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ZUSAMMENFASSUNG

Das Axion stellt einen vielversprechenden Forschungsbereich dar, da es eine Verbindung

zwischen verschiedenen Fragen der Hochenergiephysik aufzeigt. Darüber hinaus floriert

das experimentelle Axion-Programm derzeit. Das Verständnis der Axion-Landschaft

ist daher entscheidend für die Physik jenseits des Standardmodells. Wir zeigen, dass

die kosmologische Restriktion der Axion-Skala durch eine frühe Phase stark gekoppelter

QCD vermieden werden kann. Die meisten Ansätze auf Theorien beruhen, bei denen die

starke Kopplungskonstante durch den Erwartungswert eines skalaren Feldes bestimmt

wird. Alternativ zeigen wir, dass eine frühe Phase stark gekoppelter QCD in den KSVZ-

und DFSZ-Modellen durch die Modifikation der Kopplungskonstante während der kos-

mologischen Inflation entstehen kann. Für beide Modelle verändert die Physik, die für die

stark gekoppelter QCD verantwortlich ist, das Minimum des Axions kaum. Die Effizienz

der Relaxation wird somit durch Parameter der Theorie und der Dauer der Inflation

kontrolliert. Als Nächstes berücksichtigen wir allgemeine Konsistenzanforderungen der

Quantengravitation. Dadurch wird zum einen das CP-Problem der QCD zu einem Kon-

sistenzproblem erhoben und zum anderen ergibt sich ein CP-Problem in jeder Yang-Mills

Gruppe. Wir betrachten Theorien mit dunklen Yang-Mills Sektoren und untersuchen

die phänomenologischen Auswirkungen der Einführung eines Axions pro dunkler Yang-

Mills Gruppe, wie es die quantengravitative Konsistenz erfordert. Wir führen unsere

Berechnungen für einen reinen Yang-Mills Sektor und N exakte Standardmodellkopien

durch. Dabei identifizieren wir eine Beschränkung der dunklen Confinement-Skala, eine

Beschränkung auf N , sowie eine Beschränkung der inflationären Hubble-Skala durch

Isocurvature-Fluktuationen. Ebenfalls diskutieren wir kompakte Objekte, die kollektiv

aus Teilchen verschiedener dunkler Sektoren bestehen, und zeigen wie Kinetic-Mixing zur

Existenz von zwei verschiedenen Axion-Zuständen führt. Zuletzt berechnen wir systema-

tisch die Axion-Photon-Kopplung für nicht-minimale DFSZ-Modelle. Dadurch können

wir jedes berechnete Modell klassifizieren und die für Axion-Experimente relevanten

Verteilungen untersuchen. Wir finden Kopplungen, die fast drei Größenordnungen größer

sind als die der minimalen Modelle. Die meisten möglichen Axion-Photon-Kopplungen

liegen jedoch in der Nähe der Werte, die von den minimalen Modellen vorgegeben werden.

Wir quantifizieren dies, indem wir eine A-priori-Wahrscheinlichkeit für nicht-minimale

DFSZ-Modelle einführen und 68% und 95% Grenzen sowie zweiseitige Bänder angeben.

Wir vergleichen unsere Ergebnisse mit dem KSVZ-Fall und finden ähnliche Werte, sowie

ein sehr spezifisches Muster bei den Verteilungen. Um bevorzugte Modelle zu identi-

fizieren, diskutieren wir Flavor Changing Neutral Currents und das Domain-Wall-Problem

als mögliche Auswahlkriterien. Es ist möglich, eine große Anzahl von nicht-minimalen

DFSZ-Modellen mit einer Domain-Wall-Nummer von Eins zu konstruieren und damit

das Domain-Wall-Problem zu vermeiden. Diese Untergruppe hat auch eine signifikant

erhöhte Axion-Photon-Kopplung im Vergleich zu den minimalen DFSZ-Modellen.





ABSTRACT

The axion represents a promising avenue of investigation by providing a common theme

among various questions of high-energy physics. Furthermore, its experimental program

is currently thriving, with until recently unreachable regions of the axion parameter space

being probed. Understanding the axion landscape is thus crucial for beyond the Standard

Model physics. We demonstrate that the cosmological bound on the invisible axion scale

can be avoided by an early phase of strong QCD. While most approaches rely on theories

where the strong coupling constant is determined through the expectation value of some

scalar field, we show that an early phase of strong QCD emerges in the benchmark KSVZ

and DFSZ models by the modification of the running coupling during inflation. For

both models the physics that is responsible for making QCD strong does not displace

the axions minimum by too much, so that the efficiency of the relaxation is controlled

by parameters of the theory and the number of inflationary e-folds. Next, taking into

account general consistency requirements of Quantum Gravity not only elevates the

strong CP problem in QCD from a small-value puzzle to a consistency problem, but also

induces a “strong CP problem” in every Yang-Mills group. We consider theories with dark

Yang-Mills sectors and investigate general phenomenological implications of including one

axion per dark Yang-Mills group, as demanded by quantum gravitational consistency. In

particular, we carry out computations for a pure YM sector and N exact Standard Model

copies, and identify phenomenological consequences such as: a cosmological constraint

on the dark confinement scale, a bound on N , as well as no tightening of the bound on

the inflationary Hubble scale arising from isocurvature perturbations. We also discuss

the phenomenon of compact objects collectively made from particles of different dark

sectors, and demonstrate how intersector communication through axion kinetic mixing

leads to the existence of two distinct axion states. In the last project, we systematically

calculate the axion-photon coupling for non-minimal DFSZ models. Thereby we can

classify every calculated model and study the resulting distributions, relevant for various

axion experiments. We find couplings almost three orders of magnitude larger than

the ones of the minimal models. Most of the possible axion-photon couplings, however,

lie in the vicinity of the values dictated by the minimal models. We quantify this by

introducing a theoretical prior probability distribution for DFSZ-type axions and giving

68% and 95% lower bounds as well as two-sided bands. We compare our results with the

KSVZ case, for which a similar analysis has been conducted. Both display similar values

as well as a very specific pattern. In order to identify preferred models, we discuss the

role of flavor changing neutral currents and the domain wall problem as selection criteria.

It is possible to construct a large number of non-minimal DFSZ models with a domain

wall number of unity and thereby avoid the domain wall problem. This subset also has a

significantly enhanced axion-photon coupling compared to the minimal DFSZ models.
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lunch, coffee or ice cream: Marc Syväri, Thomas Steingasser, Max Bramberger, Felix

Palm, Anamaria Hell, Christoph Müller-Salditt, Max Brinkmann, Bence Temesi, Anja

Stuhlfauth, Giacomo Contri, Giordano Cintia, Maximilian Bachmaier, Lasha Berezhiani,

Silvia Zanoli, Thomas Raml, Andrei Kovtun, Otari Sakhelashvili, Juan Sebastian Val-

buena Bermudes, Alessandro Ratti, Luc Schnell, Christian Kneißl, Antonela Matijašić,
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CHAPTER

ONE

INTRODUCTION

During the 20th century, modern physics witnessed two of its greatest accomplishments:

Einstein’s general theory of relativity (GR) and the Standard Model of particle physics

(SM). Together, by classifying all known particles and their interactions, these two

theories provide an exceptionally successful description of the basic building blocks and

fundamental forces of nature [6–8]. This allows to explain physical phenomena from tiny

distances of 10−16 cm all the way up to the size of the observable universe at 1028 cm

in agreement with all experimental tests [9]. The SM, in particular, has demonstrated

experimental accuracy to an impressive degree of 11 digits, establishing it as the most

precise scientific theory ever tested [10].

Despite of their tremendous success, the SM and GR are not the final step in our

understanding of nature. There are still several unanswered questions of high physical

importance that either stem from observed phenomena or from problems within these two

theories. Examples for the former include: What is the mechanism behind the neutrino

masses [11, 12]? What is dark matter made of [13–15]? Why is the cosmological constant

so unnaturally small [16–18]? Examples for the latter are: What is the correct theory of

high-energy quantum gravity [19]? What protects the Higgs mass against high-energy

contributions [20]? Why does the strong interaction not violate the charge conjugation

parity (CP) symmetry [21–23]? All these questions are difficult or even impossible to

answer by means of the SM and GR.

Although this may seem like an unprecedented situation, it is not. Our theories

of nature are provisional, meaning that they have been tested and found to be valid

over a limited range of energies and distances. It is unclear whether they hold true

in more extreme circumstances. Many theories have been surpassed by new ones at

higher energies, and we anticipate that this pattern will persist. Seen in this light, the

unanswered questions of the previous paragraph indicate the existence of theories that

go beyond. But the question is how to go beyond.



2 CHAPTER 1: INTRODUCTION

1.1 High Energy Physics and the Axion

The research presented in this thesis focuses on the last of the mentioned questions, which

goes under the name of the strong CP problem. Astonishingly, this problem is closely

intertwined with several of the other mentioned problems. Let us briefly elaborate on

this connection and why we consider it so important for the way to new physics.

The Strong CP Problem. The non-Abelian nature of quantum chromodynamics

(QCD) leads to many new features compared to an Abelian theory as quantum elec-

trodynamics (QED). In particular, QCD has a plethora of vacua that are labeled by a

continuous angular parameter called the θ-angle [24]. This non-trivial vacuum structure

manifests itself in the form of CP violating processes that for instance result in an electric

dipole moment for the neutron (nEDM) proportional to θ [21]. The nEDM has not

been observed experimentally, thus putting a bound on the θ-angle, i.e. θ ≪ 10−10 [22].

The strong CP problem is the question of why θ is so small. This does not present

a naturalness problem because, in contrast to say the Higgs mass, the θ-angle is not

sensitive to “ultraviolet” (UV) physics. In fact, its quantum corrections from the SM are

many orders below the bound [25]. Thus, in this common view the strong CP problem is

not really a problem but rather a small-value puzzle.

High-Energy Quantum Gravity. GR is a non-renormalizeable theory and, as such, it

was thought for a long time that it cannot be quantized. From a modern point of view,

however, GR is an effective field theory (EFT). Within this framework, GR provides a

well-behaved theory of low-energy quantum gravity with a (maximal) cut-off given by the

Planck scale MP [26, 27]. Past this cut-off, the true nature of quantum gravity remains

a mystery. From the point of view of EFT, this lack of knowledge poses no problem

for low-energy physics. Any corrections to GR will be suppressed by higher powers of

MP, so that high energy quantum gravity completely decouples on the electroweak scale.

Therefore, it may seem reasonable to ignore quantum gravity in fundamental particle

physics or even remain agnostic about the nature of high-energy quantum gravity. But

what if high-energy quantum gravity provides self-consistency conditions? In this case

ignoring it would result in the consideration of theories that are inconsistent in a real

world where gravity is present. The impact could be dramatic.1

A compelling argument for such a self-consistency condition was presented by Dvali

et al. [30–33]. They suggested that the concept of a cosmological constant is incompatible

with the quantum resolution of the de Sitter metric as a coherent state of gravitons.2 The

reason for this is that the gravitons are subject to quantum-scattering, which inevitably

will result in the self-destruction of the coherent state. This is in contradiction with a de
1In the context of string theory this question started the so called swampland program, namely the
systematic search of low-energy theories that are incompatible with string theory [28, 29].

2Representing classical gravitational backgrounds, such as black holes and cosmological space-times, in
terms of graviton coherent states may sound exotic. In fact, it is not. Any classical field configuration
is a limit of quantum states with large occupation numbers of particles. For example, a classical
electromagnetic wave is fundamentally a coherent state of photons. It is thus anticipated that this
phenomenon will be present in any microscopic theory that accounts for the quantum corpuscular
structure of the cosmological background.[30]



SECTION 1.1: HIGH ENERGY PHYSICS AND THE AXION 3

Sitter “vacuum” and thus a cosmological constant [31]. Fundamentally, this outcome is

rooted in the S-matrix formulation of quantum gravity [33]. The unique limit, in which

quantum back-reactions of scattered gravitons on the hypothetical de Sitter vacuum with

curvature radius RdS and cosmological constant Λ vanish, is given by Λ → ∞, M−1
P → 0

such that ΛM−1
P = R−2

dS = finite. In this limit, however, the coupling of gravitons with

wavelength λ ≲ RdS goes as αgr = 1/M2
Pλ

2 → 0. This indicates that a consistent theory

of gravity based on the S-matrix formulation cannot accommodate a de Sitter vacuum

without decoupling gravity. Consequently, de Sitter cannot be regarded as a vacuum

but only as an excited (coherent) state constructed on top of a true S-matrix vacuum of

Minkowski with Λ = 0.

The connection between these two problems is established by the fact that every

QCD vacuum angle with θ ̸= 0 behaves as a cosmological constant [34, 35]. Taking

the quantum gravity imposed S-Matrix exclusion of de Sitter serious, the number of

viable vacua reduces to exactly one: the CP conserving vacuum at θ = 0. This not only

elevates the strong CP problem in QCD from a small-value puzzle to a real problem,

but makes a vacuum-selection mechanism a necessity. Such a mechanism is given by the

Peccei-Quinn (PQ) solution, which essentially introduces a non-linearly realised U(1)PQ
that is anomalous with respect to QCD [36, 37]. The PQ mechanism solves the strong

CP problem as the vacuum angle θ gets relaxed to zero by the pseudo-Goldstone boson

of the PQ symmetry, namely the axion [38, 39].

As a pseudo-Goldstone boson, the axion has properties that allow the connection

to the question about the true nature of dark matter. This question arises from plenty

of evidence that the matter visible to us only represents a subdominant fraction of the

total amount present in the universe [40]. Instead, most of the matter appears to be a

cold, collisionless fluid that only interacts gravitationally [13–15]. The invisibility of this

component has lead to the name dark matter. While a remarkably successful effective

description of the dark matter is provided by the cosmological Lambda-Cold-Dark-Matter

model [41, 42], a fundamental description in the form of a particle is still missing. As

such any particle candidate must fulfill three crucial properties in addition to behaving

as a cold, collisionless fluid [43]. First of all, it needs to be stable, otherwise it would

decay and not be present in the universe. Secondly, it must be very weakly interacting

via the forces described by the SM. Lastly, there must be a production mechanism that

results in the observed abundance. The axion fulfills all of these properties, making

it of high interest not only to particle physics but also to cosmology and astrophysics.

Its production via the so called misalignment mechanism, in particular, puts a severe

bound on the parameter space of the axion. The first presented project in this thesis

provides evidence on the non-robustness of this cosmological bound by extending on

Dvali’s scenario [44].

Going back to the strong CP problem viewed in the light of consistency, it is not

exclusive to QCD but extends to any non-Abelian Yang-Mills (YM) group. Every YM

group includes vacuum angles that lead to unacceptable de Sitter-type vacua and must

therefore be removed [45]. Using the PQ mechanism to achieve this, requires one axion per
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YM group because a single axion cannot set multiple θ-parameters to zero, even when all

θ parameters are set equal [46, 47]. This is due to the emergence of new effective vacuum

angles. Allowing these vacuum angles to persist would conflict with the requirement of

a vanishing cosmological constant, hence requiring the use of one axion per YM group.

Even without the requirement of a vanishing cosmological constant, the necessity of one

axion per YM group still arises. With the new effective vacuum angles the question of

the smallness of θ is shifted to the smallness of these new angles. Thus, one can say that

the need for one axion per YM group is in fact a condition required for solving the strong

CP problem. The second project covered in this thesis investigates the phenomenological

consequences of the necessary multitude of axions in theories with hidden non-Abelian

YM group.

Theories with a large number of non-Abelian YM groups are of high interest for the

mentioned question about the Higgs mass stability. This question goes under the name

of the hierarchy problem and is basically about one of the most important lessons that

GR and the SM teach us, i.e. that physics is scale-dependent. While on our everyday

scales Newton’s law of gravity provides an excellent description, it must be replaced by

Einstein’s GR in the vicinity of very heavy objects such as stars or black holes. Similarly,

while at energies way below the W -boson mass Fermi’s theory provides an excellent

description of the weak interaction, for energies comparable to the W -boson mass the

electroweak part of the SM must be used. As such the question arises why the Planck

mass MP, as the fundamental scale of gravity, is so much higher than the electroweak

scale vEW ∼ 102GeV. Equivalently, by looking at the ratio between Newton’s and Fermi’s

constants, i.e. GN/GF ∼ (vEW/MP)
2, this can be rephrased as the question why gravity

is so much weaker than the weak force. This is the Hierarchy problem [20]. Formulated in

this way, the Hierarchy problem sounds more like a puzzle than a problem but the actual

problem can be identified by considering the Higgs mass. Being the mass of a scalar

field, it receives quantum corrections proportional to the cutoff of the theory. If these

corrections were smaller than the observed value, there would be no problem. However,

taking MP as the cutoff (or any fundamental scale above TeV) requires fine-tuning and

thus renders the Higgs mass unnatural. In the presence of a large number of particle

species, such as the gluons from additional non-Abelian YM groups or the various fields

from copies of the SM, the true fundamental scale of gravity can be pushed all the way

down to the electroweak scale. This would nullify the Hierarchy problem by having the

Planck scale coincide with the electroweak scale or, in other words, having strong gravity

effects in the vicinity of the energy scales probed by the LHC [48, 49].

The requirement to solve the strong CP problem does not specify all of the axion’s

properties. As a pseudo-Goldstone, all axion low-energy couplings depend on the UV

realization of the PQ mechanism, thus requiring model building to make concrete

predictions [50]. This is usually achieved by the two large classes of invisible axion

models, the Dine-Fischler-Srednicki-Zhitnitsky-type (DFSZ-type) [51, 52] and Kim-

Shifman-Vainshtein-Zakharov-type (KSVZ-type) models [53, 54]. The former adds Higgs

singlets and doublets to the SM, while the latter adds Higgs singlets and heavy quarks
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(for a review see [55]). Even though the minimal models of each type, adding only one

Higgs singlet and one Higgs doublet for DFSZ and one Higgs singlet and one uncharged

quark for KSVZ, define benchmark models, in principle there is a plethora of non-minimal

models. An identification of all these models and systematic approach that allows to

extract a prediction from all these models at the same time would be desirable. The goal

of the third project is to do exactly this for the DFSZ-type axions.

We see that by predicting the existence of a new light field, the PQ solution opens

up a vast landscape of new research directions and challenges. Hence, this solution does

not present the end of the story around the strong CP problem, but in a sense a new

beginning. Our personal answer to the question on how to go beyond the SM is that the

axion represents a promising avenue of investigation by, remarkably, providing a common

theme among various questions of high-energy physics. Therefore, understanding this

landscape in great detail is essential to pave the way beyond the SM. Of course this

answer is highly subjective and its correctness can only be determined retrospectively.

However, scientific progress relies on attempting various approaches based on personal

interpretation and understanding. So we take our answer as the starting point for this

thesis and shall try to delve into the questions surrounding the axion and its potential

role in going beyond the SM.

1.2 Outline

While Chapter 2 and Chapter 3 provide a didactic introduction of the theoretical

background, Chapter 4, Chapter 5, and Chapter 6 are devoted to individual projects.

The latter three chapters feature an introduction and conclusion that provide readers

with an overview of the material covered. In addition, these chapters are self-contained

and can be read on their own, allowing readers to select the chapters that are of relevance

to them. This comes with the price that if one chooses to read the thesis from start to

finish, there may be some overlap in the material presented in each chapter. Finally, it is

worth noting that standard quantum field theory (QFT) notation has been summarized

in Appendix A to avoid interrupting the reading flow. With these things in mind, let us

briefly outline the topics covered in each individual chapter.

Chapter 2 provides a detailed introduction to the strong CP problem. Apart

from establishing the standard language that is used in axion physics, including chiral

perturbation theory and instantons, we make the connection to not so well-known aspects

of the axion, namely as the Schwinger model and the higher-form formalism. We try to

be very didactic so that this and the next chapter can be used a suitable starting point

for students who are interested in this topic and want to acquire an understanding of the

concepts involved.

Chapter 3 introduces the PQ mechanism and discusses how the axion solves the strong

CP problem in the various formalisms. Moreover, we write down the low-energy EFT of

the axion and introduce the four models that are used throughout the rest of this thesis:
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The Peccei-Quinn-Weinberg-Wilczek (PQWW) model, the Kim-Shifman-Vainshtein-

Zakharov (KSVZ) model, the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model, and the

two-form implementation of the axion.

Chapter 4 places the axion within a cosmological framework and discusses the various

implications, such as cosmological bounds on the axion scale arising from overproduction

and isocurvature perturbations. We discuss a known mechanism to avoid these bounds

based on an early phase of strong QCD and show that this mechanism can be implemented

into the KSVZ and DFSZ models by using the modification of the running coupling

during inflation. In particular, we illustrate how in both models the physics that makes

QCD strong during inflation does not displace the axions minimum by too much, so that

the efficiency of the relaxation is controlled by parameters of the theory and the number

of inflationary e-folds. Moreover, we identify the parameter space compatible with all

cosmological constrains when the axion abundance is dominated by inflationary quantum

and post-inflationary thermal fluctuations.

Chapter 5 considers theories with hidden YM (sub-)groups and identifies general

phenomenological consequences of including one axion per YM group, as demanded from

the strong CP problem understood as a consistency problem of every YM group. In

particular, we carry out computations for two simple models, namely a pure YM sector

and N exact Standard Model copies. We illustrate phenomenological consequences such

as: a cosmological constraint on the dark confinement scale, a bound on N , as well

as a potential tightening of the bound on the inflationary Hubble scale arising from

isocurvature perturbations. Furthermore, we discuss the phenomenon of axion stars

collectively made from axions of different dark sectors, as well as the possibility of axion

kinetic mixing and its implications for axion states and stability.

Chapter 6 presents a systematic way to calculate the axion-photon coupling for a

large number of DFSZ-type models, thereby allowing the classification of these models

and the study of the resulting distributions. We show that most of the possible axion-

photon couplings lie in the vicinity of the values dictated by the minimal models by

introducing a theoretical prior probability distribution for DFSZ-type axions and giving

68% and 95% lower bounds as well as two-sided bands. Moreover, we compare the

DFSZ-type distributions with the ones from the KSVZ case and discuss the role of flavor

changing neutral currents and the domain wall problem as possible selection criteria.

We find a large number of non-minimal DFSZ models with a domain wall number of

unity. Intriguingly, these models have an enhanced axion-photon coupling compared to

the minimal DFSZ models.

Chapter 7 gives general conclusions that complement the individual summaries

provided in Chapters 4 – 6. Additionally, we provide a glimpse into potential theoretical

studies in the future that could expand upon the ideas presented in this thesis.



CHAPTER

TWO

THE STRONG CP PROBLEM

The PQ mechanism was proposed to solve the strong CP problem almost 50 years ago

[36, 37]. For this reason it may seem that comprehending how this mechanism works is

only relevant for historical purpose. However, gaining an understanding of how the PQ

mechanism resolves the strong CP problem offers valuable insights into the axion. First

of all, knowing which axion properties are universal and which are model-dependent is

crucial in identifying the axion parameter space. Second, in complex models it is easy

to undermine the axion’s ability to solve the strong CP problem. For these reasons we

take the perspective that it is necessary, rather than purely historical, to understand the

details behind the PQ mechanism. This requires understanding the physics underlying

the strong CP problem first, to which we dedicate this whole chapter.

The standard starting point for introducing the strong CP problem is Weinberg’s

U(1)A problem [56]. Then ’t Hooft’s instanton solution is usually discussed. While

solving the U(1)A problem, instantons result in the strong CP problem in the sense of a

small-value puzzle [57–59]. The first two sections of this chapter stick to this standard

way to establish the language commonly used in axion physics. From there, further not

so commonly known aspects of the strong CP problem are discussed that are important

for some projects on which this thesis is based. These aspects are the 1 + 1 dimensional

Schwinger model [60, 61] as a toy model of the strong CP problem [62], the topological

formulation of the strong CP problem using higher forms [63], and the role of gravity

[31, 64].
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2.1 Low Energy QCD

In QCD, the fundamental degrees of freedom are gluons and quarks. However, the

situation changes when the theory is considered at low energies. Due to quantum

corrections, the strength of the coupling constant becomes stronger with lower energies

until the strong coupling regime is entered and confinement takes place [65, 66]. The

scale this happens is called the confinement scale ΛConf . Additionally, the quark sector

of QCD exhibits an approximate chiral symmetry that is spontaneously broken by the

condensation of the quarks. The scale at which this happens is called the chiral symmetry

breaking scale Λχ. It is still not clear as to whether or not chiral symmetry breaking and

confinement are separate dynamics or inherently linked in QCD [67], but for the sake of

this thesis we will set ΛConf = Λχ ≡ ΛQCD. Although it is fascinating by itself that the

conformal symmetry of the classical theory is broken upon quantization, the crucial point

is that below ΛQCD the perturbative degrees of freedom are no longer gluons and quarks

but mesons and baryons. The theory of those degrees of freedom and how it arises from

QCD can be explained by the framework of chiral perturbation theory, to which we turn

as a tool to understand the U(1)A problem. This section is mainly based on [68], further

sources and insights on this topic can be found in the references cited therein.

2.1.1 Chiral Symmetry Breaking

To simplify the discussion, we will disregard the strange quark for the time being, so

that the number of active quarks is nF = 2. In addition, we assume that the remaining

light quarks have zero mass, which is a reasonable approximation since mu,md ≪ ΛQCD.

With these assumptions, the QCD Lagrangian simplifies to

LQCD = iΨ̄iγµDµΨi −
1

4
GaµνG

a,µν + θ
g2s

32π2
GaµνG̃

aµν , (2.1)

where θ is a parameter called the vacuum angle and G̃aµν is the dual field strength

defined as

G̃aµν =
1

2
ϵµναβGaαβ . (2.2)

The last term has been added since it fulfills all the symmetry requirements of QCD.

Later in this chapter, we will demonstrate that it can be expressed as a total derivative,

implying that it is a boundary term. For the sake of this section, we will thus make the

naive conclusion that this term is non-physical and can be neglected.

In addition to the local SU(3)c color symmetry, this Lagrangian has a global

U(2)L × U(2)R flavor symmetry under which

ΨL,i −→ LjiΨL,j , L ∈ U(2)L , (2.3)

ΨR,̄i −→ Rj̄
ī
ΨR,j̄ , R ∈ U(2)R . (2.4)

This symmetry is chiral since the left and right handed fermions transform differently. In
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the following it will be advantageous to decompose this symmetry as

U(2)L ×U(2)R ≃ SU(2)L × SU(2)R ×U(1)V ×U(1)A .

Since this is per se a symmetry of QCD, the following question arises: What do the

charges of these subgroups correspond to?

• The axial U(1)A symmetry is anomalous, thus it is not expected that the low-energy

particles will carry a corresponding charge.

• The charges of the vector U(1)V are nothing else than the quark numbers or

equivalently the baryon numbers.

• The vector subgroup obtained by setting R = L is the isospin symmetry under

which hadrons and mesons have non-trivial representations. For example the proton

and the neutron form a doublet, while the three pions π0, π+, π− form a triplet.

• In contrast, there is no sign of classification in terms of the axial subgroup SU(2)A,

which is obtained by setting R = L†. It must be spontaneously broken.

The vector subgroups seem clear since they are still good symmetries in the infrared. On

the other hand, the breaking of the axial subgroups gives rise to many questions. In the

following, we discuss two of them in detail.

2.1.2 The Chiral Lagrangian

The first question to be discussed is how the subgroup SU(2)A is broken. This question

can be elegantly answered by means of effective field theory, meaning that knowing the

relevant degrees of freedom and symmetries, we can construct an effective Lagrangian

that captures the relevant physics.

First, the order parameter has to be identified. Obviously, it must be a Lorentz scalar

and an SU(3)c singlet to not disturb these symmetries. Furthermore, since there are

no fundamental scalars, composite fields must be used of which the simplest possibility

is Ψ̄L,iΨ
j̄
R. Finally, the vacuum expectation value (VEV) has to be invariant under

SU(2)V but not under SU(2)A, so that the simplest possibility is ⟨Ψ̄L,iΨ
j̄
R⟩ = v3δj̄i , where

v ≡ ΛQCD. A small note is appropriate here: This VEV vanishes at tree level and to all

orders in perturbation theory due to the flavor symmetry. In other words, there is no

local operator in QCD satisfying the required symmetries that allow the transition of a

left-handed fermion into a right-handed fermion. Therefore, the origin of chiral symmetry

breaking has to be of non-perturbative nature.

Next, the order parameter needs to be expanded around the vacuum. Since the

vacuum manifold for the considered breaking is a three-sphere S3, Goldstone’s theorem

implies that the Goldstone bosons must take values on it. As a result, there is a freedom

in choosing the coordinates to parametrize the sphere. In the following the typical choices

are summarized:
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• Linear parametrization: This yields the linear σ-model of Levy and Gell-Mann

[69]. Even though omitting the non-linear terms gives a renormalizable theory, this

parametrization fails due to phenomenology – the massive radial component σ was

never found.

• Stereographic projections: This leads to the non-linear σ-model of Levy and Gell-

Mann [69]. From the point of view of the linear sigma-model, this parametrization

can be found by taking a double scaling limit such that σ becomes infinitely

heavy and is thus pushed out of the physical spectrum. In this limit the potential

becomes a constraint that, when solved explicitly, gives the Lagrangian of the

non-renormalizable non-linear σ-model.

• Exponential map: In this parametrization, the non-linearity is encoded in the

exponential map, which expanded gives rise to infinite interactions between the

Goldstones. Hence, this model is not renormalizeable. It is most suitable for our

purpose and thus will be used in the following.

The expansion around the VEV using the exponential map yields

Ψ̄LΨR = v3 exp

(
i2πa(x)T a

fπ

)
≡ v3 U(x) , (2.5)

where T a = σa/2 and the factor of 2 is merely for convenience. The most general

Lagrangian for the low-energy effective field U(x) that is consistent with SU(2)L×
SU(2)R is then

L =
1

4
f2π tr(∂µU

†∂µU) =
1

2
∂µπ

a∂µπa + · · · , (2.6)

where the dots denote higher derivative terms that are suppressed with powers of ∂µ/fπ.

Furthermore, there are no terms without derivatives since U(x) is unitary.

Before going to the second big question, let us add the masses of the quarks, i.e.

Lm = −Ψ̄LMΨR + h.c. . (2.7)

This term is minimized by U = Id2 so that the expansion is left unaltered. After chiral

symmetry breaking, the effective mass term is

Lm = v3 tr(MU +M †U †) = − v
3

f2π
tr(M)πaπa + · · · , (2.8)

from which the mass of the pions, m2
π = 2v3tr(M)/f2π , also known as the Gellmann-

Oakes-Renner relation, can be read off. According to this relation, all pions have the

same mass but the mass degeneracy is removed when electromagnetism is incorporated.

To see this, the derivative is promoted into a covariant derivative in order to incorporate

the minimal coupling to the photon. The resulting AAππ and Aππ interactions induce an

additional contribution to the mass of the charged pion of the form δm2
EM ∼ e2 tr(QUQU)

at one-loop order, while the neutral pion is unaffected.

This is also apparent from symmetry considerations. At the classical level, the
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minimal coupling preserves a U(1)L × U(1)R subgroup of the SU(2)L×SU(2)R chiral

symmetry (these U(1) groups have nothing to do with U(1)V or U(1)A). Thus, after chiral

symmetry breaking, the mass of two mesons will be protected from further contributions

from electromagnetism, namely the neutral pion and the η′ meson, which will be discussed

in a moment.

This whole song and dance can be easily generalized to the case with nF = 3,

i.e. including the strange-quark. The flavor symmetry is then given by U(3)L ×U(3)R
and the additional Goldstone bosons are the four kaons and the η-meson. Note that

SU(3) has two Casimirs in contrast to SU(2), which has only one (in general, SU(N)

has N − 1 Casimirs since the amount of Casimirs is equal to the dimension of the

center for simple and semi-simple Lie groups). One of these Casimirs is the isospin I

arising from the SU(2) subgroup, while the other one is the strangeness S. Adding

the quark masses results in heavier masses for the kaons due to the heavier strange

quark. The electromagnetic coupling again produces an additional contribution to the

masses of the charged particles via one-loop effects. In the symmetry language, the only

difference is that the preserved subgroup of the chiral symmetry SU(3)L×SU(3)R is now

(U(1)×SU(2))L × (U(1) × SU(2))R, leading to five meson masses without electromagnetic

contribution: π0,K0, K̄0, η, η′, i.e. all the neutral particles. In what follows, we work

with an arbitrary amount of flavors nF.

2.1.3 The U(1)A Problem

The second big question regards the U(1)A symmetry [56]. It was not known at that time

that U(1)A was anomalous, so a ninth Goldstone had to be included in the expansion

around the VEV, i.e.

U(x) = exp

(
i2πa(x)T a

fπ
+
iπ9

f9

)
, (2.9)

where fπ ≠ f9 since there is no symmetry forcing them to be equal. Due to U(x) now

being an element of U(2)V instead of SU(2)V, another invariant exists that must be

included in the effective Lagrangian, leading to

L ⊃ 1

4
f2π tr(∂µU

†∂µU) +
1

4
F 2∂µ(detU

†)∂µ detU

=
1

2
∂µπ

a∂µπa +
1

2
∂µπ

9∂µπ9 + · · · , (2.10)

where F 2 = (2f29 − nFf
2
π)/n

2
F is fixed by canonical normalization. Again activating the

quark masses leads to a mass of all the (pseudo-)Goldstone bosons. Diagonalizing the

mass matrix to identify the mass eigenstates, it can be shown that the mass of the η′ as

the ninth Goldstone cannot exceed mη′ ≲
√
3mπ. However, experimentally it is known

that mη′ ≫ mπ. In addition, lattice calculations reveal that mη′ ↛ 0 as mu/d → 0, which

should be the case as a consequence of Goldstone’s theorem. The absence of the ninth

Goldstone boson or, in other words, the η′ being too heavy, was called the U(1)A problem

by Weinberg [56].
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It did not take long until ’t Hooft [57–59] realized that U(1)A was not a symmetry

as a consequence of the Adler–Bell–Jackiw anomaly [70–72], i.e.

∂µJ
µ
5 =

nFg
2
s

16π2
GaµνG̃

aµν , (2.11)

where Jµ5 is the current of U(1)A and nF is the number of active quarks. The associated

shift in the Lagrangian was, like the θ-term in (2.1), a boundary term and it was

initially treated like a mathematical artifact. He showed, however, that non-perturbative

configurations in the spectrum of QCD, named instantons [73], make the anomaly physical

by inducing an explicit breaking term in the effective Lagrangian. This term was coined

the ’t Hooft vertex or ’t Hooft determinant. Consequently, η′ receives an additional

contribution to its mass that does not vanish in the chiral limit,

L′tHooft = −κ det(Ψ̄RΨL) + h.c. −→ −κ e−i
η′
fη′ ⟨det(Ψ̄RΨL)⟩+ h.c. . (2.12)

Here, κ is a constant that was calculated by ’t Hooft [58] and will be discussed later.

In summary, ’t Hooft’s instanton mechanism solved the U(1)A problem by realizing

that the Adler–Bell–Jackiw anomaly has physical effects due to non-perturbative config-

urations called instantons. Thus, it can be said that instantons generate a correlation

between the boundary and the bulk of our spacetime. This statement should make us

question our naive conclusion about the θ-term in (2.1). Since instantons are treated

explicitly in the next section, the remainder of this section will assume their existence

and look at the θ-term using chiral perturbation theory.

2.1.4 The Role of θ

Let us now perform chiral symmetry breaking but without neglecting the θ-term to see

its consequences. For that consider the full QCD Lagrangian, i.e.

LQCD = iΨ̄γµDµΨ− Ψ̄MΨ− 1

4
GaµνG

a,µν + θ
g2s

32π2
GaµνG̃

aµν , (2.13)

where M is without loss of generality chosen to be diagonal and the quark masses

are denoted by mf . It is important to note that massive fermions give rise to another

contribution to the vacuum angle. The mass appearing in the mass term of the Lagrangian

can in general be complex but usually one can get rid of the phase by a chiral redefinition,

Ψf −→ eiαfγ5Ψf or
ΨL f −→ e−iαfΨL f

ΨR f −→ e+iαfΨR f

.
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This redefinition, however, is anomalous in the presence of gauge fields and hence affects

the θ-term via the chiral anomaly [74, 75],

θ −→ θ + 2
∑
f

αf ,

argmf −→ argmf + 2αf . (2.14)

Exploiting this through a suitable redefinition of the quarks, the physics encoded in the

QCD vacuum angle can be transferred to the fermion sector. Vice versa the physics

encoded in the phase of the quark masses can be moved to the gluon sector. In either case,

since a redefinition of integration variables in the path integral, such as the fermionic

fields, cannot change physics, physical quantities cannot depend on θ or M separately

but only on the combination

exp(−iθ)
∏
f

mf or

θ̄ = θ −
∑
f

argmf

= θ − arg detM

. (2.15)

In the following, let us choose a redefinition that moves the vacuum angle to the

quark masses and also ensures that both quark masses have an equal phase. This is

achieved by αf = − argmf/2− θ̄/2nf , so that

M −→ e−iθ̄/nFM (2.16)

Regarding chiral symmetry breaking, the crucial point of having θ̄ in the quark sector is

that the minimum is no longer given by the identity. Taking nF = 2 for simplicity and

minimizing the potential, instead yields that the minimum is located at

V =

(
eiϕ

e−iϕ

)
, with ϕ ≡ arctan

(
mu −md

mu +md
tan

θ̄

2

)
. (2.17)

The most convenient way to expand around this minimum is via

U =

(
ei

ϕ
2

e−i
ϕ
2

)
exp

(
2iπa(x)T a

fπ
+
iπ9

f9

)(
ei

ϕ
2

e−i
ϕ
2

)
≡

√
V U0

√
V , (2.18)

where U0 is the solution when θ̄ = 0. The final chiral Lagrangian including the ’t Hooft
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determinant is then

L =
1

4
f2π tr(∂µU

†
0∂

µU0) +
1

4
F 2∂µ(detU

†
0)∂

µ detU0 + κ (detU0 + h.c.)

+ v3 tr(e−iθ/2MV U0 + h.c.)

=
1

2
∂µπ

3∂µπ3 +
1

2
∂µπ

9∂µπ9 + κ cos

(
π9

f9

)
+ 2muv

3 cos

(
ϕ− θ̄

2
+
π3

fπ
+
π9

f9

)
+ 2mdv

3 cos

(
ϕ+

θ̄

2
+
π3

fπ
− π9

f9

)
, (2.19)

where in the second step any constants in the ’t Hooft determinant have been absorbed

into κ and only the neutral pion π3 has been taken into account. The mass eigenstates

η′ and π0 can be deducted by diagonalizing the mass term that emerges from expanding

the cosines. We parameterize these eigenstates by η′/fη′ ± π0/fπ0 ≡ π3/fπ ± π9/f9
with suitable definitions of fη′ and fπ0 and continue to work with the non-expanded

cosines. The mass term stemming from the quark masses can then be decomposed using

trigonometric identities, yielding the potential

V (a, π0) =− 2v3
[
mu cos

(
η′

fη′
+ ϕ− θ̄

2

)
+md cos

(
η′

fη′
+ ϕ+

θ̄

2

)]
cos

(
π0

fπ0

)
− 2v3

[
mu sin

(
η′

fη′
+ ϕ− θ̄

2

)
+md sin

(
η′

fη′
+ ϕ+

θ̄

2

)]
sin

(
π0

fπ0

)
− κ cos

(
η′

fη′

)
. (2.20)

This is the key relation of this section from which a couple of interesting observations

can be made about the vacuum of the theory. Defining z ≡ mu/md and taking θ̄ ≪ 1

for a simpler relation between ϕ and θ̄ (experimentally, this turns out to be a very

good approximation as will be explained in Sec. 2.4), the vacuum energy density can be

obtained by setting the two fields on their ground states η′ = 0 and π0 = 0, which yields

ϵ0(θ̄)− ϵ0(0) = −2v3
[
mu cos

(
mdθ̄

mu +md

)
+md cos

(
muθ̄

mu +md

)]
. (2.21)

From this expression, it is apparent that the presence of θ̄ leads to a reduction in the

vacuum energy. This is a sign that θ̄ is related to tunneling since these transitions are

known to reduce the vacuum energy. The relation to tunneling will become clearer in

Sec. 2.2 where the role of θ̄ is analyzed using instantons. Furthermore, the lowest value

is located at θ̄ = 0, showing that this value for the vacuum angle is very special. This

statement will appear many times in this chapter.

For the second interesting observation, we set one of the quark masses to zero, say

mu. This causes θ̄ to vanish from the Lagrangian and, consequently, from the vacuum

energy density. What happened? The key point can be extracted by defining the

(unphysical) field η̃′ ≡ ϕ + η′. In (2.20), the term proportional to mu vanishes and in

the term proportional to md we have expanded around the minimum ϕ. So effectively
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what happened is that η̃′ acquired the VEV ϕ. According to (2.17) with mu = 0, the

VEV is now located at ϕ = −θ̄/2, thus being located exactly where θ vanishes from the

Lagrangian. This is also not changed when nucleons are also taken into account. In that

case the η̃′ boson will again appear at the same term as θ̄, thus acquiring a VEV that

after expansion around it removes θ̄.

According to (2.15), it is necessary that θ̄ vanishes in the presence of a massless

quark. However, chiral perturbation theory can be used to reveal the special role η′ plays

in this, namely the role of what is called the axion. It renders θ̄ dynamical so that it

relaxes to the true minimum at θ̄ = 0. We will discuss the axion in detail in Chapter 3.

2.2 Instantons

The U(1)A problem was resolved by ’t Hooft’s instanton mechanism [57–59], which

revealed that instantons [73] make the Adler–Bell–Jackiw anomaly [70–72] physical. In

Sec. 2.1 we included the emerging ’t Hooft determinant without any derivation to analyze

some features of θ and reveal the special role η′ plays. The goal of this section is not only

to show how the ’t Hooft determinant emerges but also to discuss the physics behind the

θ-term from a more conceptual point of view. This section is mainly based on [76], further

sources and a far more details on this topic can be found there and in the references

cited therein.

2.2.1 Semi-Classical Theory of Tunneling

The instantonic field configuration is deeply connected with the notion of tunneling.

Before treating instantons in YM theories, it is helpful to start with a simpler example

to get the general idea. Consider the simple example of a real scalar field Φ in 1 + 1

dimensions with a double-well potential. Furthermore, we change to the Euclidean

formulation by Wick rotating to imaginary time, x0 = −ix2, such that the path integral

becomes

Z =

∫
[DΦ] exp(−SE[Φ]) , (2.22)

with

SE[Φ] =

∫
d2xE

(
(∂iΦ)

2 + V (Φ)
)
. (2.23)

The reason we go to Euclidean spacetime is because tunneling processes are inherently

quantum – we cannot rely on our minimal action principle since the solutions of the

EOMs represent classical trajectories in our field theoretic framework. However, in the

Euclidean formulation the potential is flipped, V (Φ) → −V (Φ), meaning that the minima

become maxima and vice versa. Thus, the solution of the EOM that corresponds to a

tunneling process between the two minima in Minkowski spacetime becomes a motion

through a classical region in Euclidean spacetime – we can rely on our minimal action

principle again. This non-perturbative solution is called an instanton. It is important to
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Figure 1: A Simple system to understand the role of topology in YM theories. Left: A particle moving
along an upright circle and subject to a constant gravitational force. Right: Potential of this system
with n denoting the minima. Classically, the particle oscillates around one of the vacua. Quantum
mechanically, the vacuum is a superposition of all the minima, inducing non-trivial effects.

note that, as solutions of the Euclidean EOMs, instantons merely represent the leading

order contribution to tunneling processes. The higher contributions corresponding to

quantum corrections, however, can become very important in systems that are inherently

quantum. This makes instantons merely a tool to understand tunneling processes in the

semi-classical limit ℏ → 0.

2.2.2 Tunneling in YM Theory and the Role of Topology

With this simple example in 1+1 dimensions, let us move on to YM theories. For

simplicity, we consider the pure YM Lagrangian with gauge group SU(2) and without

the θ-term, i.e.

L(A) = −1

4
GaµνG

aµν . (2.24)

It is not obvious that this theory has non-trivial tunneling processes because the direction

in which the tunneling is taking place is hidden in the infinite dimensional space of fields

and the potential along this direction is a result of non-trivial topology [76].

An excellent analogy to understand the role of topology in YM theories is given by

a particle moving along an upright circle and subject to a constant gravitational force

(Fig. 1, left panel). Classically the system is not very interesting since the particle will

oscillate around the bottom of the circle. Quantum mechanically, however, the story

changes due to the periodicity of the potential (Fig. 1, right panel). The true vacuum

of the system is not one of the single, so-called perturbative vacua but a superposition

of all of them. This is independent of the fact that all the perturbative vacua lie at the

same position in the physical position space, i.e. the bottom of the circle. Therefore, the

naive perturbative treatment is not complete. We need to take into account the influence

of tunneling trough the barrier induced by the non-trivial topology to capture the whole

picture.



SECTION 2.2: INSTANTONS 17

To show the existence of such tunneling processes in YM theories, we change into the

Hamiltonian formulation. While the classical Hamiltonian is easy to find via Legendre

transformation of the action, the vanishing momentum conjugate of the scalar potential

leads to a vanishing commutator and thus makes canonical quantization problematic, just

like in QED. This problem happens as we have included non-physical polarizations at the

beginning. An easy fix to this, is adding a term to the action that fixes the gauge.3 But

then the next problem appears. Picking the Lorenz gauge due to being Lorentz invariant,

does not fix the gauge freedom completely and results in negative norm states coming

from the time-like polarization. Thus, we are either left with the Gupta-Bleuler formalism

of enforcing the Lorenz gauge merely on the physical states ⟨Ψ|∂µAµ|Ψ⟩, or using the

non-Lorentz covariant temporal gauge A0 = 0 and imposing Gauss’s law divEa = ρa

by hand since it no longer appears as an equation of motion. Both of these solutions

are rather impractical to perform calculations in the case of YM theory (in contrast to

e.g. QED where it is to some degree possible) but for the purpose of this section it is

sufficient. In the following, we pick the latter but do not impose Gauss’s law so that

we work with an undergauged theory. The corresponding Hamiltonian in the temporal

gauge reads

H =
1

2

∫
d3x(Eai E

a i +Ba
i B

a i) . (2.25)

First we need to identify the zero-energy states of this theory. Naively, one would

expect that these are given by Ai(x⃗) = 0 but due to gauge freedom the zero-energy states

are pure gauge configurations

Ai(x⃗)|vac =
i

g
U(x⃗)∂iU

†(x⃗) , (2.26)

where U(x⃗) belongs to SU(2). For the corresponding action to be finite, we must have

lim
|x⃗|→∞

U(x⃗) = const . (2.27)

This boundary conditions compactifies our three-dimensional space, making it topologi-

cally equivalent to S3. Since the group manifold of SU(2) is also S3, the functions U(x⃗)

realize a mapping S3 → S3. These mappings can intuitively be classified according to

the number of times one sphere is wound around the other sphere or, in other words,

the functions U(x⃗) are forming distinct classes Un(x⃗) that are labeled by the winding

number n ∈ Z.

The crucial point here is that matrices belonging to a class with given n can be related

to each other via continuous gauge transformations. At the same time, no continuous

gauge transformation can change n. In order to pass from one value of n to another, one

must pass through configurations that are not pure gauge. In other words, there is an

energy barrier between the field configurations with different values on n. Thus, n is a

3Such terms look like they explicitly break the gauge symmetry, but gauge symmetries can never be
broken due to not being a real symmetry but a redundancy in the description. This becomes manifest
in the Stückelberg formulation.
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topological quantum number that labels the distinct vacua of the theory, similar to the

right panel of Fig. 1.

Mathematically, the winding number is called the Pontryagin-index and it being

non-trivial follows from the third homotopy group of the three-sphere being non-trivial,

π3(S
3) = Z . (2.28)

Furthermore, there exists an expression for the winding number in terms of the gauge

group elements U(x), i.e.

n = − 1

24π2

∫
d3x ϵijk tr

[
(U∂iU

†)(U∂jU
†)(U∂kU

†)
]
, (2.29)

where the integral goes over any coordinates parametrizing the three-sphere. It can

explicitly be checked that this expression is locally invisible and additive, thus satisfying

all the properties of a topological quantum number.

The existence of many vacua as a consequence of non-trivial mappings between S3

and the gauge group SU(2) ≃ S3 can make the impression that it is only present in

theories with an SU(2) gauge symmetry, but this is not true. There is a theorem by

Raoul Bott that states that any continuous mapping of S3 into a simple Lie group G

can be continuously deformed to a mapping into an SU(2) subgroup of G. This means

that every conclusion made so far and every mathematical equality including numerical

factors equally apply for any simple group G, in particular SU(N).

With this expression for the winding number, the existence of instantons in YM

theories can be shown by finding solutions of the Euclidean EOMs with the boundary

condition

lim
x4→±∞

lim
|x|→∞

Ai(x⃗, x4) =
i

g
U±(x⃗, x4)∂iU

†
±(x⃗, x4) , (2.30)

where U±(x⃗, x4) have winding number n± and all quantities are in Euclidean formulation

(see Appendix A.7). Using (2.29), the total change in the winding number can be

expressed as [68]

ν ≡ n+ − n− =
ig3

24π2

∫
dSµ ϵ

µνρσ tr [AνAρAσ] =
g2

32π2

∫
dSµ C̃

µ

=
g2

32π2

∫
d4xE ∂µC̃

µ =
g2

32π2

∫
d4xEE , (2.31)

where the following topological quantities have been used,

Cµνρ ≡ 2tr

[
AµGνρ −

2

3
igAµAνAρ

]
,

C̃µ ≡ ϵµνρσCνρσ ,

E ≡ ∂µC̃
µ = GaµνG̃

aµν . (2.32)

The first object is the Chern-Simons three-form. The second object is the dual of the
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Chern-Simons three-form, called the Chern-Simons current. From the last expression

of the first row in (2.31) it follows that this is the direction in field space where the

tunneling is taking place (again see right panel of Fig. 1 for the analogy). The last object

is the Pontryagin density, which by its definition expresses the (non-)conservation of the

Chern-Simons current.

From the last equality in (2.31) it follows that for a nontrivial value of ν, it is

sufficient to find a configuration for which the integral over the Pontryagin density does

not vanish. For this purpose, the Bogomol’nyi trick is applied, i.e.,

SE[A] = −1

4

∫
d4xE GaijG

a ij = −1

8

∫
d4xE (Gaij ± G̃aij)

2 ∓ 1

4

∫
d4xE E

≥ ∓1

4

∫
d4xE E =

8π2

g2
ν . (2.33)

The equality holds iff the gauge field is dual or self-dual, i.e.

Gaij = ±G̃aij . (2.34)

Any solution of this first-order equation is a minimum of the action S[A] and thus a

solution of the Yang-Mills EOM. This also immediately follows from the Bianchi identity.

The corresponding action given by (2.33) is the instanton action.

For ν = 1 an explicit solution can be found. This solution is the so called BPST

instanton, named after Belavin, Polyakov, Schwarz, and Tyupkin and it takes the form

Aaµ(x) =
2

g
ηaµν

(x− x0)ν
(x− x0)2 + ρ2

, (2.35)

where x0 denotes the location of the instanton, ρ denotes its size, and ηaµν is called the

’t Hooft symbol,

ηaµν =


ϵaµν , µ, ν = 1, 2, 3 ,

−δaν , µ = 4 ,

δaµ, ν = 4 ,

0, µ, ν = 4 .

. (2.36)

It is apparent that Aaµ falls off as slowly as 1/x but what is most intriguing about this

solution is that the color and Lorentz indices are entangled. This is a consequence of the

instanton solution spontaneously breaking both global color and Lorentz symmetry, but

preserving a diagonal combination.

The BPST instanton is the most important solution for two reasons. First, it is the

leading order configuration since higher ν are suppressed as follows from the instanton

action (2.33). Secondly, multi-instantons with ν ̸= 1 can be expressed in terms of many

BPST instantons. However, it is not the most general, since all instantons have the same

orientation in color space. The most general solution – the so-called ADHM construction

named after Atiyah, Drinfel’d, Hitchin and Manin – assigns 8 Moduli per instanton for
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SU(2): 4 for its position, 1 for its size, and 3 orientations in color-Lorentz-space. In the

general case of SU(N) there are 4N moduli per instanton and so 4N |ν| moduli altogether

in the multi-instanton solution.

2.2.3 The YM Vacuum

The existence of instantons has dramatic consequences. According to quantum mechanics,

when a theory has degenerate vacua separated by a finite energy barrier, the actual

vacuum state is described by a superposition of the degenerate “pre-vacua”. The necessity

for this can be seen by looking at the tunneling amplitude between two vacua |n⟩ and
|n′⟩, which is generically given by

⟨n|H|n′⟩ = e−SE . (2.37)

Here H denotes the Hamiltonian and SE the Euclidean action of the configuration that

mediates between the vacua. Since the vacuum of a consistent theory is per definition

(quasi-)stable, the Hamiltonian must be diagonalized to give the true vacuum.

In QFT this is slightly different. Since every point in space must perform this

tunneling procedure, the tunneling amplitude must be considered in the infinite volume

limit. Thus, the true vacuum is only different from a pre-vacuum if the action of the

configuration, which mediates between the different pre-vacua, does not vanish in the

infinite volume limit. In YM theory the vacua |n⟩ correspond to different winding numbers

and the tunneling amplitude (2.37) is given by

⟨n|H|n′⟩ = e−|ν| g2

8π2 . (2.38)

Since the action is independent of x, it does not vanish in the infinite volume limit and

the true vacuum of the theory is a superposition of |n⟩, i.e.

|θ⟩ =
∞∑

n=−∞
einθ|n⟩ . (2.39)

This is called a θ-vacuum. The phase including the parameter θ results from imposing

the periodic Bloch boundary condition on the wave function, i.e. |n+ 1⟩ = exp(iθ)|n⟩,
which is the most natural boundary condition to impose on a periodic system.

As a result of the periodic boundary condition, the vacuum is labeled by a parameter

θ. This has the interesting property that for any operator O acting on the physical

Hilbert space,

⟨θ|O|θ′⟩ = 0 . (2.40)

This means that the Hilbert spaces are orthogonal or, in other words, different values

of θ correspond to different superselection sectors. This makes the value of θ a global

constant that once fixed cannot be changed.
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The need for θ-vacua can also be seen in a path integral formulation [77]. Per

definition, any mediation between the different winding numbers must be included in

the path integral. Denoting the corresponding weight factor with f(ν), the path integral

becomes

Z =
∑
ν

f(ν)

∫
[DA]eiS[A] , (2.41)

Next consider the expectation value of a local observable O placed within a large Euclidean

volume Ω,

⟨O⟩ =
∑

ν f(ν)
∫
ν DΦeiSΩ O∑

ν f(ν)
∫
ν DΦeiSΩ

. (2.42)

Suppose that Ω is split into two (very large) volumes Ω1 and Ω2, with O in the volume

Ω1. In this case the expectation value in (2.42) becomes

⟨O⟩ =
∑

ν1,ν2
f(ν1 + ν2)

∫
ν1
DΦeiSΩ1 O

∫
ν2
DΦeiSΩ2∑

ν1,ν2
f(ν1 + ν2)

∫
ν1
DΦeiSΩ1

∫
ν2
DΦeiSΩ2

. (2.43)

For the cluster decomposition principle to hold, which essentially is the requirement of

S-matrix locality (or, in other words, that distant experiments are uncorrelated), the

factors including Ω2 must cancel. This is only possible if

f(ν1 + ν2) = f(ν1)f(ν2) , (2.44)

which is uniquely solved by

f(ν) = eiθν . (2.45)

Plugging in the definition of ν from (2.31) results in the appearance of the θ-term in the

Lagrangian,

Lθ = θ
g2

32π2
GaµνG̃

aµν . (2.46)

Even though the θ-term in the Lagrangian has so far been neglected in this whole section,

once instantons were properly taken into account, the term appeared anyway. This

shows that, while the θ-term is irrelevant in the classical YM Lagrangian due to being a

boundary term, the quantum theory makes its inclusion a necessity. However, the θ-term

can even classically have implication in some theories. For instance, this is the case for

QED in the presence of a magnetic monopole. On this background, the θ-term cannot

be neglected since there is a classical configuration creating a “new boundary” that is

not located at infinity. Thus, the correct conclusion would be that θ is never zero. It is

at most irrelevant on a chosen background.

2.2.4 The YM Vacuum Energy

After establishing that the true YM vacuum is parametrized by the global parameter θ,

the question is how the vacuum energy density depends on θ. Using the path integral, a

few general properties can be derived easily [55, 78]:
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• E(θ) = E(θ + 2π)

• E(0) ≤ E(θ)

• E(θ) = E(−θ)
These properties also hold when fermions are included. While in the last section the

vacuum energy was calculated in chiral perturbation theory, in this section the vacuum

energy will be calculated using instanton calculus. For this purpose a weight factor

encoding the influence of the instantons in the functional integral will be derived – this

is called the instanton measure. The calculation was first performed by ’t Hooft [58, 76]

and is straight forward but cumbersome. Here we will outline the procedure and estimate

the final result. All quantities are still in the Euclidean formulation.

To include quantum fluctuations of the gauge field near the instanton, the following

expansion is performed,

Aaµ = (Ainst)
a
µ + aaµ . (2.47)

Up to quadratic order in this expansion, the action is then given by

SE[A] =
8π2

g2
− 1

2

∫
d4xE a

a
µL

ab µν
[
(Ainst)

a
µ

]
abν , (2.48)

where the zeroth order, which we will denote as S0 in the following, is the instanton

action (2.33) and

Lab µν
[
(Ainst)

a
µ

]
= (D2δµν −DµDν)δab − gϵabcGc µνinst . (2.49)

Integrating out the small fluctuations of the gauge field around the instanton, naively

results in (detL)−1/2, but this is where the technicalities need to be taken into account.

These are the following:

Gauge-Fixing Fixing the gauge in order to quantize introduces ghosts and therefore

an additional ghost determinant. We will absorb this contribution

into an overall constant.

Non-zero modes The product of the non-zero eigenmodes diverges and thus needs

regularization, where usually the Pauli-Villars regulator MUV is used.

This effectively means

detL→ detL

det(L+M2
UV)

(2.50)

Zero-modes The zero-modes must be excluded from detL−1/2 to avoid infinities.

Instead, each zero-mode gives rise to an integral over the correspond-

ing modulus times a Jacobian, which produces
√
S0 per collective

coordinate. Additionally, each Jacobian will be accompanied byMUV,

due to the exclusion of the zero-modes after regularization.

As already mentioned, for SU(2) the general instanton solution has 8 collective

coordinates: x0 (the position of its center), ρ (the instanton size), and three Euler angles
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θ, ϕ, ψ, which specify the orientation of the instanton in either the color SU(2) or the

dotted SU(2) of the Lorentz group SU(2)×SU(2). Performing the above steps yields

[58, 76]

dµinst = const×
(
MUVS

1/2
0

)8 ∫
d4x0dρ ρ

3 exp (−S0 +Φ1)

∫
dϕ dθ dψ sin θ

= const×
(
− 8π2

g2

)4 ∫ d4x0 dρ

ρ5
exp

(
8π2

g2
+ 8 ln(MUVρ) + Φ1

)
, (2.51)

where in the second step the integration over the Euler angels has been absorbed into the

overall constant and the Pauli-Villars regulator MUV has been moved to the exponent.

The function Φ1 parametrizes the non-zero mode contribution and is given by

Φ1 = −2

3
ln
(
MUVρ

)
+ const . (2.52)

Plugin this into the expression for the instanton measure (2.51), the prefactor of the

logarithm becomes the renormalization coefficient b0 = 8− 2/3 = 22/3. Thus, the whole

term can be absorbed by the coupling to give the renormalized coupling g(ρ). The final

expression for SU(2) can then be written as

dµinst ≡
∫

dx40 dρ

ρ5
d(ρ) , (2.53)

d(ρ) = const×
(
8π2

g2

)4

exp

(
− 8π2

g2(ρ)

)
, (2.54)

where d(ρ) is called the instanton density. The reason why the renormalized coupling

appears only in the exponent is because only the first order quantum corrections have

been included. A careful calculation to second order would result in the appearance

of the renormalized coupling also in the non-exponential factor, as expected from the

renormalizability of Yang Mills theory.

It should be noted that the ρ dependence of the instanton density at leading order

is given by d(ρ) ∼ ρb0 , which is a steep function for large values of ρ. Since at large

ρ the gauge coupling constant becomes strong, the control over the theory is lost and

semi-classical methods are no longer reliable. This is the reason why instantons are of no

help in solving the confinement problem in QCD.

The generalization to SU(N) is straight forward. The relation between dµinst
remains the same, while the power of the prefactor becomes 2N due to the presence

of 4N zero-modes. Furthermore, the ρ dependence of the instanton density becomes

d(ρ) ∼ ρb0 = ρ11N/3, which is an even steeper function for large values of ρ.

While one instanton has been considered so far, it is necessary to analyze an

ensemble of n+ instantons and n− anti-instantons in order to describe the YM vacuum.

In general, there are highly non-trivial interactions between the instantons and the other

degrees of freedom that need to be taken into account. Instead, the dilute instanton gas

approximation [79] will be used in the following, which assumes the (anti-)instantons to
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be well separated and unaffected by each other. Even though the instanton gas is not a

good approximation in real QCD due to the presence of large instantons, it provides a

basic intuition.

In the large 4-volume limit, the relation between the energy density of the QCD

vacuum and the Euclidean path integral ZE(θ) is given by [80]

ZE(θ) = lim
V4→∞

exp (−V4ρ(θ)) . (2.55)

At the same time the generating functional can be brought to the following form by taking

the (anti-)instanton measure to be dominated by the instantons of size ρ ∼ 1/ΛQCD,

ZE(θ) =
∑
n+,n−

∏∫
dµinst

∫
dµanti−inst

=
∑
n+

1

n+!
(KΛ4

QCDV4)
n+e

− 8π2n+

g2(ΛQCD) eiθn+ × (anti− instanton) (2.56)

= exp

(
2KΛ4

QCDV4e
− 8π2

g2(ΛQCD) cos θ

)
, (2.57)

where K encodes all the constants appearing in the evaluation of the instanton measure

and the θ-term was included. Hence, the energy density of the QCD vacuum depends on

θ via

ρ(θ) = −2KΛ4
QCDe

− 8π2

g2(ΛQCD) cos θ , (2.58)

which is negative, as expected from the general property that tunneling lowers the

ground-state energy.

2.2.5 Tunneling in the Presence of Fermions

So far, only the pure YM Lagrangian has been considered but in real QCD fermions are

present. This gives rise to the question what influence fermions have on instantons and if

the statements made in this section still apply. In order to answer this question the path

integral over the fermions will be evaluated in the presence of a fixed-size instanton.

Since QCD is vector-like, the analysis is limited to Dirac spinors. The corresponding

action in Euclidean space is given by

Sferm
E =

∫
d4xE ψ̄(−iγµDµ − im)ψ . (2.59)

Using Grassmann calculus the corresponding integral yields

det(iγµDµ − im) =
∏
n

(λn + im) , (2.60)

where the real numbers λn denote the eigenvalues of the Hermitian operator iγµDµ.
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Solving the eigenvalue equation of iγµDµ explicitly, it is found that among the solutions

there are two zero-modes per Dirac fermion, one in ψ and one in ψ̄. Consequently, in

the presence of massless fermions the determinant in (2.60) vanishes and the tunneling

probability becomes zero.

This is peculiar because the presence of fermions does not change the non-trivial

topology in the space of gauge fields. Therefore, it should not change the picture of

tunneling along this direction. The solution of this puzzle lies again in the chiral anomaly,

∂µJ
µ
5 =

nFg
2
s

16π2
GaµνG̃

aµν . (2.61)

Integrating both sides over the Euclidean four-volume and evaluating the integrals in the

presence of the instanton, results in

Q5(t = ∞)−Q5(t = −∞) = 2ν . (2.62)

The instanton changes the chiral charge of each massless fermion by two units, meaning

that a left-handed fermion has to become right-handed or vice versa. In fact, since the

number of zero-modes is equal to the change in the chiral charge, this is nothing else

than a special case of the famous Atiya-Singer index theorem,

ν+ − ν− = ν , (2.63)

where ν+ (ν−) is the number of the normalizable zero-modes of positive (negative) chirality.

To sum up, there is nothing wrong with the tunneling picture along the direction of

non-trivial topology. The tunneling still takes place in the presence of massless fermions,

but in such a way that the index theorem holds.

For the index theorem to be incorporated into the path integral, an operator with

exactly this feature must be induced after integrating out the instantons. In the presence

of an instanton located at x1, this is achieved by [57]∫
DψDψ̄ eS[A,ψ]+Jψ̄ψ ⇐⇒ κ

∫
DψDψ̄ eS[0,ψ]+Jψ̄ψ det

(
ψ̄R(x1)ψL(x1)

)
. (2.64)

Generalizing this to n+ instantons and n− anti-instantons at the locations xi, and

integrating over their locations xi yields an additional term in the action,

∑
n±=0

κn++n−

n+!n−!
eiθ̄(n+−n−)

(∫
d4x det

(
ψ̄R(x)ψ(x)L

))n+
(∫

d4x det
(
ψ̄R(x)ψ(x)L

))n−

= exp

(∫
d4x

(
κeiθ̄ det

(
ψ̄RψL

)
+ h.c.

))
. (2.65)

This effective vertex between (anti-)instantons and 2nF fermion lines is the already

mentioned ’t Hooft vertex (see Fig. 2). In contrast to (2.12) in the previous section, where

θ was moved to the fermion sector via a suitable redefinition, here we moved the phase
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Figure 2: ’t Hooft vertex for nF = 3. In its essence, this non-perturbative multi-fermion vertex is a
manifestation of the Atiya-Singer index theorem, arising from zero-modes of the Dirac equation in the
instanton background.

of the quark masses to the gluon sector. Thus, θ̄ appears in front of the determinant.

2.3 Topological Three-Form Formalism

Instantons play a crucial role in addressing not only the U(1)A problem via the ’t Hooft

vertex, but also in revealing the non-trivial vacuum structure of YM theories. This

structure emerges from a compact direction in the infinite-dimensional field space, where

an energy barrier exists. The compact nature of this direction leads to an infinite

number of degenerate vacua labeled by the winding number n. Instantons correspond

to finite-action tunneling processes through the periodic potential so that the physical

vacua |θ⟩ are superpositions of n. As such, the angular parameter θ serves as a label for

the non-trivial vacuum structure.

Our previous discussion on instantons and chiral perturbation theory provided the

standard framework for understanding the nature of θ and the η′ meson. However,

there exists an additional language based on the topological quantities introduced in

the previous section. This language is known as the topological three-form formalism

[45, 46, 81] and will be the primary focus of this section. To provide a more accessible

introduction to the topological three-form formalism, we will first explore its application

in the context of the Schwinger model [60, 61]. This simplified model allows us to gain a

deeper understanding of the topological features of the theory, which we can then apply

to QCD [62].

2.3.1 Lessons from the Schwinger Model

The Schwinger model is basically massless QED in 1+1 dimensional space-time [60, 61],

i.e.

S =

∫
d2x

(
−1

4
FµνF

µν + ψ̄iγµ (∂µ + ieAµ)ψ +
1

2
θϵµνFµν

)
, (2.66)
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where the last term is the corresponding θ-term. In 1+1 dimensional space-time, the

dual of the field strength tensor is a (pseudo) scalar given by Fµν = ϵµνE. This scalar

is essentially the electric field present on the off-diagonal elements of the tensor when

represented as a matrix.

Let us ignore the electron for a moment and focus on the photon kinetic term and

the θ-term. The field equations written in terms of E are

∂µF
µν = ϵµν∂µE = 0 . (2.67)

Therefore, the solutions are given by E = κ, where κ represents an integration constant,

indicating that the solution is a uniform electric field extending throughout the entire

space.4 Since the vacuum energy in this model is simply ρ = E2/2, a non-zero electric

field indicates a non-zero vacuum energy.

To see the role of θ in this simple model, we write the action in terms of E, i.e.

S =

∫
d2x

(
1

2
E2 − θE

)
. (2.68)

We see that by redefining the electric field as E = θ + Ē, we can remove the θ-term.

The new solution to the field equations is Ē = κ − θ. This is a crucial observation.

The vacuum angle θ is essentially some contribution into a background effective field,

so setting θ to zero does not remove the background electric field. Rather it is the

integration constant that encodes the physics of a vacuum angle. In the following, we

set θ to zero and keep in mind that the physics of the vacuum angle is encoded in the

integration constant κ.

Let us now add the massless electrons. From Sec. 2.1 we know that adding a massless

fermion in the presence of a gauge symmetry should make θ unphysical. To see this,

we formally integrate out the fermions via functional integration, yielding the effective

action

Seff = −1

4

(∫
d2xFµνF

µν − i ln det[γµ(∂µ + ieAµ)]

)
. (2.69)

The evaluation of the determinant can either be performed by solving the eigenvalue

problem of the operator inside the determinant or, since the Schwinger model is quite

simple, diagrammatically. The only non-vanishing Feynman diagram is the vacuum

polarization graph (see Fig. 3). Due to Lorentz covariance and Ward-identities, the

resulting polarization operator must be of the form Πµν ∝ (gµν−kµkν/k2). The coefficient

can be calculated after regularizing the diagram and is given by e2/2π. Thus, the effective

Lagrangian becomes

Leff = −1

4
FµνF

µν +
e2

2π
Aµ

(
gµν − ∂µ∂ν

□

)
Aν , (2.70)

4The integration constant κ has nothing to do with the constant in front of the ’t Hooft determinant of
the previous section.



28 CHAPTER 2: THE STRONG CP PROBLEM

Figure 3: The vacuum polarization diagram that generates the polarization operator Πµν ∝ (gµν −
kµkν/k2).

where 1/□ is a symbolic notation for the Green’s function of □ and the photon receives

a mass m2 = e2/π. In 1+1 dimensions the photon field can be decomposed as Aµ =

(∂µϕ + ϵµν∂
νη′)/m as follows from Helmholtz’s theorem. By plugging the Helmholtz

decomposition into the field equations of the photon, we find that the first part of the

decomposition decouples so that we are left with

(□+m2)η′ = 0 . (2.71)

By also plugging in the Helmholtz decomposition into the field strength tensor, we find

the relation between E and η′ to be □η′ = −mE. Taking the d’Alembertian from the

left in (2.71) and using the relation between E and η′, we find

(□+m2)E = 0 . (2.72)

The dual photon is now massive so that a non-zero constant electric field is no longer a

solution. The vacuum angle indeed becomes unphysical by adding a massless fermion. This

is intuitive since in the presence of a charged massless fermion the vacuum configuration

will always be such that the electric field is completely screened by the fermion.

To make the connection with Sec. 2.1 where in the massless quark limit the anomaly

was crucial to make θ unphysical, we use the 1+1 dimensional duality relation between

axial and vector currents,

J5
µ = ϵµνJ

ν . (2.73)

This relation is a consequence of geometry, which follows from the 1+1 dimensional

gamma matrix relation,

γµγ5 = ϵµνγ
ν . (2.74)

In 3+1 dimensions the calculation of a triangle diagram between two vector- and one

axial current reveals that the axial and vector current cannot be conserved simultaneously.

Since the conservation of the vector current is crucial for gauge symmetry, the axial

symmetry must be anomalous in the quantum theory. In 1+1 dimensions the same
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holds true but the responsible diagram is the vacuum polarization (see Figure 3) with a

vector and a axial current on each end. From the gamma matrix relation follows that the

correlator between the axial current and the vector current is given by 5Π ν
µ = ϵµαΠ

αν .

Demanding the conservation of the vector symmetry by gauge invariance results in the

divergence of the axial current becoming anomalous [82],

∂µJ5
µ =

e

π
F . (2.75)

From there the generation of the mass-gap of E follows from the field equations,

∂µF
µν = ϵµν∂µE = eJν , (2.76)

where Jν is the fermionic vector current. Bringing the epsilon-tensor to the other side

gives

∂αE = −eJ5
α . (2.77)

Taking another divergence results in (2.72), meaning that the anomaly is also in the

Schwinger model responsible for the mass generation.

In order to understand intuitively why the constant electric field configuration

disappears, we express the theory in the Stückelberg formulation, i.e.

L = −1

4
FµνF

µν +
m2

2

(
Aµ −

1

m
∂µB

)2

. (2.78)

Here, B denotes the Stückelberg field, which represents the longitudinal mode of the

photon. Let us dualize the Stückelberg field by first imposing the Bianchi identity in the

Lagrangian via the Lagrange-multiplier η′,

Ldualize = η′ϵµν∂µ∂νB . (2.79)

Integrating B out via the equations of motion gives

L = −1

4
FµνF

µν +
1

2
∂µη

′∂µη′ +
m

2
η′ϵµνF

µν , (2.80)

or equivalently

L =
1

2
E2 +

1

2
∂µη

′∂µη′ +mη′E . (2.81)

The equation of motion for the photon field can then be written as

∂µE = m∂µη
′ , (2.82)

so that E = m(η′ − κ) with κ again an integration constant. Plugging this back into the

Lagrangian results in the expression we are looking for,

L =
m2

2
(η′ − κ)2 +

1

2
∂µη

′∂µη′ . (2.83)
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We observe that η′ has its VEV exactly where the background electric field, expressed

via the integration constant κ, vanishes. Incorporating θ just shifts κ, so that the VEV

will be located where the combination of θ and κ vanishes. This picture of course is

equivalent to the screening by the charged massless fermion but here the screening is

performed by a boson. The equivalence between the fermion ψ and the η′ boson is a

special feature of 1+1 dimensional theories, namely bosonization.

The pseudo-scalar mode η′ of the photon essentially plays the same role as the η′

meson in QCD. Its mass is induced by the anomaly and it makes the vacuum angle

unphysical by acquiring a VEV such that θ vanishes. Hence, every aspect of η′ in the

massless quark limit that we have discussed in the previous sections is included in the

Schwinger model. However, in the Schwinger model we have the intuitive picture that

the vacuum angle is encoded in the background electric field, which gets screened by

massless fermions or, equivalently, by the scalar η′. Before showing that a similar picture

exists in QCD, let us introduce the notion of a topological susceptibility.5

The susceptibility is a quantity that describes how a system is deformed by a source,

which is assumed to be a small perturbation of the original system. Given a source

term in the Lagrangian of the form Lsource ∼ ϕO, where ϕ denotes a source and O some

operator, the susceptibility is defined as

⟨O,O⟩q→0 ≡ lim
q→0

∫
ddx eiqx⟨T [O(x)O(0)]⟩ . (2.84)

If this value is non-zero, the system responds on the source and thus depends on it in

some way.

In the Schwinger model we are interested in the topological susceptibility regarding

the θ-term,

⟨ϵµνFµν , ϵµνFµν⟩q→0 = lim
q→0

∫
d2x eiqx⟨T [ϵµνFµν(x)ϵ

ρσFρσ(0)]⟩ , (2.85)

which is just the two-point function of E. Here, the operator O = ϵµνFµν is a topological

quantity, hence the two-point function is referred to as the topological susceptibility. As

the topology of a system affects the vacuum energy (as discussed in Sec. 2.2), it is also

referred to as the topological vacuum susceptibility.

Without a massless fermion, the field equations are solved by a constant electric

field, so that the topological susceptibility is non-zero and the vacuum energy depends on

θ. Since we can express the field strength in terms of Aµ, this statement is equivalent to

⟨AA⟩q→0 ∼
1

q2
, (2.86)

which is the propagator of a massless field. From this we can make the crucial observation

5In the Schwinger model, the same dynamics and the same degrees of freedom that generate the mass
are also responsible for the anomaly. In the 3+1 dimensional theory we must posit the anomaly
separately from the mass generating dynamics [62].
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that any physics making θ unphysical must remove the pole at q = 0, which in the presence

of gauge-invariance is uniquely achieved by making A massive. This is another way to

understand why θ becomes unphysical, when the massless fermion or the Stückelberg

field is added.

2.3.2 Topological Susceptibility in QCD

Let us apply the argument based on the topological susceptibility to QCD. There, the

topological susceptibility is given by

⟨GG̃,GG̃⟩q→0 = lim
q→0

∫
d4x eiqx⟨T [GG̃(x)GG̃(0)]⟩ .

The problem in QCD is that this quantity is very hard to calculate. As we mentioned

in Sec. 2.2, ’t Hooft’s mechanism is semi-classical in the sense that instantons represent

the extremal trajectory in the semi-classical treatment of tunneling transitions. Below

the confinement scale, instantons are no longer suitable degrees of freedom so that the

contribution from quantum correction cannot be neglected. However, Edward Witten

and Veneziano demonstrated that in the large N limit of QCD, i.e. in the limit with a

large number of colors, the topological susceptibility is not zero [83–85]. This claim is

supported by other formalisms, such as lattice computations [86, 87](see also [88]), so

that there is strong evidence for the topological susceptibility of QCD being non-zero.

Using the topological quantities defined in (2.32), a constant topological susceptibility in

QCD is equivalent to

⟨C,C⟩q→0 ∼
1

q2
, (2.87)

where C is the Chern-Simons three-form. From this correlator we observe that the

physicality of θ automatically leads to a pole at q = 0. Consequently, any physics making

θ unphysical must remove this pole. Requiring gauge-invariance, this is uniquely achieved

by making C massive [63].

In more physical terms, the pole at q = 0 corresponds to a non-zero propagator

of Coulomb-type, meaning that C propagates a long-range interaction [89]. Since a

three-form in four dimensions has no propagating degrees of freedom, the long range

interaction takes the form of a constant four-form “electric field” Fµνρσ. Making C

massive then means that the theory is moved from the Coulomb phase to the Higgs phase

and, consequently, the four-form electric field gets screened.

We have exactly the same situation as in the Schwinger model but instead of the

Photon field A in the correlator, we have the Chern-Simons three-form C. This is of not

unexpected because Aµ in 1+1 dimensions plays the role of the Chern-Simons one-form

and ϵµνFµν plays the role of the Pontryagin density. In the following, we will set the

constant value of the topological susceptibility to 1 for simplicity and demonstrate the

three-form Higgs effect using EFT as first pointed out [63].
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2.3.3 Three-Form Higgs Effect

The difference in QCD is that C and E are composite operators of the gluon field matrix

Aaµ. As such, the behavior of the gluons under the QCD gauge transformation translates

into

C → C + dΩ, E → E , (2.88)

where Ω is a two-form. While above the confinement scale C and E are not elementary

and thus can be treated as a formal notation, this is no longer true below the confinement

scale. In that regime C obtains the role of an elementary degree of freedom and E can

be thought of the dual of its field strength [89],

Fµνρσ = ∂[µCνρσ] = ϵµνρσE . (2.89)

Let us use EFT to make the analogy to the Schwinger model clearer. The effective

Lagrangian of Cνρσ is

Leff = − 1

2 · 4! Λ4
QCD

(Fµνρσ)
2 +

1

4!
θϵµνρσFµνρσ + · · ·

=
1

2Λ4
QCD

E2 − θE + · · · , (2.90)

where the dots correspond to higher dimensional operators and in the second equality we

used (2.89). The higher dimensional operators either carry higher powers of derivatives,

which vanish in the q → 0 limit, or have higher powers in E, which have no influence on

the existence of the pole at q = 0 (see [90] for a discussion of sub-leading terms). Thus,

we ignore these higher order terms in the following.

Like in the Schwinger model, the equations of motion are solved by a constant

four-form electric field,

E = Λ4
QCDκ , (2.91)

where κ is an integration constant that induces an additional CP violation beyond θ.

The θ-term can be removed by redefining E, so that the solution of the equations of

motion becomes E = Λ4
QCD(κ− θ). The vacuum angle is thus again a contribution into

the background electric field. Therefore, it is not sufficient to get rid of θ alone but the

constant solution for E must be prevented to make the vacuum angle unphysical. For

simplicity, we set θ = 0 in the following.

Let us now see how the anomaly is incorporated into the effective Lagrangian in the

massless quark limit. We set the prefactors to unity and rewrite the anomalous current

in terms of the Pontryagin density, i.e.

∂µJ
µ
5 = GaµνG̃

aµν = E . (2.92)

The anomaly in 3+1 dimensions generates the following interaction in the effective
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Lagrangian [91]

∆L =
1

Λ2
QCD

E
∂µ
□
Jµ5 . (2.93)

With this interaction included, the equation of motion for Cµνρ becomes

∂ν

(
E + Λ2

QCD

∂µ
□
Jµ5

)
= 0 . (2.94)

Inserting the anomaly from (2.92),

(□+ Λ2
QCD)E = 0 , (2.95)

we see that the equation of motion for E is that of a massive field, which has no pole at

q = 0, again like in the Schwinger model.

The relation between the massive three-form, which propagates one degree of freedom,

and the massless three-form is evident in the Stückelberg formulation. The Higgsing comes

down to the appearance of a two-form Stückelberg field, in contrast to a pseudo-scalar in

the Schwinger model. Since in 3+1 dimensions a two-form is dual to a pseudo-scalar,

this pseudo-scalar in the massless quark limit is the η′-meson. To explicitly see this, let

us insert the current for the massless quark,

Jµ5 = Ψ̄γµγ5Ψ , (2.96)

which after chiral symmetry breaking effectively becomes Jµ5 = fη′∂
µη′. Introducing

m2 = Λ4
QCD/f

2
η′ in the following, the effective Lagrangian becomes

Leff = − 1

2 · 4!Λ4
QCD

(Fµνρσ)
2 +

f2η′

2m2
(∂µη

′)2 − fη′

4!Λ2
QCD

η′ϵµνρσFµνρσ ,

where we took into account the η′ kinetic term, which arises from J5
µJ

µ
5 /2m

2. From this

Lagrangian there are two ways to explicitly see how a mass is generated.

First, by dualizing the η′ and canonically normalizing, we arrive at the following

three-form Stückelberg Lagrangian [46],

Leff = − 1

2 · 4!(Fµνρσ)
2 +

m2

2 · 3!
(
Cµνρ − ∂[µBνρ]

)2
. (2.97)

We see that C becomes massive by eating the two-form Bµν , which is the η′ dual and

plays the role of the Stückelberg-field.

Alternatively, by dualizing the three-form instead and integrating out E via its

equations of motion,

∂νE = Λ2
QCDfη′∂νη

′ , (2.98)
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one arrives at the following (canonically normalized) η′ Stückelberg Lagrangian [46],

Leff =
1

2
(∂µη

′)2 − m2

2

(
η′ − κ

)2
, (2.99)

where κ is the same integration constant as in (2.91). Reintroducing θ would effectively

change κ→ κ− θ. We see that the η′ VEV is exactly at κ− θ. This is also apparent in

(2.98), where the η′ perfectly screens E, not just θ.

So far we considered the massless quark limit. Let us now include the quark mass

and see how the situation changes. The mass induces a further term in the divergence of

the axial current,

∂µJ
µ
5 = GaµνG̃

aµν + 2i
∑
f

mf ψ̄fγ5ψf = E + 2(md −mu)Λ
3
QCD

η′

fη′
. (2.100)

Going through the same calculation again but including the additional term arising from

the quark masses, results in a second mass term in (2.99) where η′2 and not (η′ − κ)2

appears. Hence, the VEV is no longer located where the integration constant vanishes.

To put it differently, the η′ can only partially screen the four-form electric field, leaving a

residual contribution.

2.3.4 Higgsing of Multiple Three-Forms

The above analysis can be generalized to N non-Abelian YM groups, where for con-

creteness we choose N SU(3) groups. Without a massless quark the situation is exactly

the same as in the single three-form case. Each SU(3) brings its own Chern-Simons

three-form Ci, i = 1, 2, and a pole at q = 0 in the correlators ⟨Ci, Ci⟩. This again means

that the equations of motion of each Ci will be solved by a constant four-form electric

field,

Ei = Λ4
i (κi − θi) , (2.101)

so that we have N different θ-vacuum structures. This is not changed if kinetic mixing

terms of the form EiEj are introduced in the effective Lagrangian, since we can transform

into a basis with canonical kinetic terms.

Let us now consider two YM sectors and add one massless quark or, equivalently,

one η′ with the naive intention to make both vacuum angles unphysical. This should be

done by making the axial symmetry anomalous with respect to both gauge groups, i.e.

∂µJ
µ
5 = α1G

a
1µνG̃

aµν
1 + α2G

a
2µνG̃

aµν
2 = α1E1 + α2E2 , (2.102)

where the αi are dimensionless parameters determining the coupling strength. Inserting

this into the effective interaction,

∆L =
α1

Λ2
1

E1
∂µ
□
Jµ +

α2

Λ2
2

E2
∂µ
□
Jµ , (2.103)
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the equations of motion for the different Ci become

∂νE1 + Λ2
1∂ν

∂µ
□
Jµ = 0 , (2.104)

∂νE2 + Λ2
2∂ν

∂µ
□
Jµ = 0 . (2.105)

Plugging in (2.102), this can be rewritten as

(□+m2)

(
α1E1 + α2E2

)
= 0 , (2.106)

□

(
α2

Λ4
1

E1 −
α1

Λ4
2

E2

)
= 0 , (2.107)

where m2 = (α2
1Λ

4
1 + α2

2Λ
4
2)/f

2
η′ . Thus, one superposition of four-form electric fields

becomes massive, while the other one remains massless. Including the θi, the latter’s

equation of motion is solved by

α2

Λ4
1

E1 −
α1

Λ4
2

E2 = α2κ1 − α1κ2 , (2.108)

where κi are again integration constants inducing additional CP violation beyond the

existed θi.

Let us again insert the single axial current (2.96) and perform the same steps as in

the single three-form case. The effective Lagrangian takes the form

Leff =− 1

2 · 4! Λ4
1

(Fµνρσ1 )2 − 1

2 · 4! Λ4
2

(Fµνρσ2 )2 +
f2η′

2m2
(∂µη

′)2

− fη′

4!
η′
(
α1

Λ2
1

ϵµνρσF
µνρσ
1 +

α2

Λ2
2

ϵµνρσF
µνρσ
2

)
. (2.109)

By dualizing the η′ and canonically normalizing, we arrive at the following three-form

Stückelberg Lagrangian,

Leff =− 1

2 · 4!(F
µνρσ
1 )2 − 1

2 · 4!(F
µνρσ
2 )2

+
m2

2 · 3!
(
α1C

µνρ
1 + α2C

µνρ
2 − ∂[µBνρ]

)2
. (2.110)

Again, we see that only one superposition of three-forms can eat the two-form Bµν and

become massive, leaving the theory with one pole at q = 0.

Alternatively, by dualizing the three-form and integrating out both Ei via their

equations of motion,

∂νEi = Λ2
i fη′∂νη

′ , (2.111)
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we arrive at the following (canonically normalized) axion Stückelberg Lagrangian,

Leff =
1

2
(∂µη

′)2 − m2

2

(
η′ − κ1

)2
+
m2

2

(
η′ − κ2

)2
, (2.112)

where the κi are the same integration constants as previously. We observe that the η′

VEV cannot be chosen such that both κi disappear. It is important to realize that the

situation is not altered when all the αi and θi in the Lagrangian are set equal by some

symmetry. In that case it may seem that a single η′ with the above anomalous current can

remove both θi but this is not true. The solution of the massless superposition’s equation

of motion still gives rise to the integration constant κ = α2κ1 − α1κ2, spontaneously

breaking the assigned symmetry and making the vacuum angle physical again. To

conclude this section:

• One η′ cannot remove more than one vacuum angle. In order to make the vacuum

angles of N non-Abelian gauge groups unphysical, N η′ are required.

• Any attempt to change the η′ mass by adding non-Abelian gauge groups, results in

the η′ no longer removing all vacuum angles.

2.4 θ̄ and the Strong CP Problem

So far we focused on understanding the θ-parameter by using different languages but we

did not mention any observable consequences. The observable consequences, however,

are the origin of the strong CP problem as formulated almost 50 years ago. In this

section we discuss the observable consequences and formulate the strong CP problem in

the traditional sense as well as in a modern formulation using consistence arguments of

quantum gravity.

2.4.1 Observing θ̄ via the nEDM

The crucial property of the θ̄-term for that purpose is that its CP violating as can be

seen from the epsilon tensor. Alternatively, this can be seen by writing GG̃ ∝ E⃗a · B⃗a:

while both fields are unchanged under charge conjugation, the B-field is parity odd in

contrast to the parity even E-field. But how can this contribute to an observable?

The key to this question lies in the Wigner-Eckert theorem [92, 93]. Without delving

into technical details, the theorem essentially asserts that for a quantum system possessing

a well-defined directional property (e.g. angular momentum) and an observable associated

with a direction (e.g. a vector-valued operator), there exist strict limitations on how the

orientation of the observable and the orientation of the state can interact with each other.

For instance, in the case of a spin 1/2 particle all observables that are described by a

vector must be collinear to the spin angular momentum vector S⃗. For a charged, spin

1/2 particle in an electric field E⃗, the simplest non-relativistic interaction including a

vector-valued observable is

H = −E⃗ · d⃗ = −d E⃗ · ⃗̂S , (2.113)
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where d⃗ is the intrinsic electric dipole moment and we used the Wigner-Eckert theorem in

the second equality. This interaction is CP violating and thus, due to the universality of

the Wigner-Eckert theorem, the QCD vacuum angle and all other sources of CP violation

contribute into the electric dipole moment.

Since the measurement for protons is quite hard due to charge contamination and the

theoretical value for leptons is very small, the nEDM dn is the most suitable to measure

the QCD vacuum angle. The calculation of the nEDM can be performed using various

frameworks, e.g. chiral perturbation theory [21], QCD sum-rules [94], holography [95],

and lattice QCD [96]. In the following, we will simply estimate the nEDM by dimensional

reasoning and EFT.

The above Hamiltonian interaction can be written in terms of a Lorentz invariant

Lagrangian operator as follows,

L = −dn
i

2
n̄σµνγ5nF

µν , (2.114)

where n denotes the neutron and σµν are the Lorentz generators for the anti-symmetric

representation. This is a dimension 5 operator and hence the dipole moment as the

Wilson coefficient must naively be suppressed by dn ∼ 1/mn. Next, it needs to pick-up

an imaginary part in order to contribute to the real nEDM, which can only originate from

the phase of the quark mass. This motivates dn ∼ θ̄. In addition, from (2.15) we see that

dn → 0 when θ̄ → 0 or mf → 0, so that a reasonable suppression factor is dn ∼ mq/mn.

Lastly, being a dipole, the operator must be generated via an electromagnetic loop, i.e.

dn ∼ e/(8π2). The final effective contribution to dn can thus be estimated as

|dn| ∼
e

8π2
θ̄

mn

mq

mn
∼ 10−18 θ̄ e cm . (2.115)

The most precise calculation is based on QCD sum-rules and yields

dn = 10−16θ̄ e cm . (2.116)

At this time, the best measurement of the nEDM is dn ≲ 10−26 e cm, constraining the

value of θ̄ to be smaller than 10−10.

This unnatural smallness of θ̄ is known as the Strong CP problem. While it indeed

looks like a naturalness problem, this is actually misleading. The quantum corrections to

θ̄ are much smaller than the measured bound [25]. Furthermore, in the SM only θ̄ is an

observable, not its two components θ and arg detMf , so there is no reason to expect θ̄ to

be large due to the CP violation in the Yukawa sector. Thus, from the point of view of

naturalness it is rather a small value puzzle than a problem. In our experience, however,

there is usually a deeper reason behind the smallness of parameters.
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2.4.2 Constraining θ̄ via Quantum Gravity

The situation dramatically changes when gravity is taken into account, in particular

quantum gravity (QG). This might seem hopeless in an EFT sense since QG corrections to

any of our low-energy observables should be extremely small due to the huge suppression

by the Planck scale. However, QG can become important if it forces consistency criteria

upon low-energy theories.

A compelling argument for such a self-consistency requirement was proposed by Dvali

et al [30–33], which states that the notion of a cosmological constant is not compatible

with the quantum interpretation of the de Sitter metric as a coherent state of gravitons.

The framework where this argument arises is called the corpuscular theory of gravity. In

this picture gravitational systems are treated as condensates of gravitons. Describing

classical gravitational backgrounds, such as black holes and cosmological space-times,

using graviton coherent states may seem unconventional, but it is not. In fact, any

classical field configuration can be viewed as a limit of quantum states with a large

occupation number of particles. As an example, a classical electromagnetic wave is

essentially a coherent state of photons. Therefore, it is expected that this is also the

case for any microscopic theory that considers the quantum corpuscular structure of

the cosmological background [30]. Consequently, gravitational systems posses the same

phenomena as other many particle systems.

The phenomenon in this framework we are particularly interested in is the so called

quantum breaking. In a many body system the constituents are subject to classical

scattering but also to quantum scattering. The classical break time tcl is the time scale

after which the system changes its properties due to classical scattering. The quantum

break time tQ, in contrast, is the time after which the system changes due to quantum

scattering and the relation between the two is

tQ =
tcl
α
, (2.117)

where α is the dimensionless (quantum) coupling strength.

In the case of a black hole, which is a localized object, this effect leads to the

departure from the classical behavior after tQ, meaning that the black hole can no longer

be described by the solution of Einsteins field equations. In other words, the mean

field approximation breaks down. In the case of de Sitter, due to the space-time being

non-local, quantum breaking is non-physical and is thus not allowed to take place. Hence,

the so called quantum breaking bound results in the inconsistency of de Sitter space

vacuum. To put it differently, the quantum nature of gravitons leads to their scattering

and ultimately causes the collapse of the coherent state, rendering it incompatible with a

de Sitter “vacuum” and the existence of a cosmological constant [31].

This result is fundamentally based on the S-matrix formulation of quantum gravity

and is thus far more general [33]. In such a formulation, the only limit in which the

quantum back-reaction of scattered gravitons on the hypothetical de-Sitter vacuum,
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characterized by a curvature radius RdS and cosmological constant Λ, vanishes (or in

other words the quantum breaking time goes to infinity) is given by:

Λ → ∞,
1

MP
→ 0, such that

Λ

MP
=

1

R2
dS

= finite . (2.118)

In this limit, however, the coupling of gravitons with wavelength λ ≲ RdS goes as

αgr =
1

M2
Pλ

2
→ 0 . (2.119)

This implies that a self-consistent theory of gravity based on the S-matrix formulation

cannot include a de-Sitter vacuum without gravity decoupling. Therefore, de Sitter

cannot be considered as a vacuum state but only an excited (coherent) state constructed

on top of a true S-matrix vacuum of Minkowski. Notably, this is a unique feature of

gravity, as the stability of the de Sitter “vacuum” and the quantum coupling of gravitons

are both determined by the same parameter, MP.

What does the inconsistency of a cosmological constant have to do with the strong

CP problem? As we have seen in Sec. 2.2, the different vacua of QCD belong to different

superselection sectors that are labeled by θ̄. The energy of these vacua depends on θ̄ with

the global minimum being located at θ̄ = 0 as a consequence of the Vafa-Witten theorem

[34, 35]. Thus, all vacuua with θ ̸= 0 are of de Sitter type and are thus forbidden by the

quantum breaking bound or, more generally, by the S-Matrix exclusion of de Sitter. This

not only elevates the strong CP problem in QCD from a small-value puzzle to a real

problem but makes a vacuum-selection mechanism, which chooses the CP conserving

vacuum at θ = 0, a necessity. Such a mechanism is given by the PQ solution, which is

the subject of the next chapter.





CHAPTER

THREE

THE QCD AXION

We have seen that in the massless quark limit the η′ meson removes the vacuum angle

from the theory. However, in QCD the fit to light quark masses on the lattice has

ruled out the possibility of massless quarks by 20σ [97]. Using the information from the

previous chapter, we can understand how massive quarks spoil the solution. In chiral

perturbation theory, the VEV of the η′ meson is no longer located at the point where

the vacuum angle is removed. In the three-form formalism, the η′ cannot fully align with

the background electric field to screen it. The issue in both languages stems from the

anomaly, where the inclusion of the quark mass term results in an additional contribution

to the anomalous current. From this statement, a solution is almost obvious: We need

to introduce a new global axial symmetry U(1)PQ, which is non-linearly realized and

anomalous only with respect to QCD. This is the PQ solution and its pseudo-Goldstone

is the axion. In this light, the massless quark solution is nothing else than the PQ

mechanism with the η′ playing the role of the axion.

In this section, we formally explain the PQ solution from the perspectives of the

formalisms used in Chapter 2. Then we write down the low-energy EFT of the axion

and derive the axion mass, the axion-fermion couplings, and the axion-photon coupling.

Lastly, we discuss explicit models, i.e. models which provide a UV completion for the

axion EFT, that will be used in latter chapters of this thesis. These are the PQWW

model [36–39], the DFSZ-type models [51, 52], the KSVZ-type models [53, 54], and the

two-form implementation [45, 63].
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3.1 The PQ Mechanism

Essentially, the PQ mechanism is the introduction of a global axial symmetry U(1)PQ,

which is non-linearly realized and anomalous only with respect to a certain YM group.

In the low-energy EFT, all these properties result in the appearance of the axion a, a

pseudo-scalar with the anomalous coupling

La ⊃
(
a

fa
+ θ̄

)
g2

32π2
GG̃ . (3.1)

Here, fa is the axion decay constant, G the field strength of the associated YM group, G̃

its dual, and g the YM coupling.

In Chapter 2, we observed that the vacuum angle enters into the vacuum energy.

Including the axion, which transforms as a→ a+ κ with a constant κ (the non-linearly

realized U(1)PQ), the vacuum angle becomes dynamical. Consequently, the vacuum

energy acts as a potential for a, allowing it to relax to the unique minimum at a(x) = 0

as dictated by the Vafa-Witten theorem. The particular potential can be calculated

either in chiral perturbation theory or using instanton techniques (see Sec. 3.2).

We want to stress that, for the PQ mechanism to work, the only contribution to the

anomaly must be the one proportional to the Pontryagin density of the associated YM

group. Any additional explicit breaking results in a residual vacuum angle, thus shifting

the question of the smallness of θ̄ to the smallness of this new angle or, equivalently, to

the smallness of the breaking parameter. This is not a fundamental issue per se but it

renders the PQ solution no longer a real solution. However, it becomes a fundamental

issue when quantum gravity is incorporated. With additional explicit breaking terms, the

PQ solution cannot remove all de Sitter-type vacua from the theory, so that the theory

is equally incompatible with the S-matrix exclusion of de Sitter as before. In this light,

any additional contribution into the anomaly is strictly forbidden.

An exception to this is provided by Abelian anomalies. There, the vacuum angle is

not physical due to the lack of field configurations, such as instantons, that result in a

non-trivial topological susceptibility.

3.2 The Low-Energy EFT of the Axion

The PQ solution is intriguing in the sense that it predicts the existence of a new light

pseudoscalar particle. This section focuses on formulating the low-energy axion EFT,

which provides a good starting point for obtaining an overview of the axion properties and

understanding how the UV model dependency enters [50]. We have based our notation

and presentation on [55], but made some minor modifications and clarifications to better

suit the specific focus of this thesis.
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3.2.1 Effective Lagrangian

The low-energy axion EFT follows from the required properties of the PQ mechanism.

As a consequence of the U(1)PQ being non-linearly realized, the axion couplings have the

form

La ⊃
∂µa

va
JµPQ +

a

va
∂µJ

µ
PQ , (3.2)

where JPQ
µ denotes the PQ current and va the PQ scale. The PQ current depends on the

global charges χϕ of the fields transforming under U(1)PQ, so a chiral fermion ψL results

in the contribution JµPQ|ψL
= −χψL

ψ̄Lγ
µψL. The anomaly of the PQ current, including

the electromagnetic anomaly and considering arbitrary quark representations, is given by

∂µJ
µ
PQ =

g2N
16π2

GG̃+
e2E
16π2

FF̃ , (3.3)

where N and E denote the color and the electromagnetic anomaly coefficients, respectively.

We constrain ourselves to operators up to dimension 5 that play a role in this thesis,

thus omitting numerous couplings and mixings like axion-nucleon couplings and axion-η′

mixing (for these, see [55, 98]). Correspondingly, the effective Lagrangian is

La =
1

2
∂µa∂

µa+
a

va

g2N
16π2

GG̃+
a

va

g2E
16π2

FF̃ − q̄LMqqR + h.c.

− ∂µa

va

[
χqL q̄Lγ

µqL + χqR q̄Rγ
µqR + χℓL ℓ̄Lγ

µℓL + χℓR ℓ̄Rγ
µℓR
]
, (3.4)

where q denotes the quarks, ℓ the leptons, Mq is the diagonal quark mass matrix, and we

used the axion shift-symmetry to remove the θ̄-parameter. The GG̃-term is canonically

normalized by defining

fa ≡
va
2N . (3.5)

For convenience, we perform the field-dependent axial transformation of the quark fields,

q → e
iγ5

a
2fa

Qaq , (3.6)

where Qa is a generic matrix with tr(Qa) = 1 acting on the quark fields. This redefinition

removes the GG̃-term but induces a shift in the FF̃ -term through the electromagnetic

anomaly, a shift in the axion-quark interaction through the quark kinetic terms, and

a change in the quark mass term. Taking all these changes into account, the effective

Lagrangian becomes

La =
1

2
∂µa∂

µa+
1

4
gaγaF F̃ − q̄LMaqR + h.c.

+ cq
∂µa

2fa
q̄γµγ5q + cl

∂µa

2fa
l̄γµγ5l , (3.7)
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where we introduced

gaγ =
α

2πfa

( E
N − 6 tr(QaQ

2)

)
with Q = diag(2/3,−1/3,−1/3) , (3.8)

cq =
χqL − χqR

2N −Qa , (3.9)

cℓ =
χℓL − χℓR

2N , (3.10)

Ma = e
i a
2fa

QaMq e
i a
2fa

Qa . (3.11)

By utilizing this effective Lagrangian, the consequences of the axion can be investigated,

making it a crucial tool for any phenomenological analysis. In the following, we discuss

the various terms.

3.2.2 Axion Potential and Mass

Let us start by calculating the axion potential emerging from (3.7). In principal, the axion

potential can either be obtained through instanton techniques or chiral perturbation

theory. However, since we have already computed the vacuum energy in these formalisms

and the axion is essentially a dynamical θ, we can use that the vacuum energy acts as

potential for a. For simplification, we again only consider the two light quarks in the

following.

The vacuum energy emerging from instantons in the dilute instanton gas approxima-

tion is given by (2.58), giving rise to the axion potential

V (a) = Λ4
QCD

(
1− cos

(
a

fa

))
, (3.12)

where we approximated Ke
− 8π2

g2(ΛQCD) ∼ 1 [58]. Expanding the cosine, yields the axion

mass

m2
a =

Λ4
QCD

f2a
=⇒ ma = 4× 10

(
1012GeV

fa

)
µeV . (3.13)

Although instantons may not provide reliable degrees of freedom at energies below the

QCD scale, the potential captures the basic qualitative properties at leading order in

a/fa. For this reason, it is a suitable potential when axion self-interactions are negligible.

A more reliable potential can be obtained from chiral perturbation theory. There,

the vacuum energy (2.21) gives rise to the axion potential

V (a) = −2v3
[
mu cos

(
md

mu +md

a

fa

)
+md cos

(
mu

mu +md

a

fa

)]
, (3.14)

which corresponds to the choice Qa =M−1
q /trM−1

q = diag(md,mu)/trMq. It should be

noted that according to (2.20), this choice does not induce any mixing with the pions.
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Expanding then results in the mass,

m2
a =

2Λ3
QCD

f2a

mumd

(mu +md)2
∼

Λ3
QCDmu

f2a
=⇒ ma = 5.7

(
1012GeV

fa

)
µeV . (3.15)

An alternative expression follows from the choice Qa = diag(1, 1)/2, giving rise to the

potential

V (a) = − m2
πf

2
π

(1 + z)

√
1 + z2 + 2z cos

(
a

fa

)
, (3.16)

where z ≡ mu/md. Expanding in a/fa, results in the same expression for the mass as the

first choice of Qa. However, higher order terms differ because Qa = diag(1, 1)/2 induces

a mixing with the pions, which we have neglected here.

The crucial point regarding the axion mass is that it does not directly depend on a

particular UV model. The form ma ∝ f−1
a follows from the anomaly requirement of the

PQ mechanism, hence one can say that this form is dictated by the necessity to solve

the strong CP problem. Nevertheless, the UV dependency can enter indirectly by UV

models preferring different values of fa.

3.2.3 Axion-Photon Coupling

To obtain the axion-photon coupling, let us use Qa = M−1
q /trM−1

q , so no axion-pion

mixing has to be taken into account. Inserting this choice for Qa in (3.8), yields

gaγ =
α

2πfa

( E
N − 2

3

4md +mu

md +mu

)
=

α

2πfa

( E
N − 1.92(4)

)
, (3.17)

where we included next-to-leading-order chiral corrections in the numerical value [99].6

Let us now define the anomaly coefficients E and N . These can be decomposed into

the contributions from each irreducible representation ϕ,

N =
∑
ϕ

Nϕ , E =
∑
ϕ

Eϕ , (3.18)

where each contribution is given by (for a comprehensive review, see [75]),

Nϕ = χϕ dim(Iϕ) T(Cϕ) , (3.19)

Eϕ = χϕ dim(Cϕ) tr(Q
2
ϕ)

= χϕ dim(Cϕ) dim(Iϕ)

(
1

12
(dim(Iϕ)

2 − 1) + Y 2
ϕ

)
. (3.20)

In these expressions, the χϕ denote the PQ charges, Cϕ and Iϕ the color and isospin

representations, T(Cϕ) the color Dynkin index with normalization T(3) = 1/2, Qϕ the

electromagnetic charge generator, Yϕ the hypercharge, and in the second equality for

6The number in parenthesis denotes the error in the last digit.
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E we simply used the Gellmann-Nishijima relation Qϕ = I
(3)
ϕ + Yϕ. It should be noted

that the contributions from right handed fermions come with an overall minus due to the

different sign in the projector PR in the evaluation of the triangle diagram.

3.3 Axion Models

We have observed that the axion-photon coupling has two contributions. The second

term comes from QCD mixing effects. The first term stems from UV physics and is thus

model dependent. As evident from (3.9) and (3.10), such a model dependency appears in

any axion coupling, revealing that it is a universal characteristic of axion-couplings. In

fact, this characteristic is fundamentally rooted in the axion’s Goldstone nature [50]. The

important consequence is that UV models are needed to make concrete predictions about

the couplings of the axion. In this section, we present the benchmark models relevant

for this thesis and discuss general aspects of axion model building. These benchmark

models are:

• PQWW (Peccei-Quinn-Weinberg-Wilczek) [36–39]

Induce anomaly with respect to QCD by requiring SM fermions to carry PQ charges.

As a consequence, the SM scalar sector must be expanded by a second Higgs doublet.

This model is phenomenologically excluded since the PQ scale is connected to the

electroweak scale.

• DFSZ (Dine-Fischler-Srednicki-Zhitnitsky) [51, 52]

Same basic idea as PQWW model but the SM scalar sector is expanded by a second

Higgs doublet and a Higgs singlet. In this way the PQ scale is decoupled from the

electroweak scale, resulting in an invisible axion model.

• KSVZ (Kim-Shifman-Vainshtein-Zakharov) [53, 54]

Induce anomaly with respect to QCD by a new heavy quark and a new Higgs

singlet that guarantees the PQ invariance. In this way, only these two new fields

carry PQ charges instead of any SM fermions.

• Two-Form Axion [45, 46]

Introduce the axion as a two-form that plays the role of the Stückelberg field for

the massive Chern-Simons three-form. Below the PQ scale, the two-form is dual to

the ordinary axion, but UV completion and implications are dramatically different.

3.3.1 PQWW-Model

The crucial ingredient in developing an axion model is to make the U(1)PQ anomalous

with respect to QCD or, in other words, to have N ̸= 0. This is not possible with a single

Higgs doublet when the SM fermions are required to carry PQ charges. To see this, let

us assume that the up- and down-type quarks carry PQ charges. Their contribution to



SECTION 3.3: AXION MODELS 47

the color anomaly results in N = (χu + χd)/2, where

χu = χuL − χuR , (3.21)

χd = χdL − χdR . (3.22)

In the SM, the Higgs doublet couples to both quark types but with a relative complex

conjugation. Therefore, we have χd = −χu, resulting in a vanishing color anomaly.

Another way to see this, is by realizing that there is no Goldstone left in the SM to play

the role of the axion. When the electroweak symmetry is broken, three Higgs doublet

degrees of freedom render the W and Z bosons massive by becoming their longitudinal

modes, while the fourth degree of freedom becomes the Higgs field. For these reasons, a

minimal implementation with charged SM fermions requires a second Higgs doublet.

A general prediction of a two Higgs doublet model (2HDM) are flavor changing

neutral currents (FCNCs) [100]. In the SM, these are only present at higher orders as a

consequence of the Glashow-Iliopoulos-Maiani mechanism [101] and are thus suppressed,

in agreement with experiments [102, 103]. Therefore, new physics should not induce

FCNCs at tree level or provide mechanisms to suppress FCNC reactions. The simplest

way to achieve this is by imposing the Glashow-Weinberg condition [104, 105], meaning

that every fermion type must couple to a single Higgs. We denote the doublet coupling

to the up-type quarks as Hu and the one coupling to the down-type quarks as Hd. The

leptons then acquire their mass via couplings to either of the Higgs doublets. With these

couplings the hypercharge of each doublet is fixed to be YHd
= YHu = −1/2.

The kinetic and the Yukawa sector have a U(1)u × U(1)d symmetry, which must

be identified with U(1)Y ×U(1)PQ in the end. For this reason, none of the initial U(1)

symmetries must be explicitly broken in the scalar potential. This fixes the potential to

have the form

V (Hu, Hd) =
∑

i,j∈{u,d}

−µ2iH†
iHi + aij(H

†
iHi)(H

†
jHj) + bij(H

†
iHj)(H

†
jHi) , (3.23)

where the matrices aij and bij are real and symmetric. The coefficients can be restricted

to give rise to a proper scalar potential7, so that for the electroweak symmetry breaking

both doublets acquire a VEV in the standard basis,

⟨Hd⟩ = vd exp

(
i
ad
vd

)(
0

1

)
, ⟨Hu⟩ = vu exp

(
i
au
vu

)(
1

0

)
. (3.24)

The superposition that becomes the longitudinal mode of the Z boson is

b =
1

vb

∑
i∈{u,d}

Yiviai =
1

v
(vdad − vuau) , (3.25)

7A scalar potential that is bounded from below and renormalizable is called a proper scalar potential.
For these there exists a region in parameter space where all doublets get a VEV in the standard basis.
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where v is the electroweak scale and v2b =
∑
Y 2
i v

2
i = v2/4. The axion is uniquely defined

by being the orthogonal superposition, i.e.

a =
1

va

∑
i∈{u,d}

χiviai =
1

v
(vuad + vdau) , (3.26)

where χd = vu/vd and χu = vd/vu and, consequently, v2a =
∑
χ2
i v

2
i = v2.

The problem with the PQWW axion is that the PQ scale coincides with the

electroweak scale. Such a relatively strongly coupled Goldstone is not only contradicting

to astrophysics (see Chapter 4) but also to many experiments conducted around the time

of the axions proposal.

3.3.2 DFSZ Model

One way to address the issues of the PQWW model is to decouple the PQ scale from

the electroweak scale. The PQ scale can then be pushed to higher scales, rendering the

axion “invisible”. This can most easily be achieved by introducing a Higgs singlet whose

angular mode will contribute into the axion. The resulting model is the DFSZ-model

and it provides the first example of an invisible axion model [51, 52].

The DFSZ model is similar to the original PQWW model, as the fermionic fields

in the SM are charged under the PQ symmetry. To make the PQ symmetry anomalous

with respect to QCD, it is necessary for the scalar sector to feature two doublets denoted

as Hd and Hu. Moreover, a singlet is introduced to make the axion undetectable by

decoupling the PQ scale from the electroweak scale [51, 52]. We denote the singlet as S

in the following. We again impose the Glashow-Weinberg condition, so that Hu couples

to the up-type quarks and Hd to the down-type quarks. This fixes the hypercharges to

be YHd
= YHu = −1/2. With two doublets there is a freedom in choosing which doublet

couples to the leptons but we will leave this unspecified for now.

The kinetic and the Yukawa sector have a global U(1)u ×U(1)d × U(1)S symmetry.

To ensure a well-defined PQ current and to prevent the existence of Goldstone bosons

with decay constants of the electroweak scale order, it is necessary to explicitly break

down this symmetry to U(1)PQ ×U(1)Y . With two doublets this is uniquely achieved by

the term HuHdS
†S† (up to hermitian conjugation of both singlets), which is equivalent

to the condition χu + χd = 2χS . By means of a proper scalar potential, each scalar field

develops a VEV vf , where we introduced the index f = u, d, S. Expanding around these

VEVs yields,

Hd ⊃
vd√
2
e
i
ad
vd

(
0

1

)
, Hu ⊃ vu√

2
ei

au
vu

(
1

0

)
, S ⊃ vS√

2
e
i
aS
vS .

Here, we neglected any degrees of freedom not containing the axion. Each angular mode

af transforms under a PQ transformation as af → af + κfχfvf with the χf denoting
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the PQ charges and the κf being constants. After spontaneous symmetry breaking, the

corresponding PQ current is then

JPQ
µ

∣∣∣
a
⊃ −χSS†i∂µS − χuH

†
ui∂

µHu − χdH
†
di∂

µHd + h.c.

= χuvu∂µau + χdvd∂µad + χSvS∂µaS . (3.27)

By requiring JPQ
µ |a = va∂µa and a→ a+ κva under the PQ transformation, the axion

field is defined as a linear combination of all scalar angular modes,

a =
1

va
(χuvuau + χdvdad + χSvSaS) , (3.28)

v2a = χ2
uv

2
u + χ2

dv
2
d + χ2

Sv
2
S , (3.29)

similar to the PQWW model. We observe that the VEV of the singlet decouples the PQ

scale from the electroweak scale.

Again, the axion must be orthogonal to the superposition that becomes the longitu-

dinal mode of the Z boson. This is equivalent to the orthogonality requirement between

the PQ current defined in (3.27) and the weak hypercharge current JYµ |a =
∑

f Yfvf∂µaf ,

implying ∑
χfYfv

2
f = 0 . (3.30)

Solving this condition together with the other condition resulting from the explicit break-

ing term, allows to express χu and χd in terms of χS , which is otherwise unconstrained

in the original DFSZ model and can be conveniently chosen to be χS = 1. With this

choice, we find

χu = 2
v2d
v2

, χd = 2
v2u
v2

. (3.31)

With the axion identified, the low energy theory can be constructed using standard

methods. Inverting (3.29) allows to express the scalar angular modes in terms of the

axion. Since our focus is on terms that include the axion, this essentially amounts to the

substitution

af
vf

→ χf
a

va
. (3.32)

The Lagrangian can then be brought to the form of the axion EFT in (3.4) by performing

the field-dependent chiral redefinition of the fermion fields,

ψ → exp

(
−iγ5χf

a

2va

)
ψ . (3.33)

In the model under consideration, the ratio between the electromagnetic and color

anomaly coefficients can be expressed as [106]

E

N
=

2

3
+ 2

χu + χe
χu + χd

. (3.34)
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As we already mentioned, with two doublets there is a freedom in choosing which doublet

couples to the leptons. If Hd couples to the leptons, which is referred to as the DFSZ-I

model, we have χe = χd. Alternatively, if H̃
u couples to the leptons, this is referred to as

the DFSZ-II model and we have χe = −χu. For the anomaly ratio this means

DFSZ− I :
E

N
=

8

3
, (3.35)

DFSZ− II :
E

N
=

2

3
. (3.36)

Finally, note that using (3.31) the color anomaly is N = 3 and thus fa = va/6.

3.3.3 KSVZ Model

The phenomenological issues of the PQWW model can also be addressed by building

a model where the QCD anomaly is not generated by the SM fermions. Instead, it is

generated by a new fermion Q, which must transform non-trivially under QCD. The

simplest possibility is given by a fermion that is a QCD fundamental, a SU(2)L singlet,

and has zero hypercharge, i.e. Q ∼ (3, 1, 0). Adding a Higgs singlet S ∼ (1, 1, 0) to

guarantee a PQ invariant Yukawa coupling, results in the KSVZ model, the second

benchmark invisible axion model [53, 54].

The Lagrangian of this model is

L = |∂µS|2 + Q̄iγµDµQ− yQSQ̄LQR + h.c.− V (S) . (3.37)

It features a U(1)PQ symmetry under which QL carries charge 1/2, QR carries charge

−1/2, and S consequently carries charge +1. Moreover, V (S) is a Mexican hat potential

resulting in the spontaneous breaking of the U(1)PQ,

S ⊃ vs√
2
ei

a
va . (3.38)

Performing a field-dependent chiral redefinition of Q to remove the axion from the quark

sector, again results in the axion EFT (3.4). The SM fermions carry no PQ charges in

the KSVZ model, so that the axion-photon coupling is the only coupling of the axion

with the SM fields. Regarding this coupling, since in the KSVZ model Q is electrically

neutral, the anomaly ratio vanishes,

KSVZ :
E

N
= 0 , (3.39)

and the axion-photon coupling is fully determined by the QCD mixing. In this model,

the color anomaly is N = 1/2 and thus fa = va.
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3.3.4 Two-Form Axion

The models discussed so far realize the PQ mechanism by introducing the global U(1)PQ
symmetry by hand with no additional explicit breaking. However, there exists a folk-

theorem stating that no global continuous symmetries are allowed in quantum gravity (see

for instance [107]). The general consensus arising from this folk-theorem is that global

continuous symmetries only appear as approximate symmetries after the spontaneous

breaking of gauge symmetries. Consequently, it is expected that also the PQ symmetry

emerges as a global approximate symmetry with a sufficiently small explicit breaking

to guarantee θ̄ ≲ 10−10. With this believe the above models merely shift the question

of a small θ̄ to the question of a small breaking parameter, which is called the “quality

problem” of the PQ symmetry. The situation gets even worse when the S-matrix exclusion

of de Sitter is taken into account, which requires the exact cancellation of any vacuum

angle.

An approach avoiding these issues is provided by implementing the PQ mechanism

at an intrinsic field theory level.8 By introducing the axion as a two-form that plays the

role of the Stückelberg field for the massive Chern-Simons three-form, the axion shares

the gauge redundancy of gluons and is thus protected against arbitrary UV physics.

While the two-form axion provides a different approach in the implementation of the PQ

mechanism, it is not a UV model. Nevertheless, a fair amount of consequences arise just

from the assumption of such an intrinsic implementation.

To begin with, there is no renormalizable UV-completion in terms of a complex

scalar field for a two-form. Consequently, it is likely that a UV completion has its origin

in a theory of quantum gravity. This implies that in the two-form implementation fa
is related to the UV cutoff of quantum gravity, which in the simplest case would mean

fa ∼ MP. As such, the two-form implementation provides an example for an indirect

influence on the axion-mass by favoring certain values of fa.

Next, in such an implementation the PQ mechanism is only spoiled by deformations

of the theory that put it out of the Higgs phase. Such a deformation is given by the

introduction of additional Chern-Simons three-forms, as demonstrated in Sec. 2.3. This

gives a clear picture on which UV contributions spoil the PQ mechanism and how to

avoid these in model building.

Lastly, with an exact cancellation of θ̄, a measurement of the nEDM would indicate

the source of CP violation to be new physics. In the ordinary implementation of the PQ

mechanism, the source could not be distinguished from a partially screened θ̄ arising from

some additional explicit breaking of the PQ symmetry. This gives a clear interpretation on

potential measurements of the nEDM. Alternatively, this allows to exclude the two-form

axion by experimentally identifying any type of PQ violation.

We want to stress that the two-form axion results in the same low-energy EFT,

due to the duality between two-forms and pseudo-scalars in 3+1 dimensions. This is

8This is usually the case for axion-like particles arising in string theory. There, string compactifications
generate U(1) symmetries that are often spontaneously broken at the string scale [108].
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in agreement with Sec. 2.3, where we introduced the topological three-form formalism

in the context of the η′ mesons as a language that allows to understand the strong CP

problem from a different perspective. The duality on which this is based, however, only

holds true for energies below fa.



CHAPTER

FOUR

COSMOLOGICAL BOUNDS ON THE

AXION

So far we have seen that the axion is an excellently motivated particle candidate beyond

the Standard Model. It emerges as the leading solution to the strong CP problem,

which due to quantum gravity is promoted from a small-value puzzle to a consistency

problem, necessitating a mechanism to remove the QCD vacuum angle. However, due

to its Goldstone nature, the axion also provides an excellent dark matter candidate for

the following reasons [43]: (1) it is stable, (2) it is very weakly interacting via the forces

described by the SM, (3) it is subject to misalignment, a production mechanism that is

able to produce the required amount of axions to account for the observed dark matter

abundance [109–111]. Because of that the axion’s appeal extends beyond particle physics

and encompasses fields such as astrophysics and cosmology. The axion experimental

program is currently thriving, with previously unreachable regions of the axion parameter

space being probed. Therefore, understanding the axion’s parameter space is crucial, and

the project presented in this chapter strives to contribute to this aim.

Let us direct the attention to the region in the parameter space where the axion decay

constant fulfills fa ≳ 1012GeV. This region is usually excluded from the axion window

because of overproduction from the misalignment production mechanism. If this bound

was taken as cast in stone, a non-measurement in the classical window 109GeV ≲ fa ≲
1012GeV would result in the axion’s exclusion. Alternatively, a measurement at higher

values of fa would be interpreted as an axion-like particle instead of the QCD axion.

However, if it were possible to circumvent this cosmological bound, the interpretation

of the measurements would differ considerably. This emphasizes the significance of

comprehending the imposed bounds, particularly the possibility to evade them.

The objective of our work is to do exactly that, i.e. to provide evidence for the

non-robustness of the cosmological bound in question by studying how Dvali’s mechanism
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[44] can be realized in the benchmark axion models presented in Sec. 3.3. The cosmlogical

bound is primarily based on the critical assumption that the initial misalignment angle

θ1 is of order O(1) and not fine-tuned. While fine-tuning itself is not problematic,

it is typically considered undesirable in the absence of an explanation for its origin.

Consequently, if a mechanism existed that yielded very small values of θ1, the parameter

space with fa ≳ 1012GeV would become natural. This would be of particular interest for

string axion-like particles [108] or even the pure gauge two-form implementation of the

axion [46, 112] since both favor large values of fa. Our work is complementary to other

studies of Dvali’s early relaxation mechanism that have been conducted in the literature.

Examples include [113] and [114], which explore its implementation in the context of

supersymmetry (SUSY). In [115], the implications of Higgs inflation on the mechanism

were studied. Additionally, for the related concept of low-scale inflation, which focuses

on constructing a concrete QCD-scale inflation model with successful reheating, we refer

to [116]. A list of alternative ideas to expand the axion window can be found in [55]. We

also note that a complementary study of the same mechanism was presented in [117].

This chapter is structured as follows. To begin with, in Sec. 4.1 we introduce the

two main production mechanisms for the axion, i.e. the misalignment mechanism and the

decay of topological defects. Next, in Sec. 4.2 we briefly review the different phenomena

that constrain the parameter space of the axion, resulting in the axion window. We

specifically focus on the initial misalignment angle θ1 and the impact of thermal and

inflationary fluctuations. In Sec. 4.3, we examine the possibility of early relaxation. We

begin by demonstrating how inflation can cause a shift in the QCD scale and lead to an

early phase of strong QCD. Using this information, we determine the initial misalignment

angle in both the KSVZ and DFSZ models by considering the inflation-induced shift in

the axion’s minimum. Finally, we calculate the energy density and identify the feasible

region of parameter space within our model. We conclude by summarizing our findings

in Sec. 4.4.

4.1 Axion Production

The axion is mainly produced by the misalignment mechanism or by the decay of

topological defects. The former is basically the release of energy that is stored in the

axion field since its emergence. Intriguingly, the produced axions are non-thermal as

required for a dark matter candidate. The latter is based on cosmic strings and domain

walls that emerge from the spontaneous breaking of the PQ symmetry. These can decay

into axions, thus contributing to its cosmological abundance. Both of this production

mechanism are introduced in this section.



SECTION 4.1: AXION PRODUCTION 55

4.1.1 Misalignment Mechanism

In the standard FLRW cosmological framework, the axion emerges at the temperature

TPQ ∼ va ≫ ΛQCD as the U(1)PQ symmetry is spontaneously broken [36, 38, 39]. For

convenience, let us in the following work with the dimensionless axion field θ(x) = a(x)/fa.

For large temperatures, instantons provide good degrees of freedom so that we can describe

the axion potential by instantons coupled to the thermal bath. In the dilute instanton

gas approximation [79], the temperature-dependent potential takes the form [118]

V (θ) = m2
a(T )f

2
a

(
1− cos(θ)

)
, (4.1)

where for the axion mass we use

ma(T ) ≡
(Λ3

QCDmu)
1
2

fa

γ
(
ΛQCD

T

)4
: T > ΛQCD ,

1 : T ≲ ΛQCD .
(4.2)

Here, γ encodes QCD and active quark physics, which for the Standard Model roughly are

of order 10−2 [79]. We observe that the axion potential is essentially flat in the beginning

due to its Goldstone nature. With decreasing temperature due to the expansion of the

universe, the potential becomes more significant until the temperature becomes of order

ΛQCD ∼ 0.2GeV. At this point, the potential becomes independent of the surrounding

thermal environment and remains unchanged.

The equation of motion for the axion in the Friedmann–Lemâıtre–Robertson–Walker

(FLRW) background are given by

θ̈ + 3H(t)θ̇ − 1

R2(t)
∆θ +

V ′(θ)

f2a
= 0 , (4.3)

where R(t) denotes the scale factor and H(t) the Hubble parameter. We can get an

intuitive picture by performing the following two simplification. First, as we are only

concerned with small values of θ, we neglect higher-order terms in the potential expansion.

Secondly, we will only focus on the zero-mode of θ. Incorporating these simplifications,

the equation of motion reduces to that of a damped harmonic oscillator,

θ̈ + 3H(t)θ̇ +m2
a

(
T (t)

)
θ = 0 . (4.4)

For T >> ΛQCD, the Hubble friction dominates and the axion is essentially frozen out.

As long as this situation persists, the axion behaves as dark energy. Since dark energy

does not redshift, the energy remains stored within the axion field. Eventually, as

ma(T (t)
)
= 3H(t) , (4.5)

the axion can release the built-up energy and begin performing coherent oscillations

around the vacuum. After this point, the axion’s equation of state changes from that

of dark energy to that of non-relativistic matter, resulting in the axion contributing to
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dark matter. For convenience, let us use the universe’s temperature instead of cosmic

time in the following, and denote the temperature when the oscillations begin as T1. The

oscillations commence during radiation domination, so that the Hubble parameter can

be expressed as

H(T ) =

√
ρ

3M2
P

∼ T 2

MP
. (4.6)

Together with the axion mass defined by the first row of (4.2), this results in the

oscillations commencing at the temperature

T1 ∼
(
1012GeV

fa

) 1
6

GeV . (4.7)

It is worth noting that for fa values greater than approximately 2 × 1017GeV, the

oscillations commence after the axion has attained its low-temperature mass, resulting in

a distinct expression for T1. Moreover, in the range of 2× 1015GeV ≲ fa ≲ 2× 1017GeV,

there is a slight caveat due to the dilute instanton gas approximation’s breakdown.

Nevertheless, we will employ (4.7) for all fa < MP for the purpose of illustration.

We can estimate the contribution to today’s dark matter fraction as follows. The

initial energy density of these oscillations at T1 is

ρ1 =
1

2
f2am

2
a(T1)θ

2
1 , (4.8)

where θ1 is the initial misalignment angle. This is nothing else than the amplitude of the

axion oscillation at the moment when they commence.

Assuming the change in the mass to be in the adiabatic regime, the number of

zero-modes per co-moving volume is conserved as the axions are essentially decoupled.

Today’s energy density is thus given by

ρ0 = ρ1
ma(T0)

ma(T1)

(
R(T1)

R(T0)

)3

, (4.9)

and the associated cold dark matter fraction is

Ωa
ΩCDM

∼
(

fa
1012GeV

)7/6(θ1
1

)2

. (4.10)

We can observe from this basic estimate that the maximal value of fa depends on θ1. For

“non-special” initial conditions, i.e. θ1 ≈ O(1), the upper limit for fa is approximately

1012GeV. For rather special initial conditions on the other hand, i.e. θ1 ≪ 1, the upper

limit for fa exceeds 1012GeV.

It is important to distinguish between two scenarios that are determined by the time

when the PQ symmetry is broken. We can quantify these scenarios by introducing the

following scales:
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Figure 4: Cosmological bound on the axion scale fa depending on the inflationary Hubble scale HI.
The thick red line represents fa = max{TGH, TRH} in the case of inefficient reheating, separating the
pre-inflationary and the post-inflationary scenarios. The case of very efficient reheating with ϵeff ≈ 0
is depicted in orange to show the influence of the thermalization efficiency on the bound. We neglect
the contribution from the decay of topological defects in the post-inflationary scenario due to large
uncertainties in their determination [119–121].

• The Gibbons-Hawking temperature during inflation, TGH = HI/2π, where HI is

the inflationary Hubble parameter.

• The maximum thermalization temperature [122]

TMax = ϵeffEI ∼ ϵeff(MPHI)
1
2 , (4.11)

where ϵeff is used as a dimensionless efficiency parameter with 0 ≲ ϵeff ≲ 1. This

should not be confused with the reheating temperature which can be somewhat

lower [123].

The pre-inflationary scenario occurs when PQ symmetry is spontaneously broken during

or before inflation, and is never restored afterward, i.e. fa > max{TGH, TRH}. Since the

axion potential is essentially flat during its emergence, in each Hubble patch one initial

value is chosen randomly from a uniform distribution on the range [−π, π]. Inflation

then enlarges each patch so that after inflation has ended the universe starts with one

homogeneous value θ1. This render θ1 a free parameter in this scenario.

In contrast, the post-inflationary scenario occurs when PQ symmetry is either broken

or restored after inflation, i.e. when fa < maxTGH, TRH. In this scenario, patches with

various initial values come into causal contact, resulting in all possible values appearing
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in the current universe. Consequently, the initial misalignment angle in the present-day

universe can be defined as the average over the uniform distribution, θ1 ≡
√

⟨θ21⟩ = π/
√
3.

We show the cosmological bound for both scenarios in Fig. 4. The red line represents

fa = max{TGH, TMax}, thus separating the two scenarios in the case of very inefficient

reheating (ϵeff ≈ 0). The post-inflationary scenario occurs below the red line, while the

pre-inflationary scenario takes place above it. We also present the line that separates

the two scenarios in the case of very efficient reheating (ϵeff ≈ 1) to demonstrate the

influence of the ϵeff parameter. In the pre-inflationary scenario, we include the impact

of inflationary fluctuations (discussed in Sec. 4.2.1), which cause the deviation from the

horizontal lines.

4.1.2 Decay of Topological Defects

The pre-inflationary and post-inflationary scenarios are different in regard to topological

defects, in particular domain walls and cosmic strings. In the pre-inflationary model,

these defects are inflated away and are thus irrelevant to the subsequent evolution. In

the post-inflationary scenario, however, these defects are present and add to the energy

density of the axion through their decay. Therefore, we briefly explain the formation

of these topological defects as a result of the PQ symmetry undergoing spontaneous

breaking. This phenomenon can be understood by the Kibble-Zurek Mechanism (KZM),

which describes the non-equilibrium dynamics and the creation of topological defects in

a system undergoing a continuous phase transition caused by a finite rate change of a

control parameter λ [124–126].

Kibble-Zurek Mechanism

Let us focus on continuous second-order phase transitions, where the KZM was developed.

These phase transitions are characterized by the divergence of the equilibrium correlation

length ξ and the equilibrium relaxation time τ , which usually take the form of a power-law,

ξ(ϵ) =
ξ0
|ϵ|ν , τ(ϵ) =

τ0
|ϵ|zν . (4.12)

Here, ν is the correlation length critical exponent, z the dynamical critical exponent, and

ϵ is the reduced distance parameter, i.e a conveniently normalized distance to the critical

point λc,

ϵ ≡ λc − λ

λc
. (4.13)

In terms of ϵ, the system is initially prepared in the high-symmetry phase (ϵ < 0) and is

forced to face a spontaneous symmetry breaking scenario as the critical point is crossed

towards the degenerate vacuum manifold (ϵ > 0).

In order to describe the dynamics during the phase transition, λ is assumed to be

time-dependent. In the proximity of the critical point, this time-dependence can usually
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be linearized,

λ(t) = λc(1− ϵ(t)) . (4.14)

Taking a linear quench symmetric around the critical point,

ϵ(t) =
t

τQ
, (4.15)

the distance parameter varies linearly in the interval [−τQ, τQ] and is characterized by the

quench time τQ. This whole approximation captures the essence of the non-equilibrium

dynamics involved in the phase transition at a finite rate and is often referred to as the

adiabatic-impulse approximation. This leads to the dynamics being split into three stages

(see Fig. 5)

• Initial stage (dynamics adiabatic and high symmetry):

λ < 0 and |λ| ≫ λc : ϵ≫ 0 =⇒ τ(ϵ) −→ 0

• Intermediate stage (dynamics frozen):

λ ∼ λc : ϵ ∼ 0 =⇒ τ(ϵ) −→ ∞
• Final stage (dynamics adiabatic and low symmetry):

λ > 0 and λ≫ λc : ϵ≫ 0 =⇒ τ(ϵ) −→ 0

The crucial point in the KZM is that the evolution of the system or the order parameter

does not stop. The microstate still evolves as the Hamiltonian dictates and local

thermodynamic equilibrium of the microscopic degrees of freedom may be maintained.

However, the order parameter does not follow its equilibrium value, it can merely catch

up locally. This is the reason for the formation of topological defects.

The freeze-out time t̂, i.e. the boundary between stages, can be estimated by com-

paring the relaxation-time τ(t) with the inverse Hubble rate during radiation domination,

τ(t)
!∼ t =⇒ t̂ ∼ (τ0τ

zν
Q )

1
1+zν . (4.16)

The equilibrium value of the order parameter corresponds to the instantaneous value of ϵ

in the interval [−ϵ̂, ϵ̂],

ϵ̂ = |ϵ(t̂)| =
(
τ0
τQ

) 1
1+zν

, (4.17)

but it should be kept in mind that the true value lags behind this value.

The average length of domains set by the value of the equilibrium correlation length

at ϵ̂ is given by

ξ̂ ≡ ξ(ϵ̂) = ξ0

(
τQ
τ0

) ν
1+zν

. (4.18)

This can be recast as an estimate for the density of topological defects n,

n ∼ ξ̂d

ξ̂D
=

1

ξD−d
0

(
τ0
τQ

)(D−d) ν
1+zν

, (4.19)
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Figure 5: Schematic representation of the freeze-out captured by the adiabatic-impulse approximation.

where D denotes the dimension of space and d the dimension of the defect (for example

in D = 3 a cosmic string has d = 1 and a domain wall has d = 2).

Cosmic Axion Strings

The vacuum manifold of the spontaneously broken U(1)PQ is isomorphic to S1. Since

the first homotopy group of this vacuum manifold is π1(S
1) = Z, the low energy theory

includes cosmic strings. For instance in either the KSVZ or the DFSZ model, the

spontaneous breaking occurs via a standard Higgs potential of the singlet S with a

coefficient λ in front of the quartic term. The energy per length L of the emerging string

is given by

µString ≈ πf2a ln

(
L

δ

)
. (4.20)

Here, δ denotes the thickness of the string and is given by δ ∼ m−1 ∼ (
√
λva)

−1, where

m is the mass of the radial degree of freedom of the Higgs singlet.

The evolution of string networks is an extremely complex problem involving many

different length scales, but all analyses hint that the network reaches a self-similar

attractor solution on large scales in which all the properties and length scales describing

the network scale with time [119, 120]. In this regime, the strings energy density can be

estimated by

ρstring ∼ µStringL

L3
=
µString
γ2t2

, (4.21)

where γ is the factor of proportionality between the characteristic length and time.
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In an FLRW background, this “scaling solution” represents a dissipative solution to

the equations of motion, meaning that the string decays into various forms of radiation

in order to maintain its self-similarity. Possible forms of radiation include the scalar of

which the string is formed, gauge fields to which the scalar is coupled to, and gravitational

waves. Before the QCD phase transition, axions are practically massless and, neglecting

gravitational radiation, represent the only form of radiation in the present case. Thus,

the time-evolution of a string is given by

1

R(t)2
d

dt

(
ρstringR(t)

2
)
= ρ̇string + 2Hρstring = −Pstring ,

1

R(t)4
d

dt

(
ρaR(t)

4
)
= ρ̇a + 4Hρa︸ ︷︷ ︸

Cosmo. redshift

= Pstring︸ ︷︷ ︸
axion emission

.

(4.22)

(4.23)

Inserting (4.21) into (4.22) and assuming the universe to be radiation dominated, gives

Pstring =
πf2a
γ2t3

[
ln

(
γt

δ

)
− 1

]
. (4.24)

Since Ea(t) = ρa(t)R(t)
4 is the comoving energy of radiated axions, (4.23) can be

rewritten as
d

dt
Ea = R(t)4Pstring . (4.25)

Expressing the average energy of emitted axions at t′ as ⟨Ea(t′)⟩ = R(t′)ω̄a(t
′), the

comoving number of radiated axions can be estimated as

Na(t > tQCD) =

∫ tQCD

tPQ

dt′
1

⟨E(t′)⟩
d

dt
Ea(t

′)

=

∫ tQCD

tPQ

dt′
R(t′)3

ω̄a(t′)

πf2a
γ2t′3

[
ln

(
γt′

δ

)
− 1

]
. (4.26)

In the literature there is a controversy on the determination of ω̄a. Naively, ω̄a should

be comparable to the horizon scale at time t, i.e. ω̄a ∼ 2π/t. However, turbulent decay

processes can make it large, so that it requires a cut-off at the horizon and string scale,

i.e. ω̄a ∼ 2π ln(γt/δ)/t. Modern simulations yield intermediate results [121]. Depending

on the choice of ω̄a, the final result is often stated as

Ωah
2 = Ωa,mish

2(1 + αdec) , (4.27)

with 0.16 ≤ αdec ≤ 186 [55].

String-Wall System

The situation changes when at T ∼ TQCD the axion potential is “switched on”. Let us

use the potential in (4.1) but with the canonically normalized axion and with the axion
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decay constant expressed as fa = va/2N ,

V (a) =
m2
av

2
a

2N

(
1− cos

(
2N a

va

))
. (4.28)

The periodicity of the potential results in discrete vacua. The number of these vacua in a

single 2π-loop is the domain wall number NDW, which can be read off to be NDW = 2N .

In a symmetry language, this potential explicitly breaks the U(1)PQ symmetry into

a ZNDW
subgroup under which the axion transforms as a → a + 2πnfa with n ∈ Z.

The DW number can also be determined from this transformation as the value of n

that corresponds to a single loop with a circumference of 2πva, which again results in

NDW = 2N . The ZNDW
is spontaneously broken by one of the NDW vacua. Due to this

spontaneous breaking of a discrete symmetry [127], domain walls emerge and attach

themselves to the already present strings in such a way that the intersection point of

domain walls is given by the cosmic strings.

After the QCD phase transition, the tension of the strings dominates over the tension

of the domain walls σDW. However, after the time tDW, defined by σDW ∼ µstring/tDW,

the tension becomes comparable. the fate of the string-wall system then depends on the

value of NDW. In particular, there are two cases:

• NDW = 1, short lived domain walls

One domain wall is attached to each string. These configurations are unstable and

decay soon after due to the dominating domain wall tension. The energy density

at tQCD is ρDW ∼ σDWL
2/L3 ∼ σDW/tQCD. Assuming that their energy density is

well approximated by extrapolating the previous energy densities to tDW, the total

energy density can be estimated to be

ρstring−wall ∼
σDW(tDW)

tDW
+
µstring(tDW)

t2DW

. (4.29)

The total number density of axions produced by the decay of string-wall systems is

thus

na,dec(t) =
ρstring−wall

ω̄a

(
R(tDW)

R(t)

)3

, (4.30)

which can be used to calculate Ωa,dech
2.

• NDW > 1, long lived domain walls

These configurations are stable because the strings are sustained by the tension of

walls from multiple directions. For t > tDW the strings energy density can be ignored

and the total energy density is given by ρDW(t) ∼ σDW/t ∝ R(t)−2. Therefore,

domain walls redshift slower than dust (∝ R(t)−3) and radiation (∝ R(t)−4) during

radiation domination, leading to an overclosure of the universe. This is the so

called domain wall problem [128] (see [129] for a review).

Before moving to the next section, let us discuss a caveat in theories where the

axion is a linear combination of angular modes af from three or more scalars [130]. For
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concreteness, we use the DFSZ model as an example. There, the explicit breaking of

each angular mode results in a residual cyclic symmetry, af → af + 2πnfvf , where nf
is an integer. To account for these residual symmetries , we apply the cyclic symmetry

transformations to both sides of the first equation in (3.29) and define NDW as previously

mentioned,

NDW = 2N
∑
nfχfv

2
f∑

χ2
fv

2
f

. (4.31)

To ensure that NDW is an integer, we need to demand that the fraction in the expression

for NDW is also an integer, which can be achieved by setting it equal to one without

loss of generality. One possible way to do this is to require nf = χf , which imposes

the compactness of each U(1) and is thus highly restrictive. However, there is a less

restrictive alternative. We can use the orthogonality condition to eliminate one of the vf
terms in the numerator and denominator of the fraction, and then compare the resulting

terms with the same v2f . Let us consider DFSZ2 for simplicity, where f = u, d, S, and

demand that the fraction is equal to one. We find

nS = χS , (4.32)

nu + nd = χu + χd = 2χS , (4.33)

where in the second equality we used the PQ invariance from the unique Veb term

HuHdSS (up to complex conjugation of both singlets). We observe that for NDW to be

an integer in the presence of residual cyclic symmetries, χS and certain combinations

of PQ charges must also be integers. This is not very restrictive for the DFSZ model,

however, it can become more restrictive for more complicated models as the ones we will

consider in Chapter 6. There, we will encounter models where χS has a minimum integer

value larger than one.

In summary, when the axion is a linear combination of fields, the DW number can

still be expressed as NDW = 2N , but with the condition that the fraction in (4.31) is

equal to one. This requirement implies that χS must be an integer, but not necessarily

equal to one. In regard of the domain wall problem, it is convenient to choose the minimal

possible value of χS . Therefore, we define the domain wall number as

NDW = min positive integer {2N} (4.34)

and use this definition for the remainder of this thesis.

4.2 The Axion Window

The axion production mechanism results in an upper bound on the scale fa or, equivalently,

a lower bound on the axion mass ma. However, this is not the only bound on the

parameters of the axion. In this section, we give a brief overview over the various bounds

and discus how model-dependent these are. All bounds are shown in Fig. 6, where the



64 CHAPTER 4: COSMOLOGICAL BOUNDS ON THE AXION

non-excluded region is the axion window (more details on the various bounds can for

instance be found in [55]).

4.2.1 Isocurvature Fluctuations

In the pre-inflationary scenario, the axion exists during inflation as an essentially massless

field. As such, it is subject to quantum fluctuations. Let us write the axion field as

θ = ⟨θ⟩ + δθ, where ⟨θ⟩ = θ1 and δθ denote the quantum fluctuations. These fulfill

⟨δθ⟩ = 0 and have a standard deviation of

σθ ∼
√
⟨δθ2⟩ ∼ HI

2πfa
. (4.35)

These fluctuations displace the axion value during inflation, resulting in the modification

of (4.10) by θ21 → θ21 + σ2θ . For large values of HI the quantum fluctuations can dominate

over the initial misalignment angle, resulting in the deviation from the horizontal lines in

Fig. 4.

In addition, if the axion acts as a spectator field during inflation, its fluctuations

will not be adiabatic but of isocurvature-type. Isocurvature fluctuations have a distinct

signature in the temperature and polarization fluctuations of the CMB, which places

constraints on the parameter space of axions. Assuming the fluctuations to be normal

distributed in the regime of small θ1, where anharmonic corrections of the axion potential

can be ignored, the amplitude of the axions isocurvature fluctuations is given by [131]

∆a(k0) =
δΩDM

ΩDM
=

Ωa
ΩDM

δ lnΩa
δθ1

σθ =
Ωa
ΩDM

HI

πθ1fa
,

The latest experimental bound on uncorrelated isocurvature perturbations by Planck is

[40]
∆2
a(k0))

∆2
R(k0) + ∆2

a(k0)
< 0.038 at 95% CL , (4.36)

where k0 = 0.050 Mpc−1 and ∆R(k0) = (2.196 ± 0.060) × 10−9 denotes the measured

amplitude of scalar perturbations. This implies

HI ≲ 107
(

Ωa
ΩCDM

)−1( fa
1012GeV

θ1
1

)
GeV . (4.37)

We want to stress that this bound only applies in the pre-inflationary scenario when the

axion is a massless spectator field during inflation. Any violation of these conditions

reduces or even nullifies this bound.

4.2.2 Primordial Gravitational Waves

The pre-inflationary scenario depends on the scale of inflation and, as such, is subject

to the constraints on these. The most robust and model-independent constraint comes
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from tensor fluctuations, which develop into primordial gravitational waves. Their

amplitude ∆t = 2H2
I /(π

2M2
P) only depends on the expansion rate during inflation and

thus represents a bound of the parameter space to the right. It is convenient to express

the bound in terms of the tensor-to-scalar ratio, r ≡ ∆t/∆R, which is just the tensor

amplitude normalized with respect to the scalar amplitude. The bound given by the

Planck-BICEP2 joint analysis is r < 0.063 [40], implying

HI < 6.1× 1013GeV . (4.38)

4.2.3 Thermal Fluctuations

After inflation has ended and the universe is reheated, the axion is essentially frozen

out until the QCD phase transition. Throughout this period, the axion is exposed to

thermal fluctuations that cause it to deviate from its value at the end of inflation [44].

Since the potential is essentially flat during that time, its movement can be considered

a random walk with a step size of ∆θ ∼ T/fa per Hubble time. In the pre-inflationary

setting, the axion is present right from the onset of the thermal universe at the reheating

temperature TRH. Consequently, the maximum deviation until the QCD phase transition

is

σthermal
θ ∼ TRH

fa
. (4.39)

The influence of the thermal fluctuations on the misalignment can be captured by the

same replacement as the quantum fluctuations, i.e. θ21 → θ21 + (σthermal
θ )2. In the

pre-inflationary scenario, fa ≫ TRH, so that thermal fluctuations are negligible compared

to θ1 ∼ O(1). However, as the quantum fluctuations, they can become important for

θ1 ≪ 1 and can even dominate for certain values of the parameters.

4.2.4 Astrophysics

A lower bound on fa is obtained by studying astrophysical consequences of the axion

[132]. In particular, the axions-photon or any axion- matter couplings induce a new

cooling channel that significantly alters the stellar evolution and cooling efficiency of

various stars. The reason for such efficient cooling is the weakness of the couplings due

to the suppression by fa. Consequently, a produced axion within the star is very likely

to leave it. This is in contrast to photons, which get scattered a huge amount of time

until they leave the star. While this is a strong simplification for the complicated physics

that take place in stars, it provides an intuitive picture that captures the essence. The

most stringent bounds come from the cooling of red giants and the neutrino flux of SN

1987A, excluding for the benchmark models the region

fa ≲ 109GeV . (4.40)

It is important to note, that this bound only holds for the benchmark models or models

with similar couplings. As presented in Sec. 3.2.1, all axion couplings get contributions
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Figure 6: Axion window with the bounds coming from isocurvature perturbations (darker blue), black
hole super-radiance (purple), interactions in stars (yellow), primordial gravitational waves (cyan) and
overproduction (light blue or brown). See [55] for further details on each constraint.

from several terms, allowing for cancellations or at least strong suppression in more

complicated models. These are called astrophobic axion models and they allow for lower

values of fa.

4.2.5 Black Hole Super-radiance

The last bound we want to mention is black hole super-radiance [133, 134]. This

phenomenon describes the amplification of a wave’s amplitude by scattering from a black

hole, extracting angular momentum and energy from the black hole in the process. For

massive bosons like the axion, the boson mass acts as a mirror that traps the incoming

wave to the vicinity of the black hole. The super-radiance phenomenon can then occur

repeatedly, leading to an instability that drastically reduces the angular momentum of

the black hole and leads to potential gravitational wave and γ-ray signatures. In particle

terms, the phenomenon of super-radiance leads to the axions binding to the black hole,

forming a “gravitational atom”. Angular momentum and energy conservation lead to an

exponential growth of the occupation number of the atomic levels, essentially forming

an axion Bose-Einstein condensate cloud around the black hole. When the attractive

axion self-interactions dominate the gravitational binding energy, the cloud collapses in a

phenomenon called “bosenova”. By analyzing the masses and spins of observed black

holes, a limit can be set on the mass of the boson. In the case of the axion, this excludes
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the range where

6× 1017GeV ≲ fa ≲ 1019GeV . (4.41)

This bound can be lowered by future experiments such as Advanced Laser Interferometer

Gravitational-Wave Observatory (LIGO), which can detect gravitational wave signals

resulting from a bosenova of a QCD axion cloud with fa as low as the grand unified

theory (GUT) scale.

4.3 Early Relaxation using Inflation

The upper boundary of the axion window at fa ∼ 1012GeV is crucially based on the

initial misalignment angle θ1 being O(1). However, smaller values of θ1 emerge naturally

when the axion is able to relax to its minimum in the early universe. Such an early

relaxation mechanism as proposed by Dvali [44], allows to shift the bound on the axion

scale to fa ≫ 1012GeV.

4.3.1 General Idea

As proposed in [44], we use inflation to generate a temporal phase of strong QCD. Such

a phase occurs during inflation when the QCD scale is larger than the inflationary

Gibbons-Hawking temperature,

ΛQCD ≳ HI . (4.42)

As in the late universe, the QCD phase transition results in the axion developing its

potential and relaxing to its minimum.

The efficiency of this relaxation is controlled by the axion mass ma, the inflationary

Hubble parameter HI and the number of e-folds Ne. If for instance ma ≳ HI, the Hubble

friction is overcome and the relaxation to the minimum is very efficient. As an additional

feature of this scenario, the axion does not generate any isocurvature perturbations,

as these perturbations only arise for massless particles with respect to the inflationary

Hubble parameter. If ma ≲ H, the relaxation occurs when the phase of strong QCD lasts

long enough. To see this, we solve the axion equation of motion in this case, yielding

θ(tf ) ∼ θ(ti) exp

(
−Ne

m2
a

3H2
I

)
. (4.43)

where θ(ti) ∼ O(1) denotes the initial misalignment angle during inflation. For the

relaxation to be efficient, the initial phase of strong QCD must last for

Ne ≫
3H2

I

m2
a

. (4.44)

In both situations the potential vanishes at the end of this early phase of strong QCD

and the axion remains frozen out in the vicinity of its potential minimum. When the
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“ordinary” QCD phase transition activates the axion potential again in the late universe,

the resulting amplitude of the oscillations is naturally small, i.e. θ1 << 1.

4.3.2 The QCD Scale during Inflation

The condition (4.42) makes the impression that early relaxation can only take place for

small values of HI. This impression, however, is based on the assumption that parameters

such as ma or ΛQCD are unaltered during inflation and the history of the universe. While

this assumption seems natural, in fact, it is not.

In generic supergravity and superstring theories, the strong coupling constant is

usually fixed by the VEV(s) of some scalar field(s). The minima of those scalars during

inflation, in general, do not coincide with their late universe minima due to thermal and

quantum fluctuations but also due to a displacement of the minima themselves. This

could result in αs ≫ 1 during inflation, thus making QCD strong with a ΛQCD different

from its late universe value [44].

The change of the QCD scale can also occur indirectly from the effect of displaced

scalar VEVs. In the SM, for instance, the VEV of the Higgs H can be displaced as well.

For example, consider the case of massive chaotic inflation, i.e. V (Φ) = m2Φ2/2, together

with the Higgs-portal coupling

∆V = −1

2
κΦ2H†H , (4.45)

where κ is some positive constant that fulfills κ ≲ 10−6 for quantum corrections to be

negligible [135]. From the Friedmann-equations in the slow-roll approximation we obtain

3H2
IM

2
P = m2Φ2/2, so that the potential becomes

∆V = −1

2
κ

(
6
H2

I

m2

)
H†H . (4.46)

We observe that the Higgs receives a curvature of order HInf , displacing its VEV.

Alternatively, a displacement occurs when higher dimensional operators of the inflaton

and the Higgs are included, e.g.

∆V =
λ

Λ2
Φ4H†H , (4.47)

where λ < 1 is a coupling constant and Λ is some UV cutoff, say MP. In large field

inflation, where the Higgs takes value of order of MP, the Higgs VEV becomes of order of

λ1/2MP. Motivated by these examples, the Higgs VEV can be significantly larger during

inflation. This would have a considerable impact on the masses of the quarks, since these

are directly proportional to the Higgs VEV. This change in turn affects the running of

αs and, consequently, ΛQCD. According to (4.2), a changed value of ΛQCD automatically

results in a modified value of ma.
9

9Even though we will focus on the implications from the changed value ΛQCD in the early universe on
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Let us now turn to the influence of inflation on ΛQCD in the KSVZ and the DFSZ

models (see Sec. 3.3). Since in these two models the strong coupling constant is not

controlled by the VEV of some moduli field, the shift comes purely from the displaced

Higgs VEV. The first order β-function of QCD in dimensional regularization is given by

β ≡ µ
dαs
dµ

= −α
2
s

2π
b , (4.48)

where

b = 11− 2

3
nf . (4.49)

Here, nf denotes the number of active quarks in the energy range under consideration.

In the late universe, given the measured value αs(MZ) = 0.1179 [137], the differential

equation can be solved in the energy range mb ≤ E ≤ mt where nf = 6. Taking the value

of the solution at mb as new initial condition, the differential equation can be solved in

the energy range mc ≤ E ≤ mb where nf = 5, and so on. The QCD scale is identified

with the scale where αs = 1 and is ΛQCD ∼ 0.28GeV at first loop. Note that a heavy

quark needs to be included in the running of the KSVZ model. Since this heavy quark is

obtaining its mass from the singlet S, its mass is assumed to be roughly of order of fa.

This influences the running only above fa, so that it plays no role in the determination

of the QCD scale in the late universe.

During inflation the quark masses are much larger due to the shifted Higgs VEV.

Consequently, the quark are integrated out at much higher energies. Since the running

of αs becomes steeper with less active quarks, the emerging Landau pole is located at

a much higher energy than with the smaller quark masses in the late universe. Let us

indicate parameters during inflation with the label “Inf” in the following.

In order to define the quark masses during inflation, we take into account the running

of the Yukawa couplings in addition to the changed value of the Higgs VEV. Usually, the

mass of the (heavy) quarks is defined at the corresponding mass scale in the MS scheme,

i.e. mq ∼ vHyq(mq), where vH is the Higgs VEV and yq is the corresponding Yukawa

coupling. We take this as the defining relation and solve it numerically by making the

approximation yInfq ∼ ytodayq . Incorporating the Yukawa coupling in this way, gives a

slightly more precise definition of the quark masses than only using the shifted Higgs

VEV, but it turns out that the final influence on the QCD scale is negligible.

Moreover, in the ordinary low energy situation the measured value of αs(MZ) served

as the initial condition for the running. This condition is no longer applicable during

inflation due to the changed quark masses. Hence, we need to use as initial condition the

value of αs at a higher scale that is not affected by the larger quark masses. This, for

instance, could be the GUT scale ΛGUT ∼ 1016GeV or the Planck scale MP. Since the

value of αs at such a large scale crucially depends on the field content, the particular

value is very model dependent. In the DFSZ model without additional fields, the

the axion, it should be noted that this could have interesting consequences on other theories. For
example, this would allow for a production of primordial black holes from the confinement of our
QCD as discussed in [136].
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Figure 7: Running of αs during inflation in the KSVZ model with the inflationary Higgs VEV chosen to
be vInfH ∼ MP and the initial condition αInf

s (MP) = αs(MP). The different colors indicate the parts with
a different number nf of active quarks. We see that the QCD scale is much larger compared to its value
in the late universe.

running is purely controlled by the known quarks and we have αs(ΛGUT) ∼ 0.0224 or

αs(MP) ∼ 0.0200. For the KSVZ model, the heavy quark can have an influence if its

mass is smaller than the energy at which the new initial condition is defined. Taking its

mass to be not too far off from the GUT scale, i.e. mQ ∼ ΛGUT, its influence is rather

small and the initial conditions of the DFSZ and the KSVZ models coincide. It should

also be noted that the KSVZ singlet could be coupled to the inflaton itself, leading to a

shift of the mass mQ during inflation.

In order to determine the QCD scale, we solve (4.48) in the same manner as in

the late universe case but incorporate the changes we just discussed. For illustration,

let us use the following set of parameter in the KSVZ model. First, the mass of the

heavy KSVZ quark is fixed at mQ ∼ ΛGUT. Next, the late time value of αs at MP is

used as initial condition. Lastly, the value of the inflationary Higgs VEV is chosen to be

vInfH ∼MP. We depict the resulting running of αs in Fig. 7. As can be read of, with these

parameters the QCD scale is located at ΛInf
QCD ∼ 105GeV. We repeat this procedure for

various values of the inflationary Higgs VEV. The resulting values of the QCD scale are

plotted in blue in Fig. 8 and can be fitted by

ΛInf
QCD(vH) ∼ 105

(
vH
MP

)5/14

GeV . (4.50)

Our analysis shows that for the given choice of parameters and initial conditions the

QCD scale during inflation is significantly changed. This effect is known in the literature

[115]. The different exponent in our calculation comes from including the running of

Yukawa couplings.

The analysis can be repeated for the DFSZ model. By comparing the running of
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Figure 8: Values of the QCD scale for various values of the inflationary Higgs VEV vInfH and the
corresponding linear fit. The red points have αInf

s (mInf
Z ) = αs(mZ) as initial condition for the running

while the blue points have αInf
s (ΛGUT) = αs(ΛGUT). In both the KSVZ quark mass was fixed to be of

order of fa ∼ ΛGUT.

both models (with the fixed mass of the KSVZ quark mQ ∼ fa), we find that the KSVZ

quark has negligible influence on the running of αs for the parameter space region where

fa > 1012. This conclusion is not changed when a coupling between the inflaton and the

KSVZ singlet is included so that fa gets shifted during inflation. To be more precise, the

influence on the running gets even more negligible.

In order to demonstrate the impact of the initial condition on the value of the QCD

scale, we solve the ODE with an alternative initial condition, say αInf
s (mInf

Z ) = αs(mZ).

Of course additional fields are required for this but let us calculate the quark controlled

running to illustrate the influence of the initial condition. The resulting values are plotted

in red in Fig. 8 and this time can be fitted by

ΛInf
QCD(vH) ∼ 1015

(
vH
MP

)
GeV . (4.51)

4.3.3 Location of Minima during Inflation

While the concept of early relaxation seems intuitive, its implementation must take into

account that the minima of the axion during both strong QCD phases must coincide. If

this was not the case, the axion would relax to its early time minimum but when the

ordinary QCD phase transition takes place, the axion is not necessarily located close to

its true minimum. Fine-tuning would then be necessary, making the proposed mechanism

no more advantageous than simply fine-tuning θ1 ≪ 1. For instance, this is the case

when the axion mass is dominated by a temporal additional contribution in the early

universe. The crucial word here is additional. The axion then relaxes to its minimum at

that time but the minimum is in general very different from the true minimum in the
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late universe.

In order to achieve the coincidence of the minima, it is necessary that the axions

potential in the early universe arises in the same way as in the late universe, namely

by non-perturbative QCD effects. This, however, is not enough since physics that give

rise to this early phase of strong QCD can also change the location of the minimum.

Thus, the necessary condition is that the early phase of QCD emerges in such a way

that the axions minimum during that phase sufficiently coincides with the minimum in

the late universe. In the following, we calculate the displacement of the minimum for

the KSVZ and the DFSZ axions during inflation. We perform the calculation with all

parameters taken to be different during inflation and, for a first approximation, assume a

step-function like transition from the inflationary values to the later ones. To provide a

clearer representation, we will use the label “0” to indicate a value in the late universe, in

addition to the label “Inf” that we have used so far to represent a value during inflation.

The location of the minima is seen most conveniently by considering the axion

Lagrangian in the presence of the θ-term,

L ⊃
(
θ̄ +

ã

fa

)
α2
s

8π
GaµνG̃

aµν , (4.52)

where θ̄ is the CP violating parameter with the contribution from QCD and the quark

masses,

θ̄ = θQCD + arg det yuyd . (4.53)

After QCD gets strong, this gives rise to a potential that has its minimum at ⟨ã⟩ = −θ̄fa
[78] as dictated by the Vafa-Witten theorem. The physical axion field is then identified

as

a = ã− ⟨ã⟩ . (4.54)

Due to the values of the parameters evolving throughout the cosmological evolution, the

minima are different and thus the physical axion field itself. Regarding the original field

ã, however, it depends on the particular axion model.

In the case of the KSVZ axion, the definition of ã is the same at any time since it

does not depend on any additional parameter. Hence, we can write down the axion VEV

in the late universe and during inflation as

⟨ã⟩0 = −θ̄0fa0 , (4.55)

⟨ã⟩Inf = −θ̄InffaInf . (4.56)

Using these, the resulting displacement of the vacua ∆θ is given by

∆θKSVZ ≡
∣∣∣∣⟨ã⟩Inf − ⟨ã⟩0

fa0

∣∣∣∣ = ∣∣∣∣θ̄0 − θ̄Inf
faInf
fa0

∣∣∣∣ . (4.57)

Let us now turn to the DFSZ axion. Here the situation is more involved due to the

original axion field ã depending on the VEVs of the two Higgs doublets Hu and Hd and
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the singlet S. For concreteness, let us take the DFSZ-I model. Even though Equations

(4.55) and (4.56) are also valid for the DFSZ model, calculating the displacement by just

subtracting the VEVs from each other, as in the KSVZ case, does not give the correct

initial amplitude for today’s axion ã0. The reason is that the axion potential in the late

universe emerges along ã0. Hence, it is the projection on ã0 that results in the correct

amplitude for the late time oscillations,

∆θDFSZ ≡
∣∣∣∣⟨ã⟩Inf |ã0 − ⟨ã⟩0

fa0

∣∣∣∣ = ∣∣∣∣θ̄0 − θ̄Inf
f Infa

f0a
P

∣∣∣∣ . (4.58)

Here, we introduced the projection factor P , which is given by

P =

(
χInf
u vInfu

vInfa

)(
χ0
uv

0
u

v0a

)
+

(
χInf
d vInfd

vInfa

)(
χ0
dv

0
d

v0a

)
+

(
vInfS

vInfa

)(
v0S
v0a

)
∼
(
vInf

vInfa

v0

v0a

)
+

(
vInfS

vInfa

)
. (4.59)

In the second row we used v0S ∼ v0a for today’s axion to be invisible and, in addition, we

assumed both doublets to get similar shifting from the inflaton so that vInfu ∼ vInfd ∼ vInf .

The first term is strongly suppressed compared to the second one due to the factor

v0/v0a ≪ 1. Hence, the difference between the KSVZ and DFSZ models comes down to

the factor P ∼ vInfs /vInfa ≲ 1.

Within the KSVZ and the DFSZ models θ̄ is per se a free parameter but let us

assume it takes its natural value following from its renormalization [25],

θ̄ ∼
(α
π

)2
s21s2s3 sin δ

m2
sm

2
c

m2
W

∼ 10−16 . (4.60)

Here ms is the mass of the strange quark, mc is the mass of the charm quark, and mW

is the mass of the W-boson. Furthermore, the sk ≡ sinϕk are the mixing angles and δ

is the CP odd phase of the CKM matrix in the original parameterization of Kobayashi

and Maskawa. Evaluated during inflation, the running is not that much altered since the

factor including the masses is independent of the Higgs VEV, the running of the Yukawa

couplings is very slow, and the parameters of the CKM matrix are unchanged. Hence,

it is reasonable to take θ̄Inf ∼ θ̄0 ∼ 10−16. To conclude, the displacement is extremely

small for both benchmark models.

4.3.4 The Modified Axion Window

Since the axion’s inflationary vacuum essentially coincides with its late time vacuum

for the KSVZ and the DFSZ models, the value of θ1 is determined by the efficiency of

the relaxation. Thus, for sufficiently long inflation, the region with HI ≲ ΛInf
QCD becomes

viable. Without further field content than the one necessary for the KSVZ and the DFSZ

models, the maximum inflationary QCD scale is ΛInf
QCD ∼ 105GeV.
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Including all fluctuations, the final axion abundance is given by

Ωa
ΩCDM

∼
(

fa
1012GeV

)7/6 [
θ(tf )

2 + σ2θ +
(
σthermal
θ

)2]
. (4.61)

When the relaxation is extremely efficient, it creates an intriguing situation where the

dark matter density is dominated by quantum or thermal fluctuations, which in turn

depend on the reheating temperature TRH and on the inflationary Hubble scale HI. In

the case when either of the types of fluctuations dominates, we can use (4.61) to find the

parameter space where the axion makes up all the dark matter, i.e.

HI ∼ 1013
(

fa
1012GeV

)5/6

GeV : HI ≫ TRH (4.62)

TRH ∼ 1012
(

fa
1012GeV

)5/6

GeV : HI ≪ TRH . (4.63)

When quantum fluctuations dominate over the post-inflationary thermal fluctuations, it

is not possible to reach values for fa that are much larger than 1012 GeV. This is due to

the upper bound on HI from inflationary gravitational waves as dictated by (4.38). Hence,

for such an efficient relaxation the cosmological bound can only be avoided by large

reheating temperatures. In particular, using the maximum thermalization temperature

defined in (4.11) as an upper bound for the reheating temperature, allows to give a

constraint on fa in terms of HI,

fa ≲ 1015
(ϵeff

1

)6/5( HI

1011GeV

)3/5

GeV . (4.64)

We show the maximum of this bound by a blue line in Fig. 9 for ϵeff ∼ 1 (top) and for

ϵeff ∼ 10−1 (bottom). The viable parameter space is defined by the region enclosed by

the blue and red lines. For ϵeff ∼ 10−2 there is already no more parameter space left.

Overall we can say, that efficient relaxation of θ1 results in a very narrow allowed region.

This region lies in the isocurvature constrained region of the parameter space. Hence,

it is only allowed if the axion avoids the isocurvature constrain for which there are several

known possibilities (see [55] for an overview). One of those possibilities is given by the

fact that if the axion acquires a sufficiently high mass the constrain is relaxed [138]. In

this case, the QCD scale during inflation has to fulfill not only HI ≲ ΛInf
QCD in order to

make QCD strong but the more restrictive condition

HI ≲ mInf
a ∼


√

(ΛInf
QCD)3mInf

u

f Infa
: mInf

u ≲ ΛInf
QCD ,

(ΛInf
QCD)2

f Infa
: mInf

u > ΛInf
QCD .

(4.65)

Here we use different expressions for the axion mass depending on whether there are

light quarks or not. In the case when there are no light quarks, as described by the lower
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equation, we used the axion mass derived from the dilute instanton gas approximation.

Alternatively, by plugging (4.65) into (4.64), we can derive a condition on ΛInf
QCD,

ΛInf
QCD ≳


1015

(
fa

1016 GeV

)16/9 (
MP

vInfH

)1/3 (
1
ϵeff

)4/3
GeV ,

1014
(

fa
1016 GeV

)4/3 (
1
ϵeff

)
GeV .

(4.66)

If a model with some ΛInf
QCD satisfies this condition, then the initial misalignment angle

will be dominated by thermal fluctuations, giving rise to the viable region depicted in

Fig. 9.

In the KSVZ and DFSZ models, where ΛInf
QCD(v

Inf
H ) is given by (4.50), it is not

possible to satisfy condition (4.66). Without additional field content that modifies the

running of the strong coupling, ΛInf
QCD is simply not high enough. Thus, in these two

models such an efficient relaxation must be avoided. For instance, this can be achieved

by requiring θ1 ≳ σθ. Using (4.43), this translates into

Ne ≲
3H2

I

(mInf
a )2

ln

(
2πfa
HI

)
. (4.67)

For HI ∼ ΛInf
QCD ∼ 105GeV and fa ∼ 1016GeV, this bound gives Ne ≲ 1022.

4.4 Summary and Discussion

In this chapter, we showed that there is a viable part of the parameter space where

the early relaxation mechanism can successfully be incorporated into the KSVZ and

DFSZ axion models. For clarity, we first recapitulated the early relaxation mechanism

proposed in [44] which can be summarized as follows. When QCD becomes strong during

inflation, i.e. when HI ≲ ΛInf
QCD, the axion potential is activated prior to the time when

the ordinary misalignment mechanism occurs. In this way it can relax to the minimum

so that, when the ordinary QCD phase transition takes place, the axion is located close

to its minimum. Hence, the initial misalignment angle naturally takes small values.

As we pointed out, a Higgs portal between the inflaton and our Higgs doublet or,

alternatively, higher order operators of those fields, can result in much larger quark

masses during inflation than in today’s universe. This changes the running of the strong

coupling constant and thus can result in a larger value of the QCD scale. By using

αInf
s (MGUT) = αs(MGUT) as initial condition for the running as dictated by the minimal

field content of the KSVZ and DFSZ models, we found that ΛInf
QCD can be as large as

105GeV. But using additional field content such that αInf
s (M Inf

Z ) = αs(MZ) would be

the initial condition, we found that ΛInf
QCD can be as large as 1015GeV.

Furthermore, we showed that the displacement of the axion minimum during inflation

is completely negligible for the KSVZ and DFSZ models. Since we used the same non-

perturbative QCD effects as in the late universe to make QCD strong and to generate the
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Figure 9: Top: Constraints on the axion for very efficient reheating, ϵeff ∼ 1. The blue line depicts the
upper bound for our minimal scenarios. Hence, the region enclosed by the red and the blue line defines
the parameter space where the axion dynamically relaxes to the minimum during inflation and later
makes up all the dark matter. Bottom: Same as top but with ϵeff ∼ 10−1.
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axion potential, the relaxation is guarantied to suppress the initial misalignment angle.

The resulting suppression depends on the duration of the early phase of strong QCD.

In particular, we pointed out that when mInf
a ≳ HI or inflation lasts long enough,

the axion is diluted to an extend where the initial misalignment angle is dominated

by inflationary quantum fluctuations and post-inflationary thermal fluctuations. The

former cannot result in the axion making up all the dark matter due to the bound on HI

induced by inflationary tensor perturbations. Hence, in this interesting case only strong

thermal fluctuations can result in the axion making up all the dark matter for values

of fa ≳ 1012GeV. The required amount of thermal fluctuations is controlled by the

reheating temperature, which can be bounded by above by the maximum thermalization

temperature defined in (4.11). For very efficient reheating,i.e. 10−1 ≲ ϵeff ≲ 1, we found

that this results in a relatively narrow region of applicability, while for less efficient

reheating there is no viable parameter space. In particular we discovered that the

point with fa ∼ 1016GeV and HI ∼ 1013GeV lies in that allowed region, which is very

interesting due to the PQ scale coinciding with the GUT scale and the inflationary

Hubble parameter being very close to the experimental constraint.

Since this narrow region of applicability is furthermore constrained by isocurvature

perturbations, these must be avoided in addition. For this purpose, we required the

axion mass mInf
a to be larger than the inflationary Hubble parameter HI, resulting in

a constrain on ΛInf
QCD. Unfortunately, this constraint is not satisfied for the KSVZ and

DFSZ models where the modification of the QCD scale comes only from the displacement

of the Higgs VEV. Without a modification of the running coupling from additional fields

or a direct enhancement via a moduli field, only the region with HI ≲ 105GeV becomes

viable in the minimal models.





CHAPTER

FIVE

AXIONS AND HIDDEN YM GROUPS

In Sec. 2.4, we explained how the strong CP problem of QCD is promoted to a consistency

problem due to the S-matrix exclusion of de Sitter. From this perspective of quantum

gravitational consistency, the strong CP problem is not limited to QCD but extends

to all non-Abelian YM groups. Each YM group contains a vacuum angle that leads to

unacceptable de Sitter-type vacua, necessitating its removal [45]. To achieve this using

the PQ mechanism, one axion is required per YM group because a single axion cannot

set multiple θ-parameters to zero, as pointed out in Sec. 2.3.4. In the projects presented

in this chapter, we consider theories in which dark matter includes one or more YM

sectors, add the necessary axions, and study phenomenological consequences. To our

knowledge, axions have not been taken into account in these theories because there was

no necessity for them from the understanding of the strong CP problem as a small value

puzzle. However, the situation is essentially similar to the string theory inspired axiverse

[108], even though the axions in our framework arise from a motivation that is completely

different. The phenomenology of several axions in the context of the axiverse was for

instance studied in [139].

To be precise, we consider theories containing N sectors labeled by i = 1, ..., N ,

where each sector contains at least one Yang-Mills subgroup. For convenience, we choose

our sector to be labeled by i = 1. All the other sectors collectively form the dark matter

and we will refer to them as hidden or dark sectors. The sectors interact via gravity

and additional non-gravitational interactions, which we encode in Lmix. Thus, the total

Lagrangian can be written as

L =

N∑
i=1

Li + Lmix . (5.1)

The range of potential models is remarkably wide, including mirror dark matter [140,

141], the many-species solution to the hierarchy problem [48, 49], and string theory
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inspired models [142–145]. All these models predict the existence of various particles and

fundamental forces in the hidden sectors, which interact very weakly with our sector’s

particles. This makes the particles from the dark sectors effectively invisible to most of

our current detection methods. Nonetheless, they could still account for a significant

portion of the dark matter in the universe.

To provide concrete examples, we will examine two simple models: a pure YM sector

and N exact SM copies. The former has been utilized to model the dark matter due

to the interesting dynamics of YM theories. For instance, these dynamics can result

in a potential phase transition that generates stochastic gravitational waves during the

early universe [146, 147]. The latter is a realization of the many-species solution to the

hierarchy problem, which yields many fascinating phenomena when applied to model the

dark matter [148], such as neutron and neutrino oscillations [149, 150], modified black

hole physics [151], and compact dark matter objects [152]. Although we focus on these

two models for our calculations, our discussion aims to be as general as possible and

highlight the model-independent predictions.

By adding to the dark YM sectors the necessary axions, we find several phenomeno-

logical consequences such as constraints on the parameter space of the dark sectors,

potential new small structures, and new experimental signatures that we briefly summarize

here. For a pure YM sector the misalignment mechanism and the stability requirement

of the axions result in a constraint on the dark confinement scale. For N exact SM

copies the misalignment mechanism in combination with the species bound places an

upper bound on N . In the pre-inflationary scenario for multiple axions, the additive

influence of isocurvature fluctuations does not necessarily tighten the single axion bound

on the inflationary Hubble scale and we identify regions in the parameter space where

the isocurvature bound is avoided. The collective phenomenon leading to N -MACHOs

does not take place for axions due to their attractive self-interaction. Thus, there are

no collective axion stars with a 1/
√
N suppressed mass spectrum. Lastly, intersector

communication through axion kinetic mixing leads to the existence of two distinct axion

states and an additional constraint from the stability requirement of the axions.

This chapter is organized as follows. To begin with, in Sec. 5.1 we define the

cosmological framework of the N dark sectors. We then discuss how to implement the PQ

mechanism in each sector and show the bounds arising from the misalignment production

and isocurvature perturbations of N axions. In Sec. 5.2 we discuss collective phenomena

that result in compact dark matter objects in theories with N dark sectors and study

if this can lead to interesting collective bound states of multiple axions. In Sec. 5.3 we

study the consequences of kinetic mixing between N axions and point out the differences

for different types of experiments. Finally, in Sec. 5.4 we summarize our results.

5.1 Cosmological Implications

The axion provides an excellent dark matter candidate due to its Goldstone nature and

is subject to several cosmological constraints, as discussed in Sec. 4.2. In this section, we
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ask the question how these constraints change in the presence of several axions.

5.1.1 Cosmological Framework

Let us start by clarifying the cosmological behavior of N sectors. We neglect intersector

interactions except gravity for now by setting Lmix = 0 and discuss them separately in

Sec. 5.3.

In order for these models to be viable in a cosmological context, the dark sectors

must exhibit characteristics of a cold and pressureless fluid, forming stable dark matter

halos. Additionally, if the dark sectors involve any massless fields, they must avoid the

bound on the number of massless particles during nucleosynthesis. These requirements

can appear challenging to achieve, particularly when non-trivial interactions are present

within the dark sectors. We will use the approach proposed in [148, 153] to address these

requirements.

In that approach, inflation is used to populate and reheat the sectors in different

ways. The key aspect is that the reheating process in the dark sectors is significantly less

efficient compared to the visible sector. This leads to a low reheating temperature in the

dark sectors, which is then used to avoid the nucleosynthesis bound and prevent cooling

mechanisms from collapsing dark matter halos. The behavior throughout cosmological

history is in general altered, despite potential similarities to the visible sector. For large

N , each sector is so sparsely populated that the pressureless fluid-like behavior arises

from kinematics, meaning that particles from the same sector rarely interact with each

other. The whole situation is unchanged even when starting with equal sectors. The

cosmological evolution breaks this symmetry in a sense by resulting in different energy

densities and temperatures. The field theoretic parameters of each sector, however,

remain the same.

Let us now add an axion to each YM sector via the PQ mechanism as described in

Chapter 3. The implementation of the U(1)PQ in the dark sectors depends on the model,

but there is more freedom compared to our SM sector due to a lack of bounds. For exact

SM copies, the KSVZ or DFSZ models or the two-form implementation can be used. For

SM-like sectors with the same field content and group structure but different parameters,

even the original PQWW model can be used. In pure YM sectors, the KSVZ scenario,

2-form implementation, or massless quark solution can be implemented. The crucial point

here is that the cosmological evolution is essentially identical for all options, only the

values of fai differ. Hence, we will remain independent of any concrete realization of the

PQ mechanism and treat fai as free parameters. However, we will discuss consequences

specific to certain realizations if necessary.

Before going to the misalignment mechanism, let us discuss the range of N . The

lowest value of interest is N = 2, which in the case of a SM copies corresponds to the

ordinary mirror dark matter [140, 141]. This value is not viable if the dark SM copy

is supposed to make up all the dark matter since in this case the dark matter halos

would have collapsed. By increasing the number of SM copies, the particle density in
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each sector is reduced. This leads to a suppressed dissipation efficiency and the lowest

phenomenologically viable value of N being of O(10) [149, 154]. An upper bound on N

arises from the fact that in the presence of Ns particle species, the gravitational cutoff is

not given by the Planck scale MP but by

M∗ ∼
MP√
Ns

. (5.2)

In the case of SM copies, since no strong gravity effects have been measured up to the

energy scale of roughly 1TeV, this results in the upper bound N ≲ 1032. We will keep

N as a free parameter throughout this work and focus on N = 2 and large values of N .

5.1.2 Misalignment: Exact SM Copies

The misalignment mechanism, which is required not to produce more dark matter than

observed, imposes a very strict constraint on the axion scale in the case of a single axion

[109–111]. In this section, we extend this constraint to multiple axions and derive limits

on the parameter space of the dark sectors. For a clearer presentation, let us begin with

the case of N exact SM copies, where the equality between the sectors can be ensured

by a discrete symmetry [149, 155]. For other compositions of the dark sectors, we then

highlight the differences in the calculation and provide the final outcome.

In the standard axion scenario, the U(1)PQ symmetry is spontaneously broken at

TPQ ∼ fa, whereas in our framework, this occurs in each sector at temperatures TPQ
i ∼ fa.

The axions ai emerge as the corresponding Goldstone bosons. Let us again work with

the dimensionless field θi(x) ≡ ai(x)/fa in the following. Each axion receives a potential

from its corresponding QCD, which we again model by the dilute instanton gas coupled

to the cosmological thermal bath [118],

Vi(θi) = m2
a(Ti)f

2
a

(
1− cos(θi)

)
, (5.3)

where the Temperature-dependent masses are given by

ma(Ti) ≡
(Λ3

QCDmu)
1
2

fa

β
(
ΛQCD

Ti

)4
: Ti > ΛQCD ,

1 : Ti ≲ ΛQCD .
(5.4)

For the SM, the parameter β encodes QCD and active quark physics at the temperature

T and is roughly 10−2 [79].

In an FLRW background with R(t) denoting the scale factor and H(t) the Hubble

parameter, each axion satisfies the equation of motion

θ̈i + 3H(t)θ̇i −
1

R2(t)
∆θi +

V ′
i (θi)

f2a
= 0 . (5.5)

Let us as in the single axion case make the following two simplifications. First, only the

leading order in θi of the potential is is taken into account. Secondly, only the zero mode
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of θi is considered. With these simplifications, each equation of motion reduces to that

of a damped harmonic oscillator,

θ̈i + 3H(t)θ̇i +m2
a

(
Ti(t)

)
θi = 0 . (5.6)

At Ti >> ΛQCD, the axions are basically frozen out due to the flat potential. At

Ti ∼ ΛQCD the corresponding axion potential gets significant but it is not until the Hubble

friction is overcome before the axion starts performing coherent oscillations around the

vacuum. This moment is defined by

ma

(
Ti(tosc)

)
= 3H(tosc) , (5.7)

for each axion. From that moment on, its equation of state does no longer correspond

to that of dark energy but to that of non-relativistic matter, making the corresponding

axion contribute into the dark matter.

For the model under consideration, this implies that the axions in the dark sectors are

essentially created with their zero-temperature potential due to the very low temperature

in the dark sectors. In contrast, our axion is created with an essentially flat potential due

to the temperature suppression in (5.4). Since the zero-temperature mass is larger than

the high-temperature mass, the axion from our sector will hence start oscillating later

than the other axions. In order to quantify this delay, let us use our sectors temperature

T1 ≡ T as a clock instead of the cosmic time t. In terms of T , the Hubble parameter

during radiation domination is given by

H(T ) =

√
ρtot
3M2

P

∼ T 2

MP
, (5.8)

where ρtot denotes the total energy density, which is dominated by our sector. Using

(5.8) and the axion masses defined by (5.4), the condition (5.7) results in the oscillations

commencing when

Tosc,1 ∼

βMPΛ
11
2
QCDm

1
2
u

3fa


1
6

∼ 4× 10−1

(
1012GeV

fa

) 1
6

GeV , (5.9)

in our sector and

Tosc,i ∼

MPΛ
3
2
QCDm

1
2
u

3fa


1
2

∼ 2× 101
(
1012GeV

fa

) 1
2

GeV , (5.10)

in the dark sectors with i ̸= 1. It should be kept in mind that both moments in time are

expressed in terms of our sectors temperature. While we left fa as a free parameter there

is a small caveat for fa ≳ 6× 1017GeV. Above of this value, our axion has also reached

its zero-temperature mass before overcoming the Hubble friction [156]. Consequently, all
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axions start oscillating at the temperature dictated by (5.10).

The initial energy density of each oscillation is

ρai(Tosc,i) =
1

2
f2am

2
ai(Tosc,i)θ

2
i (Tosc,i) , (5.11)

where θi(Tosc,i) ≡ θinii is each sectors initial misalignment angle.

The value of θinii is determined by whether the pre- or post-inflationary scenario

takes places. To remind the reader, in the post-inflationary all possible values of θinii
appear in the Hubble patch of the universe, and averaging over a uniform distribution

leads to θinii = π/
√
3 for all i. In the pre-inflationary scenario, the initial misalignment

angle can be an arbitrary value, although a reasonable choice in the absence of any

explanation for special initial conditions is θinii ∼ O(1). Moreover, for a sufficiently large

number of dark sectors, assuming a uniform distribution among them leads to an average

value of θinii ∼ O(1). Let us adopt θinii ∼ O(1) for the time being and revisit this issue

later, taking into account the discussion of Chapter 4.

During the period of radiation domination when Big Bang nucleosynthesis occurred,

it is crucial that the energy density of the dark sector axions does not dominate the

energy density of the universe. The energy density contributed by the relativistic

degrees of freedom at Tosc,i is approximated by ρrad(Tosc,i) ∼ g∗(Tosc,i)(Tosc,i)
4, where

the effective number of relativistic species is g(Tosc,i) ∼ 102. To satisfy the condition∑N
i=2 ρai(Tosc,i) ≪ ρrad(Tosc,i), we find the constraint

N ≲
g∗(Tosc,i)(Tosc,i)

4

Λ3
QCDmu(θinii )2

∼ 1012
(
1012GeV

fa

)2(
1

θinii

)2

. (5.12)

As it turns out, a more stringent constraint on the value of N can be derived at

present temperature. Assuming the changes in the mass to be adiabatic, the number of

axion zero modes per co-moving volume is conserved. Hence, the current energy density

for each sector is

ρai(Ttoday) = ρai(Tosc,i)
mai(Ttoday)

mai(Tosc,i)

(
Ttoday
Tosc,i

)3

(5.13)

We normalize with respect to the critical energy density ρcr ∼M2
PH

2
today to receive the

corresponding axion fraction Ωai in the present universe. By comparing Ωai with the

observed dark matter fraction ΩDM from the latest Planck mission [40], we find for our

sector

Ωa1
ΩDM

∼ 0.54

β− 1
6m

5
12
u Λ

7
12
QCD

10−2GeV

( fa
1012GeV

) 7
6
(
θini1

1

)2

, (5.14)
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while for each dark sector we get

Ωai
ΩDM

∼ 0.01

m
1
4
uΛ

3
4
QCD

10−2GeV

( fa
1012GeV

) 3
2
(
θinii
1

)2

: i ̸= 1 . (5.15)

To summarize, differences in reheating temperatures cause axion oscillations to commence

at different times, leading to distinct axion densities even with identical field theoretic

parameters. Although a single mirror sector has a minimal cosmological impact owing to

its lower axion density relative to our axion, the presence of numerous mirror sectors

leads to the accumulation of densities, and their combined impact cannot be ignored.

In the following discussion, we will examine the parameter space and investigate the

consequences of this collective effect.

In the single axion case, the scale fa is restricted to lie in the classic axion window,

109GeV ≲ fa ≲ 1012GeV (see Sec. 4.2). The lower bound on fa is determined by

astrophysical considerations, where a non-trivial interaction with matter contributes to

the cooling of stars. Meanwhile, the upper bound on fa is determined by (5.14) and the

requirement that our axion does not exceed the observed density of dark matter. These

limitations remain unchanged even in the presence of axions from dark sectors. However,

the total number of axions must not surpass the observed dark matter density, i.e.

N∑
i=1

Ωai
ΩDM

≲ 1 . (5.16)

The result in the following inequality for the viable parameter space,

N ≲ 102
(
1012GeV

fa

)3/2(
1

θinii

)2
[
1− 0.54

(
fa

1012GeV

) 7
6
(
θini1

1

)2
]
. (5.17)

Fig. 10 depicts the viable regions in the N -fa plane for various initial values of θinii . The

bold lines correspond to the equality in (5.16) and indicate the parameter combinations

where the axions constitute all of the dark matter. For instance, following the blue line

on the graph, our axion comprises the entirety of the dark matter when fa ∼ 1012GeV,

whereas for fa ∼ 109GeV, approximately N ∼ 106 axions from the dark sectors make up

the dark matter. A similar behavior is observed for the other depicted values of θinii . We

can quantify this behavior by calculating the fraction of our axion along these lines. The

result is shown in Fig. 11. There, we also observe that for a fixed θinii , lower fa values

result in a dominant contribution from dark sector axions while larger fa values lead to

a dominant contribution from our axion.

Let us now discuss the range of the initial misalignment angels, taking into account

our results from Chapter 4. While θinii ∼ O(1) most certainly applies when the PQ

symmetry is broken after inflation, it does not necessarily when the PQ symmetry is

broken during inflation. In this scenario, the initial misalignment angle is an initial

condition, and thus can take any value. While θinii ∼ O(1) appears to be the most
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Figure 10: The allowed parameter space with different initial misalignment angles θinii according to
(5.17). The values on the thick lines correspond to the case where the dark matter is entirely composed
of axions. The dashed line presents the species bound, meaning that along this line the gravitational
cutoff M∗ and fa coincide.

plausible, a strong QCD phase during inflation can dynamically result in θinii ≪ 1 [44].

Although such a phase may appear exotic, it arises naturally for small inflationary

Hubble scales (refer to [2, 157] for specific implementations). If such a phase or a similar

mechanism is present in each sector, the parameter space can extend to fa ≫ 1012GeV

and N ≫ 106. However, note that for a given N , the PQ scale is limited from above by

(5.2), which we display as a dashed line in Fig. 10. Therefore, for sufficiently small values

of θinii within a given fa-window, axions cannot compose all of the dark matter.

If such a phase existed in each sector, it would allow for N > 106, but this raises the

question of whether this is sufficient to address the Hierarchy problem. As discussed in

the previous section, N ∼ 1032 copies of the SM would provide a solution to the Hierarchy

problem. However, this requires fa ∼ TeV and an early phase of strong QCD, which

is in conflict with the lower bound on the PQ scale from astrophysical considerations

and direct detection in our sector (fa ≳ 109GeV). Thus, a large number of exact SM

copies as a solution to the Hierarchy problem seems to be excluded. However, proposals

such as the clockwork mechanism [158] allow for the separation of the PQ scale from the

suppression factor of the couplings, which may render the part of the parameter space

that solves the Hierarchy problem viable.
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Figure 11: The fraction of our axion energy density with respect to the total axion energy density in
the case when the axions make up all the dark matter. For larger fa our axion is dominating, while for
lower fa the axions from dark sectors dominate.

5.1.3 Misalignment: SM-like Dark Sectors

Another way that does not rely on small values of θi(Tosc) is given by relaxing the

assumption of N exact copies of the SM. Although specific predictions require a defined

profile in the discrete space of sectors, there will be some general consequences that are

worth mentioning.

To begin with, the PQ symmetry could be broken at different temperatures TPQ
i ∼ vi.

Therefore, some axions could appear during inflation while others would appear after

inflation. This would result in the constraints from each scenario to only apply to the

corresponding axions, e.g. only the axions that appeared after inflation will be subject to

the domain wall problem while those appearing during inflation would lead to isocurvature

perturbations. Moreover, different values of vi change the axions mass, which is also

changed by different values of ΛQCD
i and mui . This would have the crucial consequence

that some axions never start to oscillate, resulting in the bound from misalignment only

holding for the sectors with oscillating axions. In other words, if there were Nmis sectors

with parameters roughly of the order of our SM parameters and N −Nmis sectors with

any parameters such that oscillation does not take place until today, the bounds in (5.17)

would only hold for Nmis instead of N . Hence, N could be large enough to solve the

Hierarchy problem.
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Figure 12: The allowed region for a single dark, pure YM sector with confinement scale Λconf , axion scale
fa2 , and no intersector interactions. The red line represents the perturbative unitarity bound Λconf ≲ fa2 .
The region with θini2 ∼ 1 is favored by minimality, since in this scenario there is no need for additional
physics that results in a small misalignment angle.

5.1.4 Misalignment: Pure YM Dark Sector

Finally, let us turn to the case where each dark sectors is based on a pure YM group

SUi(NC). The difference compared to the case with exact SM copies would be the absence

of light quarks. Without light quarks, chiral perturbation techniques can no longer be

used to calculate the zero-temperature mass of the axion. Instead, the mass would have

to be calculated by using alternatives such as large Nc methods. As before, we use as an

approximation the extrapolated result of the dilute instanton gas at finite temperatures

[118],

mai(T
i) ≡ (Λiconf)

2

fai


(
Λi
conf

T i

)4
: T i > Λiconf ,

1 : T i ≲ Λiconf .
(5.18)

Here, the confinement scales of the dark sectors are denoted by Λconf,i and the factor of

β is absent because of the absence of light quarks. In contrast to the case of exact SM

copies, the Λconf,i can be smaller than the dark sector temperatures. Hence, the dark

sector axion can in principle be created with an essentially flat potential, although this

requires quite low confining temperatures. We will only consider the scenario where the

dark axions are produced with their zero-temperature mass.

From there, the calculation is vastly the same as in the exact SM case. The oscillations
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in the dark sectors commence at

Tosc,i ∼ Λiconf

(
MP

3fai

) 1
2

,

which results in the dark sector density of

Ωai
ΩDM

∼ 10−18

(
Λiconf
GeV

)(
θinii
1

)2(
fai
GeV

) 3
2

. (5.19)

Let us discuss the parameter space for the particularly interesting case of a single,

pure YM sector. For the dark sector axion to not result in an abundance of dark matter,

we find

Λiconf ≲ 1018GeV

(
1

θinii

)2( GeV

fai

) 3
2

, (5.20)

where the equality is valid when the dark axion makes up all the dark matter. The viable

region is shown in Fig. 12. An interesting difference arises between the invisible axion

and the two-form realizations of the PQ mechanism. In the case of the KSVZ axion,

the decay constant fai is essentially unconstrained. Since there is no requirement for

additional physics to yield a small misalignment angle in this dark sector, we can assume

θinii ∼ O(1). Therefore, in order for the dark confinement scale to be below the Planck

scale, the axion scale must satisfy fai ≳ 1GeV. For the two-form realization, the value

of fai ∼MP is strongly favored, which leads to Λiconf ∼ 1 eV.

5.1.5 Isocurvature Perturbations

When one of the PQ symmetries is broken during inflation and never restored afterwards,

the corresponding axion field is subject to quantum fluctuations. Let us write the axion

fields as θi = ⟨θi⟩ + δθi, where ⟨θi⟩ = θinii and δθi denotes the quantum fluctuations.

These fulfill ⟨δθi⟩ = 0 and have a standard deviation of

σθi ∼
√
⟨δθ2i ⟩ ∼

HI

2πfai
. (5.21)

Moreover, if none of the axions drives inflation, their fluctuations will not be of adiabatic

but of isocurvature-type. Since these lead to a unique imprint in the temperature

and polarisation fluctuations of the CMB, they give rise to a constraint on the axion’s

parameter space.

One could worry that in the presence of several axions, the amount of isocurvature

perturbations is significantly enhanced due to the contributions being additive. This

would tighten the existing constraint, making it much more severe. Let us show that this

is not necessarily the case.

Assuming the fluctuations to be normal distributed in the regime of small θi, where

anharmonic corrections of the potentials are negligible, the collective amplitude of the
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axions isocurvature fluctuations is given by [131]

∆a(k0) =
δΩDM

ΩDM
=

∑
iΩai

ΩDM

δ lnΩai
δθinii

σθi

=
∑
i

Ωai
ΩDM

HI

πθinii fai
, (5.22)

where θinii ≪ σθi was used. The latest experimental bound on uncorrelated isocurvature

perturbations by Planck is [40]

β(k0) ≡
∆2
a(k0)

∆2
R(k0) + ∆2

a(k0)
< 0.038 at 95% CL , (5.23)

where k0 = 0.050Mpc−1. This translates to a constrain on HI,

HI ≲ 107GeV
∑
i

ΩDM

Ωai

(
fai

1012GeV

)(
θinii
1

)
. (5.24)

For a single dark YM sector and N exact SM copies, the generated isocurvature pertur-

bations are either dominated by our sector or the dark sector(s).

For the former, if the dark matter is dominated by the axion from the dark sector,

we can eliminate θini2 by using the equality of (5.20). The bound on HI is then expressed

in terms of the dark confinement scale,

HI ≲ 107GeV

(
fai

1012GeV

) 1
4
(
1GeV

Λconf

) 1
2

. (5.25)

In particular, for a two-form axion from such a dark sector, i.e. with fa2 ∼MP and the

minimal possible dark confinement scale Λconf ∼ eV, the bound reduces toHI ≲ 1013GeV.

This shows that such an axion is effectively not plagued by an isocurvature constraint.

For N exact SM copies, when the dark matter is collectively composed by the axions

from the copies, using (5.17) to eliminate the initial misalignment angles in (5.24) yields

HI ≲ 107GeV

(
fai

1012GeV

) 1
4
(

10√
N

)
. (5.26)

We observe that for N ∼ 102 the bound remains relatively unaffected. On the other hand,

for values required to solve the Hierarchy problem, i.e. N ∼ 1032 and fa ∼ TeV, the

bound naively tightens to HI ≲ 10−10GeV. However, in this case, the dark confinement

scale and the axion mass exceed the inflationary Gibbons-Hawking temperature TI ∼ HI.

Consequently, the dark YM sector becomes strongly coupled during inflation and the

axion develops a substantial mass, meaning that the requirements for the development

of isocurvature perturbations are no longer given. Of course, this requires avoiding the

astrophysical bounds on fa by a mechanism such as clockworking (see discussion at the

end of Section 5.1.2).
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5.2 Compact Dark Matter

Bosonic dark matter is known to be able to form dense clumps, which in the case of

the axion are called axion stars. The expression “star” in this context is used to denote

an object sustained by hydrostatic equilibrium, regardless of its emission of light. Such

objects as well as other variations of compact dark matter structures have been long

studied and provides an interesting portal to the dark matter arising for instance from

gravitational waves, gravitational lensing, and large scale structure formation [159–162].

In particular, models with N dark sectors provide interesting compact structures that

are made collectively from the N dark sectors and have a mass spectrum suppressed by

1/
√
N . In this section, we outline the collective effect leading to these exotic structures

that we put forward in [1] and apply it to scalars such as axions.

5.2.1 N -MACHOs

In the case of N identical SM sectors with gravity as the only intersector interaction,

these objects can be intuitively understood as follows. When the particles from the N

sectors are put within a certain volume, gravitational forces will attempt to collapse the

volume. However, the pressure exerted by each sector will oppose this collapse, eventually

reaching an equilibrium where pressure and gravity balance each other out. Since each

particle can only interact with a small fraction of the present particles, the pressure is

immensely reduced compared to the single sector case. At the same time, gravitational

forces remain unaffected. Consequently, the equilibrium configuration will have much

smaller masses and radii.

To quantify this, we consider the condition for hydrostatic equilibrium in general

relativity in the presence of N sectors (see [163] for a pedagogical treatment of the single

sector case). The Einstein-Hilbert action without a cosmological constant reads

S =

∫ √−g d4x
(
M2

P

2
R+ Ltot

)
, (5.27)

where g = det gµν , R is the Ricci scalar and Ltot ≡
∑N

j=1 Lj denotes the total matter

Lagrangian. Varying this action with respect to the metric, yields Einstein’s field

equations,

Gµν ≡ Rµν −
1

2
Rgµν =

1

M2
P

(Ttot)µν , (5.28)

where Gµν is the Einstein Tensor and (Ttot)µν the total energy-momentum tensor. For a

general Lagrangian Lj , the energy-momentum tensor is given by

(Tj)µν = − 2√−g
∂(
√−gLj)
∂gµν

= −2
∂Lj
∂gµν

+ Lj gµν . (5.29)
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Summing over these, give the total energy-momentum tensor

(Ttot)µν =

N∑
j=1

Tk µν , (5.30)

which is the source in the field equations. Considering each sector to behave as a perfect

fluid, the energy-momentum tensor in the rest-frame of the fluid can be written as

(Ttot)µν = diag (−ρtot, Ptot, Ptot, Ptot)

= diag

−
N∑
j=1

ρj ,
N∑
j=1

Pj ,
N∑
j=1

Pj ,
N∑
j=1

Pj

 , (5.31)

where ρtot and Ptot are the energy density and the pressure measured by an observer in

that frame. Neglecting rotation, it is reasonable to make a spherical ansatz for compact

objects, i.e.

ds2 = gµνdx
µdxν = −B(r)dt2 +A(r)dr2 + r2dθ2 + r2 sin2(θ)dϕ2 , (5.32)

where r, θ, ϕ denote the standard spherical coordinates and A(r), B(r) are the standard

coefficients of the spherical ansatz. Plugging this ansatz into the field equations yields

the Tolman–Oppenheimer–Volkoff (TOV) equation [164]:

dPtot(r)

dr
= −M(r)ρtot(r)

8πM2
Pr

2

(
1 +

Ptot(r)

ρtot(r)

)(
1 +

4πr3Ptot(r)

M(r)

)(
1− M(r)

4πM2
Pr

)−1

, (5.33)

where

M(r) =

∫ r

0
4πr′2ρtot(r

′)dr′ . (5.34)

The three brackets encode general relativistic corrections, which we neglect in the following.

In other words, we consider the Newtonian limit, in which the TOV equation reduces to

r2
dPtot(r)

dr
= −M(r)ρtot(r)

8πM2
P

, M(r) =

∫ r

0
4πr′2ρtot(r

′)dr′ . (5.35)

Dividing the left equation by ρtot(r) and then differentiating, allows to combine both

equations into a single second-order equation,

d

dr

(
r2

ρtot(r)

dPtot(r)

dr

)
= −r

2ρtot(r)

2M2
P

. (5.36)

To proceed, we need to specify the type of pressure by choosing an equation of state.

A simple model for the behavior of any known stellar structure is given by a polytropic

equation of state,

Ptot = Ktotρ
γ
tot , (5.37)

where γ and Ktot are constants. A polytropic EOS describes an object with uniform
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entropy, which for instance is the case if it has effectively zero temperature or is in

convective equilibrium. While these properties are idealistic, they result in the right

order of magnitude. With a polytropic equation of state, the TOV equation becomes the

Lane-Emden-equation, which is known to have a stable finite radius solution for γ > 6/5

[163]. This radius is given by

R ≡
(
2M2

PKtotγ

γ − 1

)1/2

ρtot(0)
(γ−2)/2ξ0 , (5.38)

resulting in the mass

M = 4πρtot(0)
(3γ−4)/2

(
2M2

PKtotγ

γ − 1

)3/2

ξ20 |θ′(ξ0)| . (5.39)

Here, ξ0 and −ξ20 |θ′(ξ0)| are numerical coefficients which for instance can be found in

[163].

Let us now turn to the N dependence of the above solution. Consider for each sector

a generic polytropic equation of state with polytropic index γ and polytropic constant K.

By summing over the contribution from each sector, we find the total pressure to be

Ptot =
N∑
j=1

Pj = K
N∑
j=1

ργj =

∑N
j=1 ρ

γ
j

ργtot
Kργtot ≡ Ktot ρ

γ
tot ,

which again describes a polytropic equation of state. From this we observe that the

influence of the N sectors is encoded in the quantity

Ktot

K
=

∑N
j=1 ρ

γ
j

ργtot
. (5.40)

For sufficiently large N and identical copies, we can assume the densities to be roughly

equal, i.e.

ρtot =

N∑
j=1

ρj ≡ Nρ , (5.41)

where we denoted a single sector without a label. With this, (5.40) simplifies to

Ktot

K
=

1

Nγ−1
. (5.42)

Inserting the last expression for Ktot into (5.38) and (5.39), we find

M ∼ M0

(
ρ(0)

)
√
N

, (5.43a)

R ∼ R0

(
ρ(0)

)
√
N

, (5.43b)
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where M0 and R0 depend on the particular pressure. Thus, if DM consists of N identical

sectors, there exist stellar objects in the spectrum that are lighter by a factor of 1/
√
N

compared to the single sector case. For a single dark sector, the difference is almost

negligible but for large values as required by the N species solution to the hierarchy

problem the impact is dramatic. In [1] we used the Fermi pressure to counteract gravity

and called the resulting objects N -MACHOs.

5.2.2 N -Boson Stars

For an axion arising from a dark YM sector, the physics of axion stars are essentially

equal to those of our sectors, merely the values of the axion mass and decay constant

change. However, the existence of multiple dark sectors may lead to structures that are

collectively formed from the axions of the different sectors. The analysis outlined in

Sec. 5.2.1 was based on the TOV equation, which characterizes the hydrostatic equilibrium

of a self-gravitating, spherically symmetric object made of a perfect fluid. Unlike perfect

fluids, the pressure of a scalar field of axion stars cannot be described by a simple equation

of state due to a non-trivial self-interaction. Consequently, the equilibrium structure

of axion stars cannot be determined solely by the TOV equation. Instead, it requires

simultaneously solving the Klein-Gordon equation and Einstein’s field equations.

Let us limit ourselves to so called dilute axion stars. To identify such configurations,

we follow the standard approach (see for instance [162]) and impose a set of approximations

to simplify the relevant equations while still maintaining a high level of accuracy. We aim

to maintain a maximal level of generality in our calculations to allow for the application

to scalars with various potentials. First, we can utilize non-relativistic effective field

theory since the axions produced through misalignment are non-relativistic. In this

framework, it is convenient to introduce the complex field ψi(x) for each axion through

ai(t, x⃗) =
1√
2mai

[
ψi(t, x⃗)e

imai t + ψ∗
i (t, x⃗)e

−imai t
]
. (5.44)

By taking the non-relativistic limit of each Klein-Gordon equation and expressing the

axion field in terms of ψi, we obtain the time-dependent Gross-Pitaevskii equation. To

furthermore separate the time dependence, we make the standard separation ansatz

ψi(x⃗, t) = Ai(x⃗)e
−iωit, resulting in the time-independent Groß-Pitaevskii equation,

mai

(
Φ+ V ′

i (|ψi|2)
)
− 1

2mai

∆ψi
ψi

= Ei . (5.45)

Next, the cosmic axion condensate has a relatively low mean mass density, so that we

can use Newtonian gravity described by the Poisson equation,

∆Φ =

∑
imai |ψi|2
M2

P

. (5.46)

Within these approximations, the Groß-Pitaevskii-Poisson equations provide a simplified
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set of equations that can accurately describe dilute axion stars. To rewrite this system as a

single hydrodynamic equation, we first take the Laplacian of the Gross-Pitaevskii equation

and plug in the Poisson equation. Secondly, we perform the Madelung transformation to

express everything in terms of the (pseudo) density ρi = mai |ψi|2 and the pressure, which

is related to the potential via ∇V ′
i = ∇pi/ρi. This results in the fundamental equation

of hydrostatic equilibrium (5.36) with quantum effects taken into account,

−∇ ·
(∇pi
ρi

)
+

1

2m2
ai

∆

(
∆
√
ρi√
ρi

)
=
ρtot
M2

P

. (5.47)

The first term describes the hydrodynamic pressure, which can either be attractive or

repulsive, while the second term characterizes the repulsive quantum pressure due to the

Heisenberg uncertainty principle. The total density ρtot =
∑

i ρi appears on the right

hand side since gravity couples to all axions.

The last approximation regards the (pseudo) density ρ, which we take to be small

compared to the cosmic condensate density m2
aif

2
ai . The effective potential Vi(ρi) in this

regime is dominated by the leading term in its power series. For the instantonic potential

from (5.3), the leading order interaction is the quartic term of ai. Therefore, in terms of

ρi the potential can be approximated as

Vi(ρi) ∼ − 1

m2
aif

2
ai

ρ2i . (5.48)

This is equivalent to the negative polytropic pressure

pi ∼ − 1

m2
aif

2
ai

ρ2i ≡ Ki ρ
γi
i , (5.49)

with polytropic constant Ki ∼ −1/(m2
aif

2
ai) and polytropic index γi = 2. With this

equation of state, (5.47) becomes

−∇
(
γiKiρ

γi−2
i ∇ρi

)
+

1

2m2
ai

∆

(
∆
√
ρi√
ρi

)
=
ρtot
M2

P

. (5.50)

For the sake of illustration, let us assume that all densities are equal, i.e. ρi = ρtot/N , as

collective effects are most pronounced when all sectors have equal densities [1]. We can

then express (5.50) in terms of the total density,

−∇
(
γiKiρ

γi−2
tot

Nγi−1
∇ρtot

)
+

1

2m2
ai

∆

(
∆
√
ρtot√
ρtot

)
=
ρtot
M2

P

. (5.51)

We observe that in the presence of N axions the pressure from short-range interactions

is suppressed by Nγi−1 while the quantum pressure is unaffected.

The influence of N on the solution can be understood by considering the following

limiting cases:

• Neglecting the hydrostatic pressure, the equilibrium is between the gravitational
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attraction and the repulsion by the quantum pressure. Since both are independent

of N , the final configuration is unchanged from the single axion case.

• Neglecting the quantum pressure, the equilibrium is between the gravitational

attraction and the hydrostatic pressure (which must be repulsiv). From here on

the analysis is exactly the same as in Sec. 5.2.1. Since the hydrostatic pressure

is strongly suppressed by Nγi−1, the radius and mass of the final configuration is

suppressed by 1/
√
N .

• Neglecting the gravitational attraction, the equilibrium is between the hydrostatic

pressure (which must be attractive) and the repulsion by quantum pressure. This

would again result in an altered mass spectrum, however, such equilibria are always

unstable [165].

We can see that stable collective configurations with a suppressed mass spectrum can only

exist for repulsive interactions. This is not the case for the axion. Therefore, dilute axion

stars would consist of several axions but would not differ in mass or radius compared to

the single sector case. The situation is different for scalars with a repulsive interaction

(see for instance [166, 167]), which we will not consider further in this thesis.

5.3 Kinetic Mixing between Axions

In this section we discuss non-gravitational intersector interactions by restoring Lmix in

(5.1). For concreteness, we start with N exact SM copies and discuss the pure YM sector

afterwards.

5.3.1 Kinetic Mixing as Intersector Interaction

Without the additional axions, the possible renormalizable interactions of N exact SM

copies that are compatible with gauge-, Lorentz-, and the underlying discrete symmetry

are photon kinetic mixing, a Higgs portal coupling, and neutrino mass mixing. At

the non-renormalizable level additional oscillations such as neutron oscillations become

possible as well. The effects of these interactions have been vastly discussed in the

literature (see [168] for a review). Regarding cosmology, the primary impact of say

photon kinetic mixing and the Higgs portal coupling is that they can result in thermal

equilibrium between our sector and the dark sectors prior to BBN. This would lead to

inconsistencies with nucleosynthesis or result in an excessive amount of dark matter

particles.

As our focus is not on those topics, we will not elaborate further on their influence

and focus on axion kinetic mixing, which in the model under consideration is described

by the terms

Lmix = ϵ
∑
i ̸=j

∂µa
i∂µaj . (5.52)
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The axions that are produced by misalignment are non-thermal, thus they cannot transfer

heat between sectors and thermalize them. However, depending on the UV theory that

gives rise to the kinetic mixing term, there can appear bounds from BBN.

In the standard PQ implementation via the KSVZ model, a singlet scalar is added

to make the axion invisible. Denoting this singlet in each sector as Φi allows for the

following dimension six scalar portal couplings between the sectors

LUV
mix =

1

M2

∑
i ̸=j

(Φ†
i∂µΦi)(Φj∂

µΦ†
j) + h.c. , (5.53)

where M is some cut-off scale. The singlets acquire the VEVs fai via a proper scalar

potential that spontaneously break the U(1)PQ symmetries. This results in the kinetic

mixing described in (5.52) with

ϵ ≡ f2a
2M2

. (5.54)

Similar operators that result in axion kinetic mixing are also possible in DFSZ-type

models, where extra Higgs doublets are required in addition to the singlet.

In addition, (5.53) results in kinetic mixing between the radial modes of the singlets

with the same kinetic mixing parameter ϵ. Depending on the particular values of the

fai and the reheating temperature, the radial modes can be relativistic for some time

in the early universe. Then, a bound on ϵ would appear from the requirement to avoid

thermalization of the dark sectors before BBN. Since we are mostly interested in large

values of N , let us focus on a model independent bound arising from unitarity. The

operators in (5.53) lead to loop diagrams, such as the one depicted in Fig. 13, with a

large number of scalars involved in the loop. For m such loops, the amplitude of this

process scales as M ∼ Nm(∆p/M)2m+2 ≲ ϵ(Nϵ)m, where ∆p is the momentum transfer

of the process. For the process to obey unitarity, the amplitude should not exceed unity,

thereby resulting in the constraint

ϵ ≲
1

N
. (5.55)

In the alternative two-form implementation of the PQ mechanism, axion kinetic

mixing appears via non-diagonal mass terms of the three-form action,

Lmix ∼ 1

f2a

∑
i ̸=j

(
Ciµνρ − ∂[µB

i
νρ]

)(
Cjµνρ − ∂[µB

j
νρ])
)
. (5.56)

Mixing of this kind is not forbidden by gauge symmetries and can possibly originate from

virtual black hole exchange, giving rise to suppression by powers of MP. The reason for

this suppression is that micro black holes cannot be universally coupled, which requires

gravitational suppression of inter-sector transitions at the fundamental level [47]. Since

the UV origin of this PQ implementation is unknown, we do not know if a unitarity

bound arises in the same way as in the standard implementation. In the remainder of this

section we will study the consequences of the axion kinetic mixings in the pseudo-scalar

formulation. We will stay agnostic of their origin, but use the unitarity bound described
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Figure 13: Loop induced by the operators in (5.53). Each vertex contributes the effective coupling
∆p2/M2, but for maximum momentum transfers of order fa the effective coupling becomes ϵ.

by (5.55).

5.3.2 Modification of Axion Physics

The presence of the extra term in the Lagrangian requires a change of basis to express it

in a canonical form. As a result, there is a mismatch between the “sector basis”, which

corresponds to the labels of the species, and the “canonical kinetic basis”, in which the

propagator is in canonical form. So the task is to find the relation between these two

bases.

In our case the mismatch appears in the axion sector. The first step is to express

the kinetic part in (5.52) as

L ⊃


∂µa1
...
...

∂µaN


T 

1 ϵ . . . ϵ

ϵ 1
. . .

...
...

. . .
. . . ϵ

ϵ . . . ϵ 1



∂µa1
...
...

∂µaN

 . (5.57)

We can rewrite the matrix, which we shall call K from now on, in the following way,

K =


1− ϵ 0 . . . 0

0 1− ϵ
. . .

...
...

. . .
. . . 0

0 . . . 0 1− ϵ

+ ϵ

1 . . . 1
...

. . .
...

1 . . . 1

 . (5.58)

In this way, the problem reduces to the diagonalization of a matrix of just ones. The

transformation matrix S that diagonalizes K is

S =



1 1 1 . . . 1

1 −1 0 . . . 0

1 0 −1
. . .

...
...

...
. . .

. . .
...

1 0 · · · 0 −1


. (5.59)
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The first row give rise to the eigenstate of the form,

ãL =
1√
N
a1 +

√
N − 1

N
ah , (5.60)

where we have introduced the notation

ah =
1√
N − 1

∑
i=2

ai (5.61)

due to later convenience. The eigenstate ãH corresponds to the eigenvalue of 1+(N −1)ϵ.

Because the matrix S is not a unitary matrix we still have to find a convenient basis.

From all other rows, we see that we have N − 1 degenerate eigenstates vi of the

eigenvalue 1− ϵ. These vi are the columns of S. Due to this degeneracy, we can reduce

the N ×N problem to a 2× 2 problem by defining a superposition of these degenerate

eigenstates,

ãH =

√
N − 1

N
a1 −

1√
N
ah . (5.62)

The eigenvalue of this superposition is again 1 − ϵ. We see that ãH is a collective

expression made out of all former ai. Inverting the eigenstates, we find a1 expressed in

the canonical kinetic basis as

a1 =

√
N − 1

N
ãH +

1√
N
ãL . (5.63)

Expressing (5.57) in terms of ãL and ãH , there is no more mixing but each term is

multiplied by the corresponding eigenvalue. In order to have canonical kinetic terms, the

states ãL and ãH need to be redefined by

ãH → 1√
1− ϵ

ãH , ãL → 1√
1 + (N − 1)ϵ

ãL . (5.64)

One effect of this redefinition is that the mass terms in the Lagrangian become

Lmass ∼
(
ãH
ãL

)T ( m2
a

1−ϵ 0

0 m2
a

1+(N−1)ϵ

)(
ãH
ãL

)
. (5.65)

with ma being the mass induced by the PQ mechanism. We observe that kinetic mixings

leads to a splitting of the masses of the axions. N − 1 axions are degenerated and one

light axion whose mass is suppressed by the number of copies. In other words, kinetic

mixing of many copies of the axion leads to two different detectable axion states with

different masses. The relation of these masses is

mL

mH
=

(
1− ϵ

1 + (N − 1)ϵ

) 1
2

∼ 1√
2
, (5.66)
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where we assumed natural values of ϵ with respect to the unitarity bound, i.e. ϵ ∼ N−1,

and N ≫ 1 in the similarity.

With the relation between the species basis and the canonical kinetic basis, we can

turn to the phenomenological implications of this model. Due to the Goldstone nature of

the axion, its lowest order couplings to fermions and gauge bosons have the generic form

gaoa1O , (5.67)

where the whole UV dependency is encoded in gao. After the diagonalization and field

redefinition of (5.64) the expression becomes

gao

(√
N − 1

N

1√
1− ϵ

ãH +
1√
N

1√
1 + (N − 1)ϵ

ãL

)
O . (5.68)

We see that by having N kinetically mixed axions, our sector couples to N axions instead

of one. These N axions come in two categories: N − 1 axions encoded in ãH that behave

exactly the same, and one special axion ãL. The single axion coupling gao gets modified

by one of the following factors,

fH(N, ϵ) =

√
N − 1

N

1√
1− ϵ

, (5.69)

fL(N, ϵ) =
1√
N

1√
1 + (N − 1)ϵ

. (5.70)

These demonstrate a different behavior regarding the two parameters N and ϵ. Imposing

the unitarity constraint (5.55) on ϵ, the coupling of ãH is essentially indistinguishable

from a single ordinary axion from our sector, while ãL shows a suppression by 1/
√
N .

Let us focus on the axion-photon coupling, which becomes

gH/Laγ =
α

2πfa

( E
N − 2

3

4md +mu

mu +md

)
fH/L(N, ϵ) . (5.71)

In Fig. 14, we show the band in which the light axion state would reside relative to the

original KSVZ prediction for N = [1, 106] (as motivated by Sec. 5.1). In the framework

of many axions, the next step after discovery of the ordinary axion would be to search

for a second light weakly coupled state. After a potential discovery of the axion, mH

and gHaγ would be known. The ratio between gLaγ and gHaγ is given by

gLaγ
gHaγ

∼ 1√
N
. (5.72)

Since the masses of both states almost coincide, this means that after measuring the

coupling and the mass of the first axion, the properties of the second are uniquely

determined by N . For example, if N = 106 would be realized the couplings are related

by gLaγ ∼ 10−3gHaγ . We depict this in Fig. 14. The included projected sensitivities of
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Figure 14: Viable axion-photon couplings for the light axion state (yellow band), which arises from equal
kinetic mixing of axions from N sectors. Current bounds and predicted sensitivities of future experiments
are depicted different colors. The parameter space for N ≲ 10 will be probed by future experiments. The
two stars represent a situation when future experiments measure one axion (the upper star) and where
we expect the second axion (the lower star). The yellow band is not to be confused with the band from
e.g. [3], which includes the set of DFSZ-type or KSVZ-type models. This plot was created with the help
of the software [169].

future experiments are ranging into the predicted band but only relatively small values

of N ≲ 10 will be covered in the near future. Even though in this regime the unitarity

bound (5.55) would allow for relatively large values of ϵ, we expect the BBN bound to

require much smaller values of ϵ. The statements in this section should thus still be valid.

Let us now briefly turn to the case of a single pure YM sector, which would be vastly

similar but with N = 2 instead of an arbitrary N . The main difference arises from the

fact that the original axion states would likely have different masses. Hence, a further

diagonalization of the mass matrix would be necessary. With different axion parameters

in the dark sector and new channels arising from the mixing, both axions could become

unstable by decaying into photons. This would result in a modification of Fig. 12. The

calculation of this bound (and the masses by further diagonalization) lies beyond the

scope of the work presented here.

5.4 Summary and Discussion

In this chapter, we studied phenomenological consequences of adding axions to dark YM

sectors. These axions are required from quantum gravitational arguments that promote
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the strong CP problem to a consistency problem. As such, an axion becomes a necessary

component not only in QCD but in every YM group. We focused on two models, namely

N exact copies of the SM and a single pure YM sector.

We first pointed out that the total axion density from all sectors should not be

higher than the observed dark matter density. Using the misalignment mechanism on all

axions, for N exact SM copies this results in an upper bound on N . For a single pure YM

sector, we find a relation between the dark confinement scale and the PQ scale. Notably,

the misalignment mechanism is independent of the thermalization of the dark sectors

and thus our findings apply even for large values of N when the sectors are very dilute.

Furthermore, we showed that the contribution of additional axions to the isocurvature

fluctuations does not necessarily tighten the bound on HI. In fact, both models exhibit

parameter space regions where the bound is essentially not present. For N exact SM

copies, the viable parameter space requires either a moderate number of sectors, i.e.

N ≲ 102, or a mechanism that allows for smaller PQ scales.

In models with several dark sectors it is possible that particles from different sectors

collectively form structures with a mass spectrum suppressed by 1/
√
N . While this

phenomenon was originally studied with fermions, we showed that it also applies to

bosons with a repulsive self-interaction. Since axions have an attractive self-interactions,

this phenomenon cannot take place. Therefore, the presence of multiple axions does not

modify the mass spectrum of axion stars.

Lastly, we studied non-gravitational communication between the dark sectors from

axion kinetic mixing. We showed that a mass splitting into N − 1 degenerate states

and one light state emerges. Interestingly, both states have almost similar masses and

the lighter has couplings weaker by a factor of 1/N1/2 with respect to the heavier axion

states. If two axions were discovered, this would allow to determine N . For a single

YM sector the axion masses are different, so that the axions from the dark sector could

decay into photons. Furthermore, the kinetic mixing parameter ϵ is constrained by the

requirement to not reheat the dark sector prior to BBN. We are currently investigating

these two phenomena in order to improve the phenomenological bounds that we have

found so far.



CHAPTER

SIX

NON-MINIMAL DFSZ MODELS

In Sec. 3.3, we pointed out that the PQ solution does not specify the axion low-energy

couplings as a result of the axions Goldstone nature [50]. UV models are thus needed

to make concrete predictions about the couplings of the axion. Two commonly utilized

models for this purpose are the DFSZ [51, 52] and KSVZ [53, 54] invisible axion models.

So far, we have only addressed the minimal versions of these models. However, there exists

a plethora of non-minimal generalizations that cannot be overlooked, even though minimal

models are generally preferred due to reasons such as Occam’s razor and predictiveness.

It is possible that a physical principle renders the minimal model invalid, so knowledge of

non-minimal models is crucial. In addition, comprehending the landscape of non-minimal

models enables us to answer questions such as the extent to which the parameter space

is excluded in the absence of experimental signatures. For these reasons, it would be

beneficial to identify all non-minimal models and develop a systematic approach that

enables us to extract predictions from all of them concurrently. The objective of the

project discussed in this chapter is to achieve exactly this for DFSZ-type axions.

We achieve this by exploiting the unique property of the axion-photon coupling

(3.17), that its UV physics are fully encoded in the ratio between the electromagnetic

and the QCD anomaly coefficients [50]. For convenience, let us introduce the following

definition,

gaγ =
α

2πfa

[ E
N − 1.92(4)

]
≡ α

2πfa
Caγ , (6.1)

where by Caγ we denote the dimensionless part. In contrast to the other couplings,

this ratio is not influenced by unknown VEVs or mixing angles due to the nature of

anomalies. Instead, it is determined solely by the representations of the fields. In the

case of DFSZ-type models, this entails fixing the PQ charges of the SM fermions, which

are not free but determined by linear consistency and phenomenology conditions [55].

By systematically solving the associated linear system of equations (LSE), we are able to
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compute the anomaly ratio and consequently the axion-photon coupling for a vast range

of DFSZ-type models.

In addition to computing the anomaly ratios for numerous DFSZ-type models, we

are also able to determine how many distinct models yield the same anomaly ratio. We

employ this concept of multiplicity to assign a probability to each anomaly ratio. By

analyzing the resulting distributions, we can extract various intriguing insights for the

axion experimental program. One of our key observations is that the values advocated

by the minimal DFSZ models, i.e. E/N = 2/3 and E/N = 8/3, are statistically favored,

despite the existence of numerous other possible anomaly ratios for DFSZ-type models.

While this confirms the potential experimental significance of these values, we argue

that a non-observation at these values still leaves a considerable amount of the axion

parameter space viable. We quantify this statement by defining an axion band and lower

bounds for gaγ .

A similar investigation has previously been conducted for KSVZ-type axions: the

identification and categorization of these models are outlined in [106], while the statistical

analysis is presented in [170]. Additionally, in [106], a section is dedicated to DFSZ-type

axions. There, by approximating the maximum possible anomaly ratio, the authors

contend that the majority of realistic DFSZ-type models lie within the same range as

the favored KSVZ-type models. With our study, we not only provide a more accurate

estimate of the maximum feasible anomaly ratio, which turns out to be larger than the

prior estimate, but we also conduct a detailed comparison between the two classes, which

enables us to gain a better understanding of their relation.

This chapter is organized as follows. First, in Sec. 6.1, we define the non-minimal

DFSZ models under consideration, which we refer to as DFSZ-type models. We place a

particular emphasis on the determination of the PQ charges and potential phenomenolog-

ical selection criteria. Furthermore, we provide a general procedure for determining all

possible anomaly ratios and their multiplicities for a given number of Higgs doublets. In

Sec. 6.2, we apply this approach to models with three to nine Higgs doublets, discussing

the problems that arise for a large number of doublets and comparing our results with

those of KSVZ-type models. Next, Sec. 6.3 explores the experimental implications of our

findings by estimating the necessary sensitivities for axion searches. Finally, in Sec. 6.4,

we summarize our results.
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6.1 DFSZ-Type Models

We consider DFSZ-type models that extend the original DFSZ model by allowing for

more Higgs doublets. Hence, the scalar sector consists of at least one extra Higgs doublet

to make the PQ symmetry anomalous with respect to QCD, and one singlet to make

the axion undetectable by decoupling the PQ scale from the electroweak scale. The

inclusion of more Higgs doublets results in more freedom in assigning the PQ charges to

the fermions, leading to a larger number of possible anomaly ratios.

In the DFSZ-type models, the anomaly of the PQ current is solely determined by

the difference between the PQ charges of left- and right-handed fermions. To simplify

the analysis, we assume that the PQ charges of the left-handed fermions are zero. This

leaves us with the PQ charges of the right-handed fermions, denoted as χui , χdi , χei with

i being a generation index. The situation is different for neutrinos, as their left-handed

component does not directly contribute to the anomaly ratio E/N . However, if there

exists a right-handed neutrino in the theory, the left-handed neutrino could indirectly

contribute. Since it is uncertain whether the neutrino masses are realized via the type-I

seesaw mechanism, which necessitates the inclusion of right-handed neutrinos, we exclude

the neutrinos in our analysis by setting their PQ charge to zero in accordance with the

other left handed fermions.

Throughout this chapter, we will make several comparisons with KSVZ-type models.

We define those as in [106], i.e. as those generalizations of the original KSVZ model that

introduce additional heavy fermions in per se arbitrary representations and a singlet

scalar to the SM in order to address the strong CP problem.

6.1.1 Identifying the Axion

Let us use the notation DFSZnD to refer to DFSZ-type models, where nD represents the

total number of doublets. For concreteness, we consider a DFSZnD model with nD being

less than or equal to nine and start by defining the Yukawa sector. To fully exhaust the

freedom of PQ charges, we consider a Yukawa sector where each right-handed fermion

couples to only one doublet. This approach allows to refer to the doublets as Hui , Hdi ,

and Hei , while the singlet can be denoted as S. The Yukawa sector then takes the form

L ⊃ −yuijHuiQ̄iLu
j
R − ydijH

diQ̄iLd
j
R − yeijH

eiĒiLe
j
R + h.c. . (6.2)

For nD = 9 each right-handed fermion couples to a different doublet, while for nD < 9

some fermions have to couple to the same doublet. This form of the Yukawa sector fixes

the weak hypercharge of the doublets to be

−YHui = YHdi = YHei =
1

2
. (6.3)

In principle several doublets can couple to the same right-handed fermion. For the time

being, we disregard this matter and revisit it in Sec. 6.1.3.
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The standard kinetic term for each scalar is invariant under a U(1)nD+1 symmetry.

To ensure the PQ current is well-defined and to prevent the existence of Goldstone bosons

with decay constants of the electroweak scale order, it is necessary to explicitly break

down this symmetry to U(1)PQ × U(1)Y . With this requirement in mind, we decompose

the potential into two parts,

V = Vmoduli + Veb . (6.4)

The first term only contains the modulus of each scalar or the modulus of two doublets

and hence does not break any of the global U(1) groups explicitly. In contrast, Veb
consists of terms that all break the U(1)nD+1 symmetry explicitly. Since the broken

symmetry must be identified with U(1)PQ × U(1)Y , the number of terms in Veb required

is nD − 1.

By choosing the parameters such that we have a proper scalar potential, each scalar

field develops a VEV vf , where we introduced the index f = ui, di, ei, S. Expanding

around these VEVs yields,

Hdi ⊃
vdi√
2
e
i
adi
vdi

(
0

1

)
, Hui ⊃

vui√
2
e
i
aui
vui

(
1

0

)
,

Hei ⊃
vei√
2
e
i
aei
vei

(
0

1

)
, S ⊃ vS√

2
e
i
aS
vS . (6.5)

Here, we only consider angular degrees of freedom that contain the axion. Each angular

mode af transforms under a PQ transformation as af → af + κfχfvf with the κf being

constants. The PQ current after spontaneous symmetry breaking takes the form

JPQ
µ

∣∣∣
a
⊃ −χSS†i∂µS −

∑
f\S

χfH
†
f i∂

µHf + h.c.

=
∑
f

χfvf∂µaf . (6.6)

By requiring JPQ
µ |a = va∂µa and a→ a+ κva under the PQ transformation, the axion

field is defined as a linear combination of all scalar angular modes,

a =
1

va

∑
f

χfvfaf , v2a =
∑
f

χ2
fv

2
f . (6.7)

With the axion identified, the low energy theory can be constructed like in the

original DFSZ model. Inverting (6.7) allows to express the scalar angular modes in terms

of the axion. Since our focus is on terms that include the axion, this essentially amounts

to the substitution

af
vf

→ χf
a

va
. (6.8)

The Lagrangian can then be brought to the form of the axion EFT in (3.4) by performing
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the field-dependent chiral redefinition of the fermion fields,

ψ → exp

(
−iγ5χf

a

2va

)
ψ . (6.9)

In the considered models, all representations except for the PQ charges are known.

Therefore, the ratio between the electromagnetic and color anomaly coefficients can be

expressed in as [106]

E
N =

∑
i
4
3χui +

1
3χdi + χej

1
2

∑
i χui + χdi

=
2

3
+ 2

∑
i χui + χei∑
i χui + χdi

. (6.10)

6.1.2 The PQ Charges

When a new U(1) is introduced, the charges are a priori free. However, there can

be phenomenological and theoretical constrains on this choice. This is the case for

DFSZ-type models. In particular, the U(1)nD+1 symmetry must be explicitly broken into

U(1)PQ ×U(1)Y to avoid Goldstones with decay constants of electroweak scale couplings.

This explicit breaking must respect the following conditions [55]:

1. Orthogonality between JPQ
µ and the weak hypercharge current JYµ .

2. Invariance under PQ symmetry.

3. Well-definiteness of domain wall number NDW.

Consequently, the PQ charges are determined by the nD + 1 relations following from

these requirements. Solving the resulting linear system yields all PQ charges.

Let us discuss these conditions in detail. To begin with, the orthogonality requirement

between the PQ current defined in (6.6) and the weak hypercharge current JYµ |a =∑
f Yfvf∂µaf implies ∑

χfYfv
2
f = 0 . (6.11)

From this relation one can immediately see that in general the PQ charges are not integer

numbers, which also follows from the fact that U(1)PQ is not compact.

Regarding the PQ invariance, the nD−1 terms in Veb are divided into two categories:

those composed of two doublets and two singlets (HHSS), and those consisting of four

doublets (HHHH). To ensure the invisibility of the axion, at least one term of the type

HHSS must be present, while the form of the remaining nD−2 terms is unconstrained in

principle. We only consider renormalizable terms, thereby excluding higher-order scalar

terms. When choosing the terms in Veb, it is necessary to ensure that they give rise to

linearly independent conditions. This means that Veb should have enough terms to render

the system exactly solvable and neither underdetermined nor overdetermined. If the

system is underdetermined, it will not explicitly break enough of the U(1)nD+1 symmetry,

resulting in undesired massless states. Conversely, if the system is overdetermined, it will

be inconsistent.
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After imposing the conditions of orthogonality and PQ invariance, it becomes possible

to solve for all PQ charges in terms of χS , which is a singlet and otherwise unconstrained.

It is important to note that the value of χS is not relevant for the anomaly ratio since it

cancels out in the ratio. Therefore, for a given set of terms in Veb, all PQ charges can be

expressed in terms of χS , allowing for the calculation of the anomaly ratio. This is the

main message regarding the PQ charges.

However, there are quantities in which χS does not cancel, and one of them is the

domain wall number. Since domain wall numbers larger than unity can lead to the

domain wall problem, it is helpful to also fix χS . Following our discussion in Sec. 4.1.2

regarding the caveats with residual cyclic symmetries in theories where the axion is a

superposition of angular modes, we fix χS by the definition of the domain wall number

in (4.34). In the models under consideration, the domain wall number takes the form

NDW = q χS , where q is a rational number. Then, the definition (4.34) uniquely fixes χS
to be the denominator of q.

6.1.3 Multiplicity

The just described method of fixing the PQ charges allows for a straightforward calculation

of all possible anomaly ratios, at least in principle. To define a precise concept of

multiplicity, however, more specification is required to avoid the possibility of overcounting.

The standard consensus in constructing models is to include all terms allowed by given

symmetries. Regarding Veb, this implies that potentials that yield the same PQ charges

should not be considered different, as they can simply be added together. This can

be understood in the language of conditions and LSEs. The construction described in

Sec. 6.1.2 required nD − 1 terms in the explicit breaking potential. Including fewer terms

would result in undesired Goldstone bosons, while incorporating too many independent

terms would lead to overdetermined systems with χf = 0 for all f , thus failing to solve

the strong CP problem. However, one can add additional terms to the potential that

give rise to redundant conditions. These potentials correspond to the same solution of

the underlying LSE, or in other words, they have the same PQ charges.

This reasoning also affects the construction of the Yukawa sector. While the initial

construction couples a single Higgs doublet to each right-handed fermion, in principle,

multiple doublets can couple to the same right-handed fermion. Therefore, the Yukawa

sector is completed a posteriori for each set of possible PQ charges. For example, if a

solution for some LSE is χd1 = χe1, then the Yukawa sector for that solution would be

yd1jH
d1Q̄1

Ld
j
R −→ (yd1jH

d1 + ỹd1jH
e1)Q̄1

Ld
j
R ,

ye1jH
e1ĒiLe

j
R −→ (ỹe1jH

d1 + ye1jH
e1)Ē1

Le
j
R . (6.12)

By adding the potentials and completing the Yukawa sectors for a specific set of PQ

charges, we ensure that all possible Yukawa terms compatible with that set are included

(such as cross-couplings where up-type doublets couple to down-type fermions). Moreover,
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since each set of PQ charges is unique after adding the potentials, the Yukawa sector

with all compatible couplings is uniquely determined, and no additional multiplicities

need to be taken into account. To conclude, adding the potentials and completing the

Yukawa sectors for a specific set of PQ charges specifies one model for the counting of the

multiplicity. The final step is to calculate the anomaly ratio for each model and count its

multiplicity, which completes the construction procedure.

6.1.4 Selection Criteria

Now that we have established the definition of a model in regard of the multiplicity, we

can explore the possibility of applying (phenomenological) selection criteria to identify

favored axion models.

In the KSVZ-type models, all selection criteria stem from the existence of new

fermions [106]. For instance, if the new fermions are excessively massive and long-lived,

they are subject to stringent constraints from BBN and Cosmic Microwave Background

(CMB) observations. Furthermore, since their mass is related to the axion decay constant

fa, the precise value of fa is of crucial importance. Lastly, the presence of additional

quarks may significantly alter the running of the QCD coupling constant, potentially

violating asymptotic freedom or leading to Landau poles below the Planck scale. Since

none of these constraints apply in the DFSZ case, we will not discuss them further (for a

detailed discussion, see [106] or [170]).

Next, let us briefly discuss the aspects that are present in both types of invisible

axion models, starting with the domain wall problem. As explained in Sec. 4.1.2, models

with NDW > 1 result in the domain wall problem. Hence, one can consider imposing

NDW = 1 as a selection criterion for axion models. However, there are several ways to

avoid the domain wall problem. First of all, it is not present when the PQ symmetry is

broken during or before inflation since no domain walls form within the Hubble horizon.

In the scenario where the PQ symmetry is broken after inflation, it is possible that the

symmetry is not restored at high temperatures, thus avoiding the production of strings

and walls [171]. Alternatively, by embedding the discrete subgroup into a continuous

group, the different vacua become related via symmetry transformations, resulting in

an effective domain wall number of unity [172]. Given these viable solutions, we do not

consider NDW = 1 to have a sufficient level of generality to represent a necessary selection

criterion for our main analysis. Nonetheless, we calculate the domain wall number for

DFSZ3 to DFSZ7, demonstrate the influence of this selection criterion, and compare it

with the KSVZ case in Sec. 6.3.2.

Another aspect that is present in both types of invisible axion models is the impact

of additional Higgs doublets on the running of the electroweak gauge coupling. While

the maximal case of nD = 9 appears to enhance unification compared to the SM, the

resulting unification scale of ΛGUT ∼ 1013GeV leads to a rapid proton decay, rendering

the improvement of unification not suitable as a selection criterion. Moreover, for nD ∼ 50

asymptotic freedom is spoiled and a Landau Pole emerges below the Planck scale, setting
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an upper limit on the number of doublets [106]. Because of these arguments and for the

sake of better comparability with the KSVZ case, we do not consider improvement of

unification as a selection criterion.

Let us now consider an aspect that is specific to the DFSZ-type models, namely

the general feature of multi-Higgs doublet models to include FCNCs. Since FCNC are

subject to strong experimental constraints [173], they could potentially limit the number

of viable DFSZ-type models. However, as with the domain wall problem, there exist

viable solutions to avoid the presence of FCNC (for a review, see [174]):

Natural Flavor Conservation: The easiest way to avoid FCNCs is to impose

the Weinberg-Glashow-Paschos condition [105, 175], which requires all right-handed

fermions of a given electric charge to couple to only one of the doublets, as in the original

models. Imposing this condition effectively sets several Yukawa couplings to zero, which

for nD > 3 results in nD − 3 decoupled Higgs doublets. Hence, for DFSZ-type models as

we have defined them in the beginning of this section, natural flavor conservation is only

possible for nD ≤ 3.

Flavor Alignment: A less restrictive possibility is to impose an alignment condition,

i.e. requiring the Yukawa matrices of each right-handed fermion to be proportional to

one Yukawa matrix. All Yukawa matrices are then simultaneously diagonalised in the

fermion mass-eigenbasis, yielding no FCNC at tree level [176–178].

Mass Matrix Ansätze: Another possibility is to take the Yukawa matrices to have

a specific texture in flavour space. This allows viable SM mass and mixing phenomenology

and sufficient suppression of the tree-level FCNCs [179].

Implementing Natural Flavor Conservation and Mass Matrix Ansätze typically

requires imposing (discrete) symmetries that protect the flavor structure from quantum

corrections. However, imposing additional symmetries on the scalar potential can spoil

the decoupling property of general multi-Higgs doublet models [180]. This implies that the

new scalar cannot have arbitrarily large masses, which can result in significant deviations

from the measured SM couplings. Thus, in order to avoid FCNC using these solutions,

it would be necessary to systematically determine which of our models have discrete

symmetries that avoid FCNC while allowing for a decoupling limit. Such an analysis is

beyond the scope of this work due to the large number of models and the lack of a catalog

of possible symmetries for nD > 3 [174]. Flavor Alignment, on the other hand, preserves

the decoupling limit but leaves the flavor structure vulnerable to quantum corrections.

However, residual flavor symmetries can sufficiently mitigate this vulnerability [181]. In

summary, for the DFSZ-type models, we have identified desirable features for specific

models but no selection criteria that have a sufficient level of generality.

Finally, we note that it is possible to enlarge the definition of DFSZ-type axions by

including more singlets or doublets beyond nD = 9, which do not couple to SM fermions.

Although this does not alter the axion-photon coupling given by (6.10), it can yield very

large PQ charges in an indirect way [106, 182]. We limit our analysis to the narrower

definition of DFSZ models introduced earlier in this section, which can be regarded as a

form of selection criterion.
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6.2 Anomaly Ratio Distributions

We demonstrated how for the DFSZ-type axions the calculation of the anomaly ratio

reduces to fixing a Veb and solving the resulting LSE. Therefore, to compute all possible

anomaly ratios, it is necessary to perform this calculation for every feasible Veb. Moreover,

we defined a model to consist of the sum of all Veb that give rise to the same set of PQ

charges. By counting how many different models lead to the same anomaly ratio enables

us to assign a probability to each anomaly ratio within the considered set of models.

With this probability distribution, we can define lower bounds for |Caγ | above which the

majority of DFSZ-type axion models can be found.

Our procedure can be summarized as a cooking recipe, which consists of the following

steps:

1. Specify the Yukawa sector for a fixed nD by coupling one doublet to each right-

handed fermion. This exhausts the maximal freedom regarding the anomaly ratio.

2. Write down all possible Veb with nD − 1 terms.

3. Solve all associated LSEs to find all possible sets of PQ charges. Underdetermined

systems are discarded.

4. Add the potentials of all equal PQ charges to get the most general potential

associated with a particular solution. This defines one model for the sake of

counting the multiplicity.

5. For each model complete the Yukawa sector by adding all Yukawa terms compatible

with the PQ- and hypercharges.

6. For each model calculate the anomaly ratio and count its multiplicity.

We calculate the PQ charges and anomaly ratios numerically using the programming

language “Julia” [183]. The “StaticArrays” package [184] allows us to compute the

extremely large number of LSEs very fast without heap memory allocation. Since it is

not relevant to the acquired solutions, we skip step 5 in practice.

6.2.1 Example: nD = 3

Let us illustrate our approach using DFSZ3 as an example, where we impose the Weinberg-

Glashow-Paschos condition. In this case, there are three possible bilinears, namely

(HuHd), (HuHe), and (HdH
†
e), along with their complex conjugates. Each bilinear can

either couple to the singlet, resulting in 6 different terms of the form HHSS, or to

another bilinear, resulting in 36 different quadrilinears of the form HHHH. For the

latter case, after removing terms related by Hermitian conjugation and those resulting in

no condition, the number is reduced to 9 (see Tab. 1). For nD = 3, the breaking potential

consists of either one HHSS and one HHHH term, or two HHSS terms. The former

has 54 possible combinations and the latter has 15 possible combinations, totaling to 69

possible combinations for Veb (see Tab. 2).



112 CHAPTER 6: NON-MINIMAL DFSZ MODELS

Table 1: Resulting PQ conditions from quadrilinears, constructed from corresponding bilinears. The lower triangle
(’−’) are not counted because the order of the bilinears does not matter. The terms ’x’ are not to be counted because
they are Hermitian to a term that has already been counted and the potential by definition has to include all Hermitian
conjugated terms. Terms with ’o’ produce only trivial conditions. We are left with 9 distinct quadrilinears, which
produce 6 unique conditions.

(HuHd) (HuHe) (HdH
†
e ) (HuHd)

† (HuHe)
† (HdH

†
e )

†

(HuHd) 2χu + 2χd = 0 2χu + χd + χe = 0 χu + 2χd − χe = 0 o χd − χe = 0 χu + χe = 0

(HuHe) − 2χu + 2χe = 0 χu + χd = 0 x o χu − χd + 2χe = 0

(HdH
†
e ) − − 2χd − 2χe = 0 x x o

(HuHd)
† − − − x x x

(HuHe)
† − − − − x x

(HdH
†
e )

† − − − − − x

Table 2: All possible solutions for PQ charges of Higgs doublets in terms of χS (top) and anomaly ratios (bottom)
for the nD = 3 Yukawa sector under consideration. The potential should not produce the same condition twice (’x’),
nor does the order of the conditions matter (’−’). ’o’ denotes combinations of conditions that do not have a solution.
Infinite solutions arise when N = 0.

[χu, χd, χe] χu + χd = 2χS χu + χe = 2χS χd − χe = 2χS −χu − χd = 2χS −χu − χe = 2χS −χd + χe = 2χS

χu + χd = 2χS x − − − − −

χu + χe = 2χS [4/3, 2/3, 2/3] x − [0,−2, 2] − −

χd − χe = 2χS [2/3, 4/3,−2/3] [2, 2, 0] x [−2, 0,−2] [−2/3, 2/3,−4/3] −

−χu − χd = 2χS o − − x − −

−χu − χe = 2χS [0, 2,−2] o − [−4/3,−2/3,−2/3] x −

−χd + χe = 2χS [2, 0, 2] [2/3,−2/3, 4/3] o [−2/3,−4/3, 2/3] [−2,−2, 0] x

2χu + 2χd = 0 o [2/3,−2/3, 4/3] [−2/3, 2/3,−4/3] o [−2/3, 2/3,−4/3] [2/3,−2/3, 4/3]

χu + χd = 0 o [2/3,−2/3, 4/3] [−2/3, 2/3,−4/3] o [−2/3, 2/3,−4/3] [2/3,−2/3, 4/3]

2χu + 2χe = 0 [2/3, 4/3,−2/3] o [2/3, 4/3,−2/3] [−2/3,−4/3, 2/3] o [−2/3,−4/3, 2/3]

χu + χe = 0 [2/3, 4/3,−2/3] o [2/3, 4/3,−2/3] [−2/3,−4/3, 2/3] o [−2/3,−4/3, 2/3]

2χd − 2χe = 0 [4/3, 2/3, 2/3] [4/3, 2/3, 2/3] o [−4/3,−2/3,−2/3] [−4/3,−2/3,−2/3] o

χd − χe = 0 [4/3, 2/3, 2/3] [4/3, 2/3, 2/3] o [−4/3,−2/3,−2/3] [−4/3,−2/3,−2/3] o

2χu +χd +χe = 0 [0, 2,−2] [0,−2, 2] [0, 1,−1] [0,−2, 2] [0, 2,−2] [0,−1, 1]

χu +2χd −χe = 0 [2, 0, 2] [1, 0, 1] [−2, 0,−2] [−2, 0,−2] [−1, 0,−1] [2, 0, 2]

χu −χd +2χe = 0 [1, 1, 0] [2, 2, 0] [2, 2, 0] [−1,−1, 0] [−2,−2, 0] [−2,−2, 0]

E/N χu + χd = 2χS χu + χe = 2χS χd − χe = 2χS −χu − χd = 2χS −χu − χe = 2χS −χd + χe = 2χS

χu + χd = 2χS x − − − − −

χu + χe = 2χS 8/3 x − −4/3 − −

χd − χe = 2χS 2/3 5/3 x 14/3 ∞ −

−χu − χd = 2χS o − − x − −

−χu − χe = 2χS −4/3 o − 8/3 x −

−χd + χe = 2χS 14/3 ∞ o 2/3 5/3 x

2χu + 2χd = 0 o ∞ ∞ o ∞ ∞

χu + χd = 0 o ∞ ∞ o ∞ ∞

2χu + 2χe = 0 2/3 o 2/3 2/3 o 2/3

χu + χe = 0 2/3 o 2/3 2/3 o 2/3

2χd − 2χe = 0 8/3 8/3 o 8/3 8/3 o

χd − χe = 0 8/3 8/3 o 8/3 8/3 o

2χu +χd +χe = 0 −4/3 −4/3 −4/3 −4/3 −4/3 −4/3

χu +2χd −χe = 0 14/3 14/3 14/3 14/3 14/3 14/3

χu −χd +2χe = 0 5/3 5/3 5/3 5/3 5/3 5/3
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The resulting 3×3 LSEs consist of the orthogonality relation, χuv
2
u−χdv2d−χev2e = 0,

and the two conditions coming from the potential. Solving the LSEs yields the PQ charges

in terms of χS , which can then be fixed by our definition of the domain wall number. We

can perform the following two simplifications for the purpose of calculating the anomaly

ratio. First, we can set all VEVs equal to one because E and N are independent of

them, and secondly, we can leave χS unfixed because it cancels in the anomaly ratio after

expressing all PQ charges in terms of χS .

Of the 69 minimal potentials found, many have no or degenerate solutions. For

example, potentials including a bilinear and its Hermitian conjugate at the same time

gives rise to an underdetermined system, and the nine quadrilinears only give six unique

conditions for PQ charges. A summary of all solutions can be found in Tab. 2 (top). In

total this leaves us with only 16 different solutions for the PQ charges, for each of which

we have to add all the terms to the potential that give rise to the same set of PQ charges.

The Yukawa sector in this example does not need any completion since it is already

fixed by the Weinberg-Glashow-Paschos condition. Hence, it merely remains to plug the

different sets of PQ charges into (6.10), yielding the following possible anomaly ratios

(see Tab. 2, bottom),

DFSZ3 :
E
N = −4

3
,
2

3
,
5

3
,
8

3
,
14

3
. (6.13)

Counting the multiplicity, we find that 2/3 and 8/3 each appear 2× with four terms in

the potential each, and −4/3, 5/3, as well as 14/3 each appear 4× with three or two

terms in the potential each. A visualization of this result together with all other nD
values can be found in Fig. 17. For a summary of important statistics in this model see

Tab. 3.

It turns out useful in the following to introduce a compact notation that encodes

which doublet couples to which of the nine fermions. For this, we assign to the nine

fermions a position in a nine dimensional row vector with square brackets and write the

subscript of the doublets that couple to a certain fermion to the corresponding position. If

one doublet couples to multiple fermions, we use the first subscript in the order presented

above. For a more comprehensive notation, we use the fermion type (up-, down- or

lepton-type, short u, d or e) and the generation (1 to 3), so that

u c t d s b e µ τ

u1 u2 u3 d1 d2 d3 e1 e2 e3

[ · , · , · , · , · , · , · , · , · ] , (6.14)

For DFSZ9, this row vector would be [u1, u2, u3, d1, d2, d3, e1, e2, e3] while for the original

DFSZ2-I model it would be [u1, u1, u1, d1, d1, d1, d1, d1, d1].
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6.2.2 Choices for a Statistical Interpretation

We are considering many different solutions for the PQ charges. In Sec. 6.2.1 we just

counted the number of models leading to specific anomaly ratios, but in the end we want

to translate a catalog of models with specific E/N values to a probability distribution of

anomaly ratios. To achieve this, we require relative probabilities of the solutions, which

are subject to some sort of theoretical prior belief. Multiple decisions about this belief

are required, including:

• The concept of multiplicity as outlined in Sec. 6.1.3.

• The relative probability of different Yukawa sectors given a specific nD.

A reasonable choice is to demand all solutions with a given nD to be equally

probable. The same applies to different Yukawa sectors. Unfortunately both cannot

be true at the same time, because different Yukawa sectors can lead to different

amounts of possible solutions. We take the approach of requiring solutions to

be equally likely (given equal multiplicity and same nD). This also implies not

applying any “beauty” arguments for Yukawa sectors, e.g. in favor of coupling

patterns that are equal for different fermion types.

• The relative probabilities of different nD.

For our total anomaly ratio distribution, we treat the probability of all nD values

2 ≤ nD ≤ 9 as equal. This implies at the same time that we consider any single

solution for e.g. DFSZ3 (of which there are 16) much more probable than any

single solution for e.g. DFSZ5 (of which there are 9.7× 104). It would be equally

reasonable to additionally penalize models with higher nD, enhance the probability

of models satisfying symmetry arguments, or consider all solutions equally probable.

In the latter case, the final histogram would be completely dominated by DFSZ9

due to the much larger amount of unique solutions.

The arguments above all imply a probabilistic approach to model selection, i.e. nature

“selects” one of the possible realizations at random. This notion itself may be subject

to critique, but in absence of any decisive underlying physical argument singling out

any specific model we deem it to be satisfactory. In Sec. 6.1.4, we outline theoretical

arguments that might challenge this view.

Even under the assumption of probabilistic model selection, we acknowledge that

any of these choices is to some extent a matter of taste. For this reason, we aim to

ensure transparency by providing the raw catalog and generating code as supplementary

material, allowing the reader to make their own choices without being constrained by

our own preferences.

6.2.3 Results for nD = 4 − 7

Now that we have outlined our assumptions leading to a statistical treatment, we can

move on to analyzing the higher numbers of Higgs doublets for which we investigate
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Figure 15: Anomaly ratio distributions for DFSZ-type models with 4 Higgs doublets. Two Higgs
couple to the fermions specified in the panels with the other two Higgs covering the remaining
two fermion types invariant with respect to fermion generation. For example, the Yukawa sectors
[u1, u1, u3, d1, d1, d1, e1, e1, e1], [u1, u2, u1, d1, d1, d1, e1, e1, e1] and [u1, u2, u2, d1, d1, d1, e1, e1, e1] are all
equivalent and have anomaly ratio distributions as shown in the top panel. Note that the up-type and
down-type cases are mirrored around 5/3.

multiple Yukawa sectors. However, we will start by focusing on the DFSZ4 to DFSZ7

models as we can explicitly calculate all possible solutions for these models.

Fig. 15 provides an overview of the anomaly ratio distributions for DFSZ4 models,

grouped by the various Yukawa sectors. Each histogram represents all models of the

corresponding coupling type, with the explicit symmetry breaking potential Veb composed

of k or more HHSS-terms and 3−k or fewer HHHH-terms. The results are independent

of fermion generation, as the construction of Higgs charges as well as (6.10) treat all

generations equally.

Histograms for Yukawa sectors with a special coupling to a lepton are symmetric

around 5/3, while the histograms for up- and down-type special couplings are mirrored

around 5/3. The reason for this symmetry is that for every nD, we consider all possible

Yukawa sectors. As can be seen from (6.10), every solution has a corresponding one

obtained by applying the transformation

χui → −χdi , χdi → −χui . (6.15)

This is because up-type and down-type quarks are treated equally in the construction,
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except for the sign of their hypercharges. Therefore, for example, all solutions for

the Yukawa sector [u1, u1, u3, d1, d1, d1, e1, e1, e1] have a corresponding solution in the

Yukawa sector [u1, u1, u1, d1, d1, d3, e1, e1, e1] under the transformation (6.15). Solutions

related through this transformation have anomaly ratios that are related by

E
N → 10

3
− E

N , (6.16)

which corresponds to a mirror symmetry around 5/3.

By summing up all nine histograms from Fig. 15 without preferring any Yukawa

sector, we obtain the distribution shown in Fig. 17 (second row, left). Due to the

symmetries of the nine contributing Yukawa sectors, the distribution is symmetric around

5/3 as well. The largest number of models coincides with the two possible values for the

DFSZ2 model: 2/3 and 8/3. Both of these statements are true for nD ∈ [4, 7], as Fig. 17

shows (second row, third row left).

With increasing nD, we find an increasing number of unique anomaly ratios and more

extreme E/N values. Anomaly ratios E/N = 5/3 + k with k ∈ Z are highly favored for

nD ≥ 5, especially for odd k. We see this very characteristic, peaked spectrum evolving:

E/N values with high probability tend to have their probabilities shrink with increasing

nD, whereas low probability E/N values behave in the opposite manner. In Fig. 17 one

can most easily see this evolution at big anomaly ratios E/N ≳ 10.

This trend can be understood from a purely mathematical perspective. The anomaly

ratio in (6.10) is a function with nine variables, where each variable’s value can be thought

of as being drawn from a specific distribution. In Fig. 16 we show the effect of using

different distributions for the variables on the outcome of the function. A continuous, flat

charge distribution of arbitrary width produces a smooth, fat-tailed E/N distribution.

If the median of the charges is 0, the median of the distribution is at 5/3 (Fig. 16 top

three rows). Allowing only positive values for the charges shifts the distribution to higher

values, with a median of 8/3 and makes E/N < 0 impossible (Fig. 16 bottom row). The

fewer distinct input values for the charges are used, the more peaked the anomaly ratio

structure becomes, i.e. anomaly ratios with high relative probability see their likelihood

increased and vice versa. This also leads to fewer possible unique E/N values. The

continuum limit with its vanishing skewness and positive kurtosis can be approximated

in analytic form via a Pearson type VII distribution [185],

p

( E
N

)
=

1

αB(m− 1
2 ,

1
2)

1 +( E
N − λ

α

)2
−m

, (6.17)

with reasonable fit parameters λ = 5/3, α = 7/4 and m = 1, and Beta function B with

B(1/2, 1/2) = π.

Following these insights from a mathematical perspective, it can be understood

that the histograms for larger nD should be smoother, considering that there are more

unique solutions (Tab. 3). Note, however, that this effect neglects the influence of
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Figure 16: Influence of drawing charges from different distributions on the resulting anomaly ratio
distribution, using (6.10). More unique charges lead to a smoother anomaly ratio distribution, irrespective
of their distribution. Charge distributions centered around 0 produce anomaly ratio distributions centred
around 5/3. The dashed blue line in the top right panel denotes the fit presented in (6.17).
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choosing different probabilities for different solutions. Non-uniform probabilities reduce

the effective number of different solutions.10 Using our approach of adding all possible

potential terms for one solution of charges, leads to more comparable probabilities for

the charges than if we had separately considered all potentials with the minimal amount

of terms to fix the PQ charges (we call these minimal potentials). Therefore the effect of

non-uniform charge probabilities is clearly subdominant for DFSZ5 to DFSZ7. We expect

this to still be the case even for DFSZ8 and DFSZ9.

6.2.4 Extrapolation to nD > 7

Our procedure can in principle be applied to any number of Higgs doublets. However,

for larger values of nD, it becomes computationally intensive as it requires solving a vast

number of linear systems of LSEs. Let us get an idea of the magnitude by estimating

the number of all possible terms for step 2 with an arbitrary nD. Since the number of

possible bilinears is nB =
(
nD
2

)
plus their Hermitian conjugate, there are 2nB terms of

the form HHSS. This results in (2nB)
2 possible quadrilinears, which can be written as

a matrix (HH (HH)†

HH A B

(HH)† C D

)
, (6.18)

where A denotes the submatrix formed by all terms of the form HHHH, B the submatrix

formed by HH(HH)†, and so on. However, as in the DFSZ3 example there are several

equal terms in this matrix that should not be counted. First of all, the whole matrix

is symmetric. Secondly, since Hermitian conjugated terms are equal, D is completely

redundant with respect to A. Lastly, B is anti-symmetric, so that the number reduces to

n2B quadrilinears.

From the set of all terms, we need to pick nD − 1 terms with at least one being

of the form HHSS. Therefore, we can pick between 1 and nD − 1 terms of the form

HHSS, then fill up with HHHH terms, and repeat this for all possible amounts of

HHSS terms. The total number of possible Veb can then be estimated by

Ntot(nD) ∼
nD−1∑
j=1

(
2nB
j

)(
n2B

nD − 1− j

)
, (6.19)

which at the same time is the number of LSEs that needs to be solved. In principle,

we can again perform the simplifications used for the DFSZ3 example, i.e. setting all

VEVs to one and not fixing χS , but regardless of these simplifications the computation

time rises exponentially with nD. While Ntot(nD = 3) = 69 is easily manageable, for

e.g. nD = 8 the number of possibilities becomes Ntot(nD = 8) ≈ 2 · 1016. Thus, it is not

10For instance, this can be understood by considering a charge distribution with 100 unique solutions, in
which 10 solutions are 1000× more probable than the other 90. The resulting E/N distribution will
behave more as if it came only from 10 unique charges than as if it had 100.
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possible for us to solve all LSEs for nD beyond DFSZ7 due to the high computational

requirements.

A potential solution to the computationally prohibitive number of LSEs would be

to sample the (minimal) potentials. However, due to step 4 in our approach this is

not possible without introducing a bias: Multiple minimal potentials can lead to the

same solution, and all of them belong to the same model in our approach, resulting in a

lengthy potential that is likely to be found by any sampling algorithm. On the opposite

side, there are also models that can just be found with one or two minimal potentials.

Therefore, sampling in the space of minimal potentials results in biased sampling in the

space of models.

Another way to estimate the DFSZ8 and DFSZ9 distributions is given by the following

observations. When a sufficiently large number of theories is considered, the plots in

Fig. 16 (top, right) and Fig. 16 (third row, right) can be regarded as extreme cases for

the anomaly ratio distribution. By “extreme,” we do not mean the upper or lower limits

of individual E/N bins, as we are dealing with normalized probability measures. Rather,

Fig. 16 (top row, right) appears very smooth, while Fig. 16 (third row, right) is highly

peaked. To quantify this criterion, we look at the cumulative sum of anomaly ratios

below a certain value. We define the smoothness of an anomaly ratio distribution f(E/N )

as

maxx

∣∣∣∣∣∣
∑

E/N<x

f (E/N )−
∑

E/N<x

c (E/N )

∣∣∣∣∣∣ , (6.20)

where c(E/N ) represents the continuous distribution as shown in Fig. 16 (top, right). The

smoothness as defined by (6.20) measures the maximum difference in the cumulative sum

of the distribution compared to the case of continuous charges and serves as a possible

metric for the required task. In Sec. 6.3.1, we will see that this metric is closely related

to a relevant observable. The metric ranges from one to zero (by construction for the

continuous distribution), with DFSZ3 having a value of 17%, DFSZ4 having 5.7%, and

DFSZ7 having only 1.4%.

We aim to place a rough constraint on the smoothness of the anomaly ratio dis-

tributions for DFSZ8 and DFSZ9. Based on our findings for DFSZ3 to DFSZ7, we

observe that the anomaly ratio distribution becomes smoother as the number of doublets

increases. Additionally, from our analysis of biased sampling for nD = 6 and nD = 7,

where the actual distributions can be computed, we find that sampling leads to less

smooth distributions. Therefore, we expect the distribution for nD = 8 or nD = 9 to be

smoother than their respective sampled distribution and the nD = 7 distribution. In

Fig. 17, we utilize the nD = 7 distribution as one estimate, referred to as “limit 1”.

Another way to estimate the smoothness of the DFSZ8 and DFSZ9 anomaly ratio

distributions is to consider that the difference in smoothness between DFSZ6 and DFSZ7

is smaller than that between DFSZ5 and DFSZ6. By extrapolating the distributions

beyond nD = 7 using the difference between the DFSZ6 and DFSZ7 distributions, we can

obtain estimates of the anomaly ratio distributions that are smoother than our actual
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expectation. These estimates are denoted as “limit 2” in Fig. 17, with one subtraction for

nD = 8 and two subtractions for nD = 9. Using the metric described by (6.20), we find

that the smoothness values for DFSZ8 and DFSZ9 are 0.73% and 0.71%, respectively.

It is important to note that these estimates are not definitive and should be viewed

as rough approximations. Although the difference in probability in Fig. 17 appears

significant due to the logarithmic axis, both estimates are much closer to the continuous

case of Fig. 16 (top, right) than to the peaked case of Fig. 16 (third row, right), indicating

that the probability mass is spread across a continuum rather than concentrated at

unique E/N values.

6.2.5 Constructing extreme |gaγ|

Another problem arising from sampling potentials is that it is very unlikely to find the

anomaly ratio corresponding to the maximum axion-photon coupling, which we denote as

Ê/N = argmaxE/N (|E/N − 1.92|) . (6.21)

This anomaly ratio, however, provides a useful bound for DFSZ-type models. For this

reason, we present a procedure on how to estimate it. Before turning to this procedure

though, let us note that due to the symmetry around E/N = 5/3, in absence of selection

criteria, Ê/N is not given by the largest possible anomaly ratio but the smallest.

The procedure is based on observations of the LSEs that led to Ê/N for the smaller

numbers of doublets. There, we found that any of the LSEs leading to Ê/N of DFSZ4

can be extended to an LSE leading to Ê/N for DFSZ5. The same behavior can be seen

from DFSZ5 to DFSZ6 and in a slightly different form from DFSZ3 to DFSZ4. We do not

have a rigorous mathematical explanation for this behavior, so applying it to larger nD is

more of an educated guess. However, it turns out to give extreme anomaly ratios, so we

use it to systematically provide an estimate for Ê/N . The procedure works as follows:

1. Take all LSEs that lead to Ê/N for a number of doublets where all solutions are

known, say nD = 6.

2. Add one additional Higgs doublet by specifying its Yukawa sector.

3. Adjust the orthogonality relation appearing in all LSEs.

4. Add one additional relation to the LSEs, solve them and calculate the anomaly

ratio.

5. Repeat step 2 – step 4 for every possible relation and every possible Higgs doublet,

specified by its Yukawa sector.

6. Extract the LSEs with the smallest anomaly ratio.

This procedure results in extreme negative anomaly ratios. However, we found for

DFSZ9 that taking the resulting LSEs and systematically exchanging one (or more if the

computational time is acceptable) of the relations, new LSEs are found that give even
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Figure 17: Anomaly ratio distributions for different numbers of Higgs doublets nD. All histograms are symmetric
around 5/3. nD ≥ 5 display a characteristic peaked structure which becomes smoother with increasing nD. DFSZ8

and DFSZ9 could not be fully calculated, the two semi-transparent colors denote the two estimates as discussed in the
text. Note that limit 2 only slightly exceeds limit 1 at big absolute anomaly ratios for nD = 8 as well as nD = 9.

Table 3: Important statistics of DFSZ-type models broken down by number of Higgs doublets nD. We include

information on the model with maximal photon coupling Ê/N from (6.21) and the percentage of models that have
minimal photon coupling (photophobic, |E/N − 1.92| < 0.04). ’x’ denotes values that could not be estimated.

nD #Veb unique solutions unique E/Ns Ê/N % photophobic % NDW = 1

2 2 2 2 2/3 0 0

3 54 16 5 −4/3 0 0

4 52614 996 83 −52/3 1.4 6.00

5 6.65× 107 9.7× 104 432 −112/3 1.52 6.64

61 ≲ 4× 109 > 2.19× 106 1680 −238/3 1.37 5.83

71 ≲ 7× 1012 x 6256 −466/3 1.39 5.19

82 ≲ 2× 1016 x > 11617 < −628/3 x x

92 ≲ 1× 1020 x ≫ 14122 < −1216/3 x x

1For nD ≥ 6, #Veb and “unique solutions” are estimates. Number of minimal potentials calculated via (6.19),
many of which will be unphysical and not produce valid solutions for PQ charges. “unique solutions” gives
the number of solution found in sample, for which data exists.
2For nD ≥ 8 we did not calculate all possible models, therefore we have no exact value neither for the number

of unique E/N , nor for the percentage of photophobic models or models with NDW = 1. Ê/N was estimated
as shown in Sec. 6.2.5.
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smaller anomaly ratios. In DFSZ9 for instance, the smallest anomaly ratio we construct

in this way is E/N = −1216/3 and it is generated by the terms

(H†
d2
He1)(H

†
d2
Hd1) , (Hu1Hd1)(Hu1Hd2) , (H

†
u3Hu1)(H

†
u3Hu2) , (H

†
e1Hd1)(H

†
e1He2) ,

(H†
e2Hd1)(H

†
e2He3) , (Hu2Hd3)(H

†
u1Hu2) , (Hd3Hu1)(H

†
d1
Hd3) , (Hd1Hu1)S

†S† . (6.22)

6.2.6 Comparison with KSVZ-Type Models

In [170], the authors add all anomaly ratios of phenomenologically allowed KSVZ-type

models, regardless of the number of quarks and including additive quark representations.

Consequently, a model with NQ = 9 quarks, of which there are more than 105, is

considered equally probable as a model with only NQ = 1, of which there are only 15.

The final distribution is dominated by 7 ≲ NQ ≲ 21. If we were to apply a similar

weighting to our DFSZ-type models, the resulting distribution would be indistinguishable

from the DFSZ9 case. In Sec. 6.2.2, we argued for an alternative approach in which all

separate values of nD are equally probable. Since the raw data from [170] was provided,

we can weight their KSVZ data to give equal probability to all values of NQ, so the

15 models with NQ = 1 combined are equally likely as all ∼ 105 models with NQ = 9

combined. Using this weighting, their data can be compared with our DFSZ results on a

fair basis and we show the result in Fig. 18.

Nonetheless, we want to stress that there remain differences: The authors of [170]

were able to apply selection criteria, which significantly reduced the number of viable

models. As we did not find stringent selection criteria, our catalog contains the complete

range of models rather than a preferred subset. Therefore, any comparison between the

two model types or a combined axion band should not be considered conclusive, but

rather as including all current selection criteria. Also note that in our case, a model with

a higher value of nD is always less probable than a model with a lower value, which can

be seen as an appropriate penalty for introducing more degrees of freedom to the model.

However, this is not the case for the KSVZ data from [170] when our weighting scheme is

applied. As an example, for NQ = 28 they discovered only 510 preferred models, which

is considerably lower than for NQ = 9. Consequently, a single model with NQ = 28 is

more likely than a single model with NQ = 9 in our weighting scheme.

The impact of giving equal weights to all nD values can be observed in Fig.18,

particularly in the vicinity of E/N = 5/3. The DFSZ2 and DFSZ3 models, which have

high relative probabilities, are responsible for the significantly elevated probabilities of

the five E/N values (compare Fig.17). The effect of the two DFSZ8 and DFSZ9 estimates

only becomes substantial at low absolute probabilities and above |E/N| ≳ 20.
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Figure 18: Comparison between anomaly ratio distributions for KSVZ-type and DFSZ-type axion
models. The KSVZ-type estimate of [170] includes all phenomenologically allowed models, adding and
subtracting quark representations, and assumes every model to be equally likely. Our DFSZ-type results
include calculations for DFSZ2 to DFSZ7 and estimates for DFSZ8 and DFSZ9, giving equal probability
to each nD. For DFSZ-type, the different shades denote maximum and minimum for each bin under the
two limits for DFSZ8 and DFSZ9 described above.
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We find the KSVZ results display a similar peaked structure to the DFSZ case,

which is only noticeable in a finely binned histogram. In fact, for E/N values not

including DFSZ2 and DFSZ3, the DFSZ-type histograms are less peaked than the KSVZ-

type histograms, with decreased probability at moderately large |E/N| and significantly

increased probability for |E/N| ≳ 40. However, this pattern does not extend to the

maximum axion-photon coupling. We find a maximal |gaγ | at Ê/N > −1216/3, which is

comparable to the KSVZ case for NQ ≤ 9 before any phenomenological constraints are

imposed (Ê/N = −1312/3).

Regarding models with the smallest axion-photon couplings, we define photophobic

models in the same way as [170], i.e. by selecting those with an anomaly ratio E/N
that is compatible with vanishing gaγ within 1 sigma theoretical uncertainty. Tab. 3

shows that there is no clear trend towards a higher or lower percentage of photophobic

models with increasing nD. As discussed in Sec. 6.2.3, the distribution of anomaly ratios

becomes smoother with increasing nD, with peaks becoming less pronounced and ratios

with low probability becoming more likely. The absence of a clear trend suggests that

the photophobic region lies in the middle between these two extremes. In summary, the

percentage of photophobic models we find for DFSZ-type models with nD ≤ 7 is similar

to the KSVZ case.

The probability near the highest peaks is notably reduced in both the KSVZ- and

DFSZ-type model probability distributions (Fig. 18, bottom). However, this effect is less

pronounced in DFSZ-type models compared to KSVZ-type models because, as mentioned

earlier, DFSZ-type models are less peaked when DFSZ2 and DFSZ3 are excluded.

Closer inspection reveals that the distribution of KSVZ-type models is not symmetric

around 5/3, unlike the DFSZ-type models which have both the mean and median anomaly

ratios at exactly 5/3. In particular, the mean and median anomaly ratios for KSVZ-type

models are E/N|mean = 1.43 and E/N|median = 1.30, respectively. These values do not

change even when considering only the subset of NDW = 1 models. The deviation from

5/3 in the KSVZ-type models of [170] could potentially arise from the phenomenological

selection criteria imposed in their study.

6.3 Implications for Axion Searches

We have so far derived probability mass functions for the anomaly ratio from theoretical

assumptions for different DFSZ-type models. Let us now discuss what implications these

results have for axion experiments.

6.3.1 Caγ Cumulative Distribution Function

In order to comprehend the consequences for axion searches, it is necessary to map the

E/N distributions into gaγ space using (6.1). To eliminate the dependence on the axion

mass, we present our findings in terms of the dimensionless quantity |Caγ |, as defined in

(6.1).
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Figure 19: Cumulative probability of models with |Caγ | higher than the indicated values. The plot
includes DFSZ-type models of arbitrary domain wall number NDW with DFSZ3 to DFSZ7 as well as
NDW = 1 models for DFSZ4 to DFSZ7 (for smaller nD no NDW = 1 models exist). The CDFs become
smoother with increasing nD, with DFSZ6 and DFSZ7 already being almost indistinguishable. NDW = 1
models have systematically larger |Caγ |, shifted by almost one order of magnitude. The dashed line
indicates the analytic fit on the continuum limit from (6.23).

Typically, two-sided axion bands centered around the region of maximal probability

are provided in this situation [106, 170, 186–188]. However, experiments are usually

sensitive to all axion-photon couplings above a certain threshold |Caγ |min, and therefore

it is relevant to also report a one-sided limit that must be achieved in order to detect,

e.g. 68% of all DFSZ-type models for a given axion mass. For this purpose, we utilize

a cumulative distribution function (CDF) plotted against |Caγ |, which represents the

combined theoretical prior probability of models with |Caγ | (model) > |Caγ |min.

Since we are treating the anomaly ratio as a random variable derived from a

distribution that we aim to determine, we must handle the next-to-leading order QCD

corrections C(0)
aγγ in the same manner. We model its uncertainty as a normal distribution

N (1.92, 0.04) with a mean of 1.92 and standard deviation of 0.04. This approach smooths

out the steps in the CDF that result from high probability E/N values, particularly for

anomaly ratios near the mean value of C(0)
aγγ .

6.3.2 Experimental Constraints

The anomaly ratios of the DFSZ2 and DFSZ3 models are still the most prominent feature

in the probability distribution for all possible DFSZ models. However, reaching sensitivity

to these models may be either not necessary or not sufficient because only one value of

the anomaly ratio is realized in nature.

Fig. 19 displays the resulting theoretical prior probability of DFSZ-type axion models

with |Caγ | above a certain threshold. We group results by possible values of nD. Let us
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first discuss the “all NDW”-case, in which the domain wall number is not imposed as

selection criterion. DFSZ3 models have zero probability above log |Caγ | ≳ 0.5. Should an

axion be found above this value that can be determined to be of DFSZ-type, this would

imply the existence of nD > 3 Higgs doublets. The impact of the prominent peaks of

maximal probability between E/N = −4/3 or E/N = 14/3 on the cumulative probability

is only minor for theories with nD ≥ 5. As the CDFs for DFSZ6 and DFSZ7 are already

almost indistinguishable, we refrain from additionally plotting our estimates for higher

nD. In fact, the relative difference on |Caγ | exclusion limits between our two ways of

estimating the smoothness of the DFSZ8 and DFSZ9 distributions is below the percent

level. For the purpose of |Caγ | exclusion limits, the two estimates are therefore virtually

equivalent. In the following, we use limit 2. An analytical estimate for the cumulative

probability distribution can be obtained by utilizing the analytic anomaly ratio fit given

in (6.17). This fit can be translated to |Caγ | as,

p (|Caγ |) = 1− tan−1
[
4
7

(
|Caγ | − 19

75

)]
+ tan−1

[
4
7

(
|Caγ |+ 19

75

)]
π

, (6.23)

which is plotted as a dotted line in Fig. 19.

We can compare the complete set of DFSZ4 to DFSZ7 models with their subsets

that have NDW = 1. The latter models are preferred in the post-inflationary scenario due

to cosmological energy density arguments (see Sec. 6.1.4). The NDW = 1 models have

|Caγ| values that are almost one order of magnitude higher on average than the complete

set. Therefore, they are more easily detectable. Like in the previous case, higher values

of nD tend to have smoother distributions. Hence, we can reasonably introduce our two

estimates. Here, the difference between the two estimates with respect to the |Caγ| limits

is also below the percent level. Therefore, we use limit 2, the extrapolation estimate, in

the following analysis.

Now let us compare the complete set of DFSZ4 to DFSZ7 models with their subsets

that have NDW = 1. The latter models could be considered preferred in the post-

inflationary scenario since they avoid the domain wall problem. The NDW = 1 models

have |Caγ | values almost an order of magnitude higher on average than the full set and

are therefore much easier to detect. Similar to the “all NDW”-case, higher nD values tend

to have smoother distributions. It therefore seems reasonable to analogously introduce

our two estimates where the difference with respect to the |Caγ | limits between the two is

again below the percent level. We again use limit 2 in the following.

Fig. 20 compares the CDFs for DFSZ- and KSVZ-type models. In general, both

types are very similar for all values of |Caγ |, only for DFSZ-type models with NDW = 1

a significant fraction of models is above log |Caγ | ≳ 1.5. The lines of E/N = 2/3 and

E/N = 8/3 are clearly visible for both, DFSZ-type and KSVZ-type models. The relative

difference between the 68% limits of KSVZ- and DFSZ-type axions is only ∼ 3% and

∼ 19% for the 95% limits with the DFSZ limit being higher in the latter case. Taking

into account possible effects from diverging theory assumptions, this relative difference

can be seen as negligible.
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Figure 20: Cumulative probability of models with |Caγ | higher than the indicated values for the complete
set of DFSZ-type and KSVZ-type models as well as for models with NDW = 1 specifically (thin lines).
One sided 95% and 68% limits for both cases are given with coloured vertical dotted lines. The arrows at
the top indicate the location of DFSZ2-I and DFSZ2-II.

Although exploring various theoretical assumptions is not the focus of this study,

it is worth noting that different assumptions can only alter the relative importance of

the prominent peaks of DFSZ2 and DFSZ3 in the entire set of models. For instance, if

we adopt a different definition of multiplicity based on minimal potentials, it leads to a

substantial increase in their probability mass, but it does not shift the overall cumulative

probability towards higher or lower |Caγ | values. Therefore, any variation in theoretical

assumptions, except for the model selection criteria, would lie somewhere between the

cumulative probabilities of the nD = 2 and the continuum cases.

Translating these limits to gaγ over a range of axion masses, we obtain Fig. 22

(top). If an experimental exclusion limit touches the 68% line, it excludes 68% of the

probability mass in the model space for a given mass range, assuming the aforementioned

assumptions. An experiment reaching down to the 95% line would be sensitive to 95%

of the probability for all models within the targeted mass range. We provide these

and the 99% limit for DFSZ-type as well as KSVZ-type models and the combined case

of NDW = 1. The maximum Ê/N value found for DFSZ9 is also included in black.

Additionally to being excluded by experiments for a large fraction of the ma range, this

model may likely also be subject to phenomenological constraints (see Sec. 6.1.4).

Our study has made it possible to determine one-sided limits or axion bands for

the combined KSVZ and DFSZ scenario, assuming that both types of axions are equally

probable. The associated probability density function (PDF) for the combined “all

NDW”-case is shown in Fig. 21. In logarithmic space with the chosen binning, the

distribution appears to be approximately Gaussian, with several notable peaks at E/N =
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Figure 21: Probability density in log |Caγ |-space of the combined DFSZ-type and KSVZ-type “all
NDW”-case. Central 68% and 95% regions used for Fig. 22 are indicated in different shades of yellow.
Note that the underlying distribution is discrete and any illustration will in part depend on the binning
chosen.

5/3, 8/3, 2/3, 14/3 and −4/3 (from left to right). It should be kept in mind, however,

that the true underlying distribution is comprised out of a multitude of delta peaks

and thus fundamentally discrete. Central 68% and 95% bands from this distribution

are used in Fig. 22 (bottom) together with a previous estimate for the same band from

[106]. Previous work was either limited to very few extensions of DFSZ-type [106] or the

KSVZ case [170]. Despite several caveats, such as the imprecise prediction for DFSZ8

and DFSZ9 models or the lack of selection criteria in the DFSZ case, it is still valuable

to provide usable data of typical limits and bands for a variety of scenarios. An overview

can be found in Tab. 4 and more detailed information is available on the website “zenodo”

together with the model catalog (see end of Sec. 6.4 for links).
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Figure 22: Top: 68%, 95% and 99% limits for the complete preferred KSVZ case [170], our complete
DFSZ case (using extrapolation for DFSZ8 and DFSZ9) as well as the combined NDW = 1 case. The
highest DFSZ-type coupling found is shown in black (E/N = −1216/3). DFSZ2-I and DFSZ2-II roughly
coincide with the 68% limit of the complete DFSZ case and the 95% limit of the NDW = 1 case, respectively.
Bottom: Central 68% and 95% regions for the case combining all preferred KSVZ and all DFSZ models
together with a previous band from Di Luzio et al. [106] for comparison. We show helioscope limits and
forecasts [189–191] in green as well as limits and forecasts from various haloscope experiments [192–235]
in purple. For reference we also show the E/N = 0 and E/N = 8/3 lines in black. All experimental
limits shown here are Frequentist in nature and should therefore only be seen as a rough comparison
with respect to our Bayesian prior results. For the full cumulative probability from which the three limits
shown in the top panel are taken, see Fig. 20, and for the combined probability density from which the
band in the bottom panel is derived, see Fig. 21. (Plotted with tools by O’Hare [169].)
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Table 4: |Caγ | lower prior limits for selected combinations of models. All limits shown are one sided, so a
central 68% band can be constructed with values given for 16% and 84% and similar for 95%. The label
“KSVZ” denotes re-weighted results from [170], while “DFSZ” denotes results from this paper. Both are
combined with equal probability for the case “Combined”. The combination only considering models
with domain wall number of unity is shown as “NDW = 1”.

|Caγ | 68% band 95% band

one sided limit 68% 95% 16% 84% 2.5% 97.5%

KSVZ 0.833 0.135 4.684 0.427 15.274 0.068
DFSZ 0.809 0.164 4.529 0.482 19.272 0.08
Combined 0.819 0.148 4.593 0.451 17.285 0.074
NDW = 1 5.294 0.769 22.773 2.733 36.729 0.731

6.4 Summary and Discussion

This study aimed to determine the axion-photon coupling for a large number of DFSZ-

type models and provide limits required to be reached in order to be sensitive to a

certain fraction of the probability mass of these models. We began by clearly defining

the DFSZ-type models that under consideration and discussed various selection criteria,

including the absence of FCNCs and the domain wall problem, to identify the preferred

models. In contrast to the KSVZ-type models, where all selection criteria follow from

cosmological bounds on the new fermions, for DFSZ-type axions we did not find criteria

with a sufficient level of generality, only desirable features.

Next, we developed a recipe to calculate the axion-photon coupling for DFSZ-type

models. This recipe relies on the fact that the PQ charges in DFSZ-type models are

not arbitrary but are constrained by linear consistency and phenomenology relations.

Consequently, the process of DFSZ-type model building reduces to solving LSEs. By

systematically going through each Yukawa sector and solving all possible LSEs, we were

able to derive all possible anomaly ratios for up to seven Higgs doublets, and hence all

possible axion-photon couplings.

Furthermore, by essentially counting how many models lead to a certain anomaly

ratio and establishing relative probabilities of these models, we were able to assign

probabilities to each anomaly ratio. For this counting of models, we considered as a

model the Lagrangian that arises by combining different potentials resulting in the same

set of PQ charges and by adding the Yukawa couplings compatible with the resulting set

of PQ charges. In this way, we took into account the general consensus that all terms

allowed by symmetry must be included and avoided overcounting. The obtained anomaly

ratio distributions have their median at E/N = 5/3, their maximum values at E/N = 2/3

and E/N = 8/3, and a shape that is reminiscent of the distributions found in KSVZ-type

models. These findings can be attributed to the discrete nature of the underlying sets of

PQ charges, which can be thought of as charge distributions with uniform probability

and symmetry around zero.

Although our recipe can be applied to DFSZ-type models with any number of Higgs
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doublets, the computational time required becomes impractical for eight or more doublets.

Attempting to estimate these cases through simple sampling of potential terms results

in a significant bias. Therefore, we developed estimations for nD > 7 based on the

expected smoothness of the distributions. We have also used an incremental construction

procedure to identify a maximal anomaly ratio that exceeds previous estimates in [106]

by more than a factor of two.

Regarding the axion experimental program, the anomaly ratio distributions confirm

the experimental importance of the values dictated by the minimal DFSZ models, namely

E/N = 2/3 and E/N = 8/3, since they are also favored for every number of Higgs

doublets (with the exception of nD = 3, were we imposed the Weinberg-Glashow-Paschos

condition). However, the distributions also indicate that there is a considerable amount

of viable parameter space above and below these values. Therefore, a non-observation at

these favored values is insufficient to declare the axion excluded, while an observation

above these values would suggest the presence of at least two additional Higgs doublets

from the DFSZ-type perspective. The statistical analysis also reveals that KSVZ and

DFSZ models set comparable requirements for experiment sensitivity.

Intriguingly, for nD ≥ 4 we found a subset of models with domain wall number

NDW = 1. These avoid the domain wall problem and thus make DFSZ-type models

theoretically more viable in post-inflationary scenarios. This subset even displays a

significantly enhanced axion-photon coupling compared to the minimal scenarios for both

invisible axion classes, hence rendering these models easier to probe.

In conclusion, we want to emphasize that our analysis is valuable for axion searches

regardless of the statistical interpretation. By providing all possible E/N values for up

to seven doublets and a full catalog for up to five doublets, one can perform hypothesis

testing with the compatible models in the case of a detection. Since all E/N values for

preferred KSVZ models are also known, this could be used for model comparison between

these two classes. Thus, whether or not one adopts a statistical viewpoint, our analysis

presents another step forward in the understanding and mapping of the landscape of

axion models. 11

11Our generating code can be found at https://github.com/jhbdiehl/DFSZforest, the model catalogs
and axion limits/ bands together with usable Bayesian theory priors at https://doi.org/10.5281/
zenodo.7656939.

https://github.com/jhbdiehl/DFSZforest
https://doi.org/10.5281/zenodo.7656939
https://doi.org/10.5281/zenodo.7656939




CHAPTER

SEVEN

CONCLUSION AND OUTLOOK

In this thesis, we investigated the axions potential role in going beyond the SM by

studying various aspects of its landscape. Taking this avenue of investigation is motivated

by the axion providing a common theme among various questions of high-energy physics.

Thus, the axion holds significant potential for playing a key role in beyond the SM

physics.

We began by providing a detailed introduction into the strong CP problem and the

axion solution. The aim of this introduction is twofold: First, to establish the standard

languages employed in axion physics, namely chiral perturbation theory and instantons.

Secondly, to set up a connection between these languages and less well-known aspects of

the axion through the exploration of the Schwinger model and the higher-form formalism.

In this way, the most suitable formalism can be chosen to solve a particular problem. As

part of this introduction, we outlined the low-energy EFT of the axion and the various

benchmark UV models that we used throughout the rest of the thesis.

We then placed the axion within an FLRW framework and discussed the model

dependency of the arising cosmological bounds. In particular, we showed that there

is a viable part of the parameter space where Dvali’s early relaxation mechanism can

successfully be incorporated into the KSVZ and DFSZ axion models by only using the

modification of the running coupling during inflation. We achieved this via much heavier

quarks resulting from a Higgs portal between the inflaton and our Higgs doublet or,

alternatively, higher order operators of those fields. The heavier quarks change the

running of the strong coupling constant and thus result in a larger value of the QCD

scale. Thus, QCD can become strong in both models for HI ≲ 105GeV, vastly expanding

the viable parameter space. We also illustrated how in both models the physics that

makes QCD strong during inflation does not displace the axions minimum, so that the

efficiency of the relaxation is controlled by parameters of the theory and the number of
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inflationary e-folds. Intriguingly, we identified a parameter space compatible with all

cosmological constrains when the axion abundance is dominated by inflationary quantum

and post-inflationary thermal fluctuations. Unfortunately, this region is not realized in

the minimal models.

Next, we pointed out that the strong CP problem, as a quantum gravitational

consistency problem, is not special to QCD but arises in every YM group. We then

considered hidden sectors with YM subgroups and identified general phenomenological

consequences of including one axion per YM group as required to solve “each strong

CP problem”. In particular, we carried out computations for two simple models, i.e. a

pure YM sector and N exact Standard Model copies, and identified phenomenological

consequences such as: a cosmological constraint on the dark confinement scale, an upper

bound on N , as well as no necessary tightening of the bound on the inflationary Hubble

scale arising from isocurvature perturbations. Furthermore, we discuss the phenomenon

of axion stars collectively made from axions of different dark sectors, as well as the

possibility of axion kinetic mixing and its implications for axion states and stability.

Axions cannot collectively form structures with a 1/
√
N suppressed mass spectrum due

to their repulsive self-interaction. Kinetic mixing results in N − 1 degenerate states that

behave as the ordinary axion, and one special state that is slightly lighter by a factor of

1/
√
2 and couples weaker by 1/N1/2.

Lastly, we presented a systematic way to calculate the axion-photon coupling for a

large number of non-minimal DFSZ models and studied the resulting distributions. We

found that the values dictated by the minimal models are favored for every number of

Higgs doublets and that most of the possible axion-photon coupling lie in the vicinity of

these values. This confirms the experimental importance of these values. The distributions

also reveal that there exists a significant amount of viable parameter space above and

below the indicated values. Therefore, a non-observation at these preferred values is not

enough to exclude the axion. On the other hand, detection of the axion above these

values would imply the existence of at least three Higgs doublets from a DFSZ-type

perspective. The statistical analysis also indicates similar requirements in terms of

experimental sensitivity for the KSVZ and DFSZ models. It is also worth mentioning

that we found a large number of non-minimal DFSZ models with a domain wall number

of unity, thus avoiding the domain wall problem. In addition, all these models have an

enhanced axion-photon coupling compared to the minimal DFSZ models and are thus

easier to detect.

Let us now provide an outlook to future theoretical studies, which build upon the

projects presented in this thesis. Regarding the cosmological bound on the axion scale, let

us discuss which models could potentially offer a modification of the running so that the

narrow region of interest becomes viable. By playing around with simple modifications of

the minimal models, such as varying the quark mass of the KSVZ model or adding more

heavy quarks, we found that ΛInf
QCD cannot dramatically exceed 105GeV. An interesting

possibility, however, is given by embedding of the PQ symmetry into GUTs with an

intermediate breaking. For instance, this could be achieved by SO(10), which breaks into
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SU(5) or the Pati-Salam group. Since the running is steeper in these groups, such an

implementation would not only modify the initial condition of the running but would

also modify the running itself. This could potentially result in a larger ΛInf
QCD, thus

allowing for the implementation of a GUT or MP scale axion without the need of moduli

fields. Furthermore, let us make the note that our analysis is automatically valid for the

two-form implementation of the axion due to duality below the Peccei-Quinn scale and a

minor influence of the KSVZ and DFSZ fields on the running.

The two-form implementation of the axion, in general, offers many interesting

question. Since there is no renormalizable UV-completion in terms of a complex scalar

field for a two-form, it is likely that a UV completion has its origin in a theory of quantum

gravity. This could be studied in string theory where the Kalb-Ramond two-form is a

generic prediction. Alternatively, since the two-form is sourced by fundamental strings,

it is interesting to study its dynamics in the presence of confining strings in QCD. It

would also be interesting to study how the PQ scale can be lowered, since for fa ∼MP

the axion avoids any current experimental endeavors. One example to achieve this is by

introducing a large number of species as these lower the fundamental scale of gravity.

Moving on to the second project, the situation with multiple axions closely resembles

the axiverse proposed by string theory. However, in our case, the axions arise from

quantum gravitational consistency in theories with numerous hidden YM groups. Given

that hidden YM groups and multiple axions are predictions of string theory, exploring this

connection in the context of string theory is a valuable pursuit. Furthermore, all of our

axions originate from a single underlying physical principle, namely the S-matrix exclusion

of de Sitter. Pushing this idea further, if the dark energy is realized by quintessence, this

would suggest the existence of a non-trivial vacuum structure that needs to be eliminated

by this scalar field. The requirement of the corresponding particle to behave as dark

energy instead of dark matter results in a dark confinement scale below ∼ 10−3 eV. A

potential late phase transition in the universe could have intriguing consequences as

pointed out in [236].

In regard of the DFSZ project, there are several potential avenues for extending our

analysis. One possibility is to investigate models with a right-handed neutrino or hybrid

KSVZ/DFSZ models, which featuring additional Higgs singlets, Higgs doublets, and heavy

quarks. Although the resulting anomaly ratios would be different, we anticipate that the

shape of the distributions and the exclusion lines for axion mass versus axion-photon

coupling would be similar. Nevertheless, it would still be important to perform an explicit

analysis to confirm this expectation. Another area of interest is the exploration of other

axion couplings, such as the axion-electron coupling. Although the higher-dimensional

parameter space due to the VEVs of the Higgs doublets poses a challenge, the perturbative

range of the top and bottom Yukawa couplings [237] or other phenomenological constraints

could be used to derive reasonable limits. Furthermore, finding a better estimate for the

anomaly distribution of eight or more doublets, or developing an unbiased method for

computing it, would be desirable.

It is also interesting to mention that with the identification and classification of both
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large classes of invisible axion models, a comparison with other classes of axion models, like

the two-form implementation of the axion, is possible. There, in contrast to the ordinary

invisible axion models, no explicit PQ violating processes are possible there. Hence,

should the axion be detected through its axion-photon coupling, we can dramatically

limit the number of invisible axion models and search for PQ violating processes in these.

If a PQ violating process is experimentally found, this would completely eliminate the

two-form axion.

The research presented in this thesis provides a comprehensive examination of

various aspects of the axion landscape, shedding light on its potential role in answering

fundamental questions in high-energy physics. Our findings suggest that the axion

represents a promising avenue for further exploration, with multiple branches of physics

intersecting at this unique particle. As such, the research summarized here sets the stage

for future investigations.



APPENDIX

A

CONVENTIONS AND

FUNDAMENTALS

A.1 Units

Throughout this thesis Lorentz-Heaviside natural units are used, i.e. c = ℏ = kB = 1,

which gives all quantities the dimension of energy to some power. In these units the

electron is chosen to have rationalized charge −e, so that the fine-structure constant is

α = e2/4π ≃ 1/137.

It is advantageous to interchange between natural units and centimeter-gram-second

(CGS) units. In the following table we show the values for this conversion,

Natural Unit CGS Value

eV 105 cm−1

eV 1015 s−1

eV 104K

eV 10−33 g

A.2 Indices and Metric Signature

• Latin indices (i,j,k, ...) generally run over the three spatial coordinate labels taken

1, 2, 3. Greek indices (µ, ν, ρ, ...) generally run over the four spacetime coordinate

labels 0, 1, 2, 3.

• The Levi-Civita tensor ϵµ,ν,ρ,σ is defined as the totally antisymmetric tensor with

ϵ0123 = 1.
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• For the spacetime metric ηµν the “particle physics”, “west coast” or “mostly minus”

convention is chosen, i.e., ηµν ≡ diag(+,−,−,−).

• The γ-matrices are defined by the anti-commutator relation of the Clifford algebra,

{γµ, γν} = 2 ηµν 14.

Many authors use different conventions, so it can be very helpful to know how to

translate between conventions to get those minus signs right. The biggest confusion

enters when fermions are involved, since the metric appears in the Clifford algebra and

thus affects the gamma matrices. Demanding the Clifford algebra to be independent

of the metric convention and the spatial component of the momentum to be defined as

in non-relativistic quantum mechanics (see Appendix A.3), the two conventions can be

related by

ηwcµν = −ηecµν
γwcµ = −iγecµ .

Physical quantities will never depend on these conventions, but some equations will

change, e.g.

West coast metric ∂µF
µν = Jµ , (□+m2)Φ = 0 , (iγµ∂µ −m)ψ= 0 ,

East coast metric ∂µF
µν = −Jµ , (□−m2)Φ = 0 , (γµ∂µ +m)ψ = 0 .

A.3 2π and Fourier Transformation

The origin of all 2π is the relation

δ(x) =

∫ ∞

−∞
dp e±2πipx . (A.1)

We choose the convention with negative sign and rescale p in order to remove the 2π

factor from the exponent. Therefore, the Fourier transformation of an arbitrary function

f(x) is given by

f(x) =

∫ ∞

−∞

d4p

(2π)4
f̃(p)e−ipx ↔ f̃(p) =

∫ ∞

−∞
d4x f(x)eipx . (A.2)

This Fourier transform convention is consistent with

pµ = i∂µ , (A.3)

which has spatial components p⃗ = −i∇⃗, as in quantum mechanics (recalling that con-

travariant four-vectors have only positive components, while for the four gradient the

covariant components are all positive due to the definition ∂µ = d/dxµ).
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A.4 Gauge Theories

As usual, the kinetic term of scalars or fermions can be made gauge invariant by the

introduction of a gauge covariant derivative. For a field ϕ carrying U(1) charge Q and

transforming as

ϕ −→ eiQαϕ , (A.4)

we define the gauge covariant derivative as

Dµϕ = (∂µ − igQAµ)ϕ , (A.5)

where the gauge field Aµ transforms as

Aµ −→ Aµ +
1

g
∂µα . (A.6)

In non-Abelian YM Theories the fundamental gauge group G is a non-Abelian Lie

group. For the kinetic term to transform covariantly, a covariant derivative is introduced

in the standard way, i.e

Dµ = ∂µ − igAµ . (A.7)

The gauge field Aµ is now Lie algebra valued, meaning that Aµ = AaµT
a, where T a are

the generators of the algebra and a = 1,. . . ,dim G. These satisfy

[T a, T b] = ifabcT c, Tr T aRT
b
R =

T (R)

2
δab , (A.8)

where fabc are the structure constants and the representation dependent number T (R) is

called the Dynkin Index. We fix it to be 1 in the fundamental representation and 2 in

the adjoint. The corresponding field strength is defined as

Gµν = i[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

=
(
∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν

)
T a = GaµνT

a . (A.9)

Under gauge transformations the gauge field and the field strength transform as

Aµ −→ UAµU
−1 +

i

g
U∂µU

−1 = Aµ +
1

g
∂µα− i[Aµ, α]

= (Aaµ +
1

g
∂µα

a − fabcαbAcµ)T
a , (A.10)

Gµν −→ Gµν − i[Gµν , α] = (Gaµν − fabcαbGcµν)T
a . (A.11)

The locally gauge invariant Lagrangian is then

L = −1

4
tr[GµνG

µν ] = −1

4
GaµνG

µν,a , (A.12)

where g is the analog of e in QCD. Note that there are two frequently used conventions
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in the literature. In order to change to the other convention, we simply need to make the

following two rescalings,

Aµ −→ 1

g
Aµ , Gµν −→ 1

g
Gµν . (A.13)

A.5 The Standard Model

The Standard Model is the QFT based on the gauge group GSM = SU(3)c×SU(2)L×U(1)Y
that contains all known particles (see Fig. 23 for an overview of the particles, the

corresponding charges, and the couplings). The Lagrangian can be split into four sectors:

QCD sector

LQCD =
∑
q

q̄iiγ
µ(Dµ)

ijqj −
1

4
GaµνG

µν,a , (A.14)

where

(Dµ)q = (∂µ − igsA
a
µT

a)q . (A.15)

Electroweak sector:

LEW =
∑
Ψ

Ψ̄iγµ(Dµ)Ψ− 1

4
W a
µνW

µν,a − 1

4
BµνB

µν , (A.16)

where

DµΨ = (∂µ1 − igW a
µτ

a − ig′Y Bµ)Ψ . (A.17)

Note that for SU(2)L singlets the coupling with the corresponding gauge bosons in the

covariant derivative vanishes.

Higgs sector:

LHiggs = (DµH)†(DµH)− λ

2

(
H†H − v2

)2
, (A.18)

where the covariant derivative is the same as in the EW sector since the Higgs doublet

carries no color charge.

Yukawa sector:

LYukawa = −y(u)Q̄LH̃uR − y(d)Q̄LHdR − y(e)L̄LHeR + h.c. (A.19)

where H̃ = iσ2H.
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Figure 23: The Standard Model of particle Physics with its particles, the corresponding charges, and
the couplings for both, unbroken and spontaneous broken symmetry.

A.6 Higher-Forms

The structure of Maxwell’s theory can be generalized to tensor fields of higher rank, called

higher form fields. A p-form is a differential form with a corresponding antisymmetric

covariant tensor field of rank p. Acting on a p-form with the external derivative d, a

(p+ 1)-form can be constructed. In the context of Maxwell theories, the p-form A plays

the role of the higher rank analog of the gauge field, while the corresponding (p+1)-form

F can be thought of as its field strength. Choosing a local coordinate system, the

components of the field strength can be expressed as

Fµ1···µp+1 = (dA)µ1···µp+1 ≡ ∂[µ1Aµ2···µp+1] . (A.20)

The square brackets in this relation indicate antisymmetrization with respect to all indices

inside the brackets. There are different conventions for the canonical normalization of

p-forms. In this thesis, we normalize the Lagrangian of a p-form field as

L = − 1

2(p+ 1)!
(Fµ1···µp+1)

2 +
m2

2p!

(
Aµ1···µp + ∂[µ1aµ2···µp]

)2
+ Jµ1···µpAµ1···µp . (A.21)

where Jµ1···µp represents an antisymmetric tensor current. In order to dualize Lagrangian

(A.21) in n dimensions, it is useful to impose the Bianchi-identity via a Lagrange multiplier,
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i.e.

Ldual =
1

(p+ 1)!
∂µp+2ξµp+3···µnϵ

µ1···µnFµ1···µp+1 , . (A.22)

In this thesis, we have chosen the convention for the contraction of epsilon-tensors such

that

ϵi1···ikik+1···inϵ
i1···ikjk+1···jn = −k! δjk+1

[ik+1
· · · δjnin] , (A.23)

so that the Euler-Lagrange equations of a general p-form take a form that is similar to

that of Maxwell’s theory,

∂νF
νµ1···µp = Jµ1···µp . (A.24)

In principle, one can either work with (coordinate independent) forms or with the

corresponding fields. In this thesis we merely use the higher form fields and use the

terms “higher forms” and “higher form fields” interchangeably (even though this might

be highly confusing in a strict mathematical sense).

A.7 Euclidean Formulation of YM Theories

To go to Euclidean spacetime, we need to go to imaginary time, which induces a similar

change on the timelike components of other tensors. For this purpose, we make the

following definitions,

xi = x̂i Ai = −Âi Di = −D̂i Gaij = Ĝaij ,

x0 = −ix̂4 A0 = iÂ4 D0 = iD̂4 Ga0j = iĜa4j , (A.25)

where

D̂µ =
∂

∂x̂µ
− igÂaµT

a , Ĝaµν =
∂

∂x̂µ
Âaν −

∂

∂x̂ν
Âaµ + gfabcÂbµÂ

c
ν . (A.26)

The Greek letters now denote indices running from 1 to 4 and we chose to work with

merely lower indices, since there is no difference between upper and lower indices in

Euclidean spacetime. Furthermore, the Levi-Civita tensor is defined such that ϵ1234 = 1.

Similarly, we define the fermions as

Ψ = Ψ̂ γ0 = γ̂4 ,

Ψ̄ = −i ˆ̄Ψ γi = iγ̂i . (A.27)

All put together in the Yang-Mills action yields

iS = −Ŝ , (A.28)
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with

S =

∫
d4x

{
−1

4
GaµνG

aµν + Ψ̄(iγµDµ −m)Ψ + θ
g2

32π2
GaµνG̃

aµν

}
,

Ŝ =

∫
d4x̂

{
+
1

4
ĜaµνĜ

a
µν +

ˆ̄Ψ(−iγ̂µD̂µ − im)Ψ̂ + iθ
g2

32π2
Ĝaµν

ˆ̃Gaµν

}
. (A.29)

When working in the Euclidean formulation in the main part of this thesis, we simply

drop the hats on the Euclidean quantities. Instead, we mark the action and the integral

measure with an “E” to indicate that all quantities are in the Euclidean formulation as

defined in this appendix. We will also write upper indices to mark the contraction, even

though there is no difference between covariant and contravariant tensors in Euclidean

space-time.
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[191] E. Armengaud, D. Attié, S. Basso, et al., “Physics potential of the International Ax-

ion Observatory (IAXO),” JCAP 2019 no. 6, (June, 2019) 047, arXiv:1904.09155

[hep-ph].

[192] S. Beurthey et al., “MADMAX Status Report,” arXiv:2003.10894

[physics.ins-det].

[193] T. Grenet, R. Ballou, Q. Basto, et al., “The Grenoble Axion Haloscope platform

(GrAHal): development plan and first results,” arXiv:2110.14406 [hep-ex].

[194] CAST Collaboration, A. A. Melcón et al., “First results of the CAST-RADES

haloscope search for axions at 34.67 µeV,” JHEP 21 (2020) 075, arXiv:2104.13798

[hep-ex].

[195] N. Crisosto, P. Sikivie, N. S. Sullivan, et al., “ADMX SLIC: Results from a

Superconducting LC Circuit Investigating Cold Axions,” Phys. Rev. Lett. 124

no. 24, (2020) 241101, arXiv:1911.05772 [astro-ph.CO].

[196] J. A. Devlin et al., “Constraints on the Coupling between Axionlike Dark Matter and

Photons Using an Antiproton Superconducting Tuned Detection Circuit in a Cryo-

genic Penning Trap,” Phys. Rev. Lett. 126 no. 4, (2021) 041301, arXiv:2101.11290

[astro-ph.CO].

[197] QUAX Collaboration, N. Crescini et al., “Axion search with a quantum-

limited ferromagnetic haloscope,” Phys. Rev. Lett. 124 no. 17, (2020) 171801,

arXiv:2001.08940 [hep-ex].

[198] D. Alesini et al., “Galactic axions search with a superconducting resonant cavity,”

Phys. Rev. D 99 no. 10, (2019) 101101, arXiv:1903.06547 [physics.ins-det].

[199] D. Alesini et al., “Search for invisible axion dark matter of mass ma = 43 µeV

with the QUAX–aγ experiment,” Phys. Rev. D 103 no. 10, (2021) 102004,

arXiv:2012.09498 [hep-ex].

http://dx.doi.org/10.1088/1748-0221/12/11/P11019
http://arxiv.org/abs/1706.09378
http://arxiv.org/abs/1706.09378
http://dx.doi.org/10.1088/1742-6596/120/4/042003
http://arxiv.org/abs/0711.2870
http://dx.doi.org/10.1109/TASC.2013.2251052
http://arxiv.org/abs/1212.4633
http://arxiv.org/abs/1212.4633
http://dx.doi.org/10.1038/nphys4109
http://arxiv.org/abs/1705.02290
http://arxiv.org/abs/1705.02290
http://dx.doi.org/10.1088/1475-7516/2019/06/047
http://arxiv.org/abs/1904.09155
http://arxiv.org/abs/1904.09155
http://arxiv.org/abs/2003.10894
http://arxiv.org/abs/2003.10894
http://arxiv.org/abs/2110.14406
http://dx.doi.org/10.1007/JHEP10(2021)075
http://arxiv.org/abs/2104.13798
http://arxiv.org/abs/2104.13798
http://dx.doi.org/10.1103/PhysRevLett.124.241101
http://dx.doi.org/10.1103/PhysRevLett.124.241101
http://arxiv.org/abs/1911.05772
http://dx.doi.org/10.1103/PhysRevLett.126.041301
http://arxiv.org/abs/2101.11290
http://arxiv.org/abs/2101.11290
http://dx.doi.org/10.1103/PhysRevLett.124.171801
http://arxiv.org/abs/2001.08940
http://dx.doi.org/10.1103/PhysRevD.99.101101
http://arxiv.org/abs/1903.06547
http://dx.doi.org/10.1103/PhysRevD.103.102004
http://arxiv.org/abs/2012.09498


BIBLIOGRAPHY 165

[200] C. A. Thomson, B. T. McAllister, M. Goryachev, et al., “Upconversion Loop

Oscillator Axion Detection Experiment: A Precision Frequency Interferometric

Axion Dark Matter Search with a Cylindrical Microwave Cavity,” Phys. Rev. Lett.

126 no. 8, (2021) 081803, arXiv:1912.07751 [hep-ex]. [Erratum: Phys.Rev.Lett.

127, 019901 (2021)].

[201] B. T. McAllister, G. Flower, J. Kruger, et al., “The ORGAN Experiment: An axion

haloscope above 15 GHz,” Phys. Dark Univ. 18 (2017) 67–72, arXiv:1706.00209

[physics.ins-det].

[202] J. Jeong, S. Youn, S. Bae, et al., “Search for Invisible Axion Dark Matter

with a Multiple-Cell Haloscope,” Phys. Rev. Lett. 125 no. 22, (2020) 221302,

arXiv:2008.10141 [hep-ex].

[203] A. V. Gramolin, D. Aybas, D. Johnson, et al., “Search for axion-like dark matter

with ferromagnets,” Nature Phys. 17 no. 1, (2021) 79–84, arXiv:2003.03348

[hep-ex].

[204] C. P. Salemi et al., “Search for Low-Mass Axion Dark Matter with

ABRACADABRA-10 cm,” Phys. Rev. Lett. 127 no. 8, (2021) 081801,

arXiv:2102.06722 [hep-ex].

[205] J. L. Ouellet et al., “First Results from ABRACADABRA-10 cm: A Search

for Sub-µeV Axion Dark Matter,” Phys. Rev. Lett. 122 no. 12, (2019) 121802,

arXiv:1810.12257 [hep-ex].

[206] HAYSTAC Collaboration, L. Zhong et al., “Results from phase 1 of the HAYSTAC

microwave cavity axion experiment,” Phys. Rev. D 97 no. 9, (2018) 092001,

arXiv:1803.03690 [hep-ex].

[207] HAYSTAC Collaboration, K. M. Backes et al., “A quantum-enhanced search for

dark matter axions,” Nature 590 no. 7845, (2021) 238–242, arXiv:2008.01853

[quant-ph].

[208] C. Hagmann, P. Sikivie, N. Sullivan, and D. Tanner, “Results from a search for

cosmic axions,” Physical Review D 42 no. 4, (1990) 1297.

[209] S. DePanfilis, A. Melissinos, B. Moskowitz, et al., “Limits on the abundance and

coupling of cosmic axions at 4.5 < ma < 5.0 µev,” Physical Review Letters 59 no. 7,

(1987) 839.

[210] ADMX Collaboration, N. Du et al., “A Search for Invisible Axion Dark Matter

with the Axion Dark Matter Experiment,” Phys. Rev. Lett. 120 no. 15, (2018)

151301, arXiv:1804.05750 [hep-ex].

[211] ADMX Collaboration, T. Braine et al., “Extended Search for the Invisible Axion

with the Axion Dark Matter Experiment,” Phys. Rev. Lett. 124 no. 10, (2020)

101303, arXiv:1910.08638 [hep-ex].

http://dx.doi.org/10.1103/PhysRevLett.127.019901
http://dx.doi.org/10.1103/PhysRevLett.127.019901
http://arxiv.org/abs/1912.07751
http://dx.doi.org/10.1016/j.dark.2017.09.010
http://arxiv.org/abs/1706.00209
http://arxiv.org/abs/1706.00209
http://dx.doi.org/10.1103/PhysRevLett.125.221302
http://arxiv.org/abs/2008.10141
http://dx.doi.org/10.1038/s41567-020-1006-6
http://arxiv.org/abs/2003.03348
http://arxiv.org/abs/2003.03348
http://dx.doi.org/10.1103/PhysRevLett.127.081801
http://arxiv.org/abs/2102.06722
http://dx.doi.org/10.1103/PhysRevLett.122.121802
http://arxiv.org/abs/1810.12257
http://dx.doi.org/10.1103/PhysRevD.97.092001
http://arxiv.org/abs/1803.03690
http://dx.doi.org/10.1038/s41586-021-03226-7
http://arxiv.org/abs/2008.01853
http://arxiv.org/abs/2008.01853
http://dx.doi.org/10.1103/PhysRevLett.120.151301
http://dx.doi.org/10.1103/PhysRevLett.120.151301
http://arxiv.org/abs/1804.05750
http://dx.doi.org/10.1103/PhysRevLett.124.101303
http://dx.doi.org/10.1103/PhysRevLett.124.101303
http://arxiv.org/abs/1910.08638


166 BIBLIOGRAPHY

[212] ADMX Collaboration, C. Bartram et al., “Search for Invisible Axion Dark Matter

in the 3.3–4.2 µeV Mass Range,” Phys. Rev. Lett. 127 no. 26, (2021) 261803,

arXiv:2110.06096 [hep-ex].

[213] M. Baryakhtar, J. Huang, and R. Lasenby, “Axion and hidden photon dark matter

detection with multilayer optical haloscopes,” Phys. Rev. D 98 no. 3, (2018) 035006,

arXiv:1803.11455 [hep-ph].

[214] Y. Michimura, Y. Oshima, T. Watanabe, et al., “DANCE: Dark matter Axion

search with riNg Cavity Experiment,” J. Phys. Conf. Ser. 1468 no. 1, (2020)

012032, arXiv:1911.05196 [physics.ins-det].

[215] B. Aja et al., “The Canfranc Axion Detection Experiment (CADEx): search

for axions at 90 GHz with Kinetic Inductance Detectors,” JCAP 11 (2022) 044,

arXiv:2206.02980 [hep-ex].

[216] BREAD Collaboration, J. Liu et al., “Broadband Solenoidal Haloscope for

Terahertz Axion Detection,” Phys. Rev. Lett. 128 no. 13, (2022) 131801,

arXiv:2111.12103 [physics.ins-det].

[217] A. J. Millar et al., “ALPHA: Searching For Dark Matter with Plasma Haloscopes,”

arXiv:2210.00017 [hep-ph].

[218] M. Lawson, A. J. Millar, M. Pancaldi, et al., “Tunable axion plasma haloscopes,”

Phys. Rev. Lett. 123 no. 14, (2019) 141802, arXiv:1904.11872 [hep-ph].

[219] TASEH Collaboration, H. Chang et al., “First Results from the Taiwan Axion

Search Experiment with a Haloscope at 19.6 µeV,” Phys. Rev. Lett. 129 no. 11,

(2022) 111802, arXiv:2205.05574 [hep-ex].

[220] D. Alesini, D. Babusci, C. Braggio, et al., “Search for Galactic axions with a high-Q

dielectric cavity,” Phys. Rev. D 106 no. 5, (Sept., 2022) 052007, arXiv:2208.12670

[hep-ex].

[221] A. P. Quiskamp, B. T. McAllister, P. Altin, et al., “Direct search for dark matter

axions excluding ALP cogenesis in the 63- to 67-µeV range with the ORGAN

experiment,” Sci. Adv. 8 no. 27, (2022) abq3765, arXiv:2203.12152 [hep-ex].

[222] HAYSTAC Collaboration, M. J. Jewell et al., “New results from HAYSTAC’s

phase II operation with a squeezed state receiver,” Phys. Rev. D 107 no. 7, (2023)

072007, arXiv:2301.09721 [hep-ex].

[223] S. Lee, S. Ahn, J. Choi, et al., “Axion Dark Matter Search around 6.7 µ eV,” Phys.

Rev. Lett. 124 no. 10, (Mar., 2020) 101802, arXiv:2001.05102 [hep-ex].

[224] O. Kwon, D. Lee, W. Chung, et al., “First Results from an Axion Haloscope

at CAPP around 10.7 µ eV,” Phys. Rev. Lett. 126 no. 19, (May, 2021) 191802,

arXiv:2012.10764 [hep-ex].

http://dx.doi.org/10.1103/PhysRevLett.127.261803
http://arxiv.org/abs/2110.06096
http://dx.doi.org/10.1103/PhysRevD.98.035006
http://arxiv.org/abs/1803.11455
http://dx.doi.org/10.1088/1742-6596/1468/1/012032
http://dx.doi.org/10.1088/1742-6596/1468/1/012032
http://arxiv.org/abs/1911.05196
http://dx.doi.org/10.1088/1475-7516/2022/11/044
http://arxiv.org/abs/2206.02980
http://dx.doi.org/10.1103/PhysRevLett.128.131801
http://arxiv.org/abs/2111.12103
http://arxiv.org/abs/2210.00017
http://dx.doi.org/10.1103/PhysRevLett.123.141802
http://arxiv.org/abs/1904.11872
http://dx.doi.org/10.1103/PhysRevLett.129.111802
http://dx.doi.org/10.1103/PhysRevLett.129.111802
http://arxiv.org/abs/2205.05574
http://dx.doi.org/10.1103/PhysRevD.106.052007
http://arxiv.org/abs/2208.12670
http://arxiv.org/abs/2208.12670
http://dx.doi.org/10.1126/sciadv.abq3765
http://arxiv.org/abs/2203.12152
http://dx.doi.org/10.1103/PhysRevD.107.072007
http://dx.doi.org/10.1103/PhysRevD.107.072007
http://arxiv.org/abs/2301.09721
http://dx.doi.org/10.1103/PhysRevLett.124.101802
http://dx.doi.org/10.1103/PhysRevLett.124.101802
http://arxiv.org/abs/2001.05102
http://dx.doi.org/10.1103/PhysRevLett.126.191802
http://arxiv.org/abs/2012.10764


BIBLIOGRAPHY 167

[225] Y. Lee, B. Yang, H. Yoon, et al., “Searching for Invisible Axion Dark Matter with

an 18 T Magnet Haloscope,” Phys. Rev. Lett. 128 no. 24, (June, 2022) 241805,

arXiv:2206.08845 [hep-ex].

[226] J. Kim et al., “Near-Quantum-Noise Axion Dark Matter Search at CAPP around

9.5 µeV,” Phys. Rev. Lett. 130 no. 9, (2023) 091602, arXiv:2207.13597 [hep-ex].

[227] A. K. Yi et al., “Axion Dark Matter Search around 4.55 µeV with Dine-Fischler-

Srednicki-Zhitnitskii Sensitivity,” Phys. Rev. Lett. 130 no. 7, (2023) 071002,

arXiv:2210.10961 [hep-ex].

[228] A. Berlin, R. T. D’Agnolo, S. A. R. Ellis, and K. Zhou, “Heterodyne broad-

band detection of axion dark matter,” Phys. Rev. D 104 no. 11, (2021) L111701,

arXiv:2007.15656 [hep-ph].

[229] DMRadio Collaboration, L. Brouwer et al., “Projected sensitivity of DMRadio-m3:

A search for the QCD axion below 1 µeV,” Phys. Rev. D 106 no. 10, (2022) 103008,

arXiv:2204.13781 [hep-ex].

[230] D. Alesini, D. Babusci, D. Di Gioacchino, et al., “The KLASH Proposal,”

arXiv:1707.06010 [physics.ins-det].

[231] Z. Zhang, D. Horns, and O. Ghosh, “Search for dark matter with an LC circuit,”

Phys. Rev. D 106 no. 2, (2022) 023003, arXiv:2111.04541 [hep-ex].

[232] K. Nagano, T. Fujita, Y. Michimura, and I. Obata, “Axion Dark Matter Search

with Interferometric Gravitational Wave Detectors,” Phys. Rev. Lett. 123 no. 11,

(2019) 111301, arXiv:1903.02017 [hep-ph].

[233] H. Liu, B. D. Elwood, M. Evans, and J. Thaler, “Searching for Axion Dark

Matter with Birefringent Cavities,” Phys. Rev. D 100 no. 2, (2019) 023548,

arXiv:1809.01656 [hep-ph].
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