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Abstract (in English)

Background:
Detrimental alterations in body composition and strength have generally been overlooked regarding

their impact on adverse health outcomes. In recent years, the recognition of disorders such as

sarcopenia, a muscle disease characterized by low muscle strength and low muscle quantity/quality,

amplified and observations of their associations with various chronic diseases and premature mortality

accumulated. The public health and economic burden of sarcopenia and related adverse body

composition such as obesity is expected to progressively increase in the future as a result of severe

modifications in lifestyle, work, transportation, and demography. As these developments augment the

requirement to advance medical research in terms of optimized diagnosis, targeted treatment, and more

profound understanding of pathophysiological factors, this cumulative thesis aims to examine the

expediency of the newest European definition for the diagnosis of sarcopenia and to identify potential

biomarkers and thereby biological and pathophysiological determinants of sarcopenia-related body

composition parameters.

Methods:
The data included in the present thesis was obtained from the population-based cohort studies the

German National Cohort (NAKO) study (n = 200,389, aged 19 to 75 years), the Cooperative Health

Research in the Region of Augsburg (KORA)-Age study (n = 1,012, aged 65 to 93 years) including 7-

year mortality follow-up data, as well as the KORA S4 study (n = 1,478–1,484, aged 55 to 74 years)

and its 14-year follow-up KORA FF4 (n = 608). Grip strength was measured in the KORA-Age and

NAKO study by Jamar dynamometers. The body composition parameters appendicular skeletal muscle

mass (ASMM), body fat mass index (BFMI), and the phase angle were assessed by bioelectrical

impedance analysis in the KORA S4 and FF4 studies. The high-throughput proteomics technology

proximity extension assay was implemented to measure targeted protein biomarkers in plasma samples

collected during the KORA S4 study.

The statistical analyses comprised the assessment of grip strength across age of the adult life span in

the data of the NAKO study using percentile curves. Cut-off points (for men and women) for the

definition of probable sarcopenia, i.e. low grip strength, were derived from grip strength values of the

NAKO study. Subsequent analyses in older adults of the KORA-Age study covered the comparison of

the German NAKO-derived cut-off points with the cut-off points of the current sarcopenia definition of

the European Working Group on Sarcopenia in Older People (EWGSOP) 2 regarding their resulting

age-standardized prevalence of probable sarcopenia and time-dependent sensitivity and specificity for

all-cause mortality. For the purpose of identifying potential biomarkers of sarcopenia-related body

composition with KORA S4 and FF4 data, 233 protein markers were analyzed by boosting with stability

selection to detect protein markers that encompassed strong associations with (low) ASMM, (high)

BFMI, the coexistence of both (indicator of sarcopenic obesity), and the phase angle. The prediction

accuracy of low ASMM, high BFMI, and their coexistence by protein markers besides classical risk

factors was assessed with the cross-validated area under the curve. Furthermore, protein markers
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selected for the phase angle were incorporated into a network and enrichment analysis to identify

relevant biological factors related to the phase angle.

Results:
Grip strength over the adult life span increased until the age of ~40 years, followed by a progressive

decline. The cut-off point values for probable sarcopenia derived from German NAKO data (men: 29

kg, women: 18 kg) were 2 kg higher than the EWGSOP2 values. In older adults, this difference caused

a 1.5 x higher age-standardized prevalence of probable sarcopenia for the NAKO cut-off points

compared to the current EWGSOP2 cut-off points. The sensitivity for all-cause mortality was higher and

the specificity somewhat lower for the NAKO-derived cut-off points.

The analysis of targeted high-throughput proteomics enabled the identification of new markers of (low)

muscle mass, (high) fat mass, the coexistence of a low muscle mass and a high fat mass, as well as

the phase angle. Furthermore, adding protein markers to classical risk factors distinctly increased the

prediction accuracy of low ASMM, high BFMI, and their coexistence. The protein profiles of ASMM and

BFMI overlapped by several protein markers, whereas other protein markers were uniquely selected

for either outcome. Insulin-like growth factor-binding protein 2 was strongly associated with ASMM,

BFMI, and the phase angle. Myoglobin was strongly associated with ASMM and the phase angle, and

adrenomedullin with BFMI and the phase angle. Another key finding entailed that the main biological

processes that were related to the protein profile of the phase angle are involved in the regulation of

cell mass and growth.

Conclusion:
This cumulative thesis contributes to the evaluation of the expediency of the current diagnostic criteria

of sarcopenia by identifying that the grip strength cut-off points differ for reference populations, causing

a large discrepancy in the prevalence of probable sarcopenia and that less conservative cut-off points

could detect more patients at risk, thereby enabling an earlier intervention. Additionally, biostatistical

analyses identified new potential starting points for future protein treatment targets for sarcopenia-

related body composition parameters. The discovered links between their protein profiles suggest

interrelationships between muscle mass, fat mass, and the phase angle on the molecular level and

present jointly with the identified protein markers new insights into the pathophysiology of sarcopenia

and related parameters.
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Zusammenfassung (in German)

Hintergrund:
Ungünstige Veränderungen der Körperzusammensetzung und -kraft wurden häufig hinsichtlich ihrer

nachteiligen gesundheitlichen Auswirkungen übersehen. In den vergangenen Jahren wurde die

Bedeutung von Erkrankungen, wie z.B. der Sarkopenie, eine Muskelerkrankung, die durch eine geringe

Muskelkraft und eine geringe Muskelquantität/-qualität charakterisiert ist, zunehmend erkannt sowie

deren Assoziationen mit verschiedenen chronischen Erkrankungen und mit vorzeitiger Mortalität

vermehrt beobachtet. Es ist davon auszugehen, dass aufgrund von starken Änderungen des

Lebensstils, der Arbeitswelt, des Transportwesens und der Demografie die Belastung des öffentlichen

Gesundheitswesens und die wirtschaftliche Belastung der Gesellschaft durch Sarkopenie und durch

eine ungünstige Körperzusammensetzung, wie etwa die Adipositas, in der Zukunft progressiv

zunehmen wird. Da diese Entwicklungen die Notwendigkeit verstärken, die medizinische Forschung

durch eine optimierte Diagnostik, zielgerichtete Therapien und ein tieferes Verständnis der

pathophysiologischen Faktoren voranzutreiben, zielt diese kumulative Dissertation darauf ab, die

Zweckmäßigkeit der neuesten europäischen Definition zur Diagnose der Sarkopenie zu untersuchen

und potentielle Biomarker sowie dadurch biologische und pathophysiologische Einflussfaktoren auf

Sarkopenie-verwandte Körperzusammensetzungsparameter zu identifizieren.

Methoden:
Die vorliegende Arbeit basiert auf Daten der bevölkerungsbasierten Kohortenstudien NAKO

Gesundheitsstudie (n = 200.389, im Alter von 19 bis 75 Jahren), der Kooperativen

Gesundheitsforschung in der Region Augsburg (KORA)-Age Studie (n = 1.012, im Alter von 65 bis 93

Jahren) einschließlich Nachuntersuchungsdaten zur Mortalität nach sieben Jahren, sowie der KORA

S4 Studie (n = 1.478–1.484, im Alter von 55 bis 74 Jahren) und dessen Nachuntersuchung nach 14

Jahren KORA FF4 (n = 608). Die Greifkraft wurde in der KORA-Age und der NAKO Studie mit Jamar

Dynamometern gemessen. Die Körperzusammensetzungsparameter appendikuläre

Skelettmuskelmasse (ASMM), Körperfettmassenindex (BFMI) und Phasenwinkel wurden in der KORA

S4 und FF4 Studie mit der bioelektrischen Impedanzanalyse bestimmt. Die Hochdurchsatz-Proteomik

Technologie Proximity Extension Assay wurde angewendet um targetierte Protein-Biomarker in

Plasmaproben, die bei der KORA S4 Studie entnommen wurden, zu messen.

Die statistische Analyse umfasste die Darstellung der Greifkraft über das Alter während der

Lebensspanne im Erwachsenenalter anhand von Perzentilkurven basierend auf den Daten der NAKO

Studie. Zudem wurden Cut-off-Werte (für Männer und Frauen) für die Definition einer „wahrscheinlichen

Sarkopenie“, d.h. einer geringen Greifkraft, von Greifkraftwerten der NAKO Studie abgeleitet.

Darauffolgende Analysen von älteren Erwachsenen der KORA-Age Studie beinhalteten den Vergleich

der deutschen NAKO-abgeleiteten Cut-off-Werte mit den Cut-off-Werten der aktuellen Sarkopenie

Definition der European Working Group on Sarcopenia in Older People (EWGSOP) 2 hinsichtlich der

daraus resultierenden altersstandardisierten Prävalenz der „wahrscheinlichen Sarkopenie“ und der

zeitabhängigen Sensitivität und Spezifität für die Gesamtmortalität. Um potentielle Biomarker der
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Sarkopenie-verwandten Körperzusammensetzung in KORA S4 und FF4 zu identifizieren, wurden 233

Proteinmarker durch „Boosting with Stability Selection“ analysiert, um Proteinmarker zu ermitteln, die

eine starke Assoziationen mit (geringer) ASMM, (hohem) BFMI, der Koexistenz beider Faktoren

(Indikator der „Sarcopenic Obesity“) und dem Phasenwinkel aufwiesen. Die Prädiktionsgenauigkeit von

Proteinmarkern für eine geringe ASMM, einen hohen BFMI und deren Koexistenz zusätzlich zu

klassischen Risikofaktoren wurde mit der kreuzvalidierten Fläche unter der Kurve analysiert. Die für

den Phasenwinkel selektierten Proteinmarker wurden in eine „Network and Enrichment Analysis“

integriert, um relevante biologische Faktoren zu identifizieren, die mit dem Phasenwinkel

zusammenhängen.

Ergebnisse:
Die Greifkraft stieg über die Lebenspanne im Erwachsenenalter bis ~40 Jahre an und fiel danach

progressiv ab. Die von den deutschen NAKO Daten abgeleiteten Cut-off-Werte für eine

„wahrscheinliche Sarkopenie“ (Männer: 29 kg, Frauen: 18 kg) waren 2 kg höher als die der EWGSOP2.

Dieser Unterschied führte bei älteren Erwachsenen zu einer 1,5-mal höheren altersstandardisierten

Prävalenz der „wahrscheinlichen Sarkopenie“ für die NAKO Cut-off-Werte im Vergleich zu den aktuellen

EWGSOP2 Cut-off-Werten. Die Sensitivität für die Gesamtmortalität war bei den NAKO-abgeleiteten

Cut-off-Werten höher und die Spezifität etwas niedriger.

Die Bestimmung von Proteinmarkern mittels targetierter Hochdurchsatz-Proteomik ermöglichte die

Identifizierung neuer Marker der (geringen) Muskelmasse, der (hohen) Körperfettmasse, der

Kombination einer geringen Muskelmasse und einer hohen Körperfettmasse sowie des Phasenwinkels.

Des Weiteren erhöhte das Hinzufügen von Proteinmarkern zu den klassischen Risikofaktoren deutlich

die Prädiktionsgenauigkeit für eine geringe ASMM, einen hohen BFMI und deren Koexistenz. Die

Protein-Profile der ASMM und des BFMI überschnitten sich für einige Proteinmarker, während andere

Proteinmarker spezifisch nur für eine der beiden Zielgrößen selektiert wurden. „Insulin-like Growth

Factor-binding Protein 2“ war stark mit der ASMM, dem BFMI und dem Phasenwinkel assoziiert.

Myoglobin war stark mit der ASMM und dem Phasenwinkel assoziiert, Adrenomedullin mit dem BFMI

und dem Phasenwinkel. Darüber hinaus zeigten die Ergebnisse, dass die wesentlichen biologischen

Prozesse, die mit dem Protein-Profil des Phasenwinkels in Verbindung standen, eine Rolle bei der

Regulation von Zellmasse und Zellwachstum spielen.

Schlussfolgerung:
Diese kumulative Dissertation leistet einen Beitrag zur Bewertung der Zweckmäßigkeit der aktuellen

Diagnosekriterien der Sarkopenie durch die Beobachtungen, dass Greifkraft Cut-off-Werte für

verschiedene Referenz-Populationen variieren und diese Abweichungen zu einer großen Diskrepanz

in der Prävalenz einer „wahrscheinlichen Sarkopenie“ führten. Zudem könnten weniger konservative

Cut-off-Werte mehr Patienten als gefährdet erkennen und dadurch ein früheres Eingreifen ermöglichen.

Darüber hinaus wurden mittels biostatistischer Analysen neue potentielle Ansatzpunkte für zukünftige

Protein-Therapieangriffsziele für Sarkopenie-verwandte Körperzusammensetzungsparameter

identifiziert. Die entdeckten Verbindungen zwischen deren Protein-Profilen implizieren
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Zusammenhänge zwischen Muskelmasse, Körperfettmasse und dem Phasenwinkel auf molekularer

Ebene und erlauben zusammen mit den identifizierten Proteinmarkern neue Einblicke in die

Pathophysiologie der Sarkopenie und verwandter Parameter.
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1 Introduction

1.1 The role of body composition and function in health and
disease

Viewed from the outside the human body occurs in various sizes and forms, while the composition and

detailed functions remain covered behind the exterior. The curiosity concerning the inside of the body,

the body’s components and their individual and interacting functions, roots already in the antiquity [1].

The early stages of body composition research developed many centuries later between the second

half of the 19th and the first half of the 20th century [1] covering initially cadaver autopsy followed by in

vivo methods to quantify body components [1, 2]. From the 1960s onwards, the body composition

research gained increasing recognition and the awareness that body composition abnormalities are

related to several disease outcomes expanded [1]. Today, we know that body composition and function

disorders such as high fat mass, low lean body mass [3], and low muscle strength [4, 5] are associated

next to various diseases with a higher risk of premature mortality.

Currently, disorders describing varying body size and body components that dominate medical research

include predominantly obesity, i.e. excessive fat accumulation [6], and with increasing awareness also

sarcopenia, a muscle disease characterized by low muscle strength and low muscle quantity and quality

[7]. Although obesity [8] and sarcopenia [9] have been associated with numerous adverse health

outcomes such as cardiovascular diseases (CVD) and (type 2) diabetes mellitus [8, 9], the recognition

as independent diseases apart from the supplemental or secondary role to other disorders took many

years. A major milestone in the recognition of sarcopenia as a disease presented the allocation of

sarcopenia to the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-

10-CM) code M62.84 in 2016 [10]. Some years earlier, several official associations, including the

American Medical Association in 2013, officially announced obesity as a disease [11].

In addition to the health consequences on an individual level, sarcopenia constitutes a public health

burden with resulting adverse outcomes covering higher incidence of hospitalizations [12] as well as

higher risk of falls [12, 13] and fractures [13]. The economic burden of healthcare [14] and

hospitalization [15] costs per capita have been reported to be higher for patients with sarcopenia

compared to those without sarcopenia. As the prevalence of sarcopenia increases with increasing age,

factors such as the lifespan extension leading to older populations will cause a rising number of people

with sarcopenia [16], thus amplifying the public health and economic burden in the future. Besides, the

prevalence of obesity in the world almost tripled from 1975 to 2016, caused by for instance an increase

in energy-dense nutrition and changes in work forms and transportation [6]. Moreover, obesity has been

estimated to increase the average costs (including medical and non-medical costs) of different countries

from 1.8 % of gross domestic product in 2019 to 3.6 % in 2060 [17].

The detrimental changes in body composition and function such as increasing fat mass as well as lower

muscle mass and strength (sarcopenia) reinforced by demographic, work-related, dietary, and lifestyle
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changes present a major public health and economic burden, which is expected to progressively expand

in the future. Therefore, it is essential to drive medical research for prevention, diagnosis, and treatment

to prepare for future medical challenges that alterations in demography and the way of life will induce

on our body composition and muscle function.

1.2 Body composition
Body composition separates the human body into different parts followed by the quantification of these

components. Many different compartment models subdividing the body by varying numbers of

components have been developed, which commenced with the 2-compartment model consisting of fat

mass and fat-free mass [2, 18]. These two components can be subdivided into further components.

Moreover, components can be classified by different levels of body composition [18]. Since in 1992

Wang et al. [19] proposed the five-level model, human body composition has been commonly

distinguished into the following levels: whole body, tissue-system (e.g. skeletal muscle and adipose

tissue), cellular (e.g. cell mass), molecular (e.g. water and protein), and atomic (elements, e.g.

hydrogen) [19]. Notably, a compartment model can incorporate components of different levels from

these five levels of body composition.

The body components of the different levels can be assessed using a wide range of techniques

including invasive and non-invasive [20] as well as indirect and direct methods [3]. Simple and

inexpensive measurements comprise e.g. the body mass index (BMI) [20], waist circumference, waist-

to-hip ratio, and calipometry to measure skin fold thickness [3]. The BMI is the most widely used

parameter of obesity [3, 21] and a common concept known not only to medical professionals. A major

disadvantage of the BMI is displayed in the inability to distinguish between fat mass and muscle mass

[21], components that are in general oppositely associated with adverse health outcomes and that entail

a tissue interconnection as fat can also infiltrate into muscle tissue [20, 22].

In body composition research, many different terms have been applied for the unofficial generic term

muscle mass, e.g. fat-free mass, lean body mass, appendicular skeletal muscle mass (ASMM), and

total skeletal muscle mass. Of note, appendicular refers to the upper and lower limbs [23] and is

frequently assessed as these muscle regions are relevant for physical movement [24]. These various

terms differ between measurement techniques and do not all refer to the same body components but

are sometimes used interchangeably. For the parameter fat mass, commonly the same body

component is referred to (adipose tissue consisting of, among others, adipocytes [21, 25]). However,

for the generic term fat mass various different parameters have been used for research purposes, e.g.

body fat percentage, body fat mass in kg, and body fat mass index (BFMI).

Measurements that are capable of assessing body fat include e.g. hydrostatic weighing and air

displacement plethysmography, both premised on measuring the overall body density [20]. Muscle

mass can be estimated by e.g. dilution techniques such as the D3-creatine dilution method [26]. Other

techniques include computed tomography (CT) and the commonly implemented method dual-energy

X-ray absorptiometry (DXA), both based on the principle of varying X-ray attenuation of different tissues
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or body components [3, 20]. Therefore, both measurements expose the body to radiation [3, 20, 23],

while the radiation exposure of DXA is considerably lower [3]. Similar to CT, magnetic resonance

imaging (MRI) is an imaging technique that can be applied to quantify muscle and fat mass [20]. Whole

body CT and MRI are generally considered as the gold standard for body composition assessment,

while the 4-compartment model that combines different methods was further described as a gold

standard [18]. Common disadvantages of DXA, CT, and MRI are the high costs [3] and the restricted

transportability [3, 23]. Additionally, manual image segmentation for CT and MRI requires experts [25].

A very frequently implemented method to assess body composition is the bioelectrical impedance

analysis (BIA) [27]. The technology is based on the impedance of the body, i.e. the opposition of

conductors to an alternating electrical current [27, 28]. The impedance depends on the resistance and

reactance. The resistance reflects the resistive components of the body including fluid and electrolytes,

whereas the reactance reflects the capacitive components comprising tissue interfaces and cell

membranes [28]. Followed by the measurement of resistance and reactance, these values can be

incorporated together with other variables such as sex, height, and weight into equations to calculate

for instance skeletal muscle mass and body fat mass. The BIA is a more practical tool especially for

large-scale studies compared to the methods described above, as the BIA is portable, inexpensive [3,

21, 26], does not expose to radiation [21], and is noninvasive [26, 27]. Disadvantages involve that BIA

requires equations that fit to the target population (predominantly similar age and ancestry) to estimate

muscle and fat mass parameters. Furthermore, the measurement values of BIA can be affected by

influencing factors such as hydration [3, 26].

A unique capability of the bioelectrical impedance in contrast to other body composition methods entails

the measurement of the phase angle. The phase angle is until today incompletely defined in the medical

and biological setting as it is not uniquely allocated to a disease area and does not encompass a definite

biological meaning. Instead, the phase angle has been related to various diseases, among these

sarcopenia [29] and obesity [30]. The main application of the parameter though, has been to reflect the

nutritional status of patients [31]. From a technical point of view, the phase angle is the angular

transformation of reactance (Xc) to resistance (R) [28]:

𝑎𝑟𝑐 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 (𝑋𝑐/𝑅) × (180°/𝜋)

In the representation of the body as a circuit, the alternating electrical current that flows through the

body during BIA conducts in parallel setting through the extracellular space and the cells, which consist

of the intracellular fluid and the surrounding cell membranes [28]. The current progresses through the

fluids continuously, whereas the cell membranes act as capacitors by storing electrical charge, which

results in a delay of the current penetrating the cell membranes leading to an out-phasing of the current

[28]. This delay is derived in degrees as the phase angle and thus the phase angle indicates the amount

of current that flows through capacitive elements [28]. Based on these technical aspects, a higher phase

angle is thought to indicate a higher body cell mass [28] with an interrelated lower ratio of extracellular

to intracellular fluid volume [31]. However, the biomedical meaning of the phase angle remains to be

determined beyond technical aspects of the measurement technique.
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1.3 Sarcopenia
The history of the term sarcopenia leads only back a few decades to 1988, when the designation was

first introduced at a meeting by Irwin H. Rosenberg described as the decline in lean body mass with

aging [32]. However, Rosenberg noted that the loss of muscle mass and strength with aging was

already reported earlier [33]. One of the first approaches to define sarcopenia was conducted by

Baumgartner et al. published in 1998 and described as the “[…] appendicular skeletal muscle mass

(kg)/height2 (m2) being less than two standard deviations below the mean of a young reference group”

[34]. Further approaches to define sarcopenia followed, including a differentiation into sarcopenia class

I and class II based on the skeletal muscle mass index (skeletal muscle mass / body mass x 100) by

Janssen et al. in 2002 [35]. Several definitions and cut-off points for muscle mass parameters followed,

while muscle function (or rather muscle strength) was increasingly included in the definitions of

sarcopenia. Of note, several findings hinted towards an advantage of muscle strength exceeding

muscle mass for the definition of sarcopenia due to stronger associations with disability and mortality

[36]. A milestone in the standardization of the sarcopenia definition was achieved with the publication

of an European consensus to diagnose sarcopenia by the European Working Group on Sarcopenia in

Older People (EWGSOP) in 2010 [37]. The diagnosis of sarcopenia was based on low muscle mass

and low muscle function (either strength or performance) with different cut-off points suggested for these

parameters. The cut-off points for a low grip strength were < 30 kg for men and < 20 kg for women [37]

based on the work of Lauretani et al. (2003) [38]. In 2018, the EWGSOP met again to discuss an update

of the first consensus definition [7]. This new and current EWGSOP2 sarcopenia definition from 2018

recommends a pathway described as “Find-Assess-Confirm-Severity” [7], which is detailed in the

following. The diagnosis of sarcopenia is performed by the parts “Assess” and “Confirm” [7].

1. Find: The first step is to “find cases” at risk for sarcopenia by clinical suspicion for symptoms that

are related to sarcopenia or by implementing the self-reported SARC-F questionnaire [7], which

includes five items to identify if patients hold limitations of e.g. physical function or mobility that are

relevant for sarcopenia [39].

2. Assess: Probable sarcopenia is detected by a low muscle strength, which can be assessed by

grip strength or the chair stand test [7].

3. Confirm: Sarcopenia is confirmed by low muscle quantity or quality (assessed by DXA, BIA, CT,

or MRI) in addition to low muscle strength [7].

4. Severity: Severe sarcopenia is identified if an individual with a confirmed sarcopenia additionally

exhibits low physical performance (assessed by gait speed, Short Physical Performance Battery,

Timed-Up and Go test or the 400-m walk test) [7].

Distinct alterations of the sarcopenia definition from EWGSOP1 (2010) to EWGSOP2 (2018) were

declared in the 2018 update involving that sarcopenia can also occur earlier in life and that the causes

of sarcopenia surpass the aging process [7]. The key modification entailed that muscle strength was

established as the main component of sarcopenia and that muscle mass was classified as only

secondary to muscle strength [7]. Additionally, the cut-off points for low grip strength were changed to
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< 27 kg for men and < 16 kg for women [7] based on a study by Dodds et al. from 2014 [40], which

pooled data from 12 British studies to determine the cut-off points as 2.5 standard deviations below the

peak mean. The peak mean of grip strength was identified at 32 years for both men and women [40].

Since these cut-off points are based on one limited geographical region and studies observed

differences in grip strength between European regions [41, 42], verification of these cut-off points in

other samples of different European countries is necessary to ensure suitability of the cut-off points for

Europe beyond Great Britain. According to the EWGSOP update, a high priority for research concerns

the development of validated cut-off points that are predictive for hard end-points. Additionally, further

research is needed to identify if region-specific cut-off points for muscle strength improve the prediction

of outcomes [7].

Beyond the updated sarcopenia definition, new developments cover the accumulation of suggestions

regarding the phase angle as a potential marker of muscle quality, which may be incorporated in the

definition of sarcopenia [29, 43, 44] and assessed in individuals with obesity [30]. Nevertheless, since

the biomedical meaning of the phase angle is incompletely understood as depicted above, research to

elucidate biological knowledge of the phase angle on a tissue, cellular, and molecular level should

proceed prior to establishing the phase angle as a marker of muscle quality. In comparison, other

diagnosis parameters for sarcopenia such as skeletal muscle mass and grip strength are sufficiently

defined regarding their biomedical meaning.

Compared to already longer established diseases, the definition of sarcopenia underwent several

alterations within the last years and is still under development. This highlights the urgent need for a

sustainable definition that can be applied in a standardized manner. At the current stage, the

examination of the individual components included in the definition of sarcopenia such as muscle mass,

grip strength, and physical performance may facilitate the comparability of study results.

Sarcopenic obesity

Sarcopenic obesity is the coexistence of sarcopenia and obesity [45]. Following several years of

research lacking a standardized definition, sarcopenic obesity was finally defined for the European

population by the European Society for Clinical Nutrition and Metabolism (ESPEN) and the European

Association for the Study of Obesity (EASO) in a consensus statement published early in 2022 [45].

This definition of sarcopenic obesity is based on the existence of both low skeletal muscle function

(muscle strength) and altered body composition that is indicated by increased fat mass and reduced

muscle mass [45].

The concept of sarcopenic obesity was based on the observation that a low muscle mass combined

with a high fat mass encompasses a more detrimental effect on health outcomes compared with the

diseases sarcopenia and obesity alone. Participants with a low ASMM/stature2 and a coexisting high

body fat percentage at baseline were observed to report 2 to 3 x more onset of instrumental activities

of daily living disability compared to participants with only sarcopenia or obesity after a follow-up of up

to eight years [46]. Individuals with sarcopenic obesity (sarcopenia based on EWGSOP1 criteria and
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BMI ≥ 30.0 kg/m2) were observed to have a higher fall risk and a lower health-related quality of life

compared to participants with only sarcopenia [47]. Additionally, prior studies suggest a higher

cardiovascular risk and a higher mortality in sarcopenic obesity (defined by varying criteria) compared

to solely sarcopenia or obesity [48, 49]. The more detrimental effect of sarcopenic obesity might result

from the similar biological and pathophysiological factors that influence both sarcopenia and obesity.

These similar factors include among others aging, lower physical activity and other unfavorable lifestyle

changes, decreased metabolic rate, and alterations in hormone levels [49]. Furthermore, the causes of

sarcopenic obesity are considered to cover among other factors the fat infiltration into muscle, leptin

resistance, and muscle inflammation resulting from higher secretion of adipokines and cytokines [47].

Additionally, in obesity, the fat accumulation in skeletal muscle augments, which results in increased

insulin resistance [22]. However, the established mechanisms that connect skeletal muscle and fat

mass on a molecular level are limited. The identification of similar molecular markers for (low) muscle

and (high) fat mass may support the explanation of the pathophysiology of sarcopenic obesity.

1.4 Biomarkers of sarcopenia and related body composition
parameters

Biomarkers can be described as quantitative indicators of biological and pathophysiological processes

[50], which are applied to several aspects of diseases such as diagnosis, progression, monitoring,

differentiation for severity, identification of drug targets, and understanding of pathogenic mechanisms

[50, 51]. As detailed in the chapter above, the main diagnostic markers of sarcopenia and sarcopenic

obesity (muscle strength, skeletal muscle mass, and body fat mass) have already been defined,

whereas the use of molecular biomarkers in diagnosis and personalized prevention/treatment of

sarcopenia and sarcopenic obesity is still in its infancy. General strategies to decrease the progression

of sarcopenia [52, 53] and sarcopenic obesity [53] are dietary interventions and physical exercise.

These treatments are rather unspecific as they are employed to counteract various adverse health

outcomes. More specific intervention strategies based on molecular mechanisms, as for instance the

approach of targeting senescent cells that produce among others proinflammatory cytokines [54], are

rare but necessary to complement the general intervention strategies. Besides the implementation as

potential targets for intervention, molecular markers measured in for instance serum, plasma or urine

enable the identification of the underling pathophysiological factors and mechanisms of diseases. Thus,

identifying specific markers for sarcopenia and sarcopenic obesity is an important future aim. However,

considering the still developing definitions of these disorders, which already changed several times and

might therefore be altered again in the future, additionally identifying potential biomarkers of the

individual components of the disease entities (such as muscle mass) may be more sustainable.

Protein biomarkers

Proteins are a common target of medical research as they play a role in nearly all biological activities

providing a comprehensive opportunity to understand the biology of diseases [55] and because they

represent the majority of drug targets [50]. Prior research attempting to determine potential protein
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biomarkers of sarcopenia and related body composition primarily focused on single or only a few

markers. For instance inflammation markers such as interleukin-6 and C-reactive protein have been

frequently associated with muscle mass and muscle strength in inverse direction and with fat mass in

positive direction [54]. However, a single biomarker is insufficient to understand the pathophysiology of

sarcopenia as the disease is multidimensional [56] and caused by a combination of factors [53]. An

advancement to identify several potential protein biomarkers at once presents the simultaneous

measurement of many proteins, termed proteomics. In this context, proteomics describes the

quantitative assessment of proteins that are encompassed in a cell, tissue or an organism [57].

Various techniques have been developed to measure proteins and the progression of research in this

area has accelerated over the last few years. Next to conventional techniques, which are limited to the

measurement of a few specific proteins such as enzyme-linked immunosorbent assays or western

blotting, more advanced techniques to perform high-throughput proteomics (measuring many proteins

for many samples simultaneously) such as protein microarray or mass spectrometry have been

developed [57]. High-throughput proteomics present a promising opportunity to accelerate biomarker

discovery, to identify many potential biomarkers at once, and to receive a more comprehensive picture

of the underlying biology of the investigated outcome.

1.5 Aims of the cumulative thesis
Figure 1 illustrates the interfaces of the individual topics of the three manuscripts incorporated in this

cumulative thesis.

Figure 1: Overview of the general topics of the manuscripts reported in this cumulative thesis



Introduction

18

With regard to the progressively increasing public health burden of sarcopenia and related adverse

body composition, reinforced by demographic and detrimental work and lifestyle changes, requiring

effective diagnosis and treatment, this cumulative thesis aims to examine the expediency of the newest

sarcopenia definition and to identify potential biomarkers and thereby biological/pathophysiological

determinants of related body composition. Specifically, the objectives of the manuscripts of this

cumulative thesis comprise:

1. The comparison of grip strength cut-off points for probable sarcopenia from the EWGSOP2 with

cut-off points derived from a large German population-based sample through resulting prevalence

of probable sarcopenia and by prediction of all-cause mortality in older people (Manuscript 1) [58].

2. The identification of new protein markers for (low) muscle mass, (high) fat mass, the coexistence

of a low muscle and a high fat mass, and their change over 14 years using a proteomics approach

as well as the evaluation of the importance of protein markers beyond classical risk factors for the

prediction of these body composition parameters (Manuscript 2) [59].

3. The detection of protein markers strongly associated with the phase angle and thereby related

biological factors through proteomics, contributing to a more comprehensive understanding of the

biomedical meaning of the phase angle (Manuscript 3) [60].
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2 Manuscripts: Overview and contributions

This cumulative thesis incorporates three manuscripts. This chapter entails a short description of the

manuscripts’ key data and my contribution to the manuscripts.

2.1 Manuscript 1
Manuscript 1 entitled “Grip strength values and cut-off points based on over 200,000 adults of the

German National Cohort - a comparison to the EWGSOP2 cut-off points” was published in Age and

Ageing in 2023 [58]. We analyzed data from 200,389 participants aged 19 to 75 years obtained from

the German National Cohort (NAKO, German: NAKO Gesundheitsstudie) and data from 1,012

participants aged 65 to 93 years derived from the Cooperative Health Research in the Region of

Augsburg (KORA)-Age study. With the NAKO data, we deduced cut-off points for probable sarcopenia,

i.e. low grip strength. In the KORA-Age data, we compared the prevalence of probable sarcopenia as

well as the time-dependent sensitivity and specificity for all-cause mortality of the NAKO-derived to the

EWGSOP2 cut-off points. We observed that the German NAKO-derived cut-off points were 2 kg higher

than the ones of the EWGSOP2 for both men and women, which yielded a relatively large discrepancy

in the resulting prevalence of probable sarcopenia and a higher sensitivity as well as somewhat lower

specificity for all-cause mortality of the NAKO-derived cut-off points [58].

Contribution to Manuscript 1

As the first author of Manuscript 1, I initiated the project through selecting the research topic and

developing the research questions. I wrote the draft of the proposal for the data application of the NAKO

data and subsequently applied for the NAKO and KORA-Age data. Furthermore, I performed some

parts of the literature research, developed all parts of the statistical analysis plan and performed all

following statistical analyses. I wrote the entire drafts of the manuscript and supplement and created all

tables and figures. After distribution of the manuscript to all coauthors, I incorporated the comments of

the coauthors, prepared the paper for submission, and subsequently submitted it to the journal. I further

wrote the draft for the revision of the manuscript in response to the peer reviewers’ comments.

2.2 Manuscript 2
Manuscript 2 entitled “Proteomic profiling of low muscle and high fat mass: a machine learning approach

in the KORA S4/FF4 study” was published in 2021 in the Journal of Cachexia, Sarcopenia and Muscle

[59]. We derived data from the KORA S4 and FF4 studies encompassing 1,478 participants aged 55 to

74 years in the cross-sectional and 608 participants in the longitudinal analysis. We implemented

several machine learning methods to identify protein markers strongly associated with (low) muscle

mass, (high) fat mass, and their coexistence and to identify the relevancy of protein markers beyond

classical risk factors for the prediction of these outcomes. We identified several previously unknown

protein markers for (low) muscle mass, (high) fat mass, and their coexistence and further observed that
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the protein profiles of muscle and fat mass partially overlapped. Adding protein markers to classical risk

factors increased the prediction accuracy of all three binary outcomes, i.e. low muscle mass, high fat

mass, and their coexistence [59].

Contribution to Manuscript 2

My contribution as the first author of Manuscript 2 encompassed the process from finalizing the research

question to the publication of the manuscript. To initiate the process, I conducted extensive literature

research regarding the central topic and suitable statistical analysis methods. I contributed to the

research question by redefining the main outcomes of the project. Furthermore, I performed and

documented some parts of the general quality control of the proteomics data before the data was

transferred to the KORA database for subsequent use by data applicants including myself. I applied for

all data, conceived the largest part of the statistical analysis plan and performed all statistical analyses.

Moreover, I drafted all sections of the manuscript as well as the supplement and produced all

corresponding figures and tables. I implemented the suggestions by the coauthors and prepared the

submission of the paper to the journal. After submitting the paper for publication, I revised the

manuscript according to the peer reviewers’ comments.

2.3 Manuscript 3
Manuscript 3 is entitled “Proteomics of the phase angle: Results from the population-based KORA S4

study” and was published in 2022 in Clinical Nutrition [60]. We analyzed data of 1,484 participants aged

55 to 74 years from the KORA S4 study. We investigated the proteomic profile of the phase angle as

well as related gene ontology terms to contribute to the elucidation of the biomedical meaning of the

phase angle. We identified seven protein markers that were strongly associated with the phase angle

of which six markers were previously unknown and identified that the key biological processes related

to the phase angle’s protein profile are linked to the amount and growth of cells [60].

Contribution to Manuscript 3

I am also the first author of Manuscript 3 and initiated the project by selecting the research topic and

substantially developing the research question. I further conducted all literature research and applied

for all required data. Besides constructing the complete statistical analysis plan and executing all of the

corresponding analyses, I drafted the manuscript as well as the supplement and created all figures and

tables. I implemented the coauthors’ comments, prepared the paper for submission, and submitted the

paper to the journal. Thereafter, I incorporated the suggestions of the peer reviewers into the

manuscript.
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3 Methods

3.1 Study populations
This cumulative thesis presents the results based on data from two prospective population-based cohort

studies from Germany, the KORA study and the NAKO study. Manuscript 1 encompasses data from

the NAKO baseline assessment as well as the KORA-Age study [58]. Manuscripts 2 [59] and 3 [60]

entail data from the KORA S4 study and Manuscript 2 additionally includes data from the KORA FF4

study, a follow-up of KORA S4. The studies and corresponding key measurements that are incorporated

in this thesis are illustrated in Figure 2.

Figure 2: Studies and corresponding measurements included in this thesis

Grey font and dashed lines indicate that the data of these studies was not incorporated in the cumulative thesis.

The depiction of these studies only serves to provide a comprehensive picture.

BIA: bioelectrical impedance analysis, KORA: Cooperative Health Research in the Region of Augsburg, MONICA:

Monitoring of Trends and Determinants in Cardiovascular Diseases, NAKO: German National Cohort.

From 1984 onwards, starting with the Monitoring of Trends and Determinants in Cardiovascular

Diseases (MONICA) Augsburg survey S1, examinations have been conducted every five years

(MONICA Augsburg S2, MONICA Augsburg S3, and KORA S4). The study samples of the four surveys

encompassed participants randomly drawn from the residents of Augsburg and adjacent counties [61].
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The KORA-Age study was performed in 2008 to 2009 and included participants from the MONICA

Augsburg S1, S2, S3, and KORA S4 studies that were born in 1943 or earlier. Within the KORA-Age

study, 1,079 participants received physical examinations [62]. The study sample of KORA-Age

participants analyzed in Manuscript 1 encompassed 1,012 individuals aged 65 to 93 years after

exclusions. Mortality follow-up data until 2016 was further used for analysis [58]. Manuscript 1

additionally includes data of the NAKO baseline assessment in 2014 to 2019, which comprises 18 study

centers across Germany with over 205,000 participants [63]. The final sample size for analysis after

exclusions comprised 200,389 participants aged 19 to 75 years [58].

The KORA S4 study was conducted in 1999 to 2001 and comprised 4,261 participants aged 25 to 74

years [61]. In 2013 to 2014, examinations of 2,279 participants of the S4 study were performed in the

second follow-up, the KORA FF4 study [59]. In the analyses of Manuscript 2 and Manuscript 3, only S4

participants aged 55 to 74 years (n = 1,653) were included because proteomics were only measured in

this age group [59, 60]. After exclusions, Manuscript 2 encompassed a final sample of 1,478 participants

[59] and Manuscript 3 of 1,484 participants [60] for the cross-sectional analysis of the KORA S4 data.

The additional longitudinal analysis of Manuscript 2 entailed 608 participants after exclusions due to

incomplete follow-up data [59].

3.2 Grip strength
Grip strength data was obtained from the NAKO and KORA-Age study for the analysis in Manuscript 1.

Jamar hand dynamometers were used to assess the grip strength in both the NAKO [64] and the KORA-

Age study [5]. The maximum value of three trials of both hands in the NAKO [64] and of the dominant

hand in KORA-Age [5] was incorporated in the analysis [58].

3.3 Body composition
The body composition parameters ASMM, BFMI (Manuscript 2), and the phase angle (Manuscript 3)

were derived using the BIA 2000-S (DATA-INPUT GmbH, Frankfurt, Germany) in the KORA S4 and

FF4 study [59, 60]. For Manuscript 2, ASMM and BFMI were calculated using the equation of Sergi et

al. [65] and the equation of Kyle et al. [66, 67], respectively [59]. For the cross-sectional analysis, we

calculated based on the continuous variables of ASMM and BFMI the binary variables low ASMM

(ASMM < 25th sex-specific percentile), high BFMI (BFMI > 75th sex-specific percentile), and the

combined outcome low ASMM and high BFMI (overlap of ASMM < 40th sex-specific percentile and

BFMI > 60th sex-specific percentile) [59]. For the longitudinal analysis, we derived the relative change

(%) in ASMM and BFMI between S4 and FF4 and subsequently calculated the binary outcomes using

the same cut-off points as described above for the cross-sectional analysis [59]. The phase angle was

analyzed as a continuous variable in a cross-sectional analysis in Manuscript 3. The BIA device

immediately calculates the phase angle from resistance and reactance during the measurement [60].
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3.4 Proteomics
Targeted high-throughput proteomics measured with proximity extension assay (PEA) technology in

plasma blood samples that were collected during the KORA S4 study examinations were analyzed in

Manuscript 2 [59] and Manuscript 3 [60]. Measurements included the three proteomics panels Olink®

CVDII, CVDIII, and Inflammation (Olink Proteomics, Uppsala, Sweden) each including 92 protein

markers. We performed the analysis with the protein markers as log2-normalized protein expression

(NPX) values divided by their respective standard deviation derived before any exclusions [59, 60]. We

incorporated the same 233 protein markers into the analysis of Manuscript 2 and Manuscript 3 after

exclusions from the original proteomics data set (n = 276) [59, 60].

3.5 Statistical methods
Manuscript 1 encompasses two analysis parts. The first part involves data from the NAKO study to

calculate the grip strength distribution over age as well as cut-off points for probable sarcopenia and

the second part entails KORA-Age data to compare the EWGSOP2 and NAKO-derived cut-off points

for probable sarcopenia [58]. In the first part, the LMST method (lambda, mu, and sigma, with Box-Cox-

t) using the Box-Cox-t-orig. distribution [68] was implemented to illustrate the distribution of grip strength

across age by compiling percentile curves from the NAKO grip strength data [58]. Furthermore, the

mean and standard deviation of grip strength were derived for each individual age as well as age

groups. Based on the sex-specific highest (i.e. peak) mean of all ages (considering the individual ages)

and its respective standard deviation, the cut-off points for probable sarcopenia were calculated

stratified for sex with the following equation as implemented by Dodds et al. (2014) [40]: peak mean -

2.5 x standard deviation [58]. In the second analysis part using the KORA-Age data, the cut-off points

determined based on the NAKO data and the EWGSOP2 definition were applied to calculate the (age-

standardized) prevalence of probable sarcopenia. Subsequently, time-dependent sensitivity and

specificity for the prediction of all-cause mortality were calculated for both cut-off points. In addition,

Cox proportional hazards regression models were applied to investigate the association between grip

strength (cut-off points) and all-cause mortality. The shape of this association was investigated by

depicting covariate-adjusted Cox regression models with penalized splines. Covariates for the Cox

regression analyses were selected based on stepwise backward model selection by Akaike Information

Criterion [58].

In order to analyze the proteomics data and thus a large number of variables that could be associated

with the outcomes, we applied various machine learning methods in Manuscript 2 and Manuscript 3. In

both manuscripts, boosting with stability selection, a method that allows controlling for false positives

[69], was implemented to identify protein markers that were independent of covariates and strongly

associated with ASMM and BFMI in Manuscript 2 [59] and the phase angle in Manuscript 3 [60].

Besides this association analysis in Manuscript 2 applied to identify new protein markers of (low) ASMM,

(high) BFMI, and their coexistence, we further performed a prediction analysis to investigate the

importance of protein markers for these outcomes in comparison to classical risk factors [59]. The



Methods

24

prediction analysis included the application of group least absolute shrinkage and selection operator

(lasso) with 100x bootstrapping to determine a ranking of the protein markers together with classical

risk factors based on their selection frequency. Prediction models of the outcomes low ASMM, high

BFMI, and their combination with protein markers that were selected in ≥ 90 % of the lasso bootstrap

iterations were then evaluated by calculating the cross-validated area under the curve (AUC) to assess

the prediction accuracy of these protein markers in addition to classical risk factors. We additionally

performed the methods random forest and support vector machine (SVM) with linear Kernel to

determine a ranking of the variables (protein markers and classical risk factors) by importance for each

outcome. Afterwards, we compared the top ten ranking of the variables from the group lasso to the top

ten ranking by random forest and SVM in a sensitivity analysis. We then identified which variables

(proteins or classical risk factors) were ranked in the top ten by all three methods (group lasso, random

forest, and SVM) [59]. The cross-sectional and longitudinal analysis were performed with the same

analysis procedure but with different outcomes [59] as described in the chapter 3.3 Body composition.

In Manuscript 3, the protein markers strongly associated with the phase angle selected by boosting with

stability selection were incorporated into a network and enrichment analysis to identify relevant

biological factors related to the phase angle [60]. In this analysis, gene ontology terms of the sources

gene ontology biological process, cellular component, and molecular function were selected if the

protein markers associated with the phase angle were significantly overrepresented for the gene

ontology terms [60]. To perform the enrichment analysis and for the construction of a functionally

grouped network of the phase angle protein marker set with its gene ontology terms, we used the

software Cytoscape v3.8.2 [70] with the plugins ClueGo v2.5.8 [71] and Cluepedia v1.5.8 [72]. All other

analyses of the manuscripts within this cumulative thesis were performed using R [58-60].
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4 Main results

The key findings reported in this cumulative thesis comprising of the individual results of the three

manuscripts are listed in Table 1.

Table 1: Key findings of the manuscripts included in this cumulative thesis

Grip strength in the
sarcopenia definition

(Manuscript 1 [58])

Proteomic profiling of
muscle and fat mass

(Manuscript 2 [59])

Proteomic profiling of the
phase angle

(Manuscript 3 [60])

Probable sarcopenia cut-off points

from German data (NAKO) were 2

kg higher compared to the

EWGSOP2 cut-off points.

In older adults, the prevalence of

probable sarcopenia and the

sensitivity for all-cause mortality

were higher, while the specificity

was somewhat lower for NAKO-

derived compared to EWGSOP2

cut-off points.

Proteomics enabled the

identification of novel markers of

(low) muscle mass, (high) fat

mass, and their combination.

The protein profiles of muscle and

fat mass overlapped partially.

Protein markers are an important

addition to classical risk factors for

the prediction of low muscle mass,

high fat mass, and their

coexistence.

Proteomics enabled the

identification of novel markers of

the phase angle.

The main biological processes

related to the protein profile of the

phase angle are involved in cell

mass and growth.

Few proteins were strongly associated with muscle mass/fat mass and

additionally with the phase angle.

Grip strength across the adult life span

In the NAKO data, grip strength of men increased from around the age of 20 years to approximately the

age of 40 years, followed by a consistent decrease after a small plateau around the age of 40 years.

The grip strength percentile curves of women demonstrated a comparable course across age but with

an overall less pronounced increase and a decrease starting at an older age than in men [58]. We

identified that grip strength in the NAKO study peaked at age 38 years in men and at age 39 years in

women (peak mean ± standard deviation: 52.1 ± 9.2 kg in men and 32.5 ± 5.7 kg in women) [58].

Grip strength as a dichotomized disease marker

Based on the peak mean of grip strength and its corresponding standard deviation, we determined the

cut-off points for probable sarcopenia at 29 kg for men and at 18 kg for women [58].

In the KORA-Age cohort including older people (65 to 93 years), the prevalence of probable sarcopenia

increased with a higher age for both men and women. The overall age-standardized prevalence of

probable sarcopenia was 1.5 x higher for the NAKO-derived (17.7 %) than the EWGSOP2 (11.7 %) cut-

off points [58].
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Time-dependent (3-year and 6-year survival) sensitivity for predicting all-cause mortality was higher

and specificity was somewhat lower for the NAKO-derived than EWGSOP2 cut-off points for probable

sarcopenia. The increase in sensitivity was higher than the decrease in specificity. For a 6-year survival,

probable sarcopenia based on NAKO-derived cut-off points yielded a 1.3 x higher sensitivity for women

and a 1.5 x higher sensitivity for men than EWGSOP2-defined probable sarcopenia [58].

The graphical representation of the association between grip strength and all-cause mortality depicted

a nearly linear, inverse relation with no apparent cut-off point for both men and women individually [58].

New markers of muscle mass, fat mass, and their combination

Through exploring the proteomics data in a cross-sectional design using boosting with stability

selection, we detected novel protein markers independent of covariates and strongly associated with

(low) ASMM, (high) BFMI, and the combination of low ASMM and high BFMI (Figure 3).

Figure 3: Newly identified protein markers of (low) muscle mass, (high) fat mass, and their combination

Adapted from the image of the poster of an online conference presentation of Huemer et al. (2021) [73]. The poster

was published in the online conference system. The results illustrated in this figure are from Manuscript 2 [59].

Green arrows next to the proteins indicate the direction of association with the outcomes, which are illustrated in

the rectangles.

CCL28: C-C motif chemokine 28, KLK6: kallikrein-6, PRSS27: serine protease 27, TFPI: tissue factor pathway

inhibitor, TIMP4: metalloproteinase inhibitor 4.

The overlap of protein profiles from muscle and fat mass

The boosting with stability selection analysis of cross-sectional data further revealed that the protein

profiles of (low) ASMM and (high) BFMI overlapped by several similar proteins (Figure 4). The

coexistence of low ASMM and high BFMI was strongly associated with the proteins leptin, C-C motif

chemokine 28 (CCL28), and metalloproteinase inhibitor 4 [59].
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Figure 4: The overlap of protein profiles of ASMM, BFMI, and their binary parameters

This figure is an image from the manuscript “Proteomic profiling of low muscle and high fat mass: a machine

learning approach in the KORA S4/FF4 study” by Huemer et al. (2021) [59], published in the Journal of Cachexia,

Sarcopenia and Muscle, available under the following link: https://onlinelibrary.wiley.com/doi/10.1002/jcsm.12733

and licensed under the Creative Commons Attribution License “Attribution 4.0 International (CC BY 4.0)”

(https://creativecommons.org/licenses/by/4.0/). No changes have been made to the original published version of

the image.

Original title and original description of the image: “Figure 2 Association analysis — boosting with stability selection

— comparison of protein biomarker selection between the outcomes. Protein biomarkers are primarily ordered

according to the number of outcomes the biomarkers were selected for and secondary according to their selection

for the outcomes in the table from left to right. Only protein biomarkers are included that were selected for at least

one outcome. The cut point for variable selection was a selection frequency of 63%, which was determined by the

algorithm based on the number of variables available for selection, the number of selected variables per iteration,

and the maximum number of tolerable false positives. ASMM, appendicular skeletal muscle mass; BFMI, body fat

mass index.” [59]

ADM: adrenomedullin, CCL28: C-C motif chemokine 28, DNER: delta and Notch-like epidermal growth factor-

related receptor, FABP4: fatty acid-binding protein 4, GDF2: growth/differentiation factor 2, GH: growth hormone,

HO-1: heme oxygenase 1, IGFBP: insulin-like growth factor-binding protein, KLK6: kallikrein-6, LEP: leptin, MB:

myoglobin, Notch 3: neurogenic locus notch homolog protein 3, PON3: paraoxonase, PRSS27: serine protease

27, RAGE: receptor for advanced glycosylation end products, TFPI: tissue factor pathway inhibitor, THBS2:

thrombospondin-2, TIMP4: metalloproteinase inhibitor 4.

https://onlinelibrary.wiley.com/doi/10.1002/jcsm.12733
https://creativecommons.org/licenses/by/4.0/
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A single protein marker, N-terminal prohormone brain natriuretic peptide (NT-proBNP), was selected

for the two outcomes strong decrease in ASMM and the combination of a strong decrease in ASMM

and a strong increase in BFMI in the longitudinal analysis [59].

The importance of protein markers next to classical risk factors for the
prediction of muscle and fat mass parameters

The cross-validated AUC increased for all three binary outcomes (low ASMM, high BFMI, and their

combination) after selected protein markers were additionally included into the model of the classical

risk factors. Further findings of the prediction analysis with cross-sectional data (using group lasso with

bootstrapping, random forest, and SVM) entailed that the ranking of some protein markers were similar

to or at a higher rank compared to the classical risk factors. In the sensitivity analysis investigating the

overlap of variables in the top ten variable rankings of the three methods group lasso with bootstrapping,

random forest, and SVM, we observed that some protein markers overlapped more frequently between

the methods than the classical risk factors [59].

New markers of the phase angle

Similar to Manuscript 2, we implemented the combined method boosting with stability selection to

identify protein markers that have strong associations with the phase angle independent of covariates.

In this respect, NT-proBNP, insulin-like growth factor-binding protein (IGFBP) 2, adrenomedullin,

myoglobin, matrix metalloproteinase-9, protein-glutamine gamma-glutamyltransferase 2, and

fractalkine were selected. To our knowledge, all markers except NT-proBNP have not been observed

in an association with the phase angle before [60].

Biological factors related to the protein marker set of the phase angle

For the protein marker set that was strongly associated with the phase angle (listed above), the

enrichment analysis identified 20 significantly overrepresented gene ontology terms. The top five of

these included, in descending order based on the p-value corrected with Bonferroni step down, positive

regulation of cell population proliferation, extracellular space, anatomical structure formation involved

in morphogenesis, regulation of multicellular organismal development, and metal ion homeostasis [60].

Similar protein markers of muscle mass, fat mass, and the phase angle

Figure 5 illustrates the overlapping protein markers that were selected by boosting with stability

selection for the continuous outcomes ASMM, BFMI, and the phase angle in the KORA S4 data.
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Figure 5: Protein markers simultaneously associated with the continuous parameters fat mass (BFMI),

muscle mass (ASMM), and/or the phase angle

Dashed lines between the body composition parameters and protein markers indicate inverse association; solid

lines indicate positive association.

The results regarding muscle and fat mass are from Manuscript 2 [59] and the results regarding the phase angle

from Manuscript 3 [60].

ADM: adrenomedullin, CCL28: C-C motif chemokine 28, GDF2: growth/differentiation factor 2, IGFBP: insulin-like

growth factor-binding protein, LEP: leptin, MB: myoglobin.
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5 Discussion

The main findings of this cumulative thesis entailed that the grip strength cut-off points for probable

sarcopenia derived from a large German study were 2 kg higher than the EWGSOP2 cut-off points,

which emerged into a considerable discrepancy in the prevalence of probable sarcopenia in older

people. The higher cut-off points resulted in a higher sensitivity for all-cause mortality, thus suggesting

prevention and treatment for more patients at risk for premature death, whereas other patients may

receive intervention without immediate reason due to the concurrent decrease in specificity [58]. High-

throughput proteomics facilitated the discovery of new potential biomarkers and confirmed previously

identified markers of sarcopenia-related body composition parameters muscle mass, fat mass, the

combination of a low muscle and a high fat mass [59], as well as the phase angle [60]. Protein markers

might be a relevant addition to other known risk factors for the prediction of body composition outcomes

[59]. The overlapping protein profiles of muscle mass, fat mass, and the phase angle support a linkage

of those tissues on the molecular level. Furthermore, the biostatistical analysis strengthened the

technical-based consensus that the phase angle reflects body cell mass since the most significant

biological processes that were related to the protein profile of the phase angle are linked to the amount

and growth of cells [60].

5.1 The interrelationships of muscle mass, fat mass, and the
phase angle based on proteomic profiling

Understanding the interrelationships of the body composition parameters muscle mass, fat mass, and

the phase angle can help to explain adverse body composition alterations occurring in related disorders

such as sarcopenia and sarcopenic obesity. The phase angle has been positively associated with

muscle mass parameters such as muscle mass percentage [74] and muscle mass/height2 assessed by

BIA [75] as well as muscle cross-sectional area/height2 measured by ultrasound (of the quadriceps

rectus femoris) [76]. In contrast, inverse correlations/associations of body fat mass percentage with the

phase angle have been observed [77, 78] but these results have not always been consistent [74, 75,

77]. A positive correlation has been reported between muscle and fat mass parameters assessed by

BIA [59] and DXA [79] after adjustment for age and sex. Beyond the direct relationships between body

composition parameters, underlying biological or pathophysiological links can be explored by

overlapping proteomic profiles as conducted in the present thesis as well as other observational studies

[80, 81]. The findings of the present thesis displayed that several protein markers were strongly

associated with more than one of the examined continuous body composition parameters, muscle

mass, fat mass, and the phase angle. The following section will particularly focus on these protein

markers and discuss how they can provide indications to explain the links between the body

composition parameters on a molecular level.

IGFBP2 was the only protein marker that was strongly (and inversely) associated with all three body

composition parameters. IGFBPs bind to insulin-like growth factor (IGF)-1 and IGF-2 with high affinity
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[82] and function as transporters of IGFs [83]. Next to the IGF-binding actions, IGFBPs encompass IGF-

independent functions such as inhibition of cell proliferation [82]. Thus, the inverse association of

IGFBP2 with the phase angle and ASMM may be explained by the characteristic of IGFBP2 to bind to

and thereby mainly inhibit IGFs, resulting in reduced cell proliferation, as well as by IGF-independent

functions of IGFBP2 resulting in the inhibition of proliferative processes [82]. In accordance with this,

ASMM/height2 has been inversely correlated with IGFBP2 in men and women and positively with IGF-

1 and IGF-2 in men after adjustment for age and physical activity in an US-American study [84]. The

inverse association with BFMI may root in the frequent observations that IGFBP2 inhibits adipogenesis

[85]. The varying functions of IGFBP2 may ground on its different domains. The N-domain of IGFBP2

binds to IGF [85], whereas peptides containing the sequences of heparin-binding domain 1 and 2

incorporated in the linker region and C-terminal region of IGFBP2, respectively, have been

demonstrated to inhibit adipogenesis in male mice [86]. The different functions of IGFBP2 affecting

muscle and fat mass both in inverse direction may indicate why IGFBP2 was not selected as a marker

for the combination of low muscle and high fat mass. IGFBP2 could therefore indicate a phenotype of

concurrently low muscle and low fat mass rather than sarcopenic obesity. Furthermore, we observed

that IGFBP1 was inversely associated with ASMM and BFMI [59]. Similar to IGFBP2, IGFBP1 also

inhibits adipogenesis and is decreased in obesity [85]. Concerning muscle mass, IGFBP1 has been

reported to inhibit IGF1-stimulated protein synthesis in the muscle [85].

Leptin might be an indicator of sarcopenic obesity or more specifically, coexistence of low muscle mass

and high fat mass, as we observed that out of the 233 markers (increased) leptin was selected as the

most important marker for this coexistence [59]. Notably, leptin was positively associated with both

continuous parameters (ASMM and BFMI) individually. However, after adjusting the association

between leptin and ASMM for BFMI, the direction of association changed from positive to inverse [59],

suggesting that fat mass is a crucial factor for the link between leptin and muscle mass. On a molecular

level though, leptin can reduce fatty acid accumulation in muscle and fat tissue, while in obesity in the

presence of leptin resistance, this process may be diminished due to reduced fatty acid oxidation [87].

Therefore, sarcopenic obesity may be related to leptin resistance and fat infiltration into muscle as

suggested before [47]. Of note, in a study published only a few days after Manuscript 2 [59], serum

leptin was positively associated with sarcopenic obesity (defined based on the parameters body mass

index and skeletal muscle mass divided by body weight) [88].

CCL28 and growth/differentiation factor 2 (GDF2) were inversely associated with muscle and fat mass

[59]. In line with these results, CCL28 was inversely associated with BMI and waist circumference in a

recent study also using PEA proteomics [89]. The expression of CCL28 is induced by pro-inflammatory

processes [90], potentially explaining the link to lower muscle mass. However, sufficient research able

to explain the mechanisms linking CCL28 and GDF2 to muscle and fat mass is currently lacking.

Myoglobin was strongly and positively associated with both ASMM [59] and the phase angle [60].

Myoglobin is mainly expressed in oxidative skeletal muscle fibers and cardiomyocytes [91]. Recent

results from rat muscle conjecture that myoglobin is located in skeletal muscle mitochondria and might
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be involved in mitochondrial respiration [92], beyond well-known functions such as oxygen storage [91].

Concluding from the positive link between myoglobin and muscle mass, the strong association of

myoglobin with the phase angle might carefully support (or at least not argue against) the assumption

that the phase angle reflects muscle quality as suggested before [29, 30, 43, 44].

Adrenomedullin was inversely associated with the phase angle [60] and positively with BFMI [59].

Inflammatory processes may be a potential link that might connect the phase angle and fat mass

through adrenomedullin. As suggested in Manuscript 3, adrenomedullin synthesis is triggered by

inflammation markers, which may lead to cell damage (and thus lower phase angle) [60] and

inflammation is associated with obesity, or more specifically increased fat mass. Besides,

adrenomedullin is increased in obesity and secreted by fat cells [93].

Figure 6 depicts Figure 5 of the results chapter with the addition of suggested biological and

pathophysiological links between the protein markers and the body composition parameters based on

prior literature as described within this chapter or in Manuscript 2 and Manuscript 3.

Figure 6: Suggested biological and pathophysiological links that may connect the protein markers to fat

mass, muscle mass, and the phase angle. The links indicated between the protein markers and the

body composition parameters fat mass, muscle mass, and the phase angle do not reflect all processes

between these parameters and are suggestions based on information from the literature described in

this section of the discussion or in Manuscript 2 and Manuscript 3.

Dashed lines between the body composition parameters and protein markers indicate inverse association; solid

lines indicate positive association.

The results regarding muscle and fat mass are from Manuscript 2 [59] and the results regarding the phase angle

from Manuscript 3 [60].

ADM: adrenomedullin, CCL28: C-C motif chemokine 28, GDF2: growth/differentiation factor 2, IGFBP: insulin-like

growth factor-binding protein, LEP: leptin, MB: myoglobin.
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5.2 Implications for sarcopenia and sarcopenic obesity

Grip strength

In line with other studies that observed differences in grip strength data between European regions [41,

42], we reported discrepancies in grip strength peak values and distributions across age between the

German NAKO data and other European reference populations of various articles [58]. Additionally,

grip strength cut-off points to define probable sarcopenia were 2 kg higher derived from German NAKO

data [58] than the EWGSOP2 cut-off points derived from British data [40]. This comparatively minor

difference in cut-off point values led to a large difference in the prevalence of probable sarcopenia in

older people [58]. This may also be considered in the process of comparing studies using the first (men:

30 kg, women: 20 kg) [37] and the second (men: 27 kg, women: 16 kg) [7] EWGSOP sarcopenia

definitions as these grip strength cut-off points differ even more, potentially causing larger discrepancies

of the prevalence of probable sarcopenia. A considerable difference has already been reported by a

recent systematic review comparing the complete sarcopenia definitions of EWGSOP1 and EWGSOP2

[94]. Considering the discrepancies in grip strength values between different regions as well as in the

derived cut-off points and the resulting prevalence of probable sarcopenia, harmonization of grip

strength data from a wide range of European countries would facilitate the derivation of suitable cut-off

points for Europe that are tailored to not only one geographical region. As opposed to assembling data

from various populations, implementation of different cut-off points for different countries would

complicate research comparability, while patients may be misclassified if the standardized cut-off point

deviates from the target population in a large amount [58]. Thus, the harmonization of grip strength data

would additionally allow to investigate whether and to what extent grip strength values differ between

different regions or if some discrepancies observed between studies might have resulted from different

study protocols such as measurement device and number of measurement trials.

Besides the differences between European regions, the expediency of the cut-off points concerning the

prediction of adverse outcomes should further be considered in the process of generating and validating

cut-off points. As concluded in the EWGSOP2 consensus paper, generating cut-off points that are

predictive for hard end-points should be the priority of future research [7]. Since a distinct cut-off point

for grip strength did not emerge due to the nearly linear shape of the association between grip strength

and all-cause mortality in Manuscript 1 [58] as well as in other European studies in men [4, 95] and

women [4], clear dichotomized risk stratification by grip strength may be limited. However, generating

cut-off points is necessary for clinical practice and whether the linear association is also present for

other end-points such as multi-morbidity or CVD needs to be investigated in future research.

Additionally, we observed that the sensitivity for all-cause mortality was higher for a higher grip strength

cut-off point in men and women, which was in line with the observed linear relationship of grip strength

with all-cause mortality [58]. In clinical practice a high priority constitutes prevention and treatment for

patients at risk. Therefore, from a clinical perspective choosing less conservative cut-off points for

probable sarcopenia suggests earlier intervention for more patients that are at risk for premature death

based on their low grip strength. On the other hand, due to the lower specificity for all-cause mortality
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resulting from higher cut-off points, some patients would receive intervention or more diagnostic

measures even though there is no immediate reason. Of note, the decrease in specificity for the higher

cut-off points (NAKO-derived vs. EWGSOP2) was lower compared to the increase in sensitivity.

However, an alteration of the cut-off points should be preceded by studies investigating whether

intervention is effective for patients with a grip strength above the current cut-off points [58]. The

evaluation of higher grip strength cut-off points within the complete definition of sarcopenia (including

muscle quantity/quality [7]) should also be prioritized before establishing new cut-off points.

Even though changing the current grip strength cut-off points seems plausible based on the above

described issues, we should consider that the more frequently the definition changes the more difficult

the comparison will be over time. Therefore, concluding from the observations of varying grip strength

values between European regions and the linear relationship between grip strength and all-cause

mortality, the sarcopenia definition may rather be changed only if new cut-off points emerge from

harmonized European data sets comprising various regions and have been thoroughly tested for

effectiveness regarding prevention and treatment.

Muscle and fat mass

As we found similar protein markers associated with muscle and fat mass [59], this reinforces the

assumption of physiological/pathophysiological links on the molecular level between the two tissues.

However, we only identified three markers for the coexistence of low muscle and high fat mass, yet

more markers that were associated with both continuous outcomes in the same direction [59]. This may

be explained by the fact that the overlap between low ASMM and high BFMI in terms of number of

participants was rather low resulting in a low prevalence of “sarcopenic obesity” [59]. Likewise, other

European studies also reported a low prevalence of sarcopenic obesity for different definitions [96, 97].

In the longitudinal analysis, NT-proBNP, a known marker of heart failure, was associated with a strong

decrease in ASMM combined with a strong increase in BFMI over 14 years of follow-up [59]. NT-proBNP

was further an important marker of the phase angle, though in cross-sectional analysis [60]. Of note,

body composition abnormalities such as low lean mass entail a high prevalence in patients with heart

failure, potentially linked through a reduction in cardiorespiratory fitness, which can also be lowered by

elevated intermuscular fat [98].

As the definition of sarcopenic obesity including grip strength, muscle mass, and fat mass was published

in 2022 [45] after Manuscript 2 was published in 2021 [59], future research may explore the protein

profile of (low) grip strength with subsequent linkage to muscle and fat mass to enhance the

understanding of the protein profile and thus the underlying pathophysiology of sarcopenic obesity.

Phase angle

The findings presented in this thesis suggest that the phase angle reflects cell mass amount and growth

and reinforce the prior implementation of the phase angle as a risk factor for many rather than one

single disorder [60]. In previous research, the phase angle has been repeatedly suggested as a marker
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of muscle quality for potential integration into the sarcopenia definition [29, 43, 44]. Notably, a suitable

marker of muscle quality has been characterized by “[…] ratios of muscle strength and/or muscle power

per unit of muscle mass […]” [99]. Moreover, a review suggested that the phase angle might further be

implemented as a measure of muscle quality in obesity, though subsequent to further research

regarding connections to muscle parameters and metabolism [30]. Additionally, a recent study from

Japan observed that the phase angle was positively associated with muscle quality (grip strength /

upper limbs muscle mass) and accurately predicted sarcopenia [43]. However, the phase angle

displayed only a small-to-moderate correlation with muscle quality (total strength / appendicular lean

soft tissue) in Brazilian older women [100].

Furthermore, we only identified two proteins (myoglobin and IGFBP2) that were strongly associated

with both ASMM and the phase angle. As detailed above, myoglobin seems to be a marker for muscle

tissue, tentatively hinting to the concept that the phase angle could reflect muscle quality.

Another attribute that would characterize the phase angle as an indicator of sarcopenia is the age-

related decline. The phase angle increases until the age of 18 years, plateaus from 19 to 48 years and

decreases progressively afterwards in men and women of various studies [101]. We observed that the

grip strength shows an overall comparable course over aging but there appeared an increase after the

age of 20 years until approximately the age of 40 years and the decline started somewhat earlier [58]

than the decline in the phase angle.

If future research can verify that the phase angle measured by BIA reflects muscle quality accurately

and represents a suitable parameter for the assessment of sarcopenia, muscle quality could be

assessed by a simple, portable, and comparably inexpensive measurement method. DXA is not capable

of determining the muscle quality in terms of fat infiltration into the muscle [23] and methods that can

be used to assess muscle quality (through fat infiltration into the muscle) depend on operator skills

(ultrasound) [23, 26] or are not portable and expensive (CT and MRI) [3, 23]. Furthermore, the phase

angle is a raw BIA parameter since it is directly calculated from the reactance and resistance without

the need for additional variables such as weight, height, and sex. Thus, prediction equations as required

for muscle mass are not necessary, further simplifying the process. However, until the phase angle can

be considered for representing a diagnostic parameter of sarcopenia, further extensive research is

required to assess the links of the phase angle with specific muscle quality parameters including image-

based quantification.

5.3 A new era of protein biomarkers
The present thesis as well as other recent studies [60, 102-104] exemplify that protein biomarkers and

in particular proteomics can help to elucidate which underlying biological factors and pathophysiological

mechanisms could be related to the examined health outcomes. This was more difficult before the

development of these technologies, such as proteomics, that can simultaneously measure hundreds of

markers since assessing single markers in different studies can only provide limited insight into the

underlying biological system. Next to proteomics, other omics technologies can complement the
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understanding of disease biology including for instance genomics (e.g. single nucleotide

polymorphisms), transcriptomics (e.g. non-coding RNA), and metabolomics (e.g. amino acids) [105,

106]. Additionally, the progressively increasing advancement of statistical techniques, software, and

publicly available pooled data of e.g. gene ontology and pathways offers the opportunity to extract

various information out of high-throughput data from a biostatistical standpoint. Recent developments

enable the analysis of multi-omics integration to combine different single omics (e.g. proteomics and

genomics) using machine learning methods [105]. Multi-omics can increase the information output as

the information of the original causes of the disease such as genetic or environmental causes can be

combined with the resulting effects on a functional level such as protein expression [106].

Next to the insights into pathophysiology and biological mechanisms, protein markers appear to be an

important addition to classical risk factors in predicting body composition parameters of sarcopenia and

sarcopenic obesity [60, 107]. Furthermore, the simultaneous analysis of numerous markers enables to

rank the markers by importance for an outcome, which is not possible for single marker measurements

as assessing only a few markers in different studies cannot provide clear evidence regarding the

relevance of one marker compared to others. Additionally, the discovery of new potential biomarkers

can be accelerated by high-throughput proteomics as exemplified in the manuscripts of this thesis and

other studies [59, 60, 108, 109].

Apart from sole research purposes, precision medicine can also benefit from recent advancements in

omics to provide specific treatment for individual patients [105]. In aging research, biomarker sets of for

instance transcriptomics, genomics, and proteomics can display specific profiles for the different

progressing stages of aging. Since the aging progression varies between individuals, biomarkers from

all types can be employed to identify the personalized aging progression [110]. Also specifically for

sarcopenia and frailty, omics can be implemented to identify next to biomarkers for diagnosis,

biomarkers to monitor the progression of the disorders by investigating phenotypic groups [111].

Another focus of research may be the identification of mechanistic links of muscle changes to

performance outcomes as well as mechanistic biomarkers to connect diagnostics to precision

interventions to enable personalized treatment [111]. However, the research area of omics in precision

medicine of sarcopenia is in the early stages and these concepts still have to be transferred into

practice.

5.4 Strengths and limitations
Strengths include that the analyzed data from all three manuscripts was derived from population-based

studies [58-60]. Further strengths entail the large sample size (> 200,000 participants) as well as the

standardized measurements and collective quality control for the different study centers of the NAKO

data included in Manuscript 1 [58]. Strengths of Manuscript 2 and Manuscript 3 entail that a large

number of protein markers was incorporated and that the statistical approach included boosting with

stability selection, which restricts the number of false positive markers selected for the body composition
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parameters [59, 60]. The additional longitudinal approach and the employment of multiple machine

learning methods are further strengths of Manuscript 2 [59].

Limitations entail that the generalizability of the findings of all three manuscripts is restricted as only

data from the German population with limited age ranges was analyzed [58-60]. Additionally, the NAKO

study included in Manuscript 1 currently lacks follow-up examinations and data of very old people

relevant for the assessment of sarcopenia [58]. Limitations of Manuscript 2 and Manuscript 3 comprise

the relative and not absolute protein marker values. Furthermore, the targeted approach of the

proteomics data set could have limited the selection of other important protein markers not included in

the data set [59, 60]. Further limitations of the thesis include the lack of data on the proteomics of grip

strength.

5.5 Outlook
Harmonization of grip strength data from different European countries could help to assemble reference

values and cut-off points for probable sarcopenia that fit to various regions in Europe. Future

approaches should further focus on evaluating the effectiveness of intervention measures for different

cut-off points of probable sarcopenia. Subsequent research is also needed to externally validate the

protein markers of the body composition parameters that were newly identified in this cumulative thesis

and the proteomics that were analyzed in this thesis may be explored for grip strength to complement

the picture of proteomics of sarcopenia- and sarcopenic obesity-related parameters. Moreover, multi-

omics studies of sarcopenia components could identify genetic causes of sarcopenia and their resulting

functional consequences of the disease.

5.6 Conclusion
Adverse alterations in body composition and muscle strength present a major and progressively

advancing burden on an individual’s health and quality of life as well as the public health system. Thus,

the effective and standardized diagnosis of diseases such as sarcopenia and sarcopenic obesity is

essential. This thesis points out disparities in grip strength values and cut-off points between European

study populations and suggests that harmonization of grip strength values may help to overcome these

differences. Higher grip strength cut-off points as suggested by this thesis would identify more patients

at risk of premature death, thereby enabling the access to intervention for more patients at risk in clinical

practice. Next to the diagnosis, understanding the disease determinants and mechanisms in order to

develop treatment strategies is needed to counteract the increasing medical challenge of detrimental

body composition. In this respect, this thesis identified new potential starting points for future treatment

in the form of relevant proteins as well as underlying pathophysiological processes of sarcopenia-

related body composition on the molecular level.
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Abstract

Background: The European Working Group on Sarcopenia in Older People (EWGSOP) updated in 2018 the cut-off points
for low grip strength to assess sarcopenia based on pooled data from 12 British studies.
Objective: Comparison of the EWGSOP2 cut-off points for low grip strength to those derived from a large German sample.
Methods: We assessed the grip strength distribution across age and derived low grip strength cut-off points for men and
women (peak mean -2.5 × SD) based on 200,389 German National Cohort (NAKO) participants aged 19–75 years. In
1,012 Cooperative Health Research in the Region of Augsburg (KORA)-Age participants aged 65–93 years, we calculated
the age-standardised prevalence of low grip strength and time-dependent sensitivity and specificity for all-cause mortality.
Results: Grip strength increased in the third and fourth decade of life and declined afterwards. Calculated cut-off points
for low grip strength were 29 kg for men and 18 kg for women. In KORA-Age, the age-standardised prevalence of low
grip strength was 1.5× higher for NAKO-derived (17.7%) compared to EWGSOP2 (11.7%) cut-off points. NAKO-derived
cut-off points yielded a higher sensitivity and lower specificity for all-cause mortality.
Conclusions: Cut-off points for low grip strength from German population-based data were 2 kg higher than the EWGSOP2
cut-off points. Higher cut-off points increase the sensitivity, thereby suggesting an intervention for more patients at risk, while
other individuals might receive additional diagnostics/treatment without the urgent need. Research on the effectiveness of
intervention in patients with low grip strength defined by different cut-off points is needed.

Keywords: grip strength, probable sarcopenia, European Working Group on Sarcopenia in Older People (EWGSOP),
mortality, cut-off points

Key Points

• Cut-off points for low grip strength from German population-based data (NAKO) were 2 kg higher than the EWGSOP2
cut-off points.

• A relatively small difference between the cut-off points resulted in a large difference in the prevalence of low grip strength.
• Higher cut-off points may propose intervention for more patients at risk, while others may receive intervention without

the need.
• Research on the effectiveness of intervention in patients with low grip strength defined by various cut-off points is needed.

Introduction
The severe loss of muscle strength with aging constitutes
a detrimental factor for the health of older people. To
determine the strength of an individual, handgrip strength
measured with dynamometers has been established as it is
suitable to indicate overall muscle strength [1, 2]. Handgrip
strength has been reported to predict a multifaceted decline
in various health parameters necessary to maintain daily
activities such as cognition, mobility, and functional status
in older people [3]. Besides functional deterioration, low
handgrip strength has further been associated with an
increased risk of premature death [1, 3, 4] and longer

hospital stays [1, 5]. As an indicator of disease, handgrip
strength represents the main component of sarcopenia
[6]. Current cut-off points to identify low grip strength,
which defines probable sarcopenia, as part of the sarcopenia
definition for European populations were suggested by
the European Working Group on Sarcopenia in Older
People (EWGSOP) in 2018 (i.e. EWGSOP2) [6] based on
pooled data of 12 British studies [7]. Premised on reported
comparability of normative grip strength values of the British
data with other more developed regions, Dodds et al . [8]
suggested that these cut-off points for low grip strength could
be employed across Europe, Northern America, Australia,
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and Japan. Other studies reported discrepancies in grip
strength between European regions [9, 10], encouraging the
verification of the current cut-off points in other European
countries. Most articles presenting European grip strength
values and/or cut-off points for low grip strength though,
reported data based on a small number of participants
(because of the necessary multiple stratification by age and
sex) [11–23] and/or did not include data of young adults [9,
10, 18, 19, 24]. However, young adults were recommended
as the reference group for the derivation of low grip strength
cut-off points [6].

In this article, we analyse the data of a large German
population-based sample encompassing younger adults.
Similar to other European studies, the majority of prior
studies that reported German adult grip strength data either
encompassed, relative to other available European data, a
small number of participants [25–33] and/or were based
on older individuals [28–31]. Only one previous German
study calculated low grip strength cut-off points based
on a younger study population (11,790 participants, aged
17–90 years) [27].

Therefore, we aimed to analyse grip strength and its distri-
bution across age in 200,389 adults of the German National
Cohort (NAKO, German: NAKO Gesundheitsstudie) aged
19–75 years and to derive cut-off points for low grip strength
based on data from younger adults of the NAKO. As these
cut-off points are mainly intended to define low grip strength
in older people, we further aimed to compare the NAKO-
derived cut-off points to the ones of the EWGSOP2 in an
independent German cohort of older individuals aged 65–
93 years from the Cooperative Health Research in the Region
of Augsburg (KORA)-Age study using all-cause mortality
since the EWGSOP recommended validation of cut-off
points by their prediction of hard end-points [6].

Methods

Study sample

The NAKO is a population-based cohort study including
18 study centres across Germany. Over 205,000 men and
women randomly invited from the German general pop-
ulation participated in the baseline examination between
2014 and 2019 [34]. General information regarding the
NAKO study design and methods are described elsewhere
[34–36]. We analysed grip strength data of the NAKO
baseline examination after measurements for all baseline
participants were completed. From the available data set of
204,916 participants, we excluded 4,527 participants due
to missing, outside the measurement range or implausible
(≤ 0 kg and ≥ 90 kg) grip strength values. The data set
for analysis included the remaining 200,389 participants
aged 19–75 years encompassing 100,640 women and 99,749
men. We did not exclude participants with diseases, as we
aimed to calculate values for a general population in line
with previous studies [7, 27]. Data on mortality are not yet
available for the NAKO sample.

The KORA-Age study consisted of 1,079 individuals
aged ≥ 65 years, who participated in the physical examina-
tion between 2008 and 2009 [4]. From the 1,079 KORA-
Age participants, we excluded 10 participants with missing
maximum grip strength values and 57 participants with
missing values for any covariate leading to a final sample
size of 1,012 participants (499 women and 513 men). Fur-
ther details regarding the study sample are included in the
Supplementary data.

Grip strength measurement

In the NAKO study, three grip strength measurement trials
were conducted at each hand. We used the maximum grip
strength value if at least two measurement values were avail-
able for at least one hand [37]. For analyses with the KORA-
Age data, the maximum grip strength value of three trials
of the dominant hand was used. We analysed the maximum
grip strength value to ensure comparability to Dodds et al .
[7] and, therefore, the EWGSOP2 low grip strength cut-
off points [6]. Jamar dynamometers were used for both,
NAKO and KORA-Age measurements. Details regarding
the measurement procedures and devices are included in the
Supplementary data.

All-cause mortality – KORA-Age

All-cause mortality was determined between the enrolment
into the KORA-Age study and the end of the follow-up in
2016. Population registries inside and outside of the KORA
study area were asked for the vital status of the participants.
Local health authorities provided the death certificates [4].

Covariates

Sociodemographic variables, anthropometry, lifestyle, dis-
eases, blood markers, and details regarding their data acqui-
sition are described in the Supplementary data.

Statistical analysis

With the NAKO data, percentile curves of grip strength
across age stratified for sex were created with the LMST (i.e.
lambda, mu, and sigma, with Box-Cox-t) method using Box-
Cox-t-orig. (BCTo) distribution [38]. Percentiles, means,
and standard deviations (SD) given in the tables were cal-
culated based on original data and not based on estimated
percentile curves. Low grip strength cut-off points for men
and women were calculated with the sex-specific peak mean
of all ages and corresponding SD from the NAKO data
using the T -score calculation (peak mean -2.5 × SD) as
described by Dodds et al . [7]. We used the values rounded to
the nearest integer as cut-off points in accordance with the
EWGSOP2 consensus [6].

In an independent sample of older people, the KORA-
Age study, we calculated the prevalence and the directly
age-standardised prevalence of low grip strength (grip
strength < cut-off point) for both cut-off point definitions
(NAKO-derived and EWGSOP2) for the whole sample
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and stratified for men and women. We standardised the
prevalence with the age groups (65–69, 70–74, 75–79, 80–
84, 85– women: –90, men: –93) of the German population
on 31 December 2008 [39]. We further calculated the
rate ratio and corresponding 95% confidence interval of
the NAKO-derived to EWGSOP2 prevalence of low grip
strength. In a sensitivity analysis, we further calculated
several T -scores (peak mean -1 × SD; -1.5 × SD; -2 × SD;
-3 × SD) based on the NAKO data and the resulting
prevalence of low grip strength in the KORA-Age sample.

We investigated the shape of the association of grip
strength with all-cause mortality in Cox proportional hazards
regression models with penalised splines stratified for men
and women and fully adjusted for covariates in model 4
as detailed below. To check for potential discontinuity of
the grip strength distribution in the section between the
two cut-off points (EWGSOP2 and NAKO-derived), we
created density plots for men and women. The association
of grip strength (continuous variable) and low grip strength
defined based on NAKO-derived and EWGSOP2 cut-off
points with all-cause mortality was analysed using Cox
proportional hazards regression models. To account for
potentially confounding variables, models were adjusted as
follows: model 1 was unadjusted, model 2 was adjusted for
age (and sex only in the models with all participants), model
3 was additionally adjusted for physical activity, smoking,
education, and body mass index (as a penalised spline term
due to non-linear association with mortality), and model
4 was further adjusted for lung disease, cancer within the
last three years, diabetes mellitus, heart problems or disease,
neurological disease, estimated glomerular filtration rate,
and albumin. Covariates for all Cox regression analyses
were chosen based on stepwise backward model selection by
Akaike information criterion. Variables that were available
for selection and a detailed description are listed in the
Supplementary data. The proportional hazards assumption
was checked for all Cox proportional hazards regression
models using scaled Schoenfeld residuals. There were no
violations of the assumption.

We further calculated time-dependent (3-year and 6-year
survival) sensitivity and specificity for all-cause mortality of
EWGSOP2 and NAKO-derived cut-off points as well as the
differences in sensitivity and specificity between the two cut-
off points (EWGSOP2 and NAKO-derived).

All statistical analyses were performed using R, V. 4.0.5
[40]. The R packages that were used for the analyses and
further details are described in the Supplementary data.

Results

Distribution of grip strength across age in the
NAKO sample

Descriptive statistics of grip strength stratified by sex
are listed for age groups in Table 1 and for every age
individually in Supplementary Table S1, available in Age
and Ageing online. The mean and SD of grip strength

across age (Supplementary Table S1, available in Age and
Ageing online) are illustrated for men and women separately
in Supplementary Figure S1, available in Age and Ageing
online.

The peak mean was 52.1 kg (SD: 9.2 kg) at age
38 years and 32.5 kg (SD: 5.7 kg) at age 39 years in
men and women, respectively. Considering one decimal
place, the peak mean of women appeared at ages 37–
40 years (Supplementary Table S1, available in Age and
Ageing online). The second decimal place revealed the
highest peak mean at age 39 years (32.53 kg).

The percentile curves demonstrated an increase in grip
strength in the third and fourth decade of life, which
appeared more pronounced in men than in women. After
plateauing in the later years of the fourth decade, grip
strength decreased continuously in men. The grip strength
curves of women were overall flatter, the plateau was more
prominent around age 40, and the decline started slightly
later (Figure 1).

Cut-off points for low grip strength in the NAKO
sample

Low grip strength cut-off points (peak mean -2.5 × SD)
based on NAKO data were 29 kg (not rounded: 29.1 kg)
for men and 18 kg (not rounded: 18.25 kg) for women.

Prevalence of low grip strength based on
NAKO-derived and EWGSOP2 cut-off points in the
KORA-Age sample

Study population characteristics of KORA-Age participants
(n = 1,012) are listed in Supplementary Table S2, available in
Age and Ageing online.

The prevalence of low grip strength was higher for
the NAKO-derived compared to the EWGSOP2 cut-
off points for all age groups in both men and women
(Supplementary Figure S2, available in Age and Ageing
online). After age-standardisation, the prevalence of low grip
strength decreased for both NAKO-derived and EWGSOP2
cut-off points but the rate ratio between both definitions
remained similar (Table 2).

The T-scores of peak mean -2 × SD and -3 × SD yielded
a prevalence of low grip strength of 43.0% and 11.1%,
respectively compared to 20.7% with the main T -score
(-2.5 × SD) (Supplementary Table S3, available in Age and
Ageing online).

Association of (low) grip strength with all-cause
mortality in the KORA-Age sample

The shape of the association of grip strength with all-cause
mortality was nearly linear, inverse for men and women
(Figure 2).

In density plots, no discontinuity of the grip strength
distribution appeared in the section between the two cut-
off points (EWGSOP2 and NAKO-derived) in men and
women (Supplementary Figure S3, available in Age and Age-
ing online).
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Table 1. Grip strength stratified by age groups and sex in the NAKO sample

Age n Grip strength (kg)

Percentiles

5th 10th 25th 50th 75th 90th 95th Mean (SD)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Men
19–24 3,140 32.6 35.8 41.5 47.3 53.6 59.5 63.8 47.6 (9.4)
25–29 6,615 34.5 38.0 43.2 49.0 55.5 61.6 65.2 49.4 (9.4)
30–34 5,507 35.8 39.4 45.0 50.8 56.8 62.5 65.9 50.9 (9.3)
35–39 5,041 37.0 40.3 45.7 51.7 57.7 63.1 66.7 51.7 (9.1)
40–44 10,670 36.9 40.4 45.7 51.3 57.3 62.9 66.3 51.5 (9.0)
45–49 15,338 36.4 39.8 45.2 50.8 56.4 61.5 64.9 50.7 (8.7)
50–54 14,356 35.3 38.7 44.0 49.3 54.9 60.1 63.2 49.4 (8.6)
55–59 12,167 33.5 36.9 42.2 47.6 52.8 57.8 60.7 47.4 (8.4)
60–64 12,598 32.2 35.2 40.0 45.3 50.5 55.3 58.3 45.2 (8.1)
65–69 12,106 30.8 33.6 38.2 43.3 48.1 52.8 55.8 43.2 (7.7)
70–75 2,211 29.2 31.9 36.3 41.3 46.3 50.7 53.6 41.3 (7.4)
All 99,749 33.6 36.9 42.4 48.1 54.1 59.8 63.3 48.3 (9.1)
Women
19–24 3,476 21.2 23.4 26.8 30.4 34.1 37.6 39.6 30.5 (5.6)
25–29 6,512 22.1 24.2 27.4 31.0 34.8 38.4 40.6 31.2 (5.7)
30–34 5,572 22.5 24.7 28.1 31.9 35.6 39.0 41.2 31.9 (5.7)
35–39 5,200 22.9 25.1 28.6 32.5 36.1 39.5 41.5 32.3 (5.7)
40–44 10,435 23.1 25.3 28.6 32.3 36.1 39.6 41.7 32.4 (5.7)
45–49 15,706 22.8 24.9 28.4 31.9 35.5 39.0 41.2 31.9 (5.7)
50–54 14,746 21.3 23.4 27.1 30.6 34.3 37.5 39.7 30.6 (5.7)
55–59 12,401 20.6 22.7 25.9 29.3 32.6 35.8 37.6 29.2 (5.3)
60–64 12,964 19.9 21.8 24.8 28.0 31.3 34.3 36.3 28.0 (5.1)
65–69 11,630 18.8 20.7 23.7 26.8 30.0 32.9 34.8 26.8 (4.9)
70–74 1,998 18.2 19.9 23.0 25.9 28.8 31.4 33.1 25.8 (4.6)
All 100,640 20.9 23.0 26.3 30.1 33.9 37.5 39.7 30.1 (5.8)

Bold font indicates the highest mean of all age groups. n: number of participants, SD: standard deviation.

Figure 1. Percentile curves of grip strength across age for men and women in the NAKO sample. The 5th (green), 10th (red), 25th
(blue), 50th (black), 75th (blue), 90th (red) and 95th (green) percentiles of grip strength (kg) across age (years) are presented for
men (left) and women (right). n: number of participants.

In Cox regression models, the fully adjusted (model
4) hazard ratio (95% confidence interval) for all-cause
mortality was 0.96 (0.92, 1.01) in women and 0.97

(0.94, 0.99) in men for a 1-kg increase in grip strength
(Supplementary Table S4, available in Age and Ageing
online). Correspondingly, the estimated decrease in all-cause
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Table 2. Prevalence comparison between the NAKO-derived and EWGSOP2 cut-off points for low grip strength in the
KORA-Age sample

Low grip strength Prevalence of
low grip
strength (%)

Rate ratio of NAKO-derived
to EWGSOP2 prevalence
(95% CI)a

Age-standardised
prevalence of low
grip strength (%)b

Rate ratio of NAKO-derived to
EWGSOP2 age-standardised
prevalence (95% CI)a

Yes (n) No (n)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
All
(n = 1,012)

EWGSOP2 139 873 13.7 1.5 (1.3, 1.7) 11.7 1.5 (1.3, 1.7)
NAKO 209 803 20.7 17.7

Men
(n = 513)

EWGSOP2 73 440 14.2 1.6 (1.3, 1.9) 10.6 1.6 (1.3, 1.9)
NAKO 115 398 22.4 17.0

Women
(n = 499)

EWGSOP2 66 433 13.2 1.4 (1.1, 1.7) 12.1 1.4 (1.1, 1.8)
NAKO 94 405 18.8 17.4

Low grip strength defined based on NAKO-derived cut-off points: <29 kg for men and <18 kg for women. Low grip strength defined based on EWGSOP2
cut-off points: <27 kg for men and <16 kg for women [6]. CI: confidence interval, EWGSOP2: European Working Group on Sarcopenia in Older People 2,
n: number of participants, NAKO: German National Cohort. aEWGSOP2 is the reference group for comparison. bAge-standardisation was performed with the
German population on 31 December 2008 [39].

Figure 2. Association of grip strength with all-cause mortality by Cox regression with penalised splines in the KORA-Age sample.
Solid black curve indicates the hazard ratio for all-cause mortality and dashed black curves depict the corresponding 95% confidence
intervals. The reference (hazard ratio = 1) was represented by the median of the grip strength (men: 36 kg, women: 22 kg). Grey
vertical line shows the cut-off point of the EWGSOP2 sarcopenia definition for low grip strength (men: 27 kg and women: 16 kg
[6]) and black vertical line represents the cut-off point for low grip strength calculated based on the NAKO data (men: 29 kg and
women: 18 kg). The y-axis is presented as a log scale. Cox regression models with grip strength as a penalised spline term were
adjusted for body mass index (penalised spline term), age, physical activity scale for the elderly: total score, smoking, education,
estimated glomerular filtration rate, albumin, lung disease (asthma, emphysema, COPD), cancer within the last three years, diabetes
mellitus, heart problems or disease, and neurological disease (without stroke). CI: confidence interval, COPD: chronic obstructive
pulmonary disease, EWGSOP2: European Working Group on Sarcopenia in Older People 2, HR: hazard ratio, n: number of
participants, NAKO: German National Cohort.

mortality for a 2-kg increase in grip strength was -6% for
men and -8% for women.

Out of all 1,012 participants, 23% (n = 233) died during
the approximate seven years of follow-up. Employing the
NAKO cut-off points, 209 individuals in the KORA-Age
sample had low grip strength and 95 of them (45.5%) died.
Based on the EWGSOP2 cut-off points, a total of 139
participants had low grip strength and 66 of them (47.5%)
died. Due to the higher NAKO cut-off points, 70 additional

participants were classified as having low grip strength as
compared to the EWGSOP2 cut-off points and 29 of these
70 participants (41.4%) died. Hazard ratios of all-cause mor-
tality were slightly (but not significantly) higher for low grip
strength based on NAKO-derived compared to EWGSOP2
cut-off points (Supplementary Table S5, available in Age and
Ageing online).

Low grip strength defined based on NAKO-derived cut-
off points showed consistently higher sensitivity and lower
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Table 3. Time-dependent sensitivity and specificity of EWGSOP2 and NAKO-derived cut-off points for all-cause mortality
in the KORA-Age sample

3-year survival 6-year survival

Sensitivity (95% CI) in % Specificity (95% CI) in % Sensitivity (95% CI) in % Specificity (95% CI) in %
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Men (n = 513)
EWGSOP2 low grip
strength cut-off point

32.7 (20.2, 45.4) 87.9 (85.3, 90.3) 30.1 (22.5, 37.2) 90.8 (88.0, 93.1)

NAKO-derived low grip
strength cut-off point

51.9 (38.7, 63.1) 80.9 (78.0, 84.5) 45.5 (35.6, 52.4) 84.9 (81.1, 87.9)

Difference (EWGSOP2 -
NAKO-derived cut-off
point)

-19.2 (-29.9, -8.5) 6.9 (4.6, 9.3) -15.4 (-21.8, -9.1) 5.9 (3.6, 8.2)

Women (n = 499)
EWGSOP2 low grip
strength cut-off point

37.5 (22.5, 53.0) 88.0 (84.7, 90.9) 27.3 (18.9, 40.6) 88.9 (85.3, 91.6)

NAKO-derived low grip
strength cut-off point

54.2 (37.1, 72.1) 82.9 (79.4, 86.2) 36.4 (28.2, 52.6) 83.8 (80.2, 87.4)

Difference (EWGSOP2 -
NAKO-derived cut-off
point)

-16.7 (-31.6, -1.8) 5.1 (3.1, 7.0) -9.1 (-16, -2.2) 5.1 (3.0, 7.1)

CI: confidence interval, EWGSOP2: European Working Group on Sarcopenia in Older People 2, n: number of participants, NAKO: German National Cohort.

specificity compared to EWGSOP2 cut-off points for all-
cause mortality while the difference in sensitivity was larger
than the difference in specificity (Table 3).

Discussion

Analysing data of 200,389 adults from the German
population-based study NAKO, we observed that grip
strength increased in the third and fourth decade of life and
declined after the fourth decade. Derived cut-off points for
low grip strength were 29 kg for men and 18 kg for women,
each 2 kg higher than the EWGSOP2 cut-off points. In
KORA-Age, the age-standardised prevalence of low grip
strength was 1.5 (95% confidence interval: 1.3, 1.7) times
higher for the NAKO-derived compared to the EWGSOP2
cut-off points. The shape of the association between grip
strength and all-cause mortality was nearly linear, inverse,
without an indication of a clear cut-off point. The sensitivity
for all-cause mortality was higher and the specificity lower
for the NAKO-derived compared to the EWGSOP2 cut-off
points. These findings were similar for the two investigated
time points.

Distribution of grip strength across age in the
NAKO sample

In line with the percentile curves of British data reported by
Dodds et al . [7], we observed that grip strength increased
in early adulthood and decreased progressively after the
fourth decade. Irish [20] and Italian [21] percentile curves
did not display such a distinct increase in grip strength in
early adulthood. Comparable to our results, another German
study that analysed data from the German Socio-Economic
Panel (SOEP) observed an increase of the mean grip strength
during the third and fourth decade of life and a decline
starting in the mid-forties [27].

The age at peak mean was considerably higher for
German NAKO data (men: 38 years, women: 39 years)
compared to the British data (men and women: 32 years)
[7]. Additionally, the peak mean was somewhat higher and
the SD lower in the NAKO data (men: 52.1 ± 9.2 kg,
women: 32.5 ± 5.7 kg) compared to the British sample
(men: 51.9 ± 9.9 kg, women: 31.4 ± 6.1 kg) [7]. The higher
SD in the British data might have resulted from the pooling
of 12 different studies with various measurement protocols
[7]. Presumably due to smaller sample sizes, most previous
studies did not report the mean for each age, but only for
age groups. The Irish study reported a peak mean of grip
strength (average of the highest scores of two measurements
from each hand) in men of 51.3 ± 8.5 kg (30–39 years) and
in women of 32.3 ± 5.2 kg (30–39 years) [20], which were
close to the NAKO results (men: 35–39 years, 51.7 ± 9.1 kg;
women: 40–44 years, 32.4 ± 5.7 kg). As opposed to this,
the peak mean of the Italian sample, with grip strength
based on the maximum value of both hands, was distinctly
lower (minimum ∼4 kg) [21] compared to the present and
other studies [7, 20, 25, 27]. The peak mean of Danish
grip strength data (maximum of three trials of the dominant
hand) [22] was ∼1 kg higher in men and 2 kg higher in
women than our results. Results of the German SOEP study
displayed the peak mean (weighted) of the maximum value
of two measurements at each hand at ages 40–44 for men
(53.8 ± 9.3 kg) and women (34.5 ± 6.3 kg) [27]. These peak
means were ∼2 kg higher than our results and those of other
European studies [7, 20]. Another German study with a
small sample size (n = 769, age range 20–95 years) reported
a similar peak mean for men as the SOEP data, however,
only based on the right hand [25].

The NAKO-derived low grip strength cut-off points for
men and women were each 2 kg higher than the EWGSOP2
cut-off points [6]. As opposed to our study and the
EWGSOP2 cut-off points, other studies calculated cut-off
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points as 2 instead of 2.5 SDs below the sex-specific peak
mean [20, 27]. Since the NAKO low grip strength cut-off
points were derived within a German sample, this may imply
that these might be more suitable for a German population.
However, our peak mean values were closer to an Irish [20]
and a British [7] study than to other German studies [25,27].

Of note, the willingness to participate was lower in
younger people after the halftime of the NAKO baseline
measurements [34]. It is however unlikely that this would
affect the cut-off points derived from younger participants,
as non-participation due to health reasons is rather unlikely
for younger participants.

Prevalence of low grip strength in the KORA-Age
sample

As discussed above, we identified disparities between the grip
strength of different European studies and further demon-
strated that relatively small changes in cut-off points led
to relatively large differences in the prevalence of low grip
strength. The implementation of different cut-off points in
different populations would, however, decrease comparabil-
ity between studies, while in clinical practice, the use of cut-
off points that do not fit to the patient population could lead
to misclassification. Thus, harmonisation and pooling of grip
strength data from European countries may support to find
suitable cut-off points for Europe.

Association of (low) grip strength with all-cause
mortality in the KORA-Age sample

We observed that the shape of the association between grip
strength and all-cause mortality was nearly linear, inverse. In
line with our findings, other European studies of older peo-
ple with larger sample sizes also observed linear inverse asso-
ciations for men [41, 42] and women [41]. However, data
of older Norwegians indicated that the association might
have only been present below the mean of z-standardised
grip strength for women [42]. The observed nearly linear
association of grip strength with all-cause mortality may
indicate that there is no clear cut-off point. However, cut-off
points for low grip strength are necessary and reasonable for
clinical practice. Of note, a linear association between disease
marker and hard end-points has also been observed for other
diseases with established cut-off points such as blood pressure
(hypertension), which is linearly related to cardiovascular
and renal diseases [43].

We observed higher sensitivity and lower specificity of low
grip strength for all-cause mortality for the NAKO-derived
compared to the EWGSOP2 cut-off points. However, the
difference in sensitivity was larger than in specificity. Thus,
higher cut-off points may be more suitable in clinical practice
to increase the sensitivity, i.e. to identify more patients at
risk for premature death, suggesting an earlier start of inter-
vention, while other individuals could concurrently receive
additional diagnostics/treatment without the urgent need.
Due to the nearly linear, inverse association between grip
strength and all-cause mortality, changing the cut-off point

to a lower value may easily lead to misclassification of persons
at risk. According to the EWGSOP2 algorithm, in clini-
cal practice, low grip strength ‘[ . . . ] is enough to trigger
assessment of causes and start intervention’ [6]. Through the
subsequent steps (i.e. assessment of muscle quality/quantity),
sarcopenia can be confirmed, but if we exclude a high
number of patients at the preceding step (low grip strength),
then the prevalence of confirmed sarcopenia may decrease
even more. Of note, the cut-off point of blood pressure
to define hypertension, which also had a linear association
to hard end-points, was changed after a first definition
to a lower value classifying more patients into the disease
group [43]. This approach though, may be conducted after
evaluation if prevention and treatment programs are effective
for people that have a higher grip strength than the current
EWGSOP2 cut-off points. Additionally, the higher costs
should be considered as intervention for more patients would
increase overall health care costs.

Strengths and limitations

Strengths include foremost the sample size of the NAKO
sample and its population-based origin. Furthermore, the
data of the NAKO is homogeneous as all 18 study centres
performed measurements according to the same protocol
and with the same dynamometer type as well as combined
quality control of data. Limitations include the not yet avail-
able follow-up data in the NAKO regarding outcomes and
data of older age groups, prohibiting an internal assessment
of the association between low grip strength and mortality.
For this purpose, a different study was used, but this study
had a much smaller sample size. Furthermore, the general-
izability of the NAKO data could be limited due to the low
response proportion [36] especially for younger people [34].

Conclusion

Cut-off points for low grip strength from German population-
based data (NAKO) were 2 kg higher than the EWGSOP2
cut-off points. The relatively small difference between the
cut-off points resulted in a large difference in the prevalence
of low grip strength and a higher sensitivity but lower
specificity for all-cause mortality of the NAKO-derived
cut-off points. A higher cut-off point as suggested by the
NAKO data could detect more patients at risk of premature
death and thereby propose an earlier intervention, while
other individuals could concurrently receive additional
diagnostics/treatment without the urgent need. Future
research on the effectiveness of intervention regarding hard
end-points in patients with low grip strength defined by
different cut-off points is crucial.

Supplementary Data: Supplementary data mentioned in
the text are available to subscribers in Age and Ageing online.
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Details regarding the study sample
German National Cohort (NAKO)
The response proportion was 17 % for the whole NAKO sample (9 %–32 % for the individual

study centers) [1]. To ensure standardized measurement procedures, examiners from all

study centers were trained and certified before and during the study in joint sessions.

Additionally, monitoring of examiners was conducted during the study in the individual study

centers by internal and external quality control [2].

Cooperative Health Research in the Region of Augsburg (KORA)-Age
The KORA-Age participants were recruited from the group of participants born in 1943 or

earlier that took part in one of the three Monitoring of Trends and Determinants in

Cardiovascular Disease (MONICA) Augsburg studies S1, S2, and S3 conducted between

1984–1995 or the KORA S4 study conducted between 1999–2001 [3].

Grip strength measurement
NAKO
Details regarding grip strength measurements during the NAKO examinations including

calibration and quality control have been reported before [4]. Briefly, the maximum isometric

handgrip strength was measured using Jamar Plus+ hand dynamometer (Sammons Preston,

Rolyon, Bolingbrook, IL, USA). Every study center used several devices of exactly the same

device type. The manufacturer calibrated the hand dynamometers every two years.

Additionally, the measurement accuracy was tested in the study centers using standard

weights every six weeks. Data collection protocols were the same for all study centers.

Influences of examiners and devices on results were tested frequently and in case of any

irregularities, examiners received further training, while measurement devices were tested for

measurement accuracy and if applicable calibrated or replaced. During handgrip

measurement, participants were in seating position on a chair without armrests, placed their

feet on the ground and remained their shoulders and forearm in neutral position, while the

elbow was flexed approximately 90°. The hand dynamometer was set to the grip width 2 for

all participants. The measurement was performed three times with each hand, alternating.

Participants were excluded from performing the handgrip measurement if they had acute injury

or operation at both hands or amputation or paralysis of both arms. For this article, we used

the maximum grip strength value of all available measurements (both hands) if minimum two

measurement values were available for at least one hand [4].
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KORA-Age
In KORA-Age, the handgrip strength was measured with a Jamar dynamometer (SAEHAN

Corporation, Masan, Korea). The maximum value of three measurements of the dominant

hand with short breaks in between [5] was used for analysis. The dominant hand was identified

as the hand that is used to cut with a scissor or to hold a knife cutting bread. The measurement

was conducted in standing position (if impossible in upright seating position) and the

participants were instructed to hold their upper arm against their body, while holding their

elbow approximately 90° flexed. The handle of the dynamometer was adjusted to fit the hand

of the participants.

Description of the covariates
Covariates for the cut-off point calculation with the NAKO data comprised sex (women / men)

and age (years) at the examination date.

Covariates for the Cox regression analyses with KORA-Age data included age at reference

date (December 31, 2008) (years), sex (women / men), physical activity scale for the elderly

(PASE): total score, smoking (never / former / current), education (> 10 years / ≤ 10 years),

body mass index (BMI) (kg/m2), estimated glomerular filtration rate (eGFR) (ml/min/1.73 m2),

albumin (g/dl), lung disease (asthma, emphysema, COPD) (no / yes), cancer within the last

three years (no / yes), diabetes mellitus (no / yes), heart problems or disease (e.g. angina,

congestive heart disease, coronary heart disease, myocardial infarction, bypass, stent) (no /

yes), and neurological disease (without stroke) (no / yes).

The continuous score PASE: total score was calculated based on the publication of Washburn

et al. from 1993 [6] using interview questions regarding leisure, household, and work physical

activities [7]. Smoking status was assessed based on interview questions. Smoking status

“never” was defined as having smoked ≤ 100 cigarettes in life (yes or no question) and

smoking status “former” as having smoked > 100 cigarettes in life and not smoking cigarettes

currently. Smoking status “current” was defined as smoking regularly and occasionally [8]. For

assessing the education, the highest level of vocational training and the highest level of school

graduation were combined and assessed based on prior data from the studies S1, S2, S3,

and S4 [8]. We categorized the variable education into > 10 years and ≤ 10 years.

Self-reported diseases (lung disease, cancer within the last three years, diabetes mellitus,

heart problems or disease, and neurological disease) were assessed during a telephone

interview in the KORA-Age study [8].

In KORA-Age, Albumin was measured in serum with modified bromocresol purple (BCP) dye-

binding method using Dimension® Flex® reagent cartridge ALB (Siemens Healthcare
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Diagnostics Inc.). eGFR was calculated with serum creatinine according to Inker et al. (2012)

[9]. Creatinine was measured in serum with modified kinetic Jaffe reaction using Dimension®

Flex® reagent cartridge CREA (Siemens Healthcare Diagnostics Inc.).

Statistical analysis
Description of the selection of covariates in the KORA-Age sample
Covariates for Cox regression models were chosen based on stepwise backward model

selection by Akaike information criterion (AIC) in a preliminary data set of 1,003 participants

(smaller sample size compared to the final data set due to more exclusions based on missing

values for any of the tested variables). The variables that were available for selection included:

age, sex, PASE: total score, smoking, education, BMI, eGFR, albumin, lung disease, cancer

within the last three years, diabetes mellitus, heart problems or disease, neurological disease

without stroke (all chosen by the model selection with grip strength as a continuous variable

and low grip strength defined by European Working Group on Sarcopenia in Older People

(EWGSOP) 2 cut-off points and NAKO-derived cut-off points), nutrition score, number of

medication without plant-based and homeopathic, high sensitivity C-reactive protein (mg/l)

(transformed by natural logarithm), alcohol intake (0 g/day / men 0.1–39.9 g/day and women

0.1–19.9 g/day / men ≥ 40 g/day and women ≥ 20 g/day), arthritis or rheumatic disease or

arthrosis (no / yes), and stroke (no / yes) (all not chosen by the model selection).

All continuous covariates were tested prior to the model selection individually for linear and

non-linear association with all-cause mortality using Cox regression models adjusted for age

and sex with the tested variables as a penalized spline term. To identify non-linearity of the

associations, we used graphical representations of the Cox regression models and in a second

step significance of the p-values for the linear and non-linear terms in the Cox regression

models. If both (linear and non-linear) p-values were significant, we chose the term with the

higher portion (lower p-value). Based on these analyses, only BMI showed a non-linear

association with all-cause mortality. Therefore, the only covariate included as a penalized

spline term for all following Cox regression models was BMI.

After testing for linear and non-linear association of all continuous covariates with all-cause

mortality, we calculated the stepwise backward model selection by AIC to choose the

covariates. We calculated three Cox regression models (function “coxph” of R package

“survival” [10, 11]) with grip strength as a continuous variable or low grip strength defined by

EWGSOP2 cut-off points or NAKO-derived cut-off points plus all variables available for

selection including BMI as a penalized spline term with function “pspline” of R package

“survival” [10, 11]. Number of degrees of freedom for the penalized spline term was chosen

by AIC corrected with the method of Hurvich et al. [12]. A stepwise backward model selection
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by AIC was performed for each of the three models (with either of the three grip strength

outcomes) using the “stepAIC” function from the R package “MASS” [13]. The variables listed

in the section “Description of the covariates” are the covariates that were selected by this

method for all three models.

R packages used in the statistical analysis
Figure 1: Percentile curves were created using the function “lms” from the R package “gamlss”

[14]. For both graphs (men and women), the “BCTo” method with fitting method Rigby and

Stasinopoulos algorithm was chosen by the “lms” function to fit the curves. The percentiles

were plotted using the “centiles” function of the “gamlss” R package [14].

Table 2: We calculated the directly age-standardized prevalence of low grip strength with the

R function “dsr” and the rate ratio of NAKO-derived to EWGSOP2 prevalence (EWGSOP2 as

the reference) with the function “dsrr” of the R package “dsr” [15].

Figure 2: We calculated the Cox models with grip strength as a penalized spline term, stratified

for sex and adjusted for BMI (penalized spline term) and all other covariates chosen by the

model selection as described above. We therefore used the functions “coxph” and “pspline” of

the R package “survival” [10, 11]. We used the function “dfmacox” of the R package

“smoothHR” [16, 17] to calculate the number of degrees of freedom by AIC corrected with the

method of Hurvich et al. [12]. The “dfmacox” function enabled the calculation of the optimal

degrees of freedom for a model with multiple nonlinear covariate effects [16] (here: grip

strength and BMI). The function “termplot” from the R package “stats” [18] was used to

calculate the data from the Cox regression models for plotting. We centered the plot to the

median of the grip strength (women: 22 kg, men: 36 kg) as the reference (hazard ratio = 1).

Curves were plotted with the function “matplot” from the R package “graphics” [18].

Table 3: Time-dependent sensitivity and specificity of the EWGSOP2 and NAKO-derived cut-

off points for the time points 3-year (1,095 days) and 6-year (2,190 days) survival were

calculated using the R package “tdROC” [19] with the function “tdROC”. (The confidence

intervals of sensitivity and specificity were calculated within the same function with 100x

bootstrapping.) The differences (and corresponding confidence intervals) in sensitivity and

specificity between the two cut-off points were calculated with the R package “DTComPair”

[20] using the function “sesp.diff.ci”.

Supplementary Table S4 and S5: Cox proportional hazards regression models were

calculated using the function “coxph” of the R package “survival” [10, 11]. BMI was included

as a penalized spline term using the function “pspline” of the R package “survival” [10, 11]. To

calculate the spline term’s number of degrees of freedom by AIC corrected with the method of

Hurvich et al. [12], we used the “caic = T” specification within the “pspline” function.
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Supplementary Table S1: Grip strength stratified by age and sex in the NAKO sample

Age n Grip strength (kg)

Percentiles
5th 10th 25th 50th 75th 90th 95th Mean (SD)

Men
19* 3 - - - - - - - -
20 118 33.7 36.4 40.4 46.2 52.3 57.7 60.7 46.5 (8.5)
21 468 31.2 36.2 41.5 46.5 51.9 59.1 62.1 46.7 (9.2)
22 733 32.1 34.8 40.5 46.6 53.7 59.3 63.6 47.1 (9.7)
23 879 32.6 35.8 42.0 47.6 53.4 58.5 63.1 47.7 (9.1)
24 939 33.9 36.5 42.2 48.1 54.7 60.8 65.1 48.5 (9.5)
25 1,055 34.3 37.3 42.2 48.0 54.3 60.4 64.0 48.5 (9.2)
26 1,150 34.2 37.9 42.3 48.3 55.3 61.5 64.8 49.0 (9.5)
27 1,331 34.7 38.3 43.5 49.4 55.7 62.0 66.0 49.7 (9.4)
28 1,537 35.2 38.0 43.3 49.1 55.6 61.6 64.9 49.5 (9.4)
29 1,542 34.4 38.6 44.2 49.7 56.2 62.0 65.5 50.1 (9.4)
30 1,336 35.7 38.8 44.7 50.2 56.2 61.7 65.3 50.4 (9.0)
31 1,129 34.4 38.6 44.5 50.6 56.7 62.8 65.7 50.5 (9.5)
32 1,036 35.8 39.0 44.8 51.1 56.8 63.3 66.8 51.0 (9.6)
33 1,006 37.1 40.7 45.9 51.2 56.8 62.2 65.9 51.3 (9.0)
34 1,000 36.1 40.1 45.4 51.5 57.4 62.7 65.8 51.4 (9.2)
35 1,011 36.6 39.5 45.1 51.6 57.5 62.7 66.5 51.3 (9.2)
36 1,047 36.5 40.0 45.1 51.6 57.7 63.1 65.9 51.5 (9.2)
37 1,008 36.1 40.4 46.0 51.8 57.9 62.9 66.5 51.8 (9.1)
38 984 37.3 40.4 46.2 51.8 58.2 63.8 68.1 52.1 (9.2)
39 991 37.9 40.6 45.8 51.7 57.6 63.0 66.6 51.7 (8.9)
40 1,435 37.6 41.2 46.0 51.6 57.7 63.5 66.4 51.9 (8.9)
41 2,022 36.1 40.5 45.7 51.5 57.6 62.9 66.2 51.6 (9.1)
42 2,378 36.8 40.1 45.6 51.5 57.3 63.0 66.7 51.4 (9.2)
43 2,382 37.4 40.4 45.6 51.0 57.0 62.8 66.0 51.3 (8.8)
44 2,453 36.8 40.5 45.8 51.3 57.2 62.6 65.9 51.4 (9.0)
45 2,677 36.4 40.4 45.9 51.5 57.3 62.4 66.0 51.5 (9.0)
46 2,878 36.5 40.4 45.5 50.8 56.2 61.4 64.8 50.8 (8.7)
47 3,032 36.2 39.7 45.1 50.6 56.4 61.2 64.7 50.6 (8.7)
48 3,290 36.4 39.5 44.9 50.9 56.5 61.7 65.2 50.7 (8.7)
49 3,461 36.4 39.5 44.8 50.2 55.7 60.8 63.8 50.2 (8.6)
50 3,257 36.4 39.5 44.6 50.0 55.6 60.6 64.1 50.1 (8.6)
51 2,999 35.3 39.1 44.3 49.7 55.4 60.5 63.7 49.7 (8.6)
52 2,808 35.6 39.0 44.0 49.2 54.7 60.2 63.3 49.3 (8.6)
53 2,752 35.0 37.9 43.4 48.8 54.3 59.7 62.4 48.8 (8.5)
54 2,540 34.7 37.7 43.5 48.6 54.2 59.3 61.8 48.7 (8.5)
55 2,536 34.0 37.3 42.8 48.1 53.3 58.4 61.7 48.0 (8.5)
56 2,454 34.2 37.5 42.6 48.2 53.4 58.0 60.4 47.9 (8.2)
57 2,466 33.0 36.6 42.0 47.6 53.1 57.9 60.5 47.4 (8.5)
58 2,387 34.2 37.0 42.0 47.2 52.4 57.6 60.2 47.2 (8.2)
59 2,324 32.4 35.7 41.4 46.5 51.8 56.7 60.4 46.4 (8.4)
60 2,233 32.6 35.8 40.5 45.8 51.5 56.7 59.7 46.0 (8.3)
61 2,373 33.4 36.4 40.9 46.2 51.6 56.4 59.5 46.3 (8.2)
62 2,515 31.4 34.7 39.8 45.2 50.0 54.6 57.0 44.9 (8.0)
63 2,784 32.2 34.9 39.7 44.9 50.1 54.9 58.0 44.9 (8.0)
64 2,693 31.5 34.5 39.3 44.4 49.7 54.0 57.1 44.4 (7.8)
65 2,739 31.9 34.6 39.1 44.3 49.1 54.1 57.3 44.2 (7.9)
66 2,602 31.5 34.2 38.7 43.7 48.5 53.4 56.1 43.6 (7.6)
67 2,438 30.5 33.4 38.1 43.2 48.1 52.5 55.3 43.1 (7.7)
68 2,308 29.9 32.9 37.4 42.7 47.7 52.0 54.9 42.5 (7.7)
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69 2,019 30.0 32.9 37.4 42.1 47.0 51.5 54.0 42.2 (7.3)
70 1,358 29.6 32.2 36.6 41.5 46.6 50.6 53.6 41.5 (7.4)
71 629 29.0 31.8 36.0 41.4 46.2 50.9 53.5 41.2 (7.5)
72 183 28.5 31.3 35.9 40.6 46.0 51.3 54.0 40.9 (7.7)
73* 29 - - - - - - - -
74* 9 - - - - - - - -
75* 3 - - - - - - - -
Women
19* 6 - - - - - - - -
20 126 18.8 21.1 24.3 28.8 33.1 37.0 39.2 29.0 (6.1)
21 466 20.8 23.3 26.7 29.8 33.5 37.2 39.4 30.1 (5.6)
22 862 21.2 23.4 26.6 30.4 34.3 37.7 40.0 30.4 (5.8)
23 1,008 22.2 23.5 27.1 30.8 34.0 37.5 39.6 30.6 (5.4)
24 1,008 21.0 23.4 27.2 30.7 34.2 37.6 39.5 30.6 (5.7)
25 1,174 22.0 24.0 27.3 31.0 34.5 38.2 40.8 31.1 (5.7)
26 1,186 21.7 24.4 27.6 30.9 34.7 38.6 40.9 31.1 (5.7)
27 1,379 22.1 24.4 27.4 30.7 34.7 38.3 40.5 31.0 (5.6)
28 1,421 22.1 24.1 27.5 31.0 34.8 38.5 40.7 31.2 (5.7)
29 1,352 22.3 24.3 27.4 31.3 35.1 38.4 40.6 31.3 (5.6)
30 1,301 22.2 24.4 28.1 31.5 35.5 39.1 41.2 31.6 (5.8)
31 1,105 22.6 24.6 27.8 31.7 35.2 38.5 40.4 31.5 (5.6)
32 1,051 22.2 24.5 28.0 31.8 35.5 38.8 41.0 31.7 (5.7)
33 1,043 23.1 25.4 28.5 32.0 35.8 39.2 41.8 32.2 (5.7)
34 1,072 22.5 25.0 28.3 32.3 36.2 39.5 42.2 32.3 (6.0)
35 1,105 22.3 24.6 28.3 32.3 35.9 38.9 40.4 32.0 (5.6)
36 1,024 22.7 24.9 28.4 32.2 35.8 39.4 41.5 32.2 (5.8)
37 1,045 23.3 25.4 28.8 32.6 36.0 39.7 41.9 32.5 (5.8)
38 1,012 23.3 25.3 28.8 32.6 36.3 39.9 41.6 32.5 (5.7)
39 1,014 23.3 25.2 28.8 32.5 36.3 39.7 41.8 32.5 (5.7)
40 1,393 23.2 25.4 28.8 32.2 36.0 39.6 41.8 32.5 (5.8)
41 1,777 23.1 25.2 28.4 32.2 36.3 39.7 41.4 32.3 (5.7)
42 2,249 23.0 25.3 28.5 32.3 36.1 39.8 42.0 32.4 (5.8)
43 2,450 23.2 25.3 28.7 32.5 36.0 39.4 41.6 32.4 (5.6)
44 2,566 23.1 25.3 28.6 32.3 36.1 39.6 41.5 32.3 (5.7)
45 2,638 23.2 25.4 28.6 32.2 35.9 39.4 41.6 32.3 (5.7)
46 2,991 22.5 24.7 28.4 32.0 35.6 39.1 41.2 32.0 (5.7)
47 3,180 22.9 25.0 28.4 31.9 35.4 39.0 41.1 31.9 (5.7)
48 3,370 22.4 24.6 28.2 31.9 35.6 39.0 41.0 31.8 (5.8)
49 3,527 22.7 24.9 28.1 31.6 35.2 38.6 40.8 31.7 (5.6)
50 3,251 22.1 24.1 27.6 31.3 35.0 38.3 40.8 31.3 (5.8)
51 2,944 21.6 23.6 27.5 31.0 34.7 37.9 40.0 31.0 (5.7)
52 2,848 21.4 23.4 27.2 30.6 34.3 37.5 39.7 30.6 (5.6)
53 2,986 20.8 23.2 26.7 30.3 33.7 37.0 39.1 30.1 (5.6)
54 2,717 20.7 22.8 26.2 29.9 33.4 36.6 38.8 29.8 (5.6)
55 2,731 20.9 22.9 26.3 29.7 33.1 36.2 38.0 29.6 (5.5)
56 2,513 21.0 23.2 26.3 29.5 32.7 35.9 37.8 29.4 (5.2)
57 2,505 20.5 22.6 26.0 29.3 32.5 35.8 37.8 29.2 (5.4)
58 2,352 20.6 22.6 25.7 28.9 32.3 35.4 37.3 28.9 (5.2)
59 2,300 20.4 22.3 25.4 28.9 32.3 35.4 37.2 28.9 (5.3)
60 2,332 20.0 22.0 25.2 28.5 31.9 35.1 37.0 28.5 (5.3)
61 2,470 19.9 22.0 25.1 28.2 31.6 34.4 36.5 28.2 (5.1)
62 2,586 19.9 21.7 24.7 28.0 31.2 34.2 35.9 27.9 (5.0)
63 2,792 19.8 21.8 24.7 27.8 31.1 34.3 36.4 27.9 (5.2)
64 2,784 19.8 21.5 24.3 27.7 30.9 33.9 35.6 27.6 (4.9)
65 2,725 19.3 21.3 24.1 27.4 30.4 33.4 35.2 27.3 (4.9)
66 2,580 18.8 20.8 23.9 26.9 30.1 33.1 35.2 27.0 (5.0)
67 2,446 19.2 20.9 23.8 27.1 30.1 32.8 34.8 26.9 (4.8)
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68 2,175 18.3 20.4 23.2 26.4 29.7 32.4 34.1 26.4 (4.9)
69 1,704 18.4 20.2 23.1 26.1 29.1 32.3 33.8 26.1 (4.6)
70 1,231 18.2 19.8 23.2 26 28.9 31.4 33.0 25.9 (4.5)
71 574 18.3 20.1 22.7 25.5 28.8 31.2 33.3 25.6 (4.7)
72 172 18.4 19.4 21.8 24.9 28.0 30.6 32.3 25.0 (4.4)
73* 19 - - - - - - - -
74* 2 - - - - - - - -

Bold font indicates the highest mean of all ages.

* Not enough participants to calculate valid descriptive statistics.

n: number of participants, SD: standard deviation.
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Supplementary Figure S1: Mean (± standard deviation) of grip strength across age in the

NAKO sample

Dark grey line indicates the mean and surrounding light grey area indicates the standard deviation.

n: number of participants, SD: standard deviation.
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Supplementary Table S2: Characteristics of the study participants in the KORA-Age sample

Characteristic N = 1,012
Age (years) a 75.7 ± 6.5
Sex, n (%)
    Female 499 (49.3)
    Male 513 (50.7)
Physical activity scale for the elderly: total score a 117.9 ± 56.0
Smoking, n (%)
    Never 577 (57.0)
    Former 388 (38.3)
    Current 47 (4.6)
Education, n (%)
    > 10 years 372 (36.8)
    ≤ 10 years 640 (63.2)
Body mass index (kg/m2) a 28.5 ± 4.3
eGFR (ml/min/1.73 m2) a 67.7 ± 17.2
Albumin (g/dl) a 3.8 ± 0.3
Lung disease (asthma, emphysema, COPD), n (%)
    No 907 (89.6)
    Yes 105 (10.4)
Cancer within the last three years, n (%)
    No 972 (96.0)
    Yes 40 (4.0)
Diabetes mellitus, n (%)
    No 834 (82.4)
    Yes 178 (17.6)
Heart problems or disease, n (%)
    No 700 (69.2)
    Yes 312 (30.8)
Neurological disease (without stroke), n (%)
    No 978 (96.6)
    Yes 34 (3.4)
Maximum grip strength (kg) a 28.3 ± 9.8

a Continuous variables are listed as arithmetic mean ± standard deviation.

COPD: chronic obstructive pulmonary disease, eGFR: estimated glomerular filtration rate, n: number of

participants.
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Supplementary Figure S2: Prevalence of low grip strength based on the NAKO-derived and

EWGSOP2 cut-off points stratified for age groups in the KORA-Age sample

Low grip strength defined based on NAKO-derived cut-off points: < 29 kg for men and < 18 kg for women.

Low grip strength defined based on EWGSOP2 cut-off points: < 27 kg for men and < 16 kg for women [21].

EWGSOP2: European Working Group on Sarcopenia in Older People 2, n: number of participants, NAKO: German

National Cohort.
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Supplementary Table S3: T-scores based on data from the NAKO sample and resulting

prevalence of low grip strength in the KORA-Age sample

T-score calculation Men
(n = 513)

Women
(n = 499)

All
(n = 1,012)

T-score low
grip strength

(kg)

Prevalence
of low grip

strength (%)

T-score low
grip strength

(kg)

Prevalence
of low grip

strength (%)

Prevalence
of low grip

strength (%)
EWGSOP2 low grip strength cut-off points

peak mean - 2.5 x SD 27 14.2 16 13.2 13.7
NAKO-derived low grip strength cut-off points

peak mean - 1 x SD 43 83.0 27 85.2 84.1
peak mean - 1.5 x SD 38 60.0 24 62.5 61.3
peak mean - 2 x SD 34 40.7 21 45.3 43.0
peak mean - 2.5 x SD 29 22.4 18 18.8 20.7
peak mean - 3 x SD 25 9.4 15 12.8 11.1

EWGSOP2: European Working Group on Sarcopenia in Older People 2, n: number of participants, NAKO:

German National Cohort.
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Supplementary Figure S3: Density plot of grip strength in the KORA-Age sample

Grey vertical line shows the cut-off point of the EWGSOP2 sarcopenia definition for low grip strength (men: 27 kg

and women: 16 kg [21]) and black vertical line represents the cut-off point for low grip strength calculated based

on the NAKO data (men: 29 kg and women: 18 kg).

EWGSOP2: European Working Group on Sarcopenia in Older People 2, n: number of participants, NAKO: German

National Cohort.
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Supplementary Table S4: Hazard ratios for the association of grip strength (continuous

variable) with all-cause mortality in the KORA-Age sample

HR (95 % CI)

Men (n = 513)

Model 1  0.93 (0.91, 0.95)

Model 2  0.95 (0.93, 0.98)

Model 3  0.96 (0.94, 0.99)

Model 4  0.97 (0.94, 0.99)

Women (n = 499)

Model 1  0.89 (0.86, 0.93)

Model 2  0.95 (0.91, 0.99)

Model 3  0.95 (0.90, 0.99)

Model 4  0.96 (0.92, 1.01)

HRs are shown for a 1-kg increase in grip strength.

Model adjustments:

Model 1: crude model

Model 2: age

Model 3: model 2 + physical activity scale for the elderly: total score, smoking, education, and body mass index

(as penalized spline term)

Model 4: model 3 + estimated glomerular filtration rate, albumin, lung disease (asthma, emphysema, COPD),

cancer within the last three years, diabetes mellitus, heart problems or disease, and neurological disease (without

stroke)

CI: confidence interval, COPD: chronic obstructive pulmonary disease, HR: hazard ratio, n: number of

participants.
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Supplementary Table S5: Hazard ratios for the association of low grip strength with all-cause

mortality in the KORA-Age sample

EWGSOP2
low grip strength cut-off points

NAKO-derived
low grip strength cut-off points

HR (95 % CI) HR (95 % CI)

All (n = 1,012)

Model 1 3.07 (2.31, 4.08) 3.33 (2.56, 4.33)

Model 2 1.85 (1.37, 2.50) 2.03 (1.53, 2.68)

Model 3 1.65 (1.22, 2.24) 1.85 (1.40, 2.45)

Model 4 1.40 (1.02, 1.92) 1.72 (1.29, 2.30)

Men (n = 513)

Model 1 3.05 (2.11, 4.40) 3.24 (2.31, 4.53)

Model 2 1.96 (1.33, 2.88) 2.10 (1.47, 3.00)

Model 3 1.67 (1.13, 2.49) 1.86 (1.29, 2.67)

Model 4 1.64 (1.08, 2.47) 1.93 (1.32, 2.82)

Women (n = 499)

Model 1 3.06 (1.94, 4.83) 3.32 (2.18, 5.06)

Model 2 1.63 (1.01, 2.64) 1.86 (1.19, 2.91)

Model 3 1.76 (1.08, 2.88) 2.02 (1.28, 3.18)

Model 4 1.44 (0.86, 2.41) 1.87 (1.17, 3.02)

Model adjustments:

Model 1: crude model

Model 2: sex (only in the models with all participants), age

Model 3: model 2 + physical activity scale for the elderly: total score, smoking, education, and body mass index

(as penalized spline term)

Model 4: model 3 + estimated glomerular filtration rate, albumin, lung disease (asthma, emphysema, COPD),

cancer within the last three years, diabetes mellitus, heart problems or disease, and neurological disease (without

stroke)

CI: confidence interval, COPD: chronic obstructive pulmonary disease, EWGSOP2: European Working Group on

Sarcopenia in Older People 2, HR: hazard ratio, n: number of participants, NAKO: German National Cohort.
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Abstract

Background The coexistence of low muscle mass and high fat mass, two interrelated conditions strongly
associated with declining health status, has been characterized by only a few protein biomarkers. High-throughput
proteomics enable concurrent measurement of numerous proteins, facilitating the discovery of potentially new
biomarkers.
Methods Data derived from the prospective population-based Cooperative Health Research in the Region of Augsburg
S4/FF4 cohort study (median follow-up time: 13.5 years) included 1478 participants (756 men and 722 women) aged
55–74 years in the cross-sectional and 608 participants (315 men and 293 women) in the longitudinal analysis.
Appendicular skeletal muscle mass (ASMM) and body fat mass index (BFMI) were determined through bioelectrical
impedance analysis at baseline and follow-up. At baseline, 233 plasma proteins were measured using proximity exten-
sion assay. We implemented boosting with stability selection to enable false positives-controlled variable selection to
identify new protein biomarkers of low muscle mass, high fat mass, and their combination. We evaluated prediction
models developed based on group least absolute shrinkage and selection operator (lasso) with 100× bootstrapping
by cross-validated area under the curve (AUC) to investigate if proteins increase the prediction accuracy on top of
classical risk factors.
Results In the cross-sectional analysis, we identified kallikrein-6, C-C motif chemokine 28 (CCL28), and tissue factor
pathway inhibitor as previously unknown biomarkers for muscle mass [association with low ASMM: odds ratio (OR)
per 1-SD increase in log2 normalized protein expression values (95% confidence interval (CI)): 1.63 (1.37–1.95),
1.31 (1.14–1.51), 1.24 (1.06–1.45), respectively] and serine protease 27 for fat mass [association with high BFMI:
OR (95% CI): 0.73 (0.61–0.86)]. CCL28 and metalloproteinase inhibitor 4 (TIMP4) constituted new biomarkers for
the combination of low muscle and high fat mass [association with low ASMM combined with high BFMI: OR
(95% CI): 1.32 (1.08–1.61), 1.28 (1.03–1.59), respectively]. Including protein biomarkers selected in ≥90% of group
lasso bootstrap iterations on top of classical risk factors improved the performance of models predicting low ASMM,
high BFMI, and their combination [delta AUC (95% CI): 0.16 (0.13–0.20), 0.22 (0.18–0.25), 0.12 (0.08–0.17), respec-
tively]. In the longitudinal analysis, N-terminal prohormone brain natriuretic peptide (NT-proBNP) was the only
protein selected for loss in ASMM and loss in ASMM combined with gain in BFMI over 14 years [OR (95% CI): 1.40
(1.10–1.77), 1.60 (1.15–2.24), respectively].
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Conclusions Proteomic profiling revealed CCL28 and TIMP4 as new biomarkers of low muscle mass combined with
high fat mass and NT-proBNP as a key biomarker of loss in muscle mass combined with gain in fat mass. Proteomics
enable us to accelerate biomarker discoveries in muscle research.
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Introduction

For several decades, the disorder of low muscle mass was not
recognized as a severe condition, although it is associated
with various pathological conditions such as non-alcoholic
fatty liver disease, type 2 diabetes,1 hypertension,2 and car-
diovascular mortality.3 A milestone turn in perception of con-
dition severity constituted the assignment of an ICD-10-CM
code for the term sarcopenia in 2016. Besides the increasing
awareness of low muscle mass, early decisive research ob-
served that the combination of low muscle and high fat mass
had a more detrimental effect on disability in daily living
activity,4 multi-morbidity,5 and an increased 10 year cardio-
vascular disease (CVD) risk6 in comparison with participants
solely experiencing low muscle mass.

Previous studies investigated the association of different
muscle mass and fat mass parameters with a low number of
biomarkers. Most studies focused on classical inflammatory
biomarkers, predominantly C-reactive protein (CRP) and inter-
leukin (IL)-6, and found contradictory results regarding the rela-
tion to muscle mass (fat free mass index7 and loss of
appendicular skeletal muscle mass (ASMM)8,9). The combina-
tion of low muscle mass (appendicular lean mass) and high
body fat has been investigated and observed to be indepen-
dently associated with CRP and fibrinogen.10 However, there
has been the concern that a low number of biomarkers might
be insufficient in describing disease development. The principle
of parsimony, that is, only selecting a small set of biomarkers as
predictors for the outcome, could provide incomplete results as
few biomarkers only reflect the most prominent proteins re-
lated to general processes.11 As a response, multiplex measure-
ments including a high number of proteins, that is, proteomics,
have been established over the last years. Several recently pub-
lished cross-sectional and longitudinal studies used different
proteomics measurements to investigate various body compo-
sition parameters including body mass index (BMI), waist cir-
cumference (WC), waist-to-hip ratio (WHR), body fat mass
(kg), and body fat (%),12–19 but only one study investigated a
muscle mass parameter, lean body mass (kg).17 Studies using
high-throughput proteomics to assess associations with muscle
and fat mass parameters in combination are lacking. The aim of
this study is to identify new protein biomarkers of low muscle,
high fat mass, and their combination as well as their changes
over a 14 year follow-up period.

Methods

Study population

The analysis is based on data from the population-based
Cooperative Health Research in the Region of Augsburg
(KORA) study, conducted in Southern Germany. 4261
individuals participated in the KORA S4 baseline
examinations,20 and 2279 additionally participated in the
second follow-up study KORA FF4 (2013–2014).

The present analysis was restricted to participants aged
55–74 years at baseline (n = 1653), who were invited to the
study centre after an overnight fast of at least 8 h. After exclu-
sions, the cross-sectional analysis included 1478 participants
(756 men and 722 women) of which 1315 participants com-
plied with the overnight fasting and 163 participants did not.
Out of these 1478 participants, 608 participants (315 men
and 293 women) with a median follow-up time of 13.5 years
(25th percentile: 13.5 years, 75th percentile: 13.6 years)
remained for the longitudinal analysis. Exclusion criteria of
the cross-sectional and longitudinal analysis are illustrated in
Supporting information, Figure S1.

At the S4 and FF4 surveys, all participants were
examined by trained medical personnel. In the S4 survey,
sociodemographic data, lifestyle, medical history, and medica-
tion use were assessed in a standardized face-to-face
interview.20

Exposure

Plasma samples collected at S4 in 1999–2001 were used to
measure CVD- and inflammation-related protein biomarkers.
Protein measurements were performed using proximity
extension assay (PEA) technology developed by Olink® (Olink
Proteomics, Uppsala, Sweden) with the three panels Olink®
Multiplex CVDII, CVDIII, and Inflammation, each comprising
92 protein biomarkers. Details regarding measurement proto-
col are described elsewhere.21 The Olink® platform provided
the protein biomarkers as log2-normalized protein expression
(NPX) values. We further divided the values by their respec-
tive standard deviation using the total study population with
available data before exclusions. After exclusions, 233 protein
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biomarkers remained for the present analysis. Exclusion
criteria are described in Supporting information, Figure S2.
Supporting information, Tables S1–S3 provide detailed infor-
mation regarding all 276 measured biomarkers of the three
panels before exclusions.

Outcome

The parameters requisite to calculate the continuous out-
come variables ASMM in kilogram and body fat mass index
(BFMI) in kilograms per square meter were assessed at S4
and FF4 using bioelectrical impedance analysis (BIA) with
the BIA 2000-S (DATA-INPUT GmbH, Frankfurt, Germany).
The calculations are included in the Supporting information.
The binary outcomes included the risk group low ASMM,
representing the 25% (n = 370) of participants with the low-
est ASMM and its corresponding control group, the remain-
ing 75% (n = 1108). The risk group of the outcome high
BFMI included the 25% (n = 370) of participants with the
highest BFMI and its corresponding control group, the re-
maining 75% (n = 1108). Sex-specific cut points were used
for this purpose. The risk group for the combined outcome
of low ASMM and high BFMI was determined by intersecting
the 40% of participants with the lowest ASMM and the 40%
of participants with the highest BFMI. This group consists of
7% (n = 110) of the total study population and the corre-
sponding control group of the remaining 93% (n = 1368).
Cut points of 40% were chosen for this outcome to ensure
a sufficiently large size of the risk group while preserving a
relatively extreme value of low ASMM and high BFMI.
Currently, no standardized definition for the combination of
both outcomes exists for European populations. For the
longitudinal analysis, we used the changes of ASMM and
BFMI between baseline and follow-up relative to baseline.
Therefore, we changed the variables’ descriptions from ‘low
ASMM’ to ‘strong decrease in ASMM’ and ‘high BFMI’ to
‘strong increase in BFMI’, while the cut points based on the
percentages remained the same. Detailed descriptions of
the cross-sectional and longitudinal outcomes are included
in Supporting information, Table S4, Figure S3, and Table S5.

Covariates

The covariates (association analysis)/classical risk factors
(prediction analysis) included age, high-density lipoprotein,
triglycerides, glycated haemoglobin, estimated glomerular
filtration rate (eGFR), albumin (all continuous), sex
(female/male), physical activity (high/moderate/low/
no activity), hypertension (no/yes), smoking status (never/
former/current smoker), education (>10 years/≤10 years), al-
cohol intake [0 g/day, 0.1–39.9 g/day (men)/0.1–19.9 g/day
(women), ≥40 g/day [men]/≥20 g/day (women)], and intake

of lipid-lowering medication (no/yes). Detailed information
describing their measurements are available in the
Supporting information.

Statistical analysis

Test results with two-sided P value <0.05 were considered
statistically significant. Analysis workflow is depicted in
Figure 1 and described in the Supporting information. We
implemented the same statistical approach in both,
cross-sectional and longitudinal analyses.

We separated the analysis into two parts to investigate
two different analysis goals, ‘association’ and ‘prediction’.
As both terms have various applications, in the following,
we specify this paper’s meaning of the terms. The goal of
the association analysis comprised the accurate selection of
biomarkers associated with the outcomes independent of co-
variates. Therefore, we implemented boosting with stability
selection as it allows finite error control of false positives en-
abling accurate variable selection. The paper validating this
method explains that its prediction accuracy can suffer as
the true positive rate is due to a tight error control usually
lower compared with prediction methods without stability
selection. ‘Prediction and variable selection are two different
goals.’22 Our goal of the prediction analysis was to identify
biomarker models able to predict unknown data using
methods with a high predictive accuracy. The sensitivity anal-
ysis was employed to compare the highest ranked variables
between these methods.

Results

Participant characteristics of the analysed population are
listed in Supporting information, Tables S6 and S7. Partial cor-
relation analysis between ASMM and BFMI adjusted for age
and sex resulted in a Spearman rank correlation coefficient
of 0.57. Coefficients to other body composition parameters
constituted for BFMI and BMI 0.93, ASMM and BMI 0.68,
BFMI and WC 0.84, ASMM and WC 0.68, BFMI and WHR
0.52, and ASMM and WHR 0.30.

Cross-sectional association of appendicular
skeletal muscle mass/body fat mass index with
protein biomarkers

Table 1 displays the strength of associations of protein
biomarkers selected by boosting with stability selection with
the outcomes adjusted for Models 1 and 2. Figure 2
illustrates a comparison of the selected biomarkers between
the outcomes.

Proteomic profiling of low muscle and high fat mass 1013
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Concerning the association analysis, leptin (LEP) was the
only protein biomarker that was selected for all five out-
comes. Insulin-like growth factor-binding protein (IGFBP) 1
and 2, C-C motif chemokine (CCL) 28, growth/differentiation
factor 2 (GDF2), and growth hormone (GH) were selected
for both, muscle and fat mass parameters. Kallikrein-6
(KLK6), myoglobin (MB), and tissue factor pathway inhibitor
(TFPI) were only selected for the two muscle mass parame-
ters ASMM and low ASMM. Adrenomedullin (ADM), fatty
acid-binding protein 4 (FABP4), serine protease 27 (PRSS27),
and paraoxonase (PON3) were only selected for the two fat
mass parameters BFMI and high BFMI. LEP, CCL28,
and metalloproteinase inhibitor 4 (TIMP4) were selected for
the combination of low ASMM and high BFMI (Table 1).

Table 1 illustrates that after adjusting for the other out-
come in Model 2, the associations of thrombospondin-2
(THBS2) and GDF2 with ASMM, of CCL28 and IGFBP2 with
BFMI as well as of GH with low ASMMbecame non-significant.
The association of LEP with ASMM was still significant but be-
came inverse. After further including an interaction term

between the above-listed proteins and the other outcome,
only the interaction between GDF2 and BFMI for the outcome
of ASMMwas significant [beta coefficient (β) (95% confidence
interval, CI): �0.03 (�0.06, 0.00), P = 0.041].

Cross-sectional analysis: prediction of appendicular
skeletal muscle mass/body fat mass index by
classical risk factors and protein biomarkers

Table 2 displays the cross-validated area under the curve
(AUC) of a logistic regression model including 13 classical risk
factors (AUCbasic) and a model additionally including protein
biomarkers (listed in Supporting information, Table S8) that
were selected in ≥90% of the 100 group least absolute
shrinkage and selection operator (lasso) bootstrap iterations
(AUCextended) as well as their cross-validated delta AUC
(AUCextended � AUCbasic). The receiver operating characteristic
(ROC) curves of the AUC cross-validation are included in
Supporting information, Figure S4.

Figure 1 Statistical analysis plan. AUC, area under the curve; lasso, least absolute shrinkage and selection operator; VIM, variable importance mea-
sure. a1478 participants in the cross-sectional analysis; 608 participants in the longitudinal analysis.
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Figure 3 illustrates the results of the sensitivity analysis in-
cluding the comparison of variables between the outcomes
regarding the number of methods (group lasso with
bootstrapping, random forest, and support vector machine)
that ranked the variables in the top 10.

In the prediction analysis, the protein biomarkers were
ranked equal to or even higher than classical risk factors
(Supporting information, Tables S8 and S9) and were ranked
in the top 10 in all three methods more consistently com-
pared with classical risk factors (Figure 3).

Longitudinal analysis

Detailed results regarding the longitudinal analysis are in-
cluded in Supporting information, Tables S10–S13 and Figures
S5 and S6. Most relevant results of the association analysis in-
clude that N-terminal prohormone brain natriuretic peptide
(NT-proBNP) was the only protein biomarker selected for a
strong decrease in ASMM and the combination of a strong
decrease in ASMM and a strong increase in BFMI. In logistic
regression analyses, NT-proBNP was positively associated

Table 2 Prediction analysis — cross-validated AUCs of logistic regression models with classical risk factors (mean AUCbasic) and protein biomarkers in
addition to classical risk factors (mean AUCextended)

Outcome Mean AUCbasic (95% CI) Mean AUCextended (95% CI) Mean delta AUC (95% CI)

Low ASMM 0.67 (0.65, 0.71) 0.83 (0.82, 0.87) 0.16 (0.13, 0.20)
High BFMI 0.67 (0.65, 0.72) 0.89 (0.88, 0.92) 0.22 (0.18, 0.25)
Combination low ASMM and high BFMI 0.73 (0.69, 0.80) 0.85 (0.83, 0.90) 0.12 (0.08, 0.17)

ASMM, appendicular skeletal muscle mass; AUC, area under the curve; BFMI, body fat mass index; CI, confidence interval.
AUCbasic: AUCof a logistic regressionmodel including13 classical risk factors (age, high-density lipoprotein, triglycerides, glycatedhaemoglobin,
estimated glomerular filtration rate, albumin, sex, physical activity, hypertension, smoking status, education, alcohol intake, and intake
lipid-loweringmedication). AUCextended: AUC of the basicmodel plus all protein biomarkers selected in ≥90%of the group least absolute shrink-
age and selection operator bootstrap iterations (variables are listed in Supporting information, Table S8). Delta AUC: AUCextended � AUCbasic.
AUCs and delta AUCs are arithmetic means of 10-fold cross-validation. The confidence intervals of AUCs and delta AUCs were calculated
via 100-fold percentile bootstrapping.

Figure 2 Association analysis — boosting with stability selection — comparison of protein biomarker selection between the outcomes. Protein bio-
markers are primarily ordered according to the number of outcomes the biomarkers were selected for and secondary according to their selection
for the outcomes in the table from left to right. Only protein biomarkers are included that were selected for at least one outcome. The cut point
for variable selection was a selection frequency of 63%, which was determined by the algorithm based on the number of variables available for selec-
tion, the number of selected variables per iteration, and the maximum number of tolerable false positives. ASMM, appendicular skeletal muscle mass;
BFMI, body fat mass index.
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with a strong decrease in ASMM [odds ratio (OR) (95% CI):
1.40 (1.10, 1.77) and the combined outcome (OR (95% CI):
1.60 (1.15, 2.24)] after adjustment for all 13 covariates.
CCL4, CCL15, and a disintegrin and metalloproteinase with
thrombospondin motifs 13 were selected for relative
change in BFMI and protein delta homolog 1 for strong
increase in BFMI. In the prediction analysis, group lasso with
bootstrapping ranked NT-proBNP in first place for both,
strong decrease in ASMM and the combined outcome. Sensi-
tivity analysis presents age for relative change in ASMM and
CCL4 for relative change in BFMI as the only variables ranked
in the top 10 of all three methods for any outcome.

Discussion

This study aimed to identify new protein biomarkers of low
muscle mass, high fat mass, and their combination as well
as their changes over a 14 year follow-up period. In our
cross-sectional analysis, we identified KLK6, CCL28, and TFPI

as novel protein biomarkers associated with muscle mass
and PRSS27 with fat mass. CCL28 and TIMP4 are newly de-
tected biomarkers associated with the combination of low
muscle and high fat mass. In the longitudinal analysis,
NT-proBNP was the only biomarker that was selected for a
strong decrease in ASMM and the combination of a strong
decrease in ASMM and a strong increase in BFMI over
14 years.

To the best of our knowledge, this is the first study to in-
vestigate the pathological condition of combined low muscle
and high fat mass using proteomics. However, a few previous
studies investigated related body composition parameters.
Six studies investigated proteomics measured with PEA tech-
nology by Olink® using the CVDII panel with BMI-defined
obesity,12 inflammation panel with BMI and WC,13 CVDI panel
with changes in BMI and WHR,14 inflammation, cardiometa-
bolic, CVDII, and CVDIII panels with BMI-defined obesity,15

immuno-oncology panel with BMI,19 and a large-scale map-
ping of genetics of the proteome investigated causal relation-
ships of CVDI panel with BMI, body fat (%), and WHR.18 No
previous study investigated PEA-measured proteomics and

Figure 3 Sensitivity analysis— comparison of variables between the outcomes regarding the number of methods that ranked the variables in the top
10. Only variables are included that were ranked in the top 10 in at least two of the three analysis methods (group least absolute shrinkage and se-
lection operator with 100× bootstrapping, random forest, and support vector machine) in at least one of the five outcomes. Variables are primarily
ordered descending according to the total number (sum of all outcomes) of methods that ranked the variable in the top 10, and secondary according
to the outcome in the table from left to right based on the number of methods that ranked the variable in the top 10 for the outcome. ASMM, ap-
pendicular skeletal muscle mass; BFMI, body fat mass index.
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muscle mass. Other studies implemented the aptamer-based
proteomics approach SOMAscan by SomaLogic (Boulder,
Colorado, USA), which is as PEA a relative quantification
method, but instead of antibodies, aptamers are used,
which are randomly generated nucleotide sequences.23

Aptamer-based proteomics were used to investigate dual-en-
ergy X-ray absorptiometry (DXA)-measured body fat mass
(kg)16 as well as DXA-measured body fat (%) and lean body
mass (kg).17

The comparison of our results with those of other studies
has to be viewed with caution as different ethnicities can
show varying body composition and numerous different
parameters and measurement methods have been used to
define muscle and fat mass. As BFMI showed strong correla-
tions to BMI and WC in our data, comparisons of our results
with those of studies using these parameters are feasible to
some extent.

Relevant protein biomarkers

In the cross-sectional analysis, we identified various protein
biomarkers associated with both, muscle and fat mass param-
eters, among them IGFBP1 and IGFBP2. In line with our re-
sults, both proteins are reduced with increasing obesity24

and an US-American cohort study using single biomarkers
measured with radioimmunoassays showed that higher
total per cent fat and higher visceral fat were associated
with lower IGFBP1 and IGFBP2.25 In a Swedish PEA-based-
proteomics study, IGFBP1 was inversely associated with
BMI-defined obesity15 and by using aptamer methodology,
IGFBP1 was inversely associated with fat mass (kg).16

Concerning muscle mass, IGFBP1 was inversely associated
with DXA-measured low relative muscle mass in a Swedish
cohort of elderly women26 and IGFBP2 was inversely
associated with DXA-measured total muscle mass in an
US-American study.27 Both IGFBPs have been related to glu-
cose and insulin levels and are known to be suppressed by
GH.24 In our study, GH was selected for some of the same
outcomes that the IGFBPs were selected for as well. A longi-
tudinal PEA-based study observed that a decrease in GH was
associated with an increase in BMI and WHR over a 10 year
period.14 Payette et al. summarized the characteristics of
GH among others with a decreased secretion in obesity and
in contrast to our results inducing anabolic effects on skeletal
muscle. GH therapy can increase muscle mass, however with
deleterious side effects.28 Even though the literature is clear
regarding a positive association of GH and muscle mass, we
observed an opposite association. This may be explained as
follows: first, GH secretion is pulsatile and therefore difficult
to interpret as an individual value measured at one time-
point.29 Second, under conditions of cachexia, that is, body
wasting including a decrease in muscle and fat mass, ob-
served usually in patients with chronic diseases such as heart

failure (HF), GH resistance can develop.30 This is character-
ized by increased secretion of GH and reduced insulin-like
growth factor 1 (IGF-1) as GH is ineffective in stimulating
IGF-1 production,30,31 diminishing the highly relevant effect
of IGF-1 on muscle regeneration and decelerating muscle
wasting under conditions of high GH concentrations.30 Even
though we cannot prove this malfunction in our participants
with low ASMM, this process might give an insight into the in-
verse relationship of GH with ASMM in our study.

KLK6, MB, and TFPI were only associated with the continu-
ous and categorical parameters of ASMM. MB is an already
known biomarker for increased muscle mass. MB further in-
creases as a result of exercise induced through the degrada-
tion of protein structures within the muscle. In addition to
its role in oxygen storage and transport, MB is thought to in-
fluence nitric oxide at the microvascular and tissue level.32

KLK6 and TFPI are new biomarkers associated with muscle
mass. Due to a lack of previous studies related to body
composition, we described the main hallmarks of the new
biomarkers. The over-expression of KLK6 transcript and pro-
tein has been recognized in numerous cancer types, such as
breast, renal, pancreatic, ovarian, colorectal, and lung
cancer.33 In our study, KLK6 was a risk factor for low muscle
mass, notably, in participants without cancer. Moreover,
KLK6 is linked to inflammatory pathways due to its ability to
activate protease-activated receptors, which are relevant in
driving inflammatory processes. KLK6 is further attributed
to participate in angiogenesis and apoptosis pathways.33

Regarding TFPI, recent articles investigated the biomarker
as a potential treatment against haemophilia, due to its role
in thrombin generation and coagulation processes.34 To our
knowledge, the relations of KLK6 and TFPI to muscle mass
have not been observed before.

FABP4, ADM, PRSS27, and PON3 were only associated with
the continuous and categorical parameters of BFMI. In a pre-
vious PEA-proteomics study, ADM and FABP4 were positively
associated with BMI-defined obesity.15 An increase in FABP4
was also associated with an increase in BMI and WHR over
10 years.14 Large-scale mapping of genetics of the proteome
identified that BMI and body fat (%) causally affected
PEA-measured ADM and FABP4 positively and WHR affected
these biomarkers inversely.18 PRSS27 was the only new bio-
marker associated with fat mass in our study. The protease
is largely unknown, and there are only a few articles mention-
ing PRSS27, for example, as a possible prognostic marker of
oesophageal squamous cell carcinoma in patients with preop-
erative treatment.35

LEP, CCL28, and TIMP4 were associated with the
combination of low ASMM and high BFMI. Associations of
protein biomarkers to the combined outcome can only be ex-
pected if the associations to ASMM and BFMI are aligned in
opposite directions or if the strengths of the associations dif-
fer to a high extent. If the associations of a biomarker to
ASMM and BFMI are similar, a significant association to the
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combined outcome cannot be assumed as the combined out-
come consists of opposite extremes (low ASMM and high
BFMI). LEP is known to increase muscle mass and is inextrica-
ble from fat mass as it regulates energy expenditure and LEP
sensitivity decreases in obesity.36 In relation to our results,
previous European studies using PEA technology displayed
that LEP was positively associated with BMI-defined
obesity12,15 and changes in BMI and WHR.14 LEP measured
with aptamer-based proteomics was positively associated
with fat mass (kg) in a European cohort16 and was selected
as one of the top three proteins for body fat (%) but not lean
mass (kg) in a Finnish cohort.17 In large-scale mapping of ge-
netics of the proteome, BMI and body fat (%) causally af-
fected LEP positively and WHR affected LEP inversely.18

Underlying mechanisms connecting LEP to muscle and fat
mass might constitute that under physiological conditions,
LEP binds to its receptors in skeletal muscle and fat cells,
which can initiate energy dissipation and reduce fatty acid ac-
cumulation as well as lipotoxicity in the muscle and fat cells.
In obesity, LEP is increased but cannot bind to its receptors;
thus, processes of fatty acid oxidation might be impaired,
which can lead to intracellular accumulation of lipid
intermediates.36 CCL28 is a new marker for muscle mass
and as well as TIMP4 a new marker for the combination of
low muscle and high fat mass. CCL28 has only recently and
for the first time been inversely associated with the meta-
bolic syndrome in Japanese adults also using PEA
proteomics.37 Generally in line with this finding, we observed
an inverse relationship of CCL28 with BFMI. TIMP4 is highly
expressed in adipose tissue and was reported to promote
high fat-induced obesity, fatty liver, and dyslipidaemia in a
study using TIMP4-deficient mice exposed to high-fat diet.
The underlying mechanism may be the promotion of intesti-
nal lipid absorption by TIMP4 through the reduction of the
proteolytic processing of CD36, a fatty acid transporter in
the small intestine. In addition, mice with deficient TIMP4
were protected against skeletal muscle triglyceride accumula-
tion in the quadriceps.38 Our observations are in line with
these reports, as higher levels of TIMP4 were associated with
the combination of lower muscle mass and higher fat mass.

In the longitudinal analysis, NT-proBNP was the only pro-
tein biomarker selected for a strong decrease in ASMM and
the combination of a strong decrease in ASMM and a strong
increase in BFMI. In a longitudinal cohort study, a decrease in
NT-proBNP was associated with an increase in BMI and WHR
over 10 years.14 NT-proBNP levels are increased in severe
muscle wasting and the components of NT-proBNP might
be involved in lipolysis in adipose tissue.39 Furthermore,
NT-proBNP is already established in clinical application as a
marker of HF. Muscle mass reduction as a part of body
wasting is described as a complication of HF by the term car-
diac cachexia.30 This could represent the linkage between
higher baseline NT-proBNP values and a stronger decrease
in muscle mass over time. We are not able to directly verify

this as PEA values are relative and not absolute protein
concentrations necessary for HF classification. Additionally,
compared with the association solely with a strong decrease
in muscle mass, we observed a stronger association of
NT-proBNP with a strong decrease in muscle mass combined
with a strong increase in fat mass, whereas cardiac cachexia is
usually accompanied by reduced muscle and reduced fat
mass. However, because not all HF patients show a decrease
in fat mass as for instance over 80% of HF patients with pre-
served ejection fraction are overweight or obese,30 a de-
creased heart function reflected by NT-proBNP could still be
involved in this association.

Cross-sectional prediction analysis

Protein biomarkers were ranked equally high or even higher
than most classical risk factors. In sensitivity analysis, protein
biomarkers were ranked in the top 10 by all three methods
more consistently compared with classical risk factors. The
prediction performance reflected by the AUC for all three bi-
nary outcomes distinctly increased when protein biomarkers
selected in ≥90% of group lasso bootstraps were added to
the classical risk factors. This highlights the importance of
protein biomarkers in addition to classical risk factors for op-
timal prediction of low muscle, high fat mass, and their
combination.

Comparison: cross-sectional and longitudinal
analysis

Prediction analysis in the longitudinal data yielded distinctly
lower AUCs concerning all three, AUCbasic (only classical risk
factors), AUCextended (classical risk factors plus protein bio-
markers), and delta AUC (AUCextended � AUCbasic), compared
with the cross-sectional data. Moreover, the overlap of bio-
markers that were selected in both, longitudinal and
cross-sectional analyses, was lacking. The main reason likely
is that our prospective data force the relation into the direc-
tion of baseline protein biomarkers leading to changes in
body composition as proteomics data were only available at
baseline, and we were therefore unable to investigate the
changes in proteomics with the changes in body composition.
If, in turn, body composition would affect the biomarkers,
only cross-sectional analyses without pre-specified direction
would be able to identify the association. A recently
published large-scale mapping of genetics of the proteome
supports this concept as it demonstrated that body fat (%)
causally affected LEP, ADM, and FABP4, but there was only
weak evidence of FABP4 and LEP and no evidence of ADM
causally affecting body fat (%).18 In our analysis, these
biomarkers were selected in cross-sectional but not in
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longitudinal analysis, possibly due to the lacking causal effect
of the biomarkers on fat mass.

Strengths and limitations

A major strength of this project presents the usage of
proteomics in addition to classical risk factors enabling us to
simultaneously analyse 233 protein biomarkers. Furthermore,
we employed multiple machine learning approaches to
analyse the data based on different aspects. Another strength
encompasses the usage of stability selection, which strongly
minimizes false positives in the association analysis. Only
protein biomarkers with good measurement quality were
included in the analysis. Concerning the comparison of the
outcomes, bias was minimized as muscle and fat mass were
calculated based on the same BIA measurements. Another
strength constitutes the implementation of both cross-
sectional and longitudinal approaches.

A few limitations of the present study also require acknowl-
edgement. First, generalizability of the results is limited for
younger adults and other ethnicities, because the study in-
cluded primarily white Europeans aged 55–74 years. Second,
as the number of participants in the combined outcome was
relatively low, we had to implement different cut points for
the combined outcome compared with the single outcomes.
Third, the PEA technique used for proteomics measurements
provides only relative and not absolute protein concentration.
Fourth, as we used a targeted proteomics approach with pro-
teins selected for inflammation and CVDs, other non-targeted
proteins could also be relevant for muscle and fat mass.

Conclusion

To the best of our knowledge, we identified KLK6, CCL28, and
TFPI as novel protein biomarkers associated with muscle
mass and PRSS27 with fat mass. CCL28 and TIMP4 are new
biomarkers associated with the combination of a low muscle
and a high fat mass. NT-proBNP was the only biomarker se-
lected for a strong decrease in muscle mass and the combina-
tion of a strong decrease in muscle mass and a strong
increase in fat mass over 14 years. In the cross-sectional anal-
ysis, proteomics substantially improved the prediction of low
muscle, high fat mass, and their combination on top of classi-
cal risk factors.
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Figure S1: Flow chart of participant exclusions of cross-sectional and longitudinal analysis 

BIA, bioelectrical impedance analysis; n, number of participants. 

 

Figure S2: Biomarker exclusions in the three proteomics panels 

CVD, cardiovascular disease; INF, inflammation; LOD, limit of detection; n, number of protein 

biomarkers. 
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Details regarding exclusions of the protein biomarkers: 

We excluded three biomarkers of panel CVDII, three biomarkers of the panel CVDIII, and 23 

biomarkers of the panel Inflammation due to values below the limit of detection (LOD) in > 25 

% of all data before participant exclusions. From the remaining data, nine biomarkers were 

measured in duplicate for all participants in two different panels: Six biomarkers were enclosed 

in both CVDII and Inflammation panels and three biomarkers were included in both CVDIII and 

Inflammation panels. We decided to exclude the values of the panel in which the data entailed 

more values below the LOD and if not applicable, a higher inter-assay coefficient of variation. 

Resulting from this, four biomarkers of CVDII, three biomarkers of CVDIII, and two biomarkers 

of Inflammation were excluded. Additionally, five biomarkers were excluded in CVDIII, because 

of missing values not resulting from values below LOD. This concludes to a total number of 

233 different protein biomarkers incorporated into the analysis (Figure S2). For all biomarkers 

that were not excluded and contained values < LOD, the values < LOD remained in the data 

and were not substituted. 

 
 
 
Table S1: Biomarker information CVDII panel 

 

Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

ACE2 
Angiotensin-converting 
enzyme 2  

Q9BYF1 1.18 0 0 11 13.73 

ADAM-TS13 

A disintegrin and 
metalloproteinase with 
thrombospondin motifs 
13 

Q76LX8 1.88 0 0 5.58 6.92 

ADM Adrenomedullin P35318 1.06 0 0 10.15 12.5 

AGRP Agouti-related protein  O00253 0.47 0 0 5.16 12.19 

AMBP Protein AMBP  P02760 0.83 0 0 3.42 4.93 

ANGPT1 Angiopoietin-1 Q15389 0.86 0 0 6.82 23.38 

BMP-6 
Bone morphogenetic 
protein 6  

P22004 2.08 0 0 5.98 17.1 

BNP Natriuretic peptides B  P16860 1.55 1092 69.55  a  a  

BOC Brother of CDO  Q9BWV1 0.61 0 0 6.77 10.52 

CA5A 
Carbonic anhydrase 5A, 
mitochondrial  

P35218 1.51 317 20.19 11.19 14.66 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

CCL17 C-C motif chemokine 17  Q92583 0.83 0 0 6.11 30.36 

CCL3 C-C motif chemokine 3  P10147 0.58 0 0 5.58 13.28 

CD4 
T-cell surface 
glycoprotein CD4  

P01730 1.26 0 0 5.65 15.22 

CD40-L CD40 ligand  P29965 2.46 4 0.25 6.73 63.53 

CD84 SLAM family member 5  Q9UIB8 2.08 0 0 4.64 18.96 

CEACAM8 
Carcinoembryonic 
antigenrelated cell 
adhesion molecule 8  

P31997 1.91 0 0 5.55 16.21 

CTRC Chymotrypsin C  Q99895 1.42 0 0 5.15 10.92 

CTSL1 Cathepsin L1  P07711 0.5 0 0 4.06 10.3 

CXCL1 
C-X-C motif chemokine 
1  

P09341 3.84 0 0 4.09 43.33 

DCN Decorin  P07585 1.13 0 0 3.86 9.15 

DECR1 
2,4-dienoyl-CoA 
reductase, mitochondrial 

Q16698 4.95 25 1.59 12.07 39.82 

Dkk-1 
Dickkopf-related protein 
1  

O94907 0.93 0 0 5.11 16.65 

FABP2 
Fatty acid-binding 
protein, intestinal  

P12104 1.66 0 0 5.38 15.76 

FGF-21 
Fibroblast growth factor 
21  

Q9NSA1 1.84 0 0 7.12 13.39 

FGF-23 
Fibroblast growth factor 
23  

Q9GZV9 2.96 28 1.78 4.22 10.24 

FS Follistatin  P19883 2.08 0 0 4.26 9.51 

Gal-9 Galectin-9  O00182 0.46 0 0 3.57 8.49 

GDF-2 
Growth/differentiation 
factor 2  

Q9UK05 2.81 0 0 7.02 12.5 

GH Growth hormone  P01241 1.1 0 0 3.7 28.29 

GIF Gastric intrinsic factor  P27352 1.7 3 0.19 10.09 11.65 

GLO1 Lactoylglutathione lyase  Q04760 1.86 0 0 5.67 66.17 

GT Gastrotropin  P51161 0.75 34 2.17 6.18 11.21 

HAOX1 Hydroxyacid oxidase 1  Q9UJM8 1.1 0 0 8.89 17.66 

HB-EGF 
Proheparin-binding EGF-
like growth factor  

Q99075 0.61 0 0 6.36 17.6 

HO-1 Heme oxygenase 1  P09601 0.97 0 0 5.84 9.94 

hOSCAR 
Osteoclast-associated 
immunoglobulin-like 
receptor 

Q8IYS5 2.29 0 0 6.19 6.87 

HSP 27 
Heat shock 27 kDa 
protein  

P04792 4.29 0 0 5.26 8.73 

IDUA Alpha-L-iduronidase  P35475 1.73 0 0 5.5 15.53 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

IgG Fc 
receptor II-b 

Low affinity 
immunoglobulin gamma 
Fc region receptor II-b  

P31994 2.2 122 7.77 7.24 13.47 

IL-17D Interleukin-17D  Q8TAD2 1.95 52 3.31 9.15 12.73 

IL-1RA 
Interleukin-1 receptor 
antagonist protein  

P18510 1.79 0 0 4.49 18.48 

IL-27 Interleukin-27 
Q8NEV9
,Q14213 

0.99 0 0 4.56 6.7 

IL-4RA 
Interleukin-4 receptor 
subunit alpha  

P24394 0.88 0 0 4.91 16.73 

IL16 Pro-interleukin-16  Q14005 2.47 0 0 7.43 71.9 

IL18 Interleukin-18  Q14116 0.45 0 0 5.68 10.41 

IL1RL2 
Interleukin-1 receptor-
like 2  

Q9HB29 2.14 0 0 7.33 12.14 

IL6 Interleukin-6  P05231 1.57 50 3.18 3.98 11.3 

ITGB1BP2 Melusin  Q9UKP3 4.89 123 7.83   a 9.72 

KIM1 Kidney Injury Molecule  Q96D42 2.01 0 0 5.14 10.28 

LEP Leptin  P41159 1.59 0 0 5.82 14.32 

LOX-1 
Lectin-like oxidized LDL 
receptor 1  

P78380 1.08 0 0 4.87 12.58 

LPL Lipoprotein lipase  P06858 2.36 0 0 3.13 7.99 

MARCO 
Macrophage receptor 
MARCO  

Q9UEW
3 

1.42 0 0 4.16 11.34 

MERTK 
Tyrosine-protein kinase 
Mer  

Q12866 2.08 0 0 4.84 12.96 

MMP12 
Matrix 
metalloproteinase-12  

P39900 0.76 0 0 4.62 10.53 

MMP7 
Matrix 
metalloproteinase-7  

P09237 1.36 0 0 3.31 22.69 

NEMO 
NF-kappa-B essential 
modulator  

Q9Y6K9 3.74 2 0.13 7.78 68.32 

PAPPA Pappalysin-1  Q13219 2.99 1229 78.28 8.53 8.92 

PAR-1 
Proteinase-activated 
receptor 1  

P25116 1.38 0 0 5.33 23.68 

PARP-1 
Poly [ADP-ribose] 
polymerase 1  

P09874 3.96 315 20.06 24.09 19.74 

PD-L2 
Programmed cell death 
1 ligand 2  

Q9BQ51 1.55 2 0.13 5.13 10.54 

PDGF 
subunit B 

Platelet-derived growth 
factor subunit B  

P01127 2.26 0 0 7.82 25.22 

PGF Placenta growth factor  P49763 1.08 0 0 8.32 11.87 

PIgR 
Polymeric 
immunoglobulin receptor  

P01833 2.15 0 0 4.19 6.07 

PRELP Prolargin  P51888 0.39 0 0 3.89 6.32 

PRSS27 Serine protease 27  Q9BQR3 0.62 0 0 4.02 6.18 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

PRSS8 Prostasin Q16651 2.1 0 0 3.75 7.54 

PSGL-1 
P-selectin glycoprotein 
ligand 1 

Q14242 1.12 0 0 6.16 7.38 

PTX3 
Pentraxin-related protein 
PTX3  

P26022 1.6 0 0 6.27 9.3 

RAGE 
Receptor for advanced 
glycosylation end 
products 

Q15109 1.15 0 0 4.97 10.14 

REN Renin  P00797 0.76 0 0 7.56 10.6 

SCF Stem cell factor  P21583 0.89 0 0 3.26 7 

SERPINA12 Serpin A12 Q8IW75 -0.16 2 0.13 5.18 13.01 

SLAMF7 SLAM family member 7  Q9NQ25 3.51 498 31.72 6.97 13.61 

SOD2 
Superoxide dismutase 
[Mn], mitochondrial  

P04179 0.66 0 0 3.86 4.91 

SORT1 Sortilin  Q99523 1.45 0 0 3.47 8.43 

SPON2 Spondin-2  Q9BUD6 0.62 0 0 4.14 7.96 

SRC 
Proto-oncogene 
tyrosine-protein kinase 
Src  

P12931 1.29 0 0 5.37 29.18 

STK4 
Serine/threonine-protein 
kinase 4  

Q13043 2.64 15 0.96 7.99 26.11 

TF Tissue factor  P13726 0.06 0 0 4.2 8.53 

TGM2 
Protein-glutamine 
gamma-
glutamyltransferase 2  

P21980 2.44 0 0 2.43 12.44 

THBS2 Thrombospondin-2  P35442 0.29 0 0 3.67 4.81 

THPO Thrombopoietin  P40225 0.14 0 0 5.72 11.97 

TIE2 Angiopoietin-1 receptor  Q02763 1.43 0 0 5.24 7.67 

TM Thrombomodulin  P07204 3.73 0 0 4.74 8.32 

TNFRSF10A 
Tumor necrosis factor 
receptor superfamily 
member 10A  

O00220 2.01 0 0 5.44 9.71 

TNFRSF11A 
Tumor necrosis factor 
receptor superfamily 
member 11A  

Q9Y6Q6 1.24 0 0 4.9 10.96 

TNFRSF13B 
Tumor necrosis factor 
receptor superfamily 
member 13B  

O14836 1.84 0 0 4.75 8.33 

TRAIL-R2 
TNF-related apoptosis-
inducing ligand receptor 
2  

O14763 1.68 0 0 6.33 9.24 

VEGFD 
Vascular endothelial 
growth factor D  

O43915 0.32 0 0 5.61 6.81 

VSIG2 
V-set and 
immunoglobulin domain-
containing protein 2  

Q96IQ7 2.16 0 0 7.83 11.65 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

XCL1 Lymphotactin  P47992 0.5 0 0 4.61 10.06 

CV, coefficient of variation; LOD, limit of detection; UniProt ID, universal protein database identification. 

a All or nearly all values of the control samples, which are requisite to calculate the CVs, were < LOD. If 

the values of the control samples are < LOD, they are not included in the calculation of the CVs. 

Therefore, the number of available values was too low to estimate the CV. 

 

Table S2: Biomarker information CVDIII panel 

 

Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

ALCAM CD166 antigen  Q13740 0.71 0 0 6.04 16.21 

AP-N Aminopeptidase N  P15144 0.63 0 0 5.42 13.16 

AXL 
Tyrosine-protein kinase 
receptor UFO  

P30530 2.95 0 0 6.62 18.45 

AZU1 Azurocidin  P20160 3.06 841 53.46   a   a 

BLM 
hydrolase 

Bleomycin hydrolase  Q13867 1.45 52 3.31 5.41 18.12 

CASP-3 Caspase-3  P42574 3.14 4 0.25 6.18 69.48 

CCL15 C-C motif chemokine 15  Q16663 0.76 0 0 6.81 17.15 

CCL16 C-C motif chemokine 16  O15467 0.58 0 0 8.22 19.65 

CCL24 C-C motif chemokine 24  O00175 0.61 0 0 6.45 17.3 

CD163 
Scavenger receptor 
cysteine-rich type 1 
protein M130  

Q86VB7 0.88 0 0 6.62 16.62 

CD93 
Complement component 
C1q receptor  

Q9NPY3 1.21 0 0 5.14 15.99 

CDH5 Cadherin-5  P33151 1.24 0 0 7.06 18.09 

CHI3L1 Chitinase-3-like protein 1  P36222 2.86 164 10.43 4.95 13.02 

CHIT1 Chitotriosidase-1  Q13231 1.58 87 5.53 5.22 17.57 

CNTN1 Contactin-1  Q12860 0.69 0 0 7.06 17.89 

COL1A1 
Collagen alpha-1(I) 
chain  

P02452 0.35 0 0 5.16 14.62 

CPA1 Carboxypeptidase A1  P15085 0.40 0 0 5.61 13.75 

CPB1 Carboxypeptidase B  P15086 0.20 0 0 5.64 13.64 

CSTB Cystatin-B  P04080 3.26 47 2.99 6.83 22.64 

CTSD Cathepsin D  P07339 1.26 0 0 4.51 14.86 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

CTSZ Cathepsin Z  Q9UBR2 0.64 0 0 5.51 15.3 

CXCL16 
C-X-C motif chemokine 
16  

Q9H2A7 0.69 0 0 5.42 15.85 

DLK-1 Protein delta homolog 1  P80370 0.62 0 0 6.24 17.52 

EGFR 
Epidermal growth factor 
receptor  

P00533 0.90 0 0 5.66 13.34 

Ep-CAM 
Epithelial cell adhesion 
molecule  

P16422 2.29 0 0 5.69 21.07 

EPHB4 Ephrin type-B receptor 4  P54760 1.40 0 0 5.17 15.22 

FABP4 
Fatty acid-binding 
protein 4 

P15090 1.61 0 0 5.85 21.23 

FAS 
Tumor necrosis factor 
receptor superfamily 
member 6  

P25445 -0.16 0 0 5.81 16.09 

Gal-3 Galectin-3  P17931 0.61 0 0 5.64 14.55 

Gal-4 Galectin-4  P56470 0.61 0 0 7.03 14.98 

GDF-15 
Growth/differentiation 
factor 15  

Q99988 0.51 0 0 5.07 14.89 

GP6 Platelet glycoprotein VI  Q9HCN6 1.00 37 2.35 5.82 34.23 

GRN Granulins  P28799 1.97 0 0 5.44 13.83 

ICAM-2 
Intercellular adhesion 
molecule 2  

P13598 1.10 0 0 6.59 15.94 

IGFBP-1 
Insulin-like growth factor-
binding protein 1  

P08833 1.33 0 0 5.44 17.38 

IGFBP-2 
Insulin-like growth factor-
binding protein 2  

P18065 1.54 0 0 5.52 17.79 

IGFBP-7 
Insulin-like growth factor-
binding protein 7  

Q16270 1.19 0 0 6.37 16.87 

IL-17RA Interleukin-17 receptor A  Q96F46 1.36 0 0 6.3 24.57 

IL-18BP 
Interleukin-18-binding 
protein  

O95998 0.90 0 0 6.13 15.4 

IL-1RT1 
Interleukin-1 receptor 
type 1  

P14778 2.17 0 0 5.74 15.31 

IL-1RT2 
Interleukin-1 receptor 
type 2  

P27930 2.85 0 0 5.66 14.4 

IL-6RA 
Interleukin-6 receptor 
subunit alpha  

P08887 2.39 0 0 5.22 15.24 

IL2-RA 
Interleukin-2 receptor 
subunit alpha  

P01589 0.56 0 0 5.13 13.17 

ITGB2 Integrin beta-2  P05107 3.61 0 0 5.04 31.13 

JAM-A 
Junctional adhesion 
molecule A  

Q9Y624 2.45 1 0.06 7.28 64.49 

KLK6 Kallikrein-6  Q92876 1.59 75 4.77 6.87 14.04 

LDL receptor 
Low-density lipoprotein 
receptor  

P01130 0.73 0 0 5.71 16.18 

LTBR 
Lymphotoxin-beta 
receptor  

P36941 0.42 0 0 4.95 15.07 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

MB Myoglobin  P02144 2.16 0 0 6.48 15.06 

MCP-1 
Monocyte chemotactic 
protein 1  

P13500 0.49 0 0 5.65 19.24 

MEPE 
Matrix extracellular 
phosphoglycoprotein  

Q9NQ76 1.11 0 0 8.96 19.91 

MMP-2 
Matrix 
metalloproteinase-2  

P08253 0.40 0 0 6.31 18.11 

MMP-3 
Matrix 
metalloproteinase-3  

P08254 1.30 0 0 6.64 17.82 

MMP-9 
Matrix 
metalloproteinase-9  

P14780 2.06 0 0 6.13 23.75 

MPO Myeloperoxidase  P05164 3.22 347 22.06 3.73 12.41 

Notch 3 
Neurogenic locus notch 
homolog protein 3  

Q9UM47 0.87 0 0 7.24 18.32 

NT-proBNP 
N-terminal prohormone 
brain natriuretic peptide  

NA 2.34 236 15 6.62 17.19 

OPG Osteoprotegerin  O00300 0.73 0 0 5.78 15.64 

OPN Osteopontin  P10451 1.04 0 0 6.22 19.29 

PAI 
Plasminogen activator 
inhibitor 1  

P05121 1.35 0 0 5.89 22.87 

PCSK9 
Proprotein convertase 
subtilisin/kexin type 9  

Q8NBP7 0.82 0 0 8.13 18.11 

PDGF 
subunit A 

Platelet-derived growth 
factor subunit A  

P04085 2.08 57 3.62 5.5 36.9 

PECAM-1 
Platelet endothelial cell 
adhesion molecule  

P16284 0.99 0 0 5.32 37.48 

PGLYRP1 
Peptidoglycan 
recognition protein 1  

O75594 1.63 0 0 5.36 16.09 

PI3 Elafin  P19957 1.13 66 4.2 10.15 38.14 

PLC Perlecan  P98160 3.40 0 0 4.73 14.56 

PON3 Paraoxonase  Q15166 0.68 0 0 6.92 18.11 

PRTN3 Myeloblastin  P24158 3.66 429 27.27 4.07 21.1 

PSP-D 
Pulmonary surfactant-
associated protein D  

P35247 1.40 16 1.02 8.65 12.08 

RARRES2 
Retinoic acid receptor 
responder protein 2  

Q99969 1.39 0 0 7.64 14.89 

RETN Resistin  Q9HD89 2.85 0 0 5.26 15.52 

SCGB3A2 
Secretoglobin family 3A 
member 2  

Q96PL1 0.20 0 0 6.24 17.44 

SELE E-selectin  P16581 3.23 0 0 4.84 13.58 

SELP P-selectin  P16109 1.92 0 0 6.47 40.36 

SHPS-1 
Tyrosine-protein 
phosphatase non-
receptor type substrate 1  

P78324 1.04 0 0 6.23 17.31 

SPON1 Spondin-1  Q9HCB6 1.51 746 47.43 5.6 10.9 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

ST2 ST2 protein  Q01638 1.62 1 0.06 8.81 14.62 

t-PA 
Tissue-type plasminogen 
activator  

P00750 2.44 0 0 5.6 25.63 

TFF3 Trefoil factor 3  Q07654 2.68 0 0 6.49 15.5 

TFPI 
Tissue factor pathway 
inhibitor  

P10646 0.53 0 0 6.2 15.91 

TIMP4 
Metalloproteinase 
inhibitor 4  

Q99727 0.58 0 0 5.78 14.53 

TLT-2 
Trem-like transcript 2 
protein  

Q5T2D2 2.47 0 0 7.23 22 

TNF-R1 
Tumor necrosis factor 
receptor 1  

P19438 1.36 0 0 6.46 15.15 

TNF-R2 
Tumor necrosis factor 
receptor 2  

P20333 2.17 0 0 6.08 15.06 

TNFRSF10C 
Tumor necrosis factor 
receptor superfamily 
member 10C  

O14798 1.77 0 0 5.94 14.54 

TNFRSF14 
Tumor necrosis factor 
receptor superfamily 
member 14  

Q92956 1.85 0 0 5.39 18.65 

TNFSF13B 
Tumor necrosis factor 
ligand superfamily 
member 13B  

Q9Y275 1.28 0 0 6.02 16.91 

TR 
Transferrin receptor 
protein 1  

P02786 0.57 0 0 4.34 12.57 

TR-AP 
Tartrate-resistant acid 
phosphatase type 5  

P13686 1.97 0 0 5.58 14.63 

U-PAR 
Urokinase plasminogen 
activator surface 
receptor  

Q03405 1.86 0 0 6.13 18.69 

uPA 
Urokinase-type 
plasminogen activator  

P00749 1.09 0 0 5.65 15.43 

vWF von Willebrand factor  P04275 1.09 0 0 11.49 38.74 

CV, coefficient of variation; LOD, limit of detection; UniProt ID, universal protein database identification. 

a All or nearly all values of the control samples, which are requisite to calculate the CVs, were < LOD. If 

the values of the control samples are < LOD, they are not included in the calculation of the CVs. 

Therefore, the number of available values was too low to estimate the CV. 

 
 
Table S3: Biomarker information Inflammation panel 

 

Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

4E-BP1 
Eukaryotic translation 
initiation factor 4E-
binding protein 1  

Q13541 2.19 0 0 5.78 64.17 

ADA Adenosine Deaminase  P00813 1.06 0 0 6.88 29.35 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

ARTN Artemin  Q5T4W7 0.97 1476 93.95  a   a  

AXIN1 Axin-1  O15169 2.24 26 1.65 5.08 48.36 

Beta-NGF Beta-nerve growth factor  P01138 1.68 1549 98.6  a   a  

CASP-8 Caspase-8  Q14790 1.64 215 13.69 6.17 48 

CCL11 Eotaxin  P51671 0.75 0 0 5.83 14.16 

CCL19 C-C motif chemokine 19  Q99731 1.82 0 0 5.45 15.73 

CCL20 C-C motif chemokine 20  P78556 1.64 0 0 7.31 21.3 

CCL23 C-C motif chemokine 23  P55773 1.63 0 0 5.38 12.34 

CCL25 C-C motif chemokine 25  O15444 0.55 0 0 5.97 10.84 

CCL28 C-C motif chemokine 28  Q9NRJ3 0.71 0 0 7.38 12.03 

CCL3 C-C motif chemokine 3  P10147 0.14 0 0 6.48 12.74 

CCL4 C-C motif chemokine 4  P13236 0.45 0 0 6.06 14.57 

CD244 
Natural killer cell 
receptor 2B4  

Q9BZW8 2.03 0 0 7.16 21.25 

CD40 CD40L receptor  P25942 2.21 0 0 5.33 25.34 

CD5 
T-cell surface 
glycoprotein CD5  

P06127 0.7 0 0 6.09 20.84 

CD6 
T cell surface 
glycoprotein CD6 
isoform  

P30203 1.5 0 0 11.63 28.56 

CD8A 
T-cell surface 
glycoprotein CD8 alpha 
chain  

P01732 1.23 0 0 8.41 14.18 

CDCP1 
CUB domain-containing 
protein 1  

Q9H5V8 -0.06 0 0 10.33 12.52 

CSF-1 
Macrophage colony-
stimulating factor 1  

P09603 1.24 0 0 5.66 8.18 

CST5 Cystatin D  P28325 0.57 0 0 4.77 11.88 

CX3CL1 Fractalkine  P78423 1.11 0 0 8.39 13.04 

CXCL1 
C-X-C motif chemokine 
1  

P09341 2.49 0 0 5.49 42.98 

CXCL10 
C-X-C motif chemokine 
10  

P02778 2.98 0 0 5.96 15.71 

CXCL11 
C-X-C motif chemokine 
11  

O14625 1.89 0 0 5.59 37.97 

CXCL5 
C-X-C motif chemokine 
5  

P42830 3.17 0 0 4.49 40.11 

CXCL6 
C-X-C motif chemokine 
6  

P80162 1.28 0 0 5.63 30.23 

CXCL9 
C-X-C motif chemokine 
9  

Q07325 1.38 0 0 5.45 12.76 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

DNER 
Delta and Notch-like 
epidermal growth factor-
related receptor  

Q8NFT8 1.31 0 0 4.22 9.55 

EN-RAGE Protein S100-A12  P80511 0.13 0 0 7.89 28.18 

FGF-19 
Fibroblast growth factor 
19  

O95750 0.89 0 0 5.69 13.34 

FGF-21 
Fibroblast growth factor 
21  

Q9NSA1 1.6 0 0 6.26 11.12 

FGF-23 
Fibroblast growth factor 
23  

Q9GZV9 2.38 1279 81.41 8.34 9.23 

FGF-5 
Fibroblast growth factor 
5  

P12034 0.68 1203 76.58 8.94 8.53 

Flt3L 
Fms-related tyrosine 
kinase 3 ligand  

P49771 1.89 0 0 6.28 11.58 

GDNF 
Glial cell line-derived 
neurotrophic factor  

P39905 2.07 721 45.89 8.89 12.11 

HGF Hepatocyte growth factor  P14210 0.93 0 0 5.3 14.82 

IFN-gamma Interferon gamma  P01579 3.08 0 0 6.9 14.08 

IL-1 alpha Interleukin-1 alpha  P01583 -0.62 1493 95.04  a   a  

IL-10RA 
Interleukin-10 receptor 
subunit alpha  

Q13651 0.34 512 32.59 8.22 9.7 

IL-10RB 
Interleukin-10 receptor 
subunit beta  

Q08334 0.73 0 0 6.45 9.64 

IL-12B 
Interleukin-12 subunit 
beta  

P29460 0.19 0 0 6.62 13.25 

IL-15RA 
Interleukin-15 receptor 
subunit alpha  

Q13261 0.22 0 0 8.66 9.87 

IL-17A Interleukin-17A  Q16552 1.1 725 46.15 9.99 13.14 

IL-17C Interleukin-17C  Q9P0M4 1.48 878 55.89 6.67 5.76 

IL-18R1 Interleukin-18 receptor 1  Q13478 1.36 0 0 5.29 11.1 

IL-20 Interleukin-20  Q9NYY1 0.73 1515 96.44  a   a  

IL-20RA 
Interleukin-20 receptor 
subunit alpha  

Q9UHF4 1.03 1394 88.73 7.64 9.21 

IL-22 RA1 
Interleukin-22 receptor 
subunit alpha-1  

Q8N6P7 2.63 1369 87.14 9.04 14.66 

IL-24 Interleukin-24  Q13007 1.99 1501 95.54  a   a  

IL-2RB 
Interleukin-2 receptor 
subunit beta  

P14784 1.6 1443 91.85  a  1.77 

IL10 Interleukin-10  P22301 1.99 5 0.32 9.48 16.18 

IL13 Interleukin-13  P35225 1.14 1423 90.58 6.96 11.88 

IL18 Interleukin-18  Q14116 0.35 0 0 5.62 14.9 

IL2 Interleukin-2  P60568 1.48 1568 99.81  a  a  

IL33 Interleukin-33  O95760 1.41 1542 98.15  a   a  
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

IL4 Interleukin-4  P05112 1.07 1409 89.69  a  2.41 

IL5 Interleukin-5  P05113 1.34 1415 90.07 8.35 15.58 

IL6 Interleukin-6  P05231 1.48 23 1.46 5.27 12.44 

IL7 Interleukin-7  P13232 0.96 0 0 7.71 20.38 

IL8 Interleukin-8  P10145 0.85 0 0 5.72 13.86 

LAP TGF-
beta-1 

Latency-associated 
peptide transforming 
growth factor beta-1  

P01137 1.08 0 0 5.26 17.29 

LIF 
Leukemia inhibitory 
factor  

P15018 0.88 1504 95.74 5.44 7.43 

LIF-R 
Leukemia inhibitory 
factor receptor  

P42702 0.81 0 0 7.19 11.11 

MCP-1 
Monocyte chemotactic 
protein 1  

P13500 1.77 0 0 4.94 11.15 

MCP-2 
Monocyte chemotactic 
protein 2  

P80075 1.93 0 0 8.85 16.51 

MCP-3 
Monocyte chemotactic 
protein 3  

P80098 1.24 165 10.5 7.67 9.12 

MCP-4 
Monocyte chemotactic 
protein 4  

Q99616 3.47 0 0 4.77 32.72 

MMP-1 
Matrix 
metalloproteinase-1  

P03956 1.73 0 0 4.7 28.16 

MMP-10 
Matrix 
metalloproteinase-10  

P09238 2.43 0 0 4.92 11.4 

NRTN Neurturin  Q99748 1.02 1502 95.61  a   a  

NT-3 Neurotrophin-3  P20783 1.25 6 0.38 7.69 12.76 

OPG Osteoprotegerin  O00300 1.68 0 0 4.57 12.03 

OSM Oncostatin-M  P13725 0.7 0 0 6.52 16.86 

PD-L1 
Programmed cell death 
1 ligand 1  

Q9NZQ7 2.82 0 0 5.95 15.45 

SCF Stem cell factor  P21583 1.06 0 0 4.17 8.85 

SIRT2 SIR2-like protein 2  Q8IXJ6 4.28 205 13.05 7.04 100.19 

SLAMF1 
Signaling lymphocytic 
activation molecule  

Q13291 1.49 1007 64.1  a  4.39 

ST1A1 Sulfotransferase 1A1  P50225 2.67 204 12.99  a   a  

STAMBP STAM-binding protein  O95630 2.29 0 0 6.65 86.4 

TGF-alpha 
Transforming growth 
factor alpha  

P01135 0.49 0 0 8.98 10.53 

TNF Tumor necrosis factor  P01375 0.21 0 0 6.08 9.45 

TNFB TNF-beta  P01374 1.21 0 0 7.71 10.28 

TNFRSF9 
Tumor necrosis factor 
receptor superfamily 
member 9  

Q07011 1.59 0 0 6.27 10.92 
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Biomarker 
ID 

Full name 
UniProt 

ID 
LOD 

Values 
<LOD 

(n) 

Values 
<LOD 

(%) 

Intra-
Assay 
CV (%) 

Inter-
Assay 
CV (%) 

TNFSF14 
Tumor necrosis factor 
ligand superfamily 
member 14  

O43557 1.47 0 0 6.56 35.24 

TRAIL 
TNF-related apoptosis-
inducing ligand  

P50591 1.16 0 0 4.94 9.24 

TRANCE 
TNF-related activation-
induced cytokine  

O14788 1.02 0 0 8.16 13.39 

TSLP 
Thymic stromal 
lymphopoietin  

Q969D9 0.64 1476 93.95  a   a  

TWEAK 
Tumor necrosis factor 
(Ligand) superfamily, 
member 12 

O43508 1.67 0 0 6.5 13.86 

uPA 
Urokinase-type 
plasminogen activator  

P00749 1.69 0 0 4.39 11.53 

VEGFA 
Vascular endothelial 
growth factor A  

P15692 1.95 0 0 6.67 13.17 

CV, coefficient of variation; LOD, limit of detection; UniProt ID, universal protein database identification. 

a All or nearly all values of the control samples, which are requisite to calculate the CVs, were < LOD. If 

the values of the control samples are < LOD, they are not included in the calculation of the CVs. 

Therefore, the number of available values was too low to estimate the CV. 

 
 
 
 
Detailed description concerning the calculations of the outcomes: 
 
Based on the impedance, the BIA generates the parameters resistance and reactance, which 

were used for the calculations of the variables appendicular skeletal muscle mass (ASMM) 

and body fat mass index (BFMI). ASMM was calculated using the Sergi equation: ASMM(kg) 

= -3.964 + 0.227 * resistive index + 0.095 * weight + 1.384 * sex + 0.064 * reactance [1], 

recommended by the European Working Group on Sarcopenia in Older People in 2019 [2]. 

Concerning the Sergi equation, the resistive index is the resistance normalized by stature 

(height2 / resistance). Sex was coded as female = 0 and male = 1. BFMI was calculated using 

the equation of Kyle et al. [3]. This included first the calculation of fat free mass (FFM) in kg 

using the formula: FFM = -4.104 + 0.518 * (height2 / resistance) + 0.231 * weight + 0.130 * 

reactance + 4.229 * sex [4], followed by the calculation of body fat in kg (body fat = weight - 

FFM) and subsequently the calculation of BFMI (BFMI = body fat / height2).  
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In the following, we describe the choice of using BIA measurements for our study. Apart from 

the lower costs, BIA does not expose the participants to radiation as opposed to dual X-ray 

absorptiometry (DXA) and computed tomography (CT) [5]. This could increase the compliance 

of the participants and therefore reduce selection bias. Moreover, we specifically used 

equations to calculate muscle [1] and fat mass [4] for which DXA was used as the reference 

method. The consensus of the European Working Group on Sarcopenia in Older People from 

2019 on which we based our choice to use the Sergi equation for ASMM of BIA measurements, 

advised the BIA as well as DXA, CT or magnetic resonance imaging (MRI) in research studies 

to confirm sarcopenia through measuring muscle quantity or quality [2]. 

 
 
Table S4: Definition of the outcomes in the cross-sectional analysis 

 

Outcome variable Type Coding N 

ASMM 
Continuous 
(kg) 

 - 1478 

BFMI 
Continuous 
(kg/m2) 

- 1478 

Low ASMMa Binary 
1: ASMM < 25th sex-specific percentile 
0: ASMM ≥ 25th sex-specific percentile 

1: 370 
0: 1108 

High BFMIb Binary 
1: BFMI > 75th sex-specific percentile 
0: BFMI ≤ 75th sex-specific percentile 

1: 370 
0: 1108 

Combination low 
ASMMc & high BFMId 

Binary 

1: ASMM < 40th sex-specific percentile 
    & BFMI > 60th sex-specific 
    percentile 
0: Remaining participants 

1: 110 
0: 1368 

a Cut point for women: 15.26 kg, cut point for men: 21.18 kg 

b Cut point for women: 13.42 kg/m2, cut point for men: 9.78 kg/m2 

c Cut point for women: 16.08 kg, cut point for men: 22.27 kg 

d Cut point for women: 12.03 kg/m2, cut point for men: 8.79 kg/m2 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; N, number of participants 
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Figure S3: Definition of the outcomes in the cross-sectional analysis 

(a) The binary outcome low ASMM consists of the risk group including participants representing the 25 

% (n = 370) of participants with the lowest ASMM and its corresponding control group, the remaining 75 

a

b
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% (n = 1108). The binary outcome high BFMI included the 25 % (n = 370) of participants with the highest 

BFMI and its corresponding control group, the remaining 75 % (n = 1108). (b) The risk group for the 

combined outcome of low ASMM and high BFMI was determined by intersecting the 40 % of participants 

with the lowest ASMM and the 40 % of participants with the highest BFMI, illustrated in light grey. This 

group consists of 7 % (n = 110) of the total study population and the corresponding control group of the 

remaining participants (n = 1368). 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; n, number of participants. 

a For the group of male participants, one participant had the same value as the cutoff for BFMI. 

Therefore, the one participant did count into the group of ≤ 60 %. As this was not the case for ASMM, 

there is one participant less in the group of ASMM ≥ 40 % compared to the group of BFMI ≤ 60 %. 

 
 
Table S5: Definition of the outcomes in the longitudinal analysis 

 

Outcome variable Type Coding N 

Relative change in 
ASMM 

Continuous 
(%) 

(follow-up – baseline) / baseline) * 100  608 

Relative change in 
BFMI 

Continuous 
(%) 

(follow-up – baseline) / baseline) * 100  608 

Strong decrease in 
ASMMa 

Binary 

1: ASMM relative change < 25th sex-
specific percentile 
0: ASMM relative change ≥ 25th sex-
specific percentile 

1: 152 
0: 456 

Strong increase in 
BFMIb 

Binary 

1: BFMI relative change > 75th sex-
specific percentile 
0: BFMI relative change ≤ 75th sex-
specific percentile 

1: 152 
0: 456 

Combination strong 
decrease in ASMMc & 
strong increase in 
BFMId 

Binary 

1: ASMM relative change < 40th sex-
specific percentile &  
BFMI relative change > 60th sex-
specific percentile 
0: Remaining participants 

1: 57 
0: 551 

a Cut point for women: -6.81 %, cut point for men: -5.28 % 

b Cut point for women: 13.19 %, cut point for men: 14.21 % 

c Cut point for women: -4.63 %, cut point for men: -2.75 % 

d Cut point for women: 7.78 %, cut point for men: 5.08 % 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; N, number of participants. 
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Detailed description of the covariates: 

Albumin was measured in EDTA-plasma with nephelometry using a BN 2 analyzer. Glycated 

hemoglobin (HbA1c) was analyzed in whole blood with a turbidimetric inhibition immunoassay 

(TINIA) using a Hitachi 717 (Roche Diagnostics, Mannheim, Germany) [6]. The measurements 

of high-density lipoprotein (HDL) and triglycerides were described elsewhere [7]. For this 

analysis, the covariate triglycerides was transformed with natural logarithmic transformation. 

Estimated glomerular filtration rate (eGFR) was calculated based on measurements of 

creatinine. Creatinine was measured in serum using enzymatic color test on a Hitachi 917 

(Boehringer Mannheim, Mannheim, Germany). The calculations of eGFR with creatinine were 

based on the publication of Inker et al. in 2012 [8]. 

The categories of smoking status included never, former or current (at least one cigarette per 

day) smoker. The definition of the variable physical activity was described elsewhere [9]. The 

variable education was classified as either > 10 years or ≤ 10 years of education. For the 

variable alcohol intake, the participants were asked about their consumption of alcoholic 

beverages on the previous workday and during the previous weekend to estimate the alcohol 

intake as grams per day. Based on the continuous variable of grams per day, alcohol intake 

was classified into three categories: men: 0 g/day, 0.1-39.9 g/day, and ≥ 40 g/day; women: 0 

g/day, 0.1-19.9 g/day, and ≥ 20 g/day [10]. Blood pressure measurements were described 

elsewhere [7]. Hypertension was identified if participants had a blood pressure of > 140/90 

mmHg or if the participant claimed the intake of antihypertensive medication and was aware 

of having hypertension [6]. Intake of lipid-lowering medication was defined as intake of at least 

one medication including Simvastatin, Lovastatin, Pravastatin, Fluvastatin, Atorvastatin, 

Cerivastatin, Bezafibrat, Gemfirolzil, Fenofibrat, and Etofibrat. Plant-based medication was not 

included. 

 

Detailed description of the statistical analysis: 

All statistical analyses were performed using R, V.3.6.2 [11]. We performed association 

analysis using the combined method boosting with stability selection [12]. Thereby, 
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component-wise functional gradient descent boosting of a linear / logistic regression model is 

combined with the method stability selection, which enables strong control of false positives. 

We used the R package mboost [13] for boosting and the R package stabs [14] for stability 

selection. We performed the boosting with an offset encompassing a model including the 13 

covariates age, HDL, triglycerides, HbA1c, eGFR, albumin, sex, physical activity, 

hypertension, smoking status, education, alcohol intake, and intake lipid-lowering medication. 

As a result, only protein biomarkers that were associated with the outcome independent of the 

covariates were selected. In a second step, we calculated logistic / linear regression models 

with the single selected biomarkers adjusted for all 13 covariates and other selected protein 

biomarkers of the corresponding outcome (model 1). In model 2, we included in addition to 

model 1 the opponent outcome as a further covariate, i.e. for the outcome ASMM we adjusted 

for BFMI and vice versa. For all protein biomarkers of which the coefficients became non-

significant or changed directions in model 2 compared to model 1, we further included an 

interaction term of the concerned protein biomarker and the opponent outcome.  

The prediction analysis encompassed the calculation of group least absolute shrinkage and 

selection operator (lasso) using R package grpreg [15] with 100 bootstrap iterations. Based on 

the 100 lasso calculations in all training samples of the bootstrapping and therefore 100 results 

concerning the selected variables, we determined the selection frequency of the variables and 

based on this the final ranking. All variables with the same selection frequency calculated from 

lasso with bootstrapping have the same rank; e.g. all variables with a selection frequency of 

100% have rank 1. Therefore, more than one variable can be assigned to rank 1. We calculated 

the area under the curve (AUC) of a logistic regression model including 13 classical risk factors 

(AUCbasic) and a model additionally including protein biomarkers (variables of the cross-

sectional analysis are listed in Table S8, variables of the longitudinal analysis in Table S11) 

that were selected in ≥ 90 % of the group lasso bootstrap iterations (AUCextended). We 

additionally calculated their delta AUC (AUCextended-AUCbasic) to identify the added prediction 

performance of the most important protein biomarkers on top of the classical risk factors. 

Therefore, AUCs and delta AUCs were calculated using the R package fbroc [16]. Cross-
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validation was used to calculate the arithmetic means of AUCs and delta AUCs over 10 folds. 

The confidence intervals (CI) of mean AUCs and mean delta AUCs were calculated via 100-

fold percentile bootstrapping using the R package boot [17, 18]. Smoothing the ROC curves 

enabled us to calculate and plot a mean ROC curve illustrated in Figure S4. We smoothed the 

ROC curve of each of the 10 folds using the function “smooth” from the R package pROC [19] 

and created the plots of Figure S4 using the R package ggplot2 [20]. 

As a sensitivity analysis for the prediction analysis, we further compared the results of lasso 

with bootstrapping with the results of random forest (RF) and support vector machine (SVM). 

We performed RF using the R package randomForest [21]. R packages caret [22] and e1071 

[23] with the “svmlinear2” method were used for SVM with linear Kernel. The ranking of the 

variables in RF and SVM was according to variable importance measures (VIM), based on the 

mean decrease in accuracy for categorical outcomes in RF, percentage increase in mean 

squared error for continuous outcomes in RF, coefficient of determination R² for continuous 

outcomes in SVM and AUC for categorical outcomes in SVM. The top 10 rankings of the most 

important variables of the lasso with bootstrapping, RF, and SVM were compared in the 

sensitivity analysis. In all prediction analyses, the classical risk factors and the protein 

biomarkers were processed equally as possible predictors. Therefore, all variables (13 

classical risk factors and 233 protein biomarkers) were available for the ranking. 

In the longitudinal analysis, we used the same statistical approach as in the cross-sectional 

analysis.  
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Table S6: Baseline (S4) characteristics of the study population 

 

Characteristic 
Cross-sectional 

(n = 1478) 

Longitudinal 

(n = 608) 

Age (years) a 63.9±5.4 61.9±4.9 

Sex male, n (%) 756 (51.2) 315 (51.8) 

Triglycerides (mmol/L) b 1.41 (1.01) 1.34 (1.02) 

HDL cholesterol (mmol/L) a 1.49±0.43 1.51±0.43 

HbA1c (mmol/mol) a 39.5±7.9 38.8±6.8 

HbA1c (%)a 5.8±0.7 5.7±0.6 

Hypertension, n (%) 831 (56.2) 304 (50.0) 

eGFR (ml/min/1.73 m2) a 82.4±13.3 84.2±11.7 

Albumin (g/L) a 38.2±3.9 38.6±4.1 

Intake of lipid-lowering medication, n (%) 172 (11.6) 64 (10.5) 

Smoking status, n (%)   

    Never 710 (48.0) 309 (50.8) 

    Former 561 (38.0) 231 (38.0) 

    Current 207 (14.0) 68 (11.2) 

Alcohol intake, n (%)   

    0 g/day 415 (28.1) 140 (23.0) 

    Men 0.1–39.9 g/day 

    Women 0.1–19.9 g/day 
765 (51.8) 347 (57.1) 

    Men ≥40 g/day 

    Women ≥20 g/day 
298 (20.2) 121 (19.9) 

Physical activity, n (%)   

    High activity 256 (17.3) 124 (20.4) 

    Moderate activity 365 (24.7) 170 (28.0) 

    Low activity 227 (15.4) 96 (15.8) 

    No activity 630 (42.6) 218 (35.9) 

Education ≤ 10 years, n (%) 927 (62.7) 334 (54.9) 

ASMM (kg) a 19.9±3.9 20.1±4.0 

BFMI (kg/m2) a 10.0±3.1 9.5±2.9 

Low ASMM, n (%)c 370 (25.0) 152 (25.0) 

High BFMI, n (%)d 370 (25.0) 152 (25.0) 

Combination low ASMM and high BFMI, n (%)e 110 (7.4) 39 (6.4) 

a Continuous variables are presented as arithmetic mean±SD. 

b Natural logarithmic transformed variables are presented as geometric mean (antilog of SE). 

c 25 % of participants with the lowest ASMM. Cut points were applied for men and women separately. 

d 25 % of participants with the highest BFMI. Cut points were applied for men and women separately. 

e Combination of participants, who were categorized in the group of the 40 % of participants with the 

lowest ASMM and the group of the 40 % of participants with the highest BFMI. Cut points were applied 

for men and women separately. 
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ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; eGFR, estimated glomerular 

filtration rate; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein. 

 
 

Table S7: Characteristics of the study population in the longitudinal sample 
 

Characteristic  n = 608 

Variables measured at baseline (S4) 

ASMM (kg) a 20.1±4.0 

BFMI (kg/m2) a 9.5±2.88 

Low ASMM, n (%)b 152 (25.0) 

High BFMI, n (%)c 152 (25.0) 

Combination low ASMM and high BFMI, n (%)d 39 (6.4) 

Variables measured at follow-up (FF4) 

ASMM (kg) a 19.7±4.2 

BFMI (kg/m2) a 9.7±3.1 

Low ASMM, n (%)b 152 (25.0) 

High BFMI, n (%)c 152 (25.0) 

Combination low ASMM and high BFMI, n (%)d 44 (7.2) 

Variables measured at S4 and FF4 

Relative change in ASMM (%) a -2.2±6.6 

Relative change in BFMI (%) a 3.8±17.1 

Strong decrease in ASMM, n (%)e 152 (25.0) 

Strong increase in BFMI, n (%)f 152 (25.0) 

Combination of strong decrease in ASMM and strong increase in BFMI, n 
(%)g 

57 (9.4) 

Strong decrease in ASMM   

    Yes (n = 152), relative change in ASMM (%) a -10.1±4.1 

    No (n = 456), relative change in ASMM (%) a 0.4±5.1 

Strong increase in BFMI   

    Yes (n = 152), relative change in BFMI (%) a 25.7±12.2 

    No (n = 456), relative change in BFMI (%) a -3.5±11.2 

a Continuous variables are presented as arithmetic mean±SD. 

b 25 % of participants with the lowest ASMM. Cut points were applied for men and women separately. 

c 25 % of participants with the highest BFMI. Cut points were applied for men and women separately. 

d Combination of participants, who were categorized in the group of the 40 % of participants with the 

lowest ASMM and the group of the 40 % of participants with the highest BFMI. Cut points were applied 

for men and women separately. 

e 25 % of participants with the highest decrease in ASMM. Cut points were applied for men and women 

separately. 
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f 25 % of participants with the highest increase in BFMI. Cut points were applied for men and women 

separately. 

g Combination of participants, who were categorized in the group of the 40 % of participants with the 

highest decrease in ASMM and the group of the 40 % of participants with the highest increase in BFMI. 

Cut points were applied for men and women separately. 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index. 

 

 

Table S8: Cross-sectional analysis – Prediction analysis – Group lasso with 100x 

bootstrapping 

ASMM (kg) BFMI (kg/m2) Low ASMM High BFMI  
Combination low 
ASMM and high 

BFMI 

Selected 

variables 

Selection 

frequency 

Selected 

variables 

Selection 

frequency 

Selected 

variables 

Selection 

frequency 

Selected 

variables 

Selection 

frequency 

Selected 

variables 

Selection 

frequency 

Age  
Sex 

Physical 

Activity 
LEP 

IGFBP1 

KLK6 
MMP2 
Notch3 
CXCL9 

CCL28 

100 % 

Age 

Sex 
eGFR 

Smoking 

Education 
ADM 
LEP 

FABP4 
IGFBP1 

KLK6 
CCL4 

FGF21 
CCL28 

100 % 

Age 
Alcohol 
IL1RL2 

PRSS8 
CCL15 
Gal4 

IGFBP1 
KLK6 
MB 

CST5 

CCL28 

100 % 

Sex 

eGFR 
ADM 
LEP 

FABP4 
IGFBP1 

 

100 % 

Age 
Physical 
Activity 

LEP 
SCGB3A2 

100 % 

Smoking 
PRSS27 
VSIG2 

DCN 
IGFBP2 

TFPI 

TRAP 
CST5 
DNER 

99 % 

Triglycerides 

Alcohol 
PRSS27 
PSGL1 

CD8A 
TWEAK 

99 % 

SCF 
LEP 

SELE 

TFPI 

99 % Smoking 98 % 
Sex 

MMP2 
MMP3 

99 % 

HbA1c 
eGFR 

PRSS8 

CPB1 
MB 

98 % 

FGF23 

XCL1 
IGFBP7 
PON3 

TNFR1 
MCP1 
TRAIL 

98 % 

Physical 
Activity 

Intake lipid-
lowering 

medication 

CD40L 
VSIG2 

CXCL10 

 

98 % 
Alcohol 
VEGFA 

CCL4 

97 % CCL17 98 % 

GDF2 
ALCAM 
EpCAM 
CCL4 

97 % SOD2 97 % 

CD84 

SERPINA12 
GDF15 
OPN 
vWF 

MCP3 

97 % TWEAK 96 % CCL28 97 % 

HGF 96 % 

Intake lipid-

lowering 
medication 

IL4RA 

IL1RL2 
GDF2 
Notch3 

IFNG 
MCP2 

96 % 

eGFR 

CPB1 
CTSZ 

96 % Notch3 95 % 
MB 

FGF21 
96 % 
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Alcohol 
IL7 

FGF21 
95 % 

Hyperten-

sion 
TNFRSF-

13B 

CCL16 
CPB1 

95 % 
MARCO 
Notch3 

95 % 

Age 

Physical 
Activity 

Education 

PCSK9 
 

94 % TWEAK 94 % 

IL1RL2 
THBS2 
XCL1 

OPN 
vWF 
TNFB 

94 % 
RAGE 

THBS2 
94 % FABP4 94 % 

MMP12 

VEGFD 
93 % Education 93 % 

TRAILR2 

NT-proBNP 
93 % 

IL17RA 
TNFRSF-

10C 
HGF 

93 % 

RAGE 
DCN 

MEPE 

MMP2 
PAI 

IFNG 

92 % 

Triglycerid-
es 

PRSS27 
GH 

91 % ENRAGE 92 % 

ADM 92 % 
CCL15 

NT-proBNP 
92 % 

ALCAM 

LIFR 
91 % 

TF 
CD8A 

PDL1 

90 % MPO 90 % 

Intake lipid-
lowering 

medication 
91 % 

HDL 

VEGFD 
PSPD 
TIMP4 

TR 

91 % 
Smoking 

CD4 
90 %     

HDL 
TNFRSF-

11A 
RAGE 
CD93 

CTSZ 

90 % 
PDL2 

LDL-RC 
90 %       

In the table, only variables are listed that were selected in ≥ 90 times out of 100 group least absolute 

shrinkage and selection operator bootstrap iterations. 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; eGFR, estimated glomerular 

filtration rate; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; lasso, least absolute shrinkage 

and selection operator. 
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Figure S4: Smoothed ROC curves of 10-fold cross-validation of logistic regression models 

with classical risk factors (AUCbasic) and protein biomarkers in addition to classical risk factors 

(AUCextended) 

Smoothed ROC curves of all 10 folds and their mean of the cross-validation are illustrated for the AUCs 

calculated for a model only including classical risk factors, AUCbasic (illustrated in grey), and the AUCs 

calculated for a model additionally including all protein biomarkers that were selected in ≥ 90 % of the 

group least absolute shrinkage and selection operator bootstrap iterations, AUCextended (illustrated in 

black). Bold lines indicate the mean ROC curve of all 10 smoothed ROC curves of the folds, which are 

a) Low ASMM b) High BFMI 

c) Combination low ASMM and high BFMI 
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illustrated as thin lines. ROC curves are shown for the outcomes (a) low ASMM, (b) high BFMI, and (c) 

combination of low ASMM and high BFMI. 

AUCbasic: AUC of a logistic regression model including 13 classical risk factors (age, high-density 

lipoprotein, triglycerides, glycated hemoglobin, estimated glomerular filtration rate, albumin, sex, 

physical activity, hypertension, smoking status, education, alcohol intake, and intake lipid-lowering 

medication). 

AUCextended: AUC of the basic model plus all protein biomarkers selected in ≥ 90 % of the group least 

absolute shrinkage and selection operator bootstrap iterations (variables are listed in Supporting 

Information, Table S8).  

ASMM, appendicular skeletal muscle mass; AUC, area under the curve; BFMI, body fat mass index; 

ROC, receiver operating characteristic. 

 

 

Table S9: Cross-sectional analysis – Sensitivity analysis – Comparison of the top 10 most 

important variables of lasso, random forest, and support vector machine 

Rank Lasso Random forest Support vector machine 

ASMM (kg) 

1 

Age / Sex / Physical activity / 
LEP / IGFBP1 / KLK6 / 

MMP2 / Notch3 / CXCL9 / 
CCL28 

Sex Sex 

2  LEP LPL 

3  IGFBP1 GH 

4  LPL HDL 

5  MMP3 MMP3 

6  GH GDF2 

7  IGFBP2 ACE2 

8  CCL28 IGFBP1 

9  FABP4 PON3 

10  PON3 LEP 

BFMI (kg/m2) 

1 

Age / Sex / eGFR / 
Education / Smoking / ADM / 

LEP / FABP4 / 
IGFBP1 / KLK6 / CCL4 / 

FGF21 / CCL28 

LEP LEP 

2  FABP4 FABP4 

3  Sex Sex 

4  IGFBP1 ADM 

5  IGFBP2 RARRES2 

6  PON3 THBS2 

7  ADM IL1RL2 

8  RAGE MMP3 
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9  GAL9 TNFRSF11A 

10  MMP3 IL12B 

Low ASMM 

1 

Age / Alcohol / IL1RL2 / 
PRSS8 / CCL15 / Gal4 / 
IGFBP1 / KLK6 / MB / 

CST5 / CCL28 

IGFBP2 IGFBP2 

2   IGFBP1 IGFBP1 

3  LEP LEP 

4  PON3 PON3 

5  IL1RA KLK6 

6  CCL28 Age 

7  IL27 CCL28 

8  CX3CL1 OPN 

9  THPO SCGB3A2 

10  CA5A TFPI 

High BFMI 

1 
Sex / eGFR / ADM / LEP / 

FABP4 / IGFBP1  
LEP LEP 

2 Smoking  FABP4 FABP4 

3 Alcohol / VEGFA / CCL4 PON3 PON3 

4  ADM ADM 

5  IGFBP1 IGFBP1 

6  IGFBP2 IL6 

7  HGF HGF 

8  CD163 THBS2 

9  IL6 IGFBP2 

10  TNFRSF11A CD163 

Combination low ASMM and high BFMI 

1 
Age / Physical Activity / 

LEP / SCGB3A2 
ADM  Age 

2 Sex / MMP2 / MMP3 TFPI  TIMP4 

3 CCL17 SCF  Physical activity 

4 CCL28 GDF15 ADM 

5 MB / FGF21 FABP4  GDF15 

6  TIMP4  CXCL9 

7  PRSS8 IL6 

8  CD93 LEP 

9  AMBP UPAR 

10  KIM1 FABP4 

Grey shading indicates that the variable was ranked in the top 10 in all three methods (lasso, random 

forest, and support vector machine); bold print indicates that the variable was ranked in the top 10 in 

two of the three methods. 

All variables with the same selection frequency calculated from lasso with bootstrapping have the same 

rank; e.g. all variables with a selection frequency of 100% have rank 1. Therefore, more than one 

variable can be assigned to rank 1. 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; eGFR, estimated glomerular 

filtration rate; lasso, least absolute shrinkage and selection operator. 
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Results of the longitudinal analysis 
 

Table S10: Association analysis – Boosting with stability selection – Longitudinal analysis 
 

Boosting with  
stability selection 

Linear regression models 

Selected 
variables 

Selection 
frequency 

β (95% CI) (Model 1) p value 

Relative change in ASMM (%) 

-    

Relative change in BFMI (%) 

CCL4 76% -2.29 (-3.72, -0.87) 0.001700 

ADAMTS13 76% -2.22 (-3.55, -0.89) 0.001123 

CCL15  66 % 1.92 (0.49, 3.35) 0.008596 

  Logistic regression models 

Selected 
variables 

Selection 
frequency 

OR (95% CI) (Model 1) p value 

Strong decrease in ASMM 

NT-proBNP 69 % 1.40 (1.10, 1.77) 0.00582 

Strong increase in BFMI 

DLK1 65 % 0.75 (0.60, 0.92) 0.00681 

Combination strong decrease in ASMM and strong increase in BFMI 

NT-proBNP 72 % 1.60 (1.15, 2.24) 0.00524 

The cut point for variable selection in the boosting with stability selection was a selection frequency of 

63 %, which was determined by the algorithm based on the number of variables available for selection, 

the number of selected variables per iteration, and the maximum number of tolerable false positives.  

Effect estimates have been calculated per 1 SD increase in normalized protein expression values on a 

log2 scale. 

Model 1: Adjustment for all 13 covariates (age, high-density lipoprotein, triglycerides, glycated 

hemoglobin, estimated glomerular filtration rate, albumin, sex, physical activity, hypertension, smoking 

status, education, alcohol intake, and intake lipid-lowering medication) as well as all other in the boosting 

with stability selection selected variables of the corresponding outcome. 

Bold print indicates significance. 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; β, beta coefficient; CI, 

confidence interval; OR, odds ratio. 
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Figure S5: Association analysis – Boosting with stability selection – Comparison of protein 

biomarker selection between the outcomes – Longitudinal analysis 

Protein biomarkers are primarily ordered according to the number of outcomes the biomarkers were 

selected for and secondary according to their selection for the outcomes in the table from left to right. 

Only protein biomarkers are included that were selected for at least one outcome. The cut point for 

variable selection was a selection frequency of 63 %, which was determined by the algorithm based on 

the number of variables available for selection, the number of selected variables per iteration, and the 

maximum number of tolerable false positives. 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index. 

 

Table S11: Prediction analysis – Group lasso with 100x bootstrapping – Longitudinal analysis 

Relative change in 
ASMM (%) 

Relative change in 
BFMI (%) 

Strong decrease in 
ASMM 

Strong increase in 
BFMI  

Combination strong 
decrease in ASMM 
and strong increase 

in BFMI 

Selected 
variables 

Selection 
frequency 

Selected 
variables 

Selection 
frequency 

Selected 
variables 

Selection 
frequency 

Selected 
variables 

Selection 
frequency 

Selected 
variables 

Selection 
frequency 

Age 98 % CCL4 98 % 
NT-

proBNP 
99 % 

Age 
ICAM2 

100 % 
NT-

proBNP 
94 % 

FAS 95 % 
Education 

Alcohol 
96 % HDL 97 % PLGR 99 % PLGR 92 % 

FLT3L 90 % DLK1 95 %   CCL15 96 %   

  
ADAMTS-

13 
93 %   

Physical 
activity 

95 %   

  CCL15 92 %   IL6RA 93 %   

  TGM2 90 %   CCL4 92 %   

      
CCL16 
DLK1 

90 %   

In the table, only variables are listed that were selected in ≥ 90 times out of 100 group least absolute 

shrinkage and selection operator bootstrap iterations. 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; HDL, high-density lipoprotein. 
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Table S12: Prediction analysis – Cross-validated AUCs of logistic regression models with 

classical risk factors (mean AUCbasic) and protein biomarkers in addition to classical risk 

factors (mean AUCextended) – Longitudinal analysis 

Outcome 
Mean AUCbasic 

(95 % CI) 
Mean AUCextended 

(95 % CI) 
Mean delta AUC  

 (95 % CI) 

Strong decrease in ASMM 0.54 (0.51, 0.67) 0.57 (0.54, 0.68) 0.03 (0.00, 0.07) 

Strong increase in BFMI 0.56 (0.54, 0.68) 0.63 (0.63, 0.75) 0.07 (0.01, 0.11) 

Combination strong 
decrease in ASMM and 
strong increase in BFMI 

0.50 (0.48, 0.70) 0.55 (0.52, 0.72) 0.05 (-0.01, 0.11) 

AUCbasic: AUC of a logistic regression model including 13 classical risk factors (age, high-density 

lipoprotein, triglycerides, glycated hemoglobin, estimated glomerular filtration rate, albumin, sex, 

physical activity, hypertension, smoking status, education, alcohol intake, and intake lipid-lowering 

medication). 

AUCextended: AUC of the basic model plus all protein biomarkers selected in ≥ 90 % of the group least 

absolute shrinkage and selection operator bootstrap iterations (variables are listed in Supporting 

Information, Table S11).  

Delta AUC: AUCextended - AUCbasic 

AUCs and delta AUCs are arithmetic means of 10-fold cross-validation. The confidence intervals of 

AUCs and delta AUCs were calculated via 100-fold percentile bootstrapping. 

ASMM, appendicular skeletal muscle mass; AUC, area under the curve; BFMI, body fat mass index; CI, 

confidence interval. 
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Table S13: Sensitivity Analysis – Comparison of the top 10 most important variables of lasso, 

random forest, and support vector machine – Longitudinal analysis 

 

Rank Lasso Random forest Support vector machine 

Relative change in ASMM (%) 

1 Age Age CA5A 

2 FAS TFPI Age 

3 FLT3L FLT3L CASP8 

4 OPG  IGFBP2 ALCAM 

5 IL6RA  LIFR IGFBP7 

6 CDCP1 / CCL19 CCL23 OPG 

7 Alcohol / FGF21 IL10RB HSP27 

8 IL12B GRN LTBR 

9  CSTB TIE2 

10  IL18R1 IL18R1 

Relative change in BFMI (%) 

1 CCL4 TPA TPA 

2 Education / Alcohol CCL4 CCL4 

3 DLK1 GRN LDL-RC 

4 ADAMTS13 IGFBP2 IGFBP7 

5 CCL15 Notch3 Triglycerides 

6 TGM2 CCL15 IGFBP2 

7 Smoking CPB1 DLK1 

8 CHIT1 / CCL19 MMP9 / HAOX1 FGF21 

9  LDL-RC REN 

10   AXIN1 

Strong decrease in ASMM 

1 NT-proBNP IGFBP2 NT-proBNP 

2 HDL CD40L HSP27 

3 IL27 / FGF21 Age vWF 

4 EGFR PCSK9 TNFRSF11A 

5 Physical activity LTBR EGFR 

6 RAGE TNFR2 Age 

7 AGRP / vWF / IL12B TNFRSF10C RETN 

8  ADAMTS13 IL27 

9  IL17RA / DCN TNFR2 

10   GDF15 

Strong increase in BFMI 

1 Age / ICAM2 AXIN1 DLK1 

2 PLGR NEMO IGFBP2 

3 CCL15 4EBP1 FLT3L 

4 Physical activity PDGFA / MERTK IL6RA 

5 IL6RA SIRT2 Age 

6 CCL4 CPB1 LDL-RC 

7 CCL16 / DLK1 Triglycerides CD163 

8 CHIT1 JAMA CXCL10 

9  CXCL16 CCL4 

10   Triglycerides / DCN 

Combination strong decrease in ASMM and strong increase in BFMI 

1 NT-proBNP TIE2 FABP4 

2 PLGR LEP NT3 

3 RARRES2 CXCL9 LEP 
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4 ADAMTS13 PCSK9 SCGB3A2 

5 MEPE HOSCAR NT-proBNP 

6 IL17D MCP3 HSP27 

7 NT3 CTSZ RARRES2 

8 HSP27 OPN MEPE 

9 IFNG TNF IGFBP2 

10 MB IL7 ADAMTS13 

Grey shading indicates that the variable was ranked in the top 10 in all three methods (lasso, random 

forest, and support vector machine); bold print indicates that the variable was ranked in the top 10 in 

two of the three methods. 

All variables with the same selection frequency calculated from lasso with bootstrapping have the same 

rank; e.g. all variables with a selection frequency of 100% have rank 1. Therefore, more than one 

variable can be assigned to rank 1. 

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index; lasso, least absolute shrinkage 

and selection operator. 
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Figure S6: Sensitivity Analysis – Comparison of variables between the outcomes regarding 

the number of methods that ranked the variables in the top 10 – Longitudinal analysis 

Only variables are included that were ranked in the top 10 in at least two of the three analysis methods 

(group least absolute shrinkage and selection operator with 100x bootstrapping, random forest, and 

support vector machine) in at least one of the five outcomes. Variables are primarily ordered descending 

according to the total number (sum of all outcomes) of methods that ranked the variable in the top 10, 

and secondary according to the outcome in the table from left to right based on the number of methods 

that ranked the variable in the top 10 for the outcome.  

ASMM, appendicular skeletal muscle mass; BFMI, body fat mass index. 
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s u m m a r y

Background & aims: The phase angle (PhA) measured with bioelectrical impedance analysis is considered
to reflect the interrelated components body cell mass and fluid distribution based on technical and
physical aspects of the PhA measurement. However, the biomedical meaning of the PhA remains vague.
Previous studies mainly assessed associations of the PhA with numerous diseases and health outcomes,
but few connected protein markers to the PhA. To broaden our understanding of the biomedical back-
ground of the PhA, we aimed to explore a proteomics profile associated with the PhA and related bio-
logical factors.
Methods: The study sample encompassed 1484 participants (725 women and 759 men) aged 55e74
years from the population-based Cooperative Health Research in the Region of Augsburg (KORA) S4
study. Proteomics measurements were performed with a proximity extension assay. We employed
boosting with stability selection to establish a set of markers that was strongly associated with the PhA
from a group of 233 plasma protein markers. We integrated the selected protein markers into a network
and enrichment analysis to identify gene ontology (GO) terms significantly overrepresented for the
selected PhA protein markers.
Results: Boosting with stability selection identified seven protein markers that were strongly and
independently associated with the PhA: N-terminal prohormone brain natriuretic peptide (NT-proBNP),
insulin-like growth factor-binding protein 2 (IGFBP2), adrenomedullin (ADM), myoglobin (MB), matrix
metalloproteinase-9 (MMP9), protein-glutamine gamma-glutamyltransferase 2 (TGM2), and fractalkine
(CX3CL1) [beta coefficient per 1 standard deviation increase in normalized protein expression values on a
log 2 scale (95% confidence interval): �0.12 (�0.15, �0.08), �0.13 (�0.17, �0.09), �0.14 (�0.18, �0.10),
0.10 (0.07, 0.14), 0.07 (0.04, 0.10), 0.08 (0.05, 0.11), �0.06 (�0.10, �0.03), respectively]. According to the
enrichment analysis, this protein profile was significantly overrepresented in the following top five GO
terms: positive regulation of cell population proliferation (p-value: 1.32E-04), extracellular space (p-
value: 1.34E-04), anatomical structure formation involved in morphogenesis (p-value: 2.92E-04), regu-
lation of multicellular organismal development (p-value: 5.72E-04), and metal ion homeostasis (p-value:
8.86E-04).
Conclusion: Implementing a proteomics approach, we identified six new protein markers strongly
associated with the PhA and confirmed that NT-proBNP is a key PhA marker. The main biological pro-
cesses that were related to this PhA's protein profile are involved in regulating the amount and growth of
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cells, reinforcing, from a biomedical perspective, the current technical-based consensus of the PhA to
reflect body cell mass.
© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The phase angle (PhA) measured with bioelectrical impedance
analysis (BIA) is considered to generally reflect the interrelated
components body cell mass (BCM) and fluid distribution, i.e. ratio of
extracellular to intracellular fluid volume (ECF/ICF) [1]. Thereby, an
increased PhA is related to an increased body cell mass (BCM)
(which includes ICF [1]) with concurrently decreased ECF/ICF [2].
Generally, the PhA does not encompass a standardized assignment
to a specific disease nor a distinct biomedical meaning. Among
numerous outcomes that have been examined, the PhA has been
observed to be a prognostic factor for mortality [3] and falls [4] and
participants with a low PhA have been observed to encompass a
higher prevalence of sarcopenia [5]. Primarily though, the PhA has
been described as an indicator of malnutrition based on the
assumption that an impaired nutritional status affects the fluid
distribution displayed in the displacement of water from intracel-
lular to extracellular space [2]. Consequently, BCM decreases with
concurrently increased ECF, leading to lower PhA values [2].

In contrast to the vaguely described biological and medical
meaning, the technical aspects of the PhA measurement can be
clearly described as follows. The opposition of conductors in the
body to an alternating electric current during BIA measurements is
expressed as the impedance, which is influenced by the resistance
(resistive components: fluid and electrolytes) and reactance
(capacitive components: tissue interfaces and cell membranes)
[1,6]. In resistive components, an alternating current passes
consistently, while in capacitive components, the current flow is
delayed as capacitors can temporarily store electrical charge [1].
These detaining properties evoke a time delay of the current
waveform behind the voltage waveform, which is expressed in
degrees as the PhA [4,5]. In over-hydration, characterized as
increased ECF (resistive component) relative to BCM [1], PhA values
decrease [2]. As the PhA reflects the amount of current passing
through capacitive components (reactance), which is relative to the
current’s frequency, PhA values are frequency-dependent [1]. At
low frequencies, the largest part of the current passes through ECF
to avoid cells due to their large capacitive reactance, whereas at
higher frequencies, current penetration through cells augments [7].
This is relevant when comparing PhA values of different device
technologies such as phase-sensitive single-frequency (50 kHz) BIA
and bioelectrical impedance spectroscopy (BIS), which measures
the impedance for a range of frequencies [1].

Approaches to explore the biological and medical meaning as
well as potential applications of the PhA beyond body composition
include the identification of associations to health outcomes, dis-
eases, and protein markers. While associations to health outcomes
and diseases have been studied extensively, only few studies have
yet connected protein levels to the PhA. Based on inverse associa-
tions of the PhA with the proteins interleukin-6 (IL-6), tumor ne-
crosis factor alpha, and C-reactive protein (CRP), a Brazilian study
recognized a possible link to inflammation in elderly women [8]. Of
note, inflammation has been described as a crucial link between the
PhA and its main application malnutrition. This is indicated by the
impact of inflammation on the fluid status as well as the presence of

inflammation in diseases affecting malnutrition [2]. Moreover, the
proinflammatory marker CRP was inversely related to the PhA in
various other populations [9e11]. IL-6 was inversely related to the
PhA in obese women [12] and an increase in IL-6 was associated
with a decrease in PhA over two years in patients on maintenance
hemodialysis after controlling for fat mass and extracellular water
[13]. The consistent findings of the inverse association between
inflammation markers and the PhA have been explained with the
characteristic of inflammation processes to induce cellular and tis-
sue damage [10]. Previous results regarding the relation of the PhA
with the obesity marker leptin have been inconsistent [11,12,14].

Through novel proteomics technologies, a large number of
protein markers is accessible to expand and accelerate the identi-
fication of markers associated with the PhA; thereby contributing
to a larger, long-term goal to broaden the understanding of the
PhA’s biomedical meaning and possible applications. Our goal was,
therefore, to employ proteomics to explore biomedical factors of
the PhA through first, the identification of protein markers asso-
ciated with the PhA and second, the identification of biological
processes, molecular functions, and cellular components related to
the PhA’s protein profile.

2. Material & methods

2.1. Study population

We analyzed data from the population-based Cooperative
Health Research in the Region of Augsburg (KORA) S4 study
encompassing 4261 residents from Southern Germany [15]. Of the
KORA S4 study cohort, 4178 participants had complete BIA mea-
surement data. Proteomics measurements were only planned for
the age group 55e74 years (n ¼ 1653). After exclusion of partici-
pants with missing proteomics values, 1566 participants remained.
We further excluded participants, who indicated that they had
cancer within the last 12 months before the S4 study as well as
those, who indicated that they did not know it or did not answer
the respective question [16], because we observed cancer to be
strongly associated with the PhA in the pre-analysis. We did not
exclude further participants based on disease status. From the
remaining 1520 participants, we further excluded participants that
entailed missing values for any of the covariates. Afterwards, the
final data set comprised of 1484 participants (725 women and 759
men).

2.2. Proteomics

The proteomics data set used within this article has been used
before for analyzing proteomics of muscle and fat mass [16]. The
plasma samples for the proteomics measurements were collected
from the participants during the KORA S4 study in 1999e2001 and
were analyzed in 2019e2020. Blood sampling and BIA measure-
ments were performed on the same day. We performed analyses
with cardiovascular disease (CVD)- and inflammation-related
plasma protein markers measured with proximity extension
assay (PEA) technology, a targeted proteomics assay. With PEA, the
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proteins are identified by employing pairs of antibodies, which
attach to the proteins. The antibodies are labeled with deoxy-
ribonucleic acid oligonucleotides, which are specific for each pro-
tein marker. If the oligonucleotides are in close proximity and the
pair is a correct match, they bind together, followed by polymeri-
zation. The product is then quantified by microfluidic real-time
polymerase chain reaction [17].

The panels we assessed for protein marker measurement were
Olink® CVDII, CVDIII, and Inflammation (Olink Proteomics,
Uppsala, Sweden). All three panels each covered 92 markers as log
2-normalized protein expression (NPX) values divided by their
respective standard deviation, calculated in the complete data set
prior to exclusions [16]. Out of these 276 protein markers, 233
remained for the final analysis according to the following criteria:
We excluded protein markers due to values below the limit of
detection (LOD) in >25% of the complete data set prior to exclu-
sions, duplicate marker measurements in two of the three panels,
and missing values (only observed in the panel CVDIII). We main-
tained the values < LOD of the remaining 233 markers and did not
exchange these values [16]. Further details regarding the prote-
omics data set and a complete list of all protein markers can be
found in our previous manuscript and the respective supporting
information [16].

We assessed the inflammation and CVD protein marker panels
for associations with the PhA as inflammatory markers have been
frequently associated with the PhA as highlighted in the intro-
duction. Furthermore, the PhA is considered to indicate fluid dis-
tribution, which plays an important role in CVD entities such as
heart failure (HF) and hypertension. Additionally, a number of
previous studies have suggested a link between the PhA and CVD
[18]. However, the allocation of a protein to these marker panels
does not preclude strong relations of these proteins to other disease
entities.

2.3. PhA

The PhA, used as the outcome of the present study, was assessed
by BIA with the phase-sensitive device BIA 2000-S (DATA-INPUT
GmbH, Frankfurt, Germany), which employs a measurement fre-
quency of 50 kHz and a current of 800 mA tomeasure the resistance
and reactance. The PhA is then derived by the device using the
resistance and reactance. PhA values were gathered from the BIA
directly and were not calculated by us.

Before the measurement, participants were asked to empty
their bladder. The measurement was performed in supine position
and the participants were asked to relax, avoid movement, spread
their hands in flat position, and spread their arms and legs apart to
avoid contact to other body parts. The participants were connected
to the BIA through attaching four skin electrodes to their hand (two
electrodes) and foot (two electrodes) of their dominant side.
Thereafter, the BIA generated a weak, alternating current con-
ducting through the participants’ bodies. The accuracy of the BIA
measurement was tested daily before the first and after the last use
of the BIA with a test resistor. In line with the recommendation of
the manufacturer according to the instruction manual, deviations
of ±4 U were within the tolerated range [resistance (R) ¼ 500 (±4)
U and reactance (Xc) ¼ 144 (±4) U]. The BIA measurement was
performed two times for each participant and themean value of the
PhA was used for analysis. Occurrence of potential technical error
for intra-rater repeated measurements was assessed directly after
the two measurements for each participant. If the R or Xc values of
the twomeasurements differed substantially (R > 5U and Xc> 2U),
measurements were repeated (two new measurements) with a
prior check for accuracy using the test resistor as described above.

2.4. Covariates

In a standardized face-to-face interview, trained medial staff
assessed the sociodemographic and lifestyle variables [15]. The
covariates of this analysis included age, high-density lipoprotein
(HDL) cholesterol, triglycerides, glycated hemoglobin (HbA1c),
estimated glomerular filtration rate (eGFR), albumin, body mass
index (BMI) (all continuous), sex (female/male), smoking status
(never/former/current smoker), and fasting status of more than 8 h
(yes/no). We transformed triglycerides with natural logarithmic
transformation due large discrepancies from normal distribution.
In a sensitivity analysis, we further included the variables hyper-
tension (no/yes), myocardial infarction (no/yes), and intake of
antihypertensive medication (no/yes). We described details
regarding the measurements of HDL cholesterol, triglycerides,
HbA1c, eGFR, albumin, smoking status, and hypertension in the
supporting information elsewhere [16]. Myocardial infarction
(hospitalized) and intake of antihypertensive medicationwere self-
reported by participants during the standardized interview.

2.5. Statistical analysis

The aim of the analysis consisted of the identification of protein
markers that were strongly associated with the PhA as well as
incorporating these markers into a network and enrichment anal-
ysis to determine biological processes, molecular functions, and
cellular components related to the PhA.

We performed boosting with stability selection [19] with the R
package mboost [20] for boosting and the R package stabs [21] for
stability selection using R, V.4.0.5 [22]. This method encompasses
the merging of a component-wise functional gradient descent
boosting on a linear regression model together with stability se-
lection, which implements a resampling method and allows to
control for false discoveries [19]. The selection of the variables is
based on a cut point for the selection frequency of each variable.
The cut point is determined by the algorithm parameters
comprising of the number of variables that were available to be
selected (here, n ¼ 233), number of variables selected within each
iteration (here, n¼ 15), and themaximumnumber of tolerable false
positives (here, n¼ 2) [16,19]. In our analysis, the cut point was 63%,
which lies within the suggested range [19]. We conducted the
stability selection with the assumption “unimodal” and the sam-
pling type complementary pairs. We calculated the boosting with
an offset that included amodel of all 10 covariates (model 2), which
enabled us to select protein markers that were independently
associated with the PhA. Afterwards, we assessed a linear regres-
sion model including all protein markers that were selected by
boosting with stability selection plus the 10 covariates to identify
beta coefficients and directions of association [16]. In a sensitivity
analysis, we assessed the influence of hypertension (n ¼ 1482, 2
missing values), myocardial infarction (n ¼ 1484), and intake of
antihypertensive medication (n ¼ 1481, 3 missing values) on the
association between NT-proBNP (selected marker by boosting with
stability selection) and the PhA by further adjusting the linear
regression model 2 separately for the three variables.

In a second step, we integrated the protein markers selected by
boosting with stability selection into an enrichment analysis and
created a functionally grouped network with ClueGo v2.5.8 [23]
and Cluepedia v1.5.8 [24] in Cytoscape v3.8.2 [25]. In this regard, we
employed the hypergeometric test with Bonferroni step down
correction to identify gene ontology (GO) terms for which the
protein markers were significantly (p-value � 0.05) over-
represented. The data sources consisted of GO biological process,
cellular component, and molecular function, all retrieved on July
14, 2021 in ClueGo v2.5.8 [23]. We allowed GO term fusion and GO
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tree levels 3 to 20. We only permitted selection of GO terms that
were associated with at least four of our selected protein markers.
The required proportion of selected markers in relation to all
existing proteins that were associated with a GO termwas set to 0%,
due to the low number of protein markers included in the enrich-
ment analysis. All other parameters remained in the default set-
tings. We focused our main results on the top five most significant
GO terms to obtain a clear visualization of the results.

Our analytical approach was guided by recent publications
analyzing proteomics data in breast cancer and HF [26e28].

We additionally performed the complete analysis again, this
time, with adjustment for the covariates age and sex only (model
1), and compared the results to themain analysis (model with all 10
covariates, model 2).

We employed a sparse selection method with error control
(boosting with stability selection) to identify protein markers
associated with the PhA in order to obtain a specific marker profile
and to minimize false-positive marker selection. In addition,
selecting a high percentage of markers from the original prote-
omics data set could have led to the identification of GO terms that
generally reflect the pattern of markers in the data set. Our prote-
omics data set specifically comprised markers of inflammation and
CVD. As the aim of this analysis was to identify GO terms related to
the PhA and not the specific proteomics pattern of the data set, a
sparse and accurate marker selection was required.

3. Results

The characteristics of the study population (n ¼ 1484) are listed
in Table 1.

3.1. Selected protein markers associated with the PhA

Boosting with stability selection analysis selected seven protein
markers that were strongly associated with the PhA after adjusting
for all 10 covariates (model 2). N-terminal prohormone brain
natriuretic peptide (NT-proBNP), insulin-like growth factor-binding
protein 2 (IGFBP2), adrenomedullin (ADM), and fractalkine
(CX3CL1) were inversely associated with the PhA, whereas
myoglobin (MB), matrix metalloproteinase-9 (MMP9), and protein-
glutamine gamma-glutamyltransferase 2 (TGM2) demonstrated
positive associations with the PhA. The results of the boosting with
stability selection as well as of the linear regression analysis are
listed in Table 2. Adjusting for age and sex only (model 1), boosting
with stability selection again selected seven protein markers, five of
which (NT-proBNP, IGFBP2, MB,MMP9, and TGM2)were equivalent
to the main analysis that included all 10 covariates (model 2).

Results of the sensitivity analysis, further adjusting the asso-
ciation between NT-proBNP and the PhA in the linear regression
model 2 separately for hypertension, myocardial infarction, and
intake of antihypertensive medication, yielded the following beta
coefficients (95% confidence interval) for NT-proBNP: �0.12
(�0.15, �0.08), �0.12 (�0.16, �0.08), �0.11 (�0.15, �0.08),
respectively.

3.2. Biological factors of the PhA’s protein profile

The enrichment analysis identified that the set of selected pro-
tein markers associated with the PhA (Table 2, model 2) was
significantly overrepresented in 20 GO terms, ranked by their p-
values corrected with Bonferroni step down in Table 3. Figure 1
illustrates the functionally grouped network of the top five most
significant GO terms and their associated protein markers. Positive
regulation of cell population proliferation was the most significant
GO term of the PhA-associated protein marker set (Table 3).

By conducting the enrichment analysis with the markers
selected by boosting with stability selection, this time adjusted for
age and sex only (model 1), the GO terms extracellular space,
positive regulation of cell population proliferation, and anatomical
structure formation involved inmorphogenesis were again selected
as the top three GO terms (Table 4). All eight selected GO terms are
listed in Table 4.

4. Discussion

To our knowledge, this is the first study to explore a proteomic
profile of the PhA. We identified four protein markers that were
inversely (NT-proBNP, IGFBP2, ADM, and CX3CL1) and three
markers that were positively (MB, MMP9, and TGM2) associated
with the PhA. To our knowledge, all protein markers except NT-
proBNP have been identified as markers of the PhA for the first
time. Positive regulation of cell population proliferation was the
most significant biological process associated with the PhA marker
set.

4.1. Selected protein markers associated with the PhA

We identified NT-proBNP along with IGFBP2 as the most
important protein markers of the PhA. Bothmarkers were inversely

Table 1
Characteristics of the study population.

Characteristic N ¼ 1484

Age (years) a 63.9 ± 5.4
Sex, n (%)
Female 725 (49)
Male 759 (51)

Triglycerides (mmol/L) b 1.40 (1.01)
HDL cholesterol (mmol/L) a 1.49 ± 0.42
HbA1c (mmol/mol) a 39.5 ± 7.9
HbA1c (%) a 5.8 ± 0.7
eGFR (ml/min/1.73 m2) a 82.4 ± 13.3
Albumin (g/L) a 38.2 ± 3.9
BMI (kg/m2) a 28.5 ± 4.3
Hypertension, n (%) c

No 647 (44)
Yes 835 (56)

Myocardial infarction, n (%) d

No 1418 (96)
Yes 66 (4)

Stroke, n (%) e

No 1444 (97)
Yes 40 (3)

Intake of antihypertensive medication, n (%) f

No 942 (64)
Yes 539 (36)

Smoking status, n (%)
Never 711 (48)
Former 563 (38)
Current 210 (14)

Fasting state >8 h, n (%)
Yes 1321 (89)
No 163 (11)

PhA (�) a 5.8 ± 0.8

BMI, body mass index; eGFR, estimated glomerular filtration rate;
HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; PhA, phase
angle.

a Continuous variables are listed as arithmetic mean ± standard
deviation.

b The natural logarithmic transformed variable is listed as geometric
mean (antilog of standard error).

c N ¼ 1482, current hypertension based on ISH-WHO 1999 (�140/
90 mm Hg) or medically controlled, known hypertension.

d Hospitalized myocardial infarction (self-reported).
e Hospitalized stroke (self-reported).
f N ¼ 1481.
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associated with the PhA. In line with our results, a Korean study
observed in patients with stage 5 chronic kidney disease not un-
dergoing dialysis that NT-proBNP inversely correlated with BIS-
measured PhA using a device that measures the impedance of 50
frequencies (5e1000 kHz). PhA was described as the lag between
voltage waveform at 50 kHz and current waveform [11].

Multifrequency BIA-measured PhA (frequency not indicated) was
also inversely associated with NT-proBNP in hemodialysis patients
in a longitudinal Dutch study [30]. From a clinical perspective,
increased NT-proBNP is a marker of HF. In line with this, an article
investigating PEA proteomics of HF detected NT-proBNP as one of
the keymarkers for HF with a reduced ejection fraction (HFrEF) and

Table 2
Protein markers associated with the PhA selected by boosting with stability selection.

Boosting with stability selection Linear regression model

Selected variables Selection frequency b (95% CI) p-value

Model 1
NT-proBNP 100% �0.12 (�0.15, �0.08) 5.69e-10
IGFBP2 100% �0.16 (�0.20, �0.13) <2e-16
MB 100% 0.14 (0.10, 0.18) 1.78e-13
TGM2 93% 0.07 (0.04, 0.10) 2.20e-05
MMP2 77% �0.10 (�0.14, �0.06) 1.80e-07
DLK1 77% 0.05 (0.02, 0.09) 0.00452
MMP9 76% 0.07 (0.04, 0.10) 4.93e-05
Model 2
NT-proBNP 100% �0.12 (�0.15, �0.08) 3.10e-10
IGFBP2 100% �0.13 (�0.17, �0.09) 5.08e-10
ADM 99% �0.14 (�0.18, �0.10) 2.18e-10
MB 83% 0.10 (0.07, 0.14) 1.06e-08
MMP9 80% 0.07 (0.04, 0.10) 5.72e-05
TGM2 73% 0.08 (0.05, 0.11) 3.53e-06
CX3CL1 71% �0.06 (�0.10, �0.03) 0.000874

Beta coefficients are listed per 1 standard deviation increase in normalized protein expression values on a log 2 scale.
Bold font indicates markers that were selected for both, model 1 and model 2.
We adjusted the boosting with stability selection and linear regression for covariates in two models:
Model 1: age and sex.
Model 2: model 1 þ high-density lipoprotein cholesterol, triglycerides, glycated hemoglobin, estimated glomerular filtration rate, albumin, smoking status, body mass index,
and fasting status.
The linear regressionmodels were in addition to the covariates adjusted for all other proteinmarkers listed in the table for the specificmodel, i.e. all markers thatwere selected
by boosting with stability selection for model 1 and model 2, respectively.
ADM, adrenomedullin; b, beta coefficient; CI, confidence interval; CX3CL1, fractalkine; DLK1, protein delta homolog 1; IGFBP2, insulin-like growth factor-binding protein 2;
MB, myoglobin; MMP2, matrix metalloproteinase-2; MMP9, matrix metalloproteinase-9; NT-proBNP, N-terminal prohormone brain natriuretic peptide; TGM2, protein-
glutamine gamma-glutamyltransferase 2.

Table 3
GO terms of selected PhA-associated protein markers after full adjustment (model 2).

Rank GO term GO category p-value corrected with
Bonferroni step down

Associated protein markers

1 Positive regulation of cell population
proliferation

Biological process 1.32E-04 ADM, CX3CL1, IGFBP2, MMP9, TGM2

2 Extracellular space Cellular component 1.34E-04 ADM, CX3CL1, IGFBP2, MB, MMP9, NPPB, TGM2
3 Anatomical structure formation

involved in morphogenesis
Biological process 2.92E-04 ADM, CX3CL1, MMP9, NPPB, TGM2

4 Regulation of multicellular organismal
development

Biological process 5.72E-04 ADM, CX3CL1, MMP9, NPPB, TGM2

5 Metal ion homeostasis Biological process 8.86E-04 ADM, CX3CL1, NPPB, TGM2
6 Inflammatory response Biological process 1.51E-03 ADM, CX3CL1, MMP9, TGM2
7 Response to organic substance Biological process 1.70E-03 ADM, CX3CL1, IGFBP2, MB, MMP9, TGM2
8 Homeostatic process Biological process 2.17E-03 ADM, CX3CL1, MB, NPPB, TGM2
9 Response to organonitrogen compound Biological process 4.24E-03 ADM, IGFBP2, MMP9, TGM2
10 Circulatory system development Biological process 4.83E-03 ADM, CX3CL1, MB, NPPB
11 G protein-coupled receptor signaling

pathway
Biological process 6.93E-03 ADM, CX3CL1, NPPB, TGM2

12 Regulation of apoptotic process Biological process 1.09E-02 ADM, CX3CL1, MMP9, TGM2
13 System development Biological process 1.21E-02 ADM, CX3CL1, MB, MMP9, NPPB, TGM2
14 Regulation of signal transduction Biological process 1.33E-02 ADM, CX3CL1, IGFBP2, MMP9, TGM2
15 Regulation of transport Biological process 1.61E-02 CX3CL1, MMP9, NPPB, TGM2
16 Apoptotic process Biological process 1.97E-02 ADM, CX3CL1, MMP9, TGM2
17 Positive regulation of biological process Biological process 2.16E-02 ADM, CX3CL1, IGFBP2, MMP9, NPPB, TGM2
18 Signal transduction Biological process 2.35E-02 ADM, CX3CL1, IGFBP2, MMP9, NPPB, TGM2
19 Extracellular exosome Cellular component 2.77E-02 IGFBP2, MB, MMP9, TGM2
20 Cell surface receptor signaling pathway Biological process 3.51E-02 CX3CL1, IGFBP2, MMP9, NPPB

NT-proBNP is represented by NPPB, because there is no unique UniProt ID of NT-proBNP that could be included in the analysis. Instead, NT-proBNP belongs to the NPPBs in this
analysis.
ADM, adrenomedullin; CX3CL1, fractalkine; GO, gene ontology; IGFBP2, insulin-like growth factor-binding protein 2; MB, myoglobin; MMP9, matrix metalloproteinase-9;
NPPB, natriuretic peptides B; NT-proBNP, N-terminal prohormone brain natriuretic peptide; TGM2, protein-glutamine gamma-glutamyltransferase 2.
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proposed that relevant selected terms of the enrichment analysis of
HFrEF relate to cell proliferation [27], resembling our results. Pa-
tients with HF are characterized by over-hydration (increased ECF
relative to BCM) [1], which is associated with lower PhA [2], sup-
porting the inverse association of NT-proBNP (i.e. HF marker) with
the PhA. Additionally, besides (higher) NT-proBNP [31], (lower) PhA
was employed as a marker of congestion in patients with acute
decompensated HF [32] since congestion markers largely explained

the data variability of PhA in patients with acute and chronic HF
[33]. The inverse link between IGFBP2 and the PhA might be
explained by the indirect impact of IGFBP2 on BCM due to regu-
lating cell proliferation and growth via influencing the bioavail-
ability of insulin-like growth factors (IGF) [34]. IGFBP2
predominantly inhibits IGF action [35], potentially resulting in
lower BCM (and PhA). IGFBP2 was inversely associated with inci-
dent [36] and prevalent type 2 diabetes (T2D) [37]. As the PhA was

Fig. 1. Functionally grouped network of selected PhA-associated protein markers and their top five GO terms. GO terms are clustered in functional groups based on the kappa score,
which considers the number of protein markers associated with two GO terms [29]. GO terms belonging to the same functional group are illustrated in the same color (black or
grey). A star around the node (i.e. color-filled circle) and bold description indicate the GO term of each functional group with the highest significance. The size of the GO term node
corresponds to the GO term p-value corrected with Bonferroni step down. A larger node indicates a higher significance. The white nodes represent the protein markers. NT-proBNP
is represented by NPPB, because there is no unique UniProt ID of NT-proBNP that could be included in the analysis. Instead, NT-proBNP belongs to the NPPBs in this analysis. ADM,
adrenomedullin; CX3CL1, fractalkine; GO, gene ontology; IGFBP2, insulin-like growth factor-binding protein 2; MB, myoglobin; MMP9, matrix metalloproteinase-9; NPPB, natri-
uretic peptides B; NT-proBNP, N-terminal prohormone brain natriuretic peptide; TGM2, protein-glutamine gamma-glutamyltransferase 2.

Table 4
GO terms of selected PhA-associated protein markers after adjustment for age and sex (model 1).

Rank GO term GO category p-value corrected with
Bonferroni step down

Associated protein markers

1 Extracellular space Cellular component 8.31E-05 DLK1, IGFBP2, MB, MMP2, MMP9, NPPB, TGM2
2 Positive regulation

of cell population
proliferation

Biological process 2.31E-03 IGFBP2, MMP2, MMP9, TGM2

3 Anatomical
structure formation
involved in
morphogenesis

Biological process 4.28E-03 MMP2, MMP9, NPPB, TGM2

4 Response to organic
substance

Biological process 1.72E-02 IGFBP2, MB, MMP2, MMP9, TGM2

5 Animal organ
development

Biological process 2.70E-02 MB, MMP2, MMP9, NPPB, TGM2

6 Signal transduction Biological process 3.29E-02 DLK1, IGFBP2, MMP2, MMP9, NPPB, TGM2
7 Extracellular

exosome
Cellular component 3.69E-02 IGFBP2, MB, MMP9, TGM2

8 Metal ion binding Molecular function 4.68E-02 DLK1, MB, MMP2, MMP9, TGM2

NT-proBNP is represented by NPPB, because there is no unique UniProt ID of NT-proBNP that can be included in the analysis. Instead, NT-proBNP belongs to the NPPBs in this
analysis.
DLK1, protein delta homolog 1; GO, gene ontology; IGFBP2, insulin-like growth factor-binding protein 2; MB, myoglobin; MMP2, matrix metalloproteinase-2; MMP9, matrix
metalloproteinase-9; NPPB, natriuretic peptides B; NT-proBNP, N-terminal prohormone brain natriuretic peptide; TGM2, protein-glutamine gamma-glutamyltransferase 2.
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positively associated with T2D [38], this might support the inverse
association between IGFBP2 and the PhA, potentially explained by
higher skeletal muscle index in prevalent T2D [39]. In summary,
lower IGFBP2 in T2D, which decreases the inhibition of IGF action,
thereby increasing cell proliferation, could potentially result in
increased muscle mass, BCM, and thus PhA.

Increased ADM has also been discussed as a potential marker of
HF [40]. ADM might compensate fluid overload and high fluid
volume could be indicated by increased ADM levels in plasma [40].
This reinforces the inverse association of ADM with the PhA, as a
lower PhA is related to higher fluid overload (higher ECF/ICF)
relative to BCM [1]. Next to volume overload [40], other stimuli of
ADM synthesis are inflammation-related markers [41], which can
induce cell damage, while cell damage can initiate inflammation
[42], potentially decreasing the PhA.

In this article, MB, MMP9, and TGM2 were positively associated
with the PhA, potentially through positive links with muscle mass
and thereby BCM. Quadriceps muscle cross-sectional area (CSA)
and BCM, which is closely related to the PhA [2], correlated posi-
tively with MB in healthy participants [43]. Moreover, MB, BCM,
and CSA were lower in patients with cancer cachexia compared to
healthy controls [43], a condition also exhibiting lower PhA values
[44]. Biological functions of MB comprise oxygen storage as well as
regulation of reactive oxygen species andmitochondrial function in
the muscle [45]. MB appears positively related to cell mass and
health, resembling the positive associationwith the PhA. MMP9 has
been linked to the development of various diseases, in particular
cancer [46] and CVD [47]. The positive association between MMP9
and the PhA might be supported by the observation that overex-
pressed MMP9 caused skeletal muscle hypertrophy in transgenic
mice [48]. The positive association of TGM2with the PhA could also
be explained by muscle growth as TGM2 was observed to increase
myotube protein synthesis and hypertrophy in mice skeletal mus-
cle [49].

CX3CL1, inversely associated with the PhA in our study, pro-
motes cell adhesion in transmembrane form, whereas in soluble
form, the chemokine enhances cell survival. CX3CL1 was reported
to encompass abilities to enhance tumors and metastasis and to
promote anti-tumor immunity [50].

The PhA’s protein profile encompassed markers that have been
related to various disease entities and not to one specific disease or
health outcome. This supports the previous broad application and
research of the PhA for numerous health outcomes.

4.2. Biological factors of the PhA’s protein profile

Due to a high number of selected GO terms, we focused on the
five most significant and related terms. The most significant bio-
logical factor was positive regulation of cell population prolifera-
tion. In fact, the PhA is assumed to indicate BCM in relation to ECF/
ICF [1], which could be affected by cell proliferation. Cell population
proliferation could indicate physiological but also pathophysio-
logical processes as for instance in cancer cells [51]. Also related to
cell mass are the further top five GO terms anatomical structure
formation involved in morphogenesis and regulation of multicel-
lular organismal development. The PhA marker set was also asso-
ciated with (regulation of) apoptotic process, which is again related
to the amount of cell mass. The selected GO term extracellular
space is somewhat contradictory to the biological processes
mentioned above, as extracellular space does not contain cells.
Nevertheless, higher ECF is related to lower PhA values [1]. The
underlying reason for the selection of extracellular space might
however, lie upon the fact that the protein markers included in the
analysis might commonly be represented in extracellular space.
Another top five biological process was metal ion homeostasis.

Maintaining themetal ion homeostasis in the body is imperative, as
metal ions are important for health, while being able to destruct
proteins and DNA. Furthermore, the imbalance of the metal ion
homeostasis can lead to cell death [52].

The PhA’s protein profile was mainly associated with biological
processes involved in influencing the amount of cell mass, sup-
porting the consensus that the PhA is considered to indicate BCM
[2]. In line with the protein marker set, the most significant bio-
logical factors are not specific to any pathophysiological area. The
potential explanation could entail that factors influencing the cell
growth and amount might affect various outcomes and not one
specific disease.

4.3. Strengths and limitations

Limitations concern the generalizability of the data (primarily
white Europeans aged 55e74 years) and the assessment of relative
and not absolute values of the protein markers. The inflammation-/
CVD-targeted proteomics set might not include other potentially
relevant markers [16] and thus might have restricted identifying
other relevant biological factors.

Strengths included the population-based design, the measure-
ment of the PhA as a directly derived BIA parameter, and the
implementation of boosting with stability selection to select
markers limited the identification of false positive markers and
thereby biological factors falsely related to the PhA. A strength of
the data set included the simultaneously measured high number of
markers.

5. Conclusion

Implementing a proteomics approach, we identified six new
markers that were strongly associated with the PhA and confirmed
that NT-proBNP is a key PhA marker. The main biological processes
that were related to this PhA’s protein profile are involved in
regulating the amount and growth of cells, reinforcing, from a
biomedical perspective, the current technical consensus of the PhA
to reflect BCM.
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