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Abstract 

Background and objectives:  

Researchers are often motivated to update established and validated prognostic scores, due to 

the well-known issue of degraded predictive performance of prediction models over time and 

across populations. Dynamic prediction approaches have been shown to have the potential to 

tackle this issue. However, there is little evidence about the usefulness of such dynamic prediction 

approaches. Especially, in clinical settings with repeated measurements, depending on data’s 

correlation structure, such dynamic approaches bring greater complexity and more difficult imple-

mentation with them. This thesis aims to study the usefulness of dynamic approaches, compared 

with generalized linear mixed model (GLMER) in predicting risk of overweight in children within 

the Programming of Enhanced Adiposity Risk in Childhood - Early Screening (PEACHES) cohort, 

where arthrometric measurements were obtained over ten well-child visits during the first living 

years of the participating children. Results of this analysis are compared with those of a simulated 

study, where the attempt was made to imitate children’s BMI development over their first five 

living years. This thesis also aims to explore factors that potentially influence the usefulness of 

dynamic approaches. 

Methods: Analyses were performed with 1) PEACHES cohort study: this data set contains growth 

data of 1,707 children and pregnancy weight data of their mothers, who were recruited and ob-

served in the prospective PEACHES cohort study between during 18th August 2010 and 16th July 

2018; 2)  simulation data that imitated PEACHES study settings but introduced more control over 

the data randomness; and 3) simulated data of the same design as in 2) but different random 

intercept variance 𝜏2 values were considered. Common metrics such as Brier Score, Scaled Brier 

Score, Brier Skill Score, and calibration plots were used to compare prediction performance of 

the models. The results of all analyses were then compared graphically. The difference in predic-

tion performance among models was quantified applying linear mixed models on logarithmized 

relative prediction error. The impact of 𝜏2 on the usefulness of dynamic approaches was then 

quantified applying linear mixed models. The following models were compared with one another: 

1) generalized linear mixed model trained (GLMER1), where prediction was made at U1 and no 

updates over time were made; 2) Bayesian static model, future outcome are updated using out-

come of the past visits (BSM1); 3) Bayesian static model, where prediction was made at U1 and 

no updates over time were made (BSM2); 4) Bayesian dynamic model, where individual random 

intercepts and outcome are updated using outcome of the past visits and RIs from the last visits 

(BDM1); and 5) Bayesian dynamic model, where fixed effects, individual random intercepts and 

outcome are updated using outcome of the past visits and estimated random intercepts and fixed 

effects from the last visits (BDM2). In an extended analysis, three other GLMER models were 

considered, where child’s and/or mother’s covariates were incorporated.  

Results: In PEACHES study, BSM1 and BSM2 show overall similar prediction errors as 

GLMER1, while it was shown that with increasing amount of information from past visits, model 

updating in BDM1 and BDM2 leads to improvement in prediction. However, this improvement was 

rather observed at later visits. Results of the analyses with error rates show similar but less pro-

nounced results. Overall, results of different metrics show great agreement. Results of the simu-

lation main study mostly agreed with those of PEACHES study. The overperformance of BDM1 

and BDM2, which was observed with Brier Skill Score and Scaled Brier Score seems to be more 

pronounced in the simulation settings. Results of the simulation study with different 𝜏2 show that 

inter-individual variability strongly influences the overperformance of BDM1 and BDM2, relative 
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to GLMER1. With higher 𝜏2, the overperformance of BDM1 and BDM2 is more pronounced. Re-

sults of analyses at individual level in the simulation study with different 𝜏2 show that the more 

amount of information from past visits is available, the better BDM1 and BDM2 can capture the 

overall distribution of the simulated random intercepts. 

Conclusion: Dynamic prediction approaches, despite the well-known challenges they bring, have 

the potential to offer advantages over traditional prediction methods. These challenges can be 

tackled with the development of information technologies and increased data quality. It is neces-

sary to carefully evaluate the usefulness of dynamic approaches in the designing stage of clinical 

or epidemiological studies under consideration of study settings and assumed parameters. 
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1. Introduction 

Objectives 

This thesis aims to study the usefulness of dynamic approaches in predicting risk of overweight 

in children within the PEACHES cohort. Results of this analysis are compared with those of a 

simulated study, where randomness presumably due to measurement errors is introduced into 

the data in a controlled way. This thesis also aims to explore factors that influence the usefulness 

of dynamic approaches, if any exists. 

Dynamic prediction models – definition and usage in the literature 

The followings present the definition and usage of dynamic prediction models in the literature. 

The findings presented below result from a focused literature review that was conducted within 

this thesis. The motivation to update prediction models or established prognostic scores was en-

countered in the identified articles. The issue of degraded predictive performance of models and 

scores over time is behind that motivation. From the focused literature review, five identified stud-

ies raised the necessity for updating and attempted to update established risk scores or prognos-

tic models. The studies by Hafkamp-De Groen, Hickey et al. and Hippisley-Cox et al. dealt with 

the PIAMA score (for predicting asthma in pre-school children with asthma like-symptoms) 

(Hafkamp-De Groen, 2013), the EuroSCORE (for cardiac surgery) (Hickey, 2013) and QRISK (for 

cardiovascular disease) (Hippisley-Cox et al., 2011), respectively. The study by Houwelingen and 

Thorogood aimed to update model predicting kidney graft survival (Houwelingen and Thorogood, 

1995), while Genders et al. suggested an updated version of the Diamond–Forrester model for 

estimating the probability of obstructive coronary disease (Genders, 2011) and Hafkamp-De 

Groen provided a revised version of the risk model. Hoewelingen and Thorogood applied fine-

tuning of the prognostic model by shrinkage with validation data set (Houwelingen and 

Thorogood, 1995). Hafkamp-De Groen, Hippisley-Cox et al. and Genders et al. chose model re-

vision, where model coefficients were refitted (Hippisley-Cox et al., 2011, Genders, 2011). After 

reassessing model performance, Hickey et al. came to the conclusion that the EuroSCORE model 

showed systematic deterioration in the calibration over time for patient population in England and 

Wales (Hickey, 2013). Consequently, they performed analyses comparing different updating ap-

proaches for this model, which include 1) periodic update every one or two year(s), 2) monthly 

update (“rolling window”), and 3) dynamic logistic regression (Hickey et al., 2013). 

Other identified studies compared different approaches using real data (Siregar et al., 2016, Davis 

et al., 2019a, Steyerberg et al., 2004, Su et al., 2018, Vergouwe et al., 2017, Janssen et al., 2008). 

Approaches that were addressed in these studies include recalibration (Siregar et al., 2016) 

(Davis et al., 2019a, Steyerberg et al., 2004, Su et al., 2018, Vergouwe et al., 2017, Janssen et 

al., 2008), structural model revision (Siregar et al., 2016, Steyerberg et al., 2004, Su et al., 2018, 

Vergouwe et al., 2017, Janssen et al., 2008), Bayesian dynamic model (Siregar et al., 2016) and 

Bayesian dynamic model incorporating a forgetting factor (Su et al., 2018). 

In time-to-event data settings, joint models seem to be commonly used to incorporate repeated 

measurements into a time-to-event prediction model. In the literature, for instance, in the two 

identified studies (Andrinopoulou et al., 2017, Posch et al., 2020), this approach was often re-

ferred to as a dynamic approach. As an alternative, landmark analysis or “landmarking” have 

been used to allow time-dependence and certain dynamics into time-to-event prediction models. 

A few examples in the literature can be named: (Heyard et al., 2019, Keogh et al., 2019, Li et al., 

2017, Rizopoulos et al., 2017, Suresh et al., 2017). These approaches are not in line with the 
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data settings and the aim of this thesis, no further details regarding these two approaches will be 

provided in the followings. 

More formally, the approach of gradual model updating was formulated in the text book “Clinical 

Prediction Models” by Steyerberg (Steyerberg, 2009). There, it was recommended to start with 

simple updating methods, such as re-calibration, then continue with model revision and model 

extension (Steyerberg, 2009). However, no recommendations were made for settings with corre-

lated data such as repeated measurements. Considering the identified articles, I believe that the 

systematic review by Jenkins et al. (Jenkins et al., 2018) could capture pretty well the research 

landscape in the field of dynamic prediction and provided the current state of the art. They cate-

gorized their findings into three groups: 1) model updating in discrete steps with frequentist meth-

ods, 2) Bayesian updating methods, and 3) methods based on time-varying coefficients (Jenkins 

et al., 2018). Dynamic approaches that are demonstrated in this thesis fall into the second cate-

gory. Here, the focus lies in the comparison of Bayesian methods of different dynamic level with 

a frequentist static model (“GLMER1”). Additionally, the comparison was performed with extended 

frequentist model (“GLMER4”), which incorporates updated data and introduces dynamics in the 

model in a discrete manner. 

The followings give a deeper focus on the study by Finkelman et al. (Finkelman et al., 2016) and 

present the findings from the literature review regarding potential benefits of dynamic approaches. 

This study used simulated data to compare 1) a static linear static model, 2) a static linear mixed 

effects model with random intercept only, 3) a static linear mixed effects model with both random 

intercept and random slope 4) a dynamic linear model, 5) a Bayesian linear mixed effects (BLME) 

model with random intercept only, and 6) a BLME model with both random intercept and random 

slope with regard to prediction accuracy in clustered populations. Dependent variable of these 

models represented a hypothetical normally distributed, continuous clinical outcome. Dynamics 

in the dynamic linear model and the two BLME models was introduced in a way that after making 

predictions on a certain group of patients, the predicted outcome data on these individuals were 

then used as data for the predictions of the next group of patients. This was repeated until pre-

dictions for all patients in the test data set had been made. The model priors were not affected, 

only data was updated after each prediction (Finkelman et al., 2016). The authors of this study 

came to the conclusion that model updating provided great gain in accuracy, while the effect of 

overfitting is comparably small and even complex dynamic models are more useful than static 

models (Finkelman et al., 2016). Results of this study also suggested substantial improvement of 

prediction performance in a clustered data setting by using dynamic approaches (Finkelman et 

al., 2016). Siregar et al. considered Bayesian models as good alternative for model updating in 

both small and large data sets (Siregar et al., 2016). 

Results of the studies mentioned above (Siregar et al., 2016, Davis et al., 2019a, Steyerberg et 

al., 2004, Su et al., 2018, Vergouwe et al., 2017, Janssen et al., 2008, Hickey et al., 2013) all 

agree on the improvement in prediction performance by model updating. Davis et al., Steyerberg 

et al., Su et al., Vergouwe et al., and Janssen et al. all agree on the statistical overperformance, 

thus preference for simpler updating methods over extensive model revision (Janssen et al., 2008, 

Steyerberg et al., 2004, Su et al., 2018, Vergouwe et al., 2017, Davis et al., 2019a). Hickey et al. 

and Siregar et al. concluded the potential benefit of Bayesian dynamic modeling over static ap-

proaches (Hickey et al., 2013, Siregar et al., 2016). 

The findings of Plate et al. (Plate et al., 2019) suggested an increasing number of studies with 

repeated measurements in healthcare, and at the same time, their reluctant usage. Incorporating 
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these measurements can potentially optimize prediction models. The reasons for failing to imple-

ment such measurements into the prediction models that was stated by the authors included the 

uncertainty of the usefulness of (probably more complex) methods accounting for repeated meas-

urements and the lack of added clinical value of these models due to their complicated implemen-

tation (Plate et al., 2019). The authors also suggested the necessity of a framework of possible 

approaches to help researchers with optimizing prediction models (Plate et al., 2019).  

This suggestion and other findings in the literature about potential benefit of dynamic approaches 

motivated this research work and support the relevance of its results. 

Common prediction performance measures 

Common measures that have been used in the literature to capture prediction performance were 

summarized by Steyerberg et al. (Steyerberg et al., 2010). This summary served as basis to 

choose criteria measuring prediction performance of the models in this thesis. As suggested by 

the authors, discrimination and calibration are two important aspects that need be addressed 

when assessing performance of prediction models. 

In identified published works, the following discrimination and calibration measures were used: 

area under the receiver operating characteristic curve (AUC) (Siregar et al., 2016, Davis et al., 

2019a, Su et al., 2018), Brier Score (Davis et al., 2019a), logarithmic score (Davis et al., 2019a), 

Observed to Expected ratio (Davis et al., 2019a), calibration plots, intercept, and/or slope 

(Steyerberg et al., 2004, Su et al., 2018, Vergouwe et al., 2017, Siregar et al., 2016, Janssen et 

al., 2008), and mean absolute error (Finkelman et al., 2016). 

In this thesis, the performance measures applied are Brier Score, (logarithmized) relative predic-

tion error, scaled Brier Score, Brier Skill Score, as well as calibration plots. 

Comparison between static and dynamic models 

While calibration and discrimination measures have been widely used to compare static and dy-

namic prediction models, no established measure quantifying or evaluating the overperformance 

of dynamic over static models seem to exist. From the focused literature review, three proposals 

have been identified. Finkelman et al. suggested using “relative improvement” for such purpose 

(Finkelman et al., 2016). In their article, “relative improvement” was described as a metric that 

ranges from 0 to 1 and demonstrates the improvement in mean absolute error of a model over 

the intercept-only model, relative to the improvement that would have been observed with the true 

model (Finkelman et al., 2016). The advantage of this metric lies in its interpretability. 

Vergouwe et al. proposed a closed testing procedure to choose an appropriate update method, 

while controlling for overfitting (Vergouwe et al., 2017). In this procedure, a series of likelihood 

ratio tests against the original were performed. Alternative models included recalibration and 

model revision, where the number of coefficients to be updated increased (Vergouwe et al., 2017). 

The authors suggested that performing these likelihood ratio tests in a step-wise manner helped 

balance the amount of information and the risk for overfitting (Vergouwe et al., 2017). 

Davis et al. proposed a data-driven annual updating strategy, where the simplest updating method 

with no difference in accuracy compared with the best model, while the best model was defined 

as model with best median accuracy over all bootstrap samples (Davis et al., 2019b). Interest-

ingly, this strategy considered the updating sample size and aimed to minimize overfitting. 

In this thesis, besides the common prediction performance measures mentioned above, relative 

prediction error on logarithmic scale and linear mixed models were applied to visualize and quan-

tify the performance of dynamic approaches, relative to the static approach. 
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Data 

Data used for the analyses in this thesis come from two sources: 1) the prospective mother-child 

cohort study PEACHES and 2) simulation. 

In PEACHES cohort, pregnant women examined in maternity clinics in Germany (Munich, Düs-

seldorf, and some provinces in northern Germany) were recruited between 2010 and 2015. In 

essence, the arthrometric data of their children from birth until their fifth living year as well as 

mothers’ pre-conceptional, prenatal and postpartum data were collected. One main objective of 

the study focuses on the association between mothers’ pregnancy obesity status and risk of over-

weight and metabolic diseases in children’s early life course (Gomes et al., 2018). The nature of 

arthrometric data contains randomness due to different sources of systematic and unsystematic 

measurement errors: instrument error, intra-rater error, inter-rater error for example due to differ-

ent measurement procedures for newborns at different clinics and medical facilities. These 

sources of measurement errors are difficult to be captured in prediction models. For that reason, 

simulated data was also used in this thesis, where PEACHES cohort’s data of children’s BMI over 

time is imitated. The same analyses were performed with these two sources of data and the 

results were compared. Besides the so-called simulation main study, as described above, the 

simulation study was extended to examine the usefulness of dynamic approaches when modify-

ing the structure of random effects. In other words, different intraclass correlation coefficients of 

the underlying model were analyzed in this approach. This extended study, the so-called simula-

tion ICC study, used different data sets, which were simulated using the same model components 

as in the simulation main study but various random intercept variance. 

Outline of the thesis 

This thesis is outlined in the following chapters: Chapter 2 (page17) describes statistical methods 

and data used. Chapter 3 (page 72) and Chapter 4 (page 160) presents and discusses core 

results of the analyses, respectively. Additional information are presented in the appendices: Ap-

pendix A: Technical information (page 169), Appendix B: Supplementary results (page 171), Ap-

pendix C: Results of literature search (page 174), and Appendix D: Reproducibility of the results 

(page 176). 
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2. Material and Methods 

2.1 General remarks 

2.1.1 Wordings 

The following wordings are applied throughout the thesis: 

- Visit: if not specified otherwise, throughout the thesis, the term “visit” represents the fre-

quent preventive medical check-up that is recommended for children in Germany, the so-

called well-child visits. These visits are scheduled at birth (U1), 3 to 10 days after birth 

(U2), 4 to 5 weeks after birth (U3), 3 to 4 months after birth (U4), 6 to 7 months after birth 

(U5), 10 to 12 months after birth (U6), 21 to 24 months after birth (U7), 34 to 36 months 

after birth (U8), 46 to 48 months after birth (U8), and 60 to 64 months after birth (U9) 

(Bundeszentrale für gesundheitliche Aufklärung, 2020).  

- Prediction visit: the visit, where data is collected, and prediction is made for future risk of 

overweight. 

- Future visits: visits that lie in the future, risk of overweight at these timepoints will be 

predicted. 

- ID: a child that participated in the PEACHES data set, or a simulated case in the simula-

tion study. 

2.1.2 Discrete vs. continuous time variable 

Graphical presentation of most of the results in this thesis does not consider time as a continuous 

variable. The analyses in section 2.8 attempted to quantify the association between prediction 

performance and number of previous visits. These analyses were performed on the individual 

level. Here, child’s age in months was considered. 

2.2 PEACHES study 

2.2.1 Description of original data set 

The data set contains growth data of 1,707 children and pregnancy weight data of their mothers, 

who were recruited in the Programming of Enhanced Adiposity Risk in Childhood - Early Screen-

ing (PEACHES) cohort study between during 18th August 2010 and 16th July 2018. 

One of the objectives of PEACHES cohort study was to investigate factors that associate with 

child’s future risk of overweight. Risk of overweight was measured with BMI-Z score. The cut-off 

1 was chosen, which indicates risk for overweight as recommended by the WHO (de Onis M, 

2010). If BMI-Z score of a certain child is >1 at a certain visit, he/she is considered to be at risk of 

overweight. 

More details about background as well as variables that were measured and collected in the 

PEACHES study can be found in the study protocol (Gomes et al., 2018). 



 18 

2.2.2 Preparation of data set for analysis 

The following calculations were done, in order to prepare the data sets PEACHES for analyses 

within this thesis. 

2.2.2.1 Inclusion and exclusion criteria 

The inclusion and exclusion criteria applied are shown in the following table. 

Table 1. Inclusion and exclusion criteria for PEACHES analyses 

Inclusion criteria 

- Pre-conceptionally obese or non-obese 

- Singleton pregnancy  

- Absence of type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM) in mothers (pre-

conceptionally) 

- Full-term (>=37 weeks 0 days of gestation) live birth 

Exclusion criteria 

- Underweight mothers 

- Twin/multiple pregnancy 

- Presence of T1DM or T2DM in mothers (pre-conceptionally) 

- Preterm children (gestational age <36 weeks 6 days of gestation) 

Please refer to the script "scripts/exclude.R" to see single calculations of this step. 

2.2.2.2 Calculation of child's BMI z-scores 

The scripts provided by WHO were used to calculate the BMI z-score of the children in the 

PEACHES and PEPO cohorts. More details about this calculation method can be found in in 

Appendix D: Reproducibility of the results, 'peaches/cre-

ate_data_peaches/scripts/who2007_R/ReadMe.pdf' and 'peaches/cre-

ate_data_peaches/scripts/igrowup_R/ReadMe.pdf'. Please also refer to the script "peaches/cre-

ate_data_peaches/scripts/calc_bmiz.R" in Appendix D: Reproducibility of the results to see single 

calculations of this step. 

Offspring BMI z-scores were categorized according to the World Health Organisation categories 

(World Health Organization, 2006). 

2.2.2.3 Calculation of total gestational weight gain (GWG) 

Total gestational weight gain (GWG) in kilograms was calculated as the difference between the 

last measured weight before delivery and pre-conception weight and was classified as inade-

quate, adequate, or excessive according to the BMI-specific recommendations of the Institute of 

Medicine (Rasmussen et al., 2009). Please refer to the script "peaches/cre-

ate_data_peaches/scripts/calc_gwg.R" in Appendix D: Reproducibility of the results to see single 

calculations of this step. 
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Women with GWG values within the recommended range are considered as having adequate 

GWG. Women with GWG values below the lower cut-off were considered as having inadequate 

GWG while those having GWG values above the upper cut-off were considered as having exces-

sive GWG. Please refer to the script "peaches/create_data_peaches/scripts/derive.R" in Appen-

dix D: Reproducibility of the results to see single calculations of this step. 

2.2.2.4 Calculation of birth weight categories for gestational age and sex 

The file 'peaches/create_data_peaches/input/Voigt2014_ga_long.txt' in Appendix D: Reproduci-

bility of the results with birth weight percentile cutoffs was used to determine the categories large-

for-gestational-age (LGA, >90th percentile), average-for-gestational-age (AGA, 10th to 90th per-

centile), and small-for-gestational-age (SGA, <10th percentile) birth weight for gestational age 

and sex. These cut-offs were based on the German reference population (Voigt et al., 2014).  

Please refer to the script "peaches/create_data_peaches/scripts/calc_ga.R" in Appendix D: Re-

producibility of the results to see single calculations of this step. 

2.2.2.5 Split data set for training and validation 

1,000 children were randomly sampled from the original data set. These 1,000 children entered 

the training data set. The remaining children were set aside for the purpose of validation. The 

validation study is not part of this thesis. Therefore, from now on, the validation data set will only 

be shortly described in 2.2.3.3, but no further analyses were done with it. 

2.2.3 PEACHES data used for analyses 

2.2.3.1 Variables of interest 

The following variables are considered in the analyses within this thesis. 

Exposure variables:  

• time (in months) after birth at a certain visit (U1, U2, U3, U4, U5, U6, U7, U7a, U8, or U9),  

• mother’s pre-conceptional obesity status (obese or non-obese), and  

• child’s large-for-gestational age at birth (yes or no) 

Outcome variable: 

• child’s risk of overweight (defined as BMI Z-score >1) at a certain visit 

2.2.3.2 Training dataset 

Number of IDs included in the validation dataset is 1000. The following figures describe the course 

of BMI-Z score and its population mean, as well as the average risk of overweight in all children 

included in the training dataset.  
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Figure 1. (left) BMI Z score of children in training dataset; (right) mean risk of overweight 

throughout the study. Average numbers of days from U1 at each visit are depicted (0d, 3d, 33d, 

etc…) 

Table 2. Number of available (non-missing) BMI Z-score at each visit in training dataset 

Visit Number of available 

observed outcomes

Proportion of available 

observed outcome

U1 1000 1

U2 972 0.972

U3 982 0.982

U4 977 0.977

U5 962 0.962

U6 969 0.969

U7 936 0.936

U7a 882 0.882

U8 845 0.845

U9 597 0.597  

Mean absolute BMI Z-scores of children included in the training dataset can be seen in Table 3. 

On average, BMI-Z score of children in PEACHES training dataset are lower than 0. From U5 to 

U7, it increases. From U7 it decreases continually over time 

Table 3. Mean absolute BMI Z-scores at all visits in training dataset 

 

Visit Average number of days 
from U1 

Mean BMI 
Zscore 

[2.5% - 97.5%] of 
BMI Zscore 

U1 0 -0.35 [-2.31;1.63] 

U2 3 -0.78 [-2.68;1.24] 

U3 33 -0.22 [-2.09;1.59] 

U4 101 -0.32 [-2.43;1.81] 

U5 191 -0.15 [-2.29;1.94] 

U6 355 0.13 [-1.94;2.25] 

U7 721 0.57 [-1.42;2.47] 
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U7a 1,092 0.42 [-1.45;2.57] 

U8 1,454 0.37 [-1.46;2.48] 

U9 1,861 0.31 [-1.50;2.80] 

 

Table 4 presents the average risk of overweight in PEACHES training dataset at each visit. From 

U2 to U7, the average risk of overweight increases over time. At U7 (about 2 years after birth), 

children are at highest risk of overweight. From U7, it tends to decrease. 

Table 4. Mean risk of overweight at all visits in training dataset 

 

Timepoint Average number of 
days from U1 

Mean risk 
for over-
weight 

[2.5% - 97.5%] of risk for over-
weight 

U1 0 0.076 [0;1] 

U2 3 0.034 [0;1] 

U3 33 0.088 [0;1] 

U4 101 0.104 [0;1] 

U5 191 0.142 [0;1] 

U6 355 0.205 [0;1] 

U7 721 0.317 [0;1] 

U7a 1,092 0.262 [0;1] 

U8 1,454 0.245 [0;1] 

U9 1,861 0.24 [0;1] 

 

2.2.3.3 Validation dataset 

Number of IDs included in the validation dataset is 557. The following figures describe the course 

of BMI-Z score throughout the study and the average risk of overweight in all children included in 

the validation dataset. At U7 (about 2 years after birth), children in the validation dataset are at 

highest risk of overweight. The shape of the BMI z-score curve observed in the validation dataset 

seems to be similar to the curve observed in the training dataset. Table 5 and Table 6 present 

detailed numbers for these figures. 
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Figure 2. (left) BMI Z score of children in validation dataset; (right) mean risk of overweight 

throughout the study. Average numbers of days from U1 at each visit are depicted (0d, 3d, 33d, 

etc…) 

Table 5. Mean absolute BMI Z-scores at each visit in validation dataset 

 

Timepoint Average num-
ber of days 
from U1 

Mean BMI 
Zscore 

[2.5% - 97.5%] of BMI 
Zscore 

U1 0 -0.389 [-2.42;1.57] 

U2 3 -0.843 [-2.75;1.02] 

U3 33 -0.198 [-2.28;1.72] 

U4 100 -0.327 [-2.42;1.87] 

U5 192 -0.183 [-2.22;1.79] 

U6 354 0.158 [-1.91;2.00] 

U7 723 0.535 [-1.65;2.53] 

U7a 1,090 0.446 [-1.55;2.52] 

U8 1,448 0.453 [-1.42;2.71] 

U9 1,858 0.395 [-1.54;2.59] 

 

Table 6. Mean risk of overweight at each visit in validation dataset 

 

Timepoint Average number of 
days from U1 

Mean risk 
for over-
weight 

[2.5% - 97.5%] of risk for over-
weight 

U1 0 0.076 [0;1] 

U2 3 0.034 [0;1] 

U3 33 0.088 [0;1] 

U4 101 0.104 [0;1] 

U5 191 0.142 [0;1] 
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U6 355 0.205 [0;1] 

U7 721 0.317 [0;1] 

U7a 1,092 0.262 [0;1] 

U8 1,454 0.245 [0;1] 

U9 1,861 0.24 [0;1] 

 

2.2.4 Effect of time on growth curve 

In order to look for relevant time points that will serve as basis for the simulation design, a linear 

mixed model with random intercept, the effect of linear and additive time effects at each visit on 

BMI-Z score over time was examined. Dependent variable was defined as BMI-Z score over time. 

Independent variables were the time effects. No random slopes were specified. It was assumed 

that the population homogenous is and possible inhomogeneity can be covered by the random 

effects. Models were backward selected in a stepwise manner according to their AIC by using the 

function step() in package lmerTest (Kuznetsova et al., 2017). The time effects of the se-

lected model then served as input of the simulation design. The full model was specified as the 

followings: 

𝐵𝑀𝐼𝑧𝑖,𝑗 = 𝛼𝑖 + 𝛽0 + 𝛽1 ∗  𝑡1𝑖,𝑗
+ 𝛽2 ∗  𝑡2𝑖,𝑗

+ 𝛽3 ∗  𝑡3𝑖,𝑗
+ 𝛽4 ∗  𝑡4𝑖,𝑗

+ 𝛽5 ∗  𝑡5𝑖,𝑗
+ 𝛽6 ∗ 𝑡6𝑖,𝑗

+ 𝛽7 ∗ 𝑡7𝑖,𝑗

+ 𝛽7𝑎 ∗  𝑡7𝑎𝑖,𝑗
+𝛽8 ∗  𝑡8𝑖,𝑗

+ 𝜀𝑖,𝑗 

𝛼𝑖~ 𝑁(0, 𝜏 2) 

𝜀𝑖,𝑗  ~ 𝑁(0, 𝜎2) 

An example of time variables for one ID that were examined in this analysis was shown in Table 

7. Note that the number of days from birth (U1) at each visit differ from those in Table 3 to Table 

6. The numbers shown in Table 7 relate to data of an individual, while elsewhere they represent 

an aggregated measure overall children in the data set. 

Table 7. Example of time variables in PEACHES data set 

U1 U2 U3 U4 U5 U6 U7 U7a U8

U1 0 0 0 0 0 0 0 0 0 0

U2 2 0.07 0 0 0 0 0 0 0 0

U3 30 0.99 0.92 0 0 0 0 0 0 0

U4 107 3.52 3.45 2.53 0 0 0 0 0 0

U5 213 7 6.93 6.01 3.48 0 0 0 0 0

U6 360 11.83 11.76 10.84 8.31 4.83 0 0 0 0

u7a 688 22.6 22.54 21.62 19.09 15.61 10.78 0 0 0

U7a 1,016 33.38 33.31 32.39 29.86 26.38 21.55 10.78 0 0

U8 1,456 47.84 47.77 46.85 44.32 40.84 36.01 25.23 14.46 0

U9 1,906 62.62 62.55 61.63 59.1 55.62 50.79 40.02 29.24 14.78

Number of months from Number of 

days from 

birth

Visit

 

The primary purpose of this analysis focuses on time factor, thus no further mother’s or child’s 

covariables were incorporated in the model. More details about this analysis can be found in 

Appendix B: Supplementary results. 
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2.3 Main simulation study design 

Results of the analysis described in 2.2.41 revealed that number of months after U1, U2, U3, U4, 

U6, and U7 were identified as variables that significantly influence the average growth curve of 

the children in PEACHES data set. These time variables served as input of the design of the 

simulation main and ICC studies. The subsections 2.3.1 and 2.3.2 will represent the model spec-

ification as well as the components that enter the main simulation design. The simulation steps 

will be shown in subsection 2.3.3. 

2.3.1 Model specification 

The generalized linear mixed model that underlies the simulation design is specified as follows: 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗
+ 𝛽2̂ ∗  𝑡2𝑖,𝑗

+ 𝛽3̂ ∗  𝑡3𝑖,𝑗
+ 𝛽4̂ ∗  𝑡4𝑖,𝑗

+ 𝛽6̂ ∗  𝑡6𝑖,𝑗
+ 𝛽7̂ ∗  𝑡7𝑖,𝑗

, where 

𝛼𝑖  ~ 𝑁(0, 𝜏2) 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 and 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

The following logit link function was applied: 𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒

𝐿𝑃𝑖,𝑗

1+ 𝑒
𝐿𝑃𝑖,𝑗

 

Variance 𝜏2 as well as the coefficients of the fixed effects 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ were estimated 

from the training dataset (see 2.2.3.2). The estimate of 𝜏2 is 3.551, which indicates an ICC of 

3.551/(3.551+𝜋2/3) = 0.519. This estimate suggests that variances between individuals contrib-

utes to more than 50% of the overall variance and that it is necessary to use mixed models that 

incorporate random intercepts.  More details about the output of the underlying model can be 

found in Appendix B2 (Appendix B: Supplementary results). 

Table 8. Parameters used for simulation design 

Parameter Estimated value that 

entered the simula-

tion model (SE) 

𝜏2 3.551  

𝛽0̂ -4.65186 (0.51158) 

𝛽1̂ 0.10092 (2.94906) 

𝛽2̂ 0.56928 (3.06273) 

𝛽3̂ -0.37908 (0.54987) 

 𝛽4̂ -0.19887 (0.21051) 

𝛽6̂ -0.03126 (0.07224) 

𝛽7̂ -0.07443 (0.03589) 

 

1 Detailed results of analysis about time effect on growth curve can be found in Appendix B: 

Supplementary results. 
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2.3.2 Underlying distributions of additive time covariates for the 

simulation 

In order to imitate the variability of the number of days from birth (U1) at each visit, it is necessary 

to define an underlying distribution for each time covariate that enters the simulation. Uniform 

distributions are chosen to do so. The time window for each visit includes the earliest possible 

and the latest possible date suggested by the Bundeszentrale für gesundheitliche Aufklärung 

(BzgA) (Bundeszentrale für gesundheitliche Aufklärung, 2020) (see Table 9). These time windows 

served as parameters of the uniform distribution for each visit, respectively. 

Table 9. Assumptions for time window of visits, recommended by BzgA 

Visit Earliest recom-

mended days af-

ter birth 

Latest recom-

mended days af-

ter birth 

U1 0 0 

U2 3 10 

U3 28 35 

U4 90 120 

U5 180 210 

U6 300 360 

U7 630 720 

U7a 1,020 1,080 

U8 1,380 1,440 

U9 1,800 1,920 

 

2.3.3 Calculation of simulated outcome 

The presence of risk of overweight at a certain visit for a certain child was simulated by using the 

logit link function and the simulation model presented in 2.3.1, whereas the variance of estimated 

random intercept and estimates of fixed effects were obtained from fitting a GLMM with the train-

ing PEACHES data set (see Table 8). The simulated outcome is binary. 

Simulation was done using the package simstudy (Version 0.2.1) (Wujciak-Jens, 2020). First of 

all, the estimated standard error 𝜏 for random intercepts extracted from the fitted GLMM (see 

Table 8) is defined (as sigma.ri, see Table 10). In the second step, the uniform distributions of 

the time distance between each visit and birth (U1) are defined (as u1 to u9, see Table 10). Next, 

the normal distribution of the random intercept (as variable RI) is defined with mean = 0 and 

variance = sigma. ri2. With these components, the first part of the data is generated considering 

the correlation between data points within one individual. In this process, the random intercept 

and the number of days from birth (U1) of each individual are simulated simultaneously according 

to the defined distributions. In the next step, the additive time variables are calculated as shown 
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in an example in Table 7. The coefficients of the fixed effects 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ are then 

extracted from the GLMM model (see Table 8) and serve as fixed components of the simulation 

design. In the last step, the outcome is simulated, which undergoes a binomial distribution with a 

logit link function. The linear predictor is calculated using the formula in 2.3.1. R codes for data 

generation that follow the steps described above are shown in Table 10. 1,000 IDs were simulated 

in the main simulation study. 

Table 10. Simulation steps using package simstudy (Version 0.2.1) 

R codes for data generation 

simulate <- function(nid, seed, sigma.ri = NULL) { 

  require(plyr) 

  require(lme4) 

  load("sim_bin/input/siminput.RData") 

   

  # Extract from glmer model 

  if (is.null(sigma.ri)) { 

    sigma.ri <- 

      as.data.frame(lme4::VarCorr(m0.bin, comp = "Std.Dev."))[1, "sdcor"] 

  } 

   

   

  def <- 

    defData(varname = "u1", 

            dist = "uniformInt", 

            formula = "0;0") 

  def <- 

    defData(def, 

            varname = "u2", 

            dist = "uniformInt", 

            formula = "3;10") 

  def <- 

    defData(def, 

            varname = "u3", 

            dist = "uniformInt", 

            formula = "28;35") 

  def <- 

    defData(def, 

            varname = "u4", 

            dist = "uniformInt", 

            formula = "90;120") 

  def <- 

    defData(def, 

            varname = "u5", 

            dist = "uniformInt", 

            formula = "180;210") 

  def <- 
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R codes for data generation 

    defData(def, 

            varname = "u6", 

            dist = "uniformInt", 

            formula = "300;360") 

  def <- 

    defData(def, 

            varname = "u7", 

            dist = "uniformInt", 

            formula = "630;720") 

  def <- 

    defData(def, 

            varname = "u7a", 

            dist = "uniformInt", 

            formula = "1020;1080") 

  def <- 

    defData(def, 

            varname = "u8", 

            dist = "uniformInt", 

            formula = "1380;1440") 

  def <- 

    defData(def, 

            varname = "u9", 

            dist = "uniformInt", 

            formula = "1800;1920") 

  def <- 

    defData( 

      def, 

      varname = "RI", 

      formula = 0, 

      dist = "normal", 

      variance = sigma.ri ^ 2 

    ) 

   

  #Reference: https://www.kindergesundheit-info.de/themen/entwicklung/frueherkennung-

u1-u9-und-j1/untersuchungen-u1-bis-u9/ 

  set.seed(seed) 

  utab <- genData(nid, def) %>% 

    tidyr::gather(udata, udata_age_days, -id, -RI) 

   

  udatatab <- 

    plyr::join_all ( 

      list( 

        ddply(utab, .(id), u1func) %>% gather(visit, months_from_u1, -id), 

        ddply(utab, .(id), u2func) %>% gather(visit, months_from_u2, -id), 

        ddply(utab, .(id), u3func) %>% gather(visit, months_from_u3, -id), 

        ddply(utab, .(id), u4func) %>% gather(visit, months_from_u4, -id), 
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R codes for data generation 

        ddply(utab, .(id), u5func) %>% gather(visit, months_from_u5, -id), 

        ddply(utab, .(id), u6func) %>% gather(visit, months_from_u6, -id), 

        ddply(utab, .(id), u7func) %>% gather(visit, months_from_u7, -id), 

        ddply(utab, .(id), u7afunc) %>% gather(visit, months_from_u7a, -id), 

        ddply(utab, .(id), u8func) %>% gather(visit, months_from_u8, -id), 

        ddply(utab, .(id), u9func) %>% gather(visit, months_from_u9, -id) 

      ) 

    ) 

   

  udatatab$udata <- 

    factor( 

      udatatab$visit, 

      levels = c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10"), 

      labels = unique(utab$udata) 

    ) 

   

  udatatab <- join( 

    udatatab %>% select(-visit), 

    utab %>% select(id, RI, udata, udata_age_days) %>% distinct() 

  ) 

   

  udatatab$beta0 <- getME(m0.bin, "beta")[1] 

  udatatab$beta1 <- getME(m0.bin, "beta")[2] 

  udatatab$beta2 <- getME(m0.bin, "beta")[3] 

  udatatab$beta3 <- getME(m0.bin, "beta")[4] 

  udatatab$beta4 <- getME(m0.bin, "beta")[5] 

  udatatab$beta6 <- getME(m0.bin, "beta")[6] 

  udatatab$beta7 <- getME(m0.bin, "beta")[7] 

   

  set.seed(seed) 

  def2 <- 

    defDataAdd( 

      varname = "risk", 

      dist = "binary", 

      formula = 

"beta0+RI+beta1*months_from_u1+beta2*months_from_u2+beta3*months_from_u3+beta4*months_

from_u4+beta6*months_from_u6+beta7*months_from_u7", 

      link = "logit" 

    ) 

  return(addColumns(def2, data.table::as.data.table(udatatab))) 

   

} 
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2.4 Simulation ICC study design 

In order to examine the impact of the ICC, different 𝜏2 values were applied. For each of this value, 

a separate analysis was done, respectively. The results of all analyses were then compared 

graphically. The impact of ICC on the usefulness of dynamic approaches was then quantified 

applying linear mixed models. More about this point is presented in 2.10. These analyses are also 

referred to as “ICC scenarios” throughout the thesis. 

2.4.1 Variance of random intercept 𝝉𝟐 

Considering a certain known or estimated variance of random intercepts, ICC of a GLMM can be 

calculated by assuming the theoretical variance of a GLMM = 
𝜋2

3
 (Nakagawa et al., 2017), which 

gives: ICC = 
 𝜏2

 𝜏2+
𝜋2

3
 
.The following table presents different 𝜏2 values applied in the simulation ICC 

study and their corresponding ICC. 

Table 11. Hypothetical 𝜏2values defined and their corresponding ICC 

𝝉 𝝉𝟐 ICC 

0.00 0.000 0.000 

0.50 0.250 0.071 

0.75 0.562 0.146 

1.00 1.000 0.233 

1.25 1.562 0.322 

1.50 2.250 0.406 

1.75 3.062 0.482 

2.00 4.000 0.549 

2.50 6.250 0.655 

2.75 7.562 0.697 

3.00 9.000 0.732 

4.00 16.000 0.829 

5.00 25.000 0.884 

7.00 49.000 0.937 

10.00 100.000 0.968 

 

ICC measures the relativeness of variance explained by differences among observation units to 

all observed variance. In PEACHES study, these units are children included in the PEACHES 

analysis. In the simulation studies, these units are individuals in the simulation dataset(s). If the 

ICC is higher than 0.5, observed variance in the data is rather due to differences among individ-

uals. If ICC is lower than 0.5, the observed variance can be rather explained by random errors 

within one individual over time, including measurement errors. In a binomial setting, this variance 

is assumed to be the theoretical variance, which is a fixed value 
𝜋2

3
 (Nakagawa et al., 2017). In 

PEACHES dataset, an ICC around 0.5 was observed. This indicates comparable amount of con-

tribution in explaining variability in the data due to between-individual vs. within-individual vari-

ances. With a wider range of ICC in this simulation study, other scenarios are examined. With an 

ICC close to 0, variability in data is explained mostly by random errors. With an ICC close to 1, 

rather variances between individuals contribute to the overall variability in data. 
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2.4.2 Model specification 

The GLMM that underlies the simulation design is specified as follows: 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗
+ 𝛽2̂ ∗  𝑡2𝑖,𝑗

+ 𝛽3̂ ∗  𝑡3𝑖,𝑗
+ 𝛽4̂ ∗  𝑡4𝑖,𝑗

+ 𝛽6̂ ∗  𝑡6𝑖,𝑗
+ 𝛽7̂ ∗  𝑡7𝑖,𝑗

, where 

𝛼𝑖  ~ 𝑁(0, 𝜏2) 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 and 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

The following logit link function was applied: 𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒

𝐿𝑃𝑖,𝑗

1+ 𝑒
𝐿𝑃𝑖,𝑗

 

Variance 𝜏2 was a set of hypothetical values (see above in 2.4.1). 

The coefficients of the fixed effects 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ were estimated from the training dataset 

(see 2.2.3.2). More details about the output of the underlying model can be found in Appendix B2 

(Appendix B: Supplementary results). 

Table 12. Parameters used for simulation design 

Parameter Estimated value that 

entered the simula-

tion model (SE) 

𝛽0̂ -4.65186 (0.51158) 

𝛽1̂ 0.10092 (2.94906) 

𝛽2̂ 0.56928 (3.06273) 

𝛽3̂ -0.37908 (0.54987) 

 𝛽4̂ -0.19887 (0.21051) 

𝛽6̂ -0.03126 (0.07224) 

𝛽7̂ -0.07443 (0.03589) 

2.4.3 Distributions of time variables 

The time window for each visit includes the earliest possible and the latest possible date sug-

gested by the Bundeszentrale für gesundheitliche Aufklärung (BzgA) (Bundeszentrale für 

gesundheitliche Aufklärung, 2020) (see Table 9). These time windows served as parameters of 

the uniform distribution for each visit, respectively. 

2.4.4 Calculation of simulated outcome 

The presence of risk of overweight at a certain visit for a certain child was simulated by using the 

logit link function and the simulation model presented in 2.4.2, whereas estimates of fixed effects 

obtained from fitting a GLMM with the training PEACHES data set and a set of hypothetical vari-

ances of random intercept (𝜏2) were used. The simulated outcome is binary. 
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2.4.5 Sample size of the main simulation study 

In order to reduce computing time, 100 IDs were simulated in each scenario of the simulation ICC 

study. 

2.5 Prediction models 

2.5.1 Overview of performed prediction models 

In the main analyses, the following prediction models were specified, where linear and additive 

time effects from birth were included in the models: 

• Bayesian dynamic model 1 (BDM1): individual random intercepts (RI), precision of RI 

distribution1, and outcome are updated using outcome of the past visits and RIs from the 

last visits. 

• Bayesian dynamic model 2 (BDM2): fixed effects (FEs), individual RIs, precision of RI 

distribution, and outcome are updated using outcome of the past visits and estimated RIs 

and FEs from the last visits. 

• Bayesian static model 1 (BSM1): future outcome is updated using outcome of the past 

visits, other estimates are not updated. RIs are assumed to equal 0. 

• Bayesian static model 2 (BSM2): prediction of outcome is made once at U1 using esti-

mates from model fitted with cross-validation training data set. No updates of prediction 

over time. RIs are assumed to equal 0. 

• Generalized linear mixed-effect regression model 1 (GLMER1): prediction is made once 

at U1 using estimates from model fitted with cross-validation training data set. No updates 

of prediction over time. RIs are assumed to equal 0. 

It is to be expected that GLMER1 and BSM2 are the most static model and provide rigid prediction 

over time. These two models are supposed to provide similar results. Differences might be caused 

by different estimation methods and Monte-Carlo sampling. With greater sample size of the CV 

training dataset, the differences between predicted BDM2 and GLMER1 are supposed to become 

smaller. BDM2 is expected to provide the most flexible results. 

The prediction performance was assessed by applying leave-one-out cross validation (LOOCV). 

After fitting a certain model with the training data set (with 999 children), validation done with the 

one child in the test data set to assess the prediction performance of the model. In total, 1,000 

LOOCVs were done.  

For BDM1 and BDM2, prediction was made for a child's outcome at each future visit separately, 

using all available accumulated data. This procedure results in maximal nine predictions for one 

child within one cross-validation. Specifically, accumulated data of all IDs at U1, U2, U3, U4, U5, 

U6, U7, U7a, and U8 were used to predict outcome of one child at U2, U3, U4, U5, U6, U7, U7a, 

U8, and U9, respectively. Whenever more data is available, BDM1 updated the random intercepts 

and the precision parameter, while BDM2 updates random intercepts, the precision parameter, 

and fixed exffects. 

The GLMER1 and BSM2 models use the fixed effects that were estimated using the LOOCV-

training data set. These estimates stay the same at all future time points. Random intercepts are 

 

1 Precision = 
1

𝜏2, where 𝜏2 is the variance of the distribution of random intercepts. 
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assumed to be 0. As a result, for these two models, outcome predicted using a certain model at 

a certain future time point are supposed to be the same, regardless of the accumulated data used. 

Like for GLMER1 and BSM2, for BSM1, random intercepts are assumed to be 0 and fixed effects 

are not updated over time. BSM1 differs from GLMER1 and BSM2 in a way that it accounts for 

available outcome of all available past visits and makes use of this information for prediction. As 

a result, outcome of the same future visit made at different prediction visits might show deviations. 

The specifications of the prediction models described above are summarized in the following ta-

ble.
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Table 13. Overview of the prediction models 

Model Fixed components over time Components updated over time Components used for updates Bayesian 
approach 

Dynamic 
approach 

BDM1 • Fixed effects 
• RI 

• precision of RI distribution 

• outcome 

• Outcome of last visit 

• RI of last visit 
Yes Yes 

BDM2 - • RI 

• Precision of RI distribution 

• Outcome 

• Fixed effects 

• Outcome from last visit 

• RI from last visit 

• Fixed effects estimated from last 
visit 

Yes Yes 

BSM1 • Fixed effects estimated at U1 

• RI = 0 
 

• Outcome • Outcome from last visit 
Yes No 

BSM2 • Fixed effects estimated at U1 

• RI = 0 

• Outcome for all visits estimated at 
U1 

- - Yes No 

GLMER1 • Fixed effects 

• RI = 0 

• Outcome for all visits estimated at 
U1 

- - No No 
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2.5.2 Bayesian dynamic models 

At the first visit, a child with ID i entered the study. His/her random intercept (RI) is assumed to 

be 0. 

Risk for overweight of child i at U2, U3, U4, U5, U6, U7, U7a, U8, and U9 will then be predicted, 

respectively, using this RI (equal 0), RIs of children i* from the trained data set, the precision of 

random intercept distribution, and the fixed effects estimated from the LOOCV-trained model.  

In both models, the random intercepts of all children (i* and i) and the precision parameter are 

updated at this step. Fixed effects are updated only in BMD2. At U1, both models BDM1 and 

BDM2 give the same predicted outcome. The following sections will describe the updating and 

predicting procedure at later prediction visits (U2 to U8) of BDM1 (2.5.2.1) and BMD2 (2.5.2.2) in 

details. 

2.5.2.1 Bayesian dynamic model 1 (BDM1) 

At U2, the BDM1 model contains the fixed effects estimated from the LOOCV-trained model, 

random intercepts of all children (i* and i) estimated from the U1-BDM1 model as well as the 

precision parameter for the distribution of random intercepts (
1

𝜏2). At this step, the random inter-

cept of all children (i* and i) are updated, using the precision parameter estimated from U1-BDM1 

model. At the same time, the precision parameter is also updated. This updated model is called 

U2-BDM1 model. 

At U3, the BDM1 model contains the fixed effects estimated from the LOOCV-trained model, 

random intercepts of all children (i* and i) estimated from the U2-BDM1 model as well as the 

precision parameter for the distribution of random intercepts (
1

𝜏2). At this step, the random inter-

cept of all children (i* and i) are updated, using the precision parameter estimated from U2-BDM1 

model. At the same time, the precision parameter is also updated. This updated model is called 

U3-BDM1 model. 

The same procedure applies for U4, U5, U6, U7, U7a, U8, and U9. 

At U9, the BDM1 model contains the fixed effects estimated from the LOOCV-trained model, 

random intercepts of all children (i* and i) estimated from the U8-BDM1 model as well as the 

precision parameter for the distribution of random intercepts (
1

𝜏2). At this step, the random inter-

cept of all children (i* and i) are updated, using the precision parameter estimated from U8-BDM1 

model. At the same time, the precision parameter is also updated. This updated model is called 

U9-BDM1 model, which is our final model. Theoretically, this final model could be used to predict 

outcome of another child(ren) that would enter the study in the future. 

Table 14. Model specification of model BDM1 

BDM1 

Step 1 – Training with available IDs i* 
 

Prior: 

𝛽0~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽1~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
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BDM1 

 

𝛽2~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽3~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽4~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
𝛽6~ 𝑁(0, 10−5) 

 
 

𝛽7~ 𝑁(0, 10−5) 
 

1

𝜏2
 ~ 𝐺𝑎𝑚𝑚𝑎(10−4, 10−4) 

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample. 

 

Likelihood: 

 

𝑌𝑖∗,𝑗∗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖∗,𝑗∗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖∗,𝑗∗ = 
𝑒𝐿𝑃𝑖∗,𝑗∗

1 + 𝑒𝐿𝑃𝑖∗,𝑗∗
 

 

𝐿𝑃𝑖∗,𝑗∗ = 𝛼𝑖∗ + 𝛽0 + 𝛽1 ∗  𝑡1𝑖∗,𝑗∗
+ ⋯+ 𝛽7 ∗  𝑡7𝑖∗,𝑗∗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖∗  ~ 𝑁 (0, 𝜏2) 

𝐿𝑃𝑖∗,𝑗∗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖∗ 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗∗ 

𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Estimated posterios:  

Fixed effects: 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ 
 

𝐿𝑃𝑖∗,𝑗∗̂ , where 𝑗∗ = {𝑈2,𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts: 𝛼𝑖∗̂ 
 

Precision parameter: 
1

𝜏2 
̂

 

1

𝜏2 
̂

 follows a Gamma distribution with parameters �̂� and 𝑚�̂�. These two parameters 

are calculated with the mean and variance of 
1

𝜏2 
̂

 (MRC Biostatistics Unit, 2003). 
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BDM1 

 
 

𝑚�̂� =  
 𝑚𝑒𝑎𝑛 (

1
𝜏2 
̂

)

𝑉𝑎𝑟 (
1
𝜏2 
̂

)

  

 

�̂� =  
 [𝑚𝑒𝑎𝑛 (

1
𝜏2 
̂

)]2

𝑉𝑎𝑟 (
1
𝜏2 
̂

)

  

 
Step 2 – Updating and predicting at U1 

 
Updated priors: 

1

𝜏𝑈1
2  ~ 𝐺𝑎𝑚𝑚𝑎(�̂�,𝑚�̂�) 

 
Random intercepts of children i* from Step 1: 𝛼𝑖∗̂ 
 
Random intercepts of child i from the test sample:  𝛼𝑖 = 0 

 

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample, and  

 
 

[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1} and i is the child in the test sample. 
 
Likelihood: 

𝑌𝑖,𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗
+ ⋯+ 𝛽7̂ ∗  𝑡7𝑖,𝑗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈1
 ~ 𝑁 (0, 𝜏𝑈1

2) , 𝛼𝑖𝑈1
∗  ~ 𝑁 (0, 𝜏𝑈1

2) 
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𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

Posterios: 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟: 𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Random intercepts: 𝛼𝑖𝑈1
∗̂ , 𝛼𝑖𝑈1

̂  

 

Precision parameter:  
1

𝜏𝑈1
2

̂
 

 

1

𝜏𝑈1
2

̂
 follows a Gamma distribution with parameters 𝑟𝑈1̂ and 𝑚𝑢𝑈1̂. These two parame-

ters are calculated with the mean and variance of 
1

𝜏𝑈1
2

̂
. 

 

𝑚𝑢𝑈1̂ = 

 𝑚𝑒𝑎𝑛 (
1

𝜏𝑈1
2

̂
)

𝑉𝑎𝑟 ( 
1

𝜏𝑈1
2

̂
)

  

 

𝑟𝑈1̂ = 

 [𝑚𝑒𝑎𝑛 (
1

𝜏𝑈1
2

̂
)]2

𝑉𝑎𝑟 (
1

𝜏𝑈1
2

̂
)

  

 
 
Step 3 – Updating and predicting at U2 

Updated priors: 

1

𝜏𝑈2
2  ~ 𝐺𝑎𝑚𝑚𝑎(𝑟𝑈1̂, 𝑚𝑢𝑈1̂) 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈1
∗̂ , 𝛼𝑖𝑈1

̂  

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV training 

sample, and  
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[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1, 𝑈2} and i is the child in the test sample 

 

Likelihood: 

𝑌𝑖,𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖𝑈1
̂ + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗

+ ⋯+ 𝛽7̂ ∗  𝑡7𝑖,𝑗
 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈2
 ~ 𝑁 (0, 𝜏𝑈2

2) , 𝛼𝑖𝑈2
∗  ~ 𝑁 (0, 𝜏𝑈2

2) 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Posterio: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts: 𝛼𝑖𝑈2

∗̂ , 𝛼𝑖𝑈2
̂  

 

Precision parameter: 
1

𝜏𝑈2
2

̂
.  

 

1

𝜏𝑈2
2

̂
 follows a Gamma distribution with parameters 𝑟𝑈2̂ and 𝑚𝑢𝑈2̂. These two parameters are 

calculated with the mean and variance of 
1

𝜏𝑈2
2

̂
 

 

𝑚𝑢𝑈2̂ = 

 𝑚𝑒𝑎𝑛 (
1

𝜏𝑈2
2

̂
)

𝑉𝑎𝑟 ( 
1

𝜏𝑈2
2

̂
)

  

 

𝑟𝑈2̂ = 

 [𝑚𝑒𝑎𝑛 (
1

𝜏𝑈2
2

̂
)]2

𝑉𝑎𝑟 (
1

𝜏𝑈2
2

̂
)

  

 
Repeat Step 3 for the visit U3, U4, U5, U6, U7a, and U8.  
Specifically, at U8, we have: 

 
Updated priors: 
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1

𝜏𝑈8
2  ~ 𝐺𝑎𝑚𝑚𝑎(𝑟𝑈7�̂� , 𝑚𝑢𝑈7𝑎̂ ) 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈7𝑎
∗̂ , 𝛼𝑖𝑈7�̂�

 

 

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV training 

sample, and  

 
 

[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8} and i is the child in the test sample 

 
Likelihood: 

𝑌𝑖,𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖𝑈7�̂�
+ 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗

+ ⋯+ 𝛽7̂ ∗  𝑡7𝑖,𝑗
 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈8
 ~ 𝑁 (0, 𝜏𝑈8

2) , 𝛼𝑖𝑈8
∗  ~ 𝑁 (0, 𝜏𝑈8

2) 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈9} 

 

Posterios: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈9} 

 
Random intercepts: 𝛼𝑖𝑈8

∗̂ , 𝛼𝑖𝑈8
̂  

 

Precision parameter: 
1

𝜏𝑈8
2

̂
.  
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1

𝜏𝑈8
2

̂
 follows a Gamma distribution with parameters 𝑟𝑈8̂ and 𝑚𝑢𝑈8̂. These two parameters are 

calculated with the mean and variance of 
1

𝜏𝑈8
2

̂
. 

 

𝑚𝑢𝑈8̂ = 

 𝑚𝑒𝑎𝑛 (
1

𝜏𝑈8
2

̂
)

𝑉𝑎𝑟 ( 
1

𝜏𝑈8
2

̂
)

  

 

𝑟𝑈8̂ = 

 [𝑚𝑒𝑎𝑛 (
1

𝜏𝑈8
2

̂
)]2

𝑉𝑎𝑟 (
1

𝜏𝑈8
2

̂
)

  

 
 

These posterios estimated at U9 can be considered to predict future outcome later than 

U9 of this child. 

 

2.5.2.2 Bayesian dynamic model 2 (BDM2) 

At U2, BDM2 contains the updated RIs of all children (i* and i) estimated with the U1-BDM2 model. 

Updated estimates for fixed effects and precision parameter also come from the U1-BDM2 model. 

At this step, the random intercept of all children (i* and i) are once again updated using the preci-

sion parameter. At the same time, the precision parameter and the fixed effects are updated. This 

updated model is called U2-BDM2 model. 

At U3, BDM2 contains the updated RIs of all children (i* and i) estimated with the U2-BDM2 model. 

Updated estimates for fixed effects and precision parameter also come from the U2-BDM2 model. 

At this step, the random intercept of all children (i* and i) are once again updated using the preci-

sion parameter. At the same time, the precision parameter and the fixed effects are updated. This 

updated model is called U3-BDM2 model. 

The same procedure applies for U4, U5, U6, U7, U7a, U8, and U9. 

At U9, BDM2 contains the updated RIs of all children (i* and i) estimated with the U8-BDM2 model. 

Updated estimates for fixed effects and precision parameter also come from the U8-BDM2 model. 

At this step, the random intercept of all children (i* and i) are once again updated using the preci-

sion parameter. At the same time, the precision parameter and the fixed effects are updated. This 

updated model is called U9-BDM2 model, which is our final model. Theoretically, this model would 

be used to predict outcome of another child(ren) that entered the study in the future. 

Table 15. Model specification of model BDM2 

BDM2 

Step 1 – Training with available IDs i* 
 

Prior: 

𝛽0~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
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𝛽1~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽2~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽3~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽4~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
𝛽6~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 

 
 

𝛽7~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

1

𝜏2
 ~ 𝐺𝑎𝑚𝑚𝑎(10−4, 10−4) 

  

Data:   

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample. 

  

Likelihood: 

 

𝑌𝑖∗,𝑗∗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖∗,𝑗∗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖∗,𝑗∗ = 
𝑒𝐿𝑃𝑖∗,𝑗∗

1 + 𝑒𝐿𝑃𝑖∗,𝑗∗
 

 

𝐿𝑃𝑖∗,𝑗∗ = 𝛼𝑖∗ + 𝛽0 + 𝛽1 ∗  𝑡1𝑖∗,𝑗∗
+ ⋯+ 𝛽7 ∗  𝑡7𝑖∗,𝑗∗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖∗  ~ 𝑁 (0, 𝜏2) 

𝐿𝑃𝑖∗,𝑗∗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖∗ 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗∗ 

𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Estimated posterios:  

Fixed effects: 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ 
 

𝐿𝑃𝑖∗,𝑗∗̂ , where 𝑗∗ = {𝑈2,𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts:  𝛼𝑖∗̂ 
 

Precision parameter: 
1

𝜏2 
̂
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1

𝜏2 
̂

 follows a Gamma distribution with parameters �̂� and 𝑚�̂�. These two parameters 

are calculated with the mean and variance of 
1

𝜏2 
̂

 . 

 

𝑚�̂� =  
 𝑚𝑒𝑎𝑛 (

1
𝜏2 
̂

)

𝑉𝑎𝑟 (
1
𝜏2 
̂

)

   

 

�̂� =  
 [𝑚𝑒𝑎𝑛 (

1
𝜏2 
̂

)]2

𝑉𝑎𝑟 (
1
𝜏2 
̂

)

   

 
 

Step 2 – Updating and predicting at U1 
 
Updated priors: 

1

𝜏𝑈1
2   ~ 𝐺𝑎𝑚𝑚𝑎(�̂�,𝑚�̂�) 

 
Random intercepts of children i* from Step 1: 𝛼𝑖∗̂ 
 
Random intercept of child i form the test sample:  𝛼𝑖 = 0 

 

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample, and  

 
 

[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1} and i is the child in the test sample. 
 
Likelihood: 

𝑌𝑖,𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗)) 

𝑃[𝑧𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
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𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0 + 𝛽1 ∗  𝑡1𝑖,𝑗
+ ⋯+ 𝛽7 ∗  𝑡7𝑖,𝑗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈1
 ~ 𝑁 (0, 𝜏𝑈1

2) , 𝛼𝑖𝑈1
∗  ~ 𝑁 (0, 𝜏𝑈1

2) 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Posterio: 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟: 𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

Random intercetps: 𝛼𝑖𝑈1
∗̂ , 𝛼𝑖𝑈1

̂  

Precision parameter:  
1

𝜏𝑈1
2

̂
 

1

𝜏𝑈1
2

̂
 follows a Gamma distribution with parameters 𝑟𝑈1̂ and 𝑚𝑢𝑈1̂. These two parameters 

are calculated with the mean and variance of 
1

𝜏𝑈1
2

̂
. 

 

𝑚𝑢𝑈1̂ = 

 𝑚𝑒𝑎𝑛 (
1

𝜏𝑈1
2

̂
)

𝑉𝑎𝑟 ( 
1

𝜏𝑈1
2

̂
)

   

 

𝑟𝑈1̂ = 

 [𝑚𝑒𝑎𝑛 (
1

𝜏𝑈1
2

̂
)]2

𝑉𝑎𝑟 (𝜏𝑈1
1

𝜏𝑈1
2

̂̂
)

   

 

Fixed effects: 𝛽0𝑈1
̂,𝛽1𝑈1

̂,𝛽2𝑈1
̂,𝛽3𝑈1

̂,𝛽4𝑈1
̂,𝛽6𝑈1

,̂ 𝛽7𝑈1
̂ 

 
 
Step 3 – Updating and predicting at U2 

Updated priors: 

1

𝜏𝑈2
2   ~ 𝐺𝑎𝑚𝑚𝑎(𝑟𝑈1̂, 𝑚𝑢𝑈1̂) 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈1
∗̂ , 𝛼𝑖𝑈1

̂  

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV training 

sample, and  
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[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1, 𝑈2} and i is the child in the test sample 

 

Likelihood: 

𝑌𝑖,𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗)) 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 =  𝛼𝑖𝑈1
̂ + 𝛽0𝑈1

̂ + 𝛽1𝑈1
̂ ∗ 𝑡1𝑖,𝑗

+ ⋯ + 𝛽7𝑈1
̂ ∗ 𝑡7𝑖,𝑗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈2
 ~ 𝑁 (0, 𝜏𝑈2

2) , 𝛼𝑖𝑈2
∗  ~ 𝑁 (0, 𝜏𝑈2

2) 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Posterio: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈3, 𝑈4,𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts: 𝛼𝑖𝑈2

∗̂ , 𝛼𝑖𝑈2
̂  

 

Precision parameter:  
1

𝜏𝑈2
2   
̂

.  

 

1

𝜏𝑈2
2   
̂

   follows a Gamma distribution with parameters 𝑟𝑈2̂ and 𝑚𝑢𝑈2̂. These two param-

eters are calculated with the mean and variance of 
1

𝜏𝑈2
2   
̂

. 

 

𝑚𝑢𝑈2̂ = 

 𝑚𝑒𝑎𝑛 (
1

𝜏𝑈2
2   

̂
)

𝑉𝑎𝑟 ( 
1

𝜏𝑈2
2   

̂
)

   

 

𝑟𝑈2̂ = 

 [𝑚𝑒𝑎𝑛 (
1

𝜏𝑈2
2   

̂
)]2

𝑉𝑎𝑟 (
1

𝜏𝑈2
2   

̂
)

   

Fixed effects: 𝛽0𝑈2
̂,𝛽1𝑈2

̂,𝛽2𝑈2
̂,𝛽3𝑈2

̂,𝛽4𝑈2
̂,𝛽6𝑈2

,̂ 𝛽7𝑈2
̂ 

 
 
Repeat Step 3 for the visit U3, U4, U5, U6, U7a, and U8.  
Specifically, at U8, we have: 
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Updated priors: 

1

𝜏𝑈8
2   ~ 𝐺𝑎𝑚𝑚𝑎(𝑟𝑈7�̂� , 𝑚𝑢𝑈7𝑎̂ ) 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈7𝑎
∗̂ , 𝛼𝑖𝑈7�̂�

 

 

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV training 

sample, and  

 
 

[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8} and i is the child in the test sample 

 
Likelihood: 

𝑌𝑖,𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 =  𝛼𝑖𝑈7�̂�
+ 𝛽0𝑈7𝑎

̂ + 𝛽1𝑈7𝑎
̂ ∗ 𝑡1𝑖,𝑗

+ ⋯ + 𝛽7𝑈7𝑎
̂ ∗ 𝑡7𝑖,𝑗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖𝑈8
 ~ 𝑁 (0, 𝜏𝑈8

2) , 𝛼𝑖𝑈8
∗  ~ 𝑁 (0, 𝜏𝑈8

2) 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈9} 

 

Posterios: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈9} 

 
Random intercepts: 𝛼𝑖𝑈8

∗̂ , 𝛼𝑖𝑈8
̂  

 

Precision parameter:  
1

𝜏𝑈8
2

̂
.  
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1

𝜏𝑈8
2

̂
 follows a Gamma distribution with parameters 𝑟𝑈8̂ and 𝑚𝑢𝑈8̂. These two parameters are 

calculated with the mean and variance of 
1

𝜏𝑈8
2

̂
. 

 

𝑚𝑢𝑈8̂ = 

 𝑚𝑒𝑎𝑛 (
1

𝜏𝑈8
2

̂
)

𝑉𝑎𝑟 ( 
1

𝜏𝑈8
2

̂
)

   

 

𝑟𝑈8̂ = 

 𝑚𝑒𝑎𝑛 (
1

𝜏𝑈8
2

̂
)

2

𝑉𝑎𝑟 (
1

𝜏𝑈8
2

̂
)

   

 

Fixed effects: 𝛽0𝑈8
̂,𝛽1𝑈8

̂,𝛽2𝑈8
̂,𝛽3𝑈8

̂,𝛽4𝑈8
̂,𝛽6𝑈8

,̂ 𝛽7𝑈8
̂ 

 

These posterios estimated at U9 can be considered to predict future outcome later than 

U9 of this child. 
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2.5.3 Bayesian static models 

2.5.3.1 Bayesian static model 1 (BSM1) 

At U1, child with ID i entered the study. His/her random intercept is assumed to be 0. 

Risk for overweight of child i at U2, U3, U4, U5, U6, U7, U7a, U8, and U9 will then be predicted, 

respectively, using this assumed random intercept (equal 0) and the fixed effects as well as the 

RIs of children i* estimated from the LOOCV-trained model. This is the initial model for BSM1 and 

BSM2. 

At U2, outcome of child i at U1 and U2 is known and will be used as new data for the prediction 

of future outcome (at U3, U4, U5, U6, U7, U7a, U8, and U9). Random intercept of child i is as-

sumed to be 0. Fixed effects as well as the RIs of children i* estimated from the initial model are 

used for prediction and these estimates are not updated. 

At U3, outcome of child i at U1, U2, and U3 is known and will be used as new data for the predic-

tion of future outcome (at U4, U5, U6, U7, U7a, U8, and U9). Random intercept of child i is as-

sumed to be 0. Fixed effects as well as the RIs of children i* estimated from the initial model are 

used for prediction and these estimates are not updated. 

The same procedure applies for U4, U5, U6, U7, U7a, and U8. 

At U8, outcome of child i at U1, U2, U3, U4, U5, U6, U7, U7a, and U8 is known and will be used 

as new data for the prediction of future outcome (at U9). Random intercept of child i is assumed 

to be 0. Fixed effects as well as the RIs of children i* estimated from the initial model are used for 

prediction and these estimates are not updated. 

Theoretically, the same procedure can be done at U9 to predict future outcome. 

Table 16. Model specification of model BSM1 

BSM1 

Step 1 – Training with available IDs i* 
 

Priors: 

𝛽0~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽1~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽2~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽3~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽4~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
𝛽6~ 𝑁(0, 10−5) 

 
 

𝛽7~ 𝑁(0, 10−5) 
 

1

𝜏2
 ~ 𝐺𝑎𝑚𝑚𝑎(10−4, 10−4) 

   

Data:   
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[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample. 

Likelihood: 

 

𝑌𝑖∗,𝑗∗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖∗,𝑗∗)) 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖∗,𝑗∗ = 
𝑒𝐿𝑃𝑖∗,𝑗∗

1 + 𝑒𝐿𝑃𝑖∗,𝑗∗
 

 

𝐿𝑃𝑖∗,𝑗∗ = 𝛼𝑖∗ + 𝛽0 + 𝛽1 ∗  𝑡1𝑖∗,𝑗∗
+ ⋯+ 𝛽7 ∗  𝑡7𝑖∗,𝑗∗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖∗  ~ 𝑁 (0, 𝜏2) 

𝐿𝑃𝑖∗,𝑗∗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖∗ 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗∗ 

𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Estimated posterios:  

Fixed effects: 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ 
 

𝐿𝑃𝑖∗,𝑗∗̂ , where 𝑗∗ = {𝑈2,𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts:  𝛼𝑖∗̂ 
 

Precision parameter: 
1

𝜏2 
̂

 

1

𝜏2 
̂

 follows a Gamma distribution with parameters �̂� and 𝑚�̂�. These two parameters 

are calculated with the mean and variance of 
1

𝜏2 
̂

 . 

 

𝑚�̂� =  
 𝑚𝑒𝑎𝑛 (

1
𝜏2 
̂

)

𝑉𝑎𝑟 (
1
𝜏2 
̂

)

   

 

�̂� =  
 [𝑚𝑒𝑎𝑛 (

1
𝜏2 
̂

)]2

𝑉𝑎𝑟 (
1
𝜏2 
̂

)

   

 
Step 2 – Predicting at U1 

 
Prior: 
 

Random intercept of child i form the test sample:  𝛼𝑖 = 0 



 49 

BSM1 

 

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV training 

sample,  

random intercepts of children i* from Step 1: 𝛼𝑖∗̂, and  
 
 

[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1} and i is the child in the test sample 

 
 
Likelihood: 

𝑌𝑖,𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗)) 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗
+ ⋯+ 𝛽7̂ ∗  𝑡7𝑖,𝑗

 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Posterio: 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟: 𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Step 3 – Predicting at U2 
Prior: 
 

Random intercepts of child i from the test sample:  𝛼𝑖 = 0 

 

Data:  
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[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV training 

sample,  

random intercepts of IDs from Step 1: 𝛼𝑖∗̂, and  
 
 

[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1, 𝑈2} and i is the child in the test sample 

 
Likelihood: 

𝑌𝑖,𝑗 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗)) 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 =  𝛼𝑖 + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗
+ ⋯ + 𝛽7̂ ∗  𝑡7𝑖,𝑗

 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Posterio: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
 
Repeat Step 3 for the visit U3, U4, U5, U6, U7a, and U8.  
At U8, we have: 

 
Prior: 
 

Random intercepts of child i from the test sample:  𝛼𝑖 = 0 

 

Data:  
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[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV training 

sample,  

random intercepts of IDs from the LOOCV training sample: 𝛼𝑖∗̂, and  
 
 

[
 
 
 
 
 
 
 
Yi,j

t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 
 

, 

where 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8} and i is the child in the test sample 

 
Likelihood: 

𝑌𝑖,𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 =  𝛼𝑖 + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗
+ ⋯ + 𝛽7̂ ∗  𝑡7𝑖,𝑗

 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈9} 

 

Posterio: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈9} 

 

2.5.3.2 Bayesian static model 2 (BSM2) 

Prediction is made once at U1 using estimates from model fitted with LOOCV-training data set. 

No updates of prediction over time were made. 

Table 17. Model specification of model BSM2 

BSM2 

Step 1 – Training with available IDs i* 
 

Prior: 
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𝛽0~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽1~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽2~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽3~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
 

𝛽4~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 10−5) 
𝛽6~ 𝑁(0, 10−5) 

 
 

𝛽7~ 𝑁(0, 10−5) 
 

1

𝜏2
 ~ 𝐺𝑎𝑚𝑚𝑎(10−4, 10−4) 

   

Data:   

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample. 

Likelihood: 

 

𝑌𝑖∗,𝑗∗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖∗,𝑗∗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖∗,𝑗∗ = 
𝑒𝐿𝑃𝑖∗,𝑗∗

1 + 𝑒𝐿𝑃𝑖∗,𝑗∗
 

 

𝐿𝑃𝑖∗,𝑗∗ = 𝛼𝑖∗ + 𝛽0 + 𝛽1 ∗  𝑡1𝑖∗,𝑗∗
+ ⋯+ 𝛽7 ∗  𝑡7𝑖∗,𝑗∗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖∗  ~ 𝑁 (0, 𝜏2) 

𝐿𝑃𝑖∗,𝑗∗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖∗ 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗∗ 

𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Estimated posterios:  

Fixed effects: 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ 
 

𝐿𝑃𝑖∗,𝑗∗
̂ , where 𝑗∗ = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts:  𝛼𝑖∗̂ 
 
Precision parameter: 𝜏 ̂ 
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1

𝜏2 
̂

 follows a Gamma distribution with parameters �̂� and 𝑚�̂�. These two parameters 

are calculated with the mean and variance of 
1

𝜏2 
̂

 . 

 

𝑚�̂� =  
 𝑚𝑒𝑎𝑛 (

1
𝜏2 
̂

)

𝑉𝑎𝑟 (
1
𝜏2 
̂

)

   

 

�̂� =  
 [𝑚𝑒𝑎𝑛 (

1
𝜏2 
̂

)]2

𝑉𝑎𝑟 (
1
𝜏2 
̂

)

   

 
Step 2 – Predicting at U1 

 
Prior: 

 
Random intercepts of child i from the test sample:  𝛼𝑖 = 0 

 

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample, 

random intercepts of IDs from the LOOCV training sample: 𝛼𝑖∗̂, and 

[
 
 
 
 
 
 
t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 

, 

 

where 𝑗 =  {𝑈1, U2, U3, U4, U5, U6, U7, U7a, U8, U9} and i is the child in the test sample 

 
 
Likelihood: 

𝑌𝑖,𝑗  ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖((𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗)) 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗
+ ⋯+ 𝛽7̂ ∗  𝑡7𝑖,𝑗

 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 
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𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Posterios: 

𝐿𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟: 𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
At visit U2, U3, U4, U5, U6, U7a, and U8, no predictions are made but prediction results 
from visit U1 are adopted. 

 

 

2.5.4 Generalized linear mixed regression model 1 (GLMER1) 

Generalized linear mixed regression model with linear and additive time effects from birth was 

examined. Prediction is made once at U1 using estimates from model fitted with LOOCV-training 

data set. No updates of prediction over time were made. At visit U2, U3, U4, U5, U6, U7a, and 

U8, no predictions are made but prediction results from visit U1 are adopted. 

Table 18. Model specification of model GLMER1 

GLMER1 

Step 1 – Training with available IDs i* 
 

Data:   

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample. 

Model specification: 

 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖∗,𝑗∗ = 
𝑒𝐿𝑃𝑖∗,𝑗∗

1 + 𝑒𝐿𝑃𝑖∗,𝑗∗
 

 

Linear predictor: 𝐿𝑃𝑖∗,𝑗∗ = 𝛼𝑖∗ + 𝛽0 + 𝛽1 ∗  𝑡1𝑖∗,𝑗∗
+ ⋯+ 𝛽7 ∗  𝑡7𝑖∗,𝑗∗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖∗  ~ 𝑁 (0, 𝜏2) 

𝐿𝑃𝑖∗,𝑗∗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖∗ 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗∗ 

𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 
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Model estimates: 

Fixed effects: 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ 
 

𝐿𝑃𝑖∗,𝑗∗
̂ , where 𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts:  𝛼𝑖∗̂ 

 

 
Step 2 – Predicting at U1 

 
Assumption:  
 

Random intercepts of child i from the test sample:  𝛼𝑖 = 0 

 

Data:  

[
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗ ]
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample,  

random intercepts of IDs from the LOOCV training sample: 𝛼𝑖∗̂, and 
 

[
 
 
 
 
 
 
t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j]
 
 
 
 
 
 

,  

where 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i is the child in the test sample 

 
Prediction model: 

𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0̂ + 𝛽1̂ ∗  𝑡1𝑖,𝑗
+ ⋯+ 𝛽7̂ ∗  𝑡7𝑖,𝑗

 

𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

Predicted values: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
At visit U2, U3, U4, U5, U6, U7a, and U8, no predictions are made but prediction results 
from visit U1 are adopted. 
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2.6 Applied measures  

2.6.1 Measures comparing prediction performance at the individual level 

2.6.1.1 Prediction error at each time point (for each ID) 

For a certain ID, Prediction Error (PE) was calculated at each timepoint for each model, respec-

tively.  

𝑃𝐸𝑖,𝑗,𝑘,𝑚 = (𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗,𝑘,𝑚 − 𝐼[𝑧𝐵𝑀𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 > 1])2 

𝑖 = {1,2,3,… , 𝑛},𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐺𝐿𝑀𝐸𝑅1, 𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

2.6.1.2 Relative prediction error at each time point (for each ID), compared 

with GLMER1 

For a certain ID, Relative Prediction Error (RPE) between a model versus GLMER1 was calcu-

lated at each timepoint, respectively.  

𝑅𝑃𝐸𝑖,𝑗,𝑘,𝑚
𝐺𝐿𝑀𝐸𝑅1 =

𝑃𝐸𝑖,𝑗,𝑘,𝐺𝐿𝑀𝐸𝑅1

𝑃𝐸𝑖,𝑗,𝑘,𝑚

 

RPE on the natural logarithmic scale was also calculated, this measure was used in the regres-

sion models quantifying the association between RPE and the amount of information available 

from past months. 

𝐿𝑅𝑃𝐸𝑖,𝑗,𝑘,𝑚
𝐺𝐿𝑀𝐸𝑅1 =  𝑙𝑛 (𝑅𝑃𝐸𝑖,𝑗,𝑘,𝑚) = 𝑙𝑛 (

𝑃𝐸𝑖,𝑗,𝑘,𝐺𝐿𝑀𝐸𝑅1

𝑃𝐸𝑖,𝑗,𝑘,𝑚

) 

𝑖 = {1,2,3,… , 𝑛},𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

A LMM including fractional polynomial to the 4th grade1 of time effect was selected2 and fitted to 

quantify the LRPE over time. LRPE < 0 indicates better prediction performance of GLMER1 than 

BSM1 at a certain visit. A LRPE > 0 indicates that on average, at a certain visit, GLMER1 performs 

better. Linear time effect (in months) was also entered into the model. 

The full LMM was specified as follows: 

𝐿𝑅𝑃𝐸𝑖,𝑗,𝑘,𝑚
𝐺𝐿𝑀𝐸𝑅1 = 𝛽0 + 𝛽1 ∗  𝑡1𝑖,𝑗,𝑘,𝑚

+ 𝛽2 ∗  𝑡1𝑖,𝑗,𝑘,𝑚
2 + 𝛽3 ∗  𝑡1𝑖,𝑗,𝑘,𝑚

3 + 𝛽4 ∗  𝑡1𝑖,𝑗,𝑘,𝑚
4 + 𝜀𝑖,𝑗,𝑘,𝑚 

 
1 Fractional polynomial was applied to capture the non-linearity of the time effect, if any exists. 
2 Model selection was done with backward selection using AIC. The function step() in package 

lmerTest KUZNETSOVA, A., BROCKHOFF, P. B. & CHRISTENSEN, R. H. B. 2017. 

lmerTest Package: Tests in Linear Mixed Effects Models. 2017, 82, 26. was used. 
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𝑖 = {1,2,3,… , 𝑛},𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2}, and 𝑡1𝑖,𝑗,𝑘,𝑚
: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑈1 

2.6.1.3 Relative prediction error at each time point (for each ID), compared 

with GLMER4 

For a certain ID, Relative Prediction Error between a model versus GLMER4 was calculated at 

each timepoint, respectively.  

𝑅𝑃𝐸𝑖,𝑗,𝑘,𝑚
𝐺𝐿𝑀𝐸𝑅4 =

𝑃𝐸𝑖,𝑗,𝑘,𝐺𝐿𝑀𝐸𝑅4

𝑃𝐸𝑖,𝑗,𝑘,𝑚

 

RPE on the natural logarithmic scale was also calculated, this measure was used in the regres-

sion models quantifying the association between RPE and the amount of information aka number 

of past visits. 

𝐿𝑅𝑃𝐸𝑖,𝑗,𝑘,𝑚
𝐺𝐿𝑀𝐸𝑅4 = ln (𝑅𝑃𝐸𝑖,𝑗,𝑘,𝑚) = 𝑙𝑛 (

𝑃𝐸𝑖,𝑗,𝑘,𝐺𝐿𝑀𝐸𝑅4

𝑃𝐸𝑖,𝑗,𝑘,𝑚

) 

𝑖 = {1,2,3,… , 𝑛},𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

2.6.2 Measures comparing prediction performance at the aggregated 

level 

For each timepoint, PE and ER was averaged over all IDs, respectively. This measure was used 

to compare the prediction performance of the models in a descriptive way. 

2.6.2.1 Prediction error averaged over all IDs - Brier score (BS) 

𝐵𝑆𝑗,𝑘,𝑚 = 
1

𝑛
∑ 𝑃𝐸𝑖,𝑗,𝑘,𝑚

𝑛

𝑖=1

 

𝑖 = {1,2,3,… , 𝑛},𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

2.6.2.2 Scaled Brier Score 

Brier Score can be scaled by the maximum score for a non-informative model (Steyerberg et al., 

2010), resulting in the scaled Brier Score (sBS). sBS can be calculated as below (Steyerberg et 

al., 2010): 
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𝑠𝐵𝑆𝑗,𝑘,𝑚 =  1 − 
𝐵𝑆𝑗,𝑘,𝑚

𝑚𝑎𝑥𝐵𝑆𝑗,𝑘

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

Where the maximum score for a non-informative model can be calculated as: 

𝑚𝑎𝑥𝐵𝑆𝑗,𝑘 =  𝑚𝑒𝑎𝑛 (𝑃[𝑧𝐵𝑀𝐼 > 1])𝑗,𝑘 ∗ (1 −  𝑚𝑒𝑎𝑛 (𝑃[𝑧𝐵𝑀𝐼 > 1])𝑗,𝑘) 

2.6.3 Measures describing the relative usefulness of models 

2.6.3.1 Brier Skill score 

This section presents approaches applied in this thesis, which attempt to describe the usefulness 

of a certain dynamic model compared with GLMER1, GLMER4, or overtime (compared with 

model at U1). 

The concept of Brier Skill Score (BSS) seems to originate in non-medical literature (Wikipedia 

contributors). This measure describes the relative improvement of a certain model compared with 

a reference model. For the PEACHES study, I propose two comparisons, one taking model 

GLMER1 and one taking model GLMER4 as the reference model, respectively. For the simulation 

study, one comparison was performed taking GLMER1 as the reference model.  

Additionally, BSS over time was also calculated for the PEACHES study, the main simulation 

study as well as the ICC scenarios, respectively. In these analyses, reference model is the one, 

which is fitted at U1 – from now on called “U1-model”. BSS over time was calculated for GLMER1, 

BSM1, BSM2, BDM1, and BDM2, respectively. 

BSS can be calculated as (World Climate Research Programme, 2009, Glen, 2016): 

𝐵𝑆𝑆𝑗,𝑘,𝑚 =  1 − 
𝐵𝑆𝑗,𝑘,𝑚

𝐵𝑆𝑗,𝑘,𝑟𝑒𝑓

 

𝑟𝑒𝑓: 𝑡ℎ𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙, 𝑒. 𝑔. 𝐺𝐿𝑀𝐸𝑅1, 𝐺𝐿𝑀𝐸𝑅4 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8} 𝑖𝑓 𝑟𝑒𝑓 = 𝐺𝐿𝑀𝐸𝑅1,  

𝑗 = {𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8} 𝑖𝑓 𝑟𝑒𝑓 = 𝐺𝐿𝑀𝐸𝑅4;  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 𝑖𝑓 𝑟𝑒𝑓 = 𝐺𝐿𝑀𝐸𝑅1, 

 𝑘 = { 𝑈5,𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 𝑖𝑓 𝑟𝑒𝑓 = 𝐺𝐿𝑀𝐸𝑅4; 𝑗 <  𝑘; and 𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

 

• Brier Skill score (reference: GLMER1) 

BSS for the comparison with GLMER1 can be calculated for all time points as the followings: 

𝐵𝑆𝑆𝑗,𝑘,𝑚 =  1 − 
𝐵𝑆𝑗,𝑘,𝑚

𝐵𝑆𝑗,𝑘,𝐺𝐿𝑀𝐸𝑅1

 

𝑗𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and  
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𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

This measure was calculated for the PEACHES study, main simulation analysis, as well as the 

ICC scenarios. 

• Brier Skill score (reference: GLMER4) 

BSS for the comparison with GLMER4 can be calculated for visit U4 or later as the followings: 

𝐵𝑆𝑆𝑗,𝑘,𝑚 =  1 − 
𝐵𝑆𝑗,𝑘,𝑚

𝐵𝑆𝑗,𝑘,𝐺𝐿𝑀𝐸𝑅4

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

This measure was calculated for the PEACHES study. 

• Brier Skill score (reference: model at U1 – “U1-model”) 

BSS for the comparison with the “U1-model” can be calculated as the followings: 

𝐵𝑆𝑆𝑗,𝑘,𝑚 =  1 − 
𝐵𝑆𝑗,𝑘,𝑚

𝐵𝑆𝑈1,𝑘,𝑚

 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

This measure was calculated for the PEACHES study, main simulation analysis, as well as the 

ICC scenarios. For all models, 𝐵𝑆𝑆𝑈1 is equal 0. 

2.6.3.2 Mean logarithmized relative prediction error 

For the simulation ICC scenarios, 𝐿𝑅𝑃𝐸𝐺𝐿𝑀𝐸𝑅1 (see 2.6.1.2) was averaged over all LOOCVs to 

obtain the mean logarithmized relative prediction error (MLRPEGLMER1). This measure was then 

used to examine the influence of time and ICC on the difference in prediction performance of the 

Bayesian models and GLMER1 (see 2.10). MLRPEGLMER1 was calculated as: 

𝑀𝐿𝑅𝑃𝐸𝑗,𝑘,𝑚
𝐺𝐿𝑀𝐸𝑅1 = 

1

𝑛
∑𝐿𝑅𝑃𝐸𝑖,𝑗,𝑘,𝑚

𝐺𝐿𝑀𝐸𝑅1

𝑛

𝑖=1

 

𝑖 = {1,2,3,… , 𝑛},𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

2.7 Graphical presentation of the applied measures 

The following plots were created in order to visualize the results of the analyses of PEACHES 

data (presented in 2.2) and the main simulation study (presented in 2.3). 



 60 

2.7.1 Logarithmized relative prediction errors (LRPE) on individual level 

For each model, boxplots for LRPEGLMER1 (see 2.6.1.2) and LRPEGLMER4 (see 2.6.1.3) were cre-

ated to depict the distribution of these measures among individuals for each future visit, at a 

certain prediction visit. Mean values of these measures are also given within the boxplots as red 

dots. 

Because prediction for all future visits was made at U1, model BSM2 should show the same 

(therefore the same distributions of the) LRPE, regardless of the number of past visits.  

Even though the prediction made by using model BSM1, which considered the same model esti-

mates for the same ID over time, sampling of outcome was done at each prediction visit. This led 

to different values of predicted outcome for the same prediction visit, which was made at different 

prediction visits. However, one would expect similar distributions.  

Model BDM1 and BDM2 are expected show improvement of model performance by increasing 

the number of past visits. 

LRPE values that are greater than 0 indicates improvement in prediction performance of the al-

ternative model, compared with GLMER1 or GLMER4. The higher the LRPE, the larger is this 

improvement. 

2.7.2 Brier Score over time 

At a certain prediction visit, Brier Score of each model for all possible future visits was plotted. 

For example, at the prediction visit U1, Brier Score of each model was plotted for each future visit, 

which are U2, U3, U4, U5, U6, U7, U7a, U8, and U9. At the prediction visit U8, Brier Score of 

each model was plotted for U9. This plot serves as visual comparison between the course of Brier 

Score over time of different models. 

For each of the model GLMER1, GLMER2, GLMER3, GLMER4, and BSM2 and for each future 

visit, Brier Score should be constant, independent of the prediction visit. In other words, Brier 

Score of the prediction model GLMER1 for visit U4 is supposed to be the same, if the prediction 

is made at U1, U2, or U3. 

For model BSM1 and for each future visit, the Brier Score is not necessarily constant over time, 

because the prediction is made by Monte Carlo sampling, which happens independently at each 

prediction visit. However, a remarkable change over time is not expected. 

One can expect that the two models BDM1 and BDM2 would show a changing course of Brier 

Score over time. The later the prediction visit, the better the model for future visits should perform. 

2.7.3 Average prediction error rate over time 

Similarly, as presented in the section 2.7.2 above, APER was plotted for each model, each future 

visit, and each prediction visit, respectively.  

One can expect that the differences between models would be smaller, compared with Brier 

Score. 
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2.7.4 Scaled Brier Score over time 

Scaled Brier Score was plotted for models BSM1, BSM2, BDM1, and BDM2, respectively. The 

features of this plot are the same as those of the one described in the section 2.7.2 above. This 

was done for the comparison with GLMER1 and GLMER4, separately. Negative values of scaled 

Brier Score refer to models with worse prediction performance, compared with a non-informative 

model. 

2.7.5 Brier Skill Score vs. GLMM over time 

Brier Skill Score was plotted for models BSM1, BSM2, BDM1, and BDM2, respectively. The fea-

tures of this plot are the same as those of the one described in the section 2.7.2 above. This was 

done for the comparison with GLMER1 and GLMER4, separately. Negative values of Brier Skill 

Score refer to models with worse prediction performance, compared with GLMER1 or GLMER4, 

respectively. If overperformance of a certain model is observed, updating this model by using 

updated data improves prediction performance compared with static approaches. 

2.7.6 Brier Skill Score vs. “U1-model” over time 

Brier Skill Score was plotted for models GLMER1, BSM1, BSM2, BDM1, and BDM2. This was 

done for the comparison with the “U1-model” of each approach, respectively. For a future visit, 

BSS of the models at each prediction visit was plotted. Negative values of BSS refer to models 

with worse prediction performance than the “U1-model”. Overperformance over time of a certain 

model indicates that updating this model by using updated data improve predictions performance. 

2.7.7 Scatter plots of Brier Score for different ICC scenarios 

The following plots were created to depict the results of the simulation ICC study. 

Scatter plots were created to depict the course of Brier Score for each prediction visit, as well as 

future visit, similarly as described in 2.7.2. The plots were made for each model and each ICC 

scenario, respectively.  

The higher ICC indicates higher inter-individual, or in other words, higher variance of random 

intercepts distribution. Updating random intercepts using information from past visit(s) would then 

improve prediction performance of the dynamic models (BDM1 and BDM2), compared to the 

static models. The more visits in the past, the more information from the data is gained. It is then 

expected that the improvement in prediction performance of the dynamic models would then be 

more visible over time.  

Within a certain ICC scenario, between the models BDM1 and BDM2 as well as between models 

BSM1 and BSM2, no large differences in prediction performance are expected. Prediction perfor-

mance of the Bayesian static models (BSM1 and BSM2) is expected to be more similar to perfor-

mance of GLMER1 than those of the dynamic Bayesian models BDM1 and BDM2. 

2.7.8 Calibration plots 

Calibration plots were created to plot the observed values against the predicted values at a certain 

future visit, using data from certain prediction visit(s). Perfect agreement of all observations, which 

means perfect prediction would be a regression line with intercept 0 and slope 1. A slope smaller 
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than 1 indicates risk underestimation, a slope greater than 1 indicates risk overestimation. The 

change of calibration over time of BDM1, BDM2, and BSM1 is also demonstrated in these plots, 

while calibration of BSM2 and the GLMM, where no updates are made, should stay the same 

over time. 

Calibration plots of future visit U1 and U9 are shown in this thesis. Calibration plots of all other 

visits can be found in the supplementary material. 

2.8 Quantification of the association between prediction 

performance and overall time effect 

The association between relative prediction performance and number of past months was quan-

tified by applying a mixed-effects regression model including random intercepts. The dependent 

variable of the model was ln (𝑅𝑃𝐸𝑖,𝑗,𝑚) (see 0). The independent variables included number of 

months as well as its fractional polynomials up to grade 4. The best model was then chosen by 

likelihood ratio tests and backward elimination of fixed effects. For this purpose, function step() 

from the package lmerTest was applied (Kuznetsova et al., 2017). 

Overall time effect can be calculated using coefficient estimates from the mixed model described 

above. It is the amount of improvement in prediction performance by adding one or more month(s) 

from the past. In the context of PEACHES study and the main simulation study, overall time effect 

is rather a vector of values corresponding to the number of past months. Overall time effect can 

be interpreted as the value of information from the past that contributes to the improvement of 

prediction performance, relative to the reference model. 

2.9 Results on the individual level 

For 10 IDs, models are graphically compared at the individual level regarding estimates and pre-

dicted outcome at each timepoint. The aim of this analysis is to demonstrate the updating process 

of the dynamic models and to compare the estimates obtained from this process with those ob-

tained from the static model on the individual level.  

Additionally, in the simulation main study, the following aspects were considered in the compari-

son between models: estimate bias of fixed effects, change of random intercept over time, and 

predicted outcome compared with simulated values. In case of biased estimate at U1, the change 

of random intercept over time could be more extreme for BDM1, since the fixed effects stay the 

same and any attempt to adapt the model would then affect the random effects.  

2.10 Examining factors that associate with prediction error 

In a linear mixed model, ICC and time as influencing factors were considered, in order to quantify 

the effect of these factors on the Brier Score (see 2.6.2.1) and MLRPEGLMER1 (see 2.6.3.2), re-

spectively. Backward selection was done with the full LMMs to select best model with respect to 

AIC1. 

 
1 Model selection was done with backward selection using AIC. The function step() in package 

lmerTest ibid. was used. 



 63 

The full LMM for the analysis with BS is specified as followings: 

𝐵𝑆𝑗,𝑘,𝑚 = 𝛽0 + 𝛽1 ∗  𝑡𝑘,𝑚 + 𝛽2 ∗  𝐼𝐶𝐶𝑗,𝑘,𝑚 + 𝛽3 ∗  m𝑗,𝑘 + 𝛽4 ∗   𝐼𝐶𝐶𝑗,𝑘,𝑚 ∗  m𝑗,𝑘 + 𝛽5 ∗   𝐼𝐶𝐶𝑗,𝑘,𝑚 ∗ 𝑡𝑘,𝑚

+ 𝛽6 ∗  𝐼𝐶𝐶𝑗,𝑘,𝑚 ∗ 𝑡𝑘,𝑚 ∗  m𝑗,𝑘 + 𝜀𝑗,𝑘,𝑚 

The full LMM for the analysis with MLRPEGLMER1 is specified as followings: 

𝑀𝐿𝑅𝑃𝐸𝑗,𝑘,𝑚
𝐺𝐿𝑀𝐸𝑅1 = 𝛽0 + 𝛽1 ∗  𝑡𝑘,𝑚 + 𝛽2 ∗  𝐼𝐶𝐶𝑗,𝑘,𝑚 + 𝛽3 ∗  m𝑗,𝑘 + 𝛽4 ∗   𝐼𝐶𝐶𝑗,𝑘,𝑚 ∗  m𝑗,𝑘 + 𝛽5 ∗   𝐼𝐶𝐶𝑗,𝑘,𝑚

∗ 𝑡𝑘,𝑚 + 𝛽6 ∗  𝐼𝐶𝐶𝑗,𝑘,𝑚 ∗ 𝑡𝑘,𝑚 ∗  m𝑗,𝑘 + 𝜀𝑗,𝑘,𝑚 

𝑤ℎ𝑒𝑟𝑒: 𝑡𝑘,𝑚 = average time from U1 in months 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

2.11 Supplementary analyses 

2.11.1 Extended GLMM models 

In a supplementary analysis, the following extended GLMM models were examined: 

• GLMER2: additive time effects from birth, mother’s preconception BMI status (preBMI), 

and child’s largeness for gestational age (LGA), as well as their interaction with later time 

(U6, U7). Prediction is made once at U1 using estimates from model fitted with cross-

validation training data set. No updates of prediction over time. 

• GLMER3: additive time effects from U4 (3 months after birth). Prediction is made once at 

U5 using estimates from model fitted with cross-validation training data set. No updates 

of prediction over time. 

• GLMER4: additive time effects from U4 (3 months after birth), mother’s preconception 

BMI status (preBMI), and child’s largeness for gestational age (LGA), as well as their 

interaction with time. Prediction is made once at U4 using estimates from model fitted 

with cross-validation training data set. No updates of prediction over time. 

2.11.1.1 Extended model GLMER2 

Table 19. Model specification of model GLMER2 

GLMER2 

Step 1 – Training with available IDs i* 
 

Data:  
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GLMER2 

[
 
 
 
 
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗

𝑋1𝑖∗

𝑋2𝑖∗

𝑋3𝑖∗ ]
 
 
 
 
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample. 

Model specification: 

 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖∗,𝑗∗ = 
𝑒𝐿𝑃𝑖∗,𝑗∗

1 + 𝑒𝐿𝑃𝑖∗,𝑗∗
 

 

𝐿𝑃𝑖∗,𝑗∗ = 𝛼𝑖∗ + 𝛽0 + 

𝛽1 ∗  𝑡1𝑖∗,𝑗∗
+ 𝛽2 ∗  𝑡2𝑖∗,𝑗∗

+ 𝛽3 ∗  𝑡3𝑖∗,𝑗∗
+ 𝛽4 ∗  𝑡4𝑖∗,𝑗∗

+ 𝛽6 ∗  𝑡6𝑖∗,𝑗∗
+ 𝛽7 ∗  𝑡7𝑖∗,𝑗∗

+ 

𝛾1 ∗ 𝑋1𝑖∗
+ 𝛾2 ∗ 𝑋2𝑖∗

+ 𝛾3 ∗ 𝑍𝑈1𝑖∗
+  

𝛾4 ∗  𝑡6𝑖∗,𝑗∗
∗  𝑋2𝑖∗

+ 𝛾5 ∗  𝑡7𝑖∗,𝑗∗
∗  𝑋2𝑖∗

+ 𝛾6 ∗  𝑡6𝑖∗,𝑗∗
∗  𝑍𝑈1𝑖∗

+ 𝛾7 ∗  𝑡7𝑖∗,𝑗∗
∗  𝑍𝑈1𝑖∗

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖∗  ~ 𝑁 (0, 𝜏2) 

𝐿𝑃𝑖∗,𝑗∗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖∗ 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗∗,  

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

Covariates:  

𝑋1: mother’s pre-conceptional obesity status 

𝑋2: child’s largeness for gestational age 

𝑍𝑈1: child’s BMI Z-score at U1 

Model estimates: 

Fixed effects: 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂, 𝛾1̂, 𝛾2̂ , 𝛾3̂, 𝛾4̂, 𝛾5̂, 𝛾6̂, 𝛾7̂ 
 

𝐿𝑃𝑖∗,�̂�, where 𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts: 𝛼𝑖∗̂ 

 
Step 2 – Predicting at U1 

 
Assumption:  
 

Random intercepts of child i form the test sample:  𝛼𝑖 = 0 

 

Data:  
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GLMER2 

[
 
 
 
 
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗

𝑋1𝑖∗

𝑋2𝑖∗

𝑋3𝑖∗ ]
 
 
 
 
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample, 

random intercepts of IDs from the LOOCV training sample: 𝛼𝑖∗̂, and 

[
 
 
 
 
 
 
 
 
 
 
𝑡1𝑖,𝑗

𝑡2𝑖,𝑗

𝑡3𝑖,𝑗

𝑡4𝑖,𝑗

𝑡6𝑖,𝑗

𝑡7𝑖,𝑗

𝑋1𝑖

𝑋2𝑖

𝑋3𝑖 ]
 
 
 
 
 
 
 
 
 
 

 

 
Prediction model: 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0̂ + 

𝛽1̂ ∗  𝑡1𝑖,𝑗
+ 𝛽2̂ ∗  𝑡2𝑖,𝑗

+ 𝛽3̂ ∗  𝑡3𝑖,𝑗
+ 𝛽4̂ ∗  𝑡4𝑖,𝑗

+ 𝛽6̂ ∗  𝑡6𝑖,𝑗
+ 𝛽7̂ ∗  𝑡7𝑖,𝑗

+ 

𝛾1̂ ∗ 𝑋1𝑖
+ 𝛾2̂ ∗ 𝑋2𝑖

+ 𝛾3̂ ∗ 𝑍𝑈1𝑖
+ 

𝛾4̂ ∗  𝑡6𝑖,𝑗
∗  𝑋2𝑖

+ 𝛾5̂ ∗  𝑡7𝑖,𝑗
∗  𝑋2𝑖

+ 𝛾6̂ ∗  𝑡6𝑖,𝑗
∗  𝑍𝑈1𝑖

+ 𝛾7̂ ∗  𝑡7𝑖,𝑗
∗  𝑍𝑈1𝑖

 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

Predicted values: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

At visit U2, U3, U4, U5, U6, U7a, and U8, no predictions are made but prediction results 

from visit U1 are adopted. 
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2.11.1.2 Extended model GLMER3 

Table 20. Model specification of model GLMER3 

GLMER3 

Step 1 – Training with available IDs i* 
 

Data:   

[
 
 
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗

𝑍𝑈4𝑖∗ ]
 
 
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample. 

Model specification: 

 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖∗,𝑗∗ = 
𝑒𝐿𝑃𝑖∗,𝑗∗

1 + 𝑒𝐿𝑃𝑖∗,𝑗∗
 

 

𝐿𝑃𝑖∗,𝑗∗ = 𝛼𝑖∗ + 𝛽0 + 𝛽5 ∗  𝑡5𝑖∗,𝑗∗
+ 𝛽6 ∗  𝑡6𝑖∗,𝑗∗

+ 𝛽7 ∗  𝑡7𝑖∗,𝑗∗
+ 𝛽7𝑎 ∗  𝑡7𝑎𝑖∗,𝑗∗

+ 

𝛾1 ∗  𝑍𝑈4𝑖∗
+ 𝛾2 ∗  𝑡5𝑖∗,𝑗∗

∗ 𝑍𝑈4𝑖∗
+ 𝛾3 ∗  𝑡6𝑖∗,𝑗∗

∗ 𝑍𝑈4𝑖∗
+ 𝛾4 ∗  𝑡7𝑖∗,𝑗∗

∗ 𝑍𝑈4𝑖∗
+ 𝛾5 ∗  𝑡7𝑎𝑖∗,𝑗∗

∗ 𝑍𝑈4𝑖∗
 

 

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖∗  ~ 𝑁 (0, 𝜏2) 

𝐿𝑃𝑖∗,𝑗∗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖∗ 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗∗ 

𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Model estimates: 

Fixed effects: 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ 
 

𝐿𝑃𝑖∗,�̂�, where 𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 
Random intercepts:  𝛼𝑖∗̂ 

Covariates:  

𝑍𝑈4: child’s risk of overweight at U4 

 
Step 2 – Predicting at U4 
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GLMER3 

Assumption:  
 

Random intercepts of child i form the test sample:  𝛼𝑖 = 0 

 

Data:  

[
 
 
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  

𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗

𝑍𝑈4𝑖∗ ]
 
 
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample,  

random intercepts of IDs from the LOOCV training sample: 𝛼𝑖∗̂, and 
 

[
 
 
 
 
 
 
 
 
t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j

𝑍𝑈4𝑖]
 
 
 
 
 
 
 
 

,  

where 𝑗 =  {𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i is the child in the test sample 

 
 
Prediction model: 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + �̂�0 + 𝛽5̂ ∗  𝑡5𝑖,𝑗
+ 𝛽6̂ ∗  𝑡6𝑖,𝑗

+ 𝛽7̂ ∗  𝑡7𝑖,𝑗
+ 𝛽7�̂� ∗  𝑡7𝑎𝑖,𝑗

+ 𝛾1 ∗  𝑍𝑈4𝑖
+ 𝛾2 ∗  𝑡5𝑖,𝑗

∗ 𝑍𝑈4𝑖
+ 𝛾3 ∗   𝑡6𝑖,𝑗

∗ 𝑍𝑈4𝑖
+ 𝛾4 ∗   𝑡7𝑖,𝑗

∗ 𝑍𝑈4𝑖
+ 𝛾5 ∗   𝑡7𝑎𝑖,𝑗

∗ 𝑍𝑈4𝑖
 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

Predicted values: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

At visit U5, U6, U7a, and U8, no predictions are made but prediction results from visit 

U4 are adopted. 
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2.11.1.3 Extended model GLMER4 

Table 21. Model specification of model GLMER4 

 

GLMER4 

Step 1 – Training with available IDs i* 
 

Data:   

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  
𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗

𝑍𝑈4𝑖∗

𝑋1𝑖∗

𝑋2𝑖∗

𝑋3𝑖∗ ]
 
 
 
 
 
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample. 

Model specification: 

 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖∗,𝑗∗ = 
𝑒𝐿𝑃𝑖∗,𝑗∗

1 + 𝑒𝐿𝑃𝑖∗,𝑗∗
 

 

𝐿𝑃𝑖∗,𝑗∗ = 𝛼𝑖∗ + 𝛽0 + 𝛽5 ∗  𝑡5𝑖∗,𝑗∗
+ 𝛽6 ∗  𝑡6𝑖∗,𝑗∗

+ 𝛽7 ∗  𝑡7𝑖∗,𝑗∗
+ 𝛽7𝑎 ∗  𝑡7𝑎𝑖∗,𝑗∗

+ 

𝛾1 ∗  𝑍𝑈4𝑖∗
+ 𝛾2 ∗  𝑡5𝑖∗,𝑗∗

∗ 𝑍𝑈4𝑖∗
+ 𝛾3 ∗  𝑡6𝑖∗,𝑗∗

∗ 𝑍𝑈4𝑖∗
+ 𝛾4 ∗  𝑡7𝑖∗,𝑗∗

∗ 𝑍𝑈4𝑖∗
+  

𝛾5 ∗  𝑡7𝑎𝑖∗,𝑗∗
∗ 𝑍𝑈4𝑖∗

+ 𝛾6 ∗  𝑍𝑈1𝑖∗
+ 𝛾7 ∗  𝑍𝑈4𝑖∗

+ 𝛾8 ∗  𝑋1𝑖∗
+ 𝛾9 ∗  𝑋2𝑖∗

+ 

 𝛾10 ∗  𝑋1𝑖∗
∗ 𝑡5𝑖∗,𝑗∗

+ 𝛾11 ∗  𝑋2𝑖∗
∗ 𝑡5𝑖∗,𝑗∗

+ 𝛾12 ∗  𝑋1𝑖∗
∗ 𝑡6𝑖∗,𝑗∗

+ 𝛾13 ∗  𝑋2𝑖∗
∗  𝑡6𝑖∗,𝑗∗

+  

 𝛾14 ∗  𝑋1𝑖∗
∗  𝑡7𝑖∗,𝑗∗

+ 𝛾15 ∗  𝑋2𝑖∗
∗ 𝑡7𝑖∗,𝑗∗

+ 𝛾16 ∗ 𝑋1𝑖∗
∗  𝑡7𝑎𝑖∗,𝑗∗

+ 𝛾17 ∗  𝑋2𝑖∗
∗  𝑡7𝑎𝑖∗,𝑗∗

 

 

𝑅𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑠: 𝛼𝑖∗  ~ 𝑁 (0, 𝜏2) 

𝐿𝑃𝑖∗,𝑗∗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖∗ 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗∗ 

𝑗∗ = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

 

Model estimates: 

Fixed effects: 𝛽0̂, 𝛽1̂, 𝛽2̂, 𝛽3̂, 𝛽4̂, 𝛽6̂, 𝛽7̂ 
 

𝐿𝑃𝑖∗,�̂�, where 𝑗 =  {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 
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GLMER4 

Random intercepts:  𝛼𝑖∗̂ 

Covariates:  

𝑋1: mother’s pre-conceptional obesity status 

𝑋2: child’s largeness for gestational age 

𝑍𝑈4: child’s risk of overweight at U4 

 

Step 2 – Predicting at U4 
 
Assumption:  
 

Random intercepts of child i form the test sample:  𝛼𝑖 = 0 

 

Data:  

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑌𝑖∗,𝑗∗  
𝑡1𝑖∗,𝑗∗  

𝑡2𝑖∗,𝑗∗

𝑡3𝑖∗,𝑗∗

𝑡4𝑖∗,𝑗∗

𝑡6𝑖∗,𝑗∗

𝑡7𝑖∗,𝑗∗

𝑍𝑈4𝑖∗

𝑋1𝑖∗

𝑋2𝑖∗

𝑋3𝑖∗ ]
 
 
 
 
 
 
 
 
 
 
 
 

, 

where 𝑗∗ =  {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i* are IDs from the LOOCV 

training sample,  

random intercepts of IDs from the LOOCV training sample: 𝛼𝑖∗̂, and 
 

[
 
 
 
 
 
 
 
 
 
 
 
t1i,j

t2i,j

t3i,j

t4i,j

t6i,j

t7i,j

𝑍𝑈4𝑖

𝑋1𝑖

𝑋2𝑖

𝑋3𝑖 ]
 
 
 
 
 
 
 
 
 
 
 

,  

where 𝑗 =  {𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} and i is the child in the test sample 

 
 
Prediction model: 

𝑃[𝐵𝑀𝐼𝑧 > 1]𝑖,𝑗 = 
𝑒𝐿𝑃𝑖,𝑗

1 + 𝑒𝐿𝑃𝑖,𝑗
 

 

𝐿𝑃𝑖,𝑗 = 𝛼𝑖 + 𝛽0̂ + 𝛽5̂ ∗  𝑡5𝑖,𝑗
+ 𝛽6̂ ∗  𝑡6𝑖,𝑗

+ 𝛽7̂ ∗  𝑡7𝑖,𝑗
+ 𝛽7�̂� ∗  𝑡7𝑎𝑖,𝑗

+ 
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GLMER4 

𝛾1̂ ∗  𝑍𝑈4𝑖
+ 𝛾2̂ ∗  𝑡5𝑖,𝑗

∗ 𝑍𝑈4𝑖
+ 𝛾3̂ ∗  𝑡6𝑖,𝑗

∗ 𝑍𝑈4𝑖
+ 𝛾4̂ ∗ 𝑡7𝑖,𝑗

∗ 𝑍𝑈4𝑖
+  

𝛾5̂ ∗  𝑡7𝑎𝑖,𝑗
∗ 𝑍𝑈4𝑖

+ 𝛾6̂ ∗  𝑍𝑈1𝑖
+ 𝛾7̂ ∗  𝑍𝑈4𝑖

+ 𝛾8̂ ∗  𝑋1𝑖
+  𝛾9̂ ∗  𝑋2𝑖

+ 

 𝛾10̂ ∗  𝑋1𝑖
∗  𝑡5𝑖,𝑗

+ 𝛾11̂ ∗  𝑋2𝑖
∗ 𝑡5𝑖,𝑗

+  𝛾12̂ ∗  𝑋1𝑖
∗  𝑡6𝑖,𝑗

+ 𝛾13̂ ∗  𝑋2𝑖
∗  𝑡6𝑖,𝑗

+  

 𝛾14̂ ∗  𝑋1𝑖
∗ 𝑡7𝑖,𝑗

+ 𝛾15̂ ∗  𝑋2𝑖
∗  𝑡7𝑖,𝑗

+ 𝛾16̂ ∗  𝑋1𝑖
∗  𝑡7𝑎𝑖,𝑗

+ 𝛾17̂ ∗  𝑋2𝑖
∗  𝑡7𝑎𝑖,𝑗

 

𝐿𝑃𝑖,𝑗: 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝑜𝑓 𝐼𝐷 𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒𝑝𝑜𝑖𝑛𝑡 𝑗 

𝑗 =  {𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

Predicted values: 

𝐿𝑃𝑖,𝑗
̂ , where 𝑗 =  {𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

At visit U5, U6, U7a, and U8, no predictions are made but prediction results from visit 
U4 are adopted. 

2.11.2 Comparing models using error rate 

In addition to Brier score, classification error at each time point was calculated and examined in 

a supplementary analysis. 

For a certain ID, classification prediction error rate was calculated at each timepoint, respectively.  

 

𝐸𝑅𝑖,𝑗,𝑚 = {
1 𝑖𝑓 𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗,𝑚 |𝑧𝐵𝑀𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 > 1 

0 𝑖𝑓 𝑃[𝑧𝐵𝑀𝐼 > 1]𝑖,𝑗,𝑚 |𝑧𝐵𝑀𝐼𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ≤ 1
 

𝑖 = {1,2,3,… , 𝑛},𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9} 

𝑚 = {𝐺𝐿𝑀𝐸𝑅1, 𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

Prediction error rate averaged for all IDs 

𝐴𝑃𝐸𝑅𝑗,𝑘,𝑚 = 
1

𝑛
∑𝐸𝑅𝑖,𝑗,𝑘,𝑚

𝑛

𝑖=1

 

𝑖 = {1,2,3,… , 𝑛},𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑣𝑖𝑠𝑖𝑡 𝑗 = {𝑈1, 𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8};  

𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑖𝑠𝑖𝑡 𝑘 = {𝑈2, 𝑈3, 𝑈4, 𝑈5, 𝑈6, 𝑈7, 𝑈7𝑎, 𝑈8, 𝑈9}; 𝑗 <  𝑘; and 

𝑚 = {𝐵𝑆𝑀1, 𝐵𝑆𝑀2, 𝐵𝐷𝑀1, 𝐵𝐷𝑀2} 

2.11.3 Analyses with smaller sample size 

For the PEACHES study and simulation main study, sensitivity analyses were performed with 

sample size of 100 to examine the impact of a smaller sample size on the results of the study. 
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2.12 Literature search 

A non-systematic literature search was performed to identify methods of dynamic prediction in 

clinical or epidemiological context. Snowball method and citation searching were performed in 

Google Scholar with Jenkins et al., which was published in 2018 (Jenkins et al., 2018) as key 

publication. Articles that cited this publication, “related” articles (according to Google Scholar) as 

well as references of this publication were screened for their relevance. 

2.13 Statistical program 

R version 4.0.4 (2021-02-15), on platform: x86_64-pc-linux-gnu (64-bit), running under Debian 

GNU/Linux bullseye/sid was used to perform analyses and to create results, tables, and plots. 

For further details about used packages, see Appendix A: Technical information. 
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3. Results 

This part of the thesis presents the results of the 1) PEACHES study, 2) simulation main study 

with ICC estimated from the PEACHES study, 3) simulation study with different ICC, 4) results of 

the supplementary analyses, and 5) literature research. A summary of the results can be found 

at the end of the chapter (section 0). 

3.1 PEACHES study 

Logarithmized Relative Prediction Error (based on Brier’s score) (LRPE) of BSM1, BSM2, BDM1, 

and BDM2 compared with that of GLMER1 using is presented in 3.1.1.1, 3.1.1.2, 3.1.1.3, and 

3.1.1.4, respectively. In 3.1.2, comparison between these five models using the average RPE is 

depicted, followed by comparison regarding calibration (in 3.1.3), scaled Brier Score (in 3.1.4), 

and Brier Skill Score (in 3.1.5). 

3.1.1 Relative prediction error 

3.1.1.1 Relative prediction error of GLMER1 vs BSM1 

The following table shows the output of the LMM, which quantifies the difference between 

GLMER1 and BSM1 over time. On average, the relative difference of prediction error (RPE) be-

tween the two models GLMER1 vs. BSM1 is 𝑒0.158 = 1.171 at U1. This indicates that BSM1 pre-

dicts better than GLMER1 at U1. This difference stays the same, regardless of the number of 

previous months. Table 22 shows the estimated coefficients of the LMM. The proportion of vari-

ances that was contributed by different visits is 
0.1162

(0.1782+0.1162+0.1562)
∗ 100% =19.368%. Variances 

among individuals contribute to 45.604% of the total variances. 

Table 22. LRPE of GLMER1 vs. BSM1 in PEACHES study – output of LMM 

group term estimate std.error statistic df p.value

(Intercept) 0.158 0.039 4.069 7.990 3.60E-03

udata:PseudoID sd__(Intercept) 0.178

udata sd__(Intercept) 0.116

Residual sd__Observation 0.156  

The distribution of LRPE in 1,000 LOOCVs test datasets over time is presented in the following 

box plots in relationship with number of past visits. Red dots represent mean of a distribution at a 

certain prediction visit. Nine panels represent the future visits. E.g., panel “U2” shows the distri-

bution of LRPE for predicted outcome at U2, which was predicted using data at U1. For the pre-

diction of outcome at U9, regardless of number of previous visits, LRPE of GLMER1 vs. BSM1 

seem not to differ. 
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Figure 3. LRPE of GLMER1 vs. BSM1 over time in PEACHES study
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3.1.1.2 Relative prediction error of GLMER1 vs. BSM2 

Table 23. LRPE of GLMER1 vs. BSM2 in PEACHES study – output of LMM 

group term estimate std.error statistic df p.value

(Intercept) 0.164 0.004 38.451 945.459 1.6961E-195

PseudoID sd__(Intercept) 0.091

Residual sd__Observation 0.280  

Results of the LMM, which quantifies the time effect on LRPE of GLMER1 vs. BSM2 are shown 

in Table 23. On average, the relative difference of prediction error between the two models 

GLMER1 vs. BSM1 is 𝑒0.164 = 1.178 at U1. This indicates that BSM2 predicts better than GLMER1 

at U1. Similarly, as results of the comparison between GLMER1 vs. BSM2, this difference stays 

the same, regardless of the number of previous months. 

Box plots in the following figure presents the distribution of LRPE over time, with increasing num-

ber of previous visits. Prediction was made at U1 for all future visits at once and no model updating 

was done. Thus, no change in predicted outcome if passing more information into the model. For 

that reason, box plots within one panel are exact the same. 
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Figure 4. LRPE of GLMER1 vs. BSM2 over time in PEACHES study
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3.1.1.3 Relative prediction error of GLMER1 vs. BDM1 

Table 24. LRPE of GLMER1 vs. BDM1 in PEACHES study – output of LMM 

group term estimate std.error statistic df p.value

(Intercept) -0.908 0.178 -5.096 8.001 9.34E-04

months_from_u1 0.095 0.003 37.884 30467.862 6.32E-307

I(months_from_u1 2̂) -5.41E-03 2.92E-04 -18.541 30476.356 2.54E-76

I(months_from_u1 3̂) 1.43E-04 1.08E-05 13.251 30482.428 5.77E-40

I(months_from_u1 4̂) -1.28E-06 1.21E-07 -10.576 30486.671 4.26E-26

udata:PseudoID sd__(Intercept) 0.899

udata sd__(Intercept) 0.534

Residual sd__Observation 0.524  

On average, RPE of GLMER1 vs. BDM1 at U1 is 𝑒−0.908= 0.403, which means GLMER1 overper-

forms BDM1 at this visit. However, this difference attenuates over time. Non-linearity of time effect 

is present. The proportion of variances that was contributed by different visits is 

0.5342

(0.8992+0.5342+0.5242)
∗  100% =20.846%. Figure 5 presents distribution of the LRPE of GLMER1 vs. 

BDM1. The box plots tend to move upward with increasing number of previous visits. Their 

mean/median lie above 0 when data from U6 or later was used for prediction. This observation 

supports the results of the LMM presented above (Table 24).  
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Figure 5. LRPE of GLMER1 vs. BDM1 over time in PEACHES study
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3.1.1.4 Relative prediction error of GLMER1 vs. BDM2 

Table 25. LRPE of GLMER1 vs. BDM2 in PEACHES study– output of LMM 

group term estimate std.error statistic df p.value

(Intercept) -0.911 0.178 -5.127 8.015 8.95E-04

months_from_u1 0.097 0.003 38.529 30474.364 0.00E+00

I(months_from_u1 2̂)-5.64E-03 2.94E-04 -19.171 30482.974 1.96E-81

I(months_from_u1 3̂)1.51E-04 1.09E-05 13.879 30489.127 1.16E-43

I(months_from_u1 4̂)-1.36E-06 1.22E-07 -11.202 30493.428 4.56E-29

udata:PseudoID sd__(Intercept) 0.900

udata sd__(Intercept) 0.532

Residual sd__Observation 0.528  

On average, GLMER1 overperforms BDM2 at U1. However, this difference attenuates over time 

in a linear manner. Non-linear time effects are present. The proportion of variances that was 

contributed by different visits is 
0.5322

(0.9002+0.5322+0.5282)
∗  100% =20.631%. Similarly, as when com-

paring BDM1 and GLMER1, in Figure 6, the box plots tend to move upward with increasing num-

ber of previous visits. Their mean/median lie above 0 when data from U6 or later was used for 

prediction. This observation supports the results of the LMM presented above (Table 25).  

3.1.1.5 Overall time effect on RPE  

Overall time effect (see 2.8) of the four Bayesian models is shown in the following table, when 

incorporating the non-linearity of time effects. RPE of GLMER1 versus BSM1 and BSM2 was 

shown to be constant and around 1 over time, while RPE of GLMER1 versus BDM1 and BDM2 

seems to increase with increasing number of months from U1. At month 36 (U7) and 48 (U7a) 

after birth, BDM1 and BDM2 overperform GLMER1. This cannot be observed for timepoint 60 

months (U9). At this timepoint, GLMER1 performs better than BDM1 and BDM2. 

Table 26. RPE of GLMER1 vs. Bayesian models in PEACHES study 

BSM1 BSM2 BDM1 BDM2

0 1.171 1.178 0.403 0.393

1 1.171 1.178 0.441 0.436

3 1.171 1.178 0.513 0.519

6 1.171 1.178 0.604 0.625

12 1.171 1.178 0.720 0.751

24 1.171 1.178 0.821 0.840

36 1.171 1.178 1.013 1.056

48 1.171 1.178 1.214 1.252

60 1.171 1.178 0.673 0.515

Number of 

months 

from U1

RPE of GLMER1 vs.
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Figure 6. LRPE of GLMER1 vs. BDM2 over time in PEACHES study 
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3.1.2 Brier Score of Bayesian models vs. GLMER1 

Brier Score of GLMER1, BSM1, BSM2, BDM1, and BDM2 for each prediction visit and each future 

visit was shown in Table 27 and Figure 7. The Brier Score of GLMER1 and BSM2 stay the same, 

regardless of at what visit the prediction was made. The Brier Score of BSM1 for the same future 

visit changes only little when considering different prediction visits. 

At early visits (U1, U2, and U3), the Brier Score of all models seem to resemble. The improvement 

in prediction of BDM1 and BDM2 compared with GLMER1, BSM1, and BSM2 can be observed 

from prediction visit U4 (Figure 7). 
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Table 27. Brier Score of Bayesian models vs. GLMER1 over time in PEACHES study 

GLMER1 BSM2 BSM1 BDM1 BDM2

U1 U2 0.033 0.033 0.033 0.025 0.025

U1 U3 0.083 0.084 0.084 0.078 0.079

U1 U4 0.098 0.098 0.098 0.096 0.096

U1 U5 0.129 0.130 0.130 0.127 0.127

U1 U6 0.170 0.171 0.172 0.168 0.167

U1 U7 0.229 0.230 0.231 0.227 0.228

U1 U7a 0.199 0.200 0.200 0.200 0.201

U1 U8 0.192 0.193 0.193 0.187 0.188

U1 U9 0.193 0.194 0.194 0.182 0.182

U2 U3 0.083 0.084 0.084 0.080 0.080

U2 U4 0.098 0.098 0.098 0.099 0.099

U2 U5 0.129 0.130 0.130 0.133 0.133

U2 U6 0.170 0.171 0.172 0.172 0.172

U2 U7 0.229 0.230 0.230 0.234 0.234

U2 U7a 0.199 0.200 0.200 0.205 0.204

U2 U8 0.192 0.193 0.194 0.190 0.190

U2 U9 0.193 0.194 0.195 0.186 0.187

U3 U4 0.098 0.098 0.098 0.090 0.089

U3 U5 0.129 0.130 0.130 0.124 0.125

U3 U6 0.170 0.171 0.171 0.165 0.165

U3 U7 0.229 0.230 0.231 0.229 0.228

U3 U7a 0.199 0.200 0.200 0.203 0.203

U3 U8 0.192 0.193 0.193 0.188 0.188

U3 U9 0.193 0.194 0.195 0.191 0.191

U4 U5 0.129 0.130 0.130 0.109 0.109

U4 U6 0.170 0.171 0.172 0.149 0.149

U4 U7 0.229 0.230 0.230 0.222 0.222

U4 U7a 0.199 0.200 0.200 0.194 0.194

U4 U8 0.192 0.193 0.193 0.178 0.178

U4 U9 0.193 0.194 0.195 0.185 0.186

U5 U6 0.170 0.171 0.171 0.131 0.131

U5 U7 0.229 0.230 0.231 0.210 0.211

U5 U7a 0.199 0.200 0.201 0.184 0.184

U5 U8 0.192 0.193 0.193 0.168 0.169

U5 U9 0.193 0.194 0.195 0.179 0.179

U6 U7 0.229 0.230 0.231 0.196 0.196

U6 U7a 0.199 0.200 0.200 0.172 0.171

U6 U8 0.192 0.193 0.193 0.159 0.158

U6 U9 0.193 0.194 0.194 0.168 0.168

U7 U7a 0.199 0.200 0.200 0.149 0.150

U7 U8 0.192 0.193 0.193 0.146 0.146

U7 U9 0.193 0.194 0.195 0.156 0.156

U7a U8 0.192 0.193 0.193 0.128 0.128

U7a U9 0.193 0.194 0.195 0.143 0.143

U8 U9 0.193 0.194 0.195 0.129 0.130

Future visit 

to be 

predicted

Prediction 

made at 

visit

Brier Score
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Figure 7. Brier Score of Bayesian models vs. GLMER1 over time in PEACHES study
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3.1.3 Calibration of Bayesian models vs. GLMER1 

Results of the calibration analysis for a certain future visit in PEACHES study are shown in the 

following table. 

Table 28. Calibration slopes and intercepts of Bayesian models vs. GLMER1 in PEACHES 

study 

 

Futu

re 

visit

Pred

ictio

n 

visit

GLMER1 

Slope

GLMER1 

Intercept

BSM1 

Slope

BSM1 

Intercept

BSM2 

Slope

BSM2 

Intercept

BDM1 

Slope

BDM1 

Intercept

BDM2 

Slope

BDM2 

Intercept

U2 U1 -6.195 0.124 -4.649 0.090 -2.794 0.068 2.032 -0.065 2.036 -0.064

U3 U1 0.200 0.082 0.160 0.083 0.004 0.087 0.627 0.034 0.613 0.035

U3 U2 0.200 0.082 -0.087 0.090 0.004 0.087 0.487 0.047 0.494 0.046

U4 U1 0.272 0.094 0.483 0.087 0.255 0.095 0.331 0.070 0.320 0.071

U4 U2 0.272 0.094 0.424 0.089 0.255 0.095 0.280 0.076 0.273 0.076

U4 U3 0.272 0.094 0.252 0.095 0.255 0.095 0.656 0.037 0.660 0.037

U5 U1 0.671 0.103 0.248 0.129 0.329 0.124 0.224 0.112 0.218 0.113

U5 U2 0.671 0.103 0.619 0.108 0.329 0.124 0.139 0.124 0.138 0.124

U5 U3 0.671 0.103 0.849 0.096 0.329 0.124 0.433 0.084 0.430 0.085

U5 U4 0.671 0.103 0.523 0.114 0.329 0.124 0.864 0.026 0.867 0.025

U6 U1 0.919 0.097 0.647 0.134 0.847 0.111 0.330 0.136 0.346 0.133

U6 U2 0.919 0.097 0.705 0.127 0.847 0.111 0.265 0.151 0.269 0.150

U6 U3 0.919 0.097 0.904 0.105 0.847 0.111 0.454 0.112 0.467 0.109

U6 U4 0.919 0.097 0.735 0.123 0.847 0.111 0.770 0.046 0.763 0.047

U6 U5 0.919 0.097 0.838 0.112 0.847 0.111 1.005 -0.006 1.005 -0.006

U7 U1 0.336 0.247 0.259 0.265 0.332 0.250 0.176 0.265 0.134 0.277

U7 U2 0.336 0.247 0.376 0.241 0.332 0.250 0.078 0.295 0.084 0.293

U7 U3 0.336 0.247 0.248 0.267 0.332 0.250 0.283 0.235 0.300 0.230

U7 U4 0.336 0.247 0.427 0.230 0.332 0.250 0.427 0.192 0.418 0.194

U7 U5 0.336 0.247 0.236 0.269 0.332 0.250 0.584 0.143 0.575 0.146

U7 U6 0.336 0.247 0.306 0.255 0.332 0.250 0.725 0.102 0.728 0.102

U7a U1 0.674 0.139 0.594 0.157 0.600 0.156 0.274 0.187 0.248 0.194

U7a U2 0.674 0.139 0.735 0.133 0.600 0.156 0.201 0.209 0.225 0.202

U7a U3 0.674 0.139 0.651 0.147 0.600 0.156 0.319 0.176 0.309 0.179

U7a U4 0.674 0.139 0.716 0.136 0.600 0.156 0.485 0.130 0.497 0.127

U7a U5 0.674 0.139 0.542 0.167 0.600 0.156 0.620 0.091 0.624 0.090

U7a U6 0.674 0.139 0.681 0.142 0.600 0.156 0.742 0.058 0.747 0.057

U7a U7 0.674 0.139 0.643 0.149 0.600 0.156 0.970 -0.009 0.958 -0.006

U8 U1 0.611 0.147 0.515 0.166 0.710 0.136 0.424 0.138 0.392 0.146

U8 U2 0.611 0.147 0.462 0.174 0.710 0.136 0.349 0.161 0.353 0.159

U8 U3 0.611 0.147 0.629 0.149 0.710 0.136 0.438 0.137 0.437 0.138

U8 U4 0.611 0.147 0.585 0.156 0.710 0.136 0.627 0.090 0.620 0.092

U8 U5 0.611 0.147 0.520 0.165 0.710 0.136 0.734 0.062 0.720 0.065

U8 U6 0.611 0.147 0.538 0.163 0.710 0.136 0.818 0.041 0.823 0.040

U8 U7 0.611 0.147 0.691 0.140 0.710 0.136 0.948 0.004 0.944 0.005

U8 U7a 0.611 0.147 0.476 0.172 0.710 0.136 1.117 -0.037 1.116 -0.036

U9 U1 0.322 0.196 0.451 0.181 0.424 0.185 0.529 0.120 0.509 0.125

U9 U2 0.322 0.196 0.257 0.206 0.424 0.185 0.382 0.157 0.376 0.158

U9 U3 0.322 0.196 0.216 0.212 0.424 0.185 0.312 0.171 0.297 0.174

U9 U4 0.322 0.196 0.135 0.222 0.424 0.185 0.448 0.140 0.427 0.145

U9 U5 0.322 0.196 0.309 0.200 0.424 0.185 0.556 0.114 0.547 0.116

U9 U6 0.322 0.196 0.476 0.178 0.424 0.185 0.695 0.084 0.691 0.085

U9 U7 0.322 0.196 0.323 0.198 0.424 0.185 0.825 0.052 0.827 0.052

U9 U7a 0.322 0.196 0.362 0.193 0.424 0.185 0.959 0.024 0.954 0.025

U9 U8 0.322 0.196 0.264 0.205 0.424 0.185 1.085 -0.005 1.074 -0.002  
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For prediction at U2, all models show bad calibration and seem to underestimate the risk of over-

weight at U2. BDM1 and BDM2 seem to overperform other models.  

 

Figure 8. Calibration of Bayesian models vs. GLMER1 predicting U2 outcome using U1 data in 

PEACHES study 

For prediction at later future visits, calibration of models fitted at different prediction visits is com-

pared. Since the same GLMER1 and BSM2 models were used to predict outcome at all future 

visits, calibration of these two models is the same, regardless at which visit the prediction was 

made. Calibration of BSM1 seems to change little over time. BDM1 and BDM2 show improvement 

in calibration with increasing number of past visits. Figure 9 shows calibration of Bayesian models 

vs. GLMER1 predicting U9 outcome using data from U1 to U8, respectively.  

Full results of this analysis can be found online in the folder /supplementary_mate-

rial/3.1.3. 
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Figure 9. Calibration of Bayesian models vs. GLMER1 predicting U9 outcome using cumulated data from U1 until U8 in PEACHES study
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3.1.4 Scaled Brier Score of Bayesian models vs. GLMER1 

Scaled Brier Score of models predicting future outcome using data from past visit(s) (Figure 10) 

show that using accumulated data from visit U5 or later can improve the usefulness of the Bayes-

ian models BDM1 and BDM2 vs. GLMER1. The Scaled Brier Score of other models BSM1, 

GLMER1 and BSM2 stay below 0, which indicates that these models are not more useful than an 

uninformative model in predicting future outcome.  

 

Figure 10. Scaled Brier Score of Bayesian models vs. GLMER1 over time in PEACHES study 

3.1.5 Brier Skill Score 

3.1.5.1 Brier Skill Score of Bayesian models vs. GLMER1 

Brier Skill Score of the four Bayesian models over time (shown in  

Figure 11) reveal that overall, BDM1 and BDM2 overperform GLMER1. This overperformance is 

not consistent if prediction was made at early visits (U1, U2, and U3), while prediction made at 

U4 or later with BDM1 and BDM2 shows consistent improvement comparing with GLMER1. BSM1 

and BSM1 show consistently similar performance with GLMER1. 
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Figure 11. Brier Skill Score of Bayesian models vs. GLMER1 over time in PEACHES study 

3.1.5.2 Brier Skill Score with “U1-model” as reference 

 

Figure 11 shows Brier Skill Score of four Bayesian models and GLMER1 over time. Comparing 

with model trained at U1 – “the “U1-model”, both BDM1 and BDM2 models tend to show overper-

formance at later visits. For future visits U4, U5, and U6, overperformance can be observed when 

prediction was made at U3 or later. For future visits U7, U7a, and U8, overperformance starts 

with prediction made at U4. For future visit U9, models trained with data from U5 or later overper-

form the “U1-model”. GLMER1, BSM1, and BSM2 show comparatively no improvement in pre-

diction performance over time. 

 

Figure 12. Brier Skill Score vs. “U1-model” over time in PEACHES study 
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3.1.6 Results at individual level - PEACHES study 

While models BSM1, BSM2, and GLMER1 assume random intercept = 0 for each of the validation 

IDs, BDM1 and BDM2 estimate and update the random intercept of this ID at each prediction visit. 

Figure 13 shows the distribution of random intercepts in 1,000 LOOCV validation data sets. At 

earlier visits (U1, U2, U3, and U4), the distribution of the random intercepts estimated by BDM1 

and BDM2 seem to be less varying. At later visits, variances of random intercepts become greater. 

From U5, even though the mean of this distributions is around 0, the random intercepts of different 

IDs seem to be more varying. 
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Figure 13. Distributions of estimated random intercepts over time –Bayesian models vs. GLMER1 in PEACHES study 
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The following plots show the development of the estimates for random intercept and fixed effects 

as well as predicted outcomes for the LOOCV with a specific ID, ID number 2, dependent of 

prediction visits. Results of other selected IDs can be found online in the folder /supplemen-

tary_material/3.1.6. 

It can be seen in Figure 14 that random intercept of this ID estimated with GLMER1, BSM1, and 

BSM2, stays equal 0, while BDM1 and BDM2 updated this estimate at each new prediction visit. 

The expected value of this estimate starts near 0 and continually decreases from U1 to U7 and 

moves back near 0 at U7a and U8. The standard error for ID 2’s random intercept was obtained 

from the GLMER1 model and serves as the starting point for BDM1 and BDM2. With increasing 

number of previous visits, the standard error seems to decrease. 

Figure 15 shows the updating process of the fixed effects over time. Expected values of ID 2’s 

fixed effects stay the same for all models but BDM2. These value for BSM1, BSM2, and BDM1 

are exact the same (over time) as expected, due to their defined model specification. Slight dif-

ferences between the expected values estimated by the Bayesian models and GLMER1 are ex-

pected. The expected values estimated by BDM2 seem to fluctuate around those estimated by 

BDM1, BSM1, BSM2. No timely trend can be seen for the expected values of BDM2. 

Outcome predicted at different prediction visits are shown in Figure 16. For BSM2 and GLMER1 

the courses of the predicted outcome stay the same over time, since no updating was done. 

BSM1 shows unremarkable changes of the predicted outcome over time. BDM1 and BDM2 up-

date the predicted outcome according to available data at the prediction visit. The development 

of ID 2’s random intercept seems to directly associate with the development of this ID’s outcome 

over time. 

 

Figure 14. Random intercept estimated by Bayesian models vs. GLMER1 over time in LOOCV 

with validation ID = 2 (left: expected value, right: standard error) 
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Figure 15. Fixed effects estimated by Bayesian models vs. GLMER1 over time in LOOCV with validation ID = 2 
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Figure 16. Outcome predicted by Bayesian models vs. GLMER1 over time in LOOCV with validation ID = 2 
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3.2 Simulation main study 

3.2.1 Simulated data used for analyses 

The following plot presents the mean risk of overweight in the simulated dataset with 1,000 indi-

viduals.  

 

Figure 17. Mean risk of overweight in large simulation data set 

3.2.2 Relative prediction error 

3.2.2.1 Relative prediction error of GLMER1 vs. BSM1 

On average, the relative difference of prediction error between these two models GLMER1 vs. 

BSM1 is 𝑒0.211 = 1.235 at U1. This indicates that BSM1 predicts better than GLMER1 at U1. This 

difference stays the same, regardless of number of previous months. Table 29 shows the esti-

mated coefficients of the LMM. Figure 18 shows the distribution of LRPE of GLMER1 vs. BSM1. 

The proportion of variance that can be explained by different visits is 
0.0872

0.1252+ 0.0872+0.1992 ∗  100% =

12.054%. The distribution of LRPE over time, in relationship with number of past visits is pre-

sented in the box plots in Figure 18. The box plots show that number of previous visits seems not 

to influence the LRPE of GLMER1 vs. BSM1 over time. 

Table 29. LRPE of GLMER1 vs. BSM1 in simulation main study – output of LMM 

group term estimate std.error statistic df p.value

(Intercept) 0.211 0.029 7.252 7.982 8.886E-05

udata:val.id sd__(Intercept) 0.125

udata sd__(Intercept) 0.087

Residual sd__Observation 0.199
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Figure 18. LRPE of GLMER1 vs. BSM1 over time in simulation main study
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3.2.2.2 Relative prediction error of GLMER1 vs. BSM2 

Similar as the results shown in 3.2.2, BSM2 predicts better than GLMER1 at U1. RPE of GLMER1 

vs. BSM2 at this visit is 𝑒0.339 = 1.404. This difference stays the same, regardless of number of 

previous visits. The following table shows the estimated coefficients of the LMM. Figure 19 shows 

the distribution of LRPE between GLMER1 and BSM2. 

Table 30. LRPE of GLMER1 vs. BSM2 in simulation study – output of LMM 

group term estimate std.error statistic df p.value

(Intercept) 0.339 0.010 33.743 0.974 2.057E-02

val.id sd__(Intercept) 0.166

Residual sd__Observation 5.074E-08
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Figure 19. LRPE of GLMER1 vs. BSM2 over time in simulation main study 
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3.2.2.3 Relative prediction error of GLMER1 vs. BDM1 

On average, GLMER1 overperforms BDM1 at U1. However, this difference attenuates over time. 

Non-linear time effects are present. The proportion of variance that can be explained by different 

visits is 
0.5102

0.9242+ 0.5102+0.5862 ∗  100% = 18.848%. In Figure 20, the box plots move upward with in-

creasing number of previous months, and their mean/median seem lie above 0 when data from 

U7 or later was used for prediction. This observation supports the results of the LMM presented 

above (Table 31).  

Table 31. LRPE of GLMER1 vs. BDM1 in simulation main study – output of LMM 

group term estimate std.error statistic df p.value

(Intercept) -1.235 0.170 -7.247 7.998E+00 8.839E-05

months_from_u1 0.116 0.003 42.838 3.620E+04 0

I(months_from_u1 2̂) -7.250E-03 3.304E-04 -21.944 36197.9457 4.863E-106

I(months_from_u1 3̂) 2.038E-04 1.272E-05 16.024 36198.7072 1.3783E-57

I(months_from_u1 4̂) -1.967E-06 1.482E-07 -13.269 3.620E+04 4.3498E-40

udata:val.id sd__(Intercept) 0.924

udata sd__(Intercept) 0.510

Residual sd__Observation 0.586
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Figure 20. LRPE of GLMER1 vs. BDM1 over time in simulation main study  
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3.2.2.4 Relative prediction error of GLMER1 vs. BDM2 

Similar as the results of BDM1 (3.2.2.3), at U1, GLMER1 overperforms BDM2 on average. This 

effect attenuates over time. Non-linear time effects are present. The proportion of variance that 

can be explained by different visits is 
0.5182

0.9272+ 0.5182+0.5902 ∗  100% = 18.182%. In Figure 21, the box 

plots move upward with increasing number of previous months, and their mean/median seem lie 

above 0 when data from U7 or later was used for prediction. This observation supports the results 

of the LMM presented above (Table 32).  

Table 32. LRPE of GLMER1 vs. BDM2 in simulation study – output of LMM 

group term estimate std.error statistic df p.value

(Intercept) -1.246 0.173 -7.195 7.998 9.304E-05

months_from_u1 0.119 0.003 43.541 36198.520 0.000E+00

I(months_from_u1 2̂) -0.007 3.324E-04 -22.554 36199.485 7.334E-112

I(months_from_u1 3̂) 2.110E-04 1.279E-05 16.490 36200.267 7.1953E-61

I(months_from_u1 4̂) -2.032E-06 1.491E-07 -13.625 36200.806 3.6076E-42

udata:val.id sd__(Intercept) 0.927

udata sd__(Intercept) 0.518

Residual sd__Observation 0.590  

3.2.2.5 Overall time effect on RPE 

Overall time effect (see 2.8) of the four Bayesian models is shown in the following table, when 

incorporating the non-linearity of time effects. RPE of GLMER1 versus BSM1 and BSM2 was 

shown to be constant regardless of number of previous months, while until 48 months after birth, 

RPE of GLMER1 versus BDM1 and BDM2 seems to increase with increasing number of months 

from U1. BDM1 and BDM2 do not overperform GLMER1 at any timepoints. 

Table 33. RPE of GLMER1 vs. Bayesian models in simulation main study 

RPE of GLMER1 vs.

BSM1 BSM2 BDM1 BDM2

0 1.235 1.404 0.291 0.288

1 1.235 1.404 0.324 0.322

3 1.235 1.404 0.388 0.386

6 1.235 1.404 0.468 0.467

12 1.235 1.404 0.561 0.560

24 1.235 1.404 0.628 0.621

36 1.235 1.404 0.776 0.769

48 1.235 1.404 0.757 0.756

60 1.235 1.404 0.157 0.153

Number of 

months 

from U1
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Figure 21. LRPE of BDM2 vs. GLMER1 over time in simulation study 
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3.2.3 Brier Score of Bayesian models vs. GLMER1 

Table 34. Brier Score of dynamic models vs. GLMER1 over time 

GLMER1 BSM1 BSM2 BDM1 BDM2

U1 U2 0.053 0.053 0.053 0.049 0.049

U1 U3 0.055 0.055 0.055 0.053 0.053

U1 U4 0.100 0.101 0.101 0.089 0.089

U1 U5 0.105 0.105 0.106 0.093 0.093

U1 U6 0.143 0.144 0.144 0.131 0.131

U1 U7 0.182 0.184 0.184 0.161 0.161

U1 U7a 0.169 0.170 0.170 0.152 0.152

U1 U8 0.159 0.160 0.160 0.137 0.138

U1 U9 0.141 0.142 0.142 0.126 0.127

U2 U3 0.055 0.055 0.055 0.051 0.050

U2 U4 0.100 0.101 0.101 0.089 0.089

U2 U5 0.105 0.105 0.106 0.090 0.090

U2 U6 0.143 0.144 0.144 0.126 0.126

U2 U7 0.182 0.184 0.184 0.156 0.156

U2 U7a 0.169 0.170 0.170 0.144 0.144

U2 U8 0.159 0.160 0.160 0.132 0.133

U2 U9 0.141 0.142 0.142 0.119 0.119

U3 U4 0.100 0.101 0.101 0.083 0.083

U3 U5 0.105 0.105 0.106 0.088 0.089

U3 U6 0.143 0.144 0.144 0.119 0.119

U3 U7 0.182 0.184 0.184 0.150 0.151

U3 U7a 0.169 0.170 0.170 0.139 0.139

U3 U8 0.159 0.160 0.160 0.125 0.126

U3 U9 0.141 0.142 0.142 0.115 0.115

U4 U5 0.105 0.105 0.106 0.088 0.088

U4 U6 0.143 0.144 0.144 0.117 0.116

U4 U7 0.182 0.184 0.184 0.146 0.146

U4 U7a 0.169 0.170 0.170 0.134 0.134

U4 U8 0.159 0.160 0.160 0.120 0.120

U4 U9 0.141 0.142 0.142 0.109 0.110

U5 U6 0.143 0.144 0.144 0.115 0.115

U5 U7 0.182 0.184 0.184 0.143 0.143

U5 U7a 0.169 0.170 0.170 0.130 0.130

U5 U8 0.159 0.161 0.160 0.115 0.115

U5 U9 0.141 0.142 0.142 0.106 0.106

U6 U7 0.182 0.184 0.184 0.135 0.135

U6 U7a 0.169 0.170 0.170 0.125 0.126

U6 U8 0.159 0.160 0.160 0.112 0.112

U6 U9 0.141 0.142 0.142 0.102 0.102

U7 U7a 0.169 0.171 0.170 0.121 0.122

U7 U8 0.159 0.160 0.160 0.108 0.108

U7 U9 0.141 0.142 0.142 0.099 0.099

U7a U8 0.159 0.160 0.160 0.105 0.105

U7a U9 0.141 0.142 0.142 0.096 0.096

U8 U9 0.141 0.142 0.142 0.096 0.096

Brier ScorePrediction 

made at 

timepoint

Future 

timepoint 

to be 

predicted
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Brier Score of four Bayesian models and GLMER1 are shown in Table 34. Their courses over 

time are presented in Figure 22. From U1, two groups of models seem to distinguish in their 

prediction performance. BDM1 and BDM2 overperform BSM1, BSM2, and GLMER1. This over-

performance seems to increase with increasing amount of data from past visits that was used for 

prediction. 
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Figure 22. Brier Score of Bayesian models vs. GLMER1 over time in simulation main study 
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3.2.4 Calibration of Bayesian models vs. GLMER1 

Calibration slopes and intercepts of Bayesian models vs. GLMER1 in the simulation main study 

are shown in the following table. Calibration slope close to 0 and intercept close to 1 indicate good 

calibration. 

Table 35. Calibration slopes and intercepts of Bayesian models vs. GLMER1 – simulation main 

study 

Futur

e 

visit

Predi

ction 

visit

GLMER1 

Slope

GLMER1 

Intercept

BSM1 

Slope

BSM1 

Intercept

BSM2 

Slope

BSM2 

Intercept

BDM1 

Slope

BDM1 

Intercept

BDM2 

Slope

BDM2 

Intercept

U2 U1 -75.783 1.070 -4.500 0.105 -3.106 0.089 0.954 0.006 0.957 0.005

U3 U1 21.476 -0.323 2.195 0.024 1.351 0.036 0.646 0.017 0.623 0.018

U3 U2 21.476 -0.323 0.955 0.043 1.351 0.036 0.758 0.010 0.792 0.007

U4 U1 29.997 -0.928 5.269 -0.054 11.471 -0.243 1.028 0.005 1.031 0.004

U4 U2 29.997 -0.928 8.171 -0.142 11.471 -0.243 0.871 0.020 0.864 0.020

U4 U3 29.997 -0.928 6.546 -0.091 11.471 -0.243 1.041 0.004 1.038 0.004

U5 U1 9.938 -0.344 0.155 0.107 -1.597 0.179 1.041 -0.012 1.016 -0.010

U5 U2 9.938 -0.344 2.877 -0.005 -1.597 0.179 0.935 -0.001 0.937 -0.001

U5 U3 9.938 -0.344 1.521 0.051 -1.597 0.179 0.925 0.002 0.908 0.003

U5 U4 9.938 -0.344 2.773 -0.001 -1.597 0.179 0.853 0.009 0.854 0.009

U6 U1 10.847 -0.604 4.037 -0.097 3.692 -0.074 0.746 0.043 0.716 0.047

U6 U2 10.847 -0.604 3.769 -0.079 3.692 -0.074 0.809 0.032 0.822 0.029

U6 U3 10.847 -0.604 4.527 -0.129 3.692 -0.074 0.947 0.011 0.939 0.012

U6 U4 10.847 -0.604 5.744 -0.205 3.692 -0.074 0.890 0.018 0.903 0.015

U6 U5 10.847 -0.604 5.158 -0.168 3.692 -0.074 0.896 0.019 0.895 0.018

U7 U1 4.039 -0.270 1.456 0.057 3.107 -0.131 1.058 -0.012 1.036 -0.008

U7 U2 4.039 -0.270 1.342 0.070 3.107 -0.131 0.985 0.002 0.975 0.004

U7 U3 4.039 -0.270 2.776 -0.093 3.107 -0.131 1.005 0.000 0.992 0.002

U7 U4 4.039 -0.270 2.973 -0.116 3.107 -0.131 0.949 0.010 0.955 0.008

U7 U5 4.039 -0.270 1.856 0.012 3.107 -0.131 0.952 0.011 0.941 0.013

U7 U6 4.039 -0.270 2.327 -0.042 3.107 -0.131 1.000 -0.001 0.999 -0.001

U7a U1 0.011 0.198 -0.455 0.242 1.385 0.067 0.860 0.026 0.858 0.026

U7a U2 0.011 0.198 0.344 0.166 1.385 0.067 0.957 0.005 0.952 0.006

U7a U3 0.011 0.198 0.574 0.144 1.385 0.067 0.974 0.004 0.980 0.002

U7a U4 0.011 0.198 0.437 0.157 1.385 0.067 0.962 0.003 0.960 0.004

U7a U5 0.011 0.198 0.763 0.126 1.385 0.067 0.982 0.001 0.975 0.002

U7a U6 0.011 0.198 -0.043 0.203 1.385 0.067 0.992 -0.001 0.986 -0.001

U7a U7 0.011 0.198 -1.969 0.387 1.385 0.067 0.990 -0.002 0.981 0.000

U8 U1 -0.668 0.242 -0.224 0.201 0.726 0.124 1.119 -0.021 1.086 -0.016

U8 U2 -0.668 0.242 -0.231 0.202 0.726 0.124 1.037 -0.007 1.037 -0.008

U8 U3 -0.668 0.242 -0.536 0.226 0.726 0.124 1.103 -0.018 1.096 -0.017

U8 U4 -0.668 0.242 -1.164 0.277 0.726 0.124 1.071 -0.014 1.064 -0.014

U8 U5 -0.668 0.242 -2.056 0.348 0.726 0.124 1.099 -0.017 1.098 -0.018

U8 U6 -0.668 0.242 1.188 0.087 0.726 0.124 1.095 -0.017 1.084 -0.017

U8 U7 -0.668 0.242 -0.466 0.221 0.726 0.124 1.091 -0.018 1.086 -0.017

U8 U7a -0.668 0.242 -1.598 0.312 0.726 0.124 1.098 -0.018 1.097 -0.019

U9 U1 -4.565 0.487 -2.949 0.350 -3.297 0.374 0.870 0.018 0.857 0.020

U9 U2 -4.565 0.487 -3.557 0.391 -3.297 0.374 0.970 0.001 0.977 -0.001

U9 U3 -4.565 0.487 -1.711 0.269 -3.297 0.374 1.003 -0.003 1.001 -0.003

U9 U4 -4.565 0.487 -0.134 0.167 -3.297 0.374 1.007 -0.006 0.996 -0.005

U9 U5 -4.565 0.487 -2.441 0.318 -3.297 0.374 1.028 -0.007 1.029 -0.008

U9 U6 -4.565 0.487 -1.824 0.277 -3.297 0.374 1.037 -0.010 1.044 -0.011

U9 U7 -4.565 0.487 -2.632 0.330 -3.297 0.374 1.049 -0.012 1.048 -0.012

U9 U7a -4.565 0.487 -2.566 0.326 -3.297 0.374 1.064 -0.014 1.060 -0.014

U9 U8 -4.565 0.487 -2.661 0.332 -3.297 0.374 1.026 -0.008 1.028 -0.009  
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Figure 23. Calibration of Bayesian models vs. GLMER1 predicting U2 outcome using U1 data 

Calibration of the prediction models that predicted future outcome at U2 using data of U1 is de-

picted in Figure 23. BDM1 and BDM2 shows good calibration, while other three models BSM1, 

BSM2, and GLMER1 show bad calibration. This can also be observed for prediction of outcome 

at U9, which used accumulated data from U1 to U8, respectively (Figure 23). 

Full results of this analysis can be found online in the folder /supplementary_mate-

rial/3.2.4
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Figure 24. Calibration of Bayesian models vs. GLMER1 predicting U9 outcome using cumulated data from U1 until U8
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3.2.5 Scaled Brier Score of Bayesian models vs. GLMER1 

As shown in Figure 25, Scaled Brier Score of BDM1 and BDM2 reveal consistent overperfor-

mance of these models compared to BSM1, BSM2, and GLMER1 over time. The Scaled Brier 

Score of BDM1 and BDM2 also show their overperformance compared to a non-informative 

model, and this overperformance seem to increase over time. 

 

Figure 25. Scaled Brier Score of Bayesian models vs. GLMER1 in simulation main study 

3.2.6 Brier Skill Score 

3.2.6.1 Brier Skill Score of Bayesian models vs. GLMER1 

The consistent overperformance of BDM1 and BDM2 compared to GLMER1 over time can also 

be seen in Figure 26. BSM1 and BSM2 show similar prediction performance as GLMER1. 

 

Figure 26. Brier Skill Score of Bayesian models vs. GLMER1 over time in simulation main study 
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3.2.6.2 Brier Skill Score with “U1-model” as reference 

Figure 12 shows Brier Skill score of four Bayesian models and GLMER1 over time. Comparing 

with model trained at U1 – “the “U1-model”, both BDM1 and BDM2 models show consistent over-

performance. GLMER1, BSM1, and BSM2 show comparatively no improvement in prediction per-

formance. 

 

Figure 27. Brier Skill Score of Bayesian models vs. “U1-model” over time in simulation main 

study 

3.2.7 Results at individual level - Simulation main study 

While models BSM1, BSM2, and GLMER1 assume random intercept = 0 for each of the validation 

IDs, BDM1 and BDM2 estimate and update random intercept of this ID at each prediction visit. 

Figure 28 shows the distribution of random intercepts in 1,000 LOOCV validation data sets. At 

earlier visits (U1 and U2), the distribution of the random intercepts estimated by BDM1 and BDM2 

seem to be less varying. From U3, variances of the random intercepts of different IDs seem to be 

greater. The means of both distributions for BDM1 and BDM2 lie around 0.
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Figure 28. Distributions of random intercepts over time – compared between Bayesian vs. GLMER1 models in simulation main study
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The following plots show the development of the estimated random intercepts and fixed effects 

as well as predicted outcomes for the LOOCV with a specific ID, ID number 1, dependent of 

prediction visits. Results of other selected IDs can be found online in the folder /supplemen-

tary_material/3.2.7. 

It can be seen in Figure 29 that random intercept of this ID estimated with GLMER1, BSM1, and 

BSM2, stays equal 0, while BDM1 and BDM2 updated this estimate at each new prediction visit. 

The expected value of this estimate starts near 0 and continually decreases from U1 to U4 and 

then continually increases to the simulated value = 3.668. The standard error for ID 2’s random 

intercept was obtained from the GLMER1 model and serves as the starting point for BDM1 and 

BDM2. The standard error seems to decrease with increasing amount of information from previ-

ous visits that was available for prediction. 

Figure 30 shows the updating process of the fixed effects over time. Expected values of ID 1’s 

fixed effects stay the same for all models but BDM2. These value for BSM1, BSM2, and BDM1 

are exact the same (over time) as expected, due to their defined model specification. Small dif-

ferences between the expected values estimated by the Bayesian models and GLMER1 are ex-

pected. The expected values estimated by BDM2 seem to fluctuate around those estimated by 

BDM1, BSM1, BSM2. However, no timely trend can be seen here. Expected values of all fixed 

effects with the exception of 𝛽6, that were estimated by four Bayesian models and GLMER1 seem 

to be deviate from the simulated value. 

Outcome predicted at different prediction visits are shown in Figure 31. For BSM2 and GLMER1 

the courses of the predicted outcome stay the same over time, since no updating was done. 

BSM1 shows unremarkable changes of the predicted outcome over time. BDM1 and BDM2 up-

date the predicted outcome according to available data at the prediction visit. The development 

of ID 1’s random intercept and outcome of past visits seems to associate with the development 

of this ID’s outcome over time.  
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Figure 29. Random intercept estimated by Bayesian models vs. GLMER1 over time in LOOCV 

with validation ID = 1 
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Figure 30. Fixed effects estimated by Bayesian models vs. GLMER1 over time in LOOCV with validation ID = 1 
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Figure 31. Outcome predicted by Bayesian models vs. GLMER1 over time in LOOCV with validation ID = 1 
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3.3 Simulation ICC study 

3.3.1 Brier Score among Bayesian models 

Brier Score among the Bayesian models of different ICC scenarios are shown in Figure 32, Figure 

33, and Figure 34. Figure 32 shows the similarity between BSM1 and BSM2 regardless of the 

amount of available information (whether prediction was made at earlier or later visits) and the 

ICC that was defined in the simulation design. The same can be observed for BDM1 and BDM2. 

No remarkable differences between the two curves in each panel can be detected, whether pre-

diction was made at earlier or later visits, whether the ICC is relatively lower or higher. 

The comparison between BDM1 and BSM1 (Figure 34) reveals that the prediction performance 

of BDM1 is comparable with that of BSM1 for lower ICC. With higher ICC, BDM1 overperforms 

BSM1 and this overperformance seems to increase when more data from the past visits were 

available for prediction. 
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Figure 32. Impact of ICC on difference of performance between BSM1 and BSM2  
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Figure 33. Impact of ICC on difference of performance between BDM1 and BDM2  
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Figure 34. Impact of ICC on difference of performance between BSM1 and BDM1  
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3.3.2 Brier Score of Bayesian models vs. GLMER1 

Brier Score of BSM1 and BDM1, compared with GLMER1 in different ICC scenarios are shown 

in Figure 35 and Figure 36, respectively. The comparison between BSM2 and BDM2 with 

GLMER1 is omitted here, same results are expected because the Brier Score of BSM1 is similar 

to that of BSM2 and the Brier Score of BDM1 is similar to that of BDM2 (see 3.3.1).  

For ICCs lower than 0.9, BSM1 and GLMER1 show very similar prediction performance (Figure 

35). GLMER1 starts to overperform BSM1 with higher ICCs. The amount of information from past 

visits used for prediction does not seem to influence these observations. 

Figure 36 shows that BDM1 and GLMER1 perform similarly for lower ICCs. BDM1 starts overper-

forming GLMER1 with ICC larger than 0.4. This overperformance stays consistent with ICC > 0.5 

and seems to be more pronounced with more data available from the past visits. 
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Figure 35. Impact of ICC on difference of Brier Score between BSM1 and GLMER1  
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Figure 36. Impact of ICC on difference of Brier Score between BDM1 and GLMER1  
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3.3.3 Calibration of Bayesian models vs. GLMER1 

The following figures show the results of calibration for four Bayesian models and GLMER1 in 

three different scenarios: scenario 𝐼𝐶𝐶 = 0 in  

Figure 37 and Figure 40; scenario 𝐼𝐶𝐶 = 0.549 in Figure 38 and Figure 41; and scenario  𝐼𝐶𝐶 =

0.884 in Figure 39 and Figure 42. 

For scenario 𝐼𝐶𝐶 = 0, calibration of the prediction models that predicted future outcome at U2 

using data of U1 is depicted in  

Figure 37. All models show bad calibration. For other two higher ICC scenarios, BDM1 and 

BDM2’s overperformance can be observed for the prediction of future outcome at U2 using data 

of U1 (Figure 38 and Figure 39). Using accumulated data from U1 to U8 to predict data at U2, 

BDM1 and BMD2 show consistent overperformance. This consistency seems to be more pro-

nounced with ICC = 0.884 than with ICC = 0.549. 

 

 

Figure 37. Calibration of Bayesian models vs. GLMER1 predicting U2 outcome using U1 data - 

𝐼𝐶𝐶 = 0 
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Figure 38. Calibration of Bayesian models vs. GLMER1 predicting U2 outcome using U1 data - 

𝐼𝐶𝐶 = 0.549 
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Figure 39. Calibration of Bayesian models vs. GLMER1 predicting U2 outcome using U1 data - 

𝐼𝐶𝐶 = 0.884 
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Figure 40. Calibration of Bayesian models vs. GLMER1 predicting U9 outcome using cumulated data from U1 until U8- 𝐼𝐶𝐶 = 0 
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Figure 41. Calibration of Bayesian models vs. GLMER1 predicting U9 outcome using cumulated data from U1 until U8- 𝐼𝐶𝐶 = 0.549 
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Figure 42. Calibration of Bayesian models vs. GLMER1 predicting U9 outcome using cumulated data from U1 until U8-𝐼𝐶𝐶 = 0.884 
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3.3.4 Scaled Brier Score of Bayesian models vs. GLMER1 

For ICC =0, four Bayesian models performs similarly with GLMER1, regardless of number of past 

visits considered to predict future outcome. 

For higher ICC, which are 0.549 and 0.884, as respectively shown in Figure 44 and Figure 45, 

Scaled Brier Score of BDM1 and BDM2 reveal consistent overperformance of these models com-

pared to BSM1, BSM2, and GLMER1 over time. The Scaled Brier Score of BDM1 and BDM2 also 

show their overperformance compared to a non-informative model, and this overperformance 

seems to increase with increasing information of past visits used for prediction. 

 

 

Figure 43. Scaled Brier Score of Bayesian models vs. GLMER1 over time in simulation study - 

𝐼𝐶𝐶 = 0 

 

Figure 44. Scaled Brier Score of Bayesian models vs. GLMER1 over time in simulation study - 

𝐼𝐶𝐶 = 0.549 
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Figure 45. Scaled Brier Score of Bayesian models vs. GLMER1 over time in simulation study - 

𝐼𝐶𝐶 = 0.884 

3.3.5 Brier Skill Score 

3.3.5.1 Brier Skill Score of Bayesian models vs. GLMER1 

For ICC = 0, the similarity among models can also be shown with respect to BSS Figure 46.  

 

Figure 46. Brier Skill Score of Bayesian models over time in simulation study - 𝐼𝐶𝐶 = 0 

For higher ICC, BDM1 and BDM2 clearly overperforms BSM1, BSM2, and GLMER1. BSM1 and 

BSM2 show poorer performance compared with GLMER1. Both of these observations are more 

pronounced in scenarios with higher ICC (Figure 47 and Figure 48). 
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Figure 47. Brier Skill Score of Bayesian models over time in simulation study – 𝐼𝐶𝐶 = 0.549 

 

Figure 48. Brier Skill Score of Bayesian models over time in simulation study - 𝐼𝐶𝐶 = 0.884 

3.3.5.2 Brier Skill Score with “U1-model” as reference 

For ICC = 0, the similarity among models can be shown with respect to Brier Skill Score (Figure 

49).  
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Figure 49. Brier Skill Score of Bayesian models (reference = “U1-model”) over time in simulation 

study - 𝐼𝐶𝐶 = 0 

For ICC = 0.549, BDM1 and BDM2 models trained at later visits clearly overperforms those trained 

at U1. Later models of BSM1 and BSM2 show comparative performance compared with their “U1-

models”. This observation is more obvious in scenarios where ICC = 0.884 (Figure 50 and Figure 

51). 
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Figure 50. Brier Skill Score of Bayesian models (reference = “U1-model”)” over time in simula-

tion study – 𝐼𝐶𝐶 = 0.549 

 

Figure 51. Brier Skill Score of Bayesian models (reference = “U1-model”) over time in simulation 

study - 𝐼𝐶𝐶 = 0.884 
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3.3.6 Results at individual level - Simulation ICC study 

The following figures show the distribution of random intercept estimated by four Bayesian models 

and GLMER1 in difference ICC scenarios. The distribution of simulated values is depicted in grey. 

For BSM1, BSM2, and GLMER1, random intercept = 0 was assumed. In all ICC scenarios, these 

models show the same figures for the random intercepts. In scenario where ICC = 0, BDM1 and 

BDM2 estimated a 𝜏 different from 0. However, the variance of random intercept seems to be 

close to 0. 

 

Figure 52. Distributions of random intercepts over time – compared between Bayesian vs. 

GLMER1 models in simulation study with 𝐼𝐶𝐶 = 0 

 

Figure 53. Distributions of random intercepts over time – compared between Bayesian vs. 

GLMER1 models in simulation study with ICC= 0.233 

For lower ICC, it took several visits for BDM1 and BDM2 to be able to capture the distribution of 

the simulated random intercepts (Figure 53 and Figure 54). For higher ICC, this seems to happen 

right at U1 (Figure 55 and Figure 56) 
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Figure 54. Distributions of random intercepts over time – compared between Bayesian vs. 

GLMER1 models in simulation study with 𝐼𝐶𝐶 = 0.549 

 

 

Figure 55. Distributions of random intercepts over time – compared between Bayesian vs. 

GLMER1 models in simulation study with 𝐼𝐶𝐶 = 0.884 
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Figure 56. Distributions of random intercepts over time –compared between Bayesian vs. 

GLMER1 models in simulation study with 𝐼𝐶𝐶 = 0.968 

The following figures show results of one individual for three different ICC scenarios. Results of 

other selected IDs can be found online in the folder /supplementary_material/3.3.6. 

 

Figure 57. Random intercept estimated by Bayesian vs. GLMER1 models over time in LOOCV 

with validation ID = 1 in simulation study with 𝐼𝐶𝐶 = 0 
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Figure 58. Random intercept estimated by Bayesian vs. GLMER1 models over time in LOOCV 

with validation ID = 1 in simulation study with 𝐼𝐶𝐶 = 0.549 

 

Figure 59. Random intercept estimated by Bayesian vs. GLMER1 models over time in LOOCV 

with validation ID = 1 in simulation study with 𝐼𝐶𝐶 = 0.884 
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Figure 60. Outcome predicted by Bayesian vs. GLMER1 models over time in LOOCV with vali-

dation ID = 1 in simulation study with 𝐼𝐶𝐶 = 0 

 

Figure 61. Outcome predicted by Bayesian vs. GLMER1 models over time in LOOCV with vali-

dation ID = 1 in simulation study with 𝐼𝐶𝐶 = 0.549 
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Figure 62. Outcome predicted by Bayesian vs. GLMER1 models over time in LOOCV with vali-

dation ID = 1 in simulation study with 𝐼𝐶𝐶 = 0.884 

3.3.7 Influence of ICC and time on prediction performance 

Table 36 shows the output of the selected LMM. 

Table 36. Influence of ICC and time on Brier Score – Output of LMM 

term estimate std.error statistic df p.value

(Intercept) 0.009 0.004 2.232 479.821 0.026

icc 0.256 0.007 39.038 3344.784 0.000

udata_age_month 0.001 0.000 12.215 3351.057 0.000

modBDM1 0.045 0.006 7.975 3344.785 0.000

modBDM2 0.045 0.006 7.963 3344.785 0.000

modBSM1 -0.010 0.006 -1.819 3344.785 0.069

modBSM2 -0.010 0.006 -1.821 3344.785 0.069

icc:modBDM1 -0.210 0.009 -22.623 3344.785 0.000

icc:modBDM2 -0.210 0.009 -22.636 3344.785 0.000

icc:modBSM1 0.040 0.009 4.274 3344.785 0.000

icc:modBSM2 0.039 0.009 4.262 3344.785 0.000

udata_age_month:modBDM1 0.000 0.000 0.708 3344.785 0.479

udata_age_month:modBDM2 0.000 0.000 0.594 3344.785 0.552

udata_age_month:modBSM1 0.000 0.000 -0.678 3344.785 0.498

udata_age_month:modBSM2 0.000 0.000 -0.683 3344.785 0.494

icc:udata_age_month -0.001 0.000 -5.627 3344.785 0.000

icc:udata_age_month:modBDM1 -0.001 0.000 -2.858 3344.785 0.004

icc:udata_age_month:modBDM2 -0.001 0.000 -2.749 3344.785 0.006

icc:udata_age_month:modBSM1 0.000 0.000 1.672 3344.785 0.095

icc:udata_age_month:modBSM2 0.000 0.000 1.687 3344.785 0.092

sd__(Intercept) 0.003

sd__Observation 0.030  

For ICC = 0, directly after birth, on average, GLMER1 model would have a Brier Score of 0.009. 

At the same time, BDM1 and BDM2 show higher Brier Score, while the difference of BSM1 and 
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BSM2 compared with GLMER1 is not significant. The prediction performance of GLMER1 de-

creases with increasing ICC. For ICC = 0.5, a GLMER1 model trained directly after birth would 

have a Brier Score of 0.009 + 0.256 * 0.5 = 0.137. For the same ICC, BDM1 and BDM2 would 

have a Brier Score 0.009 + 0.045 + 0.256 * 0.5 - 0.210 * 0.5 = 0.077, while Brier Score of BSM1 

and BSM2 would be 0.009 -0.010 + 0.256*0.5+ 0.04 * 0.5 = 0.147. For ICC = 0, prediction per-

formance of GLMER1 for every month after birth would decrease by 0.001 (Brier Score unit). This 

effect is the same for all models. For ICC >0, the effect of time on Brier Score attenuates with 

increasing ICC for BDM1 and BDM2. For BSM1 and BSM2, this effect is not significant. 

Output of the selected LMM for MLRPEGLMER1 is presented in Table 39. Directly after birth, for a 

scenario where ICC is equal to 0, MLRPEGLMER1 of BSM2 is -0.002, indicating that GLMER1 per-

forms better than BSM2. RPE between GLMER1 and BDM1 and BDM2 are 𝑒−0.607= 0.545 and 

𝑒−0.846 = 0.429, respectively. MLRPEGLMER1 of BSM2 does not differ from that of BSM1 signifi-

cantly. With increasing ICC, MLRPE of BSM2 increases, indicating that BSM2 overperforms 

GLMER1 for higher ICC. For ICC = 0.5, directly after birth, on average, RPE of GLMER1 vs. 

BSM2 would be 𝑒−0.002 + 1.781 ∗ 0.5 = 2.431. For ICC = 0, this effect is the same for all other models. 

The interaction between ICC and model is not significant. For ICC = 0, RPE of GLMER1 vs. BSM2 

for every month after birth would decrease by 0.5%, which means that the overperformance of 

GLMER1 vs. BSM2 increases over time. For ICC = 0, this effect is the same for all other models. 

The interaction between time and model is not significant. However, for ICC>0, the overperfor-

mance of GLMER1 vs. BDM1 attenuates over time. Taking an example of ICC = 0.5, directly at 

birth RPE of GLMER1 vs. BDM1 would be 𝑒– 0.002 + 1.781 ∗ 0.5 – 0.607  = 1.325. At month 10 after birth, 

this RPE would increase to 𝑒– 0.002 + 1.781 ∗ 0.5 – 0.607 + 0.053 ∗ 0.5 ∗ 10 = 1.727. This effect is not signifi-

cant for BSM1. 

Table 37. Influence of ICC and time on MLRPE – Output of LMM 

term estimate std.error statistic df p.value

(Intercept) -0.002 0.135 -0.012 84.306 0.991

icc 1.781 0.184 9.668 2651.659 0.000

udata_age_month -0.005 0.003 -1.587 2658.767 0.113

modBDM1 -0.607 0.159 -3.825 2651.659 0.000

modBDM2 -0.846 0.158 -5.359 2651.658 0.000

modBSM1 -0.009 0.159 -0.060 2651.656 0.952

icc:modBDM1 -0.399 0.260 -1.532 2651.667 0.126

icc:modBDM2 -0.076 0.259 -0.292 2651.660 0.770

icc:modBSM1 0.025 0.260 0.095 2651.656 0.924

udata_age_month:modBDM1 -0.005 0.004 -1.131 2651.658 0.258

udata_age_month:modBDM2 -0.002 0.004 -0.521 2651.658 0.603

udata_age_month:modBSM1 0.000 0.004 0.077 2651.656 0.939

icc:udata_age_month -0.007 0.005 -1.465 2651.658 0.143

icc:udata_age_month:modBDM1 0.053 0.007 7.357 2651.665 0.000

icc:udata_age_month:modBDM2 0.049 0.007 6.908 2651.663 0.000

icc:udata_age_month:modBSM1 -0.001 0.007 -0.101 2651.656 0.920

sd__(Intercept) 0.211

sd__Observation 0.835  
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3.4 Supplementary analyses 

3.4.1 Extended GLMM models 

3.4.1.1 Relative prediction error of Bayesian models vs. GLMER4 

On average, the relative difference of prediction error between these two models GLMER4 vs. 

BSM1 is 𝑒−0.735 = 0.480 at U4. This indicates that GLMER4 predicts better than BSM1 at U4. This 

difference stays the same regardless of number of previous visits. The proportion of variance that 

can be explained by different visits is 
0.3402

1.4552+ 0.3402+0.1292 ∗  100% = 5.139%. Table 38 shows the 

estimated coefficients of the LMM. Figure 63 shows the distribution of the LRPE between 

GLMER4 and BSM1 over time. 

Table 38. Prediction performance of BSM1 vs. GLMER4 – quantified with LMM 

group term estimate std.error statistic df p.value

(Intercept) -0.735 0.140 -5.240 5.024 3.31E-03

udata:PseudoID sd__(Intercept) 1.455

udata sd__(Intercept) 0.340

Residual sd__Observation 0.129  

 



 140 

 

 

Figure 63. Prediction performance of GLMER4 vs. BSM1 over time in PEACHES study
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On average, the relative difference of prediction error between these two models GLMER4 vs. 

BSM2 is 𝑒−0.750 = 0.472 at U4. This indicates that GLMER4 predicts better than BSM2 at U4. This 

difference stays the same regardless of number of previous months. Table 39 shows the esti-

mated coefficients of the LMM. Figure 64 shows the distribution of the LRPE between GLMER4 

and BSM2 over time. 

Table 39. Prediction performance of BSM2 vs. GLMER4 - quantified with LMM 

group term estimate std.error statistic df p.value

(Intercept) -0.750 0.037 -20.375 970.223 4.21E-77

PseudoID sd__(Intercept) 1.044

Residual sd__Observation 1.077
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Figure 64. Prediction performance of GLMER4 vs. BSM2 over time in PEACHES study
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On average, the relative difference of prediction error between these two models GLMER4 vs. 

BDM1 is 0.306 at U4. This indicates that GLMER4 predicts better than BDM1 at U4. However, 

this difference reduces over time in a linear manner, but the reduction attenuates over time due 

to the non-linearity of the time effect. The proportion of variance that can be explained by different 

visits is 
0.6382

1.3392+ 0.6382+0.5372 ∗  100% = 16.358%.  Table 40 shows the estimated coefficients of the 

LMM. Figure 65 shows the distribution of the LRPE between GLMER4 and BDM1 over time.  

Table 40. Prediction performance of BDM1 vs. GLMER4 – quantified with LMM 

group term estimate std.error statistic df p.value

(Intercept) -1.418 0.261 -5.432 5.008 2.85E-03

months_from_u1 0.092 0.003 35.742 27401.288 1.68E-273

I(months_from_u1 2̂) -5.14E-03 3.00E-04 -17.123 27405.400 2.21E-65

I(months_from_u1 3̂) 1.34E-04 1.11E-05 12.105 27408.208 1.20E-33

I(months_from_u1 4̂) -1.19E-06 1.24E-07 -9.591 27410.130 9.45E-22

udata:PseudoID sd__(Intercept) 1.339

udata sd__(Intercept) 0.638

Residual sd__Observation 0.537
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Figure 65. Prediction performance of GLMER4 vs. BDM1 over time in PEACHES study
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On average, the relative difference of prediction error between these two models GLMER4 vs. 

BDM2 is 0.297 at U4. This indicates that GLMER4 predicts better than BDM2 at U4. However, 

this difference reduces over time in a linear manner but the reduction attenuates over time due to 

the non-linearity of the time effect. The proportion of variance that can be explained by different 

visits is 
0.6392

1.3392+ 0.6392+0.5422 ∗  100% = 16.366%.  Table 41 shows the estimated coefficients of the 

LMM. Figure 66 shows the distribution of the LRPE between GLMER4 and BDM2 over time. 

Table 41. Prediction performance of BDM2 vs. GLMER4 – quantified with LMM 

group term estimate std.error statistic df p.value

(Intercept) -1.422 0.262 -5.436 5.006 2.85E-03

months_from_u1 0.095 0.003 36.298 27401.459 8.25E-282

I(months_from_u1 2̂) -5.36E-03 3.03E-04 -17.692 27405.646 1.17E-69

I(months_from_u1 3̂) 1.42E-04 1.12E-05 12.683 27408.506 9.28E-37

I(months_from_u1 4̂) -1.27E-06 1.25E-07 -10.171 27410.463 2.94E-24

udata:PseudoIDsd__(Intercept) 1.339

udata sd__(Intercept) 0.639

Residual sd__Observation 0.542  
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Figure 66. Prediction performance of GLMER4 vs. BDM2 over time in PEACHES study
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Overall time effect (see 2.8) of the four Bayesian models is shown in the following table, when 

incorporating the non-linearity of time effects. RPE of GLMER4 versus BSM1 and BSM2 was 

shown to be around 1 over time, while RPE of GLMER1 versus BDM1 and BDM2 seems to in-

crease with increasing number of months from U1. These observations do not apply for timepoint 

60 months (U9). At this timepoint, GLMER4 performs more poorly than BSM1 and BSM2 and 

better than BDM1 and BDM2. 

Table 42. RPE of GLMER4 vs. Bayesian models in PEACHES study 

BSM1 BSM2 BDM1 BDM2

3 0.480 0.472 0.306 0.297

6 0.480 0.472 0.360 0.352

12 0.480 0.472 0.430 0.423

24 0.480 0.472 0.493 0.485

36 0.480 0.472 0.605 0.597

48 0.480 0.472 0.725 0.713

60 0.480 0.472 0.431 0.400

Number of 

months 

from U1

RPE of GLMER4 vs.

 

3.4.1.2 Brier Score of Bayesian vs. extended GLMM models 

Brier Score of the four Bayesian vs. four GLMM models are shown in Figure 67, where all GLMM 

models are depicted in grey. The curves of four GLMM models (four grey curves) and BSM2 are 

rigid over time and stay the same regardless of at which visit prediction was made. BSM1 and 

BSM2 are very close to each other. The same can be observed for BDM1 and BDM2. The pre-

diction performance of these two models improves with increasing number of past visits. From 

prediction visit U6, the improvement of BDM1 and BDM2 becomes more pronounced. Overall, 

BSM1 and BSM2 show the worst prediction performance. Figure 68 depicts the four GLMM mod-

els distinctively and shows the prediction performance of all eight models from prediction visit U4. 

Among the GLMM models, GLMER4 (depicted with purple curve) shows the best prediction per-

formance and GLMER1 (depicted with black curve) shows the worst prediction performance.
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Figure 67. Brier Score of Bayesian vs. all GLMM models in PEACHES study 
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Figure 68. Brier Score of Bayesian vs. all GLMM models, from U4 in PEACHES study
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3.4.1.3 Calibration of Bayesian models vs. GLMER4 

The calibration of GLMER4 and BSM2 predicting a certain future visit stays the same, regardless 

at which visit the prediction was made. GLMER4 shows better calibration than the Bayesian mod-

els at earlier prediction visits. BDM1 and BDM2 show improvement in calibration with increasing 

number of past visits and overperforms GLMER4 at the last or second last prediction visit. Cali-

bration of BSM1 seems to change over time. However, this change does not show a consistent 

trend over time. Results of the calibration of GLMER4 and the Bayesian models are shown in the 

following table.  
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Table 43. Calibration of Bayesian models vs. GLMER4 

Fut

ure 

visit

Pred

ictio

n 

visit

GLMER4 

Slope

GLMER4 

Intercept

BSM1 

Slope

BSM1 

Intercept

BSM2 

Slope

BSM2 

Intercept

BDM1 

Slope

BDM1 

Intercept

BDM2 

Slope

BDM2 

Intercept

U5 U1 0.828 0.066 0.248 0.129 0.329 0.124 0.224 0.112 0.218 0.113

U5 U2 0.828 0.066 0.619 0.108 0.329 0.124 0.139 0.124 0.138 0.124

U5 U3 0.828 0.066 0.849 0.096 0.329 0.124 0.433 0.084 0.430 0.085

U5 U4 0.828 0.066 0.523 0.114 0.329 0.124 0.864 0.026 0.867 0.025

U6 U1 0.768 0.103 0.647 0.134 0.847 0.111 0.330 0.136 0.346 0.133

U6 U2 0.768 0.103 0.705 0.127 0.847 0.111 0.265 0.151 0.269 0.150

U6 U3 0.768 0.103 0.904 0.105 0.847 0.111 0.454 0.112 0.467 0.109

U6 U4 0.768 0.103 0.735 0.123 0.847 0.111 0.770 0.046 0.763 0.047

U6 U5 0.768 0.103 0.838 0.112 0.847 0.111 1.005 -0.006 1.005 -0.006

U7 U1 0.665 0.169 0.259 0.265 0.332 0.250 0.176 0.265 0.134 0.277

U7 U2 0.665 0.169 0.376 0.241 0.332 0.250 0.078 0.295 0.084 0.293

U7 U3 0.665 0.169 0.248 0.267 0.332 0.250 0.283 0.235 0.300 0.230

U7 U4 0.665 0.169 0.427 0.230 0.332 0.250 0.427 0.192 0.418 0.194

U7 U5 0.665 0.169 0.236 0.269 0.332 0.250 0.584 0.143 0.575 0.146

U7 U6 0.665 0.169 0.306 0.255 0.332 0.250 0.725 0.102 0.728 0.102

U7a U1 0.719 0.132 0.594 0.157 0.600 0.156 0.274 0.187 0.248 0.194

U7a U2 0.719 0.132 0.735 0.133 0.600 0.156 0.201 0.209 0.225 0.202

U7a U3 0.719 0.132 0.651 0.147 0.600 0.156 0.319 0.176 0.309 0.179

U7a U4 0.719 0.132 0.716 0.136 0.600 0.156 0.485 0.130 0.497 0.127

U7a U5 0.719 0.132 0.542 0.167 0.600 0.156 0.620 0.091 0.624 0.090

U7a U6 0.719 0.132 0.681 0.142 0.600 0.156 0.742 0.058 0.747 0.057

U7a U7 0.719 0.132 0.643 0.149 0.600 0.156 0.970 -0.009 0.958 -0.006

U8 U1 0.876 0.099 0.515 0.166 0.710 0.136 0.424 0.138 0.392 0.146

U8 U2 0.876 0.099 0.462 0.174 0.710 0.136 0.349 0.161 0.353 0.159

U8 U3 0.876 0.099 0.629 0.149 0.710 0.136 0.438 0.137 0.437 0.138

U8 U4 0.876 0.099 0.585 0.156 0.710 0.136 0.627 0.090 0.620 0.092

U8 U5 0.876 0.099 0.520 0.165 0.710 0.136 0.734 0.062 0.720 0.065

U8 U6 0.876 0.099 0.538 0.163 0.710 0.136 0.818 0.041 0.823 0.040

U8 U7 0.876 0.099 0.691 0.140 0.710 0.136 0.948 0.004 0.944 0.005

U8 U7a 0.876 0.099 0.476 0.172 0.710 0.136 1.117 -0.037 1.116 -0.036

U9 U1 0.671 0.136 0.451 0.181 0.424 0.185 0.529 0.120 0.509 0.125

U9 U2 0.671 0.136 0.257 0.206 0.424 0.185 0.382 0.157 0.376 0.158

U9 U3 0.671 0.136 0.216 0.212 0.424 0.185 0.312 0.171 0.297 0.174

U9 U4 0.671 0.136 0.135 0.222 0.424 0.185 0.448 0.140 0.427 0.145

U9 U5 0.671 0.136 0.309 0.200 0.424 0.185 0.556 0.114 0.547 0.116

U9 U6 0.671 0.136 0.476 0.178 0.424 0.185 0.695 0.084 0.691 0.085

U9 U7 0.671 0.136 0.323 0.198 0.424 0.185 0.825 0.052 0.827 0.052

U9 U7a 0.671 0.136 0.362 0.193 0.424 0.185 0.959 0.024 0.954 0.025

U9 U8 0.671 0.136 0.264 0.205 0.424 0.185 1.085 -0.005 1.074 -0.002  
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3.4.1.4 Scaled Brier Score of Bayesian models vs. GLMER4 

Results of SBS show overall overperformance of BDM1 and BDM2 compared to GLMER4 and 

BSM1 as well as BSM2. Only at U6 and later visits, BDM1 and BDM2 clearly perform better than 

a non-informative model.  

 

Figure 69. Scaled Brier Score over time in PEACHES study 

3.4.1.5 Brier Skill Score of Bayesian models vs. GLMER4 

When considering GLMER4 as the reference model, BSS of the Bayesian models show con-

sistent overperformance of BDM1 and BDM2 from prediction visit U5. BSM1 and BSM2 performs 

consistently worse than GLMER4. 

 

Figure 70. Brier Skill Score vs. GLMER4 over time in PEACHES study 
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3.4.2 Comparing models using error rate 

Using error rate reveals overall similar results of measures related to absolute predicted proba-

bility and Brier Score. However, the distinction between models seems to be less pronounced if 

comparing models using error rate. Also, the small changes of BSM1 over time become indetect-

able if using error rate. For a certain future visit, BSM1 shows the same error rate regardless of 

the prediction visit considered. These observations apply for the PEACHES (Table 44, Figure 72 

and Figure 71) as well as the simulation main study (Table 45 and Figure 73).  

Table 44. Error rate of Bayesian models vs. GLMER1 over time in PEACHES study 

GLMER1 BSM1 BSM2 BDM1 BDM2

U1 U2 0.034 0.034 0.034 0.034 0.034

U1 U3 0.088 0.088 0.088 0.088 0.088

U1 U4 0.104 0.104 0.104 0.103 0.103

U1 U5 0.142 0.142 0.142 0.150 0.152

U1 U6 0.205 0.205 0.205 0.232 0.231

U1 U7 0.317 0.317 0.317 0.338 0.338

U1 U7a 0.262 0.262 0.262 0.282 0.283

U1 U8 0.245 0.245 0.245 0.259 0.259

U1 U9 0.240 0.240 0.240 0.245 0.245

U2 U3 0.088 0.088 0.088 0.100 0.100

U2 U4 0.104 0.104 0.104 0.121 0.121

U2 U5 0.142 0.142 0.142 0.162 0.162

U2 U6 0.205 0.205 0.205 0.231 0.228

U2 U7 0.317 0.317 0.317 0.339 0.339

U2 U7a 0.262 0.262 0.262 0.285 0.285

U2 U8 0.245 0.245 0.245 0.259 0.260

U2 U9 0.240 0.240 0.240 0.246 0.246

U3 U4 0.104 0.104 0.104 0.114 0.110

U3 U5 0.142 0.142 0.142 0.162 0.163

U3 U6 0.205 0.205 0.205 0.218 0.220

U3 U7 0.317 0.317 0.317 0.332 0.332

U3 U7a 0.262 0.262 0.262 0.293 0.294

U3 U8 0.245 0.245 0.245 0.264 0.267

U3 U9 0.240 0.240 0.240 0.263 0.265

U4 U5 0.142 0.142 0.142 0.148 0.154

U4 U6 0.205 0.205 0.205 0.204 0.205

U4 U7 0.317 0.317 0.317 0.323 0.325

U4 U7a 0.262 0.262 0.262 0.276 0.280

U4 U8 0.245 0.245 0.245 0.253 0.253

U4 U9 0.240 0.240 0.240 0.251 0.256

U5 U6 0.205 0.205 0.205 0.180 0.183

U5 U7 0.317 0.317 0.317 0.301 0.304

U5 U7a 0.262 0.262 0.262 0.253 0.254

U5 U8 0.245 0.245 0.245 0.232 0.232

U5 U9 0.240 0.240 0.240 0.248 0.246

U6 U7 0.317 0.317 0.317 0.292 0.292

U6 U7a 0.262 0.262 0.262 0.244 0.243

U6 U8 0.245 0.245 0.245 0.222 0.224

U6 U9 0.240 0.240 0.240 0.236 0.241

U7 U7a 0.262 0.262 0.262 0.212 0.222

U7 U8 0.245 0.245 0.245 0.209 0.206

U7 U9 0.240 0.240 0.240 0.214 0.216

U7a U8 0.245 0.245 0.245 0.182 0.185

U7a U9 0.240 0.240 0.240 0.206 0.209

U8 U9 0.240 0.240 0.240 0.188 0.188

Error ratePrediction 

made at 

timepoint

Future 

timepoint 

to be 

predicted
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Figure 71. Error rate of Bayesian models vs. GLMER1 over time – PEACHES study 
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Figure 72. Error rate of Bayesian models vs. GLMM models over time – PEACHES study 

 



 156 

Table 45. Error rate of Bayesian models vs. GLMER1 over time in simulation main study 

GLMER1 BSM1 BSM2 BDM1 BDM2

U1 U2 0.054 0.054 0.054 0.054 0.054

U1 U3 0.057 0.057 0.057 0.057 0.057

U1 U4 0.107 0.107 0.107 0.107 0.107

U1 U5 0.113 0.113 0.113 0.112 0.115

U1 U6 0.161 0.161 0.161 0.167 0.167

U1 U7 0.222 0.222 0.222 0.204 0.204

U1 U7a 0.199 0.199 0.199 0.191 0.191

U1 U8 0.183 0.183 0.183 0.167 0.167

U1 U9 0.158 0.158 0.158 0.156 0.156

U2 U3 0.057 0.057 0.057 0.061 0.061

U2 U4 0.107 0.107 0.107 0.103 0.103

U2 U5 0.113 0.113 0.113 0.107 0.107

U2 U6 0.161 0.161 0.161 0.164 0.162

U2 U7 0.222 0.222 0.222 0.198 0.198

U2 U7a 0.199 0.199 0.199 0.184 0.185

U2 U8 0.183 0.183 0.183 0.165 0.163

U2 U9 0.158 0.158 0.158 0.152 0.153

U3 U4 0.107 0.107 0.107 0.103 0.104

U3 U5 0.113 0.113 0.113 0.110 0.110

U3 U6 0.161 0.161 0.161 0.150 0.150

U3 U7 0.222 0.222 0.222 0.194 0.190

U3 U7a 0.199 0.199 0.199 0.185 0.180

U3 U8 0.183 0.183 0.183 0.163 0.166

U3 U9 0.158 0.158 0.158 0.143 0.143

U4 U5 0.113 0.113 0.113 0.116 0.114

U4 U6 0.161 0.161 0.161 0.151 0.151

U4 U7 0.222 0.222 0.222 0.194 0.195

U4 U7a 0.199 0.199 0.199 0.179 0.179

U4 U8 0.183 0.183 0.183 0.161 0.161

U4 U9 0.158 0.158 0.158 0.134 0.134

U5 U6 0.161 0.161 0.161 0.145 0.144

U5 U7 0.222 0.222 0.222 0.190 0.190

U5 U7a 0.199 0.199 0.199 0.173 0.173

U5 U8 0.183 0.183 0.183 0.153 0.153

U5 U9 0.158 0.158 0.158 0.138 0.138

U6 U7 0.222 0.222 0.222 0.184 0.184

U6 U7a 0.199 0.199 0.199 0.163 0.169

U6 U8 0.183 0.183 0.183 0.156 0.160

U6 U9 0.158 0.158 0.158 0.131 0.131

U7 U7a 0.199 0.199 0.199 0.163 0.163

U7 U8 0.183 0.183 0.183 0.147 0.147

U7 U9 0.158 0.158 0.158 0.131 0.129

U7a U8 0.183 0.183 0.183 0.152 0.150

U7a U9 0.158 0.158 0.158 0.122 0.122

U8 U9 0.158 0.158 0.158 0.125 0.131

Error ratePrediction 

made at 

timepoint

Future 

timepoint 

to be 
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Figure 73. Error rate of Bayesian models vs. GLMER1 over time - simulation main study 

 



 158 

3.4.3 Analyses with smaller sample size 

For PEACHES and the simulation main study, analyses with sample size of 100 do not differ than 

those with sample size of 1,000. See Appendix B3 (provided in the folder supplementary_ma-

terial/) for detailed results of analyses with sample size of 100. 

3.5 Literature search 

Literature search in Google Scholar identified 24 cited and 101 related articles. After removing 

duplicates, 99 articles were identified. After title screening, 22 articles were considered as relevant 

to enter screening of abstract and full text, if available. 38 references of Jenkins et al. 2018 

(Jenkins et al., 2018) and 37 references of Jenkins et al. 2021 (Jenkins et al., 2021) were also 

taken into consideration to identify methods dealing with dynamic prediction models in clinical or 

epidemiological context.  

After the first screening (by their titles), 41 articles were selected and assigned into different 

groups: 1) systematic or non-systematic review about dynamic prediction, 2) dynamic prediction 

modelling approaches, 3) related methodological aspects, and 4) examples of dynamic prediction 

models in different clinical contexts. Refer to Appendix C: Results of literature search for the list 

of the selected articles. 
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3.6 Summary of the results 

In PEACHES study, BSM1 and BSM2 show overall similar prediction errors as GLMER1. Even 

though these two Bayesian models seem to perform better than GLMER1 at early visits. However, 

this overperformance is marginal. On the other hand, GLMER1 overperforms BDM1 and BDM2 

at early visits. At later visits, BDM1 and BDM2 start overperforming GMLER1 but then performs 

more poorly at the end of the study time period. Brier Score of BSM1 and BSM2 are comparable 

with GLMER1’s Brier Score, while model updating results in better prediction performance over 

time. From visit U4, better calibration of BDM1 and BDM2 compared to GLMER1 can be ob-

served. Calibration of BDM1 and BDM2 improves with increasing amount of available information 

for prediction, while BSM1, BSM2, and GLMER1 show bad calibration, regardless of which pre-

diction visit is considered. Comparing Bayesian models versus GLMER1 using scaled Brier Score 

and Brier Skill Score revealed overperformance of BDM1 and BDM2 to BSM1, BSM2, and 

GLMER1. This overperformance can be observed at later visits. BSM1 and BSM2 show similar 

performance as GLMER1. Brier Skill Score with “U1-model” as reference showed that overper-

formance to “U1-model” can be observed for BDM1 and BDM2 at later visits. Results of the com-

parison with GLMER4 show that within the observation period, GLMER4 consistently overper-

forms Bayesian models at early visits. However, it can be shown that with increasing amount of 

information, model updating in BDM1 and BDM2 leads to improvement in prediction. Results of 

the analyses with error rates show similar but less pronounced results. Overall, results of the 

analyses with sample size of 100 are comparable those with sample size of 1,000.  

Results of the simulation main study agreed with those of PEACHES study. The analyses of 

overall time effect on relative prediction errors in simulation main study showed that GLMER1 

performs more poorly than BSM1 and BSM2, regardless of the amount of data used for prediction. 

The overperformance of BDM1 and BDM2, which was observed with Brier Skill Score and Scaled 

Brier Score seems to be more pronounced in the simulation settings. Results of the simulation 

ICC study show that ICC strongly influences the better prediction performance of BDM1 and 

BDM2 compared with GLMER1. The higher ICC, in other words, the higher the variance of ran-

dom intercepts is, the more pronounced is the overperformance of BDM1 and BDM2. Results of 

analyses at individual level in the simulation ICC study show that the more amount of information 

from past visits, the better BDM1 and BDM2 can capture the overall distribution of the simulated 

random intercepts. 
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4. Discussion 

This section will discuss the following points: 1) results of PEACHES study, 2) results of simulation 

main study and the agreement as well as disagreement of PEACHES vs. simulation study, 3) 

results of simulation ICC study and the role of ICC on usefulness of dynamic approaches, 4) 

presumptions made in this thesis, 5) well-known challenges of dynamic approaches as well as 

new insights that this thesis gives, and 6) limitations of this thesis and perspective for future re-

search, 

Results of PEACHES study 

Different measures of prediction performance, which are Brier Score, calibration, scaled Brier 

Score, LRPE, and Brier Skill Score provided different perspectives but agreed on the benefit of 

dynamic models (BDM1 and BDM2) at later visits. While Brier Score, calibration, and scaled Brier 

Score are absolute measures that stand alone for each model, LRPE and Brier Skill Score con-

sider GLMER1 as reference and serve as relative comparison measures. Because of the static 

character of BSM2 and GLMER1, it is expected that the absolute prediction performance 

measures of these models stay constant, regardless of at which visit the prediction was made. It 

is also expected that BDM1 and BDM2, due to their capability of updating and “adapting” the 

prediction according to the amount of available information, offer better prediction performance. 

Both expectations could be observed in this research work. BSM1 owns a semi-dynamic charac-

ter and provides updates of the outcome according to updated outcome values from previous 

values. The model specification, however, stays the same over time. It was interesting to see that 

the flexibility that BSM1 offers is not sufficient to improve prediction performance. At the aggre-

gated level, no profound difference between BDM1 and BDM2 could be observed. This indicates 

that in this study setting, updating fixed effects does not add any benefit to improve prediction 

performance of the models. Thus, it can be concluded that updating random effects leads to the 

improvement of the two dynamic approaches over time.  

One of the objectives of this research work was to examine from which time point the overperfor-

mance of the dynamic approaches becomes visible. Graphically, Brier Score, calibration, scaled 

Brier Score, and Brier Skill Score showed that this turning point seems to happen at U4 (about 3 

months after birth) or U5 (about 6 months after birth). I believe it could not be observed earlier 

because of the nature of this study setting, and not necessarily because of the model specifica-

tions. In the first living months, weight and height measurements are more prone to measurement 

errors of different sources (Alsop-Shields and Alexander, 1997). Measurement errors introduced 

by deviating measuring practices at different medical facilities, with different newborn scales (in-

struments that are used to measure newborns’ weight and height) or by different pediatric nurses 

also play a role in introducing randomness of measurement. These again are difficult to be incor-

porated into and explained by regression models. In this way, measurement errors can affect 

model’s prediction performance substantially. 

While Brier Score, calibration, scaled Brier Score, and Brier Skill Score describe models’ predic-

tion performance at an aggregated level, LMMs with LRPE attempted to quantify the difference 

at an individual level. Results of the LMM give insights about the turning point of improvement of 

Bayesian models for a single individual for the same future visit. These results suggest that for 
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BSM1 and BSM2, there is no such turning point, while for both BDM1 and BDM2 this turning point 

happens between U7 (24 months after birth) and U7a (36 months after birth). 

In the LMMs quantifying the influence of amount of information on LRPE of GLMER1 vs. BSM1, 

BDM1, and BDM2, random intercepts on the level of prediction visit and on the individual level 

were allowed in the model specification. It was necessary since predictions for the same visit and 

of the same individual are naturally correlated. Analysis of variance shows that for BSM1, BDM1, 

and BDM2, the fitted LMM can describe the association of time and LRPE quite well, while the 

course of LRPE over time between GLMER1 and BSM2 can rather be explained with random-

ness. The LMMs estimated the proportion of variances explained by different future visits and 

these numbers are comparable among BSM1, BDM1, and BDM2. These numbers are 19.37%, 

20.85%, and 20.63%, respectively. For BSM2, since prediction was made once at U1, this number 

is practically 0%. The proportion of variances explained by individuals are 45.60%, 49.08%, 

49.05% for BSM1, BDM1, and BDM2, respectively. This number is 9.55% for BSM2.  

Regarding results of GLMER1 vs. BSM1 and BSM2: even though the prediction mechanism of 

BSM2 and GLMER1 is similar, the probability of being at risk of overweight predicted by these 

two models showed deviations. These observations are expected, because GLMER1 uses the 

log-odd link function to get the binary outcome, while BSM2 uses Bernoulli distribution to obtain 

the outcome. Even though BSM1 allows no model updating, it uses the available outcome values 

until the time of prediction as part of the data and get the predicted outcome. Therefore, BSM1 

offers more flexibility than BSM2 and GLMER1, in a way that outcome is updated  

Regarding results at individual level of selected children, BDM1 and BDM2 show certain differ-

ences. Since fixed effects are not updated over time, if bias is introduced at U1, it will not be 

adjusted for in BDM1, while BDM2 provides updates of these estimates over time. BDM2 thus 

shows lower bias with respect to model estimate of the fixed effects. On the other hand, BDM1 

seems to adjust the random intercept to adapt to changes in outcome over time. The detailed 

update process of model components in ten individuals were depicted to examine the effect of 

updating over time for BDM1 and BDM2. Expected values of random intercepts were shown to 

develop in different directions but standard error seemed to decrease over time. The updates of 

outcome over time seemed to directly relate to the updates of random intercepts. No timely trend 

in the development of the fixed effects were observed. Since only ten individuals were examined, 

these results cannot be generalized. 

The updating effect could also be observed at the population level. While estimate of each random 

intercept tends to become more precise over time, variance of the overall distribution of RI in-

creases with the increasing amount of available information from previous visits. 

Results of simulation main study 

All in all, results of the simulation main study show great agreement with the findings in PEACHES 

study. This simulation study aimed to imitate the study settings but introduce more control over 

the data. Randomness due to potential measurement errors was introduced into the model in a 

controlled way. At the aggregated level, Brier Score, calibration, and scaled Brier score agree on 

the consistent overperformance of BDM1 and BDM2 from prediction visit U1 (at birth). Interest-

ingly, the results at individual level revealed that within the simulated time frame (birth until about 

five years after birth), no turning point could be observed, while results of PEACHES study sug-

gest that BDM1 and BDM2 overperform GLMER1 at U7a and U8. Despite this deviation, I believe 

results of both studies agree in one point: since LRPE describes relative prediction performance 
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at individual level, it is inadequate to describe the overall performance of a model. For this reason, 

it fails to detect the overperformance of BDM1 and BDM2 at the aggregated level. 

Results at individual level at time point U9 differ from what has been discussed in the previous. 

Specifically, while in PEACHES and simulation main study, from U1 to U8, LRPE seemed to 

decrease, the timely trend of LRPE for BDM1 and BDM2 was not observed for U9. Because of 

the substantial proportion of missing data at U9, which is about 40% (Table 2), results at this 

timepoint need be interpreted with care. 

Results of simulation ICC study 

Among Bayesian models, regardless of ICC, the prediction performance of BSM1 vs. BSM2 as 

well as the prediction performance of BDM1 vs. BDM2 are comparable. This implies that rather 

updating random intercepts contributes on the improvement of prediction performance. Using all 

available outcome from previous visits to update the future outcome is not sufficient to improve 

prediction performance. Updating model’s fixed effects over time introduces extra flexibility into 

the model but might not be necessary in this study setting. 

Comparing Bayesian models with GLMER1 in different ICC scenarios revealed a significant influ-

ence of ICC on the difference of models’ prediction performance. With increasing ICC, the over-

performance of the Bayesian models is more distinctive. The overperformance of Bayesian ap-

proaches start showing at ICC about 0.5. With the same study settings, dynamic approaches 

might only be relevant for populations with ICC greater than 0.5. For populations with ICC smaller 

than 0.5, traditional approaches might be more suitable. This points out that the clinical relevance 

of the overperformance needs always be considered when assessing the usefulness of dynamic 

versus traditional prediction approaches. 

This research work also aimed to answer the question to what extent ICC would influence the 

overperformance of dynamic approaches, if any observed. Results of the ICC study revealed that 

ICC as well as its interaction with amount of available information (measured with number of 

previous months) significantly associate with the improvement of BDM1 and BDM2 compared 

with GLMER1, while the amount of available information alone does not show any significant 

effect. 

Description of the updating process at individual level revealed that with higher ICC, the updating 

effect described above for PEACHES study is visible at earlier visits. As expected, for ICC = 0, 

which means the random intercepts are homogenously equal to 0, such updating effect was not 

observed, either at population or at individual level. 

Presumptions 

It was assumed that it is common practice in Germany for parents to comply with the recom-

mended time frame of the well-child visits. Therefore, in most of the analyses, discrete time vari-

ables presented as well-child visits were considered. This simplification in presenting the results 

might fail to visualize the actual time distance between visits. However, it has an advantage of 

making the interpretation of the aggregated results more clearly.  

In this thesis, it was assumed that time effects that underlie the shape of the growth curve within 

their first five living years in PEACHES study population are “true” ones and need not be modified 

over time. The necessity for refitting the time model was not addressed. However, in the literature, 

the tendency of favoring small model updates over complete model revision was observed (Davis 

et al., 2019a, Houwelingen and Thorogood, 1995, Janssen et al., 2008, Steyerberg et al., 2004, 
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Vergouwe et al., 2017). Therefore, I believe the assumption made is acceptable and helps gain 

focus on the main objective of this thesis. 

In three extended GLMM models, the following exposure variables were additionally considered: 

mother’s pre-conceptional obesity status, child’s largeness for gestational age, child’s BMI Z-

score at U1, and child’s risk of overweight at U4. The choice of these variables was based on 

informal discussion with the study team. Including these variables mainly aims to introduce com-

plexity and interaction into the model, rather than investigate the underlying medical mechanism 

of developing risk of overweight in children. Whether other exposure variables should be included 

is not within the scope of this thesis and needs be examined separately. 

Well-known challenges of dynamic approaches and new insights 

Published works identified from the literature review all agree on advantages of dynamic predic-

tion models to improve future prediction. Dynamic model update offers possibilities to overcome 

initial sampling bias (Finkelman et al., 2016, Janssen et al., 2008) and improving model calibration 

over time (Finkelman et al., 2016), to tackle the issue of calibration drift and was shown to be a 

good alternative of static approaches (Siregar et al., 2016) such as periodic recalibration (Hickey, 

2013). While extensive model revision suffers from overfitting, thus harms prediction performance 

(Steyerberg et al., 2004), dynamic model update provides small corrections over time that improve 

predictive performance but keeps the variance-bias trade-off in good balance (Steyerberg et al., 

2004, Vergouwe et al., 2017). 

Lenert et al. addressed the following issue as nature of prediction models, that the more effective 

a prediction model is, the faster it became useless (Lenert et al., 2019). Especially in interventional 

settings, where patients receive treatment over time, and if this treatment improves patients’ out-

come, it will naturally result in degrading of the prognostic model. The authors suggested to in-

corporate treatment in the model and also proposed that model updating is the most effective way 

to tackle this issue (Lenert et al., 2019). Results of the comparison between Bayesian models 

versus GLMER4 in this thesis agree with this proposal in a way that they showed the potential 

ability of dynamic approaches to adapt the models according to individuals’ longitudinal outcome 

alone without incorporating other possible confounders or influencing factors. In a setting of com-

plex intervention, where treatment effect over time cannot be modeled easily, dynamic ap-

proaches might be able to offer good solution to improve prediction performance. 

This thesis gave new insights about factors that could influence the usefulness of dynamic ap-

proaches in a study setting with repeated measurements. The focused literature review showed 

that current literature has not dealt with the same question yet. In another context, a (simulated) 

clustered data setting, results from the study by Finkelman et al. could show that dynamic ap-

proaches are superior to static approaches with regard to prediction accuracy and more robust in 

situation of misspecified relationship between outcome and cluster size (Finkelman et al., 2016). 

The authors suggested that best results can be obtained when high-quality data is used 

(Finkelman et al., 2016). Another conclusion of this study indicated the improved prediction accu-

racy by using dynamic models with increasing values of variance of random intercepts (Finkelman 

et al., 2016), which agrees with the findings of this thesis. The authors stated that using the ran-

dom intercept could account for the inter-cluster variability and therefore offered better prediction 

accuracy than static models and the dynamic linear models. 

Dynamic approaches might need time to be improved and adapted to achieve acceptable grade 

of overperformance compared with traditional approaches. For this reason, they are probably 
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rather appropriate for long-term settings like chronic diseases or cohorts with long follow-up pe-

riod. It needs also be mentioned that the use of dynamic approaches is related to data collection 

over multiple follow-up visits, which can increase effort and cost of conducting studies. 

Generally, it is challenging to implement dynamic models as handy and portable tools for health 

care professionals and to make it easy for health care professionals as well as patients to com-

prehend and communicate these models with one another. However, I agree with Hickey et al. 

that with the current trend of digitalization in health care, the fast development of information 

technologies, as well as health care professionals’ and patients’ increasing contacts with digital 

tools in their work and daily routine, this challenge can be tackled in a near future (Hickey et al., 

2013, Jenkins et al., 2021). 

There is also a trade-off between complexity and prediction precision that needs be considered. 

It is therefore important to understand what factors influence the usefulness of the dynamic ap-

proaches, in order to make a decision for or against the use of such approaches as an alternative 

to traditional prediction approaches. 

Due to these challenges, there is a necessity to examine the usefulness of dynamic approaches 

in the preparing stage of research. With simulation studies, different scenarios of unknown pa-

rameters can be considered and simulated. The usefulness of dynamic approaches and its influ-

encing factors can then be investigated, in order to make a judgement whether it is worth applying 

a dynamic instead of traditional approach. Cost-utility analyses can also be performed to evaluate 

the use of dynamic approaches. Such analyses can, for instance, aim to answer the question how 

much monetary unit it would cost additionally to lower a prediction error by a certain percentage, 

which is clinically relevant for the settings. In prevention studies this objective could certainly be 

interesting. 

In a medical point of view, this research work also pointed out potential breakpoints in children’s 

growth curve from birth until five years of age that might be worth being further investigated and 

validated in future research. 

Limitations and perspective for future research 

The thesis did not aim to examine the medical mechanism that underlies the growth curve of 

PEACHES children over five years of observation but rather compare different Bayesian ap-

proaches that describe these curves with traditional regression models. For this reason, the re-

sults of this research work cannot provide any inference on the epidemiology of children’s over-

weight. Exposure variables in extended models were chosen in an informal way. Therefore, in-

terpretation of these models’ output needs be done with care. 

In the foreseeable future, analyses can be performed to gain a deeper look into the medical mech-

anisms that underlie child’s development of risk for overweight by incorporating other mother’s 

child’s markers. Maternal glycated hemoglobin at delivery has been shown to associate with 

child’s large-gestational-age status (Ensenauer et al., 2015). After a model is trained and tested, 

validation study can be done with the validation data set that was set aside in this research work 

but not yet used. The ultimate goal would be to provide health care professionals a prediction 

tool, which offers good prediction performance and straight forward to communicate. 

Future research can focus on the question whether adding more complexity (covariates) into a 

dynamic model would bring essential improvement in prediction performance. Time model for the 

shape of the growth curve can be updated over time. It will be then possible that at each prediction 

visit, new time effects will be added into the model. Model updating will be not limited with updating 
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random intercepts or fixed effects but also updating its structure. The best model can be trained 

selected with training dataset, then tested with cross-validation and compared with other ap-

proaches. It can also be investigated in which settings more complex dynamic approaches are 

needed and, where using the data itself for model updating would be sufficient. 

In this thesis, models updated after a single individual comes into the study and after each well-

child visit of the same child. The benefit of the dynamic model might be more visible if updates 

done after more than one individual comes into the study. For instance, Davis et al. suggested 

model retraining if the number of individuals in the new data set is great enough but recommended 

small model corrections if the new data set is small (Davis et al., 2019a). The effect of sample 

size of new data set on the usefulness of dynamic approaches in similar study settings as 

PEACHES study needs be examined in future research. 

This thesis aims to compare different approaches with regard to prediction performance. To do 

so, different numeric as well as graphical measures were applied. Score-based measures like 

(scaled) Brier score, Brier skill score or calibration intercepts or slopes give an insight into the 

quantitative difference of prediction performance of the different models, while graphical 

measures like calibration plots offer an overall visual comparison of these differences over all 

observation timepoints. The relative prediction error offers a better insight when comparing two 

specific models with each other. This measure also gives the approximate timepoint, where a 

specific model shows its overperformance compared to the other. Each of this applied measure 

offers insights from a different angle. In this thesis, no investigation was made to determine the 

superior measure of all. 

Usefulness of dynamic approaches can be examined in a broader context, such as biomarker 

studies. In such a context, not only time and patient’s outcome are considered in the model, but 

also time-varying biomarkers and/or treatment schemes. 

Diagnosis and parameter tuning for Bayesian models as well as the handling of missing data in 

PEACHES study were not within the scope of this research work and is worth being studied in 

future research. Cohort and follow-up studies are probably study settings, where dynamic ap-

proaches can be implemented and made use. Missing data due to loss-to-follow-up in such set-

tings is a well-known issue. It is also worth to examine to what extent which mechanisms of miss-

ing data influences the usefulness of dynamic approaches. 

All in all, dynamic prediction methods, despite the well-known challenges they bring with them, 

are shown to have the potential to offer advantages over traditional prediction methods. Some of 

the challenges can be tackled with the development of information technologies. However, it is 

necessary to carefully evaluate the usefulness of dynamic approaches, considering feasible and 

established alternative approaches. The evaluation also needs be done closely within the context 

of the study assumptions and settings. 
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Appendix A: Technical information 

R version 4.0.4 (2021-02-15) 

Platform: x86_64-pc-linux-gnu (64-bit) 

Running under: Debian GNU/Linux bullseye/sid 

 

Matrix products: default 

BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0 

LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0 

 

locale: 

 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               

LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8     

 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    

LC_PAPER=en_US.UTF-8       LC_NAME=C                  

 [9] LC_ADDRESS=C               LC_TELEPHONE=C             

LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C        

 

attached base packages: 

[1] stats     graphics  grDevices utils     datasets  methods   base      

 

other attached packages: 

 [1] latex2exp_0.5.0      gridExtra_2.3        ggrepel_0.9.1        

foreach_1.5.1        forcats_0.5.1        

 [6] stringr_1.4.0        purrr_0.3.4          readr_1.4.0          

tidyr_1.1.2          tibble_3.0.6         

[11] tidyverse_1.3.0      mcmcplots_0.4.3      coda_0.19-4          

rstudioapi_0.13      R2OpenBUGS_3.2-3.2.1 

[16] simstudy_0.2.1       DT_0.17              shiny_1.5.0          

ggpubr_0.4.0         dplyr_1.0.4          

[21] plyr_1.8.6           ggplot2_3.3.3        openxlsx_4.2.3       

broom.mixed_0.2.6    lmerTest_3.1-3       

[26] lme4_1.1-26          Matrix_1.3-2         

 

loaded via a namespace (and not attached): 

 [1] minqa_1.2.4         colorspace_2.0-0    ggsignif_0.6.0      

ellipsis_0.3.1      rio_0.5.16          rprojroot_2.0.2     

 [7] fs_1.5.0            farver_2.0.3        fansi_0.4.2         

lubridate_1.7.9.2   xml2_1.3.2          codetools_0.2-18    

[13] splines_4.0.4       pkgload_1.1.0       jsonlite_1.7.2      

nloptr_1.2.2.2      broom_0.7.4         dbplyr_2.1.0        
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[19] rjags_4-10          sfsmisc_1.1-8       compiler_4.0.4      

httr_1.4.2          backports_1.2.1     assertthat_0.2.1    

[25] fastmap_1.1.0       cli_2.3.0           later_1.1.0.1       

htmltools_0.5.1.1   tools_4.0.4         gtable_0.3.0        

[31] glue_1.4.2          reshape2_1.4.4      Rcpp_1.0.6          

carData_3.0-4       cellranger_1.1.0    vctrs_0.3.6         

[37] nlme_3.1-152        iterators_1.0.13    testthat_3.0.1      

rvest_0.3.6         mime_0.9            lifecycle_0.2.0     

[43] statmod_1.4.35      rstatix_0.6.0       MASS_7.3-53.1       

scales_1.1.1        hms_1.0.0           promises_1.1.1      

[49] parallel_4.0.4      TMB_1.7.18          curl_4.3            

stringi_1.5.3       desc_1.2.0          boot_1.3-27         

[55] zip_2.1.1           rlang_0.4.10        pkgconfig_2.0.3     

lattice_0.20-41     htmlwidgets_1.5.3   labeling_0.4.2      

[61] tidyselect_1.1.0    magrittr_2.0.1      R6_2.5.0            

generics_0.1.0      DBI_1.1.1           pillar_1.4.7        

[67] haven_2.3.1         foreign_0.8-81      withr_2.4.1         

abind_1.4-5         modelr_0.1.8        crayon_1.4.0        

[73] car_3.0-10          denstrip_1.5.4      utf8_1.1.4          

grid_4.0.4          readxl_1.3.1        data.table_1.13.6   

[79] reprex_1.0.0        digest_0.6.27       xtable_1.8-4        

httpuv_1.5.5        numDeriv_2016.8-1.1 munsell_0.5.0       
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Appendix B: Supplementary results 

Appendix B1. Selected time effects that associate with BMI-Z score  

The following model output describes the chosen model after backward selection for PEACHES 

data set. 

Linear mixed model fit by REML. t-tests use Satterthwaite's method 

['lmerModLmerTest'] 

Formula: zbmi ~ months_from_u1 + months_from_u2 + months_from_u3 + 

months_from_u4 +      months_from_u6 + months_from_u7 + (1 | PseudoID) 

   Data: antab 

 

REML criterion at convergence: 36980.3 

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-7.2371 -0.5793  0.0039  0.5854  7.6531  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 PseudoID (Intercept) 0.4364   0.6606   

 Residual             0.6472   0.8045   

Number of obs: 14112, groups:  PseudoID, 1557 

 

Fixed effects: 

                 Estimate Std. Error         df t value Pr(>|t|)     

(Intercept)    -4.329e-01  2.479e-02  4.355e+03 -17.461  < 2e-16 *** 

months_from_u1 -2.068e+00  1.974e-01  1.255e+04 -10.473  < 2e-16 *** 

months_from_u2  2.458e+00  2.080e-01  1.243e+04  11.817  < 2e-16 *** 

months_from_u3 -4.088e-01  3.133e-02  1.409e+04 -13.045  < 2e-16 *** 

months_from_u4  7.475e-02  1.231e-02  1.370e+04   6.072 1.29e-09 *** 

months_from_u6 -2.618e-02  4.735e-03  1.294e+04  -5.528 3.30e-08 *** 

months_from_u7 -3.486e-02  2.615e-03  1.273e+04 -13.331  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) mnt__1 mnt__2 mnt__3 mnt__4 mnt__6 

mnths_frm_1 -0.464                                    

mnths_frm_2  0.426 -0.994                             

mnths_frm_3  0.095  0.279 -0.379                      

mnths_frm_4  0.010  0.045  0.005 -0.645               

mnths_frm_6 -0.002  0.006 -0.001  0.073 -0.515        

mnths_frm_7  0.000 -0.004  0.003 -0.008  0.151 -0.734 

 

Interpretation of the model output: 

At U1, on average, a child in the PEACHES cohort had a BMI-Z score of -0.433. Every day after 

U1, the BMI-Z score of this average child reduces by 2.068 * 30.4375 = 0.068 unit. Every month 

after U2, his/her BMI-Z score increases by -2.068 + 2.458 = 0.39 unit. Every month after U3, 

his/her BMI-Z score decreases by -2.068 + 2.458 – 0.4088= 0.019 unit. Every month after U4, 

his/her BMI-Z score increases by -2.068 + 2.458 - 0.4088 + 7.475e-02 = 0.056 unit. Every month 

after U6, his/her BMI-Z score increases by -2.068 + 2.458 - 0.4088 + 7.475e-02 - 2.618e-02   = 

0.030 unit. Every month after U7, his/her BMI-Z score decreases by -2.068 + 2.458 - 0.4088 + 

7.475e-02 - 2.618e-02 -3.486e-02 = 0.005 unit.  
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Taking the simplified time frame of the visits as 0 days (U1), 3 days (U2), 30 days (U3), 3 months 

(U4), 6 months (U5), 12 months (U6), 24 months (U7), 36 months (U7a), 48 months (U8), and 60 

months (U9), the estimated BMI-Zscore of an average child would be: -0.43 at U1, -0.433 -0.068*3 

days = -0.637 at U2,  -0.637 + 0.39/30.4375*(30-3) days = -0.291 at U3, -0.291 - 0.019*2 months 

= -0.329 at U4, -0.329 + 0.056*3 months = -0.161 at U5, -0.329 + 0.056*9 months = 0.175 at U6, 

0.175 + 0.030* 12 months = 0.535 at U7, 0.535 – 0.005*12 months = 0.475 at U7a, 0.535 – 

0.005*24 months = 0.415 at U8, and 0.535 – 0.005*36 months = 0.355 at U9. This interpretation 

applies assuming that the random intercept of this child is 0. 

 

Appendix B2. Time effects used in the simulation design 

The following model output was obtained by fitting a model with the training dataset using the 

selected time effects above (see Appendix B1): 

Generalized linear mixed model fit by maximum likelihood (Laplace 

Approximation) ['glmerMod'] 

 Family: binomial  ( logit ) 

Formula: risk ~ months_from_u1 + months_from_u2 + months_from_u3 + 

months_from_u4 +   

    months_from_u6 + months_from_u7 + (1 | PseudoID) 

   Data: antab.train 

Control: glmerControl(tolPwrss = 0.1) 

 

     AIC      BIC   logLik deviance df.resid  

   590.4    628.9   -287.2    574.4      901  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-1.8455 -0.2658 -0.1771 -0.0722  6.0236  

 

Random effects: 

 Groups   Name        Variance Std.Dev. 

 PseudoID (Intercept) 3.551    1.884    

Number of obs: 909, groups:  PseudoID, 100 

 

Fixed effects: 

               Estimate Std. Error z value Pr(>|z|)     

(Intercept)    -4.65186    0.51158  -9.093   <2e-16 *** 

months_from_u1  0.10092    2.94906   0.034   0.9727     

months_from_u2  0.56928    3.06273   0.186   0.8525     

months_from_u3 -0.37908    0.54987  -0.689   0.4906     

months_from_u4 -0.19887    0.21051  -0.945   0.3448     

months_from_u6 -0.03126    0.07224  -0.433   0.6652     

months_from_u7 -0.07443    0.03589  -2.074   0.0381 *   

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

            (Intr) mnt__1 mnt__2 mnt__3 mnt__4 mnt__6 

mnths_frm_1 -0.385                                    

mnths_frm_2  0.306 -0.990                             

mnths_frm_3  0.336  0.120 -0.255                      

mnths_frm_4  0.046  0.069 -0.016 -0.604               

mnths_frm_6  0.047  0.019 -0.016  0.096 -0.515        

mnths_frm_7  0.018 -0.003  0.007 -0.039  0.161 -0.708 

optimizer (Nelder_Mead) convergence code: 0 (OK) 

Model is nearly unidentifiable: large eigenvalue ratio 

 - Rescale variables? 
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Appendix B3. Analyses with sample size of 100 

Appendix B3 (saved as “supplementary_material/AppendixB3.pdf”) contains results of 

the supplementary analyses for PEACHES and simulation main study with sample size of 100. 

Supplementary material can be accessed by using the link provided in Appendix D. 
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Appendix D: Reproducibility of the results 
R codes to reproduce the results are provided under this link: 
https://drive.google.com/drive/folders/1hNrE-X3UBT9JlyU6PyJrWkQUA6WxePVf?usp=sharing 
 
Supplementary material as well as full texts of the references can also be found under the link 
above. 

  

https://drive.google.com/drive/folders/1hNrE-X3UBT9JlyU6PyJrWkQUA6WxePVf?usp=sharing


 177 

Acknowledgements 

I would like to thank Prof. Ulrich Mansmann for his untiring support over the years. His broad 

knowledge in mathematics, statistics, and his work ethics at the highest standard have been in-

spriring and supporting me in various research projects that we have been working in together 

the last seven years and motivating me to finish this research thesis. Furthermore, I want to thank 

Prof. Anne-Laure Boulesteix and Prof. Eva Hoster for their helpful advices, suggestions, and their 

openness towards my ideas and questions. 

 

I want to dedicate my sincere thanks to my colleagues Dr. Ursula Berger and Dr. Christine Adrion 

for their continuous encouragement and support. Thank you for bringing culture and authencity 

into my work life.  

 

I want to thank Delphina Gomes and Prof. Ensenauer for providing me the PEACHES data and 

their cooperation in processing the data. 

 

I am grateful for the instructions of Magda Radermacher, Monika Darchinger and Annette Hart-

mann from the PhD office throughout my PhD program. I want to thank Nikolaus von Bomhard 

for the technical support, Anja Friedrichs, Frau Pelagia Pajonk, and Shirley von Stuckrad for the 

organizational support. Without this seamless support, I would have not been able to focus on the 

actual research work. 

 

My dearest thanks are dedicated to my parents, An, Manuel & Marie, and especially Beate, who 

have been there for me and sharing with me the ups and downs of this journey. 

 

Finally, I want to give my special thanks to Prof. Jörg Hasford. I had the privilege to become his 

mentee in 2010. Over the years, he had been wholeheartedly teaching me about work ethics and 

life. He never lost faith and hope in me. This thesis, I dedicate wholly to him, with all my respect 

and thankfulness. 



 178 

Affidavit 

 

 

 

 
Le, Dung Lien 
________ 

_______________________________________________________________ 
Surname, first name 

 
 
Gräfelfingerstr. 54 
_____________________________________________________________________________________ 
Street 

 
 
81375 München, Germany 
_________________________________________________________________ 
Zip code, town, country 
 
 
I hereby declare, that the submitted thesis entitled:  

 

The usefulness of dynamic approaches in predicting risk of overweight in children within the 
PEACHES cohort 

……………………………………………………………………………………………………………. 

 

 

is my own work. I have only used the sources indicated and have not made unauthorised use of 

services of a third party. Where the work of others has been quoted or reproduced, the source is 

always given. 

I further declare that the submitted thesis or parts thereof have not been presented as part of an 

examination degree to any other university. 

 

 

 
Munich, 01.04.2023          Lien Dung Le 
__________________________                                        __________________________________
              

place, date                                                                                                                    Signature doctoral candidate 

Affidavit 



 179 

Confirmation of congruency 

 

 

 

 
 
Le, Lien Dung 
________ 

_______________________________________________________________ 
Surname, first name 

 
 
Gräfelfingerstr. 54 
_________________________________________________________________ 
Street 

 
 
81375 München, Germany 
_________________________________________________________________ 
Zip code, town, country 
 
 
I hereby declare, that the submitted thesis entitled:  

 

The usefulness of dynamic approaches in predicting risk of overweight in children within the 
PEACHES cohort 

……………………………………………………………………………………………………………. 

 

is congruent with the printed version both in content and format. 

 

 

 

 

Munich, 01.04.2023          Lien Dung Le 
__________________________                                        __________________________________
              

place, date                                                                                                                    Signature doctoral candidate 
 
 

Confirmation of congruency between printed and electronic version of 
the doctoral thesis 



 180 

List of publications 
GLIMM, A.-M., SPRENGER, L. I., HAUGEN, I. K., MANSMANN, U., HERMANN, S., HÄUPL, T., HOFF, P., BUR-

MESTER, G.-R., BACKHAUS, M., LE, L. & OHRNDORF, S. 2019. Fluorescence optical imaging for 

treatment monitoring in patients with early and active rheumatoid arthritis in a 1-year follow-up 

period. Arthritis Research & Therapy, 21, 209. 

LE, L. D., MANSMANN, U. R., JUNG, A., KIRCHNER, T., SCHÄFER, R., NEUREITER, D., HOLCH, J. W., HEINE-

MANN, V. & STINTZING, S. 2017. Is the primary tumor location (PTL) associated with differential 

gene expression profiles in patients with metastatic colorectal cancer (mCRC)? Analysis of the 

FIRE1-trial. Journal of Clinical Oncology, 35, 598-598. 

NGUYEN, N., THALHAMMER, R., BEUTNER, K., SAAL, S., SERVATY, R., KLINGSHIRN, H., ICKS, A., FREYBERG, 

K., VOMHOF, M., MANSMANN, U., LE, L., MULLER, M. & MEYER, G. 2019. Effectiveness of a com-

plex intervention to improve participation and activities in nursing home residents with joint con-

tractures (JointConEval): study protocol of a multicentre cluster-randomised controlled trial 

[DRKS-ID:DRKS00015185]. Trials, 20, 305. 

PHILIPP SEWERIN, A. M.-L., CHRISTOPH SCHLEICH, FLORIAN FICHTE, MARKUS EICHNER,, RUBEN SENGE-

WEIN, LIEN LE, HANS-JÖRG WITTSACK, MATTHIAS SCHNEIDER AND BENEDIKT OSTENDORF 

2017. The Value of Dynamic Contrast-Enhanced MRI and Delayed Gadolinium Enhanced MRI of 

the Cartilage in Patients with Early Rheumatoid Arthritis: Leads Local Hyperperfusion to Cartilage 

Loss? 2017 ACR/ARHP Annual Meeting. 

RADEMACHER, J., TIETZ, L., LE, L., HARTL, A., RUDWALEIT, M., SIEPER, J., MANSMANN, U. & PODDUBNYY, 

D. 2018. FRI0154 Added value of biomarkers compared to routine clinical parameters for the pre-

diction of radiographic spinal progression in axial spondyloarthritis. Annals of the Rheumatic Dis-

eases, 77, 620-621. 

RADEMACHER, J., TIETZ, L. M., LE, L., HARTL, A., HERMANN, K. A., SIEPER, J., MANSMANN, U., RUDWALEIT, 

M. & PODDUBNYY, D. 2019. Added value of biomarkers compared with clinical parameters for the 

prediction of radiographic spinal progression in axial spondyloarthritis. Rheumatology (Oxford), 

58, 1556-1564. 

RADEMACHER, J., TIETZ, L. M., LE, L., HARTL, A., HERMANN, K. A., SIEPER, J., MANSMANN, U., RUDWALEIT, 

M. & PODDUBNYY, D. 2019. Added value of biomarkers compared with clinical parameters for the 

prediction of radiographic spinal progression in axial spondyloarthritis. Rheumatology (Oxford), 

58, 1556-1564. 

SCHUNK, M., BERGER, U., LE, L., REHFUESS, E. A., SCHWARZKOPF, L., STREITWIESER, S., MÜLLER, T., HOF-

MANN, M., HOLLE, R., HUBER, R. M., MANSMANN, U. & BAUSEWEIN, C. 2020. Randomisiert-

kontrollierte Studie zur Evaluation der Atemnot-Ambulanz München (BreathEase): Rekrutierung 

und Beschreibung der Studienteilnehmer [164]. Zeitschrift für Palliativmedizin, 21, P44. 

SCHUNK, M., LE, L., SYUNYAEVA, Z., HABERLAND, B., TÄNZLER, S., MANSMANN, U., NASTASSJA, B., 

SCHWARZKOPF, L., SEIDL, H., STREITWIESER, S., HOFMANN, M., MÜLLER, T., WEIß, T., 

MORAWIETZ, P., REHFUESS, E. A., HUBER, R. M., BERGER, U. & BAUSEWEIN, C. 2020. Effectiveness 

of a breathlessness service for patients suffering from breathlessness in advanced disease: prag-

matic fast-track randomized controlled trial. European Respiratory Journal, 56, 3820. 

SCHUNK, M., BERGER, U., LE, L., REHFUESS, E., SCHWARZKOPF, L., STREITWIESER, S., MULLER, T., HOF-

MANN, M., HOLLE, R., HUBER, R. M., MANSMANN, U. & BAUSEWEIN, C. 2021. BreathEase: ra-

tionale, design and recruitment of a randomised trial and embedded mixed-methods study of a 

multiprofessional breathlessness service in early palliative care. ERJ Open Res, 7. 

SCHUNK, M., LE, L., SYUNYAEVA, Z., HABERLAND, B., TANZLER, S., MANSMANN, U., SCHWARZKOPF, L., 

SEIDL, H., STREITWIESER, S., HOFMANN, M., MULLER, T., WEISS, T., MORAWIETZ, P., REHFUESS, E. 

A., HUBER, R. M., BERGER, U. & BAUSEWEIN, C. 2021. Effectiveness of a specialised breathlessness 

service for patients with advanced disease in Germany: a pragmatic fast track randomised con-

trolled trial (BreathEase). Eur Respir J. 

SCHUNK, M., LE, L., SYUNYAEVA, Z., HABERLAND, B., TÄNZLER, S., MANSMANN, U., SCHWARZKOPF, L., 

SEIDL, H., STREITWIESER, S., HOFMANN, M., MÜLLER, T., WEIß, T., MORAWIETZ, P., REHFUESS, E. 

A., HUBER, R. M., BERGER, U. & BAUSEWEIN, C. 2020. Behandlung in der Atemnot-Ambulanz führt 

zu besserem Umgang mit chronisch refraktärer Atemnot bei Patienten mit fortgeschrittenen 

Erkrankungen: Ergebnisse der randomisiert-kontrollierten Studie BreathEase [160]. Zeitschrift für 

Palliativmedizin, 21, V7: 15:00–15:15 Uhr. 

SCHUNK, M., STREITWIESER, S., HABERLAND, B., EGLI, M., LE, L., HOFMANN, M., MÜLLER, T., BERGER, U., 

MANSMANN, U., REHFUESS, E., SEIDL, H., HOLLE, R., HUBER, R. M. & BAUSEWEIN, C. 2016. 



 181 

Erfahrungen mit der Patientenrekrutierung und der Durchführung einer randomisierten kontrol-

lierten komplexen Interventionsstudie bei palliativ erkrankten Patienten am Beispiel der 

BreathEase-Studie. Zeitschrift für Palliativmedizin, 17, P86. 

SEIDL, H., SCHUNK, M., LE, L., SYUNYAEVA, Z., STREITWIESER, S., BERGER, U., MANSMANN, U., SZENTES, B. 

L., BAUSEWEIN, C. & SCHWARZKOPF, L. 2022. Cost-Effectiveness of a Specialized Breathlessness 

Service Versus Usual Care for Patients With Advanced Diseases. Value Health. 

SEWERIN, P., LE, L., VORDENBAUMEN, S., SCHLEICH, C., SENGEWEIN, R., BRINKS, R., PONGRATZ, G., BLECK, 

E., LESCH, J., MANSMANN, U., SCHNEIDER, M. & OSTENDORF, B. 2018. Rheumatoid Arthritis Mag-

netic Resonance Imaging Score Predicts Therapy Response: Results of the German ArthroMark 

Cohort. J Rheumatol, 45, 753-759. 

SEWERIN, P., LE, L., VORDENBAUMEN, S., SCHLEICH, C., SENGEWEIN, R., BRINKS, R., PONGRATZ, G., BLECK, 

E., LESCH, J., MANSMANN, U., SCHNEIDER, M. & OSTENDORF, B. 2018. Rheumatoid Arthritis Mag-

netic Resonance Imaging Score Predicts Therapy Response: Results of the German ArthroMark 

Cohort. J Rheumatol, 45, 753-759. 

SHEN, Y. M., LE, L. D., WILSON, R. & MANSMANN, U. 2017. Graphical Presentation of Patient-Treatment 

Interaction Elucidated by Continuous Biomarkers. Current Practice and Scope for Improvement. 

Methods Inf Med, 56, 13-27. 

ZHANG, M., SAAD, C., LE, L., HALFTER, K., BAUER, B., MANSMANN, U. R. & LI, J. 2018. Computational mod-

eling of methionine cycle-based metabolism and DNA methylation and the implications for anti-

cancer drug response prediction. Oncotarget, 9, 22546-22558. 

 


