and
effect plots and draw meaningful conclusions. To overcome this challenge, exploring how various
interpretability metrics can be transformed into more semantically meaningful explanations would
be interesting. Usability studies should be conducted to ensure that the resulting explanations
are sufficiently clear and provide answers to the relevant questions.

Most of the current research on algorithm explainability has focused on simple and well-behaved
problems, such as interpreting hyperparameter importance or effects when there is a small num-
ber of numeric hyperparameters only (Hutter et al., 2014; Biedenkapp et al., 2017; Moosbauer
et al., 2021). Many of the existing methods use surrogate models to fit an archive of sampled
hyperparameter configurations, which may work well for low-dimensional and mostly numeric hy-
perparameter spaces but pose challenges for hyperparameter spaces with high complexity, such
as those encountered in NAS with a multitude of categorical hyperparameters with dependencies
between them. In addition, as the number of dimensions of the hyperparameter space increases,
extracting meaningful patterns may become more challenging, and it may be worth exploring
interpretability methods that leverage dimensionality reduction techniques. Overall, developing
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concepts and solutions for interpreting complex and high-dimensional HPO problems is an impor-
tant avenue for future research.

AutoML system explainability Given the no-free lunch theorem, a potential research direction
is investigating which AutoML systems are best suited for which types of tasks. Specifically,
it is worth examining which AutoML systems are better suited for specific application domains
such as healthcare or finance and for varying dataset sizes. For instance, it could be that an
AutoML system performs well in healthcare domains due to the inclusion of a specific learning
algorithm that excels at tasks within this field into the pipeline, which could be inferred from
data on the performance of different AutoML systems on a variety of datasets. Additionally, it
may be the case that an AutoML system is well-suited for larger datasets due to the presence of
a specific dimensionality reduction operator within the pipeline, which is consistently selected for
larger datasets. Investigating the reasons behind the suitability of different AutoML systems for
different tasks and datasets would be a valuable area of research.

Efforts have been made towards a unified way of benchmarking AutoML systems against each
other (Gijsbers et al., 2022). However, a standardized approach for conducting ablation analyses
is needed to develop a valid, common understanding of the factors driving the superior perfor-
mance of one AutoML system over another. Ablation analysis is particularly important when
new AutoML systems claim to surpass state of the art, as it provides evidence that the changes
introduced by the new system significantly contribute to improved performance. A harmonized
framework, in which different configurations correspond to different AutoML tools and the newly
introduced AutoML systems (as target configuration) could be compared against the previous
state of the art (as source configuration), could facilitate effective ablation analyses for AutoML
systems. A contribution to this thesis (Moosbauer et al., 2022) (also discussed in Chapter 4.2)
represents a first step in this direction, as it provides a standardized framework covering a range of
HPO algorithms that are used for ablation analysis. Still, a standardized approach to performing
ablation analyses should be adopted across the community.

In addition to elucidating the inner workings of classical AutoML systems, investigating the ex-
plainability of meta-learning-based systems could be an exciting direction for further research.
Extending upon previous works such as (van Rijn and Hutter, 2018; Moussa et al., 2022), which
delve into the importance of hyperparameters across datasets, it would be interesting to explore
the specific dataset properties that meta-learning algorithms exploit for better performance and
faster results. Such an investigation could yield valuable insights into the underlying mechanisms
of these systems and contribute to their further development and refinement.

Lastly, when conducting benchmarks and sensitivity analyses, it is important to consider both
performance metrics and secondary metrics, such as an AutoML system’s ability to produce
robust, fair, and explainable models, among others. Such metrics can provide valuable insights
into the broader implications and impact of AutoML systems beyond performance and contribute
to developing more comprehensive and responsible approaches to AutoML.
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Stockholm, Sweden, July 10-15, 2018, Volume 80 of Proceedings of Machine Learning Research,
pp. 1563–1572. PMLR.

Freitas, A. A. (2019). Automated machine learning for studying the trade-off between predictive
accuracy and interpretability. In A. Holzinger, P. Kieseberg, A. M. Tjoa, and E. R. Weippl
(Eds.), Machine Learning and Knowledge Extraction - Third IFIP TC 5, TC 12, WG 8.4,
WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK,
August 26-29, 2019, Proceedings, Volume 11713 of Lecture Notes in Computer Science, pp. 48–
66. Springer.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of
Statistics, 1189–1232.

Garouani, M., A. Ahmad, M. Bouneffa, A. Lewandowski, G. Bourguin, and M. Hamlich (2021).
Towards the automation of industrial data science: A meta-learning based approach. In J. Fil-
ipe, M. Smialek, A. Brodsky, and S. Hammoudi (Eds.), Proceedings of the 23rd International
Conference on Enterprise Information Systems, ICEIS 2021, Online Streaming, April 26-28,
2021, Volume 1, pp. 709–716. SCITEPRESS.

Gijsbers, P., M. L. P. Bueno, S. Coors, E. LeDell, S. Poirier, J. Thomas, B. Bischl, and J. Van-
schoren (2022). AMLB: an automl benchmark. CoRR abs/2207.12560.

Gijsbers, P. and J. Vanschoren (2019). Gama: Genetic automated machine learning assistant.
Journal of Open Source Software 4 (33), 1132.

Gilpin, L. H., D. Bau, B. Z. Yuan, A. Bajwa, M. A. Specter, and L. Kagal (2018). Explaining
explanations: An overview of interpretability of machine learning. In F. Bonchi, F. J. Provost,
T. Eliassi-Rad, W. Wang, C. Cattuto, and R. Ghani (Eds.), 5th IEEE International Conference
on Data Science and Advanced Analytics, DSAA 2018, Turin, Italy, October 1-3, 2018, pp.
80–89. IEEE.

Goldstein, A., A. Kapelner, J. Bleich, and E. Pitkin (2015). Peeking inside the black box: Visu-
alizing statistical learning with plots of individual conditional expectation. Journal of Compu-
tational and Graphical Statistics 24 (1), 44–65.

Golovin, D., B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley (2017). Google vizier:
A service for black-box optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13 - 17,
2017, pp. 1487–1495. ACM.

Guyon, I., A. Saffari, G. Dror, and G. C. Cawley (2010). Model selection: Beyond the
bayesian/frequentist divide. J. Mach. Learn. Res. 11, 61–87.

Hamon, R., H. Junklewitz, and I. Sanchez (2020). Robustness and explainability of artificial
intelligence. (KJ-NA-30040-EN-N (online)).

Hansen, N. and A. Auger (2011). Cma-es: Evolution strategies and covariance matrix adapta-
tion. In Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary
Computation, GECCO ’11, New York, NY, USA, pp. 991–1010. Association for Computing
Machinery.

176



Further References

Hasebrook, N., F. Morsbach, N. Kannengießer, J. K. H. Franke, F. Hutter, and A. Sunyaev
(2022). Why do machine learning practitioners still use manual tuning? A qualitative study.
CoRR abs/2203.01717.

Hennig, P. and C. J. Schuler (2012). Entropy search for information-efficient global optimization.
J. Mach. Learn. Res. 13, 1809–1837.

Hernández-Lobato, J. M., M. W. Hoffman, and Z. Ghahramani (2014). Predictive entropy search
for efficient global optimization of black-box functions. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger (Eds.), Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pp. 918–926.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2011). Sequential model-based optimization for
general algorithm configuration. In C. A. C. Coello (Ed.), Learning and Intelligent Optimization
- 5th International Conference, LION 5, Rome, Italy, January 17-21, 2011. Selected Papers,
Volume 6683 of Lecture Notes in Computer Science, pp. 507–523. Springer.

Hutter, F., H. H. Hoos, and K. Leyton-Brown (2014). An efficient approach for assessing hyperpa-
rameter importance. In Proceedings of the 31th International Conference on Machine Learning,
ICML 2014, Beijing, China, 21-26 June 2014, Volume 32 of JMLR Workshop and Conference
Proceedings, pp. 754–762. JMLR.org.

Hutter, F., L. Kotthoff, and J. Vanschoren (Eds.) (2019). Automated Machine Learning - Methods,
Systems, Challenges. The Springer Series on Challenges in Machine Learning. Springer.

Ikemura, K., E. Bellin, Y. Yagi, H. Billett, M. Saada, K. Simone, L. Stahl, J. Szymanski, D. Gold-
stein, M. R. Gil, et al. (2021). Using automated machine learning to predict the mortality
of patients with covid-19: prediction model development study. Journal of medical Internet
research 23 (2), e23458.
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Canada, pp. 2488–2498.

Sass, R., E. Bergman, A. Biedenkapp, F. Hutter, and M. Lindauer (2022). Deepcave: An inter-
active analysis tool for automated machine learning. CoRR abs/2206.03493.
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parallel coordinates. In F. Paternò, N. Oliver, C. Conati, L. D. Spano, and N. Tintarev (Eds.),
IUI ’20: 25th International Conference on Intelligent User Interfaces, Cagliari, Italy, March
17-20, 2020, pp. 308–312. ACM.

Wolpert, D. H. and W. G. Macready (1997). No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1 (1), 67–82.

Wu, J., M. Poloczek, A. G. Wilson, and P. I. Frazier (2017). Bayesian optimization with gradients.
In Advances in Neural Information Processing Systems 30, pp. 5267–5278.

Yang, F., Y. Qiao, Y. Qi, J. Bo, and X. Wang (2022). Bacs: blockchain and automl-based
technology for efficient credit scoring classification. Annals of Operations Research, 1–21.

Zimmer, L., M. Lindauer, and F. Hutter (2021). Auto-pytorch: Multi-fidelity metalearning for
efficient and robust autodl. IEEE Trans. Pattern Anal. Mach. Intell. 43 (9), 3079–3090.
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