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1. Contribution to the publications 

1.1 Contribution to the first publication 
The first publication included 48 [18F]GE-180 positron emission tomography–magnetic resonance 
imaging (PET/MR) mouse scans. First, I reconstructed the PET scans using NuclineTM acquisition 
software (Mediso Ltd, Hungary). The reconstruction was performed with an ordered subset ex-
pectation maximization 3D-based (OSEM-3D-based) algorithm (Tera-TomoTM, Mediso Ltd, Hun-
gary). For attenuation correction I used the corresponding T1-weighted MR image. For each im-
age, a body-air threshold used for the material map creation was manually checked and adjusted 
to ensure that the resulting segmentation covers the head of the mouse as closely as possible.  

Next, I performed all the image pre-processing steps that included cropping of the brain region in 
both PET and MR images; deformable registration (SPM5 procedure) of MR images to a high-
resolution MR template that included affine transformation and warping; segmentation of the cer-
ebellum and cortex volume of interest (VOI) using the Ma-Benveniste-Mirrione atlas; definition of 
a cerebellar white matter VOI; dilation of a photothrombotic stroke (PT) VOI defined by Dr. S. 
Heindl by 1 mm at all borders to include microglia possibly located in the peri-lesional area. For 
this, I used PMOD View and FuseIt tools (version 4.005, PMOD Technologies, Zurich, Switzer-
land). 

After that, I generated an image-derived input function (IDIF), for which, inspired by the paper 
from Wimberley et al (Wimberley et al., 2020), I developed a procedure called factor analysis-
based partial volume effect correction. The procedure included (1) cropping of the vena cava 
region using PMOD View, (2) factor analysis on the cropped image using Pixies (Apteryx, France), 
(3) multiplication of the blood factor curve with the corresponding factor image, (4) automatic 
segmentation of a VOI in the resulting image for the IDIF definition, (5) time-activity curve (TAC) 
extraction, (6) TAC fitting using the 2-exponential linear model in PMOD Kinetic. Steps 3 through 
5 were performed using a custom Python script that I wrote by myself using SimpleITK, NiBabel, 
Pandas, and NumPy packages.  

Using the generated IDIF, I performed kinetic modeling with Logan plot by means of PMOD Ki-
netic. I created another Python script using SciPy, Pingouin, NumPy, and Pandas libraries to (1) 
correlate distribution volume ratio (DVR) and standardized uptake value (SUV) ratio in PT VOI in 
the analysis cohort, (2) estimate DVR in the PT VOI in the validation cohort using the fits calcu-
lated for the analysis cohort, (3) perform statistical analysis. I created all the figures in the manu-
script using Matplotlib (Python), PMOD, and PowerPoint. 

I wrote the first draft of the paper on my own, which was then corrected and extended by my co-
authors. As both the first and the corresponding author of the paper, I was responsible for the 
submission and revision process as well as for the communication with the journal.  

1.2 Contribution to the second publication 
I performed all ischemic lesion segmentations using the Medical Imaging Interaction Toolkit 
(MITK) Workbench, which were then checked and, when needed, corrected by an experienced 
neuroradiologist. I performed all the image spatial co-registration steps described in the paper 
(PMOD FuseIt, Neuro). I wrote a Python script to create the mask described in Section 2.5 of the 
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manuscript using SimpleITK and NumPy libraries. PET reconstructions were also partially per-
formed by me. 

I performed all the steps related to input function generation: (1) gamma counter measurements 
of activity of venous blood and plasma drawn by a physician at five timepoints as well as gamma 
counter cross-calibration with the PET/computed tomography (CT) scanner; (2) creating a Python 
script (SimpleITK, NiBabel, Pandas libraries) for automated segmentation of carotid arteries, TAC 
extraction, fitting, calibration, and metabolite correction.  

Next, I created a Python script for voxelwise 18 kDa translocator protein (TSPO) binding predic-
tion in the study patients. The script incorporated Scikit-learn implementation of the random forest 
algorithm. Additionally, I implemented the Logan plot analysis in Python (SciPy, NumPy libraries) 
for automated voxelwise PET quantification to generate ground truth for the machine learning 
algorithm. Lastly, in Python I calculated Shapley additive explanations (SHAP library), performed 
reduced-features model comparison, and statistical tests (Pingouin library). I created all the fig-
ures in the manuscript using Matplotlib (Python), PMOD, and PowerPoint. 

I drafted the first version of the manuscript, which was then iteratively refined together with my 
co-authors. Being both the first and the corresponding author of the paper, I handled the submis-
sion process, coordinated the revision process, and was responsible for the communication with 
the journal.  
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2. Introduction 

2.1 Overview 
Stroke is the second-leading cause of death and the third-leading cause of death and disability 
combined worldwide (Feigin et al., 2022). Therefore, post-stroke recovery remains a huge re-
search topic worldwide. Microglia activation is thought to be one of the key factors influencing the 
recovery process, and multiple studies were performed to access its extent after acute ischemic 
stroke (Ma et al., 2017). Activated microglia are known to have a high expression level of the 18 
kDa tranlocator protein (TSPO) (Knezevic & Mizrahi, 2018; Vivash & O’Brien, 2016). TSPO pos-
itron emission tomography (PET) is a technique that provides in-vivo assessment of microglia 
activation (Ma et al., 2017). Several TSPO PET tracers have been developed over the years, 
including [18F]GE-180, and existing kinetic modeling approaches enable quantitative estimation 
of TSPO binding from [18F]GE-180 PET images (Fan et al., 2016). Yet, these gold-standard meth-
ods are burdensome and not feasible to implement for a common nuclear medicine department 
and cause discomfort to the patient, which explains the need for a simplified quantification ap-
proach. 

2.2 Objective of this thesis 
This thesis aimed at establishing a simplified TSPO quantification approach using a short late 
[18F]GE-180 PET acquisition (Figure 1). The first step was to create and evaluate the quantifica-
tion method in a mouse model of ischemic stroke (Figure 1A, Paper 1), the second step was to 
adjust it to a human ischemic stroke dataset and, by means of machine learning (ML), determine 
whether incorporating additional information such as plasma activity concentration at various 
timepoints and brain perfusion from arterial spin labeling (ASL) magnetic resonance (MR) images 
improves the performance of the algorithm (Figure 1B, Paper 2). 
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Figure 1. Thesis objective. (A) Mouse study. (B) Human study. TSPO quantification in both mice and
humans requires a 0-90 min p.i. PET acquisition and an arterial input function (can be replaced by an image-
derived input function) (left). The goal of this dissertation was to establish a quantification approach based on
a short [18F]GE-180 PET acquisition (right). For the human study (B), we additionally tested whether ASL-
derived brain perfusion and activity of blood samples drawn after the tracer injection improves the estimation.
The numbers next to PET images indicate frame start time in seconds p.i. PET images are shown on top of
T1w MR images for better visualization.



 

 5 

2.3 Ischemic stroke 
An ischemic stroke, or cerebral infarction, is caused by reduced blood supply to the brain tissue. 
First, this results in transient functional loss in the brain tissue. Ischemia then triggers a chain of 
processes including electrical function loss, calcium influx-induced excitotoxicity, and formation 
of reactive oxygen species, which eventually leads to severe cell membrane damage and cell 
death (Feske, 2021). The most common causes of ischemic stroke are cardioembolism, artery-
to-artery embolism, paradoxical embolism, large vessel disease, atherosclerotic stenosis of oc-
clusion, small vessel disease (Feske, 2021).  

In most clinics, a noncontrast head computed tomography (CT) is performed to identify ischemic 
stroke due to its availability and speed. On the CT, one needs to search for gray-white matter 
differentiation loss, which could be caused by reduced density in, e.g., the insular cortex or the 
deep gray matter (Feske, 2021). Additionally, the CT scan provides a sensitive means to exclude 
hemorrhage (Herpich & Rincon, 2020).  Later, mass effect is observed, which can be seen by 
sulcal effacement, as well as frank hypodensity (Feske, 2021). 

MR imaging (MRI) provides a more precise way of identifying ischemic stroke compared to CT. 
With MRI sequences such as diffusion-weighted imaging (DWI) and apparent diffusion coefficient 
(ADC), acute cerebral infarction is diagnosed with an accuracy of up to 100%. Within the first 6 
hours after the onset, a typical ischemic stroke lesion is hyper-intense on DWI, hypo-intense on 
ADC, and not yet visible on fluid-attenuated inversion and recovery (FLAIR) MRI (Feske, 2021). 

Further assessments might require perfusion CT or perfusion MR. Perfusion MRI techniques in-
clude dynamic susceptibility contrast (DSC), dynamic contrast enhanced (DCE), and ASL. Perfu-
sion CT as well as DWI are used to estimate the extent of irreversibly damaged brain tissue 
(Powers, 2020). Perfusion CT and perfusion MRI are used to determine the penumbra, ischemic 
brain tissue that with high probability can be recovered, which is seen by delayed arrival of con-
trast. CT angiography and MR angiography are employed to define sites of intracranial arterial 
occlusions in order to perform thrombectomy (Nogueira et al., 2018; Powers, 2020). 

2.3.1 The role of microglia in ischemic stroke 

Neuroinflammation is a crucial component of ischemic stroke pathophysiology (Moskowitz et al., 
2010). Brain inflammatory response starts with the activation of microglia, resident brain immune 
cells, which can occur within minutes after cerebral infarction (Nakajima & Kohsaka, 2004). Sev-
eral studies showed the presence of activated microglia at the acute (Krupinski et al., 1996; 
Tomimoto et al., 1996), the subacute (Price et al., 2006), and the recovery phase (Gulyás et al., 
2012). PET studies demonstrated that microglia activation remains high in the peri-infarct zone 
longer than in the infarct zone (Gulyás et al., 2012) and that microglia can spread from the stroke 
site into connected regions at the recovery stage (Gerhard et al., 2005).  

Activated microglia produce a wide range of mediators, which can enhance or inhibit neuronal 
damage (Ma et al., 2017). It was shown that activated microglia in the infarct zone are associated 
with negative clinical outcome (Thiel et al., 2010). There they can aggravate delayed death of 
neurons by generating toxic substances (Ma et al., 2017). However, activated microglia produce 
growth factors and can therefore enhance neuronal regeneration (Madinier et al., 2009). Moreo-
ver, microglial cells clean the infarct area by removing cellular debris (Stoll et al., 1998). These 
studies suggest that microglia is a promising intervention target to improve post-stroke recovery 
(Thiel & Heiss, 2011). 
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2.4 Positron emission tomography (PET) 
PET is an imaging technique that enables in-vivo estimation of various metabolic processes and 
density quantification of a wide range of cellular receptors, which is achieved by injecting into the 
patient’s bloodstream a radioactive-labeled substance taking part in a metabolic process under 
investigation. This substance is called tracer. PET tracers are always labeled with b+-emitters. 
The decay of such isotopes results in generation of a positron, which, after traveling a short dis-
tance within the tissue called positron range, annihilates with a tissue electron. This generates 
two 511 keV annihilation photons propagating in opposite directions. The photon pair is then de-
tected by PET detectors arranged in a ring and consisting of a scintillation crystal that converts 
the energy of the annihilation photons into visible light and a photomultiplier that amplifies the 
detected signal. Detection of photon pairs spreading in opposite directions eliminates the need 
for a physical collimator. The location of the annihilation event is determined down to the line 
between the two scintillators where the photons were detected, or line of response. This is called 
electronic collimation. The two annihilation photons must be detected within a predefined coinci-
dence time window to be recorded as a coincidence. All the coincidence events recorded during 
the scan, or list-mode data, can be reconstructed either together as a single image (static recon-
struction) or can be first split into several pre-defined time frames, which are reconstructed indi-
vidually (dynamic reconstruction). The latter provides the information on tracer behavior in time 
and is required for tracer kinetic modeling. PET images are usually reconstructed using either 
filtered backprojection or iterative algorithms such as ordered subset expectation maximization 
(OSEM).  During the reconstruction process, several corrections are made, which include correc-
tions for physical decay of the tracer, annihilation photons originating from different decays but 
detected within the coincidence time window, and attenuation by the imaged object and the bed 
(Cherry et al., 2012). 

2.4.1 Tracer kinetic modeling for quantitative PET 

PET enables imaging of metabolic processes or specific receptor molecules, which is achieved 
by selecting an appropriate radioligand. For instance, intensity of glucose uptake and phosphor-
ylation can be estimated by measuring the uptake of fluorodeoxyglucose ([18F]FDG), a glucose 
analog, which is absorbed by the cell and phosphorylated but cannot be further metabolized and 
remains trapped in the cell (Ido et al., 1978; Pauwels et al., 1998). Other examples include beta 
amyloid imaging using tracers such as [11C]Pittsburgh Compound-B and [18F]Florbetapir for early 
diagnostics of Alzheimer’s disease (AD) (Suppiah et al., 2019) and TSPO imaging using tracers 
such as [11C]PK11195, [11C]ER176, [18F]GE-180 to assess the level of neuroinflammation (Werry 
et al., 2019).  

However, tracer signal in PET images originates not only from the tracer at a metabolic site of 
interest or specifically bound tracer in the target tissue. Depending on the tracer, these values 
can be contaminated by unspecifically bound tracer in the target tissue, free tracer in the target 
tissue and blood, tracer bound to plasma proteins, and metabolized tracer. Quantification of spe-
cifically bound tracer can be performed via kinetic modeling. 

A kinetic model is a mathematical approximation that links the dynamics and possible states 
(called compartments) of the tracer to the final PET image. By knowing the tracer dynamics pro-
vided by PET acquisition starting directly at tracer injection time and followed by multi-frame re-
construction, all the possible tracer states, and ways of conversion between them, one can isolate 
the signal of interest (Morris et al., 2004). In many receptor studies, the endpoint of kinetic analysis 
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is the volume of distribution (VT), which is the ratio of the tracer concentration in the target tissue 
to its concentration in plasma (Innis et al., 2007).  

2.4.1.1 Compartment models 

One of the simplest kinetic models is the one-tissue compartment model (Gunn et al., 2001). This 
model only separates tracer uptake by the target tissue (K1, ml/ccm/min) and its washout (k2, 
1/min) (Figure 2A).  

 

Figure 2. Compartment models. (A) One-tissue compartment model. (B) Two-tissue compart-
ment model. CP is the free tracer concentration in arterial plasma, CT is the tracer concentration 
in the target tissue, CND is the non-displaceable tracer concentration in the tissue, CS is the con-

centration of specifically bound tracer in the tissue. K1, k2, k3, and k4 are kinetic constants.  

The differential equation of the mass balance for this model is written as follows: 

𝑑𝐶!(𝑡)
𝑑𝑡 = 𝐾"𝐶#(𝑡) − 𝑘$𝐶!(𝑡), 

where CT(t) is the tracer concentration in the target tissue and CP(t) is the free tracer concentration 
in arterial plasma. Its solution is a convolution of Cp(t) and the impulse response function, which 
for the one-tissue model is 𝐾"𝑒%&!' (Gunn et al., 2001): 

𝐶!(𝑡) = 𝐶#(𝑡) ⊗ 𝐾"𝑒%&!' . 

Considering that 

 

𝐶#(!(𝑡) = (1 − 𝑉))𝐶!(𝑡) + 𝑉)𝐶)(𝑡), 

where CPET(t) is the tracer uptake value from the PET image, CB(t) is the tracer concentration in 
blood, VB is the ratio of blood volume to the total volume of the target tissue, one can estimate VT 
as follows (Innis et al., 2007):  

𝑉! = 	
𝐾"
𝑘$
. 

A more complex compartment model is the two-tissue compartment model (Gunn et al., 2001), 
which additionally separates CT into two compartments: free and non-specifically bound tracer in 

(1) 

(2) 

(3) 
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the target tissue (non-displaceable compartment, CND) and specifically bound tracer (CS) (Figure 
2B). The model includes two additional rate constants, k3 (1/min) and k4 (1/min), depicting the 
exchange between these two compartments. To determine VT, one needs to solve the differential 
equations of the mass balance  

𝑑𝐶*+(𝑡)
𝑑𝑡 = 𝐾"𝐶#(𝑡) − (𝑘$ + 𝑘,)𝐶*+(𝑡) + 𝑘-𝐶.(𝑡), 

𝑑𝐶.(𝑡)
𝑑𝑡 = 𝑘,𝐶*+(𝑡) − 𝑘-𝐶.(𝑡), 

 

together with equation (2). VT is then calculated as follows (Innis et al., 2007): 

𝑉! = 	
𝐾"
𝑘$
21 + 	

𝑘,
𝑘-
3. 

Kinetic modeling with more than two compartments is possible (Gunn et al., 2001); however, the 
practical use of such models is limited due to the high number of parameters that have to be fitted.  

2.4.1.2 Logan plot graphical analysis 

Logan plot offers a simplified way of calculating VT. Compared to compartment models, it reduces 
the number of fitting parameters to two and replaces non-linear fitting by linear fitting, which pro-
vides more robust results and is less computationally expensive. The Logan plot equation is ob-
tained by rearranging compartmental equations for an arbitrary number of compartments (Gunn 
et al., 2001; Logan et al., 1990) and integrating them and is written as follows:  

∫ 𝐶!(𝜏)𝑑𝜏
'
/
𝐶!(𝑡)

= V0
∫ 𝐶#(𝜏)𝑑𝜏
'
/
𝐶!(𝑡)

+ 𝑏, 

where b is the intercept. Linear fitting is then performed for the two fraction terms, the slope of the 
fit line is VT (Logan et al., 1990).   

2.4.1.3 Input function (IF) 

CP, or arterial IF, is estimated directly by either continuous measurement of arterial blood radio-
activity (Watabe et al., 2006), which is performed by means of an external detector (Boellaard et 
al., 2001; Eriksson et al., 1988) and/or by measuring frequently drawn manual arterial samples 
(Watabe et al., 2006). There exist several non-invasive methods of IF estimation, such as popu-
lation-based IF (Buchert et al., 2020), image-derived IF (Mourik et al., 2009), and factor analysis 
(Wimberley et al., 2020). Depending on the tracer and the method, following corrections might be 
required for the IF: plasma-to-whole-blood ratio, plasma metabolite correction, plasma protein 
correction. 

2.4.2 TSPO PET 

The 18 kDa translocator protein (TSPO) is primarily expressed on the outer mitochondrial mem-
brane (Guilarte, 2019). Under physiological conditions, highest TSPO expression levels are ob-
served in steroidogenic tissues, while its expression in central nervous system is relatively low 
(Papadopoulos et al., 2006). However, neuroinflammation leads to a pronounced increase of 
TSPO expression in activated microglia (Knezevic & Mizrahi, 2018; Vivash & O’Brien, 2016) and 
reactive astrocytes (Lavisse et al., 2012), which suggested a possible use of TSPO in assessing 

(5) 

	
(6) 



 

 9 

the outcome of anti-inflammatory interventions (Gershen et al., 2015; Setiawan et al., 2015; 
Zhang et al., 2021). 

Multiple TSPO radiotracers have been developed over the years. The first TSPO tracer, 
[11C]PK11195, is also the one that has been most extensively applied for neuroinflammation im-
aging in various neurological disorders (Morris et al., 2018; Sucksdorff et al., 2017; Zhang et al., 
2021). [11C]PK11195, however, has important disadvantages, such as low signal-to-noise ratio 
(SNR) and short physical half-life, the latter limiting its use to medical facilities with an on-site 
cyclotron (Zhang et al., 2021). Second-generation TSPO tracers demonstrated enhanced SNR, 
but it was discovered that these tracers have variable TSPO binding affinity in different human 
subjects due to a single-nucleotide polymorphism (rs6971) in human TSPO gene (Fan et al., 
2015; Kreisl et al., 2013). An individual can be homozygous for high-affinity state (high-affinity 
binder, HAB), homozygous for low-affinity state (low-affinity binder, LAB), or heterozygous 
(mixed-affinity binder, MAB) (Kreisl et al., 2013). Third-generation TSPO tracers have lower sen-
sitivity to the rs6971 polymorphism (Zhang et al., 2021) and include [18F]FEBMP (Tiwari et al., 
2014), [18F]GE-180 (Fan et al., 2016), [11C]ER176 (Ikawa et al., 2017), and [18F]GE387 (Qiao et 
al., 2019).  

2.4.3 Properties and kinetic modeling of [18F]GE-180  

[18F]GE-180 is a third-generation TSPO tracer with excellent TSPO binding, high brain absorption 
affinity (Wadsworth et al., 2012), higher SNR (Boutin et al., 2015), and longer physical half-life 
compared to [11C]PK11195. Feeney et al. observed no effect of the rs6971 polymorphism on K1, 
VT, distribution volume ratio (DVR), standardized uptake value (SUV), and SUV ratio when com-
paring HABs and MABs (Feeney et al., 2016). Even at late timepoints after the injection, [18F]GE-
180 has a high parent fraction (Fan et al., 2016; Feeney et al., 2016). However, low brain absorp-
tion of [18F]GE-180 in healthy human subjects was reported (Zanotti-Fregonara et al., 2018).  

 [18F]GE-180 has been extensively used to monitor neuroinflammation in various animal models, 
including ischemic stroke (Boutin et al., 2015; Chaney et al., 2019), AD (Deussing et al., 2018; 
Liu et al., 2015; López-Picón et al., 2018), glioblastoma (Holzgreve et al., 2022), epilepsy 
(Brackhan et al., 2018; Russmann et al., 2017), as well as in a number of clinical trials, e.g. in 
glioma (Albert et al., 2017; Kaiser et al., 2022; Unterrainer et al., 2020), multiple sclerosis 
(Unterrainer et al., 2018; Vomacka et al., 2017), AD, four-repeat tauopathy (Vettermann et al., 
2021), corticobasal syndrome (Schuster et al., 2022), and progressive multifocal leukoencepha-
lopathy (Mahler et al., 2021) patients.  

2.4.3.1 Kinetic modeling approaches of [18F]GE-180 

Fan et al. tested five compartment models for kinetic modeling of [18F]GE-180: one-tissue model 
(Figure 2A), one-tissue model with an extra vascular component, two-tissue model (Figure 2B), 
two-tissue model with an extra vascular component, and two-tissue model with irreversible bind-
ing (k4 = 0), on ten healthy subjects (6 HAB, 4 MAB) (Fan et al., 2016). The two-tissue model 
demonstrated the best performance among the investigated models – it yielded the lowest Akaike 
information criterion (AIC) (Akaike, 1974) for tested volumes of interest (VOIs), smallest coeffi-
cient of variation of VT, lowest weighted residual sum square, and more random residual se-
quence as shown by the Wald-Wolfowitz test. The authors also showed a strong positive corre-
lation between the two-tissue model-derived VT and Logan plot-derived VT.  
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Feeney et al reported similar results: the authors tested the one- and two-tissue compartment 
model on ten healthy subjects (5 HAB, 5 MAB) and showed that the two-tissue model had lower 
AIC in most of the studied VOIs (Feeney et al., 2016). Adding VB as a fitting parameter to the two-
tissue model did not improve the results compared to the model with VB fixed at 5%. Similar to 
Fan et al., the authors reported a strong correlation between VT estimates from two-tissue com-
partment model and Logan plot. 

However, these approaches require 90 min PET scan and arterial IF. Therefore, simplified meth-
ods are needed.  

2.5 Magnetic resonance imaging (MRI) 
MRI is an imaging technique that provides detailed structural information with high soft tissue 
contrast. It is based on magnetic resonance of hydrogen atoms nuclei (1H) of the imaged tissue. 
In the presence of a strong static magnetic field (B0, 1-10T), the nuclear spins within the tissue 
become aligned and start to precess with the Larmor frequency, which generates net magnetiza-
tion. Next, a radiofrequency magnetic field (B1, several µT) is applied to disturb the thermal equi-
librium. The nuclear spins then return to the thermal equilibrium in the process called relaxation, 
which can be divided into longitudinal and transversal relaxation. The longitudinal (T1) and  trans-
versal relaxation time (T2) are tissue-dependent and therefore can provide tissue contrast 
(Weishaupt & Köchli, 2009). 

2.5.1 Arterial spin labeling (ASL) 

ASL is a quantitative MR-based perfusion imaging technique that does not require contrast media. 
ASL is performed in two acquisitions. For the first, or labeled, acquisition, magnetic labeling of 
protons in arterial blood at the neck vessels, i.e., upstream from the volume to be imaged, by 
means of radiofrequency pulses is performed. The image is then obtained after the labeled pro-
tons have perfused the imaged tissue. The second, or control, acquisition is performed without 
the labeling. The perfusion-weighted image is then derived by subtracting the control image from 
the labeled image (Ferré et al., 2013). It is possible to generate a quantitative cerebral blood flow 
(CBF) map from the perfusion-weighted image (∆𝑀) by applying a kinetic model (Buxton et al., 
1998; Ferré et al., 2013): 

∆𝑀 = 2𝑀1,/ ∙ 𝐶𝐵𝐹 ∙ > 𝑐(𝜏
'

/
)𝑟(𝑡 − 𝜏)𝑚(𝑡 − 𝜏)𝑑𝜏, 

where 𝑀1,/ is the equilibrium magnetization in a voxel of arterial blood, 𝑐(𝑡) is the normalized 
concentration of magnetization in arterial blood, 𝑟(𝑡 − 𝜏) is the output of the labeled protons from 
the voxel, and 𝑚(𝑡 − 𝜏) represents the impact of longitudinal relaxation.  

The main advantages of ASL include the lack of ionizing radiation and contrast medium, possibil-
ity of absolute CBF quantification and repeated measurements, and high reproducibility. The main 
disadvantages of ASL are low SNR and spatial resolution (Ferré et al., 2013).  

2.6 Machine learning (ML) 
ML comprises mathematical algorithms that create a model based on training data to make pre-
dictions without being explicitly programmed (Koza et al., 1996). If training data include not only 
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inputs but also desired outputs, a ML learning algorithm is called supervised (Russell, 2010). 
Examples of ML models include artificial neural networks, decision trees, and support-vector ma-
chines. In recent years, ML methods have been successfully implemented for a variety of medical 
imaging problems, such as image segmentation (Seo et al., 2020), classification (Vandenberghe 
et al., 2013), reconstruction (G. Wang et al., 2020), attenuation correction (T. Wang et al., 2020) 
and IF estimation in PET (Kuttner et al., 2020; Kuttner et al., 2021). When used for quantitative 
PET analysis, ML can provide more robust parameter estimation (Pan et al., 2017). 

2.6.1 Random forest 

Decision trees are a supervised ML technique that is based on splitting the input data according 
to certain conditions (Maimon & Rokach, 2014). The splitting process occurs at decision nodes, 
while decision leaves contain the final results.  

Several ML models can be combined for improved prediction accuracy compared to any of the 
composing models alone. This approach is called ensemble learning (Polikar, 2006). Random 
forest is an ensemble learning approach that builds multiple decision trees at training time. When 
used for regression tasks, the method outputs mean prediction of the constituent trees (Ho, 1995). 
Random forest is much less prone to overfitting compared to an individual decision tree (Hastie 
et al., 2009). In the second paper of this dissertation, random forest was used for estimating VT. 

2.6.2 Shapley additive explanations 

Shapley additive explanations (SHAP) (Lundberg & Lee, 2017) is a method to estimate the impact 
of individual input features on the model predictions that can be applied to any ML model. The 
method computes a Shapley value (Shapley, 1997) for each feature of the investigated sample, 
which corresponds to the feature’s impact, by using Kernel Shap, a simplified calculation ap-
proach based on local interpretable model-agnostic explanations (LIME) (Ribeiro et al., 2016). In 
the second paper of this dissertation, SHAP were used to assess the importance of individual 
features on VT predictions. 
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3. Zusammenfassung 
Hintergrund 

Der ischämische Schlaganfall ist weltweit die zweithäufigste Todesursache und die dritthäufigste 
Ursache für Langzeitbehinderungen, was den Bedarf an neuartigen Therapien zur Verbesserung 
der neurologischen Erholung erklärt. Mikroglia, Immunzellen im Gehirn, sind ein geeignetes Ziel 
für eine solche Therapie. Diese Zellen exprimieren das 18 kDa-Translokatorprotein (TSPO), wenn 
sie aktiviert sind, was die Messung von Neuroinflammation mittels Positronen-Emissions-Tomo-
graphie (PET) mit TSPO-Tracern wie [18F]GE-180 ermöglicht. Das Signal in den PET-Bildern 
stammt jedoch nicht nur von der spezifischen Bindung des Tracers an den betreffenden Rezeptor, 
sondern wird auch durch unspezifische Bindungen und freien Tracer im Gewebe und im Blut 
kontaminiert. Die Goldstandard-Quantifizierung der spezifischen Bindung von [18F]GE-180 wird 
derzeit mit Hilfe pharmakokinetischer Modelle durchgeführt, was eine längere Messzeit und eine 
kontinuierliche arterielle Blutentnahme erfordert. Dies ist nicht nur für das Krankenhauspersonal 
belastend, sondern auch mit zusätzlichen Risiken und Unannehmlichkeiten für die Patienten ver-
bunden.  

Zielsetzung 

Ziel dieser Arbeit war es, ein vereinfachtes [18F]GE-180-PET-Scanprotokoll für ein ischämisches 
Schlaganfallmodell bei Mäusen zu erstellen und es auf die PET-Untersuchung bei Menschen zu 
übertragen, indem zusätzliche potenziell relevante Informationen mit Hilfe von maschinellem Ler-
nen (ML) integriert werden und eine wohl etablierte pharmakokinetische Modellierungsmethode 
als Grundwahrheit verwendet wird.  

Material und Methoden 

Mausstudie: Sechs Mäuse nach photothrombotischem Schlaganfall (PT) und sechs Mäuse nach 
identischer Versuchsdurchführung, jedoch ohne Schlaganfall (sham), wurden in die Studie auf-
genommen und mit einem dedizierten Kleintier-PET/MR-Scanner untersucht. Für die Hälfte der 
Mäuse wurden vier serielle Messungen 0-90 Minuten nach der Injektion (p.i.) pro Maus (Analyse-
kohorte) durchgeführt und die TSPO_Bindung quantitativ geschätzt (Distribution Volume Ratio, 
DVR). Zusätzlich wurden semi-quantitative Schätzungen (Standardized Uptake Volume Ratio, 
SUVR) für fünf späte 10 min Zeitfenster berechnet. Wir verglichen die Eignung der SUVRs als 
Näherung für die DVR mittels linearer Anpassung und Pearson-Korrelationskoeffizient. Die an-
dere Hälfte der Mäuse erhielt 60-90 min p.i. [18F]GE-180-PET und wurde als Validierungskohorte 
verwendet. Humanstudie: 18 Probanden erhielten nach einem akuten ischämischen Schlaganfall 
0-90 min p.i. [18F]GE-180-PET zusammen mit einer Reihe von MRT-Sequenzen. Fünf manuelle 
venöse Blutproben wurden während des PET-Scans entnommen und ihre Aktivitätskonzentration 
gemessen. Auf der Grundlage der dynamischen PET-Daten wurde eine quantitative Schätzung 
der TSPO-Bindung voxelweise berechnet. Wir trainierten einen ML-Algorithmus, der diese Schät-
zungen als Grundwahrheit und drei späte 10 min PET-Bilder, das ASL-Bild, Voxelkoordinaten, 
die Läsionsmaske und die fünf Plasmaaktivitätskonzentrationen als Eingangsmerkmale verwen-
dete. Unter Verwendung von Shapley Additive Explanations stellten wir fest, dass die drei späten 
PET-Bilder und die Plasmaaktivitätskonzentrationen den größten Einfluss auf die Qualität des 
Modells hatten. Anschließend testeten wir eine vereinfachte Quantifizierungsmethode, die darin 
bestand, ein spätes PET-Bild durch eine Plasmaaktivitätskonzentration zu dividieren. Alle Kom-
binationen von Bildern/Proben wurden anhand von Konkordanz-Korrelationskoeffizienten und 
Bland-Altman-Diagrammen verglichen. 



 

 13 

Ergebnisse 

Die Mausstudie zeigte, dass die 60-70, 70-80 und 80-90 min p.i. Zeitfenster die beste Näherung 
an die 90 min Scan basierte DVR sowohl bei den Sham- als auch bei den PT-Mäusen produzie-
ren. Die Humanstudie zeigte auf der Basis individueller Voxel einen zusätzlichen Wert der späten 
Plasmaaktivitätskonzentration für die Näherung an die quantitative 90-min Scan-basierten TSPO-
Schätzung. Die Division der Werte im 70-80 min p.i. Zeitfenster mit dem Messwert der 30 min p.i. 
Plasmaprobe ergab die genaueste semi-quantitative Schätzung in der ischämischen Läsion. 

Schlussfolgerung 

Eine zuverlässige vereinfachte TSPO-Quantifizierung bei Patienten nach einem akuten ischämi-
schen Schlaganfall ist durch die Verwendung eines kurzen späten PET-Zeitfensters geteilt durch 
eine späte Plasmaaktivitätskonzentration möglich und kann somit eine vollständige Quantifizie-
rung auf der Grundlage eines 90 min dynamischen Scans ersetzen. Das in dieser Arbeit verwen-
dete ML-basierte Verfahren zur Schätzung der Relevanz verschiedener Merkmale kann in Zu-
kunft auch für andere Erkrankungen und Tracer angewendet werden.   
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4. Abstract 
Background 

Ischemic stroke is the second leading cause of death and the third main cause of long-term dis-
ability worldwide, which explains the need for novel therapies to improve neurological recovery. 
Microglia, brain resident immune cells, are a suitable target for such a therapy. These cells ex-
press 18 kDa translocator protein (TSPO) when activated, which enables neuroinflammation 
monitoring using positron emission tomography (PET) with TSPO tracers, such as [18F]GE-180. 
However, the signal in PET images originates not only from specific binding of the tracer to the 
receptor of interest; it is contaminated by non-specific binding and free tracer in both tissue and 
blood. Gold-standard quantification of [18F]GE-180 specific binding is currently performed using 
pharmacokinetic modeling, which requires a longer scanning time and continuous arterial blood 
sampling. This is not only burdensome for the hospital staff, but also associated with additional 
risks and discomfort for the patient.  

Aim 

The aim of this work was to establish a simplified [18F]GE-180 PET scanning protocol for a mouse 
ischemic stroke model and translate it into human PET by integrating additional potentially rele-
vant information using machine learning (ML) and taking a well-established pharmacokinetic mod-
eling method as the ground truth.  

Materials and Methods 

Mouse study: Six mice after photothrombotic stroke (PT) and six sham mice were included in the 
study and scanned using a dedicated small-animal PET/MR scanner. For a half of the mice, we 
acquired four serial 0–90 min post injection (p.i.) scans per mouse (analysis cohort) and calcu-
lated quantitative TSPO binding estimates (distribution volume ratio, DVR) as well as semi-quan-
titative estimates (standardized uptake volume ratio, SUVR) for five late 10 min time frames. We 
compared how well the obtained SUVRs approximated DVR by means of linear fitting and Pear-
son correlation coefficient. The other half of the mice received 60-90 min p.i. [18F]GE-180 PET 
and was used as a validation cohort. Human study: 18 subjects after acute ischemic stroke re-
ceived 0-90 min p.i. [18F]GE-180 PET along with a number of MRI sequences. Five manual ve-
nous blood samples were drawn during the PET scan and their activity concentration was meas-
ured. Based on dynamic PET data, a quantitative TSPO binding estimate was calculated voxel-
wise. We trained an ML algorithm using these estimates as the ground truth and three late 10 min 
PET frames, the ASL image, voxel coordinates, the lesion mask, and the five plasma activity 
concentrations as input features. Using Shapley Additive Explanations, we determined that the 
three late PET frames and the plasma activity concentrations had the highest impact on the 
model’s performance. We then tested a simplified quantification approach consisting of dividing 
a late PET frame by a plasma activity concentration. All the combinations of frames/samples were 
compared by means of concordance correlation coefficient and Bland-Altman plots. 

Results 

The mouse study showed that the 60–70, 70–80, and 80–90 min p.i. frames produce the closest 
approximation for 90 min scan-based DVR in both sham and PT mice. The human study demon-
strated on an individual voxel basis an additional value of the late plasma activity concentration 
in approximating the quantitative 90 min scan-based TSPO estimate. The 70-80 min p.i. frame 
divided by the 30 min p.i. plasma sample produced the closest semi-quantitative estimate in the 
ischemic lesion. 
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Conclusion 

Reliable simplified TSPO quantification in patients after acute ischemic stroke is achievable by 
using a short late PET frame divided by a late plasma activity concentration and can thus replace 
full quantification based on a 90 min dynamic scan. The ML-based procedure of estimating fea-
ture importance used in this work can be applied for other conditions and other tracers in the 
future.   
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