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Zusammenfassung

Diese Arbeit beschreibt die ausführliche Charakterisierung intra- und interorbitaler Wechsel-
wirkungen in ultrakalten fermionischen Quantengasen von 171Yb Atomen mit zwei elektro-
nischen Orbitalen. Aufgrund ihres metastabilen angeregten elektronischen Uhrenzustandes
zusätzlich zum Grundzustand sind erdalkaliartige Elemente wie Ytterbium oder Strontium pri-
vilegierte Plattformen für modernste Präzisionsmetrologie und für die Quantensimulation von
Systemen mit zwei Orbitalen. Die außergewöhnlich lange Lebensdauer des Uhrenzustands
ermöglicht insbesondere die Untersuchung von Quanten-Vielteilchensystemen mit einem zu-
sätzlichen orbitalen Freiheitsgrad. Dies geht über die berühmten Bose- und Fermi-Hubbard-
Modelle hinaus, die mit Alkaliatomen zugänglich sind. Bei der Untersuchung der Vielteilchen-
physik mit diesen Elementen spielen die interatomaren Wechselwirkungen im Allgemeinen
eine entscheidende Rolle.

Wir charakterisieren die intra- und interorbitalen Wechselwirkungen in 171Yb umfassend,
indem wir den extrem schmalen optischen Uhrenübergang zwischen dem Grund- und dem
Uhrenzustand in einem zustandsunabhängigen optischen Gitter direkt untersuchen. Wir be-
stimmen mit hoher Genauigkeit die fundamentalen Streulängen, die mit allen Streukanälen
für beide Orbitale assoziiert sind und finden Werte, die im Gegensatz zur Situation in ande-
ren erdalkaliartigen Elementen wie 173Yb und 87Sr antiferromagnetische Spinaustauschwech-
selwirkungen in interorbitalen Paarzuständen implizieren. Die Stabilität dieser Zustände in
optischen Gittern wird ebenfalls untersucht, wobei sehr lange Lebensdauern in beiden inter-
orbitalen Wechselwirkungskanälen gefunden werden.

Darüber hinaus beobachten wir eine orbitale Feshbach-Resonanz (OFR), die bisher nur
in 173Yb beobachtet wurde und die vollständige Kontrolle über interorbitale Wechselwirkun-
gen ermöglicht. Der interorbitale molekulare Dimer-Zustand, der mit der OFR assoziiert ist,
kann direkt über dem Uhrenübergang erzeugt werden und hat eine große Bindungsenergie,
die typische Skalen in kalten atomaren Ensembles übersteigt, was ihn für molekulare Uhren-
experimente nützlich machen könnte. Als ersten Schritt in diese Richtung erzeugen wir ein
zustandsunabhängiges Potential in erster Ordnung für den Übergang zum Dimer.

Die in dieser Arbeit vorgestellten Ergebnisse machen 171Yb zu einer idealen Plattform für
die Quantensimulation von Fermi-Hubbard-Modellen mit orbitalem Freiheitsgrad sowohl im
antiferromagnetischen Spinaustausch-Regime als auch im stark wechselwirkenden Regime.
Sie führen 171Yb auch als potenziell interessanten Kandidaten für Anwendungen im Bereich
der molekularen optischen Uhren ein.





Abstract

This thesis reports on the comprehensive characterization of intra- and interorbital interac-
tions in two-orbital ultracold quantum gases of fermionic 171Yb. Owing to their metastable
excited electronic clock state in addition to the ground state, alkaline-earth(-like) (AEL) el-
ements such as ytterbium or strontium are privileged platforms for state-of-the-art precision
metrology and for the quantum simulation of two-orbital systems. The remarkably long life-
time of the clock state opens in particular the way for the study of many-body physics with an
additional orbital degree of freedom, going beyond the celebrated Bose- and Fermi-Hubbard
models accessible using alkali atoms. When studying many-body physics with these elements,
interatomic interactions generally play a decisive role.

We extensively characterize intra- and interorbital interactions in 171Yb by directly prob-
ing the ultranarrow optical clock transition between the ground and clock states in a state-
independent optical lattice. We precisely determine the fundamental scattering lengths asso-
ciated with the two-particle interaction channels, finding values which notably imply antifer-
romagnetic spin-exchange interactions in interorbital pair states, as opposed to the situation
in other AEL elements such as 173Yb and 87Sr. The stability of these states in optical lattices is
probed as well, finding very long lifetimes in both interorbital interaction channels.

We furthermore observe an orbital Feshbach resonance (OFR) which has previously only
been witnessed in 173Yb, enabling full control over interorbital interactions. The interorbital
molecular dimer state associated with the OFR can be directly addressed on the clock transi-
tion and has a large binding energy exceeding typical scales in cold atomic ensembles, making
it possibly useful for molecular clock experiments. As a first step in this direction, we demon-
strate a first-order state-independent potential for the free-to-bound transition into the dimer.

The results presented in this thesis strongly establish 171Yb as an ideal platform for the
quantum simulation of two-orbital Fermi-Hubbard models in both the antiferromagnetic spin-
exchanging regime as well as the strongly-interacting regime. They also bring 171Yb to light
as a potentially interesting candidate for molecular optical clock applications.
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CHAPTER 1

Introduction

Since the first realization of quantum degenerate bosonic [1, 2] and fermionic [3] gases of
neutral atoms nearly thirty years ago, the field of ultracold atoms has experienced a rapid
growth. Today, quantum degenerate atomic gases are used in a wide range of applications
including quantum metrology [4–6], quantum information processing [7, 8], quantum many-
body physics [9–14], molecular physics [15–18] or topology [19–21] to only name a few.

An especially remarkable aspect of ultracold quantum gases is the extraordinary level of
control over experimental parameters such as the potential energy or interatomic interactions.
The potential landscape experienced by the atomic sample can be fully engineered with laser
light, which exerts an optical dipole force on the atoms [22]. In particular, interfering coher-
ent laser beams can be used to create nearly defect-free periodic potentials, so-called optical
lattices [23]. Different laser configurations lead to various lattice dimensionalities or geome-
tries, such as cubic [24], triangular [25], honeycomb [26] or kagome [27]. In addition, pro-
grammable spatial light modulators such as liquid crystal or digital micromirror devices have
been successfully introduced to project arbitrary potentials on atomic samples [28]. Further-
more, the recent advent of quantum gas microscopes [29–31] and optical tweezer arrays [32]
has enabled the readout and control of individual atoms, giving access to observables previ-
ously out of reach. Moreover, magnetic Feshbach resonances [33] enable extensive control
over interatomic interactions via an external magnetic field and have been an essential tool
for the realization of quantum gases in the strongly interacting regime [11].

This striking tunability opens the way for the versatile implementation of various many-
body quantum systems. These can be precisely engineered to faithfully imitate certain quan-
tum physical systems of interest by replicating the Hamiltonian governing their time evolu-
tion, thereby realizing the concept of a quantum simulator envisioned by Feynman back in
1981 [34]. The potentially large number of particles in ultracold atomic ensembles enables the
quantum simulation of large systems reaching beyond the computational capabilities of clas-
sical computers [35]. Neutral atoms have therefore attracted considerable interest for analog
quantum simulation, steering swift developments in recent years [12–14, 35–40]. In parallel,
other promising platforms such as trapped ions [41, 42], superconducting resonators [43],
photons [44] or Rydberg atoms [45] have emerged as well.

Neutral atoms in optical lattices are particularly well-suited for the investigation of many-
body physics [9–14], which has been previously limited to experiments with solid-state sys-
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tems. In particular, ultracold spin-1/2 Fermions in optical lattices mimic electrons in solids and
thus nearly perfectly realize the celebrated Fermi-Hubbard model describing the dynamics of
interacting fermionic particles in a discrete lattice [38, 46, 47]. This model is widely used in
solid-state physics since it is believed to describe a broad range of strongly-correlated mate-
rials, including high-critical-temperature superconductors in the presence of doping [48, 49].
The Fermi-Hubbard model is especially relevant in the context of quantum simulation since it is
only exactly solvable in one dimension [50], relying on numerical approaches such as quantum
Monte Carlo [51, 52] or dynamical mean-field theory [53, 54] to make predictions in the two-
and three-dimensional cases. Even then, simulations are limited to systems containing only
up to a few thousands of atoms. Following the first observation of fermionic quantum gases
in the Mott insulating phase [55, 56], an impressive diversity of experiments has explored the
Fermi-Hubbard model with alkali atoms [12–14, 31, 46, 47], including recent groundbreaking
work probing antiferromagnetic ordering emerging at low temperatures [57–62].

Although such stunning experimental findings have been achieved in the study of Fermi-
Hubbard-like models with alkali atoms, these elements only allow for the convenient imple-
mentation of single-orbital systems. A rich variety of captivating quantum phenomena how-
ever arises from the orbital degree of freedom of the particles such as the Kondo effect [63, 64],
heavy-Fermion behavior [64, 65] or colossal magnetoresistance [66, 67]. Since the numerical
simulation of these phenomena is a daunting task, our current understanding of their under-
lying physics is very limited and can greatly benefit from analog quantum simulations to gain
further insight.

In this context, alkaline-earth(-like) (AEL) elements such as ytterbium or strontium have
been established in the last decade as a privileged platform for the simulation of two-orbital
quantum systems, in addition to being used for state-of-the-art precision metrology. In contrast
to alkali metals, these elements possess two valence electrons, leading to a richer helium-
like electronic level structure. Of central importance is the lowest-lying metastable excited
electronic «clock» state, which is connected to the ground state via an ultranarrow optical
«clock» transition [68].

Fermionic isotopes of AEL atoms such as 171Yb, 173Yb or 87Sr enable the quantum simula-
tion of Fermi-Hubbard models generalized to multiple orbitals, reaching beyond the capabili-
ties of alkali atoms [39, 69–72]. Indeed, owing to the extremely long lifetime of the clock state,
these atoms are ideal candidates for the study of physical systems containing atoms in two dis-
tinct electronic states, or orbitals. In the limit of zero magnetic fields, atoms in different orbitals
interact via spin-exchange interactions [69, 73–76]. Together with the use of state-dependent
optical lattice potentials [75–77] featuring potentially very different mobilities between atoms
in distinct orbital states, this opens the way for the investigation of quantum magnetism such
as the celebrated Kondo [78–81], Kondo lattice [69, 82–84] or Kugel-Khomskii [69] models.
Promising experimental findings have been made in this direction through the observation of
interorbital spin exchange in state-dependent lattices [75, 76].

Interactions between two ground- or clock-state AEL atoms are nearly independent of the
nuclear spin, a consequence of the zero total angular momentum in both states [69, 85]. This
leads to a potentially large SU(N) symmetry of the Hamiltonian describing the system at zero
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magnetic field [73, 86, 87], where N is the number of nuclear spin states. This number is
particularly large in 173Yb (N = 6) and in 87Sr (N = 10). This is in strong contrast with the
SU(2) symmetry arising in alkali quantum gases or in solid-state systems and has for instance
enabled the observation of Mott insulators with enhanced SU(N) symmetry [88–90], which
are believed to show exotic magnetic ordering at low temperatures [91–94].

Ytterbium, which has been first cooled down to quantum degeneracy nearly twenty years
ago [95], is now relatively commonly used in multiple cold-atom experiments over the world.
Its two fermionic isotopes, 171Yb and 173Yb, are particularly promising candidates for the in-
vestigation of two-orbital many-body physics. In this context, 173Yb has to this day attracted
the greatest attention owing to its six different nuclear spin states which have led to the exper-
imental demonstration of fermionic Mott insulators with SU(N ≤ 6) symmetry [88–90]. In-
terorbital interactions between atoms in distinct electronic ground or clock states are very well
characterized and most notably imply ferromagnetic spin-exchange interactions [73]. This en-
ables for instance the study of the ferromagnetic Kondo lattice model, which is relevant in the
context of colossal magnetoresistance. However, the finite elastic scattering between ground-
state atoms [96] as well as the ferromagnetic nature of interorbital spin-exchange interactions
hinder the study of crucial models such as the antiferromagnetic Kondo lattice model [69, 82–
84, 97], which has a rich phase diagram expected to describe for instance heavy-Fermion
behavior in metals [64, 98].

On the other hand, 171Yb, which only features two nuclear spin states, has to this day
rather been considered in the context of optical atomic clocks [6, 99, 100] or quantum infor-
mation processing [101, 102]. Given the almost vanishing elastic scattering of atoms in the
electronic ground state in 171Yb [96], this isotope has the potential to be a promising candidate
for quantum simulations as well. The suitability of 171Yb for the implementation of two-orbital
systems can however only be reliably assessed with the full knowledge of intra- and interor-
bital interactions in this isotope. In the frame of this thesis, we extensively characterize these
interactions by probing the elastic scattering of atomic pairs in the electronic clock state as well
as in superpositions of ground and clock state using lattice spectroscopy on the narrow-line
clock transition. We furthermore probe inelastic scattering in these states by measuring their
lattice lifetime.

Remarkably, interorbital interactions between atoms in the electronic ground and clock
states can be tuned over a large range via an external magnetic field, using the so-called
orbital Feshbach resonance mechanism [103, 104] which has been predicted [103] and ob-
served [105, 106] for the first time in 173Yb. This novel type of Feshbach resonance, which
intrinsically differs from usual magnetic Feshbach resonances [33], enables the study of two-
orbital samples in the strongly interacting regime and has inspired numerous theoretical pro-
posals in recent years [97, 107–117]. The orbital Feshbach resonance has been used to this day
as a central experimental tool for the observation of multiorbital Fermi polarons [118] as well
as for the study of transport in the mass-imbalanced Fermi-Hubbard model [119]. Alterna-
tively, interorbital interactions can be enhanced using confinement-induced resonances [120,
121], which have been demonstrated in 173Yb [75]. In this work, we also observe and char-
acterize an orbital Feshbach resonance in 171Yb for the first time, enabling extensive control
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over interorbital interactions in this isotope as well.
Finally, the ultranarrow transition in AEL elements has enabled the development of the

currently most accurate clocks in the world, which probe the clock line in ultracold ytter-
bium or strontium atoms in state-independent optical lattices [6, 122]. Impressive recent
technical progress has led to optical atomic clocks with relative uncertainties on the 10−18

level [99, 123], paving the way for applications in general relativity [99, 124–127], improved
constraints on dark matter [128, 129] or tests of fundamental physics [130]. The advent of
such clocks also makes AEL elements solid candidates to replace caesium in the definition
of the SI second [131]. Another exciting application is the development of molecular lattice
clocks [132, 133], which could enable fundamental measurements beyond the reach of atomic
clocks such as precision tests of electron-to-proton mass ratio variations [134]. In particular,
the production of ultracold molecules on the clock transition would enable molecular spec-
troscopy on the Hz level [135]. We find an interorbital molecular dimer state in 171Yb that can
be directly addressed on the clock transition, with properties such as its binding energy that
can be precisely probed spectroscopically. This dimer lies at the heart of the orbital Feshbach
resonance mechanism since it is the least-bound state supported by the closed interorbital in-
teraction channel. We find this state to have a large binding energy exceeding all other typical
scales in cold atomic ensembles, making it a potentially interesting candidate in the context
of optical molecular clocks. As a first step in this direction, we demonstrate a first-order state-
insensitive trapping potential for the free-to-bound transition into the dimer state.

Outline

This thesis consists in seven chapters, including this introduction, which are organized as
follows.

Chapter 2 reviews the electronic structure of ytterbium as well as its most relevant atomic
properties, highlighting the key differences between both fermionic isotopes 171Yb and 173Yb.
A detailed description of scattering between atoms in the electronic ground and clock state
is given, showing in particular the mechanism underlying the orbital Feshbach resonance in
AEL atoms. Finally, the physics of multiorbital quantum gases in optical lattices is discussed,
including relevant models such as the Kondo lattice model.

In Chapter 3, an overview of the experimental apparatus and relevant techniques used to
prepare and detect ultracold gases of ytterbium with electronic as well as nuclear spin degrees
of freedom is given. In particular, high-precision spectroscopy on the ultranarrow clock line in
a state-independent lattice is described in detail as it is the most central experimental technique
used throughout this work. The chapter ends with the measurement of the differential and
quadratic Zeeman shifts in 171Yb, which are important atomic properties for the experiments
presented in the following chapters.

In Chapter 4, a set of four measurements characterizing intra- and interorbital interactions
in 171Yb is presented. The s-wave scattering lengths corresponding to the interorbital pair
states and to the intraorbital pair state in the clock state are precisely determined via clock-
line spectroscopy at low magnetic fields. Furthermore, inelastic scattering in these states is
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probed by measuring their lifetime in optical lattices.
Chapter 5 reports on the first experimental observation of an orbital Feshbach resonance

in 171Yb. By means of clock-line spectroscopy at large magnetic fields, the energy of both
the least-bound state supported by the closed-channel interatomic potential as well as the
free open-channel pair state is measured. The resonance position, resonance width and back-
ground scattering length are characterized by fitting the data in the vicinity of the resonance
to an effective open-channel model. In a separate measurement, the position of the scattering
length zero-crossing is precisely determined as well.

Chapter 6 focuses on the least-bound interorbital molecular dimer state associated with
the orbital Feshbach resonance. The dimer is created via direct clock-line spectroscopy both in
a cubic and a single-axis optical lattice, exhibiting a large binding energy. A first-order state-
independent potential is engineered for the free-to-bound transition at a given optical lattice
depth by introducing a suitable differential light shift between the ground and clock states.

Chapter 7 concludes this work by briefly summarizing the most important findings ob-
tained throughout this thesis and gives an outlook about future prospects in exploring mul-
tiorbital many-body systems with antiferromagnetic spin exchange and tunable interorbital
interactions using 171Yb atoms.
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CHAPTER 2

Two-orbital physics with ultracold ytterbium
atoms

Alkaline-earth(-like) atoms such as ytterbium or strontium are a privileged platform for the
analog quantum simulation of two-orbital many-body physics as well as for the the imple-
mentation of state-of-the-art optical atomic clocks. In this chapter, we review the electronic
structure of ytterbium together with some relevant atomic properties, in particular for the
fermionic isotopes 171Yb and 173Yb. After that, a theoretical description of scattering between
atoms in the electronic ground and clock state is given, leading in particular to the orbital
Feshbach resonance mechanism which makes interorbital interactions tunable with an exter-
nal magnetic field. The physics of two-orbital quantum gases in optical lattices is described
as well, leading to the Kondo lattice model and mass-imbalanced Fermi-Hubbard models as
examples of possible implementations with fermionic ytterbium isotopes.

2.1 Ytterbium electronic structure and atomic properties

Ytterbium is a rare-earth element in the lanthanide series which has the atomic number Z = 70.
It has multiple stable isotopes, namely five bosonic ones with mass numbers A= 168, 170,172,
174 and 176 as well as two fermionic ones with A= 171 and 173. All bosonic isotopes have
a vanishing nuclear spin I = 0 while both fermionic isotopes 171Yb and 173Yb have non-zero
nuclear spins I = 1/2 and I = 5/2, respectively. Most isotopes have a relatively large natu-
ral abundance above 10%, which makes ytterbium very convenient for the almost seemless
switching between different isotopes in atomic physics experiments or for the study of inter-
isotope mixtures [96]. In particular, the isotope 171Yb used throughout this work has a natural
abundance about 14% [136].

In the ground state, ytterbium has an electron configuration given by [Xe]4 f 146s2, which
features a closed f shell. The resulting helium-like electronic structure is therefore mostly de-
termined by the two valence electrons in the outer 6s2 shell in the same way as in alkaline-earth
elements such as magnesium or strontium. For this reason, ytterbium is sometimes referred
to as an alkaline-earth-like element. In Fig. 2.1, we show the energy level diagram of the elec-
tronic states relevant to this work, also including the relevant electronic transitions. Similar
to the helium atom, the level diagram is split into two manifolds, the electronic spin-singlet
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Singlet manifold : S = 0 Triplet manifold : S = 1

Clock
transition
λ = 578.4 nm
Γ = 2 π × 6.9 mHza

λ = 649.1 nm
Γ = 2 π × 1.5 MHzd

Repumping
transition
λ = 1388.8 nm
Γ = 2 π × 0.3 MHzb 

Intercombination
line
λ = 555.8 nm 
Γ = 2 π × 183.8 kHzb

Zeeman
slower/
imaging
transition
λ = 398.9 nm
Γ = 2 π × 29.1 MHzc

(6s2) 1S0

(6s6p) 1P1

(6s6p) 3P0

(6s6p) 3P1

(6s7s) 3S1

(6s6p) 3P2

(5d6s) 3D1

Figure 2.1 – Relevant lowest-lying electronic states and optical transitions in 171Yb. We show the level
diagram (not to scale) including the relevant electronic orbitals for this work. Each electronic state is labeled
with its associated Russel-Sanders (RS) symbol 2S+1LJ , assuming bare LS eigenstates. The hyperfine struc-
ture is omitted for simplicity. Relevant electronic transitions are represented by colored double-arrows between
states. For each transition, the vacuum wavelength λ and natural linewidth Γ is specified. The values for Γ
are taken from Refs. [68]a,[137]b,[138]c and [139]d.

manifold with spin S = 0 and spin-triplet manifold with spin S = 1. In good approximation,
the electronic states can be labeled in Russel-Sanders (RS) notation 2S+1 LJ . This suggests bare
LS eigenstates where the electronic spin S, orbital angular momentum L and total electronic
angular momentum |L − S|< J < L + S are good quantum numbers.

Imaging and Zeeman slowing transition

Within an electronic spin manifold with S = 0 or S = 1, broad dipole-allowed transitions are
featured. One example is the 399 nm 1S0↔ 1P1 transition, which has a natural linewidth Γ =
2π×29.1MHz [138] and is almost closed, with negligible decay to other lower-lying electronic
states. In our experiment, the large linewidth and scattering rate make this transition well-
suited for Zeeman slowing and for in-situ absorption imaging of ground-state atoms.

Intercombination line

In contrast to transitions within an electronic spin manifold, transitions involving a spin flip
∆S = ±1 violate the electric dipole selection rules and are therefore strictly forbidden in a
pure LS coupling picture. However, this picture is not exact in ytterbium, which has a rather
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large atomic number Z , and a significant mixing between the 1P1 and 3P1 states originates
from spin-orbit coupling [140]. This induces a decay channel for the 3P1 state to the ground
state 1S0. As a result, a so-called intercombination line 1S0↔ 3P1 of wavelength 555.8 nm and
natural linewidth Γ = 2π×183.8 kHz [137] exists. This transition is closed and of intermediate
strength. It is therefore very suitable for the operation of the magneto-optical trap in our
experiment, providing a remarkably low Doppler temperature TD = ħhΓ/2kB = 4.4µK (where
kB denotes the Boltzmann constant) while ensuring a sufficiently large capture velocity. In our
experiment, this transition is also used for spin state preparation and detection.

Clock transition

Arguably the most remarkable transition in ytterbium and other alkaline-earth atoms such as
strontium is the 1S0↔ 3P0 transition, which is doubly forbidden in the LS coupling picture
as it violates the J = 0↮ J ′ = 0 selection rule in addition to the ∆S = 0 rule. In fermionic
isotopes with I ̸= 0, the hyperfine interaction leads to a small admixture of the 3P0, 3P1 and
3P2 states [140], ultimately yielding a finite coupling between the 1S0 and 3P0 states via the
coupling between 1S0 and 3P1 described above. The resulting 1S0 ↔ 3P0 transition occurs
at a wavelength λ = 578.4nm and has an extraordinarily small natural linewidth Γ = 2π×
6.9mHz [68].

This particularly narrow so-called «clock» transition has two important implications. On
one hand, its large optical frequency yields an impressive quality factor Q ∼ 1017 which makes
these atoms particularly promising in the context of optical atomic clocks [6] and credible
candidates to replace caesium in the definition of the SI second [131]. The very low sensi-
tivity of the 1S0 and 3P0 states to external magnetic fields owing to their zero total electronic
angular momentum J = 0 is a further important property for the implementation of optical
atomic clocks. In this work, we extensively use the narrow linewidth of the clock transition to
spectroscopically investigate interactions between ytterbium atoms in the 1S0 and 3P0 states.

On the other hand, the extremely small linewidth of the transition implies a remarkably
long lifetime above 10 s of the 3P0 state before decaying to the ground state, making the 3P0

«clock» state metastable. Consequently, both electronic states 1S0 and 3P0 can be used to
implement systems featuring an additional orbital degree of freedom, enabling the study of
two-orbital many-body physics with ytterbium atoms [69].

Other transitions

In addition to the three main transitions discussed above, we mention two other transitions rel-
evant to this work. First, the repumping transition 3P0↔ 3D1 of wavelength λ = 1388.8 nm
and linewidth Γ = 2π × 0.3MHz [137] is used in our experiment to repump atoms intially
in the 3P0 state back to the ground state in order to be imaged on the 1S0 ↔ 1P1 line. Fi-
nally, the broad 3P0↔ 3S1 transition at 649.1 nm is relevant for the calculation of the atomic
polarizability in the ground and in the clock state.
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171Yb 173Yb 174Yb

171Yb -2.8(3.6) -578(60) 429(13)
173Yb 199(2) 139(2)
174Yb 105(2)

Table 2.1 – Ground-state s-wave scattering lengths between ytterbium atoms in different isotopes. All
values are taken from Ref. [96] and in units of the Bohr radius a0. The bold numbers refer to scattering lengths
directly relevant to this work.

Nuclear spin states

Both 1S0 and 3P0 states have a zero total electronic angular momentum J = 0 such that their
total angular momentum F is directly given by the nuclear spin I . As a consequence, 173Yb
(I = 5/2) features six different spin states mF ∈ {−5/2,−3/2, . . . ,+5/2}while 171Yb (I = 1/2)
only has two different mF ∈ {±1/2}.

A central feature arising from J = 0 is that I is almost perfectly decoupled from J in both
1S0 and 3P0 states. This implies that the scattering properties of pairs with 1S0 and 3P0 atoms
are independent of the nuclear spin [69], with the exception of the Pauli exclusion principle
for Fermions. The interactions between two ytterbium atoms in 1S0 or in 3P0 can therefore
be described with a single s-wave scattering length. This property arises from the fact that
the total angular momentum is solely contained in the atomic nucleus and is therefore only
weakly affected by collisions occurring on the scale of the electronic cloud radius.

In particular, the decoupling between I and J involves an SU (N) spin symmetry of the
Hamiltonian describing an ultracold gas of ytterbium atoms, where N denotes the number of
different spin states [69]. The isotope 171Yb has N = 2, which leads to the usual SU (2) spin
symmetry occuring in electron gases and accessible with alkali atoms. On the other hand,
173Yb features a potentially large spin symmetry SU (N ≤ 6) arising from N = 6. This en-
ables the study of Fermi-Hubbard models with enhanced SU (3) color symmetry or even larger
SU (N) symmetries [89, 90], which are expected to show exotic magnetic ordering at low
temperatures [91–94].

Intra- and interisotope interactions

At ultracold temperatures where energies are low, interactions between two ytterbium atoms
in the ground state 1S0 or in the clock state 3P0 can be described by a single s-wave scattering
length owing to the interactions being independent of the mF spin state. In Table 2.1, we
show the most relevant ground-state intra- and interisotope scattering lengths for this work
measured by means of two-color photoassociation spectroscopy [96].

The extremely small scattering length in 171Yb is striking and in strong contrast with the
intermediate value in the other fermionic isotope, 173Yb. This feature is highly desirable in the
implementation of certain two-orbital many-body systems. One example is the Kondo lattice
model with ytterbium which is discussed in Section 2.3.3 and assumes vanishing interactions
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Figure 2.2 – State-dependent and state-independent potentials in 171Yb. We show the scalar light shift
Uac relative to the laser light intensity I0 for atoms in the 1S0 (blue solid lines) and 3P0 states (yellow solid
lines). The shifts are determined from the LS coupling estimate described in Ref. [142]. The dotted vertical
lines denote the atomic transitions 1S0 ↔ 3P1 and 3P0 ↔ 3S1 occuring at 556 nm and 649 nm, respectively.
The solid vertical black lines denote the wavelengths relevant to this work, the 1⃝ state-dependent lattice
wavelength (670 nm), 2⃝ magic wavelength (759.4 nm), 3⃝ light-shift-canceling wavelength (776.6 nm) for
the free-to-bound transition investigated in Chapter 6. The simple model used here does not predict the magic
wavelength where both light shifts are equal very accurately. For a better prediction, we refer to the calculation
presented in Ref. [143].

between ground-state atoms.

On the other hand, the almost zero ground-state scattering length in 171Yb presents an
experimental challenge when performing forced evaporative cooling on these atoms, which
consequently thermalize extremely slowly. A solution discussed in Section 3.1.3 is to evaporate
171Yb atoms together with 174Yb atoms to exploit the relatively large scattering length between
these isotopes.

Note that only the elastic scattering between ground-state ytterbium atoms is discussed
here. In Chapter 4, elastic as well as inelastic scattering in interorbital as well as in clock-state
pairs are comprehensively characterized.

State-dependent and state-independent potentials

Atoms trapped with laser light experience an ac Stark shift proportional to the light intensity
and to the atomic polarizability. In general, the polarizability depends on the wavelength of the
trapping light and on the electronic state of the atom. The dependence of the light shift relative
to the laser light intensity is shown in Fig. 2.2 for 171Yb atoms in the 1S0 and 3P0 states, follow-
ing a LS coupling estimate calculation described in Ref. [142]. In the vicinity of the 3P0↔ 3S1

transition at 649 nm, trapping potentials with large depth ratio between 1S0 and 3P0 atoms
can be engineered such as the state-dependent lattice (introduced in Section 3.1.1) in our
experiment, which operates at 670nm. These potentials are especially relevant when imple-
menting two-orbital Fermi-Hubbard models with distinct mobility between different orbitals
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such as the Kondo lattice model or the mass-imbalanced Fermi-Hubbard model introduced in
Section 2.3.

On the other hand, the so-called magic wavelength where both atomic polarizabilities are
equal is crucial in the context of precision spectroscopy, as discussed in Section 3.3.3. Nearly
all the experiments reported in this work are performed at this magic wavelength of 759.4nm,
with the only exception of the light-shift-canceling potential for the free-to-bound transition
reported in Chapter 6.

2.2 Interactions in two-orbital ultracold quantum gases

When using ultracold atoms as a platform for the analog quantum simulation of many-body
physics, interactions between atoms generally play a crucial role in the evolution of the sys-
tem and need to be well-understood. In this section, elastic scattering between two ultracold
atoms is described, leading to the introduction of the s-wave scattering length. This is a key
quantity containing most information about low-energy scattering in atomic samples. We then
move on to discuss how interorbital interactions between atoms in the electronic ground state
1S0 and clock state 3P0 take place in the specific case of 171Yb. In particular, we show how
both interorbital interaction channels lead to an orbital Feshbach resonance allowing to tune
interactions between 1S0 and 3P0 atoms with an external magnetic field.

2.2.1 Low-energy elastic scattering of atoms

Here, we consider scattering in a dilute gas of ultracold neutral atoms with density n. Atoms
are assumed to interact via a conservative short-range potential with characteristic length scale
r0 beyond which the potential rapidly vanishes, such as a van der Waals potential. If the
mean interparticle distance n−1/3 is much larger than r0, only two-body collisions need to be
considered. Assuming isotropic interactions, the potential V (r) is central and the problem
of two interacting atoms can in general be reduced to a single-particle potential scattering
problem in the center-of-mass frame following the Schrödinger equation

�

ħh2∇2

2mr
+ V (r)

�

ψ (r) = Eψ (r) , (2.1)

where mr is the reduced mass and r the relative coordinate for the two-body problem. At
large r →∞ such that V (r)→ 0, the asymptotically free solutions ψk (r) for the scattering
problem take the energy solutions Ek = ħh2k2/2mr , where k denotes the wave vector of the
scattered wave. A standard ansatz wavefunction fulfilling this boundary condition is

ψk (r) = eik·r + f (k,θ )
eikr

r
. (2.2)

The first term is an incoming plane wave while the second term describes an outgoing spherical
wave modulated with the scattering amplitude f (k,θ ). The scattering amplitude contains all
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the information about the scattering process and is related to the differential scattering cross
section via dσ/dΩ= | f (k,θ )|2. A partial-wave expansion of f (k,θ ) leads to

f (k,θ ) =
1

2ik

∞
∑

l=0

(2l + 1)
�

e2iδl − 1
�

Pl (cosθ ) , (2.3)

defining the scattering phase shift δl of the l th partial wave and the Legendre polynomial Pl (x)
of order l. For short-range potentials behaving as r−6 such as the van der Waals potential and
low energies k, the scattering phase shift varies as k2l+1 for l ∈ {0, 1} and as k4 for all higher
partial waves l ≥ 2 [144]. Therefore for k → 0 only the l = 0 term is relevant in the sum
in Eq. (2.3), the so-called s-wave. This is a good approximation for cold atomic ensembles
and means that at low energies the angular properties of the scattering cannot be resolved
anymore, leading to a scattering amplitude

f (k) =
1

k cotδ0 (k)− ik
. (2.4)

The s-wave phase shift can be expanded for low energies, leading to [144]

k cotδ0 (k)≈ −
1
a
+

1
2

reffk
2, (2.5)

which defines the s-wave scattering length a and the effective range reff representing the first
energy-dependent correction to the scattering amplitude.

In practice, when calculating low-energy properties of the system, details about the real
interatomic potential can be replaced by an effective potential yielding the same scattering
length a as the original problem, neglecting effective range contributions. A good choice is
the Fermi pseudopotential

V (r) =
4πħh2a
2mr

δ(3) (r) (2.6)

describing zero-range contact interactions.

2.2.2 The van der Waals potential

At large interatomic distances, the molecular interaction potential between two neutral atoms
is dominated by the attractive van der Waals potential defined for l = 0 as

VvdW (r) = −
C6

r6
(2.7)

and which is entirely characterized by the single C6 coefficient. Typical scales are defined by
the van der Waals length [33]

lvdW =
1
2

�

2mr C6

ħh2

�−1/4

(2.8)

and energy

EvdW =
ħh2

2mr l2
vdW

. (2.9)
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Remarkably, the two-body problem defined in Eq. (2.1) can be solved for any type of short-
range potential of the form V (r) = −α/rn using the semiclassical WKB approximation to
describe the atomic motion in the potential well. In the n= 6 case corresponding to a van der
Waals potential, the s-wave scattering length is given by the expression [145]

a = ā
h

1− tan
�

Φ−
π

8

�i

, (2.10)

defining the zero-energy semiclassical phase shift

Φ=

∫ ∞

r̃
dr
Æ

−2mV (r) (2.11)

where r̃ is the classical turning point obeying V (r̃) = 0. The mean scattering length ā is
defined as

ā =
p

2γ
Γ (3/4)
Γ (1/4)

≈ 0.956 lvdW

(2.12)

with the Gamma function Γ (x) and asymptotic parameter

γ=

√

√ 2mr

meC6
, (2.13)

where me denotes the electron mass. The corresponding mean energy is given by

Ē =
ħh2

2mr ā2
. (2.14)

In addition to the s-wave scattering length a, the effective range can be analytically calcu-
lated as well, yielding [145]

reff =
ā
3

�

Γ (1/4)
Γ (3/4)

�2 �

1− 2
ā
a
+ 2

�

ā
a

�2
�

. (2.15)

2.2.3 Two-orbital interaction channels

The concepts and derivations presented in Sections 2.2.1 and 2.2.2 are very general and apply
to a variety of scattering problems. Here, we move to the specific case of interactions between
171Yb atoms in the electronic ground state 1S0 and in the electronic clock state 3P0. We in-
troduce the notation |g〉 ≡ |1S0〉 and |e〉 ≡ |3P0〉 to describe the orbital state of one atom.
Similarly, we introduce the notation |↑〉 ≡ |mF = +1/2〉 and |↓〉 ≡ |mF = −1/2〉 to describe the
nuclear spin state of one atom.

Interactions between atoms in the same orbital X ∈ {g, e} are characterized by two intraor-
bital scattering lengths agg and aee. The corresponding interaction states are given by

|g g〉 ≡ |g g〉 ⊗ |s〉 ,

|ee〉 ≡ |ee〉 ⊗ |s〉 ,
(2.16)
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where the spin singlet state |s〉 = (|↑↓〉 − |↓↑〉)/
p

2 ensures that the the total wavefunction is
antisymmetric under particle exchange.

On the other hand, two interorbital pair states with one atom in |g〉 and one atom in |e〉 can
be defined with both orbital and spin degrees of freedom either symmetric or antisymmetric,
namely

|eg+〉=
1
p

2
(|eg〉+ |ge〉)⊗ |s〉 ,

|eg−〉=
1
p

2
(|eg〉 − |ge〉)⊗ |t〉 ,

(2.17)

with the spin triplet state |t〉 ∈
�

|↑↑〉 , |↓↓〉 , (|↑↓〉+ |↓↑〉)/
p

2
	

. Here, the corresponding interor-
bital s-wave scattering lengths are defined as a+eg and a−eg. Overall, only four s-wave scattering
lengths are required to fully describe all interaction channels. In order to characterize two-
orbital interactions in 171Yb, a±eg and aee need to be experimentally determined in addition to
agg, which has been measured in Ref. [96].

At zero magnetic field, where all spin states are degenerate, both interorbital pair states
defined in Eq. (2.17) are eigenstates of the Hamiltonian describing the two-body interactions.
The corresponding eigenenergies U±eg depend on the external potential and on the interorbital
scattering lengths a±eg. At finite magnetic fields B, however, a mixing between |eg+〉 and |eg−〉
is induced by the differential Zeeman shift between |g, mF 〉 and |e, mF ′〉 states. This effect,
which arises from the difference in the Landé g-factor for atoms in |g〉 and in |e〉, is explained
and characterized in detail for 171Yb in Section 3.4. The resulting interaction Hamiltonian in
the

�

|eg+〉 , |eg−〉
	

basis is [73]

Ĥ =

�

U+eg δ (B)
δ (B) U−eg

�

, (2.18)

where δ (B) = h×399.0 (1) Hz×B/2 is the differential Zeeman shift measured in Section 3.4.
Diagonalization of the interaction Hamiltonian in Eq. (2.18) in this basis leads to the eigenen-
ergies

E± (B) = V ± Vex

√

√

√

1+
�

δ (B)
Vex

�2

, (2.19)

defining the spin-exchange interaction energy

Vex =
U+eg − U−eg

2
(2.20)

and direct interaction energy

V =
U+eg + U−eg

2
. (2.21)

The energy branches resulting from Eq. (2.19) are shown in Fig. 4.3 for 171Yb atoms probed
using interaction spectroscopy measurements in a deep optical lattice. In Section 4.2, we use
the obtained energy branches to extract the interaction energies U±eg in a first step and finally
the fundamental interorbital scattering lengths a±eg in 171Yb in a second step.
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The eigenstates corresponding to E± (B) are given by

|ψ+eg〉=−
[Vex + c (B)]

p
2
q

δ (B)2 + V 2
ex + Vexc (B)

|eg+〉+
δ (B)

p
2
q

δ (B)2 + V 2
ex + Vexc (B)

|eg−〉 ,

|ψ−eg〉=−
[Vex − c (B)]

p
2
q

δ (B)2 + V 2
ex − Vexc (B)

|eg+〉+
δ (B)

p
2
q

δ (B)2 + V 2
ex − Vexc (B)

|eg−〉 ,
(2.22)

with c (B) =
q

δ (B)2 + V 2
ex. In the limit of large magnetic fields where δ (B) ≫ Vex, the

eigenstates of the interaction Hamiltonian in Eq. (2.18) become

|ψ+eg〉 → |eg ↑↓〉=
1
p

2

�

|eg−〉 − |eg+〉
�

=
1
p

2
(|e ↑〉 |g ↓〉 − |g ↓〉 |e ↑〉)

|ψ−eg〉 → |eg ↓↑〉=
1
p

2

�

|eg−〉+ |eg+〉
�

=
1
p

2
(|e ↓〉 |g ↑〉 − |g ↑〉 |e ↓〉) ,

(2.23)

with eigenenergies given by E± (B)≈ V ± sgn (Vex) |δ (B)|, where sgn (Vex) denotes the sign of
the spin-exchange interaction energy Vex.

2.2.4 Orbital Feshbach resonances

Magnetic Feshbach resonances [33] occuring in alkali atoms are an essential tool in cold atoms
experiments since they enable full control over the scattering length a between atoms in the
sample by simply tuning an external magnetic field. In particular, the strongly interacting
regime where |a| becomes very large can be explored in the vicinity of a Feshbach reso-
nance [11].

In a simple picture, we consider two cold atoms colliding with very small energy E and
featuring two interaction channels, an energetically accessible open channel |o〉 and an en-
ergetically inaccessible closed channel |c〉 with corresponding molecular potentials Vo (r) and
Vc (r). A Feshbach resonance occurs if both interaction channels are coupled and if the least-
bound state supported by the closed-channel molecular potential approaches the open-channel
entrance energy at long interparticle distances r. This is generally achieved by using an exter-
nal magnetic field B. Around a magnetically tuned Feshbach resonance, the s-wave scattering
length describing the interactions between both atoms takes the form [33]

a (B) = abg

�

1−
∆

B − B0

�

, (2.24)

where B0 is the resonance position, ∆ the resonance width and abg the background scattering
length.

In alkali atoms with electronic ground state 2S1/2, two interaction channels corresponding
to a spin singlet or triplet are available for the scattering process. At large magnetic fields B,
the relative energy between both channels varies linearly in B with a magnetic moment about
−2µB ≈ −2.8MHz/G [33]. This leads to a Feshbach resonance occurring at the magnetic field
B0 where the closed-channel bound state is brought into resonance with the energy of the
incoming atoms, as illustrated in Fig. 2.3(a).
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Figure 2.3 – Feshbach resonance mechanisms. The magnetic field dependence of the open- (solid black
lines) and closed-channel (solid red lines) interatomic molecular interaction potentials is shown in (a) usual
magnetic Feshbach resonances in alkali atoms and (b) orbital Feshbach resonances in alkaline-earth(-like)
atoms. In the case of magnetic Feshbach resonances, the open scattering channel corresponds to the spin
singlet state while the closed channel corresponds to the triplet state. The relative energy between both
channels can be tuned with an external magnetic field with a slope −2µB ≈ −2.8MHz/G, where µB denotes
the Bohr magneton. When the energy of the least-bound state supported by the closed channel (horizontal
dashed black line) is equal to the entrance energy of the open channel, a Feshbach resonance occurs and
the scattering length diverges. In the case of an orbital Feshbach resonance, the entrance energy of the
open channel |o⟩ = |eg ↑↓⟩ is tuned to enter in resonance with least-bound state |bc⟩ supported by the
closed channel |c⟩ = |eg ↓↑⟩. This is achieved by using the differential Zeeman shift, which induces a small
differential magnetic moment h × 399.0 (1) Hz/G between both channels.

The situation is different in alkaline-earth(-like) atoms such as ytterbium, which feature a
ground state 1S0 with J = 0. As already mentioned in Section 2.1, the zero total electronic
angular momentum leads to a strong decoupling between J and I implying a single scattering
channel for all collisions between two atoms in the same electronic state. Therefore, no mag-
netic Feshbach resonance is expected to occur in the 1S0 and 3P0 states in Yb. However, the
situation is different when considering scattering between one 1S0 atom and one 3P0 atom.
Here, two interorbital interaction channels |o〉 and |c〉 exist. At large atomic separations and
finite magnetic fields, they are given by the eigenstates of the Zeeman Hamiltonian |eg ↑↓〉
and |eg ↓↑〉 defined in Eq. (2.23), respectively, since the atoms are non-interacting (U±eg→ 0).
Here, the differential Zeeman shift introduced in Section 2.2.3 shifts down the entrance en-
ergy of the open channel |o〉 while shifting up the entrance energy of the closed channel |c〉.
This induces a differential magnetic moment δµ= h×399.0 (1) Hz/G between both scattering
channels.

At small atomic separations, interactions become dominant over the Zeeman shift, and the
open and closed channels are given by |eg+〉 and |eg−〉, respectively. The interaction part of the
Hamiltonian describing the scattering process can therefore be expressed using a regularized
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pseudopotential [103]

V̂ =
4πħh2

m

�

a+eg |eg+〉 〈eg+|+ a−eg |eg−〉 〈eg−|
�

δ(3) (r)
∂

∂ r
r, (2.25)

where m denotes the atomic mass. This yields in the {|o〉 , |c〉} basis [103]

V̂ = V̂d (|o〉 〈o|+ |c〉 〈c|) + V̂ex (|c〉 〈o|+ |o〉 〈c|) , (2.26)

with Vα =
�

4πħh2/m
�

aαδ
(3) (r) (∂ /∂ r) r. Here we have defined ad =

�

a+eg + a−eg

�

/2 and

aex =
�

a−eg − a+eg

�

/2. The second term in Eq. (2.26) describes interorbital spin exchange and
effectively couples both interorbital scattering channels |o〉 and |c〉. For ad > 0, a bound state
supported by the molecular potential of the closed channel always exists, with binding energy

εb = −
ħh2

ma2
d

. (2.27)

From the above, it appears that all requirements for a Feshbach resonance are fulfilled,
yielding a so-called orbital Feshbach resonance [103] such as illustrated in Fig. 2.3(b), which
has first been observed in 173Yb [105, 106]. In Chapter 5, we report on the first experimental
observation of an orbital Feshbach resonance in 171Yb.

The open-channel scattering length is determined by solving the Schrödinger equation for
the full Hamiltonian Ĥ = Ĥ0 + V̂ including the non-interacting Hamiltonian Ĥ0 and is given
by [103]

a (B) =
−ad +

Æ

mδ (B)/ħh2
�

a2
d − a2

ex

�

ad

Æ

mδ (B)/ħh2 − 1
, (2.28)

with the differential Zeeman shift δ (B)/h= B×399.0 (1) Hz for 171Yb. Using the interorbital
scattering lengths determined in Section 4.2 for 171Yb, a (B) such as described by Eq. (2.28)
diverges at a magnetic field B ≈ 536G corresponding to the expected position of the orbital
Feshbach resonance in this isotope. As reported in Chapter 5, we find the resonance to occur
at a much larger magnetic field B ≈ 1300 G. We explain this discrepancy by the very large
Zeeman shift on resonance, making the scattering amplitude highly sensitive to finite-range
effects which are not considered in Eq. (2.28).

Finally, we introduce the dimensionless resonance strength parameter, which is defined
as [33]

sres =
abg

ā
δµ∆

Ē
, (2.29)

with the resonance width ∆, background scattering length abg and differential magnetic mo-
ment δµ. The mean scattering length ā and mean energy Ē are defined in Eqs. (2.12) and
(2.14), respectively. This parameter allows to classify Feshbach resonances into narrow (or
closed-channel dominated) resonances for sres ≪ 1 and broad (or open channel dominated)
resonances for sres ≫ 1. Owing to the very small differential magnetic moments δµ involved
in orbital Feshbach resonances compared to the situation in magnetic Feshbach resonances,
these can be classified as very narrow despite featuring widths ∆∼ 100G.
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2.3 Two-orbital Fermi-Hubbard models

Optical lattices are an important tool for the study of many-body physics [9, 11, 12, 14] since
they realize periodic potential landscapes for ultracold atomic ensembles. Fermions in optical
lattices mimic the behavior of electrons in a crystal and allow for the quantum simulation
of the Fermi-Hubbard model. In alkaline-earth(-like) atoms, this Fermi-Hubbard model can
be generalized to feature two orbitals and SU (N) symmetry. Furthermore, optical lattices
are a key ingredient for precision spectroscopy measurements since they quantize the atomic
motion, see Section 3.3.2 for a detailed discussion. All the measurements reported in this work
have therefore been performed in an optical lattice.

2.3.1 Optical lattices

In cold atoms experiments, optical lattices are conveniently generated by interfering one or
multiple laser beams. A simple experimental implementation is to use a single retro-reflected
beam interfering with itself. In this case, the resulting potential is given by

V (r) =
∑

i={x ,y ,z}

−V0,i sin2 (kri) , (2.30)

where the inhomogeneous intensity profile of the laser generating the lattice potential is ne-
glected1. The potential along the axis i has a periodicity of λi/2, where λi denotes the wave-
length of the lattice laser along i. The lattice depth V0,i is proportional to the intensity I0 of the
lattice laser and is usually given in units of the lattice photon recoil energy Erec = ħh2k2

i /2m,
with wave vector ki = 2π/λi and atomic mass m.

Along a single lattice axis x , the non-interacting single-particle Hamiltonian for an atom
in an optical lattice is given by

Ĥ0 = −
ħh2∇2

2m
+ V (x) . (2.31)

Since the potential is spatially periodic, the solutions of the Schrödinger equation satisfy the
Bloch theorem and take the form

φq,n (x) = eiqx/ħhuq,n (x) , (2.32)

where q is the lattice momentum, n the lattice band, and uq,n (x) a function with the same
periodicity as the lattice. Expanding uq,n (x) as a discrete Fourier sum

uq,n (x) =
∑

l

c l
q,nei2lkx (2.33)

and inserting Eq. (2.33) into the Schrödinger equation yields the eigenenergy spectrum, which
can be obtained via numerical diagonalization [146].

1In Section 3.3.4, we show that the lattice inhomogeneity needs to be taken into account for certain applica-
tions.
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An important alternative orthonormal set of functions describing atoms in a lattice are the
so-called Wannier functions, which are defined as

wn, j (x) = wn

�

x − x j

�

=

∫ π/a

−π/a

dq
2π
φq,n (x) e

−iqx j (2.34)

on the lattice site j. These functions are localized around the lattice potential minima and
form a natural basis to describe on-site interactions and nearest-neighbor tunneling in deep
lattices.

In second quantization, the non-interacting Hamiltonian in Eq. (2.31) takes the form

Ĥ0 =

∫

dxΨ̂† (x)

�

−
ħh2∇2

2m
+ V (x)

�

Ψ̂ (x) , (2.35)

with the field operators Ψ̂ (x) =
∑

n,i w∗n,i (x) ân,i expanded in terms of the Wannier function
and annihilation operator ân,i on each lattice site i and band n. Limiting the problem to
nearest-neighbor tunneling yields the tight-binding Hamiltonian

Ĥ0 ≈ −t
∑

〈i, j〉

�

â†
i â j + h.c.

�

, (2.36)

defining the tunneling matrix element

t = −
∫

dxwn (x − x i)

�

−
ħh2∇2

2m
+ V (x)

�

w∗n (x − x i) (2.37)

which can be computed numerically. In Section 2.4, the interaction part of the Hamiltonian
is derived, see Eq. (2.48). Summing both contributions and taking into account the spin σ of
the atoms leads to the Fermi-Hubbard Hamiltonian

Ĥ = −t
∑

〈i, j〉,σ

�

â†
i,σ â j,σ + h.c.

�

+
U
2

∑

i,σ ̸=σ′
n̂i,σ n̂i,σ′ ., (2.38)

where n̂i,σ = â†
i,σ âi,σ is the number operator.

Finally, we note that in the limit of deep lattices, the on-site trapping potential experienced
by an atom can be approximated with an harmonic potential. Expanding the potential V (x)
around x = 0 yields the corresponding harmonic oscillator frequency

ωho =
2
p

s
ħh

Erec (2.39)

and harmonic oscillator length

aho =

√

√ ħh
mωho

, (2.40)

where s denotes the lattice depth V0 in units of Erec. Expanding the lattice potential up to
next-to-leading order x4 leads to a modified ground band (n= 0) energy

E0 =
�

2
p

s−
1
4

�

Erec (2.41)

containing the first energy correction −Erec/4 arising from the lattice anharmonicity. This
correction is independent of the lattice depth s.
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2.3.2 Two-orbital Fermi-Hubbard Hamiltonian

The Fermi-Hubbard Hamiltonian introduced in Eq. (2.38) can be generalized to the case of two
electronic orbitals α = {g, e} and SU (N)-symmetric interactions. The resulting two-orbital
Fermi-Hubbard Hamiltonian is given by [69]

Ĥ =−
∑

〈i, j〉,α,σ

tα
�

â†
i,α,σ â j,α,σ + h.c.

�

+
∑

i,α,σ ̸=σ′

Uαα
2

n̂i,α,σ n̂i,α,σ′

+ V
∑

i

n̂i,e n̂i,g + Vex

∑

i,σ,σ′
â†

i,g,σ â†
i,e,σ′ âi,e,σ′ âi,g,σ,

(2.42)

with the direct and spin exchange interaction energies V and Vex defined in Eqs. (2.21) and
(2.20), respectively. The on-site interaction energies Uαα are obtained from the fundamental
s-wave scattering lengths aαα using one of the methods discussed in Section 2.4. The first line
in Eq. (2.42) is similar to the single-band Fermi-Hubbard Hamiltonian in Eq. (2.38) in the g
and e orbitals. The second line, however, couples both orbitals and gives rise to two additional
terms. While the first term represents the direct interorbital on-site interactions, the second
term describes on-site spin-exchanging interactions. The ratio of the tunneling matrix element
te to tg can be readily tuned via the wavelength of the lattice laser, see Fig. 2.2, enabling the
use of so-called state-dependent lattices [75].

The two-orbital Hamiltonian in Eq. (2.42) is very general. By careful choice of the exper-
imental parameters, particular two-orbital models of interest can be engineered. In the next
sections, two examples of such models are introduced.

2.3.3 Kondo lattice model

The Kondo lattice model [147] describes in solid state physics the spin-exchange interactions
between mobile conduction electrons and strongly localized spins. It is the generalization of
the Kondo impurity model to a unit-filled lattice of localized magnetic impurities.

Starting from the general Hamiltonian in Eq. (2.42), one can set the lattice wavelength
such that |e〉 atoms are strongly localized with te ≈ 0 and ni,e ≈ 1 while keeping the |g〉 atoms
mobile. Furthermore neglecting the direct interaction term which corresponds to a constant
energy offset and assuming Ugg ≈ 0, the general Hamiltonian reduces to [69]

ĤKLM = −tg

∑

〈i, j〉,σ

�

â†
i,g,σ â j,g,σ + h.c.

�

+ Vex

∑

i,σ,σ′
â†

i,g,σ â†
i,e,σ′ âi,e,σ′ âi,g,σ, (2.43)

which corresponds to the Kondo lattice model Hamiltonian. In 171Yb, the very small s-wave
scattering length agg ≈ 0 in the ground state makes Ugg ≈ 0 a good approximation. In contrast,
a very shallow lattice for |g〉 atoms needs to be used in 173Yb in order to fulfill this condition.

The properties of the Kondo lattice model strongly depend on the sign of the spin exchange
interaction energy Vex. In 173Yb, Vex > 0, corresponding to ferromagnetic spin exchange in-
teractions [73]. This situation favors the formation of spin-triplet states between mobile con-
duction fermions and localized spins and is relevant for example in the context of colossal
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magnetoresistance [66, 67]. In 171Yb, the interorbital scattering lengths determined in Sec-
tion 4.2 imply Vex < 0, corresponding to antiferromagnetic spin exchange interactions. This
situation favors the formation of spin-singlet states between mobile and localized spins and
describes for instance heavy-Fermion behavior in metals [64, 98]. In the single-impurity limit,
the antiferromagnetic spin-exchange interaction gives rise to the Kondo effect [63] describing
the resistance minimum with temperature in metals with magnetic impurities [148].

2.3.4 Mass-imbalanced Fermi-Hubbard model

A second example of a model that can be derived from Eq. (2.42) is the mass-imbalanced
Fermi-Hubbard model with tunable interactions. In the presence of an external magnetic field
B, the differential Zeeman shift discussed in Section 3.4 strongly suppresses the spin-exchange
interactions and allows to tune interorbital interactions Ueg (B) using an orbital Feshbach res-
onance. If atoms are prepared in the single-particle states |e〉 ≡ |e ↑〉 and |g〉 ≡ |g ↓〉 corre-
sponding to the open interaction channel in 171Yb, the Hamiltonian in Eq. (2.42) becomes

ĤLH = −
∑

〈i, j〉

tα
�

â†
i,αâ j,α + h.c.

�

+ Ueg (B)
∑

i

n̂i g n̂ie, (2.44)

where the ratio between te and tg corresponding to a mass imbalance between |g〉 and |e〉
atoms can be tuned with the lattice laser wavelength. In 171Yb we furthermore have Ugg ≈ 0.
In a recent experiment [119], transport properties in the one-dimensional mass-imbalnced
Fermi-Hubbard model have been investigated using 171Yb atoms. In this measurement, the
orbital Feshbach resonance in 171Yb reported in Chapter 5 has played a central role.

2.4 On-site interaction models

Most measurements performed in this work consist in spectroscopically probing the inter-
actions between two ytterbium atoms subjected to various experimental conditions. The ob-
tained interaction energies, however, depend on these conditions such as the trapping po-
tential. In order to extract more universal quantities from our measurements such as s-wave
scattering lengths, suitable models for the interaction energy need to be used together with a
careful characterization of the experimental conditions.

In this section, two models which are extensively used in the following chapters to compute
the interaction energies of two ultracold atoms on a single lattice site are described.

2.4.1 Wannier functions overlap

In a first approach, the Hubbard on-site interaction energy corresponding to two indistinguish-
able atoms interacting in an optical lattice via a point-like pseudo-potential is used. Here, we
consider the general expression for the interaction Hamiltonian

Ĥint =
1
2

∫

dr Ψ̂† (r) Ψ̂†
�

r′
�

Û
�

r− r′
�

Ψ̂
�

r′
�

Ψ̂ (r) (2.45)
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in second quantization. The field operator Ψ̂ (r) can be expanded in terms of the corresponding
atomic wavefunction, leading to

Ψ̂ (r) =
∑

i

âiψi (r) , (2.46)

where âi is the annihilation operator for an atom and ψi (r) the atomic wavefunction, both
defined on a lattice site i. On the other hand, the interaction operator Û (r) is given by the
pseudo-potential

Û (r) =
4πħh2a

m
δ(3) (r) , (2.47)

where m denotes the atomic mass and a the s-wave scattering length defining the interaction
between the atoms. Inserting Eqs. (2.46) and (2.47) into Eq. (2.45) yields

Ĥint =
U
2

∑

i

n̂i (n̂i − 1) , (2.48)

defining the number operator n̂i = â†
i âi and the Hubbard on-site interaction energy

U =
4πħh2a

m

∏

i={x ,y ,z}

�∫

dr |ψi (r)|
4

�

, (2.49)

where we have assumed two identical particles with separable wavefunction
ψ (r) = ψx (x)ψy (y)ψz (z) along each spatial axis. Equation (2.49) is very general since it
does not explicitly take into account the specific potential the atoms undergo but only contains
the overlap of the atomic spatial wavefunctions. The external potential is indirectly taken into
account when making a particular choice for the wavefunction. In a cubic optical lattice, the
simplest choice is to assume both wavefunctions to be given by the ground-band Wannier
function

�

�w0,i (r)
�

� corresponding to a given lattice depth and wavelength along each lattice
axis i, leading to

U =
4πħh2a

m

∏

i={x ,y ,z}

�∫

dr
�

�w0,i (r)
�

�

4
�

. (2.50)

Equation (2.50) is only valid in the limit of small scattering lengths a and deep lattices,
where contributions from higher lattice bands are negligible. In general, these contributions
reduce the interaction energy U . If U is experimentally determined as in the measurements
reported in the following chapters, the corresponding s-wave scattering length a is therefore
underestimated when computing the interaction energy with Eq (2.50).

On-site inelastic scattering

In addition to the elastic on-site interactions described above, inelastic scattering occurs be-
tween atomic pairs, leading to a loss of these atoms. This is particularly relevant in the case of
atomic pairs in the electronic clock state 3P0 which show strong inelastic scattering as demon-
strated in Section 4.5. The on-site pair lifetime τX X ′ , where X and X ′ denote the electronic
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states of both atoms, can be obtained via [149]

(τX X ′)
−1 = 2βX X ′

∫

d3r |wX (r)|
2 |wX ′ (r)|

2 , (2.51)

assuming that both atoms are in the ground lattice band. Here, βX X ′ defines the two-body
loss-rate coefficient for atomic pairs in X and X ′. In Chapter 4, we characterize the two-body
loss-rate coefficient of interorbital pairs as well as of clock-state pairs in 171Yb.

2.4.2 Two ultracold atoms in a harmonic trap

A second approach to model interatomic interactions is to consider the exactly-solvable prob-
lem of two ultracold atoms in an isotropic harmonic trap interacting via a regularized contact
potential [150]. The Hamiltonian describing the motion of both atoms takes the general form

Ĥ = −
ħh2

2m
∇2

1 −
ħh2

2m
∇2

2 +
1
2

mω2r2
1 +

1
2

mω2r2
2 +

4πħh2a
m

δ(3)reg (r1 − r2) , (2.52)

where m is the atomic mass, ω the harmonic oscillator frequency of the trap and δ(3)reg (r) =
δ(3) (r) (∂ /∂ r) r the regularized Dirac delta function [151]. Since the kinetic and potential en-
ergy parts of the Hamiltonian are quadratic, the problem can be separated into center-of-mass
and relative motion. While the center-of-mass part of the problem leads to the usual har-
monic oscillator solutions for the Schrödinger equation, the solutions for the relative motion
are obtained by considering a wavefunction of the form

ψ (r) =
∞
∑

n=0

cnϕn (r) , (2.53)

whereϕn (r) denotes the harmonic oscillator wavefunction in state n. The resulting eigenergies
E are defined by [150]

p
2
Γ (−E/2ħhω+ 3/4)
Γ (−E/2ħhω+ 1/4)

=
aho

a
, (2.54)

where aho is the harmonic oscillator length defined in Eq. (2.40) and Γ (x) denotes the Gamma
function. The left-hand side of Eq. (2.54) vanishes for E = (1/2+ 2n)ħhω. On the other hand,
it diverges for the unperturbed oscillator levels E = (3/2+ 2n)ħhω corresponding to the non-
interacting case with a = 0.

In Fig. 2.4, the energy branches obtained from Eq. (2.54) are shown both as a function
of the scattering length a [Fig. 2.4(a)] and as a function of the inverse scattering length 1/a
[Fig. 2.4(b)]. In the measurement of the intra- and interorbital scattering lengths in 171Yb
reported in Chapter 4, the second-lowest-lying energy branch shown in Fig. 2.4(a) is used to
extract the scattering lengths from the measured on-site interaction energies. On the other
hand, both lowest-lying branches shown in Fig. 2.4(b) are probed in Chapter 5 to observe and
characterize the OFR in 171Yb.

In the limit of very deep lattices, Eq. (2.54) is a good model to describe on-site interac-
tions using the harmonic oscillator frequency defined in Eq. (2.39). However, at finite lattice
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Figure 2.4 – Exact energy solutions for two ultracold atoms in an harmonic trap. We show the three
lowest-lying energy branches solving Eq. (2.54) as a function of the (a) scattering length a and (b) inverse
scattering length 1/a. The energies are represented in units of the harmonic oscillator level spacing ħhω while
the scattering length is given in units of the harmonic oscillator length aho. Solid (dashed) horizontal gray lines
denote poles (zeroes) of the left hand side in Eq. (2.54). The green branch in (a) is used for the extraction of
the s-wave scattering lengths from the measured on-site interaction energies in Chapter 4. On the other hand,
the blue and red branches in (b) are probed in Chapter 5 to characterize the OFR in 171Yb. When comparing
these energies with our experimental data, the zero-point energy 3ħhω/2 is first removed. The uncorrected
energy branches are shown as solid lines while the energy branches corrected for the anharmonicity in a
30Erec optical lattice are shown as dashed lines.

depths, the lattice potential anharmonicity plays a significant role and needs to be taken into
consideration in the calculation of the on-site interaction energies. We do this by means of
first-order perturbation theory, expanding the lattice potential up to 8th order. The corrected
energies for a 30 Erec deep isotropic lattice are shown as dashed lines in Fig. 2.4.
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CHAPTER 3

Experimental methods

The experiments presented in this thesis are performed on quantum degenerate gases of 171Yb
atoms trapped in optical lattices. Complex experimental techniques are required to allow
for the reproducible production, manipulation and detection of samples. In this chapter, we
review the experimental methods used in the frame of this thesis. First, the production of
ultracold ytterbium gases is described, including an overview of our experimental setup and
cooling techniques. After that, all relevant methods for sample preparation and detection
are introduced, addressing both the electronic and the nuclear spin degrees of freedom. In
particular, clock-line spectroscopy in a state-independent optical lattice is discussed in detail
since it plays a central part in all experiments presented in the following chapters. Finally, a
measurement of the differential and quadratic Zeeman shifts on the clock transition in 171Yb
is reported as these atomic properties play an important role in the experiments presented in
this thesis.

3.1 Preparation of degenerate Fermi gases of ytterbium

The first step of our experiments is always the production of ultracold 171Yb quantum-degenerate
gases in a dipole trap. In this section, an overview of our experimental setup is given along
with a description of the cooling procedure, where atoms initially trapped in a magneto-optical
trap (MOT) are subsequently cooled by means of forced evaporative cooling. The implemen-
tation is more complex with 171Yb than with the other fermionic isotope, 173Yb. This is due
to the almost vanishing s-wave scattering length in the ground state, which hinders efficient
forced evaporative cooling and requires sympathetic cooling with another isotope, which we
have chosen to be 174Yb.

3.1.1 Experimental setup overview

Our experimental apparatus, which has been running for multiple years now, has undergone
numerous improvements over time and is currently in a mature stage where significant techni-
cal changes are made at a rather slower pace. The experimental setup is therefore only briefly
discussed in the following, with a focus on recent upgrades. For further technical details about
the setup, we refer to previous thesis works [142, 152–155].
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A schematic illustration of the experimental setup used in this thesis is shown in Fig. 3.1.
It consists of an ultrahigh vacuum system surrounded by multiple coils to generate magnetic
fields and numerous laser beams to address the atoms. The main part of the setup is an
octagonal stainless steel chamber with a background pressure around 10−11 mbar in which
the atoms are trapped and manipulated. In such an ultra-high vacuum, our degenerate Fermi
gases have a very long lifetime over 100s. The chamber features eight CF40 and two CF100
flange connections to ensure optimal optical access to the atoms. The atomic source is an oven
heated up to 400 °C and filled with small pieces of nearly-pure ytterbium metal containing all
isotopes with their natural abundance. Atoms exit the oven through a collimation section and
form an atomic beam with an average longitudinal thermal velocity about 340m/s.

The longitudinal atomic velocity is reduced by a Zeeman slower consisting of a counter-
propagating laser beam (ZS) addressing the broad 1S0→ 1P1 line and of a coil (CZS) generating
a spatially-dependent magnetic field. The atoms are subsequently cooled and trapped in the
center of the main chamber in a MOT operating on the narrow 556 nm 1S0→ 3P1 intercombi-
nation line. The trapping potential is generated by two pairs of coils running in anti-Helmholtz
configuration, the transverse (CTV) and MOT (CMOT) coils. Laser cooling in all spatial dimen-
sions is provided by six MOT beams, with a remarkably low Doppler temperature TD = 4.4µK
arising from the narrow linewidth 182kHz of the transition. In Helmholtz configuration, the
transverse coils produce a maximal horizontal magnetic field BTV = 25G at the position of the
atoms. The MOT coils, on the other hand, have been designed to withstand large currents and
we have generated vertical magnetic fields up to Bz = 1650 G using them.

After cooling in the MOT, atoms are transferred into a far-off-resonant crossed optical
dipole trap (xODT) consisting of two high-power 1064 nm horizontal (HDT) and vertical
(VDT) laser beams, in which forced evaporative cooling is performed to reach quantum de-
generacy. Two 759nm laser beams propagating horizontally (mHDT) and vertically (mVDT)
are employed as additional optical dipole traps, presenting the advantage of operating at the
magic wavelength of the clock transition (see Section 3.3.3) such that both electronic states 1S0

and 3P0 experience the same trapping potential. A set of three perpendicular retro-reflected
759nm beams (L1, L2 and L3) generates a cubic magic-wavelength optical lattice with a max-
imal average depth about 40 Erec, where Erec denotes the lattice photon recoil energy, in which
the atoms are finally loaded to perform our experiments.

The electronic state of the atoms is manipulated with resonant 578nm light addressing
the clock transition. Three clock-laser beam paths are employed, each of them aligned with
one lattice axis (clock L1, clock L2 and clock L3) to operate in the Lamb-Dicke regime (see
Section 3.3.2).

Two 399 nm beams are used for absorption imaging of the sample (see Section 3.2.2). A
first horizontal beam (img hor) enables time-of-flight imaging from the side after free expan-
sion from the trap, and is recorded on a CCD camera with low magnification (3.9 µm/px).
A second vertical beam (img ver) is dedicated to high-resolution in-situ imaging in the trap
and is recorded on an EMCCD camera with a magnification of 0.47 µm/px. In addition, a
1389nm repumper laser allows for separate imaging of 1S0 and 3P0 atoms (see Section 3.2.2)
and a 556nm optical Stern-Gerlach (OSG) beam enables nuclear spin state detection after
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Figure 3.1 – Overview of the experimental setup. Sketch of the relevant laser beam paths and coils, shown
(a) from the top and (b) from the side (not to scale). The magnetic fields BTV and BMOT are generated by
the transverse (CTV) and MOT (CMOT) coils running in Helmholtz configuration, respectively. This figure is an
update of the setup presented in Ref. [142], with an additional clock laser path along the lattice axis L2. A brief
description of each part of the setup is given in the main text.
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time-of-flight expansion (see Section 3.2.4). Note that one full experimental cycle, which en-
compasses the production, manipulation and detection of an experimental sample, lasts about
30 s and needs to be be repeated for every data point taken in a measurement because of the
destructive nature of our detection method.

Finally, our setup also features a 670nm state-dependent optical lattice (SDL) as well as
a 556 nm molecular photoassociation (PA) beam which have been used in previous projects
but not in the frame of this thesis. In a recent upgrade, a 759nm vertical accordion lattice
has been added to the setup with a large spacing of ≈ 3.5µm in which atoms can be loaded
in one single plane from our xODT. This enables the study of clean two-dimensional systems
without the need to average over multiple lattice planes when performing in-situ imaging and
is an important step towards the realization of a quantum gas microscope featuring single-
lattice-site imaging resolution [29–31, 156, 157]. The experiments presented in this thesis
have nevertheless been performed before this upgrade, which has therefore been omitted in
Fig. 3.1. A detailed description of our new vertical lattice can be found in Ref. [158].

3.1.2 Two-isotope magneto-optical trap

The ground-state s-wave scattering length a171
g g = −2.8 (3.6) a0 [96] in 171Yb, where a0 de-

notes the Bohr radius, is strikingly small in comparison to the situation in 173Yb, with a173
g g =

199.4 (21) a0 [96]. While being a great feature for the study of certain Fermi-Hubbard models
such as the Kondo lattice model [69, 82–84], this also results in an extremely slow thermal-
ization rate and precludes efficient forced evaporation cooling in our xODT. This problem can
be circumvented by sympathetically cooling 171Yb atoms together with atoms of another iso-
tope. As can be read from Table 2.1, 173Yb and 174Yb stand out as good potential candidates
and have both already successfully been used in other experiments to create degenerate 171Yb
Fermi gases [86, 159].

In our experiment, we have implemented a two-color MOT working on the 1S0→3 P1 inter-
combination line to trap 171Yb together with 174Yb atoms, yielding an inter-isotope scattering
length a171−173

g g = 429 (13) a0 [96]. We use a single laser resonant with the 171Yb transition
together with an electro-optical modulator (EOM). The laser frequency is modulated by the
EOM with a modulation frequency of 3.8 GHz corresponding to the isotope shift between 171Yb
and 174Yb. This creates a frequency sideband resonant with the transition in 174Yb while the
carrier frequency still addresses the 171Yb line, allowing for simultaneous trapping and cooling
of both isotopes in the MOT.

The experimental sequence for loading both isotopes in the MOT is sketched in Fig. 3.2(a)
and is implemented as follows. First, 171Yb atoms are loaded in the MOT by setting the ZS
frequency on resonance with the 1S0→1 P1 transition in 171Yb and keeping the EOM off. After
8 s of 171Yb loading time, the EOM is switched on and the ZS frequency tuned to the 174Yb
frequency such that 174Yb atoms are loaded in the MOT. In the meanwhile, sufficient power is
kept in the carrier frequency component to hold the 171Yb atoms in the trap. After 4 s of further
loading time, the MOT is compressed and≈ 1.0×106 171Yb as well as≈ 1.5×106 174Yb atoms
are loaded into our xODT to perform evaporative cooling. Further technical details about our
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Figure 3.2 – Preparation of quantum degenerate gases of 171Yb. (a) Sketch of our two-color MOT cooling
sequence (not to scale). Both isotopes 171Yb and 174Yb are consecutively loaded in the MOT in two main
steps: 1⃝ 171Yb atoms are captured and cooled during 8 s using a ZS and MOT addressing the corresponding
transitions in 171Yb, 2⃝ The ZS is tuned to the 174Yb transition frequency and the MOT is frequency modulated
by an EOM generating a sideband addressing the transition in 174Yb, thereby enabling the simultaneous trap-
ping of both 171Yb and 174Yb atoms in our MOT. (b) Forced evaporation cooling sequence after transferring the
atoms from the MOT into our xODT. The power in the HDT and in the VDT is shown as a function of time, with
the lowest value of the HDT defining the evaporation threshold Pevap. By varying Pevap, both the final (c) atom
number and (d) sample temperature can be tuned. In our experiments, between 2 × 104 and 3 × 104 171Yb
atoms are typically prepared at a temperature T/TF ≈ 0.25 with < 102 174Yb atoms remaining in the trap,
where TF denotes the Fermi temperature of the gas. Error bars denote the standard error of two consecutive
measurements.

two-color MOT and the preparation of quantum degenerate 171Yb gases in our experiment can
be found in Ref. [141].

3.1.3 Sympathetic cooling in a crossed optical dipole trap

After cooling in the MOT, the atoms are transferred into the 1064nm xODT. The vertical VDT
beam is circular with a waist w0 = 168µm while the horizontal HDT beam is strongly ellipti-
cal with horizontal and vertical waists w0,y = 154µm and w0,z = 20µm, respectively [142].
The initial power in the HDT is 7W while it is 0.7 W in the VDT, leading to trapping frequen-
cies ωx = 2π × 10 Hz, ωy = 2π × 88 Hz and ωz = 2π × 678Hz along the axes defined in
Fig. 3.1. The power in the HDT is subsequently ramped down to a value Pevap following the
nearly exponential ramp sketched in Fig. 3.2(b), which is very similar to the one used for the
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evaporation of 173Yb atoms in our experiment [152]. During this time, the VDT is ramped
up to a maximal power of 7W to compensate for the decrease of ωx and ωy when ramping
down the HDT, thereby maintaining a sufficient collision rate in the xODT. The evaporation
threshold Pevap can be varied to set the final atom number and sample temperature, as shown
in Fig. 3.2(c-d). Fortunately, for sufficiently low values of Pevap only a negligible amount of
174Yb atoms can be detected, essentially leaving only 171Yb atoms in the trap at the end of the
evaporation. To ensure that no 174Yb atoms remain at the end of the evaporation, a short pulse
resonant with the 1S0→ 1P1 transition in 174Yb can be used, thereby kicking all residual 174Yb
atoms out of the trap. In our experiment, we typically work with samples between 2× 104 to
3× 104 171Yb atoms at a temperature T/TF = 0.25, where TF denotes the Fermi temperature
of the gas. At the end of the evaporation, typical trapping frequencies are ωx = 2π× 25 Hz,
ωy = 2π× 21Hz and ωz = 2π× 152Hz, leading to a final trap depth below 1µK. Atoms are
then adiabatically loaded into the cubic optical lattice in which our experiments are performed
(see Section 4.1). Typical sample temperatures are low enough to ensure that all atoms are
in the motional ground state of each lattice site. We have verified this by means of sideband-
resolved clock-line spectroscopy in the lattice (see Section 3.3.2).

3.2 State preparation and detection

Throughout our experiments, the two main atomic internal degrees of freedom probed are
the electronic state, in particular the ground state 1S0 and the clock state 3P0, and the nuclear
spin, which can take the values mF = ±1/2 for 171Yb atoms in 1S0 and 3P0. The ability to reli-
ably prepare and probe the state of an atomic sample therefore is of paramount importance to
ensure well-defined and reproducible experimental conditions. In this section, the techniques
used in our experiment for state preparation and detection are presented. The electronic de-
gree of freedom is prepared by directly addressing the clock transition with a narrow-linewidth
laser and is probed by separately detecting ground- and clock-state atoms by means of absorp-
tion imaging. On the other hand, the nuclear spin degree of freedom is prepared via an optical
pumping scheme on the intercombination line and is probed using an optical Stern-Gerlach
technique.

3.2.1 Addressing the clock transition

The electronic state of the atoms is manipulated by directly driving the 1S0→ 3P0 clock tran-
sition with a resonant light pulse of wavelength 578.4nm. To resolve interaction shifts ∼ kHz
to the clock transition frequency, the laser addressing the transition should have a significantly
narrower linewidth ∼ 100Hz. While remaining orders of magnitude above the current state
of the art in the context of atomic clock experiments, where linewidths ∼ 100 mHz have been
achieved [160], these requirements still demand significant care in the design of our clock
laser.

The laser source used to drive the clock transition is a 1156.8 nm external cavity diode
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laser1 developed in-house and featuring an output linewidth below 100 kHz. The laser light
is amplified by a commercial tapered amplifier (TOPTICA BOOSTA PRO) and is subsequently
frequency-doubled to 578.4 nm using a non-linear PPLT crystal in a bow-tie cavity, leading to
a maximal available power Pmax ≈ 100mW at the position of the atoms. A high-finesse refer-
ence optical cavity consisting of two mirrors separated by an ultra-low expansion (ULE) glass
spacer is used to stabilize the laser via the Pound-Drever-Hall technique [162, 163]. A digital
PID controller stabilizes the spacer temperature to a value corresponding to the minimum of
its linear thermal expansion coefficient. The cavity is located in a vacuum chamber with a
pressure ≈ 10−6 mbar which itself lies on a passive vibration-damping stage, thereby isolating
it from the environment. Using a high-bandwidth control loop, this allows to reduce the laser
linewidth to about 100Hz after frequency doubling. The clock transition frequency is then
calibrated in a magic-wavelength optical lattice as absolute reference. The cavity features a
linear frequency drift of 1.98kHz/day, which is compensated by our cavity offset lock. Resid-
ual non-linear drifts, which are on the order of 100Hz/day are canceled by means of daily
clock-line spectroscopy calibration measurements. Further technical details about our clock
laser setup can be found in Refs. [152, 164].

Our experimental setup features three independent clock laser beam paths, each copropa-
gating along one of the lattice axes L1, L2 and L3 (see Fig. 3.1) and thereby allowing for oper-
ating in the Lamb-Dicke regime (see Section 3.3.2). While the paths along L2 and L3 are solely
used to calibrate our optical lattice (see Section 3.3.4), the L1 path is used as main axis along
which all other measurements are performed. Along this axis, the clock laser beam has a waist
w0 ≈ 200µm [142], leading to a maximum light intensity Imax = 2Pmax/πw2

0 ≈ 150W/ cm2.
Furthermore, since the beam waist is much larger than typical cloud sizes ≈ 30µm, the light
intensity is near-constant over the extent of the cloud.

During the clock pulse, a small bias magnetic field B ≈ 1G is generated along the vertical
axis at the position of the atoms to preserve the quantization axis, using the low-current shim
coil. Larger magnetic fields are generated using both MOT coils running in Helmholtz con-
figuration. Initially limited to B ≈ 1200G by the maximal output current 220A of the power
supply, the range of accessible magnetic fields has been extended by operating an additional
power supply in parallel. With this upgrade, the magnetic field can theoretically take values
up to B ≈ 1800 G, limited by the maximal voltage 30 V of the power supply. In practice, we
have generated magnetic fields up to 1650G during 1s using our MOT coils, thereby heating
them up to reasonable temperatures < 40 °C. Such large fields are required to observe the or-
bital Feshbach resonance in 171Yb (see Chapter 5). In a vertical magnetic field, the clock laser
light along the L1 path is linearly polarized. An additional pair of λ/2 and λ/4 waveplates
mounted on a flip mount allows for convenient switching to a circular polarization without
any other change to the experimental configuration, and has been used for the measurements
presented in Section 3.4.

1In a recent upgrade to the experiment, we have replaced our seed laser with a commercial amplified diode
laser (TOPTICA TA PRO), leading to enhanced lock stability. Further details can be found in Ref. [161].
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3.2.2 Strong saturation absorption imaging

The only directly accessible observable in our experiment is the atomic density distribution,
which we access via the standard absorption imaging technique [165]. The in-situ column
density distribution is measured by illuminating the atomic cloud with a vertically propagating
circularly polarized laser beam resonant with the |1S0, F = 1/2〉 → |1P1, F = 3/2〉 transition
for a short time ∆t. We use high intensity pulses with ∆t = 15µs, which minimizes atomic
motion during the pulse while providing sufficient light to fully penetrate the atomic cloud.
At the position of the atoms, the beam waist is about 220µm, such that the intensity of the
imaging light can be considered constant over the spatial extent of the atomic cloud, which is
typically about 30µm. During the imaging pulse, a small vertical bias field of 1G is applied to
define a quantization axis while keeping the Zeeman splitting of the hyperfine mF states very
small compared to the linewidth of the atomic transition. The beam is imaged in the atomic
plane using a high-resolution quadruplet-lens objective with numerical aperture NA = 0.27,
which allows for a diffraction-limited resolution of 1.3µm [153]. In reality, imperfections
in our imaging system such as astigmatism and spherical aberrations limit the resolution to
≈ 3µm [118], a value determined after reconstructing the image response function from local
density fluctuation measurements2 [166].

The image is recorded on an EMCCD camera sensor, with an image magnification γ =
0.47µm/px [153]. Neglecting imperfections such as photon noise, dark noise or read noise,
the number of counts C (i, j) recorded by the sensor on each pixel of position (i, j) is propor-
tional to the incident light intensity I (i, j) and can be expressed as

C (i, j) = CP (i, j)QE g, (3.1)

where CP (i, j) = I (i, j)γ2∆t/ħhω is the number of photons hitting the pixel during the pulse,
ω the frequency of the imaging light, QE the quantum efficiency of the detector and g the
electron-multiplying gain of the camera. The quantum efficiency represents the fraction of
photons converted into electron-hole pairs that are successfully detected by the device.

The imaging light intensity, propagating along the axis z, undergoes an attenuation through
atomic absorption which can be described as

dI
dz
= −σ

I (r)

1+
I (r)
Isat

n (r) , (3.2)

where n (r) denotes the atomic density distribution, σ the effective absorption cross-section
and Isat the effective saturation intensity. Using the resonant absorption cross-section σ0 =
6πc2/ω2 for a two-level system, we can write σ = σ0/α, where α > 1 accounts for imperfect
polarization of the imaging beam, the multi-level structure of the atom or residual detuning
of the imaging light [167]. The correction factor α effectively reduces the absorption cross-
section σ and has to be determined experimentally since it depends on the specific conditions

2We have recently added a cylindrical lens in the imaging path to compensate for astigmatism. This has im-
proved the imaging resolution to ≲ 2µm. However, the experiments presented in this thesis have been performed
with a resolution of ≈ 3µm.
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in which the imaging is performed. Similarly, we have Isat = αI0
sat, where I0

sat denotes the
two-level saturation intensity. Integrating Eq. (3.2) along z through the entire extent of the
cloud leads to [167]

nc (x , y) =
α

σ0

�

ln
�

Ii (x , y)
If (x , y)

�

+
Ii (x , y)− If (x , y)

αI0
sat

�

, (3.3)

defining the imaging light intensity profiles Ii (x , y) and If (x , y) before and after hitting the
atoms, respectively, as well as the atomic column density nc (x , y) =

∫

n (r)dz, which is the
observable measured in our experiment. Note that Eq. (3.3) is valid for any light intensity, in
particular in the saturated regime where I ≳ Isat as well. In terms of counts recorded by each
camera pixel, Eq. (3.3) takes the form

σ0nc (i, j) = α ln
�

Ci (i, j)
Cf (i, j)

�

+ β [Ci (x , y)− Cf (x , y)] , (3.4)

with β = 1/
�

C0
sat∆t

�

, where C0
sat = I0

satγ
2QE g/ħhω denotes the count rate per pixel correspond-

ing to a light intensity I0
sat. We estimate this quantity by comparing the peak counts recorded

by the camera for a given pulse time to the corresponding peak intensity in units of I0
sat, leading

to C0
sat ≈ 75.3 MHz.
In practice, the column density distribution is reconstructed by taking three images. First,

an imaging pulse is performed in the presence of the atoms. This leads to the measurement
of Cf (i, j) on the camera sensor and removes all atoms from the trap because of the large
associated photon recoil energy. After that, a second identical imaging pulse is performed
in the absence of atoms, giving access to Ci (i, j). Finally, a third image Cbg (i, j) is taken in
the absence of imaging light to take into account any background light illumination such that
Ci,f (i, j) → Ci,f (i, j) − Cbg (i, j). On Fig. 3.3(a), a typical absorption image of ground-state
171Yb atoms is shown.

Imaging clock-state atoms

The absorption imaging technique used in our experiment only allows for the detection of
atoms in the electronic ground state 1S0. However, our experiments also involve atoms in the
clock state 3P0, which need to be detected as well. In principle, the clock-state population
can be indirectly probed via the loss of ground-state atoms. The signal-to-noise ratio is then
limited by shot-to-shot fluctuations in the total atom number arising from sample preparation,
making in particular small fractions of atoms in the clock state undetectable.

To circumvent this issue, we repump clock-state atoms back to the ground state by driving
the 3P0→ 3D1 transition with a laser of wavelength 1389nm. Technical details about the setup
can be found in Ref. [168]. Atoms in the 3D1 state decay to the 3P0, 3P1 and 3P2 states, with
branching ratios of 0.64, 0.35 and 0.01, respectively. From the 3P1 state, atoms quickly decay
to the ground state, achieving a theoretical maximum repumping efficiency after multiple
cycles of 97.5% [168, 169], which is only limited by the fraction of atoms ending up in the
dark metastable 3P2 state. In practice, we measure a repumping efficiency of 70.5 (5.1)% by
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Figure 3.3 – Strong saturation absorption imaging of ground- and clock- state atoms. We show the
atomic column density in a cubic optical lattice in units of µm−2 measured via absorption imaging of (a)
ground-state and (b) clock-state atoms repumped back to the ground state, both imaged separately at the end
of one experimental cycle. The total number of atoms in each state is obtained by summing up the column
density in each pixel. (c) Schematic representation of the imaging sequence in our experiment (not to scale).
A first imaging pulse 1⃝ is performed, addressing the atoms in the ground state. A 500µs repumper pulse
subsequently brings about 70% of the clock-state atoms back to the ground state, which are imaged separately
by a second imaging pulse 2⃝. After that, two additional imaging pulses 3⃝ and 4⃝ are performed without
atoms as reference. (d) High-intensity imaging calibration. The relative standard deviation of the atom number
measured with various imaging light intensities is shown as a function of the parameter α in Eq. (3.4) (solid
lines). The optimum value α = α∗ (circles) minimizes the standard deviation. We measure α∗ for samples
with nuclear spin mF = ±1/2,+1/2,−1/2 and for repumped atoms. The gray vertical line indicates the
uncorrected case α = 1.

comparing the sum of repumped atoms detected after exciting all atoms to the clock state to
the initial ground-state atom number.

The imaging sequence allowing for separate detection of 1S0 and 3P0 atoms in our exper-
iment is sketched in Fig. 3.3(c). After detecting the ground-state atoms with a first imaging
pulse, a 500µs repumper pulse is performed and the clock-state atoms are subsequently de-
tected with a second imaging pulse. After that, a third and fourth imaging pulses are per-
formed in the absence of atoms as reference Ci (i, j). A single background image Cbg (i, j) in
the absence of light is taken every day before taking data.

Experimental determination of the imaging parameter α

The parameter α in Eq. (3.4) is experimentally determined by requiring the total atom number
to be independent of the imaging light intensity [167]. We take multiple images with different
probe intensities and choose the value of α = α∗ that minimizes the atom number variance,
as is shown in Fig. 3.3(d). We measure α∗ for samples with mF = +1/2, mF = −1/2, mF =
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±1/2 as well as for repumped clock-state atoms, and obtain α∗ = 1.36, α∗ = 1.33, α∗ =
1.43 and α∗ = 1.30, respectively. These values are significantly lower than for 173Yb in our
experiment [118], which can be attributed to the simpler hyperfine structure in 171Yb.

Time-of-flight imaging

In addition to vertical in-situ imaging, our experimental setup also allows for the horizontal
imaging of atoms after a given time of flight with all traps switched off, giving access to their
momentum distribution. This technique is used in this work to determine the temperature of
the sample and to perform optical Stern-Gerlach spin state detection (see Section 3.2.4).

3.2.3 Nuclear spin state preparation

In the experiments reported in this thesis, spin-balanced as well as spin-polarized samples are
used. This requires an optical pumping scheme enabling the preparation of any desired nuclear
spin state mixture. In the absence of optical pumping, the sample is fully spin-unpolarized at
the end of the evaporation in the crossed dipole trap [152] and consists of atoms in the elec-
tronic ground state 1S0 in a balanced statistical mixture of both nuclear spin states mF = ±1/2.
This configuration is typically used when two-body interactions are probed, as for example in-
terorbital interactions. On the other hand, it is advantageous to prepare spin-polarized samples
when probing single-particle physics, such as bare clock transition lines, which are important
references in our measurements. This allows for a clean sample with a well-identified nuclear
spin state, removes interaction-induced effects and maximizes the signal-to-noise ratio since
all atoms are addressed by the same clock laser frequency even at finite magnetic fields.

The optical pumping scheme used in our experiments is based on a single light pulse driving
the |1S0, F = 1/2〉 → |3P1, F ′ = 3/2〉 transition. The degeneracy of the hyperfine states mF in
the |3P1, F ′ = 3/2〉 manifold is lifted by applying a bias magnetic field of B = 50 G along the
vertical axis, which is produced by both MOT coils running in Helmholtz configuration. One
of the circularly polarized vertical MOT beams is then used to drive the transition, depending
on the nuclear spin state to be prepared. To prepare a spin-polarized sample in the mF =
+1/2 state, we drive the |1S0, mF = −1/2〉 → |3P1, mF = +1/2〉 transition with σ+-polarized
light (top MOT beam), as illustrated on Fig. 3.4(a). Similarly, all atoms are prepared in the
mF = −1/2 state by driving the |1S0, mF = +1/2〉 → |3P1, mF = −1/2〉with σ−-polarized light
(bottom MOT beam), as shown on Fig. 3.4(b). The optical pumping pulse is performed at the
beginning of the evaporation, before starting to ramp down the horizontal dipole trap, in order
to ensure a minimal effect on the final sample temperature.

The response of the system to an optical pumping pulse as a function of the driving fre-
quency is displayed in Fig. 3.4(c) for various magnetic fields, showing that the sample can
be fully spin-polarized for resonant pulses. In particular, a magnetic field of 50G ensures a
sufficient hyperfine splitting to address single transitions. From Fig. 3.4(c), the linear Zee-
man shift of atoms in the 3P1 state can be determined, as shown in Fig. 3.4(d), leading to
a shift of 1.414(6)MHz/ (G×mF ). This is in excellent agreement with the expected value
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Figure 3.4 – Nuclear spin state preparation with optical pumping. (a)-(b) Optical pumping schemes for the
preparation of spin-polarized samples with atoms in the states |1S0,mF = +1/2⟩ and |1S0,mF = −1/2⟩,
respectively. The optical pumping pulses are performed with resonant σ+ and σ−-polarized light on the
|1S0,F = 1/2⟩ → |3P1,F ′ = 3/2⟩ transition, respectively (solid green lines). Dashed green lines denote
possible decays via spontaneous emission. Solid black lines show the relevant hyperfine energy levels at finite
magnetic fields B (not to scale), compared to the situation for B = 0 (dashed grey lines). The Zeeman shift
for atoms in the electronic ground state 1S0 is three orders of magnitudes smaller than in the 3P1 state and
is therefore omitted. (c) Relative population in the mF = +1/2 (diamonds) and mF = −1/2 (circles) spin
states after a σ+- (right panel) and σ−-polarized (left panel) optical pumping pulse as a function of the laser
detuning with respect to the transition frequency at zero magnetic field. We show data taken at B = 10G,
40G and 75G. Solid lines denote Lorentzian fits to the data. The relative populations are measured using
the optical Stern-Gerlach technique introduced in Section 3.2.4. (d) Shift of the σ− (red) and σ+ (blue) lines
extracted from fits to data as shown in (c). Solid lines are linear fits to the data points, corresponding to a linear
Zeeman shift of ±707(3) kHz/G for the mF = ±1/2 states.
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Figure 3.5 – Optical Stern-Gerlach (OSG) nuclear spin state detection. (a) Working principle of the OSG
detection method. A σ+-polarized horizontal laser beam blue-detuned with respect to the |1S0,F = 1/2⟩ →
|3P1,F = 3/2⟩ transition is shone on the atoms in an external magnetic field BTV. The center of the beam
is shifted vertically with respect to the atoms to maximize the intensity gradient experienced by the atoms,
which yields a spin-dependent vertical force F (mF ). After a certain time of flight, this divides the cloud
into two regions corresponding to both nuclear spin states that can then be separately detected. The z axis
corresponds to the direction of gravity. (b) OSG detection image of a spin-unpolarized sample, showing a clear
separation in two equally populated clouds corresponding to each nuclear spin state mF = ±1/2. (c)-(d)
OSG detection image of spin-polarized samples prepared in mF = −1/2 and mF = +1/2, respectively. No
residual atoms are observed in the undesired spin state.

µB gF = 1.4 MHz/ (G×mF ), with the Landé g factor gF = 1 for the |3P1, F ′ = 3/2〉 state and
Bohr magneton µB. Here, the Zeeman shift of the ground state is neglected since it solely
arises from the nuclear spin and is thus three orders of magnitude smaller.

3.2.4 Optical Stern-Gerlach nuclear spin state detection

With alkali atoms, a standard spin detection technique consists in time-of-flight imaging com-
bined with a magnetic field gradient exerting a spin-dependent force on the atoms [165], using
the Stern-Gerlach effect [170]. However, the very small angular momentum in the ground and
clock state of alkaline-earth(-like) atoms due to the zero total electronic angular momentum
requires extremely large magnetic field gradients to spatially separate the different spin states.
Instead, an optical Stern-Gerlach (OSG) technique [171] is used to effectively detect the nu-
clear spin state mF .

In our experiment, a mF -dependent force is applied to the atoms by exposing them to
a short horizontally propagating σ+-polarized laser pulse with other traps switched off, as
illustrated in Fig. 3.5(a). The pulse has a duration of 1.5ms and is performed in a trans-
verse magnetic field BTV = 20 G. The light is blue-detuned by 250 MHz with respect to the
|1S0, F = 1/2〉 → |3P1, F ′ = 3/2〉 transition. A large and nearly-uniform light intensity gradi-
ent is achieved by vertically shifting the beam position with respect to the atoms. This induces
a dipole force on the atoms, which depends monotonically on the light intensity gradient and
on mF [152]. The atoms are then imaged after a 12ms time of flight to resolve the momentum
kicks experienced by atoms in different mF states. On Figs 3.5(b-d), spin detection images are
displayed for spin-balanced as well as spin-polarized samples, representing all the relevant
spin configurations for our experiments.
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3.3 Clock-line spectroscopy in a magic-wavelength lattice

One of the most striking features of alkaline-earth(-like) atoms such as ytterbium or strontium
arguably is their ultranarrow electronic clock transition, which currently lies at the heart of
the most accurate clocks in the world [6, 99, 123]. In the experiments presented in this thesis,
this transition always plays an essential role. On one hand, the narrow linewidth enables
precise clock-line spectroscopy in an optical lattice, where the energy shifts caused by two-body
interactions can be resolved. On the other hand, it allows for the reliable preparation of the
system in any desired initial electronic state. In this section, we review the theoretical behavior
of a two-level atom driven by a near-resonant monochromatic light field and demonstrate how
this simple model can be readily applied to describe clock-line spectroscopy measurements in a
magic-wavelength optical lattice. We also show how sideband-resolved clock spectroscopy can
be used in combination with high-resolution in-situ imaging of the atoms for spatially-resolved
lattice depth calibration.

3.3.1 Two-level atom driven by a near-resonant light field

The driving of an ytterbium atom from the electronic ground state 1S0 to the clock state 3P0

with near-resonant narrow-linewidth laser light can be readily described within the standard
semi-classical framework of a two-level atom coupled to an external light field [172], also
known as Rabi problem. Consider a single atom at rest with two states |g〉 and |e〉 which are
the eigenstates of the two-level Hamiltonian Ĥe given by

Ĥe = −
ħhω0

2
|g〉 〈g|+

ħhω0

2
|e〉 〈e|=

ħhω0

2
σ̂z , (3.5)

defining the Pauli matrix σ̂z and the energy splitting ħhω0 between |g〉 and |e〉. We now inves-
tigate the time evolution of the system in the presence of a monochromatic electromagnetic
plane wave, with an electric field of the form

E (r, t) =
E0ε̂

2

�

ei(k·r−ωt+φ) + e−i(k·r−ωt+φ)
�

, (3.6)

with ω = 2πc/λ and |k| = 2π/λ, where λ is the wavelength of the electromagnetic wave, E0

its amplitude, ε̂ its polarization and φ an arbitrary phase shift. In 171Yb, the laser driving the
clock transition has a wavelength of λ = 578 nm whereas the atomic radius is estimated to
be about a ∼ 0.175nm [173]. The electric field can therefore be treated as constant within
the spatial extent of a single atom since k · a ∼ 10−3≪ 1, an approximation known as dipole
approximation. This allows us to drop the spatial dependence in Eq. (3.6) and write

E (t) =
E0ε̂

2

�

ei(ωt+φ) + e−i(ωt+φ)
�

. (3.7)

The electric dipole interaction between the atom and the field is given by [174]

ĤI (t) = −er̂ · E (t) , (3.8)
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where r̂ is the position operator and e the elementary charge. With the help of Eq. (3.7) and
dropping the phase φ for simplicity, we obtain

ĤI (t) =
ħhΩ0

2
(|e〉 〈g|+ |g〉 〈e|)

�

eiωt + e−iωt
�

=
ħhΩ0

2
(σ̂+ + σ̂−)

�

eiωt + e−iωt
�

,
(3.9)

defining the ladder operators σ̂± and the Rabi frequency

Ω0 =
dge · ε̂E0

ħh
, (3.10)

where dge = 〈g| (−er̂) |e〉 is the (real) transition dipole moment for the |g〉 → |e〉 transition.
The full Hamiltonian of the system is then given by Ĥ = Ĥe + ĤI .

The problem is most conveniently solved in the interaction picture, performing the unitary
transformation Ĥ ′I (t) = eiĤe t/ħhĤI (t) e−iĤe t/ħh. We obtain

Ĥ ′I (t) =
ħhΩ0

2

�

σ̂+e−iδt+i(2ω0+δ)t + σ̂−eiδt−i(2ω0+δ)t
�

, (3.11)

where we have defined the detuning δ = ω−ω0 between the frequency of the driving laser
and of the atomic transition. In our experiments, we typically work with detunings up to δ ∼
104 Hz, which are extremely small compared to the transition frequency ω0 ∼ 1017 Hz. Terms
proportional to e±i(2ω0+δ)t therefore oscillate much faster than those proportional to e±iδt and
effectively average out to zero since the time dynamics is essentially dominated by e±iδt . We
hence neglect these terms in Eq. (3.11). This is called the rotating wave approximation, under
which the interaction Hamiltonian takes the simpler form

Ĥ ′I (t) =
ħhΩ0

2

�

σ̂+e−iδt + σ̂−eiδt
�

. (3.12)

In general, we can express the state of the system as

|ψ′ (t)〉= cg (t) |g〉+ ce (t) |e〉 , (3.13)

where cg (t) and ce (t) are complex coefficients obeying the normalization condition
�

�cg (t)
�

�

2
+

|ce (t)|
2 = 1 . The time evolution of the state is then given by iħh∂t |ψ′ (t)〉= Ĥ ′I (t) |ψ

′ (t)〉 and
leads to the differential equations

ċg (t) = −
iΩ0

2
eiδt ce (t) ,

ċe (t) = −
iΩ0

2
e−iδt cg (t) .

(3.14)

Let us consider an atom initially in the state |g〉 such that cg (t = 0) = 1 and ce (t = 0) = 0.
We can then compute the probability Pe (t,Ω0,δ) for the atom to be in the state |e〉 as

Pe (t,Ω0,δ) = |ce (t,Ω0,δ)|2 =
�

Ω0

Ω

�2

sin2
�

Ωt
2

�

, (3.15)
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where we have defined the generalized Rabi frequency Ω =
q

Ω2
0 +δ2. Note that this result

neglects the finite lifetime of the state |e〉 and decoherence effects. From Eq. (3.15), it is clear
that an atom can be prepared in the state |e〉 when addressed with a resonant light pulse
(δ = 0) of duration tπ = π/Ω0 (or in general t = (2n+ 1)π/Ω0, with n a non-negative
integer). Such a pulse is called π pulse since it drives the atom from |g〉 to |e〉, corresponding
to a rotation of angle π on the Bloch sphere. When scanning the pulse time on resonance, the
atom undergoes oscillations with frequency Ω0 given by

Pe (t) = sin2
�

Ω0 t
2

�

, (3.16)

known as Rabi oscillations. On the other hand, scanning the detuning δ of a π pulse leads to
a response

Pe (δ) =
�π

2

�2
sinc2

 

π

2

√

√

√1+
δ2

Ω2
0

!

. (3.17)

In our experiment, we do not work with single atoms but with larger samples consisting
of ∼ 104 atoms instead. In this case, the probability Pe (t,Ω0,δ) defined in Eq. (3.15) is
equivalent to the fraction of atoms detected in the state |e〉. After driving atoms from the
electronic ground state 1S0 to the clock state 3P0, we determine the fraction excited to 3P0

by separately measuring the number of atoms in the 1S0 and in the 3P0 state as described in
Section 3.2.2.

Typical clock-line spectroscopy measurements consist in varying the frequency of clock-
laser pulses of duration tπ and fitting the response of the system to Eq. (3.17), gaining access
to the transition frequency ω0. In practice, the measured fraction of excited atoms is always
smaller than one, even with resonant π pulses. This can be due to our clock laser beam
profile being inhomogeneous, from the finite coherence time or linewidth of our clock laser
or from the repumping efficiency of 3P0 atoms to the 1S0 state for imaging. We take this into
account by adding a global multiplication factor < 1 to Eq. (3.17) as free fit parameter, and
also add a global offset accounting for any residual background excited fraction measured.
Two examples of such measurements including fits to the data are shown in Fig. 3.6(a) for
different Rabi frequencies Ω0. As expected from Eq. (3.17), the resonance becomes narrower
for lower Rabi frequencies, which is desirable for the precise determination of the resonance
position. The Rabi frequency can be tuned by varying the intensity I of the clock laser, since
it scales as

p
I as can be read from Eq. (3.10).

Similarly, the Rabi frequency Ω0 for a given clock laser power is probed by scanning
the duration of resonant laser pulses, driving the Rabi oscillations defined in Eq. (3.16). In
Fig. 3.6(b), two examples of such measurements for different Rabi frequencies are shown. As
expected from Eq. (3.16), larger Rabi frequencies, which correspond to larger light intensities
I , lead to faster Rabi oscillations. By fitting the Rabi frequency for certain experimental pa-
rameters, the π pulse time tπ used in clock-line spectroscopy measurements such as the ones
shown in Fig. 3.6(a) is calibrated.

Note that instead of π pulses, long resonant pulses exceeding the coherence time of the
clock-excitation light can be used. In that case, the Rabi oscillations shown in Fig.3.6(b) are



3.3 Clock-line spectroscopy in a magic-wavelength lattice 43

Ω0 = 0.6 kHz Ω0 = 2.8 kHz

(a) (b)

Detuning (kHz)

E
xc

ite
d

 fr
ac

tio
n

E
xc

ite
d

 fr
ac

tio
n

−1 0 1
0.0

0.5

1.0

Ω0 = 1.0 kHz Ω0 = 3.2 kHz

Pulse duration (ms)
0 10

0.0

0.5

1.0

Figure 3.6 – Clock-line spectroscopy and Rabi oscillations. We measure the response of a spin-polarized
sample in a 30Erec magic-wavelength cubic lattice by determining the fraction of atoms in the clock state after
a laser excitation pulse. The excited fraction is computed after separately imaging the atoms in the ground
and in the clock state, as described in Section 3.2.2. (a) Scan of the pulse frequency detuning δ with respect
to the atomic transition for constant pulse duration tπ . We show two data sets with different Rabi frequencies
Ω0. The data is well-fitted with a Rabi lineshape of the form of Eq. (3.17) (solid lines), allowing us to extract
the resonance frequency where δ = 0. (b) Scan of the pulse duration on resonance. We again show two data
sets with different Rabi frequencies. The data is well-fitted with Rabi oscillations of the form of Eq. (3.16),
allowing us to extract the Rabi frequency.

damped and the excited fraction reaches the asymptotic value of 1/2. These incoherent pulses
are used in this work to address the molecular bound state associated with the orbital Feshbach
resonance in 171Yb in Chapters 5 and 6.

3.3.2 Clock-line spectroscopy in an optical lattice

The results presented in Section 3.3.1 are valid for atoms at rest. In real-life experiments,
however, atoms possess a motional degree of freedom which affects the clock line through
atomic interactions, Doppler shifts and photon recoil. To decouple the motional and internal
degrees of freedom, a solution is to strongly confine the atoms in a tight trap, in the Lamb-
Dicke regime [175] where the trap size is smaller than the wavelength of the trapping light.
For neutral atoms, this can be achieved by the use of a deep one- or three-dimensional optical
lattice which traps the atoms in a near-harmonic potential [176, 177]. This creates a situa-
tion similar to ions in Paul or Penning traps [178, 179]. In our experiments, another crucial
advantage of a tight trapping potential is that it creates strongly confined pairs of atoms on
the same lattice site, resolving interaction-induced energy shifts. Using Eq. (2.49) and assum-
ing an s-wave scattering length of a ∼ 102 a0, where a0 denotes the Bohr radius, a 30 Erec

deep three-dimensional lattice of wavelength 759 nm leads to an interaction shift of ∼ 103 Hz,
which is one order of magnitude larger than the linewidth ∼ 102 Hz of our clock laser.

The on-site potential in a deep optical lattice can be approximated to be harmonic, as
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shown in Section 2.3.1. The motional Hamiltonian seen by an atom is then

Ĥm =
p̂2

2m
+

1
2

mω2
ho x̂2, (3.18)

with the harmonic oscillator frequency ωho given by Eq. (2.39). The above equation can be
rewritten in the standard form [180]

Ĥm = ħhωho

�

n̂+
1
2

�

, (3.19)

using the number operator n̂ = â†â, where â =
p

mωho/2ħh ( x̂ + i p̂/mωho) and â† denote
the annihilation and creation operators, respectively. In such a potential, atoms experience
a periodic motion. The position dependency in Eq. (3.6) must therefore be kept. Similarly
to the case in Section 3.3.1, we compute the electric dipole interaction Hamiltonian in the
interaction picture, using this time Ĥ0 = Ĥe + Ĥm as non-interacting Hamiltonian. We obtain

H ′I (t) =
ħhΩ0

2

�

σ̂+ exp
�

iη
�

âe−iωho t + â†e+iωho t
�

− iδt
�

+ h.c
	

, (3.20)

introducing the Lamb-Dicke parameter η= kx0, where k is the wave vector of the laser driving
the transition projected on the lattice axis and x0 =

p

ħh/2mωho the harmonic oscillator length.
In the Lamb-Dicke regime, we have η≪ 1 and Eq. (3.20) can be expanded to first order,

leading to

H ′I (t) =
ħhΩ0

2

�

σ̂+eiδt
�

1+ iη
�

âe−iωho t + â†e+iωho t
��

+ h.c
	

. (3.21)

This Hamiltonian basically consists of three contributions, and can be written as H ′I (t) =
H ′c (t) +H ′rs (t) +H ′bs (t). The carrier part of the Hamiltonian is given by

H ′c (t) =
ħhΩ0

2
σ̂+e−iδt + h.c, (3.22)

which is strictly identical to Eq. (3.12) since it is independent of the motional degree of free-
dom. It couples |g, n〉 ↔ |e, n〉 states with a Rabi frequency Ω0 and is resonant for δ = 0,
leading to a resonance with a shape given by Eq. (3.15). The red sideband part of the Hamil-
tonian is of the form

H ′rs (t) =
ħhΩrs

2
σ̂+âe−i(δ+ωho) + h.c, (3.23)

which couples |g, n〉 ↔ |e, n− 1〉 states. It again leads to a resonance with a shape given by
Eq. (3.15) but with a Rabi frequency Ωrs = Ω0η

p
n and a resonance position δ = −ωho. Note

that the Hamiltonian in Eq. (3.23) has the same form than the ubiquitous Jaynes-Cummings
Hamiltonian in cavity QED [178, 181, 182]. Similarly, the blue sideband part of the Hamilto-
nian is of the form

H ′bs (t) =
ħhΩbs

2
σ̂+â†e−i(δ−ωho) + h.c, (3.24)

which couples |g, n〉↔ |e, n+ 1〉 states with Rabi frequency Ωbs = Ω0η
p

n+ 1 and resonance
position δ = ωho. In Fig. 3.7(a), we show a sketch of the carrier, red sideband and blue
sideband on the clock transition in an optical lattice. In an optical lattice of finite depth,
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Figure 3.7 – Sideband-resolved clock-line spectroscopy in the Lamb-Dicke regime in an optical lattice.
(a) Clock transition sketched in a deep optical lattice, in the sideband-resolved regime. We show an atom in
the energy band n driven to the band n (gray arrow, carrier), n − 1 (red arrow, red sideband) and n + 1 (blue
arrow, blue sideband). The energy shifts with respect to the bare 1S0 →3 P0 transition are determined by
the corresponding band gaps. Solid black lines represent the optical lattice trapping potential while dashed
black lines indicate the energy level of each lattice band. (b) Clock-line spectroscopy measurement in a
magic-wavelength optical lattice along the clock excitation pulse propagation direction, using a spin-polarized
sample. We distinguish two peaks, corresponding to the carrier (n : 0 → 0, gray dots) and first blue sideband
(n : 0 → 1, blue dots). Solid lines correspond to fits to the data using Eq. (3.17). The shift in energy between
the carrier and the sideband is equal to the band gap and is 19.10(3) kHz. This corresponds to a lattice depth
of 28.14(7)Erec, where Erec denotes the lattice photon recoil energy. In a separate measurement, we have
verified that no feature corresponding to the first red sideband is observed, indicating that nearly all atoms are
initially prepared in the lowest energy band n = 0 of the lattice.

the energy shift of the sidebands is not exactly given by ωho, but rather by the energy gap
between the band n and n ± 1. Furthermore, while strongly suppressed in the Lamb-Dicke
regime, higher-order sideband transitions |g, n〉 ↔ |e, n±m〉 with m > 1 are in practice still
possible, with Ωn↔m∝ η|n−m| [183].

Using Eq. (2.39) to computeωho allows us to greatly simplify the expression for the Lamb-
Dicke parameter in our lattice to

η=
�

1
4s

�1/4

, (3.25)

which only depends on the lattice depth s in units of the lattice photon recoil energy, Erec. In
our experiments, we typically work with s ≈ 30 along each lattice axis, corresponding to

η≈ 0.3, (3.26)

which is well into the Lamb-Dicke regime. Furthermore, the energy gap between the ground
and first excited lattice band can be numerically computed following the method shown in
Section 2.3.1, leading to a value of 19.83 kHz for s = 30. This can be very well resolved
by means of clock-line spectroscopy, allowing us to work in the so-called resolved-sideband
regime. A typical example of a clock-line spectroscopy measurement performed along one
of our lattice axes is shown in Fig. 3.7(b). We observe two features corresponding to the
carrier and first blue sideband resonances. The internal and motional degrees of freedom are
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perfectly separated and both resonances can be readily described using the results derived in
Section 3.3.1 up to the modified Rabi frequency for sidebands. No feature corresponding to
the first red sideband resonance is observed, indicating that no significant amount of atoms is
prepared in higher lattice bands with n> 0.

3.3.3 The magic wavelength

In Section 3.3.2, we have shown how to perform Doppler-free clock-line spectroscopy mea-
surements by quantizing the motional degree of freedom of the atoms. This is done by sub-
jecting them to an external optical lattice potential. In the derivation of the Rabi solution in
Eq. (3.15), though, we only have taken into account the atomic internal energy levels as well
as the near-resonant light field driving the transition. Considering the additional light field
generating the optical lattice, atoms in an electronic state i experience an ac Stark shift [184]

Uac,i (r) = −
1

2ε0c
ℜ [αi (λL)] IL (r) , (3.27)

where ℜ [αi (λL)] is the real part of the dynamic polarizability of an atom for a given trapping
light wavelength λL . In general, the intensity IL (r) of the trapping light is spatially inhomo-
geneous since it is generated by a laser beam, which usually exhibits a near-Gaussian profile.
This directly leads to an inhomogeneous ac Stark shift, which is a desirable feature because it
leads to the dipole force ∇Uac,i (r) trapping the atoms.

If we now consider the clock transition 1S0→3 P0, we see from Eq. (3.27) that the differ-
ence in polarizabilities ℜ

�

α3P0
(λL)−α1S0

(λL)
�

induces a differential light shift

∆Uac (r) = −
1

2ε0c
ℜ
�

α3P0
(λL)−α1S0

(λL)
�

IL (r) (3.28)

between both states which has two main unfavourable consequences. First, it shifts the fre-
quency of the clock transition by an amount∆Uac (r)/2πħh, which has to be taken into account
for a correct addressing of the transition. Second, the inhomogeneity of the light shift broad-
ens the line since the atomic cloud samples a large enough region of the trap to experience a
significant variation in I (r). This is harmful to the precision of clock-line spectroscopy mea-
surements and furthermore leads to the dephasing of both states because of atomic motion in
the trap, which couples the atomic internal and external degrees of freedom since the light
field is inhomogeneous [6].

A solution to this problem is to design a trap where both states shift equally in energy,
making it state-insensitive. A straightforward way to achieve this is to find a wavelength λm

at which both states have equal polarizabilities, such that

ℜ
�

α3P0
(λm)

�

=ℜ
�

α1S0
(λm)

�

. (3.29)

Such a wavelength is called magic wavelength [177, 185] and is a fundamental building block
of state-of-the-art optical atomic clocks [6]. For 171Yb, a magic wavelength has been reported
in Ref. [186] with the value

λm = 759.355944 (19) nm. (3.30)
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Figure 3.8 – Spatially-resolved lattice depth calibration with clock-line sideband spectroscopy. (a) In-
situ column density of 171Yb atoms in a cubic optical lattice measured with absorption imaging. The central red
square denotes the 6.58µm × 6.58µm (14× 14 pixels) region of interest (ROI) in which the lattice depth is
calibrated. (b) Mean lattice depth in units of the lattice photon recoil energy Erec inside the ROI. It is computed
after measuring the band gap along all three lattice axes via clock-line sideband spectroscopy. We show the
value obtained in each 0.94µm × 0.94µm (2 × 2 pixels) square inside the ROI. The lattice depth variation
inside the ROI is about 1%. Adapted from Ref. [188].

In our experiments, we therefore always operate the optical lattice beams at the above men-
tioned wavelength λm unless stated otherwise, using a wavemeter as reference with a precision
of ∼ 10MHz. In such a lattice, the results from Sections 3.3.1 and 3.3.2 can be applied to
evaluate our data without further considerations.

3.3.4 Spatially-resolved lattice depth calibration

When performing clock-line sideband spectroscopy, we typically measure the frequency of the
carrier and of the first blue sideband. The difference between both frequencies is equal to the
lowest lattice band gap. The energy band calculation presented in Section 2.3.1 can therefore
be inverted to obtain the lattice depth. This provides us with an alternative procedure to
calibrate our optical lattice compared to the standard method relying on parametric excitations
via periodic lattice depth modulation [187], with the noticeable advantage that the high spatial
resolution of our in-situ imaging system as well as the narrow linewidth of our clock laser can
be exploited. The precision of the measurement is limited by the spatial inhomogeneity of the
lattice depth over the cloud size, which effectively broadens the blue sideband line as visible
in Fig. 3.7(b).

To reduce the effect of lattice inhomogeneity, we restrict our data evaluation to small sub-
regions within our absorption images, as shown in Fig. 3.8(a). In the cloud center, where
the atomic column density is the largest, we are able to determine the lattice depth in areas
as small as 0.94µm× 0.94µm, corresponding to 2× 2 pixels on our camera sensor. We can
therefore perform a spatially-resolved lattice depth calibration with a resolution solely limited
by our imaging system. Each axis i = x , y , z of our cubic lattice is characterized by means
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of clock-line sideband spectroscopy using a clock laser pulse propagating along i, leading to
a lattice depth Vi . The mean lattice depth V̄ =

�

Vx Vy Vz

�1/3
, which is a crucial experimental

parameter in our experiments since it determines the on-site pair interaction energy in the lat-
tice, is then obtained by combining the measurements along all axes. In Fig. 3.8(b), we show
an example of a spatially-resolved lattice depth calibration in the center of our atomic cloud.
The lattice inhomogeneity can clearly be seen, highlighting the relevance of this calibration
method.

This technique is used to calibrate the optical lattice in all experiments presented in the
following chapters. It is particularly relevant for the precise measurement of the interorbital
scattering lengths presented in Section 4.2. On one hand, only considering small areas in
the cloud center as shown in Fig. 3.8(b) narrows down the |g g〉 → |eg〉 lines, improving for
instance the measurement precision of the on-site interaction energies U±eg . On the other hand,
this improves the signal-to-noise ratio of pair-state spectroscopic features, owing to the larger
fraction of doubly-occupied lattice sites. In fact, while the absolute temperature T can be
considered constant over the entire sample, the Fermi temperature TF is larger in the cloud
center owing to the larger atomic density. The doublon fraction, which depends on the ratio
T/TF in a cubic lattice [189], is therefore larger in the cloud center.

3.4 Differential and quadratic Zeeman shifts

In general, the hyperfine states mF of an alkaline-earth(-like) atom in the electronic ground
state 1S0 or clock state 3P0 are shifted in energy at finite magnetic fields, owing to the Zeeman
effect. For fermionic isotopes, the Landé g factor in 1S0 atoms is different from the one in 3P0

atoms, causing atoms in both electronic states to undergo different first-order Zeeman shifts.
The clock transition frequency is therefore sensitive to the external magnetic field, which in-
volves a splitting of the different |1S0, mF 〉 → |3P0, m′F 〉 transition frequencies. This defines
the so-called differential Zeeman shift, which is a crucial effect to take into account when per-
forming clock-line spectroscopy, in particular for the operation of state-of-the-art atomic clock
experiments. When the differential Zeeman shift is large compared to the linewidth, the dif-
ferent spin components of a gas can be individually addressed. This provides an advantageous
tool to state-selectively prepare and probe experimental samples. The differential Zeeman
shift also plays a critical role in the interorbital interactions since it mixes the pair states |eg±〉
defined in Eq. (2.17) and lies at the heart of the orbital Feshbach resonance mechanism de-
scribed in Section 2.2.4. In addition to the (linear) differential Zeeman shift, the second-order
Zeeman shift also has to be considered for precise clock-line spectroscopy at larger magnetic
fields.

In this section, we explain the working principle of the differential and quadratic Zeeman
shifts and precisely characterize them in 171Yb by means of clock-line spectroscopy measure-
ments in a magic-wavelength optical lattice.
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3.4.1 Differential Zeeman shift

To first order, the energy of an atom in the state mF undergoes a magnetic field-induced shift
∆E(B) given by

∆E(B) = µB gmF B, (3.31)

where µB is the Bohr magneton, B the external magnetic field and g the Landé g-factor of
the atom. For atoms in the electronic ground state 1S0, the g-factor is given by the nuclear
g-factor gI = µµN/ |I |µB, where µ is the nuclear magnetic moment, µN the nuclear magne-
ton and I the nuclear spin quantum number. In the particular case of 171Yb, I = 1/2 and
µ = 0.4919µN [190], leading to gI = 749.91 h Hz/ (GµB). For fermionic isotopes, which
have finite nuclear spin, however, the wavefunction in the clock state 3P0 is modified by the
hyperfine interaction-induced mixing with the 3P1 and 1P1 states [140, 191]. This causes a
modification of the 3P0 g-factor and defines the differential Zeeman shift

δg = g3P0
− g1S0

(3.32)

as the difference between the g-factor of atoms in the 3P0 and 1S0 state, respectively. The key
consequence of the existence of a differential Zeeman shift δg ̸= 0 is that the clock transition
frequency undergoes a linear shift∆ν(1) (B) =

�

∆E3P0
(B)−∆E1S0

(B)
�

/2πħh at finite magnetic
fields B, as can be read from Eq. (3.31). For π transitions driven with a linearly polarized light
field (mF → mF ), the shift is given by

∆ν(1) (B, mF → mF ) =
µBB
2πħh

mFδg, (3.33)

whereas for σ± transitions driven with circularly polarized light (mF → mF ± 1), the shift is
given by

∆ν(1) (B, mF → mF ± 1) =
µBB
2πħh

[(mF ± 1)δg ± gI] . (3.34)

Combining Eqs. (3.33) and (3.34), the result can be generalized to a transition from a hyperfine
state mF to mF ′ where the differential (linear) shift can be expressed as

∆ν(1) (B, mF → mF ′) =
µBB
2πħh

[(mF −mF ′) gI +mF ′δg] . (3.35)

Eq. (3.35) shows that the differential Zeeman shift lifts the degeneracy of the transition fre-
quency between different hyperfine states mF at finite magnetic fields.

3.4.2 Quadratic Zeeman shift

To accurately address the clock transition at larger magnetic fields, the second-order Zeeman
shift also needs to be considered. For the clock transition in alkaline-earth(-like) atoms in-
volving states with J = 0, there is no contribution to the quadratic Zeeman shift from nearby
hyperfine states. Instead, the shift arises from states separated in energy by fine-structure
splitting, with a dominant contribution from the 3P0 and 3P1 states since the ground state
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is separated from all other states by optical frequencies [6, 140]. In general, the resulting
quadratic frequency shift of the clock transition takes the form [192]

∆ν(2) (B) = βB2, (3.36)

which is independent of the hyperfine states involved in the transition and defines the quadratic
shift coefficient β . In particular, unlike the differential Zeeman shift, the quadratic Zeeman
shift leaves the energy splitting between different hyperfine states unchanged. Summing up
the first and second-order Zeeman shift contributions in Eq. (3.35) and Eq. (3.36) yields the
total magnetic field-dependent frequency shift of the clock transition

∆ν (B, mF → mF ′) =
µBB
2πħh

[(mF −mF ′) gI +mF ′δg] + βB2, (3.37)

where δg and β are the two coefficients that have to be determined experimentally.

3.4.3 Measurement of the differential and quadratic Zeeman shifts

Since both electronic states 1S0 and 3P0 in 171Yb have F = 1/2, there only are four different
clock transitions with frequency ν (B, mF → mF ′). We define for simplicity

ν1 (B)≡ ν (B,+1/2→ +1/2) , ν2 (B)≡ ν (B,−1/2→−1/2) ,

ν3 (B)≡ ν (B,+1/2→−1/2) , ν4 (B)≡ ν (B,−1/2→ +1/2) ,
(3.38)

which are illustrated in Fig. 3.9(a). To experimentally determine the coefficients δg and β
in Eq. (3.37), we measure the frequency of each single-particle transition νi (B) at various
magnetic fields up to B = 600G, see Fig. 3.9(b). A spin-polarized sample in the electronic
ground state 1S0 and intial hyperfine state mF is first prepared by means of optical pumping.
The atoms are then loaded into the ground band of a ≈ 30 Erec deep cubic optical lattice
operating at the magic wavelength and the external magnetic field B is ramped to the desired
value. Atoms are then directly driven from |1S0, mF 〉 to |3P0, mF ′〉 and the response of the
system as a function of the driving frequency is probed. We fit individual Rabi lineshapes [see
Eq. (3.17)] to extract the frequency of each transition νi (B) at various magnetic fields, as
shown in Fig. 3.9(b).

Differential Zeeman shift

The main motivation behind measuring both π and σ± transitions is that it allows for the
determination of the differential Zeeman shift without any prior calibration of the magnetic
field [6, 140]. First, we get access to the purely linear differential Zeeman shift by using
∆(1)ν1,2 = ν1,2− (ν1 + ν2)/2 and∆(1)ν3,4 = ν3,4−

�

ν3 + ν4

�

/2, which removes all non-linear
shifts and cancels long-term drifts of the clock laser. Combining all transition frequencies and
with the help of Eq. (3.35), the magnetic field can be self-calibrated by computing

B =
πħh
µB gI

�

∆(1)ν1 (B) +∆
(1)ν3 (B)−∆(1)ν2 (B)−∆(1)ν4 (B)

�

, (3.39)
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Figure 3.9 – Differential and quadratic Zeeman shifts on the 171Yb clock transition. (a) Relevant energy
levels for the clock transition sketched at zero (dotted grey lines) and finite magnetic field (solid black lines)
(not to scale). The yellow arrows illustrate the four transitions νi defined in Eq. (3.38). (b) Detuning ∆νi (B)

of each clock transition νi (B) with respect to the B = 0 case (dashed grey line). All data points are obtained
by fits to clock-line spectroscopy measurements described in the main text. The error bars denote the fit un-
certainty of individual lineshapes and are much smaller than the marker size. We use Eq. (3.39) to determine
the magnetic field B independently of any prior calibration. Solid lines represent the detunings obtained via
Eq. (3.37), using the differential and quadratic Zeeman shifts obtained in (c) and (d). (c)-(d) Characterization
of the first- and second-order Zeeman shift, respectively. For each magnetic field B , we extract the detunings
∆νi (B) and use Eqs. (3.40) and (3.42) to compute δg and β, respectively. The error bars are computed
using the fit uncertainty on ∆νi (B). The horizontal lines denote the mean value of the three data points while
the colored area spans over their standard deviation. Adapted from [188].
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assuming all transitions frequencies have been measured at the exact same magnetic field.
The differential Zeeman shift δg is finally computed using Eqs. (3.35) and (3.39), leading to

δg =
2πħh
µBB

�

∆(1)ν1 (B)−∆(1)ν2 (B)
�

=
2gI

1+

�

∆(1)ν3 (B)−∆(1)ν4 (B)
∆(1)ν1 (B)−∆(1)ν2 (B)

� , (3.40)

which is indeed independent from the explicit value B of the magnetic field. This method has
been successfully applied to determine the differential Zeeman shift in 87Sr [140], 171Yb [193]
and 173Yb [118]. We compute the differential Zeeman shift using Eq. (3.40) for B = 200,
400 and 600G using our experimental data, see Fig. 3.9(c). Taking the mean and standard
deviation of all three values, we find

δg = −399.0 (1)h Hz/ (GµBmF ) , (3.41)

which induces a magnetic field-dependent linear frequency splitting of δ (B) = 399 (1)× B Hz
between both π transitions |1S0, mF 〉 → |3P0, mF 〉. This value is in good agreement with pre-
vious results obtained for 171Yb [193, 194].

Quadratic Zeeman shift

We also determine the quadratic Zeeman shift in a fashion similar to the differential shift.
Using ∆νi (B) = νi (B)− νi (B = 0) and Eq. (3.37), one obtains

β =
∆ν1 (B) +∆ν2 (B) +∆ν3 (B) +∆ν4 (B)

B2
, (3.42)

where the magnetic field B is computed via Eq. (3.39). This expression neglects higher-order
contributions to the Zeeman shift as well as long-term drifts of the clock laser. We compute
the quadratic Zeeman shift using Eq. (3.42) for again B = 200, 400 and 600G using our
experimental data, see 3.9(d). Taking the mean and standard deviation of all three values, we
obtain

β = −0.059 (2) Hz/G2, (3.43)

which is in good agreement with theoretical predictions [192] as well as previous measure-
ments [186, 195] for Yb.

Knowing δg and β , we have used Eq. (3.37) to calibrate the magnetic field B generated
by our coils as a function of the output current I of our power supplies. In particular, we
have verified that the magnetic field is proportional to the current and have extracted the
proportionality factor for each relevant combination of coils and power supplies, using data
sets such as the one shown in Fig. 3.9(b).



CHAPTER 4

Characterization of interorbital interactions
in 171Yb

When considering two-orbital Fermi-Hubbard models realized with 171Yb atoms featuring or-
bital as well as nuclear spin degrees of freedom in optical lattices, two-body interactions be-
tween different atomic pairs play a key role. Of particular importance is the elastic scattering
between interorbital pair states, which gives rise to spin-exchange interactions. These interac-
tions lie at the heart of orbital quantum magnetism, which includes iconic models such as the
Kondo lattice model [64, 98] or the Kugel-Khomskii model [196]. Alkaline-earth(-like) atoms
such as 171Yb therefore appear as promising potential candidates for the investigation of these
models [69, 82–84, 197]. In that case, inelastic scattering processes are also critical, since they
can limit the lifetime of certain states in the experimental sample, leading to a detrimental loss
of atoms.

In this chapter, we report on the full characterization of intra- as well as interorbital inter-
actions in 171Yb by probing pair states on individual sites of a magic-wavelength optical lattice.
We precisely measure the s-wave scattering lengths associated with the intraorbital superpo-
sition states as well as the interorbital scattering length associated with pairs of atoms in the
clock state by means of clock-line spectroscopy, similarly to the method introduced in Ref. [73].
Furthermore, we investigate the effect of inelastic scattering in these states by extracting the
associated two-body loss coefficients from lifetime measurements.

4.1 Experimental configuration and sequence

Most of the experiments presented throughout this thesis are performed in a three-dimensional
isotropic cubic optical lattice operating at the magic wavelength λm = 759nm, as illustrated in
Fig. 4.1(a). The three lattice axes are generated by three retroreflected orthogonal laser beams,
each with a typical lattice depth of 30 Erec. Here Erec = (2πħh)

2 /2mλm denotes the lattice pho-
ton recoil energy, with m the atomic mass. In our experiments, we typically work with either
spin-balanced samples (mF = ±1/2) or spin-polarized gases (mF = −1/2 or mF = +1/2).
Our samples generally have a temperature T ≈ 0.25 TF before loading them from the optical
dipole trap into the lattice, where TF denotes the Fermi temperature of the gas. We therefore
work in the deeply quantum degenerate regime, where all atoms can be assumed to be in the
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lowest energy band of the lattice. Since there are two different possible nuclear spin states
mF ∈ {−1/2,+1/2}, every lattice site can only be populated with zero (hole), one (singlon) or
two (doublon) atoms, owing to the Pauli exclusion principle. A yellow clock-excitation pulse
is performed along the lattice axis L1 in a vertical bias magnetic field B to drive singlons to |e〉
or doublons to the interorbital states |ψ±eg (B)〉 defined in Eq. (2.22). The clock laser is linearly
polarized with a polarization aligned along B, such that only π transitions are driven.

A typical experimental sequence is sketched in Fig. 4.1(b). First, the atoms are transferred
from the crossed optical dipole trap (xODT) into the optical lattice after having performed
forced evaporative cooling (see Sec. 3.1.3). The HDT and the VDT are ramped down while
the vertical lattice L3 is ramped up to its final depth within 120ms following an s-shaped ramp.
The horizontal lattices L1 and L2 are subsequently ramped up to 3 Erec within 120 ms, and after
that to their final depth within 150 ms. Such a sequence is designed to keep the lattice loading
as adiabatic as possible by minimizing the mass redistribution during the ramp [153], and is
identical to the one used to prepare 173Yb atoms in the Mott-insulating phase at temperatures<
0.1 TF [89] with our apparatus. From clock-line spectroscopy measurements, we estimate that
about 25% of the atoms are on doubly-occupied lattice sites, corresponding to a temperature
in the lattice ≈ 0.8 TF and therefore a temperature ≲ 0.4 TF in the dipole trap before loading
into the lattice [189]. The magnetic field B is then ramped up within 75ms to the the desired
value and the sample is probed or prepared with a coherent clock-laser π-pulse after a 500 ms
hold time used to allow the magnetic field to stabilize. Finally, the population in |g〉 and in |e〉
are separately imaged in situ, following the procedure described in Section 3.2.2.

Throughout this chapter, we mainly probe four different clock-line transitions, namely both
single-particle transitions

|g ↓〉 → |e ↓〉

|g ↑〉 → |e ↑〉
(4.1)

as well as both two-particle transitions1

|g g〉 →|ψ−eg (B)〉

|g g〉 →|ψ+eg (B)〉 ,
(4.2)

as illustrated in Fig. 4.1(c). Here, we have used the notations |1S0〉 ≡ |g〉, |3P0〉 ≡ |e〉,
|mF = −1/2〉 ≡ |↓〉 and |mF = +1/2〉 ≡ |↑〉 to describe the internal state of single atoms.

At B = 0, the interorbital states are given by |eg±〉 defined in Eq. (2.17) while in the limit
|δ (B)| ≫ |Vex| they are given by |e ↑ g ↓〉 and |e ↓ g ↑〉 defined in Eq. (2.23). Here, δ (B) =
−399.0 (1) Hz/G×mF B is the differential Zeeman shift determined in Section 3.4 and Vex the
spin-exchange interaction energy defined in Eq. (2.20). While single-particle transitions are
driven with a Rabi frequency Ω0, the coupling to the interorbital states |ψ±eg (B)〉 shows super-

1Note that since we use linearly polarized light to drive the clock transition, only the |t〉 = (|↑↓〉+ |↓↑〉)/
p

2
triplet spin state of |eg−〉 is addressed, with the other two possible spin states |↑↑〉 and |↓↓〉 remaining inaccessible.
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Figure 4.1 – Experimental sequence and geometry. (a) Sketch of the experimental geometry. We prepare
a spin-balanced quantum degenerate Fermi gas of 171Yb in a magic-wavelength isotropic cubic optical lattice
and vertical bias magnetic field B . The lattice potential is generated by the three perpendicular retroreflected
laser beams L1, L2 and L3, as introduced in Fig. 3.1. Red circles represent individual lattice sites while gray
lines denote nearest-neighbor tunnel links. Each lattice site can be populated with a maximum of two atoms in
the ground band, owing to the Pauli exclusion principle and the presence of two different spin states. The laser
employed to drive ground-state atoms to the clock state is co-propagating with L1 and linearly polarized along
B . At the end of each experimental cycle, in-situ imaging of the atoms is performed using a vertical imaging
laser beam. (b) Experimental sequence. After forced evaporation in the xODT [see Fig. 3.2(b)], atoms are
first transferred into the vertical lattice planes in L3 before ramping up the horizontal lattices L1 and L2. The
bias magnetic field B is subsequently ramped up to the desired value, after which a clock-excitation π-pulse
is performed to probe or prepare the sample. The atoms are finally imaged following the sequence described
in Fig. 3.3(c). (c) Relevant single- and two-particle transitions on the clock line represented for B = 0G.
We either drive the single-particle transitions 1⃝: |g ↓⟩ → |e ↓⟩ and 2⃝: |g ↑⟩ → |e ↑⟩ or the two-particle
transitions 3⃝: |gg⟩ → |eg+⟩ and 4⃝: |gg⟩ → |eg−⟩. Solid black lines represent the on-site lattice potential
while solid gray lines denote the energy of each state. Two-particle states are shifted in energy with respect
to single-particle states by the on-site interaction energies Ugg and U±

eg . At finite magnetic fields, the various
transition energies are shifted with respect to the B = 0 case.
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and subradiant behavior, with effective Rabi frequencies [152]

Ω±eg (B)

Ω0
=
∓1+ C (B)

C (B)

√

√

√

1+
V 2

ex

δ (B)2
[1± C (B)], (4.3)

where C (B) =
q

1+δ (B)2 /V 2
ex. At B = 0, the coupling to |eg−〉 is therefore enhanced by a

factor
p

2 compared to the single-particle transition, while the coupling to |eg+〉 vanishes. At
finite magnetic fields, however, the mixing between |eg−〉 and |eg+〉 leads to a finite coupling
to both interorbital states, with the limit Ω±eg (B)/Ω0→ 1 for large fields where |δ (B)| ≫ |Vex|.
In our experiments, we always take the modified coupling to |ψ±eg (B)〉 into account to choose
the correct π-pulse time tπ.

4.2 Interorbital scattering lengths

In order to experimentally determine the interorbital scattering lengths a±eg in 171Yb, which are
among the most critical parameters for the study of two-orbital Fermi-Hubbard Hamiltonians,
we first measure the on-site interaction energies U±eg associated with both interorbital states
|eg±〉 in a magic-wavelength optical lattice of mean depth V̄ = 29.71 (5) Erec. The experimen-
tal geometry and sequence correspond to the description in Section 4.1.

We perform clock-line spectroscopy measurements at various magnetic fields
B = {1.1, . . . , 50} G on both pair transitions |g g〉 → |ψ±eg (B)〉 in spin-balanced samples, as
shown in Fig. 4.2. The response of the system is probed as a function of the clock-laser detun-
ing with respect to the single-particle transition frequency at zero magnetic field. This leads to
the eigenenergies E± (B) of the interorbital states defined in Eq. (2.19) relatively to the initial-
state on-site interaction energy Ugg. As a reference, we also measure in spin-polarized samples
both single-particle transitions |g ↓〉 → |e ↓〉 and |g ↑〉 → |e ↑〉, which are affected by the differ-
ential Zeeman shift at finite magnetic fields. All four transitions are probed in an interleaved
fashion at each magnetic field in order to keep track of clock laser drifts. The single-particle
transitions are driven with coherent π-pulses of power P = 15µW (corresponding to an inten-
sity I ≈ 24 mW/cm2) and duration tπ = 3.972 ms. To keep the exact same coupling strength

for the pair-state transitions, we adjust the clock-laser power P such that P → P
�

Ω0/Ω
±
eg (B)

�2
,

whereΩ0 is the single-particle transition Rabi frequency andΩ±eg (B) the two-particle transition
Rabi frequencies defined in Eq. (4.3), ensuring a constant π-pulse time throughout our mea-
surements. The only exceptions are the |g g〉 → |ψ+eg〉 transitions at B = 1.1 G and B = 2.5 G
where longer pulse times have been used since available laser power was lacking to fully adjust
the coupling strength.

We restrict the evaluation of our in-situ absorption images to a small region of interest
(ROI) of 14 px × 14px (corresponding to 6.58µm × 6.58µm, or 17.33 × 17.33 lattice sites)
in the center of the atomic cloud. We evaluate our data in each 2px× 2px (corresponding to
0.94µm × 0.94µm) binned superpixel within the ROI, leading to a total of 49 independent
measurements. At each magnetic field, every resonance is individually fitted with a Lorentzian
profile, leading to the energy branches shown in Fig. 4.3. Using the resonance frequencies ex-
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Figure 4.2 – Low-field interaction spectroscopy in 171Yb. Clock-line spectroscopy measurements per-
formed at multiple magnetic fields B = {1.1, . . . 50} G and evaluated in a 0.94µm × 0.94µm large region
of interest inside our in-situ absorption images. For each magnetic field, we show the fraction of atoms detected
in the clock state as a function of the detuning of the driving laser with respect to the single-particle transition
frequency at zero magnetic field. In addition to both single-particle transitions (gray diamonds), we observe two
features corresponding to both two-particle transitions |gg⟩ → |ψ+

eg (B)⟩ (blue circles) and |gg⟩ → |ψ−
eg (B)⟩

(red circles). Solid lines denote Lorentzian fits to the data.
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Figure 4.3 – Interorbital interaction energies in 171Yb. We show the resonance position of both single-
particle transitions (gray diamonds) and both two-particle transitions (circles) as a function of the magnetic field,
extracted from fits to the data displayed in Fig. 4.2. The color of data corresponding to the interorbital interaction
states is given at each magnetic field B by the parameter m (B) =

∣∣⟨eg+|ψ±
eg (B)⟩

∣∣2 − ∣∣⟨eg−|ψ±
eg (B)⟩

∣∣2.
Using this definition, m = −1 corresponds to a pure |eg−⟩ state, m = 1 to a pure |eg+⟩ state and m = 0 to
a perfect superposition state. Solid lines correspond to either the differential Zeeman shift computed using the
values reported in Section 3.4 (gray) or to fits of Eq. (2.19) to the data (color). Error bars are smaller than the
marker size. Adapted from Ref. [188].

tracted from the fits, we shift the clock-laser detuning such that the mean of both single-particle
transition frequencies is set to zero. This cancels clock-laser drifts as well as contributions from
the quadratic Zeeman shift. We notice that the pair-state energy corresponding to |ψ−eg (B)〉 is
always larger than the one corresponding to |ψ+eg (B)〉. This implies a negative spin-exchange
interaction energy Vex < 0 as a consequence of Eq. (2.19) and demonstrates antiferromagnetic
interorbital spin-exchange in 171Yb, in agreement with similar measurements [194, 198].

In each superpixel inside the ROI, we fit the obtained energy branches E± (B) with

E− (B) + E+ (B) =2V

E− (B)− E+ (B) =2
Ç

V 2
ex +δ (B)

2,
(4.4)

which immediately follows from Eq. (2.19) and Vex < 0, using V and Vex as free fit parameters.
Here, V denotes the direct interaction energy defined in Eq. (2.21) and δ (B) the differential
Zeeman shift. Using Eqs. (2.20) and (2.21), the on-site interaction energies are then given by

U+eg =V + Vex

U−eg =V − Vex.
(4.5)
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Figure 4.4 – Comparison of models for the on-site interaction energy. (a) We compare the on-site pair
interaction energy as a function of the s-wave scattering length a in a 30Erec deep optical lattice using the
various interaction models introduced in Section 2.4, where Erec denotes the lattice photon recoil energy. The
different lines represent the results obtained using: Eq. (2.49) with ground-band Wannier wavefunctions (black
dashed line) as well as the harmonic oscillator solutions in Eq. (2.54) without (blue dotted line) and with (solid
blue line) correction of the slope at a = 0 (see main text). The exact diagonalization solution computed
in Ref. [74] applied to our data is shown as well for reference (red dashed line). Solid vertical gray lines
correspond to the scattering lengths a±eg determined in this section and aee probed in Section 4.3. The dashed
horizontal gray line denotes the lattice band gap and the dashed vertical gray line the corresponding harmonic
oscillator length aho computed via Eq. (2.40). We also show detailed plots around (b) a = 240 a0 and (c)
a = 389 a0, which correspond to the values of a+eg and a−eg determined in this section, respectively.

The final step is to compute the interorbital scattering lengths a±eg from the on-site inter-
action energies U±eg and lattice parameters. In Fig. 4.4, a comparison between the various
models introduced in Section 2.4 to describe the pair-state interaction energy as a function of
the s-wave scattering length is shown for a lattice of depth 30 Erec, where Erec represents the
lattice photon recoil energy.

A first approach consists in considering two indistinguishable particles on a single lattice
site interacting via the pseudopotential V (r) =

�

4πħh2a/m
�

δ(3) (r), where r is the interparticle
distance, a the s-wave scattering length and m the atomic mass. This leads to the Hubbard on-
site interaction energy U defined in Eq. (2.49). In a simple approximation, one could assume
that the atomic wavefunction in Eq. (2.49) is given by the lowest-lattice-band Wannier func-
tion w0 (r), yielding the model used in Refs. [194, 198] to compute the interorbital scattering
lengths from the measured on-site interaction energies (dashed black lines in Fig. 4.4). This is
however only valid in the limit of deep lattices and small scattering lengths, where contribu-
tions from higher bands are negligible. In order to better account for these contributions, we
instead use the exact energy solution for two atoms in a harmonic trap, see Eq. (2.54) (dotted
blue line in Fig. 4.4). The anharmonicity of the on-site trapping potential is accounted for
by matching the slope of the obtained energy branch at a = 0 with the slope obtained from
using Eq. (2.49) with ground-band Wannier functions (solid blue lines in Fig. 4.4). This leads
to results in excellent agreement with an exact diagonalization of the Hamiltonian describing
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Figure 4.5 – Interorbital scattering lengths distribution in the cloud center. From the spatially-resolved
measurement of the on-site interaction energies U±

eg −Ugg and of the mean lattice depth [see Fig. 3.8(b)], we
compute the relative interorbital scattering lengths (a) a+eg − agg and (b) a−eg − agg in each 0.94µm× 0.94µm
binned superpixel within our region of interest using the method described in the main text. (c-d) Normalized
weighted distribution of the relative interorbital scattering lengths displayed in (a) and (b), respectively. We use
the number of atoms in each superpixel as weights. Solid black lines represent Gaussian fits to the distribution,
while solid red lines denote the mean of the distribution, leading to the values reported in the main text. The
red shaded area coincides with the standard error of the mean. Adapted from Ref. [188].

two interacting atoms in a lattice, expanding the lattice potential to 10th order [74] (dashed
red lines in Fig. 4.4).

In each binned superpixel inside the ROI, we compute the relative interorbital scattering
lengths a±eg − agg using the measured relative on-site interaction energies U±eg − Ugg and the
spatially-resolved mean lattice depth calibration shown in Fig. 3.8(b). The obtained a±eg are
displayed in Figs. 4.5(a-b) and show as expected no apparent spatial dependence, in contrast
to U±eg − Ugg or the mean lattice depth. This effectively leads to multiple independent mea-
surements of a±eg with outcomes following a distribution which we assume to be Gaussian,
as shown in Figs. 4.5(c-d). Taking the mean value of the distribution leads to the relative
scattering lengths

a+eg − agg = 242.7 (1) a0

a−eg − agg = 392.2 (2) a0,
(4.6)

where a0 denotes the Bohr radius. The error is given by the fit uncertainty on the position of
the mean. Using the previously measured value agg = −2.8 (3.6) [96] for the |g g〉 scattering
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length, we finally obtain the absolute interorbital scattering lengths

a+eg = 240 (4) a0

a−eg = 389 (4) a0,
(4.7)

with an uncertainty dominated by the uncertainty on agg since the relative values in Eq. (4.6)
exhibit uncertainties smaller by one order of magnitude. A measurement of agg with en-
hanced precision could therefore significantly reduce the uncertainties of a±eg. Note that us-
ing Eq. (2.49) with ground-band Wannier functions to extract the scattering lengths leads to
a+eg − agg = 248.2 (1) a0 and a−eg − agg = 391.7 (2) a0.

In particular, we find that a+eg < a−eg, involving antiferromagnetic spin-exchange interac-
tions with Vex < 0, in qualitative agreement with similar measurements performed in 171Yb [194,
198]. Considering the vanishingly small s-wave scattering length associated with |g g〉 pairs as
well, this makes 171Yb a very promising platform for the study of the antiferromagnetic Kondo
and Kondo lattice models in particular [69, 78–84].

4.3 Intraorbital scattering length in the clock state

In order to complete the characterization of 1S0–3P0 elastic scattering in 171Yb, we measure
the scattering length aee associated with the |ee〉 interaction channel, which has not yet been
determined in this isotope. In principle, aee could be probed by directly driving the |g g〉 → |ee〉
transition in an optical lattice via two-photon excitations, in analogy to the measurement per-
formed to determine aee in 173Yb [73]. In this case, two clock-laser photons of identical fre-
quencies are simultaneously absorbed, with a resonance frequency detuned by

�

Uee − Ugg

�

/2
compared to the bare |g〉 → |e〉 transition frequency at zero magnetic field, where Ugg and Uee

denote the on-site interaction energy of |g g〉 and |ee〉 pairs, respectively.
In our experiment, we instead determine aee by performing two successive clock-excitation

pulses of power P = 1.5mW (corresponding to an intensity I = 240 mW/cm2) and duration
tπ = 1.26 ms in a cubic optical lattice of mean depth V̄ = 35.5 (1) Erec, where Erec denotes the
lattice photon recoil energy, and magnetic field B. After coherently driving all |g g〉 pairs to the
interorbital state |ψ−eg (B)〉, we scan the frequency of a second pulse addressing the |ψ−eg (B)〉 →
|ee〉 transition, as illustrated in Fig. 4.6(a). The first pulse is resonant for a detuning h ×
�

E− (B)− Ugg

�

with respect to the bare |g〉 → |e〉 transition frequency at zero magnetic field
while the second pulse is resonant for a detuning h × [Uee − E− (B)]. From both detunings,
the magnetic-field-independent relative interaction energy Uee − Ugg is directly obtained. To
improve signal-to-noise ratio, we restrict our data evaluation to one single 5px× 5px region
of interest (corresponding to 2.35µm× 2.35µm) in the center of our absorption images. In
Fig. 4.6(b-d), the number of clock-state atoms in the sample is shown as a function of the
second clock-excitation pulse detuning in three different magnetic fields B = {1.1, 10,25} G,
exhibiting two distinct features. A first peak of positive amplitude is observed, corresponding
to the creation of |e〉 atoms via the single-particle |g ↑〉 → |e ↑〉 transition2. We attribute the

2At B = 1.1 G, both single-particle transitions |g ↑〉 → |e ↑〉 and |g ↓〉 → |e ↓〉 are driven in the observed feature
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Figure 4.6 – Intraorbital 3P0 scattering length in 171Yb. (a) Two-pulse sequence used to probe the s-
wave scattering length aee associated with the |ee⟩ state. After a first clock-laser pulse 1⃝ driving the |gg⟩ →
|ψ−

eg (B)⟩ transition, a subsequent pulse 2⃝ driving the |ψ−
eg (B)⟩ → |ee⟩ transition is performed in a magnetic

field B . The interaction shift of the first transition is E− (B) − Ugg while it is Uee − E− (B) for the second
transition, ultimately leading to Uee − Ugg. We show the number of detected atoms in |e⟩ as a function of the
detuning of the second clock-laser pulse 2⃝ with respect to the zero-field single-particle transition frequency
(dashed vertical gray lines) for (b) B = 1.1G, (c) B = 10G and (d) B = 25G (blue circles). Error bars
are given by the standard deviation of two consecutive measurements. We fit the data with a sum of two
Lorentzians, where the peak of positive amplitude represents single-particle clock transitions and the loss
feature corresponds to the |gg⟩ → |ψ−

eg (B)⟩ transition 2⃝. Red vertical lines denote the position of the first
transition 1⃝ while blue vertical lines represent the fitted position of 2⃝. (e) Magnetic-field-independent on-site
interaction energies Uee − Ugg extracted from the data. (f) Corresponding relative s-wave scattering lengths
aee − agg computed from the on-site interaction energies similarly to the interorbital scattering lengths (see
Section 4.2). The green horizontal line denotes the weighted average of aee − agg, which is the value reported
in the main text, while the green shaded area represents the uncertainty. Adapted from Ref. [188].



4.4 Interorbital pair states lifetimes 63

second feature, which corresponds to a loss of |e〉 atoms compared to the |ψ−eg (B)〉 baseline,
to the formation of |ee〉 pairs. Indeed, given the extremely short lifetime of |ee〉 states in the
lattice (∼ 100µs), these pairs leave the trap far before they are imaged (see Section 4.5). The
large width of the |ee〉 loss feature, which limits our measurement precision, further hints at
a short lifetime of this state.

We fit a sum of two Lorentzians to the data shown in Fig. 4.6(b-d) and determine the
relative on-site interaction energy Uee − E− (B) from the position of the |ee〉 peak. The inter-
action energy E− (B)− Ugg is obtained via Eq. (2.19), with the on-site interorbital interaction
energies U±eg computed from the associated scattering lengths a±eg determined in Section 4.2
and the mean lattice depth V̄ . This leads to the values for Uee − Ugg shown in Fig. 4.6(e). We
extract the associated s-wave scattering length in the same fashion as in Section 4.2, leading
to the values displayed in Fig. 4.6(f). Taking the weighted average of the values obtained at
each magnetic field yields

aee − agg = 111 (4) a0, (4.8)

where a0 denotes the Bohr radius. Using the known value agg = −2.8 (3.6) a0 [96], we finally
obtain

aee = 108 (8) a0, (4.9)

which is comparable to the value measured in 173Yb [73].

4.4 Interorbital pair states lifetimes

A crucial parameter for the implementation of two-orbital many-body Hamiltonians in addi-
tion to the s-wave scattering lengths measured in Sections 4.2 and 4.3 is the lifetime of the
interorbital states, which should ideally be much larger than all other relevant timescales gov-
erning the dynamics in the experiment. Here, we extract the two-body loss coefficient β±eg

associated with both interorbital states |eg±〉 by measuring the lifetime of clock-state atoms in
|eg±〉 samples.

The experiment starts with a spin-balanced sample in a magic-wavelength cubic lattice of
mean depth V̄ , containing singlons (|g ↓〉, |g ↑〉) as well as doublons (|g g〉). Doublons are
subsequently excited to the interorbital states |eg±〉 by means of a single coherent clock-laser
pulse addressing one of the |g g〉 → |ψ±eg (B)〉 transitions in a bias magnetic field B = 25G,
after which the magnetic field is ramped down to B = 1G. The pulse time tπ = 397µs is much
shorter than the lifetime of |eg±〉 and bare |e〉 states and is performed with a laser power of
1.5 mW corresponding to an intensity I ≈ 2.4 W/cm2. Similarly to the protocol described in
Section 4.2, the clock-laser pulse intensity I is slightly adjusted to ensure a constant coupling
strength (and thereby pulse time tπ) throughout the measurements. After preparing the sam-
ple in the interorbital states |eg±〉, the atoms are held in the lattice for a given time th and sub-
sequently imaged. To improve the signal-to-noise ratio, a single 10px×10px (4.7µm×4.7µm)
area in the center of our in-situ images is considered. The decay of a spin-polarized sample of

since the energy splitting between both transitions is smaller than our resolution in this experiment.
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Figure 4.7 – Lifetimes of interorbital states in 171Yb. We measure the number of atoms remaining in the
clock state after a given hold time in a cubic lattice of mean depth (a) 13.02(9)Erec, (b) 20.18(5)Erec and
(c) 34.99(6)Erec. A spin-polarized sample prepared in |e ↑⟩ (grey circles) is compared to spin-balanced
samples prepared in the |eg−⟩ (red circles) and |eg+⟩ (blue circles) states. Solid lines correspond to fits to
the data as described in the main text. The measurements are performed in a bias magnetic field of 1G. (d)
Corresponding 1/e lifetimes extracted for each lattice depth. The dashed lines serve as a guide to the eye.
Adapted from Ref. [188].

|e ↑〉 atoms prepared with a single |g ↑〉 → |e ↑〉 clock-laser pulse is measured as well to serve
as reference.

In Figs. 4.7(a-c), the number of clock-state atoms remaining in the trap is shown as a func-
tion of th for V̄ = 13.02 (9) Erec, V̄ = 20.18 (5) Erec and V̄ = 34.99 (6) Erec respectively, where
Erec denotes the lattice photon recoil energy. In shallower lattices with V̄ = 13.02 (9) Erec and
V̄ = 20.18 (5) Erec, the |e〉 population Pe (th) in |eg±〉 samples is best described by a sum of
two exponentials, indicating that the decay is following two distinct time scales. In deep lat-
tices such as V̄ = 34.99 (6) Erec, on the other hand, the data is well-described with a simple
exponential decay of the form

Pe (th) = Pe,0e−th/τ
±
eg + bg, (4.10)

where Pe,0 is the initial population in the clock state |e〉, τ±eg the lifetime associated with both
interorbital states |eg±〉 and bg accounts for background counts. Note that Eq. (4.10) accu-
rately fits the data for spin-polarized |e ↑〉 samples at all lattice depths.
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The resulting 1/e lifetimes are shown in Fig. 4.7(d). While lattice-depth independent for
spin-polarized |e ↑〉 samples, they are significantly reduced in shallower lattices for interorbital
|eg±〉 samples, hinting at a tunneling-induced effect. Indeed, tunneling leads to the formation
of |ee〉 pairs, which have an extremely short on-site lifetime because of the large associated
two-body loss coefficient βee (see Section 4.5). In contrast, such a process is suppressed in a
spin-polarized sample in |e ↑〉 prepared in the lowest lattice band, owing to the Pauli exclusion
principle. We have verified that the decay of ground-state atoms in the same measurements is
not affected by the lattice depth, further indicating that the increased loss of clock-state atoms
observed in shallower lattices is not intrinsically related to two-body collisions in the |eg±〉
channels.

In a deep V̄ = 34.99 (6) Erec lattice, tunneling is strongly suppressed, with a hopping rate
≲ 0.5Hz. Here, the |eg±〉 lifetimes are not limited by tunneling and are comparable to the
bare |e ↑〉 lifetime. This makes these states very suitable for the implementation of two-orbital
Hamiltonians with 171Yb atoms in optical lattices with the requirement to work in the limit
of few |e〉 atoms or in a lattice which strongly suppresses the tunneling of |e〉 atoms, such as
state-dependent lattices [75]. Assuming both ground- and clock-state atoms forming the |eg±〉
pairs to be in the same ground lattice band, Eq. (2.51) leads to

�

τ±eg

�−1
= 2β±eg

∫

d3r |w0 (r)|
4 , (4.11)

where w0 (r) is the ground-band Wannier function determining the on-site atomic density.
Fitting Eq. (4.10) to the data gives τ±eg = 4.3(4) s, which ultimately leads to the two-body loss
coefficient

β±eg ≤ 2.6 (3)× 10−16 cm3/s. (4.12)

Here, we only specify an upper bound for β±eg since the |eg±〉 lifetimes are comparable to the
|e ↑〉 lifetime and residual tunneling of |e〉 atoms still takes place. We therefore overestimate
β±eg since our value also contains the single-particle decay of |e〉 atoms and tunnel-induced |ee〉
losses. Our value is comparable to the one obtained in 173Yb via a similar method [73], but is
multiple orders of magnitude lower than the value βeg = 3× 10−11 cm3/s previously reported
in non-degenerate 171Yb gases [199].

4.5 Intraorbital pair state lifetime in the clock state

To complete the full description of intra- and interorbital interactions in 171Yb, we investigate
the lifetime of |ee〉 pairs as well. Collisions between two 3P0 atoms are expected to be strongly
inelastic in alkaline-earth(-like) elements, leading to a rapid loss through the decay of one
atom to the ground state [69, 200]. It is therefore important to characterize the associated
two-body loss coefficient βee since it represents a potential limitation for quantum simulation
experiments involving these states.

In our experiment, the lifetime of |ee〉 states could not be measured in a cubic optical lattice,
in analogy to the measurement of the |eg±〉 lifetimes reported in Section 4.4. Indeed, in such
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Figure 4.8 – Lifetime of clock-state 171Yb atomic pairs in two-dimensional planes. (a) Sketch of the
experimental geometry (not to scale). A spin-balanced sample is trapped in a magic-wavelength crossed
optical dipole trap consisting of a horizontal (mHDT) and a vertical (mVDT) laser beam. A one-dimensional
magic-wavelength optical lattice is additionally generated along the x axis using a single retroreflected laser
beam (L2). The atoms are excited to the 3P0 state by means of two consecutive clock-laser pulses addressing
both |g ↑⟩ → |e ↓⟩ and |g ↓⟩ → |e ↑⟩ transitions in a bias magnetic field B = 30G. The clock laser beam
propagates along the lattice axis to be operating in the Lamb-Dicke regime. (b) Number of |e⟩ atoms remaining
in the sample as a function of the hold time in the traps after the clock excitation pulses, normalized by the
initial atom number. We show the lifetime of |e⟩ atoms in a |e ↓⟩-|e ↑⟩ sample (green circles) and in a |g ↓⟩-
|e ↓⟩ sample (gray circles) for comparison. Solid lines correspond to a fit to the data using the two-body decay
in Eq. (4.14) (green) or an exponential decay (gray). The depth of the optical lattice is Vx = 31.2 (8) Erec,
where Erec is the lattice photon recoil energy. Adapted from Ref. [188].

an experimental configuration, the loss of |ee〉 pairs is occurring at timescales < 1 ms compa-
rable with the shortest achievable clock excitation pulse duration in the experiment. The mea-
surement geometry therefore needs to be modified to reduce the confinement of atomic pairs,
as is shown in Fig. 4.8(a). A spin-balanced sample is prepared and trapped in a single-axis
optical lattice of depth Vx = 31.2 (8) Erec (where Erec denotes the lattice photon recoil energy)
with an additional confinement provided by a magic-wavelength crossed optical dipole trap,
which also holds the atoms against gravity. This prepares the atoms in quasi-two-dimensional
planes, similar to the measurement reported in Ref. [73]. Two successive coherent clock-laser
pulses of duration tπ = 264µs are subsequently performed along the lattice axis to drive both
|g ↑〉 → |e ↓〉 and |g ↓〉 → |e ↑〉 transitions3 in a bias magnetic field B = 30 G, thereby preparing
the sample in a balanced statistical mixture of |e ↓〉 and |e ↑〉 atoms. The atoms are then held
in the traps for a given time th and imaged. In Fig. 4.8(b), the number of remaining |e〉 atoms
is shown as a function of th. The decay is significantly faster in the |e ↓〉-|e ↑〉 mixture than in
a |g ↓〉-|e ↓〉 mixture prepared as comparison by only performing one single clock excitation
pulse.

Since the loss of |ee〉 pairs is dominant in the decay of clock-state atoms, it can be readily

3Here we use the clock laser along the lattice axis L2, which is circularly polarized in a vertical magnetic field
and thereby drives σ± transitions. This is in contrast to all other experiments which have been performed along
the lattice axis L1 with a linearly polarized clock laser driving π transitions.
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described as a two-body loss process. Assuming a perfectly spin-balanced |e ↓〉-|e ↑〉 sample,
the loss of |e〉 atoms can be described by the rate equation [199]

ṅe (t) = −βeen (t)2 , (4.13)

where ne (t) denotes the density of |e〉 atoms and βee the two-body loss coefficient between
two |e〉 atoms. The solution of Eq. (4.13) is

ne (t) =
ne,0

1+ ne,0βee t
, (4.14)

defining ne,0 = ne (0) as the initial atomic density. While we use Eq. (4.14) to fit the data
shown in Fig. 4.8(b), the two-body loss coefficient βee can only be determined if the initial
atomic distribution ne,0 is known.

To compute the initial atomic density, we model the optical lattice potential as an array of
quasi-two-dimensional traps. Along the strongly-confined lattice axis x , the potential can be
considered to be harmonic, with an oscillator frequency ωx = 2

p
sErec/ħh, where Erec denotes

the lattice photon recoil energy and s the lattice depth in units of Erec [see Eq. (2.39)]. For
s = 31.2 (8), one obtains ωx = 2π× 22.6 (3) kHz. Assuming all atoms are in the vibrational
ground state of the harmonic potential, the density profile n (z) along the lattice axis is given
by

n (x) =
s

mωx

πħh
exp

�

−
mωx x2

ħh

�

, (4.15)

where m is the atomic mass. Within each optical lattice plane, the distribution function in
phase space f (r,p) is given in the semi-classical approximation by [201]

f (r,p) =
2

Z−1eβ(p2/2m+ωy y2/2+ωzz2/2) + 1
, (4.16)

where Z is the fugacity of the gas andωy ,z the in-plane trapping frequencies along the weakly
confined axes y and z. The factor of 2 accounts for the two spin components in the sample. The
density distribution n (r) in real space is then obtained by integrating f (r,p) over momentum
space,

n (y , z) =
1

(2πħh)2

∫

dp f (r,p) , (4.17)

leading to a two-dimensional Thomas-Fermi density distribution

n (y , z) = −
�

m

πħh2β

�

Li1

§

−Zexp
�

−
mβ
2

�

ω2
y y2 +ω2

z z2
�

�ª

=

�

m

πħh2β

�

ln
§

1+Zexp
�

−
mβ
2

�

ω2
y y2 +ω2

z z2
�

�ª

,

(4.18)

using the polylogarithm function −Lis (−x) =
�

∫∞
0 du us−1/

�

x−1eu + 1
�

�

/Γ (s) with the prop-
erty Li1 (x) = − ln (1− x). Here, Γ (x) denotes the gamma function and β = 1/kB T , with kB

the Boltzmann constant and T the temperature of the gas. We determine the trap frequen-
cies by measuring the period of center-of-mass oscillations along y and z after a sudden trap
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s-wave scattering lengths (a0) Two-body loss coefficients ( cm3/s)

agg a+eg a−eg aee β±eg βee

Kitagawa et al. [96] −2.8(3.6) – – – – –
Ono et al. [194] – 225(13) 355(6) – – –
Abeln et al. [198] – 203(5) 308(6) – – –
This thesis – 240(4) 389(4) 108(8) ≤ 2.6(3)× 10−16 4.8(2.1)× 10−12

Table 4.1 – Summary of the 1S0–3P0 intra- and interorbital s-wave scattering lengths and two-body loss coef-
ficients in 171Yb obtained in this chapter or reported by other research groups. The s-wave scattering lengths
are given in units of a0, which represents the Bohr radius.

displacement, and obtain ωy = 2π× 53.7 (8.1) Hz as well as ωz = 2π× 262.6 (2.8) Hz. The
temperature is obtained by directly fitting the in-situ integrated column density distribution
nc (y) =

∫

dz n (y , z), leading to T = 117 (41) nK.
The total density distribution is then obtained by combining Eqs. (4.15) and (4.18) and is

given by n (x , y , z) = n (x)n (y , z). We find a weighted average initial density

n̄=

∫

dr n (x , y , z)2
∫

dr n (x , y , z)
= 2.0 (7)× 1013 cm−3, (4.19)

which we use as value for ne,0 in Eq. (4.14). A fit to the data shown in Fig. 4.8(b) then leads
to a two-body loss coefficient

βee = 4.8 (2.1)× 10−12 cm3/s, (4.20)

which is comparable to a similar measurement performed with 171Yb in the high-temperature
regime [199] and to previous results obtained with 173Yb [73] and 88Sr [200] atoms. It is
much larger than the two-body loss coefficient β±eg associated with the interorbital states. In
any quantum simulation experiment involving clock-state atoms, it is therefore essential to
isolate |e〉 atoms to prevent lossy e-e collisions. This can be achieved by working in the limit of
very few |e〉 atoms or by using deep optical lattice potentials for |e〉 atoms, for instance via a
state-dependent lattice in which |g〉 atoms are mobile and |e〉 atoms are strongly localized [75].

4.6 Discussion

Together with the previously known ground-state intraorbital scattering length agg measured
via two-color photoassociation spectroscopy on the intercombination line [96], the various
measurements reported in this chapter fully characterize the 1S0–3P0 intra- and interorbital
interactions in 171Yb. In Table 4.1, we give an overview of the currently known elastic and
inelastic interaction parameters, including the values obtained in this chapter as well as results
from other research groups.

In particular, two other groups have recently reported values for the interorbital scattering
lengths a±eg [194, 198] which differ by up to ≈ 20% from our measurements, far outside the
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s-wave scattering lengths (a0)

a+eg a−eg Spin-exchange interactions

87Sr [87] 169 (8) 68 (22) Ferromagnetic
173Yb [73] ≈ 4× 103 220 (3) Ferromagnetic
171Yb (This thesis) 240 (4) 389 (4) Antiferromagnetic

Table 4.2 – Comparison of the 1S0–3P0 interorbital scattering lengths in different alkaline-earth(-like) elements,
using this thesis as reference for 171Yb. The s-wave scattering lengths are given in units of a0, which represents
the Bohr radius.

range defined by the reported uncertainties. The reasons behind these discrepancies are cur-
rently unknown to us. In Ref. [194], the measurement is performed in a similar geometry but
only the pair-state energy branch E− (B) is probed, which could lead to a less accurate deter-
mination of the on-site interaction energies U±eg. In Ref. [198], the measurement is performed
in a triangular lattice and this geometry is taken into account when computing a±eg from U±eg.
Both references use Eq. (2.49) with ground-band Wannier functions as wavefunctions to model
on-site interactions, which is slightly different from the model we have used. This however
only leads to small discrepancies, since using Eq. (2.49) with ground-band Wannier functions
to extract the scattering lengths leads to a+eg = 245 (4) a0 and a−eg = 389 (4) a0 using our data,
which still differ from the other values reported in Table 4.1.

A central consequence resulting from the interorbital scattering lengths reported in this
thesis is that a+eg − a−eg < 0, in qualitative agreement with Refs [194, 198]. This implies
antiferromagnetic spin-exchange interactions Vex < 0 in 171Yb, in strong contrast with the
situation in 87Sr and in 173Yb, where ferromagnetic spin-exchange interactions have been re-
ported [73, 87], see Tab. 4.2. This opens the way for the study of the antiferromagnetic Kondo
and Kondo lattice models [69, 78–84] with ultracold 171Yb atoms in state-dependent optical
lattices [75].

Finally, the very small two-body loss coefficient β±eg associated with the |eg±〉 states leads to
their long lifetime in optical lattices, which are comparable to the lifetime of single |e〉 atoms.
This makes these states suitable for uses in quantum simulation experiments. On the other
hand, the very short lifetime of |ee〉 states arising from strongly inelastic collisions is an in-
evitable limitation that needs to be taken into consideration when designing experiments. This
fact is expected in alkaline-earth(-like) atoms [69] and has also been observed in 88Sr [200]
and 173Yb [73], which feature similar clock-state two-body loss coefficients. To circumvent
this issue and prevent the formation of |ee〉 pairs during experiments, a lattice in which |e〉
atoms are strongly localized must be used, such as a state-dependent lattice for |g〉 and |e〉
atoms [75]. Alternatively, experiments could be performed in the limit of very few |e〉 atoms,
which is relevant for the investigation of impurity physics [118]. Overall, the unique combi-
nation of antiferromagnetic spin-exchange interactions, long-lived interorbital pair states and
almost vanishing ground-state scattering length agg makes 171Yb an ideal candidate for the
quantum simulation in optical lattices and in the limit of zero magnetic fields of two-orbital
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models based on spin-exchange interactions.



CHAPTER 5

Observation of an orbital Feshbach
resonance in 171Yb

Despite the absence of magnetic Feshbach resonances in alkaline-earth(-like) atoms, these el-
ements potentially feature so-called orbital Feshbach resonances (OFRs) [103] between atoms
in the electronic ground and clock states. While so far only observed in 173Yb [105, 106], the
elastic interorbital scattering parameters determined in Chapter 4 hint at an OFR occuring at
an experimentally accessible magnetic field in 171Yb as well, as discussed in Section 2.2.4.

In this chapter, we report on the observation and characterization of the OFR in 171Yb. We
measure the binding energy of the molecular dimer state associated with the resonance as well
as the repulsive interaction energy of the open-channel pair state via clock-line spectroscopy at
large magnetic fields. The obtained data is well-described by an effective open-channel model,
allowing to extract the resonance position, resonance width and background scattering length.
In a second measurement, we precisely determine the scattering length zero-crossing position
by measuring the dimer state binding energy in a narrow magnetic field range.

5.1 Experimental configuration and sequence

The experimental configuration and sequence used for the measurements reported in this chap-
ter are practically identical to the detailed description given in Section 4.1. The main differ-
ence is that significantly larger magnetic fields up to 1600 G are probed here. Throughout this
chapter, we mainly probe three different clock-line transitions which are the single-particle
transition

|g ↑〉 → |e ↑〉 (5.1)

as well as the two-particle transitions

|g g〉 → |o〉 (5.2)

and
|g g〉 → |bc〉 . (5.3)

These three transitions are illustrated in Fig. 5.1(a). Here, |o〉 denotes the energetically acces-
sible open interaction channel, which is given by the state |eg ↑↓〉 defined in Eq. (2.23) in the
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limit of large interparticle distances and at large magnetic fields where the differential Zeeman
shift is large compared to the spin-exchange interaction energy. The state |bc〉 represents the
least-bound state supported by the closed-channel interatomic potential |c〉1. Note that we
again use the notations |g〉 ≡ |1S0〉, |e〉 ≡ |3P0〉, |↓〉 ≡ |mF = −1/2〉 and |↑〉 ≡ |mF = +1/2〉 to
describe the internal state of single atoms.

5.2 Large-field lattice interaction spectroscopy

Two ultracold atoms in an isotropic harmonic trap with an interaction described using a reg-
ularized pseudopotential follow an exactly solvable Schrödinger equation [150], as described
in Section 2.4.2. In particular, the eigenenergies can be computed exactly and depend only
on the s-wave scattering length a, the harmonic trapping frequency ωho and the atomic mass
m, leading to the energy branches shown in Fig. 2.4. As clearly visible in Fig. 2.4(b), these
eigenenergies exhibit a strong dependence on 1/a around 1/a = 0. Measuring these energy
branches with interorbital pairs of 171Yb atoms in various external magnetic fields therefore
represents an advantageous method to probe the magnetic field dependence of the interorbital
scattering length a, in particular the resonant behavior expected in the vicinity of the OFR.

In order to observe and characterize the OFR in 171Yb, we probe the interaction energy of
the pair states |bc〉 and |o〉, which correspond to both energetically lowest-lying states displayed
in Fig. 2.4(b). All measurements are performed in a magic-wavelength isotropic cubic optical
lattice of mean depth V̄ = 30.36 (5) Erec, where Erec = (2πħh)

2 /2mλm denotes the lattice
photon recoil energy, with m the atomic mass and λm = 759.4nm the lattice wavelength.
In such a deep lattice, the on-site trapping potential can be assumed to be approximately
harmonic, with an harmonic trapping frequency ωho = 2π× 22.31 (2) kHz [see Eq. (2.39)].

We perform clock-line spectroscopy measurements at large magnetic fields B = {5, . . . ,
1600}G on both pair transitions |g g〉 → |bc〉 and |g g〉 → |o〉 in spin-balanced samples. As a
reference, we also measure the single-particle transition |g ↑〉 → |e ↑〉 in spin-polarized sam-
ples. The |g ↑〉 → |e ↑〉 and |g g〉 → |o〉 transitions are driven with coherent π-pulses of power
P = 20µW (corresponding to an intensity I ≈ 32 mW/cm2) and duration tπ = 3.44 ms. The
|g g〉 → |bc〉 transitions are on the other hand driven with long incoherent pulses of power
P = 150nW (I ≈ 240µW/cm2) and duration t = 250ms at magnetic fields B ∈ [1350, 1600]G
and of power P = 1.5µW (I ≈ 2.4 mW/cm2) and duration t = 250ms at magnetic fields
B ∈ [1000, 1200]G. At magnetic fields below 1000G, the transition into the bound state is
driven with short pulses of power P = 10 mW (I ≈ 1.6 W/cm2) and duration t = 490µs. To
improve the signal-to-noise ratio, we restrict the evaluation of our in-situ absorption images
to a small region of interest (ROI) of 6px× 6 px (corresponding to 2.82µm× 2.82µm) in the
center of the atomic cloud.

At each magnetic field, every resonance is individually fitted with a Lorentzian profile, as
shown for B = 1000 G in Fig. 5.1(b-c). Here, the single-particle transition frequency is used as

1In the limit of large interparticle distances and at large magnetic fields, the closed interaction channel |c〉 is
given by the state |eg ↓↑〉 defined in Eq. (2.23).
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Figure 5.1 – Orbital Feshbach resonance in 171Yb. (a) Relevant single- and two-particle transitions on the
clock line in a deep cubic optical lattice. We drive the single-particle transition 1⃝: |g ↑⟩ → |e ↑⟩ as well as
the two-particle transitions into the repulsively interacting open-channel pair state 2⃝: |gg⟩ → |o⟩ and into
the closed-channel molecular bound state 3⃝: |gg⟩ → |bc⟩. Solid black lines represent the on-site lattice
potential while solid gray lines denote the energy of each state compared to the single-particle state energy
(dotted gray lines). Here, the very small on-site pair interaction energy in the ground state Ugg is omitted. (b-c)
Raw clock-line spectroscopy measurements at a magnetic field B = 1000G. To maximize the signal, the
transition frequency into the bound state 3⃝ is determined using the loss of ground-state atoms (blue circles)
while the transition frequency into the open-channel pair state 2⃝ (red circles) as well as the single-particle
transition frequency 1⃝ (gray diamonds) are obtained from the detection of clock-state atoms. The detuning is
defined with respect to the single-particle transition frequency. Solid lines denote Lorentzian fits to the data.
(d) Energy of the open-channel pair state |o⟩ (red circles) and closed-channel dimer state |bc⟩ (blue circles)
relative to the single-particle state energy (solid gray line) at large variable magnetic fields. The data points
are obtained from fits to clock-line spectroscopy data such as shown in (b-c). The inset shows the bound-state
energy at lower magnetic fields. We fit the data to the theoretical model described in the main text between
1000G and 1600G (solid lines), where the universal Feshbach relations hold well for the bound state. Outside
this magnetic field range, we show the fitted model as dashed lines. Both horizontal dotted gray lines denote
the first and second lattice band excitations. (e) Interorbital scattering length as a function of the magnetic field
(solid lines) extracted from the fitted model in (d). The dashed vertical line at B = 1300G marks the OFR
position. Adapted from Ref. [188].
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reference for both two-particle transitions. The resulting pair interaction energies are shown
in Fig. 5.1(d) and exhibit a behavior typically corresponding to a divergence of the interorbital
scattering length around 1300G where the binding energy of |bc〉 vanishes as it approaches
the threshold. We note a strong loss of contrast on the transition into |o〉 between 1250G
and 1400 G, in the vicinity of the OFR. We currently do not have a clear explanation for this
observation, which could possibly be related to avoided crossings with other two-body states
occuring at these magnetic fields.

To theoretically describe the data, we use the energy solutions E (1/a) for two ultracold
atoms in a harmonic potential [150] defined by [see Eq. (2.54)]

p
2
Γ (−E/2ħhωho + 3/4)
Γ (−E/2ħhωho + 1/4)

=
aho

a
, (5.4)

where aho =
p

ħh/mωho denotes the harmonic oscillator length. We account for the on-site
lattice potential anharmonicity by means of first-order perturbation theory corrections to the
eigenergies computed using Eq. (5.4), as described in Section 2.4.2. Here, the potential is
expanded up to 8th order around each lattice site. Around the OFR, where the universal Fesh-
bach relations hold well for the bound state, the magnetic field dependence of the interorbital
scattering length is well-described by an effective open-channel model given by the simple
expression [33, 202]

a (B) = abg

�

1−
∆

B − B0

�

, (5.5)

where B0 is the resonance position, ∆ the resonance width and abg the background scatter-
ing length. Fitting Eqs. (5.4) and (5.5) to the data shown in Fig. 5.1(d) between 1000G
and 1600 G leads to the resonance parameters B0 = 1300 (44) G, ∆ = 402 (169) G and
abg = 255 (24) a0 in 171Yb, where a0 denotes the Bohr radius. Using these parameters,
Eq. (5.5) leads to the interorbital scattering lengths a (B) shown in Fig. 5.1(e) as function
of the magnetic field. As can be seen in Fig. 5.1(e), the OFR occurs at an accessible magnetic
field and enables the tuning of a (B) over a broad range. The fairly large resonance width∆ is
convenient for the experimental investigation of the strongly interacting regime, which does
not require overly stringent conditions for the stability of the magnetic field.

A useful additional quantity to describe the resonance is the strength parameter sres de-
fined in Eq. (2.29). In the context of the OFR, the differential magnetic moment δµ =
399.0 (1) h Hz/G is given by the differential Zeeman shift and has been determined in Sec-
tion 3.4 for 171Yb. Using Eq. (2.29) together with Eqs. (2.12) and (2.14) leads to

sres = 0.16 (8) (5.6)

for the OFR in 171Yb, a value comparable to the one obtained in 173Yb [154]. Here we have
used the C6 van der Waals coefficient C6 = 2561 computed in Ref. [68] for 1S0+3 P0 ytterbium
dimers using configuration interaction together with coupled-cluster all-order calculations.
The uncertainty on sres is dominated by the rather large uncertainty on the resonance width
∆.
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5.3 Two-channel on-site interaction model

The open-channel theoretical model used in Section 5.2 accurately describes the magnetic
field dependence of the scattering length in the universal regime in the vicinity of the OFR.
In Fig. 5.1(d), it is apparent that the open-channel model fails at magnetic fields outside this
range, where contributions from the closed channel become significant. Here, we therefore
make an attempt at describing our experimental data with the two-channel interaction model
that has been successfully used for the OFR in 173Yb [105, 154].

The problem of two 171Yb atoms in a three-dimensional harmonic trap can be separated
into center-of-mass and relative coordinates, see Section 2.4.2. The total Hamiltonian in the
relative basis considering both interaction channels |o〉 and |c〉 is the sum of the non-interacting
Hamiltonian

Ĥ0 =
∑

n

εn |o, n〉 〈o, n|+
∑

n

(εn +δ) |c, n〉 〈c, n| (5.7)

and interacting Hamiltonian

V̂ =
∑

n,n′
ϕn (0)ϕn′ (0)

�

U+eg |eg+, n〉 〈eg+, n|+ U−eg |eg−, n〉 〈eg−, n|
�

, (5.8)

where n denotes the harmonic oscillator state with angular momentum l = 0, ϕn (0) the
harmonic oscillator wavefunction at position r = 0, δ (B) = 399.0 (1)×B Hz the magnetic field-
dependent differential Zeeman shift and |eg±〉 the interorbital pair states defined in Eq. (2.17)
with on-site interaction energies U±eg.

Using the general wavefunction |ψ〉 in the {|eg−〉 , |eg+〉} basis given by

|ψ〉=
∑

n

c+n |eg+, n〉+ c−n |eg−, n〉 (5.9)

allows for the derivation of the eigenenergies E in the T-matrix formalism, which are defined
by the equation [154]
�

2aho

a−eg
−F0

�

−E
ħhωho

�

−F0

�

−E +δ
ħhωho

�

��

2aho

a+eg
−F0

�

−E
ħhωho

�

−F0

�

−E +δ
ħhωho

�

�

−
�

F0

�

−E
ħhωho

�

−F0

�

−E +δ
ħhωho

��2

= 0. (5.10)

Here we have introduced the harmonic oscillator frequency ωho defined in Eq. (2.39), the
harmonic oscillator length aho =

p

ħh/mωho and F0 (x) =
p

2Γ (x/2+ 3/4)/Γ (x/2+ 1/4),
where Γ (x) denotes the Gamma function. In a deep optical lattice,ωho can be computed using
Eq. (2.39), leading toωho = 2π×22.3 kHz in our case. While Eq. (5.10) is valid for zero-range
interactions, finite-range corrections can be readily added by making the replacement [105]

1
a±eg
→

1
a±eg
−

1
2

mr±eff

ħh2

�

E −
δ

2
+

3
2
ħhωho

�

, (5.11)

where r+eff = 130.0 (9) a0 and r−eff = 157.6 (6) a0 are the effective ranges that can be analyti-
cally computed using Eq. (2.15).
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Figure 5.2 – Two-channel model for the OFR in 171Yb. We show the energy of the open-channel pair state
|o⟩ (red circles) and closed-channel dimer state |bc⟩ (blue circles) relative to the single-particle transition en-
ergy (horizontal gray line). The data is identical to Fig. 5.1(d). Solid colored lines correspond to the energy
branches obtained by using the two-channel model described in the main text with (a) scattering lengths a±eg

determined in Section 4.2 and analytically calculated effective ranges r±eff, (b) fitted a±eg and analytically calcu-
lated r±eff from the fitted a±eg, (c) a±eg determined in Section 4.2 and fitted r±eff, (d) a±eg determined in Section 4.2,
analytically calculated r±eff and higher-order energy contribution ∝ k4 fitted to the data. The colored areas rep-
resent a variation of ±10% of the singlet effective range r−eff, showing an important sensitivity of the resulting
energy branches to small changes of r−eff.

The obtained energy branches using the scattering lengths a±eg determined in Section 4.2
are shown in Fig. 5.2(a). While the zero-field bound-state energy is predicted well by the
model, it fails to describe our data at larger fields and implies an OFR occuring at a magnetic
field much lower than the experimentally observed one.

To gain further insight, we use the interorbital scattering lengths as free parameters and
fit the two-channel model to our data. The result is shown in Fig. 5.2(b) and describes the
data well. However, while the fitted scattering length a−eg ≈ 378 a0 is in fair agreement with
the measured value, the other fitted scattering length a+eg ≈ 138 a0 is clearly inconsistent with
the value measured in Section 4.2. Another option is to use the effective ranges r±eff as free
parameters while using the experimentally determined interorbital scattering lengths. The
resulting fit is shown in Fig. 5.2(c). Here, while the fitted r−eff ≈ 166 a0 corresponds well to the
analytically calculated value, we obtain a very large r+eff ≈ 654 a0 in disagreement with our
prediction.

In an additional attempt at capturing the large-field energy behavior, we add a higher-order
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term O
�

k4
�

in the low-energy expansion in Eq. (5.11), yielding

1
a±eg
→

1
a±eg
−

1
2

mr±eff

ħh2

�

E −
δ

2
+

3
2
ħhωho

�

+ β
�

E −
δ

2
+

3
2
ħhωho

�2

, (5.12)

where we use β as a free fit parameter while using the measured and analytically calculated
a±eg and r±eff. The resulting energy branches are displayed in Fig. 5.2(d) and show an overcom-

pensation arising from the additional O
�

k4
�

term at larger fields leading to a non-monotonous
behavior.

A significant difference between the situation in 173Yb and in 171Yb is the resonance po-
sition, which occurs around B0 ≈ 40G in 173Yb [103, 105, 106] and B0 ≈ 1300 G in 171Yb.
In the vicinity of the resonance in 171Yb, the differential Zeeman shift δ (B) ≈ 0.25 MHz is
much larger than in 173Yb and makes the scattering amplitude particularly sensitive to finite-
range effects [203]. This can be seen in Fig. 5.2(a), where the model captures the low-field
behavior well but fails at larger fields. The above measurement spans a very large range of
energy scales, and it is therefore challenging to engineer a low-energy model covering this
entire range.

5.4 Interorbital scattering length zero crossing

Since the strength parameter of the OFR in 171Yb is very small, i.e. sres≪ 1, the resonance is
narrow and the model used in Section 5.2 is only expected to hold well within a small range
|(B − B0)/∆| ≪ 1 [33]. In particular, this means that the scattering length zero-crossing posi-
tion Bzc = B0+∆= 1702 (175) G is not accurately determined by the measurement reported in
Section 5.2, mainly because of the inaccurate calculation of∆. However, the zero-crossing po-
sition is a crucial parameter to implement interorbital mixtures of 171Yb in the non-interacting
regime, such as in the measurements reported in Ref. [119].

We precisely probe the zero-crossing position Bzc of the OFR in 171Yb by repeating the mea-
surement presented in Section 5.2 in a narrow range of magnetic fields B = {1400, . . . , 1600} G
around Bzc in a 30.7 (8) Erec deep lattice. Here, we only perform clock-line spectroscopy on the
free-to-bound transition |g g〉 → |bc〉 and on the single-particle transition |g ↑〉 → |e ↑〉. The
resulting interaction energies relative to the single-particle transition are shown in Fig. 5.3(a).
The data is fitted using the same on-site interaction model as in Section 5.2, using the expres-
sion

a (B) = abg

�

B − Bzc

B − B0

�

(5.13)

for the magnetic field dependence of the scattering length around Bzc. This equation is equiv-
alent to Eq. (5.5) using Bzc = B0 +∆ in order to introduce an explicit dependence on Bzc. As
can be seen in Fig. 5.3(a), the data is very well described by our theoretical model within this
narrow magnetic field range, leading to the parameters Bzc = 1538.3 (2) G, B0 = 1316.9 (2) G
and abg = 285 (2) a0. Using the resonance position determined in Section 5.2 and the zero-
crossing position obtained above leads to a resonance width ∆ = 238 (44) G and strength
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Figure 5.3 – Orbital Feshbach resonance zero crossing in 171Yb. (a) Energy of the closed-channel dimer
state |bc⟩ (blue circles) relative to the single-particle state energy (solid horizontal gray line) around the OFR
zero crossing, measured via clock-line spectroscopy. The solid blue line corresponds to a fit to the data using
Eqs. (5.4) and (5.13) while the dashed vertical gray line denotes the position of the OFR zero crossing from
the fit. The interorbital scattering length given by Eq. (5.13) is shown as well (solid green line). (b) Position of
the OFR zero crossing as a function of the mean lattice depth. The data point at 30.7 (8) Erec corresponds to
the measurement shown in (a). The dashed red line corresponds to a linear fit to the data.

parameter sres = 0.09 (3), which corresponds to a very narrow resonance. Here, we have used
the background scattering length abg determined in Section 5.2.

All resonance parameters reported above have been obtained at a given mean lattice depth
V̄ = 30.7 (8) Erec. However, we have observed that the zero-crossing position significantly de-
pends on the lattice depth, see Fig. 5.3(b), with a slope of 1.5 (2) G/Erec. This in an important
point that needs to be taken into account when using the OFR to prepare non-interacting in-
terorbital mixtures. We consider this shift to be a finite- range effect. Indeed, it can be seen
from Eq. (5.11) that the effective range r±eff introduces an explicit energy dependence of the
interorbital scattering lengths a±eg. Here, a change in the lattice zero-point motion energy
calls for a modified differential Zeeman shift δ (B) to yield the same scattering cross-section,
effectively shifting the OFR zero-crossing position.

5.5 Discussion

This chapter reports on the first experimental observation and characterization of an OFR
in 171Yb occuring between interorbital atomic pairs at B0 = 1300 (44) G, which had so far
only been observed in 173Yb [105, 106]. In Table 5.1, the resonance parameters obtained
from clock-line spectroscopy measurements both for a wide magnetic field range around the
resonance position and for a narrow magnetic field range around the zero-crossing position
are summarized.

Near the resonance, the measured closed-channel bound state and open-channel pair-state
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B0 (G) ∆ (G) Bzc (G) abg (a0)

Measurement I (Section 5.2) 1300 (44) 402 (169) – 255 (24)
Measurement II (Section 5.4) 1316.9 (2) – 1538.3 (2) 285 (2)
Combined 1300 (44) 238 (44) 1538.3 (2) 255 (24)

Table 5.1 – Orbital Feshbach resonance parameters. We give the resonance position B0, width ∆ and zero
crossing Bzc as well as the background scattering length abg obtained from clock-line spectroscopy measure-
ments in a large magnetic field range around the resonance (Measurement I) and in a narrow range around
the zero crossing, in a 30.7 (8)Erec deep cubic lattice (Measurement II). We also show the values obtained
when combining B0 and abg extracted from Measurement I with Bzc extracted from Measurement II, yielding
∆ = Bzc − B0.

energies shown in Fig. 5.1(d) are accurately described by the energy solutions of Eq. (2.54)
combined with an effective open-channel model given by Eq. (2.24) for the interorbital scat-
tering length, yielding credible values for the resonance position and for the background scat-
tering length. However, this theoretical description fails when moving away from the open
channel dominated universal regime and leads here to an inaccurate resonance width or zero
crossing. A second measurement around the OFR zero-crossing position is therefore required
to obtain a complete set of meaningful resonance parameters, which is shown in Table 5.1.
From this, we find a very small value for the resonance strength parameter sres = 0.09 (3),
indicating a very narrow resonance similarly to the situation in 173Yb [154].

The two-channel model which has been highly successful in describing the on-site interac-
tions energies in the vicinity of the OFR in 173Yb [105] fails to cover the full energy range of
the interaction spectroscopy measurement in Fig. 5.1(d) and to reliably predict the OFR posi-
tion. Leaving the interorbital scattering lengths or the effective ranges as free fit parameters
leads to values inconsistent with the measurements described in Section 4.2. We attribute this
to the large energy range of our results which is difficult to entirely cover with a low-energy
model and to the large linear Zeeman shift on resonance, which makes the scattering ampli-
tude highly sensitive to finite range effects. The accurate theoretical description of our results
therefore remains a challenging and interesting open problem.

Overall, the OFR in 171Yb allows to fully control interorbital interactions with an exter-
nal magnetic field and therefore makes this isotope a promising platform for the quantum
simulation of multiorbital many-body systems in the strongly-interacting regime.
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CHAPTER 6

A strongly-bound interorbital dimer on the
clock transition

In Chapter 5, the orbital Feshbach resonance (OFR) in 171Yb is observed and characterized
by measuring the binding energy of the least-bound state supported by the closed-channel
interorbital molecular interaction potential as a function of the external magnetic field. In
strong contrast to the bound state associated with the OFR in 173Yb, the one in 171Yb has
a large binding energy at zero magnetic field far exceeding all other relevant energy scales
in typical experiments with ultracold atoms. This state could therefore be of interest in the
context of optical molecular clocks.

In this chapter, after determining the zero-field binding energy of the above mentioned
interorbital dimer state, we show that the free-to-bound transition into the dimer can be made
first-order insensitive to the trap depth by an appropriate choice of the lattice wavelength,
a first step towards high-resolution spectroscopy of the molecular bound state energy on the
171Yb clock line. In addition, we demonstrate the direct formation of this dimer state by
photoassociation in two-dimensional pancake-shaped traps as well.

6.1 Strongly-bound dimer state in a cubic lattice

The transition |g g〉 → |bc〉 from a free ground-state atomic pair into the interorbital closed-
channel bound state associated with the OFR is measured in Section 5.2 in a cubic lattice
within a large magnetic field range between 5 G and 1600 G. In Fig. 6.1(a), we show a raw
spectroscopy measurement adressing the free-to-bound transition at 5G. The data can be fitted
with a Lorentzian profile to extract the free-to-bound transition frequencyδ0 = −324.0 (1) kHz
with respect to the zero-field single-particle transition |g ↑〉 → |e ↑〉. In order to determine the
bare molecular binding energy εb from δ0, the contribution of the single-particle zero-point
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Figure 6.1 – Interorbital dimer state with large binding energy in a cubic lattice. (a) Raw clock-line
spectroscopy measurement into the interorbital bound state [corresponding to the transition 3⃝ sketched in
Fig. 5.1(a)] shown at a 5G magnetic field. Error bars denote the standard error of two consecutive measure-
ments and the black solid line refers to a Lorentzian fit to the data, yielding a transition frequency detuned by
−324.0 (1) kHz with respect to the single-particle clock transition at zero magnetic field. This corresponds to
a binding energy ϵb = h × 292.1 (2) kHz after removing the zero-point energy of one particle in the trapping
potential (see main text). (b) Energy of the closed-channel dimer state (blue circles) relative to the zero-field
single-particle transition energy, showing a weak magnetic field dependence for differential Zeeman shifts
≲ 50 kHz. Red circles represent the energy of the transition into the open-channel pair state |eg ↑↓⟩. The
data is identical to the one shown in Fig. 5.1(d). The solid gray line denotes the energy of the single-particle
transition |g ↑⟩ → |e ↓⟩ sketched in Fig. 5.1(a). Dashed lines serve as a guide to the eye.

energy ε0,i along a lattice axis i = {x , y , z} needs to be taken into account1, leading to

εb = −

�

hδ0 +
∑

i

ε0,i

�

. (6.1)

Using the zero-point energies ε0,i obtained after full diagonalization of the lattice Hamiltonian
(see Section 2.3.1), we obtain a molecular binding energy εb = h×292.1 (2) kHz which is very
large compared to the situation in 173Yb [105]. We also note that this value is significantly
larger than the estimate εb,th = h× 213 (5) kHz obtained using Eq. (2.27) together with the
elastic interorbital s-wave scattering lengths a±eg determined in Section 4.2, indicating that the
bound state is far outside the universal regime at low magnetic fields. On the other hand, the
dimer binding energy is predicted with good accuracy by the two-channel model described in
Section 5.3 using the interorbital scattering lengths obtained in Section 4.2, see Fig. 5.2(a).

In Fig. 5.1(d), the different energies are represented with respect to the single-particle
transition energy at each magnetic field in order to make the energy branches defined by

1The energy of the initial state |g g〉with two free ground-state particles contains two zero-point contributions,
while the energy of the final dimer state |bc〉 contains a single zero-point contribution since both atoms form a
strongly-bound molecule. This leads to an additional shift of the free-to-bound transition frequency which needs
to be taken into account for the calculation of the binding energy.
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Eq. (5.4) apparent. However, it is also instructive to plot these energy branches with respect
to the zero-field single-particle transition energy. The result is shown in Fig. 6.1(b) and clearly
indicates that the dimer binding energy is almost magnetic-field independent for magnetic
fields B ≲ 200G corresponding to a differental Zeeman shift δ ≲ 50kHz of the single-particle
transition. This is expected for a strongly-bound molecular state where the binding energy
dominates the Zeeman energy. At larger magnetic fields, the Zeeman energy becomes com-
parable to the binding energy and induces a magnetic field dependence for the dimer binding
energy.

6.2 Strongly-bound dimer state in pancake-shaped traps

In Section 6.1, the on-site clock-line photoassociation of interorbital dimers is discussed in the
case of a deep cubic lattice. Here, we demonstrate that such dimers can be similarly produced
in a bulk gas confined in strongly elliptical traps.

The experimental geometry is similar to the one used in Section 4.5 to characterize inelas-
tic scattering in |ee〉 states [also see Fig. 4.8(a)]. A single-axis magic-wavelength optical lattice
(L1) of depth 25.2 (1) Erec generates pancake-shaped two-dimensional traps along the axis y ,
where Erec denotes the recoil energy of a lattice photon. At the same time, a magic-wavelength
crossed-beam optical dipole trap (mHDT and mVDT) provides additional confinement against
gravity. The trapping frequencies ωx = 53.7 (8.1) Hz and ωz = 262.6 (2.8) Hz along the
weakly-confined axes x and z are determined by measuring the period of center-of-mass oscil-
lations along these axes after a sudden trap displacement. To improve the signal-to-noise ratio,
we restrict the evaluation of our in-situ absorption images to a small region of interest (ROI)
of 6 px × 6px (corresponding to 2.82µm × 2.82µm) in the center of the atomic cloud. The
free-to-bound transition is driven with long incoherent clock-laser pulses of power P = 1mW
(intensity I ≈ 160 mW/cm2) and duration t = 75ms propagating along L1.

We perform clock-line spectroscopy measurements at three different magnetic fields B =
{1.1,5, 50} G, a range where the dimer binding energy εb = h× 292.1 (2) kHz is almost con-
stant [see Fig. 6.1(b)]. The obtained energy spectra are shown in Fig. 6.2 and exhibit a clear
resonant feature corresponding to the production of dimers on the free-to-bound transition.
In contrast to the situation in a cubic lattice, however, the obtained lineshapes are asymmetric
because of the continuous momentum distribution within the sample and cannot be fitted with
a simple Lorentzian function. A straightforward way to describe the data shown in Fig. 6.2 is
to consider the convolution of a Lorentzian (accounting for the zero-momentum spectral re-
sponse) and a Fermi-Dirac distribution (accounting for the momentum distribution within the
sample). Taking into account the fact that the positive atomic kinetic energies in the sample
lead to negative shifts of the transition frequency, the response of the system as a function of
the detuning δ can therefore be written as

f (δ,δ0, Γ ,Z,β , A, C) =

¨

A

∫ 0

−∞

dx

[x2/Γ 2 + 1]
�

Z−1eβh(−δ+δ0−x) + 1
�

«

+ C , (6.2)
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Figure 6.2 – Interorbital dimer state binding energy in two-dimensional free-space. Raw clock-line spec-
troscopy measurements into the interorbital dimer state at magnetic field (a) 1.1G, (b) 5G and (c) 50G. The
measurements are performed in a 25.2 (1)Erec deep single-axis optical lattice and the frequency detuning
is defined with respect to the single-particle transition |g ↑⟩ → |e ↑⟩. Error bars denote the standard error
of two consecutive measurements. The solid blue lines represent fits of Eq. (6.2) to the data, with the blue
vertical lines indicating the fitted transition frequencies. The red vertical lines represent the predicted transition
frequency using Eq. (6.3). Adapted from Ref. [188].

where the zero-momentum resonance detuning δ0 with respect to the |g ↑〉 → |e ↑〉 transi-
tion, resonance linewidth Γ , fugacity Z, inverse temperature β , amplitude A and offset C are
considered free fit parameters. Our data is very well described by Eq. (6.2) as can be seen in
Fig. 6.2, allowing to reliably extract the resonance position (blue vertical lines).

The detuning on resonance δ0 (B) can also be directly predicted from the bare dimer bind-
ing energy, the trap parameters and the differential Zeeman shift. We can write

δ0 (B) = −
1
h

�

εb + ε0,y +ħh (ωx +ωz) +δ (B)
�

, (6.3)

where ε0,y = 9.62 (2) kHz denotes the zero-point energy along the strongly-confined lattice
axis y computed numerically from the diagonalization of the lattice Hamiltonian (see Sec-
tion 2.3.1) and δ (B) = −hB/2×399.0 (1) Hz the differential Zeeman shift of the single-particle
transition |g ↑〉 → |e ↑〉. The obtained resonance positions are represented as red vertical lines
in Fig. 6.2 and are in excellent agreement with the resonance position extracted from the fit
of Eq. (6.2) to our data. The small relative discrepancy up to 0.3% between both positions
can be explained by systematical errors in the determination of the lattice depth such as drifts
occuring between the lattice calibration and the measurement, or drifts of the clock excitation
laser.

6.3 Trap-depth-insensitive free-to-bound transition

The measurements discussed in Sections 6.1 and 6.2 have all been performed in trapping
potentials operating at the magic wavelength λm = 759.4nm of the single-particle transi-
tion. This choice of wavelength is appropriate for the two-particle transition |g g〉 → |eg ↑↓〉
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Figure 6.3 – Trapping potential with depth-independent free-to-bound transition into the dimer. We
show a sketch of the (a) free-to-free |gg⟩ → |eg ↑↓⟩ and (b) free-to-bound |gg⟩ → |bc⟩ transitions in an
optical lattice. Solid black lines denote the trapping potential and dashed red lines represent the pair-state
spatial wavefunction in the lowest lattice energy band. While the wavefunction is not significantly modified
in the free-to-free transition (a), it samples a smaller region of the trapping potential after the transition into
the dimer (b). (c) First-order linear shift of the free-to-bound transition in a cubic lattice, relative to the lattice
depth. Each shift is determined from two consecutive clock-line spectroscopy measurements in a 25Erec

and 30Erec deep lattice such as shown in (d) and (e). The shift is shown for various detunings of the lattice
laser frequency with respect to the value f0 = 386.0 (1) THz that cancels the linear shift. This frequency
corresponds to a wavelength λ0 = 776.6 (2) nm. The solid red line denotes a linear fit to the data with a
slope of −49 (5) Hz/ (ErecTHz). (d)-(e) Clock-line spectroscopy of the free-to-bound transition (b) in a 25Erec

and 30Erec lattice of wavelength 778 nm (385.3THz), respectively. Solid lines denote Lorentzian fits to the
data. Adapted from Ref. [188].

into the repulsively-interacting pair state since the pair-state wavefunction is not significantly
modified during the transition, see Fig. 6.3(a). The situation is different when driving the
free-to-bound transition |g g〉 → |bc〉 since the dimer wavefunction features a smaller fraction
of the trapping potential than the initial free pair wavefunction owing to its large binding en-
ergy, see Fig. 6.3(b). As a consequence, the frequency of the transition into the dimer depends
on the local lattice depth. Since the laser beams generating the trapping potentials have a
nearly Gaussian intensity profile, this leads to an inhomogeneous free-to-bound transition fre-
quency, effectively broadening the transition line and leading to dephasing of both states. This
is analogous to addressing the single-particle clock transition at a non-magic wavelength, see
Section 3.3.3, and is an important obstacle to using the free-to-bound transition for precision
spectroscopy.

A straightforward strategy to make the transition frequency independent of the trap depth
is to introduce a suitable differential ac Stark shift ∆Uac (r) [see Eq. (3.28)] between the
ground and the excited state which exactly cancels the light shift caused by the modified
pair state wavefunction. Since the dimer wavefunction samples a smaller region around the



86 Chapter 6. A strongly-bound interorbital dimer on the clock transition

trap minimum than the free pair wavefunction, the induced shift of the free-to-bound line
∂ δ0/∂ V < 0 is negative, where δ0 denotes the detuning of the line with respect to the single-
particle transition |g ↑〉 → |e ↑〉 and V the potential depth. A positive ac Stark shift should
therefore be introduced by increasing the wavelength of the trapping potential with respect to
the magic wavelength λm, see Fig. 2.2.

We implement this approach by comparing the free-to-bound transition frequency in a
deep cubic optical lattice of depth 30.03 (6) Erec and 25.03 (5) Erec for different lattice laser
wavelengths from 776nm to 779 nm, see Fig. 6.3(d-e). The free-to-bound transition is driven
at a magnetic field B = 1.1 G with long incoherent clock-laser pulses of power P = 2.5µW
(intensity I ≈ 4 mW/cm2) and duration t = 250 ms. For each lattice wavelength, we compare
the free-to-bound transition frequency at both lattice depths to determine the line shift and
find a linear dependence, as can be seen in Fig. 6.3(c). In particular, we notice that the line
shift is canceled for a lattice wavelength λ0 = 776.6 (2) nm corresponding to a frequency of
386.0 (1) THz. At this wavelength, the transition into the dimer state is independent of the
trap depth and we observe narrow lines ∼ 100 Hz, which are limited by the linewidth of the
clock laser. It is important to note that the obtained wavelength is not universal, in contrast
to the single-particle transition magic wavelength. Here, the wavelength canceling the free-
to-bound line shift is only valid to first order for a specific choice of magnetic field and lattice
depth.

6.4 Discussion

In this chapter, the stronlgy-bound molecular state associated with the OFR in 171Yb is in-
vestigated. This state is nearly independent of the magnetic field B for B ≲ 200G (or small
differential Zeeman shifts ≲ 50kHz). Using the data obtained in Chapter 5, we find a zero-
field binding energy εb = h × 292.1 (2) kHz which is significantly larger than the value ex-
pected from a simple calculation using the interorbital scattering lengths a±eg determined in
Section 4.2, which indicates that the bound state is outside the purely universal regime [33].
The measured value, while still close to the regime of a universal halo dimer [204], is larger
by at least one order of magnitude than other relevant energy scales in cold atomic ensembles.
Indeed, values for the lattice band gap or zero-point energy, the Fermi energy, the temper-
atures or the level spacing between neighboring optical lattice traps do typically not exceed
∼ 10kHz levels. The dimer wavefunction is therefore only weakly perturbed by the external
confinement, which opens the way for the direct photoassociation of interorbital dimers on a
unique and particularly well-defined optical transition on the ultranarrow clock line. This is
in strong contrast with the weakly-bound dimer state associated with the OFR in 173Yb [105],
which is intrinsically in the resonant regime and strongly depends on the trap parameters.

The above properties could make the dimer state in 171Yb interesting in the context of
optical molecular clocks, which have to this day only been realized on the intercombination
line in 88Sr [133]. These clocks have been proposed as sensitive probes for precision tests of
fundamental physics such as variations of constants or gravitation on microscopic scales [134,
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135, 205]. In particular, the free-to-bound transition into the dimer state in 171Yb could enable
an optical molecular clock operating directly on the ultranarrow 1S0→ 3P0 line, similar to the
implementation proposed in Ref. [135] using 174Yb atoms.

The proof-of-principle demonstration reported in Section 6.3 of a lattice wavelength mak-
ing the transition into the dimer insensitive to the trap depth is an important first step towards
precision spectroscopy on the |g g〉 → |bc〉 line. In our experiment, this has enabled the obser-
vation of narrow molecular lineshapes limited by the finite driving laser linewidth ∼ 100Hz.
This wavelength is non-trivial since it differs from the magic wavelength canceling the differ-
ential ac Stark shift between the ground and excited electronic states. Indeed, the line shift
induced by the modification of the pair state wavefunction during the free-to-bound transition
calls for a suitable ac Stark shift to cancel this effect to first order. However, the obtained
wavelength is not universal but only valid for a given set of magnetic field and lattice depth.
The measurement presented in Section 6.3 would therefore need to be performed for every
specific experimental configuration.

All measurements reported in this chapter have used long incoherent clock-excitation
pulses to produce the interorbital dimers. A promising next experimental milestone would
be the observation of coherent oscillations between the free pair and the interorbital dimer
states |g g〉 ↔ |bc〉, similarly to the Rabi oscillations observed in Ref. [206] on the transition
into the bound state associated with the OFR in 173Yb.
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CHAPTER 7

Conclusions and outlook

The work presented in this thesis provides a substantial characterization of interactions be-
tween ultracold 171Yb atoms in the electronic ground and clock state at small and large mag-
netic fields.

In a first set of measurements, we have extensively probed elastic as well as inelastic
scattering in interorbital mixtures of 171Yb at low magnetic fields. By means of clock-line
spectroscopy in state-independent optical lattices, we have determined the s-wave scattering
lengths a+eg = 240 (4) a0, a−eg = 389 (4) a0 and aee = 108 (8) a0 associated with the interor-
bital pair states |eg±〉 and intraorbital pair state |ee〉, where |g〉 (|e〉) denotes the electronic
ground (clock) state and + (−) the symmetric (antisymmetric) superposition of orbital states.
In particular, since a+eg < a−eg, these results imply antiferromagnetic spin-exchange interactions
Vex < 0 in 171Yb, in agreement with similar measurements [194, 198]. By measuring the life-
time of atomic pairs in optical lattices, we have also investigated inelastic scattering in these
states. While the lifetime of |eg±〉 states is very long and even comparable to the lifetime of
the |e〉 state in a deep lattice where the motion of clock-state atoms is frozen, |ee〉 pairs are
very quickly lost from the trap owing to strongly inelasting scattering.

In the interaction-dominated regime where the differential Zeeman shift is small, two-
orbital physics are dominated by spin-exchange interactions. Here, 171Yb possesses a promis-
ing combination of properties for the quantum simulation of two-orbital many-body physics,
namely the reasonably large antiferromagnetic spin-exchange interaction arising from a+eg −
a−eg = −149 (6) a0, the very long lifetime of interorbital states and the remarkably small s-wave
scattering length agg = −2.8 (3.6) a0 in the ground state [96]. Together with the experimental
accessibility of state-dependent lattices with itinerant ground-state atoms and localized clock-
state atoms [75], this makes this isotope an ideal platform for the study of the Kondo effect
using clock-state atoms as localized magnetic impurities in a Fermi sea of mobile ground-state
atoms.

A first step towards the observation of Kondo-type physics has recently been achieved
through the observation of spin-exchange dynamics in a one-dimensional state-dependent
lattice for 171Yb [76], in analogy to a similar measurement performed in 173Yb [75]. The
main experimental challenge which currently needs to be overcome is to reach temperatures
smaller than the Kondo temperature TK , under which spin-singlet correlations become signif-
icant. This could be achieved by using a quantum gas microscope together with an optical
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tweezer or by enhancing the spin-exchange interaction energy via confinement-induced reso-
nances [75, 120, 121]. A significant achievement would then be for instance the observation
of the Kondo spin-screening cloud, which has recently been observed in a quantum dot [207].
Alternatively, using one Kondo impurity on every lattice site realizes the Kondo lattice model,
which features very rich physics in the antiferromagnetic regime, including heavy-Fermion
behavior [64, 98] or unconventional superconductivity [208].

In a second set of clock-line spectroscopy measurements performed at larger magnetic
fields, we have observed an orbital Feshbach resonance (OFR) occurring at a magnetic field
B = 1300 (44) G by tracking the energy branches corresponding to the repulsively-interacting
open-channel pair state and to the least-bound state supported by the closed-channel inter-
atomic potential. The data is well-described by the exact energy solutions for two atoms in a
harmonic trap interacting via contact interactions [150], using a simple open-channel model
for the scattering length. On the other hand, the two-channel model which has been success-
fully applied to describe the OFR in 173Yb [105] is not well-suited, even when considering
analytically calculated effective ranges from the van der Waals potential [145]. We attribute
this to the very large differential Zeeman shift around the resonance, making the scattering
amplitude particularly sensitive to finite-range effects. The OFR occurs at a large but experi-
mentally accessible magnetic field, where spin-exchange interactions are strongly suppressed,
in contrast to the OFR in 173Yb [105, 106].

The OFR in 171Yb enables full control over interorbital interactions through an external
magnetic field and makes this isotope an excellent platform to study multiorbital quantum
gases in the strongly-interacting regime. A striking aspect of the OFR is its small strength pa-
rameter sres≪ 1, defining the OFR as narrow [33] while featuring a large resonance width of
several hundreds of Gauss. This is due to the small magnetic moment difference δµ between
the open and the closed channel compared to usual magnetic Feshbach resonances and enables
the study of the famous BEC-BCS crossover [209–212] or strongly-interacting Fermi superflu-
ids in the vicinity of a narrow resonance [107]. While narrow Feshbach resonances also occur
in alkali atoms and have enabled the production of strongly interacting Fermi gases [213],
such systems require precise control of the magnetic field to remain in the strongly interacting
regime and are usually plagued with short lifetimes near resonance. Intriguingly, the equation
of state of the unitary Fermi gas [214–216] could be probed around the OFR as well.

The OFR furthermore offers promising prospects for the quantum simulation of impurity
physics with orbital degree of freedom. A prominent example is the Fermi polaron prob-
lem, which has been extensively studied in numerous experiments with alkali atoms [217–
224]. With alkaline-earth(-like) atoms, such polarons can be realized by preparing few mo-
bile clock-state atoms in a Fermi sea of ground-state atoms and have recently been observed
in 173Yb [118]. Here, the OFR is used to tune the interactions between the impurity and the
surrounding Fermi sea. Fermi polarons have attracted considerable interest in the context of
multiorbital quantum gases [225–227] owing to the complexity of interactions across the OFR
which are in particular expected to lead to Pauli-blocking of two-body scattering processes in
the presence of an additional Fermi sea [117, 228].

We also note that the OFR observed in this work has been exploited in a recent experiment
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probing transport in the mass-imbalanced Fermi-Hubbard model using 171Yb atoms in a state-
dependent lattice [119]. In this experiment, non-interacting interorbital superposition states
are first prepared on the OFR zero-crossing before enabling attractive or repulsive interorbital
interactions via a magnetic field ramp.

Finally, we have been able to directly photoassociate the molecular dimer state associated
with the OFR on the clock transition. The dimer features a binding energy far exceeding all
other relevant energy scales in typical cold-atoms experiment such as the band structure, the
Fermi energy, the level spacing of the optical lattice traps or temperatures. This is in strong
contrast with the situation in 173Yb [105], where the dimer binding energy is comparable
to other typical energy scales. In particular, this implies that the molecular wavefunction is
largely independent of the trap parameters, enabling a photoassociation process on a unique
and well-defined optical transition. This makes this dimer potentially interesting in the con-
text of molecular optical clocks [132, 133] which have been proposed for precision tests of
fundamental physics [134, 135, 205]. For instance, the transition into the dimer state in 171Yb
would enable the molecular clock spectroscopy on the Hz level proposed in Ref. [135] for
174Yb atoms, with the additional advantage of featuring direct clock-line photoassociation.
Since the wavefunction of the dimer state features a smaller region of the trapping potential
than the free atomic pair, the free-to-bound transition energy depends on the local trap depth.
We have shown that this effect can be compensated to first order by inducing an appropriate
differential light shift between ground- and clock-state atoms. This effectively creates a state-
independent potential for the free-to-bound transition at a given lattice depth, an important
first step towards molecular clock spectroscopy with 171Yb atoms. An interesting next step
would be the observation of coherent Rabi oscillations between the free pair and dimer states,
in analogy to the work reported in Ref. [206] for weakly-bound molecules in 173Yb.

To conclude, the findings reported in this work establish 171Yb as an excellent platform
for the quantum simulation of two-orbital Fermi-Hubbard models in optical lattices. The an-
tiferromagnetic interorbital spin-exchange interactions together with the long lifetime of the
interorbital states offer highly promising prospects for the implementation of Kondo-type mod-
els while the OFR paves the way for the study of exciting multiorbital systems in the strongly-
interacting regime with these atoms. Furthermore, the strongly-bound molecular dimer state
associated with the OFR is an intriguing feature that could be of use in the context of molecular
optical clocks.
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M. Schioppo, M. Sekido, R. Le Targat, P. Wolf, X. Zhang, B. Zjawin, and M. Zawada. New
bounds on dark matter coupling from a global network of optical atomic clocks. Science
Advances 4, eaau4869 (2018). See page: 4

[129] C. J. Kennedy, E. Oelker, J. M. Robinson, T. Bothwell, D. Kedar, W. R. Milner, G. E. Marti,
A. Derevianko, and J. Ye. Precision Metrology Meets Cosmology: Improved Constraints
on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons. Physical Review
Letters 125, 201302 (2020). See page: 4

[130] M. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark.
Search for new physics with atoms and molecules. Reviews of Modern Physics 90, 025008
(2018). See page: 4

[131] F. Riehle. Towards a redefinition of the second based on optical atomic clocks. Comptes
Rendus Physique 16, 506–515 (2015). See pages: 4, 9

[132] T. Zelevinsky, S. Blatt, M. M. Boyd, G. K. Campbell, A. D. Ludlow, and J. Ye. Highly Co-
herent Spectroscopy of Ultracold Atoms and Molecules in Optical Lattices. ChemPhysChem
9, 375–382 (2008). See pages: 4, 91

[133] S. S. Kondov, C.-H. Lee, K. H. Leung, C. Liedl, I. Majewska, R. Moszynski, and T. Zelevin-
sky. Molecular lattice clock with long vibrational coherence. Nature Physics 15, 1118–
1122 (2019). See pages: 4, 86, 91

[134] T. Zelevinsky, S. Kotochigova, and J. Ye. Precision Test of Mass-Ratio Variations with
Lattice-Confined Ultracold Molecules. Physical Review Letters 100, 043201 (2008). See
pages: 4, 86, 91

[135] M. Borkowski. Optical Lattice Clocks with Weakly Bound Molecules. Physical Review
Letters 120, 083202 (2018). See pages: 4, 87, 91

[136] M. Berglund and M. E. Wieser. Isotopic compositions of the elements 2009 (IUPAC Tech-
nical Report). Pure and Applied Chemistry 83, 397–410 (2011). See page: 7

[137] K. Beloy, J. A. Sherman, N. D. Lemke, N. Hinkley, C. W. Oates, and A. D. Ludlow. Deter-
mination of the 5d6s3D1 state lifetime and blackbody-radiation clock shift in Yb. Physical
Review A 86, 051404 (2012). See pages: 8, 9

[138] Y. Takasu, K. Komori, K. Honda, M. Kumakura, T. Yabuzaki, and Y. Takahashi. Pho-
toassociation Spectroscopy of Laser-Cooled Ytterbium Atoms. Physical Review Letters 93,
123202 (2004). See page: 8

http://dx.doi.org/10.1038/s41586-021-04344-y
http://dx.doi.org/10.1126/sciadv.aau4869
http://dx.doi.org/10.1126/sciadv.aau4869
http://dx.doi.org/10.1103/PhysRevLett.125.201302
http://dx.doi.org/10.1103/PhysRevLett.125.201302
http://dx.doi.org/10.1103/RevModPhys.90.025008
http://dx.doi.org/10.1103/RevModPhys.90.025008
http://dx.doi.org/10.1016/j.crhy.2015.03.012
http://dx.doi.org/10.1016/j.crhy.2015.03.012
http://dx.doi.org/10.1002/cphc.200700713
http://dx.doi.org/10.1002/cphc.200700713
http://dx.doi.org/10.1038/s41567-019-0632-3
http://dx.doi.org/10.1038/s41567-019-0632-3
http://dx.doi.org/10.1103/PhysRevLett.100.043201
http://dx.doi.org/10.1103/PhysRevLett.120.083202
http://dx.doi.org/10.1103/PhysRevLett.120.083202
http://dx.doi.org/10.1351/PAC-REP-10-06-02
http://dx.doi.org/10.1103/PhysRevA.86.051404
http://dx.doi.org/10.1103/PhysRevA.86.051404
http://dx.doi.org/10.1103/PhysRevLett.93.123202
http://dx.doi.org/10.1103/PhysRevLett.93.123202


104 BIBLIOGRAPHY

[139] J. W. Cho, H.-g. Lee, S. Lee, J. Ahn, W.-K. Lee, D.-H. Yu, S. K. Lee, and C. Y. Park. Opti-
cal repumping of triplet- P states enhances magneto-optical trapping of ytterbium atoms.
Physical Review A 85, 035401 (2012). See page: 8

[140] M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-Willette, S. M. Foreman, and
J. Ye. Nuclear spin effects in optical lattice clocks. Physical Review A 76, 022510 (2007).
See pages: 9, 49, 50, 52

[141] G. Pasqualetti. Isotopic mixtures of ytterbium for quantum simulation of Kondo physics.
Master’s thesis, Ludwig-Maximilians-Universität München (2018). See page: 31

[142] L. Riegger. Interorbital spin exchange in a state-dependent optical lattice. PhD thesis,
Ludwig-Maximilians-Universität München (2019). See pages: 11, 27, 29, 31, 33

[143] V. A. Dzuba and A. Derevianko. Dynamic polarizabilities and related properties of clock
states of the ytterbium atom. Journal of Physics B: Atomic, Molecular and Optical Physics
43, 074011 (2010). See page: 11

[144] C. Pethick and H. Smith. Bose-Einstein condensation in dilute gases. Cambridge Univer-
sity Press, Cambridge ; New York, 2nd ed edition (2008). ISBN 978-0-521-84651-6.
See page: 13

[145] V. V. Flambaum, G. F. Gribakin, and C. Harabati. Analytical calculation of cold-atom
scattering. Physical Review A 59, 1998–2005 (1999). See pages: 14, 90

[146] M. Greiner. Ultracold quantum gases in three-dimensional optical lattice potentials. PhD
thesis, Ludwig-Maximilians-Universität München (2003). See page: 19

[147] S. Doniach. The Kondo lattice and weak antiferromagnetism. Physica B+C 91, 231–234
(1977). See page: 21

[148] W. de Haas, J. de Boer, and G. van dën Berg. The electrical resistance of gold, copper and
lead at low temperatures. Physica 1, 1115–1124 (1934). See page: 22

[149] J. J. García-Ripoll, S. Dürr, N. Syassen, D. M. Bauer, M. Lettner, G. Rempe, and J. I. Cirac.
Dissipation-induced hard-core boson gas in an optical lattice. New Journal of Physics 11,
013053 (2009). See page: 24
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