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Wichtige Vorbemerkungen zu vorliegender Dissertationsschrift

Vorliegende Dissertationsschrift basiert auf einem vom Verfasser im Auftrag des Bundesamtes
fiir Strahlenschutz (BfS) von 2014 bis 2016 durchgefiihrten Forschungsprojekt mit dem Titel
,Evaluierung neuer CT-Techniken und Bestimmung der mit ithnen erzielten Strahlenreduktion
bei verschiedenen CT-Betreibern in Deutschland* (siehe Tab. 0.1) [94, 257, 258].

Tab. 0.1. Eckdaten des BfS-Forschungsprojektes.

Projektname: Evaluierung neuer CT-Techniken und Bestimmung der mit ihnen erzielten Strahlen-
reduktion bei verschiedenen CT-Betreibern in Deutschland

Projektnummer: BfS AG-F3 — 0803 /3613520025

Auftraggeber: Bundesminister fiir Umwelt, Naturschutz und Reaktorsicherheit

Projektbetreuer: Dr. Alexander Schegerer, Bundesamt fiir Strahlenschutz, AG-SG 2.3

Projektleiter: Prof. Dr. med. Hans-Christoph Becker, i.V. PD Dr. med. Clemens Cyran, vormaliges

Institut fiir klinische Radiologie (Direktor: Prof. Dr. med. Dr. h.c. Maximilian Reiser,
FACR, FACS), Klinikum der Universitidt Miinchen

Projektinhalte: = Literaturstudie zum Stand der CT-Technik

= Querschnittsstudie zu Bildqualitit und Strahlendosis in der CT

= Prospektive Phantomstudie zu Bildqualitdt und Strahlendosis in der CT
Offizielle Laufzeit: 01.01.2014 —30.06.2015

Das Forschungsprojekt setzte sich aus drei Unterprojekten zusammen: Zunichst wurde eine
Literaturstudie zum Stand der CT-Technik im Jahr 2014 durchgefiihrt, der sich eine Quer-
schnittsstudie zum Einfluss verschiedener CT-Verfahren auf Bildqualitit und Strahlendosis an-
hand einer Erhebung von rund 300 in anonymisierter Form vorliegender Bilddatensétzen bei
rund 50 CT-Betreibern anschloss und durch eine Phantomstudie erginzt wurde.

Literaturstudie, Datenakquisition, Datenverarbeitung, mathematische Dosimetrie, Mes-
sung der objektiven Bildqualitdt, statistische Verarbeitung und Abfassung der internen For-
schungsberichte wurden allein vom Verfasser dieser Arbeit durchgefiihrt. Die Bestimmung der
subjektiven Bildqualitét erfolgte durch Mitarbeiter des vormaligen Institutes fiir klinische Ra-
diologie, Klinikum der Universitidt Miinchen, unter Federfithrung von Herrn PD Dr. Dr. R.
Stahl. Die prospektive Phantomstudie wurde von Frau Ursula Lechel, Bundesamt fiir Strahlen-
schutz, in Zusammenarbeit mit dem Verfasser dieser Arbeit durchgefiihrt. Fiir das Promotions-
vorhaben wurde die initial bis Mitte 2014 reichende Literaturstudie vom Verfasser bis zum
Ende des Jahres 2015, dem Jahr der Querschnittsstudie und dem Endpunkt des Forschungs-
vorhabens, um etwa 300 Literaturstellen auf rund 1100 Referenzen erweitert.

Die Inhalte dieser Dissertationsschrift entsprechen somit vielfach jenen, wie sie in den
Forschungsberichten des Verfassers an das Bundesamt fiir Strahlenschutz formuliert wurden
[94,257,258]. Aus diesem Grunde finden sich zahlreiche Formulierungen aus den Forschungs-
berichten teils im Wortlaut in vorliegender Arbeit wieder. Die unmittelbare Bezugnahme der
Dissertationsschrift auf entsprechende Passagen in den zugehdrigen Forschungsberichten wird
im Folgenden durch fett-kursive Zitation wie folgt kenntlich gemacht: /94, 257, 258]. Aul3er-
dem wurden vom Verfasser dieser Arbeit aus sprach6konomischen Griinden vornehmlich in
der Einleitung zu dieser Arbeit Textpassagen und Abbildungen aus einem von ihm fiir die
Firma Bayer Leverkusen verfassten Online-Tutorial fiir Medizinisch-technische Radiologieas-
sistenten [76] sowie aus seiner ersten Dissertationsschrift [73] und seiner Habilitationsschrift
[7574] iibernommen.

Die vorliegende Dissertationsschrift gibt - ebenso wie der Abschlussbericht zum For-
schungsvorhaben des Bundesamtes fiir Strahlenschutz - die Auffassung und Meinung des Ver-
fassers wieder und muss nicht mit der Meinung des Auftraggebers des Forschungsprojektes
(Bundesminister fiir Umwelt, Naturschutz und Reaktorsicherheit) {ibereinstimmen.



Der Verfasser erklirt, die Arbeit mit den hier genannten Einschrinkungen selbstdndig
abgefasst und Quellenangaben nach bestem Wissen und Gewissen verfertigt zu haben.

Miinchen, im Friihjahr 2023 PD Dr. rer. biol. hum. habil. Michael Seidenbusch
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“When you can measure what you are speaking about,

and express it in numbers, you know something about it;

but when you cannot express it in numbers,

your knowledge is of a meagre and unsatisfactory kind;

it may be the beginning of knowledge, but you have scarcely,
in your thoughts, advanced to the stage of science,

whatever the matter may be.”

William Thomson, 1% Baron Kelvin, 1883



0. Zusammenfassung /94, 257, 258]

Vorliegende Arbeit enthélt eine Literaturstudie zum Stand der CT-Technik bis zum Jahr 2015
sowie eine Querschnittsstudie zur Evaluierung neuer CT-Techniken und zur Bestimmung der
mit diesen Techniken erzielten Strahlendosisreduktion im Jahr 2015.

Im Rahmen der Literaturstudie wurden tiber 1100 Literaturquellen zur Strahlenexposi-
tion einzelner Patienten und der Gesamtbevolkerung bei CT-Untersuchungen, zu nationalen
Dosisreferenzwerten sowie zu den einzelnen Dosisreduktionstechniken in der CT und deren
Auswirkungen auf den Dosisbedarf vor allem der CT-Untersuchungen des Schidels, des Tho-
rax und des Abdomens aufgenommen.

In der Querschnittsstudie zur Evaluierung neuer CT-Techniken und zur Bestimmung der
mit ihnen erzielten Strahlendosisreduktion wurde der Einfluss der Konstantstromtechnik, der
Rohrenstrommodulation und der iterativen Bildrekonstruktion auf die Strahlenexposition des
Patienten sowie die objektive und subjektive Bildqualitdt der CT-Schnittbilder untersucht.
Hierzu wurde bei 54 verschiedenen CT-Betreibern in Deutschland eine Analyse von 465 CT-
Bildserien aus 280 CT-Untersuchungen des Schédels, des Thorax, des Abdomens und der CT-
Angiographie der A. pulmonalis bei erwachsenen Patienten hinsichtlich der Strahlendosis und
der Bildqualitédt durchgefiihrt. Die Rekonstruktion der Strahlendosen wurde durch Extraktion
der in den DICOM-Bilddatensitzen dokumentierten Expositionsparameter durch einen im
Rahmen der Arbeit entwickelten Algorithmus zur Analyse der DICOM-Daten und deren Wie-
terverarbeitung durch die kommerziell verfiigbare PC-Software CT-Expo durchgefiihrt. Die
Ermittlung der objektiven Bildqualitét erfolgte durch eine Messung des Bildpixelrauschens,
des Signal-Rausch-Verhiltnisses und des Kontrast-Rausch-Verhéltnisses in ausgewéhlten ana-
tomischen Regionen, die Bestimmung der subjektiven Bildqualitédt durch die visuelle Beurtei-
lung der CT-Schnittbilder durch zwei unabhingige Befunder.

Die Wirksamkeit der R6hrenstrommodulation ist wesentlich vom Lebensalter des Patien-
ten und vom Untersuchungsprotokoll abhéngig; wie gezeigt werden konnte, kann die Réhren-
strommodulation gegeniiber der Konstantstromtechnik bei Erhaltung einer diagnostisch ver-
niinftigen Bildqualitdt eine Reduktion der Strahlenexposition des Patienten um bis zu 50% be-
wirken. Sie kann heute als Dosisreduktionstechnik der Wahl bei jeder Form der CT-Unter-
suchung angesprochen werden. Iterative Bildrekonstruktionsverfahren kénnen zusitzlich zur
Rohrenstrommodulation angewandt werden und erlauben unter klinischen Bedingungen bei
gleichzeitiger Anhebung der objektiven und der subjektiven Bildqualitét ebenfalls eine Dosis-
reduktion um 50% und mehr. Insbesondere bei den Abdomentechniken gestatten der Einsatz
der Rohrenstrommodulation, der iterativen Bildrekonstruktion sowie die Kombination aus
beiden Techniken bei zunehmendem Durchstrahlungsdiameter des Patienten eine weitgehende
Konstanthaltung der Strahlendosis bei weitestgehend gleichbleibender Bildqualitat.

Demgegeniiber kann die reine Anwendung der Konstantstromtechnik weder bei der CT-
Untersuchung des Schidels noch bei CT-Untersuchungen des Korperrumpfes mehr empfohlen
werden; auch bei péddiatrischen CT-Untersuchungen von Kindern aller Altersstufen empfiehlt
sich der Einsatz der R6hrenstrommodulation.

Die kombinierte Anwendung der R6hrenstrommodulation und iterativer Bildrekonstruk-
tionsverfahren erweist sich vor allem im Rahmen von CT-Abdomentechniken bei adipdsen
Patienten hinsichtlich der Strahlenhygiene und der Bildqualitit als besonders wirkungsvoll. Bei
der Anwendung iterativer Verfahren ist allerdings auf eine sorgfiltige Einstellung der Itera-
tionsparameter zur Vermeidung artifizieller Bildartefakte zu achten.
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1. Einleitung /94, 257, 258]

Die Computertomographie (CT) zihlt zu den dosisintensivsten Verfahren der Rontgendiagnos-
tik [143] und trégt in zunehmendem Mal3e zur Strahlenexposition der bundesdeutschen Bevol-
kerung bei [189]. Andererseits existieren eindeutige strahlenepidemiologische Hinwiese auf
eine Erhohung des stochastischen Strahlenrisikos nach computertomographisch bedingter
Strahlenexposition [19, 25]. Aus diesem Grunde wird die Reduktion der bei computertomogra-
phischen Untersuchungen applizierten Strahlendosen als eines der wichtigsten Ziele der
technologischen Weiterentwicklung der CT bezeichnet [13].

In den vergangenen Jahren wurden mehrere neue computertomographische und bildver-
arbeitungstechnische Verfahren entwickelt, als welche unter anderem die dynamische R6hren-
strommodulation und die verschiedenen Algorithmen zur iterativen Bildrekonstruktion zu
nennen sind. Diese Verfahren weisen jeweils alleine bzw. in Kombination untereinander un-
terschiedliche Dosisreduktionspotentiale auf und sind demgemifB Gegenstand zahlreicher Stu-
dien zu Bildqualitdt und Strahlendosis in der CT geworden [91, 92]. Allerdings konnte die
Frage, in welchem Umfang die verfligbaren CT-Verfahren in der Bundesrepublik Deutschland
klinisch Anwendung finden und in welchem MalBe sich die Verfahren der Réhrenstrommo-
dulation und der iterativen Bildrekonstruktion unter klinischen Routinebedingungen auf die
Strahlenexposition des Patienten und die erzielte Bildqualitit der CT-Untersuchungen aus-
wirken, noch nicht abschlieBend beantwortet werden.

Aus diesem Grunde erfolgte im Rahmen eines Forschungsprojektes des Bundesamtes fiir
Strahlenschutz zum einen die Anfertigung einer Literaturstudie zum Stand der CT-Technik
hinsichtlich der Optimierung von Bildqualitit und Strahlendosis [94] und zum anderen die
Durchfiihrung einer Querschnittsstudie zur Bestimmung der mit den Verfahren der Réhren-
strommodulation und der iterativen Bildrekonstruktion unter klinischen Bedingungen bei ver-
schiedenen CT-Betreibern in Deutschland erzielten Dosisreduktion unter Beriicksichtigung der
hierbei jeweils erreichten Bildqualitédt [258, 257]. Im Rahmen der Literaturstudie wurde eine
Analyse von iiber 1100 wissenschaftlichen Artikeln aus internationalen radiologischen Zeit-
schriften vor allem hinsichtlich moderner Verfahren zur Reduktion der Strahlendosis bei com-
putertomographischen Untersuchungen vorgenommen. Im Rahmen der Querschnittsstudie mit
rund 50 teilnehmenden radiologischen Einrichtungen aus dem Bundesgebiet erfolgte eine Ana-
lyse von insgesamt rund 300 CT-Datensétzen, wie sie im Rahmen von Standard-CT-Unter-
suchungen des Schédels, des Thorax und des Abdomens sowie bei der CT-Angiographie der
A. pulmonalis unter Anwendung der konventionellen Konstantstromtechnik, der Réhrenstrom-
modulation und der iterativen Bildrekonstruktion angefertigt wurden, in Hinblick auf den
Dosisbedarf der jeweiligen Untersuchung und die hierbei erzielte Bildqualitit.
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1. Einleitung




2. Grundlagen
2.1. Die Entwicklung der Computertomographie [76]

Fast gleichzeitig mit der Entdeckung der Rontgenbremsstrahlung durch Wilhelm Conrad
Rontgen im Jahre 1895 wird deren Eignung zur nicht-invasiven Darstellung der menschlichen
Anatomie erkannt. Rontgenologen wie der Hamburger Arzt Hans Albers-Schonberg sind sich
der klinischen Bedeutung dieser ,,neuen Art von Strahlung® [8] fiir die medizinische Diagnostik
bewusst und rufen das neue medizinische Fachgebiet der Rontgenologie ins Leben, welches in
den folgenden Jahren die Medizin revolutionieren wird. In diesen ersten Jahren der neu erstan-
denen Rontgendiagnostik werden auch die grundlegenden radiologischen Verfahren geschaf-
fen, wie sie das Bild dieser neuen Wissenschaft fiir mehrere Generationen prigen werden:
Zunéchst die Rontgendurchleuchtung, welche darin besteht, dass zwischen eine laufende Ront-
genrohre und einen strahlenempfindlichen Durchleuchtungsschirm der Patient gebracht wird,
wobei erstmals die Beobachtung dynamischer physiologischer Prozesse wie des Herzschlages,
der Atemtitigkeit oder des Schluckaktes durch den Rontgenarzt gelingt; und schlieflich die
Radiographie, welche in Analogie zur Photographie in der Anfertigung einer Momentaufnah-
me der von der Rontgenstrahlung dargestellten anatomischen Strukturen auf einer photographi-
schen Emulsion besteht und die fiir den Rontgenologen, welcher vordem seine wihrend des
Durchleuchtungsvorganges durchgefiihrten Beobachtungen hiufig noch durch Bleistiftskizzen
zu dokumentieren gezwungen war, eine ganz wesentliche Erleichterung seiner klinischen Té-
tigkeit bedeutet. Beiden bildgebenden Verfahren gemein ist jedoch die Tatsache, dass der im
menschlichen Korper bestehende komplexe rdumliche Situs der Organe und Gewebe durch den
Rontgenstrahl nach den Gesetzen der geometrischen Optik lediglich in Gestalt eines planaren
Uberlagerungsbildes dargestellt, mithin also die dreidimensionale Wirklichkeit auf ein zwei-
dimensionales Schattenbild projiziert wird, ein Mangel, welcher zwar friithzeitig erkannt wird,
fiir welchen es jedoch keine Abhilfe zu geben scheint. In der Frankfurter Zeitung vom 7. Januar
1896 findet sich die Notiz: ,,Und ldsst man der Phantasie weiter die Ziigel schief3en, stellt man
sich vor, dass es gelingen wiirde, die neue Methode des photographischen Prozesses mit Hilfe
der Strahlen aus den Crookeschen Rohren so zu vervollkommnen, dass nur eine Partie der
Weichteile des menschlichen Korpers durchsichtig bleibt, eine tiefer liegende Schicht aber auf
der Platte fixiert werden kann, so wdre ein unschdtzbarer Behelf fiir die Diagnose zahlloser
anderer Krankheitsgruppen als die Knochen gewonnen.” [6]. Tatséchlich wird sich in einigen
Jahrzehnten durch die Entwicklung der konventionellen Schichtbildgebung ein technisch auf-
wendiges Verfahren zur schichtweisen Abtastung des menschlichen Kdrpers im klinischen Ge-
brauch befinden, welches aber mehr einen Anfangsdienst denn ein dauerhaftes Mittel darstellt.

Die folgenden Jahre und Jahrzehnte sind durch eine rege Forschungstétigkeit gepriagt. Da
in dem noch jungen Gebiet der Rontgenologie die Deutung der anatomischen Wirklichkeit
anhand der folgerichtigen Interpretation zweidimensionaler Projektionsbilder erfolgt, ist die
erfolgreiche Suche nach pathognomonischen Rontgenzeichen der planaren Radiographie und
deren Beschreibung im Rahmen des neuen Fachgebietes der Rontgenanatomie wesentlicher
Bestandteil der wissenschaftlichen Auseinandersetzung mit dem Fachgebiet.

Die wesentliche, sich in wenigen Jahrzehnten als geradezu schicksalshaft fiir die diag-
nostische Radiologie erweisende Frage wird indessen nicht in der Medizin, sondern in der
Mathematik gestellt und beantwortet; der mahrische Mathematiker Johann Radon liefert 1926
mit seinem spéter als Radon-Theorem bezeichneten Lehrsatz die theoretische Grundlage fiir
die mathematische Rekonstruktion eines dreidimensionalen Objektes aus der Gesamtheit
seiner zweidimensionalen Projektionsbilder. Allerdings ist an eine praktische Anwendung des
Radon-Theorems noch nicht zu denken, zumal hierfiir duBerst komplexe numerische Rechen-
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vorginge durchgefiihrt werden miissen, wie sie selbst wenige Jahre spiter mit den neuen elek-
tromechanischen Rechenmaschinen nicht zu bewéltigen sind.

Schnelle transistorgesteuerte Elektronenrechner, wie sie fiir eine derartige Aufgabe er-
forderlich sind, werden erst in den 1960er-Jahren von der britischen Firma EMI unter der Lei-
tung des Elektrotechnikers Godfrey Hounsfield entwickelt. Diese neuen schnellen Elektronen-
rechner sind in der Lage, selbst dullerst komplexe Rechenvorgédnge innerhalb weniger Stunden
vorzunehmen. Hounsfield erhdlt nach dem erfolgreichen Abschluss seines Projektes aufgrund
der durch die Plattenvertriige mit den Beatles durch EMI erzielten finanziellen Uberschiisse
das Angebot, ein Forschungsprojekt frei zu wihlen. In Ubereinstimmung mit den theoretischen
Vorarbeiten des Physikers Allan Cormack verwirklicht er nunmehr seine Idee, das Radon-
Theorem mit Hilfe der neuen Transistorrechnertechnik auf das Problem der dreidimensionalen
radiologischen Bildgebung anzuwenden [ 1, 3]. Hierbei soll mittels eines um den Patienten ro-
tierenden bildgebenden Systems unter zahlreichen Projektionswinkeln eine Vielzahl von Pro-
jektionsaufnahmen angefertigt werden, aus deren Transmissionsdosisprofilen unter Verwen-
dung der schnellen neuen Computer eine Rekonstruktion der dreidimensionalen anatomischen
Strukturen gemiBl dem Radon-Theorem erfolgen soll. Dieses neue Verfahren der Schnittbild-
gebung mit Hilfe von Computern wird schlieBlich erfolgreich fiir die radiologische Untersu-
chung des Gehirnschédels einer Patientin angewandt und in der Folge filir weitere klinische
Untersuchungen nutzbar gemacht; im Jahre 1973 verfiigen bereits einzelne Kliniken iiber die
ersten CT-Scanner der Firma EMI. Trotz der anfanglich von klinischen Radiologen geduflerten
ernsthaften Bedenken hinsichtlich des noch sehr hohen technischen, zeitlichen und finanziellen
Aufwandes des neuen Bildgebungsverfahrens wird die Computertomographie in wenigen
Jahren ein neues Zeitalter der Radiologie heranbrechen lassen.

2.2. Technische Prinzipien der Computertomographie [76]

Bei der planaren Radiographie entsteht durch die partielle Schwichung eines die zu untersu-
chende anatomische Region des menschlichen Korpers unter einem definierten Projektions-
winkel bzw. in einem bestimmten Strahlengang durchsetzenden Rontgenstrahls auf der Strahl-
austrittsseite ein Transmissionsprofil, welches einem virtuellen Strahlenbild entspricht, aus
welchem das projektionsradiographische Abbild der anatomischen Region gewonnen werden
kann (Abb. 2.1). Bei der Computertomographie hingegen erfolgt durch Drehung der Ront-
genrohre und des Detektorsystems um die Longitudinalachse des Patienten herum in einer
Vielzahl von Winkelpositionen die Aufzeichnung einer Vielzahl von Transmissionsprofilen,
deren Gesamtheit einem Bildrechner zugefiihrt und unter Anwendung des Radon-Theorems in
ein dreidimensionales virtuelles Strahlenbild transformiert wird, aus welchem dann durch wie-
tere Rechenprozesse wiederum zweidimensionale Schnitte durch das dreidimensionale Abbild
der untersuchten anatomischen Region erhalten werden konnen (Abb. 2.2). Mithin kann also
ein Computertomogramm als die Gesamtheit einer Vielzahl planarer Radiographien aufgefasst
werden. In Analogie zur konventionellen Radiologie existieren in der computertomographi-
schen Schnittbilddiagnostik der klinischen Fragestellung entsprechend spezifische Untersu-
chungen bestimmter anatomischer Korperregionen. Wéhrend eine konventionelle Rontgen-
untersuchung einen unter verschiedenen Strahlengingen (Projektionen) angefertigten Satz ein-
zelner Projektionsradiographien umfasst, besteht eine computertomographische Schnittbildun-
tersuchung, welche klinisch auch als CT-Untersuchung oder CT-Scan bezeichnet wird, in der
Anfertigung eines oder mehrerer Sdtze von entlang der Longitudinalachse des Patienten an-
gefertigten Schnittbildern, wobei jeder Satz von Schnittbildern als Scanserie oder kurz als Serie
bezeichnet wird. Der Begriff der Scanserie tragt dem Umstand Rechnung, dass jede Serie unter
verdnderten Expositionsbedingungen mit der Intention eines Gewinnes an diagnostischer In-
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formation wiederholt werden kann; das klassische Beispiel stellt der sogenannte native CT-
Scan ohne Kontrastmittelapplikation und der je nach klinischer Fragestellung in verschiedenen
Phasen nach Verabreichung eines Kontrastmittels zu wiederholende Kontrastmittel-Scan dar.
Jede Serie besteht mithin aus einer mehr oder minder groen Anzahl von Schnittbildern. Der
zur Anfertigung einer Scanserie vom CT-Scanner iiberstrichene anatomische Bereich wird
auch als Scanbereich bezeichnet, die im ersten bzw. letzten Schnittbild einer Serie abgebildeten

anatomischen Strukturen definieren die Scanbereichsgrenzen !, 2.

Attenuation profile

Dose

Abb. 2.1: Prinzip der planaren Radiographie (O Regine Kuschke 2015, www.desein.com, nach einer Vor-
lage von M. Seidenbusch [76]). Der Rontgenstrahl durchsetzt die zu untersuchende anatomische Region des
Patienten unter einem definierten Projektionswinkel bzw. in einem bestimmten Strahlengang. Hinter dem Patien-
ten entsteht ein Schwichungsprofil (attenuation profile), welches einem virtuellen zweidimensionalen Strahlen-
bild entspricht, das wiederum in ein sichtbares Uberlagerungsbild der untersuchten anatomischen Region umge-
wandelt werden kann.

! Die Scanbereichsgrenzen beziehen sich in dieser Formulierung auf die tatsichlich abgebildeten anatomischen
Strukturen der CT-Bildgebung unter Vernachlissigung des Overranging-Effektes. Der sich in der Computer-
tomographie mit zunehmender Detektorzeilenzahl zunehmend stirker machende Effekt des Overranging besteht
in einer zusétzlichen Exposition der jenseits der anatomischen Scanbereichsgrenzen lokalisierten und nicht zur
Abbildung gelangenden anatomischen Strukturen.

2 Strenggenommen ist zwischen einem durch anatomische Landmarken definierten anatomischen Scanbereich
und einem durch cartesische Lagekoordinaten des Patienten oder eines Dosimetriephantoms definierten metri-
schen Scanbereich zu unterscheiden. Allerdings existiert bisher keine normierte Transformation anatomischer in
metrische Scanbereiche, ein Umstand, welcher klinisch orientierte, retrospektive dosimetrische CT-Studien kom-
plikationsreich gestaltet, da fiir eine valide Rekonstruktion von Organdosen der anatomische Scanbereich eines
Patienten in Ubereinstimmung mit dem metrischen Scanbereich eines korrespondierenden mathematischen oder
physikalischen Dosimetriephantoms zu bringen ist und bisher auf internationaler Ebene keine cartesische Nor-
mierung der anatomischen Strukturen einer Standard-Anatomie erfolgt ist.
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Abb. 2.2: Prinzip der Computertomographie (© Regine Kuschke 2015, www.desein.com, nach einer Vor-
lage von M. Seidenbusch [76]). Rontgenrohre und Detektorsystem umkreisen die zu untersuchende anatomische
Region des Patienten. In jeder Winkelposition entsteht hinter dem Patienten ein Schwéachungsprofil, welches dem
Bildrechner zugefiihrt wird. Die Gesamtheit der Schwéchungsprofile definiert einem virtuellen zweidimensio-
nalen Strahlenbild entspricht, das wiederum in ein sichtbares Uberlagerungsbild der untersuchten anatomischen
Region umgewandelt werden kann. Anders als bei der planaren Radiographie (Abb. 2.1), bei welcher das Schwi-
chungsprofil des Rontgenstrahls unmittelbar zur zweidimensionalen Bildgebung verwendet wird, wird bei der
Computertomographie die in allen Winkelpositionen der Rontgenrohre und des Bilddetektorsystems erfasste Ge-
samtheit der Schwachungsprofile einem Bildrechner zugefiihrt, wo sie dann gemilB3 den Vorgaben des Untersu-
chers zu einem dreidimensionalen Bilddatensatz synthetisiert werden.

Wihrend aber in der klassischen Projektionsradiographie die Abmessungen des Strahlenfeldes
der darzustellenden anatomischen Region des Patienten durch Einblendung angepasst werden
konnen, sind in der Computertomographie in der Regel die Feldbreite und die Feldldnge bau-
seitig festgelegt, wobei bei den meisten modernen Gerdten der gesamte Patientenquerschnitt
vom Strahlenfeld erfasst wird, die Feldldnge in Richtung der Longitudinalachse des Patienten
jedoch lediglich in der Gréenordnung von wenigen Zentimetern liegt und somit durch eine
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einzelne Vollrotation des bildgebenden Systems um den Patienten herum nur eine eng um-
schriebene Korperregion in Form einer Einzelschicht erfasst werden kann. Zur Abbildung aus-
gedehnter anatomischer Regionen ist es daher notwendig, den Bildaufzeichnungsvorgang unter
sukzessiver Verschiebung des Patienten in Richtung seiner Longitudinalachse zu wiederholen,
bis der gesamte darzustellende anatomische Bereich vom bildgebenden System abgetastet bzw.
gescannt wurde (Abb. 2.3). Hierzu erfolgt die Lagerung des Patienten auf einem in Richtung
der Longitudinalachse des Patienten verschiebbaren Untersuchungstisch, welcher in aller Re-
gel orthogonal zur Rotationsrichtung des bildgebenden Systems verschoben wird. Erfolgt die
Verschiebung schrittweise jeweils nach Ausfiihrung einer Vollrotation des bildgebenden Sys-
tems um den Patienten herum, so wird ein aus mehreren aufeinanderfolgenden Einzelschichten
bestehendes Mehrschicht-Computertomogramm angefertigt. Erfolgt hingegen die Verschie-
bung kontinuierlich wihrend der Rotationsbewegung des bildgebenden Systems um den Pa-
tienten herum, resultiert eine relative Spiralbewegung des bildgebenden Systems um den Pa-
tienten, welche diesem von Kalender et al. [5] entwickelten Verfahren der Spiral-CT seinen
Namen gegeben hat [4] (Abb. 2.4).

Der grundlegende Unterschied zwischen klassischer Radiographie und Computertomo-
graphie besteht also in der rdumlichen Geometrie und den hieraus fiir Bildverarbeitung und
Strahlendosimetrie resultierenden Konsequenzen, wie sie im Folgenden dargestellt werden
sollen.

180°

Abb. 2.3: Technischer Ablauf der Computertomographie (© Regine Kuschke 2015, www.desein.com, nach
einer Vorlage von M. Seidenbusch [76]). Die Lingsachse des Patiententisches ist in aller Regel orthogonal zur
Rotationsrichtung des bildgebenden Systems angeordnet. Zur Darstellung ausgedehnter anatomischer Regionen
ist es notwendig, je nach longitudinaler Ausdehnung des Strahlenfeldes und der Detektoreinheiten den Patienten
relativ zum bildgebenden System zu bewegen.
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2.2.1. Grundlegender Aufbau eines Computertomographen [76]

In Analogie zur klassischen konventionellen Rontgeneinrichtung setzt sich ein Gerét zur Com-
putertomographie aus Komponenten zur Rontgenstrahlerzeugung, zur Modifikation der er-
zeugten Rontgenstrahlung, zur Positionierung des Patienten und zur Aufzeichnung des Trans-
missionsprofils auf Strahlaustrittsseite zusammen, deren in Hinblick auf die Strahlenexposition
des Patienten bedeutendste im Folgenden genannt werden sollen.

Ein Gerét zur Computertomographie wird in aller Regel als CT-Ger<it, als Computerto-
mograph oder als CT-Scanner bezeichnet. Es besteht in der Regel aus der sogenannten Gantry,
in welcher in einer rotierenden Einheit unter anderem eine oder mehrere Rontgenrdhren, die
Vorrichtungen zur Strahlenfilterung und entweder stationére oder mitrotierende Bilddetektor-
einheiten enthalten sind. Die rotierende Einheit bewegt sich um die Gantry6ffnung, durch wel-
che hindurch der Lagerungstisch mit dem Patienten bewegt wird.

Erhebliche Unterschiede bestehen in der Ausfiihrung des bildgebenden Systems. Die
Computertomographen der 1. Generation und 2. Generation waren als Translations-Rotations-
scanner ausgefiihrt, wobei ein oder mehrere eng kollimierte Strahlenbiindel durch eine kombi-
nierte Translations- und Rotationsbewegung iiber den gesamten Korperquerschnitt gefiihrt und
die resultierenden Schwiachungsprofile durch einen oder mehrere Signaldetektoren empfangen
wurden. Die komplexe und zeitintensive Translation des Rontgenstrahlenbiindels wird in den
heute betriebenen Geriten der 3. Generation und 4. Generation durch die Ausbildung eines den
gesamten Patientenquerschnitt erfassenden Ficherstrahls vermieden, wobei bei Geréten der 3.
Generation ein an die Féicherstrahlgeometrie adaptierter Detektorkranz zusammen mit der
Rontgenrdhre um den Patienten herum rotiert und bei Geriten der 4. Generation ein stationérer
360°-Detektorkranz die Transmissionssignale der rotierenden Rontgenréhre empfangt.

Abb. 2.4: Spiral-CT und Mehrschicht-CT (© Regine Kuschke 2015, www.desein.com, nach einer Vorlage
von M. Seidenbusch [76]). Bei der Mehrschicht-CT (unten) erfolgt die sukzessive Longitudinalverschiebung des
Patienten jeweils nach Ausfiihrung einer Vollrotation des bildgebenden Systems um den Patienten herum. Bei der
Spiral-CT (oben) wird die Longitudinalverschiebung des Patienten kontinuierlich wéhrend der Rotations-
bewegung des bildgebenden Systems um den Patienten herum ausgefiihrt, sodass eine virtuelle Spiralbewegung
des bildgebenden Systems um den Patienten herum resultiert.
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2.2.2. Rontgenstrahlerzeugung [76]

Die strahlenphysikalischen Eigenschaften einer Rontgenstrahlung werden im Wesentlichen
durch ihre Strahlenqualitit bedingt, welche wiederum durch das auch als Rontgenbremsspek-
trum bezeichnete Photonenflussdichtespektrum definiert ist und durch die Kenngré3en Roh-
renspannung, Anodenwinkel und Gesamtfilterung charakterisiert werden kann [39]. Die vom
Rontgengenerator bereitgestellte Rohrenspannung definiert hierbei die Maximalenergie des
Rontgenbremsspektrums. Die in der Anode der Rontgenrdhre erzeugte Rontgenstrahlung ver-
lasst die Rontgenrohre durch das Strahlaustrittsfenster, wobei sie eine erste, als Eigenfilterung
bezeichnete Modifikation ihrer spektralen Zusammensetzung erféhrt. Da die die Rontgenréhre
verlassende Rontgenstrahlung immer noch niederenergetische Anteile enthélt, welche zur
Strahlenexposition des Patienten, nicht aber zur Bildgebung beitragen wiirden, erfolgt durch
nach der Rontgenr6hre angeordnete Filterbleche eine Zusatzfilterung der Rontgenstrahlung.
Eigenfilterung und Zusatzfilterung definieren die Gesamtfilterung der Rontgenstrahlung und
bewirken eine Verschiebung der effektiven Energie des Rontgenspektrums in Richtung héherer
Photonenenergien. In CT-Geréten ist die Gesamtfilterung in aller Regel bauseitig festgelegt.

Abb. 2.5: Formfilterung des Ficherstrahls (© M. Seidenbusch 2015). Dargestellt ist die Luftdosisverteilung
in der Transversalebene des Fécherstrahls in anteriorer Position der Rontgenréhre (Strahlengang antero-posterior)
ohne Formfilterung (links) und mit Formfilterung (grau symbolisiert, rechts) am Beispiel eines Einzeilen-CT-
Scanners. Orte hochster Dosisleistung sind rot, Orte niedrigster Dosisleistung blau dargestellt. Die Formfilterung
bewirkt eine an den Patientenquerschnitt (hier am Beispiel der Thoraxregion) adaptierte laterale Abschwichung
des Dosisprofils.

2.2.3. Formfilterung [76]

In CT-Geriten ab der 3. Generation gelangt die Facherstrahlgeometrie zur Anwendung. Abb.
2.5 links zeigt exemplarisch die Luftdosisverteilung in der Transversalebene des Facherstrahls
bei einem Einzeilen-CT-Scanner. Naturgemaf nimmt die Luftdosisleistung mit zunehmendem
Abstand von der Rontgenrdhre ab. Da aber der aufgrund des ellipsoiden Patientenquerschnittes
der mediale Durchstrahlungsdurchmesser am gréften ist und die Dosisleistung der Rontgen-
rohre diesem Durchstrahlungsdurchmesser angepasst werden muss, erfolgt durch die lateralen
Anteile des Ficherstrahlbiindels eine relative Uberexposition der vom Ficherstrahl tangential
getroffenen lateralen Regionen des Patientenkorpers. Aus diesem Grunde werden in modernen
CT-Scannern zwischen den Rontgenstrahler und den Patienten sogenannte Fdcherstrahlfilter
oder Bow-Tie-Filter implementiert, welche eine Anpassung der Strahlintensitatsverteilung und
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damit der Dosisverteilung an die ellipsoide Korperkontur des Patienten bewirken. Die Wirkung
der Formfilterung zeigt schematisch Abb. 2.5 rechts; wie ersichtlich ist, bewirkt die Form-
filterung eine Abschwéchung der lateralen Anteile des Fécherstrahlbiindels.

2.3. Dosisgroflen in der Computertomographie [76]

Die Rekonstruktion der im Rahmen konventioneller Rontgenuntersuchungen beim Patienten
applizierten Organ- und Effektivdosen® erfolgt in aller Regel durch Anwendung von Orgando-
sis-Konversionsfaktoren auf gemessene Ausgangsdosisgroflen wie die Einfalldosis oder das
Dosisflichenprodukt. In Analogie hierzu wird die Abschitzung der Strahlenexposition des Pa-
tienten bei computertomographischen Untersuchungen ebenfalls mit Hilfe des Konversions-
faktoren-Konzeptes durchgefiihrt; allerdings unterscheiden sich die Ausgangsdosisgréflen der
Computertomographie nicht zuletzt aufgrund der Tatsache, dass sie die bei CT-Untersuchun-
gen entstehenden komplexen rdumlichen Dosisverteilungen zu repriasentieren in der Lage sein
sollen, grundlegend von jenen der konventionellen Radiologie. Im Folgenden sollen die in der
CT gebriuchlichen DosisgroBBen vorgestellt und ihre Bedeutung in Hinblick auf eine Dosis-
abschitzung erldutert werden. Eine integrierte Darstellung der Dosisgréen und des Dosisma-
nagements in der CT findet sich auch in dem Buch von Nagel et al [135] sowie eine Ubersicht
iiber dieselben in einem Bericht der AAPM Task Group [929].

2.3.1. Computed Tomography Dose Index (CTDI) und gewichteter CTDI [68, 76]

In der konventionellen Radiologie stellt die Einfalldosis ein Mal} fiir die zweidimensionale
Dosisverteilung des planaren Strahlenfeldes einer radiologischen Untersuchung dar. Zur Quan-
tifizierung der bei CT-Untersuchungen auftretenden dreidimensionalen Dosisverteilung wurde
der Computed Tomography Dose Index (CTDI) entwickelt. Er représentiert je nach Definition
den Mittelwert der nach einer Vollrotation des bildgebenden Systems auf der Rotationsachse
oder in einem rotationssymmetrischen Bereich um die Rotationsachse applizierten Dosis in
Luft oder in einem gewebedquivalenten Material. Abb. 2.6 illustriert das Konzept des CTDI.
Waihrend einer Vollrotation des bildgebenden Systems um einen Punkt auf der Rotationsachse
eines CT-Scanners wird eine Dosisverteilung erzeugt, welche aufgrund der Divergenz des
Strahlenbiindels und aufgrund von Streueffekten in Richtung der Rotationsachse die Gestalt
einer Glockenkurve aufweist, deren Ausldufer mithin tiber den vom rotierenden Facherstrahl
erfassten Bereich der Rotationsachse weit hinausreichen. Der CTDI nun soll die durch eine
Vollrotation des bildgebenden Systems um einen Punkt auf der Rotationsachse entstehende
Gesamtdosis reprisentieren bzw. in dquivalenter Betrachtungsweise ein MaB fiir jene Dosis
darstellen, wie sie unter Vernachldssigung von Divergenz- und Streueffekten innerhalb der als
nominellen Schichtdicke d bezeichneten Halbwertbreite der Dosisverteilung D(z) appliziert
wiirde. Aus diesem Grunde wurde der CTDI mathematisch als das auf die nominelle Schicht-
dicke d bezogene Integral liber die Dosisverteilung D(z) in Richtung der Rotationsachse z
definiert:

+00
1
CTDI = rh f D(z)-dz Einheit: mGy (2.1)

Diese durch die Formulierung unendlicher Integrationsgrenzen mathematisch korrekte Forde-
rung nach einer Aufsummierung sdmtlicher Dosisbeitrage des mit zunehmendem Abstand von

3 Aus sprachokonomischen Griinden wird hier und im folgenden der korrekte Terminus ,,Effektive Dosis* durch
die Bezeichnung ,,Effektivdosis* ersetzt.
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der nominellen Schicht immer flacher auslaufenden Dosisprofils ist indessen aufgrund der
mangelnden Verfiigbarkeit unendlich langer Messkammern messtechnisch naturgeméaf nicht
zu verwirklichen. Aus diesem Grunde wurde eine Reihe messtechnischer CTDIs definiert, wie
sie im Folgenden dargestellt werden sollen.
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Abb. 2.6: Definition des Computed Tomographic Dose Index (CTDI) (© M. Seidenbusch 2015). Wéhrend
einer Vollrotation des bildgebenden Systems wird auf der Rotationsachse z die glockenférmige Dosisverteilung
Di(z) erzeugt. Als nominelle Schichtdicke d wird die Halbwertbreite der Dosisverteilung bezeichnet. Der CTDI
ist als das auf die nominelle Schichtdicke d bezogene Integral iiber die Dosisverteilung D(z) definiert und stellt
somit ein MaB fiir jene Strahlendosis dar, wie sie bei Vernachlassigung von Divergenz- und Streueffekten inner-
halb der nominellen Schichtdicke appliziert wiirde.

CTDI gemill FDA-Definition.
Gemél der Definition der US-amerikanischen Food and Drug Administration (FDA) soll der
messtechnisch ermittelte CTDI die Streubeitrdge des Dosisprofils D(z) in einem zylindrischen

Plexiglasphantom aus jeweils 7 nominellen Schichten hinter und vor der nominellen Schicht
einbeziehen [45]:

+7-d
1
CTDIgp, = rh J D(z)-dz Einheit: mGy (2.2)
-7-d

Allerdings besitzt diese Definition des CTDI den Nachteil, bei geringen nominellen Schicht-
dicken nicht mehr zuverldssig alle Streubeitrage des Dosisprofils zu erfassen.
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CTDI gemifl IEC-Definition.

Der CTDI gemilB FDA-Definition besitzt den Nachteil, bei geringen nominellen Schichtdicken
die Streuverluste nicht mehr hinreichend zu beriicksichtigen. Aus diesem Grunde soll nach der
Definition der International Electrotechnical Commission (IEC) der messtechnisch ermittelte
CTDI die Streubeitrage des Dosisprofils D(z) in jeweils 50 mm Entfernung hinter und vor der
nominellen Schicht einbeziehen [56, 66]:

+50
1 mm ' .
CTDI oy = 7 f D(z)-dz Einheit: mGy (2.3)
—-50mm

Praktischer CTDI bzw. Achsendosis frei in Luft.

Eine vor allem im deutschsprachigen Raum gebrauchliche Abwandlung des CTDI 00 bezieht
sich nicht auf das Energiedosisprofil D(z), sondern auf das Kerma-Profil in Luft K,(z), und
wird daher auch als ,,praktischer CTDI* (practical CTDI, PCTDI) bzw. im deutschsprachigen
Raum etwas unkorrekt als ,,Dosis frei in Luft auf Systemachse* oder ,,Achsendosis frei in Luft*
CTDIi00,1 bezeichnet:

+50mm
1 L
CTDlyg; = rh f K,(z)-dz Einheit: mGy (2.4)
-50mm

Abb. 2.7: Gewichteter CTDI (CTDIw) (© M. Seidenbusch 2015). Der gewichtete CTDI (CTDlIqo,w) ist der
gewichtete Mittelwert des anhand physikalischer Messungen in einer zentralen (c) bzw. in peripheren (p) Bohrun-
gen in einem zylindrischen PMMA -Phantom bestimmten zentralen CTDI oo (CTDI 0,c) bzw. peripheren CTDI o
(CTDlig0,). Zur Approximation der Dosisverteilung im Rumpf bzw. Schédel eines Erwachsenen wird der gewich-
tete CTDI in einem PMMA-Phantom mit 32 cm Durchmesser (links) bzw. 16 cm Durchmesser (rechts) ermittelt.

Gewichteter CTDI.

Die bisher angefiihrten Definitionen des CTDI stellen zwar ein MaB fiir die auf der Rotations-
achse und damit — bei PMMA* als Bezugsmaterial — im Isozentrum des Patienten applizierte
Strahlendosis dar, repriasentieren jedoch nicht die Strahlenenergiedeposition im Korpervolu-
men des Patienten, zumal sich das Dosisprofil im Korper des Patienten deutlich vom Dosispro-

4 PMMA = Polymethylmethacrylat, Handelsname z.B. Plexiglas®.
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fil auf der Rotationsachse unterscheiden wird. Zur Beriicksichtigung dieses Umstandes wurde
der gewichtete CTDI eingefiihrt; hierbei dient die Dosisverteilung in einem zylindrischen
PMMA-Phantom mit 16 cm bzw. 32 cm Durchmesser als Approximation an die reale Dosis-
verteilung im Schédel bzw. Rumpf des erwachsenen Patienten (Abb. 2.7). In der Praxis erfolgt
die Bestimmung eines zentralen CTDIioo (CTDIiooc) im Isozentrum und des peripheren
CTDli00 (CTDI100,p) in der Peripherie des PMMA-Phantoms mit anschlieBender Bildung eines
gewichteten Mittelwertes [66]:

1 2 C
CTDIlOO,W - § " CTDIlOO,C + § * CTDIlOO,p Elnhelt: mGy (2.5)
Normierter CTDI.

Da die Strahlendosis bei sonst unveridnderten Expositionsparametern linear mit der Ladungs-
menge Q bzw. dem Produkt aus Rohrenstrom I und Expositionsdauer t - also dem Rohren-
strom-Zeit-Produkt oder dem mAs-Produkt - zunimmt, ist zur Charakterisierung des Dosisbe-
darfs der Einzelschicht einer CT-Untersuchung unter definierten Bedingungen die Einfiihrung
eines auf das mAs-Produkt normierten CTDImas sinnvoll:

1 o
masCTDI = Tt CTDI Einheit: mGy (2.6)

Einer weit verbreiteten Konvention entsprechend wird der normierte CTDI meist auf ein mAs-
Produkt von 100 mAs bezogen:

1
= Einheit: mG 2.7

2.3.2. Size Specific Dose Estimate (SSDE) [76]

Der gewichtete CTDI ist aufgrund seiner Bezugnahme auf zylindrische PMMA -Phantome mit
16 cm bzw. 32 cm Durchmesser in der padiatrischen Radiologie aufgrund der dort auftretenden
weitaus geringeren Durchstrahlungsdurchmesser von Kindern in aller Regel zumindest a priori
nicht anzuwenden; allerdings existiert eine Mdglichkeit, diese gewichteten CTDIs anhand von
Tabellenwerken [929] unter Verwendung der individuellen Abmessungen des Patienten und
des sich hieraus errechnenden effektiven Diameters in einen dem CTDI entsprechenden, jedoch
patientenspezifischen Size Specific Dose Estimate (SSDE) [929, 934, 947, 991] zu tiberfiihren.
In der Tat konnen die fiir Kinder anhand von CTDIs ermittelten Effektivdosen in Abhingigkeit
vom Lebensalter und damit der Anthropometrie erheblich von den anhand von SSDEs ermittel-
ten effektiven Dosen abweichen, weswegen dem Konzept des SSDE zumindest in der pédia-
trischen Radiologie eindeutig der Vorzug zu geben ist [934, 947, 991]; hier kann er auch zur
Optimierung der Bildqualitét eingesetzt werden [938]. Zur vereinfachten Bestimmung des
SSDE unter klinischen Bedingungen koénnen die Abmessungen des Patienten in guter Néhe-
rung durch das jeweilige Korpergewicht ersetzt werden [937]. Allerdings scheint der SSDE als
Dosisindikator fiir CT-Untersuchungen der Abdomenregion besser geeignet als fiir CT-Unter-
suchungen der Thoraxregion, fiir welch letztere der Wasserdquivalente Diameter als Dosis-
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indikator besser geeignet scheint [42], welcher im Ubrigen mit dem SSDE in guter Korrelation
steht [167]. Im Rahmen dieser Arbeit wird weder vom SSDE noch vom Wasserdquivalenten
Diameter Gebrauch gemacht werden, da sich in der internationalen Literatur beide Konzepte
zugunsten der klassischen CTDI offensichtlich noch nicht durchgesetzt haben.

2.3.3. Multiple Scan Average Dose (MSAD) und Volumen-CTDI [76]

Der CTDI reprisentiert definitionsgemal} die wahrend einer einzigen Vollrotation des bildge-
benden Systems um einen Punkt der Rotationsachse applizierte Strahlendosis; er stellt somit
kein MaB fiir den Dosisbedarf einer vollstandigen CT-Untersuchung dar, zumal bei dieser der
Patient unter dem rotierenden bildgebenden System so lange hindurchbewegt wird, bis die zu
untersuchende anatomische Region vollstindig zur Darstellung gelangt ist, und somit eine
Vielzahl iiberlappender Dosisprofile zur Gesamtdosis beitragt.

15
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Abb. 2.8 (© M. Seidenbusch 2015): Definition der Multiple Scan Average Dose (MSAD) (© M. Seidenbusch
2015). Die Abbildung zeigt exemplarisch eine 5 Schichten umfassende Mehrschicht-Untersuchung. Wahrend
einer Vollrotation des bildgebenden Systems werden auf der Rotationsachse z die den nominellen Einzelschichten
1 bis 5 entsprechenden glockenférmigen Dosisverteilungen Di(z) bis Ds(z) erzeugt. Je nach der Hohe des Tisch-
vorschubes in Relation zur nominellen Schichtdicke (hellgriin) der Einzelschichten kommt es zu einer mehr oder
minder starken Uberlappung (dunkelgriin) der den Einzelschichten entsprechenden Einzeldosisverteilungen Di(z)
bis Ds(z). Aufgrund dieser Uberlappung wird die aus diesen Einzeldosisverteilungen resultierende Gesamtdosis-
verteilung D(z) durch den CTDI der Einzeldosisverteilungen nicht mehr addquat beschrieben, wohl aber durch die
Mulitple Scan Average Dose (MSAD) (blau), welche aus dem CTDI der Einzeldosisverteilungen und dem Tisch-
vorschub berechnet werden kann.
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Multiple Scan Average Dose (MSAD).

Abb. 2.8 zeigt exemplarisch anhand einer 5 Einzelschichten umfassenden Mehrschicht-Unter-
suchung die Zusammensetzung des resultierenden Gesamtdosisprofils. Wahrend einer Voll-
rotation des bildgebenden Systems werden auf der Rotationsachse z die den nominellen Ein-
zelschichten entsprechenden glockenformigen Dosisverteilungen Di(z) erzeugt. Je nach der
Hohe des Tischvorschubes in Relation zur nominellen Schichtdicke der Einzelschichten, dem
sogenannten Pitch-Faktor p, kommt es zu einer mehr oder minder starken Uberlappung der den
Einzelschichten entsprechenden Einzeldosisverteilungen Di(z), aufgrund deren die aus diesen
Einzeldosisverteilungen resultierende Gesamtdosisverteilung D(z) durch den CTDI der Einzel-
dosisverteilungen nicht mehr adidquat beschrieben wird. Hingegen liefert der als Mulitple Scan
Average Dose (MSAD) oder effektiver CTDI CTDlIegr bezeichnete CTDI der Gesamtdosis-
verteilung ein sehr gutes Abbild der im Rahmen der CT-Untersuchung applizierten Gesamt-
dosis. Er errechnet sich aus dem CTDI der nominellen Einzelschichten zu

1
MSAD = 5 CTDI Einheit: mGy (2.8)

wobei der Pitch-Faktor p der Quotient aus Tischvorschub V in Relation zur nominellen
Schichtdicke d ist:

2.9)

=
Il
al <

Volumen-CTDI.

Auch die MSAD stellt lediglich ein MaB fiir die auf der Rotationsachse bei einer Mehrschicht-
CT applizierte Gesamtdosis dar. Zur Approximation an die im Kdrpervolumen des Patienten
applizierte Gesamtdosis wurde in Analogie zum gewichteten CTDI der aus diesem zu errech-
nende Volumen-CTDI CTDlIyo definiert, welcher auch als effektiver CTDI CTDlIesr bezeichnet
wird und letztlich einem Pitch-normierten gewichteten CTDI entspricht:

1
CTDI,o = CTDlys; = > CTDI, Einheit: mGy (2.10)

2.3.4. Dosis-Lingen-Produkt (DLP) [76]

Die Strahlenexposition des Patienten wird im Wesentlichen durch zwei Faktoren bedingt:
Durch die vom Strahlenfeld im Raum erzeugte Ortsdosis und durch die GroBe des anatomi-
schen Bereiches, welcher vom Strahlenfeld tatsidchlich erfasst wird. Aus diesem Grunde reicht
die alleinige Angabe einer Ortsdosis ebenso wenig zur Bestimmung der Strahlenexposition des
Patienten aus wie die alleinige Angabe der Strahlenfeldgrofe. So stellt in der konventionellen
planaren Radiologie die von der Strahlenfeldgro3e weitgehend unabhingige Einfalldosis eine
Ortsdosis dar, doch bestimmt die Einblendung des Strahlenfeldes auf die Korperoberfldache des
Patienten in entscheidendem Mafle, in welchem Umfang der Korper des Patienten tatséchlich
exponiert wird. Aus diesem Grunde stellt das als Dosis-Flachen-Produkt bezeichnete Produkt
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aus der Einfalldosis und der Strahlenfeldgroe ein MaB fiir die Strahlenexposition des Patienten
dar.

In Analogie hierzu vermag bei computertomographischen Untersuchungen ein Dosisin-
dikator wie die MSAD bzw. der effektive CTDI zwar ein MaB fiir die innerhalb mehrerer no-
mineller Schichten entstehende und bei sonst unverdnderten Expositionsparametern in Rich-
tung der Longitudinalachse weitestgehend unverdnderliche Ortsdosis darzustellen, doch be-
stimmt die Lénge des Scanbereiches in entscheidendem Malle, in welchem Umfang das Kor-
pervolumen des Patienten tatsdchlich exponiert wird. Aus diesem Grunde stellt das als Dosis-
Langen-Produkt DLP bezeichnete Produkt aus MSAD bzw. effektivem CTDI und tatséchlicher
Scanlidnge L ein MaB fiir die Strahlenexposition des Patienten dar:

DLP = CTDI sr+L = MSAD - L Einheit: mGy cm (2.11)

Die tatsdchliche Scanldnge errechnet sich wiederum aus der Anzahl der Einzelschichten N, der
nominellen Schichtdicke d und dem Pitch-Faktor p zu

L=N-d-p Einheit: cm (2.12)

Somit kann zur Berechnung des DLP an Stelle des CTDIer bzw. der MSAD auch der CTDI
verwendet werden:

DLP =CTDI-N -d Einheit: mGy cm (2.13)

2.3.5. Organdosen und Effektive Dosis [76]

Aquivalentdosis.

Als Aquivalentdosis H wird die zur Beriicksichtigung der Strahlenqualitit mit einem Strah-
lungswichtungsfaktor wr (welcher in der diagnostischen Radiologie zumindest vorldufig noch
mit wr = 1 Sv/Gy anzusetzen ist) gewichtete Energiedosis D bezeichnet:

H=wg-D Einheit: mSv (2.14)

Organdosis.

Als Organdosis Ht wird jene Aquivalentdosis bezeichnet, wie sie aus der innerhalb eines Or-
ganes oder Gewebes T applizierten Organenergiedosis Dt zu bestimmen ist:

Hy = wg - Dp Einheit: mSv (2.15)

Die Organdosis stellt das reliabelste MaB fiir die Strahlenexposition auch von Patienten in der
padiatrischen Radiologie dar [72].

Effektive Dosis.

Die Effektivdosis wurde urspriinglich als einheitliches strahlenepidemiologisches Ma@ fiir die
berufliche Strahlenexposition der Bevolkerung eingefiihrt. Threr Konzeption nach soll sie als
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»effektive somatische Dosis* jene virtuelle Dosis reprasentieren, welche bei homogener Ganz-
korperexposition dem nidmlichen Strahlenrisiko entsprechen wiirde wie die Gesamtheit der
einzelnen Organdosen Hr bei ungleichformiger Exposition einzelner Korperbereiche. Als ge-
wichtete Summe der Produkte der einzelnen Organdosen mit den das Risiko fiir stochastische
Spatwirkungen in den einzelnen Korpergeweben charakterisierenden Gewebewichtungs-
faktoren wr, wie sie zuletzt durch ICRP 103 neu definiert wurden [55], entspricht die Effektiv-
dosis mithin der ,,gewichteten Summe der stochastischen Strahlenrisiken* [70]:

E = Z wr - Hy Einheit: mSv (2.16)
T

Allerdings ist die Anwendung des Konzeptes der effektiven Dosis in der Radiologie aus ma-
thematischen und strahlenbiologischen Griinden umstritten [z. B. 49, 78]. Hingegen stellt die
Angabe der in den einzelnen Organen und Geweben applizierten Organdosen eine sinnvolle
Alternative zur Verwendung der effektiven Dosis in der CT dar [116, 117].

Die Wahl der DosisgroBle besitzt wesentlichen Einfluss auf die dosimetrische Wertung
des von der CT fiir den Patienten ausgehenden stochastischen Strahlenrisikos [51, 60, 923]. So
ist die Bestimmung einzelner Organdosen aus gemessenen Ausgangsdosisgrofien wie dem
CTDI oder dem DLP [1014] unter Anwendung des Konversionsfaktoren-Konzeptes in Ab-
hingigkeit von dem der Berechnung der Konversionsfaktoren zugrundeliegenden Phantommo-
dell einer erheblichen Variationsbreite unterworfen [51, 86, 299, 948]. Demgegeniiber erweist
sich die effektive Dosis gegeniiber Variationen der exponierten anatomischen Bereiche als ver-
gleichsweise stabil [51, 299].

2.3.6. Zusammenfassung der Dosisgrofien [76]

Mit Tab. 2.1 wurde der Versuch einer Klassifizierung der Dosisgro3en nach Geltungsbereich
und représentierter riumlicher Dimension [50] unternommen. Wéhrend der CTDI die Informa-
tion iiber die auf einem Punkt auf der Longitudinalachse (rdumliche Dimension = 0) enthilt,
flieBt in die Definition der MSAD Information iiber die Dosisverteilung léngs der Longitudi-
nalachse (rdumliche Dimension = 1) ein. Der gewichtete CTDI stellt ein MaB fiir die Quer-
verteilung der Dosis in der Transversalebene (rdumliche Dimension = 2) dar. Der Volumen-
CTDI bzw. effektive CTDI beriicksichtigt zusatzlich die Dosisverteilung entlang der Longitu-
dinalachse und représentiert damit die rdumliche Dosisverteilung (rdumliche Dimension = 3).
Das DLP stellt ein Mal} fiir die mittlere Dosis im Scanbereich dar, und Dt bzw. E geben den
Mittelwert der dreidimensionalen Dosisverteilungen in den einzelnen Organen und Geweben
T bzw. im Patientenvolumen an.

Tab. 2.1: Klassifizierung der Dosisgrofien.

Dosisgrofie Einzelschicht-CT Mehrschicht-CT Raumdimension
CTDI + 0 0

SSDE + 0 0

MSAD 0 + 1

CTDIy + 0 2

CTDIvol = CTDIeff 0 + 3

DLP + + Scanvolumen

Dr + + Organvolumen

E + + Patientenvolumen
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2.3.7. Rekonstruktion von Organ- und Effektivdosen [73, 74, 75, 76]

Die Rekonstruktion der bei computertomographischen Untersuchungen applizierten Orgando-
sen erfolgt in der Regel unter Anwendung des Konversionsfaktoren-Konzeptes [38, 46]. In der
Computertomographie besteht das Konversionsfaktoren-Konzept in der Berechnung von Or-
gandosen Dt durch die Anwendung von Konversionsfaktoren kr (synonym: Konversions-
koeffizienten, normalized organ doses) auf eine in der klinischen Routine ermittelbare Aus-
gangsdosisgrofle wie den CTDI oder das DLP:

DT = kT,DLP -DLP = kT,CTDI -CTDI Einheit: mGy (217)

Die Ermittlung von Konversionsfaktoren erfordert die Bestimmung der auf die Ausgangsdo-
sisgrofle bezogenen Energiedosis in den verschiedenen Organen und Geweben des menschli-
chen Korpers in Abhéngigkeit von der Strahlengeometrie und der Strahlenqualitét des Strah-
lenfeldes. Aufgrund der heterogenen Zusammensetzung der menschlichen Kérpergewebe so-
wie der durch die menschliche Anatomie bedingten komplexen Lagebeziehungen der Organe
und Gewebe untereinander ist die Bestimmung von Konversionsfaktoren komplexer Natur.
Wihrend Konversionsfaktoren frither hdufig durch Dosismessungen an anthropomorphen
Phantomen erhalten wurden, stellt heute die Monte-Carlo-Simulation an virtuellen mathemati-
schen Phantomen oder an realitdtsnahen anthropomorphen Voxel-Phantomen die Methode der
Wahl dar. Das Monte-Carlo-Verfahren beruht auf der probabilistischen Simulation der Wech-
selwirkung von Strahlenfeldern mit Materie und besteht fiir Anwendungen in der Rontgendia-
gnostik in der Verfolgung virtueller Einzelphotonenschicksale vom Auftreffen der Photons auf
der Phantomoberfliche iiber Streu- und Absorptionsprozesse bis hin zur Energiedeposition im
Phantommaterial.

Konversionsfaktoren fiir die Computertomographie finden sich vornehmlich in den zwei
grundlegenden Tabellenwerken von Zankl et al (Helmholtz Zentrum Miinchen, vormals GSF-
Forschungszentrum fiir Umwelt und Gesundheit, Neuherberg) und von Jones et al (National
Radiological Protection Board, Chilton), wie sie anhand von Monte-Carlo-Simulationen an
mathematischen anthropomorphen Phantomen erstellt wurden. Die Berechnungen von Zankl
et al erfolgten unter Zugrundelegung nomineller Schichtdicken von 10 mm und unter Ver-
nachldssigung von Ficherstrahlfiltern [84, 85], jene von Jones et al fiir nominelle Schicht-
dicken von 5 mm sowie unter Beriicksichtigung ausgewéhlter Facherstrahlfilter verschiedener
Hersteller [57, 58]. Da Monte-Carlo-Simulationen von CT-Untersuchungen nach wie vor
duBerst rechenleistungsintensiv sind, basieren die meisten der klinisch anwendbaren Com-
puterprogramme zur Rekonstruktion der im Rahmen klinischer CT-Untersuchungen applizier-
ten Organ- und Effektivdosen auf den Tabellenwerken von Zankl et al und Jones et al. Als auf
dieser Grundlage erstellte und kommerziell erhdltliche Computerprogramme sind beispiels-
weise zu nennen CTDOSE [65], CT-Dose [69], CT-Expo [81], IMPACT [53, 61] und WinDose
[59]. In den meisten dieser Programme werden CTDI und DLP als Ausgangsdosisgroflen zur
Rekonstruktion von Organ- und Effektivdosen verwendet.

2.4. Bildqualitit in der Computertomographie /257, 258/

Die Beurteilung der Bildqualitét einer planaren Radiographie oder eines CT-Bilddatensatzes
kann nach objektiven und subjektiven Bildgiitekriterien erfolgen, wobei jeweils verschiedene
Verfahren gebrauchlich sind.
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2.4.1. Hounsfield-Einheiten /257, 258/

Im Rahmen der computertomographischen Schnittbildgebung werden die physikalischen
Schwichungskoeffizienten der einzelnen Korpergewebe aus der Gesamtheit der gemessenen
Schwichungsprofile errechnet. Da die Schwéchungskoeffizienten zum einen von der Strahlen-
qualitidt und damit von der Rohrenspannung abhédngig sind und zum anderen in klinisch un-
praktikablen Zahlenwerten bestehen, erfolgt eine Normierung der Schwiachungskoeffizienten
beziiglich der Rohrenspannung sowie deren Uberfiihrung in eine klinisch anwendbare Skala
zur Charakterisierung der Gewebedichte, die aus den sogenannten Hounsfield-Einheiten (HE)
oder Hounsfield units (HU) bestehende Hounsfield-Skala. Hierbei wird der normierte Schwé-
chungskoeffizient von Luft der Hounsfield-Einheit HE = -1024 > und der normierte Schwi-
chungskoeffizient von Wasser der Hounsfield-Einheit HE = 0 zugeordnet; die iibrigen Houns-
field-Einheiten werden durch Interpolation und Extrapolation erhalten.

2.4.2. Objektive Bildqualitiit /257, 258]

Die objektive Bildqualitit wird in der Regel durch die drei Kriterien Rauschen, Kontrast und
Ortsauflosung beschrieben.

Bildrauschen.

Wihrend die in einem definierten Bildareal bestimmten Mittelwerte der Hounsfield-Einheiten
den (von einer eventuellen Kontrastmittelanreicherung im Gewebe abhdngigen) mittleren
Schwichungskoeffizienten der jeweiligen Organe und Gewebe reprisentieren, stellen die Stan-
dardabweichungen s(HU) der Hounsfield-Einheiten HU vom Mittelwert der Hounsfield-Ein-
heiten im gewdhlten Bildareal ein MaB fiir das Pixelrauschen und damit fiir das objektive Bild-
rauschen in der entsprechenden Geweberegion dar. Hier und im Folgenden wird somit als ob-
jektives Bildrauschen eines Schnittbildes der Mittelwert des Pixelrauschens in den einzelnen
Organen und Geweben des Schnittbildes bezeichnet.

Signal-Rausch-Verhiltnis.

Als Signal-Rausch-Verhéltnis (signal-to-noise ratio SNR) wird das Verhéltnis aus der Houns-
field-Einheit eines Organs HUorgan zum Hintergrundrauschen in der den Patienten umgebenden
Luft s(HULust) bezeichnet:

SNR = UOrgan

B S(HULuft) 2.18)

Kontrast-Rausch-Verhiiltnis.

Das Kontrast-Rausch-Verhéltnis (contrast-to-noise ratio CNR) ist entsprechend definiert als
die Differenz der Signal-Rausch-Verhéltnisse eines Organs und der Umgebung des Organs:

HUOrgan - HUUmgebung

CNR =
S(HULuft)

(2.19)

5 Diese Definition entspricht der binéren Schreibweise besser als die frithere Definition HE(Luft) = - 1000.
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2.4.3. Subjektive Bildqualitit /257, 258/

Zur Bestimmung der subjektiven Bildqualitit existieren verschiedene Ansédtze. Eine Moglich-
keit zur Bestimmung der subjektiven Bildqualitit, wie sie in vorliegender Arbeit angewandt
wurde, besteht in der Aufstellung einer qualitativen Mehr-Punkte-Likert-Skala, in welcher eine
Reihe qualitativer Bildgiitekriterien in ordinaler Folge charakterisiert und somit einer statisti-
schen Auswertung zuginglich gemacht wird.

2.5. Strahlendosis und Bildqualitit /257, 258/

Im Sinne des ALARA®-Konzeptes ist im medizinischen Strahlenschutz ein ausgewogenes Ver-
hiltnis zwischen Strahlendosis und Bildqualitit im Sinne eines Kompromisses zwischen maxi-
maler Bildqualitdt und minimaler Strahlendosis anzustreben. Die Bildqualitdt wird durch das
dosisabhingige Quantenrauschen im Bildempfiangersystem wesentlich beeinflusst. Als Mal}
fiir das Quantenrauschen dient in der Regel die Varianz g2 der PhotonenfluBdichte, welche
gemil der Brooks-Beziehung indirekt proportional zur Strahlendosis und damit zum Produkt
aus Rohrenstrom I und Expositionsdauer t (mAs-Produkt) ist und exponentiell mit dem Durch-
strahlungsdurchmesser d bzw. dem von der mittleren Gewebedichte abhidngigen linearen
Schwichungskoeffizienten p der untersuchten anatomischen Region zunimmt [43]:

-d
N (2220)

h D

Hierbei ist h die Schichtdicke des CT-Scans.

Somit bedingen Mallnahmen zu einer Dosisreduktion stets zwangsldufig eine Zunahme
des Bildpixelrauschens und damit eine Abnahme der Bildqualitét, sofern das Rauschen nicht
durch die Bildverarbeitungstechnik kompensiert werden kann. Vice versa konnen daher Ver-
fahren zur Hebung der Bildqualitét indirekt zur Reduktion der Strahlendosis angewandt wer-
den, eine Feststellung, wie sie fiir die modernen Verfahren zur Dosisreduktion in der Compu-
tertomographie von essentieller Bedeutung ist.

Allerdings mag die Brooks-Beziehung bei Anwendung iterativer Verfahren zur Bildre-
konstruktion und hier insbesondere bei hohen Iterationsstufen nicht mehr giiltig sein, da hier
die physikalische Beziehung zwischen Strahlendosis und Bildpixelrauschen durch das mathe-
matische Verfahren der Rauschreduktion gestort wird [827].

In der Computertomographie existieren zahlreiche Einflussgroflen, die sich in unter-
schiedlichem Mafle auf die Strahlendosis und auf die Bildqualitdt auswirken. Aufgrund des
komplexen Zusammenhangs zwischen den einzelnen Einflussgroflen gestaltet sich der Strah-
lenschutz in der Computertomographie als weitaus schwieriger als in der konventionellen pla-
naren Radiologie. In Tab. 2.2 sind in Anlehnung an eine Darstellung von Nage/ [135] in einer
Ubersicht die wichtigsten EinflussgroBen in ihrer Wirkung auf Energiedosis D, effektive Dosis
E und Bildpixelrauschen o aufgefiihrt. In der radiologischen Praxis wird — ganz im Sinne des
ALARA-Prinzips des medizinischen Strahlenschutzes - die Beibehaltung einer diagnostisch
verwertbaren Bildqualitdt und damit eines definierten Bildpixelrauschens von hochster Priori-
tat sein, weswegen die Modifikation einer das Bildpixelrauschen tangierenden Einflussgrofe
oftmals von einer Anpassung der Einflussgrofle des RGhrenstromes begleitet sein wird. Um die
physikalische Abhéngigkeit der Energiedosis, der effektiven Dosis und des Bildpixelrauschens

% ALARA = As Low as Reasonably Achievable. Das ALARA-Konzept fordert eine im Rahmen einer verniinftigen
Bildgebung niedrigstmogliche diagnostische Anwendung ionisierender Strahlung am Patienten.



2. Grundlagen 33

von den einzelnen Einflussgrofen dennoch klar darzustellen, wurde in der Tabelle gegebenen-
falls zwischen der Situation einer praktisch erfolgten und der Situation einer theoretisch nicht
erfolgten Anpassung des Rohrenstromes unterschieden.

Tab. 2.2: Einflussgrofien und ihre Wirkung auf Strahlendosis und Bildqualitiit [in Anlehnung an 135].

. .. . Effektive o Anpassung des
Einflussgrofie Dosis D Dosis E Bildpixelrauschen ¢ Réhrenstromes
Réntgen- Rohrenspannung U ~U? ~U325 ~1/U @) nein
: Durchstrahlungs- ~et ~et konstant Jja
Patient -
durchmesser d konstant konstant ~qf eid nein
Schichtdick ~1/h ~1/h konstant ja
Scan- chichtdicke s ;
konstant konstant ~
parameter onstan onstan 1/ Vh nein
Pitch-Faktor p ~1/p9 ~1/p k.A. nein
Faltungskern .
.. nein
Bildver- glattend ! ! !
arbeitung Iterative ! ! = ja
Rekonstruktion = = i nein

2.6. Strahlendosis und Anthropometrie /257, 258/

Der Dosisbedarf einer Rontgenuntersuchung und die damit einhergehende Strahlenexposition
des Patienten werden erheblich vom Durchstrahlungsdurchmesser bzw. Durchstrahlungsdia-
meter d des Patienten bestimmt. Wenn Dsysem der Nenn-Dosisbedarf des Bildempfingersys-
tems ist, so ergibt sich die Einfalldosis auf der Strahleintrittsseite des Patienten ndherungsweise
zu

D = Dgystem * et ? (2.21)

wobei p der mittlere lineare Schwichungskoeffizient der durchstrahlten anatomischen Region
des Patienten ist. Somit korreliert die Strahlenexposition des Patienten sehr gut mit dem Durch-
strahlungsdurchmesser [168]; hingegen sind andere anthropometrische Parameter wie der
Body-Mass-Index zur Beschreibung der Strahlenexposition weitaus schlechter geeignet [168].
Allerdings ist der Durchstrahlungsdiameter des Patienten bei CT-Untersuchungen des Korper-
rumpfes nicht nur von der longitudinalen, sondern auch von der transversalen Position der
Rontgenrdhre abhingig, zumal der Korper des erwachsenen Patienten nicht wie der des Neu-
geborenen einen kreisformigen, sondern einen ellipsoiden Querschnitt aufweist, der durch ei-
nen sagittalen Diameter dsag und einen lateralen Diameter diac charakterisiert werden kann.

Effektiver Diameter.

Aus diesem Grunde wurde mit dem effektiven Diameter defreiv als geometrischem Mittel aus
dem sagittalem Diameter dsagital und dem lateralem Diameter diaera der Scanregion ein Para-
meter zur Reprasentation der Anthropometrie des Patienten geschaffen [929]:

7 Wiedergegeben ist die ungefihre Abhingigkeit des Bildpixelrauschens von der Réhrenspannung.
8 Die Ladungsmenge Q ist ein Synonym fiir das mAs-Produkt.
9 Wiedergegeben ist die ungefihre Abhingigkeit der Dosis vom Pitch-Faktor.



34 2. Grundlagen

deffektiv = \/dsagittal *digteral (2.22)

Anatomisch bedeutet diese Definition die Gleichheit der sich aus dem effektiven Diameter er-
rechnenden Kreisfliche mit dem sich aus dem sagittalen und lateralen Diameter ergebenden
elliptischen Patientenquerschnitt.

Wasseriquivalenter Diameter.

Daneben wird in der Computertomographie mit dem wasserdquivalenten Diameter dv jener
Diameter bezeichnet, welcher unter dosimetrischen Aspekten resultieren miisste, bestiinde der
Patient homogen aus Wasser [167]:

dy = % : \/Z (% + 1) *Apixel (2.23)

X,y

Hierbei ist HE(x, y) die Hounsfield-Einheit in Zeile x und Spalte y des CT-Schnittbildes und
Apixel die Fldche eines isotropen Bildpixels im CT-Schnittbild. Vom wasserdquivalenten Dia-
meter wird in dieser Arbeit kein Gebrauch gemacht werden.

2.7. Dosisreduktion in der Computertomographie /94, 257, 258]

Bei der Optimierung der Patientendosis in der CT handelt es sich um eine multimodale Pro-
blemstellung, bei welcher — wie auch bei der planaren Radiographie - die Gesamtheit aus Strah-
lenqualitit, Strahlengeometrie, Anthropometrie und Bildverarbeitung zu betrachten ist. Allein
eine optimale Abstimmung der genannten Komponenten aufeinander wird eine Optimierung
von Bildqualitdt und Strahlendosis ermodglichen. Allerdings determinieren zahlreiche anthro-
pometrische und rontgentechnische Einflussgroflen Bildqualitit und Strahlendosis [118, 128].
Naturgemil ist eine strahlenhygienische Wertung des Dosisbedarfs einer Rontgenuntersu-
chung nur bei simultaner Beurteilung der hierbei erzielbaren Bildqualitét sinnvoll, wobei ge-
mal der Brooks-Beziehung (2.20) Dosisbedarf und Bildqualitét positiv miteinander korreliert
sind [43, 390, 911]. In den letzten Jahren wurden zahlreiche Verfahren zur Dosisreduktion in
der Computertomographie entwickelt [382, 535, 537, 538, 542], welche - mit patientenbeding-
ten Einschrankungen - auch in der pidiatrischen Radiologie angewandt werden konnen [1067]:

. Rohrenspannungs-Adaptation bzw. Roéhrenspannungs-Modulation (meist im Sinne
einer RGhrenspannungs-Reduktion)
. Reduktion des mAs-Produktes durch
o EKG-Triggerung
o Rohrenstrommodulation
o Iterative Bildrekonstruktion
o High-Pitch-Verfahren
. Abschirmung strahlenempfindlicher Organe und Gewebe durch
o Physikalische Abschirmung
o Organbasierte Rohrenstrommodulation

Die wichtigsten Dosisreduktionsverfahren wurden zusammen mit dem Zeitpunkt ihrer Einfiih-
rung und der durch das Verfahren durchschnittlich zu erwartenden Dosisreduktion in Tab. 2.3
genannt [121]. Einen generellen Uberblick iiber die Methoden zur Dosisreduktion bieten Lee
et Chem 2012 [540]. Die zur Dosisreduktion existierenden modernen Strategien bzw. Tech-
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niken konnen sowohl separat als auch kombiniert eingesetzt werden und erreichen bei sinn-
voller Kombination einen Synergieeffekt, welcher die den initialen Dosisbedarf einer CT-Un-
tersuchung um voraussichtlich insgesamt 90% zu verringern vermag [132].

Tab. 2.3. Dosisreduktion durch diverse Expositions- und Bildverarbeitungstechniken [121, 132].

Jahr Technik Dosisreduktionspotential
1999 Rohrenstrommodulation 10 — 60%
2009 Optimierung der Rontgenspektren 10 —50%
2009 Strahlkollimation 5-30%
2010 Iterative Rekonstruktion 10 — 60%
2010 Effizientere Detektorsysteme 10 —40%

Die Strahlenexposition des Patienten wird wesentlich durch die R6hrenspannung und den Roh-
renstrom bestimmt. Wéhrend die Strahlendosis linear mit dem Rdhrenstrom steigt, ist sie in
etwa zum Quadrat der R6hrenspannung proportional (Tab. 2.2). Insbesondere steigt die effek-
tive Dosis bei Kindern bei sonst gleichen Expositionsparametern {iberproportional mit der
Hohe der Rohrenspannung [z. B. 1080]. Somit kann durch eine Reduktion des Rohrenstromes
und durch eine Herabsetzung der R6hrenspannung eine Dosisreduktion erzielt werden. Beide
MaBnahmen erfordern jedoch erh6hte Anforderungen an die Leistungsfahigkeit der Bildrekon-
struktionsalgorithmen. Die klinische Einsetzbarkeit der Low-Dose-CT mit verminderter R6h-
renspannung und vermindertem Rohrenstrom bei gegeniiber den Referenzeinstellungen ver-
gleichbarer Bildqualitdt wurde bereits 1990 anhand klinischer Studien untersucht [579] und
ermOglicht einen zunehmend risikodrmeren Einsatz der CT beispielsweise im onkologischen
Screening [106]. CT-Untersuchungen des Thorax erreichen inzwischen effektive Strahlendo-
sen im GroBenordnungsbereich der konventionellen Projektionsradiographie [388] (Tab. 2.4).
Im Folgenden sollen die technischen Moglichkeiten zur Dosisreduktion in der Computertomo-
graphie ndher erldutert werden.

Tab. 2.4. Groflenordnung der effektiven Dosis bei diversen Untersuchungsverfahren [388].

Untersuchungsverfahren Effektive Dosis (mSv)
Konventionelle Projektionsradiographie pa 0.05
Volumen-CT des Thorax 7.00
Spiral CT (Pitch 1) 7.00
Spiral CT (Pitch 2) 3.50
High-resolution CT (Schichtabstand 10 mm) 0.70
High-resolution CT (Schichtabstand 20 mm) 0.35
Diinnschicht-Low-Dose High-resolution CT 0.02
Konventionelle Pulmonalangiographie 9.00

2.7.1. Rohrenspannungs-Adaptation bzw. Rohrenspannungs-Modulation /94, 257, 258/
Rohrenspannung und Gesamtfilterung determinieren nicht nur die Strahlenqualitét des Strah-
lenfeldes und damit die Durchdringungsféhigkeit der Rontgenstrahlung, sondern bei gegebe-
nem Rohrenstrom auch die Hohe der Strahlendosis: Bei sonst gleichen Expositionsparametern
steigen in der CT Energiedosis D und effektive Dosis E iiberproportional mit der Hohe der
Rohrenspannung an [71] (Tab. 2.2); der noch stirkere Anstieg der effektiven Dosis ist hierbei
durch die Energieabhédngigkeit der zur Berechnung der Organdosen aus der Energiedosis ver-
wendeten Konversionsfaktoren zu erklédren.

Entsprechend kann durch eine Verminderung der R6hrenspannung eine Dosisreduktion
erreicht werden [z. B. 622], wobei jedoch gleichzeitig das Bildpixelrauschen zunimmt und ggf.
wiederum durch eine Erhhung des Rohrenstromes kompensiert werden muss, welche jedoch
manche Rontgenrdhren an die Grenzen ihrer Belastbarkeit heranfiihrt und daher nicht in allen
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Féllen verwirklicht werden kann. Hierbei besteht die Rohrenspannungs-Adaptation in einer
Anpassung der Rohrenspannung an die Anthropometrie des Patienten. Diese statische manuel-
le Adaptation der Rohrenspannung wird im Verfahren der Rohrenspannungs-Modulation
angewandt, wie sie z. B. der Care-kV-Algorithmus von Siemens Healthcare darstellt, in Analo-
gie zur Rohrenstrommodulation zur dynamischen Anpassung der RGhrenspannung an die mit
der aktuellen Scanposition variierenden anthropometrischen Parameter.

Die Reduktion der Rohrenspannung besitzt neben dem Vorteil der Reduktion der Strah-
lendosis auch den Vorteil einer Erh6hung des Verstarkungseffektes jodhaltiger Kontrastmittel
und der damit einhergehenden Moglichkeit zu einer Reduktion der Kontrastmittelkonzentra-
tion [z. B. 622, 625].

Retrospektives EKG-Gating

W T T

Tisch- Rohrenstrom
Prospektives EKG-Triggering vorschub eingeschaltet

L=l =l =

Abb. 2.9: Prinzip der EKG-Steuerung des Rohrenstroms bei der Cardio-CTA (Abbildung nach [461]).
Beim retrospektiven EKG-Gating bleibt der Rohrenstrom wihrend des gesamten Herzzyklus eingeschaltet, die
zur Bildsynthese benétigte Bildinformation wird retrospektiv ermittelt. Beim prospektiven EKG-Triggering wird
erfolgt eine EKG-synchronisierte Pulsung des Rohrenstromes zum Zeitpunkt der prasystolischen Bildacquisition.

2.7.2. EKG-Triggerung /94, 257, 258]

Die CT-Cardangiographie (CTCA) zdhlt zu den vergleichsweise dosisintensiven CT-Untersu-
chungen; so konnen hier Mammadosen von bis zu 100 mSv [557] und Lungendosen bis zu 85
mSv [462] gefunden werden. Da die CTCA dem kardiologischen Patientenkollektiv erhebliche
diagnostische Vorteile bietet, scheint trotz der Notwendigkeit einer kritischen Indikations-
stellung [147] die liberkritische Indikationsstellung angesichts des vergleichsweise abstrakten
Strahlenrisikos nicht angezeigt [437]. Aufgrund eines errechenbaren Lebenszeit-Krebsrisikos
von bis unter 1:150 [444] stellt die Optimierung der Strahlenexposition in der CTCA eine
wesentliche Aufgabe dar [97, 444], der sich zahlreiche Arbeitsgruppen gewidmet haben. Eine
Literaturiibersicht liber Dosisbedarf und Dosisreduktionsmdglichkeiten findet sich in der
Publikation von Paul et Abada 2007 [467].

Eine Moglichkeit zur Reduktion der Patientendosis bei CT-Cardangiographien besteht in
der herzaktionassoziierten Steuerung des Rohrenstromes, der sogenannten EKG-Triggerung
des Rohrenstromes. Grundsétzlich werden bei der EKG-Triggerung zwei Verfahren unter-
schieden: Das retrospektive EKG-Gating und das prospektive EKG-Triggerung im eigentli-
chen Sinne (Abb. 2.9). Beim retrospektiven EKG-Gating bleibt der Rohrenstrom im Wesent-
lichen {liber den gesamten Scanvorgang hinweg eingeschaltet und wird lediglich in seiner Hohe
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der Herzaktion angepasst, wobei die diagnostisch relevante Bildinformation nach Beendigung
des Scans iiber das simultan aufgezeichnete EKG-Signal identifiziert und retrospektiv aus dem
Bilddatensatz extrahiert wird. Beim prospektiven EKG-Triggering hingegen erfolgt eine iiber
das simultan aufgezeichnete EKG-Signal herzaktionassoziierte Einschaltung des Rohrenstro-
mes, sodass neben einer Reduktion der Strahlendosis lediglich eine Erfassung der diagnostisch
relevanten Bildinformationen erfolgt.

2.7.3. Rohrenstrommodulation [94, 257, 258, 632, 658, 665, 667]

Bei einer CT-Untersuchung in konventioneller Konstantstromtechnik wird der Réhrenstrom
der Rontgenrdhre vor Beginn der CT-Untersuchung der Anthropometrie des Patienten ange-
passt, bleibt aber wihrend der gesamten CT-Untersuchung unveréndert. Hierdurch erfolgt im
Gesamtscan je nach Einstellung eine relative Uber- oder Unterexposition des Patienten, da der
zur Erzielung einer definierten Bildqualitit erforderliche minimale R6hrenstrom sowohl von
der Gewebedichte als auch vom Durchstrahlungsdurchmesser der jeweils durchstrahlten ana-
tomischen Region und damit von der Winkelposition der Rontgenrdhre und der Schichtlage
auf der Longitudinalachse des Patienten abhéngig ist. Die R6hrenstrommodulation oder Dosis-
modulation nun besteht in der dynamischen Adaptation des R6hrenstromprofiles an die Gewe-
bedichte und den Durchstrahlungsdurchmesser, wodurch eine Minimierung des R6hrenstromes
und damit eine Reduktion der Strahlendosis moglich wird. Hierzu wurden von den verschie-
denen Geriteherstellern unterschiedliche Algorithmen entwickelt.

Ll

Transversales Rohrenstromprofil Longitudinales R6hrenstromprofil

Abb. 2.10: Prinzip der angular-axialen Rohrenstrommodulation (© Regine Kuschke 2015, www.de-
sein.com, nach einer Vorlage von M. Seidenbusch [76]). Die gelbe Kurve entspricht dem axialen bzw. longi-
tudinalen, die blaue Kurve dem angular-axialen bzw. transversalen Réhrenstromprofil.

Die Entwicklung der angularen Rohrenstrommodulation Mitte der 1990er-Jahre [640] in Form
des damals sogenannten Smart-Scan-Verfahren [639]) besteht in einer ,,dynamischen Anpas-
sung des Rohrenstroms aufgrund von Messungen der lokalen Form der Dichtestruktur und
Absorptionsfahigkeit des Untersuchungsobjektes* [639] und gestattet nach theoretischen Vor-
hersagen bzw. unter klinischen Bedingungen eine Reduktion des Rohrenstromes und damit der
Strahlenexposition um 40-50% [640, 647]. Die Rohrenstrommodulation wurde entsprechend
weiteren Vorhersagen [1091] zum klinischen Standard. Allgemein werden heute unter dem
Begriff ,,Automatic exposure control* (AEC) in der CT alle Techniken zur automatischen
Adaptation des Rohrenstromes in angularer Richtung (angulare Rohrenstrommodulation bzw.
angular dose modulation (ADM) in der Transversal- bzw. x-y-Ebene des Patienten) und entlang
der axialen Richtung (axiale oder longitudinale Rohrenstrommodulation bzw. longitudinal do-
se modulation (LDM) in der Longitudinal- bzw. z-Achse des Patienten) an die Abmessungen
und das Schwichungsvermogen der durchstrahlten Korperregion zusammengefasst [653]. Je
nach Hersteller werden die Algorithmen einzeln oder in Kombination angeboten (Tab. 2.5).
Die praktische Realisierbarkeit der R6hrenstrommodulationstechnik basiert letztlich auf
der Brooks-Beziehung (2.18) [43] zwischen Bildqualitdt und Strahlendosis. Da das Bildrau-
schen des Gesamtbildes einer Einzelschicht im Wesentlichen durch das maximale Bildrau-
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schen aller in den verschiedenen Winkelpositionen angefertigten Teilbilder determiniert wird,
ist zur Erzielung einer gegebenen Bildqualitit des Gesamtbildes das Bildrauschen in allen Teil-
bildern konstant zu halten. Diese Tatsache eréffnet die Mdglichkeit zu einer vom Durchstrah-
lungsdurchmesser und von der Gewebedichte abhingigen Modulation des R6hrenstromes.

Allen Réhrenstrommodulationsalgorithmen liegt somit zunichst die Festlegung der zu
erzielenden Bildqualitét bzw. des zur Erzielung einer definierten Bildqualitét erforderlichen
mAs-Produktes zugrunde. Hierbei ist die strikte Beachtung der Patientenanthropometrie loh-
nend, da sich auf diese Weise CT-Protokolle ohne Verlust der Bildqualitét vereinfachen lassen
[638]. Bildqualitit und zugehoriges mAs-Produkt werden in physikalischen Phantomen
(General Electric, Toshiba) oder anhand von Referenz-Bilddatensdtzen von Standard-Patienten
(Philips, Siemens) ermittelt werden. Diese Referenzwerte werden im Rahmen realer CT-Un-
tersuchungen iiber die durch das Topogramm erhaltenen anthropometrischen Mal3e des Patien-
ten etwa durch eine dem ellipsoiden Patientenquerschnitt entsprechende Sinusoidal-Interpola-
tion in ein patientenadaptiertes Rohrenstromprofil umgerechnet, welches in der Regel wihrend
des Scanvorganges durch einen angular-axialen Online-Feedback-Algorithmus zur Beriick-
sichtigung der winkel- und schichtabhéngigen individuellen Transmissionseigenschaften des
Patienten korrigiert wird. Der angulare Feedback-Algorithmus nutzt die Tatsache einer nur
geringfiigigen Variation der Transmissionseigenschaften des durchstrahlten anatomischen Be-
reiches innerhalb von ein bis zwei Rohrenumdrehungen, sodass die im ersten 90°-Sektor bzw.
im ersten 180°-Sektor des Rohrenumlaufs bzw. die beim vorhergehenden vollstandigen 360°-
Rohrenumlauf gesammelten Transmissionswerte zur Modulation des R6hrenstromes im nach-
folgenden Rohrenumlauf verwendet werden konnen (90°- bzw. 180°- bzw. 360°-Rotations-
Feedback).

Tab. 2.5. Glossar: Algorithmen zur Réhrenstrom-Modulation [S37, 636, 653, 665, 671, 672].

Modulationstechnik Bezeichnung Hersteller

Patientenadaptierte automatische Automated current selection (ACS) Philips (1)

Rohrenstromselektion (ACS)

Angulare Dosismodulation ADM Smart mA General Electric

(in der Transversalebene bzw. x-y-Ebene | Smart Scan (2)

des Patienten) Dynamic dose modulation (D-DOM) Philips
CARE Dose Siemens (3)

Longitudinale Dosismodulation LDM Auto mA GE

(auf der Longitudinalachse bzw. z-Achse | Z-axis dose mdoulation (Z-DOM) Philips

des Patienten) Z-axis exposure control Siemens
Real exposure control (Real EC) Toshiba (4)
Sure exposure

Angular-axiale Dosismodulation Auto mA 3D = Smart mA + Auto mA GE

(im x-y-z-Raum) CARE Dose 4D Siemens
Dose Right = ACS + D-DOM + Z-DOM (5) | Philips
Sure Exposure 3D Toshiba

Organbasierte Dosismodulation X-CARE Siemens

(1) Philips Medical Systems

(2) GE Healthcare

(3) Siemens Medical Solutions

(4) Toshiba Medical Systems

(5) D-DOM und Z-DOM waren wohl zum Zeitpunkt der Literaturstudie noch nicht simultan einsetzbar.

Herstellerspezifische Merkmale.

Die herstellerspezifischen Unterschiede der angular-axialen R6hrenstrommodulationsalgorith-
men besitzen in Abhédngigkeit von den iibrigen Scanparametern wesentlichen Einfluss auf die
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Strahlenexposition des Patienten [673] und sollen daher im Folgenden kurz dargestellt werden
(Tab. 2.6) [671, 672, 673]. General Electric. Der angular-axiale R6hrenstrommodulations-
algorithmus Auto mA 3D von General Electric (GE) setzt sich aus dem angularen Algorithmus
Smart mA und dem axialen Algorithmus Auto mA zusammen. Auto mA erfasst anhand eines
in 2 Ebenen angefertigten Topogrammes die anthropometrischen Eigenschaften des Patienten
und legt den axialen Roéhrenstrom fiir jede Einzelschichtposition fest. Smart mA modifiziert
unter Anwendung eines 90°-Rotations-Feedback und unter Beriicksichtigung des Topogram-
mes das angulare Rohrenstromprofil. Auto mA 3D nimmt eine R6hrenstrommodulation inner-
halb des vom Benutzer vorgegebenen Rohrenstromintervalles unter Beriicksichtigung des vom
Benutzer vorgegebenen und auf die Standardabweichung der Pixelwerte in einem physikali-
schen Wasserphantom bezogenen Rausch-Index vor. Toshiba. Der angular-axiale Rohren-
strommodulationsalgorithmus Sure Exposure 3D von Toshiba erfasst anhand eines in 2 Ebenen
angefertigten Topogrammes die anthropometrischen Eigenschaften des Patienten und legt den
axialen Rohrenstrom fiir jede Einzelschichtposition innerhalb des vom Benutzer vorgegebenen
Rohrenstromintervalles unter Beriicksichtigung des vom Benutzer vorgegebenen Bildrau-
schens (Standardabweichung der Pixelwerte) in einem physikalischen Wasserphantom bezo-
gene Standard-Abweichung der Hounsfield-Einheiten fest. Philips. Der angular-axiale Roh-
renstrommodulationsalgorithmus Dose Right von Philips setzt sich aus der patientenadaptier-
ten automatischen Rohrenstromselektion ACS, dem angularen Algorithmus D-DOM und dem
axialen Algorithmus Z-DOM zusammen. Eine simultane Verwendung von D-DOM und Z-
DOM ist allerdings gegenwirtig noch nicht moglich. Das Grundkonzept von Dose Right be-
steht in der Acquisition von Referenzbilddatensétzen fiir Standard-Patienten, welche in Roh-
datenform zusammen mit den zugehorigen Topogrammen in einer Datenbasis hinterlegt wer-
den. ACS schldgt dem Benutzer durch einen Vergleich des in Sagittalebene angefertigten To-
pogrammes mit dem Referenz-Topogramm fiir jeden neuen Patienten den zur Erzielung einer
der Bildqualitdt des Referenzbilddatensatzes vergleichbaren Bildqualitét als sinnvoll erachtete
mAs-Produkt vor. Das vom Benutzer tatsdchlich gewéhlte mAs-Produkt geht in den Beurtei-
lungsalgorithmus von ACS als selbstlernendem System ein. Z-DOM erfasst anhand des vom
Patienten angefertigten Topogrammes die anthropometrischen Eigenschaften des Patienten
und berechnet hiervon ausgehend unter Beriicksichtigung der aktuellen Transmissionswerte
den axialen Rohrenstrom fiir jede Einzelschichtposition neu. D-DOM modifiziert unter An-
wendung eines 360°-Rotations-Feedback das angulare Rohrenstromprofil. Siemens. Das
Grundkonzept des angular-axialen Rohrenstrommodulationsalgorithmus CARE Dose 4D von
Siemens besteht in der Acqusition von Referenz-Transmissionsprofilen von Standard-Patien-
ten fiir jedes gewiinschte Untersuchungsprotokoll, welche zusammen mit den zur Erzielung
der jeweils gewiinschten Bildqualitidt anzuwendenden Referenz-mAs-Produkten in einer Da-
tenbasis hinterlegt werden. Vor Durchfiihrung einer CT-Untersuchung sind vom Benutzer ent-
sprechend dem Untersuchungsprotokoll ein Referenz-mAs-Produkt sowie die Modulations-
stirke des Algorithmus (stark, normal, schwach) festzulegen. CARE Dose 4D erstellt anhand
eines in einer Ebene angefertigten Topogrammes unter mathematischer Ergdnzung einer zu
dieser Ebene orthogonalen virtuellen zweiten Topogrammebene das Transmissionsprofil des
Patienten und schlidgt unter Beriicksichtigung des Referenz-Transmissionsprofils, des Refe-
renz-mAs-Produktes und der eingestellten Modulationsstirke das zu verwendende mAs-Pro-
dukt vor. Der Algorithmus modifiziert unter Anwendung eines 180°-Rotations-Feedback und
unter Beriicksichtigung des Topogrammes das angular-axiale R6hrenstromprofil. Hiervon aus-
genommen sind Schideluntersuchungen, bei welchen lediglich eine longitudinale Roéhren-
strommodulation erfolgt.
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Tab. 2.6. Algorithmen zur Rohrenstrom-Modulation [535, 636, 653, 665, 671, 672].

Hersteller | Produktname | Referenzgrofie | Rohrenstrommodulation iiber | Bediener-Vorgaben
General Auto mA 3D | Bildrauschen Topogramm in 2 Ebenen + Rausch-Index +
Electric Smart mA (Standard- Sinusoidal-Interpolation + Rohrenstrom-Intervall
abweichung der | 90°-Rotations-Feedback
Toshiba Sure Exposure | Pixelwerte im Topogramm in 2 Ebenen + Referenz-Standard-
3D Wasserphantom) | Sinusoidal-Interpolation abweichung der
Hounsfield-Einheiten
oder Bildqualitit +
Rohrenstrom-Intervall
Philips Dose Right Referenz- Topogramm in Sagittal-Ebene + | Referenz-mAs fiir
Schichtbild 360°-Rotations-Feedback Schichtbild
Siemens Care Dose 4D | Referenz-mAs Topogramm in Sagittal-Ebene + | Referenz-mAs fiir
180°-Rotations-Feedback Standard-Patienten
(Erwachsener / Kind),
Modulationsstérke

2.7.4. Iterative Bildrekonstruktion /94, 257, 258]

Die Akquisition dreidimensionaler Bilddatensétze erfolgt in der Computertomographie durch
die Rotationsbewegung der Rontgenrohre und des Bildempfingersystems um den Patienten
herum. Wihrend der sinusoiden Relativbewegung des bildgebenden Systems um den Patienten
herum werden die durch die Gewebedichteverteilung im Patienten erzeugten Transmissions-
profile des Primérstrahlenbiindels vom Bildempfingersystem aufgezeichnet und vom Bild-
rechner zu einem virtuellen Abbild der Patientenmorphologie, dem Sinogramm, zusammenge-
setzt. In mathematischer Beschreibung dieses Vorganges erfolgt durch Radon-Transformation
eine Projektion der Gewebedichteverteilung des Patienten im Ortsraum auf das die Gesamtheit
aller Schwichungsprofile reprisentierende Sinogramm im Sinogramm-Raum. Durch eine
Riickprojektion in Gestalt der Invertierung der Radon-Transformation, der Radon-Riick-
transformation, kann nun das Sinogramm im Sinogramm-Raum in ein Bild im Bild-Raum
umgewandelt werden. Dieses Bild im Bildraum sollte naturgeméf ein moglichst realitdtsnahes
Abbild der untersuchten anatomischen Region des Patienten im Ortsraum darstellen. Abb. 2.11
illustriert diese Vorginge schematisch.

Orts-Raum Sinogramm-Raum Bild-Raum

Riick-
projektion

Gemessenes
Sinogramm

Pl

Abb. 2.11: Radon-Projektion und —Riickprojektion (© M. Seidenbusch 2015 nach einer Abbildung von Ul-
zenheimer, Siemens Healthcare). Durch den computertomographischen Scanvorgang wird die dreidimensionale
Struktur des Patienten im Orts-Raum durch Radon-Transformation in Gestalt von Transmissionsprofilen in den
Sinogramm-Raum und von dort aus durch Radon-Riicktransformation als errechnetes Bild in den Bild-Raum
iibertragen. Ziel der Rekonstruktionsalgorithmen ist eine weitestgehende Annéherung der Information im Bild-
Raum an die Informationen im Orts-Raum.

Patient |>{ Projektion Bild
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Zur praktischen Durchfiihrung der inversen Radon-Transformation bzw. Radon-Riickprojek-
tion existieren zwei Verfahrensgruppen: Die analytischen und die iterativen Rekonstruktions-
verfahren. Zu den analytischen Rekonstruktionsverfahren zéhlen die ungefilterte Riickprojek-
tion (unfiltered back projection, UBP), die gefilterte Riickprojektion (filtered back projection,
FBP) sowie die gewichtete gefilterte Riickprojektion (weighted filtered back projection,
WEFBP), zu den iterativen Verfahren die algebraischen Rekonstruktionstechniken (ART) und
die modellbasierten Rekonstruktionstechniken. Wihrend die analytischen Rekonstruktionsver-
fahren durch eine hohe Effizienz gekennzeichnet sind, vermdgen sie Storeinfliisse wie das
Bildrauschen vergleichsweise schlecht zu kompensieren. Iterative Rekonstruktionsverfahren
hingegen zéhlen zu den a priori rechenleistungsintensiveren Verfahren, vermdgen aber Stor-
einfliisse besser zu eliminieren.

a n b I

C u d n
Abb. 2.12 (Abbildungen aus [728]): Visualisierung der Bildrekonstruktion durch Riickprojektion am Beispiel
eines wiirfelformigen Objektes. (a) Original im Ortsraum; (b) Gesamtheit der Transmissionsprofile (Sinogramm)

im Sinogramm-Raum; (c) Ergebnis der ungefilterten Riickprojektion im Bildraum; (d) Ergebnis der gefilterten
Riickprojektion (FBP) im Bildraum.

2.7.4.1. Analytische Bildrekonstruktion /94, 257, 258]

Die ungefilterte Riickprojektion (back projection, BP) stellt die elementarste Bildrekonstruk-
tionstechnik dar. Sie besteht in der Riickprojektion der Gesamtheit der gemessenen Trans-
missionsprofile, also des Sinogramms im Sinogramm-Raum, auf das darzustellende Bild im
Bild-Raum durch Radon-Riicktransformation. Durch die elementare Form der Riickprojektion
konnen jedoch die abzubildenden Strukturen aus dem Ortsraum nicht realitétsidentisch
abgebildet werden; insbesondere stellt die reduzierte Kantenschérfe ein inhdrentes Problem
dieser Methode dar. Aus diesem Grunde wird in der Praxis nicht die elementare Riickprojek-
tion, sondern die gefilterte Riickprojektion (filtered back projection, FBP) angewandt, wel-
che durch zusdtzliche Anwendung mathematischer Filterfunktionen (sogenannter Filterkerne)
eine Verbesserung der Kantenschéarfe herbeifiihren. Dennoch bleiben die Riickprojektionsver-
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fahren nach wie vor sehr empfindlich gegeniiber Storeinfliissen, wie sie vor allem die Rausch-
effekte darstellen. Eine zusammenfassende Illustration der ungefilterten und der gefilterten
Riickprojektion bietet Abb. 2.12.

2.7.4.2. Iterative Bildrekonstruktion [2, 94, 257, 258, 778, 827]
Iterative Verfahren zur Bildrekonstruktion wurden bereits in den ersten Jahren der Computer-
tomographie angewandt [2]; in ihrer heutigen Form vermdgen sie das nach der gefilterten
Riickprojektion die Bildinformation iiberlagernde Bildrauschen deutlich zu reduzieren und
damit die objektive Bildqualitit nachhaltig zu verbessern [2]. Das Grundprinzip der iterativen
Rekonstruktion besteht in der sukzessiven Anpassung des Bildes im Bild-Raum an die reale
Gewebedichteverteilung im Ortsraum. Hierzu erfolgt zunédchst durch die klassische Radon-
Riickprojektion eine Uberfiihrung des gemessenen Sinogramms im Sinogramm-Raum in ein
errechnetes Bild im Bild-Raum. AnschlieBend erfolgt im Rahmen eines mathematischen Itera-
tionsprozesses je nach Algorithmus eine sukzessive Verbesserung der Qualitdt des errechneten
Bildes durch Vergleichs- und Korrekturroutinen im Sinogramm-Raum, im Bild-Raum oder in
beiden Réumen.

In der Praxis existieren verschiedene mathematische Verfahren, welche sich durch die
Art und Weise des Vergleichs- und Anpassungsprozesses unterscheiden; sie finden in Tab. 2.7
lediglich Erwéhnung und werden z. B. in [704] ndher erldutert. Genanntes Verfahren wurden
von verschiedenen Herstellern in unterschiedlicher Weise umgesetzt. Tab. 2.8 zeigt die
gingigsten Verfahren zur iterativen Rekonstruktion, die im Folgenden ndher vorgestellt wer-
den sollen.

Tab. 2.7. Mathematische Verfahren der iterativen Rekonstruktion [704].
Konventionelle iterative algebraische Verfahren

ART Algebraische Rekonstruktionstechnik (Algebraic reconstruction technique)

SART Simultane algebraische Rekonstruktionstechnik (Simultaneous ART)

MART Multiplikative algebraische Rekonstruktionstechnik (Multiplicative algebraic reconstruction
technique)

SIRT Simultane iterative Rekonstruktionstechnik (Simultaneous iterative reconstruction technique)

OS-SIRT Ordered subset SIRT

ILST Iterative least-squares technique

Iterativ-statistische Rekonstruktionsverfahren
Gradienten-Algorithmen

ML-EM Maximum likelihood expectation maximization

OS-EM Ordered-subsets expectation maximization

OSC Ordered subset convex algorithm

ICD Iterative coordinate descent

OS-ICD Ordered subset ICD

MAP Maximum a posteriori algorithms

Modell-basierte Verfahren

IMR Wissens- und modellbasierte iterative Rekonstruktion (Knowledge- and model-based iterative
model reconstruction)

MBIR Modellbasierte iterative Rekonstruktion (Model-based iterative reconstruction)

Adaptierte statistische iterative Rekonstruktion (ASIR) und modellbasierte iterative
Rekonstruktion (MBIR).

Bei den Verfahren der adaptierten statistischen iterativen Rekonstruktion (Adaptive Statistical
Iterative Reconstruction, ASIR) und der modellbasierten iterativen Rekonstruktion (Model-
Based Iterative Reconstruction, MBIR) erfolgt eine Radon-Transformation des errechneten
Bildes aus dem Bild-Raum in ein neu errechnetes Sinogramm im Sinogramm-Raum. Dieses
neue errechnete Sinogramm wird im Sinogramm-Raum mit dem alten gemessenen Sinogramm
verglichen und anschliefend durch erneute Radon-Riickprojektion in ein neues errechnetes
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Bild im Bild-Raum {iberfiihrt. Dieses neue Bild sollte nunmehr ein getreueres Abbild der Ge-
webedichteverteilung im Ortsraum darstellen als das alte Bild. Dieser Vorgang kann prinzipiell
beliebig oft wiederholt werden, wobei eine zunehmend bessere Approximation des errechneten

Bildes im Bild-Raum an die reale Gewebedichteverteilung im Ortsraum erzielt werden kann
(Abb. 2.13).

Tab. 2.8: Verfahren zur iterativen Rekonstruktion [537, 540, 721, 727, 768, 794, 827, 1116].

Verfahren | Hersteller
Statistische iterative Rekonstruktion
AIDR, AIDR-3D, Adaptive iterative dose reduction Toshiba Medical Systems
IARD
ASIR Adaptive statistical iterative reconstruction GE Healthcare
ASIR-V Adaptive statistical iterative reconstruction GE Healthcare
iDose Philips Medical Systems
IRIS Iterative reconstruction in image space Siemens Healthcare
Modell-basierte iterative Rekonstruktion
ADMIRE Advanced model-based iterative reconstruction Siemens Healthcare
iDose* Philips Medical Systems
IMR Iterative model reconstruction Philips Medical Systems
MBIR = VEO Model based iterative reconstruction GE Healthcare
SAFIRE Sinogram affirmed iterative reconstruction Siemens Healthcare
Sinogramm-Raum Bild-Raum
Gemessenes
Sinogramm
Vergleich Riick-
& projektion > Bild
Korrektur (WFBP)
Errechnetes
Sinogramm n
Iteration
1 Regula-
risierung
Analyse
Projektion gee

Bildrau-
schens

Abb. 2.13: Vereinfachtes Prinzip der Verfahren ASIR (Adaptierte Statistische Iterative Rekonstruktion)
und MBIR (Modellbasierte Iterative Rekonstruktion) (© M. Seidenbusch 2015 nach einer Abbildung von
Ulzenheimer, Siemens Healthcare, und Willemink et al 2013 [827]). Als Verfahren der Riickprojektion dient
hier die gewichtete gefilterte Riickprojektion (weighted filtered back projection, WFBP). Die Rechenleis-
tungsintensitit des Verfahrens rithrt im wesentlichen von der Projektionsroutine her. Dieses Prinzip liegt den
Verfahren der adaptierten statistischen iterativen Rekonstruktion (ASIR) und der modellbasierten iterativen
Rekonstruktion (MBIR) zugrunde.
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Ein Nachteil dieser klassischen Iterationsalgorithmen besteht in der Notwendigkeit der Trans-
formation der Bildinformation im Bildraum in ein errechnetes Sinogramm im Sinogramm-
Raum. Diese Transformation entspricht einer virtuellen Computertomographie des Bildes, wel-
che durch den Projektionsalgorithmus moglichst realitdtsnah simuliert werden muss. Aus die-
sem Grunde sind zahlreiche technische Informationen iiber die Beschaffenheit der Strahlen-
quelle und des Bildempfingersystems in den Projektionsalgorithmus zu implementieren, wel-
che bei jeder Iteration durch die Projektionsroutine abgerufen und prozessiert werden miissen,
weswegen sich die Projektion vom Bildraum in den Sinogramm-Raum &uf3erst rechenleis-
tungsintensiv gestaltet und damit eine Limitation fiir das Verfahren der iterativen Rekonstruk-
tion darstellt. Dies gilt vor allem fiir das Verfahren der MBIR, bei welcher die strahlenphysi-
kalischen Abldufe von der Erzeugung der Rontgenstrahlung in der Anode der Rontgenrohre
iiber die Wechselwirkungen der Rontgenstrahlung im Patienten bis hin zum Auftreffen der
transmittierten Rontgenstrahlung auf das Bilddetektorsystem im Modell detailliert beriick-
sichtigt werden, weswegen die MBIR gegentiber der ASIR als weitaus rechenleistungsintensi-
ver zu betrachten ist [823].

Die Detaildarstellung scheint durch die MBIR besser zu gelingen als durch die ASIR
[823, 1118]. Ein neues Verfahren, welches die Vorteile der ASIR und der MBIR in sich ver-
einigt, stellt der Algorithmus der ASIR-V dar [722].

Sinogramm-Raum Bild-Raum

Riick-
Gemessenes ik : .
: >| projektion Bild > Bild
Sinogramm (WFBP)

tion

Analyse
des
Bildrau-
schens

Abb. 2.14: Vereinfachtes Prinzip der iterativen Rekonstruktion im Bildraum IRIS (Image Reconstruction
in Image Space) (© M. Seidenbusch 2015 nach einer Abbildung von S. Ulzenheimer, Siemens Healthcare,
und Willemink et al 2013 [827]). Die rechenleistungsintensive Projektionsroutine wird durch Verlagerung der
Iterationsschleife in den Bildraum eingespart.

Iterative Rekonstruktion im Bild-Raum (IRIS).
Diese Rechenleistungsintensitit der iterativen Verfahren kann durch eine Verlagerung der Ver-
gleichs- und Korrektur-Routine aus dem Sinogramm-Raum in den Bildraum durch das Verfah-
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ren der iterativen Rekonstruktion im Bildraum (Iterative Reconstruction in Image Space, IRIS)
und der damit einhergehenden Einsparung der in jedem Iterationsschritt notwendigen Projek-
tion vom Bildraum in den Sinogramm-Raum wirkungsvoll begegnet werden (Abb. 2.14).
Allerdings muss der vergleichsweise hohe Rauschanteil des aus dem Sinogramm-Raum trans-
formierten ,,Master“-Bildes durch iterative Korrektur im Bildraum reduziert werden. Gemaf
den Herstellerangaben bleiben Ortsauflésung und Bildtextur wihrend des Iterationsprozesses
erhalten.

Sinogram-Affirmed Iterative Reconstruction (SAFIRE).

Das Verfahren der sinogramm-gestiitzten iterativen Rekonstruktion (Sinogram-Affirmed Ite-
rative Reconstruction, SAFIRE) fiihrt iterative Prozesse sowohl im Sinogramm-Raum als auch
im Bild-Raum durch (Abb. 2.15). Hierbei erfolgt eine voxelweise Bestimmung des Bildrau-
schens und eine Entfernung desselben durch einen Abgleich zwischen Sinogramm- und Bild-
daten.

Adaptive Iterative Dosis-Reduktion 3D (AIDR 3D).

Das Verfahren der adaptiven iterativen Dosisreduktion 3D (adaptive iterative dose reduction
3D, AIDR 3D) fiihrt ebenfalls iterative Prozesse sowohl im Sinogramm-Raum als auch im
Bild-Raum durch (Abb. 2.15). Der Algorithmus basiert auf einer Modellierung des CT-Scan-
ners und des Bildrauschens. Das resultierende errechnete Bild entsteht durch eine Synthese aus
dem initialen errechneten Bild und dem durch die letzte Iterationsstufe errechneten Bild.

Sinogramm-Raum Bild-Raum

Riick-
Errechnetes =E : :
= ) L—»| projektion Bild > Bild
Sinogramm (WFBP)
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Bildrau-
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Abb. 2.15: Vereinfachtes Prinzip der kombinierten iterativen Rekonstruktion im Sinogrammraum und im
Bildraum fiir die Verfahren AIDR 3D, iDose und SAFIRE (© M. Seidenbusch 2015 nach einer Abbildung
von Willemink et al 2013 [827]). Die rechenleistungsintensive Projektionsroutine wird durch die Verlagerung
der Iterationsschleifen in den Sinogrammraum und in den Bildraum eingespart.
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iDose*.

Auch das Verfahren iDose* [788], die vierte Version des iDose-Algorithmus, fiihrt iterative
Prozesse zur Rauschreduktion sowohl im Sinogramm-Raum als auch im Bild-Raum durch
(Abb. 2.15). Hierbei erfolgt zundchst eine Identifikation von Sinogrammgebieten mit ver-
gleichsweise hohen Rauschanteilen anhand einer Analyse der Signal-Rausch-Verhéltnisse und
der Photonenstatistik, welche durch iterative Prozesse unter Beibehaltung der Kanteniiber-
ginge unterdriickt werden. Verbleibende Rauschanteile dieser Sinogrammgebiete werden bei
der Projektion in den Bildraum iibernommen, wobei deren Lokalisation im Bildraum nunmehr
bekannt ist und zur effektiven Elimination des Rauschens im Bildraum genutzt werden kann.
Hierzu erfolgt eine sukzessive Subtraktion des Bildrauschens unter Beibehaltung der anato-
miespezifischen Kantenstrukturen des Bildes, wobei das der realen anatomischen Topologie
am besten entsprechende Subtraktionsbild zur Reduktion des Bildrauschens herangezogen
wird [789].

Sinogramm-Raum Bild-Raum
e Riick-
St —>»| projektion Bild > Bild
Modell (WFBP)

Gemessenes
Sinogramm

Master

Fortgesch
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Regula-

tion
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Ruck-
projektion
(System-
modell

Errechnetes
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Abb. 2.16: Prinzip des Verfahrens ADMIRE (Advanced Model-based Iterative REconstruction) (© M.
Seidenbusch 2015 nach einer Abbildung in [819]). Der Algorithmus dhnelt dem Konzept von SAFIRE. Niheres
siche Text.

Advanced model-based iterative reconstruction (ADMIRE) [819].

Im Verfahren der fortgeschrittenen modellbasierten iterativen Rekonstruktion (ADMIRE) wur-
den statistische Modelle zur Verarbeitung der gemessenen Sinogramme und der Bilddaten in
Abhéngigkeit von der Qualitit der Projektionsdaten implementiert. Hierbei erfolgt die Projek-
tion des errechneten Bildes aus dem Bildraum in ein errechnetes Sinogramm im Sinogramm-
raum anhand eines Modells des CT-Systems und ein anschlieender Vergleich des errechneten
Sinogramms mit dem gemessenen Sinogramm (Abb. 2.16). Im Gegensatz zu anderen iterativen
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Algorithmen wird zur Einsparung der rechenleistungsintensiven Riick- und Vorwirtsprojek-
tionen die statistische Wichtung aus dem Sinogrammraum in den Bildraum {ibernommen,
wobei die Anzahl der bendtigten Iterationen zwischen Riick- und Vorwartsprojektion von den
Scanparametern abhéngig ist. Die Iterationen gehen in die Errichtung eines Master-Datensatzes
mit ein, mit welchem ein Abgleich des durch Riickprojektion errechneten Bildes erfolgt.

Regularisierungs-Routinen.

Zur Reduktion des Rauschanteils werden in den verschiedenen Iterationsalgorithmen der ein-
zelnen Gerétehersteller (Tab. 2.8) im Sinogramm-Raum oder im Bild-Raum oder in beiden
Réumen sogenannte Regularisierungsroutinen in den Iterationsalgorithmus implementiert. Ihre
Aufgabe ist die mathematische Modellierung des im Sinogramm bzw. im Bild enthaltenen
Bildrauschens sowie die Subtraktion desselben zur sukzessiven Herausarbeitung der Bild-
information und damit zur Verbesserung des Signal-Rausch-Verhéltnisses. Die Regularisie-
rung ist somit als wesentlicher Vorgang zur Reduzierung des Bildrauschens im Rahmen der
iterativen Bildrekonstruktion zu betrachten.

Tab. 2.9.A. Eigenschaften der Algorithmen zur iterativen Rekonstruktion.
Hersteller Algorithmus | Anpassungsort Verfahren Maogliche Maogliche
Einstellungen Anzahl der
Iterationen
0-100%
(10%-Inkre-
0 =
ASIR Sinogrammraum | Statistisch glégfe) (0% 3-5
GE 100% = ASIR)
(Praxis: 30-40%)
. Statistisch &
ASIR-V Sinogrammraum modell-basiert | -
MBIR = VEO | Sinogrammraum | Modell-basiert | 1 -
. Bildraum + Anzahl der
1Dose . . 1-7
Sinogrammraum Iterationen 1 - 7
. Bildraum + .
Philips iDose* Sinogrammraum Modell-basiert | 0 — 100% 1-7
Body Soft
IMR Modell-basiert | Body Routine -
Body SharpPlus
ADMIRE Modell-basiert | ~-07ahl der 1-5
Iterationen | - 5
Anzahl der
) IRIS Bildraum Statistisch Iterationen 1 - 5 1-5
Siemens (Praxis: 3 - 5)
) Anzahl der
+ . .
SAFIRE }Sgilrll((i)rarlellﬁmraum Modell-basiert | Iterationen 1 - 5 1-5
g (Empfohlen: 3)
AIDR B.l Idraum + Statistisch automatisch -
Sinogrammraum
Toshiba . mild
AIDR-3D B.l ldraum -+ Statistisch standard -
Sinogrammraum
strong

Beim Verfahren der adaptiven statistischen iterativen Rekonstruktion (ASIR) erfolgt durch die
Regularisierungsroutine eine statistische Beriicksichtigung des Bildrauschens. Beim Verfahren
der modellbasierten iterativen Rekonstruktion (MBIR) wird die Regularisierungs-Routine noch
um eine Modellierung der Strahlenquelle, des Bildempfangersystems und des Bildgebungspro-
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zesses erginzt. Auf diese Weise lassen sich durch beide Verfahren stochastische Storeinfliisse
wie das Bildrauschen sukzessive vermindern, wodurch bereits im Vorfeld der Bildverarbeitung
der Dosisbedarf der Bildgebung deutlich reduziert werden kann. Zwar ist die MBIR aufgrund
der in die Bildkorrektur einflieBenden Zusatzinformationen robuster gegeniiber Storeinfliissen,
aber aufgrund der komplexeren Regularisierungsroutine naturgemall noch rechenleistungsin-
tensiver und damit noch langsamer als die ASIR. Bei der Sinogramm-unterstiitzten iterativen
Rekonstruktion (SAFIRE) schlieBlich erfahrt die Regularisierungsroutine im Bildraum ein
Feedback aus dem Sinogramm-Raum (Abb. 2.15). Bei SAFIRE und auch ADMIRE vollfiihrt
die Regularisierungsroutine eine lokale Analyse der Signal-Rausch-Verhéltnisse mit einer Zer-
legung des Bildes in Signal- und Rauschanteile, wobei bei SAFIRE unmittelbar benachbarte
Voxel, bei ADMIRE jedoch auch anatomisch weiter entfernte Voxel sowohl zur Verbesserung
der Bildstatistik als auch zur Erzielung eines gewohnteren Bildaspektes verwendet werden
[819].

Tab. 2.8 gibt einen Uberblick iiber die verschiedenen iterativen Verfahren der einzelnen
Hersteller. In Tab. 2.9 werden weitere Details zu den einzelnen Verfahren aufgefiihrt.

Tab. 2.9.B. Eigenschaften der Algorithmen zur iterativen Rekonstruktion [u.a. 721].

Hersteller Algorithmus Vorteile Nachteile
GE ASIR - Rauschreduktion - Limitierte Ortsauflosung
- Hohe Geschwindigkeit - Limitierte Rauschreduktion
- Herstellerspezifisch
ASIR-V - -
MBIR = VEO - Schwache Bildartefakte vs. - Niedrige Geschwindigkeit
FBP

- Geringes Rauschen bei - Herstellerspezifisch

niedriger Dosis

- Gute Ortsauflosung

Philips iDose - Rauschreduktion - Limitierte Ortsauflosung
- Hohe Geschwindigkeit - Limitierte Rauschreduktion
- Herstellerspezifisch
IMR
Siemens ADMIRE
IRIS - Hohe Geschwindigkeit - Limitierte Ortsauflosung
- Herstellerunabhéngig - Limitierte Rauschreduktion
SAFIRE - Rauschreduktion - Limitierte Ortsauflosung
- Hohe Geschwindigkeit - Limitierte Rauschreduktion
- Herstellerspezifisch
Toshiba AIDR - Rauschreduktion - Limitierte Ortsauflosung
- Hohe Geschwindigkeit - Limitierte Rauschreduktion
- Herstellerspezifisch

Tab. 2.9.C. Eigenschaften der Algorithmen zur iterativen Rekonstruktion [827]).

Hersteller Algorithmus Maximale Dosisreduktion
ASIR 40%
ASIR-V 82% [722]

GE MBIR = VEO 75% 1, 46%-84% [810] @
iDose4 80% [788, 8271V
IMR 80% [720] @
ADMIRE -

Siemens IRIS 60%
SAFIRE 60% M

Toshiba AIDR 75% [738, 8271

(D GeméB Herstellerangabe
@ GeméB Literatur
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Tab. 2.9.D. Algorithmen zur iterativen Rekonstruktion - Abkiirzungsverzeichnis [535, 537, 538, 716]).

Hersteller Algorithmus | Name
GE ASIR Adaptive statistical iterative reconstruction
MBIR Model-based iterative reconstruction
Philips iDose iDose
IMR Iterative modeled reconstruction
Siemens ADMIRE Advanced modeled iterative reconstruction
IRIS Iterative reconstruction in image space
SAFIRE Sinogram-affirmed iterative reconstruction
Toshiba AIDR Adaptive iterative dose reduction
AIDR 3D Adaptive iterative dose reduction 3D

Allen iterativen Verfahren gemein ist die Verbesserung der Bildqualitédt durch eine sukzessive
Verminderung des Bildrauschens mit steigender Iterationsstufe. Abb. 2.17 zeigt die Auswir-
kung verschiedener Iterationsstufen auf den Bildaspekt [1125].

Low Dose ijteration iteration iteration
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forward projection ideal
projection
Abb. 2.17: Auswirkung der Anzahl iterativer Bildrekonstruktionsprozesse auf die Bildqualitit [aus 1017].
Von links nach rechts: Mit zunehmender Anzahl der Iterationen wird durch den Vergleich des gemessenen
Sinogramms mit den errechneten Sinogrammen eine zunehmende Verminderung des Bildrauschens bewirkt,
sodass die resultierenden Bilder gegen das Ideal eines rauschfreien Bildes konvergieren. In der Praxis wird
naturgemél das rauschfreie Ideal weder anzustreben noch zu erreichen sein.

2.7.5. High-Pitch-Verfahren /94, 257, 258]

Strahlendosis und objektive Bildqualitdt bei einer CT-Untersuchung sind eine direkte Funktion
des Pitch-Faktors; bei sonst unverdnderten Expositionsparametern steigen Dosis [843, 845,
848] und Bildqualitdt [853, 1134] mit sinkendem Pitch und vice versa. Das High-Pitch-Ver-
fahren nun erlaubt durch verbesserte Bildverarbeitungsalgorithmen eine dramatische Vergro-
Berung des Pitch-Faktors auf > 2 und damit eine Dosisreduktion.

Allerdings ist die Wahl des Pitch-Faktors bei der Spiral-CT bzw. des Tischinkrements
bei der Hochauflosenden Einzelschicht-CT aus bildverarbeitungstechnischen Griinden Limita-
tionen unterworfen. Bei der CT-Cardangiographie begrenzt das geringe Scanvolumen die Wahl
des Pitch-Faktors [468]. Bei der Thorax-CT zur Diagnostik von Lungenstrukturerkrankungen
wird die mit einer Erh6hung des Pitch-Faktors einhergehende Verminderung der Anzahl der
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Schnittbilder wegen der hierdurch einhergehenden Verminderung der Bildqualitét als nicht
sinnvoll erachtet [1034], zumal hierdurch die quantitative Lungendiagnostik erschwert wird
[1035].

2.7.6. Physikalische Abschirmungsmaf3nahmen /94, 257, 258]

Die Strahlenexposition strahlenempfindlicher Organe und Gewebe und damit die Strahlenex-
position des Patienten kann durch physikalische Abschirmungsmafinahmen deutlich reduziert
werden. Die gezielte Abschirmung strahlenempfindlicher Organe wie der Augenlinse, der
Schilddriise oder der Mamma durch Auflage von Wismut- oder Bleischilden wurde erstmals
im Jahre 1997 angewandt und bewirkt in den genannten Organen eine Reduktion der Organ-
dosis um etwa 20 - 80%. Allerdings ist der Einsatz von Abschirmungen aus bildverarbeitungs-
technischen Griinden nicht unumstritten.

2.7.7. Organbasierte Rohrenstrommodulation (organbasierte Dosismodulation OBDM)
194, 257, 258]

Bei CT-Untersuchungen befinden sich nahe der Hautoberfldche lokalisierte Organe und Ge-
webe zwangsldufig nahe der Strahleintrittsseite und erfahren damit eine wesentlich héhere
Strahlenexposition als tiefer gelegene Organe und Gewebe, deren Strahlenexposition durch die
exponentielle Abnahme der Photonenflussdichte reduziert ist. Das Verfahren der organbasier-
ten Rohrenstrommodulation bzw. organ based dose modulation (OBDM) erlaubt durch die
sektorielle Variation des Rohrenstromes in der Transversalebene des Patienten (Abb. 2.18) vor
allem die Verminderung der Strahlenexposition oberfldchlich lokalisierter Organe wie der Au-
genlinse, der Schilddriise und der Mamma (Abb. 2.19).

330

Rohrenstrom

—— Ohne OBDM
—— Mit OBDM

90

270

180

Abb. 2.18: Prinzip der organbasierten Dosismodulation (OBDM) (© M. Seidenbusch 2015). Bei eingeschal-
teter OBDM wird hier {iber einen Sektor von 120° der Rohrenstrom abgeschaltet.
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Abb. 2.19: Auswirkung der organbasierten Dosismodulation (OBDM) auf die Dosisverteilung im Patienten
[Abbildung aus 1076]. (a) Bei konstantem Rohrenstrom ist die Strahlenexposition aller nahe der Hautoberfldche
lokalisierter Organe und Gewebe am hochsten. (b) Bei eingeschalteter OBDM wird hier iiber einen Sektor von
etwa 120° der Rohrenstrom abgeschaltet und im restlichen Rohrenumlauf kompensativ erhoht, sodass eine
Schonung des Mammagewebes resultiert.

Wenn auch bei bestimmten Untersuchungsprotokollen ein Einfluss auf die effektive Dosis
nicht nachweisbar ist, soll die OBDM dennoch eine Reduktion der lokalen Organdosen ohne
Beeintrachtigung der Bildqualitit bewirken. Die OBDM kann daher in gewissem Rahmen al-
ternativ zur klassischen Wismut-Abschirmung eingesetzt werden; insbesondere bei péadiatri-
schen CT-Untersuchungen stellt sie eine sinnvolle Alternative zu der bei Kindern weniger
wirksamen angularen Rohrenstrommodulation dar. Allerdings scheint in der Praxis das Mam-
magewebe bei erwachsenen Frauen hiufig nicht vollstindig vom rohrenstromreduzierten Sek-
tor umfasst zu werden [670].






3. Methodik
3.1. Forschungsprojekt

Das der vorliegenden Arbeit zugrundeliegende Forschungsprojekt des Bundesamtes fiir Strah-
lenschutz (BfS) /94, 257, 258] war in insgesamt drei Unterprojekte untergliedert. Zum einen
wurde eine Literaturstudie zum Stand der Wissenschaft und Technik dosisreduzierender Ver-
fahren in der Computertomographie vorgenommen /94/, zum anderen eine retrospektive Quer-
schnittsstudie zum Einsatz verschiedener Dosisreduktionstechniken in der klinischen Praxis
und zu deren Auswirkungen auf Bildqualitdt und Strahlendosis durchgefiihrt und diese durch
eine prospektive Phantomstudie zur Verifikation der retrospektiv erhobenen Befunde ergédnzt
[257, 258]. In der zu Tab. 0.1 identischen Tab. 3.1 wurden die Eckdaten des Forschungspro-
jektes aufgefiihrt.

Tab. 3.1. Eckdaten des BfS-Forschungsprojektes.

Projektname: Evaluierung neuer CT-Techniken und Bestimmung der mit ihnen erzielten Strahlen-
reduktion bei verschiedenen CT-Betreibern in Deutschland
Projektnummer: BfS AG-F3 — 0803 /3613520025
Auftraggeber: Bundesminister fiir Umwelt, Naturschutz und Reaktorsicherheit
Projektbetreuer: Dr. Alexander Schegerer, Bundesamt fiir Strahlenschutz, AG-SG 2.3
Projektleiter: Prof. Dr. med. Hans-Christoph Becker, i.V. PD Dr. med. Clemens Cyran,
vormaliges Institut fiir klinische Radiologie (Direktor: Prof. Dr. med. Dr. h.c.
Maximilian Reiser, FACR, FACS), Klinikum der Universitit Miinchen
Projektinhalte: = Literaturstudie zum Stand der CT-Technik
= Retrospektive Querschnittsstudie zu Bildqualitit und Strahlendosis in der CT
=  Prospektive Phantomstudie zu Bildqualitit und Strahlendosis in der CT
Laufzeit: 01.01.2014 — 30.06.2015

Tab. 3.2: Schema zur Datenakquisition gemal3 Projektdurchfiihrungsvorschlag. Die Tabelle enthilt die im
initialen Projektvorschlag intendierte Verteilung der Untersuchungsdatensitze nach Untersuchungskonstellatio-
nen, von denen die grau unterlegten aufgrund der zu niedrigen akquirierbaren Fallzahlen vernachlissigt wurden.

Protokoll Konstantstrom Rohrenstrom- Rohrenstrom- Dual-Energy-CT
modulation modulation +
Iterative
Rekonstruktion

Schidel-CCT 20 20 20 -
Thorax 20 20 20 -
Abdomen 20 20 20 -
CTA 20 20 20 -
Thorax Kind 2010 20 20 =
Summe 50 Teilnehmer, 300 Datensiitze

Gemil Projektdurchfithrungsvorschlag sollten im Bundesgebiet bei etwa 50 radiologischen
Einrichtungen insgesamt rund 300 CT-Datensétze, wie sie unter konventioneller Konstant-
stromtechnik, unter R6hrenstrommodulation, unter Iterativer Bildrekonstruktion sowie unter
Dual-Energy-Technik erhalten wurden, akquiriert und hinsichtlich des Dosisbedarfs und der
Bildqualitit untersucht werden, wobei eine Verteilung der Datensdtze initial gemi3 dem in
Tab. 3.2 dargestellten Schema intendiert wurde. Allerdings mussten aufgrund der geringen
Zahl der in Betrieb befindlichen Dual-Energy-Gerite CT-Untersuchungen in dieser Technik
bereits a priori aus der Studie ausgeschlossen werden (dunkelgraue Felder in Tab. 3.2). Da im

9 Im Verlauf der Akquisition der CT-Daten in den vornehmlich nicht pédiatrisch ausgerichteten radiologischen
Einrichtungen wurde nur eine geringe Zahl padiatrischer CT-Untersuchungsdatensétze aufgefunden, sodass in der
Studie a posteriori auf eine Analyse der padiatrischen CT-Untersuchungen verzichtet wurde.
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Verlauf der Akquisition der CT-Daten in vornehmlich nicht padiatrisch ausgerichteten radio-
logischen Einrichtungen eine nur geringe Zahl kinderradiologischer CT-Untersuchungsdaten-
sdtze aufgefunden werden konnte, wurde in der Studie a posteriori auf eine Analyse der padia-
trischen CT-Untersuchungen verzichtet (hellgraue Felder in Tab. 3.2). Von initial insgesamt
305 erhobenen CT-Datensédtzen wurden 25 Datensitze verworfen und somit letztlich 280 CT-
Untersuchungen bzw. 465 Scanserien aus 54 radiologischen Abteilungen und Praxen in die
vorliegende Studie aufgenommen.

3.2. Literaturstudie /94, 257, 258]

Es existieren bereits mehrere Ubersichtsarbeiten zur Strahlenexposition in der Rontgendiag-
nostik, wie sie exemplarisch in Tab. 3.3 aufgefiihrt wurden. Besonders hervorzuheben ist die
duBerst umfangreiche Literaturstudie zur Strahlenexposition in der CT, wie sie von Dougeni et
al im Jahre 2012 publiziert wurde [91] und einige Aspekte der vorliegenden Literaturstudie
enthidlt. Zu nennen ist in diesem Zusammenhang auch die bundesweite CT-Studie des Bundes-
amtes fiir Strahlenschutz aus dem Jahr 2017 [145], wie sie nach vorliegender Studie durchge-
fiihrt wurde. In die vorliegende Literaturstudie wurden insgesamt iiber 1000 Publikationen
aufgenommen. Tab. 3.4 gibt einen Uberblick iiber die in dieser Arbeit verwendeten zwolf hiu-
figsten wissenschaftlichen Zeitschriften.

Tab. 3.3. Ubersichtsarbeiten zur CT-Strahlenexposition.

Jahr | Referenz | Autoren Studie

2007 [274] | Tsai et al 2007 Studien-Ubersicht
2008 [382] | Kubo et al 2008 Literatur-Ubersicht
2009 [89] | Heyer et al 2009 Literatur-Ubersicht
2009 [247] | Perris et al 2009 Studien-Ubersicht
2011 [244] | Pantos et al 2011 Literatur-Ubersicht
2012 [91] | Dougeni et al 2012 Dosisstudien-Ubersicht
2013 [92] | Martin et Huda 2013 Studien-Ubersicht
2013 [95] | Willemink et al 2013 Studien-Ubersicht
2015 [1111] | Den Harder et al 2015 Studien-Ubersicht
2015 [716] | Den Harder et al 2015 Studien-Ubersicht
2017 [145] | Schegerer et al 2017 CT-Studie

Tab. 3.4. Ubersicht iiber die in der vorliegenden Arbeit verwendeten 12 hiufigsten Zeitschriften.

Zeitschrift Gepriifter Anzahl Anzahl
Zeitraum Artikel | Artikel (%)
American Journal of Radiology 01/2000 - 12/2015 176 19
Radiation Protection Dosimetry 01/1980 - 12/2015 144 15
European Radiology 01/1991 - 12/2015 104 11
Radiology 01/1998 - 12/2015 93 10
Pediatric Radiology 01/1973 - 12/2015 91 10
British Journal of Radiology 01/1928 - 12/2015 84 9
European Journal of Radiology 01/1990 - 12/2015 80 8
Medical Physics 01/1974 - 12/2015 53 6
Fortschritte auf dem Gebiete der Rontgenstrahlen (R6Fo) | 01/1949 - 12/2015 45 4
Acta radiologica 01/1921 - 12/2015 41 4
Health Physics 01/1999 - 12/2015 21 2
Radiographics 01/1956 - 12/2015 15 2
Summe 974 100

worden.

® Die im Rahmen der Fragestellung des Projektes irrelevanten Jahrgiinge (insbesondere die Jahrginge vor der
Publikation des CT-Verfahrens im Jahre 1973) waren vom Autor bereits in anderem Zusammenhang iiberpriift
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Abb. 3.1 zeigt die Anzahl der wissenschaftlichen Publikationen mit Bezug zur allgemeinen
bzw. zur padiatrischen Radiologie in Abhéngigkeit vom Erscheinungsjahr. Der dramatische
Anstieg der Publikationen ab 1995 spiegelt die Tatsache wider, dass die Strahlenexposition des
Patienten durch die Computertomographie in der Literatur erst seit Beginn des neuen Jahrtau-
sends in zunehmendem Mal3e als bedeutsam wahrgenommen wurde (siehe zu dieser Thematik
auch Heyer et al 2009 [89]). Offensichtlich hat die padiatrische Radiologie in den letzten Jahren
in der Literatur zunehmend an Bedeutung gewonnen.
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Abb. 3.1: Anzahl der verwendeten Publikationen mit Bezug zur allgemeinen bzw. zur padiatrischen CT in Ab-
hingigkeit vom Erscheinungsjahr.

3.3. Retrospektive Querschnittsstudie /257, 258/

Zur Analyse des Standes von Wissenschaft und Technik in der klinischen Computertomogra-
phie wurde eine retrospektive Querschnittsstudie zu Bildqualitit und Strahlendosis in der Com-
putertomographie unter besonderer Beriicksichtigung der CT-Verfahren der Konstantstrom-
technik, der Rohrenstrommodulation sowie der R6hrenstrommodulation in Verbindung mit ite-
rativen Bildrekonstruktionsalgorithmen untersucht. Hierzu wurden bundesweit Stichproben
anonymisierter CT-Bilddatensitze von CT-Untersuchungen des Schédels, des Thorax, des Ab-
domens sowie von CT-Angiographien der A. pulmonalis erhoben und beziiglich der Strahlen-
dosis sowie objektiver und subjektiver Bildgilitekriterien ausgewertet.

3.3.1. Datenakquisition /257, 258/
Methodik und Verlauf der Datenakquisition wurden von folgenden Faktoren bestimmit:
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=  Auswahl radiologischer Einrichtungen zur potentiellen Teilnahme an der Studie nach lo-
gistischen Gesichtspunkten (Standorte, ortliche Gegebenheiten, personliche Kontakte)

= Bereitschaft der potentiellen Teilnehmer zur Teilnahme an der Studie

=  Ausgewogenheit der teilnehmenden radiologischen Einrichtungen beziiglich Organisa-
tionsstruktur, technischem Standard und klinischer Leistungsstérke

=  Verfligbarkeit der in der Studie zu beriicksichtigenden CT-Techniken in den teilnehmen-
den radiologischen Einrichtungen

=  Abstimmung der Geriteeinstellungen auf die CT-Protokolle durch den CT-Geréte-Her-
steller

3.3.1.1. Auswahl potenzieller Teilnehmer nach logistischen Gesichtspunkten /257, 258/

Zur Minimierung des fiir die Teilnehmer entstehenden Aufwandes wurden fiir die Datenak-
quise stets eine personliche Betreuung sowie eine Barauszahlung der im Projekt vorgesehenen
Aufwandsentschadigung vor Ort angeboten und in den meisten Fillen auch vor Ort durch-
gefiihrt. Entsprechend erfolgte die Auswahl der Studienteilnehmer nach geographischen und
logistischen Gesichtspunkten; insbesondere wurden als geographische Schwerpunkte der Stu-
die das Bundesland Bayern und als norddeutsches Pendant die Freie und Hansestadt Hamburg
gewdhlt. Hingegen erfolgte selbstredend keine Vorauswahl beziiglich der Organisationsstruk-
tur bzw. der zu erwartenden klinischen Leistungsstdrke und der technischen Standards der ra-
diologischen Institutionen; auf diese Weise wurde eine weitgehende Ausgewogenheit der teil-
nehmenden radiologischen Einrichtungen beziiglich Organisationsstruktur, technischem Stan-
dard und Leistungsstirke erzielt. Das Institut fiir klinische Radiologie des Klinikums der Uni-
versitdt Miinchen wurde bewusst nicht in die Studie mit aufgenommen, um mogliche subjek-
tive Einfliisse auszuschlieen. Somit kann die Héufigkeitsverteilung der vorgefundenen CT-
Techniken wie Rohrenstrommodulation und Iterative Rekonstruktion zwar aufgrund der ver-
gleichsweise geringen Zahl von 54 Abteilungen und Praxen nicht im Sinne einer statistisch
reprisentativen Stichprobe gewertet, doch kdnnen Tendenzen innerhalb Deutschlands auf-
gezeigt werden.

3.3.1.2. Bereitschaft der potenziellen Teilnehmer zur Teilnahme an der Studie /257, 258/

Ein wesentliches Problem der Datenakquisition stellte die Bereitschaft der in den ausgewéhlten
klinisch-radiologischen Einrichtungen tétigen leitenden Radiologen zur grundsétzlichen Teil-
nahme an einer - wenn auch retrospektiven und damit unaufwendigeren — wissenschaftlichen
Studie dar. Aufgrund des heute vergleichsweise hohen Patientendurchsatzes in klinischen Ein-
richtungen und der konsekutiv meist aulerordentlich hohen Arbeitsbelastung der radiologisch
tatigen Kolleginnen und Kollegen geht die Teilnahme selbst an retrospektiv gestalteten wissen-
schaftlichen Studien mit einer Stérung des klinischen Routinebetriebes einher und wird ent-
sprechend vielfach als nicht zu vernachldssigende personelle Zusatzbelastung wahrgenommen.
Nachdem sich eine Vorstellung des Forschungsprojektes auf radiologischen Kongressen als
nicht zielfithrend erwies, wurde von der initial geplanten schriftlichen Erstkontaktierung poten-
zieller Teilnehmer abgesehen und die Erstkontaktierung potenzieller Teilnehmer stattdessen
telephonisch vorgenommen. Die Vorteile der telephonischen Kontaktierung bestanden in einer
Beschleunigung der Entscheidungsfindung durch rasche und interaktive Vermittlung der
Projektinhalte und des Projektablaufes; auch konnten auf diese Weise im Falle einer positiven
Entscheidung zur Teilnahme an der Studie die Teilnahmemodalitéten effizient kommuniziert
werden.

Insbesondere wurde durch eine Vor-Ort-Betreuung der Datenerhebung und der Daten-
anonymisierung bei den einzelnen Teilnehmern eine Minimierung des den Teilnehmern ent-
stehenden Aufwandes erzielt. Im Ubrigen wurde die im Projekt vorgesehene pekuniire Vergii-
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tung des projektbezogenen Arbeitsaufwandes in Form von 20,00 € pro CT-Untersuchungsda-
tensatz von den meisten Teilnehmern keineswegs als entscheidungsmodulierend betrachtet; die
Teilnahme erfolgte meist aus ideellen Griinden wie dem Interesse der Teilnehmer an einer
Kontrolle und ggf. Verbesserung ihrer CT-Untersuchungspraxis oder aufgrund eines wissen-
schaftlichen Interesses der Teilnehmer.

Insgesamt wurden 80 radiologische Einrichtungen'! telephonisch kontaktiert. Hiervon
gewihrten 43 Einrichtungen eine Zusage, und 41 Einrichtungen mit insgesamt 54 radiologi-
schen Abteilungen bzw. Praxen wurden letztlich in die Studie einbezogen. In der Regel erfor-
derte der Weg von der Erstkontaktierung bis zur Terminabsprache mehrere Telephonate. Tab.
3.5 gibt einen Uberblick iiber die Hiufigkeitsverteilung der Zu- und Absagen.

Tab. 3.5. Ergebnis der telephonischen Kontaktierung radiologischer Einrichtungen'2.

Absolute Hiufigkeit Relative Hiufigkeit (%)
Hergestellte Kontakte: 80 100
Anzahl der Absagen: 39 49
Anzahl der Teilnehmer: 41 51
Anzahl der Abteilungen bzw. Praxen: 54 -

3.3.4. Dosisrekonstruktion /257, 258/

3.3.4.1. DICOM-Standard /257, 258]

Siamtliche Bilddatensitze lagen im DICOM-Standard vor. Der DICOM"3-Standard [48] ist seit
Jahrzehnten der am weitesten verbreitete Informationsstandard in der medizinischen Bildge-
bung. Er gestattet neben der Speicherung des Bilddatensatzes die Hinzufiigung von Metadaten
im sogenannten DICOM-Header, in welchem neben Metainformationen zur Bilddatenstruktur
und Bilddarstellung auch Patientendaten, Befunddaten, Rontgenexpositionsdaten und Geréte-
daten enthalten sein konnen. Hierzu werden in genau spezifizierten Datenfeldern (Tags) die zu
dokumentierenden Daten in genau spezifizierten Datenformaten (Hexadezimaldarstellung,
Gleitkommadarstellung, Ganzzahlendarstellung oder Stringvariablendarstellung) niedergelegt,
wobei hoch standardisierte, sogenannte Official Tags fiir genau definierte Dateninhalte geméaf
DICOM-Standard von gering standardisierten, sogenannten Private Tags fiir beliebige Inhalte
unterschieden werden miissen. Der wesentliche Vorteil des DICOM-Standards besteht in sei-
ner Anpassbarkeit an den gewiinschten Informationsgehalt des Bilddaten-satzes durch dynami-
sche Datenfelder und damit in einer Optimierung des zu beanspruchen-den Speicherplatzes,
der wesentliche Nachteil in einer duflerst komplexen und uneinheitlichen Datenstruktur. Wie
in der Diskussion noch zu bemerken sein wird, bewirkt die in der Praxis durch die Gerateher-
steller erfolgende, nicht-standardisierte und somit in Widerspruch zur Konzeption des
DICOM-Standards stehende Belegung der DICOM-Tags bzw. die haufige Umgehung der stan-
dardisierten DICOM-Datenfelder durch Private Tags eine ganz erhebliche Komplikation
rechnergestiitzter Analysen der DICOM-Bilddatensétze.

3.3.4.2. CT-Expo-Algorithmus /257, 258]

Die Rekonstruktion der bei den unterschiedlichen CT-Untersuchungstechniken applizierten
Organ- und Effektivdosen erfolgte mit Hilfe des von Stamm und Nagel entwickelten, kom-
merziell verfligbaren Dosisrekonstruktionsalgorithmus CT-Expo, Version 2.3.1 [81]. Der

' Unter radiologischen Einrichtungen werden hier und im folgenden sowohl radiologische Abteilungen in
Kliniken sowie Einzelpraxen als auch Praxisverbiinde verstanden.

12 Radiologische Praxisverbiinde mit mehreren Standorten zihlen hier einfach.

13 DICOM = Digital Imaging and Communications in Medicine.
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Microsoft-Excel-assoziierte Algorithmus gestattet die Rekonstruktion der bei beliebigen
Einzelschicht- und Spiral-CT-Untersuchungen in 31 Organen und Geweben des menschlichen
Korpers applizierten Organdosen sowie die Berechnung der effektiven Dosen gemdl3 ICRP 60
[54] und ICRP 103 [55]. Grundlage fiir den Algorithmus bilden die von Zankl et al [84, 85]
durch Monte-Carlo-Simulationen an den mathematischen MIRD-Phantomen ADAM und EVA
[63, 83] ermittelten Konversionsfaktoren-Datensédtze unter Einbeziehung der technischen
Daten von 86 CT-Scanner-Typen von 8 Geréteherstellern. Da bei der Dosisrekonstruktion von
CT-Untersuchungen unter Rohrenstrommodulation die approximative Verwendung mittlerer
Rohrenstrome an Stelle des angulo-axialen Réhrenstromprofils zu einer Fehleinschdtzung der
effektiven Dosis flihren kann [678], verfligt die Software {iber eine Moglichkeit zur Bertick-
sichtigung der Rohrenstrommodulation [41, 67]. Weiter existiert die Moglichkeit einer Over-
beaming-Korrektur. Zur Angabe des zur Rekonstruktion von Organdosen zwingend notwendi-
gen anatomischen Scanbereiches ist auf der Benutzeroberfliche des Programmes die manuelle
Lokalisierung von Scanbeginn und Scanende auf einem Sagittalschnitt der der Berechnung der
Konversionsfaktoren zugrundeliegenden mathematischen Phantome mdglich (Abb. 3.2).
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Abb. 3.2: Ausschnitt aus der Benutzeroberfliche des CT-Expo-Algorithmus. Exemplarisch wurde der einer
CT-Untersuchung des Abdomens entsprechende Scanbereich am méannlichen MIRD-Phantom ADAM durch den
blau schattierten Bereich eingezeichnet.
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Weiter sind die in Tab. 3.6 aufgefiihrten Expositionsparameter manuell in der Benutzerober-
fliche einzutragen.

Tab. 3.6: Expositionsdaten und Dosisgréfien in CT-Expo.

Grofle Inhéirente Scannerdaten Dateneingabe Datenausgabe
Scanlénge L L

CTDI «CTDIy CTDIy , CTDlyo
Rohrenspannung U Urer U

Rohrenstrom I I

Rotationszeit t t

Gesamtkollimation N h Ns

Tischvorschub TV bzw. Pitch p TV p
Korrekturfaktoren k k

Organdosen H H
Effektive Dosis E E

3.3.4.3. DICT-Algorithmus /257, 258]

Die Rekonstruktion der bei einzelnen CT-Untersuchungen applizierten Strahlendosen durch
den CT-Expo-Algorithmus erfordert gemaf der Konzeption des Algorithmus die manuelle Ein-
gabe sowohl des anatomischen Scanbereiches als auch der Expositionsparameter. Der CT-
Expo-Algorithmus verfiigt insbesondere iiber eine Option zur Beriicksichtigung der Réhren-
strommodulation durch die Prozessierung eingepflegter typischer R6hrenstromprofile [67]. Da
die genaue Form dieser Rohrenstromprofile in der eingesetzten Version der Software nicht
dokumentiert wurde und diese Option aufgrund der a priori nicht auszuschlieBenden Kom-
plexitdt der Rohrenstromprofile [677] nicht als mit Sicherheit als valide einzuschétzen war,
wurde im Rahmen dieser Arbeit auf diese Option zugunsten der im folgenden beschriebenen
Softwarelosung verzichtet.
Aufgrund des durch die Erfordernis einer Dosisrekonstruktion bei 465 Bildserien zu er-
wartenden Aufwandes sowie zur Sicherstellung der Validitit der Dosisrekonstruktion bei CT-
Untersuchungen unter Verwendung der Rohrenstrommodulation wurde ein im Folgenden als
DICT-Algorithmus bezeichnetes Verfahren zur rechnergestiitzten Steuerung des CT-Expo-Al-
gorithmus unter Einbindung der den DICOM-Headern zu entnehmenden dosimetrierelevanten
Informationen entwickelt. Der DICT-Algorithmus gestattete die Automatisierung folgender
Abléufe:
=  Festlegung der Scanbereichsgrenzen durch Transformation der visuell anhand der Schnitt-
bilder zu identifizierenden anatomischen Strukturen in die axialen metrischen Koordinaten
der in den CT-Expo-Algorithmus implementierten mathematischen Phantome: Hierzu
wurden die Scanbereichsgrenzen visuell anhand der Topogramme und Scanserien identi-
fiziert und unter Angabe anatomischer Landmarken (Schideldach, Orbita, Halswirbelkor-
per HWK 1 — 7, Brustwirbelkdrper BWK 1 — 12, Lendenwirbelkorper 1 — 7, Sakralwirbel-
korper SWK 1 — 5, proximaler Femur) in einer Datenbasis notiert. Die Zuordnung zu den
metrischen Koordinaten in CT-Expo erfolgte iiber eine hierzu erstellte Koordinatentabelle
mit den Koordinaten der Organe der mathematischen Phantome ADAM und EVA.

= Extraktion der DICOM-Metainformationen aus den DICOM-Headern jedes Schnittbild-
datensatzes: Hierzu wurde anhand der DICOM-Spezifikationen mit Hilfe der Program-
mierumgebung VisualBasic, Microsoft Visual Studio 2010, Microsoft Corporation, eine
Software zur Abfrage der in den DICOM-Headern der Scanserien enthaltenen DICOM-
Tags entwickelt.

=  Transformation der dosimetrierelevanten DICOM-Daten in den CT-Expo-Algorithmus:
Hierzu wurde mittels der o. a. Programmierumgebung der Inhalt dosimetrierelevanter
DICOM-Tags durch automatisierte Ansteuerung von CT-Expo in die entsprechenden
Datenfelder von CT-Expo iibertragen.
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=  Analyse der durch den CT-Expo-Algorithmus aus den DICOM-Daten errechneten Dosis-
werte flir jeden Schnittbilddatensatz unter Verzicht auf die CT-Expo-interne Beriicksich-
tigung der RoOhrenstrommodulation: Hierzu wurden die DICOM-Informationen der
Schnittbilder jeder Scanserie einzeln ausgelesen, in CT-Expo tiberfiihrt und die durch CT-
Expo fiir jede Einzelschicht ermittelten Strahlendosen addiert.

Der DICT-Algorithmus wurde auf samtliche Einzelschnittbilder aller Scanserien angewandkt.
Insbesondere wurde das im DICOM-Header jedes Einzelschnittbildes dokumentierte mAs-
Produkt in den CT-Expo-Algorithmus {ibertragen, wodurch eine zuverldssige Beriicksichti-
gung zumindest des longitudinalen Réhrenstrom-Profils moglich wurde, wéhrend sich durch
die Zugrundelegung der in den DICOM-Headern dokumentierten und mithin als Mittelwerte
iiber die transversalen Dosisprofile aufzufassenden mAs-Produkte die transversalen Rohren-
stromprofile naturgemal einer Beriicksichtigung entzogen. Wie jedoch ein Vergleich beider
Verfahren der Dosisrekonstruktion anhand von Stichproben zeigte, liefern beide Algorithmen
weitestgehend libereinstimmende Ergebnisse, weswegen im CT-Expo-Algorithmus auf die
Option zur Beriicksichtigung der Réhrenstrommodulation zugunsten einer DICT-gestiitzten
Implementierung realer longitudinaler R6hrenstromprofile verzichtet wurde. Ein unabhéngig
von dieser Arbeit entwickeltes dhnliches Procedere zur Beriicksichtigung der R6hrenstrommo-
dulation wurde im iibrigen 2015 in [702] beschrieben. Ein dem Grundprinzip des DICT-Algo-
rithmus verwandtes Verfahren wurde in [62] entwickelt.

3.3.4.4. Effektiver Diameter /257, 258]

Fiir jeden Patienten wurden durch eine Vermessung eines zentralen Schnittbildes einer Scan-
serie reprisentative sagittale und laterale Diameter der jeweiligen anatomischen Region be-
stimmt und hieraus der effektive Diameter geméf Formel (2.22) ermittelt. Der effektive Dia-
meter diente in den Darstellungen der Bildgiite und der Strahlendosis als Parameter zur Cha-
rakterisierung der anthropometrischen Eigenschaften des Patienten.

3.3.5. Ermittlung der Bildqualitat /257, 258]

Fiir jede der betrachteten 465 Scanserien wurde jeweils die objektive und die subjektive Bild-
qualitit durch manuelle Messung ermittelt'*. Zur Betrachtung der Bilddatensitze sowie zur
Messung der zur Bestimmung der objektiven Bildqualitét erforderlichen Pixelwerte wurde die
DICOM-Betrachtungssoftware RadiAnt, Version 1.9.16, des Herstellers Medixant eingesetzt.
Die Pixelwerte wurden fiir jede Serie in Abhingigkeit von der Scanregion in jeweils einem
definierten Schnittbild der Scanserie gemessen. Zur Bestimmung der subjektiven Bildqualitit
wurde die gesamte Scanserie an einem Monitor mit Befundungsqualitit visuell durchmustert.

3.3.5.1. Messung der objektiven Bildqualitit /257, 258/

Die Ermittlung der objektiven Bildqualitit erfolgte fiir jede Scanserie in Abhingigkeit von der
anatomischen Region der CT-Untersuchung durch Messung des Pixelrauschens in den in Tab.
3.7 aufgefiihrten anatomischen Strukturen. Als MaB fiir das Pixelrauschen wurde die Stan-
dardabweichung der Hounsfield-Einheiten der Bildpixel in einem definierten Pixelareal des
jeweils betrachteten Gewebebereiches herangezogen. Hierzu wurden in den in Tab. 3.7 aufge-
fithrten Organen und Geweben unter weitestgehender Vermeidung inhomogener Bereiche an
jeweils etwa fiinf Lokalisationen meist kreisformige, hilfsweise auch ellipsoide Pixelareale mit
einem Durchmesser von in aller Regel nicht unter 1 cm eingegrenzt, innerhalb derer jeweils
Mittelwert und Standardabweichung der Hounsfield-Einheiten der Bildpixel bestimmt wurden.

14 Zwischenzeitlich wurden Verfahren zur automatischen Messung des Bildrauschens entwickelt [87].
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Tab. 3.7: Messung der objektiven Bildqualitit.

CT-Untersuchung Axiale Position des Schnittbildes | Betrachtete anatomische Strukturen
Schidel Seitenventrikel Graue Substanz
Liquor
Thorax / Truncus pulmonalis Aorta descendens
CTA-Pulmonalis Thoracales Fettgewebe
Thoracales Muskelgewebe
Abdomen / Milzhilus Aorta abdominalis
CTA-Aorta Abdominales Fettgewebe
Abdominales Muskelgewebe
Lebergewebe
Milzgewebe

Abb. 3.3 zeigt das Prinzip der Bestimmung der objektiven Bildqualitit bei den CT-Unter-
suchungen des Schidels, des Thorax und des Abdomens sowie bei der Pulmonalis-CTA; aus
Griinden der Ubersichtlichkeit wurde in jedem Gewebebereich nur ein einziges Pixelareal dar-
gestellt. Ein Pixelareal mit einer Flidche von 1,0 cm? umfasste je nach rdumlicher Auflésung
des CT-Schnittbildes zwischen etwa 160 und 230 Bildpixel; die Fliche eines einzigen Bild-
pixels betrug demnach etwa zwischen 0,4 mm? und 0,6 mm?.

Bildrauschen.

Als MaB fiir das Bildrauschen wurde gemif3 den Ausfithrungen in Abschnitt 2.4.2 die Stan-
dardabweichung der Hounsfield-Einheiten vom Mittelwert der Hounsfield-Einheiten in einem
definierten Pixelareal betrachtet.

Signal-Rausch-Verhiltnis.

Als Signal-Rausch-Verhiltnis (signal-to-noise ratio, SNR) wurde gemill Formel (2.18) in der
Schéidelregion bzw. in der Thorax- und Abdomenregion das Verhéltnis aus der Hounsfield-
Einheit in der weiflen Substanz bzw. in den Lumina der Aorta thoracalis und der Aorta
abdominalis, HUSubstantiaialba bzw. HUAortaithoracalis und HUaortaﬁabdominalis und der mittleren Stan-
dardabweichung der Hounsfield-Einheit in der den Patienten umgebenden Luft, s(HUruf),
herangezogen:

HUSubstantia_alba

SNR i =

Substantia_alba S (H ULuft) (3 A .a)

HUyporta_thoracaii
SNRyorta_thoracalis = So(rHa[} O;a)ca = (3.1.b)

Luft
HUA ta_abdominali

SNRyorta_abdominatis = 0;(6;_}6;] O;n;na = (3.1.¢)

Luft

Kontrast-Rausch-Verhaltnis.

Zur Berechnung des Kontrast-Rausch-Verhéltnisses (contrast-to-noise ratio, CNR) wurde ge-
mil Formel (2.19) in der Schidelregion bzw. in der Thorax- und Abdomenregion die Differenz
der Hounsfield-Werte in der weilen Substanz bzw. in den Lumina der kontrastmittelfiihrenden
Aorta thoracalis und der kontrastmittelfithrenden Aorta abdominalis, HUsubstantia alba bZW.
HU aorta_thoracatis Und HUoorta_abdominatis, und dem Hounsfield-Wert im Liquor bzw. im Muskel-
gewebe der Thoraxwand und des Abdomens, HULiquor bZw. HUmuskel Thorax Und HUmuskel Abdomen
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auf die mittlere Standardabweichung des Hounsfield-Wertes in der den Patienten umgebenden
Luft, s(HULu), bezogen:

HUsupstantia_atba— HULi
CNRgypstantia_atba = = a:.(l;_ll_l(} af ) = (3.2.2)
Luft

CNR _ HUAorta_thoracalis_ HUMuskel_Thorax
Aorta_thoracalis — HU
S(HUpyft)

(3.2.b)

HUAorta_abdominalis_ HUMuskel_Abdomen
S(HUpyft)

CNRyorta_abdominatis = (3.2.0)

3.3.5.2. Bestimmung der subjektiven Bildqualitit /257, 258/

Zur Betrachtung der Bilddatensétze zur Bestimmung der subjektiven Bildqualitdt wurde wie-
derum die DICOM-Betrachtungsssoftware RadiAnt, Version 1.9.16, des Herstellers Medixant
in Verbindung mit gepriiften Befundungsmonitoren verwendet. Die Beurteilung der subjekti-
ven Bildqualitdt jeder Scanserie erfolgte anhand der in Tab. 3.8 wiedergegebenen qualitativen
5-Punkte-Likert-Skala (1 = hervorragende Bildqualitit, 2 = gute Bildqualitét, 3 = befriedigende
Bildqualitit, 4 = ausreichende Bildqualitdt, 5 = ungeniigende Bildqualitdt), wobei sowohl die
Qualitdt der Darstellung der untersuchten anatomischen Region als auch die mutmaBliche
diagnostische Verwertbarkeit des Gesamtbildes — allerdings ohne Kenntnis der klinischen Fra-
gestellung - in Abhingigkeit von der Art der CT-Untersuchung und von der verwendeten CT-
Technik bewertet wurde. Die Beurteilung wurde jeweils unabhédngig von einem Facharzt fiir
diagnostische Radiologie mit mehrjahriger Berufserfahrung sowie von einem Weiterbildungs-
assistenten mit einem Berufsjahr Erfahrung vorgenommen; unabhéngig hiervon wurde eine
zusatzliche stichprobenartige Bewertung von einem weiteren radiologischen Facharzt mit
mehrjdhriger Berufserfahrung durchgefiihrt, deren Ergebnisse aufgrund der weitestgehenden
Ubereinstimmung zwischen beiden Fachiirzten nicht explizit in der Studie beriicksichtigt wur-
den.

Tab. 3.8: Likert-Skala zur Bewertung der subjektiven Bildqualitiit.
Wert Beurteilungskriterium
Anatomische Strukturen: Darstellung und Abgrenzbarkeit | Diagnostische Verwertbarkeit
Hervorragend
Gut
Durchschnittlich
Noch tolerabel
Unzureichend

N |B (W[ |—
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B i L

Abb. 3.3. a, b: Prinzip der Bestimmung der objektiven Bildqualitit durch Berechnung der Standardabwei-
chung der Pixelwerte in definierten Arealen (a) bei der CT des Schiidels (oben) und (b) bei der CT des
Thorax (unten).
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Abb. 3.3. ¢, d: Prinzip der Bestimmung der objektiven Bildqualitiit durch Berechnung der Standardabwei-
chung der Pixelwerte in definierten Arealen (c) bei der CT des Abdomens (oben) und (d) bei der Pulmo-
nalis-CTA (unten).
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3.4. Phantommessungen /257, 258/

Zur Validierung des im Rahmen der vorliegenden retrospektiven Studie durchgefiihrten Dosis-
rekonstruktionsverfahrens erfolgte eine Simulation der CT-Untersuchung des Schédels, des
Thorax und des Abdomens unter jeweiliger Anwendung der Konstantstromtechnik sowie der
Rohrenstrommodulation an einem anthropomorphen physikalischen Phantom sowie die Mes-
sung der hierbei jeweils applizierten Organdosen sowie der jeweils erzielten Bildqualitit.

Die CT-Untersuchungen wurden an einem 16-Zeilen-Scanner des Typs Brightspeed 16
der Firma General Electrics unter Anwendung von Standard-CT-Protokollen fiir die o.a. CT-
Untersuchungen durchgefiihrt. Als virtueller Patient diente ein weibliches anthropomorphes
Phantom (CIRS ATOM™, Norfolk, Virginia, USA [37], Modell 702-D) mit einem Kdrperge-
wicht von 55 kg, einer Korpergrofle von 160 cm und einem sagittalen Diameter von 20 cm
(Abb. 3.4). Das Phantom bestand aus einem schichtweisen Aufbau rontgendquivalenter Kno-
chen- Weichteil- und Lungengewebesurrogate und gestattete die Messung von Organdosen in
20 Referenzorganen. Zur Messung der Organdosen wurden pro Messreihe 208 energiekali-
brierte LiF-TLD-Rods (TLD-100, Bicron-Harshaw, Cleveland, Ohio, USA) in den TLD-Aus-
sparungen der einzelnen Organe und Gewebe angebracht. Dariiber hinaus wurden Ober-
flichendosen mit Hilfe von rund 80 an der Kdrperoberflache des Phantoms angebrachten TLD-
Chips ermittelt. Die gesamte TLD-Dosimetrie wurde von Frau Ursula Lechel, Bundesamt fiir
Strahlenschutz, im Rahmen des Forschungsprojektes durchgefiihrt.

ATOI
Sect

Abb. 3.4: CIRS ATOM™.-Phantom [37]. (a) Links: Photographie des Phantoms. (b) Mitte: Ubersichtsradio-
graphie der Phantoms. (c) Rechts: Einzelschicht mit eingezeichneten Organkonturen und Aussparungen fiir die
TLD-Dosimeter.
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3.5. Statistische Analyse und Darstellung der Ergebnisse /257, 258/

Statistische Analyse.

In vorliegender Studie sollten die CT-Techniken der Konstantstromtechnik, der Dosismodu-
lation und der Iterativen Rekonstruktion einander gegeniibergestellt und in ihrer jeweiligen
Auswirkung auf Bildqualitidt und Strahlendosis untersucht werden. Die Beantwortung der
Frage nach signifikanten Unterschieden der CT-Techniken erfolgte hierbei mit Hilfe des sta-
tistischen ungepaarten t-Testes. Mit dem t-Test kann der Nachweis eines signifikanten Unter-
schiedes zwischen den Mittelwerten zweier Datenreihen gefiihrt werden. Der Testparameter t
reprisentiert hierbei die t-Statistik nach Student und der p-Wert die Wahrscheinlichkeit einer
filschlichen Annahme der Diversitit der Datenreihen. Ublicherweise wird der Unterschied
zwischen zwei Datenreihen bei einem p-Wert von bis zu 0,1 % als hoch signifikant, bei einem
p-Wert von bis zu 1 % als sehr signifikant und bei einem p-Wert von bis zu 5 % als signifikant
bezeichnet [40].

Zur Feststellung der linearen Korrelation zwischen einzelnen Merkmalen wurde eine li-
neare Regressionsanalyse durchgefiihrt. Als Parameter fiir das Mal der linearen Korrelation
diente hier der Korrelationskoeffizient r*, welcher Werte von 0 (keine lineare Korrelation) bis
1 (sichere lineare Korrelation) aufweist.

Boxplot
10
8 90%-Perzentile
75%-Perzentile
6 50%-Perzentile = Median
Mittelwert
>_
4 1 25%-Perzentile
_ 10%-Perzentile
2 .
0 T
X
X

Abb. 3.5.: Boxplot mit einer Visualisierung der Haufigkeitsverteilung der y-Werte entlang der y-Achse anhand
von 10%-, 25%-, 50%-, 75%-, und 95%-Perzentilen sowie vom Mittelwert.
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Darstellung der Ergebnisse.

Die Ergebnisse wurden weitestgehend anhand von Box-Plots zur Visualisierung der Haufig-
keitsverteilung der entsprechenden Werte dargestellt (Abb. 3.5). In der hier gewéhlten Darstel-
lungsform entspricht der untere bzw. obere Fehlerbalken der 10%- bzw. 90%-Perzentile, die
untere bzw. obere Begrenzungslinie einer Box der 25%- bzw. 75%-Perzentile und die Mittel-
linie der Box der 50%-Perzentile und damit dem Median der Datenreihe. Der Mittelwert jeder
Datenreihe wurde in den Abbildungen durch eine rote Linie angedeutet.

Parallel zu den Boxplots wurden in einer Balkengraphik die zugehdrigen Anzahlen der
der statistischen Analyse der jeweils betrachteten Merkmale zugrundeliegenden CT-Unter-
suchungen oder CT-Serien dargestellt. Da die einzelnen Merkmale aufgrund des heterogenen
Informationsgehaltes der DICOM-Datensédtze nicht bei allen CT-Serien mit gleicher Haufig-
keit erhoben werden konnten, ist die Anzahl der bei der Analyse der verschiedenen Merkmale
jeweils tatsdchlich verwendeten CT-Untersuchungen und CT-Serien einer gewissen Varia-
tionsbreite unterworfen. Aufgrund der vergleichsweise geringen Fallzahlen wurden die CT-
Angiographien der Aorta thoracalis et abdominalis nicht in die graphischen Darstellungen und
die statistischen Analysen aufgenommen.
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4. Ergebnisse /94, 257, 258]
4.1. Literaturstudie /94, 257, 258]

4.1.1. Die Strahlenexposition des Patienten in der Computertomographie /94, 257, 258]
Schon wenige Jahre nach dem ersten klinischen Einsatz der initial fiir Schadeluntersuchungen
konzipierten Computertomographie [119, 120] wurde erkannt, dass fiir den Patienten und hier
besonders fiir die Augenlinse bei der CT des Schidels eine erhebliche lokale Strahlenexposi-
tion in der GroBenordnung von bis zu 340 mGy bestehen konnte [334, 347, 348, 349, 353, 354,
356, 357, 365, 1017], zumal sich der Dosisbedarf computertomographischer Untersuchungen
seitdem als um ein bis zwei Grofenordnungen hoher erweist als jener der konventionellen
radiologischen Diagnostik [134, 148, 149, 311, 336, 866]. Aus dem gleichen Grunde wurde
der Strahlenschutz des Patienten und hier insbesondere der des Kindes [866, 914, 1024] bereits
in den 1980er-Jahren als von wesentlicher Bedeutung erkannt. Dennoch war der Dosisbedarf
der CT bei besserer Performance zunichst deutlich geringer als jener der bis zur Einfiihrung
der CT durchgefiihrten konventionellen Tomographien [355]. Somit standen in den ersten Jah-
ren der Nutzung der CT auch unter wirtschaftlichen Aspekten als Forderungen an die tech-
nische Weiterentwicklung der CT zunéchst die Verbesserung der Bildqualitit und der klini-
schen Performance im Vordergrund, wogegen dem Strahlenschutz noch keine wesentliche Be-
deutung zuerkannt wurde [107].

Ebenfalls wenige Jahre nach der Etablierung der CT wurde aus klinischen Erwadgungen
heraus fiir die Zukunft mit steigenden CT-Untersuchungszahlen gerechnet [141]. In der Tat hat
die CT als Schnittbildverfahren in der Erwachsenen- und in der Kinderradiologie nicht zuletzt
durch die Entwicklung effizienterer Scanverfahren wie Spiral- und Mehrschichttechnik [164,
339, 1050], durch ihre zunehmende klinische Anwendbarkeit in der Notfalldiagnostik [123,
897] und durch ihre (im Ubrigen keineswegs unumstrittene [234]) prinzipielle Anwendbarkeit
als Screening-Verfahren [106, 411] zunehmende Verbreitung gefunden [906, 907, 908, 973,
974]. Entsprechend hat mit regionalen Unterschieden [26] die Anwendungshiufigkeit der CT
seit ihrer Einfithrung in die klinische Medizin im Jahre 1973 um bis zu einen Faktor 10 [138]
bis 20 [96, 210] und konsekutiv die durch die CT bedingte kollektive Strahlenexposition der
Bevdlkerung um bis zu einen Faktor 6 [12, 108, 121, 123, 137, 139, 143, 148, 149, 161, 226,
267, 280, 1004] zugenommen, wobei die Zunahme der absoluten Haufigkeit von CT-Untersu-
chungen nicht auf demographische Faktoren zuriickzufiihren zu sein scheint [179]. Entspre-
chend bilden CT-Untersuchungen heute weltweit einen wesentlichen Teil aller Rontgenunter-
suchungen [218]. Auch in der Bundesrepublik Deutschland wird der Anstieg der individuellen
kumulativen [186] und der kollektiven [185] Strahlenexposition im Wesentlichen durch die CT
bestimmt [189], zumal bis vor wenigen Jahren der Dosisbedarf der einzelnen CT-Untersu-
chungen im klinischen Routinebetrieb nicht wesentlich reduziert werden konnte [309, 310].
Allerdings scheint in jiingster Zeit eine wesentliche Reduktion des Dosisbedarfs beobachtbar
zu sein [145].

In der Kinderradiologie ist ebenfalls kein globaler Riickgang der CT-Untersuchungszah-
len zu beobachten [972], wenngleich lokal fallende Tendenzen der CT-Untersuchungs-
hiufigkeiten erkennbar sind [960], wobei in Japan wohl die Wahrnehmung des Strahlenrisikos
nach dem Reaktorunfall von Fukushima zu einer signifikanten Abnahme pédiatrischer CT-
Untersuchungen beigetragen hat [971]; eine dramatische Reduzierung der CT-Untersuchungs-
zahlen mit gleichzeitiger Reduktion des Dosisbedarfs beschréankt sich in der Kinderradiologie
offenbar auf einzelne kinderradiologische Einrichtungen [890]. Ein Anstieg der CT-Unter-
suchungshiufigkeiten bei Kindern ist insbesondere in Abteilungen der Erwachsenenradiologie
zu beobachten [917]. In der pidiatrischen Radiologie sind besonders Neugeborene und Sidug-
linge von pédiatrischen CT-Untersuchungen betroffen [22, 972]; allerdings ist bei Kindern aller
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Altersstufen die durch rontgendiagnostische Maflnahmen insgesamt bedingte durchschnittliche
Strahlenexposition vergleichsweise gering [955], wobei allerdings in Analogie zur Erwachse-
nenradiologie der relative Dosiseintrag durch computertomographische Untersuchungen sehr
betréachtlich ist und ganz wesentlich zur kumulativen Strahlenexposition von Kindern beitrégt
[989, 1012].

Angesichts der Zunahme der Strahlenexposition des Patienten durch die CT und den sich
mehrenden mathematischen [9, 10, 11, 18, 22, 23, 24], strahlenbiologischen [29, 30, 31, 32,
34, 33, 34, 35, 36] und strahlenepidemiologischen [15, 16, 19, 20, 28] Hinweisen auf eine
Erhdhung des stochastischen Strahlenrisikos'® in der Folge von CT-Untersuchungen sind an
den medizinischen Strahlenschutz des 21. Jahrhunderts besondere Anforderungen zu stellen
[13,99, 109, 115, 138, 144], zumal der Strahlenschutz besonders in der CT ein multimodaler
Prozess ist [124, 130, 890, 1045]. Insbesondere in der Kinderradiologie stellt der Strahlen-
schutz aufgrund der hohen Heterogenitit der anthropometrischen Merkmale der Patienten und
der vergleichsweise hohen Strahlenempfindlichkeit des Kindes eine besondere Heraus-
forderung dar [868, 876, 879, 910, 913, 916, 921, 925, 926, 927, 1045], sodass die praktische
Umsetzung von an die Erfordernisse der padiatrischen Radiologie adaptierten Strahlenschutz-
konzepten noch vergleichsweise am Anfang steht [865, 871, 898, 921, 923], wobei jedoch
Abteilungen der Kinderradiologie im Einzelfalle bessere Ergebnisse erzielen als solche der Er-
wachsenenradiologie [1050]. In zunehmendem Mafe wird vor allem bei Kindern ein restrik-
tiver Umgang mit der computertomographischen Bildgebung gefordert [880, 883], insbe-
sondere im Rahmen der US-amerikanischen Image-Gently-Kampagne [881, 885, 887, 888,
889, 891], in welcher auch moderne Verfahren zur Dosisreduktion in der Computertomogra-
phie in den Vordergrund geriickt werden. Allerdings scheinen derartige Bemithungen im We-
sentlichen auf die westlichen Industrienationen beschrinkt zu sein [976], zumal in den anderen
Nationen die Strahlenexposition bei pédiatrischen CT-Untersuchungen einer Schwankungs-
breite von bis zu einen Faktor 100 unterworfen ist [976]. Ein wesentlicher Schritt auf diesem
Wege stellt in der padiatrischen Radiologie die Formulierung patientenspezifischer CT-Unter-
suchungsprotokolle dar [920].

Eine wesentliche Voraussetzung fiir einen evidenzbasierten Strahlenschutz bildet natur-
gemal} der fachliche Kenntnisstand der in die Anwendung ionisierender Strahlung involvierten
Personenkreise [100, 125, 126, 130, 146, 150, 152, 162, 271, 867, 1001]. Sehr hdufig scheint
der Dosisbedarf konventioneller wie computertomographischer Rontgenuntersuchungen sei-
tens der anwendenden Radiologen einer Fehleinschiatzung unterworfen zu sein [ 100, 125, 126].
Eine derartige Fehleinschitzung diirfte mit einer Fehleinschdtzung des stochastischen Strah-
lenrisikos einhergehen und damit zu einer Relativierung der wirkungsvollsten Strahlenschutz-
mafBnahme von allen fithren, welche naturgeméB in der Stellung der Rechtfertigenden Indi-
kation besteht [150], wobei unter Beriicksichtigung alternativer bildgebender Untersuchungs-
verfahren wie der MRT oder der Sonographie [101, 154, 197] eine Abwagung zwischen dem
konkreten klinischen Nutzen und dem abstrakten Strahlenrisiko einer radiologischen Unter-
suchung zu erfolgen hat [98, 110, 864]; im Ubrigen iibersteigt bei korrekter Indikationsstellung
der tatsachliche klinische Nutzen das potentielle stochastische Strahlenrisiko bei weitem [14,
18, 20,27, 140, 311], ein Faktum, welches insbesondere fiir die Risikokommunikation mit dem
Patienten von Bedeutung ist [111, 126, 155, 864, 896].

Das zunehmende strahlenhygienische Bewusstsein in Radiologie, Medizinphysik und
Industrie, wie es sich auch in einer zunehmenden wissenschaftlichen Auseinandersetzung mit
der Thematik des Strahlenschutzes widerspiegelt [89, 90], haben in den letzten Jahren strah-
lenhygienisch relevante Fortschritte in der Weiterentwicklung der CT-Technik und trotz stei-

15 Allerdings stehen die gegenwiirtigen strahlenepidmeiologischen Befunde nicht zuletzt aus methodischen
Griinden in Kritik [17]; so mag das von der pédiatrischen Computertomographie ausgehende stochastische
Strahlenrisiko derzeit eher tiberschétzt werden [17].
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gender Untersuchungszahlen eine Reduktion der Strahlenexposition durch CT-Untersuchun-
gen bewirken konnen [97]; die in den letzten Jahren entwickelten Dosisreduktionsalgorithmen
haben zu einer Verminderung des Dosisbedarfs einer CT-Einzeluntersuchung um bis zu einen
Faktor 2 gefiihrt [699].

Es existieren zahlreiche Maflnahmen zur Optimierung der Strahlenexposition in der CT
[102, 104, 105,112,113, 114,122,129, 136, 142, 156, 157, 159, 160, 271, 332, 382,902, 913,
919, 922], wobei die Abwagung des Einflusses der einzelnen Einflussgroen vor allem in der
Kinderradiologie [869, 875, 877, 878, 882, 898, 902, 905, 913, 919, 922, 1067, 1068] von
erheblicher Bedeutung ist. Mehr noch als in der allgemeinen Radiologie ist in der Kinderradio-
logie ein ,,ganzheitlicher” Strahlenschutz, beginnend bei der Indikationsstellung [158, 870,
875, 895, 903, 918] und endend bei der Optimierung und Standardisierung der Untersuchungs-
protokolle [867, 893, 894, 904, 912,913,915, 918, 970, 983, 1067, 1068] vor dem Hintergrund
einer diagnostisch verniinftigen Bildqualitét [103, 363, 872, 873, 874, 878, 911, 913, 1049] zu
fordern [97, 866, 885, 888, 886, 887, 884, 892, 899, 900, 901, 909, 919, 925, 926, 927].

4.1.2. Dosiswerte [94, 257, 258]

In Abschnitt 8 werden tabellarisch Dosiswerte aufgefiihrt, wie sie den in Abschnitt 6 wieder-
gegebenen Referenzen entnommen werden konnten. Allerdings sind die angegebenen Dosis-
werte einer erheblichen intrainstitutionellen und interinstitutionellen Schwankungsbreite un-
terworfen. Zu dieser Schwankungsbreite trigt bereits die Variationsbreite der Dosisangaben
durch die verschiedenen CT-Scanner bei, welche bis zu 10% betragen kann [82] und gemél
DIN EN 61223-2-6 sogar 10% bis 20% betragen darf [47]. Aufgrund der Diversitit der Exposi-
tionsparameter, der weitgehend fehlenden Standardisierung der Untersuchungsprotokolle und
der zahlreichen in Betrieb befindlichen Scannertypen und Scannerfabrikate erweist sich daher
ein Vergleich der strahlenhygienischen Relevanz der unterschiedlichen CT-Technologien a
priori als nicht unproblematisch. Bereits in einer frithen bundesdeutschen Feldstudie zur Strah-
lenexposition des Patienten durch die CT mit einer Angabe der bei verschiedenen CT-
Untersuchungen frei in Luft applizierten Dosis als vergleichbar wohldefinierter Dosisgrof3e
erwies sich die dennoch erhebliche Variation der Dosiswerte [322] als Komplikation fiir eine
Abschitzung der tatsdchlich stattgehabten individuellen Patientenexposition [245]. Aus diesem
Grunde wurde in der vorliegenden Literaturstudie der Versuch unternommen, dieser inhdrenten
Problematik durch eine Erfassung moglichst zahlreicher Quellenangaben zur Strahlenexpo-
sition des Patienten zu begegnen.

4.1.2.1. Nationale und internationale Ubersichtsstudien fiir Erwachsene /94, 257, 258]

Abb. 4.1 zeigt die Verteilung der in Abschnitt 8 in Tab. 8.1 aufgefiihrten 75%-Perzentilen der
nationalen DLP-Werte fiir die Standard-CT-Untersuchungen des Schédels, des Thorax und des
Abdomens in einer Gegeniiberstellung mit den Referenzwerten der Europdischen Kommission
[201]. Als effektive Dosen referierte Werte wurden mittels der z. B. in [979] zitierten Konver-
sionsfaktoren in entsprechende DLP-Werte zurlickgerechnet. Abb. 4.2 illustriert den zeitlichen
Verlauf der mittleren effektiven Dosis pro Einwohner, wie sie auf CT-Untersuchungen zuriick-
zufiihren ist. Demnach hat sich der Dosiseintrag der CT seit den 1990er-Jahren etwa verzehn-
facht.

In Tab. 8.1 bzw. Tab. 8.4 und Tab. 8.5 wurden die Ergebnisse in der Literatur auffind-
barer nationaler und internationaler Dosisstudien bei Erwachsenen bzw. bei Kindern auf-
gefiihrt, wie sie vielfach als Ausgangswerte fiir lokale oder nationale Referenzwerte herange-
zogen wurden.
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Abb. 4.1: Nationale DLP-Werte (75%-Perzentilen) in Abhingigkeit vom Publikationsjahr in Gegeniiber-
stellung mit den Referenzwerten der Europidischen Kommission [201]. Die Daten wurden Tab. 8.1
entnommen.

4.1.2.2. Nationale und internationale Referenzwerte /94, 257, 258]

Vor dem Hintergrund des stochastischen Strahlenrisikos ist die Etablierung von Dosisreferenz-
werten (dose reference levels, DRL) als Richtwerten zur Regulierung der Strahlenexposition
und zur Risikokommunikation sinnvoll [161, 183, 191, 198, 202, 209, 231, 277]'. Seit einem
entsprechenden Vorschlag der ICRP wurden in vielen Landern Dosisreferenzwerte aus natio-
nalen Ubersichtsstudien abgeleitet. In Tab. 8.8 wurden nationale Referenzwerte fiir Erwach-
sene aufgefiihrt, wie sie in verschiedenen Lindern zu unterschiedlichen Zeitpunkten etabliert
wurden. Abb. 4.3 zeigt Referenzwerte verschiedener Lénder in Abhéngigkeit vom Berichtsjahr
in Gegeniiberstellung mit den Referenzwerten der Europdischen Kommission [202]. Die
Umsetzung des Konzeptes in der klinischen Praxis erweist sich jedoch noch vereinzelt als
problematisch [180]. Insbesondere fiir die Anwendung des Referenzwert-Konzeptes in der
padiatrischen Radiologie scheint aufgrund der hohen interindividuellen Schwankungsbreite der
anthropometrischen Parameter innerhalb einer Altersgruppe beispielsweise das Korpergewicht
an Stelle des Lebensalters des Kindes zur Festlegung von Referenzwerten weitaus besser ge-
eignet [964]; zumindest ist eine sich an anthropometrischen Merkmalen orientierende Alters-
gruppierung von Dosisreferenzwerten fiir die padiatrische Radiologie anzustreben [950].

16 Allerdings ist das Konzept der Dosisreferenzwerte in seiner gegenwirtigen Form im wesentlichen auf die Strah-
lendosis ohne explizite Berticksichtigung der Bildqualitit beschrankt und damit ein klinisch umstrittenes Konzept;
nach einem neueren Vorschlag konnte an Stelle des Konzeptes der Dosisreferenzwerte das Konzept der Dosis der
akzeptablen Bildqualitét (acceptable quality dose, AQD) treten, welches den zur Erzielung einer verniinftigen
Bildqualitét erforderlichen Dosisbedarf einer Rontgenuntersuchungstechnik berticksichtigt [252, 253].
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Abb. 4.3: Referenzwerte verschiedener Linder in Abhiingigkeit vom Berichtsjahr in Gegeniiberstellung
mit den Referenzwerten der Européischen Kommission [202]. Die Daten wurden Tab. 8.8 entnommen. Diesen
Referenzwerten konnen im Einzelfalle die 75%-Perzentilen der nationalen Studien aus Abb. 4.1 zugrunde gelegt
worden sein. Die hochsten Referenzwerte stammen aus Korea [193].
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4.1.3. Einfluss verschiedener Faktoren auf die Strahlenexposition des Patienten bei CT-
Untersuchungen /94, 257, 258]

Die Strahlenexposition des Patienten ist von zahlreichen patientenspezifischen, geritespezifi-
schen und protokollspezifischen Faktoren abhéingig. Diese Faktoren sollen im Folgenden weit-
gehend separat dargestellt werden, wenngleich sie in praxi gro3enteils in Wechselwirkung mit-
einander stehen.

4.1.3.1. Anthropometrie des Patienten /94, 257, 258/

Die Strahlenexposition des Patienten wird wesentlich von dessen anthropometrischen Merk-
malen bestimmt, da bei gegebener Bildempfangerdosis der Dosisbedarf einer Rontgenuntersu-
chung entsprechende den strahlenphysikalischen Gegebenheiten exponentiell mit dem Durch-
strahlungsdurchmesser der entsprechenden anatomischen Region steigt. Aus diesem Grunde
ist der Durchstrahlungsdurchmesser [930] oder der aus dem Sagittal- und Lateraldiameter zu
errechnende effektive Durchmesser [380, 415, 930] des Patienten zur Charakterisierung des
Dosisbedarfs einer Rontgenuntersuchung weitaus besser geeignet als alle anderen anthropo-
metrischen KenngréBen [169, 170, 670, 939, 941, 942] wie Lebensalter, Korpergrofie, Korper-
gewicht, BMI oder die als dosimetrisch relevante anthropometrische Kenngréf3e vorgeschla-
gene Circumferenz des Patientenquerschnitts [945]. Vor allem in der Kinderradiologie bildet
aufgrund der besonders hohen interindividuellen Schwankungsbreite der anthropometrischen
Parameter um den Median der jeweiligen Altersstufe eine moglichst individuelle Anpassung
der Untersuchungsprotokolle an die Anthropometrie des Patienten eine wesentliche Grundlage
der Optimierung von Strahlendosis und Bildqualitét [99, 931, 933, 935, 944, 1021, 1022, 1043,
1044]. Umgekehrt ist die Beriicksichtigung der anthropometrischen Parameter bei Kindern fiir
eine valide Dosisrekonstruktion von erheblicher Bedeutung, zumal die Angabe der meist auf
16cm- und 32cm-PMMA-Phantome bezogenen Volumen-CTDI-Werte bei Kindern fiir eine
korrekte Einschédtzung der Strahlendosis aufgrund der erheblichen Abweichung der tatséchli-
chen Patienten-Diameter von den Standard-Diametern der PMMA-Phantome unzureichend ist;
im Regelfall wird die Strahlenexposition padiatrischer Patienten durch die auf 16 cm- bzw. 32
cm-PMMA-Phantome bezogenen Volumen-CTDIs [941, 942] bei weitem unterschétzt. Aus
diesem Grunde wurde das Konzept des Size Specific Dose Estimate (SSDE) zur Hochrechnung
realistischerer Korperdosen aus den Volumen-CTDIs unter Beriicksichtigung der realen
Patientendiameter entwickelt [929, 932, 936, 946, 948, 949, 958] (das SSDE-Konzept wird in
zunehmendem Mafle auch fiir die Erstellung von Dosisreferenzwerten in der pédiatrischen
Radiologie verwendet [958]). Bei der Rekonstruktion der bei Kindern applizierten Organdosen
ist dariiber hinaus zu beachten, dass zwar der Dosisbedarf bei niedrigeren Lebensaltern
geringer ist, jedoch der relative Dosiseintrag mit abnehmendem Lebensalter ansteigt und daher
bei Kindern deutlich hoher ist als bei Erwachsenen [z. B. 1023]. Somit weist die Hohe der im
Rahmen von CT-Untersuchungen applizierten Organdosen eine starke Abhéingigkeit von den
anthropometrischen Eigenschaften der Patienten auf [165, 166, 380, 381, 415, 450, 943, 948,
949, 963, 1043]. Aus analogen Griinden sind die Ergebnisse einer Dosisrekonstruktion ganz
erheblich vom zugrundeliegenden Phantommodell abhéngig [51, 86].

Bei der Beurteilung der Validitét der effektiven Dosiswerte ist daher zu beachten, dass
die der Dosisberechnung aus den dosimetrischen Basisdaten wie dem CTDI zugrundeliegenden
Modellannahmen aufgrund der interindividuellen Variation der anthropometrischen Kenn-
daten der betrachteten Patientenkollektive eine inhdrente Unsicherheit in der Bestimmung der
effektiven Dosis in der GroBBenordnung von 100% bedingen [44]. Speziell in der Kinder-
radiologie besteht durch die Vielzahl der in Verwendung befindlichen DosisgroB3en eine er-
hebliche Unsicherheit in der Beurteilung der tatséchlich applizierten padiatrischen Strah-
lendosen [923].
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4.1.3.2. Scannerfabrikate /94, 257, 258]

Grundsitzlich kann bei vergleichbaren Untersuchungsprotokollen die erforderliche Strahlen-
dosis erheblich zwischen den Scannerfabrikaten variieren [79, 149, 215, 239, 267, 295, 321,
324, 327, 328, 329, 330, 333, 360]. Auch kann der Dosisbedarf einer bestimmten CT-Unter-
suchung trotz Verwendung von CT-Scannern des gleichen Herstellers und Herstellertyps inter-
institutionell einer Variation um bis zu einen Faktor 5 unterworfen sein [79, 215, 321, 322,
325, 326, 327, 360]. Hierzu tragt ganz wesentlich der Einfluss der technischen Strahlenexpo-
sitionsparameter auf die Strahlendosis bei [128, 133, 325, 326, 327, 360, 382, 539].

4.1.3.3. Scantechnik /94, 257, 258]

Spiral-CT. Die Entwicklung der Spiral-CT-Technik [119, 336] und der Mehrschicht-CT-
Technik [127, 337, 340] haben bei gleichzeitiger Verbesserung der Bildqualitit und der klini-
schen Performance zu einer Erhohung der Strahlenexposition gefiihrt. Beispielsweise bedingt
gemill Phantomstudien die Anwendung der Spiraltechnik bei der Schidel-CT gegeniiber der
sequentiellen Technik eine Verdoppelung bis Verdreifachung der Organdosen [320] bzw. eine
Erhohung der effektiven Dosis um einen Faktor 1,6 [539] (bei der Bewertung der Organdosen
ist jedoch zu beachten, dass deren Hohe entscheidend von der Erfassung des Organs oder Ge-
webes durch das Strahlenfeld bestimmt wird und im Spiralmodus in Abhingigkeit vom Start-
winkel der Gantryposition entsprechend den longitudinalen Organdiametern beim Sidugling um
bis zu 2% und beim Erwachsenen um bis zu 20% und variieren kann [1008]). Gemal klinischen
Vergleichsstudien kann aber die Anwendung der Spiral-CT-Technik gegeniiber der konven-
tionellen Einzelschicht-CT-Technik in Abhéngigkeit vom Untersuchungsprotokoll auch mit
einer Reduktion des Dosisbedarfs [310] von 36-72% einhergehen [302].

Tab. 4.1. Einfluss der Zeilenzahl auf die effektive Dosis.

Zeilenzahl Reduktion* der effektiven Dosis um
Thorax Thorax-HR Abdomen GanzKkorper Cardio-CTA
4->8 -38% [341]
4->16 2% [341]
4 > 64 8% [338] 1% [338] 8% [338]
8> 16 29% [341]
8 > 64 56% [287] 64% [287] 11% [287] 52% [287]
16 > 32 7% [1036]
16 > 64 10% [1033]
11% [1036]
22% [343]
16 > 128 28% [343]
16 > 320 33% [1036]
32 2> 64 5% [1036]
32 2320 28% [1036]
64 > 128 8% [343] -38% [471]
64 > 256 50% [462]
64 > 320 25% [1036] 7% [471]
29% [497]
128 = 320 44% [471]
* Negative Werte kennzeichnen einen Anstieg der effektiven Dosis.

Mehrschicht-CT (MSCT) und Mehr-Detektor-CT (MDCT). Die in der internationalen
Literatur auffindbaren Angaben zum Einfluss der Detektorzahl auf die Strahlenexposition im
Rahmen einer CT-Untersuchung sind teilweise widerspriichlicher Natur (Tab. 4.1). Moglicher-
weise spielen hier Overbeaming-Effekte eine Rolle, die bei einer Zeilenzahl von 4 am stérksten
ausgepragt zu sein scheinen und mit héheren Zeilenzahlen wieder abnehmen [135]. Generell
bedingt die Anwendung hoherer Zeilenzahlen unter sonst vergleichbaren Expositionsbedin-
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gungen eine Abnahme der Strahlenexposition, wie beispielsweise anhand einer Phantomstudie
zwischen verschiedenzeiligen Scannern gezeigt werden konnte [342]. Andererseits existieren
Hinweise darauf, dass je nach Untersuchungsprotokoll die bei Mehrzeilen-Geréten erzielten
Strahlendosen gegeniiber dem Einzeilen-Verfahren um einen Faktor 2,6 hoher liegen konnten
[159, 293, 309]. In einer anderen Phantomstudie wurde in einer differenzierten Betrachtung
gezeigt, dass die effektive Dosis einer Cardio-CTA beim Ubergang von 16 auf 64 Zeilen zu-
néchst geringfiigig zu- und beim Ubergang von 64 auf 256 Zeilen um einen Faktor 2 abnimmt
[462]. Die Anwendung der Mehrschicht-CT in der Cardio-CTA fiihrt im Ubrigen zu einer
systemimmanenten Erhohung der Patientendosis [458].

In einer bundesdeutschen Studie wurde jedoch darauf hingewiesen, dass der Dosiseintrag
durch MSCT-Verfahren nicht als alarmierend zu bezeichnen ist [335], zumal die scheinbare
Erhohung des Dosisbedarfs der MSCT-Techniken auf einen wohl noch bestehenden Optimi-
erungsbedarf bei dieser vergleichsweise neuen Untersuchungstechnik zuriickzufiihren sein
diirfte [331, 335]. Diese Feststellung liefert eine weitere Erklarung fiir die teils widerspriichli-
chen Befunde in der Literatur, ldsst aber die moglichst {iberregionale Festlegung von Dosisre-
ferenzwerten einmal mehr sinnvoll scheinen [331].

4.1.3.4. Filterung /94, 257, 258]

Die Gesamtfilterung besitzt wesentlichen Einfluss auf die Strahlenexposition des Patienten.
Allerdings ist in der Computertomographie — im Gegensatz zur konventionellen Radiologie —
eine Modifikation der Gesamtfilterung durch den Anwender in der Regel nicht mdglich. Dabei
vermag die Wahl der Filtermaterialien die Strahlenexposition des Patienten deutlich zu redu-
zieren; so zeigte sich in klinischen Untersuchungen etwa die Uberlegenheit der Sn-Filterung
gegeniiber einer konventionellen Filterung durch eine Dosisreduktion um 90%, wobei gleich-
zeitig der Submillisievert-Bereich erreicht wird [863].

4.1.3.5. Scanliinge

Naturgemif ist die Strahlenexposition des Patienten auch eine Funktion der Scanlidnge. So
kann eine Verldngerung des Scanbereiches um wenige Zentimeter in Longitudinalrichtung
bereits eine Erhhung der effektiven Dosis um bis zu 40% bewirken [163].

4.1.4. Einfluss expliziter Dosisreduktionsmalinahmen auf die Strahlenexposition des
Patienten /94, 257, 258]

4.1.4.1. Rohrenspannungs-Adaptation bzw. -Modulation /94, 257, 258]

In der Regel ist die Rohrenspannung bei CT-Scannern zwischen 80 kV und 140 kV frei wéahlbar
[1082]. Aus strahlenphysikalischen Griinden steigt die effektive Dosis bei sonst unverandert
gehaltenen Expositionsparametern — mehr noch bei Kindern als bei Erwachsenen — iiberpro-
portional mit der Hohe der R6hrenspannung [z. B. 1080, 1082]. Entsprechend kann durch eine
Verminderung der R6hrenspannung eine Reduktion der effektiven Dosis erreicht werden (Tab.
4.5); manche Autoren halten unter klinischen Bedingungen eine Dosisverminderung von bis
zu 60-70% fiir moglich [586, 587], nach einer anderen Einschitzung seien lediglich 10-15%
zu verwirklichen [588]. Dies gilt auch fiir die automatische Réhrenspannungsselektion [568,
576,399, 609, 621, 628, 630, 1085]. Eine dynamische Rohrenspannungsmodulation verspricht
in Verbindung mit der Roéhrenstrommodulation eine Reduktion der Organdosis der Mamma
um bis zu 33% [698, 699, 1106] und der effektiven Dosis um etwa 17% [595]. Allerdings
gestaltet sich bei der dynamischen Rohrenspannungsmodulation die Interaktion mit der R6h-
renstrommodulation nicht trivial [1078], weswegen hier offensichtlich noch Forschungsbedarf
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besteht. Abb. 4.4 zeigt die in diversen Publikationen ermittelten Dosisreduktionen beim Uber-
gang von hoheren auf niedrigere RGhrenspannungen.
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Abb. 4.4: Reduktion der effektiven Dosis durch Verminderung der R6hrenspannung bei Standard-Protokollen.
Der Trend der Werte fiir Standard-Protokolle aus Tab. 4.2.B (farbige Kreise) steht in guter Ubereinstimmung mit
der mathematischen Theorie (schwarze Quadrate) welche eine quadratische Spannungsabhéngigkeit der

Strahlendosis annimmt (der lineare Fit soll lediglich zur besseren Lesbarkeit der Graphik beitragen).

Tab. 4.2.A. Dosisreduktion durch Verminderung der Réhrenspannung bei Angiographie-Protokollen.

kV- Reduktion der effektiven Dosis um
Verminderung Schidel Carotis- Cardio- Pulmonal- Thorax- Becken-
Perfusion CTA CTA CTA CTA CTA
140 - 120 35% [598] 26% [684]
120 - 100 25% [568] | 35% [568] 1) 30% [630]
32% [489]1 36% [578] 34% [629]
39% [511] 45% [570]
42% [841] 45% [612]
47% [527] 49% [739]
47% [596] | 60% [483]1
47% [1093]
50% [436]
52% [617]
60% [477]
120 - 80 64% [422] 70% [569] 47% [597] 33% [584] 37% [609] 47% [630]
62% [631] 49% [739]
69% [700] 71% [612]
70% [618]
70% [841]
100 - 80 15% [604] 41% [624]
42% [573] 48% [612]
55% [618] 53% [618]
80 > 70 42% [1123]
(D Zusammenfassung mehrerer Zahlenwerte innerhalb einer Studie zu einem Mittelwert.
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Tab. 4.2.B. Dosisreduktion durch Verminderung der Réhrenspannung bei Standard-Protokollen.

kV- Reduktion der Dosis um
Verminderung Schédel Hals Thorax Abdomen Becken Urographie
140 > 120 18% [346] 16% [583] 24% [539] | 28% [1044] | 19% [630]
33%[1021] 46% [616] 38% [539]
47% [582]
140 - 100 58% [1021] 24% [583] 67% [582] 66% [582]
140 - 80 81% [1021] 26% [583] 71% [603]
71% [770]
77% [582]
120 > 110 62% [1050] | 41% [1050]
120 - 100 35% [1084] 9% [583] 15% [1084] | 29%[1109] | 25% [630] 32% [599]
37% [1021] 30% [372] 23% [620] | 30% [1133] 52% [567]
25% [1133] 35% [577]
35% [568]11 | 36% [568]1
37% [582] 40% [399]
39% [1109] 40% [811]
41% [708] | 50% [1079]
48% [1081]
60% [593]
89% [572] @
120 - 90 35% [581]
57% [607]
120 - 80 43% [1030] 129% [583] 61% [1133] 15% [575] | 38% [630] 59% [567]
72% [1021] 71% [372] 71% [601] 17% [623]
85% [1030] 73% [1081] 32% [605]
80% [593] 52% [606]
63% [577]
67% [99911)
70% [811]
100 -> 80 39% [627]* 3% [583] 29% [700] 34% [582] 14% [567]
55% [1021] 44% 11281 M 42% [577]
48% [1133] 51% [811]
50% [593]
69% [602]
100 > 70 74% [571]
80 > 70 0% [1083]

(D Zusammenfassung mehrerer Zahlenwerte innerhalb einer Studie zu einem Mittelwert.
@ Unter Verwendung zusitzlicher Sn-Filterung.

Eine differenzierte Analyse der Auswirkung einer Modulation der R6hrenspannung auf Bild-
qualitdt und Dosis erfolgt in [626]; hier wird eine Reduktion der Organdosis der Mamma um
50% beim Ubergang von 120 kV auf 80 kV Réhrenspannung beobachtet. Eine protokoll- und
anthropometriebasierte Optimierung der Rontgenspektren soll ebenso eine Dosisreduktion bis
zu 50% erbringen [592]. Diesen Tatsachen entsprechend hat sich die Selektion niedrigerer
Rohrenspannungen in den letzten Jahren auch in der Kinderradiologie durchgesetzt [1021,
1022, 1050, 1077]. Als positiver klinischer Kollateraleffekt einer reduzierten R6hrenspannung
wiederum ist bei Kontrastmittel-Scans ein verringerter Bedarf an jodhaltigem Kontrastmittel
zunennen [578, 611]. Als negative strahlenbiologische Begleiterscheinung geht mit einer Ver-
minderung der Rohrenspannung der Anstieg der Relativen Biologischen Wirksamkeit der
Rontgenstrahlung einher [31].

Insgesamt ist somit aufgrund der zahlreichen Interaktionen zwischen Anthropometrie,
Rohrenspannung, Bildqualitét, Dosis, Kontrastmittelbedarf und biologischer Wirksamkeit die
Rohrenspannung fiir jedes Untersuchungsprotokoll mit Bedacht zu wiahlen [536, 589, 1086].
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4.1.4.2. EKG-Triggerung [94, 257, 258]

Die CT-Cardangiographie (CTCA) zdhlt zu den vergleichsweise dosisintensiven CT-Untersu-
chungen; so konnen hier Mammadosen von bis zu 100 mSv [557] und Lungendosen bis zu 85
mSv [462] gefunden werden. Da die CTCA dem kardiologischen Patientenkollektiv erhebliche
diagnostische Vorteile bietet, scheint trotz der Notwendigkeit einer kritischen Indikations-
stellung [147] eine tiberkritische Indikationsstellung angesichts des vergleichsweise abstrakten
Strahlenrisikos nicht angezeigt [437]. Dennoch stellt aufgrund eines errechenbaren Lebenszeit-
Krebsrisikos von bis zu etwa 1:150 [444] die Optimierung der Strahlenexposition in der CTCA
eine wesentliches Ziel dar [97, 444], dem sich zahlreiche Arbeitsgruppen verschrieben haben.
Eine Literaturiibersicht iiber Dosisbedarf und Dosisreduktionsmoglichkeiten findet sich in der
Publikation von Paul et Abada 2007 [467].

Zur Reduktion der Strahlendosis in der Cardio-CTA existieren verschiedene Strategien
[448, 467, 470, 527] wie Abschirmung, Rohrenspannungsselektion oder organbasierte Dosis-
modulation sowie die Kombination dieser Verfahren. Untersuchungsspezifische Methoden
stellen die EKG-Triggerung [480] und das High-Pitch-Verfahren [837] dar. Die Anwendung
von High-Pitch-Verfahren gestaltet sich bei der CTCA allerdings aufgrund der Relation zwi-
schen Bildrauschen, Dosis und Pitch-Faktor komplexer als bei der Standard-Spiral-CT; insbe-
sondere ist hier aus bildverarbeitungstechnischen Griinden eine Modifikation des Pitch-Faktors
zur Dosisreduktion nicht ohne Limitationen moglich [468].

Hingegen stellt die EKG-Steuerung des Rohrenstromes eine wirksame Methode zur
Dosisreduktion dar. In der Cardio-CTA ist ganz wesentlich zwischen retrospektivem EKG-
Gating und prospektivem EKG-Triggering (oftmals auch als prospektives EKG-Gating be-
zeichnet) zu unterscheiden [z. B. 461]. Wahrend beim retrospektiven EKG-Gating der R6hren-
strom liber den gesamten Herzzyklus hinweg eingeschaltet bleibt und die zur Bildsynthese zu
verwendende Bildinformation retrospektiv ermittelt wird, erfolgt beim prospektiven EKG-
Triggering eine EKG-synchrone Pulsung des Rohrenstroms zum Zeitpunkt der prisystolischen
Bildakquisition. Aus diesem Grunde bewirkt prospektives EKG-Triggering in jedem Falle eine
weitaus hohere Dosisreduktion als retrospektives EKG-Gating [436, 438, 482, 504, 1060].
Abb. 4.5 und Tab. 4.3 zeigen die durch Einsatz des retrospektiven EKG-Gating vs. Konstant-
stromtechnik bzw. des prospektiven EKG-Triggering vs. retrospektivem EKG-Gating jeweils
erzielbare Dosisreduktion.

Besonderheiten beim EKG-Gating.

Retrospektives EKG-Gating kann nach Phantomstudien [481, 500, 506] gegeniiber der kon-
ventionellen MDCT eine Reduktion der Mammadosis um bis zu 80% bewirken [435]. Bei
retrospektivem EKG-Gating gestattet die Justierung des Rohrenstroms auf die thorakale
Circumferenz des Patienten immerhin eine Reduktion der effektiven Dosis um 41% [503] und
eine Gewichtsadaptation des Rohrenstroms eine Reduktion der effektiven Dosis um 37% [505].
Allerdings wurde bei Neugeborenen und Siuglingen durch retrospektives EKG-Gating
gegeniiber der konventionellen MDCT bei Verbesserung der Bildqualitét eine Erhéhung der
effektiven Dosis um einen Faktor 2.5 beobachtet [ 1058].

Besonderheiten beim EKG-Triggering.

Eine Kombination aus prospektivem EKG-Triggering und Rohrenspannungsreduktion von 120
kV auf 80 bis 100 kV ermdglicht gegeniiber der konventionellen MDCT eine Reduktion der
effektiven Dosis um bis zu 86-88% [480, 436], in ausgewéhlten Féllen sogar um das 15-fache
[438]. Die simultane Ausnutzung von Roéhrenspannungserniedrigung, prospektivem EKG-
Triggering und High-Pitch-Verfahren erlaubt eine Reduktion der effektiven Dosis um bis zu
89% [841].
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Tab. 4.3.A. Prospektives EKG-Triggering vs. retrospektives EKG-Gating vs. konventionelle MDCT.

Zeilenzahl

Rohrenspannung (kV)

Effektive Dosis
EKGr : MDCT

Effektive Dosis
EKGp : ECGr

120

45% [494]

57% [513]

16 120

40% [489]
53% [474]

32 120

42% [508

64 80

58% [841

100

—

J
J
55% [580]
57% [841]

28% [436
42% [512
74% [847

120

17% [493]
34% [512]
36% [489]
48% [580]
51% [524]
55% [509]
72% [522]
95% [518]

15% [529
17% [488
21% [490
24% [449]
24% [520]
26% [517]
27% [487]
28% [525]
29% [521]
30% [436]
31% [491]
32 % [440]
33% [525]
43% [482]
56% [480]
64% [498]
65% [527]
71% [509] (1)
76% [847]

[436]
[512]
[847]
15% [484]
[529]
[488]

]

128 100

21% [488]
26% [705]
26% [850]

120

31% [495]
37% [516]
42% [456]
52% [496]

256 120

69% [492]

24% [485]
34% [492]

320 120

24% [519]
43% [515]
56% [719

[719]
31% [486]
57% [229]

(1) Retrospektiv 64 Zeilen, prospektiv 256 Zeilen

EKGr = retrospektives EKG-Gating; EKGp = prospektives EKG-Triggering

Tab. 4.3.B. Prospektives EKG-Trig

ering + High-Pitch vs. retrospektives EKG-Gating.

Zeilenzahl

Roéhrenspannung (kV)

Effektive Dosis
EKGp+HP : EKGr

64

100

15% [847]

120

17% [847]

128

100

10% [850]
12% [841]

120

11% [841]

EKGr = retrospektives EKG-Gating

EKGp = prospektives EKG-Triggering

HP = High-Pitch-Verfahren
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Abb. 4.5: Dosisbedarf von retrospektivem EKG-Gating vs. konventioneller MDCT (blau) bzw. prospektivem
EKG-Triggering vs. retrospektivem EKG-Gating (rosa) in Abhdngigkeit von der Zeilenzahl des MDCT-Scan-
ners. Die Daten wurden Tab. 4.3.A entnommen. Eine signifikante Abhéngigkeit der Dosisersparnis von der
Zeilenzahl konnte nicht festgestellt werden. Die blaue und rosa Linie entsprechen dem jeweiligen Mittelwert.

4.1.4.3. Rohrenstrommodulation /94, 257, 258]

Bei den Verfahren der Rohrenstrommodulation sind die angulare Rohrenstrommodulation in
der zweidimensionalen Transversalebene des Patienten, die axiale Rohrenstrommodulation auf
der eindimensionalen Longitudinalachse des Patienten und die kombinierte angular-axiale
Rohrenstrommodulation im dreidimensionalen Patientenvolumen zu unterscheiden. Angulare
Rohrenstrommodulation (ADM) kann geméf Phantommessungen eine Dosisreduktion um bis
zu 51% [591] und axiale R6hrenstrommodulation eine Reduktion der effektiven Dosis um bis
zu 35% [633, 657] bewirken.

Heute ist neben der angularen und der axialen Rohrenstrommodulation die kombinierte
angular-axiale Rohrenstrommodulation in Gebrauch [668], welche zum Zeitpunkt der Bericht-
erstellung (2015) von den meisten Herstellern mit Ausnahme der Fa. Philips [641, 672] unter-
stiitzt wurde. Die axiale Rohrenstrommodulation erweist sich hierbei beziiglich des Dosisre-
duktionspotentials als effektiver als die angulare Rohrenstrommodulation [685] und die kom-
binierte angular-axiale Rohrenstrommodulation wiederum effektiver als die rein angulare
Rohrenstrommodulation [666, 672, 1101]; so sagten Monte-Carlo-Simulationen bei Anwen-
dung der angular-axialen Rohrenstrommodulation in der Thorax-CT eine Reduktion der effek-
tiven Dosis zu etwa 1/3 durch die angulare und zu etwa 2/3 durch die axiale Rohrenstrom-
modulation voraus [646].

In Tab. 4.4 wurden fiir mehrere Standard-Protokolle die in der Literatur auffindbaren
Dosisreduktionspotentiale der angular-axialen Rohrenstrommodulation in Abhingigkeit vom
Lebensalter der Patienten und vom Scanprotokoll aufgefiihrt.
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Tab. 4.4. Dosisreduktion durch Rohrenstrommodulation bei Standard-Protokollen.

31% [657]
53% [1091]

53% [456]

Altersstufe Schiidel Hals Thorax Abdomen Becken
0 Jahre 2% [1098] 5% [1098] 7% [1098] 2% [1098]
54% [1100]
1 Jahr 3% [1098] 9% [1098] 6% [1098] 5% [1098]
67% [1099]
3 Jahre 16% [1090]* 16% [1090]*
5 Jahre 2% [1098] 5% [1098] 4% [1098] 4% [1098]
14% [1100] 20% [1102] 31% [998]*
26% [998]* 43% [997]*
31% [997]*
7 Jahre 18% [1090] 17% [10907* 14% [1090]*
10 Jahre 6% [1098] 9% [1098] 5% [1098] 7% [1098]
14% [1100]
15 Jahre 13% [10907]* 19% [1090] 20% [10907*
Kinder o.n.A. 35% [1092] 38% [1092] 45% [1091]
66% [1091] 55% [1091]
Erwachsene 11% [1098] 35% [299] 7% [539] 10% [1098] 14% [1098]
11% [309] 40% [303] 10% [646] 11% [641] 25% [642]
18% [492] 50% [308] 10% [688] 12% [539] 34% [650]
24% [682] 13% [377] 15% [642] 40% [657]
29% [1100] 14% [450] 17% [675] 50% [1091]
36% [682] 17% [666]* 19% [676]
60% [447] 17% [676] 23% [650]
18% [641] 42% [674]*
21% [643] 29% [666]*
22% [642] 439% [659]
27% [650] 52% [1091]
27% [657] 65% [669]
27% [1101]
28% [674]*
35% [662]
47% [672]*
36% [675]
64% [1091]
68% [669]
Altersstufe Ganzkorper Schidel-CTA Cardio-CTA
0 Jahre 0% [1087] 9% [1089]
5% [1098]
1 Jahr 6% [1098] 14% [1089]
11% [1087] 65% [1093]
2 — 5 Jahre 16% [1089]
5 Jahre 5% [1098]
6% [1087]*
6 — 12 Jahre 26% [1089]
10 Jahre 9% [1098]
14% [1087]*
13 — 16 Jahre 16% [1089]
Kinder 0.n.A. 44% [1091] 58% [1093]
Erwachsene 12% [1098] 27% [1101] 38% [657]

* = Zusammenfassung mehrerer Zahlenwerte innerhalb einer Studie zu einem Mittelwert.

Phantomstudien lassen eine mdgliche Dosisreduktion bei verniinftiger Bildqualitidt um 75-80%
moglich scheinen [664], in einem Einzelfall wird von einer klinisch erzielbaren Dosisreduktion
um 75% berichtet [655].
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Strahlenexposition mit und ohne Anwendung der Rohrenstrommodulation.

Die Abbildungen 4.6.A und 4.6.B zeigen die Reduktion der Strahlenexposition von Erwachse-
nen und Kindern bei den Standard-CT-Untersuchungen des Schédels, des Thorax und des
Abdomens sowie des Ganzkorpers durch Anwendung der Rohrenstrommodulation gemil3 den
in der Literatur auffindbaren Werten. Wie aus den Abbildungen trotz der Heterogenitit der
erhobenen Literaturdaten hervorgeht, bewirkt der Einsatz der Rohrenstrommodulation eine
deutliche Dosisreduktion um bis zu im Median etwa 25% bei Erwachsenen und um bis zu im
Median etwa 20% bei Kindern, hier aber in deutlicher Abhingigkeit vom Lebensalter des Kin-
des.

Moglichkeiten und Grenzen der Rohrenstrommodulation.

Durch Réhrenstrommodulation ist insbesondere auch in iiberlangen Scans eine Dosisreduktion
um bis zu 50% in den Randbereichen moglich [651], allerdings mit Limitationen [635]. Auch
wird die Strahlenexposition des Patienten trotz Anwendung der R6hrenstrommodulation nach
wie vor ganz wesentlich vom Durchmesser des Patienten bestimmt [670], weswegen bei der
Anwendung der Rohrenstrommodulation im Schidelbereich aufgrund der weitgehenden Zy-
lindersymmetrie des Schédels eine manuelle Festlegung des Rohrenstroms vorzuziehen ist.
Dabher ist auch die Anwendung der R6hrenstrommodulation in der péddiatrischen CT nicht un-
umstritten, zumal die Réhrenstrommodulation aus anthropometrischen Griinden in ihrer Wirk-
samkeit mit dem Lebensalter zunimmt und ihre grofte Wirkung beim Erwachsenen entfaltet
[1098] (siehe auch Abb. 4.6). So wurde beispielsweise bei padiatrischen CT-Untersuchungen
des Abdomens in Abhingigkeit vom Korpergewicht ein Dosisreduktionspotential der longi-
tudinalen Rohrenstrommodulation von 11 bis 31% gefunden [1097].

Offensichtlich kann die Rohrenstrommodulation bei inaddquater Anwendung wie etwa
bei der Schidelperfusion auch zu einer deutlichen Erhohung der effektiven Dosis mit erhebli-
chen maximalen Organdosen bis zu 3 Sv (Sievert, sic!) fithren [422]. Auch bei Kindern wurde
bei CT-Untersuchungen im Schidel-Hals-Bereich in strahlensensiblen Organen wie den Spei-
cheldriisen und der Schilddriise eine Erh6hung der Organdosen beobachtet [1087], die durch
die vergleichsweise hohe Gewebedichte bei Kindern begiinstigt wird.

Unabhingig hiervon ist bet Anwendung der Rohrenstrommodulation stets die korrekte
Zentrierung des Patienten von essenzieller Bedeutung [644, 645, 660, 687, 1088, 1095], zumal
in Phantomstudien bei einer Exzentrizitdt von nur wenigen Zentimetern eine Erhohung des
Rohrenstroms um bis zu 70% festgestellt werden konnte [644, 645, 687]. Auch die unkorrekte
Lagerung der Arme kann bei Verwendung der R6hrenstrommodulation zu einer Erhéhung der
effektiven Dosis um bis zu 100% fiithren [634, 656, 661]. Daneben spielt wohl auch der Strah-
lengang beim Topogramm eine nicht unbedeutende Rolle [645].

Hingegen kann die simultane Verwendung von Réhrenstrommodulation und physikali-
schen AbschirmungsmaBnahmen zu einer kontraproduktiven Uberexposition fithren [1076], da
die Topogramm-gesteuerte Rohrenstrommodulation am Ort der physikalischen Abschirmung
eine kompensative Erhohung des Rohrenstromes bewirkt [1076, 1088]. Auch der Kunstgriff
des Anbringens der physikalischen Abschirmung nach Anfertigung eines Topogramms im Na-
tivzustand ist kritisch zu beurteilen, da je nach Algorithmus auch wihrend des Scans eine
Transmissionsmessung mit konsekutiver dynamischer Korrektur des Rohrenstromes erfolgen
kann.
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Abb. 4.6.A: Wirkung der Rohrenstrommodulation auf die Reduktion der effektiven Dosis bei CT-Unter-
suchungen des Schiidels von Kindern und Erwachsenen. Die Dosisreduktionswirkung ist auch hier bei
Erwachsenen hoher als bei Kindern. Die relativen Zahlenwerte wurden Tab. 4.4 entnommen.
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Abb. 4.6.B: Wirkung der Rohrenstrommodulation auf die Reduktion der effektiven Dosis bei CT-Untersu-
chungen des Korperrumpfes von Kindern aller Altersstufen und von Erwachsenen. Die Dosisreduktions-
wirkung steigt mit dem Lebensalter des Patienten. Die relativen Zahlenwerte wurden Tab. 4.4 entnommen.



4.1. Literaturstudie 85

In Analogie hierzu sind bei Anwesenheit metallischer Implantate zur Vermeidung von Fehl-
expositionen besondere Vorkehrungen erforderlich [637]. Hingegen wirkt sich die Anwesen-
heit von Kontrastmitteln offenbar nur in Form einer geringfiigigen Erhohung des R6hrenstroms
und damit der Patientenexposition aus [681].

Kritisch zu beurteilen bleibt die Anwendung der Rohrenstrommodulation als Ersatz fiir
andere Dosisreduktionstechniken [1098] wie die R6hrenspannungsselektion, zumal die Roh-
renstrommodulations-Algorithmen vielfach eine freie Wahl der R6hrenspannung noch nicht
zulassen und die Reduktion der R6hrenspannung gegeniiber der R6hrenstrommodulation meist
ein vergleichbares oder sogar hoheres Dosisreduktionspotential aufweist [699].

4.1.4.4. Iterative Rekonstruktion /94, 257, 258]

Generelle Vor- und Nachteile der iterativen Verfahren.
In den letzten Jahren wurden von verschiedenen Herstellern diverse Verfahren zur iterativen
Bildrekonstruktion entwickelt [794], wobei der Einflull der einzelnen iterativen Verfahren auf
die Befundungsqualitit von der Art des verwendeten Algorithmus, von der Iterationsstufe, von
der Strahlendosis [739], aber auch vom Hersteller des CT-Scanners [809] abhingig ist. Alle
Verfahren weisen dariiber hinaus je nach Kombination mit anderen Dosisreduktionstechniken
spezifische Vor- und Nachteile auf, welche hier nicht im Einzelnen dargestellt werden sollen.
Es existieren jedoch allen Verfahren mehr oder minder gemeine Vor- und Nachteile.
Vorteile. Die Vorteile aller iterativer Verfahren bestehen in der Reduktion des Rausch-
anteils und der Verminderung von Bildartefakten in Abhéngigkeit von der Iterationsstufe [712,
713, 795, 834]. Meist kommt es zu keiner nennenswerten Anderung der Ortsauflosung.
Nachteile. Die Nachteile der iterativen Techniken stellen die Rekonstruktionsdauer sowie die
von der Benutzereinstellung abhingige Anderung des Bildaspektes gegeniiber der FBP dar.
Auch sind der Dosisreduktion bei Wahrung der klinischen Bildqualitét in der Praxis Grenzen
gesetzt, da die Niedrigkontrast-Detektionsrate auch bei Anwendung iterativer Verfahren ein-
deutig mit der Strahlendosis abnimmt [812]; dies gilt insbesondere fiir adipdse Patienten [813].
Auch der subjektive Bildaspekt wird - insbesondere bei hdheren Iterationsstufen - von manchen
Radiologinnen und Radiologen als zu manieriert empfunden [818].

Dosisreduktion durch iterative Verfahren bei verschiedenen CT-Untersuchungen.
Verfahren zur iterativen Bildrekonstruktion bewirken nicht nur im Einzelfall eine verbesserte
Bildgebung [787], sondern besitzen auch das Potential zur erheblichen Reduktion der zur
Bildgebung erforderlichen Strahlendosen [712, 723, 725,764, 777, 793, 815]. Die unterschied-
lichen Rekonstruktionsverfahren unterscheiden sich beziiglich ihres Rechenleistungsbedarfs,
ihrer Bildqualititsmerkmale und ihrer Dosisreduktionspotentiale [768]. Allerdings stehen de-
finitive Studienergebnisse iiber die Wirksamkeit der verschiedenen Algorithmen in den diver-
sen Einsatzbereichen zum Zeitpunkt der Berichterstellung (2015) noch aus.

Tab. 4.5.A bzw. Tab. 4.5.B sowie. Abb. 4.7 und Abb. 4.8 zeigen die durch die verschie-
denen Algorithmen bei verschiedenen CT-Untersuchungen jeweils bewirkte relative Dosisre-
duktion bei Protokollen der Erwachsenen- und der Kinderradiologie. Wie ersichtlich ist, kann
eine Dosisreduktion um bis zu 95% erzielt werden, wodurch der Submillisievert-Bereich er-
reichbar wird. Dies gilt insbesondere bei Kombination der iterativen Verfahren mit der High-
Pitch-Technik [780, 836].

Zusammenfassend lassen allerdings die noch vergleichsweise geringe Anzahl der Stu-
dien sowie die heterogenen Expositionsbedingungen eine abschlieBende Bewertung der ein-
zelnen Verfahren zur iterativen Bildrekonstruktion anhand der vorliegenden Literatur noch
nicht zu.
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Tab. 4.5.A. Dosisreduktion durch iterative Rekonstruktion bei Erwachsenen.

IR-Algorithmus

Reduktion des DLP bzw. der effektiven Dosis um

Schiidel Hals Thorax Abdomen Ganzkorper
FBP - IR o.n.A. 11% [93] 28% [821] 24% [821] 6% [93] 34% [821]
12% [93] 28% [93] 21% [821]

14% [821]

FBP > ADMIRE 95% [771]
FBP > AIDR 64% [829] 50% [771] 58% [750]
83% [759]
FBP > ASIR 6% [740] 17% [822] | 6-32%[1109] | 7-32% [1109] 23% [740]
27% [806] 10-50% [731] 20% [718] 90% [1129]
30% [1117] 25% [832] 26% [804]
31%[1117] 27% [803] 28% [717]

33% [807]
34%[1117]
34%[1117]

28-72% [805]
34%[1113]
36% [764]
40% [773]
41%[1126]
71% [817]
72% [622]
74% [713]
79% [629]

30% [744]
30-70% [818]
349% [711]
349% [744]
349% [1126]
35%[1130]
38% [700]
38% [782]
40% [707]
40% [730]
41% [779]
42%[1113]
43% [808]
50% [772]

FBP - iDose,
FBP = iDose*

16% [702]
25% [1124]
30% [769]
35% [702]
50% [709]

35% [414]
45% [797]
47% [701]

FBP - IMR 85% [752]
90% [754]
FBP > IRIS 18% [758] 35% [799] 50% [776]
30% [753] 37% [734]
44% [745]
50% [736]
50% [775]
FBP > MBIR 91% [733] 72% [622] 61% [783]
80% [773] 75% [816]
92% [831]
95% [629]
FBP - SAFIRE 29% [706] 65% [742] 5-9% [746]
70% [801] 75% [743]
90% [763] 82% [755]
ASIR 2> MBIR 80% [747] 59% [814] 45% [1127]
81% [724]
IR-Algorithmus Schiidel-Perfusion Cardio-CTA Aorten-CTA Pulmonal-CTA

FBP > AIDR 50% [786]
FBP > ASIR 19% [1122] 24% [714] 31% [739]
37%[1122] 27% [714] 37% [792]
40-60% [765]
44% [766]
FBP > iDose 23% [784]
55% [732]
FBP > MBIR 93% [780]
FBP > SAFIRE 50% [781] 50% [828]
ASIR > MBIR 70% [729]
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Abb. 4.7: Dosisreduktion bei der Thorax-CT durch Anwendung verschiedener iterativer Verfahren. Die
Daten wurden Tab. 4.5 entnommen. Die zu erzielende Dosisreduktion kann demnach in Abhéngigkeit vom

Verfahren bis zu

95% betragen. Allerdings sind die Ergebnisse aufgrund der geringen Fallzahl nicht signifikant.
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Abb. 4.8: Dosisreduktion durch Anwendung der adaptiven iterativen Rekonstruktion (ASIR) an Stelle
der reinen FBP bei der Thorax- und Abdomen-CT. Die Daten wurden Tab. 4.5 entnommen. Die zu erzie-
lende Dosisreduktion betrdgt im Mittel etwa 30 bis 35%.
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Tab. 4.5.B. Dosisreduktion durch iterative Rekonstruktion bei Kindern verschiedener Altersstufen.

IR-Algorithmus Reduktion der effektiven Dosis um
Schiidel | Hals | Thorax | Abdomen | Ganzkorper
1 Jahr
FBP 2 ASIR 1% [11217* 66% [995]
FBP > MBIR 72% [995]
5 Jahre
FBP - IR o.n.A. 6% [93] 18% [93] 25% [93]
11% [93]
FBP - iDose 53% [1124]
8 Jahre
FBP DASIR 28% [1121]* | | | |
10 Jahre
FBP > iDose 46% [1124] | | | |
15 Jahre
FBP D ASIR 49% [11217* | | | |
Kinder ohne nihere Altersabgabe
FBP > ASIR 83% [1115] 57% [1132] 46% [1107] | 62-86% [1110]
FBP 2 SAFIRE 50%[1119]
* Mittelwert bzw. Median einer entsprechenden Altersgruppe.

4.1.4.5. Rohrenstrommodulation und iterative Bildrekonstruktion

Vielfach werden die Verfahren der R6hrenstrommodulation und der iterativen Bildrekonstruk-
tion in Kombination angewandt. Abb. 4.9.A mit Abb. 4.9.C zeigen in der Literatur angegebene
Werte fiir den CTDlyol, das Dosis-Langen-Produkt sowie die Effektivdosis unter jeweiliger
Anwendung der Konstantstromtechnik, der Rohrenstrommodulation (DM), der Iterativen Bild-
rekonstruktion (IR) sowie der Kombination aus Réhrenstrommodulation und Iterativer Bild-
rekonstruktion (DM + IR) fiir die CT-Untersuchungen des Schédels, des Thorax und des Abdo-
mens. Die Werte wurden den Tabellen 8.11 bis 8.13 in Abschnitt 8 entnommen und wider-
spiegeln das internationale Expositionsniveau bei diesen Untersuchungen {iber einen Zeitraum
von mehreren Jahren.

Demnach unterscheiden sich im Rahmen dieser Literaturstudie CTDIyo;, und DLP und
Effektivdosis zwischen CT-Untersuchungen mit Konstantstromtechnik und Réhrenstrommo-
dulation nicht signifikant. Auch kann im Rahmen dieser Literaturstudie bei den CT-Untersu-
chungen des Schidels aufgrund der vergleichsweise geringen Anzahl aufgefundener Literatur-
stellen kein statistisch signifikanter Unterschied ohne und mit Anwendung iterativer Bildre-
konstruktionsverfahren festgestellt werden. Hingegen bestehen bei CT-Untersuchungen des
Thorax und des Abdomens signifikante Unterschiede zwischen Verfahren ohne und mit An-
wendung iterativer Bildrekonstruktionsverfahren. Auch konnte fiir die Effektivdosis bei CT-
Untersuchungen ohne und mit Anwendung iterativer Verfahren kein statistisch signifikanter
Unterschied nachgewiesen werden.

Der mittlere CTDIyor ohne bzw. mit Anwendung iterativer Verfahren betrdgt bei einer
CT-Untersuchung des Schédels rund 53 mGy bzw. rund 38 mGy, bei der CT-Untersuchung
des Thorax rund 10 mGy bzw. rund 4 mGy und bei der CT-Untersuchung des Abdomens rund
14 mGy bzw. rund 7 mGy. Das mittlere DLP ohne bzw. mit Anwendung iterativer Verfahren
betrigt bei einer CT-Untersuchung des Schédels 877 mGy cm bzw. 646 mGy cm, bei einer
CT-Untersuchung des Thorax 374 mGy cm bzw. 176 mGy cm und bei einer CT-Untersuchung
des Abdomens 559 mGy cm bzw. 244 mGy cm. Die mittlere Effektivdosis ohne bzw. mit
Anwendung iterativer Verfahren betridgt bei einer CT-Untersuchung des Schidels 1,8 mSv
bzw. 1,1 mSv, bei einer CT-Untersuchung des Thorax 8,2 mSv bzw. 2,9 mSv und bei einer
CT-Untersuchung des Abdomens 10,7 mSv bzw. 4,4 mSyv.

Insgesamt unterschritten die meisten berichteten CT-Untersuchungen die européischen
Referenzwerte aus dem Jahre 1999 [202].



4.1. Literaturstudie 89

110 110
1 =01 = I
100 4 p G?samtfallzahl 183 L 100
. ’—|:‘ Réhrenspannung = 120kV L
90 Europaische Referenzwerte 1999 90
80 - 80
o’; 70 A |—| - 70
£ 60 - - 60
3 i L
é 50 — — 50
O i p < 0.001 p < 0.001 L
40 _ 40
30 T 1 ’ ‘ - 30
20 rj E TT - 20
"
4 E L
0 T T T T 1 1 E 1 T T T T 0
S o & & P N R\ S o & 8
L0 A A\ e AN e O XN
SO RN S\ AT N NS A (G- AN
S & S Y e o N ) OV po7 ?péo‘(\ e(\p
J <x® &©
o W
CT-Protokoll
1800 1800
1 p>>0.05 Gesamtfallzahl = 160 F
1600 - Roéhrenspannung = 120kV - 1600
1 Europaische Referenzwerte 1999 |
1400 - p = 0.001 - 1400
_ 1200 - I p <0.01 - 1200
£ ] | — i
> 1000 ] | - 1000
(g ] I
E_’ 800 - ’—‘ 1 FT - 800
51 1 L
600 - % - 600
400 A - 400
200 A E - 200
0 T T T T T 0

Q@\ 0@ \\Q‘ \Q‘ \’&d‘ 0 \Q‘ \Q‘ e“ 0\\ N\
Mo SR S & QA
%6\ 2 B 0\\ «‘\/\ 0‘%$< 0@ ?pé 6‘@(\ e;o‘(\e os\

Nl W S
e O ® o SRS
?\
& < o
CT-Protokoll

Abb. 4.9.a, b. CTDILva-Werte (oben) bzw. DLP-Werte (unten) bei CT-Untersuchungen des Schiidels, des
Thorax und des Abdomens jeweils (1) ohne Dosisreduktionstechnik, (2) unter Anwendung eines Verfahrens zur
Rohrenstrommodulation (DM) bzw. (3) zur iterativen Bildrekonstruktion (IR) bzw. (4) unter kombinierter
Anwendung dieser Verfahren (DM + IR) gemél der internationalen Literatur der letzten Jahre (Tab. 8.11 bzw.
Tab. 8.12). Bei den Thorax- und Abdomen-Protokollen besteht ein sehr bis hoch signifikanter Unterschied (p <
0,01 bis p <0,001) zwischen CT-Untersuchungen mit und ohne iterativen Bildrekonstruktionsverfahren.
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Abb. 4.9.c. Effektivdosis-Werte bei CT-Untersuchungen des Schiidels, des Thorax und des Abdomens
jeweils (1) ohne Dosisreduktionstechnik, (2) unter Anwendung eines Verfahrens zur Réhrenstrommodulation
(DM) bzw. (3) zur iterativen Bildrekonstruktion (IR) bzw. (4) unter kombinierter Anwendung dieser Verfahren
(DM + IR) geméiB der internationalen Literatur der letzten Jahre (Tab. 8.11 bzw. Tab. 8.12). Bei allen Protokollen
besteht ein sehr bis hoch signifikanter Unterschied (p < 0,01 bis p < 0,001) zwischen CT-Untersuchungen mit und
ohne iterativen Bildrekonstruktionsverfahren.

4.1.4.6. High-Pitch-Verfahren /94, 257, 258]

Strahlendosis und objektive Bildqualitdt bei einer CT-Untersuchung sind eine direkte Funktion
des Pitch-Faktors; bei sonst unverdnderten Expositionsparametern steigen Dosis [843, 845,
848] und Bildqualitdt [853, 1134] mit sinkendem Pitch und vice versa. Das High-Pitch-Ver-
fahren nun erlaubt durch verbesserte Bildverarbeitungsalgorithmen eine dramatische Vergro-

Berung des Pitch-Faktors und damit in Abhingigkeit vom Untersuchungsprotokoll eine Dosis-
reduktion um bis zu iiber 60% (Tab. 4.6).

Tab. 4.6. Dosisreduktion durch High-Pitch-Verfahren bei verschiedenen CT-Protokollen.

CT-Protokoll Dosisreduktion
Hals 55% [838]
Thorax 59% [852]
Abdomen 36% [842]

45% [837]
Cardio-CTA 41% [705]

48% [835]
86% [851]
CTA der thoracoabdominalen Aorta 20% [846]
60% [839]

Allerdings ist die Wahl des Pitch-Faktors bei der Spiral-CT bzw. des Tischinkrements bei der
Hochauflosenden Einzelschicht-CT aus bildverarbeitungstechnischen Griinden Limitationen
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unterworfen. So begrenzt bei der CT-Cardangiographie das geringe Scanvolumen die Wahl des
Pitch-Faktors [468]. Bei der Thorax-CT zur Diagnostik von Lungenstrukturerkrankungen wird
die mit einer Erhohung des Pitch-Faktors einhergehende Verminderung der Anzahl der Schnitt-
bilder wegen der hierdurch einhergehenden Verminderung der Bildqualitét als nicht sinnvoll
erachtet [1034], zumal hierdurch die quantitative Lungendiagnostik erschwert wird [1035].

4.1.4.8. Physikalische Abschirmungsmafinahmen /94, 257, 258]
Die Abschirmung strahlenempfindlicher Organe wie der Augenlinse, der Schilddriise oder der
Mamma durch Auflage von Wismut- oder Bleischilden wurde im Jahre 1997 eingefiihrt [555]
und bewirkt bei korrekter Anwendung in den Organen eine Reduktion der Organdosis um etwa
20-80% (Tab. 4.7). Erwachsenenradiologie. In der Erwachsenenradiologie entfaltet die
Rohrenstrommodulation hinsichtlich der zu erzielenden Dosisreduktion ihre grofite Wirkung
und vermag dort insbesondere die durch Anwendung von Wismut-Mamma-Abschirmungen zu
erzielenden Dosisreduktionen zu iibertreffen [546, 686]; die organbasierte Dosismodulation
bewirkt hier einen der Wismut-Abschirmung vergleichbaren Effekt [688, 696, 697]. Somit sind
in der Erwachsenenradiologie Rohrenstrommodulation und organbasierte Dosismodulation als
wirksame Alternativen zu den aus bildverarbeitungstechnischen Griinden zweifelhaften Ab-
schirmungsmalnahmen anzusprechen. Kinderradiologie. Nicht nur in der pédiatrischen Ra-
diologie wird der Einsatz von Abschirmungsmafinahmen hdchst kontrovers diskutiert [560,
1071]. Grundsétzlich steht der Kinderradiologie die Rohrenstrommodulation aufgrund ihrer
anthropometriebedingt deutlich herabgesetzten Effizienz bei Kindern nicht als ernsthafte
Alternative zu anderen Dosisreduktionsmalinahmen zur Verfiigung [1087, 1098]; so bewirkt
beispielsweise geméfl Phantommessungen die R6hrenstrommodulation keine hohere Dosisre-
duktion als die alleinige Verwendung von Mamma-Schutzschilden [1103]. Aus diesem Grunde
wird hier die Anwendung organspezifischer AbschirmungsmafBnahmen empfohlen [1070],
zumal die Schonung oberflichennah lokalisierter Organe und Gewebe allein durch Abschir-
mungsmaflnahmen wirksam zu erzielen ist [1072]. Insbesondere ist bei péddiatrischen CT-
Untersuchungen des Schidels der Schutz der Augenlinse von ganz erheblicher Bedeutung, da
Kinder nicht nur am Beginn ihrer Strahlenexpositionsgeschichte stehen, sondern auch bei ent-
sprechenden Indikationen wiederholten Schidel-CT-Untersuchungen unterzogen werden und
hierbei kumulative Linsendosen von bis zu 256 mSv erhalten kénnen [1028]; allerdings ist bei
der Verwendung von Augenschilden deren korrekte Positionierung zur Minimierung von Bild-
artefakten bzw. Erfahrung in der Interpretation von Bildartefakten von Wichtigkeit [1075].
Noch effektiver kann eine Reduktion der Augenlinsendosis durch eine Entfernung der Augen-
linse aus dem Nutzstrahlenbiindel mittels Kippung der Gantry erreicht werden [697]. Vom
Standpunkt der Bildverarbeitung jedoch wird von der Anwendung von Abschirmungsmal-
nahmen dringend abgeraten [1071], da die erwiinschte deutliche Verringerung der Strahlen-
exposition oberflachennah lokalisierter Organe und Gewebe vor allem bei Kindern aus strah-
lengeometrischen Griinden gleichzeitig mit einer ebensolchen der bildgebenden Dosis und da-
mit der Bildqualitit einhergeht [1071]. Dies ist vor allem bei simultaner Verwendung der R6h-
renstrommodulation [1103] der Fall, bei der besonderes Augenmerk auf die Anfertigung eines
nativen Topogramms vor Anbringung der physikalischen Abschirmung zu richten ist [1088].
Sehr wahrscheinlich ist die Wirkung von AbschirmungsmaBnahmen und Roéhrenstrom-
modulationstechniken auf Bildqualitit und Strahlendosis als Synergieeffekt aufzufassen und
entsprechend zu behandeln [1072]. Vielversprechend scheint in diesem Zusammenhang ins-
besondere die Kombination aus organbasierter Dosismodulation (OBDM) und lokalen Ab-
schirmungsmafnahmen.
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Tab. 4.7. Dosisreduktion durch Wismut- und Bleiabschirmungen bei Standard-Protokollen.

Organ Dosisreduktion um
Schadel Hals Thorax Abdomen Becken Cardio-CTA /
Pulmonal-
CTA
Augen- 11% [550] 12% [683]
linse 11% [685] 50% [649]
16% [561]
25% [697]*
27% [549]
33% [1074]*
34% [680]*
35%[1073]*
38% [557]
40% [551]
44% [562]
45% [10707*
50% [559]
53% [556]
Schild- 13% [545]* 15% [685] 2% [1102] 24% [563]
driise 13% [1070]* 26% [549]
15% [561] 28% [683]*
23% [552] 31% [568]
33% [563] 33% [686]*
45% [543] 36% [554]
51% [562] 50% [649]
Mam- 57% [544] 13% [545]* 53% [563] 26% [547]*
ma 76% [543] 20% [561] 339% [548]
92% [563] 20% [1103] 37% [566]
23% [685] 42% [631]*
26% [1102] 46% [481]
28% [568] 49% [557]
29% [1069]
30% [546]
30% [549]
33% [548]
34% [554]
37% [679]
47% [688]
Lunge 53% [563] 7% [1069] 9% [563] 16% [631]
9% [1102]
15% [549]
Testes 72% [558] 82% [563] 93% [564]
83% [563] 87% [553]
95% [552]
96% [550]
RKM 36% [563] 15% [686]* 5% [563] 7% [563]

* = Zusammenfassung mehrerer Zahlenwerte innerhalb einer Studie zu einem Mittelwert.

Tab. 4.8. Vor- und Nachteile physikalischer Abschirmungsmafinahmen [1076].

Vorteile.

= Gute Steuerbarkeit von Dosis und Bildqualitét
= Einfache Handhabung
= Subjektive Wahrnehmung von Sicherheit durch den Patienten

Nachteile.

» Uberexposition bei fehlerhafter Platzierung
= Verfilschung der Hounsfield-Einheiten

= Komplexe Interaktion mit einer ggf. zugeschalteten Réhrenstrommodulation
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Die Vor- und Nachteile physikalischer Abschirmungsmafinahmen wurden in Tab. 4.8 zusam-
mengefasst [1076].
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Abb. 4.10: Dosisreduktion bei verschiedenen CT-Protokollen durch Anwendung physikalischer Abschirmungen
bei verschiedenen Referenzorganen. Die Daten wurden Tab. 4.7 entnommen. Die zu erzielende Dosisreduktion
betrdgt demnach weitgehend unabhingig vom CT-Protokoll und vom Referenzorgan im Median etwa 30%, bei
Abdomenprotokollen fiir die Testes im Median etwa 95%.

4.1.4.9. Organbasierte Rohrenstrommodulation (organbasierte Dosismodulation) [94,
257, 258]

Die organ-basierte Rohrenstrommodulation (organ-based tube current modulation, OBTCM)
bzw. organ-basierte Dosismodulation (OBDM) erlaubt durch die sektorielle Variation des R6h-
renstromes in der Transversalebene des Patienten vor allem die Verminderung der Strahlenex-
position oberfliachlich lokalisierter Organe wie der Augenlinse, der Schilddriise und der Mam-
ma (Tab. 4.9); hierbei ist eine Reduktion der Organdosis um bis zu 47% [680, 688, 697] bzw.
eine Reduktion der effektiven Dosis um bis zu 16% mdoglich [689, 691, 692, 693]. Wenn auch
bei bestimmten Untersuchungsprotokollen ein Einfluss auf die effektive Dosis nicht nachweis-
bar ist, bewirkt die OBDM dennoch eine Reduktion der lokalen Organdosen ohne Beeintréch-
tigung der Bildqualitét [694]. Die OBDM kann daher als sinnvolle Alternative eingesetzt wer-
den, um eine Abschirmung der Augenlinsen bei der Schiadel-CT weitgehend [680, 697] und
der Mammae bei der Thorax-CT fast vollstindig zu ersetzen [679, 688, 696]. Die OBDM stellt
insbesondere eine sinnvolle Alternative zu der bei padiatrischen Untersuchungsprotokollen
aufgrund des eher kreisformigen Korperquerschnittes von Kindern weniger wirksamen angula-
ren Rohrenstrommodulation dar [1105] und kann bei padiatrischen Protokollen ohne nennens-
werten Verlust an Bildqualitdt angewandt werden [1104]. Allerdings kann die Schonung ein-
zelner strahlenempfindlicher Organe und Gewebe durch die OBDM aufgrund der kompensati-
ven Erhohung des mittleren Rohrenstromes mit einer Erhdhung der effektiven Dosis einher-
gehen [690].
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Tab. 4.9. Dosisreduktion durch OBDM.

Organ Dosisreduktion um
Augenlinse 19% [690]
Gehirn 11% [690]
Mamma 31% [690]
Lunge 21% [690]
Herz 24% [690]
Wirbelsdule 6% [690]

4.1.5. CTDlvo1, Dosis-Lingen-Produkte und Effektivdosen bei diversen Scanprotokollen
Einen Uberblick iiber die gemif Literaturstudie zum Berichtszeitpunkt bei den CT-Untersu-
chungen des Schédels, des Thorax und des Abdomens sowie bei der Pulmonalis-CTA appli-
zierten CTDIyo1, Dosis-Langen-Produkte und Effektivdosen zeigen die Abb. 4.11.
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Abb. 4.11.a: CTDIva des Patienten in Abhiingigkeit von der Art der CT-Untersuchung und der verwen-
deten CT-Technik. Im Gegensatz zu Abb. 4.9.a wurden simtliche R6hrenspannungsstufen subsumiert. In natur-
gemiBer Ubereinstimmung zu Abb. 4.9.a zeigt sich bei den CT-Untersuchungen des Thorax und des Abdomens
eine statistisch signifikante Verminderung der effektiven Dosis bei kombinierter Verwendung der Rohrenstrom-
modulation und der iterativen Rekonstruktion (rot gekennzeichneter p-Wert). Die geringe Zahl der Referenzen
fiir die CT-Untersuchung des Schédels und die Pulmonalis-CTA 148t keine signifikanten Aussagen zu.
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Abb. 4.11.b: Dosis-Lingen-Produkt des Patienten in Abhéingigkeit von der Art der CT-Untersuchung und
der verwendeten CT-Technik. Im Gegensatz zu Abb. 4.9.b wurden simtliche Réhrenspannungsstufen sub-
sumiert. In naturgemiBer Ubereinstimmung zu Abb. 4.9.b zeigt sich bei den CT-Untersuchungen des Thorax und
des Abdomens eine statistisch signifikante Verminderung der effektiven Dosis bei kombinierter Verwendung der
Rohrenstrommodulation und der iterativen Rekonstruktion (rot gekennzeichneter p-Wert). Die geringe Zahl der
Referenzen fiir die CT-Untersuchung des Schédels und die Pulmonalis-CTA ldsst keine signifikanten Aussagen
Zu.

In Abb. 4.11.a, Abb.4.11.b bzw. Abb. 4.11.c wurden im Gegensatz zu den sehr dhnlichen
Abb. 4.9.a, Abb.4.9.b bzw. Abb. 4.9.c — einer besseren Vergleichbarkeit mit Abb. 4.24 bzw.
Abb. 4.27 wegen — die CT-Pulmonalis-Angiographie in die Abbildung mit aufgenommen, Fal-
le mit ausschlieBlicher Verwendung iterativer Verfahren ohne gleichzeitige Rohrenstrommo-
dulation ausgeschlossen und beliebige Rohrenspannungen subsumiert. Tab. 4.10.a, Tab.
4.10.b und Tab. 4.10.c zeigen die statistische Verteilung der Werte fiir den CTDlyo1, das DLP
und die effektive Dosis bei den einzelnen CT-Techniken; in Tab. 4.11.a, Tab. 4.11.b und Tab.
4.11.c wurden die durch die einzelnen CT-Techniken gegeniiber der Konstantstromtechnik
bewirkte Reduktion des medianen CTDIyo1, des medianen DLP und der medianen effektiven
Dosis aufgefiihrt, wobei statistisch signifikante Werte kursiv und fett hervorgehoben wurden.
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Abb. 4.11.c: Effektive Dosis des Patienten in Abhéingigkeit von der Art der CT-Untersuchung und der
verwendeten CT-Technik. Im Gegensatz zu Abb. 4.9.c wurden sdmtliche R6hrenspannungsstufen subsumiert.
In naturgemiBer Ubereinstimmung zu Abb. 4.9.¢ zeigt sich bei den CT-Untersuchungen des Thorax und des
Abdomens eine statistisch signifikante Verminderung der effektiven Dosis bei kombinierter Verwendung der
Rohrenstrommodulation und der iterativen Rekonstruktion (rot gekennzeichneter p-Wert). Die geringe Zahl der
Referenzen fiir die Pulmonalis-CTA lisst keine signifikanten Aussagen zu.

Wie erkennbar ist, bewirkt demnach die kombinierte Anwendung der R6hrenstrommodulation
und iterativer Bildrekonstruktionsverfahren eine signifikante Reduktion des Dosisbedarfs von
CT-Untersuchungen des Schidels, des Thorax und des Abdomens; bei der CT-Pulmonalis-
Angiographie konnte aufgrund der vergleichsweise geringen Anzahl von Literaturstellen kein
signifikanter Zusammenhang zwischen CT-Technik und Dosisbedarf gefunden werden. Die
Rohrenstrommodulation alleine scheint demgegeniiber bei den meisten Protokollen keine
signifikante Dosisreduktion zu bewirken. Es sei an dieser Stelle bereits bemerkt, dass dieses
Ergebnis somit in Gegensatz zu den Ergebnissen der retrospektiven Querschnittsstudie steht,
gemall welcher im Wesentlichen die Rohrenstrommodulation zu einer signifikanten Dosis-
reduktion beitrug (Abschnitt 4.2.6.3).
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4.1.6. Zusammenfassung /94, 257, 258/

Die Strahlenexposition des Patienten in der Computertomographie setzt sich aus dem Dosis-
bedarf einer CT-Untersuchung und der Exposition des Patienten zusammen. Eine Reduktion
des Dosisbedarfs ist durch eine untersuchungs- und patientenadaptierte Herabsetzung der Roh-
renspannung sowie durch eine Minimierung des effektiven Rohrenstromes durch Rohren-
strommodulation bzw. Anwendung iterativer Bildverarbeitungsalgorithmen moglich.

Tab. 4.10.a: Mittelwert und Perzentilenwerte des CTDIvo in Abhiingigkeit von der CT-Untersuchung und
von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungsprotokollen und Dosis-
reduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken der Réhrenstrommo-
dulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen eine deutliche
Reduktion des Volumen-CTDI.

- CTDIva (mGYy)
2
o o
e z P ilen (%
g Dosisreduktionstechnik %‘3 £ % g erzentilen (%)
=
& =|E|£|E
S| E| | %
8| 5 =
z S S | < 10 (25|50 | 75 | 90
Konstantstromtechnik 24 | 14| 52| 92| 22| 35| 58| 63 | 82
>
=
‘2 | Roéhrenstrommodulation 11 1] 27| 8109 2 51 53] 80
9
[ Rghrenstrommodulation + iterative 0 i i ) ) ) i i )
Rekonstruktion
Konstantstromtechnik 33 1] 10| 26 1 6 91 16 | 21
><
[+
E Rohrenstrommodulation 33 1 91 21 3 6 71 13| 17
= - - s -
Rohrenstrommodulatlon+1terat1ve 14 1 4 11 1 5 3 6| 11
Rekonstruktion
= Konstantstromtechnik 30 10| 16| 27| 10| 12| 15| 20| 22
%)
_§ Rohrenstrommodulation 49 6| 12| 37 7 91 11| 16| 21
= - - -
< Rohrenstrommodulatlon+1terat1ve 23 | 7 16 ) 3 311l 14
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Tab. 4.11.a: Reduktion des medianen CTDIva durch verschiedene CT-Techniken vs. Konstantstromtech-
nik. Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktionsfaktoren. Ein Faktor = 0
bedeutet keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer Signifikanz.

Reduktionsfaktor (%)
CT-Technik Schiidel Thorax Abdomen CTA-
Pulmonalis

Konstantstromtechnik 0 0 0 0

Rohrenstrommodulation 90 25 28 13
Roh t lation +

0 rer.15 rommodula 19n ) 68 50 93

Iterative Rekonstruktion
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Eine Verminderung der Strahlenexposition strahlenempfindlicher Organe und Gewebe kann
bei gegebenem Dosisbedarf einer CT-Untersuchung patientenseitig durch physikalische Ab-
schirmungsmalBnahmen bzw. organbasierte Rohrenstrommodulation erfolgen. In praxi erfolgt
der Strahlenschutz des Patientendurch eine Kombination dieser MaBBnahmen.

Tab. 4.10.b: Mittelwert und Perzentilenwerte des Dosis-Lingen-Produktes in Abhiingigkeit von der CT-
Untersuchung und von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungs-
protokollen und Dosisreduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken
der Rohrenstrommodulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen
eine deutliche Reduktion des Dosis-Léngen-Produktes.

: Dosis-Lingen-Produkt (mGy cm)
p— ‘E
E z P ilen (%
g Dosisreduktionstechnik g g | &5 | E erzentilen (%)
=
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gl s = = 10 | 25 | 50 75 90
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>
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9
197} " - - -
Rohrenstrommodulatlon + iterative > | 491 | 491 | 491 i ) ) i )
Rekonstruktion
Konstantstromtechnik 41 8| 311 894 | 42 | 144 | 296 386 628
><
«
E Rohrenstrommodulation 34 16 | 322 | 856 | 144 | 166 | 251 480 | 682
i " p . ;
Rohrenstrommodulatlon+1terat1ve 19 3 | 174 633 | a4l 105 190 608
Rekonstruktion
= Konstantstromtechnik 18 | 350 | 634 | 1054 | 350 | 471 | 565 820 | 1050
%)
g Rohrenstrommodulation 32 1 126 | 475 845 | 170 | 348 | 447 627 800
-Q . . .
< Rohrenstrommodulatlon+1terat1ve s 1100 | 175 254 1119 142 | 250 )
Rekonstruktion
£ | Konstantstromtechnik 14 | 170 | 328 | 737 | 154 | 211 | 252 | 400 | 670
=
=]
E Rohrenstrommodulation 8 81 | 317 839 - 127 | 228 534 -
- - —
= Rohrenstrommodulation + iterative
© | Rekonstruktion 2| 20142 262 ] ) ) ) )

Tab. 4.11.b: Reduktion des medianen Dosis-Lingen-Produktes durch verschiedene CT-Techniken vs.
Konstantstromtechnik. Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktionsfakto-
ren. Ein Faktor = 0 bedeutet keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer
Signifikanz.

Reduktionsfaktor (%)

_ i TA-
CT-Technik Schidel Thorax Abdomen ¢ .
Pulmonalis
Konstantstromtechnik 0 0 0 0
Rohrenstrommodulation 23 15 21 10

Rohrenstrommodulation +
Iterative Rekonstruktion
*) Aufgrund der zu geringen Fallzahl wurden hier statt der Mediane Mittelwerte zugrunde gelegt.

33%* 65 75 57*
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Wie anhand der Literaturstudie gezeigt werden konnte, vermogen die EinzelmafBnahmen je-
weils eine nicht unbetrichtliche Dosisreduktion zu bewirken. Tab. 4.12 zeigt einen Uberblick
iiber das im Rahmen dieser Literaturstudie gefundene Dosisreduktionspotential der verschie-
denen Dosisreduktionsverfahren; die Werte stehen in sehr guter Ubereinstimmung mit der der
Literatur entnommenen Tab. 2.3.

Tab. 4.10.c: Mittelwert und Perzentilenwerte der effektiven Dosis in Abhiingigkeit von der CT-Untersu-
chung und von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungsprotokollen
und Dosisreduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken der Réhren-
strommodulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen eine deutliche
Reduktion der effektiven Dosis.
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Tab. 4.11.c: Reduktion der medianen effektiven Dosis durch verschiedene CT-Techniken vs. Konstant-
stromtechnik. Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktionsfaktoren. Ein
Faktor = 0 bedeutet keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer Signifikanz.

Reduktionsfaktor (%)
- i TA-
CT-Technik Schiidel Thorax Abdomen CTA-
Pulmonalis

Konstantstromtechnik 0 0 0 0

Rohrenstrommodulation - 8 23 76
Roh t lation +

W) rer.15 rommodula 19n 31 74 53 77

Iterative Rekonstruktion
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Allerdings geht jede einzelne dieser MalBlnahmen bei sonst unveridnderten Expositionsbedin-
gungen mit einer Beeinflussung der Bildqualitit einher. Aus diesem Grunde konnen die ein-
zelnen DosisreduktionsmaBBnahmen nur dann klinisch sinnvoll eingesetzt werden, wenn eine
hierdurch ggf. bedingte Verschlechterung der priméren Bildqualitédt durch entsprechende Bild-
verarbeitungsalgorithmen kompensiert werden oder im Sinne der klinischen Fragestellung in
Kauf genommen werden kann.

Bei der Kombination der Einzelmalinahmen jedoch zeigen sich neben erwiinschten Sy-
nergieeffekten auch kontraproduktive Auswirkungen entweder auf die Strahlenexposition des
Patienten oder auf die Bildqualitét.

So ist eine Reduktion der Rohrenspannung nur dann sinnvoll, wenn der Diameter des
Patienten dies zuldsst, da sonst ausreichende Bildqualitit bei moderater Strahlendosis nicht
erzielt werden kann. Wéhrend die Rohrenstrommodulation vor allem auf isozentrumsnah loka-
lisierte Organe und Gewebe protektiv wirkt, kann eine effiziente Dosisreduktion in oberfla-
chennah lokalisierten Organen und Geweben meist nur durch zusétzliche physikalische Ab-
schirmungsmafBinahmen oder durch zusétzlichen Einsatz der organbasierten Rohrenstrom-
modulation erreicht werden. Allerdings setzt der Einsatz der R6hrenstrommodulation eine sehr
sorgféltige Positionierung des Patienten voraus, da bereits bei geringfiigig exzentrischer Lage-
rung des Patienten dosisrelevante Fehlsteuerungen auftreten konnen. Aufgrund ihrer ver-
gleichsweise geringen Effizienz bei Kindern wird in der pédiatrischen Radiologie oftmals von
einer Anwendung der Rohrenstrommodulation abgeraten und stattdessen eine besonders um-
sichtige manuelle Verringerung des Rohrenstromes empfohlen. Ebenso bleibt in der pédiatri-
schen Radiologie der Einsatz der AbschirmungsmafBnahmen aufgrund der bildverarbeitungs-
technischen Auswirkungen umstritten.

Iterative Bildrekonstruktionsverfahren stellen hingegen aus dosimetrischer Sicht eine
vielversprechende Ergdnzung zu den anderen Dosisreduktionsverfahren dar. Die geringen
Nachteile der iterativen Algorithmen scheinen eher technologischer Natur und konnten im Lau-
fe der nichsten Jahre liberwunden werden.

Insgesamt stellt die simultane Abstimmung der Dosisreduktionstechniken aufeinander
einen multimodalen und somit hochkomplexen Prozess dar [z. B. 541]. Erschwerend wirkt sich
hierbei die noch mangelhafte Translationalitit zwischen mathematischer Grundlagenforschung
und der klinischen Anwendung aus [7].

Tab. 4.12. Wirkung der einzelnen Dosisreduktionsmafinahmen.

Verfahren Protokoll Dosisreduktionspotential
Intervall Mittelwert
AbschirmungsmafBnahmen * Standard 10 - 50% 30%
Herabsetzung der Rohrenspannung um 20 kV Standard 10 —70% 30%
Herabsetzung der Rohrenspannung um 20 kV CT-Cardangiographie 25 - 60% 40%
Herabsetzung der Rohrenspannung um 40 kV Standard 15 -85% 50%
EKG-Steuerung retrospektiv vs. ohne CT-Cardangiographie 15-95% 50%
EKG-Steuerung prospektiv vs. retrospektiv CT-Cardangiographie 15-75% 35%
Rohrenstrommodulation Standard 10 — 60% 25%
Iterative Rekonstruktion Standard 5-65% 35%
High-Pitch-Verfahren Standard 20 -35% 40%
* Das Dosisreduktionspotential der Abschirmungsmafinahmen bezieht sich auf die Organdosen in ober-
flichennah lokalisierten Organen und Geweben.




4.2. Retrospektive Querschnittsstudie /257, 258/

4.2.1. Grundlegende Eigenschaften des Datenbestandes /257, 258/

4.2.1.1. Ausgewogenheit der teilnehmenden Einrichtungen /257, 258/

An der Querschnittsstudie nahmen insgesamt 41 radiologische Einrichtungen mit insgesamt
280 Rontgenuntersuchungsdatensitzen teil (Tab. 4.13). Aufgrund der nicht rein willkiirlich
erfolgten Vorauswahl der potenziellen Teilnehmer beziiglich der Organisationsstruktur bzw.
dem zu erwartenden Patientendurchsatz und der technischen Standards der radiologischen
Institutionen konnte eine weitgehende Ausgewogenheit zwischen radiologischen Praxen und
klinikassoziierten radiologischen Zentren erzielt werden. Wie Tab. 4.13 zeigt, waren rund 50%
der teilnehmenden radiologischen Einrichtungen Universitdtskliniken sowie Krankenhduser
(Kreiskrankenhduser und kommunale Krankenhéuser) und rund 50% Praxisverbiinde, Gemein-
schaftspraxen und Einzelpraxen.

Tab. 4.13: Teilnehmende radiologische Einrichtungen.

Radiologische Einrichtung Anzahl der Einrichtungen Anzahl der CT-Untersuchungen
absolut relativ (%) absolut relativ (%)
Universititskliniken 4 10 33 12
Krankenhduser 16 39 98 35
Praxisverbiinde 4 10 59 21
Praxen 17 41 90 32
Summe 41 100 280 100

4.2.1.2. Verfiigbarkeit der in der Studie zu beriicksichtigenden CT-Techniken /257, 258/
Wie im Laufe der Datenakquisition festgestellt werden konnte, war die Verfligbarkeit vieler
der a priori gemél Tab. 3.2 zu betrachtenden Untersuchungsprotokolle und CT-Techniken de
facto eingeschrinkt.

So wurden péadiatrische CT-Untersuchungen offensichtlich fast ausschlieBlich in radio-
logischen Zentren in Kliniken und Universitétskliniken, kaum aber in radiologischen Praxen
durchgefiihrt, welch letztere im Ubrigen nur in Ausnahmefillen iiber ausgebildete Kinderra-
diologen verfiigten. Aus diesem Grunde konnte lediglich eine geringe Anzahl von 20 Bildda-
tensédtzen zu padiatrischen CT-Untersuchungen des Thorax erhoben werden, welche daher
nicht in die Studie einbezogen wurden. Zudem wurden weitere 5 Datensitze zu Becken-Bein-
CT-Angiographien verworfen. Auch wurde aufgrund ihrer offensichtlich zum Zeitpunkt der
Studie noch vergleichsweise geringen Verbreitung die Technik der Dual-Energy-CT in der
Studie nicht beriicksichtigt.

In die Studie wurden somit CT-Untersuchungen des Schidels, des Thorax, des Abdo-
mens sowie CT-Angiographien der A. pulmonalis und der Aorta aufgenommen, wie sie unter
Konstantstromtechnik, unter Réhrenstrommodulation sowie unter Rohrenstrommodulation in
Kombination mit iterativen Bildrekonstruktionsverfahren durchgefiihrt wurden.

4.2.1.3. Abstimmung der Geriiteeinstellungen auf die CT-Protokolle /257, 258]

Ein wesentliches Problem stellte bei der Akquisition die Erfassung der von den Geréteherstel-
lern vor Ort vorgenommenen Geriteeinstellungen bzw. deren Dokumentation durch den
Gerétehersteller in den RIS-PACS-Systemen dar. So konnte in Einzelféllen selbst vor Ort bei
Existenz mehrerer CT-Scanner anhand der Dokumentation der CT-Untersuchungen in den
RIS-PACS-Systemen nicht eindeutig geklirt werden, wann Dosismodulationstechniken oder
iterative Verfahren bei einzelnen CT-Untersuchungen zur Anwendung gelangten. In einem
Einzelfall fiihrte die Datenakquisition zur Aufdeckung einer von der Applikationsassistenz der
Herstellerfirma vorgenommenen fehlerhaften Einstellung der Rohrenstrommodulation im Rah-
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men einer zeitlich kurz vorher erfolgten Neuinstallation eines CT-Scanners. Wie im iibrigen
eine Analyse der DICOM-Daten zeigte, wird der hochstandardisierte DICOM-Standard von
den Geriteherstellern offensichtlich nicht ausgeschopft und die gegebenen Moglichkeiten zu
einer eindeutigen Dokumentation der Expositionsmodalitdten nicht oder nicht in standardisier-
ter Weise genutzt.

4.2.1.4. Standorte der teilnehmenden radiologischen Einrichtungen /257, 258/

Den Teilnehmern der Studie wurde groBtmdogliche Diskretion zugesichert. Aus diesem Grunde
werden im Folgenden die Standorte der radiologischen Einrichtungen lediglich durch die
zugehorigen Landkreise repriasentiert (Abb. 4.12, Tab. 4.14). Zur Wahrung groftmdglicher
Neutralitdt wurden Daten der die Studie durchfiihrenden Institution, des vormaligen Institutes
fiir klinische Radiologie!’, Klinikum der Universitit Miinchen, nicht in die Studie einbezogen.

Tab. 4.14. Standorte der teilnehmenden radiologischen Einrichtungen nach Landkreisen. Von den insge-
samt 305 akquirierten Bilddatensitzen mussten 25 Bilddatensétze aus verschiedenen Griinden verworfen werden
(siche Text).

Anzahl der

Ort / Landkreis -

Einrichtungen Abteil‘::f:: und CT-[IJ)I;tteel:sl;ictlzl:ngs- Bildserien
Amberg 1 1 8 12
Augsburg 2 4 16 21
Bad Kissingen 1 1 7 10
Berchtesgadener Land 1 |
Cham 1 | 5 8
Ebersberg 1 | 10 14
Erding 1 1 4
Freising 1 1 4 7
Firstenfeldbruck 3 3 21 22
Garmisch-Partenkirchen 1 1 5 9
Hamburg 8 13 51 104
Kempten 1 1 3 3
Mannheim 1 1 17 27
Miinchen 9 13 66 123
Niirnberg 1 1 5 6
Regensburg 3 5 26 48
Starnberg 2 2 11 8
Traunstein 1 1 13
Tiibingen 1 1 18
Weilheim-Schongau 1 1 5
Summe 41 54 280 465
Verworfene Datensitze - - 25 -
Gesamtsumme 41 54 305 -

17 Ehemals: Institut fiir klinische Radiologie, Direktor: Prof. Dr. med. Dr. h.c. Maximilian Reiser; nunmehr: Klinik
und Poliklinik fiir Radiologie, Direktor: Prof. Dr. med. Jens Ricke.
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Abb. 4.12: Ungefihre Standorte der teilnehmenden radiologischen Einrichtungen (Karte: Verwaltungskarte
der Bundesrepublik Deutschland, Bundesamt fiir Kartographie und Geodasie). Die Schwerpunkte der Studie lagen

in Bayern und Hamburg.
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4.2.2. Scanner-Fabrikate /257, 258]

In der liberwiegenden Anzahl der Fille kamen CT-Scanner der Firmen General Electric,
Philips, Siemens und Toshiba zum Einsatz. Erwartungsgemal verfligten klinikassoziierte ra-
diologische Einrichtungen tendenziell iiber modernere CT-Gerite als radiologische Praxen.
Eine Ubersicht iiber die eingesetzten CT-Scanner-Typen bietet Tab. 4.15. Wie aus Tab. 4.15,
Abb. 4.13 und Abb. 4.14 ersichtlich ist, wurden in den meisten radiologischen Einrichtungen
16-Zeilen-Gerite und 64-Zeilen-Gerite verwendet; moderne 256-Zeilen-Geréte wurden in den
teilnehmenden radiologischen Einzelpraxen nicht betrieben. Entsprechend zeigt eine Be-
trachtung der Mittelwerte der Zeilenzahl der in den Einrichtungen vorgefundenen CT-Scanner
eine Zunahme der Zeilenzahl von der Praxis (28 Zeilen) iiber den Praxisverbund (64 Zeilen)
und das Krankenhaus (74 Zeilen) bis zur Universititsklinik (174 Zeilen) wohl aufgrund der in
dieser Reihenfolge zunehmend gehobeneren Geréteausstattung (Abb. 4.13).

Tab. 4.15. In den teilnehmenden radiologischen Einrichtungen eingesetzte Scannerfabrikate.

Art der Einrichtung
Scannerfabrikat ZV | Praxis | Praxis- | Kranken- | Universitits- Hiiufigkeit
verbund haus klinik absolut |relativ (%)
= |Brightspeed 16 1
& [Lightspeed plus 4 1 4 6
© OptimaCT660 | 16 1 1
Brilliance 16 16 2
2 Brilliance 40 40 1
= [Brilliance 64 64 1 2 9 14
A& iCT 256 256 1
Ingenuity CT 128 2
2
= MX 16 16 1 1 2 3
Z
&
Emotion Duo 2 1
Emotion 6 6 1
Emotion 16 16 7 2 1
Sensation 16 16 2 1 2
Sensation 64 64 1 2
§ Sensation Open 40 2
E Somatom 41 65
7 [Definition AS, 64 3 4 4
Definition AS+
Somatom
IDefinition Flash 256 ! 3 2
Somatom Force 256 1
'Volume Zoom 4 1
|Activion 16 16 1
2 |Alexion 16 2
< [Aquilion 16 2 7 12
ﬁ IAquilion Prime 80 1
|Asteion 4 1
Summe - 24 9 24 6 63 100
Legende:
(1) Z = Zeilenzahl
(@ GE = General Electric
® PNMS = Philips-Neusoft Medical Systems
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Abb. 4.13: Absolute Hiufigkeitsverteilung der CT-Ger:iite der vier hiiufigsten Hersteller nach der Zeilen-
zahl. Vorwiegend wurden 16- und 64-Zeilen-Geréte betrieben.
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Abb. 4.14: Relative Hiiufigkeitsverteilung der CT-Gerite in den teilnehmenden radiologischen Einrich-
tungen nach der Zeilenzahl. 16- und 64-Zeilen-Geréte wurden vorwiegend in radiologischen Einzelpraxen,
Praxisverbiinden und Krankenhdusern betrieben; moderne 256-Zeilen-Gerdte wurden in radiologischen Ein-
zelpraxen nicht vorgefunden. Der Mittelwert der Zeilenzahl der Gerdte nimmt von der Praxis (28 Zeilen) {iber
den Praxisverbund (64 Zeilen) und das Krankenhaus (74 Zeilen) bis zur Universititsklinik (174 Zeilen) zu.
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4.2.3. CT-Protokolle und CT-Techniken /257, 258]

Wie aus Abb. 4.15 hervorgeht, weist der erhobene Datenbestand eine weitgehende Ausgewo-
genheit beziiglich der relativen Anzahl von CT-Untersuchungen des Schidels, des Thorax, des
Abdomens sowie der subsumierten CT-Angiographie-Techniken auf.
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Abb. 4.15: Absolute Hiiufigkeitsverteilung der in den teilnehmenden radiologischen Einrichtungen akqui-
rierten CT-Untersuchungen. Bei Subsumierung der CT-Angiographie-Techniken liegt in guter Ndherung eine
Gleichverteilung der CT-Untersuchungen vor.

Abb. 4.16 in Verbindung mit Tab. 4.16 bzw. Abb. 4.17 in Verbindung mit Tab. 4.17 stellen
in Form einer Matrix bzw. Balkengraphik die absoluten und relativen Haufigkeitsverteilungen
der unterschiedlichen CT-Untersuchungstechniken in Abhédngigkeit vom CT-Protokoll bzw. in
Abhéngigkeit von der Art der radiologischen Einrichtung dar, Tab. 4.17 mit Tab. 4.21 diffe-
renzieren nochmals nach der Art der Untersuchungsprotokolls.

Demnach wurde die Konstantstromtechnik vornehmlich bei der CT-Untersuchung des
Schédels und die Rohrenstrommodulation hauptsichlich bei Untersuchungen des Korperstam-
mes eingesetzt, wihrend die Rohrenstrommodulation in Kombination mit iterativen Bild-
rekonstruktionsverfahren vorwiegend bei den Abdomentechniken angewandt wurde (Abb.
4.16, Tab. 4.17). Hierbei wurde die Konstantstromtechnik in 22%, die Rohrenstrommodulation
in 49%, die Konstantstromtechnik in Kombination mit iterativen Bildrekonstruktionsverfahren
in 3% und die Rohrenstrommodulation in Kombination mit iterativen Bildrekonstruktionsver-
fahren in 26% der radiologischen Einrichtungen angewandt (Tab. 4.17). Die anndhernde
Gleichverteilung der angewandten Untersuchungsprotokolle in den radiologischen Einrichtun-
gen lief3 eine ndhere Betrachtung der relativen Anwendungshéufigkeit der verschiedenen CT-
Techniken in den radiologischen Einrichtungen zu: Wahrend die Technik der R6hrenstrommo-
dulation weitgehend unabhéngig von der Art der radiologischen Einrichtung flichendeckende
Anwendung fand, wurde die Konstantstromtechnik vergleichsweise hédufig in radiologischen
Praxen und die Kombination aus Rohrenstrommodulation und iterativer Rekonstruktion
vergleichsweise hdufig an Krankenhdusern angewandt; an den Universitétskliniken hingegen
war keine Praferenz einer der drei CT-Techniken feststellbar (Abb. 4.17 und Tab. 4.17).
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Tab. 4.16: Verteilung der CT-Untersuchungstechniken nach CT-Protokollen.
CT-Protokoll Konstant- | Rohrenstrom Iterative Rohrenstrom- Summe
strom- modulation Rekonstruktion modulation +
technik Iterative
Rekonstruktion
Schidel-CCT 39 (14%) 11 (4%) 9 (3%) 8 (3%) 67 (24%)
Thorax 8 (3%) 45 (16%) 1 (0%) 18 (6,5%) | 72 (25,5%)
Abdomen 6 (2%) 50 (18%) 0 (0%) 27 (10%) 83 (30%)
CTA-Pulmonalis 9 (3%) 31 (11 %) 0 (0%) 18 (6,5%) | 58 (20,5%)
und CTA-Aorta
Summe 62 (22%) 137 (49%) 10 (3%) 71 (26%) | 280 (100%)
Tab. 4.17: Verteilung der CT-Untersuchungstechniken nach radiologischen Einrichtungen.
Konstant- Rohrenstrom-
Radiologische strom- Réhrenstrom Iterative modulation + Summe
Einrichtung . modulation Rekonstruktion Iterative
technik .
Rekonstruktion
Universititskliniken 10 (4%) 14 (5%) 1 (0%) 8 (3%) 33 (12%)
Kliniken 18 (6%) 37 (13%) 6 (2%) 37 (13%) 98 (34%)
Praxisverbiinde 9 (3%) 39 (14%) 1 (0%) 10 (4%) 59 (21%)
Praxen 25 (9%) 47 (17%) 2 (1%) 16 (6%) 90 (33%)
Summe 62 (22%) 137 (49%) 10 (3%) 71 (26%) | 280 (100%)

Die Tabellen Tab. 4.18 mit Tab. 4.21 geben die absoluten und relativen Verteilungen der CT-
Untersuchungen des Schidels, des Thorax und des Abdomens sowie der Pulmonalis-Angio-
graphie hinsichtlich der angewandten CT-Techniken und der durchfiihrenden klinisch-radiolo-

gischen Einrichtungen wieder.

Tab. 4.18: Verteilung der CT-Untersuchung des Schédels nach CT-Untersuchungstechniken und radiolo-

gischen Einrichtungen.

. . Konstant- . Rﬁhrenst.rom-
Radiologische strom- Rohrenstrom Iterative modulation + Summe
Einrichtung . modulation Rekonstruktion Iterative

technik .
Rekonstruktion

Universitéitskliniken 4 (6%) 1 (1%) 1 (1%) 0 (0%) 6 (9%)
Kliniken 11 (16%) 2 (3%) 5 (%) 4 (6%) 22 (33%)
Praxisverbiinde 8 (12%) 6 (9%) 1 (2%) 3 (5%) 18 (27%)
Praxen 16 (24%) 2 (3%) 2 (3%) 1 (2%) 21 31%)
Summe 39 (58%) 11 (16%) 9 (13%) 8 (13%) 67 (100%)

Tab. 4.19: Verteilung der CT-Untersuchung des Thorax nach CT-Untersuchungstechniken und radiologi-

schen Einrichtungen.

Konstant- Roéhrenstrom-
Radiologische strom- Roéhrenstrom Iterative modulation + Summe
Einrichtung . modulation Rekonstruktion Iterative

technik .
Rekonstruktion

Universitétskliniken 2 (3%) 4 (6%) 0 (0%) 2 (3%) 8 (12%)
Kliniken 3 (4%) 12 (17%) 1 (1%) 8 (11%) 24 (33%)
Praxisverbiinde 0 (0%) 14 (19%) 0 (0%) 3 (4%) 17 (23%)
Praxen 3 (4%) 15 (21%) 0 (0%) 5 (7%) 23 (32%)
Summe 8 (11%) 45 (63%) 1 (1%) 18 (25%) 72 (100%)
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Tab. 4.20: Verteilung der CT-Untersuchung des Abdomens nach CT-Untersuchungstechniken und radio-

logischen Einrichtungen.

. . Konstant- .. . Rﬁhrenst.rom-
Radiologische strom- Rohrenstrom Iterative modulation + Summe
Einrichtung . modulation Rekonstruktion Iterative

technik .
Rekonstruktion

Universititskliniken 1 (1%) 5 (6%) 0 (0%) 4 (5%) 10 (12%)
Kliniken 2 (2%) 14 (17%) 0 (0%) 13 (16%) 29 (35%)
Praxisverbiinde 0 (0%) 16 (19%) 0 (0%) 3 (4%) 19 (23%)
Praxen 3 (4%) 15 (18%) 0 (0%) 7 (8%) 25 (30%)
Summe 6 (7%) 50 (60%) 0 (0%) 27 (33%) 83 (100%)

Tab. 4.21: Verteilung der CT-Angiographien der Vv. pulmonales und der Aorta nach CT-Untersuchungs-
techniken und radiologischen Einrichtungen.

Konstant- Rohrenstrom-
Radiologische strom- Réhrenstrom Iterative modulation + Summe
Einrichtung . modulation Rekonstruktion Iterative
technik .
Rekonstruktion
Universititskliniken 3 (6%) 4 (7%) 0 (0%) 2 (4%) 9 (17%)
Kliniken 2 (4%) 9 (7%) 0 (0%) 12 (23%) 23 (34%)
Praxisverbiinde 1. (2%) 2 (6%) 0 (0%) 1 (1%) 4 (9%)
Praxen 3 (6%) 16 (28%) 0 (0%) 3 (6%) 22 (40%)
Summe 9 (18%) 31 (48%) 0 (0%) 18 (34%) 58 (100%)
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Abb. 4.16: Relative Haufigkeitsverteilung der CT-Techniken in den teilnehmenden radiologischen Einrich-
tungen nach Art der CT-Untersuchung. NaturgeméB wird die Rohrenstrommodulation vorwiegend bei CT-
Untersuchungen des Korperrumpfes verwendet, wiahrend die Konstantstromtechnik hauptsichlich bei der CT-
Untersuchung des Schédels eingesetzt wird (Tab.4.16).

Die Technik der Iterativen Bildrekonstruktion fand mit einem Anteil von insgesamt 29% an
allen CT-Techniken vergleichsweise selten Anwendung; als Begriindung hierfiir wurde von
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einzelnen Anwendern zum einen der von der konventionellen Bildrekonstruktionstechnik deut-
lich abweichende Bildaspekt und zum anderen die Kostenintensivitét des Verfahrens genannt.
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Abb. 4.17: Relative Haufigkeitsverteilung der CT-Techniken in den teilnehmenden radiologischen Einrich-
tungen nach Art der radiologischen Einrichtung. Die R6hrenstrommodulation zahlt inzwischen zu den tiberall
etablierten CT-Techniken. Die Iterative Rekonstruktion wird demgegeniiber noch keineswegs flaichendeckend
eingesetzt (Tab. 4.17).

4.2.4. Effektiver Diameter der Patienten /257, 258/

Naturgemil besteht ein enger Zusammenhang zwischen dem Durchstrahlungsdurchmesser des
Patienten, den Expositionsparametern wie Rohrenspannung und Réhrenstrom und der Strah-
lendosis sowie der Bildqualitét, wie er in der fiir CT-Untersuchungen ohne Anwendung itera-
tiver Bildrekonstruktionsverfahren giiltigen Formel von Brooks (Formel 2.20) quantifiziert
wird.

Aus diesem Grunde wurde der effektive Diameter (nach Formel 2.22) des untersuchten
Patientenkollektivs fiir jede Art der CT-Untersuchung durch Ausmessung des sagittalen und
des lateralen Diameters auf Hohe der in Tab. 3.5 genannten anatomischen Strukturen ermittelt.
Abb. 4.18 zeigt die effektiven Diameter der Patienten in Abhédngigkeit von der Art der CT-
Untersuchung und der verwendeten CT-Technik. Entgegen der Erwartung waren die medianen
effektiven Diameter bei den einzelnen Untersuchungstechniken tendenziell nicht gleich ver-
teilt; die hochsten medianen effektiven Diameter wiesen Patienten auf, die unter Konstant-
stromtechnik untersucht wurden, die niedrigsten medianen effektiven Diameter Patienten, de-
ren Untersuchung unter R6hrenstrommodulation mit iterativer Rekonstruktion erfolgte. Aller-
dings wurde lediglich bei der CT-Untersuchung des Abdomens eine signifikante Abhéngigkeit
des effektiven Diameters von der CT-Technik festgestellt. Da fiir eine derartige Abhéngigkeit
keine Evidenz bestehen diirfte bzw. keine nachvollziehbaren Griinde fiir eine Bevorzugung der
Konstantstromtechnik bei adipdsen Patienten vorliegen diirften, handelt es sich wohl um eine
zufillige Korrelation, welche aufgrund des exponentiellen Zusammenhanges zwischen Durch-
strahlungsdurchmesser, Strahlendosis und Bildrauschen bei der Interpretation der Ergebnisse
dennoch beriicksichtigt werden muss. Im Ubrigen wichen die effektiven Diameter bei der CT-
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Untersuchung des Schédels bzw. des Korperrumpfes nur geringfiigig von den Diametern der
CTDI-Phantome fiir den Schidel (16 cm) und den Korperrumpf (32 cm) ab.
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Abb. 4.18: Effektive Diameter der Patienten in Abhiingigkeit von der Art der CT-Untersuchung und der
verwendeten CT-Technik. Die effektiven Diameter bei der CT-Untersuchung des Schédels bzw. des Korper-
rumpfes weichen nur geringfligig von den Diametern der CTDI-Phantome fiir den Schéidel (16 cm) und den Kor-
perrumpf (32 cm) ab. Die hochsten medianen effektiven Diameter wiesen Patienten auf, die unter Konstant-
stromtechnik untersucht wurden, die niedrigsten medianen effektiven Diameter Patienten, deren Untersuchung
unter Rohrenstrommodulation mit iterativer Rekonstruktion erfolgten. Die Unterschiede zwischen den CT-
Techniken sind hierbei jedoch lediglich bei der CT-Untersuchung des Abdomens statistisch signifikant.

4.2.5. Expositionsparameter /257, 258/

Die beim Gesamtscan applizierte mittlere Strahlendosis wird im Wesentlichen durch die Vor-
schubgeschwindigkeit des Tisches bzw. durch den Pitch-Faktor, durch die Rotationsgeschwin-
digkeit bzw. die Rotationsdauer der Rontgenrohre, durch den mittleren Réhrenstrom sowie
durch die Rohrenspannung bestimmt. Im Folgenden soll die Abhédngigkeit des Pitch-Faktors,
des mittleren effektiven mAs-Produktes und der Rohrenspannung von der gewihlten CT-
Technik dargestellt werden.
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4.2.5.1. Pitch-Faktor /257, 258]

Bei gegebener Schichtdicke und gegebenem Dosisbedarf einer CT-Untersuchung wird eine
Erhohung des Pitch-Faktors entweder eine Erh6hung des mittleren R6hrenstromes erfordern
oder mit einer Erhohung des Bildrauschens einhergehen. Aus letzterem Grunde wiirden itera-
tive Verfahren prinzipiell die Erh6hung des Pitch-Faktors und damit die Durchfiihrung schnel-
lerer CT-Untersuchungen ermoglichen. Indessen wurde von dieser Moglichkeit offensichtlich
kein Gebrauch gemacht, wie auch Abb. 4.19 nahelegt; im Gegenteil scheint sogar speziell in
Verbindung mit iterativen Verfahren ein geringerer Pitch-Faktor angewandt worden zu sein als
etwa bei der CT-Untersuchung unter Konstantstromtechnik'®.
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Abb. 4.19: Pitch-Faktor in Abhiingigkeit von der Art der CT-Untersuchung und der verwendeten CT-
Technik. In Verbindung mit Réhrenstrommodulation und iterativer Rekonstruktion unterbleibt in der Regel die
Verwendung hoherer Pitch-Faktoren, tendenziell — wenn auch statistisch nicht signifikant - erfolgt sogar eine
Verringerung der Pitch-Faktoren.

18 Bei manchen Geriteherstellern bedingt eine Erhdhung des Pitch-Faktors gleichzeitig eine Erhéhung des
mittleren R6hrenstromes und vice versa.
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4.2.5.2. Mittleres effektives mAs-Produkt /257, 258]

Als mittleres effektives mAs-Produkt wird bei einer CT-Untersuchung das mittlere Pitch-ge-
wichtete ROhrenstrom-Zeit-Produkt bezeichnet, welches bei gegebener Rohrenspannung als
Mab fiir die beim Gesamtscan applizierte Strahlendosis betrachtet werden kann. Da neben dem
mittleren Rohrenstrom sowohl die Rotationsgeschwindigkeit der Rontgenrdhre als auch die
Vorschubgeschwindigkeit des Tisches in das effektive mAs-Produkt mit eingehen, stellt der
mittlere Rohrenstrom alleine kein addquates MaB fiir die Strahlendosis dar.

Das in Abb. 4.20 in Abhéngigkeit von der Art der CT-Untersuchung und von der hierbei
verwendeten CT-Technik dargestellte mittlere effektive mAs-Produkt wurde anhand des mitt-
leren Rohrenstromes, der Rotationsdauer der Rontgenrdhre und des Pitch-Faktors bestimmt;
der mittlere R6hrenstrom wurde hierbei anhand des in den DICOM-Datensétzen dokumen-
tierten Rohrenstromprofils ermittelt.
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Abb. 4.20: Mittleres effektives mAs-Produkt in Abhiingigkeit von der Art der CT-Untersuchung und der
verwendeten CT-Technik. Nur bei der CT-Untersuchung des Abdomens erfolgte bei Anwendung der Rohren-
strommodulation und der iterativen Rekonstruktion gegeniiber zur Konstantstromtechnik eine statistisch signifi-
kante Abnahme des mittleren effektiven mAs-Produktes (rot gekennzeichnete p-Werte).
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Wie ersichtlich ist, wies die Hohe des mittleren effektiven mAs-Produktes bei allen CT-Unter-
suchungen mit Ausnahme der CT-Untersuchung des Abdomens sowie der Pulmonalis-
Angiographie keine signifikante Abhingigkeit von der CT-Technik auf. So erfolgte in Verbin-
dung mit Réhrenstrommodulation und iterativer Rekonstruktion nur bei der CT-Untersuchung
des Abdomens eine signifikante Verwendung niedrigerer mittlerer Rohrenstrome (Abb. 4.19).
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Abb. 4.21: Mittleres effektives mAs-Produkt bei der CT-Untersuchung des Abdomens in Abhiingigkeit von
der verwendeten CT-Technik und dem effektiven Diameter des Patienten. Naturgemal wird das mittlere
effektive mAs-Produkt mit zunehmendem Durchstrahlungsdurchmesser hoher gewéhlt. Bei Anwendung der
Konstantstromtechnik ist die Abhéngigkeit des mittleren effektiven mAs-Produktes vom Durchstrahlungsdurch-
messer am stérksten, bei der Anwendung der R6hrenstrommodulation in Verbindung mit iterativen Verfahren am
schwichsten ausgeprégt. Offensichtlich zeigt sich die Leistungsféhigkeit der iterativen Rekonstruktion vornehm-
lich bei adiposen Patienten mit effektiven Diametern iiber 30 cm. Eine statistische Signifikanz dieses Zusammen-
hangs konnte ab einem effektiven Abdomendiameter von {iber 30 cm festgestellt werden (rot gekennzeichnete p-
Werte).

Wie eine ndhere Betrachtung der Hohe des mittleren effektiven mAs-Produktes bei der CT-
Untersuchung des Abdomens in Abb. 4.21 in Abhingigkeit vom effektiven Diameter des Pa-
tienten zeigt, erfolgte aber durchaus eine Adaptation des mittleren R6hrenstrom-Zeit-Produktes
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an den effektiven Diameter des Patienten in Abhédngigkeit von der CT-Technik. Da naturgemal3
mit dem effektiven Durchmesser des Patienten der Dosisbedarf einer CT-Untersuchung zu-
nimmt, wird in der Regel das mittlere effektive mAs-Produkt mit zunehmendem Durchstrah-
lungsdurchmesser hoher gewéhlt werden. Bei Anwendung der Konstantstromtechnik war die
Abhingigkeit des mittleren effektiven mAs-Produktes vom Durchstrahlungsdurchmesser am
starksten, bei der Anwendung der R6hrenstrommodulation in Verbindung mit iterativen Ver-
fahren am schwéchsten ausgepragt. Eine statistische Signifikanz dieses Zusammenhangs konn-
te flir die Rohrenstrom-Zeit-Produkte ab einem effektiven Abdomendiameter von 30 cm festge-
stellt werden. Moglicherweise zeigt sich die Leistungsfahigkeit der iterativen Rekonstruktion
vornehmlich bei den Abdomentechniken und hier vor allem bei adipdsen Patienten mit effek-
tiven Diametern tiber 30 cm.
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Abb. 4.22: Rohrenspannung in Abhiingigkeit von der Art der CT-Untersuchung und der verwendeten CT-
Technik. Bei Einsatz der iterativen Rekonstruktion wurde in der Regel eine niedrigere Rohrenspannung gewéhlt
als bei den anderen CT-Techniken. Statistisch signifikant ist lediglich der bei der CT-Untersuchung des Schidels
bestehende Unterschied zwischen der unter Feststromtechnik und der unter iterativer Rekonstruktion gewéhlten
Rohrenspannung (rot gekennzeichneter p-Wert).
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4.2.5.3. Rohrenspannung /257, 258/

Die Wahl des mittleren Rohrenspannung erfolgte tendenziell in Abhédngigkeit von der CT-
Technik. Wie Abb. 4.22 nahelegt, wurde bei Einsatz der iterativen Rekonstruktion die R6h-
renspannung in der Regel niedriger gewihlt, wodurch eine Dosisreduktion mit dem Quadrat
der Rohrenspannungsverminderung zu erzielen ist. Allerdings konnte lediglich bei der CT-
Untersuchung des Schédels eine signifikante Abhingigkeit der R6hrenspannung von der CT-
Technik festgestellt werden. Wie eine detaillierte Betrachtung der Réhrenspannung in Ab-
héngigkeit vom effektiven Diameter der Patienten bei der CT-Untersuchung des Thorax bzw.
des Abdomens in Abb. 4.23 zeigt, ermdglicht die Verwendung der Rohrenstrommodulation
und der iterativen Rekonstruktion eine Konstanthaltung bzw. Verminderung der R6hrenspan-
nung bei zunehmendem effektivem Diameter des Patienten. Statistische Signifikanz war indes-
sen nur bei der CT-Untersuchung des Thorax fiir die R6hrenspannungswerte bei einem effek-
tiven Diameter von 32 bis 34 cm feststellbar (Abb. 4.23).

4.2.6. Einfluss der CT-Technik auf Strahlendosis und Bildqualitit /257, 258/
Strahlendosis und Bildpixelrauschen stehen, wie die fiir konventionelle computertomographi-
sche Untersuchungen ohne Anwendung iterativer Verfahren giiltigen Brooks-Formel (Formel
2.20) quantitativ nahelegt, in indirekt proportionaler Beziehung zueinander; so bewirkt eine
Erhohung der Strahlendosis in der Regel eine Verminderung des Bildpixelrauschens und vice
versa. Somit sollte eine Beurteilung des Dosisreduktionspotenzials der CT-Techniken der Roh-
renstrommodulation und der iterativen Rekonstruktion sinnvollerweise simultan mit einer Be-
wertung der gleichzeitig mit diesen Verfahren jeweils erzielten Bildqualitit erfolgen. Da aller-
dings die Brooks-Formel zumindest a priori nicht auf iterative Bildrekonstruktionsverfahren
anzuwenden ist, erfolgt in diesem Abschnitt zunichst eine nicht simultane, sondern separate
Betrachtung von Strahlendosis und objektiver wie subjektiver Bildqualitit. Am Ende des
Abschnittes wird der Versuch einer Gegeniiberstellung von Strahlendosis und Bildqualitét un-
ternommen.

4.2.6.1. Einfluss der CT-Technik auf den Volumen-CTDI /257, 258]

Eine Betrachtung des Einflusses der CT-Technik auf den CTDlyq erfolgt in Abb. 4.24; hier
zeigt sich bei den CT-Untersuchungen des Schiadels und des Abdomens signifikant und bei der
CT-Untersuchung des Thorax sowie bei der Pulmonalis-Angiographie tendenziell die Uberle-
genheit der Rohrenstrommodulation und der iterativen Rekonstruktion gegeniiber der Kon-
stantstromtechnik; der Referenzwert des Bundesamtes fiir Strahlenschutz aus dem Jahr 2010
wurde bei den meisten CT-Untersuchungen mit Ausnahme der CT-Untersuchung des Thorax
unterschritten. Tab. 4.22 zeigt die durch die einzelnen CT-Techniken gegeniiber der Konstant-
stromtechnik bewirkte Reduktion des medianen CTDlIyo1.

So bewirkt die Rohrenstrommodulation bei den CT-Untersuchungen des Schidels bzw.
des Abdomens eine Reduktion des medianen CTDIyo um iiber 50% bzw. 20% und bei der
Pulmonalis-Angiographie um rund 20%; dieser Zusammenhang ist bei der CT-Untersuchung
des Schédels statistisch hochsignifikant ausgepréigt. Der Einsatz der R6hrenstrommodulation
in Verbindung mit iterativen Rekonstruktionsverfahren gestattet bei den CT-Untersuchungen
des Schidels bzw. des Abdomens eine Reduktion des medianen CTDIyo1 um etwa 40% und bei
der Pulmonalis-Angiographie um rund 30%; dieser Zusammenhang ist bei der CT-Untersu-
chung des Schidels statistisch sehr signifikant und bei der CT-Untersuchung des Abdomens
statistisch hochsignifikant ausgeprigt. Hingegen wirken sich die genannten Techniken bei der
CT-Untersuchung des Thorax nur geringfiigig auf die Reduktion des CTDIyo1 aus. Die bei den
einzelnen CT-Untersuchungen unter den einzelnen CT-Techniken erzielten Perzentilen- und
Mittelwerte des CTDlIyo1 sind in Tab. 4.23 aufgefiihrt.
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Abb. 4.23: Rohrenspannung bei der CT-Untersuchung des Thorax bzw. des Abdomens in Abhéngigkeit
von der verwendeten CT-Technik und dem effektiven Diameter des Patienten. Wihrend bei der CT-Unter-
suchung des Thorax bzw. des Abdomens unter Verwendung der Konstantstromtechnik die R6hrenspannung mit
zunehmendem effektiven Durchmesser des Patienten zunehmend héher gewidhlt bzw. konstant gehalten wurde,
erlaubte die Verwendung der Rohrenstrommodulation und der iterativen Rekonstruktion eine weitestgehende
Konstanthaltung bzw. Reduktion der Rohrenspannung und damit eine Dosisreduktion unter der Voraussetzung
einer nicht erfolgten Anpassung des Rohrenstromes. Statistisch signifikant ist dieser Zusammenhang allerdings
lediglich bei der CT-Untersuchung des Thorax fiir die Rohrenspannungswerte bei einem effektiven Thoraxdia-
meter von 32 bis 34 cm (rot gekennzeichneter p-Wert).



4.2. Querschnittsstudie 117

125 125
< 100 | (@) Schédel (b) Thorax ey =
2 Gesamtzahl der Serien = 72 Gesamtzahl der Serien = 102 2
© 1 £
n 5 2
R F50 &
N N
c c
< 254 F2s =
0 0
[ Konstantstromtechnik [ Konstantstromtechnik
[ Rohrenstrommodulation [ Rohrenstrommodulation
125 1 [ Rohrenstrommodulation + Iterative Rekonstruktion [ Rohrenstrommodulation + lterative Rekonstruktion
Referenzwert des Bundesamtes flir Strahlenschutz 2010 Referenzwert des Bundesamtes fur Strahlenschutz 2010
100 1 p=0.01 p=0.9 L so
= =
Q Q
5 p=0001—7— p=0,7ﬁ p=0'2ﬁ;p=05 E
3 75 — g
a —— o
= \ =
8] —_— o
50 A r25
25 ] —_— = | !
=== I .
=l = —
0 0
c 1004 (c) Abdomen (d) CTA-Pulmonalis Lo
2 Gesamtzahl der Serien = 167 Gesamtzahl der Serien = 45 2
D 75 s &
w w
S 504 Fso 5
N N
c c
< 254 I—I Fos <
0 0
45 ] [ Konstantstromtechnik [] Konstantstromtechnik L 45
1 Rohrenstrommodulation =3 Rohrenstrommodulation
40 4 =71 Rohrenstrommodulation + lterative Rekonstruktion [ Rohrenstrommodulation + Iterative Rekonstruktion E 40
Referenzwert des Bundesamtes fur Strahlenschutz 2010
35 4 r
p < 0.001 p=02 —— *
5 30 Lo =
o A 0 3
E 25 1 p=02 ————p<0001 pP=01 —— p=10 — broe E
=2 3
B 2 — 20 B
3} ‘ _— o
15 4 r 15
| .
10 I ] —— F 10
3 T ) .. L
0 L0

Abb. 4.24: CTDIva in Abhéngigkeit von der Art der CT-Untersuchung und der verwendeten CT-Technik.
Wihrend sich bei der CT-Untersuchung des Thorax bzw. bei der Pulmonalis-Angiograpahie die CT-Technik nicht
bzw. kaum auf den CTDI,q auswirkt, zeigt sich bei den anderen CT-Untersuchungen eine teilweise statistisch
signifikante Verminderung des CTDI.o bei Verwendung der Réhrenstrommodulation und der iterativen Rekon-
struktion (rot gekennzeichnete p-Werte). Der als dunkelgriine Linie eingezeichnete Referenzwert des Bundes-
amtes fiir Strahlenschutz aus dem Jahr 2010 fiir den CTDI,oi wurde vornehmlich bei Anwendung der Rohren-
strommodulation und der iterativen Rekonstruktion unterschritten.

Die Leistungsfahigkeit der Rhrenstrommodulation und der iterativen Rekonstruktion zeigt
sich stark bei der Kompensation des Durchstrahlungsdiameters des Patienten, wie Abb. 4.25
anhand der Abhdngigkeit des CTDlIyo von der CT-Technik und vom effektiven Diameter des
Patienten bei der CT-Untersuchung des Abdomens nahelegt; demnach ist bei Anwendung der
Konstantstromtechnik die Abhdngigkeit des CTDIyoi vom Durchstrahlungsdurchmesser am
starksten und bei der Anwendung der R6hrenstrommodulation in Verbindung mit iterativen
Bildrekonstruktionsverfahren am schwichsten ausgepragt.



4. Ergebnisse

118
Abdomen
40
=TT Gesamtzahl der Scanserien = 167
Q0
© 30 -
2 25
S o0
wn
= 15 4
§ 101 H
& 5- |_|
0 H — 1 1 — 35
] [1 Konstantstromtechnik —
25 | [ Rohrenstrommodulation
4 [ Roéhrenstrommodulation + Iterative Rekonstruktion
20 4
’; —
U]
E 4
= 15
] -
o
5 ]
10 - E'
5] sl 819
(=]
E =| ok (%
Q [=8 Q Q
| p = 0.004 p=0.08
0 T T I 1 1 T 1 1 T T I 1 T 1 I
>24-26 >26-28 >28-30 >30-32 >32-34

Effektiver Diameter in Hohe des Milzhilus (cm)

Abb. 4.25: Volumen-CTDI (CTDIva) bei der CT-Untersuchung des Abdomens in Abhiingigkeit von der
angewandten CT-Technik und dem effektiven Diameter des Patienten. Bei Anwendung der Konstantstrom-
technik ist die Abhéngigkeit des CTDI, o1 vom Durchstrahlungsdurchmesser am stérksten, bei der Anwendung der
Rohrenstrommodulation in Verbindung mit iterativen Verfahren am schwichsten ausgeprégt. Eine statistische
Signifikanz dieses Zusammenhangs konnte fiir die Werte des CTDI, bei einem effektiven Abdomendiameter
von Uber 30 cm festgestellt werden (rot gekennzeichnete p-Werte). Aufgrund des linearen Zusammenhanges zwi-
schen mittlerem effektivem mAs-Produkt und CTDI,, entspricht die Abbildung nahezu der Abb. 4.20.

Tab. 4.22: Reduktion des medianen CTDIvoi durch verschiedene CT-Techniken vs. Konstantstromtechnik.
Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktionsfaktoren. Ein Faktor = 0 bedeutet
keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer Signifikanz.

Reduktionsfaktor (%)
CT-Technik Schiidel Thorax Abdomen CTA-
Pulmonalis

Konstantstromtechnik 0 0 0 0

Rohrenstrommodulation 56 - 23 18
Rohrenst dulation +

0 rerlls rommodula 1<?n 44 0 38 27

Iterative Rekonstruktion
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Tab. 4.23: Mittelwert und Perzentilenwerte des CTDIva in Abhéingigkeit von der CT-Untersuchung und
von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungsprotokollen und Dosis-
reduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken der Rohrenstrommo-
dulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen mit Ausnahme der Tho-
raxuntersuchung eine deutliche Reduktion des Volumen-CTDI.

: CTDIva (mGy)
2
=1 St
E % P ilen (%
g Dosisreduktionstechnik _ag g E g erzentilen (%o)
=
£ = |E|2|E
SIE |25 [10]25]50]|75] 00
< | =2 | 2| =2
Konstantstromtechnik 50 12| 50| 82| 27| 46| 52| 64 | 72
>
=
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4.2.6.2. Einfluss der CT-Technik auf den Size Specific Dose Estimate (SSDE) /257, 258]
Die in Abb. 4.24 dargestellte Beziehung zwischen CTDlyo1 und effektivem Diameter legt zu-
mindest a priori die Vermutung nahe, der sich auf ein PMMA-Phantom mit definiertem kon-
stanten Diameter beziechende CTDIyo moge den in der Brooks-Formel beschriebenen exponen-
tiellen Einfluss des effektiven Diameters des Patienten auf die Dosisverteilung im Patienten
nicht hinreichend berticksichtigen.

Aus diesem Grunde wurde in Abb. 4.26 der sich aus dem Volumen-CTDI CTDIyo1 gemif3
[929] errechnenden Size Spezific Dose Estimate SSDE in Abhdngigkeit von der eingesetzten
CT-Technik dargestellt. Der Size Specific Dose Estimate beriicksichtigt im Gegensatz zum
Volumen-CTDI die Abhéngigkeit der Dosisverteilung vom effektiven Diameter des Patienten;
indessen weist Abb. 4.26 keine signifikanten Unterschiede zu Abb. 4.24 auf. Offensichtlich
wird also das sich in vorliegender Studie aus Erwachsenen zusammensetzende Patientenkol-
lektiv durch den Volumen-CTDI hinreichend gut charakterisiert, zumal gemél3 Abb. 4.18 die
medianen effektiven Diameter fiir Schidel bzw. Korperrumpf im Patientenkollektiv nur ge-
ringfligig von den der Definition des Volumen-CTDI zugrundeliegenden Diametern der ent-
sprechenden CTDI-Messphantome von 16 cm bzw. 32 cm abweichen.
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Abb. 4.26: SSDE in Abhéngigkeit von der Art der CT-Untersuchung und der verwendeten CT-Technik. Es
ergeben sich trotz der Beriicksichtigung der individuellen effektiven Diameter keine wesentlich anderen Bezie-
hungen zwischen CT-Technik und SSDE als die in Abb. 4.23 dargestellten Beziehungen zwischen CT-Technik
und CTDlo1.

4.2.6.3. Einfluss der CT-Technik auf das Dosis-Liangen-Produkt /257, 258/

Eine ergéinzende Betrachtung des Einflusses der CT-Technik auf das Dosis-Langen-Produkt
zeigt Abb. 4.27. In dieser Darstellung zeigt sich bei allen CT-Untersuchungen eine geringe
oder deutliche Uberlegenheit der Rohrenstrommodulation und der iterativen Rekonstruktion
gegeniiber der Konstantstromtechnik; im Ubrigen entspricht die Darstellung des Dosis-Lin-
gen-Produktes in threm Verlauf jener der effektiven Dosis in Abb. 4.28. Die bei den einzelnen
CT-Untersuchungen unter den einzelnen CT-Techniken erzielten Perzentilen- und Mittelwerte
des Dosis-Langen-Produktes sind in Tab. 4.25 aufgefiihrt. Tab. 4.24 gibt die durch die ein-
zelnen CT-Techniken bewirkte prozentuale Reduktion des medianen Dosis-Langen-Produktes
gegeniiber der Konstantstromtechnik wieder.
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Abb. 4.27: Dosis-Lingen-Produkt in Abhiingigkeit von der Art der CT-Untersuchung und der verwen-
deten CT-Technik. Bei allen CT-Untersuchungen zeigt sich eine geringe bis deutliche Verminderung des DLP
bei Verwendung der Rohrenstrommodulation und der iterativen Rekonstruktion. Der als dunkelgriine Linie
eingezeichnete Referenzwert des Bundesamtes fiir Strahlenschutz aus dem Jahr 2010 fir das DLP wurde
vornehmlich bei Anwendung der R6hrenstrommodulation und der iterativen Rekonstruktion unterschritten.

Tab. 4.24: Reduktion des medianen Dosis-Lingen-Produktes durch verschiedene CT-Techniken vs.
Konstantstromtechnik. Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktions-
faktoren. Ein Faktor = 0 bedeutet keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer

Signifikanz.
Reduktionsfaktor (%)
- i TA-
CT-Technik Schiadel Thorax Abdomen ¢ .
Pulmonalis

Konstantstromtechnik 0 0 0 0

Rohrenstrommodulation 9 37 43 39
Ro6h lation +

0 rer.lstrommodu atlgn Al 34 61 34

Iterative Rekonstruktion
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Tab. 4.25: Mittelwert und Perzentilenwerte des Dosis-Lingen-Produktes in Abhiéingigkeit von der CT-
Untersuchung und von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungs-
protokollen und Dosisreduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken
der Rohrenstrommodulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen mit
Ausnahme der Thoraxuntersuchung eine deutliche Reduktion des Dosis-Léngen-Produktes.

: DLP (mGy cm)
2
o I
E & P ilen (%
g Dosisreduktionstechnik g £ E g erzentilen (%o)
=
£ = | E|Z |E
S| E|E | &
Z = = = 10 25 50 75 90
Konstantstromtechnik 50| 64| 1143 | 1918 | 690 | 855 | 1163 | 1323 | 1811
>
=
‘2 | Rohrenstrommodulation 12 | 128 912 | 1498 | 196 | 515 | 1055 | 1292 | 1447
2]
125} " - - -
Rohrenstrommodulation + iterative 10 | 241 | 860 | 1758 | 243 | 278 | 690 | 1350 | 1730
Rekonstruktion
Konstantstromtechnik 10 | 101 684 | 1695 | 124 | 319 648 885 | 1625
[
«
E Rohrenstrommodulation 70 81 453 | 2276 | 175 | 293 407 556 675
i " : . ;
Rohrenstrommodulatlon+1terat1ve » 113 438 953 | 124 | 180 | 428 570 370
Rekonstruktion
. Konstantstromtechnik 8 729 | 1220 | 2924 | 771 | 773 | 953 | 1328 | 1330
%)
_§ Rohrenstrommodulation 110 | 136 655 | 2289 | 254 | 408 542 835 | 1220
= - - ;
< Rohrenstrommodulatlon+1terat1ve 49 | 108 | 54712238 | 165 | 259 | 367 | 660 | 1190
Rekonstruktion
2 Konstantstromtechnik 51378 | 537 | 778|392 393 | 534 | 682 | 685
=
=]
E Rohrenstrommodulation 23 12| 357 | 810|102 |219| 327| 514 | 605
- - —
S Rohrenstrommodulatlon+1terat1ve 113 322 737 | 120 | 182 | 351 415 615
Rekonstruktion

4.2.6.4. Einfluss der CT-Technik auf die effektive Dosis des Patienten /257, 258/

Entsprechend den bisherigen Befunden stellt sich auch der Einfluss der CT-Technik auf die
effektive Dosis des Patienten dar!®. Wie Abb. 4.28 nahelegt, zeigt sich beziiglich der Reduktion
der effektiven Dosis des Patienten bei allen CT-Untersuchungen eine zumindest geringe oder
sogar deutliche Uberlegenheit der Réhrenstrommodulation und der iterativen Rekonstruktion
gegeniiber der Konstantstromtechnik.

Allerdings besteht aufgrund der Definition der effektiven Dosis als gewichtete Summe
der Organdosen iiber simtliche Organe und Gewebe des menschlichen Korpers ein nicht-line-
arer Zusammenhangs zwischen Volumen-CTDI und effektiver Dosis, wodurch es zu gering-
fiigigen Abweichungen zwischen den in Abb. 4.28 wiedergegebenen Werten der effektiven
Dosis von den in Abb. 4.24 dargestellten Werten des Volumen-CTDI kommt.

1 Die gleichzeitige Darstellung von Dosis-Lingen-Produkt und effektiver Dosis mag zuniichst redundant schei-
nen, zumal die effektive Dosis durch Anwendung entsprechender Konversionsfaktoren aus dem Dosis-Léngen-
Produkt hervorgeht. Wahrend tatséchlich in den meisten Literaturstudien eine effektive Dosis durch Anwendung
von Standard- Konversionsfaktoren aus dem Dosis-Langen-Produkt errechnet wurde, erfolgte im Rahmen der
klinischen Studie eine patientenspezifische Bestimmung der effektiven Dosis, weswegen eine separate Betrach-
tung von Dosis-Langen-Produkt und effektiver Dosis hier zumindest a priori sinnvoll scheint.
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Demnach erlaubt die Rohrenstrommodulation bei den CT-Untersuchungen des Thorax
bzw. des Abdomens eine Reduktion der medianen effektiven Dosis um etwa 40% und bei der
Pulmonalis-Angiographie um rund 30%; dieser Zusammenhang ist bei der CT-Untersuchung
des Thorax statistisch signifikant und bei der CT-Untersuchung des Abdomens statistisch sogar
hochsignifikant ausgepriagt. Der kombinierte Einsatz von Rohrenstrommodulation und iterati-
ver Bildrekonstruktion ermoglicht bei den CT-Untersuchungen des Thorax sowie bei der Pul-
monalis-Angiographie ebenfalls eine Reduktion der medianen effektiven Dosis um etwa 40%
und bei der CT-Untersuchung des Abdomens um etwa 75%; dieser Zusammenhang ist bei der
CT-Untersuchung des Abdomens statistisch hochsignifikant und bei der Pulmonalis-Angio-
graphie statistisch signifikant ausgeprégt.

125 125
a) Schadel
c 100 ( ) (b) Thorax F100 c
- Gesamtzahl der Serien = 72 Gesamtzahl der Serien = 102 2
@ 1 E
o s
& 501 F50 &
N N
c =
< 25 F2s <
0 [E— [ [ 0
[ Feststromtechnik [ Feststromtechnik b ag
[ Rohrenstrommodulation [ Rohrenstrommodulation
[ Rohrenstrommodulation + Iterative Rekonstruktion [ Rohrenstrommodulation + lterative Rekonstruktion
r 35
p=03 ———— p=03
@ e F30 &
g’ =02 =10 — ——p=0.02 — - p=06 — g’
= p=02 —— p=1. p= [ p=0 tor B
2 5 = == B
8 e 8
o F20 o
= =
3 3
= P15 8
w w
r 10
il [
I ] |
VE— | L5
:I: o ——
0 0
< 100 | {¢) Abdomen (d) CTA-Pulmonalis L
2 Gesamtzahl der Serien = 167 Gesamtzahl der Serien = 40 2
% 75 4 F75 g
S 50 Es0 5
N N
(= c
< 25 F2s <
0 — 0
[ Feststromtechnik [ Feststromtechnik
35 1 =3 Rshrenstrommodulation [0 Réhrenstrommodulation
[ Roéhrenstrommodulation + Iterative Rekonstruktion [ Rohrenstrommodulation + Iterative Rekonstruktion r 20
30
= p=0.001 e — =
[72] 3]
£ 25 15 E
) = = =
2 p<0.001——7—— p=02 p=007—7— p=06 %
Q20 o
=] PR 0
2 s tio 2
= ] =
Q [0}
=
H i
10 — —L—
r5
> : i
0- -0

Abb. 4.28: Effektive Dosis des Patienten in Abhiingigkeit von der Art der CT-Untersuchung und der ver-
wendeten CT-Technik. Wihrend sich bei der CT-Untersuchung des Schédels die CT-Technik nur gering auf die
effektive Dosis auswirkt, zeigt sich bei den anderen CT-Untersuchungen eine teilweise statistisch signifikante
Verminderung der effektiven Dosis bei Verwendung der Rohrenstrommodulation und der iterativen Rekon-
struktion (rot gekennzeichneter p-Wert).



124 4. Ergebnisse

Abdomen
40
c 35 | Gesamtzahl der Scanserien = 167
o
o 30 - =
2 25 ]
S 20
w
= 151
S 10 - H
ey
Z 5- ﬂ
0 ﬂ - 1 =] — =0
[ Konstantstromtechnik
[ Rohrenstrommodulation 1
40 1 [ Réhrenstrommodulation + lterative Rekonstruktion
& 30 - L2
£
R
8
A 20 -
= H
= . ||
< -
£ 10 - =
’ —
| E % = o ]
= B &
O N ? 1] I | ]
(=1 o [=% o
p =0.02 p=0.12

I I T 1 I I T T T I I I 1 L I

> 24 -26 >26-28 >28-30 >30-32 >32-34

Effektiver Diameter in Hohe des Milzhilus (cm)

Abb. 4.29: Effektive Dosis bei der CT-Untersuchung des Abdomens in Abhéingigkeit von der verwendeten
CT-Technik und dem effektiven Diameter des Patienten. Bei Anwendung der Konstantstromtechnik ist die
Abhiéngigkeit der effektiven Dosis vom Durchstrahlungsdurchmesser am stéirksten, bei der Anwendung der
Rohrenstrommodulation in Verbindung mit iterativen Verfahren am schwichsten ausgeprigt. Eine statistische
Signifikanz dieses Zusammenhangs konnte fiir die Werte der effektiven Dosis bei einem effektiven Abdomendia-
meter von iiber 30 cm festgestellt werden (rot gekennzeichnete p-Werte). (Die scheinbare Diskrepanz zwischen
den Signifikanzen in der Diametergruppe ,,> 32 - 34 cm® ist auf die hier sehr geringen Fallzahlen fiir Kon-
stantstromtechnik und iterative Rekonstruktion zuriickzufiihren.)

Auf die Reduktion der effektiven Dosis bei der CT-Untersuchung des Schédels hingegen wir-
ken sich die unterschiedlichen CT-Techniken nahezu nicht aus. Die bei den einzelnen CT-Un-
tersuchungen unter den einzelnen CT-Techniken erzielten Perzentilen- und Mittelwerte der
effektiven Dosis sind in Tab. 4.26 aufgefiihrt. Tab. 4.27 gibt die durch die einzelnen CT-
Techniken bewirkte prozentuale Reduktion der medianen effektiven Dosis gegeniiber der Kon-
stantstromtechnik wieder.
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Tab. 4.26: Mittelwert und Perzentilenwerte der effektiven Dosis in Abhéingigkeit von der CT-Untersuchung
und von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungsprotokollen und
Dosisreduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken der Rohren-
strommodulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen eine deutliche
Reduktion der effektiven Dosis.

: Effektive Dosis (mSv)
p— .E
E A P ilen (%
g Dosisreduktionstechnik g £ *5 g erzentilen (%o)
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£ =|E |2 |
S|E 2 |2 [10]25|50 |75 9
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>
=
‘2 | Rohrenstrommodulation 121 091 30| 44|13 1,8 28| 41| 4,4
[}
125} - - - -
Rohrenstrommodulatlon + iterative 10| 07 3.1 6.0 i 1.8 19| 44 )
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Tab. 4.27: Reduktion der medianen effektiven Dosis durch verschiedene CT-Techniken vs. Konstantstrom-
technik. Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktionsfaktoren. Ein Faktor =
0 bedeutet keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer Signifikanz.

CT-Technik Schéadel Thorax Abdomen CTA- .
Pulmonalis
Reduktion der effektiven Dosis (%)
Konstantstromtechnik 0 0 0 0
Rohrenstrommodulation 7 41 45 32
Rohrenstrommodulation +
iterative Rekonstruktion 37 45 73 39

In Analogie zum Volumen-CTDI (Abb. 4.25) nimmt die effektive Dosis vor allem bei Anwen-
dung der Konstantstromtechnik mit zunehmendem effektiven Diameter des Patienten zu, wih-
rend sie bei Anwendung der Rohrenstrommodulation und der iterativen Verfahren weitgehend
konstant gehalten werden kann (Abb. 4.29). Eine statistische Signifikanz dieses Zusammen-
hangs konnte fiir die Werte der effektiven Dosis bei einem effektiven Abdomendiameter von
iber 30 cm festgestellt werden.
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4.2.6.5. Einfluss der CT-Technik auf das Bildpixelrauschen /257, 258/

Das Ausmal} des Bildpixelrauschens sollte a priori von der CT-Untersuchungstechnik abhingig
sein. Wahrend aufgrund der Brooks-Beziehung (Formel 2.20) unter Konstantstromtechnik bei
vergleichbaren Patientendiametern das Bildpixelrauschen mit zunehmender Strahlendosis
abnehmen sollte, sollte es bei der R6hrenstrommodulation weitgehend konstant gehalten wer-
den; bei den Verfahren der iterativen Bildrekonstruktion sollte das Bildpixelrauschen bei kon-
stant gehaltener Strahlendosis reduziert und bei konstant gehaltenem Bildpixelrauschen die
Strahlendosis reduziert werden.
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Abb. 4.30: Bildpixelrauschen in Abhéngigkeit von der Art der CT-Untersuchung und der verwendeten CT-
Technik. Die Verwendung der Réhrenstrommodulation fiihrt zu keiner statistisch nachweisbaren Reduktion des
Bildpixelrauschens. Hingegen bewirkt der Einsatz der iterativen Rekonstruktion bei der CT-Untersuchung des
Abdomens sowie bei der Pulmonalis-Angiographie eine statistisch hochsignifikante bzw. statistisch sehr
signifikante Reduktion des Bildpixelrauschens (rot gekennzeichnete p-Werte).

Abb. 4.30 zeigt das in den Bilddatensétzen der verschiedenen CT-Untersuchungen gemessene
Bildpixelrauschen in Abhéngigkeit von der CT-Untersuchung und von der verwendeten CT-
Technik. Demnach fiihrt die Rohrenstrommodulation tatsachlich bei keiner der CT-Untersu-
chungen zu einer statistisch signifikanten Abnahme des Bildpixelrauschens, vielmehr scheint
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das Bildpixelrauschen im Wesentlichen konstant gehalten zu werden. Der Einsatz der iterativen
Rekonstruktion hingegen bewirkt bei der CT-Untersuchung des Abdomens eine statistisch
hochsignifikante und bei der Pulmonalis-Angiographie eine statistisch sehr signifikante
Abnahme des Bildpixelrauschens.
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Abb. 4.31: Bildpixelrauschen bei der CT-Untersuchung des Abdomens in Abhiingigkeit von der verwende-
ten CT-Technik. Bei Anwendung der Konstantstromtechnik ist die Abhangigkeit des Bildpixelrauschens vom
Durchstrahlungsdurchmesser am stirksten, bei der Anwendung der Réhrenstrommodulation in Verbindung mit
iterativen Bildrekonstruktionsverfahren am schwéchsten ausgepragt. Eine statistische Signifikanz dieses Zusam-
menhangs konnte fiir die Werte der effektiven Dosis bei einem effektiven Abdomendiameter von iiber 32 cm
festgestellt werden (rot gekennzeichneter p-Wert).

NaturgemaB sollte das Bildpixelrauschen mit steigendem Patientenvolumen und damit mit stei-
gendem effektiven Durchmesser des Patienten zumindest unter Verwendung der Konstant-
stromtechnik zunehmen. Wie Abb. 4.31 anhand einer Darstellung des Bildpixelrauschens bei
der CT-Untersuchung des Abdomens in Abhéngigkeit von der verwendeten CT-Technik und
vom effektiven Durchmesser des Patienten illustriert, ist bei Anwendung der Konstantstrom-
technik die Abhingigkeit des Bildpixelrauschens vom Durchstrahlungsdurchmesser am stirk-
sten und bei der Anwendung der Rohrenstrommodulation in Verbindung mit iterativen Ver-
fahren am schwéchsten ausgepriagt. Somit ist also im Gegensatz zu den CT-Techniken der
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Rohrenstrommodulation und der iterativen Rekonstruktion unter Konstantstromtechnik eine
ausreichende Reduktion des mit steigendem Patientenvolumen in zunehmendem Mal3e entste-
henden Bildpixelrauschens durch eine Anpassung des Rohrenstromes an den effektiven
Diameter des Patienten (Abb. 4.25) nicht mdglich, welche Feststellung in guter Ubereinstim-
mung mit der klinischen Beobachtung steht. Thr stdrkstes Rauschreduktionspotential entfalten
die iterativen Verfahren offensichtlich bei adipdsen Patienten mit Abdomendiametern von iiber
32 cm, wo sie gegeniiber der Konstantstromtechnik eine statistisch signifikante Reduktion des
Bildpixelrauschens bewirken (Abb. 4.31).
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Abb. 4.32: Signal-Rausch-Verhiiltnis in Abhingigkeit von der Art der CT-Untersuchung und der verwen-
deten CT-Technik. Wéhrend bei Verwendung der Réhrenstrommodulation und der iterativen Rekonstruktion bei
den meisten CT-Untersuchungen eine Konstanthaltung oder eine statistisch allerdings nicht signifikante
Anhebung des Signal-Rausch-Verhiltnisses beobachtet werden kann, kommt es bei der Pulmonalis-Angiographie
zu einer statistisch nicht signifikanten Verringerung des Signal-Rausch-Verhéltnisses.
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4.2.6.6. Einfluss der CT-Technik auf Signal-Rausch- und Kontrast-Rausch-Verhiltnis
[257, 258]

In Abb. 4.32 und Abb. 4.33 werden das Signal-Rausch-Verhéltnis und das Kontrast-Rausch-
Verhiltnisses nach der in Abschnitt 3.2.5.1 gegebenen Definition in ihrer Abhidngigkeit von
der Art der CT-Untersuchung und der verwendeten CT-Technik wiedergegeben.
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Abb. 4.33: Kontrast-Rausch-Verhiltnis in Abhéingigkeit von der Art der CT-Untersuchung und der ver-
wendeten CT-Technik. Bei Anwendung der R6hrenstrommodulation und der iterativen Rekonstruktion kann bei
den meisten CT-Untersuchungen eine Konstanthaltung des Kontrast-Rausch-Verhéltnisses beobachtet werden;
bei der CT-Untersuchung des Thorax bewirkt der Einsatz der Rohrenstrommodulation und der iterativen
Rekonstruktion eine statistisch signifikante Anhebung des Kontrast-Rausch-Verhéltnisses (rot gekennzeichneter
p-Wert), bei der Pulmonalis-Angiographie zeigt sich bei Anwendung der iterativen Rekonstruktion eine paradoxe
statistisch signifikante Verringerung des Signal-Rausch-Verhéltnisses (rot gekennzeichneter p-Wert).

Wihrend bei Verwendung der Rohrenstrommodulation und der iterativen Rekonstruk-
tion bei den meisten CT-Untersuchungen eine Konstanthaltung oder eine - statistisch allerdings
nicht signifikante - Anhebung des Signal-Rausch-Verhéltnisses beobachtet werden kann,
kommt es bei der Pulmonalis-Angiographie zu einer statistisch nicht signifikanten Verringe-
rung des Signal-Rausch-Verhéltnisses.
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Abb. 4.34: Unterschiede in der Beurteilung der Qualitit der Darstellung der untersuchten anatomischen
Region (oben) und der mutmaBlichen diagnostischen Verwertbarkeit des Gesamtbildes (unten) durch bei-
de Befunder in Abhéngigkeit von der Art der CT-Untersuchung und der verwendeten CT-Technik, aus-
gedriickt durch die Punktedifferenz auf der 5-Punkte-Likert-Skala. Im Wesentlichen gelangten beide Befun-
der zum gleichen Urteil beziiglich der Qualitét der Darstellung der untersuchten anatomischen Region.
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Bei Anwendung der R6hrenstrommodulation und der iterativen Rekonstruktion kann bei den
meisten CT-Untersuchungen eine Konstanthaltung des Kontrast-Rausch-Verhéltnisses beo-
bachtet werden; bei der CT-Untersuchung des Thorax bewirkt der Einsatz der R6hrenstrom-
modulation und der iterativen Rekonstruktion eine statistisch signifikante Anhebung des Kon-
trast-Rausch-Verhéltnisses, bei der Pulmonalis-Angiographie zeigt sich bei Anwendung der
iterativen Rekonstruktion eine paradoxe statistisch signifikante Verringerung des Signal-
Rausch-Verhiltnisses.

4.2.6.7. Einfluss der CT-Technik auf die subjektive Bildqualitit /257, 258/

Im Sinne des ALARA-Konzeptes des medizinischen Strahlenschutzes ist weniger die Ausge-
wogenheit zwischen Strahlendosis und objektiver Bildqualitdt als vielmehr jene zwischen
Strahlendosis und subjektiver Bildqualitdt von Bedeutung, zumal die zur erfolgreichen Befun-
dung erforderliche subjektive Bildqualitit von der klinischen Fragestellung abhéngig ist.

Darstellung der untersuchten anatomischen Region Diagnostische Verwertbarkeit des Gesamtbildes
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Abb. 4.35: Subjektive Bildqualitiit (a) der Darstellung der untersuchten anatomischen Region und (b) der
diagnostischen Verwertbarkeit des Gesamtbildes in Abhingigkeit vom Befunder. Bei der Beurteilung der
subjektiven Bildqualitét besteht kein wesentlicher Unterschied in der jeweiligen Haufigkeitsverteilung der Punk-
teberwertung durch Befunder 1 (Facharzt mit mehrjéhriger Berufserfahrung) und Befunder 2 (Weiterbildungsas-
sistent mit einjéhriger Berufserfahrung) gemif einer 5-Punkte-Likert-Skala (1 = hervorragende Bildqualitit, 2 =
gute Bildqualitdt, 3 = mittelméBige Bildqualitit, 4 = ausreichende Bildqualitét, 5 = ungeniigende Bildqualitat).

4.2.6.7.1. Unterschied zwischen den Befundern /257, 258/

Eine Beurteilung der subjektiven Bildqualitit wurde von zwei unabhdngigen Befundern an-
hand der in Tab. 3.6 dargestellten 5-Punkte-Likert-Skala vorgenommen. Abb. 4.34 zeigt die
Abweichung der Beurteilungen der Darstellung der anatomischen Region bzw. der mutmalli-
chen diagnostischen Verwertbarkeit des Gesamtbildes durch beide Befunder in Likertskalen-
punkten in Abhdngigkeit vom Untersuchungsprotokoll und von der CT-Technik; demnach be-
stand beziiglich der Punktebewertung bei allen Untersuchungsprotokollen und CT-Techniken
kein wesentlicher Unterschied zwischen den Befundern®.

20 Im iibrigen sollten die hervorragenden bzw. guten Bewertungen durch beide Befunder, wie sie in Abb. 4.34
durch Likert-Skalenwerte von 1 bzw. 2 zum Ausdruck gelangen, nicht a priori zu der Vermutung Anlaf3 geben,
eine geringere subjektive Bildqualitit als die erzielte sei moglicherweise diagnostisch ausreichend und damit noch
Dosisreduktionspotential vorhanden. Allerdings erfolgten die Bewertungen der subjektiven Bildqualitét in vor-
liegender Studie unter Vernachléssigung der unter klinischen Bedingungen in den diagnostischen Prozef} einzu-
beziehenden klinischen Indikationen und Fragestellungen, deren Beriicksichtigung ggf. eine gezielte Vermin-
derung der Bildqualitdt und damit eine weitere Dosisreduktion ermoglichen wiirde.
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Entsprechend variiert die Haufigkeitsverteilung der Likertskalenpunkte bei der Beurtei-
lung der Darstellung der anatomischen Region bzw. der mutmaBlichen diagnostischen Ver-
wertbarkeit des Gesamtbildes durch beide Befunder nur gering (Abb. 4.35). Aus diesem
Grunde wird im Folgenden als Qualititsparameter stets der Mittelwert der Punktewertungen
der beiden Befunder betrachtet.
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Abb. 4.36: Subjektive Qualitit der Darstellung der untersuchten anatomischen Region in Abhiingigkeit
von der Art der CT-Untersuchung und der verwendeten CT-Technik. Die subjektive Bildqualitét ist nahezu
kaum von der angewandten CT-Technik abhéngig, allerdings bewirkt die iterative Rekonstruktion bei der CT-
Untersuchung des Abdomens und bei der Pulmonalis-Angiographie eine sehr signifikante Anhebung der subjek-
tiven Bildqualitit gegeniiber der solitiren Anwendung der Rohrenstrommodulation (rot gekennzeichneter p-

Wert).

4.2.6.7.2. Subjektive Bildqualitit /257, 258/

Eine statistisch signifikante Abhéngigkeit der Qualitédt der Darstellung der untersuchten anato-
mischen Region von der eingesetzten CT-Technik konnte lediglich fiir die iterative Rekon-
struktion bei der CT-Untersuchung des Abdomens und bei der Pulmonalis-Angiographie auf-

gefunden werden (Abb. 4.36).
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Die mutmaBliche diagnostische Qualitdt des Gesamtbildes hingegen wies keine signifikante
statistische Abhéngigkeit von der CT-Technik auf (Abb. 4.37). Die vorwiegend hervorragen-
den Punktewerte bei der Beurteilung der CT-Untersuchungen des Thorax sind auf die in nahezu
samtlichen Féllen erfolgte hervorragende Darstellung des Lungenparenchyms in den Schnitt-
bildern zuriickzufiihren, welche sich als weitestgehend unabhéngig von der gewihlten CT-
Technik erwies.

Allerdings bewirkte die iterative Rekonstruktion nicht zwangsldufig eine verbesserte
diagnostische Wertigkeit der Bilddatensétze; zum einen bedingt der geometrisierte Bildaspekt
nicht zwangsldufig einen Zuwachs an diagnostischer Information, zum anderen wurden in
manchen Bildern artifizielle Artefakte wahrgenommen, welche vor dem Hintergrund der diag-
nostischen Wertigkeit des Bilddatensatzes bei sonst gutem oder sogar sehr gutem Bildeindruck
zu einer negativen Gesamtwertung fiihrten.
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Abb. 4.37: Mutmafiliche diagnostische Verwertbarkeit des Gesamtbildes in Abhiingigkeit von der Art der
CT-Untersuchung und der verwendeten CT-Technik. Die mutmalliche diagnostische Verwertbarkeit des
Gesamtbildes scheint von der angewandten CT-Technik nicht signifikant abhidngig.
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4.2.6.8. Zusammenhang zwischen objektiver und subjektiver Bildqualitit /257, 258]
NaturgemiB sollte die subjektive Bildqualitit mit der objektiven Bildqualitdt — wenn auch in
weiten, von der klinischen Indikation und der Erfahrung des Befunders bestimmten Grenzen —
korrelieren, insbesondere dann, wenn eine niedrige objektive Bildqualitit zur Beschriankung
der diagnostischen Wertigkeit eines Bilddatensatzes fiihren musste. In der Tat existiert eine
schwache lineare Korrelation zwischen dem objektiv gemessenen Bildpixelrauschen und der
subjektiven Beurteilung der Bildqualitit, wie Abb. 4.38 anhand der CT-Untersuchungen des
Schidels, des Thorax, des Abdomens sowie der Pulmonalis-Angiographie zeigt. Diese Kor-
relation ist nicht von der angewandten CT-Technik abhidngig, wie auch eine weitergehende und
hier nicht dargestellte Analyse zeigte.
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Abb. 4.38: Subjektive Qualitit der Darstellung der untersuchten anatomischen Region in Abhiingigkeit
von der CT-Untersuchung und von der Hohe des Bildpixelrauschens. Bei allen CT-Untersuchungen besteht
unabhéngig von der angewandten CT-Technik eine lineare Korrelation zwischen dem objektiven Bildpixelrau-
schen und der subjektiv wahrgenommenen Bildqualitit. Aufgrund der meist hervorragenden Darstellung des
Lungenparenchyms weist die Punktebewertung der subjektiven Bildqualitit des Thorax (b) geméaB der Likert-
Skala nur eine geringfiigige Streuung auf.

4.2.6.9. Zusammenhang zwischen Dosis und objektiver Bildqualitit /257, 258/

Aufgrund der bei konstanten Expositionsbedingungen zumindest bei nicht-iterativen Bildre-
konstruktionsverfahren bestehenden Reziprozitidt zwischen Strahlendosis und Bildpixelrau-
schen gemél der Brooks-Relation (Formel 2.20) sollte ein indirekt proportionaler Zusammen-
hang zwischen Volumen-CTDI und Bildpixelrauschen zu erwarten sein. Allerdings kann es
unter klinischen Bedingungen zu einer scheinbaren Abweichung von dieser Regel kommen,
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wie Abb. 4.39 anhand einer Darstellung des Bildpixelrauschens in Abhéngigkeit vom Volu-
men-CTDI zeigt.

Demnach war eine durch Priifung der linearen Korrelation zu erwartende negativ-lineare
Korrelation zwischen Bildpixelrauschen und Volumen-CTDI hier lediglich bei der CT-Unter-
suchung des Schidels unter Rohrenstrommodulation sowie bei der CT-Pulmonalisangiogra-
phie unter Konstantstromtechnik und unter R6hrenstrommodulation nachweisbar. Bei der CT-
Untersuchung des Abdomens tritt indessen sogar eine positive lineare Korrelation unter Kon-
stantstromtechnik auf, welche auf den bereits festgestellten Anstieg des Volumen-CTDI bzw.
des Bildpixelrauschens mit dem effektiven Diameter des Patienten vor dem Hintergrund einer
zunehmenden Insuffizienz der Feststromtechnik beziiglich einer Konstanthaltung des Bild-
pixelrauschens bei zunehmendem effektiven Diameter des Patienten hinweist. In den meisten
Fiallen war indessen — nicht zuletzt aufgrund der vergleichsweise geringen Fallzahlen — keine
eindeutige Korrelation zwischen Volumen-CTDI und Bildpixelrauschen erkennbar.
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Abb. 4.39: Bildpixelrauschen in Abhingigkeit vom Volumen-CTDI und von der CT-Technik bei den
CT-Untersuchungen (a) des Schéidels, (b) des Thorax, (c) des Abdomens sowie (d) bei der Pulmonalis-
Angiographie. Durchgezogene Linien weisen auf eine lineare Korrelation zwischen Volumen-CTDI und
Bildpixelrauschen mit einem Korrelationskoeffizienten 2 > 0,1 hin. Die gestrichelten Linien entsprechen den
Mittelwerten des Bildpixelrauschens bei den einzelnen CT-Techniken. Wie ersichtlich, besteht bei fast allen
CT-Untersuchungen eine negative Korrelation zwischen Bildpixelrauschen und Volumen-CTDI. Allein bei der
CT-Untersuchung des Abdomens unter Konstantstromtechnik zeigt sich eine positive Korrelation, welche auf
die bereits festgestellte geringe Unterdriickbarkeit des Bildpixelrauschens bei adipdseren Patienten durch die
Konstantstromtechnik hinweist. Der Einsatz iterativer Bildrekonstruktionsverfahren verringert bei allen CT-
Untersuchungen mit Ausnahme der CT-Untersuchung des Schédels das Bildpixelrauschen.
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Zur Validierung des angewandten mathematischen Dosisrekonstruktionsverfahrens wurden
mittels Thermoluminsezenzdosimetrie (TLD) physikalische Messungen der bei Standard-CT-
Untersuchungen des Schédels, des Thorax und des Abdomens unter jeweiliger Anwendung der
Konstantstromtechnik und der R6hrenstrommodulation in einem anthropomorphen physikali-
schen Phantom applizierten Organdosen sowie eine Ermittlung der hieraus resultierenden Ef-
fektivdosen vorgenommen und den sich mit Hilfe des DICT-Algorithmus und der Dosisrekon-
struktions-Software CT-EXPO aus den DICOM-Datensitzen ergebenden Werten gegeniiber-
gestellt. Eine Validierung bzw. Bestimmung des mit Hilfe der R6hrenstrommodulation zu er-
zielenden maximalen Dosisreduktionspotentials war nicht intendiert. Auch war eine Beurtei-
lung der objektiven und subjektiven Bildqualitdt nicht zuletzt aufgrund der durch die Homo-
genitét der artifiziellen anatomischen Strukturen des physikalischen Phantoms weder intendiert
noch sinnvoll. Auch konnte aufgrund der mangelnden Darstellbarkeit von Gefdl3systemen eine
Pulmonalis-Angiographie am verwendeten physikalischen Phantom nicht simuliert werden.
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Abb. 4.40: Abweichung der berechneten von der mit Hilfe von Messungen bestimmten effektiven Dosis
im anthropomorphen physikalischen Phantom. Die aus der Gesamtheit der mit Hilfe der TLD im anthropo-
morphen Phantom physikalisch gemessenen Organdosen errechneten effektiven Dosen stehen in guter Uber-
einstimmung mit den mit Hilfe des DICT-Algorithmus und des CT-Expo-Algorithmus aus den DICOM-Da-
tensdtzen ermittelten effektiven Dosen. DICT-Algorithmus und CT-EXPO-Algorithmus weichen lediglich bei
der CT-Untersuchung des Schidels um etwa 25% voneinander ab, bei den CT-Untersuchungen im thorako-
abdominalen Bereich betrdgt die maximale Abweichung zwischen DICT-Algorithmus und CT-Algorithmus
etwa 15%.

Abb. 4.40 zeigt die Abweichung der durch mathematische Dosisrekonstruktion von den durch
physikalische TLD-Messungen erhaltenen Werten fiir die effektive Dosis; demnach besteht vor
allem im thorakoabdominalen Bereich eine gute Ubereinstimmung zwischen den gemessenen
und den errechneten Dosiswerten. Der den CT-EXPO-Algorithmus nutzende DICT-Algorith-
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mus liefert dabei Werte fiir die effektive Dosis, welche um maximal 15% von den Werten des
eigentlichen CT-EXPO-Algorithmus abweichen; allerdings berticksichtigt der DICT-Algorith-
mus im Gegensatz zum reinen CT-EXPO-Algorithmus bei der Dosimetrie die anhand der
DICOM-Datensitze am Befundungsmonitor vordefinierten Scangrenzen sowie die in den
DICOM-Datensédtzen in jedem Schichtbild dokumentierten Rohrenstromprofile, welche bei
CT-EXPO durch Standard-Rohrenstromprofile ersetzt werden.
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Abb. 4.41: Organdosen und effektive Dosis bei der CT-Untersuchung des Schédels anhand von TLD-Mes-
sungen und Berechnungen mit Hilfe des DICT-Algorithmus. Die teils deutlichen Abweichungen der errech-
neten von den gemessenen Organdosen diirften auf die unterschiedliche Konstruktion des physikalischen ATOM-
Phantoms und der in CT-Expo implementierten mathematischen Phantome ADAM und EVA zuriickzufiihren
sein. Die effektive Dosis wird durch beide Verfahren annihernd gleich wiedergegeben.

Die sich anhand von TLD-Messungen und Dosisberechnungen mit Hilfe des DICT-Algorith-
mus ergebenden Werte fiir diverse Organdosen und die effektive Dosis bei der CT-Untersu-
chung des Schidels, des Thorax und des Abdomens unter Konstantstromtechnik und unter
Rohrenstrommodulation wurden in den Abbildungen 4.41 bis 4.43 sowie in Tab. 4.28 wieder-
gegeben. Wie anhand der Abbildungen ersichtlich wird, ergeben sich die grofiten Abweichun-
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gen zwischen gemessenen und errechneten Organdosen bei der CT-Untersuchung des Schi-
dels. Der Grund hierfiir diirfte in einer unterschiedlichen Konstruktion des fiir die TLD-Mes-
sungen verwendeten physikalischen ATOM-Phantoms und der fiir die Dosisberechnungen in
den CT-EXPO-Algorithmus implementierten mathematischen Phantome ADAM und EVA zu
suchen sein.
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Abb. 4.42: Organdosen und effektive Dosis bei der CT-Untersuchung des Thorax anhand von TLD-Mes-
sungen und Berechnungen mit Hilfe des DICT-Algorithmus. Die teils deutlichen Abweichungen der errech-
neten von den gemessenen Organdosen diirften auf die unterschiedliche Konstruktion des physikalischen ATOM-
Phantoms und der in CT-Expo implementierten mathematischen Phantome ADAM und EVA zuriickzufiihren
sein. Die effektive Dosis wird durch beide Verfahren annihernd gleich wiedergegeben.

Auch bei den CT-Untersuchungen des Thorax und des Abdomens kommt es zu teilweise deut-
lichen Abweichungen zwischen den gemessenen und den errechneten Organdosen, vor allem
im Bereich der nicht unmittelbar im Primérstrahlenfeld lokalisierten Organe und Gewebe.
Demgegeniiber weist die effektive Dosis eine vergleichsweise geringe Variation mit dem Do-
sisrekonstruktionsverfahren auf, was im Ubrigen zumindest teilweise auf die der effektiven
Dosis inhdrente Stabilitdt gegeniiber geringen ortlichen Variationen bei der Strahlenexposition
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zuriickzufiihren sein konnte [64]. Insgesamt kann somit die Rekonstruktion der effektiven Do-
sis als im Sinne der Fragestellung valide Dosisgrof3e bezeichnet werden.
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Abb. 4.43: Organdosen und effektive Dosis bei der CT-Untersuchung des Abdomens anhand von TLD-
Messungen und Berechnungen mit Hilfe des DICT-Algorithmus. Die teils deutlichen Abweichungen der
errechneten von den gemessenen Organdosen diirften auf die unterschiedliche Konstruktion des physikalischen
ATOM-Phantoms und der in CT-Expo implementierten mathematischen Phantome ADAM und EVA zuriick-
zufiihren sein. Die effektive Dosis wird durch beide Verfahren annihernd gleich wiedergegeben.

Tab. 4.28: Aus Messwerten (TLD) und mathematischen Werten (CT-EXPO, DICT) ermittelte effektive
Dosis fiir die CT-Untersuchung des Schiidels, des Thorax und des Abdomens unter Konstantstromtechnik
und unter Rohrenstrommodulation.

CT- Konstantstrom Rohrenstrommodulation
Untersuchung TLD CT-EXPO DICT TLD CT-EXPO DICT
Schédel 1.37 1.2 1.6 1.36 1.1 1.0
Thorax 4.30 4.0 3.7 3.10 2.8 3.3
Abdomen 11.2 10.6 12.3 6.20 6.4 6.3




4.4. Zusammenfassung der Dosisdaten aus Literaturstudie und Querschnittsstudie

Im Folgenden sollen die in Hinblick auf die Dosisstudie wichtigsten Ergebnisse einander ge-
geniibergestellt bzw. zusammengefasst werden. Hierzu wurden die in der Literatur und in der
Querschnittsstudie verwendeten Werte fiir den CTDIyo1, fiir das DLP und fiir die effektive Dosis
in gepoolter Form in den Abb. 4.44 bis 4.46 zusammengefasst. Wie ersichtlich ist, zeigt sich
bei allen Protokollen eine tendenzielle Abnahme der Strahlendosis bei CT-Untersuchungen
unter Rohrenstrommodulation gegentiber der Konstantstromtechnik und unter Réhrenstrom-
modulation in Verbindung mit iterativen Verfahren gegeniiber der reinen Réhrenstrommodu-
lation. Allerdings sind die Auswirkungen auf den Dosisbedarf zwischen den einzelnen CT-
Techniken keineswegs immer statistisch signifikant.
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Abb. 4.44: CTDIya in Abhiingigkeit von der Art der CT-Untersuchung und der verwendeten CT-Technik.
Waihrend sich bei der CT-Untersuchung des Thorax bzw. bei der Pulmonalis-Angiographie die CT-Technik nicht
bzw. kaum auf den CTDI,o auswirkt, zeigt sich bei den anderen CT-Untersuchungen eine teilweise statistisch
hoch signifikante Verminderung des CTDI,, bei Verwendung der R6hrenstrommodulation und der iterativen Re-
konstruktion (rot gekennzeichnete p-Werte). Der als dunkelgriine Linie eingezeichnete Referenzwert des Bundes-
amtes flir Strahlenschutz aus dem Jahr 2010 fiir den CTDI,, wurde bei fast allen CT-Untersuchungen vornehmlich
bei Anwendung der Rohrenstrommodulation und der iterativen Rekonstruktion unterschritten.
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Bei der CT-Untersuchung des Schidels wurde in der Mehrzahl der Fille von der Konstant-
stromtechnik Gebrauch gemacht. Dennoch zeigt sich hier bei Anwendung der R6hrenstrom-
modulation gegeniiber der Konstantstromtechnik eine statistisch signifikante Reduktion des
durch den CTDIyq definierten Dosisbedarfs; hingegen ist eine Verminderung der durch das
DLP und die effektive Dosis charakterisierten Strahlenexposition des Patienten hier nicht
statistisch signifikant nachweisbar. Iterative Verfahren wurden zu selten angewandt, um iiber
deren Auswirkungen auf die Strahlendosis statistisch signifikante Aussagen treffen zu konnen.

Tab. 4.29: Mittelwert und Perzentilenwerte des CTDIvo1 in Abhéingigkeit von der CT-Untersuchung und
von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungsprotokollen und Dosis-
reduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken der Réhrenstrommo-
dulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen eine deutliche
Reduktion des Volumen-CTDI.

: CTDIva (mGy)
2
— S
E % P ilen (%
g Dosisreduktionstechnik -"E = % g erzentilen (%)
=
= =|E| 2|5
S1E |22 1025|5079
< | ===
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>
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Rekonstruktion
Konstantstromtechnik 43 1] 11| 23 2 7 9 15 22
"
[
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Rekonstruktion
= Konstantstromtechnik 38 8| 15| 27| 10 11 15 20 22
%)
g .
S Rohrenstrommodulation 159 4| 12| 37 7 8 10 15 20
n . . .
< Rohrenstrorgmodulahon+1terat1ve 7 1 3 18 3 6 3 10 14
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£ | Konstantstromtechnik 15 5111 27 5 6 9 11 25
=
(=}
é Rohrenstrommodulation 34 2 9| 32 3 5 8 11 14
= [ Rohrenst dulation + iteraf]
= O6hrenstrommodulation + iterative
S | Rekonstruktion 16 1 71 19 1 4 8 10 15

Tab. 4.30: Reduktion des medianen CTDIvoi durch verschiedene CT-Techniken vs. Konstantstromtechnik.
Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktionsfaktoren. Ein Faktor = 0 bedeutet
keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer Signifikanz.

CT-Technik Schidel Thorax Abdomen | CTA-Pulmonalis
Reduktion des CTDIvo (%)
Konstantstromtechnik 0 0 0 0
Rohrenstrommodulation 60 - 33 11
Rohrenstrommodulation +
iterative Rekonstruktion 49 22 47 1
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Bei der CT-Untersuchung des Thorax kam vornehmlich die R6hrenstrommodulation zur An-
wendung. Bei Anwendung der Réhrenstrommodulation konnte lediglich eine statistisch signi-
fikante Reduktion der effektiven Dosis, nicht aber der anderen Dosisgroflen gegeniiber der
Konstantstromtechnik gefunden werden. Iterative Verfahren in Verbindung mit der Réhren-
strommodulation wurden auch bei der Thoraxuntersuchung vergleichsweise selten eingesetzt,
dennoch ist hier gegeniiber der reinen Rohrenstrommodulation eine statistisch signifikante
Reduktion des CTDlIyo1, des Dosis-Langen-Produktes sowie der effektiven Dosis nachweisbar.
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Abb. 4.45: Dosis-Lingen-Produkt in Abhiingigkeit von der Art der CT-Untersuchung und der verwen-
deten CT-Technik. Bei allen CT-Untersuchungen zeigt sich eine geringe bis deutliche Verminderung des DLP
bei Verwendung der Rohrenstrommodulation und der iterativen Rekonstruktion, jedoch nur selten statistisch
signifikant. Der als dunkelgriine Linie eingezeichnete Referenzwert des Bundesamtes fiir Strahlenschutz aus
dem Jahr 2010 fiir das DLP wurde vornehmlich bei Anwendung der R6hrenstrommodulation und der iterativen
Rekonstruktion unterschritten.

Bei der CT-Untersuchung des Abdomens fand in Analogie zu den CT-Untersuchungen des
Thorax vornehmlich die Rohrenstrommodulation Anwendung. Hier konnte in nahezu allen
Fillen eine statistisch signifikante Reduktion des Dosisbedarfs und der Strahlenexposition des
Patienten bei Verwendung der Rohrenstrommodulation gegeniiber der Konstantstromtechnik
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sowie bei Verwendung der Rohrenstrommodulation in Verbindung mit iterativen Verfahren
gegeniiber der reinen Réhrenstrommodulation gefunden werden.

Tab. 4.31: Mittelwert und Perzentilenwerte des Dosis-Léingen-Produktes in Abhéingigkeit von der CT-Un-
tersuchung und von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungsproto-
kollen und Dosisreduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken der
Rohrenstrommodulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen eine
deutliche Reduktion des Dosis-Langen-Produktes.
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Tab. 4.32: Reduktion des medianen Dosis-Lingen-Produktes durch verschiedene CT-Techniken vs. Kon-
stantstromtechnik. Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktionsfaktoren.
Ein Faktor = 0 bedeutet keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer Signifi-
kanz.

CT-Technik Schidel Thorax Abdomen | CTA-Pulmonalis
Reduktion des Dosis-Lingen-Produktes (%)
Konstantstromtechnik 0 0 0 0
Rohrenstrommodulation 32 - 31 16
Rohrenstrommodulation +
iterative Rekonstruktion 36 39 33 27
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Insbesondere zeigte sich im Rahmen der Querschnittsstudie, dass der Anstieg des Dosisbedarfs
der Untersuchung bzw. die Strahlenexposition des Patienten mit dem Durchstrahlungsdurch-
messer des Patienten bei Verwendung der reinen Rohrenstrommodulation gegeniiber der Kon-
stantstromtechnik niedriger bzw. bei Anwendung der Réhrenstrommmodulation in Verbin-
dung mit iterativen Verfahren gegeniiber der reinen Rohrenstrommodulation noch niedriger
gehalten werden konnte als unter Konstantstromtechnik, unter welcher das mAs-Produkt dem
zunehmendem Durchstrahlungsdurchmesser deutlich angepasst werden musste. Auch zeigte
sich, dass durch Anwendung der Rohrenstrommodulation und iterativer Verfahren das Bild-
rauschen trotz mit zunehmendem Durchstrahlungsdurchmesser simultan zunehmendem Streu-
strahlungsvolumens gegeniiber der Konstantstromtechnik weitgehend unverdndert gehalten
werden konnte.

200 200
- 1751 (a) Schédel (b) Thorax F175
2 150 3 Gesamtzahl der Referenzen = 113 Gesamtzahl der Referenzen = 219 F 150 2
% 125 4 F 125 $
% 100 4 E 100 =
N 75 4 E 75 ﬁ
£ 501 E50 %
254 E 25
0 0
[ Feststromtechnik [ Feststromtechnik E 40
[ Réhrenstrommodulation [ Rohrenstrommodulation
77 Rohrenstrommodulation + Iterative Rekonstruktion [ Rohrenstrommodulation + Iterative Rekonstruktion
r 35
p =0.06 p <0.001
@ F30 &
g’ =0.81 p=0.22—— ——p=0.02 p = 0.004 \E/
2 5 p=0st— - pEReTT ) F2s @
[ [7)
8 — a
r 20
2 — 2
3 3
2 F1e 8
w w
r 10
—
— .
# I
0 0
- 757 (c) Abdomen (d) CTA-Pulmonalis P75
150 1 F 150
2 Gesamtzahl der Referenzen = 250 Gesamtzahl der Referenzen = 64 2
o 125 4 F125 o©
Z) 100 4 F 100 (£
§ v T
g 75 LY
£ 501 F50 %
25 4 E 25
0 0
[ Feststromtechnik [ Feststromtechnik F 50
35 1 @3 Réhrenstrommodulation [ Roéhrenstrommodulation
77 Rohrenstrommodulation + Iterative Rekonstruktion [ Rohrenstrommodulation + Iterative Rekonstruktion F 45
30 4
= p <0.001 p=0.004 F 40 =
(%]
£ 25 Fas @
% p=0.03 -1 p=0.03— —— p=0.001 T p=0.36 E 30 %
Q20 o
a Fs O
2 15 S 1 2
X 151 F2o X2
& &
10 F15
F 10
5 -
R E— Fo
0 0

Abb. 4.46: Effektive Dosis des Patienten in Abhéngigkeit von der Art der CT-Untersuchung und der ver-
wendeten CT-Technik. Wihrend sich bei der CT-Untersuchung des Schédels die CT-Technik nur gering auf die
effektive Dosis auswirkt, zeigt sich bei den anderen CT-Untersuchungen eine teilweise statistisch hoch signifikante
Verminderung der effektiven Dosis bei Verwendung der Roéhrenstrommodulation und der iterativen Rekon-
struktion (rot gekennzeichnete p-Werte).
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Tab. 4.33: Mittelwert und Perzentilenwerte der effektiven Dosis in Abhéingigkeit von der CT-Untersuchung
und von der CT-Technik. Mittelwerte und Mediane stehen bei den einzelnen Untersuchungsprotokollen und
Dosisreduktionstechniken in guter Ubereinstimmung miteinander. Die Dosisreduktionstechniken der Réhren-
strommodulation bzw. iterativen Bildrekonstruktion bewirken bei allen Untersuchungsprotokollen eine deutliche
Reduktion der effektiven Dosis.
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Tab. 4.34: Reduktion der medianen effektiven Dosis durch verschiedene CT-Techniken vs. Konstantstrom-
technik. Angegeben sind auf die Konstantstromtechnik bezogene prozentuale Reduktionsfaktoren. Ein Faktor =
0 bedeutet keinen Reduktionseffekt. Fett und kursiv gedruckte Werte sind von statistischer Signifikanz.

CT-Technik Schidel Thorax Abdomen | CTA-Pulmonalis
Reduktion der effektiven Dosis (%)
Konstantstromtechnik 0 0 0 0
Rohrenstrommodulation 4 10 21 37
Rohrenstrommodulation +
iterative Rekonstruktion 30 37 31 30

Bei der CT-Pulmonalis-Angiographie wurde offensichtlich keinem der Verfahren der Kon-
stantstromtechnik, der Réhrenstrommodulation und der Réhrenstrommodulation in Verbin-
dung mit iterativen Verfahren ein signifikanter Vorzug gegeben. Auch ist die erhobene Fallzahl
zu gering, um wesentliche Aussagen treffen zu konnen. Allerdings ist wie bei den bereits be-
sprochenen CT-Protokollen ein Trend zur zunehmenden Reduktion des Dosisbedarfs bei der
Verwendung der Rohrenstrommodulation gegeniiber der Konstantstromtechnik bzw. bei der
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kombinierten Anwendung der Rohrenstrommodulation und iterativer Verfahren gegeniiber der
Anwendung der reinen Rohrenstrommodulation erkennbar; signifikant ist die Reduktion der
effektiven Dosis des Patienten durch letztgenannte Verfahren.

Tab. 4.35: Signifikanz der Unterschiede zwischen diversen Merkmalen bei unterschiedlichen CT-
Techniken und unterschiedlichen CT-Protokollen im Rahmen der Querschnittsstudie (K) und der Litera-
turstudie (L) sowie prozentuale mediane Unterschiede der Merkmalsausprigungen zwischen den CT-
Techniken. K = Konstantstromtechnik; RM = Roéhrenstrommodulation; IR = iterative Rekonstruktion; graue
Felder = statistisch nicht signifikant (p > 0,05); griine Felder = statistisch signifikant (p < 0,05); gelbe Felder =
statistisch sehr signifikant (p < 0,01); rote Felder = statistisch hochsignifikant (p < 0,001).
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In Tabelle 4.35 wurde die statistische Signifikanz der Auswirkungen der R6hrenstrommodu-
lation und der iterativen Verfahren gegeniiber der Konstantstromtechnik auf die die in der
Literaturstudie und in der Querschnittsstudie untersuchten Merkmale in einer Ubersicht auf-
gefiihrt. Wie ersichtlich, konnte die Auswirkung von Einflussparametern wie Durchstrahlungs-
durchmesser, Pitch-Faktor und Réhrenspannung bei der Bewertung der Ergebnisse in aller
Regel vernachldssigt werden. Hingegen konnte vor allem bei den CT-Untersuchungen des Tho-
rax und des Abdomens ein signifikanter Zusammenhang zwischen der angewandten CT-Tech-
nik und dem Dosisbedarf der CT-Untersuchung bzw. der Strahlenexposition des Patienten
gefunden werden. Allerdings konnte die initiale Erwartung einer Verbesserung der Signifi-
kanzniveaus durch ein Pooling der Ergebnisse der Literaturstudie mit jenen der Querschnitts-
studie nicht erfiillt werden.






5. Diskussion und Ausblick /94, 257, 258]
5.1. Methodik

5.1.1. Literaturstudie

Literatur zu Strahlendosis, Dosisreduktionsverfahren und Bildqualitit existiert fiir die Compu-
tertomographie in geradezu uniiberschaubarer und hier in weit gréerer Menge als fiir die kon-
ventionelle Radiologie (sieche hierzu etwa [73, 90]). Aus diesem Grunde wurde eine begonnene
elektronische Literaturrecherche zugunsten einer manuellen Durchmusterung der am meisten
verbreiteten medizinphysikalischen und radiologischen Zeitschriften fallengelassen. Die Lite-
raturstudie umfasst somit Arbeiten aus hauptsichlich vierzehn der am meisten verbreiteten me-
dizinphysikalischen und radiologischen Zeitschriften, wobei sdmtliche Arbeiten, wie sie seit
der klinischen Etablierung der Computertomographie bis zum Ende des Forschungsprojektes,
also von Anfang 1973 bis Ende 2015 und mithin in einem Zeitraum von iiber vierzig Jahren,
erschienen sind, in die Literaturstudie aufgenommen wurden.

Die Gesamtzahl von iiber 1100 betrachteten Publikationen {ibertrifft somit zumindest be-
ziliglich der Anzahl der betrachteten Publikationen nach bestem Wissen des Verfassers dieser
Arbeit selbst die umfangreiche Literaturstudie von Dougeni et al [91], wodurch im Gegensatz
zu jener beziiglich mancher Aspekte nicht nur deskriptiv-statistische, sondern auch quantitativ-
statistische Aussagen getroffen werden konnten. Dabei zeigte sich jedoch, dass statistisch sig-
nifikante Aussagen oftmals nicht in befriedigendem Malle moglich sind.

Aus Griinden der Ubersicht wurde versucht, die Literaturreferenzen im Literaturanhang
beziiglich deren Hauptaussage im Kontext zur vorliegenden Arbeit nach Rubriken zu ordnen,
wobei zwischen der Allgemeinradiologie und der Kinderradiologie unterschieden wurde.

5.1.2. Querschnittsstudie

Insgesamt nahmen 41 radiologische Einrichtungen mit zusammen 280 CT-Untersuchungen des
Schédels, des Thorax und des Abdomens bzw. Pulmonalis-Angiographien an der retrospekti-
ven Querschnittsstudie teil. Die Auswahl der Teilnehmer erfolgte wesentlich nach logistischen
Gesichtspunkten mit Schwerpunkten in Bayern und Hamburg. Hierdurch konnte zwar natur-
gemilB keine reprisentative Ubersicht iiber die Anwendung der verschiedenen CT-Techniken
im Bundesgebiet geschaffen, jedoch aufgrund der weitgehend homogenen Verteilung der Art
der teilnehmenden Einrichtungen (radiologische Praxen, radiologische Praxisverbiinde, Ront-
genabteilungen in Krankenhdusern und Universititskliniken) ein Einblick {iber die relative
Anwendung der einzelnen Technologien in den verschiedenen Einrichtungen gegeben werden.

Die Uberzahl der Datensétze wurde vom Verfasser der Arbeit jeweils vor Ort in Zusam-
menarbeit mit den klinisch titigen Kolleginnen und Kollegen der jeweiligen radiologischen
Einrichtungen erhoben. Dieses Procedere erwies sich als sinnvoll, da eine eindeutige Identifi-
kation der Dosisreduktionstechniken der Rohrenstrommodulation und iterativen Bildrekon-
struktion anhand der DICOM-Datensitze aufgrund mangelhafter bzw. fehlender entsprechen-
den Kennzeichnung der Datensétze in den DICOM-Headern durch die Gerétehersteller viel-
fach nicht moglich war.

Der im Rahmen der vorliegenden Studie zur Rekonstruktion der bei den einzelnen CT-
Untersuchungen applizierten Strahlendosen vom Verfasser entwickelte DICT-Algorithmus
erlaubte einen automatischen Transfer der in den DICOM-Bilddatensétzen enthaltenen dosis-
relevanten Informationen zu der kommerziell verfiigbaren Microsoft-Excel-basierten Dosis-
rekonstruktionssoftware CT-Expo. Aufgrund der im DICOM-Standard vorgesehenen Erfas-
sung nahezu sdmtlicher relevanter Expositionsparameter wiirde der DICOM-Standard eine her-
vorragende Grundlage zur Dosisrekonstruktion bilden, erfolgte in der Praxis nicht hdufig durch
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die Geritehersteller eine Umgehung des hochstandardisierten DICOM-Formates durch eine
nach Auffassung des Autors dieser Arbeit unkorrekte Belegung der sogenannten Official Tags
zugunsten frei definierbarer Private Tags, mithin also eine willkiirliche Festlegung firmenspe-
zifischer Datenfelder und damit eine im Sinne des DICOM-Standards unkorrekte Notation der
Expositionsparameter. Diese vielfach mangelhafte Beschickung des DICOM-Headers durch
die Geritehersteller flihrte in der praktischen Durchfiihrung der Strahlendosimetrie im Rahmen
dieser Arbeit zu der Komplikation, dass die Entwicklung der Software um eine Abfrage von
zunichst manuell zu identifizierenden Private Tags in Abhéngigkeit vom Scannerfabrikat er-
weitert werden musste. In analoger Weise mag hierdurch auch die Entwicklung fabrikatiiber-
greifender Dosismanagement-Systeme mit Komplikationen behaftet sein und die Idee des
DICOM-Standards als internationaler Datenbankstandard sukzessive ad absurdum gefiihrt
werden. Aus diesen Griinden wire die Forderung nach einer Reoptimierung des DICOM-Stan-
dards von Seiten der Geratehersteller bzw. die Einleitung von Normenverfahrens zum DICOM-
Standard wiinschenswert.

5.1.3. Phantomstudie
Ziel der in Zusammenarbeit mit dem Bundesamt fiir Strahlenschutz entstandenen Phantom-
studie war die messtechnische Uberpriifung der bei den CT-Untersuchungen des Schidels, des
Thorax und des Abdomens jeweils unter Konstantstromtechnik und Réhrenstrommodulation
applizierten Strahlendosen zur Validierung der mathematischen Dosisrekonstruktion. Hierbei
zeigten sich teils wesentliche Abweichungen zwischen physikalischer und mathematischer
Strahlendosimetrie, die teils auf die konstruktiven Unterschiede des zur TLD-Dosimetrie ein-
gesetzten ATOM-Phantoms und der in den Dosisrekonstruktionsalgorithmus CT-Expo imple-
mentierten mathematischen Phantome ADAM und EVA, teils auf die per se punktuellen TLD-
Messungen im Gegensatz zur Berechnung der Organdosen anhand des als Mittelwert des drei-
dimensionalen Dosisprofils zu betrachtenden Volumen-CTDI zuriickzufiihren sein diirften.
Demgegeniiber war eine Validierung der Wirksamkeit der R6hrenstrommodulation und
der iterativen Bildrekonstruktionsverfahren anhand der Phantomstudie nicht intendiert und
wurde demgemal auch nicht durchgefiihrt, zumal eine valide Simulation klinischer Bedingun-
gen neben Dosismessungen auch eine simultane Beurteilung der objektiven und subjektiven
Bildqualitit erfordert hitte, deren Durchfithrung aufgrund der sehr homogenen und artifiziellen
anatomischen Strukturen des physikalischen ATOM-Phantoms bereits a priori als sehr kom-
plex und als den Rahmen der vorliegenden Arbeit sprengend zu bezeichnen gewesen wiren.
Aus dem gleichen Grunde erfolgte auch keine Simulation der Auswirkungen einer Anwendung
iterativer Bildrekonstruktionsverfahren auf die Strahlendosis und die objektive wie subjektive
Bildqualitit. Ebenso wurde aufgrund mangelnder Simulierbarkeit am ATOM-Phantom auch
die Pulmonalis-CT-Angiographie in der Phantomstudie nicht beriicksichtigt.

5.2. Ergebnisse der Literaturstudie und der Querschnittsstudie

Die allgemein bekannte Tatsache der stetigen Zunahme der medizinisch bedingten mittleren
Strahlenexposition der internationalen und insbesondere der bundesdeutschen Bevolkerung um
einen Faktor 6 bis 10 aufgrund eines Anstiegs der Haufigkeit von CT-Untersuchungen wird in
mehreren Publikationen weitgehend iibereinstimmend berichtet. Insgesamt kann festgestellt
werden, dass die medizinische Strahlenexposition der Bevolkerung heute definitiv im Wesent-
lichen und in zunehmendem MaBe durch die Computertomographie definiert wird. Internatio-
nale Bestrebungen, dieser Entwicklung entgegenzuwirken, diirften sich bei der Computertomo-
graphie aufgrund der im Gegensatz zur konventionellen Radiologie noch zahlreicheren Ein-
flussfaktoren wesentlich komplexer gestalten; so spielen nicht nur wie in der konventionellen
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Radiologie die Strahlenqualitét, die Anthropometrie des Patienten und die Empfindlichkeit der
Bilddetektorsysteme eine Rolle, sondern dariiber hinaus auch Scannerfabrikat, Zeilenzahl, Ge-
samtkollimation, Scanmodus, Pitch-Faktor, Scanlédnge und angewandte Bildverarbeitungs- und
Dosisreduktionstechniken wie Rohrenstrommodulation, organbasierte Rohrenstrommodula-
tion sowie iterative Bildrekonstruktionsverfahren. Die Moglichkeit zur multimodalen Kombi-
nation dieser Dosisreduktionstechniken mit ihren jeweils unterschiedlichen Auswirkungen auf
Strahlendosis und Bildqualitit erschwert das Auffinden einer optimalen CT- Untersuchungs-
technik im Gegensatz zur konventionellen Radiologie deutlich. Dariiber hinaus kompliziert der
wesentlich von der subjektiven Bildwahrnehmung beeinflusste Befundungsprozess, welcher
nur bedingt mit objektiven Bildqualitétskriterien korreliert und i{iberdies auch von der klini-
schen Indikation abhingig ist, die Suche nach einer objektiv gilinstigsten Untersuchungstechnik
weiter. Obwohl im Rahmen dieser Arbeit der Versuch unternommen wurde, diesen Unwégbar-
keiten durch eine Erhohung der Zahl der Referenzen etwa gegeniiber der bereits sehr umfang-
reichen Arbeit von Dougeni et al. [91] zu begegnen, kdnnen wohl dennoch aus der Literatur-
studie nur wenige eindeutige Schliisse gezogen werden.

5.2.1. CT-Techniken

Wie die Literaturiibersicht nahelegt, existieren zahlreiche Ansétze zur Dosisreduktion in der
Computertomographie, als deren haufigste Rohrenspannungsadaptation, R6hrenspannungsmo-
dulation, Rohrenstrommodulation, organbasierte Rohrenstrommodulation, Anwendung physi-
kalischer Abschirmungen, High-Pitch-Techniken sowie die Verfahren zur iterativen Bildre-
konstruktion zu nennen sind. In der vom Bundesamt fiir Strahlenschutz beauftragten Quer-
schnittsstudie sollte der Einfluss der Konstantstromtechnik, der Rohrenstrommodulation, der
iterativen Bildrekonstruktion sowie der Dual-Energy-CT auf Strahlendosis und Bildqualitat
untersucht werden; aufgrund des zum Zeitpunkt der Studie noch vergleichsweise seltenen Ein-
satzes der Dual-Energy-CT wurde diese Untersuchungstechnik in der Studie nicht betrachtet.
Auch wurden aufgrund der vergleichsweise seltenen Anwendung der Computertomographie in
der padiatrischen Radiologie padiatrische CT-Untersuchungen in der Querschnittsstudie nicht
bertiicksichtigt.

Wie in vorliegender Querschnittsstudie gezeigt werden konnte, wurden von den erhobe-
nen CT-Untersuchungen etwa 20% in Konstantstromtechnik, etwa 50% unter R6hrenstrom-
modulation und etwa 30% unter kombinierter Verwendung von Réhrenstrommodulation und
iterativen Bildrekonstruktionsverfahren durchgefiihrt. Demnach zéhlte die CT-Technik der
Rohrenstrommodulation zum Zeitpunkt der Studie bereits zum klinischen Standard. Hingegen
wurden die iterativen Verfahren noch nicht flichendeckend eingesetzt; hierfiir diirfte neben
finanziellen und logistischen Griinden auch die von manchen Studienteilnehmern berichtete
intuitive Ablehnung des ungewohnten Bildaspekts durch viele Radiologinnen und Radiologen
eine Rolle gespielt haben. Die Dual-Energy-Technik schien nicht zuletzt aufgrund des hohen
technischen und kommerziellen Aufwandes zumindest vorldufig noch wenigen klinischen
Zentren vorbehalten gewesen zu sein.

Wohl aufgrund der anthropometrischen Gegebenheiten wurde die Konstantstromtechnik
vornehmlich — wenn auch nicht ausschlieBlich - bei der CT-Untersuchung des Schidels einge-
setzt, wihrend bei den CT-Untersuchungen des Thorax und des Abdomens sowie bei der Pul-
monalis-Angiographie vorwiegend die CT-Technik der Réhrenstrommodulation angewandt
wurde. In diesem Zusammenhang konnte festgestellt werden, dass sich die Stichprobe der kli-
nischen Einrichtungen in Deutschland offenbar vornehmlich im Betreuungsbereich der vier
GroBgeritehersteller General Electrics, Philips, Siemens und Toshiba (in alphabetischer Rei-
henfolge) befand. Da die CT-Techniken der Rohrenstrommodulation bzw. der iterativen Re-
konstruktion in die CT-Geréte implementiert sind bzw. in Form von geréiteassoziierten Soft-
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ware-Paketen vertrieben werden, diirften Verbreitung und Einsatzmodus dieser Techniken na-
turgemaf ganz entscheidend vom Angebotsspektrum der Gerétehersteller determiniert werden.

5.2.2. Auswirkung der CT-Technik auf Strahlendosis und Bildqualit:it

In Tab. 4.35 wurde als Synopsis der Befunde aus Abschnitt 4 die statistische Signifikanz der
im Rahmen der Literaturstudie und der Querschnittsstudie untersuchten Unterschiede zwischen
Konstantstromtechnik und Roéhrenstrommodulation, zwischen Konstantstromtechnik und Ro6h-
renstrommodulation in Verbindung mit iterativen Verfahren sowie zwischen Rohrenstrommo-
dulation alleine und Réhrenstrommodulation in Verbindung mit iterativen Verfahren beziiglich
der Expositions-, Dosis- und Bildqualititsparameter fiir die CT-Untersuchungen des Schadels,
des Thorax, des Abdomens sowie flir die CT-Pulmonalis-Angiographie dargestellt.

Bei den iterativen Verfahren wurde nicht zwischen den einzelnen Algorithmen der verschie-
denen Hersteller unterschieden, da zur Aufldsung statistisch signifikanter Unterschiede vor
dem Hintergrund verschiedener iterativer Algorithmen und innerhalb dieser durch den Anwen-
der variabel justierbarer Iterationsstufen die Anzahl der erhobenen Bilddatensétze nicht ausrei-
chend schien.
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70 - Konstantstromtechnik
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Abb. 5.1: Mittlere Dosisreduktion in Abhiingigkeit von der Art der CT-Untersuchung und der verwendeten
CT-Technik in der gepoolten Studie. Eingezeichnet wurden die aus den Reduktionsfaktoren fiir gepoolte CTDIyq,
DLP und effektive Dosis berechneten mittleren Dosisreduktionsfaktoren fiir die CT-Untersuchung des Schédels,
des Thorax, des Abdomens sowie fiir die CT-Pulmonalis-Angiographie jeweils unter Beriicksichtigung der Rohren-
strommodulation gegeniiber der Konstantstromtechnik, der R6hrenstrommodulation in Verbindung mit iterativen
Verfahren gegeniiber der reinen Rohrenstrommodulation sowie der Rohrenstrommodulation in Verbindung mit
iterativen Verfahren gegeniiber der Konstantstromtechnik. Wie ersichtlich, kommt der R6hrenstrommodulation bei
allen Protokollen eine herausragende Bedeutung zu.
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Die Tatsache, dass bei den meisten CT-Protokollen und den meisten CT-Techniken kein sta-
tistisch signifikanter Unterschied zwischen dem effektiven Diameter des Patienten und zwi-
schen den Expositionsparametern festgestellt werden konnte, l4sst die einzelnen CT-Techniken
als von anthropometrischen Einfliissen durch das Patientenkollektiv weitgehend unabhéngige
Einflussgroflen auf Bildqualitdt und Strahlendosis erscheinen, welche Feststellung vor dem
Hintergrund der Tatsache, dass Dosisbedarf und Bildqualitét radiologischer Untersuchungen
entscheidend vom effektiven Diameter des Patienten bestimmt sein sollten, bedeutsam scheint.
Somit kann im Folgenden der Einfluss der einzelnen CT-Techniken auf Strahlendosis und
Bildqualitdt bei den untersuchten CT-Protokollen weitestgehend unabhidngig von anderen
Einflussgrofen diskutiert werden.

Wie im Folgenden genauer ausgefiihrt werden wird, ist beim Vergleich der CT-Techni-
ken der Konstantstromtechnik, der Rohrenstrommodulation und der iterativen Bildrekonstruk-
tionsverfahren erwartungsgemal ein deutlicher Trend beziiglich deren Auswirkung auf Strah-
lendosis und Bildqualitdt erkennbar. Allerdings konnte dieser Trend in der Literaturstudie und
in der Querschnittsstudie nur vereinzelt durch statistisch signifikante Aussagen untermauert
werden. Aus diesem Grunde wurde der Versuch unternommen, durch ein Pooling der Ergeb-
nisse der Literaturstudie und der Querschnittsstudie das Signifikanzniveau zu verbessern. Da
ein verbessertes Signifikanzniveau auch durch Pooling im Wesentlichen nicht erreicht werden
konnte, wird in der folgenden Diskussion auf die Schwankungsbreite der Ergebnisse der Litera-
turstudie, der Querschnittsstudie und der gepoolten Studie Bezug genommen. Wie Abb. 5.1
anhand mittlerer Dosisreduktionsfaktoren zeigt, kommt der R6hrenstrommodulation bei der
Dosisreduktion nahezu unabhingig vom Untersuchungsprotokoll eine zentrale Bedeutung zu,
die durch die additive Anwendung iterativer Bildrekonstruktionsverfahren synergistisch ver-
starkt werden kann.

5.2.2.1. CT-Untersuchung des Schiidels

Sowohl in der Literaturstudie als auch in der Querschnittsstudie erfolgten CT-Untersuchungen
des Schédels vornehmlich in Konstantstromtechnik.

Gemadl der Literaturstudie und der Querschnittsstudie bewirkte die Rohrenstrommodu-
lation gegeniiber der Konstantstromtechnik eine tendenzielle Reduktion der Strahlendosis um
7-90% und die Kombination aus Réhrenstrommodulation und iterativen Verfahren gegeniiber
der Konstantstromtechnik eine tendenzielle Reduktion der Strahlendosis um 30% bis 49% bei
jeweils weitestgehend unverinderter objektiver und subjektiver Bildqualitét. Statistische Sig-
nifikanz konnte hier — wohl aufgrund der vergleichsweise geringen Fallzahlen — nur beim CTDI
und der effektiven Dosis erlangt werden. Bei letztgenannter CT-Technik mag als externer Ein-
flussfaktor der Querschnittsstudie auch die sehr signifikante Reduktion der Rohrenspannung
beigetragen haben. GemiR den in der Literatur angegebenen Reduktionsfaktoren scheint durch
den bloflen Finsatz der Rohrenstrommodulation eine Reduktion der effektiven Dosis um etwa
5% bei Kindern und um etwa 25% bis 31% bei Erwachsenen gegeniiber der Konstantstrom-
technik moglich. Demnach ist gemdl3 der Querschnittsstudie eine Dosisreduktion bei Schédel-
untersuchungen im Wesentlichen durch den Einsatz der Rohrenstrommodulation zu erzielen,
die iterativen Verfahren scheinen hierbei eine untergeordnete Rolle zu spielen. Dies legt auch
Abb. 5.1 nahe, wonach anhand einer Analyse der gepoolten Daten die im Mittel hdchste Dosis-
reduktion von etwa 50% durch die R6hrenstrommodulation erzielt werden konnte.

Ein signifikanter Einfluss der gewéhlten CT-Technik auf objektive und subjektive Bild-
qualitétskriterien konnte in der Querschnittsstudie bei der CT-Untersuchung des Schédels nicht
gefunden werden.

Im Ubrigen wurden in den Referenzen der Literaturstudie die Dosisreferenzwerte der
Européischen Kommission aus dem Jahr 1999 und in der Querschnittsstudie die Dosisreferenz-
werte des Bundesamtes flir Strahlenschutz aus dem Jahr 2010 weitestgehend unterschritten.
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Zusammenfassend sollte entgegen einer in der klinischen Praxis offensichtlich weit ver-
breiteten Anschauung die R6hrenstrommodulation nicht nur bei CT-Untersuchungen des Kor-
perrumpfes, sondern auch bei der CT-Untersuchung des Schidels und hier im Sinne des
ALARA-Prinzips trotz ihrer vergleichsweise geringen Wirksamkeit bei Kindern insbesondere
auch bei padiatrischen Untersuchungen Anwendung finden. Hingegen kann beziiglich der
strahlenhygienischen Auswirkungen der iterativen Verfahren keine definitive Aussage getrof-
fen werden, es ist aber zu vermuten, dass auch diese CT-Technik zur Reduktion des Dosisbe-
darfs bei der CT des Schédels bei Patienten aller Altersstufen beitragen kann.

5.2.2.2. CT-Untersuchung des Thorax

Sowohl in der Literaturstudie als auch in der Querschnittsstudie erfolgten CT-Untersuchungen
des Thorax vornehmlich unter Réhrenstrommodulation. Gemif3 der Literaturstudie und der
Querschnittsstudie bewirkte die Rohrenstrommodulation gegeniiber der Konstantstromtechnik
eine tendenzielle Reduktion der Strahlendosis um bis zu 41% bei weitestgehend unverénderter
objektiver und subjektiver Bildqualitit; gemal der Literaturstudie ist die Wirksamkeit der R6h-
renstrommodulation deutlich abhingig vom Lebensalter des Patienten und bewirkt eine medi-
ane bzw. maximale Reduktion der effektiven Dosis um etwa 5% bei Kindern und um etwa 20%
bzw. 60% bei Erwachsenen gegeniiber der Konstantstromtechnik. Die vergleichsweise geringe
Wirkung der alleinigen Verwendung der Rohrenstrommodulation in der gepoolten Studie mag
auf die besonderen strahlenphysikalischen Eigenschaften des Lungenparenchyms zuriickzu-
fithren sein, welche in Vergleich zu Weichteilgewebe in einem deutlich geringeren wasseraqui-
valenten Diameter der Thoraxregion resultieren®!, wodurch die Wirksamkeit der R6hrenstrom-
modulation alleine zwangsldufig nicht so hoch sein kann wie unter falschlicher Annahme einer
Wasserdquivalenz des Lungengewebes zu erwarten wiére.

Die zusitzliche Anwendung iterativer Verfahren lieB in der Querschnittsstudie keine sig-
nifikante Dosisreduktion erkennen, allerdings ging deren Einsatz hier mit einer signifikanten
Erh6hung des Kontrast-Rausch-Verhéltnisses einher. Damit liegt der Schluss nahe, dass in der
Querschnittsstudie iterative Verfahren bei der CT-Untersuchung des Thorax mehr zur Verbes-
serung der Bildqualitdt als zur Reduktion der Strahlenexposition eingesetzt wurden. In der
Literaturstudie zeigte sich hingegen, dass der additive Einsatz iterativer Verfahren statistisch
sehr signifikant bis hochsignifikant eine Reduktion des CTDlyo1, des DLP und der effektiven
Dosis bewirken kann, wobei in Abhéngigkeit vom iterativen Verfahren und der angewandten
Iterationsstufe eine Dosisreduktion von 20% bis 90% erzielt werden kann. Gemél Literatur-
studie und Querschnittsstudie erlaubte die Kombination aus Rohrenstrommodulation und ite-
rativen Verfahren gegeniiber der Konstantstromtechnik eine tendenzielle Reduktion der Strah-
lendosis um bis zu 74% bei ebenfalls weitestgehend unverdnderter objektiver und subjektiver
Bildqualitét. Statistische Signifikanz konnte jeweils nur bei einzelnen Merkmalen, insbeson-
dere bei der effektiven Dosis, erlangt werden. Die qualitative Uberlegenheit der Anwendung
der Rohrenstrommodulation in Verbindung mit iterativen Verfahren gegeniiber der reinen
Rohrenstrommodulation legt auch Abb. 5.1 nahe.

Im Ubrigen wurden durch die Referenzen der Literaturstudie die Dosisreferenzwerte der
Européischen Kommission aus dem Jahr 1999 weitestgehend unterschritten; hingegen konnten
in der Querschnittsstudie die Dosisreferenzwerte des Bundesamtes fiir Strahlenschutz aus dem
Jahr 2010 in zahlreichen Féllen nicht eingehalten werden.

Zusammenfassend kann festgestellt werden, dass Rohrenstrommodulation und iterative
Verfahren alleine oder in Kombination bei der CT-Untersuchung des Thorax in Abhéngigkeit

2l Dem Lungenparenchym kommt im tibrigen aus strahlenphysikalischer Sicht generell eine Sonderstellung zu,
welche zu scheinbaren Paradoxa fiithrt; so bedingt beispielsweise seine mit dem Lebensalter des Patienten
abnehmende Dichte in der padiatrischen Radiologie eine weitgehenden Konstanz des Dosisbedarfs von Thorax-
iibersichtsaufnahmen vom Neugeborenenalter bis zur Adoleszenz [72].
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vom Lebensalter eine signifikante Dosisreduktion bewirken konnen. Aufgrund der in den ver-
schiedenen Altersstufen existierenden Spezifika der Lungenbildgebung kommt allerdings der
sorgfaltigen Auswahl des Filterkernels und damit konsekutiv der iterativen Bildgebung beson-
dere Bedeutung zu [1042], sodass der zusitzliche Einsatz iterativer Verfahren mit Bedacht er-
folgen sollte.

5.2.2.3. CT-Untersuchung des Abdomens

Bei der CT-Untersuchung des Abdomens ist die Anwendung der Réhrenstrommodulation na-
hezu obligat geworden. In der Literaturstudie und in der Querschnittsstudie zeigte sich eine
groftenteils statistisch signifikante Abhéngigkeit der Strahlendosis von der CT-Technik. Ge-
mal der Literaturstudie und der Querschnittsstudie bewirkte die Rohrenstrommodulation ge-
geniiber der Konstantstromtechnik eine Reduktion der Strahlendosis von 21% bis 45%; gemal3
der Literaturstudie ist die Wirksamkeit der Rohrenstrommodulation deutlich abhéngig vom
Lebensalter des Patienten und bewirkt eine mediane bzw. maximale Reduktion der effektiven
Dosis um etwa 5% bei Kindern und um etwa 20% bzw. 60% bei Erwachsenen gegeniiber der
Konstantstromtechnik. Die Kombination aus R6hrenstrommodulation und iterativen Verfahren
erlaubte gegeniiber der Konstantstromtechnik eine Reduktion der Strahlendosis um 38% bis
75%. Diese qualitative Uberlegenheit der Anwendung der Rohrenstrommodulation in Verbin-
dung mit iterativen Verfahren gegeniiber der reinen Réhrenstrommodulation legt auch Abb.
5.1 nahe.

Bei der CT-Untersuchung des Abdomens scheinen Rohrenstrommodulation und iterative
Verfahren einander synergistisch zu ergénzen; so konnte gemaf3 der Querschnittsstudie bereits
durch alleinige Verwendung der Rohrenstrommodulation im Gegensatz zur Konstantstrom-
technik die Strahlendosis weitgehend unabhéngig vom Durchstrahlungsdurchmesser des Pa-
tienten gehalten werden. In Analogie hierzu konnte anhand der Querschnittsstudie gezeigt wer-
den, dass das Bildrauschen als Parameter der objektiven Bildqualitdt durch alleinige Anwen-
dung der R6hrenstrommodulation bereits weitgehend und durch die kombinierte Anwendung
von Rohrenstrommodulation und iterativen Verfahren praktisch vollstindig unabhéngig vom
Durchstrahlungsdurchmesser des Patienten gehalten werden konnte. Somit kann — zumindest
bei CT-Untersuchungen des Abdomens — der Rohrenstrommodulation wesentlicher Einfluss
auf die Reduktion der Strahlendosis und den iterativen Verfahren wesentlicher Einfluss auf die
Erh6hung der Bildqualitdt zugesprochen werden.

Zusammenfassend diirften alle Patienten unabhéngig von ihrer Altersstufe und ihrem
Erndhrungszustand bei CT-Untersuchungen der Abdominalregion von der kombinierten An-
wendung der Rohrenstrommodulation und iterativer Bildrekonstruktionsverfahren hinsichtlich
der Optimierung der Strahlendosis und der Bildqualitét profitieren. Die im Rahmen der Abdo-
men-CT teilweise noch angewandte Konstantstromtechnik stellt demnach auch bei sehr jungen
Patienten kein Verfahren der Wahl mehr dar und sollte als obsolet betrachtet werden.

5.2.2.4. CT-Pulmonalis-Angiographie

Sowohl in der Literaturstudie als auch in der Querschnittsstudie erfolgten CT-Pulmonalis-
Angiographien vornehmlich unter R6hrenstrommodulation. Aufgrund der vergleichsweise ge-
ringen Fallzahlen konnte in der Regel keine statistische Signifikanz erzielt werden. Gemaf der
Literaturstudie und der Querschnittsstudie bewirkte die Rohrenstrommodulation gegeniiber der
Konstantstromtechnik eine tendenzielle Reduktion der Strahlendosis von 10% bis 76%. Gemaf3
Literaturstudie und Querschnittsstudie erlaubte die Kombination aus Rohrenstrommodulation
und iterativen Verfahren gegeniiber der Konstantstromtechnik eine tendenzielle Reduktion der
Strahlendosis um 11% bis 93%. Statistische Signifikanz konnte nahezu nur bei den gepoolten
Daten fiir die effektive Dosis erlangt werden. Die weitgehende Aquipotenz bei der Anwendung
der Rohrenstrommodulation in Verbindung mit iterativen Verfahren gegeniiber der reinen
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Rohrenstrommodulation hinsichtlich der Dosisreduktion legt auch Abb. 5.1 nahe. Allerdings
lieB in Analogie zur CT-Untersuchung des Thorax auch hier der additive Einsatz iterativer
Verfahren in der Querschnittsstudie bei nahezu keiner signifikanten Dosisreduktion eine
signifikante Erhohung des Kontrast-Rausch-Verhéltnisses erkennen.

Zusammenfassend kann festgestellt werden, dass Rohrenstrommodulation und iterative
Verfahren alleine oder in Kombination bei der CT-Pulmonalis-Angiographie eine deutliche
Dosisreduktion bzw. eine deutliche Verbesserung der Bildqualitdt bewirken konnen.

5.2.3. Allgemeine Bemerkungen zu den CT-Techniken

5.2.3.1. Konstantstromtechnik

Die Konstantstromtechnik wurde gemidB Querschnittsstudie bei etwa 20% der CT-Untersu-
chungen und hier vor allem bei der CT-Untersuchung des Schidels verwendet. In Einzelfallen
wurde die Konstantstromtechnik auch in Verbindung mit iterativen Bildrekonstruktionsverfah-
ren eingesetzt, welches Procedere aufgrund der hiermit verbundenen Option zur Reduktion des
Rohrenstromes a priori als nicht unpraktikabel scheint. Indessen zeigte sich der Dosisbedarf
einer CT-Untersuchung des Korperrumpfes und die damit verbundene Strahlenexposition des
Patienten unter alleiniger Anwendung der Konstantstromtechnik bei vergleichbarer objektiver
und subjektiver Bildqualitét fast stets signifikant hoher als unter Anwendung der R6hrenstrom-
modulation. Zusammenfassend kann somit die intendierte und nicht durch gerdtetechnische
Gegebenheiten bedingte Anwendung der Konstantstromtechnik bei CT-Untersuchungen des
Schidels als fragwiirdig und bei CT-Untersuchungen des Krperrumpfes als obsolet bezeichnet
werden.

5.2.3.2. Rohrenstrommodulation

Die CT-Technik der Rohrenstrommodulation war gemif3 der Querschnittsstudie in den meisten
radiologischen Einrichtungen verfiigbar und wurde bei etwa 50% aller CT-Untersuchungen
angewandt.

Obwohl bei CT-Untersuchungen des Schédels aus anthropometrischen Griinden a priori
nicht mit erheblichen Dosisreduktionen gerechnet werden sollte, zeigen die Ergebnisse der ge-
poolten Studie auch hier eine Dosisreduktion von bis zu 50%, weswegen CT-Untersuchungen
des Schidels sowohl bei Erwachsenen als auch bei Kindern unter Anwendung der Réhren-
strommodulation erfolgen sollten.

Bei der CT-Untersuchung des Korperrumpfes fiihrt die Anwendung der Rohrenstrom-
modulation gegeniiber der Konstantstromtechnik zu einer eindeutig vom Lebensalter und damit
mit vom Durchstrahlungsdurchmesser der Patienten abhidngigen Dosisreduktion. Hierbei zeig-
te die Rohrenstrommodulation bei der CT-Untersuchung des Thorax und bei der Pulmonalis-
Angiographie die geringste Wirkung, was - wie bereits angemerkt - auf die spezifischen Eigen-
schaften des Lungengewebes zuriickzufiihren sein mag. Bei der CT-Untersuchung des Abdo-
mens konnten unter Anwendung der Rohrenstrommodulation im Gegensatz zur Konstant-
stromtechnik sowohl die Strahlenexposition als auch die Kenngrof3en der objektiven und sub-
jektiven Bildqualitit weitestgehend unabhingig vom Durchstrahlungsdiameter des Patienten
gehalten werden.

Die vorhergehende Diskussion bezieht sich indessen lediglich auf CT-Untersuchungen
ohne Applikation lokaler physikalischer Abschirmungen am bzw. ohne Vorhandensein metal-
lischer Implantate im Patienten. Die Interaktionen der RGhrenstrommodulationstechniken mit
physikalischen Abschirmungen sowie die Strategien zu deren Vermeidung werden mafigeblich
von den Rohrenstrommodulationsalgorithmen beeinflusst und demgeméf in der Literatur
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hochst kontrovers diskutiert; indessen war diese besondere Thematik nicht Gegenstand des
Bundesforschungsprojektes und wiirde den Rahmen der vorliegenden Arbeit iiberschreiten.
Insgesamt aber kann die heute bei allen Scannerfabrikaten zur Verfligung stehende Roh-
renstrommodulation vorbehaltlich der unter Anwesenheit metallischer Fremdkorper ggf.
entstehenden Komplikationen vor dem Hintergrund der bei gleichbleibender Bildqualitdt zu
erzielenden Dosisreduktionen als Dosisreduktionstechnik der Wahl angesprochen werden.

5.2.3.3. Iterative Rekonstruktion und Rohrenstrommodulation

Die iterativen Bildrekonstruktionsverfahren zdhlten zum Zeitpunkt der Querschnittsstudie mit
einer relativen Anwendungshéufigkeit von 30% noch nicht zum klinischen Standard. Als limi-
tierende Faktoren fiir deren Einfiihrung wurden von den Teilnehmern der Querschnittsstudie
vielfach der immer noch betrichtliche finanzielle Aufwand fiir den Erwerb der Rekonstruk-
tionssoftware genannt, deren Installation auf den Bildrechnern aufgrund des hohen Rechenleis-
tungsbedarfs zudem meist mit einer Aktualisierung der Hardwareumgebung bzw. mit deutlich
hoheren Rechenzeiten einherging. Auch wurde von manchen Studienteilnehmern der durch die
Anhebung der Kantenschérfe und durch die Reduktion des Bildrauschens bedingte stark geo-
metrisiert und artifiziell wirkende Bildaspekt — ungeachtet der Moglichkeit der Adjustierung
der Iterationshaufigkeit in den Rekonstruktionsalgorithmen - als ungewohnt und unangenehm
empfunden; auch eine mit diesem Bildaspekt in Verbindung gebrachte Umgewo6hnungs- und
Einarbeitungsphase wurde von manchen Studienteilnehmern als Gegenargument zur Einfiih-
rung iterativer Verfahren genannt. Zudem wurde von vielen Studienteilnehmern die durch die
iterativen Rekonstruktionsverfahren bedingte Erhdhung der objektiven Bildqualitdt keines-
wegs zwangsldufig mit einer erhdhten Diagnosesicherheit in Verbindung gebracht. Wie bei der
Beurteilung der subjektiven Bildqualitdt im Rahmen der vorliegenden Querschnittsstudie in
zwei Einzelfillen evident wurde, konnen iterative Verfahren — vorbehaltlich der Korrektheit
der Adjustierung des Iterationsgrades - in der Tat Bildartefakte erzeugen, die klinisch zu diffe-
rentialdiagnostischen Komplikationen fiihren mogen.

Bei der Bewertung der im Rahmen der Literaturstudie und der Querschnittsstudie erho-
benen Befunde zum Dosisreduktionspotential bzw. zum Bildoptimierungspotential der iterati-
ven Bildrekonstruktionsverfahren bestanden folgende grundsitzliche Schwierigkeiten. Zum
einen kamen sowohl in der Literaturstudie als auch in der Querschnittsstudie jeweils unter-
schiedliche Algorithmen mit einer unterschiedlichen Variationsbreite von Iterationsstufen zur
Anwendung. Zum anderen besteht zwischen den Extremen der reinen Reduktion der Strah-
lendosis unter weitgehender Beibehaltung der Bildqualitidt und der reinen Optimierung der
Bildqualitit unter weitgehender Beibehaltung der Strahlendosis ein breites Spektrum von Ein-
flussmoglichkeiten auf Strahlendosis und Bildqualitét. SchlieBlich handelt es sich bei den in
der Literatur aufgefundenen Studien zu iterativen Bildrekonstruktionsverfahren in der Mehr-
zahl um prospektive klinische Studien oder Phantomstudien, wogegen die im Rahmen der vor-
liegenden Arbeit durchgefiihrte Querschnittsstudie rein retrospektiver Natur ist. Diese Gege-
benheiten machen einen Vergleich zwischen den Ergebnissen der Literaturstudie und den
Resultaten der Querschnittsstudie sowie auch innerhalb beider Studien schwierig und mogen
insbesondere eine Erklarung fiir eine gewisse Inkongruenz der Ergebnisse darstellen.

Wihrend bei der CT-Untersuchung des Schidels durch zusétzliche Anwendung iterativer
Bildrekonstruktionsverfahren gegeniiber der alleinigen Anwendung der Konstantstromtechnik
oder der Rohrenstrommodulation eine vergleichsweise geringe Dosisreduktion erreicht wurde,
konnte die additive Verwendung iterativer Verfahren bei CT-Untersuchungen des Korperrum-
pfes mit einer eindeutigen Reduktion der Strahlendosis bei weitestgehender Konstanthaltung
der objektiven und subjektiven Bildqualitdt in Verbindung gebracht werden. Diese Relation
war vor allem bei der CT-Untersuchung des Abdomens ausgeprégt, zumal hier die iterativen
Verfahren in Verbindung mit der R6hrenstrommodulation Strahlendosis und objektive Bild-
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qualitit praktisch unabhidngig vom Durchstrahlungsdurchmesser des Patienten zu halten ver-
mogen, wenn auch die subjektiv beurteilte mutmaBliche diagnostische Verwertbarkeit des
Gesamtbildes durch iterative Verfahren keine signifikante Verbesserung erfuhr.
Zusammenfassend kann festgestellt werden, dass die internationale Literatur ein erheb-
liches Dosisreduktionspotential der iterativen Bildrekonstruktionstechniken nahelegt, wenn
dies auch durch die Studien im Rahmen dieser Arbeit statistisch nicht eindeutig belegt werden
kann. Die tendenziell erkennbare weitestgehende simultane Konstanthaltung von Strahlendosis
und Bildqualitit in Abhéngigkeit vom Patientendiameter legt indessen nahe, dass iterative Ver-
fahren in Kombination mit der R6hrenstrommodulation insbesondere bei adipdsen Patienten
sowohl Strahlendosis als auch Bildqualitét in sehr giinstiger Weise beeinflussen konnen.

5.3. Limitationen der Arbeit
Vorliegende Arbeit weist naturgemil3 sowohl in der Literaturstudie als auch in der Quer-
schnittsstudie Limitationen auf, die im Folgenden genannt werden sollen.

5.3.1. Literaturstudie

So wurde zwar eine umfangreiche Literaturstudie beziiglich der Dosisreduktionsalgorithmen
und deren Einfliisse auf die Strahlendosis, nicht aber auf die Bildqualitét durchgefiihrt. Ande-
rerseits war die Uberzahl der in der Literatur aufgefundenen Studien klinischer Natur, weswe-
gen eine diagnostisch gute Verwertbarkeit der mit Hilfe der einzelnen CT-Techniken erhalte-
nen Bilddatensdtze zu vermuten war.

Auch konnten aufgrund der Heterogenitit der betrachteten Studien (prospektive Patien-
tenstudien, retrospektive Patientenstudien, prospektive Phantomstudien, Literaturstudien) bei
vielen Fragestellungen und hier vor allem bei Detailfragestellungen keine eindeutigen Schluss-
folgerungen gezogen werden. Insbesondere die nicht-systematische, simultane Modifikation
mehrerer Expositionsparameter in diversen klinischen Studien (beispielswiese Rohrenspan-
nungsreduktion bei gleichzeitiger Einfiihrung iterativer Verfahren) machte eine Differenzie-
rung der Wirkung monoparametrischer Modifikationen auf Dosis und Bildqualitdt schwierig
bis unmoglich. Das Dilemma besteht nach Ansicht des Verfassers dieser Arbeit in der Tatsache,
dass sich vom wissenschaftlichen Gesichtspunkt aus wiinschenswerte systematische Modifi-
kationen der Expositionsparameter bzw. der Dosisreduktionstechniken im Rahmen der unter
realen Bedingungen durchgefiihrten klinischen Patientenstudien nicht zuletzt aus ethischen
Griinden als schwierig erweisen diirften und dass umgekehrt Phantomstudien, welche ethi-
schen Einschrankungen per se nicht unterliegen und die damit eine systematische Modifikation
der Expositionsparameter und Dosisreduktionstechniken zulassen, klinische Bedingungen und
Pathologien authentisch zu beriicksichtigen kaum imstande sein diirften.

5.3.2. Querschnittsstudie

In der Querschnittsstudie wurde retrospektiv eine Querschnittssituation untersucht. Hierbei
zeigte sich a posteriori, dass die Anzahl der untersuchten Bilddatensétze nicht zuletzt aufgrund
der Heterogenitit der Expositionsbedingungen statistisch signifikante Aussagen nur in be-
schrinktem Umfang zulieB. Auch war eine Differenzierung nach einzelnen Réhrenstrommo-
dulationsverfahren und einzelnen Algorithmen zur iterativen Bildrekonstruktion aufgrund der
zu geringen betrachteten Fallzahl nicht mdglich. Weiter konnten aufgrund einer zu geringen
Fallzahl keine Aussagen zu péadiatrischen CT-Untersuchungen getroffen werden; diese miiss-
ten daher zum Gegenstand weiterer Arbeiten gewéhlt werden.



5. Diskussion 159

5.3.3. Zusammenfassung

Zusammenfassend kann der Schluss gezogen werden, dass die vorliegende Arbeit am ehesten
einen allgemeinen Trend aufzuzeigen und hieraus Empfehlungen abzuleiten in der Lage ist.
Hingegen sollte vorliegende Arbeit nicht zur Entscheidung von gerite- und anwendungsspezi-
fischen Detailfragen herangezogen werden.

5.4. Schlussbemerkung und Ausblick

Wie im Rahmen der vorliegenden Arbeit deutlich wurde, kann die ausschlieBliche Verwendung
der Konstantstromtechnik bei CT-Untersuchungen aus strahlenhygienischen Griinden nicht
mehr empfohlen werden. Die inzwischen flichendeckend eingesetzte CT-Technik der R6hren-
strommodulation gestattet bei nahezu gleichbleibender objektiver und subjektiver Bildqualitat
eine deutliche Reduktion der Strahlenexposition des Patienten bzw. eine Konstanthaltung von
Bildqualitit und Strahlenexposition weitgehend unabhingig vom Durchstrahlungsdurchmesser
des Patienten. Vor allem zeigt sich die Leistungsfahigkeit der R6hrenstrommodulation bei den
computertomographischen Abdomentechniken, bei welchen die Kombination mit iterativen
Bildrekonstruktionsverfahren insbesondere bei adipdsen Patienten vielversprechend zu sein
scheint. Bei der Anwendung iterativer Verfahren ist allerdings auf eine sorgféltige Einstellung
der Iterationsparameter zur Vermeidung artifizieller Bildartefakte zu achten. Ausgehend von
einer synoptischen Betrachtung der Literaturstudie und der Querschnittsstudie ist zu vermuten,
dass das Dosisreduktionspotential der modernen CT-Techniken der R6hrenstrommodulation
und der iterativen Bildrekonstruktionsverfahren beim klinischen Einsatz noch nicht ausge-
schopft wurde.
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8. Anhang: Tabellen

8.1. Nationale und internationale Ubersichtsstudien: Erwachsene

Tab. 8.1: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. GroBe Protokoll (?n T(I;)yl) (ml();I;l:m) (Egi])
Schadel 1.8
Thorax 6.5
Dénemark [219] MW Abdomen 7.7
Becken 4.5
LWS 5.0
Schadel 2.0
1989 Thorax 9.3
Grof3- Abdomen 8.3
britannien [197] MW* Becken 7.6
lokal HWS 1.2
BWS 2.7
LWS 3.8
Schédel 2.0
Thorax 10.8
GroB- Abdomen 12.0
britannien [197] MW* Becken 10.2
lokal HWS 1.2
1991 BWS 2.7
LWS 3.8
Schédel 2.1
Schweden | [270] | MW Eﬁﬁp - <
WS 6
Schédel 1.8
Thorax 8.9
Abdomen 9.7
1992 | Neuseeland [248] MW Becken 6.9
HWS 3.3
BWS 6.5
LWS 4.7
Schédel 2.6
Thorax 20.5
Deutschland [178] MW Abdomen 27.4
LWS 9.0
1995 Extremitéten 1.0
Schédel 2
GroB3- Thorax 8
britannien [279] Mw Abdomen 10
Becken 10
Schadel 1.8+0.7
GroB Thorax 7.8+4.1
ori t;gni'en [278] MW | Abdomen 7.6 £4.0
Becken 7.1+3.7
1997 LWS 33+2.1
Schadel 1.9
. " Thorax 10.1
Niederlande [276] MW Abdomen 158
LWS 4.9
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ijn TGDyl) (mlé];l:m) (Iflléfi,)
Schédel 2.0
Thorax 11.5
MW Abdomen 12.8
Becken 9.8
LWS 4.5
1997 Norwegen [239] Schadel 27
Thorax 15.5
75%-P | Abdomen 17.2
Becken 11.8
LWS 5.2
Schidel 50.0+ 14.6 882 +332
MW Thorax 203+7.6 517 £243
Abdomen 25.6+ 8.4 597 £ 281
brg;sgi'en 2601 Becken 26496 | 443233
1998 Schidel 57.8 1045
o Thorax 26.8 649
75%-P A bdomen 32.3 774
Becken 33.1 566
Schweiz [174] MW Thorax 9.0
Schidel 57 980 2.8
NNH 41 446 1.0
205 Thorax 18 506 7.7
Deutschland 20 6]’ MW Abdomen 21 1237 21.4
Becken 23 634 10.7
HWS 66 260 2.5
LWS 39 230 34
Schédel 1.8
Thorax 7.3
Griechenland [247] MW Abdomen 8.5
Becken 7.5
LWS 4.7
Schédel 1.3
Hals 1.5
GrofB Thorax 4.2
19991 itannien | [280] | wmw |borax-HR 1.4
lokal Abdomen 6.6
Becken 7.2
LWS 4.4
Rumpf 10.2
Schidel 52.7 669 2.4
Thorax 16.8 413 34
Oman [208] MW "Abdomen 19.0 664 9.5
HWS 42.4 463 3.5
Schidel 1.8
Thorax 2.8
Abdomen 7.6
Polen [267] MW Becken 5.7
HWS 2.6
BWS 4.8
LWS 3.3
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ij:(];);) (mlé];l:m) (Iflléfi,)
Schidel 816 1.6
Thorax 434 7.6
MW Abdomen 433 8.1
. Becken 363 6.8
2000 Nordirland [196] Schidel 19
o Thorax 8.9
75%-P Abdomen 10.6
Becken 8.4
Schédel 57.9 677 1.6
Thorax 19.0 401 6.8
MW Abdomen 22.4 464 7.0
Becken 22.4 336 6.4
HWS 49.2 295 1.6
. LWS 29.6 203 -
Griechenland -~ [214] Schidel 69.9 869 2.0
Thorax 22.0 550 9.4
0 Abdomen 26.0 561 8.4
2001 75%-P Becken 26.0 385 7.3
HWS 61.5 404 2.2
LWS 34.5 236 -
Schédel 2.0
Hals 2.5
GroB3- Thorax 8.0
britannien [211] Mw Abdomen 10.0
Becken 10.0
Extremititen 0.5
Schédel 760 1.7
Hals 330 3.2
GroB Thorax 190 3.5
. . Thorax-HR 110 2.2
b“ltglfgllen (2801 1 MW I b domen 400 7.0
Becken 470 9.2
LWS 300 6.4
Rumpf 580 10.9
2002 NNH 353 279 0.7
Thorax 16.3 399 6.8
Osterreich [201] MW Abdomen 17.5 880 14.9
Becken 20.4 478 8.1
LWS 35.6 411 6.2
Thorax 9.0
Schweiz [175] MW Abdomen 10.4
LWS 9.4
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ij:(];);) (mlé];l:m) (Iflléfi,)
Schédel 68 919 2.1
Thorax 21 429 7.3
Abdomen 23 493 7.4
MW Becken 27 538 10.3
HWS 48 621 34
BWS 29 734 13.1
. LWS 39 473 7.1
Griechenland -~ [246] Schidel 78 1093 2.5
Thorax 25 503 8.5
Abdomen 22 493 7.4
75%-P | Becken 30 602 11.8
HWS 63 821 3.8
BWS 33 822 16.8
LWS 48 573 8.6
Schédel 49 694 1.5
Thorax 8.9 402 5.8
MW Thorax-HR 32 88 1.2
Abdomen 12 352 5.3
GroB- [261, Becken 11 473 7.1
britannien 979] Schidel 57 787 1.7
2003 Thorax 11 488 6.9
75%-P | Thorax-HR 4.0 104 1.5
Abdomen 14 472 7.1
Becken 13 537 8.0
Schédel 59 707 1.6
Thorax 21 483 6.2
Abdomen 23 551 8.3
MW Becken 24 434 8.2
HWS 71 353 1.9
BWS 36 272 4.6
Italien [246] LWS 36 303 4.7
Schédel 69 894 2.1
Thorax 25 631 8.7
Abdomen 25 632 9.5
75%-P | Becken 27 510 9.7
HWS 84 550 2.9
BWS 40 330 5.6
LWS 40 365 5.5
Schédel 1250
Schweiz [177] MW Thorax 370
Abdomen 790
Schédel 2.8
Thorax 9.3
2004 Kanada [171] MW Abdomen 101
Becken 9.0
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll (Cn"ll“(l;);) (m]()}];l;m) (Ifllgf‘f,)
Schédel 59.6 768 1.8
Thorax 19.7 487 7.9
Abdomen 24.3 527 7.9
MW Becken 22.1 487 8.8
HWS 57.9 280 1.5
BWS 33.2 234 3.9
. LWS 26.3 274 4.6
ltalien [241] Schadel 68.7 047 23
Thorax 25.0 650 11.0
Abdomen 25.6 625 9.2
75%-P | Becken 28.9 505 9.1
HWS 75.2 420 2.2
BWS 39.7 287 4.8
LWS 41.7 380 6.4
Schédel 39 544
MW Thorax 9.3 348
2006 . oot | s Abdomen 104 549
ntemational | [275] Schidel 47 527
75%-P | Thorax 9.5 447
Abdomen 10.9 696
Schédel 48.2 732 6.9
Thorax 14.0 470 7.9
Abdomen 30.4 821 10.3
[235] MW* Becken 75.9 610 10.9
HWS 12.8 155 3
] BWS 10.4 145 2.6
Tansania LWS 3.0 476 73
Schédel 2.2+0.9
Thorax 122+3.4
[237] MW Abdomen 153 +6.0
Becken 134+73
LWS 54+23
Schidel 36.8+20.5
MW Abdomen 222+£25.0
Korea [224] =
75%-P Schidel 454
Abdomen 24.3
Schédel 72.9+24.0 850 + 310
Thorax 99+33 349 £ 122
MW Abdomen 11.8+4.9 511 £176
HWS 38.3+13.6 618 £241
LWS 33.4+17.2 574 £ 150
2007 Schédel 1064
Thorax 381
Luxemburg [271] 50%-P | Abdomen 500
HWS 874
LWS 673
Schidel 1270
Thorax 480
75%-P | Abdomen 580
HWS 1400
LWS 830
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ij:(];);) (mlé];l:m) (Iflléfi,)
Schédel 55 655 1.6+09
MW Thorax 20 455 8.4+6.5
Abdomen 22 453 7.4+5.8
. Becken 22 410 7.7+5.7
2007 Taiwan [274] Schadel 62 763
o Thorax 21 535
75%-P A bdomen 23 500
Becken 23 459
Schédel 41.1+14.4
MW Ganzkdrper 12.5 £4.7
Korea [192] ~
759-p Schédel 50.5
Ganzkdrper 14.4
2008 Schédel 45
Thorax 5.6
Luxemburg [271] MW Abdomen 8.0
HWS 21
LWS 25
Thorax 9.2-24.3 256933
Thorax 6.8-25.8 121-366
. HRCT
Afrika [236] MW" “Abdomen 11.9227 | 341-1314
Becken 7.3-26 163-837
LWS 11.9-38.8 341-646
Thorax 12-18.6 223-564
Thorax 14.4-24.3 99-561
. HRCT
Asien [236] MW "Abdomen 11.7-21.6 513-638
Becken 16.8-28.4 390-545
LWS 19.3-19.5 513-720
Deutschland [215] 50%-P | Cardio-CTA 52.7 885 12
Schidel 1.2+0.6
MW Thorax 54+1.6
. Abdomen 10.9+4.3
Dubai [988] Schidel 1.8
75%-P | Thorax 5.5
2009 Abdomen 10.3
Schédel 463+7.2 747 + 127
Thorax 6.6+29 234+ 128
Luxemburg [271] MW Abdomen 8.8+3.1 382 £ 155
HWS 242+9.0 391 + 169
LWS 29.8+14.6 544 + 163
Schédel 38.3+18.1 531 £201
MW Thorax 119+73 455 +309
Abdomen 11.3+£7.0 512 +£311
Malta [281] Schidel 41 736
75%-P | Thorax 13.1 492
Abdomen 12.1 539
Thorax 6.9-21.3 148-833
Thorax 10-20.6 117-330
HRCT
Osteuropa [236] MW "Abdomen 10.2-21.2 435-910
Becken 8.3-21.8 268698
LWS 12.3-23.9 289-541
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.
Jahr Nation Ref. Grofle Protokoll ((Ij:(];);) (mlé];l:m) (Iflléfi,)
Schédel 1.0+ 04
MW Thorax 5.8+2.6
. Abdomen 153+£2.9
Dubai [988] Schadel 1.0
75%-P | Thorax 6.3
Abdomen 15.9
Finnland [963]** | 75%-P | Thorax 341
Schédel 64.0+15.0 875+ 121
NNH 12.7+6.0 170 + 84
Thorax 10.1 £3.0 354 £ 103
Thorax- 46+40 166 £ 144
MW HRCT
Abdomen 11.1+3.0 547 £ 193
Ganzkdrper 10.2+£3.0 765 + 240
HWS 16.8+4.0 362 + 133
Pulmonal-A 9.9+4.0 324 + 208
Irland [203] Schadel 66.2 940
NNH 16.0 206
Thorax 10.5 393
Thorax- 6.6 276
75%-P | HRCT
Abdomen 12.3 598
Ganzkorper 11.6 845
HWS 19.4 418
Pulmonal-A 12.5 432
Schadel 997 + 495
2010 Hals 529 £ 503
Thorax 491 + 357
MW Abdomen 522 +323
Becken 323 +284
Extremititen 573 + 840
Cardio-A 1091 + 664
Japan [956] Schidel 1119
Hals 523
Thorax 576
75%-P | Abdomen 681
Becken 349
Extremititen 642
Cardio-A 1510
Schédel 53.8+16.1 819 + 352
Hals 21.2+133 540 + 333
MW Thorax 129+5.6 807 £ 401
Abdomen 15.0+5.0 1263 £ 678
LWS 34.1+252 876 £ 575
Korea [1931 Schidel 624 960
Hals 28.2 693
75%-P | Thorax 17.0 1122
Abdomen 17.6 1676
LWS 39.8 1216
Schédel 522+152 813 + 187
Thorax 6.8+2.8 233+ 96
Luxemburg [271] MW Abdomen 9.6 £4.7 431 +£234
HWS 20.5+9.0 341 £ 175
LWS 26.5+10.7 473 £219
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ij:(];);) (mlé];l:m) (Iflléfi,)
Schédel 58 867
NNH 18 252
Hals 15 462
Thorax 10 338
Abdomen 11 497
50%-P | Becken 15 381
Ganzkdrper 13 702
HWS 19 459
LWS 23 494
Extremititen 13 695
. Cardio-CTA 39 763
Schweiz | [273] Schadel 69 1083
NNH 25 359
Hals 21 475
Thorax 13 424
Abdomen 14 633
75%-P | Becken 20 490
Ganzkdrper 16 1012
HWS 28 605
2010 LWS 30 896
Extremititen 17 1420
Cardio-CTA 65 1222
Schédel 53.5+13.0 668 + 194 1.2+04
Thorax 169+ 7.8 396 + 164 54+£23
Thorax 25.7+11.3 116 £ 96 1.6+1.3
Mw HRCT
Abdomen 20.2 + 8.5 567 £338 7.7+4.6
Syrien [222] Becken 23.4+13.2 465 +308 6.8+4.5
Schédel 60.7 793 1.4
Thorax 22.0 520 7.1
Thorax 30.5 133 1.8
75%-P | HRCT
Abdomen 24.1 721 9.8
Becken 27.5 542 8.0
LWS
Schédel 502+ 143 597+ 179 1.4+04
WeiBruBland [225] MW Hals 393+ 15.6 470 + 188 26+1.0
Thorax 164+53 408 £ 130 69+22
Thorax 13.5 437
Bosnien- Abdomen 21 460
Herzegowina [195] MW Becken 20 423
LWS 21 460
Schidel 75.9
Bulgarien [967]* MW Thorax 17.5
2011 Abdomen 13.5
Schidel 2.37
MW Thorax 8.35
. Abdomen 9.96
Griechenland [262] Schidel 266
75%-P | Thorax 9.72
Abdomen 12.1
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll g(];);) (mlé];l:m) (Iflléfi,)
Schidel 52.0 733 1.9
Thorax 18.6 394 7.5
Abdomen 22.0 464 7.9
International [244] 50%-P | Becken 23.0 434 7.6
HWS 44.3 324 2.6
BWS - 253 4.6
LWS 30.3 302 5.2
Schédel 950
Hals 415
Thorax 372
50%-P | Abdomen 434
Becken 345
Ganzkdrper 1010
Cardio-CTA 722
Japan [204] Schadel 1387
Hals 616
2011 Thorax 544
75%-P | Abdomen 694
Becken 556
Ganzkdrper 1558
Cardio-CTA 1163
Schidel 61 1575 3.8
. Thorax 15.1 950 19.4
Kenia [226] 1 MW domen 16.1 1702 277
LWS 17.9 345 5.9
Thorax 11.4 342
. Abdomen 13 625
Mazedonien [195] MW Becken 14 416
LWS - -
Thorax 20 148
. Abdomen 12.3 512
Serbien (193] 1 MW 5 ken 14.1 305
LWS 12.3 512
Schédel 989
Hals 441
Thorax 371
50%-P | Abdomen 362
Becken 363
Ganzkdrper 910
Cardio-CTA 606
Japan [204] Schadel 1262
Hals 678
Thorax 519
2012 75%-P | Abdomen 590
Becken 549
Ganzkorper 1343
Cardio-CTA 1031
Schadel 3.1+1.6
Thorax 11.0+£5.6
Abdomen 229+11.7
Ruménien [207] MW Becken 19.4+£9.9
HWS 39+2.0
LWS 9.7+5.0
Extremititen 8.7+4.4
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ij:(];);) (mlé];l:m) (Iflléfi,)
Schédel 766 + 142
NNH 132 £ 62
Hals 529 + 142
Thorax 345 + 123
Abdomen 736 £ 169
MW" Becken 448 = 156
HWS 522+ 187
BWS 689 + 356
LWS 617 £ 246
Cardio-CTA 474 £260
Schédel 775
NNH 140
Hals 484
Thorax 341
o Abdomen 700
2012 UK [190] 50%-P Becken 435
HWS 483
BWS 546
LWS 619
Cardio-CTA 462
Schédel 858
NNH 179
Hals 639
Thorax 415
o Abdomen 822
75%P Mpecken 575
HWS 568
BWS 697
LWS 698
Cardio-CTA 493
Schédel 60.7+19.7 909 + 326
NNH 38.9 +20.0 473 + 257
MW Thorax 12.1+5.5 395+ 178
Abdomen 13.9+6.0 628 +£263
Ganzkorper 13.8+5.2 834 + 333
LWS 28.8+14.1 646 + 331
Schédel 59.4 854
NNH 37.2 440
. o Thorax 11.1 375
2013 | Griechenland [263] 50%-P Abdomen 2.9 539
Ganzkorper 13.4 802
LWS 22.7 552
Schédel 66.7 1053
NNH 52.1 607
o Thorax 14.4 481
75%-P Abdomen 16.3 758
Ganzkorper 16.8 1022
LWS 35.2 723
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien:

Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ij:é);) (mlé];l:m) (Iflléfi,)
Schédel 449+ 12.1 748 £ 214 1.7£0.5
Hals 18.8+11.2 681 + 382 3.7+2.1
Thorax 104+42 583 £ 269 9.9+4.6
Thorax-HR 9.4+49 413 £269 7.0+£4.6
Thorax + 11.5+34 990 £ 363 159+£5.8
Abdomen
Abdomen 11.7+3.5 835+ 427 12.6 £ 6.5
Magen 11.0+3.5 816 +419 12.3+6.3

MW Leber 12.5+4.1 1434 + 543 21.5+82
Pancreas 12.1+4.9 1268 £ 637 19.1£9.6
Nieren 12.5+4.1 1623 + 597 243+£9.0
HWS 23.6 £15.1 525 £ 340 28+1.38
LWS 23.5+15.9 713 + 477 39+26
Hiifte 149 + 8.6 523 + 287 0.5+0.3
Schédel-CTA 329+11.9 1502 + 739 35+1.7
Cardio-CTA 348+17.2 852 + 523 14.5+ 8.9
Leber-CTA 12.1+34 1185+ 372 17.8+£5.6
Aorten-CTA 13.5+5.0 1633 + 863 245+ 13.2
Schédel 43.2 748 1.7
Hals 15.6 574 3.1
Thorax 9.7 521 8.9
Thorax-HR 8.4 345 5.9
Thorax + 10.5 862 13.8
Abdomen
Abdomen 114 693 10.4
Magen 11.0 692 10.4
Leber 12.1 1285 19.3

2013 Korea [223] | S0%-P o creas 10.8 1077 16.2
Nieren 11.7 1474 22.1
HWS 18.8 435 2.3
LWS 18.6 587 3.2
Hiifte 12.8 446 0.5
Schiadel-CTA 324 1396 3.3
Cardio-CTA 31.1 692 11.2
Leber-CTA 13.2 1177 17.7
Aorten-CTA 13.0 1420 21.3
Schidel 52.8 904 2.1
Hals 19.1 769 4.2
Thorax 13.2 707 12.0
Thorax-HR 114 502 8.5
Thorax + 13.4 1186 19.0
Abdomen
Abdomen 13.3 1028 154
Magen 13.2 947 14.2
Leber 14.7 1693 25.4

75%-P Pancreas 14.0 1531 23.0
Nieren 14.2 2100 31.5
HWS 28.9 596 3.2
LWS 23.7 755 4.1
Hiifte 16.8 601 0.6
Schéadel-CTA 42.7 1854 4.5
Cardio-CTA 44.6 1246 21.2
Leber-CTA 14.2 1382 20.7
Aorten-CTA 14.9 1998 30.0
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ij:é);) (mlé];l:m) (Iflléfi,)
Schédel 3.0£1.0
NNH 1.0£0.7
MW "Thorax 3.2+ 64
Kanada - [199] Abdomen 18.0+ 8.6
Manitoba Schédel 1305
. NNH 516
75%-P Thorax 823
Abdomen 1325
Korea [194] MW Schéadel-CTA 252+11.9 1380 + 865
75%-P | Schiadel-CTA 34.1 1816
Thorax 14.3 520
2013 Thorax-HR 14.5 430
Abdomen 14.1 685
MW Ganzkdrper 15 1000
Pulmonal- 16.7 410
. . CTA
Saudiarabien [249] Thorax 13 630
Thorax-HR 20 600
o Abdomen 15 800
75%-P Ganzkorper 16 1040
Pulmonal- 18 480
CTA
Schadel 2.9
Thorax 13.3
Thorax 20.4
. HRCT
Australien [234] MW Thorax- 77
Angio
Abdomen 19.5
Ganzkdrper 28.9
Schidel 64 1086
Thorax 12 453
MW Abdomen 15 653
Ganzkdrper 14 713
. WS 34 617
2014 lialien 2431 Schidel 69 1312
Thorax 15 569
75%-P | Abdomen 18 843
Ganzkdrper 17 933
WS 42 888
Schidel 77.4
MW Thorax 13.0
Abdomen 17.7
Schidel 73.0
Japan [93] 50%-P | Thorax 11.5
Abdomen 16.0
Schidel 92.3
75%-P | Thorax 16.2
Abdomen 21.5
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Tab. 8.1 - Fortsetzung: Nationale Dosisstudien: Einzeldosen bei Erwachsenen.

Jahr Nation Ref. Grofle Protokoll ((Ij:(];);) (mlé];l:m) (Iflléfi,)
Schédel 70.0 + 14.7 802 + 388
Hals 19.8 + 18.0 385 £226
Thorax 124+ 12.0 390 +£ 228
MW Abdomen 14.0 + 8.0 563 £316
Becken 17.2+17.1 543 £ 314
HWS 36.3 +36.2 483 £279
LWS 34.6 +26.6 651 £372
Portugal -1 [977] Schadel 75 1010
Hals 20 465
2014 Thorax 14 470
75%-P | Abdomen 18 800
Becken 18 645
HWS 39 600
LWS 38 845
50%-P Ganzkorper - 789
Schottland [269] MW - 782
75%-P - 837
Schédel 65* 953*
Serbien [172] MW Thorax 18* S591*
Abdomen 59* 1706*
Schédel - 960 2
NNH - 400 1
50%-P | Hals - 510 6
Thorax - 550 11
e S
NNH - 610 2
75%-P | Hals - 690 8
Thorax - 830 18
Abdomen - 1460 26
* Mittelwert aus mehreren Einzelstudien
MW Mittelwert
50%-P 50%-Perzentile
75%-P 75%-Perzentile
CTDI CTDIy, oder CTDI,

Tab. 8.2. Nationale Dosisstudien: Organdosen bei Erwachsenen.

Jahr | Nation Referenz
1997 | Norwegen [239]
2003 | Griechenland [246]
2006 | Tansania [238]
2007 | Taiwan [274]
2011 | International [244]
2012 | Finnland [316]
2014 | Australien [234]
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Tab. 8.3. Nationale Dosisstudien: Kollektivdosen *.

Jahr | Nation Ref. Kollektivdosis Mittlere effektive Mittlere effektive
(Personen-Sv) Dosis pro Einwohner Dosis pro CT-
(mSv) Untersuchung
Radiologie CT Radiologie CT (mSv)

1989 | Dianemark [219] 250 0.05 34
GrofBbritannien [197] 31.5 5.4
lokal

1990 | Spanien lokal [251] 0.4

1991 | GrofBbritannien [197] 51.9 9.4
lokal
Portugal [251] 7000 0.71
Schweden [270] 840 0.1 4.5

1992 | Deutschland [221] 115000 5250 1.8 0.63
Japan [230] 270100 56000
Neuseeland [248] 1609 271 0.48 0.08 4.5

1993 | Norwegen [182, 3375 1005 0.78 0.23 4.9

240]

1994 | Ukraine [220] 26247 790 0.5

1995 | Deutschland [178] 113968 39661

1996 | USA [264] 1.24 0.38

1997 | Deutschland [250] 186600 69000 2.15 0.80

1998 | Grofibritannien [211] 12298 7662

[213] 19300 7720 0.33 0.13
Niederlande [188] 9148 0.59 7.9
Schweiz [173] 7100 2000 1.0 0.28

1999 | Belgien [251] 18315 1.78
Griechenland [247] 1033 0.5 5.5
Polen [267] 2200 4.8

1993 | Norwegen [182] 4960 1.09 0.64

1994 | Luxemburg [259] 614 1.59 0.48

2000 | Deutschland [185] 1.8 0.73 8.1

2001 | GroBbritannien [211] 19298 7672 0.33 0.13 5.5

2002 | GrofBbritannien [212] 22713 10650
Italien — Aosta [282] 0.68 0.55
Luxemburg [259] 852 1.98 0.99

2003 | Italien, Friuli- [242] 1130 553 0.95 0.47 7.9
Venezia Giulia
USA [264] 1.86 0.90

2005 | Dianemark [210] 18.9

2006 | USA [232] 900000 437523 3.0 1.5 6.6

[233] 899000 437523 3.01 1.47

2007 | Frankreich [200] 82631 47955 1.3 - 6.3
weltweit [233] 4000000 0.6 0.24

2008 | Frankreich [256] 45541 16680 0.74 0.29 3.5
GroBbritannien [213] 24471 16640 0.41 0.29
Schweiz [255] 9100 6150 1.2 0.8 7.9

2009 | Italien — Aosta [282] 1.19 1.03

2010 | Australien [217] 26212 16820 1.2 0.77 6.1
Portugal [272] 10164 7481 0.96 0.71 5.9
Sudan [268] 7197 777 0.18
USA [264] 2.34 1.58

2012 | Ruménien [207] 0.37
Ukraine [266] 43530 2453 0.95 0.05

2015 | Europa [181] 547500 1.06

* Fehlende Zahlenangaben in den Referenzen wurden anhand des verfiigbaren Datenmaterials hochgerechnet.
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8.2. Nationale und internationale Ubersichtsstudien: Kinder

Tab. 8.4. Nationale Dosisstudien: Einzeldosen bei Kindern ohne néihere Altersbezeichnung.

DLP
Jahr Nation Ref. Grofe Protokoll (CHTGDL)V (mGy (:llgf‘f,)
y cm)
Thorax 10.3 153
Thorax 9.8 137
. HRCT
Afrika o701 | MW b domen 8.5 180
Becken 8.3 131
LWS 13.6 201
Thorax 10.4 169
Thorax 12.6 139
. HRCT
Asien [970] MW Abdomen 13.8 413
Becken 14.4 189
LWS 13.6 274
Thorax 8.7 194
Thorax 6.5 145
2010 Osteuropa [970] MW Zﬂbzdcorfnen 97 246
Becken 9.3 255
LWS 11.1 182
Schadel 354+14.8 | 375+ 190 1.2+0.6
Thorax 27.0+14.9 | 332+179 43+23
Thorax 37.1+24.0 127 £ 83 1.7+1.1
Mw HRCT
Syrien Abdomen 273 +£15.1 | 439+290 6.6 4.4
y 0221 Becken 336+ 189 | 351 £240 | 53+36
Schadel 47.6 500 1.6
Thorax 32.1 347 4.5
759 Ellg)crz}rx 39.9 168 2.2
Abdomen 342 525 7.9
Becken 41.2 537 8.1
Thorax 7.2 160
Bosnien- Abdomen 5.5 199
Herzegowina [195] Mw Becken 14.2 275
g
LWS 5.5 199
Thorax 16.3 326
2011 | Mazedonien | [195] MW g:flfemnen ﬁ 'i 2;2
LWS - -
Thorax 11 230
. Abdomen 13 385
Serbien [195] MW Becken 3 330
LWS 11 385
2015 USA [965] MW Schidel 27.3 391
* Mittelwert aus mehreren Einzelstudien
MW Mittelwert
50%-P 50%-Perzentile

75%-P 75%-Perzentile
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Tab. 8.5. Nationale Dosisstudien: Einzeldosen bei Kindern nach Altersgruppen.

CTDIw
Jahr Nation Ref. Grofle Protokoll [CTDIval] (mlé];l:m) (:llgf‘f,)
(mGy)
0 Jahre
Schédel 21.8 227 2.3%
NNH 15.1 137 1.4*
MW Thorax 4.5 46 1.9*
Abdomen 5.2 71 3.6*
LWS 9.0 90 4. 4%
2005 | Deutschland [957] Schidel 269 275 2 6*
NNH 10.7 58 0.6*
75%-P | Thorax 5.6 47 2.1%*
Abdomen 5.5 81 4.6*
LWS 9.1 92 5.1%
0—1 Jahre
MW Schédel 11.0+ 8.4 159 + 124 6.3+£5.0
2003 .GI"OB.- [979] Thorax 25.0+123 230 £ 106 25+1.2
britannien 7504-p Schidel 12 204 7.9
Thorax 34 270 3.0
Schédel 26.4 302 2.2%
NNH 7.5 68 0.5%
MW Thorax 6.0 77 2.2%
Abdomen 7.0 148 4 8%
LWS 21.9 297 11.4*
2005 | Deutschland [957] Schidel 385 393 73
NNH 9.4 84 0.7
75%-P | Thorax 7.1 93 2.6
Abdomen 8.6 164 49
LWS 39.2 564 22.0
Schédel 17 213
2008 Schweiz [985] MW Thorax 4.2 85
Abdomen 5.9 107
Schédel 22+19
MW Thorax 1.9+0.3
Dubai [988] Abdomen 8.0£4.6
Schidel 2.4
2009 75%-P | Thorax 2.0
Abdomen 9.8
Schédel 27 245 6.4
Griechenland | [986]* MW Thorax 24 165 5.1
Abdomen 24 353 12.3
Schédel 35 280
. 0 NNH 16 80
Belgien [953] 75%-P Thorax 3 76
Abdomen 7.8 101
Schidel 1.5+0.6
MW Thorax -
2010
Dubai [988] Abdomen 54+1.1
Schidel 1.7
75%-P | Thorax -
Abdomen 6.2
MW Schidel 615+ 563
Japan 956 77504p | Schadel 821
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Tab. 8.5 - Fortsetzung. Nationale Dosisstudien: Einzeldosen bei Kindern nach Altersgruppen.

Jahr Nation Ref. Grofe Protokoll g:GD;V)V (mlé];l:m) (Ifllgf‘f,)
0 —1 Jahre
Schédel 23.7
2011 Bulgarien [967]* MW Thorax 20.0
Abdomen 18.3
Schédel 1.2
Frankreich [9517* 50%-P | Thorax 32
Abdomen 7.9
Kenia [226] MW Schédel 34 764 1.8
Schédel 22+8 327 £ 147
MW Thorax 43+1.8 77 +42
2012 Abdomen 6.0£25 157 £ 86
Schédel 22 300
Thailand [968] 50%-P | Thorax
Abdomen
Schédel 26 402
75%-P | Thorax
Abdomen
Schiadel 2.9
. Thorax 2.9
Australien [975] MW Abdomen 25
2013 Ganzkorper 11
MW Abdomen 3.6+04 87+9 6.2+0.5
USA [958]** 50%-P | Abdomen 34 88 6.5
75%-P | Abdomen 5.0 106 7.3
Schédel [26.0] 311
o NNH [7.1] 67
S0%-P Iy orax [1.7] 24
Australien / [962] Abdomen [3.4] 63
Neuseeland Schédel [28.7] 378
0 NNH [8.4] 84
T3%P rhorax [2.4] 35
2015 Abdomen [4.6] 93
Schidel 15+1 247 + 28
Serbien [954] MW Thorax 3+0 90+0
Abdomen 3+1 153 +32
MW Schidel 19.1+83 265 £ 76 3.1+0.5
Sudan [981] Abdﬂomen 8.8+1.4 242 + 81 77+1.5
75%-p Schédel 19.3 285 3.2
Abdomen 9.3 269 8.2
1 Jahr
Schidel 2.2
NNH 0.5
2005 | Deutschland [957]* MW Thorax 2.2
Abdomen 4.8
LWS 11.4
Schidel 31
. 0 NNH 11
2009 Frankreich [952] 75%-P Thorax 3
Abdomen 4
MW Schidel 494 +£15.6 512+228
Thorax 1.6+0.9 26+ 19
2014 | Portugal (9771 Csop | Schidel 483 630
Thorax 2.4 43
50%-P | Abdomen 3.1 107
2015 Japan 9611 775%P | Abdomen 3.5 134
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Tab. 8.5 - Fortsetzung. Nationale Dosisstudien: Einzeldosen bei Kindern nach Altersgruppen.

CTDIw
Jahr Nation Ref. Grofle Protokoll [CTDIval] (mlé];l:m) (:llgf‘f,)
(mGy)
1 -5 Jahre
MW Schédel 34.0+13.9 383 + 142 1.5+0.6
2003 'GroB.- [979] Thorax 11.0+6.4 198 £119 3.6+22
britannien 75%-p Schidel 43 465 1.9
Thorax 13 228 4.1
Schédel 354 452 1.9*
NNH 11.1 116 0.5%
MW Thorax 7.0 116 2.5%
Abdomen 9.0 219 5.4%
LWS 24.8 279 8.0*
2005 | Deutschland [957] Schidel 514 611 2 6*
NNH 14.2 132 0.6*
75%-P | Thorax 8.7 137 3.2%
Abdomen 10.7 261 5.6%
LWS 38.6 483 13.4*
Schédel 25 332
2008 Schweiz [985] MW Thorax 6.5 161
Abdomen 7.2 238
Schidel 20£1.3
MW Thorax 3.6+ 0.5
Dubai [988] Abd?men 52+23
Schéidel 2.4
2009 75%-P | Thorax 3.8
Abdomen 6.4
Schidel 34 298 2.4
Griechenland | [986]* MW Thorax 30 295 59
Abdomen 20 449 9.0
Schidel 43 473
. 0 NNH 16 80
Belgien [953] 75%-P Thorax 9 111
Abdomen 11 209
Schidel 1.4+£0.7
2010 MW Thorax 37+4.0
Dubai [988] Abdomen 47+ 1.7
Schidel 1.7
75%-P | Thorax 2.8
Abdomen 5.2
Schidel 30.8
2011 Bulgarien [967]* MW Thorax 14.6
Abdomen 14.7
Schidel 1.1
Frankreich [951]* 50%-P | Thorax 2.1
Abdomen 7.9
Kenia [226] MW Schédel 42 1189 2.9
Schédel 26+9 459 + 179
MW Thorax 54+2.1 122 +£53
2012 Abdomen 7.0+£22 229 + 94
Schédel 23 457
Thailand [968] 50%-P | Thorax 4.6 104
Abdomen 6.9 213
Schédel 29 570
75%-P | Thorax 5.7 140
Abdomen 8.9 276
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Tab. 8.5 - Fortsetzung. Nationale Dosisstudien: Einzeldosen bei Kindern nach Altersgruppen.

CTDIw
Jahr Nation Ref. Grofle Protokoll [CTDIval] (mlé];l:m) (Iflléfi,)
(mGy)
1 —5 Jahre
Schédel 2.5
. Thorax 2.6
Australien [975] MW Abdomen 6.3
2013 Ganzkorper 8.9
MW Abdomen 47+0.2 132+5 6.6+0.3
USA [958]** 50%-P | Abdomen 4.1 124 5.8
75%-P | Abdomen 5.6 162 7.8
MW Schidel 44.6 £ 14.3 674 £ 240
Thorax 39+£22 98 + 66
2014 Portugal [977] s Schidel 50.0 767
Thorax 5.6 139
Schidel [30.5] 436
o NNH [9.2] 116
S0%-P oy orax [3.7] 61
Australien / [962] Abdomen [4.3] 119
Neuseeland Schidel [32.7] 492
0 NNH [14] 136
75%-P Thorax [5.3] 90
Abdomen [5.9] 159
Schidel [26.3] 409
50%-P | Thorax [1.6] 32
2015 . Abdomen [3.6] 109
ltalien [959] Schadel [30.6] 504
75%-P | Thorax [2.5] 49
Abdomen [5.7] 151
Schidel 19+1 335+43
Serbien [954] MW Thorax 3+0 130 £52
Abdomen 4+1 184 £ 52
MW Schidel 225+11.4 305+ 122 1.1£0.3
Sudan [981] Abdomen 126+1.3 317 £78 51+1.8
75%,p Schidel 21.2 316 1.3
Abdomen 13.6 358 5.8
1—7 Jahre
MW Schidel 857 + 641
2010 Japan (9361 ™50, p [ Schadel 995
Finnland [963]** 75%-P | Thorax 146
2 Jahre
2015 |  Korea | [969] | 50%-P | Abdomen 4.7
4 Jahre
2015 |  Korea | [969] | 50%-P [ Schidel 1.3
5 Jahre
Schidel 39.5
. 0 NNH 11
2009 | Frankreich [952] 75%-P Thorax 35
Abdomen 4.5
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Tab. 8.5 — Fortsetzung. Nationale Dosisstudien: Einzeldosen bei Kindern nach Altersgruppen.

CTDIw
Jahr Nation Ref. Grofie Protokoll [CTDIvol] (mlé];l:m) (Ifllgf‘f,)
(mGy)
Schidel 42.7
MW Thorax 9.5
Abdomen 11.3
Schidel 40.0
2014 Japan [93] 50%-P | Thorax 6.6
Abdomen 8.4
Schidel 50.0
75%-P | Thorax 12.0
Abdomen 14.1
50%-P | Abdomen 1.9 86
20151 Japan 611 775%P | Abdomen 2.0 97
5—10 Jahre
MW Schidel 44.0+17.2 508 + 173 1.6+ 0.5
2003 .Groﬂ‘- [979] Thorax 140+ 7.4 303 +£173 39422
britannien 750,-p Schidel 12 204 7.9
Thorax 51 619 2.0
Schidel 424 582 2.0*
NNH 13.1 147 0.5*
MW Thorax 10.5 194 3.0%*
Abdomen 12.6 342 5.8*%
LWS 31.5 383 7.6*
2005 | Deutschland [957] Schadel 555 711 2 5%
NNH 18.1 162 0.6*
75%-P | Thorax 13.6 257 3.9%
Abdomen 16.3 477 6.2%
LWS 473 524 11.3*
Schidel 32 451
2008 Schweiz [985] MW Thorax 7.6 178
Abdomen 10 308
Schédel 14+£1.0
MW Thorax 32+1.3
2009 | Dubai [988] Abdomen 58+3.1
Schidel 1.5
75%-P | Thorax 3.0
Abdomen 6.4
Schidel 49 637
. 0 NNH 16 96
Belgien [953] 75%-P Thorax 9 144
Abdomen 9.5 238
Schédel 14+£0.7
MW Thorax 34+1.7
2010 Dubai [988] Abdomen 6.0+£34
Schidel 2.0
75%-P | Thorax 3.9
Abdomen 8.1
Schidel 47 614 2.5
Griechenland [986] MW Thorax 32 309 4.6
Abdomen 35 814 10.6
Schidel 30.4
2011 Bulgarien [967]* MW Thorax 7.6
Abdomen 7.6
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Tab. 8.5 — Fortsetzung. Nationale Dosisstudien: Einzeldosen bei Kindern nach Altersgruppen.

Jahr | Nation Ref. Grofle Protokoll CTDIw DLP Hesr
[CTDIvol] (mGy cm) (mSyv)
(mGy)
5-10 Jahre
Schédel 31+12 523 £ 178
MW Thorax 7.8 +4.38 209 + 138
Abdomen 11+6 427 £295
Schidel 28 510
2012 Thailand [968] 50%-P | Thorax 4.7 118
Abdomen 10 335
Schédel 39 613
75%-P | Thorax 10 305
Abdomen 13.8 561
MW Schédel 52.3+14.3 785 £ 270
Thorax 53+4.0 176 £ 199
2014 1 Portugal (5771 Tsopp | Schidel 70.0 1096
" | Thorax 5.7 186
Schidel [33.6] 498
o NNH [5.7] 48
S0%-P oy orax [4.3] 81
Australien / [962] Abdomen [7.2] 218
Neuseeland Schédel [35.9] 561
0 NNH [7] 77
75%-P Thorax [6.1] 122
Abdomen [8.3] 277
Schidel [34.8] 594
50%-P | Thorax [2.7] 67
. Abdomen [4.4] 187
Jots ltalien [959] Schadel [56.4] 852
75%-P Thorax [3.8] 108
Abdomen [7.0] 227
Schidel 21+2 507 £193
Serbien [954] MW Thorax 4+£1 127 £ 56
Abdomen 7+2 408 + 305
Schidel 773*
[980] MW Thorax 178*
Abdomen 447*
Sudan MW Schidel 293 +15.1 407 £ 115 1.2+04
[981] Abdﬂomen 11.8+3.7 314 + 123 50+22
75%,p Schédel 30.8 433 1.4
Abdomen 13.3 340 5.3
5 —15 Jahre
2012 |  Kenia | [226] | MW | Schidel | 51 | 1665 4.0
6 Jahre
Hals 1.1
2015 Korea [969] 50%-P | Thorax 1.0
Abdomen 2.6
7 — 13 Jahre
MW Abdomen 6.0+£04 196 £5 6.6+0.2
2013 USA [958]** 50%-P | Abdomen 5.4 186 6.3
75%-P | Abdomen 7.1 245 8.0
8 Jahre
2015 |  Korea | [969] | 50%-P | Schidel | | 2.3
8 — 12 Jahre
Finnland [963]** 75%-P | Thorax 216
2010 Japan [956] MW Schédel 906 £ 500
75%-P | Schidel 1035
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Tab. 8.5 — Fortsetzung. Nationale Dosisstudien: Einzeldosen bei Kindern nach Altersgruppen.

Jahr | Nation Ref. Grobe Protokoll CTDIw/ voy DLP Hesr
(mGy) (mGy cm) (mSyv)
10 Jahre
Schédel 49.5
. . NNH 11
2009 Frankreich [952] 75%-P Thorax 55
Abdomen 7
50%-P | Abdomen 2.8 167
2015 Japan 9611 795%P | Abdomen 2.9 128
10 — 15 Jahre
Schédel 52.6 764 2.4%*
NNH 15.7 201 0.6*
MW Thorax 7.7 180 3.4%*
Abdomen 10.1 328 6.7*
LWS 15.4 294 6.9%*
2005 | Deutschland [957] Schidel 65.2 920 2 7%
NNH 22.5 243 0.7*
75%-P | Thorax 11.1 244 4.4%
Abdomen 12.0 402 8.0%
LWS 20.4 294 7.3%
Schédel 45 805
2008 Schweiz [985] MW Thorax 9.6 366
Abdomen 13 398
Schiadel 1.7+1.0
MW Thorax 35+1.7
. Abdomen 5.8+2.7
Dubai [988] Schadel 2.6
2009 75%-P | Thorax 4.5
Abdomen 7.3
Schédel 48 730 2.9
Griechenland | [986]* MW Thorax 38 485 5.3
Abdomen 40 1021 10.2
Schédel 50 650
. 0 NNH 16 160
Belgien [953] 75%-P Thorax 3 260
Abdomen 13 260
Schidel 1.3+0.7
2010 MW Thorax 29+0.6
Dubai [988] Abc.i.omen 6.9+3.2
Schadel 1.4
75%-P | Thorax 3.2
Abdomen 8.0
Schidel 36.1
2011 Bulgarien [967]* MW Thorax 11.9
Abdomen 11.9
Schédel 3349 701 + 182
MW Thorax 9.6+5.0 314+ 185
Abdomen 14+ 6 649 + 344
Schédel 28 687
2012 Thailand [968] 50%-P | Thorax 9.0 246
Abdomen 12.2 549
Schédel 45 801
75%-P | Thorax 15.6 472
Abdomen 16.8 764
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Tab. 8.5 — Fortsetzung. Nationale Dosisstudien: Einzeldosen bei Kindern nach Altersgruppen.

Jahr | Nation Ref. Grolie Protokoll CTDIw/ voy DLP Hesr
(mGy) (mGy cm) (mSyv)
10 — 15 Jahre
Schidel 1.7
. Thorax 2.2
2013 Australien [975] MW Abdomen 51
Ganzkdrper 6.9
MW S;hédel 592 +£12.5 930 +234
Thorax 6.3+43 212 £ 186
2014 1 Porgal ) BT T T Sehdel 723 1120
Thorax 7.2 195
Schidel [35.6] 544
0 NNH [7.3] 68
S0%-P oy orax [6.2] 161
Australien / [962] Abdomen [8.4] 324
Neuseeland Schidel [42.2] 633
0 NNH [14] 134
T3% P M orax [7.6] 223
Abdomen [11.1] 473
2015 Schéidel [41.7] 631
50%-P | Thorax [3.7] 111
. Abdomen [10.0] 427
ltalien [959] Schadel [58.2] 985
75%-P Thorax [6.6] 195
Abdomen [14.0] 602
Schidel 23+1 609 + 237
Serbien [954] MW Thorax 542 197+ 114
Abdomen 6+1 403 + 197
13 - 19 Jahre
Finnland [963]** 75%-P | Thorax 282
2010 MW Schidel 983 +£412
Japan (9361 77504-p | Schadel 1119
14 — 18 Jahre
MW Abdomen 8.2+0.2 345+ 7 8.0+0.2
2013 USA [958]** 50%-P | Abdomen 8.0 328 7.1
75%-P | Abdomen 9.8 418 10.0
15 Jahre
50%-P | Abdomen 8.1 472
2013 Japan 611 77504-p | Abdomen 9.0 681
* Mittelwert aus mehreren Einzelstudien
ok Umgerechnet von Gewichts- oder Diameter-Gruppen auf Altersgruppen
MW Mittelwert
50%-P 50%-Perzentile
75%-P 75%-Perzentile

Tab. 8.6. Nationale Dosisstudien: Organdosen bei Kindern.

Jahr | Nation Referenz
2012 | Frankreich [951]
Grof3britannien [966]

Tab. 8.7. Nationale Dosisstudien: Kumulativdosen bei Kindern.

Jahr | Nation Referenz | Mittlere bzw. mediane Kumulativdosis (mSv)

2007 | Norwegen [1019] 2.2

2012 | Frankreich [951] 32
[1028] 27+2.0

2015 | Korea [969] 5.4
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8.3. Nationale und internationale Referenzwerte: Erwachsene

Vor dem Hintergrund des stochastischen Strahlenrisikos ist die Etablierung von Dosisreferenz-
werten (dose reference levels, DRL) als Richtwerten zur Regulierung der Strahlenexposition
und zur Risikokommunikation sinnvoll [161, 191, 198, 209, 231, 277]. Seit einem entsprechen-
den Vorschlag der ICRP wurden in vielen Lindern Dosisreferenzwerte aus nationalen Uber-
sichtsstudien abgeleitet. In Tab. 8.8 wurden nationale Referenzwerte fiir Erwachsene aufge-
fiihrt, wie sie in verschiedenen Léndern zu unterschiedlichen Zeitpunkten etabliert wurden.

Tab. 8.8. Nationale und internationale Referenzwerte: Erwachsene.

Jahr Nation Ref. Grofie Protokoll ?HTGD;; (ml();];l;m) (:llgfi’)
GroB Schédel 58 1050
oo 0 Thorax 27 650
britannien [260] 75%-P Abdomen 33 770
Becken 33 570
Schidel 2
logg | Niederlande | [283] | 75%-P ilg‘éf;‘len 18
LWS 20
Schidel 800
NNH 510
Schweiz [176] 75%-P | Thorax 480
Abdomen 710
Becken 540
Schédel 60 1050
NNH 35 360
Thorax 30 650
o Thorax 35 280
1999 Europa [201] 75%-P HRCT
Abdomen 35 780
Becken 35 570
LWS 35 800
Schédel 60 1050
Thorax 22 650
2003 | Deutschland [184] 75%-P | Abdomen 24 1500
Becken 28 750
LWS 47 280
Schidel 1300
0 Thorax 600
2004 Kanada [171] 75%-P Abdomen .
Becken 650
Schédel 58 1050
Thorax 20 500
2008 | Frankreich [254] 75%-P | Abdomen 25 650
Becken 25 450
Ganzkorper 20 1600
Schidel 65 950
2010 Thoras v 20
0
Deutschland [187] 75%-P Abdomen 20 900
Becken 20 450
LWS 42 250
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Tab. 8.8 - Fortsetzung. Nationale und internationale Referenzwerte: Erwachsene.

Jahr Nation Ref. Grofie Protokoll ((rjn TGDyl) (mlé];l:m) (Iflléfi,)
Schédel 66 940
NNH 16 210
Thorax 11 390
0 Thorax-HRCT 7 280
Irland [203] 75%-P Abdomen B 400
Ganzkdrper 12 850
HWS 19 420
Pulmonal-A 13 430
Schédel 1120
Hals 520
Thorax 580
Japan [956] 75%-P | Abdomen 680
Becken 350
Extremititen 640
Cardio-A 1510
Schédel 69 1056
Hals 31 762
Korea [193] 75%-P | Thorax 19 1234
Abdomen 19 1844
LWS 44 1338
2010 Schédel 65 1000
NNH 25 350
Hals 20 500
Thorax 10 400
Abdomen 15 650
Schweiz [273] 75%-P | Becken 20 500
Ganzkdrper 15 1000
HWS 30 600
LWS 30 850
Extremitéten 15 1000
Cardio-CTA 50 1000
Schédel 60 900 1.4
NNH
Syrien [222] Thorax 20 520 7.1
75%-P | Thorax HRCT 30 135 1.8
Abdomen 25 720 9.8
Becken 30 540 8.0
LWS
Schédel 60 730
WeiBiruland | [225] MW Hals 55 640
Thorax 20 500
Schédel 65 760 1.7
. Thorax 13 580 6.9
2012 Kenia [226] MwW Abdomen 14 470 3
LWS 14 650 7.2
Schédel 55 800
NNH 13 190
. 0 Thorax 9 290
2013 Finnland [228] 75%-P Abdomen B 560
Ganzkorper 12 770
Aorta 10 630
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Tab. 8.8 - Fortsetzung. Nationale und internationale Referenzwerte: Erwachsene (Fortsetzung).

Jahr Nation Ref. Grofie Protokoll (?n ”l;l;)yl) (mlé];l:m) (Iflléfi,)
Schédel 67 1055
NNH 52 605
Griechen- Thorax 14 480
land (2631 75%P b domen 16 760
Ganzkdrper 17 1020
LWS 35 725
Schédel 53 900
Hals 19 770
Thorax 13 710
Thorax-HR 11 500
Thorax +
Abdomen
Abdomen 13 1190
Magen 13 950
2013 Leber 15 1690
Korea [223] 75%P [ pancreas 14 1530
Nieren 14 2100
HWS 29 600
LWS 24 760
Hiifte 17 600
Schédel-CTA 43 1850
Cardio-CTA 45 1250
Leber-CTA 14 380
Aorten-CTA 15 2000
Thorax 18 630
Thorax-HR 20 600
Saudiarabien [249] 75%-P | Abdomen 15 800
Ganzkorper 16 1040
Pulmonal-CTA 18 480
Schédel 75 1010
Hals 20 465
Thorax 14 470
2014 Portugal [977] 75%-P | Abdomen 18 800
Becken 18 645
HWS 39 600
LWS 38 845
Cardio-CTA,
prospektives 12 210
Triggering
25%-P Cardio-CTA,
retrospektives 22 355
. Gating
2015 | Frankreich [229] Cardio-CTA,
prospektives 26 370
Triggering
75%-P Cardio-CTA,
retrospektives 40 870
Gating

CTDI = CTDIy oder CTDI, o
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8.4. Nationale und internationale Referenzwerte: Kinder

Einen Uberblick iiber die Methodik der Ableitung von Dosisreferenzwerten fiir Kinder bietet
Thomas 2012 [982]. Aufgrund der vergleichsweise hohen interindividuellen Schwankungs-
breite der anthropometrischen Merkmale bei Kindern ist die Klassifizierung der Dosisreferenz-
werte geméll dem Lebensalter zwar praxisorientiert, aber unter dosimetrischen Aspekten mit
erheblichen Unsicherheiten behaftet. Aus diesem Grunde werden bereits vereinzelt Dosisrefe-
renzwerte durch Korpergewichts-Klassen oder Patientendurchmesser-Klassen charakterisiert.
Eind kurze Diskussion dieser Problematik findet sich in Abschnitt 4.1.1.

Da die Uberzahl der Dosisreferenzwerte anhand von Altersgruppen klassifiziert wurde,
wurde im Rahmen dieser Studie diese Darstellungsweise beibehalten; zur Verbesserung der
Ubersichtlichkeit wurden Gewichtsklassen in entsprechende mediane Altersklassen transfor-
miert.

Tab. 8.9. Nationale und internationale Referenzwerte: Kinder ohne Altersbezeichnung.

Jahr Nation Referenz Grofie Protokoll EEGD;V)V (ml()}l}:l:m) (Ifllgfi,)
Schidel 70 750 2.4
NNH
Thorax 30 600 7.8
1999 Europa [201] 75%-P | Thorax HRCT 50 100 1.3
Abdomen 30 800 12
Becken 30 500 7.5
LWS
Schidel 50 500 1.6
NNH
Syrien Thorax 30 350 4.5
2010 [222] 75%-P | Thorax HRCT 40 175 2.2
Abdomen 35 525 7.9
Becken 40 550 8.1
LWS

Tab. 8.10. Nationale und internationale Referenzwerte: Kinder nach Altersgruppen.

Jahr Nation Ref. Grofe Protokoll ?HTIGD;‘)V (ml();l}:l:m) (;Igi,)

0 —1 Jahre
Schidel 40 300
Thorax 20 200
2000 | GrofBbritannien [978] 75%-P | Thorax-HRCT 30 50
Abdomen 20 330
Becken 20 170
. 125 x Schidel 20 270
2008 Schweiz [985] MW Thorax 5 110
Abdomen 7 130
Schédel 33 400
2010 Deutschland [187] 75%-P | Thorax 4 60
Abdomen 7 170
Japan [956] 75%-P | Schidel 820

2012 Kenia [226] MW | Schidel 30 270 3
Finnland [964] - Schédel 23 330
2015 Schédel 26 440
International | [984983] | 75%-P | Thorax 5.2 130
Abdomen 5.2 130
1 Jahr

o Schidel 48 630
2014 Portugal [977] 75%-P Thorax 24 45
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Tab. 8.10 - Fortsetzung. Nationale und internationale Referenzwerte: Kinder nach Altersgruppen.
1 -5 Jahre

Schidel 30 420
2008 Schweiz [985] 11&3\/)( Thorax 8 200
Abdomen 9 300
Finnland [964] - Schidel 25 370
2015 . Schidel 36 540
International | [984983] | 75%-P | Thorax 6.0 140
Abdomen 7.0 250
1—7 Jahre
2010 | Japan | [956] | 75%-P | Schidel | 1000 |
2 — 5 Jahre
Schidel 13 125
2010 Deutschland [187] 75%-P | Thorax 7 130
Abdomen 10 230
2012 Kenia [226] MW Schidel 45 470 1.9
5 Jahre
Schédel 60 600
Thorax 30 400
2000 | GroBbritannien [978] 75%-P | Thorax-HRCT 40 75
Abdomen 25 360
Becken 25 250
2013 Griechenland [987] 75%-P | Becken 38 420
75%-P | Schidel 50 770
2014 Portugal [977] Thorax 56 140
5-10 Jahre
Schidel 40 560
2008 | Schweiz [985] ﬁf)v" Thorax 10 220
Abdomen 13 380
Schédel 60 600
2009 | Griechenland [986] 75%-P | Thorax 30 400
Abdomen 25 610
Schédel 17/-(% 180/ -
2010 Deutschland [187] 75%-P | Thorax 10/5 230 /115
Abdomen 7/3.5 170/ 85
Finnland [964] - Schidel 29 460
2015 ‘ Schidel 43 690
International | [984983] | 75%-P | Thorax 6.8 170
Abdomen 7.8 310
6 — 14 Jahre
2012 | Kenia | 2261 | MW [ Schidel | 50 | 620 | 2.0
8 — 12 Jahre
2010 | Japan | [956] | 75%-P | Schidel | | 1040 |
10 Jahre
Schidel 70 750
Thorax 30 600
2000 | GroBbritannien [978] 75%-P | Thorax-HRCT 50 100
Abdomen 30 800
Becken 30 500
2013 Griechenland [987] 75%-P | Becken 45 640
75%-P | Schédel 70 1100
2014 Portugal [977] Thorax 57 135
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Tab. 8.10 - Fortsetzung. Nationale und internationale Referenzwerte: Kinder nach Altersgruppen.

10 — 15 Jahre
. 125 x Schidel 60 1000
2008 Schweiz [985] MW Thorax 12 460
Abdomen 16 500
Schédel 70 750
2009 | Griechenland [986] 75%-P | Thorax 30 600
Abdomen 30 1300
Schidel 20 230
2010 Deutschland [187] 75%-P | Thorax 8 230
Abdomen 13 500
Finnland [964] - Schédel 35 560
2015 . Schédel 53 840
International | [984983] | 75%-P | Thorax 7.3 300
Abdomen 9.8 460
13 - 19 Jahre
2010 | Japan | [956] | 75%-P | Schidel 1120 |
> 15 Jahre
Schidel 22 250
2010 Deutschland [187] 75%-P | Thorax 12 400
Abdomen 20 900
75%-P | Schidel 72 1120
2014 Portugal [977] Thorax 71 195

(*) 16-cm-Phantom / 32-cm-Phantom bei Thorax- und Abdomenprotokollen

8.5. Einzeldosen bei Erwachsenen und Kindern

In den folgenden Tabellen wurden in der Literatur auffindbare als Volumen-CTDI CTDlyol, als
Dosis-Langen-Produkt DLP oder als effektive Dosis Hetr publizierte Dosiswerte in Abhéngig-
keit vom Untersuchungsprotokoll, von der Rontgenréhrenspannung und der CT-Untersu-
chungstechnik aufgefiihrt. Hierbei wurden folgende Abkiirzungen verwendet:

AbKkiirzungen.

CT-Techniken

*

Mittelwert aus mehreren Studiengruppen gebildet

A Abschirmung

DE Dual-Energy-Modus

DM Dosismodulation

ECG EKG-Triggerung

ECGp EKG-Triggerung prospektiv

ECGr EKG-Triggerung retrospektiv

HP High-Pitch-Verfahren

IR Iterative Rekonstruktion o.n.A.

IR- Iterative Rekonstruktion mittels
AIDR (Toshiba) ADMIRE (Siemens) | ASIR (GE) iDose (Philips)
IMR (Philips) IRIS (Siemens) MBIR (GE) SAFIRE (Siemens)

OBDM Organ-basierte Dosismodulation

CT-Protokolle

BWS Brustwirbelséule

GK Ganzkorper

HWS Halswirbelsdule

ISG Ileosacralgekenke

LWS Lendenwirbelséule

NNH

Nasennebenhohlen
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8.5.1. Erwachsene: CTDIvo-Werte

Tab. 8.11. Erwachsene: CTDIya (mGy).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Schidel

14.3 [627]
22.2[627]
22.5[301]

26.2 [346]*
32.5[627]

39.7 [708]*
41.2 [702]
47.4[321]*
47.8 [302]
57.2+ 1.8 [807]
59.4 + 1.4 [753]
59.5 [362]
59.7[709]

60.0 + 11.7 [360]
60.1[758]

62.6 [1100]
63.3 [1105]*
66.5 [806]

71 [291]

76 [345]

87 [318]*
92.7+28.3[1101]

32.8 [297]*
38.7 [708]*

50.8 + 3.7 [312]

DM

0.9 [627]
2.0 [627]
3.2[627]

1.6 [627]
3.5[627]
4.6 [627]

36.2+62[1101]
44.6 [1100]
53.2+3.2[338]
53.6 + 2.4 [338]
86.2 [539]*
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIva (mGy).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Schédel

IR-ASIR

38.1+ 1.2 [807]
38.6 + 0.8 [753]
49.7 [806]

IR-iDose*

27.41702]
34.3[702]

IR-IRIS

51.8[758]

IR-SAFIRE

33.2[709]

OBDM

62.9 [1105]*

NNH

13.4[371]
14.9 [301
17.0 [371

31.6+ 0.0 [733

33.5[371]

IR-VEO

]
]
20.5 [306]
]
]

2.9+0.0[733

Hals

9.5 [633]

10.5 [554]

11.4 [288]
13.6+ 0.1 [822]
22.5[301]

26.3 [373]*
33.1 [302]*

IR-ASIR

11.2+ 0.8 [822]

DM

6.3 [633]
6.5+2.6 [374]
12.4+ 1.4 [838]

DM, HP

5.5+0.8 [838]




244

8. Anhang: Tabellen

Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120 140

80 + 140

100 + 140

Thorax

0.2 [593]
1.6 [602]
10.4 + 3.0 [294]

0.5 [593]
4.6 +0.0 [734]

5.2 [602]
6.2 +2.1[576]

0.9 [593] 12.6 [301]
3.9[831] 16.4 [288]

6.4 +2.7[801] 17.5 [306]
6.8+ 1.5 [675]
7.0 [554]

7.0 [539]

7.6 0.0 [734]
7.8 [393]*

8.0 [666]

8.3 + 4.6 [748]
9.2 [657]

9.6+ 1.8 [576]
10.4+2.1 [837]
11.1+4.7 [756]
11.5 [495]

12.6 [817]

14.6 + 4.7 [832]
17.9[1105]
18.9 [302]*
20.4 [415]

21.9 [1000]*
22.1 [318]*
25.6 [759]

1.4 % 0,0 [696]

A, OBDM

1.4 £ 0.3 [696]
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIva (mGy).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Thorax

DM

0.5[572]
0.5+0.2 [863]
4.9 +1.9[863]
5.5+2.1[763]
6.3+0.5[582]

154+ 6.4 [764]

2.9+ 1.0 [384]
43[572]
43+ 1.1[935]
4.6+ 1.8 [675]
6.0 £ 1.0 [593]
6.2 [775]

6.2 + 1.4 [826]
6.6 [539]

6.7 [666]*

6.8 [657]

7.1 [674]*
7.1+£2.2[742]
7.2 [376]*

10.0 + 1.7 [582]
10.2 + 2.5 [338]
10.4 [602]*
11.1+ 6.3 [829]
11.4+ 1.4 [338]
12.1 0.5 [745]
14.0 [861]

14.6 [998]*
17.1+9.5 [741]
17.5 [1105]
21.2[852]

8.6 [539]
19.2 [582]

15.2[861]

DM, HP

8.3 [852]

DM, IR-AIDR

43 +2.5[829]
6.2 +2.5[741]

DM, IR-ASIR

1.5+0.5 [713]
11.3 +5.1 [764]

3.5+ 0.0 [832]
10.8 + 2.9 [747]

DM, IR-IRIS

3.1[775
6.9 +0.2[745

DM, IR-MBIR

2.2+0.7[747

DM, IR-SAFIRE

1.4 +2.8[700]

0.6 +0.0 [763]
1.5 +0.7 [700]
3.0 £ 0.8 [826]

— e —
e o —

2.5+0.7[742
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Thorax IR-AIDR 4.3 [759]
IR-ASIR 1.8 £1.3[748]
3.5[817]
IR-Idose* 4.9+2.0[756]
IR-IRIS 4.6 + 0 0[734]
IR-MBIR 3 [831]
0.4+ 0 0[748]
IR-SAFIRE 1.8 +£ 0.2 [801]
DM, OBDM 18.1[1105]
HP 7.7+ 1.3[837]
OBDM 1.3 £0.0 [696]
17.9[1105]
Thorax- - 2.5 [394] 11.6 [288]
HRCT
Thorax + - 52+0.41[620] 6.8 + 0.8 [620]
Abdomen
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Abdomen

10.3 = 1.5 [854]
10.5 + 3.2 [294]
11.6 % 5.3 [399]

9.8 [539]

9.8 + 3.0 [397]*
10.1 + 2.3 [675]
10.8 + 1.2 [755]
11.3[301]

11.4 [406]

11.6 + 5.3 [399]
12.0 [666]

12.2 [288]

12.9 [659]
15.0+ 3.5 [718]
15.2 + 4.9 [837]
15.4 [401]

18.4 [861]

18.5 + 4.6 [399]
19.5 + 4.0 [399]
20.1[415]

20.6 [302]*
20.8 + 6.2 [751]
22.1 [318]*
26.5 [1050]*

17.5 [306]
19.0 £ 2.2 [668]
22[730]

16.7 [861]
252 +5.5 [854]

15.4 [861]

DM

5.5+ 1.4 [623]
6.9 + 3.4 [698]
8.5+ 0.6 [582]

10.8 + 0.0 [605]

11.1+ 1.8 [606]

12.9 + 2.5 [582]

5.8+ 1.2 [402]
6.4 [820]

6.7 0.0 [623]
7.0 0.9 [762]
7.1+ 1.0 [659]
7.5 [674]*

78 [711]

8.2 +3.2[833]
8.5 [666]*

8.5 +2.8[783]
8.8 £2.9 [675]
9.0 +3.5[752]
9.3 [539]

9.4 + 1.8 [698]

55+ 1.1[623]
11.0 + 2.5 [668]
13.4[539]
37.5 [582]

11.0 + 2.3 [623]
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Tab. 8.11 — Fortsetzung. Erwachsene: CTDIva (mGy).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Abdomen

DM

9.9 5.6 [760]
10.2 + 3.1 [707]
10.5+ 2.1 [743]
10.8 + 5.2 [824]
10.9 + 3.8 [744]
12.0 + 5.5 [744]

12.5 [681]*

12.8 [796]

13.6 + 4.0 [605]
13.6 + 5.2 [398]*
14.2 + 3.7 [338]

152+ 10 [779]
15.8 + 4.5 [842]
15.9 + 4.3 [804]
16.0 + 3.3 [402]
16.1+ 1.7 [338]

17.2 [998]*
18.5+ 8.6 [741]
19.7 + 5.5 [782]
20.5 + 5.0 [606]

21.4[774]

21.8 4.9 [735]
21.9 [1000]*

23 [808]
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Abdomen | DM, IR 18.2 £4.1[735] 2.0+ 1.4 [824]
2.7+1.9[824]
DM, IR-AIDR 7.8+4.6[741]
10.8 [774]
DM, IR-ASIR 1.8 +0.7 [760] 4.0 [820] 3.1£1.2[726]
4.41711] 7.7+ 1.7[744]
7.7+£2.1[744]
8.0[761]
9.1£5[779]
11.9 + 3.6 [804]
12.2+ 4.7 [782]
13 [808]
152+ 7.6 [814]
DM, IR-ASIR-V 5.0 [761]
DM, IR-IRIS 2.8 [811] 5.6 [811] 3.5+0.5[596]
9.4 [811]
DM, IR-MBIR 0.7+0.2 [833]
1.9+ 0.6 [833]
3.3+£1.3[783]
3.5[796]
6.2 +3.6[746]
DM, IR-SAFIRE 6 [5771* 10.4 [S77]* 2.7+ 0.6 [743]
16.1 [577]*
HP 7.9 £1.3[837]
10.1 £1.0[842]
IR-AIDR 6.4 [10507*
IR-ASIR 6.1 £1.3[751] 10.9 + 4.6 [724] 6.3 £2.3[707] 11 [730]
11.4+3.4[718]
IR-IMR 1.3+0.1[752]
IR-IRIS 13.5+3.7[718]
IR-MBIR 1.7+£0.8 [724]
IR-SAFIRE 2.1£0.5[755]
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Becken - 5.6 [407] 12.0 [409]
11.3 [301] 22.7 [306]
12.3 [657]
22.1 [318]*
24.6 [302]*
DM 6.4+ 1.9[700]
7.4 [657]
11.2+3.4[700]
284+ 11.0 [767]
DM, IR 5.9+2.3[700]
7.8+£2.3[700]
DM, IR-ASIR 10.8+ 6.0 [767]
HWS - 18.6£6.1[1101] 23.3 [666]
DM 12.0£7.9[1101] 13.4 [666]*
LWS - 17.9 [288]
20.3 [301]
26.4 [666]
28.0 [302]*
35.0 [306]
DM 20.4 [666]*
Ganz- - 13.0£3.5[701]
korper 16.9 [657]
229+ 5.6 [418]
DM 9.2 +2.2[414]
11.3 [657]
11.6 £ 5.0 [654]
13.8+7.2[797]
26.3 + 6.5 [750]
DM, 10.5+£3.4[750]
IR-AIDR-3D
DM, 6.0+ 1.1[414]
IR-iDose* 7.4+3.7[797]
IR-iDose* 7.1+£1.5[701]
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Schidel-
CTA

20.6 = 0.1 [429]

DM

13.2+ 0.0 [574]

10.6 [362]
17.2 £ 0.0 [574]

25+ 12 [426]
26.9 + 1.5 [694]

Schidel-
Perfusion

196 [285]

221 [362]
230-590 + 6 [421]
306 [425]*

531.4 [422]

17143 [422]

DM

4457.1 [422]

Hals —
Carotis-
CTA

8.8 [657]
11+2.0[1101]
32.4+0.3[757]

DM

4.6 [657]
6.8+ 1.8[1101]

HIR

19.4+ 0.3 [757]

Cardio-
CTA

18.0+0.1 [841]

10.1 [454]
41.7[719]

42.1 4 3.6 [489]
48.1[512]

50.3 [509]

52.7 [499]*
58.7+ 0.0 [841]
58.8 + 6.3 [489]
93.6 [446]*

DM

0.84 + 0.33 [844]
4.23 + 1.76 [844]

DM, ECGp

3.3[598]
11.4 [496]

5.1 [598]

DM, ECGp, HP

0.7 0.1 [528]

DM, ECGr

16.2 [496]*
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Cardio- ECG 31.8 £2.7 [568] 43.1 £5.7[568]
CTA 34.4 [617] 57.4 [617]
ECG, IR- 4.3 £0.5[835]
SAFIRE
ECG, HP, IR- 2.3+£0.5[835]
SAFIRE
ECGp 2.9+0.7 [604] 3.8+£1.5[604] 7.5 [597]
4.4 [597] 4.2 [441]* 11.1 +£3.3[529]
5.8£1.0[436] 12.6 [449]
7.9 [512] 12.6 + 2.1 [436]
10.9 [850] 13.0 [441]*
32.6 [477]* 13.0+ 5.6 [484]
14.9 [495]*
15.6 [519]
18.0 £ 1.9 [485]
18.4 [440]
24.9 [513]
25.6 £ 6.2 [475]
28.8 +2.1[525]
47.7+9.4 [825]
55.4 [477]*
72.6 £27[469]
ECGp, HP 3.1[841] 5.18 [841]
3.1[850]
ECGp, IR-iDose* 11.2+3.4[791]
ECGp, IR- 23.4+£4.7[825]
SAFIRE
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120 | 140

80 + 140

100 + 140

Cardio-
CTA

ECGr

3.5 [454]
10.8 + 2.4 [841]

16.8 [512]
18.1 £ 5.9 [596]
19.4 + 1.0 [489]
20.4 + 1.3 [436]
22.0 + 1.8 [489]
28.6+ 6.3 [511]

32.1+20.3 [781]

34.5[841]
37.4 [850]
85.2 [594]

25.2+2.9 [489]
25.3 [499]*
27.3[509]
33.84+4.4[841]
34.1 + 18.2 [596]
36.7 + 8.7 [505]
38.3 + 3.1[489]
38.8 + 11.0 [503]
39.1 4 3.2 [523]
40.9 + 2.3 [436]
42.4 [495]*
45.5+ 4.7 [460]
45.6 [513]
47.8+6.1[511]
49.3 [519]

49.8 [440]

51.9 [449]*
52.7+5.1 [485]
55.3 [453]*

57.0 + 10.1 [505]
58.8 = 16.6 [529]
60.8 [841]

60.3 + 4.7 [732]
62.6 4 4.0 [451]
63.6 [503]
67.6+ 7.3 [484]
74.4 + 13.4 [525]
85.6 [594

46.6 [510]

ECGr+IR

283 +23[732

HP

3.9+0.5 [840]
6.0 + 1.5 [840]

8.1+ 1.8[840

7.8+ 1.9 [840]

IR-AIDR

17.8[719

Thorax-
CTA

DM

2.2+0.9[609]

2.8 [800

]
]
]
9.6 + 2.4 [840]
]
]
3.6 +0.9 [609]

DM, IR-SIR

1.2 [300]
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Tab. 8.11 - Fortsetzung. Erwachsene: CTDIya (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Thorax- - 51.9+£11.2[294]
Perfusion
Thorax — - 6.1 [584] 4.8 [570] 7.5 [570] 27 [453] 6.2 + 1.6 [430] 8.7+2.8[430]
Pulmonal-CTA 8.2 [584] 9.2 +3.3[430]
8.5+2.6[430]
11.8 +5.6 [283]
DM 2.6 [612] 5.0[612] 8.3 [612] 31.7 [684]
3.6 £ 0.5 [624] 8.0+ 1.8[780] 23.3 [684]
6.1 +£1.5[624]
DM, IR- 0.6 +£0.0 [780]
MBIR
Thorax — DM, ECGp 4.7+ 1.1 [483] 12.9 £2.1 [483]
Aorten-CTA DM, ECGr 9.2 +£2.1[483] 21.2 £5.7[483]
Thorax — - 10.9 [608] (90kV) 14.6 [608]
Abdomen — 21.5[714]
Aorten-CTA 21.5+ 5.1 [828]
IR-ASIR 15.6 [714]
21.3+9.4[729]
IR-MBIR 5.7+5.3[729]
Abdomen-CTA | - 21.9 +£3.2[530]
DM 17.7 £2.7 [530]
Abdomen- - 110.5+£21.9 [294]
Perfusion
Becken-CTA - 10.0 [629] 15.6 [629]
Becken- - 131.5 £ 10.5 [294]
Perfusion 137 [285]
CT-Urographie | DM 13.6 [567] 4.4 +1.5[532] 8.6 +1.2[599]
5.0+0.9[599] 8.8+ 1.3[599]
8.2+ 1.5[599] 8.9+ 1.2[599]
29.8 [567] 38.8 [567]
735.6 £217.0 [533]
924.9 + 325.5 [533]
Bein-CTA DM 2.4+0.5[615] 3.8+0.7 [615]
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8.5.2. Erwachsene: DLP-Werte

Tab. 8.12. Erwachsene: DLP (mGy cm).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Schiadel

22 [627]
57 [627]
79 [627]

41 [627]
99 [627]
116 [627]

349 [301]

366 [627]

560 [627]

587 [302]

614 [318]*

690 [321]*

770 + 52 [702]
789 [345]

850 + 91 [338]
851 + 54 [740]
877 [1100]

913 [627]

986 [1105]*
1033 + 55 [709]
1043 + 53 [758]
1045 + 108 [706]
1081+ 67 [753]
1181 + 232 [298]
1270 + 25 [806]
1306 + 201 [338]
1409 + 452 [1101]
1526 + 2311 [413]

806 +

124 [312]

DM

560 + 124 [1101
624 [1100

DM, IR-ASIR

491 [790

DM, IR-
MBIR

]
]
711 [539]
]
]

491 [790

IR-ASIR

749 + 52 [753]
798 + 42 [740]
932 + 12 [806]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Schidel IR-iDose* 504 + 30 [702]
646 £41 [702]
IR-IRIS 890 + 34 [758]
IR-SAFIRE 530+ 21 [709]
744 £ 80 [706]
OBDM 979 [1105]*
NNH - 187 [371] (110kV) 87 [710] 368 [371]
147 [371]
156 [301]
205 [306]
Hals - 100 [372] 244 £ 28 [372] 168-251 [633]
171 [288]
315[301]
350+£56[372]
359 +£83[372]
389 £29 [822]

469 [302]*
812 [373]*
DM 344 + 60 [838]
DM, HP 172 + 27 [838]

IR 322 + 43 [822]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Thorax

8 [593]
38 [571]

45 [602]
388 + 126 [294]

12 [593]
92 [378]

132 [571]

141 = 11 [734]
145 [602]

218 + 65 [576]
295 [613]

358 [614]

35[593]

66 [393]*

108 [817]

150 + 12 [831]
162 + 120 [799]
218 + 98 [801]
224 + 25 [734]
250 [657]

258 + 60 [675]
297 [613]

308 + 178 [748]
316 [539]

354 4 60 [576]
361 [614]

381 [495]

468 [302]*

513 + 163 [832]
520 [1105]

555 [672]*

577 [415]

643 [318]*

767 + 53 [759]
780 + 146 [655]
894 [1000]*

308 [301]
364 [288]
373 [306]

282 [613]
342 [614]

48 + 3 [696]

A, OBDM

49 + 12 [696]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Thorax

DM

16 [572

18 + 7 [863
167 + 66 [863
204 + 78 [763

141

144

146 [862

170 + 67 [675
183 + 44 [826]
185 [657]

192 + 96 [655]
206 [666]*

217 [593]

245 [775]

245 + 136 [829]
257 [376]*

257 + 82 [742]
270 [672]

302 [539]

349 + 81 [298]
377 [602]*

411 + 165 [737]
472 + 74 [338]
504 + 34 [338]
507 [998]*

507 [1105]

524 + 191 [741]
560 + 138 [785]
802 + 33 [745]
833 [852]

856 + 253 [804]

572
851

389 [539]

143 [862]

165 [862]

DM, HP

340 [852]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Thorax DM, IR 32.7+10.6 [700] 47.4+13.4[700] 33 +£9[742]
DM, IR- 88 £51[829]
AIDR 191 + 80 [741]
DM, IR-ASIR 51.3+£20.0[713] 113 £56[737]
127 £ 8 [832]
396 £ 106 [747]
606 £ 161 [802]
633 + 195 [804]
DM, IR-IRIS 105 + 64 [799]
122 [775]
448 £ 14 [745]
DM, IR- 8+0.3[785] 81 + 25 [747]
MBIR 113 +£56[737]
DM, IR- 20.8 £2.0 [763]
SAFIRE 91 + 24 [826]
DM, OBDM 524 [1105]
IR-AIDR 129 £ 9 [759]
IR-ASIR 31 [817]
66+ 51 [748]
IR-IRIS 142 £ 9 [734]
IR-MBIR 12 £1[831]
15+1[748]
IR-SAFIRE 64 +5[801]
OBDM 46 =3 [696]
520 [1105]
Thorax- - 358 £31[620] 467 £ 74 [620]
Abdomen 1076 [634]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

598 + 92 [659]
757 [1050]*

760 + 98 [718]
960 [415]

1048 [1000]*
1054 + 248 [751]

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Abdomen 481 + 157 [294] 341 [288] 350 [306]
369 [302]* 814 + 94 [668]
465 [539] 840 [730]
472 [318]*
473 [301]
501 £ 126 [675]
547 £ 74 [755]
583 [726]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Abdomen

DM

128 + 40 [623]
295 + 12 [605]
423 + 75 [606]

154 = 17 [623]
195 [820]

259 + 79 [402]
341 + 80 [659]
362 [666]*

366 + 62 [762]
378 + 104 [605]
390 [711]

421 + 180 [833]
423 [539]

434 + 195 [752]
457 + 185 [675]
478 [774]

558 [824]

577 297 [744]
580 + 248 [744]
582 + 462 [741]
607 + 439 [398]*
645 + 184 [606]
687 [400]*

719 + 218 [402]
750 + 159 [298]
827 + 22 [338]
834 + 237 [338]
845 [998]*

126 = 31 [623]
473 £ 105 [668]
630 [539]

254 + 68 [623]

DM, IR

100 + 73 [824]
136 + 99 [824]

DM, IR-
AIDR

243 [774]
254 4218 [741]

DM, IR-ASIR

141 + 59 [726]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Abdomen | IR-AIDR 300 [1050]*
IR-ASIR 306 70 [751] 125 [820] 380 + 150 [744] 470 [730]
586 + 270 [724] 408 + 139 [744]
608 + 213 [718]
IR-IMR 61 +2 [752]
IR-IRIS 183 + 31 [762]
672 + 69 [718]
IR-MBIR 92 + 45 [724] 36 + 13 [833]
98 + 35 [833]
IR-SAFIRE 101 + 28 [755]
Becken - 253 [657] 569 [306]
258 [407]
292 [301]
492 [318]*
576 [302]*
602 + 68 [767]
DM 152 [657]
273.7+97.9 [700]
544.6 + 286.6 [700]
DM, IR 318.6 + 201.3 [700]
401.1 £ 149.5 [700]
DM, IR-ASIR 265 + 55 [767]
HWS - 433 + 164 [1101]
DM 232 [666]*
271 + 125 [1101]
LWS - 295 [301]
302 [302]*
315 [306]
449 [288]
DM 412 [666]*
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Ganz- - 920 + 234 [701] 1099 £ 270 [740]
korper 1338 [657]
1494 + 392 [418]
1686 + 1092 [413]
DM 861 + 375 [654]
895 [657]
975 £536 [797]
IR-ASIR 843 £250 [740]
IR-idose* 496 + 107 [701]
DM, IR- 532 £268 [797]
idose*
Schédel- - 399 £ 19 [429]
CTA DM 1001 £ 108 [694]
1380 + 865 [426]
Schédel- - 1920 [423] 6857 [422]
Perfusion 2120-2740 [421]
2126 [422]
2909 [285]
DM 17829 [422]
Hals — - 227+ 16 [569] 209 [657]
Carotis- 398 £ 105 [1101]
CTA 739 £ 61 [569]
1330 £ 221 [757]
DM 106 [657]
249 £34[1101]
HIR 808 + 87 [757]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

62 [597]
138 [514]

79 £ 16 [436]
99 [512]

115 [4417*
150 [850]
704 [477]*

121 + 40 [473]
131 + 32 [529]
150 [850]

169 [495]

170 + 34 [436]
170 + 80 [484]
176 [449]

185 + 55 [482]
213 [480]

219 [519]

228 + 44 [485]
240 + 105 [490]
259 [440]

274 [499]*

276 + 51 [491]
311 [441]*

317 [497]

329 + 83 [475]
349 [487]

417 [719]

440 [497]

630 + 124 [825]
753 [477]*

834 + 116 [525]
943 + 442 [469]

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Cardio- - 342 +£46 [841] 533 [719]
CTA 701 [512]
1131 £+ 87 [841]
A, ECGp, ECGr 85[631] 126 [631] 176 [631]
DM 15.7 £ 6.0 [844]
70.3 + 28.7 [844]
DM, ECGp 268 [598] 338 [598]
355 [496]
DM, ECGp, HP 12.4 £ 1.7 [528]
DM, ECGr 521 [496]*
ECGp 55 +£12[604] 65 +£21 [604] 117 [597]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

SAFIRE

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140

Cardio- ECG 391 £46 [568] 522 + 69 [568]
CTA 578 [617] 1125 [617]

ECG, IR 165 [766]

ECQG, IR- 152 £ 19 [835]

SAFIRE

ECG, HP, IR- 78 +£ 17 [835]

SAFIRE

ECGp, ECGr 82 [631] 129 [631] 179 [631]

284 [514]
ECGp, HP 61 [850] 109 [841]
65 [841] 141 [851]

ECGp, HP, 61 +£19[705]

IR-IRIS

ECGp, IR- 145+ 47 [791]

IDose*

ECGp, HP, 4.6 £0.5[836]

IR-SAFIRE

ECGp, IR- 148 + 160 [705]

IRIS

ECGp, IR- 315 £59[825]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)

80 100 120 140 80 + 140 100 + 140
Cardio- ECGr 202 + 55 [841] 237 [512 292 [766 751 [510]
CTA 245 £33 [436 396 + 187 [482
460 + 304 [781 459 £ 63 [523
565+ 88596 497 £ 54 [436
586 [850] 531 +39[460]
603 [841] 608 [495]
1551+ 115 [594] 646 + 120 [841]
700 £ 192 [503]
727 [449]*
759 [519]
801 [440]
856 [480]
858 + 109 [732]
868 + 198 [529]
889+ 111 [491]
948 [719]
959 + 94 [485]
989 [453]*
1082 + 140 [484]
1043 [841]
1067 £ 551 [596]
1070 [851]
1120 £ 172 [451]
1175 £ 205 [490]
1185+ 62 [503]
1201 [487]
1560 = 80 [594]
2547 + 553 [525]
ECGr, IR 389 +£44[732]
ECGr, IR- 583 £327[705]
IRIS
HP 140 + 20 [840] 290 + 62 [840] 234 £ 57 [840]
199 + 47 [840] 323 £93 [840]
249 [719]

— e —_
e e —
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Thorax- DM 87 + 37 [609] 142 + 34 [609]
CTA 164 [800]
DM, IR-IRIS 126 + 54 [798]
DM, IR-SIR 77 [800]
Thorax- - 720 £ 52 [294]
Perfusion
Thorax — | - 173 [584] 139 [570] 234 [570] 737 [453] 170 + 41 [430] 246 + 86 [430]
Pulmonal- 379 [578] 235+ 117 [430] 224 + 121 [430]
CTA 258 [584] 388 =100 [792]
367 + 100 [739]
605 [578]
433 +£220[312]
DM 81[612] 144 [612] 247 [612] 839 [684]
120 + 17 [624] 205 + 63 [624] 616 [684]
282 + 64 [780]
DM, IR-ASIR 262 £34[792]
DM, IR- 21 +£2[780]
MBIR
IR-ASIR 131 +69 [739] 131 4+30[739] 255+ 142 [739] 244 + 33 [792]
Thorax — | DM, ECGp 113 +30[483] 314 + 65 [483]
Aorten- DM, ECGr 243 +45 [483] 560 + 78 [483]
CTA
Thorax- - 1075 [714]
Abdomen | IR-ASIR 818 [714]
— Aorten- 1479 + 393 [828]
CTA
Abdomen- | - 1092 £ 204 [530]
CTA DM 880 =233 [530]
Abdomen- | - 1180 + 371 [403]
Perfusion 1593 £ 180 [294]
2237 + 455 [403]
Becken- - 447 + 30 [629] 675+ 82 [629]
CTA
Becken- - 1632 £ 222 [294]
Perfusion 2033 [285]
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Tab. 8.12 - Fortsetzung. Erwachsene: DLP (mGy cm).

CT-Uro-
graphie

712 [567]

169 = 62 [532]
825 [567]

855 [396
1529 [396

1733 [567

DM

868 £ 211 [599]

]
]
1550 [396]
J
]

612* [396
1272 + 219 [599]
935* [396]

Bein-CTA

DM

265 + 63 [615]

412 £82[615]
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8.5.3. Erwachsene: Heff-Werte

Tab. 8.13. Erwachsene: Effektive Dosis (mSv).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Schiadel

0.2 [1021]

0.4 [1021]

0.6 [1021]

0.9 [1003]

1.0 [301]

1.0 [1002]

1.1 [1124]

1.2 [292]*

1.2 [287]*

1.3 [428]*

1.3 +0.1 [1020]
1.4[318]

1.4 [362]

1.5 [313]*

1.5 [1013]

1.6 [321]*

1.6 0.1 [702]
1.7 [1105]*
1.7 0.5 [309]
1.9 [291]

1.9 [304]

2.0 [300]

2.0 0.4 [319]
2.1 [286]*
2.2+0.1[709]
2.2+0.1[758]
2.3 [304]
2.3+0.1[753]
2.4 [295]*

2.7 +0.1[806]
4.7 £7.2 [413]

0.84 [304]
1.0 [1021]
5.3[295]

DM

2.0+ 0.2 [338]
2.2 [539]*
3.0 0.5 [338]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Schiadel DM, IR-ASIR 0.6 +0.1 [790]
DM, IR- 0.6 0.1 [790]
MBIR
IR-ASIR 1.6 £0.1 [753]
2.0£0.0 [806]
IR-iDose, 0.8 [1124]
IR-iDose* 1.1 £0.1[702]
1.3 £0.1[702]
IR-IRIS 1.8 £0.1[758]
IR-SAFIRE 1.1 £0.0[709]
OBDM 1.7 [1105]*
NNH - 0.1 [368] 2.5 [287]*
0.2 [710]
0.5 [300]
0.5[301]
0.5 [306]
0 7[370]
IR-IRIS 1[710]
Hals - 4.1 +£0.2[583] 4.2 4+0.3 [583] 0.9 [374] 5.1[287]*
1.7 [300] 5.5+£0.2 [583]
1.8 [554]
2.0 [301]
2.0 [649]
2.0+£0.2 [822]
2.8 [288]*
4.7+0.2 [583]
A, DM 3.1+0.2[683]
A, OBDM 2.9+ 0.2 [683]
DM 1.0 [649]
3.6 £1.6[309]
3.7+0.1[683]
IR 1.7+ 0.2 [822]
OBDM 3.5+0.3[683]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Thorax

0.1[593

0.5[571
5.2+ 1.9 [294
6.2+0.7 [601

0.2 [593]
2.4+0.2[734]
2.0 [571]
2.6 [378]
5.4[614]

0.5 [593]

0.9 [393]*

1.4 [385]

1.4+ 0.5 [384]
2.1+0.2[831]
2.6 [392]
3+1.3[801]
3.6 [554]
3.7+0.5[319]
3.8 [616]*
3.8+0.4[734]
4.1 [295]*

4.3 [286]*

4.3 [748]
4.4+0.9[675]
5.3[614]
5.5[539]
5.5+ 1.2 [837]
6.2 [287]*

6.4 + 1.5 [434]
6.8 [377]

6.9 [315]

7.8 [495]

7.9 [1053]

8.4 [1006]*
8.7 [415]
9.5+0.9[1010]
9.6 [380]

10.1 [292]*
10.3 [389]
10.8 + 3.4 [832]
10.9 [318]
12.6 [387]
13.4[1105]
15.7 [304]

4.8 [304]
5.4 [300]
5.4[301]
7 [616]*

7.8-10.7 [391]
8.1 [295]

8.7 [306]

12.4 [288]*
15.6-21.4 [391]

5.1[614]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Thorax

16.0 [304]
18 [291]

18 [308]

19.4 [1000]*

20 [313]*

20.1 + 0.2 [669]
21.8 + 1.8 [601]
28 [299]

DM

0.3+0.1[863]

2.5-4.3 [568]
2.9+ 1.1[763]
3.0+ 1.2 [863]

2.4+ 0.6 [935]
2.5 [862]

2.6 + 0.6 [826]
2.7[851]

2.9+ 1.0 [675]
3.0 [593]

3.1 [666]*
3.4+1.9[829]
3.6 [775
4.2-6.7 [568
5.1[539
5.3+0.4[691
5.7+2.3[737]
5.9[377]

6.5 [558]

6.5 = 0.3 [669]
8.0 £ 1.3 [338]
8.5 + 3.4 [764]
8.6 +2.3 [338]
8.9 [997]*
9.5[1013]

9.5 +2.8 [805]
9.8 +1.1[309]
10.8 [558]

11.2 +2.7 [785]
11.5 [998]*
11.5 [1105]

6.7 [539]

2.4 [862]
6.7 [858]*

2.8 [862]




8. Anhang: Tabellen

273

Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Thorax DM 12.0 £ 0.5 [745]
12.2 + 2.1 [803]
14.2 [852]
DM, HP 5.8 [852]
DM, IR 0.5+0.2[700] 0.7+ 0.2[700]
DM, IR-AIDR 1.2 £0.7 [829]
DM, IR-ASIR 0.7+0.3[713]
1.6 £0.8 [737]
2.6 £0.6 [805]
2.7+0.2 [832]
5.54 [747]
6.3 £3.2[764]
8.5 £2.3[802]
8.9+ 1.9[803]
DM, IR-IRIS 1.8 [775]
6.7+0.2 [745]
DM, IR- 0.16 £0.01 [785] 1.13 [747]
MBIR 1.6 £ 0.8 [737]
DM, IR- 0.3 +£0.03 [763]
SAFIRE 1.3 £0.3 [826]
DM, OBDM 11.4[1105]
HP 4.4+ 0.9 [837]
IR 0.24 [708] 0.40 [708]
IR-ASIR 0.9 [748]
IR-IRIS 24+ O 2 [734]
IR-MBIR 2 [748]
02+ O 0[831]
IR-SAFIRE 0.9+0.7[801]
OBDM 4.4+0.3[691]
11.5[1105]
Thorax- - 1.3 [394]* 7 [288]*
HRCT 2.5 [287]*
DM 3.0 £1.7[309]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Thorax-
Abdomen

12 [308]

Abdomen

5.1+ 0.3 [603]
5.1+0.3[770]

72 +2.4[294]

5[1003]

3 7[315]

3.9+ 1.1[1048]
6.0 [287]*

6.1 [406]

6.2 [295]*

6.3 [304]

6.6 +0.8[319]

7.1[318]

7.8 3.2 [397]*

8 [299]

8.2+ 1.1[755]

9.2 [300]

9.2 [301]

9.4 +2.3[675]

9.5 [304]

10.1 [539]

10.3 [405]*

11.3 + 3.8 [837]

11.4+3.0 [718]

11.9 + 3.0 [395]

13.0£3.9 [1010]

13.1 [292]*

13.4 [288]*

15.5 [848]*

15.8 3.7 [751]

16.4 [415]

17.3 + 0.4 [669]

20.9 [1000]*

24 [291]

26 [308]*

6 [304
4306
13.3 + 1 0[305
17.5+ 0.6 [603
17.5+ 0.6 [770]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Abdomen

DM

1.9 £ 0.6 [623]
4.1+0.2 [605]
5.6+ 1.0 [606]

3.8-4.2[568]

1.5 [824

2.0 [824
2.3+0.3[623
3.9 + 1.2 [402
4.7+ 1.1[762]
6.0 £0.2 [669]
6.0 £ 1.7 [605]
6.0 £2.9[752]
6.2 [666]*

6.2 -9.0 [568]
7.0 +1.5[309]
7.2[774]
7.5+5.5[779]
8.4 [824]

8.6 + 3.4 [675]
8.9 [539]

10.8 + 3.3 [402]
11.5 +3.2 [776]
11.6 + 3.3 [606]
12.1 [997]*
12.4 + 1.8 [338]
12.5+ 3.7 [338]
13.5[1013]
16.7 [998]*
20.4 + 3.3 [395]
34.7 + 3.8 [395]

1.9 £0.5 [623]
14.3 [539]

3.8+ 1.0 [623]

DM, IR-
AIDR

3.6 [774]

DM, IR-ASIR

3.5[711]

2.1+0.9[726]
4.4 +2.4[779]

HP

6.5+ 1.2[837]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Abdomen

IR-ASIR

4.6+1.1[751]
5.1+0.3[770]

8.8 +4.1[724]

9.1+32[718]

IR-IMR

1.0+ 0.0 [752

IR-IRIS

24+05[762
5.8 [776
10.1+£2.5[718

IR-MBIR

1.4 £0.7 [724]

IR-SAFIRE

1.5 £ 0.4 [755]

Becken

4.4 [407]
4.4 [408]

5.3 [295]*

5.5 [300]
5.5[301]

6.0 [286]*

6.7 [304]

8 [299]

9.0 £ 1.0 [767]
9.3 [318]

13.4 [304]

2.1 [304]
4.9 [409]
9.4 [306]

DM

5.4+ 2.1 [700]
10.5 + 5.1 [700]

DM, IR

6.4 +4.1[700]
7.6 +2.6 [700]

DM, IR-ASIR

4.0 £0.8 [767]

Ileosacral-
gelenke

0.5 [409]*
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Ganz- - 129+ 3.2 [701] 16.6 £ 4.1 [740]
korper 13.3 [1053]
21.2+5.7[418]
22.2 [297]
26.8 + 18.1 [413]
29.5 [287]*
DM 14.6 + 8.0 [797]
22.4+3.6 [338]
24.1 £4.6 [338]
31 £8[750]
DM, 13 £4[750]
IR-AIDR-3D
IR-ASIR 12.7 + 3.8 [740]
IR-iDose* 6.9+ 1.6[701]
DM, IR- 8.0+4.0[797]
iDose*
HWS - 0.6 [295]* 0.8 [295]
5.8 [287]*
DM 1.3 [666]*
BWS - 4.4 [295]* 9.2 [295]
12.0 [287]*
LWS - 4.1 [295]* 4.0 [306]
16.6 [287]* 5.3[300]
5.3[301]
10.3 [295]
11.3 [288]*
DM 0.37+0.10 [419] 8.2 [666]*
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Schadel- - 0.7 [574] 0.9 [574]
CTA 1.1 [428]*
3.3 [362]
DM 0.3 +£0.0 [427] 0.6 £0.1[427]
Schadel- - 4.2 [362] 2.3 [428]*
Perfusion 4.9-6.3 [421] 5.2+£1.0[309]
6.4 [285] 20.7 £ 0.0 [422]
7.5+£0.0[422]
DM 2.1+0.0 [427] 59.1+0.3 [422]
2.7+0.7 [427]
Hals — - 1.2 £0.1[569] 4.0+0.3[569]
Carotis- 7.2+ 1.2[757]
CTA BP, HIR 4.1+£1.0[757]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Cardio- - 5.0+0.7[841] 9.6 + 1.1 [580] 2.1 [454]
CTA 2.2 [494]
3.3 [452]*
9.5 [474]*
9.8 [512]
10.6 + 1.2 [489]
11.6 [479]*
12.8 [456]*
13.4+£1.9[492]
13.8 + 1.4 [465]
14.0 [462]
14.8 + 1.8 [489]
15 [447]*
15.2+ 2.1 [509]
16.5 [442]
16.6 £ 1.3 [841]
18.1 + 5.6 [524]
18.2 £2.6 [580]
22.7 [462]
24.3 [518]
27 [488]
27.5[508]
27.7 [462]
DM 0.27 £0.10 [844] 6.0 [456]*
1.19 £ 0.49 [844]
DM, ECGp 3.3 [598] 5.1 [598]
7.1 [496]*

DM, ECGp, 0.2 +0.0 [528]
HP
DM, ECGr 14.4 [488] 33+0.5[517]
7.2 [456]*

13.7 [496]*
14.2 + 4.5 [309]
14.4 [488]

31.8 5.1 [521]
DM, IR 6.8 £3.0[]522
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

3.1+9.4[492]
3.2+0.6 [485]
3.5 [456]*

3.6 [440]

3.7 [493]

3.9 [499]*

4.0 [488]

4.0 [480]
4.1+ 1.8 [490]
4.2 [519]*

4.2 +1.2[847]
4.4 [495]

4.4 [497]
4.6+ 1.2 [475]
4.7+0.9 [491]
4.9 +1.8[309]
5.0 [497]*

5.3 [441]*

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Cardio- ECG 6.7+ 0.8 [568] 4.1 [766]
CTA 9.5 [459] 8.2 [476]*
9.6 [617] 8.8 +2.8[524]
8.9+ 1.2[568]
14.5+4.3 [478]
20.2 [617]
ECG, HP, IR- 1.4 +£0.3 [835]
SAFIRE
ECG, IR 2.3 [766]
ECG, IR-SAFIRE 2.7+0.3[835]
ECGp 0.8 £0.2 [604] 0.9 +0.3 [604] 1.6 [597]
0.9 [597] 1.4 [512] 1.8 £ 0.8 [498]
1.9 [514] 2.0 [441]* 2.1+0.7[473]
2.74 £ 1.14 [847] 2.2+0.5[529]
3.2 [488] 2.5+0.8[517]
3.6 [850]* 2.8+ 1.4[484]
4.1+ 1.1[847] 3.0 [449]
7.7 [4777* 3.0+ 1.0[482]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

SAFIRE

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Cardio- ECGp 5.9 [455]*
CTA 6.0 [513]*
6.0£1.0[509]
6.0+ 1.2 [525]
6.2 [497]
6.2 +2.0[520]
6.6 +3.1[516]
6.8 [487]
7.5+ 1.8 [847]
8.8+ 1.7[825]
9.2 +£2.2[521]
9.9+1.4[784]
10.0 £3.5[515]
12.8 [477]*
13.3 [469]
14.2 £ 2.0 [525]
14.8 £ 9.8 [472]
ECGp, ECGr 1.9 [631] 3.5[631] 5.0[631]
ECGp, ECGr, 4[631] 2.8 [631] 4.0 [631]
A
ECGp, HP 0.06 +£0.01 [836] 0.81 +£0.30 [847] 1.7+£0.7 [847]
1.4 [850]* 2.7 [851]
1.9 [841] 3.2 [841]
ECGp, HP, 0.9+0.3[705]
IR-IRIS
ECGp, IR 4.9+2.2[522]
ECGp, IR- 2.7+0.5[443]
ASIR 2.8 £0.5[443]
4.2+ 1.2 [443]
5.1 £0.6 [443]
ECGp, IR- 2.0+0.7[672] 7.6 +1.3[784]
iDose
ECGp, IR- 2.1+£2.2[705]
IRIS
ECGp, IR- 4.4+0.8 [825]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

5.5+ 1.8[847]
6.2+2.3[619]
6.4+ 4.3 [781]
7.8+2.0[511]
9.6 +3.2 [596]

13.7 [850]*

15.1 [488]

16.6 [841]

21.7 £ 1.6 [594]

6.4 + 0.9 [489]
7.0 +3.0 [482]
7.8+ 1.1[523]
8.4 [456]*
8.4+ 1.2 [509]
8.7+ 1.3[580]
9.0 + 0.6 [460]
9.2 [480]

9.2 + 1.6 [492]
9.2 +2.2[505]
9.4 + 1.0 [489]
9.5+ 1.8 [841]
9.6 +0.1[517]
9.8 +3.5[847]
10.3 +2.1[619]
10.5+ 4.2 [516]
10.6 [513]*
11.2 [440]
11.9+ 3.3 [503]
12.1+ 1.5 [732]
12.4 [449]*
12.7+ 1.7 [511]
13.4 4+ 2.7 [485]
14.0 [495]

14.5 + 2.6 [464]
14.6 + 2.3 [505]
14.6 + 3.3 [529]
15.1 + 1.9 [491]
15.1 + 2.9 [464]
16.0 [508]

16.4 [466]*
17.5 [519]*

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Cardio- ECGr 0.7 [454] 3.3[512] 1.2 [494] 21 [510]
CTA 2.9+0.8[841] 5.0+0.3[489] 4.0+ 0.5 [439]
53+ 1.1[580] 4.9+ 1.7 [498]
54+1.1[489] 5.0 [474]*
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

100 + 140

Cardio-
CTA

ECGr

18.1+ 9.4 [596]
19.3 [851]

18.4 + 2.4 [484]
20.0 + 3.5 [490]
20.1+ 1.1 [503]
21.6 + 2.0 [525]
21.8+ 1.1 [594]
22.4 [493]*
23.1 [488]
23.2[518]
23.243.4[515]
24.8 [487]

24.9 [453]*
2524+ 4.9 [451]
26.4+ 6.2 [520]
29.5 [841]
433+ 9.4 [525]
53 [313]*

ECGr, IR

3.2+2.1[781]

5.5+0.6[732]

ECGr, IR-
IRIS

8.2 +4.6[705]

Thorax-
CTA

DM

1.5 + 0.6 [609]

2.4+0.6 [609]
2.8 [800]

DM, IR-IRIS

2.1+0.9 [798]

DM, IR-SIR

1.3 [800]

Thorax-
Perfusion

13.7 + 1.0 [294]

Thorax —
Pulmonal-
CTA

2.0 [570]
12.5 [578]

32+0.1[319]
4.0 [570]

42 +0.8 [431]
6.2+ 1.7 [739]
19.5 [578]

28 + 8 [434]

14.4+ 2.1 [305]

19.9 + 1.4 [453]
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Tab. 8.13 - Fortsetzung. Erwachsene: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Thorax — | DM 1.2 [612] 2.3[612] 1.4 [432]
Pulmonal- 2.9-5.0 [568] 4.2 [612]
CTA 4.1+1.1[780] 4.9-7.8 [568]
DM, IR- 0.6 +0.0 [780]
MBIR
IR-ASIR 22+1.2 [739] 2.24+0.5 [739] 43+2.4 [739]
Thorax — - 14.4 + 5.1 [839]
Aorten- DM, ECGp 1.9 £ 0.5 [483] 5.3+ 1.1[483]
CTA DM, ECGr 4.1 +£0.7 [483] 9.5 +3.0[483]
ECGp, HP 5.4+ 1.8[839]
Thorax- DM 14.9 + 1.5 [309]
Abdomen, 21.7+ 5.8 [828]
Aorten- DM, 10.9 + 2.9 [828]
CTA IR-SAFIRE
IR-ASIR 16.2 £7.6 [729]
IR-MBIR 4.4+4.4[729]
Abdomen- | - 16.4 £ 3.1 [530]
CTA DM 3.3 [568] 13.2[530]
Abdomen- | - 17.7 £5.6 [403]
Perfusion 28.7+ 3.1 [294]
33.5 4+ 6.8 [403]
Abdomen- | - 2.5+0.9[532] 1.16* [534] 11.4 [404]*
Urografie 14.4% [396]
22.5% [396]
26.6* [396]
DM 13.0 + 3.1 [599] 10.3* [396]
15.2* [396]
19.1 £3.3[599]
Becken- - 6.7+0.4[629] 10.1+1.2 [629]
CTA
Becken- - 19.6 +£ 2.6 [294]
Perfusion 32.0 [285]
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8.5.4. Erwachsene: Organdosis-Werte

Tab. 8.14. Erwachsene: Organdosis (mSv).

0.41[680]

Protokoll Ver- Organdosis (mGy)
fahren Gehirn Augenlinse Schilddriise Mamma Lunge RKM Haut Testes
Schédel - 24 [284] 5.4 [3207* 0.5+0.1[358] 0.05[310] 0.16 [310] 0.25 [563] 1.0 [303] 0.0 [289]
5.6 [351]* 0.75 [293] 0.1 [428]* 0.18 [314] 1.4 [314] 2.7 [1105]* 0.0 [426]*
6.5+ 1.2 [358] 0.8-2.2 [364] 0.15[314] 0.19 [289] 1.7-3.5 [364] 2.8 [426]* 0.1 [303]
8.1+3.7[360] 0.9 [359]* 0.19 [289] 0.3 [428]* 1.8£5.1[313] 4.8+8.9[313] 0.1 [358]
12.2-37.3 [364] 1.0 [428]* 0.19 [307] 0.32 [303] 2.2 [303] 0.1 [1105]*
16.0 [352]* 1.1 [289] 0.2 [293] 0.32 [563] 2.2 [320]*
16.5 £ 5.9 [550] 1.1 [321] 0.25 [563] 0.4 [1105]* 3.5[310]
16.9 [685] 1.34[563] 0.29+0.11 0.47 [307] 4.1 [307]
16.9 [320]* 1.56 [543] [313] 0.54+ 0.05 4.4 [428]*
19.0+1.3 1.65 [307] 0.30 [303] [313] 4.7289]
[1008] 1.8 [1105]* 0.32 [543] 4.8 [1105]*
24.8 [301] 2.0 [344] 0.1 [1105]* 5.5 [320]*
29.1 [549] 2.0 [303]
30.4 [359]* 2.0+ 0.4 [309]
322+ 1.6[680] | 2.5+0.2[1008]
33.0 [321] 2.7 [320]*
39.5 [344] 2.46 [310]
41.9 £ 9.5 [557] 3.0£0.1[313]
48.9 [1105]* 4.5 [320]*
49.3 +£9.0 [350] 9.60 [314]
50 [559]
52.2[310]
54.7+ 7.5 [360]
61.2 [428]*
A 15.1 [685]
21.8 [549]
237+
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Tab. 8.14 - Fortsetzung. Erwachsene: Organdosis (mSv).

Protokoll Ver- Organdosis (mGy)
fahren Gehirn Augenlinse Schilddriise Mamma Lunge RKM Haut Testes
Schédel A, DM 12.7 [685

]
14.1+ 1.1 [697]
14.5+ 1.2 [697]
14.9+ 0.1 [697]
15.1+ 1.2 [697]
152+ 1.2 [697]
15.2 + 1.5 [697]
16.3 + 1.3 [697]
17.1 + 0.4 [680]
DM 12.4[685]
16.1+ 1.2 [697]
17.7 + 1.8 [697]
19.2 + 1.5 [697]
20.1+ 1.3 [697]
22.440.5 [680]
OBDM 11.3 +0.5 [697] 1.7 [1105]* 0.1 [1105]* 0.4 [1105]* 4.8 [1105]* 2.5 [1105]* 0.1 [1105]*
13.1+ 1.1 [697]
13.8+ 0.4 [697]
14.4 + 0.4 [697]

33.2 [1105]*

NNH - 2.9-6.9[367] 0.4 [371]*
3.5-10.5 [366] 1.6 [371]*

7.6 [369]*

9.6 [371]*

28.5 [371]*

HP 0.6 [849] 0.09 [849]
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Tab. 8.14 - Fortsetzung. Erwachsene: Organdosis (mSv).

Protokoll

Verfahren

Organdosis (mGy)

Augenlinse

Schilddriise

Mamma

Lunge

RKM

Haut

Testes

Hals

11.0 [633]
11.9 [310]
23.7 [583]*

9.4 [549]
12.4 [633]
17.8 [685]
22.4 [300]
26.5 [301]

31.0 £ 0.9 [554]
33.9 [583]*

40 + 23 [375]
55 [373]*

76.9 + 1.4 [686]
126 [310]

1.4 [583]*
1.87 [310]

8.7 [583]*
8.83[310]

8.59 [310]
41.4+0.7 [686]

0[310]

7.0 [549]

15.2 [685]

19.9 4 1.5 [554]
44.7+ 0.7 [686]

33.7+0.7 [686]

8.2 [649]
17.9 + 2.6 [683]

9.1 [649]

12.9 [685]
12.9 + 0.3 [686]
18.4 + 2.4 [683]

10.8 = 0.6 [686]

A, OBDM

132i06 683

15.2 2.1 [683]

DM

7.3[633]
16.4 [649]
20.4 + 3.8 [683]

633
685
686

137
17.0£04
18.2
27.6+1.7
29.9 £8.7

683
309

12.1+ 0.5 [686]

OBDM

10.8 £ 2.9 [683]

19.8+3.0

1
]
]
]
649]
]
1
683]

— e e e e
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Tab. 8.14 - Fortsetzung. Erwachsene: Organdosis (mSv).

Protokoll Verfahren Organdosis (mGy)
Augenlinse Schilddriise Mamma Lunge RKM Haut Testes
Thorax 0.6 [1000]* 3 [385] 0[385] 3.6 [385] 1.52 [563] 1.7 [303] 0.0 [289]
1[310] 9[315] 0 [549] 6.7 [549] 3.0 [614]* 2.9 [614]* 0.0 [310]
1.3 [1105] 1 [303] 9.6+ 0 8 [693] 8.4+£0.3[1008] 3.1 [303] 3.5[1105] 0.0 [10007*
51293] 10-30 [379] 9.86 [310] 3.25[310] 3.5+£0.4[1010] 0.05[315]
5.1+0.3[313] 10.2 £ 1.0 [548] 9.9 +£0.4 [548] 4.3 [289] 5.7+£5.2[313] 0.06 [563]
6.67 [307] 11.0 [1053] 10.0 [303] 5.7 [315] 6.1 [308] 0.07 [308]
7.5 [290] 12 +1[313] 10.2 £ 0.9 [296] 5.94+0.74 7.0 [1000]* 0.1[1105]
8.3 [296] 12.3[1105] 11.4[317]* [1010] | 13.6 +£3.2[296] 0.12+0.13
8.7+ 0.8 [1008] 13.9 [685] 13.3[614]* 7.0 [1053] 36.3+0.9 [386] [1010]
12.0 [310] 14 [632] | 13.4+£0.5[1008] 7.28 [307] 74.7 [290] 0.14 [310]
12.1 [614]* 14.5[310] 14.5 [1053] 8.4+3.9[313] 0.15[303]
12.2 [289] 14.7 £ 0.7 [296] 14.5 £ 3.9 [565] 9.4 [1000]*
15.2 £ 1.8 [1008] 15.0 [303] 16 [293] 11.5[1105]
23 [291] 15.9 [315] 17.3+0.2 [313] 13.1 [308]
23.4+3.5[1010] | 16.0+£2.1[1010] | 19.2+2.0[1010] 13.2 [290]
24.8 [1053] 17.2 £ 0.5 [554] 19.6 [315] 16 [291]
48.8 [308] 18 [284] 20.5[300] 22.4[310]
50[310] 21.0 [10007* 20.5[301]
50.1 [10007* 21.2 [289] 21 2 [289]
21.6[1105] 23 [632]
22.6 [300] 30.8 [1105]
22.6 [301] 32.5[10007*
23.9 [308] 37.4 [308]
30 [293] 43.0 [307]
35[291] 50 [291]
48.1 [307] 61.6 [290]
68.5[310] 62.2 [310]
71.6 [290]
A 4.2 [549] 5.7 [549]
8.6+ 2 3 [565]
4 [685]
11.4+ 0 6 [554]
A, DM 10.0 [685]
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Tab. 8.14 - Fortsetzung. Erwachsene: Organdosis (mSv).
Protokoll Ver- Organdosis (mGy)
fahren | Augenlinse Schilddriise Mamma Lunge Leber RKM Haut Testes
Thorax DM 1.3[1105] 0.22 [862]* 8 [632] 1.0 [862]* 0.29 [862]* 0.01 [862]* 1 [997]*
6.0 +4.5[6438] 9.0 [602]* 8.8£0.9[691] 0.44 [563] 2 [1105] 1 [998]*
12.6 £3.1 [691] 11.3 [685] 8.9 £3.9[309] 8.2 [997]* 51[997]* 0.1[1105]
12.7[1105] | 12.4+£11.2[648] 14.8 [602]* 9.0 [998]* 1 [998]*
13.0 [997]* 13.0 [997]* 18 [632] 13.3[1105]
24.7 [998]* 14.0 [1105] 20.8 £16.0 [648] 16.1 £9.0 [648]
30.2 £3.7[309] 15.4 [998]* 20.9 [997]*
21.9+£3.3[309] 23.1 [998]*
30.8 [1105]
DM, 1.3 [1105] 11.2[1105] 12.4 [1105] 32.0[1105] 14.2 [1105] 2.4 [1105] 0.1[1105]
OBDM
OBDM 1.3 [1105] 10.2 [1105] 7.3+0.8[693] 8.7+ 1.7[691] 11.1[1105] 3.6 [1105] 0.1[1105]
10.5+1.5[691] 14.6 [1105] 28.7[1105]
Thorax- - 2.1+0.1[386]
HRCT 4.4 +0.2 [386]
Thorax- DM 7.6 £2.3[309] 5.9 £2.4[309] 8.1 £1.1[309]
HRCT
Thorax- - 27.9 [308] 11.4 [308] 19.7 [308] 9.0 [308] 4.1 [308] 0.15[308]
Abdomen
Abdomen | - 0.1 [1000]* 0.12 [303] 0.06 [310] 1.2 [310] 11 [284] 1.22 [563] 1.6 [303] 0.1[315]
0.2 [315] 0.45 [563] 1.3 [303] 30.2 2.2[315] | 5.0£1.9[1010] | 0.7 +0.1[1008]
0.3 [293] 0.8 [315] 1.7 [315] [10007* 3.1[303] 7.6 [308] 0.8 [303]
0.3 [563] 1.3 [303] 1.7 [563] 4.97 [310] 8.8 [1000]* 1.3 [289]
0.4 [289] 1.89 [310] 8 £1.4[296] 7.51290] | 15.4+2.8[296] 1.7 [310]
0.4 [307] 2.96 [307] 5.8 [289] 9.3+2.8[1010] 75.3 [290] 2.4+ 0.6 [553]
0.6 [1000]* 31291] 6 [291] 9.8 [289] 4.6 [563]
0.9 [308] 5.8 [289] 6.7 [307] 10.3 [307] 7.3 [308]
1[291] 7.5 [290] 11.2 [310] 13.0 [1000]* 11.1+7.5
7.9 [305] 12.51290] 17 [291] [1010]
13.2 +£ 1.8 [296] 14 [293] 17.5 [308] 37.5[1000]*
15.2 [1000]* 14.8 [1000]* 41.3[310]
21.8 [308] 16.0 [308]
Abdomen, | - 0.4 [997]* 8.1 [997]* 6.3 [997]* 8.7 [997]* 3.7 [997]* 6.9 [997]*
DM 0.5 [998]* 15.1 [998]* 11.1998]* 11.8 [998]* 5.2 [998]* 11.3 [998]*
ISG - 11.3 [409] 8.1 [409]
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Tab. 8.14 - Fortsetzung. Erwachsene: Organdosis (mSv).

42.3 [428]*

2.2 [428]*

Protokoll Verfahren Organdosis (mGy)
Augenlinse Schilddriise Mamma Lunge RKM Haut Testes
Becken - <0.1[303] 0[310] 0[310] 2.7 [303] 1.2 [303] 0.65 [303]
0.21[303] 0.07 [303] 4.63 [310] 17.8 £ 5.0 [296] 7.1[320]
0.13[310] 6.49 [310] 19.1 [408] 12.1 [320]
10.8 [408] 29.4 [320] 19.2 £4.5[550]
15.7 [290] 65.1[320] 17.1 [310]
18.1[320] 75.3[290] | 22.2+1.7[1008]
36.6 [320] 27.7+7.7[564]
29.6 [310]
Becken A 2.0£0.5[564]
Uro- - 9.3 [531] 180 [531] 1.0 [531]
graphie A 0.1 [531]
Ganz- - 13.9[296] 11.1]1053] 11.8 £ 0.6 [296] 13.4 [1053] 18.2 £3.7[296] 33.4297]
korper 21.8 [297] 14.7 [297] 14.8 [1053] 18.4 [297] 23.7[297]
24.8 [1053] 17.4 £1.0 [296] 19.3 [297]
DM 49 £ 12 [750] 37 +£9[750] 38 £ 9 [750] 6.2 £1.6[750]
DM, 21 +£7[750] 16 + 5 [750] 16 £5[750] 2.8 +0.9 [750]
IR-AIDR-3D
HWS - 26.0 [420] 27.2 [420]
LWS DM 0.39 [419] 0.47[419] 0.02 [419]
Schédel- - 5.5+£0.4[427] 0.7 [428]* 0.2 [428]* 0.2 [428]* 8.0 [428]* 2.7 [428]*
Perfusion 7.0 £0.6 [427] 1.2 £0.1[427] 59.3 [422]* 37.2 [422]*
14.5 [428]* 1.4£0.2 [427] 233 [425]*
108 [422]* 7.7 £2.2[309] 304 [424]*
188 [425]* 10.5 [422]*
DM 435 +49[422] | 44.3 +38.7[422] 236 + 1 [422] 138 + 1 [422]
Schédel- - 3.3£0.5[427] 0.4£0.1[427] 0.1 [428]* 0.3 [428]* 2.8 [428]* 1.2 [428]*
CTA 9.6 £0.8 [427] 1.1 £0.2 [427]
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Tab. 8.14 - Fortsetzung. Erwachsene: Organdosis (mSv).

5.6+0.1[313]

792+ 1.1 [517]
Ca. 80 [507]

120+ 10 [313]

Ca. 120 [507]

Protokoll Verfahren Organdosis (mGy)
Augenlinse Schilddriise Mamma Lunge RKM Haut Testes
Cardio- - 0.40 £ 0.02 [462] 0.06 [455]* 3.0 [455]* 2.0 [455]* 0.2 [455]* 0.02 [455]*
CTA 0.77 £ 0.05 [462] 0.5-4.8 [841] 6.8-27.7 [841] 5.0-72.1 [841] 1.7-27.5 [841] 4.5-89.9 [841]
0.79 £ 0.03 [462] 1.0 [445] 7.0 [445] 10.3 [452] 4.3 [452] | 6.69 £0.04 [462]
1.0 [610]* 9.1£1.5[566] 13.6 [445] 7.4 [445] 8.5+£0.05 [462]
1.4 [452] 11.7 [452] 36 [447]*% | 9.34+£0.31 [462] 8.7 £0.05 [462]
1.6 [453]* 40 [447] 38.8 [610]* 12 [463] 67.5 [442]
3.27+£0.37 [462] 40.9 [610]* | 45.2+20.0 [462] 13 [4477*
4 [4477* 60.0 £2.7 [548] 47.1 +£2.8[548] 16.4 £ 0.6 [462]
5.8+ 0.14 [462] 62 [463] 56.5 [453]* 20.0 £ 0.7 [462]
8.6 £ 0.7 [462] 67.9 £6.7 [462] 58 [463]
69.5 [453]* | 77.1£36.7 [462]
80.3 +£5.8 [462] | 85.0+30.1 [462]
89.5 + 7.7 [462]
102.3 + 8.5 [557]
A 5.7+ 1.1[566]
A, ECGp, 6.0 [631]* 7.6 [631]*
ECGr
DM, ECGr 38.6+£0.1[517] | 67.2+14.0[309]
59.5 £ 6.0 [309]
ECGp 0.6 [519] 13 [519] 10 [519] 4.8 [519] 1.2 [519]
1.2 [513] 16.9 £ 1.4 [309] 22.8 [513] 1[513] 32.3[513]
25.7[513] 23.34+0.7 [309] Ca. 50 [507]
34.7+1.9[517] Ca. 55 [507]
Ca. 40 [507]
ECGp, ECGr 10.0 [6317* 9.1 [631]*
ECGp, HP Ca. 10 [507] Ca. 10 [507] Ca. 10 [507]
ECGr 1[513] 46 6[513] 36.4 [513] 1[513] 4.6 [519]
8 [519] 3 [519] 42 [519] 8 [519] 15+ 18[313]
4.0+ 1.8[619] 75i2[313] Ca. 110 [507] 23i25 [313] 50.1[513]
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Tab. 8.14 - Fortsetzung. Erwachsene: Organdosis (mSv).

CTA

Protokoll Verfahren Organdosis (mGy)
Augenlinse Schilddriise Mamma Lunge RKM Haut Testes
Thorax — - 3.2 [453] 20 [433] 21.0 £ 1.0 [548]
Pulmonal- 24.2 + 1.0 [548] 39.5 [453]
CTA 38.7 [453] 51.6 [684]*
53 [305]

53 [684]*
Thorax- DM 18.9 £ 7.7 [309] 20.6 = 3.3 [309] 20.5+7.5[309]
Abdomen,
Aorten-
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8.5.5. Kinder: CTDIv-Werte

Tab. 8.15. Kinder ohne Altersangabe: CTDIva (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Schiadel - 35.0[93] 17.0 [1018]
31.5[93] 42.4 93]
43.6 [93]
68.2+£12.2[1101]
DM 28.7£15.5[1101]
Thorax - 0.8+ 0.2 [1083] 2.1+0.6[1133] 2.8+0.7[1133]
1.1 +0.0[1133] 5.0 [93] 10.5 [93]
Abdomen - 2.8+0.7[1079] 5.9+3.7[1079]
5.2+£2.5[1133] 7.3+£23[1112]
6.4 [93] 7.4+5.6[1133]
10.2 [1131]*
12.6 [93]
IR-AIDR 3.6 [1131]*
IR-iDose* 4.0+£2.0[1112]
Ganzkorper | DM, 5.6 £3.3[1127]
IR-ASIR
DM, 3.1+£2.3[1127]
IR-MBIR
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Tab. 8.16. Kinder nach Altersgruppen: CTDIva (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 120 | 140 | 80 + 140 | 100 + 140
0 Jahre
Schédel - 24.9 [1105]* 7 [1015]
27 [986]* 18.8 [1009]
23.3[1117]*
38.4[1100]
DM 17.7[1100]
IR-ASIR 15.7 [1117]*
OBDM 24.41105]*
NNH - 6[1015]
Thorax - 1.7 [1036]* 0.6 [1105] 3[1015]
5.3 [1009]
24 [986]*
DM 0.6 [1105]
DM, 0.7 [1105]
OBDM
OBDM 0.6 [1105]
Thorax- - 13 [1015]
HRCT
Abdomen - 3[1015]
24 [986]*
Becken - 24 [987]*
Cardio-CTA | - 1.5£0.2[1093] 12.5[999] 3.1[999]
13.9+£5.1[1064]
DM 0.5+0.1[1093]
ECG 7.9 [1056]
ECGp 2.1+0.4[1063]
ECGp, 1.5+0.4[1064]
IR-AIDR
Thorax-CTA | ECG 2.5 [1056]*
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Tab. 8.16 - Fortsetzung. Kinder nach Altersgruppen: CTDIyva (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 | 120 | 140 80 + 140 | 100 + 140
0 — 1 Jahre
Schiadel - 27.6 [962]
DM 20.7 [962]
DM, IR 18.3 [962]
IR 9.8 [962]
Thorax DM 6.0 [1114]
DM, IR-
ASIR 1.6 [1114]
DM, IR-
MBIR 1.3 [1114]
Abdomen - 4.1 [962]
DM 4.41962]
DM, IR 2.4[962]
IR 3.3[962]
Cardio-CTA | ECGp 0.7 [1059]
1.0+ 0.5[1123]
0 — 3 Jahre
Schédel - 169+ 1.0[1121]
IR-ASIR 16.7+£0.7 [1121]
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Tab. 8.16 - Fortsetzung. Kinder nach Altersgruppen: CTDIyva (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 | 140 | 80 + 140 | 100 + 140
1 Jahr
Schiadel - 22 [986] 21.8[1011]* 25.5[1011]*
24.0 [1009]
33.7 [999]*
45 [986]
Thorax - 2.1[1036]* 20 [986] 5.5 [1009] 29 [1011]
5.9 [999]*
6.7+ 0.6 [1099]
9.7 [10007*
13.6 [1011]*
39 [986]
DM 1.0 £ 0.1 [935] 2.3+0.7[1099]
18.7+£12.7[1120]
DM, IR- 7.4+4.2[1120]
ASIR
Abdomen - 1.7 [999] 19 [986] 6.8 [999]*
9.7 [1000]*
16.4 [1011]*
20 [986]
Becken - 19 [987] 20 [987]
GK - 0.6 [1054]
Cardio-CTA | - 12.5 [999] 3.1[999]
1—2 Jahre
Schidel - 32.2[1117]*
IR-ASIR 21.2[1117]*
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Tab. 8.16 - Fortsetzung. Kinder nach Altersgruppen: CTDIyva (mGy).

Protokoll Verfahre Rohrenspannung (kV)
n 80 | 100 120 | 140 80 + 140 | 100 + 140
1 -5 Jahre
Schidel - 7[1015]
17 [1025]*
19.5 [1075]
- 31.7 [962]
DM 21.2[962]
DM, IR 23.3[962]
IR 41.71962]
NNH - 5[1015]
Thorax - 2.6 [1036]*
4.0 [1036]*
DM 1.4 [1081] 5.2 [1081]
Thorax- - 4.411113]
Abdomen IR-ASIR 3.1 [1113]
Abdomen - 4.1[1113]
IR-ASIR 3.1 [1113]
- 4.9 1962]
DM 5.5[962]
DM, IR 2.3 [962]
IR 1.9 [962]
Thorax-CTA | ECG 12.2[1056] | I
3 Jahre
Cardio-CTA | DM 6.7 [1122] | | [
3-10 Jahre
Schéidel - 34.3 [1117]*
IR-ASIR 229 [1117]*
3 —12 Jahre
Schéidel - 30.0 + 5.2 [1121]
IR-ASIR 21.5+2.5[1121]
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Tab. 8.16 - Fortsetzung. Kinder nach Altersgruppen: CTDIyva (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 | 140 80 + 140 | 100 + 140
5 Jahre
Schiadel - 36 [986] 24.5[1011]* 25.5[1011]*
29.6 [1009]
35.8 [1105]*
37.5[1031]*
48.3 [1100]
49 [986]*
DM 41.9[1100]
OBDM 35.4[1105]*
NNH 14.3 [1009]
22.7[1031]*
Hals - 14.8 [1031]*
Thorax - 10 [986] 1.5 [1105] 3[1015] 29.0[1011]
4.2[1113] 5.9 [998]
28 [986] 5.9 [1009]
15.8 [1011]*
38 [986]*
DM 1.3+0.2[935] 1.5 [1105] 4.2 [998]*
5.2 [1005]*
DM, OBDM 1.5 [1105]
IR-ASIR 3.1[1113]
OBDM 1.5 [1105]
Thorax-HRCT | - 20 [1015]
Abdomen - 18 [986] 28 [986] 5[1015]
5.9 [998]
17.7 [1011]*
40 [986]*
DM 7.1 [1005]* 3.9 [998]*
8.1+22[1126]
DM, IR-ASIR 5.0+ 1.2[1126]
Becken - 18 [987] 28 [987] 36 [987]* 55 [987]
GK DM 0.8 [1054] 7.3 [10057*
Cardio-CTA ECG 23.7[1056]
ECGr 82.0[10617*
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Tab. 8.16 - Fortsetzung. Kinder nach Altersgruppen: CTDIyva (mGy).

Protokoll | Verfahren Rohrenspannung (kV)
80 | 100 120 | 140 80 + 140 | 100 + 140
5 Jahre
Thorax- ECG 14.0 [1056]
CTA
5-10 Jahre
Schédel - 2.3+0.4[1030] 4.0 £2.3[1030] 16 [1015]
18.8 £ 8.1 [1030]
21[1025]*
- 34.9 [962]
DM 33.5[962]
DM, IR 29.7[962]
IR 49.2 [962]
Thorax - Ca.4.4[1041]
DM 3.3+£0.5[1094] 6.5 [1081]
3.6 [1081]
Abdomen | DM 5.9+ 1.7[1094]
DM 7.4 [962]
DM, IR 4.2 1962]
IR -
Becken DM 5.5+1.2[1094] |
8 Jahre
Abdomen | - 6.8+3.0[1130]
IR-ASIR 4.3+1.8[1130]
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Tab. 8.16 - Fortsetzung. Kinder nach Altersgruppen: CTDIyva (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 | 140 | 80 + 140 | 100 + 140
10 Jahre
Schiadel - 31 [986] 34.3[1075] 49.0 [10117]*
35.5[1009] 81 [986]*
39 [986]*
46.5[1011]*
50.0[1100]
DM 43.0[1100]
NNH - 7[1015]
20.1 [1009]
Thorax - 25 [986] 5[1015] 27.0[1011]
7.6 [1009] 54 [986]
15.5[1011]*
34 [986]*
DM 6.9+2.0[1126] 8.3 £4.7[1085]
DM, IR-ASIR 3.7£1.4][1126]
Thorax-HRCT 21[1015]
Abdomen - 25[986] 5[1015] 72 [986]
13.6 [1009]
20.8 [1011]*
38 [986]*
DM 8.4 £4.5[1085]
Becken - 25 [987] 38 [987]* 49 [987]*
GK - 1.1[1054]
Cardio-CTA - 4.7+2.4[1093] 15.2+5.7[1093]
DM 2.5+ 1.8[1093] 5.2+£3.2[1093]
ECGr
Thorax-CTA DM 8.1 £4.5[1085]




8. Anhang: Tabellen

301

Tab. 8.16 - Fortsetzung. Kinder nach Altersgruppen: CTDIyva (mGy).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 140 80 + 140 | 100 + 140
10 — 15 Jahre
Schédel - 35.2[962]
DM 37.6 [962]
DM, IR 35.4[962]
IR 37.9[962]
Abdomen - -
DM 9.3 [962]
DM, IR 5.8 [962]
IR 4.4 [962]
10 — 20 Jahre
Thorax | DM 7.1[1033]* |
11 — 17 Jahre
Schédel - 42.5[1117]*
IR-ASIR 29.7 [1117]*
12 Jahre
Thorax - 4.8 [1050] 12.7 [1050]
Abdomen - 4.8 [1050] 8.2 [1050]
Ganzkorper - 7.1[1050] 15.8 [1050]
Wirbelsdule DM 0.3+£0.1[1096]
12 — 18 Jahre
Schédel - 49.9+2.0[1121]
IR-ASIR 257+ 1.1[1121]
15 Jahre
Schédel - 38.4 [1009]
NNH - 18.1 [1009]
Thorax - 9 [1015]
11.5[1009]
DM 2.34+0.4[935]
Thorax- - 4.3[1038]
HRCT 29 [1015]
Abdomen - 12.6 [1009]
17 [1015]
Cardio-CTA | ECG 13.8 [1056] 30.5[1056]
Thorax-CTA | ECG 41.2[1056]*
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8.5.6. Kinder: DLP-Werte

Tab. 8.17. Kinder ohne Altersangabe: DLP (mGy cm).

Protokoll Verfahren Roéhrenspannung (kV)
80 100 120 140 80 + 140 100 + 140

Schiadel - 293 [1018]*
575 [1007]
953 £238 [1101]
DM 425 +273[1101]
890 [1007]
Thorax - 0.8+£0.1[972] 45 [1007]
DM 92 [1007]
Abdomen - 146 =60 [1079] 105 [1007]
293 + 107 [1079]
421 [1050]*
DM 228 [1007]

IR-AIDR 147 [1050]*
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Tab. 8.18. Kinder nach Altersgruppen: DLP (mGy cm).

IR-AIDR

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 140 80 + 140 | 100 + 140
0 Jahre
Schédel - ca. 200 [10017*
- 245 [986]* 106 [1015]
261 [1105]* 192 [1009]
308 [994]
325 [111771*
377 [1100]
DM 174 [1100]
IR-ASIR 225 [1117]*
OBDM 255 [1105]*
NNH - 28 [1015]
Thorax - ca. 10 [10017]*
- 8 [1105] 55[1015]
165 [986]* 61 [1009]
227 [994]
DM 7[1105]
DM, OBDM 8 [1105]
OBDM 8 [1105]
Thorax-HRCT - 4511015]
Abdomen - 353 [986]* 67[1015]
177 [994]
Becken - 235 [987]* 227 [994]
Ganzkorper - ca. 20 [10017*
Cardio-CTA - 123 £37[1064]
ECGp, 13 +5[1064]
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Tab. 8.18 - Fortsetzung. Kinder nach Altersgruppen: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 140 | 80 +140 100 + 140
0 — 1 Jahre
Schédel - ca. 300 [1001]*
362 [962]
DM 259 [962]
DM, IR 229 [962]
IR 138 [962]
Thorax - ca. 20 [10017]*
DM 74 [1114]
DM, IR-ASIR 25 [1114]
DM, IR-MBIR 21[1114]
Abdomen - ca. 60 [1001]*
77 [962]
DM 102 [962]
DM, IR 39 [962]
IR 82 [962]
Ganzkorper | - ca. 40 [10017]*
Cardio-CTA | - 8+ 6[1058] 222 [999] 67 [999]
25+ 8[1093]
DM 9+ 3[1093]
ECG 21 £9[1058]
94 [1056]
ECGp 17+£9.1[1123]
25+ 6[1063]
Thorax-CTA | ECG 61 [1056]*
0 —7 Jahre
Schidel | - 10+3[1026] |
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Tab. 8.18 - Fortsetzung. Kinder nach Altersgruppen: DLP (mGy cm).

Protokoll

Verfahren

Rohrenspannung (kV)

80

|

100

120

|

140

80 + 140

|

100 + 140

1 Jahr

Schidel

220 [986]

179 [1011]*
284 [994]
291 [1009]
375 [986]
404 [999]*

149 [1011]*

Thorax

36 £ 13 [991]

200 [986]

100 [1009]
102 [1011]*
130 [999]*

134 + 13 [1099]
213 [1000]*
328 [994]

390 [986]

203 [1011]

DM

44 +91099]
307 +227 [1120]

DM, IR-ASIR

135 + 88 [1120]

Abdomen

88 £ 26 [991]

37 [999]

437 [986]

178 [999]*
253 [994]
256 [1000]*
324 [1011]*
460 [986]

Becken

228 [987]

240 [987]
252 [994]

GK

30 [1054]

Cardio-CTA

2221999]

67 [999]

ECGp

5.7+ 4.8 [1065]

Thorax-CTA

ECG

195 [1056]

1 -2 Jahre

Schidel

433 £38[1117]

IR-ASIR

286 26 [1117]
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Tab. 8.18 - Fortsetzung. Kinder nach Altersgruppen: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 | 140 | 80 + 140 100 + 140
1 -5 Jahre
Schédel - 463 [962]
ca. 500 [1001]*
DM 331 [962]
DM, IR 344 [962]
IR 583 [962]
- 171 [1015]
198 [1075]
NNH - 48 [1015]
Thorax - ca. 20 [10017]*
DM 27 [1081] 108 [1081]
Thorax- - 181 [1113]
Abdomen IR-ASIR 133 [1113]
Abdomen - ca. 50 [10017]*
157 [962]
DM 144 [962]
DM, IR 60 [962]
IR 41 [962]
- 193 [1113]
IR-ASIR 112 [1113]
Ganzkdrper | - ca. 60 [10017*
3 Jahre
Cardio-CTA | DM | 112 [1122] | |
3—10 Jahre
Schédel - 482 + 31 [852]
IR-ASIR 318 +£23[852]
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Tab. 8.18 - Fortsetzung. Kinder nach Altersgruppen: DLP (mGy cm).
Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 140 | 80 + 140 | 100 + 140
5 Jahre
Schédel - 468 [986] 253 [1011]* 169 [1011]*
366 [994] 1170 [986]
370 [1009]
458 [1031]*
532 [986]*
563 [1105]*
628 [1100]
DM 543 [1100]
OBDM 557 [1105]*
NNH - 67 [1009]
205 [10317*
Hals - 272 [10317*
Thorax 30+6[991]
- 72 [986] 29 [1105] 83 [1015] 245 [10117*
141 [1113] 102 [1009] 468 [986]*
336 [986] 151 [1011]*
153 [998]
321 [986]*
428 [994]
DM 29 [1105] 103 [998]*
DM, OBDM 30[1105]
IR-ASIR 93[1113]
OBDM 29 [1105]
Thorax-HRCT 57 [1015]
Abdomen 92 £4[991]
- 330 [986] 840 [986] 153 [1015] 1170 [986]
192 [998]
403 [994]
459 [1011]*
840 [986]*
DM 328 £ 128 [1126] 126 [998]*
DM, IR- 217 +£94 [1126]

ASIR
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Tab. 8.18 - Fortsetzung. Kinder nach Altersgruppen: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)
80 100 120 | 140 100 + 140
5 Jahre
Becken - 165 [987] 420 [987] 328 [994] 585 [987]
420 [987]*
GK - 40 [1054]
Cardio-CTA | ECG 291 [1056]
ECGr 804 [10617*
Thorax-CTA | ECG 189 [1056]
5-10 Jahre
Schidel - 5151962]
ca. 570 [10017*
DM 506 [962]
DM, IR 424 [962]
IR 519 [962]
- 40 £+ 6 [1030] 69 +40[1030] 281 £ 128 [1030]
337 [1015]
Thorax - ca. 30 [10017]*
DM
IR-ASIR 52+ 12[1094] 176 [1081]
98 [1081]
Abdomen - ca. 50 [10017*
DM 225[962]
DM, IR 136 [962]
IR -
DM 176 + 63 [1094]
Becken DM 137 £35[1094]
Ganz-korper | - ca. 60 [10017*
8 Jahre
Abdomen - 276 £171[1130]
IR-ASIR 185+ 119 [1130]
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Tab. 8.18 - Fortsetzung. Kinder nach Altersgruppen: DLP (mGy cm).

Protokoll

Verfahren

Rohrenspannung (kV)

80

100

120

140

80 + 140

|

100 + 140

10 Jahre

Schidel

465 [986]

420 [1075]
461 [1009]
591 [1011]*
627 [1100]
679 [986]*

594 [1011]*
1215 [986]*

DM

538 [1100]

NNH

73[1015]
145 [1009]

Thorax

57+ 15 [991]

425 [986]

152 [1015]
184 [1009]
227 [1011]*
468 [986]*
642 [994]

309 [1011]
587 [986]*

DM

204+ 118 [1126]

DM, IR-ASIR

121 £ 73 [1126]

Thorax-HRCT

86 [1015]

Abdomen

150 + 20 [991]

875 [986]

313[1015]
360 [994]
379 [1009]
714 [1011]*
1062 [986]*

1820 [986]

Becken

500 [987]

479 [994]
529 [987]*

763 [987]*

GK

95 [1054]
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Tab. 8.18 - Fortsetzung. Kinder nach Altersgruppen: DLP (mGy cm).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 120 140 | 80 + 140 | 100 + 140
10 — 15 Jahre
Schédel - 540 [962]
ca. 650 [10017]*
DM 581 [962]
DM, IR 528 [962]
IR 535 [962]
Thorax - ca. 80 [10017]*
Abdomen - ca. 130 [10017]*
DM 380 [962]
DM, IR 251 [962]
IR 168 [962]
Ganz-korper - ca.310[10017*
11 — 17 Jahre
Schédel - 618 £39[1117]
IR-ASIR 431 +£31[1117]
Cardio-CTA - 22 [1057]* 128 £ 70 [1093] 346 £ 220 [1093]
DM 59 +£51[1093] 157 £ 124 [1093]
15 Jahre
Schédel - 505 [1009]
NNH - 202 [1009]
Thorax - 231 [1015]
300 [1009]
DM 144 [1033]*
Thorax-HRCT | - 1.3[1038]
75[1015]
Abdomen - 370 [1009]
743 [1015]
Cardio-CTA ECG 187 [1056] 478 [1056]
Thorax-CTA ECG 657 [1056]*
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Tab. 8.18 - Fortsetzung. Kinder nach Altersgruppen: DLP (mGy cm).

Protokoll | Verfahren Rohrenspannung (kV)
80 | 100 120 | 140 | 80 + 140 | 100 + 140
15— 18 Jahre
Schédel - ca. 750 [10017]*
Thorax - ca.200[10017*
Abdomen | - ca. 520 [10017]*
Sj‘;zer - ca. 610 [1001]*
8.5.7. Kinder: Effektivdosis-Werte
Tab. 8.19. Kinder ohne Altersangabe: Effektive Dosis (mSv).
Protokoll | Verfahren Rohrenspannung (kV)
80 100 120 140 80 + 140 100 + 140
Schidel - 2.6 [1018]*
Thorax - 4.743.0[1132]
DM-ASIR 2.0£1.0[1132]
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Tab. 8.20. Kinder nach Altersgruppen: Effektive Dosis (mSv).

IR-AIDR

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 140 | 80 + 140 | 100 + 140
0 Jahre
Schédel - 0.8 [1021] 1.6 [1021] 0.5[1029] 3.7[1021]
1.6 [1084] 2.0 [993]*
2.6 [1105]* 2.4[1084]
6.4 [986]* 2,5 [852]*
2.5[1021]
2.7[1013]
3.6 [1003]
3.7[1002]
4.2+0.6[1014]
8.4 [994]
IR-ASIR L7 [11177]*
OBDM 2.5[1105]* 433 +£38[852]
Thorax - 3.4[1053] 2.8+0.9[1014]
4.1[1084] 5.1[1084]
5.6 [986]* 7.7 [994]
7.5[1105] 13.6 [1006]*
DM 7.2[1105] 4.0 [1013]
DM, OBDM 7.7[1105]
IR-ASIR 0.5[1128]* 0.9 [1128]*
OBDM 7.6 [1105]
Abdomen - 12.1[1084] 2.5[1003]
12.3 [986]* 7.51994]
11.2[1084]
13.1[1014]
DM 6.0 [1013]
Becken - 8.2 [987]*
8.4 [994]
Ganzkorper | - 5.5[1053]
9.4 [1087]*
DM 9.4 [1087]*
Cardio-CTA | - 4.8+ 1.4[1064]
ECGp, 0.5+£0.2[1064]
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 120 140 | 80 + 140 | 100 + 140
0 — 1 Jahre
Schédel - 7 [1058]
6 2 [1016]
Thorax - 3 [1058]
DM 1[1114]
DM, IR-ASIR 2.1 [1114]
DM, IR-MBIR 1.7[1114]
Abdomen - 2.3[1058]
Ganzkorper | - 3.6 [1058]
Cardio-CTA | - 0.5+0.2[1058] 2.4 [1055] 3.8 [1055]
1.4 [1055]
2.9+0.7[1093]
DM 1.0+ 0.2 [1093]
ECG 1.3+0.6 [1058]
1.6 [1056]
ECGp 1.1+0.6[1123]
1.7+ 0.3[1063]
Thorax-CTA | ECG 0.7 [1056]*
0 — 6 Jahre
Schidel DM 2.0+ 3.2[1052]
Thorax DM 1.2+£0.9[1052]
Abdomen DM 10.5 + 6.9 [1052]
HWS DM 1.2+0.9[1052]
0 —7 Jahre
Schiidel | - 0.3+0.1[1026] | |
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Protokoll

Verfahren

Rohrens

annung (kV)

80 |

100

120

140

80 + 140

|

100 + 140

1 Jahr

Schidel

1.8 [986]

0.9 [1011]*
0.9 [1029]

2.1 [999]*

2.3 [994]

3.0 [986]
3.6+0.5[1014]
7.6 + 3.1 [1020]

1.1 [1011]*

Thorax

4.0 [1053]
4.0 [986]

3.4+0.7[1014]
3.5[1011]*

3.9 [999]*

6.9 [1000]*

7.0 [994]

7.8 [986]

9.6 [380]

11.8 [1006]*

6.1 [1011]

DM

0.7 0.1 [935]

4.1 £2.8[1120]

DM, IR-ASIR

1.8 £ 1.1 [1120]

Abdomen

1.3 [999]

8.7 [986]

4.8 [994]
5.7 [999]*

7.8 [1000]*

9.2 [986]
11.1+3.2[1014]
11.9 [1011]*

Becken

5.1 [987]

5.4[987]
6.7 [994]

GK

0.7 [1054]

6.6 [1053]
8.4 [1087]

DM

7.5 [1087]

Cardio-CTA

5.8 [999]*

2.3[999]*

ECGp

0.3+£0.2[1065]

Thorax-CTA

ECG

3.3 [1056]
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 120 | 140 | 80 + 140 | 100 + 140
1- 2 Jahre
Schiadel - 2.9+0.3[1117]
IR-ASIR 1.9+£0.2[1117]
1—5 Jahre
Schiadel 2.3 [1016]
- 0.6 [1021] 1.2 [1021] 1.5[993]* 2.9[1021]
1.7 [1084] 1.6 [993]*
2.0 [1021]
2.7[1084]
Thorax - 1.7 [993]* 4.2 [1084] 5.0 [1084]
DM 0.8 [1081] 3.0[1081]
Abdomen - 2.6 [993]* 11.7 [1084] 6.1 £1.4[1048]
12.8 [1084]
2 — 8 Jahre
Schédel - 0.8 [1058]
Thorax - 1.2 [1058]
Abdomen - 2 1[1058]
Ganzkorper | - 1[1058]
3-10 Jahre
Schédel - 0.311021] 0.7 [1021] 1.1[1021] 1.6 [1021]
0.511002] 1.0 [1002] 1.6 [1002] 2.3[1002]
1.8+ 0.2 [1117]
7.4+0.8[1010]
IR-ASIR 1.2+0.1[1117]
Abdomen - 8.3 +£2.9[1010]
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Protokoll

Verfahren

Rohrenspannung (kV)

80

|

100

|

120

|

140

80 + 140

100 + 140

5 Jahre

Schidel

0.7 [996]
1.9 [986]

0.9 [1011]*
15 [994]
5[1013]
6 [1029]
1 8 [1124]
1.8+ 0.5 [1031]*
2.1 [986]*
2.4 [1105]*
2.4 +0.3[1014]

0.7 [1011]*
4.7 [986]

IR-iDose

0.9 [1124]

OBDM

2.4 [1105]*

NNH

1.1+£0.7[1031]*

Hals

3.2 +£3.4[1031]*

Thorax

1.1 [986]

1.7 [1105]
2.0 [1040]*
4.5[1053]
5.0 [986]

2.0 [1102]
3.7+0.6[1014]
43 [1011]*

4.8 [986]*

5.4 [997]*

5.9 [994]

6.4 [998]*

11.3 [1006]*

6.0 [1011]*
7.0 [986]

2.0 [1102]

A, DM

1.4[1102]

DM

0.8 0.2 [935]

1.7 [1105]
1.9 [1005]*
3.5 [996]

1.6 [1102]
3.7 [997]*
4.0[1013]
4.7 [998]*

DM, OBDM

1.6 [1105]

OBDM

5[1105]

Thorax-HRCT

0.4 [1040]*
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 120 | 140 | 80 + 140 | 100 + 140
5 Jahre
Abdomen - 4.3 [986] 10.9 [986] 5.3 [994] 15.2 [986]
8.4+ 1.1[1014]
8.6 [997]*
8.7 [998]*
9.8 [1011]*
10.9 [986]*
DM 3.0 [996] 5.8 [997]*
3.3 [10057]* 6.0 [998]*
7.0 [1013]
Becken - 2.9 [987] 7.4 [987] 6.0 [994] 10.1 [987]*
7.4 [987]*
DM 1.3 [996]
GK - 0.9 [1054] 8.3 [1053]
9.1 [10877]*
DM 5.4 [10057]*
8.5 [1087]*
Cardio-CTA | - 0.4+0.4[1066]
ECG 1.4+ 1.2[1066] 4.9 [1056]
ECGr 13.1 [1062]* 15.2 [1061]*
Thorax-CTA | - 1.8 [10407*
ECG 3.2 [1056]
5-10 Jahre
Schidel 2.0 [1016]
- 1.6 [993]*
Thorax - 5.1 [993]*
Abdomen - 6.5 [993]*
6 — 16 Jahre
Schédel DM 2.1+£0.8[1028]
Thorax DM 3.5+8.0[1028]
Abdomen DM 13.6 £10.4 [1028]
HWS DM 2.3+1.5[1028]
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 120 | 140 | 80 + 140 | 100 + 140
8 Jahre
Schédel - 0.4+0.1[1030] 0.7 +0.4[1030] 5[1084]
1.6 [1084] 26i12[1030]
Thorax - 4.0 [1084] 7 [1084]
8.7+ 1 0 [1037]
13.6 = 1.4 [1037]
18.8 [1109]
DM 1.5+0.3[1094] 3.1[1081]
1.6 [1081]
IR-ASIR 2.7 [1109] 5.3 [1109]
4.411109]
Thorax-HRCT | - 1.5+£0.5[1037]
Abdomen - 11.3[1084] 10.4 [1084]
20.9[1109]
DM 3.6 £1.6[1094]
IR-ASIR 4.81109] 6.8 [1109]
7.6 [1109]
Becken DM 2.8 £1.2[1094]
9 — 13 Jahre
Schédel - 7 [1058]
Thorax - 7 [1058]
Abdomen - 8 [1058]
Ganzkorper - 5[1058]
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 120 140 | 80 + 140 | 100 + 140
10 Jahre
Schiadel - 1.3 [1084] L4 [10117]* 1.9 [1011]*
1.9 [986] 1.4 [1124] 4.9 [986]
1.7 [994]
2.0 [1084]
2.0+0.2[1014]
2.1[1029]
2.6 [986]*
IR-iDose 0.8[1124]
Thorax - 1.9 [1040]* 3.6 [1084] 5.3[1011]
2.8 [1084] 4.1[1011]* 7.3 [986]
4.7 [986] 4.1+0.8[1014]
5.1 [1053]
5.8 [986]*
6.1 [994]
9.8 [1006]*
Thorax-HRCT | - 0.8 [10407*
Abdomen - 8.8 [986] 3.5+0.1[1044] 18.2 [986]
9.6 [1084] 4.8 [994]
8.9+£2.1[1014]
9.1 [1084]
10.6 [986]*
11.9[10117]*
Becken - 5.6 [987] 5.9 [987]* 8.5 [987]*
6.4 [994]
GK - 1.1[1054] 8.6 [1053]
13.2 [1087]*
DM 11.3[1087]*
Cardio-CTA - 0.6 [1057]* 4.5+2.4[1093] 10.6 £3.7[1093]
DM 1.9+ 1.5[1093] 4.4+2.1[1093]
Thorax-CTA - 2.6 [1040]*
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 120 | 140 | 80 + 140 | 100 + 140

10 — 15 Jahre
Schédel 0.7 [1016]

- 0.2 1021] 0.41021] 0.7[1021] 1.0 [1021]
Thorax - 12 [993]*

DM 2.0 [10337*
Abdomen - 10 [993]*
11 - 17 Jahre
Schédel - 1.7£0.4[1117]

IR-ASIR 1.2+0.3[1117]
12 Jahre
Wirbelséiule | DM | | 0.3 +0.1[1096] | |
14 — 15 Jahre
Schidel - 0.7 [1058]
Thorax - 1.7 [1058]
Abdomen - 2.6 [1058]
Ganzkorper | - 4.3 [1058]
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Tab. 8.20 - Fortsetzung. Kinder nach Altersgruppen: Effektive Dosis (mSv).

Ganzkorper

Protokoll Verfahren Rohrenspannung (kV)
80 | 100 | 120 | 140 | 80 + 140 | 100 + 140
15 Jahre
Schédel - 14i02 [1014]
1 [1029]
Thorax - 2.8+ 1 0 [1014]
1 [994]
[1053]
8. 7 [1006]*
DM 1.4 +0.4[935]
Thorax- - 0.16 [1038]*
HRCT
Abdomen - 3.3 [994]
4.4+1.0[1048]
5.9+2.6[1014]
Becken - 4.7 [994]
GK - 13.3[1053]
Cardio-CTA | ECG 3.2[1056] 8.1 [1056]
Thorax-CTA | ECG 11.2]1056]*
> 15 Jahre
Schédel - 8 [1058]
Thorax - 3 [1058]
Abdomen - 8 [1058]
11 8 [1058]
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8.5.8. Kinder: Organdosis-Werte

Tab. 8.21. Kinder ohne Altersangabe: Organdosis (mSv).

Protokoll Organdosis (mGy)
Verfahren - - —
Gehirn Schilddriise Mamma Lunge Leber RKM Haut Testes
Schiadel - 19.6 [990]
Hals DM 31 +£18[1032]
34 £ 15[1032]
Thorax - 17.6 1.4 16.8 £2.1 11.8 [990] 4,78 £0.53 2.3+0.6 0.10+0.11
[1010] [1010] 157+1.9 [1010] [1010] [1010]
[1010]
Abdomen | - 9.4 [990] 5.9+2.1[1010] 33+1.7 6.5+4.6[1010]
[1010]
Tab. 8.22. Kinder nach Altersgruppen: Organdosis (mSv).
Protokoll | Verfahren Organdosis (mSv)
Augenlinse | Schilddriise | Mamma | Lunge | RKM | Haut I Testes
0 Jahre
Schédel - 21.511029] 2.3[1027] 0.9 [1105]* Ca. 1[1013]* 5[951]* 3.9 [1105]* 0.1 [1105]*
22 [9517* 3.7[1105]* 1.2 [1105]* Ca. 8[1013]*
22.8 [1105]* Ca. 4.2 [1024]* 8.3 [1105]*
Ca. 26 [1013]* Ca. 5T1013]*
Ca. 30 [1024] 8.2 [1027]
OBDM 18.0 [1105]* 3.6 [1105]* 0.9 [1105]* 1.2 [1105]* 8.0 [1105]* 3.8 [1105]* 0.1 [1105]*
Hals - 15.4 [1027]
Thorax - 0.1 [1105] 2.0 [1105] 2.0 [1105] 0.18 [1039] 0.6 [1105] 0.4 [1105] 0.1[1105]
Ca. 1[1013]* Ca. 6 [1013]* Ca. 5[1013]* 2.1[1105] 0.9 [1053]
6.4 [1053] 5.5 [1053] Ca. 6 [1013]* 2 [9517*
9[951]* 8 [951]* 6.5 [1053]
8 [951]*
DM 0.1 [1105] 1.9 [1105] 1.8 [1105] 1.9 [1105] 0.5[1105] 0.3[1105] 0.1[1105]
DM, OBDM 0.1 [1105] 2.0 [1105] 1.7 [1105] 1.8 [1105] 0.5[1105] 0.3[1105] 0.1[1105]
OBDM 0.1 [1105] 1.8 [1105] 1.9 [1105] 2.0 [1105] 0.6 [1105] 0.3[1105] 0.1[1105]
Abdomen | - Ca. 1[1013]* Ca. 6 [1013]* Ca. 7 [1013]* Ca. 5[1013]*
7[9517*
GK - 6.4 [1053] 5.6 [1053] 6.7 [1053] 2.2 [1053] 10.2 [1087] 11.2[1087]
10.1 [1087] 10.8 [1087] 9.5 [1087] 6.5 [1087]
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Tab. 8.22 - Fortsetzung. Kinder nach Altersgruppen: Organdosis (mSv).

Protokoll | Verfahren Organdosis (mSv)
Augenlinse | Schilddriise | Mamma | Lunge | RKM | Haut | Testes
1 Jahr
Schédel - 31.2[1070]* 1.6 [999]* 0.6 [999]* 0.8 [999]* 8.5 [999]* 4.0 [999]* 0.0 [999]*
32.8 [999]* 2.8 [1027]
34.7[1029] 5.41070]*
8.7 [1027]
A 17.3 [1070]* 4.7110707]*
Hals - 15.2 [1027]
Thorax - 0.3 [999]* 3.2[991] 3.1[991] 4.5[991] 0.8[991] 0.8 [991] 0.0 [999]*
0.3 [1000]* 6.9 [999]* 6.3 [1053] 7.0 [999]* 1.2 [1053] 1.2 [999]* 0.1 [10007*
8.6 [1053] 6.7 [999]* 7.9 [1053] 2.0[999] 1.9 [1000]*
11.5 [1000]* 11.2 [1000]* 11.4 [1000]* 3.3 [10007*
Abdomen | - 0.1 [999]* 0.9 [1000]* 5.3 [999]* 4.0 [999]* 1.2 [991] 1.3 [999]* 2.2 [999]*
0.1 [1000]* 1.1 [999]* 10.5 [1000]* 7.2 [10007* 1.9 [999]* 1.8 [991] 4.2 [991]
3.9 [1000]* 2.6 [1000]* 3.9 [10007*
GK - 8.7 [1053] 6.6 [1053] 8.1 [1053] 2.7 [1053] 8.8 [1087] 8.3 [1087]
10.4 [1087] 10.8 [1087] 9.2 [1087] 5.6 [1087] 12.2+ 1.0 [1008]
16.5+ 1.3 [1008] 14.7 £ 0.6 [1008] 12.3+0.7 [1008]
16.8 + 1.6 [1008] 14.9 £ 0.8 [1008]
Cardio- - 0.4 [999]* 9.2 [999]* 8.5 [999]* 8.8 [999]* 2.4 [999]* 1.5[9997* 0.0 [999]*
CTA
Protokoll | Verfahren Organdosis (mSv)
Leber | Magen | Diinndarm | Colon | Nieren | Harnblase | Uterus
1 Jahr
Abdomen | - 6.4[991] | 5.6 [991] | 5.41991] | 5.41991] | 6.0 [991] | 5.7[991] | 5.7 [991]
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Tab. 8.22 - Fortsetzung. Kinder nach Altersgruppen: Organdosis (mSv).

Protokoll | Verfahren Organdosis (mSv)
Augenlinse | Schilddriise | Mamma | Lunge | RKM | Haut | Testes
5 Jahre
Schédel - 4.8+0.6 [995] 0.7£0.1[995] 0.1 £0.0[995] 0.53 [996] 0.02 [996] 0.70 [996] 0.01 [996]
26.8 [1073]* 1.8£0.7[1031] 0.26 [996] 0.6 0.2 [1031] 3[951]* 2.9+1.0[1031] 0.0 £0.0 [995]
Ca. 29 [1013]* Ca.2[1013]* 0.3£0.1[1031] Ca. 1[1013]* Ca. 5[1013]* 3.6 [1105]* 0.2 [1105]*
Ca. 30 [1024] 2.1[1027] 0.7 [1105]* 1.1 [1105]* 5.3£0.6[995] 0.2+0.2[1031]
31 [951]* 2.51996] 59+1.6[1031]
32.7+16.3 Ca. 2.6 [1024]* 6.3 [1105]*
[1031] 2.9 [1105]*
33.0[1105]* 4.8 [1027]
48.0 [1029]
A 17.3[1073]*
OBDM 24.3[1105]* 2.9 [1105]* 0.7 [1105]* 1.1[1105]* 6.2 [1105]* 3.4 [1105]* 0.2 [1105]*
NNH - 16.2+10.1 1.6 £1.1[1031] 0.2+0.1[1031] 0.3+0.2[1031] 2.9+1.9[1031] 0.9+0.5[1031] 0.1£0.1[1031]
[1031]
Hals - 6.5+£6.3[1031] 17.2+11.7 4.8+8.4[1031] 5.5+£6.4[1031] 3.1£2.9[1031] 2.0+ 1.4[1031] 0.1£0.0[1031]
[1031]
22.1[1027]
Thorax - Ca.0[1013]* 2.6 [991] 3.0[1105] 3.5[991] 0.6 [991] 0.5[1105] 0.1[998]
0.3 [997]* 4.1 [1105] 3.8 [1102]* 3.7 [1105] 1 [951]* 0.6 [991] 0.1 [1105]
0.3 1998] 4.4[1102]* 3.91991] 4.3 [1102]* 1.0 [1105] 2.1[997]* 0.2 [997]*
0.3 £0.0[995] 5.5£0.6 [995] 7[951]* 6 [951]* 1.7 [1053] 2.0 [998] 0.2+0.0 [995]
0.9[1105] 7[951]* Ca. 7[1013]* Ca. 7[1013]* 3.2 [997]*
Ca. 8[1013]* 8.0 [1053] 9.7 [1053] 3.81998]
11.3[1053] 9.5 [9971* 11.4 [997]* 3.9£0.6 [995]
13.5[998] 12.0 [998] 12.6 [998]
14.9 [997]* 14.8 + 0.9 [995]
A 43[1102]* 2.8 [1102]* 3.9[1102]*
A, DM 2.5[1102]* 1.8 [1102]* 2.3[1102]*
DM 0.1 [997]* 2.5 [1102]* 1.8 [1102]* 3.3 [1102]* 0.25 [996] 0.3 [1105] 0.03 [996]
0.2 [998]* 3.1 [1005]* 3.2[1105] 3.7 [1005]* 0.7 [10057* 1.0 [997]* 0.1 [997]*
0.9 [1105] 3.4 [996] 3.7 [1005]* 3.7[1105] 1.2 [1105] 1.2 [998]* 0.1 [998]*
4.3 [1105] 7.9 [996] 5.41996] 2.6 [997]* 3.6 [1005]* 0.1[1105]
8.8 [997]* 8.3 [998]* 8.1 [997]* 2.9 [998]* 4.4 1996]
10.6 [998]* 9.9 [997]* 9.9 [998]*
DM, OBDM 0.9[1105] 2.0 [1105] 2.9 [1105] 3.9 [1105] 1.2 [1105] 0.4[1105] 0.1[1105]
OBDM 0.9[1105] 3.2[1105] 2.5[1105] 3.7 [1105] 1.0 [1105] 0.5[1105] 0.1[1105]




8. Anhang: Tabellen

325

Tab. 8.22 - Fortsetzung. Kinder nach Altersgruppen: Organdosis (mSv).

Protokoll | Verfahren Organdosis (mSv)
Augenlinse | Schilddriise | Mamma | Lunge | RKM | Haut | Testes
5 Jahre
Abdomen | - 0.1 [997]* Ca.0[1013]* 1.2+0.2[995] Ca. 5[1013]* 1.0 [991] 1.5[991] 0.8+0.1[995]
0.1 [998] 0.2 £0.1[995] 2.5 [997]* 6.1 [997]* 3.2+£0.8[995] 2.3 [997]* 2.4 1991]
0.1 £0.0[995] 0.4 [997]* Ca. 5[1013]* 6.8 [998] 3.9 [998] 2.5[998] Ca. 7[1013]*
0.5 [998] 7.3 1998] 4.4 [997]* 8.9 [998]
10.8 [997]*
11 [9517*
DM 0.0 [997]* 0.16 [996] 0.8 [996] 2.5[996] 2.6 [996] 1.4 [998]* 0.06 [996]
0.1 [998]* 0.3 [997]* 2.2 [997]* 3.5[997]* 3.3 [997]* 1.7 [997]* 4.5 [998]*
0.4 [998]* 4.8 [998]* 5.0 [998]* 3.6 [998]* 3.31996] 6.6 [997]*
Becken DM 0.01[996] 0.05[996] 0.07 [996] 3.31996] 1.7 1996] 1.0 [996]
GK - 0.3 £0.0[995] 5.1£0.4[995] 8.4 [1053] 10.1 [1053] 4.1 [1053] 9.0 [1087] 5.4+0.4[995]
11.4[1053] 9.9 [1087] 10.1 [1087] 5.8 [1087] 12.1 [1087]
12.8 [1087] 16.0 = 1.4 [995] 11.0 £ 0.6 [995]
Cardio- ECGr 3.0 [1062]* 24.5 [1062]* 20.9 [1062]* 16.8 [1062]* 21.7 [1062]* 0.0 [1061]*
CTA 4.5[10617* 71.4[1061]* 67.7[1061]* 0.1]1062]*
Protokoll | Verfahren Organdosis (mSv)
Leber | Magen | Diinndarm | Colon | Nieren | Harnblase | Uterus
5 Jahre
Abdomen | - 4919911 | 4.9[991] | 44199117 | | | |
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Tab. 8.22 - Fortsetzung. Kinder nach Altersgruppen: Organdosis (mSv).

Protokoll | Verfahren Organdosis (mSv)
Augenlinse | Schilddriise | Mamma | Lunge | RKM | Haut | Testes
10 Jahre
Schédel - 63.2[1029] 2.2 [1027]
5.0 [1027]
Hals - 32.1[1027]
Thorax - 5.6 [991] 4.7 991] 5.71991] 1.2 [991] 1.2 [991]
12.7 [1053] 8.1 [1053] 9.9 [1053] 2.9 [1053]
17 [1069] 15 [1069]
A 12 [1069] 14 [1069]
Abdomen | - 1.7 [991] 1.7 [991] 2.6 [991]
23.8+ 16 [1046]
GK - 12.8 [1053] 8.1 [1053] 10.1 [1053] 6.2 [1053] 14.1 [1087] 16.9 [1087]
20.8 [1087] 12.2 [1087] 15.6 [1087] 8.7 [1087]
Protokoll | Verfahren Organdosis (mSv)
Leber | Magen | Diinndarm | Colon | Nieren | Harnblase I Uterus
10 Jahre
Abdomen | - 7.41991] | 6.7[991] | 5.8[991] | 5.8[991] | 6.4[991] | 5.41991] | 5.2[991]
15 Jahre
Schédel - 62.4[1029] 2.1[1027]
4.8 [1027]
Hals - 52.0[1027]
Thorax - 19.5[1053] 9.0 [1053] 12.1[1053] 5.0 [1053]
GK - 19.4 [1053] 9.1[1053] 12.4 [1053] 10.4 [1053]

8.5.9. Kinder: Kumulativdosis-Werte

Tab. 8.24. Kinder ohne Altersangabe: Kumulativdosis-Werte.

Protokoll | Verfahren Kumulative Dosis (mSv)
Augenlinse Effektive Dosis
Schédel - 132 [1019] 1.7 [1028]
168 [1028] 19 [1019]
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9. Abkiirzungen
Tab. 9: Abkiirzungen.
Abkiirzung Begriff
ADM Angulare Dosismodulation (siche DM)
BMI Body-Mass-Index
CT Computertomographie
CTCA CT-Cardangiographie
CTDI Computed Tomographic Dose Index
DM Dosismodulation = Réhrenstrommodulation
EKG Elektro-Kardiographie
FBP Filtered Back Projection = Gefilterte Riickprojektion
IR Iterative Bildrekonstruktion
MSCT Multi-Slice-CT; Mehrschicht-CT
OBDM Organ-basierte Dosismodulation = Réhrenstrommodulation
OBTCM Organ-based tube current modulation (siche OBDM)
PMMA Polymethylacrylat (Plexiglas ®)
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