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Abstract

Microscopes are a valuable tool in biological research, facilitating information

gathering with different magnification scales, samples and markers in single-cell

and whole-population studies. However, image acquisition and analysis are very

time-consuming, so efficient solutions are needed for the required speed-up to allow

high-throughput microscopy.

Throughout the work presented in this thesis, I developed new computational

methods and software packages to facilitate high-throughput microscopy. My work

comprised not only the development of these methods themselves but also their

integration into the workflow of the lab, starting from automating the microscopy

acquisition to deploying scalable analysis services and providing user-friendly local

user interfaces.

The main focus of my thesis was YeastMate, a tool for automatic detection and

segmentation of yeast cells and sub-type classification of their life-cycle transitions.

Development of YeastMate was mainly driven by research on quality control mech-

anisms of the mitochondrial genome in S. cerevisiae, where yeast cells are imaged

during their sexual and asexual reproduction life-cycle stages. YeastMate can auto-

matically detect both single cells and life-cycle transitions, perform segmentation

and enable pedigree analysis by determining origin and offspring cells. I developed

a novel adaptation of the Mask R-CNN object detection model to integrate the

classification of inter-cell connections into the usual detection and segmentation

analysis pipelines.
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vi ABSTRACT

Another part of my work focused on the automation of microscopes themselves

using deep learning models to detect wings of D. melanogaster. A microscope

was programmed to acquire large overview images and then to acquire detailed

images at higher magnification on the detected coordinates of each wing. The

implementation of this workflow replaced the process of manually imaging slides,

usually taking hours to do so, with a fully automated, end-to-end solution.
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Chapter 1

Introduction

The pursuit of knowledge has been a fundamental aspect of human civilisation

since the beginning of time. The human mind seeks to understand the world

around it and builds a mental model of its perceived reality (Anderson, 2009).

Science, sometimes defined as knowledge derived from the facts of experience

(Chalmers, 2013), is a framework to create objective models of our reality based

on verifiable evidence obtained through observation and experimentation. This

approach contrasts with other, very human, bases for creating models such as

faith or intuition. Most definitions of the scientific method within experimental

frameworks include steps about creating a hypothesis about reality, either from

prior knowledge or a new observation, creating and conducting a fitting experiment,

and then analysing the results to accept or reject the hypothesis (Gauch Jr &

Gauch, 2003). Here, the theoretical part of science creates new models from our

past observations. In contrast, the experimental part puts them to the test, opening

the way for new observations and thus closing the circle. This interplay creates an

iterative process through which knowledge is refined step by step (Godfrey-Smith,

2009).

However, gathering observations to further this cycle can be a complicated process.

As our knowledge about the world grows, so do our models. Having a complete

understanding of every part of a scientific model has become almost impossible for

1
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a researcher (Ioannidis et al., 2015), increasing pressure to specialise (Casadevall

& Fang, 2014). Biological systems are exceedingly complex; an organism can be

viewed through many different lenses, for example, the structure and function of

an organism’s genome or, with epigenomics, the mechanisms that control gene

expression. However, not just the research object can be complex, but the techniques

used to study them can be equally so. Looking at the field of proteomics, for

example, many different techniques can be used to study the structure and function

of proteins. These techniques include x-ray crystallography, microscopy, flow

cytometry, and mass spectrometry (Breker & Schuldiner, 2014; Yee et al., 2005).

Each combination between analysis technique and research topic slice might give a

subset, or slice, of facts, which might even clash with facts observed in a different

slice. Because of this, each slice of a biological system studied with a particular

technique is just one piece of a much larger puzzle. Exploring all layers of biological

phenomena with the right combination of approach and technique is essential.

Microscopy, the technique highlighted in this work, can hold a unique, emotional

appeal to researchers. Humans are visual animals (Kaas, 2013), and microscopy

allows us to engage with the objects of their study directly (Hacking, 1985). The

ability to see and interpret the results of experiments with our own eyes can

provide a sense of understanding that is impossible with other forms of scientific

inquiry. With microscopy, we can zoom on the core building blocks of biological

systems, visualising single cells or even single proteins (Longchamp et al., 2017).

Furthermore, the use of microscopy images allows researchers to showcase the

complexity of biological systems to the general public in an understandable and

more relatable way, which might provide a more intuitive understanding than

numerical results.

While microscopy is a powerful tool for studying biological systems, it has limit-

ations. One of the critical limitations of microscopy is the so-called Abbe limit,
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which states that the resolution of a microscope is limited by the wavelength of

light used to illuminate the sample (Stelzer, 2002). This means that a traditional

microscope cannot resolve features smaller than roughly half of the wavelength of

light used to illuminate the sample. While the Abbe limit imposes a fundamental

limit on the resolution of traditional microscopy, it is possible to overcome this limit

using super-resolution microscopy techniques. There are several different types of

super-resolution microscopy, including techniques such as stimulated emission de-

pletion (STED) microscopy (Hell & Wichmann, 1994) and structured illumination

microscopy (SIM) (Gustafsson, 2000). These techniques push physical boundar-

ies to overcome the Abbe limit and obtain images with higher resolution than

possible with a traditional microscope. Super-resolution microscopy techniques

often do not immediately generate interpretable images and often rely on complex

computational algorithms to either process or visualise the data. For example,

SIM microscopy uses structured illumination patterns to excite the sample and

then uses computational methods to combine multiple images with rotated and

shifted illumination patterns into a super-resolution, interpretable image. A similar

principle is used in localization microscopy, like photoactivated localization micro-

scopy (PALM) (Betzig et al., 2006) or stochastic optical reconstruction microscopy

(STORM) (Rust et al., 2006), where many images per view are acquired, with each

excitating and capturing a subset of all molecules, and are then combined into a

single super-resolution image. This also comes with the drawback of not being

able to look through the microscopes with your own eyes. In this case, as in many

others, we must rely on new computational tools to observe new facts.

The Big Data revolution (Kitchin, 2014) and the advent of deep learning (DL)

(Ching et al., 2018) a decade ago had a major impact on many fields and did not

spare the biological sciences. The availability of large amounts of data and the

ability to process them has opened up new research opportunities, but it has also

presented new challenges (Leonelli, 2014). In the case of microscopy, acquisition,
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storage and analysis of more and bigger image acquisitions became possible, and

with this, the field of high-throughput microscopy (HTM) (Pepperkok & Ellenberg,

2006). With HTM, image acquisition became both faster and easier, enabling

methods like high content screening (HCS), where the effects of many different

compounds on a biological sample can be captured within a single experiment run

(Pegoraro & Misteli, 2017). While HCS aims to analyse many variations in an

experiment quickly, the inverse is also possible. When dealing with rare biological

events, manually finding enough to reach a statistically significant sample size can

be difficult; these can be more readily found if a broad set of images is acquired.

An example of this is found in my work on S. cerevisiae, where sexual mating

events have to be located (Bunk et al., 2022; Jakubke et al., 2021).

Independent from how it was acquired, an extensive dataset usually precludes its

analysis by the human eye, removing one of the hallmarks of microscopy. While a

single microscopy image can still be seen and analysed manually, its context and

meaning may only arise in union with every piece of the dataset. Thus, new tools

are required to handle such datasets and extract observable facts for the researcher.

Whether such tools would pre-sort, classify or even completely analyse our images,

pipelines to reduce the dimensionality of data have to be created.

The ways to make machines help us extract information from images can be put

under the umbrella term of Computer Vision (CV). Its most known definition is:

The goal of Computer Vision is to make useful decisions about real

physical objects and scenes based on sensed images.

(Shapiro, Stockman et al., 2001)

This includes all necessary steps from beginning to end, from transforming raw

microscope output to images to pre-processing these and extracting information

out of images for these useful decisions. While in the end, the researcher will have

to make the decisions, everything up to that could be automated. The applications
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of CV to biological research also were the central part of my work, with a big focus

on providing tools for HTM using DL.

With the following sections, I hope to introduce the realms of CV, machine and

DL and its applications in the biological field, including my own tools.
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1.1 Machine Learning

1.1.1 Origins of Machine Learning

The term machine learning (ML) encompasses a wide array of mathematical

techniques and is not synonymous with the nowadays ubiquitous terms of DL

and artificial intelligence (AI). In essence, ML describes that a model or program

is created to perform a task when given corresponding data without relying on

specific, predetermined rules; one could also describe this as the model learning from

previously seen data. While some ML methods like the Least Squares algorithm

(Stigler, 1981) or Linear Regression (Stanton, 2001) can already be traced back to

the 18th or 19th century respectively, the field of ML originated from the 1950s when

Alan Turing proposed a theoretical model of learning in 1950 (Turing, 2009) and

from the works of A.L. Samuel who developed the first self-learning program for

computers and coined the term machine learning (ML) (Samuel, 1959). While the

1950s and 1960s produced necessary groundwork such as the Perceptron (Rosenblatt,

1958) and Backpropagation (Linnainmaa, 1970), as well as new models like the

Nearest Neighbor algorithm (Cover & Hart, 1967), the 1970s became known as

the AI winter. Following the book Perceptrons (Minsky & Papert, 1969), which

criticised Rosenblatt’s Perceptron and claimed its inherent limitations, coupled

with other AI projects ending up underwhelming, interest in AI died down and

AI research barely progressed. Interest in ML increased again in the 1990s, with

many new publications, including support vector machines (SVMs) (Cortes &

Vapnik, 1995) and Random Forests (Ho, 1995), which are still commonly used

almost twenty years later. With the increase in both data availability and amount,

and computational resources, interest steadily increased in the 2000s. When DL

was proven feasible for image classification tasks in 2012 with GPUs providing the

necessary compute power for it (Krizhevsky et al., 2012), progress continued every

year, with considerable improvements in existing areas and new use cases for AI.
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ML has been used in biology for a long time. In 1943, McCulloch and Pitts

already proposed a method to study the human brain by building a simplified

model of neuronal structures. Other examples from the 20th include the analysis

of nerve cell recordings (Linsker, 1988), identification of genes by analysing DNA

sequences (Baldi & Brunak, 2001) and prediction of the secondary structure of

proteins (Salamov & Solovyev, 1995). What sets biology apart from every other

field impacted by ML (Xu et al., 2021) is the close relation between ML and

learning mechanisms in neurobiological systems (Hasson et al., 2020). While early

iterations of artificial neural networks and learning mechanisms were inspired by

the brain (Macpherson et al., 2021), technologies like DL now allow more rapid

progress in some areas of neurobiology (Richards et al., 2019). This circle is closed

again by new insights on brain structures and learning, which might influence the

development of new artificial models again (Hassabis et al., 2017).

This work focuses on the applications of DL, a subset of ML, on images. Analysing

images is challenging, especially in biology, where images can get so big that specific

software is needed even to visualise them (Hörl et al., 2019; Pietzsch et al., 2015).

Thus, DL, as the state-of-the-art approach for many problems, remained my method

of choice for image analysis. While DL and each specialised model come with

their own set of requirements and implementations, many of the basic principles of

general ML described below still apply to DL and create the basis of how learning

in computational systems is achieved.

1.1.2 Data Preparation

While model architectures are plentiful and diverse, there are some basic paradigms

about data preparation that apply to most model architectures. ML models require

data to learn the (usually multi-dimensional) distribution of data points to capture

the underlying structure and to allow the model to generalize to new, unseen

data. There are unsupervised models, which are provided with input data without
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corresponding labels indicating the correct output for each input. Instead, the

model uses various approaches to find the underlying structure and patterns in

the data (Zhou, 2021). Some models may achieve this without prior knowledge or

assumptions. At the same time, other methods like k-means clustering allow the

user to include basic assumptions, such as the number of different classes in the

dataset (MacQueen, 1967). On the other side stand supervised models, which are

ML models trained on labelled data. These models are fed with input data and

corresponding labels indicating each input’s correct output. A ML algorithm sets

the parameters of its model using this labelled data to capture the relationship

between the input and the output and can then be used to make predictions on

new, unknown data.

One of the critical disadvantages of supervised ML is that it requires a large

amount of labelled data to train the algorithm adequately. Acquiring new ground

truth can be difficult and time-consuming, particularly in biomedical research,

where the data is often complex and difficult to label. While standard datasets for

DL-based, non-biological image analysis contain millions of images (Deng et al.,

2009), a dataset containing hundreds of annotated biological images is seen as a

large dataset, as seen with the big Data Science Bowl 2018 competition, which

dataset contained 841 images (Caicedo et al., 2019). Additionally, the quality of

the labelled data can significantly impact the algorithm’s accuracy. As biomedical

images are often difficult to assess for human experts, the dataset will almost always

include incorrectly annotated ground-truth (Le et al., 2022).

Splitting the data into separate training, validation, and test sets adds to this data

scarcity. The training set is used to train the ML algorithm and typically consists

of most of the data. The validation set is used to fine-tune the model and to ensure

it is not overfitting to the training data. Finally, the test set is used to evaluate the

performance of the trained model on unseen data and to estimate its generalisation
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performance. Data splitting is a common practice in ML (Raykar & Saha, 2015)

to ensure that the algorithm is trained on a representative sample of the data and

is tested on unseen data to provide an unbiased evaluation of its performance. The

necessity of an unbiased evaluation to have valid scientific insights also mandates a

big enough test set size.

1.1.3 Model Training

When first initialised, a model will produce, depending on implementation, either

random or insufficiently fitted output, as it still needs to tune its response to

any input. Two steps are integral for model training; defining a loss function

and propagating this loss back to the model’s weights. A loss function usually is

the distance between generated and desired output (Goodfellow et al., 2016). In

supervised learning, this will be a metric of difference between generated output

and the labelled ground-truth point of the input; in unsupervised learning, the

loss might either be defined by a direct relation of output to input, as with, e.g.

autoencoders or by analysing the structure of outputs, like in some clustering

models. Two simple loss functions summing up the absolute difference between

predicted and real data points are the mean absolute error (MAE) and the mean

squared error (MSE):

MAE = 1
N

N∑
i=1
|yi − ŷi| MSE = 1

N

N∑
i=1

(yi − ŷi)2

where N is the total number of examples in the dataset, yi is the true label of the

ith example, and ŷi is the predicted label of the ith example.

While the MAE measures the absolute difference, it fails to punish large differences

between data points. The similar MSE, which squares the difference, remedies this
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problem by focusing more on those data points. Just as the MAE could be adapted

for a different use case, there are various losses for different models and applications.

While the MAE and the MSE are predominantly used for regression, other tasks

like classification call for other losses like the binary cross-entropy (BCE) loss.

Some models are built on specific losses, like SVM, which uses the hinge loss:

hinge = 1
N

N∑
i=1

max(0, 1− yi · ŷi)

where N is the total number of examples in the dataset, yi is the true label of

the ith example, and ŷi is the predicted output of the model for the ith example

with −1 for the negative and +1 for the positive class. This classification loss

punishes wrong classifications more the further they are away from the threshold

line between a binary classification. It also slightly punishes correct classifications

close to the threshold and thus closer to being incorrect.

The calculated loss must be applied to the model in a second step to improve it.

The process of applying error metrics varies greatly between model architectures.

While training Decision Trees as part of a Random Forest, the error metric, in this

case often the Gini impurity, is applied in every step of iteratively creating the

different layers of the model, with the model itself undergoing only one iteration.

Starting at the top at the root node, the algorithm considers all possible data splits

according to their features. The quality of each split is then evaluated by using

the error metric. The split that results in the most significant improvement in this

metric is chosen, and the data is split accordingly. This process is repeated for

each of the resulting child nodes until the decision tree is fully grown (Rokach &

Maimon, 2005).

This process is more difficult for artificial neural networks (ANNs) , which will

take the biggest part of this work. ANNs are fully and randomly initialised in the

first step and then iteratively trained. As an ANN contains many weights to tweak
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every iteration, determining which parts of the model to tweak to decrease loss

requires methods called gradient descent and backpropagation. Gradient descent is

an optimisation algorithm to find the minimum of a differentiable loss function;

it iteratively moves a parameter in the direction opposite to the gradient of the

objective function at the current point to move closer to the minimum. A single

update for a model parameter can be calculated with:

θk ← θk − α · ∇θk
L

where θk is a parameter of the model, L is the loss function, ∇θk
L is the gradient

of the loss function corresponding to the parameter θk, and α is the learning rate.

The learning rate is one of the most essential hyperparameters in model training

and is a scalar multiplier to the step in each iteration; it defines how much the

model’s weights can be changed in each iteration and strongly influences training

stability and speed. The gradient is a vector that indicates the direction of the

steepest ascent of the loss function. Thus, moving in the opposite direction of the

gradient will decrease the value of the loss function.

The backpropagation algorithm is specific to ANNs and is a way to propagate the

gradient from the end of the network back to its beginning. It uses the chain rule

of calculus to calculate the gradient of the loss function through the network’s

weights. Starting with the output layer and going backwards through the hidden

layers of the network, it uses the weights of the connections between the neurons

to propagate the error backwards and calculate the gradient for each weight in the

network. The gradient can then be used to update the weights in the direction

that reduces the error.

The use of backpropagation in model training constitutes a big discrepancy between

ANNs and the way biological brains are thought to work. There is little evidence

that the mechanisms modifying synaptic connections between neurons work in the
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same way (Crick, 1989; Grossberg, 1987). While approximations of backpropagation

have been suggested to exist within the brain (Lillicrap et al., 2020), other learning

processes like predictive coding (Bastos et al., 2012), feedback alignment (Lillicrap et

al., 2016) or equilibrium propagation (Scellier & Bengio, 2017) have been suggested.

While optimiser algorithms for ANNs currently use backpropagation and gradient

descent to train a network, the increasing understanding of how learning functions

in biological systems might help build better ML models.

Common optimiser algorithms using backpropagation and gradient descent are

stochastic gradient descent (SGD) (Robbins & Monro, 1951), Adam (Kingma &

Ba, 2015), and Adagrad (Duchi et al., 2011). While these pursue the same goal,

their implementations differ and have unique advantages and disadvantages. SGD

for example, while similar to standard gradient descent, uses a small batch of

training examples to estimate the gradient instead of the entire training dataset,

reducing the required memory footprint of the model. This allows SGD to compute

the gradient more efficiently and make more frequent updates to the network

parameters. This brings the advantages of being computationally efficient and easy

parallelisation, makes it well-suited for training on large datasets, and can help

reduce the training time of the network.

However, SGD also has its disadvantages. Because it uses a small batch of training

examples to estimate the gradient, the gradient estimate can be noisy and less

accurate than the gradient computed using the entire training dataset. This can

lead to more unstable and noisy updates, making converging to the optimal solution

slower and less stable. Additionally, SGD can be more difficult to tune than other

optimisation algorithms and may require careful selection of the learning rate and

other hyperparameters for good performance.

Other optimisers like Adam or Adagrad offer techniques like adaptive learning

rates to improve the stability and convergence of the optimisation process. This
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means that the learning rate is automatically adjusted based on the characteristics

of the data and the gradient, which can help to avoid the challenges of choosing

the learning rate manually. Other techniques, such as momentum in the case of

Adam and weight decay in the case of Adagrad can improve the stability and

convergence of the optimisation process. These techniques can help to smooth the

optimisation process and to avoid local minima and other challenges that can arise

during training. These methods make the training process much more robust; a

model trained with an Adam optimiser will usually reach convergence even with

default settings (Bock & Weiß, 2019). For this reason, an SGD optimiser is usually

not used as a starting point. However, if adequately fine-tuned, it might still

be the best choice because of its better performance in generalisation than other

optimisers (Keskar & Socher, 2018).
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1.2 Computer Vision

Computer vision is a research field that focuses on developing methods to facilitate

computers to process visual data from the world around them and infer quantitative

information about the contents of a presented image. Computer vision has a long

and rich history, dating back to the early days of computing when researchers first

began to explore the potential of using computers to process and analyse visual

information. The origins of computer vision can be traced back to the 1960s when

researchers began to think about teaching computers to analyse visual data (Papert,

1966). Understanding the visual world around them was seen as an essential step

in creating intelligent robots, so computer vision held a vital position within AI

research (Szeliski, 2022). Early efforts in the field focused on developing simple

algorithms for recognising basic shapes and patterns in images and applying these

algorithms to practical tasks such as character recognition. This would allow the

extraction of numerical information about an image that can be used in quantitative

research. Nowadays, computer vision tasks are predominantly solved with AI tools.

The field of computer vision has undergone significant evolution and growth over

the past years, driven by advances in computer hardware and software and the

increasing availability of large datasets and powerful ML algorithms (Voulodimos

et al., 2018).

The central CV tasks arising from biomedical image analysis are segmentation,

image-to-image transformation, classification and detection. These tasks are deeply

intertwined and often need to be solved in tandem to reach desirable results.

1.2.1 Segmentation

Segmentation of images can also be described as classifying each pixel in it. In

its simplest use-case, the binary segmentation, each pixel can be differentiated

into either a foreground (usually 1) or a background (usually 0) pixel. Visualising
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cat

cat

detection

segmentation

classification

Figure 1.1: An image of a cat can either be classified as containing a cat; the exact location of

the cat including the classification that it is a cat can be detected; or an exact segmentation of

each pixel corresponding to the cat can be created.

this result as a binary image shows a so-called semantic segmentation mask (Fig.

1.1). This mask can then be used to extract information from the pixels of all

foreground objects. As it is only a binary mask with no information about the

image potentially containing multiple objects, it is not directly possible to do any

single-cell analysis in this case.

A widespread, simple segmentation algorithm is Otsu-Thresholding (Otsu, 1979).

Here, a threshold value, meaning that pixels above it will be categorised as fore-

ground, and pixels below as background, is iteratively determined. The algorithm
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below is an optimisation method called the Otsu algorithm that seeks to find the

threshold value that maximises the separation between the two classes of pixels in

the image.

arg min
t

σ2(t) = ωbg(t)σ2
bg(t) + ωfg(t)σ2

fg(t)

where σ2(t) is the weighted sum of variances for the background and foreground

classes at a given threshold value t. The terms ωbg(t) and ωfg(t) represent the

proportions of pixels in the background and foreground classes at this threshold

value, while σ2
bg(t) and σ2

fg(t) represent the variances of the pixel intensities within

the background and foreground classes, respectively. By finding the threshold value

that minimizes this weighted sum of variances, the algorithm can automatically

determine an appropriate threshold value for performing image segmentation.

When thresholding, the classification of a pixel does not directly impact the classi-

fication of the next pixel. An exceptionally bright single pixel in the background

might be erroneously classified as a foreground object by thresholding, even though

there are no adjacent positive pixels; the opposite might also happen. Most of the

time, this behaviour is not intended, so additional post-processing of the segment-

ation mask is necessary. Common operations include filling small holes that are

entirely enclosed by foreground pixels, removing tiny objects, or dilating or eroding

objects if their borders are not classified correctly. Most of these operations can be

summarised as binary morphological operations (Haralick et al., 1987).

Because most binary classification methods can be adapted for multi-class classific-

ation, it is possible to define different classes of objects in an image and classify

the pixels accordingly. As this increases the complexity and difficulty of the task,

it is common to have pixels of different classes within each object, making correct

post-processing even more critical. As binary morphological operations cannot dir-

ectly be applied to multi-class masks, these masks need to either be split class-wise
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into binary images again or, if the use-case allows it, multi-colour implementations

could be used (Comer & Delp III, 1999).

In many cases, being able to extract the pixel values for each cell separately instead

of analysing the whole semantic mask can be advantageous to extract more detailed

information. Additionally, object segmentations can be more easily improved if the

segmentation of each object can be inspected and modified separately instead of

on a per-image basis. The process of generating individual masks for each object is

called instance segmentation and can be achieved through two opposed approaches.

One approach is to generate a semantic segmentation mask as described above

and then split this mask into different object masks. This task becomes trivial if

objects are non-touching and well-segmented, as each can be defined as a cluster

of fully adjoined pixels. Multiple touching objects would count as a single one,

necessitating steps to separate object boundaries. A standard solution is one of the

many implementations of the watershed transform (Roerdink & Meijster, 2000).

Another method, usually used with ML or DL models, is to let the model predict

additional semi-structured output, for example a vector pointing towards the object

boundary for each pixel like in the StarDist architecture (Schmidt et al., 2018) or

topological maps, similar to the watershed transform, as used in the CellPose tool

(Stringer et al., 2021). The second approach, described below, is an inverse of the

workflow; objects can also be detected separately in the first step and only then

are the segmentation masks generated on an image crop for each object.

1.2.2 Image to image translation

Segmentation can also be viewed as a translation of an image into a mask image; in

contrast, images can also undergo image-to-image translation from a source image

to an arbitrary target image of the same dimensions (Liu et al., 2017). Instead of

treating this as a classification problem with categorical output values, the distance

between the expected and retrieved image can usually be measured with regression
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metrics as the output values are continuous (Pang et al., 2021). While image

translation can be seen as a regression task when applying ML algorithms, the

simplest form of it is applying an image filter. Blurring and smoothing image

filters such as the gaussian filter can be used remove noise from an image (Fan

et al., 2019), while filters like the sobel (Kanopoulos et al., 1988) or hessian filter

(Frangi et al., 1998) filter can be used to highlight specific features, in this case,

edges or local extrema, in an image (Fig. 1.2). This can be enough to detect and

process some biological structures; e.g. curvilinear structures such as blood vessels

or bronchial trees can be extracted with the application of the sato filter, which

highlights ridges in an image (Sato et al., 1998).

Denoising and image restoration are common preprocessing tasks for biological

microscopy images, as a good signal-to-noise ratio (SNR) can be difficult to achieve

in many applications; meanwhile, it is paramount to improve the SNR to extract

valid data points and/or maintain a robust analysis pipeline. This also gets

exacerbated by the frequent trade-off in microscopy between SNR and sample

health (Scherf & Huisken, 2015). A good SNR can be achieved by imaging with

high light intensity for a longer time; this might decrease sample health by, for

example, bleaching fluorophores in fluorescent microscopy (Lichtman & Conchello,

2005) or by damaging or influencing the assayed organism (Magidson & Khodjakov,

2013).

Content-aware image restoration, utilising a DL model, tackles this issue by acquir-

ing a set of images containing pairs of high-intensity and corresponding low-intensity,

low-toxicity images (Weigert et al., 2018). This dataset can be used to capture the

connection between the two sub-sets, allowing the model to transform unseen low-

light images into high-quality images, thus increasing the SNR without sacrificing

sample health. Other approaches include Noise2Void (Krull et al., 2019), which

aims to achieve similar restoration results on image sets where no high-quality
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Figure 1.2: Different filters applied on a picture of a cat (A). B: Sobel filter highlighting edges.

C: Sato filter highlighting ridges. D: Hessian filter detecting local extrema. E: Gaussian filter

blurring the image.

equivalent of an image can be acquired, or PhaseStain (Rivenson et al., 2019), which

can translate images of biological structures into images containing the stained

equivalent of these.

While image translation with DL methods can be helpful in many use cases, the

possible insertion of instabilities and perturbations into the reconstructed image has

to be taken into account (Antun et al., 2020). New patterns might be found that

are just artefacts of the translation process, while other expected details might be

lost during it. Thus, the viability of these techniques must be carefully considered

for each project.
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1.2.3 Classification

Image classification is a fundamental task in computer vision and refers to the

process of automatically assigning a label to an image based on its content. There

are many different approaches to image classification, each with its strengths and

limitations. Traditional approaches often rely on hand-crafted features extracted

from the image using domain-specific knowledge. These features are then used as

input to a classifier, which makes a prediction based on the learned characteristics

of each class. However, these approaches can be limited by the quality and

expressiveness of the features and specific domain knowledge required to design

them. Additionally, a statistical approach can analyse all pixel values in the input

image and use this information to assign a class label to the image, including

techniques such as histogram or texture analysis. While whole-image classification

is very hard for classical approaches, it is, in comparison with other tasks like

segmentation or detection, one of the easier tasks for modern approaches like

DL; with the model architectures used in classification often re-used as a base for

other tasks. This can be seen with the classic VGG-16 architecture (Simonyan &

Zisserman, 2015) being extended for segmentation in the U-Net model (Ronneberger

et al., 2015), or the ResNet architecture (He et al., 2016) being commonly used as

the backbone for detection architectures like Faster R-CNN (Ren et al., 2015).

1.2.4 Detection

In microscopy, we often deal with relatively simple and homogeneous images. Es-

pecially in fluorescence microscopy, where bright signals against a dark background

result in high-contrast images, cells or signals can often be detected consistently if

they are not touching. Object detection becomes a much more challenging task in

other modalities where objects are not clearly separated from the background. A

good example is tissue imaging, where the definition of background depends on

what has to be extracted, and the objects are part of the structure that builds the
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background. Of course, segmentation on these images might get more complicated,

making a pipeline of detection and segmentation appealing.

Object detection can also be described as the classification of arbitrary sub-regions

of the image into either containing or not containing an object. Without DL, it is a

difficult task with a limited amount of possible approaches. Either specific features

can be engineered that can be used to extract objects, e.g. above segmentation

masks, or specific colour and shape constraints that stay roughly equal between

objects (a typical toy example is the detection of coke cans, which are specifically

rectangle and red). Alternatively, if these features are not manually specified,

an example object can be given and compared to the image in a process called

Template Matching (Brunelli, 2009). Here, a smaller template image of the sought

object is slid across the image while the correlation between the template and

the corresponding image area is calculated. A local maximum in correlation can

then be treated as a matched object if the correlation surpasses a set threshold.

Template matching can be helpful if the objects are very similar or even identical

to each other, and has been used in finding and classifying viruses in electron

microscopy (Sintorn et al., 2004).
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1.3 Artificial Neural Networks

Even though the public usually refers to artificial neural networks when talking

about AI, ANNs are just a subset of AI and ML. They mimic the structure and

function of the brain, being composed of many interconnected processing units

called neurons (Krenker et al., 2011). The strength, also called weights of these

connections, are the variables of the model, which change during model training,

similar to how connections between real neurons can grow and strengthen. Of course,

this concept of a neuron is an oversimplification as computational neurons cannot

build new connections and lack the many understood, and also not yet understood

properties of real biological neurons (Davidson & Furber, 2021). Nevertheless, this

architecture makes the model capable of learning from data and making predictions

on unseen samples.

Arti�cial Neuron

Output

Input x1

Input x2

Input x3
Σ Activation function

Input x4

weight w1 

weight w2 

weight w3 

weight w4

Figure 1.3: Structure of a single artificial neuron. Inputs are multiplied separately by their

corresponding weights and then summed up together. A non-linear activation function is then

applied to its output.
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1.3.1 Fully connected networks

Artificial neurons are the key building block of artificial neural networks, which

are mathematical models inspired by how biological central nervous systems are

structured. They are the basic computation units in a neural network responsible

for processing and transmitting information. An artificial neuron receives input

from other neurons or external sources, such as the input features of a dataset.

The input is multiplied by a set of weights, which determines the importance of

each input. The weighted input is then summed and passed through a non-linear

activation function, which produces the neuron’s output (Fig. 1.3):

f(x) = max(0, x)

y = f(
n∑

i=1
wixi + b)

where y is the output of the neural network, xi are the inputs to the neural network,

wi are the weights applied to the inputs, b is the bias term and f(x) is the activation

function, in this example the commonly used rectified linear unit (ReLU) function

(Agarap, 2018).

After the activation function, an artificial neuron’s output is transferred to other

neurons in the network or is used as the network’s final output. In this way, neurons

can be connected by building an artificial neural network (Fig. 1.4), forming a

complex network of computational units that can learn and model complex data

distributions (Goodfellow et al., 2016).

The activation function of an artificial neuron is a fundamental design choice that

determines the properties of the neuron and the behaviour of the network. Common

examples of activation functions include the ReLU, the sigmoid function and the

hyperbolic tangent (tanh) (Fig. 1.5). Each function has different properties, such
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Figure 1.4: Diagram of a fully connected artificial neural network with 3 input neurons, 3 hidden

neurons, and 1 output neuron. Arrows represent the weighted connections between neurons.

as being bounded or unbounded and smooth or non-smooth. The shape of the

activation functions determines its use cases; the sigmoid function, for example,

is often used on the last layer of output neurons as it is bound between 0 and 1,

thus able to model probabilities (Narayan, 1997). Without non-linear activation

functions, the output of a neural network would be a linear function of the inputs.

Thus a network consisting of multiple layers of ANNs could be reduced to a single

layer again, negating the advantages of a deeper network (Huang & Babri, 1998).

1.3.2 Deep Learning

While artificial neural networks consisting of neuronal units described above can

handle some tasks and modalities well enough, they are unsuitable for image

analysis. There are 262,144 pixels in an average-sized 512x512 image; having a

neuron for each input pixel and the same amount in the first hidden layer would
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Figure 1.5: Different activation functions for an ANN.

result in almost 69 billion parameters in the first layer. As of 2022, the biggest

model in use, GPT-3 for language modelling (Brown et al., 2020), has comparable

175 billion parameters with approximate compute costs of 5 million dollars per

training run; this is a rare exception and training such massive networks is not

feasible for general use. Thus, a method that does not encode every pixel separately

is required. The use of convolutional layers to encode and extract information

in spatial modalities like images was already suggested in the 1980s by David

Marr (1982) and again by Yann LeCun (1995). A convolutional layer applies a

convolution operation to the input data to extract local features and patterns; the

discrete convolutional operation can be expressed as:

(f ∗ g)[n] =
∞∑

k=−∞
f [k] · g[n− k]
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where f and g are discrete signals (arrays of numbers), with f as the input or

intermediary image and g as the kernel, which is used as a weight in the network.

The convolution operation takes these two signals and produces a third signal that

represents the overlap between the two signals as one of them is shifted over the

other. The resulting signal is indexed by n. As the non-zero part of the kernel is

limited, the sum is not bounded from −∞ to ∞ in practice.

This can also be described simplified as the kernel being moved as a small window

across the image to detect and highlight local patterns and thus transforming the

image into a filtered version. Different kernels can be used to recognise specific

features, such as edges, ridges, or textures; thus different filters can highlight

different features of an image (similar to the filters in Fig. 1.2). In convolutional

neural networks, the numerical contents of the kernels represent the weights of the

network and are thus not manually selected, but automatically fit during model

training. As each kernel is used across the whole image, the same set of weights

is used at each position in the input data, dramatically decreasing the number of

network parameters. This feature falls under the term parameter sharing, and also

improves the translation invariance of convolutional neural networks (O’Shea &

Nash, 2015). As the same kernels are applied to e.g. the top and bottom half of the

image, image features should be recognised independent of their global location,

with some exception to boundary effects at the borders of an image (Kayhan &

Gemert, 2020).

This transformed representation of the original image is called the feature map,

which encodes the local patterns and features detected by the filters. By applying

multiple convolutional layers to the input data, a DL model can learn to extract

and combine increasingly complex and abstract features. Convolutional layers are

usually alternated with pooling layers, which compress the spatiality of an image

(Nagi et al., 2011). This enlarges the receptive field of the convolutional layer,
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meaning that the convolutional kernel now receives information on a larger part of

the image (Araujo et al., 2019). Through this architecture, the shallow layers will

have a small receptive field and encode for simpler features like edges (Fig. 1.2).

In comparison, the deeper layers will have larger receptive fields and encode for

more global features and bigger shapes, e.g. directly highlighting eyes or faces in

an image.

While a new architecture for general tasks and image analysis called Transformer

emerged recently (Carion et al., 2020), the majority of DL image analysis is still

done with convolutional nteural networks (CNNs). CNNs for image analysis had

their breakthrough a decade ago when Krizhevsky et al. presented AlexNet (2012)

and Simonyan et al. presented VGG16 (2015), which both are feasible model

architectures for image classification with DL. Ronneberger et al. presented the

U-Net architecture for image segmentation (2015), which instantly became a staple

in the biomedical imaging community. Its architecture is still commonly used by

itself, with modifications, or as a part of more extensive networks as in the Mask

R-CNN described below (He et al., 2017).

The U-Net model is a type of encoder-decoder architecture. It has two main parts:

an encoder that extracts features from the input image and a decoder that uses

the extracted features to generate the segmentation map. The encoder consists of

convolutional and pooling layers, which downsample the input image and extract

hierarchical features at different scales. The decoder uses these features to upsample

the image and generate the segmentation map. The U-Net model also uses skip

connections, which connect the encoder and decoder at different levels, to combine

features at different scales and provide a more detailed and accurate segmentation.
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1.3.3 Faster R-CNN

New architectures for object detection quickly emerged as well, with the two most

common ones being YOLO (Redmon et al., 2016) and Faster R-CNN (Ren et al.,

2015). While the former focuses mainly on real-time detection, sacrificing accuracy

for speed, the latter does the opposite. It lends itself to tasks in the biomedical

domain, where almost instantaneous outputs are usually unnecessary. Faster R-

CNN went through fast iterations with it, and its predecessors R-CNN (Girshick

et al., 2014), and Fast R-CNN (Girshick, 2015) being developed in the timespan

between 2014 and 2015. It consists of four main components: a feature extractor,

a region proposal network (RPN), and lastly a box head consisting of a bounding

box regressor and a classifier (Fig. 1.6, with an additional mask head).

The feature extractor is a typical CNN, similar to VGG16, extracting features

from the image. This model backbone can be freely changed between smaller and

bigger architectures, opening the possibility for a similar speed/accuracy tradeoff

as YOLO. The RPN is a fully convolutional network that runs in parallel with the

CNN and uses its feature maps to generate proposals. These proposals represent

the possibility that an object is present at a location, regarding all objects belonging

to the same foreground class. The fact that the number of objects in an image

is unknown to the model is not easily reconciled with the fact that it needs a

consistent output shape. This differs from classification or segmentation tasks, as

the model will always output a predefined number of classifications or an output

segmentation mask of a defined shape. This necessitates using a predefined number

of anchors, which are boxes of different sizes and aspect ratios placed at regular

intervals across the input image. At each anchor and box, a prediction can be

made whether it contains a foreground object, thus generating the proposals.

Once the proposals have been generated, the classifier uses the features from the

CNN and the proposals from the RPN to classify each region as belonging to a
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Figure 1.6: Adapted Mask R-CNN architecture containg an additional multi-mask header

(Bunk et al., 2022). The box and mask headers are stacked on top of the model backbone and

RPN.

specific object class or as background. To already discard unlikely matches and

save computational resources, only the top-k proposals are forwarded from the

RPN. The classifier and regressor are called model heads and are stacked on top

of the backbone and the RPN. They are modular and can be easily switched and

modified independently from the rest of the model. The classifier is trained to

assign class labels to the proposals and uses the features from the CNN to make

these predictions. The bounding box regressor uses the features and proposals to

refine the locations and sizes of the bounding boxes around the objects. This can

improve the accuracy of the bounding boxes and make the detection results more

precise.
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While it also introduces much complexity to the model, the modularity of the

Faster R-CNN architecture also means that it can be easily extended beyond the

originally proposed object detection task. While switching the backbone of the

model can greatly impact its performance, it mainly arises from the use of task-

specific network headers on top of the backbone and RPN. The most prominent

example is Mask R-CNN (He et al., 2017). Here, the original object detection

header is complemented by an additional semantic segmentation header, which is

similar, but smaller than the U-Net architecture (Ronneberger et al., 2015). A

binary mask is generated for each box, which can then be stitched into a whole

instance segmentation image with the information from the detection header.

The topic of instance/semantic segmentation and object detection are closely related,

so one might not be surprised to see this use-case implemented. However, the

same paper also describes another custom header for keypoint detection (Keypoint

R-CNN). Here specific keypoints are detected in an image; this is mainly used

to find keypoints for human pose estimation, e.g. joints or landmarks of the face

like the nose or edges of the mouth. Custom headers are also used for even more

objectives, like improving Few-Shot training (Qiao et al., 2021).
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1.4 Machine Learning in Biology

While constant progress is happening in DL and CV (Sapoval et al., 2022), it is not

easily transferred into the biological domain. Biology asks unique questions, often

requiring unique tools to answer them. On the one hand, computer vision is heavily

focused on specific, outlined problems and benchmarks that do not translate well

to biological problems. On the other hand, creating tools from well-performing

models that can easily be integrated into the daily routine of the lab poses its own

set of challenges.

1.4.1 Adapting models to biological problems

In the past ten years since the viable training of an image classification CNN by

(Krizhevsky et al., 2012), AI models have experienced a renaissance with massive

interest from both the commercial and the scientific side. A new research area

has surfaced, and biological or medical applications are just a small subset. Many

problems with applying general AI research to biological problems arise from the

stark difference in input data that goes into the models. While microscopy images

can be broadly seen as pictures, as the human eye can view them just like a picture

taken from a phone, they differ significantly in contents and shape.

Image analysis networks are usually built to accept images in a three-dimensional

shape of [channels, height, width] with channels = 3, one each for each colour of

the common RGB-format (Gulli & Pal, 2017). While RGB images are used in

some biological areas, for example, when imaging histopathological slices, they

are instead often recorded as grayscale images with one single channel. In the

case of fluorescence microscopy, recordings of different fluorescent channels are

often stacked in an image, resulting in sometimes even more than three channels.

This will require either modification to the input layers of a CNN to process the

images or changing the input images themselves to conform to the model structure.
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Images of even higher dimensionality, such as three-dimensional images or focus

series require even more pre-processing or even dedicated model architectures.

Additionally, the content, and thus the embeddings of a picture or a microscopy

image, differ significantly. In microscopy, objects are kept in focus as much as

possible, while it is customary in pictures to have out-of-focus objects and different

perspectives. Inherent statistics of an image dataset, like pixel value distribution

and contrast, greatly impact how a model performs. A common difference is the

lower SNR in microscopy images compared to well-lit pictures. Thus, more tweaks

on a model may be required to compensate for changes in these statistics.

These discrepancies make transfer learning, where models are pre-trained on a

larger, general dataset and then fine-tuned on new data, difficult. Transfer learning

is a big part of current state-of-the-art models. It helps when the amount of

training data in a new dataset is limited, as it allows the model to leverage the

knowledge of a previous domain containing many training examples to improve

its performance on the new task (Zhuang et al., 2020). While transfer learning

from non-biological domains to a biological task can be done to success (Maqsood

et al., 2019), its performance will still be a bit degraded compared to in-domain

transfer learning. An ideal setup, for example, in fluorescence microscopy, would

be to have a large, general dataset containing various fluorescent cells, which can

then be transferred to tasks examining specific structures. A good example of

in-domain transfer learning is the transfer of knowledge gained on a dataset of

the well-understood model organism Caenorhabditis elegans to other organisms to

predict mRNA splice sites (Schweikert et al., 2008).

Limited ground truth and the difficulty of acquiring new annotations to create these

kinds of big datasets is a recurring problem in biomedical AI research. Especially

when compared to big, non-biological datasets like COCO (Lin et al., 2014) with

328,000 pictures or ImageNet (Deng et al., 2009) with over 14 million pictures, the
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effort to build such a basis seems insurmountable. The Broad Bioimage Benchmark

Collection (Ljosa et al., 2012) is a big driver in this effort, especially with their

dataset from the Kaggle DataScienceBowl 2018, which provided 841 images of

different nuclei acquisitions (Caicedo et al., 2019). The lack of common datasets

also precludes the existence of benchmarks on those, making reproducibility in

biological AI studies even more of a problem than it already is (Wagner et al.,

2022). Experimental setups vary wildly, so the performance of AI models might do

the same, even if the general task and organism are the same.

The lack of computational resources can also inhibit the use of AI in biology.

Training a bigger AI model can be computationally expensive and usually requires

GPU capacities to train them within an acceptable time-frame (Wang et al., 2019).

As the current trend with transformer networks reaches unseen model sizes (Floridi

& Chiriatti, 2020), it is unlikely for this to change in the near future. While

research groups from bioinformatical areas are not strangers to this issue, as high-

performance computing was already part of their research (Hey & Trefethen, 2003),

the average biological researcher might not have these computational capacities.

A good approach is to move model training into the cloud, and while this might

still be prohibitively expensive, efforts have been made to offer a free alternative

within Google’s Colab platform to biological researchers (von Chamier et al.,

2021). Another good approach is to take bigger models such as DETR, a detection

model based on the transformer architecture (Carion et al., 2020), and reduce the

model’s size while preserving its performance for biomedical tasks as done with

GasHis-Transformer (Chen et al., 2022).

1.4.2 Custom Faster R-CNN heads

In my work YeastMate (Bunk et al., 2022), I adapted the common Mask R-CNN

model architecture to a specific problem in the biological domain. S. cerevisiae

cells can reproduce both asexually and sexually; in both, a new daughter cell will
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emerge from either the mother cell or the two fused mother cells. To analyse these

reproduction events, it is important not only to find them but also to be able to

differentiate between mother and daughter cells. This might be a trivial task if

the daughter cell is in its earliest stage and much smaller than the mother cells.

However, to correctly classify them in their later stages, the conformation of the

whole reproduction event must be considered.

We solved this problem with an implementation reminiscent of the mask header

from Mask R-CNN. Instead of just generating a binary mask and assigning it a

class value transmitted by the detection header, the segmentation head is trained to

produce a multi-categorical mask containing information on the class value of the

included objects (Fig. 1.6). Here, every mask layer is returned instead of reducing

the mask header output to the predicted mask of the class specified by the detection

head. Equally, the model is trained with multi-dimensional masks containing the

sub-classifications of the reproduction event. To facilitate this change in training

objective, the usual BCE loss for binary image segmentation is replaced by a

categorical cross-entropy (CE) loss:

BCE = − 1
N

N∑
i=1

(yi log ŷi + (1− yi) log(1− ŷi))

CE = − 1
N

N∑
i=1

C∑
j=1

yi,j log ŷi,j

where N is the number of samples, yi is the true label for sample i, ŷi encodes the

probabilities of the predicted labels for sample i, and C is the number of classes.

The multiclass segmentation mask allows for postprocessing the acquired detections

into their respective sub-classes (Fig. 1.7). Instances of segmented single-cell

objects can be compared with the scores of the multiclass segmentation at the

same pixel locations. The instance of the single cell can then be matched to the
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sub-class using linear sum assignment. Additional constraints can be defined, such

as the minimum and the maximum number of mother or daughter cells. When

setting the acceptable amount range of daughter cells to 0-1, a second daughter cell

will be rejected, even with a high confidence score. In the inverse, a daughter cell

might be rejected if its confidence score is too low, as having no daughter cell lies

within our constraints. This helps avoid false positives, as even if an unrelated cell

sits at the location a daughter cell would be expected, the multiclass segmentation

will try to reject it based on texture and edges.

cell, id 2cell, id 4

cell, id 3
cell, id 1

0.160   0.768
0.808   0.001
0.861   0.001
0.011   0.060

mating
mother

mating
daughter possible roles

mother 1
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    discard optional objects (e.g. mating daughter)
    if their score is too low 4) return instance segmentation mask

     and role annotation

mating, id 5

Figure 1.7: Post-processing steps of the generated yeast mating multi-masks (Bunk et al.,

2022).

The problem of identifying and tracking cell divisions and reproduction events is

a unique biological problem. Especially when the imaged cells are in a colony or

very close together, the resulting image will not have an equivalent in everyday
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pictures like in ImageNet (Deng et al., 2009). This example shows that while

domain-specific adaptions to DL models are sometimes required, they can usually

still be solved with minimal changes and interference so as not to diverge too far

away from the constant progress in DL.

1.4.3 Creating tools for the daily lab routine

DL itself in its current form is not even a decade old at this point, and the knowledge

of how to efficiently deploy trained models in production, called MLOps, even more

so (Alla & Adari, 2021). That might translate to having dedicated servers that can

be easily used for routine high-throughput applications or the knowledge of how to

package models and provide them to the user without any further requirements.

However, in the field of biomedical research, there is often a lack of expertise and

knowledge in this area, which can make it challenging to deploy DL models reliably

and effectively. Another challenge is the high barrier to entry for users with limited

programming experience. Many researchers in the field of biomedical research may

have little or no programming experience and may not be familiar with the tools

and technologies used in DL. This can make it difficult for them to use DL models

and tools and can limit their ability to apply these methods to their research.

In order to overcome these challenges, it is essential for researchers and tool

developers to focus on making DL tools and models more accessible and user-

friendly. This can include providing easy installation, low system requirements,

wide availability, and good documentation. By lowering the entrance barrier and

making DL tools more widely available, researchers can expand the use of these

methods in biomedical research. The past years have seen some very useful tools

that keep the user experience in mind, like DeepLabCut (Mathis et al., 2018),

ilastik (Berg et al., 2019) and CellPose (Stringer et al., 2021). Still, the onus is on

us as the model developers and tool providers to open up our tools to an audience

as broad as possible.
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D E V E L O P M E N T A L  B I O L O G Y

Regulatory encoding of quantitative variation in spatial 
activity of a Drosophila enhancer
Yann Le Poul1*, Yaqun Xin1*, Liucong Ling1, Bettina Mühling1, Rita Jaenichen1, David Hörl2, 
David Bunk2, Hartmann Harz2, Heinrich Leonhardt2, Yingfei Wang3, Elena Osipova1, 
Mariam Museridze1, Deepak Dharmadhikari1, Eamonn Murphy1, Remo Rohs3, 
Stephan Preibisch4,5, Benjamin Prud’homme6†, Nicolas Gompel1†

Developmental enhancers control the expression of genes prefiguring morphological patterns. The activity of an 
enhancer varies among cells of a tissue, but collectively, expression levels in individual cells constitute a spatial 
pattern of gene expression. How the spatial and quantitative regulatory information is encoded in an enhancer 
sequence is elusive. To link spatial pattern and activity levels of an enhancer, we used systematic mutations of the 
yellow spot enhancer, active in developing Drosophila wings, and tested their effect in a reporter assay. Moreover, 
we developed an analytic framework based on the comprehensive quantification of spatial reporter activity. We 
show that the quantitative enhancer activity results from densely packed regulatory information along the se-
quence, and that a complex interplay between activators and multiple tiers of repressors carves the spatial pattern. 
Our results shed light on how an enhancer reads and integrates trans-regulatory landscape information to encode 
a spatial quantitative pattern.

INTRODUCTION
Enhancers constitute a particular class of cis-regulatory elements that 
control in which cells a gene is transcribed, when, and at which rate 
(1, 2). Notably, enhancers play a central role during development in 
plants and animals (3), generating patterns of gene expression that 
delineate embryonic territories and prefigure future forms (4). How 
the information determining these patterns is encoded in a devel-
opmental enhancer has therefore been at the center of attention for 
several decades. Enhancers integrate spatial information from tran-
scription factors (TFs) bound to them, and the number, affinity, and 
arrangement of TF binding sites (TFBSs) in the enhancer sequence 
are relevant to the enhancer spatial activity [reviewed in (5)]. How-
ever, the logic of TFBS organization that determines a spatial pattern 
is not sufficiently understood to reliably design a functional syn-
thetic enhancer driving correct expression levels (6, 7).

The study of developmental enhancers has been polarized by two 
conceptions of gene expression patterns. Until recently, most stud-
ies have referred to enhancer activities in qualitative terms exclusively, 
where the notion of spatial pattern evokes discrete and relatively ho-
mogeneous domains of gene expression (8). With the rise of ge-
nomics from the early 2000s, it has become possible to precisely 
measure gene expression and, by extension, enhancer activity. How-

ever, whether it is measured in a given tissue or in single cells, this 
quantification of gene expression is done at the expense of losing 
spatial information [e.g., (9–11)], with few exceptions [e.g., (12, 13)]. 
It is nevertheless critical to appreciate that the overall levels and the 
spatial pattern of activity in a given tissue are intrinsically linked. 
Therefore, to understand how a spatial pattern of gene expression is 
encoded in the sequence of an enhancer, it is necessary to measure 
quantitative variation of gene expression in space in the tissue where 
the enhancer is active. Leading this endeavor, recent studies have 
quantified spatial enhancer activity but without considering the pat-
tern itself as a quantitative object (13–18).

To pursue this effort of measuring quantitative variation in spatial 
gene expression, we have analyzed the structure and the functional 
logic of a compact Drosophila enhancer sequence with quantitative 
measurements of its spatial activity in fly wings. The so-called spot196 
enhancer, from the yellow gene of the fruit fly Drosophila biarmipes, 
drives a patterned gene expression in pupal wings with heterogeneous 
expression levels among cells (19–21). The spot196 enhancer sequence 
contains at least four TFBSs for the activator Distal-less (Dll) and at 
least one TFBS for the repressor Engrailed (En) (Fig. 1A) (19, 20). 
Together, these inputs were considered to be sufficient to explain 
the spatial activity of spot196 in the wing, with activation in the distal 
region and repression in the posterior wing compartment (19, 20). 
Grafting TFBSs for these factors on a naïve sequence in their native 
configuration, however, proved insufficient to produce regulatory 
activity in wings. This prompted us to dissect the spot196 element 
further to identify what determines its regulatory activity, consider-
ing simultaneously spatial pattern and activity levels.

We first introduced systematic small-scale mutations along the 
196 base pairs (bp) of the enhancer sequence to test the necessity of 
the mutated positions; we then randomized large blocks of the en-
hancer sequence to test the sufficiency of the remaining intact se-
quence to drive activity. To assess the activity of each mutant enhancer, 
we devised a pipeline that uses comprehensive descriptors to quantify 
variations in reporter activity levels across the wing of Drosophila 
melanogaster transgenic lines. Our quantitative analysis revealed a 
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high density of regulatory information, with all mutated positions 
along the spot196 enhancer sequence contributing significantly to the 
activity levels. It also outlined an unanticipated regulatory logic for 
this enhancer, where the spatial pattern in the wing results from a 
complex interplay between activators and multiple tiers of repressors 
carving a spatial pattern.

RESULTS
Regulatory information distributed along the entire spot196 
enhancer contributes to its quantitative spatial activity 
in the wing
We first systematically evaluated the potential role of all positions 
along the spot196 enhancer sequence to produce an activity pattern 
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Fig. 1. A mutational scan of the D. biarmipes spot196 enhancer with a quantitative reporter assay. (A) Wild-type ([+]) and mutant ([0] to [16]) versions of the spot196 
enhancer from the D. biarmipes yellow locus (depicted at the top) were cloned upstream of a DsRed reporter to assay their respective activities in transgenic D. melanogaster. 
Each mutant targets a position of the enhancer, where the native sequence was replaced by an A-tract (color code: light green, guanine; purple, adenine; dark green, cytosine; 
pink, thymine). Four characterized binding sites for the TF Distal-less (Dll-a, Dll-b, Dll-c, and Dll-d) (19) are highlighted in red, and a single binding site for the TF Engrailed 
(20) is highlighted in blue across all constructs. (B) Average wing reporter expression for each construct depicted in (A) and an empty reporter vector (ø). Each wing image 
is produced from 11 to 77 individual wing images (38 on average; data file S2), aligned onto a unique wing model. The average image is smoothened, and intensity levels 
are indicated by a colormap. (C) Mutational effect on intensity of activity along the spot196 sequence. The phenotypic effect of each mutation described in (A) along the 
spot196 sequence (x axis) is plotted as the average level of expression across the wing relative to the wild-type average levels. Shaded gray areas around the curve rep-
resent the 95% confidence interval of the average levels per position. “1” on the y axis represents the mean wild-type intensity of reporter expression. The graph shows 
how each construct departs from the wild-type activity (see Materials and Methods). Mutation positions in constructs [0] to [16] are indicated above the graph. The loca-
tions of blocks A, B, and C, analyzed in Fig. 3, are also indicated above the graph. The yellow curve above the graph indicates the helical phasing.
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and wild-type levels of gene expression. We generated a series of 
mutants scanning the element and thereby testing the necessity of 
short adjacent segments to the enhancer function. Notably, we 
made no prior assumption (e.g., predicted TFBSs) on the function 
of the mutated nucleotides. We maximized the disruption of se-

quence information by introducing stretches of 10 to 18 bp (11.5 bp 
on average) of poly(dA:dT), also known as A-tracts (22), at adjacent 
positions along the sequence (Fig. 1A). Thus, the sequence of each 
of the 17 constructs (spot196 [0] to spot196 [16], or [0] to [16] in short; 
Fig. 1A) is identical to the wild-type spot196 ([+] in short), except for 
one segment where the sequence was replaced by the corresponding 
number of adenines. These mutations affect the local sequence 
composition, without changing distances or helical phasing in the 
rest of the enhancer. We measured activities of each mutant en-
hancer in the wing of the corresponding reporter construct line 
of D. melanogaster, here used as an experimental recipient for 
site-specific integration. In brief, for each reporter construct line, 
we imaged individually around 30 male wings (1 wing per fly) un-
der bright-field and fluorescent light. We detected the venation on 
the bright-field images of all wings and used it to compare reporter 
activity across wings. For this, we applied a deformable model to 
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Fig. 2. Trans-regulatory integration along the spot196 sequence. (A) Average 
phenotypes reproduced from Fig. 1B. (B) logRatio images [log([mutant]/[+]) for 
intensity values of each pixel of registered wing images] reveal what spatial infor-
mation is integrated by each position along the enhancer sequence. For instance, 
a blue region on an image indicates that the enhancer position contains informa-
tion for activation in this region. When mutated, this enhancer position results in 
lower activity than [+] in this region of the wing. Note that logRatio illustrates local 
changes between [+] and mutants far better than image differences (fig. S3) in re-
gions of relatively low activity. (C) Summary of spatial information integrated along 
the enhancer sequence.
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warp the fluorescent image of each wing, using landmarks placed 
along the veins of the corresponding bright-field image and align-
ing them to a reference venation (see Materials and Methods for 
details). The resulting dataset is a collection of fluorescence images 
for which the venation of all specimens is perfectly aligned. These 
images, represented as the list of fluorescence intensity of all pixels, 
constitute the basis of all our quantitative dissection. To assess 
whether the activity driven by a given enhancer sequence signifi-
cantly differs from any other, wild type or mutant, we used the 
scores produced by principal components analysis (PCA) that com-
prehensively summarizes the variation of the pixel intensities across 
wings. To visualize the reporter activity per line, we used images 
representing the average activity per pixel (hereafter average 
phenotype).

The activity of each mutant (Fig. 1B) differs significantly from 
that of [+], as measured in the PCA space (fig. S1 and data file S1). 
This means that the activity of each mutant had some features, 
more or less pronounced, that significantly differentiate its activity 
from [+], revealing the high density of regulatory information dis-
tributed along the sequence of spot196. The magnitude and direction 
of the effects, however, vary widely among mutants, ranging from 
activity levels well above those of [+] to a near-complete loss of 
activity.

The average activity levels of each mutant construct in the wing 
relative to the average activity levels of [+] show how effect direc-
tions and intensities are distributed along the enhancer sequence 
(Fig. 1C). This distribution of regulatory information and the mag-
nitude and direction of the effects, including several successions of 
overexpressing and underexpressing mutants, suggest a more com-
plex enhancer structure than previously thought (20). The density 
of regulatory information is also reminiscent of what has been 
found for other enhancers (13, 23, 24).

In principle, the localized mutations we introduced can affect 
the spot196 enhancer function through nonexclusive molecular 
mechanisms. Mutations may affect TF-DNA interactions by dis-
rupting TFBS cores or by influencing TF binding at neighboring 
TFBSs [for instance, by altering DNA shape properties (25, 26)]. 
A-tract mutations may also influence nucleosome positioning and 

thereby the binding of TFs at adjacent sites (27). Not exclusively, 
because of stacking interactions between adjacent As and Ts, they 
increase local DNA rigidity (22, 28, 29) and may thereby hinder or 
modulate TF interactions. These changes in rigidity, which we have 
evaluated for our mutant series (fig. S2A), may affect TF-TF inter-
actions (fig. S2B). Regardless of the precise molecular mechanisms 
underlying the mutations we introduced in the spot196 sequence, we 
wanted to assess how they affect the integration of spatial informa-
tion along the enhancer sequence.

An enhancer’s view on the wing trans-regulatory landscape 
revealed by logRatio images
We have introduced a spatial visualization of the intensity of effect 
of a mutation on the enhancer activity. We computed the pixel-wise 
log of the ratio between two average phenotypes (single mutants over 
[+]) at every pixel (30), hereafter noted logRatio. The advantages 
of using logRatio are detailed in the Supplementary Materials and 
briefly summarized here. logRatio images show visually how much 
a mutant affects the enhancer activity across the wing proportionally 
to the local activity level. By contrast, the absolute difference in 
expression is generally locally linked to the level of expression. 
Therefore, effects in areas of high activity tend to be much more 
visible than those in areas of low activity (compare Fig. 2 and 
fig. S3). logRatio images instead represent the local proportional ef-
fects and are therefore suitable to reveal the variety of spatial effects 
of mutations, irrespective of the expression pattern itself.

Depending on how TF integration is modified by a mutant, 
logRatio images can also reflect the distribution of the individual 
spatial inputs received and integrated along the spot196 sequence. 
They can be particularly informative when both a TFBS and the 
spatial distribution of the cognate TF are known, as they shed light 
on how directly the TF information is integrated. This is the case for 
En and Dll, for which TFBSs have been previously characterized in 
spot196 (19, 20). The disruption of an En binding site (Fig. 1, A and B, 
construct [15]) resulted in a proportional increase of activity in the 
posterior wing compartment (75%, F1,124 = 77.8, P = 8.8818 × 10−15). 
The log([15]/[+]) image (Fig. 2) shows that mutant [15] propor-
tionally affects the activity mostly in the posterior wing. The effect 
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correlates with En distribution (20) and is consistent with the re-
pressive effect of its TF. Contrary to what the average phenotypes 
suggested (Fig. 1C), mutant [16] shows a very similar logRatio to 
that of [15], albeit with only 25% increase in activity. The effect of 
mutant [16] was barely discernible when considering the variation 
in the overall fluorescence signal (Fig. 1C), illustrating the power of 
the logRatio analysis to detect local effects in areas of low activity. 
Mutations that disrupted characterized Dll binding sites (Fig. 1, A and B, 
constructs [0], [1], [7], and [9]) resulted in strong reduction in 
reporter expression (90%, F1,74 = 143.3, P = 0; 75%, F1,78 = 109.3, 
P = 2.2204 × 10−16; 47%, F1,107 = 75.4, P = 4.8073 × 10−14; and 39%, 
F1,74 = 23.2, P = 7.6363 × 10−6, respectively; data file S1). The logRatio 
images for mutants [0], [1], and, to a lesser extent, [7] show a 
patterned decrease of activity in line with Dll distribution in the 
wing (Fig. 2) (19), with a proportionally stronger loss of activity 
toward the distal wing margin. This corroborates previous evidence 
that Dll binds to these sites. The respective logRatio images for seg-
ments [0] and [1] correlate with levels of Dll across the wing. This 
suggests that these sites individually integrate mostly Dll informa-
tion and do so in a near-linear fashion. Site [9], which produces a 
relatively different picture with areas showing overexpression, is 
discussed below. Mutations of Dll sites, however, have nonadditive 
effects, as mutants [0], [1], [7], and [9] result in a decrease of activity 
levels by 90, 75, 47, and 39% compared to [+], respectively. This 
nonadditivity could be explained by a strong cooperative binding of 
Dll at these sites or, alternatively, by considering that these Dll TFBS 
are interacting with other sites in the sequence.

In addition, we noted that, despite mutating a Dll TFBS, mutant 
[9] showed a substantially different logRatio than [0] and [1] but 
similar to [8], with a repressing activity in the posterior wing com-
partment, proximally, and a distal activation (Fig. 2B). This dual 
effect could be explained by the disruption of the Dll site along 
with a distinct TFBS for a posterior repressor. Alternatively, a 
single TFBS could be used by different TFs with opposite activi-
ties. In this regard, we note that the homeodomains of Dll and En 
have similar binding motifs (31) and could both bind the Dll 
TFBS disrupted by [9] (and possibly [8]). The posterior repres-
sion of En and the distal activation of Dll seem compatible with 
this hypothesis.

Unraveling trans-regulatory integration along  
the spot196 sequence
Following the same approach, we next analyzed the information 
integrated in other segments. Apart from the known Dll and En 
TFBSs, the enhancer scan in Fig. 1C identified several segments 
with strong quantitative effects on the regulatory activity. Between 
the two pairs of Dll TFBSs, we found an alternation of activating 
sites [[3] and [6], reducing overall levels by 36% (F1,69 = 17.6, 
P = 7.8336 × 10−5) and 93% (F1,98 = 284.9, P = 0) compared to [+], 
respectively] and strong repressing sites [[2], [4], and [5], with an 
overall level increase of 3.2-fold (F1,72 = 511.5, P = 0), 1.9-fold 
(F1,85 = 103.2, P = 2.2204 × 10−16), and 2.7-fold (F1,82 = 426.5, P = 0) 
compared to [+], respectively]. Construct [3] proportionally de-
creases the expression mostly around the wing veins (Fig. 2B), sug-
gesting that this segment integrates information from an activator 
of the vein regions. We had found a similar activity for this region 
of yellow from another species, Drosophila pseudoobscura, where no 
other wing blade activity concealed it (20). The logRatio of mutant 
[6], with a stronger, more uniform effect than for the other mutants 

that repress the activity, suggests a different trans-regulatory inte-
gration than Dll sites. We have recently shown that this site regu-
lates the chromatin state of the enhancer (21). Regarding segments 
with a repressive effect, mutants [4] and [5] result in a fairly uni-
form relative increase in expression, different from the activity of 
[2], indicating that the information integrated by these two regions 
([2] versus [4] and [5]) likely involves different TFs. Three seg-
ments, [6], [0], and [1] (the last two containing previously known 
Dll binding sites), each decrease the activity levels by 75% or more. 
Finding additional strong repressive sites ([2], [4], and [5]) with 
a global effect on the enhancer activity across the wing is also 
unexpected.

The analysis revealed another activating stretch of the sequence, 
between 116 and 137 bp, as mutated segments [10] and [11] de-
creased activity by 56% relative to [+] and showed very similar 
logRatios. Mutant [12] showed a mixed effect, with practically, in 
absolute terms, no effect in the anterior distal wing quadrant. Last, 
segments [13], [14], and [15] showed a succession of repressing and 
activating sites, as we have seen for segments [2] to [6], although 
with a lower amplitude. Mutant [13] caused an overall increase in 
activity (1.4-fold relative to [+]) with, proportionally, a uniform ef-
fect across the wing (logRatio). By contrast, mutant [14] decreased 
the overall activity by 36%, with a logRatio indicating an activating 
effect in the spot region and a repressive effect in the proximal part 
of the posterior wing compartment, similarly to mutants [8] and [9] 
but with lesser effects.

Together, this first dissection, focusing on the necessity of seg-
ments for the enhancer activity at the scale of a TFBS, which is typ-
ically 10 bp long (32), suggested a much higher density of regulatory 
information in the spot196 enhancer than previously described 
(19, 20). The nonadditivity of effects at Dll binding sites, three 
repressing and four activating and previously unidentified segments 
distributed in alternation along the enhancer, and the variety of 
their effects pointed to a complex regulatory logic, involving more 
(possibly six to eight) factors than just Dll and En. We resorted to a 
different approach to further probe the regulatory logic of spot196.

An interplay of activating and repressing inputs produces 
a spatial pattern of enhancer activity
The first series of mutations informed us on the contribution of the 
different elementary components of the spot196 enhancer sequence 
to its regulatory activity. However, it failed to explain how these 
components integrated by each segment interact to produce the en-
hancer activity. To unravel the regulatory logic of this enhancer, it 
is required to understand not only which segments are sufficient to 
drive expression but also how elementary components underlying 
the regulatory logic influence each other. To evaluate the sufficiency 
of, and interactions between, different segments, we would require 
to test all possible combinations of mutated segments, namely, a 
combinatorial dissection. Doing this at the same segment resolu-
tion as above is unrealistic, because the number of constructs grows 
with each permutation. Instead, we used three sequence blocks of 
comparable sizes in the spot196 enhancer—A, B, and C, defined arbi-
trarily (Fig. 3A)—and produced constructs where selected blocks 
were replaced by a randomized sequence (noted “-”). This second 
series, therefore, consists of eight constructs, including all combina-
tions of one, two, or three randomized blocks, a wild-type [ABC] 
(which has strictly the same sequence as [+] from the first series), 
and a fully randomized sequence, [---].
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With these constructs, we can track which segments, identified 
in the first series as necessary for activation in the context of the 
whole spot196, are also sufficient to drive activity (table S3; see 
Fig. 1C for the correspondence between the two series of muta-
tions). Of the three blocks (constructs [A--], [-B-], and [--C]), only 
block C is sufficient to produce activity levels comparable to those 
of the wild-type spot196 in the wing blade, although with a different 
pattern from [ABC] (fig. S4, A to C). Reciprocally, randomizing 
block C (construct [AB-]) results in a uniform collapse of the activ-
ity (fig. S4, A to C). We concluded that the sequence of block C 
contains information necessary and sufficient to drive high levels of 
activity in the wing in the context of our experiment. This is partic-
ularly interesting because C does not contain previously identified 
Dll TFBSs or strong activating segments. By contrast, blocks A and 
B, although they each contain two Dll sites, do not drive wing blade 
expression. The activating segments in block C revealed in the first 
dissection, particularly segments [10] and [11], are therefore candi-
dates to drive the main activity of spot196 in the context of these 
reporter constructs.

Block A alone ([A--]) produces high levels of expression in the 
veins (fig. S4, A to C). Combined with block C (construct [A-C]), 
it also increases the vein expression compared to C alone. We 
concluded that A is sufficient to drive expression in the veins. 
Segment [3], which proportionally decreased the activity mostly 
in the veins, could therefore be the necessary counterpart for this 
activation.

Block B alone drives expression only near the wing hinge, in a 
region called the alula ([-B-]; Fig. 3, B to D). The first dissection se-
ries, however, did not identify a mutated segment within block B 
that affected specifically the alula.

The necessity of Dll binding sites (in segments [0], [1], [7], and 
[9]) and of segment [6], and their insufficiency to drive activity in 
the wing blade in the context of block A alone, block B alone, or 
blocks A and B combined, suggest that these sites with a strong ac-
tivation effect function as permissive sites. We next focused on un-
derstanding the interplay between repressing and activating sites to 
shed light on how the spot196 patterning information is built. In the 
first series of constructs, we identified several strong repressing seg-
ments in block A ([2] and [4]) and block B ([5]). Using sufficiency 
reasoning with the second series of constructs, we further investi-
gated how these inputs interacted with other parts of the enhancer 
(Fig. 3). These interactions are best visualized with logRatios, com-
paring this time double-block constructs to single-block constructs 
used as references (Fig. 3D and fig. S4, D to F). Block B has a strong 
repressive effect on block C throughout the wing, except at the 
anterior distal tip, where C activity is nearly unchanged [log([-BC]/
[--C]); Fig. 3D]. Likewise, log([AB-]/[A--]) shows that B also re-
presses the vein expression driven by A. Similarly, block A represses 
the C activity across the wing blade, except in the spot region 
log([A-C]/[--C]). We have seen above that blocks A and B both con-
tain not only strong repressing segments but also known Dll TFBSs. 
Because both A and B show a repressive effect on block C, except in 
the spot region, we submit that the apparent patterned activation by 
Dll may result from its repressive effect on direct repressors of ac-
tivity, mostly at the wing tip. This indirect activation model would 
explain the nonadditivity of the individual Dll binding sites ob-
served in the first construct series and why grafting Dll TFBSs 
on a naïve DNA sequence is not sufficient to create a wing spot 
pattern. Together, these results outline an unexpectedly complex 

regulatory logic that contrasts with the simple model we had initially 
proposed (19, 20) and involves multiple activators and several tiers 
of repressors.

Sequence reorganization affects activity levels of the spot196 
enhancer, not its spatial output
In a final series of experiments, we wondered whether the complex 
regulatory architecture uncovered by the first two mutant series was 
sensitive to the organization of the inputs. To test the effect of 
changes in the organization of enhancer logical elements, we intro-
duced new constructs with permutations of blocks A, B, and C 
(Fig. 4A). These permutations preserve the entire regulatory con-
tent of the enhancer, except at the junction of adjacent blocks where 
regulatory information may be lost or created. All permutations 
that we have tested (four of five possible permutations) drive sig-
nificantly higher levels of expression than the wild-type [ABC] 
[[ACB]: 2.9-fold (F1,98 = 191.8, P = 0); [BAC]: 6-fold (F1,93 = 589.1, 
P = 0); [BCA]: 5.8-fold (F1,93 = 589.1, P = 0); [CBA]: 8.4-fold 
(F1,93 = 1664.2, P = 0); Fig. 4B] yet with minor effects on the activity 
distribution proportionally to the wild type (Fig. 4C). We conclud-
ed from these experiments that, in terms of pattern, the regulatory 
output is generally resilient to large-scale rearrangements. As long 
as all inputs are present in the sequence, the spatial activity is de-
ployed in a similar pattern, yet its quantitative activity is strongly 
modulated. Because they have little influence on the activity pat-
tern, the rearrangements may not change the nature of the interac-
tions within the enhancer or with the core promoter. Although we 
would need to challenge this conclusion with additional constructs 
and blocks with different breakpoints, we speculate that, molecular-
ly, the block randomization perturbates the action of some of the 
uniformly repressing elements. It highlights the robustness of the 
enhancer logic to produce a given patterned activity.

DISCUSSION
With this work, we have set to decipher the regulatory logic of an 
enhancer, spot196. The viewpoint presented here is the informa-
tion that the enhancer integrates along its sequence. Combined 
with the quantitative measurement of enhancer activity in a tis-
sue, the wing, this information reveals the enhancer regulatory 
logic and how it reads the wing trans-regulatory environment to 
encode a spatial pattern. The strength of our arguments stems from 
the introduction of two complementary aspects of the method 
(discussed in the following sections): one to combine the assess-
ment of necessity and sufficiency of regulatory information in our 
analysis and another to compare the spatial activity of enhancer 
variants (logRatio).

Regulatory necessity and regulatory sufficiency
When dissecting a regulatory element, it is straightforward to 
assess the necessity of a TFBS or any stretch of the sequence to 
the activity, by introducing mutations. It is generally more diffi-
cult to assess whether the same sequence is sufficient to promote 
regulatory activity at all, and most enhancer dissections are focusing 
on necessity analysis [see, for instance, (12, 17, 19, 20, 23, 33–37)]. 
However, our study shows that, to decipher regulatory logic and 
eventually design synthetic enhancers, understanding which reg-
ulatory components are sufficient to build an enhancer activity 
is key.
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A visual tool to compare spatial activities driven by 
enhancer variants
We introduced a new representation to compare activities between 
enhancer variants, typically a wild type and a mutant. Proportional 
effects, or local fold changes, as revealed by logRatio produce repre-
sentations that are independent from the distribution of the refer-
ence activity. They also better reflect the distribution of factors in 
trans and their variations as seen by the enhancer (here, across the 
wing) than differential comparisons (compare Fig. 2 and fig. S3). 
Differential comparisons are dominated by regions of high activi-

ties and thereby focusing our attention to the regions of high varia-
tion of activity. By contrast, logRatios reveal strong effects in regions 
of low activity that would hardly be visible using differential com-
parisons, highlighting some cryptic components of the regulatory 
logic. When additional knowledge about TFBSs and TF distribution 
will become available, they will also inform us on the contribution 
of the TF in the regulatory logic. In this respect, the introduction of 
logRatios in our analysis has proven useful and could be adapted to 
any system where image alignment is possible, such as Drosophila 
blastoderm embryos (38) or developing mouse limbs (39).

Posterior repression

of distal repression

of global repression

Activation

A

Global

repression

B

Distal repression

of global repression

C

D

Fig. 5. A model of the regulatory logic governing the spot196 enhancer. (A to D) The schematics show step by step how regulatory information and interactions inte-
grated along the enhancer sequence produce a spatial pattern of activity. (A) Three independent inputs, respectively, in blocks A, B, and C promote activity (arrows) in the 
wing veins, the alula, and the wing blade, as illustrated with average phenotypes of constructs [A--], [-B-], and [--C], respectively. Note that activity levels in the wing blade, 
stemming from block C, match the final levels of the spot196 enhancer activity in the spot region. (B) A first set of repressive inputs suppresses activity in the wing blade 
(stemming from blocks A and B) and the veins (stemming from block B). The overall combined output of the initial activation and the global repressive inputs is a 
near-complete loss of activity, except in the alula. (C) A second set of repressive inputs, whose action is localized in the distal wing region, counters the global repression, 
thereby carving a pattern of distal activity promoted by block C. (D) The distal activity is repressed in the posterior wing compartment, likely through the repressive action 
of Engrailed, resulting in a final pattern of activity in the spot region.
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A-tracts did not disrupt the major effect of TF-TF interactions
A-tracts are known to change local conformational properties of 
DNA. Hence, our A-tract mutations could influence the regulatory 
logic not only by directly disrupting the information contained in 
the sequence they replaced but also, indirectly, by introducing more 
changes than wanted. As an alternative, sequence randomization, 
however, is more likely to create spurious TFBSs, which is difficult 
to control for, especially if all the determinants of the enhancer 
activity are not known. The possible occurrence of undesired and 
undetected TFBSs would have biased our interpretation of the effect 
of individual segments and, consequently, of the regulatory logic of 
the enhancer. The chance that A-tracts introduce new TFBSs in the 
enhancer sequence is quite low compared to sequence randomiza-
tion, which is why we favored this mutational approach for the 
analysis of short, individual segments. However, A-tracts can mod-
ify various physical properties of the DNA molecule and, in turn, 
influence interactions between TFs binding the enhancer. The dis-
ruption of a TF-TF interaction due to the introduction of an A-tract 
between two TFBSs (fig. S2B) would be revealed if mutating a par-
ticular segment would have an effect similar to the effect of mutat-
ing immediately adjacent flanking segments. We note, however, 
that we do not have such situation in our dataset. This suggests that 
the A-tracts we introduced, if anything, only mildly altered TF-TF 
interactions through changes in the physical properties of spot196. 
Instead, we think that the effects of A-tract mutations are mostly 
due to disrupted TFBSs along the enhancer sequence.

The regulatory logic underlying spot196 enhancer activity
The main finding of our study is that the spot196 enhancer likely in-
tegrates six to eight distinct regulatory inputs, with multiple layers 
of cross-interactions (Fig. 5). We had previously proposed that the 
spot pattern resulted from the integration of only two spatial regu-
lators: the activator Dll and the repressor En (19, 20). The regulato-
ry density that we reveal here (Figs. 1C and 2) is reminiscent of what 
has been found for other enhancers (13, 23, 24). A logical analysis of 
systematic mutations along the enhancer gives a different status to 
the factors controlling spot196. The main levels of spot196 activity 
across the wing blade seem to result mostly from two unknown ac-
tivators: one promoting a relatively uniform expression in the wing 
blade, and another along the veins (Fig. 5A). This activation is, in 
turn, globally repressed throughout the wing by an unknown re-
pressor whose action masks that of the global activator (Fig. 5B). 
Upon these first two regulatory layers, the actual spot pattern of 
activity is carved by two local repressions. A distal repression coun-
teracts the effect of the global repressor in the distal region of the 
wing (Fig. 5C), but the spatial range of this repression is limited to 
the anterior wing compartment by another repressor acting across 
the posterior wing compartment (Fig. 5D). The former local repres-
sion could be mediated by Dll itself, a hypothesis compatible 
with the nonadditive effects of Dll TFBS mutations, whereas the 
latter is almost certainly due to En. Thus, the pattern of activity 
results not so much from local activation but from multiple tiers of 
repressors.

One would expect this complex set of interactions between TFs 
that bind along the enhancer sequence to be vulnerable to sequence 
reorganization. We unexpectedly find that shuffling blocks of the 
sequence resulted in marked changes in activity levels with little 
effect on the activity pattern. Similarly, many of the mutations still 
produced a pattern of activity quite similar to the one of [+]. This 

suggests that the exact organization of the different inputs and the 
absence of some of these inputs do not affect the TF-enhancer and 
TF-TF interactions required for a patterned activity, which here 
translates mainly to the role of Dll in repressing global repressors 
and the repressing role of En. The frequency of these interactions, 
or the interactions with the core promoter, may, however, change 
significantly upon sequence modifications, affecting transcription 
rate. In other words, the regulatory logic described above is robust 
to changes for the production of a spatial pattern but less so for the 
tuning of enhancer activity levels.

The regulatory logic of this enhancer perhaps reflects the evo-
lutionary steps of the emergence of spot196. The spot196 element 
evolved from the co-option of a preexisting wing blade enhancer 
(20). The sequences of this ancestral wing blade enhancer and the 
evolutionary-derived spot196 overlap and share at least one common 
input (21). This perspective is consistent with the idea that a novel 
pattern emerged by the progressive evolution of multiple tiers of 
repression carving a spot pattern from a uniform regulatory activity 
in the wing blade. To further deconstruct the regulatory logic gov-
erning the spot196 enhancer and its evolution, one first task will be to 
investigate how some of the mutations we introduced affect the 
activity of a broader fragment containing the entire spot activity 
(and the wing blade enhancer), closer to the native context of this 
enhancer. Another challenging step will be to identify the direct 
inputs integrated along its sequence. It will also be necessary to 
characterize their biochemical interactions with DNA and with one 
another. Ultimately, to fully grasp the enhancer logic will mean to 
be able to recreate these interactions in a functional synthetic regu-
latory element.

MATERIALS AND METHODS
Fly husbandry
Our D. melanogaster stocks were maintained on standard cornmeal 
medium at 25°C with a 12:12 day-night light cycle.

Transgenesis
All reporter constructs were injected as in (19). We used ɸC31-
mediated transgenesis (40) and integrated all constructs at the 
genomic attP site VK00016 (41) on chromosome 2. All transgenic 
lines were genotyped to ascertain that the enhancer sequence was 
correct.

Molecular biology
All 196-bp constructs derived from the D. biarmipes spot196 se-
quence were synthesized in vitro by a biotech company (Integrated 
DNA Technologies, Coralville, USA; catalog no. 121416). Table S1 
provides a list of all constructs and their sequences. Each construct 
was cloned by In-Fusion (Takara, Mountain View, USA) in our 
pRedSA vector [a custom version of the transformation vector pRed 
H-Stinger (42) with a 284-bp attB site for ɸC31-mediated transgen-
esis (40) cloned at the Avr II site of pRed H-Stinger]. All constructs 
in Fig. 1 were cloned by cutting pRedSA with Kpn I and Nhe I and 
using the following homology arms for In-Fusion cloning: 5′-GAG-
CCCGGGCGAATT-3′ and 5′-GATCCCTCGAGGAGC-3′. Likewise, 
constructs in Fig. 3 were cloned by cutting pRedSA with Bam HI 
and Eco RI and using the following homology arms for In-Fusion 
cloning: 5′-GAGCCCGGGCGAATT-3′ and 5′-GATCCCTCGAG-
GAGC-3′.
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Wing preparation and imaging
All transgenic wings imaged in this study were homozygous for the 
reporter construct. Males were selected at emergence from pupa, a 
stage that we call “post-emergence,” when their wings are unfolded 
but still slightly curled. When flies were massively emerging from 
an amplified stock, we collected every 10 min and froze staged flies 
at −20°C until we had reached a sufficient number of flies. In any 
case, staged flies were processed after a maximum of 48 hours at 
−20°C. We dissected a single wing per male. Upon dissection, wings 
were immediately mounted onto a microscope slide coated with 
transparent glue (see below) and fixed for 1 hour at room tempera-
ture in 4% paraformaldehyde diluted in phosphate-buffered saline–1% 
Triton X-100 (PBST). Slides with mounted wings were then rinsed 
in PBST and kept in a PBST bath at 4°C until the next day. Slides 
were then removed from PBST, and the wings were covered with 
Vectashield (Vector Laboratories, Burlingame, USA). The samples 
were then covered with a coverslip. Preparations were stored for a 
maximum of 48 hours at 4°C until image acquisition.

The glue-coated slides were prepared immediately before wing 
mounting by dissolving adhesive tape (Tesa brand, tesafilm, 
ref. 57912) in heptane (two rolls in 100 ml of heptane) and spreading a 
thin layer of this solution onto a clean microscope slide. Once the 
heptane had evaporated (under a fume hood), the slide was ready 
for wing mounting. All wing images were acquired as 16-bit images 
on a Ti2 Eclipse Nikon microscope equipped with a Nikon 10× plan 
apochromatic lens (numerical aperture, 0.45; Nikon Corporation, 
Tokyo, Japan) and a pco.edge 5.5 Mpx sCMOS camera (PCO, 
Kelheim, Germany) under illumination from a Lumencor SOLA 
SE II light source (Lumencor, Beaverton, OR, USA). Each wing was 
imaged by tiling and stitching of several z-stacks (z-step, 4 m) with 
50% overlap between tiles. Each image comprises a fluorescent 
channel (ET-DSRed filter cube, Chroma Technology Corporation, 
Bellows Falls, VT, USA) and a bright-field channel (acquired 
using flat field correction from the Nikon NIS-Elements software 
throughout), the latter being used for later image alignment. To 
ensure that fluorescence measurements are comparable between 
imaging sessions, we used identical settings for the fluorescence 
light source (100% output), light path, and camera (20-ms exposure 
time, no active shutter) to achieve comparable fluorescence excitation.

Z-projection
Stitched three-dimensional (3D) stacks were projected to 2D images 
for subsequent analysis. The local sharpness average of the bright-
field channel was computed for each pixel position in each z-slice, 
and an index of the slice with the maximum sharpness was recorded 
and smoothed with a Gaussian kernel (sigma = 5 px). Both bright-
field and fluorescent 2D images were reconstituted by taking the 
value of the sharpest slice for each pixel.

Image alignment
Wing images were aligned using the veins as a reference. Fourteen 
landmarks placed on vein intersections and end points and 26 sliding 
landmarks equally spaced along the veins were placed on bright-
field images using a semi-automatized pipeline. Landmark coordi-
nates on the image were then used to warp with a deformable model 
(thin plate spline) bright-field and fluorescent images to match the 
landmarks of an arbitrarily chosen reference wing by the thin plate 
spline interpolation (43). All wings were then in the same coordinate 
system, defined by their venation.

Fluorescent signal description
A transgenic line with an empty reporter vector (ø) was used as a 
proxy to measure noise and tissue autofluorescence. The median 
raw fluorescent image was computed across all ø images and used to 
remove autofluorescence, subtracted from all raw images before the 
following steps. All variation of fluorescence below the median ø 
value was discarded. The DsRed reporter signal was mostly local-
ized in the cell nuclei. We measured the local average fluorescent 
levels by smoothing fluorescence intensity, through a Gaussian 
filter (sigma = 8 px) on the raw 2D fluorescent signal. The sigma 
corresponded roughly to two times the distance between the adja-
cent nuclei. To lower the memory requirement, images were then 
subsampled by a factor of 2. We used the 89,735 pixels inside the 
wings as descriptors of the phenotype for all subsequent analyses.

Average phenotypes, differences, logRatio colormaps, 
and normalization
Average reporter expression phenotypes were computed as the 
average smoothed fluorescence intensity at every pixel among all 
individuals in a given group (tens of individuals from the same 
transgenic line). The difference between groups was computed as 
the pixel-wise difference between the average of the groups (fig. S3). 
logRatio between two constructs represents the fold change of a 
phenotype relative to another and is calculated as the pixel-wise 
logarithm of the ratio between the two phenotypes. Averages, dif-
ference, and logRatio images were represented using colors equally 
spaced in CIELAB perceptual color space (44). With these color-
maps, the perceived difference in colors corresponds to the actual 
difference in signal. Colormaps were spread between the minimal 
and maximal signals across all averages for average phenotypes. 
Difference and logRatio spread between minus and plus represent 
the absolute value of all difference for the phenotype differences, 
with gray colors indicating that the two compared phenotypes 
are equal.

Mutation effect direction and intensity
We proposed to represent the necessity of a stretch of the sequence 
along the enhancer with the activity levels of mutants of this stretch 
relative to the wild-type ([+]) activity. To summarize the overall ef-
fect of mutants (overexpression or underexpression), we measured 
the average level of activity across each wing relative to that of the 
reference. The reference level was defined as the average level of 
activity of all [+] individuals. The value at each position corre-
sponds to the average of all individuals that present a sequence that 
have an effect on this position. The effect of a mutation is not strictly 
limited to the mutated bases, because they can also modify proper-
ties of DNA of flanking positions (45). To take this effect into 
account and produce a more realistic and conservative estimation 
of necessity measure at each position, we weighted the phenotypic 
contribution of each mutant line to the measure by the strength of 
the changes they introduce to the DNA shape descriptors at this 
position. At each position, the phenotype of constructs not affecting 
the DNA shape descriptors compared to [+] was not considered. 
When two mutants modify the DNA shape descriptors at one 
position, typically near the junction of two adjacent mutations, the 
effect at this position was computed as the weighted average of 
the effect of the two mutants, where the weight is the extent of the 
DNA shape modification relative to the [+] sequence. DNA shape 
descriptors were computed by the R package DNAshapeR (46). 
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Notably, with an average of 11.5 bp, our A-tract mutations are 
somewhat larger than an average eukaryotic TFBS [~10 bp (32)], 
and each mutation is likely to affect up to two TFBSs. This size 
represents the limit of regulatory content that we can discriminate 
in this study.

PCA and difference significance
The intensity measure is an average of the overall and variable 
expression across the wing. Hence, mutations causing a different 
effect on the phenotype can have the same intensity value. To test 
whether the mutant significantly differs from [+], we used compre-
hensive and unbiased phenotype descriptors provided by PCA, 
which removes the correlation between pixel intensities and de-
scribes the variation in reporter gene expression. PCA was calculated 
on the matrix regrouping intensities of all pixels for every individual, 
of dimensions (n_individuals × n_pixels on the wing). The signifi-
cance of the difference between two constructs considers the multi-
variate variation of the phenotypes and is tested using multivariate 
analysis of variance (MANOVA) on all five first components ex-
plaining more than 0.5% of the total variance (data file S3).

Overall expression intensity and significance
The overall expression level was measured for each individual as the 
average intensity across the wing. This was used to test the signifi-
cance of overall increase and decrease in expression levels relative to 
the wild-type levels.

DNA rigidity scores
A-tracts are runs of consecutive A/T base pair without a TpA step. 
Stacking interactions and inter–base pair hydrogen bonds in ApA 
(TpT) or ApT steps of A-tracts lead to conformational rigidity (28). 
The length of an A-tract directly correlates with increased rigidity 
(47). To parametrize DNA rigidity at nucleotide resolution, we used 
A-tract length as a metric. For each position in a given DNA se-
quence, we find the longest consecutive run of the form AnTm that 
contains this position (with the requirement of n ≥ 0, m ≥ 0, and 
n + m ≥ 2), and score DNA rigidity at that position using the length 
of this subsequence. For example, the sequence AATCGCAT will 
map to the scores 3,3,3,0,0,0,2,2 because AAT and AT are A-tracts 
of lengths 3 and 2 bp, respectively.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/49/eabe2955/DC1

View/request a protocol for this paper from Bio-protocol.
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Figure S1. First two axes of variation in a principal component analysis of all individual 

wings used to generate the average reporter expression of Figure 1. Each wing is depicted by 

a colored dot, and each construct by a color. PC1 captures 87.8% of the variation and corresponds 

to overall changes in the activity of the spot196 CRE. PC2 captures 2.1% of the variation and 

appears to represent spatial difference in CRE activity between lines. The direction of variation 

along each principal component is represented on a wing with a colormap next to each axis. 

  



 

 
Figure S2. Local rigidity along the wild-type and mutant spot196. (A) Each graph is a plot of 

the length of the longest consecutive AnTn sequence that a base pair participates in, a proxy for 

sequence rigidity at this position. The first graph on top is the wild type ([+]) alone. The 

remaining graphs show plots for each mutant ([0], …, [16]) with a solid black line, compared to 

the wild type represented with a dotted magenta line. (B) Schematics illustrating the hypothetical 

consequence of local DNA rigidity (caused by an A-tract) on TF interactions. A flexible linker 

between two TFBSs would favor interactions between 2 bound TFs, while a stiffer linker of the 

same length would limit, or prevent these interactions. 

  



                       

 
 

 



 

Figure S3. Pattern changes between wild-type and mutant spot196 constructs. (A) Average 

phenotypes reproduced from Figure 1B. (B) difference images ([+] – [mutant]) for intensity 

values of each pixel of registered wing images) highlight changes in the distribution of the 

enhancer activity across the wing. Note that this operation introduces a visual bias towards 

changes in region of high expression, contrasting with logRatio images of Figure 2. 



Figure S4. logRatio of all block constructs. (A) Schematics of block constructs repeated from 

Figure 3A for legibility. (B) Average phenotypes of constructs shown in (A), repeated from 

Figure 3B for legibility. Colormap of average phenotypes normalized for all constructs of the 

block series, including block permutations of Figure 4B. (C) Average phenotypes in (B) 

compared to the average phenotype of the wild type [ABC] (logRatio). (D) Average phenotypes 

in (B) compared to the average phenotype of [A--] (logRatio). (E) Average phenotypes in (B) 

compared to the average phenotype of [-B-] (logRatio). (F) Average phenotypes in (B) compared 

to the average phenotype of [--C] (logRatio). Colormaps in (C)-(F) indicate an increase or a 

decrease of activity compared to the reference (denominator). 

 



 

Table S1. Sequences of spot196 enhancer variants. 
 

• wild type [+] or [ABC] 
>spot196 [+] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGATGTGCGCCCATGCAAT 
 

• single mutants [0] to [16] 
>spot196 [0] 
AAAAAAAAAAAAAAAAAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAG
ATCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTA
AAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCG
CCTAATTGATGTGCGCCCATGCAAT 
 
>spot196 [1] 
TCTAATTATTCCGTTTAAAAAAAAAAAATTCTGAGCTAAAACTCGCTTATGGAGAGA
TCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAA
AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [2] 
TCTAATTATTCCGTTTAAGGACGCAATTAAAAAAAAAAAAACTCGCTTATGGAGAGA
TCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAA
AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [3] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAAAAAAAAAATGGAGAGA
TCTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAA
AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [4] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTAAAAAAAAAA
ATAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGATGTGCGCCCATGCAAT 
 
>spot196 [5] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CAAAAAAAAAAAGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAA
AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [6] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCAAAAAAAAAAAAAATAAATTAATCGAATTCCCCGCTGGCTATTAA
AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC



TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [7] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAAAAAAAAAAAAGAATTCCCCGCTGGCTATTAA
AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [8] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCAAAAAAAAAAAAGGCTATTAA
AACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [9] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTAAAAAAAAAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGATGTGCGCCCATGCAAT 
 
>spot196 [10] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
AAAAAAAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [11] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAAAAAAAAAAATCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [12] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAGGCGCTCTCGAAAAAAAAAATGTAAATTGCAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [13] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAAAAAAAAAAAAAAATTGCTCAATCCGCC
TAATTGATGTGCGCCCATGCAAT 
 
>spot196 [14] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAAAAAAAAAAACCGCC
TAATTGATGTGCGCCCATGCAAT 
 



>spot196 [15] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATAAAAA
AAAAAAATGTGCGCCCATGCAAT 
 
>spot196 [16] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGAAAAAAAAAAAAAAAAA 
 

• Permutations of blocks 
> spot196 [ACB] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCC
GCCTAATTGATGTGCGCCCATGCAATTTTCCCCGCTTTTGGCTTGAATAAATTAATCG
AATTCCCCGCTGGCTATTAAAA 
 
>spot196 [BAC] 
TTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAAATCTA
ATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGATCTAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGATGTGCGCCCATGCAAT 
 
>spot196 [BCA] 
TTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAAACACA
CAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCTAATTG
ATGTGCGCCCATGCAATTCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAA
CTCGCTTATGGAGAGATCTAAA 
 
>spot196 [CBA] 
CACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCTA
ATTGATGTGCGCCCATGCAATTTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTC
CCCGCTGGCTATTAAAATCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAA
CTCGCTTATGGAGAGATCTAAA 
 

• Randomized blocks 
>spot196 [A--] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACCACATGT
TGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTCCTTATCGA
ACTTACACTCGCCTGCGTTGGT 
 
>spot196 [-B-] 
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACTGTT
GCATGTTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
AGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTCCTTATCG
AACTTACACTCGCCTGCGTTGGT 
 



>spot196 [--C] 
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACTGTT
GCATGTCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACCACATGT
TCACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGATGTGCGCCCATGCAAT 
 
>spot196 [AB-] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
AGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTCCTTATCG
AACTTACACTCGCCTGCGTTGGT 
 
>spot196 [A-C] 
TCTAATTATTCCGTTTAAGGACGCAATTTTCTGAGCTAAAACTCGCTTATGGAGAGAT
CTAAATCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACCACATGT
TCACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGATGTGCGCCCATGCAAT 
 
>spot196 [-BC] 
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACTGTT
GCATGTTTCCCCGCTTTTGGCTTGAATAAATTAATCGAATTCCCCGCTGGCTATTAAA
ACACACAAAAGGCGCTCTCGTCTGTTTCAATGTAAATTGCAAATTGCTCAATCCGCCT
AATTGATGTGCGCCCATGCAAT 
 
>spot196 [---] 
ATAATATTGCATCTCATTGTGGTGCTAGATAATCATCTAGGCTAAATCCAAAACTGTT
GCATGTCCGAATTTTTTCTTGTCCGACTAGAAACGACTAATTTAGCCGTACCACATGT
TGTCGACTCAGAAACATTATTCCCATTTACGCGTAAGCAAAAAATGCGTCCTTATCGA
ACTTACACTCGCCTGCGTTGGT 
  



 
 

genotype number of individuals 
ø 38 

[+] 49 
[0] 27 
[1] 31 
[2] 25 
[3] 22 
[4] 38 
[5] 35 
[6] 51 
[7] 60 
[8] 67 
[9] 27 
[10] 46 
[11] 33 
[12] 61 
[13] 39 
[14] 44 
[15] 77 
[16] 23 

WT-[ABC] 61 
[-BC] 32 
[A-C] 49 
[AB-] 24 
[A--] 33 
[-B-] 35 
[--C] 32 
[---] 37 

[ACB] 39 
[BAC] 34 
[BCA] 37 
[CBA] 34 

 

Table S2. Number of individuals analyzed for each construct in this study. 

  



 
 

regulatory potential 
(sufficiency) 

necessity 

[A--] A is sufficient for vein 
expression 

 

[-B-] B is sufficient for alula 
expression 

 

[--C] C is sufficient for wing blade 
expression 

 

[AB-] 
 

C is necessary for high levels in the 
spot 

[A-C] A is sufficient to repress wing 
blade expression (outside of 
spot region) 

B is necessary for alula expression 
B is necessary for full spot levels 

[-BC] B is sufficient to repress wing 
blade expression (outside of 
spot region) 

A is necessary for full spot levels 

Table S3. Analysis of necessity and sufficiency of each block. 

  



Data file S1. Scores for the PCA shown in Figure S1. 

 

Data file S2. Significance of difference in activity between pairs of groups, using the first 6 

principal components. 

 

Data file S3. Significance of the difference in average expression levels among constructs of 

the first mutant series ([0]-[16]). 

 

Data file S4. Significance of difference in average expression levels among constructs of the 

second mutant series (blocks). 

 

 

Additional notes on logRatios. 

Using average phenotypes to evaluate the effect of the mutations we introduced is useful but 

limited. Indeed, the differences we observe are visually driven by changes in regions of the wing 

with elevated enhancer activity. It is then difficult to appreciate whether a mutation affects 

enhancer activity locally or uniformly across the wing. Differential gene expression is generally 

represented using log ratios (see reference (30) in main text), which measure the fold changes in 

expression level of a gene relative to a reference (e.g., the expression of the same gene under 

different conditions). We applied this principle to our image data to visually compare the activity 

of different constructs across the wing. Classical log ratio translates here to the log of the pixel-

wise ratio between two average phenotypes at every pixel (hereafter noted logRatio). logRatio 

images of mutants vs. wild type are of particular interest to decipher the regulatory logic, because 

they reveal in which proportion a mutant affects the enhancer activity across the wing.  

Compared to absolute difference, logRatio are not driven by regions with high levels of 

expression, but by regions with a large fold change, irrespective of the wild-type activity pattern. 

In a theoretical case where the enhancer activity depends directly and linearly on a given TF 

concentration, the logRatio image reflects logically the spatial distribution of this particular TF. 

This is also the case if this integration of this TF information is only modulated by uniformly 

distributed TFs. The underlying logic is straightforward: in this theoretical case, a sequence 

mutation breaking the interaction between the DNA and the TF will have a significant effect on 

the phenotype. The intensity of the local phenotypic effect (relatively to the wild-type levels) will 

depend on the local intensity of the TF-DNA interaction across the wing, and therefore on the 



local concentration of the TF. Logically, this interaction is not happening where the TF is absent, 

with no effect on the phenotype. For any situation departing from these ideal conditions, the 

resemblance between the logRatio and the TF distribution is compromised. For instance, when a 

TF is locally repressed by another, logRatio will correspond to the net loss of spatial information 

integration, including the loss of this repression. The logRatio of a mutant affecting a known 

TFBS for which the corresponding TF distribution is known therefore informs us on its 

contribution in the regulatory logic of the enhancer, and how linearly this integration happens. 

Moreover, even without additional knowledge on the regulatory logic and TF spatial variation, the 

variety of logRatio patterns suggests the action of different spatial inputs integrated by the 

enhancer. 
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G E N E T I C S

Cristae-dependent quality control of the  
mitochondrial genome
Christopher Jakubke1,2†, Rodaria Roussou1,2†, Andreas Maiser1, Christina Schug3, Felix Thoma1,2, 
David Bunk1, David Hörl1, Heinrich Leonhardt1, Peter Walter4,5, Till Klecker3, Christof Osman1*

Mitochondrial genomes (mtDNA) encode essential subunits of the mitochondrial respiratory chain. Mutations in 
mtDNA can cause a shortage in cellular energy supply, which can lead to numerous mitochondrial diseases. How 
cells secure mtDNA integrity over generations has remained unanswered. Here, we show that the single-celled 
yeast Saccharomyces cerevisiae can intracellularly distinguish between functional and defective mtDNA and pro-
mote generation of daughter cells with increasingly healthy mtDNA content. Purifying selection for functional 
mtDNA occurs in a continuous mitochondrial network and does not require mitochondrial fission but necessitates 
stable mitochondrial subdomains that depend on intact cristae morphology. Our findings support a model in which 
cristae-dependent proximity between mtDNA and the proteins it encodes creates a spatial “sphere of influ-
ence,” which links a lack of functional fitness to clearance of defective mtDNA.

INTRODUCTION
Mitochondria contain their own genome, known as mitochondrial 
DNA (mtDNA), which in most organisms encodes core subunits of 
the respiratory chain and the adenosine triphosphate (ATP) synthase 
as well as transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs) 
required for mitochondrial protein translation. Multiple copies of 
mtDNA are distributed throughout the mitochondrial network. 
Mutations in mtDNA can have detrimental consequences for mito-
chondrial function and can lead to a multitude of mitochondrial 
diseases, which have a prevalence of ∼20 cases per 100,000 individ-
uals (1). How cells maintain the integrity of mtDNA over generations, 
despite high mitochondrial mutation rates, has remained unclear. 
Studies in Drosophila melanogaster and mice have revealed that 
mutant copies of mtDNA are removed in the female germline in a 
process known as purifying selection (2–4). Mitochondrial fission 
has been proposed to contribute to this process in D. melanogaster 
(5, 6). Generation of small mitochondrial fragments containing 
only one or a few mitochondrial genomes is believed to separate 
mtDNA copies from one another to prevent complementation of 
mutant mtDNA by gene products of intact mtDNA. Subsequently, 
mitochondrial fragments containing mutated mtDNA are proposed 
to be detected on the basis of a decreased membrane potential or 
ATP content and removed by mitophagy. In addition, it has been 
found that compromised protein import efficiency into damaged 
mitochondria leads to a decrease in mtDNA replication and hence 
disfavors propagation of mutated mtDNA copies (3, 7). Despite this 
progress, many questions remain about the cellular mechanisms that 
facilitate selection against mutant mtDNA. By exploiting the possi-
bility to genetically manipulate mtDNA in Saccharomyces cerevisiae, 
we establish budding yeast as a model system to study mtDNA 
quality control.

RESULTS
A pedigree analysis reveals mtDNA quality control  
in S. cerevisiae
First, we asked whether the single-celled S. cerevisiae intracellularly 
distinguishes between intact and mutant mtDNA and supports gen-
eration of young progeny with a healthy mtDNA content. We de-
vised an approach to genetically follow segregation of wild-type (WT) 
and mutant mtDNA copies from heteroplasmic single yeast cells. 
Two yeast strains of opposing mating types were used for this ap-
proach. The first strain is of mating type a and harbors WT mtDNA 
and a deletion of the nuclear-encoded ARG8 gene that encodes the 
mitochondrially localized Arg8 protein and is required for synthesis 
of arginine. Therefore, this strain is able to grow on medium con-
taining nonfermentable carbon sources but not on medium lacking 
arginine. The second strain is of mating type alpha and harbors a 
deletion of the nuclear-encoded ARG8, but contains mtDNA in which 
the COB gene is replaced by the ARG8 gene (cob::ARG8) (8). This 
latter strain can thus grow in the absence of arginine but not on non-
fermentable carbon sources due to the deletion of the mtDNA-
encoded COB gene. The open reading frames (ORFs) of COB and 
ARG8 are 1158 and 1294 base pairs (bp) in size, respectively. Re-
placement of the COB gene, therefore, results in a minor increase of 
the overall size of the mtDNA of less than 0.2%, which is unlikely to 
confer a replicative disadvantage on the cob::ARG8 mtDNA due to 
larger size. Both strains contained comparable amounts of mtDNA 
as determined by quantitative real-time polymerase chain reaction 
(PCR; fig. S1A).

Both yeast strains were mated to obtain heteroplasmic diploid 
zygotes containing WT and cob::ARG8 mtDNA. Microdissection 
was used to transfer single zygotes to a cell-free area on an agar plate 
containing rich medium and glucose as a fermentable carbon source, 
which supports growth of cells containing WT, cob::ARG8, or both 
mtDNA species. Once the first daughter cell had budded from the 
zygote, it was moved to a new location on the agar plate. Growth of 
this former daughter cell was again monitored, until the second-
generation daughter cell had budded, which was again transferred 
to a new position. This procedure was repeated for up to five gener-
ations, and isolated cells were incubated to allow growth of colonies 
(Fig. 1, A and B). The mtDNA genotype in such colonies was inferred by 
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Fig. 1. S. cerevisiae cells distinguish between WT and mutant mtDNA. (A) Schematic illustration of the pedigree analysis. Two arg8 yeast strains harboring WT or 
cob::ARG8 mtDNA were mated. Zygotes were isolated, and daughter cells from up to five consecutive generations were separated and placed on free spots on the agar 
plate by microdissection. (B) Growth pattern of the pedigree analysis after microdissection. Colonies were initially grown on rich medium containing glucose. The mtDNA 
genotype was inferred from the ability of colonies to grow on synthetic arginine lacking medium (cob::ARG8 mtDNA) or on medium containing the nonfermentable 
carbon source glycerol (WT mtDNA). Asterisks indicate cell material that was carried over by replica plating and failed to produce obvious colonies upon further incu-
bation. For further illustrative explanation and confirmation of the pedigree analysis, refer to fig. S1 (B to D). (C) Pedigree analysis of WT cells. Striped bars indicate per-
centage of heteroplasmic cells containing WT and cob::ARG8 mtDNA. Gray or red bars indicate percentage of homoplasmic cells containing WT or cob::ARG8 mtDNA, 
respectively. (D) Inheritance of either intact or mutated mtDNA. Mating events between two cells either with WT-LacO (GFP, P1) or cob::ARG8-TetO (mRuby3, P2) 
mtDNA. Both cells expressed a nuclear-encoded, matrix-targeted TagBFP. The percentage of either GFP or mRuby3 spots in the daughter cells relative to total number of the 
respective mtDNA variant have been plotted. Big circles represent the mean values from individual experiments. **P<0.01, t test. (E) Mitochondrial morphology during 
mating. Mating events between two cells containing either WT or cob::ARG8 mtDNA. Cells expressed either matrix-targeted mKate2 or mNeonGreen (NG). Mating 
events were monitored by live-cell microscopy. Time point before mixing of the matrix contents has been defined as T0. (F and G) Pedigree analysis of dnm1 or atg32 
cells. Scale bars, 10 m (D and E).
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their ability to grow on medium containing a nonfermentable carbon 
source or medium lacking arginine, indicative of the presence of WT 
or cob::ARG8 mtDNA, respectively (Fig. 1B and fig. S1B). The presence 
or absence of mtDNA was further corroborated by PCR analysis of 
selected lineages (fig. S1C). Of note, this growth-based assay cannot 
distinguish whether mtDNA variants are entirely absent or present in 
insufficient amounts to support growth on the respective selective 
medium. Previous analyses in S. cerevisiae have revealed rapid segregation 
of mtDNA variants containing neutral genetic markers within less than 
10 and often within one generation (9). We similarly observe rapid seg-
regation; notably, however, we detected a strong bias for the WT mtDNA 
copy. More than 60% of the colonies derived from the first-generation 
daughter contained exclusively the WT mtDNA, while only about 
∼15% of the colonies contained exclusively the cob::ARG8 mtDNA 
and ~25% remained in a heteroplasmic state (Fig. 1C). A further segre-
gation toward WT mtDNA was observed in following generations. More 
than 80% of colonies derived from daughters of the fifth generation con-
tained only the WT mtDNA (Fig. 1C). Only 3% of the colonies of the 
fifth generation were heteroplasmic, indicating virtually complete seg-
regation of both mtDNA types. Very similar results were obtained in 
pedigree analyses, where the mating types of the WT and the cob::ARG8 
mtDNA containing strains had been switched, indicating that selec-
tion for WT mtDNA over cob::ARG8 mtDNA is independent of the 
mating type (fig. S2A). Furthermore, we did not observe selection 
against mtDNA variants with an ARG8 gene inserted into a non-
coding region of mtDNA, indicating that the ARG8 gene does not 
impart a strong selective disadvantage on the mtDNA (fig. S2B).

We developed a microscopic approach to visualize selection of WT 
over cob mtDNA during budding of daughter cells from zygotes. 
To this end, we used our previously generated strain that harbors tan-
dem LacO repeats in a noncoding region of mtDNA upstream of COX2 
and expresses a nuclear-encoded LacI-3×GFP (green fluorescent pro-
tein) fusion protein harboring an N-terminal mitochondrial targeting 
sequence (10). In a separate strain, we replaced the mtDNA-encoded 
COB gene with tandem TetO repeats and introduced a gene encoding 
a mitochondrially targeted Tet-repressor fused to three repeats of the 
fluorescent protein mRuby3 into the nuclear genome. This strain con-
tained very similar mtDNA levels compared to a reference strain, 
indicating that the TetO-TetR system does not lead to major defects 
in mtDNA maintenance (fig. S3A). In the strains used for this anal-
ysis, LacI-3×GFP and TetR-3×mRuby3 bind to the LacO and TetO 
repeats, respectively. To visualize mitochondria, both strains express 
the mitochondrially targeted blue fluorescent protein TagBFP. Both 
strains were mated, and zygotes were analyzed by fluorescence mi-
croscopy. We detected mutant mtDNA in the daughter cell. Quan-
titative image analysis, however, revealed that relative amounts of WT 
LacO-mtDNA were more abundant in the daughter cell than the 
cob TetO-mtDNA (Fig. 1D and fig. S3B). While we cannot entirely 
rule out that the LacO-LacI or the TetO-TetR systems affect the mtDNA 
selection process or lead to biased results in this imaging approach, 
these data support the conclusion that S. cerevisiae cells can distin-
guish between WT and mutant mtDNA and promote generation of 
progeny with predominantly healthy mtDNA content.

Selection against mutant mtDNA occurs in a continuous 
mitochondrial network
Like in higher eukaryotes, mitochondria form a continuous tubular 
network in S. cerevisiae that is constantly rearranged by fusion and 
fission events. A simple explanation for rapid segregation of WT 

and mutant mtDNA could be that dysfunctional mitochondria do 
not fuse with healthy mitochondria to form a continuous network 
upon mating. In such a scenario, mutant and WT copies of mtDNA 
would not mix but be kept in separated mitochondrial compart-
ments, which could facilitate efficient segregation. To examine 
this possibility, we used live-cell microscopy to monitor mitochon-
drial fusion during mating of two yeast strains expressing either 
mNeonGreen (NG) or mKate2 targeted to the mitochondrial ma-
trix. We first examined mating events between two cells, both contain-
ing WT mtDNA. In line with previous observations, we observed 
fusion of mitochondria in newly formed zygotes (11–13). Fusion was 
characterized by quick and mostly complete equilibration of 
mKate2 and NG within 2 min throughout virtually all parts of the 
mitochondrial network in zygotes (fig. S4A). Similarly, we observed 
rapid fusion of mitochondrial networks in mating events between 
cells containing either WT or cob::ARG8 mtDNA (Fig. 1E, fig. S4B, 
and movie S1). Detection of both fluorescent proteins through-
out the mitochondrial network was the result of fusion rather than 
ongoing translation, because unfused fragments could be distin-
guished during the mitochondrial fusion process in zygotes 
(arrowheads in Fig. 1E). Despite content mixing of mitochondria, 
our pedigree analysis reveals that yeast zygotes can still distinguish 
between mutant and WT mtDNA to produce daughter cells that 
predominantly contain WT mtDNA.

Mitochondrial fission or Atg32-mediated mitophagy is not 
required for selection against mutant mtDNA
We asked whether mitochondrial fission could facilitate selection 
against mutant mtDNA, as has been proposed for D. melanogaster 
(5, 6). We did not observe increased mitochondrial fragmentation 
after mating between cells containing WT mtDNA or mating be-
tween cells containing either WT or cob::ARG8 mtDNA. Thus, 
excessive mitochondrial fragmentation does not occur during selec-
tion against mutant mtDNA in yeast zygotes (Fig. 1E; fig. S4, A and 
B; and movie S1).

To further assess the role of mitochondrial fission in selection 
against mutant mtDNA, we performed pedigree analyses of crosses 
between cells lacking the fission protein Dnm1 and harboring ei-
ther WT or mutant cob::ARG8 mtDNA. Notably, the absence of 
mitochondrial fission did not compromise rapid selection for WT 
mtDNA in a colony produced by the first daughter cell of hetero-
plasmic yeast zygotes (Fig. 1F). Furthermore, live-cell microscopy 
of mating events between two dnm1 strains harboring either WT 
or mutant mtDNA and expressing matrix-targeted mKate2 or NG, 
respectively, revealed that mitochondria from both parental cells 
rapidly fused in zygotes (fig. S4C and movie S2). We also tested the 
importance of the mitophagy receptor Atg32 (14, 15) for selection 
against mutant mtDNA. atg32 cells behaved similar to WT cells 
in pedigree analyses and exhibited complete mitochondrial fusion 
during the mating process (Fig. 1G, fig. S4D, and movie S3). Thus, 
neither mitochondrial fission nor Atg32-mediated mitophagy is es-
sential for selection against mutant mtDNA during mating events 
of S. cerevisiae cells. Notably, selection for WT mtDNA in genera-
tions 2 to 5 appeared less prominent in pedigree analyses of dnm1 
or atg32 cells compared to matings between WT cells. This ob-
servation could indicate that selection toward WT mtDNA in daugh-
ter cells of zygotes is independent of fission and mitophagy, whereas 
further selection in dividing diploids may be supported by these 
processes.
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The mtDNA-encoded protein Atp6 exhibits severely limited 
diffusion rates
The fact that selection occurs in a continuous network that shares 
WT and mutant mtDNA presents a conundrum. How can cells dis-
tinguish between WT and mutant mtDNA if mitochondrial content 
equilibrates in a continuous network? We hypothesized that selec-
tion can only occur when subdomains are maintained within the 
mitochondrial network, whose functionality is determined by nearby 
copies of mtDNA. In such a scenario, it is important that mtDNA-
encoded respiratory chain subunits do not exhibit rapid diffusion, 
because this would allow complementation of dysfunctional sub-
domains by gene products from WT mtDNA. To examine diffusion 
of an mtDNA-encoded protein, we modified mtDNA and fused an 

NG-tag to the C terminus of the mtDNA-encoded ATP6 gene (fig. 
S5A). Yeast strains exclusively expressed the NG-tagged variant of 
Atp6 and did neither show growth defects on medium containing 
fermentable or nonfermentable carbon sources at 30° or 37°C nor 
exhibit increased formation of so-called petite cells that are respiratory 
deficient or display altered mtDNA or Atp6 protein levels (Fig. 2A 
and fig. S5, B to D). These observations indicate full functionality of 
the NG-tagged Atp6.

Fluorescence microscopy of diploid cells harboring the ATP6-NG 
mtDNA and expressing a nuclear-encoded matrix-targeted mScarlet 
revealed that, in contrast to the uniformly distributed mScarlet signal, 
Atp6-NG exhibited a patchy distribution in the mitochondrial net-
work (fig. S5E). This distribution has also been observed previously 
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using nuclear-encoded GFP-tagged variants of ATP synthase subunits, 
and it has been proposed that these patches report on mitochondrial 
cristae, in which the ATP synthase is enriched (16). We used struc-
tured illumination microscopy of 4′,6-diamidino-2-phenylindole 
(DAPI)–stained cells to query the relationship between Atp6-NG 
and mtDNA. Atp6-NG foci were spatially linked to mtDNA and were 
detected in the immediate surroundings of DAPI spots rather than 
directly colocalizing with them (Fig. 2B). This finding demonstrates 
that the ATP synthase localizes close to mtDNA but is largely ex-
cluded from areas occupied by mtDNA itself. This observation is in 
line with recent super-resolution data in HeLa cells that showed a 
lack of cristae in close proximity to mtDNA (17).

To further test whether Atp6-NG remains close to the copy of 
mtDNA by which it is encoded, we examined diffusion of Atp6-NG 
in living cells during a mating experiment. Cells harboring mtDNA en-
coding Atp6-NG were mated with cells expressing a nuclear-encoded 
matrix-targeted mKate2 and harboring nonmodified mtDNA.  
Equilibration of both fluorescent signals throughout the mitochondrial 
network of zygotes was studied over time by live-cell microscopy 
(Fig. 2C). In line with our previous observation, soluble mKate2 rapidly 
equilibrated throughout the mitochondrial network upon fusion of 
parental mitochondria. Notably, the Atp6-NG signal remained lo-
calized to mitochondria from the cell of its origin (Fig. 2D, fig. S6A, 
and movie S4). Only very small Atp6-NG amounts were present 
in the mitochondrial network of the mating partner ∼80 min after 
mitochondrial fusion, when a daughter bud had already emerged at 
midpoint between both parental cells and had been invaded by mito-
chondria. To quantify equilibration of Atp6-NG in late zygotes harboring 
a large medial bud, we first segmented the mitochondrial network 
based on the mitochondrial mKate2 signal and assigned mitochon-
drial parts to either the parental Atp6-NG (P1), the parental mKate2 
(P2), or the daughter cell. The Atp6-NG signal was then determined 
along the mitochondrial network parts that had been assigned to P1, 
P2, and daughter cell. The Atp6-NG signal was further normalized 
to the length of the subnetwork localized to the respective cells. This 
analysis revealed that on average only approximately 20% of the 
Atp6-NG was detected in the mitochondrial network of the other 
parental cell (Fig. 3B). In contrast, no difference in the mKate2 signal 
in both parental cells was apparent in this analysis, indicating complete 
mitochondrial fusion and full equilibration of this soluble matrix 
protein (fig. S7A). We cannot distinguish between preexisting and 
newly synthesized Atp6-NG in this assay but conclude that proteins 
from neither group efficiently populate the mitochondrial network 
of the parental cell that did not contain the Atp6-NG mtDNA.

To examine diffusion of another protein component of the oxidative 
phosphorylation (OXPHOS) complexes, we created a strain expressing 
an NG-tagged version of the nuclear-encoded protein Cox4, which 
is a subunit of complex IV. Cells expressing Cox4-NG cells were 
mated with cells expressing matrix-targeted mKate2. Of note, upon 
mating of these cells, continued cytosolic synthesis of Cox4-NG will 
lead to import of Cox4 into all parts of the mitochondrial network at 
later time points. Despite this complication and similar to our 
results obtained with Atp6-NG, Cox4-NG exhibited strongly re-
duced diffusion throughout the mitochondrial network of zygotes 
compared to the soluble matrix–targeted mKate2 and remained 
largely restricted to the cell of its origin during the duration of the 
microscopy experiment (fig. S6B).

Next, we asked whether limited diffusion of Atp6-NG or Cox4-
NG was general to transmembrane (TM) proteins of mitochondrial 

membranes. We mated cells expressing matrix-targeted mKate2 with 
cells either expressing NG fused to the TM-domain of the outer 
membrane protein Fis1 or a functional Pam16-NG fusion protein 
(Fig. 2, E and F, and fig. S6, C and D). Pam16 is a subunit of the 
translocase of the inner mitochondrial membrane, which localizes 
predominantly to the inner boundary membrane (18). Time-lapse 
microscopy of such mating events revealed that diffusion of Fis1-
TM-NG and Pam16-NG was slightly delayed compared to the soluble 
matrix protein mKate2, but both proteins equilibrated much faster 
than Atp6-NG throughout mitochondrial networks and no differ-
ence in signal intensity in both parental cells could be observed 
∼10 min after fusion of mitochondria in zygotes (fig. S6, E and F, 
and movies S5 and S6). In summary, mtDNA-encoded Atp6-NG and 
nuclear-encoded Cox4-NG, which are both subunits of respiratory 
chain complexes consisting of nuclear- and mtDNA-encoded sub-
units, are severely limited in equilibration throughout mitochondrial 
tubules compared to proteins of the inner boundary or the outer 
mitochondrial membranes.

Components important for cristae morphology affect 
diffusion rates of Atp6-NG
We hypothesized that components involved in maintenance of cristae 
morphology could be important for hindering diffusion of OXPHOS 
subunits and particularly mtDNA-encoded proteins within the 
mitochondrial network. Mic60 and Mic10 are components of the 
mitochondrial contact site (MICOS) complex, which stabilizes cristae 
junctions (19–21). Lack of Mic60 leads to cristae that are detached 
from the inner mitochondrial membrane but maintain their sheet-like 
morphology in the matrix. Atp20 and Atp21 are crucial for dimeriza-
tion of the ATP synthase, which, in turn, stabilizes strongly bent 
cristae rims (22). Lack of the dimeric ATP synthase has been described 
to lead to an onion-like morphology of mitochondria, where un-
controlled proliferation of cristae membranes leads to a multilayered 
appearance (23). To examine the role of cristae in limiting equili-
bration of OXPHOS proteins, we quantified Atp6-NG mobility in our 
mating assay in atp20, atp21, atp20atp21, mic10, or mic60 
strains. Both parental cells contained the respective deletion in these 
crosses. In all mating events, the nuclear-encoded mKate2 equili-
brated across the mitochondrial network (fig. S7A). We could 
observe a slightly less complete equilibration of mKate2 in zygotes 
lacking the dimeric ATP synthase, which is likely explained by septae 
that may create separate matrix compartments (24) and thereby 
may decrease efficiency of matrix content exchange. mic10 and 
mic60 cells exhibited increased diffusion of Atp6-NG between 
mitochondrial networks of parental cells compared to WT cells in 
our mating assay, which was characterized by a greater amount of 
Atp6-NG detected in the mating partner harboring the WT mtDNA 
(∼35% compared to ∼25% in WT cells; Fig. 3, A and B). Cells lacking 
Atp20, Atp21, or both proteins showed a strongly increased diffu-
sion of Atp6-NG across the mitochondrial network in zygotes. In 
many cases, the source cell that contained ATP6-NG-mtDNA was 
hardly discernible from the mKate2 source cell in the zygotes. On 
average, ∼45% of Atp6-NG was detected in the mating partner 
harboring the WT mtDNA in the absence of Atp20, Atp21, or both 
proteins (Fig. 3, A and B). In contrast to limited diffusion within the 
mitochondrial network formed by parental cells, Atp6-NG was 
readily detected in the budding daughter cells. In daughters 
from zygotes, the Atp6-NG signal was at ∼70% compared to the 
ATP6-NG signal from the ATP6-NG parental cell in all mutants, 
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with the exception of mic60 cells, where Atp6-NG levels only 
amounted to ∼60% (fig. S7B). The reason why less Atp6-NG is found 
in the daughter cells of matings between mic60 cells is currently 
unclear. In summary, we observe increased diffusion of Atp6-NG in 
mutants lacking intact cristae morphology across existing mito-
chondrial networks of yeast zygotes. Because mic10 or mic60 
mutants still have the dimeric form of the ATP synthase (25, 26), our 
results strongly suggest that Atp6-NG mobility is increased due to 
compromised cristae morphology rather than conversion of the ATP 
synthase into the monomeric form in cells lacking Atp20 or Atp21.

We developed an additional assay to test the generation of mtDNA 
autonomous domains and the role of cristae therein. Cells express-
ing mtDNA-encoded Atp6-NG and nuclear-encoded matrix-targeted 
TagBFP were mated with cells expressing mtDNA-encoded Atp6-
mKate2, and the patterns produced by the differently tagged Atp6 
proteins were examined in zygotes. The Atp6-mKate2 strain grew 
normally on medium containing fermentable or nonfermentable 
carbon sources, and no increase in petite formation was observed, 
indicating that the mKate2-tagged variant of Atp6 was functional 
(fig. S7C). In line with our previous observations, the Atp6 proteins 
remained localized to their respective origin cells in zygotes in crosses 
between WT cells (Fig. 3C). Notably, we often observed an alternating, 
mostly nonoverlapping pattern of green and red signals along the 
TagBFP-stained mitochondrial network in the daughter cell pro-
duced by the zygote (Fig. 3C, zoom, and fig. S7D). Thus, Atp6-NG 
and Atp6-mKate2 occupy separate domains in the mitochondrial 
network and exhibit limited mixing. This result indicates that mtDNA 
copies encoding Atp6-NG or Atp6-mKate2 maintain semi-autonomous 
mitochondrial subdomains. The alternating pattern in the daughter 
cell further suggests a complex procedure in which mitochondrial 
domains from both parental cells are sorted into the daughter cell. 
In mating events between atp20 and atp21 cells expressing either 
Atp6-NG or Atp6-mKate2, both fluorescently tagged Atp6 variants 
showed a stronger colocalization in daughter cells and separate do-
mains were hardly discernible (Fig. 3C and fig. S7D). These obser-
vations show that cristae are required for maintenance of inner 
membrane domains and prevent extensive mixing between gene 
products of different mtDNA copies.

mtDNA diffusion is limited in WT, atp21 and mic60 cells
Cristae could support mtDNA-mediated formation of mitochondrial 
subdomains via at least two mutually nonexclusive mechanisms: (i) 
Cristae could limit mobility of mtDNA within the mitochondrial 
matrix by forming physical barriers and thereby promote local syn-
thesis of mtDNA-encoded proteins. (ii) Cristae could corral mtDNA-
encoded proteins by preventing their diffusion through cristae junctions 
into the inner boundary membrane. To determine the importance 
of cristae in restricting mtDNA mobility, we used our recently de-
veloped mtDNA LacO-LacI-GFP system (10) to specifically mark 
mtDNA in one of the parental cells in a mating experiment (P2 cell). 
The other parental strain used in the mating assay contained WT 
mtDNA lacking the LacO repeats and expressed the matrix-targeted 
mKate2 protein (P1 cell). In mating events between two WT cells, 
two atp21, or mic60 cells, LacO-marked mtDNA was evident in the 
daughter cells produced by zygotes, indicating efficient transport of 
mtDNA into daughter cells. Of note, we observed a slight increase of the 
percentage of LacO mtDNA spots in the daughter cell in matings be-
tween atp21 cells compared to matings between WT or mic60 
cells (Fig. 3D). The underlying reason for this observation remains 

to be determined. LacO-marked mtDNA did not accumulate in the P1 
parental cell even at late zygotic stages in any of the matings (Fig. 3D). 
Thus, mobility of mtDNA remains limited in the mitochondrial net-
work of parental cells in matings between atp21 or mic60 cells that 
contain strongly compromised cristae architecture. We conclude that 
WT-like cristae architecture plays a crucial role in limiting equili-
bration of the Atp6-NG protein, rather than diffusion of mtDNA.

To find a potential explanation for the rapid equilibration of Atp6-
NG in the absence of dimer-specific ATP synthase subunits, we 
carefully examined WT, atp20, atp21, and atp20atp21 cells by 
electron microscopy and also performed serial sectioning to obtain 
three-dimensional (3D) information about the mitochondrial ultra-
structure. Mitochondria of WT cells showed cristae with the typical 
perpendicular orientation to the mitochondrial tubular axis. In mu-
tant cells lacking dimeric ATP synthase, however, inner membrane 
structure was markedly altered and virtually no WT-like cristae were 
apparent. Instead, mitochondria exhibited onion- and balloon-like 
inner membrane profiles, as previously described. In accordance with 
previous work, we frequently observed strongly elongated cristae-like 
structures that traversed the whole mitochondrion (Fig. 3, E and F, 
and fig. S8) (22, 23,27).

These observations provide a possible explanation for the inability 
of cells lacking dimeric ATP synthase to constrain diffusion of Atp6-
NG. While respiratory chain complexes get trapped in cristae in WT 
cells, they are free to diffuse along the altered cristae membranes in 
atp20, atp21, and atp20atp21 mutants.

Cristae morphology is required for mtDNA quality control
Having determined that mtDNA-encoded subunits exhibit a severely 
reduced mobility in the inner mitochondrial membrane that is de-
pendent on normal cristae biogenesis, we asked whether mutants 
defective in cristae biogenesis would have problems to distinguish 
between WT and mutant mtDNA. We applied our pedigree analysis 
to follow inheritance of WT over cob::ARG8 mtDNA from hetero-
plasmic zygotes in the absences of ATP20, ATP21, MIC10, or MIC60. 
Deletion of these genes did not lead to greatly altered mtDNA levels 
in strains containing WT or cob::ARG8 mtDNA (fig. S9A). In par-
ticular, mtDNA levels of the mating partners of each pedigree mating 
pair did not differ significantly to one another. Notably, clearance of 
the mutant mtDNA was significantly delayed in the absence of any of 
these proteins. While 60% of lineages for the WT were already ho-
moplasmic for WT mtDNA in the first generation, this value dropped 
to 40% in cristae mutants. Moreover, while only ∼20% of cells of the 
first generation in WT cells still maintained a heteroplasmic state, 
∼40% of such cells were detected in the first generation of matings 
between cristae mutants. After five generations, a significantly smaller 
proportion of the lineages were homoplasmic for WT mtDNA in 
the cristae mutants (Fig. 4, A to F). Thus, the ability to choose WT 
over mutant mtDNA is severely compromised in mutants with de-
fective cristae architecture. In line with these pedigree results and in 
accordance with previous work, atp20, atp21, atp20atp21, mic10, 
or mic60 strains harboring exclusively WT mtDNA exhibit in-
creased formation of petites, revealing a reduced ability to maintain 
a healthy mtDNA population in cells (fig. S9B) (23).

DISCUSSION
Our data reveal that the unicellular S. cerevisiae is able to promote 
generation of progeny with a healthy mtDNA population from 
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heteroplasmic zygotes that contain WT and mutant mtDNA. So far, 
our demonstration of the purifying selection in yeast is limited to a 
model mutant mtDNA variant that entirely lacks the COB gene. It 
will be interesting to examine in future studies how yeast cells deal 
with deletions of other mtDNA-encoded genes or milder point mu-
tations. Unexpectedly, we show that the purifying selection occurs 
in a continuous mitochondrial network and does not require mito-
chondrial fission. This finding raised the question how cells can de-
tect mutant mtDNA copies among WT copies in a mitochondrial 
network, where soluble matrix proteins rapidly equilibrate and poten-
tially even out physiological differences and thus conceal mutant copies.

A possible solution for this problem is provided by our finding 
that diffusion of OXPHOS components, namely, the mtDNA-encoded 
protein Atp6-NG and the nuclear-encoded Cox4-NG, is severely 

limited in WT cells compared to proteins localized to the inner bound-
ary membrane, the outer membrane, or the matrix. Of particular 
interest in this respect is the observation that the mtDNA-encoded 
Atp6-NG forms subdomains that remain in the vicinity of the mtDNA 
by which it is encoded. These findings are in line with analyses in 
HeLa cells that have similarly demonstrated reduced mobility of 
OXPHOS proteins along the longitudinal axis of mitochondrial tu-
bules (28, 29). A previously proposed plausible explanation for the 
restricted mobility is that OXPHOS proteins, likely aided through 
their assembly into complexes and supercomplexes (30), get trapped 
within cristae membranes and are prevented from diffusion past 
cristae junctions into the inner boundary membrane (18,  31). In 
strong support of this hypothesis, we find that the mtDNA-encoded 
Atp6-NG exhibits increased equilibration across the mitochondrial 
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network in mutants with defective cristae architecture, while move-
ment of the mtDNA from which it originates remains restricted. Notably, 
our pedigree analysis revealed that mutants with defective cristae 
biogenesis are incapable of distinguishing effectively between WT 
and mutant mtDNA to support progeny with functional mtDNA.

Together, our findings are in line with a previously proposed 
model in which each mtDNA copy has a “sphere of influence” and 
remains spatially linked to its gene products (32, 33). Our data sup-
port the hypothesis that such a sphere of influence is dependent on 
normal cristae architecture (Fig. 4G). According to this model, muta-
tions in mtDNA would lead to mitochondrial subdomains with 
physiological defects that could flag such areas and facilitate purging 
of the linked mtDNA copy. In line with this idea, it has recently been 
shown that individual cristae within the same mitochondrial tubule 
can maintain independent membrane potentials (34). Defective 
cristae biogenesis would lead to defective subdomain formation and 
a weakened link between mtDNA and its gene products, which, in 
turn, would blur physiological differences caused by mtDNA muta-
tions (Fig. 4G). As a consequence, detection and purging of mutated 
mtDNA would be hindered.

For such a system to work, not only the proteins but also their 
mRNAs need to remain close to the mtDNA copy from which they 
originate. In matings between two WT cells containing either regu-
lar or ATP6-NG mtDNA, we observe very low levels of Atp6-NG 
protein in parts of the mitochondrial network that does not contain 
the ATP6-NG mtDNA, even more than 80 min after mitochondria 
of both parental cells have fused (fig. S6A). This result indicates that 
little synthesis of Atp6-NG occurs in these parts of the network 
within the time frame of this analysis. It is, however, possible that 
biogenesis of OXPHOS complexes is generally low in the mitochon-
drial network of parental cells because of little OXPHOS turnover. 
In this case, we would see little synthesis of Atp6-NG even if its 
mRNA would be present. Not much is known from the literature 
about the mobility of mitochondrial mRNAs. It was recently pro-
posed that mitochondrial transcription and translation may occur 
in a coupled manner in S. cerevisiae (35). Taking into account that 
insertion of mtDNA-encoded proteins into the mitochondrial in-
ner membrane occurs cotranslationally (36, 37) and, at least in part, 
at cristae membranes (38), all steps of mitochondrial gene expression 
from transcription to insertion of proteins into cristae membranes 
could be spatially linked. Nevertheless, characterization of mRNA 
mobility in mitochondria awaits further studies.

We demonstrate that yeast cells can distinguish between mutant 
and WT mtDNA and propose that cristae-dependent subdomains 
are an important prerequisite for efficient purging of mutant mtDNA. It 
remains an outstanding and exciting question how cells mechanis-
tically detect and remove mutant mtDNA. Plausible physiological 
parameters that may serve as signals on dysfunctional mitochon-
dria are a reduced membrane potential (39), decreased ATP levels 
(5), or altered redox states (40). What processes may remove mu-
tant mtDNA from cells? Our microscopic analyses suggest that mu-
tant mtDNA transfer to daughter cells of heteroplasmic zygotes 
may be reduced, but not entirely prevented (Fig. 1D). Preferential 
transport of fit mitochondria into daughter cells has been demon-
strated in yeast previously (40). In combination with our pedigree 
analysis, where a large percentage of first-generation colonies ap-
pears homoplasmic (Fig. 1C), we suggest that further rounds of se-
lection against mutant mtDNA likely occur in the daughter cells 
that eventually entirely purge mutant mtDNA. While we find that 

mitochondrial fission or Atg32-mediated mitophagy is not absolutely 
essential for selection against mutant mtDNA, especially during 
production of the first daughter cell of heteroplasmic zygotes, these 
processes may contribute to efficient clearance during further growth 
and cell divisions. Furthermore, WT mtDNA could also be prefer-
entially replicated as suggested for D. melanogaster (3, 7) or mutant 
mtDNA could be selectively degraded within mitochondria by nu-
cleases. It was demonstrated in yeast that the mtDNA polymerase 
Mip1 degrades mtDNA through its exonuclease domain upon pro-
longed starvation (41). It remains to be determined whether such a 
mechanism could also be involved in clearance of mutant mtDNA.  
Together, selection against mutant mtDNA could entail a combina-
tion of mechanisms that may include selective transport of mito-
chondria containing healthy mtDNA to daughter cells, mitophagic 
removal of mitochondrial fragments containing mutant mtDNA, 
selective replication of healthy mtDNA, or selective degradation of 
mutant mtDNA by nucleases. The discovery of a purifying selection 
in S. cerevisiae combined with the tools we developed in this study 
will be of great value in elucidating molecular mechanisms respon-
sible for clearance of mutant mtDNA.

MATERIALS AND METHODS
Yeast strains and plasmids
All yeast strains are derived from W303 background. Strain infor-
mation can be found in table S1. Deletions of genes and C-terminal 
tagging of nuclear-encoded genes were performed in haploid strains 
using homologous recombination as described previously (42). For 
the experiment presented in fig. S3A, the mating type of strain 
yCO354 had to be switched from Mat alpha to Mat a. Mating type 
switching was performed by transient (90 min) galactose-induced 
expression of the HO endonuclease from the plasmid pJH132 (43). 
Subsequently, a Mat a strain that had lost the plasmid pJH132 was 
isolated. Primer and plasmid information can be found in tables S2 
and S3, respectively.

Pedigree analysis
Approximately 1.85 × 107 cells from early post-log phase [optical 
density at 600 nm (OD600) ~ 1.5] growing cultures of strains with 
opposing mating types were combined in a 1.5-ml reaction tube, 
vortexed, centrifuged at 3000 rpm for 3 min, and resuspended in 50 l 
of rich medium containing glucose [yeast extract peptone dextrose 
(YPD)]. Subsequently, the cell suspension was spotted onto a YPD 
plate and incubated for 2 to 3 hours to allow mating of strains. A 
small amount of cells was scraped off the plate and was resuspended 
in 200 l of YPD medium. From this mated cell suspension, 30 l 
was spread as a line on a YPD plate. Individual zygotes were identi-
fied on the basis of their characteristic shape and transferred to free 
areas on the agar plate. Cell growth was monitored, and daughter 
cells were separated from zygotes or mother cells and transferred to 
free areas on the agar plate. This procedure was repeated for five 
generations (Fig. 1, A and B). After incubation for 2 days at 30°C, 
the grown colonies were replica-plated onto plates containing syn-
thetic defined medium lacking arginine (SD-Arg) and plates con-
taining rich medium and glycerol as a carbon source [yeast extract 
peptone glycerol (YPG)]. Those plates were again incubated for 24 to 
48 hours, and growth was scored. Of note, colonies were scored as 
“growing” for SD-Arg or YPG even when only parts of the replicated 
colony displayed growth. Growth rates were not considered in this 
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experiment. The presence or absence of growth was verified by re-
streaking of cell material from selected colonies onto YPG or SD-Arg 
plates (fig. S1B). In addition, a mating-type test was performed to 
confirm that the initially picked cells were zygotes. Lineages were only 
considered when the starting zygotes were able to grow on YPG and 
SD-Arg plates, indicating a heteroplasmic state. Of note, we sporad-
ically observed that mtDNA species were lost in one generation but 
reappeared at a later generation (e.g., replicate 2 in Fig. 1B). We at-
tribute this observation to cases in which all copies of one particular 
mtDNA species are passed on to the daughter cell. In such a scenario, 
a mother cell lacking this mtDNA species is produced, whereas this 
species will be present in the daughter cell (fig. S1D).

Live-cell microscopy
For all live-cell microscopy experiments, yeast cells were imaged in 
ibidi 8-well -Slides (ibidi GmbH, Gräfelfing). For immobilization 
of yeast cells during microscopy, wells were coated with concanav-
alin A, a lectin that can bind the cell wall of yeast cells. In brief, wells 
were filled with 200 l of concanavalin A (0.5 g/ml) and incubated 
for 30 min. Concanavalin A was removed, and wells were dried for 
30 min at room temperature. For single-frame images and videos of 
mating events, 1000 l from two cultures with strains of opposing 
mating types was combined in a reaction tube, vortexed thoroughly, 
and centrifuged for 3 min at 5000 rpm. The pellet was resuspended 
in 50 l of YPD medium and spotted onto a YPD plate to allow cells 
to mate. Plates were incubated for 3 hours for single-frame images 
and for 1.5 hours for videos. The premated cells were scraped off 
and resuspended in 400 l of sterile-filtered 1× phosphate-buffered 
saline (PBS) buffer, and 200 l was transferred into a concanavalin 
A–coated well of ibidi 8-well -Slide. The slides were centrifuged 
for 2 min at 2000 rpm to promote adherence of the cells to the bot-
tom of the well. Wells were washed twice with 400 l of filtered 
synthetic complete (SC) medium to remove floating cells and eventu-
ally resuspended in SC medium for imaging. Microscopy was per-
formed at 30°C on a Nikon Ti2-Eclipse microscope equipped with a 
CFI Apochromat TIRF 100×/1.49 numerical aperture (NA) oil ob-
jective and a TwinCam LS dual-camera splitter attached to two 
Photometrics Prime 95B 25-mm cameras. The dual-camera setup 
enabled simultaneous imaging of red and green fluorophores. Spec-
ifications of filters and dichroics can be made available upon request. 
For time-lapse microscopy, cells were imaged every 2 or 7 min for 
indicated total periods of time. For quantification of the imaging pre-
sented in Fig. 1D, zygotes were only considered when patchy struc-
tures were apparent for GFP and mRuby3 signals. Cells harboring 
the TetO repeats often showed a diffuse red staining of mitochondria, 
which is likely explained by recombination of the TetO repeats.

Image processing and analysis
All images, except those obtained by structured illumination micros-
copy, were postprocessed by deconvolution with the Huygens soft-
ware (Scientific Volume Imaging). Fluorescent channels acquired 
simultaneously on two different cameras were aligned using a cus-
tom-built Python script. Alignment parameters were obtained from 
simultaneous imaging in bright-field mode. For quantification of 
Atp6-NG levels presented in Fig. 3A, mitochondria were first seg-
mented in 3D based on the matrix-mKate2 signal using the mito-
graph software (44). Binary masks for parental and daughter cells 
were manually created in Fiji by drawing outlines on the bright-
field image. Masks were used in a next step to assign coordinates of 

the mitochondrial network to the respective cells. Then, Atp6-NG 
intensities were determined and summed up along the mitochon-
drial network of parental or daughter cells using custom-built Python 
scripts. To account for differences in the mitochondrial amount in 
different cells, the Atp6-NG signal was normalized to the mito-
chondrial network length present in the respective cell.

Quantification of colocalization of Atp6-NG and Atp6-mKate2, 
presented in fig. S7D, was performed as follows. The mitochondrial 
network was first segmented in 3D based on the matrix-TagBFP 
signal using the mitograph software. Manually created binary masks 
were used to assign parts of the mitochondrial network to parental 
or daughter cells. Fluorescent intensities of Atp6-NG and Atp6-
mKate2 were then determined for pixels along the mitochondrial 
network. Next, Manders and Pearson correlation coefficients were 
determined between both signals. For determination of the Manders 
correlation coefficient, signals along the mitochondrial network were 
thresholded beforehand with Yen et al.’s method (45).

Genetic manipulation of mtDNA
Strains harboring mtDNA in which the COB gene was replaced with 
an arginine marker and a nonrecombinable TetO array were gener-
ated as follows. First, a synthesized TetO array, in which 21 TetO 
repeats are separated by spacers of varying length and sequence, 
was inserted after the stop codon of the ARG8 gene in the plasmid 
pCOB-ST5 (8). This cloning step resulted in the plasmid pCO307, 
which thus contains an insert in which sequences homologous to 
the up- and downstream regions of the COB gene flank the ORF of 
ARG8 followed by the TetO array. pCO307 was introduced into the 
kar1-1 strain DFS160 0 by biolistic transformation with the PDS-
1000/He particle delivery system (Bio-Rad Laboratories), and trans-
formants were selected by their ability to rescue the cox2-62 mutation 
of the strain NB40-3C (46). pCO307 was then cytoducted into a 
arg8 W303 WT strain, which resulted in the deletion of the COB 
gene by ARG8-TetO through homologous recombination. Cells 
containing the cob::ARG8-TetO-mtDNA were selected on the ba-
sis of their arginine prototrophy. Last, a construct (pCO407) con-
sisting of the Cup1 promoter driving expression of an ORF in which 
the Su9 mitochondrial targeting sequence was fused to the TetR 
gene, which, in turn, was followed by three copies of the red fluores-
cent protein mRuby3, was chromosomally integrated into the HO 
locus (strain yCO460).

Strains harboring mtDNA in which the ATP6 is tagged with ei-
ther NG or mKate2 were generated as follows. First, synthesized gene 
fragments encoding NG and mKate2 compatible with the mitochon-
drial genetic code (Twist Bioscience, San Francisco) were fused to 
the C terminus of the coding region of ATP6, which was amplified 
from genomic DNA. ATP6-NG or ATP6-mKate2 was flanked with 
an 806-bp region homologous to the upstream region of ATP6 and 
a 60-bp region homologous to the downstream region of ATP6. The 
entire fragments were then cloned into the Xho I site of the plasmid 
pPT24 (47), which resulted in either plasmid pCO444 or pCJ013 for 
ATP6-NG and ATP6-mKate2, respectively. pCO444 and pCJ013 were 
introduced into the kar1-1 strain DFS160 0 by biolistic transfor-
mation, and transformants were selected by their ability to rescue 
the cox2 mutation of NB40-3C (46). pCO444 and pCJ013 were then 
cytoducted into the strain MR10 (48). Colonies in which ATP6-NG 
(yCJ043) or ATP6-mKate2 (yCJ120) had successfully integrated into 
the ATP6 locus were identified by their ability to grow on a non-
fermentable carbon source. A strain containing ATP6-NG-mtDNA 
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and mating type alpha was obtained by mating yCJ043 with a 0 W303 
WT strain followed by sporulation and tetrad dissection (yCJ084).

Primer sequences used for cloning and plasmid maps can be made 
available upon request.

DAPI staining and structured illumination microscopy
Coverslips (no. 1.5) were coated with 50 l of concanavalin A (0.5 g/ml) 
and air-dried for 1 hour. Residual concanavalin A was removed, and 
coverslips were dried for 45 min before fixation. OD600 = 0.5 of log 
phase yeast cells were harvested at 5000 rpm for 3 min and washed 
using 1× PBS + 0.02% Tween 20. Cells were resuspended in 20 l of 
1× PBS + 0.02% Tween 20. Subsequently, all cells were placed on the 
concanavalin A–coated coverslips and incubated for 45 min to let 
cells settle on the coverslip. Then, cells were washed for 2 min with 
filtered SC medium. Cells were fixed using a 4% formaldehyde 
solution + DAPI (1 g/ml) in filtered SC medium for 30 min. Cells 
were washed once more for 2 min using filtered SC medium. Twenty 
microliters of MOVIOL 4-88 (Roth) was added to the coverslips, 
and microscope slides were put onto the coverslips. Fixed immobi-
lized cells were used for super-resolution imaging by structured il-
lumination microscopy. The acquisition was performed on a 3D SIM 
DeltaVision OMX V3 microscope (General Electric) equipped with 
a 10× 1.4 NA oil immersion objective UPlanSApo (Olympus), 405-, 
488-, and 593-nm diode lasers, and Cascade II electron-multiplying 
charge-coupled device (CCD) cameras (Photometrics). After acqui-
sition with an appropriate refractive index oil, raw data were first 
reconstructed and corrected for color shifts using the provided software 
softWoRx 6.0 Beta 19 (unreleased). In a second step, a custom-made 
macro in Fiji (49) finalized the channel alignment and established 
composite TIFF (tag image file format) stacks, which were used for 
image analysis.

Electron microscopy
For electron microscopy, all strains were pregrown in YPG medium 
to select for functional mtDNA. Subsequently, cells were grown to 
log phase in YPD or rich medium containing galactose medium, as 
indicated. Sample preparation for electron microscopy was essentially 
performed as previously described (50) with two minor changes: 
The fixation with glutaraldehyde was performed for 1 hour, and all 
centrifugation steps were carried out at 1610g for 5 min. Ultrathin 
sectioning was performed using a Leica Ultracut UCT (Leica Micro
systems, Wetzlar, Germany) ultramicrotome and an ultra 35° dia-
mond knife (Diatome, Nidau, Switzerland). Ultrathin 50- to 70-nm 
sections were placed on Pioloform-coated copper slot grids (Plano, 
Wetzlar, Germany) and poststained for 15 min with uranyl acetate 
and 3 min with lead citrate, as previously described (50). Electron 
microscopy was performed using a JEOL JEM-1400 Plus transmission 
electron microscope (JEOL, Tokyo, Japan) operated at 80 kV. Images 
were taken with a JEOL Ruby CCD camera (3296 × 2472 pixels) and 
the TEM Center software Ver.1.7.12.1984 (JEOL, Tokyo, Japan).

Miscellaneous
Western blot analyses were performed with isolated mitochondria. 
Fifty micrograms of isolated mitochondria was preheated on 95°C 
for 5 min in 1× SDS loading buffer and separated on a 12% SDS gel. 
After transfer to polyvinylidene difluoride membranes, membranes 
were incubated with the following primary antibodies in 5% milk 
and tris-buffered saline: mouse anti-NG (1:1000; Chromotek GmbH), 
rabbit anti-aconitase1 (1:1000), and rabbit anti-Atp6 (1:1000). 

Quantitative real-time PCR experiments to determine mtDNA levels 
were performed as described previously (51). For the petite analysis, 
cells were grown overnight at 30°C, then freshly diluted to an OD600 = 0.2, 
and grown for another 3 hours. A total of 200 cells were plated onto 
YPG plates containing 0.1% glucose. Plates were incubated for 3 days 
at 30°C. Only cells proficient in respiratory growth are able to con-
tinue growth after all glucose has been consumed.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi8886

View/request a protocol for this paper from Bio-protocol.
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Figure S1

(A) Quantitative PCR analysis of mtDNA levels of WT or �cob::ARG8 strains, which

were used in the pedigree analysis (Fig. 1C). No di↵erence in mtDNA levels between both

strains are apparent. The average value is derived from three biological replicates. The

value for each biological replicate was derived from three technical replicates; Error bars

indicate SD. n. s. - non significant, t-test.

(B) Carry-over cell material does not support growth upon restreaking. Replica plat-

ing during the pedigree analysis results in carry-over of cell material. While such cell

material is easily distinguished from growing cells by direct visual inspection of plates, it

is di�cult to discern on photos. For this experiment, cell material was restreaked on selec-

tive plate to demonstrate the di↵erence between carry-over cell material and cell growth.

Asterisks indicate carry-over cell material.

(C) PCR analysis corroborates results from the growth-based pedigree assay. Genomic

DNA was extracted directly from YPD grown colonies without further incubation from

three pedigree lineages and remaining cell material was replica plated onto YPG or SC-

ARG (lacking arginine) plates. Presence of the COB gene (present in WT mtDNA, which

supports growth on YPG) or the ARG8 gene (present in �cob::ARG8 mtDNA, which

supports growth on SC-Arg) was tested by PCR using specific oligos for the respective

genes. PCR results correlate perfectly with the growth based analysis.

(D) Schematic illustration of the pedigree analysis, explaining the skipping of genera-

tions on a respective medium. YPG - rich medium containing the non-fermentable carbon

source glycerol, SC-Arg - synthetic defined medium lacking arginine.



Figure S2

(A) Pedigree analysis of WT cells. The experiment is virtually identical to the experi-

ment presented in Fig. 1C with the di↵erence that the starting strains for the pedigree

analysis had switched mating types. Specifically, in this experiment the strain contain-

ing WT mtDNA had mating type alpha, whereas the strain containing �cob::ARG8 had

mating type a. Striped bars indicate percentage of heteroplasmic cells containing WT

and �cob::ARG8 mtDNA. Grey or red bars indicate percentage of homoplasmic cells

containing WT or �cob::ARG8 mtDNA, respectively.

(B) Pedigree analysis of cells containing ARG8 inserted neutrally into mtDNA upstream

of the COX2 gene. We cannot distinguish between cells that are heteroplasmic for both

mtDNA species and cells where ARG8 had recombined into WT mtDNA. The shown

result, however, indicates that ARG8 does not confer a strong disadvantage on mtDNA,

which could lead to its removal.



Figure S3

(A) Quantitative PCR analysis of mtDNA levels of WT or �cob::ARG8-TetO-TetR-

3xmRuby3 strains, which were used for the microscopy experiments presented in Fig.

1D. A slight increase in the mtDNA levels of the �cob::ARG8-TetO-TetR-3xmRuby3 is

apparent. The average value is derived from three biological replicates. The value for

each biological replicate was derived from three technical replicates; Error bars indicate

SD. n. s. - non significant, t-test.

(B) Additional microscopic images of the inheritance of either LacO-marked intact or

TetO-marked �cob::ARG8-TetO mtDNA. Images complement data shown in Fig. 1D.

Scale bar: D 10 µm.



Figure S4

(A and B) Time-lapse microscopy of mating events between WT cells expressing either

matrix-targeted NG or matrix-targeted mKate2. Mating events are shown, where either

both cells contained WT mtDNA (A) or one cell contained WT mtDNA and the other

contained �cob::ARG8 mtDNA (B). Selected time-frames for (B) are shown in Fig. 1E.

(C and D) Similar to (A), except that cells with deletions of the nuclear-encoded �dnm1

(C) or �atg32 (D) were used.

Scale bars: A-D 10 µm.



Figure S5

(A) Schematic illustration of the NG-tagged ATP6 within mtDNA.

(B) Quantitative PCR analysis of mtDNA levels of WT or strains expressing the Atp6-

NG protein. The average value is derived from three biological replicates. The value for

each biological replicate was derived from three technical replicates; Error bars indicate

SD. n. s. - non significant, t-test.

(C) Petite frequency of the Atp6-NG strain in comparison to WT and the �atp21 strains.

(D) Westernblot analysis of strains harbouring either WT or ATP6-NG mtDNA. Aconi-

tase (Aco1) was used as a loading control.

(E) Widefield fluorescence microscopy images of diploid cells harbouring ATP6 -NG mtDNA

and expressing nuclear-encoded matrix-targeted mScarlet.

Scale bar: E 10 µm.



Figure S6

(A) Time-lapse microscopy of mating events between WT cells harbouring ATP6 -NG

mtDNA and WT cells harbouring WT mtDNA and expressing nuclear-encoded matrix-

targeted Kate2.

(B) Time-lapse microscopy of mating events between cells expressing NG-tagged Cox4

and cells expressing nuclear-encoded matrix-targeted mKate2.

(C) Growth analysis of strains expressing NG fused to Pam16 or the transmembrane

domain of Fis1 in comparison to WT. Strains were used in the time-lapse experiment

presented in Fig. 2, E and F and Fig. S4D and E.

(D) Westernblot analysis of strains harbouring the NG-tagged version of Pam16. Aconi-

tase was used as a loading control. Note that no signal for free NG is detectable indicating

that NG is not cleaved o↵.

(E) Time-lapse microscopy of mating events between WT cells expressing NG fused to the

transmembrane domain of Fis1 and WT cells expressing nuclear-encoded matrix-targeted

mKate2.

(F) Time-lapse microscopy of mating events between cells expressing NG-tagged Pam16

and cells expressing nuclear-encoded matrix-targeted mKate2.

Scale bars: A and D-E 10 µm.



Figure S7

(A) Quantification of the equilibration of soluble Su9-mKate2 protein in mating experi-

ments shown in Fig. 3A and B; ** P<0.01, t-test.

(B) Quantification of the Atp6-NG in the daughter cells of zygotes from mating ex-

periments shown in Fig. 3A and B; * P<0.05, t-test.

(C) Spot test of strains expressing Atp6-NG or Atp6-mKate2 compared to the WT and

a strain harbouring �atp6 mtDNA.

(D) Quantification of the co-localization of Atp6-NG and Atp6-mKate2 in daughter cells

derived from matings between WT, �atp20 or �atp20 cells, in which parental cells con-

tained either ATP6-NG or ATP6-mKate2 mtDNA. The Pearson (PCC) and Manders

(MCC) correlation coe�cients between Atp6-NG and Atp6-mKate2 signals along the

mitochondrial network of daughter cells were determined for multiple cells in three inde-

pendent experiments; * P<0.05, ** P<0.01, t-test.



Figure S8

(A) Electron micrographs of mitochondria from WT, �atp20, �atp21, and �atp20

�atp21 cells grown in rich medium containing glucose.

(B) Quantification of cristae shape from cells grown in rich medium containing glucose.

For each strain, mitochondria from 50 cells were scored for mitochondrial ultrastructure

and grouped into the indicated categories. Shown is the mean ± standard deviation from

three independent experiments. Examples of mitochondria with altered cristae shape are

depicted on the right.

(C) Electron micrographs of mitochondria from �atp20 �atp21 cells grown in rich

medium containing galactose. Shown are two representative cells. For each cell, the

same mitochondrion was imaged in consecutive 70 nm ultrathin sections.

Scale bars: A and C 500 nm; B 200 nm.



Figure S9

(A) Quantitative PCR analysis of mtDNA levels of WT, �atp20, �atp21, �atp20�atp21,

�mic10, or �mic60 strains containing WT or �cob mtDNA. Strains were used for the

pedigree analysis presented in Figure 4A-F. The average value is derived from three bio-

logical replicates. The value for each biological replicate was derived from three technical

replicates; Error bars indicate SD. n. s. - non significant, t-test.

(B) Petite frequency of the indicated deletion strains.



Movie S1

Mitochondrial morphology during mating events of WT cells. Mating events

between two cells containing either WT or �cob::ARG8 mtDNA. Cells expressed either

matrix-targeted mKate2 (WT mtDNA, cyan) or NG (�cob::ARG8 mtDNA, magenta).

Mating events were monitored by live-cell microscopy. Brightfield, single fluorescent chan-

nels and a merge from both fluorescent channels are shown.

Movie S2

Mitochondrial morphology during mating events of �dnm1 cells. Mating events

between two �dnm1 cells containing either WT or �cob::ARG8 mtDNA. Cells expressed

either matrix-targeted mKate2 (WT mtDNA, cyan) or NG (�cob::ARG8 mtDNA, ma-

genta). Mating events were monitored by live-cell microscopy. Brightfield, single fluores-

cent channels and a merge from both fluorescent channels are shown. Images were taken

in 7 min intervals.

Movie S3

Mitochondrial morphology during mating events of �atg32 cells. Mating events

between two �atg32 cells containing either WT or �cob::ARG8 mtDNA. Cells expressed

either matrix-targeted mKate2 (WT mtDNA, cyan) or NG (�cob::ARG8 mtDNA, ma-

genta). Mating events were monitored by live-cell microscopy. Brightfield, single fluores-

cent channels and a merge from both fluorescent channels are shown. Images were taken



in 7 min intervals.

Movie S4

Di↵usion of mitochondrial-encoded Atp6-NG throughout the mitochondrial

network of zygotes. Cells expressing matrix-targeted mKate2 (cyan) were mated with

cells expressing mtDNA-encoded Atp6-NG (magenta) and were monitored by live cell

imaging. Brightfield, single fluorescent channels and a merge from both fluorescent chan-

nels are shown. Images were taken in 7 min intervals.

Movie S5

Di↵usion of Fis-NG throughout the mitochondrial network of zygotes. Cells ex-

pressing matrix-targeted mKate2 (cyan) were mated with cells expressing nuclear-encoded

Fis1-NG (magenta) and were monitored by live cell imaging. Brightfield, single fluores-

cent channels and a merge from both fluorescent channels are shown. Images were taken

in 7 min intervals.

Movie S6

Di↵usion of Pam16-NG throughout the mitochondrial network of zygotes.

Cells expressing matrix-targeted mKate2 (cyan) were mated with cells expressing nuclear-

encoded Pam16-NG (magenta) and were monitored by live cell imaging. Brightfield, single



fluorescent channels and a merge from both fluorescent channels are shown. Images were

taken in 7 min intervals.

Table S1

Yeast strains used in this study.

Table S2

Primers used in this study.

Table S3

Plasmids used in this study.



A

YPD

Lineage 2

Lineage 1

YPG SC-Arg

SC-ArgYPG

Dissection YPD plate Homopl. for WT mtDNA Homopl. for ∆cob mtDNA

Lineage 1
Lineage 2

B

Supplemental Figure 1

Generation Z Z Z1 1 12 2 23 3 34 4 45 5 56 6 6

0.0

0.5

1.0

1.5

∆c
obW

T
∆a
r
g

m
tD
N
A
le
ve
ls

[fo
ld
ch
an

ge
]



COB
amplicon

ARG8
amplicon

Dissection YPD plate Homopl. for WT mtDNA Homopl. for ∆cob mtDNA

Lineage 1
Lineage 2
Lineage 3

W
T
∆a
rg

W
T
∆c
ob

Control Lineage 1 Lineage 2 Lineage 3

Zy
go
te

G
en
. 1

G
en
. 2

G
en
. 3

G
en
. 4

G
en
. 5

Zy
go
te

G
en
. 1

G
en
. 3

G
en
. 4

G
en
. 5

Zy
go
te

G
en
. 1

G
en
. 2

G
en
. 2

G
en
. 3

G
en
. 4

G
en
. 5

YPD YPG SC-Arg

D

Heteroplasmic
colony

Growth on
YPG and SC-Arg

Heteroplasmic
colony

Growth on
YPG and SC-Arg

Heteroplasmic
colony

Growth on
YPG and SC-Arg

Homoplasmic
colony

Growth only on
SC-Arg

Homoplasmic
colony

Growth only on YPG

Homoplasmic
colony

Growth only on YPG

Pedigree analysis, most often observed pattern

Pedigree analysis, generation skipping

Mating

Mating

Microdissection
Microdissection

Microdissection
Microdissection

mtDNA mtDNA
∆cob WT

Supplemental Figure 1
C



B

Supplemental Figure 2

A

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

C
ol
on

ie
s

[%
]

homopl. for
WT mtDNA

1Z 2 3 4 5

heteropl. or
recombinant
for WT and
ARG8 mtDNA

Generations

Neutral ARG8 (N=16)Wildtype - switched MAT types (N=55)

C
ol
on

ie
s
[%

]

homopl. for
∆cob mtDNA

heteropl. or
recombinant for WT
and ARG8 mtDNA

homopl. for
WT mtDNA

1Z 2 3 4 5
Generations

0%

20%

40%

60%

80%

100%



BA

Brightfield

Merge

Matrix
TagBFP

LacI-3xGFP

∆cob TetR-
3xmRuby3

Supplemental Figure 3

0.0

0.5

1.0

1.5

W
T T
etR

∆c
ob
Te
tR

mR
ub
y

m
tD
N
A
le
ve
ls

[fo
ld
ch
an
ge
]

n. s.



Supplemental Figure 4
A

B

C

D

2 4 8 1412 160-2-4 106Min.

Brightfield

Merge

WT
matrix

mKate2

WT
matrix

NeonGreen

-10 -8 -4 0 2 4 6 8 10-2-6Min.

Brightfield

Merge

∆cob
matrix

NeonGreen

WT
matrix

mKate2

0 7-7 14-14 21-21 28 35 42 49Min.

Brightfield

Merge

∆dnm1∆cob
matrix

NeonGreen

∆dnm1
matrix

mKate2

Min.

Brightfield

Merge

∆atg32∆cob
matrix

NeonGreen

∆atg32
matrix

mKate2

0-7 7 14 21 28 35 42 49 56 63



RPM1
15S rRNA

21S rRNA

Ori5 Ori1

Ori7

Ori8

Ori6

Ori3
Ori4

COX2

COX3

Ori2

COX1
ATP8

VAR1

ATP6

NeonGreen

ATP9 COB

0 kb

10

20

30

40

50

60

70

80 20

40

Supplemental Figure 5

P
et

ite
fre

qu
en

cy
[%

]

W
T

∆a
tp2
1

Atp6
-N

G
0

5

10

15

anti-Aco1anti-Atp6 anti-NeonGreen

W
T

W
T

W
T Atp6

-N
G

Atp6
-N

G

Atp6
-N

G

46 kDa
85 kDa

32 kDa

25 kDa
22 kDa

70 kDa

60 kDa

50 kDa

E

A

D

W
T

Atp6
-N

G
0

0.5

1

1.5

m
tD

N
A

le
ve

ls
[fo

ld
ch

an
ge

]

B C

Brightfield Matrix mScarlet ATP6-NG Merge



Supplemental Figure 6
A

E

0Min.

Brightfield

Matrix
mKate2

Merge

Atp6-NG

7 14 21 28 35 42 49 56 63 84

0Min.

Brightfield

Matrix
mKate2

Merge

Fis1-NG

7 14 21 28 35 42 49 56 63-7

C D

W
T

anti-N
eonG

reen
anti
A
co1

P
am

16
-N
G

46
kDa

32

25
22
17
11

YPD

30°C
WT

Pam16-NG
Fis-NG

WT

Pam16-NG
Fis1-NG

37°C

YPG

B

Min. 7 14 21 28 35 42 49 56 63-7

Cox4-NG

Merge

Gray

Matrix
mKate2

0



Supplemental Figure 6
F

0Min.

Brightfield

Matrix
mKate2

Merge

Pam16-NG

7 14 21 28 35 42 49 56-14 -7



Supplemental Figure 7

A

B

C D

30°C 37°C

YPD

YPG

WT

WT

Atp6-NG
Atp6-mKate2

Atp6-mKate2
Atp6-NG

∆atp6

∆atp6

n. s.

n. s.
n. s.

*

**
** *

*

n. s.

WT ∆mic60∆mic10 ∆atp21∆atp20 ∆atp20
∆atp21

0.0

0.2

0.4

0.6

0.8

1.0

(A
tp
6-
N
G
/N
et
w
or
k
le
ng
th
) D

/(
A
tp
6-
N
G
/N
et
w
or
k
le
ng
th
) P
1

n. s. n. s. n. s.

WT ∆mic60∆mic10 ∆atp21∆atp20 ∆atp20
∆atp21

0.0

0.2

0.4

0.6

0.8

1.0
(m
K
at
e2
/N
et
w
or
k
le
ng
th
) P
1

/(
m
K
at
e2
/N
et
w
or
k
le
ng
th
) P
2

** **

1.0 1.0

0.8

0.6

0.4

0.2

0

0.5

P
C
C

M
C
C

0

WT WT∆atp20 ∆atp20∆atp21 ∆atp21

-0.5

-1.0



Supplemental Figure 8

no cristae onion-like

onion-like

septae septae

m
ito
ch
on
dr
ia
[%
]

WT ∆atp20
∆atp21 ∆atp20∆atp21

WT-like no cristaeseptae

100

80

60

40

20

0

WT ∆atp20 ∆atp21 ∆atp20∆atp21

∆atp20∆atp21

cell 1

cell 2

A

B

C



Supplemental Figure 9

P
et
ite

fre
qu

en
cy

[%
]

W
T

∆a
tp2
0

∆m
ic1
0

∆m
ic6
0

∆a
tp2
0∆
atp
21

∆a
tp2
1

0

5

10

15

20

25

A

B

0.0

0.5

1.0

1.5

m
tD
N
A
le
ve
ls

[fo
ld
ch
an

ge
]

WT

mtDNA
Genotype

nuclear
Genotype

W
T

W
T

W
T

W
T

W
T

W
T

∆c
ob

∆c
ob

∆c
ob

∆c
ob

∆c
ob

∆c
ob

∆atp20 ∆atp21 ∆mic10 ∆mic60∆atp20
∆atp21

n. s. n. s. n. s. n. s. n. s. n. s.



Table 1 - Yeast Strains used in this study 
  

Name / 
Alias

Short 
description

Mating 
type

Genotype Source

yCO380 WT
 Mat a leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO 

1

yCO381 WT
 Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO 

1

yCO391 ∆arg8 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA 

2

yCO354 ∆arg8::HIS3 
∆cob::ARG8M 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA 

2

yCJ048 Neutral ARG8 Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 ∆arg8::hphNT1 
ARG8::mtDNA 

This 
study

yCO392 ∆arg8 Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA 

This 
study

yCO969 ∆arg8::HIS3 
∆cob::ARG8M 

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA 

This 
study

yCO460 ∆cob::ARG8-
TetO-
TetR-3xRuby

Mat a leu2-3,112 trp1-1 can1-100 ura3-1 
his3-11,15 ∆arg8::hphNT pvt100u-
mtTagBFP HO-Su9-TetR-3xmRuby3--
KanMX4-HO ∆cob::ARG8-TetO 

This 
study

yCJ033 LacO-
LacI-3xGFP

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO HO-Su9-
TagBFP-Pcup-Su9-3xGFP-
LacI::kanMX4 

This 
study

yCJ009 HO::Su9-
mKate2

Mat a leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO HO::Su9-
mKate2::kanMX6 

This 
study



yCJ010 HO::Su9-NG Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO HO::Su9-
NG::kanMX6 

This 
study

yCJ078 ∆arg8::HIS3 
∆cob::ARG8M 
HO::Su9-NG


Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
HO::Su9-NG-kanMX6 intronless 
mtDNA 

This 
study

yCJ081 ∆arg8::HIS3 

HO::Su9-
mKate2

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA HO::Su9-mKate2::kanMX6 

This 
study

yCJ002 ∆dnm1 
∆arg8::HIS3 
∆cob::ARG8M 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆dnm1::hphNT1  

This 
study

yCJ004 ∆dnm1 ∆arg8 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆dnm1::hphNT1 

This 
study

yCJ085 ∆dnm1 
∆arg8::HIS3 
∆cob::ARG8M 
HO::Su9-NG 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆dnm1::hphNT1 
HO::Su9-NG-kanMX6 

This 
study

yCJ086 ∆dnm1 ∆arg8 
HO::Su9-
mKate2

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆dnm1::hphNT1 HO::Su9-
mKate2-kanMX6 

This 
study

yCJ074 ∆atg32 
∆arg8::HIS3 
∆cob::ARG8M

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆atg32::hphNT1 

This 
study

yCJ075 ∆atg32 ∆arg8 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆atg32::hphNT1 

This 
study

yCJ076 ∆atg32 
∆arg8::HIS3 
∆cob::ARG8M 
HO::Su9-NG 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆atg32::hphNT1 
HO::Su9-NG-kanMX6 

This 
study



yCJ077 ∆atg32 ∆arg8 
HO::Su9-
mKate2

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆atg32::hphNT1 HO::Su9-
mKate2-kanMX6 

This 
study

yCO114 rho0 Mat alpha leu2 ura3-52 ade2-101 arg8::URA3 
kar1-1 rho0 

3

yCO115 rho+ ∆cox2  Mat a lys2 leu2-3,112 ura3-52 his3HinDIII 
arg8::hisG rho+ cox2-62 

3

yCJ025 MR6 WT Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 

4

yCJ026 MR10 ∆atp6 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ∆atp6 

4

yCJ043 ATP6-NG Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-NG 

This 
study

yCJ126 HO::Su9-
mScarlet 
ATP6-NG

Mat a/
alpha

ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-NG 
HO::Su9-mScarlet-URA3 

This 
study

yCJ045 HO::Su9-
mKate2

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO HO::Su9-
mKate2-kanMX6 

This 
study

yCJ019 COX4-
NeonGreen

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Cox4-NeonGreen 

This 
study

yCJ072 Fis1-NG Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA FIS1-NG::kanMX6

This 
study

yCJ114 Pam16-NG Mata leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO PAM16-
NG::kanMX

This 
study

yCJ051 ∆atp21 ATP6-
NG

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-NG 
∆atp21::hphNT1 

This 
study

yCJ052 ∆atp21 
HO::Su9-
mKate2

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Mito 
∆atp21::hphNT1 HO::Su9-mKate2-
kanMX6 

This 
study



yCJ053 ∆atp20 ATP6-
NG

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-NG 
∆atp20::hphNT1 

This 
study

yCJ054 ∆atp20 
HO::Su9-
mKate2

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Mito 
∆atp20::hphNT2 HO::Su9-mKate2-
kanMX6 

This 
study

yCJ057 ∆atp20∆atp21 
ATP6-NG

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-NG 
∆atp21::hphNT1 ∆atp20::hphNT2 

This 
study

yCJ058 ∆atp20∆atp21 
HO::Su9-
mKate2

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Mito 
∆atp21::hphNT1 ∆atp20::hphNT2 
HO::Su9-mKate2-kanMX6 

This 
study

yCO754 ∆mic10 ATP6-
NG

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-NG 
∆mic10::hphNT1

This 
study

yCO755 ∆mic10 
HO::Su9-
mKate2

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Mito 
∆mic10::hphNT1 HO::Su9-mKate2-
kanMX6 

This 
study

yCJ066 ∆mic60 ATP6-
NG

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-NG 
∆mic60::hphNT1

This 
study

yCJ067 ∆mic60 
HO::Su9-
mKate2

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Mito 
∆mic60::hphNT1 HO::Su9-mKate2-
kanMX6 

This 
study

yCJ120 ATP6-mKate2 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-
mKate2 

This 
study

yCJ084 ATP6-NG Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 ATP6-NG 

This 
study

yCJ123 ATP6-NG 
pvt100u-
TagBFP

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 ATP6-NG pvt100u-TagBFP 

This 
study



yCJ124 ATP6-mKate2 
pvt100u-
TagBFP

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-
mKate2 pvt100u-TagBFP 

This 
study

yCJ127 ATP6-NG 
∆atp20 
pvt100u-
TagBFP

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 ATP6-NG ∆atp20::NatNT2 
pvt100u-TagBFP 

This 
study

yCJ128 ATP6-mKate2

∆atp20 
pvt100u-
TagBFP

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-
mKate2 ∆atp20::NatNT2 pvt100u-
TagBFP 

This 
study

yCJ130 ATP6-NG

∆atp21 
pvt100u-
TagBFP

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 ATP6-NG ∆atp21::hphNTI 
pvt100u-TagBFP 

This 
study

yCJ132 ATP6-mKate2

∆atp21 
pvt100u-
TagBFP

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 ATP6-
mKate2 ∆atp21::hphNTI pvt100u-
TagBFP 

This 
study

yCJ103 WT LacO-LacI Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Su9-3xGFP-
LacI::kanMX6

This 
study

yCJ104 WT matrix-
mKate2

Mat a leu2-3,112 trp1-1 can1-100 ura3-1 
ade2-1 his3-11,15 HO-Su9-mKate2

This 
study

yCJ105 LacO-LacI 
∆atp21

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Su9-3xGFP-
LacI::kanMX6 ∆atp21::NatNT2

This 
study

yCJ106 matrix-mKate2 
∆atp21

Mat a leu2-3,112 trp1-1 can1-100 ura3-1 
ade2-1 his3-11,15 HO-Su9-mKate2 
∆atp21::NatNT2

This 
study

yCJ134 LacO-LacI 
∆mic60

Mat alpha leu2-3,112 can1-100 ura3-1 
his3-11,15 mt-LacO Su9-3xGFP-
LacI::kanMX6 ∆mic60::hphNT1

This 
study

yCJ135 matrix-mKate2 
∆mic60

Mat a leu2-3,112 trp1-1 can1-100 ura3-1 
ade2-1 his3-11,15 HO-Su9-mKate2 
∆mic60::hphNT1

This 
study

yCJ020 ∆atp20 
∆arg8::HIS3 
∆cob::ARG8M 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆atp20::hphNT1 

This 
study



1 Osman et al. 2015 
2 Gruschke et al. 2011 

3Steele et al. 1996 
4 Rak et al. 2007 

yCJ022 ∆atp20 ∆arg8 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆atp20::hphNT1 

This 
study

yCJ046 ∆atp20∆atp21 
∆arg8::HIS3 
∆cob::ARG8M 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆atp21::hphNT1 
∆atp20:: kanMX6 

This 
study

yCJ047 ∆atp20∆atp21 
∆arg8

Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆atp21::hphNT1 
∆atp20::kanMX6 

This 
study

yCJ005 ∆atp21 
∆arg8::HIS3 
∆cob::ARG8M 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆atp21::hphNT1 

This 
study

yCJ007 ∆atp21 ∆arg8 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆atp21::hphNT1 

This 
study

yCO756 ∆mic10 
∆arg8::HIS3 
∆cob::ARG8M 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆mic10::hphNT1 

This 
study

yCO757 ∆mic10 ∆arg8 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆mic10::hphNT1 

This 
study

yCJ070 ∆mic60 
∆arg8::HIS3 
∆cob::ARG8M 

Mat alpha ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 cob::ARG8M 
intronless mtDNA ∆mic60::hphNT1 

This 
study

yCJ071 ∆mic60 ∆arg8 Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 
ura3-1 CAN1 arg8::HIS3 intronless 
mtDNA ∆mic60::hphNT1 

This 
study



Tabel 2 - Primers used in this study 

Name / Alias Sequence

CO356 
∆dnm1 S1

CATTAAGTAGCTACCAGCGAATCTAAATACGACGGATAAAGAATG 
CGTACGCTGCAGGTCGAC

CO357 
∆dnm1 S2

CGCAATGTTGAAGTAAGATCAAAAATGAGATGAATTATGCAATTA 
ATCGATGAATTCGAGCTCG

CO573 
∆atg32 S1

TCACAAAAGCAAAAAAAATCTGCCAGGAACAGTAAA 
CATATGCGTACGCTGCAGGTCGAC 

CO574 
∆atg32 S2

GTGAGTAGGAACGTGTATGTTTGTGTATATTGGAA 
AAAGGTTAATCGATGAATTCGAGCTCG 

CO888 
∆mic10 S1

TGCTACGAGAGGGAATAAACACGGAAAAAGACAAAATATACCAT
GCGTACGCTGCAGGTCGAC

CO889 
∆mic10 S2

TATTTTTTTTTTTGAATATATATAAAGCATCGTCGCTTAAGACTAAT 
CGATGAATTCGAGCTCG

CO986 
∆atp20 S1

ACCTGCCGATAAATCATATTTCAGAACGCTAATCAATTCATC 
ATGCGTACGCTGCAGGTCGAC

CO987 
∆atp20 S2

ACGAATATACAAGGGTTTTGCGAATAGATAGAATTAAAAAGCT 
TAATCGATGAATTCGAGCTCG

CO1104 
∆atp21 S1

CGGAACATAACGTATATAGGAACTAGCTGAGTGAGTTAAAG 
GATGCGTACGCTGCAGGTCGAC 

CO1105 
∆atp21 S2

TAATGTGCATTTTTAGTATCCTATTTATGTTGAAGCTTCTATTTA 
ATCGATGAATTCGAGCTCG 

CO1114 
qPCR Cox1 

fv

CTACAGATACAGCATTTCCAAGA

CO1115 
qPCR Cox1 

rv

GTGCCTGAATAGATGATAATGGT

CO1116 
qPCR Act1 fv

CACCCTGTTCTTTTGACTGA

CO1117 
qPCR Act1 

rv

CGTAGAAGGCTGGAACGTTG

CO1196 
∆mic60 S1

GGCATAAGAACGCATTGAAAAGTCTAAAAAACTAATATTCGT 
ATGCGTACGCTGCAGGTCGAC 



CO1197 
∆mic60 S2

AGGTGTAATGACGTACATCTCTTTTCTCTTTGTATTATTCTTTC 
AATCGATGAATTCGAGCTCG 

CO1268 
tagging of 

Fis1 fw

GTAATTATCTACTTTTTACAACAAATATAAAACAATGGTCTCAA 
AAGGGGAGG 

CO1269 
tagging of 

Fis1 rv

CCAAGCTTCTTATATAATTCATCCATTCCCATGACA 

CO1270 
backbone for 
Fis1-NG fw

GGATGAATTATATAAGAAGCTTGGTCATGGTACTGA 

CO1271 
backbone for 
Fis1-NG rv

GCAAGCTAAACAGATCTTACCTTCTCTTGTTTCTTAAGAAGAAAC 

CO1677 
tagging of 
Pam16 fw

CGAATTCAACAAATTCATCTGGTGCAGATAATAGTGCAAGC 
AGCAATCAGCGTACGCTGCAGGTCGAC 

CO1678 
tagging of 
Pam16 rv

GCTGCATGCTTTCGATAACACTTGTGACGTAATGATGGAGGCTT 
CCTTGAATCGATGAATTCGAGCTCG 

CO562 
Amplification 
of COB for

AATCAAATGTGTATTTAAGTTTAGTG

CO562 
Amplification 
of COB rev

TTATTTATTAACTCTACCGATATAGAAT

CO891 
Amplification 
of ARG8 for

TCAAGACCTGAAGATTTATGTATCACAAGAGG

CO601 
Amplification 
of ARG8 rev

TTAAGCATATACAGCTTCGATAGC

CO982 S3 
tagging of 

Cox4

TACAAACTAAACCCTGTTGGTGTTCCAAATGATGACCACCATCA
CGGTGACGGTGCTGGTTTA

CO982 S2 
tagging of 

Cox4

AAAAAGTAAAAGAGAAACAGAAGGGCAACTTGAATGATAAGATT
AATCGATGAATTCGAGCTCG



Table 3 - Plasmids used in this study 

1 Janke et al. 2004 
2 Gruschke et al. 2011 

Name / 
Alias

Needed for Source

pCO021 Janke deletion cassette G418 resistance 1

pCO059 Janke deletion cassette NAT resistance 1

pCO074 Janke deletion cassette hygromycin resistance 1

pCO151 pvt100u-TagBFP This study

pCO282 pCOB-ST5 2

pCO441 HO-PPGK1-Su9-mKate2-kanMX6-HO This study

pCO442 HO-PPGK1-Su9-NG-kanMX6-HO This study

pCO307 pCOB/ST5 Arg8+Term+synth-TetO This study

pCO408 HO-PCUP-Su9-3xGFP-LacI—PPGK-Su9-TagBFP-KanMX This study

pCO407 HO-PCUP-Su9-TetR-3xRuby3--PPGK1-Su9-TagBFP-
KanMX4-HO

This study

pCO444 Plasmid for biolistic transformation and generation of 
ATP6-mtNeonGreen

This study

pCO494 C-Terminal tagging of proteins with NeonGreen This study

pCJ013 Plasmid for biolistic transformation and generation of 
ATP6-mtNeonGreen

This study
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Abstract

Summary: Here, we introduce YeastMate, a user-friendly deep learning-based application for automated detection
and segmentation of Saccharomyces cerevisiae cells and their mating and budding events in microscopy images.
We build upon Mask R-CNN with a custom segmentation head for the subclassification of mother and daughter cells
during lifecycle transitions. YeastMate can be used directly as a Python library or through a standalone application
with a graphical user interface (GUI) and a Fiji plugin as easy-to-use frontends.

Availability and implementation: The source code for YeastMate is freely available at https://github.com/hoerlteam/
YeastMate under the MIT license. We offer installers for our software stack for Windows, macOS and Linux. A
detailed user guide is available at https://yeastmate.readthedocs.io.

Contact: hoerl@bio.lmu.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

An important experimental approach when working with the bud-
ding yeast Saccharomyces cerevisiae is to examine the effects of
mutations on morphological features or protein localization either
by brightfield or fluorescent microscopy (Ohya et al., 2015). Such
experiments can also be performed in a systematic manner by com-
bining automated microscopy with strain libraries comprising thou-
sands of yeast strains that carry gene deletions or express
fluorescently tagged proteins (Giaever et al., 2002; Huh et al., 2003;
Weill et al., 2018), which, however, calls for robust automated
image analysis pipelines. In recent years, tools based on convolution-
al neural networks (CNNs) have become state-of-the-art for many
tasks in biomedical image analysis (von Chamier et al., 2019),
including segmentation of individual S.cerevisiae cells (Dietler et al.,
2020; Lu et al., 2019; Salem et al., 2021). Many experimental strat-
egies facilitated by the yeast system also make use of specific transi-
tions in the yeast lifecycle like budding and mating to study things
like organelle inheritance and mitochondrial quality control
(Jakubke et al., 2021; Rafelski et al., 2012). Detection of matings
and buddings is often done by hand or through dedicated postpro-
cessing routines on the output of a single-cell segmentation tool (e.g.
tracking of cells in a time series of images), highlighting the need for
easy-to-use end-to-end solutions for these more complex tasks.

Here, we present YeastMate, a novel deep learning-based tool
for end-to-end segmentation of single cells and detection of transi-
tions in the lifecycle of S.cerevisiae in single transmitted light images.

YeastMate performs three tasks: instance segmentation of single
cells, object detection of zygotes and budding events and automatic
assignment of mother and daughter cells involved in a mating or
budding event. The detection backend is based on Mask R-CNN
(He et al., 2017) and is complemented by a user-friendly frontend
using modern web technologies as well as a Fiji plugin. In the task of
detecting mating and budding events, we achieve accuracies compar-
able to manual human reannotation and we can also perform single-
cell segmentation robustly across various datasets. YeastMate is al-
ready being used in ongoing research in our lab (Jakubke et al.,
2021). In addition to the software, we also provide a new dataset of
images with manually annotated cells and mating and budding
events.

2 Materials and methods

CNN architecture and training: Our network architecture builds
upon Mask R-CNN with a modified mask segmentation head pro-
ducing multiclass semantic segmentations (Supplementary Fig. S1)
for each detected object. Instead of individually detecting mother
and daughter cells, we first detect the whole mating and budding
events as well as single cells. In a postprocessing step, we resolve the
roles of the cells involved in budding or mating events based on the
multiclass segmentation masks (Supplementary Fig. S2). We used
80% of our images for training our network and cross-validation
and 20% as a hold-out test set for the final performance assessment.
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Software architecture: YeastMate is implemented in a modular

way: the detection backend can be used as a Python library but also
runs as a webservice to provide its capabilities to client applications.

As clients, we provide a Fiji plugin that directly interfaces with the
server via HTTP requests as well as a standalone GUI Desktop ap-
plication (Fig. 1 and Supplementary Figs S3–S5). We provide the

whole YeastMate stack as a single installable file for use on a local
workstation.

For more details, please refer to the Supplementary Methods.

3 Results

Dataset: For training YeastMate, we collected 147 brightfield and
differential interference contrast (DIC) images of S.cerevisiae
acquired on two different microscopes at various imaging conditions
and generated curated single-cell segmentation masks and mating

and budding annotations. In total, our data contain 17 058 individ-
ual cells, 3615 buddings and 2380 zygotes (Supplementary Table
S1).

Object detection performance: Our network achieves a mean
average precision (mAP) of 0.878 as well as favourable APs for the

individual classes of objects when applied to our test set (Fig. 1B
and Supplementary Fig. S6). We also assessed interhuman repro-
ducibility by comparing the annotations for mating and budding

events of four different annotators (with the most experienced one
chosen as the reference). On our test dataset, mean interhuman

precision and recall are (0.908, 0.946) for mating events and
(0.774, 0.763) for budding events. These values lie close to the PR-
curves of our network, indicating that YeastMate can achieve ob-

ject detection performance comparable to manual human
annotation.

Single-cell segmentation performance: YeastMate also compares
favourably to existing CNN-based solutions in single-cell segmenta-

tion, showing consistent performance not only on our own test data-
set, but also two publicly available datasets (Fig. 1C, Supplementary
Results, Supplementary Fig. S7 and Table S2). Based on the robust

Mask R-CNN architecture, YeastMate achieves the highest single-
cell detection performance of all tools as well as competitive results

in segmentation.

4 Conclusion

With YeastMate, we introduce an easy-to-use application to not

only perform single-cell segmentation in images of S.cerevisiae
with high robustness across datasets, but also detect transitions in
the cell cycle in single images with accuracies comparable to

human annotation. YeastMate is implemented in a modular way
and can be run on local workstations but the detection server can
also be run on a remote compute server. Additionally, we provide

two user-friendly frontends to make the tool available without the
need to write code. We can envision YeastMate to be expanded to

detect other life cycle states, such as meiotic asci, similar to exist-
ing work in Arabidopsis thaliana (Lim et al., 2020). YeastMate
can provide a considerable improvement to high-throughput stud-

ies of yeast, facilitating not only the automated analysis of large
image datasets of single cells, but also enabling the study the com-

plex interplay of cellular components during both sexual and asex-
ual reproduction of S.cerevisiae.
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Fig. 1. (A) Main components and output of YeastMate: We perform instance segmentation of single cells and detection of lifecycle transitions using a modified Mask R-CNN

(middle), which can either be used directly from Python code or via two GUI frontends (left) to provide instance segmentation of single cells as well as detection of budding

events and mating events with identification of the mother (M) and daughter (D) cells involved in the event (right). (B) Precision–recall (PR) curves of YeastMate performance

for detection of mating and budding events in our test dataset. Human precision and recall during reannotation by three different authors are plotted as colored stars. (C)

Single-cell detection performance (F1 score) and segmentation performance (mean intersection-over-union of true positive detections) of YeastNet, YeastSpotter, YeaZ and

YeastMate on our own test dataset as well as datasets from Dietler et al. (2020) and Salem et al. (2021). The values in the table are mean 6 standard deviation across all images

in a dataset
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and budding events in S. cerevisiae 
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Supplementary Methods 
Data acquisition and cell culture 
The images in our dataset are a collection of DIC and brightfield images from multiple acquisitions 
on either a Nikon Ti2 microscope equipped with a CFI SR HP Apo TIRF 100xH NA 1.49 oil 
immersion objective (with an optional 1.5x magnification relay lens) and dual Photometrics Prime 
95B 25mm cameras or on a fully automated Olympus IX 83 microscope with an UPLFLM 60x 
NA 0.9 air objective with a Hamamatsu ORCA-Flash4.0 V3 camera. All together, we assembled 
our dataset from 6 individual experiments on the Nikon system and parts of 2 multi-well 
experiments imaged at the Olympus system. In all experiments, two haploid S. cerevisiae strains 
were mated. Data from the Nikon system were acquired for (Jakubke et al., 2021), data from the 
Olympus system are preliminary data for a high-throughput screen. For a complete reference of 
the individual experiments included in the dataset, refer to Supplementary Table ST1. 

Yeast cultivation and sample preparation was performed as described previously (Jakubke et al., 
2021). In short, to image the mating process, yeast cells of opposing mating type were grown in 
separate flasks in YPD medium at 30°C to an OD600 ~1.0. 1000 µl from both cultures were 
combined in a reaction tube, vortexed thoroughly and centrifuged for 3 minutes at 5.000 rpm. 
The pellet was resuspended in 50 µl of YPD medium and spotted onto a YPD plate to allow cells 
to mate. After incubation at 30°C for 3 h, pre-mated cells were scraped off and resuspended in 
200µl PBS. The cell suspension was added into wells of 8-well IBIDI slides that had previously 
been coated with Concanavalin A. Attachment of cells to the coverslip was supported by 
centrifuging the IBIDI slide for 60 s at 1000 rpm. 

 

Generation of ground truth annotations 
Single-cell segmentation masks were generated in an iterative, feedback-based process: We initially 
trained a standard Mask R-CNN on the brightfield dataset provided by YeaZ (Dietler et al., 
2020), applied it to our images and manually corrected the generated masks using napari 
(Sofroniew et al., 2021). For the annotation of cells involved in mating events or buddings, we 
implemented a custom annotation scheme, again using napari: For annotation of mating events, 
we manually drew paths in a shape layer going from mother 1 to mother 2 and, optionally, the 
medial daughter cell for each mating event in our images. Likewise, in another layer, we added 
paths going from mother to daughter cell in all buddings (Supplementary Figure S4, annotations 
are visualized in this manner in Supplementary Figure S6B). Our path-based annotations were 
saved in JSON files and were converted to the bounding box annotations needed by R-CNN-based 
networks on the fly when training the network. 

All annotations in the final ground truth were manually verified and corrected and all networks 
trained for validation and benchmarking were trained de-novo from these final data. The mating 
and budding annotations of the 30 images in the test set were re-annotated by four different 
authors (DB, JM, FT and DH) of this study to allow us to compare the accuracy of YeastMate 



to inter-human variation (Supplementary Figure S6). The single cell masks were left as-is unless 
the re-annotator wanted to annotate a mating or budding event where not all cells are present in 
the segmentation mask (e.g., a small bud), in which case they manually added the missing object 
to the mask with a new label in napari. 

CNN architecture and training 
We use the Detectron2 (Wu et al., 2019) implementation of Mask R-CNN (He et al., 2017) with 
modifications to the mask head and mask loss to produce a multi-class segmentation (instead of 
the default binary segmentation) for each detected object. 

In short, Mask R-CNN extends Faster R-CNN (Ren et al., 2015), which performs object detection 
using a 2-step strategy: images are first processed by a backbone CNN to extract features, which 
are then fed into a region proposal network (RPN) that performs binary object/non-object 
classification for a predefined regular grid of bounding boxes, called anchors. The features of 
proposal boxes with the highest scores from the RPN are then resized to a common shape and fed 
into box classification and box regression head subnetwork, performing a second round of 
(multiclass) classification of the proposed regions, and refining the coordinates. Mask R-CNN adds 
a mask head to this architecture that produces a binary segmentation mask for each proposal 
region. 

For YeastMate, we replaced the default mask head with a multiclass mask head: instead of a 
binary mask for each region, we produce a multichannel semantic segmentation (Supplementary 
Figure S1). We also do not threshold the segmentation, instead we continue working with the raw 
probabilities of the different segmentation classes !!"#. Note that the classes for the classification 
head !$%&, classifying the whole region, do not have to equal the classes of the segmentation. In 
our case, !$%& classifies a whole region as single cell, mating or budding, whereas the segmentation 
mask has classes !!"# ∈ {0: background, 1: single cell, 2: mating mother, 3: mating daughter, 4: 
budding mother and 5: budding daughter}.  

During training, the single cell masks from the ground-truth (GT) data are used as one-hot 
encoded segmentations of class single cell and for all mating and budding events, we use masks 
encoding the role of all the individual cells (mother or daughter) during the event as GT. As our 
mask head performs multiclass classification, we use softmax activation in the last layer of the 
mask head and cross entropy (CE) loss instead of sigmoid activation and binary CE (BCE) loss. 
During inference, the intersection-over-union (IoU) threshold for the non-maximum suppression 
(NMS) of the ROI header output was set to 0.5.  

We performed all training on a compute server equipped with 2 Intel(R) Xeon(R) E5-2680v4 
CPUs (14 cores/28 threads each), 256GB of RAM and 2 NVIDIA Tesla V100 GPUs with 32GB 
VRAM each. We did not perform single training runs on multiple GPUs, instead using the two 
GPUs to process two cross-validation splits in parallel. For optimization of the network weights, 
we used stochastic gradient with momentum of 0.9 and a learning rate warm-up period of 1000 
iterations. During cross-validation, the performance on the validation set stopped increasing after 



200,000 iterations, we therefore also trained the final model using all training images for 200,000 
iterations. We used a learning rate of 0.005 for the final model, based on performance during our 
cross-validation. Each training iteration was done on a batch of two random 400x400px image 
crops. Random augmentation was done each iteration in the form of random flips (50% chance 
for an upside-down flip and 50% for a left-right flip) and random rotation (a random 0-3 number 
of 90° rotations).  

Postprocessing of CNN outputs 
In a postprocessing step, we resolve the complementary segmentation and object detection outputs 
of our network to generate a single cell instance segmentation that assigns roles to cells 
participating a lifecycle transition event (Supplementary Figure S2). 

For each detected bounding box of the compound classes mating or budding, we proceed as follows: 
we collect all detected objects of class single cell whose centers fall inside the compound object. 
We threshold the segmentation mask (for channel !!"#= single cell) of the single cell at 0.5 and 
calculate the average scores for all classes inside the mask in the segmentation of the compound 
object. 

We consider the assignment of single cell objects to the available roles in a lifecycle transition 
object (I.e., mother and daughter in buddings, and two mothers and an optional daughter in a 
mating event) as a linear assignment problem and find the cells-to-roles matching with the highest 
overall score. For optional roles (e.g., the daughter in matings, as not all zygotes will have 
produced a medial bud), we discard the assignment of the cell to that role if the score lies under 
a threshold optional_object_thresh (we currently do not expose this parameter to the front end, 
instead using a value of 0.15, which was determined to be optimal during cross-validation). In 
each compound object, we also perform this matching for the other type and if the average score 
of the assignments is at least parent_override_thresh times higher, we use this assignment 
instead, thus using the segmentation output as a second line of evidence to catch zygotes 
erroneously classified as buddings by the object detection pathway, and vice-versa. During cross-
validation we did not see strong improvements by using this overriding strategy, so we currently 
leave the parameter at a high default value of 20. All single cells that are not assigned a role in 
this procedure remain classified as single cells in the final segmentation. 

Note that the procedure is written in a generalized way and could easily be adapted to 
accommodate, e.g., meiotic asci detection as well, if adequately annotated data were provided to 
our system. 

Tracking in timeseries 
We offer the option to perform basic overlap-based tracking of cells and lifecycle transition events 
in time series of N frames, i.e., to assign the same label to the same cell/event in subsequent 
frames. To do so, we process the network output for all adjacent pairs of frames (1,2), (2,3), …, 
(N-1, N). For each pair, we first compute the pairwise mask IoU of all detected individual cells in 
the network output for frame n with all cells in frame n+1 (IoUs below a user-settable threshold 



are set to zero). We find a bipartite matching that maximizes the sum of all IoUs via linear sum 
assignment. Cells in frame n+1 that can be matched with nonzero IoU are given the same label 
as the matched cell in frame n. We then perform the same procedure for mating and budding 
events, using the bounding boxes of detected events for IoU calculation. We keep track of the 
maximum label used so far and for all cells and events that could not be matched, we assign new 
sequential labels (first to individual cells, then to transition events). 

Validation and Benchmarking of object detection performance 
For validation of our models, we split our 147-image dataset into 5 parts of 29/30 images each, 
using a stratified splitting strategy placing a roughly equal number of images from individual 
experiments (Supplementary Table ST1) in each split. Four of the splits were used as cross-
validation data to optimize network architecture and hyperparameters, while the final 30-image 
split was left aside as test data and only used in a final test run. Performance during cross-
validation was assessed by training the network on 3 of the 4 training splits and using the 
remaining one as a validation set. The final model was trained on all 4 training splits and tested 
on the test split. 

YeastMate provides bounding boxes of all detected objects as well as their scores. For each class 
of object, we sorted the detections by score (with no minimal score threshold) and generated 
precision-recall (PR) curves as well as average precision (AP) scores at 0.5 intersection-over-union 
(IoU) using the Python implementation of common object detection metrics in (Padilla et al., 
2021). We not only computed scores and PR-curves for the compound object classes mating and 
budding, but also for the roles of single cells within them (mating mother, mating daughter/medial 
bud, budding mother, budding daughter). For this, we assigned the single cell detection the score 
of the enclosing compound object before calculating performance metrics. 

To assess reproducibility in mating and budding detection between different human annotators, 
we chose the first author (DB) as the reference annotator and compared the annotations of three 
other authors (JM, FT and DH). We assessed precision and recall for mating events, buddings, 
as well as the individual mother and daughter cells involved in them. For each class of object, the 
annotation from the second annotator was considered true positive (TP) if its bounding box 
overlapped an annotation by DB with an IoU of at least 0.5, otherwise, it was considered a false 
positive (FP). Annotations by DB that are not present in the re-annotation were considered false 
negatives (FN). For each class of object and each re-annotator, we calculated precision 
( #()
(#()	,	#-))	) and recall ( #()

(#()	,	#-/)	) and visualized them as points in the PR-curve describing the 

network performance (Supplementary Figure S6). 

Single cell segmentation performance 
 

To compare the single-cell segmentation performance of YeastMate to existing deep learning-
based solutions, we applied our model (trained on our entire training dataset) as well as the 
pretrained models of YeastSpotter, YeaZ and YeastNet (Lu et al., 2019; Dietler et al., 2020; Salem 



et al., 2021) to our test dataset, the brightfield images dataset provided by YeaZ as well as the 
dataset compiled by YeastNet, consisting of two novel annotated timeseries as well as 
segmentation masks for two of the timeseries provided by the Yeast Imaging Toolkit (YIT, 
http://yeast-image-toolkit.biosim.eu/pmwiki.php) . 
 
Given a ground truth segmentation mask and a predicted segmentation mask, we matched 
detected cells to ground truth cells to maximize the total IoU of all GT-prediction pairs. We 
considered a predicted cell true positive (TP) if it had an IoU of over 0.5 with a ground truth cell 
and false positive (FP) otherwise. Ground truth cells that were not matched to a predicted cell 
with IoU > 0.5 were considered false negatives (FN). For each image, we calculated precision, 
recall and $0-score (1∗	(34"56!6$7	∗	4"5899)(34"56!6$7	,	4"5899) 	) to measure object detection performance. In addition, we 

calculated the mean IoU of all true positive detections. If we tested multiple parameters for a tool, 
we only used the prediction with the highest $0 score for each image. 

YeastMate 
We used YeastMate as a Python library to perform the benchmarking, but only varied parameters 
that are also available to end users via our graphical interfaces. For images with pixel sizes 
differing considerably from 110nm (our own images with 1.5x magnification and the images from 
YIT), we rescaled them using bilinear interpolation and then rescaled the mask produced by 
YeastMate to the original size using nearest-neighbor interpolation with no anti-aliasing. We 
normalized images based on their 0.015 and 0.985 quantiles before feeding them into our network. 
For each image, we generated segmentation masks with single cell score thresholds in the range 
(0.4, 0.5, …, 0.9). 

YeastSpotter 
We set up the standalone Python code of YeastSpotter 
(https://github.com/alexxijielu/yeast_segmentation) in a conda environment with the minimum 
required versions of tensorflow (1.10) and keras (2.2.4), as per the authors instructions. The only 
user-settable parameter in the main options file is a scale factor, but it can only be set to integer 
downsampling factors and is intended as a performance option to speed up inference. Therefore, 
we only used the default settings of no downsampling when making predictions with YeastSpotter. 
 

YeaZ 
We set up the standalone version of YeaZ (https://github.com/lpbsscientist/YeaZ-GUI) as per 
the authors instructions and followed the instructions for segmentation without using the GUI 
(using the provided weights for brightfield detection), omitting the tracking step. We applied 
YeaZ with different values for the two main parameters exposed in the GUI, threshold (0.3, 0.4, 
…, 0.9) and minimum distance between seeds (2, 5, 10). 
 



YeastNet 
We set up YeastNet (https://github.com/kaernlab/YeastNet) as per the authors instructions and 
used the main track.py script to process all datasets. No user-settable parameters are available 
via the command line interface, so we applied YeastNet with default parameters. 

Application Architecture 
YeastMate consists not only of the code for CNN-based cell detection and segmentation, but we 
also offer two separate graphical frontends for it to maximize user-friendliness: 1) standalone 
frontend written in React.js and packaged using Electron.js and 2) a plugin that can be used from 
the popular biomedical image analysis program Fiji (Schindelin et al., 2012). An overview of the 
components of our software stack is shown in Supplementary Figure S3. 

Detection Server and Python library 
Our object detection and segmentation model is an extended version of the PyTorch Mask R-
CNN implementation provided by Detectron2, combined with custom postprocessing routines to 
resolve single cells and lifecycle transitions. The detection model is wrapped via a 
YeastMatePredictor class, which can load pretrained weights and network configurations and 
provides methods that will accept an image as input and return an integer-valued instance 
segmentation image as well as object detections in a custom JSON format. Upon installing the 
YeastMate module using pip, users can use functions from it in their own Python code. Note that 
the detection network expects intensities in the 0-1 range for the input images. To mitigate effects 
of individual bright or dark pixels, we normalize not based on minimal and maximal value, but 
rather a low and high, user-settable, intensity quantile (by default 0.015 and 0.985). Also, we 
found that for optimal performance, the input images should have a pixel size comparable to our 
reference pixel size of 110nm. We therefore also offer automatic resizing of images in the main 
inference method. 

For using the YeastMate detector from other applications, such as our two GUI frontends, we 
wrap the detection pipeline as a webservice using Flask. Our detection server listens for multipart 
HTTP POST requests containing a 2-dimensional image (encoded as a single-channel 32-bit TIFF 
image) as well as parameters encoded as JSON (we follow the AnnotatedImageInput adapter API 
from BentoML, which we used for model serving initially, see 
https://docs.bentoml.org/en/latest/api/adapters.html#annotatedimageinput for details).  

To ensure a reproducible environment with compatible versions of the libraries we use, we provide 
a Docker image of YeastMate, which can be used for running the detection server or re-training 
on new data. 

React.js/Electron GUI client 
To interface with our detection service, we created a custom GUI frontend based on modern web 
technologies (React.js) but provided as a desktop application using Electron.js. The frontend 
serves as a control hub to interface with other processes that perform image IO and visualization. 



GUI Frontend 
The frontend is written as a JavaScript web application using React.js and packaged as a desktop 
app using Electron.js (Supplementary Figure S4). It serves as a user interface for specifying all 
relevant settings of YeastMate and submitting an inference job to separate processes for image IO 
and the actual detection via HTTP requests. Users can launch the backend processes from the 
GUI or specify the IP addresses of already running instances (e.g. when the detection backend is 
running on a remote compute server) 

Client IO Backend 
The IO backend of our client is written in Python and is responsible for reading images from 
paths provided by the frontend (and in the case of multidimensional stacks, selecting the 2D plane 
the uses wishes to perform detection on), sending them to the detection server and handling and 
saving detection results. It is implemented as a webservice using Flask, with a task queue based 
on huey2. In addition to loading images and sending them to the detection server, it can also 
create crops of detected objects and save them to new files. It also provides several preprocessing 
functions that are helpful when dealing with multidimensional data. 

Preprocessing of images 
In the IO backend of our Electron client, we also support TIFF input images of higher 
dimensionality, given that they follow the TZCYX dimension order (the default order used by 
ImageJ/Fiji). The user can set a specific time point, z-plane, and channel, which will be sent to 
the detection server. Export operations such as cropping detected zygotes or budding events will 
be applied to all channels, timepoints and z-planes.  

If data are provided in a different format, such as a microscope vendor-specific image format, we 
offer an optional preprocessing step that will resave the images as TIFF files meeting our 
requirements. Image IO from vendor specific formats is done via the BioFormats library (Linkert 
et al., 2010) using the pims-bioformats wrapper. We tested this process extensively using Nikon 
nd2 files, but BioFormats should allow the reading of many other formats. As many of our own 
experiments were performed on a dual-camera microscope, during the resaving step we optionally 
added the option to align the color channels acquired on the two cameras if a reference channel 
(e.g., brightfield) was recorded on both. We perform an affine alignment using ORB keypoint 
detection and descriptor generation (Rublee et al., 2011) followed by descriptor matching and 
outlier-resistant estimation of an affine transformation from matched keypoints using RANSAC 
(Fischler and Bolles, 1981) and will use the transformation to warp all channels from the second 
camera to match channels from the first. For these operations, we make use of the OpenCV and 
scikit-image packages. Note that for time series, we will align each frame individually and for z-
stacks, we estimate a single 2D transformation on a maximum intensity projection of the reference 
stacks and applying the same transformation to all planes – we thus only correct misalignments 
along the xy-plane and will not correct drift in time series. 



Annotation Backend 
To visualize or correct the detections generated by the detection server, our GUI provides a 
visualization and annotation function. This will start a separate Python process that loads the 
specified input files, segmentation masks and JSON object annotations, which will be displayed 
using napari. Users can edit the masks and object annotations to manually curate the network 
output. 

All-in-one package 
We provide all-in-one packages for all major operating systems consisting of the Electron frontend 
as well as the IO backend and detection server, packaged using PyInstaller. When starting the 
Electron application and running a detection task, the IO backend and detection backend will be 
started in separate processes automatically (unless the user specifically points the frontend to the 
IP address and port of already running instances). 

Fiji Plugin 
In addition to our React-based frontend, we also provide a Fiji plugin that interfaces directly with 
a detection server using HTTP requests. The plugin is implemented as a SciJava Command 
(Rueden et al., 2017) that acts on the currently selected image (or a hyperstack with a time 
dimension) in Fiji (Supplementary Figure S5). It will transmit a normalized version of the image 
as well as detection parameters to the server and show the segmentation result as a new image 
and optionally add bounding boxes to Fijis ROI Manager. Execution of the plugin can be recorded 
as a macro for easy batch-application to many images. We implemented pixel-level calculations 
in the plugin using imglib2 (Pietzsch et al., 2012). 

 

  



User Guide 
 

We provide a detailed user guide for YeastMate at https://yeastmate.readthedocs.io/ 

 

Code and data availability 
 

YeastMate is fully open-source and licensed under the MIT license, all code is available on GitHub 
in the following repositories: 

https://github.com/hoerlteam/YeastMate 
(detection backend, location of releases and issue tracking)  
https://github.com/hoerlteam/YeastMateFrontend (React.js/Electron.js GUI Application)  
https://github.com/hoerlteam/YeastMateBackend   
(Python-based IO and annotation code for the App)  
https://github.com/hoerlteam/YeastMateFiji (Fiji plugin) 

Pre-packaged binaries of the whole software stack are also available under:  
https://github.com/hoerlteam/YeastMate/releases  

Our final model weights and all training and testing data and annotations are available under:  
https://osf.io/287fr/?view_only=99d1fddb563b4253957f226c19c4113f  

  



Supplementary Results 
Single cell segmentation benchmark 
When comparing YeastMate to other deep learning-based solutions for yeast cell instance 
segmentation, we achieve very satisfactory results (Supplementary Table ST2), outperforming all 
other tools on our own test dataset in all metrics considered. For the YeaZ and YeastNet-YIT 
datasets, we achieve the highest object detection performance (F1) and are only narrowly beat by 
YeaZ in terms of recall on the YeastNet-YIT dataset. In terms of the mean IoU of true positive 
detections, we achieve reasonable performance, but do not outperform YeaZ and YeastSpotter.  

Looking at example segmentation masks (Supplementary Figure S7), one can see a potential 
reason for our relatively low IoU: YeastMate tends to produce small segmentation masks compared 
to the other tools. So, while we capture the overall shape of cells well (except for very elongated 
mutants, which we likely mistake for zygotes consisting of two “mother cells”, see Supplementary 
Figure S7E, an issue that could be remedied by including the YeaZ dataset into the training data), 
biases in the ground truth, e.g., whether to include the out-of-focus halo around cells into the 
mask, affect the performance of all tools.  

Overall, the Mask R-CNN-based tools YeastMate and YeastSpotter show a more consistent 
performance across datasets, a tribute to the robustness of the underlying network architecture 
(especially considering that YeastSpotter was not even trained on S. cerevisiae images), whereas 
U-Net-based (Ronneberger et al., 2015) solutions seem to be more dependent on postprocessing 
steps optimized for a specific dataset. For example, YeastNet, which offers no easy way to finetune 
the watershed-based postprocessing, generalized poorly to data that do not match the imaging 
conditions of the original training dataset and seems prone to oversegmentation and artifacts, e.g., 
in the presence of uneven illumination. The two-step strategy of Mask R-CNN that first identifies 
proposal regions which are likely to contain objects of interest and then performs segmentation 
within individual regions also likely serves as a strong prior for the shape of the segmentation 
results in the second step. Interestingly, the authors of YeaZ cite this as a reason for not using 
Mask R-CNN as they aimed for the highest segmentation accuracy on mutants of unusual shape. 
The complementary strengths and weaknesses of Mask R-CNN and U-Net have been observed 
before, e.g. by (Vuola et al., 2019). Aside from properties of the network architecture, the different 
datasets used to train the various models likely contribute to the differences is generalization. For 
YeastMate, we deliberately compiled difficult large images at multiple illumination conditions 
that also contain isolated cells and debris in the background, not just images of single colonies of 
cells, as in the other datasets.  
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Supplementary Table ST2: Single cell segmentation performance 

  



Supplementary Table ST1: Overview of images included in the YeastMate dataset. Unless noted otherwise, we took the middle z-
plane from stacks acquired for (Jakubke et al., 2021) to train and test our network. 

Identifier Cell types Imaging conditions #images #single 
cells 

#mating 
events 

#budding 
events 

Notes 

wt_dic_1001/ 
wt_dic_1002 
 

WT ATP6-NG 
x 
WT matrix mKate2 

Ti2, 100x NA 1.49, DIC, 
pixel size: 110nm 

40 5338 958 697  

dmic60_dic ∆mic60 ATP6-NG 
x 
∆mic60 matrix mKate2 

Ti2, 100x NA 1.49, DIC, 
pixel size: 110nm 

24 4125 735 928  

wt_bf_1/ 
wt_bf_2 

WT ATP6-NG 
x 
WT matrix mKate2 

Ti2, 100x NA 1.49, brightfield, 
Low illumination intensity, 
pixel size: 110nm 

40 4217 556 602 Preliminary data 
for (Jakubke et al., 
2021) 

wt_bf_ 
magnified_rep1 

WT ATP6-NG matrix TagBFP 
x 
WT ATP6-mKate2 matrix 
TagBFP 

Ti2, 100x NA 1.49 
+ 1.5x magnification, 
brightfield, 
pixel size: 73nm 

5 339 8 123  

wt_bf_ 
magnified_rep2 

 

WT ATP6-NG matrix TagBFP 
x 
WT ATP6-mKate2 matrix 
TagBFP 

Ti2, 100x NA 1.49 
+ 1.5x magnification, 
brightfield, 
pixel size: 73nm 

4 248 5 100  

wt_bf_ 
magnified_rep3 

 

WT ATP6-NG matrix TagBFP 
x 
WT ATP6-mKate2 matrix 
TagBFP 

Ti2, 100x NA 1.49  
+ 1.5x magnification, 
brightfield, 
pixel size: 73nm 

19 983 64 384  

multiwell_bf_1 WT ATP6-NG 
x 
WT matrix mKate2 

IX83, 60x NA 0.9, brightfield, 
pixel size: 108nm 

9 872 52 330 Preliminary data for 
high-throughput 
screen 

multiwell_bf_2 WT ATP6-NG 
x 
WT matrix mKate2 
/ ∆srn2 matrix mKate2 

IX83, 60x NA 0.9, brightfield, 
pixel size: 108nm 

6 936 2 451 Preliminary data for 
high-throughput 
screen 

TOTAL   147 17058 2380 3615  



Supplementary Table ST2: Single cell detection (Precision, Recall, !!) and segmentation 
(mean IoU of true positive detections) performance of YeastMate, YeastSpotter, YeaZ and 
YeastNet, with a 0.5 IoU threshold, shown as mean ± standard deviation across all images in a 
dataset. The best-performing tool per dataset and metric is highlighted by bold text and an 
asterisk (*). The results of YeaZ and YeastNet are grayed out and marked with a dagger (†) for 
their respective datasets, as those images were used to train the models and thus the results do 
not reflect performance on novel data.  

 

A: YeastMate test dataset 
 

PRECISION RECALL F1 MEAN IOU 
YEASTNET 0.256 ± 0.279 0.220 ± 0.248 0.257 ± 0.236 0.557 ± 0.265 
YEASTSPOTTER 0.775 ± 0.099 0.860 ± 0.070 0.812 ± 0.073 0.820 ± 0.030 
YEAZ 0.670 ± 0.121 0.816 ± 0.072 0.733 ± 0.096 0.797 ± 0.026 
YEASTMATE 0.945 ± 0.032* 0.961 ± 0.031* 0.953 ± 0.024* 0.870 ± 0.019* 

 

B: YeaZ dataset 
 

PRECISION RECALL F1 MEAN IOU 
YEASTNET 0.602 ± 0.318 0.609 ± 0.280 0.608 ± 0.281 0.733 ± 0.134 
YEASTSPOTTER 0.965 ± 0.087 0.915 ± 0.114 0.938 ± 0.074 0.875 ± 0.058* 
YEAZ 0.991 ± 0.041† 0.986 ± 0.045† 0.988 ± 0.036† 0.948 ± 0.025† 
YEASTMATE 0.967 ± 0.051* 0.966 ± 0.044* 0.966 ± 0.041* 0.795 ± 0.044 

 

C: YeastNet / YIT dataset 
 

PRECISION RECALL F1 MEAN IOU 
YEASTNET 0.986 ± 0.039† 0.890 ± 0.074† 0.934 ± 0.047† 0.856 ± 0.053† 
YEASTSPOTTER 0.724 ± 0.229 0.839 ± 0.113 0.749 ± 0.175 0.763 ± 0.075 
YEAZ 0.681 ± 0.236 0.969 ± 0.053* 0.771 ± 0.209 0.821 ± 0.064* 
YEASTMATE 0.918 ± 0.075* 0.955 ± 0.051 0.935 ± 0.056* 0.804 ± 0.076 

  



Supplementary Figures 
 

Supplementary Figure S1: Network architecture 

Supplementary Figure S2: Postprocessing of network output 

Supplementary Figure S3: Software architecture 

Supplementary Figure S4: Screenshots of Electron frontend 

Supplementary Figure S5: Screenshots of Fiji frontend 

Supplementary Figure S6: Object detection performance and comparison to human re-annotation 

Supplementary Figure S7: Examples of single cell segmentation in comparison to existing tools 

  



 

Supplementary Figure S1: Schematic Network architecture used in YeastMate: Images are fed 
through a modified Mask R-CNN with a ResNet50-FPN backbone (top). In addition to object 
detections with bounding boxes with object classes #"#$ ∈ {single cell, mating, budding}, our 
modified mask segmentation head produces multichannel masks with segmentation classes #%&' ∈ 
{background, single cell, mating mother, mating daughter, budding mother, budding daughter} 
(bottom). 
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Supplementary Figure S2: YeastMate Postprocessing pipeline: We take the outputs of our 
modified Mask R-CNN (objects with bounding boxes, scores and classes $
%&'()*+ #+**-./0'()- 1233'()4, as well as raw segmentation masks with classes $
%1/#5)672(3- &'()*+ #+**-./0'() .708+6-./0'() 3/2)80+6- 1233'() .708+6- 1233'() 3/2)80+64
) and perform the following steps: 1) for all single cell objects (with score above a user-settable 
threshold) we threshold the mask of the “single cell” class at 0.5, which already gives us an
instance segmentation of individual cells 2) for objects of classes mating or budding, we then get 
the mean score for respective subclasses within the single cell mask of each cell in the bounding 
box and 3) calculate an optimal assignment to the “roles” in a lifecycle transition event, which 
gives us 4) the final results consisting of an instance segmentation with additional annotations for 
transition events.
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Supplementary Figure S3: Software components of YeastMate (blue components indicate 
individual repositories available on GitHub): At its core lies the detection backend (YeastMate, 
right), which contains our modified Mask R-CNN implemented using PyTorch and Detectron2. 
It can either be installed as a Python package and directly used from custom scripts (examples 
are provided in the repository). The detection backend can also be served as a webservice, which 
provides an interface for our two GUI frontends: the Fiji plugin YeastMateFiji (middle) as well 
as our custom GUI frontend (top). This frontend consists of the actual UI written in React.js and 
packaged as a desktop application using Electron.js (YeastMateFrontend) which will spawn 
Python-based subprocesses for Image IO, visualization using napari or communication with the 
detection server. This functionality is implemented in the YeastMateBackend repository. For 
convenience, we compile YeastMateFrontend, YeastMateBackend and YeastMate into a single 
installer package. We also offer a Docker image for the YeastMate package for re-training networks 
or serving the detection backend from a reproducible environment.  
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Supplementary Figure S4: YeastMate standalone application. We package all components of 
YeastMate in an all-in-one package consisting of a GUI frontend based on React.js and Electron.js. 
The GUI forms an interface to separate Python-based processes for image IO (including 
preprocessing of non-TIFF files to meet our format requirements and export of crops around 
detected objects), detection and annotation. The respective backend processes will be started 
automatically by the frontend.

set parameters 
for preprocessing, detection, saving of crops

start annotation
(napari)

trigger detection/IO
via HTTP requests

start backends locally
or specify remote server

Frontend Application
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Annotation App
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Supplementary Figure S5: Fiji-plugin frontend to YeastMate. The plugin can be from the 
Plugins menu under Plugins->YeastMate. Its GUI consists of a single dialog allowing the user to 
set score thresholds, normalization quantiles and what kind of output they want to display, as 
well as the IP of the detection server (a status message in the dialog will indicate if the server is 
reachable). Upon clicking “OK”, the plugin will connect to the detection server and transmit the 
currently active image for detection. Once it receives the results, it will add the bounding boxes
or outlines of the detected objects (or just objects of specific classes, if desired by the user) to Fijis 
ROI Manager and display a single cell segmentation mask. If the corresponding options are set, 
the mask can be limited to cells participating in mating or budding events. The whole process can 
be recorded using Fijis Macro Recorder and included in macros for, e.g., batch processing of 
multiple files.

input image
YeastMate plugin UI

single cell segmentations

detections added to ROI Manager

macro-recordable



Supplementary Figure S6: Object detection performance. A, top) Precision-Recall curves for 
object detection performance (at 0.5 IoU threshold) for mating and budding events for the 4 cross-
validation splits (light blue) and the final inference on the held-out test dataset (dark blue). 
Human re-annotation precision and recall for 3 re-annotators are shown as colored stars and 
closely coincide with the network curves. A, middle) Same curves as above, but for the mother 
and daughter subclasses of mating events and buddings. B): Visualization of the mating and 
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budding annotations of the 4 annotators on an example image from the test set. Mating events 
are indicated by lines between the mother cells forming the zygote (circles) and, optionally, to a 
medial daughter bud (star). Buddings are indicated by a line from mother (circle) to daughter 
(star) cells. Note that shifts between the annotations of the different authors, as well as a random 
z-ordering of the annotations were introduced on purpose for this figure to make overlapping 
annotations easier to see.  



 

image ground truth YeastMate YeastNetYeaZYeastSpotter

A) YeastMate test dataset, WT ATP6-NG x WT matrix mKate, 100x NA 1.49, scalebar: 50 µm

B) YeastMate test dataset, WT ATP6-NG matrix TagBFP x WT ATP6-mKate matrix TagBFP, 150x NA 1.49, scalebar: 30 µm

C) YeastMate test dataset, WT ATP6-NG x WT matrix mKate, 60x NA 0.9, scalebar: 50 µm

D) YeaZ bright!eld dataset, WT, 60x magni!cation, low (1ms) illumination, scalebar: 20 µm

E) YeaZ bright!eld dataset, !lamentous G1/S (clb1-6Δ) arrested cells, 60x magni!cation, high (10ms) illumination, scalebar: 15 µm

F) YeastNet dataset DS2, timepoint 20, 60x NA 1.4, high defocus, scalebar: 30 µm

G) YIT dataset 3, timepoint 20, 100x NA 1.4, scalebar: 25 µm



Supplementary Figure S7: Single cell segmentation performance and comparison to existing 
deep learning-based tools for yeast segmentation on example images from our own test dataset 
(A-C) the YeaZ brightfield dataset (D,E) as well as the YeastNet/YIT dataset (F,G). Masks are 
overlaid on the original images in random colors using the label2rgb function from scikit-image. 



Chapter 3

Discussion

DL can be a versatile tool decreasing the workload of researchers if wielded effectively.

The last three years, during which this thesis was developed, saw considerable

developments in DL and increased adoption of these methods in biomedical research.

With the speed of developments seemingly not slowing down, developing practical

toolkits becomes paramount to keep up with this progress. I hope that with my

contributions, I shifted a few weights in my research areas in the direction of their

gradient. In the following section, I will briefly discuss the studies included in this

thesis and how my computational tools helped to gain new biological insights.
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3.1 Encoding of variation in spatial enhancer activity

The study ‘Regulatory encoding of quantitative variation in spatial activity of a

Drosophila enhancer’ investigated quantitative variation of spatial gene expression

by analysing the spatial activity of the spot enhancer from the yellow gene in

Drosophila biarmipes wings (Le Poul et al., 2020). The activity of this enhancer

changes patterns in pupal wings which can be seen and analysed in microscopy

images. Each wing was imaged in multiple high-resolution tiles, z-planes, and

fluorescence channels, thus keeping the researcher waiting at the microscope until

the next wing could be imaged.

To speed up the process of imaging the wings in the future, a new high-throughput

imaging approach was developed. A Nikon Ti2 Eclipse microscope was fully

automated, processing up to three inserted sample slides and autonomously imaging

the wings in each slide while further passing the images into an end-to-end post-

processing and analysis pipeline. This pipeline is fully hands-off after loading

the microscope, thus allowing the researcher to spend the time on an imaging

run, which might take hours, on other experiments instead. In the first step, the

microscope was instructed to take a whole-slide, low-magnification, bright-field

overview image. This image was fed into a Faster R-CNN model, similar to the

original, unmodified model structure of YeastMate, to detect the coordinates of all

wings on the slide. The microscope is then automatically instructed to take the

detailed, time-consuming image acquisitions at the provided coordinates; successful

acquisition then triggers further downstream analysis processes.

Before the switch to a Faster R-CNN architecture, the first iteration of this project

was driven by a U-Net segmentation model (Ronneberger et al., 2015). While

performing adequately, it also placed a big initial burden on the project members, as

a large number of pixel-wise segmented wings needed to be annotated in the sampled

overview images. While analysis tools often require object masks, automation of
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the microscope only requires object boundary coordinates, called a bounding box,

to determine the location of the higher magnification acquisitions. Annotating

only the bounding boxes instead of the mask increases annotation throughput

drastically; the experience of this project suggests a 10-fold speedup. Besides

being inherently faster to draw on an image, bounding boxes are less reliant on

pixel-perfect annotation and can be drawn with a higher margin of error. This

usually also allows bounding boxes to be annotated in a larger overview without

having to zoom into each object. As discussed in section 1.4.1, generation of ground

truth is often a limiting factor for deep learning applications, so switching to an

object detection model for microscope automation, when possible, can make it

easier to deploy and adapt the pipeline.

While less extensive than in YeastMate, a graphical user interface (GUI) integrated

into a Jupyter Notebook was developed to make it possible for individual research-

ers to interface with the microscope without requiring programming language.

This GUI, together with the microscope automation and interfacing code was

deployed on a workstation directly connected to the microscope with the Nikon

NIS-Elements software. Commands to the microscope were translated on-the-fly

to the Nikon macro language and fed to NIS-Elements, which would perform the

actual acquisition steps. After the acquisition of the overview image, it would be

sent via XML-RPC to a dedicated GPU server, on which the deep learning model

was deployed. Coordinates of the detected wings would then be sent back from

the server to the workstation, which would then translate these coordinates into

more acquisition calls for each wing. Individually acquired tiled images of a single

wing would then have to be stitched into a single image, which is computationally

intensive and had to be done on the dedicated server, after sending the image tiles

back again. As the stitching would usually take longer than an image run, the

individual stitching tasks were inserted into a task queue, finishing the stitching

while still accepting new processing tasks.
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This project highlighted some challenges when combining software solutions with

complicated hardware. Finding the coordinates of a wing in an image is only the

first step, as the coordinates only specify a pixel location within the camera’s

resolution and not a real-world location within the coordinate system of the

microscope. Transforming such virtual observations into real-world instructions

proved challenging and showcased the intersectionality that comes with being a

bioinformatics researcher, requiring knowledge of both the computational side as

well as practical knowledge of the tools and hardware used in biology.
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3.2 Quality control of the mitochondrial genome

Mutations in the mitochondrial DNA (mtDNA) are connected to a wide range

of inherited diseases including metabolic and neurological disorders (Lax et al.,

2011). By studying the mechanisms controlling the clearance of mutant mtDNA,

novel insights into the pathogenesis of these diseases could be gained (Gorman

et al., 2016). Our study ‘Cristae-dependent quality control of the mitochondrial

genome’ showed how cells of the model organism S. cerevisiae distinguish between

functional and defective copies of mtDNA (Jakubke et al., 2021).

3.2.1 Cristae morphology influences mtDNA quality control

This study showed that S. cerevisiae cells can promote the generation of progeny

with a healthy mtDNA population from heteroplasmic zygotes that contain WT and

mutant mtDNA (Jakubke et al., 2021). A central point of the study is that purifying

selection does not require mitochondrial fission but instead depends on intact cristae

morphology. To support this hypothesis and the other methods presented in this

study, an imaging approach was developed in which yeast mating zygotes were

analysed with fluorescence microscopy. Because acquiring enough image samples of

zygotes is a time-consuming process, we developed a tool facilitating this process,

which served as the prototype of our later YeastMate software. We hope to

encourage further microscopic studies in this area by streamlining this imaging

process.

A limitation of this study was that the purifying selection in yeast was only

demonstrated with a model mutant mtDNA variant that lacked the COB gene.

Subsequent studies exploring deletions of other mtDNA-encoded genes could yield

further insights; this could also be done on a large scale by working with strain

libraries comprising thousands of yeast strains that carry gene deletions (Weill

et al., 2018). Here, YeastMate, as a tool facilitating high-throughput microscopy,



150 CHAPTER 3. DISCUSSION

could enable the analysis of a very high amount of different strains. Preliminary

tests on new images acquired in a high-throughput fashion from such a gene library

yielded satisfying results but also revealed additional obstacles.

When working with large enough datasets, perfect recall in object detection was

previously not imperative for our experiments as long as there was no inherent

bias in which objects were missed. However, this might paradoxically not be true

when working with even bigger datasets if not only the total number of images

is increasing, but also the number of variables is growing even steeper. If e.g.,

100.000 images are split over 10.000 different conditions, complete extraction of all

information in each set of 10 images becomes paramount to reach the statistical

significance of the results. This issue is further exacerbated by the inherent

randomness of the high-throughput acquisition process, as image coordinates are

not chosen based on their contents and quality as they would when manually

acquiring them. When dealing with rarer biological occurrences like mating events,

this can quickly lead to insufficient captured objects for some conditions. While

problematic, it is also a potential avenue of improvement by employing microscope

automatisation techniques to choose better image capture locations, similar to my

other work described below (Le Poul et al., 2020).

3.2.2 YeastMate

Our study ‘YeastMate: neural network-assisted segmentation of mating and budding

events in Saccharomyces cerevisiae’ (Bunk et al., 2022) was, on the one hand, an

extension of the previous study, showcasing the computational methods used to

further automate the connection between wet lab experiments and down-stream

analyses. To this end, changes to the DL model underlying this toolkit were made

to adapt to the specific requirements of the study. On the other hand, YeastMate

was also developed into its own stand-alone application suitable for use in other

labs and use cases. Here, the close collaboration between scientific end users and



3.2. QUALITY CONTROL OF THE MITOCHONDRIAL GENOME 151

tool developers proved invaluable, as constant feedback about the tool’s use in the

daily lab routine led through a quick, iterative process to the user interface and

experience accommodations now found in YeastMate.

Detection model

As described in section 1.4.2 in detail, the major innovation of this work is the ad-

dition of a multiclass segmentation header to the Faster R-CNN model architecture

(Ren et al., 2015). While the development of this tool was firmly rooted within the

framework of analysing yeast cells, applications of this model architecture could

reach further. Other life cycle states like meiotic asci in Arabidopsis thaliana might

pose very similar tasks (Lim et al., 2020) that could be solved with YeastMate.

Generally, cell divisions are an integral aspect in the life-cycle of all cells (Hunt

et al., 2011), and being able to track pedigrees might be relevant to other research

prospects. As the user interface of YeastMate includes a custom image annotation

toolkit and an interface for retraining the underlying model on new data, new

applications can be implemented within a few short steps.

With YeastMate, we wanted to mitigate the issues brought up in section 1.4.1

regarding datasets, benchmarks and reproducibility of AI experiments. Wagner

et al. in 2022 showed in a meta-analysis that only approximately 50% of publications

using DL models in computational pathology used an independent test set for

evaluation, which might also not be publicly available. We could corroborate

this observation with the few other available toolkits for yeast detection and

segmentation, which either did not provide any public test data or did not have

their own dataset in the first place. This makes comparing tools difficult, with the

only other public yeast benchmark set being the Yeast Image Toolkit (YIT) (Versari

et al., 2017). YeastMate now provides new datasets for training and benchmarking

on an independent test set. While the YIT focuses on cell tracking and contains
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longer time series, YeastMate focuses on single time-point images and exceeds YIT

in dataset size when counting independent frames.

To facilitate the generation of a big, annotated dataset, a custom annotation

pipeline was developed using the napari annotation toolkit (Sofroniew et al., 2022).

First, our model was solely pre-trained on single-cell detection and segmentation

without the multi-mask header using publicly available yeast images from YeaZ

(Dietler et al., 2020). A new dataset on our acquired images was then created by

manually correcting predicted segmentations by the previous model. While still

time-intensive, because each cell is still inspected individually to ensure annotation

correctness, this approach reduced image annotation time by up to 50%. This

procedure was performed iteratively on sub-sets of the whole dataset, improving

model performance with each step and thus decreasing the time needed to correct

the annotations. This highlighted the usefulness of publicly available datasets,

as they can lessen the burden of a cold start of a model with no ground truth.

Lifecycle transitions could then be annotated on top of the segmentation masks by

simply clicking on the cells that belong together, generating a list of coordinates

and a class label. These coordinates can be matched to the object IDs in the

segmentation mask, out of which a bounding box can be reconstructed by combining

the contained objects and returning their cumulative boundaries. This approach was

not only necessary to connect the single cells to the annotated lifecycle transitions,

as required by the multi-mask model, but also to be very fast, further streamlining

the annotation process.

When comparing YeastMate’s performance with YeaZ (Dietler et al., 2020), Yeast-

Spotter (Lu et al., 2019) and YeastNet (Salem et al., 2021) on each other datasets,

YeastMate is the only tool with consistently high performance across all datasets.

In contrast, other tools suffer from worse generalisation performance. While the

reasons for this are not very apparent and could be attested to many things, we
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suspect the composition of its dataset, rather than the model, significantly impacts

YeastMate’s generalisation performance. On the one hand, YeastMate’s dataset

consists of images from different microscopes, including brightfield and DIC, and

different acquisition parameters like illumination intensity and magnification. This

was extended with extensive data augmentation, further increasing the dataset’s

diversity and thus boosting the model’s generalisation capabilities.

On the other hand, annotated images were first picked out from different, unlabeled

sets of images. Besides focusing on increasing dataset diversity while doing this,

images were picked by prioritising the most challenging images. The difficulty

of images was mainly determined by how well previous prototype iterations of

YeastMate performed on them. While not following any exact query strategy, this

procedure mirrors some active learning techniques. These are commonly used in

DL and can select samples from an unlabeled data pool that would most likely

increase the model’s performance when annotated (Kumar & Gupta, 2020).

An interesting observation arose when comparing generalisation and segmentation

performance between model architectures. YeaZ and YeastNet used variations of

the U-Net (Ronneberger et al., 2015) architecture, thus putting segmentation as

the first step before object detection, as lined out in section 1.2.1. YeastSpotter

and YeastMate, on the other hand, used Mask R-CNN (He et al., 2017) as their

base model. Models using the U-Net architecture seemed to perform better at the

segmentation part, which seems rational and can mainly be explained by Mask

R-CNN’s inability to segment parts of an object that lie outside the detected

bounding box. Curiously, generalisation performance was worse in U-Net models.

Unfortunately, as there were other huge differences like dataset sizes and composi-

tion, no conclusions can be drawn from this and would have been outside the scope

of the study. Still, further insights on when best to use segmentation or object
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detection frameworks could be gained by studying the generalisation performance

of these model architectures.

Software architecture

When developing YeastMate into its stand-alone tool, we tried to combine the

positive user experience of a GUI with flexible interoperability with existing tools

and workflows. The GUI was built as a web application with React.js and bundled

into a local application with Electron. While React.js was the most popular web

development framework in 2022 (Vailshery, 2022), the use of it or web user interfaces,

in general, remains rare in biological research. The use of web technologies added

complexity to our tool but also added the possibility of deploying YeastMate, as

well as further projects building upon its codebase, as a remote web application.

A remote server acting as a service provider can help the end-user, as they will

not have to worry about any technical requirements, as well as the tool developer,

who can directly access the host system to debug and monitor the system. As

mentioned in section 1.4.1, sufficient computational resources might not always

be available for each researcher, and while YeastMate was explicitly designed to

even work on low-grade systems, its use in high-throughput pipelines might require

additional computing power. To mitigate this, YeastMate’s architecture allows it

to be easily set up in cloud environments, such as AWS, Microsoft Azure or Google

cloud, following established workflows enabling deployment in a few clicks (Juturu

& Yoon, 2018).

This focus can also be seen in the modularity of YeastMate’s building blocks (Fig.

3.1). Each block can be independently deployed and can communicate via HTTP

requests with internal or external components. At first sight, this might seem like a

disproportionate effort for a scientific project, but we hoped two achieve two goals

with this operational architecture. On a broader scale, YeastMate might serve as a

knowledge source for future projects. As discussed in section 1.4.3, knowledge of
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Figure 3.1: Operational architecture of the YeastMate package (Bunk et al., 2022).

best practices in model deployment is still shifting and can be hard to find. While

we currently do not provide cookie-cutter templates of our architecture, its modular

approach allows other researchers to adapt and incorporate individual components

of our system into their projects.

The second goal was interoperability with other systems. While a user interface

expands the pool of potential users, many researchers understandably prefer to use

new tools as programming scripts or packages or in conjunction with existing tools

like Fiji (Schindelin et al., 2012), which is omnipresent in image analysis. While our

DL model architecture proved challenging to implement directly in Fiji-compatible
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ways, we developed a Fiji plugin acting as a client that can communicate with the

same analysis backend used by our user interface.

To our knowledge, YeastMate is already used in some labs and has been included

in the Cell-ACDC tracking framework (Padovani et al., 2022). Even though cell

segmentation has been an afterthought while building YeastMate as a tool for

detecting lifecycle transitions, we have received positive feedback and interest

regarding whole-image, single-cell segmentation, further attesting to YeastMate’s

generalisation performance and simplicity in use.
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Abbreviations

AI artificial intelligence
ANN artificial neural network
BCE binary cross-entropy
CE categorical cross-entropy
CNN convolutional neural network
CV Computer Vision
DL deep learning
GUI graphical user interface
HCS high content screening
HTM high-throughput microscopy
MAE mean absolute error
ML machine learning
MSE mean squared error
mtDNA mitochondrial DNA
ReLU rectified linear unit
RPN region proposal network
SGD stochastic gradient descent
SNR signal-to-noise ratio
SVM support vector machine
tanh hyperbolic tangent
YIT Yeast Image Toolkit
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