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The illusion that we understand the past fosters overconfidence in our ability
to predict the future.

- Daniel Kahneman





A B S T R A C T

Utilizing regularities in this complex but stable environment is import-
ant for survival. Hence, our decisions do not only depend on current
sensory input but are also influenced by previous experiences. This
thesis investigates such effects on behavior during visual perceptual
decision-making. I further implemented a long-term neuronal record-
ing method and provide a proof of concept on how such a method can
be utilized to reveal the neuronal encoding of previous experiences.

I designed behavioral setups and trained head-fixed mice to per-
form a lick-left / lick-right orientation discrimination task using a
two-alternative forced choice paradigm. Using Logistic Regression, I
estimated the contributions of task-relevant (current stimulus) and
task-irrelevant (past stimuli, past response, past outcomes) factors on
the animals’ decisions. To investigate how mice trade-off stimulus-
related and contextual information, I introduced blocks of trials with
stimulus-specific imbalances of reward. I further designed a neuronal
recording setup and implemented a long-term recording method using
an immobile silicone probe.

Mice learned the task and reached stable performance in 6–8 weeks.
For the current stimulus, model weights were negligible for trials with
short reaction times, suggesting that on these trials, animals failed
to use relevant sensory evidence to guide decisions. Irrespective of
reaction time, significant weights were assigned to past stimulus, re-
sponse, and outcome, indicating that history effects influence decisions
across all trials. When contextual information (i.e., reward size) was
manipulated, mice showed a consistent bias towards the response side
associated with larger rewards and the model weight assigned to the
current stimulus decreased. However, given the performance during
balanced reward condition, mice performed at an optimal bias level
to maximize reward. To understand how contextual signals influence
neuronal responses and sensory representations in the primary visual
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cortex, I performed long-term neuronal recording during learning.
Stable recordings were obtained for 2 months and specific neurons
were tracked for several days. Preliminary data suggest that there
might be variation in responses of neurons in the primary visual
cortex based on previous outcomes.

Taken together, even for simple visual stimuli well above threshold,
perceptual decision-making in mice is influenced not only by the
current visual stimulus but also by the history of past trials and the
context of reward. In addition, it is important to account for trial-to-
trial variability in the speed of the response to understand behavior.
Finally, influences of prior outcomes might be reflected in the primary
visual cortex.
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1
I N T R O D U C T I O N

The ability to perceive our surroundings and make efficient decisions
in response is essential for survival. Higher-level animals have evolu-
tionary advantages because they are able to integrate information from
various sources. This improved decision-making ability implies that
they efficiently separate decision-relevant information from decision-
irrelevant information (noise). To illustrate, picture yourself in the
following situation:

You are enjoying holidays in a beautiful Mediterranean town.
The sun is about to set and you are strolling down a lively street.
At the side, relaxed people are sipping wine and indulging in
culinary delicacies, while merchants are appraising their goods to
passersby. Looking around, you suddenly spot a familiar face in
the dim light. As your eyes meet, you wonder whether it might
be a high-school friend, whom you had not met in years. Could it
be her? Should you say hi? But wait, did you not recently see her
posting on social media from elsewhere? As you contemplate how
to react, she calls out your name. Hearing her voice immediately
resolves all doubts, you respond, and are set for reminiscing joint
memories.

Information and expectation combine to form perception. Perceptual
decision-making (PDM) refers to the above-illustrated act of choosing
one decision (starting a conversation) from sets of alternatives (walking
away, smiling without talking, etc.) based on perceived reality. While
making such decisions, it is important to identify relevant sensory
information and integrate it with previous experiences. For example,
when you subconsciously recognized your friend’s face, your attention
is focused. You instantly cross-referenced her facial features with
your dated memory. You also recalled contextual information, i.e., the
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social media post. Given contradictory visual and contextual cues, you
required additional auditory information (hearing her voice) to break
the tie.

Understanding PDM is a primary goal of Neuroscience. Over the last
few decades, improvements in behavioral paradigms as well as tech-
nological advancement in areas such as optogenetics, imaging, and
electrophysiology created possibilities to investigate it. Researchers
can isolate specific behavioral strategies and manipulate neural circuits
to identify the causal mechanisms that underlie PDM. Particularly,
they perform psychophysical studies to understand the relationship
between subjective sensations and the physical stimuli that produce
them. Early studies attempted to find a relationship between stimulus
parameters (e.g., contrast and size) and perceived sensation. Over the
last decade, the focus has shifted to identifying other factors that im-
pact PDM. This is achieved by, for example, introducing uncertainties
by manipulating reward amounts or stimulus probabilities. Here, the
subject has to consider the task constraint and weigh alternative op-
tions to reach a decision (Akrami et al., 2018; Lak et al., 2020b; Busse
et al., 2011). Hence, the focus of recent studies, including this thesis,
has been on determining how various identified factors are intern-
ally weighed and how they affect perceptual judgment and neural
responses.

In section 1.1, I discuss theoretical frameworks that have been em-
ployed to explain PDM. Subsequently, in section 1.2, I provide an
overview of what is understood about the neurophysiological mech-
anisms that underlie PDM, with a focus on visual perception. Finally,
in section 1.3, I review selected factors that explain variability in
decision-making.

1.1 theoretical frameworks

Various theoretical frameworks can be employed to explain PDM
processes. To accurately represent such processes, the influence of
previous experience and sensory information needs to be modeled.
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In this section, I introduce three theoretical frameworks that are fre-
quently used to explain PDM processes: Bayesian Decision Theory
(BDT), Signal Detection Theory (SDT) and the Drift Diffusion Model
(DDM).

Experience

Environment

Prior expectation 

Sensory information 

Perception Decision Outcome

Bayesian 
belief updating

Figure 1.1: Illustrative description of Bayesian Decision Theory. Schematic
depicting information integration and flow in Bayesian Decision
Theory (BDT). Perception is based on integration of sensory in-
formation with experience-driven prior expectations. Experiences
are constantly updated based on sensory information and decision
outcomes.

BDT provides a general explanatory framework (Knill and Richards,
1996). As illustrated in Figure 1.1, BDT postulates that perception is
based on both sensory information and prior expectation. Sensory
information is extracted from the environment, while prior expectation
arises from experience with sensation (e.g., what was previously seen)
and outcomes (e.g., how were previous decisions rewarded). This
perception guides decision-making (Wei and Stocker, 2015; Gold and
Stocker, 2017; Wei and Stocker, 2016). Formally, perception can be
described as a posterior probability distribution that is computed by
the application of Bayes rule to the inputs.

P(H|E) =
P(E|H)xP(H)

P(E)
(1.1)

Here, P(H|E) is the conditional probability of a hypothesis (H) being
true given evidence (E), P(E|H) is the conditional probability of ob-
serving E under H, P(H) is the prior expectation of H, and P(E) is
the unconditional probability of observing E. While BDT is largely
consistent with observed behavior, it does not provide specific theories
of how perception translates into decisions.

3



Percieved signal (PS)

Pr
ob

ab
ili

ty
 d

is
tr

ib
ut

io
n

Signal detection theoryA

Time (s)

A
cc

um
ul

at
ed

 in
fo

rm
at

io
n

S

0
Decision
threshold

Drift rate

Bias

B Drift diffusion model

S'

Figure 1.2: Illustrative description of Signal Detection Theory and the Drift
Diffusion model.
(A) Schematic of Signal Detection Theory (SDT). The probability
distribution held by the observer of Signal and internal noise
(S) and external noise (S’). Dotted line: decision threshold, which
indicates the minimum threshold to report a detection. (B) Schem-
atic of Drift diffusion model (DDM). Example of two trials where
noisy sensory information (grey) is accumulated over time with a
specific drift rate. Yellow / Turquoise; dotted line: decision threshold
for one and for the other stimulus, respectively. Offset from 0 in-
dicates a bias towards a particular stimulus resulting, for example,
from previous experiences.

SDT provides a simplistic model of discrimination of signal from
noise (Green and Swets, 1966; Gold and Stocker, 2017). It relies on
the concept that to make a decision, the decision-maker translates
perceptual information into a decision variable. The decision variable
classifies the decision-relevant evidence for one choice over the other.
As illustrated in Figure 1.2A, the decision-maker is assumed to hold
an opinion about the probability distribution of decision variables
which is conditional on the observed stimuli and internal noise (S). The
decision-maker compares this conditional probability density functions
(PDF) to the one generated by external noise (S’). The decision criterion
(dashed black line) informs the minimum criterion where the decision-
maker detects a signal. The separation between the two PDF represents
the decision maker’s ability to detect the stimulus. SDT allows for
varying prior expectations and flexible setting of the decision criterion.
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However, it treats perception as static, thereby disregarding the process
of information accumulation.

Sequential sampling models, such as the drift-diffusion model (DDM),
build on SDT recognize that PDM is not an instantaneous process
(Ratcliff, 1978b). DDMs rely on the concept of information accumula-
tion, i.e., perceptual evidence is assumed to increase over time until
a decision threshold is reached (Stone, 1960; Ratcliff and Smith, 2004;
Gold and Stocker, 2017). Figure 1.2B illustrates this process. DDMs
have three parameters (Gold and Stocker, 2017): First, the drift rate
relates time with incremental evidence gain, i.e., the average slope of
information accumulation. Second, the bias models predispositions to-
wards a decision, i.e., the intercept of information accumulation. Third,
the decision threshold indicates how much information is necessary
to commit a decision. Jointly, these variables explain decisions and
reaction time (RT).

In section 1.2, I provide an overview of what is understood about the
neurophysiological mechanisms that underlie PDM, with a focus on
visual perception.

1.2 neural basis of perceptual decision-making

The process of converting sensory input into decisions can be summar-
ized along three stages: First, the sensory inputs are encoded. Second,
these encoded sensory information are accumulated and integrated
with previous experience. Third, once this integrated information
reaches a threshold, a decision is made. In the following paragraphs, I
discuss the state of research on the neural basis of each of these three
stages, with an emphasis on visual perception.

Steinmetz et al. (2019) demonstrated that neurons in the mice visual
cortex exhibit activity upon stimulus onset. Similarly, other studies in
monkeys and rodents have also identified that neurons in the visual
cortex respond to visual stimuli (Newsome et al., 1989; Salzman et
al., 1990; Britten et al., 1992; Cai et al., 2018) and neurons in the
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somatosensory cortex respond to tactile stimuli (Romo et al., 2002; Guo
et al., 2014b). In early experiments, monkeys were trained to report
the direction of randomly moving dots (RMD). During the RMD task,
neural activity in the Medial Temporal (MT) area of the visual cortex
is correlated with motion processing (Newsome et al., 1989). In fact,
later a causal relationship was proven by micro-simulation and lesion
studies (Salzman et al., 1990; Romo et al., 2000). A similar picture
emerges when studying rodents using a visual discrimination task.
Neural activity following sensory stimuli first appears in the primary
visual cortex (V1), continues to the secondary visual cortex, and finally
reaches the frontal cortex (Steinmetz et al., 2019).

To arrive to a decision efficiently, sensory information needs to be
accumulated and integrated with previous experience. Brain areas in-
volved in this process show increasing neural activity until a decision
threshold is reached. In monkeys trained to make choices through
saccadic eye movements, such neural activity occurs in the parietal
cortex (Shadlen and Newsome, 1996), frontal eye field (FEF) (Ding
and Gold, 2012a), prefrontal cortex (PFC) (Lin et al., 2020), and stri-
atum (Ding and Gold, 2010). Studies indicate that these areas might be
involved in the visual decision-making task, independent of specific
movements (Gold and Shadlen, 2003; De Lafuente et al., 2015). In
rodents, a similar picture unfolds. For example, Hanks et al. (2015)
used auditory experiments to show that neural activity in the posterior
parietal cortex (PPC) and the frontal orienting field (FOF) ramps up
during decision formation. In another study, Yartsev et al. (2018) shows
that optogenetic manipulation of striatal neurons in rats disrupts the
evidence accumulation process (see also subsection 1.3.1). As men-
tioned in section 1.1, sensory information integrates with previous
experiences to reach a decision. Recently, numerous studies have fo-
cused on understanding the underlying process of this history effect,
which I discuss in section 1.3.

The neural signals for choice are identified both in lower and higher
brain areas, suggesting that information flow in PDM is both feedfor-
ward and feedback. For example, in monkeys, the activity of sensory
neurons in the visual cortex is correlated with decisions (Nienborg and
Cumming, 2010). Similarly, choice signals are also identified in other
areas of the brain such as the basal ganglia, the frontal cortex, the PPC,
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and the motor cortex (Steinmetz et al., 2019; Buckley et al., 2009; Lee
et al., 2007; Thura and Cisek, 2014; Pape and Siegel, 2016). For example,
some studies show that prior to choice commitment, the neural activ-
ity in the motor cortex builds up reflecting competing choices (Cisek
and Kalaska, 2010; Klaes et al., 2011) and upcoming response options
(Donner et al., 2009; Lange et al., 2013). Other studies show that neural
activities in the lateral PFC during a WM task correlate with optimal
choice (Buckley et al., 2009; Lee et al., 2007). Choices in PDM are
followed by outcomes. The impact of the outcome and its integration
in the subsequent decision is discussed in subsection 1.3.3.

In summary, numerous studies identify neural correlates of PDM
across multiple brain areas. However, research on understanding its
causal mechanism is still in its early stages. Rigorous psychophysics
studies combined with neural recording and circuit manipulation will
give us a more detailed description of the underlying processes.

1.3 intrinsic variability in decision-making

Decisions of both humans and animals show substantial variability,
even when exposed to similar environments. While some variability
remains unexplained, a substantial fraction can be explained. Explan-
atory factors include previous experience, expected reward size, mo-
tivation, and attention state, and the speed-accuracy trade-off (SAT). In
subsection 1.3.1 I discuss the SAT and its underlying neural mechan-
isms. Next, in subsection 1.3.2, I discuss the influence of history effects
(previous stimulus, previous response, and outcome) and expected
rewards on decision-making. Finally, in subsection 1.3.3 I discuss three
specific brain areas that play a role in integrating these effects with
sensory information, i.e., the prefrontal cortex, the posterior parietal
cortex, and the striatum.
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1.3.1 Speed-accuracy trade off

There is a fundamental trade-off between the speed at which decisions
are made and the probability that they are optimal (Wickelgren, 1977;
Heitz, 2014). This speed-accuracy trade-off (SAT) exists across species
(Franks et al., 2003; Marshall et al., 2009; Wenzlaff et al., 2011; Heitz
and Schall, 2012) and modalities (Ings and Chittka, 2008; Palmer et al.,
2005; Rinberg et al., 2006). It was first observed in 1911: When human
subjects were shown two lines and asked to identify the longer one,
their reaction time (RT) and accuracy were not independent (Henmon,
1911). In the following years, empirical understanding of the SAT
progressed largely in parallel with the theoretical models of sequential
decision-making (see section 1.1). Here, I discuss empirical evidence
of the SAT as well as its neural representation.

The underlying framework of the SAT relies on the theory that de-
cision thresholds can be adjusted to trade off speed and accuracy
(Heitz, 2014). Decisions can be made faster by lowering the threshold,
thus requiring less information. Empirical studies show that animals
can be trained to adjust their decision threshold (Balci et al., 2011;
Mendonça et al., 2020). For example, Heitz and Schall (2012) trained
monkeys in a visual search task to analyze this phenomenon. Follow-
ing a cue, when presented with different rewards and punishment
contingencies, monkeys adjust their RT. In both humans and rodents,
studies emphasize that RT increases with trial difficulty (Kurylo et al.,
2015; Plainis and Murray, 2000), as animals spend more time accumu-
lating evidence to reach the decision threshold. For example, using a
visual task, Kurylo et al. (2015) shows that RT increases when contrast
and/or stimulus duration decrease.

Neuroimaging studies demonstrated that neural activity in the pre-
frontal and subcortical areas varies during information accumulation.
Specifically, such variation was identified in LIP (Roitman and Shadlen,
2002), FEF (Hanes and Schall, 1996; Boucher et al., 2007), superior col-
liculus (Ratcliff et al., 2003), and basal ganglia (Ding and Gold, 2010).
For example, the firing rate of neurons in LIP increases during evidence
accumulation and plateaus when the decision threshold is reached.
The baseline activation of these neurons increases when prioritizing
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speed, enabling them to reach the decision threshold faster (Heitz
and Schall, 2012; Hanks et al., 2014). Studies with human subjects
also identified a distinctive pattern of brain activity between those
prioritizing speed and those prioritizing accuracy: The former shows
higher baseline activation of the supplementary motor area, while the
latter shows it in the prefrontal cortex (Perri et al., 2014).

1.3.2 Influence of history effects and expected rewards on decision-making

Decisions are influenced by previous experience. For example, behavior
can often be influenced by both current and previous stimuli. The first
evidence of such history effects was reported in the early 20th century
and is known as ’contraction bias’ (Hollingworth, 1910). Hollingworth
showed that the perception in humans of a stimulus is biased towards
the average of previously shown stimuli. Contraction bias has since
been demonstrated across species and modalities, ie., visual (Olkkonen
et al., 2014), somatosensory (Fassihi et al., 2017), and auditory (Akrami
et al., 2018; Raviv et al., 2014). Most of these studies applied working
memory tasks in which the subject reported the perceived stimulus
after a time delay (Akrami et al., 2018). Hence, they emphasize that
contraction bias is integrated at a post-perceptual level. However, a
few recent studies suggest that the influence of previous stimuli can
already happen at the perceptual level (Fritsche et al., 2017; Patten et
al., 2017). For example, using fMRI on human participants, Patten et al.
(2017) shows that systematic bias in orientation perception correlates
with neural activity in V1, suggesting previous stimuli influence neural
processing from the earliest stage of cortical processing.

Choices in PDM tasks are often followed by external feedback: a reward
for a correct decision and a punishment for an incorrect decision. Such
feedback might influence subsequent choices, for example, through
feedback-driven learning (Law and Gold, 2009; Seriès and Seitz, 2013).
Feedback can influence expectations and thereby contribute to history
effects. In fact, it is speculated that feedback changes a subject’s per-
ception of subsequent information and gives rise to decision-making
strategies. A commonly observed strategy is “win-stay / lose-shift”,
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i.e., a bias to repeat a rewarded choice and avoid a punished choice
(Fründ et al., 2014; Abrahamyan et al., 2016; Busse et al., 2011; Akrami
et al., 2018). This strategy is frequently observed when the probabil-
ity of making a correct response is low, for instance, in the presence
of ambiguous stimuli such as low contrast (Akrami et al., 2018; Lak
et al., 2020b). In fact, these observations are consistent with Bayesian
Decision Theory (BDT; see also section 1.1).

Reward size also influences PDM. Under asymmetric reward con-
ditions, where one alternative holds a larger reward than the other,
subjects have a strong preference towards the larger reward alternative
(Busse et al., 2011; Rorie et al., 2010). This preference is known to in-
crease with trial difficulty and it influences decision-making strategies
(Lak et al., 2020b). While the impact of reward expectation on be-
havior is unambiguous, the underlying neural mechanism remains
unclear. Some studies suggest that reward information already affects
sensory processing (Cicmil et al., 2015; Saproo and Serences, 2010;
Weil et al., 2010), others provide evidence that later stages of decision-
making are also affected (Rorie et al., 2010; Chen et al., 2015) (see
subsection 1.3.3).

In summary, history effects and expected rewards influence decisions.
In controlled randomized laboratory experiments, such influences lead
to reduced performance. However, the real environment is temporally
stable and predictable, and history effects are beneficial in such an
environment with temporal structure. For example, such biases en-
courage heuristic decision-making and prioritize speed and resources
to reach ’accurate enough’ if not ’perfectly accurate’ decisions. Hence,
evolutionary pressure might have forced organisms to use necessarily
limited neural resources efficiently by integrating previous informa-
tion with current sensory information to reach a decision faster. In
subsection 1.3.3, I discuss brain areas that are involved in integrating
this information.
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1.3.3 Neural integration of prior information and reward expectation

History effects and expected rewards influence PDM by modulating
neural activity in brain areas such as PPC (Akrami et al., 2018; Hwang
et al., 2017), PFC (Sul et al., 2010; Amiez et al., 2006; Lak et al., 2020b),
and the striatum (Hwang et al., 2019; Balleine et al., 2007; Samejima
et al., 2005; Lau and Glimcher, 2008; Lauwereyns et al., 2002; Schultz,
2022). In this section, I summarize the literature on the role of these
areas in integrating history effects in PDM processes.

PFC receives information from various sensory areas such as the
somatosensory and the parietal cortex and has extensive feedback
and feedforward projections to mid-brain dopamine neurons (Blatt
et al., 1990). PFC is known for its role in guiding complex cognitive
behavior, retrieving both long- and short-term memory (Corcoran and
Quirk, 2007; Narayanan et al., 2006; Seamans et al., 1995; Sul et al.,
2010) and encoding future rewards from past outcomes (Sul et al.,
2010; Amiez et al., 2006; Lak et al., 2020b). For example, a single-cell
study in rats shows that the neural activity of the medial PFC and
orbitofrontal cortex (OFC) correlates with the accumulated outcome
and choice from past trials (Sul et al., 2010). Numerous studies suggest
that neural activity in the medial PFC is associated with encoding
reward prediction error and optimizing history-related strategy when
task statistics abruptly change (Sul et al., 2010; Tervo et al., 2014).
Contrarily, neural activity in the OFC is associated with expected
outcomes, irrespective of it being rewarded or unrewarded (Sul et al.,
2010; O’Reilly et al., 2013; Schoenbaum et al., 1998).

As discussed in subsection 1.3.2, PPC plays an important role in
accumulating information during the decision-making process. PPC
receives visual, somatosensory and auditory input and numerous
studies have implicated its role in PDM (Bitzidou et al., 2018) (see
section 1.2). Recent studies emphasize its role in integrating history
effects (Akrami et al., 2018; Hwang et al., 2017). For example, Akrami
et al. (2018) trained rats to report the relative loudness of two signals,
following a delay period. The result showed that the inactivation of
PPC, during the delay period, reduces contraction bias. Contradicting
this observation, using mice Hwang et al. (2017) show that in an
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orientation discrimination task, PPC inactivation during the inter-trial
interval but not during the delay period reduces history effects. In both
of these studies, PPC inactivation during stimulus presentation did
not influence decisions. Taken together, the recent literature suggest
a critical role of PPC in integrating history effects. However, it is
still debated at what stage of information processing these effects are
integrated in the decision-making processes.

Given that PPC neurons mediate history effects, the question arises, of
where PPC sends this biased information to affect choices. One of the
prime downstream candidates is the Striatum (Hwang et al., 2019; Bal-
leine et al., 2007). The striatum receives input from both the prefrontal
and the sensory cortex, and is an important part of the cortico-basal
ganglia-thalamic circuit (Thibaut, 2016; Haber, 2022; Voorn et al., 2004).
In the past decade, its role in encoding context-dependent learning and
reward prediction error has been extensively emphasized (Samejima
et al., 2005; Lau and Glimcher, 2008; Lauwereyns et al., 2002; Schultz,
2022). Particularly, researchers have shown that the striatum encodes
the value of action in choice-task (Samejima et al., 2005; Lau and
Glimcher, 2008). Supporting this claim, Tai et al. (2012) shows that
optogenetic stimulation of neurons in the dorsal striatum bias choices
towards the side with a larger reward value. Using micro-stimulation
on monkeys performing the RMD task, studies suggest that striatal
neurons incorporate this bias by shifting the starting point of the
evidence accumulation (Ding and Gold, 2012b).

In summary, in this section, I give a brief overview of three brain areas
associated with history-effect. However, one of the prime questions,
that remains unanswered is the neural circuitry and mechanism by
which these history effects are integrated into the decision-making
process. A deeper understanding of this process requires identifying
circuitry that governs flexible integration of such effects in the decision-
making process. As discussed above, by combining carefully designed
behavioral experiments with neural recordings, and optogentic or
pharmacological manipulations, more recent research has focused on
understanding the underlying causal mechanism of history effects.

12



2
O B J E C T I V E S

The overall objective of this Ph.D. project is to understand how re-
cent history of stimuli, choices, and outcomes influence subsequent
behavior and neuronal activities. To this end, the specific objectives
are:

1. Design behavioral task, assemble setup and establish behavior.

a) Develop a new experimental computer-controlled setup to
train head-fixed mice and to record behavioral activity

b) Design, implement and execute behavioral training requir-
ing minimal supervision

2. Quantify history effects on decision-making during learning,
task performance and reward manipulation.

3. Perform chronic recording across primary visual cortex.

a) Implement a computer-controlled setup to allow simultan-
eous recording of behavior and neuronal data

b) Adapt chronic recording using an immobile-silicone probe
for long-term neuronal recording

c) Evaluate stability of neural responses over time
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3
M AT E R I A L S A N D M E T H O D S

In this section, I discuss the methods used to acquire and analyze
the data reported in this thesis. All procedures complied and were
approved by the German animal welfare law (Tierschutzgesetz: ROB−

55.2 − 2532.Vet_02 − 16 − 33 and ROB − 55.2 − 2532.Vet_02 − 21 −

137).

In section 3.1 I discuss the animal model used in the experiments. Sub-
sequently, in section 3.2, I describe the behavioral setup and paradigms
in which the animals were trained. In section 3.3 I describe the method
used for electrophysiology experiments. Finally, in section 3.4 I give
a overview of the data analysis method used to obtain the results
presented in chapter 4.

3.1 animal model

Both behavioral and electrophysiology experiments were performed
on male C57BL/6 mice. The behavioral experiments were conducted
on 5 animals, and electrophysiology experiments were performed on
3 other animals. The mice were either from the breeding colony of the
Biocenter of the Ludwig Maximilian University of Munich or from
the Charles River facility. Animals were housed in groups of 2 males
in a transparent cage with nesting and environmental enrichment
materials. When experiments were not being performed, the animals
were kept in the animal facility rooms. The room was maintained at
a temperature of 22.5°and 50 % humidity with 12 h light/dark circle.
Three of the 5 behavioral animals were placed in inverse day/light
circle. Hence, for these three animals, experiments were conducted in
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the dark phase of their sleep cycle. Animals were at-least 8 weeks old
when the head bar was implanted.

3.2 behavioral experiments

In subsection 3.2.1 I describe the behavioral setup that I designed and
built. I further give an overview of various components of the setup
and how they measure behavior. Subsequently, in subsection 3.2.3 I
describe the behavioral paradigm used in this thesis (adapted from
Marques et al. (2018)). I also give a brief overview of different training
stages the animals were trained in to successfully learn the task. Finally,
in subsection 3.2.4 I describe the surgical procedure for head bar
implantation.

3.2.1 Behavioral setup

Mice were head-fixed and positioned in the center of a circular moun-
ted plastic disk. The disk enabled them to freely sit or run. To measure
running speed, a rotary encoder (MA3-A10-125-N Magnetic Encoder,
Pewatron) sampling at 100 Hz was fixed at the bottom of the disk (see
also subsection 3.2.2). Two lick spouts were positioned 4 mm apart
in front of the animal’s snout. Licking was measured by a custom-
made lick sensor (see also subsection 3.2.2). A syringe pump (Aladdin
AL-1000, WPI) delivered 4 µL water reward to the spout when the an-
imal made a correct response. This was controlled by a computerized
protocol written in MATLAB. Visual stimuli were presented using a
custom written Matlab program using Psychotoolbox package (Wilson
et al., 2011). The stimuli were presented on an LED monitor (FUJITSU
B24W-7, refresh rate 60 Hz, mean luminance of 50 cd/m2) positioned
at 25 cm distance from the animals’ eye. The stimulus presented was
either a vertical (270°) or a horizontal (180°) drifting sinusoidal grat-
ing at a 50 % contrast, with a circular aperture and a diameter of
70°. The spatial frequency was 0.05 cyc/° and the temporal frequency
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Figure 3.1: Behavioral Setup where the visual discrimination task was per-
formed

was 1.5 Hz. The stimulus duration was a minimum of 0.2–0.3 s and
maximal of 2–3 s.

3.2.2 Behavioral measurements

Locomotion

A miniature rotary absolute shaft encoder was placed on a rotating
disk. The MA3 reports the shaft position over 360° and provides
analogue voltage output in 10 bit resolution at a 2.6 kHz sampling
rate, sampled at 100 Hz. Running speed was calculated using the
reported voltage differences between two successive samples. In the
task, animals were defined to be in stationary position when the
animals’ speed fell below 20°/s.
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Lick Sensor

Based on Goltstein et al. (2018), Weijnen (1989) and Slotnick (2009), a
custom-made lick detection circuit was used. Each lick spout was a
part of a particular circuit, and the mouse short-circuited by licking
the spout. This resulted in a voltage drop, which was registered by
the digital port of the data acquisition system (Labjack U6). Refer to
Goltstein et al. (2018) for detailed description of the sensor.

For experiments involving electrophysiological studies, due to elec-
trical interference with the neuronal recording, a current-based sensor
could not be used. Hence, a piezo-based sensor was used (Schwarz
et al., 2010). A miniature piezo element, which detected vibration, was
glued to the lick spout. The detected output voltage was amplified,
high pass filtered, and a lick was detected when a certain threshold
was crossed. Refer to Schwarz et al. (2010) for detailed description of
the sensor.

Behavior monitoring and eye tracking

The setup were equipped with two cameras. One camera (IC-3140W,
Edimax) was used to monitor the mouse behavior. The second camera
(FMVU-03MTM-CS, FLIR Integrated Imaging Solutions and 4 mm 1:1.2
Camera Lens, Computar) was mounted below the lick spout and was
used to monitor the licking behavior and for precise positioning of the
lick spouts. For the electrophysiological experiments, eye movements
were monitored under infrared illumination using a zoom lens (Navitar
Zoom 6000) coupled to a camera (Guppy AVT, frame rate 50 Hz).

3.2.3 Behavioral training

One week after head-bar implantation, mice were habituated to head
fixation on the disk. After at least 1 additional week, they were placed
in a water restriction regime. Following the head-bar implantation,
body weight, and health score were monitored daily, and mice with
weight losses greater than 15% or any distress were removed from
the experiment and placed on ad libitium water. After training started,
mice received water for correctly performing the task. Training sessions
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were typically performed 5 days a week. On days without training,
mice were given at least 25 mL of water per kg.

Behavioral Tasks

2 s

0.8 s

Incorrect lick 

2 s

...0.2 s

7 s ...

Time out

Trial
 initiation

Stimulus
 onset

Correct lick
Reward

Lick left/ lick right
orientation discrimination

Grace 
period

Max response
window (2.8 s)

Time (s)
https://scidraw.io/

Figure 3.2: Schematic of the final task and trial structure.

During the initial stage of behavioral training, mice were given a
water drop (∼ 4 µL) as a reward for licking one of the two lick spouts.
During this ’0% contrast stimulus’ training stage, no grating but only
the mean luminance gray screen was presented. To discourage mice
from developing any bias towards a particular side, the mice could
only lick a particular lick spout a maximum of 5 consecutive time,
after which they had to switch to the other spout to receive a reward.
This training regime was followed until mice were able to fulfill the
minimum daily water intake requirement (25 mL per kg) through
the experiment alone (i.e., until there was no need to provide them
with additional water outside the experiments). This typically took
1-2 training sessions. Following these initial training sessions, rewards
were only provided when mice sat still (no running or licking) for 0.8 s.
The animals typically moved to the ’switch task’ training phase after
2-3 days.

During the ’switch task’ phase of training, sitting still triggered the
presentation of a grating stimulus (2–3 s duration). A water reward
was delivered to the mice after the first correct lick, following a brief
delay from the onset of the stimulus (0.2 to 0.3 s; grace period). During
this grace period, the mice were still permitted to lick, but their licks
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were not taken into account for decision-making purposes. Licks to
the incorrect side were ignored and did not affect the possibility of
rewarding the first correct lick later in the same trial. Trials without
a response after 2–3 s of stimulus presentation and additional 1 s of
gray screen were considered missed trials. After mice performed a
few sessions in this training phase, incorrect trials were introduced.
The decision in each trial was determined by the first lick after the
grace period. A correct choice resulted in a water drop reward, while
incorrect choices were penalized with a time-out period lasting 7 to 9 s.
During this time-out, a flickering visual stimulus was displayed, and
white noise was played. After a rewarded trial, the stimulus associated
with the reward was shown for 1 to 2 seconds.

Reward manipulation
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Figure 3.3: Session schematic for behavior paradigm with imbalanced reward
condition

After animals reached stable performance and enough trials were
accumulated for analysis, to understand how mice trade between
stimulus-related and contextual information, a block of trials with
stimulus-specific imbalances of reward was introduced. Specifically, in
each session, mice experienced a middle block of 50 trials, in which
they received double the reward for correctly choosing the lick spout
associated with one of the two stimuli (e.g., horizontal). No other
aspect of the task changed in these blocks, and hence the imbalanced
reward blocks, in principle, did not introduce any new behavioral
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requirements. To ensure that the animals did not develop any long term
changes in strategy or biases, such imbalanced reward blocks were
preceded and followed by blocks with balanced reward; in addition, the
stimulus and hence lick side with double reward alternated between
sessions.

3.2.4 Surgery: head bar implantation

Animals were subcutaneously administered Metamizole (200 mg/kg,
sc, MSD Animal Health, Brussels, Belgium). 30 minutes later, they
were transferred to an induction chamber and anesthetized using iso-
flurane (5% in oxygen, CP-Pharma, Burgdorf, Germany). Mice were
then transferred to a heated-pad on the stereotactic apparatus (Drill
& Microinjection Robot, Neurostar, Tuebingen, Germany). Anesthesia
level was adjusted (0.5%–2% in oxygen) and consistently monitored
by verifying the absence of the pedal reflex, breathing and heart rate.
The body temperature was maintained at 37° C and monitored using
a closed-loop temperature-control system (ATC 1000, WPI Germany,
Berlin, Germany). During the entire surgery procedure following anes-
thetic induction the eyes were protected with an ointment (Bepanthen,
Bayer, Leverkusen, Germany) and the head was stabilized using ear
and bite bars.

Once the animal was in stable condition, Buprenorphine (Bupren-
orphine, 0.1 mg/kg, sc, Bayer, Leverkusen, Germany) was admin-
istered. Following which the animal’s hair was thoroughly removed
from the head using a depilatory ointment. The skin was then disin-
fected using iodine solution (Braun, Melsungen, Germany). A local
anglesic Lidocaine hydrochloride (7 mg/kg, sc, bela-pharm, Vechta,
Germany) was subcutaneously injected along the midline. Following
this a small incision was made along the injection line using a scalpel.
A small part of the skin where the head bar was to be placed was
removed. The tissue residue around the incision site was removed and
carefully cleaned using a drop of H2O2 (3%, AppliChem, Darmstadt,
Germany).
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Before head bar implantation, it was verified that the animal’s head
was in a skull-flat configuration. For this the four landmarks (lambda,
bregma and two points 2 mm to the right and to the left, respectively)
were utilized. For mice targeted for the electrophysiology study, V1

(AP: -2.8 mm, ML: -2.5 mm) was marked to locate the future crani-
otomy site (see subsection 3.3.2). For better adhesion of the head plate
to the skull, OptiBond FL primer and adhesive Kerr dental (Kerr dental,
Rastatt, Germany) was applied on the exposed skull. The V1 marked
site and a position approximately 1.5 mm anterior and 1 mm to the
right of bregma were left exposed, as these sites were for craniotomy
and a miniature reference screw.

A lightweight stainless steel bar, with a round opening for the record-
ing site, was used for the head plate. The head bar was positioned over
the posterior part of the skull. For those mice used in electrophysiolo-
gical recordings, the round opening was centered on the marked re-
cording site. A thin layer of UV curing dental cement (Ivoclar Vivadent,
Ellwangen, Germany) was applied to the primer/adhesive layer on the
skull. The head-plate was placed on top of the cement and UV light
was used to cure the cement. For the animals used only for behavioral
studies the opening was also covered with dental cement, for the others
it was filled with the silicone elastomer sealant Kwik-Cast 604 (WPI
Germany, Berlin, Germany). For animals used in electrophysiology
study, a miniature reference screw (00-96 X 1/16 stainless steel screw,
Bilaney) was soldered to a miniature pin and was used as grounding.
The screw was placed posterior to the head post and covered with
dental cement.

At the end of the surgery the anesthesia was stopped, an antibiotic
ointment (Imex, Merz Pharmaceuticals, Frankfurt, Germany) or iodine-
based ointment (Braunodivon, 10%, B. Braun, Melsungen, Germany)
was applied around the wound and long term analgesic (Meloxicam,
2 mg/kg, Bohringer) was subcutaneously administered. The animal
was the transferred to an infrared light-heated cage with water and
food for recovery. The cage was covered with surgical tissue instead of
wood shaving. For 3 days post surgery (24 h interval), the animal was
subcutaneously administered with long term analgesic (Meloxicam,
2 mg/kg, Bohringer). For at least 7 days post surgery, the animal’s
health status was monitored, and recorded in a scoresheet. After at
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least 1 week of recovery, the animal was gradually habituated to
handling and head fixation. The habituation phase consisted of at least
3 days of handling, followed by head fixation. During this recovery
period, the animals were not trained and had food and water ad
libitum.

3.3 electrophysiological recordings

In order to achieve long-term neuronal recording, I chronically im-
planted an immobile silicon probe (see subsection 3.3.2 for a detailed
description). In subsection 3.3.1 I describe the neuronal visual stimuli
used in the electrophysiological studies, and in section subsection 3.3.2
I describe the surgical procedure for craniotomy.

3.3.1 Visual stimuli during neuronal recording

On most of the recording days, the animal performed 4 passive view-
ing and one behavioral tasks The passive viewing experiments were
used to monitor neuronal stability and responses over time. The first
experiment was orientation tuning, followed by the behavioral task,
sparse noise, checkerboard and finally an additional orientation tuning
experiment. In the following section, I give a brief overview of the
different stimuli presented during these experiments.

Orientation tuning

Drifting gratings with temporal and spatial frequencies of 0.05 Hz and
1.5 cyc/° respectively were used for orientation tuning experiments.
The gratings were presented for 2 s with a 0.5 s inter-trial-interval and
with 50% contrast. The grating direction was varied in step sizes of
30°. Each of the orientations were repeated 20 times. For all tuning
experiments, the spontaneous firing rate was assessed by including
trials in which only the mean luminance gray screen was presented.
The stimulus parameters matched the parameters used for the gratings
in the behavioral experiments.
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Sparse noise

I used sparse noise stimulus to map the ON and OFF subfields, to
measure receptive fields (RFs). The stimulus was presented for 100 ms
on a gray background at a random location on a virtual 16 × 16

grid. The stimulus was 5°, full-contrast non-overlapping black and
white squares. The RF centers for both ON and OFF sub-fields were
determined by fitting the neural responses with a 2D Gaussian (Liu et
al., 2010). I estimated the RF parameters online and relied on threshold
crossings of spiking activity at each recording channel, to place the
monitor in a position that covered as many RFs as possible.

Checkerboard stimulus

To determine the laminar location of the recording sites, mice were
presented with full-screen reversing checkerboard stimuli at 100%
contrast. The size of the stimulus was 5° and the temporal frequency
was 0.5 cyc/s. The stimulus duration was 1 s without any inter-trial
interval. Each experiment consisted of 150 contrast reversal.

Behavior stimulus

Visual stimuli matching the temporal and spatial frequency of orienta-
tion tuning experiments (see subsection 3.3.1) were used for behavior
experiments. Stimuli were either vertical (270°) or horizontal (180°)
drifting sinusoidal gratings.

3.3.2 Craniotomy and Probe implantation

Procedures were equivalent to that discussed in subsection 3.2.4 with
the following exceptions.

Craniotomy

At least 3 days before craniotomy, animals were provided with ad
libitum food and water. 24 hours before the probe implantation, mice
were fully anesthetized using the same protocol mentioned in subsec-
tion 3.2.4. The silicone Kwik-Cast was removed from the craniotomy
site and a craniotomy of approximately 1.5 mm2 was performed over
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V1 using a drill size of 02. The craniotomy site was protected with
Kwik-Cast. At the end of craniotomy, the analgesic Metacam was ad-
ministered. Metacam was administered in subsequent days only if the
animal showed any kind of discomfort.

Probe implantation

Figure 3.4: Implantation of chronic immobile silicone probe. (A) Craniotomy
with inserted probe. (B) Brain covered with kwick-cast and in-
serted probe with head stage attached. (C) Animal with probe
running on a disk.

The probes were implanted on three animals after training them on
the behavioral task for approximately three weeks. Animals were first
disk-trained, placed on a water-restriction regime, and trained to lick
and receive rewards. After they learned to do so, they were again
provided with ad libitum water for at least two days. The craniotomy
(subsection 3.3.2) was performed and 24 hours later, the probe was
implanted in a separate rig dedicated to electrophysiology.

For probe implantation, the animals were awake. As they were already
accustomed to the disk and head fixation, this did not provide any
additional discomfort. The animal was head-fixed and the probe was
lowered using a micro-manipulator to the required depth. I aimed for
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the primary visual cortex (V1), i.e., a depth of 1000-1200 µm below the
cortical surface.

Throughout probe implantation, the probe was connected to the head
stage and held by a neuronexus probe holder (IST-CM adapter). Neur-
onal recordings were performed using the OpenEphys system, and
LFP and spiking activity were monitored. Neuronal recording during
the implantation procedure allowed me to monitor any changes in
neural activity during the implantation process and to position the
probe at the desired depth and location. The location of the probe
was first verified by using a mapping stimulus, which could be inter-
actively controlled by the experimenter (hand-map). For example, I
used hand-map to hear neural activity and to roughly check receptive
field (RF) location. Before cementing the probe, the receptive fields
were mapped and orientation tuning experiments (subsection 3.3.1)
were also performed.

After verifying the probe position, I covered the craniotomy site with
a layer of Kwik-Cast. Finally, I applied several layers of dental ce-
ment (Ivoclar Vivadent, Ellwangen, Germany), and exposed each layer
with UV light before adding an addition layer. In the final stage, I
disconnected the head stage, removed the holder, and applied the final
layers of cement. Throughout the process, the eyes of the animals were
protected from the UV light. The animals were returned to their home
cage (along with their cage mates) and were allowed to recover for at
least one week before performing additional experiments.

3.4 data analysis

Data analysis was performed using Python. Data were organized in
a custom written schema using the relational database framework
"Datajoint" (Yatsenko et al., 2018).
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3.4.1 Calculation of behavioral performance

Behavioral performance was calculated as the ratio of the number of
correct trials to the number of completed trials. Missed trials were
removed from all analyses except when mentioned. The criterion for
an animal to have reached stable performance was when the animal’s
performance was (⩾ 66% correct) for 3 consecutive days (Goltstein
et al., 2018). Weekly performance was computed by pooling across all
sessions within a week, with Sunday being the first day of the week.

3.4.2 Logistic model analysis: integration of sensory evidence and recent
history

To quantify the behavior of the mice and to understand the task relev-
ant and task irrelevant factors, I carried out analyses to weigh the con-
tribution of the current sensory stimulus and various history-related
features on decisions. To achieve this, I used a logistic regression (LR)
Model. In the LR model, the log-odds of the dependent variable is
modeled as a weighted linear combination of independent variable.

Y = A ∗B0 +B ∗B1 +C ∗B2 + ...... +Bias (3.1)

This linear combination is then mapped non-linearly using the logit
function to infer a probability that the mouse selects the port associated
with the vertical grating on each trial.

P(Vertical) =
1

1+ eY
(3.2)

To understand the different strategies of the mice, I used various
variants of the models. Weights were fitted to each individual mouse
separately. In the following section, I give a brief overview of these
variants.
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History Dependent Variables

The sensory information comprised of the current (CS) and previ-
ous (PS) visual stimulus. The non-sensory information consisted of
previous response (PR).

Y = CS ∗W0 + PS ∗W1 + PR ∗W2 +Bias (3.3)

• The CS measured the influence of the current visual stimulus
on the decision, i.e. the strength of stimulus-choice associations.
The model consisted of the CS which took the value 1 for 270°
orientation and -1 for 180°.

• The PS measured the bias due to the presentation of the PS.
Consistent with the coding for the CS, the PS took the value 1 for
270° orientation and -1 for 180°.

• The PR measured the influence of the animals’ PR on the cur-
rent decision. Here, PR towards the spout associated with the
270° orientation took the value 1, and those towards the spout
associated with 180° orientation took the value -1.
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Figure 3.5: Schematics of LR model to capture the influence of CS, PS and PR
on choice.
(A) Example stimulus sequence (turquoise for stimulus with ho-
rizontal grating and yellow for stimulus with vertical grating),
response sequence (turquoise for lick on the spout associated with
horizontal grating and yellow for lick on the spout associated with
vertical grating), and associated outcomes (green for correct and
brown for incorrect lick) (B) LR model predicting the probability
to choose vertical based on a weighted combination of ’Current
stimulus’, ’Previous stimulus’, and ’Previous response’.

Here, the probability to choose the lick port associated with the vertical
stimulus was predicted by a weighted sum of influences related to
the current visual stimulus (horizontal or vertical), the previous-trial
stimulus (horizontal or vertical), and the previous-trial response. The
model found optimal weights and a bias term, which were mapped
non-linearly through a logistic function to yield the probability to lick
the spout corresponding to the vertical stimulus.
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Figure 3.6: LR model that predicts the probability of choosing the spout asso-
ciated with the vertical grating based on the previous outcome.

The second variation of the model captured the effect of bias resulting
from previous outcome. Besides the current sensory stimulus, this
variant of the model included side of correct and incorrect response, to
explain the history dependent bias to repeat or alternate its previous
response side (Hermoso-Mendizabal et al., 2020).

Y = CS ∗W0 +CR ∗W1 + IncR ∗W2 +Bias (3.4)

• The side of correct response (CR) is coded as -1 for correct re-
sponse associated with the horizontal like spout, +1 for correct
response associated with the vertical lick spout, and 0 for any
incorrect response. Positive weight assigned to CR provide evid-
ence for win-stay approach, i.e., bias towards the previously
rewarded lick spout.

• The side of incorrect response (IncR) is coded as -1 for incorrect
choices associated with the horizontal lick spout, 1 for incorrect
choices associated with the vertical lick spout, and 0 for any
correct response. Negative weight assigned to IncR captured a
lose-shift approach, i.e., an avoidance bias towards the previously
unrewarded lick spout.

In summary, in this variant, I modified the model and exchanged the
predictors for PS and PR by two alternative predictors reflecting their
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interaction. The interaction terms (side of correct response and side of
incorrect response) reflect a “stay” (positive weight) or “shift” (negative
weight) strategy towards a previously chosen side, depending on the
previous outcome.

Interaction with RT

As discussed in subsection 1.3.1, RT influences decision-making. To
understand this influence, I also included RT as a predictor. The
predictors for CS, PS, and PR were divided into two bins each (S and
L), with S referring to trials with short RT (< 0.5 s), and L to trials
with long RT (>= 0.5 s) on the current trial.

During learning (Figure 4.3 and Figure 4.4) only trials with long RT
on the current trial were considered. In Figure 4.5A, Figure 4.6A,
Figure 4.10 , Figure 4.11 and Figure 4.12 the RT on the current trial
was taken into account for all variables. In Figure 4.5B, Figure 4.6B the
RT on the current trial was taken into account for task relevant variable
and the RT on previous trial was taken into account for history related
variables.

Regressors CS PS PR

Orientation Ver Hori Ver Hori Ver Hori
Short RT 0 0 0 0 0 0

Long RT 1 -1 1 -1 1 -1

Table 3.1: Example variable coding for trials with long reaction time

LR for manipulated trials

For manipulated trials, I expressed choices with respect to the rewar-
ded stimulus, hence the side with double reward was coded as +1 and
that with single reward was coded as -1.
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3.4.3 Predictive accuracy test

To measure the predictive accuracy reported in Figure 4.3F and Fig-
ure 4.11C, the classification table approach was used. In this table, the
observed value for the dependent outcome and the predicted values
are cross-classified. For the values reported in this thesis, a cut-off
value of 0.5 was used: For example, all predicted values above 0.5
were classified as predicting that the animal chooses the lick spout
associated with a vertical grating, and for the rest, the chosen side was
predicted to be to the lick spout associated with the horizontal grating.
The predicted decision was compared with the actual choice that the
animal made, to find the accuracy of the model.

Accuracy = 100 ∗ n (Correctly predicted choices)
n (All choices)

(3.5)

3.4.4 Validation of logistic regression coefficient and model

To calculate the significance of the model weight and accuracy, the
bootstrapping method was used. The confidence interval for all coeffi-
cients, accuracy, and bias was computed by dropping 10 % of the data,
refitting the model and extracting the parameters of interest. This was
repeated 1000 times and 95 % confidence intervals were calculated for
the parameters of interest.

3.4.5 Optimal bias for manipulated trials

When reward sizes vary across stimuli, it is possible to increase the
expected reward by introducing a bias toward the stimulus that is
associated with a higher reward. The expected reward value can be
represented as
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E[R] = P(StimH) ∗ P(ChoiceH | StimH,BACC,Bias) ∗ RewardH+

P(StimV) ∗ P(ChoiceV | StimV ,BACC,Bias) ∗ RewardV

(3.6)

Here, H and V refer to Horizontal and Vertical stimulus respectively,
and BACC represents baseline accuracy. P(StimH/V) and RewardH/V

are fixed by the experimenter.

The conditional choice probability P(Choicei | Stimi,BACC,Bias) can
be represented as

P(Choicei | Stimi,BACC,Bias) = 1

1+e−(f(BAcc)+δbias) (3.7)

where f(BAcc) refers to the value that sets the probability of making a
correct choice equal to baseline accuracy when there is no bias.

P(Choicei | Stimi,BACC,Bias = 0) = BACC = 1

1+e−f(BAcc)

⇒ BACC = 1
1+e−f(BAcc)

⇒ f(BAcc) = ln(1−BACC
BACC

)

(3.8)

and delta controls whether to add or subtract the bias depending on
the stimulus

δ =

1, StimH

−1, StimV

Conditioning Equation 3.6 on bias yields:

E[R | Bias] =
P(StimH) ∗ RewardH

1+ e−(f(BAcc)+Bias)
+

P(StimV) ∗ RewardV

1+ e−(f(BAcc)−Bias)
(3.9)

Maximizing Equation 3.9 with respect to bias yields the reward max-
imizing bias.
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3.4.6 Statistical analyses

Unless noted otherwise, the error-bars shown in all plots for behavi-
oral analysis for individual mice represent 95 % confidence intervals,
calculated via the bootstrapping method. Standard deviation across
animals is reported when the mean value for the animals is reported.
The P value is obtained for the mean value across animals from the
Student’s t-test.

3.4.7 Electrophysiological analyses

Preprocessing and Spike Sorting

The extracellular signal was continuously recorded using a 32 chan-
nel recording electrode (CM-32, NeuroNexus). The signals were first
filtered between 1 and 7600 Hz and digitized using the Intan head
stage (RHD 2132). I first used Kilosort (Pachitariu et al., 2016) to obtain
single unit activity from extracellular recordings. This open source
automated Matlab toolbox removed any saturations and clustered
responses. Subsequently, I used Spyke (Spacek et al., 2009) to manually
refine the clusters. This Python-based toolbox allowed me to select
time ranges and channels around clusters for realignment of spikes
and for representation of cluster in three dimensions. This representa-
tion was done via dimensionality reduction (multichannel PCA, ICA
and/or spike time). The clusters were further split, using a gradient
ascent based algorithm (GAC). Finally, following pairwise comparison,
similar clusters were merged.

Firing rates

For each unit, the visual responses to a specific stimulus was computed
as the mean firing rate over the time window defined by stimulus onset
and offset. The error bar indicates the standard error of the mean.

For Figure 4.16, the difference in firing rate between two conditions is
reported. The error bar indicates the standard error of the mean. The
p value is calculated using a two sample t-test.
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Orientation tuning

As mentioned in subsection 3.3.1, drifting sine wave gratings were
used to test neuronal responses to different orientations. Orientation
tuning curves in Figure 4.15B, D were fitted to the neurons’ responses
with a sum of two Gaussians, having peaks 180° apart. The amplitude
of two Gaussians was allowed to vary, but baseline and width were
restricted to be the same (Liu et al., 2009) .

R(θ) = R0 + Rpe
−(θ−θp)2

2σ2 + Rne
−(θ−θp+180)2

2σ2 (3.10)

Where,

• R0: baseline response

• Rp: response at preferred direction

• θ: stimulus orientation (0° – 360°)

• θp: preferred orientation

• σ: tuning width

• Rn: neuron response at the null direction.

Receptive field fitting

Receptive field maps shown in Figure 4.15A were obtained in sparse
noise experiments. The average activity during stimulus presentation
to the sparse noise stimulus were fitted to the center of 2D Gaussian
for both ON and OFF fields.

f(x,y) =
A

2πab
e(

x ′2

2a2
−

y ′2

2b2
) + c (3.11)

Where,

• A: the maximum amplitude

• a and b: ellipse half-axes
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• x ′ and y ′: the transformations of the stimulus coordinates x and
y considering the angel (θ) and the center of the ellipse (xc, yc)

• c: offset

Euclidean distance

To identify the same unit recorded across days in Figure 4.14, I calcu-
lated the Euclidean distances between each point of the spike wave
forms between a pair of units.

d(p,q) =
n∑
i=1

(qi − pi)
2 (3.12)

As single units recorded on the same day were obtained after exhaust-
ive pair-wise comparison, I used the minimum Euclidean distance
between these units, as the threshold for distinct units.

3.4.8 Identification of recorded brain area

To verify the site of probe implantation and to access damaged caused
to the tissue, I performed histology.

Following the final recording session, mice were subcutaneously ad-
ministered Metamizole (200 mg/kg, sc, MSD Animal Health, Brussels,
Belgium). 30 minutes later, they were deeply anesthetized using a
mixture of Medetomidin (Domitor, 0.5 mg/kg, Vetoquinol, Isman-
ing, Germany), Midazolam (Climasol, 5 mg/kg, Ratiopharm, Ulm,
Germany) and Fentanyl (Fentadon, 0.05 mg/kg, Dechra Veterinary
Products Deutschland, Aulendorf, Germany). Animals were then per-
fused first with Ringer’s lactate solution and subsequently with 4 %
paraformaldehyde (PFA) in 0.2 M sodium phosphate buffer (PBS). The
brain and the probe were carefully removed. The brain was postfixated
in PFA buffer for 24 hours and then rinsed with and stored in PBS at
4°C.
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Before slicing, the brain was first washed in PBS. To preserve the brain
shape during cutting, liquid agarose was poured and left to solidify.
Afterwards, the brain was glued to the vibratome holder (Leica VT1200

S, Leica, Wetzlar, Germany). The primary visual cortex areas was cut
in 40 µm thick slices and each slice were placed in microwells filled
with PBS solution.

Some slices were stained with DAPI stain (DAPI, Thermo Fisher
Scientific, Waltham, Massachusetts, USA; Vectashield H-1000, Vector
Laboratories, Burlingame, USA) and mounted on glass slides, and
cover-slipped. Other slices were Nissl stained. For the Nissl stained
slices, a microwell was filled with a PBS solution with 1:300 green
nissl concentration. The microplate was left for at least 12 hours in the
shaker. Following this, in 20 min intervals between each wash, slices
were washed 3X in PBS. The slices were finally placed on glass slides
and cover-slipped. The stained brain slice was assessed for recording
site and tissue damage.
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4
R E S U LT S

4.1 behavior performance analysis

In the following section, behavioral data obtained from five mice
are discussed. I first analyzed performance during the behavioral
task. Next, I used LR to disentangle the impact of task relevant and
irrelevant factors during learning. I further focused on behavior during
stable performance to emphasize the impact of task-irrelevant factors
on choice. Towards, the end of this section, I report on the use of
reward expectation, to show that irrelevant factors further bias choices,
even for trained animals.
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4.1.1 Mice learned the 2AFC orientation discrimination task
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Figure 4.1: Mice learn to perform a lick-left / lick-right orientation discrimin-
ation task. (Continued on next page)

40



Figure 4.1: (Continued) (A) Two example sessions, showing licking behavior
of an example mouse during the naive training stage and during
stable performance. Each row corresponds to a trial, with trials
sorted by orientation (left: vertical; right: horizontal). Each tick
represents a lick (turquoise: lick on the spout associated with the
horizontal grating; yellow: lick on the spout associated with the
vertical grating). Dark green dots: correct trials. Black dashed lines:
grace period. (B) Performance for all trials in the orientation dis-
crimination task, computed by pooling across all sessions within
a week.

To investigate how mice combined stimulus information and prior
experiences during visual PDM, I trained head-fixed mice to perform
a lick-left / lick-right orientation discrimination task. Refer to sub-
section 3.2.3 for a detailed description of the behavioral task. I first
studied how mice learned this task. As expected, early in training,
the mice performed at chance level: for either the horizontal or the
vertical orientation, they randomly licked on the right or left lick spout
(Figure 4.1A, top). As training progressed, mice licked the rewarded
side more consistently (Figure 4.1A, bottom). Mice learned the task in
several weeks of training, reaching the criterion for stable performance
(⩾ 66% correct) for 3 consecutive days in 6-8 weeks (67.20± 0.50, N = 5

mice; Figure 4.1B).
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4.1.2 Mice performed better on trials with long RTs
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Figure 4.2: Development of RT and performance during learning.
(A) Median RT (with respect to stimulus start) in the orienta-
tion discrimination task, computed by pooling across all sessions
within a week. (B) Cumulative RT distributions for an example
mouse during the naive (dotted line) and trained stage (solid line).
Vertical dotted line indicates the separation boundary for short
and long RT. (C) Performance for trials with short (dotted lines)
and long RTs (solid lines). (D) Performance vs RT during stable
performance. (A, C, D) grey: individual mice; black: mean across
n = 5 mice.

During learning, not only did the overall performance improve, but
also RT decreased systematically (Figure 4.2A), especially for those
mice which had longer RTs in the early learning phase. In particular,
the RT density plot revealed that there was a conspicuous increase in
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short latency licks (RT < 0.5 s) after learning (Figure 4.2B). To under-
stand whether short latency licks reflected better task performance or
instead reflected responses driven by other factors, such as impuls-
ive licking or timed responses without considerations of the visual
stimulus, trials were separated into those with short (< 0.5 s) or long
RTs (⩾ 0.5 s) (Figure 4.2C). This analysis showed that for trials with
short RT, the mice performed at chance level throughout and even
after learning. In contrast, performance for long RT trials improved
and plateaued around 72± 1.5%. This phenomenon persisted even
during stable performance. To illustrate this, I calculated performance
for trained mice as a function of RT in 0.3 s bins. For all mice, the
performance gradually improved with increasing RT, plateauing at
an optimal performance of ≈ 75.5% at RTs of 1.1− 1.7s. Notably, the
performance declined slightly following this plateau, however, the
performance remained close to 66%. This further supports the hypo-
thesis that short RT trials during and after learning correspond to
trials with suboptimal performance and potentially overall lower task
engagement.
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4.1.3 During learning, weight assigned to CS increased, while those as-
signed to PS and PR decreased.
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Figure 4.3: Adjustments of weights assigned to task-relevant and task-
irrelevant influences during learning.
(A-C) Development of model weights across learning for ’Current
stimulus’ (A), ’Previous stimulus’ (B), ’Previous response’ (C).
(D) Correlation between task performance and weight assigned
to ’Current stimulus’. (E) Bias term B0 of the model; dotted line
i.e. 0.5 indicates no bias. (F) Model accuracy, computed as the
proportion of correct prediction by the model. In (A, B, C), week
0 corresponds to the week in which individual animals reached
stable performance (66% correct across three consecutive days).
Trials with short RTs (< 0.5 s) were excluded from this analysis.
Grey: individual mice; black: mean across n = 5 mice.
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As discussed in subsection 3.4.2, in the first variant of the model I
predicted the probability to choose the lick port associated with the
vertical stimulus by a weighted sum of influences related to the current
visual stimulus (CS) (horizontal or vertical), the previous-trial stimu-
lus (PS) (horizontal or vertical), and the previous-trial response (PR).
To quantify which factors might drive the change in mouse beha-
vior during learning, I next disentangled the impact of several task-
relevant and task-irrelevant influences on choices with a LR framework
(Figure 4.2C). Since short RT trials were indicative of poor performance
and potentially lack of task engagement, the trials with RTs < 0.5 s
were excluded from this analysis.

To understand how CS and PS and the PR contributed to the im-
provement in task performance, I analyzed the development of model
weights throughout the learning progress. The larger the magnitude
of a particular weight, the more the animal’s behavior relied on the
corresponding factor. During learning, the weight assigned to the CS
increased (Figure 4.3B). This observation is consistent with the im-
provement in behavioral performance over weeks (Figure 4.2 C solid
line). In contrast, the weights assigned to task-irrelevant influences, i.e.,
the PS and the PR, decreased (Figure 4.3C–D), suggesting that over
time mice correctly identified the association between stimulus orient-
ation and reward. In fact, week-by-week performance in the task was
linearly related to the weight assigned to the CS (R2 = 0.98± 0.0094;
Figure 4.3D).

Overall, the animal did not show a bias towards any particular side
throughout learning and stable performance (Figure 4.3E). This was
most likely influenced by the training phases introduced before the
final task, where animals were discouraged to repeatedly choose the
same side (see subsection 3.2.3 for task description).

This simple LR model (subsection 3.4.2) also contained the majority of
influences on choice, because it was able to correctly predict more than
70% of the variance on choice (Figure 4.3F). In addition, the overall
accuracy of the model was consistent over the weeks during learning,
suggesting that the major contributions to the animals’ choices can
be described by the same variables throughout learning and stable
performance.
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4.1.4 During learning, the impact of the win-stay strategy decreased
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Figure 4.4: Impact of previous response and outcome on choice during and
after learning.
(A, B) The probability to choose vertical on the current trial, separ-
ated based on previous correct (top) and incorrect (bottom) choices
during (A) and after (B) learning for an example mouse. I and J
are computed by pooling across all sessions in week 2 and week 6

for the example mouse. Turquoise: trials with horizontal stimulus
in current trial; Orange: trials with vertical stimulus in current trial
(C, D) Development of model weight across learning for ’Side of
correct response’ (C) and ’Side of incorrect response’ (D). In (C,
D), week 0 corresponds to the week in which individual animals
reached stable performance; trials with short RTs (<0.5 s) were
excluded from this analysis
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Having found influences of both the previous response and the pre-
vious stimulus on the current decision, I next sought to differentiate
their impact depending on the past trial’s outcome. As discussed in
detail in subsection 3.4.2, I modified the model and exchanged the
predictors for the previous stimulus and the previous response by two
alternative predictors reflecting their interaction: the side of correct
and incorrect choice. The positive weight for the interaction terms (side
of correct response and side of incorrect response) reflect a ’stay’ (pos-
itive weight) or ’shift’ (negative weight) strategy towards a previously
chosen side, depending on the previous outcome.

To illustrate the impact of the previously chosen side on the previous
outcome as closely as possible, Figure 4.4A and Figure 4.4B show data
from an example mouse before (week 2; Figure 4.4A) and after (week
6) Figure 4.4B learning. In the early learning stage, irrespective of
the stimulus, the overall tendency to repeat a previously chosen side
was high following both a correct (0.65) and incorrect (0.61) response.
However, the probability of correctly repeating a choice following
both rewarded and unrewarded trial was closer to chance level (0.55

and 0.46 respectively). Interestingly, when the naive mouse made a
switch, the probability for it to be incorrect was overall low (following
rewarded: 0.28; unrewarded: 0.34). For the trained mouse (Figure 4.4B),
the probability of correct stay increased compared to that of naive state
(following rewarded: 0.65; unrewarded: 0.62). Notably, the probability
of incorrect repeat was still high. However, the animal rarely made an
incorrect switch (following rewarded: 0.17; unrewarded: 0.20).

Examining the progression of weights assigned to the side of correct
response (Figure 4.4C) revealed that early in training, the tendency for
mice to repeat their choice after a correct trial was high. In the course
of learning, the impact of this ’win-stay strategy’ declined, but was still
present even during stable performance. Interestingly, as indicated by
weights for this interaction term (Figure 4.4D) mice showed a general
tendency to ’stay’, but this tendency was higher for trials following
a correct response. While this tendency to ’stay’ with the previous
response was not as strong after an incorrect trial as after a correct
trial, it was present during learning and persisted even after learning.
Taken together, progress in learning was paralleled by increases in
weight assigned to the current stimulus, but behavioral choices were
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also influenced by previous stimulus and response, with an overall
tendency to repeat the previous response.

4.1.5 History variables have stronger influence on choice when RT on the
current trial was short
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Figure 4.5: Impact of RT on the weights assigned to Current stimulus (CS)
and previous stimulus (PS) and previous response (PR) during
stable performance.
(A) Model weight for Current stimulus (CS), Previous stimulus
(PS) and Previous response (PR) with respect to RT on the cur-
rent trial. S: Short RT on current trial; L: Long RT on current
trial. (B) Model weight for Previous stimulus (PS) and Previous
response (PR) with respect to RT on previous trial. Left: RT on
the current trial was short. Right: RT on the current trial was long.
S: Short RT on previous trial; L: Long RT on previous trial. The
shaded area represents the RT on the current trial. Colours indicate
RT on the current trial.

Having studied how current and past information contribute to choices
during learning, I next focused on the period of stable performance
after learning, in which the larger number of trials allowed to test
additional factors. Mice completed an average of 200 trials per session
(range 168–230 trials), gathering an average of 5495 trials in total per
animal (range 3629–8267 trials) during the stable performance.
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Since behavioral results showed that short RTs were associated with
poor performance, I first investigated, within the logistic modeling
framework, the predictive power of RT on the differential weighting
of task-relevant and irrelevant factors. I divided the predictors for the
current and previous stimulus and previous responses into 2 bins each
(S and L), with S referring to trials with short RT (< 0.5 s), and L to
trials with long RT (>= 0.5 s) on the current trial (refer to section 3.4.2
for detailed description).

Consistent with the poor performance associated with short RTs, for
trials with short RT, the weight assigned to the CS was negligible
(0.44± 0.41,p = 0.16 (Figure 4.5A, (CS, S)), suggesting that on these
trials, animals failed to use relevant sensory evidence to guide de-
cisions. In contrast, the weight assigned to the CS was significantly
higher (2.16± 0.15,p < 0.001) for trials with long RTs (Figure 4.5C,
(CS, L)). Also, consistent with the earlier week-by-week analysis, sub-
stantial weights (> 0) were assigned to PS and PR irrespective of RT,
indicating that PS and PR influence decisions across all trials.

The history effects were stronger for trials with short RTs (PS: 1.65±
0.51, PR: 2.41± 0.34), compared to those with long RTs (PS: 0.54± 0.26,
PR: 1.24± 0.26) (Figure 4.5B, (PS, PR), p < 0.024). This suggests that,
in trials with short RT (p < 0.001), the choices are not random, but
predominantly influenced by stimulus and response in the previous
trial.

Next, I focused on the impact of the previous trial’s RT on the weight
assigned to task irrelevant variables. Interestingly, whether RT on the
previous trial was short or long did not impact the weight assigned
to these history-related variables (Current RT short: PS : p = 0.69, PR :

p = 0.13, Current RT long: PS : p = 0.32, PR : p = 0.89) (Figure 4.5B).
Notably, substantial weight was assigned to PR irrespective of the
RT (p < 0.012). Regarding PS, the weight assigned was significant
except on trials with long RT following a trial with long RT (PS:
0.89± 0.62,p = 0.08). Although the average weight is not significant at
a 5% significance level, PS exhibited a positive weight for all 4 animals.
To further clarify the significance of the observed effect, additional
behavioral results from other animals need to be collected.
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4.1.6 The ’stay’ tendency is higher on trials with short RT
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Figure 4.6: Impact of RT on the weights assigned to Current stimulus (CS)
side of correct response (CR) and side of incorrect response (IncR)
during stable performance.
(A) Model weight assigned to side of correct response (CR) and
side of incorrect response (IncR) with respect to RT on the current
trial. S: Short RT on current trial; L: Long RT on current trial.
(B) Model weight for side of correct response (CR) and side of
incorrect response (IncR) with respect to RT on previous trial.
Right: RT on the current trial was short. Left: RT on the current
trial was long. (C) Percentage of trials with short RT and licks
during grace period separated according to previous outcome.
Colors in A-B indicate stimulus on the current trial.
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Similar to previous analyses during learning, I here re-expressed the
regression model to include predictors capturing interactions between
response and outcome (Figure 4.6A). In particular, for short-RT trials, a
large positive weight (p = 0.0027) was assigned to the CR (4.06± 0.76),
which was even stronger than the weight for the CS (2.16 ± 0.15)
under the best possible behavioral conditions, i.e., in long RT trials
(p = 0.0056). Substantial weights were also assigned to the CR on
trials for long RT (1.77± 0.43,p = 0.0059), however, the weight was not
higher than that assigned to the CS. In contrast, the weight assigned
to the IncR was overall small, irrespective of RT on the current trial
(Figure 4.6A, IncR) (Long: 0.69± 0.28,p = 0.024, Short: 0.76± 0.41,p =

0.047).

The RT on the previous trial did not impact the weight assigned to
the CR (Current RT short: CR : p = 0.34, Current RT long: CR : p = 0.48)
(Figure 4.6B). With respect to InCR, the animals repeated previous
choices more often when the RT on both current and previous trial
was short (Current RT short: IncR : p = 0.04, Current RT long: IncR :

p = 0.23) (Figure 4.6B). Importantly, it is unlikely that short RT trials
were driven by lingering licks related to reward pickup in the previous
trial, because the proportion of trials with licks during the grace
period following rewarded trials (36.18± 12.61) were not consistently
higher than those following unrewarded trials (33.22 ± 11.67; p =

0.78; Figure 4.6C).
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4.1.7 History influences are not limited to just a single trial into the past
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Figure 4.7: Model weight assigned to Stimulus, response, and outcome up to
4 trials back.
(A-D) Model weight assigned to (A) stimuli, (B)previous re-
sponses, (C) Side of correct responses and (D) Side of incorrect
responses seen up to three trials back, separated according to RT
on the current trial. solid lines: ⩾ 0.5 s , dotted lines: ⩽ 0.5 s

Since previous studies suggested that the history influence might not
be limited to just a single trial into the past (Hermoso-Mendizabal
et al., 2020; Akrami et al., 2018), I also investigated the degree to which
the mice weighted stimuli choices and outcome that had occurred up
to three trials back. I thus, built a LR model, containing weights for
the current stimulus, and the past n stimuli, choices and outcomes,
where n varied between -1 and -3. Given the pronounced impact of
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RT that was observed in the earlier analyses, I also differentiated
whether the current trial’s RT was long or short. I first focused on the
weights assigned to current and past stimuli (Figure 4.7A). I found
that, for trials with long RTs, the influence of stimulus was high
for the current trial, and dropped rapidly to 0 over the past 2 trials
(0.05± 0.1, p = 0.37). In contrast, for trials with short RT (dotted lines),
the weight assigned to the stimulus was much lower for the current
trial, was highest for the immediately preceding trial, and still had
a non-zero influence at n = −2 trials back (0.37± 0.16, p = 0.006).
Turning to the impact of past choices (Figure 4.7B), a similar result
emerged, where choices in the immediately preceding trial (n = −1)
were assigned the highest weight, in particular for trials with short
RTs (dotted lines). Next, I focused on the weight assigned to the side of
correct (Figure 4.7C) and incorrect (Figure 4.7D) responses. The side of
correct responses followed a similar trajectory as the weight assigned
to past choices: highest for the immediately preceding trial, non-zero
influence at n = −2 trials back (Short RT: 0.38± 0.16, p = 0.006, Long
RT: 0.22± 0.08, p = 0.003 ). However, the weight assigned to the side
of incorrect choices varied between animals.

4.1.8 Implementation of trial-to-trial variation of model weight during
learning and stable performance

Recent studies have suggested that decision-making strategies might
change on a trial-trial basis and may evolve rapidly during training,
especially when animals are learning the task (Roy et al., 2021). To
explore this impact on behavior, I used Psytrack package (Roy et
al., 2021). Psytrack describes the decision-making behavior at the
resolution of single trials, allowing us to estimate weight trajectories
at shorter timescales.

Similar to the LR model described in the prior section, PsyTrack uses
Bernoulli GLM to model animals’ choices. However, unlike the model
used earlier, in this variant weight is assumed to evolve gradually from
trial to trial over time. Similar to subsection 3.4.2, using Psytrack I
predicted the probability to choose the lick port associated with the
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vertical stimulus by a weighted sum of influences related to the current
visual stimulus and the previous stimulus and response with respect
to RT.

4.1.9 The animals’ decision-making strategies across trials and across weeks
follow similar trajectories
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ance obtained from Psytrack.
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and short (bottom) RTs on current trial.
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I next examined weight trajectories obtained from the PsyTrack model
assigned to task-relevant and task-irrelevant factors. Consistent with
the observation from the standard LR, weight assigned to the CS,
particularly for trials with long RTs increased during learning and
plateaued when the animals reached stable performance. For trials
with short RT, as suggested by chance level behavioral performance
and insignificant model weight during stable performance, the weight
developments derived from the PsyTrack model were also insignific-
ant. In fact, there were little to no deviations (from 0) in the weight
trajectories through learning. Next, I focused on the weights assigned
to the task irrelevant variables. Consistent with the earlier claims, the
weight trajectories for PS and PR for trials with long RT decreased over
learning. In particular, these decrements were only observed when
task-irrelevant influences had a stronger impact on choice during the
early training sessions. On the contrary, for the trials with short RT, the
weight assigned to both PS and PR fluctuates, but is substantial. Not-
ably, supporting our earlier observations, that the weight assigned to
task-irrelevant factors remains higher when the RT on the current trial
is short (Mean across trials; PS: ∆ = 0.43± 0.080, PR: ∆ = 0.36± 0.14.
The result from the Psytrack model further confirms the claim that
for trials with short RTs, animals fail to utilize task-relevant factors
to guide choices and decisions are strongly influenced by previous
experiences.

Taken together, similar to the standard LR model, the PsyTrack model
can capture the development of the model weight during and after
learning. An advantage of the Psytrack model is its ability to capture
the decision-making trajectories on a trial-by-trial basis. As the weight
trajectories obtained from the two models complement each other,
I rely on the standard LR model for the analysis presented in this
thesis.
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4.1.10 Animals’ behavioral performance suggests a bias towards larger
rewards
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Figure 4.9: Impact of unequal reward on the performance of trained mice.
(A) Overall performance for trials in the orientation discrimination
task, computed by separating Balanced (Block 1) - Imbalanced
(Block 2) - Balanced (Block 3) for manipulated reward condition
(Red). Black: Overall performance on baseline condition, computed
by trials separated in blocks of 100-50-100 trials, grey: Individual
mice (Bi) Proportion of correct trials in Imbalanced blocks for
short RT, separated according to the reward size. (Bii) Proportion
of correct trials in Imbalanced blocks for Long RT, separated
according to the reward size.

Many studies have suggested that expectation of reward size biases
decisions (Busse et al., 2011, Rorie et al., 2010, Lak et al., 2020b). To
understand how mice trade between stimulus-related and contextual
information, I introduced blocks of trials with stimulus-specific im-
balances of reward (see Figure 3.2.3). To summarize, in each session,
mice experienced a middle block of 50 trials, in which they received a
double reward for correctly choosing the lick spout associated with
one of the two stimuli (e.g., horizontal). Correctly choosing the spout
associated with the other stimuli was normally rewarded, and incorrect
choices for both stimuli were equally penalized.

To get the first insight into the animals’ behavior during imbalanced
reward regimes, I analyzed overall performance (Figure 4.9A–B). Des-
pite performance above the criterion of 66% during Block 1 (67.21% ±
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1.36%), performance of the mice declined during Block 2 (59.2% ±
2.83%) (Figure 4.9A; red). This decline was not mediated by general
factors, such as time in the task or reduction of motivation due to
satiation, because mice had the capacity to improve again in the
subsequent block (Block3) with a balanced reward (64.57% ± 1.43%)
(Figure 4.9B; red). In addition, performance decline in Block 2 was
not evident in the sessions containing only the equal reward condi-
tion (Figure 4.9A; black). For these sessions, I split the trial in similar
blocks and compared performance (block 1: 65.44% ± 3.30%, block 2:
67.59% ± 1.33%, block 3: 68.98% ± 0.60%). Splitting trials according
to RT also in this version of the task (Figure 4.9B), revealed that in
particular for trials with short RT(Figure 4.9Bi), mice rarely chose the
stimulus associated with the single reward, leading to poor perform-
ance for this stimulus (22.64%± 2.56% Figure 4.9B). Interestingly, mice
performed at chance level for single reward stimuli for trials with long
RTs (47.9% ± 2.90%, Figure 4.9B). This asymmetric performance for
the two stimuli suggests that reward size seems to induce a bias for
the double-rewarded stimulus during visually driven choices.
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4.1.11 Reward size biases the visually driven choice
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Figure 4.10: Impact of unequal reward on the weights assigned to Current
stimulus (CS) and previous stimulus (PS) and previous response
(PR) during stable performance.
(A, B) Model weight for Current stimulus (CS), Previous stim-
ulus (PS) and Previous response (PR) for baseline and unequal
rewarded condition with respect to short RT on current trial (A),
trials with Long RT on current trial (B). B1: Equal reward block;
B2: Unequal reward block. (C) Difference in model weight in
block 2 (B2) vs block 1 (B1) separated according to RT on the
current trial

To understand the dynamic adaptations of internal weights across
blocks with changes in reward size, next, I applied the logistic mod-
elling framework separately to behavior in the first (block 1; equal
rewarded) and middle (block 2; unequal rewarded) blocks. Since in-
spection of performance suggested an improvement for the double-
rewarded stimulus in the face of a decrement for the single-rewarded
stimulus (Figure 4.9B), I expressed choices with respect to the rewar-
ded stimulus and using LR predicted the probability that the animal
would choose the side associated with the larger reward. For block 1

choices were still expressed with respect to the double rewarded side
in block 2.

I first focused on the weight assigned to CS, PS, PR with respect to
short (Figure 4.10A-C) and long RT (Figure 4.10B, C). The weight
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assigned to the CS decreased (Long RT: ∆ = −0.45± 0.25, p = 0.031;
Short RT: ∆ = −0.50± 0.30, p = 0.37), whereas those assigned to the
PS (Long: ∆ = 0.23± 0.13, p = 0.091; Short: ∆ = 0.53± 0.27, p = 0.065)
and PR (Long: ∆ = 0.32 ± 0.25, p = 0.13; Short: ∆ = 0.59 ± 0.42,
p = 0.036) increased. Notably, the weight difference for CS and PS on
trials with short RT and PS and PR on trials with long RT were not
statistically significant. Hence more number of sessions and animals
might be necessary to reach to the significant level.

4.1.12 Animals’ bias towards the larger reward size optimizes reward accu-
mulation
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Figure 4.11: Comparison of Model bias and accuracy for equal and unequal
rewarded blocks.
(A) The overall model bias, towards the side associated with
double reward for imbalanced rewarded condition and towards
the side associated with horizontal grating for equal rewarded
condition. 0.5 indicates no bias. (B) Expected reward value for
block 2 obtained from logistic regression simulation. Dotted line:
the optimal bias to maximize reward, solid line: the average bias
of the animals in block 2. (C)The overall model accuracy for
balanced and imbalanced reward block

Next, I focused on model bias. The model bias here represents the
overall probability to choose the side associated with a larger re-
ward (Figure 4.11B). Consistent with the behavioral performance dur-
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ing imbalanced reward condition, all mice had a bias > 0.5 (Block2

0.73± 0.004; Block1 0.50± 0.005), driving strongly the choice to double
rewarded side. Although the variation in changes in weight assigned to
CS, PS, and PR (Figure 4.10C) captured the impact of the reward size
on animals’ decisions, the strong bias towards the double rewarded
side reiterates the extent to which the expectation of larger reward
biases choice. Next, to evaluate if the animals’ bias is optimal to max-
imize reward, I modelled the expected reward for different bias values
(refer to subsection 3.4.5 for detail description of the method). Given
the performance in the equal reward condition, this analysis revealed
that the ideal bias to maximize reward is 0.71. Despite the decline in
overall performance, this shows that the animal adjusted its bias in an
optimal manner to maximize its reward (Figure 4.10B).

Finally, the overall accuracy of the model was consistent during the
balanced (70.42% ± 2.41%) and the imbalanced block (76.05% ± 3.94%)
suggesting that the major contributions to the animals’ choices can
be described by the same variables in both balanced and imbalanced
reward conditions (Figure 4.10C). In fact, these variables were neces-
sary for the estimation of the choice. The reduced model with only CS
with respect to RT, and a bias term as predictors had a worse model
fit ∆ = 9.0% ± 1.86%).
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4.1.13 The influence of side of correct response is higher during imbalanced
reward conditions
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Figure 4.12: Impact of unequal reward on the weights assigned to current
stimulus (CS) side of correct choice (CR) and side of incorrect
choice (IncR) during stable performance.
Model weight assigned to current stimulus (CS) side of correct
response (CR) and side of incorrect response (InCR) with respect
to short RT (A) and long TR (B) a on the current trial. (C) Differ-
ence in model weight in balanced and Imbalanced reward block.

Next, similar to previous analyses during stable performance, I sought
to determine the influence of previous response and outcome on choice
for imbalanced reward condition. Consistent with previous findings,
the reward size increased the dependency on history-related variables.
In particular, the weight assigned to the side of the correct choice for
both short (Figure 4.12A, C) (∆ = 1.12± 0.55, p = 0.025) and long RT
(Figure 4.12B, C) (∆ = 0.45± 0.25, p = 0.023) is even higher for the
imbalanced reward condition. In contrast, the differences in change
in weight assigned to the side of incorrect choice between balanced
and imbalanced reward were for most mice insignificant (Short: (∆ =

−0.06± 0.45, p = 0.82); Long (∆− 0.091± 0.21, p = 0.73).

Taken together, the results on imbalanced reward condition suggest
that in conditions where external factors such as unequal reward biases
choice, choices were strongly influenced by history related variables.
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4.2 electrophysiology recordings

The majority of the sensory decision-making literature is concerned
with characterizing neuronal responses and decision-making behavior
of fully trained animals. Over the last decades, this approach has
given us insight both in decision-making strategies and in identifying
neuronal population involved in decision-making process (section 1.2).
Recently, Roy et al. (2021) studies have focused on understanding the
impact of dynamic decision-making behavior, especially during the
learning period. With this aim in mind, the final part of the thesis was
dedicated to adapting a recording set-up and establishing in the lab a
method for long-term neuronal recording.

Traditionally, in chronic neuronal recordings, the probe is attached to
a microdrive, allowing to advance to the interest region, with small
increment. This mobile configuration, allows one to move the probe
further if the recording quality detoriates. However, the implantation
process is tedious, and the configuration is heavier. Here, I adapted a
method based on Okun et al. (2016) where silicone probes were rigidly
affixed to the skull. In addition to involving a lighter implant and a less
tedious implantation process, Okun et al. (2016) suggests, this method
may allow for more stable and longer term recordings. The authors
recorded neuronal activity for over 3 months and reported stable
waveforms in at least 70 % of neurons recorded in consecutive days
(Okun et al., 2016). Refer to subsection 3.3.2 for a detailed description
of the method.

In the following section, I first show that neuronal recording can be
obtained over several weeks and assess the stability of the record-
ings across days. Next, I evaluate the presence of visually responsive
neurons in the recorded neuronal population. Finally, I discuss the
preliminary results obtained from neuronal recordings during task
performance.
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4.2.1 Recording with the chronically implanted probe
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Figure 4.13: Recording with chronically implanted, immobile silicon probes.
(Continued on next page)
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Figure 4.13: (Continued) (A) Raw traces after high pass filtering across five
sites, recorded 20 days after implantation of the silicon probe.
Colour: waveforms of four single units. (B) Average spike wave-
forms of the four single units shown in (A) at nine different
recording sites, also shown in (A). (C) Number of well-isolated
units recorded across days. (D) Mean population firing rate of
all isolated units across recording days during periods of sitting.
Error bars indicate the standard deviation across units.

To investigate whether long-term neuronal recordings could be ob-
tained from an immobile silicone probe, I examined the recordings
acquired on the fourth week following implantation (Figure 4.13).
Inspection of the voltage traces across nine recording sites after high-
pass filtering revealed the presence of neuronal spikes (Figure 4.13A).
This is further supported by the average waveform plot of these units
across the same nine recording sites (Figure 4.13A, B). Next, I com-
pared the number of single units obtained post spike sorting across
days (Figure 4.13C). Six single units were obtained on the first record-
ing day (after a week of implantation), however this number declined
over the weeks. After approximately two months, only one single unit
was isolated. Although I recorded activity from several other units,
the auto-correlogram did not exhibit a refractory period gap. This ob-
servation suggests the presence of multi-unit activity and a relatively
low signal-to-noise ratio. Finally, I assessed the stability of the firing
rate (Figure 4.13D) by comparing the population firing rate for spon-
taneous condition when the animal was sitting. This analysis revealed
that the population firing rate varied between days (std = 4.35). In
conclusion, these data demonstrate that single units can be acquired
after several weeks of implantation of the immobile silicone probe,
however the number of units acquired decreased over time.
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4.2.2 Stability of neural recordings across days
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Figure 4.14: Example of a stable unit recorded across days.
(A) Euclidean distance measured between each pair of waves.
The distance was measured between voltage at each time point.
Colored circles: color reflects the day units were recorded on (light
blue: day 8, dark blue: day 10, green: day 14, pink: day 15, orange: day
25); same units as shown in Bi and Bii; black: non-matched units
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on different days. (B) Example wave form across 10 recording
sites of three units across three different recording days. Color:
unit recorded on a specific day. (Ci) Overlaid waveforms from B,
aligned with respect to the maximum amplitude channel. (Cii)
Overlaid waveforms for another example neuron, with respect
to the maximum amplitude channel.
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To assess the stability of neural recording, I compared the extracellular
wave shapes of the recorded units across several days. As neural re-
sponses acquired on different sessions/days were sorted separately, I
first identified units which had similar wave shape but were recorded
on different days. To quantify the similarities in units, I calculated the
Euclidean distance between the voltage at each time point between
pairs of waves (refer to Equation 3.4.7 for detail description of the
method). The single units, identified on a particular day, were dis-
tinct from each other as they were obtained after exhaustive pair-wise
comparison (Euclidean distance:0.49± 0.20). I used the minimum Eu-
clidean distance between them as a threshold for unmatched units
(0.21). Next, to illustrate the similarity in the wave shape, Figure 4.14B
shows examples of three units acquired on three different days across
10 recording sites but having similar wave shape properties (Euclidean
distance: 0.11 ± 0.01). Here, the presence of drift is evident by the
displacement of the wave towards the top of the probe (towards the
left). To better match the units across days, I shifted the waveform
with respect to the maximum channel and overlaid the waveform on
different channels over days. Figure 4.14C shows two such example
neurons Ci (the same neuron as shown in B) and Cii (Euclidean dis-
tance: 0.099). Taken together, the result here suggests that the method
discussed in subsection 3.3.2 may allow recording of the same unit
across several recording days.
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4.2.3 Presence of visually responsive neuron in the recorded neuronal popu-
lation
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Figure 4.15: Example of visually responsive units.
(A) Spatial RF map obtained for three particular units across
three recording days. Red: on response. Green: off response. (B,
D) Tuning curve generated from drifting grating (12 directions)
for two (B, D) example units across different days. Colours: units
recorded on different days. Markers: average firing rate for a spe-
cific orientation on a specific day. Dotted lines: spontaneous firing
rate. (C, E) Comparison of firing rate for different orientations
for units shown in B and D respectively. The X-axis and Y-axis
represent firing rate across different pairs of units. In C, grey
level indicates R2 across different pairs.
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To understand the stability of visually responsive neurons, I com-
pared the spatial RF maps obtained in sparse noise experiments of
three example units putatively representing the same neuron across
days. On all three days, the units responded only to the ’on’ stimulus
(Figure 4.14A). The ’off’ stimulus did not elicit any responses. The
fitted 2D Gaussian (Mean fit across days: R2 = 0.65± 0.037) was also
similar across all three days for the units. The area of the fit was con-
sistent over days (1949.45± 40.13 deg2) and the majority of the field
area overlapped (82% ± 0.5% ).

Next, I focused on understanding the similarities between orientation
tuning curves generated from the drifting gratings (Figure 4.15B-E).
Consider two example units recorded across 3 weeks (Figure 4.15B,
C) and 3 days apart (Figure 4.15D, E), respectively. The orientation
tuning were stable over time. For the first putative example neuron
(Figure 4.15E), the responses to the gratings were consistently sup-
pressed below the spontaneous firing rate and the preferred orient-
ations were 30° and 210°. In contrast, for the second putative neu-
ron (Figure 4.15D), the preferred orientation across consecutive days
peaked at 60°. To further assess the stability of these neurons, I com-
puted the correlation between the firing rate in response to various
orientations across days and found them to be strongly correlated
(Figure 4.15C, E).

Taken together, both the neuronal wave shape Figure 4.14 and the
visual response properties Figure 4.15 suggest that these units recorded
on different days might actually capture responses from the same
neuron.

4.2.4 Preliminary neuronal responses recorded during the behavioral task

Studies have characterized that prior stimulus history and reward
expectation can influence early stages of cortical sensory processing,
and thus profoundly change neuronal response properties (Aton, 2013;
Schoups et al., 2001; Yang and Maunsell, 2004). However, it is still
unclear how a particular sensory event alters the distribution of repres-
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entation of information in the visual system. As a next step, I aimed to
quantify history effects on neuronal activity in the visual cortex during
task learning. Below, I analyzed the firing rate of 3 neurons during
task performance based on the outcome. Unfortunately, the animal
did not learn the task, and therefore the animals’ performance in the
sessions discussed here was on average 53% ± 0.65 (n = 2 sessions).
Unit 2 and unit 3 are the same neurons, shown in Figure 4.15B (pink
and orange respectively).
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4.2.5 Firing rate is higher on trials following a correct outcome
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Figure 4.16: Example neuronal responses during the behavioral task.
(A) PSTHs for 3 example units for the 2 grating stimuli presented
during the task. Dotted line at 0 s indicates stimulus onset; dotted
line at 0.3 s indicates end of grace period. Turquoise: horizontal
orientation; yellow: vertical orientation. Unit 2 and unit 3 are the
same units shown in Figure 4.15B. (B-C) The difference in mean
firing rate during trial initiation following a previous correct vs
incorrect (B), correct vs missed (C), and incorrect vs missed (D)
trials. In B-D The error bars represent the standard error of the
mean difference.

To illustrate neuronal responses during task performance, Figure 4.16A
shows the PSTHs of three example neurons in response to two orienta-
tions used in the task. To understand, the impact of visual stimulation
on neuronal firing rates, I compared the firing rate before visual stim-
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ulation with the firing rate during the grace period (time between
dotted lines). Visual stimulation increased the firing rate for unit 1

(∆ =270°: 18.80± 2.31 spikes/s and 180°: 18.5± 2.19 spikes/s). Unit 2

(∆ = 270°: −7.24± 1.30 spikes/s and 180°: −4.76± 1.33 spikes/s) and
unit 3 (∆ = 270°: −5.68± 0.84 spikes/s and 180°: −2.44± 1.14 spikes/s)
were suppressed by the visual stimuli. Observations for unit 2 and
unit 3 are supported by the tuning curve illustrated in, Figure 4.15B
as both of these orientations suppressed the firing rate.

To understand the relationship between firing rate and trial outcome, I
first focused on the time period between the end of the grace period
and the animal’s decision. This analysis revealed that at the 5% signi-
ficance level, there was no difference in firing rate across units.

Having shown that previous outcomes have an impact on decision-
making, I next sought to determine their impact on the firing rate.
For this analysis, I focused on the trial initiation phase following the
decision. As mentioned in subsection 3.2.3, during this phase the
behavior was stable as the animal was neither licking nor running.
The analysis shows that the firing rate was higher for all units fol-
lowing a correct trial than those following an incorrect trial (unit 1

6.24± 2.20 spikes/s,p = 0.01; unit 2 4.55± 1.56 spikes/s, p = 0.005;
unit 3 2.47 ± 1.02 spikes/s, p = 0.02; Figure 4.16B). Similarly, the
firing rate was significantly higher for unit 1 and unit 2 following
correct vs missed trials (unit 1 6.04 ± 2.17 spikes/s, p = 0.006 ;
unit 2 3.48± 1.52 spikes/s, p = 0.02; unit 3 −0.03± 1.44 spikes/s, p =

0.98; Figure 4.16C). Finally, a comparison of firing rates between trials
with previous incorrect vs missed outcomes revealed that there were
no differences in firing rates (Figure 4.16D).

Taken together, the results in Figure 4.16 suggest that there might be
variations in V1 firing rates based on the previous outcome. However,
a full data set is required to reach valid conclusions. Notably, the
animal’s internal state following a reward consumption might have
also been reflected in the firing rate difference following a correct vs
incorrect trial.
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5
D I S C U S S I O N

In this chapter, I discuss the results presented in chapter 4. In sec-
tion 5.1, I discuss the behavioral results and its implications and in
section 5.2, I reflect on the neuronal recording approach and discuss
possible ways to improve such recordings.

5.1 behavioral results and its implications

I implemented a lick-left/lick-right orientation discrimination task.
The mice learned the task and performed well above chance. How-
ever, even after rigorous training, performance was suboptimal. To
understand why, I analyzed RT. I show that on short RT trials, animals
perform on chance level throughout both learning and stable perform-
ance. Next, using the standard logistic modeling approach, I capture
week-by-week learning progress and show how the perceptual choices
of mice are affected by the history of past stimuli, responses, and
outcomes. I further characterize the decision-making process during
stable performance and show that history influences are stronger on
trials with short RT. Finally, I manipulate reward size and show how
visually driven choices are biased by reward expectations.

In subsection 5.1.1, I discuss the influence of RT on task performance
and decision-making. Subsequently, in subsection 5.1.2, I discuss the
impact of previous outcomes on decision-making. Next in subsec-
tion 5.1.3, I discuss behavior adaptability during learning and under
asymmetric reward conditions. In subsection 5.1.4, I discuss why bi-
ases in decision-making exist. Finally, in subsection 5.1.5, I discuss
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behavior experiments that would further deepen our understanding
of PDM.

5.1.1 Influence of reaction time on decision-making

The relationship between RT and performance is widely discussed in
the literature. In this section, I first discuss the empirical evidence for
SAT and relate it to motivation and impulsive behavior. Next, I discuss
the suboptimal performance during long RT trials and relate it to
lapses in decision-making. Finally, I describe the relationship between
RT and bias and discuss its implications.

Baseline performance on short RT trials

As outlined in subsection 1.3.1, numerous empirical studies provide
evidence in support of the theory that performance decreases as RT
decreases. In Figure 4.2C, I provide evidence for SAT: mice performed
better on long RT trials, and at chance level on short RT trials. However,
prior studies also suggest that both short and (very) long RTs are
indicative of low task engagement (Shevinsky and Reinagel, 2019;
Robbins, 2002; Lyamzin et al., 2021; Ratcliff, 1978a; Yerkes and Dodson,
1908). The former has been linked to impulsive behavior and hyper-
aroused states, and the latter to low-aroused states. The result in
Figure 4.2D did not provide evidence for low task engagement on
trials with (very) long RT: the performance in the longest RT bin
is above the threshold. However, as the animal had limited time to
respond in the task (3 – 4 s), the response time might have not been
sufficient to capture such an effect.

Poorly performed short RT trials were also prevalent in trained anim-
als. Studies have reported that even for highly trained animals, internal
factors such as motivation and attention vary within sessions (Ander-
mann et al., 2010; Carandini and Churchland, 2013; McGinley et al.,
2015; Berditchevskaia et al., 2016; Groblewski et al., 2020). Especially in
studies using water restriction similar to that used in this thesis, motiv-
ation changes as the sessions progress. For example, Berditchevskaia
et al. (2016) report a hyper-aroused state and poor performance in the
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beginning of a session, likely resulting from thirst. Although water
restriction might be effective in the early learning stages, later it could
be important to maintain animals at a satisfied state to understand be-
havior precisely. In fact, researchers have successfully used alternative
restriction methods, such as free home-cage access to citric-acid water.
These studies report a slight decline in the number of completed trials,
however, they show that animals readily performed and learned the
behavioral task (Urai et al., 2021; Reinagel, 2018). Taken together, to
better understand animals’ behavior, in the absence of unaccounted
internal factors, alternative restrictions should be considered.

In the following section, I relate the suboptimal performance during
long RT to lapses in decision-making.

Suboptimal performance on long RT trials

In Figure 4.2, I show that while performance on trials with long RT
is higher than on trials with short RT it is still suboptimal. Studies
on both humans and animals have shown that, independent of stim-
ulus strength, subjects often have judgements errors (Carandini and
Churchland, 2013; Busse et al., 2011; Gold and Ding, 2013). Recent
literature relate such ’errors’ in behavior to ’lapses’ in decision-making
(Pinto et al., 2018; The International Brain Laboratory et al., 2021; Ash-
wood et al., 2022; Pisupati et al., 2021). Although the frequency of
lapses decreases with learning, they still exist in trained animals (Law
and Gold, 2009; Cloherty et al., 2020). Especially, in rodent sensory
decision-making, it is speculated that lapses underlie a significant
number (10–20%) of decisions (Ashwood et al., 2022). While in earlier
studies, a lapse was associated with attention deficiency and motor
error, a recent study relates it to strategic exploratory behavior i.e.,
trade-off between exploring uncertain rewarded action vs repeating a
known rewarded action (Pisupati et al., 2021).

In the following section, I discuss the influence of previous experiences
with respect to short and long RT.

Reaction time and biases in decision-making

Even in highly trained animals, previous experiences play a vital role in
decision-making, especially when conditions are uncertain (Lak et al.,
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2020a; Akrami et al., 2018; Busse et al., 2011). Here, I show that in trials
with short RTs, animals fail to perform above chance (subsection 4.1.5,
subsection 4.1.6) even when stimulus information remains unaltered.
A question to consider is whether poor performance on short RT trials
is associated with the inability to accumulate enough information
and/or due to a stronger bias from previous experiences.

The results of my experiments suggest that on these trials, decisions
are mostly biased by previous experiences. As discussed in subsec-
tion 1.3.1, on trials with long RT, animals can accumulate additional
evidence, and reach greater decision confidence. However, short and
long RT trials influence the following decisions equally (Figure 4.5B).
Therefore, animals might collect enough evidence on short RT trials to
make a correct choice. However, the influence of previous experiences
on these trials might be comparatively stronger, biasing decisions and
leading to poor performance. In fact, studies show that biases can be
reduced by a long stimulus exposure (Wolfe, 1984; Kaneko et al., 2017;
Dekel and Sagi, 2020). For example, Dekel and Sagi (2020) hypothesize
that over time bias from previous experiences and noisy evidence ac-
cumulate. With long stimulus exposure time, the influence of previous
experiences decreases due to noise accumulation, hence reducing the
bias in decision-making.

How do animals transition between short and long RT states? Some
studies associate the transition between short and long RT as a trans-
ition between separate systems: impulsive bias-susceptible system to
slow bias-free system (Tversky and Kahneman, 1974; Evans and Stan-
ovich, 2013). Similarly, the decreases in (history) biases on long RT
trials can also be explained by dual processing (Zoest and Hunt, 2011;
Wolfe, 1984). Others argue that a simple evidence accumulation model
(i.e., DDM, also see section 1.1) can describe this behavior (Dekel and
Sagi, 2020). Importantly, although this simple approach can describe
the basic mechanistic phenomenon, there are consecutive processes in
the brain. For example, depending on the behavioral task, the starting
threshold (i.e., bias in Figure 1.2B) might be determined and integ-
rated by higher-level brain areas, while sensory encoding is possibly
performed by lower-level brain areas.
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In the following section, I discuss the influence of previous outcomes
on decision-making.

5.1.2 Strategies based on previous outcome

One of the extensively discussed strategies is the win-stay / lose-shift
strategy (Fründ et al., 2014; Akrami et al., 2018; Braun et al., 2018; Busse
et al., 2011; Hermoso-Mendizabal et al., 2020). The data presented in
Figure 4.6 support the former and provide evidence that the win-stay
strategy is strongest for trials with short RT. Previous studies suggested
that short RTs are indicative of low task engagement and linked them to
impulsive behavior and hyper-aroused states (Shevinsky and Reinagel,
2019; Robbins, 2002; Lyamzin et al., 2021; Ratcliff, 1978a; Yerkes and
Dodson, 1908). Following a reward pickup, the animal might be in a
hyper-aroused state and hence makes impulsive decisions.

Contrary to what is mostly reported in the literature (lose-shift), sub-
section 4.1.4 and subsection 4.1.6 suggest negligible effects of the
’Side of incorrect response’. A correct response in PDM task often
only requires correct stimulus processing, however, an incorrect choice
might be influenced by various internal factors, such as, attention,
motivation and impulsive behavior. Supporting this, a recent study
provides evidence of diverse behavioral influences within a session
that follows an incorrect trial (Lak et al., 2020a). My result here shows
the overall low impact of incorrect outcomes on animals’ decisions.

In the following section, I discuss contextual behavior adaptivity.

5.1.3 Behavioral adaptability

Earlier studies extensively focused on understanding context-based
behavioral adaptation of fully trained animals (Romo and Salinas,
2003; Gold, Shadlen et al., 2007; Nienborg and Cumming, 2009). Recent
studies extended this focus to learning (Roy et al., 2021; Ashwood et al.,
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2022). These studies suggest a Bayesian approach to decision-making.
Animals update their beliefs about reward probability and adjust
their strategy. Using both the standard LR approach and a dynamic
generalized linear model with time-varying weights (Roy et al., 2021), I
first show that animals’ adapt their decision-making strategies during
learning. In particular, as the animal learns to associate a stimulus
with choice and reward, the influence of task-relevant sensory stimulus
increases. Perhaps animals learn that the stimulus sequence is random
and that the stimulus repetition and alternation probabilities both
are equal. Therefore, as learning progresses, previous experiences are
considered less while relevant sensory information are considered
more.

Contextual behavioral adaptivity is not limited to sensory processes. It
involves various behavior biasing factors, for example, asymmetry in
the reward or stimulus statistic (Busse et al., 2011; Akrami et al., 2018;
Waiblinger et al., 2022; Stüttgen et al., 2013; Lak et al., 2020b; Gao et al.,
2011; Rorie et al., 2010; Teichert and Ferrera, 2010). Also in fully trained
animals, changes in behavioral strategy with respect to variation in
reward or stimulus statistics are linked to behavioral adaptability
(Abrahamyan et al., 2016; Treviño et al., 2020; Trevino, 2014). I show
that asymmetry of rewards can also induce a bias to choose the side
associated with the higher expected reward (Figure 4.10, Figure 4.12,
Figure 4.11). But is the animal maximizing the expected reward? Earlier
studies investigated the optimality in bias across different species. For
example in humans, the bias is lower than optimal (Maddox, 2002),
and in monkeys, it is higher than optimal (Feng et al., 2009; Teichert
and Ferrera, 2010). In rodents, studies report a lower than optimal bias
(Funamizu, 2021). In contrast, Figure 4.11 suggests that during the
asymmetric reward condition, mice had reward maximizing bias levels.
Notably, Funamizu (2021) used an auditory task, with a reward value
of 3.8 µL and 1.0 µL (i.e., 3.8:1 ratio) while I used a visual task with a
reward value of 8 µL and 4 µL (i.e., 2:1 ratio). Hence, it is important to
conduct further experiments with varying reward sizes and ratios to
understand the underlying behavior phenomenon more precisely.

The experimental paradigm discussed in Figure 3.2.3 involved reward
contingencies that were alternated across the training block, giving
me further opportunities to probe behavioral adaptation. I show that
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animals successfully suppress previously rewarded responses and
disengage from ongoing behavior when context (i.e., experimental
blocks), changed (Figure 4.9). This provides further evidence of context-
dependent behavioral adaptability.

In the following section, I discuss why biases exist during decision-
making.

5.1.4 Why do such biases in decision-making occur?

Similar to most previous PDM experiments, in my experiments the
sequence of sensory stimuli was random. Under such controlled con-
ditions, history-dependent biases result in suboptimal performance
(Akrami et al., 2018; Trevino, 2014; Treviño et al., 2020; Roy et al.,
2021; Lak et al., 2020b). If so, why do such biases in decision-making
occur? Some studies suggest that they could be influenced both by
uncertainty in the decision and by strategies learned for maximizing
reward accumulation (Abrahamyan et al., 2016; Killeen et al., 2018;
Chen et al., 2021). Although the latter is true for the manipulated
reward paradigm used in this thesis, for the other experiments, there
should be no trial-by-trial variability in decision confidence, as the
discrimination task involved only two orientations. Considering there
are long-term regularities in the real-life environment (Akrami et al.,
2018), history-related biases could also reflect innate strategies (Zador,
2019; Treviño et al., 2020). In fact, many behavioral patterns that are
necessary for survival involve multiple repetitive or alternative actions
(Langen et al., 2011). Therefore, strategies such as win-stay/lose shift
might represent innate strategical preferences such as avoiding or ex-
ploring behavior that could be encoded by evolution: avoid predators
and/or explore food.

Biases could also reflect reinforced habits. These learned habits become
persistent and difficult to abolish in a particular context (Langen et al.,
2011). However, they are adaptable if the context changes (Abrahamyan
et al., 2016; Treviño et al., 2020; Trevino, 2014). The results presented in
Figure 4.9 suggest that some choice biases are adaptable. These types
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of bias are often based on purely motivational processes. For example,
while the animals had a strong bias towards the double-rewarded side,
they were able to quickly adapt when the reward size was balanced
again.

5.1.5 Future research

Based on the behavioral results presented here, there are several exper-
iments that would further deepen our understanding. In the described
orientation discrimination task, mice discriminate between two distinct
stimuli. It would be interesting to introduce more stimuli, by varying
either contrast or orientation. For example, the grating direction could
be varied in step sizes of 30° from 0° to 360°, and the mouse could be
trained to associate orientations between 0° to 180° to the right and
from 180° to 360° to the left lick spout. I expect history biases to be
stronger when the difference in orientation between prior and current
stimulus is smaller. In addition, I hypothesize that the dependencies on
history would increase when discrimination would get more difficult
(close to 180°).

Past studies show how asymmetry of reward biases decision-making,
especially when trial difficulty increases. Here, I show that during
the asymmetric condition used in this thesis, mice’s bias is optimal
with regard to reward maximization Figure 4.11. However, it remains
unclear whether this optimality in bias is dependent on magnitude
of reward size differences. Further experiments with varying reward
sizes would help to better understand this phenomenon. Perhaps, with
a small reward size difference, the animal might not adapt its strategy.
With increasing differences in reward sizes, the incentive to have a
bias towards the greater reward size increases. In addition to reward
statistics, the probability that a particular side choice is rewarded
could be varied (Sugawara and Katahira, 2021). Furthermore, both
reward statistic and stimulus probability could be varied to understand
whether mice integrate both of these variables while making a decision
or evaluate one before the other (Nachev et al., 2021).

80



Finally, the lick-left, lick-right orientation discrimination task that I
used in the behavioral paradigm has also been extensively used in
the literature (Burgess et al., 2017; Akrami et al., 2018; Guo et al.,
2014a). Two types of motor movements to consider in such tasks are
the movement made to make a decision and the one made to pick up a
reward. It might be beneficial to disentangle the two motor movements
in the design of the task. Specifically, this would allow the researcher to
isolate impulsive reward pickup movement from the animal’s decision.
An alternative way to measure behavioral responses such as ’lever
push’ or a ’wheel movement’ should be considered (The International
Brain Laboratory et al., 2021; Rossi and Yin, 2012).

5.2 neuronal recording approach and improvement op-
portunities

The results presented in this thesis show that neuronal activity can be
acquired from the mouse visual cortex through neuronal recording for
approximately 2 months. Furthermore, the acquired neuronal units
were stable for several days. However, as shown in Figure 4.13, only
6 single units could be isolated on the first day of recording, and this
number declined over time. In order to capture both learning and
stable performance phases, the method needs to be adapted to acquire
recordings from more units and track them for longer durations.

In subsection 5.2.1, I discuss specific ways to improve the probe
implantation method, to enable longer-term neuronal recording. Sub-
sequently, in subsection 5.2.2, I discuss the ideal time to implant the
probe to capture neuronal responses during different stages of learn-
ing. In subsection 5.2.3, I discuss the advantages and disadvantages
of immobile and microdrive probe configurations. Finally, in subsec-
tion 5.2.4, I discuss electrophysiology experiments that would further
deepen our understanding of the neuronal mechanisms of PDM.
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5.2.1 Method improvement of probe implantation

In this section, I discuss four ways to improve the method of probe
implantation. First, an ideal craniotomy size should be carefully con-
sidered. For the animals used in this thesis, a 1.5× 1.5 mm craniotomy
was made. Given the thickness of the probe (15 µm), the size of the
craniotomy could be reduced. A smaller craniotomy, would expose
a smaller section of the brain, hence reducing the risk of infection
and tissue degeneration. Second, unlike the self-curing acrylic dental
cement used in Okun et al. (2016), I used UV-curing dental cement,
because it is stable and easy to handle. Although the exposed brain
was covered with Kwik cast, the UV light may still have reached and
deteriorated the tissue, hence reducing recording quality. Third, the
hardening of cement around the probe causes ∼ 10–20 µm displace-
ment after implantation (Okun et al., 2016; Lee et al., 2014). While
the acrylic cement takes 10 mins to self-cure, UV curing dental ce-
ment cures within seconds of UV exposure. A disadvantage of such
instantaneous UV-curing might be sudden probe displacement, which
would result in more neuronal damage than slow curing with acrylic
cement. Lastly, after implantation, the probe was not enclosed with an
protective enclosure. Building such a protective enclosure might help
reduce trauma caused by external events.

In the next section, I discuss the ideal time to implant the probe to
capture neuronal responses during different stages of learning.

5.2.2 Probe implantation timing

Timing of probe implantation needs to be carefully considered. To
capture the learning curve, I implanted the probe 2–3 weeks after
starting to train the animals on the final task. During those prior weeks,
I aimed to acclimatize the animals to the behavioral set-up and to teach
them to associate the correct response with rewards. Unfortunately,
even after 8 weeks of training, the animals did not learn. To researchers
attempting similar experiments, I suggest implanting the probe early
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in training, i.e. before the beginning of the final task. Due to protocol
and animal welfare constraints, the animals were required to be taken-
off training for an extended period of time. First, several days before
performing the craniotomy, it is necessary to provide the “ad libitum”
water. Second, after performing the implantation, they need a recovery
time of at least one week. This disruption of training likely interfered
with learning. As neuronal signals were present for ∼ 2 months after
implantation, probe implantation before the final task still allows
capturing both the naive and trained stages.

PDM strategies evolve and fluctuate even during the stable perform-
ance. Hence, it is important to understand the sensory decision-making
process of fully trained animals. Especially on tasks with varying stim-
ulus and reward statistics, animals are continually required to change
strategies to maximize reward. It would be insightful to track neuronal
responses under such conditions. For this, the probe implantation
should be performed after the animal reached stable performance.
First, in fully trained animals, training disruption did not disrupt
performance for long. For example, for fully trained animals used
only on behavioral studies in this thesis, after five days of training,
following a week of disruption, animals’ performance was back to
the pre-disruption level. Second, given that I was able to record neur-
onal responses for ∼ 2 months, implanting the probe before the final
task might not give sufficient time to capture the majority of stable
performance and the reward manipulation phase. In summary, it is
important to carefully consider the study objectives, to identify the
timing of probe implantation.

5.2.3 Comparison of microdrive and immobile probe

Compared to the standard microdrive method, the configuration of
the immobile silicone probe is lighter and the implantation procedure
is both easier and faster. This is especially useful when performing
neuronal recordings on small animals such as mice (Okun et al., 2016).
Some studies also suggest that this method might provide neuronal
recording stability over longer time periods (Juavinett et al., 2019;
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Okun et al., 2016; Steinmetz et al., 2021), however, this remains to
be demonstrated. Furthermore, since this method does not require
any movable parts, it can be completely sealed off after implantation,
minimizing the risk of infection after surgery. However, this also comes
with a disadvantage: the microdrive allows the probe to move further
into the brain when the recording depth needs to be adjusted, e.g.,
due to deteriorating recording quality. Here, I was unable to acquire
any signal after approximately 2 months. As the probe configuration
that I used was immobile, I was unable to change its position after the
signal decayed and, hence, had to terminate the experiment after 2

months. Therefore, while immobile chronic implantation is advantage-
ous under certain circumstances, experimental requirements should
be considered when evaluating recording approaches.

5.2.4 Future research

Based on the results presented in this thesis, there are experiments that
would further deepen our understanding of PDM. In this section, I give
a few examples of experiments that could deepen our understanding
of the neuronal mechanisms that underlie PDM.

The behavioral paradigm and long-term neuronal recording technique
that I used provide an opportunity to capture the dynamic learning
progress at a single cell level. First, tracking neuronal responses from
the same neuron and/or neuronal population over learning might
enable us to identify how neuronal responses and preferences vary as
animals learn the behavioral relevance of sensory information (Jurjut
et al., 2017; Jehee et al., 2012; Hua et al., 2010; Li et al., 2004). For
example, precisely tracking orientation preferences during task learn-
ing and during passive orientation tuning experiments would help us
understand whether learning shifts the preferences of individual V1

neurons. If it does, a sharper discriminability during task performance,
but not during passive tuning measurements, is to be expected (Jurjut
et al., 2017). Second, the neuronal recording method described here
would allow one to understand at what stage of task training does
neuronal responses indicate learning. For example, a study using acute
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recording has reported that neural responses in V1 indicate learning
before the animal behaviorally demonstrated it (Jurjut et al., 2017). The
method described in subsection 3.3.2 may allow us to observe changes
in neuronal encoding throughout different learning stages and hence
get a deeper understanding of this mechanism.

Successfully establishing the neuronal correlates of bias provide op-
portunities to investigate the role of brain areas in integrating history-
related biases (Akrami et al., 2018; Hwang et al., 2017; Tai et al., 2012).
Intervention via, for example, optogenetic manipulation would give
us further insights into the neural mechanisms. For example, one
could investigate, whether history dependent V1 response modulation
was implemented via a top-down feedback circuit. If so, silencing the
long-range feedback circuit, terminating in V1 for example the PFC,
PPC would reduce the impact of history-dependent biases and thereby
improve the animal’s performance.

The task is well suited to isolate when and where sensory information
and history-related information are integrated in the decision-making
process. While some studies identified that integration happens at
the perceptual level (Fritsche et al., 2017; Patten et al., 2017), others
suggested that it happens at a post-perceptual level (Akrami et al.,
2018). Utilizing the task structure described in subsection 3.2.3, one
could optogenetically manipulate areas of interest at different stages
of the task (trial initiation, grace period, stimulus presentation, reward
pickup / timeout), thereby providing further evidence on when and
where biases are integrated (Akrami et al., 2018; Hwang et al., 2017).
Finally, a similar approach could be used to identify the role of the
visual cortex. For example, optogenetically silencing V1 during various
stages of the trial would provide us with additional information on
the importance of V1 in visual PDM.
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