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Zusammenfassung

Zufällige Konfigurationen abzählbar vieler Teilchen in messbaren Räumen wie Zd und Rd

werden üblicherweise durch Zufallsvariablen, die Werte in geeigneten Mengen von Zählmaßen
annehmen, modelliert. Solche Zufallsvariablen werden als Punktprozesse bezeichnet. Falls die
Teilchen, informell gesprochen,

”
gleichmäßig und voneinander unabhängig“ im Raum verteilt

sein sollen, spricht man von einem Poisson-Punktprozess (PPP). Wichtige zugehörige Größen
wie Teilchendichten können für den PPP direkt und explizit berechnet werden.

Betrachten wir allerdings Gibbs-Punktprozesse (GPP) — Verallgemeinerungen vom PPP,
bei welchen die Annahme der Unabhängigkeit der Teilchen fallen gelassen wird, d.h., Wech-
selwirkungen zwischen den Teilchen erlaubt sind — so lassen sich Größen, die Informatio-
nen über diese Systeme von interagierenden Teilchen kodieren, im Allgemeinen nicht explizit
berechnen. Eine Möglichkeit, dennoch Informationen über das System aus diesen schwer zu
handhabenden Funktionen zu gewinnen, liefert ein perturbativer Ansatz: Man kann die GPP
als Modifikationen eines zugrundeliegenden PPP bezüglich eines Wechselwirkungspotenzials
betrachten und die fraglichen Funktionen als Potenzreihen in der Dichte dieses PPP, eines
die Aktivität genannten Parameters, um die Null entwickeln. Unter der Voraussetzung, dass
die Wechselwirkungen hinreichend schwach sind, erwartet man, dass diese Aktivitätsentwick-
lungen in einem Regime geringer Dichte sinnvoll sind. Der Ansatz ist als Clusterentwicklung
bekannt (manchmal verwendet man die Bezeichnung auch restriktiver für eine partikuläre
Entwicklung des Logarithmus der Zustandssumme — der freien Energie des Systems). Man
interessiert sich natürlicherweise für die Konvergenzradien dieser Aktivitätsentwicklungen.

In
”
Cluster expansions: Necessary and sufficient conditions“ folgen wir der Tradition eines

analytischen Zugangs zur Clusterentwicklung, welcher die sogenannten Kirkwood-Salsburg-
Gleichungen hinzuzieht. Das sind Integral-Fixpunktgleichungen über einem geeigneten Ba-
nachraum von Funktionen, welche von den zum gegebenen Paar-Wechselwirkungspotential
gehörenden Korrelationsfunktionen gelöst werden. Wir leiten eine abstrakte hinreichende
Bedingung für die Konvergenz der entsprechenden Aktivitätsentwicklungen — die im Fall re-
pulsiver Paarwechselwirkungen auch notwendig ist — in einem recht allgemeinen Setup her.
Unser Kriterium formulieren wir hinsichtlich der Existenz von Funktionen, die Ungleichungen
vom Kirkwood-Salsburg-Typ erfüllen. Wir zeigen nicht nur, wie man klassische hinreichende
Bedingungen im Rahmen dieses Ansatzes vereinen kann, sondern auch, wie neue Konvergen-
zkriterien unter dessen Anwendung gefunden werden können, sowohl in diskreten als auch in
stetigen Setups.

Die Aktivitätsentwicklungen der Korrelationsfunktionen können als exponentielle erzeu-
gende Funktionen bestimmter Mengen von Graphen ausgedrückt werden. Grundsätzlich
besteht die Hoffnung, Informationen über die graphische Entwicklung der Korrelationsfunk-
tionen zu erlangen, indem man die zugrundeliegenden kombinatorischen Strukturen von
einem konstruktiven Standpunkt aus versteht: Elementare konstruktive Beziehungen zwis-
chen solchen

”
kombinatorischen Spezies“ lassen sich unkompliziert in Beziehungen zwischen

den zugehörigen erzeugenden Funktionen übersetzen. In
”
Logarithms of Catalan generating

functions: A combinatorial approach“ demonstrieren wir diesen Ansatz und präsentieren ein
kombinatorisches Resultat, welches den Logarithmus der erzeugenden Funktion der (verallge-
meinerten) Catalan-Zahlen hinsichtlich verschiedener baum- oder pfadähnlicher Strukturen
interpretiert. Auf dem Niveau formaler Reihen liefert das Resultat ein Analogon zu der
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klassischen Clusterentwicklung der freien Energie, wo die graphische Entwicklung der Zus-
tandssumme (i.e., die exponentielle erzeugende Funktion der Graphen) durch die erzeugende
Funktion der Catalan-Zahlen (i.e., die exponentielle erzeugende Funktion regulärer geordneter
Bäume) als Ausgangspunkt ersetzt wird. Das erlaubt uns auch, bekannte Ausdrücke für die
Koeffizienten des Logarithmus der erzeugenden Funktion der Catalan-Zahlen auf ein simples
Aufzählungsproblem zurückzuführen.

Einige Fragen, die in der Theorie der GPP aufkommen — wie die Eindeutigkeit zu gegebe-
nen Aktivitäten und Paarpotentialen gehörender Gibbsmaße — stehen im starken Zusammen-
hang mit Fragen aus verwandten Modellen für Perkolation. Ein konkretes Beispiel für ein auf
dem PPP in Rd basierendes Modell für Perkolation ist das random connection model (RCM),
in dem, informell gesprochen, ein Zufallsgraph dadurch gebildet wird, dass man Kanten zwis-
chen zwei Punkten des PPP unabhängig voneinander mit einer Wahrscheinlichkeit, die von
einer gegebenen connection function diktiert wird, zieht. Die Wahrscheinlichkeit dafür, dass
zwei vorab in Rd fixierte Punkte durch (Pfade von) Kanten in diesem Graphen verbunden sind,
wird durch die pair connectedness function beschrieben. Man kann die pair connectedness
function als formale Potenzreihe in der Dichte z des zugrundeliegenden PPP entwickeln. Zwis-
chen der Paarkorrelationsfunktion eines GPP und der pair connectedness function im RCM
gibt es eine Entsprechung, die durch ein System von Integralgleichungen folmalisiert werden
kann, allem voran unter Einbeziehung der sogenannten Ornstein-Zernike-Gleichung (OZE).
Diese Gleichung setzt die Potenzreihenentwicklung der pair connectedness function, welche
bezüglich bestimmter zusammenhängender Graphen ausgedrückt werden kann, in Beziehung
zur sogenannten direct-connectedness function, von der man erwartet, dass eine graphische
Entwicklung bezüglich bestimmter

”
doppelt zusammenhängender“ Graphen möglich ist. In

”
The direct-connectedness function in the random connection model“ leiten wir eine solche
Entwicklung für die direct-connectedness function rigoros her, zeigen, dass sie tatsächlich die
OZE in einem gewissen nicht-trivialen Konvergenzbereich der Intensität erfüllt, und setzen
sie zu anderen bekannten Entwicklungen, wie der lace expansion, in Beziehung.
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Abstract

Random configurations of countably many particles in measurable spaces such as Zd and
Rd are commonly modeled by random variables with values in a suitable set of counting
measures. These random variables are called point processes. If the particles are supposed to
be distributed, informally speaking, “uniformly and independently of each other” in space,
the random variable is referred to as the Poisson point process (PPP). Important associated
quantities such as particle densities can be computed directly and explicitly for the PPP.

However, if we consider Gibbs Point Processes (GPP) — generalizations of the PPP, where
the assumption of independence between the particles is dropped, i.e., interactions between
the particles are allowed — the quantities encoding the information about those systems of
interacting particles become intractable in general. A way to still extract information about
the system from those intractable functions is to use a perturbative approach: One can view
the GPP as a modification of an underlying PPP in terms of an interaction potential and
express the functions in question as power series in the density of that PPP, a parameter
called the activity, around zero. Under the assumption that the interactions are sufficiently
weak, one expects those activity expansions to be reasonable in a low-density regime. This
approach is known as cluster expansion (sometimes the terminology is used more restrictive to
describe a particular type of expansion for the logarithm of the partition function — the free
energy of the system). Naturally, one is interested in the convergence radii of those activity
expansions.

In “Cluster expansions: Necessary and sufficient conditions” we follow a tradition of an-
alytic arguments involving the so-called Kirkwood-Salsburg equations. Those are integral
fixed-point equations over suitable Banach spaces of functions that are solved by the corre-
lation functions associated to the given pair-interaction potential. We are able to derive an
abstract sufficient condition for the convergence of the corresponding activity expansions —
that is also necessary in the case of repulsive interactions — in a quite general setup. Our
criterion is formulated in terms of existence of functions satisfying Kirkwood-Salsburg-type
inequalities. We show not only how the classical sufficient conditions can be unified under
this approach, but also how it can be employed to find novel criteria for convergence, both in
discrete and in continuous setups.

The activity expansions for the correlation functions can be expressed as exponential
generating functions for certain sets of graphs. Generally speaking, one can hope to gain
knowledge about such graphical expansions by understanding the underlying combinato-
rial structures from a constructive point of view: Basic constructive relations between these
“combinatorial species” are easily translated to relations between the associated generating
functions. In “Logarithms of Catalan generating functions: A combinatorial approach” we
demonstrate this approach and present a new combinatorial result, interpreting the logarithm
of the generating function for (generalized) Catalan numbers in terms of different tree-like
or path-like structures. The result provides an analogue to the classical cluster expansion of
the free energy on the level of formal power series — where the graphical expansion of the
partition function (i.e., the exponential generating function for graphs) is replaced by the
Catalan generating function (i.e., the exponential generating function for regular plane trees)
as a starting point. It also allows us to recover known expressions for the coefficients of the
logarithm of the Catalan generating functions via rather simple exact enumeration of those
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combinatorial structures.

Some questions arising in the theory of GPP — such as the uniqueness of Gibbs measures
corresponding to given activities and pair-interaction potentials — are strongly connected
to questions arising in associated percolation models. A particular model driven by the
PPP in Rd is the random connection model (RCM) where, informally speaking, a random
graph is obtained by drawing edges between points of the PPP independently of each other
with probabilities dictated by a given connection function. The probability for two points
fixed in Rd to be connected through (paths of) edges of that graph is described by the pair
connectedness function. One can expand the pair connectedness function as a power series in
the density z of the underlying PPP. There is a correspondence between the pair correlation
function of a GPP and the pair connectedness function in the RCM which can be formalized by
systems of integral equations, most notably involving the so-called Ornstein-Zernike equations
(OZE). This equation relates the power series expansion of the pair connectedness function
given in terms of certain connected graphs to the so-called direct connectedness function
which is expected to possess a graphical expansion in terms of certain “doubly connected”
graphs. In “The direct-connectedness function in the random connection model” we rigorously
derive such an expansion for the direct-connectedness function showing that it indeed does
satisfy the OZE in a certain non-trivial domain of convergence and relate it to other known
expansions like the lace expansion.
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1 Introduction

1.1 Motivation and brief outline

Suppose our goal is to model a gas as a system of interacting particles in some physical
space. The statistical mechanics approach to this task involves two main assumptions: The
positions of the particles (gas molecules) are random and very large systems can be represented
by infinite systems. That is, instead of considering microscopic dynamics on deterministic
configurations of particles in a very large volume, one encodes the microscopic dynamics into
probability distributions (ensembles) and studies a random configuration on an infinite volume
— since the latter approach is more accessible. We consider the grand-canonical ensemble
where neither the number of particles nor the energy of the system are deterministic. If there
are no interactions between the particles, one refers to the system as an ideal gas.

Mathematically, the random configurations of particles are modeled by random variables
with values in a suitable space of counting measures. Those random variables are referred
to as point processes. An ideal gas is modeled via the Poisson point process (PPP), the
particle density is tuned via the intensity parameter z. In the case of present interactions, the
so-called Gibbs point processes (GPP) or (grand-canonical) Gibbs measures are used. GPP
can be viewed as modifications of the PPP corresponding to a fixed interaction potential
and an activity z (the latter is the intensity of the underlying PPP). Besides applications in
statistical mechanics [9,17], GPP appear in various models from stochastic geometry [5] and
from spatial statistics [36]. We rigorously introduce the setup of GPP with pair-interactions
and the necessary notation in Subsection 1.2.

Typically, in statistical mechanics, one is interested in the analyticity of certain functions
(such as free energy or correlation functions) encoding information about the system of in-
teracting particles. The functions of interest are, in general, intractable in the Gibbs setup
(i.e., in the presence of interactions between particles), however, one would like to extract
information from them by differentiating in some parameter, e.g., in the activity parameter z.
Therefore, one expresses those quantities as power series in z around zero. This perturbative
approach is referred to as cluster expansion. The study of those formal power series in regard
to their structure and domains of convergence is our main goal; we focus primarily on cluster
expansion results in this introduction.

The original approach to the classical cluster expansion of the free energy involves ex-
pressing it as an exponential generating function for connected graphs and trying to see what
the structure of those graphs tells about the convergence of the generating function (typi-
cally, via tree-graph bounds [4] or, more recently, via tree-graph identities [13]). We discuss
this combinatorial trick that initiated the cluster expansion approach (known as the Mayer
trick [34]) and introduce the activity expansions ρn for the correlation functions (given as
exponential generating functions for so-called multi-rooted graphs [25]) in Subsection 1.3.

In Subsection 1.4, we briefly discuss different approaches to cluster expansion known from
the literature and introduce our results from “Cluster expansions: Necessary and sufficient
conditions” (contribution [a]). Our main result (see [a, Theorem 2.1] and Theorem 1.5) is
a novel sufficient condition for the convergence of the cluster expansion for the correlation
functions in a general pair-interaction setup that is also necessary in the case of repulsive
interactions. To obtain the result, we combine combinatorial considerations with analytical
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  PPP

Figure 1: On the left, a sample of a PPP with the homogeneous intensity z ≡ 1 is depicted;
on the right a sample of a PPP with z ≡ 10.

arguments à la Gruber and Kunz [18], involving Kirkwood-Salsburg equations — certain
integral fixed-point equations which the sequence of correlation functions solves exactly and
which can be formally expressed as

Kzρ(z) + ez = ρ(z),

where ρ(z) denotes the activity expansions for the sequence of correlation functions and Kz

denotes the Kirkwood-Salsburg operator (see [a,25]). Our characterization of the convergence
domain of ρ(z) is formulated in terms of existence of sequences of non-negative measurable
solutions ξ of the corresponding sign-flipped Kirkwood-Salsburg inequalities

K̃zξ + ez ≤ ξ, (1.1)

where K̃z denotes the sign-flipped Kirkwood-Salsburg operator (see (1.4) and compare to the
Kirkwood-Salsburg operator from [a,25]).

This approach reduces finding sufficient conditions for the convergence of the activity
expansions ρ(z) to finding functions ξ satisfying Kirkwood-Salsburg-type inequalities (1.1).
In particular, the classical conditions like Kotecký-Preiss [28], Gruber-Kunz [18] or Fernández-
Procacci [13] are easily recovered by employing it. Moreover, we are able to use this method
to derive various novel sufficient conditions for different hard-core setups, both discrete and
continuous, in [a].

In Subsection 1.5, we return to the sequence of formal power series ρ(z), given by the
exponential generating functions for so-called multi-rooted graphs. We justify the role of ρ(z)
as the starting point and main object of our studies in [a] by relating it to other expansions
known from the literature and to finite-volume Gibbs correlation functions. To do so, we
formulate and prove rigorously several results including Proposition 1.7, Proposition 1.9 and
Corollary 1.10.

Notice that to show analyticity of the free energy or of the correlation functions other
graphical expansions can be helpful (like the virial expansion [27, 34], where power series in
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the density of the GPP are obtained) and might, in general, yield larger domains of analyticity.
An exemplary result that points out the limitations of cluster expansion in a classical setup
is given in Subsection 1.6.

From a purely combinatorial point of view, the classical cluster expansion of the free en-
ergy involves taking the logarithm of the exponential generating function for graphs — which
results in the exponential generating function for connected graphs. What if we consider the
logarithm of the exponential generating function for regular plane trees instead? For which
combinatorial species, in particular what kind of tree-like structures, is the resulting formal
power series the generating function? These combinatorial questions arise in the context
of statistical mechanics when studying discrete one-dimensional systems of non-overlapping
rods (see [24, Chapter 5.2]). In Subsection 1.6 we summarize our results from “Logarithms
of Catalan generating functions: A combinatorial approach” (contribution [b]) providing an-
swers to these questions: The generating function for generalized Catalan numbers can be
viewed as the exponential generating function for regular plane trees and the logarithm of
this formal power series can be represented by the exponential generating function for, e.g.,
tree-like structures called cycle-rooted trees. We give several alternative combinatorial inter-
pretations for the logarithm of these Catalan generating functions that allow us to determine
the coefficients by solving rather simple counting problems. The results are purely combina-
torial, we view the occurring generating functions as formal power series and do not concern
ourselves with questions of convergence.

Finally, in Subsection 1.7, we summarize our results from “The direct-connectedness func-
tion in the random connection model” (contribution [c]). They are motivated by the following
question: In the random connection model (RCM), a particular PPP-driven model of con-
tinuum percolation [19, 35], how can the study of the percolation phase transition provide
answers to important question concerning the phase transition in terms of uniqueness of an
associated Gibbs measure? We expand certain connectivity functions in the RCM in a fash-
ion which is partially inspired by cluster expansion: Consider the pair connectedness function
given by the probability that two points (fixed a priori in the space) are connected via paths
of a random graph with the vertex set given by a PPP. Like the pair correlation function of
a GPP, the pair connectedness function admits a graphical expansion in terms of connected
graphs. In statistical mechanics, the Ornstein-Zernike equation (OZE) provides relations be-
tween correlation functions and direct correlation functions [29]. What is the analogue for the
two-point direct correlation function in the RCM setup? We rigorously derive an expansion
for the function satisfying the OZE relations with the pair-connectedness function. While the
existence of such an analytic function in a low-density regime is known by [31], we provide
an explicit graphical expansion and quantify its domain of convergence.

1.2 General setup and notation

Let (X,X , λ) be a measure space, where X is the Borel-σ-algebra on the metric space X and
λ is a σ-finite Borel measure on X . Let Xb ⊂ X be the set of bounded Borel sets.

An activity function z is defined as a measurable map z : X → R+
0 . Here we assume

additionally that
∫
B z(x)λ(dx) < ∞ for all B ∈ Xb. To an activity function, we assign the

measure λz, given by

λz(B) :=

∫

B
z(x)λ(dx), B ∈ X .
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Although one could introduce complex activities here and work in the usual complex analysis
setup (in which case λz would be a complex measure in general), we only consider physically
relevant positive activities in this introduction.

We call a measure η on (X,X ) a locally finite counting measure if η(B) ∈ N0 for all
B ∈ Xb. We denote the set of locally finite counting measures on (X,X ) by Nf . Each non-
zero η ∈ Nf can be written as η =

∑κ
i=1 δxi for κ ∈ N ∪ {∞} and x1, x2, . . . ∈ X; by Sη we

denote the support {x1, x2, . . .} of η. Consider the family {NB}B∈Xb
of maps NB given by

NB : Nf → N0, η 7→ NB(η) := η(B) for every B ∈ Xb. We equip Nf with the σ-algebra N
generated by the family {NB}B∈Xb

, i.e., N = σ({NB|B ∈ Xb}).

Definition 1.1. Let ν be a σ-finite Borel measure on X . The Poisson point process with
intensity ν is the unique probability distribution on (Nf ,N) that satisfies:

� The number of points in any bounded Borel set B ∈ X is Poisson distributed with
intensity given by ν(B), i.e., for all B ∈ Xb and k ∈ N0

P({η ∈ Nf | NB(η) = k}) = e−ν(B) ν(B)k

k!
.

� The numbers of points in disjoint regions are independent of each other, i.e., for all
m ∈ N and all pairwise disjoint sets B1, . . . , Bm ∈ Xb, the associated random variables
NB1 , . . . , NBm are independent.

For the proof of the existence and the uniqueness of the PPP, see [30].

In infinite volume we want to consider the PPP with intensity measure λz. In a finite
volume Λ ∈ Xb, we can just consider the PPP with intensity measure 1Λzdλ. In the latter case,
we want to introduce modifications of the PPP involving interactions between particles. We
assume that the particles are interacting pairwise (and not in larger cliques) and introduce a
pair-interaction potential v, defined as a measurable and symmetric map v : X×X → R∪{∞}.
For x ∈ X and η ∈ Nf , we define the total interaction W (x; η) of x with the configuration
η =

∑κ
i=1 δyi by

W (x; η) :=

κ∑

i=1

v(x; yi).

Furthermore, we assign a family of measurable functions (Hn)n∈N, Hn : Xn → R∪{∞}, to v,
given by

Hn(x1, . . . , xn) =
∑

1≤i<j≤n
v(xi, xj), H(x1) = 0,

for any n ∈ N and (x1, . . . , xn) ∈ Xn. We write H(
∑n

i=1 δxi) := Hn(x1, . . . , xn). For Λ ∈
Xb, the finite-volume Hamiltonian HΛ is given by HΛ(η) = H(ηΛ), where ηΛ denotes the
configuration restricted to Λ, i.e., ηΛ(B) := η(B∩Λ) for all B ∈ X . HΛ encodes the energy of
the configuration on the finite volume Λ — the total interaction between particles positioned
inside Λ.

A Gibbs point process on Λ ∈ Xb can be defined via an explicit Radon-Nykodým derivative
with respect to the PPP on Λ. The derivative involves the so-called Boltzmann factor e−HΛ :
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Definition 1.2. The probability distribution on (Nf ,N) which has the Radon-Nikodým deriva-
tive

η 7→ eλz(Λ)

ΞΛ(z)
e−HΛ(η)

with respect to the the finite volume PPP with intensity measure 1Λzdλ is called the Gibbs
point process or (grand-canonical) Gibbs measure on Λ with empty boundary conditions (as-
sociated to potential v and activity z). The normalization constant ΞΛ is called the (grand-
canonical) partition function with empty boundary conditions and is given by

ΞΛ(z) := 1 +

∞∑

k=1

1

k!

∫

Λk

e−
∑

1≤i<j≤k v(yi,yj)λkz(dy).

Remark 1.1. Different boundary conditions are possible — via modification of the Hamiltonian
HΛ to include interactions with particles on the “boundary” of Λ.

For the infinite volume case, such an explicit definition is, in general, not possible. We in-
troduce infinite-volume Gibbs measures via the GNZ equations, named after Georgii, Nguyen
and Zessin. Those reflect a structural property of finite-volume Gibbs measures expressed by
a system of integral equations:

Definition 1.3. A probability distribution P on (Nf ,N) is called a Gibbs measure with in-
teraction potential v and activity z if

E


∑

x∈Sη

N{x}(η)F (x, η)


 =

∫

X
E[F (x, η + δx)e

−W (x;η)]λz(dx)

for every measurable map F : X × Nf → [0,∞). We denote the set of Gibbs measures with
interaction potential v and activity z by G (v, z).

Remark 1.2. One can find the proof that finite-volume Gibbs measures satisfy this property
in [9]. Moreover, by [9], the GNZ equations are equivalent to the DLR equations, named
after Dobrushin, Lanford and Ruelle, that provide the classical definition of Gibbs measures
in infinite volume.

Remark 1.3. The questions of uniqueness and existence of Gibbs measures are both highly
non-trivial. The phase transition associated to the uniqueness of Gibbs measures is a central
topic of ongoing research in the field of statistical mechanics (see, e.g., [7]).

In particular, for the trivial interaction potential v ≡ 0, the GNZ equations simplify to the
Mecke formula [31] and we recover the PPP with intensity measure λz as a unique solution.

Finally, we would like to consider a sequence of functions uniquely associated to a Gibbs
measure and encoding all the relevant properties of the system: the so-called n-point corre-
lation functions. In discrete setups, the n-point correlation functions are just given by the
probabilities “to encounter particles at n fixed positions” in the random configuration; in con-
tinuous setups they are given by certain measure densities. The n-point correlation functions
can be rigorously defined as densities of the factorial measures [25]. An alternative definition
is the following:
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Definition 1.4. Let P ∈ G (v, z) and n ∈ N. We define the n-point correlation function ρn(z)
by

ρn(x1, . . . , xn; z) :=
n∏

j=1

z(xj)e
−Hn(x1,...,xn)E




n∏

j=1

e−W (xj ;η)


 (1.2)

for all (x1, . . . , xn) ∈ Xn.

Remark 1.4. Notice that there is a one-to-one correspondence between Gibbs measures and
sequences of correlation functions. This follows from the observation that the functions defined
in (1.2) coincide with the densities of the factorial measures associated to P, see [25, Lemma
2.2].

For the special case of the PPP with intensity measure λz, one recovers the correlation
functions (ρn(z))n∈N given by

ρn(x1, . . . , xn; z) = z(x1) . . . z(xn).

However, in the case of non-trivial interactions, such functions are, in general, non-tractable.
To work around that fact, one can employ a perturbative approach and approximate quantities
of interest, such as the correlation function, as formal power series in the intensity z of the
underlying PPP. I.e., starting from a simplification given by the correlation function of the
PPP, one adds terms of higher order encoding the particle interactions via the Boltzman
factor and expects that the resulting series approximate the Gibbs correlation functions —
if the interactions are weak and the particle density is low enough. The so-called cluster
expansion is such a perturbative approach. It does not only ensure that the partial sums
of the resulting power series approximate the correlation functions, but also that the series
— which are the Taylor expansions of the correlation functions around z = 0 — converge
in a non-trivial region. The study of those power series expansions and their domains of
convergence is the topic of [a] and constitutes the initial research goal behind this thesis. We
now want to introduce the approach in more details — to discuss our main result from [a]
and to present some supplementary results on cluster expansion not included therein.

1.3 Mayer trick and combinatorics

We follow the so-called Mayer trick introduced in the 1940’s [34] that is at the heart of all
combinatorial approaches to cluster expansion. The trick is based on the idea to encode
interactions between pairs of+ particles by weights of edges in an associated weighted graph,
leading to a graphical expansion of the partition function. To elaborate the idea, we introduce
several sets of graphs and a way to assign weights (associated to the pair-interaction potential)
to those graphs.

For every n ∈ N, let us denote by Gn the set of all graphs on the vertex set [n] := {1, . . . , n}
and let us denote by Cn ⊂ Gn the set of all connected graphs on [n].

To introduce graph weight, we define Mayer’s f function associated to the potential v by

f(x, y) = e−v(x,y) − 1, x, y ∈ X.
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Let G ∈ Gn be a graph with vertex set [n] and edge set E(G). For (x1, . . . , xn) ∈ Xn, the
graph weight w(G;x1, . . . , xn) is given as the product of the edge weights dictated by Mayer’s
f function:

w(G;x1, . . . , xn) :=
∏

i,j∈E(G)

f(xi, xj).

We want to expand the logarithm of the partition function ΞΛ(z), that is the normalization
constant for a finite-volume Gibbs measure with empty boundary conditions, around the
activity z = 0. To do so, we first notice that ΞΛ(z) is given by the exponential generating
function for graphs: For all k ∈ N and (y1, . . . , yk) ∈ Xk we have

∏

1≤i<j≤k
(1 + f(yi, yj)) =

∑

G∈Gk

∏

{i,j}∈E(G)

f(yi, yj)

and therefore

ΞΛ(z) = 1+
∞∑

k=1

1

k!

∫

Λk

∏

1≤i<j≤k
(1+f(yi, yj))λ

k
z(dy) =

∞∑

k=1

1

k!

∫

Λk

∑

G∈Gk

∏

{i,j}∈E(G)

f(yi, yj)λ
k
z(dy).

By a well-known combinatorial argument (see, e.g., [12, 15] and compare to the proof of
Proposition 1.9) based on the fact that the weight of a graph is given by the product of
the weights of its connected components, the exponential generating function for graphs is
given by the exponential of the exponential generating function for connected graphs. That
means, that taking the logarithm of ΞΛ(z) corresponds to discarding the graphs that are
not connected, i.e., log ΞΛ(z) can be expressed as the exponential generating function for
connected graphs: For n ∈ N, we define the n-th Ursell function by

φT
n(x1, . . . xn) :=

∑

G∈Cn
w(G;x1, . . . , xn), (x1, . . . , xn) ∈ Xn,

then we can capture the following identity between formal power series:

log ΞΛ(z) =
∞∑

k=0

1

k!

∫

Λk

φT
k (y1, . . . yk)λ

k
z(dy).

In the context of statistical mechanics, log ΞΛ is the free energy of the system and encodes
the relevant thermodynamic properties of the system, which can be extracted from it by taking
derivatives; naturally, one is interested in the convergence radius of this activity expansion.

Alternatively, instead of log ΞΛ, one can (and we will in the following) consider the activity
expansions of the correlation functions. Again, those are given by exponential generating
functions for a certain type of graphs that we call multi-rooted graphs: Let n ∈ N and
k ∈ N0. We call a graph G ∈ Gn+k a multi-rooted graph with root vertices {1, . . . , n} if every
vertex j ∈ {n+1, . . . , n+k} connects to some vertex i ∈ {1, . . . , n}. We denote the collection
of multi-rooted graphs with root vertices {1, . . . , n} by Dn,n+k. Furthermore, we define

ψn,n+k(x1, . . . , xn+k) :=
∑

G∈Dn,n+k

w(G;x1, . . . , xn+k), (x1, . . . , xn+k) ∈ Xn+k.
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Notice that for n = 1, we recover the standard Ursell functions, i.e., ψ1,1+k = φT
1+k.

Finally, we can define our main object of study: For an activity function z and n ∈ N, the
activity expansion ρn(z) for the n-point correlation function is given by

ρn(x1, . . . , xn; z) =
∑

k≥0

1

k!

∫

Xk

ψn,n+k(x1, . . . , xn, y1, . . . , yk)z(x1) . . . z(xn)λ
k
z(dy) (1.3)

for (x1, . . . , xn) ∈ Xn.

1.4 Our main cluster expansion result: Characterizing the domain of con-
vergence

Later, in Subsection 1.5, we will justify the fact that the activity expansions ρn are our
main object of interest — by proving that they provide power series expansions for the
correlation functions corresponding to Gibbs measures with empty boundary conditions and
by connecting them to expansions known from literature. But what can be said about the
radii of convergence of those power series? In the literature, there are essentially three classical
approaches to cluster expansions for discrete systems with hard-core interactions:

� The combinatorial approach: This method is based on the free-energy expansion in
terms of connected graphs due to Mayer’s trick and was clearly formulated by Battle [1]
first, though there is preceding work by other authors. The convergence of the expansion
is established by tree-graph bounds [1,4], i.e., by bounding sums over weighted connected
graphs by sums over weighted trees; later Fernández and Procacci [13] improved on
the method by rediscovering an old argument by O. Penrose [38] and employing so-
called tree partition schemes to establish tree-graph identities. Another novel ingredient
contributing to their improvement was an iterative argument asserting that it is enough
to bound the expression involving single-generation trees to obtain convergence (and
analyticity) of the free-energy expansion.

� The inductive approach: This method was introduced by Kotecký and Preiss [28]; later
it was refined by Dobrushin [10] into its “final” form, abandoning any reference to
graphical expansion or power series altogether (Dobrushin himself referred to it as a
“no-cluster expansion”). While the proofs of given sufficient conditions are elegant and
accessible, they do not provide a clear path for further improvement of the conditions
since there is no recipe to come up with new inductive hypotheses. Recently, an induc-
tive proof à la Dobrushin of the Fernández-Procacci condition emerged [14].

� The analytical approach: This method was introduced by Gruber and Kunz [18]. It
involves a system of integral fixed-point equations over a suitable Banach space of
functions — the Kirkwood-Salsburg equations — that is shown to be solved by the
activity expansions for the correlation functions. The convergence of the expansion is
essentially shown via the Banach fixed-point theorem and the argument involves showing
that an operator associated to the Kirkwood-Salsburg equations is a contraction on the
Banach space. Notice that the uniqueness of the solution ensures uniqueness of the
Gibbs measure. Using a slight modification of the approach — the extended Gruber-
Kunz approach — Bissacot, Fernández and Procacci [3] were able to reproduce the
Fernández-Procacci condition.
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Notice that, until recently, in the discrete setup of polymer models, the three methods
produced at best the same bound on the convergence radius of the cluster expansion — the
one provided by the Ferández-Procacci condition (see [3, 13] for a comparison of classical
conditions in discrete setups). However, we are able to improve on the Fernández-Procacci
condition using the analytical approach (see [a, Proposition 2.4]).

A lot was done to generalize those classic results to hold in continuous setups and for larger
classes of pair interactions. Ueltschi [42] generalized the classic Kotecký-Preiss condition to
hold, in particular, in continuous setups and for soft-core interaction; Faris [11] and Jansen [25]
followed by generalizing the Fernández-Procacci criterion.

Let us briefly summarize our results from our contribution [a], “Cluster expansions: Nec-
essary and sufficient conditions”: We follow the spirit of Bissacot, Fernández and Procacci [3],
employing a similar (but slightly modified) analytical approach á la Gruber and Kunz in a
much more general setup (and combining it with some combinatorial considerations). The
activity expansions ρn of Gibbs correlation functions are given by exponential generating
functions for multi-rooted graphs. Multi-rooted graphs have a certain structural property:
Taking a multi-rooted graph and removing an arbitrary root with the incident edges produces
a multi-rooted graph, where every neighbor of the removed root becomes a root vertex itself.
The weight of the original multi-rooted graph is equal to the weight of the resulting graph
times the weight of the edges removed. This structural property, on the level of generating
functions, is expressed by the Kirkwood-Salsburg equations that can be exploited to find
sufficient conditions for convergence.

Consider an activity z and a non-negative potential v ≥ 0. Let us formulate a particular
sign-flipped version of the classical Kirkwood-Salsburg equations by defining the sign-flipped
Kirkwood-Salsburg operator K̃z — that acts on families ξ = (ξn)n∈N of measurable symmetric
functions ξn : Xn → R+ — as

(K̃zξ)n(x1, . . . , xn) := z(x1)

n∏

i=2

(1 + f(x1, xi))
(
1l{n≥2}ξn−1(x2, . . . , xn)

+
∞∑

k=1

1

k!

∫

Xk

k∏

j=1

∣∣f(x1, yj)
∣∣ ξn−1+k(x2, . . . , xn, y1, . . . , yk)λ

k(dy)
)
, (1.4)

for all n ∈ N and (x1, . . . , xn) ∈ Xn. One can show that the non-negative versions ρ̃n(z) of
the activity expansions ρn(z), given by

ρ̃n(x1, . . . , xn; z) :=
∞∑

k=0

1

k!

∫

Xk

∣∣ψn,n+k(x1, . . . , xn, y1, . . . , yk)
∣∣z(x1) · · · z(xn)λkz(dy)

for all (x1, . . . , xn), satisfy the equations

K̃zρ̃(z) + ez = ρ̃(z).

Thus, on level of formal series, the activity expansions ρ̃n(z) can be written as Neumann-
type series

∑∞
n=0 K̃

n
z ez and the partial sums

∑N
n=0 K̃

n
z ez of those series are given by truncated

versions of ρ̃n(z) involving graphs with at most N ∈ N nodes. While the classic Kotecký-
Preiss and Gruber-Kunz conditions ensure the convergence of the Neumann series

∑∞
n=0 K̃

n
z

18



with respect to an operator norm by ensuring that the operator K̃z is a contraction, this is
not necessary for the convergence of the Neumann-type series

∑∞
n=0 K̃

n
z ez in general. We

want to provide a condition which is both sufficient and necessary for the convergence of the
Neumann-type series

∑∞
n=0 K̃

n
z ez in the case of repulsive interaction, which is the idea behind

the extended Gruber-Kunz approach [3].

In the following, we characterize the convergence of the activity expansions ρ̃n in terms
of existence of non-negative, measurable solutions to the associated Kirkwood-Salsburg-type
inequalities; it is a somewhat simplified version of [a, Theorem 2.1], for the special case of
repulsive interactions (i.e., for v ≥ 0):

Theorem 1.5. In the case of repulsive interactions, the following two conditions are equiva-
lent:

(i) There is a family ξ = (ξn)n∈N of measurable symmetric functions ξn : Xn → R+ such
that

z(x1)δn,1 + (K̃zξ)n (x1, . . . , xn) ≤ ξn(x1, . . . , xn) (1.5)

for all n ∈ N and (x1, . . . , xn) ∈ Xn.

(ii) The series ρn(x1, . . . , xn; z) converges absolutely, for all n ∈ N and (x1, . . . , xn) ∈ Xn.

Moreover, if (i) is satisfied, then

∞∑

k=0

1

k!

∫

Xk

∣∣ψn,n+k(x1, . . . , xn, y1, . . . , yk)
∣∣z(x1) · · · z(xn)λkz(dy) ≤ ξn(x1, . . . , xn)

on Xn, for all n ∈ N.

This approach allows us to unify existing convergence criteria in a joint context (e.g.,
the classic Kotecký-Preiss and Fernández-Procacci sufficient conditions) but it also allows
us to find new conditions by designing suitable ansatz functions ξ (e.g., as approximations
of the the activity expansions ρ̃n) to satisfy the Kirkwood-Salsburg-type inequalities (1.5).
We demonstrate the potential of this approach to find new sufficient conditions in various
discrete and continuous setups with hard-core repulsive interactions and are able to use it
to improve on the Fernández-Procacci condition in the setup of abstract polymer models
(see [a, Proposition 2.4]).

1.5 Supplementary cluster expansion results

1.5.1 Activity expansions of the correlation functions

The results from this section — except for Lemma 1.9 — do not appear in [a] and are supposed
to be read as supplementary results providing context for the choice of the power series ρn
as the candidate activity expansions for the correlation functions. We would like to connect
different known representations for the activity expansions to each other and to the correlation
functions themselves.
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First, we want to consider some combinatorial results to understand the graphical ex-
pansions (1.3) on the level of the underlying graphs: In the literature there are two types
of expansions that (can be interpreted to) stem from two different possibilities to construct
multi-rooted graphs on a given vertex set. While the following expansions (see Proposition 1.7
and Proposition 1.9) themselves can not be considered novel and appear in different setups
under various assumptions, we provide a combinatorial interpretation of the different repre-
sentations while rigorously proving them to hold in our quite general setup without assuming
concrete sufficient conditions for convergence.

First we introduce a simple procedure to construct multi-rooted graphs, which allows us to
explain how the series ρn relates to the series ρTn given by the exponential generating function
for connected graphs: For all n ∈ N and (x1, . . . , xn) ∈ Xn, let

ρTn(x1, . . . , xn) :=

∞∑

k=0

1

k!

∫

Xk

φT
n,n+k(x1, . . . , xn, y1, . . . , yk)z(x1) · · · z(xn)λkz(dy).

Lemma 1.6. For all n ∈ N, all k ∈ N0 and all (x1, . . . , xn+k) ∈ Xn+k, we have

ψn,n+k(x1, . . . , xn+k) =
∑

{V1,...,Vm}

m∏

ℓ=1

φT
|Vℓ|
(
(xj)j∈Vℓ

)

where the sum runs over all set partitions {V1, . . . , Vm} of {1, . . . , n+k} such that every block
Vℓ contains at least one root vertex i ∈ {1, . . . , n}.

Proof. To construct a multi-rooted graph G ∈ Dn,n+k, consider a partition {V1, ..., Vm}, m ≤
n, of the vertex set {1, ..., n + k}, such that every block Vl of the partition contains at least
one vertex from the set of roots {1, ..., n}. Then simply pick connected graphs G1, ..., Gm on
the vertex sets V1, ..., Vm. The weight of the resulting multi-rooted graph G is given by

w(G;x1, . . . , xn+k) =
m∏

ℓ=1

w
(
Gℓ; (xj)j∈Vℓ

)
. (1.6)

Since every multi-rooted graph can be obtained in that fashion and since the sets of the graphs
corresponding to different partitions V1, ..., Vm are disjoint, the claim of the lemma follows
immediately from (1.6) by summation over all connected graphs G1, ..., Gm on V1, .., Vm and
summation over all partitions V1, ..., Vm, m ≤ n.

The relations (between the coefficients ψn,n+k of the activity expansions ρn and the Ursell
functions) established in Lemma 1.6 lead to the following representation of ρn:

Proposition 1.7. Suppose that all series ρn(x1, . . . , xn; z) are absolutely convergent for some
activity function z. Then also all series ρTn(x1, . . . , xn; z) are absolutely convergent, and we
have for all n ∈ N and (x1, . . . , xn) ∈ Xn

ρn(x1, . . . , xn; z) =
∑

{R1,...,Rm}

m∏

i=1

ρT|Ri|
(
(xj)j∈Ri ; z

)
, (1.7)

where the sum runs over all set partitions {R1, . . . , Rm} of {1, . . . , n}.
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Remark 1.5. The right-hand side of (1.7) is the representation for the correlation functions
in finite volume from [42, Theorem 2].

Proposition 1.7 follows from Lemma 1.6, it is proven at the end of this subsection (see 1.5.2).

Unlike in the construction underlying our proof of Lemma 1.6, one might obtain multi-
rooted graphs by considering partitions of the root vertices and partitions of the non-root
vertices separately (see also Figure 2). That is precisely the construction underlying the
proof of the following lemma (Lemma 1.8). The lemma leads to a different representation
of ρn in terms of the Ursell functions (established in Proposition 1.9). While that second
representation is of its own interest, it additionally allows us to show that the series ρn do
indeed correspond to the correlation functions (we use it in the proof of Corollary 1.10).

Lemma 1.8. For all n ∈ N, all k ∈ N0 and all (x1, . . . , xn+k) ∈ Xn+k, we have

ψn,n+k(x1, . . . , xn+k) =
∏

1≤i<j≤n

(
1 + f(xi, xj)

)

×
∑

{V1,...,Vr}

r∏

ℓ=1

( ∏

1≤i≤n,
j∈Vℓ

(
1 + f(xi, xj)

)
− 1

)
φT
|Vℓ|
(
(xj)j∈Vℓ

)
, (1.8)

where the sum runs over all set partitions {V1, . . . , Vr} of non-root vertices {n+1, . . . , n+k}.

Proof. Every multi-rooted graph G ∈ Dn,n+k can be constructed in the following way. On
the root set {1, . . . , n} pick an arbitrary graph G0. On the complement of the root set do the
following construction: Partition the set of the non-root vertices into r sets V1, ..., Vr, r ≤ k.
For every block Vℓ, pick a connected graph Gℓ with vertex set Vℓ, and in addition a non-empty
set of edges Eℓ ⊂

{
{i, j} | i ∈ {1, . . . , n}, j ∈ Vℓ}. Then the graph G on {1, . . . , n + k} with

the edge set given by the union of E1, . . . , Eℓ and the edge sets of G0, G1, . . . , Gr is contained
in Dn,n+k, its graph weight is

w(G;x1, . . . , xn+k) = w(G0;x1, . . . , xn)
r∏

ℓ=1

( ∏

{i,j}∈Eℓ

f(xi, xj)

)
w
(
Gℓ; (xj)j∈Vℓ

)
.

Summation over G0 yields
∏

1≤i<j≤n(1 + f(xi, xj)). Summation over connected graphs Gℓ

yields φT
|Vℓ|(xVℓ

). Finally, we see that summation over the edge sets Eℓ yields the factor∏
1≤i≤n,j∈Vℓ

(1 + f(xi, xj))− 1.

The relations (between the coefficients ψn,n+k of the activity expansions ρn and the Ursell
functions) established in Lemma 1.8 lead to the following a representation of the series ρn:

Proposition 1.9. Suppose that all series ρn(x1, . . . , xn; z) are absolutely convergent for some
activity function z. Then

ρn(x1, . . . , xn; z) = z(x1) · · · z(xn)
∏

1≤i<j≤n

(
1 + f(xi, xj)

)

× exp

( ∞∑

k=1

1

k!

∫

Xk

[ ∏

1≤i≤n
1≤j≤k

(
1 + f(xi, yj)

)
− 1

]
φT
k (y1, . . . , yk)λ

k
z(dy)

)
,
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for all n ∈ N and (x1, . . . , xn) ∈ Xn.

Remark 1.6. This representation is well-established in discrete setups in the literature: E.g.,
in the setup of abstract polymers in finite volume, the exponential on the right-hand side for
n = 1 coincides with the expansion ΘΛ

x1
of the reduced 1-function in x1 from [3]. For general

n ≥ 1 the exponential appears in [3] in the form of a reconstruction formula involving the

1-expansions Θ
Λ\xi+1,...,xn
xi , i ∈ {1, ..., n}.

The proposition follows from Lemma 1.8, it is proven in Section 1.5.2.

We see how the two different constructions of multi-rooted graphs lead to two different rep-
resentations of the activity expansions ρn given by (1.3) appearing throughout the literature
in various setups.

Figure 2: Here, we see a multi-rooted graph G ∈ D4,14 — the round nodes depict roots, the
square nodes depict non-root vertices. In the first line, using the example of G, we illustrate
the construction of multi-rooted graphs underlying Lemma 1.6, where in the first step the
vertex set is partitioned in blocks containing at least one root. In the second line, we illustrate
the construction of multi-rooted graphs underlying Lemma 1.8, where in the first step the
roots and the non-root vertices are partitioned separately.

Now, we would like to convince the reader even further that the power series (ρn)n∈N are
indeed the right object to study — by providing a result indicating that, for every n ∈ N, ρn
corresponds to the n-point correlation function of the grand-canonical Gibbs measure with
empty boundary conditions. To do so, we want to introduce some auxiliary notation first:
Let us fix an interaction potential v ≥ 0 and an activity z. For Λ ∈ Xb, let PΛ denote
the associated finite-volume grand-canonical Gibbs measure with empty boundary conditions
(non-negativity of the potential v is sufficient for the existence of the finite-volume Gibbs
measure). For n ∈ N, define the candidate expansions for the finite-volume n-point correlation
functions, denoted by ρn,Λ, just as ρn in (1.3) but with integrals over Λn instead of Xn.
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Corollary 1.10. Let z be an activity function and suppose that ρn(x1, . . . , xn; z) converges
absolutely for all n ∈ N and all (x1, . . . , xn) ∈ Xn. Then for every Borel set Λ ⊂ X with∫
Λ ρ̃1(x; z)λ(dx) <∞, the functions ρn,Λ(z) are the correlation functions of the finite-volume
Gibbs measure PΛ.

Remark 1.7. Suppose there exists a sequence (Λm)m∈N in X such that
∫
Λm

ρ̃1(x)λz(dx) <∞
for all m ∈ N. Then as m → ∞, the finite-volume correlation functions ρn,Λm(z) converge
pointwise to the functions ρn(z). Usually this is accompanied by a convergence of Gibbs
measures PΛm → P and the functions ρn(z) are the correlation functions of the infinite
volume Gibbs measure P. A rigorous statement on convergence is beyond the purpose of this
work; some relevant considerations and references are given in [25, Section 2.3 and Appendix
B].

Proof. The corollary essentially follows from Proposition 1.9 proven at the end of this sub-
section. We show that

ρn,Λm(x1, . . . , xn; z) = z(x1) · · · z(xn)
∏

1≤i<j≤n

(
1 + f(xi, xj)

) ∫

Nf

e−
∑n

i=1 W (xi,η)PΛm(dη).

(1.9)

To prove this identity, we observe that the expected value on the right side of (1.9) can be
rewritten as a ratio of partition functions. To do so, notice that the interactions of random
points in η with points x1, . . . , xn on the right side of (1.9) can be absorbed into a modified
activity as follows: For fixed (x1, . . . , xn) ∈ Xn define the activity ẑ by

ẑ(y) := z(y)e−
∑n

i=1 v(xi;y) = z(y)
n∏

i=1

(
1 + f(xi, y)

)
, y ∈ X.

For a Borel set Λ ⊂ X with λz(Λ) < ∞, consider the grand-canonical partition function
at activity z given by

ΞΛ(z) := 1 +

∞∑

k=1

1

k!

∫

Λk

e−
∑

1≤i<j≤k v(yi,yj)λnz (dy),

using the notation introduce above, we can write

∫

Nf

e−
∑n

i=1 W (xi,η)PΛ(dη) =
ΞΛ(ẑ)

ΞΛ(z)
.

Now, assume for a moment that

∞∑

k=1

1

k!

∫

Λk

∣∣φT
k (y1, . . . , yk)

∣∣λkz(dy) <∞, (1.10)

then it is well-known from the theory of cluster expansions (as mentioned in Subsection 1.3)
that

log ΞΛ(z) =

∞∑

k=1

1

k!

∫

Λk

φT
k (y1, . . . , yk)λ

k
z(dy).
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If the convergence condition (1.10) holds true for z, then because of v ≥ 0 the modified
activity ẑ satisfies a similar condition and log ΞΛ(ẑ) has a similar expansion. Therefore

log
ΞΛ(ẑ)

ΞΛ(z)
=
∞∑

k=1

1

k!

∫

Λk

( ∏

1≤i≤n
1≤j≤k

(
1 + f(xi, yj)

)
− 1

)
φT
k (y)λ

k
z(dy).

and we recognize the exponent from Proposition 1.9. The identities from Proposition 1.9 hold
true in finite volume as well, so we conclude that Eq. (1.9) holds true.

Thus it remains to check that a sequence (Λm)m∈N with λz(Λm) < ∞ for all m ∈ N and
Λm ↗ X, which satisfies the convergence condition (1.10), exists. Since λ is σ-finite and ρ̃1
is pointwise finite by assumption, the measure given by ρ̃1(x)dλ(x) is again σ-finite. That
ensures the existence of a sequence (Λm)m∈N ⊂ X with λz(Λm) <∞ and Λm ↗ X such that∫
Λm

ρ̃1(x)dλ(x) <∞. To see that the sets Λm thus satisfy (1.10) notice that

∞∑

k=1

1

k!

∫

Λk

∣∣φT
k (y1, . . . , yk)

∣∣λkz(dy) ≤
∞∑

k=1

1

(k − 1)!

∫

Λk

∣∣φT
k (y1, . . . , yk)

∣∣λkz(dy)

holds for every Borel set Λ. If, moreover,
∫
Λ ρ̃1(x)dλ(x) < ∞ holds, one can interchange

the order of summation and integration in the expression on the right-hand side of the last
inequality to obtain

∞∑

k=1

1

(k − 1)!

∫

Λk

∣∣φT
k (y1, . . . , yk)

∣∣λkz(dy) =
∫

Λ
ρ̃1(x)dλ(x) <∞,

which concludes the proof of the corollary.

1.5.2 Proofs of Propositions 1.7 and 1.9

Proof of Proposition 1.7. The proposition follows from Lemma 1.6. Clearly there is a one-
to-one correspondence between on the one hand set partitions {V1, . . . , Vm} of {1, . . . , n+ k}
such that every block contains at least one root vertex i ∈ {1, . . . , n}, and on the other hand
pairs consisting of (i) a set partition P = {R1, . . . , Rm} of the roots {1, . . . , n} and (ii) a
collection (V ′R)R∈P of sets, indexed by the blocks of the partition P , such that the sets V ′Rj

are pairwise disjoint and their union is {n+ 1, . . . , n+ k} (we do not exclude V ′R = ∅).

As a consequence,

ψn,n+k(x1, . . . , xn, y1, . . . , yk) =
∑

P={R1,...,Rm}

∑

(JR)R∈P

m∏

ℓ=1

φT
|Rℓ|+|Jℓ|

(
xRℓ

,yJℓ

)
(1.11)

where the sum is over set partitions P of {1, . . . , n} and tuples (JR)R∈P of pairwise distinct sets

JR (possibly empty) such that
⋃

R∈P J = {1, . . . , k}. It is a general fact that if A(ℓ)
k (y1, . . . , yk),

k ∈ N0, ℓ = 1, . . . ,m, is a family of symmetric functions with

∞∑

k=0

1

k!

∫

Xk

∣∣A(ℓ)
k (y1, . . . , yk)

∣∣λkz(dy) <∞,
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then

∑

{R1,...,Rm}

m∏

ℓ=1

( ∞∑

k=0

1

k!

∫

Xk

A
(ℓ)
k (y)λkz(dy)

)
=
∞∑

k=0

1

k!

∫

Xk

∑(k)

(J1,...,Jm)

m∏

ℓ=1

A
(ℓ)
|Jℓ|(yJℓ

)λkz(dy), (1.12)

where the sum over (J1, . . . , Jm) is over tuples of pairwise disjoint sets (with Jℓ = ∅ allowed)
with union

⋃
Jℓ = {1, . . . , k}. Assume for a moment that the truncated functions ρTn converge

absolutely, i.e., assume that

n∏

i=1

z(xi)
∞∑

k=0

1

k!

∫

Xk

∣∣φT
n+k(x1, . . . , xn, y1, . . . , yk)

∣∣λkz(dy) <∞ (1.13)

for all n ∈ N and (x1, . . . , xn) ∈ Xn. Then, for every fixed x and set partition {R1, . . . , Rm}
we can apply Eq. (1.12) to A

(ℓ)
k (y1, . . . , yk) = φT

|Rℓ|+k(xRℓ
, y1, . . . , yk)

∏
i∈Rℓ

z(xi). Together

with (1.11), this yields the formula from the proposition. Thus it remains to check the absolute
convergence (1.13).

We prove (1.13) by induction over n ≥ 1. First, notice that (1.13) holds for n = 1 and
for all x1 ∈ X, since for every k ∈ N the set of 1-rooted graphs D1,1+k is exactly the set of
connected graphs C1+k:

ρT1 (x1) =

∞∑

k=0

z(x1)

k!

∫

Xk

φT
1+k(x1, y1, . . . , yk)λ

k
z(dy) = ρ1(x1)

and the 1-point functions ρ1(z) converge absolutely by assumption.

Now assume that the truncated functions ρT1 , ..., ρ
T
n converge absolutely for some n ≥ 1.

To obtain absolute convergence (1.13) for n+1, we realize that for our choice of the functions

A
(ℓ)
k the identity (1.12) can be rewritten as

ρn+1(x1, ..., xn+1; z) = ρTn+1(x1, .., xn+1; z) +
∑

P={R1,...,Rm}
P ̸={{1,...,n+1}}

m∏

i=1

ρT|Ri|
(
(xj)j∈Ri ; z

)
, (1.14)

where the finite sum on the right side runs over all partitions P of the roots {1, . . . , n + 1}
except for the trivial partition P = {{1, . . . , n+ 1}}. Consider

∑

P={R1,...,Rm}
P ̸={{1,...,n+1}}

m∏

i=1

ρT|Ri|
(
(xj)j∈Ri ; z

)

and notice that it converges absolutely by the inductive hypothesis (as a finite sum of Cauchy
products of absolutely convergent series), while ρn+1(x1, ..., xn+1; z) converges absolutely by
assumption. Therefore,

ρ̃Tn+1(x1, ..., xn+1; z) ≤ ρ̃n+1(x1, ..., xn+1; z) +
∑

P={R1,...,Rm}
P ̸={{1,...,n+1}}

m∏

i=1

ρ̃T|Ri|
(
(xj)j∈Ri ; z

)
<∞.

and we get the absolute convergence of ρTn+1(x1, .., xn+1; z), which concludes the induction
and the proof of the proposition.
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Proof of Proposition 1.9. The proposition follows from Lemma 1.8. By Lemma 1.8,

ψn,n+k(x1, . . . , xn, y1, . . . , yk) =
∏

1≤i<j≤n

(
1 + f(xi, xj)

)

×
∑

{V1,...,Vr}

r∏

ℓ=1

An,|Vℓ|
(
x1, . . . , xn; (yj)j∈Vℓ

)
, (1.15)

where the sum runs over all partitions {V1, . . . , Vr} of {n+ 1, . . . , n+ k} and

An,k

(
x1, . . . , xn; y1, . . . , yk

)
:=

( ∏

1≤i≤n,
1≤j≤k

(
1 + f(xi, yj)

)
− 1

)
φT
k

(
y1, . . . , yk

)
.

Assume for a moment that

∞∑

k=1

1

k!

∫

Xk

∣∣An,k(x;y)z(y1) · · · z(yk)
∣∣λk(dy) <∞. (1.16)

Then it follows by the exponential formula from combinatorics (see, e.g., [12]) that

1 +

∞∑

k=1

1

k!

∫

Xk

∑

{V1,...,Vr}

r∏

ℓ=1

An,|Vℓ|
(
x;yVℓ

)
λkz(dy) = exp

( ∞∑

k=1

1

k!

∫

Xk

An,k(x;y)λ
k
z(dy)

)

and the equality from the proposition follows from (1.15). Thus it remains to check the
absolute convergence (1.16).

Therefore, we first notice that by the sign-flipped Kirkwood-Salsburg equations — satisfied
by [a, Proposition 3.6] — the following holds for every x0 ∈ X:

ρ̃1(x0; z) = z(x0)


1 +

∞∑

k=1

1

k!

∫

Xk

k∏

j=1

|f(x0, yj)| ρ̃k(y1, ..., yk; z)dλk(dy)




≥ z(x0)

∫

X
|f(x0, y)| ρ̃1(y; z)dλ(y),

in particular, that last integral is absolutely convergent:

∀x0 ∈ X :

∫

X
|f(x0, y)| ρ̃1(y; z)dλ(y) <∞. (1.17)

Standard arguments (see, e.g., [42, Eq. (10)]) yield the bound

∣∣
n∏

i=1

k∏

j=1

(
1 + f(xi, yj)

)
− 1
∣∣ ≤

n∑

i=1

k∑

j=1

|f(xi, yj)|,

which yields

∞∑

k=1

1

k!

∫

Xk

∣∣An,k(x;y)z(y1) · · · z(yk)
∣∣λk(dy) ≤

∞∑

k=1

1

k!

∫

Xk

n∑

i=1

k∑

j=1

|f(xi, yj)|
∣∣φT

k (y)
∣∣λkz(dy).
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Finally, interchanging the order of summation and integration on the right-hand side of the
last inequality and using absolute convergence (1.17), we obtain (1.16):

∞∑

k=1

1

k!

∫

Xk

n∑

i=1

k|f(xi, y1)|
∣∣φT

k (y)
∣∣λkz(dy) =

∞∑

k=1

1

(k − 1)!

∫

Xk

n∑

i=1

|f(xi, y1)|
∣∣φT

k (y)
∣∣λkz(dy)

=
n∑

i=1

∞∑

k=1

1

(k − 1)!

∫

Xk

|f(xi, y1)|
∣∣φT

k (y)
∣∣λkz(dy) =

n∑

i=1

∫

X
|f(xi, y1)|ρ̃1(y1; z)dλ(y1) <∞.

This concludes the proof of the proposition.

1.5.3 Limitations of cluster expansion

We conclude our discussion of cluster expansion with an observation about the general lim-
itations of the approach. Notice that the cluster expansion is a low density expansion and
the domain in which the correlation functions are analytic can be in general much larger
than the domain of convergence of the activity expansions — see, e.g., [24] where we have
a one-dimensional system of non-overlapping rods such that the convergence of the activity
expansion for the pressure implies that the activities decay exponentially in the length of the
rods, but the pressure is analytic even for exponentially growing activities.

Historically, the convergence of the cluster expansion is often used to argue uniqueness of
Gibbs measures, however, the convergence radius of the activity expansion is typically much
lower than the critical activity corresponding to the uniqueness phase transition and other
methods (e.g., based on disagreement percolation [2,22] or Dobrushin uniqueness [23]) provide
far superior bounds for that critical activity.

Moreover, graphical expansions of the free energy or correlation functions in other pa-
rameters are possible, e.g., virial expansions in the density of the Gibbs processes [27]. The
coefficients are given in terms of irreducible (doubly connected) graphs. Although, classically,
the convergence of the virial expansion is proven via inversion formulas starting from an ac-
tivity expansion (so that the limitations are inherited from cluster expansion methods) it was
conjectured that the virial expansions have a larger radius of convergence than activity ex-
pansions (at least in the case of repulsive interactions). In particular models, this conjecture
was confirmed (see, e.g., [24, 26,33]).

Notice that, in the case of repulsive interactions, our main result does not only provide
sufficient conditions, but also necessary ones. We show an exemplary result that demonstrates
the limitations of the cluster expansion approach in a very classical setup. The result is based
on a necessary condition that stems from [a, Theorem 2.7] — which is a minor modification
of our main result Theorem 2.1 formulated for subset polymer systems. First, we would like
to introduce this classical setup:

Let X consist of all finite, non-empty subsets of Zd, let X be the power set of X and let
the reference measure λ be given by the counting measure on X . We define the hard-core
compatibility interactions by setting

f(X,Y ) := −1{X∩Y ̸=∅}, X, Y ∈ X.

For simplicity, we want to consider a single-type polymer system here, i.e., we assume that
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there exists a finite non-empty set S ⊂ Zd and a scalar z > 0 such that

z(X) =

{
z, X is a translate of S,

0, otherwise.
(1.18)

The elements of X are called polymers. With respect to the Gibbs measure, configurations
with overlapping polymers are prohibited and the polymers that appear in the configuration
have the same shape and size. To denote the size of those polymers, we set V := |S|.

Lemma 1.11 (Limitations of cluster expansions; discrete case). In the homogeneous case of
(one-type) subset polymers, the convergence radius of the activity expansions ρ̃n(z) is bounded
by the inverse of the polymer size V .

Proof. A necessary condition for the absolute convergence of ρ̃n(z) (see [a, Theorem 2.7] and
choose D′ := ∅) is that for every x ∈ Zd there exists a measurable function a : X → [0,∞)
with

z
∑

Y ∈X,Y ∋x
ea(Y ) ≤ ea({x}) − 1.

By the proof of [a, Theorem 2.7], we can choose a to satisfy the property a(D1) ≤ a(D2) for
D1 ⊂ D2. Therefore, we get

z ≤ ea({x})∑
Y ∈X,Y ∋x e

a(Y )
− 1∑

Y ∈X,Y ∋x e
a(Y )

≤ 1∑
Y ∈X,Y ∋x e

a(Y )−a({x}) ≤ 1

|{Y ∈ X|x ∈ Y }| =
1

V
.

Remark 1.8. Analogous results can be formulated for non-overlapping objects of a single type
in continuous setups, consider, e.g., the hard sphere model. That is, let X be given by Rd, let
λ be the Lebesgue measure on Rd and, for a positive radius R > 0, define the pair potential
v on Rd × Rd by

v(x, y) =

{
0, if ||x− y|| > 2R,

∞, if ||x− y|| ≤ 2R.

In this setup, a similar argument yields 1/|BR(0)| as an upper bound for the convergence
radius of the activity expansions ρ̃n(z), where |BR(0)| denotes the (Lebesgue) volume of the
open ball of radius R around 0.

Remark 1.9. Notice that the classic Kotecký-Preiss condition yields the bound 1
V e for the

convergence radius of the cluster expansion, so that the theoretical improvement possible
past the classic result is limited to a mere multiplicative factor e.

1.6 Generating functions for generalized Catalan numbers

Now, let us briefly discuss the setup and the results from our second contribution [b]. In [24], a
one-dimensional system of non-overlapping rods on Z is considered and the activity expansion
for the associated pressure is studied. Under the assumption that all the rods have the same
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length k ≥ 2 and activity z, the convergence of the activity expansion follows from the
convergence of the power series Fk(z) satisfying the fixed-point equation

eFk(z) = 1 + zekFk(z) (1.19)

on the level of formal power series. Naturally, the following question arises: What are the
coefficients of Fk(z) and how can they be interpreted combinatorially?

It is not hard to see that the formal power series Gk(z) = eFk(z) is given by

Gk(z) := 1 +
∑

n≥1

zn

n

(
kn

n− 1

)
,

see, e.g., [32]. One way to interpret the fixed-point equation (1.19) is to consider so-called
k-ary rooted plane trees: Informally speaking, those are tree-graphs such that every vertex
has exactly 0 children (i.e., it is a leaf) or k children ordered from left to right (see Figure 4).
One can relate (1.19) to the following structural property of k-ary rooted plane trees: Such
a tree is either empty or it decomposes into the root and a sequence of k k-ary rooted plane
trees (this recursive relation can be taken as a formal definition [16]). Therefore, by standard
combinatorial arguments (see, e.g., [12]), the generating function for k-ary rooted plane trees
satisfies (1.19). And, for every n ∈ N, the n-th coefficient of Gk enumerates k-ary rooted
plane trees on n vertices: Indeed, the coefficients

c
(0)
k := 1, c

(n)
k :=

1

n

(
kn

n− 1

)
, n ∈ N

of Gk are called kth generalized Catalan numbers (or Fuss-Catalan numbers, see [32]). For

1
n

(
kn
n−1
)

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 . . .

k=2 1 2 5 14 42 132 429 1430 4862 . . .

k=3 1 3 12 55 273 1428 7752 43263 246675 . . .

k=5 1 5 35 285 2530 23751 231880 2330445 23950355 . . .

Table 1: Here we provide the first few (generalized) Catalan numbers for k = 2, 3, 5.

k = 2, we recover the prominent Catalan numbers

c
(0)
2 = 1, c

(n)
2 =

2n!

(n+ 1)!n!
, n ∈ N,

that constitute one of the most studied sequences of natural numbers in combinatorics, ad-
mitting countless significant interpretations relevant in enumeration problems. Among the
combinatorial structures enumerated by Catalan numbers (over 200 are listed in [40]) are
binary plane trees. This interpretation generalizes to kth generalized Catalan numbers, in the
sense that they were shown to enumerate k-ary rooted plane trees [21]. This can be proven
by using the recursive relation

c
(0)
k = 1, c

(n+1)
k =

∑

n=ℓ1+...+ℓj

j∏

i=1

c
(ℓi)
k , n ∈ N,
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Figure 3: There are c
(4)
2 = 14 unlabeled binary rooted plane trees with 4 (non-leaf) vertices.

which corresponds to the recursive structure of the k-ary rooted plane trees described above.

The question posed in [24] that we answer in [b] can now be reformulated as follows:
For which labeled tree-like structures is Fk(z) the exponential generating function and what
are the underlying constructions (on the level of graphs) connecting those structures to k-ary
rooted plane trees? Notice that we need to consider labeled structures here, Fk(z) = logGk(z)
can not be interpreted as an ordinary generating function for a combinatorial species, but
only as an exponential generating function, since the coefficients of Fk(z) do not need to be
natural numbers.

We provide such combinatorial interpretations in terms of tree-like structures in [b, The-
orem 3.5] and [b, Theorem 3.7]. The structures underlying the interpretation of Fk(z) from
the latter result are called cycle-rooted trees and are inherently of cyclic nature, which can
be understood as follows: Informally speaking, a cycle-rooted tree is obtained from a k-ary
rooted plane tree by bending the right-most branch of the tree into a cycle — identifying the
root and the right-most leaf of the tree. Our bijective result [b, Lemma 3.4] that identifies
the trees with sets of cycle-rooted trees can be viewed as a generalization of the well-known
decomposition of permutations into cycles.

An alternative interpretation, using the fact that the Catalan generating function Gk can
also be viewed as the generating functions for certain monotone lattice paths, the so-called
k-good path [21], is stated in [b, Theorem 2.7] — it is based on our bijective result [b, Lemma
2.4] stating that a k-good path can be decomposed into a set of cyclic path-like structures
we call lattice k-ornaments. Informally speaking, those structures are obtained by bending
k-good paths into cycles — identifying the starting point and the end-point of the path. This
combinatorial interpretation allows for a particularly simple enumerative proof to determine
explicit expressions for the coefficients of Fk(z) (as well as for the coefficients of the higher
powers (Fk(z))

a, a ≥ 2). Notice that closed expressions for the coefficients of Fk(z) are

Figure 4: There are c
(4)
2 = 14 2-good paths with 4 vertical steps.

known in the literature — the formula for k = 2 (that we prove in [b, Theorem 2.8]) was
presented by Donald Knuth in his 2014 Christmas lecture. Soon formulas for the coefficients
of Fk(z) were proven for k ≥ 2 (see [24]), and also for the coefficients of higher powers
(Fk(z))

a with a ≥ 2 (see [6,39]). All those proofs involve general algebraic inversion formulas
like Lagrange inversion. Thus our results identifying those coefficients (see [b, Theorem
2.8 and Theorem 2.9]) can not be considered novel, but demonstrate the usefulness of our
combinatorial interpretation of Fk(z) that allows us to reduce the problem of identifying the
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coefficients of its powers to a simple enumeration problem.

In [b], all appearing power series are treated as formal power series and we do not provide
statements about the convergence of the series. However, the domain of convergence of the
power series Fk(z) was characterized in [24].

1.7 The random connection model and the Ornstein-Zernike equation

Consider a GPP on Rd with repulsive pair interactions (i.e., v ≥ 0 and 0 ≤ f = ev − 1 ≤ 1).
One can hope to gain knowledge about the uniqueness of the Gibbs measure by choosing
a suitable notion of connectivity on the point configurations and studying the associated
percolation phase transition. A recipe to obtain connectedness functions is given in [8] by
physicists: On the level of graphical expansions, e.g., in the density of the GPP, one obtains
connectedness functions from the correlation functions of the GPP by discarding certain
graphs that contribute to the graphical expansions of the latter. To do so, one rewrites
Mayer’s f function as a certain sum of two functions, f = f+ + f⋆, splitting every edge
into two possible edges — one weighted with f+, the other with f⋆. Naturally, this leads
to expansions of the correlation functions in terms of weighted graphs with the two types
of edges. To obtain the expansions for connectedness functions, graphs that satisfy certain
connectivity assumptions with respect to f+-edges are kept, the rest is discarded. While [8]
provides elegant power series expansions of the connectedness functions, the convergence of
those expansions is not treated in the physics literature and mathematically rigorous analysis
is exceedingly rare (see [31]).

In [b], we consider a simplification, where the starting point is the PPP of intensity λ ≥ 0
in Rd. Consider the random connection model (RCM), informally described as follows: The
vertex set is given by the points of the PPP (and possibly a finite number of deterministic
points) and edges between the vertices are drawn independently with probabilities given by
a radially symmetric connection function φ : Rd → [0, 1]. The pair connectedness function
τλ : Rd × Rd → [0, 1] is given by the probabilities τλ(x1, x2) that two deterministic points
x1, x2 ∈ Rd (a priori fixed as vertices) are connected in the resulting random graph. For a
rigorous introduction of the RCM, see [19,31].

The pair connectedness function admits a graphical expansion in terms of graphs with
two types of edges, (+)-edges weighted by φ and (−)-edges weighted by −φ; we refer to those
as (±)-graphs. This corresponds to the recipe from [8], where one decomposes Mayer’s f
function — notice that f ≡ 0 for the PPP — as f = φ + (−φ). The resulting notion of
connectivity then coincides with the one in the RCM. Notice that the negative weights −φ
can be interpreted in terms of Mayer’s f function of an associated GPP with repulsive pair
interactions (in particular, if we draw edges deterministically between sufficiently close points,
−ϕ can be interpreted as Mayer’s f function for a hard spheres model).

The expansion of τλ(x1, x2) is then given by

τλ(x1, x2) =
∑

n≥0

λn

n!

∫ ∑

G∈C±(x⃗[n+2]):

x1
+←→x2

w±(G)dx⃗[3,n+2], x1, x2 ∈ Rd, (1.20)

where the graphs we sum over satisfy the following assumptions: Those are (±)-graphs on
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{x1, . . . , xn+2} that are connected (in terms of paths consisting of possibly both types of
edges) and, additionally, x1, x2 are connected by a path consisting of only (+)-edges.

The Ornstein-Zernike equation (OZE) is an integral equation first derived in [37]. In
statistical mechanics, it initially related — essentially via a convolution formula — the corre-
lation functions to the direct correlation functions. It was pointed out by Hill in [20] that it
was possible to use the same relations for connectedness functions in percolation as well. The
goal is to find a solution gλ, called the direct-connectedness function, to the Ornstein-Zernike
equation

τλ(x, y) = gλ(x, y) + λ

∫

Rd

gλ(x, z)τλ(z, y)dz, x, y ∈ Rd. (1.21)

The existence of a unique integrable and essentially bounded function gλ : Rd × Rd → Rd

solving (1.21) was proven in [31].

In (1.21), both the functions τλ and gλ are unknown, moreover, unlike the pair connected-
ness function τλ, the direct-connectedness function gλ cannot be interpreted probabilistically.
Usually, a complementary equation — a so-called closure relation — is provided to obtain
an approximation of gλ as a solution of a modified integral equation (a classic example is
the Percus-Yevick approximation, see [41]). In [b], we do not introduce a closure relation,
but consider a graphical expansion as a definition — showing that it converges and solves
the OZE in a certain low-intensity regime. From [8], we know the physicists expansion of gλ
(stated there without proof) given by

gλ(x1, x2) =
∑

n≥0

λn

n!

∫ ∑

G∈D±
x1,x2

(x⃗[n+2]):

x1
+←→x2

w±(G)dx⃗[3,n+2]. (1.22)

The difference to the expansion (1.20) of τλ(x1, x2) is that on the graphs in (1.22) one imposes
an additional assumption — the existence of two vertex-disjoint (±)-paths between x1 and
x2 (see Figure 5). In other words, the expansion (1.22) of gλ(x1, x2) is obtained from the
expansion (1.20) of τλ by discarding those (±)-graphs that possess vertices pivotal for the
x1-x2-connection.

In [c, Section 6.2], we show that the convergence of the expansion (1.22) follows from [31],
but we do not provide quantitative bounds for the domain of convergence of this expansions.
Instead, the idea behind the main result [c, Theorem 1.1] is to perform a resummation in
(1.22) and show that the resulting series converges and solves the OZE in a certain domain
conjectured to be bigger than the domain of convergence of (1.22). The graphical expansion
obtained by the resummation is not a power series — the direct-connectedness function can
be viewed to be partially expanded in the intensity of the underlying PPP. The rough idea
behind the resummation is to split every graph contributing to the expansion into a core
graph and a shell graph — so that the direct-connectedness function decomposes into a core
function and a shell function (see [c, Definition 4.2]). We then provide probabilistic bounds
for both the core (in terms of certain “connection probabilities”, see [c, Proposition 4.1]) and
the shell (in terms of certain “disconnection probabilities”, see [c, Eq. (4.25)]).
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x1 x1
x2x2

Figure 5: We see two graph contributing to the expansion (1.20) of τλ(x1, x2). The (+)-edges
are depicted as solid lines and the (−)-edges as dashed lines. Notice that both graphs are
connected (with respect to arbitrary edges) and in both graphs there is a path consisting of
solely (+)-edges connecting the vertices x1 and x2. The right graph does not possess a vertex
pivotal to the x1-x2-connection (with respect to arbitrary edges) — thus it also appears in
the expansion (1.22) of gλ(x1, x2). But in the left graph the solid black vertex is pivotal for
the x1-x2 connection — thus it does not appear in (1.22).
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Abstract
We prove a new convergence condition for the activity expansion of correlation functions
in equilibrium statistical mechanics with possibly negative pair potentials. For non-negative
pair potentials, the criterion is an if and only if condition. The condition is formulated with a
sign-flipped Kirkwood–Salsburg operator and known conditions such as Kotecký–Preiss and
Fernández–Procacci are easily recovered. In addition, we deduce new sufficient convergence
conditions for hard-core systems in Rd and Zd as well as for abstract polymer systems. The
latter improves on the Fernández–Procacci criterion.

Keywords Cluster expansions · Correlation functions · Kirkwood–Salsburg equations ·
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1 Introduction

Since its introduction by Mayer in the early 40s, the method of cluster expansions was—and
remains—a very important tool in equilibrium statistical mechanics. A classical application
yields the analyticity of the logarithm of the partition function for a physical system at
equilibrium by deriving a Taylor expansion in the activity or density parameter around zero.
Such results can be quite useful, for example, in the study of phase transitions or the decay
of correlations, for a vast class of models.

In 1971, Gruber and Kunz introduced in their seminal paper [12] systems of non-
overlapping geometric objects—referred to as polymers—given by subsets of a lattice. They
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presented a rigorous mathematical formalism in order to provide convergent cluster expan-
sions for this model. Instead of the logarithm of the partition function, they considered the
correlation functions of the system and derived convergent activity expansions by using a
system of integral equations, the so-called Kirkwood–Salsburg equations, and solving the
corresponding fixed point equation on a suitable Banach space. However, in the following
years less analytical appoaches were favoured by researchers: Combinatorial proofs such
as in [3], relying on tree-graph identities [23], and inductive proofs following the idea by
Kotecký and Preiss [18] and its development in [4] by Dobrushin. The inductive method was
presented in the more general setup of abstract polymers (where the underlying space is not
necessarily a lattice, nor are the polymers necessarily given by geometric objects). Notice
that abstract polymer models are universal in the sense that a large class of classical models
can be represented as polymer models due to the combinatorial structure of the correspond-
ing partition functions (see, e.g., [11] for an application to the Ising model). Moreover, an
interesting connection with probability theory was pointed out by Scott and Sokal in [29]:
Convergence of cluster expansions in abstract polymer models is related to the Lovász Local
Lemma—better sufficient conditions can provide refinements of the latter (see, e.g., [2]).

In 2008, Fernández and Procacci proved a new sufficient criterion in the setup of abstract
polymers improving on the result by Kotecký and Preiss. The initial proof [8] relies on
combinatorial arguments, an alternative proof via an induction à la Dobrushin [10] appeared
recently (finally, in this paper we provide an analytical proof in the spirit of Gruber–Kunz).

Overall, in the last two decades, a notable effort was made to generalize classical suf-
ficient conditions in the abstract polymer setup (including the condition by Fernández and
Procacci) to hold in continuous spaces and for systems with soft-core (or even more general)
interactions, see [5, 14, 22, 24, 32].

We want to go further by employing a Kirkwood–Salsburg approach in the rather general
setup of Gibbs point processes (or, in terms of statistical mechanics, grand-canonical Gibbs
measures) defined via pairwise interactions. It is well-known that—under mild additional
moment conditions, which are automatically satisfied for non-negative pair potentials—there
is a one-to-one correspondence between the set of those Gibbs measures and the associated
families of correlation functions (also known as factorial moment densities). In the special
case of a discrete space andhard-core interactions, the value of then-point correlation function
is given simply by the probability to see n particles at the prescribed positions in the random
configuration of particles. The correlation functions can be expanded as power series in the
activity parameter z, i.e., in the intensity of the underlying Poisson process. We denote the
Taylor expansion for the n-point correlation function in z around zero by ρn and write ρ

for the family of those expansions. In general, the series ρ need not to be convergent at all;
we are, however, interested in conditions which ensure pointwise convergence (towards the
correlation functions). Furthermore, we want to consider the more general case where the
underlying Poisson point process is inhomogeneous, i.e., where a different intensity value
may be assigned to every point in the space, the activity z is a function and the expansions
ρ are multivariate power series in z. For a rigorous introduction of Gibbs point processes
and corresponding correlation functions, see [14], but notice that here we do not assume the
interaction potential to be non-negative (unless explicitly stated).

The starting point of the paper and the central quantity to investigate are the activity
expansions ρ which we consider independently of their interpretation in term of the cor-
relation functions. Let us outline the main ideas present in the paper. The coefficients of
the multivariate power series ρ are defined in terms of a certain family of rooted graphs
to which we refer as multi-rooted graphs (see [14, 30]). Using the terminology from [6],
the activity expansions ρ are given by the exponential generating functions of the coloured
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weighted combinatorial species of multi-rooted graphs with a fixed set of roots. The set of all
multi-rooted graphs has an essential structural property—it is invariant under the operation
of removal of a root. Taking a multi-rooted graph and removing an arbitrary root (as well as
all edges incident to it), one gets again a multi-rooted graph on a smaller vertex set, where
every neighbour of the removed root becomes a root vertex itself. The weight of the original
graph is equal to the weight of the resulting graph times the weight of the edges removed. The
corresponding property of the generating functions is expressed by the Kirkwood–Salsburg
equations. Every possible rule for the choice of the root to remove induces a different combi-
natorial operation and therefore a different system of Kirkwood–Salsburg equations for the
generating functions.

In thisworkweprovide a condition for absolute convergence of the activity expansionsρ in
terms of the existence of a measurable function solving a system of Kirkwood–Salsburg type
inequalities (in the case of repulsive interactions, that condition is also a necessary one). Our
main result, Theorem 2.1, is inspired by [1]; it is a slightly modified, strongly generalized
version of Claim 1 therein. The goal, however, is not only to obtain abstract conditions
which are both necessary and sufficient for convergence of the cluster expansions—but also
to demonstrate how these characterizations provide a universal approach to prove model-
specific sufficient conditions on different levels of generality, both in discrete and continuous
setups with repulsive interactions. A two-lane mechanism arises: On the one hand, for a
candidate family of ansatz functions ξ (given, for example, as approximations of ρ) one
can search for conditions that ensure that these functions ξ satisfy the Kirkwood–Salsburg
inequalities; on the other hand, given candidate sufficient conditions, one can construct a
suitable family of ansatz functions ξ tailored to satisfy the Kirkwood–Salsburg inequalities
under these conditions.

This approach provides a unifying framework for the known conditions, but it also allows
to prove stronger results. To emphasize this possibility, we derive a new sufficient condition
for absolute convergence of the activity expansions ρ in the setup of abstract polymers. In
that general setup, our condition improves on any known condition that we are aware of.

A more detailed outline of the main ideas intoduced above can be found in [16] (for the
case of non-negative pairwise interactions and without rigorous proofs).

In the further course of the paper, we investigate two particular hard-core setups as
examples—the subset polymers in Zd and hard objects in Rd . There, the sets of roots of
the multi-rooted graphs correspond to configurations of geometric objects. By breaking the
geometric objects into smaller “pieces” to which we refer as snippets, we can identify these
configurations with configurations of snippets (e.g., in the case of subset polymers we can
identify a configuration of polymers with the disjoint union of monomers covering this con-
figuration). Picking a root of a multi-rooted graph—the combinatorial operation underlying
the Kirkwood–Salsburg equations—corresponds to picking a snippet. Different rules to pick
a snippet in general give rise to characterizations of absolute convergence in terms of dif-
ferent Kirkwood–Salsburg inequalities. This way the latter can be tailored to a candidate
sufficient condition. Thus different sufficient conditions can be derived by playing both with
the choice of different systems of Kirkwood–Salsburg inequalities and the choice of different
ansatz functions satisfying these inequalities. We illustrate this mechanism by deriving some
sufficient conditions for a class of hard-core interaction models, in particular for multi-type
systems of hard spheres in Rd .

The paper is organized as follows: In Sect. 2.1 we introduce the basic notation and present
the general framework. Furthermore, in Theorem 2.1 we state our main result, a character-
ization of the domain of absolute convergence for the activity expansions ρ, and use it to
recreate the classical sufficient conditions by Kotecký and Preiss as well as the sufficient
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conditions by Fernández and Procacci in a rather general setup (see Corollaries 2.7 and 2.9,
respectively). In Sect. 2.2, the same approach is used to prove a new, improved sufficient con-
dition in the setup of abstract polymers (Proposition 2.4). The proof of the proposition relies
on an auxiliary result (Lemma 2.5) which is proved in Appendix A. In the Sects. 2.3 and 2.4
we consider the special case of hard-core interactions. Both in the continuum (Sect. 2.3) and
in the discrete setup (Sect. 2.4), we provide model-specific characterizations of the conver-
gence domain, stated in Theorems 2.6 and 2.7, respectively. As an immediate consequence
of Theorem 2.7 we obtain an elementary proof of the well known Gruber–Kunz condition
(Corollary 2.8). In Sect. 3, we present a forest-graph equality and other combinatorial results
in order to prove Theorems 2.1, 2.6 and 2.7. Finally, in Sect. 4, Theorems 2.6 and 2.7 are used
to obtain practitioner-type sufficient conditions for a class of hard-core interaction models,
including new sufficient conditions for subset polymers inZd (Theorem 4.1) and hard objects
in Rd (Theorems 4.2 and 4.4).

The reader interested primarily in the discrete setup of subset polymers is encouraged
to jump directly to Subsect. 2.4, its main result being the characterization of the domain of
convergence for the activity expansions ρ given by Theorem 2.7 (compare to Theorem 3.13).
The main ideas behind the proof of Theorem 2.7 in Subsect. 3.4 and behind the application
of Theorem 2.7 in Subsect. 4.1 can be transferred to the continuous setup as well.

2 Main Results

2.1 (Locally) Stable Pair Potentials

Let (X, X ) be a measurable space, λ a σ -finite reference measure, and v a pair potential, i.e.,
v : X × X → R ∪ {∞} is measurable and symmetric—in the sense that v(x, y) = v(y, x)

for any x, y ∈ X. Corresponding to the potential v, Mayer’s f function is given by

f (x, y) = e−v(x,y) − 1.

We call the pair potential v stable if there exists a measurable map B : X → R+ such
that for any n ∈ N and x1, . . . , xn ∈ X

∏

1≤i< j≤n

(1 + f (xi , x j )) ≤ e
∑n

k=1 B(xk ) (2.1)

holds; we call v locally stable or Penrose stable (due to O. Penrose, see [23]) if there exists
a measurable map C : X → R+ such that for any x0 ∈ X, n ∈ N and x1, . . . , xn ∈ X
satisfying

∏
1≤i< j≤n(1 + f (xi , x j )) �= 0

n∏

i=1

(1 + f (x0, xi )) ≤ eC(x0) (2.2)

holds. Notice that every locally stable potential is stable and that every non-negative potential
v is locally stable (with the choice C ≡ 0).

An activity function is a measurable map z : X → R. Physically relevant activities are
non-negative but for the purpose of studying the convergence of expansions it can be helpful
to admit negative (or complex) activities as well. We define the (signed) measure λz on X by

λz(B) :=
∫

B
z(x)λ(dx), B ∈ X . (2.3)
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The weight of a graph G with vertex set [n] = {1, . . . , n} and edge set E(G) is

w(G; x1, . . . , xn) :=
∏

{i, j}∈E(G)

f (xi , x j ).

Let Gn be the set of all graphs with vertex set [n], Cn ⊂ Gn the set of connected graphs and

ϕT
n(x1, . . . xn) :=

∑

G∈Cn

w(G; x1, . . . , xn)

the n-th Ursell function. For n ∈ N and k ∈ N0, let Dn,n+k ⊂ Gn+k be the collection of all
graphs G such that every vertex j ∈ {n +1, . . . , n +k} connects to at least one of the vertices
i ∈ {1, . . . , n}. We may view the vertices {1, . . . , n} as roots and call the graphs G ∈ Dn,n+k

multi-rooted graphs or, following the footnote 53 in [30], root-connected graphs. Consider
the functions

ψn,n+k(x1, . . . , xn+k) :=
∑

G∈Dn,n+k

w(G; x1, . . . , xn+k).

For n = 1, the functions coincide with the standard Ursell functions, i.e., ψ1,1+k = ϕT
1+k .

We are interested in the associated series

ρn(x1, . . . , xn; z) :=
∞∑

k=0

1

k!
∫

Xk
ψn,n+k(x1, . . . , xn, y1, . . . , yk)z(x1) · · · z(xn)λk

z (d y).

The summand for k = 0 is to be read as ψn,n(x1, . . . , xn)z(x1) · · · z(xn). The series ρn

corresponds to the n-point correlation function of a grand-canonical Gibbs measure [30,
Eqs. (4–7)], see also [14]—it is the expansion of the correlation function in the activity z
around 0.

We will say that the activity expansions ρ converge absolutely for a non-negative activity
function z if

∞∑

k=0

1

k!
∫

Xk
|ψn,n+k(x1, . . . , xn, y1, . . . , yk)|z(x1) · · · z(xn)λk

z (d y) < ∞

for all n ∈ N and (x1, . . . , xn) ∈ Xn .
Our main concern is to derive necessary and sufficient convergence conditions, but some-

times it is useful to view the series as purely formal; relevant background on formal power
series whose variable is a measure (here λz(dx)) is given in [17, Appendix A].

Next we introduce sign-flipped Kirkwood–Salsburg operators. A selection rule s(·) is a
map from P(X) := 
∞

n=1X
n to N such that s(x1, . . . , xn) ∈ {1, . . . , n} for all (x1, . . . , xn) ∈

P(X). To lighten notation we write xs rather than xs(x1,...,xn). Further let (x ′
2, . . . , x ′

n) be
the vector obtained from (x1, . . . , xn) by deleting the entry xs , leaving the order otherwise
unchanged. For the simplest selection rule that picks the first entry s = 1, we have x ′

i = xi .
The sign-flipped Kirkwood–Salsburg operator K̃ s

z with selection rule s(·) acts on families
ξ = (ξn)n∈N of measurable symmetric functions ξn : Xn → R+ as

(K̃ s
z ξ)n(x1, . . . , xn) := z(xs)

n∏

i=2

(1 + f (xs, x ′
i ))

(
1l{n≥2}ξn−1(x ′

2, . . . , x ′
n)

+
∞∑

k=1

1

k!
∫

Xk

k∏

j=1

∣∣ f (xs, y j )
∣∣ ξn−1+k(x ′

2, . . . , x ′
n, y1, . . . , yk)λ

k(d y)
)
,

(2.4)
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for all n ∈ N and (x1, . . . , xn) ∈ Xn . Here we allow the functions (K̃ s
z ξ)n to assume the

value “∞”. For non-negative potentials and on a suitably reduced domain, K̃ s
z differs from the

standard Kirkwood–Salsburg operator [26, Chapter 4.2] by a mere sign-flip: it has | f (xs, yi )|
instead of f (xs, yi ).

Theorem 2.1 Let z(·) be a non-negative activity and s(·) any selection rule. Consider the
following two conditions:

(i) There is a family ξ = (ξn)n∈N of measurable symmetric functions ξn : Xn → R+ such
that

z(x1)δn,1 + (K̃ s
z ξ)n (x1, . . . , xn) ≤ ξn(x1, . . . , xn) (2.5)

for all n ∈ N and (x1, . . . , xn) ∈ Xn.
(ii) The series ρn(x1, . . . , xn; z) converges absolutely, for all n ∈ N and (x1, . . . , xn) ∈ Xn.

Condition (i) is sufficient for (ii) to hold; moreover, if (i) is satisfied, then

∞∑

k=0

1

k!
∫

Xk

∣∣ψn,n+k(x1, . . . , xn, y1, . . . , yk)
∣∣z(x1) · · · z(xn)λk

z (d y) ≤ ξn(x1, . . . , xn)

(2.6)

on Xn, for all n ∈ N.
In addition, if we assume the pair potential to be non-negative, then (ii) implies (i) as well,

so that the two conditions are equivalent in this case.

Remark 2.1 We formulate this theorem—as well as the following results—for non-negative
activities, mainly for the purpose of notational convenience. Naturally, such conditions for
absolute convergence can be formulated in the usual framework of complex analysis by
exchanging complex activities z with |z| in the convergence criteria.

We prove the theorem in Subsect. 3.2. The known sufficient convergence conditions of
Kotecký–Preiss and Fernández–Procacci types are easily recovered from Theorem 2.1. We
start with the Kotecký–Preiss type criterion [18], as extended to soft-core and continuum
systems by Ueltschi in [32] (and to stable interactions by Ueltschi and Poghosyan in [24]).

Corollary 2.2 Let z be a non-negative activity function and assume stable interactions in the
sense of (2.1) for some B ≥ 0. If there exists a measurable function a : X → R+ such that
for all x ∈ X

∫

X

∣∣ f (x, y)
∣∣ea(y)λz(dy) + 2B(x) ≤ a(x), (2.7)

then the activity expansions ρn(x1, . . . , xn; z) converge absolutely and the bounds

ρn(x1, . . . , xn; z) ≤ z(x1) · · · z(xn)ea(x1)+···+a(xn)

hold for all n ∈ N and (x1, . . . , xn) ∈ Xn. Notice that for non-negative pair interactions, we
can choose B ≡ 0 in condition (2.7).

Remark 2.2 Notice that via the substitution â = a − 2B the above criterion is equivalent to
the existence of a measurable function â : X → R+ such that for all x ∈ X

∫

X

∣∣ f (x, y)
∣∣eâ(y)+2B(y)λz(dy) ≤ â(x).
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Proof Assume that (2.7) holds and define ξ = (ξn)n∈N, ξn : Xn → [0,∞), by

ξn(x1, ..., xn) := z(x1) · · · z(xn)ea(x1)+···+a(xn)

for some a(·) satisfying (2.7). The interactions fulfill the stability condition (2.1), therefore
for every n ∈ N and x1, ..., xn ∈ X there exists an index j ∈ {1, . . . , n} such that the bound

∏

1≤i≤n,i �= j

(1 + f (x j , xi )) ≤ e2B(x j ) (2.8)

holds. Choose the selection rule s that always picks an element x j satisfying (2.8) from
(x1, . . . , xn). Plugging our choice of ξ into the left-hand side of Eq. (2.5) and bounding the
interaction term as

∏n
i=2(1 + f (xs, x ′

i )) ≤ e2B(xs ), we recognize an exponential series, and
find altogether that the left-hand side of (2.5) is bounded by

z(xs)z(x ′
2) · · · z(x ′

n) ea(x ′
2)+···+a(x ′

n) exp
(∫

X
| f (xs, y)|ea(y)λz(dy) + 2B(xs)

)
.

By condition (2.7), this is in turn bounded by ξn(x1, . . . , xn). It follows that condition (i) of
Theorem 2.1 is satisfied. 


Analogously, one shows that the criterion by Fernández and Procacci [8], extended to soft-
core and continuum systems by Faris in [5] and by Jansen in [14], is sufficient for absolute
convergence of the activity expansions ρ. We prove the result in the slightly more general
setup of locally stable interactions.

Corollary 2.3 Let z be a non-negative activity function and assume locally stable interactions
in the sense of (2.2) for some C ≥ 0. If there exists a measurable function μ : X → [0,∞)

such that for all x ∈ X

z(x)

⎛

⎝1 +
∞∑

k=1

1

k!
∫

Xk
e
∑k

j=1 C(y j )
k∏

j=1

∣∣ f (x, y j )
∣∣ ∏

1≤i< j≤k

(1 + f (yi , y j ))λ
k
μ(d y)

⎞

⎠ ≤ μ(x),

(2.9)

then the activity expansions ρn(xn, . . . , xn; z) converge absolutely and the bounds

ρn(xn, . . . , xn; z) ≤
∏

1≤i< j≤n

(
1 + f (xi , x j )

) n∏

i=1

μ(xi )

hold for all n ∈ N and (x1, . . . , xn) ∈ Xn. Notice that for non-negative pair interactions, we
can choose C ≡ 0 in condition (2.9).

Remark 2.3 The Fernández–Procacci condition improves on the the Kotecký–Preiss
condition—in the sense that the assumptions of Corollary 2.2 yield the assumptions of Corol-
lary 2.3. In other words, Corollary 2.3 in general guarantees convergence of ρ on a larger
domain of activities .

Proof Assume that (2.9) holds and define ξ = (ξn)n∈N, ξn : Xn → [0,∞), by

ξn(x1, . . . , xn) :=
∏

1≤i< j≤n

(
1 + f (xi , x j )

) n∏

i=1

μ(xi )
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for some μ satisfying (2.9). Let s be the selection rule that always selects the first entry—so
that xs = x1 and x ′

i = xi for i ≥ 2. For locally stable pair potentials, we have

n∏

i=2

(1 + f (x1, xi ))ξn+k−1(x2, . . . , xn, y1, . . . , yk)

=
∏

1≤i< j≤n

(1 + f (xi , x j ))
∏

1≤i< j≤k

(1 + f (yi , y j ))

n∏

i=2

k∏

j=1

(1 + f (xi , y j ))

n∏

i=2

μ(xi )

k∏

j=1

μ(y j )

≤
( ∏

1≤i< j≤n

(1 + f (xi , x j ))

n∏

i=2

μ(xi )
)( ∏

1≤i< j≤k

(1 + f (yi , y j ))

k∏

j=1

μ(y j )
)
e
∑k

j=1 C(y j ), (2.10)

where we used the local stability to estimate

n∏

i=2

k∏

j=1

(1 + f (xi , y j )) =
k∏

j=1

n∏

i=2

(1 + f (xi , y j )) ≤
k∏

j=1

eC(y j ) = e
∑k

j=1 C(y j ).

We plug our choice of ξ into the left-hand side of (2.5) and use the estimate (2.10) together
with the assumption (2.9) to find that condition (i) of Theorem 2.1 is satisfied. 


Remark 2.4 We see that Theorem 2.1 provides a mechanism to prove sufficient conditions for
absolute convergence—by constructing a sequence of ansatz functions ξ tailored to satisfy the
Kirkwood–Salsburg inequalities under the given condition. Conversely, given an appropriate
sequence of ansatz functions ξ , obtained, for example, as an approximation of ρ, one can try
to determine the corresponding sufficient condition for convergence.

We now proceed to demonstrate the usefulness of that approach by deriving a sufficient
condition that improves on the classical examples above.

2.2 Abstract Polymer Models

In the following we want to consider the setup of abstract polymers [1, 8], in which the
two classical conditions above—Kotecký–Preiss and Fernández–Procacci—were first intro-
duced.

Let X be a countable set (the set of polymers), let X be the powerset of X and let λ

simply be given by the counting measure. Moreover, let R ⊂ X × X be a symmetric and
reflexive relation. We write x � y for (x, y) ∈ R (and say that x and y are incompatible)
and x ∼ y for (x, y) /∈ R (and say that x and y are compatible). Moreover, we call a subset
X ⊂ X compatible if x ∼ y for all x �= y ∈ X and write X ∼ z for z ∈ X if z ∼ x for
all x ∈ X . We set 	(x) := {y ∈ X| y � x} for any x ∈ X and extend this notation to
	(X) := ∪x∈X {y ∈ X| y � x} for any X ⊂ X. Notice that we do not require 	(x) to be
finite sets and that x ∈ 	(x) for every x ∈ X. Finally, we consider hard-core interactions
corresponding to Mayer’s f function given by f (x, y) := −1l{x�y}.

In this setting we prove a new, improved sufficient condition for absolute convergence of
the activity expansions ρ.
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Proposition 2.4 Let z be a non-negative activity function and assume that there exists μ :
X → [0,∞) such that for all x ∈ X

z(x)

⎛

⎜⎜⎝1 +
∑

k≥1

∑

Y={y1,...,yk }
yi �x, yi ∼y j

∏
μ(yi )

∏

w∈	(Y )

eμ(w)

⎞

⎟⎟⎠ ≤ μ(x)
∏

w∈	(x)

eμ(w), (2.11)

where the inner sum on the left-hand side runs over compatible subsets Y = {y1, ..., yk} ⊂
	(x). Then the activity expansions ρn(x1, . . . , xn; z) converge absolutely and the bounds

ρn(x1, . . . , xn; z) ≤
∏

1≤i< j≤n

1{xi ∼x j }
n∏

i=1

μ(xi )
∏

w∈	({x1,...,xn})
eμ(w)

hold for all n ∈ N and all (x1, . . . , xn) ∈ Xn.

The proof of the proposition essentially exploits the following auxiliary result:

Lemma 2.5 Let μ : X → [0,∞). Then the following holds for every x1 ∈ X, n ∈ N and
X = {x2, ..., xn} ⊂ X such that x1 ∼ xi for all i ∈ {2, . . . , n}:

μ(x1)
∏

w∈	(x1)
eμ(w)

1 + ∑
k≥1

∑
Y={y1,...,yk }
yi �x1, yi ∼y j

k∏
i=1

μ(yi )
∏

w∈	(Y )

eμ(w)

≤
μ(x1)

∏

w∈	(x1)∩	(X)C

eμ(w)

1 + ∑
k≥1

∑
Y={y1,...,yk }
yi �x1, yi ∼y j

yi ∼X

k∏
i=1

μ(yi )
∏

w∈	(Y )∩	(X)C

eμ(w)

, (2.12)

where 	(W ) is given by ∪n
i=1	(wi ) for any n ∈ N and W = {w1, ..., wn} ⊂ X. The inner sum

in the denominator on the left-hand side runs over compatible subsets Y = {y1, . . . , yk} ⊂
	(x1); the inner sum in the denominator on the right-hand side runs over all such subsets Y
which additionally satisfy the constraint Y ∩ 	(X) = ∅, i.e., yi ∼ X for all i ∈ {1, . . . , k}.
The lemma is of rather technical nature; for the interested reader, the proof is to be found in
Appendix A.

Remark 2.5 The general idea behind the proof of Proposition 2.4 is to argue as in the proofs
of the classical conditions presented in the previous section (Corollaries 2.2 and 2.3)—but
to choose a sequence of ansatz functions ξ which, heuristically speaking, encode more of
the structure of the exact solution to the Kirkwood–Salsburg equations (i.e., of the activity
expansions ρ) than the ansatz functions chosen in the proof of those corollaries. The intuition
thereby is that “less multiplicative” ansatz functions ξ provide better convergence criteria.

Proof of Proposition 2.4 Assume that (2.11) holds and define ξ = (ξn)n∈N, ξn : Xn →
[0,∞), by setting

ξn(x1, ..., xn) :=
∏

1≤i< j≤n

1{xi ∼x j }
n∏

i=1

μ(xi )
∏

w∈	({x1,...,xn})
eμ(w) (2.13)
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for some μ satisfying (2.11), for any n ∈ N and every (x1, .., xn) ∈ Xn . Thereby we
again use the convention 	({w1, . . . , wn}) = ∪n

i=1	(wi ) for {w1, ..., wn} ⊂ X. As in the
preceeding proofs of the classical sufficient conditions, we show that our choice of ξ =
(ξn)n∈N satisfies the system of Kirkwood–Salsburg inequalities (2.5) from Theorem 2.1. To
lighten the notation, we choose the same selection rule s as in the proof of Lemma 2.3 and
denote by X the set {x2, ..., xn}. Notice that the left-hand side of (2.5) is equal to

z(x1)
∏

1≤i< j≤n

1{xi ∼x j }
n∏

i=2

μ(xi )
∏

w∈	(X)

eμ(w)

×

⎛

⎜⎜⎝1 +
∑

k≥1

∑

Y={y1,...,yk }

k∏

j=1

1{y j �x1}
∏

2≤i≤n
1≤ j≤k

1{xi ∼y j }
∏

1≤i< j≤k

1{yi ∼y j }

k∏

j=1

μ(y j )
∏

w∈	(Y )∩	(X)C

eμ(w)

⎞

⎠ .

By Lemma 2.5, the assumption that z satisfies the condition (2.11) implies that z also
satisfies the inequality

z(x1)

⎛

⎜⎜⎝1 +
∑

k≥1

∑

Y={y1,...,yk }

k∏

j=1

1{y j �x1}
∏

2≤i≤n
1≤ j≤k

1{xi ∼y j }
∏

1≤i< j≤k

1{yi ∼y j }

k∏

j=1

μ(y j )
∏

w∈	(Y )∩	(X)C

eμ(w)

⎞

⎠

≤ μ(x1)
∏

w∈	(x1)∩	(X)C

eμ(w)

and thus, for our choice of ξ , the left-hand side of (2.5) is bounded from above by

∏

1≤i< j≤n

1{xi ∼x j }
n∏

i=1

μ(xi )
∏

w∈	(X)

eμ(w)
∏

w∈	(x1)∩	(X)C

eμ(w)

=
∏

1≤i< j≤n

1{xi ∼x j }
n∏

i=1

μ(xi )
∏

w∈	(X∪{x1})
eμ(w) = ξn(x1, ..., xn),

which—by Theorem 2.1—yields the claim of the proposition. 

Example 2.1 Consider non-overlapping (hard-core interactions) cubes on Z2 of side-length
2 with translationally invariant activity z. The sufficient condition on z for the absolute
convergence of ρ(z) given by the Fernández–Procacci criterion provides the bound

z ≤ max
μ≥0

μ

1 + 9μ + 16μ2 + 8μ3 + μ4 ≈ 0.057271,

while our condition from Proposition 2.4 provides

z ≤ max
μ≥0

μe9μ

1 + 9e9μμ + (6e15μ + 8e16μ + 2e17μ)μ2 + 8e21μμ3 + e25μμ4
≈ 0.060833.
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This corresponds to an improvement of approximately 6%.

2.3 Hard-Core Systems in the Continuum

Let K ′ be the collection of non-empty compact subsets of Rd , equipped with the Hausdorff
distance and Borel σ -algebra [19, Chapter I-4], andX ⊂ K ′ a non-emptymeasurable subset.
Here we want to additionally assume that X consists of bounded convex sets that are non-
empty and regular closed, i.e., that are equal to the closure of its non-empty interior. Notice
that such sets are compact and have finite positive Lebesgue measure that is equal to the
Lebesgue measure of their interior. In practice X will consist of easily described subsets. For
example, when dealing with closed balls Br (x) ⊂ Rd we may identify X with Rd × R+.
Consider the hard-core interactions given by the potential v(X , Y ) := ∞1l{X∩Y �=∅}, Mayer’s
f function then is

f (X , Y ) = −1l{X∩Y �=∅}.

Clearly the function is well-defined for general subsets X , Y ⊂ Rd that are not necessarily
in X, the domains of definition of the functions ϕT

n and ψn,n+k extend accordingly.
For D ⊂ Rd and a measure λz on X defined as in (2.3), consider the formal series

T (D; z) := 1 +
∞∑

k=1

1

k!
∫

Xk
ϕT
1+k(D, Y1, . . . , Yk)λ

k
z (dY). (2.14)

As is well-known [6, Eq. (3.12)]

T (D; z) = exp

(
−

∞∑

k=1

1

k!
∫

Xk
1l{∃i : Yi ∩D �=∅}ϕT

k (Y1, . . . , Yk)λ
k
z (dY)

)
(2.15)

on the level of formal power series.
Moreover, if the domain D can be written as a finite union of disjoint objects Xi ∈ X, say

D = X1 ∪ . . . ∪ Xn for n ∈ N, then the identity

1 +
∞∑

k=1

1

k!
∫

Xk
ϕT
1+k(D, Y1, . . . , Yk)λ

k
z (dY)

=
∞∑

k=0

1

k!
∫

Xk
ψn,n+k(X1, . . . , Xn, Y1, . . . , Yk)λ

k
z (dY)

holds by Lemma 3.8 below and we recognize that the series T (D, z) provide expansions for
the reduced correlation functions in the sense that

ρn(X1, . . . , Xn; z) = z(X1) · · · z(Xn)1l{X1,...,Xn disjoint} T (X1 ∪ · · · ∪ Xn; z).

The absolute convergence of the expansions ρ(z) for the correlation functions is implied by
the absolute convergence of T (D; z), i.e., by the pointwise convergence

1 +
∞∑

k=1

1

k!
∫

Xk
|ϕT

1+k(D, Y1, . . . , Yk)|λk
z (dY) < ∞,

for all domains D that are unions of finitely many objects Xi ∈ X.
Assume we are given a systematic way to chop up the objects X ∈ X into smaller bits

and pieces, called snippets (think: analogous to representing a polymer as a collection of
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monomers in the discrete setup of subset polymers). That is, choose a positive number ε > 0
and assume that there is a designated collection Eε of bounded Borel sets in Rd , each of
which is contained in some open ball of radius ε, and a chopping map

C : X → P(Eε), X �→ C(X)

such that for every X ∈ X,C(X) = {E1, . . . , Em}withm ∈ N and E1, . . . , Em a set partition
of X . We additionally want to assume that the topological boundary of every snippet is a
λ-null set, i.e., λ(E\E◦) = 0 for all E ∈ Eε (where E denotes the topological closure and
E◦ the interior of E).

Let Dε be the set of bounded domains D ⊂ Rd that can be written as the union of finitely
many disjoint snippets. The empty set D = ∅ is an element of Dε . For two disjoint subsets
D0, D1 ⊂ Rd with D0 �= ∅ and for finitely many objects Y1, . . . , Yk ∈ X, k ∈ N, set

I (D0; D1; Y1, . . . , Yk) :=
( k∏

i=1

1l{D0∩Yi �=∅, D1∩Yi =∅}
)( ∏

1≤i< j≤k

1l{Yi ∩Y j =∅}
)
. (2.16)

Theorem 2.6 Let z(·) be a non-negative activity function. The following two conditions are
equivalent:

(i) There exists a non-negative map a : Dε → R+ such that for all D ∈ Dε , the map
K ′ � F �→ a(D∪ F) is measurable and the following system of inequalities is satisfied:
For all non-empty D ∈ Dε with C(D) = {E1, . . . , Em} ⊂ Eε for some m ∈ N, there
exists an s ∈ {1, . . . , m} such that—setting D′ := D\Es—we have

∞∑

k=1

1

k!
∫

Xk
I (Es; D′; Y1, . . . , Yk)e

a(D′∪Y1∪···∪Yk )−a(D′)λk
z (dY) ≤ ea(Es∪D′)−a(D′) − 1.

(ii) T (D; z) is absolutely convergent for all D ∈ Dε .

Moreover, if one of the equivalent conditions (hence, both) holds true, then, for all D ∈ Dε ,
we have

∣∣log T (D; z)
∣∣ ≤

∞∑

k=1

1

k!
∫

Xk
1l{∃i : Yi ∩D �=∅}

∣∣ϕT
k (Y1, . . . , Yk)

∣∣λk
z (dY) ≤ a(D). (2.17)

2.4 Subset Polymers

Let X consist of the finite non-empty subsets of Zd (or any other countable set), and let
X = P(X) be the σ -algebra containing all subsets of X. The reference measure λ is simply
the counting measure. The interaction is a pure hard-core interaction as in Sect. 2.3. Notice
that this setup is a special case of the abstract polymer setup introduced in Sect. 2.2. For a
finite set D ⊂ Zd , define T (D; z) as in (2.14). In statistical physics T (D; z) corresponds
to the probability that no polymer intersects D. If D is a polymer or a union of disjoint
polymers, it corresponds to a reduced correlation function in the sense of [12].

Notice how in the case of subset polymers every polymer always can be “chopped” in a
canonical way—into a disjoint collection of monomers. Those play the role of snippets from
the previous section—that simplifies the formulation of a criterion for absolute convergence
of the activity expansions ρ (compare next result with Theorem 2.6).

Theorem 2.7 Let (z(X))X∈X be a non-negative activity. The following two conditions are
equivalent:
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(i) There exists a function a(·) from the finite subsets of Zd to [0,∞) such that a(∅) = 0 and
the following system of inequalities is satisfied: For all finite, non-empty subsets D ⊂ Zd

there exists an x ∈ D such that—setting D′ := D\{x}—we have
∑

Y∈X:
Y�x, Y∩D′=∅

z(Y )ea(D′∪Y )−a(D′) ≤ ea(D′∪{x})−a(D′) − 1. (2.18)

(ii) T (D; z) is absolutely convergent for all finite subsets D ⊂ Zd .

Moreover, if one of the equivalent conditions (hence, both) holds true, then, for all finite
subsets D ⊂ Zd , we have

∣∣log T (D; z)
∣∣ ≤

∞∑

k=1

1

k!
∑

(Y1,...,Yk )∈Xk

1l{∃i : Yi ∩D �=∅}
∣∣ϕT

k (Y1, . . . , Yk)
∣∣z(Y1) · · · z(Yk) ≤ a(D).

(2.19)

The theorem is similar to Claim 1 in [1, Sect. 4.2]. As noted in [1], Theorem 2.7 allows
for an easy recovery of the extended Gruber–Kunz criterion. The criterion is named after
Gruber and Kunz [12], who proved a similar condition but with a strict inequality. See [8]
for a comparison of the Gruber–Kunz criterion to other classical conditions.

Corollary 2.8 Let (z(X))X∈X be a non-negative activity. Suppose there exists some α ≥ 0
such that for all x ∈ Zd ,

∑

Y�x

z(Y ) eα|Y | ≤ eα − 1. (2.20)

Then T (D; z) is absolutely convergent, for all finite subsets D ⊂ Zd .

Proof Set a(D) := α|D|, where α > 0 satisfies the inequality from (2.20). Because of the
additivity of a(·), we have a(D∪Y ) = a(D)+a(Y ) for all finite, disjoint subsets D, Y ⊂ Zd .
Therefore condition (2.18) becomes

∑

Y�x :
Y∩D=∅

z(Y ) ea(Y ) ≤ ea({x}) − 1,

which depends on D only through the constraint Y ∩ D �= ∅ on the left-hand side. By the
non-negativity of the activity z, it is clearly sufficient that

∑

Y�x

z(Y ) ea(Y ) ≤ ea({x}) − 1,

which holds true for all x ∈ Zd because of (2.20). 

Another immediate consequence of Theorem 2.7 is that convergence of cluster expansions

implies exponential decay of the activities in the object size. Precisely, set

V (D) :=
∑

Y∈X:
Y∩D �=∅

z(Y ).

Notice that if the activity is translationally invariant and not identically zero, one can choose
an arbitrary polymer X ∈ X with positive activity, say z0 > 0, and obtain the bound

V (D) ≥ z0|D|. (2.21)
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Theorem 2.9 If z(·) is a non-negative activity and T (D; z) is absolutely convergent for all
finite subsets D ⊂ Zd , then necessarily

∑

Y�x

z(Y )eV (Y ) < ∞

for all x ∈ Zd .

Proof By condition (i) in Theorem 2.7, evaluated at D′ = ∅, there exists a non-negative
function a(·) such that

∑

Y�x

z(Y )ea(Y ) ≤ ea({x}) − 1 < ∞.

For any polymer Y ∈ X, the value a(Y ) is necessarily larger than V (Y ) by (2.19) and the
claim follows. 


For translationally invariant systems, Theorem 2.9 says that if the activity expansions are
absolutely convergent, then necessarily the activities are exponentially small in the size of
the object—by (2.21) we can observe that z(X) = O(exp(−z0|X |)) when |X | → ∞. Let
us emphasize that the necessary exponential decay is an intrinsic limitation of the activity
expansion, which cannot be eliminated by tinkering with different sufficient convergence
conditions. Rigorous results for one-dimensional and hierarchical models [13, 15] suggest
that the exponential decay is not needed for the convergence of the multi-species virial
expansion, however for general systems this is so far an unproven conjecture.

3 Combinatorial Lemmas: Proof of Theorems 2.1, 2.6, and 2.7

3.1 Forest Partition Schemes: Alternating Sign Property

To obtain a better understanding of the series ρn given by the generating functions of multi-
rootedgraphs,wenowconsider a particularway to construct the latter—by taking adesignated
spanning forest and successively adding edges to it. This perspective ontomulti-rooted graphs
leads to a forest-graph equality analogous to the familiar tree-graph identity for connected
graphs [8, Proposition 5] and allows for a direct proof of an alternating sign property for
the coefficients ψn,n+k of ρn in the case of repulsive interactions (i.e., for non-negative
potentials).

The forest-graph equality builds on the notion of forest partition schemes—maps that
assign spanning forests to multi-rooted graphs in Dn,n+k and thereby in a specific manner
provide partitions of Dn,n+k .

In the following, we let Fn,n+k denote the set of forest graphs on the vertex set [n + k]
consisting of n rooted trees, where the vertices {1, . . . , n} are the roots of the trees (recall
that a forest is an acyclic graph and a tree is a connected acyclic graph).

Definition 3.1 (Forest partition scheme) A forest partition scheme is a family of maps πn,k :
Dn,n+k → Fn,n+k such that for all n ∈ N, k ∈ N0, and all F ∈ Fn,n+k , there exists a graph
Rn,k(F) ∈ Dn,n+k with

π−1
n,k

({F}) = {G ∈ Dn,n+k | E(F) ⊂ E(G) ⊂ E
(
Rn,k(F)

)} =: [F, Rn,k(F)].
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To lighten the notation,we introduced partition schemes as families ofmaps on uncoloured
structures. Notice, however, that partition schemesmay be defined on coloured structures and
may be allowed to depend on the colouring of the vertex set. Therefore, one could introduce
families of mapsπk,n(x[n]), indexed additionally by colourings x[n] ∈ Xn of [n] = {1, ..., n}.
Same graphs on the vertex set [n]with different colourings x[n] of the vertices can be mapped
onto different forests under such partition schemes.

The existence of forest partition schemes is ensured by the existence of a large class of
tree partition schemes, e.g, the Penrose tree partition scheme (see [8, 33]; for coulouring-
dependent schemes see also [25, 31]).

Example 3.1 Aparticular forest partition scheme can be defined as follows: For a givenmulti-
rooted graph, construct a connected graph from it by adding a ghost-vertex and connecting
it to every root directly by an edge. Then apply the Penrose partition scheme to the resulting
connected graph to obtain a spanning tree of this connected graph. Finally, by removing the
ghost vertex as well as every edge incident to it, one gets a spanning forest of the initial
multi-rooted graph. For the map given by this construction, the characterizing properties of a
forest partition scheme follow from the corresponding properties of the Penrose tree partition
scheme.

Naturally, the choice of thePenrose tree partition scheme in the example above is somewhat
arbitrary; any tree partition scheme which does not “delete” any edge incident to the ghost
vertex in the above construction yields a forest partition scheme via the same procedure.

Proposition 3.2 (Forest-graph equality) Let (πn,k)n∈N, k∈N0 be a forest partition scheme and
let (Rn,k)n∈N, k∈N0 provide the corresponding family of multi-rooted graphs as in Defini-
tion 3.1. Then

ψn,n+k(x1, . . . , xn+k) =
∑

F∈Fn,n+k

∏

{i, j}∈E(F)

f (xi , x j )
∏

{i, j}∈E(Rn,k (F))\E(F)

(
1 + f (xi , x j )

)

for all n ∈ N, k ∈ N0, and (x1, . . . , xn+k) ∈ Xn+k .

Proof The proof is similar to the standard proof of the tree-graph equality [8, Proposition
5]. We have

ψn,n+k(x1, . . . , xn+k) =
∑

G∈Dn,n+k

w
(
G, (x1, . . . , xn+k)

)

=
∑

F∈Fn,n+k

∑

G∈Dn,n+k :
πn,k (G)=F

w
(
G, (x1, . . . , xn+k)

)

=
∑

F∈Fn,n+k

∏

{i, j}∈E(F)

f (xi , x j )
∏

{i, j}∈E(Rn,k (F))\E(F)

(
1 + f (xi , x j )

)
.



In the case of repulsive interactions, the forest-graph equality allows for a direct proof of
the alternating sign property for the graph weights ψn,n+k . For n = 1, it reduces to the
well-known alternating sign property [8, Eq. (2.8)]

ϕT
n(x1, . . . , xn) = (−1)n

∣∣ϕT
n(x1, . . . , xn)

∣∣ (3.1)

of the Ursell functions.
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Corollary 3.3 For non-negative potentials, we have

ψn,n+k(x1, . . . , xn+k) = (−1)k
∣∣ψn,n+k(x1, . . . , xn+k)

∣∣

for all n ∈ N, all k ∈ N0, and all (x1, . . . , xn+k) ∈ Xn+k .

Proof Each forest F ∈ Fn,n+k has exactly k edges. Indeed, the forest F consists of trees
T1, . . . , Tn . Let mi be the number of vertices of the tree Ti ; thus m1 + · · · + mn = n + k.
Each tree Ti has exactly mi − 1 edges, therefore the number of edges of the forest is given
by

∑n
i=1(mi − 1) = k. Since f ≤ 0 and 1 + f ≥ 0 for non-negative potentials, it follows

that

ψn,n+k(x1, . . . , xn+k) = (−1)k
∑

F∈Fn,n+k

∏

{i, j}∈E(F)

| f (xi , x j )|
∏

{i, j}∈E(Rn,k (F))\E(F)

(
1 + f (xi , x j )

)
,

hence (−1)kψn,n+k(x1, . . . , xn+k) ≥ 0. 

We will use the alternating sign property to establish that—in the case of non-negative

potentials—condition (i) in Theorem 2.1 is not only sufficient but also necessary for absolute
convergence of ρ.

We conclude this section with a lemma that is not needed for the proof of Theorem 2.1
but enters the analysis of hard-core models, see the proof of Lemma 3.8 below.

Lemma 3.4 For all n ∈ N, all k ∈ N0, and all (x1, . . . , xn+k) ∈ Xn+k , we have

ψn,n+k(x1, . . . , xn+k) =
∏

1≤i< j≤n

(
1 + f (xi , x j )

)

×
∑

{V1,...,Vr }

r∏

=1

( ∏

1≤i≤n,
j∈V

(
1 + f (xi , x j )

) − 1

)
ϕT|V|

(
(x j ) j∈V

)
,

(3.2)

where the sum runs over all set partitions {V1, . . . , Vr } of non-root vertices {n+1, . . . , n+k}.
Remark 3.1 The lemma allows for an alternative proof of the alternating sign property from
Corollary 3.3, starting from the well-known alternating sign property of the Ursell function
instead of the forest-graph equality. Indeed, the sign of every summand in the right-hand side
of (3.2) is

(−1)r+∑r
i=1(|Vi |−1) = (−1)k .

Proof of Lemma 3.4 For n = 1, the lemma reduces to a well-known equality for the Ursell
functions, see e.g. [11, Eq. (5.13)]. For n ≥ 2, the proof is similar, we provide the details for
the reader’s convenience. Every multi-rooted graph G ∈ Dn,n+k can be constructed in the
following way. On the root set {1, . . . , n} pick an arbitrary graph G0. On the complement of
the root set do the following construction: Partition the set of the non-root vertices into r sets
V1, ..., Vr , r ≤ k. For every block V, pick a connected graph G with vertex set V, and in
addition a non-empty set of edges E ⊂ {{i, j} | i ∈ {1, . . . , n}, j ∈ V}. Then the graph
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G with vertices 1, . . . , n + k and edge set given by the union of E1, . . . , E and of the edge
sets of G0, G1, . . . , Gr is in Dn,n+k , its graph weight is

w(G; x1, . . . , xn+k) = w(G0; x1, . . . , xn)

r∏

=1

( ∏

{i, j}∈E

f (xi , x j )

)
w

(
G; (x j ) j∈V

)
.

Summation over G0 yields the factor
∏

1≤i< j≤n(1 + f (xi , x j )). Summation over the con-

nected graphs G yields ϕT|V|(xV
). Finally, summation over the edge sets E yields the factor∏

1≤i≤n, j∈V
(1 + f (xi , x j )) − 1. 


3.2 Kirkwood–Salsburg Equations: Proof of Theorem 2.1

To prove our main result, Theorem 2.1, we will show that the activity expansions ρ satisfy the
Kirkwood–Salsburg inequalities and, moreover, that equality holds for non-negative interac-
tions. To do so, we will need to establish a recursive formula for the coefficients ψn,n+k of
ρn given in terms of multi-rooted graphs.

Lemma 3.5 Let n ∈ N, k ∈ N0 and (x1, . . . , xn) ∈ Xn. Abbreviate s = s(x). For L ⊂ [k],
let  denote the cardinality of L. Then for all (y1, . . . , yk) ∈ Xk ,

ψn,n+k(x1, . . . , xn, y1, . . . , yk) = ∏
1≤i≤n:

i �=s

(
1 + f (xs, xi )

) ∑
L⊂[k]

(∏
i∈L f (xs, yi )

)

×ψn−1+,n−1+k
(
x ′
2, . . . , x ′

n, (yi )i∈L , (y j ) j∈[k]\L
)
.

Furthermore, if n ≥ 2,

ψn,n(x1, . . . , xn) =
∏

1≤i≤n:
i �=s

(
1 + f (xs, xi )

)
ψn−1,n−1

(
x ′
2, . . . , x ′

n

)
.

The lemma is proven in [14, Lemma 4.1] and holds true as well for pair potentials that may
take negative values. The index set L corresponds to the non-root vertices adjacent to the
selected vertex s. Similar recurrent relation are well-known from the literature and have been
employed in the context of both activity and density (virial) expansions for a long time (see,
e.g., [20, Eq. 5]).

We now want to translate the recurrence relation for coefficients ψn,n+k from Lemma 3.5
into integral equations for partial sums and series. For a non-negative activity function, we
set

ρ̃n(x1, . . . , xn; z) := z(x1) · · · z(xn)

∞∑

k=0

1

k!
∫

Xk

∣∣ψn,n+k(x1, . . . , xn, y)
∣∣λk

z (d y).

Notice that ρn(x1, . . . , xn; z) is absolutely convergent if and only if ρ̃n(x1, . . . , xn; z) < ∞,
and, in the case of non-negative potentials,

ρ̃n(x1, . . . , xn; z) = (−1)nρn(x1, . . . , xn;−z)

holds due to the alternating-sign property from Corollary 3.3.
Let S̃N (z) = (S̃N ,n(·; z))n∈N be the vector of partial sums given by

S̃N ,n(x1, . . . , xn; z) := z(x1) · · · z(xn)

N−n∑

k=0

1

k!
∫

Xk

∣∣ψn,n+k(x1, . . . , xn, y)
∣∣λk

z (d y)
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if N ≥ n, and 0 otherwise. The summand for k = 0 is to be read as |ψn,n(x1, . . . , xn)|.
Proposition 3.6 For general pair-interactions, we have

ρ̃(z) ≤ ez + K̃ s
z ρ̃(z) (3.3)

and

S̃1(z) = ez, S̃N+1 ≤ ez + K̃ s
z S̃N (z) (N ≥ 1).

Moreover, for non-negative potentials, we get the equalities

ρ̃(z) = ez + K̃ s
z ρ̃(z) (3.4)

and

S̃N+1 = ez + K̃ s
z S̃N (z) (N ≥ 1).

Proof The equality S̃1(z) = ez follows from the definition of S̃1(z) and ψ1,1(x1) = 1. For
the recurrence relation, we employ arguments from [14, Sect. 4] and combine them with the
alternating sign property from Corollary 3.3 to argue equality in the case of non-negative
potentials.

Consider first S̃N+1,n(z) with 2 ≤ n ≤ N + 1. Define

Rn,(x1, . . . , xn; y1, . . . , y) := z(xs)

n∏

i=2

(1 + f (xs, x ′
i ))

∏

i=1

∣∣ f (xs, yi )
∣∣.

Fix n ≥ 2. Lemma 3.5 and the triangle inequality yield
∣∣ψn,n+k(x1, . . . , xn, y1, . . . , yk)

∣∣

≤
∑

L⊂[k]
Rn,(x1, . . . , xn; yL)

∣∣ψn−1+,n−1+k
(
x ′
2, . . . , x ′

n, yL , y[k]\L

)∣∣, (3.5)

where  = #L . When we integrate over y1, . . . , yk , all sets L with the same cardinality
contribute the same, therefore

1

k!
∫

Xk

∣∣ψn,n+k(x1, . . . , xn, y1, . . . , yk)
∣∣ λk

z (d y)

≤
k∑

=0

1

!(k − )!
∫

Xk
Rn,(x1, . . . , xn; y1, . . . , y)

∣∣ψn−1+,n−1+k
(
x ′
2, . . . , x ′

n, y
)∣∣ λk

z (d y).

Summing over k = 0, . . . , N + 1 − n we obtain a double sum over k and . A change in
summation indices from (, k) to (, m) = (, k − ) yields

S̃N+1,n(x1, . . . , xn; z) ≤
N+1−n∑

=0

1

!
∫

X

Rn,(x1, . . . , xn; y1, . . . , y)
{
· · ·

}
λ

z

(
d(y1, . . . y)

)
,

{· · · } =
N+1−n−∑

m=0

1

m!
∫

Xm

∣∣ψn−1+,n−1++m
(
x ′
2, . . . , x ′

n, y
)∣∣ λm

z

(
d(y+1, . . . y+m)

)
.

The term in curly braces is nothing else but S̃N ,n−1+(x ′
2, . . . , x ′

n, y1, . . . , y). For  ≥
N + 1 − n, the function S̃N ,n−1+(·; z) is identically zero. It follows that

S̃N+1,n(x1, . . . , xn; z) ≤
∞∑

=0

1

!
∫

X

Rn,(x1, . . . , xn; y)S̃N ,n−1+(x ′
2, . . . , x ′

n, y)λ
z

(
d y

)
.
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This proves the inequality S̃N+1,n(·; z) ≤ (K̃ s
z SN (z)

)
n(·). The cases n ≥ N +2 and n = 1 are

treated in a similar fashion, we leave the details to the reader. For the equality S̃N+1,n(·; z) =
(K̃ s

z SN (z)
)

n(·) in the case of non-negative potentials, notice that for such potentials (3.5)
holds with an equality — due to the alternating-sign property from Corollary 3.3.

Finally, by passing to the limit N → ∞ in the recurrence relation for S̃N (z), the inequality
(3.3) for ρ̃(z) follows (and in the case of non-negative potentials the fixed point equation
(3.4) is obtained). Notice that all exchanges of limits, sums and integrals are permitted by
monotone convergence and because all terms involved are non-negative. 

Proof of Theorem 2.1 For the implication (i) ⇒ (ii), suppose there exists a sequence ξ =
(ξn)n∈N of measurable non-negative functions ξn : Xn → R+ such that ez + K̃ s

z ξ ≤ ξ . We
prove by induction over N that S̃N (z) ≤ ξ for all N ∈ N. For N = 1, we have

S̃1 = ez ≤ ez + K̃ s
z ξ ≤ ξ .

If S̃N ≤ ξ for some N ∈ N, then

S̃N+1 ≤ ez + K̃ s
z S̃N (z) ≤ ez + K̃ s

z ξ ≤ ξ ,

where the first inequality holds by Proposition 3.6 and the second one due to the inductive
hypothesis and the monotonicity of K̃ s

z on non-negative functions.

This completes the induction and proves S̃N ≤ ξ for all N . Passing to the limit N → ∞,
we find ρ̃ ≤ ξ . This proves the absolute convergence (ii) as well as the bound (2.6).

Left to show is the implication (ii)⇒ (i) under the additional assumption that the potential
is non-negative. Suppose that ρn(x1, . . . , xn; z) is absolutely convergent, for all n ∈ N and
(x1, . . . , xn) ∈ Xn . Then ρ̃n(x1, . . . , xn; z) is finite everywhere and we may set

ξn(x1, . . . , xn) := ρ̃n(x1, . . . , xn; z).

Proposition 3.6 yields ξ = ez + K̃ s
z ξ hence a fortiori ξ ≥ ez + K̃ s

z ξ , as a pointwise inequality
for all vector entries. This proves (i). 


3.3 Integral Equations for Hard-Core Models: Proof of Theorem 2.6

In this section we specialize to hard-core systems in the continuum as in Sect. 2.3 and
use capital letters for objects X ∈ X. Let Dred

n,n+k ⊂ Dn,n+k be the collection of graphs
G ∈ Dn,n+k that have no edges linking any two root vertices i, j ∈ {1, . . . , n}. Define
ψ red

n,n+k in a similar way as ψn,n+k but with summation over graphs in Dred
n,n+k . It is not

difficult to check that

ψn,n+k(X1, . . . , Xn+k) =
∏

1≤i< j≤n

(
1 + f (Xi , X j )

)
ψ red

n,n+k(X1, . . . , Xn+k).

The reduced functions ψ red
n,n+k satisfy recurrence relations similar to Lemma 3.5. Define

g(X1; X2, . . . , Xn; Y1, . . . , Yk) :=
k∏

j=1

f (X1, Y j )
∏

1≤i< j≤k

(
1 + f (Yi , Y j )

)

∏

2≤i≤n
1≤ j≤k

(
1 + f (Xi , Y j )

)
. (3.6)
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Remember the indicator I from (2.16) and notice

g(X1; X2, . . . , Xn; Y1, . . . , Yk) = (−1)k I (X1; X2 ∪ · · · ∪ Xn; Y1, . . . , Yk). (3.7)

Lemma 3.7 For all k, n ∈ N, we have

ψ red
n,n+k(X1, . . . , Xn, Y1, . . . , Yk)

=
∑

L⊂[k]
g
(
Xs; X ′

2, . . . , X ′
n; (Y j ) j∈L

)
ψ red

n−1+,n−1+k

(
X ′
2, . . . , X ′

n, (Y j ) j∈L , (Y j ) j∈[k]\L
)
.

The proof is based on combinatorial considerations similar to the proof of Lemma 4.1 in
[14], we leave the details to the reader. The lemma holds true for arbitrary subsets of Rd , the
Xi ’s and Y j ’s need not be in X. That applies to our next result as well.

Lemma 3.8 For all k, n ∈ N, we have

ψ red
n,n+k(X1, . . . , Xn, Y1, . . . , Yk) = ϕT

1+k(X1 ∪ · · · ∪ Xn, Y1, . . . , Yk).

Proof Revisiting the proof of Lemma 3.4, we see that

ψ red
n,n+k(X1, . . . , Xn, Y1, . . . , Yk)

=
∑

{V1,...,Vr }

r∏

=1

( ∏

1≤i≤n,
j∈V

(
1 + f (Xi , Y j )

) − 1

)
ϕT|V|

(
(Y j ) j∈V

)
, (3.8)

where the sum runs over all set partitions {V1, . . . , Vr } of non-root vertices {n+1, . . . , n+k}.
For hard-core interactions, the term in parentheses is equal to minus the indicator that D :=
X1 ∪ · · · ∪ Xn is intersected by at least one Y j , j ∈ V. Thus

ψ red
n,n+k(X1, . . . , Xn, Y1, . . . , Yk) =

∑

{V1,...,Vr }

r∏

=1

(−1l{∃ j∈V: Y j ∩D �=∅}
)
ϕT|V|

(
(Y j ) j∈V

)
.

Using again (3.8), we deduce

ψ red
n,n+k(X1, . . . , Xn, Y1, . . . , Yk) = ψ1,1+k(D, Y1, . . . , Yk) = ϕT

1+k(D, Y1, . . . , Yk).



Lemma 3.9 Let k ∈ N and let D0, D1 be two disjoint subsets of Rd , with D0 �= ∅. Then

ϕT
1+k(D0 ∪ D1, Y1, . . . , Yk)

=
∑

L⊂[k]
(−1) I

(
D0; D1; (Yi )i∈L

)
ϕT
1+k−

(
D1 ∪ (⋃

i∈L

Yi
)
, (Y j ) j∈[k]\L

)
,

where the sum is taken over all subsets L ⊂ [k] and  denotes the cardinality of L.

Proof The claim of the lemma follows from Eq. (3.7), Lemmas 3.7 and 3.8. 

For D ∈ Dε with E1, . . . , En ∈ Eε and C(D) = {E1, . . . , En}, let

T̃ (D; z) := 1 +
∞∑

k=1

1

k!
∫

Xk

∣∣ϕT
1+k(D, Y1, . . . , Yk)

∣∣λk
z (dY),
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T̃1(D; z) := δn,1({E1, . . . , En}), and for N ≥ 2,

T̃N
(
D; z

) := 1{n≤N } +
N−n∑

k=1

1

k!
∫

Xk
1l{n+∑k

i=1 |C(Yi )|≤N }
∣∣ϕT

1+k(D, Y1, . . . , Yk)
∣∣λk

z (dY).

Although the value of T̃ (D; z) (if the series converges) does not depend on the choice
of the chopping map, notice that the value of T̃N (D; z) clearly does depend on C(D) =
{E1, . . . , En} and not only on E1 ∪ . . . ∪ En — due to the constraint on the number of
snippets.

A selection rule is a map s from collections of disjoint snippets Dε to Eε such that

s({E1, . . . , En}) ∈ {E1, . . . , En},
i.e., s(·) selects one of the snippets. We use the suggestive but somewhat abusive notation Es

for the selected snippet, and let E ′
2, . . . , E ′

n be any enumeration of the remaining snippets. If
ξ(·) is a function fromDε toR+ that satisfies themeasurability assumption fromTheorem2.6,
define a new function κ̃s

z ξ (possibly assuming the value “∞”) by setting

(κ̃s
z ξ)

(
D

) := 1l{n≥2} ξ
(
E ′
2 ∪ . . . ∪ E ′

n)

+
∞∑

k=1

1

k!
∫

Xk
I (Es; E ′

2 ∪ · · · ∪ E ′
n; Y1, . . . , Yk)ξ

(
E ′
2 ∪ . . . E ′

n ∪ Y1 ∪ . . . ∪ Yk

)
λk

z (dY)

(3.9)

for D ∈ Dε with E1, . . . , En ∈ Eε and C(D) = {E1, . . . , En}. Furthermore, let e(D) :=
δn,1({E1, . . . , En}) be the indicator that D is a single snippet.

Let z be a non-negative activity such that for every non-empty D ∈ Dε the series T̃
(
D; z

)

converges absolutely. Notice that the topology induced by the Hausdorff distance is equiv-
alent to the myopic topology and the map K ′ � F �→ 1l{F∈K ′| F∩B �=∅}(F) = − f (F, B)

is measurable with respect to the myopic topology for all compact subsets B (see [21]).
Measurability of K ′ � F �→ T̃ (D ∪ F; z) for every D ∈ K ′ can be concluded, e.g., by
representing the series T̃ (D ∪ F; z) as in Eq. (2.15). Since T̃ (D ∪ F; z) = T̃ (D ∪ F; z) for
every D ∈ Dε , its topological closure D in Rd and every F ∈ K ′ (by our assumptions that
the boundaries of snippets are λ-null set), the measurability of K ′ � F �→ T̃ (D ∪ F; z) for
all D ∈ Dε follows.

The next result is an analogue of Proposition 3.6.

Proposition 3.10 We have

T̃
(·; z

) = e(·) + κ̃s
z T̃ (·; z).

Moreover T̃1(·; z) = e(·) and for N ≥ 1

T̃N+1
(·; z

) = e(·) + (κ̃s
z T̃N )

(·; z
)
.

The proposition follows fromLemma3.9 by arguments similar to the proof of Proposition 3.6,
therefore the proof is omitted.

Proof of Theorem 2.6 To show the implication (ii) ⇒ (i) suppose that T (D; z) is absolutely
convergent and thus T̃ (D; z) is convergent for all non-empty D ∈ Dε . Moreover, T̃ (D; z)
is uniformly bounded from below by 1 and does not depend on the choice of the chopping
map C . We set

a(D) := log T̃ (D; z) ≥ 0
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for non-empty D ∈ Dε and a(∅) := 0. Furthermore, for D ∈ Dε with E1, . . . , Em ∈ Eε and
C(D) = {E1, . . . , Em}, let Es ∈ Eε be given by Es({E1,...,Em }) for some selection rule s(·)
and set D′ := D\Es . Exploiting the fixed point equation for T̃ (·; z) from Proposition 3.10,
we get

ea(D′) +
∞∑

k=1

1

k!
∫

Xk
I (Es; D′; Y1, . . . , Yk)e

a(D′∪Y1∪···∪Yk )λk
z (dY) ≤ ea(Es∪D′).

Item (i) of Theorem 2.6 follows upon multiplication with exp(−a(D′)) on both sides (in fact,
we have shown that the inequality from item (i) holds for every choice of s ∈ {1, . . . , m}).
The implication (i) ⇒ (ii) follows from Proposition 3.10 by an induction over N similar to
the proof of Theorem 2.1 on p. 20. Indeed, check that for the induction step it is sufficient
that the corresponding system of Kirkwood–Salsburg inequalities holds for all finite disjoint
unions of snippets (for any choice of the chopping map C , the snippet-size ε > 0 and the
selection rule s). Bound (2.17) is then established using the triangle inequality, the alternating
sign property, and Eq. (2.15). 


3.4 Recurrence Relations for Subset Polymers: Proof of Theorem 2.7

Just as in the continuous case, we will show that the expansions T̃ solve a system of integral
equations in the discrete setup. We do so by providing a recursive formula for the corre-
sponding coefficients ϕT

1+k .

Lemma 3.11 For all finite subsets D′ ⊂ Zd , all x ∈ Zd \ D′, and all k ∈ N,

ϕT
1+k(D′ ∪ {x}, Y1, . . . , Yk)

= ϕT
1+k(D′, Y1, . . . , Yk) +

k∑

i=1

(−1l{Yi �x,Yi ∩D=∅}
)
ϕT

k

(
D′ ∪ Yi , (Y j ) j �=i

)

with ϕT
1 ≡ 1.

Proof Notice that the analogue of Lemma 3.9 holds in the discrete setup of subset poly-
mers as well, in particular for the choice D0 := {x} and D1 := D′. However, since two
disjoint polymers Y1 and Y2 cannot both intersect the same monomer x , only the summands
corresponding to L = ∅ and |L| = 1 in the sum on the right-hand side of the identity in
Lemma 3.9 provide non-trivial contributions. 


Let D be a finite non-empty subset of Zd and z a non-negative activity function. Set

T̃ (D; z) := 1 +
∞∑

k=1

1

k!
∑

(Y1,...,Yk )∈Xk

∣∣ϕT
1+k(D, Y1, . . . , Yk)

∣∣z(Y1) · · · z(Yk)

and for N ∈ N,

T̃N (D; z) := 1{|D|≤N }

+
∞∑

k=1

1

k!
∑

(Y1,...,Yk )∈Xk

1l{|D|+∑k
i=1 |Yi |≤N }ϕ

T
1+k(D, Y1, . . . , Yk)z(Y1) · · · z(Yk).

(3.10)
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Furthermore, we use the convention T̃N (∅; z) = 1 for all N ≥ 1.
Again, we lift the established recurrent relations on the level of coefficients (given by

Lemma 3.11) to the level of partial sums and series, deriving a system of integral equations
for those. The following result is an analogue of Proposition 3.6 and Proposition 3.10 for
subset polymers.

Proposition 3.12 Under the assumptions of Lemma 3.11, the identities

T̃ (D′ ∪ {x}; z) = T̃ (D′; z) +
∑

Y�x :
Y∩D′=∅

z(Y )T̃ (D′ ∪ Y ; z)

and for N ∈ N,

T̃N+1(D′ ∪ {x}; z) = T̃N (D′; z) +
∑

Y�x :
Y∩D′=∅

z(Y )T̃N (D′ ∪ Y ; z),

hold for any non-negative activity z.

Remark 3.2 Notice that the first identity in Proposition 3.12 is just a sign-flipped version of
the standard Kirkwood–Salsburg equations for the reduced correlation functions found in
[1].

Proof Lemma 3.11 yields

1l{|D′∪{x}|+∑k
i=1 |Yi |≤N+1}ϕ

T
1+k(D′ ∪ {x}, Y1, . . . , Yk)

= 1l{|D′|+∑k
i=1 |Yi |≤N }ϕ

T
1+k(D′, Y1, . . . , Yk)

+
k∑

i=1

(−1l{Yi �x, Yi ∩D′=∅}
)
1l{|D′∪Yi |+∑

j �=i |Y j |≤N }ϕT
k (D′ ∪ Yi , (Y j ) j �=i ).

The proof of the recurrence relation for T̃N (·; z) is concluded by exploiting the alternating
sign property of the Ursell functions, summing over k and Y1, . . . , Yk , and exploiting the
symmetry of ϕT

k . The recurrence relation for T̃ (·; z) follows by passing to the limit N → ∞.



Proof of Theorem 2.7 To prove the implication (i) ⇒ (i i), suppose that condition (i) is sat-
isfied for some set function a(·). Proceeding as in the proof of Theorem 2.1 again, we prove
by induction over N that

T̃N (D; z) ≤ exp(a(D)), (3.11)

for all finite subsets D ⊂ Zd . For N = 1, the inequality reads 1{|D|≤1} ≤ exp(a(D)) and it is
true because a(D) ≥ 0. Now, suppose it holds true for some N ≥ 1 and all D. Let D̂ ⊂ Zd

be finite. If D̂ is empty, then T̃N+1(D̂; z) = 1 ≤ exp(a(D̂)). If D̂ is not empty, let x be any
element of D̂ and let D′ := D̂\{x}. Then Proposition 3.12 yields

T̃N+1(D̂; z) = T̃N (D′; z) +
∑

Y�x,
Y∩D′=∅

z(Y )T̃N (D′ ∪ Y ; z).

By the induction hypothesis and condition (2.18),

T̃N+1(D̂; z) ≤ ea(D′) +
∑

Y�x,
Y∩D′=∅

z(Y )ea(D′∪Y ) ≤ ea(D′∪{x}) = ea(D̂).
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This completes the inductive proof of (3.11). Passing to the limit N → ∞, we get T̃ (D; z) ≤
exp(a(D)) < ∞.
To prove the converse implication (i i) ⇒ (i), suppose that T (D; z) is absolutely convergent
for all finite subsets D. Then T̃ (D; z) < ∞ and Proposition 3.12 yields

T̃ (D ∪ {x}; z) = T̃ (D; z) +
∑

Y�x,
Y∩D=∅

z(Y )T̃ (D ∪ Y ; z).

Set a(D) := log T̃ (D; z). Then a(D) ≥ 0 because T̃ (D; z) ≥ 1, moreover

ea(D∪{x}) = ea(D) +
∑

Y�x,
Y∩D=∅

z(Y )ea(D∪Y )

and the inequality (2.18) follows. 


Notice that the preceeding results of Sect. 3.4 can be generalized by proving amore general
version of Lemma 3.11—a direct analogue of Lemma 3.9, where we consider two arbitrary
finite subsets D0 ⊂ Zd and D1 ⊂ Zd , instead of the special case where one of the subsets is
a monomer. Naturally, one can view configurations of polymers not only as configurations
of monomers but as configurations of disjoint snippets of arbitrary shape and derive from the
generalized version of Lemma 3.11 a system of Kirkwood–Salsburg equations different from
the one in Proposition 3.12, equations which involve terms of higher order in the activity z.
Those equations in turn lead to the following alternative for Theorem 2.7:

Theorem 3.13 Let (z(X))X∈X be a non-negative activity. The following two conditions are
equivalent:

(i) There exists a function a(·) from the finite subsets of Zd to [0,∞) such that a(∅) = 0 and
the following system of inequalities is satisfied: For all finite, non-empty subsets D ⊂ Zd

there exists a subset D0 ⊂ D such that—setting D1 := D\{D0} — we have

∑

k≥1

∑

{Y1,...,Yk }⊂X

z(Y1) . . . z(Yk)e
a(D1∪Y1∪...∪Yk )−a(D1) ≤ ea(D1∪D0)−a(D1) − 1,

where the sum runs over sets of mutually disjoint polymers {Y1, . . . , Yk} ⊂ X such that
Yi ∩ D0 �= ∅ and Yi ∩ D1 = ∅ for all i ∈ {1 . . . , k}.

(ii) T (D; z) is absolutely convergent for all finite subsets D ⊂ Zd .

Moreover, if one of the equivalent conditions (hence, both) holds true, then, for all finite
subsets D ⊂ Zd , we have

∣∣log T (D; z)
∣∣ ≤

∞∑

k=1

1

k!
∑

(Y1,...,Yk )∈Xk

1l{∃i : Yi ∩D �=∅}
∣∣ϕT

k (Y1, . . . , Yk)
∣∣z(Y1) · · · z(Yk) ≤ a(D).

The details of the proof are left for the reader as an exercise.Notice that the sufficient condition
for convergence given by Theorem 3.13 is more general than the one given by Theorem 2.7.
However, all the proofs of sufficient conditions for systems of subset polymers in Sect. 4 are
using the special case of Theorem 2.7.
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4 Application to Concrete Hard-Core Models

Our main results (Theorems 2.1, 2.6 and 2.7) provide characterizations of the domain of
absolute convergence for the activity expansions ρn(x1, . . . , xn; z) from which well-known
classical criteria are easily recovered (Corollaries 2.2, 2.3 and 2.8). In this section, we illus-
trate how our convergence conditions provide new, “practitioner-type” sufficient conditions
in concrete hard-core models, both discrete and continuous. Our goal here is not to improve
on the best available conditions, but to provide upper bounds on the convergence radii that
are of reasonable computational feasibility. In the one-dimensional setup of the Tonks gas,
however, we are able to go as far as to recover the characterization of absolute convergence
from [13].

4.1 Single-Type Subset Polymers inZd

Consider the setup of subset polymers from Chapter 2.4. Suppose there is some finite non-
empty set S ⊂ Zd and a scalar z > 0 such that

z(X) =
{

z, X is a translate of S,

0, otherwise.
(4.1)

We call polymers with non-zero activity active polymers. Define

V (D) := ∣∣{X ∈ X | z(X) > 0, X ∩ D �= ∅}∣∣,
the number of active polymers intersecting a finite domain D ⊂ Zd . Notice V ({x}) = |S|,
for all x ∈ Zd .

Theorem 4.1 Let z(·) be the activity function from (4.1). Suppose there exists α > 0 such
that

|S| eαV (S)z ≤ eα|S| − 1. (4.2)

Then T (D; z) is absolutely convergent for all finite subsets D ⊂ Zd , thus the activity expan-
sions ρn(x1, . . . , xn; z) converge absolutely for all n ∈ N and all (x1, . . . , xn) ∈ Xn.

Remark 4.1 Notice that Theorem 4.1 improves on the upper bounds for the convergence
radii given by Kotecký–Preiss and by Gruber–Kunz. The improvement over the Gruber–
Kunz condition is achieved by a more sophisticated choice of the ansatz function a in the
proof of the theorem. However, although we do not have a general proof that the result by
Fernández–Procacci is stronger, notice that for all non-pathological examples we considered
(e.g., non-overlapping dimers or cubes) Fernández–Procacci provides better bounds than
Theorem 4.1.

Example 4.1 (Hypercubes) If S = {1, . . . , k}d with k ∈ N, condition (4.2) becomes

z ≤ sup
α>0

exp(αkd) − 1

kd exp(α(2k − 1)d)
.

Carrying out the optimization over α yields the condition

(2k − 1)d z ≤
(
1 − 1

(2 − 1/k)d

)(2−1/k)d−1
.
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In the limit d → ∞ at fixed k ≥ 2, the right-hand side converges from above to the familiar
bound 1/e.

Proof of Theorem 4.1 We apply Theorem 2.7 with a(D) := αV (D). We check that V (·) is
strongly subadditive. Let B, C be finite subsets of Zd . Then for every polymer X ,

1l{X∩B �=∅} + 1l{X∩C �=∅} ≥ 1l{X∩(B∪C)�=∅} + 1l{X∩(B∩C)�=∅}.

Indeed if X intersects B but not C (or C but not B), the inequality reads 1 + 0 ≥ 1 + 0 and
it is true. If X intersects both B and C , the inequality reads 1 + 1 ≥ 1 + 1l{X∩(B∩C)�=∅} and
it is true as well. Finally if X intersects neither B nor C , then both sides of the inequality
vanish. Summing over all polymers X , we get

V (B) + V (C) ≥ V (B ∪ C) + V (B ∩ C). (4.3)

Now we turn to the criterion (i) from Theorem 2.7. Condition (2.18) for D′ = ∅ reads

|S| z eαV (S) ≤ eαV ({x}) − 1,

it is satisfied because of V ({x}) = |S| and the assumption (4.2). For non-empty D′, we
bound the left-hand side of condition (2.18) with the help of the strong subadditivity. The
inequality (4.3) applied to B = D′ ∪ {x} and C = X yields

V (D′ ∪ {x}) + V (X) ≥ V (D′ ∪ X) + V ({x}), (4.4)

for x ∈ Zd \ D′, x ∈ X , and X ∩ D′ = ∅, and

V (D′ ∪ X) − V (D′) ≤ V (D′ ∪ {x}) + V (X) − V (D′) − V ({x})
= V (D′ ∪ {x}) − V (D′) + V (S) − |S|.

This provides an X -independent bound for the exponent in the left-hand side of condi-
tion (2.18). The number of summands on the left-hand side of condition (2.18) is given by the
number of active polymers intersecting x but not D′, which is equal to V (D′ ∪ {x})− V (D′).
Thus to prove (2.18) it suffices to show that

(
V (D′ ∪ {x}) − V (D′)

)
z eα[V (D′∪{x})−V (D′)+V (S)−|S|] ≤ eα[V (D′∪{x})−V (D′)] − 1. (4.5)

In view of condition (4.2), the last inequality in turn follows once we check

(
V (D′ ∪ {x}) − V (D′)

)(
eα|S| − 1

)
eα[V (D′∪{x})−V (D′)−|S|] ≤ |S|(eα[V (D′∪{x})−V (D′)] − 1

)

or equivalently,

1 − exp(−α|S|)
|S| ≤ 1 − exp(−αR)

R
, R := V (D′ ∪ {x}) − V (D′).

Because of the subadditivity of V , we have R ≥ V ({x}) = |S|. The exponential map
x �→ exp(−αx) is convex and therefore the difference quotient is monotone increasing, i.e.,
(exp(−αx) − 1)/x ≤ (exp(−αy) − 1))/y whenever 0 ≤ x ≤ y. We apply the inequality to
x = R and y = |S| and obtain the required bound. 
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4.2 Single-Type Hard-Core System inRd

Consider a bounded convex shape S ⊂ Rd which is non-empty, regular closed and balanced
(recall: A set S ⊂ Rd is called regular closed if and only if it equals the closure of its interior,
i.e., S◦ = S, and it is called balanced if and only if αS ⊂ S for all |α| ≤ 1). We investigate
the special case of the hard-core setup in the continuum from Sect. 2.3 where X consists of
all translates x + S = {x + y | y ∈ S}. Let us further assume that both the activity and
the reference measure λ are translationally invariant. Then we may identify X with Rd , the
reference measure λ with the Lebesgue measure, and the activity function with a positive
scalar, z(x) ≡ z > 0.

For an integrable function h : X → R we write
∫

X
h(Z)λ(dZ) =

∫

Rd
h(x + S)dx .

Write |S| for the Lebesgue volume of the shape S and define for Borel sets D ⊂ Rd

V (D) :=
∫

Rd
1l{(x+S)∩D �=∅}dx . (4.6)

NoticeV ({y}) = |S|, which is positive andfinite by our assumptions on S, andV (S) = |S⊕S|
with A ⊕ B := {a + b | a ∈ A, b ∈ B} the Minkowski sum. The latter identity holds
since we assumed the set S to be balanced which implies {(x + S) ∩ S �= ∅} = S ⊕ S.
Moreover, notice that V—as a function on Dε with the convention V (∅) = 0—satisfies the
measurability assumption from Theorem 2.6 by the same argument as formulated on p. 22
for T̃ .

We refer to such systems as single-type hard-core systems in the continuum. In the language
of stochastic geometry (see [28, Sects. 3,4]), the associated Gibbs measure is a hard-core
germ–grain model with deterministic grain S (the germs are the positions x).

Theorem 4.2 Assume there exists α > 0 such that

|S|eαV (S)z < eα|S| − 1. (4.7)

Then the activity expansions ρn(x1, . . . , xn; z) converge absolutely for all n ∈ N and all
(x1, . . . , xn) ∈ Xn.

Remark 4.2 Again, notice that while Theorem 4.2—just as its discrete analogue Theo-
rem 4.1)—improves on the Kotecký–Preiss condition, it is in all the cases we considered
as examples weaker than Fernández–Procacci (e.g., for systems of hard spheres the bounds
on the radius of convergence obtained in [9, 22] are slightly better). However, the advantage
of our criterion is that an explicit bound is provided directly, with no need for numerical
computation regardless of the dimension.

Example 4.2 (Hard spheres) If S = BR(0) is the closed ball of radius R > 0 around the
origin, condition (4.7) becomes

z ≤ sup
α>0

exp(α|BR(0)|) − 1

|BR(0)| exp(α|B2R(0)|) .

Carrying out the optimization over α yields the condition

|B2R(0)| z ≤
(
1 − 1

2d

)2d−1
.
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In the limit d → ∞ at fixed R > 0, the right-hand side converges from above to the familiar
bound 1/e.

Proof Let α > 0 satisfy condition (4.7). Set a(D̂) := αV (D̂) for D̂ ∈ Dε , choose some
chopping map C and let D ∈ Dε (the snippet-size ε > 0 will be specified later in the
proof). For the simplest selection rule s choosing always the first snippet E1, condition (i) in
Theorem 2.6 reads

∞∑

k=1

zk

k!
∫

Xk
I (E1; D′; Y1, . . . , Yk) e

α[V (D′∪(∪k
i=1Yi ))−V (D′)]λk(dY)

≤ eα[V (D′∪E1)−V (D′)] − 1, (4.8)

where D′ = D\E1.
Notice that—unlike in the discrete case—terms of order higher than one in z do not

necessarily vanish in the series in (4.8). Inspired by the proof of Theorem 4.7, we try first
to bound the exponent on the left-hand side of (4.8), seeking a bound that separates Y :=
Y1 ∪ · · · ∪ Yk from E1 and D′. If the constraint were that E1 ⊂ Y , we would conclude with
strong subadditivity applied to B := Y and C := D′ ∪ E1 that V (E1) + V (D′ ∪ Y ) ≤
V (Y ) + V (D′ ∪ E1). For the weaker constraint E1 ∩ Y �= ∅, this is no longer true. Let
Z ∈ X. A straightforward case distinction reveals that under the indicator I , the inequality

1l{Z∩E1 �=∅} + 1l{Z∩(D′∪Y )}�=∅} ≤ 1l{Z∩Y �=∅} + 1l{Z∩(D′∪E1)�=∅}

is correct for all possible values of the left-hand side except possibly 1 + 1. Indeed it may
happen that Z intersects both E1 and D′ ∪ Y , hence a fortiori D′ ∪ E1, but not Y , so that
the right-hand side becomes 0+ 1. This happens precisely when Z intersects D′ and E1 but
not Y . The inequality becomes correct if we add the indicator of this event to the right-hand
side. Integrating over Z , we obtain

V (E1) + V (D′ ∪ Y ) ≤ V (Y ) + V (D′ ∪ E1) +
∫

X
1l{Z∩E1 �=∅, Z∩Y=∅, Z∩D′ �=∅}λ(dZ).

Moreover, there exists a constant C = C(S, d) > 0 that depends only on the dimension d
and the shape S such that if k = 1 and Y = Y1 ∈ X is a translate of S, then

∫

X
1l{Z∩E1 �=∅, Z∩Y=∅, Z∩D′ �=∅}λ(dZ) ≤ Cε.

Indeed, on the left side we may drop the indicator that Z intersects D′ and see that it is
sufficient to check

∫

X
1l{Z∩E1 �=∅, Z∩Y=∅}λ(dZ) ≤ Cε. (4.9)

To see that such an estimate holds let Bε(c) be a closed ball of radius ε around some c ∈ Rd

containing the snippet E1 and let x ∈ Y ∩ E1 (by assumption this intersection is non-empty).
Then x ∈ Bε(c) and the inequality

1l{Z∩E1 �=∅, Z∩Y=∅} ≤ 1l{Z∩Bε(c)�=∅, x /∈Z}

holds pointwise in Z , thus also
∫

X
1l{Z∩E1 �=∅, Z∩Y=∅}λ(dZ) ≤

∫

X
1l{Z∩Bε(c)�=∅, x /∈Z}λ(dZ).
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Notice that
∫

X
1l{Z∩Bε(c)�=∅, x /∈Z}λ(dZ) = |{y ∈ Rd |(y + S) ∩ Bε(0) �= ∅, x̃ /∈ y + S}|,

where Bε(0) is the closed ball of radius ε around 0 and x̃ := x − c. For the set on the
right-hand side of that equation, the identity

{y ∈ Rd |(y + S) ∩ Bε(0) �= ∅, x̃ /∈ y + S} = (S ⊕ Bε(0)) \(x̃ + S),

holds since S being balanced directly implies

{y ∈ Rd |(y + S) ∩ Bε(0) �= ∅} = S ⊕ Bε(0)

and

{y ∈ Rd |x̃ ∈ y + S} = x̃ + S.

Furthermore, observe that the inclusion

(S ⊕ Bε(0)) \(x̃ + S) ⊂ ((S ⊕ Bε(0)) \S) ∪ ((S ⊕ Bε(x̃)) \(x̃ + S))

holds since x̃ ∈ Bε(0) and S is balanced set. Moreover, (S ⊕ Bε(x̃)) \(x̃ + S) is the translate
of (S ⊕ Bε(0)) \S by x̃ , hence it has the same Lebesgue volume and

| (S ⊕ Bε(0)) \(x̃ + S)| ≤| (S ⊕ Bε(0)) \S| + | (S ⊕ Bε(x̃)) \(x̃ + S)|
=2| (S ⊕ Bε(0)) \S|
=2 (|S ⊕ Bε(0)| − |S|) .

Finally, by Steiner’s formula for compact convex sets (see [28]), |S ⊕ Bε(0)| − |S| is given
by a non-constant polynomial in ε, which yields a bound of the form given by the right-hand
side of (4.9) (where the constant C > 0 can be expressed in terms of the intrinsic volumes
of S following the formula).

Consequently, we obtain the bound

V (E1) + V (D′ ∪ Y ) ≤ V (Y ) + V (D′ ∪ E1) + Cε (4.10)

which corresponds to the bound (4.4) in the proof of Theorem 4.1.
The inequality (4.10) immediately yields the following upper bound for the left-hand side

of (4.8):

eαCε eα[V (D′∪E1)−V (D′)−V (E1)]
∞∑

k=1

zk

k!
∫

Xk
I (E1; D′; Y1, . . . , Yk) e

αV (Y )λk(dY).

The summand for k = 1 is equal to

z eαV (S)

∫

X
1{Y1∩E1 �=∅,Y1∩D′=∅}λ(dY1) = z[V (D′ ∪ E1) − V (D′)]eαV (S).

For k ≥ 2, we bound V (Y ) ≤ ∑k
i=1 V (Yi ) = kV (S), drop the indicator that the Yi ’s do not

intersect D′, and get the upper bound

zkeαkV (S)

∫

Xk

k∏

i=1

1l{Yi ∩E1 �=∅}1l{Y1,...,Yk disjoint}λk(dY).

Notice that there exists N ∈ N such that for all k ≥ N + 1 the integral vanishes. To see
this, assume that there are infinitely many disjoint objects Y ∈ X intersecting the snippet E1
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(and therefore some open ε-ball Bε in which the snippet is contained). Since all the objects
Y are translates of S, we can choose the same radius r > 0 for all of the infinitely many
disjoint objects Y intersecting E1 such that Y = x + S ⊂ Br (x). Naturally, every such
r -ball must intersect Bε and therefore their union is again a bounded Borel subset of Rd . But
— by our assumptions on the shape S—every Y ∈ X has the same fixed, strictly positive
Lebesgue measure, thus their disjoint union must have infinite Lebesgue measure, which is
a contradiction to its boundedness.

For k ≤ N , we drop the indicator that Y3, . . . , Yk are disjoint and find that the integral is
bounded by

V (E1)
k−2

∫

X
1l{Y1∩E1 �=∅}

(∫

X
1l{Y2∩E1 �=∅, Y2∩Y1=∅}λz(dY2)

)
λz(dY1).

The inner integral is bounded by Cε because of (4.9), the outer integral gives an additional
factor V (E1). Altogether, the left-hand side of (4.8) is bounded by

eαCε eα[V (D′∪E1)−V (D′)−V (E1)]
(

z[V (D′ ∪ E1) − V (D′)]eαV (S)

+Cε

N∑

k=2

zk V (E1)
k−1eαkV (S)

)
.

Proceeding as in the proof of Theorem 4.2, but taking into account the strict inequality from
assumption (4.7), we find that there exist α > 0 such that

eα[V (D′∪E1)−V (D′)−V (E1)]z[V (D′ ∪ E1) − V (D′)]eαV (S) < eα[V (D′∪E1)−V (D)] − 1,

compare to (4.5). Therefore, picking ε small enough, we see that (4.8), hence also condition
(i) in Theorem 2.6 is satisfied and all T (D; z), D ∈ Dε , are absolutely convergent. The claim
of the theorem follows immediately. 


4.3 Multi-Type Hard Spheres inRd

Let (rn)n∈N be an increasing sequence of positive real numbers and let Brn (0) ⊂ Rd , n ∈ N,
be the family of d-dimensional closed balls around 0 with the corresponding radii. To the
sequence (rn)n∈N of radii is associated the sequence of non-negative activities (zn)n∈N such
that the ball Bri has the activity zi . In the setup of hard-core systems in the continuum from
Sect. 2.3, let X be given by all possible translates of these objects. Notice that the closed
balls are compact convex sets that are non-empty and regular closed. We refer to this special
case of a hard-core system as a system of multi-type hard spheres in Rd . We will show a
new sufficient condition for absolute convergence of the activity expansions in these types
of models.

For an integrable function h : X → R we write
∫

X
h(Z)λ(dZ) =

∑

≥1

∫

Rd
h(x + Br

(0))dx .

We define the family of functions (Vr )r>0 by setting for Borel sets D ⊂ Rd

Vr (D) :=
∫

Rd
1l{(x+Br (0))∩D �=∅}dx, (4.11)

where Br (0) is the d-dimensional closed ball of radius r > 0 around 0. Naturally, the map
Vr coincides with the map V from (4.6) for the grain S given by the closed ball Br (0) and
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therefore satisfies the measurability assumption from Theorem 2.6 (as a function on Dε with
the convention V (∅) = 0). Furthermore, we have Vr ({y}) = |Br (0)| and Vr (Bs(y)) =
|Bs(y) ⊕ Br (0)| = |Bs+r (0)| (where ⊕ denotes the Minkowski sum) for any y ∈ Rd and
any numbers r , s > 0.

The following auxiliary result turns out to be essential for the proof of the new sufficient
condition:

Lemma 4.3 Let D1 be a finite union of bounded convex regular closed subsets of Rd and let D2

be a d-dimensional ball in Rd . The map (0,∞) � r �→ Vr (D1∪D2)−Vr (D1)
Vr (D2)

is monotonically
decreasing in r .

Proof First of all, observe that for sets D given by a finite union of convex, regular closed
subsets of Rd the volume Vr (D) can be written as

Vr (D) = |D| + S(D)r + o(r), (4.12)

where S(D) denotes the surface area of D. This follows from a generalized version of the
classical Steiner’s formula (see [27, Sect. 4.4]). In particular, we see that the map r �→
Vr (D1∪D2)−Vr (D1)

Vr (D2)
is differentiable in r = 0.

Next, we notice that the map satisfies the following semi-group property:

Vr+ε(D) = Vε(D ⊕ Br (0)).

Therefore, to prove the claim of the lemma, it suffices to consider the differential at zero:

lim
ε↘0

1

ε

(
Vε(A ∪ B) − Vε(A)

Vε(B)
− |A ∪ B| − |A|

|B|
)

,

where A := D1 ⊕ Br (0) and B := D2 ⊕ Br (0).
Using the formula (4.12), a simple computation shows that this limit is equal to

|B| (S(A ∪ B) − S(A)) − S(B) (|A ∪ B| − |A|)
|B|2 .

The monotonicity in the claim of the lemma is then equivalent to

|B| (S(A ∪ B) − S(A)) − S(B) (|A ∪ B| − |A|) ≤ 0

or, equivalently,

|B|
S(B)

≤ |A ∪ B| − |A|
S(A ∪ B) − S(A)

.

Using the obvious identities |A ∪ B| − |A| = |B| − |A ∩ B| and S(A ∪ B) − S(A) =
S(B) − S(A ∩ B), we can rewrite the last inequality as

S(B)

|B| ≤ S(A ∩ B)

|A ∩ B| ,

which holds by the isoperimetric inequality since B = D2 ⊕ Br (0) is a ball in Rd (“the ball
is the shape that minimizes the surface area for given volume”, see [7, 3.2.43]). 


The following sufficient condition is, in some sense, a “continuous version” of theGruber–
Kunz criterion in the setup of hard spheres inRd . The similarity in the form arises as follows:
To establish the recurrence relations underlying the proof of Gruber–Kunz we selected a
monomer, a single point in Zd , from a configuration of polymers. We follow this idea in the
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proof of the following result, choosing the chopping map C and the selection rule s such
that a tiny snippet that approximates a single point in the continuous space sufficiently well
is selected. At the same time we choose an ansatz function a that can be interpreted as the
continuous analogue of the ansatz function from the proof of Corollary 2.8.

Theorem 4.4 In the setup of multi-type hard objects on Rd , assume that the activity z satisfies

∃α > 0 :
∑

≥1

|Br
|eα|Br+r1 |z < eα|Br1 | − 1, (4.13)

where by |Br | we denote the (Lebesgue) volume of a ball of radius r > 0. Then the activity
expansions ρn(X1, . . . , Xn; z) converge absolutely.

Remark 4.3 Activity expansions for systems with infinitely many types of objects are not
particularly well-studied in statistical mechanics. In the case of finitely many types, we
expect our result to exceed Kotecký–Preiss but to be weaker then Fernández–Procacci—as
in the special case of a single type treated above (see Remark 4.2). The general case, for
rn → ∞ in particular, remains to be investigated.

Proof Again, our strategy is to show that condition (i) from Theorem 2.6 is satisfied for an
appropriate ansatz function a. By assumption, r1 is the radius of the smallest ball present in
the system. Set a(D̂) := αVr1(D̂) for D̂ ∈ Dε , where Vr1 is given by (4.11) and α satisfies
(4.13). Choose some chopping map C and let D ∈ Dε (the snippet-size ε > 0 is to be
specified later in the proof). Just as in the proof of Theorem 4.2, independently of the choice
of the snippet E1 (i.e., independently of the selection rule s), we obtain the following upper
bound for the left-hand side of the inequality from condition (i):

eαC1(ε) eα[V (D′∪E1)−V (D′)−V (E1)]
∞∑

k=1

zk

k!
∫

Xk
I (E1; D′, Y1, . . . , Yk) e

αV (Y)λk(dY). (4.14)

The positive number C1(ε) converges towards 0 for ε ↘ 0 and is precisely the bound from
(4.9) in the proof of Theorem 4.2 for Y given by a translate of Br1(0), i.e., by a sphere of
minimal volume present in the system.

The summand for k = 1 in (4.14) is equal to
∑

≥1

ze
α|Br+r1 |

∫

X
1{r(Y1)=r}1{Y1∩E1 �=∅,Y1∩D′=∅}λ(dY1).

Notice that the integrals in the last expression are equal to [Vr
(D′ ∪ E1)−Vr

(D′)] for every
 ∈ N.

The summand for any k ≥ 2 in (4.14) is bounded from above by

∑

1,...,k

z1 . . . zk e
α

k∑
i=1

|Bri
+r1 | ∫

Xk

k∏

i=1

1{r(Yi )=ri }

k∏

i=1

1{Yi ∩E1 �=∅,Yi ∩D′=∅}1{Y1,...,Yk disjoint}λk(dY), (4.15)

which—by arguments similar to the ones used for the bound C1(ε)—is again bounded by

C2(ε)
∑

1,...,k

z1 . . . zk e
α

k∑
i=1

|Bri
+r1 |

|Br1
| . . . |Brk

| (4.16)
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for a positive constant C2(ε) that is independent of k and satisfies C2(ε) ↘ 0 for ε ↘ 0.
Notice that the sum in (4.16) is finite for every k ∈ N by assumption (4.13) [since it is simply
given by the k-th power of the left-hand side of the inequality in (4.13)]. Moreover, by the
same argument as in the proof of Theorem 4.2, the expression in (4.15) does vanish for all
but finitely many k ∈ N, i.e., there exists a number N ∈ N such that (4.15) is equal to zero
for all k ≥ N + 1.

Altogether we get the upper bound

eαC1(ε) eα[V (D′∪E1)−V (D′)−V (E1)] ×
(∑

≥1

ze
α|Br+r1 |[Vr

(D′ ∪ E1) − Vr
(D′)]+

C2(ε)
∑

2≤k≤N

∑

1,...,k

z1 . . . zk e
α

k∑
i=1

|Bri
+r1 |

|Br1
| . . . |Brk

|
)
.

As in the single-type case, we see that it is sufficient to prove the strict inequality

eα[V (D′∪E1)−V (D′)−V (E1)] ∑

≥1

ze
α|Br+r1 |[Vr

(D′ ∪ E1)−Vr
(D′)] < eα[V (D′∪E1)−V (D)]−1

for small values of ε > 0 and, consequently, for small volumes of the snippet E1 contained
in an ε-ball.

To do so, we bound [Vr
(D′ ∪ E1) − Vr

(D′)] from above by [Vr
(D′ ∪ Bε) − Vr

(D′)]
for every  ∈ N, where Bε is the ball of radius ε containing the snippet E1. Then we use
Lemma 4.3 to obtain

[Vr
(D′ ∪ Bε) − Vr

(D′)] ≤ [Vrm (D′ ∪ Bε) − Vrm (D′)] Vr
(Bε)

Vrm (Bε)

for m ≤  (since in that case rm ≤ r holds by assumption) and therefore

∑

≥1

ze
α|Br+r1 |[Vr

(D′ ∪ E1)−Vr
(D′)]≤ Vr1(D′ ∪ Bε) − Vr1(D′)

Vr1(Bε)

∑

≥1

ze
α|Br+r1 |Vr

(Bε).

By dominated convergence and assumption (4.13) we can choose ε > 0 small enough to
strictly bound the right-hand side of the last equation by

Vr1(D′ ∪ E1) − Vr1(D′)
Vr1(E1)

(eαVr1 (E1) − 1).

Finally, it suffices to show the inequality

eα[V (D′∪E1)−V (D′)−V (E1)] Vr1(D′ ∪ E1) − Vr1(D′)
Vr1(E1)

(eα|Vr1 (E1)| − 1) ≤ eα[V (D′∪E1)−V (D)] − 1

(4.17)

as in (4.5) to conclude the proof. 


4.4 Tonks Gas onZ

Next we turn to the discrete one-dimensional Tonks gas with translationally invariant activ-
ities. That is, in the setup of subset polymers from Sect. 2.4 for d = 1, let (z)∈N be a
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sequence of non-negative numbers and consider the activity

z(X) =
{

z, X = {m, m + 1, . . . , m +  − 1} for some m ∈ Z,

0, else.
(4.18)

Theorem 4.5 Let d = 1 and let (z)∈N be a sequence of non-negative activities.

(a) Suppose there exists α > 0 such that
∞∑

=1

eαz ≤ eα − 1. (4.19)

Then T (D; z) is absolutely convergent for all finite subsets D ⊂ Z.
(b) Conversely, if T (D; z) is absolutely convergent for all finite subsets D ⊂ Z, then there

exists α > 0 such that (4.19) holds true.

Remark 4.4 The condition (4.19) is exactly the necessary and sufficient criterion for absolute
convergence of the activity expansion of the pressure in the system derived in [13]. While
the result itself is not novel, we consider the proof to be instructive since it demonstrates how
our approach can provide conditions improving on the Fernández–Procacci criterion. In this
concrete setup even the optimal result—recovering the whole domain of convergence—can
be achieved.

The proof of the sufficient condition relies on a refinement of Theorem 2.7. Roughly, we
weaken condition (i) to consider the Kirkwood–Salsburg inequalities being satisfied only for
single rods rather than for arbitrary configurations of rods; at the same time we specify the
selection rule by assuming that the leftmost (or, alternatively, the rightmost) element {x} is
always picked from any given domain.

Proposition 4.6 Suppose there exists a non-negative function a(·) from the finite intervals of
Z to [0,∞) with a(∅) = 0 and for every finite interval D of Z with x = min D such that

∑

Y�x,
Y∩D′=∅

z(Y ) ea(D′∪Y )−a(D′) ≤ ea(D′∪{x})−a(D′) − 1, (4.20)

where we set D′ = D\{x}. Then T (D, z) is absolutely convergent, for all finite D ⊂ Z
(interval or not).

Proof We revisit the proof of the implication (i) ⇒ (ii) of Theorem 2.7 given on p. 24 and
prove first by induction over N that T̃N (D; z) ≤ exp(a(D)), for all finite discrete intervals
D ⊂ Z. For N = 1, the inequality is trivial because T̃1(D; z) = 1{|D|≤1} ≤ 1 ≤ exp(a(D̂)).
Now, suppose T̃N (D; z) ≤ exp(a(D)) for some N ∈ N and all discrete intervals D ⊂ Z.
Let D̂ ⊂ Z be any discrete interval. If D̂ = ∅, then T̃N+1(D̂; z) = 1 ≤ exp(a(D̂)). If D̂
is non-empty, let x := min D̂ (or, alternatively, x := max D̂) and set D′ = D̂\{x}, then
Proposition 3.12 yields

T̃N+1(D̂; z) = T̃N (D′; z) +
∑

Y�x :
Y∩D′=∅

z(Y )T̃N (D′ ∪ Y ; z).

Since all the arguments D′ and D′ ∪ Y of T̃N on the right side of this identity are again finite
discrete intervals, the inductive hypothesis and our assumption (4.20) imply that

T̃N+1(D̂; z) ≤ ea(D′) +
∑

Y�x :
Y∩D′=∅

z(Y )ea(D′∪Y ) ≤ ea(D̂).
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This completes the inductive proof of the inequality T̃N (D; z) ≤ exp(a(D)). Passing to the
limit N → ∞, we get T̃ (D; z) ≤ exp(a(D)) < ∞ for all intervals D ⊂ Z. The convergence
extends to all finite sets because log T̃ (·; z) is subadditive. 

Proof of Theorem 4.5(a) Consider the selection rule s(D) := min D that picks the left-most
point of a finite set. For α > 0 and L ∈ N let

VL(D) := ∣∣{X ⊂ Z | X is an L-rod, X ∩ D �= ∅}∣∣
and a(D) ≡ aα,L(D) := α VL(D). The choice of α and L is specified later. For a non-empty
interval D, write x := s(D) = min(D), and D′ := D \ {x}. If D′ is non-empty, then
condition (4.20) reads

∞∑

=1

z e
α ≤ eα − 1. (4.21)

Indeed in that case for each  there is a single -rod X that contains x but does not intersect
D′ (note that x + 1 ∈ D′ because of the assumption that D is an interval and x = min D).
The rod is simply the -rod with right-most endpoint x . Moreover VL(D′ ∪ X)−VL(D′) = 

and VL(D′ ∪ {x}) − VL(D′) = 1.
On the other hand if D′ is empty, then the number of -rods that contain any given site

x ∈ Zd is equal to  and the number of L-rods intersecting an -rod is equal to L +  − 1,
therefore condition (4.20) reads instead

∞∑

=1

z e
α(+L−1) ≤ eαL − 1. (4.22)

The proof of Theorem 4.5 is complete once we check the existence of α > 0 and L ∈ N such
that the inequalities (4.21) and (4.22) hold true. Set

h(u) := 1 +
∞∑

=1

z u (u ∈ R+).

Conditions (4.21) and (4.22) are equivalent to

h(eα) ≤ eα, h′(eα) ≤ 1 − e−αL . (4.23)

Notice that h is convex and monotone increasing with h(0) = 1. The assumption (4.19)
yields the existence of some u = eα > 0 such that h(u) < u. On the other hand, clearly
h(0) = 1 > 0. Therefore the mean-value theorem yields the existence of a point ũ ∈ (0, u)

such that h(ũ) = ũ. The point ũ is necessarily larger then 1 because h(ũ) is. Suppose by
contradiction that h′(ũ) ≥ 1. Then the convexity of h implies

h(u) ≥ h(ũ) + h′(ũ)(u − ũ) ≥ h(ũ) + (u − ũ) = u,

which contradicts the assumption h(u) < u. Therefore h(ũ) = ũ > 1 and h′(ũ) < 1.
Replacing α with α̃ := log ũ if needed, and picking L = L(α) large enough, we find that
(4.23) is satisfied for some α > 0. This concludes the proof. 

Proof of Theorem 4.5(b) Let a(D) := log T̃ (D; z) = log T (D;−z). In view of Eq. (2.15)
and the alternating sign property, we have

a(D) =
∞∑

k=1

1

k!
∑

(Y1,...,Yk )∈Xk

1l{∃i : Yi ∩D �=∅}
∣∣ϕT

k (Y1, . . . , Yk)
∣∣ z(Y1) · · · z(Yk).
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By Proposition 3.12, for every D ⊂ Z \ {1}, we have
∑

Y�1,
Y∩D=∅

z(X)ea(D∪Y )−a(D) ≤ ea(D∪{1})−a(D) − 1. (4.24)

Let us choose D ⊂ Z ∩ (−∞, 0] with 0 ∈ D. Then for every given  ∈ N, the unique rod of
length  that contains 1 but does not intersect D is the rod {1, . . . , }, and we obtain

∞∑

=1

z e
a(D∪{1,...,})−a(D) ≤ ea(D∪{1})−a(D) − 1. (4.25)

Let D0 := D and for m ≥ 1 set Dm := D ∪ {1, . . . , m}. The exponent on the left-hand side
in (4.25) may be written as

a(D ∪ {1, . . . , }) − a(D) =
∑

m=1

(
a(Dm) − a(Dm−1)

)
. (4.26)

Now

a(Dm) − a(Dm−1)

=
∞∑

k=1

1

k!
∑

(Y1,...,Yk )∈Xk

(
1l{∃i : Yi ∩Dm �=∅} − 1l{∃i : Yi ∩Dm−1 �=∅}

)∣∣ϕT
k (Y1, . . . , Yk)

∣∣z(Y1) · · · z(Yk).

The only clusters (Y1, . . . , Yk) that contribute to the sum are those that intersect Dm but do
not intersect Dm−1. This is only possible if one of the Yi ’s contains m and all of them are
contained in Z ∩ [m,∞). Thus

a(Dm) − a(Dm−1)

=
∞∑

k=1

1

k!
∑

(Y1,...,Yk )∈Xk

1l{∃i : Yi �m}1l{∀i : Yi ⊂[m,∞)}
∣∣ϕT

k (Y1, . . . , Yk)
∣∣z(Y1) · · · z(Yk).

Because of the translational invariance, the value of the sum does not depend on m. Thus
a(Dm) − a(Dm−1) = α > 0 for all m ≥ 1 and some α > 0. Turning back to (4.26), we
obtain

a(D ∪ {1, . . . , }) − a(D) = α

and then (4.25) yields
∑∞

=1 z exp(α) ≤ exp(α) − 1. 


4.5 Tonks Gas onR

Next, we want to consider the continuous version of the one-dimensional Tonks gas. Let
(L)∈N be sequence of strictly positive numbers and X the space of compact intervals
I ⊂ R with lengths |I | ∈ {L |  ∈ N}. The map R × N, (x, ) �→ [x − L/2, x + L/2] is
a bijection between R × N and X. The reference measure λ is defined by the equality

∫

X
h(X)λ(dX) =

∞∑

=1

∫ ∞

−∞
h
([

x − L

2 , x + L

2

])
dx
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for all non-negative measurable functions h : X → R+. We assume that the activity is of the
form

z(X) =
{

z, X = [x, x + L] for some  ∈ N, x ∈ R,

0, else

for some sequence (z)∈N of non-negative numbers.We assume that rod lengths are bounded
from below, i.e., there exists δ > 0 such that

inf
∈N

L ≥ δ. (4.27)

From here on, we will consider the following chopping map: For X = [x, x + L] ∈ X, let
C(X) = {E1, . . . , Em} consist of the intersections of X with the intervals [x+(k−1)ε, x+kε)

with k ∈ Z, where ε ∈ (0, δ). The space of snippets Eε consists of intervals [a, b] and [a, b)

of length b − a ≤ ε.

Theorem 4.7 In the setup of multi-type Tonks gas on R, under the assumption (4.27):

(a) Suppose there exists α > 0 such that

∞∑

=1

eαL z < α. (4.28)

Then the expansion for T (D; z) is absolutely convergent, for all bounded sets D ⊂ R.
(b) Conversely, if T (D; z) is absolutely convergent for all bounded subsets D ⊂ R, then

there exists α > 0 such that (4.28) holds true with “≤” instead of “<”.

Remark 4.5 The theorem essentially recovers the necessary and sufficient convergence cri-
terion from [13] (derived there for the activity expansion of the pressure in the system).
The sufficient condition in [13] is (4.28) with “≤” instead of “<”. Again, while the result
itself is not novel, its proof demonstrates the potential of our approach to go beyond the
Fernández-Procacci criterion—also in continuous setups.

First we prove an auxiliary result, the analogue of Proposition 4.6 for the continuous
setup, which is not quite as trivial.We introduce the following notion: Define the ε-gap-filling
operation ·̂ by setting D̂ := D ∪{x ∈ R| ∃y, z ∈ D with y < x < z such that z − y ≤ ε} for
any D ⊂ R. Let P be some subset of the power set of R, we say that a function ξ : P → R
does not see gaps of diameter at most ε if it is invariant under the ε-gap-filling operation, i.e.,
if ξ(D) = ξ(D̂) for all D ∈ P .

Proposition 4.8 Suppose that there exists a non-negative, measurable map a(·) defined on
finite unions of (bounded) intervals which does not see gaps of diameter at most ε and
satisfies the following system of inequalities: For any (bounded) interval D with C(D) =
{E1, . . . , En}, E1, . . . , En ∈ Eε, where the chopping map C is defined as above, there is a
subinterval Es ⊂ D of length at most ε, such that

∞∑

k=1

1

k!
∫

Xk
I (Es; D′; Y1, . . . , Yk)e

a(D′∪Y1∪···∪Yk )−a(D′)λk
z (dY) ≤ ea(Es∪D′)−a(D′) − 1,

(4.29)

where we set D′ := D\Es and I (Es; D′; Y1, . . . , Yk) is the indicator from Eq. (2.16). Then
T (D; z) is absolutely convergent for all bounded subsets D ⊂ R.
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Proof Wecanmodify theKirkwood–Salsburg-type equations κ̃s
z fromChapter 3.3 as follows:

If ξ(·) is a function fromDε toR+ that does not see gaps of diameter at most ε and satisfies the
measurability assumption from Theorem 2.6, define the function ˜K s

z ξ (possibly assuming
the value “∞”) by

( ˜K s
z ξ)

(
D

) := 1l{n≥2} ξ
(
∧

E ′
2 ∪ . . . ∪ E ′

n

)

+
∞∑

k=1

1

k!
∫

Xk
I (Es; E ′

2 ∪ · · · ∪ E ′
n; Y1, . . . , Yk)ξ

(
∧

E ′
2 ∪ . . . ∪ E ′

n ∪ Y1 ∪ . . . ∪ Yk

)
λk

z (dY),

for D ∈ Dε with E1, . . . , En ⊂ Eε and C(D) = {E1, . . . , En}, where D̂ is given by “filling
gaps” of diameter at most ε in D ⊂ R as defined above.

Notice that for any such function ξ(·) (that does not see gaps of diameter at most ε and
satisfies the measurability assumption from Theorem 2.6)

˜K s
z ξ = κ̃s

z ξ

holds, where κ̃s
z ξ is the function defined by (3.9). In particular, the left hand side of the

equation is well-defined. Since the functions T̃N (·; z), N ∈ N, and T̃ (·; z) do not see gaps
of diameter at most ε (by our assumption ε < δ and the respective definitions), Proposition
3.10 implies

T̃
(·; z

) = e(·) + ˜K s
z T̃ (·; z).

and

T̃N+1
(·; z

) = e(·) + ( ˜K s
z T̃N )

(·; z
)
.

Assumption (4.29) is equivalent to e(D) + ( ˜K s
z ea)(D) ≤ ea(D) for any interval D ⊂ R. We

prove by induction over N that T̃N (D; z) ≤ ea(D) for all N ∈ N and all intervals D ⊂ R.
For N = 1, we have by our assumption

T̃1(D, z) = e(D) ≤ e(D) + ( ˜K s
z ea)(D) ≤ ea(D)

for all intervals D ⊂ R. Next, assume for some N ∈ N that T̃N (D; z) ≤ ea(D) for all intervals
D ⊂ R, then

T̃N+1(D; z) = e(D) + K̃z
s
T̃N (D; z) ≤ e(D) + ( ˜K s

z ea)(D) ≤ ea(D),

where the first inequality holds by the inductive hypothesis, by monotonicity of ˜K s
z on non-

negative functions and by the observation that for intervals D ⊂ R all the arguments of ξ

appearing in the definition of ( ˜K s
z ξ)(D) are again intervals.

This completes the induction and proves TN (D; z) ≤ ea(D) for all N ∈ N and all intervals
D ⊂ R. Taking the limit N → ∞ yields the corresponding bound for T̃ (D; z). The claim for
arbitrary bounded subsets follows since every bounded subset is contained in some compact
interval and

T̃ (D1; z) ≤ T̃ (D2, z)

for D1 ⊂ D2 ⊂ R. 

Proof of Theorem 4.7(a) In analogy to the discrete case, for α > 0 and L > 0 let

VL(D) :=
∫ ∞

−∞
1l{[x,x+L]∩D �=∅} dx .
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and a(D) ≡ aα,L(D) := α VL(D). The choice of α and L is specified later in the proof. We
apply Proposition 4.8 with the choice of the chopping map introduced at the beginning of
this subsection and the selection rule s that picks the leftmost snippet.

Remember the indicator I (E1; D′; Y1, . . . , Yk) from Eq. (2.16). We show that there exists
α > 0 such that

∞∑

k=1

1

k!
∫

Xk
I (E1; D′; Y1, . . . , Yk)e

α[VL (D′∪Y1∪···∪Yk )−VL (D′)]λk
z (dY)

≤ eαVL (D′∪E1)−VL (D′) − 1 (4.30)

for all intervals D′ = [a, b) ⊂ R or D′ = [a, b], including the empty set D′ = ∅, and all
snippets E1 = [(k − 1)ε, a) ∈ Eε.

If D′ is non-empty, then because of inf∈N L ≥ ε and |E1| ≤ ε there cannot be two
or more disjoint rods in X that intersect E1 but do not intersect D′, so the inequality to be
proven reduces to

∫

X
eα(VL (D′∪Y )−VL (D′))1{Y∩E1 �=∅, Y∩D′=∅}λz(dY ) ≤ eα(VL (D′∪E1)−VL (D′)) − 1. (4.31)

Assuming that L ≥ ε, this is equivalent to

∞∑

=1

z

∫ |E1|

0
eα(L+x)dx ≤ eα|E1| − 1. (4.32)

The integral on the left-hand side is equal to exp(αL)[exp(α|E1|) − 1]/α, so we find
that (4.30) is equivalent to

∞∑

=1

z e
αL ≤ α,

which holds true because of the assumption (4.28).
If D′ is empty, we note that there can be at most two disjoint rods in X that intersect the

snippet E1, hence (4.30) becomes
∫

X
eαVL (Y )1l{Y∩E1 �=∅}λz(dY ) + 1

2

∫

X2
eαVL (Y1∪Y2)1l{Y1∩E1 �=∅, Y2∩E1 �=∅, Y1∩Y2=∅}λ2z

(
d(Y1, Y2)

)

≤ eαVL (E1) − 1. (4.33)

The right-hand side is equal to exp(α(L + |E1|)) − 1. The first term on the left-hand side is
equal to

∞∑

=1

z(L + |E1|)eα(L+L) =
∞∑

=1

z L e
α(L+L) + O(ε).

The second term on the left-hand side of (4.33) is equal to

∞∑

,r=1

zzr

∫

E2
1

1l{x<y} eαVL ([x−L,y+Lr ])dxdy

which is bounded by

( ∞∑

=1

ze
αL

)2
eα(ε+L)|E1|2 = O(ε2).
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For the inequality (4.33) to be satisfied, it is sufficient that

∞∑

=1

Lze
αL + O(ε) ≤ eα|E1| − e−αL . (4.34)

Arguments similar to the proof of Theorem 4.5(b), applied to the convex function h : R+ →
R, h(u) := 1 + ∑∞

=1 zuL , show that under condition (4.28) there exists α > 0 such that
not only condition (4.28) holds true but in addition

h′(eα) =
∞∑

=1

Lze
αL < 1.

Thus one can choose L = L(α) large enough and ε small enough so that (4.34) and
hence (4.33) hold true. 

Proof of Theorem 4.7(b) We proceed as in the proof of Theorem 4.5(b). Suppose that the
expansions are absolutely convergent and define

a(D) := log T (D;−z) =
∞∑

k=1

1

k!
∫

Xk
1l{∃i∈[n]: Yi ∩D �=∅}

∣∣ϕT
k (Y1, . . . , Yk)

∣∣ λk
z (dY).

Then by Proposition 3.13 and since inf∈N L is bounded from below by ε > 0,
∫

X
1l{X∩E1 �=∅, X∩D′=∅} ea(D′∪X)−a(D′)λz(dX) ≤ ea(D′∪E1)−a(D′) − 1 (4.35)

for example for E1 = [0, ε) and D′ = [ε, ε + L] with L > 0 and ε sufficiently small.
Before we evaluate the two sides of the inequality, we note two useful properties of a(·).

First, the map a does not see gaps of diameter at most ε. Precisely, if X = [x − L, x] with
x ∈ [0, ε) and D′ is as above, then

a(D′ ∪ X) = a([x − L, ε + L]).
Indeed, any rod Yi ∈ X that intersects [0, ε) must also intersect D′ ∪ X because it has a
length |Yi | ≥ ε. Second, because of translational invariance, the weight a(D) of a non-empty
interval depends only on its length |D|. We check that in addition, it is an affine function of
the length. For x ∈ R, define

α(x) :=
∞∑

=1

z

∞∑

k=0

1

k!
∫

Xk
1l{∀i∈[k]: Yi ⊂(−∞,x]}

∣∣ϕT
1+k(Y1, . . . , Yk, [x − L, x])∣∣ λk

z (dY).

The quantity α(x) is best thought of as an integral over clusters in which the right-most
rod [x − L, x] has its right end pinned at x . By translational invariance, α(x) is actually
independent of x and we may write α(x) ≡ α for some scalar α ≥ 0. Now let I = [a, b] and
J = [b, c] with a < b < c. Then

a(I ∪ J ) − a(J ) =
∞∑

k=1

1

k!
∫

Xk
1l{∃i∈[k]: Yi ∩I �=∅}1l{∀i∈[k]: Yi ∩J=∅}

∣∣ϕT
k (Y1, . . . , Yk)

∣∣ λk
z (dY).

Any cluster (Y1, . . . , Yk) that intersects I but not J has its right-most end in [a, b), therefore

a(I ∪ J ) − a(J ) =
∫

I
α(x)dx = α |I |.
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With these two observations, the left-hand side of (4.35) becomes

∞∑

=1

z

∫ ε

0
ea([x−L,x]∪D′)−a(D′)dx =

∞∑

=1

z

∫ ε

0
eα(x+L)dx =

∞∑

=1

ze
αL

1

α
(eαε − 1)

while the right-hand side of (4.35) is exp(αε) − 1. It follows that

∞∑

=1

ze
αL ≤ α.
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A Proof of Lemma 2.5

Proof of Lemma 2.5 We show that the system of inequalities

1 + ∑
k≥1

∑
Y={y1,...,yk }
yi �x1, yi ∼y j

k∏
i=1

μ(yi )
∏

w∈	(Y )

eμ(w)

∏
q∈	(x1)∩	(X)

eμ(q)

≥ 1 +
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

yi ∼X

k∏

i=1

μ(yi )
∏

w∈	(Y )∩	(X)C

eμ(w), (A.1)

which is equivalent to (2.12), holds under the assumptions of the lemma.We do so by proving
the following three claims. However, first wewould like to introduce some additional notation
to complement the notation from Sect. 2.2.
For given x1 ∈ X and X = {x2, ..., x p} ⊂ X let Q denote the set 	(x1) ∩ 	(X) and let C
denote the set of (non-empty) compatible subsets of Q. Furthermore, we define the family
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(AU )U⊂Q , AU = AU (x1, Q, μ), indexed by all the subsets U ⊂ Q (including the empty
set), by

AU = AU (x1, Q, μ) :=
∑

k≥1

∑

Y={y1,...,yk }

k∏

i=1

μ(yi )
∏

w∈	(Y )\U

eμ(w),

where the sum is over subsets Y = {y1, ..., yk} ⊂ X such that the following constraints are
satisfied: Y is an compatible set, Y ⊂ 	(x1), Y ∩ Q = ∅ and U = 	(Y ) ∩ Q.
Finally, define the family of coefficients (βU )U⊂Q , βU = βU (x1, Q, μ), also indexed by all
the subsets U ⊂ Q (including the empty set), by

βU = βU (x1, Q, μ) :=
∏

q∈Q\U

e−μ(q) +
∑

C∈C
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Q\U )\	(C)

e−μ(w).

Then the following statements hold true:

Claim A.1 The right-hand side of (A.1) is bounded from above by

1 +
∑

U⊂Q

AU .

Claim A.2 The left-hand side of (A.1) is bounded from below by

β∅ +
∑

U⊂Q

βU AU . (A.2)

Claim A.3 The lower bounds βU ≥ 1 hold for every U ⊂ Q and thus

β∅ +
∑

U⊂Q

βU AU ≥ 1 +
∑

U⊂Q

AU .

All the sums in the three claims above run over subsets of Q = 	(x1) ∩ 	(X ) including
the empty set (so that the coefficient β∅ appears in (A.2) twice). The inequalities (A.1) follow
directly from the three claims. Proving the claims is thus sufficient to conclude the proof of
the lemma:

Proof of Claim A.1 Reorder the sum in the right-hand side of (A.1) by putting the summand
together which belong to the sameU := 	(Y )∩ Q. Notice that the constraint Y ∼ X implies
Y ∩ Q = ∅ since Y ⊂ 	(x1). The claim now follows directly from the simple observation
that 	(Y ) ∩ 	(X)C ⊂ 	(Y )\U for any Y and thus

∏

w∈	(Y )\U

eμ(w) ≥
∏

w∈	(Y )∩	(X)C

eμ(w).



Proof of Claim A.2 To see that the bounds stated in the claim hold, decompose the sum in the
left-hand side of (A.1) as

1 +
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

k∏

i=1

μ(yi )
∏

w∈	(Y )

eμ(w)

=1 +
∑

C∈C∪{∅}

∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{C=Q∩Y }
k∏

i=1

μ(yi )
∏

w∈	(Y )

eμ(w). (A.3)
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Notice that for any C ∈ C

∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{C=Q∩Y }
k∏

i=1

μ(yi )
∏

w∈	(Y )

eμ(w)

≥
∏

c∈C

μ(c)
∏

w∈	(C)∩Q

eμ(w)

⎛

⎜⎜⎝1 +
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{Y∩Q=∅}1{Y∼C}
k∏

i=1

μ(yi )
∏

w∈	(Y )\(	(C)∩Q)

eμ(w)

⎞

⎟⎟⎠ .

This estimate is established by discarding the exponential weights corresponding to a subset
of 	(C): Multiplying the lower bound in the last line with

∏

w∈	(C)\	(Y )\Q

eμ(w) ≥ 1

yields equality. No further estimates are necessary to prove the claim; we simply plug the
obtained lower bound into the right-hand side of (A.3) and get

1 +
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{Y∩Q=∅}
k∏

i=1

μ(yi )
∏

w∈	(Y )

eμ(w) +
∑

C∈C

∏

c∈C

μ(c)
∏

w∈	(C)∩Q

eμ(w)

×

⎛

⎜⎜⎝1 +
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{Y∩Q=∅}1{Y∼C}
k∏

i=1

μ(yi )
∏

w∈	(Y )\(	(C)∩Q)

eμ(w)

⎞

⎟⎟⎠

or, equivalently,

1 +
∑

C∈C

∏

c∈C

μ(c)
∏

w∈	(C)∩Q

eμ(w) +
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{Y∩Q=∅}
k∏

i=1

μ(yi )
∏

w∈	(Y )

eμ(w)

+
∑

C∈C

∏

c∈C

μ(c)
∏

w∈	(C)∩Q

eμ(w)
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{Y∩Q=∅}1{Y∼C}
k∏

i=1

μ(yi )

∏

w∈	(Y )\(	(C)∩Q)

eμ(w)

as a lower bound for the left-hand side of (A.3).
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Reordering the last expression by summing over Y first, one realizes that it is equal to

1 +
∑

C∈C

∏

c∈C

μ(c)
∏

w∈	(C)∩Q

eμ(w) +
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{Y∩Q=∅}
k∏

i=1

μ(yi )
∏

w∈	(Y )

eμ(w)

×
⎛

⎜⎝1 +
∑

C∈C
C∼Y

∏

c∈C

μ(c)
∏

w∈(	(C)∩Q)\	(Y )

eμ(w)

⎞

⎟⎠ ,

which may be rewritten as

1 +
∑

C∈C

∏

c∈C

μ(c)
∏

w∈	(C)∩Q

eμ(w) +
∑

k≥1

∑

Y={y1,...,yk }
yi �x1, yi ∼y j

1{Y∩Q=∅}
k∏

i=1

μ(yi )
∏

w∈	(Y )\(	(Y )∩Q)

eμ(w)

×
⎛

⎜⎝
∏

w∈	(Y )∩Q

eμ(w) +
∑

C∈C
C∼Y

∏

c∈C

μ(c)
∏

w∈(	(C)∪	(Y ))∩Q

eμ(w)

⎞

⎟⎠ .

From the last expression, we obtain precisely the sum in (A.2) by putting the summands
in the last expression which belong to the same U = 	(Y ) ∩ Q together and dividing by∏

q∈Q eμ(q). This yields the claimed lower bound. 


Proof of Claim A.3 Without loss of generality, we may assume that Q = 	(x1) ∩ 	(X) is a
finite non-empty set. Then the claim can be proven via induction over the cardinality of Q.

To start the induction consider the case Q = {q}, q ∈ X. Then β∅ = e−μ(q) + μ(q) ≥ 1
and β{q} = 1 by definition.

For the inductive step, let n ∈ N, Qn = {q1, ..., qn} ⊂ X and let Cn be the set of compatible
subsets of Qn . Furthermore, let qn+1 ∈ X\Qn and let Qn+1 = Qn ∪{qn+1}. Naturally, there
exists a family of subsets �n ⊂ Cn , such that the set Cn+1 of compatible subsets of Qn+1 is
given by Cn+1 = {C ∪ {qn+1}|C ∈ �n or C = ∅} ∪ Cn =: �n ∪ Cn .

Under the assumption thatβU (Qn) ≥ 1 for allU ⊂ Qn it is to show thatβU (Qn+1) ≥ 1 for
all U ⊂ Qn+1. Therefore let U ⊂ Qn+1. If qn+1 ∈ U then βU (Qn+1) = βU\{qn+1}(Qn) ≥ 1
by the inductive hypothesis. Left to consider is the case qn+1 /∈ U (and thusU ⊂ Qn). Recall
that we defined the coefficient βU (Qn+1) by

βU (Qn+1) =
∏

q∈Qn+1\U

e−μ(q) +
∑

C∈Cn+1
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn+1\U )\	(C)

e−μ(w).
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Using the decomposition Cn+1 = �n ∪ Cn , we get

βU (Qn+1) = e−μ(qn+1)
∏

q∈Qn\U

e−μ(q) +
∑

C∈�n
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn+1\U )\	(C)

e−μ(w)

+
∑

C∈Cn
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn+1\U )\	(C)

e−μ(w)

= e−μ(qn+1)
∏

q∈Qn\U

e−μ(q) + μ(qn+1)
∏

q∈(Qn\U )\	(qn+1)

e−μ(q)

+ μ(qn+1)
∑

C∈�n
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn+1\U )\	(C∪{qn+1})
e−μ(w)

+ e−μ(qn+1)
∑

C∈�n
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn\U )\	(C)

e−μ(w)

+
∑

C∈Cn\�n
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn\U )\	(C)

e−μ(w).

Multiplying the second summand in the last expression by the products of negative exponen-
tial weights

∏

w∈	({qn+1})
e−μ(w)) ≤ 1

and the third summand by
∏

w∈	({qn+1})\	(C)

e−μ(w)) ≤ 1,

we obtain the following lower bound:

βU (Qn+1)

≥
(
e−μ(qn+1) + μ(qn+1)

)
⎛

⎜⎜⎝
∏

q∈Qn\U

e−μ(q) +
∑

C∈�n
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn\U )\	(C)

e−μ(w)

⎞

⎟⎟⎠

+
∑

C∈Cn\�n
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn\U )\	(C)

e−μ(w)

Since e−μ(qn+1) +μ(qn+1) ≥ 1 for any μ, this last expression is in turn bounded from below
by

∏

q∈Qn\U

e−μ(q) +
∑

C∈�n
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn\U )\	(C)

e−μ(w) +
∑

C∈Cn\�n
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn\U )\	(C)

e−μ(w)

=
∏

q∈Qn\U

e−μ(q) +
∑

C∈Cn
C∩U=∅

∏

c∈C

μ(c)
∏

w∈(Qn\U )\	(C)

e−μ(w) = βU (Qn).

By the inductive hypothesis βU (Qn) is bounded from below by 1, hence we have shown
βU (Qn+1) ≥ 1. This concludes the induction and therefore also the proof of Claim A.3. 
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Combining the three statements from the claims A.1, A.2 and A.3 immediately yields the
claim of Lemma 2.5. 
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3 Logarithms of Catalan generating functions: A combinato-
rial approach

This section contains a preprint version of :
S. Jansen and L. Kolesnikov. Logarithms of Catalan generating functions: A combinatorial
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Logarithms of Catalan generating functions: A combinatorial

approach

Sabine Jansen*� Leonid Kolesnikov*

Abstract

We analyze the combinatorics behind the operation of taking the logarithm of the
generating function Gk for kth generalized Catalan numbers. We provide combinatorial
interpretations in terms of lattice paths and in terms of tree graphs. Using explicit bi-
jections, we are able to recover known closed expressions for the coefficients of logGk by
purely combinatorial means of enumeration. The non-algebraic proof easily generalizes to
higher powers logaGk, a ≥ 2.

Keywords: Catalan numbers, logarithms of generating functions, combinatorial interpre-
tation, lattice paths, Dyck paths, plane trees, cycle-rooted trees, exact enumeration.

MSC 2020 Classification: 05A15, 05A10.

1 Introduction

The present article originated in the following question: given k ∈ N, what is the combinatorial
interpretation of the power series F (x) that solves the equation

eF (x) = 1 + x ekF (x), (1.1)

and is there a way of computing the coefficients of F (x) by counting suitable labeled combi-
natorial structures? The question was raised in the context of the statistical mechanics for
a one-dimensional system of non-overlapping rods on a line [6, Section 5.2]; up to sign flips,
the function F (x) corresponds to the pressure of a gas of rods of length k and activity x on
the discrete lattice Z.

The exponential exp(F (x)) is easily recognized as the generating function for (generalized)
Catalan numbers, whose definition we recall below. Thus we are looking for a combinatorial
interpretation of the logarithm of the generating function for (generalized) Catalan numbers.
Logarithms of Catalan generating functions have in fact attracted interest since Knuth’s
Christmas lecture [7]; to the best of our knowledge, the focus has been on the computation of
coefficients, with the question of combinatorial interpretation left open. We provide several
such interpretations, among them one with cycle-rooted labeled trees. For the interpretation

*Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München, Germany.
�Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München.
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1 INTRODUCTION 2

it is essential that we work with labeled combinatorial species, as is manifest already for a
simple special case: For k = 1, the solution to (1.1) is

F (x) = − log(1− x) =
∞∑

n=1

xn

n
=
∞∑

n=1

xn

n!
(n− 1)!.

As 1/n is not an integer, the function F is not an ordinary generating function, but it is the
exponential generating function for a labeled structure, namely for cycles.

Let us recall some facts about Catalan numbers. The sequence of natural numbers (Cn)n≥0
with

Cn :=
2n!

(n+ 1)!n!
, n ≥ 0,

is commonly referred to as Catalan numbers since the 1970’s. The name goes back to Eugène
Charles Catalan who was the first to introduce Catalan numbers in the above form, after they
already appeared in literature as far back as the 18th century, most prominently in the work
of Leonhard Euler.

Catalan numbers emerge in a huge variety of different counting problems: Over 200 pos-
sible interpretations are listed in the monograph [12] by R. P. Stanley alone; many of those
are of great significance in the field of combinatorics. Two especially prominent types of
structures enumerated by Catalan numbers are discrete paths (e.g., Dyck or Motzkin paths)
and tree graphs (e.g., binary or plane trees) under certain restrictions, see items 4−56 in [12,
Chapter 2]).

The generating function G2 of Catalan numbers (Cn)n≥0 is given by the formal power
series

G2(x) :=
∑

n≥0
Cnx

n = 1 +
∑

n≥1

xn

n!

(2n)!

(n+ 1)!
.

Naturally, one can view G2 as the ordinary generating function for any of the over 200 unla-
beled structures in [12] or as the exponential generating function for any of the corresponding
labeled structures (in the sense of combinatorial species and associated generating functions,
see [1]). In particular, we will view G2 as the exponential generating function for labeled
lattice paths (see Section 2) or for labeled binary trees (see Section 3).

The generating function G2 can be generalized to the following formal power series: For
k ≥ 2, consider the power series Gk, sometimes called the binomial series [2, 11], given by

Gk(x) := 1 +
∑

n≥1

xn

n

(
kn

n− 1

)
= 1 +

∑

n≥1

xn

n!
(n− 1)!

(
kn

n− 1

)

and let us refer to the coefficients

1

n

(
kn

n− 1

)
, n ≥ 1,

as generalized kth Catalan numbers following the terminology in [5] (also known under the
name of Fuss-Catalan numbers [9]); notice that the Catalan numbers (Cn)n≥1 are indeed
recovered for k = 2. The power series Gk satisfies

Gk(x) = 1 + xGk(x)
k.
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1 INTRODUCTION 3

It is well-known (see [5]) that generalized kth Catalan numbers enumerate monotone lattice
paths, the so called k-good paths, or alternatively plane k-ary trees. Therefore, we can and
will interpret Gk as the exponential generating function for labeled lattice paths (see Section
2) or for labeled plane k-ary trees (see Section 3).

The main object of study in this paper is the logarithm of the generating function Gk

for k ≥ 2, which again can be represented by a formal power series. Explicit expressions for
the coefficients are already known from the literature: The expansion of logG2 was presented
2014 in the annual Christmas lecture by Donald Knuth [7] — who subsequently posed an
elegant conjecture for the expansion of log2G2 as a problem in [8] to be solved by various
authors soon after:

log2G2 =
∑

n≥2

xn

n

(
2n

n

)
(H2n−1 −Hn),

where the harmonic numbers (Hm)m≥0 are given by Hm :=
∑m

i=1
1
i for m ∈ N.

Higher powers logaGk, a ≥ 2, were examined in [2] and [11], explicit formulas for the
coefficients were derived — in terms of harmonic numbers in the former and in terms of
Stirling cycle numbers in the latter work. The proofs are of algebraic nature and involve
general inversion formulas — in particular, the Lagrange inversion formula.

Here, we present a combinatorial, bijective proof providing explicit expressions for the
coefficients of logGk by means of exact enumeration. The proof easily generalizes to the case
of the higher powers logaGk, a ≥ 2. For example, in the aforementioned case of the squared
logarithm log2Ck, we obtain

[xn] log2Gk(x) = 2

n∑

p=2

k − 1

kn− p

(
kn− p

n− p

)
Hp−1,

whereHm :=
∑m

i=1
1
i form ∈ N. Naturally, this expression for the coefficients can be rewritten

to match the one by Knuth presented above. In the general case a ≥ 1, we get the formula

[xn] logaGk =
n∑

p=a

c
(p)
k,nNp,a,

where

c
(p)
k,n =

kp− p

kn− p

(
kn− p

n− p

)

and

Np,a :=
∑

(q1,...,qa)∈[p]a
q1+...+qa=p

1∏a
i=1 qi

.

While identifying the coefficients of logaCk for k ≥ 2 and a ≥ 1 is not a novel result (since
those are known from [2] and [11]), we think that our proof itself is of interest — as we are
not aware of any alternative proof that is essentially non-algebraic in nature.

The article is organized as follows: In Section 2, we provide a combinatorial interpretation
of logGk in terms of lattice paths (Theorem 2.5) by using bijective results identifying lattice
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2 COMBINATORIAL INTERPRETATION VIA LATTICE PATHS 4

paths with sets of certain paths or path-like structures (Lemma 2.4 and Lemma 2.6). Ad-
ditionally, we use this interpretation to provide a closed expression for coefficients of logGk

(Theorem 2.8) via a purely combinatorial proof, which can be easily generalized to higher
powers logaGk, a ≥ 2 (Theorem 2.9). In Section 3 we provide an alternative interpretation
of logGk in terms of plane trees (Theorem 3.5). Again, at the heart of this interpretation
is a bijective result identifying k-ary trees with sets of certain trees or tree-like structures
(Lemma 3.4 and Lemma 3.6). Finally, in the appendix, a method to encode both lattice
paths and plane trees via cyclically ordered multisets is introduced, providing a bijection be-
tween the two combinatorial species and establishing a direct connection between the two
combinatorial interpretations of logGk.

2 Combinatorial interpretation via lattice paths

2.1 Lattice paths and associated generating functions

In this section, we want to consider a combinatorial interpretation of (generalized) Catalan
numbers in terms of monotone lattice paths and understand the logarithm of the correspond-
ing generating functions on the level of these combinatorial structures. We concentrate on
item 24 in [12, Chapter 2], but consider labeled structures instead of unlabeled.

Definition 2.1 (Labeled good paths). Let n ∈ N and let k ≥ 2. Let V ⊂ N be a finite label
set with |V | = n. A path on the quadratic lattice Z2 from (0, 0) to (n, (k − 1)n) with steps
(0, 1) or (1, 0), together with a labeling of the heights {(k − 1)j}0≤j≤n−1 by elements of V
(as visualized in Figure 2), is called a V -labeled k-good path if it never rises above the line
y = (k − 1)x. Denote the set of all such paths by Pk(V ) and write Pk(n) := Pk([n]).

Remark 2.1. By labeling we mean a bijective map from {(k−1)j}0≤j≤n−1 to V . Notice these
heights are exactly those on which the path can potentially intersect the diagonal y = (k−1)x.

Remark 2.2. Our notion of (unlabeled) good paths is essentially the same as introduced in [5],
up to a vertical shift of the path by 1. Notice that, by [5], Gk — as the generating function
for kth generalized Catalan numbers — is equal to the exponential generating function for
(Pk(n))n∈N0 , i.e.,

Gk(x) = 1 +
∑

n≥1

xn

n!
|Pk(n)|.

Next, we want to introduce combinatorial structures that are enumerated by the coeffi-
cients of logGk.

Definition 2.2 (Label-minimal good paths). Let n ∈ N and let k ≥ 2. Let V ⊂ N be a
finite label set with |V | = n. A V -labeled k-good path P is called label-minimal if the label
of the height 0 is minimal under all labels labeling heights at which P intersects the diagonal
y = (k − 1)x.

Denote the set of V -labeled k-good paths that are label-minimal by Pmin
k (V ) and write

Pmin
k (n) := Pmin

k ([n]). The corresponding exponential generating function is defined by the
following formal power series:

Gmin
k (x) =

∑

n≥1

xn

n!
|Pmin

k (n)|.
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Figure 1: On the left side, we see a 3-good lattice path of length 12 (labeled by {1, 2, 3, 4});
on the right side, we see a 2-good lattice path of length 18 (labeled by {1, . . . , 9}).

Let 1 ≤ ℓ ≤ n and let B1∪. . .∪Bℓ be a partition of [n]. For every i ∈ [ℓ], let Pi ∈ Pmin
k (Bi).

The set {P1, . . . , Pℓ} is called a label-minimal k-field on [n]. Denote the set of all label-minimal
k-fields on [n] by Fmin

k (n).

4
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Figure 2: On the left side, we see a label-minimal 3-good lattice path of length 12 (labeled by
{1, 2, 3, 4}); on the right side, we see a label-minimal 2-good lattice path of length 18 (labeled
by {1, . . . , 9}).

Alternatively, just like the logarithm of the exponential generating function for permu-
tations can be interpreted as the exponential generating function for cycles (as explained in
the introduction), one can interpret logGk via certain cyclic structures as well. Informally
speaking, those cyclic structures can be obtained by “bending k-good paths into circles”, i.e.,
by identifying endpoints of [n]-labeled k-good paths with their starting points and keeping
the labelings (which thus become cycles on [n]).

Definition 2.3 (Labeled ornaments). Let n ∈ N and let k ≥ 2. Let V be a finite label set
with |V | = n. For P ∈ Pk(V ) construct a labeled infinite lattice path P̂ by taking (infinitely
many) labeled paths j(n, (k − 1)n) + P , j ∈ Z, and concatenating them (while keeping the
labeling).

An equivalence relation on the set Pk(V ) can be defined as follows: Let two V -labeled
k-good paths P1 and P2 be equivalent if and only if P̂1 is a translate of P̂2 along the line
y = (k − 1)x (including the labeling).

The corresponding equivalence classes [P ] can be identified with the shape of the infinite
periodic paths P̂ together with an infinite periodic labeling (i.e., a cycle on [n]) which are
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2 COMBINATORIAL INTERPRETATION VIA LATTICE PATHS 6

obtained by identifying the endpoint and the starting point of P .

Denote the set of the equivalence classes, called V -labeled k-ornaments, by P◦
k(V ) and

write P◦
k(n) := P◦

k([n]). The corresponding exponential generating function is defined by the
following formal power series:

G◦k(x) =
∑

n≥1

xn

n!
|P◦

k(n)|.

Let 1 ≤ ℓ ≤ n and let B1 ∪ . . . ∪ Bℓ be a partition of [n]. For every i ∈ [ℓ], let Oi be a
Bi-labeled k-ornament. The set {O1, . . . , Oℓ} is called a k-ornament field on [n]. Denote the
set of all k-ornament fields on [n] by F ◦k (n).

2

3

1

1

2

3

4

41

2

2

3

4

1

Figure 3: Both 2-good paths of length 8 depicted on the right side are representatives of the
2-ornament depicted on the left side.

Now, with these definitions at hand, we are ready to give a combinatorial interpretation
for logGk in terms of label-minimal k-good paths or, alternatively, in terms of k-ornaments.

2.2 Bijective results

The following lemma provides the combinatorial insight essential to the proofs of the main
results in this section: It enables us to identify labeled good paths with sets of label-minimal
good paths.

Lemma 2.4. Let n ∈ N and let k ≥ 2. There is a bijection between Pk(n) and Fmin
k (n).

Proof. Let us define a bijection m : Pk(n) → Fmin
k (n). For a k-good path P ∈ Pk(n), we

obtain a label-minimal k-field m(P ) ∈ Fmin
k (n) from P by the following inductive procedure:

Step 0: Set Π = P .

Step N ≥ 1: Let 0 = y1 < . . . < yℓ denote the heights at which the path Π intersects the line
y = (k − 1)x and let i1, . . . , iℓ ∈ [n] denote the corresponding labels.

� If there exists a j ∈ [ℓ] such that ij < i1 holds, set y := min{yj : j ∈ [ℓ], ij < i1}
and set Π = P . Cut the path Π at the height y, obtaining two paths — a path
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2 COMBINATORIAL INTERPRETATION VIA LATTICE PATHS 7

Π1 from (0, 0) to ( y
k−1 , y) and a path Π2 starting at ( y

k−1 , y) which inherit their
labelings from Π. Π1 and Π2 are again k-good paths — up to a translation of Π2.
Replace Π with the translate of Π2 starting in (0, 0) and GOTO Step N+1.

� Otherwise STOP.

Naturally, this procedure produces a label-minimal k-field on [n].

Conversely, given a label-minimal k-field F ∈ F ◦k (n), construct an [n]-labeled k-good path
m−1(F ) ∈ Pk(n) as follows: Order the labeled k-good paths from F decreasing in the label
at y = 0. Successively, glue the predecessor path to the successor path by concatenation
(identifying the endpoint of the former with the starting point of the latter). Naturally, the
resulting lattice path is an [n]-labeled k-good path and the described procedure does indeed
define the inverse of the map m introduced above.

Remark 2.3. Clearly, our choice of label-minimal paths is somewhat arbitrary in the following
sense: In the inductive procedure from Lemma 2.4 defining the map m, one can choose
different rules to “cut” the path P at its intersections with the diagonal. E.g., one could
instead consider “label-maximal” paths (or, more generally, define y as the height labeled
minimally with respect to an arbitrary order on the labels instead of the canonical one).
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8
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1
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8
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3
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1

5

Figure 4: On the left, we see a 2-good path of length 18, on the right we see the label-minimal
2-field corresponding to it in the sense of the proof of Lemma 2.4.

This bijective result allows us to interpret logGk as the exponential generating function
for label-minimal good paths:

Theorem 2.5. Let k ≥ 2. The following holds as an identity between formal power series:

logGk = Gmin
k .

Proof. The claim follows directly from Lemma 2.4 via a standard combinatorial argument
(see, e.g., [4], for the argument formulated in the framework of combinatorial species).

Lemma 2.6. For n ∈ N and k ≥ 2, there is a bijection between the sets Pmin
k (n) and P◦

k(n).

Proof. The bijection is given by assigning to the label-minimal path P ∈ Pmin
k (n) its equiv-

alence class [P ] ∈ P◦
k(n). This map is clearly invertible since every element of P◦

k(n) has a
unique representative P ∈ Pmin

k (n) that is label-minimal.
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Remark 2.4. Again, we see that the choice of label-minimal paths was somewhat arbitrary:
In the above proof, one could identify [P ] ∈ P◦

k(n) with a representative different from P ,
e.g., with the “label-maximal” path in [P ], see Remark 2.3.

The lemma allows us to identify logGk with the exponential generating function for labeled
k-ornaments:

Theorem 2.7. Let k ≥ 2. The following holds as an identity between formal power series:

logGk = G◦k.

Proof. The claim follows from Theorem 2.5 and Lemma 2.6 since the latter implies that
G◦k = Gmin

k for k ≥ 2.

We have shown how taking the logarithm of the generating function for kth Catalan
numbers Gk can be interpreted on the level of lattice paths. By Theorem 2.5, it can be
interpreted as the exponential generating function for label-minimal k-good paths — so that
taking the logarithm of Gk corresponds to discarding those k-good paths that have labels
at height 0 which are not minimal among the labels labeling intersections of the path with
the diagonal y = (k − 1)x. Alternatively, by Theorem 2.7, logGk can be interpreted as the
exponential generating function for k-ornaments — so that taking the logarithm corresponds
to identifying those k-good paths that result in the same k-ornament when they are “bent
into a circle”.

2.3 Identifying the coefficients

Lemma 2.4 also provides an elementary way to recover the explicit expressions for the coeffi-
cients of logGk for every k ≥ 2 (known from [6, 7]) — by simply counting k-ornaments.

Theorem 2.8. Let k ≥ 2 and n ∈ N. We have

log(Gk(x)) =
∑

n≥1

xn

n!

(kn− 1)!

(kn− n)!
.

Proof. A well-known result (see, e.g., [3]) provides the number c
(p)
k,n of Dyck paths of length

kn with exactly p ∈ N returns to zero (which corresponds to the number of unlabeled k-good
paths of length kn that intersect the diagonal y = (k − 1)x exactly p+ 1 times):

c
(p)
k,n =

kp− p

kn− p

(
kn− p

n− p

)
.

Notice that if some k-good lattice path P intersects the line y = (k− 1)x exactly p+ 1 times
then the same holds for every path in [P ] and |[P ]| = p (since choosing a representative of [P ]
is equivalent to choosing which intersection point to place at y = 0). Therefore, the number
of [n]-labeled k-ornaments intersecting the diagonal y = (k − 1)x exactly p times (for any
representative, counting starting point and endpoint as one intersection) is given by

n!
c
(p)
k,n

p
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and thus we get

[xn] logGk =
n∑

p=1

c
(p)
k,n

p
=

n∑

p=1

k − 1

kn− p

(
kn− p

n− p

)
=

1

n!

(kn− 1)!

(kn− n)!
.

The presented proof of the preceding theorem has the following advantage: It can be easily
modified to investigate the coefficients of logaGk for higher powers a ≥ 2. As mentioned in
the introduction, the result itself is not novel and similar expressions for the coefficients are
known from [2, 11].

Theorem 2.9. Let a, k ≥ 2 and n ∈ N. We have

[xn] logaGk =

n∑

p=a

c
(p)
k,nNp,a,

where

c
(p)
k,n =

kp− p

kn− p

(
kn− p

n− p

)

and

Np,a :=
∑

(q1,...,qa)∈[p]a
q1+...+qa=p

1∏a
i=1 qi

.

Remark 2.5. In the special case a = 2, considered by Knuth in [8], we get

[xn] log2Gk =
n∑

p=2

c
(p)
k,n

∑

1≤q≤p−1

1

q(p− q)
= 2

n∑

p=2

k − 1

kn− p

(
kn− p

n− p

)
Hp−1,

where Hm :=
∑m

i=1
1
i for m ∈ N.

Proof. By Theorem 2.5 and by a standard combinatorial argument, logaGk is the exponential
generating function for k-ornament fileds consisting of a ≥ 2 k-ornaments. For every n ∈ N,
we need to determine the number of such k-ornament fields on [n]. To do so, we employ
the same decomposition as in the proof of Theorem 2.8 sorting the k-ornament fields by the
total number of intersections with the diagonal y = (k − 1)x (in any corresponding set of

representatives). So, let N̂
(k,n)
p,a denote the number of k-ornament fields on [n] consisting

of precisely a ≥ 2 k-ornaments such that in total there are p intersections with the diagonal
y = (k−1)x (for any representative, counting starting point and endpoint as one intersection).
Then

[xn] logaGk =
a

n!

n∑

p=a

N̂ (k,n)
p,a .

In the proof of Theorem 2.8, we already established that

n!
c
(p)
k,n

p
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3 COMBINATORIAL INTERPRETATION VIA TREE GRAPHS 10

is the number of [n]-labeled k-ornaments O intersecting the diagonal y = (k − 1)x exactly p
times (for any representative, counting starting point and endpoint as one intersection). We
now want to determine how many k-ornament fields of precisely a ≥ 2 k-ornaments correspond
to each such k-ornament O — in the sense that they can be obtain by cutting O at precisely
a ≥ 2 intersections with the diagonal y = (k − 1)x. This number is exactly the number of
possible decompositions of a cycle of length p into a ≥ 2 segments which is given by

∑

(q1,...,qa)∈[p]a
q1+...+qa=p

p

a
,

where the tuple (q1, . . . , qa) corresponds to the lengths of the segments, the factor p corre-
sponds to the possible choice of the starting point for the first segment and the factor 1

a is
due to the fact that there are a ≥ 2 sequences (q1, . . . , qa) corresponding to the same cycle on
{q1, . . . , qa}.

Left to notice is the following: Consider a k-ornament field of a ≥ 2 k-ornaments and let
the corresponding numbers of intersections with the diagonal y = (k−1)x be given by a fixed
sequence (q1, . . . , qa) with q1+ . . .+qa = p. From how many distinct k-ornaments intersecting
the diagonal y = (k − 1)x precisely p times can this k-ornament be obtained by the cutting
procedure described above? Naturally, this is equivalent to asking how many different cycles
on [p] can be cut to obtain a set of a ≥ 2 cycles with lengths (q1, . . . , qa) and the answer is
just given by the number

∏k
i=1 qi.

Thus the number N̂
(k,n)
p,a is given by

N̂ (k,n)
p,a = n!

c
(p)
k,n

p

∑

(q1,...,qa)∈[p]a
q1+...+qa=p

p

a
∏a

i=1 qi

and, plugging that in the above expression, we obtain

[xn] logaGk =
a

n!

n∑

p=a


n!

c
(p)
k,n

p

∑

(q1,...,qa)∈[p]a
q1+...+qa=p

p

a
∏a

i=1 qi


 =

n∑

p=a

c
(p)
k,nNp,a.

3 Combinatorial interpretation via tree graphs

3.1 Tree graphs and associated generating functions

In this section, we provide an alternative combinatorial interpretation for the logarithm of
the binomial series Gk in terms of tree graph structures. To do so, we introduce several sets
of labeled graphs.

Definition 3.1 (Rooted plane trees). Let k ≥ 2. For a finite set V ⊂ N, we define a rooted
plane k-ary tree with the vertex set V as follows: Consider a quadruple (V,E, r, (ℓ(v))v∈V )
such that
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3 COMBINATORIAL INTERPRETATION VIA TREE GRAPHS 11

1. r ∈ V , E ⊂
(
V
2

)
,

2. the graph (V,E, r) is a tree rooted in r,

3. for each vertex v ∈ V , the set C(v) ⊂ V of children of v in (V,E, r) satisfies the
constraint |C(v)| ≤ k,

4. for each vertex v ∈ V , ℓ(v) : C(v) → {1, . . . , k} is an injective map.

For each vertex v ∈ V , we interpret the numbers {1, . . . , k} as an ordered list of slots
potentially available for the children of v. We say that the pth v-slot is occupied by a vertex
j ∈ V , if j ∈ C(v) and l(v)(j) = p ∈ {1, . . . , k}. We say that the pth v-slot is vacant, if such
a j does not exist. The slots {1, . . . , k} are visualized in an increasing order from left to right
and vacant slots are depicted by small solid (unlabeled) nodes.

We denote the set of rooted plane k-ary trees with the vertex set V by Tk(V ).

Remark 3.1. Vacant slots can be interpreted as unlabeled leaf vertices (compare to the full
binary trees as in [5]).

1

2

3

4

5

6

7

8

9

Figure 5: Binary (d ≡ 2) tree with n = 9 vertices.

Definition 3.2 (Root-minimal plane trees). Let k ≥ 2. For a finite set V ⊂ N, let t be a
rooted plane k-ary tree with the vertex set V , i.e., t ∈ Tk(V ). We say that a vertex v ∈ V
is on the rightmost branch of t if v is an element of the vertex set B ⊂ V defined via the
following induction:

1. Let the root r ∈ V be in B.

2. If a vertex v ∈ V is in B, then the vertex occupying the kth (rightmost) v-slot is in B.

We call t root-minimal if the root r ∈ V is smaller (with respect to the canonical order
on the natural numbers) than any of the other vertices on the rightmost branch of the tree.
The set of root-minimal plane k-ary trees is denoted by T min

k (V ). We denote the set of
root-minimal plane k-ary forests with the vertex set V by Fmin

k (V ).

Definition 3.3 (Cycle-rooted plane trees). Let k ≥ 2. For a finite set V ⊂ N, we de-
fine a cycle-rooted plane k-ary tree with the vertex set V as follows: Consider a quintuple
(V,E,R, o, (ℓ(v))v∈V ) such that

1. R ⊂ V , E ⊂
(
V
2

)
,

97



3 COMBINATORIAL INTERPRETATION VIA TREE GRAPHS 12
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8
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Figure 6: Root-minimal binary tree with n = 9 vertices.

2. (R,E ∩
(
R
2

)
) is the cycle graph associated with the cyclic permutation o on R and is

visualized as oriented clockwise,

3. the graph (V,E\
(
R
2

)
, R) is a forest of |R| trees rooted in vertices from R,

4. for each vertex v ∈ V , the set C(v) ⊂ V of children of v in (V,E\
(
R
2

)
, R) satisfies the

constraint |C(v)| ≤ k,

5. for each vertex v ∈ V , ℓ(v) : C(v) → {1, . . . , k} is an injective map; we use the same
vocabulary and interpret ℓ(v) in the same manner as in Definition 3.1,

6. For every r ∈ R, the kth (rightmost) r-slot is vacant.

We denote the set of cycle-rooted plane k-ary trees with the vertex set V by T ◦k (V ) and the
set of cycle-rooted k-ary forests with the vertex set V by F ◦d (V ).

Remark 3.2. Cycle-rooted trees can be interpreted as equivalence classes of rooted plane trees:
Two rooted plane trees are equivalent if and only if they result in the same cycle-rooted tree
when we identify the root of the tree with its right-most leaf (the right-most branch therefore
becoming the cycle sub-graph in the resulting cycle-rooted tree). In this way a cycle-rooted
tree with a cycle of length r corresponds to an equivalence class consisting of r rooted plane
trees. Compare this to the definition of k-ornaments (Definition 2.3 in Section 2).

51

3

7

6

9

4

2

8

Figure 7: Cycle-rooted binary tree with n = 9 internal vertices.
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3 COMBINATORIAL INTERPRETATION VIA TREE GRAPHS 13

Let n ∈ N and let k ≥ 2. For notational convenience, we set Tk(n) := Tk([n]) and,
analogously, write T min

k (n), T ◦k (n), Fmin
k (n) and F ◦k (n) for any n ∈ N.

As mentioned in the introduction, the exponential generating function for (Tk(n))n∈N is
given by the series Gk (see [5]), i.e.,

Gk(x) = 1 +
∑

n≥1

xn

n!
|Tk(n)|.

Moreover, we denote

� by Ĝmin
k the exponential generating function for (T min

k (n))n∈N given by

Ĝmin
k (x) =

∑

n≥1

xn

n!
|T min

k (n)|,

� by Ĝ◦d the exponential generating function for (T ◦d (n))n∈N given by

Ĝ◦d(x) =
∑

n≥1

xn

n!
|T ◦d (n)|.

3.2 Bijective results.

The following lemma is the tree analogue of Lemma 2.4.

Lemma 3.4. Let n ∈ N and k ≥ 2. There is a bijection between the set of k-ary trees with n
vertices Tk(n) and the set of root-minimal k-ary forests with n vertices Fmin

d (n).

Proof. We consider the following map m from Tk(n) to Fmin
k (n). Let t ∈ Tk(n), then we

obtain the forest m(t) ∈ Fmin
k (n) from t by the following inductive procedure:

Step 0: Set i = r. Set ℓ = i.

Step N ≥ 1: � If the kth (rightmost) ℓ-slot is vacant, STOP.

� If the kth (rightmost) ℓ-slot is occupied by a vertex j ∈ V and j < i, then delete the
edge {ℓ, j}, obtaining N + 1 trees, and leave the kth ℓ-slot vacant. Let all vertices
that were roots in the previous step remain roots and let j become the root in the
tree to which it belongs. Set i = j, ℓ = i and GOTO Step N + 1.

� If the kth (rightmost) ℓ-slot is occupied by a vertex j ∈ V and j > i, then do
nothing and the number of trees remains N . All vertices that were roots in the
previous step remain roots. If the j-slot d(j) is vacant, STOP. If the kth j-slot is
occupied by some vertex, set ℓ = j and GOTO Step N + 1.

Naturally, this procedure produces a forest of root-minimal trees while preserving the
vertex set and the offspring constraint k, thus the map m : Tk(n) → Fmin

k (n) is well-defined.

Conversely, given a k-ary forest in Fmin
k (n), one can obtain a tree from it by the following

procedure: Order the trees of the forest decreasing in the root numbers (with respect to the
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3 COMBINATORIAL INTERPRETATION VIA TREE GRAPHS 14

canonical order on the natural numbers). From this sequence of trees, we obtain a single tree
(with the root given by the largest of the initial roots) by successively attaching the successor
tree to the predecessor tree as follows: Let j be the last vertex on the rightmost branch of the
predecessor tree. We place the root of the successor tree in the vacant kth (rightmost) j-slot,
leaving the offspring structure unchanged otherwise. Naturally, this procedure preserves the
vertex set and the offspring constraint k as well, and thus defines a map from Fmin

k (n) to
Tk(n) — which clearly is the inverse for the map m defined above.

Remark 3.3. Naturally, our choice of root-minimal trees is somewhat arbitrary in the following
sense: In the proof Lemma 3.4, one can choose a different rule to compare the labels i and j.
E.g., one could instead consider “maximal-rooted” trees (or, more generally, use any arbitrary
order on the natural numbers instead of the canonical one).

12

3

8

6

9

7

4

5

1

2 3

8 6

9

7

4 5

Figure 8: On the left side, we see a binary tree with n = 9 vertices; on the right side, we see
the root-minimal binary forest corresponding to it in the sense of the proof of Lemma 3.4.

The following theorem is the tree analogue of Theorem 2.5 and a direct consequence of
the preceding lemma.

Theorem 3.5. Let k ≥ 2. The following holds as an identity between formal power series:

log Ĝk = Ĝmin
k .

Proof. Analogously to the proof of Theorem 2.5, the claim follows directly from Lemma 3.4
via a standard combinatorial argument (see, e.g., [4], for the argument formulated in the
framework of combinatorial species).

The following lemma is the tree analogue of Lemma 2.6.

Lemma 3.6. Let n ∈ N and k ≥ 2. There is a bijection between the sets T ◦k (n) and T min
k (n).

Proof. We consider the following map p from T ◦k (n) to T min
k (n). Starting with a cycle-rooted

tree c ∈ T ◦k (n), one obtains a root-minimal tree p(c) ∈ T min
k (n) by the following procedure:

For every vertex r ∈ R on the unique cycle in c, the kth (rightmost) r-slot is vacant by
definition. Delete the edge {i, j} of the cycle which connects the minimal cycle vertex i ∈ R
with its neighbor in the counter-clockwise direction j ∈ R. Let the minimal cycle vertex i
now be the root of the resulting tree and, for every r ∈ R\{j}, let the kth r-slot be occupied
by the former clockwise neighbor of r on the cycle while leaving the kth j-slot vacant. That
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3 COMBINATORIAL INTERPRETATION VIA TREE GRAPHS 15

way, the former cycle becomes the rightmost brunch of the resulting tree. Otherwise, let the
offspring structure be inherited from c. Notice that the resulting tree is indeed in T min

k (n),
the map p is thus well-defined.

Conversely, to obtain from a root-minimal tree t ∈ T min
k (n) a cycle-rooted tree in T ◦k (n)

consider the following procedure: Add an edge between the root r of t and the last vertex
of the rightmost branch of t, obtaining a cycle. Set R ⊂ V to be the cycle nodes (that are
precisely the vertices on the right-most branch of the original root-minimal tree t). For every
cycle node r ∈ R, let the kth (rightmost) r-slot be vacant. Otherwise, for every v ∈ V , let
the offspring structure of v be inherited from the map l(v) defining t. Clearly, this procedure
provides the inverse to the map p defined above.

Remark 3.4. If we identify the cycle-rooted trees with equivalence classes of trees as hinted in
Remark 3.2, then a bijection is given by just assigning to a root-minimal tree t its equivalence
class [t]. The map is indeed invertible, since every equivalence class has a unique representative
which is root-minimal (compare to the proof of Lemma 2.6).
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Figure 9: The cycle-rooted tree from Figure 7 (depicted on the left side) corresponds to the
root-minimal tree from Figure 6 (depicted on the right side) in the sense of the proof of
Lemma 3.6. The construction is illustrated in the middle.

The following theorem follows immediately from Lemma 3.6 and Theorem 3.5. It is the
tree analogue of Theorem 2.7:

Theorem 3.7. Let k ≥ 2. The following holds as an identity between formal power series:

log Ĝk = Ĝ◦k.

Proof. The claim follows from Theorem 3.5 and Lemma 3.6 since the latter implies that
Ĝ◦k = Ĝmin

k for k ≥ 2.

We have shown how taking the logarithm of the generating function for kth Catalan num-
bers Gk can be interpreted on the level of trees. By Theorem 3.5, logGk can be interpreted
as the exponential generating function for root-minimal plane k-ary trees — i.e., taking the
logarithm of Gk corresponds to discarding those k-ary trees that have roots that are not min-
imal among the vertices on the right-most branch of the tree. Alternatively, by Theorem 3.7,
logGk can be interpreted as the exponential generating function for cycle-rooted k-ary trees
— so that taking the logarithm corresponds to identifying those trees that result in the same
cycle-rooted tree when their right-most branch is “bent into a circle”.
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A CYCLIC MULTISETS: ENCODING LATTICE ORNAMENTS AND TREES 16

A Cyclic multisets: Encoding lattice ornaments and trees

Here we introduce a way to encode both k-ornaments and cycle-rooted k-ary trees by struc-
tures we call cyclically ordered multisets. The rough idea of the encoding is best explained
starting from binary rooted trees. Each internal vertex (except for the root) sits on a branch
connecting one of its leaf-descendants to the root, and is at the origin of a new branch emanat-
ing from it. Enumerating the vertices in the order in which they are visited by a depth-first
search, along with the lengths of the associated emanating branches, we obtain sequences
(v(1), . . . , v(n)), (f(1), . . . , f(n)) of labels and branch lengths, with the branch lengths sum-
ming up to the total number of vertices. In turn, the branch lengths may be reinterpreted as
step heights of lattice paths. Alternatively, we may view the branch lengths f(j) as multi-
plicities of the element v(j) in some multiset. The precise constructions are more involved as
k-ary trees may have more than one branch emanating from internal vertices and the natural
structure for cycle-rooted trees is a cycle, rather than an ordered list, of the vertex labels.

For every n ∈ N and k ≥ 2, we will introduce a bijective map π encoding [n]-labeled k-
ornaments and a bijective map τ encoding cycle-rooted k-ary trees on [n] using the same set
of cyclically ordered multisets. Naturally, those maps τ and π induce a bijection between the
sets T ◦k (n) and P◦

k(n) for every n ∈ N and k ≥ 2 which can be interpreted as a way to encode
k-ary trees by monotone lattice paths and is similar the well-known encoding of binary trees
by Dyck paths from [10]. Moreover, the bijections π and τ provide an alternative approach
to finding the coefficients of logGk — by simply counting cyclically ordered multisets in the
image of τ and π. Before we further discuss the encoding, we would like to introduce the set
of cyclically ordered multisets rigorously:

Definition A.1 (Cyclically ordered multisets). Let k ≥ 2. A cyclically ordered k-multiset
(σ, f) on [n] consists of a cycle (cyclic permutation) σ on [n] together with a map f : [n] →
Nk−1
0 given by

[n] ∋ i 7→ (f1(i), . . . , fk−1(i)) ∈ Nk−1
0

such that
∑n

i=1

∑k−1
q=1 fq(i) = n. To the cycle σ, assign the cycle graph Cσ = (V,E), given by

V = [n]× [k − 1]

and

E = {{(i, q), (j, p)}| i = j and |q−p| = 1 or i is the σ-predecessor of j, q = k−1 and p = 1}.

Alternatively, one can view f as a function on the nodes of Cσ, i.e., f : [n] × [k − 1] → N0,
(i, q) 7→ fq(i). We denote the set of cyclically ordered k-multisets on [n] by M ◦

k (n).

Let n ∈ N. In the binary case k = 2, one needs the whole set M ◦
2 (n) to encode the

corresponding 2-ornaments or binary trees. For k ≥ 3, however, the set M ◦
k (n) is too big. We

introduce a subset of M ◦
k (n) which is naturally suited to encode the structures from P◦

k(n)
and T ◦k (n):

Definition A.2 (Multisets with root vertices). Let m = (σ, f) ∈ M ◦
k (n), let i, j ∈ [n] and let

1 ≤ ki, kj ≤ k− 1. We call a simple path on the circle graph Cσ starting in (i, ki) and ending
in (j, kj) a segment of Cσ if i = j and ki ≤ kj or if it is consistent with the orientation of σ,
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i.e., if i ̸= j and for every pair of consecutive points (ℓ1, k − 1), (ℓ2, 1) in s we have that ℓ2 is
the σ-sucessor of ℓ1. To any segment s of Cσ we assign the scope of s given by

λ(s) = |{i ∈ [n]|(i,m) ∈ s for some 1 ≤ m ≤ k − 1}|

and the weight of s in m given by

w(m)(s) =
∑

(i,m)∈s
fm(i).

For m ∈ M ◦
k (n), we define the set of root vertices W (m) by

W (m) := {i ∈ [n]| every segment s of Cσ starting in (i, 1) satisfies w(m)(s) ≥ λ(s)}.

We denote the set of those multisets in M ◦
k (n) that possess root vertices by M(k, n), i.e.,

M(k, n) := {m ∈ M ◦
k (n)|W (m) ̸= ∅}.
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Figure 10: On the left side m ∈ M ◦
5 (2) is depicted, on the right side m′ ∈ M ◦

3 (4). The
numbers inside the circle graph depict the multiplicities of the vertices of the circle graph Cσ

closest to them. Notice that m /∈M(5, 2), but m′ ∈M(3, 4), since 1, 2 ∈W (m′).

Now we can introduce a map encoding lattice ornaments by cyclically ordered multisets:

Definition A.3 (Map π encoding lattice ornaments by multisets). Let k ≥ 2 and n ∈ N. We
define the embedding π : P◦

k(n) → M ◦
k (n) as follows: For a k-ornament O ∈ P◦

k(n), we set
π(O) =: (σ, f), where σ is simply given by the labeling of O. To obtain the map f , take any
representative of O and set fq(i), q ∈ [k− 1], i ∈ [n], to be the number of steps to the right at
the height y = yi + q − 1, where yi is the height labeled by i in O.

Remark A.1. Naturally, the map π is indeed injective. The property of the path O to not rise
above the diagonal y = (k − 1)x corresponds to the property W (π(O)) ̸= ∅ on the level of
multisets. Moreover, the set of labels marking the heights at which O intersects the diagonal
becomes the set W (π(O)). Thus the range π(P◦

k(n)) of π is given by M(k, n) := {m ∈
M ◦

k (n)| W (m) ̸= ∅} so that |P◦
k(n)| = |M(k, n)|. For k = 2, we have M(k, n) = M ◦

k (n) and
π is a bijection.

Now we investigate how cycle-rooted trees can be encoded by cyclically ordered multiset.
To this end, we introduce the following map:
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Figure 11: The [4]-labeled 3-ornament corresponding to the 3-good path from Figure 2 (de-
picted on the left side) is mapped by π to the multiset from M ◦

3 (4) (depicted on the right
side).

Definition A.4 (Map τ encoding cycle-rooted trees by multisets). Let k ≥ 2 and n ∈ N.
We introduce an embedding τ : T ◦k (n) → M ◦

k (n). Given a cycle-rooted tree t ∈ T ◦k (n),
we construct the cyclically ordered multiset τ(t) = (f, σ) ∈ M ◦

k (n) by the following two-step
procedure:

� Step 1 (Constructing the cycle σ by exploration of vertices in t): Starting at any root
of t ∈ T ◦k (n), the cycle σ is obtained by the following exploration procedure: In every
step of the exploration, we uncover a single vertex of t. In the first step, we uncover
an arbitrary root r of t. In every further step, as long as there are unexplored vertices
in the maximal k-ary subtree of t rooted in r, we go to the last explored vertex that has
an unexplored child and uncover its leftmost unexplored child. When the maximal k-ary
subtree of t rooted in r is explored, we move to the next root in t according to the cyclic
order induced by the oriented cycle of roots t and repeat the procedure. We stop when all
vertices of t are explored and define σ as the cycle induced directly by the linear order
in which the vertices of t were uncovered.

� Step 2 (Define the function f by re-distributing multiplicities of vertices in t): Ini-
tially every vertex of t is assigned a single multiplicity. Then the multiplicities are re-
distributed between the vertices of t by “rolling-down” (viewed drawing the trees growing
upwards with equiangular branches, see Figure 12): Let i ∈ [n] be an arbitrary vertex of
t. For q ∈ [k], consider the path Θq(i) given by the unique simple path starting in i and
ending in its leaf-descendant such that every vertex j ̸= i on the path occupies slot q of
its parent. Denote by |Θq(i)| the number of vertices on the path Θq(i).

If i is a root, i.e. i ∈ R, set
fq(i) := |Θq(i)|+ δq,1

for 1 ≤ q ≤ k − 1.

If i is not a root, then i is the child of a vertex, say i occupies slot p of its parent. For
1 ≤ q ≤ k − 1, let q′ denote the q-smallest element of [k]\{p} and set

fq(j) := |Θq′(j)|.

Notice that
∑n

j=1

∑k−1
q=1 fq(j) = n indeed holds for the function f defined above.
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Figure 12: Redistribution of multiplicities from Step 2 of Definition A.4 in the binary case:
The multiplicities of non-root vertices “roll down” and the multiplicities of roots do not move.

Remark A.2. The map τ is indeed injective. The set R of roots of t is mapped under τ precisely
onto the set W (τ(t)) on the level of multisets. Again, the range τ(T ◦k (n)) of τ is given by
M(k, n) so that |T ◦k (n)| = |M(k, n)|. In the binary case k = 2, we have M(k, n) = M ◦

k (n)
and τ is a bijection.
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Figure 13: Final result: The cycle-rooted tree from Figure 7 (depicted on the left side) is
mapped by τ to the multiset from M ◦

2 (9) (depicted on the right side).

Let k ≥ 2 and n ∈ N. By Remark A.1 and Remark A.2, a bijection between the sets
T ◦k (n) and P◦

k(n) is given by the composition π̂−1 ◦ τ , where π̂ : P◦
k(n) → M(k, n) is given

by π̂(O) = π(O) for O ∈ P◦
k(n). Moreover, let t ∈ T ◦k (n) and Ot := π̂−1(τ(t)), then there

is a one-to-one correspondence between the roots of t (vertices R of the cycle subgraph of t)
and the labels at which Ot intersects the diagonal y = (k− 1)x. The bijection can be viewed
as an alternative to the well-known encoding of binary trees by Dyck paths presented in [10,
Chapter 6.3] which also involves a depth-first exploration of the tree (as described in Step 2
of Definition A.4).

Finally, notice the following: It can be shown that the set M(k, n) contains exactly the
fraction 1

k−1 of all elements in M ◦
k (n). Since by definition |M ◦

k (n)| = (n−1)!
((
(k−1)n

n

))
holds,

where
((
i
j

))
denotes the multiset coefficient and can be written as

((
i
j

))
=
(
i+j−1

j

)
for i, j ∈ N,

we have

|M(k, n)| = |M ◦
k (n)|

k − 1
=

(n− 1!)

k − 1

(
kn− 1

n

)
=

(kn− 1)!

(kn− n)!
.

This outlines an alternative proof for Theorem 2.8, since we have |M(k, n)| = |P◦
k(n)| =
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|T ◦k (n)| and thus logGk is the exponential generating function for (Mk(n))n∈N, i.e.,

logGk(x) =
∑

n≥1

xn

n!
|Mk(n)| =

∑

n≥1

xn

n!

(kn− 1)!

(kn− n)!
.
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4 The direct-connectedness function in the random connec-
tion model

This section contains the published version of:
S. Jansen, L. Kolesnikov, and K. Matzke. The direct-connectedness function in the random
connection model. Adv. in Appl. Probab., 1–44, 2022.

Personal contribution:
This article is mainly a collaborative effort with Kilian Matzke (who was a PhD student at
the time), with occasional input from my supervisor, Sabine Jansen. Kilian proposed the
question and initiated the collaboration in which he had a leading role. In numerous discus-
sions, we developed the ideas for the main results — to which I could contribute my expertise
in cluster expansion methods and resummation of series.
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Abstract

We investigate expansions for connectedness functions in the random connection model
of continuum percolation in powers of the intensity. Precisely, we study the pair-
connectedness and the direct-connectedness functions, related to each other via the
Ornstein–Zernike equation. We exhibit the fact that the coefficients of the expansions
consist of sums over connected and 2-connected graphs. In the physics literature, this
is known to be the case more generally for percolation models based on Gibbs point
processes and stands in analogy to the formalism developed for correlation functions in
liquid-state statistical mechanics.

We find a representation of the direct-connectedness function and bounds on the
intensity which allow us to pass to the thermodynamic limit. In some cases (e.g., in
high dimensions), the results are valid in almost the entire subcritical regime. Moreover,
we relate these expansions to the physics literature and we show how they coincide with
the expression provided by the lace expansion.

Keywords: Ornstein–Zernike equation; random connection model; connectedness func-
tions; Poisson process; percolation; graphical expansions; lace expansion
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1. Introduction and main result

Perturbation analysis plays an important role in both stochastic geometry [14, Chapter 19]
and statistical mechanics. For Gibbs point processes (grand-canonical Gibbs measures in statis-
tical mechanics), quantities like factorial moment densities (also called correlation functions)
are highly nontrivial functions of the intensity of the Gibbs point process itself (density) or
the intensity of an underlying Poisson point process (activity). When interactions are pairwise,
it is well known that the coefficients of these expansions are given by sums over geomet-
ric, weighted graphs. There is a vast literature addressing the convergence of these expansions;
see, for example, [2, 16]. Some attempts have been made at exploiting power series expansions
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2 S. JANSEN ET AL.

from statistical mechanics for likelihood analysis of spatial point patterns in spatial statistics;
see [19].

The physics literature provides similar power series expansions for connectedness functions
in a class of percolation models driven by Gibbs point processes, the so-called random con-
nection models (RCMs) [6]. The expansion coefficients for the pair-connectedness function
can be written in terms of a sum of certain connected graphs (see (3.1)) and the coefficients
for the direct-connectedness function in terms of a sum over certain 2-connected graphs (see
(4.1)). The two functions are related via the Ornstein–Zernike equation (OZE) [20], an integral
equation which is of paramount importance in physical chemistry and soft matter physics and
which enters some approaches to percolation theory; see [25, Chapter 10]. For Bernoulli bond
percolation on Zd, the OZE encodes a renewal structure and is used to prove Ornstein–Zernike
behavior [4], a precise asymptotic formula for pair-connectedness functions in the subcriti-
cal regime that incorporates subleading corrections to the exponential decay. The OZE also
appears as a by-product of lace expansions [10, Proposition 5.2].

The expansions for connectedness functions appearing in [6] are derived as a means of dis-
cussing the following question: is it possible to choose the notion of connectivity in such a way
that the percolation transition, if it occurs at all, coincides with the phase transition in the sense
of non-uniqueness of Gibbs measures? We remind the reader that the relationship between the
two phenomena is rather subtle, and in general the corresponding critical parameters do not
match; see [12] and references therein. To the best of our knowledge, the question above has
not been fully answered for continuum systems, although Betsch and Last [1] were recently
able to show that uniqueness of the Gibbs measure follows from the non-percolation of an
associated RCM driven by a Poisson point process.

Moreover, the convergence of the expansions for connectedness functions has not been
treated in a mathematically rigorous way, in stark contrast with the rich theory of cluster expan-
sions. Even in the simplest case of the RCM driven by a Poisson point process that we consider
in this paper, where activity and density coincide and are called the intensity, rigorous results
for the expansion of connectedness functions barely exist: the first ones were obtained by Last
and Ziesche in [15]. However Last and Ziesche do not prove that their expansions coincide
with the physicists’ expansion, and they do not prove quantitative bounds for the domain of
convergence of the small-intensity expansion.

Our main result addresses graphical expansions of the direct-connectedness function in
infinite volume. The results by Last and Ziesche [15], combined with our combinatorial con-
siderations from Section 6.2, imply that the physicists’ expansions have a positive radius
of convergence; however, it is not our purpose to provide a quantitative bound for the lat-
ter. Instead, we perform first a re-summation, in finite volume, of the physicists’ expansion.
Although the re-summed expansion is no longer a power series in the intensity of the underly-
ing Poisson point process, it has the (conjectured) advantage of converging in a bigger domain
than the physicists’ expansion. We provide quantitative bounds on the intensity that allow us
to pass to the infinite-volume limit in the re-summed expansion of the direct-connectedness
function. The proof uses the continuum BK inequality proved in [10].

In addition, we discuss the relationship of the physicists’ and our expansion to the lace
expansion for the continuum random connection model [10]. Roughly, the lace expansion
could in theory be rederived from the graphical expansion by yet another re-summation step.
In fact a notion of laces similar to the laces for the self-avoiding random walk [2, 22] already
enters the proof of our main result on graphical expansions (see Section 4.3). Thus, contrary
to what is stated in [9, Chapter 6.1], the denomination ‘lace expansion’ for percolation is not a
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The direct-connectedness function in the random connection model 3

misnomer, at least for continuum systems. It is unclear, however, whether the discussion offers
a new angle of attack on the intricate convergence problems in the theory of lace expansions.

Let us properly introduce the RCM and state our results. The RCM depends on two param-
eters, namely its intensity λ≥ 0 and the (measurable) connection function ϕ : Rd → [0, 1],
satisfying

0 <

∫
ϕ(x)dx <∞

as well as radial symmetry ϕ(x)= ϕ(−x) for all x ∈Rd. The model is described informally
as follows: the vertex set is taken to be a homogeneous Poisson point process (PPP) in Rd of
intensity λ, denoted by η. For any pair x, y ∈ η, we add the edge {x, y}with probability ϕ(x− y)
and independently of all other pairs. We refer to [10, 18] for a formal construction.

The RCM is an undirected simple random spatial graph and a standard model of continuum
percolation. We denote it by ξ and we use Pλ to denote the corresponding probability measure.
Its vertex set is V(ξ )= η, and we let E(ξ ) denote its edge set.

For x ∈Rd, we let ξ x be the RCM augmented by the point x. In other words, the vertex
set of ξ x is η ∪ {x} and the edges are formed as described above. In particular, edges between
x and points of η are drawn independently and according to ϕ. More generally, for a set of
points x1, . . . , xk, we let ξ x1,...,xk be the RCM with vertex set η ∪ {x1, . . . , xk} (also here, edges
between deterministic points x1, x2 are drawn independently and according to ϕ).

We say that x, y ∈ η are connected (and write x←→ y in ξ ) if there is a path from x to y in
ξ . For x ∈Rd, we let C(x)=C(x, ξ x)= {y ∈ ηx : x←→ y in ξ x} be the cluster of x and define
the pair-connectedness (or two-point) function τλ : Rd ×Rd → [0, 1] to be

τλ(x, y) := Pλ

(
x←→ y in ξ x,y). (1.1)

Thanks to the translation-invariance of the model, we have τλ(x, y)= τλ(0, x− y)
(
where 0

denotes the origin in Rd
)
, and we can also define τλ as a function τλ : Rd → [0, 1] with τλ(x)=

Pλ

(
0←→ x in ξ0,x

)
.

We say that x, y ∈ η are 2-connected (or doubly connected) and write x⇐⇒ y in ξ if there
are two paths from x to y that have only their endpoints in common (or if x and y are directly
connected by an edge or if x= y). We define

σλ(x) := Pλ

(
0⇐⇒ x in ξ0,x).

Recall that the critical intensity for percolation is defined by

λc = sup{λ≥ 0 : Pλ(|C(0)| =∞)= 0}
and that the identity

sup{λ≥ 0 : Pλ(|C(0)| =∞)= 0} = sup{λ≥ 0 :
∫

τλ(x)dx <∞}

has been shown to hold true for connection functions φ that are nonincreasing in the Euclidean
distance (see [17]). It is proved in [15] that for λ < λc, there exists a uniquely defined integrable
and essentially bounded function gλ : Rd ×Rd →Rd such that

τλ(x, y)= gλ(x, y)+ λ

∫
Rd

gλ(x, z)τλ(z, y) d(z), x, y ∈Rd. (1.2)
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This equation is known as the Ornstein–Zernike equation (OZE), and gλ is called the direct-
connectedness function.

For two integrable functions f , g : Rd →R, we recall the convolution f ∗ g to be given by

(f ∗ g)(x)=
∫

Rd
f (x)g(x− y)dy.

We let f ∗1 = f and f ∗m = f ∗(m−1) ∗ f . Notice that we can interpret both the pair-connectedness
function τλ and the direct-connectedness function gλ as functions on Rd, thanks to translation-
invariance. The OZE then can be formulated as

τλ = gλ + λ(gλ ∗ τλ). (1.3)

Naturally, the question arises whether one can provide an explicit form for the direct-
connectedness function gλ. Unfortunately, an immediate probabilistic interpretation of gλ is
not known. One classical approach from the physics literature is to obtain explicit approx-
imations for the solution gλ of (1.2) by introducing complementary equations, known as
closure relations, the choice of which depends on the specifics of the model considered.
Different closure relations provide different explicit approximations for gλ and thus also for the
pair-connectedness function τλ, e.g., via a reformulation of the OZE (1.2) for the Fourier trans-
forms of the connectedness functions. Most prominent are the Percus–Yevick closure relations
[5, 25]; other examples can be found in [7]. Another approach [6] is to directly provide an inde-
pendent definition of gλ in terms of a graphical expansion and then argue that this expansion
satisfies the OZE (1.2). We follow the spirit of the latter approach: our main result is a graph-
ical expansion for the direct-connectedness function, with quantitative bounds on the domain
of convergence.

Let

λ∗ := sup

{
λ≥ 0 : sup

x∈Rd

∑
k≥1

λk−1σ ∗k
λ (x) <∞

}
, λ̃∗ := sup

{
λ≥ 0 : λ

∫
σλ(x) dx < 1

}
.

(1.4)

It is not hard to see that λ̃∗ ≤ λ∗ ≤ λc using (1.5) below.
We can now state our main theorem. It provides (in general dimension) the first rigorous

quantitative bounds on λ under which the direct-connectedness function admits a convergent
graphical expansion.

Theorem 1.1. (Graphical expansion of the direct-connectedness function.) For λ < λ∗, the
direct-connectedness function gλ(x1, x2) is given by the expansion (4.24), which is abso-
lutely convergent pointwise for all (x1, x2) ∈R2d. Moreover, for λ < λ̃∗, the expansion (4.24)
converges in the L1(Rd, dx2)-norm for all x1 ∈Rd.

The convergence results for the expansion (4.24) are proved in Theorem 4.1 and Theorem 4.2;
the equality with the direct-connectedness function is proved in Section 5.

Last and Ziesche show that there is some λ0 > 0 such that gλ is given by a power series
for λ ∈ [0, λ0). No quantitative bounds for λ0 are provided, however. In Section 6.2, we dis-
cuss how to relate this expansion to our expression for gλ. We now make several remarks on
Theorem 1.1 and the quantitative nature of the bounds provided there.
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• Since 0≤ σλ ≤ 1, we can bound

∑
k≥1

λk−1σ ∗k
λ (x)≤

∑
k≥0

(
λ

∫
σλ(x) dx

)k

=
∑
k≥0

(
Eλ

[∣∣{x ∈ η : 0⇐⇒ x in ξ0}∣∣])k
, (1.5)

where the identity is due to the Mecke equation (2.1). This shows that λ̃∗ ≤ λ∗ and that
λ̃∗ is the point where the expected number of points in η that are 2-connected to the
origin passes 1 (i.e., we have Eλ

[∣∣{x ∈ η : 0⇐⇒ x in ξ0
}∣∣]≥ 1 for all λ > λ̃∗).

• The argument of the geometric series in (1.5) can be further bounded from above by

λ

∫
τλ(x)dx=Eλ

[∣∣{x ∈ η : 0←→ x in ξ0}∣∣],
the expected cluster size (minus 1). A classical branching-process argument gives that
λ̃∗ ≥ 1/2 (see, for example, [21, Theorem 3]).

• In high dimension, we have the following result, proven in [10]: under some additional
assumptions on ϕ (see [10, Section 1.2]), there is an absolute constant c0 such that

λc

∫
σλc (x) dx≤ 1+ c0/d

in sufficiently high dimension, or, for a class of spread-out models (closely related to
Kac potentials in statistical mechanics; see [8]) with a parameter L,

λc

∫
σλc (x) dx≤ 1+ c0L−d

for all dimensions d > 6 (in the spread-out case, c0 is independent of L but may depend
on d). As σλ is nondecreasing in λ, this provides a bound for the whole subcritical
regime. This also implies that for every ε > 0, there is d0 (respectively, L0) such that
λ̃∗ ≥ 1− ε for all d≥ d0 (respectively, L≥ L0 and d > 6). As we also know that λc ↘ 1
as the dimension becomes large, this shows that in high dimension, λ̃∗ (and thus also λ∗)
gets arbitrarily close to λc.

Outline of the paper. The paper proceeds as follows. We introduce most of our important
notation in Section 2. This allows us to demonstrate some basic (and mostly well-known)
central ideas in Section 3, where the two-point function is discussed in finite volume. Section 4
contains the main body of work for the proof of Theorem 1.1 (the convergence results). The
remainder of Theorem 1.1 regarding the OZE is then proved in Section 5.

We discuss our results in Section 6. In particular, we point out where many of the formulas
can be found in the physics literature (not rigorously proven) and allude to generalizations to
Gibbs point processes. Moreover, we highlight the connection to two other expressions for
the pair-connectedness function; in particular, we show how our expansions relate to the lace
expansion. Lastly, we address other percolation models very briefly in Section 6.4.

2. Fixing notation

2.1. General notation

We let [n] := {1, . . . , n} and [n]0 := [n]∪ {0}. For a set V , we write
(V

2

)
:= {E⊆ V : |E| = 2}.

For I = {i1, i2, . . . , iκ} ⊂N, let �xI =
(
xi1 , . . . , xiκ

)
. For compact intervals [a, b]⊂R, we write
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FIGURE 1. A schematic sketch of the pivot decomposition (u0, V0, . . . , V7, u8) of G, setting x= u0 and
y= uk+1.

�x[a,b] = �xI with I = [a, b]∩N. If a= 1, we write �x[b] = �x[1,b]. By some abuse of notation, we
are going to interpret �x[a,b] both as an ordered vector and as a set.

If not specified otherwise, � denotes a bounded, measurable subset of Rd.

2.2. Graph theory

We recall that a (simple) graph G= (V, E)= (V(G), E(G)) is a tuple with vertex set (or
set of points, sites, nodes) V and edge set (or set of bonds) E⊆ (V

2

)
. In this paper, we will

always consider graphs with V ⊂Rd, and for x, y ∈Rd, an edge {x, y} will sometimes be
abbreviated xy.

If xy ∈ E, we write x∼ y (and say that x and y are adjacent). We extend this notation and
write x∼W for x ∈ V and W ⊆ V if there is y ∈W such that x∼ y; also, we write A∼ B if there
is x ∈ A such that x∼ B. For W ⊆ V , we define the W-neighborhood NW (x)= {y ∈W : x∼ y}
and the W-degree of a vertex x ∈ V as degW (x)= |NW (x)|, and we write N(x)=NV (x) as well
as deg(x)= degV (x). For two sets A, B⊆ V , we write E(A, B)= {xy ∈ E(G) : x ∈ A, y ∈ B}.

Given a graph G= (V, E) and W ⊆ V , we denote by G[W] := (W, {e ∈ E : e⊆W}) the
subgraph of G induced by W. Given two simple graphs G, H, we let G⊕H := (V(G)∪
V(H), E(G)∪ E(H)).

Connectivity. Given a graph G and two of its vertices x, y ∈ V(G), we say that x and y are con-
nected if there is a path between x and y—that is, a sequence of vertices x= v0, v1, . . . , vk = y
for some k ∈N0 such that vi−1vi ∈ E(G) for i ∈ [k]. We write x←→ y in G or simply x←→ y.
We call C(x)=C(x; G)= {y ∈ V(G) : x←→ y} the cluster (or connected component) of x in G.
If there is only one cluster in G, we say that G is connected.

For x←→ y in G, we let Piv(x, y; G) denote the set of pivotal vertices for the connection
between x and y. That is, v /∈ {x, y} is in Piv(x, y; G) if every path from x to y in G passes through
v. We say that x is doubly connected to y in G (and write x⇐⇒ y in G) if Piv(x, y; G)=∅. We
remark that in the physics literature, pivotal points are usually known as nodal points.

In the pathological case x= y, we use the convention x←→ x in G and set Piv(x, x; G)=∅
for any graph G with x ∈ V(G) (equivalently, x⇐⇒ x in G).

We observe that the pivotal points {u1, . . . , uk} can be ordered in a way such that every path
from x to y passes through the pivotal points in the order (u1, . . . , uk). We define PD(x, y, G)=
PD(G) to be the pivot decomposition of G, that is, a partition of the vertex set V into a sequence,
(x, V0, u1, V1, . . . , uk, Vk, y), where (u1, . . . , uk) are the ordered pivotal points and Vi is the
(possibly empty) set of vertices that can be reached only by passing through ui and that is still
connected to x after the removal of ui+1. See Figure 1.

Classes of graphs. Given a (locally finite) set X ⊂Rd, we let G(X) be the set of graphs with
vertex set X. We let C(X) be the set of connected graphs on X. Moreover, for x, y ∈ X, we let
Dx,y(X)⊆ C(X) be the set of non-pivotal graphs, i.e., the set of connected graphs such that
Piv(x, y; G)=∅.

Given m bags X1, . . . , Xm ⊂Rd with |Xi ∩ Xj| ≤ 1 for all 1≤ i < j≤m, we let
G(X1, . . . , Xm) denote the set of m-partite graphs on X1, . . . , Xm, i.e., the set of graphs G

https://doi.org/10.1017/apr.2022.22 Published online by Cambridge University Press

113



The direct-connectedness function in the random connection model 7

with V(G)=∪m
i=1Xi and E(G[Xi])=∅ for i ∈ [m]. Note that we allow bags to have (at most)

one vertex in common, which is a slight abuse of the notation in graph theory, where m-partite
graphs have disjoint bags.

The notion of (±)-graphs. We introduce a (±)-graph as a triple

G± = (V(G), E+(G), E−(G))= (V, E+, E−),

where V is the vertex set and E+, E− ⊆ (V
2

)
are disjoint. In other words G± is a graph where

every edge is of exactly one of two types (plus or minus). We set E := E+ ∪ E− and associate
to G± the two simple graphs G|±| := (V, E) and G+ := (V+, E+), where V+ := {x ∈ V : ∃e ∈
E+ : x ∈ e} are the vertices incident to at least one (+)-edge.

We extend all the notions for simple graphs to (±)-graphs. In particular, given X ⊂Rd,
we let G±(X) be the set of (±)-graphs on X. Moreover, C±(X) are the (±)-connected graphs
on X, that is, the graphs such that G|±| is connected. Similarly, C+(X)⊂ C±(X) are the (+)-
connected graphs, that is, those where G+ is connected and V(G)= V+. For x, y ∈ X, we
denote by D±x,y(X) the set of those (±)-connected graphs on X where Piv(x, y; G|±|)=∅, and
by D+x,y(X)⊂D±x,y(X) the set of those (±)-connected graphs on X where Piv

(
x, y; G+

)=∅.
We also define the (±)-pivot decomposition PD±

(
x, y, G±

)=PD±
(
G±

)=PD(G|±|) and the

(+)-pivot decomposition PD+
(
x, y, G±

)=PD+
(
G±

)=PD
(
G+

)
. Lastly, we write x

+←→ y if
there is a path from x to y in E+.

Given a (±)-graph G and a simple graph H, we define

G⊕H := (V(G)∪ V(H), E+(G), E−(G)∪ E(H)).

Weights. Given a simple graph G, a (±)-graph H on X ⊂Rd, and the connection function ϕ,
we define the weights

w(G) := (−1)|E(G)| ∏
{x,y}∈E(G)

ϕ(x− y), w±(H) := (−1)|E−(H)| ∏
{x,y}∈E(H)

ϕ(x− y).

2.3. The random connection model

The RCM ξ can be formally constructed as a point process, that is, a random variable taking
values in the space of locally finite counting measures (N,N ) on some underlying metric space
X. There are various ways to choose X. One option is to let X=Rd ×M for an appropriate
mark space M (see [18]); another way can be found in [10, 15]. In any case, one can reconstruct
from ξ the point process η on Rd which makes up the vertex set of ξ . We treat η both as a
counting measure and as a set, giving meaning to statements of the form x ∈ η.

If e= {x, y} is an edge, then we write ϕ(e)= ϕ(x− y). For a bounded set �⊂Rd, we write
η� = η ∩� and let ξ� denote the RCM restricted to �, that is, ξ [η�]. The two-point function
restricted to � is defined as τ�

λ (x, y)= Pλ

(
x←→ y in ξ

x,y
�

)
for x, y ∈� and zero otherwise.

For V ⊂W, there is a natural way to couple the models ξV and ξW , which is by deleting
from ξW all points in W \ V along with their incident edges. We implicitly assume throughout
this paper that this coupling for different sets of added points is used.

The Mecke equation. Since it is used repeatedly throughout this paper, we state the
Mecke equation, a standard tool in point process theory, in its version for the RCM (see
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[15]). For m ∈N and a measurable function f : N×Rdm →R≥0, the Mecke equation states
that

Eλ

[ ∑
�x[m]∈η(m)

f
(
ξ, �x[m]

)]= λm
∫

Eλ

[
f
(
ξ x1,...,xm , �x[m]

)]
d�x[m], (2.1)

where η(m) = {�x[m] ∈ ηm : xi �= xj for i �= j
}

are the pairwise distinct tuples.

Rescaling. It is a standard trick in continuum percolation to rescale space in order to normal-
ize a quantity of interest, which is

∫
ϕ(x) dx in our case. We refer to [18, Section 2.2]. As a

consequence, we may without loss of generality assume that
∫

ϕ(x) dx= 1.

The BK inequality. We say that A ∈N lives on � if 1A(μ)= 1A(μ�) for every μ ∈N. We call
an event A ∈N increasing if μ ∈ A implies ν ∈ A for each ν ∈N with μ⊆ ν. Let R denote the
ring of all finite unions of half-open rectangles with rational coordinates. For two increasing
events A, B ∈N we define

A ◦ B := {μ ∈N : ∃K, L ∈R s.t. K ∩ L=∅ and μK ∈ A, μL ∈ B}. (2.2)

Informally, this is the event that A and B take place in spatially disjoint regions. It is proved in
[10, Theorem 2.1] that for two increasing events A and B living on �, we have

Pλ(A ◦ B)≤ Pλ(A)Pλ(B).

The RCM on a fixed vertex set. Given some (finite) set X ⊂Rd and a function ϕ : Rd → [0, 1],
we will often have to deal with the following random graph: its vertex set is X, and two vertices
x, y ∈ X are adjacent with probability ϕ(x− y), independently of other pairs of vertices. This
is simply the RCM conditioned to have the vertex set X. To highlight the difference from ξ ,
which depends on the PPP η, we denote this random graph by ϕ(X). If Y ⊂ X, then we write
ϕ(Y) for ϕ(X)[Y]. Since there is no dependence on λ, we write P for the probability measure
of the RCM with fixed vertex set.

3. Fixing ideas: the two-point function in finite volume

We use this section to put the definitions of Section 2 into action and to derive a power
series expansion for τλ in finite volume. We start by motivating the introduction of (±)-graphs
by linking them to the RCM ϕ .

Observation 3.1. (Connection between (±)-graphs and probabilities.) Let X ⊂Rd be finite.
Let P⊆ G(X) be a graph property. Then∑

G∈G±(X):
(V(G),E+(G))∈P

w±(G)= P
(
ϕ(X) ∈P

)
.

Proof. Note that

P
(
ϕ(X) ∈P

)= ∑
G∈G(X) :

G∈P

∏
e∈E(G)

ϕ(e)
∏

e∈(X
2)\E(G)

(1− ϕ(e)).

Expanding the factor
∏

e∈(X
2)\E(G) (1− ϕ(e)) into a sum proves the claim. �
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The direct-connectedness function in the random connection model 9

Note that the weight of a (±)-graph may also be calculated by taking the product over all
its edges, with factors ϕ(·) and −ϕ(·) for edges in E+ and E−, respectively. Observation 3.1
motivates that the edges in E+ correspond to the edges in the random graph ϕ .

Next we prove a power series expansion for τλ in terms of the intensity λ. The expansion
(3.1) has already been given by Coniglio, De Angelis and Forlani [6, Equation (12)], who
work in the more general context of Gibbs point processes but do not prove convergence. The
proposition enters the proof of Proposition 5.1.

Notice that the coefficients of power series expansions like (3.1) are given by integrals
with respect to the Lebesgue measure, and it is sufficient that the integrands be defined up
to Lebesgue null sets for those integrals to be well-defined. Since vectors �x[3,n+2] ∈Rdn with
fewer than n distinct entries constitute a Lebesgue null set, we can assume that for x1 �= x2 only
graphs with vertex sets of cardinality n+ 2 contribute to the nth coefficient in (3.1). The same
considerations apply to all graphical expansions appearing from here on, including our main
definition (4.6).

Proposition 3.1. (Graphical expansion for the two-point function.) Consider the RCM
restricted to a bounded measurable set �⊂Rd, and let x1, x2 ∈�. Then

τ�
λ (x1, x2)=

∑
n≥0

λn

n!
∫

�n

∑
G∈C±

(
�x[n+2]

)
:

x1
+←→x2

w±(G) d�x[3,n+2] (3.1)

with ∑
n≥0

λn

n!
∫

�n

∣∣∣ ∑
G∈C±

(
�x[n+2]

)
:

x1
+←→x2

w±(G)
∣∣∣ d�x[3,n+2] ≤ exp

{
2λ+ λ|�|eλ

}
<∞.

Note that Proposition 3.1 is valid for all intensities λ≥ 0. This situation is completely
different from familiar cluster expansions [2], where the radius of convergence of relevant
expansions is finite in finite volume as well.

The expansion (3.1) amounts to the physicists’ expansion in powers of the activity. The
expansion in powers of the density instead involves sums over a smaller class of graphs. For
PPPs, activity and density are the same and the two expansions must coincide. In our context,
we point out that the sum over graphs in (3.1) can be reduced to the sum over the subset
of graphs in C± that contain a (+)-path from x1 to x2 and that have no articulation points
(with respect to x1, x2). To define articulation points, recall that a cut vertex leaves a connected
graph disconnected upon its deletion. Now, an articulation point is a cut vertex that is not
pivotal for the x1–x2 connection. It is not difficult to see that for fixed points x[n+2], the graphs
with articulation points in the sum over graphs G in (3.1) exactly cancel out. This cancellation
happens at fixed n and does not require any re-summations between graphs with different
numbers of vertices.

The proof of Proposition 3.1 builds on yet another equivalent representation: in Equation
(3.1) we can discard those graphs G for which G+ is not connected and those for which not
every (−)-edge has at least one endpoint in V

(
G+

)
; see Equation (3.6) below for a precise

statement. To the best of our knowledge, Equation (3.6) is new.
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Proof of Proposition 3.1. We write τλ = τ�
λ and η= η�. Given x1, x2 ∈�, we can

partition

τλ(x1, x2)=
∑
n≥0

Pλ

(
x1 ←→ x2 in ξ

x1,x2
� ,

∣∣C(x1, ξ
x1,x2
�

)∣∣= n+ 2
)

=
∑
n≥0

λn

n!
∫

�n
P
(
ϕ

(�x[n+2]
) ∈ C

(�x[n+2]
))

× exp

{
− λ

∫
�

(
1−

n+2∏
i=1

(1− ϕ(xi − y))

)
dy

}
d�x[3,n+2] (3.2)

The second identity can be found, for example, in [15, Proposition 3.1]. Set

f
(�x[n+2], �y[m]

)= P
(
ϕ

(�x[n+2]
) ∈ C

(�x[n+2]
)) m∏

j=1

(
n+2∏
i=1

(1− ϕ(xi − yj))− 1

)
.

Expanding the exponential in (3.2), we find

τλ(x1, x2)=
∑

n,m≥0

λn+m

m!n!
∫

�n

∫
�m

f
(�x[n+2], �y[m]

)
d�y[m] d�x[3,n+2], (3.3)

with

∑
n,m≥0

λn+m

m!n!
∫

�n

∫
�m

∣∣f (�x[n+2], �y[m]
)∣∣ d�y[m] d�x[3,n+2]

=
∑
n≥0

λn

n!
∫

�n
P
(
ϕ

(�x[n+2]
) ∈ C

(�x[n+2]
))

exp

{
λ

∫
�

(
1−

n+2∏
i=1

(1− ϕ(xi − y))

)
dy

}
d�x[3,n+2]

≤
∑
n≥0

λn

n!
∫

�n
eλ(n+2) d�x[3,n+2]

= exp
{
2λ+ λ|�|eλ

}
<∞. (3.4)

In the third line, we have used the inequality

∫
�

(
1−

n+2∏
i=1

(1− ϕ(xi − y))

)
dy≤

∫
�

n+2∑
i=1

ϕ(xi − y) dy≤ n+ 2, (3.5)

which can be shown as follows. Let n ∈N and let 0≤ a1, . . . , an ≤ 1. Notice that the identity
1−∏n

i=1 (1− ai)= (1− an)
(
1−∏n−1

i=1 (1− ai)
)+ an and the estimate (1− an)≤ 1 hold for

all n ∈N. The inequality between the integrands in (3.5) now follows by induction with the
choice ai = ϕ(xi − y). The rescaling introduced in Section 2.3 ensures that

∫
�

ϕ(xi − y) dy≤ 1,
i ∈ [n+ 2], yielding the second inequality.
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The direct-connectedness function in the random connection model 11

Next we turn to a combinatorial representation of f as a sum over (±)-graphs. Recall that
C+ denotes sets of (±)-graphs that are (+)-connected. The definition of f and Observation 3.1
yield

f
(�x[n+2], �y[m]

)=
⎛
⎜⎝ ∑

G∈C+
(
�x[n+2]

) w±(G)

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎝

∑
H∈G

(
�x[n+2],�y[m]

)
:

yi∼�x[n+2] ∀i∈[m]

w(H)

⎞
⎟⎟⎟⎟⎠=

∑
G⊕H

w±(G⊕H),

where the last sum is over all (±)-graphs G′ =G⊕H in C±
(�x[n+2] ∪ �y[m]

)
such that, first,

there are no edges between points of �y; second, (G⊕H)+ is connected; and third, the vertices
of (G⊕H)+ are precisely �x[n+2].

We rearrange the double sum (3.3) over m, n into one sum, indexed by the value of m+ n,
and obtain

τλ(x1, x2)=
∑
n≥0

λn

n!
∫

�n

∑
G∈C±

(
�x[n+2]

)
:

{x1,x2}⊆V
(

G+
)
,G+ connected,

E(G|±|[V\V+])=∅

w±(G) d�x[3,n+2] (3.6)

=
∑
n≥0

λn

n!
∫

�n

∑
G∈C±

(
�x[n+2]

)
:

x1
+←→x2

w±(G) d�x[3,n+2]. (3.7)

In the second identity, we have added some graphs to the sum, namely those in which G+ is
not connected or where there exist edges between vertices of V \ V+.

We claim that the weights of these added graphs sum up to zero. To see this, first iden-
tify [n+ 2] with the vertices �x[n+2] and fix a graph G ∈ C([n+ 2]). Now, let C⊆ [n+ 2] with
{1, 2} ⊆C and consider the set GG(C) of all (±)-connected graphs G± on [n+ 2] such that
G|±| =G and C is the vertex set of the (+)-component of 1 in G±. If there is at least one edge
e in G that has both endpoints outside of C, we partition GG(C) into those graphs where e is in
E+ and those where e is in E−. This induces a pairing between the graphs of GG(C), and they
cancel out. What remain are precisely the graphs in (3.6). �

4. The direct-connectedness function

4.1. Motivation and rough outline

The expansion of the direct-connectedness function in powers of the activity given by [6],
without proofs and convergence bounds, is

g�
λ (x1, x2)=

∑
n≥0

λn

n!
∫

�n

∑
G∈D±

x1,x2

(
�x[n+2]

)
:

x1
+←→x2

w±(G) d�x[3,n+2]. (4.1)

It is obtained from the expansion of the pair-connectedness function in Proposition 3.1 by dis-
carding graphs that have pivotal points (i.e., graphs G where Piv±(G) is nonempty). Before we
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pass to the thermodynamic limit, we perform a re-summation and find another representation
of g�

λ which has the conjectured advantage of increasing the domain of convergence.
Let G= (V, E+, E−) ∈ C±

(�x[n+2]
)

be a (±)-graph appearing in the expansion (3.6). Thus
V = {xi : 1≤ i≤ n+ 2}, the graph G+ is connected, x1 and x2 belong to V+ = V

(
G+

)
, every

vertex y ∈ V(G) \ V
(
G+

)
is linked by at least one (−)-edge to V+, and there are no edges

between two vertices in V \ V+. We impose the additional constraint that G|±| = (�x[n+2], E+ ∪
E−

)
has no pivotal points for paths from x1 to x2.

Since x1 and x2 are connected by a path of (+)-edges, G admits a (+)-pivot decom-
position �W = (u0, V0, . . . , uk, Vk, uk+1) (with u0 = x1 and uk+1 = x2), where k ∈N0 is the
number of pivotal points in Piv+(x1, x2; G). Then, G decomposes into a core graph Gcore =(
V
(
G+

)
, E+, E−core

)
, with E−core the set of (−)-edges of G with both endpoints in Vi ∪ {ui, ui+1}

for some i ∈ [k]0, and a shell graph H = (
V, ∅, E− \ E−core

)
. By our choice of E−core, we have

PD±
(
Gcore

)=PD+
(
Gcore

)= �W. Clearly

w±(G)=w±
(
Gcore

)
w±(H).

In the right-hand side of (4.1), we restrict to graphs that also appear in (3.6) and rewrite the
resulting sum as a double sum over core graphs and shell graphs. This gives rise to the series

∞∑
r=0

λr

r!
∫

�r

∑
�W

∑
Gcore

w±
(
Gcore

)( ∞∑
m=0

λm

m!
∫

�m

∑
H

w±(H) d�y[m]

)
d�x[3,r+2].

The outer sum is over potential pivot decompositions �W of core vertices �x[r+2], the second
sum over (±)-graphs Gcore =

(�x[r+2], E+, E−core

)
that are (+)-connected and for which �W is

both the (±)-pivot decomposition and the (+)-pivot decomposition (in other words, the simple
graph

(�x[r+2], E+
)

is connected and PD±(x1, x2, G)=PD+(x1, x2, G)= �W). The inner sum
is over (±)-graphs H = (V(H), ∅, E−(H)) with vertex set �x[r+2] ∪ �y[m] and (−)-edges {yi, xj}
such that every vertex yi is linked to at least one vertex xj, under the additional constraint that
(�x[r+2] ∪ �y[m], E+, E−core ∪ E−(H)) has no (±)-pivotal points for paths from x1 to x2. Let us
denote the series associated to such graphs H by h�

λ

(
Gcore

)
:

h�
λ

(
Gcore

)= ∞∑
m=0

λm

m!
∫

�m

∑
H

w±(H) d�y[m]. (4.2)

The right-hand side of (4.2) depends on Gcore only through the pivot decomposition �W. We
obtain the representation

g�
λ (x1, x2)=

∞∑
r=1

λr

r!
∫

�r

∑
�W

∑
Gcore

w±
(
Gcore

)
h�
λ

(
Gcore

)
d�x[3,r+3]. (4.3)

This expression, written in a slightly different form (see Definition 4.2), forms the starting
point of this section. The main results of this section are the following:

1. Let Gcore be a (±)-graph as above. Then the corresponding power series h�
λ

(
Gcore

)
is

absolutely convergent for all intensities λ≥ 0 (Proposition 4.1). In addition, h�
λ

(
Gcore

)
can be expressed in terms of probabilities involving the random connection model on
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The direct-connectedness function in the random connection model 13

the fixed vertex set V
(
Gcore

)
and of Poisson processes in �. This alternative expression

is used to show that the (pointwise) limit

hλ

(
Gcore

)= lim
�↗Rd

h�
λ

(
Gcore

)
exists for all λ > 0 (Lemma 4.5).

2. Then we show in Theorem 4.1 that

∞∑
r=0

λr

r!
∫

(Rd)r

∑
�W

∑
Gcore

w±
(
Gcore

)∣∣∣hλ

(
Gcore

)∣∣∣ d�x[3,r+3] <∞.

This allows us to define

gλ(x1, x2) :=
∞∑

r=0

λr

r!
∫

(Rd)r

∑
Gcore

w±
(
Gcore

)
hλ

(
Gcore

)
d�x[3,r+3]

and to pass to the limit in (4.3), showing that

lim
�↗Rd

g�
λ (x1, x2)= gλ(x1, x2)

as part of Theorem 4.1.

4.2. Definition

Here we introduce the precise definitions of core graphs and shell graphs as well as of
the functions h�

λ and g�
λ . We follow the ideas outlined in the previous section but make two

small changes. First, shell graphs H are defined not as (±)-graphs with minus edges only but
right away as standard graphs. Second, a close look reveals that the shell function h�

λ

(
Gcore

)
defined in (4.2) depends on the core graph only via �W; accordingly we view h�

λ as a function
of a sequence of sets. In addition we drop the index from the core graph; thus the graph G in
Definition 4.1 below corresponds to Gcore in the previous section (see Figure 2).

Definition 4.1. (Core graphs and shell graphs.)

1. Let x1, x2 ∈Rd and let {x1, x2} ⊂W ⊂Rd be a finite set of vertices. We call a
graph G ∈ C+(W) with PD±(x1, x2, G)=PD+(x1, x2, G)= �W a core graph with pivot
decomposition �W and denote the set of such graphs by G �Wcore.

2. Let G ∈ C+(W) be a core graph with pivot decomposition �W = (u0, V0, . . . , Vk, uk+1),
k ∈N0, where we set u0 := x1 and uk+1 := x2. Moreover, let Vi := Vi ∪ {ui, ui+1} and
let Y be a finite subset of Rd. A shell graph on W ∪ Y associated to �W is a (k+ 1)-partite
graph H ∈ G

(
V1, . . . , Vk, Y

)
such that G⊕H ∈D±x1,x2

(W ∪ Y). We call the vertices Y ⊂
V(H) satellite vertices and write S(H)= Y . Notice that the set of all shell graphs on
W ∪ Y associated to �W does not depend on the choice of the core graph G. We denote it

by GY, �W
shell .

We define h�
λ and g�

λ by expansions similar to (4.2) and (4.3) and postpone the proof of
convergence to Proposition 4.3 and Theorem 4.4. By some abuse of language, we refer to the
series (4.6) as the direct-connectedness function, and we use the same letter gλ as in (1.2). This
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FIGURE 2. In the first line, we see an example of two (±)-graphs; the (+)-edges are depicted by dotted
lines and the (minus;)-edges by dashed lines. Notice that both graphs are (+)-connected. However, the
solid black vertex—which is (+)-pivotal for the x1–x2 connection in both graphs—is (±)-pivotal for the
x1–x2 connection in the graph on the left but not in the graph on the right. Hence, the graph on the
left is a core graph according to Definition 4.2 but the graph on the right is not. In the second line, the
simple graph on the left is a shell graph for the core graph above, since the (±)-graph given by their sum
(depicted on the right) is (±)-doubly connected; in particular there are no (±)-pivotal points for the x1–x2
connection.

is justified a posteriori by the proof of Theorem 1.1, where we show that the series is indeed
the expansion for the direct-connectedness function gλ defined as the unique solution of the
OZE (1.2).

Definition 4.2. (Shell functions and direct-connectedness function.)

1. Let W ⊂Rd be finite and let �W be given as in Definition 4.2. For m ∈N0, define the
m-shell function h(m) by

h(m)( �W, Y) :=
∑

H∈GY, �W
shell

w(H), Y = {y1, . . . , ym} ⊂Rd, (4.4)

and the shell function h�
λ in finite volume �⊂Rd by

h�
λ

( �W)
:=

∑
m≥0

λm

m!
∫

�m
h(m)( �W, �y[m]

)
d�y[m]. (4.5)

2. Let λ < λ∗. We define the direct-connectedness function as gλ : Rd ×Rd →R,

g�
λ (x1, x2) :=

∑
r≥0

λr

r!
∫

�r

∑
�W

( ∑
G∈G �W

core

w±(G)

)
h�
λ

( �W)
d�x[3,r+2], (4.6)

where W := {x1, . . . , xr+2} and we sum over decompositions �W of W given as in
Definition 4.1. In the pathological case x1 = x2, (4.6) is to be read as g�

λ (x1, x2) := 1.
Let g�

λ : Rd →R be defined by g�
λ (x)= g�

λ (0, x).
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The direct-connectedness function in the random connection model 15

The 0-shell function h(0) is understood to be given in terms of shell graphs without satellite
vertices, i.e.,

h(0)( �W)= ∑
H∈G∅, �W

shell

w(H).

Note that because of translation-invariance, g�
λ (x1, x2)= g�

λ (0, x2 − x1)= g�
λ (x2 − x1).

4.3. Analysis of the shell functions: laces

If we take a look at the graphs that are summed over in the shell function, we note that the
associated minimal structures have a form which is very reminiscent of graphs that are known
as laces and famously appear in the analysis of, for example, self-avoiding walks [3, 22]. They
are also the namesake of the lace-expansion technique.

Proposition 4.1 is the central result of this section. It allows us to bound the shell function
by the probability that the points in a PPP η are not connected to the core vertices W. Moreover,
we introduce laces and partition the shell graphs with respect to them. For every lace, we obtain
a precise expression for its contribution to the shell function.

To prove Proposition 4.1, we will need quite a few definitions (see Definitions 4.3, 4.4, and
4.5) and some intermediate results thereon.

Proposition 4.1. (Bounds on the shell functions) Let λ≥ 0 and let �⊂Rd be bounded.
Let u0, . . . , uk+1 ∈� for k ∈N0, let V0, . . . , Vk ⊂� be finite sets, and set �W =
(u0, V0, . . . , Vk, uk+1). Then ∣∣h�

λ

( �W)∣∣≤ Pλ

(
η� �←→W in ξW)

. (4.7)

Moreover, ∑
m≥0

λm

m!
∫

�m

∣∣h(m)( �W, �y[m]
)∣∣ d�y[m] ≤ 1√

5
e3λ|W|(3+√5

)|W|. (4.8)

Proposition 4.1 consists of two parts, and it is (4.8) that guarantees the well-definedness of
the shell function h�

λ of Definition 4.2.
Proposition 4.1 is easy to prove for k= 0, and we mostly focus on k≥ 1. Throughout the

remainder of this section, we fix a pivot decomposition �W = (u0, V0, . . . , Vk, uk+1) and recall
that Vi = Vi ∪ {ui, ui+1}.

We now work towards a deeper understanding of the shell graphs H summed over in (4.4).

Definition 4.3. (Skeletons) Let W ⊂Rd and let �W = (u0, V0, . . . , uk+1) be a pivot decompo-
sition of some core graph on W. Furthermore, let Y ⊂Rd be finite and let H be a shell graph
associated to �W with satellite vertices S(H)= Y . Then we define the skeleton Ĥ of H as the
following graph: its vertex set is V(Ĥ)= {0, . . . , k+ 1}. A bond αβ is in E(Ĥ) if and only if
|α− β| ≥ 2 and there exist s ∈ {uα} ∪ Vα , t ∈ Vβ−1 ∪ {uβ} such that

• st ∈ E(H), or

• sy, yt ∈ E(H) for some y ∈ S(H).

In the first case we call {s, t} a direct stitch, and in the second case we call it an indirect
stitch. We call an edge αβ in E(Ĥ) a bond to distinguish it from the edge of the underlying
graph H.

Thus, the graph Ĥ has no nearest-neighbor bonds, and αβ with |α− β| ≥ 2 is a bond in
E(Ĥ) if and only if {uα} ∪ Vα and Vβ−1 ∪ {uβ} are connected by a direct or indirect stitch. See
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16 S. JANSEN ET AL.

FIGURE 3. In the first line, we see a schematic shell graph H1. Its skeleton Ĥ1 is already a lace, namely L.
The skeleton of the graph H2 in the second line is not a lace, but H2 ∈ 〈〈L〉〉. The structure of L is indicated
in H2 and in Ĥ2 by the thicker edges.

Figure 3 for an illustration. We may now apply the standard vocabulary of lace expansion (for
self-avoiding walks) to the graph Ĥ [22, Section 3.3].

Definition 4.4. (Laces)

• The graph Ĥ with vertex set {0, . . . , k+ 1} is irreducible if 0 and k+ 1 are endpoints of
edges in E(Ĥ) and for every i ∈ [k] there exists αβ ∈ E(Ĥ) with α < i < β.

• The graph Ĥ is a lace if it is irreducible and, for every bond αβ ∈ E(Ĥ), removal of the
bond destroys the irreducibility.

• We denote by Lk the set of all laces on {0, . . . , k+ 1}.
In the context of lace expansions, usually the word ‘connected’ is used instead of ‘irreducible’,
but ‘connected’ is clearly misleading in our setup; Brydges and Spencer originally called those
graphs ‘primitive’ [3]. We observe that the skeleton graphs Ĥ arising from our shell graphs
H are precisely the irreducible graphs (and so G⊕H being 2-connected corresponds to the
skeleton Ĥ being irreducible).

We map irreducible graphs to laces by following a standard procedure [22, Section 3.3],
performed backwards. That is, we define bonds α′jβ ′j with β ′1 > β ′2 > · · · inductively as follows:
we set

β ′1 := k+ 1, α′1 := min
{
α : αβ ′1 ∈ E(Ĥ)

}
,

and

α′j+1 =min
{
α : ∃β > α′j with αβ ∈ E(Ĥ)

}
, β ′j+1 =max

{
β : α′j+1β ∈ E(Ĥ)

}
.

The procedure terminates when α′j = 0. At the end, we let αjβj be a relabeling of the bonds
α′jβ ′j from left to right.

It is well known that the algorithm maps irreducible graphs to laces; moreover, the set of
irreducible graphs that are mapped to a given lace L can be characterized as follows.
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The direct-connectedness function in the random connection model 17

Definition 4.5. (Compatible bonds and the span of a lace.)

1. Let L be a lace with vertex set {0, . . . , k+ 1}. A bond is compatible with a lace L if the
algorithm described above maps the graph (V(L), E(L)∪ {αβ}) to the lace L.

2. Let W ⊂Rd and let �W = (u0, V0, . . . , uk+1) be a pivot decomposition of some core
graph on W. Further let Y ⊂Rd be finite and let H be a shell graph associated to �W with
S(H)= Y . Then we say that H belongs to the span of the lace L, and write H ∈ 〈〈L〉〉, if
E(L)⊆ E(Ĥ) and every bond αβ ∈ E(Ĥ) \ E(L) is compatible with L.

In other words, H is in the span of L if the above algorithm maps Ĥ to L. See Figure 3.
Given �W and a lace L, we define

h�
λ ( �W; L) :=

∑
m≥0

λm

m!
∫

�m

∑
H∈〈〈L〉〉 :S(H)=�y[m]

w(H) d�y[m]. (4.9)

The series h�
λ

( �W; L
)

converges absolutely for every fixed λ. This is shown as part of the proof
of (4.8) in Proposition 4.1. Now,

h�
λ

( �W)= ∑
L∈Lk

h�
λ ( �W; L).

The following characterization of compatible bonds will be useful. We recall that the bonds
of a lace with m bonds can be labeled as αjβj with

0= α1 < α2 < β1 ≤ α3 < β2 ≤ · · · ≤ αm < βm−1 < βm = k+ 1;

see [22, Equations (3.15) and (3.16)].

Lemma 4.1. (Characterization of compatible bonds.) Let L be a lace with vertex set V(L)=
{0, . . . , k+ 1} and bonds αjβj, j= 1, . . . , m, labeled from left to right (i.e., αj < αj+1). Then a
bond αβ /∈ E(L) with α < β − 1 is compatible with L if and only if either

(a) αi ≤ α < β ≤ βi for i ∈ [m] or

(b) αi < α < β ≤ αi+2 for i ∈ [m− 1] (where we set αm+1 := k).

Proof. Let αβ /∈ E(L) be compatible with L; that is, the algorithm below Definition 4.4 maps
E(L)∪ {αβ} to E(L), which in turn means that αβ is not selected to be part of the output lace.
We show that then either (a) or (b) is satisfied. Assume the algorithm has already constructed
the partial lace up to some j < m, producing the bonds

(
α′i, β ′i

)j
i=1 (note that they are in reverse

order and make up the last j bonds of the lace). Assume moreover that α′j < β ≤ α′j−1; that is,
αβ is a potential candidate to be chosen as the next bond of the lace. Since it is not chosen,
there is α′j+1β

′
j+1 with β ′j+1 ∈

(
α′j, α′j−1

]
such that either

• α′j+1 < α, or

• α′j+1 = α and β ′j+1 > β.

Both the second case and the first case under the additional assumption β ′j+1 ≥ β imply that
αβ satisfies (a). Let us thus focus on the case where α′j+1 < α and β ′j+1 < β. Remembering the
stage of the algorithm, we have β ≤ α′j−1, implying (b).
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18 S. JANSEN ET AL.

FIGURE 4. Schematic illustration of Ai from the proof of Lemma 4.2 for i= 0, 2, 3, 4, 5, 6.

Now let αβ /∈ E(L) be a bond that satisfies (a) or (b). We claim that αβ is compatible with L.
Let i be the index such that αiβi satisfies (a) or (b). Note that in the execution of the algorithm
below Definition 4.3, αβ does not appear as a candidate to be added to the constructed lace up
until the point where αmβm, αm−1βm−1, . . . , αi+1βi+1 have already been added to the partial
lace. At this stage of the algorithm, if αβ satisfies (b), then it is not picked, because the left
endpoint of the bond αiβi has a smaller value (i.e., αi < α). If αβ satisfies (a), however, then
either also αi < α, or αi = α, but αiβi has its right endpoint further to the right (i.e., β < βi,
since the two bonds cannot be equal), and so again, αiβi is picked by the algorithm. �

To prove the second result of Proposition 4.1, we need the following counting lemma, which
may be of independent interest.

Lemma 4.2. (On the number of laces.) Let fi be the ith Fibonacci number with f1 = 0, f2 = 1.
Then

|Lk| = 1+
k∑

i=1

(
k

i

)
fi and, as k→∞, |Lk| ∼ 1√

5

(
3+√5

2

)k

.

Proof. We first choose i vertices in {1, . . . , k} and then count the laces that use exactly
those vertices. To this end, let Ai be the set of laces L with V(L)= {0, . . . , i+ 1} so that every
vertex is the endpoint of at least one stitch. We claim that |Ai| = fi for i≥ 1. Clearly, |A0| = 1,
|A1| = 0, |A2| = 1. See Figure 4 for an illustration.

Let i≥ 3. We now establish the Fibonacci recursion. First, note that the bond incident to 0
(the ‘first’ bond) must always have 2 as the second endpoint. Now, depending on whether
or not the third bond is incident to 2, the remaining lace lives on {1, 2, . . . , i+ 1} or on
{1, 3, 4, . . . , i+ 1}, and so |Ai| = |Ai−1| + |Ai−2|.

The asymptotic behavior follows from the fact that fn ∼�n/
√

5, where �= 1
2

(
1+√5

)
is

the golden ratio. �
We can now work towards finding an explicit expression for h�

λ

( �W; L
)

for a fixed lace. The
next lemma is in the spirit of Observation 3.1 and will help us find probabilistic factors in the
shell function.

Lemma 4.3. (Bipartite graphs and probabilities.) Let Y, A, B, C⊂Rd be finite, disjoint sets.

1. Then ∑
H∈G(A∪C,Y) :
∀y∈Y : y∼A

w(H)=
∏
y∈Y

(−P(A∼ y � C)
)= (−1)|Y|P(∀y ∈ Y : A∼ y � C).

2. Moreover, ∑
H∈G(A∪B∪C,Y) :
∀y∈Y : A∼y∼B

w(H)=
∏
y∈Y

P
(
A∼ y∼ B, y � C

)
.
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The direct-connectedness function in the random connection model 19

3. Lastly, ∑
H∈G(A,Y) :

E(H)�=∅

w(H)=−P(A∼ Y).

Proof. The first part of the statement is rather straightforward. If Y = {y}, then G(A∪C, {y})
is the set of star graphs (with center y). Observe first that

∑
H∈G(A∪C,{y}) : y∼A

w(H)=
( ∑

H′∈G(A,{y}) : y∼A

w(H′)
)( ∑

H′′∈G(C,{y})
w
(
H′′

))
.

The first sum is over all star graphs in G(A, {y}) except the empty one, the second is over all
star graphs in G(C, {y}), and so

∑
H∈G(A∪C,{y}) : y∼A

w(H)=−
(

1−
∏
x∈A

(1− ϕ(y, x))

)∏
x∈C

(1− ϕ(y, x))=−P(A∼ y � C).

It is an easy induction to prove that for general Y , the sum factors into a product over sums
over star graphs. For the second statement, assume again that Y = {y} and observe that

∑
H∈G(A∪B∪C,{y}) :

A∼y∼B

w(H)=
( ∑

H∈G(A∪C,{y}) : y∼A

w(H)

)( ∑
H∈G(B,{y}) : y∼B

w(H)

)

= P(A∼ y∼ B, y � C),

where the last identity is due to independence. The statement easily extends to general Y (again,
the sum factors).

For the third statement, note that we sum over every graph except the empty one. �
Since the explicit expression for h�

λ

( �W; L
)

is a lengthy product of probabilities, we first
introduce some notation to represent the factors of this product compactly. Let A, B be two
subsets of [k+ 1]0. We define the set of all possible direct stitches in H leading to bonds
αβ ∈ E(Ĥ) with α ∈ A, β ∈ B as

ϒ(A, B) := {
xy⊂W : ∃α ∈ A, β ∈ B with α < β − 1 and x ∈ {uα}∪Vα, y ∈ Vβ−1∪{uβ}

}
,

and we write ϒ(A)=ϒ(A, A). We define

qα,β :=
∏

xy∈ϒ([α,β))∪ϒ((α,β])

(1− ϕ(x− y))

and, for α1 < α2 < α3,

qα1,α2,α3 :=
∏

xy∈ϒ([α1+1,α2),[α2,α3))

(1− ϕ(x− y)).

Note that these products encode the sum over all w-weighted graphs on the set of edges
multiplied over.

To lighten notation, for 0≤ α ≤ β ≤ k+ 1, set

[uα]] := {uα} ∪ Vα, [[uβ ] := Vβ−1 ∪ {uβ},
[uα, uβ ] := {uα} ∪ Vα ∪ · · · ∪ Vβ−1 ∪ {uβ}.
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FIGURE 5. Illustration of the induction proof of Lemma 4.4. The lace L is sketched using dashed lines.
The left picture shows the base case m= 1, where u0 = s1 and uk+1 = t1. To the right, the first three
stitches of L are (partially) sketched. The sets C, D are defined as C= [s2, t1)) and D= [[t1].

We extend this notation further: for a, b ∈ {u0, . . . , uk+1}, let (a, b) := [a, b] \ {a, b}, let
[a, b) := [a, b] \ {b}, and let (a, b] := [a, b] \ {a}. We set ((a, b)) := [a, b] \ ([a]]∪ [[b]) and
define sets ((a, b] etc. accordingly.

Moreover, define

Qα,β = Pλ

(
�y ∈ η� s.t. [uα]]∼ y∼ [[uβ ], y � [uα+1, uβ−1]

)
for β ≥ α+ 2. We extend this notation by writing

QA,B =
∏
α∈A

∏
β∈B

Qα,β

for sets of pivotal points A, B; we abbreviate Qa,[b,c] =Q{a},[b,c].
We are now ready to state Lemma 4.4, for which we recall the definition of h�

λ

( �W; L
)

in
(4.9).

Lemma 4.4. (The shell function of a lace.) Let λ≥ 0 and let �⊂Rd be bounded. Let W ⊂Rd

be a core vertex set with pivot decomposition �W = (u0, V0, . . . , uk+1). Let L be a lace with
vertex set [k+ 1]0 and m bonds αiβi, i ∈ [m]. Then, setting αm+1 = k, we have

h�
λ

( �W; L
)= Pλ(η� �←→W)

m∏
i=1

qαi,βi

[
1−Qαi,βi − P([uαi]]∼ [[uβi ])

]

×
m−1∏
i=1

qαi,αi+1,αi+2 Qαi,(βi,k+1]Q(αi,αi+1),(αi+2,k+1]. (4.10)

Moreover, ∑
n≥0

λn

n!
∫

�n

∣∣∣ ∑
H∈〈〈L〉〉:S(H)=�y[n]

w(H)
∣∣∣ d�y[n] ≤ 2me3λ|W|. (4.11)

Proof. We abbreviate η= η�, h= h�
λ , and prove the statement by induction on m.

Base case. Let m= 1, which means that α1 = 0 and β1 = k+ 1. Set A= [u0]], B= [u1, uk],
and C= [[uk+1]. See Figure 5 for an illustration of A, B, C.

Note first that the edge set ϒ([k+ 1]0) \ E(A, C), that is, the possible direct stitches between
points of W except the direct ones between A and C, do not determine membership of H in
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The direct-connectedness function in the random connection model 21

〈〈L〉〉. Any such edge xy may or may not be present, resulting in a factor (1− ϕ(x− y)) that can
be extracted. In total, this produces the factor q0,k+1, and we can restrict to considering graphs
H ∈ 〈〈L〉〉 that do not possess any such edge. The remaining graphs H only have edges that are
incident to A∪C ∪ S(H).

We split this set of remaining graphs H into those that have a direct stitch between A and C
and those that do not. Among the former, the sum over graphs factors into graphs H′ ∈ G(A, C)
(the direct stitches) and graphs H′′ ∈ G(W, S(H)). With Lemma 4.3,

h
( �W; L

)= q0,k+1

⎡
⎢⎢⎢⎢⎢⎣
∑
n≥0

λn

n!
∫

�n

( ∑
H′∈G(A,C):E(H′)�=∅

w(H′)
)⎛
⎜⎜⎜⎝

∑
H′′∈G(W,�y[n]):

yi∼W∀i∈[n]

w
(
H′′

)
⎞
⎟⎟⎟⎠ d�y[n]

+
∑
n≥0

λn

n!
∫

�n

∑
H∈G(W,�y[n]):

deg (yi)≥1∀i∈[n],
∃i:A∼yi∼C

w(H) d�y[n]

⎤
⎥⎥⎥⎥⎥⎦

= q0,k+1

⎡
⎢⎢⎢⎢⎢⎣−P(A∼C)Pλ(η �←→W)+

∑
n≥0

λn

n!
∫

�n

∑
H∈G(W,�y[n]):

deg (yi)≥1∀i∈[n],
∃i:A∼yi∼C

w(H) d�y[n]

⎤
⎥⎥⎥⎥⎥⎦ .

(4.12)

For now the power series are treated as formal power series; convergence is proven later. To
treat the sum in (4.12), we define

S1 := {y : A∼ y∼C}, S2 := {y : C � y∼ (A∪ B)}, and S3 := {y : C∼ y � A}.
With these definitions, we can partition �y= S(H)= S1 ∪ S2 ∪ S3. Moreover, we know that
S1 �=∅. Re-summing and then applying Lemma 4.3, the sum over n in (4.12) becomes∑

n1,n2,n3≥0

λn1+n2+n3

n1!n2!n3!
∫

�n1+n2+n3

∑
H∈〈〈L〉〉:

Si(H)=�yi,[ni]∀i∈[3]

w(H) d
(�y1,[n1], �y2,[n2], �y3,[n3]

)

=
(∑

n≥1

λn

n!
∫

�n

∑
H∈G(A∪B∪C,�y[n]):
∀i∈[n]:A∼yi∼C

w(H) d�y[n]

)(∑
n≥0

λn

n!
∫

�n

∑
H∈G(A∪B,�y[n]):
∀i∈[n]:yi∼(A∪B)

w(H) d�y[n]

)

×
(∑

n≥0

λn

n!
∫

�n

∑
H∈G(B∪C,�y[n]):
∀i∈[n]:yi∼C

w(H) d�y[n]

)

=
(∑

n≥1

λn

n!
( ∫

�

P(A∼ y∼C, y � B)dy

)n
)(∑

n≥0

λn

n!
(
−

∫
�

P(y∼ (A∪ B)) dy

)n
)

×
(∑

n≥0

λn

n!
(
−

∫
�

P(C∼ y � B) dy

)n
)

. (4.13)
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Recognizing the exponential series in the expression above, we can rewrite the probabilities
with respect to P (appearing in the exponents) as probabilities with respect to Pλ associated
to ξ y, e.g., P(y∼ (A∪ B))= Pλ(y∼ (A∪ B) in ξ y). Then we can apply the univariate Mecke
formula (see (2.1) for m= 1) to rewrite (4.13) as(

eEλ[|{y∈η:A∼y∼C,y�B}|] − 1
)

e−Eλ[|{y∈η:y∼(A∪B)}|]e−Eλ[|{y∈η:C∼y�B}|]

=
(

1− e−Eλ[|{y∈η:A∼y∼C,y�B}|])e−Eλ[|{y∈η:y∼(A∪B)}|]e−Eλ[|{y∈η:C∼y�(A∪B)}|]

=(1−Q0,k+1)e−Eλ[|{y∈η:y∼(A∪B∪C)}|].

Since e−Eλ[|{y∈η:y∼(A∪B∪C)}|] = Pλ(η �←→W), we can plug this back into (4.12) and obtain

h
( �W; L

)= Pλ(η �←→W)q0,k+1

(
1−Q0,k+1 − P(A∼C)

)
on the level of formal power series. Now we prove convergence and check that the previous
computational steps are justified not only on the level of formal power series. We first revisit
Equation (4.13). On the left-hand side, let us put absolute values inside the integral (but outside
the sum over shell graphs H). The resulting expression is bounded by the middle part of (4.13),
again with absolute values inside the integral. Each integrand is bounded in absolute value by
a probability; hence it is smaller than or equal to 1. The resulting series are exponential series
and, in particular, absolutely convergent. As a consequence, Equation (4.13) is justified and the
last sum in (4.12) is bounded as

∑
n≥0

λn

n!
∫

�n

∣∣∣∣∣∣∣∣∣∣∣
∑

H∈G(W,�y[n]):
deg (yi)≥1∀i∈[n],
∃i:A∼yi∼C

w(H)

∣∣∣∣∣∣∣∣∣∣∣
d�y[n]

≤ eEλ[|{y∈η:A∼y∼C,y�B}|]eEλ[|{y∈η:y∼(A∪B)}|]eEλ[|{y∈η:C∼y�B}|]

≤ eEλ[|{y∈η:y∼A}|]eEλ[|{y∈η:y∼(A∪B)}|]eEλ[|{y∈η:y∼C}|]

≤ e2λ|W|, (4.14)

where for the last inequality we use the fact that the expected number of direct neighbors of any
fixed element of W with respect to η is given by λ

∫
ϕ(x) dx, as well as the rescaling introduced

in Section 2.3 ensuring that
∫

ϕ(x) dx= 1; compare this bound to the one used in (3.4). For the
other contribution to h

( �W; L
)
, we notice that

∑
n≥0

λn

n!
∫

�n

∣∣∣∣∣∣∣∣∣
( ∑

H′∈G(A,C):E(H)�=∅
w(H′)

)⎛
⎜⎜⎜⎝

∑
H′′∈G(W,�y[n]):

yi∼W∀i∈[n]

w
(
H′′

)
⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

d�y[n]

≤ P(A∼C) eEλ[|{y∈η:y∼W}|] ≤ eλ|W|, (4.15)

by the same argument as in (4.14).
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Combining (4.14) and (4.15) with (4.12) and 0≤ q0,k+1 ≤ 1, we deduce

∑
n≥0

λn

n!
∫

�n

∣∣∣∣∣∣
∑

H∈〈〈L〉〉:S(H)=�y[n]

w(H)

∣∣∣∣∣∣ d�y[n] ≤ eλ|W| + e2λ|W| ≤ 2e2λ|W| <∞.

Inductive step. For the inductive step, let m > 1. We write the lace L in terms of its vertices
(si, ti) in W (that is si = uαi and ti = uβi ) and let L′ be the lace on W ′ := W \ [s1, s2) obtained
from L by deleting the first stitch. We note that if H ∈ 〈〈L〉〉, then H[[s2, uk+1]] ∈ 〈〈L′〉〉. Observe
that

h
( �W; L

)= h
( �W ′; L′

)∑
n≥0

λn

n!
∫

�n

∑
H∈G(V0,...,Vα3−1,�y[n]) :

H⊕L′∈〈〈L〉〉

w(H) d�y[n]. (4.16)

Again we first prove (4.10) and carry out computations on the level of formal power series;
we prove convergence (and thus (4.11)) at the end. We can apply the induction hypothesis
to h( �W ′; L); it remains to deal with the second factor. We partition the vertices in [s1, s3] as
A= [s1]], B= ((s1, s2), C= [s2, t1)), D= [[t1], and E= (t1, s3] (see Figure 5). If m= 2, we let
E= (t1, uk].

The graphs summed over in (4.16) must satisfy the following restraints: there must be at
least one direct or indirect stitch between A and D, and there cannot be any (direct or indirect)
edge between A and E. In particular, the remaining direct stitches may or may not be there, and
thus can be extracted as the factor qα1,α2,α3 .

We partition S(H)=∪4
i=1Si, where

S1 = {y : A∼ y∼D, N(y)⊆ [s1, t1]}, S2 = {y : A∼ y∼C, N(y)⊆ [s1, t1))},
S3 = {y : ∅ �=N(y)⊆ [s1, s2)}, S4 = {y : B∼ y∼ (C ∪D∪ E), N(y)⊆ ((s1, s3]}.

Again, we intend to split the sum over graphs into those that have at least one direct stitch
between A and D, and those that do not. We can thus rewrite the second factor in (4.16) as

qα1,α2,α3

∑
n≥0

λn

n!
∫

�n

∑
H∈G(V0,...,Vα3−1,�y[n]):

H⊕L′∈〈〈L〉〉,
∀e∈E(H):e∩(A∪D∪�y[n])�=∅

w(H) d�y[n]

= qα1,α2,α3

4∏
i=2

( ∑
ni≥0

λni

ni!
∫

�ni

∑
H∈G(W,�yi,[ni]):

S(H)=Si

w(H) d�y[i,[ni]

)

×
[
− P(A∼D)

∑
n≥0

λn

n!
∫

�n

∑
H∈G([s1,s3],�y[n]):

yi∼A∪B∀i∈[n]

w(H) d�y[n]

+
∑
n≥1

λn

n!
∫

�n

∑
H∈G([s1,s3],�y[n]):

yi∼A∪B∀i∈[n]

w(H) d�y[n]

]

= qα1,α2,α3

(
−P(A∼D)eEλ[|{y∈η:y∈S1}|] + eEλ[|{y∈η:y∈S1}|] − 1

)
× exp

{
Eλ[|{y ∈ η:y ∈ S2}|]−Eλ[|{y ∈ η:y ∈ S3}|]+Eλ[|{y ∈ η:y ∈ S4}|]

}
, (4.17)
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where the last identity was obtained using Lemma 4.3. Note that the factor h
( �W ′; L′

)
con-

tains the factor P(η �←→ [s2, uk+1])= e−Eλ[|{y∈η:y∼[s2,uk+1]}|]. Together with this factor, (4.17)
equals

exp
{
Eλ

[− |{y ∈ η : (A∪ B∼ y∼ [s2, uk+1]}| + |{y ∈ η : A∼ y∼D, y � (B∪C)}|
+ |{y ∈ η : A∼ y∼C, y � B}| + |{y ∈ η : B∼ y∼ (C ∪D∪ E)}|]} (4.18)

× Pλ(η �←→W)
(
1−QA,D − P(A∼D)

)
.

It remains to rewrite the argument in the expectation of the exponent in (4.18). Note that

− |{y ∈ η : A∼ y∼ [s2, uk+1], y � B}| − |{y ∈ η : B∼ y∼ [s2, uk+1]}|
+ |{y ∈ η : A∼ y∼ (C ∪D), y � B}| + |{y ∈ η : B∼ y∼ (C ∪D∪ E)}|

=− |{y ∈ η : A∼ y∼ (t1, uk+1], y � (B∪C ∪D)}|
− |{y ∈ η : B∼ y∼ (s3, uk+1], y � (C ∪D∪ E)}|.

This gives two exponential terms. The first is

exp
{
−Eλ

[∣∣{y ∈ η : [uα1 ]]∼ y∼ (uβ1 , uk+1], y �
((

uα1 , uβ1

]}∣∣]}

=
k+1∏

j=β1+1

exp
{
−Eλ

[∣∣{y ∈ η : [uα1 ]]∼ y∼ [[uj], y �
((

uα1 , uj
))}∣∣]}

=Qα1,(β1,k+1].

Similarly, the second exponential term equals Q(α1,α2),(α3,k+1].
Again, we prove convergence and justify the previous computational steps. Revisiting the

left-hand side of (4.17), we insert absolute values inside the integral (and outside the sum over
graphs H). As in the base case, this is bounded by the middle part of (4.17) with absolute values
in the integrals, and each integrand is a probability. With the Mecke equation, we obtain

∑
n≥0

λn

n!
∫

�n

∣∣∣∣ ∑
H∈G(V0,...,Vα3−1,�y[n]):

H⊕L′∈〈〈L〉〉,
∀e∈E(H):e∩(A∪D∪�y[n])�=∅

w(H)

∣∣∣∣ d�y[n]

≤ 2 exp
{
Eλ[|{y ∈ η : y ∈ S1}|]+Eλ[|{y ∈ η : y ∈ S2}|]
+Eλ[|{y ∈ η : y ∈ S3}|]+Eλ[|{y ∈ η : y ∈ S4}|]

}
≤ 2e3λ|A∪B|,

arguing as in (4.14) for the last inequality.
Note that by the induction hypothesis, the term h

( �W ′; L′
)

with absolute values in the

respective integrals is bounded by 2m−1e3λ|W ′|. Since A∪ B and W ′ are disjoint, this proves
(4.11). �

Proof of Proposition 4.1. Again, we abbreviate η= η� and h= h�
λ . First, consider k= 0,

i.e., pivot decompositions with no pivotal points. Then there are no direct stitches, and we have

h(m)( �W, �y[m]
)= (−1)m

m∏
i=1

P(yi ∼W), h
( �W)= Pλ(η �←→W).
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Moreover, ∑
m≥0

λm

m!
∫

�m
|h(m)( �W, �y[m]

)| d�y[m] = eEλ[|{y∈η:y∼W}|] ≤ eλ|W|,

using the same bound as in (4.15). Since this proves the proposition for k= 0, we turn to k≥ 1
and we first prove (4.7).

We rewrite h
( �W)

by explicitly writing out the sum over laces L in terms of the endpoints of
their stitches in W (note that any lace can have at most k stitches). We first exhibit this for k= 2,
where �W = (u0, V0, u1, V1, u2, V2, u3) and there are two different laces. With the abbreviation
Q̃i,j =Qi,j + P([ui]]∼ [[uj]),

h
( �W)= h

( �W; L1
)+ h

( �W; L2
)= Pλ(η �←→W)

(
q0,3

(
1− Q̃0,3

)+Q0,3
(
1− Q̃0,2

)(
1− Q̃1,3

))
= Pλ(η �←→W)

3∑
β1=2

q0,β1

(
1− Q̃0,β1

)[
1{β1=3} + 1{β1<3}

β1−1∑
α2=1

Q0,3
(
1− Q̃α2,3

)]
.

(4.19)

Clearly, this is unnecessarily complicated for k= 2, as the sum over α2 contains only one term
and q0,2 = 1. However, this turns out to be convenient for general k. We use the convention
that Q[a,b],∅ =Q∅,[a,b] = 1. Carefully rearranging the sum over all laces yields

h
( �W)= ∑

L∈L
( �W) h

( �W; L
)= Pλ(η �←→W)

k+1∑
β1=2

q0,β1

(
1− Q̃0,β1

)
Q0,(β1,k+1]

×
[
1{β1=k+1} +

β1−1∑
α2=1

k+1∑
β2=β1+1

qα2,β2

(
1− Q̃α2,β2

)
Q(0,α2],(β2,k+1]Q(0,α2),β2

×
[
1{β2=k+1} +

β2−1∑
α3=β1

k+1∑
β3=β2+1

qα3,β3

(
1− Q̃α3,β3

)
qα1,α2,α3

Q(α2,α3],(β3,k+1]Q(α2,α3),β3 Q(0,α2),(α3,β2)

×
[
1{β3=k+1} +

β3−1∑
α4=β2

k+1∑
β4=β3+1

qα4,β4

(
1− Q̃α4,β4

)
qα2,α3,α4

Q(α3,α4],(β4,k+1]Q(α3,α4),β4 Q(α2,α3),(α4,β3) × · · ·

×
[
1{βk−1=k+1} + 1{βk−1<k+1}

βk−1−1∑
αk=βk−2

qαk,k+1
(
1− Q̃αk,k+1

) ∏
j=k,k+1

qαj−2,αj−1,αj

Q(αk−1,αk),k+1Q(αk−2,αk−1),(αk,βk−1)

]
· · ·

]]]
.

Note that if β = k+ 1 for some i, then the double sum following the corresponding indicator
breaks down to 0. Also, only the innermost bracketed term contains two factors of qa,b,c.

We now show that, starting with the innermost square brackets, the bracketed terms are
bounded by 1 in absolute value.

To lighten notation, we write the innermost sum as
∑b2−1

α=b1
R(α). We split the factor

1− Q̃αk,k+1 = (1−Qαk,k+1)− P([uαk]∼ [[uk+1]).
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This yields two sums
b2−1∑
α=b1

R(α)=
b2−1∑
α=b1

R′(α)−
b2−1∑
α=b1

R′′(α),

where R′ and R′′ are both nonnegative. Now, with the estimate Q(αk−1,α),k+1 ≤Q[βk−2,α),k+1 =
Q[b1,α),k+1, we can bound

b2−1∑
α=b1

R′(α)≤
b2−1∑
α=b1

(1−Qα,k+1)Q[b1,α),k+1

= (1−Qb1,k+1)+Qb1,k+1

b2−1∑
α=b1+1

(1−Qα,k+1)Q[b1+1,α),k+1, (4.20)

which is readily proven to be at most 1 by induction. Moreover,

b2−1∑
α=b1

R′′(α)≤
b2−1∑
α=b1

qα,k+1P([uα]]∼ [[uk+1]). (4.21)

The above summands can be rewritten as the probability of the event that the direct stitch
(α, k+ 1) is present, while all direct stitches (j, k+ 1) for j ∈ (α, k+ 1] are not. Hence, these
are disjoint events for different values of α, and so the sum is at most 1.

In total, we rewrote
∑b2−1

α=b1
R(α) as the difference of two nonnegative values, both at most 1,

proving our claim.
To deal with the summands for 2≤ i < k, we write the double sum as

b2−1∑
α=b1

k+1∑
β=b2+1

R(α, β)

and split the term 1− Q̃αi,βi = (1−Qαi,βi )− P([uαi]∼ [[uβi ]) so that

b2−1∑
α=b1

k+1∑
β=b2+1

R(α, β)=
b2−1∑
α=b1

k+1∑
β=b2+1

R′(α, β)−
b2−1∑
α=b1

k+1∑
β=b2+1

R′′(α, β) (4.22)

for nonnegative summands R′, R′′. We prove a bound on the sum over R′(α, β) by induction on
k− b2. If b2 = k, then the bound is the same as for the bound (4.20). For b2 < k, we first bound
Q(αi,α],(β,k+1] ≤Q[b1,α],(β,k+1] and then extract the summand for β = k+ 1, yielding

b2−1∑
α=b1

k+1∑
β=b2+1

R′(α, β)≤
b2−1∑
α=b1

k+1∑
β=b2+1

(1−Qα,β )Q[b1,α],(β,k+1]Q[b1,α),β

≤
b2−1∑
α=b1

(1−Qα,k+1)Q[b1,α),k+1

+Q[b1,b2−1],k+1

b2−1∑
α=b1

k∑
β=b2+1

(1−Qα,β )Q[b1,α],(β,k]Q[b1,α),β .

(4.23)
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By the induction hypothesis, the double sum in (4.23) is at most 1. Therefore,

b2−1∑
α=b1

k+1∑
β=b2+1

R′(α, β)≤
b2−2∑
α=b1

(1−Qα,k+1)Q[b1,α),k+1

+ (1−Qb2−1,k+1)Q[b1,b2−1),k+1 +Qb2−1,k+1Q[b1,b2−1),k+1

=
b2−2∑
α=b1

(1−Qα,k+1)Q[b1,α),k+1 +Q[b1,b2−2],k+1

= 1,

where the last identity is now an easy induction.
Turning to the second summand in (4.22), by the same argument used to treat (4.21), the

summands R′′(α, β) are probabilities of events which are disjoint for different values of (α, β),
and so they sum to at most 1.

The observation that the bracket term for i= 1 is handled analogously finishes the proof
of (4.7).

We proceed to prove (4.8) for k > 1. By combining Lemma 4.2 with Lemma 4.4, we obtain

∑
m≥0

λm

m!
∫

�m

∣∣h(m)( �W, �y[m]
)∣∣ d�y[m] ≤

∑
L∈Lk

∑
m≥0

λm

m!
∫

�m

∣∣∣ ∑
H∈〈〈L〉〉:S(H)=�y[m]

w(H)
∣∣∣ d�y[m]

≤ 1√
5

(
3+√5

2

)k

2ke3λ|W|.

Using the bound k≤ |W| finishes the proof. �
Lemma 4.5. (Thermodynamic limit of the shell function.) For every λ≥ 0, the pointwise limit

lim
�↗Rd

h�
λ

( �W)= hλ

( �W)
along Rd-exhausting sequences exists.

Proof. Let (�n)n∈N be an Rd-exhausting sequence. For fixed �W = (u0, V0, . . . , uk+1), note
that

h�n
λ

( �W)= ∑
L∈Lk

h�n
λ

( �W; L
)
.

For each lace L, the limit
hλ

( �W; L
)= lim

n→∞ h�n
λ

( �W; L
)

exists and does not depend on the precise choice of Rd-exhausting sequence. This is clear from
the representation for h�

λ

( �W; L
)

proven in Lemma 4.4. In particular, h�
λ

( �W; L
)

is given as the
finite product of �-independent factors and factors that describe the probability of certain point
processes containing no points (namely, Pλ(η� �←→W) and the factors Qi,j). As probabilities
that are decreasing in the volume, the latter admit a �↗Rd limit. It follows that the limit of
the shell function exists as well and is given by

hλ

( �W)= ∑
L∈Lk

hλ

( �W; L
)
.

�
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4.4. The direct-connectedness function in infinite volume

In this section, we consider the limit lim�↗Rd g�
λ with g�

λ as in (4.6) and give suffi-
cient conditions under which it exists, thereby proving the two convergence statements from
Theorem 1.1.

The candidate limit is given by the analogue of (4.6) with � replaced by Rd; the existence
of hRd

λ ≡ hλ has been checked in Lemma 4.5. Thus,

gλ(x1, x2)=
∞∑

r=0

λr

r!
∫

(Rd)r

∑
�W

⎛
⎜⎝ ∑

G∈G �W
core

w±(G)

⎞
⎟⎠ hλ

( �W)
d�x[3,r+2], (4.24)

where the inner sum is over core graphs G on �x[r+2] with pivot decomposition �W, i.e., over
(+)-connected graphs G on �x[r+2] with PD+(x1, x2, G)=PD±(x1, x2, G)= �W. Remember the
quantities 0 < λ̃∗ ≤ λ∗ introduced before Theorem 1.1. We will see in (4.25) that the sum over
core graphs for a given pivot decomposition is a probability, hence in particular nonnegative.

Theorem 4.1. (The thermodynamic limit of g�
λ : pointwise convergence.) If λ < λ∗, then

∞∑
r=0

λr

r!
∫

(Rd)r

∑
�W

⎛
⎜⎝ ∑

G∈G �W
core

w±(G)

⎞
⎟⎠ ∣∣hλ

( �W)∣∣ d�x[3,r+2] <∞

for all x1, x2 ∈Rd. Moreover, for every Rd-exhausting sequence (�n)n∈N, we have the
pointwise convergence

lim
n→∞ g�n

λ (x1, x2)= gλ(x1, x2)

with gλ given in (4.24) (equivalently, Equation (4.6) with � replaced by Rd).

Theorem 4.2. (Integrability and convergence in the L1-norm.) If λ < λ̃∗, then for all x1 ∈Rd,

∫
Rd
|gλ(x1, x2)| dx2 ≤

∞∑
r=0

λr

r!
∫

Rd

( ∫
(Rd)r

∑
�W

( ∑
G∈G �W

core

w±(G)

)∣∣hλ

( �W)∣∣ d�x[3,r+2]

)
dx2 <∞.

Proof of Theorem 4.1. We consider a summand in (4.24) for fixed �W and set x1 = u0 as
well as x2 = uk+1. Let �W = (u0, V0, . . . , Vk, uk+1). Remember Vi = {ui} ∪ Vi ∪ {ui+1}. A first
important observation is the fact that the weight of a core graph with pivot decomposition �W
factors into the product over the k(±)-subgraphs induced by the vertex sets Vi. The sum over
core graphs thus factors as

∑
G∈C+(W) :

PD+(G)=PD±(G)= �W

w±(G)=
k∏

i=0

( ∑
H∈D+

ui,ui+1 (Vi)

w±(H)

)

=
k∏

i=0

P
(
ϕ(Vi) ∈Dui,ui+1

)

= P

(
k⋂

i=0

{ϕ(Vi) ∈Dui,ui+1}
)

. (4.25)
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Hence, the core can be written as a probability. Combining this with Proposition 4.1,
we get⎛
⎜⎜⎜⎝

∑
G∈C+(W) :

PD+(G)=PD±(G)= �W

w±(G)

⎞
⎟⎟⎟⎠

∣∣h�
λ

( �W)∣∣≤ Pλ(η� �←→W)P

(
k⋂

i=0

{ϕ(Vi) ∈Dui,ui+1}
)

= Pλ

({
C
(
u0, ξW

�

)=W
}
∩

k⋂
i=0

{
ξW
�

[
Vi

] ∈Dui,ui+1

})
.

Above, we used independence as well as the fact that for V ⊆W, the two random graphs
ϕ(V) and ξW [V] are identical in distribution. The inequality holds true for bounded � as well
as �=Rd.

We now go back to (4.6) and rearrange the sum by first summing over the number of pivotal
points k, giving

∞∑
r=0

λr

r!
∫

�r

∑
�W

( ∑
G∈G �W

core

w±(G)

)∣∣h�
λ

( �W)∣∣ d�x[3,r+2]

=
∑
k≥0

λk
∑
n≥0

λn

n!
∫

�k+n

∑
�W

( ∑
G∈G �W

core

w±(G)

)∣∣h�
λ

( �W)∣∣ d�v[n] d�u[k]. (4.26)

In the second term, the sum is over pivot decompositions �W = (u0, V0, . . . , Vk, uk+1) where
u0 = x1, uk+1 = x2, and ∪k

i=0Vi = {v1, . . . , vn}.
When rewriting the integrand of (4.26) as a probability, the event that ui and ui+1 are 2-

connected for i ∈ [k]0 in disjoint vertex sets Vi becomes the event that these connection events
occur disjointly within W; see Section 2 and recall the definition (2.2). The inner series can
thus be bounded as

∑
n≥0

λn

n!
∫

�n

∑
�W

( ∑
G∈G �W

core

w±(G)

)
|h�

λ

( �W)| d�v[n]

≤
∑
n≥0

λn

n!
∫

�n
Pλ

({
C
(

u0, ξ
�u[k],�v[n]
�

)
= �u[k] ∪ �v[n]

}

∩
({

u0 ⇐⇒ u1 in ξu0,u1,�v[n]
} ◦ · · · ◦ {uk ⇐⇒ uk+1 in ξuk,uk+1,�v[n]

}))
d�v[n]

= Pλ

({
u0 ⇐⇒ u1 in ξu0,u1

} ◦ · · · ◦ {uk ⇐⇒ uk+1 in ξuk,uk+1
})

, (4.27)

where the identity is due to the Mecke equation and the fact that by summing over �v, we were
partitioning over what the joint cluster of �u[0,k+1] is. We can now use the BK inequality ([10,
Theorem 2.1]) to bound (4.27) by

k∏
i=0

Pλ

(
ui ⇐⇒ ui+1 in ξ

ui,ui+1
�

)
≤

k∏
i=0

σλ(ui+1 − ui). (4.28)
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Inserting this back into (4.26),

∑
k≥0

λk
∑
n≥0

λn

n!
∫

�k+n

∑
�W

( ∑
G∈G �W

core

w±(G)

)∣∣h�
λ

( �W)∣∣ d�v[n] d�u[k]

≤
∑
k≥0

λkσ
∗(k+1)
λ (x2 − x1). (4.29)

The last expression is finite for λ < λ∗, by the definition of λ∗. The pointwise convergence of
g�n
λ to gλ follows by dominated convergence. �

Proof of Theorem 4.2. If we integrate over x2 in (4.29), this yields the upper bound

λ−1
∑
k≥1

(
λ

∫
σλ(x) dx

)k

,

which is finite for λ < λ̃∗, by definition of λ̃∗. The theorem follows by Fubini–Tonelli and the
triangle inequality. �

5. The Ornstein–Zernike equation

Here we complete the proof of Theorem 1.1. In view of Theorems 4.1 and 4.2, it remains to
prove that the expansion (4.24) is indeed equal to the direct-connectedness function given by
the OZE (1.2). This is proven by showing first that g�

λ from Definition 4.2 fulfills the OZE in
finite volume and then passing to the limit �↗Rd.

The idea of the proof in finite volume is basically well known; the same proof works for the
OZE for the total correlation function.

Proposition 5.1. (The Ornstein–Zernike equation in finite volume.) Let �⊂Rd be bounded
and let x1, x2 ∈�. Then

τ�
λ (x1, x2)= g�

λ (x1, x2)+ λ

∫
�

g�
λ (x1, x3)τ�

λ (x3, x2) dx3.

Proof. We drop the �-dependence in the superscript of τ�
λ and g�

λ . Thanks to
Proposition 3.1, we can re-sum the series expansion for τλ at will. Given a pivot decomposition
�W = (u0, V0, . . . , uk+1) of an arbitrary core graph G with the vertex set W, define

h̄(m)
λ

( �W, �y[m]
)

:=
∑

H∈G(V1,...,Vk,�y[m]):

G⊕H∈C±u0,uk+1

(
W∪�y[m]

)
w(H), h̄λ

( �W)
:=

∑
m≥0

λm

m!
∫

�m
h̄(m)
λ

( �W, �y[m]
)

d�y[m],

(5.1)

in analogy to the shell function hλ in (4.5) (just like the latter, h̄λ only depends on G through
its pivot decomposition �W). To be more precise, the shell function hλ is recovered from h̄λ by
summing over a smaller subset of graphs H in (5.1), adding the restriction that G⊕H shall not
contain (±)-pivot points for the u0–uk+1 connection. Note that

0≤ h̄λ

( �W)= e−Eλ[|{y∈η:y∼W}|] ∏
x,y∈W:�i∈[k]0:{x,y}⊆V̄i

(1− ϕ(x− y))
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FIGURE 6. The schematic representation of a (±)-graph G⊕H in C±u0,u4
(W ∪ �y[3]) illustrates the factor-

ization of the graph weight from Equation (5.2): the edges of H are explicitly depicted in the picture,
while the core graph G is represented by its pivot decomposition (u0, V0, . . . , u4). The vertices �y[3] are
depicted by squares, ordered from left to right. The first (±)-pivot point for the u0–u4 connection in
G⊕H is u2. Thus, the weight of the simple graph H factors into the weight of its subgraph induced by
�W ′

2 ∪ �y[1] = {u0, u1, u2} ∪ V0 ∪ V1 ∪ {y1} (hatched on the left) and the weight of the subgraph induced by
�W ′′

2 ∪ �y[3]\[1] = {u3, u4} ∪ V2 ∪ V3 ∪ {y2, y3} (crosshatched on the right).

and that when replacing hλ with h̄λ in the right-hand side of (4.6), we get τλ instead of gλ. We
can split the sum h̄(m)

λ

( �W, �y[m]
)= h(m)

λ

( �W, �y[m]
)+ f (m)

λ

( �W, �y[m]
)
, where f (m)

λ contains the sum
over those graphs H such that G⊕H does have (±)-pivotal points with respect to the u0–uk+1
connection. We set

fλ
( �W)

:=
∑
m≥0

λm

m!
∫

�m
f (m)
λ

( �W, �y[m]
)

d�y[m].

Assume now that uj for j ∈ [k] is the first pivotal point of G⊕H ∈ C±x1,x2

(
W ∪ �y[m]

)
.

Furthermore, let �W ′
j := (

u0, V0, . . . , uj
)
, let �W ′′

j := (uj, Vj, . . . , uk+1), and let y[s] for s≤m

be the points adjacent to �W ′
j (possibly after reordering the vertices). The weight of such a

graph H then factors into the product of the weights of two graphs, namely the subgraphs of H
induced by �W ′

j ∪ �y[s] ⊂ V(H) and by �W ′′
j ∪ �y[m]\[s] ⊂ V(H); see Figure 6. That is,

w(H)=w
(
H
[ �W ′

j ∪ �y[s]
])

w
(
H
[ �W ′′

j ∪ �y[m]\[s]
])

. (5.2)

Moreover, we see that H
[ �W ′

j ∪ �y[s]
]⊕G

[
W ′

j

]
does not contain (±)-pivot points (for the u0–uj

connection) and H
[ �W ′′

j ∪ �y[m]\[s]
]⊕G

[
W ′′

j

]
is in general just (±)-connected.

By partitioning over j, we thus obtain the decomposition

fλ
( �W)= k∑

j=1

hλ

( �W ′
j

)
h̄λ

( �W ′′
j

)
.

Since both hλ and h̄λ converge absolutely, so does fλ, justifying all re-summations. Letting
x1 = u0 and x2 = uk+1,

(τλ − gλ)(x1, x2)=
∑
k≥1

λk
∑

n0,...,nk≥0

λ
∑k

i=0 ni∏k
i=0 ni!

∫
�

k+∑k
i=0 ni

(
k∏

i=0

P
(
ϕ(V̄i) ∈Dui,ui+1 (V̄i)

))

×
(

k∑
j=1

hλ

( �W ′
j

)
h̄λ

( �W ′′
j

)) k∏
i=0

d�vi,[ni] d�u[k]
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=
∑

j≥1,k≥0

λj+k
∫

�

∑
n0,...,nj+k≥0

λ
∑j+k

i=0 ni∏j+k
i=0 ni!

[ ∫
�

j−1+∑j−1
i=0 ni

j−1∏
i=0

P
(
ϕ(V̄i) ∈Dui,ui+1 (V̄i)

))

× hλ

( �W ′
j

) j−1∏
i=0

d�vi,[ni] d�u[j−1]

]

×
[ ∫

�
k+∑j+k

i=j ni

j+k∏
i=j

P
(
ϕ(V̄i) ∈Dui,ui+1 (V̄i)

))

× h̄λ

( �W ′′
j

) j+k∏
i=j

d�vi,[ni] d�u[j+1,j+k]

]
duj

= λ

∫
�

gλ(x1, u)τλ(u, x2) du.

The re-summation with respect to j and k is justified as the resulting series converges for λ < λ∗
even when we put hλ in absolute values. �

We can now extend the result of Proposition 5.1 to �↗Rd and thus prove that the expan-
sion (4.24) is indeed equal to the direct-connectedness function for λ < λ∗, finalizing the proof
of our main result.

Proof of Theorem 1.1. We have

τλ(x1, x2)= lim
�↗Rd

τ�
λ (x1, x2)

= lim
�↗Rd

g�
λ (x1, x2)+ λ lim

�↗Rd

∫
Rd

g�
λ (x1, x3)1�(x3)τ�

λ (x3, x2) dx3, (5.3)

where the first equality holds by the continuity of probability measures along sequences of
increasing events and the second one by Proposition 5.1.

Note that the integrand in (5.3) is bounded uniformly in � by

Cτλ(x3, x2),

where C= supy∈Rd
∑

k λkσ
∗(k+1)
λ (y) is a constant obtained in (4.29). Since τλ is integrable for

all λ < λc, the theorem follows by dominated convergence. �

6. Discussion

6.1. Connections to percolation on Gibbs point processes

The Ornstein–Zernike equation gets its name from the seminal paper [20] and has since been
a well-known formalism in liquid-state statistical mechanics. It relates the total correlation
function to the direct correlation function and it naturally connects to power series expansions
of these correlation functions (see [6, 23, 24]; the terminology is not the same in all of these
references).

The correlation functions admit graphical expansions that also consist of connected graphs.
It was observed [11] that a similar formalism can be formulated for the pair-connectedness
function, and a key reference for this is [6]. The pair-connectedness function is deemed part
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of the pair-correlation function. The connected graphs appearing in the expansion of the latter
are referred to as ‘mathematical clusters’, and they correspond to our (±)-connected graphs.
Isolating the (+)-connected components within these graphs yields the ‘physical clusters’, and
the graphs in which x1 and x2 lie in the same physical cluster make up the expansion for
τλ(x1, x2). In the following, we elaborate on this.

The percolation models considered in the physics literature are mostly based not on a PPP
(Stell calls the Poisson setup random percolation [24]), but on a Gibbs point process (called
correlated percolation in the language of Stell). (The denomination ‘random percolation’ for
the Poisson setup feels quite misleading for probabilists; but it reflects language commonly
adopted across physics, with ‘random’ understood as ‘completely random’ in the sense of
completely random measures [13], a class comprising the PPP.)

To define the latter, consider a nonnegative pair potential v : Rd →R≥0 and some finite
volume �. Let N(�) be the set of finite counting measures on � and let μ ∈N(�). Then the
energy of {x1, . . . , xn} under the boundary condition μ is

H({x1, . . . , xn} |μ)=
∑

1≤i<j≤n

v
(
xi − xj

)+ n∑
i=1

∑
y∈μ

v(xi − y).

Let f : N(�)→R be bounded. We define a probability measure as

Ez[f ] := 1

�(z)

∑
n≥0

zn

n!
∫

�n
f ({x1, . . . , xn})e−H({x1,...,xn}) d�x[n],

where the partition function �(z) is such that Ez[1]= 1 and z ∈R≥0 is called the activity. If we
denote by η a random variable with law Ez, then η is a point process. Note that we recover the
homogeneous PPP with intensity λ= z by setting v≡ 0.

We can define the RCM ξ on this general point process, and we denote its probability
measure by Pz,ϕ . We furthermore define the (one-particle) density as

ρ1(x)= zEz
[
e−H({x}|η)]= ρ,

and we define the pair-correlation function as

ρ2(x, y)= z2Ez
[
e−H({x,y}|η)].

Again, in the case of a homogeneous PPP with intensity λ= z, we have ρ = z and ρ2 = z2.
Defining the pair-connectedness function as

τz,ϕ(x, y) := Ez,ϕ
[
e−H({x,y}|η)1{x←→y in ξ x,y}

]
,

we can decompose

ρ2(x, y)= z2τz,ϕ(x, y)+ z2Ez,ϕ
[
e−H({x,y}|η)1{x �←→y in ξ x,y}

]
.

In [6], Coniglio et al. define the pair-connectedness function as τ̃z,ϕ =
(
z2/ρ2

)
τz,ϕ .

The function τ̃z,ϕ has a density expansion (note that τz,ϕ is better suited for activity
expansions) that can be found in [6, Equation (12)], which can be obtained from the den-
sity expansion of the pair-correlation function: the latter is obtained by expanding the Mayer
f -functions f (x, y)= e−v(x,y) − 1 in the partition function, which is the starting point of a cluster
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expansion. Splitting the Mayer f -function as f = f+ + f ∗ with f+ = e−v(x,y)ϕ(x− y) and exe-
cuting the same expansion for the correlation function ‘doubles’ every edge into a (+)-edge
and a (∗)-edge. Only summing over graphs in which x and y are connected by (+)-edges yields
the pair-connectedness function.

In general, the graphs appearing in the density expansion are a subset of those in the activity
expansion, namely the ones without articulation points (articulation points were defined after
Proposition 3.1). In the case of a homogeneous PPP, we have λ= z= ρ, and so activity and
density expansion coincide (and the graphs with articulation points cancel out). Moreover,
f+(x, y)=−f ∗(x, y)= ϕ(x− y), and the graphs summed over in the expansion become the
(±)-graphs, yielding the expansion (3.1) for τλ.

It is an interesting question which ideas of this paper can be generalized to RCMs based
on Gibbs point processes. While some aspects generalize without much effort, the crucial
difference lies in the fact that the weight of graphs showing up in expansions for Gibbs point
processes also encodes the pair interaction induced by the potential v. To recover probabilistic
interpretations for terms after performing re-summations and bounds is therefore much more
delicate.

6.2. Connections to Last and Ziesche

In [15], Last and Ziesche use a Margulis–Russo-type formula to prove analyticity of τλ in
presumably the whole subcritical regime. Moreover, they show the existence of some λ0 > 0
(which is not quantified) such that both τλ and gλ have an absolutely convergent graphical
expansion in [0, λ0) that seems closely related to the ones discussed here. We want to illustrate
how to relate the respective expressions.

The two-point function. Last and Ziesche show that τλ(x1, x2) is equal to

∑
n≥0

λn

n!
∫ ∑

J⊂[3,n+2]

(−1)n−|J|P
(
x1 ←→ x2 in ϕ

(�xJ∪{1,2}
)
, ϕ

(�x[n+2]
)

is connected
)

d�x[3,n+2].

(6.1)

We show that the above integrand is the same as the one in (3.1). We can rewrite the one in
(6.1) as

E

[
1{

ϕ

(
�x[n+2]

)
is connected

} ∑
J⊂[n+2]

(−1)n−|J|1{
x1←→x2 in ϕ (�xJ )

}]. (6.2)

Note that now, any nonvanishing J needs to contain {1, 2}. We are now going to observe some
cancellations. For a fixed graph G ∈ C

(�x[n+2]
)
,

∑
J⊆[n+2]

(−1)n−|J|1{x1←→x2 in G[�xJ ]} =
∑

I,J⊆[n+2]

(−1)n−|J|1{{1,2}⊆I⊆J}1{C(x1,G[�xJ ])=�xI }

=
∑

I,J⊆[n+2]

(−1)n−|J|1{{1,2}⊆I⊆J}1{G[�xI ] connected}1{∀j∈J\I:xj��xI }

=
∑

{1,2}⊆I⊆[n+2]

(−1)n−|I|1{G[�xI ] connected}

×
∑

J⊆[n+2]\I
(−1)|J|1{∀j∈J:xj��xI }. (6.3)
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Note that for given G and I, defining I(G, I)= {j ∈ [n+ 2] \ I : xj � �xI}, we can rewrite∑
J⊆[n+2]\I

(−1)|J|1{∀j∈J:xj��xI} =
∑

J⊆I(G,I)

(−1)|J|. (6.4)

The only case for which (6.4) does not vanish is when I(G, I)=∅. We can therefore rewrite
(6.3) as∑
J⊆[n+2]

(−1)n−|J|1{
x1←→x2 in G[�xJ ]

} = ∑
{1,2}⊆I⊆[n+2]

(−1)n−|I|1{G[�xI ] connected}1{∀j∈[n+2]\I:xj∼�xI

},
and so (6.2) becomes∑

{1,2}⊆I⊆[n+2]

(−1)n−|I|P
(
ϕ(�xI) is connected, xj ∼ �xI∀j ∈ [n+ 2] \ I

)

=
∑

{1,2}⊆I⊆[n+2]

P
(
ϕ(�xI) is connected

) ∏
j∈[n+2]\I

[∏
i∈I

(
1− ϕ

(
xi − xj

))− 1

]

=
∑

I⊆[n+2]

∑
G

w±(G).

In the last line, summation is over the same set of graphs as in (3.6), with the additional
restriction that V

(
G+

)= I. Resolving the partition over I gives that (6.1) is equal to (3.6).

The direct-connectedness function. In [15, Theorem 5.1], it is shown that there exists λ0 such
that for λ ∈ [0, λ0),

gλ(x1, x2)=
∑
n≥0

λn

n!
∫ ∑

G∈Dx1,x2

(
�x[n+2]

)
∏

e∈E(G)

ϕ(e)

×
∑

H∈C
(
�x[n+2]

)
:

H⊆G

∑
J⊆[n+2] :

x1←→x2 in H[�xJ ]

(−1)n−|J|+|E(G)\E(H)| d�x[3,n+2]. (6.5)

We show that the integrand in (6.5) is equal to the one in (4.1). With the calculations (6.3) and
(6.4) performed for the two-point function, letting Ic = [n+ 2] \ I, we have∑
J⊆[n+2]

(−1)n−|J|1{
x1←→x2 in H[�xJ ]

} = ∑
{1,2}⊆I⊆[n+2]

(−1)n−|I|1{H[�xI ] is connected}1{∀j∈Ic:xj∼�xI in H
}.

The two indicators imply that H is connected, and so∑
H∈C

(
�x[n+2]

)
:

H⊆G

∑
J⊆[n+2]:

x1←→x2 in H[�xJ ]

(−1)n−|J|+|E(G)\E(H)|

=
∑

{1,2}⊆I⊆[n+2]

∑
H⊆G

(−1)n−|I|+|E(G)\E(H)|1{H[�xI ] is connected}1{∀j∈Ic:xj∼�xI in H
}

=
∑

{1,2}⊆I⊆[n+2]

∑
H′∈C(�xI ):

H′⊆G

(−1)n−|I|+|E(G)\E(H′)| ∑
F⊂E(G)∩

(
(I×Ic)∪(Ic

2 )
)

:
∀j∈Ic:F∩(I×{j})�=∅

(−1)|F|. (6.6)

https://doi.org/10.1017/apr.2022.22 Published online by Cambridge University Press

142



36 S. JANSEN ET AL.

Note that for the second identity in (6.6), we split the edges of H into those contained in H′
(the subgraph induced by I) and the remaining ones, called F.

When E(G)∩ (Ic

2

) �=∅, the sum over F vanishes. Hence, the sum over I can be reduced to
those I such that G[Ic] contains no edges. For such sets I, we have∑

F⊂E(G)∩(I×Ic):
∀j∈Ic:F∩(I×{j})�=∅

(−1)|F| =
∏
j∈Ic

∑
∅ �=Fj⊆E(G)∩(I×{j})

(−1)|Fj| =
∏
j∈Ic

(−1)= (−1)n−|I|. (6.7)

If we insert (6.7) back into (6.6), the two factors (−1)n−|I| cancel out, and so∑
H∈C

(
�x[n+2]

)
:

H⊆G

∑
J⊆[n+2]:

x1←→x2 in H[�xJ ]

(−1)n−|J|+|E(G)\E(H)|

=
∑

{1,2}⊆I⊆[n+2]:
E(G[Ic])=∅

∑
H∈C(�xI ):

H⊆G

(−1)|E(G)\E(H)|

=
∑

H∈G
(
�x[n+2]

)
:G�H

1{{1,2}⊆V(H)}(−1)|E(G)\E(H)|, (6.8)

where G � H means that E(H)⊆ E(G), the subgraph of H induced by the vertices incident
to at least one edge (call this set V≥1(H)) is connected, and the subgraph of G induced by
[n+ 2] \ V≥1(H) contains no edges.

With the identity (6.8), and letting X = �x[n+2], the integrand of (6.5) is equal to∑
H∈G(X):

{x1,x2}⊆V≥1(H),
H[V≥1(H)] connected

∏
e∈E(H)

ϕ(e)
∑

F⊆(X
2)\E(H):

∀e∈F:e∩V≥1(H)�=∅,

(X,F∪E(H))∈Dx1,x2 (X)

(−1)|F|
∏
e∈F

ϕ(e)

=
∑

H∈G(X):
x1←→x2

∏
e∈E(H)

ϕ(e)
∑

F⊆(X
2)\E(H):

(X,F∪E(H))∈Dx1,x2 (X)

(−1)|F|
∏
e∈F

ϕ(e)

=
∑

C∈D±
x1,x2

(X):

x1
+←→x2

w±(G). (6.9)

The argument for the first identity in (6.9) is the same as for the identity of (3.6) and (3.7).

6.3. Connections to the lace expansion

Both the graphical power series expansions and the lace expansion provide expressions for
the direct-connectedness function. In this section, we show how to get from one to the other.
Note that the statements to follow hold for sufficiently small intensities and cannot replace
the lace expansion, which works all the way up to λc. The emphasis of this section is on the
qualitative nature of the results.

We first summarize some results of [10], where the lace expansion is applied to the RCM.
We keep some of the definitions brief and informal, and we refer to [10] for the detailed
definitions in these cases.
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On the lace expansion. In [10], among other things, the OZE is proved for τλ in high dimen-
sion (and for certain classes of connection functions ϕ; see [10, Section 1.2]). In particular, it
is shown that

gλ(x)= ϕ(x)+�λ(x),

with �λ(x)=∑
n≥0 (−1)n�

(n)
λ (x). The functions �

(n)
λ are called the lace-expansion coeffi-

cients; they are nonnegative and have a quite involved probabilistic interpretation. To briefly

define them, let
{
x

A←→ y in ξ x,y
}

be the event that x←→ y in ξ x,y, but x is no longer connected
to y in an A-thinning of ηy. Informally, every point z ∈ η survives an A-thinning with probability∏

y∈A (1− ϕ(z− y)). See [10, Definition 3.2] for a formal definition. Letting

E
(
x, y; A, ξ x,y)= {

x
A←→ y in ξ x,y}∩ {

�w ∈Piv
(
x, y; ξ x,y) : x

A←→w in ξ x},
we introduce a sequence ξ0, . . . , ξn of independent RCMs and define

�
(0)
λ (x) := σλ(x)− ϕ(x),

�
(n)
λ (un) := λn

∫
Pλ

({
0⇐⇒ u0 in ξ

0,u0
0

}∩ n⋂
i=1

E
(

ui−1, ui; C
(
ui−2, ξ

ui−2
i−1

)
, ξ

ui−1,ui
i

))
d�u[0,n−1]

(6.10)

for n≥ 1 (with u−1 = 0). The method of proof is called the lace expansion, a perturbative
technique in which one first proves via induction that

τλ(x)= ϕ(x)+
n∑

m=0

(−1)m�
(m)
λ (x)+ λ

((
ϕ +

n∑
m=0

(−1)m�
(m)
λ

)
∗ τλ

)
(x)+ Rλ,n(x) (6.11)

for n ∈N0 and some remainder term Rλ,n (see [10, Definition 3.7]), and then shows that the
partial sum converges to �λ = gλ − ϕ and that Rλ,n → 0 as n→∞.

The lace expansion was first devised for self-avoiding walks by Brydges and Spencer [3] and
takes some inspiration from cluster expansions. It was later applied to percolation (specifically,
bond percolation on Zd) by Hara and Slade [8]. While the name stems from laces that appear in
the pictorial representation in [3], laces are absent in the representation for percolation models.

We show that we can rewrite �
(n)
λ in terms of graphs that are associated to a lace of size

n. More generally, rewriting �
(n)
λ should serve as a bridge between the graphical expansions

for gλ that are well known in the physics literature, and the expression for gλ in terms of
lace-expansion coefficients.

The big advantage in the lace expansion lies in the probabilistic nature of all the terms that
appear, allowing one to bound most of the integrals that appear by the expected cluster size,
which is finite for λ < λc. The downside is the absence of a direct expression for gλ and thus a
direct proof of the OZE, which is only obtained after performing the n→∞ limit in (6.11).

We now show how to re-sum the graphical expansion for τλ and how to obtain the lace-
expansion coefficients by appropriate grouping of terms.

Building the connection. For x, y ∈ X, let C̃±x,y(X)⊂ C±(X) be the set of graphs in C±(X) such
that G+ is connected and contains {x, y}, and E(G[V \ V+])=∅. Hence, all (−)-edges are
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incident to at least one vertex in V
(
G+

)
. This is exactly the set of graphs summed over in (3.6).

Indeed,

τλ(x1, x2)=
∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈C̃±x1,x2

(
�x[n+2]

) w±(G) d�x[3,n+2]. (6.12)

If we define D̃±x,y(X) := D±x,y(X)∩ C̃±x,y(X), we can express gλ(x1, x2) by replacing the graphs

summed over in (6.12) by D̃±x,y
(�x[n+2]

)
.

We are going to recycle some notation from Section 4. We split G into its core Gcore and its
shell H, so that

PD+(x, y, Gcore)=PD±(x, y, Gcore)= (u0, V0, u1, . . . , uk, Vk, uk+1)

for some k (where u0 = x and uk+1 = y). We also recall that G ‘contains’ a skeleton (see
Definition 4.3), a graph on [k+ 1]0.

Definition 6.1. (The minimal lace.) Let G be a graph with core Gcore and shell H; let
�W = (u0, V0 . . . , uk+1) for k ∈N be its (+)-pivot decomposition. We define the minimal lace
Lmin(x, y; G) as the lace with the following properties:

• L (having bonds αiβi with i ∈ [m] for some m ∈N) is contained as a subgraph in the
skeleton Ĥ;

• for every i ∈ [m], among all the bonds αβ in Ĥ satisfying α < βi−1, the bond αiβi

maximizes the value of β. For i= 1, we take β0 = 1.

If Piv+(x, y; G)=∅, we say that G has a minimal lace of size 0.

In other words, the first stitch 0β1 maximizes the value of β1 among all stitches starting at 0,
the second stitch has a maximal value of β2 among the stitches with 1≤ α2 < β1, and so on.

As a side remark, it is worth noting that the minimal laces offer an alternative way of par-
titioning the set of all shell graphs by mapping every shell graph H onto its minimal lace.
This gives a standard procedure used in lace expansion for self-avoiding walks; performing it
‘backwards’ yields precisely the mapping described below Definition 4.4.

With the notion of minimal laces, we partition

gλ(x1, x2)=
∑
m≥0

π
(m)
λ (x1, x2), (6.13)

where

π
(m)
λ (x1, x2) :=

∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈D̃±

x1,x2

(
�x[n+2]

)
:

‖Lmin‖=m

w±(G) d�x[3,n+2]. (6.14)

We also set π
(m)
λ (x)= π

(m)
λ (0, x).

We strongly expect that the (pointwise) absolute convergence of the power series on the
right-hand side of (6.14) holds (at least) in the domain of absolute convergence of the physi-
cists’ expansion (4.1) and thus, as already discussed, for sufficiently small intensities λ > 0.
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However, a proof would go beyond the scope of the discussion here; therefore we formulate
the absolute convergence of π

(m)
λ (in the above sense) as an assumption for the following result

(Lemma 6.1).

Assumption 6.1. There exists 0 < λ� ≤ λc such that the right-hand side of (6.14) is (point-
wise) absolutely convergent for all m ∈N and λ < λ�.

Under Assumption 6.1, we show that the coefficients defined in (6.14) are basically identical
to the lace-expansion coefficients introduced in (6.10).

Lemma 6.1. (Identity for the lace-expansion coefficients.) Let m≥ 1 and let λ < λ�. Then

�
(0)
λ (x)= π

(0)
λ (0, x)− ϕ(x),

(−1)m�
(m)
λ (x)= π

(m)
λ (0, x).

As a side note, since �
(m)
λ is nonnegative, Lemma 6.1 shows that the sign of π

(m)
λ alternates,

which is far from obvious from the definition in (6.14).
Next, we prove an approximate version of the OZE in analogy to [10, Proposition 3.8].

Clearly, Lemma 6.2 follows immediately from the latter via Lemma ; however, we want to
present a short independent proof on the level of formal power series, which we consider
instructive for the understanding of the underlying combinatorics. We emphasize that the proof
presented here treats the claim of Lemma 6.2 as an identity between formal power series;
in particular, we do not concern ourselves with absolute convergence of the power series
appearing in (6.20) and in (6.21).

Lemma 6.2. (The lace expansion in terms of (±)-graph coefficients.) Let m ∈N0, let λ < λ�,

and set πλ,m(x) := ∑m
i=0 π

(i)
λ (0, x). Then

τλ(x)= πλ,m(x)+ (
πλ,m ∗ τλ

)
(x)+ Rλ,m(x),

where Rλ,m is defined in [10, Definition 3.7].

Before carrying out the proof of Lemma 6.1, we define

ϕ̄(A, B)=
∏
a∈A

∏
b∈B

(1− ϕ(a− b))

and ϕ̄(a, B)= ϕ̄({a}, B). Now, observe that, given a set A⊂Rd and an RCM event F,

∑
n≥0

λn

n!
∫

(Rd)n
ϕ̄
(
A, �v[n+2]

) ∑
G∈C̃±v1,v2

(�v[n+2]) :

G+∈F

w±(G) d�v[3,n+2] = Pλ

(
ξ
(
η

v1,v2〈A〉
) ∈ F

)
, (6.15)

where ξ (η) is the RCM on the basis of the point process η and ηv
〈A〉 is an A-thinning of ηv (the

usual PPP of intensity λ and added point v). In particular, v may be thinned out as well. We
remark that η〈A〉 has the same distribution as a PPP of intensity λϕ̄(A, ·).
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FIGURE 7. Illustration for the proof of Lemma 6.1. On the left, we see an example graph G ∈B; the grey
bags on the bottom represent PD+(u−1, um, G) (note that there can be pivotal points within a grey bag).
The minimal lace Lmin is not depicted; however, note that pm ∈ B. On the right, we see a schematic zoom
into G[Z], where Z =�z[n], together with the partition Z = S ∪ T .

Proof of Lemma 6.1. The statement for m= 0 is clear. For m > 0, we can rewrite π
(m)
λ as

π
(m)
λ (u−1, um)= λm

∫
(Rd)m

∑
k,n≥0

λk+n

k!n!
∫

(Rd)k+n

∑
G∈B

w±(G) d
(�u[0,m−1], �x[k], �z[n]

)
, (6.16)

where B⊆ D̃±u−1,um

(�u[−1,m] ∪ �x[k] ∪�z[n]
)

are the graphs such that

• u0 is the first pivotal point in Piv+(u−1, um; G) (i.e., ord(u0)= 2);

• �u[0,m−1] ⊆Piv+(u−1, um; G) and ui−1 ≺ ui;

• there are points p2, . . . , pm such that Lmin =̂ {(u−1, u1), (p2, u2), . . . , (pm, um)};
• �z[n] are those vertices z /∈ {um−1, um} in G such that {z} ∪N(z) contains at least one vertex

y of order y" um−1.

Given a graph G ∈B, let B denote the set of points x in V
(
G+

)
with um−2 � x≺ um−1. See

Figure 7 for an illustration of such a graph G. We integrate out the points �z first and claim that
their contribution to (6.16) is

λ
∑
n≥0

λn

n!
∫

(Rd)n

∑
H∈B�

w±(H) d�z[n] =−λPλ

(
E
(
um−1, um; B, ξum−1,um

))
, (6.17)

where every H ∈B� is the subgraph of some G ∈B and has vertex set B∪ {um−1, um} ∪ �z[n]
and precisely those edges in G that have at least one endpoint in {um} ∪ �z[n].

We let y be the last pivotal point in V
(
G+

)
, that is, ord(y)= ord(um)− 2. We write Z =�z[n]

and split Z once more into those vertices ‘in front of’ and ‘behind’ y; that is, Z = S ∪ T , where
T are the points in G+ of order ord(um)− 1 together with the points in V \ V

(
G+

)
that are

adjacent to the former, and S= Z \ T . Possibly y= um−1, in which case S=∅. See Figure 7
for an illustration of this split of the vertices in Z.

Note that there are no restrictions on the (−)-edges between B and S ∪ {y}, whereas there
must be at least one (−)-edge between B and T ∪ {um}. There are no restrictions on the
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(−)-edges between {um−1} ∪ S ∩ V
(
G+

)
and T ∪ {um}, whereas there cannot be any (−)-edges

between S \ V
(
G+

)
and T ∪ {um}. By distinguishing whether or not S=∅, we find that the

left-hand side of (6.17) is equal to

∑
n≥0

λn

n!
∫

(Rd)n

(
ϕ̄(B, �z[n] ∪ {um})− 1

) ∑
G∈C̃±um−1,um

(
{um−1,um}∪�z[n]

)
:

um−1
+⇐⇒um

w±(G) d�z[n]

+ λ
∑
k≥0

λk

k!
∫

(Rd)k+1
ϕ̄
(
B, �s[k] ∪ {y}

) ∑
H∈C̃±um−1,y

(
{um−1,y}∪�s[k]

)
:

um−1
+←→y

w±(H)

×
(∑

n≥0

λn

n!
∫

(Rd)n

(
ϕ̄(B,�t[n] ∪ {um})− 1

)
ϕ̄
(
V+(H) \ {y},�t[n] ∪ {um}

)
∑

G∈C̃±y,um ({y,um}∪�t[n]) :

y
+⇐⇒um

w±(G) d�t[n]

)
d�s[k] dy

= Pλ

(
um−1 ⇐⇒ um in ξ

({um−1} ∪ η
um〈B〉

))− Pλ

(
um−1 ⇐⇒ um in ξum−1,um

)
+ λ

∫
Rd

Eλ

[
1{

um−1←→y in ξ
(
{um−1}∪η

y
〈B〉
)}

×
(
Pλ

(
y⇐⇒ um in ξ

(
{y} ∪ η

um
〈B∪C〉

))
− Pλ

(
y⇐⇒ um in ξ

(
{y} ∪ η

um
〈C〉

)))]
dy,

(6.18)

where we abbreviate C=C(um−1, ξum−1 ). Note that the inner probabilities are conditional on
the random variable C. We now resolve the integral over y by use of the Mecke equation and
incorporate the first two summands as the case y= um−1. With this, (6.18) becomes

Eλ

[ ∑
y∈ηum−1

1{
um−1←→y in ξ

(
{um−1}∪η

y
〈B〉
)}1{

y⇐⇒um in ξ
(
{y}∪(ηum\C ′)〈B〉

)}]

−Eλ

[ ∑
y∈ηum−1

1{
um−1←→y in ξum−1

}1{
y⇐⇒um in ξ

(
ηum\C ′

)}], (6.19)

where C ′ =C
(
um−1, ξ

(
ηum−1 \ {y})). But both terms in (6.19) are simply a partition over the

last pivotal point for the connection between um−1 and um, and so (6.19) equals

Pλ

(
um−1 ←→ um in ξ

(
{um−1} ∪ η

um〈B〉
))
− τλ(um − um−1)=−Pλ

(
E
(
um−1, um; B, ξum−1,um

))
,

proving (6.17). Lemma 6.1 can now be proven by iteratively applying (6.17). �
Proof of Lemma 6.2. For m ∈N0, we can write

τλ(x1, x2)=
m∑

l=0

π
(l)
λ (x1, x2)+

∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈A

w±(G) d�x[3,n+2], (6.20)
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where A is the set of graphs G ∈ C̃±x1,x2

(�x[n+2]
) \ D̃±x1,x2

(�x[n+2]
)

together with the graphs G ∈
D̃±x1,x2

(�x[n+2]
)

where ‖Lmin‖> m. Note that if G ∈A, then Piv+(x1, x2; G) �=∅.
For G ∈A and u ∈Piv+(x1, x2; G), define

V�(u) := {y ∈ V
(
G+

)
: y � u} ∪ {y ∈ V(G) \ V

(
G+

)
: ∃z ∈N(y)∩ V

(
G+

)
with z≺ u},

that is, all the core vertices of order at most that of u together with the shell vertices adjacent to
at least one vertex of strictly smaller order than u. Next, let ucut = ucut(x1, x2; G) be the vertex
in Piv+(x1, x2; G) such that

E
(
V�(

ucut) \ {ucut}, V \ V�(
ucut))=∅ and G

[
V�(

ucut)] ∈ D̃±x1,ucut .

If such a point exists, it is unique; if no such point exists, set ucut = x2. We can now partition
A as

A=
(

m⋃
i=1

Ai

)
∪A>m,

where

Ai := {
G ∈A : ucut �= x2 and

∥∥Lmin
(
x1, ucut; G

[
V�(

ucut)])∥∥= i
}
,

A>m := {
G ∈A :

∥∥Lmin
(
x1, ucut; G

[
V�(

ucut)])∥∥> m
}
.

Now, if xs = ucut and V ′ := V�(ucut) as well as V ′′ := {xs} ∪
(�x[n+2] \ V ′

)
, then

w±(G)=w±
(
G
[
V ′

])
w±

(
G
[
V ′′

])
;

that is, the weight factors. Therefore, for every i ∈ [m],

∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈Ai

w±(G) d�x[3,n+2] = λ

∫
Rd

π
(i)
λ (x1, u)τλ(u, x2) du. (6.21)

Setting

R̄λ,m(x2 − x1) :=
∑
n≥0

λn

n!
∫

(Rd)n

∑
G∈A>m

w±(G) d�x[3,n+2],

we can rewrite (6.20) as

τλ(x)= πλ,m(x)+ λ
(
πλ,m ∗ τλ

)
(x)+ R̄λ,m(x).

One can now prove by hand or by employing Lemma 6.1 that R̄λ,m = Rλ,m. �

6.4. Other percolation models

The results of this paper should apply in quite analogous fashion to all other percolation
models that enjoy sufficient independence—in particular, to (long-range) bond and site perco-
lation on Zd. We take bond percolation on Zd with edge parameter p as an example. We can
adjust our notation by using C

(
x, y, Zd

)
to denote the connected subgraphs of Zd containing x
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and y, and we define Dx,y(Zd) and the notions for (±)-graphs analogously. Then one can show
that, if we restrict to a finite box �⊂Zd, the two-point function satisfies

τ�
p (x1, x2)=

∑
n≥0

pn
∑

G∈C±(x1,x2,�):|E(G)|=n,

x1
+←→x2

(−1)|E−(G)|. (6.22)

One can easily observe that all graphs summed over in (6.22) that contain more than one
(+)-cluster cancel out, which is also what happens in the RCM. The direct-connectedness
function can be defined analogously to Definition 4.2, providing a suitable setup for an analysis
analogous to the one in Section 4.
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