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Zusammenfassung

Verschiedene Messungen der Hubble-Konstante, einem Maß für die Ausdehnungsgeschwindig-
keit des Universums, ergeben abweichende Werte. Kann diese Diskrepanz – bekannt als “Hubble-
Tension” – nicht durch systematische Fehler in den Messungen erklärt werden, so könnte sie ein
Hinweis auf neue physikalische Effekte jenseits des Standard-ΛCDM-Modells sein. Ein vielver-
sprechendes Modell zur Behebung dieser Diskrepanz ist frühe dunkle Energie (Early Dark En-
ergy, EDE), eine Form von dunkler Energie, die im frühen Universum auftreten soll. In der Liter-
atur besteht jedoch kein Konsens darüber, ob das EDE-Modell sowohl die Hubble-Tension lösen
als auch die gute Übereinstimmung mit den Daten des kosmischen Mikrowellenhintergrunds und
der großräumigen Struktur des Universums erhalten kann.

In dieser Dissertation beginnen wir mit einem kurzen Überblick über die nötigen Konzepte
des Standard-ΛCDM-Modells, der Hubble-Tension, EDE und Statistik. Wir untersuchen den Ur-
sprung gegensätzlicher Schlussfolgerungen zu EDE in der Literatur mithilfe einer Rasteranalyse
und finden Hinweise darauf, dass technische Effekte in der Markov-Chain-Monte-Carlo-Analyse,
sogenannte Volumeneffekte, eine große Rolle spielen und den Dissens in der Literatur erklären
können. Um Konfidenzintervalle zu konstruieren, die unabhängig von Volumeneffekten sind, ver-
wenden wir die Profile-Likelihood-Methode, eine Methode aus der frequentistischen Statistik, die
selten für Analysen in der Kosmologie genutzt wird. Mithilfe des Profile-Likelihoods finden wir,
dass das EDE-Modell in der Lage ist, die Hubble-Konstante zu erhöhen, um die Hubble-Tension
unter eine Signifikanz von 1,7σ zu reduzieren, während gleichzeitig eine gute Übereinstimmung
mit allen in dieser Dissertation betrachteten Datensätzen gewährleistet wird. Obwohl EDE damit
vielversprechende Eigenschaften in Bezug auf die Auflösung der Hubble-Tension zeigt, führt es
auch zu einer erhöhten Amplitude der Dichteschwankungen im späten Universum, S8, was bereits
vorhandene Diskrepanzen bei Messungen von S8 verschlechtert. Wir untersuchen eine natürliche
Erweiterung des EDE-Modells, die die Summe der Neutrinomassen als freien Parameter enthält,
und bewerten, ob höhere Neutrinomassen die EDE-induzierte Erhöhung von S8 kompensieren
können. Unsere Ergebnisse zeigen, dass dieses Szenario jedoch durch Messdaten der großräumi-
gen Struktur des Universums stark eingeschränkt ist. Wir schlussfolgern, dass das EDE-Modell
ein möglicher Kandidat zur Auflösung der Hubble-Tension ist, während die gleichzeitige Behe-
bung der S8-Diskrepanz anderer Erklärung bedarf.
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Abstract

With the increasing precision of cosmological measurements, a number of discrepancies have
emerged among which the Hubble tension, a mismatch between different measurements of the
current expansion rate of the Universe, is the most significant. If not caused by systematics in the
measurements, this tension could be a hint of new physics beyond the standard ΛCDM model.
One of the most promising proposed solutions to this tension is Early Dark Energy (EDE), which
introduces a dark-energy-like component in the early Universe that decays very quickly around re-
combination. However, there is no consensus in the literature whether the tension-resolving EDE
model can provide an adequate fit to cosmological data of the cosmic microwave background
and large-scale structure (LSS) of the Universe. Further, it has been suggested that prior volume
effects influence the constraints of the EDE model from Markov Chain Monte Carlo (MCMC)
analyses, which originate in the specific parametrization of the model, and lead to a strong de-
pendence of the constraints on the prior.

In this thesis, we begin by giving a brief overview about the necessary concepts of the stan-
dard ΛCDM model, the Hubble tension, EDE, and statistics. In order to understand the origin of
different conclusions about EDE in the literature, we deconstruct the current constraints using a
grid analysis and find evidence that prior volume effects affect the constraints of the EDE model
from an MCMC analysis, suggesting that these effects are the reason behind the disagreement
in the literature. Motivated by this, we use a profile-likelihood analysis to construct confidence
intervals for the parameters of the EDE model. The profile likelihood, which is rarely used for
cosmological parameter inference, is a standard tool in frequentist statistics to construct confi-
dence intervals, which are independent of a prior and hence serve as a powerful tool to assess
the influence of prior volume effects. With the profile likelihood, we find that the EDE model is
able to raise the Hubble constant in order to reduce the Hubble tension below a significance of
1.7σ, while presenting a good fit to all data sets considered in this thesis. Although EDE shows
promising properties with regards to resolving the Hubble tension, it is well known that intro-
ducing EDE comes at the cost of an increased clustering amplitude, which worsens the already
existing tension in measurements of the clustering amplitude. We explore one well-motivated
extension of the EDE model, which includes the sum of neutrino masses as a free parameter, and
assess whether higher neutrino masses can compensate the EDE-induced clustering enhancement.
We find that this scenario is disfavored since higher neutrino masses within the EDE model are
tightly constrained by LSS data.
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Chapter 1

The Standard Cosmological Model

Sections 1.2, 1.4 closely follow the Cosmology lecture by Prof. Kristina Giesel at Friedrich
Alexander University in 2018/2019. Section 1.3 follows Weinberg (2008) (their Chapter 1.4) and
Dodelson and Schmidt (2020) (their Chapter 2.2.). Section 1.4 follows Dodelson and Schmidt
(2020) (their Chapter 7). Section 1.5 follows Jeong and Komatsu (2006), Weinberg (2008) (their
Chapter 2 and 3), Dodelson and Schmidt (2020) (their Chapter 8 and 11), and Baldauf (2020).

Summary: In this chapter, we will give a brief overview about the mathematical
description of the ‘standard cosmological model’, which starts with the homoge-
neous and isotropic Universe described by the Friedmann-Lemaître-Robertson-
Walker metric (Sec. 1.2). Inflation, a phase of accelerated expansion (Sec. 1.4),
explains the homogeneity and isotropy and the origin of the large-scale structure
(LSS) of the Universe, which is described in the framework of linear perturba-
tion theory. To describe the non-linear gravitational growth of structure in the late
Universe, linear perturbation theory is not sufficient and we will sketch one-loop
perturbation theory (Sec. 1.5). We give an overview of one example to describe
non-perturbative effects, which is the effective field theory of large-scale struc-
ture (Sec. 1.5.5).



2 1. The Standard Cosmological Model

1.1 Introduction

The discovery of the theory of general relativity, the detection of the (accelerated) expansion of
the Universe, and the evidence for an invisible dark matter component in galaxies, along with
the measurement of the cosmic microwave background (CMB) are important milestones that led
to the standard cosmological model. In this model, the Universe is expanding, meaning that at
earlier times, the Universe was hotter, smaller and denser. If we take this argument back in time,
at some point the Universe was so dense, hot and small that it was in a regime where physical
theories do not apply anymore and a singularity happens, usually called the Big Bang. For this
reason, this model is also called the Big Bang model.

Inflation provides an explanation for the small initial perturbations out of which the large-
scale structure (LSS) of the Universe formed. Observations of the CMB and LSS can give a
precise picture of the composition of the Universe. Only about 5% of the energy of the Universe
is composed of the common baryonic matter, while the rest is composed of dark components:
about 25% of the energy consist of cold dark matter (CDM), which has so far only been detected
by its gravitational interaction and is known to be largely non-relativistic (‘cold’). The bulk of the
energy, about 75%, is contained in dark energy, a dark component with negative pressure, which
is typically modeled by a cosmological constant, Λ, and can explain the accelerated expansion of
the Universe. The standard cosmological model ΛCDM is named after these dark components
and presents a remarkably good fit to all cosmological observations.

1.2 Friedmann-Lemaître-Robertson-Walker Universe

Gravity, the force that governs the Universe at large scales, is described by Einstein’s equations

Rµν − R

2
gµν + Λgµν =

κ

2
T µν , (1.1)

where Rµν is the Riemann tensor, R the Ricci scalar, gµν the metric tensor, Λ the cosmological
constant, κ = 16πGN is related to Newton’s constant, GN, and T µν is the energy-momentum
tensor (see e.g. Wald, 1984; Misner et al., 1973). Einstein’s equations (1.1) are the centerpiece of
the theory of general relativity (GR) and they describe how gravity can be understood as curvature
of spacetime: “Space (g) tells matter (T ) how to move, matter (T ) tells space (g) how to curve”
(Misner et al., 1973).

On large scales, the Universe appears spatially homogeneous and isotropic. The assumption
of spatial homogeneity and isotropy is known as the Cosmological Principle and is related to the
premise that we – as observers – are not located at a special place in the Universe. If one assumes
the Cosmological Principle, the spacetime metric, gµν , simplifies to the Friedmann-Lemaître-
Robertson-Walker (FLRW; Friedmann, 1922; Robertson, 1935; Walker, 1937) metric:

ds2 = −dt2 + a2(t)
δab

1 + k
4

∑
c(x

c)2
dxadxb, (1.2)
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where t denotes cosmological time and x comoving spatial coordinates. k is the curvature of the
Universe, which can take on k = −1 (hyperbolic topology), k = 0 (flat topology) and k = 1
(spherical topology). The only degree of freedom of the FLRW metric is the scale factor a(t),
which describes the scale of the volume of the Universe. In an expanding Universe, a(t) grows
as a function of time, t. Inserting the FLRW metric (1.2) into the Einstein equations (1.1) and
assuming the energy-momentum tensor of a perfect fluid1, T pf

µν = (ρ+ p)uµuν + pgµν , uµ being
the 4-velocity of the observer, one obtains the Friedmann equations (Friedmann, 1922):(

ȧ

a

)2

+
k

a2
=

8πGN

3
ρ+

Λ

3
, (1.3a)

ä

a
= −4πGN

3
(ρ+ 3p) +

Λ

3
, (1.3b)

where ρ(t) and p(t) are the energy density and pressure of the fluid, respectively. As discussed
in the Introduction, observations suggest that the Universe consists of dark energy given by the
cosmological constant Λ, cold dark matter ρc, baryonic matter ρb, and radiation ρr. By inserting
Eq. (1.3b) into the temporal derivative of Eq. (1.3a), one obtains the continuity equation

ρ̇ = −3(ρ+ p)
ȧ

a
. (1.4)

Note that the terms proportional to Λ and k cancel. The Friedmann equations (1.3a), (1.3b) and
the continuity equation (1.4) describe the expansion of space given a specific energy composition
of the Universe. The central parameter, which describes the rate of expansion of the Universe, is
the Hubble-Lemaître parameter:

H(t) =
ȧ

a
. (1.5)

Particularly interesting is the expansion rate of the Universe today, t = t0, which is given by the
Hubble constant or Hubble-Lemaître constant:

H0 = H(t = t0). (1.6)

The first Friedmann equation (1.3a) can be rewritten in terms of the Hubble-Lemaître parameter,
Eq. (1.5):

H2(t) =
8πGN

3
ρtot −

k

a2
, (1.7)

where ρtot = Λ
8πGN

+ρc+ρb+ρr. It is common to assume a linear equation of state, i.e. p = wρ,
where w is the equation-of-state parameter of the fluid. On large scales, one finds that the linear
relationship holds approximately: for dark matter and baryonic matter: w = 0; for radiation:
w = 1/3, and for a cosmological constant (Λ): w = −1. Inserting the linear equation of state

1One can show that the energy-momentum tensor of the perfect fluid is the most general energy-momentum tensor
that satisfies spatial homogeneity and isotropy.
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into the continuity equation (1.4), the energy density as a function of the scale factor takes the
form:

ρ(t)

ρ0
=

(
a(t)

a0

)−3(1+w)

, (1.8)

where ρ0 and a0 are energy density and scale factor today, respectively. The fractional energy
density is defined as

ΩI =
ρI
ρcrit

, where ρcrit =
3H2

8πGN

(1.9)

for I ∈ {c, b, r,Λ}. ρcrit is the critical density for which the curvature vanishes, k = 0. Hence
for a flat Universe, ρcrit = ρtot. Inserting Eq. (1.8) into Eq. (1.7) and defining ρk := − 3

8πGN

k
a2

,
one obtains the Friedmann equation in terms of fractional energy densities (1.9):

H2(a)

H2
0

= Ωr,0

(a0
a

)4
+ Ωm,0

(a0
a

)3
+ Ωk,0

(a0
a

)2
+ ΩΛ,0, (1.10)

where ΩI,0 denotes the fractional energy density today (the index 0 will be omitted from now on)
and Ωm = Ωc + Ωb. Defining the dimensionless Hubble constant

h =
H0

100 km/s/Mpc
(1.11)

and the physical fractional energy densities ωI = h2ΩI , one can rewrite Eq. (1.10) as
H2(a)

(100 km/s/Mpc)2
= ωr

(a0
a

)4
+ ωm

(a0
a

)3
+ ωk

(a0
a

)2
+ ωΛ. (1.12)

Assuming only one dominant component, one can insert Eq. (1.8) into Eq. (1.10) to obtain:

a(t) =

{
a0 t

2
3(1+w) for w ̸= −1,

a0 e
√

Λ
3
t for w = −1.

(1.13)

Instead of expressing the evolution of the Universe in terms of the time, t, or the scale factor, a,
it is common to introduce the redshift

1 + z :=
a0
a
. (1.14)

The redshift describes the relative change in wavelength of a photon that was emitted at scale
factor a and detected today, a0. We will from now on set a0 = 1. In terms of redshift, Eq. (1.12)
becomes

H2(z)

(100 km/s/Mpc)2
= ωr(1 + z)4 + ωm(1 + z)3 + ωk(1 + z)2 + ωΛ. (1.15)

Since observations prefer a flat Universe, the curvature is often fixed to k = 0 (e.g. Aghanim
et al., 2020b). Assuming a flat Universe, ωk = 0, and taking into account that the energy density
in radiation is negligible in the late Universe (ωr ≈ 0), Eq. (1.15) becomes

H2(z)

(100 km/s/Mpc)2
= ωm(1 + z)3 + ωΛ = ωm(1 + z)3 + h2 − ωm, (1.16)

where we used Ωm + ΩΛ = 1. It becomes evident that at late times H(z) for fixed redshift, z, is
a function of ωm = ωd + ωb, and h only.
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1.3 Distances in an expanding Universe

In an expanding Universe, the ‘distance’ between two objects, e.g. two galaxies, becomes an
ambiguous term. In this Section, we will review three commonly used distances.

The comoving distance

The comoving distance, χ, is the distance in a coordinate grid that expands with the Universe.
Hence, the physical distance, rp, at a given scale factor, a, is related to the comoving distance, χ,
via

rp(t) = a(t)χ(t). (1.17)
To derive an expression for χ(t), consider a photon that moves at the speed of light c. An in-
finitesimal light travel-time interval is related to the comoving distance via: dt = drp(t)

c
= a(t)

c
dχ.

Hence, the comoving distance can be expressed as

χ(t) = c

∫ t0

t

dt′

a(t′)
=

∫ z(t)

0

c dz′

H(z′)
, (1.18)

where we changed variables via dz
dt

= − a0
a(t)2

ȧ(t) = −a0H(t)
a(t)

=⇒ dz
a0H(z)

= − dt
a(t)

and set
a0 = 1. For small redshifts, Eq. (1.18) can be approximated as

χ =
cz

H0

=⇒ cz = χH0, (1.19)

which represents the famous linear Hubble-Lemâitre law: “redshift ∼ distance × Hubble con-
stant”. The linear relation breaks down at higher redshifts, where also higher order terms need to
be taken into account.

The angular diameter distance

One possibility to define distances in an expanding Universe is to require that the following rela-
tion holds between the opening angle, θ, the proper size, s, and the distance, DA, to an object:

θ =
s

DA

. (1.20)

The distance DA is called the (physical) angular diameter distance and ensures that the familiar
relation between angle and distances (1.20) holds (in the small-angle approximation, which is usu-
ally a good approximation since angles are typically small in astronomy). To derive an equation
forDA, note that the proper size, s, of the object can also be expressed as s = χ(t) θ ·a(t), where
χ(t) θ corresponds to the comoving size of the object. Hence, the angular diameter distance takes
on the form

DA(t) = a(t)χ(t) =
c

1 + z(t)

∫ z(t)

0

dz′

H(z′)
. (1.21)
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The luminosity distance

The luminosity distance,DL, is defined such that the familiar relation between flux, F , of a source
with luminosity, L, holds:

F =
L

4πD2
L

. (1.22)

Since the Universe is expanding, it holds that F = La2

4πχ2(a)
, where the additional factor of a2

comes from the fact that the expansion of the Universe leads to a dilution of photons (×a) and to
an increase in wavelength (×a). Hence, the luminosity distance is given by:

DL(t) =
χ(t)

a(t)
= [1 + z(t)]

∫ z(t)

0

c dz′

H(z′)
. (1.23)

We will set the speed of light to unity, c = 1, from now on.

1.4 Inflation

Inflation is a phase of rapid expansion in the very early Universe, which was proposed in order
to resolve the horizon problem2. The horizon problem refers to the puzzling observation that the
Universe is homogeneous and isotropic on large scales – scales much larger than could have been
in causal contact in the early Universe. The isotropy is impressively demonstrated by the almost
perfectly uniform temperature of the cosmic microwave background (see Sec. 1.5.1). The idea
of inflation is to introduce a phase of accelerated expansion, which leads to a decreasing Hubble
radius 1

aH
. The requirement of a decreasing Hubble radius, d

dt
1
aH

= − ä
ȧ2
< 0, translates into the

requirement for an accelerated expansion of the Universe ä > 0. Since the temporal derivative
of Eq. (1.13) gives ä(t) ∼ 2

3(1+w)

(
2

3(1+w)
− 1
)
t

2
3(1+w)

−2, the equation-of-state parameter during
inflation has to be:

wϕ < −1

3
. (1.24)

This means that inflation needs to be driven by an exotic energy component with negative pressure.
The simplest model of inflation consists of a single scalar field, ϕ, known as the inflaton. In the
following, we will review the dynamics of a scalar field in general, which will also be relevant for
the Early Dark Energy model, which – in the simplest case – consists of a single scalar field (see
Chapter 2).

2Inflation is usually not considered part of the standard cosmological model but rather sets the initial conditions
for the standard cosmological model. We will still discuss it here briefly.
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1.4.1 Dynamics of a scalar field in an expanding Universe

The action of a scalar field, ϕ, minimally coupled to the metric, gµν , reads

Sϕ =

∫
d4x
√

| det(g)|
[
−1

2
gµν∂µϕ ∂νϕ− V (ϕ)

]
. (1.25)

The first term in square brackets is the kinetic term, the second term is the potential term with
generic potential V (ϕ). One can compute the background energy-momentum tensor of the scalar
field by

Tµν = ∂µϕ∂νϕ− gµν

(
1

2
gαβ∂αϕ∂βϕ− V (ϕ)

)
=
ϕ̇2

2
δ0µδ

0
ν +

[
ϕ̇2

2
− V (ϕ)

]
gµν , (1.26)

where we assume ϕ to be homogeneous and that spatial derivatives vanish in the homogeneous
and isotropic background. By comparing Eq. (1.26) to the energy momentum tensor of the perfect
fluid in the background, Tµν = (ρ+p)δ0µδ

0
ν+pgµν , one can read off the energy density and pressure

of the scalar field

ρϕ =
ϕ̇2

2
+ V (ϕ), pφ =

ϕ̇2

2
− V (ϕ). (1.27)

Inserting Eqs. (1.27) into the first Friedmann equation (1.7) and the continuity equation (1.4) (for
k = 0, Λ = 0) yields

H2 =
8πGN

3

(
ϕ̇2

2
+ V (ϕ)

)
, (1.28a)

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0. (1.28b)

Eq. (1.28b) is the Klein-Gordon equation for a scalar field in an expanding space, where the second
term (3Hϕ̇) is the Hubble-drag term and the third term (1

2
dV/dϕ) is the potential-gradient term.

Properties of the inflaton

Returning to the requirement that the scalar field that drives inflation needs to satisfy Eq. (1.24),
one can easily read off the slow-roll condition from Eqs. (1.27):

V (ϕ) ≫ ϕ̇2, (1.29)

which ensures that wϕ = ρϕ/pϕ ∼ −1. It is still an active field of research to understand how
inflation ended and how the postulated inflaton field should decay into the species of the ΛCDM
model.

Inflation does not only solve the horizon problem and other problems, e.g. the flatness prob-
lem, which is concerned with the fact that the Universe has zero curvature to very high preci-
sion, but inflation can also explain the origin of cosmic structure formation: inflation predicts
the properties of the initial conditions for the density fluctuations, which have been confirmed
observationally. This is the topic of the next section.
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1.4.2 Cosmological perturbation theory

The Cosmological Principle states that the Universe is homogeneous and isotropic on large scales.
However, there are density fluctuations on smaller scales, which can be observed as e.g. galaxies
and galaxy clusters today. One approach to describe small fluctuations in a homogeneous back-
ground is perturbation theory. The derivations are beyond the scope of this thesis and we will
only quote a few important results focusing on the intuitive picture (for a complete treatment,
see e.g. Mukhanov, 2005; Weinberg, 2008; Dodelson and Schmidt, 2020). The metric, gµν and
the energy-momentum tensor, Tµν , are described by a homogeneous and isotropic background
(marked by a bar) plus perturbations, which are small compared to the background (δ):

gµν = ḡµν + δgµν , (1.30a)

Tµν = T̄µν + δTµν . (1.30b)
To derive the perturbations of the line element ds2 = gµνdx

µdxν , one writes down all possible
terms and applies a scalar-vector-tensor decomposition, where at linear order, the equations of
motion for scalar, vector and tensor perturbations decouple. One can show that the vector degrees
of freedom are suppressed by the expansion of the Universe. The tensor metric perturbations are
primordial gravitational waves. Here, we will only quote the scalar perturbations to the metric:

ds2
∣∣
scalar

= a2(η)
[
−(1− 2ϕ)dη2 + 2(∂aB)dxadη + ((1 + 2ψ)δab + 2∂<a∂b>ϵ) dxadxb

]
,

(1.31)
where ∂<a∂b> := ∂a∂b− 1

3
δab and η =

∫
dt
a(t)

is the conformal time. The four scalar perturbations
of the metric are3: ϕ, B, ψ, ϵ.

The same can be done for the energy-momentum tensor of the perfect fluid:

δT (pf)µ
ν = (δρ+ δp)ūµūν + (ρ̄+ p̄)(δuµūν + δuν ū

µ) + δp δµν + πµ
ν , (1.32)

where δρ is the density perturbation, δp the pressure perturbation, uµ = dx/dt = ūµ + δuµ is
the comoving four velocity of the fluid, and πµ

ν is the anisotropic stress. By inserting the metric
perturbations, one can compute δuµ = a(ϕ− 1, ∂aB+ νa), where νa is the velocity perturbation.
A scalar-vector decomposition of the velocity perturbation yields νa = ∂aν+va, where ∂ava = 0.
Hence, we are left with three scalar perturbations of the energy-momentum tensor: δρ, δp, ν.

These perturbations are not invariant under gauge transformations, i.e. diffeomorphisms or
coordinate transformations of the form xµ → xµ + δxµ. In order to describe physical processes
it is necessary to express them in terms of gauge-invariant parameters, which are constructed in
such a way that the gauge-transformation effects cancel up to linear order in perturbation theory.
Examples for gauge-invariant parameters are the comoving curvature perturbation or Mukhanov-
Sasaki variable (Mukhanov et al., 1992; Sasaki, 1986) or the Bardeen potentials (Bardeen, 1980).
The scalar perturbations are most commonly parameterized by the comoving curvature perturba-
tion:

R = ψ − ∆

3
ϵ+ ȧ (B + ν), (1.33)

3Note that ϕ is not the inflaton field in this section.
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which has the advantage that it is frozen on scales larger than the Hubble radius. To relate per-
turbations to observations, one needs to quantize the perturbations, e.g. parameterized by R, and
compute the two-point correlation function ⟨R(k)R∗(k′)⟩. Another procedure that is adopted
to solve the gauge problem is to fix the gauge to eliminate spurious degrees of freedom present
in the perturbations. There are many gauges in the literature that fix different quantities like the
Newtonian gauge (B = 0, ϵ = 0), the synchronous gauge (ϕ = 0,B = 0), the spatially-flat gauge
(ϵ = 0, ψ = 0), and others. Each gauge has different advantages like making the physics be sim-
ple and apparent (e.g. Newtonian gauge) or to simplify calculations. Therefore, a procedure to
study cosmological observations is to choose a gauge in which to perform calculations and then
express the result in terms of gauge-invariant variables.

Since inflation puts the entire universe in causal contact at early times, the seeds for the struc-
tures we see today could have originated from quantum fluctuations. These quantum fluctuations
are then stretched during the inflationary period and grow until they become super-Hubble, when
they don’t change their wavelength anymore (they ‘freeze’). The curvature perturbation, R, is
conserved on super-horizon scales and its value does not change from the value it had when
crossing the Hubble radius during inflation until it re-enters the horizon. Once inflation ends, the
inflaton decays into the different species of the ΛCDM model (dark matter, baryons, radiation)
and the smaller scales start to re-enter the horizon. These perturbations, which were created as
quantum fluctuations in the early Universe, are the seeds for the growth of structure in the current
Universe. Single-field slow-roll inflation, i.e. inflation with one scalar field, which rolls slowly
down a potential in order for inflation to last sufficiently long, makes three important quantitative
predictions:

1. The density fluctuations are adiabatic, i.e. the fractional number density fluctuations are
the same for all species:

δρ

ρ̄+ p̄
=

δρI
ρ̄I + p̄I

, (1.34)

where I stands for dark matter, baryons, or radiation (dark energy is usually assumed to
have no perturbations).

2. The amplitude of the density fluctuations follows a Gaussian distribution with mean zero,
i.e. ⟨R(k)⟩ = 0, hence the full information is contained in the variance of the distribution,
i.e. the two-point function (in Fourier space for two modes, k and k′):

⟨R(k)R∗(k′)⟩ = PR(k)(2π)
3δ

(3)
D (k − k′), (1.35)

where PR is the power spectrum and δ(3)D is the 3-dimensional Dirac delta.

3. The power spectrum, k3PR(k), of the perturbations is nearly scale invariant with spectral
index ns ≃ 1:

k3PR(k) = 2π2As

(
k

kp

)ns−1

, (1.36)
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where As is the amplitude. Both are typically used as free parameters of the ΛCDM model
and determined by a fit to data, e.g. data from the cosmic microwave background. kp is the
pivot scale and is often fixed by convention to kp = 0.05Mpc−1.

All three properties of the density fluctuations have been confirmed observationally. While in-
flation sets the ‘initial conditions’ of the density fluctuations, the next section will be concerned
with the evolution of the density fluctuations and the formation of cosmic structure.

1.5 Growth of structure

1.5.1 From inflation to the cosmic microwave background

After inflation ended, the inflaton is assumed to decayed into the different components of the
Universe: dark matter (DM), baryonic matter, and radiation (photons and neutrinos)4. This pro-
cess is known as reheating. All matter in the early Universe was in an extremely hot and dense
state, so hot that baryons, photons and neutrinos were tightly coupled and too hot for the nucle-
ons (protons and neutrons) to be bound into atoms. In the following we will sketch the history
of the Universe from the radiation-dominated era until the emission of the cosmic microwave
background, following Chapters 2 and 3 in Weinberg (2008).

While the Universe was expanding and cooling, certain interactions became less efficient once
the interaction rate dropped below the expansion rateH(z). When the temperature of the Universe
dropped below T = 1010K, the conversion between protons and neutrons by weak interaction
was not possible anymore in both directions but only in one direction (n + νe p + e− ).
Therefore, neutrinos decoupled from the baryon-photon plasma and free streamed since then. At
a temperature of about T = 109K big bang nucleosynthesis (BBN) started: protons and neutrons
formed deuterium (p + n d + γ , where d = 2H), and then heavier nuclei (d + d 3H + p,
d + d 3He + n, d + 3H 4He + n, and so on). At a temperature of T = 104K the energy
density of radiation fell below the energy density of (baryonic and dark) matter; this epoch is
known as matter-radiation equality.

Once the temperature dropped below T = 3000K – the Universe was only about 380,000
years old (Aghanim et al., 2020b) at this time – electrons and nuclei started to form atoms. This
moment is known as recombination. Once electrons were bound to atoms, the – until then opaque
– Universe became transparent for photons. These photons, which free stream until today, con-
stitute the cosmic microwave background (CMB). The CMB is a snapshot of the very early Uni-
verse – showing an almost perfectly isotropic black-body spectrum with temperature of about
T = 2.7K. There are only tiny fluctuations of the order of T = 10−5K, demonstrating how
homogeneous and isotropic the early Universe was. In Sec. 2.2.1, we will describe how a mea-
surement of the CMB can constrain the composition of the Universe and its current expansion

4Dark energy only becomes important at later times and is usually modelled as a cosmological constant.
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rate H0.

1.5.2 Boltzmann equations for linear perturbations

The components of the Universe (dark matter, baryons, photons, and neutrinos) are coupled:
all components couple via gravity, photons and baryons couple via electromagnetic interaction,
neutrinos and baryons couple via weak interaction, etc. Describing these components as a perfect
fluid, i.e. in each point in spacetime all particles have the same momentum, is only in certain limits
a good description. In practice, one needs to solve the collisional Boltzmann equation:

df

dt
(t,x,p) = C[f ], (1.37)

where f is the phase-space distribution function, which describes the number density of particles
with position x and momentum p at time t. The collision term, C, encodes all interactions
between the different species. One typically solves the set of Boltzmann equations with numerical
codes like CAMB (Lewis et al., 2000) and CLASS (Blas et al., 2011) in a fixed gauge (e.g.
synchronous gauge) to obtain the matter power spectrum

⟨δ(k, t)δ∗(k′, t)⟩ = (2π)3P (k, t)δ
(3)
D (k − k′), (1.38)

where δ(k, t) are the relative density perturbations, also called density contrast, around a homo-
geneous and isotropic matter background ρ̄(t). Hence, the total matter density, ρ(k, t), can be
written as:

ρ(k, t) = ρ̄(t) + δρ(k, t) = ρ̄(t)[1 + δ(k, t)] (1.39)

The Boltzmann equations are solved perturbatively up to linear order in density perturbations, δ,
to obtain the linear power spectrum, Plin. The linear power spectrum describes the density fluc-
tuations observed in the cosmic microwave background already very well.5 However, once the
Universe grows older, the density fluctuations become more and more non-linear. The reason be-
hind this is that gravitational collapse leads to very non-linear structures like galaxies. Describing
the cosmic web of dark matter and galaxies today, requires considering non-linear perturbations.

In the following, we will distinguish between linear and non-linear scales. The transition
between them happens at the non-linear scale, which is often defined as the scale at which the
dimensionless matter power spectrum k3Plin(k)/(2π

2) becomes of order unity, which is at about
kNL = 0.25h/Mpc at z = 0 (c.f. Desjacques et al., 2018). Linear scales, k ≫ kNL, are well
described by linear perturbation theory while non-linear scales, k ≪ kNL, are difficult to model
analytically. Scales around kNL are often referred to as mildly non-linear scales, which can be
described with the tools of the next section.

5To determine the cosmological parameters, one typically models non-linear corrections based on the halo model
(e.g. Smith et al., 2003), which we will not discuss here.
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1.5.3 Non-linear growth: one-loop perturbation theory

In order to describe the non-linearities of the large-scale structure (LSS), it is unavoidable to
go to higher orders in perturbation theory. Standard perturbation theory computes higher order
perturbative corrections, so-called loop corrections, iteratively assuming a fluid description of
dark and baryonic matter (Zel’dovich, 1970; Goroff et al., 1986; Jain and Bertschinger, 1994;
Scoccimarro and Frieman, 1996a,b).

The idea behind next-to-leading order perturbation theory is to solve the fluid equations itera-
tively assuming knowledge of the linear matter power spectrum, Plin (which can be obtained from
Boltzmann solvers, see Sec. 1.5.2). The following is based on Goroff et al. (1986); Jeong and Ko-
matsu (2006). As the power spectrum, P (k, t), is a quadratic quantity of the density contrast in
Fourier space, δ(k, t) (see Eq. 1.38), the 3rd-order expansion in the density contrast is necessary
for obtaining the next-to-leading order correction to P (k, t). We are considering scales, which
are large enough such that dark matter and baryons can be treated as a pressureless fluid. Since
the peculiar velocities are much smaller than the speed of light and fluctuations are deep inside
the horizon, i.e. k ≫ aH , it is a good approximation to treat the system as Newtonian. The
equations for the density contrast, δ, that need to be solved in the following are:

δ̇ +
1

a
∇[(1 + δ)v] = 0 (continuity equation), (1.40)

v̇ +
1

a
(v ·∇)v = − ȧ

a
v −∇ϕ (Euler equation), (1.41)

∆ϕ = 4πGa ρ̄ δ (Poisson equation), (1.42)

where v = a dx/dt is the velocity perturbation (which is assumed to be curl free up to linear
order), ϕ is Newton’s potential (c.f. 1.31), ∇ is the gradient/divergence with respect to comoving
coordinates, and ρ̄ is the background matter density. The fluid equations can be obtained by taking
moments of the collisionless (C = 0) Boltzmann equation (1.37), also known as the Vlasov
equation (see e.g. Baldauf, 2020). For the Fourier transform, we use the convention:

δ(x, t) =

∫
d3k

(2π)3
e−ik·xδ(k, t). (1.43)

Defining the velocity divergence field θ := ∇ · v =⇒ θ(k) = −ik · v(k) and Fourier trans-
forming the continuity and Euler equation, one finds

δ̇(k, t) +
1

a
θ(k, t) = −1

a

∫
d3k1
(2π)3

∫
d3k2δ

(3)
K (k1 + k2 − k)

k · k1
k21

δ(k2, t)θ(k1, t) (1.44)

and similarly for θ. One can solve these equations iteratively following the steps:

1a) Linearize equations (1.40) - (1.42), i.e. keep only terms linear in δ, v, and ϕ.
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1b) Insert the ansatz δ1(x, t) = ϵ1(x)t
n1 into the linearized equations from 1a and keep only

the solutions with leading time dependence. This approximation, which assumes scale-
independent growth, is usually a good approximation for matter. Massive neutrinos, how-
ever, show a scale-dependent growth and would violate this assumption.

2a) Linearize the equations (1.40) - (1.42) around the solution obtained in 1b up to second order
in the perturbations.

2b) Insert the ansatz δ2(x, t) = ϵ2(x)t
n2 into the second-order equations from 2a and keep only

the solutions with leading time dependence.

3a) Linearize the equations (1.40) - (1.42) around the solution obtained in 2b up to third order
in the perturbations.

3b) Insert the ansatz δ3(x, t) = ϵ3(x)t
n3 into the third-order equations from 3a and keep only

the solutions with leading time dependence.

4) Etc.

In the following, we will show explicitly how to obtain the one-loop power spectrum from Step1
to 3.

Step 1a

The linearized form of the Eqs. (1.40) - (1.42) is

δ̇1 +
1

a
∇v1 = 0, (1.45)

v̇1 = − ȧ
a
v1 −∇ϕ1, (1.46)

∆ϕ1 = 4πGa ρ̄ δ1, (1.47)

where first-order linear perturbations are denoted by the index 1. Inserting Eq. (1.45) into∇·(1.46)
gives

−aδ̈1 − ȧδ̇1 = ȧδ̇1 −∆ϕ1.

Further inserting ∆ϕ1 from Eq. (1.47), yields an equation for δ1:

δ̈1 + 2Hδ̇1 = 4πG ρ̄ δ1. (1.48)

Assuming matter domination, w = 0, we can use Eq. (1.13) to infer a(t) = a0t
2/3 and ȧ =

2
3
a0t

−1/3 (a0 = 1), as well asH = 2
3
t−1. Inserting this into Eq. (1.48) gives a differential equation

for δ1(t):

δ̈1 +
4

3
t−1δ̇1 −

2

3
t−2δ1 = 0. (1.49)
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Step 1b

Inserting the ansatz δ1(x, t) = ϵ1(x)t
n1 into (1.49) yields:

n1(n1 − 1)ϵ1(x)t
n1−2 +

4

3
t−1n1ϵ1(x)t

n1−1 − 2

3
t−2ϵ1(x)t

n1 = 0,

which gives an equation for the index, n2
1 +

1
3
n1 − 2

3
= 0, which has two solutions: one growing

mode (n1 = 2
3
) and one decaying mode (n1 = −1). Since we are only interested in growing

perturbations, we discard the decaying mode and find for the density contrast up to linear order

δ1(x, t) = ϵ1(x)t
2/3 = a(t)ϵ1(x). (1.50)

Note that δ1(x, t) ∼ a grows linearly with the scale factor, a. More general, one defines δ1(x, t) =
ϵ1(x)D(t), where D(t) is the linear growth factor. In matter domination is D(t) = a(t). Eq.
(1.45) then gives for the velocity perturbation up to linear order

v1(x, t) = aν1(x)t
−1/3, (1.51)

where ν1(x) is a function only of x.

Step 2a

Now, we want to linearize Eqs. (1.40) - (1.42) around the solutions from Step 1b. For that, we
make the ansatz

δ(x, t) = δ1(x, t) + δ2(x, t), (1.52)
v(x, t) = v1(x, t) + v2(x, t). (1.53)

Inserting this into Eqs. (1.40) - (1.42), and solving the resulting equations analogously to Step 1a
gives an equation for δ2(x, t):

δ̈2 + 2Hδ̇2 − 4πGρ̄δ2 = −∇(ϵ1ν1)

(
1

3
t−2/3 + 2Ht1/3

)
+∇[(ν1 ·∇)ν1]t

−2/3.

Step 2b

Inserting the ansatz δ2(x, t) = ϵ2(x, t)t
n2 gives an equation for n2:

n2
2 +

1

3
n2 −

2

3
=
t
4
3
−n2

ϵ2

[
−5

3
∇(ϵ1ν1) +∇((ν1 ·∇)ν1)

]
,

which has the solution: n2 =
4
3

and with that

δ2(x, t) = ϵ2(x)t
4
3 , (1.54)

v2(x, t) = aν(x)t
1
3 (1.55)
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if ϵ2 is given by ϵ2(x) = 9
14

[
−5

3
∇(ϵ1ν1) +∇((ν1 ·∇)ν1)

]
. It turns out to be more convenient

to express ϵ2 in Fourier space:∫
d3k

(2π)3
e−ik·xϵ2(x) =

∫
d3k1
(2π)3

∫
d3k2
(2π)3

∫
d3kδ(3)(k1+k2−k)F2ϵ1(k1)ϵ1(k2)e

−ik·x, (1.56)

where
F2 =

5

7
+

2

7

(k1 · k2)2
k21k

2
2

+
1

2
k1 · k2

(
1

k21
+

1

k22

)
(1.57)

and hence

ϵ2(k) =

∫
d3k1
(2π)3

∫
d3k2δ

(3)(k1 + k2 − k)F̃2(k1,k2)ϵ1(k1)ϵ1(k2). (1.58)

Step 3

In order to find δ3(x, t) = ϵ3(x)t
n3 , repeat Step 2a and Step 2b, and obtain:

F3(k1,k2k3) =
1

18

[
7
k1 · (k1 + k2 + k3)

k21
F2(k2,k3) +G2(k2,k3)

|k1 + k2|2
k21k

2
2

(k1 · k2)
]

+
G2(k1,k2)

18

[
7
(k1 + k2) · (k1 + k3)

(|k1 + k2|2
+

|k1 + k2 + k3|2
|k1 + k2|2k23

(k1 + k2) · k3
]
,

(1.59)

where
G2(k1,k2) =

3

7
+

1

2

k1 · k2
k1k2

(
k2
k1

+
k1
k2

)
+

4

7

(k1 · k2)2
k21k

2
2

. (1.60)

Calculating the power spectrum

In Step 1 to Step 3, we found δ(k, t) = δ1(k, t) + δ2(k, t) + δ3(k, t) with (in Fourier space):

δ1(k, t) = aϵ1(k), (1.61)

δ2(k, t) = a2ϵ2(k) =

∫
d3q

(2π)3
F2(q,k − q)δ1(q)δ1(k − q), (1.62)

δ3(k, t) = a3ϵ3(k) =

∫
d3q1
(2π)3

∫
d3q2
(2π)3

F3(q1, q2,k − q1 − q2)δ1(q1)δ1(q2)δ1(k − q1 − q2),
(1.63)

whereF2 is given in Eq. (1.57), andF3 in Eq. (1.59). The one-loop power spectrum,P one−loop(k, t),
can then be computed by inserting δ2(k, t) and δ3(k, t) and expressing it in terms of Plin:

P one−loop(k, t) =

∫
d3k′

(2π)3
⟨δ(k, t)δ(k′, t)⟩ = P11(k, t) + P22(k, t) + 2P13(k, t), (1.64)
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where

P11(k) = Plin(k),

P22(k) = 2

∫
d3q

(2π)3
P11(q)P11(|k − q|)(F2(q,k − q))2,

P13(k) = 2

∫
d3q

(2π)3
P11(k)

[
F3(k, q,−q)P11 + F3(q,k,−q)P11(q) + F3(q,−q,k)P11(q)

]
.

(1.65)

Since δ1(k, t) is Gaussian (see Sec. 1.4.2), P12 vanishes.

Eqs. (1.64) and (1.65) are the main results of this section. Given a linear matter power spec-
trum Plin (which can be obtained using Boltzmann solvers, see Sec. 1.5.2), one can solve the
integrals for P22 and P13 numerically6 and obtain the one-loop matter power spectrum, i.e. the
power spectrum until fourth order in density perturbations δ. The one-loop power spectrum can
be used as a starting point to analyse galaxy clustering data.

1.5.4 Redshift space distortions and Alcock-Paczyński effect

In order to compare the matter power spectrum discussed in the previous sections to the galaxy
power spectrum, which can be observed in galaxy surveys, one needs to take into account three
further effects: the effect of redshift space distortions, the effect of galaxy bias and the effect of
assuming the ‘wrong’ cosmology (Alcock-Paczyński effect). The goal of this section is to sketch
the derivation of the linear power spectrum including these two effects. This section closely
follows Dodelson and Schmidt (2020), their Ch. 11.

When observing galaxies in spectroscopic galaxy surveys, one cannot directly measure their
(comoving) positions, x, in real space (or wave vector, k, in Fourier space). Galaxy clustering
surveys typically measure the emission spectrum of a galaxy and determine the redshift z of the
galaxy by identifying, e.g. spectral lines. Therefore, instead of the position, x, in real space, we
only have access to the redshift and position on the sky given by two angles: (z, θ, ϕ). To convert
angles and redshifts into real space, consider the comoving distance, χ (c.f. Eq. 1.18):

xobs(z, θ, ϕ) := χ(zobs)n̂ =

∫
dzobs
Hfid(z)

n̂, (1.66)

where n̂ = xobs/|xobs| is the unit vector on the sphere of the sky. In order to use this conversion
one needs to assume a fiducial cosmology (e.g. as constrained by Planck CMB data) to infer
Hfid(z). The tricky part, when converting galaxy redshift to distance, is that the observed redshift
has two contributions, the expansion of the Universe and the peculiar velocity:

1 + zobs =
1

a
(1 + u∥), (1.67)

6Although P22 looks simpler, there is a pole in the integral and one needs to calculate it numerically in two steps.
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where u∥ = v · n̂ is the peculiar velocity of the galaxy. The impact of the peculiar velocities on
the observed density field is called redshift space distortions (RSD).

Furthermore, the fiducial cosmology could be different from the cosmology of the real Uni-
verse. Assuming only small deviations from the true cosmology, one can treat this difference
perturbatively:

χfid(z) = χ(z) + δχ(z), (1.68)
Hfid(z) = H(z) + δH(z). (1.69)

The impact of assuming a wrong cosmology (δχ ̸= 0, δH ̸= 0) on the observed matter density
field is known as the Alcock-Paczyński effect (AP effect).

In the following, we will sketch the derivation of the linear power spectrum including RSD
and the AP effect. Expanding Eq. (1.66) in linear order in δχ and u∥ gives

xobs =

∫
dz

H(z)
+

1

aH(z)
u∥n̂+ δχ(z)n̂ = x+

(
δχ(z) +

u∥
aH

)
n̂. (1.70)

In order to find an expression for the observed density contrast, δg,obs, of galaxies, consider that
the total number of galaxies needs to be the same in the observed coordinate system, xobs, and
the real-space coordinate system, x:

ng,obs(xobs)d
3xobs = ng(x)d

3x. (1.71)

To change between the two coordinate systems, one needs to compute the Jacobian (up to linear
order). Converting to polar coordinates with d3x = r2drdΩ, where r is the comoving radial
distance from a spacetime point, one finds:

J :=

∣∣∣∣ d3x

dx3obs

∣∣∣∣ = [1 +H−1δH − 2
δχ

χ
− 2

u∥
aHr

]
︸ ︷︷ ︸

=:J̄

(
1− 1

aH

∂u∥
∂r

)
, (1.72)

where the last therm in the square bracket can be neglected since u∥
aH

≪ x. Inserting this into
Eq. (1.71) and assuming linear perturbations, δ, around a homogeneous background, n̄, of galax-
ies, ng = n̄g(1 + δg) and ng,obs = n̄g(1 + δg,obs), gives (up to linear order):

1 + δg,obs(xobs) = J(1 + δg(x)) = J̄

1 + δg(x)−
1

aH

∂u∥
∂r︸ ︷︷ ︸

δg,RSD

 . (1.73)

Since in surveys, we observe galaxies, δg, rather than the total matter density field, δm, we need
to assume a relation between them. Here, we will simply assume a linear bias relation, which is
accurate at large scales:

δg(x) = b1δm(x). (1.74)
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We now want to express δg in Fourier space in order to compute the power spectrum later. Insert-
ing Eq. (1.74) and Fourier-transforming δg,RSD, yields

δg,RSD(k) =

∫
d3xe−ik·x

(
b1δm(x)−

1

aH

∂

∂r

∫
d3k′

(2π)3
eik

′·x′
u∥(k

′)

)
= b1δm(k) + f(k̂ · êLOS)

2δm(k)

=
[
b1 + fµ2

]
δm(k),

(1.75)

where µk = êLOS · k̂ is the angle between the unit k-vector, k̂ = k/k, and the line of sight, êLOS.
We used that the velocity perturbation, u∥ = aHf ik

k2
δ(k), can be expressed in terms of the linear

growth rate, f = d ln(D)
d ln(a)

, where D is the linear growth factor (see Eq. 1.50). Note that Eq. (1.75)
only includes RSD, no AP effect. Inserting this into Eq. (1.73), gives

δg,obs(kobs) = J̄δg,RSD(kobs) = δg,RSD(k[kobs]), (1.76)

with k[kobs] =
([
1 + α∥

]
k1obs,

[
1 + α∥

]
k2obs, [1 + α⊥] k3obs

)
, where

α∥ =
δχ

χfid

and α⊥ =
δH

Hfid

. (1.77)

With that, the observed galaxy density contrast, δg,obs, as a function of the observed wave vector,
kobs, can be expressed in terms of the true matter density field as a function of the Fourier space
wave vector, k:

δg,obs(kobs) = [b1 + fµ2
k]δm(k)|k=k[kobs]. (1.78)

Finally, this can be inserted into the power spectrum:

Pg,obs(kobs, z) = Plin(k, z)[b1 + fµ2
k]

2

∣∣∣∣∣
k=k[kobs]

. (1.79)

This equation is known as the Kaiser formula. It is linear in gravitational clustering, in galaxy
bias and in redshift-space distortions. This is only a good approximation at large scales. There are
several approaches to include non-linearities in all of these aspects, e.g. Taruya et al. (2010) also
take into account non-linear gravitational clustering and non-linear redshift-space distortions and
find approximations for the power spectrum. Another approach to model the mildly non-linear
scales is the effective field theory of LSS, which is described in the next section.

1.5.5 Effective field theory of large scale structure

The standard one-loop perturbative approach discussed in Sec. (1.5.3) works very well on mildly
non-linear scales (k ≤ 0.5h/Mpc) at high redshift (z > 1), when non-linearities are still small
(Jeong and Komatsu, 2006). However, at low redshifts (z ≈ 0) the perturbative approach breaks
down at mildly non-linear scales (k ≈ 0.1h/Mpc): even when adding higher-order perturbative
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terms, the analytic prediction does not approach the ‘true’ power spectrum (as obtained from N-
body simulations). Additionally, there is no good expansion parameter at small scales since the
density fluctuations δ can be much larger than unity. This leads to the problem that there is no good
notion of convergence in cosmological perturbation theory. Furthermore, some of the integrals
discussed in Sec. 1.5.3 do not converge for certain initial power spectra. The reason behind these
problems is that the pressureless ideal-fluid approximation is not a good description of dark matter
on (mildly) non-linear scales since effects like shell crossing can take place on smaller scales.
Strictly speaking the integrals over k from 0 to ∞ appearing in one-loop perturbation theory are
not even well defined since we are lacking understanding of the short-scale physics (k → ∞),
which includes the non-fluidity of dark matter.

The effective field theory (EFT) of LSS (Baumann et al., 2012; Carrasco et al., 2012, 2014)
aims to solve these problems by introducing a cutoff or smoothing scale7 Λ beyond which the
perturbative approach, i.e. the ‘effective theory’, breaks down – much like EFT of particle physics.
The physics of the unknown small-scale (ultraviolet, UV) physics beyond the cutoff Λ onto the
larger scales will then be encoded in counterterms. The counterterms have a mathematical form
informed from the EFT, however, their coefficients need to be determined from a fit to data. The
such-constructed counterterms will absorb the back-reaction of the unknown small-scale physics
on the larger mildly non-linear scales.

In the following we will closely follow the description in Baldauf (2020). We will split all
quantities in large-scale and small-scale modes and infer the mathematical form of the countert-
erms. For that, we need to introduce the cutoff scale Λ (in k-space)8, above which the density
field is smoothed with some kernel, e.g. a Gaussian kernel:

WΛ(k) = e−
1
2

k2

Λ2 . (1.80)

Given a phase-space distribution function (see Eq. 1.37) f(x,k, t) =
∑N

i=1 fi(x,k, t), where N
is the total number of particles and fi(x,k) = δ(x−xi)δ(k− ki) is the distribution function of
a single particle, one can define the smoothed matter and momentum densities as9

ρΛ(x, t) =
m

a3

∫
d3y

∫
d3q WΛ(|x− y|) f(y, q, t), (1.81)

πΛ(x, t) =
1

a4

∫
d3y

∫
d3q q WΛ(|x− y|) f(y, q, t), (1.82)

where WΛ(x) is the Fourier-transformed smoothing kernel. We can now apply the smoothing
to the Euler (1.41) and continuity Eqs. (1.4) (or derive these equations by taking moments of
the collisionless Boltzmann equation – but this times with the smoothed densities). We will
split the density into a smoothed long-wavelength part and a short-wavelength part, e.g. ρ(x) =
ρΛ(x) + ρs(x) and v(x) = vΛ(x) + vs(x). Finally, we obtain the standard fluid equations but

7Λ is not the cosmological constant in this section.
8The cutoff scale needs to be larger than the non-linear scale kNL ∼ 0.25h/Mpc.
9x and y refer to comoving coordinates, k is the comoving wave vector.
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with additional terms (e.g. Baldauf, 2020):

δ̇Λ +
1

a
∂j[(1 + δ)vj]Λ = 0, (1.83)

v̇iΛ +
1

a
vjΛ∂jv

i
Λ +

ȧ

a
viΛ + ∂iϕΛ = − 1

ρΛ
∂j[τ

ij]Λ, (1.84)

where [·]Λ denotes smoothing with scale Λ. These additional terms, τ ij , can be interpreted as an
effective stress tensor of an imperfect fluid. The stress tensor is a function of the short-wavelength
contributions:

τij = ρvisv
j
s −

(∂kϕs)(∂
kϕs)δij − 2(∂iϕs)∂jϕs

8πG
. (1.85)

Eq. (1.85) shows how two short modes, vs or ϕs, can couple couple to a long mode giving a
backreaction of the small scales onto the larger scales.

Since the short-scale physics are very difficult to model analytically, the approach of the EFT
of LSS is to take expectation values over the short-wavelength fluctuations (in quantum field
theory, this is called ‘integrating out the UV-degrees of freedom’). The expectation value can
depend on all terms allowed by the equivalence principle at the given order in perturbations, in
particular it can depend on the actual local amplitude of the long modes, e.g. by tidal effects.
Therefore, we expand the effective stress tensor perturbatively around the homogeneous solution:

〈
[τ ij]Λ

〉
δl
=
〈
[τ ij]Λ

〉
0︸ ︷︷ ︸

=pbδij
hom.+isotr.

+
∂ ⟨[τ ij]Λ⟩δl

∂δl︸ ︷︷ ︸
=ρbc2sδ

ij

δl +
∂ ⟨[τ ij]Λ⟩δl
∂(∂kvk)︸ ︷︷ ︸
=−ρb

c2
bv
aH

δij

∂kv
k − τvisc,Λ(v) + ∆tij,

with τvisc,Λ(v) =
3

4
ρb
c2sv
aH

(∂jvil + ∂jvil −
2

3
δij∂kv

k
l ) being the shear viscosity term.

(1.86)

The coefficients pb (effective pressure), cs (sound speed), cbv (bulk viscosity) and csv (shear vis-
cosity) are determined by the UV physics. Hence, they are not predictable within the EFT and
need to be fitted to data.

The new interaction term, [τ ij]Λ, leads to a new term in the perturbative solution of the fluid
equations at third order (see Sec. 1.5.3). The additional term is proportional to a pre-factor, c̃s,
and needs to be determined from a fit to data:

δ(k, t) = δ(1)(k, t) + δ(2)(k, t) + δ(3)(k, t)− c̃2sk
2δ(1)(k, t). (1.87)

As a consequence, the one-loop matter power spectrum obtains an additional term as well:

P (k, t) = D2(t)P11(k) +D4(t) [2P13(k) + P22(k)]− 2c̃2sk
2D2(t)P11(k), (1.88)

The additional term in Eq. (1.88) is a counterterm with free coefficient c̃s, which naturally emerged
from introducing a smoothing scale and a split between long- and short-wavelength modes. Note
that Eq. (1.88) is independent of the smoothing scale, Λ. This is due to the fact that the countert-
erm has the correct functional form to absorb the cutoff dependence (e.g. Baldauf et al., 2015).
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Hence, introducing the smoothing scale can be regarded as a method to find the mathematical
form of the counterterm that describes the effect of the short-scale physics on the long-wavelength
modes.

To describe the relation between matter and galaxy density contrast, EFT-of-LSS approaches
typically use a non-linear galaxy bias expansion (for a review see Desjacques et al., 2018), which
reads up to third order:

δg = b1δ +
b2
2
δ2 + bG2G2 +

b3
6
δ3 + bδG2δG2 + bG3G3 + bΓ3Γ3 +R2

∗∂
2δ. (1.89)

where G2 ≡ G2(ϕg) = (∂i∂jϕg)
2 − (∂2i ϕg)

2 is the so-called tidal-field operator and Γ3 =
G2(ϕg)−G2(ϕv). This leads to additional free parameters (b1, b2, bG2 , bδG2 , bG3 , bΓ3 , R2

∗). When
calculating the monopole, quadrupole and hexadecapole galaxy power spectrum (see below), one
finds that four of these terms disappear or are degenerate with other terms. One ends up with10:

δg = b1δ +
b2
2
δ2 + bG2G2 + bΓ3Γ3, (1.90)

When going over to redshift space and taking velocity bias into account, Eq. (1.88) acquires four
counterterms in total (Senatore and Zaldarriaga, 2014; Lewandowski et al., 2018; Perko et al.,
2016):

P ctr
∇2δ(z, k, µ) = −2c̃0(z)k

2P11(z, k)− 2c̃2(z)f(z)µ
2k2P11(z, k)

− 2c̃4(z)f
2(z)µ4k2P11(z, k),

P ctr
∇4

zδ
(z, k, µ) = −c̃(z)f 4(z)µ4k4(b1(z) + f(z)µ2)2P11,

(1.91)

where the four coefficients c̃0, c̃2, c̃4 and c̃ appear. Note that the counterterm P ctr
∇4

zδ
(z, k, µ) ∼ c̃ is

a two-loop counterterm. Since the 3-dimensional power spectrum in redshift space is anisotropic,
one would loose information by considering only the monopole power spectrum, i.e. the power
spectrum averaged over all angles on the sphere. Therefore, one typically expands the power
spectrum P (z, k, µ) in terms of multipoles11:

Pℓ(z, k) =
2ℓ+ 1

2

∫ 1

−1

dµLℓ(µ)P (z, k, µ), (1.92)

where Lℓ corresponds to the Legendre polynomial of order ℓ and µ = êLOS · k/k is the angle
between the line of sight, êLOS, and the wave vector, k. P0 corresponds to the monopole, P2 the
quadrupole, and P4 to the hexadecapole power spectra. One typically does not go higher in ℓ
than the hexadecapole since higher order multipoles do not contain much cosmological informa-
tion for current galaxy clustering surveys like BOSS due to the low signal-to-noise ratio. When
calculating the multipoles of the power spectrum up to the hexadecapole, one finds that only the
following combinations appear:

c0 = c̃0 +
f

3
c̃2 +

f 2

5
c̃4, c2 = c̃2 +

6f

7
c̃4, c4 = c̃4. (1.93)

10The term proportional to bΓ3
is often assumed to be negligible.

11Alternatively, P (z, k, µ) is often computed in bins of µ called ‘wedges’.
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Finally, one also needs to take into account the stochastic power-spectrum contribution in redshift
space, which at next-to-leading order has the following form:

P ϵϵ(z, k, µ) = Pshot(z) + a0(z)k
2 + a2(z)µ

2k2, (1.94)

where Pshot, a0 and a2 are in principle free parameters12. The Pctr,RSD,∇4
zδ

counterterm is approx-
imately degenerate with the a2µ2k2 stochastic contribution in the galaxy power spectrum. Hence,
we only keep Pctr,RSD,∇4

zδ
. Furthermore, the a0 contribution can be approximately neglected on

scales k ≲ 0.3h/Mpc. So we are only left with the free parameter Pshot.13

To summarize, the EFT model of the galaxy power spectrum in redshift space has the follow-
ing form (Senatore and Zaldarriaga, 2014; Perko et al., 2016; Chudaykin et al., 2020):

Pg,RSD(z, k, µ) = P tree
g (z, k, µ) + P 1−loop

g (z, k, µ) + P ϵϵ
g (z, k, µ) + P ctr

g (z, k, µ), (1.95)

where the tree-level and one-loop contributions to the power spectrum are given by

P tree
g (z, k, µ) = Z2

1(k)P11(z, k), (1.96)

P 1−loop
g (z, k, µ) = 2

∫
d3qZ2

2(q,k − q)P11(z, |k − q|)P11(z, q) (1.97)

+ 6Z1(k)P11(z, k)

∫
d3qZ3(q,−q,k)P11(z, q),

where the kernels are Z1(k) = b1 + fµ2, Z2 and Z3, which depend on b1, b2, bG2 , bΓ3 (their
explicit form is given in Chudaykin et al., 2020, their Eq. 2.14). The stochastic contribution
P ϵϵ is given in Eq. (1.94) and often simply modeled as scale-independent Poisson shot noise, i.e.
P ϵϵ(z, k, µ) = Pshot. The counterterms P ctr

g (z, k, µ) = P ctr
∇2δ(z, k, µ) + P ctr

∇4
zδ
(z, k, µ) are given

in Eqs. (1.91). That means, in total the EFT-of-LSS parametrization discussed in this section
introduces nine free nuisance parameters:

• 4 bias coefficients: b1, b2, bG2 , bΓ3 .

• 4 counter-term coefficients (in redshift space): c0, c2, c4, c̃.

• 1 stochastic term: Pshot.

Note that this is not the only parametrization of the EFT. While this parametrization is called ‘east
coast’ (EC, used in e.g. CLASS_PT, Chudaykin et al., 2020) parametrization, there is a physically
equivalent parametrization called ‘west coast’ (WC, used in pybird, D’Amico et al., 2021a)
parametrization (see Simon et al., 2022, for a comparison of both parametrizations).

If one only includes monopole and quadrupole in the analysis, c4 can be discarded and one
ends up with eight nuisance parameters. These nuisance parameters cannot be predicted from

12a0, a2 are not related to the scale factor here.
13In more recent studies, scale-dependent shot noise is included, thereby increasing the number of nuisance pa-

rameters by two.
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theory and need to obtained from a fit to data. The EFT approach allows to include the full shape
of the power spectrum into the analysis up to mildly non-linear scales. The lack of knowledge of
the complicated small-scale physics is absorbed in the bias terms and counterterms. One small
complication remains, which is the treatment of large-scale bulk flows, which will be discussed
in the next subsection.

IR resummation

The baryon acoustic oscillations (BAO, see Sec. 2.2.1) are oscillations in the baryon-photon fluid
of the primordial Universe, which leave an imprint in matter density and with that in the LSS
of the Universe. The shape of the BAO peak is very sensitive to bulk flows, i.e. large-scale
displacements that are induced by long-wavelength modes (‘infrared modes’). The dominant
effect of these bulk flows is a simple translation of matter, resulting in a broadening of the BAO
peak. In BAO-only analyses, this broadening is undone by so-called BAO-reconstruction, which
reverts the effect of gravity on the BAO signal. This sharpens the BAO but also introduces a
distortion of the broadband power spectrum that is not easily removed. Therefore, for an analysis
using the full shape of the power spectrum, it is more straight-forward to include the broadening
of the BAO in the theory model. In Eulerian perturbation theory, bulk flows are usually treated
perturbatively. However, due to the strong non-linearity of the effect, this is very inaccurate. Via
a ‘detour’ to Lagrangian perturbation theory, it is possible to resum the perturbative expansion of
the translation to a exponential prefactor. This so-called IR resummation gives an accurate non-
perturbative treatment of the effect and at the same time does not introduce any new parameters
(Senatore and Zaldarriaga, 2015; Baldauf et al., 2015; Vlah et al., 2016; Ivanov and Sibiryakov,
2018; Lewandowski et al., 2018).
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Chapter 2

The Hubble Tension and Early Dark
Energy

This Chapter follows the recent reviews by Kamionkowski and Riess (2022); Poulin et al. (2023).
Sec. 2.2.1 follows the Advanced Course of the International Max Planck Research School by Prof.
Eiichiro Komatsu in 20201.

Summary: In this chapter, we will give an overview of different measurements
of the Hubble constant, H0. These are commonly grouped into the indirect mea-
surements (Sec. 2.2), which strongly depend on the assumption of a cosmological
model, and the direct measurements (Sec. 2.3), which do not depend or depend
only weakly on a cosmological model. In Sec. 2.4, we describe general properties
that solutions to the Hubble tension should have, and in Sec. 2.5, we describe one
workable solution called Early Dark Energy (EDE) and discuss constraints of the
EDE model in the literature in Sec. 2.6.

1https://wwwmpa.mpa-garching.mpg.de/~komatsu/lectures--reviews.html

https://wwwmpa.mpa-garching.mpg.de/~komatsu/lectures--reviews.html
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2.1 The Hubble tension

The standardΛCDM model discussed in Chapter 1 presents a remarkably good fit to all cosmolog-
ical data sets. However, it comes at the cost of introducing several ingredients beyond the Standard
Model of particle physics: dark matter, dark energy and inflation. The underlying micro-physics
of these ingredients are still largely unknown and direct detection of the dark components have
evaded all efforts so far. CDM and the cosmological constant, Λ, present an effective description,
which can successfully describe observational data. One way forward is to look for evidence of
a breakdown of this effective description in order to obtain new hints towards understanding the
dark sector of the Universe.

During the last 10 years, several tensions have emerged, of which the Hubble tension is the
most pressing tension (Knox and Millea, 2020; Bernal et al., 2016; Kamionkowski and Riess,
2022; Poulin et al., 2023). The Hubble tension is a discrepancy between different measurements
of the current expansion rate of the Universe as defined in Eq. (1.6). It reaches 5σ between the
Planck cosmic microwave background measurement (Aghanim et al., 2020b, see Sec. 2.2.1), and
the SH0ES distance ladder measurement (Riess et al., 2022, see Sec. 2.3.1). While the tension
is most severe between these two experiments, there are several other experiments that infer H0

from cosmological data and a very interesting picture emerges: Experiments, which measure H0

indirectly by constraining the Universe at early times and assuming a cosmological model to pre-
dictH0 (for example the Planck CMB measurement), favor lower values ofH0 ∼ 67 km/s/Mpc.
On the other hand, experiments that constrain H0 directly without having to assume a cosmolog-
ical model favor higher values of H0 ∼ 73 km/s/Mpc (for example the SH0ES experiment). It
transpires that the Hubble tension can be viewed as a tension between two classes of experiments,
the direct and indirect measurements. If this tension is not caused by measurement systematics in
one or several of the experiments, the tension could be a hint of new physics beyond the ΛCDM
model.

In the following, we will begin by discussing a selection of the most constraining direct and
indirect measurements of the Hubble constant, H0.

2.2 Indirect measurements of H0

Indirect measurements of H0 constrain the composition of the Universe at early times and need
to assume a cosmological model in order to infer H0.

2.2.1 The cosmic microwave background

The cosmic microwave background (CMB, see Sec. 1.5.1), shows tiny fluctuations in photon
temperature and polarization, which are best represented by the two-point correlation function
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Figure 2.1: CMB temperature power spectrum as measured by Planck (red data points) and the
ΛCDM model (blue line). The bottom panel shows the deviation of the data from the model.
Taken from Aghanim et al. (2020b).

in Fourier space, i.e. the power spectrum, usually decomposed in spherical harmonics, Cℓ or
Dℓ = ℓ(ℓ+ 1)Cℓ/2π (see Fig. 2.1). The shape of the temperature and polarization power spectra
can be accurately predicted for a given cosmological model, e.g. ΛCDM, with Boltzmann solvers
(see Sec. 1.5.2). Fitting the theory prediction to the ‘full shape’ of the CMB power spectra gives
accurate constraints on the cosmological parameters, e.g. the six ΛCDM parameters. To get
an intuition for how the CMB constrains the cosmological parameters, in particular H0, it is
instructive to look at the quantities that the CMB power spectra are most sensitive to. For the
following discussion, we will assume flat (Ωk = 0) ΛCDM.

Baryon acoustic oscillations

The baryon acoustic oscillations (BAO) are the imprint of sound waves in the primordial baryon-
photon fluid. They originate from density perturbations with gravity as a driving force while
photon pressure provides the restoring force. Since the perturbations are small, they evolve lin-
early and each Fourier mode can be regarded separately. Once a given mode enters the horizon,
it starts oscillating. While the peaks at high ℓ (small scales) in Fig. 2.1 entered the horizon earlier
and underwent several oscillations, the first peak at ℓ ∼ 300 could only complete 1/4 of an oscil-
lation, reaching maximal compression. Since the Cℓ measure the variance of fluctuations, both
under- and overdensities appear as peaks, where odd peaks correspond to maximal overdensities
and even peaks to maximal underdensities.
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Since the BAO have only a limited time to propagate in the baryon-photon plasma – from the
hot Big Bang (z = ∞) until the time of recombination (z = z∗), they imprint a characteristic
scale into the density field, the comoving sound horizon:

rs =

∫ ∞

z∗

cs(z)

H(z)
dz, (2.1)

where cs(z) is the sound speed of the waves in the baryon-photon plasma. Using the relations of
an adiabatic and relativistic fluid (e.g. Dodelson and Schmidt, 2020, their Ch. 9), one can infer
the sound speed (c = 1)

cs(z) =
1√

3(1 +R(z))
(2.2)

as a function of the baryon-to-photon ratio:

R(z) =
3ωb

4ωγ

1

1 + z
. (2.3)

The CMB can be used to precisely measure the angular size of the sound horizon:

θs =
a(z∗) rs
DA(z∗)

=

∫∞
z∗
cs(z)dz/H(z)∫ z∗
0

dz/H(z)
, (2.4)

where we inserted Eqs. (2.1) and (1.21). θs can be inferred from the frequency of the acoustic
peaks in the CMB power spectrum and is measured with very high accuracy: θs = 1.04110 ±
0.00031 (Aghanim et al., 2020b). The dependence of the cosmological model in Eq. (2.4) enters
mainly via the Hubble parameter (c.f. Eq. 1.15):

H2(z)

(100 km/s/Mpc)2
= ωm(1 + z)3 + h2 − ωm, (2.5)

where ωm = ωb + ωc. In the following, we will see that Eq. (2.4) becomes an implicit equation
for H0 in flat ΛCDM since CMB data can constrain ωr, ωb and ωc independently from θs.

Constraints on ωr, ωb, ωm from CMB data

The radiation density, ωr, consisting of photons and neutrinos, can be inferred from the tempera-
ture and density of the CMB photons. The temperature is fixed by COBE’s Far Infrared Absolute
Spectrophotometer (FIRAS) finding T = 2.725 ± 0.002K (Mather et al., 1999; Fixsen et al.,
1996). For a black-body spectrum, the energy density in radiation is then given by (e.g. Weinberg
(2008), their Ch. 2.1):

ρ0,CMB =

∫ ∞

0

hν · n(ν)dν =
8π5k4B
15h3c3

T 4 = 4.64× 10−34 g/cm3, (2.6)
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where n(ν) is the number density of CMB photons with frequency ν and h is the Planck constant.
Taking into account the earlier time of decoupling of neutrinos, one finds that the contribution of
neutrinos to the energy density is about 0.4 ρ0,CMB. Since the CMB and neutrinos are by far the
dominant contribution to the radiation density of the Universe, one finds for the fractional energy
density: Ωr = 1.4 ρ0,CMB/ρcrit = 4.15 × 10−5h−2. Since it is so precisely measured, ρ0,CMB is
usually fixed during parameter inference.

The baryon density, ωb, appears in the equation for the sound horizon θs (2.4) via H(z) and
the sound speed cs (2.2) by fixing the baryon-to-photon ratio R. Apart from having an impact on
the sound horizon, ωb has two other effects on the CMB temperature power spectrum:
(1) A higher ωb leads to a tighter coupling of the photons to the baryon fluid, which leads to
less diffusion. Spatial diffusion of photons between hot and cold regions leads to Silk damping.
Therefore, a higher ωb leads to less suppression of the temperature power spectrum at large scales
(ℓ > 1000) due to Silk damping.
(2) ωb also affects the inertia of the baryon-photon fluid: a larger ωb leads to a larger baryon-to-
photon ratio, R, which leads to a larger inertia of the baryon-photon fluid. The baryon inertia
increases overdensities as compared to underdensities since the change of direction at a maximal
overdensity needs to work against the inertia. The baryon inertia acts like a force term that changes
the zero point of the oscillations. As the even and odd peaks in the temperature power spectrum
correspond to maximal under- and overdensities in the density field, respectively, a higher ωb

decreases the even while increasing the odd peaks.

The total matter density, ωm, is constrained in particular by the height of the acoustic peaks:
Less matter, i.e. a smaller ωm, leads to a later time of matter-radiation equality. While in a matter-
dominated Universe, the gravitational potential is constant, the presence of radiation leads to a
decay of the gravitational potential. Hence, a later time of matter-radiation equality leads to a
stronger decay of the gravitational potentials at recombination. This effect is known as the early
integrated Sachs-Wolfe effect (eISW). Since the eISW adds in phase with the BAO, this leads to
a boost of all peaks, particularly the first peak.

Constraining the Hubble constant h with CMB data

Since ωb, ωr and ωm can be constrained independently from the sound horizon θs, Eq. (2.4) be-
comes an implicit equation for H0. Using a full treatment of the Boltzmann equation system
for the CMB temperature and polarization fluctuations, NASA’s WMAP CMB experiment de-
termined H0 = 70.0 ± 2.2 km/s/Mpc (Hinshaw et al., 2013), which is consistent with the low-
redshift measurements ofH0. The Hubble tension was ‘discovered’ in 2013 between the first data
release of ESA’s Planck satellite, which found H0 = 67.3 ± 1.2 km/s/Mpc (Ade et al., 2014a)
and measurements based on the distance ladder (H0 = 73.8 ± 2.4 km/s/Mpc, Riess et al.,
2011; Freedman et al., 2012). The final Planck data release gives H0 = 67.4 ± 0.5 km/s/Mpc
(Aghanim et al., 2020b).

InferringH0 from the sound horizon depends sensitively on the assumed cosmological model
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(here: flat ΛCDM). We will later demonstrate how, with the assumption of a different cosmo-
logical model, a CMB-inferred H0 can be obtained that is more compatible with direct late-time
measurements (see Sec. 2.4).

2.2.2 Baryon acoustic oscillations in galaxy surveys

The BAO, which are imprinted in the CMB radiation, also left a pattern in the density field of
the early Universe, which can still be observed in the large-scale structure (LSS) today. Galaxy
surveys measure the positions of thousands to millions of galaxies in redshift space using spec-
troscopic data to identify known spectral features (see Sec. 1.5.4), e.g. the 6 Degree Field Galaxy
Survey (6dFGS, Beutler et al., 2011), the Sloan Digital Sky Survey (SDSS, Ross et al., 2015), the
Baryon Oscillation Spectroscopic Survey (BOSS, Alam et al., 2017). The BAO can be observed
as a ‘bump’ in the galaxy two-point correlation function or as a periodic oscillation in the galaxy
power spectrum. The BAO were first detected by the SDSS and 2dFGS surveys and have a size
of around 150Mpc today (Eisenstein et al., 2005; Cole et al., 2005).

The characteristic length scale of the BAO in the 3-dimensional galaxy distribution can be used
as a standard ruler. Since the BAO scale has the same length in all three spatial dimensions, it
can be used to measure distortions in the observed BAO that are caused by the Alcock-Paczyńsky
effect, i.e. by assuming a fiducial cosmology that differs from the underlying true cosmology.
The distortions are parameterized by α⊥ = δχ

χfid
= δDA

DA,fid
in the direction perpendicular to the line

of sight and α∥ = δH
Hfid

in the direction parallel to the line of sight (c.f. Sec. 1.5.4). From the
α-parameters, one can infer the true angular diameter distance and true Hubble parameter at the
redshift z of the survey:

DA(z) = DA,fid(z)(1 + α⊥), H(z) = Hfid(z)(1 + α∥). (2.7)

Both DA(z) and H(z) depend on H0 and Ωm. One possibility to break the degeneracy between
H0 andΩm is by observing BAO at different redshifts. Another possibility is to use the knowledge
of the relation of the BAO to the sound horizon in Eq. (2.4). The angular size of the sound horizon,
θ, at redshift, z, is

θ(z) =
a(z) rs
DA(z)

, (2.8)

where a(z) rs is the physical size of the sound horizon at redshift z. The size of the sound horizon
at recombination, rs, depends on ωm, H0, ωr and ωb (c.f. Eq. 2.4). ωr is fixed by the CMB
temperature. ωb can be obtained independently from CMB data by using observations of element
ratios created during big bang nucleosynthesis (BBN, see Sec. 1.5.1). The primordial deuterium-
to-hydrogen ratio is very sensitive to ωb and can be used to constrain it precisely, e.g. D/H =
2.527 ± 0.030 × 10−5 (Cooke et al., 2018). With ωb fixed, Eq. (2.8) breaks the degeneracy
between Ωm and H0 when combining BAO from various redshifts including z = z∗. Using BAO
measurements from SDSS and (e)BOSS combined with a BBN constraint, Alam et al. (2021)
obtain H0 = 67.35± 0.97 km/s/Mpc.
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Such a measurement of H0 is considered an indirect measurement since it depends on rs,
which is sensitive to the cosmological model at early universe, as well as onDA, which is sensitive
to the cosmological model at late times.

2.3 Direct measurements of H0

Direct measurements do not or only weakly depend on the assumed cosmological model. Many
innovative ways have been used in the literature to infer H0 from low-redshift probes. We will
only discuss a small fraction of them in the following.

2.3.1 Cepheid-calibrated Type Ia SNe

The SH0ES (‘Supernovae, H0 for the Equation of State of dark energy’) collaboration measures
H0 using the distance ladder. The idea behind the distance ladder is to infer the recession velocity
v and distance D of standardizable candles deep in the Hubble flow in order to infer H0.

The SH0ES experiment uses Type Ia supernovae (SNe) as standardizable candles. Type I
SNe are characterized by their spectra, which do not show a hydrogen line since the star has been
stripped of their outer hydrogen shells (Carroll and Ostlie, 1996). Precise measurements of the
light curve, i.e. the luminosity as a function of time, can be calibrated using the light-curve vs.
luminosity relation in order to obtain the absolute magnitude (or luminosity) of the SN, from
which the distance to the SN can be inferred.

Since SNe are relatively rare events, SNe Ia are only observed in distant galaxies. To calibrate
the SN light-curve-luminosity relation, one can use different anchors. The SH0ES project uses
Cepheid variable stars as anchors, which are pulsating stars with a very precise relation between
pulsation period and luminosity. Using galaxies, which host both Cepheids and one or several
SNe Ia, one can employ the Cepheid period-luminosity relation to calibrate the SN Ia light-curve-
luminosity relation. Cepheids are much more common than SN Ia and a large number of them
can be observed in the Milky Way. The Cepheids in the Milky Way themselves can be calibrated
with parallax measurement by telescopes like Gaia (Riess et al., 2021). The parallax method is
a geometric method that utilizes the movement of the Earth (or the satellite) with respect to the
comoving frame to measure the apparent angle that a distant object, e.g. a Cepheid variable star,
subtends on the sky; this is a direct measure of the distance of the object. However, it can only be
used for very close objects, i.e. not outside the Milky Way.

Using Cepheid-calibrated Type Ia SNe, the SH0ES collaboration inferred H0 = 73.04 ±
1.04 km/s/Mpc (Riess et al., 2022).
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2.3.2 TRGB-calibrated Type Ia supernovae

An alternative calibrator for the SN Ia in the Hubble flow is the tip of the red giant branch (TRGB).
Red giants are stars that evolved from the main sequence, which have burned all the hydrogen
in the core and started burning hydrogen in a shell around the core, developing a convection
zone on the surface of the star. Therefore, although being cooler and taking on a red-orange
color, they become brighter than when they were on the main sequence. The red giants follow
the red-giant branch on the Hertzsprung-Russel diagram. The TRGB marks the position in the
Hertzsprung-Russel diagram where the temperature in the core of the star becomes high enough
that helium fuses to carbon and further to oxygen. This process makes the core expand and
dilutes the hydrogen-burning shell and consequently cools it rapidly. The sudden cooling leads
to an abrupt decrease in luminosity, which in turn leads to the sudden cutoff in the red giant
branch known as the TRGB. Therefore, the TRGB is a standardizable empirical measure of the
luminosity of the brightest objects in a given stellar population (Carroll and Ostlie, 1996).

The brightest stars in the TRGB are similarly accurate standardizable candles as the Cepheids,
however, they are not as bright as the Cepheids. Since they are based on different physics,
they present an important alternative calibrator of the SNe Ia. Using TRGB-calibrated SNe Ia,
the Carnegie-Chicago Hubble Program (CCHP) determined the Hubble constant to be H0 =
69.8± 2.5 km/s/Mpc (Freedman et al., 2019). This measurement of H0 is consistent with both
the Planck CMB-inferred value (Aghanim et al., 2020b) and the value inferred from Cepheid-
calibrated Type Ia SNe (Riess et al., 2022) and hence, does not display any Hubble tension. Other
groups independently used TRGB-calibrated SNe Ia and found slightly different values (Anand
et al., 2022; Yuan et al., 2019) due to different choices in the calibration of the TRGB with ge-
ometric distance indicators like parallax or megamasers and due to differences in the treatment
of the SNe Ia in the Hubble flow (Kamionkowski and Riess, 2022). Understanding the difference
between H0 using Cepheid- and TRGB-calibrated SNe is important and the James Web Space
Telescope may help to resolve this difference.

2.3.3 Gravitational-lens time delays

If light rays from a background source pass by a massive foreground object, e.g. a galaxy cluster,
their path is deflected by the gravitational potential of the foreground object. This effect is referred
to as strong gravitational lensing when multiple images of the same object occur.

If a time-varying source, e.g. an active galactic nucleus (AGN) or a SN, is multiply lensed,
the difference in path length of the different images leads to time delays in the arrival time of the
photons. This time delay can be used to infer H0 (Refsdal, 1964) via the time delay distance,
which is given by

D∆t = (1 + zd)
DdDs

Dds

, (2.9)

where zd is the redshift of the lens, andDd,Ds,Dds are the angular diameter distances of the lens,
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the source and between lens and source, respectively. The physical angular diameter distance
DA(z) = a(z)

∫ z

0
dz/H(z) (see Eq. (1.21)) depends on H0 and ωm (if Ωk = 0) via H(z) (see

Eq. (2.5)). The dependence on H0 is much stronger than on ωm and hence there is only a mild
dependence on the cosmological model. The time delay distanceD∆t in Eq. (2.9) can be inferred
from the measured time delay between the separate images of the source (Suyu et al., 2018).

Using 6 gravitationally-lensed quasars, the H0LiCOW collaboration (‘H0 Lenses in COSMO-
GRAIL’s Wellspring’, Suyu et al., 2017) inferred H0 = 73.3+1.7

−1.8 km/s/Mpc (Wong et al., 2020).
This is in 3.1σ tension with the value inferred by Planck and in agreement with the SH0ES re-
sult. However, this analysis assumed a fixed mass density profile of the foreground lens. Varying
the lens potential has a strong impact on the inferred value of H0 due to the mass sheet degener-
acy (Birrer et al., 2020). This degeneracy can be broken by high-resolution imaging and accurate
spectroscopy of the lens (Shajib et al., 2023) and is topic of active research in the TDCOSMO
collaboration (‘Time Delay Cosmography’).

Instead of quasars, the HOLISMOKES collaboration (‘Highly Optimised Lensing Investiga-
tions of Supernovae, Microlensing Objects, and Kinematics of Ellipticals and Spirals’, Suyu et al.,
2020) uses strongly-lensed SNe to constrainH0 and will provide another independent direct mea-
surement of H0.

2.3.4 Type II SNe

Type II SNe are supernovae, which contain strong hydrogen lines. They consist of stars whose
mass is above the Chandrasekhar mass limit. Hence, once fusion cannot maintain the pressure to
withstand the gravity, they explode in a core-collapse SN (Carroll and Ostlie, 1996).

One can calibrate the light-curve-luminosity relation of Type II SNe similarly to the Type
Ia SNe using Cepheids or the TRGB. Using this method (de Jaeger et al., 2022) found H0 =
75.4+3.8

−3.7km/s/Mpc.

Since the underlying physics of Type II SNe2 are better understood than of the Type Ia, one
can model the light curves and the spectra of SN II and directly infer the absolute magnitude of
the SN. This method is known as expanding photosphere method (Schmidt et al., 1992) and can
be used as a one-step inference ofH0 without the need of the distance ladder. This method is still
being developed but will soon provide first constraints on H0 (Gall et al., 2018; Csörnyei et al.,
2023).

2.3.5 Other measurements of the Hubble tension

There are numerous other ways to measure the expansion rate of the Universe, which are be-
yond the scope of this short introduction. We will name a few further methods in the following.

2One typically uses Type IIP SNe.
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Surface brightness fluctuations use the ‘granularity’ of galaxies to infer the distance and find
H0 = 73.3 ± 3.1 km/s/Mpc (Blakeslee et al., 2021). Fast radio bursts are very bright bursts
of radio emission, which can be used to infer H0 via the electron dispersion measure along the
line of sight giving H0 = 62.3 ± 9.1 km/s/Mpc (Hagstotz et al., 2022). Megamasers, which
are sources of monochromatic microwave radiation from accretion discs containing water (the
H2O line) around black holes, open the possibility for geometric distance inference and yield
H0 = 73.9 ± 3.0 km/s/Mpc (Pesce et al., 2020). The ages of old objects like globular clusters
and very-low-metallicity stars (e.g. Jimenez et al., 2019) can be used to infer H0. Also gravi-
tational waves (Schutz, 1986) can be used to determine H0, although the uncertainties are still
large.

Improving the uncertainties from these measurements presents a promising avenue and will
shed new light on possible systematics behind one or several of the H0 measurements.

2.4 New physics to resolve the Hubble tension?

Since the ‘discovery’ of the Hubble tension between the distance ladder (Riess et al., 2011; Freed-
man et al., 2012) and Planck 2013 data (Ade et al., 2014a), a great effort has been spent on the
search for possible systematics in either or several of the measurements. However, no plausi-
ble explanation has been put forward, which can explain nowadays’ 5σ tension between direct
and indirect measurements (e.g. Freedman et al., 2019; Efstathiou, 2020; Mortsell et al., 2022;
Di Valentino et al., 2021; Abdalla et al., 2022).

If on the other hand, if the H0 tension is not caused by systematics in one or more of the ex-
periments, the tension could hint towards new physics beyond the standard ΛCDM model. Many
possible extensions of ΛCDM have been proposed in the literature, which could alleviate or re-
solve the tension. Since the direct measurements of H0 discussed in Sec. 2.3 do not (or only
weakly) depend on the cosmological model but rather on very different astrophysical modelling,
it is difficult to introduce new physics that decrease the preferred values of H0 of the direct mea-
surements. Therefore, the common scheme to attempt to resolve theH0 tension is to increase the
value of the indirect measurements of H0 discussed in Sec. 2.2 by modifying the cosmological
model. Both indirect measurements discussed in Sec. 2.2 depend sensitively on the angular size
of the sound horizon, θs (c.f. Eq. 2.4). It becomes apparent that there are two main avenues to
resolve theH0 tension by introducing new physics: The first is to modify the cosmological model
in the early Universe between the Big Bang (z = ∞) and recombination (z = z∗) by introducing
new physics that modifies the physical size of the sound horizon rs. This can be done by modi-
fying the sound speed of the baryon-photon fluid cs or by modifying the expansion history H(z)
in the early Universe. This type of solutions has been dubbed early-Universe solutions.

The second avenue is to introduce new physics in the late Universe, known as late-Universe
solutions, in order to modify the expansion rate H(z) between the redshift of recombination
(z = z∗) and today (z = 0). However, this second avenue turns out to be very challenging. Due
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to the large amount of data that is available between redshift z = 0 and redshift z = 1 from e.g.
BOSS BAO and uncalibrated Pantheon SN data, the relative expansion rateH(z) at low redshifts
is tightly constrained (Bernal et al., 2016; Addison et al., 2018; Lemos et al., 2019; Aylor et al.,
2019; Knox and Millea, 2020). This leaves little room for changes of H(z) at low redshift. For
example, the late-Universe solutions considered by Schöneberg et al. (2022) manage to achieve a
highH0 when considering Planck CMB and BOSS BAO data combined with a SH0ES-informed
prior on H0. However, when including the full Pantheon and SH0ES likelihood, a mismatch in
the absolute SN luminosity MB between the model and the Pantheon data appears. Hence, most
late-Universe solutions, which simply modify H(z) at low redshifts, trade the tension in H0 for a
tension in the absolute SN luminosity MB (Camarena and Marra, 2021; Efstathiou, 2021). This
apparent resolution of the tension can be avoided by using a likelihood in MB instead of H0. 3

As a consequence of the difficulty of finding late-Universe solutions, the community turned
towards finding workable early-Universe solutions (Knox and Millea, 2020; Schöneberg et al.,
2022). One prime example of such solutions is Early Dark Energy (EDE), which we will discuss
in the next section.

2.5 A possible solution: Early Dark Energy

The idea behind Early Dark Energy (EDE) is simple: EDE introduces an additional component in
the early Universe, which boosts the expansion rate H(z) before recombination. From Eq. (2.4),
we see that this reduces the physical size of the sound horizon rs. Since θs is fixed by observations
(it is very precisely measured by Planck CMB data), a reduced rs leads to a reduced angular
diameter distance to last scattering, DA, in Eq. (2.4).

The angular diameter distance is inversely proportional to the expansion rate, DA ∼ 1/H(z),
which is given by Eq. (2.5) and depends on ωr, ωm, and h. Since ωr and ωm are not only con-
strained via the position of the CMB peaks, i.e. θs, but are fixed by other CMB observables (c.f.
Sec. 2.2.1), the increase of H(z) translates directly into an increase of h. Therefore, introducing
an extra component before recombination that boosts H(z), leads to an increase of the expan-
sion rate today, H0. Since direct measurements of H0 are about 10% higher than the indirect
measurements, this effect needs to reduce the sound horizon by about 10% to resolve the Hubble
tension. In the following, we will discuss a working example of how this energy injection before
recombination could be realized by a dark-energy-like component in the early Universe.

3See however Krishnan et al. (2020), who find a hint of time evolution in the BAO, SNe and cosmic chronometers,
which disfavors early-time solutions to the Hubble tension.
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2.5.1 The axion-like EDE model

Early Dark Energy has become an umbrella term for a whole plethora of models, which fulfill
the basic idea described above. The presence of early dark energy has been studied already since
the year 2000 in the context of quintessence models (Doran et al., 2001; Wetterich, 2004; Doran
and Robbers, 2006).

In this thesis, we will focus on the ‘canonical’ axion-like EDE model, which is a promising
candidate to resolve theH0 tension and is the most well-studied EDE model in the literature. The
EDE model consists of an axion-like scalar field ϕ, with potential

V (ϕ) = V0[1− cos(ϕ/f)]n, (2.10)

with V0 = m2f 2, where m is called ‘mass’4 and f the spontaneous symmetry breaking scale.
The potential from Eq. (2.10) is shown in Fig. 2.2 for different indices n, where n determines
the steepness of the potential. The standard axion potential is obtained if n = 1.5 This type
of potential was proposed by Kamionkowski et al. (2014) in order to explain why the onset of
accelerated expansion caused by (late) dark energy occurred only recently. EDE has been first
proposed as a solution to the H0 tension by Karwal and Kamionkowski (2016) and shown to be
able to solve the H0 tension by Poulin et al. (2018, 2019)6.

Apart from the axion-like potential in Eq. (2.10), many alternative ideas for the EDE potential
have been proposed in the literature. We will name a few well-studied examples in the follow-
ing (for a review see Poulin et al., 2023). Rock ’n’ Roll EDE (Agrawal et al., 2019) for example
assumes a power law potential of the form V (ϕ) ∼ ϕ2n, which approximates the axion-like po-
tential in Eq. (2.10) for small ϕ/f . The Acoustic EDE model generalizes the EDE model (at the
level of the background) by using a phenomenological fluid description of EDE parameterized
by the sound speed c2s and equation-of-state parameter wADE (Lin et al., 2019). New Early Dark
Energy (NEDE) realizes the onset of decay by a phase transition by coupling the NEDE field to
a trigger field. The trigger field continuously changes the potential perceived by the NEDE until
the NEDE field tunnels to its true vacuum, where it starts to decay. This tunneling process is
more natural than the axion-like EDE potential (Niedermann and Sloth, 2021, 2020). The NEDE
phase transition can also be realized by a coupling to a dark gauge sector dubbed Hot NEDE (Nie-
dermann and Sloth, 2022). The EDE field can also be realized by axion-dilaton destabilization
(Alexander and McDonough, 2019), the existence of anti-De Sitter vacua (Ye and Piao, 2020), in
the framework of α-attractors (Braglia et al., 2020b), in F (R) gravity (Oikonomou, 2021), in the
context of Chain EDE (Freese and Winkler, 2021), in the context of Chameleon EDE (Karwal
et al., 2022), in a more general framework of the equation of state (Nojiri et al., 2021) or different
microphysics (Sabla and Caldwell, 2022).

4The effective mass of the potential is defined as m2
eff = dV (ϕ)

dΦ close to the minimum of the potential, ϕ ≈ 0.
Hence, meff ∼ m only for n = 1.

5Higher indices of n can be generated by higher-order instanton corrections (Kappl et al., 2016).
6The EDE model considered by Karwal and Kamionkowski (2016) did only include EDE as a background quantity

and concluded that EDE is not able to resolve the tension. However, when including perturbations, which is a more
consistent treatment of the model, Poulin et al. (2019) show that EDE can resolve the H0 tension.
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Figure 2.2: The axion-like EDE potential from Eq. (2.10) for f = m = 1 and different choices
of the index n. The vertical red-dashed line marks the best-fit initial field value θi = ϕ0/f for
n = 3 obtained from a fit to Planck and BOSS full-shape data (see App. 5.6).

2.5.2 Dynamics of the EDE model

The EDE background

The dynamics of a scalar field are governed by the Klein-Gordon equation (c.f. Sec. 1.4):

ϕ̈+ 3Hϕ̇+
dV (ϕ)

dϕ
= 0, (2.11)

where ⟨·⟩ denotes the derivative with respect to cosmological time, t. At early times, the expansion
rate,H(t), is large and the Hubble-friction term, 3Hϕ̇, dominates such that the potential-gradient
term dV (ϕ)/dϕ in Eq. (2.11) can be neglected: ϕ̈+ 3Hϕ̇ ≈ 0. Since ϕ̇≫ V (ϕ), the equation of
state parameter is (c.f. Eq. 1.27):

wEDE =
p

ρ
=

ϕ̇2

2
− V (ϕ)

ϕ̇2

2
+ V (ϕ)

≈ −1 for z ≫ zc. (2.12)

Hence, the slow-roll phase leads to an accelerated growth of the field, similar to inflation (Sec. 1.4).
The critical redshift, zc, marks the redshift at which the Hubble friction term becomes of the
same size as the potential-gradient term. Note that Eq. (2.12) justifies calling this field (early)
dark energy. Since in the radiation and matter dominated eras, the Universe undergoes decel-
erated expansion (c.f. Eq. 1.13), i.e. H(z) decreases, at times z ≪ zc, the Hubble friction
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Figure 2.3: Fractional energy density of EDE, ΩEDE, as a function of redshift, z for different
values of the index, n, for θi ≈ 2.7 (left), and different values of the initial value of the scalar
field, θi = ϕi/f , for n = 3 (right). All cosmological parameters are fixed to the best-fitting
parameters obtained for Planck and BOSS data (see Tab. 5.6.2). All plots in this section are
based on computations done with CLASS_PT (Chudaykin et al., 2020, see text).

term can be neglected compared to the potential-gradient term: ϕ̈ + dV (ϕ)
dϕ

= 0. One can easily
see that this leads to oscillatory solutions, e.g. expanding the potential for small fields ϕ gives
V (ϕ) ≈ V0

[
ϕ2

f2

]n
, which for n = 1 has solutions of the form ϕ(t) ∼ cos

(√
2V0

f2 t
)

. By solving
the differential equation for V (ϕ) ∼ ϕ2n and using the virial theorem, one can show that during
the oscillatory phase the time-average of the equation-of-state parameter is (Poulin et al., 2018):

⟨wEDE⟩ =
n− 1

n+ 1
for z ≪ zc, (2.13)

where ⟨·⟩ denotes the average over time. Inserting Eq. (2.13) into Eq. (1.8), we find for the frac-
tional energy density in EDE:

ΩEDE(t) =
ρEDE

ρcrit
∼ [a(t)]−3(1+n−1

n+1). (2.14)

Hence, the higher n, the quicker the field redshifts or ‘decays’. E.g. for n = 1, the EDE field
redshifts like matter (w = 0), for n = 2, the field redshifts like radiation (w = 1/3), and for n > 3,
the field redshifts faster than radiation (w > 1/2). In Fig. 2.3 (left), we show the fractional energy
density in EDE, ΩEDE, for different indices n: the larger n, the faster the EDE field redshifts away.
The other parameters are fixed to the best fit obtained from Planck and BOSS full-shape data for
fixed n = 3 and tabulated in App. 5.6. When letting the index, n, vary in an analysis using Planck
CMB, BOSS BAO, and Pantheon and SH0ES SN data, the best fit lies close to n = 3 (Smith et al.,
2020).7 In principle, n can be considered as a free parameter of the model. However, since n does
not have a strong influence on the ability of EDE to resolve the Hubble tension as long as n ≥ 3,
it became customary in the EDE literature to fix the index to n = 3 (Poulin et al., 2023).

7Poulin et al. (2023) update the result by Smith et al. (2020) and find n = 3.37+0.41
−0.99.
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Figure 2.4: Total energy density, ρ(z), for different species for the EDE cosmology with n =
3 that corresponds to the best fit to Planck and BOSS full-shape data. EDE (teal solid line)
constitutes a subdominant component, which decays faster than radiation (orange) after zc =
3.6× 103.

In Fig. 2.4, we show the contributions to the total energy density, ρ(z) (black solid) for the
best-fitting EDE model with n = 3 obtained from a fit to Planck and BOSS data (see App. 5.6),
containing a maximum fractional energy density fEDE ≈ 9% of EDE. At high redshifts, ρEDE

(teal solid line) is approximately constant, until at the critical redshift, zc = 3.6 × 103, the field
starts oscillating and decays faster than matter (blue dashed line) and radiation (orange dashed
line).

The initial value of the EDE field in the potential (2.10), i.e. the initial field displacement, is
typically parameterized by the dimensionless parameter: θi := ϕi

f
, where ϕi = ϕ(t = 0). Fig. 2.3

(right) shows the the fractional energy density in EDE,ΩEDE, for different values of θi. The closer
θi is to π ≈ 3.1 (purple dashed line), the higher the field starts in the potential (2.10) and the faster
the field oscillates. CMB and BAO data prefer θi to be near the peak of the potential Smith et al.
(2020). From a fit, to Planck and BOSS full-shape data, we obtain a best-fit θi = 2.749 (see
Ch. 5), which is indicated as the vertical dashed red line in Fig. 2.2 and plotted as the solid teal
line in Fig. 2.3 (right).

The fractional energy density in the EDE field, ΩEDE peaks at the critical redshift zc, i.e. when
the Hubble friction term and the potential-gradient term in Eq. (2.11) become of the same size,
3Hϕ̇2 ≈ V (ϕ), and the field starts to oscillate in the potential. At zc, the EDE field reaches its
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Figure 2.5: Relation between the phenomenological parameters {fEDE, zc} and the particle-
physics parameters {m, f} for three different values of θi (indicated in the upper left corner of
each subplot). Vertical solid lines show contours of constant log10 fEDE and horizontal dashed
lines show contours of constant log10(zc), while red lines show contours for n = 2, black lines
show contours for n = 3. Taken from Smith et al. (2020).

maximal fractional energy density, fEDE := ΩEDE(zc). Inserting Eq. (1.9), we obtain

fEDE =
ρEDE

ρcrit
(zc) ≈

8πGNV (ϕi)

3H(zc)2
, (2.15)

where we took into account that V (ϕ(zc)) ≈ V (ϕi) since the field is frozen before zc. This relates
the maximum fraction of EDE, fEDE, to the EDE parameters m and f for given values of zc and
θi.

There are two common ways to parameterize the EDE model while fitting to data: the particle
physics parametrization given by {m, f, θi} and the phenomenological parameterization given
by {fEDE, zc, θi}. Fig. 2.5 shows how both parametrizations are related. m is strongly correlated
with the onset of oscillations and, therefore, with zc. The decay constant f on the other hand, sets
fEDE. The more commonly used parametrization when constraining the parameters with data in
the literature is the phenomenological parametrization.

The EDE perturbations

The perturbations of the EDE field, ϕ = ϕ̄+δϕ can be described by the Klein-Gordon equation up
to linear order in perturbations (in synhronous gauge and Fourier space, e.g. Smith et al., 2020):

δϕ̈(k) + 3Hδϕ̇(k) +

(
k2

a2
+

dV (ϕ)

dϕ2

)
δϕ(k) = − ψ̇

˙̄ϕ

2
, (2.16)

whereψ is the trace of the spatial-spatial metric perturbation (see Eq. 1.31). In practice, Eq. (2.16)
is solved numerically and integrated in the framework of a Boltzmann solver. EDE (and more
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general axion-like fields) have been implemented as an extension of the Boltzmann solver CLASS
(Blas et al., 2011) in AxiCLASS8 (Smith et al., 2020). An alternative extension of CLASS includ-
ing EDE appeared in CLASS_EDE9 (Hill et al., 2020), which we will use in the following. Both
implementations solve the full Klein-Gordan eq. (2.16). All plots in this section have been done
using CLASS_EDE and include EDE perturbations up to linear order.

2.6 Can Early Dark Energy resolve the Hubble tension?

EDE aims to resolve the Hubble tension by introducing a dark-energy like component (wEDE =
−1 at early times), which increases the expansion rate just prior to recombination at a redshift of
around z ∼ 103. This is shown in Fig. 2.6 for two different cosmologies corresponding to the
best-fitting parameters to Planck and BOSS (baseline) and baseline and SH0ES. ΩEDE peaks at
zc = 3.6 × 103, leading to an increase in the expansion rate, HEDE(z), compared to HΛCDM in
the ΛCDM model around recombination. This decreases the size of the sound horizon, rs, which
leads to an increased H(z) also at low redshifts (see overview in Sec. 2.4). In the following we
will review the recent literature on constraints on EDE and discuss whether EDE can resolve the
Hubble tension and present a good fit to different cosmological data sets.

2.6.1 EDE constraints from Planck CMB and BAO data

It was shown in Poulin et al. (2018, 2019) that the axion-like EDE model introduced in Sec. 2.5
can resolve the Hubble tension. In a fit to Planck (TT, TE, EE and lensing) CMB data, BAO and
redshift-space distortion (RSD) data from 6dFGS, SDSS, BOSS, and SN data from Pantheon and
SH0ES they find a relatively high maximum fraction of EDE, fEDE = 0.050+0.024

−0.019, and a high
H0 = 70.6± 1.3 km/s/Mpc. This value is compatible with the direct measurements of H0 from
SH0ES, while improving the goodness of fit compared to the ΛCDM model by ∆χ2 = −14.5.
Since these first constraints, there have been many works constraining the parameters of the EDE
model with different data-set combinations. We will discuss a few representative studies in the
following and present an overview of the constraints on fEDE and H0 in Table 2.1.

Using slightly updated data sets compared to Poulin et al. (2019) and an improved modelling10,
Smith et al. (2020) find fEDE = 0.107+0.035

−0.030 and H0 = 71.49 ± 1.20 km/s/Mpc. Both works
suggest that EDE presents a possible solution to the H0 tension.

While introducing EDE has the largest impact on H0, it also induces shifts in other ΛCDM
8https://github.com/PoulinV/AxiCLASS
9https://github.com/mwt5345/class_ede

10Poulin et al. (2019) use approximate ‘cycle-averaged’ fluid equations for the scalar-field perturbations, while
Smith et al. (2020) solve the full fluid equations for the homogeneous part and perturbations up to linear order.

https://github.com/PoulinV/AxiCLASS
https://github.com/mwt5345/class_ede
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Figure 2.6: The fractional energy density of EDE, ΩEDE (top), and the expansion rate,
HEDE/HΛCDM (bottom), as a function of redshift z for different maximum fractions of EDE,
fEDE, corresponding to the best fit to Planck and BOSS full-shape data (teal) and Planck, BOSS
full-shape and SH0ES data (orange).

Data sets fEDE H0 [km/s/Mpc] Reference
Planck; 6dFGS+SDSS (BAO), BOSS
(BAO+RSD); Pantheon, SH0ES

0.050+0.024
−0.019 70.6± 1.3 Poulin et al. (2019)

Planck; 6dFGS+SDSS (BAO), BOSS
(BAO+RSD); Pantheon, SH0ES

0.107+0.035
−0.030 71.49± 1.20 Smith et al. (2020)

Planck; 6dFGS+SDSS (BAO), BOSS
(BAO+RSD); DES, KiDS, HSC; Pan-
theon

< 0.06 68.92+0.57
−0.59 Hill et al. (2020)

Planck; BOSS (BAO+FS) < 0.072 68.54+0.52
−0.95 Ivanov et al. (2020b)

Planck; BOSS (BAO+FS); Pantheon < 0.045 67.39+0.46
−0.68 D’Amico et al. (2021b)

ACT, Planck (low ℓ); SDSS+BOSS
(BAO)

0.091+0.020
−0.036 70.9+1.0

−2.0 Hill et al. (2022)

ACT, SPT, Planck (low ℓ) 0.163+0.047
−0.04 74.2+1.9

−2.1 Smith et al. (2022)

Table 2.1: Overview of selected constraints on the fraction of EDE, fEDE, and the Hubble con-
stant,H0, for EDE cosmologies with fixed indexn = 3. The data sets, which have been considered
in the respective study, are indicated in the first column. Note that the data sets from different
studies can originate from different data releases.
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parameters. Since EDE increases H(z) before recombination, EDE cosmologies feature a sup-
pressed growth of structure in the early Universe compared to ΛCDM. This suppressed growth
leads to a stronger decay of the gravitational potential compared to a Universe filled with mat-
ter and radiation, enhancing the early integrated Sachs-Wolfe effect (eISW, see Sec. 2.2.1). The
eISW effect enhances the amplitude of the acoustic peaks (particularly the first) and is, therefore,
strongly constrained by CMB data. To compensate the enhanced eISW effect induced by the pres-
ence of EDE, EDE cosmologies feature a higher ωc, ns, and As (Smith et al., 2020; Hill et al.,
2020; Vagnozzi, 2021). In the next section, we will discuss how measurements of the LSS can
help to break degeneracies among the ΛCDM parameters that are generated by introducing EDE.

2.6.2 EDE constraints from LSS

Weak gravitational lensing or cosmic shear is a distortion of the observed shapes of galaxies as
their light passes through the LSS on its way to Earth. The effect of weak lensing on a single
galaxy is small but can be observed statistically for a large number of galaxies in weak lensing
surveys like the Dark Energy Survey (DES, Abbott et al., 2022), the Kilo Degree Survey (KiDS,
Asgari et al., 2021) or the Hyper Supreme Cam (HSC, Hikage et al., 2019) survey.

Weak lensing surveys are particularly sensitive to S8 = σ8(Ωm/0.3)
0.5, where σ8 is the am-

plitude of (linear) matter density fluctuations smoothed over a kernel with radius R = 8Mpc/h
(e.g. Dodelson and Schmidt, 2020):

σ2
8 :=

1

2π2

∫
d3k Plin(k)|W8(k)|2, (2.17)

where Plin is the linear matter power spectrum and W8(k) is the Fourier transform of a top-hat
filter with a radius of 8Mpc/h. Measurements of S8 from weak lensing experiments yield higher
values than indirect measurements from the CMB by 2−3σ. This discrepancy is known as the S8

tension (see Abdalla et al., 2022, for a review). The increase inωc, ns, andAs in EDE cosmologies
leads to a further increase of the CMB-inferred value of S8, worsening the S8 tension.

Including data from the weak lensing surveys DES, KiDS and HSC, which prefer lower values
of S8 than CMB data, and excluding SH0ES from the analysis, Hill et al. (2020) find very tight
upper limits on the fraction of EDE, fEDE < 0.06, and a lowH0 = 68.92+0.57

−0.59. Indeed, only when
including the direct measurement of H0 from SH0ES, they find high values of fEDE, which lead
to values of H0 consistent with the SH0ES measurement.

A similarly tight constraint on fEDE and low values ofH0 are obtained when including data of
the full-shape of the BOSS galaxy power spectra data analysed with a model based on the effective
field theory (EFT) of LSS discussed in 1.5.5. Compared to the traditional approach, which uses
the BAO scale, the Alcock-Paczyński effect and RSD, this approach fits the full functional shape
of the galaxy power spectrum. The EFT of LSS provides a model for the galaxy power spectrum,
which is accurate up to mildly non-linear scales (see Sec. 1.5.5). The increase of S8 in EDE
cosmologies relative to ΛCDM leads to an increase of power in the galaxy power spectrum at
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scales around 0.1h/Mpc, which is accessible by current galaxy surveys like BOSS. Using the
Planck CMB data and the full shape of the galaxy power spectrum based on the EFT of LSS,
Ivanov et al. (2020b) find fEDE < 0.072 andH0 = 68.54+052

−0.95km/s/Mpc. D’Amico et al. (2021b)
find fEDE < 0.45 and H0 = 67.390.46−0.95 when additionally including SN data from Pantheon.11

These analyses question the ability of EDE to simultaneously resolve the H0 tension and fit
LSS data sets, which are sensitive to the amplitude of matter clustering, S8. However, it has been
pointed out by Smith et al. (2020) that the constraints on the EDE model can be subject to prior
volume effects, which we will discuss in the next section.

2.6.3 Prior volume effects in the EDE model?

(Prior) volume effects, also known as projection effects or marginalization effects, refer to a strong
influence of the prior in the marginalized or projected posterior, where marginalization refers
to the integration over nuisance parameters (see Sec. 3.3.2). This typically happens if the data
does not constrain all parameters of the model well (i.e. the model has too many parameters), the
posterior is non-Gaussian, and/or the parameter structure of the model leads to large prior-volume
differences. Prior volume effects will be discussed in more detail in Chapter 3.

Smith et al. (2020) argue that the structure of the EDE model can be particularly prone to
prior volume effects12: EDE is typically parameterized by three parameters (for the index n = 3):
the ‘abundance parameter’, fEDE, and two parameters that describe EDE more closely, zc and θi.
This means that when the abundance approaches zero, fEDE ≈ 0, the two EDE parameters, zc
and θi, become unconstrained. In this limit, the model recovers ΛCDM with two extra parameters
that are unconstrained by the data. On the other hand, when fEDE > 0, the two parameters zc
and θi need to take on specific values in order to ensure a good fit to the data, for example CMB
data. As a consequence, the prior volume (in the fEDE × zc × θi parameter space) for fEDE ≈ 0
is larger than for any fEDE > 0. The marginalized fEDE posterior is obtained by integrating the
posterior over all parameters, including zc and θi. Since the parameter (or prior) volume is much
larger for fEDE ≈ 0 than for fEDE > 0, the marginalization can lead to an up-weighting of small
values of fEDE.

In order to explore the influence of prior volume effects in analyses of EDE including LSS,
Smith et al. (2021) fix zc and θi to their best-fit values obtained by a fit to Planck data (referred
to as ‘1-parameter model’)13. By fixing the two parameters, which are unconstrained, there is no
volume difference between fEDE ≈ 0 and fEDE > 0. Using BOSS full-shape data, Planck CMB
and Pantheon SN data, they find fEDE = 0.0523+0.026

−0.036 for this 1-parameter model, while they
find fEDE < 0.053 for the full 3-parameter Markov Chain Monte Carlo (MCMC). Alternatively
putting a tight Gaussian prior on zc and θi also leads to higher values of fEDE andH0 as compared

11See also recent constraints from Lyman-α forest data (Goldstein et al., 2023), which disfavor the EDE model.
12The order of the cited articles is not chronological. Prior volume effects were already discussed by Smith et al.

(2020) before weak-lensing and full-shape clustering data was used to constrain EDE.
13A 1-parameter model was already considered by Niedermann and Sloth (2020) in the context of NEDE.
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to the full 3-parameter MCMC. (Smith et al., 2021) show further that a model with fEDE = 0.09
presents a similarly good fit as ΛCDM with ∆χ2 = 0.12. Although fixing two parameters to
their best-fitting values can lead to double-counting of the data set and under-estimation of the
statistical errors, this study gives evidence for the influence of prior volume effects in the analysis
of the EDE model using CMB and LSS probes.

In order to understand whether EDE presents a viable solution to the Hubble tension, it is vital
to understand the influence of prior volume effects on the constraints of the EDE model. We will
devote Chapters 4 and 5 to this open problem.

2.6.4 Ground-based CMB experiments prefer EDE

The Atacama Cosmology Telescope (ACT, Aiola et al., 2020) is a ground-based CMB experi-
ment, which improves the accuracy of Planck at small angular scales (high ℓ). While full MCMC
analyses of Planck data do not show a preference for EDE, analyses of ACT data have shown a
2− 3σ preference for EDE over ΛCDM (Hill et al., 2022; Smith et al., 2022). For the combined
data set of ACT DR 4, large-scale Planck TT (which is similar to WMAP data) Planck lensing,
and BAO from SDSS and BOSS, Hill et al. (2022) find fEDE = 0.091+0.020

−0.036 and H0 = 74.2+1.9
−2.1.

The preference for EDE is driven by a residual pattern in low-ℓACT EE and TE polarization data.
It is still unclear whether this pattern is physical or due to systematics.

The South Pole Telescope (SPT, Dutcher et al., 2021) reaches a similar precision as ACT albeit
with a slightly more restricted multipole range. Smith et al. (2022); La Posta et al. (2022) find
that SPT data does not show strong evidence for EDE but due to the large error bar is compatible
with both the Planck and ACT results.

Interestingly, the constraints on the EDE critical redshift, zc, from Planck and SH0ES differ
from the ones obtained by data sets including ACT or including SPT: While Planck, BAO and
SH0ES prefer EDE to be important around recombination, log10(zc) = 3.57+0.056

−0.140 (Smith et al.,
2020), ACT, low-ℓPlanck and BAO do prefer EDE to be important at later times: log10(zc) < 3.36
(Hill et al., 2022). We will discuss the interesting results from ACT and SPT further in the
Conclusions 7 in light of the recent profile likelihood results, which will be the topic of Chapters
4 and 5.

2.7 Other proposed solutions to the Hubble tension

EDE presents one example for a possible solution to the Hubble tension but there are numerous
other proposed theoretical models, which could resolve or alleviate the tension. Schöneberg et al.
(2022) compiled a recent and comprehensive list of ‘contenders’ to solve the tension. We will
name a few promising examples of early-type solutions in the following. Dark radiation, i.e. ex-
tra relativistic relics, can raise the indirectly inferred value of H0 by raising the effective number
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of relativistic degrees of freedom Neff , for example self-interacting dark radiation (e.g. Bashin-
sky and Seljak, 2004; Baumann et al., 2016), Majoron models (e.g. Escudero and Witte, 2021),
early mass-varying neutrino dark energy (Gogoi et al., 2021) or the Weiss-Zumino dark-radiation
model (e.g. Aloni et al., 2022; Schöneberg and Franco Abellán, 2022), which evade the Neff

constraints from the CMB. Primordial magnetic fields can raise H0 by introducing small-scale
baryon-density inhomogeneities, which change the time of recombination (e.g. Jedamzik and
Pogosian, 2020). Early modified gravity theories can for example contain a scalar field, which is
non-minimally coupled to gravity, e.g. the model considered in Braglia et al. (2021) reduces to the
Rock’n’Roll (Agrawal et al., 2019); other examples are gravity theories based on Horndeski grav-
ity (Zumalacarregui, 2020), a time-varying Newton’s constant (Ballesteros et al., 2020; Braglia
et al., 2020a) or a early gravity transition (Benevento et al., 2022). A varying electron mass can
shift the time of recombination (similar to the primordial magnetic fields) and as a consequence
increase H0 (e.g. Sekiguchi and Takahashi, 2021).



Chapter 3

Statistics of Cosmological Parameter
Inference

This chapter follows closely Workman et al. (2022), their ch. 38, Gross (2018), Verde (2007), and
Lista (2016).

Summary: In this chapter, we will sketch the statistical methods that will be used
in chapters 4 to 6. We will need methods from both frequentist and Bayesian
statistics. We introduce parameter estimators in Sec. 3.1, Bayes’ theorem in
Sec. 3.2, the treatment of nuisance parameters in Sec. 3.3 and frequentist as well
as Bayesian interval construction in Secs. 3.4 and 3.5, respectively.
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3.1 Parameter estimators

Suppose we conduct one or several experiments and obtain data, x, in order to test a hypothe-
sis, H . A hypothesis is a proposed explanation for the data, which needs to be testable. The
hypothesis can be that the universe can be described by a (cosmological) model with parameters
θ = (θi, . . . , θN). One typically distinguishes between the null hypothesis, H0, e.g. the Universe
is described by theΛCDM model, and an alternative hypothesis,H1, e.g. the Universe is described
by ΛCDM and Early Dark Energy (EDE, see Ch. 3)1. The measurement data, x = (x1, . . . , xM),
are considered as random variables, which follow a probability density function (p.d.f.), f(x|θ),
for given parameters of the model, θ. For a continuous random variable,

P (x < x0 < x+ dx|H(θ)) = f(x|θ)dx (3.1)
is the probability that the outcome of the measurement, x0, lies between x and x+ dx for given
parameters θ. Once we have obtained the data from the experiment, we can compute the proba-
bility, P , of the data, x, for a given hypothesis, H , which is the likelihood:

L(x|θ) = P (x|H(θ)). (3.2)
The dependence on the data, x is often dropped, since the likelihood is always computed with
respect to a fixed (measured) data set. The likelihood quantifies the agreement of the hypothesis
with the data: the larger L, the better the agreement with the data. Note that the likelihood itself
is not a probability distribution since it is always computed for fixed x. Due to the properties of L,
it is often more convenient to work with the logarithm of the likelihood ln(L). In the following,
we will discuss two point estimators for the parameters of the model θ following Workman et al.
(2022).

3.1.1 Maximum likelihood estimator

The maximum likelihood (ML) estimators θ̂ for θ are defined as the values that give the maximum
of L or equivalently lnL:

∂ ln(L)
∂θi

∣∣∣∣
θ=θ̂

= 0. (3.3)

The ML estimator has the important property that it is invariant under a change of parameters θ
to ψ(θ), i.e. the ML estimator θ̂ transforms to ψ(θ̂).

3.1.2 Least squares estimator

The least squares (LS) estimator is based on the χ2-function:

χ2(θ) =
∑
i,j

[xi − µi(θ)]TC−1
ij [xj − µj(θ)], (3.4)

1H0 is not the Hubble constant in this chapter.
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where x = (x1, . . . , xM) are realizations of the data, e.g. the galaxy power spectrum P (k) in
bins of k, and µ(θ) is a model of the data, e.g. the power spectrum computed with a Boltzmann
solver assuming the cosmological parameters θ. Cij is the covariance matrix, which contains the
variance of the data on the diagonal, σi = Cii, and the correlations on the off-diagonal elements.
The covariance matrix typically needs to be estimated from the data or simulations. We assume
here that the covariance matrix doe not depend on the parameters. The LS estimator is defined as
the values of θ that minimize the χ2:

∂χ2

∂θi

∣∣∣∣
θ=θ̂

= 0. (3.5)

If there are no correlations among the data, i.e. the different xi are independent, the χ2-function
simplifies to

χ2(θ) =
∑
i

[xi − µi(θ)]
2

σ2
i

. (3.6)

If the measurements xi are Gaussian distributed and the measurements are independent, the fol-
lowing relation holds between χ2 and likelihood L:

χ2(θ) = −2 lnL(θ) + const. (3.7)

3.2 Bayes’ theorem

While in frequentist statistics probability is only associated with the data, x, in Bayesian statistics
one constructs probability distributions of the parameters, θ, of the model with the help of the
Bayes’ theorem:

P (H(θ)|x) = P (x|H(θ)) · P (H(θ))

P (x)
=

L(x|θ) · π(θ)
P (x)

, (3.8)

where L(x|θ) = P (x|H(θ)) is the likelihood, π(θ) = P (H(θ)) is the prior, and P (x) is the
probability of the data called evidence2. All knowledge about the parameters, θ, is encoded in
the posterior, P (H|x), which corresponds to the probability that the hypothesis, H , is true given
the data, x. One can simply obtain the degree of belief or (subjective) probability that θ lies in a
region of parameter space by integrating Eq. (3.8) over this region.

The prior, π(θ), contains prior information about the distribution of the model parameters,
θ. This prior information can come from prior experimental data, e.g. calibration experiments,
from simulations, or from theoretical considerations. The choice of π(θ), therefore, reflects the
analyst’s (subjective) degree of belief about the parameters, θ, prior to the experiment. If there
is no prior knowledge, which could inform the π(θ), a typical choice is a flat prior. However, a

2Since the probability P (x) depends only on the data, x, it only contributes a constant factor and is not important
for all further discussion.
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flat prior in the parameters θ, would lead to a non-flat prior in a parametrization ψ(θ) if ψ is
a non-linear function of θ, i.e. the prior – and with that the posterior – is not reparametrization
invariant.

3.3 Treatment of nuisance parameters

In cosmological experiments, we are typically interested in constraining cosmological parame-
ters, e.g. the six ΛCDM parameters. However, experimental data most of the time cannot be
described fully by the set of cosmological parameters but also instrumental effects, foreground or
astrophysical effects need to be taken into account. These effects can introduce additional param-
eters that have to be determined from a fit to data. These nuisance parameters, which one is not
immediately interested in but need to be taken into account, will be referred to as ν, as opposed
to the parameters of interest, e.g. the cosmological parameters, θ. Of course, also cosmological
parameters can be treated as nuisance parameters if one is only interested in a subset of them. As
a consequence, the likelihood takes the form L(D|θ,ν) and the constraining power of the data
decreases. We will discuss two common ways to take into account nuisance parameters along the
lines of Workman et al. (2022).

3.3.1 The profile likelihood

A common way to include nuisance parameters in frequentist statistics is the profile likelihood,
which is obtained by maximizing the likelihood, L(x|θ,ν), over the nuisance parameters, ν, for
fixed parameters of interest, θ:

Lp(x|θ) := L(x|θ, ˆ̂ν(θ)), (3.9)

where ˆ̂ν(θ) are the values that maximize L(x|θ,ν) for a specific θ, i.e. ˆ̂ν(θ) is the conditional
ML estimate of ν for fixed θ. One says that L(x|θ,ν) is profiled over ν. The optimization
is typically performed numerically using maximizers/minimizers based on gradient descent or
simulated annealing techniques (see Ch. 4).

3.3.2 Marginalization

An alternative to the profile likelihood is the marginalization, which is typically used in Bayesian
statistics. The marginal posterior is obtained by integrating the posterior, P (θ,ν|x), over the
nuisance parameters, ν:

Pm(θ|x) :=
∫
P (θ,ν|x) dν. (3.10)

This integration typically cannot be performed analytically and Markov Chain Monte Carlo meth-
ods (see Sec. 3.5.1) are applied. Since the posterior is proportional to the prior, π(θ,ν), the
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marginalized posterior takes into account the prior volume of the nuisance parameters, i.e. the
marginalization up-weights parameter values θ, which are compatible with a larger range of nui-
sance parameter, ν.

3.4 Frequentist confidence intervals

In Sec. 3.1 we discussed point estimators, which give an estimate for the ‘best-fit’ parameters.
However, in practice in addition to the point estimate one wants to quote an interval that reflects
the statistical uncertainty of the measurement. In frequentist statistics, these are referred to as
confidence intervals and are usually associated with the construction by Neyman (1937), which
is further specified by the construction by Feldman and Cousins (1998). In this section, we will
assume that the model depends on a single parameter, θ, and the measurement contains a single
data point, x, but the results can be extended straightforwardly to the multidimensional case or a
case including nuisance parameters by profiling (Sec. 3.3.1).

3.4.1 The Neyman construction

Let’s assume we want to construct a confidence interval for the unknown parameter, θ, by mea-
suring the data, x, which follows the p.d.f. f(x|θ). The p.d.f. is in general not known analytically
and is typically obtained by simulating the expected experimental data for a given parameter θ
using Monte Carlo techniques (see also Sec. 3.5.1).

To construct the confidence interval by Neyman (1937), we fix the confidence level (C.L.),
(1−α), and obtain for a given value of the parameter, θ, a set of possible measurement outcomes
x1(θ, α) and x2(θ, α) such that

P (x1 < x < x2|θ) =
∫ x2

x1

f(x|θ)dx = 1− α. (3.11)

Typical choices of the C.L. are α = 0.3173 corresponding to 68.27% C.L. (typically denoted as
68% C.L. for brevity) and α = 0.0455 corresponding to 95.45% C.L. (typically denoted as 95%
C.L.).

Repeating the procedure in Eq. (3.11) for a grid of values of the parameter, θ, gives the confi-
dence belt, which is illustrated in Fig. 3.1. After measuring a value x0 in the experiment, one can
simply draw a vertical line at x = x0 and the confidence interval for θ at C.L. (1−α) is defined as
the interval θ ∈ [θ1, θ2], for which the line segment [x1(θ, α), x2(θ, α)] is still intercepted by the
line. Eq. (3.11) does not determine the interval [x1(θ, α), x2(θ, α)] uniquely. Common choices
to define the confidence interval uniquely, are to require a central interval, where

P (x ≤ x1) = P (x ≥ x2) = α/2, (3.12)
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Figure 3.1: Construction of the Neyman confidence belt. For every value of the parameter, θ,
a confidence interval, [x1(θ, α), x2(θ, α)], is constructed via Eq. (3.11). Taken from Workman
et al. (2022).

or lower/upper limits, where

P (x ≤ x1,2) = α and P (x ≥ x2,1) = 0. (3.13)

If one would repeat the measurement of x a large number of times and for each repetition con-
structs the confidence interval with C.L. (1 − α) according to above prescription, the such con-
structed intervals would include the true value of the parameter, θ, a fraction (1 − α) of the
experiments. This property is referred to as correct coverage. Note that such a ‘probability’
defined by (1 − α) is not meaningful for a fixed confidence interval. To see that this holds,
suppose that the true value of θ is θ0 as indicated in Fig. 3.1. Then, θ0 lies in [θ1, θ2] if and
only if x lies in [x1(θ0), x2(θ0)] (for x(θ) being monotonic functions of θ). Hence, it holds that
1− α = P (x1(θ) < x < x2(θ)) = P (θ2(x) < θ < θ1(x)).

Gaussian-distributed measurements

We will now consider the special case, where the data parameter, x, follows a Gaussian p.d.f.

f(x|µ, σ) = 1√
2πσ2

e−
[x−µ]2

2σ2 , (3.14)

where the model is now completely described by the mean, µ, and standard deviation, σ. As a
consequence, the construction of the confidence interval simplifies significantly. The integral in
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Eq. (3.11) gives:

1− α =
1√
2πσ2

∫ µ+δ

µ−δ

e−
[x−µ]2

2σ2 = 2Φ

(
δ

σ

)
− 1, (3.15)

where Φ denotes the Gaussian cumulative distribution. δ is the standard deviation in units of
σ, e.g. δ = 1σ corresponds to α = 0.3173 or (1 − α) = 0.6827 and δ = 2σ corresponds to
α = 0.0455 or (1 − α) = 0.9545. Upon performing the experiment and determining x0, we
can use the relation (3.7) between the likelihood and the χ2 function for a Gaussian-distributed
parameter and obtain

∆χ2 := χ2 − χ2
min = −2 ln

(L(x0|µ)
L(x0|µ̂)

)
=

(x0 − µ)2

σ2
=
δ2

σ2
, (3.16)

where χ2
min denotes the minimum of the χ2. Hence, in the case of a Gaussian-distributed parame-

ter, we can simply read off the confidence interval for µ by plotting the χ2-function and finding the
intersection of the curve with ∆χ2 = δ2/σ2. For example, to obtain the 1σ confidence interval,
one determines the intersection of the χ2(x|µ) with ∆χ2 = 1, for the 2σ confidence interval with
∆χ2 = 4, and so on. The case of a Gaussian p.d.f. simplifies the construction of the confidence
interval significantly since the confidence interval can be constructed directly from the data and
it is not necessary to determine f(x|µ, σ) from simulations. Even if the likelihood, L(x|µ), is
non-Gaussian but a reparametrization y(x) exists such that L(y|µ) is Gaussian, the simple χ2-
threshold method can be applied.

Wilks’ theorem

Wilks’ theorem (Wilks, 1938) states that in the limit of infinite data, the distribution of the test
statistic − ln[L(x0|θ)/L(x0|θ̂)] follows a χ2-distribution (3.6). This means that in the limit of a
large data set, the approximate formula (3.16) for a Gaussian p.d.f. can be applied, simplifying
the confidence interval construction significantly. The intervals obtained with this method are
approximate but are often used to quote results since they do not need expensive simulations
to estimate the p.d.f. of the data. Cowan et al. (2011) extend Wilks’ theorem to more than one
parameter and give approximate formula for the computation.

Wilks’ theorem only applies in the case when the true value of the parameter is far away from
the boundary of the parameter space. If this is the case, the Feldman-Cousins prescription needs
to be used, which is discussed in the next section.

3.4.2 The Feldman-Cousins prescription

The Feldman-Cousins prescription is a special case of the Neyman construction, which shows
improved behaviour in the vicinity of a physical boundary, i.e. a boundary of parameter space
outside of which the parameter is not defined. We will consider the case where θ ≥ 0 (for example
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if θ corresponds to a mass or a fraction). Feldman and Cousins (1998) point out that if the analysts
of an experiment decide prior to conducting the experiment whether they want to quote an upper
limit or a central confidence interval for θ according to Neyman’s construction, then the correct
coverage is ensured. However, if the analysts make this decision based on the outcome of the
experiment, referred to as ‘flip-flopping’, this can lead to over- or undercoverage. Undercoverage
(overcoverage) refers to confidence intervals, which – upon repetition of the experiment – contain
the true parameter less (more) than a fraction (1− α) of the times. While overcoverage is not as
problematic as undercoverage and often regarded as conservatism, undercoverage is regarded as
a serious flaw.

To ensure the correct coverage, Feldman and Cousins (1998) suggest an alternative to the
central confidence interval (Eq. 3.12) and upper/lower limit (Eq. 3.13). To uniquely define the
intervals [x1, x2], they suggest an ordering principle based on the likelihood ratio:

R(x|θ) = f(x|θ)
f(x|θ̂)

, (3.17)

where f(x|θ) is the p.d.f. of the data, x, which typically needs to be inferred from simulations
and θ̂ is the ML estimate for θ, i.e. the value of θ that maximizes L(x|θ) for the hypothetically
observed value x (see Sec. 3.1.1). For every value of θ, the interval [x1(θ, α), x2(θ, α)] at C.L.
(1− α) is defined such that∫ x2

x1

f(x|θ)dx = 1− α and R(x1|θ) = R(x2|θ). (3.18)

The ordering principle based on the likelihood ratio R in Eq. (3.18) defines the Neyman con-
fidence belt uniquely. It transitions smoothly from a central confidence interval (Eq. 3.12) for
θ ≫ 0 to an upper confidence interval (Eq. 3.13) for θ ⪆ 0. Once the Neyman confidence belt is
constructed, one can read off the confidence interval [θ1, θ2] for the measured x0 as in Sec. 3.4.1.

Gaussian-distributed measurements with boundary at the origin

For a Gaussian p.d.f. (3.14), the denominator in Eq. (3.17) simplifies significantly. Since µ̂ = x
for x ≥ 0 and µ̂ = 0 for x < 0,

f(x|µ̂, σ) =
{

1√
2πσ2

for x ≥ 0,
1√
2πσ2

ex
2/(2σ2) for x < 0.

(3.19)

Therefore, the likelihood ratio (3.17) becomes

R(x|µ) =
{
e−(x−µ)2/2 for x ≥ 0,

exµ−µ2/2 for x < 0.
(3.20)
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Figure 3.2: Likelihood ratio R(x|µ) as defined in Eq. (3.20) for different choices of the mean, µ,
in units of the standard deviation, σ, i.e. σ = 1.

The likelihood ratio for the Gaussian case is shown in Fig. 3.2 for σ = 1 and different choices of
µ. R(x|µ) peaks at x = µ and gets more asymmetric around the peak the closer µ approaches
zero.

For a given C.L. (1−α), mean, µ, and standard deviation, σ, the Feldman-Cousins prescription
for the confidence belt in Eq. (3.18) can be solved numerically. For the Gaussian case, Eq. (3.18)
becomes: ∫ x2

x1

f(x|µ, σ)dx = 1− α and R(x1|µ) = R(x2|µ). (3.21)

In practice, µ and σ need to be obtained from (Monte-Carlo) simulations of the data. In the limit
of a large data set, Wilks’ theorem (Wilks, 1938, see Sec. 3.4.1) is often applied as an approximate
method to obtain an estimate for µ and σ, i.e. µ = x0 and σ can be obtained from Eq. (3.16).

With µ and σ determined, the p.d.f. f(x|µ, σ) is fixed and the set of two Eqs. (3.21) can be
solved numerically for x1(µ) and x2(µ). The interval [x1(µ), x2(µ)] for a grid of values in µ gives
the Neyman confidence belt. Fig. 3.3 shows the Neyman confidence belt in units of σ (i.e. σ = 1)
for two different C.L.s. The confidence belt smoothly transforms from a central interval at high
values of x to an upper limit at low values of xwhile ensuring the correct coverage of the interval.

After measuring a value x0, the confidence interval for µ can be obtained by inverting the
functions µ(x1) and µ(x2) to find the interval [µ1, µ2]. The resulting confidence intervals are
shown in Tab. 3.1 for different measurements, x0 (c.f. Tab. X in Feldman and Cousins, 1998).
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Table 3.1: Confidence intervals for the mean, µ, of a Gaussian p.d.f. constructed with the
Feldman-Cousins prescription as a function of the measured mean, x0, for 68.27% C.L. and
95.45% C.L. in units of σ (i.e. σ = 1).

x0 68.27% C.L. 95.45% C.L.
-1.5 [0.01, 0.12] [0.00, 0.84]
-1.4 [0.01, 0.15] [0.00, 0.89]
-1.3 [0.01, 0.17] [0.00, 0.95]
-1.2 [0.01, 0.20] [0.00, 1.01]
-1.1 [0.01, 0.23] [0.00, 1.07]
-1.0 [0.01, 0.27] [0.00, 1.14]
-0.9 [0.01, 0.32] [0.00, 1.21]
-0.8 [0.01, 0.37] [0.00, 1.29]
-0.7 [0.01, 0.43] [0.00, 1.36]
-0.6 [0.01, 0.49] [0.00, 1.45]
-0.5 [0.01, 0.56] [0.00, 1.53]
-0.4 [0.01, 0.64] [0.00, 1.62]
-0.3 [0.01, 0.72] [0.00, 1.71]
-0.2 [0.01, 0.81] [0.00, 1.81]
-0.1 [0.01, 0.90] [0.00, 1.90]
0.0 [0.01, 1.00] [0.00, 2.00]
0.1 [0.01, 1.10] [0.00, 2.10]
0.2 [0.01, 1.20] [0.00, 2.20]
0.3 [0.01, 1.30] [0.00, 2.30]
0.4 [0.01, 1.40] [0.00, 2.40]
0.5 [0.03, 1.50] [0.00, 2.50]
0.6 [0.00, 1.60] [0.00, 2.60]
0.7 [0.11, 1.70] [0.00, 2.70]

x0 68.27% C.L. 95.45% C.L.
0.8 [0.15, 1.80] [0.00, 2.80]
0.9 [0.00, 1.90] [0.00, 2.90]
1.0 [0.24, 2.00] [0.00, 3.00]
1.1 [0.30, 2.10] [0.00, 3.10]
1.2 [0.35, 2.20] [0.00, 3.20]
1.3 [0.42, 2.30] [0.00, 3.30]
1.4 [0.49, 2.40] [0.00, 3.40]
1.5 [0.56, 2.50] [0.00, 3.50]
1.6 [0.64, 2.60] [0.00, 3.60]
1.7 [0.72, 2.70] [0.01, 3.70]
1.8 [0.81, 2.80] [0.11, 3.80]
1.9 [0.90, 2.90] [0.21, 3.90]
2.0 [1.00, 3.00] [0.31, 4.00]
2.1 [1.10, 3.10] [0.41, 4.10]
2.2 [1.20, 3.20] [0.50, 4.20]
2.3 [1.30, 3.30] [0.58, 4.30]
2.4 [1.40, 3.40] [0.66, 4.40]
2.5 [1.50, 3.50] [0.74, 4.50]
2.6 [1.60, 3.60] [0.81, 4.60]
2.7 [1.70, 3.70] [0.89, 4.70]
2.8 [1.80, 3.80] [0.96, 4.80]
2.9 [1.90, 3.90] [1.04, 4.90]
3.0 [2.00, 4.00] [1.12, 5.00]
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Figure 3.3: Neyman confidence belt constructed with the Feldman-Cousins method for a Gaus-
sian p.d.f. (Eq. 3.21) with mean, µ, in units of standard deviation, σ, at 68.27% C.L. (dashed line)
and 95.45% C.L. (solid line). The shaded area between x1(µ) (red) and x2(µ) (blue) gives the
confidence belt.

Frequentist confidence intervals are rarely used to quote results in cosmology. For an (incom-
plete) list of examples of profile-likelihood analyses in cosmology see Hamann (2012); Hannes-
tad (2000); Yeche et al. (2006); Ade et al. (2014b); Henrot-Versillé et al. (2016); Campeti et al.
(2022); Campeti and Komatsu (2022); Hadzhiyska et al. (2023). Results on cosmological pa-
rameters are typically reported as Bayesian credible intervals, which are described in the next
section.

3.5 Bayesian credible intervals

Bayesian confidence intervals or credible intervals, [θ1, θ2], at a confidence level (1−α) give the
degree of belief that the true value of the parameter θ lies within the interval with a probability of
(1−α). The credible interval, [θ1, θ2], can be obtained by integration over the posterior, which is
related to the likelihood via Bayes theorem (3.8). In the simple one-dimensional case, the credible
interval is given by

1− α =

∫ θ2

θ1

P (θ|x)dθ. (3.22)

or in the multidimensional case for some volume V :

1− α =

∫
V

P (θ|x)dθ. (3.23)
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Similar to the frequentist confidence interval, common choices for the credible interval are central
intervals or upper/lower limits. The integral in Eq. (3.23) does not have an analytic solution in
general and is typically solved using Monte Carlo methods, which will be discussed in the next
section following Verde (2007).

3.5.1 Markov Chain Monte Carlo

Monte-Carlo sampling is a brute-force way of sampling the parameter space, i.e. calculating the
posterior in Eq. (3.23) for random parameter combinations in order to construct the parameter
credible intervals. In order to get an accurate estimate of the posterior, one needs to compute the
likelihood sufficiently often, which makes this method computationally very expensive, especially
when many parameters are involved. A refinement of this method is the so-called Markov Chain
Monte Carlo (MCMC). Instead of sampling the parameter space uniformly at random, the MCMC
focuses on the most interesting regions of the parameter space, i.e. regions with non-negligible
values of the likelihood.

A simple example of an MCMC algorithm is the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970). It samples the multi-dimensional parameter space with fixed step
size, s, in a Markov chain according to the following prescription:

1. The current position in parameter space is ϑn with likelihood L(x|ϑn), where x is the
measured data.

2. Propose a move with random direction en and fixed step size, s.

3. Compute the likelihood, L(x|ϑn + sen):

(a) If L(x|ϑn + sen) > L(x|ϑn), then accept the step and ϑn+1 = ϑn + sen.
(b) IfL(x|ϑn+sen) ≤ L(x|ϑn), then draw a random number from a uniform distribution

a ∈ [0, 1]: If L(x|ϑn + sen) > a · L(x|ϑn), then accept the proposal and ϑn+1 =
ϑn + sen, otherwise reject proposal and ϑn+1 = ϑn.

There are several free choices that need to be tuned in that algorithm, e.g. the step size, s, and
the start values of the chains. To sufficiently sample the parameter space one runs several chains
(about 4-10) with many steps (104 − 106) and discards the first fraction of steps, the so-called
burn-in.

The chains are said to converge when they spend a sufficiently long time close to one set of
parameters, which is likely close to the mean of the parameters. Apart from convergence, also
a good mixing of the chains is important, i.e. a good exploration of the likelihood surface. A
commonly used convergence and mixing criterion is the Gelman-Rubin criterion. For M chains
with N steps each after burn-in, the Gelman-Rubin ratio is defined as:

R =
N−1
N
W +B

(
1 + 1

M

)
W

, (3.24)



3.5 Bayesian credible intervals 59

which is a fraction of the variance within the chains defined as

W =
1

M(N − 1)

M∑
m=1

N∑
n=1

(ϑ(m)
n − ϑ̄(m))2 (3.25)

and the variance between the chains defined as

B =
1

M − 1

M∑
m=1

(ϑ̄(m) − ϑ̄)2. (3.26)

where

ϑ̄(m) =
1

N

N∑
n=1

ϑ(m)
n and ϑ̄ =

1

NM

M∑
m=1

N∑
n=1

ϑ(m)
n (3.27)

are the mean of the m-th chain and the mean of all chains, respectively. A common choice of
the convergence criterion is to require R− 1 < 0.1 for all sampled parameters, but much stricter
R − 1 are also often used. After the chains have converged, the posterior can be computed as a
function of the step counts in each cell in parameter space. The results are typically quoted in
the form ‘mean ± 1σ’ and illustrated as contour plots. Since the MCMC does not sample the
parameter space very finely, the estimate for the best-fitting parameters is typically poor.
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Chapter 4

New Constraint on Early Dark Energy
using the Profile Likelihood

The content of this chapter has been published as Herold, Ferreira, and Komatsu (2022).

Abstract: A dark energy-like component in the early Universe, known as early
dark energy (EDE), is a proposed solution to the Hubble tension. Currently, there
is no consensus in the literature as to whether EDE can simultaneously solve the
Hubble tension and provide an adequate fit to the data from the cosmic microwave
background (CMB) and large-scale structure of the Universe. In this work, we
deconstruct the current constraints from the Planck CMB and the full-shape clus-
tering data of the Baryon Oscillation Spectroscopic Survey (BOSS) to understand
the origin of different conclusions in the literature. We use two different analy-
ses, a grid sampling and a profile likelihood, to investigate whether the current
constraints suffer from volume effects upon marginalization and are biased to-
wards some values of the EDE fraction, fEDE. We find that the fEDE allowed by
the data strongly depends on the particular choice of the other parameters of the
model and that several choices of these parameters prefer larger values of fEDE

than in the Markov Chain Monte Carlo analysis. This suggests that volume ef-
fects are the reason behind the disagreement in the literature. Motivated by this,
we use a profile likelihood to analyze the EDE model and compute a confidence
interval for fEDE, finding fEDE = 0.072±0.036 (68% C.L.). Our approach gives
a confidence interval that is not subject to volume effects and provides a powerful
tool to understand whether EDE is a possible solution to the Hubble tension.
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4.1 Introduction

Measurements of the Hubble constant, H0, the present-day expansion rate of the Universe, ob-
tained with different techniques show a discrepancy known as the “Hubble tension” (Bernal et al.,
2016). Indirect measurements, which depend on the assumption of a cosmological model, yield
systematically lower values ofH0 than direct measurements, which do not or only weakly depend
on the assumption of a cosmological model.

The most significant tension is seen between the (indirect) inference of H0 from the cosmic
microwave background (CMB) data of the Planck mission assuming a flat Λ Cold Dark Matter
(ΛCDM) cosmological model, H0 = 67.37 ± 0.54 km/s/Mpc (Aghanim et al., 2020b), and the
(direct) local inference from Cepheid-calibrated Type Ia supernovae of the SH0ES project, H0 =
73.04 ± 1.04 km/s/Mpc (Riess et al., 2022). The statistical significance of the tension is 5σ.
Throughout this chapter, we quote uncertainties at the 68 % confidence level (C.L.), unless noted
otherwise.

This tension could hint at new physics beyond the flat ΛCDM model. One of the proposed
models to alleviate the tension is early dark energy (EDE, Poulin et al., 2018, 2019; Smith et al.,
2020). In this model, the ΛCDM cosmology is extended to include a dark energy-like compo-
nent in the pre-recombination era, which reduces the size of the sound horizon and increases H0

(Bernal et al., 2016). EDE is typically parameterized by three parameters: the initial value of
the EDE field (θi), its maximum fractional energy density (fEDE) and the critical redshift (zc) at
which this maximum fraction is reached.

EDE was shown to reduce the tension between the values of H0 (Poulin et al., 2019; Smith
et al., 2020) inferred from the CMB data of Planck (Aghanim et al., 2016), the baryon acoustic
oscillation (BAO) and the redshift-space distortion data of the Baryon Oscillation Spectroscopic
Survey (BOSS; Alam et al., 2017), the BAO measurements from the 6-degree Field Galaxy Sur-
vey (6dFGS; Beutler et al., 2011) and Sloan Digital Sky Survey Main Galaxy Sample (SDSS
MGS; Ross et al., 2015), the Pantheon supernova sample (Scolnic et al., 2022), and the direct
measurement by the SH0ES collaboration (Riess et al., 2019). They find fEDE = 0.107+0.035

−0.030,
which gives H0 = 71.49± 1.20 km/s/Mpc.

However, it was pointed out in Hill et al. (2020) that introducing EDE leads to a higher am-
plitude of matter density fluctuations parametrized by Ωm and σ8, worsening the so-called σ8-
tension. They showed that including further large-scale structure (LSS) probes such as Dark
Energy Survey (DES; Abbott et al., 2018b), Kilo-Degree Survey (KiDS-VIKING; Hildebrandt
et al., 2020) and Hyper Suprime-Cam (HSC; Hikage et al., 2019), which are particularly sen-
sitive to Ωm and σ8, weakens the evidence for EDE. When including all probes but H0 from
SH0ES, their analysis yields an upper limit of fEDE < 0.06 at 95% C.L. A similar constraint of
fEDE < 0.072 at 95% C.L (with fEDE = 0.025+0.006

−0.025) is obtained when employing the full shape
of the galaxy power spectrum combined with the BAO data of BOSS Data Release 12 (DR 12)
galaxies along with the Planck data (Ivanov et al., 2020a). Concurrently, a similar analysis from
D’Amico et al. (2021b) found fEDE < 0.08 at 95% C.L for the same data set and additionally



4.1 Introduction 63

including the Pantheon supernova sample. These three papers conclude that EDE does not solve
the Hubble tension.

In the analyses of Hill et al. (2020), Ivanov et al. (2020a), and D’Amico et al. (2021b), all
three EDE parameters {fEDE, θi, zc} are varied, which is referred to as the “3-parameter model.”
Smith et al. (2021) argued that the reason for the small preferred value of fEDE found by them is
due to volume effects upon marginalization, and proposed alternative approaches.1 In particular,
they found fEDE = 0.072 ± 0.034 for the same data set as in Ivanov et al. (2020a), when fixing
two EDE parameters {θi, zc}, which is referred to as the “1-parameter model.” Within the 1-
parameter model, they observe that including LSS data decreases the evidence for EDE similar to
the 3-parameter model; they relate this tighter constraint on EDE to the lower clustering amplitude
preferred by LSS data compared to CMB data. The 1-parameter model was already explored
earlier in Niedermann and Sloth (2020) in the context of new EDE.

Currently there is no agreement in the community as to whether EDE can simultaneously solve
the Hubble tension and fit all available data sets. A new chapter in this discussion was presented
recently: Two groups (Hill et al., 2022; Poulin et al., 2021) reported independently on a 2 − 3σ
preference for EDE when analyzing the model using the CMB data of the Atacama Cosmology
Telescope (ACT; Choi et al., 2020). South Pole Telescope data (Dutcher et al., 2021) is consistent
with both ACT and Planck results (La Posta et al., 2022).

One question that remains open is: What is the reason behind this disagreement? The root of
this seems to lie in the Markov Chain Monte Carlo (MCMC) sampling of the three parameters of
the EDE model. For fEDE = 0, the EDE model is degenerate with ΛCDM for any choice of θi
and zc. Therefore, the parameter volume for fEDE = 0 is larger than for every fEDE > 0. This
can lead to a preference for fEDE = 0 in the marginalized posterior, affecting the inferred amount
of EDE allowed by the data. On the other hand, fixing some parameters of the model, as for the
1-parameter model, is an incomplete analysis, as stated in Smith et al. (2021); the results might
depend on the particular choice of the parameters.

In this chapter, we deconstruct the current constraints on the EDE model from the CMB and
BOSS full-shape clustering data. Our goal is to understand where the disagreement in the litera-
ture comes from and to check if volume effects are indeed present. In particular, we answer the
following questions: Is the 3-parameter model affected by the two unconstrained parameters θi
and zc or by volume effects? Do the results of the 1-parameter model depend on the particular
choice of θi and zc and how well can the results be generalized to the full 3-parameter model?
How would the constraints on fEDE change if those effects were eliminated?

To this end, we perform two analyses: a grid sampling and a profile likelihood. With the
grid sampling, we explore the parameter space of {θi, zc} by fixing them to a wide range of
values and performing the 1-parameter analysis. This analysis shows that higher values of fEDE

are consistent with the data, which suggests that the 3-parameter MCMC analysis is affected by
volume effects, and that there is a strong dependence of fEDE on the particular choice of {θi, zc}.

1An exploration of volume effects with an averaging method can be found in the appendix of Ivanov et al. (2020a).
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This makes it difficult to generalize the results of the 1-parameter model. To confirm the presence
of volume effects, we perform a frequentist-statistic analysis using a profile likelihood. We find
that a considerably larger fEDE is preferred by the data compared to the Bayesian MCMC analysis,
confirming that volume effects affect the 3-parameter analysis.

The rest of this chapter is organized as follows. In Section 4.2, we describe the EDE model.
In Section 4.3, we deconstruct the current constraints using the grid and the profile likelihood. In
Section 4.4, we construct a new confidence interval using the profile likelihood. We discuss the
results and conclude in Section 4.5.

4.2 The EDE model

The idea behind early-time solutions to the Hubble tension is to reduce the sound horizon and
hence increase the inferred value of H0 (Bernal et al., 2016). The sound horizon,

rs =

∫ ∞

z∗

cs(z) dz/H(z),

where z∗ is the redshift of the last scattering surface, cs(z) the sound speed in the baryon-photon
plasma, andH(z) the expansion rate of the Universe, is dominated by contributions near the lower
bound of the integral.

EDE (Kamionkowski et al., 2014; Karwal and Kamionkowski, 2016; Caldwell and Devulder,
2018) is an extra component added to the energy density budget near z∗, which increases H(z)
and lowers rs. This can be achieved by a pseudo scalar field, ϕ, which obeys the following re-
quirements: (i) it starts becoming relevant at matter-radiation equality; (ii) it behaves like dark
energy at early times; and (iii) its energy density dilutes faster than the matter density after z∗. To
model this behavior, the canonical EDE model is given by the potential (Poulin et al., 2018):

V (ϕ) = V0 [1− cos(ϕ/f)]n , (4.1)

where V0 = m2f 2, m is the mass of ϕ, and f is the spontaneous symmetry breaking scale.

The parameters of the model can be re-written in terms of the phenomenological parameters
{fEDE, θi, zc, n}, where fEDE is the maximum fraction of EDE at the critical redshift zc, and θi
is the initial value of the dimensionless field, θ ≡ ϕ/f . A larger value of fEDE leads to a higher
H0. To solve the Hubble tension, it was predicted that fEDE ≃ 0.1 would be necessary (Knox and
Millea, 2020).

The EDE field ϕ in a cosmological background with the potential given in Eq. (4.1) behaves
like dark energy initially, with the field essentially frozen. Once H(z) becomes smaller than the
effective massmeff = d2V (ϕ)/dϕ2, ϕ starts decaying and oscillating at the bottom of the potential
with an effective, time-averaged equation of state parameter of ⟨w⟩ = (n− 1)/(n+1). Here, we
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choose n = 3 as in the previous analyses, which was shown to dilute sufficiently fast to satisfy
the requirement (iii) (Poulin et al., 2018; Smith et al., 2020).

4.3 Deconstructing the current constraints on the EDE model

4.3.1 Data and methodology

For our analysis, we use a similar setup as in Ivanov et al. (2020a). We combine the following
publicly available extensions of the Einstein–Boltzmann solver CLASS (Lesgourgues, 2011; Blas
et al., 2011):2 CLASS_EDE (Hill et al., 2020), which evolves the EDE field as a pseudo scalar field
up to linear order in perturbations; and CLASS-PT (Chudaykin et al., 2020), which is based on the
Effective Field Theory (EFT) of LSS (Baumann et al., 2012; Carrasco et al., 2012) and allows to
model the galaxy power spectrum up to mildly nonlinear scales. We perform an MCMC infer-
ence with MontePython (Brinckmann and Lesgourgues, 2019), using the Metropolis–Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970).

Our data set consists of the Planck 2018 TT+TE+EE+lowℓ+lensing likelihoods (Aghanim
et al., 2020b) along with the BOSS DR 12 full-shape likelihood based on the EFT of LSS pre-
sented in Ivanov et al. (2020b); D’Amico et al. (2020). Note that this is a slightly different data set
than in Ivanov et al. (2020a) and Smith et al. (2021), who also included the BOSS (reconstructed)
BAO likelihood. We have checked that including the reconstructed BAO data in addition does not
lead to a large change of our conclusions. Recently, there has been an update on the BOSS win-
dow function from Beutler and McDonald (2021) that might impact the conclusions in previous
analysis cited here. To compare with the published constraints, we do not use the new window
functions.

We sample the ΛCDMparameters ωb, ωCDM, θs, As, ns, τreio assuming flat priors, along with
the Planck and EFT nuisance parameters. In Section 4.3.2, we assume fEDE ∈ [0.001, 0.5], in
Sections 4.3.3, 4.4, we assume θi ∈ [0.1, 3.1] and log(zc) ∈ [3, 4.3]. Following the convention of
the Planck collaboration (Aghanim et al., 2020b), we model the neutrino sector by two massless
and one massive neutrino species with mν = 0.06 eV.

4.3.2 Grid Sampling

In this section, we perform our first analysis3 to study how much the conclusions of Smith et al.
(2021) drawn from the 1-parameter model depend on the particular choice of θi = 2.775 and

2The code used for this analysis is publicly available at
https://github.com/LauraHerold/CLASS-PT_EDE.

3See Sec. 4.6.1 in the supplementary material for some preliminary studies using MCMC techniques.

https://github.com/LauraHerold/CLASS-PT_EDE
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Figure 4.1: Mean values of fEDE for different fixed values of θi and log(zc). Every value in this
6× 7 grid is determined by a full MCMC analysis.

log(zc) = 3.569. An exploration of the effect of θi, zc on cosmological observables can be found
in Smith et al. (2020); Poulin et al. (2018); Lin et al. (2019).

The potential problem encountered in the MCMC exploration of the 3-parameter model is a
preference for small fEDE due to volume effects upon marginalization over θi and zc. We investi-
gate this problem as follows. To explore the dependence of the fEDE constraints on θi and zc, we
run several MCMC inferences, where we keep θi and zc fixed to different values and vary only
fEDE. We choose six values in the typical prior range of θi ∈ [0.1, 3.1] and seven values in the
typical prior range of log(zc) ∈ [3, 4.3]:

θi = {0.3, 0.8, 1.3, 1.8, 2.3, 2.8} ,
log(zc) = {3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3} .

Throughout this chapter “log” denotes the logarithm with base 10. This gives a 6 × 7 grid of
MCMC analyses. For each MCMC, we infer the mean fraction of EDE f̄EDE depending on the
choice of θi and zc. We run every MCMC until the Gelman-Rubin convergence criterionR−1 <
0.1 is reached. Our results are summarized in Fig. 4.1.

We find that f̄EDE strongly depends on the particular choice of θi and log(zc). There are
choices of θi and log(zc) that allow for higher fEDE. For example, θi = 2.8 and log(zc) = 3.5
(which is close to the values chosen by Smith et al. (2021): θi = 2.775, log(zc) = 3.569), allows
for particularly high fEDE = 0.057+0.027

−0.034, the highest found in the grid. The authors point out
that this choice of {θi, zc} is reasonable since it is obtained from the best-fit cosmology to Planck
data. However, for θi = 1.8 and log(zc) = 3.7 (which is similar to the mean values found in
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Ivanov et al. (2020a): θi = 2.023, log(zc) = 3.71), we find fEDE = 0.017+0.004
−0.016. This shows

that the particular choice of θi and log(zc) made in Smith et al. (2021) is the reason for a higher
fEDE than found in Ivanov et al. (2020a). We point out that the best fit and mean values quoted
in Ivanov et al. (2020a) (best-fit values: θi = 2.734, log(zc) = 3.52) correspond to choices of θi
and log(zc) that allow for high and low values of fEDE, respectively.

We also explore the dependence of the best-fit fEDE and the ∆χ2 as a function of θi and zc in
the supplementary material 4.6.2, finding a similar pattern as in Fig. 4.1. We show that the choice
of θi = 2.8 and log(zc) = 3.5, which gives the highest mean and best fit of fEDE, has the smallest
χ2.

As the constraint on fEDE depends strongly on the particular choice of {θi, zc}, the analysis of
the 1-parameter model presented in Smith et al. (2021) might have been biased. Our result also
shows that, if {θi, zc} cannot be constrained, as in the MCMC analysis of the 3-parameter model
(Ivanov et al., 2020a), it might lead to misleading constraints on fEDE.

Our grid method is not plagued by volume effects since there is no larger prior volume at
fEDE = 0 compared to fEDE > 0 when θi and log(zc) are fixed. This course-grained exploration
of the {θi, zc} parameter space made with the grid shows that higher values of fEDE are allowed
for a considerable part of the parameter space and present a good fit to the data. This indicates that
volume effects might be present in the 3-parameter MCMC analysis, and that, when this effect is
eliminated, the preference for smaller fEDE in the posterior is weakened. Motivated by this, in
the next section we perform a frequentist analysis using profile likelihoods, which does not suffer
from volume effects.

4.3.3 Profile likelihood

Comparison of the results obtained from Bayesian and frequentist analyses is useful for checking if
priors or marginalization affect the results (Cousins, 1995). A profile likelihood is a standard tool
in frequentists’ statistics. To construct a profile likelihood, one fixes the parameter of interest, i.e.
in our case fEDE, to different values and maximizes the likelihood L (or minimizes χ2 = −2 lnL)
with respect to all the other parameters of the model, i.e. all ΛCDM parameters, θi and zc, as well
as all the nuisance parameters, for every choice of the parameter of interest (fEDE). The ∆χ2 as
a function of the parameter of interest is the profile likelihood (see, e.g. Ade et al., 2014b, for an
application to the Planck data).

For the minimization, we adopt the method used in Schöneberg et al. (2022). For every fixed
value of fEDE, we first run a long MCMC (with at least 104 accepted steps) until the Gelman-Rubin
criterion R − 1 < 0.25 is reached. This yields a reasonable estimate for the best-fit values and
covariance of all the other parameters. Second, we run three small chains with successively de-
creasing step size (decreasing temperature) and enhanced sensitivity to the likelihood difference.
This is done with a slightly modified Metropolis–Hastings algorithm as described in Schöneberg
et al. (2022). Since they found that in the context of EDE and other solutions to the Hubble ten-
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Figure 4.2: Profile likelihood of the fraction of EDE fEDE from the Planck CMB and the BOSS
full-shape galaxy clustering data. We show ∆χ2 = −2 ln(L/Lmax), where Lmax is the maximum
likelihood, (green markers) and a parabola fit (grey line). The confidence interval is constructed
using the Feldman–Cousins prescription Feldman and Cousins (1998) (vertical dashed lines).
It is indistinguishable from the interval constructed from the intersection of the parabola with
∆χ2 = 1 (horizontal dotted line).

sion, this method was less likely to get stuck in local minima than algorithms based on gradient
descent such as MIGRAD (James and Roos, 1975), we adopted the same approach.

The results of the minimization are shown as the markers in Fig. 4.2. For a parameter following
a Gaussian distribution, one would expect a parabola, which is a good fit for fEDE < 0.15 (grey
line). The minimum of the curve is the minimum χ2(fEDE), and shows the best-fit value for fEDE.
Already from the profile likelihood, one can see that our best-fit value lies near the upper bound
fEDE < 0.072 (95% C.L) of Ivanov et al. (2020a). This is a strong indication that the MCMC
analysis of the 3-parameter model is plagued by volume effects. The profile likelihood does not
suffer from volume effects, since the minimum χ2(fEDE) is the same as the maximum likelihood
estimate.

We report the best-fit values of all the parameters for fEDE = 0, 0.07 and 0.11 in the supple-
mentary material 4.6.3. We found that the best-fit values of {θi, zc} are approximately constant for
all fixed values of fEDE and fluctuate within a few percent around log(zc) = 3.56 and θi = 2.75.
Note that these values are very close to the ones adopted in the 1-parameter model in Smith et al.
(2021).
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4.4 Constructing Confidence Intervals: Profile likelihood

To construct confidence intervals from the profile likelihood shown in Fig. 4.2, we use the pre-
scription introduced by Feldman and Cousins (1998), which is suitable for a parameter with a
physical boundary like fEDE, which has to lie between 0 and 1. The Feldman–Cousins prescrip-
tion is based on the likelihood ratio

R(x) =
L(x|µ)

L(x|µbest)
, (4.2)

where x is the observable or measured value (it can take on all possible values for fEDE), µ is
the true value of fEDE (which will be read off at the minimum of the parabola), and µbest is the
physically allowed value µ for which for a given x the likelihood L(x|µ) is maximized; since
µbest > 0, it is µbest = x for x ≥ 0 and µbest = 0 for x < 0. The confidence interval [x1, x2] is
chosen such that R(x1) = R(x2) and ∫ x2

x1

L(x|µ) dx = α, (4.3)

where α is the confidence level, e.g. α = 0.6827 for 68.27% C.L. To shorten the notation, we de-
note 68.27% C.L as 68% C.L. in the remainder of the chapter. For a given µ, the integral is solved
numerically and tabulated by Feldman and Cousins (1998). The Feldman–Cousins prescription
unambiguously determines whether one parameter should be quoted as an upper/lower limit or
as a central confidence interval. Here, we find a central confidence interval at the 68% C.L. By
reading off µ at the minimum of the parabola shown in Fig. 4.2, we find fEDE = 0.072 ± 0.036
(fEDE = 0.072+0.071

−0.060 at 95% C.L.).

The upper and lower bounds of the 68% confidence interval are shown in Fig. 4.2, as the
vertical dashed lines. They coincide with the confidence intervals constructed by the Neyman
prescription (interval between parabola points that intersect with ∆χ2 = 1, Neyman, 1937),
which is only valid far away from a physical boundary.

4.5 Discussion and conclusion

In this chapter, we used the grid sampling and profile likelihood methods to understand the differ-
ence in the constraints on the EDE model reported in the literature (Ivanov et al., 2020a; D’Amico
et al., 2021b; Smith et al., 2021), using the Planck CMB and the BOSS full-shape galaxy cluster-
ing data. With the grid sampling, we showed that the inferred mean and best-fit values of fEDE

depend strongly on the values of {θi, zc}. This finding is relevant, since the posterior distribu-
tions in the full 3-parameter model shown in Ivanov et al. (2020a) (their Fig. 5) indicate that θi
and particularly zc are poorly constrained by the Planck and BOSS data. Also, depending on the
particular choice of {θi, zc} made in the 1-parameter model, one could draw different conclusions
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Figure 4.3: Summary of the current constraints on fEDE from the Planck CMB and the BOSS full-
shape galaxy clustering data by different methods: Ivanov et al. (2020a) with an MCMC inference
of the 3-parameter model in green (95% C.L.), Smith et al. (2021) with an MCMC inference
within the 1-parameter model in blue (68% C.L.), and our results obtained with the Feldman–
Cousins prescription based on the profile likelihood in purple (68% C.L.). For comparison, we
show the recent ACT results in grey (Hill et al., 2022) (68% C.L.). The vertical grey dashed line
marks fEDE = 0.1.

about the amount of EDE allowed by the data. The choice made in Smith et al. (2021) is an ex-
ample of a choice that allows for high value of fEDE and therefore a larger effect onH0. However,
even for the choice θi = 2.8 and log(zc) = 3.5, which gives the highest value of fEDE in our grid
method, we find H0 = 69.52+0.95

−1.21 km/s/Mpc, which only partially alleviates the Hubble tension.

Based on the hints of the grid analysis, we constructed the profile likelihood for fEDE, which
is not subject to volume effects upon marginalization in the MCMC chain. Using the Feldman–
Cousins prescription, we constructed the confidence interval, finding fEDE = 0.072 ± 0.036,
providing a new and robust constraint on the EDE model.

In Fig. 4.3, we compare the confidence interval from this work based on the profile likelihood
to previous work. For reference, we mark fEDE = 0.1. Our best-fit value, fEDE = 0.072, is at the
95%-confidence upper limit found in Ivanov et al. (2020a), which is fEDE < 0.072. This shows
that there is an effect in the MCMC analysis that drives the constraint on fEDE closer to zero. The
most plausible explanation is volume effects upon marginalization due to the large prior volume
in θi and zc when fEDE → 0. On the other hand, our best-fit value and the 68% C.L. are similar to
those found in Smith et al. (2021) with the same central value and only slightly larger confidence
interval. Nevertheless, their result was obtained within the 1-parameter model, which has a strong
dependence on the particular choice of θi and zc as shown in Section 4.3.2, and cannot be used to
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draw conclusions about the full 3-parameter model.

We suggest that the profile likelihood is a more suitable method to analyze the EDE model,
and determine fEDE. The confidence intervals obtained through this method do not suffer from
volume effects or a reduced parameter space.

4.6 Supplementary material

4.6.1 Preliminary studies using MCMC techniques

As a first step to explore the influence of prior volume effects and the dependence of the results
on all parameters of the EDE model, we ran MCMC with MontePython analyses with certain
parameters fixed using getdist to create the plots (Lewis, 2019). Fig. 4.4 shows the posteriors
of different 1-parameter models, corresponding to different positions in the grid of fixed zc and
θi values (Fig. 4.1). We find that the inferred values of fEDE and other cosmological parameters
like H0, σ8 and ωc depend strongly on the fixed values of zc and θi. The largest values of fEDE

are preferred for log(zc) = 3.5 and θi = 2.8.

Fig. 4.5 shows the posteriors of a ‘2-parameter model’ with fEDE fixed to different values
between 0.01 and 0.1 while zc and θi are free to vary. As expected, the higher the fixed value of
fEDE, the larger the inferred H0, ωc, σ8, and ns. Moreover, the larger the fixed value of fEDE the
stronger the constraints on zc and θi. This illustrates how the prior volume in zc and θi increases
when fEDE approaches zero.

4.6.2 Best fit and ∆χ2 of grid analysis

The results of the grid analysis, showing the dependence of the best-fit fEDE and the ∆χ2 as a
function of θi and zc, can be seen in Fig. 4.6.

4.6.3 Best-fit values of the parameters for different cosmologies

In Table 4.1, we show the best-fit parameters obtained with the minimization described in Sec-
tion 4.3.3 for the ΛCDM cosmology and for EDE cosmologies with fixed fEDE. The first 8 pa-
rameters in the table are varied in the MCMC, the last 6 parameters are derived parameters. At
the bottom, we quote the minimum χ2. The cosmology with fixed fEDE = 0.07 is close to the
best fit computed from the minimum of the parabola fit, fEDE = 0.11 is at the higher end of the
68% confidence interval.
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zc and θi as indicated in the legend. For comparison, we show the full 3-parameter EDE model
(yellow) and the ΛCDM model. The 1-parameter EDE model with log(zc) = 3.5 and θi = 2.8
shows the largest preferred values of fEDE.



4.6 Supplementary material 73

68 70 72

H0

3.4

3.5

3.6

3.7

0.5

1.0

1.5

2.0

2.5

0.96

0.97

0.98

0.99

1.00

n
s

0.80

0.82

0.84

8

2.20

2.25

2.30

1
0

2
b

0.120

0.125

0.130

0.120 0.125 0.130

cdm

2.25 2.30

10 2
b

0.80 0.82 0.84

8

0.96 0.98

ns

1 2

i

3.4 3.5 3.6 3.7

log10zc

Figure 4.5: MCMC posteriors with fEDE fixed to different values between 0.01 and 0.1.



74 4. New Constraint on Early Dark Energy using the Profile Likelihood

3.1 3.3 3.5 3.7 3.9 4.1 4.3
log(zc)

0.3

0.8

1.3

1.8

2.3

2.8

θ i

0.01

0.02

0.03

0.04

0.05

b
es

tfi
t
f E

D
E

[%
]

3.1 3.3 3.5 3.7 3.9 4.1 4.3
log(zc)

0.3

0.8

1.3

1.8

2.3

2.8

θ i

0.0

0.5

1.0

1.5

2.0

2.5

3.0

m
in

im
u

m
∆
χ

2

Figure 4.6: Best-fit values of fEDE (left) and ∆χ2 (right) for different fixed values of θi and
log(zc). Every value in this 6× 7 grid is obtained with the minimization procedure described in
Section 4.3.3.

Table 4.1: Best-fit parameters for different cosmologies.
Parameter best-fit ΛCDM best-fit fEDE = 0.07 best-fit fEDE = 0.11
100 ωb 2.245 2.259 2.270
ωcdm 0.1191 0.1260 0.1304
100 ∗ θs 1.042 1.042 1.041
ln(1010As) 3.044 3.056 3.064
ns 0.9681 0.9794 0.9872
τreio 0.0548 0.0549 0.0553
log(zc) – 3.55 3.56
θi – 2.76 2.77
zreio 7.701 7.827 7.924
Ωm 0.3093 0.3046 0.3012
YHe 0.2454 0.2479 0.2480
H0 [km/s/Mpc] 67.80 70.00 71.45
10+9As 2.099 2.125 2.141
σ8 0.808 0.825 0.836
min. χ2 3237.4 3233.7 3234.6
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Chapter 5

Resolving the Hubble tension with Early
Dark Energy

The contents of this chapter are under review and online available as Herold and Ferreira (2022).

Abstract: Early dark energy (EDE) offers a solution to the so-called Hubble ten-
sion. In Ch. 5, it was shown that the constraints on EDE using Markov Chain
Monte Carlo are affected by prior volume effects. The goal of this chapter is
to present constraints on the fraction of EDE, fEDE, and the Hubble parame-
ter, H0, which are not subject to prior volume effects. We conduct a frequentist
profile likelihood analysis considering Planck cosmic microwave background,
BOSS full-shape galaxy clustering, DES weak lensing, and SH0ES supernova
data. Contrary to previous findings, we find that H0 for the EDE model is in sta-
tistical agreement with the SH0ES direct measurement at< 1.7σ for all data sets.
For our baseline data set (Planck + BOSS), we obtain fEDE = 0.087± 0.037 and
H0 = 70.57± 1.36 km/s/Mpc at 68% confidence limit. We conclude that EDE
is a viable solution to the Hubble tension.
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5.1 Introduction

The increasing precision of cosmological measurements revealed a discrepancy known as the
Hubble tension (see Abdalla et al., 2022, for a review). The Hubble tension refers to the difference
between direct measurements ofH0 and indirect measurements given a cosmological model. This
tension reaches 5σ between the values obtained from the cosmic microwave background (CMB)
data from Planck for the Λ Cold Dark Matter (ΛCDM) model (Aghanim et al., 2020b), and from
the Cepheid-calibrated Type Ia supernovae of the SH0ES project (Riess et al., 2022).

While systematics are considered as a possible cause for the tension, growing interest has
been given to the possibility that this tension points to new physics beyond the ΛCDM model.
Among the most well studied proposed solutions to address this tension is the early dark energy
(EDE) model (Poulin et al., 2019, 2018; Smith et al., 2020), which introduces a new dark-energy
component acting in the early Universe.

This model was shown to successfully reduce the tension in H0 (Knox and Millea, 2020;
Schöneberg et al., 2022) when analyzed with Planck CMB, Baryon Acoustic Oscillation, Pan-
theon supernova sample and data from SH0ES (Poulin et al., 2019; Smith et al., 2020). Later it
was pointed out in Hill et al. (2020); Ivanov et al. (2020a); D’Amico et al. (2021b) that excluding
the SH0ES measurement and including large-scale structure (LSS) probes like galaxy clustering
and weak lensing leads to a tight upper limit on the amount of EDE, giving a value ofH0 compat-
ible with the one from ΛCDM and not being able to solve the Hubble tension. Additionally, it was
shown that the so-called S8-tension, a tension in the amplitude of matter clustering, is worsened
for the EDE model (Hill et al., 2020; D’Amico et al., 2021b; Secco et al., 2022).

However, it was shown in Herold et al. (2022), previously hinted in Niedermann and Sloth
(2020); Smith et al. (2020); Murgia et al. (2021); Smith et al. (2021) and later confirmed in Gómez-
Valent (2022), that the previous analyses of the EDE model using standard Bayesian Markov Chain
Monte Carlo (MCMC) methods suffer from marginalization or prior volume effects that can bias
the posteriors.

Prior volume effects are common effects in MCMC analyses that appear if the posterior is
strongly influenced by the prior volume. In the case of the EDE model, the parameter structure
of the model leads to large volume differences: When fEDE approaches zero, the model reduces
to ΛCDM; in this limit, the other parameters of the EDE model are unconstrained, which leads
to an enhanced prior volume for ΛCDM and which can drive the posterior towards low fractions
of EDE, fEDE, upon marginalization (Smith et al., 2020).

In view of these effects, it was suggested in Herold et al. (2022) to use a frequentist profile
likelihood. The profile likelihood and the Bayesian MCMC are complementary statistical tools
since they address different statistical questions: While MCMC localizes large volumes in pa-
rameter space that fit the data well, the profile likelihood is based only on the minimum χ2, i.e.
the best fit to the data, regardless of the size of the parameter volume. Therefore, the profile like-
lihood is reparametrization invariant Hogg et al. (2013) and, most importantly, is not influenced
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by prior volume effects.

A profile likelihood of the EDE fraction, fEDE, resulted in a fEDE = 0.072 ± 0.036 (Herold
et al., 2022) for Planck data (Aghanim et al., 2020b) and Baryon Oscillation Spectroscopic Survey
(BOSS) full-shape likelihood (Ivanov et al., 2020b; D’Amico et al., 2021b), which is considerably
higher than the MCMC result for the same data set. A similar analysis with free neutrino mass
was performed in (Reeves et al., 2023), with the goal of reducing S8, finding a similar constraint
(see Hamann, 2012; Ade et al., 2014b; Campeti et al., 2022; Campeti and Komatsu, 2022, for
application to other cases).

The goal of this chapter is to provide robust constraints in the value ofH0 for the EDE model.
We will assess the level of compatibility of the model-dependent H0 constraints for the EDE
model with the SH0ES direct measurement, revealing whether the EDE model can address the
Hubble tension.

5.2 Early Dark Energy

The EDE model contains a new component in the energy density of the Universe that behaves
like dark energy right after matter-radiation equality, but that dilutes away after recombination.
The inclusion of this extra energy component decreases the sound horizon at the last scattering
surface, which leads to an increase in H0.

EDE (Kamionkowski et al., 2014; Karwal and Kamionkowski, 2016; Caldwell and Devulder,
2018) is the name given to a class of models satisfying the above dynamics (for some examples
see Schöneberg et al., 2022). In this work, we use the canonical EDE model (Poulin et al., 2018)
which is described by a pseudoscalar field with the potential V (ϕ) = V0 [1− cos(ϕ/f)]n, where
V0 = m2f 2, m and f are the explicit and spontaneous symmetry breaking scales, respectively.
Based on previous works (Poulin et al., 2018; Smith et al., 2020), we study here the case of n = 3,
which satisfies the condition that the energy density of EDE dilutes faster than the one for matter.

One can relate the parameters of this model to the phenomenological parameters fEDE and
zc, where fEDE is the maximum fraction of EDE at the critical redshift zc. This field has a fixed
initial value ϕi, and becomes dynamical near zc. These parameters together with the initial di-
mensionless value of the field θi ≡ ϕi/f , fully describe the EDE model. This phenomenological
description is instrumental in making it clear that a higher fEDE indicates a higher H0; it was
shown that fEDE ∼ 0.1 is necessary to restore concordance in H0 (Bernal et al., 2016; Knox and
Millea, 2020).
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5.3 Analysis Methods

5.3.1 Data and modeling

To model the EDE dynamics, we use the public EDE_CLASS_PT code 1 an extension of the Einstein–
Boltzmann solver CLASS (Lesgourgues, 2011; Blas et al., 2011), based on CLASS_EDE (Hill et al.,
2020) and CLASS-PT (Chudaykin et al., 2020), a code based on the Effective Field Theory (EFT)
of LSS (Alam et al., 2017; Baumann et al., 2012; Carrasco et al., 2012) that allows to model the
galaxy power spectrum up to mildly nonlinear scales.

We consider the following data sets: Planck 2018 TT, TE, EE, lowℓ, lensing (Aghanim et al.,
2020b, referred to as Planck); the BOSS Data Release 12 (Alam et al., 2017) full-shape power
spectrum with a maximum wavenumber, kmax = 0.25h/Mpc, using a consistent window-function
normalization, which we implement along the lines of Beutler and McDonald (2021) and which
corrects an inconsistency present before (referred to as BOSS); a Gaussian likelihood centered
on the clustering amplitude of matter, S8 = σ8

√
Ωm/0.3 = 0.776 ± 0.017, measured by the

Dark Energy Survey Year 3 analysis (Abbott et al., 2018b, referred to as DES)2; and a Gaussian
likelihood centered on H0 = 73.04± 1.04 measured by SH0ES (Riess et al., 2022, referred to as
SH0ES).

We sample the ΛCDM parameters {ωb, ωcdm, θs, As, ns, τreio}, the EDE parameters {fEDE,
log(zc), θi}, along with the Planck and EFT nuisance parameters. Following the convention of
the Planck collaboration (Aghanim et al., 2020b), we model the neutrino sector by two massless
and one massive neutrino species with mν = 0.06 eV.

5.3.2 Statistical inference: MCMC and profile likelihood

We perform both a Bayesian MCMC and a frequentist profile likelihood analysis using Monte-
Python(Brinckmann and Lesgourgues, 2019) with the Metropolis–Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970). We assume the same priors as Philcox and Ivanov (2022) on the
EFT nuisance parameters, and the same priors as Hill et al. (2020) on the EDE parameters. We
require the Gelman-Rubin convergence criterion R− 1 < 0.05.

Following the methodology in our previous works (Herold et al., 2022; Reeves et al., 2023),
we construct a profile likelihood by fixing the parameter of interest to different values and min-
imizing χ2 = −2 lnL with respect to all other parameters of the model, where L denotes the
likelihood. The ∆χ2 as a function of the parameter of interest is the profile likelihood. For the
minimization, we adopt a simulated annealing approach based on the method used by Schöneberg
et al. (2022) (see also Hannestad, 2000). As in our previous work (Herold et al., 2022), we con-

1https://github.com/Michalychforever/EDE_class_pt
2Using a Gaussian likelihood is an approximation but it was tested in Hill et al. (2020) for DES Y1 that the

difference to the full likelihood is small for the EDE model.

https://github.com/Michalychforever/EDE_class_pt
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Figure 5.1: Profile likelihoods (markers) for the maximum fraction of EDE, fEDE, for different
data sets. The intersection of the parabola fit (lines) with ∆χ2 = 1 (horizontal dashed line) gives
the 1σ confidence interval in the approximate Neyman construction.

Data set χ2(ΛCDM) χ2(EDE) ∆χ2 ∆AIC
Planck 2774.24 2770.72 −3.52 +2.48
Planck+BOSS (base) 3045.65 3039.98 −5.67 +0.33
Baseline + DES 3052.06 3049.13 −2.93 +3.07
Baseline + SH0ES 3068.44 3042.08 −26.36 −20.36

Table 5.1: The χ2 values of the ΛCDM and best-fit EDE models, the difference ∆χ2 =
χ2(EDE)− χ2(ΛCDM), the Akaike information criterion (AIC, Akaike, 1974).

struct a confidence interval from the profile likelihood following the prescription by Feldman and
Cousins (1998), which extends the procedure by Neyman (1937) and is also valid at a physical
boundary. We quote confidence intervals obtained from profile likelihoods (MCMC) as best fit
(mean) ±1σ.

5.4 Results and discussion

Fig. 5.1 and Fig. 5.2 present the final result of our profile likelihood analysis for fEDE and H0 for
different datasets, with final confidence intervals summarized in Fig. 5.3 and Table 5.1.
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Figure 5.2: Profile likelihoods for the Hubble parameter, H0, for different data sets. The red
vertical region corresponds to the 1σ and 2σ contours forH0 from Planck 2018 for ΛCDM, while
the grey region corresponds to the 1σ and 2σ contours for the direct measurement by SH0ES.

Data set fEDE H0 (consistency w. SH0ES)
Planck 0.072± 0.039 69.97± 1.52 (1.7σ)
Planck+BOSS (base) 0.087± 0.037 70.57± 1.36 (1.4σ)
Baseline + DES 0.061+0.035

−0.034 70.28± 1.33 (1.6σ)
Baseline + SH0ES 0.127± 0.023 72.12± 0.82 (0.69σ)

Table 5.2: Constraints on fEDE and H0, and the compatibility with the SH0ES measurement in
units of σ for the different data sets considered in this work.

5.4.1 Planck + BOSS full-shape analysis (baseline)

Our baseline data set consists of Planck CMB and BOSS galaxy clustering data (solid teal lines
in Figs. 5.1, 5.2). The confidence intervals obtained from the profile likelihood are:

fEDE = 0.087± 0.037, H0 = 70.57± 1.36 km/s/Mpc . (5.1)

To assess parameter consistency, we report the one-dimensional difference between the best fits of
the two measurements divided by the quadrature sum of the 1σ errors. We find that H0 obtained
from the baseline data set within the EDE model is consistent with SH0ES at 1.4σ.

Compared to ΛCDM, the goodness of fit to the data improves by ∆χ2 = −5.67 for the EDE
model with fEDE = 0.09 (see Table 5.1)3. To assess whether the data prefers EDE with extra

3We cite χ2 and best-fit parameters for the EDE cosmology with fixed fEDE that is closest to the global minimum
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parameters over ΛCDM, we compute the Akaike information criterion (AIC, Burnham and An-
derson, 2002), which penalizes additional parameters and is defined as ∆AIC = ∆χ2 + 2∆N ,
where ∆N is the number of additional parameters of the extended model (for EDE: ∆N = 3).
We find ∆AIC = +0.33, i.e. a not statistically significant preference for ΛCDM over EDE.

For direct comparison, we run an MCMC analysis for the same data set and find a tight upper
limit fEDE < 0.072 (at 95% confidence), and H0 = 68.55+0.62

−1.06 km/s/Mpc, which is in tension
with SH0ES at 3.7σ. As pointed out previously Herold et al. (2022), the difference to the profile
likelihood result can be explained by prior volume effects affecting the results of the MCMC
results.

The constraints on fEDE andH0 found here are slightly higher than those from a profile likeli-
hood analysis with the previously widely used BOSS likelihood using an inconsistent normaliza-
tion (fEDE = 0.072±0.036, Herold et al., 2022). The consistent window-function normalization
leads to higher values of S8. Since S8 is increased in EDE cosmologies compared to ΛCDM, a
higher S8 allows for more EDE. This is in agreement with Simon et al. (2023), who use MCMC
to constrain EDE and find a weaker upper limit on fEDE with the consistent window-function
normalization as compared to the inconsistent normalization.

With the profile likelihood analysis, we also find shifts in other cosmological parameters com-
pared to ΛCDM: the best-fit ns increases from 0.968 (ΛCDM) to 0.983 (best-fit EDE cosmology,
fEDE = 0.09), and ωcdm from 0.120 (ΛCDM) to 0.129 (fEDE = 0.09), which can be under-
stood as a compensation of an enhanced early Sachs-Wolfe effect in EDE cosmologies (Ivanov
et al., 2020a; Vagnozzi, 2021). The most notable change is in S8, which increases from 0.828
(ΛCDM) to 0.840 (fEDE = 0.09), worsening the so-called S8-tension with weak-lensing experi-
ments (Di Valentino and Bridle, 2018; Nunes and Vagnozzi, 2021).

5.4.2 Baseline + DES

Since EDE cosmologies feature higher S8 (Smith et al., 2020; Hill et al., 2020; Secco et al.,
2022), including weak lensing measurements into the analysis is an important test for EDE. In
this section, we include a Gaussian likelihood from DES4 with S8 = 0.776 ± 0.017 along with
the baseline data set (blue dashed lines in Figs. 5.1, 5.2). The profile likelihood analysis yields:

fEDE = 0.061+0.035
−0.034, H0 = 70.28± 1.33 km/s/Mpc . (5.2)

As expected, we find smaller fEDE and H0 than those from the baseline data set, but H0 is still
consistent with SH0ES at 1.6σ. The improvement of the fit compared to ΛCDM, ∆χ2 = −2.93,
is smaller than for the baseline result. The worsening can be attributed mainly to the contribution

(minimum of the profile likelihood). The error of this approximation is negligible compared to the 1σ statistical
uncertainty and can only lead to an underestimation of the improvement of fit for EDE.

4We did not include likelihoods for HSC (Hikage et al., 2019) and KiDS (Asgari et al., 2021) simultaneously since
there is non-negligible cross-correlation between the data sets. Using a combined weak-lensing likelihood would be
an important further check.
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from the S8 likelihood. The best-fit S8 for ΛCDM, S8 = 0.812, and the best-fit EDE model
fEDE = 0.06, S8 = 0.817, are comparable but both are higher than the DES measurement,
S8 = 0.776. The AIC shows a mild preference for ΛCDM over EDE, ∆AIC = +3.07.

The trend of a decreasing fEDE and H0 when including an S8 likelihood is similar as in pre-
vious MCMC analyses (Smith et al., 2020; Hill et al., 2020; Secco et al., 2022) but the effect in
the profile likelihood is less pronounced since it is not overlaid by prior volume effects. While the
MCMC results suggest that EDE is not able to solve the H0 tension, the profile-likelihood result
forH0 from the baseline + DES data set is in statistical agreement with the SH0ES measurement.

5.4.3 Baseline + SH0ES

Given that the value of H0 for the EDE baseline data set is consistent with the SH0ES measure-
ment at 1.4σ, it is sensible to combine both data sets. A profile-likelihood analysis of the base-
line data set with a Gaussian likelihood centered on the measurement by the SH0ES experiment,
H0 = 73.04± 1.04 (yellow dashed lines in Figs. 5.1, 5.2) yields:

fEDE = 0.127± 0.023, H0 = 72.12± 0.82 km/s/Mpc. (5.3)

This constraint of H0 is consistent with SH0ES at 0.69σ. We find an improvement of fit of the
EDE model compared to ΛCDM by ∆χ2 = −26.36, where the main contribution to the ∆χ2

comes from the SH0ES-H0 likelihood, ∆χ2
SH0ES = −18.47. The AIC shows a strong preference

for the EDE model over ΛCDM, ∆AIC = −20.36. The profile likelihood constraints are con-
sistent with previous MCMC constraints including SH0ES data (Smith et al., 2020; Hill et al.,
2020; D’Amico et al., 2021b; Murgia et al., 2021)5 at < 1σ.

The constraints of H0 and fEDE within the EDE model for the baseline + SH0ES data set
are consistent with the constraints for all other data sets considered here at < 1.3σ and < 1.6σ,
respectively.

5.4.4 Planck-only constraint and comparison to ACT

Lastly, we probe the constraining power of the Planck CMB data alone. We find

fEDE = 0.072± 0.039, H0 = 69.97± 1.52 km/s/Mpc. (5.4)

The H0 constraint is consistent with SH0ES at 1.7σ. We find an improvement of fit of ∆χ2 =
−3.52. This improvement is dominated by the Planck high-ℓ likelihood with ∆χ2

high−ℓ = −2.90.
The AIC shows a mild preference of ΛCDM over EDE, ∆AIC = +2.48.

5With the exception of the result from D’Amico et al. (2021b) for Planck+BAO+SnIa(Pantheon)+BOSS full-shape
power spectrum+SH0ES, which is consistent with our result at ∼ 2σ.
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Figure 5.3: Constraints ofH0 within the EDE model for different data sets. The top four errorbars
show constraints from the profile likelihood, whereas the bottom errorbar shows the constraint
from MCMC. For comparison, the red shaded area corresponds to the 1σ and 2σ constraint from
Planck (Aghanim et al., 2020b) assuming ΛCDM and the grey shaded area to the 1σ and 2σ
constraint from SH0ES (Riess et al., 2022).

The relatively high fEDE preferred by Planck in the profile likelihood analysis is interesting in
light of the preference for fEDE in an MCMC analysis of Atacama Cosmology Telescope (ACT)
CMB data (Choi et al., 2020). The profile likelihood constraints of fEDE from Planck are con-
sistent at < 1σ with MCMC constraints from ACT (fEDE = 0.091+0.020

−0.036 for the baseline data set
in Hill et al. (2022), see also Smith et al. (2022); La Posta et al. (2022)). The difference between
the results from Planck and ACT from MCMC analyses is likely due to prior volume effects in
the MCMC analysis for Planck. The strong preference for the EDE model over ΛCDM that was
found for ACT (Hill et al., 2022) seems to indicate that the constraints from this data set are less
affected by prior volume effects.

5.5 Conclusion

In this chapter, we obtained constraints on the value of H0 for the EDE model, which are not
subject to prior volume effects, using a frequentist profile likelihood and assessed the viability of
EDE as a solution to the Hubble tension.

It was previously concluded from MCMC analyses that EDE is not able to resolve the H0

tension and simultaneously fit different cosmological data. We find a similar result from the
MCMC analysis of our baseline data set (bottom errorbar in Fig. 5.3). As was previously shown
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in Herold et al. (2022), MCMC analyses of the EDE model are affected by marginalization or
prior volume effects. Therefore, we used the profile likelihood to obtain confidence intervals for
H0 (Fig 5.3) and to assess consistency with other measurements and the resolution of the tension.

We assessed whether the data prefers EDE over ΛCDM using the AIC, which takes into ac-
count that the EDE model has three additional parameters compared to ΛCDM. The AIC shows
a mild preference for ΛCDM for the baseline data set, the baseline + DES and the Planck-only
data sets. Only when adding SH0ES, there is a clear preference for the EDE model over ΛCDM.
Therefore, EDE presents a good fit to CMB and LSS even when penalizing the additional param-
eters of EDE.

Our baseline data set yieldsH0 = 70.57±1.36 km/s/Mpc, which is consistent with SH0ES at
1.4σ. This value is considerably higher than the MCMC result, reinforcing the evidence for prior
volume effects in the Bayesian analysis. Adding a likelihood centered on the S8 measurement
from DES decreases fEDE with respect to the baseline data set, translating into a mild decrease
in H0. This is expected since EDE cosmologies show a positive correlation of S8 with fEDE and
H0 (Secco et al., 2022). However, this decrease is much smaller than the one found in previous
MCMC analysis. TheH0 for baseline + DES is consistent with the SH0ES value at 1.6σ. Hence,
even for the most constraining data combination for EDE considered here, we find an agreement
with SH0ES. Given that the value of H0 for the baseline data set is consistent with the SH0ES
measurement, we can combine both data sets. As expected from previous analyses, including
SH0ES to the baseline data set results in an even higher H0 than for the baseline data set. This is
consistent with the SH0ES measurement at 0.69σ. Finally, we find that the H0 constraint from
Planck data alone is compatible with SH0ES, and interestingly also in agreement with previous
works performing an MCMC analysis with ACT data. Considering the relative χ2 contributions
for all likelihoods considered in this work, we find that (apart from SH0ES), the Planck high-
ℓ likelihood dominates the improvement of fit compared to all other data sets. We present an
exploration of parameter correlations and an extended table of our results in the supplementary
material Sec. 5.6.

For all data combinations, the H0 value obtained with the profile likelihood analysis is con-
sistent with the measurement from SH0ES at ≤ 1.7σ. Therefore, the values of H0 for the EDE
model are in agreement with SH0ES. We conclude that the EDE model provides a resolution of
the Hubble tension.

5.6 Supplementary material

5.6.1 Parameter correlations

One can use the data obtained from the profile likelihood to explore correlations between the
parameter of interest, here fEDE, and the other cosmological parameters. In Fig. 5.4, we show
the best-fit log(zc) (left) and θi (right) as a function of the fixed value of fEDE for different data
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Figure 5.4: Best-fit values of log(zc) (left) and θi (right) as a function of the fixed value of fEDE

for different data sets as indicated in the legend.

sets. We find that the best-fit values for both parameters are constant within a few percent apart
for small values of fEDE, where both parameters are not well constrained.

5.6.2 Best-fit parameters and χ2 contributions

In Tab. 5.6.2, we show the best-fit parameters for Planck+ BOSS full-shape data (baseline, BL),
BL + a Gaussian likelihood centered on S8 = σ8

√
Ωm/0.3 = 0.776±0.017 (DES, Abbott et al.,

2018a), BL + a Gaussian likelihood centered on H0 = 73.04± 1.04 (SH0ES, Riess et al., 2022)
and Planck-only data. In the bottom part of the table we show the contributions inχ2 = −2 log(L)
from the different data sets. Since for the profile likelihood, we ran minimizations with fEDE fixed
to values between 0 and 0.15 (and all other parameters free), we show the cosmology that is closest
to the global best fit (c.f. 5.2).

We additionally ran four minimizations, with all parameters free (including fEDE) to obtain
the global best-fit cosmology for the baseline and baseline + SH0ES data sets. The best-fitting
parameters are shown in Tab. 5.6.2.
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Data baseline (BL) BL+DES BL+SH0ES Planck
Model ΛCDM EDE0.09 ΛCDM EDE0.06 ΛCDM EDE0.13 ΛCDM EDE0.07

Best-fit parameters
100 ωb 2.243 2.266 2.251 2.267 2.261 2.276 2.239 2.259
ωcdm 0.1196 0.1285 0.1184 0.1239 0.1177 0.1328 0.12 0.1268
100 ∗ θs 1.042 1.041 1.042 1.042 1.042 1.041 1.042 1.041
ln 1010As 3.047 3.063 3.041 3.05 3.056 3.068 3.045 3.058
ns 0.9679 0.9833 0.9707 0.9802 0.9731 0.9916 0.9665 0.9789
τreio 0.0556 0.0563 0.0537 0.0542 0.0616 0.0555 0.0543 0.0549
log10 zc − 3.559 − 3.548 − 3.562 − 3.563
θi,scf − 2.747 − 2.754 − 2.761 − 2.742
zreio 7.803 7.994 7.579 7.695 8.324 7.974 7.685 7.834
Ωm 0.3122 0.3046 0.305 0.299 0.3006 0.2997 0.315 0.3088
YHe 0.2479 0.248 0.2479 0.248 0.2479 0.248 0.2478 0.2479
H0 67.6 70.59 68.13 70.16 68.49 72.2 67.39 69.7
10+9As 2.106 2.139 2.092 2.113 2.124 2.15 2.101 2.128
σ8 0.8115 0.8332 0.8054 0.8183 0.8097 0.8424 0.8119 0.8284
S8 0.828 0.840 0.812 0.817 0.811 0.842 0.832 0.840

χ2 contributions
BOSS NGC z3 61.55 60.18 61.53 60.66 61.64 59.66 − −
BOSS SGC z3 64.31 64.25 64.74 64.78 65.04 64.28 − −
BOSS NGC z1 69.88 70.01 69.77 70.06 69.78 70.35 − −
BOSS SGC z1 75.91 75.11 75.58 75.04 75.44 74.72 − −
Planck high-ℓ 2345.94 2342.85 2348.50 2345.74 2348.67 2345.14 2346.18 2343.28
Pl. low-ℓ EE 396.28 396.35 395.87 395.91 397.70 396.16 396.03 396.11
Pl. low-ℓ TT 22.92 21.52 22.35 21.56 22.20 20.97 23.14 21.90
Planck lensing 8.85 9.71 9.22 9.58 8.86 10.14 8.89 9.43
S8 (DES) − − 4.51 5.80 − − − −
H0 (SH0ES) − − − − 19.12 0.65 − −
Total χ2 3045.65 3039.98 3052.06 3049.13 3068.44 3042.08 2774.24 2770.72

Table 5.3: Best-fit parameters (top half) and χ2 contributions (bottom half of the table) for the
ΛCDM and EDE models. For each of the four data sets considered in this work, we show the
EDE model with fixed fEDE closest to the global best fit indicated by the index EDEfEDE

.



5.6 Supplementary material 89

Param BL BL+SH0ES
100 ωb 2.265 2.278
ωcdm 0.1282 0.1324
100 ∗ θs 1.041 1.041
ln1010As 3.063 3.071
ns 0.9831 0.9917
τreio 0.05626 0.05682
fEDE 0.08717 0.1271
log10 zc 3.56 3.563
θi,scf 2.749 2.768
zreio 7.992 8.101
Ωm 0.3052 0.2993
YHe 0.248 0.248
H0 70.46 72.15
10+9As 2.139 2.155
σ8 0.8328 0.8427
S8 0.840 0.850

Table 5.4: Global best-fit parameters (with fEDE free) for the baseline data (BL) and the baseline
+ SH0ES (BL+SH0ES) data set
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Chapter 6

Cosmological Concordance with Early
Dark Energy and Massive Neutrinos?

Parts of this chapter have been published as
Reeves, Herold, Vagnozzi, Sherwin, and Ferreira (2023).

Abstract: The early dark energy (EDE) solution to the Hubble tension comes at
the cost of an increased clustering amplitude, argued to worsen the fit to galaxy
clustering data. We explore whether freeing the total neutrino mass, Mν , which
can suppress small-scale power, can improve EDE’s fit to galaxy clustering. Us-
ing Planck Cosmic Microwave Background and BOSS galaxy clustering data,
a Bayesian analysis shows that freeing Mν does not increase the inferred EDE
fraction fEDE, and there is no evidence for non-zero Mν . A frequentist analy-
sis reveals a correlation between Mν and the EDE fraction, fEDE, which keeps
H0 fixed as Mν increases, and supports earlier evidence of prior volume effects
impacting the Bayesian constraints. We find that the baseline EDE model with
Mν = 0.06 eV provides the overall best fit. Compared to this, a model with
Mν = 0.24 eV maintains the same H0[km/s/Mpc]=(70.08, 70.11, respectively)
whilst decreasing S8=(0.837, 0.826) to below the ΛCDM value, but worsening
the fit significantly, hence providing no clear evidence that an increased Mν can
alleviate the clustering issue in EDE. We find that these results are driven not by
the clustering amplitude, but by background shifts in the BAO scale.
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6.1 Introduction

The Hubble tension is a disagreement between independent measurements of the Hubble constant
H0 (Di Valentino et al., 2021; Perivolaropoulos and Skara, 2022; Abdalla et al., 2022). One
proposed solution to this tension is early dark energy (EDE), a model which introduces a pre-
recombination dark energy (DE)-like component that boosts the expansion rate in order to reduce
the sound horizon and decays quickly after (Karwal and Kamionkowski, 2016; Poulin et al., 2018).
Although EDE was shown to alleviate theH0 tension and present a good fit to cosmic microwave
background (CMB), weak lensing (WL) and large-scale structure (LSS) data (Poulin et al., 2019;
Smith et al., 2020, 2021; Murgia et al., 2021; Herold et al., 2022), parameter shifts in high-fEDE

cosmologies lead to an increase in the clustering amplitude, σ8, and the related parameter S8,
worsening the “S8 discrepancy” (Di Valentino and Bridle, 2018; Hill et al., 2020; Ivanov et al.,
2020a; D’Amico et al., 2021b; Nunes and Vagnozzi, 2021).

In this work, we study the influence of massive neutrinos on EDE, motivated by their free-
streaming nature, whose associated power suppression might counteract the EDE-induced en-
hancement and provide a better fit to LSS data. We find no clear benefits for EDE resulting
from massive neutrinos, neither in a Bayesian nor frequentist setting. We investigate prior vol-
ume effects, and physical effects driving our parameter constraints, which overall motivate further
studies of EDE cosmologies with massive neutrinos.

6.2 EDE and massive neutrinos

The simplest EDE model consists of an ultra-light scalar field initially displaced from the mini-
mum of its potential and frozen by Hubble friction, behaving as a DE component and boosting the
pre-recombination expansion rate. Once the Hubble rate drops below its effective mass, the field
becomes dynamical, rolls down and oscillates around the minimum of its potential. The ‘canon-
ical’ EDE model is assumed to consist of a pseudoscalar (axion-like) field with the following
potential:

V (ϕ) = m2f 2

[
1− cos

(
ϕ

f

)]n
, (6.1)

wherem and f are the EDE ‘mass’ and decay constant, respectively. With this choice of potential,
EDE later decays as a fluid with effective equation of state ⟨wϕ⟩ = (n− 1)/(n+ 1).

The fundamental particle-physics parametersm and f can be traded for the phenomenological
parameters fEDE and zc: at redshift zc, EDE’s fractional contribution to the energy density is
maximal and equal to fEDE = ρEDE/3M

2
PlH(zc)

2, where ρEDE is EDE’s energy density, MPl is
the Planck mass, and H(z) is the Hubble rate. The physics of the EDE model is then governed
by four parameters: fEDE, zc, n, and the initial misalignment angle, θi = ϕi/f , with ϕi the initial
field value. For simplicity we set n = 3, corresponding to the best-fit value reported by Poulin
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et al. (2019). Increasing fEDE reduces rdrag, the sound horizon at the drag epoch, and solving the
Hubble tension requires fEDE ≳ 0.1.

To compensate for the EDE-induced enhancement of the early integrated Sachs-Wolfe (eISW)
effect and preserve the fit to the CMB (Vagnozzi, 2021), EDE’s success comes at the cost of an
increase in the dark matter (DM) density ωc = Ωch

2. This boosts the matter power spectrum and
raises S8 = σ8(Ωm/0.3)

0.5, worsening the S8 discrepancy present within ΛCDM. EDE was thus
argued to be disfavored by WL and galaxy clustering data (Hill et al., 2020), although Murgia
et al. (2021), Smith et al. (2021), Herold et al. (2022), and Gómez-Valent (2022) argued that this
is in part due to prior volume effects.

A possible remedy is to add extra components absorbing the excess power (e.g. Allali et al.,
2021; Ye et al., 2023; Clark et al., 2021). Massive neutrinos are a natural candidate in this sense
as oscillation experiments show that at least two neutrino mass eigenstates are massive. In this
chapter, we include the neutrino mass sum, Mν , as a free parameter rather than fixing it to the
minimum allowed value of 0.06 eV as in the baseline EDE model. Due to their free-streaming
nature, massive neutrinos suppress small-scale power (Lesgourgues and Pastor, 2006). Note that
models connecting EDE to neutrinos and predicting high Mν have been studied (Sakstein and
Trodden, 2020; Carrillo González et al., 2021), alongside the role of neutrino physics in relation
to cosmic tensions (Ilić et al., 2019; Das et al., 2022; Di Valentino and Melchiorri, 2022; Sakr
et al., 2022; Chudaykin et al., 2022).

AddingMν as a free parameter within ΛCDM induces well-known parameter degeneracies at
the CMB level: a negativeMν-H0 correlation related to the geometrical degeneracy, and a positive
Mν-ωc correlation connected to the CMB lensing amplitude (Vagnozzi et al., 2018; Roy Choud-
hury and Hannestad, 2020). BAO data partially help in breaking these degeneracies (especially
theMν-H0 degeneracy). At fixed acoustic scale θs, increasingMν reduces the BAO angular scale
θBAO = rdrag/DV (zeff) (Hou et al., 2014; Archidiacono et al., 2017; Boyle and Komatsu, 2018),
with DV (zeff) the volume-averaged distance at the effective redshift zeff .

6.3 Datasets and methodology

We use Planck 2018 CMB temperature, polarization, and lensing measurements, combining the
Plik TTTEEE, lowl, lowE, and lensing likelihoods (Aghanim et al., 2020a). We add the joint
pre-reconstruction full-shape plus post-reconstruction BAO likelihood for the BOSS DR12 galax-
ies (see Ivanov et al., 2020b; Philcox et al., 2020).1 The cross-covariance between full-shape and
BAO is fully taken into account in the likelihood. The full-shape measurements include both the
monopole and quadrupole moments. We do not include a distance ladderH0 prior to not biasH0

towards high values (see also Efstathiou, 2021).

1Note that in this chapter, we do not use the updated window-function treatment (Beutler and McDonald, 2021)
as in Ch. 5. We do not expect a big impact on our constraints, which are driven by the BAO scale.
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We consider a 3-parameter EDE+Mν (10 parameters in total) model where, besides the 6
ΛCDM parameters, Mν and 3 EDE parameters (fEDE, log10 zc, and θi, fixing n = 3) are varied.
The neutrino mass spectrum is modelled following the degenerate approximation, sufficiently ac-
curate for the precision of current data (Vagnozzi et al., 2017; Giusarma et al., 2018; Roy Choud-
hury and Hannestad, 2020; Archidiacono et al., 2020; Tanseri et al., 2022). For comparison,
we also consider 3 related models: 3-parameter EDE with fixed Mν = 0.06 eV (9 parameters
in total), ΛCDM+Mν (fEDE = 0, 7 parameters in total), and the standard 6-parameter ΛCDM
model.

Theoretical predictions are computed using the EDE-CLASS-PT Boltzmann solver2, itself a
merger of CLASS_EDE (Hill et al., 2020) and CLASS-PT (Philcox et al., 2020), themselves both
extensions to the Boltzmann solver CLASS (Blas et al., 2011). The underlying galaxy power spec-
trum model is based on the Effective Field Theory (EFT, Baumann et al., 2012) of LSS, which is
the most general, symmetry-driven model for the mildly non-linear clustering of biased tracers of
the LSS, accounting for the complex and poorly-known details of short-scale physics which are
integrated out.

We follow two analysis methods. We begin with a standard Bayesian analysis, adopting
Markov Chain Monte Carlo (MCMC) methods and using the MontePythonMCMC sampler (Au-
dren et al., 2013; Brinckmann and Lesgourgues, 2019). We impose the same (flat) priors on the
EDE parameters as in Hill et al. (2020), whereas for the EFT of LSS nuisance parameters we fol-
low Philcox et al. (2020). Following the conclusions of Herold et al. (2022); Herold and Ferreira
(2022), and the analysis in Ade et al. (2014b) for varying neutrino mass sum, we then perform a
profile-likelihood analysis in Mν : for a given (fixed) value of Mν , after minimizing the χ2 with
respect to all other parameters, the profile likelihood is given by ∆χ2(Mν). We follow the min-
imization method of Schöneberg et al. (2022), referred to as S21, running a series of MCMCs
with decreased temperature and enhanced sensitivity to likelihood differences. We checked that
this method out-performs the gradient descent-based Migrad algorithm (James and Roos, 1975).

6.4 Markov Chain Monte Carlo analysis

In Fig. 6.1, we show the EDE posterior obtained from a Bayesian MCMC analysis of Planck CMB
and BOSS full-shape clustering data3 while varyingMν (red, green) and fixing it toMν = 0.06 eV
(yellow, blue). The contours for all parameters do not change significantly when varying or fixing
Mν . Only in the case with Planck-only data, theH0 and σ8 constraints widen slightly for the case
with Mν as a free parameter (although not in the H0-tension-resolving direction). We show the
posteriors for different data-set combinations in the supplementary material 6.7.1.

Since prior-volume effects could influence the results of the full 3-parameter EDE model, we
2https://github.com/Michalychforever/EDE_class_pt
3Note that we do not include the reconstructed BAO information here. For posteriors including the BAO scale,

see Reeves et al. (2023).

https://github.com/Michalychforever/EDE_class_pt
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Figure 6.1: MCMC posteriors of the full 3-parameter EDE model for Planck-only and
Planck+BOSS full-shape data. Varying the sum of neutrino masses, Mν (red, green), has lit-
tle impact on the constraints compared to fixing Mν = 0.06 eV (yellow, blue).
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follow the methodology in Smith et al. (2021) and fix log10(zc) = 3.569 and θi = 2.775 (this
corresponds to their best-fitting parameters to Planck-only data). This ‘1-parameter model’ (see
also Sec. 2.6) is shown in Fig. 6.2 forMν free (red, green) andMν = 0.06 eV fixed (yellow, blue).
As was already noted in Smith et al. (2021), the 1-parameter model is only suitable to check
for qualitative trends since fixing two parameters of the model is not a full Bayesian analysis.
Nevertheless, it already gives insight into possible degeneracies between cosmological parameters
that open up due to varying fEDE and Mν . We monitor convergence with the Gelman-Rubin
criterion (Gelman and Rubin, 1992) and take R− 1 < 0.05 as a limit.4

Within the 1-parameter model, the 68% confidence level (C.L.) for the Planck and BOSS
(in parentheses, Planck-only) data set on the fraction of EDE are fEDE = 0.077+0.038

−0.035 (fEDE =
0.076+0.039

−0.039) when varyingMν . For both data sets, the constraints do not change significantly with
Mν fixed: fEDE = 0.075+0.033

−0.037 (fEDE = 0.077+0.037
−0.04 ). For the Planck-only data set, varying Mν

broadens the error bar on σ8 = 0.832+0.059
−0.037 towards lower values compared to fixing Mν , which

gives σ8 = 0.881+0.022
−0.025, therefore, leading to a better agreement with direct measurements of σ8

from WL experiments, e.g. DES (σ8 = 0.733+0.039
−0.049, Abbott et al., 2022). When adding BOSS

full-shape data, the mean shifts to lower values and the error bars broaden when varying Mν ,
σ8 = 0.818+0.018

−0.014, compared to fixing Mν , σ8 = 0.826+0.0095
−0.012 . The results from the 1-parameter

model hint to a possible degeneracy between Mν and σ8. To further explore this degeneracy, we
employ the frequentist profile likelihood in the next section.

6.5 Profile likelihood analysis

We perform a profile-likelihood analysis, fixing Mν to seven values between 0.06 eV and 0.3 eV
and dissecting each likelihood’s contribution to the total χ2. Technical details concerning the
convergence of the profile-likelihood analysis are given in the supplementary material 6.7.3. We
aim to identify a) which data set(s) prevent high Mν values, and b) whether prior volume effects
are playing a role. Smith et al. (2020), Herold et al. (2022), and Gómez-Valent (2022) argued that
prior volume effects play a key role with EDE, as in the fEDE → 0 limit ΛCDM is recovered, so
the likelihood is approximately flat in the θi and zc directions. This leads to a larger prior volume
in the low-fEDE region, resulting in a preference for small fEDE upon marginalization. The profile
likelihood is not impacted by these prior volume effects.

Our profile-likelihood analysis results are shown in Fig. 6.3 and Tab. 6.1. We find that the base-
line EDE model (Mν = 0.06 eV) with fEDE = 0.077 fits the data best. This has a ∆χ2 = −5.6
compared to the baseline ΛCDM model although we have introduced three extra parameters
(when fixingMν). The best-fit fEDE for this model is significantly higher than the mean value ex-
pected from the Bayesian results for the baseline model with Mν = 0.06 eV, hence we reconfirm
the results of Herold et al. (2022) that prior volume effects could have an impact on the Bayesian
constraints of the baseline EDE model. However, even without prior volume effects, the profile-

4Note that not all parameters of the full 3-parameter MCMC shown in Fig. 6.1 satisfy this criterion.
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Figure 6.2: MCMC posteriors of the 1-parameter EDE model, with zc, θi fixed. The constraints
on σ8 loosen when varying Mν (red, green) compared to fixing Mν = 0.06 eV (yellow, blue).
Although fixing two parameters of the model helps to mitigate prior volume effects, it is not a full
Bayesian analysis and is only suitable to infer qualitative trends.
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Best-fit χ2 contributions

L
Model

ΛCDM0.06 EDE0.06 EDE0.09 EDE0.12 EDE0.15 EDE0.18 EDE0.24 EDE0.3

BOSS (BAO+FS) 297.2 295.3 295.4 295.5 295.9 296.5 298.2 301.9
Planck TTTEEE 2345.5 2342.6 2343.2 2343.7 2345.1 2345.5 2347.2 2348.3
Planck lowE 396.3 396.1 396.4 396.8 396.5 397.0 397.3 397.7
Planck lowl 23.2 21.9 21.7 21.5 21.3 21.2 21.1 21.1

Planck lensing 8.8 9.47 9.34 9.18 9.15 9.07 9.01 9.07
Total χ2 (S21) 3071.0 3065.4 3065.9 3066.7 3067.9 3069.3 3072.9 3078.1

Best-fit parameters
H0 [km/s/Mpc] 67.59 70.08 69.96 69.97 70.12 70.12 70.11 69.42

σ8 0.811 0.828 0.824 0.820 0.814 0.811 0.802 0.787
Ωm 0.312 0.306 0.309 0.311 0.312 0.315 0.319 0.325
S8 0.827 0.837 0.836 0.834 0.831 0.831 0.826 0.819
ωc 0.120 0.127 0.128 0.128 0.129 0.130 0.131 0.130
fEDE – 0.077 0.082 0.089 0.099 0.107 0.117 0.117

Table 6.1: Upper half : breakdown of the best-fit χ2 contributions from BOSS (BAO + full-shape,
FS) and each Planck likelihood and the total best-fitχ2, within different models (“EDEx” indicates
an EDE model with fixed Mν = x eV). Lower half : best-fit values of H0, σ8, Ωm, S8, ωc and
fEDE within each model.

likelihood analysis shows no evidence for a higher Mν in the EDE model. Lowering S8 to the
ΛCDM level within EDE requires aboutMν ∼ 0.24 eV (S8 = 0.826, fEDE = 0.117). This comes
at the cost of a substantially worse fit quality (∆χ2 = 7.5).

The profile likelihood in Mν , broken down into the χ2 contributions from the individual
datasets in our analysis is shown in the blue and purple lines in Fig. 6.3 (top). We find that
the fit to both the Planck TTTEEE + lensing and the BOSS data worsens as Mν is increased. For
the Planck data the strong constraining power on Mν is expected (Aghanim et al. (2020b) for
ΛCDM). More interestingly, the fit to the BOSS dataset also degrades monotonically with Mν :
this suggests that the benefits of increased Mν in the EDE scenario in terms of a reduction in
clustering amplitude are being outweighed by an increasing mismatch to the geometric features
of the full-shape spectrum. We find that most of the effect of EDE-induced parameter shifts and
Mν on the full-shape clustering amplitude is re-absorbed by nuisance parameter shifts, as pointed
out in Ivanov et al. (2020a) within baseline EDE (see also supplementary material 6.7.2). The
remaining differences in the galaxy power spectrum multipoles are due to a mismatch in the lo-
cation of the BAO wiggles. Hence, the derived constraints on the EDE+Mν model are mostly
driven by shifts in the BAO scale θBAO, rather than theMν-driven small-scale power suppression.
In Fig. 6.4 we show how the fit to the BAO scale gradually worsens as Mν increases, reflecting
the increasing trend in the BOSS likelihood χ2.

We show the correlations ofH0, S8, and fEDE with the fixed value ofMν in Fig. 6.3 (bottom).



6.5 Profile likelihood analysis 99

0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30
M  / eV

0

2

4

6

8

10

12

2

2 to fs BOSS
2 to Planck (TTTEEE+lensing)

Total 2

CDM
Ruled out by  oscillations

66

68

70

72

74

H
0
[k

m
/s

/M
pc

]

Ruled out by  oscillations
SH0ES
Planck

0.78

0.80

0.82

0.84

S 8

Ruled out by  oscillations
DES-Y1+KiDS+HSC

CDM bestfit

0.06 0.10 0.14 0.18 0.22 0.26 0.30
M  / eV

0.06

0.08

0.10

0.12

f E
DE

Ruled out by  oscillations

Figure 6.3: Top: χ2 contributions as a function of Mν within the EDE model. The purple and
blue lines respectively show the χ2 contribution from the Planck and BOSS likelihoods and the
red line is the total χ2, given by the sum of the two. The blue dot represents the best-fit ΛCDM
model, given the same combination of data. The red shaded region encompasses values of Mν

which are ruled out by oscillation experiments. Bottom: Variation in the best-fit values of selected
cosmological parameters as a function of Mν . The red shaded region encompasses values of Mν

that are ruled out by oscillation experiments. The blue and green bands indicate respectively the
value of H0 inferred from Planck assuming the ΛCDM model (Aghanim et al., 2020b), and the
SH0ES local distance ladder value (Riess et al., 2022). The purple band is an inverse-variance-
weighed combination of DES-Y1+KiDS+HSC S8 measurements as in Hill et al. (2020), whilst
the black dashed line is the best-fit value of S8 from a fit to the same datasets assuming ΛCDM.
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Figure 6.4: BAO angular scale within EDE at fixed values ofMν relative to theΛCDM predictions
(all parameters fixed to their Planck+BOSS best fits). Purple triangles denote the BOSS DR12
consensus isotropic BAO measurements (Alam et al., 2017).

As expected, we find that S8 decreases with increasing Mν since neutrino free-streaming is able
to suppress clustering. We also find a positive correlation between Mν and fEDE, which can be
understood by the effect ofMν and fEDE on the BAO scale, θBAO: if θs andωb+ωc is assumed to be
fixed, increasingMν leads to a decrease ofH0 and consequently a decrease of θBAO at z ≲ 1 (Hou
et al., 2014; Archidiacono et al., 2017). Increasing fEDE on the other hand, leads to an increase of
rdrag and with that an increase in H0, which together results in a decrease of DV (zeff) increasing
θBAO. Hence, increasing fEDE can partly compensate for theMν-induced decrease of θBAO. This
compensation is not perfect and θBAO still decreases while increasing Mν . However, the extent
to which fEDE can be increased is limited by the increase in ωc (compensating the eISW boost).
As a result, the best-fit H0 barely shifts when Mν is raised.

For Mν ≳ 0.18 eV the χ2 increases more steeply, mostly driven by the BOSS likelihood due
to the gradually worsened BAO scale fit. However,H0 remains stable within 1% across the whole
Mν range, due to two competing effects: while increasing fEDE pullsH0 upwards, increasingMν

lowers it due to the geometrical degeneracy.
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6.6 Conclusions

It is well known that introducing EDE in order to resolve theH0 tension worsens the “S8 tension”.
This chapter re-examines this issue in light of an extension including massive neutrinos, driven
by the possibility of their small-scale power suppression counteracting the EDE-induced excess
power, which leads to the increase in S8.

A standard Bayesian analysis of CMB and galaxy clustering data shows that freeing Mν does
not increase the inferred fEDE, and has no effect on EDE’s standings relative to the H0 and S8

tensions. A frequentist profile-likelihood analysis also finds no clear benefits for EDE resulting
from a higher Mν , as the best fit is achieved within baseline EDE (Mν = 0.06 eV), but supports
earlier claims of prior volume effects playing a key role in these Bayesian constraints using BOSS
data (Smith et al., 2021; Herold et al., 2022; Gómez-Valent, 2022). Values of Mν lowering S8

to the ΛCDM level are not preferred statistically; a model with Mν = 0.24 eV worsens the fit by
∆χ2 = 7.5 in comparison to baseline EDE. We find a correlation between fEDE and Mν , along
with the expected negative Mν-S8 correlation.

Our Mν limits are driven not by the full-shape clustering amplitude (re-absorbed by nuisance
parameters), but by shifts in the BAO scale, θBAO. As the clustering amplitude plays a minor
role, our analysis is not very sensitive to the benefits of the Mν-driven power suppression. One
possible avenue for further work would be to explore the inclusion of WL data or WL-derived
priors which, without freeingMν , appear to slightly decrease the value of fEDE and consequently
H0 (Herold and Ferreira, 2022); it will be interesting to study whether freeing Mν can improve
the consistency of EDE with WL measurements.

In the coming years, β-decay experiments will aim for a model-independent kinematical neu-
trino mass detection which, combined with future cosmological probes (Ade et al., 2019; Abitbol
et al., 2019), will set the stage for further tests of EDE and massive neutrinos.

6.7 Supplementary material

6.7.1 MCMC for different data set combinations

In Figs. 6.5 and 6.6, we show the posteriors of the full 3-parameter MCMC model for different
data-set combinations. For this analysis, we use Planck CMB temperature, polarization and CMB
lensing (Aghanim et al., 2020b), the BAO and the redshift-space distortion data from BOSS (Alam
et al., 2017), the BAO measurements from the 6-degree Field Galaxy Survey (6dFGS; Beutler
et al., 2011) and Sloan Digital Sky Survey Main Galaxy Sample (SDSS MGS; Ross et al., 2015),
the Pantheon supernova sample (SNIa, Scolnic et al., 2022), and the direct measurement by the
SH0ES collaboration (Riess et al., 2019). Additionally, we use data from the WL survey DES
(Abbott et al., 2018b).



102 6. Cosmological Concordance with Early Dark Energy and Massive Neutrinos?

Similar to the posteriors of the full 3-parameter EDE model using Planck and BOSS full-
shape data in Fig. 6.1, we find almost no difference between the contraints on the cosmological
parameters when Mν is free (solid lines) or fixed to Mν = 0.06 eV (dashed lines) for all data sets
we considered. Fig. 6.6 resembles Fig. 1 in Hill et al. (2020) but with varyingMν (dashed lines).

6.7.2 Shifts in nuisance parameters

To illustrate the parameter shifts in the nuisance parameters, we plot in Fig. 6.7 the minimization
chains, which are chains with iteratively decreasing step size and enhanced sensitivity to the
likelihood difference (Schöneberg et al., 2022). Hence, the smoothed contours in Fig. 6.7 are
not posteriors but are only an qualitative indication of the position of the best-fitting nuisance
parameters. We find that fixing Mν to different values leads to up to 10% shifts in the nuisance
parameters, which include three bias parameters (b1, b2, bG2), two counterterms (c0, c2) and shot
noise (Pshot).

6.7.3 Details about the convergence of the profile-likelihood analysis for
cosmologies with EDE and neutrinos

In Ch. 6, we compute profile likelihoods in Mν with all EDE parameters {fEDE, zc, θi} and
all ΛCDM parameters free, while in Ch. 4 and Ch. 5, we computed profile likelihoods in fEDE

with only two EDE parameters {zc, θi} and all ΛCDM parameters free. Due to the additional
free parameter, Mν , the minimization procedure in Ch. 6 led to longer convergence times and
more problems with local minima. Since the minimization procedure is based on the running
of MCMC chains (Schöneberg et al., 2022), the minimization can be affected by the larger prior
volume in fEDE ≈ 0 similar to the MCMC inference: due to the larger prior volume at smaller
values of fEDE, the minimization chains spend more time around fEDE ≈ 0 and are less likely to
find the global minimum of χ2 if it lies at fEDE ≫ 0 and stay in a local minimum instead. One
can mitigate this effect by running several minimizations with different starting positions and
covariance matrices5 In the following, we describe how we ran four iterations of minimizations
in order to mitigate the problem of local minima.

Run 1

The first iteration (referred to as run 1) is based on the covariance obtained from seven full MCMC
analysis (until R− 1 < 0.3, Gelman and Rubin, 1992) with the sum of neutrino masses fixed to
Mν [eV] = {0.06, 0.09, 0.12, 0.15, 0.18, 0.24, 0.3} . For each minimization with fixed value
of Mν , we run with the respective covariance and best fit from the MCMC. For the MCMC, we

5The covariance matrix determines the relative step sizes in the different parameter directions.
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Figure 6.5: MCMC posteriors of the full 3-parameter EDE model for Planck CMB, CMB lensing,
BAO, RSD, Pantheon SNIa and the SH0ES direct H0 measurement. We explore the impact of
varying the sum of neutrino masses, Mν (solid lines), compared to fixing Mν = 0.06 eV (dashed
lines), and find little impact on the cosmological constraints. Note that the MCMC posteriors can
be influenced by prior volume effects.
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Figure 6.8: Profile likelihood in Mν for run 1 (orange, left axis) and the corresponding best-fit
fEDE for each Mν (blue, right axis).

compute the theory model with the code from Herold et al. (2022)6, which combines the two
extension of CLASS (Lesgourgues and Pastor, 2006): CLASS-PT (Chudaykin et al., 2020) and
CLASS_EDE (Hill et al., 2020), while for the minimization, we use EDE_class_pt (Ivanov et al.,
2020a)7. We show the profile likelihood, i.e. minimum χ2 as a function of Mν , obtained from
run 1 in Fig. 6.8.

We find that the profile likelihood (orange, left axis) follows a smooth parabola. However, the
corresponding best-fit values of fEDE as a function of the fixed values of Mν peaks at Mν = 0.18
and decreases for Mν > 0.18. Note also that the first data point (Mν = 0.06 eV) corresponds to
the case that we explored in Ch. 4, where we found fEDE = 0.072 for Planck + BOSS full-shape
and fEDE = 0.077 for Planck + BOSS full-shape+BAO, whereas here with the minimization of
the full 3-parameter model we find only fEDE = 0.061. These two observations indicate that the
minimization could be stuck in a local minimum.

Run 2 and run 3

In order to check whether run 1 did find the global minimum of χ2 for all fixed values ofMν , we
run two further iterations of minimizations. From now on, we use EDE_class_pt (Ivanov et al.,
2020a) for the MCMC to compute the covariance and for the minimizations. For run 2, we used
an intermediate estimate of the covariance (after only one or two days of running the MCMC),
whereas for run 3, we used the final covariance (with at least 10,000 steps and R − 1 < 0.3,
taking > 5 days). Hence, naively run 3 should be the run with the best convergence so far. Both

6https://github.com/LauraHerold/CLASS-PT_EDE
7https://github.com/Michalychforever/EDE_class_pt

https://github.com/LauraHerold/CLASS-PT_EDE
https://github.com/Michalychforever/EDE_class_pt
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min. χ2 0.06 0.09 0.12 0.15 0.18 0.24 0.3
run1 3065.86 3066.30 3067.10 3067.92 3069.28 3073.52 3082.16
run2 3065.46 3066.04 3066.80 - 3071.30 3073.16 3079.12
run3 3065.50 3066.00 3066.80 3068.02 3071.00 3072.94 3078.18
run4 3065.40 3065.88 3066.70 3067.90 3069.28 3072.90 3077.92

Table 6.2: Minimum χ2 for run 1 to 4 for Mν fixed to 0.06-0.3 eV. The minimum among run 1
to 3 is shown in boldface.

runs along with run 1 and 4 are shown in Fig. 6.9. We find that run 2 and run 3 are evidently
stuck in local minima for Mν = 0.18 but they out-perform run 1 for Mν = 0.3. We show the
values of minimum χ2 for run 1 to 4 in Tab. 6.2. Note that run 2 finds forMν = 0.06 eV a best-fit
fEDE = 0.077, which agrees with the result obtained in Ch. 4; this confirms that run 1 was stuck
in a local minimum for Mν = 0.06 eV.
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Figure 6.9: Profile likelihood in Mν for run 1, 2, 3, 4 (red-orange colors, left axis) and the
corresponding best-fit fEDE for each Mν (blue colors, right axis).

Run 4

To verify the minima found before, we started a fourth iteration, which uses the full covariance
based on the theory model EDE_class_pt (Ivanov et al., 2020a) but starts at the best-fit positions
marked in bold face in Tab. 6.2. The results of run 4 are shown in Fig. 6.9 (dark, solid lines). Run
4 outperforms all runs, which is expected since we started from the best-fit cosmologies found
before. The minimum χ2 is shown in the fourth row of Tab. 6.2.



108 6. Cosmological Concordance with Early Dark Energy and Massive Neutrinos?

Fig. 6.10 shows the final profile-likelihood results (orange, left axis) used in Sec. 6.5 with
a parabola fit (grey). The corresponding bestit values of fEDE (blue, right axis) still show a
decrease at Mν = 0.3. This could be caused by a local minimum but does not influence the
main conclusions in Ch. 6.
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Figure 6.10: Final profile likelihood in Mν based on run 4 (orange colors, axis) and the cor-
responding best-fit fEDE for each Mν (blue, right axis). We show a parabola fit to the profile
likelihood (solid, grey line). By running four iterations, we could mitigate the effect of local min-
ima and obtain a smooth estimate of the profile likelihood.
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Chapter 7

Conclusions and Outlook

In this thesis, we used both frequentist and Bayesian methods to answer the question whether
Early Dark Energy (EDE) can simultaneously resolve the Hubble tension and present a good
fit to cosmic microwave background (CMB) and large-scale structure (LSS) data. We find that
the results from Bayesian Markov Chain Monte Carlo (MCMC) analyses are affected by prior
volume effects, which lead to a preference for small fractions of EDE, disfavoring EDE as a
solution to the Hubble tension (Ch. 4). Using a profile-likelihood analysis, we find that models
with tension-resolving amounts of EDE present a good fit to Planck CMB, Baryon Oscillation
Spectroscopic Survey (BOSS) full-shape galaxy clustering data and Dark Energy Survey (DES)
weak lensing data (included as a Gaussian likelihood on the clustering amplitude, S8). For all
data sets considered in this thesis, we find that the tension with the SH0ES direct measurement
of the Hubble constant is reduced below 1.7σ (Ch. 5). Further, we consider an extension of
the EDE model that includes the sum of neutrino masses, Mν , as a free parameter, in order to
assess whether a higher Mν can help to reduce the S8 tension. A profile-likelihood analysis in
Mν revealed a positive correlation between Mν and the fraction of EDE, which enables a lower
S8 while resolving the Hubble tension. However, values of Mν that sufficiently suppress S8 are
disfavored by Planck and BOSS data (Ch. 6).

The results in this thesis demonstrate the complementarity of Bayesian credible intervals from
MCMC and frequentist confidence intervals from the profile likelihood. Of course, no method is
superior but both methods address different questions and give complementary answers: While
Bayesian credible intervals include prior knowledge and localize bulk volumes in parameter space
that fit the data well, the frequentist confidence intervals do not include prior knowledge and are
based only on the maximum likelihood estimate, regardless of the size of the parameter volume.
Therefore, both methods have different shortcomings: While the Bayesian credible intervals can
be subject to prior volume effects, the frequentist confidence intervals can be subject to fine tuning,
i.e. they can prefer very small volumes in parameter space that are physically not well motivated.
Once the data reach sufficient statistical power, both methods will give equivalent results. How-
ever, until then, we believe that it is important to use both Bayesian and frequentist methods as
complementary tools to mitigate the shortcomings of both methods.
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Figure 7.1: Profile likelihood results of the initial energy density fraction of DCDM, ωini
dcdm, and

decay rate, Γ. Left: 1-dimensional profile likelihood in log10 Γ (top subplot) with corresponding
best-fitting values of ωini

dcdm (bottom subplot). Right: 2-dimensional profile likelihood in ωini
dcdm

and Γ (blue) compared to the MCMC posterior (red). While the posterior prefers either very long-
or short-lived DCDM, the profile likelihood slightly favors an intermediate regime. Taken from
Holm et al. (2023).

Understanding the influence of prior volume effects is not only important for the EDE model
but is important also for other beyond-ΛCDM models. The reason for the strong influence of prior
volume effects in the EDE model is the parametrization of the model, which has a structure that is
common for many beyond-ΛCDM models: The model introduces several additional parameters
and reduces to ΛCDM once the abundance of the beyond-ΛCDM energy density approaches
zero. In this limit, all other parameters of the extended model are unconstrained, which leads to
an enhanced prior volume and with that an up-weighting of the ΛCDM limit in cases where there
is no clear preference for the beyond-ΛCDM model.

One recent example, where prior volume effects were shown to have a strong influence is
decaying cold dark matter (DCDM), where a fraction of dark matter (DM) decays into invisible
dark radiation with a certain lifetime. Studies using Bayesian methods show that CMB data either
prefer the very short-lived regime, i.e. a fraction of DM decays immediately, which corresponds
to the ΛCDM model with extra dark radiation, or the very long-lived regime, which corresponds
to the standard ΛCDM model (Nygaard et al., 2021; Holm et al., 2022). Using profile likeli-
hoods to constrain the energy density fraction of DCDM, ωdcdm, and the decay rate, Γ, which
corresponds to the inverse of the lifetime, Holm et al. (2023) find that prior volume effects are
important. The results of this study are shown in Fig. 7.1. Opposed to the Bayesian credible
intervals, which prefer either very large or very small values of Γ, the profile likelihood slightly
favors an intermediate regime, where a small fraction of DM (about 3%) decays with a decay rate
log10(Γ ·Gyr) = 4.76+0.24

−0.29. The preferred Γ corresponds to a decay around recombination, which
reveals interesting parallels to EDE, which is also important around recombination. Another ex-
ample where the profile likelihood gives important complementary information compared to the
Bayesian credible interval is New Early Dark Energy (NEDE). Cruz et al. (2023) find that while
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Figure 7.2: Posterior distribution of the parity-violating coupling of EDE and photons with
coupling constant, g, and instrumental miscalibration and cosmic birefringence, α + β, for two
different EDE models (with/without SH0ES) and two sky cuts. Planck data prefers α + β as an
explanation for the EB-correlation data. Taken from Eskilt et al. (2023).

the Bayesian credible interval gives tight upper limits on the fraction of NEDE when all param-
eters of the model are varied, the profile likelihood prefers higher values of NEDE, which yield
values of the Hubble constant that resolve the tension with the SH0ES experiment, very similar
to the case of EDE.

The results presented in this thesis are also relevant for future research on EDE. Since we
find that EDE is not ruled out by current CMB and LSS experiments, it is important to look
for other signatures that give corroborating evidence for EDE or rule out the EDE model. One
example for this is the possibility that EDE could be related to the observed signal of correlation
in EB polarization data from Planck (see Komatsu, 2022, for a review). The axion-like EDE
model could couple to photons in a parity-violating manner, which could explain the observed
EB signal. Murai et al. (2023); Eskilt et al. (2023) find that Planck polarization data disfavor
the predicted shape of EB-correlation from (pre-recombination) EDE with coupling constant, g,
but prefer (post-recombination) cosmic birefringence, β, or instrumental miscalibration, α (see
Fig. 7.2). This approach gives complementary insights into the micro-physics and potential of
the axion-like EDE model.
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While in this thesis, we find that the tension-resolving EDE model presents a good fit to current
CMB and LSS data sets, future observational data will shed new light on this model. Next gen-
eration LSS experiments like HETDEX (Gebhardt et al., 2021), DESI (Aghamousa et al., 2016),
PFS (Ellis et al., 2014) and Euclid (Laureijs, 2011) will provide a crucial test for the EDE model
by tightly constraining the clustering amplitude of the galaxy power spectrum, which is increased
in EDE cosmologies compared to ΛCDM, and the Hubble parameter,H(z), at different redshifts.
Further, the preference of the EDE model over ΛCDM by ground-based CMB experiments like
ACT (see Sec. 2.6.4) needs further investigation. CMB temperature and polarization data from
current and future experiments like SPT (Dutcher et al., 2021), ACT (Aiola et al., 2020), Simons
Observatory (Ade et al., 2019), CMB-S4 (Abazajian et al., 2019), and LiteBIRD (Allys et al.,
2022) will give insights about the reason behind this preference. Moreover, it will be crucial to
confirm the robustness of the Hubble tension or find systematics in one or several of the measure-
ments, which can explain the tension. New methods are being developed that give independent
constraints on the Hubble constant (see Sec. 2.3). If the tension is confirmed to be caused by new
physics, this will give important insights into particular models like EDE but more importantly
may shed light on the general nature of the dark sector of the Universe.
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