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ZUSAMMENFASSUNG

Die Datenmenge künftiger Galaxiendurchmusterungen hat die Entwicklung im-
mer besserer Techniken zur Gewinnung kosmologischer Informationen aus diesen
Datensätzen vorangetrieben. Die Erhöhung der erwarteten Anzahl von Moden,
die innerhalb der Reichweite der Theorie liegen könnten, bietet eine Verbesserung
um mehrere Größenordnungen im Vergleich zum kosmischen Mikrowellenhinter-
grund (CMB). Diese zusätzliche Information ist in den nichtlinearen Strukturen
verborgen. Um mit den anstehenden Datensätzen verantwortungsvoll umgehen zu
können, ist es notwendig, die verschiedenen physikalischen Faktoren, die dabei eine
Rolle spielen, sehr sorgfältig zu modellieren. Das Hauptziel dieser Arbeit war es
daher, die Entwicklung und das Verständnis solcher theoretischen Modelle für die
kosmische Strukturbildung voranzutreiben.

Kapitel 3 der Dissertation widmet sich dem Ansatz der effektiven Feldtheo-
rie für die Strukturbildung, der unter dem Namen EFTofLSS bekannt ist. Der
Ansatz wird auf der Feldebene angewandt, d.h. es wird versucht, maximale Infor-
mationen aus allen verfügbaren Moden in den Daten zu extrahieren. Es wurde
eine neuartige Methode zur Durchführung von Selbstkonsistenztests des EFT-
Vorwärtsmodells entwickelt, um sowohl die Reichweite des EFTofLSS-Ansatzes zu
demonstrieren als auch die Leistung des Modells in verschiedenen Szenarien mit
unterschiedlichen Graden von Modellfehlspezifikationen zu testen. Alle Modelle
wurden auf eine Reihe von synthetischen Datensätzen angewandt. Daher sollte
die in diesem Teil vorgestellte Arbeit als ein weiterer Schritt in Richtung einer
kosmologischen Analyse auf voller Feldebene unter Verwendung des EFTofLSS-
Ansatzes betrachtet werden.

Der nächste Teil, Kapitel 4, konzentriert sich auf die Demonstration des Poten-
zials von Rekonstruktionen der lokalen großräumigen Struktur auf Feldebene zur
Einschränkung der fundamentalen Physik. Die Arbeit konzentriert sich auf die
Extraktion von Grenzwerten für die Annihilations- und Zerfallsquerschnitte der
dunklen Materie unter Verwendung der aus den beobachteten Galaxienkatalog-
daten abgeleiteten Verteilung der dunklen Materie im lokalen Universum. Dies
wird durch die Konstruktion von Schablonen (Templates) für die Annihilation
und den Zerfall dunkler Materie aus dieser abgeleiteten Materieverteilung und die
Kreuzkorrelation mit verfügbaren γ-Röntgendaten erreicht.

Kapitel 5 schließlich ist der Entwicklung von Ideen gewidmet, wo und wonach
in zukünftigen Durchmusterungen gesucht werden sollte, um kosmologische Mod-
elle effizienter einzuschränken. Es werden Karten vorgestellt, die Himmelsregio-
nen nach ihrem posterior-gewichteten Informationsgewinnpotenzial für die jew-
eilige Gruppe von Modellen klassifizieren. Die Arbeit zeigt, dass der Inferenz
auf Feldebene auf diese Weise einen Einblick gibt, wie zukünftige Suchstrategien
aussehen sollten und wie sie schrittweise mit neuen kosmologischen Datensätzen
im Rahmen von “active learning” verfeinert werden können.
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ABSTRACT

The constraining power promised by future large-scale structure LSS surveys has
driven the development of ever better techniques for extracting cosmological in-
formation from those datasets. Increase in the expected number of modes that
could be well within the reach of the theory offers an improvement of few orders
of magnitude with respect to cosmic microwave background (CMB). This extra
information is hidden within the non-linear structures of the LSS. It is necessary
to very carefully model different physics at play in order to responsibly deal with
the upcoming datasets. Consequently, the main goal of this thesis was to push
the development and understanding of such theoretical models for the clustering
of the large-scale structure.

The Chapter 3 of the thesis is dedicated towards bringing closer LSS models
utilizing the effective field theory approach, known collectively as EFTofLSS, to
realistic galaxy-survey data applications. The approach is applied at the field-level,
meaning that it tries to extract maximal information from all available modes in
the data. A novel methodology for performing self-consistency tests of the EFT
forward model framework was developed, both for demonstrating the reach of
EFTofLSS approach, as well as test model performance in different scenarios with
varying degrees of model mis-specification. All the models were applied to a set of
synthetic datasets and hence the work presented in this part should be viewed as
yet another step towards a final full field level cosmological analysis utilizing the
EFTofLSS approach.

Next part, Chapter 4, is focused on demonstrating the potential of the field
level reconstructions of the local large-scale structure in constraining fundamental
physics. The work focuses on extracting the dark matter annihilation and decay
cross-section constraints by using the inferred distribution of the dark matter in
the local universe from the observed galaxy catalogue data. This is achieved by
constructing templates of dark matter annihilation and decay from this inferred
matter distribution and cross-correlating with available γ-ray data.

Finally, Chapter 5, is dedicated to developing ideas for where and what to look
for in the future surveys in order to more efficiently constrain particular forward
models of the LSS. Maps classifying regions of the sky according to their posterior
weighted information gain potential are presented for the particular set of forward
models. The work demonstrates that the field level approach gives, as a side
product, an insight into how future search strategies should look like and how
they can progressively be refined with new cosmological data sets within an active
learning framework.
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CHAPTER 1

INTRODUCTION

It is fair to say that the modern cosmology is built on top of the discovery of the Cosmic
Microwave Background. From the initial discoveries of the Cosmic Microwave Back-
ground (CMB) anisotropies by the COBE satellite [1], over the subsequent introduction
of the field of cosmology into the realm of precision science by the WMAP project [2, 3],
up to pushing the concordance ΛCDM model predictions to ever higher multipoles on
the sky by the Planck satellite [4, 5], the CMB continues to be the driving force of
the bulk of cosmological research. However, the promise of an information gain of up
to few orders of magnitude, offered by the future large-scale structure surveys such as
DESI [6], Euclid [7], PFS [8], SPHEREx [9] and the LSST survey [10], to name a few,
offers hope for a completely new regime for testing current cosmological theories. For
example, taking z ∼ 1.6, number of modes the large-scale structure offers is around
NLSS ∼ (kmax/kmin)

3 ∼ 109, for wavelengths up to kmax ∼ 0.3hMpc−1, while for CMB,
taking NCMB ∼ l2max ∼ 106. This extra information however is hidden within the non-
linear structures of our universe, such as the filaments, dark matter halos and galaxy
clusters. This calls for careful modelling in order to be able to extract useful physics out
of these future datasets.

The traditional approach to extracting cosmological information from large-scale
structure surveys relies upon the analysis of summary statics of the underlying galaxy
density field. Mainly, focus is on the 2-, 3- and 4-point statistics (see [11–18]). In contrast
to the angular power spectrum of the CMB, the main observable here is the 3D galaxy
power spectrum. Some of the difficulties that affect these approaches are the unbiased
estimation of the power spectrum from a set of observed galaxies on the sky and removal
of survey mask effects which are themselves localized in real space, but become quite dif-
ficult to handle for higher order n-point correlation function estimators in Fourier space
(e.g. [13]).
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Alternative, advocated in this thesis, aims to extract information from all available
Fourier modes offered by the large-scale structure surveys. This forward modelling tech-
nique allows for incorporating any physical effect, be it observational systematic or a new
phenomenological piece. They are collectively known as field-level forward modelling ap-
proaches. Given that it is unclear how much cosmological information there is beyond
the summary statistics approaches, it is a worthwhile effort to construct these models,
and explicitly quantify the information gain.

One such example is the physical Bayesian forward modelling approach (BORG) [19–
23]. This model is capable of producing realizations of present day galaxy count distri-
bution on the sky by explicitly marginalizing over plausible initial conditions consistent
with the observed galaxy data. As a side product, the model produces an ensemble of
possible dark matter distributions in the local universe, which can be used to constrain
fundamental dark matter properties. This we demonstrate in Chapter 4, motivating
the use of such forward models beyond their initial goal of constraining cosmological
models of structure formation. However, the cost of this modelling approach, among
other things, is its very high dimensionality. In order to mend this problem, specific
statistical inference techniques need to be used. We give a brief overview of such tech-
niques in Section 2.5. Alongside this, it is not clear whether the mapping between the
underlying dark matter density field and the observed galaxy tracer field is appropriate
for all modes of interest. Given that we do not observe dark matter halos on the sky
directly, but rather galaxies, it is necessary to have a well tuned model of the mapping
between the underlying matter field and galaxy density field in order to avoid biasing
the cosmological parameters of the forward model. Typically, what is assumed in BORG
is a semi-empirical model from [24], which, as we explain in Section 2.4 does not give a
complete picture. It is also not clear whether the model from Neyrinck et al. (ibid.) is
well suited for all the Fourier modes BORG forward model aims to extract cosmological
information from. Nevertheless, attempts have been made towards making this mapping
more flexible, utilizing neural network approaches, albeit with limiting success [25, 26].

Another example of a structure formation forward modelling approach is the effective
field theory of large-scale structure (EFTofLSS) [27–29]. This approach offers a rigorous
and systematic framework, which allows for incorporating the physics of galaxy forma-
tion all the way up to quasilinear scales (kNL ∼ 0.3hMpc−1 at z = 0). In contrast to
the BORG modelling framework, which utilizes a differentiable N-body simulation as its
dark matter structure formation model, and a semi-empirical matter-tracer mapping, the
EFTofLSS approach provides a perturbative model. The model is capable of producing
the matter density field at redshift zero to a sub-percent accuracy when compared to N-
body simulation result up to kNL (see [30]), while as well offering matter-tracer mapping
up to a given order in matter perturbations for any tracer of interest. This comes as a
natural consequence of the equivalence principle, as we outline in Section 2.4 (see also
[31]). The perturbative approach not only allows for robust structure formation model
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all the way up to quasilinear scales, but also motivates the form the model likelihood, by
explicitly marginalizing out the small scale physics of the structure formation problem.
As shown in Section 2.6.2, this likelihood can be seen as an extension of the likelihood
assumed in the BORG forward model (presented in Section 2.6.1). In Chapter 3 we make
an effort towards applying this EFTofLSS approach at the field-level, and demonstrate its
robustness in scenarios with model-mismatch between the generated synthetic data and
the forward model employed. We develop a novel code capable of jointly sampling the
cosmological parameters, EFT parameters of the model and marginalizes over the plau-
sible initial conditions realizations at the same time. The following Chapter 2 serves as a
broad overview of the prior knowledge required to understand the EFTofLSS modelling
efforts that were undertaken in this thesis.

After providing a robust forward model and obtaining wanted constraints on cosmol-
ogy, a natural question is where to look next for more data in order to further constrain
the models at hand. The usual approach undertaken by most of the aforementioned
surveys is to try to scan as big part of the sky as possible and within as large of a volume
as possible. This takes a substantial effort both in terms of time and resources. In Chap-
ter 5 we propose an idea for an automated active learning framework, which can offer
a more efficient path towards constraining a favorite model at hand. It is not a novel
concept, in the past similar ideas have been applied to CMB data [32], as well as survey
geometry design [33]. However, the approach we propose in Chapter 5 is to also use
the previously obtained model posterior, using it as a weighting measure for quantifying
relative importance of the regions in the sky in terms of their information gain on our
model parameters.

Additional work

During the course of the thesis, I have also collaborated on developing novel Causal in-
ference models within the Information Field Theory framework [34, 35]. This was work
built on top of my MSc thesis research and I have contributed to further development
of the NIFTy code [36] by incorporating important pieces of the generative causal model
structure and Bayesian model selection calculations. We applied this generative model to
inferring causal relationship between patient’s viral load of the COVID-19 virus and pa-
tient’s age in [37] and extended the model by going beyond the additive noise assumption
in [38]. Even though phenomenologically these papers are completely unrelated to the
topic covered in this thesis, the methodology underlying the generative model framework
itself has significant overlap.
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CHAPTER 2

STRUCTURE FORMATION: THEORETICAL MINIMUM

In this section, we outline the theoretical framework behind structure formation mod-
elling. We present the concordance structure formation model (Section 2.1) and its
corrections within the framework of effective field theory of large-scale structure (Sec-
tion 2.3). In Section 2.2 we use the derived phase-space dynamics of dark matter particles
to study possible beyond Standard Model candidates for dark matter using the large-
scale structure. This further motivates our work presented in Chapter 4 on constraining
fundamental properties of dark matter. Then, we pursue towards a formulation of the
theory of biased tracers (Section 2.4), heavily relied upon in the rest of the chapters of
this thesis. Finally, we give a short overview of the necessary ingredients of the reasoning
framework employed throughout and conclude the chapter by presenting two contrast-
ing forward modelling frameworks in Section 2.6, explaining their advantages over the
usually employed summary statistics approaches.

2.1 Standard model of structure formation

The standard cosmological model is built upon understanding the consequences of the
theory of general relativity, fixing the initial conditions to the ones suggested by quantum
field theory. The seminal work of V. Mukhanov and G. Chibisov [39] demonstrated that
with the help of the inflationary phase in the early universe, initial quantum fluctuations
can grow into cosmological perturbations and cause the subsequent formation of dark
matter halos and galaxy clusters (see for example Chapter 8.3 of [40]). This even further
consolidated the motivation for the inflation paradigm, besides it already providing the
solutions to the well known horizon and flatness problems (see [40–42]). In fact, these
initial fluctuations are also responsible for the anisotropies seen first by the COBE satel-
lite [1]. However, the perturbations are rather small (of the order of ∼ 10−5 − 10−4) and
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very closely respect statistical homogeneity and isotropy. This motivates that presently,
on large-scales, the universe is homogeneous and isotropic as well, which defines the cos-
mological principle. Guided by the cosmological principle, it is then possible to uniquely
fix the form of the metric tensor up to a coordinate transformation to (see Chapter 13.5
in [43])

gµνdx
µxν = −dt2 + γijdx

idxj (2.1)

with

γijdx
idxj = a2(t)

(
dr2

1− kr2 + r2dΩ2

)
, (2.2)

where the k ∈ {−1, 0,+1} represents the curvature constant, which has to be determined
observationally, a(t) represents the scale factor, r the radial coordinate distance1 and
dΩ2 = dθ2 + sin2(θ)dϕ2. Given the strong preference for a flat universe provided by the
Planck team [5], from now on we will fix k = 0. The scale factor a(t) can only be a
function of time in order to preserve the homogeneity and isotropy of the spatial slices
(being a maximally symmetric subspace). This is the well known Friedmann-Robertson-
Walker (FRW) metric [44–50].

Knowing the metric not only allows us to write down the left-hand side of the Ein-
stein field equation, but also fixes the form of the energy-momentum tensor. The field
equations are given by

Rµν −
1

2
gµνR = 8πGTµν , (2.3)

with Rµν being the Ricci tensor, R the Ricci scalar, Tµν the energy-momentum tensor
and G being the gravitational constant. The expressions for the Ricci tensor and the
Ricci scalar can be found in [41, 43]. Now, since we know the metric has to be form
invariant, so must be any quantity that is derived from it. This implies then that the
Ricci tensor and the Ricci scalar must be form invariant as well (see Chapter 13.4 in
[43]). Furthermore, from the Equivalence Principle, it follows that any tensor involved
in a covariant equation with a form invariant object has to be form invariant. Therefore,
given the form of the field equations above, it follows that the energy-momentum tensor is
also form invariant itself. The form of the FRW metric then fixes the energy-momentum
tensor to be given as 2

Tµν = (ρ+ p)uµuν + gµνp, (2.4)

with ρ ≡ ρ(t) and p ≡ p(t) being the background density and pressure respectively.
Note that the background density, ρ, and pressure, p, can be only a function of time
since they need to transform as scalars with respect to the symmetries of the spatial
slices (rotations and translations). It should be noted that in presence of perturbations

1Note that in this formulation all units are absorbed by the scale factor a(t), while r is the coordinate
on a grid scaled by a(t).

2See for example discussion around Eq. 1.1.31 and Appendix B in [41]
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around this background, the energy-momentum tensor will have additional terms such
as anisotropic stress tensor or bulk viscosity (see for example [27, 51]). We will see the
implications of this for cold dark matter evolution in Section 2.3.

Given this and conservation of the energy-momentum tensor, one can relate the scale
factor a to the density and pressure of the background. The conservation equation implies

T µν
;ν = T 0ν

;ν + T iν
;ν = T 0ν

;ν , (2.5)

since the covariant derivative of the second term in the first equality, T iν
;ν is zero. To

see this, one can expand the term as

T iν
;ν = T i0

;0 + T ij
;j = T ij

;j = gij;jp(t). (2.6)

The T i0
;0 term is zero in the comoving fluid frame, since there uµ = (1, 0⃗) and hence

T i0 = 0, hence its covariant derivative is too. Given that this is a covariant equation, it
holds in all frames. The term gij;j is the covariant derivative of the metric, i.e.

gij;j = ∂jg
ij + Γi

jkg
kj + Γj

kjg
ki, (2.7)

with Γ being the Christoffel symbol

Γµ
να =

1

2
gµλ (∂αgλν + ∂νgλα − ∂λgαν) (2.8)

In order to see the covariant derivative of the metric is indeed zero, one can notice that
in a local frame the gij corresponds to the flat-space Minkovski metric, for which the
equality trivially holds. Therefore, given that it is a covariant equation and holds in one
frame, it holds in all frames. Hence, the Eq. (2.5) simplifies to

T µν
;ν ≡ T 0ν

;ν = ∂tT
00 + Γ0

νµT
µν + Γν

νµT
µ0

=
∂ρ(t)

∂t
+ 3

ȧ

a
(p(t) + ρ(t))

!
= 0, (2.9)

from which it follows that ρ ∼ a−3(1+κ) after assuming the equation of state of the form
p = κρ. For different components of the cosmological energy budget, κ takes different
values. For example, for the radiation κ = 1/3, for pressureless matter κ = 0, while the
cosmological constant corresponds to an equation of state with κ = −1.

The Eq. (2.9) can be supplemented by the field equations from Eq. (2.3), taking
the expression of the energy momentum tensor from Eq. (2.4). This then gives (see for
example [41]) the Friedmann equations

(
ȧ

a

)2

=
8πG

3
ρ

ä

a
= −4πG

3
(3p+ ρ). (2.10)
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These equations govern how the background cosmology evolves with time. One can
immediately notice from the first equation that the scale factor, a, will continuously
increase with time if ρ > 0. In fact, the first of the two equations from Eq. (2.10) is
usually written as

H2 = H2
0 (Ωra

−4 + Ωma
−3 + ΩΛ) (2.11)

with
Ωi =

8πG

3H2
0

ρ0,i (2.12)

denoting the fraction of the energy budget stored within different components of the
universe, with ρ0,i being the present density of different components. For example,
matter (i ≡ m), radiation (i ≡ r) or cosmological constant contribution (i ≡ Λ). We also
implicitly assumed the present day scale factor is fixed to a0 = 1. The H ≡ ȧ/a is the
Hubble parameter, while H2

0 corresponds to its current value.
As already suggested, in order to extract as much of the physical information as pos-

sible from the large-scale structure, one needs to understand how to model the perturba-
tions around this background cosmology, since it is clear that the universe doesn’t look
completely isotropic and homogeneous on all scales. This requires a careful treatment of
all possible perturbations to the Einstein field equation Eq. (2.3). The usual approach
is to decompose the perturbations into scalars, divergenceless vectors and divergenceless
traceless symmetric tensors and write down to leading order how the perturbed field
equations look in this case (see for example Chapter 5.1 in [41] or Chapter 7 in [40]).
Since in the bulk of this thesis, the focus will be on the dark matter component of our
universe, we will focus on the relevant physics governing its evolution in what follows.
This means that it is necessary to study only the scalar perturbations of the metric.

In the conformal Newtonian gauge3, the scalar perturbations change the background
metric as (for example Eq. 3.49 in [42])4

g00 = −1− 2Ψ, gi0 = 0, gij = a2δij(1 + 2Φ). (2.13)

The scalar fields Φ and Ψ are not independent in case one can neglect the anisotropic
part of the energy-momentum tensor, which is the case for example for the cold dark
matter particles due to their small velocities on the scales of interest, as demonstrated in
Section 2.3 (see Eq. (2.62) and discussion around it). In fact, neglecting the anisotropic
part of the energy-momentum tensor allows for equating Φ = −Ψ, and the field Ψ can
be interpreted as the Newtonian potential arising from the matter density perturbations.

Given that we are not interested in tracking down each individual dark matter particle
in the universe, it is useful to instead study the change in the corresponding phase-space
density, or more feasibly, the moments thereof. The equation governing the evolution of

3For the consistent treatment in both synchronous and conformal Newtonian gauge see [52]
4Note that different conventions are used in [41] and [40] for example
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the phase-space distribution function in time is the Boltzmann equation. Neglecting the
self-interaction processes of the dark matter particles, due to a very small cross sections
(very long decay rates), as demonstrated in Section 2.2 and Chapter 4, the relevant
Boltzmann equation is of the collisionless type

df

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂pi
dpi

dt
!
= 0. (2.14)

Furthermore, assuming the dark matter particles to be non-relativistic5, the geodesic
equations for xi and pi simplify significantly, and the Boltzmann equation reduces to
(see Chapter 12 in [42])

∂f

∂t
+
∂f

∂xi
pi

ma
− ∂f

∂pi

(
Hpi +

m

a

∂Ψ

∂xi

)
= 0, (2.15)

with m being the non-relativistic dark matter particle mass. Taking the first two mo-
ments of the above Eq. (2.15) (see also Appendix A) produces the following two equations

∂

∂η
ρ+

∂

∂xi
(
ρvi
)
+ 3Hρ = 0,

∂

∂η
vi + vj

∂

∂xj
vi +Hvi + ∂

∂xi
Ψ+

1

ρ

∂

∂xj
τ ij = 0 (2.16)

where the derivatives with respect to the proper time, t, have been switched into deriva-
tives with respect to the conformal time, η defined through dt = a(η)dη and H = aH
being the conformal Hubble parameter. As can immediately be noticed, these equations
are the continuity and Euler equations in the presence of the Hubble flow. What is
instructive and usually done at this point (for example Chapter 12.2 in [42]) is to neglect
the presence of the stress tensor τ ij and continue solving the system treating the dark
matter as a pressureless fluid, which happens to be quite a good description for cold dark
matter (see Eq. (A.4) and discussion below it). However, dark matter is not a perfectly
presureless fluid, but represents a collection of collisionless particles and hence a more
correct treatment is that of an effective fluid as discussed in Section 2.3. Nonetheless,
solving the system of equations from 2.16 without the presence of τ ij is still valid at the
tree-level and hence coincides with the effective description at this order. Continuing
along these lines, using the fact the background density evolves as given in Eq. (2.9) and
supplementing the Poisson equation one obtains the following system of equations (see

5For example taking WIMPs (see Section 2.2) as candidates, with a typical mass close to mχ ∼
100GeV, which is much higher than the temperatures throughout the history of the observed universe
∼ 10−4 − 10−1 eV
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Eq. 12.23 in [42])

δ′ +
∂

∂xi
(
(1 + δ)vi

)
= 0,

vi ′ + vj
∂

∂xj
vi +Hvi + ∂

∂xi
Ψ = 0,

∇2Ψ =
3

2
H2Ωm(η)δ, (2.17)

with Ωm(η) being the time dependent matter density parameter, absorbing the time
dependence of the background matter density, unlike the present time density parameters
defined in Eq. (2.12). The primes denote derivatives with respect to the conformal time
η.

It is useful to decompose the Euler equation into the divergence and curl part. The
curl component produces the following equation 6

∂ηω
i +Hωi + ∂j(v

jωi)− ∂j(viωj) = 0, (2.18)

using the identity vj∂jv
i = ϵjikvjωk + 1

2
∂i(v

jvj) and defining ωi = ϵijk∂jvk, with ϵijk

being the Levi-Civita pseudo-tensor. As can be seen, if the initial curl of the velocity
vanishes, it remains zero. Given that vector perturbations of the metric decay both
inside and outside the horizon it is safe to assume that the initial curl is very small 7. It
is also good to note that even with the inclusion of the stress-tensor term, ∂τ/ρ, into the
Euler equation of Eq. (2.16) the curl will be sourced only at the second order in density
perturbations, i.e.

∂ ×
(
1

ρ
∂τ

)
= ∂ ×

(
1

ρ̄(1 + δ)
∂τ

)
∼ ∂ × (∂τ(1− δ)) ∼ ∂ × (−∂τδ)) ∼ δ2

given that the stress-tensor itself is of order ∼ δ (see Eq. (2.50) and discussion around
it). Therefore, indeed at leading order the vorticity is sourced at ∼ δ2, and hence the
vorticity starts at ∼ δ3 order.

Since we will be expanding up to the 2nd order in the discussion below, we don’t
need to worry about the curl component of the velocity field and instead we focus on
the divergence part. This allows to write the velocity field as vi = ∂i

∇2 θ, θ being the
divergence of the velocity field. Therefore, the coupled system of PDEs to solve is

δ′ + θ = −∂i(viδ),

θ′ +Hθ + 3

2
Ωm(η)H2δ = −∂i(vj∂jvi). (2.19)

6See also Mehrdad Mirbabayi’s comprehensive yet concise lecture notes available at the following
coordinates https://users.ictp.it/~mirbabayi

7However, in the presence of primordial magnetic fields, non-zero curl can be generated, although
the field strength is most likely very small. See for example [53].

https://users.ictp.it/~mirbabayi
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To linear order, the equations become

θ(1) + ∂ηδ
(1) = 0,

∂2ηδ
(1) +H∂ηδ(1) −

3

2
Ωm(η)H2δ(1) = 0. (2.20)

We see that at this order the two equations decouple, and that the velocity divergence is
directly sourced by the linear density perturbations. In what follows we restrict to the
EdS universe (Ωm = 1) given that the period during which structures form is very much
matter dominated and the overall error made when compared to the full ΛCDM solution
is at the percent level (see for example [30]). Having this in mind and switching from
the conformal time derivative into a derivative with respect to the scale factor ∂η = a′∂a
produces the following linear growth equation

H2

(
a2∂2a +

3

2
a∂a −

3

2

)
δ(1) = 0. (2.21)

Looking at this second order ODE in Fourier space, unveils that at linear order in den-
sity perturbations, all the modes decouple and evolve in the same manner. The two
solutions for the time dependence are given by D+ = a and D− = a−3/2. For systematic
treatment to higher orders, it is useful to write down the corresponding Green’s function
of Eq. (2.21), which in EdS becomes

G(a > ai, ai) =
D−(a)D+(ai)

ζ(ai)W (ai)
− D+(a)D−(ai)

ζ(ai)W (ai)
=

2

5H2
0

(
a

ai
−
(ai
a

)3/2)
, (2.22)

with ai denoting the starting value of the scale factor, at which the initial conditions are
specified, and ζ(ai) = (H(ai))2a2i . The W (ai) represents the Wronskian of the differential
equation evaluated at ai. A corresponding expression for a general ΛCDM cosmology
can be found in [54].

In the following we keep only theD+ part, since it corresponds to the growing solution,
which is the one relevant for the structure formation. Therefore, we see that at leading
order the solutions are

δ(1)(k, a) = aδ1(k),

θ(1)(k, a) = −aH∂aδ(1)(k, a), (2.23)

where δ1(k) denotes the initial conditions. As we will see, δ1(k) is fully specified with
the expression from Section 3.2.1 (second line of Eq. (3.4)) and can be used in that form
to set the initial conditions for our forward models.

To continue to higher orders, we can turn back to the full PDE system in Eq. (2.19),
remember that we’re keeping Ωm = 1, and rewrite it as

θ = −aH∂aδ − ∂i(viδ),

H2

(
a2∂2aδ +

3

2
a∂aδ −

3

2
δ

)
= ∂i(v

j∂jv
i)−H(a∂a + 1)∂i(v

iδ). (2.24)
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Since we know the Green’s function of the second PDE, we can straightforwardly obtain
higher order solutions using perturbation theory. It is only necessary to keep track of all
relevant source terms on the right hand side of the PDE at the given order. At second
order, the solution for the divergence and density perturbation is

δ(2)(x, a) = a2

(
5

7
δ21(x) +

2

7

(
∂i∂j
∇2

δ1(x)

)2

+ ∂iδ1(x)

(
∂i
∇2

δ1(x)

))
,

θ(2)(x, a) = −a2H
(
3

7
δ21(x) +

4

7

(
∂i∂j
∇2

δ1(x)

)2

+ ∂iδ1(x)

(
∂i
∇2

δ1(x)

))
(2.25)

or equivalently in Fourier space

δ(2)(k, a) = a2
∫

k1

∫

k2

δ
(3)
D (k − k1 − k2)F2(k1,k2)δ1(k1)δ1(k2),

θ(2)(k, a) = −a2H
∫

k1

∫

k2

δ
(3)
D (k − k1 − k2)G2(k1,k2)δ1(k1)δ1(k2), (2.26)

where the Fourier convention of Section 3.7 being utilized, the δ
(3)
D being the three-

dimensional Dirac delta function and the symmetrized kernels are

F2(k1,k2) =
5

7
+

2

7

(k1 · k2)2
k21k

2
2

+
1

2

k1 · k2
k1k2

(
k1
k2

+
k2
k1

)
,

G2(k1,k2) =
3

7
+

4

7

(k1 · k2)2
k21k

2
2

+
1

2

k1 · k2
k1k2

(
k1
k2

+
k2
k1

)
. (2.27)

The same procedure can be repeated to higher orders and it can be shown by induction
that the solution will be given as

δ(x, a) =
∞∑

n=1

anδn(x), θ(x, a) = −H
∞∑

n=1

anθn(x), (2.28)

with vn = ∂i
∇2 θn and δn related through the following recursion relation

δn =
1

(n− 1)(n+ 3/2)

∑

m1+m2=n
m1>0,m2>0

(
∂i(v

j
m1
∂jv

i
m2

)− (n+ 1/2)∂i(δm1v
i
m2

)
)
, (2.29)

which can be obtained by directly plugging in the general solution from Eq. (2.28) into
the Euler equation from Eq. (2.24). It is worth emphasizing once more that the solutions
derived above are valid for the EdS universe, while the solutions for the ΛCDM model
have slightly different form [54, 55]. Collectively, the perturbative solutions presented in
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this chapter are known as Eulerian perturbation theory solutions. As already mentioned,
it relies on the smallness of density fluctuations δ. It is however possible to go beyond
this approximation in the Lagrangian perturbation theory (LPT) approach, as described
in Appendix B. The EFT forward models we employ, as presented in Section 2.6.2 and
Chapter 3, follow the LPT description. The two frameworks are of course equivalent,
but have different convergence properties with respect to the fully non-linear solution
for the velocity and density field obtained from N-body simulations (see Appendix B
for discussion on these points). In the following, we stick to the Eulerian perturbation
theory formulation for clarity.

2.2 The WIMP dark matter

Even though significant advances towards a complete theoretical description of dynam-
ical evolution of the dark matter fluid have been made over the past few decades, the
dark matter’s intrinsic nature still stays elusive to this day. Over the years, there have
been many proposals for potential candidates, motivated by different extensions of the
Standard Model. The wealth of proposed candidates is well captured by the fact that
the possible mass range spans 90 orders of magnitude [42]. One of the most promising
candidates through the past few decades was the weekly interacting massive particle,
WIMP for short. The WIMP has been the favorite cold dark matter candidate, arising
from the extension of the electroweak sector of the Standard Model [56–58], for the rea-
sons that will be discussed in this section. Among the wealth of different particle types
WIMPs could take on, the Majorana fermion stayed the most favorable candidate (see
Section 12 in [59] for example). Therefore, before continuing with further investigation
into the clustering of dark matter, we can first utilize the derived Boltzmann equation of
the previous chapter to study the background evolution of WIMP dark matter particles.
This will provide further context for the pursuit of dark matter constraints from the local
universe as performed in Chapter 4.

As in Section 2.1, we are interested in the averaged behavior of the dark matter
particles, hence we start our study again from the Boltzmann equation. Instead of
focusing on the perturbations around the background density, here we will focus on
the average abundance of dark matter particles as a function of time. Therefore, the
Eq. (2.15) reduces to

∂f

∂t
− ∂f

∂pi
Hpj = I[f ], (2.30)

where we have dropped ∂if term due to homogeneity, the metric perturbation term ∂iΨ
due to our focus on the background density and we have added the source term I[f ].
The source term, otherwise known as collision term, is present due to the interactions the
WIMP dark matter particles are involved in. Here we focus on annihilation, since decay
is treated analogously. To understand how these interactions change the background
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〈σv〉 = 10−21 cm3 s−1
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Figure 2.1: Thermal history of a dark matter WIMP, assuming it corresponds to a
Majorana fermion, with a mass of mχ = 100GeV. The plot shows the change in WIMP
abundance (nχ/s) with time. The dotted line represents the evolution of the equilibrium
number density, while the black and red represent the evolution of a WIMP thermal
relic with different cross sections indicated in the top right of the figure. The gray line
indicates the moment of freeze-out for the WIMP with cross section ⟨σv⟩ = 10−26 cm3 s−1.

abundance, we can integrate the phase-space distribution function f over momenta and
arrive at the following equation

1

a3
d(nχa

3)

dt
=

∫

p

I[f ], (2.31)

where nχ represents background dark matter particle density. The collision term can be
derived from the following consideration. We focus on Majorana WIMPs, since they are
the main candidate we consider in Chapter 4,. This implies the annihilation interactions
will have the following form

χχ⇄ AĀ, (2.32)

where A and Ā denote some standard model part-antiparticle pair and taking Majorana
WIMPs are their own antiparticle, i.e. nχ = nχ̄. It is then straightforward to derive
the collision term purely from dimensional grounds. Given that the number of particle
pairs AĀ generated from annihilation will be proportional to n2

χ and vice versa for the
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opposite direction, Eq. (2.31) can be written as (see Chapter 4.1 in [42])

1

a3
d(nχa

3)

dt
= −⟨σv⟩n2

χ + αnAnĀ. (2.33)

The minus sign in front of the first term signifies that the budget of χ particles is depleted
upon annihilation, while upon the reverse reaction it is enhanced and hence the plus sign.
The ⟨σv⟩ represents the thermally averaged annihilation cross section (see Eq. (4.77)).
For s-wave annihilation, this is a straightforward calculation, while for p- and d-wave,
the thermal cross section requires a bit more effort as described in Section 4.5.5. In the
following, we focus only on s-wave annihilation, for which ⟨σv⟩ is a constant velocity
independent number. Next, we notice that in equilibrium we have

α = ⟨σv⟩ (neq
χ )2

(nAnĀ)eq
. (2.34)

Assuming that the final products AĀ are much less massive than our WIMP particle χ,
and essentially in complete equilibrium before WIMP goes out of equilibrium, we have
nA = (nA)eq (nĀ = (neq

Ā
)). This implies

1

a3
d(nχa

3)

dt
= −⟨σv⟩

(
n2
χ − (neq

χ )2
)
, (2.35)

which is the well known Riccati equation. Dividing out by the entropy density, s, re-
moves the dependence on the scale factor, assuming adiabatic expansion. Furthermore,
presuming most of the annihilation interactions occur during the radiation domination
era we can recast from explicit time dependence to temperature dependence, since during
radiation domination the two are related as

(
T

MeV

)
∼
(
t

s

)1/2

,

where temperature is measured in MeV and proper time in seconds. Taking x ≡ mχ/T
Eq. (2.35) becomes [60] (see also Section 4.5.5)

dY

dx
= −s ⟨σv⟩

Hx

[
1 +

1

3

d (ln geff(T ))

d (lnT )

] (
Y 2 − Y 2

eq

)
, (2.36)

where geff(T ) is the number of effective degrees of freedom contributing to entropy density
and has to be calculated phenomenologically from the thermodynamics of the Standard
Model of particle physics. For example, reference [61] provides such a calculation (see
their Fig. 4). Given that the range of temperatures we are interested in is T ≪ mχ, the
equilibrium comoving number density is given as the corresponding limit of the Fermi-
Dirac distribution

Yeq =
45

2π4

(π
8

)1/2 gχ
geff

x3/2 exp (−x) , (2.37)
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where gχ represents the number of internal degrees of freedom for the WIMP. For ex-
ample, for the spin 1/2 Majorana fermion WIMP, as usually assumed, this number is 2.
With this, it is possible to numerically solve Eq. (2.35). The solution of this calculation
is plotted in Fig. 2.1 for a WIMP of mass mχ = 100GeV. The change in mass weakly
affects the relic abundance, i.e. the comoving number density in the limit mχ/T → ∞
(see for example Fig. 1 from [60]). As one can see from Fig. 2.1, the abundance stays
almost unchanged after x ∼ 25 (vertical gray band in Fig. 2.1), which corresponds to
the freeze-out temperature for the WIMP of mass mχ = 100GeV. It turns out that for
⟨σv⟩ ∼ 10−26 cm3 s−1 (black line in Fig. 2.1) is able to roughly match the present day dark
matter abundance of Y ∼ 10−9 [40]. Interpreting this result as coming from a particle
annihilating with the cross section ⟨σv⟩ ∼ α2

χ/m2
χ suggests a coupling constant of around

αχ ∼ 1/100 which is close to the electroweak coupling constant ∼ 1/137. This coincidence,
among other favorable properties, was the reason why WIMP model became so popular
in the first place. In Chapter 4 we use the inferred local large-scale structure dark matter
distribution by the BORG forward model (see Section 2.6.1) in order to constrain this cross
section for different annihilation channels.

2.3 Dark matter as an effective fluid

The approach presented in Section 2.1 is known as the standard perturbation theory
(SPT). As mentioned previously, it is valid at tree-level only, as will be explained in
this section. One can try nonetheless and apply the SPT approach to model the 2-point
statistics of the dark matter halo density field, for example, extracted from N-body
simulations. However, we don’t observe dark matter halos but galaxies instead, and this
requires an introduction of several more parameters to the model, collectively called bias
parameters (see Section 2.4). Even so, using the 2-point statistics of the galaxy field
can still provide useful information on cosmology, given the Equivalence Principle. In
other words, the dark matter halos and galaxies cluster the same way, since they feel
the gravitational field in the same way. It is therefore a worthwhile effort to try and
see how well the SPT approach works in recovering the underlying cosmology given an
N-body halo density field. This is precisely what was done in [62, 63]. The conclusion
of this work was that the SPT is useful, but only up to relatively high redshift of z ≥ 1.
The reason being simply that the perturbation series from Eq. (2.28) doesn’t converge
anymore on a big enough range of scales in order for it to be a useful series expansion.
The cause of such behavior is that the density perturbations become of order unity at
ever larger scales, as time passes by and larger and larger structures form. This in turn
reduces the applicability of the series expansion. In order to understand this in more
detail, it is enough to look at the typical amplitude of the linear density fluctuations at
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a given time t

⟨δ(1)(x, t)δ(1)(0, t)⟩ =
∫

k

PL(k, t)e
ik·x. (2.38)

The quantity PL(k, t) is the linear power-spectrum at time t. It is straightforward to
obtain this relation given the solution for δ(1) from Eq. (2.23). The modulus of the
integrand of the above equation is ∆(k) = a2k3PL(k). Due to the shape of the linear
power-spectrum, this is a monotonically increasing function of k. This means that one
can find a typical scale |x| ∼ R at which the integral becomes of order unity. This is
precisely the scale up to which it will be valid to apply the perturbation series from
Eq. (2.28), since for modes beyond the scale kNL ∼ 1/R, the SPT solution will start
to deviate strongly from the correct non-linear solution for the halo clustering problem,
which is given simply as a result of an N-body simulation. For redshifts up to z ∼ 1 this
is of order kNL ∼ 0.24hMpc−1 [62, 63], corresponding to a scale of about R ∼ 4h−1Mpc.
During the subsequent clustering, this scale will only continue increasing as more and
more modes will go into the non-linear regime, simply because larger and larger halos of
dark matter will form.

One can then try to add higher n-point correlation functions into the fold, but as
one can conclude from the above, their range of validity within the SPT approach will
be constrained to an even smaller set of modes. Now, given that some of the forward
modelling approaches do use a full N-body simulation as a part of the forward model,
they will not have the same issues. They will however suffer from other problems, such
as a very high number of degrees of freedom and the proper choice of the bias expansion,
as will be explained in Section 2.6. This then raises a question whether it is possible to
somehow regulate the perturbation series and extend its applicability to a higher range of
scales in order for it to be useful at redshifts z ∼ 0. This was demonstrated to indeed be
possible, for the first time in [27–29], by developing the effective field theory of large-scale
structure (EFTofLSS).

In order to grasp the main concepts of the EFTofLSS approach, it is useful to write
out the 2-point function at next-to-leading order (again assuming EdS)

⟨δ(k, t)δ(−k, t)⟩′ = a2⟨δ1(k)δ1(−k)⟩′ + a4(⟨δ2(k)δ2(−k)⟩′ + 2⟨δ1(k)δ3(−k)⟩′)
= a2PL(k) + a4(P22(k) + 2P13(k)), (2.39)

where

P22(k) = 2

∫

q

F 2
2 (q,k − q)PL(q)PL(|k − q|),

P13(k) = 3PL(k)

∫

q

F3(q,−q,k)PL(q), (2.40)

with F3 being the kernel for the third order density field perturbation δ(3) (see for example
[54, 55] for the full expression). Diagramatically, the above integrals can be represented
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as follows

P22 ∼

PL(q)

k −k

PL(|k − q|)

, P13 ∼

PL(q)

k −k
PL(k)

k − q

, (2.41)

where the convention from [64] is used. Both integrals involve loops, but can nonetheless
be safely numerically evaluated for the modes of interest, for example by a procedure
shown in [65] (see their Chapter 2.2). However, the problems arise in the limiting cases
for the momenta involved. For example, looking at the behavior of the F2(q,k − q)
kernel in the case when k ≪ q one obtains F2 ∼ O(q/k), which suggests that there
is an IR divergence. It turns out this effect is due to the presence of vi∂iδ and vi∂iθ
source terms from Eq. (2.19) (see [64]) and corresponds to a uniform displacement of
shorter-scale modes by a large-scale mode. This however is an unobservable effect due to
the invariance of the original system of coupled PDEs from Eq. (2.19) to bulk flows. It
can be therefore regulated by choosing a more suitable coordinate system, which in this
case is the coordinate system along the fluid flow (see Section 4.2 in [64]). This can be
demonstrated on the case of the δ(2) term derived in Eq. (2.25). One can notice that the
IR divergence is caused by the term ∼ ∂iδ1

∂i
∇2 δ1. Transforming this expression to Fourier

space, we notice that it gives rise to a term scaling as ∼ O(k2/k1). When k1 ≪ k2 this
term diverges. However, switching to the fluid frame, gets rid of this IR divergence. To
see this, expand the density fluctuation up to 2nd order

δ[2](x, a) = δ(1)(x, a) + δ(2)(x, a)

= aδ1(x) + a2

(
5

7
δ21(x) +

2

7

(
∂i∂j
∇2

δ1(x)

)2

+ ∂iδ1

(
∂i
∇2

δ1(x)

))
(2.42)

and apply the coordinate shift to the fluid frame

x→ xfl[x, η; 0] = x+

∫ η

0

dη′v(1)(x, η′), (2.43)

where v(1)(x, η′) = −H ∂i
∇2 δ

(1)(x, η′) is the first order solution for the velocity field in
EdS. The notation xfl[x, η; 0] is just for keeping track of the particle along the fluid flow,
meaning that the particle was at the beginning of the fluid flow line at conformal time
η = 0, and ended up at the coordinate x at time η which corresponds to the coordinate
xfl along the fluid flow. Applying now the shift ∆x(1) = xfl−x to the terms on the right
hand side of Eq. (2.42), and keeping all the relevant terms up to 2nd order in density
fluctuations, produces (see for example [66, 67])

δ[2](x, a) = aδ1(xfl[x, η; 0]) + a2
(
5

7
δ21(xfl[x, η; 0]) +

2

7

(
∂i∂j
∇2

δ21(xfl[x, η; 0])

))
. (2.44)
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As one can see the IR divergent term is not present anymore, since it has cancelled with
the term from the Taylor expansion of δ(1) after applying the shift ∆x(1). This is actually
a generic feature which also holds at higher orders [64, 66]. One more important thing to
note is that the derivatives with respect to x, employed in the Taylor expansion above,
should be corrected for the discrepancy between x and the fluid flow coordinate xfl. At
leading order, the derivative with respect to x and xfl coincide, while at higher orders one
needs to account for the higher order terms coming from the Jacobian of this coordinate
transform as well (see for example Appendix B). The intrinsic property of removing the
IR divergent terms by simply modelling the evolution along the fluid flow, motivates our
use of Lagrangian perturbation theory for the forward modelling effort from Chapter 3.

A direct consequence of this conclusion is that now we can claim that the time
evolution diagram at nth order is double soft. This can be also manifestly seen by
introducing momentum density πi = (1 + δ)vi, taking again the divergence of the Euler
equation for the density perturbation from Eq. (2.17) and reducing it to second order
ODE (see also Chapter 5.2 in [64]). This results in a source term, suppressing the
arguments,

Sδ = ∂i(δ∂iϕ) + ∂i∂j

(
πiπj

1 + δ

)

=
2

3H2

(
∂i∂j(∂jϕ∂iϕ)−

1

2
∇2(∂jϕ∂jϕ)

)
+ ∂i∂j

(
πiπj

1 + δ

)
, (2.45)

where we have used the Poisson equation and product rule identities to go from the first
to second line. As can be seen, all the source terms have two overall derivatives in front.
This means that when solving for the density perturbation, all diagrams that appear
will have the same overall scaling in derivatives, since the source term, Sδ, dictates what
couplings are possible in the theory and Eq. (2.45) is non-perturbative. Therefore, since
we know there are no IR divergences, i.e. no ∼ 1

∂
terms are allowed in the interaction

vertices, the overall double softness of the diagrams at all orders is preserved. If the IR
safety was not confirmed beforehand, one could not claim double softness directly from
Eq. (2.45).

We can now turn our attention towards looking at the UV limit of our theory. One can
again analyze the behavior of the P22 and P13 from Eq. (2.40). In order to immediately
see what is the scaling, one can write out the correlators as follows

P22 ∼
〈

,
〉

P13 ∼
〈
,

〉
(2.46)

and notice that the P22 arises from contracting two diagrams, each of which consist of two
hard modes with momenta q and k− q (see also diagrams from Eq. (2.41)). The double
softness argument implies that P22 has to scale as ∼ k4. The P13 contains the third order
field δ(3) which consists of one soft mode δ1(k) and two hard modes, which is contracted
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with the linear field δ(1). This means it has to scale as ∼ k2PL(k). The interpretation of
the UV limit for the P22 comes directly from studying the constituent diagrams. As can
be seen, both diagrams entering the correlator represent two hard modes combining into
a soft mode. In other words, even in the absence of initial long mode perturbation, it will
form from the collapse of the shorter scale modes. Given that a field with correlation
structure scaling as ∼ k4 in Fourier space corresponds to a completely localized and
uncorrelated field in real-space, it can be understood as stochastic noise contribution
arising from short scales. On the other hand, the P13 arises from coupling an existing
soft mode to hard modes. Therefore, the δ(3) diagram appearing in the P13 correlator,
describes how the evolution of short scale modes is affected in the presence of initial
long mode. With this physical interpretation in mind, it is then possible to regulate
the integrals from Eq. (2.40) by cutting them off at some momentum Λ and absorbing
the residual cutoff dependent terms by adding appropriately scaling terms to the theory.
These terms will capture the effective couplings between the remaining soft and neglected
hard modes. In the case of 2-point function, given the above estimated scaling of the
leading contributions at 1-loop, the leading order correction that needs to be included is

− 2c213(η)k
2PL(k) + c222(η)k

4, (2.47)

with two new counter terms with time dependent coefficients appearing. They correspond
to adding the following correction to the source term of the Euler equation

δct(k, η) = c22(η)k
2ϵ(k)− c13(η)k2δ(1)(k, η), (2.48)

with the introduction of ϵ(k) field, representing the stochastic noise contribution. This
field is uncorrelated with the matter field δ, and has an analytic power spectrum, typ-
ically with increasing power on small scales (see for example [31]). The arbitrary time
dependence of the counter term coefficient allows for systematic renormalization of all
higher-order diagrams which include the same 1-loop contribution from the P22 and P13

diagrams. For example, analyzing the diagram for the 1-loop bispectrum contribution,
B411

B411 ∼ a , (2.49)

we see that the same 1-loop contribution as for P13 appears. However, the time depen-
dence of the field ingoing into the loop is different, i.e. it is second order, arising from two
linear fields coupling at the vertex labelled with “a”, while for the case of P13 it was first
order. This is the reason why the most general coefficient of the counter term has to be
time dependent. Note that the form of the leading order counter terms from Eq. (2.48)
will stay the same even if we have assumed ΛCDM from the start, since the time- and
spatial-dependent part also decouple as in EdS. Only the specific time dependence of
c13, c22 terms will be affected. This generic time dependence of the counter terms simply
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reflects the fact that the short mode can be affected by a long mode at any moment dur-
ing its evolution and then couple to other modes at some later time afterward (see for
example Chapter 4.1 in [64]). Precisely the terms from Eq. (2.48) will be contained inside
the neglected stress tensor τ ij from Eq. (2.16), as will be shortly explained. Furthermore,
this kind of analysis directly motivates the structure of our own EFTofLSS forward mod-
els from Chapter 3. For example, the ϵ(k) term directly dictates the k-dependence of
the noise model from Section 3.2.3, while the second term, c13(η)k2δ(1)(k, η), motivated
the presence of b∇2δ term in Eq. (3.11). Although, see Section 2.4 for a more complete
description.

In order to systematically generate required counter terms at all orders, it is enough
to write out, at the given order, all terms consistent with the equivalence principle, which
are as well invariant to time-dependent boosts. This suggests that the terms will start
first order in δ but second order in derivatives. All the terms can then be absorbed
into the effective stress tensor, τ ij, from Eq. (2.16). For example, the ∼ δ(1) term from
Eq. (2.48) is obtained from the following effective stress tensor

τ ij ⊃ l1(η)∂
i∂jΨ+ l2(η)δ

ij
D∂

2Ψ, (2.50)

while at next-to-leading order, relevant for the bispectrum for example, we have

τ ij ⊃ p1(η)∂
i∂kΨ∂

k∂jΨ+ p2(η)∂
2Ψ∂2Ψ+ p3(η)∂

i∂jΨ∂2Ψ. (2.51)

The l1, l2, p1, p2 and p3 are all generic time dependent functions. The above discussion
focused on density perturbations, δ, however the same approach holds for the θ field
as well, given that it can be associated with velocity potential Ψv ≡ ∇−2( 1

Hθ). For
consistent treatment of both δ and θ field solutions at all orders, see [64].

The equations 2.50 and 2.51 can be written in a way where the invariance to the time
dependent boosts is more manifest as well as the preservation of IR safety of the theory.
In this form the expression for τ ij is given as (see Eq. 6.9 in [64])

τ ij(x, η) =

∫ η

0

{dηn}Ka1...an...(η; {ηn})Πi1j1
a1
· · ·Πijk

ak
· · ·Πilj

al
· · ·︸ ︷︷ ︸

n

, (2.52)

where
Πij

a ≡ Πij
a (xfl(ηa), η

′
a)

def
= ∂i∂jΨa(x(ηa), η

′
a),

with Ψa representing a doublet of density and velocity potentials

Ψ0 = Ψ, Ψ1 = Ψv (2.53)

As can be seen they are evaluated along the fluid flow and are manifestly IR safe as well
as invariant to time dependent boosts. Furthermore, these terms are all observables,
since they contain two spatial derivatives, and hence consistent with the equivalence
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principle. The Ka1...an...(η; {ηn}) represents an arbitrary time dependent kernel, reflecting
the arbitrary time dependence of an ingoing field to the loop at nth order. As an example,
one can consider the terms from Eq. (2.50), apply two derivatives to the Euler equation
from Eq. (2.16), in order to obtain the source term for the velocity divergence PDE. This
then directly results in a term

1

ρ
∂i∂jτ

ij ∼ ∂i∂jτ
ij +O(δ2)

⊃ ∂i∂j

∫ η

0

dη′K11(η; η
′)
[
l1(η

′)∂i∂jΨ1(xfl, η
′) + l2(η

′)δijD∂
2Ψ1(xfl, η

′)
]

= ∂2
∫ η

0

dη′K11(η; η
′)(l1(η

′) + l2(η
′))δ(xfl, η

′), (2.54)

which already reproduces the form of the δ(1) from Eq. (2.50). The above expression
is satisfying both the equivalence principle requirements and invariance under time de-
pendent boosts, given that it is formulated along the fluid flow. In order to see what
is the relation between the c13 from Eq. (2.50) and the coefficients l1, l2 one can just
perturbatively solve for δ(xfl(η), η

′) in terms of δ(x, η) (see for example Chapter 3.1 in
[67]) to obtain

δ(xfl(η), η
′) =

a(η′)

a(η)
δ(x, η)+

a(η′)

a(η)

(
a(η′)

a(η)
− 1

)[
5

7
δ2(x, η) +

2

7

(
∂i∂j

∇2
δ(x, η)

)2
]
+O(δ3)

(2.55)
which holds up to second order in δ. One can then easily see that, after applying the
usual perturbative ansatz from Eq. (2.28), the relation is

c13(η) =

∫ η

0

dη′K ′
11(η, η

′)(l1(η
′) + l2(η

′)), (2.56)

where K → K ′ emphasizes that the time-dependent part of the perturbative solution can
just be absorbed by the kernel itself. Note that this result will also hold in general ΛCDM
case too. Therefore, the generic relation from Eq. (2.52) is indeed capable of reproducing
the ∼ δ(1) term from Eq. (2.48) as anticipated, and can be used for generating higher
order counter terms. The only remaining piece to be explained is the generation of
stochastic terms, such as the ∼ ϵ(k) in Eq. (2.48). However, these terms are subleading
on large scales. This can already be suspected from the scaling in Eq. (2.47), given that
the amplitude of the stochastic and non-stochastic contribution scale as

∆2
c22
∼ k7, ∆2

c13
∼ k(5+ns), (2.57)

where ns is the slope of the linear power-spectrum close to kNL, which is approximately
ns ∼ −1.5, since the typical value for kNL ∼ 0.3hMpc−1 (see discussion below Eq. (2.38)).
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Given that we will be concerned only with the leading order piece of the stochasticity, as
given in Eq. (2.48) in Chapter 3, we refer the reader to consult with [31] (Chapter 2.8)
for a systematic treatment of the higher order stochastic terms.

The momentum cutoff of the loops from Eq. (2.41), necessary for regulating the SPT
approach, can be also generically imposed if one would smooth the original equations of
motion, Eq. (2.16), up to the same scale. This will automatically regulate the loops up to
any order. Even if one would start from the approximate equations from 2.17, smoothing
will introduce an effective stress-tensor as a source term. Therefore, the appearance of
the effective stress-tensor is the generic feature of the matter clustering problem. It
simply comes from the fact that the gravitational interaction couples all scales. The
smoothed equations Eq. (2.16) take the form

δ′l + ∂i
(
(1 + δl)v

i
l

)
= 0,

vil
′ + vjl ∂jv

i
l +Hvil + ∂iΨl = −

1

ρl
∂j[τ

ij]Λ,

∇2Ψl =
3

2
H2Ωm(η)δl, (2.58)

where subscript (.)l denotes long modes that remain after convolving with the smoothing
kernel with a characteristic scale Λ. In order to derive the above result, one should start
directly smoothing the momenta involved in the original Boltzmann equation Eq. (2.15)
(see [27] for derivation). The expression of the effective stress tensor arising from this
smoothing procedure is given as

[τ ij]Λ = [ρvivj]Λ +
1

8πG
[2∂iΨs∂jΨs − δijD(∇Ψs)

2]Λ, (2.59)

where the superscript (.)s stands for short modes, i.e. the ones with k ≥ Λ. Given that
the curl-free velocity field can be written as the gradient of a velocity potential field, all
the terms appearing above have two spatial derivatives, as required by the equivalence
principle.

Another important thing to note is the justification for the truncation of the Boltz-
mann hierarchy at the second moment. To really label the dark matter content of the
universe as a cosmic fluid requires it not only to respect continuity and Euler equations
from Eq. (2.16), but also have negligible higher order moments of the Boltzmann equa-
tion. For neutrinos this was demonstrated in [52], while in similar manner, reference [27]
shows that the same conclusion holds for cold dark matter. Namely, after writing the
recursion relation of the Boltzmann equations for the perturbation of the dark matter
phase space distribution function for moments m ≥ 2 (using the same convention as in
[52])

∆̇
[m]
f (k, η) =

k|ẋ|
2m+ 1

(
m∆

[m−1]
f (k, η)− (m+ 1)∆

[m+1]
f (k, η)

)
, m ≥ 2, (2.60)
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where vp
def
= |ẋ| is the particle’s peculiar velocity, which doesn’t necessarily coincide

with the mean peculiar velocity obtained from calculating moments of the Boltzmann
equation (see Eq. (2.16)). The relevant timescale is the Hubble time, ∼ H−1, and hence
the solution for the ∆f can be roughly estimated to scale as

∆
[m]
f (k, η) ∼ kvpH−1

2m+ 1

(
m∆

[m−1]
f (k, η)− (m+ 1)∆

[m+1]
f (k, η)

)
, m ≥ 2. (2.61)

From the above it follows that

∆
[m]
f ∼ (kvpH−1)m−2∆

[2]
f . (2.62)

This is similar as to the usual fluid treatment, where the prefactor is instead ∼ kvptc,
with tc being the characteristic collision time. As usually done, one coarse grains the
Boltzmann hierarchy, takes volume elements of big enough extent such that kvptc ≪
1. In other words, one models only the phenomenology at scales k ≪ (vptc)

−1, much
bigger than the characteristic length scale covered within the collision time. Unlike for
the conventional fluid, where the characteristic collision time is very short, the dark
matter fluid has a characteristic timescale of order ∼ H−1. Since we’re interested in the
modes within the horizon, it follows that the characteristic magnitude of the dark matter
peculiar velocities should be small in order to allow for the truncation of Boltzmann
hierarchy. To see this, one can look at the typical amplitude of the velocity field and see
when it becomes O(1)

∆2
v(kNL) ∼ ∆2

δ(kNL)

( H
kNL

)2

∼
( H
kNL

)2

, (2.63)

since ∆δ(kNL) ∼ 1, and the relation vp(k, η) ∼ k−1Hδ(k, η) follows directly from the
leading order continuity equation (see Eq. (2.17)). Therefore, we see that as long as

kvpH−1 ≲
k

kNL

, (2.64)

i.e. k ≪ kNL, the truncation of the Boltzmann hierarchy is well motivated and hence
dark matter can be indeed treated as an effective fluid.

At the end of the day, we will not be able to directly observe the dark matter field, or
the halos that form by the gravitational evolution, as described in this section. Instead,
we observe a tracer of the matter field. This tracer can be anything from galaxies,
quasars, the Ly-α forest [68, 69], Sunyaev-Zel’dovich effect measurements [3, 70–72],
21cm observations [73], line intensity mapping data [74] etc. In this work we are focusing
on galaxies, however the same principles will apply to any other tracer. In Section 2.4
we aim to provide a general framework of how the EFT approach can be extended to
the description of biased tracers.
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2.4 Modelling biased tracers

The previous sections were focused on the description of modelling the underlying matter
density field. However, we can not directly observe dark matter, rather it is much easier
to deal with different tracers of this underlying matter field observationally, such as
galaxies, quasars etc. All these tracers are collectively known as biased tracers of the
large-scale structure. The main goal of all large-scale structure models is to constrain
cosmological parameters given the biased tracer data. Therefore, we dedicate this section
to the effective theory of biased tracers, upon which the section Chapter 3 relies.

The most general bias expansion follows from the following assumptions: (i) the
Equivalence principle, stating that all objects feel the gravitational field in the same
way and (ii) the renormalization condition, saying that one needs to include in the bias
expansion all terms allowed by the symmetries of general relativity up to the given order.
The first assumption suggests that there must be a mapping between the underlying
matter field and the clustered tracer field (halos or galaxies for example), i.e.

δg(x, τ) =
∑

O

bO(τ)O[δ,Θ](x, τ), (2.65)

where we have denoted with the O[δ,Θ](x, τ) a general bias operator, which itself is a
function of the underlying matter field δ and cosmology Θ, while bO(τ) are the corre-
sponding bias coefficients. The time dependence of the bias coefficients reflects the fact
that different sized objects will collapse at different times, as already noted in Section 2.3.
The leading order term can already be fixed through the famous peak-background split
argument, first proposed by N. Kaiser in 1984 [75]

δg(x, τ) ⊃ bδ(τ)δ(x, τ) (2.66)

Although this original argument was derived for dark matter halos, the same argument
applies between the halo and galaxy density field due to the equivalence principle. Hence,
by transitivity, the same relation will hold between the matter and galaxy clustering
field as written above. Since the voids are as much present in our universe as clusters
of galaxies, the bias coefficient bδ can be any real number. Following this logic, one can
then propose the following bias expansion in a form of a Taylor series [76, 77]

δLIMD
g (x, τ) =

∑

n

bn(τ)δ
n[Θ](x, τ). (2.67)

Given that we are forming a perturbation series description, it is necessary to consider
overdensities which are belowO(1). The same reasoning as from Section 2.3 then suggests
that we need to impose a scale up to which we want to describe the galaxy overdensity
field, given that the smaller the scales we are concerned with, the larger the amplitude of
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the overdensity and hence weaken the PT description. However, a Lagrangian approach
will extend the applicability of the above expansion to beyond O(1) overdensities (see
Appendix B and Chapter 3). In the spirit of the perturbative description from Section 2.3
and 2.1, the above equation should be rephrased as

Eq. (2.67)→ δLIMD
g,Λ (x, τ) =

∑

n

bn(τ)δ
n
Λ[Θ](x, τ), (2.68)

with Λ denoting the cutoff scale. This approach is known as local-in-matter-density
(LIMD) bias expansion (see Section 2.1 in [31]), hence the superscript. As the name
suggests, the expansion doesn’t account for spatially non-local effects, such as tidal field
for example, which is a local observable. This already suggests the above expansion is
incomplete, since it is expected the tracer density should also depend on the underlying
tidal field. In order to see what is necessary how to expand the above PT series, one can
start from looking at the expectation value of the proposed LIMD mapping. Given that
we are interested in modelling an overdensity field we need to have

⟨δLIMD
g,Λ ⟩ !

= 0, (2.69)

however, already with n = 2 in Eq. (2.67) we have (suppressing arguments)

⟨δ[2],LIMD
g,Λ ⟩ = ⟨bδδ[2]Λ + bδ2(δ

(1)
Λ )2⟩ = ⟨(δ(1)Λ )2⟩

=

∫ Λ

q

PL(q) ≡ σ2(Λ), (2.70)

given that ⟨δ[2]Λ ⟩ = 0. We see therefore that the mean of the PT expansion up to 2nd
order is not zero, but equals the variance of the matter field, smoothed on scale Λ. The
issue can be alleviated by renormalizing the expansion and introducing a counter term
at 2nd order as

δ
[2]
Λ = bδδΛ + bδ2 [δ

2
Λ] = bδδΛ + bδ2((δΛ)

2 − σ2(Λ)). (2.71)

As can be explicitly checked, this renormalized 2nd order bias expansion now correctly
produces zero mean expectation value for the resulting galaxy overdensity field. Since we
are not only interested in the 1-point function, but want to also model the higher order
moments of the galaxy field, we need to also ensure the final result doesn’t depend on the
arbitrary selected cutoff Λ. The same issue was already encountered when considering
the 2-point function of the matter field in Section 2.3 which resulted in the introduction
of counter terms of the form Eq. (2.48) at the one loop level. Let us therefore consider
the 2-point function of the galaxy clustering field, at one loop. In order to grasp the
main argument, there is no need to go beyond δ2 in bias expansion. With this, we have

〈
δ
[2],LIMD
g,Λ δ

[2],LIMD
g,Λ

〉′
1−loop

= b2δ ⟨δΛδΛ⟩′1−loop

+ 2bδbδ2
〈
(δΛ)

2δΛ
〉′
1−loop

+ b2δ2
〈
(δΛ)

2(δΛ)
2
〉′
1−loop

, (2.72)
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as usual, ′ denotes dropping the momentum conserving Dirac deltas. The first term
from Eq. (2.72) represents the two point function of the matter field, and is renormalized
within the EFTofLSS as demonstrated in Section 2.3 at 1-loop. However, as we will see
shortly, the terms in the second line require a new type of counter terms, different from
those introduced for the matter field in Eq. (2.48) at the 1-loop level. In order to see
this, we can expand the ∼ bδbδ2 and ∼ b2δ2 terms in density perturbations up to ∼ (δ(1))4

Eq. (2.72) ⊃
〈(

δ
(1)
Λ + δ

(2)
Λ

)2
q

(
δ
(1)
Λ + δ

(2)
Λ

)
q1

〉′

+

〈(
δ
(1)
Λ

)2
q

(
δ
(1)
Λ

)2
q1

〉′

=

〈(
δ
(1)
Λ δ

(1)
Λ

)
q

(
δ
(2)
Λ

)
q1

〉′
+ 2

〈(
δ
(1)
Λ δ

(2)
Λ

)
q

(
δ
(1)
Λ

)
q1

〉′

+

〈(
δ
(1)
Λ

)2
q

(
δ
(1)
Λ

)2
q1

〉′
, (2.73)

or diagrammatically

Eq. (2.72) ⊃ +

+ , (2.74)

with the white circle representing convolution in Fourier space. In the UV limit, each
loop term evaluates to (schematically)

∼
∫ Λ

p

F2(p, q − p)PL(|q − p|)PL(p)

∼ q2
(∫ Λ dp

2π2
P 2
L(p)

)

∼ σ2(Λ)PL(q)

∼ σ4(Λ). (2.75)

The first line scales as q2, which follows directly from the behavior of the F2 kernel
for q ≪ p, i.e. limq≪p F2(p, q − p) → q2/p2. Borrowing from the intuition gathered
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while analyzing the P22 loop term from Eq. (2.41), we can conclude that this term will
contribute as a stochastic noise term with correlation structure scaling as ∼ q2 in Fourier
space. This demonstrates that the stochasticity of biased tracers has a different structure
to the one of the matter field and requests a term with correlation structure ∼ q2 to be
as well inserted.

Similarly, the other two diagrams we have also not encountered in previous section
at the level of 1-loop matter power spectrum. As we can see, these loops arise from
contracting the fields within the ∼ δ2 bias operator. This insight will help us formulate
a more general renormalization condition, which will provide a systematic way of gener-
ating all needed counter terms at the given loop order (see Eq. (2.85)). This will in turn
generalize the bias expansion from Eq. (2.67) and force us to include all possible terms
allowed by the symmetry of the problem at the given loop order, a recurring theme of
every EFT approach.

It is therefore instructive to analyze more closely the remaining two terms. Looking
back at the Eq. (2.71) it is clear that the ∼ σ4(Λ) term of Eq. (2.75), will be automatically
cancelled due to the introduced ∼ σ2(Λ) term in the renormalized expression for δ2.
However, the ∼ σ2(Λ)PL requires an introduction of yet another counter term, this time
of the form ∼ σ2(Λ)δΛ. In order to see exactly what is the term to add, we can explicitly
evaluate the loop

〈
(δΛ)

2(q)δΛ(q1)
〉′
1−loop

= 2

∫

p1

〈
δ
(1)
Λ (p1)δ

(2)
Λ (q − p1)δΛ(q1)

〉′

= 2WΛ(q1)

∫

p1

∫

p2

∫

p3

(2π)3δD(q − p1 − p2 − p3)
WΛ(p1)WΛ(|p2 + p3|)F2(p2,p3)〈
δ(1)(p1)δ

(1)(p2)δ
(1)(p3)δ

(1)(q1)
〉′

= 4WΛ(q1)

[∫

p

WΛ(p)WΛ(|q + p|)F2(q,p)PL(p)

]
PL(q1),

dropping momentum conserving Dirac deltas. The first line expands the convolution from
the (δΛ)

2 operator, while the next one applies the solution for the δ(2) from Eq. (2.26).
The kernels WΛ are representing the smoothing operation, and cut the corresponding
momenta up to Λ in magnitude. Divergence generated in the limit of q ≪ q1 is handled
by our discussion on EFTofLSS from previous section (Section 2.3), the more interesting
limit here is when q1 ≪ q. Therefore, we can take WΛ(q1)→ 1. Similarly, taking q ≪ Λ,
since we’re interested in the UV behavior of the loop, one can perform the angular
integration of the momentum integral and expand in powers of (q1/q) to obtain

〈
(δΛ)

2(q)δΛ(q1)
〉′
1−loop

= 4PL(q1)

(
17

21

∫

p

WΛ(p)PL(p)

)
=

68

21
σ2(Λ)PL(q1). (2.76)
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This then suggests the bias operator δ2 should be added a counter term of the form

[δ2] = δ2Λ − σ2(Λ)

(
1 +

68

21
δΛ

)
. (2.77)

The correction doesn’t yet suggest that the original expansion from Eq. (2.67) is incom-
plete, given that one can redefine the leading order bias coefficient bδ → bδ− (68/21)σ2(Λ)
and absorb the divergence. This indicates that the bias parameters themselves as given
by the LIMD expression from Eq. (2.67), in this case bδ, are going to depend on the cut-
off scale, and therefore can not be seen as observable quantities. It is however possible
to renormalize the bias parameters as well. As shown in [78], it follows automatically
after listing all possible terms allowed by the equivalence principle at the given order in
density fluctuations and thus providing a complete bias expansion at that order.

To see how to systematically generate a complete bias expansion, it is instructive to
proceed to the 1-loop expansion from Eq. (2.72) even further, up to ∼ (δ(1))6. In order not
to worry about the terms renormalized by the EFTofLSS approach from Section 2.3, it is
better to focus only on the 1PI8 diagrams appearing at 1-loop, these are diagrammatically
(see also [78])

〈
δ
(n=2)
g,Λ δ

(n=2)
g,Λ

〉1PI
1−loop

=

+ +

The first diagram we have already seen in Eq. (2.75), with the only difference here being
that we should keep in mind it appears as a part of a larger diagram whose remaining
part is renormalized by the EFTofLSS counter terms. The structure of this 1PI diagram
immediately suggests that the corresponding counter term should scale as ∼ σ2δΛ as we
already discussed. The diagrams on the second line are new.

Following the same logic, we can then immediately write down what is the scaling of
the first 1PI diagram on the second line with Λ

∼
(∫ Λ

p

F2(p, q1)F2(p,−q2)PL(p)

)
δ(q1)δ(q2), (2.78)

which can be absorbed by adding a counter term proportional to ∼ δ2 to the renormal-
ization of δ[2] bias operator. The Λ dependence of the remaining diagram however can

8one-particle irreducible
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not. The resulting expression of this diagram is

∼
(∫ Λ

p

F3(q1 + q2 − p, q1, q2)PL(p)

)
δΛ(q1)δΛ(q2), (2.79)

where the white square vertex symbolizes the F3 kernel given by (see e.g. [54, 55])

F3(q1, q2, q3) =
1

18
[7α(q1, q2 + q3)F2(q2, q3) + 2β(q1, q2 + q3)G2(q2, q3)]

+
1

18
[7α(q1 + q2, q3) + 2β(q1 + q2, q3)]G2(q1, q2),

with

α(q1, q2) = 2F2(q1, q2)−G2(q1, q2),

β(q1, q2) =
5

2
G2(q1, q2)−

3

2
F2(q1, q2). (2.80)

Taking the limit of large loop momentum q1, q2 ≪ p and performing the angular integral
after expanding the F3 kernel gives (see also [78])

∼ (q1 · q2)2
q21q

2
2

δΛ(q1)δΛ(q2) +O
(
q2i
Λ2

)
, (2.81)

which suggests a completely new counter term, constructed out of the 2nd derivative of
the gravitational potential ∂2ΨΛ is to be included in order to properly renormalize δ2
at the level of 1-loop. As expected, this term is indeed a local observable and as such
suggests that the original expansion in Eq. (2.67) is incomplete. More precisely, the
relevant counter terms we looked at up to now renormalize the δ2 bias operator as (see
[78] and Section 2.10 in [31])

[δ2] = δ2Λ − σ2(Λ)

(
1 +

68

21
δΛ +

2624

735
δ2Λ +

254

2205

(
2

3H2Ωm

∂i∂jΨΛ

)2
)
. (2.82)

In fact, the term (∂2ΨΛ)
2, can be rewritten in terms of the more familiar tidal tensor

Kij,Λ =
2

3H2Ωm

∂i∂jΨΛ −
1

3
δijδΛ, (2.83)

which then adapts Eq. (2.82) to

[δ2] = δ2Λ − σ2(Λ)

(
1 +

68

21
δΛ +

24032

6615
δ2Λ +

254

2205
(Kij,Λ)

2

)
. (2.84)
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Appearance of the tidal tensor in the bias expansion at 2nd order motivates the question
on whether it itself is already renormalized or one needs additional terms in order to
achieve that. As it turns out, by repeating the same reasoning as we have done so far,
the necessary term for renormalizing the tidal tensor, whilst keeping up to the 2nd order
in density perturbations is given as ∼ ∂2δ. This could’ve been also guessed directly from
the form of the renormalized δ2 operator from Eq. (2.84), since δ2 appears directly in
K2

Λ with two additional derivatives in front. This is precisely the reason why we include
bias terms such as ∼ b∇2δ in our forward models from Chapter 3.

The intuition gathered so far can be formulated into a general renormalization con-
dition for the bias operators as ([31, 78])

lim
ki→0

〈
[O](k)δ(1)(k1) . . . δ

(1)(kn)
〉 !
=
〈
O(k)δ(1)(k1) . . . δ

(1)(kn)
〉
tree

. (2.85)

In words, we require that in the large-scale limit, all n-point functions the bias operator is
involved in, don’t have any diverging loop contributions. The reason why this condition
is phrased through only contracting with n instances of the linear matter field δ(1) is that
the divergences specific to the biased tracer expansion are coming from the UV behavior
of the bias operator O itself, and not from internal contractions between the constituent
fields of the bias operator and higher order matter fields. These are renormalized by the
approach presented in Section 2.3. For example, at the level of 2-loops the tracer power
spectrum contains

⟨δg,Λδg,Λ⟩2−loop ⊃ , (2.86)

However, the behavior in the limit q1 ≪ q2, q3 is already captured by the EFTofLSS
counter terms. On the other hand, when q2, q3 ≪ q1, the UV behavior will match the
one from the 1PI diagram in Eq. (2.79). Therefore, even though this term should formally
be renormalized with the counter term appearing at two loops, the fact that we have
already renormalized properly the matter density field allows us to focus only on the 1PI
diagram coming from internal contractions of the corresponding bias operator.

In conclusion, if one is interested in producing a complete bias expansion at order n,
one needs to renormalize all bias operators appearing to that order by applying the above
renormalization condition for all possible number of matter fields < n. This ensures all
loop divergences are captured by the generated counter terms. In fact, by this proce-
dure, the bias parameters themselves get renormalized as well and don’t depend on the
smoothing scale Λ (see Section 3.2 in [78]). This then allows for physical interpretation
of the obtained values of the bias parameters from any inference approach. As will be
seen, in Chapter 3 we precisely use this fact to both construct, and later discuss, the
inferred values of various bias parameters of the forward models we consider.
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With this, one can then continue to any order in perturbation theory, which then
produces a general bias expansion of the form

δg(x, τ) =
∑

O

bO(τ)[O](x, τ), (2.87)

which is exactly what we used in Chapter 3 for our EFTofLSS forward model.
The first look into the performance of the EFTofLSS approach at the level of 2-

point, for the matter density field at redshift zero was performed in [29], while for the
halo density field it was first done in [79, 80]. As they demonstrated, the EFTofLSS
approach is capable of reproducing the non-linear power spectrum at the percent level
up to kNL ∼ 0.3hMpc−1 and therefore significantly improves the results of the SPT
approach as previously demonstrated for example in [62, 63]. The EFTofLSS approach
however introduces more parameters, as any EFT does, which need to be calibrated for
the application at hand. Examples of such parameters are bias parameters presented in
this section or EFTofLSS counter terms from Section 2.3. What the authors of [29, 79, 80]
did is to deduce them directly from the N-body simulation and then use them in their
EFT expansion. Of course, since we don’t have access to the N-body simulation for
our own universe, one needs to marginalize over these parameters statistically by using
some of the techniques explained in Section 2.5. This is precisely what was done in the
works [14, 15], which were able to utilize the EFTofLSS approach and apply it at the
level of 2- and 3-point functions on the 12th data release of the BOSS galaxy survey [81]
and constrain cosmological parameters of the ΛCDM model using galaxy data for the
first time. The question remains, however, how much information can be gained on the
cosmology by going to ever higher n-point functions. One way to answer this question is
to construct a field-level forward model which will automatically contain the information
of all higher order n-point statistics. As briefly mentioned previously, and as elaborated in
Section 2.6, this has its own downfalls. However, it remains to be demonstrated whether
combining the field-level forward modelling approach with the EFTofLSS, taking the
best of both worlds, is the most optimal way forward. A step towards this goal was
exactly one of the aims of this thesis and is undertaken in Chapter 3. We will come back
to this topic in Section 2.6.2.

2.5 Statistical inference

Before continuing onto the formulation of the field-level forward models of the large-scale
structure, it is instructive to briefly review the statistical inference machinery employed
throughout this thesis. This will allow for better understanding of the different model
choices presented in Section 2.6. A common theme among the models is that all of them
are built on top of Bayesian statistics, which we motivate below.
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Bayesian reasoning arises as a natural formulation for problems where one needs to
draw conclusions from incomplete information at hand. In 1946, R.T Cox [82] showed
that there is unique correspondence between reasoning in logic and Bayesian inference,
if one accepts probabilities are a correct measure for degrees of belief towards a given
statement. In a Bayesian setting it is possible to formulate any problem and incorporate
into this formulation all the available knowledge about it, before any data is measured.
In fact, as argued in the book by E.T. Jaynes [83], that is exactly what one should do
when drawing conclusions about any parameter of a physical theory, given that always
we would deal with an incomplete representation of the parameter space simply due to
the finite data sample. One might be worried that this prior knowledge can ultimately
bias the result, however it can be argued that if one phrases the prior information using
the principle of maximal entropy coupled with reparameterization invariance (see Chap-
ter 12 in [84], also see [85]), the prior will be automatically maximally ignorant about
any particular parameter of our model. This is enough motivation for us to adopt the
Bayesian inference as the main statistical inference machinery of this thesis.

The goal of any cosmological inference is to deduce what are the preferred values of a
given set of model parameters Θ by the data D. In the Bayesian reasoning language, this
means that we are interested in inferring the posterior probability distribution of a given
model M, P(Θ|D,M, I). The symbol I stands for any other background information
about the problem we might have. The Bayesian approach then tells us we can use
probability calculus to do reasoning, and hence we can apply the rule of conditional
probabilities

P(Θ|D,M, I) =
P(D|Θ,M, I)P(Θ|I)

P(D|M, I)
. (2.88)

The equation is otherwise known as the Bayes theorem. This equation relates the like-
lihood, P(D|Θ,M, I), of observing a particular dataset realization D, given the set of
parameters Θ of modelM, supplemented by background information I. This is addition-
ally weighted by the prior knowledge we have on the problem, which modelM conveys
and it is formulated before receiving the data and having information I in addition at
our disposal, P(Θ|M, I). The normalization factor, P(D|M, I), denotes the Bayesian
evidence and represents the model’s preference for the given dataset. However, usually
one is not interested in this quantity but rather in the preference of the data for a given
model M, i.e. P(M|D, I). For example in Chapter 4 we will be interested in which
spectral tilt for the WIMP dark matter decay does the data prefer better. Again, one
can utilize the Bayes theorem and write

P(M|D, I) = P(D|M, I)P(M|I)
P(D|I) , (2.89)

where P(M|I) denotes the prior belief in a given modelM, as dictated by background
knowledge I, while P(D|I) denotes our prior belief in the plausibility of a given data



34 2. Structure formation: Theoretical minimum

realization. However, one never calculates the posterior P(M|D, I), since it only makes
sense to compare two different modelsM1 andM2 and see which one of them is preferred
by the data. Therefore, one is interested in calculating the following ratio

P(M1|D, I)
P(M2|D, I)

=
P(D|M1, I)P(M1|I)
P(D|M2, I)P(M2|I)

. (2.90)

This ratio is otherwise known as the Bayesian odds factor and is tightly related to the
Occam’s razor principle (see also [86]) as we demonstrate below.

A priori, the background knowledge I can be uninformative about the model choice
and hence assign them equal probabilities P(M1|I) = P(M2|I). The problem then
reduces to calculating the Bayesian evidence ratio for the two models. It then follows
that

P(D|M, I) =

∫
DΘ P(D|Θ,M, I)P(Θ|M, I)

≈
∫
DΘ exp

[
lnP(D|Θ̂,M, I) +

1

2

(
Θ− Θ̂

)i
Cij
(
Θ− Θ̂

)j]

= P(D|Θ̂,M, I)

√
(2π)NΘ

det(C) , (2.91)

where we have assumed likelihood has a local maximum value Θ̂ and doesn’t have very
heavy tails, so that the Gaussian approximation holds to a good degree. Expanding
around it then defines the curvature matrix

Cij def
=

∂2

∂Θi∂Θj
(lnP(D|Θ,M, I))

∣∣∣∣
Θ=Θ̂

.

The final step involves a simple Gaussian integral, where NΘ denotes the dimensionality
of the parameter space. If the problem is such that the likelihood is a convex function
of Θ, then there will exist a unique Θ̂ which will correspond to a global maximum. Oth-
erwise, the only way of correctly estimating the integral is through sampling techniques,
some of which will be covered in next subsections. In the limit of informative data, i.e.
NΘ ≪ ND, with ND being the number of independent measurements, we have to leading
order

ln det

(
1

ND

C
)

= NΘ lnND + det

(
1

NΘ

C
)
≈ NΘ lnND. (2.92)

Therefore, applying this identity and taking the ln of Eq. (2.91) gives

lnP(D|M, I) ≈ lnP(D|M, Θ̂, I)− NΘ

2
lnND. (2.93)

As we can see, Bayesian evidence implicitly penalizes models with higher number of
degrees of freedom, while it rewards the models which are better at explaining the given
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data realization. Therefore, it is the balance of model complexity and model accuracy
that determines the preference of the data. The Eq. (2.93) is also known as the Bayesian
information criterion (BIC) and is used in Chapter 4 for distinguishing between different
plausible explanations of the decay signal detected within the γ-ray data.

As we have seen, the Bayesian model selection involves calculating potentially high
dimensional integrals. However, even when obtaining the posterior distribution one
might be interested in integrating out uninteresting degrees of freedom of the model, to
arrive at useful constraints for the parameters of interest. For example, one might be
interested in marginalizing over the bias parameters introduced in Section 2.4 to obtain
the posterior for cosmological parameters preferred by the data

P(Θ|δg) =
1

P(δg)

∫
D{bO}P(δg|Θ, {bO})P({bO},Θ)

where δg denotes the measured galaxy density. Depending on the form of the likelihood
P(δg|Θ, {bO}) and the dimensionality of the bias parameter space, the above integral
might be too difficult to perform analytically. In this case, we need to be satisfied with
only approximating the posterior distribution, usually by calculating the estimators for
its mean and covariance. For example, the unbiased estimator of the mean is given by

⟨Θ⟩P(Θ|δg) =

∫

Θ

DΘP(Θ|δg)Θ ≈
1

N

∑

n

Θn,

with Θn ←↩ P(Θ|δg). (2.94)

Therefore, it is necessary to develop techniques capable of sampling from the intractable
posterior distribution. In the next section, we present such a method, which is utilized
throughout the thesis.

2.5.1 Hamiltonian Monte Carlo

In Chapter 3 we will be dealing with very high dimensional problems, briefly outlined in
Section 2.6. This is a common feature of all field-level forward modelling approaches. For
such problems, the conventional Monte Carlo sampling techniques are not very efficient.
The reason is that the cost for generating an independent sample from a distribution with
N degrees of freedom goes as ∼ N for a usual MCMC technique. This is a general feature
of all random walk algorithms such as Metropolis-Hastings. A particularly efficient
implementation of MH algorithm is available in [87]. Therefore, when the dimensionality
is of order ∼ 106 as we will see in Section 2.6 is the order of magnitude for field-level
forward models, the sampling will be too inefficient. The Hamiltonian Monte Carlo
algorithm [88] is specifically designed to tackle this problem. It achieves this feat in the
following way
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Each model parameter Θi, is associated with a corresponding conjugate momentum
variable P i which allows for defining the joint Hamiltonian as

H =
1

2
P i(M−1)ijP

j − lnL(Θ), (2.95)

with L being the model likelihood, which is a function of model parameters Θ9, and Mij

representing the model’s mass matrix. The role of the mass matrix is to approximate
the local curvature of the parameter space as close as possible, for the most efficient
exploration of the posterior [89]. The sample generation proceeds by solving the set of
Hamiltonian equations

dΘi

du
=
∂H
∂P i

,

dP i

du
= − ∂H

∂Θi
≡ ∂L
∂Θi

,

with u parameterizing the Hamiltonian trajectory. When far away from the typical set,
this formulation allows for driving the trajectories towards regions of high likelihood.
Once the trajectories converge to the typical set, due to the conservation of Hamiltonian,
the trajectories stay within the typical set and hence the obtained samples are guaranteed
to also come from this set. Therefore, it is clear that the target distribution of the HMC
chain is

π(P,Θ) ∼ e−H(P,Θ) = L(Θ)e
1
2
PTM−1P . (2.96)

The reversibility and phase-space volume preservation of Hamiltonian dynamics allow
for defining the following transition probability [88]

T (Θ′, P ′|Θ, P ) = min
[
1, eH(P,Θ)−H(P ′,Θ′).

]
(2.97)

As one can notice, if we end up in the typical set, due to the conservation of the Hamil-
tonian, we will keep on sampling with high acceptance rate from the target distribution.
However, usually, the trajectory integration is implemented through discrete step size
symplectic integrators, such as leap frog [90]. It is important the utilized integrators
are symplectic, both due to approximate reversibility and volume preservation of such
integrators.

In order to generate new samples with HMC, it is only necessary to sample the
conjugate momenta from the zero centered Gaussian and covariance given by the mass
matrix M . Resampling the momenta at each step guarantees the Markov property is
preserved along the chain. This algorithm however comes with a cost of tuning properly
the length of integration along the Hamiltonian trajectory, as well as tuning the mass

9Note here that the likelihood, L, is a function of the model parameters, but it is a probability density
in data values
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Algorithm 1: Slice sampling
Data: Previous sample – Θ∗

Result: New sample – Θ′

1

2 L∗ ← L(Θ∗)
3 ℓ←↩ (0,L(Θ∗))
4

5 r ←↩ U(0, 1)
6 Θl ← Θ∗ − rθ
7 Θr ← Θ∗ + (1− r)θ
8

9 while L(Θl) > ℓ do
10 Θl ← Θl − θ
11 end
12 while L(Θr) > ℓ do
13 Θr ← Θr + θ
14 end
15

16 while L(Θ′) < ℓ do
17 Θ′ ← U(Θl,Θr)
18 if L(Θ′) > ℓ then
19 return Θ′

20 else
21 if Θ′ > Θ∗ then
22 Θr ← Θ′

23 else
24 Θl ← Θ′

25 end
26 end
27 end

matrix. However, if tuned properly, it can achieve a very efficient scaling with dimen-
sionality ∼ N1/4 [88]. Therefore, it is the algorithm of choice for the forward models
presented in Section 2.6.

2.5.2 Slice sampling

A particularly interesting type of Markov chain Monte Carlo sampling (MCMC) tech-
nique is embodied in the slice sampling algorithm [91] (see also Section 29.7 in [86]).



38 2. Structure formation: Theoretical minimum

Similarly, as for other Monte Carlo techniques, it can be utilized whenever one is capa-
ble of evaluating the value of the probability function at any given point in parameter
space Θ∗. The main advantage of using this algorithm is its robustness, i.e. it doesn’t
require as much tuning as the HMC algorithm does, but has the advantage over standard
Metropolis-Hastings algorithm for example in not requiring any tuning for the sampling
interval. It is quite a simple algorithm, embodied in the pseudocode from Algorithm 1.
A few lines require some further clarification. Lines 2-7 set the stage for the algorithm.
As input, it only requires the initial sample Θ∗, which can for example be drawn from
the prior P(Θ), or be one of the previously obtained samples in the Markov chain. Lines
9-14 set up the interval (Θl,Θr) such that the adjacent points outside this interval have
a likelihood value below ℓ. Note that this value ℓ ←↩ U(0,L(Θ∗)) (line 3). This allows
for preserving the Markov property of the chain, given that at each new step the state
is completely randomized through drawing ℓ. Then in lines 16 - 27, a new sample is
sought after within the interval Θ′ ←↩ (Θl,Θr). After a sample with a larger likelihood
value is found it is accepted and returned, otherwise the interval is reset according to
lines between 20 - 25.

The slice sampling algorithm is particularly efficient in exploring the 1D probability
distributions, no matter if the distribution is multi-modal or not. Therefore, it is partic-
ularly useful when coupled to the HMC sampling block, for example for exploring low
dimensional subspaces of the posterior, marginalizing out the parameters of no imme-
diate interest (such as bias parameters for example). This is exactly the scheme used
within the BORG framework (Section 2.6.1) as well as the EFTofLSS forward modelling
framework from Chapter 3. Next, we focus on the field-level approaches to modelling
the large-scale structure and explain different pieces of the models in more detail.

2.6 The field-level approach to structure formation

The EFTofLSS approach has so far been applied on the level of n-point statistics (see
[14, 15] for example), however the question remains whether an approach modelling the
full density field of galaxies could extract more useful information on cosmology than
the approach utilizing summary statistics. These approaches are collectively labelled as
field-level approaches. So far, most of the field-level studies have focused on the use
of N-body simulations for solving the dark matter clustering problem with a simplified
bias model on top to relate the underlying dark matter density field to the observed
galaxy data [20, 23, 92–94]. However, different approaches utilizing deep neural nets and
emulators are also emerging [25, 26, 95]. Nonetheless, which approach is chosen, all of
them can be formulated in a Bayesian language (see Section 2.5), as trying to solve the
following problem

P(Θ|δg;M) ∼
∫
D{λn}

∫
D ŝP(δg|Θ, {λn}, ŝ;M)P(Θ, {λn}, ŝ|M), (2.98)
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where Θ = {{Ωi}, σ8,H, · · · } represents the set of cosmological parameters of the model
M of interest, the δg represents the data such as galaxy density field for example, while
the {λn} and ŝ represent the set of nuisance parameters of the modelM and the initial
conditions model M requires. The field δg is typically represented on a Cartesian or
Fourier space grid, where the physical size of the grid and the number of cells it has
determines its Nyquist frequency, the maximal resolvable Fourier mode of the grid. The
Nyquist frequency provides a natural cutoff scale for any bias expansion used in describ-
ing the tracer field. This becomes especially important for the EFT field-level forward
models, as described in Chapter 3.

The proportionality sign in Eq. (2.98) emphasizes that we’re not interested in the
overall normalization of the equation, P(δg;M), at this stage, which will be necessary
only at the model comparison stage (see Section 2.5). Given that all the work in this
thesis is focused on either the EFTofLSS forward modelling approach (Chapter 3) or the
N-body approach (Chapters 5 and 4) in the following subsections a short overview of the
two forward modelling approaches is given.

2.6.1 BORG forward model

The Bayesian Origin Reconstruction in Galaxies (BORG) forward model has been first
outlined in [96] and subsequently improved in [19–22] with ever present ongoing devel-
opment. It is surprisingly simple to formulate in terms of Eq. (2.98)

P(Θ|Ng,M1) =

∫
D{λn}

∫
D ŝP(δg|Θ, {λn}, ŝ;M1)P({λn},Θ, ŝ|M1)

=

∫
D{λn}

∫
D ŝP(Ng|δdet;M1)P(δdet|Θ, {λn}, ŝ;M1)P({λn},Θ, ŝ|M1)

(2.99)

where the data is taken to be the observed galaxy counts Ng. The individual terms are
given as

P(Ng|δdet;M1) =
∏

xi

(δxi
det)

(Ng)xie−δ
xi
det

((Ng)xi
)!

,

P(δdet|Θ, {λn}, ŝ;M1) =
∏

xi

δD(δ
xi
det −Dxi(ŝ, {λi},Θ)). (2.100)

The first line of the above equation describes the probability of observing the galaxy
countsNg inside the observed volume, given the expected value of the deterministic model
prediction for the density field for the same volume, δdet. It is given simply through the
Poisson likelihood, with the product running over each Cartesian grid element, centered
around xi. The second line describes the probability of realizing the δxi

det at the position
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xi within the volume, given the deterministic mapping, D, from the initial conditions
of the model, ŝ. This mapping depends on the given set of cosmological parameters Θ,
the set of nuisance parameters {λi} and the model’s initial conditions ŝ. The mapping
D can further be decomposed into the following set of mappings

D = R ◦ S(Θ) ◦ B({λi}) ◦G(Θ, δi(ŝ,Θ)) (2.101)

where the R encompasses all survey mask effects, which can be quite difficult to handle
at the level of summary statistics (e.g. [13]), the B represents the bias model, the S the
mapping to redshift space, which in general depends on the assumed cosmology (see for
example [97, 98]) and finally the G represents the deterministic gravitational evolution,
mapping the initial overdensities δi into the final dark matter density field. The initial
overdensity field δi is a deterministic function of initial conditions of the forward model ŝ
as will be elaborated further below. For the operator G, there are multiple choices within
the BORG framework one of them being a differentiable N-body simulation implemented
through Particle Mesh model (see [23]), which was also used for the results of Chapters 5
and 4. Depiction of all these forward modelling elements is available in Fig. 5.1. The bias
model B is usually chosen to follow the semi-empirical relation from [99] which contains
4 degrees of freedom, which corresponds to a model similar to the LIMD bias expansion
from Eq. (2.67).

As a final step, one needs to also evaluate the integrals from Eq. (2.99). This is
done through the use of Monte Carlo methods such as block sampling. The blocks are
split into the slice sampling block for λn and Θ parameters, and the Hamiltonian Monte
Carlo sampling block for sampling the initial conditions ŝ (see Section 2.5). In order
to perform this step, one also needs to specify the prior distributions for Θ, {λn} and
ŝ. The priors for Θ, {λn} are usually taken to be drawn from a uniform distribution,
for example taking reasonable bounds informed by the latest Planck results [5], while
the initial conditions are sampled from a white Gaussian field, i.e. ŝxi ←↩ G(0, 1). The
choice of the white Gaussian random field makes the setting of initial overdensities, δi,
needed by the mapping G generic. The initial overdensities, δi, for the Particle Mesh can
be initialized through δi(k; Θ) =

√
PL(k; Θ)ŝ(k). To see that δi indeed has the correct

correlation structure one can look at

⟨δi(k; Θ)δi(−k; Θ)⟩′ = ⟨
√
PL(k; Θ)ŝ(k)

√
PL(k; Θ)ŝ(−k)⟩′ = PL(k; Θ) ⟨ŝ(k)ŝ(−k)⟩′︸ ︷︷ ︸

1

,

= PL(k; Θ). (2.102)

Therefore in total, the BORG forward model has on the order of ∼ 106−107 free parameters,
depending on the resolution of the initial conditions grid. This high dimensional posterior
is a daunting inference task and is a shared feature among field-level forward modelling
approaches. It is necessary to have a robust forward model in order to efficiently explore
such a high dimensional space.
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Even with all the detailed modelling of the BORG framework, questions still remain on
whether the likelihood from Eq. (2.100) is well motivated and whether the bias model
is indeed applicable to the range of scales considered. As we have seen in Section 2.4,
the choice of scale up to which one strives to describe the tracer field implicitly defines
the nature of the bias expansion to be used. Given that the EFTofLSS approach to the
clustering problem offers a natural formulation of both the bias expansion and the nature
of the underlying stochastic field, it is a worthwhile effort to try and join the field-level
approach presented in this chapter with the EFTofLSS framework.

2.6.2 EFTofLSS field-level forward model

One of the issues raised in the previous section is whether the Poisson likelihood is indeed
a good choice for modelling the observed halo distribution. This is tightly related to the
assumption on the noise distribution. Namely, the most general forward model with
additive noise can be written as

δd(x) = δdet[Θ, {bO}, ŝ](x) + ϵ(x; Σ(x)), (2.103)

where once again Θ represents all cosmological parameters of the model, Σ represents
the correlation structure of the noise, the ŝ initial conditions of the model and {bO} the
set of bias parameters the model implements such that

δdet[Θ, {bO}, ŝ](x) =
∑

O

bO[O][Θ, ŝ](x), (2.104)

with [O] ∈ {δ, [δ]2, (∂i∂jΨΛ)
2, . . . }. This bias expansion arises as a direct consequence of

general considerations from Section 2.4 and therefore is motivated by the fundamental
principles of the theory, unlike the semi-empirical relation used in Section 2.6.1. The
Bayesian reasoning suggests that the parameter joint posterior is given by

P(Θ, {bO}, ŝ|δd) ∼
∫
D ϵP(δd|Θ, {bO}, ŝ, ϵ)P(Θ, {bO}, ŝ)Pϵ(ϵ; Σ)

=

∫
D ϵ δD(δd − δdet[Θ, {bO}, ŝ]− ϵ)P(Θ, {bO})Pϵ(ϵ; Σ)

= Pϵ(δd − δdet[Θ, {bO}, ŝ]; Σ)P(Θ, {bO}, ŝ), (2.105)

neglecting the normalization term. In the above equation, Pϵ represents the noise prob-
ability density function, and as can be seen, the obtained likelihood will follow the same
distribution law. This is a direct consequence of assuming additive noise.

In case of large-scale structure, additive noise assumption is completely consistent
and was already suggested to us by the analysis of terms appearing within the effective
stress tensor τ ij. The leading order counter terms from Eq. (2.48), directly support
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this assumption. What we obtained in Section 2.4 is that the leading order correction
to the shot noise field of biased tracers, comes with a correlation structure scaling as
∼ k2 in Fourier space. Therefore, the EFTofLSS suggests that corrections to the Poisson
assumption for the noise exist and should be included already at leading order. Therefore,
this renders the assumption of the Poisson likelihood from the previous section as too
restricting. For example, one could also ask of why the log-normal distribution would
not be a better choice (see e.g. [100, 101]).

On the other hand, the EFTofLSS suggests clearly the form of all higher order stochas-
tic counter terms (see Section 2.8 in [31]) that should be included, and gives a clear pre-
scription at which order they should appear. This motivates the form of the likelihood
itself directly from the theory.

The only remaining condition for the EFTofLSS forward modelling approach is that
it should capture the full spectrum of the tracer n-point statistics. The BORG forward
model naturally captures all n-point statistics of the matter field through simply forward
evolving the field fully non-linearly utilizing the N-body simulation. However, it is not
clear whether this is also true for the underlying tracer field, like the galaxy clustering
field, given the simple bias assumption usually applied [99]. In contrast, as we have seen,
the effective field theory approach relies on a perturbation series expansion to model the
final tracer field realization where the terms are ordered according to the perturbation
theory and are ultimately controlled by the requested modelling precision. In the follow-
ing section, we demonstrate that the EFTofLSS forward model presented here is indeed
capable of capturing higher order statistics of the given tracer field generically, thus mo-
tivating the pursuit for an EFTofLSS field-level forward modelling approach undertaken
in Chapter 3.

From n-point to field-level

At the field-level, besides noise and bias parameters, one also needs to specify the set
of initial conditions ŝ, in order to generate a forward model realization. Given that all
these degrees of freedom are of secondary interest, it is necessary to marginalize over
them in order to obtain our constraints on cosmology. In other words

P(Θ|δg) ∼
[∫
D{bO}P({bO})

∫
D ŝP(ŝ)

∫
D ϵP(ϵ)P(δg|Θ, {bO}, ŝ, ϵ)

]
P(Θ), (2.106)

again dropping the normalization term. The likelihood term can be rewritten in the
following way

P(δg|Θ) =

∫
D{bO}P({bO})

∫
D ŝP(ŝ)

∫
D ϵP(ϵ)δD(δd − δdet[Θ, {bO}, ŝ]− ϵ)

=

∫
D{bO}P({bO}) ⟨δD(δd − δdet[Θ, {bO}, ŝ]− ϵ)⟩ , (2.107)
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using the expression for the forward model from Eq. (2.103). This expectation value of
the Dirac delta functional, δD, can be cast into the following integral form, using the
Fourier representation of the Dirac delta (dropping the arguments for clarity)

∫
DX

〈
e
∫
q iX(δg−δdet−ϵ)

〉
=

∫
DXe−

∫
q iXδg

〈
e
∫
q iX(δdet+ϵ)

〉
. (2.108)

As already discussed, the EFTofLSS gives a clear prescription for the correlation structure
of the noise field. At leading order, it is diagonal in Fourier space, and is analytic in
even powers of Fourier modes k2n (see Section 2.4 as well as Section 3.2.3). This then
motivates a zero mean Gaussian prior with correlation structure Σ(k) for the noise field.
Therefore, one can readily perform the integral over the P(ϵ)

〈
e
∫
q iX(δdet+ϵ)

〉
=

∫
D ŝP(ŝ)e

∫
q iXδdet

∫
D ϵP(ϵ)e

∫
q iXϵ

=

∫
D ŝP(ŝ)e

∫
q iXδdet

∫
D ϵ e

∫
q(iXϵ− 1

2
ϵ2(q)Σ−1(q))

= e
1
2((iX)2(q)Σ(q))

∫
D ŝP(ŝ)e

∫
q iXδdet , (2.109)

where we perform a simple Gaussian integration step from second to third line. The
remaining expectation value can be rewritten in a more enlightening form

〈
e
∫
q iXδdet

〉
P(ŝ)

=
∑

n

∫

q1

iX(q1)· · ·
∫

qn

iX(qn) ⟨δdet(q1) . . . δdet(qn)⟩P(ŝ) ≡ Zŝ[iX],

(2.110)
which is nothing else than an expression for a generating functional with the current
being given by iX. Expanding further the δdet term using the general bias expansion
from Section 2.4 shows that the forward model of this form can systematically gener-
ate all n-point functions of the resulting tracer field beyond the leading order. In fact
reference [102] shows that the field-level EFT likelihood derived above in combination
with 2nd order Lagrangian perturbation theory (see Appendix B), is capable of captur-
ing the cosmological information contained in leading- and next-to-leading order power
spectrum and leading order bispectrum. Furthermore, reference [103] also shows that the
description of curvature and tidal effects at the typical scale of BAO10 is also captured
with the field-level EFT forward model which effectively contains the information on the
4-point and higher-order statistics. Therefore, putting all together back into Eq. (2.108)
and integrating over the source field X, gives (reintroducing the explicit ŝ dependence
for clarity)
〈∫
DXe

∫
q(iXδdet[ŝ])(q)+

1
2((iX)2(q)Σ(q))

〉

P(ŝ)

= |Σ|−1/2
〈
e−

1
2

∫
q(δd(q)−δdet[ŝ](q))

2Σ−1(q)
〉
P(ŝ)

.

(2.111)
10Baryon acoustic oscillations
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This demonstrates that at leading order, the field-level likelihood of the EFTofLSS ap-
proach takes the form of a Gaussian with mean given by the forward model prediction
δdet[ŝ] and diagonal covariance Σ. The final expression of the cosmological posterior will
then be given as

P(Θ|δg) =
〈
|Σ|−1/2e−

1
2

∫
q(δd(q)−δdet[{bO},ŝ](q))2Σ−1(q)

〉
P({bO},ŝ)

P(Θ). (2.112)

In fact, given that the bias parameters enter linearly into the bias expansion, in this
case one can even analytically marginalize over the bias parameters and obtain the
marginalized likelihood expression from Eq. (3.16) (see also [104, 105]). This likelihood
expression has in turn more desirable properties, as demonstrated in Fig. 3.9.

Note that the same procedure can be repeated with a more general noise model,
introducing the higher order stochastic terms such as ∼ ϵδδ (see Chapter 2.8 in [31])
which will then generate a more complicated covariance structure but keep the Gaussian
form intact.

For more details on how the specific forward models are constructed utilizing this
approach, reader is referred to Section 3.2 and the following references [30, 102, 104,
106, 107] as well as [97, 108]. The latter two references however use the residual power
spectrum as their likelihood function and by this effectively average out the information
contained in the modes falling in the given power spectrum bin. On the other hand, the
former as well as the work presented in Chapter 3 extracts cosmological information at
the level of individual modes.



CHAPTER 3

FIELD-LEVEL INFERENCE WITH THE EFT
LIKELIHOOD

The following material was first presented in [109], with me as a first author and Fabian
Schmidt, Minh Nguyen and Martin Reinecke as co-authors. Paper is submitted to Journal
of Cosmology and Astroparticle Physics.

Abstract

Analyzing the clustering of galaxies at the field-level in principle promises access to all the
cosmological information available. Given this incentive, in this chapter we investigate
the performance of field-based forward modeling approach to galaxy clustering using
the effective field theory (EFT) framework of large-scale structure (LSS). We do so
by applying this formalism to a set of consistency and convergence tests on synthetic
datasets. We explore the high-dimensional joint posterior of LSS initial conditions by
combining Hamiltonian Monte Carlo sampling for the field of initial conditions, and slice
sampling for cosmology and model parameters. We adopt the Lagrangian perturbation
theory forward model from [30], up to second order, for the forward model of biased
tracers. We specifically include model mis-specifications in our synthetic datasets within
the EFT framework. We achieve this by generating synthetic data at a higher cutoff scale
Λ0, which controls which Fourier modes enter the EFT likelihood evaluation, than the
cutoff Λ used in the inference. In the presence of model mis-specifications, we find that
the EFT framework still allows for robust, unbiased joint inference of a) cosmological
parameters — specifically, the scaling amplitude of the initial conditions — b) the initial
conditions themselves, and c) the bias and noise parameters. In addition, we show that
in the purely linear case, where the posterior is analytically tractable, our samplers fully
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explore the posterior surface. We also demonstrate convergence in the cases of nonlinear
forward models. Our findings serve as a confirmation of the EFT field-based forward
model framework developed in [102, 104–107, 110], and as another step towards field-level
cosmological analyses of real galaxy surveys.

3.1 Introduction

Current and future galaxy surveys such as DESI [6], Euclid [7], PFS [8], and the Vera
Rubin Observatory [10] offer a wealth of modes for probing the physics of structure
formation. The traditional approach to cosmology inference from galaxy clustering is
to compress the galaxy density field into summary statistics, such as two-point (see [11]
and references therein), three-point [12–15], and four-point functions [16–18].

An alternative approach, and the one we follow in this chapter, attempts to extract
information at the field-level, by explicitly forward modeling the entire observed galaxy
density field including all the relevant physics and observational effect. This physical
Bayesian forward modeling approach [20, 23, 92–94] in principle allows for exploiting
information on cosmology beyond n-point functions via explicit marginalization over the
initial conditions. While the amount of cosmological information available beyond the
low-order n-point functions is still unclear, this approach at the very least allows for a
consistent treatment of Baryon Acoustic Oscillation reconstruction [103, 104], and thus
is well motivated. Observational systematic effects can be explicitly encoded into the
forward model (e.g. [93, 111]), and might be easier to disentangle from cosmological
signals at the field-level as compared to summary statistics.

So far, field-level inference approaches have typically used an empirical galaxy bias
model and a simplified likelihood to infer from galaxy clustering data. Using dark matter
halos in N-body simulations as the reference data, [112] demonstrated that most empirical
bias models and likelihoods that have been widely adopted by this approach thus far (e.g.
[23, 93]) can significantly bias the inferred cosmological fields. Therefore, the key issue
for this approach currently lies in a rigorous physical model, or alternatively a sufficiently
flexible effective model (e.g. [25, 26, 95]) to connect the matter and tracer fields.

The effective field theory of large-scale structure (EFTofLSS) [27–29] provides a sys-
tematic way of incorporating the complex nonlinear physics of galaxy formation on small
scales, by using the fact that galaxy formation is spatially localized, and that galaxies
and matter comove on large scales (the latter is ensured by the equivalence principle).
In particular, the EFTofLSS provides a parametric model for the matter-tracer relation
up to the given order in matter density perturbations for any tracer-field of interest (see
[31] for a review). This in turn allows for robust extraction of cosmological information
from the tracer data up to quasilinear scales [15, 113], i.e. wavenumbers smaller than the
nonlinear scale wavenumber kNL (kNL ∼ 0.2hMpc−1 at z = 0). Until recently, the EFT
predictions were restricted to summary statistics, but Refs. [102, 106, 110] (see [108]
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for related work) presented a derivation of a field-level, EFT-based forward model and
likelihood. The work described in this chapter a follow up to the series of EFT likelihood
papers [30, 102, 104, 106, 107], with the crucial addition of the marginalization over
the initial conditions field by explicitly sampling it. Specifically, we test the consistency
of the EFT likelihood – previously demonstrated for fixed initial conditions – on a set
of synthetic tracer data and range of forward models including model mis-specification.
The tests of the EFT likelihood approach presented here serve as a crucial stepping stone
towards applying the method to more realistic tracers such as dark matter halo or simu-
lated galaxy catalogs. Throughout this chapter, we use the following fiducial cosmology:
Ωm = 0.3,ΩΛ = 0.7, h = 0.7, ns = 0.967, σ8 = 0.85 and a box size of L = 2000h−1Mpc.
We keep cosmological parameters fixed to the fiducial ΛCDM cosmology, but vary a
scaling parameter α multiplying the initial conditions, which corresponds to varying σ8
while keeping all other cosmological parameters fixed.

The structure of the chapter is as follows. In section Section 3.2, we elaborate on
the specific forward models we use for consistency tests of the EFT likelihood. We first
describe the simple toy models linear and then physical models based on Lagrangian
perturbation theory (LPT) 1lpt, 2lpt in Section 3.2.1 and Section 3.2.2, respectively.
Next, we give the description of the EFT likelihoods (Section 3.2.3) and the expression for
the full field-level posterior being sampled in Section 3.3.1. We then outline the sampling
methods and the code implementation in Section 3.3.2 and Section 3.3.3, respectively.
Afterwards, we describe how we generate the synthetic datasets in Section 3.4. Finally, we
discuss our results in Section 3.5. We conclude and discuss future outlook in Section 3.6.
In the appendices, additional details complementing the main results in Section 3.5 are
presented and discussed.

3.2 Forward models

In this section, we present all forward models used in Section 3.2.1 and Section 3.2.2.
Next, we describe the EFT likelihoods, the last piece of the inference framework, in
Section 3.2.3.

We begin by discussing the common properties of the forward models. All forward
models we consider in this chapter aim at modeling the following quantity

δd(x) ≡
nd(x)

n̄d

− 1 = δdet(x) + ϵ(x), (3.1)

with nd representing the number density field of synthetic tracers, n̄d its spatial mean,
and δd the fractional overdensity. Throughout this chapter, we will work with tracers
defined at a fixed time τ , corresponding to today’s epoch in the fiducial cosmology.
Hence, we will drop the time argument for clarity.
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We effectively marginalize over n̄d by working with δd and excluding the k⃗ = 0 mode
from the analysis. Thus, the field-level forward models consist of two parts: the mean-
field prediction δdet(x), which is a deterministic function of the initial conditions, and
the likelihood, constructed from the assumptions about the underlying noise field ϵ(x).
Next, we describe the different deterministic forward models used, before turning to the
likelihoods which couple to all of these deterministic forward models.

The general form of the deterministic contribution is

δdet(x) =
∑

O

bO[O](x), (3.2)

where [O] denote the renormalized bias operators and bO the corresponding coefficients
(see Section 2.4 for more details). Depending on the gravity model and the bias model
we use, Eq. (3.2) takes on different forms. Since we utilize an EFT approach, our forward
models are defined for a specific cutoff Λ. The motivation for this cutoff is twofold:

1. The EFT model developed applies only to large scales. Hence, we want to restrict
the likelihood evaluation only to the modes below the cutoff k < Λ. This in turn
means that we need to apply a sharp-k cut to the field operators O → OΛ.

2. As first pointed out by [28], and then shown in detail in [106], it is also necessary
to perform a cutoff at the level of initial conditions Λin ≡ Λ. This allows for proper
renormalization of the dynamical evolution of the large-scale modes we want to
model.

Throughout, we generate the synthetic data at a higher or equal cutoff Λ0 than the value
Λ used in the inference, motivated by the fact that real-world tracers resemble data with
Λ0 ≫ Λ. In fact, real data effectively has no cutoff, i.e. Λ0 →∞. Below, we describe the
specifics of the forward models employed throughout the chapter. We focus first on the
simplest limiting cases, which involve only linear density fields. We then explain how we
build up the 1LPT and 2LPT forward models.

3.2.1 linear forward models

In linear forward models, the gravity model is restricted to linear evolution, which is
incorporated by applying the appropriate transfer function to the initial conditions. On
top of this, we also include tracer bias. We consider two different bias expansions. The
first one involves only the linear bias bδ and can be expressed as follows

δlinear1
det,Λ (k) = bδδ

(1)
Λ (k), (3.3)

δ
(1)
Λ (k) ≡ WΛ(k) δ

(1)(k)

= WΛ(k)αT (k)ŝ(k), (3.4)
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where ŝ(k) denotes a unit Gaussian field which describes the initial conditions (see also
discussion in Section 3.3.1), while T (k) denotes the transfer function (recall that we keep
the time fixed and implicit throughout). Since we keep the cosmological parameters fixed,
we do not write them explicitly here. The scaling parameter α is defined such that, for
α = 1, δ(1)(k) corresponds to a realization of the linear density field in the fiducial
cosmology. WΛ(k) denotes the isotropic sharp-k filter1 at k = Λ. For this forward model
(Eq. (3.3)), it is possible to analytically derive the posterior for the initial conditions ŝ
(see Appendix 3.8.1 for detailed calculation), and hence to test whether our inference
approach fully explores the posterior in this case.

The simplest extension of the above is to include also the quadratic field with the
corresponding bδ2 bias parameter:

δlinear2
det,Λ (k) = bδδ

(1)
Λ (k) + bδ2WΛ(k)

∫

k′
δ
(1)
Λ (k − k′)δ(1)Λ (k′), (3.5)

with δ(1)Λ given by Eq. (3.3). The bias expansion here is not complete in the EFT sense;
we employ this forward model merely as the simplest possible generalization from an
entirely linear forward model. The complete second-order bias expansion is considered
in the next section. Nevertheless, due to the nonlinearity induced by the quadratic bias,
the ŝ posterior is non-Gaussian and it is non-trivial to make exact statements about
its statistical moments (see Appendix 3.9 for further discussion). The models given
by Eqs. (3.3)–(3.5) thus serve as toy models for which there exists full or approximate
analytical expression of the ŝ posterior. They both assume all the relevant information
is contained within the linear density field and do not involve nontrivial gravitational
displacements, which are however essential when attempting field-level inference on real
data.

3.2.2 1lpt and 2lpt forward models

The forward models in Eqs. (3.3)–(3.5) are valid only for describing tracers at linear order.
In order to obtain more accurate descriptions at higher orders – which properly account
for gravitational evolution – we turn to Lagrangian perturbation theory. The Lagrangian
formulation of structure formation captures the effect of bulk flows non-perturbatively.
This is especially useful for forward modeling. To be more precise, we consider a first-
and second-order LPT, labeling them with 1LPT and 2LPT, respectively. For a com-
plementary review of LPT reader is referred to Appendix B. The following closely follows
the more general approach undertaken in [30].

We begin by writing the Eulerian position along the fluid line at conformal time τ as

xfl(q, τ) = q +ψ(q, τ), (3.6)
1See Appendix 3.7 for more details and our Fourier space convention.
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with q being the Lagrangian coordinate, ψ the displacement field and limτ→0ψ(q, τ) = 0.
We also re-instate the explicit τ dependence throughout this overview for clarity. Com-
bining the mass conservation condition and the Poisson equation for the non-relativistic
(cold) dark matter fluid yields the following equation of motion for ψ [30, 114–116]

tr
[
(1 +M)−1(M′′ +HM′)

]
= −3

2
ΩmH2

[
|1 +M|−1 − 1

]
, (3.7)

where Mij(q, τ) ≡ ∂(qiψj)(q, τ) is the symmetric part of the Lagrangian distortion tensor,
primes denote derivatives with respect to τ , Ωm is the corresponding matter density
parameter and H the conformal Hubble rate. We restrict to the symmetric part of ∂qiψj

throughout, since the antisymmetric part, corresponding to the curl of ψ, is only nonzero
at third order in perturbations, while here we restrict ourselves to second order. Thus,
ψ is a longitudinal vector and can be written as

ψ(q, τ) =
∇
∇2

σ(q, τ); σ(q, τ) ≡ trM(q, τ). (3.8)

Lagrangian perturbation theory then proceeds by expanding [117]

M = M(1) +M(2) + . . . , (3.9)

and analogously for ψ and σ, where M(n) involves exactly n powers of the linear density
field δ(1). In fact, σ(1)(q, τ) = −δ(1)(q, τ). For a given expansion history, Eq. (3.7)
can be formally integrated to yield recurrence relations relating M(n) to the lower-order
contributions [114–116].

The perturbative contributions to M in Eq. (3.9) can serve as building blocks for a
general bias expansion of the form given in Eq. (3.2). The reason is that the Lagrangian
distortion tensor along the fluid trajectory captures all leading gravitational observables
for a comoving observer (see section 2.5 in [31] and [66]). Specifically, one needs to
construct all scalar contractions of the M(i) that are relevant at the given order n. At
second order, this yields

OL(q, τ) ∈
{
tr
[
M(1)

]
(q, τ),

(
tr
[
M(1)

]
(q, τ)

)2
, tr
[
M(1)M(1)

]
(q, τ)

}
, (3.10)

where we emphasize that OL ≡ O(q, τ) is in Lagrangian coordinates. Thus, up to second
order, we require three distinct bias operators and the associated bias coefficients.

In order to obtain the corresponding Eulerian fields, which is the space in which the
data is obtained, we use a weighted particle approach [30, 108]. That is, we consider
(NEul

g )3 particles on a regular grid in q, and assign each of them 3 weights correspond-
ing to the three bias operators. Then, each of these particles is displaced from q to
x = q + ψ(q, τ), and the masses are deposited to the grid using a mass-conserving
assignment scheme (we choose cloud-in-cell assignment here). This yields the three Eu-
lerian operators corresponding to the Lagrangian operators listed above. In fact, we
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replace the weight field tr[M(1)] with a unit weight field, so that the resulting Eulerian
field is the LPT matter density field δnLPT (n = 1, 2), and use this linear bias term in
Eulerian frame.

Finally, we also include the leading-order higher-derivative bias contribution (see sec
2.6 in [31]), ∇2δnLPT, computed in the Eulerian frame, in order to capture the finite
spatial size of the regions forming the tracer of interest. Therefore, the full list of bias
parameters and corresponding operators is

δnLPTdet,Λ (x, τ) = bδδnLPT(x, τ)

+ bσ2 [σ
(1)
Λ ]2(x, τ) + btr[M(1)M(1)] tr

[
M

(1)
Λ M

(1)
Λ

]
(x, τ)

+ b∇2δ∇2δnLPT(x, τ), (3.11)

where we emphasize the presence of the cutoff Λ. The linear displacement tensor M (1)
Λ

is related to the linear density perturbation via

M
(1)
ij,Λ(q) = −

∂qi∂qj
∇2

q

δ
(1)
Λ (q),

where δ(1)Λ is defined in Eq. (3.4).

3.2.3 Field-level likelihood

Instead of modeling directly the tracer number counts, as done for example in [20, 23], the
EFT likelihood aims to describe the tracer density field δd. It is obtained by integrating
out the modes with k > Λ in the initial conditions [110]. These small-scale modes also
produce a stochastic contribution to the predicted galaxy density field δdet,Λ. This effect
is encoded by the noise field ϵ. Since this effective noise field arises from the superposition
of many independent modes, it is Gaussian to leading order. Moreover, because the tracer
formation is spatially local, the power spectrum of the noise is constant to leading order,
with corrections scaling as k2 as shown already in Section 2.4 (see also [31]). In other
words,

⟨ϵ(k)ϵ(k′)⟩ = (2π)3δD(k + k′)Pϵ (1 + σϵ,2k
2 + · · · ), (3.12)

where δD denotes the Dirac delta function, and we have denoted with Pϵ ∼ n̄−1
d the lead-

ing order contribution to the noise covariance, i.e. the leading noise power spectrum.
Note that the scale-dependent correction σϵ,2 is written here as fractional correction by
convention. In general, the gravitational evolution of small-scale modes under the influ-
ence of large-scale modes generates density-dependent noise terms, which cause the noise
covariance to be non-diagonal in Fourier space. We do not consider these contributions
here, since all synthetic datasets used here – except for 2LPT with second-order bias and
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cutoff mismatch (between synthetic data and inference) – do not contain such density-
dependent noise. We also set the subleading noise contribution σϵ,2 to zero throughout
this chapter. More detailed investigations of the impact of the noise model are relegated
to future work.

Thus, our final data model is given by

δd,Λ(x) = δdet,Λ(x) + ϵ(x),

ϵ(x)←↩ G(ϵ; 0, σ2
ϵ1)), (3.13)

where δdet,Λ is given by one of the forward models we consider here, namely Eqs. (3.3)–
(3.5) or Eq. (3.11). In the second line of 3.13 we emphasize that the noise field is
assumed to be Gaussian distributed with covariance structure given by the leading term
from Eq. (3.12). Specifically, the noise variance σ2

ϵ on the real-space grid of size NΛ
g is

defined through the following relation

Pϵ = σ2
ϵ

L3

(NΛ
g )

3
. (3.14)

We consider two forms of EFT likelihoods: one whose arguments explicitly include bias
parameters, hence labeled unmarginalized likelihood, and the other one where bias pa-
rameters are analytically marginalized out, namely the marginalized likelihood. Below we
detail the two likelihoods in that order. The notation closely follows that in [104]. Fur-
ther, we switch to the discrete Fourier space representation of the fields (see Appendix 3.7
for details on our Fourier space convention).

The expression for the unmarginalized likelihood is given by a Gaussian following our
assumptions on the noise field discussed at the beginning of this section. Explicitly,

lnL
(
δd,Λ

∣∣∣α, ŝ, {bO}, σϵ
)

=− 1

2

kmax∑

k ̸=0

[
ln 2πσ2

ϵ +
1

σ2
ϵ

∣∣∣δd,Λ(k)− δdet,Λ[α, ŝ, {bO}](k)
∣∣∣
2
]

+ const. , (3.15)

where we have explicitly stated the dependence of δdet,Λ on bias parameters, {bO}, the
scaling parameter α and the initial conditions ŝ. Note that δdet,Λ is a deterministic
function of these parameters, and that the likelihood is evaluated only up to kmax, strictly
allowing only for modes below the cutoff. In order to maximize the information gain, we
choose kmax = Λ. We accumulate all the terms which depend neither on α, {bO}, ŝ nor
σϵ in const., since they represent only irrelevant normalizing factors.

The marginalized likelihood is obtained by marginalizing analytically over all bias
parameters in Eq. (3.15). Given that the likelihood depends quadratically on any bias
coefficient (in case priors on the bias parameters are gaussian or uniform on (−∞,∞)),
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this is a straightforward calculation (see section 2.2 in [104]). The expression is

− lnL
(
δd,Λ

∣∣∣α, ŝ, σϵ
)

=
1

2
tr lnAOO′ +

1

2
tr lnCprior +

1

2

kmax∑

k ̸=0

(
lnσ2

ϵ +
1

σ2
ϵ

|δd,Λ(k)|2
)

− 1

2

∑

{O,O′}
BO(A

−1)OO′BO′ + const. ,

BO ≡ BO[ŝ, α] =
kmax∑

k ̸=0

δd,Λ(k)O[ŝ, α]
∗(k)

σ2
ϵ

+
∑

O′

(C−1
prior)OO′µbO′ ,

AOO′ ≡ AOO′ [ŝ, α] =
kmax∑

k ̸=0

O[ŝ, α](k)O′[ŝ, α]∗(k′)

σ2
ϵ

+
(
C−1

prior

)
OO′ , (3.16)

where, once again, const. encapsulates the terms independent of the parameters of in-
terest. The marginalization was performed under the assumption of a Gaussian prior
on bias parameters with covariance Cprior and mean µbO . We choose a fairly uninforma-
tive prior as given in Eq. (3.19). The information on α and the initial conditions ŝ is
propagated through the BO and AOO′ operators.

3.3 Sampling the full posterior

Here, we provide the final expression for the posterior being sampled and elaborate more
on some specific choices of our sampling scheme, as well as some additional details of
our code implementation.

3.3.1 Full posterior

The results of the previous section now allow us to write the full posterior which we aim
to sample from. The expression can be obtained readily from

P
(
α, ŝ, {bO}, σϵ

∣∣∣δd,Λ
)
=
L(δd,Λ|α, ŝ, {bO}, σϵ)P(α, ŝ, {bO}, σϵ)

P(δd,Λ)
, (3.17)

where P(α, ŝ, {bO}, σϵ|δd,Λ) represents the posterior probability of the parameters of in-
terest given the synthetic data, L(δd,Λ|α, ŝ, {bO}, σϵ) the corresponding likelihood (see
Eqs. (3.15)–(3.16)), while P(α, ŝ, {bO}, σϵ) represents the associated prior. The P(δd,Λ)
represents the evidence, which doesn’t play any role in our inference framework. As
noted in Section 3.1, we keep all other cosmological parameters fixed to the fiducial
values listed there.

We assume minimal prior knowledge on σϵ and the {bO}. Moreover, as physical
parameters describing the properties of the tracers, they are a-priori independent of the
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initial conditions ŝ. Therefore, the joint prior structure is entirely factorized. We choose
the following prior configuration throughout for the unmarginalized likelihood:

P(σϵ) = U(0.05, 100.),
P(α) = U(0.5, 1.5),

P(bδ) = U(0.01, 10), P(bδ2) = U(−10, 10),
P(bσ2) = P(btr[M(1)M(1)]) = P(b∇2δ) = U(−25, 25), (3.18)

where U(l, r) denotes the uniform distribution on interval [l, r]. Note that here we choose
to keep the prior on bδ strictly positive, as we do not consider the modeling of negative
bias tracers here, such as voids. We chose priors of the higher-order bias coefficients to
be symmetric around zero, as a-priori these bias coefficients could take on either sign.

For the inference with the marginalized likelihood, the only difference is in the priors
for the bias parameters, which are taken to be of the following form

P(bδ) = G(0.01, 10); P(bδ2) = G(0, 10)
P(bσ2) = P(btr[M(1)M(1)]) = P(b∇2δ) = G(0, 25). (3.19)

Given the signal-to-noise level of our synthetic datasets, these priors are essentially unin-
formative, and we expect a entirely negligible difference in parameter inferences between
marginalized and unmarginalized likelihoods.

Finally, for the prior P(ŝ) on the initial conditions, we consider the following two
choices:

P(ŝ) =
{
δD(ŝ− ŝtrue) for fixedIC case

G(ŝ; 0, S) for freeIC case,
(3.20)

where we have separated the cases with fixed initial conditions to the ground-truth
(fixedIC) and with initial conditions explicitly sampled (freeIC). In the latter case, the
prior covariance structure of the discretized ŝ field is given by Sxi

xj
≡ ⟨ŝ(xi)ŝ(xj)⟩P(ŝ) =

δi,jD , while in Fourier space it becomes Skk′ ≡ ⟨ŝ(k)ŝ(k′)⟩P(ŝ) = (NΛ
g )

3δk,k
′

D , with NΛ
g

being the grid size corresponding to the cutoff Λ, and δD denoting the Kronecker delta
(see Appendix 3.7 for details on our Fourier convention).

The fixedIC case corresponds to that considered in the application to dark matter
halo catalogs in previous papers of this series [30, 102, 104, 106, 107], where unbiased
inference of α was shown. Moreover, the same setup was used to measure bias parameters
of simulated halos and galaxies in [118, 119]. For real-data applications, as we have no
knowledge of the true initial conditions a-priori, it is crucial for our method to properly
marginalize over all plausible realizations of the initial conditions. Thus, the parameter
posterior obtained on our synthetic datasets with the fixedIC prior serves as a good
reference point for the freeIC case. Specifically, we expect consistency between the
fixedIC and freeIC posterior means of the parameters, which we demonstrate in
Section 3.5.
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3.3.2 Sampling methods

In order to explore the posterior surface of the parameters of our model, we utilize a
combination of slice sampling (see Section 29.7 in [86] and [91]) and Hamiltonian Monte
Carlo (HMC) sampling techniques (see [88, 89] and Section 30.1 in [86]). Below, we mo-
tivate this choice of sampling techniques, which was inspired by the findings made in the
development of the borg code (see, e.g. [23]). See also Section 3.3.2 for complementary
text on HMC and slice sampling.

The slice sampling technique2 is used for sampling α, bias parameters {bO}, and the
noise parameter σϵ. This means that we actually sample the 1D probability density
function of these parameters conditioned on the current realization of initial conditions
ŝ. We adopt sequential univariate slice sampling, i.e. we sequentially sample individual
parameters. While multivariate slice sampling methods do exist, they require additional
tuning to be more efficient than our approach (see the discussion in section 5 of [91]).

When it comes to sampling the posterior of the initial conditions ŝ, we use the HMC
sampling technique. The reason behind this choice is that the number of Monte Carlo
samples needed for generating an independent sample scales more efficiently with the
problem dimensionality than for standard Monte Carlo methods. This scaling goes as
∼ Ndim in the case of standard random-walk algorithm, while it goes as ∼ N

1/4
dim for the

HMC method (see, for example, Section 4.4 of [88]). For the problem we consider here,
typically Ndim ∼ 105 − 106. Therefore, HMC currently appears to be the most (if not
only) practical sampling method to tackle such a problem.

In order to utilize HMC, one needs a fully differentiable forward model with respect
to the initial conditions. This requirement is necessary for the crucial step of generating
a new proposal of initial conditions, consistent with the data likelihood. This new pro-
posal is generated by numerically integrating along the Hamiltonian flow defined by the
likelihood and prior gradients with respect to the initial conditions ŝ. For this, we choose
the second-order leapfrog integrator, although see, e.g. [120, 121], for the applicability
of higher-order integration schemes.

Given the structure of our code, LEFTfield3, described in Section 3.3.3, the ana-
lytical derivative of the full forward model can be readily obtained through successive
applications of the chain rule.

Finally, readers may ask why not try to combine the two sampling approaches such
that all the parameters are sampled within the HMC scheme at the same time. This
however is unfeasible, due to the large difference between the derivative norms of the
variation with respect to to ŝ(k) and the variation of the rest of the model parameters.
Variation of α or bias parameters affects all the modes of the forward model, while the
derivative with respect to a given ŝ(k) only has to vary a single mode at a time. This
in turn requires the HMC trajectories to be integrated with small step sizes, in order to

2See also Algorithm 1
3Lagrangian, Effective-Field-Theory-based forward model of cosmological density fields.
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Figure 3.1: A depiction of our consistency test architecture, which consists of two
branches. The top one describes all the relevant forward elements of the forward models
we consider. All forward model elements are described in Section 3.2 and Section 3.3.3.
The bottom row schematically shows the synthetic data generation process. Note that
we use the same forward models from the top row to generate the dataset in the bottom
row, but at a different cutoff value Λ0. Our ensemble of synthetic datasets is described
in Section 3.4.

reach a reasonable acceptance rate, and results in a very slow exploration of the (joint)
posterior surface.

Therefore, decoupling the sampling of α, bias and noise parameters from the sampling
of initial conditions seems to provide the fastest exploration time. Note that, in such a
block-sampling scheme one could still use the HMC method to sample cosmological and
bias parameters, conditioned on a given realization of the initial conditions. That is, one
could separate the former and latter into two separate HMC sampling blocks with two
different equations of motion (to be integrated). However, since the dimension of the
cosmological and bias parameter space is currently negligible, we opt for the robustness
of slice sampling.
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3.3.3 Code implementation

The forward models and likelihoods described in Section 3.2 are implemented in the
differentiable code LEFTfield. LEFTfield adopts the C++17 standard and represents
a substantially extended and more efficient version of the code presented in [30]. Most
importantly, LEFTfield implements the gradient of the likelihood with respect to the
initial conditions ŝ, which as noted is crucial for the HMC sampling approach. A public
release of the code, subject to additional tests and tidying up, is planned for the future.

The code is structured in a modular way, breaking down the forward model into a
series of simple steps, called “forward elements”, which are templatized on generic in-
put and output types and implement the general behavior of composed operator chains;
specifically, the respective input and output types need to match for all composed for-
ward elements. The sequence of high-level operations contained in the nLPT forward
models are represented in the top row of Fig. 3.1 (note that each of the blocks in gen-
eral consists of multiple forward elements). The forward model starts from a sample
of initial conditions from which one obtains the initial density field δ

(1)
Λ , shown in top

left of Fig. 3.1. The size of this grid is chosen based on the cutoff Λ. This is indicated
with NΛ

g . The next element is the bias operator construction. For this, we use the set
of bias operators appearing in Eq. (3.10) in case of 1LPT and 2LPT models. At this
step, care is also taken for representing all the physical modes of the forward model,
by choosing appropriate grid sizes, indicated with NnLPT

g . Afterwards, these fields are
displaced utilizing a weighted particle scheme to the final Eulerian positions. This re-
sults in a mapping OL → O, where now the O operators are assigned onto a grid of size
NEul

g , chosen in advance, with NEul
g ≥ NnLPT

g in order to keep all physical modes of the
forward model represented on the Eulerian grid. At the end, the set of the displaced bias
operators {O} is resized in Fourier space to a smaller and final grid corresponding to NΛ

g ,
using the sharp-k cutoff. Finally, the deterministic prediction δdet,Λ from Eq. (3.11) is
constructed in the last piece of the top row. This also involves drawing a new set of rele-
vant bias parameters from the corresponding prior. The grid reduction and grid-padding
are both performed in Fourier space. Several options for mass assignment schemes are
implemented, including nearest-grid-point (NGP, which is not differentiable however),
cloud-in-cell (CIC), and triangular-shaped cloud (TSC). Here, we use the CIC scheme
throughout. The very last piece of the forward model is the evaluation of the likelihood,
given by either Eq. (3.15) or Eq. (3.16). Note that the forward models of Section 3.2.1
are much simpler, but have the same overall structure.

In case of the HMC sampling block, the full gradient of the likelihood with respect
to the initial conditions, ŝ, needs to be evaluated. In order to do so, we utilize the chain
rule, collecting every ŝ-dependent term of each element in the forward model, from right
to left in the flowchart. In addition, for every sample of ŝ, the slice sampler generates a
new sample of the other parameters of interest. This process is repeated until the desired
number of samples is achieved (see Section 3.5 and Appendix 3.10 for more details on
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Dataset \ Parameter α bδ bδ2 bσ2 btr[M(1)M(1)] b∇2δ σϵ σ̃ϵ
Dlinear

1 1.0 1.0 0 0 0 0 0.5 0.586
Dlinear

2 1.0 1.0 1.0 0 0 0 0.5 0.586
Dlinear−informative

2 1.0 1.0 1.0 0 0 0 0.001 0.002
D2LPT

1 1.0 1.0 0 0 0 0 0.5 0.586
D2LPT

2 1.0 0.87 0 −0.2 −0.2 0.2 0.4 0.469

Table 3.1: Parameters used for generating different synthetic datasets. The noise levels
in these datasets correspond to Pϵ = 2743h−3 Mpc3, except for the dataset from third
row, which has Pϵ = 1.1 × 10−2 h−3 Mpc3. All datasets listed in this table are obtained
using a cutoff of Λ0 = 0.14hMpc−1. The parameters listed in this table are described in
Section 3.2, except σ̃ϵ, which is defined in Eq. (3.21).

our convergence requirements and verification).
The bulk of the computing time is spent in the HMC sampling of the initial condi-

tions. For reference, we provide some benchmark computing times here. For the 2LPT
forward model with 643 grid size, LEFTfield generates ∼ 200 samples per CPU hour,
roughly corresponding to ∼ 1 effective sample per CPU hour, running on a single Intel(R)
Xeon(R) Gold 6138 CPU @ 2.00GHz with 20 cores and using OpenMP parallelization.

3.4 Synthetic datasets

In this section, we describe how precisely we generate the synthetic data sets (the first
element in the bottom row of Fig. 3.1). In general, a dataset is generated from each
of the aforementioned forward models. We introduce model mis-specification through
the mismatch between the cutoff Λ0 in the synthetic data and a varying cutoff Λ in our
forward models, as indicated in the two elements in the bottom row of Fig. 3.1. We
always fix Λ0 = 0.14hMpc−1. Throughout, we label the specific realization of initial
conditions used for synthetic data generation by ŝtrue. All parameters of the synthetic
datasets are summarized in Tab. 3.1.

3.4.1 linear model synthetic data

For the models described in Eqs. (3.3)–(3.5) we generate two sets of synthetic data: one
with bδ2 = 0 and the other with bδ2 ̸= 0. Below, we specify the parameter values adopted
and explain our choice.

The first case of synthetic data, Dlinear
1 , is obtained with the parameters listed in the

first row of Tab. 3.1. Note that the cutoff set by Λ0 determines the grid size, which in
this case is NΛ0

g = 90, given that it corresponds to the Nyquist frequency for the cutoff
Λ0 = 0.14hMpc−1 and a box size L = 2000h−1Mpc. The parameter σϵ = 0.5 is the
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square root of the noise variance on this grid, which corresponds to a Poisson shot-noise
for tracers with comoving number density of n̄ ≈ 3.645 × 10−4(hMpc−1)3. Since the
noise power spectrum Pϵ is a physical quantity (in particular, independent of the grid
size), it follows from Eq. (3.14) that the combination σϵ(N

Λ
g )

−3/2 must be independent
of the grid size corresponding to the cutoff Λ. This implies that σϵ itself will show a
cutoff-dependence induced purely by the changing grid size NΛ

g . Therefore, instead of
working with σϵ, we define the following quantity

σ̃ϵ ≡ 103
σϵ

(NΛ
g )

3/2
= 103

(
Pϵ

L3

)1/2

, (3.21)

which is grid-size-independent by construction. The prefactor 103 is introduced for nu-
merical convenience. We will mainly quote σ̃ϵ instead of σϵ in our posterior analyses in
Section 3.5. As can be seen from Tab. 3.1, we adopt a comparable noise level for all
synthetic datasets except for Dlinear−informative

2 , which we describe below.
The second synthetic dataset, Dlinear

2 comes in two variants, listed in the second
and third row of Tab. 3.1. We always choose |bδ2| = |bδ| in order to introduce a non-
negligible mode coupling through the quadratic term in Eq. (3.5). In addition, we con-
sider Dlinear−informative

2 (third row of Tab. 3.1), using a very low noise level (σ̃ϵ = 0.002)
and hence representing a very informative dataset. This dataset was included to fur-
ther investigate the dependence of the inferred bδ2 as a function of the cutoff Λ (see
Section 3.5.1).

Apart from the case of Dlinear
1 , for all other datasets, including Dlinear

2 datasets, we
generate two different data realizations. We achieve this by generating two different
initial conditions realizations, keeping the values for the remaining parameters fixed.
Independent inferences are performed on both data realizations. This helps us gauge
the significance of any mis-estimation of the posterior and hence of potential systematic
trends in the inferred parameters. Henceforth, we label the different data realizations
by the subscript {a, b}, for example Dlinear

2,a and Dlinear
2,b which correspond to the two

different realizations of the synthetic dataset listed in the second row of Tab. 3.1.

3.4.2 2lpt synthetic data

We generate two types of synthetic datasets for the 2LPT forward model described in
Eq. (3.11). They are labelled as D2LPT

1 and D2LPT
2 and their parameters are listed in

the last two rows of Tab. 3.1. As before, we also generate two different realizations of
each of these datasets.

The D2LPT
1 datasets serve as an input for the internal consistency between the 2LPT

and 1LPT forward models. In particular, these correspond to a noisy, but unbiased
tracer of the matter field itself, given that bδ = 1 with all higher-order bias coefficients
set to zero. We demonstrate in Section 3.5.2 that we exactly recover the fiducial values
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of parameters in case of 2LPT and that we also recover the expected shifts of param-
eters in the case of the 1LPT forward model. We calculate these shifts analytically in
Appendix 3.11.

Finally, the D2LPT
2 datasets contain nonzero higher-order bias coefficients. These are

the most realistic datasets considered here, in the sense that they contain the compli-
cations due to both nonlinear gravity and nonlinear bias. Since the calculation of the
running of the bias parameters with cutoff Λ is substantially more involved in this case,
we instead validate our field-level forward model based on the inference of the α param-
eter for this case. That is, if the EFT likelihood is able to correctly absorb the effect of
modes above the cutoff, then it should lead to an unbiased inference of α for all values
of Λ.

3.5 Consistency test results

In this section, we describe the analysis procedure of our MCMC chains. Since the
dimensionality of our posterior is exceptionally high, fully characterizing it is challenging
[122], even with HMC sampling. To ensure that our samples fairly represent the true
posteriors, we strictly adopt the following setup and procedure:

• We run MCMC chains with both free initial conditions (freeIC) and initial con-
ditions fixed to the ground-truth (fixedIC). Since it is expected that the posterior
of the fixedIC case is within the typical set of the freeIC posterior, in case of no
strong multi-modality, it serves as a good reference point. Indeed, we find a good
agreement between the joint posteriors of these two cases (see also the next bullet
point), suggesting no strong multi-modality is present in the tests we consider in
this work.

• For freeIC runs, we run at least three chains: two starting from randomized
values of initial conditions and sampled parameters, and one more chain starting
from the ground-truth. The latter serves as an additional check on multimodality
of the posterior, and of the convergence of our chains.The remaining parameters
differ among the forward models we consider here and we always indicate which
parameters are actually sampled.

• In our analysis, we discard the initial part of each chain, which is typically 5 −
10 correlation lengths long (see Appendix 3.10 on how we obtain the correlation
lengths). Throughout, for each reported inference, if we run more than one MCMC
chain as described in the previous point, we combine the chains into one single set
of posterior contours. The consistency between different chains being combined is
verified with the Gelman-Rubin statistics described in the next point.
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• We evaluate the Gelman-Rubin statistics [123–125] for our MCMC chains as de-
scribed in Appendix 3.10. In doing so, we also quantify the (combined) effective
sample size. The results for both, for all our chains, are listed in Tab. 3.2, 3.3 and
3.4. We require all of our chains to have ≳ 100 effective samples. This allows us
to have the MCMC sampling error reduced to ∼ 10%, which is sufficient for the
purposes of this work.

It is also important to note that for the freeIC chains, we use different k-binned
quantities in order to check their statistics and convergence. These are the power spec-
trum of ŝ, the mean deviation from ŝtrue and the corresponding power spectrum of this
deviation. Additionally, we have verified that the convergence of individual ŝ modes is
well represented by that of the k-binned quantities for the different bins. We also note
that both the k-binned ŝ quantities and the individual ŝ modes converge much faster
than other parameters of the model, namely α, {bO} and σϵ.

We will also compare the sampled ŝ posterior with analytical predictions. For the
latter, we always first calculate the per-k-mode prediction, and then compute the k-bin
average, which is then compared with the corresponding sampled posterior in the same
k-bin.

3.5.1 linear forward models

In this section, we focus on the forward models described by Eq. (3.3) and Eq. (3.5).

Linear bias

First, we discuss the results of the forward model with linear bias expansion. In this
case, it is possible to calculate the posterior of the initial conditions analytically. The
comparison with the sampled posterior then verifies whether our sampling approach
indeed fully explores the posterior in this case. As a first result, we focus on Fig. 3.2. In
this figure, we show the projection of the posterior to the bδ − σ̃ϵ plane. We distinguish
two cases. The case where the posterior contours were obtained by fully marginalizing
over the initial conditions (freeIC), shown in the left panel, and the case where the
initial conditions were fixed to the ground-truth (fixedIC), shown in the right panel.
The two panels indicate that the freeIC and fixedIC posterior means are consistent.
Note the stark contrast in the posterior widths between the fixedIC and freeIC cases.
This is explained by the fact that, in the case of fixedIC, only two parameters need to be
constrained, while in case of freeIC the joint posterior simultaneously constrains ≳ 105

degrees of freedom. More specifically, the free initial conditions also allow for an overall
change in the amplitude, leading to the wider posteriors in bδ. We also observe that the
posterior contours shrink with increasing Λ, as expected. The degeneracy between the
amplitudes of the signal (∝ bδ) and noise (∝ σ̃ϵ) is harder to break at lower Λ due to the
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Figure 3.2: Inferred posterior of the parameters of the forward model from Eq. (3.3)
on the Dlinear

1 synthetic dataset. On the left, the posterior projections to the σ̃ϵ − bδ
plane for the freeIC case and different cutoffs are shown, while on the right we show
the corresponding case of fixedIC posteriors. Note the difference in the axis ranges
between the fixedIC and freeIC posteriors. The black lines indicate expected values
for both parameters. As can be seen, the freeIC and fixedIC posteriors agree with
each other. Also, note the difference in the posterior uncertainties between forward
models with different cutoff.
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shallower slope of the linear power spectrum, hence resulting in posterior uncertainties
that grow faster toward smaller Λ than expected merely from mode counting arguments;
that is, the error bar on bδ grows toward smaller Λ more rapidly than Λ−3/2. The
stronger degeneracy in the bδ − σ̃ϵ plane also results in a slower exploration by the
samplers, evidenced by a longer correlation length, which we do not explicitly show here
for conciseness.

Another point to emphasize is that the correct fiducial noise level has also been
recovered at 68− 95%CL in all cases. This means that our inferences have been able to
clearly disentangle between the actual signal and Gaussian noise contributions.

We now turn to investigating the posterior of the initial conditions ŝ, especially
to see if the inference recovers the true initial conditions ŝtrue. Fig. 3.3 compares the
inferred and true initial conditions as a function of Fourier wave number k, in bins of k.
The inference was performed on the Dlinear

1 dataset, at the cutoff of Λ = 0.1hMpc−1,
keeping the other model parameters {bδ, σ̃ϵ} free. The top panel of Fig. 3.3 shows the
ratio between the power spectrum of ŝ and that of ŝtrue. The ratio is consistent with
unity, indicating that the two fields agree in terms of power, or mean amplitude.

The middle panel of Fig. 3.3 depicts the k-bin statistics of the residuals ∆ŝ(k) =
(ŝ− ŝtrue)(k). Indeed, their distribution is centered around 0, clearly implying that the
bulk of the ŝ posterior closely traces the ŝtrue field.

Note that we do not expect the posterior to be always centered around the ŝtrue field,
but that ŝtrue is within the typical set. We can in fact be more precise. As we show
in Appendix 3.8.1, the ŝ posterior mean and covariance for the linear model considered
here is, in the case when the parameters bδ and σ̃ϵ are fixed to their fiducial values, given
by

ŝWF = CWFR
TC−1

ϵ δd,Λ,

CWF = (1 + SR†C−1
ϵ R)−1S, (3.22)

with

Rk1k2 = δD
k1,k2bδT (k1)

(Cϵ)
k1
k2

= δD
k1,k2Pϵ

Sk1k2 = δD
k1,k2

(
NΛ

g

)3
, (3.23)

and δd,Λ the reduced density field of theDlinear
1 synthetic dataset. As seen from Eq. (3.22),

the ŝ posterior exhibits two limits. First, in the limit of uninformative data, i.e. large
noise Cϵ, the posterior simply approaches the prior, and the posterior mean of ŝ ap-
proaches zero while CWF → S. Second, in the limit of very informative data, i.e. small
noise Cϵ, the posterior mean and covariance approach ŝ → R−1δd,Λ → ŝtrue, following
Eq. (3.3), and CWF → (SR†C−1

ϵ R)−1S → 0, respectively.



64 3. Field-level inference with the EFT likelihood

0.0

0.5

1.0

1.5

2.0

P
ŝ(
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ŝ t

ru
e
(k

)

−100

−50

0

50

100

ŝ(
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Figure 3.3: Samples of different binned statistics of the inferred ŝ field, using Λ =
0.1hMpc−1, for the linear forward model from Eq. (3.3) on the Dlinear

1 synthetic dataset.
We keep the other model parameters {bδ, σ̃ϵ} free as well, whose posteriors are shown
on Fig. 3.2 (the Λ = 0.1hMpc−1 contours). The gray band shows the modes with
k > Λ, while the color bar traces the sample number n. The top panel shows the
ratio of the sampled ŝ power spectra and the corresponding ground-truth ŝtrue power
spectrum. Clearly, Pŝtrue is well within the posterior. The middle panel shows the binned
residuals, ∆ŝ = ŝ− ŝtrue, which are found to be centered around 0 as expected. Note that,
above the cutoff, we have ∆ŝ → −⟨ŝtrue⟩, since for these modes, the sampled ŝ values
follow the prior which is zero-centered. In addition, we also show the 68%CL intervals
estimated from the Wiener-filter solution (68%CLlin.model) and the prior (68%CLprior).
The bottom panel shows the power spectrum of the ∆ŝ field. Alongside this, we also
show the Wiener filter expectation of the posterior ŝ covariance as well as the prior. As
can be seen, the modes below the cutoff agree well with the Wiener filter prediction,
while above the cutoff of Λ = 0.1 hMpc−1 they follow the prior covariance. As discussed
above Eq. (3.23), the Wiener-filter solution is obtained by fixing bδ and Pϵ to their fiducial
values. The corresponding trends are also found for other cutoff values Λ.
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The yellow dotted line in the middle panel of Fig. 3.3 represents the residual between
the Wiener-filter solution ŝWF, i.e. the linear model analytical prediction from above,
and ŝtrue. Clearly, the sampled posterior is precisely centered around ŝWF, indicating that
it is unbiased also in the case when bδ and σ̃ϵ are left free. Above the cutoff, indicated
by the gray band, the sampled modes simply follow the prior, hence ∆ŝ → −⟨ŝtrue⟩ → 0.
However, due to the finite number of modes per k-bin, the calculated mean will not be
zero exactly, but vary around it within the prior bounds, which is indeed what we see.

Finally, the bottom panel of Fig. 3.3 shows the power spectrum of the ∆ŝ field. The
theoretical expectation is that the power spectrum of ∆ŝ in a given k-bin is Γ distributed,
P∆ŝ ←↩ Γ(a, b), where the shape parameter is a = Nmode/2, Nmode being the number of
modes within the Fourier space shell centered on k, and the scale parameter is b =
2CWF(k). This conclusion follows from considering the distribution of a sum of squares
of Gaussian-distributed variables, in this case ŝ. Since the mean of the Γ distribution is
given by the product of its scale and shape parameter, it follows immediately that the
expectation value of P∆ŝ

within a given k-bin is CWF(k).
This prediction is shown as the black line in the bottom panel of Fig. 3.3. We find

good agreement with the sampled results, indicating that the posterior is fully explored
by the sampler. We expect this to be the case, even though the Wiener filter calculation
assumes fixed parameters, since the parameters bδ, σ̃ϵ are very well constrained, so that
the propagated effect of their variance is a subdominant contribution to the ŝ posterior
variance. We also show the ŝ prior covariance for comparison, and as we can see, modes
above the cutoff indeed follow the prior.

To further investigate the posterior, in Fig. 3.4, we plot, for three selected k-bins,
both the histogram of ∆ŝ and the corresponding Wiener filter prediction, ŝWF − ŝtrue.
The latter is, of course, Gaussian and plotted as the dotted line. To guide the eyes, we
also show a vertical line on zero, indicating the ground truth. The top panel of this figure
depicts the inferred ŝ residual statistics of the linear forward model from Eq. (3.3). In
this case, the predicted (Wiener-filter) and sampled posteriors fully agree. On the other
hand, the bottom panel shows the same, but for the forward model including second-
order bias (Eq. (3.5)). Here we see clear deviations between the analytical and sampled
posteriors. That is, the ŝ posterior for this simple but nonlinear forward model is not
well approximated by the Wiener-filter solution (see Section 3.5.1 and Appendix 3.8.2 for
more details). This highlights the importance of going beyond the Wiener filter approach
when trying to extract information from even mildly nonlinear scales.

Second-order bias

Next, we perform consistency tests of the EFT likelihood on the Dlinear
2 datasets. These

synthetic datasets are generated using the forward model in Eq. (3.5). That is, they
additionally include a non-negligible quadratic bias contribution. Note that this contri-
bution however still involves only the linearly evolved density field δ(1)Λ0

. This results in a
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Figure 3.4: A closer look into the binned statistics of ∆ŝ. The units on the x-axis
correspond to the units of the ŝ(k) field, which is dimensionless based on our discrete
Fourier convention. The k-bin centers are indicated at the top and are the same for both
figures in each column. The dotted line indicates the predicted Wiener filter posterior
for the statistics of the initial conditions, while the histogram represents the posterior
obtained through sampling. For the top row, the setup is identical to that of Fig. 3.3, i.e.
it shows the posterior of the statistics of ∆ŝ for the case of forward model from Eq. (3.3)
applied to the Dlinear

1 dataset. As can be seen, the sampled posterior follows the Wiener
filter prediction closely for all k bins. The bottom panel shows the corresponding results
when applying the forward model with second-order bias, from Eq. (3.5), to Dlinear

2 . Here
the deviation from the Gaussian posterior of the Wiener filter prediction is prominent,
and the latter is generally more biased than the sampled posterior.
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Figure 3.5: Same as Fig. 3.2 but for the forward model from Eq. (3.5). Again, the
left panel shows the freeIC case, while the right one shows the fixedIC case. Good
agreement is again found between the means of the two posteriors. Note the difference in
the inferred parameter ranges between the fixedIC and freeIC posteriors. The dashed
lines indicate the expected values for {bδ, bδ2} parameters, as well as the fiducial value
for the noise level parameter σ̃ϵ used for generating the synthetic data. Note that the
inferred noise level increases towards smaller cutoffs for both the fixedIC and freeIC
posteriors. We further elaborate on this in the text and indicate the predicted running
of σ̃ϵ parameter from Eq. (3.25) by the star symbols.

non-Gaussian posterior of the initial conditions, ŝ, about which nonetheless we are able
to make some qualitative analytical statements (see Appendix 3.8.2 and Appendix 3.9).

First, we analyze the posterior of the inferred parameters {bδ, bδ2 , σ̃ϵ} shown in Fig. 3.5.
As before, we consider forward models with different cutoffs Λ. Here, since the synthetic
data Dlinear

2 is generated with a nonzero bδ2 , it introduces mode couplings across the
whole available range of modes up to the synthetic data cutoff of Λ0 = 0.14hMpc−1.

We first look at the noise amplitude σ̃ϵ. Fig. 3.5 shows that the inferred value is a
function of the cutoff for both fixedIC and freeIC cases; the inferred value is largest
for the forward model with Λ = 0.05hMpc−1 and lowest for Λ = Λ0 = 0.14hMpc−1.
This can be understood as follows. The synthetic dataset Dlinear

2 is generated using the
forward model from Eq. (3.5), but with a cutoff of Λ0 = 0.14hMpc−1 (see also Tab. 3.1).
We can then split the linear density field from which the synthetic dataset is constructed
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as
δ
(1)
Λ0
(x) = δ

(1)
Λ (x) + δ(1)s (x), (3.24)

where δ(1)Λ and δ
(1)
s represent the parts of δ(1)Λ0

containing modes up to Λ, and from Λ to
Λ0, respectively. Thus, δd,Λ contains a contribution bδ2(δ

(1)
s )2(x) (see Eq. (3.5)). Since

δ
(1)
s is uncorrelated with δ(1)Λ , this contribution to the data corresponds to an additional

noise that is absorbed in Pϵ in the inference. We thus expect Pϵ to shift by the power
spectrum of (δ(1)s )2, leading to

Pϵ(k) = P
no bδ2
ϵ + 2bδ2

∫

p

P
[Λ,Λ0]
L (p)P

[Λ,Λ0]
L (|k − p|) (k < Λ) (3.25)

where P
[Λ,Λ0]
L (p) = WΛ0(p)[1−WΛ(p)]PL(p)

and PL(p) is the linear power spectrum. Notice that only Fourier modes in the shell
[Λ,Λ0] contribute. Evaluating this Pϵ(k) at k = Λ leads to the results represented with
stars in Fig. 3.5. Note that for the case of Λ = Λ0 (purple) there is no running of σ̃ϵ
parameter and the corresponding star is right in the center of the posterior contours
for this case. In general, we find that the analytical result predicts the right trend,
although the shift in the sampled posterior mean is generally larger than the prediction,
in particular for Λ values that approach Λ0. The most likely explanation is that the
inferred σ̃ϵ also has to absorb the scale-dependence of the induced noise, since Eq. (3.25)
has a significant k-dependence in particular if Λ is not much smaller than Λ0.

We now turn to the bias parameters. First, we expect no running of bδ with the cutoff
Λ, as the former only multiplies the linear density δ

(1)
Λ in the forward model Eq. (3.5).

In other words, bδ,Λ = bδ,Λ0 for all Λ. In fact, this argument can be made rigorous by
examining the maximum likelihood point of the EFT likelihood (see for example Section
4 of [102]). Note that the maximum likelihood argument assumes the initial conditions
ŝ fixed to the ground truth ŝtrue. That is, strictly speaking, the argument applies only
to the fixedIC case. However, we generally expect the freeIC posterior to overlap the
fixedIC one, and Fig. 3.5 confirms that this is indeed the case.

As for bδ2 , in Appendix 3.9 we derive the running using a similar approach and show
that it vanishes as well; that is, bδ2,Λ = bδ2,Λ0

. We plot the results for bδ2 for the different
freeIC chains in Fig. 3.6. There is a residual shift away from the expected value of bδ2
when considering synthetic datasets with our fiducial noise level (σ̃ϵ = 0.586), as shown
by the yellow data points. While we expect the model from Eq. (3.5) to be more accurate
toward lower Λ, we in fact observe that the shift in bδ2,Λ with respect to the expected
result increases as we lower the cutoff. The most plausible explanation for this is a prior
volume effect resulting from the weakening constraint on bδ2 and the growing degeneracy
with σ̃ϵ toward lower Λ (see Fig. 3.5). To confirm this, we performed an inference with
substantially lower noise (σ̃ϵ = 0.002), indicated by the red points in Fig. 3.6. Indeed, the
systematic shift is substantially reduced, showing that more informative datasets help
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Figure 3.6: Mean a posteriori second-order bias parameter for the forward model from
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thetic data Dlinear

2 (yellow). The red color represents the inferred values of bδ2 on
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2 dataset. The error bars indicate 68%CL intervals estimated from the
chains.

with breaking the degeneracy. To conclude, the expected values for the bias parameters
{bδ, bδ2} are precisely recovered at 68% − 95%CL by our freeIC posteriors. The only
stronger deviation occurs for forward models with cutoffs 0.1hMpc−1 < Λ < Λ0, which
persists even in the case of highly informative data (see Fig. 3.6). It is possible that
including the subleading, k2 contribution to the noise, which is expected to become more
important as Λ approaches Λ0, would help with this residual shift.

Next, we focus on analyzing the ŝ posterior. As before, we look at the first and
second moments of the posterior of initial conditions. However, now the Wiener filter
prediction for the posterior mean is less accurate than for the case shown in Fig. 3.3
due to the presence of the quadratic term in the forward model. Fig. 3.7 compares the
estimated 68%CL from the chain samples (dotted lines, with bands indicating sample
variance) with the Wiener-filter expectation for the variance (dashed lines). As expected,
the deviation from the Wiener-filter solution is stronger, at fixed k/Λ, as we go toward
higher cutoffs. This is both because the typical amplitude of density fluctuations grows
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the x-axis for plotting purposes, such that all the modes can be seen for all forward
models with different cutoffs, suitably adjusting the ϵΛ parameter for each cutoff Λ.
The inference here was performed on Dlinear

2,b (inferences on the Dlinear
2,a dataset yield

consistent results). The shaded regions represent the mean and 68%CL of the sampled
posterior. In addition, we also show the Wiener filter prediction, assuming a fully linear
forward model. This approximation deteriorates toward higher cutoffs at fixed k/Λ, both
because the mode coupling in the forward model becomes more important, and because
ŝ is better constrained (see also Appendix 3.8.2).

on smaller scales, and the uncertainty on ŝ shrinks.
We can in fact make some qualitative statements about the behavior seen in Fig. 3.7.

In case of the quadratic bias forward model, the posterior of initial conditions contains
terms proportional to ∼ ŝ3 and ∼ ŝ4, in addition to the terms ∼ ŝ and ∼ ŝ2 present
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in the purely linear case. The ŝ posterior covariance depends on all of these terms, as
demonstrated in Appendix 3.8.2. There, we consider under what conditions the posterior
for ŝ can be approximated analytically and describe the cause for the discrepancy between
the Wiener filter prediction and the sampled joint posterior.

3.5.2 1lpt and 2lpt forward models

We now turn toward the forward models involving nonlinear gravity, i.e. 1LPT and
2LPT. The forward models we consider in this section are the most realistic ones, and
allow for reducing the degeneracy between the bias parameters and the scaling parameter,
α, as we elaborate below. Furthermore, as already hinted in [102], these forward models
promise information gains beyond the leading- and next-to-leading order power spectrum,
and leading-order bispectrum. We leave it for future work to explicitly demonstrate this.
Instead, below we focus on the performance of these forward models on synthetic datasets
listed in Section 3.4.2.

Linearly biased case

The synthetic dataset used in this section is D2LPT
1 , with different realizations denoted

by D2LPT
1,a and D2LPT

1,b . These correspond to a linearly biased tracer of the 2LPT-evolved
matter density field, and we thus test the consequences of a mismatch in the nonlinear
matter forward model. Further, owing to the latter, the exact degeneracy between bδ
and α that is present for trivial linear evolution is now broken, as δnLPT contains terms
scaling ∝ α and ∝ α2 both multiplied by the same bδ (see [104, 106] for more discussion).

Fig. 3.8 shows the parameter posteriors after explicitly marginalizing over the poste-
rior of initial conditions. Here we compare the inferences employing the 1LPT (red and
green contours) and 2LPT (blue and dark-purple contours) forward models. Evidently,
the parameters α, bδ, and σ̃ϵ, which are not expected to run, agree well among the two
different gravity models. The running is not present since α is a cosmological parameter,
while bδ and σ̃ϵ are protected from running thanks to the absence of nonlinear bias in
the synthetic datasets D2LPT

1 . Note however that b∇2δ is expected to absorb the effect
of modes between Λ and Λ0, hence to be shifted from its fiducial value. We also observe
an expected anti-correlation in the bδ−α plane, given that these two parameters appear
together as a product in the linear bias term in the forward model.

Another interesting degeneracy is in the b∇2δ− σ̃ϵ plane, which shows positive correla-
tion. This can be understood by recalling how these parameters affect the leading order
observable, the power spectrum. The dominant contribution to the tracer power spec-
trum that contains b∇2δ is −2k2b∇2δbδPL(k) ∼ −k0.5 at k ≈ 0.1hMpc−1, while the noise
contribution scales as ∼ k0. Since these two contributions have a similar k dependence,
but opposite signs, they result into a positive correlation between the two corresponding
parameters.
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1,a and D2LPT
1,b , both generated at

Λ0 = 0.14hMpc−1. The dashed lines indicate the fiducial input parameters of the
synthetic datasets. The blue and dark-purple contours show 2LPT inferences, while
the red and green contours show the same for the 1LPT inferences, each for the two
independent datasets. The cutoff used for all the forward models is Λ = 0.1hMpc−1.
Note the positive correlation in the b∇2δ− σ̃ϵ plane and negative correlation in the bδ−α
plane, as well as the shifts away from zero in the higher-order bias parameters bσ2 and
btr[M(1)M(1)] in cases of the 1LPT inferences. The dotted lines indicate the expected
values of bσ2 and btr[M(1)M(1)] from Lagrangian perturbation theory (see Eq. (3.26) and
Appendix 3.11 for more details).
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Another interesting feature can be seen when comparing the two different forward
models in the bottom two rows of Fig. 3.8. Namely, the higher-order bias coefficients
inferred using the 1LPT forward model are shifted away from their fiducial values of
zero. The shifts of these bias coefficients can in fact be predicted using a second-order
LPT calculation. Specifically, by solving for the displacement field and then substituting
that back into the second-order bias expansion, one can derive the relations between the
bias coefficients in the 1LPT and 2LPT forward model. Following the calculation done
in Appendix 3.11, one derives the following relations between the bias coefficients of the
two forward models

b1LPT
δ = b2LPT

δ ,

b1LPT
σ2 = b2LPT

σ2 +
3

14
,

b1LPT
tr[M(1)M(1)] = b2LPT

tr[M(1)M(1)] −
3

14
. (3.26)

These values are indicated with dotted lines in Fig. 3.8, and are within 68−95%CL of the
corresponding 1LPT posteriors. The results we have discussed so far were obtained using
the likelihood from Eq. (3.15), i.e. the unmarginalized likelihood. Using the marginalized
likelihood from Eq. (3.16) gives entirely consistent results (see Appendix 3.12). However,
the marginalized likelihood offers the important advantage of a reduced correlation length
in the remaining parameters α, σ̃ϵ. Namely, marginalizing over the bias parameters allows
for a ∼ 60% reduction in the correlation length of the α parameter (see the top panel of
Fig. 3.9).4

This in turn means that for the same CPU time, the number of effective samples
produced by the marginalized likelihood is correspondingly increased by a factor of 1.6.
This improvement is expected to become more significant with increasing number of
marginalized bias parameters, and suggests that the marginalized likelihood should be
preferred, especially for higher-order bias models.

As a final remark, we also show the posterior of initial conditions within different
k-bins in Fig. 3.10. As anticipated based on the previously shown results in Fig. 3.4,
the posterior is indeed non-Gaussian, showing stronger deviations from the Gaussian
case as one goes toward smaller scales (reflected in the heavier tails of the distribution).
Furthermore, even on the largest scales covered by our simulated volume, the prediction
from the Wiener filter is biased with respect to the inferred posterior which is correctly
centered around the ground truth (see the left-most panel).

4Note that the correlation length was estimated by taking the average over three (two) independent
chains for the unmarginalized (marginalized) likelihoods, respectively.
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Figure 3.9: The normalized auto-correlation function (see Eq. (3.47)) for the 2LPT
forward model applied to the D2LPT

1 dataset for α (top panel) and σ̃ϵ (bottom panel).
The x-axis shows the separation between samples in the chain, denoted with ∆n. The
labels in the legend show the estimated correlation length τ̂ and T , the corresponding
maximal sample separation considered for making this estimate (see Appendix 3.10 for
more details). In both cases, we compare the chains using the unmarginalized (red) and
marginalized (green) likelihoods (see Eqs. (3.15)–(3.16)). A faster decay of the auto-
correlation function can be seen for the marginalized likelihood in case of α, while for σ̃ϵ
the correlation lengths are comparable.

Biased tracers

The synthetic datasets from Section 3.5.2 consisted merely of the evolved 2LPT matter
field, rescaled by the linear bias bδ with added Gaussian noise. Here, we consider synthetic
datasets with nonzero higher-order bias coefficients, as well as a cutoff mismatch. This
means that we test for the ability of our forward model to extract correct α values from
the biased tracers while marginalizing over plausible initial conditions realizations. As
before, the D2LPT

2 dataset is generated using a cutoff Λ = 0.14hMpc−1, i.e. restricting
to mildly nonlinear scales (recall that all synthetic data sets are at z = 0). A more
realistic test case would adopt dark matter halo or simulated galaxy fields identified in
cosmological N-body or hydrodynamic simulations as input. We leave this for future
work.

In case of the inference performed on D2LPT
2 , we currently do not have analytical

predictions for the cutoff dependence of the bias coefficients; once these become available,
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Figure 3.10: Same as Fig. 3.4 but for the 2LPT forward model from Eq. (3.11) applied to
the D2LPT

1 synthetic data. We can see that the inferred posterior differs significantly from
the predicted Wiener-filter solution, and is closer to the ground truth, ŝtrue, as expected.
Even on large scales, the deviation is significant. Note also that the distribution of ŝ
becomes non-Gaussian, and increasingly so toward smaller scales.

we will be able to test the inference results on these bias parameters as well. Instead,
we consider the value of α as a measure of the model performance, as this, being a
cosmological parameter, should be consistent across different cutoffs Λ.

We focus here on the results using the unmarginalized likelihood from Eq. (3.15),
shown in Fig. 3.11; when using the marginalized likelihood, we find consistent results,
similar to what we discuss in Section 3.5.2. We find a difference between the fiducial
noise level and the one inferred at a lower cutoff, similar to the case in Section 3.5.1.
The reason is the same as there, namely the presence of second-order bias terms in the
D2LPT

2 dataset and the fact that Λ0 > Λ. Estimating this shift could be done similarly
as in Eq. (3.25), but taking into account the presence of higher-order nonlinear terms.
We leave this calculation for future work.

Turning to the α parameter, both the Λ = 0.14hMpc−1 (blue) and Λ = 0.1hMpc−1

(red) fixedIC posteriors consistently infer the correct value as expected. For the freeIC
case, the Λ = 0.14hMpc−1 forward model posterior (purple contours) is able to recover
the fiducial α value, and is furthermore consistent with the corresponding fixedIC pos-
terior (blue contours). However, the Λ = 0.1hMpc−1 freeIC posterior (green contours)
shows a preference for smaller α, and excludes the fiducial α value at 95%CL contour.
Similar systematic shifts can also be observed in the bias parameters.

Given that we have already found evidence for prior-volume effects in the case of a
linear gravity model with quadratic bias expansion in Section 3.5.1 (see Fig. 3.6) it is
natural to suspect a similar cause here. However, this discrepancy could also point toward
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Figure 3.11: Parameter posteriors for the D2LPT
2 synthetic dataset using Λ = 0.1hMpc−1

(green and red contours) and Λ = 0.14hMpc−1 forward models (blue and purple con-
tours) with 2LPT displacement fields. We contrast the fixedIC and the freeIC in-
ference chains for both forward models. As expected, the Λ = 0.14hMpc−1 freeIC
forward model recovers consistent results as the corresponding fixedIC case. However,
the Λ = 0.1hMpc−1 freeIC chains, i.e. those with a cutoff mismatch, show a shift with
respect to the fixedIC contour. Possible explanations for this are discussed in the text.
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the necessity of higher-order bias terms, or a scale-dependent or density-dependent noise
covariance. We leave the investigation of the root cause for upcoming work.

3.6 Conclusions and Summary

In this chapter, we have investigated the robustness of field-level inference based on the
EFT framework with respect to mismatch between theory and data, as well as the ability
to constrain the amplitude of initial conditions (σ8) when marginalizing over the initial
conditions. Such tests do not only test the robustness of the chosen forward model and
likelihood, but also allow for a better understanding regarding what types of forward
model physics is necessary in order to capture all relevant effects and to obtain unbiased
inference of the cosmological parameters.

We have focused on several different types of forward models described in Section 3.2,
each probing different limits of our general forward model from Eq. (3.13), as well as
different types of likelihood, one with explicit marginalization over bias parameters
(Eq. (3.16)) and the other without (Eq. (3.15)). We perform all the tests on a suite
of synthetic datasets with realistic noise levels, described in Section 3.4.

We have demonstrated in Section 3.5.1 that, in the case of the purely linear forward
model (see Eq. (3.3)), our sampling approach coupled with the EFT likelihood attains
a full exploration of the high-dimensional posterior, which in this case can be derived
analytically (see Fig. 3.2–3.3 as well as the top panel of Fig. 3.4). This is a nontrivial
result given the high-dimensional (Ndim ∼ 105 − 106) posterior surface involved.

In Section 3.5.1 we have considered a simple but nontrivial extension by adding
the bδ2 term in the bias expansion as given in Eq. (3.5). This term leads to a mode
coupling between two linear density fields, which in turn yields a non-Gaussian posterior
of the initial conditions, as can be seen from the bottom panel of Fig. 3.4 as well as
Fig. 3.7. Nevertheless, the inferred parameters show the expected behavior also in this
non-Gaussian case (Fig. 3.5). We further find good agreements between the fixedIC,
where the initial conditions are fixed to their ground-truth values, and freeIC posteriors.
This illustrates that our forward modeling and sampling approaches explore the posterior
around the correct solution.

We have also examined cases which include a model mismatch in the 2LPT gravity
model, by way of choosing a lower cutoff in the inference than the one used to generate
the synthetic data. As synthetic datasets, we consider matter fields in Section 3.5.2 and
nonlinearly biased tracer fields in Section 3.5.2, both including white Gaussian noise. For
these cases, we find that, even in the presence of model mismatch, the EFT likelihood is
still able to obtain unbiased estimates of cosmological parameters, specifically α which
is our proxy for σ8. We have also demonstrated the advantage of using the marginalized
over the unmarginalized likelihood from Eqs. (3.16)–(3.15) respectively, by showing a
significantly reduced correlation length, in particular for α.
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We do find signs of a mild discrepancy in the inferred α value in the case for the
synthetic data set including nonlinear bias, when also allowing for a Λ mismatch. We
leave the exploration of possible causes to upcoming work; while prior volume effects
could be responsible, higher-order bias terms and density-dependent noise could also be
relevant for this particular data set. The flexibility in generating different synthetic data
sets will allow for a disentangling of the possible causes. Such future tests should also
include the generalization to synthetic data involving nontrivial noise, such as scale- and
density-dependent or non-Gaussian (for example, Poisson) noise.
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3.7 Appendix A: Fourier space convention

Below, we summarize the Fourier convention and notation we adopt throughout this
chapter. In particular, we give the explicit relation between the Fourier- and Hartley-
representation of ŝ. The latter is of relevance for understanding our prior choices in
Section 3.3.1 and following the calculations done in Appendix 3.8.1 and Appendix 3.8.2.

First, we define the forward Fourier transform f(k) ≡ {Ff(x)} and its inverse trans-
form f(x) ≡ {F−1f(k)} as

f(k) ≡
∫

d3xf(x)e−ik·x ≡
∫

x

f(x)e−ik·x,

f(x) ≡
∫

d3k

(2π)3
f(k)eik·x ≡

∫

k

f(k)eik·x.

In practice, we operate on finite grids, thus we use the discrete Fourier transforms given
by

δ(k) =

N3
g∑

i

δ(xi)e
−ik·xi ,

δ(x) =
1

N3
g

∑

ki

δ(ki)e
iki·x,

where k ∈ (nx, ny, nz)kF with kF = 2π/L, and ni ∈ {−Ng/2, · · · , Ng/2}. The Nyquist
frequency is given by kNy ≡ NgkF/2. L stands for the box size. With this, the two-point
prior of the initial conditions ŝ becomes

⟨ŝ(nkF )ŝ(n′kF )⟩ =
1

L3
δn,−n

′

D Pŝ,ŝ(nkF ), (3.27)

where δn,−n
′

D = δ
nx,−n′

x
D δ

ny ,−n′
y

D δ
nz ,−n′

z
D , with δ

ni,nj

D representing the Kronecker delta. For
clarity, we also write this Kronecker delta in wavenumber space as δk,k

′

D . For a field ŝ(x)
drawn from a unit normal distribution in real space, it follows that Pŝ,ŝ = L3N3

g , and
hence ⟨ŝ(nkF )ŝ(n′kF )⟩ = N3

g δ
n,−n′

D .
In order to implement the cutoff Λ, we use the isotropic sharp-k filter WΛ defined as

WΛ(k) = ΘH(k − Λ), (3.28)

with ΘH being the Heaviside function.
Finally, we note that any field ŝ(k) can be represented either in the Fourier or Hartley

convention, with our LEFTfield code utilizing the latter. The two representations are
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related through (see [126] and Section 3.4 in [127] for more details)

ŝ(k) ≡ {Hŝ}(k) = Re [{Fŝ}(k)]− Im [{Fŝ}(k)] ,

ŝ(k) ≡ {Fŝ}(k) = [{Hŝ}(−k) + {Hŝ}(k)]
2

+ i
[{Hŝ}(−k)− {Hŝ}(k)]

2
. (3.29)

with F and H denoting Fourier and Hartley transforms respectively. This is the field
whose mean, residuals, and variance is shown in the figures in Section 3.5.

3.8 Appendix B: Gaussian expectation for ŝ posterior

In this section, we present efforts towards analytical understanding of the shapes of ŝ
posteriors for the forward models represented by Eq. (3.3) (Appendix 3.8.1) and Eq. (3.5)
(Appendix 3.8.2), restricting to the case where the bias parameters and noise amplitude
are fixed to the ground truth. It is much more difficult to obtain an analytical expression
for the posterior when also varying the latter.

In the linear case, an analytical form of the posterior exists, whose mean and vari-
ance coincides with the Wiener-filter solution (see, for example [34, 128] and references
therein). In the nonlinear case however, only a perturbative approach is possible and we
elaborate on this in Appendix 3.8.2.

3.8.1 Appendix B.1: Linear model

As discussed around Eq. (3.3), the covariance structure of cosmological initial conditions
is diagonal in Fourier space. Specifically, using the Fourier-space representation of our
prior covariance (see our Fourier convention from Appendix 3.7), one obtains

Skk′ = N3
g δD

k,k′ ,

where δDk,k
′
represents the Kronecker delta. The noise is likewise assumed to be Gaussian

with diagonal covariance (Cϵ)
k
k′ related to Pϵ (see Eq. (3.14)) as

(Cϵ)
k
k′ = δD

k,k′Pϵ.

These two assumptions allow us to derive the expected posterior on ŝ. In order to more
easily see this, we can rephrase Eq. (3.3) as follows

δkd = Rkk′ ŝ
k′ + ϵk,

Rkk′ = δD
k,k′bδT (k),

where repeated indices are summed over; in the following, we will drop the repeated
indices. We also drop the explicit α dependence, since here we are only interested in the
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posterior of initial conditions with α fixed to the ground truth. In the following, we will
further fix the parameters bδ and σϵ; only for this case can we derive the posterior for ŝ
analytically.

The likelihood for δd can be derived by marginalizing over the noise distribution,
which yields

P(δd|ŝ, bδ, σϵ) = G(δd;Rŝ, Cϵ),

with Rŝ denoting the mean and Cϵ denoting the covariance of this Gaussian. Going
forward, we consider log-probabilities for convenience. This leads to (suppressing the
conditional on {bδ, σϵ} parameters for clarity)

− lnP(δd, ŝ) = − lnP(δd|ŝ)− lnP(ŝ)

=
1

2
(δd −Rŝ)†C−1

ϵ (δd −Rŝ) +
1

2
ln|2πCϵ|+

1

2
ŝ†S−1ŝ+

1

2
ln|2πS|

=
1

2

(
ŝ†(R†C−1

ϵ R + S−1)ŝ− δ†dC−1
ϵ Rŝ− ŝRTC−1

ϵ δd

)

+
1

2

(
δ†dC

−1
ϵ δd + tr lnCϵ + tr lnS +Nδd ln 2π +Nŝ ln 2π

)
, (3.30)

where Nδd and Nŝ represent the total number of modes in the δd and ŝ fields, respectively.
In our applications, these are always the same.

Defining j = RTC−1
ϵ δd and (CWF)

−1 = (S−1 +R†C−1
ϵ R) we can rewrite Eq. (3.30) as

lnP(δd, ŝ) =
1

2
(ŝ− CWF j)

† (CWF)
−1 (ŝ− CWF j) + const. (3.31)

where we have accumulated all the ŝ-independent terms inside const., i.e.

const. ≡ 1

2

(
δ†dC

−1
ϵ δd + tr lnCϵ + tr lnS +Nδd ln 2π +Nŝ ln 2π − j†CWF j

)
. (3.32)

It is now clear that the posterior of ŝ is Gaussian:

P(ŝ|δd) = G(ŝ; ŝWF, CWF), (3.33)

with mean ŝWF and covariance CWF given as

ŝWF = CWF j

CWF = (1 + SR†C−1
ϵ R)−1S. (3.34)

Substituting into the second line of Eq. (3.34) the expression for response R, noise
covariance Cϵ(k) and the prior S yields the following expression for the ŝ posterior
covariance

(CWF)
k
k′ = δD

k,k′
(
1 +N3

g

b2δPL(k)

Pϵ

)−1

N3
g . (3.35)



82 3. Field-level inference with the EFT likelihood

For the results shown in the main text, we calculate Eq. (3.35) for every mode. We
note that when comparing our analytical expression from Eq. (3.35) to the results for
the ∆ŝ power spectrum obtained from sampling shown in the bottom panel of Fig. 3.3
and in Fig. 3.7, we account for the fact that P∆ŝ

is in fact Γ distributed within each
k-bin. The shape parameter is given by Nmode/2, with Nmode being the number of modes
within the Fourier space shell centered on k, while the scale parameter is 2CWF(k) (see
Section 3.5.1). We again emphasize that the posterior mean and variance Eq. (3.34)
coincide with the Wiener filter result only for a linear forward model, Gaussian prior
and likelihood, and fixed parameters α, bδ, σ̃ϵ. In fact, Fig. 3.7 indicates that the Wiener
filter estimate of the residual variance is biased low, i.e. CWF is relatively lower than the
actual variance P∆ŝ

, for nonlinear forward models.

3.8.2 Appendix B.2: Quadratic model

We now consider the quadratic bias model with linearized gravity (see Eq. (3.5)). Before
continuing, we refer readers to Appendix 3.7 for our discrete Fourier convention. We
start with writing out the full likelihood expression (dropping again the α dependence
since this parameter is held fixed)

lnL(δd,Λ|δdet,Λ[{O, bO}], σϵ) = −1

2

kmax∑

k ̸=0

[
ln 2πσ2

ϵ +
1

σ2
ϵ

|δd,Λ(k)− δdet,Λ[{O, bO}](k)|2
]
,

which when specialized for the forward model from Eq. (3.5) reads

lnL(δd,Λ|δdet,Λ[{O, bO}], σϵ) =− 1

2

kmax∑

k ̸=0

[
ln 2πσ2

ϵ ++
1

σ2
ϵ

|δd,Λ|2(k)

− 1

σ2
ϵ

δ∗d,Λ(k)
(
(Rŝ)(k) + (R2ŝŝ)(k)

)

− 1

σ2
ϵ

δd,Λ(k)
(
(Rŝ)∗(k) + (R2ŝŝ)

∗(k)
)

+
1

σ2
ϵ

∣∣∣(Rŝ)(k) + (R2ŝŝ)(k)
∣∣∣
2
]
, (3.36)

with R and R2 operations defined as

Rkk1 [ . ]
k1 ≡ δk,k1D bδWΛ(k1)T (k1)[ . ]

k1

R2
k
k1,k2

[ . , . ]k1,k2 ≡ bδ2
1

N3
g

∑

k1,k2

δk,k1+k2D WΛ(k1)WΛ(k2)T (k1)T (k2)[ . , . ]
k1,k2 . (3.37)

Note that the R operator is the same as that in the linear forward model described in
Appendix 3.8.1. The R2 operator implements the second-order bias via a convolution in
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Fourier space, with the kernel represented by the product of the two transfer functions
and the sharp-k cutoffs.

We now add the Gaussian log-prior on ŝ to Eq. (3.36) and expand in powers of ŝ.
This results in the following ordering of terms (repeated indices are summed over)

o(ŝ) :
2

σ2
ϵ

δkd,ΛR
k
k1
ŝk1

o(ŝ2) :
( 1

σ2
ϵ

Rkk1R
k
k2
− 2

σ2
ϵ

δkd,ΛR2
k
k1,k2

+ δk1,k2D N−3
g

)
ŝk1 ŝk2

o(ŝ3) :
2

σ2
ϵ

Rkk1R2
k
k2,k3

ŝk1 ŝk2 ŝk3

o(ŝ4) :
1

σ2
ϵ

R2
k
k1,k2

R2
k
k3,k4

ŝk1 ŝk2 ŝk3 ŝk4 .

(3.38)

In other words, the final log-posterior is given by (in matrix notation)

H(ŝ|δd,Λ) ≡ − lnP(ŝ|δd,Λ) = 2R†C−1
ϵ δd,Λ︸ ︷︷ ︸
j†

ŝ+
1

2
ŝ†
(
R†C−1

ϵ R− 2R2C
−1
ϵ δd,Λ + 1N−3

g

)
︸ ︷︷ ︸

(D′)−1

ŝ

+
1

2
ŝ†R†C−1

ϵ R†
2︸ ︷︷ ︸

M(3)

ŝŝ+
1

2
ŝ†ŝ†R†

2C
−1
ϵ R2︸ ︷︷ ︸

M(4)

ŝŝ, (3.39)

where we have introduced the third and fourth order coupling kernels with M(3) and
M(4) respectively. Also, we have relabeled the operators in the quadratic and linear term
with (D′)−1 and j respectively. In the absence of the bδ2 term, the posterior covariance
is given exactly by the Wiener-filter solution for posterior covariance, i.e. second line of
Eq. (3.34). For the posterior given in Eq. (3.39), it is not straightforward to compute the
corresponding first and second moments. Instead, we expand the posterior around the
Wiener-filter solution. While this expansion is strictly only valid if the correction due to
bδ2 is small, this expansion nevertheless offers some interesting insights.

We thus define ŝ′ ≡ ŝ− ŝWF, where ŝWF represents the Wiener filter prediction of the
initial conditions given by Eq. (3.34). In this case, the formalism of Information Field
Theory, as presented in [34], suggests the following diagrammatic representation of the
solution (see also Section V.C of [34] and, for the Feynman rules, Section IV.A.2 of the
same paper)

⟨ŝ′(ŝ′)†⟩ = + + 2 perm. + + 5 perm.

+ + ,
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where the diagrams correspond to the following expressions

k1 k2 = D′
k1,k2

,

∼ (D′)k1k
′
(M(3))klm(D′)ll1jl1(D

′)mk2 ,

∼ (D′)k1k(M(4))klmn(D
′)ll1jl1(D

′)mm1jm1(D
′)nk2 ,

∼ (D′)k1k(M(4))klmn(D
′)lm(D′)nk2 ,

∼ (D′)kl(M(4))klmn(D
′)mn, (3.40)

where we assume that the external lines (without dots) are fixed at k1 and k2 as indicated
in the first line.

We can see that at leading order the posterior covariance is given exactly by D′, while
the corrections to it depend on the exact form of the coupling kernels M(3) and M(4).
The evaluation of D′ requires an explicit matrix inversion.

To avoid this, and keeping in mind that this expansion is only valid for small correc-
tions to the Wiener-filter posterior, we expand D′ to obtain the leading correction to the
posterior covariance

D′ =
(
C−1

WF − 2R2C
−1
ϵ δd,Λ

)−1 ≈ CWF + 2CWF

(
R2C

−1
ϵ δd,Λ

)
CWF + · · · (3.41)

Writing out the leading correction term, one obtains

[
CWF

(
R2C

−1
ϵ δd,Λ

)
CWF

]
k
k′ ∝ bδ2(WΛTδd,Λ)(k − k′). (3.42)

This implies that the leading correction to the covariance around the Wiener-filter
solution only contributes to the off-diagonal elements. This is an expected result, given
the structure of the mode coupling introduced by the ∼ (δ

(1)
Λ )2 term from Eq. (3.5). In

order to compute the correction to the diagonal part of the posterior covariance shown
in Fig. 3.7, one would need to compute the next-to-leading correction to the posterior
covariance. At this order, one also has to include the shift of the maximum of the
posterior from the Wiener-filter solution, which is also of order bδ2 . This is a more
involved calculation which we leave to future work.

The considerations above indicate that obtaining even approximate analytical poste-
riors for ŝ is very difficult already for the simplest nonlinear models. These difficulties are
correspondingly exacerbated for more nonlinear models, such as those involving nLPT
forward models. Thus, the explicit sampling approach appears to be the only path
toward obtaining trustable posteriors for initial conditions inference using nonlinear for-
ward models.
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3.9 Appendix C: Running of bδ2 with the cutoff

In this section, we describe the 1-loop calculation of the expectation value of the bδ2
parameter as a function of the forward model cutoff Λ. In order to derive this relation,
it is sufficient to look at the maximum likelihood point of the unmarginalized likelihood
(see Eq. (3.15))

∂

∂bδ2
lnL(δd,Λ|δdet,Λ[{O, bO}, ŝ], σϵ) =

Λ∑

k ̸=0

[
1

σ2
ϵ

(
δ
(1)
Λ

)2
(k) (δd,Λ(k)− δdet,Λ(k))∗

]
= 0.

(3.43)
We have again suppressed the explicit α dependence within δdet,Λ, since for the forward
model from Eq. (3.5) we keep it fixed. Since σϵ is a constant, we can factor it out and
using the fact that the forward model here is given by Eq. (3.5) one can rearrange the
above Eq. (3.43) to obtain

Λ∑

k ̸=0

[(
δ
(1)
Λ

)2
(k)δd,Λ(−k)

]
=

Λ∑

k ̸=0

[
bδ,Λ

(
δ
(1)
Λ

)2
(k)δ

(1)
Λ (−k) + bδ2,Λ

(
δ
(1)
Λ

)2
(k)
(
δ
(1)
Λ

)2
(−k)

]
,

where we have explicitly stated the cutoff dependence of the bias coefficients, which holds
in general and used the fact that the density fluctuation field is hermitian.

Before proceeding, we note that the above equation holds for a given realization of
initial conditions, as explicitly stated in Eq. (3.43).

In what follows, we evaluate the MAP relation for bδ2 at the ground-truth initial
conditions ŝtrue. This is obviously the correct choice when comparing to fixedIC chains.
However, since ŝtrue is expected to be in the typical set of the freeIC posterior, the result
can also be translated to freeIC chains. After evaluating on the ground truth, we then
take the ensemble average over data realizations. This allows us to compute the result
analytically and gives the following (see also section 3 of [102])

bδ2,Λ0

Λ∑

k ̸=0

〈(
δ
(1)
Λ

)2
(k)

(
WΛ

(
δ
(1)
Λ0

)2)
(−k)

〉
= bδ2,Λ

Λ∑

k ̸=0

〈(
δ
(1)
Λ

)2
(k)
(
δ
(1)
Λ

)2
(−k)

〉
,

(3.44)
keeping only the non-zero correlators. Given that the procedure for evaluating all corre-
lators is essentially the same, we focus only on the correlator from the left-hand side of
Eq. (3.44). Evaluating, we get
〈(

δ
(1)
Λ

)2
(k)

(
WΛ

(
δ
(1)
Λ0

)2)
(−k)

〉
=

∫

k1

∫

k2

WΛ(k − k1)WΛ(k1)WΛ0(k2 + k)WΛ0(k2)

〈
δ(1)(k − k1)δ(1)(k1)δ(1)(k − k2)δ(1)(k2)

〉
.
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Using repeated Wick contractions one gets
〈(

δ
(1)
Λ

)2
(k)

(
WΛ

(
δ
(1)
Λ0

)2)
(−k)

〉
= 2

∫

k1

WΛ(k − k1)WΛ(k1)WΛ0(k1 − k)WΛ0(−k1)
PL(|k − k1|)PL(k1)

+ δD(k)δD(−k)
∫

k1

∫

k2

WΛ(k − k1)WΛ(k1)

WΛ0(k − k2)WΛ0(k2)

PL(k1)PL(k2),

(3.45)

with PL(k) representing the linear power spectrum. From the above equation, it is clear
that the correlator is a diagonal matrix in Fourier space. Furthermore, using the fact
that the sharp-k cutoff WΛ cares only about the magnitude of the given k-mode, we can
rewrite Eq. (3.45) as

〈(
δ
(1)
Λ

)2(
WΛ

(
δ
(1)
Λ0

)2)〉
(k) = 2

∫

k′
WΛ(|k − k′|)WΛ(k

′)PL(|k − k′|)PL(k
′)

k=0
+

∫

k1

WΛ(k1)PL(k1)

∫

k2

WΛ0(k2)PL(k2), (3.46)

indicating that the second line only contributes to the k = 0 mode, which is not included
in the likelihood evaluation, so this line can be dropped from further calculation. There-
fore, the only relevant piece is the loop integral on the first line, which in fact matches
the correlator on the right-hand side of Eq. (3.44). This shows that bδ2,Λ0

= bδ2,Λ, and
hence no running of bδ2 is expected for the forward model represented by Eq. (3.5). This
behavior is confirmed within our inference chains in Fig. 3.6. Note that this result is
specific to this simple forward model, and does not apply to the nLPT forward models.
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Forward model, Λ [hMpc−1] Dataset (R̂C − 1)× 103 (R̂r − 1, Tϵ − 1)× 104 Ês

linear - Eq. (3.3), Λ = 0.05 Dlinear
1 5.3 (129.8, 7.97) 113

linear - Eq. (3.3), Λ = 0.07 Dlinear
1 29.6 (15.65, 7.97) 320

linear - Eq. (3.3), Λ = 0.1 Dlinear
1 1.79 (21.79, 7.97) 230

linear - Eq. (3.3), Λ = 0.14 Dlinear
1 2.31 (48.79, 7.97) 102

linear - Eq. (3.5), Λ = 0.05 Dlinear
2,a 10.2 (4.29, 7.38) 1138

linear - Eq. (3.5), Λ = 0.05 Dlinear
2,b 15.2 (5.26, 7.38) 933

linear - Eq. (3.5), Λ = 0.08 Dlinear
2,a 2.66 (4.64, 7.38) 1051

linear - Eq. (3.5), Λ = 0.08 Dlinear
2,b 4.14 (4.54, 7.38) 1075

linear - Eq. (3.5), Λ = 0.1 Dlinear
2,a 1.62 (7.69, 7.38) 635

linear - Eq. (3.5), Λ = 0.1 Dlinear
2,b 4.26 (7.86, 7.38) 622

linear - Eq. (3.5), Λ = 0.12 Dlinear
2,a 8.71 (30.18, 7.38) 330

linear - Eq. (3.5), Λ = 0.12 Dlinear
2,b 11.21 (35.96, 7.38) 277

linear - Eq. (3.5), Λ = 0.13 Dlinear
2,a 13.84 (42.91, 7.38) 232

linear - Eq. (3.5), Λ = 0.13 Dlinear
2,b 10.74 (34.56, 7.38) 288

linear - Eq. (3.5), Λ = 0.14 Dlinear
2,a 24.9 (33.69, 7.38) 147

linear - Eq. (3.5), Λ = 0.14 Dlinear
2,b 14.8 (25.31, 7.38) 195

1LPT - Eq. (3.11), Λ = 0.1 D2LPT
1,a 3.25 (38.38, 6.89) 256

1LPT - Eq. (3.11), Λ = 0.1 D2LPT
1,b 5.37 (73.68, 6.89) 135

1LPT - Eq. (3.11), Λ = 0.14 D2LPT
1,a 41.8 (28.39, 6.89) 171

1LPT - Eq. (3.11), Λ = 0.14 D2LPT
1,b 23.2 (42.95, 6.89) 114

2LPT - Eq. (3.11), Λ = 0.1 D2LPT
1,a 2.46 (36.32, 6.89) 273

2LPT - Eq. (3.11), Λ = 0.1 D2LPT
1,b 23.5 (40.71, 6.89) 243

2LPT - Eq. (3.11), Λ = 0.14 D2LPT
1,a 17.5 (31.66, 6.89 311

2LPT - Eq. (3.11), Λ = 0.14 D2LPT
1,b 95.1 (25.56, 6.89) 385

2LPT - Eq. (3.11), Λ = 0.1 D2LPT
2,a 2.78 (53.73, 6.89) 184

2LPT - Eq. (3.11), Λ = 0.1 D2LPT
2,b 0.17 (63.17, 6.89) 157

2LPT - Eq. (3.11), Λ = 0.14 D2LPT
2,a 94.3 (51.18, 6.89) 125

2LPT - Eq. (3.11), Λ = 0.14 D2LPT
2,b 99.6 (47.42, 6.89) 103

Table 3.2: Gelman-Rubin test statistics, both R̂C (see Eq. (3.51)) and R̂r (see Eq. (3.52))
for our MCMC chains using the unmarginalized likelihood presented in this work. We
also show the idealized convergence threshold value, Tϵ, corresponding to having the
same number of chains, but instead requiring that 95% of samples lie within < 10% of
the posterior volume around the posterior mean which is reported by the target.psrf
method of stableGR package (see [125]). The last column indicates the estimated effec-
tive sample size, Ês, calculated using the n.eff method of stable.GR. The results in
each line are obtained from at least 2 chains. For calculating the R̂C value, we consid-
ered bδ parameter in case of forward models from Section 3.5.1, and α parameter for the
chains from Section 3.5.2 (see text for more details about this choice).
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Forward model, Λ [hMpc−1] Dataset (R̂C − 1)× 103 (R̂r − 1, Tϵ − 1)× 104 Ês

linear - Eq. (3.5), Λ = 0.08 Dlinear−i.
2,a 0.21 (3.24, 7.38) 1516

linear - Eq. (3.5), Λ = 0.08 Dlinear−i.
2,b 0.22 (3.49, 7.38) 1408

linear - Eq. (3.5), Λ = 0.1 Dlinear−i.
2,a 31.4 (10.58, 7.38) 469

linear - Eq. (3.5), Λ = 0.1 Dlinear−i.
2,b 3.54 (9.49, 7.38) 523

linear - Eq. (3.5), Λ = 0.12 Dlinear−i.
2,a 9.45 (22.26, 7.38) 224

linear - Eq. (3.5), Λ = 0.12 Dlinear−i.
2,b 0.89 (16.81, 7.38) 296

linear - Eq. (3.5), Λ = 0.13 Dlinear−i.
2,a 31.81 (37.81, 7.38) 132

linear - Eq. (3.5), Λ = 0.13 Dlinear−i.
2,b 36.64 (41.13, 7.38) 121

linear - Eq. (3.5), Λ = 0.14 Dlinear−i.
2,a 9.95 (24.46, 7.38) 205

linear - Eq. (3.5), Λ = 0.14 Dlinear−i.
2,b 9.64 (23.57, 7.38) 211

Table 3.3: Supplement table for Tab. 3.2 containing Gelman-Rubin test statistics for
chains obtained from applying the forward model from Eq. (3.5) to the Dlinear−informative

2

datasets appearing in Fig. 3.6. We abbreviate Dlinear−informative
2 → Dlinear−i.

2 to save
space.

Forward model, Λ [hMpc−1] Dataset (R̂C − 1)× 103 (R̂r − 1, Tϵ − 1)× 104 Ês

1LPT - Eq. (3.11), Λ = 0.1 D2LPT
1,a 6.75 (116.51, 7.97) 128

1LPT - Eq. (3.11), Λ = 0.1 D2LPT
1,b 19.5 (137.9, 7.97) 108

1LPT - Eq. (3.11), Λ = 0.14 D2LPT
1,a 22.5 (96.3, 7.97) 155

1LPT - Eq. (3.11), Λ = 0.14 D2LPT
1,b 44.9 (102.9, 7.97) 145

2LPT - Eq. (3.11), Λ = 0.1 D2LPT
1,a 4.78 (60.61, 7.97) 166

2LPT - Eq. (3.11), Λ = 0.1 D2LPT
1,b 4.54 (63.89, 7.97) 156

2LPT - Eq. (3.11), Λ = 0.14 D2LPT
1,a 99.5 (80.76, 7.97) 185

2LPT - Eq. (3.11), Λ = 0.14 D2LPT
1,b 28.3 (85.84, 7.97) 174

2LPT - Eq. (3.11), Λ = 0.1 D2LPT
2,a 98.4 (108.9, 7.96) 137

2LPT - Eq. (3.11), Λ = 0.1 D2LPT
2,b 94.2 (115.6, 7.97) 129

2LPT - Eq. (3.11), Λ = 0.14 D2LPT
2,a 6.47 (113.86, 7.97) 131

2LPT - Eq. (3.11), Λ = 0.14 D2LPT
2,b 78.8 (51.95, 7.97) 192

Table 3.4: Same as Tab. 3.2, but for chains using the marginalized likelihood from
Eq. (3.16). Note that these chains were not run as long as the chains from Tab. 3.2 and
hence have a smaller number of effective samples overall.
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3.10 Appendix D: Convergence and sample correlation

MCMC samples are not entirely independent. In practice, this correlation between neigh-
boring samples introduces further uncertainty in any estimate based on averaging over
those samples, such as the posterior mean, variance and all higher moments. The cor-
relation is often measured by the integrated autocorrelation time, while the resulting
uncertainty in the posterior is quantified by the effective sample size. We refer readers
to [124] for more details.

We use the following definition of normalized autocorrelation function, ρ(t)

ρ(t) ≡ A(t)A(0) ,

A(t) = ⟨γsγs+t⟩s − ⟨γs⟩2s, (3.47)

where {γs}s=1···N is the set of chain samples, and the brackets indicate the average over
samples, i.e. ⟨γs⟩s ≡ γ̄, while t indicates the sample separation. Eq. (3.47) highlights
the significance of having a sufficient number of MCMC samples, i.e. running sufficiently
long MCMC chains, since γ̄ and A(0) are noisy estimates of the true mean and variance,
whose noise propagates nonlinearly into ρ(t). For the autocorrelation function, A(t), we
use the estimator presented in [129] which shows better asymptotic behavior than the
one given in Eq. (3.47). The normalized autocorrelation function ρ(t) is exactly what
shown in Fig. 3.9. We then use the autocorrelation function to estimate the correlation
length of the chain as

τ̂(T ) =
T∑

t=−T

ρ(t) = 1 + 2
T∑

t=1

ρ(t), (3.48)

with T representing the maximal separation between the samples considered. This esti-
mator has a vanishing variance in the limit of large chain lengths, i.e. number of samples.
We have adopted the approach of [130] for choosing T . In short, T is chosen such that it
corresponds to the smallest integer satisfying T ≥ Cτ̂(T ) with a constant C chosen such
that the variance of the estimator is minimized, at the cost of introducing a negative
bias in the estimate of τ̂ . This is typically achieved for C ∈ [5, 10]. We report the τ̂
estimates, as well as the used window T in Fig. 3.9 as well.

We now describe the two tests of convergence we perform for all chains analyzed in
this work, namely the classical and revised Gelman-Rubin (G-R) diagnostic. The revised
G-R statistics [125]) makes a clear connection to the chain effective sample size (see Eq.
(12) in [125]). We exploit this connection to link the (revised) G-R value and our target
effective sample size.

For the classical G-R statistics [123, 124, 131], we adopt the following procedure.
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First we calculate the inter- and intra-chain variances

B =
N

M − 1

M∑

j=1

(γ̄.j − γ̄..)2,

W =
1

M

M∑

j=1

s2j , (3.49)

with

γ̄.j =
1

N

N∑

i=1

γij , γ̄.. =
1

M

M∑

j=1

γ̄.j , s
2
j =

1

N − 1

N∑

i=1

(γij − γ̄.j)2 ,

and N ,M being the chain length and number of chains considered respectively. From the
above expression one can see that B represents an estimate of the variance between the
chains whileW is the mean of the variance within individual chains. These two quantities
then can be combined into an estimate of the true underlying target distribution variance

σ̂2 =
N − 1

N
W +

1

N
B. (3.50)

The authors of [123, 131] argue that for a properly dispersed set of chains, the σ̂2 estimate
is typically over-estimating the underlying variance, while the mean of the within-the-
chain variances, W , under-estimates it. Hence, they propose the following quantity as a
measure of chain convergence, which is known as the classical G-R test statistics

R̂C =

√
σ̂2

W
. (3.51)

Specifically, we apply this univariate G-R test to the α parameter (for chains from
Section 3.4.2) and bδ parameter (for chains from Section 3.5.1), since these parameters
typically have the longest correlation lengths and largest R̂C values. The resulting values
are reported in Tab. 3.2, 3.3 and 3.4 as R̂C .

The revised G-R test statistics can be estimated from the following expression

R̂r ≈
√
1 +

M

Ês

≤ Tϵ. (3.52)

The above Eq. (3.52) provides a clear connection between the number of chains M ,
effective sample size Ês and the convergence threshold Tϵ. It is possible to determine
the convergence threshold a-priori and hence the corresponding effective size necessary
for reaching it. Specifically, in this work, we set a target of Ês ≥ 100 for all MCMC
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chains. In practice, we use the n.eff multivariate method of the stable.GR package5

to estimate Ês. The stable.GR package is provided by the authors of [125]. For more
details on how Ês is calculated, we refer readers to Section 5 of [125]. This number
is reported in the last column of Tab. 3.2, 3.3 and 3.4. We note that the convergence
threshold value Tϵ we report represents an ideal case, which corresponds to having the
same number of chains as we do, but with 95% of samples lying within < 10% of the
posterior volume around the posterior mean. Such chains will then have R̂r ∼ Tϵ.

3.11 Appendix E: 1lpt and 2lpt 2nd order bias coef-
ficients

As described in Section 3.2, the 1LPT and 2LPT forward models differ only in the order
of the LPT displacement field. This difference has an impact on the inference as shown
in Fig. 3.8. The goal of this section is to understand whether the observed discrepancy
between the two chains is expected. In order to derive this, we first go back to the general
setup of both of these models.

First, the same order of Lagrangian bias expansion is employed in both, allowing for
the following set of Lagrangian bias operators

OL ∈
{
1,
(
trM (1)

)2
, tr
(
M (1)M (1)

)}
, (3.53)

and the corresponding bias coefficients. Recall that we displace a unit field to obtain the
Eulerian matter density. The transformation of bias coefficients derived in the following
only involves operators at leading order in derivatives, therefore we do not need to
consider ∇2δn−LPT in the following. The relation between Eulerian and Lagrangian
frames is given by [31]

1 + δnLPT
det,Λ (x) =

(
J (n)

)−1 (
1 + δnLPT

det,Λ (q)
)
,

J (n) = det
(
1 + ∂qψ

(n)
)
, (3.54)

with J being the Jacobian of the transformation from Lagrangian to Eulerian coordi-
nates, and n denoting the order up to which the forward model is to be evaluated. Note
that in our field-level forward model, J −1 is computed non-perturbatively, by displac-
ing and depositing pseudo particles within the simulated box. Here, we instead expand
J −1 perturbatively up to second order, to obtain the mapping of bias operators between
the different LPT orders. Specifically, for 1LPT and 2LPT the corresponding inverse

5https://github.com/knudson1/stableGR

https://github.com/knudson1/stableGR
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Jacobians are given by
(
J (1)

)−1
= 1− ∂qiψ(1)

i +
1

2

[(
∂qiψ

(1)
i

)2
+ ∂qiψ

(1)
j ∂qjψ

(1)
i

]
+ o

(
(ψ(1))3

)
,

(
J (2)

)−1
= 1− ∂qiψ(1)

i − ∂qjψ(2)
j +

1

2

[(
∂qiψ

(1)
i

)2
+ ∂qiψ

(1)
j ∂qjψ

(1)
i

]
+ o

(
(ψ(1))3

)
, (3.55)

where we kept only second order terms. We then use the following bias expansion

δdet,Λ(q) = bLδ + bLσ2

(
trM (1)

)2
+ bLtr[M(1)M(1)] tr

(
M (1)M (1)

)
, (3.56)

where we note that bLδ is the coefficient of the uniform field OL = 1. Plugging the results
of Eqs. (3.55)–(3.56) directly into the first line of Eq. (3.54) we obtain

δ1LPT
det,Λ (x) = (bLδ + 1)(1− trM (1)) +

(
bLσ2 +

1

2
(bLδ + 1)

)(
trM (1)

)2

+

(
bLtr[M(1)M(1)] +

1

2
(bLδ + 1)

)
tr
(
M (1)M (1)

)
,

δ2LPTdet,Λ (x) = (bLδ + 1)(1− trM (1)) +

(
bLσ2 +

1

2
(bLδ + 1)− 3

14

)(
trM (1)

)2

+

(
bLtr[M(1)M(1)] +

1

2
(bLδ + 1) +

3

14

)
tr
(
M (1)M (1)

)
,

(3.57)

again keeping only second order terms. In Eq. (3.57) we also used the solution for the
second order displacement field from the equations of motion assuming an Einstein-de
Sitter universe (see [117], as well as Section 2.7 in [55], Section 2.5.2 in [31])

trM (2) = − 3

14

((
trM (1)

)2 − tr
(
M (1)M (1)

))
.

This then produces the following relationship between the 1LPT and 2LPT forward
model bias coefficients

b2LPT
δ = b1LPT

δ = bLδ + 1,

b1LPT
σ2 = b2LPT

σ2 +
3

14

b1LPT
tr[M(1)M(1)] = b2LPT

tr[M(1)M(1)] −
3

14
. (3.58)

We can now compare with the results from the 1LPT and 2LPT inferences on the D2LPT
1

datasets, shown in Fig. 3.8. Taking the mean of the obtained 2LPT posterior for b2LPT
σ2 ≈

0.0236 and b2LPT
tr[M(1)M(1)]

≈ −0.099, leads to b1LPT
σ2 ≈ 0.238 and b1LPT

tr[M(1)M(1)]
≈ −0.31, which

are indicated with dotted lines in Fig. 3.8, which agree within 68− 95% confidence level
with the obtained 1LPT posterior.
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Figure 3.12: Parameter posteriors obtained using the marginalized (Eq. (3.16)) and
unmarginalized likelihoods (Eq. (3.15)) in the α−σϵ plane, both inferred from the D2LPT

1,b

dataset. We show the results at different cutoffs, on the left, Λ = 0.1hMpc−1 and on
the right Λ = 0.14hMpc−1. Forward models considered are 1LPT with unmarginalized
likelihood (green), 1LPT with marginalized likelihood (red), 2LPT with unmarginalized
likelihood (purple) and 2LPT with marginalized likelihood (blue). There is also an
excellent agreement among the two likelihoods, while the marginalized likelihood yields
a smaller correlation length for the α parameter (see Fig. 3.9).

3.12 Appendix F: Marginalized and unmarginalized like-
lihood

In this section, we compare the posteriors obtained with the marginalized likelihood
(Eq. (3.16)), using the priors given in Eq. (3.19), and unmarginalized (Eq. (3.15)) like-
lihood, using priors given in Eq. (3.18), both inferred from the D2LPT

1,b dataset. Results
are the same for the inference done on D2LPT

1,a dataset, but for the sake of clarity, we just
show the inference on D2LPT

1,b .
Results are shown in Fig. 3.12. We also note that inferences on D2LPT

1 and D2LPT
2

datasets from Section 3.5.2 show similar trends. That is, the posteriors obtained with
unmarginalized and marginalized likelihood agree.

As can be seen in Fig. 3.12, the posterior contours are entirely consistent with each
other for both inferences with 1LPT and 2LPT) forward models, and across the different
cutoffs (Λ = 0.1hMpc−1 and Λ = 0.14hMpc−1). However, recall that the marginalized
likelihood leads to a better efficiency in terms of sampling the α parameter, as depicted
in Fig. 3.9 (top panel).
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CHAPTER 4

CONSTRAINING WIMP DARK MATTER USING THE
LOCAL UNIVERSE

The following is a summary of results presented from the following papers [132, 133]
with Deaglan Bartlett, Harry Desmond, Jens Jasche and Guilhem Lavaux as co-authors.
First paper [132] is with me as second author, and the second paper [133] is submitted to
Physical Review D with me as first author.

Abstract

Decaying or annihilating dark matter particles could be detected through gamma-ray
emission from the species they decay or annihilate into. This is usually done by mod-
elling the flux from specific dark matter-rich objects such as the Milky Way halo, Local
Group dwarfs, and nearby groups. However, these objects are expected to have signifi-
cant emission from baryonic processes as well, and the analyses discard gamma-ray data
over most of the sky. Here we construct full-sky templates for gamma-ray flux from the
large-scale structure within ∼200 Mpc by means of a suite of constrained N -body simula-
tions (CSiBORG) produced using the BORG algorithm. Marginalising over uncertainties in
this reconstruction, small-scale structure, and parameters describing astrophysical con-
tributions to the observed gamma-ray sky, we compare to observations from the Fermi
Large Area Telescope to constrain dark matter annihilation cross sections and decay
rates through a Markov Chain Monte Carlo analysis. We rule out the thermal relic cross
section, σv = aℓ (v/c)

2ℓ, for s-wave (ℓ = 0) annihilation for all mχ ≲ 7GeV/c2 at 95%
confidence if the annihilation produces gluons or quarks less massive than the bottom
quark. We infer a contribution to the gamma-ray sky with the same spatial distribution
as dark matter decay at 3.3σ. Although this could be due to dark matter decay via
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these channels with a decay rate Γ ≈ 6 × 10−28 s−1, we find that a power-law spectrum
of index p = −2.75+0.71

−0.46, likely of baryonic origin, is preferred by the data. Further-
more, we also derive constraints for annihilation channels with velocity dependent cross
sections. We are able to obtain constraints on aℓ, for both p-wave (ℓ = 1) and d-wave
(ℓ = 2) channels, which are two and seven orders of magnitude tighter than those ob-
tained from dwarf spheroidals respectively. We find no evidence for p-wave or d-wave
annihilation from dark matter particles with masses in the range mχ = 2− 500GeV/c2.
In particular, for annihilations producing bottom quarks with mχ = 10GeV/c2, we find
a1 < 2.4 × 10−21 cm3s−1 and a2 < 3.0 × 10−18 cm3s−1 at 95% confidence, although we
note that these constraints are much weaker than the corresponding thermal relic cross
sections.

4.1 Introduction

An unambiguous detection of non-gravitational interactions of dark matter continues to
evade us. Astrophysical objects are ideal targets in the search for novel dark matter
physics, since low interaction rates can be compensated by the large quantities of dark
matter, leading to potentially detectable signals. For over a decade, the origin of the
observed excess of gamma rays at the centre of our galaxy – known as the Galactic Cen-
tre Excess (GCE) [134–136] – has been debated, with explanations such as unresolved
point sources or dark matter annihilation motivated by various extensions of the Stan-
dard Model (SM) being proposed, e.g. [137–163]. Moreover, experiments suggest an
anomalous muon magnetic moment, as measured by the “Muon g− 2” experiment [164],
and a mass for the W boson that is higher than expected [165], which further moti-
vates probing physics beyond SM and thus the search for dark matter (DM) candidates.
Detection of such particles could therefore solve some of the fundamental questions of
particle physics and cosmology. Favourable candidates are weakly interacting massive
particles (WIMPs) [57, 166, 167] (see also Section 2.2), including, but not limited to,
the lightest supersymmetric particle in supersymmetric theories. Given the conflicting
explanations of the GCE, and motivated by the search of beyond SM physics, one should
determine if such models are consistent with detections from other sources or across the
full sky.

So far, the majority of work on GCE excess has focused on s-wave annihilation,
where the product of the self-annihilation cross section, σ, and relative velocity, v, is
independent of v. Such models can be strongly constrained by considering the gamma
ray flux from nearby dwarf galaxies [168–170], which are able to rule out the thermal
relic cross section for dark matter particle masses relevant to explain the GCE. However,
not all dark matter annihilation models require σv to be independent of velocity. For
example, for fermionic dark matter annihilation to spin-0 particles, even parity final
states cannot have an s-wave contribution in parity conserving theories [171, 172]. p-
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wave annihilation – where σv is proportional to the square of the relative velocity –
dominates when Standard Model fermion-antifermion pairs are produced from Majorana
fermions in models with minimal flavour violation due to chirality suppression of s-wave
annihilation [173]. If dark matter is instead a real scalar, then d-wave annihilation –
where the fourth power of the relative velocity is relevant – is dominant [174, 175].

In our work [132, 133], instead of focusing on a few nearby or massive objects, the
aim is to search for the signature of DM decay and annihilation across the full sky by
forward-modelling the observed gamma-ray sky, as first suggested in [176]. As proposed
in [177], anisotropies in the cosmic gamma-ray background could be a signature of DM
annihilation or decay. This has previously been studied through the two-point correlation
function, for example [178], which is calibrated with unconstrained N -body simulations
(e.g. [179] use the Millennium-II and Aquarius simulations [180–182]). Instead, we utilise
the CSiBORG suite of constrained N -body simulations [183–186]. The initial conditions
(ICs) for these simulations are chosen to produce final three-dimensional DM density
fields that are consistent with the observed positions of galaxies in the 2M++ galaxy
catalogue. The ICs are inferred using the BORG (see also Section 2.6.1) algorithm [19–
22, 187], a fully Bayesian forward model. We use the particle positions in the simulations
to produce maps of the expected gamma-ray flux from halos down to 4.38× 1011M⊙ in
mass (although we also model smaller substructures), as well as from DM not identified
as belonging to halos.

For our fiducial analyses, the halos are assumed to have Navarro-Frenk-White (NFW)
profiles [188]. For our s-wave analysis [132], we explicitly model unresolved substructure
in a probabilistic manner, since the signal from DM annihilation is sensitive to the peaks
in the density field. On the other hand, for our p- and d-wave fiducial analyses [133], we
don’t marginalize over the substructure contribution given its negligible effect for these
two channels (see for example [189], although note that this conclusion does not hold for
the case of Sommerfeld enhanced annihilation [190, 191]). In contrast to the s-wave case,
for the velocity dependent cross sections, the full-sky analysis has a particular advantage
over local dwarf spheroidal sources, since one would expect a large signal from extra-
galactic halos, where the velocity dispersion should be larger. This is in line with what
has recently been suggested to use extra-galactic halos to search for velocity-dependent
dark matter annihilation signals in gamma ray data [192].

In our s-wave analysis, we are able to rule out the thermal relic cross section at 95%
confidence for annihilations that produce gluons or quarks less massive than the bottom
quark if DM has a mass mχ ≲ 7GeV/c2. We find a contribution to the gamma-ray
sky with the same spatial distribution as expected from DM decay (flux proportional to
DM density) at 3.3σ confidence, with a decay rate Γ ≈ 6× 10−28 s−1 for these channels.
However, a power-law spectrum with an index p = −2.75+0.71

−0.46 provides a better fit to the
data, suggesting a non-DM origin. For s-wave, we are not able to rule out the thermal
relic annihilation cross section at any mass for production of top or bottom quarks; we
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obtain upper bounds that are half the size (i.e. tighter constraints) if we marginalise over
the contribution proportional to the DM density, but we do not include this contribution
in the fiducial analysis. Our constraints on DM decay to leptons are approximately an
order of magnitude less stringent than decay to quarks.

Regarding the p- and d-wave cases, we find no evidence for either type of annihilation
from dark matter particles with masses in the range mχ = 2 − 500GeV/c2, for any
channel. The bounds we obtain, however fail to exclude the thermal relic cross section
for these velocity-dependent annihilation channels. Nonetheless, the derived constraints
are among the tightest to date.

4.1.1 Theoretical background

In this section we elaborate on the calculation of the flux templates for our annihilation
and decay models. First we describe how we treat the s-wave annihilation and decay case
and then immediately after the velocity dependent annihilation cases for p- and d-wave.

Velocity independent case

We start by assuming that DM is made of a single particle, χ, of mass mχ, whose
antiparticle is itself (e.g., Majorana fermions). This particle is assumed to be able to
both decay

χ→ AĀ, (4.1)

and annihilate
χχ→ AĀ, (4.2)

to a standard model particle, A, and its antiparticle, Ā. The annihilation of the produced
particles would lead to gamma-ray emission at some energy Eγ, which one could detect.
If these processes occur via channel i with branching ratio Bri, then the photon flux for
annihilation per unit density squared at redshift z is [193]

dΦann,ℓ=0
γ

dEγ

=
⟨σv⟩
8πm2

χ

∑

i

Bri
dNann

i

dE ′
γ

∣∣∣∣
E′

γ=Eγ(1+z)

, (4.3)

and for decay per unit density

dΦdec
γ

dEγ

=
Γ

4πmχ

∑

i

Bri
dNdec

i

dE ′
γ

∣∣∣∣
E′

γ=Eγ(1+z)

, (4.4)

where ⟨σv⟩ is the thermally averaged cross section, τ = 1/Γ is the lifetime of the particle,
and dN

(.)
i /dEγ is the photon energy distribution for channel i. Note that the photon

distribution function in both cases, dN (.)
i /dE ′

γ, should be evaluated at the redshift of the
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halo. Since we will be using low-redshift halos in this work (z ≲ 0.05) we will neglect
this redshift effect and thus assume that E ′

γ ≈ Eγ. Introducing redshift dependence
would require inserting a redshift dependent optical depth into Eq. (4.10), which, in our
case, will only marginally affect the results (see Section 4.5.2). For simplicity, we assume
that the decays occur via one channel, so the branching ratio, Bri is either 0 or 1. The
superscript ℓ = 0 reminds the reader that this equation holds only for the case of s-wave
annihilation, which assumes velocity independent cross section. The generalization to
a velocity dependent annihilation-channel such as the p- and d-wave, will be presently
shortly.

Now, if χ is not its own antiparticle (e.g., Dirac fermions), the annihilation flux is
half of this value, provided there is no matter-antimatter asymmetry. Since we do not a
priori know which branching ratios to use, in this work we assume that the annihilation
or decay occurs via a single channel; however, our analysis can be trivially extended to
multiple channels.

The above results apply at unit density, we must now take into account the integrated
DM density along the line of sight. By introducing the J factor

dJ ℓ=0

dΩ
=

∫
ρ2DM (µ,Ω) dµ, (4.5)

where µ is a radial line of sight coordinate, and the D factor

dD

dΩ
=

∫
ρDM (µ,Ω) dµ, (4.6)

we arrive at the total photon fluxes per unit solid angle

d2Φann

dEγdΩ
=

dΦann
γ

dEγ

dJ

dΩ
, (4.7)

d2Φdec

dEγdΩ
=

dΦdec
γ

dEγ

dD

dΩ
, (4.8)

where we note that we have assumed that the cosmological redshift variation across
the source is negligible, so we can factor out Eqs. (4.3) and (4.4) from the line of sight
integral.

Velocity dependent case

We also consider dark matter annihilation with a cross section σ which depends on
the relative velocity, v, between annihilating dark matter particles. We can therefore
generalize and consider the following relation

σv = aℓSℓ

(v
c

)
, (4.9)
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where aℓ is a constant and Sℓ can be an arbitrary function of v/c. At observed energy
Eγ, the differential photon flux, dΦann,ℓ

γ /dEγ, is

dΦann,ℓ
γ

dEγ

=
aℓ

8πm2
χ

J ℓ
∑

i

Bri
dNann

i

dEγ

(4.10)

where we sum over annihilation channels with branching ratios Bri. This equation is
valid if dark matter is entirely comprised of a single particle whose antiparticle is itself.
We also generalized the J factor expression into

J ℓ
µ,p =

∫

µ,p

dΩdµ d3v1 d
3v2 Sℓ

( |v1 − v2|
c

)
× f (r(µ),v1) f (r(µ),v2) , (4.11)

where f (r(µ),v) is the distribution function of DM particles, which we integrate over
the velocities of the two particles, v1 and v2, and along the line of sight coordinate, µ.
Note that taking ℓ = 0 in Eq. (4.10) and Eq. (4.11) one will obtain the exact expressions
from Eq. (4.3) and Eq. (4.5) respectively. Reason being that simply the integration over
d3v1 and d3v2 in Eq. (4.11) becomes trivial and produces ∼ ρ2 term as written down in
Eq. (4.5). Therefore, the thermal relic cross section can be identified with aℓ ≡ ⟨σv⟩. In
the following, we will use these two interchangeably. The velocity dependent part of the
cross section is defined to be

Sℓ(x) = x2ℓ, (4.12)

where ℓ = 1 (p-wave) or ℓ = 2 (d-wave). This trivially reduces to unity for the s-wave
case (ℓ = 0).

The subscript p in Eq. (4.11) denotes the HEALPix 1 pixel area. Given that we
always calculate both the J and D factors on a HEALPix grid, we also integrate across
the pixel area p. Therefore, for consistency we can also integrate the original Eq. (4.6)
for the D factor across the HEALPix pixel and obtain

Dp,µ =

∫

µ,p

dΩdµρDM (r(µ),Ω) , (4.13)

In both the velocity independent (ℓ = 0) and velocity dependent (ℓ = 1, 2) J factor
maps, we generate the templates on a higher resolution HEALPix grid than that on
which we perform the inference (nside = 2048 instead of nside = 256) and subsequently
degrade them. Because of the nonlinear dependence of J on ρ, this allows for a more
faithful representation of the density field than if J was initially calculated at nside =
256, which is especially important for the regions of the sky corresponding to halos
produced in CSiBORG . We concluded the HEALPix resolution of nside = 2048 was
sufficient by comparing the total J factor to those with increasing HEALPix resolution
(nside = 4096, 8192) since the change in total J factor was at the subpercent level with
increasing nside.

1http://healpix.sf.net

http://healpix.sf.net
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4.2 Methods

In this section we detail how we construct the full-sky templates for DM annihilation and
decay for all channels (s-,p- and d-wave), and how these are compared to the gamma-
ray data to constrain the annihilation cross section and decay rate. In Section 4.2.1 we
describe the constrained simulations used to generate these templates and in Section 4.2.3
we describe how the J and D factors are computed from the DM particles in these
simulations. These templates are combined with those from Section 4.2.5 that describe
non-DM contributions to the gamma-ray sky, and we compare these to the data using
the likelihood model in Section 4.2.6.

4.2.1 Bayesian large-scale structure inference

In this work we study the expected gamma ray flux from dark matter annihilation and
decay in extragalactic halos. To determine the masses and locations of these halos, we
use the CSiBORG suite of 101 dark matter-only constrained simulations [183–185]. The
initial conditions of these simulations produce present-day density fields which match the
observed number densities of galaxies in the 2M++ galaxy compilation [23, 187] and are
inferred using the BORG algorithm (see [19–22, 187]). This algorithm produces a Markov
Chain of plausible initial conditions via the application of a Bayesian forward model and
marginalises over galaxy bias parameters. The initial conditions are constrained in a
box of length 677.7h−1Mpc with 2563 voxels. For each CSiBORG simulation these initial
conditions are augmented with white noise to a resolution of 20483 within 155h−1Mpc
of the Milky Way (giving a mass resolution of 4.4 × 109 M⊙) and run to z = 0 using
RAMSES [194]. The watershed halofinder PHEW [195] is applied on-the-fly to the dark
matter particles with the standard threshold of 200ρc. We do not consider sub-halos and
the minimum halo mass used (M200m) is 4.4×1011M⊙. The resulting halo catalogues are
publicly available at [186].

4.2.2 Smoothed density field contribution

The halo finding allows us to split CSiBORG particles into two types: those that belong
to halos and those that do not. Since the J factor depends purely on the square of the
density along the line of sight in case of s-wave, it is more sensitive to the small-scale
matter distribution, and thus we must treat halos separately from the background density
field in order to account for structures below the resolution of the CSiBORG simulations.
This will not be an issue for the case of velocity dependent annihilation given the low
velocity dispersion present inside the substructures. The D factor is less sensitive to
these small scales, and thus we treat all particles equally in this case. D is computed
using the procedure outlined in Section 4.2.2 below, where we use all particles. For
the s-wave J factor we compute the above integral from Eq. (4.5), but only considering
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nonhalo particles, and add this to the contribution from halos, which are treated as in
Section 4.2.3. We plot the resulting ensemble mean J and D factor maps in Fig. 4.1.

For the case of velocity independent cross section and decay we also wish to determine
the density of DM particles that do not belong to a halo on a regular Cartesian grid
with Ngrid = 1024 grid points per side. For the velocity dependent case, the velocity
dispersion is not expected to be very high outside of formed halos and therefore this step
is neglected.

In order to determine the DM density outside of halos, we adopt a procedure based
on smooth particle hydrodynamics (SPH) [196] as described in [197] and outlined below.
Using the SPH algorithm over, e.g., a cloud-in-cell (CIC) approach allows us to better
capture the peaks of the matter density field, since the SPH kernel will adapt to the local
density of matter, in contrast to the CIC approach which has a fixed kernel corresponding
to a trilinear interpolation scheme. We compare the results of using a SPH kernel to a
CIC algorithm in Section VI B.1 in [132].

First, we determine the number of particles, Np, within the cell corresponding to each
grid point (i, j, k). We then define

NX = max (Np, NSPH) , (4.14)

where NSPH = 32. The choice for this number of neighbours is partly motivated by the
typical number of edges linking a node to its neighbours in a Delaunay tesselation. That
number is approximately 16 for a Euclidean three-dimensional vector space [24, 198]. We
pick a value twice as big as we intend the filter to have a larger reach than the first layer
of neighbours. We then find the mass associated with this grid point by considering the
nearest NX particles to be

m̃ijk =
1

R3
ijk

NX−1∑

l=1

mlWlS
(

dl
Rijk

)
, (4.15)

where Rijk is half the distance to the farthest of the NX particles from the grid point, ml

is the mass of particle l, which is at a distance dl from the grid point, Wl is the weight
for particle l,

Wl =

(∑

ijk

1

R3
ijk

S
(

dl
Rijk

))−1

, (4.16)

and the interpolating function, S, is chosen to be

S (x) =





1− 3
2
x+ 3

4
x3, 0 ≤ x < 1

1
4
(2− x)3, 1 ≤ x < 2

0, otherwise.
(4.17)
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Figure 4.1: Mollweide projection in galactic coordinates of the ensemble mean s-wave
(ℓ = 0) J factor and the D factor over the CSiBORG realisations, alongside the brightest
∼ 6000 galaxies from the 2M++ dataset (red points). One can see that the galaxy
number density is higher in the regions of large J and D factor, i.e. at the peaks of the
underlying DM distribution. We overplot the mask on completeness used in the BORG
inference of the initial conditions [23, 187] (faded region near the galactic plane masked
out).

If the spacing between grid points is ∆r, then the density assigned to each site is

ρ̃ijk =
m̃ijk

∆r3
. (4.18)

To compute the J and D factors, we compute Eqs. (4.5) and (4.6), respectively,
along the line of sight corresponding to each HEALPix pixel at the chosen resolution.
We integrate up to the edge of the simulated volume and perform trilinear interpolation
of the density field onto the line of sight. The convergence of this approach was checked
by increasing the resolution of the SPH kernel. The total assigned mass to the grid was
consistent among all resolutions we tried (Ngrid = 256, 512, 1024); therefore we opted for
Ngrid = 1024 for our final J and D factor calculations. Once more, it should be kept in
mind that the nonhalo particle contribution to the J factor templates is only added in
case of s-wave annihilation, while the p- and d-wave J factor calculation doesn’t contain
this contribution and the specific calculation is described in the following section. In case
of the D factor however, we always include the contribution from the smoothed density
field.

4.2.3 Computing the s-wave J factor

To include the contribution from particles inside halos, we use a custom extension of the
clumpy package2 [199–201]. In this section we review how the J factor is calculated in
this package, as well as our assumptions for the halo density profiles.

2https://clumpy.gitlab.io/CLUMPY

https://clumpy.gitlab.io/CLUMPY
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We assume that all halos are spherically symmetric and that the total density profile,
ρtot, can be described by a simple analytic form. For our fiducial case, we consider the
three-parameter family of profiles [202, 203]

ραβγ (r) =
2

β−γ
α ρs

(r/rs)
γ (1 + (r/rs)

α)
β−γ
α

, (4.19)

where rs is the scale radius, ρs is the density at rs, and α describes the sharpness of the
transition between the inner (γ) and outer (β) logarithmic slopes. For a NFW profile,
α = 1, β = 3, γ = 1. In our paper [132] we also considered the Einasto profile [182, 204],
in order to test for systematics with regard to the choice of the profile. We refer the
reader to the original paper for more details.

For the halo profile we calculate the parameters defining the profile itself from the
total halo mass and corresponding concentration. The mass-concentration relation we
use is shown in Eq. (4.29). Given that all of our halos are at very low redshift (z ≲ 0.05)
and almost all have masses within M ∈ [1012, 1015]M⊙, the parametric relation is quite
accurate. We use the colossus package throughout [205]. Baryons induce a potentially
larger effect, which is, however, harder to model reliably. For more discuss this further
in Section VI B.2 of [132]. We found that the constraints can be up to 80% tighter than
for the corresponding NFW profile, given the flatness of the Einasto profiles towards the
halo centre.

One would also expect that a halo contains a large number of “clumps” or subhalos,
such that the true smooth component of the density profile is [206]

ρsm (r) = ρtot (r)− ⟨ρsubs (r)⟩, (4.20)

where ⟨ρsubs(r)⟩ gives the average contribution from the substructure. If clump i has
density profile ρicl, then it contributes to the total J factor value within a HEALPix
pixel, p, as

Jp =

∫

p,∆halo

(
ρsm(µ,Ω) +

∑

i

ρicl(µ,Ω)

)2

dµdΩ

= Jsm,p + Jsubs,p + Jcross,p, (4.21)

where

Jsm,p =

∫

p,∆halo

ρ2sm(µ,Ω)dµdΩ, (4.22)

Jsubs,p =

∫

p,∆halo

(∑

i

ρicl(µ,Ω)

)2

dµdΩ, (4.23)

Jcross,p = 2

∫

p,∆halo

ρsm(µ,Ω)

(∑

i

ρicl(µ,Ω)

)
dµdΩ, (4.24)
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and ∆halo represents the intersection of the halo volume with the line of sight cone
spanned by the pixel p. Our task is therefore to determine the distribution of clumps for
a given halo and to calculate these integrals. Here, we readily use the solution provided
by the clumpy package and describe it briefly below.

Assuming that a given halo has Ntot independent clumps, we factorise the distribution
for the number of clumps with some mass M , concentration c, in some region dV = d3r
as [200, 207]

dN

dV dMdc
= Ntot

dPV (r)

dV

dPM (M)

dM

dPc (M, c)

dc
. (4.25)

Since the clumps form before the host halos within ΛCDM, their spatial distribution will
follow the host DM density profile. This has been shown to be a good assumption in
simulations of galaxy-sized halos [182, 208]. Given the self-similar nature of collapse of
ΛCDM halos, we extrapolate this conclusion to halos from our CSiBORG ensemble. We
assume that the distribution of masses is a power law

dPM

dM
∝M−αM , (4.26)

in the range M ∈ [10−6M⊙, 10−2Mh] for a halo of mass Mh, where αM = 1.9 (see
Section 2.3 of [209] and references therein). Again, the values are motivated by numerical
simulations of Milky Way sized halos, which we extrapolate to bigger halos present in
our forward model.

Besides modelling the uncertainty due to the spatial and mass distribution of sub-
structure, the clumpy package also allows us to include the uncertainty in the mass-
concentration relation. For the substructure component, we consider two cases for the
concentration distribution. In the first case, we assume that the concentration of all
substructure halos is a deterministic function of the mass

dPc

dc
= δ (c− c̄ (M)) , (4.27)

where we define δ as the Dirac-delta distribution. The second possibility that we follow
is that the concentration is log normally distributed about this mean

dPc

dc
=

1√
2πcσc (M)

exp

(
−(log c− log (c̄ (M)))2

2σ2
c

)
. (4.28)

Motivated by [179], the substructure halos are assumed to have the following mass-
concentration relation [210]

c̄ (M) =
5∑

j=0

Cj

[
ln

(
M

h−1M⊙

)]j
, (4.29)
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where Cj = (37.5153,−1.5093, 1.636 × 10−2, 3.66 × 10−4,−2.8927 × 10−5, 5.32 × 10−7),
with σc = 0.0; i.e., we assume all substructure halos of the same mass have the same
concentration. In Section VI B.3 of [132] we also considered a nonzero value σc = 0.2
in Eq. (4.28), as motivated by [211–213] for a comparison. We found that the scatter in
final value for the cross section constraint is of the order of 1.4%.

Given that we do not resolve substructures of all the halos present with our simulation,
we assume the resulting distribution for Jsm and Jsubs to be a Gaussian. Therefore, we
only need to find the mean and variance of these contributions in each HEALPix pixel.
We define the 1-clump luminosity to be

L (M, c) ≡
∫

Vsubhalo

ρ2cl (r;M, c) d3r, (4.30)

and its moments as

⟨Ln⟩ ≡
∫ M2

M1

dPM

dM

∫
dPc

dc
Lndc dM, (4.31)

for a given mass range of clumps [M1,M2], while the mean contribution of Jsubs,p from
this volume along the line of sight is

⟨Jsubs,p⟩ = Ntot

∫

p,Vµ

dPV

dV
µ−2dV ⟨L⟩ , (4.32)

withNtot representing the total number of clumps within the selected mass range [M1,M2].
Note that we assume that the clumps are nonoverlapping, such that the cross terms in
Eq. (4.23) can be neglected. For more details on how these quantities are defined we
refer the reader to the clumpy related publications [199–201].

Note that since we are assuming unresolved substructures for our CSiBORG extra-
galactic halos, we are integrating over the total subhalo volume Vsubhalo for the subhalo
luminosity. Furthermore, since there can be many subhalos present within the line of
sight determined by the given HEALPix pixel we are also accounting for the span of the
host halo along this line of sight through Vµ ≡ [µmin, µmax], with µmin and µmax being the
closest and farthest points of the host halo along this line of sight. Since these integrals
do not have a closed form for general DM profiles, we evaluate all numerically.

Given that the mean of some power of the distance from the observer along the line
of sight, µ, to a clump which falls inside the HEALPix pixel p is

〈
µn
p

〉
=

∫

p,Vµ

µn+2dPV

dV
dµ dΩ, (4.33)

we can write the variance on Jsubs as

σ2
Jsubs,p

=
〈
L2
〉 〈
µ−4
p

〉
− ⟨L⟩2

〈
µ−2
p

〉2
, (4.34)
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Figure 4.2: (a) The s-wave (ℓ = 0) J factor of a typical NFW halo within CSiBORG
(Mh ≈ 5× 1013M⊙) and (b) the corresponding relative fluctuations in the J factor due
to the substructure contribution. The quantities ⟨J⟩ and std(J) are calculated according
to Eqs. (4.39) and (4.40) respectively. As can be seen, the relative size of fluctuations
in the J factor grows toward the outskirts. Qualitatively similar features are observed
if we assume an Einasto profile. Note that here we placed the halo at the centre of the
HEALPix grid for numerical convenience.

since L and µ are independent. For the cross term, Jcross,p, we use that its mean is

⟨Jcross,p⟩ = 2

∫

p,Vµ

ρsm ⟨ρsubs⟩ dµ dΩ, (4.35)

while its variance can be computed as

σ2
Jcross,p = 4

∫

p,Vµ

ρ2sm(µ,Ω)σ
2
subs(µ,Ω)dµ dΩ, (4.36)

with
σ2
subs,p ≡ σ2

subs(µ,Ω) = ⟨ρ2subs(µ,Ω)⟩ − ⟨ρsubs(µ,Ω)⟩2, (4.37)

⟨ρsubs(µ,∆Ω)⟩ =
∫

∆Ω,Vµ

dPV

dV

∫

VM

dPM

dM

∫

Vc(M)

dPc

dc

× ρsubs(µ,Ω;M, c(M)) dµdΩdMdc,

(4.38)

with VM and Vc(M) representing the mass and corresponding concentration ranges for
the subhalo distribution respectively.

We decide to include only σJsubs,p as it is the dominant source of uncertainty. This can
intuitively be understood from the Eq. (4.36). We note that the integrand is negligible
both in the outskirts of the host halo, since ρsm ∼ 0 and σ2

subs remains finite, and in
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the very centre of the host halo, since σsubs,p ∼ 0. Therefore, Jcross,p contributes only
at a very limited range of scales. Furthermore, for our halos, there is a clear hierarchy
between the cross and subs term Jcross,p ≲ 0.01 − 0.1Jsubs,p; therefore, we focus only on
the σJsubs,p as the dominant source of uncertainty of the J factor due to substructure.

We hence write that the distribution followed by the J factor for a given halo in a
given pixel is given by a Gaussian with mean

⟨Jp⟩ = Jsm,p + ⟨Jsubs,p⟩+ ⟨Jcross,p⟩ , (4.39)

and variance

σ2
p = σ2

Jsubs,p
+ σ2

Jcross,p ≈ σ2
Jsubs,p

. (4.40)

We calculate these quantities for all CSiBORG realisations. To distinguish between these,
we introduce a second index, j, to label the simulation, i.e. ⟨Jpj⟩ is ⟨Jp⟩ for CSiBORG
simulation j, and likewise σpj is σp for the same simulation.

In Fig. 4.2, we show the result of the model for a typical halo within CSiBORG with
a mass of Mh ≈ 5 × 1013M⊙. We see that the effects from the term in σ2

Jsubs
cannot be

neglected, especially in the outskirts of the halo. In the very centre, where the structure
of the halo is dominated by the smooth component, the fluctuations in the J factor due
to the substructure are negligible, amounting to only few percent, while in the outer
parts these fluctuations become more important. This is an expected result given that
the boost in J factor due to substructure becomes more important in the outer edges,
where the smooth component, Jsm,p, is subdominant with respect to the substructure J
factor, Jsubs,p. This behaviour is identical for an Einasto profile.

Besides this, we also include the contributions of sub-subclumps to the J factor of ha-
los, using one additional level of substructure, which is the default setting of the clumpy
code. Because of the increased computational cost, we considered a two-level substruc-
ture contribution for our halos for only one CSiBORG realisation. Including additional
substructure levels will result in an overall change in the J factor of less than ∼ 5%
[200], and ignoring such levels will make our constraints on ⟨σv⟩ conservative since this
will systematically underestimate the J factor.

In conclusion, to obtain the total all-sky J factor, we combine the line-of-sight cal-
culation for the density field obtained from particles outside of halos detected within
CSiBORG realisations with the component coming from the halo particles of the CSiBORG
by treating the halos as presented in this section, utilising the clumpy code. This final
template is used in the inference pipeline. We discussed the numerical convergence of
these calculations in Section VI B.1 of [132].
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4.2.4 Computing the p- and d-wave J factor

For p-wave annihilation, the J factor can be re-written as

J (ℓ=1)
µ,p = 2

∫

µ,p

dΩdµρ2 (r(µ))

〈
v2

c2

〉
(r(µ))

=
2

c2

∫

µ,p

dΩdµρ2 (r(µ))
(
σ2
r(r(µ)) + 2σ2

θ(r(µ))
)
,

(4.41)

where ρ (r(µ)) is the dark matter density at the position µ along the line of sight and
σr and σθ are the corresponding radial and tangential velocity dispersion, respectively.
We keep the explicit dependence on the line of sight position in order to emphasize that
the J factor needs to be evaluated with respect to the observer. However, since the
total J factor within a pixel is a scalar quantity, one can also first evaluate it within the
corresponding volume with respect to the halo centre and then make the appropriate
projection. This is precisely how the clumpy package – which we utilise here – works
(see [132, 199–201]). Now, to obtain the dispersion for a given halo, we assume spherical
symmetry, and therefore must solve the Jeans equation

1

ρ

d

dr

(
ρσ2

r

)
+ 2β

σ2
r

r
= −dΦ

dr
, (4.42)

where we introduce an anisotropy parameter

β (r) = 1− σ2
θ (r)

σ2
r (r)

, (4.43)

and Φ is the gravitational potential of the halo.
We assume that all our halos have Navarro-Frenk-White (NFW) [188] density profiles,

taking α = β = γ = 1 in Eq. (4.19)

ρ (r) =
ρs

(r/rs) (1 + r/rs)
2 . (4.44)

Here, we also use the mean mass-concentration relation of [210, 214] and assume zero
scatter in this relation. Since the J factor traces the square of the density, one may
expect that subhalos or clumps may provide a significant contribution to the p- or d-wave
J factor and should also be included. Although this is true for s-wave annihilation, the
small velocity dispersion of these clumps means that the overall signal is dominated by the
smooth component and we therefore ignore unresolved substructure. This approximation
has been validated by explicitly calculating the p- and d-wave J factor for halos from
hydrodynamical simulations [189], although we note that this conclusion does not hold
for the case of Sommerfeld enhanced annihilation (see for example [190, 191]). We do
not consider this case here and leave it for future work.
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Defining the dimensionless radial coordinate s ≡ r/rvir, one finds that the radial
velocity dispersion for circular orbits is (see Eq. (14) in [215])

σ2
r

V 2
vir

(s)
β=0
=

c2s (1 + cs)2

2 (ln (1 + c)− c/ (1 + c))

[
π2 + 6Li2 (−cs)

− ln (cs) +

(
1 +

1

c2s2
− 4

cs
− 2

1 + cs

)
× ln (1 + cs)

+3 ln2 (1 + cs)− 1

cs
− 6

1 + cs
− 1

(1 + cs)2

]
,

(4.45)

where Vvir is the virial velocity, c the halo concentration and Li2 is the dilogarithm
function. Similarly, for the extreme cases of a constant anisotropy parameter β = 0.5
and β = 1.0 one finds (see Eq. (15) and (16) from [215])

σ2
r

V 2
vir

(s)
β=0.5
=

c (1 + cs)2

(ln (1 + c)− c/ (1 + c))

[
−π

2

3
− 2 Li2(−cs)

+
2

1 + cs
+

ln(1 + cs)

cs
+

ln(1 + cs)

1 + cs

− ln2(1 + cs)− 1

2(1 + cs)2

]
,

σ2
r

V 2
vir

(s)
β=1
=

(1 + cs)2

s (ln (1 + c)− c/ (1 + c))

[
π2

6
+ Li2(−cs)

− 1

1 + cs
− ln(1 + cs)

1 + cs
+

ln2(1 + cs)

2

]
.

(4.46)

In Fig. 4.3 we show how these different velocity dispersion profiles affect the angular
dependence of the normalised p-wave J factor (labelled as J̃ (ℓ=1)) for a halo of mass
M = 1.2 × 1015M⊙ (one of the most massive halos in CSiBORG simulation 9844) at a
distance of ∼ 100Mpc from the observer. The quantity J̃ we calculate as

J̃ ℓ(θ) =
J ℓ(θ)∫
dΩJ ℓ(θ)

, (4.47)

where θ is the angular distance from the halo centre as seen on the sky. We perform
this calculation from close to the halo centre, θ ∼ 0.01◦, all the way up to the two
times the virial radius of the halo. Similar results for the case of the Milky Way halo
(modelled as a NFW profile) were obtained through the Eddington inversion method in
[216]. We show the results for p-wave with different values of the anisotropy parameter
β (Eqs. (4.45) and (4.46)) and d-wave calculations. The β = 0.5 (dashed) and β = 1.0
(dotted-dashed) cases are more strongly peaked at the centre than the corresponding
β = 0 case, reflecting the behaviour of the velocity dispersion profiles (see also Fig. 1
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in [215]). Furthermore, for β = 1.0, J̃ diverges at the centre and hence needs to be
regularised (see Eq. (4.75)). The d-wave J̃ shows qualitatively similar behaviour as the
corresponding p-wave case (thick line). For more details on the d-wave calculation, see
Eq. (4.48) and discussion below it as well as Section 4.7.

It should be noted that, for a more realistic scenario, the anisotropy parameter should
be taken as a radially varying function (see [217–219]). We do not consider these mod-
els here, given that the three extreme scenarios for the anisotropy parameter we pick
should bracket reality. In our fiducial analysis we choose β = 0, however, and show in
Section 4.5.1 that this is a conservative choice. The corresponding J factor calculation
then simply consists of substituting Eq. (4.45) into Eq. (4.41), noting that in this case
σθ = σr, and integrating the final expression for all our halos. We do this numerically
using the clumpy package at a HEALPix resolution of nside = 2048, which is then
subsequently degraded to the coarser resolution (nside = 256) at which we perform the
inference. This allows a more faithful calculation of the J factor than performing the
calculation at nside = 256, since the dependence of J on ρ is non-linear.

For d-wave annihilation the corresponding expression for the J factor takes the form
(see also [220])

J (ℓ=2)
µ,p =

∫

µ,p

dΩdµρ2(r)

(
2

〈
v4

c4

〉
(r) +

10

3

〈
v2

c2

〉2

(r)

)
. (4.48)

We see that the second term appearing can be computed from a power of the velocity
dispersion (as in the p-wave case; see Eq. (4.41)), but the first term requires the evaluation
of the fourth moment of the velocity distribution. In general, this would require for
solving the Boltzmann hierarchy up to the fourth moment. It will not be possible to
do so, however, since this system of equations is not closed for a general self-gravitating
stellar system. In order to solve the Jeans system of differential equations, one must
impose additional constraints. This can be done by requiring the stellar system has
certain symmetries. One of the possibilities is to assume an ergodic distribution function
(β = 0, see Section 4 - Box 4.3 of [221]). This then allows to write down the following
equation, relating ⟨v2r⟩ and ⟨v4r⟩

d

dr

(
ρ
〈
v4r
〉) β=0

= −3ρ
〈
v2r
〉 dΦ
dr
, (4.49)

where by vr we have denoted the projection of the velocity to the radial direction (fixing
the coordinate system to the halo centre of mass). In addition to calculating ⟨v4r⟩, we
need to also calculate the other projected moments as well as the cross-terms in order
to obtain the total fourth moment of the velocity, as is necessary for evaluating the
Eq. (4.48). This is straightforward, due to the ergodicity of the distribution function, as
shown in Section 4.7. The final expression for the fourth velocity moment is then given
by 〈

v4
〉 β=0

= 5
〈
v4r
〉
. (4.50)
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Figure 4.3: The angular distribution of the normalised J factor, J̃ (Eq. 4.47), as a
function of angle on the sky from the halo centre, θ, for p-wave (ℓ = 1) and d-wave
(ℓ = 2) annihilation channels. The results are shown relative to the s-wave (ℓ = 0) result
and for different choices of anisotropy parameter, β. For this example, we used one of
the most massive halos from the CSiBORG 9844 realisation with M = 1.2× 1015M⊙ at a
distance of 96Mpc from the observer.

This, and the solution for ⟨v2⟩ from Eq. (4.45), are then enough to evaluate the total J
factor for d-wave annihilation. See Section 4.7 for more details.

4.2.5 Gamma ray data

We compare the dark matter annihilation templates to the gamma ray observations from
Fermi Large Area Telescope between mission weeks 9 and 634. We select photons in the
upper quartile of angular resolution (PS3) and event class SOURCEVETO in the energy
range 500MeV − 50GeV. The maximum zenith angle is chosen to be 90◦. These are
binned spatially onto HEALPix [222, 223] maps with resolution nside = 256 and into
9 logarithmically spaced energy bins. The processing of the photon files is performed
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using the Fermi Tools3 and FermiPy [224]. We also use this software to convolve our
templates with the Fermi point spread function and to obtain the exposure maps. To
reduce the impact of galactic emission and the GCE, we mask the region with galactic
latitude |λ| < 30◦.

Although some of the photons detected by Fermi could have been produced by dark
matter annihilation, there are other sources which will also contribute, and thus it is
important to incorporate these in the analysis. We therefore consider three contributions:
point sources (psc), an isotropic background (iso) and the Milky Way (gal) (see [132] for
more details). Each contribution is modelled with a fixed spatial template for energy
bin i, {T t

i (r̂) : t ∈ {iso, gal, psc}}, where we assign a different normalisation, At
i, for

each energy bin and template. We jointly infer these parameters with the amplitude
of the J or D factor template. In case of p- or d-wave we only consider the J factor
template contribution. The point source template is comprised of all extended and
point sources in the Large Area Telescope 12-year Source Catalog (4FGL-DR3)4 and
the galactic component is modelled using the templates described in [225]. The scalings
{At

i} are defined such that they all equal unity if the Fermi data is perfectly described by
these templates, however jointly inferring these parameters will allow us to capture any
imperfections in the spectral modelling. We thus require an initial guess for the isotropic
component’s spectral shape, for which we use the Fermi Isotropic Spectral Template5.
All templates are convolved with the Fermi point spread function using the Fermi Tools.

4.2.6 Likelihood model

Instead of directly constraining the DM annihilation or decay parameters, we split the
inference into two parts. First, we assume that there is a contribution to the gamma-ray
sky which is proportional to the J or D factor, i.e. for a given CSiBORG simulation j, the
flux in energy bin i and pixel p, Φipj, has terms

Φipj ⊃
(
AJ

i

Jpj
J0

+ AD
i

Dpj

D0

)
Ap∆Ei, (4.51)

where ∆Ei is the width of the bin, Ap is the area of the pixel in steradians and J0 and
D0 set the units. We choose J0 = 1013GeV2 cm−5 and D0 = 1013GeV cm−2. We fit for
the total flux of such a contribution in each energy bin to obtain a spectrum. In the
second half of the inference, we fit this spectrum to a series of models (including DM
annihilation and decay) in an attempt to determine the origin of such a signal.

This method has two main advantages. First, we can consider each energy bin and
CSiBORG simulation separately in the first half of the inference. Although this involves

3https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
4https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermilpsc.html
5https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html

https://fermi.gsfc.nasa.gov/ssc/data/analysis/software/
https://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermilpsc.html
https://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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initially computing 909 Markov Chain Monte Carlo (MCMC) chains (one for each energy
bin and for each CSiBORG simulation), since the problem is embarrassingly parallelisable
and because we only need to infer four or five parameters for each chain (AJ

i and/or AD
i ,

Aiso
i , Agal

i , Apsc
i ) compared to ∼ 30 if we combined the energy bins, we find that this

approach is computationally more efficient. Second, by remaining agnostic to the origin
of AJ

i or AD
i until the second step, we are able to more easily determine which energy

bins drive our constraints. Hence, it becomes simpler to compare different models since
we do not need to rerun the map-level inference every time that we wish to change the
DM particle mass or decay channel (which is more computationally expensive).

Inferring the spectrum

We assume that photon counts in energy bin i from the J and D factor contributions,
as well as each of the contributions described in Section 4.2.5 is Poisson distributed.
The variation of the mean of the latter with sky position, r̂, and energy is described by
the known templates {T t

i (r̂)}, where t labels the templates. For pixel p and CSiBORG
realisation j, we then define

J ℓ
ipj ≡

J ℓ
pj

J0
∆Ei, Dipj ≡

Dpj

D0

∆Ei, T t
ip ≡

∫

p

T t
i (r̂) dΩ, (4.52)

such that the mean number counts in pixel p and energy bin i is predicted to be

λℓipj = Fip ×
(
AJℓ

i J
ℓ
ipj + AD

i Dipjδ
ℓ,0
D +

∑

t

At
iT

t
ip

)
, (4.53)

and we have multiplied our templates by the Fermi exposure, Fip, which describes the
angular variation of the sensitivity of Fermi. The index ℓ distinguishes between the s-
(ℓ = 0), p- (ℓ = 1) and d-wave (ℓ = 2) cases. We emphasize that theD factor contribution
is only accounted for when ℓ = 0. The calculation of Eq. (4.53) is performed using the
Fermi Tools, where we also convolve all templates with the point spread function. The
likelihood of observing nip counts in pixel p and energy bin i given the mean λipj is

L
(
nip|λℓipj

)
=

(λℓipj)
nip exp

(
−λℓipj

)

nip!
. (4.54)

For the case of p- and d-wave anihiliation analysis, this will be our fiducial likelihood.
However, as discussed in Section 4.2.3, we do not know the exact DM distribution for a
given CSiBORG simulation due to the unresolved substructure in halos. This is especially
relevant for the case of s-wave J factor template. We did not include this uncertainty in
Eq. (4.54). The uncertainty on the substructure contribution to the s-wave J factor is
modelled as a truncated Gaussian. This choice allows us to marginalise analytically over
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the substructure uncertainty. Therefore, for our fiducial s-wave analysis our likelihood
can be obtained as

L
(
λ
(ℓ=0)
ipj |AJ(ℓ=0)

i , AD
i , {At

i}, j
)
=

1

σipj

√
2

π

(
1 + erf

(
ξipj

σipj
√
2

))−1

× exp


−

(
λ
(ℓ=0)
ipj − ξipj

)2

2σ2
ipj


 , (4.55)

for λ(ℓ=0)
ipj > 0, and zero otherwise, where

ξipj = Fip ×
(
AJ(ℓ=0)

i ⟨Jipj⟩+ AD
i ⟨Dipj⟩+

∑

t

At
iT

t
ip

)
, (4.56)

and
σipj = AJ(ℓ=0)

i

σpj
J0

∆Ei. (4.57)

Therefore, the likelihood for observing nip counts in pixel p and energy bin i for the case
of s-wave templates is

L
(
nip|AJ(ℓ=0)

i , AD
i , {At

i}, j
)
=

∫
Lipj

(
nip|λ(ℓ=0)

ipj

)
L
(
λ
(ℓ=0)
ipj |AJ

i , A
D
i , {At

i}, j
)
dλ

(ℓ=0)
ipj

=

√
2n

π

σ
nip

ipj

nip!
exp

(
− ξ2ipj
2σ2

ipj

)(
1 + erf

(
ξipj

σipj
√
2

))−1

×
(
Γ

(
nip + 1

2

)
1F1

(
nip + 1

2
;
1

2
;

(
ξipj − σ2

ipj

)2

2σ2
ipj

)

+
√
2

(
ξipj − σ2

ipj

)

σipj
Γ
(nip

2
+ 1
)

×1 F1

(
nip + 2

2
;
3

2
;

(
ξipj − σ2

ipj

)2

2σ2
ipj

))
,

(4.58)

where 1F1 is the confluent hypergeometric function of the first kind. We described how
we implement this likelihood numerically in Appendix A in [132].

Assuming that each pixel is independent, the likelihood for the observed data in
energy bin i, Di, is

L
(
Di|AJℓ

i , A
D
i , {At

i}, j
)
=
∏

p

L
(
nip|AJℓ

i , A
D
i , {At

i}, j
)
. (4.59)
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Using the priors, P , given in Table 4.1, we apply Bayes’ identity

L
(
AJℓ

i , A
D
i , {At

i}, j|Di

)

=
L
(
Di|AJℓ

i , A
D
i , {At

i}, j
)
P
(
AJℓ

i

)
P
(
AD

i

)
P ({At

i})P (j)

Z (Di)
, (4.60)

where

P
(
{At

i}
)
≡
∏

t

P
(
At

i

)
, (4.61)

to obtain the posterior, P
(
AJℓ

i , A
D
i , {At

i}, j|Di

)
, where Z (Di) is the evidence and where

we consider each energy bin and CSiBORG simulation separately. We use the emcee
sampler [87] and terminate the chain when the estimate of the autocorrelation length
changes by less than 1 percent per iteration and the chain is at least 100 autocorrelation
lengths long in all of the parameters.

We apply a Monte Carlo estimate to the likelihood of the CSiBORG samples, such that
the one-dimensional posterior for the amplitude AX

i (X being J ℓ or D) is

L
(
AX

i |Di

)
=

1

Nsim

∑

j

∫
d{At

i}dAY
i L
(
AJℓ

i , A
D
i , {At

i}, j|Di

)
, (4.62)

where Y = J ℓ if X = D and vice versa. Again, the D factor is only considered in case of
s-wave analysis (ℓ = 0). In practice, we compute the average over CSiBORG realisations by
first fitting the one-dimensional posteriors L

(
AX

i |Di, j
)

with a spline using the GetDist
package [226] and then computing the mean of the resulting functions. This is equivalent
to concatenating the Markov Chains if each chain had the same length.

Constraining DM parameters

We now have a posterior, L
(
AJℓ

i |Di

)
, describing the gamma-ray spectrum from sources

that have the same spatial distribution as the J ℓ factor. We wish to fit this spectrum
to a model, fi (θ), for these sources and infer the model parameters θ. We assume that
our model is deterministic, such that

L
(
AJℓ

i |θ
)
= δ

(
AJℓ

i − fi (θ)
)
, (4.63)
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Parameter Prior
mχ / GeV/c2 [2, 500]

⟨σv⟩ / 10−26 cm3s−1 [0, 103]
Γ / 10−30 s−1 [0, 103]

At
i [0.5, 1.5]

AJ
i / 10−16 cm−2s−1MeV−1 [0, (300GeV/Ei)

2]

AD
i / 10−16 cm−2s−1MeV−1 [0, 0.5× (300GeV/Ei)

2]

Table 4.1: Priors on DM properties and template amplitudes (At
i ∈ {Agal

i , Aiso
i , A

psc
i }),

as defined in the text. All priors are uniform in the range given, except from the DM
particle mass, mχ, since we constrain the cross section, ⟨σv⟩, and decay rate, Γ, at fixed
mχ. The priors on AJ

i and AD
i depend on the minimum energy of the energy bin, Ei,

although in all cases the prior is much wider than the posterior. For DM decay we
also ensure that mχ is at least twice the rest mass of the final decay products, and for
annihilation this limit is equal to the rest mass of the standard model particle.

and therefore we obtain the likelihood for the observed gamma-ray sky by incorporating
Eq. (4.62),

L (Di|θ) =
∫

dAJℓ

i L
(
Di|AJℓ

i

)
L
(
AJℓ

i |θ
)

=

∫
dAJℓ

i

L
(
AJℓ

i |Di

)
Z (Di)

P
(
AJℓ

i

) δ
(
AJℓ

i − fi (θ)
)
. (4.64)

We assume that all energy bins are independent such that the likelihood of θ given
the full dataset D is

L (D|θ) =
∏

i

L (Di|θ) , (4.65)

and so with a final application of Bayes’ identity we obtain the posterior for our model
parameters

L (θ|D) = L (D|θ)P (θ)

Z (D) . (4.66)

If fi (θ) comprises exclusively of DM annihilation, then, at fixed DM mass and annihi-
lation channel, the transformation from the posterior distribution of AJℓ

i to that of aℓ is
trivial. For more complicated models (i.e., where θ consists of more than one parameter),
we again calculate the posterior on θ using the emcee and numpyro packages.

For DM annihilation and decay, prompt production, decays, hadronisation and radia-
tive processes associated with the resulting standard model products produce a variety
of stable species, including gamma rays. For a given channel, one must know the energy
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spectrum of the intermediate standard model particles and the resulting branching ratios
and energies of the subsequently produced particles. One then has, for each channel, a
model for the spectrum of gamma rays as a function of DM particle mass and annihilation
cross-section or decay rate.

In this work we utilise the pre-computed spectra provided by the Fermi collaboration6

which are calculated as described by [227]. Since we are considering non-relativistic s-
wave annihilation in this work, one can view the annihilation of two DM particles of mass
mχ as equivalent to the decay of a single particle of mass 2mχ [228]. Hence, we obtain
the spectrum for decay from the tabulated annihilation spectra by evaluating these at
half the relevant particle mass. Furthermore, for kinematic reasons, if we produce two
standard model particles, each of rest mass mA, then for decay we enforce the DM
particle mass to obey mχ > 2mA, whereas for annihilation this is mχ > mA.

4.3 Results

In this section we describe the constraints for all channels considered – s-,p- and d-wave.
First we present the results on the s-wave constraints, describing the whole statistical
analysis pipeline step by step, given that the posterior analysis for this case is more
involved than for p- or d-wave case due to the presence of the D factor template for
which we actually detect a non-zero value at 2σ significance level as discussed below.

4.3.1 The s-wave constraints

In Fig. 4.4, we show the corner plot for the first stage of our inference, where we infer
AJ(ℓ=0)

i and AD
i simultaneously. We emphasise that we fit a different AJ(ℓ=0)

i and AD
i to each

energy bin, i, and CSiBORG simulation. In this example, we consider simulation number
7444 (as given in [186]) and the energy range 30−50GeV (energy bin 9). We see that the
parameters corresponding to the isotropic, galactic and point-source contributions are all
approximately unity, as one would expect. For this energy bin and CSiBORG simulation
we see that there is no evidence for a contribution to the gamma-ray flux proportional
to either the J (ℓ=0) or the D factor. We note that AJ(ℓ=0)

i and AD
i are highly degenerate,

such that a large value of AJ(ℓ=0)

i corresponds to a small AD
i . For our fiducial analysis, we

therefore choose to set one of these parameters equal to zero at a time; i.e. the inference
to place constraints on ⟨σv⟩ will assume ∀i AD

i = 0 and for Γ we assume ∀i AJ(ℓ=0)

i = 0.
This will make our constraints conservative (see Section VI A.1 in [132]).

6https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html

https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/source_models.html
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Figure 4.4: Posterior distributions for CSiBORG simulation 9844 of the parameters de-
scribing the gamma-ray flux in the energy range 30 − 50GeV for the case of s-wave
(ℓ = 0). We include templates proportional to the J (ℓ=0) factor (AJ(ℓ=0)

9 ) and D factor
(AD

9 ), as well as isotropic (Aiso
9 ), galactic diffuse (Agal

9 ), and point source (Apsc
9 ) contribu-

tions, and define A⋆ ≡ 10−22 cm−2s−1MeV−1. The contours show the 1 and 2σ confidence
intervals.
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Figure 4.5: The corresponding one-dimensional posterior distributions, complementing
the posterior from Fig. 4.4, on the coefficients describing the flux proportional to the
(left panel) J factor and (right panel) D factor in the energy range 30 − 50GeV. Each
black line gives the posterior distribution for an individual CSiBORG simulation, and the
red line is the mean of these, i.e., the final posterior distribution.
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We note that Aiso
i is strongly degenerate with Agal

i , which is to be expected since both
describe large-scale features across the sky. If we used exactly the same selection criteria
as the Fermi analysis which produced the non-DM templates, then Agal

i , Aiso
i and Apsc

i

would all have a mean of unity. This is not true here because the isotropic template is
calibrated for latitudes 10◦ < |λ| < 60◦, whereas we fit our template to |λ| > 30◦. In
general, we find Aiso

i to be slightly smaller than 1. This is more prominent in the higher
energy bins; we find that Aiso

i is closer to unity at lower energy. We verify that this is
not due to the addition of the J (ℓ=0) or D factor templates by rerunning the analysis
with AD

i = AJ(ℓ=0)

i = 0 and find that Aiso
i remains less than one.

We generate such MCMC chains for each of the 101 CSiBORG simulations, and we
plot the resulting one-dimensional posterior distributions for AJ(ℓ=0)

i and AD
i in Fig. 4.5.

Knowing that each CSiBORG simulation is a fair Monte Carlo sample, the final posterior
distribution on AX

g is simply the average of each individual probability distribution, which
yields the red lines in the figure. When marginalised over the BORG chain, we again find
AJ(ℓ=0)

i and AD
i are consistent with zero for this energy bin.

The posterior of AJ(ℓ=0)

i and AD
i is shown in Fig. 4.6. The posterior is over all con-

sidered energy bins, marginalised over all other contributions to the gamma-ray sky and
over the uncertainties involved in producing maps of the J (ℓ=0) and D factors. We in-
dicate the maximum posterior points by the circles and 1σ confidence intervals by the
error bars. For a given DM mass and channel, these posteriors can be trivially trans-
formed into constraints on ⟨σv⟩ or Γ for a given energy bin. We then simply multiply
the posteriors from each bin to determine our final constraint on these parameters.

In Fig. 4.7, we plot the 95% upper limit on ⟨σv⟩ as a function of DM particle mass,
mχ, for an annihilation which solely produces particle-antiparticle pairs of a single type,
but for any standard-model quark, charged lepton or gauge boson (except photons). We
compare these constraints to the thermal relic cross section (⟨σv⟩th ≈ 3×10−26 cm3 s−1),
such that, if the curve falls below this value in Fig. 4.7, then we rule out DM being a
thermal relic for the corresponding mass and annihilation channel at 95% confidence.
For all annihilations producing gluons or quarks less massive than the bottom quark,
we see that, if DM is a thermal relic, it should be more massive than ∼ 7GeV/c2 since
we rule out smaller masses. We are unable to rule out the thermal relic cross section
at any mass for production of bottom quarks, top quarks, W bosons or Z bosons. Our
constraints for lepton production are much weaker at a given particle mass, such that
our constraints for electron or muon production do not cross ⟨σv⟩th. We rule out τ
production for mχ ≲ 6GeV/c2 at this cross section.

Turning our attention to DM decay, Fig. 4.8 shows the inferred decay rate, Γ, for
different decay channels as a function ofmχ. Contrary to our analysis of DM annihilation,
we find that for the majority of channels we infer a nonzero Γ at over 2σ confidence for
at least some mχ (corresponding to nonzero AD

i in Fig. 4.6). The results are relatively
insensitive to the DM particle mass, provided mχ is above the threshold for production.
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Figure 4.6: The resulting s-wave channel one-dimensional posterior distributions on the
coefficients describing the flux in each energy bin, i, proportional to (left) the J factor and
(right) the D factor. The black points correspond to the maximum likelihood points and
the error bars show the 1σ confidence interval. For reference, we plot the expected AJ

i and
AD

i for DM annihilation and decay, respectively, via the bb̄ channel for a particle of mass
mχ = 100GeV/c2 with a thermally averaged cross section of ⟨σv⟩ = 3 × 10−25 cm3s−1

and decay rate Γ = 6× 10−28 s−1. We also plot AD
i if the spectrum was due to a power

law of amplitude Ap = 4.1× 10−20 cm−2s−1MeV−1 and index p = −2.75.

For the bb̄ channel, we find the inferred Γ is ∼ 6 × 10−28 s−1, which corresponds to
approximately one decay per Hubble time in a volume ∼ 280 km3 at mean cosmological
density if mχ = 100GeV/c2. This is around the smallest Γ that has been constrained by
any previous study (see Section 4.5.6). The inferred Γ for decay to the lightest charged
leptons is approximately an order of magnitude larger than this.

To determine the overall detection significance, we compute the coefficient for the
total flux across all energy bins which multiplies the D factor

AD
tot ≡

∑

i

AD
i ∆Ei = 1.02+0.24

−0.28 × 10−16 cm2s−1. (4.67)

Simply dividing the best fit value by the lower error would suggest that our detection of
a contribution to the gamma-ray sky proportional to the D factor has a significance of
3.6σ when averaged over all available energies. Since our posterior is non-Gaussian, we
wish to compute this significance through other methods. We compute the maximum
likelihood for each AD

i and, since each energy bin is treated as independent, the maximum
likelihood for AD

tot is the product of these values. We compare this to the likelihood for
AD

i = 0 and find the change in log likelihood between these two cases is ∆χ2 ≡ 2∆ ln L̂ =
11.2, which is equivalent to 3.3σ for a Gaussian likelihood or a change in the Bayesian
Information Criterion (BIC) [230] of 9.0, if one takes the AD

tot ̸= 0 model as having one
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Figure 4.7: Constraints on DM annihilation cross section, ⟨σv⟩, as a function of particle
mass, mχ, for different annihilation channels. The dot-dashed grey line is the expectation
for a thermal relic, ⟨σv⟩th, as calculated by [60]. All points below this line rule out the
thermal relic cross section at 95% confidence for the corresponding mass and channel.
The dotted black line is the constraint obtained by [169] from Milky Way satellites for the
bb̄ channel; we see our constraints are approximately an order of magnitude less stringent.
The dashed black line shows the constraints for the bb̄ channel derived from the cross-
correlation between Fermi -LAT and the Dark Energy Survey Y3 low surface brightness
galaxy sample (DES-LSBGs) [229]. Our field-level inference improves the constraints
from large-scale structure by approximately a factor of 2 at mχ = 10GeV/c2.
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Figure 4.8: Constraints on DM decay rate, Γ, as a function of particle mass, mχ, for
different decay channels. The solid lines are the median values and the bands show
the 95% confidence regions. We do not infer mχ, which means that every constraint
is conditioned on the corresponding particle mass. For some decay channels and some
masses, we see that Γ is inferred to be nonzero; however (as shown in Section 4.4.2), we
find that a power-law model better describes the spectrum, suggesting that this flux is
not in fact due to DM decay. We note that for some channels we cannot probe the full
mass range due to the requirement that mχ is at least as large as the sum of the masses
of the decay products.

more parameter. In Section 4.4.2 we ask whether this is due to DM decay, finding that
a non-DM spectrum is preferred by the data.

4.3.2 The p-wave and d-wave constraints

As in previous section, the first step of our inference is to infer the amplitudes of the
J (ℓ>0) factor templates, AJ

i , for each energy bin, i. In Fig. 4.9 we plot the one-dimensional
posterior distributions of these parameters and see that these coefficients are consistent
with zero at 1σ confidence for all energy bins for both p- (ℓ = 1) and d-wave (ℓ = 2) an-
nihilation. In the second step we fit this inferred spectrum to a dark matter annihilation
model and hence can constrain aℓ. For reference, in Fig. 4.9 we plot example spectra for
annihilation via the bb̄ channel for mχ = 100GeV/c2 at a fiducial aℓ.

In Fig. 4.10 we convert these posteriors to 95% upper limits on the p- and d-wave self-
annihilation cross-section (σv = aℓ(v/c)

2ℓ) as a function of dark matter particle mass,
mχ, for the production of any standard-model quark, charged lepton or gauge boson
(except photons). We do not attempt to constrain mχ, and instead find constraints on
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Figure 4.9: Posterior distributions of the amplitudes of the J factor templates for each
energy bin, i, for p-wave (left) and d-wave (right) annihilation. The black points are the
maximum posterior points and the error bars indicate the 1σ confidence intervals. For
reference we also plot the expected AJ

i for dark matter annihilation via the bb̄ channel for
dark matter particles of mass mχ = 100GeV/c2, with a1 = 10−19 cm3s−1 (p-wave) and
a2 = 10−16 cm3s−1 (d-wave). All fluxes are consistent with zero, indicating no detection
of dark matter p-wave or d-wave annihilation.

aℓ conditioned on this variable for the range mχ ∈ [2, 500]GeV/c2. In all cases we find
no evidence for p-wave or d-wave dark matter annihilation, as all the fluxes in Fig. 4.9
are consistent with zero. For dark matter annihilating to bb̄, if mχ = 10GeV/c2, we
constrain a1 < 2.4× 10−21 cm3 s−1 and a2 < 3.0× 10−18 cm3 s−1 at 95% confidence. For
an annihilation which forms lighter quarks, we obtain practically identical constraints,
whereas lepton production yields constraints which are approximately an order of mag-
nitude less stringent. For large mχ ≳ 100GeV/c2, our upper limits for the production of
top quarks or W or Z bosons are similar to those for lighter quarks, but these processes
cannot occur at lower mχ so we do not obtain constraints for smaller dark matter particle
masses.

Note that, in Fig. 4.10, the constraints weaken as mχ approaches mA, if the annihi-
lation product is AĀ. Near this value, the process is strongly suppressed and hence the
constraints no longer lie within the range of the plot, so we do not plot these points.

For comparison, for p-wave, in Fig. 4.10 we also plot the constraints one obtains for
the bb̄ channel from dwarf spheroidals. As anticipated from the much smaller velocity
dispersion in dwarf galaxies, our constraints are significantly tighter, by approximately
two orders of magnitude for p-wave annihilation, and seven orders of magnitude for
d-wave. This demonstrates the increased importance of large halo masses for velocity-
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Figure 4.10: 95% upper limit on the dark matter p-wave (upper, ℓ = 1) and d-wave
(lower, ℓ = 2) annihilation cross-section parameter, aℓ, where the annihilation cross-
section is σv = aℓ(v/c)

2ℓ. The solid lines and points are from this work. Each constraint
is derived at a fixed dark matter particle mass mχ as indicated on the x-axis. The red
dotted line is a constraint obtained from dwarf spheroidal (dSph) satellites of the Milky
Way [231, 232] for the bb̄ channel. We find that our constraints are approximately two
orders of magnitude tighter than those from dSphs due to the larger velocity dispersions
in massive extragalactic halos. The dSph constraint for d-wave is off the top of the plot.
The brown dashed line is the constraint for the e+e− channel, directly detecting the
resulting electrons and positrons, assuming they are produced by the galactic halo [233].
This is slightly tighter than our e+e− constraint.
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dependent annihilation, whereas for s-wave annihilation the close proximity of these
objects more than compensates for their small masses, leading to tighter constraints (see
Fig. 4.7). We perform a more detailed comparison to the literature in Section 4.5.6.

4.4 Interpretation of the results

In this section we investigate which objects and observations drive our results and
whether there are non-DM explanations for the signal proportional to the D factor.

4.4.1 Annihilation

s-wave channel

For each channel and mχ, we compute the change in log likelihood between ⟨σv⟩ = 0 and
the 1σ constraint on ⟨σv⟩ separately for each energy bin to determine which energy range
is dominating our constraint. For DM particle masses mχ ≲ 10GeV/c2, our constraints
are driven by the first three energy bins. For these masses, we expect there to be very
few photons produced at high energies at fixed ⟨σv⟩, so these bins are unable to constrain
⟨σv⟩ as very large values are required to produce an appreciable flux. As we move to
higher masses, we notice the effect of the data at higher energy, such that at the highest
masses we find that the sixth energy bin (6.5− 10.8GeV) is the most constraining. We
find a similar trend if we compare using the 95% confidence limit instead of the 1σ
constraint.

To determine which halos drive our constraints, we produce several J-factor maps
where each one is only due to objects in a given mass range. We create separate maps
for halos in moving bins of width ∆ log10 (Mh/M⊙) = 1. We rerun the inference for a
single representative CSiBORG simulation (9844) separately for each of these mass bins;
i.e., we assume that only a single mass bin contributes to the total J factor. We plot the
constraint on ⟨σv⟩ as a function of halo mass in Fig. 4.11 and observe that the tightest
constraints are obtained for halos in the range ∼ 1013.5 − 1014.5M⊙. If one studied a
single object at a fixed distance, then the most massive halo would give the tightest
constraints since it has the largest J factor. However, such massive objects are rare,
so there is a compromise between having many objects of a given mass across the sky
and those objects having a large J factor. Given the tight constraints one can obtain
with dwarf galaxies in the Local Group, it is perhaps not surprising that the inclusion of
lower mass objects can lead to an improvement in the upper limit on ⟨σv⟩. The inclusion
of these structures in this work was possible due to the use of constrained simulations,
which provide plausible realisations of these halos given the ICs that are constrained on
large scales. As a result, Fig. 4.11 shows the types of objects in the nearby universe one
should target to extract maximum information about DM annihilation.
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Figure 4.11: Constraints on the s-wave self-annihilation cross section, ⟨σv⟩, to either
bottom quarks or electrons from halos within a given mass range, where we consider
bins in halo mass of width ∆ log10 (Mh/M⊙) = 1. Here we use only a single CSiBORG
simulation (9844); the 95% upper limits on ⟨σv⟩ for this simulation if we use all halos
are indicated by the dashed horizontal lines. Our constraints are dominated by halos of
mass ∼ 1013.5 − 1014.5M⊙.

Since we found a nonzero flux proportional to the D factor, we rerun the analysis for
all CSiBORG simulations but infer both AD

i and AJ(ℓ=0)

i simultaneously. In this way, when
making our constraint on ⟨σv⟩, we now marginalise over this contribution. Note that in
this marginalisation we do not assume a spectral form for the D factor template, such
that we marginalise over any source whose spatial distribution is proportional to the
local DM density, which may or may not be DM decay. As anticipated in Section 4.3, we
find that our constraints become tighter, such that our upper limit on ⟨σv⟩ is typically
over a factor of 2 smaller. This is as expected: the negative degeneracy between AJ(ℓ=0)

i

and AD
i (Fig. 4.4) means that, if we allow AD

i > 0, we must reduce AJ(ℓ=0)

i so that the
total flux from these two contributions is approximately constant. When marginalising
over AD

i , this will result in a posterior on AJ(ℓ=0)

i which is necessarily narrower. Since
these results are tighter than when we set AD

i = 0, we choose to report the latter as our
fiducial results so that our conclusions are conservative.

p- and d-wave channels

To determine which halos are responsible for our constraints, we produce J factor maps
for halos only within a given mass range and run the inference using only those halos. For
computational convenience, we perform this on one representative CSiBORG simulation
only (9844). The results of this inference are plotted in Fig. 4.12, where we use moving
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Figure 4.12: Constraints on p-wave (left, ℓ = 1) and d-wave (right, ℓ = 2) annihilation
cross-section, σv = aℓ (v/c)

2ℓ, from halos in a given mass range from a single CSiBORG
simulation (9844). Each mass bin has a width ∆ log10 (Mh/M⊙) = 1, and we use a sliding
window. We plot the 95% upper limits on aℓ for the bb̄ and e+e− channels; the dashed
horizontal lines are the constraints obtained from all halos together. We see that our
constraints are driven by the most massive halos and that this is more important for
d-wave annihilation due to the stronger dependence of annihilation rate on the relative
velocity between dark matter particles. For comparison to s-wave case see Fig. 4.11.

mass bins of width ∆ log10 (Mh/M⊙) = 1 and consider dark matter particles of mass
mχ = 8GeV/c2 annihilating via the bb̄ or e+e− channels. We see that our constraints
are dominated by the most massive objects in our simulations, i.e. halos of mass Mh ∼
1014−16M⊙. This is due to both the larger densities and velocity dispersions in massive
objects, as was predicted in [192] (see their Fig. 3). If we continued Fig. 4.12 to larger Mh

we would see that the constraints would begin to weaken, due to the lack of very massive
objects in our simulation. We observe that the constraining power as a function of mass
for p-wave annihilation plateaus at an earlier halo mass than for d-wave annihilation due
to the weaker dependence on the relative velocity between dark matter particles, which
increases with mass. Qualitatively similar results are seen for other channels and dark
matter particle masses. Again, this is consistent with the expectations of [192]. We find
that the total J factors we obtained, for the 128 most massive halos of one of our CSiBORG
realisation (9844), agree to within factor of ∼ 5 when compared to the expression from
Eq. (3.3) in [192]. This is a consequence of more detailed modelling of the J-factor in
this work; for example, if the authors of [192] chose a different mass definition, given
the strong dependence of the p- and d-wave annihilation channels on total mass of the
object, this difference could be alleviated.

To assess which energy bins drive our constraints, for each channel and mχ we calcu-
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late the log-likelihood at the 95% upper limit on aℓ for each energy bin and compare to
the values for aℓ = 0. For both p- and d-wave annihilation, we find that the first three
energy bins are the most constraining for mχ ≲ 30GeV/c2, whereas the fourth energy
bin becomes particularly important for higher masses. This is the same behaviour as
for s-wave annihilation, which is attributed to the lower expected photon counts in the
higher energy bins, and therefore weaker constraining power. As one increases mχ, one
expects more photons at higher energy, and thus the relative importance of these bins
increases.

4.4.2 Decay

In Fig. 4.8 we found a nonzero DM decay rate is compatible with the observed gamma-
ray sky at over 2σ confidence for a range of DM masses and decay channels. More
conservatively, one would say that we find a signal which is proportional to the D factor;
i.e., the emitted flux from some region appears to be proportional to the local density,
and is compatible with the spectrum of DM decay. This source does not necessarily need
to be DM decay, which can be investigated by fitting the inferred spectrum to a different
model. For this we choose a power-law profile, such that the parameter AD

i arises from
integrating the spectrum

dN

dEγ

= Ap

(
Eγ

E0

)p

, (4.68)

across energy bin i, where we normalise to E0 ≡ 1GeV. We place broad, uniform priors
on Ap and p in the range [0, 10−18] cm−2s−1MeV−1 and [−5, 2], respectively, and find

Ap = (4.1± 1.5)× 10−20 cm−2s−1MeV−1,

p = −2.75+0.71
−0.46,

(4.69)

where the limits are at 1σ confidence. To enable a comparison, we plot the spectrum
for this model and a DM decay model in Fig. 4.6, where we see that the power law fits
better at most energies.

To assess the relative goodness of the fit of the two models we compute the BIC. Since
we have set deliberately wide priors on our model parameters, ratios of the Bayesian
evidence are difficult to interpret. For all channels and masses, we find that the BIC
prefers the power-law spectrum, with BIC ≥ 1.3 (the bound is saturated for the gluon
channel). Decays via the tt̄ channel are least preferred by the data, with BIC ≥ 4.0. We
therefore conclude that, although we do find an excess of gamma-ray flux that traces
the density of DM, its spectrum is fit marginally better by a power law, so this is not
evidence for DM decay.

This conclusion is consistent with previous works studying the origin of the residual
gamma-ray flux. The cross-correlation of the gamma-ray sky with galaxy catalogues has
been detected at 2 − 4σ [234], and the spectral index of the 1-halo contribution was
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found to be -2.7 if a single power law is assumed, which is consistent with our inferred
index and has a similar significance of detection. Moreover, analysis of the angular power
spectrum of the gamma-ray sky [235] suggests a component that can be modelled as a
double power law with an exponential cutoff, with power-law indices −2.55 ± 0.23 and
−1.86 ± 0.15, the former of which is consistent with our result. [235] note that this
spectrum is compatible with blazarlike sources being the dominant component at these
energies. Since we detect a nonzero contribution with the same spatial variation as our
D factor maps, our work suggests that these excesses could be due to sources with a
linear bias with respect to the local DM density.

4.5 Systematic uncertainties

In this section we describe the systematic uncertainties associated with our analysis and
quantify them for all of the considered s-, p- and d-wave channels.

4.5.1 J and D factor calculation

s-wave channel

In Section 4.2.2 we computed the D factor and nonhalo contribution to the J factor by
smoothing simulation particles onto a grid with a kernel inspired by SPH. Besides this
kernel, we also consider the CIC density assignment in order to quantify the impact of
the kernel choice on our constraints. The median change in the constraint on ⟨σv⟩ is 2%
for the bb̄ channel if we change to this kernel. For the DM decay inference, we find the
median and 95% upper limit on Γ change by a median of 16% and 15%, respectively,
for this channel. The inferred value of p changes only by 0.01 when we change to the
CIC kernel. If the low density regions were driving our constraints, then one would
expect large differences between the two procedures, since these regions have the fewest
simulation particles and the two kernels have different noise properties for low particle
counts. However, we do not see this since the expected flux is highest in the high density
regions and the low density regions are relatively unconstraining.

For computational convenience, for our fiducial analysis we chose a HEALPix reso-
lution of nside=256. We rerun the analysis at coarser resolution (nside=128) and find
that our constraints on ⟨σv⟩ weaken by a median change of 48% across all masses for
the bb̄ channel. The median and 95% upper limit on Γ change by a median of 13% and
10% respectively for the bb̄ channel, and the inferred value of p changes by only 0.03
when we lower the HEALPix resolution. It is unsurprising that the D factor analysis is
less affected by this choice; for the J factor our template is dominated by high density
peaks in the DM density field, since the flux is proportional to the square of the density.
By using a higher resolution map, one can localise these peaks better to obtain tighter
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constraints if these are not aligned with peaks in the observed gamma-ray sky.

The J and D factor maps were calculated for each of the 101 CSiBORG simulations. By
utilising the full suite, we marginalise over the uncertainties in the constrained density
modes from both the BORG algorithm and the unconstrained, small-scale modes. To
verify that we have a sufficiently large number of simulations to achieve this, we rerun
our analysis 100 times for the bb̄ channel using 50 randomly selected simulations to
determine a bootstrap uncertainty on our constraints. The standard deviation of the
95% upper limit on ⟨σv⟩ has a median value of 19% when considering all masses. The
inferred Γ has a median bootstrap uncertainty of 4%. The uncertainty on the inferred
power-law index, p, is 0.05 and the fractional bootstrap uncertainty on Ap is 4%, which
are small compared to the uncertainties we quote in Eq. (4.69). We therefore conclude
that the number of constrained simulations is adequate.

Since the gamma-ray flux from DM annihilation is proportional to the square of
the density, the substructure of DM halos is an important contribution that one must
consider; if one computes the angular power spectrum for the J factor, Cℓ, one finds
that (2ℓ+ 1)Cℓ is approximately constant at the smallest scales considered in this work.
Usually this substructure is modelled as a mass-dependent multiplicative boost factor,
e.g. [236] and uncertainties captured by looking at the extreme values of the boost for
given masses [179]. We, on the other hand, capture substructure and its uncertainty
through clumpy ’s probabilistic approach to substructure modelling. This led us to
use a non-Poisson likelihood, since we introduced uncertainties, σjp, on the Poisson
means. To evaluate the impact of this choice, we rerun the analysis assuming a Poisson
likelihood by setting σjp = 0. We find that our constraints typically change by a few
percent across all channels and masses, indicating that the impact of this uncertainty is
negligible. However, we note that this could not have been known a priori. Although
the fractional uncertainties are small near the centres of halos, this is not true in the
outskirts, motivating our thorough treatment of uncertainties.

For simplicity, we previously neglected the uncertainty that arises due to stochasticity
in the mass-concentration relation. We find our constraints are not very sensitive to the
scatter in this relation. For the bb̄ channel across all masses, the median change in the
constraint on ⟨σv⟩ is 1.4% if this uncertainty is included.

Another source of systematics due to substructure modelling might be driven by the
breakdown of our assumption that the uncertainty in the J factor is Gaussian. Namely,
as the considered mass of the clump grows, the total number of such clumps within
the host halo decreases. Therefore, it is expected that at some point we transition
from the Gaussian into a Poisson regime [237]. Furthermore, it is not obvious that
the contribution to the J factor from these more massive clumps will not outshine the
cumulative contribution of the lower-mass clumps. To check for this, we use the -h5
module of the clumpy package to explicitly draw substructure realisations for a typical
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halo (Mh ≈ 5×1013M⊙) from the CSiBORG simulations. We modify Eq. (4.39) such that

⟨Jp⟩ = ⟨Jcont,p(Mth)⟩+ ⟨Jdrawn,p(Mth)⟩, (4.70)

and

⟨Jcont,p(Mth)⟩ = Jsm,p + ⟨Jsubs,p(Mth)⟩
+ ⟨Jcross,p(Mth)⟩ ,

(4.71)

where we introduce

⟨Jdrawn,p(Mth)⟩ =
1

Nds

Nds∑

i

Jdrawn,pi(Mth), (4.72)

with Nds being the total number of explicit realisations of the clumps with a mass
above a given mass threshold, Mth. The quantities ⟨Jsubs,p(Mth)⟩ and ⟨Jcross,p(Mth)⟩
from Eq. (4.71) are obtained by replacing the upper limit of the clump mass distribution
by Mth, i.e., replacing M2 with Mth in Eq. (4.31). To estimate ⟨Jdrawn,p(Mth)⟩, we run
Nds ≈ 1000 explicit realisations of substructure clumps for a typical halo, requiring that
we capture fluctuations in the value of Jsm,p – the leading contribution to the total J
factor of the halo – at the percent level. In other words, any clump whose contribution
to the given pixel will induce a fluctuation to the value of Jsm,p of the order of ∼ 1% will
be explicitly drawn onto the HEALPix grid. This is equivalent to taking one sample
from Eq. (4.25), but with a modified mass range of the mass function, and setting the
lower limit for this draw to be Mth. For more details see section 2.4.3 of [199].

For this experiment, we selected a HEALPix resolution of nside = 1024, corre-
sponding to the Fermi -LAT angular resolution. The corresponding threshold mass for
this setup translates to Mth = 5.3× 109M⊙ for our chosen halo. We find that

⟨Jdrawn,p(Mth)⟩ ∼ 0.04 ⟨Jcont,p(Mth)⟩, (4.73)

which justifies our starting assumption of treating the substructure contribution to the
total J factor as Gaussian, since the “drawn” (Poisson) component is subdominant com-
pared to the “continuous” (Gaussian) contribution.

Note, however, that choosing a smaller Mth, i.e., looking at even smaller fluctuations
of Jsm,p, would lead to probing the even lower-mass end of the substructure mass function,
which would, of course, alter the ratio of the “drawn” and “continuous” components.
However, going below this limit would already enter into a regime where drawing 104 −
105 clumps from the corresponding version of Eq. (4.25) will be necessary, which is
computationally expensive and well within the validity of the Gaussian approximation.
As a comparison, using Mth ≈ 5.3× 109M⊙ required around ∼ 103 draws. Throughout
this section we assumed the same DM profile parameterisation and mass-concentration
relation as in the fiducial inference. The conclusions are unchanged for the same halo
using the Einasto profile.



4.5 Systematic uncertainties 133

p- and d-wave channels

In Equation (4.62) we marginalised over uncertainties in the large-scale density modes
which are constrained from the BORG algorithm, as well as smaller-scale unconstrained
modes which were added as white noise in the initial conditions. In our fiducial analysis
we use the full suite of 101 CSiBORG simulations, however to verify this is a sufficiently
large number, we rerun our analysis one hundred times using fifty randomly selected
CSiBORG simulations (with repeats) each time. This yields an uncertainty on the 95%
upper limit of aℓ of no more than 5.9% and 6.5% for p-wave and d-wave annihilation,
respectively, when considering all channels and particle masses separately. The median
change in the constraint across these runs at a given mass and channel changes by no
more than 1.2% compared to the fiducial analysis. Thus, we conclude that this is an
appropriate number of simulations.

For our p-wave analysis, we assumed circular orbits for dark matter particles (β = 0),
leading to the radial velocity dispersion given in Eq. (4.45). Similar expressions exist
for alternative values of β, thus to determine the impact of this assumption on our
constraints, we compute J factor maps assuming β = 0.5 or β = 1 (although the latter
case is unrealistic as this corresponds to purely radial orbits) for a representative CSiBORG
simulation (9844) and rerun our analysis to obtain alternative constraints on a1.

For β = 1, one finds that the J factor diverges logarithmically towards the centre, and
thus simply computing Eq. (4.41) would predict an infinite annihilation flux from each
halo. In practice, if the annihilation rate becomes sufficiently high, then it will disrupt
the density profile of the halo as the dark matter particles will be depleted towards the
centre, presumably forming a cored profile. Thus, Eq. (4.41) is only valid up to some
core radius, rc. We estimate this to be the radius at which the dynamical time scale of
the halo (1/

√
Gρ) equals the annihilation time scale (ρσv/mχ). Since we expect this to

occur close to the centre of the halo, we use the leading order term for σ2
r ,

σ2
r

V 2
vir

β=1
=

π2 − 9

6
(
log (1 + c)− c

1+c

) 1
s
+O

(
s0
)
, (4.74)

and assume ρ ∼ ρ0rs/r (see Eq. (4.44)). This leads to a core radius of

rc ∼
(
π2 − 9

6

a1
mχ

V 2
vir

log (1 + c)− c
1+c

√
ρ0
G

) 2
3

rvir. (4.75)

We have verified that, for the core radii that this implies, the O(s0) term is negligible
compared to the leading order term.

For simplicity, we compute Eq. (4.41) using rc as the lower limit of the integral and add
the contribution from the cored region separately. Furthermore, we note that Eq. (4.75)
depends on a1 and mχ, and thus a fully-consistent analysis should recompute the J
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factor at each step in the MCMC and for each channel. However, this is computationally
infeasible. Instead, we set a1 = 2.4×10−21 cm3 s−1 and mχ = 100GeV/c2 in this formula;
this is a characteristic WIMP mass with a1 at approximately the 20th percentile for the
bb̄ channel when β = 0.5. This typically leads to a core radius of rc ∼ 0.1 − 1 pc.
We find that the constraints on a1 for β = 1 are much tighter than this, and thus our
approximation yields a conservative constraint.

For both β = 0.5 and β = 1, we find that the anisotropic J factors lead to tighter
constraints for all masses and channels, by up to a factor of 2.3 for β = 0.5 and up to two
orders of magnitude for β = 1. This simply reflects the general behaviour of the J factor
for these two different anisotropic profiles. As can be seen from Fig. 4.3, the β = 0.5
and β = 1.0 profiles are more strongly peaked towards the centre than the corresponding
β = 0 case, with β = 1.0 diverging more quickly towards the centre and giving total J
factors between 50− 100 times larger than the corresponding β = 0 case. From this and
Eq. (4.10), it is then easy to see that the derived constraints for these respective cases
will show similar trends. Choosing β = 0 is therefore the most conservative of the cases
considered, justifying our use of it in our fiducial analysis.

For all halos considered in this work, we have not attempted to add corrections to
the halo density profiles due to baryonic effects, and have instead used profiles calibrated
against dark-matter-only simulations. In the presence of baryons, adiabatic contraction
during galaxy formation [238, 239] can steepen the central density profile, or it can be
made shallower due to the subsequent stellar feedback [240, 241]. The different resulting
density profiles would change our J factor calculations and hence our constraints on aℓ.
Indeed, cosmological zoom hydrodynamical simulations have demonstrated that baryons
do affect the J factors for velocity-dependent annihilation, typically increasing J from
a factor of a few up to factors of several hundred [242, 243]. Assuming this increase in
J can be applied to our halos, then our constraints on aℓ are conservative, however we
leave it to future work to implement more precise corrections for baryonic physics.

4.5.2 Constrained simulation volume

The gamma rays emitted from either DM annihilation or decay would interact with
the extragalactic background light (EBL) or CMB photons [244, 245]. This interaction
manifests itself through pair production and therefore can cause signal attenuation, which
can be modelled through an energy and redshift dependent optical depth coefficient
τ(E, z). Since both the EBL and the CMB are approximately isotropic, the optical
depth will not have a directional dependence. For the redshift range considered in this
work (z ≲ 0.05), the attenuation of the photon flux due to interaction with background
photons will not be significant, except at very high energies (∼ TeV), which lie well above
the maximum photon energies we consider here (∼ 50GeV), and thus we neglected this
contribution.

Although this is the case for the very nearby Universe, there is also a contribution
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to J and D from sources outside the CSiBORG volume. The expected contribution to the
differential photon flux from s-swave annihilation is [246]

〈
d2Φann

dEγdΩ

〉
=
⟨σv⟩ρ̄2DM,0

8πm2
χ

∫
dz

(
dNγ

dE ′
γ

)∣∣∣∣
E′

γ=Eγ(1+z)

× (1 + z)3

H(z)
e−τ(E′

γ ,z)⟨(1 + δ(z,Ω))2⟩, (4.76)

where ρ̄DM,0 represents present-day DM density and δ(z,Ω) is the density fluctuation.
This can be directly computed from the nonlinear matter power-spectrum (see, for ex-
ample, [247]) or by using the halo model approach [177, 248]. Within the halo model,
this factor comes directly from averaging the one-halo annihilation luminosity over the
halo mass function. This is equivalent to marginalising over plausible realisations of the
DM distribution in our Universe by utilising the Press-Schechter [249] formalism, or any
other halo-formation model.

As in [248] (see Fig. 10 in their Appendix B), we estimate the integrand at a given Eγ

and integrate between z = 0.05 and z = 10 to determine the ratio of this contribution to
that explicitly modelled from CSiBORG . We find that this ratio is approximately unity at
Eγ = 5GeV formχ = 10GeV/c2 for the bb̄ channel. One may be concerned that this is an
important contribution; however, since our chosen HEALPix resolution of nside = 256
corresponds to a physical scale of ∼ 0.6h−1Mpc at the edge of the CSiBORG volume,
one would expect that the extragalactic sources beyond z ≳ 0.05 are unresolved, and
therefore this contribution will almost entirely be absorbed into the isotropic template.
Of course, clustering of sources at redshifts beyond the CSiBORG volume would lead to
an anisotropy in this unresolved emission. Our constraints are completely independent
of how one models the isotropic part of the high-redshift component, and we leave it to
further work to model the fluctuations about this, for example, by including constrained
realisations of the density field for larger volumes. Since this contribution can only
increase the J factor, we always underestimate the J factor in our templates, making
our constraints conservative.

We note that in Eq. (4.76) one must correct for the redshift of emission; i.e., the
spectrum should be evaluated at Eγ (1 + z) for a source at redshift z if we observe a
photon at energy Eγ. Since we only considered sources at z ≲ 0.05, we neglected this
effect. If we consider the extreme case where all our sources were actually at z = 0.05,
we would find that our estimate of the flux at a given ⟨σv⟩ is correct to within 5% in the
five lowest energy bins for the bb̄ channel at mχ = 100GeV/c2 (similar effects are seen
for other channels and masses). Since this is comparable to the size of other reasonable
variations to the model and this is an unrealistically extreme case, we are justified in
making this assumption.

The question regarding the sufficiency of our CSiBORG volume also affects the con-
straints derived on p- and d-wave channels. Given that the most massive halos in the
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local universe dominate the p- and d-wave constraints (running the inference using the
∼ 20 largest halos gives constraints which differ by a factor only O(1) compared to the
full result) raises the question of whether stronger constraints could be obtained using
a dedicated cluster catalogue extending to higher redshift than CSiBORG . To address
this we calculate the J (ℓ>0) factor produced by the Master Catalogue of X-ray Clusters
(MCXC; [250]), a compilation of clusters detected through their X-ray-emitting gas.

We find that the total J (ℓ>0) factor of the CSiBORG catalogue is larger by factor of ∼ 10
than that from MCXC. This is a result of the incompleteness of the MCXC catalogue
as well as the various selection effects involved, which outweigh its larger redshift range
and are absent from CSiBORG . The CSiBORG suite is therefore optimal in terms of its
all-sky constraining power.

Nevertheless, since the p- and d-wave annihilation channels are strongly dependent
on relative velocity of dark matter particles, and thus the total halo mass, it might
still be worthwhile to explore constrained simulations with larger simulation volumes
than CSiBORG to include the contributions from more distant massive halos. Further
constraining power may be extracted from the angular dependence of the s-, p- and
d-wave annihilation signals, which we do not fully exploit due to the relatively coarse
resolution of our all-sky maps. Useful future work would therefore be to use higher-
resolution simulations or observations of clusters to compare their predicted and observed
flux profiles in greater detail. Note that the angular resolution of the Fermi data is
approximately nside ≈ 1024, so significant improvements in resolution are possible. The
positions and masses of local dark matter clusters may be found in the public CSiBORG
halo catalogues [186].

4.5.3 Cluster masses

As demonstrated in Fig. 4.12 and indicated in [192], for p-wave and d-wave annihila-
tion, the constraints on cross-section are dominated by the largest mass objects. It is
therefore more important to correctly obtain cluster masses than it is when considering
s-wave models (compare with Fig. 9 from [132]). In this work we have used the masses
obtained from constrained N -body simulations, with initial conditions inferred using the
BORG algorithm. This is an alternative to traditional estimates of cluster masses, which
typically use one of the virial theorem [251], X-ray measurements [252], the Sunyaev
Zel’dovich effect [253, 254] or weak lensing [255, 256]. These measurements tend to lead
to significantly different measurements of masses for the same clusters, e.g. Fig. 3 [257],
so it is not clear whether these traditional methods offer a more appropriate route to
obtaining J factor maps as each method would produce very different constraints.

It has been found that the halo mass function in CSiBORG is higher than the average
ΛCDM expectation at the massive end [185]. Although cosmic variance is high in this
regime, this still represents a ∼ 2σ effect. To determine the effect of this potential mass
discrepancy, we obtain a single new posterior sample of the initial conditions with a
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different gravity model (using the COmoving Lagrangian Acceleration (COLA) method
[258]), different time-stepping in the forward-model, a different method for generating
power spectra (CLASS [259] instead of Eisenstein & Hu [260]) and a more robust likelihood
[111], designed to remove the effects of unknown systematic uncertainties on scales larger
than 1.4◦. We then run a simulation with these initial conditions but otherwise identical
to CSiBORG . This reconstruction produces 2- and 3-point statistics of the density field and
a halo mass function which is closer to that expected from a random ΛCDM realisation.
However, the re-simulated halo masses are systematically smaller than those observed
and some objects (e.g. the Perseus cluster) are less prominent than in our fiducial
reconstruction. These modifications to the older BORG algorithm are studied in more
detail in [261].

Due to the variety of changes, this simulation is useful to test the robustness of our
results to the reconstruction analysis. We produce J factor maps for this simulation and
rerun the end-to-end inference. We find this new simulation produces weaker constraints
than our fiducial analysis, with changes in the constraints of up to a factor of ∼ 5 and ∼
12 for p- and d-wave, respectively. This is to be expected given the systematically smaller
cluster masses obtained with the updated initial conditions and is much greater than the
variation in constraints between CSiBORG realisations, which is typically ∼ 40 − 50%.
We note that this variation is comparable to what one would obtain using measured
clustered mass because different measurements give highly variable results [257]. It is
the most significant uncertainty in our analysis.

4.5.4 Astrophysical templates

In our fiducial analysis, we use the latest galactic diffuse model provided by the Fermi
Collaboration (gll_iem_v07). Although we find little degeneracy between the normalisa-
tion of the astrophysical templates and the amplitude of the J-factor maps (and hence aℓ
constraints), we nonetheless re-run our inference using an older template (gll_iem_v02)
to estimate the systematic effect of the choice of galactic template. We find that the
constraints usually weaken slightly when using the older model, by up to 9% for s-wave,
up to 24% for p-wave and up to 31% for d-wave, although at low mχ the d-wave con-
straints can be up to 7% tighter with the older model. This variation is small compared
to that caused by the cluster masses. We also find that the constraints on Γ can vary by
∼ 35%, while the inferred power-law index p changes by only ∼ 0.01 in total, and hence
is insensitive to the choice of the non-DM templates.

4.5.5 Thermal relics

In this work we have focused on dark matter particles of mass 2−500GeV/c2 since, if the
thermally-average annihilation cross-section is ⟨σv⟩th ≈ 3× 10−26 cm3s−1 [60] and these
particles are thermal relics, then the current abundance of dark matter is reproduced.
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Figure 4.13: Annihilation cross-section coefficient (σv = aℓ (v/c)
ℓ) as a function of dark

matter particle mass, mχ, required to give a present-day dark matter abundance of
Ωχh

2 = 0.11 for a thermal relic. We plot the results for s-, p- and d-wave annihilation
and see that the required aℓ increases by less than an order of magnitude for a unit change
of ℓ. The dashed horizontal lines give the standard value of a0 = 3 × 10−26 cm3s−1 for
s-wave, and this value multiplied by xf/3 and x2f /20 for p- and d-wave, assuming a freeze-
out value of x of xf = 20.

This cross-section is comparable to the electroweak coupling of the Standard Model,
motivating the study of these dark matter candidates. In fact, the previously quoted
⟨σv⟩th is appropriate for s-wave annihilation only. Hence, in this section we extend
the analysis of [60] to obtain the equivalent values for p- and d-wave annihilation, and
compare to the aℓ we obtain.

We assume that σv = aℓv
2ℓ and that dark matter particles are non-relativistic and

follow a Boltzmann distribution. The thermally-averaged cross-section at temperature
T is then

⟨σv⟩ =
∫
d3k1d

3k2 exp
(
−E1+E2

T

)
σv∫

d3k1d3k2 exp
(
−E1+E2

T

) =
4ℓΓ

(
ℓ+ 3

2

)

Γ
(
3
2

) aℓ
xℓ
, (4.77)

where k1 and k2 are the phase-space momenta and x = mχ/T . One must then solve the
equation governing the number density, n, of dark matter

dY

dx
=
s ⟨σv⟩
Hx

[
1 +

1

3

d (log gs)

d (log T )

] (
Y 2
eq − Y 2

)
, (4.78)

where Y = n/s for entropy density s, gs is the number of relativistic degrees of freedom
contributing to the entropy density, H is the Hubble parameter, and the equilibrium
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value of Y is
Yeq =

45

2π4

(π
8

)1/2 gχ
gs
x3/2 exp (−x) , (4.79)

where the dark matter particle has gχ degrees of freedom. Since this is a numerically
stiff differential equation, we follow [60] and solve for W = log Y instead. We also take
gs(T ) from the calculations of [61]. Using an implicit Runge-Kutta method of the Radau
IIA family of order 5 [262], we solve from x = 1 to x = 103, with an initial condition set
using the approximate solution [263]

Y (x) ≈ xℓ+2

2λ
+ Yeq (x) , (4.80)

which is valid long before freeze-out, where λ ≡ 2.76×1035mχ ⟨σv⟩0 for ⟨σv⟩ = ⟨σv⟩0 x−ℓ

and where mχ is in GeV and ⟨σv⟩0 is in cm3 s−1. We then convert our solution to a
density parameter

Ωχ =
8πG

3H2
0

mχs0Y0, (4.81)

where H0, s0 and Y0 are the values of H, s and Y evaluated today. By comparing this
value to Ωχh

2 = 0.11 [2, 3], for H0 = 100h km s−1Mpc−1, we repeat the analysis for
varying aℓ at fixed mχ to obtain the thermal relic cross-section which reproduces the
present-day dark matter abundance.

This is plotted in Fig. 4.13 as a function of mχ for ℓ = 0, 1, 2. We find that the
required p-wave coefficient is a1 ∼ (1 − 3) × 10−25 cm3 s−1, whereas for d-wave this is
a2 ∼ (4 − 9) × 10−25 cm3 s−1. In both cases, this is several orders of magnitude smaller
than the constraints we find in Fig. 4.10, and thus we cannot rule out dark matter
being a thermal relic with a velocity-dependent cross-section using large scale structure.
These conclusions are consistent with those discussed in the context of the extragalactic
gamma-ray background [264, 265]; a detection of a p-wave annihilation signal would
suggest a non-thermal origin of the present-day dark matter abundance.

We note that approximate analytic solutions of Eq. (4.81) exist for p- and d-wave
annihilation, e.g. [174, 266]. In these cases, if freeze-out occurs when x = xf and xf is
the same for all ℓ, then to obtain the p- and d-wave ⟨σv⟩th from the s-wave analysis, one
would multiply a0,th by xf/3 ≈ 6.7 and x2f /20 ≈ 20, respectively, where we have used
xf ≈ 20. These ratios give the dashed horizontal lines in Fig. 4.13, when multiplied by
the fiducial value of a0 = 3× 10−26 cm3s−1.

4.5.6 Comparison to the literature

To enable a comparison between the constraints on ⟨σv⟩ and Γ obtained in this work
using large-scale structure and those from the literature, we now briefly summarise other
methods for inferring these parameters and the results they produce.
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Annihilation

The release of energy by annihilating DM has the potential to affect several observables
over the Universe’s history. The earliest important observable is the element yield from
Big Bang Nucleosynthesis (BBN): a 100GeV/c2 DM particle with the thermal relic cross
section would release ∼1 MeV of energy for every baryon in the Universe per Hubble
time during the BBN era. This has the potential to alter subdominant nuclear reac-
tions, although the effect is not strong enough to lead to stringent constraints [267, 268].
The next important epoch is recombination, where annihilating DM has the potential
to ionise a non-negligible fraction of the hydrogen in the Universe. This would absorb
CMB photons after recombination, to which the CMB angular power spectra are acutely
sensitive [269]. This allows thermal relic DM with a velocity-independent cross section to
be ruled out for masses below ∼ 10− 30GeV/c2 depending on the annihilation channel
[270, 271]. Of course, these bounds could be evaded by a large branching fraction into
neutrinos or other particles with no electromagnetic interaction. The CMB constraints
are particularly important for light DM (mχ ≲ 1GeV/c2) where the effective area and
angular resolution of telescopes such as Fermi -LAT are poor. On the other hand, com-
bining results from HST with BAO measurements, a joint analysis of data from Planck,
WMAP9, ACT and SPT found no evidence of p-wave dark matter annihilation, ruling
out cross-sections corresponding to a1 ∼ 10−16 − 10−12 cm3 s−1 for the production of
leptons at masses mχ ∼ 1 − 103GeV/c2 at 95% confidence [272]. Our constraints are
approximately four to five orders of magnitude more stringent than these results. One
can similarly constrain dark matter annihilation via this process using the Lyman-α for-
est, but these constraints are also ∼ 4 orders of magnitude weaker than those found for
velocity-dependent annihilation in this work [273].

The above bounds were derived purely by considering the effects of energy injection
into the Universe, but more information is available from observations of the potential
annihilation products themselves. This is most often done by means of high-energy
photons (a common final product regardless of annihilation channel), and forms the
context for our own analysis. Of course, the spectra of the final-state photons depend
crucially on the channel, as we have described previously. In the local Universe, the
most promising targets are the galactic centre, nearby groups or clusters, and dwarf
galaxies in the Local Group. The former is the greatest nearby concentration of DM,
but also suffers from large astrophysical backgrounds, and the expected signal depends
sensitively on the poorly known DM density profile of the Milky Way. Nevertheless,
there are claims for a gamma-ray excess that could be due to annihilating DM [137]. In
particular, authors of [137] claim the excess is well fit formχ ∼ 7−10GeV/c2 with ⟨σv⟩ ∼
(0.5− 5)×10−26 cm3s−1 annihilating via the τ+τ− channel. Although we cannot rule out
the lower values of ⟨σv⟩ for this mass range, we do find that ⟨σv⟩ < 4.5×10−26 cm3s−1 at
95% confidence for these masses and this channel, which is incompatible with the larger
values of ⟨σv⟩ reported.
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Furthermore, combining the relic abundance requirements with the GCE and lack
of detection in dwarf galaxies can also be used to put DM annihilation constraints,
as proposed by [274]. They suggested that a metastable particle undergoing s-wave
annihilation can produce the thermal abundance of dark matter particles, and these
daughter particles can then undergo p-wave annihilation in the present epoch. They find
that a dark matter particle mass mχ ∼ 90GeV/c2 with an annihilation cross-section
given by a1 ∼ 10−20 cm3s−1 for the bb̄ channel can reproduce the GCE and survive all
other tests. For this mass and channel, the a1 required to explain the GCE is ruled out
at over 1σ confidence in our analysis, suggesting that large scale structure disfavours this
interpretation. In particular, they convert constraints on ⟨σv⟩ from clusters to constraints
on a1 by multiplying by multiples of the square of the velocity dispersion, and they find
the Fornax cluster to be the most constraining object, with constraints which are ∼ 2
orders of magnitude weaker than those given in Fig. 4.10. Since we perform a more
careful analysis and obtain tight constraints on a1, future work should be dedicated to
repeating the analyses cited by [274] but with the correct velocity-dependent J factors.

One can also use cosmic ray data in constraining DM annihilation. If dark matter
annihilated via the e+e− channel, then the resulting cosmic rays from the Milky Way
could be detectable in Voyager 1 and the AMS-02 data. [233] considered this effect,
and found constraints on p-wave annihilation for this channel which are tighter than our
constraints, by up to approximately one order of magnitude (see Fig. 4.10). Their results
are found to be robust to choice of profile used for the galactic halo, although are only
applicable to the e+e− channel. This is supported by [275], who obtain a null detection of
p-wave annihilation as the cause of the GCE, since they do not find a spike in emission
around Sgr A∗. Moreover, since s- and p-wave annihilation produce different spatial
distributions of emission [216] for the same density profile, it is argued that, to explain
the GCE, p-wave annihilation would require a slope of the density profile of the Milky
Way much steeper than normally considered (γ ∼ 1.5−1.7 compared to γ ∼ 1.2−1.4 for
s-wave) [276], further questioning whether velocity-dependent annihilation is the cause
of this detection.

Another promising laboratory for probing annihilation constraints are clusters of
galaxies. They offer a massive accumulations of DM and permit a statistical analysis.
However, they also suffer from potentially significant backgrounds. Dwarf galaxies, al-
though smaller and less dense, have a much lower baryonic mass and hence the lowest
contribution from degenerate astrophysical effects, affording a cleaner test. However,
one is limited to a small sample size and thus one has to assume that the objects do not
have peculiarities, e.g. unusual boost factors. By looking at a larger number of sources,
as we do here, one can average over a more representative sample of substructure.

Fermi -LAT has been used to set limits on the annihilation cross section using dwarf
galaxies, the Milky Way halo [182, 277, 278], and galaxy groups [279]. The strongest
constraints come from the dwarfs, which, due to their lower distances, offer higher peak
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signals than clusters [280]. These have been used to rule out the thermal relic cross
section for masses below ∼ 100GeV/c2 assuming annihilation to b quarks [168, 169], as
depicted in Fig. 4.7 (although see [281]). Even stronger constraints, ruling out the ther-
mal relic scenario to O(TeV) mass scales for annihilation to bb̄, have been claimed from
a radio search of the Large Magellanic Cloud [282]. Somewhat weaker constraints have
also been obtained using dwarf irregular galaxies [170] and by cross-correlating Fermi -
LAT data with the positions of nearby galaxies without knowledge of those galaxies’
distances (dashed line in Fig. 4.7) [229, 283]. Further information can be gleaned by
cross-correlating gamma-ray flux with a tracer of density such as gravitational lensing
[284].

Similarly, in Fig. 4.10 we compare our p-wave constraints to those obtained by dwarf
galaxies [231, 232, 285] for the bb̄ channel, and find that our constraints are up to two
orders of magnitude tighter. We also find that our d-wave constraints are approximately
seven orders of magnitude tighter than those previously found from studying 25 dwarf
spheroidal galaxies of the Milky Way [232], and hence lie outside the range of Fig. 4.10.
This is in contrast to the results of s-wave annihilation, where dwarf galaxies give a con-
straint which is an order of magnitude tighter than that from large scale structure [132].
Assuming that clusters and dwarf galaxies have velocity dispersions of O(100) km s−1 and
O(1 − 10) km s−1, respectively, then one could estimate the p- and d-wave constraints
by multiplying the s-wave ones by σ2ℓ. Given this ratio of velocity dispersions, one
would anticipate that clusters can produce p- and d-wave constraints which are factors
of 102−3 and 105−6 tighter, approximately as we find. Despite being less constraining
for velocity-dependent annihilation, if one did detect such a signal, then dwarf galaxies
could still have an important role, since each object would have the same spectrum, but
the different density and velocity profiles would result in different spatial distributions
of the signal, which one could use to determine ℓ [286].

Decay

Similar considerations to those of the above subsection allow cosmological constraints
to be placed on DM decay. These constraints are stronger at lower redshifts, where a
greater fraction of DM decays per Hubble time for fixed decay rate. This allows BBN to
test decay lifetimes around 1018s, the CMB 1025s, and the Lyman-α forest 1025 − 1026s
[246].

Constraints can also be derived from gamma-ray and neutrino telescopes. In partic-
ular, data from Fermi -LAT, AMS-02, PAO, KASCADE, and CASAMIA have been used
to constrain the DM lifetime at the 1027−1028s level for 102GeV/c2 < mχ < 1017GeV/c2

[287, 288]. For lower-mass DM decaying primarily leptonically, bounds at the 1025−1026s
level can be set from X-ray and gamma-ray telescopes, the spectrometer on board the
Voyager I spacecraft, and the heating of gas-rich dwarf galaxies, as well as the Lyman-α
forest and CMB as described above [273, 289]. These constraints imply that over a very
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large DM mass range, only a tiny fraction of the total DM can decay during the lifetime
of the Universe. Decaying DM can also be constrained using the masses and abundances
of Milky Way satellites in case the decay gives momentum to the DM particle, which
provides a constraint of order the age of the Universe (e.g., [290]). The inferred values
of Γ in this work are compatible with these constraints.

4.6 Conclusions

Annihilation of dark matter particles with velocity-dependent cross-sections can result in
fluxes of gamma rays which are higher from extragalactic halos than from dwarf galaxies
in the Local Group. In this work, we use the CSiBORG suite of constrained N -body
simulations of the nearby Universe (within 155h−1Mpc) to forward-model the expected
emission from all halos down to Mvir = 4.4 × 1011M⊙ and therefore produce full-sky,
field-level, energy-dependent intensity predictions for s-, p-wave and d-wave dark matter
annihilation as well as DM decay. We combine these with templates describing emission
by baryonic processes in the Milky Way, an isotropic background and point sources,
and compare to observations from the Fermi Large Area Telescope. Marginalising over
the amplitudes of these templates and uncertainties in the reconstructed dark matter
density field, we find no evidence for velocity-dependent dark matter annihilation to any
standard model particle.

In case of s-wave annihilation, we rule out the thermal relic cross section at 95%
confidence for DM particles of mass mχ ≲ 7GeV/c2 whose annihilation produces gluons
or quarks less massive than the bottom quark. Our constraints for the production of
charged leptons are approximately an order of magnitude less stringent, and we are
unable to rule out the thermal relic cross section for the production of top or bottom
quarks in our fiducial analysis. We infer at 3.3σ a nonzero contribution to the gamma-
ray sky with the same spatial distribution as predicted by DM decay. For the decay
to quarks, this corresponds to a decay rate of Γ ≈ 6 × 10−28 s−1. However, we find
that a power-law spectrum is preferred by the data, and we infer that the power-law
index is p = −2.75+0.71

−0.46. If we marginalise over the contribution with the same spatial
distribution as DM decay, we obtain constraints on ⟨σv⟩ which are twice as tight as our
fiducial analysis.

We also place upper limits for velocity-dependent annihilation channels. For DM
mass in the range mχ = 2 − 500GeV/c2, for the bb̄ channel, defining σv = aℓ (v/c)

2ℓ

where ℓ = 1, 2 for p and d-wave, respectively, we constrain a1 < 2.4× 10−21 cm3 s−1 and
a2 < 3.0 × 10−18 cm3 s−1 at 95% confidence for mχ = 10GeV/c2. Our constraints are
weaker for the e+e− channel, with a1 < 1.5× 10−20 cm3 s−1 and a2 < 1.9× 10−17 cm3 s−1

at 95% confidence for this particle mass. We find that these constraints are dominated
by the most massive halos (Mh ∼ 1014−16M⊙). Our constraints are four to five orders
of magnitude more stringent than those on p-wave annihilation from cosmic microwave
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background analyses, and two (seven) orders of magnitude tighter than p-wave (d-wave)
constraints from dwarf galaxies, as one would expect from the larger velocity dispersion
in higher mass objects. Our bounds are however still several orders of magnitude above
the value required to rule out dark matter being a thermal relic with a velocity-dependent
annihilation cross-section.

In this work we have demonstrated the constraining power of the full halo field
on velocity-dependent dark matter annihilation through a full-sky field-level inference,
and obtained constraints which are several orders of magnitude tighter than alternative
probes. Future work should be dedicated to higher-resolution inferences using the most
constraining (highest mass) objects, incorporating other observations to constrain and
marginalise over the density and velocity profiles, as well as investigating the case of
Sommerfeld-enhanced annihilation channels as proposed in [190, 191].

The dominant systematic uncertainty in our analysis is the density field reconstruc-
tion (in particular its ability to reproduce high halo masses accurately), and hence future
work should focus on understanding and improving this modelling (see [261]). Since
anisotropic motions and baryonic processes can increase the J factor and hence the pre-
dicted signal, more precise modelling of these effects may achieve tighter constraints even
with the same data.

4.7 Appendix A: Calculation of J factor for d-wave

To calculate the d-wave J factor at a given distance from the halo centre, one needs to
evaluate the corresponding fourth velocity moment at that distance, ⟨v4⟩. To do so, we
assume ergodicity of the halo dark matter distribution function, which directly leads to
the relation Eq. (4.49). However, this equation solves for the fourth moment of the radial
velocity component, while we need the total ⟨v4⟩. One can show that in the case of an
ergodic distribution function the following holds (see Problem 4.29 in [221] and Section
1.3 from [291])

⟨vn−j
θ vj−k

ϕ vkr ⟩ = ⟨vnr ⟩
Γ(k+1

2
)Γ(n−j+1

2
)Γ( j−k+1

2
)

πΓ(n+1
2
)

. (4.82)

From this, the following relations directly follow

⟨v4θ⟩ = ⟨v4ϕ⟩ = ⟨v4r⟩ (4.83)

⟨v2θv2ϕ⟩,= ⟨v2θv2r⟩ = ⟨v2ϕv2r⟩ =
2

3
⟨v4r⟩, (4.84)

as does Eq. (4.50). Now, the only remaining issue is finding a solution to Eq. (4.49),
since the second part of Eq. (4.48) can be directly obtained from Eq. (4.45). Note, that
since we are assuming ergodicity, β = 0.
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We assume NFW profiles (Eq. (4.44)) for our halos, which we rewrite as

ρ(s) =
ρ0

cs(1 + cs)2
, (4.85)

where c is the concentration, and s = r/rvir. We can then solve Eq. (4.49) using
Eq. (4.45). Noting that the gravitational potential in this notation is

Φ (s) = −4πGρ0r2s
log (1 + cs)

cs
, (4.86)

one obtains

ρ⟨v4r⟩ =
4

3
π2G2ρ30r

4
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]

+ const, (4.87)

where Li2 and Li3 represent the dilogarithm and trilogarithm, respectively. We use the
implementations provided in the polylogarithm library 7 to evaluate these. We impose
lims→∞(ρ⟨v4r⟩)(s) = 0, which fixes the integration constant to 0. This is a consequence
of the fact that the velocity dispersion itself goes to zero far away from the halo, for the
case of ergodic phase-space distribution function which we assumed throughout for our
halos. This in turn implies that the velocity distribution has a vanishing second moment
and hence, by definition, the fourth moment is zero too in this limit.

This analytical solution was implemented within the clumpy package and tested
against a numerical solution. For all our results regarding d-wave, we always utilise the
analytical solution from Eq. (4.87) and use the numerical solution only for cross-checking
the results. We demonstrate the obtained J factor for d-wave in Fig. 4.3 obtained by

7https://github.com/Expander/polylogarithm

https://github.com/Expander/polylogarithm
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substituting the expression from Eq. (4.87) into Eq. (4.48) and normalising by the total
integrated J factor value and dividing by the corresponding quantity for s-wave (labelled
as J̃ ℓ=2/J̃ ℓ=0). One sees that the shape of the angular distribution of the normalised
J factor is qualitatively very similar to the β = 0, p-wave case and shows the same
behaviour towards the halo centre and the edge of the halo.

Note that similar results have been obtained in [216], who used Eddington inversion
formula for obtaining the velocity moments. We chose to directly integrate the Jeans
equations instead, since we were also interested in studying the anisotropic cases for the
p-wave annihilation channel, and hence for consistency used the same approach for the
d-wave J factor calculation.



CHAPTER 5

INFORMATION GAIN MAPS FROM THE LOCAL
UNIVERSE

The following chapters first appeared in [292] with me as a first author and Jens Jasche,
Doogesh Kodi Ramanah and Guilhem Lavaux as co-authors.

Abstract

We present maps classifying regions of the sky according to their information gain poten-
tial as quantified by the Fisher information. These maps can guide the optimal retrieval
of relevant physical information with targeted cosmological searches. Specifically, we
calculate the response of observed cosmic structures to perturbative changes in the cos-
mological model and chart their respective contributions to the Fisher information. Our
physical forward modeling machinery transcends the limitations of contemporary anal-
yses based on statistical summaries to yield detailed characterizations of individual 3D
structures. We demonstrate this using galaxy counts data and showcase the potential
of our approach by studying the information gain of the Coma cluster. We find that
regions in the vicinity of the filaments and cluster core, where mass accretion ensues
from gravitational infall, are the most informative about our physical model of structure
formation in the Universe. Hence, collecting data in those regions would be most optimal
for testing our model predictions. The results presented in this work are the first of their
kind and elucidate the inhomogeneous distribution of cosmological information in the
Universe. This study paves a new way forward to perform efficient targeted searches
for the fundamental physics of the Universe, where search strategies are progressively
refined with new cosmological data sets within an active learning framework.
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5.1 Introduction

“Where in the Universe should we look to learn something new? ” This is one of the most
outstanding questions asked by researchers of all times. It reflects the wish to confirm
our current physical understanding of the world and find new evidence to shift prevailing
scientific paradigms. The latest advances in cosmological observations and data analysis
now unlock the opportunity to perform machine-aided targeted searches for cosmological
physics across the Universe. This has become feasible due to the availability of large-scale
inferences that are informed by physics and causality of the cosmic large-scale structures
and their evolution with time.

State-of-the-art cosmological surveys gather scientific information from tracers of the
cosmic large-scale structures, such as galaxies, through large-area homogeneous scans
of the sky. The historical origin of such search strategies is inherently related to the
theoretical formulation of cosmology. Without any detailed knowledge about the actual
spatial distribution of cosmic matter, theorists resorted to predicting the mean value of
statistical summaries, constituting ensemble averages over different realizations of the
unknown cosmic matter distribution. Until today, most cosmological analyses are per-
formed on the basis of two-point statistics [293–295], although there are ongoing efforts
to go beyond two- or three-point analyses. The initial need to use statistical summaries
was twofold. First, the calculation of detailed matter field realizations by evaluating
gravitational structure growth via simulations was costly and complex. Therefore, cos-
mological perturbation theory provided an efficient alternative to make predictions on
the average statistical properties of the cosmic structures [296, 297]. Secondly, little was
known about the particular realization of the cosmic matter distribution of our Universe.
The best way forward was to test statements that would be true on average using the
quantitative diagnostics provided by statistical summaries.

The above situation has witnessed a dramatic improvement in the era of modern
cosmology. The abundance of cosmological observations and the availability of compu-
tational resources have now contributed significantly in constructing a much more refined
picture of the actual spatial configuration of the cosmic structures beyond characteriza-
tions via statistical summaries. In particular, we have proposed the Bayesian physical
forward modeling framework [19–23, 187] as a novel method enabling us to reconstruct
the full 3D density field underlying observed galaxies in surveys with high fidelity. This
machinery performs a causal inference that is informed by physics of the cosmic large-
scale structures, their initial conditions and dynamical evolution. By characterizing the
full 3D density field, our inference framework exploits the information on the phase
distribution and higher-order statistics in data, which is inaccessible to traditional ap-
proaches. Although analyses relying on the use of the information content contained
in the phase distribution of the large-scale structures have been proposed since a long
time (see for e.g. [298, 299]), it was not propagated in the same manner as in the afore-
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Figure 5.1: Schematic of the Bayesian physical forward modeling framework of BORG
. BORG solves a large-scale Bayesian inverse problem by fitting a dynamical structure
formation model to galaxy observations and subsequently inferring the primordial initial
conditions (ICs) which lead to the formation of the presently observed cosmic structures
via gravitational evolution (see also Section 2.6.1). The borg forward modeling approach
marginalizes naturally over unknown galaxy bias, and accounts for all relevant physical
effects, such as the redshift space distortions (RSDs) resulting from the peculiar velocities
of galaxies, and instrumental selection effects.

mentioned physical forward modeling machinery. Therefore, the inference carried out
in previous studies by [20, 23, 187] transcends the limitations of contemporary analyses
based on statistical summaries in order to yield detailed characterizations of individual
3D structures. Presently, apart from our framework, several research groups are develop-
ing the technology to perform full 3D characterizations of the cosmic structures probed
by galaxy surveys [92, 94, 95, 300, 301].

So far, most of the work in the literature is focused on constraining cosmological
physics from existing data sets, such as Cosmic Microwave Background (CMB) (see, for
e.g., [5] and references therein) and large-scale structure, e.g. [295, 299, 302] observations.
Here, we want to go beyond the standard task of constraining models to answering the
question of how to optimally acquire future data that will be most informative to update
our cosmological knowledge and to study physics. In doing so, we use existing information
on cosmic structures to identify regions in the sky that promise the highest discovery
potential as quantified by the Fisher information. Given the advent of the new data
analysis technologies, we think that now it is especially timely to start a debate on
whether the standard cosmological search strategy should be revised.

We note that some past studies aimed at understanding if certain regions of the
sky are particularly informative about cosmology, e.g. [32], or if one could use such
information to design better survey geometries in the future [33]. The method proposed
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here goes beyond these studies by using the full forward model of the 3D matter field for
quantifying the information content, weighted by the posterior of plausible realizations
of the large-scale structures in the Universe.

In summary, we would like to address the following questions: Is it true that a
homogeneous scan of the sky is the optimal search strategy to test fundamental physics
with cosmological surveys? Are there some particular regions in the sky that are more
informative than others with respect to specific research questions? Is it possible to
answer some research questions faster with small, cheap and targeted searches? These
questions are relevant, as they in turn raise questions on the optimal use of scientific
resources. For example, two upcoming large-scale cosmological surveys, the Vera Rubin
Observatory [303] and Euclid [304], constitute a total financial investment of over a
billion dollars. As such, to optimize the scientific returns of these missions, we must
ensure that the limited survey resources are adequately managed and optimally utilized.

With the ideas outlined in this work, we wish to trigger a discussion in the cos-
mological community on whether scientific progress in terms of information gain on
fundamental physics can be sped up by using more refined cosmological searches, akin to
active learning strategies. We also hope to initiate new technological developments for
targeted searches of cosmological physics. To advance in this direction, here, we address
the following question: “Which parts of the Universe should we observe to optimally
retrieve information about a research question of interest?” Specifically, in this work, we
are interested in identifying the regions in the Universe that are most relevant to obtain
new information about the cosmological parameters underlying our standard model of
cosmology. But our approach is equally applicable to other research questions of interest.

We present, for the first time, maps detailing the expected information gain provided
by cosmic structures of the nearby Universe on cosmological parameters, based on recon-
structions of the 2M++ galaxy catalog [305]. Our proposed methodology is, nevertheless,
not limited to the nearby Universe and is applicable to any existing cosmological data
sets.

5.2 Results

In our quest for mapping out the cosmologically sensitive large-scale structures in the sky,
we adopt the Fisher information [306] methodology to provide a quantitative measure
of the information encoded by the cosmological parameters on the observed large-scale
structures. Although computing the Fisher information in this context is a highly non-
trivial task, this ambitious undertaking is rendered feasible by employing a physical
forward modeling machinery, such as our BORG (Bayesian Origin Reconstruction from
Galaxies) algorithm [20, 23]. BORG constitutes a causal model of structure formation
with a fully non-linear treatment of the dark matter clustering, allowing for the con-
nection between the cosmic initial conditions and the observed galaxy distribution. A



5.2 Results 151

σ8 sensitivity map

-5 5∆δ/∆σ8

h sensitivity map

-5 5∆δ/∆h

ns sensitivity map

-5 5∆δ/∆ns

Ωm sensitivity map

-5 5∆δ/∆Ωm

Ωb sensitivity map

-5 5∆δ/∆Ωb

Ωk sensitivity map

-5 5∆δ/∆Ωk

Figure 5.2: Components of the gradient of the matter density field with respect to the
cosmological parameters for a spherical slice of thickness ∼ 2.65h−1Mpc at a comoving
distance of 100h−1Mpc from the observer, with the corresponding galaxies from the
2M++ catalog denoted via black dots. Visually, we find that the baryon density Ωb

has the largest influence on the spatial distribution of the cosmic structures, with the
regions surrounding the filamentary galaxy distribution being particularly sensitive to
changes in the baryon density. Conversely, the least significant response emanates from
the cosmic curvature Ωk, with only the vicinity of the dense galaxy clusters reacting to
changes in the geometry of the Universe.

schematic view of the distinct components of the BORG forward model is illustrated in
Fig. 5.1. In our study, we marginalize over the ensemble of plausible realizations of the
3D primordial matter fluctuations of the very early Universe, as inferred by BORG via
a hierarchical Bayesian statistical inference framework, from the 2M++ galaxy catalog
[305] that traces the matter distribution of the nearby Universe. We refer the reader to
the appendices for more detailed information pertaining to the BORG algorithm, 2M++
galaxy catalog, mathematical formalism underlying the Fisher information map and nu-
merical implementation thereof. We stress that our approach for deriving the Fisher
information map, based on the constrained realizations of cosmic structures conditional
on galaxy observations, bears a stark contrast to the standard Fisher analyses to obtain
forecasts on cosmological constraints from forthcoming galaxy surveys.

The availability of such inferred primordial matter fluctuations enables us to test the
causal sensitivity of cosmic structures when forward modeled with perturbed cosmolog-
ical parameters. To illustrate this possibility, in Fig. 5.2, we illustrate the response of
cosmic structures in the Universe to perturbative changes in six parameters of the so-
called concordance ΛCDM cosmological model, namely the matter density Ωm, baryon
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Figure 5.3: Fisher information map for the same spherical slice as in Fig. 5.2. The ob-
served galaxy distribution from the 2M++ catalog, lying in the corresponding spherical
shell centered around the observer, is represented by the red dots. We find that the
regions in the vicinity of the massive cosmic structures, as traced by the galaxy distribu-
tion, are the most informative according to the Fisher information map. These regions
correspond to the regime of gravitational infall of the galaxy clusters.

density Ωb, cosmic curvature Ωk, Hubble constant h, amplitude of matter fluctuations σ8
and scalar spectral index ns of the primordial power spectrum. This entails computing
the gradient of the 3D galaxy field with respect to the cosmological parameters. This
gradient quantifies the sensitivity of the galaxy distribution to changes in the cosmo-
logical parameters. As such, the gradient is described by a 6D vector for each volume
element in the 3D grid. We compute the gradient using finite difference by executing
BORG forward model evaluations on the ensemble of data constrained realizations of the
cosmic initial conditions from the BORG 2M++ analysis [23], while varying the cosmolog-
ical parameters about their corresponding fiducial values, as given by the latest best-fit
values from the Planck Collaboration [5].

In Fig. 5.2, we visualize the individual gradient components of the six cosmological
parameters by representing them as cosmological sensitivity maps. To this end, we con-
sider a spherical slice of thickness ∼ 2.65h−1Mpc at a comoving distance of 100h−1Mpc
from the observer that is projected onto a healpix map [223]. The observed galaxies
from the 2M++ catalog lying in the projected spherical slice are also indicated. From
a visual comparison, we find that the density of baryonic matter, as characterized by
the Ωb parameter, induces the most significant response in the observed distribution
of cosmic structures, with the Ωm and σ8 parameters also having a notable influence.
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The astrophysical regions surrounding the filamentary patterns traced by the galaxies
respond effectively to changes in the latter cosmological parameters. In contrast, the
cosmic matter distribution displays a relatively minimal sensitivity to the Ωk parameter,
with the most noticeable effect of the cosmic curvature on the large-scale structures be-
ing on the densest regions, such as the galaxy clusters. The underdense regions of the
matter distribution, the so-called cosmic voids, are most impacted by changes in the Ωb

and σ8 parameters. We clarify that our structure formation model does not account for
baryonic physics, so that Ωb only modifies the amplitude of growth of matter perturba-
tions and the shape of the linear power spectrum. Nevertheless, it is straightforward to
repeat our analysis with hydrodynamical simulations to properly account for the pres-
ence of baryons. Given the significantly higher computational cost of such simulations,
one possible option would be to use physics emulators, recently being developed on a
large scale [307].

In addition to displaying the relative strength of the causal response of the cosmic
structures to changes in our underlying cosmological model, the array of sensitivity maps
in Fig. 5.2 reveals some interesting features. The σ8 map, for example, illustrates how the
clustering of matter occurs at the expense of the neighbouring regions, while the h map
shows that a modified Hubble flow yields different clustering features. Moreover, the Ωm

and Ωb maps display distinct anti correlated signatures. This may be attributed to the
fact that the sound horizon distance scale due to baryon acoustic oscillations (BAOs)
increases with both Ωm and Ωb, with the effect induced by Ωb being much stronger,
such that a fixed BAO scale encoded in the data yields this anti correlation between
these two maps. Similarly, the Ωm and σ8 maps depict a striking anti correlation. This
can be naturally explained on the basis that the primary constraining power emanates
from the combination of the growth rate f of cosmological perturbations and σ8, where
fσ8 ≈ σ8Ω

0.55
m for the ΛCDM model.

A crucial ingredient in the Fisher information formalism derived in our study, as
described by Eq. (5.12), lies in computing the above gradient. The desired 3D Fisher
information field, obtained using Eq. (5.12), can be represented as a Fisher information
map in the same way as the cosmological sensitivity maps. This Fisher information map
represents the combined information gain on all six cosmological parameters considered in
this study. The Fisher information map, for a spherical slice of thickness ∼ 2.65h−1Mpc
at a distance of 100h−1Mpc from the observer, is displayed in Fig. 5.3, along with
the observed galaxy distribution in this particular slice. The Fisher information map
indicates that the regions with the highest information gain are those in the vicinity
of the filamentary distribution traced by galaxies. One plausible interpretation is that
the regions of gravitational infall, where there is the accumulation of matter, are the
most informative about our cosmological model. This is particularly interesting as these
infalling regions are, as yet, relatively obscure and must be properly understood.

The BORG analysis of the 2M++ galaxy catalog showcased the capacity of the physical



154 5. Information gain maps from the local universe

240 250 260 270 280 290 300 310

comoving x [h−1 Mpc]

290

300

310

320

330

340

350

360

co
m

ov
in

g
y

[h
−

1
M

p
c]

Coma Fisher map

0

2000

4000

6000

8000

10000

‖
∆
δ /∆

θ ‖
22

1+
δ

Figure 5.4: Fisher information map of the Coma cluster, with its corresponding mass
density overlaid as a contour, for the central slice of thickness ∼ 5h−1Mpc through a
3D region centered on the cluster that extends over 40h−1Mpc. According to the Fisher
information map, the central region containing the core of the cluster encodes fairly
limited information gain, whilst the peripheral regions of the filaments and cluster core,
where mass accretion occurs via gravitational infall, constitute the largest amount of
information gain.
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forward modeling machinery to resolve the key features of prominent cosmic structures in
the present Universe [23]. The inferred mass profile of the Coma cluster, in particular, was
found to be in remarkable agreement with state-of-the-art weak lensing measurements.
Therefore, it is also interesting to study the characteristic features underlying the source
of cosmological information for this well-known cluster. Fig. 5.4 displays the Fisher
information map of the Coma cluster and its corresponding mass density. We note
that the figure depicts the central slice of thickness ∼ 5h−1Mpc through a 3D patch
extending over 40h−1Mpc. The features present in the Fisher map of the Coma cluster
are in accordance with those from the sky projected Fisher map from Fig. 5.3, thereby
supporting the interpretation that the information that can be gleaned from the regions
surrounding the filaments, i.e. the gravitationally infalling regions of the cluster, are the
most significant. Recent studies, relying on conceptually distinct methodologies, also
indicate that accretion filaments and the surroundings of voids are highly sensitive to
predictions of dark energy [308] and gravity [309] models. In contrast, the central core
of the cluster provides a relatively lower information gain, with the regions devoid of
matter displaying unsubstantial information. A key point worth stressing here is that
our relatively simple physics informed algorithm was capable of pinning down potential
regions of cosmological interest in the sky.

Now, one can use the maps displayed in Figs. 5.3 and 5.4 as a guide towards where to
look in order to optimally collect data for testing our physical model of structure forma-
tion. For the particular case demonstrated here, the data consists of galaxy counts and
the corresponding information gain predictions are for the galaxy clustering data. The
idea behind the targeted search approach is to recursively search for galaxies in the high
information gain regions, as quantified by the Fisher map, then use this newly acquired
data to constrain the model parameters and repeat the procedure. This is schematically
depicted in Fig. 5.5. The justification pertaining to why this search strategy is optimal is
further elaborated in Appendix 5.6. It should be understood that this approach can be
similarly extended to other observables for constructing the corresponding information
gain maps.

5.3 Discussion

The results presented in this work demonstrate the feasibility of machine aided targeted
searches for cosmological physics signals. These have become feasible through recent
developments of physics informed causal inference frameworks to study the 3D cosmic
large-scale structures, their origin and evolution with time. We have used 3D initial
conditions, inferred with the BORG algorithm, and a physics simulator of cosmological
structure formation to chart the response of observed structures in the Universe and their
corresponding information gain with respect to cosmological parameters. Our results are
the first of their kind and elucidate the inhomogeneous distribution of cosmological infor-
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Acquire new data
⟨I(θ|d0)⟩(ϕ|θ,d0): d0 → d

Obtain the posterior
p(θ,ϕ|d)

Calculate Fisher map
d0 ≡ d

⟨I(θ|d0)⟩(ϕ|θ,d0)

Figure 5.5: Flowchart of the targeted search approach. The core idea is to use the
existing knowledge as quantified by the posterior p(θ,ϕ|d) in order to calculate the
Fisher map marginalized over this posterior ⟨I(θ|d0)⟩(ϕ|θ,d0), keeping the observables of
interest. Then, this Fisher map will provide us with regions of the sky with highest
information gain potential for acquiring new data optimal for testing our model predic-
tions, ⟨I(θ|d0)⟩(ϕ|θ,d0): d0 → d. This data will in turn be used to update our knowledge
about the model through updating the posterior and the procedure would repeat until
the information content is fully depleted.

mation in the Universe. This study paves a new way forward to perform efficient targeted
searches for the fundamental physics of the Universe, where search strategies are pro-
gressively refined with new cosmological data sets within an active learning framework.

We have further illuminated the response of the cosmic large-scale structures with re-
spect to individual cosmological parameters. These results suggest that different features
of the cosmic structures respond differently to perturbations in the physics determined
by the cosmological parameters. For instance, we find that the vicinity of the filamentary
cosmic structures, corresponding to gravitationally infalling regions, are highly sensitive
to changes in the baryon density, with the cosmic curvature impacting only the surround-
ings of the dense galaxy clusters. Cosmic voids are primarily affected by the amplitude of
matter fluctuations and the baryon density. Our results demonstrate the value of going
beyond state-of-the-art analyses of the cosmic large-scale structures that are limited to
summary statistics and ignore this richness of the 3D cosmic structures. Even though
we consider one particular observable, namely galaxy counts, in this study, our proposed
framework can be seamlessly applied to other tracers, such as Lyman-α forest [300, 310],
which would bear complementary information.

Our findings further suggest that optimal targeted searches for research questions
have become feasible. Given a specific research question, our approach enables us to
propose targets for optimal information retrieval. This raises the question if traditional
survey strategies should be revised and if significant scientific progress could also be
driven by targeted searches with smaller, cheaper and faster instrumentation. We hope
that our contribution will trigger a discussion and new technological advances in the
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field.
While we studied the influence of cosmological parameters on the Universe in this

work, our proof of concept reveals the potentially far-reaching and groundbreaking impli-
cations when considering the physical effects induced by modified gravity [311], dynam-
ical dark energy [312] and exotic dark matter models, such as self-interacting [313] and
fuzzy dark matter [314], or massive neutrinos [315], on the cosmic large-scale structures.
Once we identify the astrophysical region(s) of interest, based on the Fisher information
map, for a particular model, we may subsequently proceed by computing accurate the-
oretical predictions for the spatial distribution of matter and luminous tracers for the
given model via cosmological N -body or hydrodynamical simulations with extremely
high resolution, thereby resulting in highly detailed physical features. The final step
would then entail observing the relevant region(s) and comparing the theoretical predic-
tions with the galaxy observations in a likelihood or posterior analysis. In essence, we
are proposing a novel way of doing science that optimizes scarce resources for maximal
scientific returns via an efficient observational strategy.
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5.4 Appendix A: 2M++ galaxy catalog

The 2M++ catalog [305] is a compilation galaxy redshifts derived from the Two-Micron-
All-Sky-Survey (2MASS) Redshift Survey (2MRS) [316], the Six-Degree-Field Galaxy
Redshift Survey Data Release 3 (6dFGRS-DR3) [317], and the Sloan Digital Sky Survey
Data Release 7 (SDSS-DR7) [318]. The resulting catalog has a greater depth and a higher
sampling rate relative to the Infrared Astronomical Satellite (IRAS) Point Source Catalog
Redshift Survey (PSCZ) [319]. The photometry is based on the 2MASS Extended Source
Catalog (2MASS-XSC) [320], an all-sky survey in the J , H and KS bands, with redshifts
in the KS band of the 2MRS complemented by those from the SDSS-DR7 and 6dFGRS-
DR3.

Since the 2M++ catalog is a combination of several surveys, the galaxy magnitudes
from all sources were first recomputed by measuring the apparent magnitude in the KS

band within a circular isophote at 20 mags arcsec−2. The apparent KS band magnitudes
were subsequently corrected by taking into account Galactic extinction, cosmological sur-
face brightness dimming, stellar evolution and k-corrections, while masking the Galactic
Plane. To account for the incompleteness due to fibre collisions in 6dFGRS and SDSS,
the redshifts of nearby galaxies within each survey region are cloned. The final 2M++
catalog contains 69190 galaxies in total, and is fairly sampling the galaxies of the cosmic
volume up to a distance of 200h−1Mpc for the area covered by the 6dFGRS and SDSS,
and up to 125h−1Mpc for the region mapped by 2MRS. For a more in-depth description
of the construction of the 2M++ catalog, we refer the interested reader to the original
compilation [305], with the computation of radial selection functions and target selection
completeness as required for the BORG 2M++ analysis [23] detailed in Section 4.1 thereof.

5.5 Appendix B: Fisher information maps

The proposed targeted search approach requires identifying regions of the observational
domain, which, when observed, can provide optimal information gain to update existing
knowledge. To quantify this information gain, we choose to employ Fisher information
[306]. The latter measures the amount of information that unseen observable data can
carry about uncertain model parameters. More explicitly, Fisher information estimates
the squared norm of the likelihood score for given model parameters averaged over all
possible future data realizations permitted by the likelihood. It, therefore, measures the
expected strength with which the likelihood will respond to changes in the model param-
eters once new data becomes available. For the specific case considered in this work, we
assume that prior knowledge on the spatial cosmic matter configuration is available from
previous observations. More specifically, we assume that the white noise realizations
(the phases) of the initial conditions ϕ are provided by the BORG reconstruction of the
2M++ survey [23]. Assuming this realization of initial conditions we can express the
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conditional Fisher information as:

I(θ|ϕ) = E(d|θ,ϕ)

[(
∂ ln(L(d|θ,ϕ))

∂θ

)2
]

=

∫
Dd

(
∂ ln(L(d|θ,ϕ))

∂θ

)2

L(d|θ,ϕ) , (5.1)

where θ corresponds to the set of cosmological parameters parametrizing our forward
model, with the galaxy observations within the voxels denoted by d = [Ni]i=1,...Nbox

and
Nbox corresponds to the number of the voxels inside the 3D volume considered in the
2M++ BORG reconstruction (see [23] for further details). Note that we express the vector
nature of these random variables using boldface symbols. For the sake of this work, we
assume a Poisson likelihood to describe the galaxy clustering data:

L(d|θ,ϕ) =
∏

i

e−λi(θ;ϕ)
λi(θ;ϕ)

Ni

Ni!
, (5.2)

where λi(θ;ϕ) denotes the rate of the specific realization of the Poisson process as dic-
tated by the initial phases ϕ and cosmological parameters θ, while Ni represents the
galaxy counts within the i-th cell of the 3D volume. Now, taking the derivative with
respect to the cosmological parameters θ gives:

∂ ln(L(d|θ,ϕ))
∂θ

=
∑

i

(
−∂λi(θ;ϕ)

∂θ
+

Ni

λi(θ;ϕ)

∂λi(θ;ϕ)
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)

=
∑

i

(
Ni

λi(θ;ϕ)
− 1

)
∂λi(θ;ϕ)

∂θ
. (5.3)

The square of the above derivative is given by:
(
∂ ln(L(d|θ,ϕ))
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=
∑
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λj(θ,ϕ)
+ 1

)
, (5.4)
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where we split the sum in diagonal and off-diagonal terms. Again, the indices i and j
denote the pixels in the healpix projection. Since given a density field, the individual
Poisson realizations are independent, the off-diagonal terms will vanish when computing
the Fisher information as given by Eq. (5.1). In order to see this, consider the following
data average of Eq. (5.4):
〈(

∂ ln(L(d|θ,ϕ))
∂θ

)2
〉

(d|θ,ϕ)
=
∑

ij

∂λi(θ;ϕ)

∂θ
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λj(θ;ϕ)
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, (5.5)

where we used the following identities:

⟨Ni⟩(d|θ,ϕ) = λi(θ;ϕ),

⟨N2
i ⟩(d|θ,ϕ) = λi(θ;ϕ) + λ2i (θ;ϕ) for ∀i ∈ [1, N ]. (5.6)

The first equality follows from the conditional independence of the Poisson realizations
within each grid cell, which always holds once the underlying density field λ(θ,ϕ) is
given, while the second results from the expression of variance of the Poisson distribution.
Therefore, the diagonal terms are:

I(θ|ϕ) =
∑

i

(
∂λi(θ;ϕ)

∂θ

)2
1

λi(θ;ϕ)
. (5.7)

From the above equation, we see that the contribution from a particular volume element
to the Fisher information is given by:

h′i(θ|ϕ) =
(
∂λi(θ;ϕ)

∂θ

)2
1

λi(θ;ϕ)
≡ λi(θ,ϕ)

(
∂ lnλi(θ;ϕ)

∂θ

)2

. (5.8)

This allows us to obtain a 3D Fisher map. Now, we also have to specify the Poisson
intensity in terms of the output of our physics simulator. This relation can be written
as:

λi(θ;ϕ) = B(δ ≡ G(θ;ϕ)) , (5.9)
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where B(x) is an arbitrary non-negative bias function and G(θ,ϕ) is a physics simulator
of the cosmic large-scale structures with output δ corresponding to the 3D matter density
contrast amplitudes. For illustrative purposes, we assume B(x) = 1 + x. Note any
bias model monotonic in the density will change the quantitative results, but not the
qualitative results, as can also be seen from Eq. (5.8). We then obtain:

λi(θ;ϕ) = 1 +Gi(θ;ϕ) , (5.10)

which leads to the following expression for the derivative with respect to cosmological
parameters θ:

∂λi(θ;ϕ)

∂θ
=
∂Gi(θ;ϕ)

∂θ
. (5.11)

We can therefore approximate the Fisher information elements through finite differencing
as:

h′i(θ;ϕ) =

(
∂Gi(θ;ϕ)

∂θ

)2
1

1 +Gi(θ;ϕ)

≈
(
Gi(θ0 +∆θ;ϕ)−Gi(θ0;ϕ)

∆θ

)2
1

1 +Gi(θ0;ϕ)
. (5.12)

Note, however, that the above calculation is done for a fixed realization of the phases ϕ.
Since we do not know what particular realization is compatible with our Universe, we
need to marginalize over them:

hi(θ|d) =
∫
Dϕ p(ϕ|d)h′i(θ|ϕ)

≡
∫
Dϕ p(ϕ|d)

(
∂Gi(θ;ϕ)

∂θ

)2
1

1 +Gi(θ;ϕ)
. (5.13)

This task is made possible by the BORG algorithm, as described in Section 2.6.1. In
this way, we are able to use the information content of the previously obtained constraints
and update the Fisher information. Projecting this 3D Fisher map onto a healpix grid
and visualizing a particular spherical slice through it, we obtain an all-sky map which we
refer to in our study as the Fisher information map. A particular example is provided
in Fig. 5.3.

Now, in order to calculate the Gi(θ0+∆θ;ϕ) term above, we first perform a forward
model evaluation by setting the cosmological parameters to their corresponding fiducial
values, θ0 ≡ {Ωm = 0.3111,Ωb = 0.049,Ωk = 7 × 10−4, h = 0.6766, σ8 = 0.8102, ns =
0.9665}, according to the latest Planck best-fit ΛCDM cosmology [5], for all the MCMC
realizations of the initial conditions from the BORG 2M++ analysis. We then compute
the mean galaxy field marginalized over the forward model output realizations. We
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subsequently repeat this procedure for a new set of perturbed cosmological parameters,
θ′ ≡ θ0 +∆θ, ensuring ∆θ does not exceed values outside 1-sigma width of a Gaussian
centered at the fiducial cosmology θ0 as characterized by Planck best-fit values. Using
the respective means of the fiducial and perturbed galaxy fields, we compute the gradient
of the forward model output with respect to the cosmological parameters, ∆G/∆θ, using
a finite differencing scheme, with:

∆G =

∫
Dϕ p(ϕ|d) [G(θ0 +∆θ;ϕ)−G(θ0;ϕ)]

≈ 1

Nϕ

∑

i

[G(θ0 +∆θ;ϕi)−G(θ0;ϕi)] with ϕi ←↩ p(ϕ|d)

and ∆θ = θ′ − θ0. The distinct gradient components correspond to the cosmological
sensitivity maps displayed in Fig. 5.2. The gradient is then squared and divided by
the mean fiducial galaxy field and marginalized over phase realizations, as required by
Eq. (5.12), to finally yield the desired Fisher information elements. The resulting Fisher
information map for a particular spherical slice through the 3D field is illustrated in
Fig. 5.3.

In this approach, we do not explicitly enforce that
∑

i Ωi = 1 for θ′, since we are
interested in infinitesimal and independent variations of the cosmological parameters as
required by the Fisher information. Therefore, although this is marginally inconsistent
from the cosmological perspective, it is perfectly consistent from the information theory
perspective. Furthermore, enforcing the

∑
iΩi = 1 in our forward model introduces

dependencies of the variations required for the evaluation of the Fisher information,
which renders the interpretation more convoluted. Nonetheless, we also tested the impact
of enforcing

∑
iΩi = 1 in our forward model and found that this has a negligible effect

on the derived Fisher information map. In addition, we verified the robustness of our
results, as expected, to the choice of fiducial cosmology.

5.6 Appendix C: Marginalizing phase realizations and
targeted searches

The derivation presented in the previous section took care of explicitly keeping, where
needed, the conditional dependence on the specific realization of the phases of the initial
density field, also referred to as the initial white noise field. The reason being that in
practice, the exact phase information of the initial density field is not available:

I(θ) =
∫

dϕP(ϕ) I(θ|ϕ) , (5.14)
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where P(ϕ) is a Gaussian prior with zero mean and unit variance for the initial white
noise field. We effectively use a Markov approximation of the integral by drawing random
realizations from the white noise prior and evaluating the corresponding averaged Fisher
information as:

I(θ) = 1

Nϕ

∑

i

I(θ|ϕi) . (5.15)

where the ϕi are independent white noise realizations. Similarly, we can just decompose
the averaged Fisher information into the individual components per volume element:

hj(θ) =
1

Nϕ

∑

i

hj(θ|ϕi) . (5.16)

It is clear that since we marginalize over all possible white noise realizations, there cannot
be any variation in the hi(θ) since every configuration is equally likely. Thus, without
any further prior information on the phases, every point in the Universe, on average, is
expected to contribute exactly the same amount of information.

This is one of the logical reasons behind performing homogeneous cosmological sur-
veys. However, we are no longer in a regime of cosmology where complete ignorance
about the Universe prevails. We have access to data, which can inform us about the
specific realization of our Universe. If we account for this fact, we can condition the
average Fisher information on the existing data:

I(θ|d) =
∫

dϕP(ϕ|d) I(θ|ϕ) . (5.17)

Now, P(ϕ|d) is the data constrained posterior of the initial phase distribution. Obtain-
ing this posterior distribution is a non-trivial task, but one that is solved by our BORG
algorithm. In particular, BORG provides a Markov approximation to the high-dimensional
posterior distribution P(ϕ|d), such that we can approximate the integral as:

I(θ|d) = 1

NBORG
ϕ

∑

i

I(θ|ϕBORG
i ) , (5.18)

with this inferred posterior of initial phase distributions being fairly robust to the details
of the physical model adopted [112]. Similarly, we can use the results of BORG to estimate
the Fisher information per volume element as:

hj(θ|d) =
1

NBORG
ϕ

∑

i

hj(θ|ϕBORG
i ) . (5.19)

The key point to realize here is that the result does not depend on the white noise
phases ϕ as they have been marginalized out. More precisely, this has been achieved by
evaluating Eq. (5.19) with NBORG

ϕ = 2422 samples characterizing the posterior P(ϕ|d).
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CHAPTER 6

CONCLUSION

The large-scale structure provides a wealth of cosmological information. One of the most
intriguing aspects is that it allows for obtaining insight into how the initial conditions of
our own universe looked like, allowing for constraining fundamental physics from large-
scale structure tracer data along the way. However, this cosmological information is
hidden in the highly non-linear structures formed throughout the history of the universe.
In order to extract it, one needs to employ sophisticated forward modelling techniques.
The aim of this thesis was precisely to make one step closer towards achieving this goal.

The framework developed in this thesis is the field-level EFT approach to large-scale
structure described in Chapter 3 and Section 2.6.2. It allows for extending the usual
standard perturbation theory approach into the quasi-linear regime and allows for rig-
orous control of the theoretical uncertainties on the obtained cosmological constraints.
Furthermore, it clearly motivates the shape of the likelihood to be utilized in the in-
ference, and gives a clear model for the matter-tracer mapping in perturbation theory.
The EFT forward model we develop, working at the field-level, is capable of modelling
the final density field mode by mode and therefore extracting maximum available in-
formation from the measured tracer field. This in turn allows for reproducing leading-
and next-to-leading order summary statistics of the final tracer field at the given order
in perturbation theory, and allows for a systematic way of proceeding to higher order
n-point functions (see Section 2.4 and Section 2.6.2).

In Chapter 3, we present a field-level forward modelling approach using the EFT of
large-scale structure capable of jointly sampling the cosmology (in particular the am-
plitude σ8), bias parameters as well as marginalizing over plausible initial conditions
consistent with the given data realization. This work is one of the first to allow for
consistent marginalization of the initial conditions space within the EFT framework.
We employ our EFT models in scenarios with model-mismatch and demonstrate that
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the consistency tests we present are a powerful tool of determining whether the forward
model captures all relevant clustering physics at the scales considered, as well as test for
the forward model robustness. We demonstrate the ability of unbiased inference of the
σ8 parameter even in the presence of strong model mismatch between the generated data
and model.

Afterward, in Chapter 4, we employ the reconstructed local dark matter density field
provided by the BORG algorithm, using cosmology consistent with Planck 2018 results
[5] in order to constrain fundamental dark matter properties such as its decay time
and annihilation cross section from the available γ-ray sky data provided by Fermi-LAT
[178]. We consider different plausible decay and annihilation channels. For annihilation,
we are able to exclude the WIMP thermal relic cross section for the case of s-wave
for masses mχ ≲ 7GeV/c2, while for velocity-dependent channels, p- and d-wave, we
obtain a1 < 2.4 × 10−21 cm3 s−1 and a2 < 3.0 × 10−18 cm3 s−1 at 95% confidence for
mχ = 10GeV/c2 respectively, both significantly above the corresponding thermal relic
cross section as calculated in Section 4.5.5. For the WIMP decay, we detect at the
level of 3.3σ a cross correlation between the measured γ-ray sky flux and the decay
template we constructed from the local dark matter distribution. The inferred decay
rate is Γ ≈ 6 × 10−28 s−1, however, the γ-ray data seems to prefer better a power-law
spectrum with an index p = −2.75+0.71

−0.46, suggesting astrophysical origin. With this we
demonstrate the potential of field-level large-scale structure reconstructions, pawing the
way for similar considerations in the future, where the field-level forward modelling can
be used in constraining fundamental physics.

Finally, in Chapter 5, we propose an active learning framework capable of detecting
regions on the sky promising highest information gain on the cosmology of interest. In
the era of big all-sky surveys, such a framework can be beneficial, allowing for focusing
only on particular highest information gain regions on the sky, and thus providing faster
convergence towards most optimal cosmological constraints. We construct such infor-
mation maps of galaxy count data for a particular forward model implemented within
the BORG algorithm, and demonstrate that the information map constructed correctly
points towards infalling regions as containing the highest information gain on cosmology.
Even though an expected result was constructed, the method of weighing the Fisher
information map by the posterior attained from previous Bayesian inference approaches,
as presented in Section 5.6, can be applied to any forward model of interest and guide
future explorations of our own universe.



APPENDIX A

MOMENTS OF THE COLD DARK MATTER
BOLTZMANN EQUATION

In Section 2.1 we have encountered the collisionless Boltzmann equation as a good de-
scription of the ensemble dynamics for cold dark matter. The equation was written in
Eq. (2.15) and states the following

∂f

∂t
+
∂f

∂xi
pi

ma
− ∂f

∂pi

(
Hpj +

m

a

∂Ψ

∂xj

)
= 0, (A.1)

with xi and pi being the corresponding phase space position and momentum, f being the
distribution function, H the Hubble parameter, a the scale factor and Ψ the gravitational
potential in which dark matter particles evolve. The goal of this appendix is to derive
the fluid equations from Eq. (2.16) and subsequently show why the vanishingly small
velocity dispersion of dark matter allows us to drop the stress tensor. However, this
approximation breaks down once we start to discuss structure formation as explained in
Section 2.3 and Section 2.4.

In order to derive the fluid equations, we need to take the first two moments of
Eq. (A.1). The reason why we can stop at the level of second moment was presented at
the end of Section 2.3 and is a direct consequence of the smallness of the mean free path
of the dark matter particles with respect to the typical scales of interest. We will list the
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first moment results for each term from Eq. (A.1), explicitly writing out the arguments

∫

p

∂tf(x,p, t) = ∂t

∫

p

f(x,p, t) = ∂tn(x, t) =
1

m
∂tρ(x, t),

∫

p

∂if(x,p, t)
pi

am
=

1

am

∫

p


∂i

(
f(x,p, t)pi

)
− f(x,p, t) ∂ipi︸︷︷︸

=0




=
1

am
∂i

(
⟨m⟩f(x,p,t)

⟨pi⟩f(x,p,t)
⟨m⟩f(x,p,t)

)

=
1

am
∂i
(
ρ(x, t)vi(x, t)

)
∫

p

(
Hpi +

m

a
∂iΨ
)
∂pif(x,p, t) = H

∫

p

pi∂pif(x,p, t) +
m

a

∫

p

∂iΨ(x, t)∂pif(x,p, t)

= H pif(x,p, t)
∣∣∣
p→∞

p→−∞︸ ︷︷ ︸
=0

−H
∫

p

∂pip
i

︸︷︷︸
=3

f(x,p, t)

+
m

a
∂iΨ(x, t) f(x,p, t)

∣∣∣
p→∞

p→−∞︸ ︷︷ ︸
=0

−m
a

∫

p

(
∂pi∂iΨ(x, t)

)
︸ ︷︷ ︸

=0

f(x,p, t)

= − 1

m
3Hρ(x, t). (A.2)

We have relied throughout on the phase space coordinates x and p being independent, as
well as that the distribution function has an exponentially decaying wings and approaches
to zero for infinitely big momenta. In summary, the first moment of the Boltzmann
equation gives

∂tρ(x, t) +
1

am
∂i
(
ρ(x, t)vi(x, t)

)
+ 3Hρ(x, t) = 0, (A.3)

which is exactly the continuity equation. Now, using the relation ρ(x, t) = ρ(t)(1 +
δ(x, t)) to introduce density fluctuations δ(x, t), alongside with the energy conservation
equation Eq. (2.9) to remove the ∼ Hρ(x, t) term, immediately gives the first line in
Eq. (2.17).

In order to derive the Euler equation, we can take the second moment of Eq. (A.1).
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Again, term by term we get

∂t

∫

p

pif(x,p, t) = ∂t
(
ρ(x, t)vi(x, t)

)

∫

p

pj∂if(x,p, t)
pi

am
=

1

am
∂i

∫

p

f(x,p, t)pipj

def.
=

1

a

(
ρ(x, t)vi(x, t)vj(x, t) + σij(x, t)

)
∫

p

pj
(
Hpi +

m

a
∂iΨ(x, t)

)
∂pif(x,p, t)

P.I.
= −H

∫

p

∂pi
(
pipj

)
f(x,p, t)

− m

a

∫

p

∂pi
(
pj∂iΨ(x, t)

)
f(x,p, t)

= −H
∫

p

(
piδij + 3pj

)
f(x,p, t)

− m

a

∫

p

δij∂iΨ(x, t)f(x,p, t)

= −4Hρ(x, t)vj(x, t)− 1

a
∂jΨ(x, t)ρ(x, t),

(A.4)

where P.I.
= stands for partial integration. Once again, we have used the asymptotic proper-

ties of the distribution function to neglect other terms appearing after partial integration.
We also introduced the anisotropic stress tensor σij(x, t), which quantifies departures
from coherent flows. Reader is referred to [321] for classical treatment and [322] for
relativistic treatment of the anisotropic stress tensor. In total, the 2nd moment of the
Boltzmann equation gives

∂t(ρ(x, t)v
i(x, t)) +

1

a
∂i
(
ρ(x, t)vi(x, t)vj(x, t) + σij(x, t)

)

+Hρ(x, t)vj(x, t) +
1

a
∂jΨ(x, t)ρ(x, t) = 0. (A.5)

After accounting for the appearance of continuity equation in the above, it reduces to
the familiar Euler equation, given in the second line of Eq. (2.17)

vj ′(x, t) + vi(x, t)∂iv
j(x, t) +Hvj(x, t) + ∂jΨ(x, t). (A.6)

We have also dropped the anisotropic stress from the final equation, which however
should be taken into account once discussing structure formation (see Section 2.3). The
absence of anisotropic tensor outside the regime of structure formation, follows from
the assumption that dark matter is dynamically cold. This means that the dark matter
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particles are moving along with the bulk flow, and the velocity field has negligible velocity
dispersion. In other words, the momentum transfer between the dark matter particles is
assumed to be completely reversible, and comes from the transport of the dark matter
particles due to the surrounding gravitational potential. This means that in principle
one can write down the distribution function of dark matter as

f(x,p, t) ∼ n(x, t)δ
(3)
D (p−mv(x, t)). (A.7)

To see that this distribution function has vanishing anisotropic stress, it is enough to
again calculate ⟨pipj⟩ and see it only produces the first term on the third line of Eq. (A.4).
Once structure formation ensues, this approximation no longer holds, since the fluid flow
lines begin intersecting.



APPENDIX B

LAGRANGIAN PERTURBATION THEORY

In Chapter 2 we have derived how the solutions for the density contrast and curl-free
velocity field look like in Eulerian perturbation theory. However, given that we are in
pursuit of describing motions of the dark matter fluid, a more natural frame to treat
the particle trajectories is the Lagrangian frame. One of the main advantages of this
approach is faster convergence towards the true clustering solution given by direct N-
body integration, for example. In Lagrangian PT it is possible to also describe much
larger density contrasts compared to Eulerian PT, which relies on the fact that density
contrast remains small as emphasized at the end of Section 2.1. Furthermore, in one
dimensional universe, the first order LPT solutions to the clustering problem are exact
up to the crossing of fluid flow trajectories [323, 324]. These properties also motivate
our own EFT forward modelling choices presented in Chapter 3.

As in Eulerian PT, the LPT seeks to find solutions to the dynamics of the self-
gravitating system such as the dark matter fluid. Again, as emphasized in Section 2.1,
we are not interested in following each individual particle, but want to describe the
evolution of the motion of an ensemble of dark matter particles, or equivalently, the fluid
elements. Numerically, this can be achieved by discretizing the phase-space sheet of dark
matter and integrating the geodesic equation of dark matter particles. This is exactly
the approach undertaken by numerical N-body simulations (see e.g. [325]). The geodesic
equations for non-relativistic dark matter are (see e.g. Section 3.3.2 in [42])

dxi

dη
=
pi

m

dpi

dη
= −Hpi −m∂iΨ, (B.1)

using the same notation as in Section 2.1. The LPT proceeds by introducing the dis-
placement field ψ relating the initial Lagrangian coordinates, q, i.e. the initial point
along the given fluid flow line, and final Eulerian coordinates x by

x(q, t) = q +ψ(q, t). (B.2)
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The corresponding Jacobian of this coordinate transform is

J =

∣∣∣∣
d3x

d3q

∣∣∣∣ = det (1 + ∂qψ) , (B.3)

which then, due to mass conservation, imposes

1 + δ(x) = J −1 (B.4)

assuming initial slice fluctuations are very small. Combining then the two first order
ODEs from Eq. (B.1) into a single 2nd order ODE for x and focusing on the divergence
part of the equation, we get

∇x
[
d2x

d2η
+Hdx

dη

]
=

3

2
ΩmH2(J −1 − 1), (B.5)

assuming EdS as in Section 2.1. Note that the neglect of the curl part of the equation of
motion only affects us at third order (see e.g. [30]). Furthermore, the error in taking the
EdS approximation with respect to the full ΛCDM treatment is below a percent (ibid.).
Since in Chapter 3 we don’t go further than 2nd order LPT and therefore there is no need
to discuss the higher order solutions in this review of LPT. However, for a full systematic
treatment, the reader is referred to [30, 116, 297, 326]. Note that the derivatives with
respect to Eulerian and Lagrangian coordinates are related as ∂xi = J −1∇qi . One can
now continue and expand Eq. (B.5) in displacement field perturbations. We need to
expand both J and ψ, keeping all relevant terms at the given order. At first order we
have

J (1) =
∑

i

∂qiψ
(1)
i ≡

∑

i

ψ
(1)
i,i . (B.6)

This then results in the following differential equation for the displacement field ψ (see
also [54]) (

d2

dη2
+H d

dη
− 3

2
ΩmH2

)
ψ

(1)
i,i = 0, (B.7)

which is the same as the linear growth equation from Eq. (2.21). Therefore, we once
again have the decaying and growing solution. Focusing on the growing solution and
using the relation between the displacement field and density field at leading order from
Eq. (B.4) we have

ψ(1)(k, η) =
ik

k2
δ(1)(k, η). (B.8)

This solution is also known as the Zel’dovich approximation [323] and can be demon-
strated to yield surprisingly accurate results with respect to the full N-body solution
(see for example Fig 6. in [297]). In fact, in one dimensional universe this displacement
field yields exact solutions when applied in Eq. (B.2) to displace particles from initial
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positions q, however only up to the shell crossing. Remedying this problem requires the
introduction of counter terms via the stress tensor, τ ij, as discussed in Section 2.3.

This approximation can be improved quite significantly when proceeding to second
order solution. For this, one can again use the fact that in EdS the growth factors are
simple and at nth order are given as n powers of a, hence the following relations hold

d2ψ(n)

da2
=
n(n− 1)

a2
ψ(n),

dψ(n)

da
= nψ(n). (B.9)

Therefore at nth order, Eq. (B.5) is given by [54]

J (1 + ∂qψ)
−1
[
n2 +

n

2

]
H2ψ

(n)
i,j =

3

2
H2(J − 1). (B.10)

Note that we have kept the Jacobian inverse, since we need to expand all the operators
up to 2nd order explicitly before solving the differential equation. Expanding now all
the Jacobian terms and keeping everything up to 2nd order in displacement fields gives
the following equation for ψ(2)

ψ
(2)
i,i = − 3

14

∑

i,j

(
ψ

(1)
i,i ψ

(1)
j,j −ψ(1)

i,j ψ
(1)
j,i

)
, (B.11)

and the resulting 2nd order displacement field ψ(2) can be obtained by direct integration.
In fact, in Appendix A of [30] analytical solutions up to any order are given for the
components of the displacement field in the EdS approximation.

After calculating the displacement field up to any given order, one can then directly
calculate the final density field fluctuations which arises as a result through

δ(k) =

∫
d3xe−ik·xδ(x) =

∫
d3qe−ik·q (e−ik·ψ(q) − 1

)
, (B.12)

using the Jacobian from Eq. (B.3). Proceeding and expanding the exponential of the
above equation gives order by order the relation between Eulerian and Lagrangian PT
(see for example [297]). This relation is only achievable, however, before shell crossing,
i.e. only while the Jacobian J is invertible and non-singular (see [327] for a proof).

An important note is that instead of expanding in density fluctuations, what LPT
does is to expand in small displacements. It doesn’t assume anything about the final
density fluctuations, and hence can capture a much wider range of final overdensities.
The downturn is that it can only be taken as formally correct up until the fluid tra-
jectories cross. Nonetheless, LPT does provide insights into the fully non-linear regime
and is capable of reproducing leading moments of the fully non-linear density field quite
accurately (see [30, 297, 328]). Precisely because of this reason, we employ LPT in our
own EFT forward models in Chapter 3.
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